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Abstract—Results from particle-in-cell simulations of the three-dimensional regime of proton acceleration
in the interaction of laser radiation with a thin spherical target are presented. It is shown that the density of
accelerated protons can be several times higher than that in conventional accelerators. The focusing of fast pro-
tons created in the interaction of laser radiation with a spherical target is demonstrated. The focal spot of fast
protons is localized near the center of the sphere. The conversion efficiency of laser energy into fast ion energy
attains 5%. The acceleration mechanism is analyzed and the electron and proton energy spectra are obtained.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of laser technology has made it
possible to create table-top superintense lasers, which
may find applications in the field of charged-particle
acceleration, nuclear fusion research, and medicine [1–
5]. One of the most important applications is related to
the acceleration of dense proton beams by ultraintense
laser radiation. As was shown previously in two- and
three-dimensional computer simulations of the interac-
tion of laser radiation with thin dense targets [6–8], the
ions are accelerated most efficiently at the back side of
the target in the laser-pulse propagation direction.
High-energy ions accelerated at the rare side of a thin
foil were observed experimentally in [9]. Previous
investigations showed that optimum conditions for effi-
cient proton acceleration are created in a slab of mar-
ginally underdense plasma with a thickness of several
tens of laser wavelengths [6–8, 10] or in a thin dense
target (foil) with a thickness of several laser wave-
lengths [6–8]. This means that only the leading part of
the pulse causes the generation of fast particles. There-
fore, ultrashort (femtosecond) laser pulses seem to be
the most appropriate for proton acceleration. This cir-
cumstance initiated a discussion of the modified fast
ignition concept [11–13]. Recall that, according to the
fast ignition concept, first formulated by Tabak et al.
[2], the thermonuclear fuel is initially compressed by a
long laser pulse up to a high density at a relatively low
1063-780X/01/2705- $21.00 © 20363
temperature. Then, a small fraction of compressed fuel
is rapidly heated to the ignition temperature. The fast
ignition concept implies that the thermonuclear reac-
tion is ignited in the final stage of compression by rela-
tivistic electrons accelerated by a petawatt laser pulse
(the third pulse) in a dense target, into which laser radi-
ation penetrates through a thin channel produced by the
second laser pulse. One can find a detailed discussion
of this scheme in [2, 14–18] and the literature cited
therein. In [11–13], it was proposed to ignite the ther-
monuclear reaction by high-energy ions (instead of
electrons), which can be produced in the interaction of
a petawatt laser pulse with a thin foil. The foil, which is
to be deformed in a desired fashion, should ensure the
focusing of the accelerated ions onto the target.

The goal of this paper is to quantitatively investigate
the efficiency of proton acceleration in the interaction
of a petawatt laser pulse with a thin dense spherical tar-
get, to identify the acceleration mechanism, and to
study how the energy of fast protons depends on the
radiation intensity. We present the results of three-
dimensional particle-in-cell (PIC) simulations of the
laser acceleration of protons. As applied to the problem
under study, we emphasize the necessity of three-
dimensional simulation, which is related to the qualita-
tively different behavior of the electrostatic potential in
three-dimensional geometry as compared to one- or
two-dimensional geometries.
001 MAIK “Nauka/Interperiodica”
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When formulating the initial and boundary condi-
tions, we follow the approach used previously to simu-
late the interaction of laser radiation with a thin foil in
one-dimensional geometry [19] and two- and three-
dimensional geometries [6–8, 20]. In the problem as
formulated, the ions are accelerated due to the irradia-
tion of a part of a spherical target by a high-power laser.
As was shown in [7, 8], a curved target ensures the effi-
cient collimation of the fast-ion beam. Therefore, in our
simulations, a thin spherical foil is used to focus proton
beams.

2. FORMULATION OF THE PROBLEM 
FOR NUMERICAL SIMULATION

We use a fully three-dimensional, electromagnetic
relativistic PIC code. At each time step, the coordinates
and momenta of the particles and the electromagnetic
field are calculated for the given initial and boundary
conditions. All the variables to be calculated are func-
tions of time and three spatial coordinates x, y, and z.
The code used complies with the mass conservation
law and the continuity equation. Adapting the particle
form-factor to the spatial grid ensured that energy in the
system was conserved with a high accuracy (about
0.1%) and substantially decreased artificial plasma
heating inherent in the PIC method. The code will be
described in more detail in a separate paper. One simu-
lation run required about 10 h of a 32-processor Cray
T3E supercomputer at about 14GB RAM.

The simulation box is 30 µm wide, 30 µm high, and
40 µm long. Inside the simulation box, a target—a
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Fig. 1. Filamentation of laser radiation: distribution of

(x, y) in the z = 8 µm plane (in the target shell) at t = 69 fs.

The characteristic distance between the filaments is on the
order of the laser wavelength.
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spherical shell of radius 22 µm with the center at x =
15 µm, y = 15 µm, and z = 30 µm—is placed. The shell
thickness is 5 µm. Since, at the laser intensities under
consideration, the shell material is ionized almost
instantaneously, we assume that the target consists of a
dense electron–proton plasma. The proton-to-electron
mass ratio is taken to be 1836. The initial electron and
proton densities in the shell are equal to 1.6 × 1021 cm–3.
In this case, the ratio of the initial plasma density to the
critical density is n/nc = 1.5 for a laser wavelength of
1 µm. The spatial grid consists of 3.6 × 107 cells
(300 cells along the x-axis, 300 cells along the y-axis,
and 400 cells along the z-axis). Such spatial resolution
corresponds to the collisionless skin depth Ò/ωpe . The
total number of quasi-particles is 1.6 × 107 for each
plasma species (electrons and protons). This corre-
sponds to about four particles per cell for electrons
(protons) in the shell. Initially, both the electrons and
ions are cold.

The laser pulse is initialized in the vacuum region to
the left of the target. The pulse is linearly polarized (the
electric field is directed along the y-axis) and propa-
gates along the z-axis. We consider linear polarization
because we are interested in the effect of polarization
on the collimation and transportation of fast protons.
The transportation of fast protons toward the target
requires a high degree of collimation as well as the neu-
tralization of the electric charge of the accelerated pro-
ton beam by electrons. Obviously, azimuthal asymme-
try can only worsen the beam collimation. The undesir-
able effect of azimuthal asymmetry should be most
pronounced in the case of linear polarization. We
assume that the laser wavelength is 1 µm. The laser
pulse is Gaussian in shape. The pulse length is 24 µm
(the duration is 70 fs), and the pulse width (at half-max-
imum of the intensity) is 15 µm. We carried out a series
of runs for different laser intensities in the petawatt
power range: 1021, 5 × 1021, and 1022 W cm–2. These
intensities correspond to dimensionless laser ampli-
tudes of a = 27, 60, and 80, where a = eE/meωc.

We assume the periodical boundary condition over
the x and y coordinates. At the left and right boundaries
(the maximum and minimum values of z), we impose
the absorption conditions for the field and particles.

The simulations are stopped at 400 fs. By this time,
the laser pulse has left the box and the first protons have
passed their focal spot near the center of the spherical
shell.

3. SIMULATION RESULTS

As was mentioned above, we carried out simula-
tions for several laser intensities. Figures 1–8 present
the results for I = 1021 W/cm2 only, because the interac-
tion pattern varies insignificantly in the intensity range
under study.

Figure 1 shows the initial stage of the interaction of
an intense laser with a thin dense shell. In this stage,
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
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small-scale nonlinear self-modulation of laser radiation
occurs. The figure presents the high-resolved distribu-

tion of the squared y-component of the electric field 
in the (x, y) plane at z = 8 µm. The laser field induces a
strong electric current along the y-axis; the nonlinear
evolution of this current results in the formation of thin
current filaments with a transverse size of about the
laser wavelength. These filaments survive throughout
the entire process of the laser–target interaction and are
still visible after the pulse has passed the target. Similar
filamentation resulting in the electron density modula-
tion along the electric field of a relativistically strong,
linearly polarized electromagnetic wave in a dense
plasma was observed in computer simulations reported
in [21]. In that paper, it was shown theoretically that fil-
amentation occurs due to the onset of a parametric
instability in a dense plasma. It was also shown that, in
a dense plasma, filamentation develops mainly in the
polarization direction of the electromagnetic wave.

Figure 2a shows the laser pulse penetrating through
the target. The pulse propagates from left to right. The
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Fig. 2. (a) Surface of a constant value of (x, y), demon-

strating the shape of the pulse, and (b) electron cloud pro-
duced by laser radiation near the target surface at t = 139 fs
in the region (subbox) 5 < x < 24 µm, 5 < y < 24 µm, and
4 < z < 32 µm.
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figure presents the distribution of the squared y-compo-

nent of the electric field , but with a lower spatial
resolution as compared to Fig. 1. For this reason, small-
scale filaments are not seen here. Under the action of
laser radiation, the electrons acquire mechanical
momentum in the direction of the pulse propagation
and leave the target. The resulting distribution of the
electron density is shown in Fig. 2b. The characteristic
electron density is 1.6 × 1021 cm–3. Figure 2 shows the
subbox 5 < x < 24 µm, 5 < y < 24 µm, and 4 < z < 32 µm
near the target.

At this intensity, heavy protons are not accelerated
directly by the laser field but acquire mechanical
momentum in the charge-separation field, mainly along
the normal to the target surface. We note that, in addi-
tion to the acceleration in the charge-separation field,
there may be other acceleration mechanisms such as
Coulomb explosion [4, 6–8, 21, 22] and acceleration
caused by eddy electric fields induced by rapidly vary-
ing quasistatic magnetic fields that are generated by
fast electrons in a plasma [6, 23, 24]. The relative con-
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Fig. 3. (a) Electron energy distribution function averaged
over the subbox shown in Fig. 2 and (b) the z-component of
the electric field calculated by formula (1) (Ez = –Te∂xne/ene
with Te = 1.9 MeV) as a function of z (dashed curve) and that
obtained from computer simulations (solid curve) at t =
69 fs. The characteristic electric field is E0 = 1012 V/cm.
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tributions from these mechanisms depend on the
parameters characterizing the laser–target interaction.
However, for the currently discussed laser intensities
corresponding to at most multipetawatt laser pulses, the
laser energy is first transferred to the electrons; then,
the ions are accelerated by quasistatic collective fields
arising due to the redistribution of the electron compo-
nent (see the discussion in [25, 26]). The characteristic
energy of fast electrons observed in experiments on the
interaction of petawatt laser pulses with matter is
100 MeV [27].

For the parameters of the laser–target interaction
under consideration, the ions are accelerated by the
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Fig. 4. Distributions of the proton density (a) at t = 200 fs
and (b) by the time the laser pulse has already left the simu-
lation box. The higher spatial resolution in plot (b) makes it
possible to see the details of the fast ion distribution in the
subbox shown in Fig. 2.
charge-separation field. This is confirmed by the depen-
dences plotted in Fig. 3. Figure 3a presents the electron
energy spectrum averaged over the subbox shown in
Fig. 2. It is seen that the electron distribution function
has the second maximum at an energy of 2 MeV. The
z-component of the electric field can be calculated from
the Vlasov equation with the known electron distribu-
tion function. After averaging over x and y, we obtain

(1)

where Lx and Ly are the subbox dimensions in the x and
y directions.

Substituting as Te, eff the energy corresponding to the
second maximum in the electron distribution function
into the right-hand side of expression (1) and calculat-
ing the partial derivative of the electron density over z,
we obtain the electric field profile shown in Fig. 3b
(dashed curve). The solid curve in Fig. 3b shows the
dependence obtained from simulations. The satisfac-
tory agreement of the two curves indicates that the
main effect is the generation of the charge-separation
electric field along the z-axis. The electric field is pro-
portional to the mean electron energy and the effective
electron density gradient. The field is approximately
normal to the target surface.

The plasma density in the shell is higher than the
critical one. Nevertheless, the laser pulse penetrates
through the target due to nonlinear effects such that the
change in the plasma refractive index in the relativisti-
cally strong electromagnetic field and the ponderomo-
tive pressure, which leads to a local reduction of the
density in the target. As a result, after the pulse has
passed through the target, a region with a reduced
plasma density is formed near the axis (Fig. 4a). Due to
the destruction of the target, proton acceleration termi-
nates. This is related to violating the conditions that are
necessary for the formation of a strong charge-separa-
tion field due to the abrupt decrease in the plasma den-
sity. Although the accelerating field acts on the ions
during a finite time, it is so strong that the ions start
moving, as is seen in Fig. 4b. The figure presents the
spatial distribution of the density of fast protons in the
subbox shown in Fig. 2.

Fast protons form a well-collimated beam (Fig. 5).
Protons are focused due to the spherical shape of the
target. Figure 5 shows the distributions of the proton
density in the (x, y) plane at distances of δz = 11 and
19 µm from the target surface. Since the left edge of the
target is located at z = 8 µm, Fig. 5a shows the region in
front of the focal spot and Fig. 5b shows the region just
behind the focal spot. The geometric center of the
spherical target is at z = 30 µm. Figures 5c and 5d
present the distributions of the x-component of the pro-
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Fig. 5. Distributions of (a, b) the fast proton density and (c, d) ı- and (e, f) y-components of the proton momentum (pxi and pyi) in
the planes z = (a, c, e) 19 and (b, d, f) 27 µm at t = 347 fs. Plots (c, e) and (d, f) demonstrate the focusing and defocusing of protons,
respectively. The geometric center of the spherical target is located at z = 30 µm.
ton momentum pxi in the planes z = 19 and 27 µm,
respectively. The distributions of the y-component of
the proton momentum pyi in the planes z = 19 and
27 µm are presented in Figs. 5e and 5f, respectively.
The distributions are shown for a time of 347 fs. Fig-
ures 5c and 5e demonstrate the focusing of the proton
beam, and Figs. 5d and 5f demonstrate the defocusing
of the proton beam. The direction of the particle motion
is shown by shades of gray, from which it is also seen
that the plane δz = 19 µm lies behind the focal spot. The
results of simulations demonstrate that the position of
the proton focal spot is determined by the curvature of
the target shell. It is seen in Figs. 5c–5f that the focal
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
spot lies near the geometric center of the spherical tar-
get.

The gray scale on the right of Fig. 5b shows the pro-
ton density in units of 1.66 × 1021 cm–3. Figure 5c pre-
sents the distribution of the transverse component of
the proton momentum. It is seen that the proton density
in the beam attains a value on the order of 1019 cm–3. We
note that the proton density changes insignificantly in
the course of focusing (as it might be in the case of
focusing a cold beam of noninteracting particles). This
is related to the fact that, in our case, the particle distri-
bution over momenta is nonuniform along the longitu-
dinal coordinate. The distribution of fast ions over the
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Fig. 7. (a) Proton energy distribution function and proton distributions in the phase planes (b) (px, py) and (c) (pz, z) in the subbox
shown in Fig. 5 at t = 347 fs.
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longitudinal momenta is shown in Fig. 7c, which is dis-
cussed below. As a result, an elementary volume con-
tracts in the transverse direction due to focusing and
stretches in the longitudinal direction. The number of
protons in the subbox 8 < x < 22 µm, 8 < y < 22 µm, and
18 < z < 28 µm is approximately equal to 1010. These
are mainly fast protons with energies of 4–50 MeV. For
comparison, the total number of protons in the simula-
tion box is 7 × 1012. The maximum value of the laser
energy in the simulation box is about 50.2 J for a
dimensionless amplitude of ‡ = 27. By the time the
laser pulse leaves the simulation box, the total energy
of fast protons in the above subbox is ~2.4 J. Hence, in
simulations with a = 27, the conversion efficiency of
laser energy into the energy of fast protons is about 5%.

Another interesting result is that the fast protons
polarize the electron component. Under the action of
the radial electric field produced by the protons, the
electron density changes and the local minimum of the
electron density, which correlates with the maximum of
the proton density, is formed at the axis. This is clearly
seen in Fig. 6. We emphasize, however, that the electron
density at the axis is much lower than the proton den-
sity. Note that, in simulations carried out for the other
parameters of the laser–target interaction [6, 8, 10], the
local values of the proton density were so high that the
conditions for the Coulomb explosion mechanism for
particle acceleration were satisfied (for details, see [26]
and the literature cited therein).

The final proton distribution function and the struc-
ture of the proton distribution in phase space are shown
in Fig. 7. The mean energy (effective temperature) of
protons in the tail of the distribution function is 7 MeV
(see Fig. 7a). At the same time, the mean energy of fast
electrons is 5.4 MeV (Fig. 3a). The structure of the pro-
ton distribution in phase space (Figs. 7b, 7c) indicates
that the divergence of the proton beam is relatively low.
The characteristic value of the transverse component of
the proton momentum is approximately ten times lower
than that of the longitudinal component. For a = 27, the
maximum kinetic energy of fast protons is approxi-

mately equal to mic2(  – 1) ≈ 50 MeV (here, we
take into account that the maximum value of the proton
momentum is 0.33mic). This energy agrees with the
estimate for the energy that the protons can acquire in
the electric field Ez shown in Fig. 3.

As the laser intensity increases (a = 60 and 85), the
maximum value of the longitudinal component of the
proton momentum increases. The momentum and
energy increase to pzi = 0.4mic and 87 MeV for ‡ = 60
and to pzi = 0.44mic and 112 MeV for ‡ = 85, respec-
tively. The dependence of fast proton energy on the
laser amplitude is described by the approximate for-
mula Ei = Kaβ, where K = 5, β = 0.7, and energy is mea-

1 0.1+
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sured in MeV. This formula may also be written in
the form

(Ei[MeV]) = 5(I[W/cm2]λ2[µm]/1.38 × 1018)0.35. (2)

The directed electron flows produce the slowly
varying electric current in the plasma, which, in turn,
generates the magnetic field. In our case, the magnetic
field whose structure is shown in Fig. 8 is generated
near the target. Figure 8a presents the distribution in the
(x, y) plane of the absolute value of the transverse com-

ponent of the magnetic field B⊥ (x, y) = , aver-
aged over the region 11 < z < 16 µm. Figure 8b shows
the distribution of the z-component of the magnetic
field in the (x, y) plane. It is seen that the magnetic field
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Fig. 8. Distributions of the (a) transverse and (b) longitudi-
nal components of the quasistatic magnetic field (both aver-
aged over the region 11 < z < 16 µm) at t = 347 fs. The azi-
muthal component of the magnetic field is directed clock-
wise. The magnetic field is measured in units of 2.9 × 106 G.
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possesses a pronounced multipole structure. The azi-
muthal component of the magnetic field is generated by
the electric current produced by fast electrons as they
move along the normal to the target surface. For this
reason, the azimuthal magnetic field mainly defocuses
fast protons. Various aspects of the influence of sponta-
neous magnetic fields on the dynamics of fast protons
are discussed in [6, 7, 26, 27], where, in particular, the
focusing effect of the magnetic field generated by fast
protons was demonstrated for the other regimes of
laser–plasma interaction.

4. CONCLUSIONS

We have presented the results of computer simula-
tions of the three-dimensional regime of proton accel-
eration in the interaction of a high-intensity laser pulse
with a thin spherical plasma shell. The beam of fast pro-
tons is almost axisymmetric, which indicates that the
laser polarization insignificantly affects proton acceler-
ation. The linear polarization of a laser pulse only
affects the structure of small-scale filamentation, and
does not cause the azimuthal asymmetry of the proton
beam. In our simulations, the density of fast protons
attains 1019 cm–3. The maximum momentum of fast
protons is 0.3mic. Protons are accelerated for a rela-
tively short time until the plasma is redistributed sub-
stantially and the plasma density in the axial region
strongly decreases. The reduction of plasma density
under the action of the ponderomotive force of laser
radiation results in violating the conditions for the gen-
eration of a strong charge-separation electric field. It is
shown that profiling the target in a proper manner cre-
ates the conditions for the generation of dense colli-
mated beams of fast protons. Accelerated protons are
focused near the geometric center of the spherical tar-
get. The linear polarization of laser radiation causes no
appreciable azimuthal asymmetry of the focused fast-
proton beam. It is worth noting the observed multipole
structure of the longitudinal component of the magnetic
field generated by fast electrons. It is found that, after
the acceleration process comes to an end, the electric
field of the proton beam leads to plasma polarization.
The electric field attracts the electrons, which results in
the regime of quasineutral propagation. This regime is
more pronounced in three-dimensional simulations
than in two-dimensional simulations. On the one hand,
the transition to the quasineutral propagation regime
results in the termination of acceleration. On the other
hand, this regime makes possible the transportation of
fast-ion beams over large distances. Obviously, this
effect is favorable for igniting thermonuclear targets by
fast ions. It is found that the energy of fast ions
increases relatively slowly with increasing laser inten-
sity. We anticipate that the use of multilayer targets sub-
stantially increases both the conversion efficiency of
laser energy into the energy of fast particles and the
number of accelerated protons, because, in such targets,
the protons will be successively accelerated in each fol-
lowing shell.
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Abstract—The energy characteristics of an electron bunch accelerated by a wakefield are largely determined
by the initial bunch dimensions. Present-day injectors are still incapable of ensuring the initial spatial parame-
ters of the bunches required for their acceleration without increasing the energy spread of the bunch electrons.
In connection with this, the possibility is studied of improving the energy characteristics of an accelerated
bunch by precompressing it in the longitudinal direction in the stage of trapping by a wakefield. Analytic for-
mulas are derived that describe the one-dimensional dynamics of the spatial and energy characteristics of a short
(much shorter than the wakefield wavelength) electron bunch in both the trapping and acceleration stages. The
analytical results obtained are shown to agree fairly well with the results from one-dimensional and three-
dimensional simulations, provided that the electrons are injected into the region that is optimum for accelera-
tion. The possibility is discussed of forming compressed bunches so as to ensure the high quality of the bunch
in the course of its acceleration to high energies. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Successful experiments on the generation of super-
strong (~100 GV/m) accelerating fields by high-power
short laser pulses in plasmas have stimulated increased
interest in theoretical investigations of the main princi-
ples of electron acceleration by a wake plasma wave
[1–5]. At present, one of the most important problems
is that of providing a high quality of the electron
bunches. Among the usual requirements for the quality
of an accelerated bunch is the requirement that the rel-
ative energy spread of the bunch electrons be small
(see, e.g., [6]). In many applications (see [7] and the lit-
erature cited therein), a very important parameter of the
accelerated electrons is the smallness of the bunch
length in the propagation direction. Previous investiga-
tions on the acceleration of electron bunches [8] have
shown that the degree to which the bunch electrons are
monoenergetic depends strongly on the bunch length. It
is desirable that the bunch be as short as possible
throughout the entire acceleration process for the rela-
tive energy spread of the accelerated electrons not to
increase. However, present-day injectors are still inca-
pable of forming bunches of the desired length. For this
reason, before proceeding to acceleration, it is neces-
sary to additionally shorten the bunch in the direction in
which it is to be accelerated. In particular, the bunch
can be precompressed in the longitudinal direction via
the bunching of the electrons in the course of their trap-
ping by the wakefield, provided that they are injected at
a velocity much lower than the phase velocity of the
wake wave. The effect of bunching on the electron dis-
tribution in the coordinate–velocity phase plane was
demonstrated more than once in investigations of the
dynamics of long electron bunches during their trap-
ping and acceleration by a potential wave. Local bunch-
1063-780X/01/2705- $21.00 © 20372
ing of electrons was found to occur not only in real
space (along a physical coordinate) [7, 9] but also in
energy space [9–11]. In particular, the possibility of
using the bunching mechanism to additionally com-
press a fairly short injected electron bunch was demon-
strated in our previous numerical [12] and theoretical
[13] studies.

Here, we present a more detailed, analytic investiga-
tion of the main features of the dynamics of both the
spatial and energy characteristics of a one-dimensional,
short (in comparison with the wakefield wavelength)
electron bunch during its trapping and acceleration by
the wakefield, provided that the injection velocity of the
electrons is lower than the phase velocity of the wake
wave. In Section 2, we derive the main formulas, study
the compression of a short electron bunch, and analyze
the evolution of the energy characteristics of the bunch
during its trapping by the wakefield. This stage of
acceleration is usually referred to as the bunching
stage. In Section 3, we study the evolution of the energy
characteristics of a bunch during its injection into the
accelerating stage, where the bunch electrons move
with a velocity higher than the phase velocity of the
wake wave. Our investigations may find important
applications, e.g., in developing a multistage accelera-
tion scheme, in which the bunch is accelerated to high
energies in successive accelerating stages. The analytic
formulas obtained in different limiting cases are com-
pared with the results from both one-dimensional
numerical simulations and simulations of the trapping
and acceleration of three-dimensional (axisymmetric)
bunches. In the Conclusion, we summarize the results
obtained.
001 MAIK “Nauka/Interperiodica”
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2. BASIC EQUATIONS DESCRIBING
THE LONGITUDINAL COMPRESSION 

OF A SHORT ELECTRON BUNCH 
BY A WAKEFIELD

The longitudinal compression of a monoenergetic
electron bunch in the acceleration direction or, equiva-
lently, in the direction of the wave phase velocity Vph
(the z-axis) is studied using a one-dimensional model.
This approach is valid when the radius Rb of the
injected bunch is much smaller than the characteristic
radius of the optimum injection region [14]. We
consider a spatial axisymmetric wake wave with the
potential

(1)

where ξ = kp(z – Vpht), kp = ωp/c is the wavenumber, ωp =

 is the Langmuir frequency of the plasma
electrons, Rp is the characteristic transverse scale length
of the wakefield, and φ0 is the maximum potential. In
such a wave, the maximum radius of the optimum
injection region for bunch electrons injected at an
energy Einj is estimated as [14]

(2)

For Rb ! Rmax, opt, we can assume that the wave
potential φ is one-dimensional; i.e., in the laboratory
frame, it depends only on the variable ξ = kp(z – Vpht).
It is assumed that the phase velocity of the wake wave
is close to the speed of light (Vph ≈ c), as is the case with
a wakefield generated by a laser pulse in an underdense
plasma (ω0 @ ωp, where ω0 is the laser frequency).

In order for an electron bunch to be compressed by
a wakefield, the energy Einj of the injected electrons
should be such that their velocity is lower than the wake

phase velocity; i.e., Einj < mc2γ, where γ = 1/
and β = Vph/c. Physically, the bunch is compressed by
the longitudinally nonuniform force Fz = |e |∂φ/∂z, in
which case the leading part of the accelerated electron
bunch experiences a weaker force than the trailing part.
Consequently, the compression is most pronounced for
the electrons that pass through the region where the
negative force gradient is the largest, ∂2φ/∂z2 < 0. Usu-
ally, this region occurs in the vicinity of the maximum
of the potential φ(ξ) of a plasma wave. On the other
hand, it is desirable that the bunch energy in this region
be as low as possible, in which case the relativistic elec-
tron mass will be lower and the longitudinally nonuni-
form force Fz = |e |∂φ/∂z will more strongly affect the
electron trajectories and will better compress the
bunch. Hence, in order for a bunch with the above
injection energy to be compressed most efficiently, it
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should be injected into the vicinity of the point of the
maximum wave potential. It is this situation that we
will consider below.

In the rest frame of the wave, the motion of an indi-
vidual electron is described by the equation

(3)

where p' is the longitudinal electron momentum, z' is
the coordinate in the propagation direction of the wave,
φ'( ) is the wave potential (which is time indepen-

dent in this frame), and  is the wavenumber. The
injection conditions are such that the bunch electrons
move initially in the negative direction along the z'-axis
and start moving in the positive direction after reflec-
tion from the turning points.

Equation (3) has the first integral

(4)

which indicates the conservation of electron energy in
the potential wave. Solving Eq. (3) in quadratures
yields the electron trajectory up to the turning point:

(5)

where z' and E ' are the instantaneous coordinate and
energy of the electron at time t '.

Our formulas can be converted from the wave rest
frame to the laboratory frame by means of relativistic
transformations of the coordinates and time. In particu-
lar, the time interval ∆t ' = t ' –  in the wave rest frame
satisfies the relationship

(6)

The spatial coordinate z' satisfies the relationship z' =
γ{z – Vpht}; thus, it is expedient to introduce the self-
similar variable ξ = kp(z – Vpht) in the laboratory frame.

Using these relationships and applying relativistic
transformations to the electron energy and wave poten-
tial, we reduce expressions (4) and (5) to

(7)
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Expressions (7) and (8) relate the parameters of the
injected electrons (z, E, etc.) at the initial time tinj to the
parameters for all subsequent times. If two electrons in
the bunch are initially separated by the sufficiently
short distance ∆ξinj , then the electron trajectories will
always be close to one another. The distance ∆ξ
between the trajectories at any time and the energy dif-
ference ∆E between the electrons can be determined
from expressions (7) and (8). This can be done by
expanding these expressions in powers of the small
variations of the coordinates, ∆ξinj = kp∆zinj ! 1 and ∆ξ =
kp∆z ! 1, and energy ∆E ! mc2 (recall that, at the initial
time, we have ∆Einj = 0). Since the bunch is injected
into the vicinity of the point of the maximum potential,
it is convenient to choose as the reference electron
(about which the variations will be made) the bunch
electron that is injected exactly at the point at which the
potential is maximum ξinj = ξm, where φ(ξm) = φmax.
Note that, in this case, we have dφ(ξinj)/dξ = 0; conse-
quently, in the expansions, it is necessary to take into
account terms on the order of ~(∆ξinj)2.

In this way, we can solve the corresponding equa-
tions to obtain

(9)
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Using formula (9), we can determine the degree to
which a bunch of finite length Lb0 can be compressed,
provided that it is properly injected into the vicinity of
the point of the maximum potential, i.e., into the region
[ξm + ∆ξ0, ξm], where ∆ξ0 = ∆ξinj = –kpLb0 is the initial
dimensionless bunch length such that |∆ξ0 | < 1.
According to formula (9), the length Lb of a homoge-
neous monoenergetic electron bunch accelerated by the
wakefield in the ξ direction decreases according to
the law

(11)

An important consequence of formula (11) is the
fact that the bunch rapidly shortens in the vicinity of the
point ξtr at which the bunch electrons become trapped
by the wave and start to move in the reverse direction
and p'(ξ) and, accordingly, α1(ξ) approach zero. The
minimum length of the bunch is determined only by its
initial length and the shape of the wave potential at the
points where the potential is maximum and where the
wave traps the electrons:

(12)

In particular, for a linear harmonic wave with the poten-
tial φ(ξ) = –φ0cos(ξ), which is maximum at the point
ξm = π, formula (12) implies that the bunch is the short-
est when the electrons are trapped by the wave at the
point ξtr = π/2, the minimum bunch length being

(13)

Note that, in a homogeneous plasma (as well as in a

plasma channel wider than ), the three-dimensional
structure of a linear wake wave with potential (1) is
such that the turning point ξ tr = π/2 lies at the boundary
of the focusing phase of the wake wave, ξ ∈  [π/2, 3π/2],
where the radial force of the wave has a focusing effect
on the electrons (this is the necessary condition for sta-
ble electron acceleration in real three-dimensional
geometry) [15, 16].

According to formula (13), for the compression to
be efficient, the initial bunch length should not exceed
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the skin depth . Moreover, the degree of compres-
sion Lb0/Lb increases with decreasing the initial bunch
length and does not depend directly on the amplitude of
the wake wave and its phase velocity (of course, pro-
vided that the wave traps the injected electrons).

In order for the bunch electrons injected at an energy
Einj into the vicinity of the point of the maximum poten-
tial φmax to be trapped by the wake wave at a given point
ξtr, the difference between the maximum wave poten-
tial and the wave potential at the trapping point should
satisfy the condition

(14)

In this case, in order to achieve stable compression
(with allowance for the transverse motion of the bunch
electrons), the trapping point should be chosen so that
the electrons moving in the wakefield in the longitudi-
nal direction in the region ξ ∈  [ξtr, ξm] always remain
inside the focusing phase of the wave. From formula
(14), we can draw the following, physically obvious,
conclusion: the higher the phase velocity and the lower
the energy of the injected bunch, the higher wakefield
amplitude is required for the bunch to be trapped. For
present-day injectors operating at Einj ≈ 10mc2, the
amplitude of the wakefield capable of trapping the
injected bunch turns out to be relatively small. Thus, for
the bunch energy Einj = 20mc2 and γ = 50, a wakefield
amplitude of |e |φ0/mc2 ≥ 0.01 is sufficient to trap the
injected bunch.

Figure 1 shows the bunch length in the trapping
stage as a function of the initial bunch length for two
values of the normalized acceleration distance Lacc /Lph,
where Lacc is the distance the bunch propagates in the

laboratory frame and Lph = 2πγ2  is the maximum
acceleration distance that the bunch passes when mov-
ing from the point of the minimum potential φmin to the
point of the maximum potential φmax. The bunch is
injected at the dimensionless energy Einj /mc2 = 20 into
a wake wave with γ = 50 and |e |φ0/mc2 = 0.01. The solid
and dotted lines present analytical results obtained for
Lacc/Lph ≈ 0.1 and 0.234, respectively, from formula
(11), in which coordinate ξ is expressed in terms of
Lacc/Lph via the solution of the equations of motion; the
symbols demonstrate the numerical results obtained
from one-dimensional simulations of the bunch
dynamics for the same acceleration distances. For a
sufficiently short injected bunch such that kpLb0 ! 1,
which is the applicability condition for expression (11),
Fig. 1 shows a good agreement between the one-dimen-
sional analytical and numerical results on the decrease
in the relative bunch length. For a more detailed graph-
ical illustration of the comparison between analytical
and numerical (in particular, three-dimensional) results

kp
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on bunch compression, we refer the reader to our paper
[14]. Note that the applicability range of the simple
asymptotic expressions (12) and (13) for the minimum
length to which the accelerated bunch is compressed at
the trapping instant is broader than the range deter-
mined by the condition kpLb0 ! 1, under which formu-
las (11) and (12) were derived. In fact, according to
Fig. 1, the expression for the compression factor at the
trapping instant, αc = kpLb0/2, which follows from for-
mula (13) and is illustrated by the solid line, describes
well one-dimensional numerical results for a broad
range of the initial bunch lengths up to kpLb0 ≈ π/2, the
acceleration distance being Lacc/Lph = 0.234, which
indicates that the electrons injected at the point ξm = π
where the potential is maximum are trapped at the point
ξtr = 1.67 ≈ π/2. For shorter acceleration distances (see,
e.g., the dotted line obtained for Lacc/Lph = 0.1), the
expression derived for the compression factor from for-
mula (11) is in good quantitative agreement with the
numerical results only in the range kpLb0 ! 1.

We now make one more comment on the change in
the energy of an electron bunch in the trapping stage.
The above analysis revealed that, even in sufficiently
short bunches, the electron trajectories, although close
to each other, are different. It is this circumstance that
provides the possibility of compressing bunches in the
acceleration direction. On the other hand, the differ-
ence between the electron trajectories inevitably gives
rise to the energy spread of the electrons in the initially
monoenergetic bunch. Using formula (10), we can
obtain the following estimate for the energy spread of a

0.2
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Lb0kp
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Fig. 1. Compression factor of an electron bunch vs. the ini-
tial bunch length kpLb0. The dotted and solid lines illustrate
the analytical results obtained from formula (9) for the
acceleration distances Lacc/Lph = 0.1 and 0.234, respec-
tively. The numerical results obtained for the same two
acceleration distances are demonstrated by circles and
squares, respectively.
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short bunch injected into the vicinity of the point of the
maximum potential:

(15)

where ∆E is the difference in energy between the elec-
trons in the trailing and leading edges of the bunch.

Figure 2 illustrates the dependence of the energy
spread of an electron bunch with the initial length Lb0 =

0.1  on the acceleration distance in the trapping
stage. The remaining parameters are the same as in
Fig. 1. The solid curve shows the results of one-dimen-
sional numerical simulation, and the dashed curve
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Fig. 2. Energy spread of the electrons in a bunch injected at
the energy Einj = 20mc2 into the vicinity of the point of the
maximum potential vs. the acceleration length in a wake
wave with the parameters γ = 50 and |e|φ0/mc2 = 0.01. The
solid curve illustrates the results of one-dimensional numer-
ical simulation, and the dashed curve gives the results
obtained from analytic formula (13). The results from three-
dimensional simulations for two bunches with Rb/Rp =
0.033 and 0.067 are demonstrated by circles and squares,
respectively.
gives the results obtained from analytic formula (15).
The slight discrepancy that remains at short accelera-
tion distances (which, however, are unimportant for
practical purposes) stems from the fact that we
neglected some terms in the expansions in formulas (9)
and (10). In the most important range of sufficiently
long acceleration distances over which the bunch is
compressed significantly, the analytical and numerical
results are seen to agree well.

The symbols in Fig. 2 demonstrate the results of
three-dimensional simulations of the electron dynam-
ics [11, 17] for two bunches with the relative dimen-
sionless radii Rb/Rp = 0.033 (circles) and 0.067
(squares) and for kpRp = 3.0. The simulations were per-
formed for a Gaussian radial profile of the wakefield
potential, φ(ξ, r) = −φ0cos(ξ)exp[–(r/Rp)2]. The good
agreement between the numerical and analytical results
completely confirms the following conclusion that was
drawn in [14]: the dynamics of the energy characteris-
tics and spatial (in the longitudinal direction) parame-
ters of electron bunches whose radii are much smaller
than the radius Rmax, opt of the optimum injection region

(in the example at hand, we have Rmax, opt ≈ , so that
the inequality Rb ! Rmax, opt holds) and which as a whole
are injected into the optimum region can be estimated
using formulas of one-dimensional theory.

Our calculations and estimates also show that, under
certain conditions, the second term on the right-hand
side of formula (15) may be much smaller than the first
term and, thus, can be neglected. As an example, for the
above parameter values γ = 50, Einj /mc2 = 20, and
|e |φm/mc2 = 0.01, the energy spread of an electron

bunch with the initial length Lb0 = 0.1  is calculated
to within an error of less than 0.25%. Such a small error
is attributed to the fact that, in formula (15), the condi-

tions |I2 | ! 1 and |β + /c | ! 1 hold for the elec-
tron trajectories under consideration, for which the
energy of the injected bunch is much lower than the res-
onant energy for the wave with the above parameters,
Einj ! γmc2, and the bunch is trapped in the region
where the wave potential is almost linear (e.g., at ξtr =
π/2). In this case, the energy spread of the bunch in the
trapping stage can be estimated from the approximate
formula

(16)

For a linear plasma wave with the potential of the
form φ(ξ, r) = –φ0cos(ξ), the energy spread at the
boundary of the region of the focusing phase of the cor-
responding linear three-dimensional wake wave near
the point ξtr = π/2 can be estimated from formula (16)
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with allowance for the trapping condition (14):

(17)

For  @ mc2, we obtain the following, simpler
estimate for the energy spread of the bunch electrons
near the trapping region after the bunch is compressed
by the linear wave: |∆E | = EinjkpLb0.

In connection with the problem of optimizing the
process of the trapping and acceleration of an electron
bunch in order to achieve such bunch parameters in the
trapping stage that will not substantially deteriorate
during the subsequent acceleration of the bunch to high
energies, it is of interest to consider the trapping and
acceleration of a one-dimensional bunch. In this
respect, the short length of the compressed bunch and
the minimized energy spread of the bunch electrons
may be used as a criterion of the quality of one-dimen-
sional compression. In order to achieve the desired
quality, it is necessary to choose the optimum parame-
ters of the wakefield and injected bunch. Recall that the
compression is most efficient when the bunch is
trapped near the boundary of the region of the focusing
phase of the three-dimensional wake wave. However,
from formula (12), we can see that a linear small-ampli-
tude wake wave is not the best means of compressing
the bunch, because, for such a wave, α2(ξtr) = 1. For a
nonlinear wave, the ratio of the derivatives of the poten-
tial in the coefficient α2(ξtr) can be markedly smaller,
because the larger the wakefield amplitude, the
smoother the potential profile near its maximum and
the steeper the slope of the profile at the trapping point
near the boundary of the region of the focusing phase
of the wave. It is well known [18] that, in the limiting
case of a strongly nonlinear potential wave with the
total potential difference |e |∆φ/mc2 = |e |2φ0/mc2 @ 1,
the wave potential over the period is nearly parabolic in
shape: φ(ξ) = φ0(4ξ/π – 2ξ2/π2 – 1), where 0 < ξ < 2π. In
this case, the boundary of the region of the focusing
phase of the corresponding, strongly nonlinear, three-
dimensional wake wave lies in the vicinity of the point
of the minimum potential (in the case at hand, near the
point ξ = 0), so that the electron bunch can be trapped
in the entire region corresponding to the total potential
difference in the wave, ∆φ = 2φ0 [19]. We thus arrive at
the coefficient α2 = π–1, which indicates that the com-
pression of a bunch by a strongly nonlinear wave is
approximately three times higher than that by a linear
wave. The energy spread of the electrons in a bunch

injected at an energy  @ mc2 and then trapped by a
strongly nonlinear wave can be estimated as |∆E | =
EinjkpLb02/π, which is smaller than the energy spread of
a bunch in a linear wave. That the compression by a
nonlinear wave is more efficient than that by a linear
wave is also confirmed by relationship (14), which

∆E EinjkpLb0
Einj' mc

2
–

Einj' mc
2

+
------------------------.=

Einj'

Einj'
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implies that, for the same trapping point, the larger the
wave amplitude, the lower the energy of the injection
bunch. We thus can conclude that nonlinear large-
amplitude wake waves are most preferable from the
standpoint of the efficient compression of one-dimen-
sional bunches. Physically, this conclusion is easy to
explain: the stronger the wave nonlinearity, the smaller
the energy spread of the bunch electrons and the closer
the electron trajectories to each other.

3. DYNAMICS OF THE BUNCH PARAMETERS
IN THE ACCELERATION STAGE

In the acceleration stage, the electron bunch injected
at an energy such that the electron velocity is higher
than the phase velocity of the wake wave experiences
no longitudinal compression (this point was considered
in Section 2). In this case, the wake field immediately
starts to accelerate the bunch to high energies on a time
scale much longer than the duration of the compression
stage. Of course, the bunch should be injected into the
region of the appropriate phase of the wake wave. It is
obvious that the optimum injection region in the prop-
agation direction of the wave is now the vicinity of the
boundary of the focusing phase, where the potential
gradient is the largest, provided that the electrons are
focused by a positive force. For the wakefield potential
φ(ξ, r) = −φ0cos(ξ)exp[–(r/Rp)2], the optimum injection
region is ξinj ≥ π/2.

In the acceleration stage, the dynamics of the energy
characteristics and spatial parameters of an initially
monoenergetic, short electron bunch can be investi-
gated by applying the approach described in Section 2
and using relationships analogous to formulas (4) and
(5). In this way, we must keep in mind that, in expres-
sion (5), the integral over electron trajectories is of the
opposite sign, because, in the wave rest frame, the elec-
trons immediately start moving in the positive direction
along the z'-axis. In the expansions, we can take into
account only the first-order terms in the small varia-
tions ∆ξ = kpLb and ∆E, because the condition dφ/dξ ≠ 0
holds over the entire electron trajectory. As the refer-
ence electron (about which the variations will be
made), we choose the last electron in the bunch, in
which case ∆ξ and ∆E are equal, respectively, to the dif-
ferences between the coordinates and energies of the
first and last electrons in the bunch. As a result, we
arrive at the relationships

(18)Lb Lb0
γc p' ξ( )

E ξ( )
------------------ β

dφ ξ inj( )
dξ

-------------------

dφ ξ( )
dξ

--------------
------------------- E ' ξ( )

c p' ξ( )
--------------- I0 ξ( )+ +

 
 
 
 
 

,=
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(19)

where

(20)

These relationships can be simplified using the sim-
ple estimate

(21)

which is valid over the entire electron trajectory (i.e.,
for ξinj < η < ξ). Using inequality (21), we can readily
show that, in the acceleration stage, the bunch length
does not increase. This is quite evident, because, in the
wakefield with the above potential, the last electron in
the bunch injected in the above manner always experi-
ences a stronger accelerating force than the first elec-

∆E e γ2
kpLb0

cp ξ( )
E ξ( )
--------------=

× β dφ ξ( )
dξ

--------------
dφ ξ inj( )

dξ
-------------------– 

  dφ ξ( )
dξ

--------------I0 ξ( )+
 
 
 

,

I0 ξ( )

=  

η
φ ξ inj( )d

ξd
-------------------d

2φ
η2

d
-------- φd

ηd
------ 

 
2–

d

1 m
2
c

4
Einj' γ e φ η( ) φ ξ inj( )–( )+[ ]

2–
–{ }

1/2
--------------------------------------------------------------------------------------------------------.

ξ inj

ξ

∫

1

1 m
2
c

4
E ' γ e φ η( ) φ ξ inj( )–( )+[ ] 2––{ }

1/2
-----------------------------------------------------------------------------------------------------

≥ E ' ξ( )
c p' ξ( )
---------------,
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Fig. 3. Energy characteristics of different electron bunches
in the acceleration stage vs. the acceleration length (Eav is
the averaged electron energy and ∆Erms is the root-mean-
square energy spread of the bunch electrons). The computa-
tion parameters corresponding to different plots are
described in the body of the paper.
tron. Accordingly, the lower estimate for the energy
spread of the bunch electrons after acceleration is

(22)

If, after acceleration, the electron momentum in the
wave rest frame is sufficiently large, p'(ξ) @ mc, then
the lower estimate for the maximum energy spread of
the electrons in an initially monoenergetic accelerated
bunch can be obtained from the simpler approximate
formula

(23)

which is, however, far more exact than the correspond-
ing formula derived in [20]. All of the above formulas
for the energy spread of the bunch electrons show that,
first, the longer the region where the accelerating
potential is nonlinear, the larger the energy spread, and,
second, the energy spread is linearly proportional to the
initial bunch length.

In order to check the above estimates for the energy
spread of an accelerated electron bunch, we carried out
a series of test simulations. First, we simulated the
acceleration of a one-dimensional bunch formed by the
compression of a one-dimensional monoenergetic elec-
tron bunch with the initial energy Einj = 20mc2 in a
plasma wave with the parameters γ = 50 and |e |φ0/mc2 =
0.01. The length of the injected bunch in the trapping
stage was chosen such that the electrons occupied the
entire optimum injection region in the longitudinal
direction [14], in which case, throughout the trapping
stage, all of the bunch electrons remained in the focus-
ing phase of the corresponding linear wake wave (this
way of forming a compact bunch was described in more
detail in [13]). By the time the electrons acquired a res-
onant energy of about ≈50mc2 in the trapping stage, the

length of the bunch was Lb = 0.1 . After the trapping
stage, the bunch was injected into the accelerating stage
with the plasma wave parameters |e |φ0/mc2 = 0.3 and
γ = 50.0, specifically, into the region of the strongest
accelerating field; for the potential φ(ξ) = –φ0cos(ξ),
this is ξinj ≈ π/2. In Fig. 3, the change in the relative
root-mean-square energy spread of an electron bunch
accelerated in such a manner is illustrated by the dotted
curve.

The solid curve in Fig. 3 demonstrates an increase in
the relative root-mean-square energy spread of the
bunch electrons accelerated by the same wake wave.
This curve was obtained using the analytic formula (23)
for an initially monoenergetic electron bunch with the
injection energy Einj = 50mc2 and the initial length Lb0 =

0.1 . The root-mean-square energy spread was esti-
mated under the assumption that the electrons are dis-
tributed uniformly over the energy interval determined

∆E ξ( ) kpLb0γ e
p ξ( )
p' ξ( )
------------ φ ξ( )d

ξd
--------------

dφ ξ inj( )
ξd

-------------------– .>

∆E 2γ2
e kpLb0

dφ ξ inj( )
dξ

------------------- dφ ξ( )
dξ

--------------–
 
 
 

,≈

kp
1–

kp
1–
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by formula (23). We can see that, even when the initial
energy spread of the injected bunch is nonzero (as is the
case in the first example), the solid and dotted curves
approach one another and, after a certain time, remain
very close together. Such a coincidence of the curves
confirms our analytical results and indicates that the
approximate formula (23) for the smallest energy
spread of the electrons in the accelerated bunch is actu-
ally quite exact and can be used directly for estimates,
provided that the acceleration length is not too short in
comparison with the maximum acceleration length.
The unimportance of the initial energy spread of the
electrons at the time at which the bunch is injected into
the accelerating stage indicates that, during accelera-
tion, the bunch electrons acquire an additional energy
spread: the final energy spread of the bunch eventually
becomes larger than the initial energy spread and thus
plays the governing role.

The dashed curve in Fig. 3 illustrates the change in
the root-mean-square energy spread of the bunch that

has the same initial length Lb0 = 0.1  and is formed in
the same way as in the first example but by the same
plasma wave in which the bunch is accelerated, i.e., by
the wave with the parameters |e |φ0/mc2 = 0.3 and
γ = 50.0. Since the amplitude of this plasma wave is
larger than that in the first example, the energy of the
injected electron bunch from which the bunch to be
accelerated was formed in the compression stage is
smaller, Einj = 1.87mc2. This series of simulations differs
from the first series only in the initial energy spreads of
the bunches injected into the accelerating stage. Note
that, in the examples at hand, the initial energy spread
is well estimated from formula (17). The good agree-
ment between the results of these two series of simula-
tions for long acceleration distances indicates that, for
the same parameters of the acceleration process, the
spatial (longitudinal) and energy characteristics of the
bunches accelerated to high energies do not differ fun-
damentally between these two model examples,
although the latter example better fits the analytical
results.

It is of interest to compare the results of one-dimen-
sional simulations and analytic predictions with the
results of three-dimensional simulations. In Fig. 3, the
closed squares illustrate the root-mean-square energy
spread of the accelerated bunch that is formed from a
three-dimensional monoenergetic bunch of radius Rb =

0.5  and, at the beginning of the compression stage
(at the instant of injection), occupies the entire optimum
injection region in the longitudinal direction. In three-
dimensional simulations, both the compressing and
accelerating wake waves were specified by the same
potential φ(ξ) = −φ0cos(ξ)exp(–(r/Rp)2) with Rp =

3.0  and the wakefield parameters were chosen to be
γ = 50 and |e |φ0/mc2 = 0.01 (in the compression stage)
and γ = 50 and |e |φ0/mc2 = 0.3 (in the acceleration

kp
1–

kp
1–

kp
1–
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stage). The remaining parameters of the three-dimen-
sional extended injected bunch and the compression
and acceleration scheme corresponded to the first
example (see [14] for more details). The closed squares
are seen to agree well with the plots obtained from one-
dimensional simulations and analytic formulas. This
agreement is predictable, because the electrons of the
given bunch were injected into the optimum injection
region and, for the above parameters of the bunch and
of the compressing field, the initial radius of the
injected bunch in the compression stage was smaller
than Rmax, opt.

4. CONCLUSION

Our analytic investigation provides better insight
into the mechanism for changes in both the spatial (lon-
gitudinal) and energy characteristics of electron
bunches injected into wake waves under different con-
ditions.

We have studied the compression of short (kpLb ! 1)
electron bunches by wake waves when the bunches are
injected at energies such that the initial electron veloc-
ity is lower than the wave phase velocity. We have
shown how the bunch length decreases in the course of
the bunch trapping by the wakefield and how the energy
spread of an initially monoenergetic bunch increases.
We have derived simple analytic formulas that make it
possible to estimate these bunch parameters. Our ana-
lytical results agree well with the results of numerical
simulations. We have shown that the proposed mecha-
nism for compressing an electron bunch can be used to
optimize the precompression of the trapped bunches in
order to raise the quality of the subsequent acceleration.

We have considered how the parameters of a short
electron bunch change in the acceleration stage, pro-
vided that the bunch electrons are injected at a velocity
higher than the phase velocity of the wake wave. The
length of the accelerated bunch is found to change only
slightly; at least, it does not increase, whereas the
energy spread of the bunch electrons increases. The
final energy spread is linearly proportional to the initial
bunch length; consequently, for the quality of accelera-
tion to be high, it is desirable to use the shortest possi-
ble bunches or to precompress the bunches to be accel-
erated. Our analytic formulas are shown to provide
quite exact estimates for the spatial (longitudinal) and
energy characteristics of the electron bunches in both
the compression and the acceleration stages, provided
that the bunch is injected into the optimum injection
region.
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Abstract—The problem of the excitation of plasma waves by a thin-walled annular electron beam in a
waveguide filled entirely with a plasma is analyzed in the quasistatic approximation. The instability growth
rates are derived and are studied as functions of the waveguide parameters. The evolution of different seed per-
turbations in the nonlinear stage of the instability is investigated. © 2001 MAIK “Nauka/Interperiodica”.
1. Much attention has recently been devoted to
experimental [1, 2] and theoretical [3, 4] studies of the
Cherenkov mechanism for the excitation of surface
waves of an annular plasma by a straight electron beam
in a metal waveguide. The spectrum of the surface
waves of an annular plasma is fairly sparse (the disper-
sion curves of the surface waves consist of a small num-
ber of branches and the surface waves themselves are
easy to excite under both single-particle and collective
Cherenkov resonance conditions), which makes it fea-
sible to achieve a single-mode regime of the generation
of surface waves and to control the frequency range of
the excited waves. These circumstances have stimu-
lated increased interest in the Cherenkov excitation of
surface plasma waves in waveguides. However, spatial
plasma waves are of no less interest from the standpoint
of the Cherenkov excitation mechanism and may also
hold great promise for practical applications. A number
of distinctive features in which spatial waves differ
from the corresponding surface waves are the focus of
our theoretical analysis. For simplicity, we restrict our-
selves to the quasistatic approximation and, accord-
ingly, consider a nonrelativistic electron beam. A rela-
tivistic electron beam in the nonquasistatic approxima-
tion will be studied in a separate paper.

2. Let us consider an infinitely thin (needle-shaped)
nonrelativistic electron beam in a metal waveguide
with an arbitrary, simply connected cross section. Let
us assume that the waveguide is filled entirely with a
homogeneous (over the waveguide cross section)
plasma and is immersed in an external longitudinal
magnetic field strong enough for the transverse motion
of the beam and plasma electrons to be neglected (the
ions are assumed to be immobile). We also assume that
the beam and plasma are both cold and that the beam
density is sufficiently low so that the motion of the
plasma electrons can be described in the linear approx-
imation. It is well known that the only waves that can
be excited in a waveguide filled entirely with a plasma
are spatial plasma waves [5].
1063-780X/01/2705- $21.00 © 20381
The potential perturbations in the system under con-
sideration are described by the equations

(1)

Here, ϕ is the scalar potential, z is the coordinate along
the waveguide axis, r⊥  is the radial coordinate in the
waveguide cross section, ∆⊥  is the transverse Laplace
operator, v is the electron velocity, e and m are the

charge and mass of an electron, ωp =  and
n0p are the Langmuir frequency and unperturbed den-
sity of the plasma electrons, ρp is the perturbed charge
density in a plasma, ρb is the beam charge density, ρ0b

is the density of the electrostatic charge that neutralizes
the beam charge, fb is the distribution function of the
beam electrons, Sb is the cross-sectional area of the
beam, and rb is the average radial coordinate of the
beam in the waveguide cross section. We assume that,
at the initial time, the distribution function of the beam
electrons satisfies the condition

(2)

where n0b is the unperturbed beam density and u is the
unperturbed beam velocity. Obviously, we have ρ0b =
en0b.

It is well known [6] that the general solution to the
kinetic equation for the distribution function fb is
expressed in terms of the following integral over the

∆⊥
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initial solutions to the characteristic system for the Vla-
sov equation:

(3)

where zb(t, z0, v0) and vb(t, z0, v0) are the solutions to
the characteristic system

(4)

supplemented with the initial conditions

(5)

We substitute function (3) into Eqs. (1) and, using rela-
tionship (2), perform the velocity integration in order to
arrive at the following equations, which will serve as a
basis for further analysis:

(6)

Here, ϕ' = –eϕ/m,  = ρp/en0p, and ωb = 
is the Langmuir frequency of the beam electrons. For
the beam, an exact analog of the dimensionless plasma

charge density  is the function

(7)

which enters the right-hand side of the first equation in
set (6). Note that, in expression (7) [as well as in
Eqs. (1) and (6)], we eliminate a constant background
charge, because we assume that the electrostatic beam
charge in the plasma is completely neutralized [7]. In
the linear approximation, we can use the third and
fourth equations in set (6) and the initial conditions for
these equations in order to show that the beam charge
density (7) satisfies the equation

(8)

Finally, replacing Sbδ(r⊥  – rb) with unity in the first
equation in set (6), we arrive at the equations that
describe a waveguide in which the plasma and beam are
both uniform over the waveguide cross section. Below,

f b t z v, ,( ) z0 v 0 f 0 v 0( )δ z zb t z0 v 0, ,( )–[ ]dd∫∫=

× δ v v b t z0 v 0, ,( )–[ ] ,

dzb

dt
------- v b,

dv b

dt
--------- e

m
----∂ϕ

∂z
------,–= =

zb t 0= z0, v b t 0= v 0.= =

∆⊥
∂2

∂z
2

-------+ 
  ϕ' ωb

2
Sbδ r⊥ rb–( )=

× z0δ z zb t z0,( )–[ ]d∫ 1–{ } ωp
2ρp' ,+

∂2ρp'

∂t
2

-----------
∂2ϕ'

∂z
2

----------,–=

dzb

dt
------- v b,

dv b

dt
--------- ∂ϕ'

∂z
-------- t zb rb, ,( ),= =

zb t 0= z0, v b t 0= u.= =

ρp' 4πe
2
n0b/m

ρp'

ρb' z0δ z z t z0,( )–[ ]d∫ 1,–=

∂
∂t
----- u

∂
∂z
-----+ 

 
2

ρb'
∂2ϕ'

∂z
2

----------.–=
such a waveguide will serve as a certain reference point
for a comparative analysis of the results obtained.

3. Let the characteristic longitudinal scale (period)
of the initial perturbation in the waveguide under con-
sideration be L. Then, all the perturbed quantities (in
particular, the potential ϕ' and density ) can be rep-
resented as

(9)

where k = 2π/L is the mean longitudinal perturbation
wavenumber. Inserting expressions (9) into Eqs. (6)
and using the orthogonality of the functions exp(inkz),
we obtain the following equations for the expansion
coefficients ϕn and ρpn:

(10)

where functions ρbn have the form

(11)

Now, we assume that all the transverse eigenfunctions
and eigenvalues of the waveguide are known; i.e., we
know the solutions to the problem

(12)

where φm is an eigenfunction,  is the corresponding
eigenvalue (m = 1, 2, …), and σ ≡ σ(r⊥ ) = 0 is the equa-
tion for the metal waveguide surface. With the expan-
sions

(13)

Eqs. (10) become
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Here and below, the subscript n specifies the longitudi-
nal (along the z-axis) mode number and the subscript m
defines the transverse waveguide mode number (below,
we will always put the subscript n in front of the sub-
script m). Now, we substitute Eqs. (14) with relation-
ships (9) and (13) into the equations of beam electron
motion in set (6), in which case it is expedient to
exclude coefficients  from consideration. As a
result, we arrive at the equations

(15)

Here, we set  = φm(rb)  and introduce the nota-
tion

(16)

Equations (15) are rather peculiar and have a compli-
cated structure, because each value of n corresponds to
a large (generally, infinite) set of the values m = 1, 2, … .
In other words, each longitudinal mode ρbn of the beam
wave generates a large number of spatial plasma waves

, which correspond to all possible transverse wave-
numbers k⊥ m. The reason for this is that the modes of a
thin beam are surface waves, whereas the modes a con-
tinuous plasma are spatial waves. In such a waveguide
system, the transverse modes not only interact with each
other in a complex manner, but the nonlinear nature of
the beam also gives rise to the interaction between lon-
gitudinal modes with different numbers n.

4. Let us examine Eqs. (15) in the linear approxima-
tion. In accordance with the initial conditions for
Eqs. (6), we assume that yb = y0 + kut + . Linearizing
expression (11) and the second equation from set (15)
in  and performing simple manipulations yields the
equations

(17)
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Since, in the linear approximation, longitudinal modes
with different numbers n do not interact with each
other, Eqs. (17) refer to a mode with an arbitrary num-
ber n.

In the linear approximation, we as usual seek a solu-

tion in the form ρbn,  ~ exp(–iωt), in which case we

can find the amplitudes  from the first equation in
set (17) and substitute them into the second equation in
order to obtain the linear dispersion relation

(18)

The poles of the right-hand side of Eq. (18), or the zeros
of the functions

, (19)

determine the spectra of spatial plasma waves with the
longitudinal wavenumber nk in a waveguide free of the
electron beam. In Eq. (18), spatial plasma waves with
different numbers m are coupled through the surface
wave of the beam. This brings about the question of the
competition between different plasma modes and of the
conditions under which the beam excites a single trans-
verse plasma mode or the desired set of transverse
modes. Usually, this question is answered as follows. If
the beam density is low, then only those transverse
plasma modes can be excited that satisfy the inequality

(20)

the remaining modes being stable. According to the
perturbation theory for beam-driven modes [8], the
growth rate of the excited mode [which should satisfy
inequality (20)] is calculated from Eq. (18), on the
right-hand side of which we must retain only the term
with the number of the excited mode. Under the condi-
tions of exact Cherenkov resonance between the beam
and the mth mode with the longitudinal number

(21)

the growth rate of the mth transverse plasma mode is
equal to

(22)

This mode grows as a result of an instability associated
with the single-particle Cherenkov effect. As for the
collective Cherenkov effect, it does not manifest itself
in a waveguide filled entirely with a plasma (at least
within the limits of the theory of the interaction
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between a thin-walled annular beam and a thin-walled
annular plasma [9, 10]). The above analysis applies to
a situation in which different spatial plasma waves are
excited independently. However, in a waveguide with a
thin beam (and, especially, when the beam is dense),
the spatial plasma waves are coupled to each other. In
this connection, it is of interest to compare the interac-
tion between a thin beam and a continuous plasma with
the interaction between a solid beam and a continuous
plasma. In the latter case, the linear approximation
clearly implies that different transverse plasma modes
are decoupled.

Let us specify the geometry of the problem. We con-
sider a thin-walled annular electron beam propagating
in a circular waveguide of radius R, which is assumed
to be filled entirely with a homogeneous plasma. Such
a beam can be regarded as a tube with a mean radius
rb < R, the thickness of the tube wall being ∆b. Under
the assumption that ∆b ! rb, the beam cross-sectional
area is equal to Sb = 2π∆brb . In a circular waveguide, the
eigenfunctions and the associated eigenvalues have the
form φm = Jl(k⊥ mr) and k⊥ m = µl, m/R, where µl, m is the
root of the lth order Bessel function. For comparison,
we also briefly analyze the case in which the beam is
solid and homogeneous, as is the plasma.

For the interaction of an annular electron beam with
a homogeneous plasma in a circular waveguide with
the adopted parameters, we can use the corresponding
formulas of the theory of Bessel functions to rewrite
dispersion relation (18) in an explicit form [10]:

(23)
ω nku–( )2

=  ωb
2
n

2
k

2π
2
---rb∆bJl

2
Xrb( )

Nl XR( )
Jl XR( )
------------------

Nl Xrb( )
Jl Xrb( )
-------------------– ,

Fig. 1. Dispersion curves for an annular electron beam of
radius rb = 0.4 cm in a waveguide filled entirely with a
homogeneous plasma at ν = 0.01. The beam is in resonance
with the first three transverse plasma modes.
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where X2 = n2k2( /ω2 – 1) and Nl(x) is the Neumann
function. For the interaction of a solid homogeneous
beam with a continuous homogeneous plasma in a cir-
cular waveguide, we arrive at an infinite number of
independent dispersion relations for the decoupled
transverse modes:

(24)

Since the structures of dispersion relations (23) and
(24) are radically different, the relevant dispersion
curves differ in shape. By the dispersion curves, we
mean the plots of the real functions ω(kz) obtained by
solving the corresponding dispersion relations with
respect to ω. Parenthetically, we assume that the reader
is familiar with the shapes of the dispersion curves of
the growing modes under consideration, including
those driven by the beam instabilities [3, 4, 9–12]. Dis-
persion relation (24) is analogous to that describing the
excitation of plasma waves when both the beam and the
plasma are homogeneous over the entire space. For
low-density beams, unstable modes are those with
numbers from zero to approximately the number corre-
sponding to the point at which the dispersion curve of
the plasma wave intersects the Cherenkov resonance
line ω = kzu ≡ nku. The transverse mode can be either
stable or unstable, without any impact on the remaining
modes. In other words, when both the beam and the
plasma are homogeneous over the entire cross section
of a circular waveguide, we may speak of the excitation
of an individual transverse mode with a specific num-
ber m.

5. Here, we analyze the consequences of the linear
dispersion relation (23). To do this, we specify the
parameters of the waveguide system. We assume that
the waveguide radius is R = 2 cm, the beam thickness is
∆b = 0.1 cm, the azimuthal number is l = 0, the plasma
frequency is ωp = 5 × 1010 rad/s, and the beam density

is such that the parameter ν = /  takes on the val-
ues 0.01 and 5 × 10–5. We fix these parameters and vary
the mean radius rb of the beam and its velocity u.

First, we choose the beam velocity in such a way
that condition (20) is satisfied for the first three trans-
verse modes (with the numbers m = 1, 2, 3) and fails to
hold for the fourth mode. For example, we set u =
1010 cm/s. We also choose the beam radius to be rb =
0.4 cm. With this choice of rb, the interaction of a beam
with the first three transverse modes of the plasma
waveguide is fairly efficient. This interaction is illus-
trated by the dispersion curves in Fig. 1, which were
obtained by solving Eq. (23) and are marked by the
transverse mode numbers m. In Fig. 1, the abscissa is
the longitudinal wavenumber nk ≡ kz (in cm–1) and the
ordinate is frequency ω (in units of 1010 rad/s). We can
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see that the dispersion curves differ greatly in shape
from the familiar dispersion curves obtained for the
interaction of a solid beam with a continuous plasma.
For a thin-walled annular beam, the only unstable
transverse mode is the first one, while the higher modes
are stable. However, this does not contradict the situa-
tion with a solid beam: we only need to refine the
notion of the transverse mode for plasma waveguides
with and without a beam.

For a solid beam, each transverse mode with the
number m = 1, 2, … is characterized by its own disper-
sion curve and, accordingly, by the corresponding
waveguide mode described by the eigenfunction (the
diaphragm function) φm = Jl(k⊥ mr) for an empty
waveguide. We call such modes transverse modes of a
plasma waveguide without a beam. For a thin-walled
annular beam, the dispersion curves in Fig. 1 can also
be renumbered (p = 1, 2, …) in the usual manner (from
top to bottom)—see the numerals above the curves. In
this case, each dispersion curve is also characterized by
a certain waveguide mode, but the corresponding
eigenfunction

(25)

is now determined not only by the plasma but also by
the beam. We call these modes transverse modes of a
beam–plasma waveguide. From Fig. 1, we can see that,
in terms of eigenfunctions (25), the only unstable mode
of a plasma waveguide with an annular beam is the first
(p = 1) transverse mode. In contrast, in terms of the dia-
phragm functions φm, at least the first three (m = 1, 2, 3)
transverse modes of a plasma waveguide are unstable.
The latter conclusion is illustrated by Fig. 2a, which
shows the function Imδω versus kz for the same param-
eters as in Fig. 1. Here, the complex growth rate δω is
defined as

(26)

where ω is the root of Eq. (23). As is usual for Cheren-
kov instability, the real part of the complex growth rate
δω is negative, in which case we can say that the beam
overtakes the plasma wave. The function Imδω has
three peaks, which reflect the interaction between the
beam and the corresponding transverse mode of a
plasma waveguide: the right peak is for the m = 1 mode,
the middle peak is for the m = 2 mode, and the left peak
is for the m = 3 mode. When the beam is not too dense,
the growth rate δω at the point at which its imaginary
part is maximum can be calculated from formula (22),
in which case we can speak of the Cherenkov excitation
of a certain transverse mode of a plasma waveguide by
a thin-walled annular beam. However, the denser the
beam, the smoother the peaks in the function Imδω, so
that the transverse modes of a plasma waveguide
become indistinguishable. In this case, eigenfunction (25)
is composed of a large number of terms, and it would

ψp r( ) amJl k ⊥ mr( )
m 1=

∑=

δω ω kzu,–=
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be more correct to speak of the instability of the first
(p = 1) transverse mode of a beam–plasma waveguide.
Note that, in terms of Eqs. (23) and (24), the limiting
transition from a thin-walled annular beam to a solid
beam is impossible. The above analysis of a low-den-
sity beam is illustrated by Fig. 3a, which refers to the
value ν = 5 × 10–5. We can see that the three peaks,
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Fig. 2. Growth rate of the instability for a continuous plasma
and an annular electron beam at ν = 0.01. The beams of radii
rb = (a) 0.4, (b) 0.871, and (c) 0.556 cm are in resonance
with the first three modes; the beams of radii rb = (d) 0.4 and
(e) 0.871 cm are in resonance with the first two modes; and
(f) the beam of radius rb = 0.4 cm is in resonance with the
first mode.
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which correspond to transverse modes with different
numbers m, are well separated from each other, thereby
providing evidence that, in a plasma waveguide, the
modes are excited almost independently.
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Fig. 3. Dispersion curves for a continuous plasma and an
annular electron beam at ν = 5 × 10–5. The beams of radii
rb = (a) 0.4, (b) 0.871, and (c) 0.556 cm are in resonance
with the first three modes; the beams of radii rb = (d) 0.4 and
(e) 0.871 cm are in resonance with the first two modes; and
(f) the beam of radius rb = 0.4 cm is in resonance with the
first mode.
Now, we set rb = Rµ0, 1/µ0, 2 = 0.871 cm, keeping the
remaining parameters unchanged. A beam with such rb

propagates in the region where the field of the second
transverse mode of a plasma waveguide vanishes, so
that this mode cannot be excited. For this value of rb,
Figs. 2b and 3b show the growth rates Imδω calculated
from expression (26). One can see two regions in which
the growth rate is nonvanishing: the right region reflects
the interaction of the beam with the first (m = 1) trans-
verse mode of a plasma waveguide and the left region
corresponds to the interaction with the third (m = 3)
transverse plasma mode. The zone between these
regions is free of instability, because the beam with the
adopted radius rb cannot interact with the second (m =
2) transverse mode of a plasma waveguide. However,
this situation can be interpreted in a different way:
Figs. 2b and 3b show the growth rates of the first (p = 1)
unstable mode of a beam–plasma waveguide, in which
case eigenfunction (25) is composed of a large number
of terms, except for the second one.

Now, we choose rb = Rµ0, 1/µ0, 3 = 0.556 cm and
again fix the remaining parameters. A thin-walled
annular beam with such rb propagates in the region
where the field of the third transverse mode of a plasma
waveguide vanishes, so that this mode cannot be
excited. For this beam, Figs. 2c and 3c show the growth
rates Imδω calculated from expression (26). For small
values of kz, we have Imδω = 0, as expected. For larger
wavenumbers, there are two regions where the growth
rate is nonzero: the right region reflects the interaction
between the beam and the first (m = 1) transverse mode
and the left region corresponds to the interaction with
the second (m = 2) mode. The regions in Fig. 2c are
seen to overlap; this effect was discussed above.

Now, we again set rb = 0.4 cm but increase the beam
velocity to u = 1.3 × 1010 cm/s. With such a beam, con-
dition (20) is satisfied for the first two (m = 1, 2) trans-
verse modes of a plasma waveguide and fails to hold for
the third mode. The related functions Imδω are dis-
played in Figs. 2d and 3d. We can see that the m = 1 and
m = 2 transverse modes of a plasma waveguide do not
overlap: the pronounced peaks in their growth rates are
separated by the zone where the growth rate vanishes.
Then, we set rb = Rµ0, 1/µ0, 2 = 0.871 cm, keeping the
values of the remaining parameters fixed. In this case,
the m = 2 transverse mode cannot be excited. The cor-
responding growth rates Imδω are presented in Figs. 2e
and 3e. From Fig. 2e, we can see that Imδω = 0 for kz

from approximately 1 to 3 cm–1: the right high peak
corresponds to the m = 1 unstable transverse plasma
mode and the left low peak refers to the nonresonant
instability of the m = 3 mode, which can be made unsta-
ble only by a sufficiently dense beam and becomes sta-
ble as parameter ν decreases (Fig. 3d).

Finally, we again set rb = 0.4 cm but consider a beam
with a higher velocity u = 2 × 1010 cm/s, with which
condition (20) is satisfied only for the first (m = 1)
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
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transverse mode of a plasma waveguide and fails to
hold for the second and third modes. The relevant func-
tions Imδω are shown in Figs. 2f and 3f. The above
analysis makes clear the structure of the figures (e.g., in
Fig. 2f, the right peak corresponds to the resonant insta-
bility of the first transverse plasma mode and the left
peak refers to the nonresonant instability of the second
transverse mode of a plasma waveguide).

Hence, even in the linear approximation, different
transverse modes of a uniform plasma waveguide with
a thin-walled annular electron beam are strongly cou-
pled to each other. The only exceptions are the modes
excited by beams with low densities, high velocities u,
and specially chosen radii rb. The results of linear the-
ory (see Figs. 2, 3) show that, by a special choice of the
parameters of a beam–plasma waveguide, it is possible
to drive unstable modes with different transverse num-
bers in different wavelength ranges. This makes it fea-
sible (at least according to linear theory) to control the
emission spectrum of a thin-walled annular electron
beam in a waveguide filled entirely with a homoge-
neous plasma, which is impossible for a waveguide
with a thin-walled annular beam and thin-walled annu-
lar plasma [4]. Nonlinear phenomena that occur in an
electron beam give rise to an additional coupling
between the transverse modes of a plasma waveguide.

6. Here, we turn to nonlinear equations (15) in order
to analyze the saturation stage of the beam–plasma
instability. The problem as formulated accounts for the
nonlinear nature of the beam and describes the plasma
by the linearized equations of cold hydrodynamics. We
model the beam by the particle method; i.e., we deter-
mine the beam density from the positions of quasi-par-
ticles, whose motion is traced by solving Newton’s
equations. We supplement Eqs. (15) with the initial
conditions that specify the seed perturbation, the initial
positions of the beam particles, and their initial veloci-
ties. We examine several different seed perturbations.
First, we consider a monochromatic perturbation. To do
this, we set the initial parameters of the perturbations
driven by the n = 1 longitudinal mode to be nonzero and
the parameters of the perturbations associated with the
remaining longitudinal modes to be zero. Then, we
specify the initial parameters of a large number of lon-
gitudinal modes, assuming equal mode amplitudes and
zero mode phases. This seed perturbation has the form
of a regular sequence of pulses at the time t = 0. Finally,
we specify random phases of a large number of longi-
tudinal modes; i.e., we consider a noisy seed perturba-
tion.

We start with a monochromatic seed perturbation. In
the sums over n, we retain the first five terms, and, in the
sums over m, we keep at least the first ten terms. We set
u = 1010 cm/s, rb = 0.4 cm, and ν = 0.01. These param-
eter values refer to the instability growth rate illustrated
in Fig. 2a. We assume that the wavelength of the seed
perturbation corresponds to the Cherenkov resonance
between the beam and the first (m = 1) transverse mode
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
of a plasma waveguide; i.e., we choose k ≈ 4.85 cm–1.
Figure 4 shows the time evolutions of the amplitudes of
the first three (n = 1, 2, 3) longitudinal modes of the per-
turbed plasma charge density (rb) at the surface
whose radius is equal to the beam radius rb. It is seen
that, in the initial stage, the first longitudinal mode
(curve 1) grows exponentially with the rate Imδω. As
the first mode saturates, the nonlinear effects in the
beam come into play and give rise to the second and
third longitudinal modes.

Now, we analyze the relative roles played by trans-
verse modes with large numbers m for two different
beam densities. For ν = 0.01 and 5 × 10–5, the develop-
ment of the first several transverse modes driven by the
n = 1 longitudinal mode is illustrated in Figs. 5 and 6,
respectively. Figure 6 demonstrates that a dominant
role is played by the first transverse mode, which is in
resonance with the beam; the second and third trans-
verse modes are seen to be of lesser importance. For a
higher density beam (ν = 0.01), the second and third
transverse modes play a greater role, even though the
beam interacts resonantly with the first transverse
mode. As discussed above, these effects stem from the
fact that the transverse structure of the beam differs
from that of the plasma.

Let us consider a seed perturbation in the form of a
large number of longitudinal modes with different
numbers n. The spatial spectra of oscillations calcu-
lated at the times τ ≡ ωpt = 0, 90, 120, and 240 for the
same parameters of the system but for a pulsed (in the
form of a regular sequence of pulses) seed perturbation
are presented in Fig. 7. At the initial time, the spectrum
consists of the first fifty longitudinal modes. In the lin-
ear stage of the instability, the longitudinal modes that
are in exact (or almost exact) resonance with the beam
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Fig. 4. Time evolutions of the amplitudes of the first three
(n = 1, 2, 3) longitudinal modes of the perturbed plasma
electron density for ν = 0.01 and rb = 0.4 cm.
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grow faster than the remaining modes. In the case at
hand, the mode that is in exact resonance with the beam
is the n = 20 longitudinal mode. The growing resonant
modes play an increasingly important role, so that the
spectrum narrows and thus becomes more monochro-
matic. Then, the nonlinear effects come into play. Thus,
the spectrum calculated at the time τ = 120 is seen to
contain a low peak at n = 40. Further, the modes with
different longitudinal (n) and transverse (m) numbers
start to interact with each other, giving rise to more and
more modes. As a result, the spectrum again broadens
and its structure becomes irregular. From Fig. 8, we can
see that similar processes are also characteristic of a
system in which the noisy seed perturbation is specified
as a set of longitudinal modes with random phases.

Finally, we consider the dynamics of energy transfer
from the directed beam motion to plasma waves. Figure 9
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Fig. 5. Time evolutions of the amplitudes of the first four
(m = 1, 2, 3, 4) transverse modes of the perturbed plasma
electron density for ν = 0.01 and rb = 0.4 cm.

Fig. 7. Spatial mode spectra for a pulsed seed perturbation
at the times τ = (1) 0, (2) 90, (3) 120, and (4) 240.
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Fig. 6. Time evolutions of the amplitudes of the first three
(m = 1, 2, 3) transverse modes of the perturbed plasma elec-
tron density for ν = 5 × 10–5 and rb = 0.4 cm.

Fig. 8. Spatial mode spectra for a noisy seed perturbation at
the times τ = (1) 0, (2) 90, (3) 120, and (4) 240.
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Fig. 9. Time evolutions of the relative energy lost by the
beam for (1) pulsed and (2) noisy seed perturbations.
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shows the relative energies lost by the beam electrons
for pulsed (curve 1) and noisy (curve 2) seed perturba-
tions. In both cases, the energy-conversion efficiency in
the saturation stage is about 30%. For a regular seed
perturbation when the phases of all the longitudinal
modes are the same, the field has the form of a regular
sequence of pulses because of the superposition of dif-
ferent harmonics. Consequently, there are spatial
regions where the longitudinal component of the elec-
tric field is weak and, accordingly, the field itself does
not interact with the beam electrons. This effect is illus-
trated in Fig. 9: for a regular seed perturbation, the
beam electrons lose their energy at a slower rate than
for a noisy seed perturbation (curve 2 is steeper than
curve 1).
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Abstract—The dispersion properties and field distribution of plasma waves in a periodic plasma-filled
waveguide are correctly analyzed for the first time with allowance for all spatial harmonics. It is shown that the
plasma wave spectrum has a zonal structure and a lower cutoff frequency. The widths of the forbidden bands
and the lower cutoff frequency are determined by the waveguide corrugation depth. For a planar periodic
plasma-filled waveguide, the allowed and forbidden frequency bands are evaluated analytically. The waveguide
periodicity substantially influences the field of the plasma waves at frequencies close to the forbidden bands.
This leads to the formation of regions in which the energy density of plasma waves exceeds the average level
by more than one order of magnitude. This effect is related to the contribution from the higher spatial harmon-
ics. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Periodic plasma-filled waveguide structures are
widely used in plasma microwave electronics. To date,
several types of microwave sources [1–4] that are based
on periodic plasma-filled structures and are better than
vacuum devices of the same class in a number of tech-
nical parameters have been developed. Periodic
plasma-filled structures can also be used to develop
new efficient methods for charged-particle acceleration
and plasma heating.

However, in spite of a number of theoretical and
experimental studies (see, e.g., reviews [4, 5]), the
mechanisms through which the plasma influences the
generation of electromagnetic waves in periodic struc-
tures are still poorly understood. To date, several mech-
anisms have been suggested to describe the effect of a
plasma on the increase in the output power and the effi-
ciency of microwave generation in plasma-filled
devices. The mechanisms can be divided into three
groups, which are briefly analyzed below.

(i) The influence of the plasma as dielectric medium
manifests itself in a decrease in the phase velocity of
the working mode [6] and an increase in the detuning
of the wavenumber of a slow beam wave from the exact
beam–plasma resonance kz = ω/V [7], where ω is the
working frequency and V is the beam velocity. The first
effect increases the spatial growth rate of the synchro-
nous mode, whereas the second effect increases the
efficiency with which the beam energy is converted into
the energy of the working mode. However, the pre-
dicted increase in the efficiency is much lower than that
observed in experiments. Moreover, an appreciable
influence of the plasma is observed at significantly
lower densities than those predicted in [6, 7]; at these
densities, the plasma permittivity is close to unity and
1063-780X/01/2705- $21.00 © 20390
does not affect the electrodynamic properties of the
waveguide structure. Note that somewhat different
mechanisms for the influence of the plasma as dielec-
tric medium were discussed in [8–10]. However, these
mechanisms, as well as those mentioned above, predict
an increase in the microwave generation efficiency at
substantially higher plasma densities as compared to
the experimentally determined optimal density.

(ii) The formation of periodic plasma inhomogene-
ities under the action of strong electromagnetic fields
[11, 12] increases the feedback coupling between the
direct and backward electromagnetic waves, which, in
turn, substantially decreases the starting current and
increases the generation efficiency. The predicted
increase in the efficiency is in fact high, but at plasma
densities much higher than the experimental ones. In
addition, the strong coupling between the direct and
backward waves may take place even without plasma
filling, when a vacuum device operates near the π-
mode; however, the efficiency does not increase so
much in this case. On the other hand, with plasma fill-
ing, no decrease in the starting current was observed.

(iii) There is a parametric interaction between the
plasma waves and electromagnetic waves that are
simultaneously excited by the electron beam. Several
mechanisms for this interaction were considered in
[13–15]. However, all these mechanisms either do not
predict such a substantial increase in the efficiency or
predict it for higher plasma densities.

Therefore, the mechanisms through which the
plasma influences the microwave generation efficiency
in plasma-filled microwave sources based on periodic
waveguide structures still remain unknown.

Note that an even more special problem of the spec-
tral properties of plasma-filled periodic structures at
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Qualitative pattern of the dispersion curves of plasma waves forming a dense spectrum. For clarity, only five transverse and
five longitudinal harmonics are depicted.
frequencies below the plasma frequency also remains
unstudied. However, without knowledge of these prop-
erties, an analysis of the mechanisms for the influence
of the plasma may be incomplete or incorrect.

As is known, the spectrum of a plasma-filled peri-
odic waveguide structure contains electromagnetic and
plasma modes, which, in the simplest case of a trans-
versely uniform plasma, are separated in frequency
[16].

The dispersion properties of high-frequency electro-
magnetic modes do not substantially differ from the
corresponding modes of a vacuum periodic structure
and can be described using the same technique [13].
Thus, if we represent the waveguide field in the form of
a superposition of spatial harmonics and require that
the tangential components of the electric field vanish on
the periodic surface of the structure, we arrive at the
dispersion relation in the form of an infinite determi-
nant. Taking into account a finite number of spatial har-
monics, we pass to a finite determinant whose roots can
be found numerically. For periodic structures with typ-
ical experimental parameters, taking into account five
to ten harmonics is usually quite sufficient to achieve
the required accuracy, which is confirmed by a compar-
ison with experimental data [17].

The first theoretical investigations of plasma waves
in periodic plasma-filled waveguides were also based
on the traditional approach [8, 18]. An analysis of the
beam–plasma instability in a periodic plasma
waveguide with allowance for the fundamental and two
neighboring spatial harmonics showed that the growth
rate of plasma waves is much less than that of electro-
magnetic waves. However, it was shown later [19] that,
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
contrary to the Floquet theorem, the dispersion curves
of plasma waves become nonperiodical with respect to
the wave vector as the number of spatial harmonics
increases. In addition, the number of dispersion curves
increases as the next spatial harmonic is taken into
account (Fig. 1). In this case, the allowed and forbidden
bands change substantially as new, even very high, har-
monics are taken into account. It seems that the results
obtained with any finite number of incorporated har-
monics are incorrect. In the limiting case when all
transverse and longitudinal harmonics are incorpo-
rated, the entire domain below ωp in the (ω, kz) plane is
compactly filled by the dispersion curves, which thus
become indistinguishable.

In fact, each point in the (ω, kz) plane below ωp is a
solution to the dispersion relation. Therefore, we arrive
at a special type of spectrum, the so-called “dense”
spectrum, which was first described in [20]. The prop-
erties of dense spectra have not yet been studied even
qualitatively, although plasma waves in periodic
plasma-filled structures have been observed in many
experiments [17, 21] and the fact of their existence is
beyond question. Nevertheless, the question arises as to
whether it is possible, in principle, to adequately
describe plasma waves by certain dispersion curves in
the (ω, kz) plane. Theoretical studies reported in this
paper provide a positive answer to this question.

The analysis is based on the method proposed in
[22]. According to this method, it is possible to pass
from representation in the form of spatial harmonics to
an integral representation for the fields inside the peri-
odic structure. As a result, instead of a dispersion rela-
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tion in the form of an infinite determinant, we obtain a
uniform integral equation for the electric field at the
axis of the periodic structure. In the quasistatic limit
c  ∞, this equation transforms into the functional
equation. A detailed study of the latter and an analysis
of the results obtained are the subject of this paper.

In Section 2, a basic integral equation for the total
field at the axis is derived by a new method that is more
efficient than that used in [22]. In Section 3, the basic
equation is transformed into a form admitting a numer-
ical analysis. In Section 4, possible methods for numer-
ically analyzing the equation obtained are described. In
Section 5, the numerical results are analyzed. As an
example, a waveguide with sinusoidal corrugation is
considered.

It is shown that the dense spectrum has a zonal
structure. The widths of the forbidden and allowed
bands depend on the corrugation depth. In the range of
lower frequencies (ω ! ωp), the forbidden bands over-
lap and periodic solutions are seemingly absent.

In the Conclusion, the results obtained are summa-
rized and some findings are formulated.

2. FORMULATION OF THE PROBLEM. 
DERIVATION OF THE BASIC INTEGRAL 

EQUATION

We consider a simple periodic waveguide struc-
ture—a planar waveguide filled with a uniform colli-
sionless cold plasma in an infinitely strong longitudinal
magnetic field (Fig. 2). The choice of such a model is
reasonable in many aspects, even although experimen-
tal plasma-filled periodic structures are, for the most
part, cylindrical. First, many specific features of the
wave processes in planar geometry do not change qual-
itatively when passing to cylindrical geometry. Second,
planar geometry is of particular interest because it can
successfully be used to model coaxial plasma-filled
structures [23] and periodic structures with rectangular
cross sections. Planar plasma-filled devices have not
yet been studied experimentally, but devices with this

z

dPerfect conductor

x
x0

X(z)

Bz = ∞Plasma

Fig. 2. Geometry of the problem.
type of geometry are widely used in vacuum electron-
ics. For harmonic TM waves (Ex , Hy, Ez) ~ exp(–iωt),
the set of Maxwell equations reduces to one equation
for Hy

(1)

where ε = 1 – /ω2 is the permittivity of a cold colli-
sionless plasma, k = ω/c, and c is the speed of light in a
vacuum. The other field components are expressed
through Hy by the formulas

(2)

In the range where plasma waves exist (ω – ωp), we
have ε < 0. Changing to a new variable |ε|1/2x = ,
Eq. (1) transforms into

(3)

where ( , z) = Hy(x, z).

Equation (3) is hyperbolic. Its solution can be
expressed through integrals of the sought function and
its derivative at the waveguide axis (x = 0) [24]:

(4)

where f(z) = (0, z) and g(z) = .

For the fields symmetric about x (Ez(–x) = Ez(–x)),

we have (0, z) = 0. Then, passing to the old vari-
ables, we obtain the following representation for the
magnetic field in the waveguide:

(5)

The requirement that the tangential component of
the electric field should vanish at the waveguide wall
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is equivalent to the condition for Hy(x, z):

(6)

where x = X(z) is the coordinate of the periodic bound-
ary of the waveguide (X(z + d) = X(z)) and the prime
stands for differentiation with respect to the argument.
Substituting Eq. (5) into Eq. (6), after simple manipu-
lations, we arrive at the integral equation

(7)

where ϕ(z) = |ε|1/2X(z),

In the quasistatic limit c  ∞, Eq. (7) coincides
with an equation obtained in [22] using a traditional
approach based on the expansion of fields in series in
spatial harmonics. The full mathematical equivalence
of these approaches under the condition ϕ'(z) ≤ 1 is also
proved in [25].

Below, we will consider in detail quasistatic oscilla-
tions, in which case the integral equation (7) transforms
into the functional equation

(8)

where Ψ(z) = Ez(0, z)  and kz is the oscillation
wavenumber.

Note that taking into account the correction for elec-
tromagnetic effects, which contribute to the integral
term in Eq. (7), presents no problems. In view of the
fact that the kernel of the integral equation (7) is contin-
uously differentiable with respect to both variables,
Eq. (7) can be solved by iterations. As an initial func-
tion, we can use the solution to Eq. (8). The procedure
for solving this equation will be described below.

3. REDUCTION OF THE FUNCTIONAL 
EQUATION DESCRIBING A DENSE SPECTRUM 

TO THE EQUATION DESCRIBING 
AN ORDINARY SPECTRUM

The functional equation (8) is the equation for
eigenfunctions and eigenvalues. Although the ampli-
tudes of spatial harmonics do not enter this equation
explicitly, it describes, again, a dense spectrum; i.e.,
any point in the (ω, kz) plane that lies below ωp is the
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solution to Eq. (8). Hence, it is hardly possible to ana-
lyze Eq. (8) numerically.

Indeed, let us assume that kzm(ω) is the eigenvalue
corresponding to the eigenfunction Ψm(z), where m = 0,
1, 2, …, ∞ is the transverse index. A direct substitution
shows that the wavenumbers kzmn(ω) = kzm(ω) + nk0
shifted by nk0, where k0 = 2π/d, are also the eigenvalues
of Eq. (8), which, however, correspond to other eigen-
functions: Ψmn(z) = Ψm(z)exp(–ink0z). The latter feature
can be used to separate out the shifted branches. Such a
separation was performed analytically in [22] for
|ε(ω)| ! 1.

Below, we will separate out the shifted branches in
the general case, without any additional assumptions. It
should be noted that all shifted branches determine the
same total field; i.e., Ezm(0, z) = exp(ikzm(ω)z)Ψm(z) ≡
exp(ikzmn(ω)z)Ψmn(z). Therefore, to completely deter-
mine the field distribution in the waveguide, it is suffi-
cient to know, e.g., kzm(ω) and Ψm(z). The other solu-
tions to Eq. (8) with the same transverse index are spu-
rious and do not provide new information about the
waveguide field. The eigenvalues kzm(ω) and eigenfunc-
tions Ψm(z) describe an ordinary spectrum of transverse
modes, which correspond to the modes of a smooth
plasma-filled waveguide (Trivelpiece–Gould modes).

In order to eliminate spurious solutions, we intro-

duce a new unknown function F(z) = (0, z')dz'.

Then, Eq. (8) reduces to the problem

(9)

The solution to Eqs. (9) is sought in the form F(z) =
ρ(z)exp(ikzz + iθ(z)). From Eqs. (9), we obtain two
independent problems for two new unknown real func-
tions ρ(z) and θ(z):

(10)

(11)

Equations (10) have a simple and obvious solution
ρ(z) = const. According to the uniqueness theorem for
the Maxwell equation with boundary conditions, the
obtained solution is unique; otherwise, we would have
two (or more) field distributions corresponding to the
same frequency and the same wavenumber, which are
independently determined from Eqs. (11).

A family of Eqs. (11) taken for different n deter-
mines a family of shifted branches, index m being the

Ez
z∫
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transverse mode number. Hence, it is Eqs. (11) that pro-
vide the separation of shifted branches. In addition, fix-
ing n and m, we not only eliminate spurious solutions,
but also arrive at the problem for a fixed transverse
mode, which substantially facilitates numerical calcu-
lations.

4. NUMERICAL METHODS FOR SOLVING
THE FUNCTIONAL EQUATION

Setting n = 0 in Eqs. (11), we arrive at the problem

(12)

which describes an ordinary spectrum of transverse

modes; here, θ(z) = [θ(z + ϕ(z)) – θ(z – ϕ(z))]. It is

easily seen that, for X(z)  x0, the eigenvalues and
eigenfunctions of problem (12) (kzm  (m +
1/2)π/(|ε|1/2x0) and θm(z)  const, respectively) corre-
spond to the ordinary Trivelpiece–Gould modes of a
smooth waveguide filled with a magnetized plasma.

Equations (12) were solved numerically by two dif-
ferent methods. The first method was based on the Fou-
rier expansion of the unknown function θ(z): θ(z) =

exp(iqk0z). As a result, we arrive at a set of
linear algebraic equations for the Fourier coefficients
Cq, which allows us to determine θ(z) and kz with any
prescribed accuracy. We took into account at most
90 Fourier harmonics. However, as a rule, it was suffi-
cient to take into account ten to twenty Fourier harmon-
ics in order to calculate θ(z) accurate to 10–2%.
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2
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Fig. 3. Dispersion curves for the first three transverse modes
of a periodic plasma waveguide: α = (1) 0 and (2) 0.1, x0 =

1.4 cm, and k0 = 3.67 cm–1.
The second method was based on the approximation
of θ(z) by the spline functions,

(13)

where (z) are the spline functions of the kth order:

To achieve an accuracy of ≤10–2%, it is sufficient to
take N ∝  100 for the spline functions of the first order.
The numerical solutions obtained by the two methods
coincide within the given accuracy.

5. ANALYSIS OF NUMERICAL RESULTS

Figure 3 shows the dispersion curves for a sinusoi-
dal corrugated plasma waveguide X(z) = x0(1 +
αcos(k0z)) for x0 = 1.4 cm, α = 0.1, and k0 = 3.67 cm–1.

As is seen from Fig. 3, the interaction between the
fundamental and higher spatial harmonics produces the
forbidden bands ω–l < ω < ω+l, where ω±l are the upper
and lower boundaries of the lth forbidden band (l = 1, 2,
…, ∞). The expressions for the boundary frequencies of
each forbidden band can be found analytically: ω±l =
ωp/(1 + (πl/x0k0(1 ± α))2)–1/2. It is interesting that, for the

frequencies within the forbidden band, operator  has

a singular point in which θ  = 0. The singular

point is determined by the condition 2ϕ(z0) = ld. From
here, in view of Eqs. (12), it follows that, at the bound-
aries of the lth forbidden band, we have kzm(ω) 
(2m + 1)π/(ld), where m = 0, 1, …, ∞ and l = 1, 2, …,
∞. At large l, the forbidden bands overlap; i.e., there is
a lower cutoff frequency. The forbidden bands overlap
at frequencies satisfying the inequality αx0k0|ε|1/2 ≥ π/2;
however, our consideration is valid for αx0k0 |ε|1/2 ≤ 1
[25]. As is the case of electromagnetic waves, the group
velocity of plasma waves tends to zero as the frequency
approaches the forbidden band.

To analyze the influence of periodicity on the field
distribution, we represent Ez(0, z) in the form Ez(0, z) =
A(z)exp(ikzz + iθ(z)). For a smooth plasma-filled
waveguide, we may assume A(z) = 1 and θ(z) = 0.

Figure 4 shows the profiles of the amplitude A(z) for
different frequencies. For frequencies far from the for-
bidden band, the amplitude A(z) differs slightly from
unity; i.e., the periodicity slightly perturbs the field of a
smooth waveguide. As the frequency approaches the
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Fig. 5. Effect of periodicity on the phase shift θ(z) of the
fundamental mode for different frequencies: ω/ωp = (1) 0.9,
(2) 0.88, (3) 0.875, and (4) 0.874 at α = 0.1, x0 = 1.4 cm, and

k0 = 3.67 cm–1.
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upper boundary frequency of the first forbidden band
(ω+1 . 0.874ωp for our parameters), the amplitude per-
turbation caused by periodicity becomes stronger. Near
the boundary frequency ω+1, A(z) has sharp peaks in
which A(z) exceeds its averaged value by more than one
order of magnitude. In this case, the width of the peaks
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
decreases and the maximum field strongly increases as
ω  ω+1. Similar behavior of the field is observed
when the frequency approaches the boundaries of the
other forbidden bands.

Figure 5 shows the profiles of the phase shift θ(z)
caused by periodicity for different frequencies. Far
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from the boundary frequency ω+1, the profile θ(z) is
nearly sinusoidal and the absolute value of θ(z) is rather
small. As the frequency approaches ω+1, the profile θ(z)
changes substantially: the sinusoidal profile transforms
into a sawtooth profile, and the maximal values of θ(z)
increase substantially. It is also of interest to analyze
the amplitudes of spatial harmonics.

Figure 6 shows the amplitudes of spatial har-
monics of the longitudinal electric field An =

(0, z)exp(−i[kz(ω) + nk0]z)d  at different fre-

quencies. As is seen from Figs. 6a–6d, the contribution
from higher spatial harmonics to the total field
increases substantially as ω  ω+1. The spatial har-
monic with n = –1 has a maximum amplitude; its
amplitude becomes comparable with the amplitude of
the fundamental spatial harmonic in the vicinity of ω+1.

The amplitudes of higher harmonics are signifi-
cantly lower. However, they fall slowly as the harmonic
number increases, so that their total contribution is sub-
stantial (especially, near the boundary frequencies),
which explains the formation of regions with the high
energy density of the electromagnetic field.

6. CONCLUSION

The dispersion properties and field distribution of
plasma waves in a periodical plasma-filled waveguide
have been thoroughly analyzed for the first time. Using
the new approach proposed in [22], the problem of the
dense spectrum of plasma waves in a periodic plasma
waveguide is solved. Specific features of both the spec-
trum of plasma waves and the distribution of electro-
magnetic fields are revealed.

The forbidden bands for plasma waves in periodic
plasma waveguides are predicted and correctly investi-
gated for the first time. It is shown that the effect of
periodicity is negligibly small for frequencies far from
the forbidden bands, even when the corrugation depth
is relatively large. As the frequency approaches the
boundary of the forbidden band, the effect of periodic-
ity on the dispersion characteristics and the field distri-
bution becomes stronger. At the boundaries of the for-
bidden bands, the wave group velocity tends to zero. At
the same time, the plasma wave field strongly increases
in narrow spatial regions: the closer the frequency to
the boundary frequency, the higher the field amplitude
and the narrower the region where the field is concen-
trated. Such an unusual behavior is due to the contribu-
tion from higher spatial harmonics, which, unlike the
case of electromagnetic waves in a periodic vacuum
waveguide, are volumetric in character.

Such diversity of the dispersion characteristics and
field distributions is favorable for implementing vari-
ous regimes of the interaction between plasma waves
and charged-particle beams. Previously, the modula-
tion of an electron beam in a nearly sinusoidal plasma

1
d
--- Ez0

d∫ z
wave field was studied in detail. However, the modula-
tion character may change substantially as the fre-
quency approaches the forbidden band.

The results obtained may also be of interest for the
development of plasma-based charged-particle acceler-
ators, because it is shown that, under certain conditions,
the local values of the plasma wave fields in periodic
plasma waveguides can be very high.

Although we have considered in detail one of the
simplest plasma-filled periodic structures (a planar cor-
rugated waveguide filled with a fully magnetized, cold
uniform collisionless plasma), we can anticipate that
the results obtained are general in character and the
method used may be extended to researching plasma
structures that are closer to the experimental ones.
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Abstract—A study is made of the generation of electromagnetic waves during the merging of two Langmuir
plasmons in a hot plasma with a magnetic field. It is shown that the frequency of Langmuir plasmons can vary
in the range from 0.8 to 1.1 of the electron Langmuir frequency. The spectrum and polarization of the emitted
electromagnetic radiation are analyzed. It is found that the thermal motion of plasma particles may lead to the
generation of electromagnetic waves in the frequency range from 1.6 to 2.2 of the electron Langmuir frequency.
In a plasma with an isotropic Langmuir turbulence spectrum, the degree of circular polarization of the emitted
radiation can amount to 50%. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Conditions favorable for the onset of Langmuir tur-
bulence may often arise in both laboratory and space
plasmas. In a turbulent plasma, electromagnetic radia-
tion can be generated during the merging of two Lang-
muir plasmons, l1 + l2  t [1]. This process in the
absence of a magnetic field was thoroughly examined
in monographs [1–3]. The presence of a magnetic field
significantly alters the generation of electromagnetic
radiation. For a weak magnetic field, the generation
process was investigated by Zlotnik [4], who analyzed
both the polarization and power of the electromagnetic
radiation generated during the merging of two Lang-
muir plasmons in a cold plasma without allowance for
the effect of the thermal motion of plasma particles on
the plasma dielectric tensor and, accordingly, on the
dispersion of Langmuir waves.

In this paper, we investigate how the thermal motion
of plasma particles affects the merging process in a
plasma with Langmuir turbulence in a magnetic field.
We treat the case in which the electron gyrofrequency
is lower than the electron Langmuir frequency. Assum-
ing that the plasma particles obey a Maxwellian energy
distribution and taking into account thermal correc-
tions, we investigate the polarization of the generated
electromagnetic radiation.

2. DISPERSION RELATION FOR LANGMUIR 
WAVES IN A HOT PLASMA WITH A MAGNETIC 

FIELD

The expression for the dielectric tensor of a plasma
in a magnetic field can be found, e.g., in monographs
[3, 5]. We use the expression presented in the book by
1063-780X/01/2705- $21.00 © 20398
V.L. Ginzburg and A.A. Rukhadze [5]. Under the con-
ditions

(1)

where s = …, –1, 0, 1, …, the plasma dielectric tensor
elements are

(2)

(3)

Ze
3

k1⊥
6
v Te

6( )/ωBe
6( ) ! 1,=

βse
3 ω1 sωBe–

k1z v Te

----------------------- 
 

3

 @ 1,=

εxx 1
ωpe

2

2ω1 ω1 ωBe–( )
----------------------------------- 1 Ze– Ze

2
5/8( )+{ }–=

× 1 β1e
2–

3β1e
4–

i π/2( )β1e β1e
2

/2–( )}exp–+ +{

–
ωpe

2

2ω1 ω1 ωBe+( )
------------------------------------ 1 Ze– Ze

2
5/8( )+{ }

× 1 β 1e–
2–

3β 1e–
4–

i π/2( )β 1e– β 1e–
2

/2–( )exp–+ +{ } ,

εxz εzx

ωpe
2

k1⊥

2ω1ωBek1z

------------------------- 1 Ze– Ze
2

5/8( )+{ }= =

× β 1e–
2– β1e

2–
– 3β 1e–

4–
3β1e

4–
–+{

+ i π/2( ) β1e β1e
2

/2–( )exp β 1e– β 1e–
2

–( )exp–( )}.

εzz 1
ωpe

2

k1z
2
v Te

2
---------------- 1 Ze– Ze

2
3/4( )+{ }+=

× β0e
2–

– 3β0e
4–

– i π/2( )β0e β0e
2

/2–( )exp+{ }

+
ωpe

2 ω1 ωBe–( )Ze

2ω1k1z
2
v Te

2
---------------------------------------- 1 Ze– Ze

2
5/8( )+{ }
001 MAIK “Nauka/Interperiodica”



SPECTRA OF ELECTROMAGNETIC RADIATION FROM A HOT PLASMA 399
(4)

The dispersion relation for the longitudinal Lang-
muir waves in a magnetic field has the form

(5)

For a hot plasma in which the electron gyrofrequency is
lower than the electron Langmuir frequency, the solu-
tion to Eq. (5) can always be represented as the sum of
the Langmuir frequency and small terms (thermal cor-
rections and corrections introduced by the magnetic
field).

We substitute the tensor elements (2)–(4) expanded
about the electron Langmuir frequency ωpe into Eq. (5)
to obtain the following dispersion relation for Lang-
muir turbulent pulsations in a plasma with a magnetic
field:

(6)

where
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(10)

(11)

(12)

(13)

Expression (6), which is valid under conditions (1), can
be reduced to a simpler form containing only first-order
(in parameter b) thermal corrections:

(14)
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b/a2 is the squared ratio of the electron gyroradius to the
wavelength of the Langmuir plasmon. Figures 1 and 2
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mula (6) on the angle θ1 between the wave vector and
the magnetic induction vector for different values of
b/a2 and b. We can see that, under conditions (1), the
Langmuir plasmon frequency ω for the maximum pos-
sible values of b/a2 and for θ1 close to 90° is lower than
the electron Langmuir frequency by 20%, whereas for
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merging of two such plasmons can result in the gener-
ation of electromagnetic radiation in the frequency
band from 1.6ωpe to 2.2ωpe (in accordance with the con-
servation of energy and momentum during the merging
process). Below, we will be interested precisely in these
mergings, assuming that the plasmon wavelengths in
the Langmuir turbulence spectrum range from 1.4
((b/a2) = 0.5) to several electron gyroradii.

0

1.00 1.5 2.00.5
θ

–0.4

0.4
∆ω/ωpe

a

b

c

0.4

0.50 1.0 1.5 2.0
θ

–0.4

0

∆ω/ωpe

a

b

Fig. 1. Dispersion of Langmuir waves (∆ω = ω1 – ωpe) vs.
the angle between the magnetic induction vector and the

wave vector for b = /  = 0.01 and different ratios

of the squared electron gyroradius to the squared wave-
length: b/a2 = (a) 0.09, (b) 0.16, and (c) 0.36.

k1
2
vTe

2 ωpe
2

Fig. 2. Same as in Fig. 1, but for b = 0.03 and b/a2 = (a) 0.27
and (b) 0.48.
3. MERGING OF TWO LANGMUIR PLASMONS 
ACCOMPANIED BY THE GENERATION 

OF AN ELECTROMAGNETIC WAVE

We consider the merging process in a hot plasma
with a magnetic field. We take into account thermal cor-
rections through the first order in the expansion in
parameter b and assume that a ≤ 1/3. In the Langmuir
turbulence spectrum, we are interested in plasmon
wavelengths 2π/k1 that range from 1.4 to several elec-
tron gyroradii, in which case the wavenumbers of the
Langmuir plasmons are much larger than the wave-
numbers of the generated electromagnetic radiation

and the conditions  ! 1 and  @ 1 hold.

The merging process under investigation is
described by the equation [1]

(15)

Here,

(16)

where κ(ω, k) is the four-dimensional wave vector of
the generated electromagnetic wave, κ1(ω1, k1) and
κ2(ω2, k2) are the four-dimensional wave vectors of the

Langmuir plasmons,  is the plasma dielectric func-
tion, and Iij(κ) is the spectral matrix of electromagnetic
radiation. When the electron gyrofrequency is much
lower than the electron Langmuir frequency (i.e., the
dispersion of the Langmuir wave is determined by
small corrections introduced by the plasma temperature
and magnetic field), we have

(17)
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the Langmuir turbulence.
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where quantities λi are functions of variables k, k1,
k − k1, ω, ω(k1), and ω(k – k1).

In the last expression, we take the integrals over the
absolute value of dk1 and over the vector dk2. As a
result, we obtain

(18)

where k1const is the solution to the following algebraic
equation, which reflects the conservation of energy (or,
equivalently, frequencies) in the merging process:

(19)

To first order in parameter b,

(20)

(21)

where θ is the angle between the wave vector of the
electromagnetic wave and the magnetic induction vec-
tor.

When the absolute value of vector k is much smaller
than the absolute values of vectors k1 and k2, vector
k1const is related to the frequency of the generated elec-
tromagnetic wave by the formula

(22)
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It is seen that, under the above conditions, expres-

sion (22) with a negative denominator describes the
generation of electromagnetic waves whose frequen-
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When the denominator is positive, expression (22)
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frequencies higher than the doubled Langmuir fre-
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rily affect the relationship between the absolute value
of vector k1 and the expression for the frequency of the
emitted electromagnetic radiation. Note also that,
although expression (22) contains terms proportional to
a2, the relationship between the wave vector k1 of the
Langmuir waves and the frequency ω of electromag-
netic radiation is described by terms of the first order in
parameter a, because the left-hand side of expression
(22) is the squared wavenumber of Langmuir turbulent
pulsations.

To first order in the parameter k/k1, we obtain

(23)

where

(24)

According to expressions (23) and (24), first-order
effects in k/k1 can only affect the generation of electro-
magnetic waves at frequencies that differ from the fre-
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Below, when analyzing the generation of electromag-
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In this approximation, quantities λi have the
form [1]

(25)

Here, (κ1) = , (κ2) = ; the matrices

(h, n) describe the transition from the laboratory
frame of reference to the frame related to the generated
electromagnetic wave [6]; and the tensor elements Smpl

have the form [1]
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(31)

We expand expressions (30) and (31) in powers of the
small parameter k/k1 and retain terms up to second
order. As a result, we obtain

(32)

(33)

In a plasma with a magnetic field, Langmuir turbu-
lence is often generated during the injection of a rela-
tivistic electron beam. In laboratory installations (e.g.,
in the GOL-3 device at the Budker Institute of Nuclear
Physics, Siberian Division of the Russian Academy of
Sciences), a relativistic electron beam is injected along
the magnetic induction vector. In a laboratory plasma
with a magnetic field such that the gyrofrequency of the
plasma electrons is lower than the electron Langmuir
frequency, the ions are, as a rule, unmagnetized and
obey an isotropic velocity distribution [7]. Langmuir
plasmons scattered by the plasma ions become distrib-
uted isotropically on time scales τ on the order of [1]
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In such devices, the spectrum of Langmuir plasmons
may become isotropic when the characteristic isotro-
pization rate τ–1 is much higher than both the frequency
of binary collisions between the plasma electrons and
the inverse duration of the electron beam. This situation
can arise when the plasma density is about 1013–
1014 cm–3 and the density of the relativistic electrons is
about 1011–1012 cm–3 (the energy of relativistic elec-
trons being about 1 MeV); in this case, the gyrofre-
quency of the plasma electrons is lower than their
Langmuir frequency. In space plasmas, the Langmuir
turbulence spectrum often becomes isotropic under
conditions analogous to those in the solar corona and
the Earth’s ionosphere. For such space plasmas, the iso-
tropic Langmuir turbulence approximation, which is
often used in model calculations, was justified in [1, 8].
Hence, when a relativistic electron beam propagates in
laboratory or space plasmas with a magnetic field, the
Langmuir turbulence spectrum may often become iso-
tropic.

We consider an isotropic Langmuir turbulence spec-
trum of the form (η ≠ 3)

such that

where Wl is the energy density of Langmuir turbulent
pulsations and k1max and k1min are the maximum and
minimum wavenumbers in the Langmuir turbulence
spectrum. We take into account the relationships [1]

where

.

We also take into account the fact that the functions IR, k
and IL, k of electromagnetic waves with left-hand and
right-hand circular polarizations are related to the func-
tions IR, ω and IL, ω by the expressions [1]

.

Under the above conditions, we can also use the follow-
ing expression for the refractive index of the electro-
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magnetic waves [4]:

Then, substituting expressions (32) and (33) for λi into
formula (18), we arrive at the equation describing the
generation of electromagnetic radiation during the
merging of two Langmuir plasmons in a magnetic field:

(34)

where

For ω < 2ωpe, we have

For ω ≥ 2ωpe, we have

Formula (34) implies that, for η = 2, the power of elec-
tromagnetic radiation (right- and left-polarized waves)
emitted into a unit solid angle from the unit volume of
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a turbulent plasma per unit frequency interval is equal
to

(35)

For estimates, we consider the case in which k1max =
kDe/4, where kDe is the wavenumber corresponding to
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Fig. 3. Spectral powers (1) JωR and (2) JωL of the generated
electromagnetic waves with right- and left-hand circular
polarizations vs. the angle between the wave vector and the
magnetic field for a = ωBe/ωpe = 1/3 and (1/p) = ω/ωpe = 2.1.

Fig. 5. Same as in Fig. 3, but for 1/p = 1.95.
the Debye radius. The spectral power of the generated
right- and left-polarized waves as a function of the
angle between the magnetic induction vector and the
direction along which electromagnetic radiation is
emitted is illustrated in Figs. 3–7, which were obtained
for different values of parameter p and for a = 1/3. One
can see that, for p–1 > 2, the maximum intensities of the
emitted right- and left-polarized waves are nearly the
same and the corresponding intensity profiles are
peaked in the angular range 0 ≤ θ < 1. The degree to
which the generated radiation is polarized is smaller
than 0.1.

For p–1 < 2, the right-polarized waves are emitted
preferentially in the angular range θ ~ 1, while the
intensity profile of the generated left-polarized waves is
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Fig. 4. Same as in Fig. 3, but for 1/p = 2.2.

Fig. 6. Same as in Fig. 3, but for 1/p = 1.8.
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peaked at θ ~ 2. The degree of polarization can amount
to 0.5 (for p–1 ≈ 1.6 and θ ≈ 2).

Figures 8–10 display the radiation spectra obtained
by integrating the spectral power of the generated right-
and left-polarized waves over the angle in the ranges
ω > 2ωpe and ω < 2ωpe for different values of the
parameter a and for k1maxvTe /ωBe = 1/1.4. From Fig. 8,
we can see that, for a = 1/3, electromagnetic radiation
is primarily generated at frequencies in the range ω >
2ωpe . On the other hand, for smaller a values (i.e., for
weaker magnetic fields), the radiation spectrum is
peaked in the frequency range ω < 2ωpe, because, in
dispersion relation (14), the term that accounts for the
magnetic field effect becomes smaller. That is why, in
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Fig. 7. Same as in Fig. 3, but for 1/p = 1.6.

Fig. 9. Same as in Fig. 8, but for a = 1.4.
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Figs. 9 and 10, we present radiation spectra precisely in
this frequency range.

Note that, in formula (35), the frequency band of the
emitted radiation does not depend explicitly on the
plasma temperature. However, from relationships (19)–
(21), we can find that the minimum frequency in the
emission spectrum is approximately equal to ωmin ≈

2ωpe +  – ωpe and the maximum frequency

is about ωmax ≈ 2ωpe + ; i.e., the bandwidth

of the radiation spectrum is governed by the plasma
temperature. For the parameter values a = 1/3 and
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Fig. 8. Angle-averaged spectrum of the generated electro-
magnetic radiation for a = 1/3.

Fig. 10. Same as in Fig. 8, but for a = 1.6.
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k1maxvTe/ωBe = 1/1.4, for which formulas (19)–(21)
indicate that the frequency spectrum of the Langmuir
turbulence extends between 0.8 and 1.1 of the electron
Langmuir frequency, the electromagnetic radiation is
seen to be generated at frequencies from ωmin ≈ 1.6ωpe

to ‡ ωmax ≈ 2.2ωpe.

4. CONCLUSION
We have shown that, when the ratio of the electron

Langmuir frequency to the electron gyrofrequency lies
in the range 3–8, the frequency of the electron Lang-
muir waves in a hot plasma with a magnetic field can
vary from 1.1ωpe (for oscillations in the direction of the
magnetic induction vector) to 0.8ωpe (for oscillations in
the transverse direction). According to the energy con-
servation law, this circumstance provides the possibil-
ity of generating electromagnetic radiation in the fre-
quency band from 1.6ωpe to 2.2ωpe in the l1 + l2  t
merging process. The closer the radiation frequency to
2ωpe, the higher the radiation power (this is valid for
generation at frequencies both above and below 2ωpe).
However, for a sufficiently strong magnetic field such
that the ratio of the electron Langmuir frequency to the
electron gyrofrequency is equal to three, the radiation is
generated predominantly at frequencies in the range
ω > 2ωpe. As the magnetic field decreases, the peak in
the radiation spectrum is displaced into the frequency
range ω < 2ωpe .

The degree of circular polarization of the generated
electromagnetic radiation can be as high as 50%.

When the minimum wavenumber of the Langmuir
turbulence spectrum is much larger (by a factor of ten
or more) than the inverse gyroradius of the plasma elec-
trons, electromagnetic radiation can only be generated
at frequencies equal to the doubled electron Langmuir
frequency or higher (this process was investigated by
Tsytovich [1]). When the maximum wavenumber of the
Langmuir turbulence spectrum is much smaller than
the inverse electron gyroradius, the energy conserva-
tion law (19) and dispersion relations (20) and (21) for
the frequencies of Langmuir plasmons imply that elec-
tromagnetic radiation is also generated exclusively at
frequencies above the doubled electron Langmuir fre-
quency.

For an arbitrary Langmuir turbulence spectrum (i.e.,
for an arbitrary anisotropic Langmuir turbulence spec-
trum with arbitrary ratios of the minimum and maxi-
mum wavelengths to the gyroradius of the plasma elec-
trons), the minimum and maximum frequencies of the
spectrum of the generated electromagnetic waves are
determined from the energy conservation law (19) and
dispersion relation (20) for the frequency of Langmuir
plasmons.
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Abstract—A multifluid MHD model is applied to study the magnetic field dynamics in a dusty plasma. The
motion of plasma electrons and ions is treated against the background of arbitrarily charged, immobile dust
grains. When the dust density gradient is nonzero and when the inertia of the ions and electrons and the dissi-
pation from their collisions with dust grains are neglected, we are dealing with a nonlinear convective penetra-
tion of the magnetic field into the plasma. When the dust density is uniform, the magnetic field dynamics is
described by the nonlinear diffusion equations. The limiting cases of diffusion equations are analyzed for dif-
ferent parameter values of the problem (i.e., different rates of the collisions of ions and electrons with the dust
grains and different ratios between the concentrations of the plasma components), and some of their solutions
(including self-similar ones) are found. The results obtained can also be useful for research in solid-state phys-
ics, in which case the electrons and holes in a semiconductor may be analogues of plasma electrons and ions
and the role of dust grains may be played by the crystal lattice and impurity atoms. © 2001 MAIK
“Nauka/Interperiodica”.
Dust structures are frequently encountered in
space plasma: these are, e.g., planetary rings, inter-
stellar clouds, and comet tails. It is inevitable that the
dust is present in plasmas of experimental and indus-
trial devices. Thus, the dust adversely affects the per-
formance of computer chips produced by the plasma-
etching method. This important and challenging prob-
lem has stimulated theoretical and experimental
efforts aimed at studying dust-related processes in
plasmas [1].

The presence of dust in plasmas substantially mod-
ifies the picture of plasma phenomena that is usually
found in the two-fluid MHD approach [2]. There are
many papers devoted to charge-exchange and recombi-
nation processes in real dusty plasmas. Here, in order to
concentrate our attention on the characteristic features
of the magnetic field dynamics in a multicomponent
plasma, we assume that the dust plasma component is
represented by point grains having a constant charge
(see, e.g., [3]), in which case the plasma electrons and
ions experience purely Coulomb collisions with the
grains. In the steady-state and linear approximations,
analogous problems have been treated in solid-state
physics [4], in which case the electrons and holes are
analogs of plasma electrons and ions and the role of
dust grains is played by the crystal lattice of a semicon-
ductor. In this paper, we derive equations for the mag-
netic field dynamics in a dusty plasma. In particular, we
describe an effect that is analogous to the magnetoresis-
tance effect, which is well known in solid-state physics.
The term “magnetoresistance” has not yet found wide-
spread use in plasma physics, although the effect itself
has been rediscovered by many plasma physicists.

We describe the magnetic field dynamics in a dusty
plasma by the standard set of equations consisting of
1063-780X/01/2705- $21.00 © 20407
the equation of motion for ions and electrons without
consideration of the inertial terms (Aristotle’s equa-
tions)

(1)

(2)

(3)

where νed and νid are the rates of the collisions of
plasma electrons and ions with the dust grains and τ =

τei = , νei is the electron–ion collision rate; the con-
tinuity equation

(4)

the condition for the plasma to be electrically neutral
(the electroneutrality condition)

(5)

where Zd is the grain charge and nd is the grain density;
and Maxwell’s equations

(6)

(7)

The main difference of the set of equations pre-
sented here from the standard two-fluid MHD equa-
tions is that we incorporate the dust component into the
electroneutrality condition (5), which now implies that
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the plasma electrons and ions are not directly coupled
to each other, but occupy such spatial positions that the
difference between their charge densities is equal to the
prescribed dust charge density.

In Eqs. (1) and (2), we neglect electron and ion iner-
tia, respectively, and, in Eq. (6), we ignore the displace-
ment current. The corresponding strong inequalities
under which these simplifying assumptions are valid
will be presented below. In Eqs. (1) and (2), we discard
terms with the gas-kinetic pressure and thermal forces;
i.e., we assume that

If, in Eqs. (1) and (2), we also omit terms accounting
for collisions of plasma electrons and ions with the dust
grains, we can sum Eqs. (1) and (2) multiplied by ne and
Zini, respectively, to obtain

(8)

Under this condition, the characteristic spatial and tem-
poral scales a and τ on which the inertial terms in
Eqs. (1) and (2) can be disregarded satisfy the inequal-
ities

We divide Eq. (8) by the dust density and take a curl
of the resulting equation:

When the transverse (with respect to the magnetic field)
dust density gradient is nonzero, we are faced with a
situation similar to that described by Kingsep et al. [5].
The exact solution that they derived in terms of the
electron magnetohydrodynamic (EMHD) model,
which makes it possible to treat electron motion
against the background of immobile ions, implies that
the magnetic field either penetrates into the plasma
due to the transverse ion density gradient or is locked
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Fig. 1. Geometry of the problem.
at the plasma boundary. In our problem, the role of the
ion density gradient is played by the dust density gra-
dient [6].

The equation for the magnetic field dynamics (the
Hopf equation) has the form

The magnetic field penetrates into the plasma in the
form of a shock wave moving at a constant speed v =

. In [5], the shock front is assumed to be governed

by the competition between the nonlinear effects and
diffusion. In our problem, the diffusion term is omitted.
However, as the shock front steepens, the spatial scale
a shortens; when it becomes as short as a ≈
(c/ωpi)Zini/Zdnd, electron and ion inertia should be
taken into account (see [7]).

In order to clarify the consequences of the electron–
grain and ion–grain collisions, we consider the simplest
one-dimensional problem, setting σ = ∞. Since the ions
are much heavier than the electrons, M @ m (see also
[2]), we take into account only ion–grain collisions.
Stricter inequalities, under which electron–grain colli-
sions may be neglected, will be presented below. We
direct the y-axis along the magnetic field (B ≡ By) and
consider the magnetic field dynamics along the x-axis
only (Fig. 1). We also assume a uniform dust distribu-
tion.

In planar geometry, Eq. (6) reduces to the simple
equation

(9)

We find the electron velocity from Eqs. (1)–(3) and use
Maxwell’s equation (7) to obtain

(10)

Substituting expression (10) into Eq. (9) yields (cf. [3])

(11)

Since the electroneutrality condition (5) indicates that
the dust grains redistribute plasma electrons and ions in
space, we must supplement the equation for the mag-
netic field dynamics with the continuity equation for
one of the plasma components, e.g., for plasma elec-
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trons. To do this, we insert the electron velocity (10)
into the continuity equation (4):

(12)

According to Eq. (9), the magnetic field is frozen in the
electron plasma component. However, since the mag-
netic pressure forces the plasma electrons and ions to
“squeeze” between the immobile grains, we deal with
diffusion-like equations in which the diffusion coeffi-
cients depend on the magnetic field strength and the
electron and ion densities. Consequently, the plasma
resistivity also depends on the magnetic field strength.
In solid-state physics, this effect is known as the mag-
netoresistance effect (see, e.g., [8]); in plasma physics,
this effect was revealed in many theoretical and exper-
imental studies (see, e.g., [3, 9]).

Now, we examine the different limiting cases of
Eqs. (11) and (12).

1. First, we assume that the magnetization parame-
ter is large in comparison with the ratio of the total
charge of the plasma electrons to the total dust charge:

Recall that, in the equations of motion, the inertial
terms are omitted. In the limiting case under consider-
ation, this can be done under the following conditions
on the characteristic spatial (a) and temporal (τ) scales
of the problem:

We thus arrive at the equations

where

Depending on the sign of the dust charge Zd, we can
distinguish between the following four cases.

1.1. The dust charge is negative, Zd < 0.
1.1.1. If the dust charge is much smaller than the ion

charge,  @ 1, we can follow the evolution of the
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given initial profile of the magnetic field by performing
the self-similar change of variables t = t0 , x = x0 , ξ =

, B(x, t) = (ξ), and n(x, t) = (ξ), where the

zero subscript refers to the dimensional quantities and
the tilde identifies the dimensionless quantities. One of
the solutions to our problem has the form

1.1.2. If the plasma contains only a few electrons,
then the ions are confined to the dust component and
the magnetic field evolves in the usual way, with the
diffusion coefficient

1.2. The dust charge is positive, Zd > 0.
1.2.1. If the plasma contains many more ions than

the grains,  @ 1, the magnetic field dynamics is

analogous to that in case 1.1.1.
1.2.3. The opposite case, in which the grain positive

charge substantially exceeds the ion charge,  ! 1,

is described by the equations

(13)

(14)

We can see that the magnetic field evolves much more
slowly than the ion density: it varies at a rate propor-
tional to the small quantity Zini/Zdnd, which drops out
of the ion continuity equation (14). Consequently, we
can follow the behavior of the ion plasma component
while keeping the magnetic field profile fixed, in which
case the magnetic field gradient is found to expel the
ions from the plasma. Thus, for a magnetic field of the

form B(x) = B0 , Eq. (14) can be integrated by the
method of characteristics (Fig. 2):

where n0i is the initial ion density profile. In contrast,
for the initial magnetic field profile in the shape of a

well, B(x) = B0 , the ions tend to concentrate in the
magnetic well (Fig. 3):
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2. Now, we analyze another limiting case of
Eqs. (11) and (12); i.e., we assume that the magnetiza-
tion parameter is much smaller than the ratio of the total
charge of the plasma electrons to the total dust charge:

 ! . In this limit, the inertial terms in the

equations of motion can be neglected if the characteris-
tic scales of the problem satisfy the conditions

Under these conditions, the evolutions of the magnetic
field and electron density are described by the equa-
tions

(15)
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Fig. 2. Evolution of the ion density in a magnetic field with
a profile in the shape of a hump. The ion density profiles cal-
culated at successive times t1 < t2 < t3 are shown.

Fig. 3. Evolution of the ion density in a magnetic field with
a profile in the shape of a well. The ion density profiles cal-
culated at successive times t1 < t2 < t3 are shown.
As before, depending on the sign of the dust charge and
on the dust-to-electron and dust-to-ion density ratios,
we can distinguish between several cases.

2.1. The dust charge is negative, Zd < 0.

2.1.1. If the dust component is insignificant in com-

parison with the electron component,  ! 1, then,

by analogy to case 1.1.1, we again arrive at a solution
in terms of the self-similar variables

specifically,

2.1.2. If the dust component dominates over the

electron component,  @ 1, Eqs. (15) and (16)

have another self-similar solution, which can also be
obtained by switching to the self-similar variables ξ =

, t = t0 , x = x0 , B(x, t) = (ξ), and n(x, t) =

(ξ):

2.2.1. Finally, if the dust component is charged pos-
itively, Zd > 0, and if the ion component dominates, we
arrive at a self-similar solution analogous to that in case
2.1.1.

It should be noted that the symmetry properties of
the equations of motion (1) and (2) allow us to apply an
analogous treatment to the problem in which the major
role is played by the electron–grain collisions and the
ion–grain collisions are neglected.

The general equations for a dusty plasma in which
the electron–grain and ion–grain collisions are both
important is far more complicated. Thus, the dynamic
equation for the magnetic field has the form
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This equation makes it possible to determine the condi-
tions for the rates of the collisions of electrons and ions
with the grains under which the electron–grain colli-
sions can be ignored (cf. [2]):

Hence, we have established that, in a dusty plasma
in which the electron–grain collisions are unimportant,
the magnetic field is frozen in the plasma electrons,
which move under the action of the magnetic pressure
force. Although, in an electrically neutral dusty plasma,
the electrons are coupled to the ions, they are freer to
move than predicted by the standard two-fluid MHD
theory. As a result, the time evolution of the magnetic
field and plasma components is described by the non-
linear diffusion equations. In such a plasma, heat is
released from the friction between the plasma ions and
immobile grains, in which case the plasma resistivity
depends on the magnetic field strength.

ACKNOWLEDGMENTS

I am grateful to K.V. Chukbar for his guidance and
support throughout the work. This work was supported
in part by the Ministry of Science of the Russian Fed-

ν id

νed

------- @ 
m
M
-----

ne

ni

----,
m
M
-----

Zi
2
ni

ne

----------,
m
M
-----

ne

ni

---- 1

ωBi
2 τ i

2
-------------.
MA PHYSICS REPORTS      Vol. 27      No. 5      2001
eration (under the program “Fundamental Problems of
Nonlinear Dynamics”) and INTAS (grant no. 97-0021).

REFERENCES
1. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys.

Usp. 40, 53 (1997)].
2. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by

M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1963), Vol. 1.

3. A. V. Gordeev, Fiz. Plazmy 13, 1235 (1987) [Sov. J.
Plasma Phys. 13, 713 (1987)].

4. A. G. Kollyukh, Yu. M. Malozovskiœ, and V. K. Maly-
utenko, Zh. Éksp. Teor. Fiz. 89, 1018 (1985) [Sov. Phys.
JETP 62, 586 (1985)].

5. A. S. Kingsep, Yu. V. Mokhov, and K. V. Chukbar, Fiz.
Plazmy 10, 854 (1984) [Sov. J. Plasma Phys. 10, 495
(1984)].

6. L. I. Rudakov, A. V. Gretchikha, C. S. Liu, and G. D. Mil-
ikh, Phys. Plasmas 8 (2001) (in press).

7. Ya. P. Kalda and A. S. Kingsep, Fiz. Plazmy 15, 874
(1989) [Sov. J. Plasma Phys. 15, 508 (1989)].

8. V. V. Vladimirov, A. F. Volkov, and E. Z. Meœlikhov,
Semiconductor Plasma (Atomizdat, Moscow, 1979).

9. A. I. Smolyakov and K. Khabibrakhmanov, Phys. Rev.
Lett. 81, 4871 (1998).

Translated by O.E. Khadin



  

Plasma Physics Reports, Vol. 27, No. 5, 2001, pp. 412–417. Translated from Fizika Plazmy, Vol. 27, No. 5, 2001, pp. 437–442.
Original Russian Text Copyright © 2001 by Gusakov, Popov.

                                                                                                                       

NONLINEAR PHENOMENA
IN PLASMAS
Calculation of the Second-Order Polarizability
of a Warm Magnetized Plasma

E. Z. Gusakov and A. Yu. Popov
Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

Received September 10, 2000

Abstract—An analysis is made of the general expression for the density of a nonlinear charge induced in a
magnetized plasma in the interaction between two arbitrary waves. Asymptotic expressions for the nonlinear
induced charge density are derived for the first time in the case where both of the interacting waves are short-
scale. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In plasma physics, the theory of nonlinear phenom-
ena has been developed fairly well. There is substantial
literature on the analysis of three-wave interactions and
the derivation of explicit expressions for the nonlinear
current in the second-order approximation (see, e.g.,
[1–3]). Thus, we can mention the familiar expression
for the nonlinear current in an isotropic plasma, which
is widely used to describe waves with arbitrary wave-
lengths [1]. An explicit expression for the nonlinear
current in an anisotropic plasma in an external mag-
netic field was derived only in the hydrodynamic
approximation and applies exclusively to an interaction
between large-scale waves [2, 3]. Recently, Bindslev
[4] has generalized this approach to the scattering prob-
lem in which the “cold” hydrodynamic approximation
can only be used to describe the scattered wave. On the
other hand, a number of physical applications require
an analysis of the interaction between three short-scale
waves, none of which can be correctly described using
the hydrodynamic approach. We can mention, e.g., the
problem of describing wave scattering from the upper
hybrid resonance region (this phenomenon is used to
diagnose spontaneous small-scale plasma fluctuations
and regular short-wavelength plasma oscillations [5]).
The only thing simplifying the theoretical analysis of
such experiments is that the frequency of the scattered
signal deviates from the frequency of the probing signal
only slightly and that the short-wavelength oscillations
are, as a rule, potential. The latter circumstance allows
one to restrict analysis to the expression for the nonlin-
ear induced charge density.

In this paper, we develop a systematic kinetic theory
of three-wave interaction under the assumption that the
frequency of the scattered wave differs insignificantly
from the frequency of the probing wave. We derive and
analyze an expression for the induced charge density,
which provides an adequate description of the interac-
tion between three short-scale waves, regardless of
their dispersion properties.
1063-780X/01/2705- $21.00 © 20412
2. KINETIC MODEL

In a collisionless plasma, the dynamics of the elec-
tron distribution function f is described by the kinetic
equation

(1)

Equation (1) can be solved by expanding function f in a
power series in the parameter δ ∝  vE /vt , where vE is
the electron oscillatory velocity in the wave field and

vt =  is the electron thermal velocity:

(2)

Here, f (0) is a Maxwellian distribution function and
f (n)(p, r, t) ∞ δ(n).

To first order in δ, the function f (1)(p, r, t) is found
from the equation

(3)

Here, the linear operator  has the form

(4)

For two harmonic plasma waves with frequencies ω(a)
and ω(b) and wave vectors k(a) and k(b), we have
F(1) = F(1a) + F(1b) and f (1) = f (1a) + f (1b), where the solu-
tions f (1a) and f (1b) to Eq. (3) are well known from linear
theory (see, e.g., [1, 3]):
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(5)

Here, β⊥ (γ) = v⊥ k⊥ (γ)/ωce and k⊥ (γ) = 
with γ = a and b.

The nonlinear interaction of two harmonic waves
gives rise to harmonic oscillations of the induced

charge density ρ(2σ) = , whose frequency

ω(σ) and wave vector k(σ) satisfy the resonant decay
conditions

(6)

For convenience, we choose a coordinate system in
which

At the combination frequency, the second-order (in δ)
correction f (2σ) to the distribution function is found
from the equation

(7)

Since we are interested in the interaction between
almost potential short-scale waves, we define F(1γ) by

F(1γ) = E(1γ) with γ = a, b. Note also that, when the

frequency of the scattered wave is close to the fre-
quency of the probing wave, ω(b)/ω(a) ! 1, we can retain
only the first (main) term on the right-hand side of
Eq. (7), because the second term is small. In this case,
the solution to Eq. (7) is

(8)
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where β⊥ (σ) = v⊥ k⊥ (σ)/ωce, α(σ) = (vzkz(σ) – ω(σ))/ωce,
φ = /v⊥ ), and

(9)

The corresponding expression for the induced charge
density has the form

(10)

where dv = v⊥ dv⊥ dvzdφ.

In expression (10), we pass over from φ to the vari-
able  φ + τ to obtain

(11)

According to formulas (9), expression (11) can be
structurally represented as

This allows us to integrate expression (11) by part:
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where vector Tk has the components

(14)

The condition ω(b)/ωce ! 1 allows us to retain only the
main term (with n = 0) in the sum in expression (5) for
the linear correction to the distribution function intro-
duced by the low-frequency wave:

(15)

We substitute formula (15) into expression (13) and,
using decay conditions (6), reduce the product of two
oscillating exponential functions to one exponential
function:

Hence, in order to obtain the desired expression for
ρ(2σ), we must calculate the fourfold multiple integral

(16)

Here, according to formulas (5), vector a(0) has the
components

Now, we turn to the familiar representation of the
Bessel function, e–iβ⊥ sin(φ) = (β⊥ )e–inφ, in order
to rewrite expression (16) in terms of the product of two
infinite series:
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Integrating this expression with respect to φ, we obtain
a delta function, which makes one of the infinite series
summable: 

ρ(2σ) =  

× . 

Here, we have introduced the notation R(τ) =

Jm(β⊥ (a))Jm(β⊥ (σ)). Using the addition
theorem for Bessel functions, J0(β3) =

(β1)Jn(β2)e–inψ, where the argument is ψ =

(τ + θ(σ)) and β3 = , we can
take the sum of the remaining series. As a result, we
arrive at the following expression for the induced
charge density:

(17)

where 

ζ = .

Note that, in expression (17), integration over variable
v⊥  can be performed with the help of the familiar for-
mulas for the second Weber exponential integral:
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in which case the above expression for the induced
charge density becomes

(18)

Here, vector Wl has the components ;

−i A( (b), ζT); –(1 + µZ( ))A( (b),

ζT) , the components of vector Tk are given by

formulas (14),

ζT = ,

 = ,  = , µ = , and  =

 + .

3. LONG-WAVELENGTH LIMIT

Expression (18) makes it possible to determine the
asymptotics of the nonlinear charge density for differ-
ent relationships between the wave vectors of the three
waves. We start by considering the long-wavelength

limit for a probing or a scattered wave: (σ) ! 1 or

(a) ! 1. We also assume that (σ) (b)ωce/ω(b) ! 1.

Note that, in the long-wavelength limit, θ(σ) is the
angle that vector k⊥ (σ) makes with the X-axis and,
accordingly, with the vector k⊥ (a), in which case
expression (18) is symmetric in the vectors k⊥ (σ) and
k⊥ (a). Consequently, we can treat only the first case,

namely, (σ) ! 1, because the corresponding result

in the second case ( (a) ! 1) can be obtained simply
by changing the indices.

In order to expand expression (18) in powers of
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represented as the sum of two vectors,  =  +

, whose components are equal to

We thus arrive at the final expression for the induced
charge density:

(19)

where

(20)

N0 is the unperturbed plasma density, and n(1b) =

. Here, we use summation over repeated indi-

ces and introduce the vector [ω(σ)] representing
the convolution of the conductivity tensor σik[ω(σ)] of

a cold plasma at the frequency ω(σ): [ω(σ)] =
ki(σ)σik[ω(σ)]/ω(σ).

The second term on the right-hand side of expres-
sion (19) has the form

where

Wl
1( )

Wl
1 1,( )

Wl
1 2,( )

Wl
1 1,( )

W̃l
1 1,( )ikz σ( )v t

2ωce

---------------------τ ,=

W̃l
1 1,( )

0; iA0' ; µA0––{ } Z ' µ( ).⋅=

Wl
1 2,( )

W̃l
1 2,( )k ⊥ σ( )v t

2ωce

-------------------- θ σ( )cos τ θ σ( )+( )cos–( ),=

W̃l
1 2,( )

 = 0; iβ⊥
T

b( )Z µ( )A0''; β⊥
T

b( ) 1 µZ µ( )+( )A0'––{ } .

ρ 2σ( ) ρ 2σ( ) 0( ) ρ 2σ( ) 1( )
,+=

ρ 2σ( ) 0( ) 1
2π
------n

1b( )

N0
----------σ̂k

0( ) ω σ( )[ ]Ek
1a( )

,=

v f
1b( )

d∫
σ̂k

0( )

σ̂k
0( )

ρ 2σ( ) 1( ) 1
2π
------ ñ b( )
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where [ω(σ) ± ωce] = ki(σ)σik[ω(σ) ± ωce]/ω(σ).

In expression (19), the first term coincides with that
obtained by Bindslev [4] and the remaining two terms
are corrections that are linear in the parameters

(σ) ! 1 and (σ) ! 1. Recall that taking limit

(a) ! 1 and (σ) (b)ωce/ω(b) ! 1 requires a

simple replacement σ  a in the expressions for 
in formula (20).

4. SHORT-WAVELENGTH LIMIT

Here, we consider the interaction of short-scale

waves satisfying the conditions 1 ! (a), (b),

(σ). We also assume that (σ) (b)ωce/ω(b) ! 1.
Note that this limiting case is, in particular, characteris-
tic of the scattering of a high-frequency wave (after it
has been converted in the upper hybrid resonance
region) by a low-frequency Bernstein wave [6]. In the
short-wavelength limit, the desired asymptotics of
expression (18) can be obtained by the method of steep-
est descent:

ρ(2σ) ∝  (τ)exp  

+ exp(Θ(τ)). 

The main contribution to the integral over dτ comes
from the points at which the function Θ(τ) = –ζT2/4 +

ln  is maximum. The extremes of Θ(τ)

are determined from the formula
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we can rewrite solution (21) as
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) with n ∈  (0, ∞). The value
of the derivative Θ''(τ) at the point at which the function
itself is maximum is determined by the relationship

To apply the method of steepest descent, we need to
impose the restriction |Θ''(τmax)| @ 1, which can be
reduced to the following condition for the transverse
components of the three interacting waves:

(a) (σ)sin(θ(σ))/| (b)| @ 1.

The sum of the remaining series

can be taken as follows. Introducing the notation η =

 and γ = , we rewrite the series as

Φ(γ, η) =  – γn2). The function Φ(γ, η)

satisfies the diffusion equation Φ(γ, η) = Φ(γ, η)
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Since the series in the initial condition is an infinite
geometric series, we have
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where G(η) = exp  is the Green’s function of

the diffusion equation.

For  @ 1 with m ∈  Z, we obtain

Hence, we arrive at the asymptotics

(24)

where ρ(2σ) = .

When the frequency of the scattered wave is close to

a multiple of the cyclotron frequency,  ≤ 1

with m ∈  Z and  @ 1, we have

(25)

where 

 

= Z exp ,

(26)

and Z is the dispersion function.
A comparison of expressions (24) and (25) with

expression (20) enables us to conclude that the MHD
expression (20) substantially (by a factor of k⊥ (σ)ρe)
overestimates the nonlinear induced charge density.

5. CONCLUSION

We have analyzed the general expression for the
density of a nonlinear charge induced in a magnetized
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plasma in the interaction between two arbitrary waves.
The proposed approach for calculating the induced
charge density is based on the addition theorem for
Bessel functions and thus provides the most complete
analytic treatment. This enabled us to derive for the first
time asymptotic expressions for the density of a nonlin-
ear charge induced in the interaction between three
short-scale waves. This limiting case is of interest for a
theoretical description of the diagnostics of spontane-
ous short-scale plasma fluctuations or regular short-
wavelength oscillations by means of the scattering in
the upper hybrid resonance region [6]. We have shown
that, for a long-scale scattered wave, the nonlinear
charge density is described by the same expression as
in the MHD theory [4], whereas, in the opposite limit
k⊥ (σ)ρe @ 1, the MHD expression substantially (by a
factor of k⊥ (σ)ρe) overestimates the nonlinear induced
charge density. Presumably, this result explains the
comparatively low intensity of the waves backscattered
by the ion Bernstein modes in the upper hybrid reso-
nance region [6].
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Abstract—The electrode region of an electrode microwave discharge in hydrogen at pressures of 0.5–4 torr
and absorbed powers of up to 12 W is studied using emission spectroscopy and actinometry. It is shown that the
gas temperature is at most 700 K and the degree of dissociation does not exceed several percent. Direct electron
impact is shown to be the main factor governing all the processes in the electrode region of the discharge,
including the excitation of the recorded emission. In particular, the Balmer-series çα line emission is related to
the dissociative electron-impact excitation of hydrogen molecules in the ground state. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

At present, initiated microwave discharges attract
considerable interest [1–3]. This interest is related to
both the fundamental problems of the interaction of a
highly nonuniform electromagnetic field with the
plasma created by this field and numerous possible
applications of such discharges. A characteristic feature
of the electrode microwave discharge (EMD), which
belongs to this type of discharges, is that energy is sup-
plied to the discharge chamber along an initiating
antenna. Although EMDs possess a number of interest-
ing features and there is a wide range of their possible
applications (e.g., in plasmochemistry [4]), they still
remain the least studied microwave discharges. The
EMD phenomenology, the spatial structure of a dis-
charge for different electrode configurations, and the
results of optical and probe measurements are
described in [5–9]. The observed discharge structure
was suggested to be a superposition of two discharges
with different properties, namely, a bright thin region
near the electrode and an external spherical region. It
was also shown that an EMD could be an efficient
source of charged particles, whose density is fairly high
throughout the entire discharge chamber. Thus, it is
important to study physicochemical processes in differ-
ent discharge regions and the mechanisms for sustain-
ing the EMD.

The aim of this study is to investigate the electrode
plasma of an EMD in a mixture of hydrogen with 5 vol %
of argon at pressures of 0.5–4 torr using emission spec-
troscopy and actinometry.

2. EXPERIMENTAL SETUP

The discharge chamber was a metal cylinder 8.5 cm
in diameter with an antenna inserted through its end via
a vacuum joint [8]. The antenna (a cylindrical stainless
1063-780X/01/2705- $21.00 © 20418
steel tube 6 mm in diameter) was part of a coaxial-to-
waveguide converter, which was adjusted with the help
of a short-circuiting piston. The dimensions of the dis-
charge, which was excited around the antenna (the
igniting electrode), were much less than the chamber
diameter and the distance from the chamber lower end.
The measurements were carried out in a gas flow. The
output power of the microwave generator operating at a
frequency of 2.45 GHz was up to 170 W. The discharge
emission was withdrawn from the discharge chamber
through a window on its side wall. Then, it was focused
by a collecting lens onto the entrance slit of an MDR-4
monochromator. A spectral range of 400–800 nm was
investigated. An FEU-79 was used as an emission
detector. For actinometry measurements, 5 vol % of
argon was added to hydrogen.

The power absorbed in a plasma is usually deter-
mined from the difference between the incident power
and the power reflected from the discharge section. In
this case, it is not known a priori what fraction of the
power is absorbed in the plasma and what fraction is
lost in the feeding system. To determine the latter, we
measured the powers absorbed with and without ignit-
ing the discharge. The difference between them was
assumed to be the power absorbed in the plasma
(Fig. 1), although it is not improbable that igniting the
discharge changes the field distribution and, corre-
spondingly, the fraction of the power lost in the feeding
system.

3. RESULTS AND DISCUSSION

3.1. Spectral Characteristics of the Discharge 
and Comparison with an Electrodeless Microwave 

Discharge in a Cavity

The spectral measurements of plasma emission in
the mixture H2 + 5 vol % Ar showed that, as in the case
001 MAIK “Nauka/Interperiodica”
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of an electrodeless microwave discharge in a cavity
[10], the emission spectrum in the range 400–800 nm
consists of hydrogen molecular bands corresponding to

the   , 1Πg  ,   , 3Πg 

3Πu, and 3Πu   transitions and atomic hydrogen
and Ar lines. The most intense band is the Fulcher α
system (d3Πu  a3Σg transition), whose intensity is
used to determine the gas temperature. The most
intense atomic lines are the Balmer-series hydrogen
lines Hα, Hβ, and Hγ and Ar lines corresponding to the
4p  4s transitions. It was shown in [10] that emis-
sion lines and bands can be divided into two groups
with different dependences of the integral (over the dis-
charge volume) intensity on the power absorbed in the
plasma. The first group consists of hydrogen molecular
bands and the Ar 4p  4s lines, whose intensities lin-
early increase with power. The other group consists of
atomic hydrogen lines, whose intensities depend non-
linearly on the absorbed power. In [10], this fact was
explained by the difference in the excitation mecha-
nisms—stepwise excitation of atomic hydrogen lines
and direct electron-impact excitation of hydrogen
molecular bands and Ar lines.

In an EMD, the observed emission intensities of the
Balmer-series atomic hydrogen lines Hα, Hβ, and Hγ;
the Ar 696.5-nm line; and the ç2 752.4-nm band
increase linearly with power (Figs. 2–5). The difference
between the above two groups manifests itself in that
the intensities of atomic hydrogen lines increase some-
what faster. For the same change in power, the intensi-
ties of the Ar 696.5-nm line and ç2 752.4-nm band
increase by a factor of 1.5–2, whereas the intensities of
atomic hydrogen lines increase by a factor of 2–5
(Fig. 6).

3.2. Spatial Structure of Emission

An interpretation of the measurements of the emis-
sion intensity is hindered by the complicated structure
of the discharge, which consists of two regions—a
bright thin region near the electrode and a less bright
spherical region surrounding the first one. A compari-
son of the integral emission intensities of the two
regions shows that the electrode region contributes
most to the observed emission [8]. Space-resolved
measurements show that the contribution from the elec-
trode region to the line emission is also much larger
than that from the spherical region. Although the rela-
tive contribution from the spherical region increases
with power, the contribution from the electrode region
remains dominant throughout the entire power and
pressure ranges under study. This indicates that the data
from spectral measurements are mainly related to the
bright layer near the electrode.

Σ1 +
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u Σ1 +
u Σ3 +

g Σ3 +
u

Σ3 +
g
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Fig. 1. The powers Wabs absorbed in the system (1) with and
(2) without igniting the discharge and (3) the difference
between them vs. the incident power Winc.

Fig. 2. The line intensities vs. the absorbed power Wabs, at a
pressure of 0.5 torr: (1) H(Hγ, 434.0 nm), (2) H(Hβ,
486.1 nm), (3) H(Hα, 656.3 nm), (4) Ar(696.5 nm), and
(5) H2 (752.4 nm).
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Fig. 3. Same as in Fig. 2 at a pressure of 1 torr.
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3.3. Gas Temperature near the Electrode

The gas temperature is an important parameter that
determines both the interaction of the electromagnetic
field with the plasma (via the ratio ν/ω, where ν is the
effective collision frequency of electrons with heavy
particles) and the kinetics of the plasma processes. The
gas temperature can be determined from the relative
intensities of the vibrational lines that belong to the
Fulcher α system of electronically excited molecular
hydrogen [11] (the H2(d3Πu  a3Σg) radiative transi-
tion). Strictly speaking, the Fulcher α system allows
one to determine the rotational temperature of the
upper excited state d3Πu of molecular hydrogen. The
relation between the rotational and gas temperatures
was studied in detail in [12–14]. In view of the above
said, the obtained gas temperature is related to the elec-
trode region. The gas temperature was calculated from
the intensities of the Q and R branches of the diagonal
(v' = v '' = 0, 1, and 2) bands of the Fulcher α system.
The rotational temperature of the d3Πu state was calcu-
lated by the formula

(1)

where I' → '' is the intensity of emission corresponding to
the transition between the rotational levels of the vibra-
tionally excited electronic molecular states, ν' → '' is the
frequency of this transition, Sj ', j '' is the Hönl–London
factor, and F( j ' ) is the rotational energy of the upper
state. The temperature is determined from the slope of

the linear dependence of ln  on F( j ' ). The

rotational temperature of the ground state is calculated

I ' ''→

ν ' ''→
4

S j ' j '',

---------------------- 
 ln

hc
kT rot*
-----------F j '( )– const,+=

I ' ''→

ν ' ''→
4

S j ' j '',
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 
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Fig. 4. Same as in Fig. 2 at a pressure of 2 torr.
by the formula [11, 15]

(2)

where B0 and B ' are the rotational constants of the
ground and excited states, respectively. The rotational
temperature of the ground state was assumed to be
equal to the gas temperature. The estimated rotational
temperature of the excited state is  = 310 ± 40 K;
the gas temperature is twice as high due to the differ-
ence between the rotational constants.

Thus, estimates show that the gas heating is insig-
nificant and the gas temperature near the electrode is no
higher than 700 K. This result is of importance for
determining the mechanisms responsible for sustaining
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Fig. 5. Same as in Fig. 2 at a pressure of 4 torr.
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(3) Ar(696.5 nm), and (4) H2 (752.4 nm).
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the discharge. One of these mechanisms may be energy
absorption in the plasma resonance region. The role of
this mechanism decreases as the ratio ν/ω increases.
Under our experimental conditions, this resonance is
feasible. However, taking into account that identical
discharge structures were observed at a pressure of
15 torr and approximately the same power [7], it is rea-
sonable to assume that the gas heating does not ensure
the conditions under which the resonant mechanism
plays a decisive role in the formation of the electrode
layer within the entire pressure range under study.

3.4. Plasma Processes near the Discharge Electrode

The linear dependences of the intensities of the
atomic hydrogen lines on the absorbed power (and,
consequently, on the electron density [10, 16]) and an
analysis of the balance of the excited particles allow us
to conclude that the excitation of atomic lines in the dis-
charge is not caused by stepwise processes of the form
H(2S, 2D) + e  H* (here, the two lowest metastable
states and two resonant hydrogen states are considered
a single state H(2S, 2D)), which would result in a stron-
ger dependence on ne . Indeed, in this case, the balance
equation for excited particles would be

(3)

where kst = 4 × 10–7 cm3/s [17] is the coefficient of exci-
tation from the metastable state, NH(2S, 2D) is the density
of metastable particles, kem = 1/τ = 4.4 × 1010 s–1 [18] is
the coefficient determined by the lifetime of the excited
(emitting) state, and NH* is the density of the excited
atoms. Comparing the contributions from different
excitation and deexcitation channels, such as [17]

(i) direct electron-impact excitation, H + e 
H(2S, 2D), with a threshold of 10.2 eV;

(ii) excitation due to the radiative transition from a
higher level, H*  H(2S, 2D) + hν, with the rate con-
stant k = 5 × 108 s–1;

(iii) dissociative excitation, H2 + e  H(2S, 2D) +
H + e, with a threshold of 15 eV and k = 10–11 –
10−10 cm3/s;

(iv) diffusion toward the electrode surface;
(v) electron-impact quenching, H(2S, 2D) + e 

H + e, with k = 6.8 × 10–9 cm3/s;
(vi) electron-impact ionization, H(2S, 2D) + e 

H+ + 2e, with a threshold of 3.4 eV and k = 7.3 ×
10−8 cm3/s;

(vii) stepwise electron-impact ionization, H(2S, 2D) +
e  H* + e, with a threshold of 1.9 eV and kst = 4 ×
10–7 cm3/s;

(viii) emission via the transition H(2S, 2D)  H +
hν with τeff = 2.1 × 10–9/(gesc s) (one can find the expres-
sion for gesc in [19, 20]);

kstNH 2S 2D,( )ne kemNH*,=
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(ix) quenching in collisions with molecules, H(2S,
2D) + H2   H + H + H, with k = 1.3 × 10–9 cm3/s;
and

(x) quenching in collisions with atoms, H(2S, 2D) +
H  H + H, with k = 3 × 10–11 cm3/s,

and taking into account the main processes, we
arrive at the following balance equation for metastable
particles:

(4)

Here, km is the coefficient of the direct electron-impact
excitation of a metastable state, NH is the atom density,
kd is the coefficient of dissociative excitation,  is the
density of hydrogen molecules calculated taking into
account the gas temperature near the electrode, and kq

is the coefficient of quenching in collisions with mole-

cules. Thus, we obtain NH* ∝  neNH(2S, 2D) ∝  , which
disagrees with experimental results. A comparison
between the stepwise and direct processes based on the
value of NH(2S, 2D) derived from Eq. (4) shows that the
former process is of minor importance.

There are two possible channels of direct electron-
impact excitation, namely, the excitation from the
ground atomic state, H + e  H* + e, and dissociative
excitation, H2 + e  H* + H + e. Thus, we can write

(5)

where kex is the coefficient of direct electron-impact
excitation and kdex is the coefficient of dissociative exci-
tation.

An analysis of the balance of hydrogen atoms shows
that direct electron-impact dissociation is the main
mechanism for their formation. Here, the following
processes are taken into account:

(i) direct electron-impact dissociation, H2 + e 
H + H + e, with a threshold of 9 eV and k = 3.7 ×
10−10 cm3/s;

(ii) dissociation in collisions of metastable particles
with molecules, H(2S, 2D) + H2  H + H + H, with
k = 1.3 × 10–9 cm3/s;

(iii) dissociation in collisions of excited particles
with molecules, H* + H2  H + H + H, with k = 2.2 ×
10−9 cm3/s; and

(iv) recombination on the electrode surface, H +
H  H2 [17].

Under our conditions, the main channel of the loss
of hydrogen atoms is recombination on the electrode
surface with a characteristic time of

(6)

Here, τk is the characteristic time of reaction at the elec-
trode surface; τd is the characteristic diffusion time; R ≈

kmNHne kd NH2
ne+ kqNH2

NH 2S 2D,( ).=

NH2

ne
2

kexNHne kdexNH2
ne+ kemNH*,=

τ s τk τd, τk+
2R
v tγ
--------, τd

R
2

6D
-------.= = =
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Degree of dissociation (%) calculated based on the experimental data (the minimum and maximum absorbed powers are 3.7
and 9.4 W for a pressure of 0.5 torr and 1.8 and 12.4 W for other pressures)

E, V/cm
0.5 torr 1 torr 2 torr 4 torr

min max min max min max min max

60 0.89 1.29 0.60 0.90 0.42 0.80 0.23 0.59

100 1.37 2.06 0.86 1.40 0.57 1.25 0.31 1.02

150 1.59 2.58 0.88 1.64 0.49 1.46 0.18 1.23

200 1.66 2.89 0.78 1.73 0.30 1.52 – 1.27

300 1.64 3.23 0.5 1.74 – 1.48 – 1.21

400 1.53 3.38 0.21 1.65 – 1.36 – 1.07

500 1.38 3.42 – 1.51 – 1.20 – 0.90
1 mm is the distance from the electrode; vt is the ther-
mal velocity of atoms; γ = 0.05 [21] is the coefficient of
recombination on steel; and D is the diffusion coeffi-
cient

(7)

where D0 = 0.184 cm2 s, T is the gas temperature in K,
a = 1.728, and P is the pressure in torr.

The balance equation for atoms is

(8)

where kdiss is the diffusion coefficient,  =  –

0.5NH is the density of hydrogen molecules, and  is
the density of molecules at zero dissociation. As a
result, a high degree of dissociation in the discharge is
required to ensure the linear dependences of the inten-
sities on the electron density in the case of direct elec-
tron-impact excitation from the ground atomic state.
Otherwise, we have NH ∝  ne, which leads to a square-

law dependence I ∝  neNH ∝  . However, it follows
from Eq. (8) that, under our conditions (ne ≈ 1011 cm–3

[7]), the degree of dissociation should be within the
range 10–2–10–3. Therefore, dissociative excitation is
the main process responsible for the atomic line emis-
sion. It is seen from Eq. (5) that it takes place when

(9)

Estimates made with allowance for the ratio of the
rate constants kdex/kex calculated from the Boltzmann
equation [17] show that condition (9) is satisfied when
the degree of dissociation is less than 0.1–3%. Since the
microwave field amplitude near the electrode is

D D0
T

273
--------- 

 
a

/ 1.3 10
3–
P×( ),=

kdissNH2
ne

v tγ
R

--------NH,=

NH2
NH2

0

NH2

0

ne
2

NH

NH2

--------
kdex

kex

--------.<
unknown, the calculations were carried out for E =
100–500 V/cm.

The threshold for dissociative excitation (17 eV for
Hα) is higher than that for direct electron-impact exci-
tation of hydrogen molecular bands (9–15 eV) and Ar
lines (13.3 eV for λ = 696.5 nm). The processes with a
higher threshold are much more sensitive to the change
in the microwave field amplitude, which can increase
with power. This circumstance can explain the fact that
the intensities of atomic hydrogen lines increase faster
than the intensities of hydrogen molecular bands and
Ar lines as the power increases (Fig. 6).

3.5. Determination of the Degree of Dissociation

The degree of dissociation was measured using act-
inometry. For this purpose, 5 vol % of argon was added
to hydrogen. In [10], it was shown that, at low argon
concentrations in a molecular gas, Ar line emission is
related to direct electron-impact excitation from the
ground state, which is confirmed by the linear depen-
dence of the intensity of the Ar 696.5-nm line on the
absorbed power. This result is also applicable for our
experiments. With allowance for process (5), the ratio
of the intensities of Hα and Ar 696.5-nm lines is

(10)

hence,

(11)

where kAr is the coefficient of electron-impact excita-
tion of the emitting argon state and NAr is the argon
atom density.

IHα

IAr
-------

kdexNH2
k+ exNH

kArNAr
--------------------------------------=

=  
kdexNH2

0
kex 0.5kdex–( )NH+

kArNAr
------------------------------------------------------------------,

NH NAr

kAr

kex 0.5kdex–
-----------------------------

IHα

IAr
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 
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The table presents the ranges of the degree of disso-
ciation calculated from the measured ratios /IAr at
different pressures and powers. The estimates were
obtained for different values of the microwave field
amplitude because its actual value was unknown. It is
seen that, within the range of pressures and powers
under study, the degree of dissociation near the elec-
trode is no more than 3.5%.

4. CONCLUSION

An EMD in hydrogen at pressures of 0.5–4 torr and
absorbed powers up to 12 W has been studied using
spectroscopy methods. The volume-averaged emission
intensities of lines and bands are measured within the
wavelength range 400–800 nm. It is shown that, due to
the substantial inhomogeneity of the discharge, the
observed emission stems from the bright region near
the electrode. Based on the relative intensities of the
rotational lines, the rotational temperature of the
excited state is determined and, taking into account the
rotational constant, the rotational temperature of the
ground state of hydrogen in the electrode region is esti-
mated. This temperature is at most 700 K. Taking into
account the fact that a similar discharge structure was
previously observed at much higher pressures, we can
conclude that gas heating is insufficient for the plasma
resonance regime to be realized within the entire pres-
sure range under study.

It is shown experimentally that the intensities of all
the lines and bands depend linearly on the absorbed
power. An analysis of plasma processes shows that the
recorded emission lines and bands are excited by direct
electron impact; in particular, the çα line emission is
related to the dissociative electron-impact excitation
from the H2 ground state. The degree of hydrogen dis-
sociation in the electrode region is determined using
actinometry and is shown to be no higher than several
percent. All this indicates that the microwave field
amplitude in the bright electrode region is high (as pre-
dicted for the electrodynamic system under study). At
the same time, the steady-state densities of the particles
whose decay is determined by diffusion (e.g., atoms
and metastable states) cannot be high because the dis-
tance from the electrode and, accordingly, the diffusion
time are short.
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Abstract—The features of the relaxation of a quasi-steady glow discharge after extra excitation by a nanosec-
ond high-voltage pulse are studied experimentally. It is shown that the plasma relaxation is characterized by the
existence of a time interval with a low emission intensity—a glow pause. A kinetic model of the helium plasma
relaxation is developed. It is shown that the nanosecond discharge that creates extra ionization and metastable
atoms enables one to keep the electron temperature at a quasi-steady level within the range 0.05–0.5 eV for sev-
eral hundred microseconds during the glow pause. The effect of the helium temperature on the glow pause fea-
tures is investigated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A combined discharge in which the main ionization
is produced by a short pulsed discharge has a number
of advantages. Applying nanosecond pulses to a cur-
rent-carrying plasma enables efficient ionization and
makes it possible to easily control the electron temper-
ature. Between the pulses, the electric field may be
maintained at a lower level. Such a scheme was used
when creating powerful lasers pumped by a combined
discharge [1, 2].

When applying nanosecond pulses to a glow dis-
charge, a specific time interval during plasma decay in
which the intensity of plasma emission was lower than
in the glow discharge was found in [3, 4]. Apparently, a
similar effect was observed in [5] at the instant of dis-
charge ignition. This paper is devoted to studying the
decay of a helium plasma carrying a dc current.

The recombination of a current-free helium plasma
after pulsed excitation has been extensively studied [6, 7].
An analysis of the results obtained shows that metasta-
ble atoms and molecules substantially affect the helium
plasma decay. Long-lived metastable states, which
accumulate the excitation energy, act as sources of fast
electrons with an energy of ~18 eV. Cooling helium to
cryogenic temperatures (e.g., T ≈ 77 K) decelerates the
decay of atoms in metastable states and increases their
total density.

Metastable atoms significantly affect the voltage–
current characteristic of a glow discharge in helium at
cryogenic temperatures [8]. At low currents, there is a
region in which dE/di > 0 (where E and i are the electric
field and current, respectively) and E is one-half of the
field in a glow discharge at room temperature.
1063-780X/01/2705- $21.00 © 20424
In this study, we investigate a plasma state that, on
the one hand, resembles an ordinary afterglow and, on
the other hand, is similar to a cryogenic glow discharge.
Immediately after the nanosecond discharge, recombi-
nation occurs as in an ordinary afterglow; then, the
plasma relaxation is mainly governed by metastables
and the glow discharge current, as is the case with a
cryogenic glow discharge.

2. EXPERIMENTAL SETUP

The schematic of the experimental device is shown
in Fig. 1. A steady-state glow discharge was ignited in
a discharge cell (1) with the help of a microsecond
pulse generator (2). The discharge cell was a 7-cm-long
and 1.6-cm-diameter molybdenum glass tube, which
was placed between two molybdenum electrodes and
was surrounded by a metal shield. The duration of a
glow discharge, which could be varied within the range
100–1200 µs, was determined by the duration of the
pulse produced by a G5-7A synchronizing generator
(3). When the glow discharge current had relaxed to a
steady-state value, the same synchronizing generator
triggered the generator of nanosecond pulses (4), which
initiated a nanosecond discharge in the discharge cell.
The glow discharge current was kept constant during
the plasma decay and was determined by a ballast resis-
tor (5) and the internal resistance of the microsecond
pulse generator (2). The current varied within the range
1–15 mA, and the voltage and duration of the nanosec-
ond pulse varied within the ranges 1.5–3.5 kV and 2–
40 ns, respectively. The synchronizing generator (3)
ensured repetitive operation at a repetition rate of 10–
100 Hz. To cool the gas to cryogenic temperatures (T ≈
77 K), the gas-discharge tube was housed in a cell filled
001 MAIK “Nauka/Interperiodica”
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with liquid nitrogen. The reduced pressure of helium in
the discharge tube varied from 2 to 50 torr. The total
average specific power of a combined discharge did not
exceed 200 mW/cm3; at such powers, the estimated dif-
ference between the gas temperatures at the tube axis
and wall attained several percent.

We measured the glow discharge current and volt-
age and the plasma emission intensity (both integral
and in individual helium spectral lines) during plasma
decay. A D6-1 capacitive divider (9) with an attenua-
tion factor of 1 : 100 and a passband of 10 MHz was
used to measure the voltage. The glow discharge cur-
rent was measured by a shunt (8) with a resistance of
1 kΩ .

Radiation emitted from the plasma in the transverse
direction was applied to an SPM-2 monochromator
(11) with the help of an optical fiber and a lens. Emis-
sion from different discharge regions was recorded by
displacing the fiber along the discharge tube. Emission
detectors (6) (FEU-97 and FEU-84-3 photomultipliers)
were gated for a time of 1–10 µs by a pulse supplied
from a G5-15 generator (10), which was synchronized
with the G5-7A generator (3). The delay time of the
gating pulse was controlled by the G5-15 generator. All
the electrical and optical parameters were recorded
with an HP-1701B oscillograph (12).

3. EXPERIMENTAL RESULTS

The main feature of the relaxation of the plasma of
a glow discharge positive column after extra excitation
with a nanosecond discharge is the existence of a time
interval (a glow pause) in which the emission intensity
is substantially lower than in an unperturbed glow dis-
charge.

Figure 2 shows the time evolution of the intensity of
the HeI 587.6-nm spectral line for two different gas
temperatures. After the nanosecond discharge, the line
intensity sharply drops and remains at a low steady-
state level for several tens or even hundreds of micro-
seconds. Then, the intensity rapidly increases and
reaches the initial value characteristic of a glow dis-
charge. During this process, the discharge current
remains constant and equal to that before applying the
nanosecond pulse.

The intensities of the following spectral lines were
measured: 706.5 nm (23S ⇒ 23P), 388.8 nm (33P ⇒
23S), 587.6 nm (33D ⇒ 23P), 667.8 nm (31D ⇒ 21P),
501.5 nm (31P ⇒ 21S), 447.2 nm (43D ⇒ 33P), and
396.4 nm (43P ⇒ 31S). The glow pause with the same
duration of the steady-state phase was observed simul-
taneously in all these lines. However, the ratio between
the intensities in the glow pause and the glow discharge
phase varied in a wide range for different lines.

A qualitative explanation of the glow pause is as fol-
lows. Applying the high-voltage nanosecond pulse
sharply increases the electron density in the plasma. At
a constant glow discharge current, the voltage drop
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
across the plasma column and, consequently, the elec-
tric field decrease due to the decrease in the discharge
resistance; this is confirmed by the recorded voltage
oscillograms. The electron temperature Te in the dis-
charge is determined by the reduced electric field E/N
(where N is the atom density); as the field decreases, Te

and, consequently, the emission intensity decrease.

There is no glow pause in the cathode sheath of a
glow discharge. After extra excitation of the plasma, the
emission intensity of the cathode sheath rapidly
increases and then monotonically relaxes to the value
typical of a steady-state discharge. The characteristic
relaxation time is about several microseconds. It is rea-
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Fig. 1. Schematic of the experimental device for studying
the decay of a current–carrying plasma: (1) discharge cell,
(2) microsecond pulse generator, (3) G5-7A synchronizing
generator, (4) nanosecond pulse generator, (5) ballast resis-
tor, (6) FEU 84-3 photomultiplier, (7) VSV-1 power supply,
(8) shunt, (9) D6-1 capacitive divider, (10) G5-15 generator,
(11) SPM-2 monochromator, and (12) HP-1701B oscillo-
graph.

Fig. 2. Time evolution of the intensity of the HeI 587.6-nm
spectral line after applying a nanosecond pulse to the glow
discharge (at t = 0) at gas temperatures of (1) 298 and
(2) 77 K; the helium atom density and the glow discharge
current are equal to 6.8 × 1017 cm–3 and 4.8 mA, respec-
tively.



 

426

        

AMIROV 

 

et al

 

.

         
20 1 3 4 5 6 7
L, cm

0.1

0.2

J, arb. units

21

3

4

150

20 1 3 4
U, kV

100

200

250
τ, µs

1
2

Fig. 3. Profile of the intensity of the HeI 587.6-nm spectral
line along the discharge tube in (1, 2) the glow pause and
(3, 4) the glow discharge phase for different gas pressures P
and discharge currents i: (1, 3) P = 23.3 torr and i = 13 mA
and (2, 4) P = 5 torr and i = 10 mA.

Fig. 4. Duration of the glow pause vs. the nanosecond pulse
amplitude for the pulse rise time of (1) 2 and (2) 5 ns at P =
22 torr and i = 3 mA.
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Fig. 5. Duration of the glow pause vs. the glow discharge
current for different helium pressures: P = (1) 21, (2) 13.7,
and (3) 9.5 torr. Solid curves are the simulated dependences;
dots show the experimental results.
sonable to assume that the structure of the cathode
sheath does not appreciably change during relaxation,
because it depends mainly on the electron emission
from the cathode surface. Thus, during the glow pause,
which lasts for several tens or hundreds of microsec-
onds, the cathode sheath is adjacent to the plasma col-
umn that carries the same current as in the steady-state
glow discharge, but at a higher electron density and
lower electron temperature.

The distribution of the plasma emission intensity in
the HeI 587.6-nm spectral line along the discharge tube
for different gas pressures and discharge currents is
shown in Fig. 3 for both the glow discharge phase and
the glow pause. It is seen that the length of the region in
which the glow pause occurs coincides with the length
of the positive column in the glow discharge phase.

The duration of the glow pause is determined by the
time during which the excessive electron density
relaxes, which, in turn, depends on the amplitude of the
high-voltage nanosecond pulse; as the amplitude
increases, the duration of the glow pause monotonically
increases (Fig. 4). Moreover, the difference between
curves 1 and 2 in Fig. 4 indicates that the degree of
extra ionization increases as the rise time of the voltage
pulse decreases.

The relaxation time of the excessive electron density
depends also on the helium pressure and glow dis-
charge current (Fig. 5). The increase in the gas pressure
increases the glow pause duration, whereas the increase
in the glow discharge current reduces it. Lowering the
helium temperature from the room temperature to 77 K
increases the glow pause duration and changes the dis-
tribution of the emission intensity along the discharge
tube in both the glow discharge phase and the glow
pause. Figure 6 shows the distribution of the emission
intensity in the HeI 587.6-nm spectral line along the
discharge tube during the glow discharge phase and the
glow pause for both of these temperatures. At a con-
stant current and helium atom density, the line intensity
in the glow pause, as well as the pause duration,
increases as the temperature decreases.

4. KINETICS OF HELIUM PLASMA 
DURING THE GLOW PAUSE

Plasma decay is determined by the plasma composi-
tion. The ion composition of helium plasma depends on
the pressure and can vary in time. Immediately after the
nanosecond discharge, the most abundant ions are the
He+ ions, which are produced by electron-impact ion-

ization of helium atoms. The  ions are produced
both in the Hornbeck–Molnar reaction He* + He ⇒

 with the participation of the He* excited state and

the conversion reaction çÂ+ + 2He ⇒   + He. The
conversion rate is equal to ν1–2 = 3 × 10–29T–1N2 s–1 [8];
here and below, the temperature T is in K and the atom

He2
+

He2
+

He2
+
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density N is in cm–3. The diatomic ions can convert into

triatomic ones in the reaction  + 2He ⇒   + He.
At T = 77 K, the rate constant of the latter reaction is
k2−3 > 1.7 × 10–31 cm6 s–1 [8]. Thus, the increase in the
pressure and decrease in the temperature enhance the
fraction of heavy ions.

The most abundant metastable particles in helium

are He22 , He21S, and He23S. The He22  mole-
cules are produced via the conversion of atomic parti-

cles, He23S + 2He ⇒  He22  + He (with a rate con-
stant of 1.8 × 10–34 cm6 s–1 [6]), and the electron–ion

recombination of  ions. We do not take into

account the He22  molecules because the conversion
time of He23S exceeds the glow pause duration; the

production of He22  molecules via recombination is
also inefficient due to the relatively low electron den-
sity.

The density of He21S singlet metastable atoms is
less than that of He23S atoms due to the different statis-
tical weights and high rate of the conversion reaction
He21S + e ⇒  He23S (with a rate constant of 3.5 ×
10−7 cm3 s–1 [9]). Taking into account the high conver-
sion rate and minor difference in the rates of reactions
involving He21S and He23S atoms, we assume that only
He23S atoms take part in the reactions characteristic of
metastable atoms.

The main channels of electron losses are the recom-
bination and ambipolar diffusion with the coefficient

Da = (Te + T), where µi is the ion mobility and Te and

T are the temperatures of electrons and neutrals, respec-
tively. The electron recombination rate depends on the
ion species. For the He+ ions, three-body recombination
with an electron as a third body is the dominant loss
channel. According to [6], the coefficient of three-body

recombination is α1 = ne cm3 s–1,

where ne is in cm–3 and P is in torr. At cryogenic tem-

peratures, when the  ions can be dominant, disso-
ciative recombination prevails. We considered the fol-

lowing recombination mechanisms involving 
[6, 10]:
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To evaluate the rates of the excitation and ionization
of metastable atoms, we used the Fabrikant approxima-
tion [11] for the energy dependences of the correspond-
ing cross sections. The electron energy distribution
function (EEDF) was assumed to be Maxwellian; cross
sections for atomic metastable states and cross sections
for ionization from the ground state were taken from
[12] and [13], respectively. The cross sections for elec-
tron elastic collisions were taken from [14].

Collisions between metastable atoms lead to their
deexcitation and the formation of fast electrons in the
reactions

He23S + He23S ⇒  He+ + He + e + 15 eV,

He23S + He23S ⇒   + e + 17.4 eV.

Metastable atoms are the so-called S-source of fast
electrons [8], whose intensity can be represented as Js =
0.5β[He23S]2, where β = (1.5 ± 0.3) × 10–9 cm3 s–1 [6] is
the total rate constant of the two latter reactions. Diffu-
sion decreases the excessive metastable atom density.
For He23S atoms, in the temperature range under study
(T = 77–293 K), the diffusion coefficient is approxi-
mated by the formula [15, 16]
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Fig. 6. Profile of the intensity of the HeI 587.6-nm spectral
line along the discharge tube in (1) the glow discharge phase
and (2) the glow pause for different gas temperatures:
(A) 293 and (B) 77 K.
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In accordance with the above processes, the equa-
tions for the electron temperature, electron balance, and
He23S metastable atom balance are incorporated into
the set of kinetic equations describing the plasma
behavior during the glow pause. These equations are
complemented with the requirement that the current be
constant during the helium plasma relaxation. The set is
written for the densities averaged over the tube radius
under the assumptions that the electron radial distribu-
tion is diffusive and the ion temperature is equal to the
gas temperature.

The equation for the electron temperature is

where me and e are the electron mass and charge and Ma

is helium atom mass. The first term on the right-hand
side describes the cooling of electrons due to elastic
collisions with atoms (with the collision frequency ν);
it is taken into account that inelastic collisions are of no
importance at electron temperatures Te less than 10 eV.
The second term describes diffusive cooling; here, Λ is
the diffusion radius and the parameter q, which depends
on the plasma parameters and tube radius, is taken from
calculations [17]. Electron heating is determined by the
electric field strength and fast electrons, which are pro-
duced in reactions involving metastable atoms. The
metastable atom density determines the quantity Q =

β[He23S]2 ∆ε + γ[He23S]∆ε, where γ = (4.2 ±
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Fig. 7. Calculated relaxation of (1) the electron density Ne,
(2) electron temperature Te, and (3) the density of metasta-

ble atoms He23S1; the pressure is P = 9.5 torr, the glow dis-
charge current is i = 5 mA, and the gas temperature is T =
293 K.
0.6) × 10–9 cm3 s–1 [6] is the rate constant of superelas-
tic collisions between electrons and metastable atoms,

He23S + e ⇒  He + e + 19.8 eV.

The quantity ∆ε is the average energy transferred by a
fast electron to the bulk electrons. According to [6], it
is equal to ∆ε = 1.39 × 10–6(neT/P)1/2, where P is the
pressure in torr. The latter expression is valid for
(ne /P) < 2 × 1011 cm–3 torr–1. At low pressures, ∆ε =
3.3 × 10−14neT/P for the fast electron energies from 18 to
20 eV and ∆ε = 5.7 × 10–14neT/P for the fast electron
energies ≤15 eV [6].

For the diffusive radial electron distribution, the bal-
ance equation for the average electron density in a
cylindrically symmetric plasma is

Here, the first and second terms on the right-hand side
describe the electron losses due to ambipolar diffusion
and recombination, respectively; the third term
describes ionization (both direct and stepwise); and the
last term is the intensity of the S-source.

The balance of He23S metastable atoms is deter-
mined by the losses due to diffusion toward the tube
wall, deexcitation by electrons, conversion into molec-
ular metastable states, and pair collisions between
atoms. The He23S atoms are produced due to electron-
impact excitation from the ground state and electron–
ion recombination. The metastable atom balance equa-
tion is

where δ is the rate constant of conversion into molecu-
lar metastable states, νM is the rate of electron-impact
excitation of metastable atoms from the ground state,
and α2 is the total recombination rate constant of the

 ions. In this equation, the quantities k1 and k2
(which are equal to 1 and 0.7, respectively [5]) charac-
terize the relative contributions of atomic and molecu-
lar ions to the recombination processes that yield He23S
atoms.

In our experiments, the current is determined by the
external circuit and remains constant during relaxation;
hence, the electric field in the plasma obeys Ohm’s law,

where j is the current density.
In simulations, the initial conditions are set at a cer-

tain instant after the nanosecond pulse when the rapid
collisional cooling of electrons has already occurred,
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but the particle density has not yet changed. The densi-
ties of electrons and He23S atoms are chosen such that
the calculations match the experimental data. To esti-
mate the ratio between the excessive density of meta-
stable atoms and the electron density, we calculated the
EEDF for the reduced electric field that is characteristic
of the nanosecond discharge. Simulations were per-
formed using the code based on the approach devel-
oped in [18]. The electric field was estimated as E =
2U/L, where U is the amplitude of the high-voltage
pulse and L is the discharge tube length. The coefficient
2 is related to the doubling of the pulse voltage due to
the mismatch between the impedances of the cable and
the discharge tube.

Figure 7 shows the calculated relaxation of the elec-
tron temperature, electron density, and metastable atom
density. We emphasize the quasi-steady behavior of Te

during the glow pause and its abrupt rise at the end of
the pause. We can distinguish three characteristic
stages of plasma decay: first, the early afterglow with a
rapid decrease in the electron temperature due to colli-
sions; then, the glow pause, during which Te varies only
slightly; and, finally, a rapid increase in Te to the value
typical of a glow discharge. The end of the Te relaxation
exactly coincides with the decay of the excessive elec-
tron density. The excessive metastable atom density
relaxes more slowly than ne.

Figure 5 presents the calculated duration of the glow
pause versus the glow discharge current for different
helium pressures. It is seen that the calculated depen-
dence is in good agreement with the experimental
results. The calculated initial densities of the electrons
and metastable atoms are proportional to the current.
The increase in the duration of the glow pause with
pressure is explained by the decrease in the rate of elec-
tron loss due to diffusion. The decrease in the duration
of the glow pause with increasing the discharge current
is related to the increase in the electric field, which
raises the electron temperature and the rate of diffusion
toward the discharge tube wall.

Metastable atoms determine the behavior of the
electron temperature during the glow pause. The calcu-
lated relaxation of the electron temperature for differ-
ent initial densities of He23S metastable atoms is shown
in Fig. 8. The higher the metastable atom density dur-
ing the decay, the fewer the variations in the electron
temperature and the lower the temperature Te during the
glow pause. The increase in the duration of the glow
pause is related to the decrease in the loss rate of exces-
sive electrons due to the action of the S-source. The
increase in Te is due to heating by the fast electrons that
are produced in superelastic collisions and pair colli-
sions between metastable atoms.

The quasi-steady behavior of the electron tempera-
ture is related to the combined action of the electric
field and metastable atoms on Te. In the initial stage of
the glow pause, the densities of electrons and He23S
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
atoms are high; hence, electron heating caused by the
electric field is weak (E ~ 1/ne) and Te is mainly deter-
mined by heating caused by metastable atoms. As the
excessive densities of electrons and metastable atoms
decrease, the contribution of the electric field to heating
increases, whereas the role of metastable atoms
decreases; i.e., the decrease in heating due to the inter-
nal source is balanced by the increase in heating caused
by the external electric field.

Figure 9 shows the contribution from different terms
in the electron temperature balance equation to electron
heating during relaxation. It is seen in Fig. 9 that,
within 200 µs after the start of plasma decay, heating

1
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3
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1 2 3 4

Fig. 8. Calculated relaxation of the electron temperature for
different initial densities of He23S1 metastable atoms:

(1) 4 × 1010, (2) 6 × 1010, (3) 8 × 1010, and (4) 1011 cm–3;
the pressure is P = 8 torr, the glow discharge current is i =
5 mA, and the gas temperature is T = 293 K.
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Fig. 9. Time evolution of the electron heating rate during the
glow pause: (1) heating caused by the electric field and
(2) heating caused by metastable atoms. Initial conditions
are Te = 5.5 eV, [He23S1] = 1.6 × 1012 cm–3, ne = 2 ×
1011 cm–3, the pressure is P = 4 torr, and the glow discharge
current is i = 5 mA.



430 AMIROV et al.
caused by the electric field is weaker than that caused
by metastable atoms because

where the term on the left-hand side characterizes Joule
heating. After the recombination of a certain fraction of
the excessive electrons, the inequality changes its sign;
i.e., heating caused by the electric field, which main-
tains the constant current through the plasma, becomes
dominant. The total heating remains almost constant
and equal to the total cooling of electrons due to elastic
collisions and diffusion. Such a behavior of the electron
heating sources ensures that the electron temperature
varies insignificantly.

Lowering the gas temperature from room tempera-
ture to 77 K leads to a threefold decrease in the diffu-
sion coefficient of metastable atoms, which, in turn,
results in an increase in the metastable atom density
during plasma decay. An analysis shows that the
increase in the duration of the glow pause as the gas
temperature decreases is mainly due to this effect. Fig-
ure 10 shows the relaxation of the electron temperature
during the glow pause for two different gas tempera-
tures.

Plasma decay in a glow discharge resembles a cryo-
genic dc discharge, namely, T-discharge [19]. In both
cases, the current flows at an anomalously low electric
field in the plasma. In the glow pause, the electric field
is such that the electron-impact ionization rate is not
equal to the rate of electron loss due to ambipolar dif-
fusion.

A characteristic feature of the glow pause is the
quasi-steady behavior of the electron temperature at a
level that cannot be realized in steady-state discharges.
This temperature can be controlled by varying the cur-
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Fig. 10. Calculated relaxation of the electron temperature
for different gas temperatures (other conditions being the
same): (1) 293 and (2) 77 K.
rent, pressure, or the parameters of the nanosecond
pulse.

Metastable atoms act as sources of fast electrons,
which enrich the EEDF near the thresholds for inelastic
processes, thus increasing the corresponding rate con-
stants. Moreover, at a high density of metastable atoms,
stepwise excitation becomes important. Accurate cal-
culations of the spectral line intensities monitored in
the experiment during the plasma relaxation require
calculating the EEDF with allowance for the time evo-
lution of the electric field and the density of He23S
metastable atoms.

5. CONCLUSION

The kinetic model of decay of a helium plasma car-
rying a dc current has been developed. The results of
computer simulations are compared with the experi-
mental data. Plasma decay is characterized by the exist-
ence of a time interval with a low emission intensity—
a glow pause. It is shown that the He23S metastable
atoms affect the duration of the glow pause and the
behavior of the electron temperature. Lowering the gas
temperature decreases the rate of He23S losses and
increases the glow pause duration. During the glow
pause in helium plasma, the electron temperature varies
only slightly and is much less than that in a glow dis-
charge.
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Abstract—A study is made of the effect of the transport of Xe 147-nm resonant radiation on the parameters of
a low-temperature plasma of DC and RF discharges in gas mixtures used as the working medium in lasers based
on infrared transitions in xenon. RF discharges are treated in the planar geometry typical of slab lasers. DC dis-
charges in tubes are treated in cylindrical geometry. The trapping of resonant radiation is described using dif-
ferent approximate models: the decay time approximation for a plasma slab (the Holstein approximation) and
the effective lifetime approximation (the Biberman approximation). The transport equation for resonant radia-
tion is solved numerically. The effect of the radiation transport on both the current–voltage characteristics of a
discharge and the spatial distribution of the excited Xe atoms is investigated. The current–voltage characteris-
tics calculated for a DC discharge with allowance for the resonant radiation transport agree well with the exper-
imental characteristics. It is found that, for an RF discharge, the effective lifetime approximation overestimates
the density of the excited Xe atoms near the electrodes by several times and underestimates this density at the
midplane of the discharge gap. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The efficiency of electric-discharge lasers based on
atomic transitions in Xe excited by a DC current in a
tube is low and decreases sharply with pressure because
of the discharge current contraction. The excitation of a
gas by RF discharges [1, 2] has made it possible to
increase the laser efficiency and to create fairly com-
pact slab lasers capable of generating output powers of
several watts in the continuous mode at wavelengths
corresponding to the atmospheric transparency region.
The parameters of the RF capacitive discharge are usu-
ally calculated for pure noble gases at pressures of sev-
eral torr and lower (see, e.g., review [3]). A numerical
model of RF discharges for lasers operating with Xe-
containing gas mixtures was developed by Il’yukhin
et al. [4].

The typical pressure of the working mixture of a
laser is 100–200 torr. The gas mixture consists of
almost equal proportions of He and Ar, with a small
(about 0.5%) amount of Xe. The distance between the
electrodes is 1–2 mm, the frequency of the exciting
electric field is about 100 MHz, and the specific excita-
tion power is about 100 W/cm3 [1, 2]. It was shown
experimentally that the amplification coefficient of a
weak signal has high sharp peaks near the electrodes
[5]. Such a shape of the amplification coefficient is
explained as being due to the increase in the electric
field near the electrode surfaces [2, 4]. The laser and
discharge parameters are largely governed by the distri-
1063-780X/01/2705- $21.00 © 20432
bution of the electronically excited states of Xe atoms
in the interelectrode gap. One of the two lowest elec-
tronic states of Xe atoms—specifically, the

6s[3/2 (3P1) state—is resonant (λ = 147 nm), the radi-
ation lifetime being τR = 3.79 ns [6]. Under the condi-
tions corresponding to a highly nonuniform distribu-
tion of the density of the excited atoms, an important
role may be played by the excitation transfer by reso-
nant radiation, which lowers the density of the excited
atoms near the electrodes and raises their density at the
midplane of the discharge.

The aim of this study is to analyze how the excita-
tion transfer by resonant radiation affects the calculated
parameters of a DC discharge and an RF discharge. We
consider a DC discharge in a tube and investigate the
effect of the resonant radiation transport on the current–
voltage (I–V) characteristic of a DC discharge. The
computed I–V characteristics are compared with the
measured ones. The structure of an RF discharge under
the conditions prevailing in lasers is numerically calcu-
lated.

There are several approximate models for describ-
ing the trapping of radiation, such as the decay time
approximation for a plasma slab or cylinder (the Hol-
stein approximation [7]) and the effective lifetime
approximation (the Biberman approximation; see, e.g.,
[8]). We compare the results calculated using different
approximate models with the results from the numeri-
cal solution of the transport equation for resonant radi-
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0

001 MAIK “Nauka/Interperiodica”
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ation. A significant difference in the spatial distribu-
tions of the population density of the lowest excited res-
onant state of Xe atoms is revealed.

2. DESCRIPTION OF THE EXPERIMENT

Figure 1 shows the scheme of the experimental
device for measuring the I–V characteristic of a DC dis-
charge. The discharge is initiated in a quartz tube with
an inner diameter of 0.3 cm, which is cooled by running
water. The discharge length is 28 cm. The discharge is
initiated by a controlled high-voltage source connected
to the cathode through a 94-kΩ ballast resistor. The
device is capable of sustaining stable discharges up to a
pressure of 100 torr. As the pressure increases, the
luminous column becomes smaller in diameter. The
voltage drop across the discharge and the discharge
current are measured with two FLUKE 8026B multim-
eters. The electric field is calculated without allowance
for the voltage drop at the cathode. Note that, in an
Ar : He : Xe = 50 : 50 : 1 mixture at a pressure of
38 torr, we achieved an output power of 0.4 mW, which
was mostly generated at a wavelength of 2.65 µm.

3. DISCHARGE MODEL

3.1. DC Discharge

The radial profiles of the parameters of DC dis-
charges were calculated under the assumption that the
plasma column is uniform along the discharge axis. We
solved a time-dependent equation for the plasma den-
sity with allowance for ambipolar diffusion in the radial
direction and the processes of direct ionization, step-
wise ionization, and dissociative recombination. In our
model, we took into account only one effective excited
state of Xe atoms, specifically, the Xe* state, which is

a combination of the 6s[3/2  metastable state and the

6s[3/2  resonant state. For this effective state, we
solved a time-dependent balance equation. The popula-
tions of the sublevels were assumed to be proportional
to the statistical weights. We took into account the exci-
tation from the ground state, stepwise ionization, and
the production of excited atoms via dissociative recom-
bination. The model for describing the excitation trans-
fer by resonant radiation will be discussed in Section 4.
The radial profile of the translational temperature was
determined by solving the time-independent heat con-
duction equation at a constant pressure. The basic set of
equations was supplemented with the relevant bound-
ary and initial conditions. All of the transport and
kinetic coefficients were calculated as functions of the
reduced electric field E/N by numerically solving the
Boltzmann equation for the spherically symmetric part
of the electron energy distribution function.

The basic set of equations was solved in finite differ-
ences by direct integration on a mesh with 25–51 mesh
points along the radial coordinate.

]2
0

]1
0
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3.2. RF Discharge

In accordance with [4, 9], our model of an RF dis-
charge was developed with allowance for three species
of positive ions (Xe+, ArXe+, and ) and one effec-
tive excited state of Xe atoms (Xe*). The basic set of
equations consisting of the balance equations for the
densities of the above four plasma components, the
equation for the electron density, and Poisson’s equa-
tion for the electric field was integrated over space and
time with allowance for drift and diffusion of the
charged particles. The gas temperature and density
were determined by solving the time-independent heat
conduction equation.

Under the conditions of our experiments with RF
discharges in a He–Ar–Xe mixture, the electron energy
relaxation rate at the midplane of the interelectrode gap
is lower than the frequency of the exciting electric field,
whereas at the electrodes, it is higher than the field fre-
quency. The electron energy relaxation length is com-
parable to the electrode sheath thickness. Conse-
quently, nonlocal effects play an important role near the
electrodes. In order to describe these nonlocal effects
correctly, it is necessary to solve the Boltzmann equa-
tion with allowance for the spatial distributions of the
discharge parameters. However, since this problem is
very involved (a similar problem for pure He was
solved by Feoktistov et al. [9]), we applied a simplified
approach described in [3]: a time-independent equation
for the mean electron energy was solved with allow-
ance for both electron drift and diffusion [10]. At each
time step, the mean electron energy was calculated at
every mesh point within the interelectrode gap. Then,
the mesh values of the mean electron energy were used
to calculate the rate constants (found in advance as
functions of the mean electron energy by numerically
solving the Boltzmann equation for the electron energy
distribution function) of direct ionization, stepwise ion-
ization, and the excitation of the effective Xe* level. We
also tabulated the transport coefficients that were used
to solve the time-independent equation for the mean

Xe2
+

1

2

3

4

5 6

Fig. 1. Scheme of the experimental device: (1) anode, (2) con-
trolled high-voltage source, (3) ballast resistor, (4) cathode,
(5) water-cooled tube, (6) output window installed at the
Brewster angle.
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electron energy and the balance equations. The terms
that describe the excitation transfer by resonant radia-
tion will be discussed in Section 4. The basic equations
were supplemented with the corresponding boundary
and initial conditions. The voltage drop across the dis-
charge was found from the given RF field power. The
basic set of equations was solved numerically by the
difference scheme that was developed by Sharfetter and
Gummel [11] in order to describe the processes in
semiconductor devices (Boeuf [12] was the first to
apply this scheme to model RF discharges).

The basic equations were integrated on a nonuni-
form grid with a spatial step that was shortened when
approaching the electrodes. As a rule, we used about
100 spatial steps. In order to achieve a steady-state
solution, it was necessary to simulate several thousands
of periods of the RF field, so that the calculation of one
version took about 20 hours of computer time on an
IBM-compatible computer with a Celeron-466 micro-
processor.

4. MODELS OF THE RESONANT RADIATION 
TRANSPORT

The balance equation for the density of the excited
atoms in the Xe* state with allowance for collisional
and radiative processes has the form [8]

(1)

Here, Kex is the rate constant of the electron-impact
excitation of the Xe* state from the ground state; Kdex is
the rate constant of the electron-impact deexcitation of
the Xe* state;  and  are the rate constants of

dissociative recombination of electrons with  and

ArXe+ ions, respectively;  is the stepwise-ioniza-
tion rate constant; KkArAr, KkXeHe, and KkXeAr are the rate
constants of three-body reactions producing the ArXe*
and  excimer molecules; and Kq is the quenching
rate of excimer molecules by heavy particles. Being the
function of the absolute value of the coordinate differ-
ence r = |r – r' |, the kernel of the integral equation (1)
has the form

(2)

Xe*∂
t∂

------------- KexneXe KdexneXe*– β
Xe2

+neXe2
++=

+ β
ArXe+neArXe+ Ki

Xe*
neXe*– KkArArXe*ArAr–

– KkXeHeXe*XeHe KkXeArXe*XeAr– KqXe*Xe–

+ Xe* r '( )K r r '–( ) r 'd∫ Xe*
τ

----------.–

β
Xe2

+ β
ArXe+

Xe2
+

Ki
Xe*

Xe2*

K r( ) 1

4πr2τ
-------------- f r( )∂

r∂
-------------.–=
Here, the spontaneous lifetime τ of the Xe* state is

defined as τ = τR ; τR is the lifetime of the reso-

nant state; and gR and gm are the statistical weights of
the resonant and metastable states, respectively. In the
case of a collisional spectral line broadening, the prob-
ability f(r) for a photon to move a certain distance r
without being absorbed or scattered is described by the

asymptotic expression f(r) = 1/ , where k0 is the
absorption coefficient at the line center (we assume that
the rate of mixing of the metastable and resonant states
is much higher than the spontaneous deexcitation rate).
In pure Xe at room temperature, the collisional broad-
ening becomes comparable to the Doppler broadening
at a pressure of several torr. However, in order to
describe the trapping of radiation, it is important to
know the radiation transport at the collision-induced
line wings. For discharges with sufficiently large geo-
metric dimensions (larger than 1 mm) in pure Xe [13],
the Doppler broadening can be neglected, in particular,
in the pressure range P > 10–2 torr. Consequently, in
simulations, we took into account only the collisional
spectral line broadening. The data on the broadening of
the spectral lines due to collisions with Xe and He
atoms were taken from [13] (these data are needed to
calculate the absorption coefficient). The broadening
due to collisions with Ar atoms was assumed to be two
times smaller than that due to collisions with He atoms.
Under the conditions of our experiments, the typical
value of k0 was 1.4 × 105 cm–1.

The rate constants of the elementary processes
incorporated into Eq. (1) are summarized in Table 1. An
analysis of the results obtained shows that the main
contribution to the quenching rate of the Xe* state
comes from stepwise ionization.

The method proposed by Holstein [7] to describe
the trapping of radiation consists in the replacement of
the last two terms in Eq. (1) by the term Xe*/τH , where
τH is the deexcitation time of a plasma slab or cylinder.
In the literature, this time is also called the effective
decay time of the fundamental mode [17]. For a colli-
sional broadening in the case of a planar plasma slab,
the decay time of the fundamental mode is calculated
from the formula [7]

(3)

where d is the slab thickness.
For a collisional broadening in the case of a cylin-

drical plasma, the decay time of the fundamental mode
is calculated from the formula [7]

(4)

where R is the radius of the plasma cylinder.

gR

gR gm+
-----------------

πk0r

τH

τ πk0d
1.150

-------------------,=

τH

τ πk0R
1.115

-------------------,=
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Table 1.  Collisional processes of the excitation and quenching of Xe* states

Reaction Designation K, cm3(n  – 1) s–1 Reference

Xe + e  Xe* + e Kex, Kdex Defined from the Boltzmann equation

 e  Xe* + Xe
1.7 × 10–7

[1 – exp(–180/T)]

ArXe+ + e   Xe∗  + Ar
8.2 × 10–7

[1 – exp(–180/T)]

Xe* + e   Xe++ e + e Defined from the Boltzmann equation

Xe* + Ar + Ar    ArXe∗ + Ar KkArAr 10–35 [14]

Xe* + Xe + He   + He KkXeHe 1.7 × 10–32(300/T)0.66 [15]

Xe* + Xe + Ar   + Ar KkXeAr 2.3 × 10–32(300/T)0.66 [16]

Xe* + Xe  Xe + Xe Kq 3.2 × 10–15 [17]

n is the number of reagents; the gas temperature T and electron temperature Te are expressed in degrees and electronvolts, respectively.

     

Xe2
+ β

Xe2
+

Te
1 2⁄–

β
ArXe

+

Te
1 2⁄–

Ki
Xe*

Xe2
*

Xe2
*

                    
The approximation proposed by L.M. Biberman
(see, e.g., [8]) incorporates the dependence of the effec-
tive lifetime on the distance from the plasma boundary.
For a planar discharge, the asymptotic expression for
the effective lifetime has the form

(5)

where x is the distance from the boundary of the plasma
slab. For a cylindrical discharge, the analytic expres-
sion for the effective lifetime in terms of hypergeomet-
ric functions is presented in [17].

An exact solution to Eq. (1), supplemented with the
other equations required for describing the discharge,
was found numerically using the algorithm developed
in [18, 19].

5. DISCUSSION OF THE RESULTS OBTAINED

In discharges in noble gases, the main ionization
mechanism is stepwise ionization. Consequently, we
can expect that the reduced electric field E/N (where E
is the electric field strength and N is the density of neu-
tral particles) at which the discharge is sustained is
highly sensitive to the quenching rate constant of the
electronically excited states. The collisional quenching
rate of the lowest electronic states is low in comparison
with the stepwise ionization rate because of the large
energy defect. In the pressure range under investiga-
tion, the quenching rate of the lowest electronic states
in three-body collisions producing  and ArXe*
excimer molecules is also unimportant (see Table 1).

τeff x( ) τ / 1

2 3 πk0x+
---------------------------- 1

2 3 πk0 d x–( )+
------------------------------------------+ ,=

Xe2*
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5.1. DC Discharge

The results obtained when studying the effect of the
radiative lifetime of a DC discharge on the reduced
electric field E/N can be interpreted very simply. The
corresponding calculations were carried out for the
conditions of our experiments with DC discharges in a
tube of radius R = 0.15 cm filled with an Ar : He : Xe =
50 : 50 : 1 mixture at a pressure of 76 torr. In Fig. 2, we
compare the I–V characteristics calculated using differ-
ent approximation models for the resonant radiation

U, kV
5

4

3

2

1

0 10 20 30

1

2

3

4

I, mA

Fig. 2. Comparison between the calculated and measured
I−V characteristics of a DC discharge in an Ar : He : Xe =
50 : 50 : 1 mixture at a pressure of P = 76 torr: the experi-
mental results are represented by the squares; curves 1 and
2 refer to an optically thin and optically thick medium,
respectively; curve 3 is obtained using the decay time
approximation for a plasma cylinder; and curve 4 is calcu-
lated by solving Eq. (1) numerically.
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: (a) the
results of solving Eq. (1) numerically and (b) the results obtained using the decay time approximation for a plasma cylinder.

           
transport with the experimentally measured I–V char-
acteristic (squares). The calculations were carried out
for an optically thin medium (curve 1) and a medium
with an infinitely large optical thickness (curve 2). The
figure also shows the I–V characteristics calculated by
using the Holstein approximation (curve 3) and by
solving Eq. (1) numerically (curve 4). The limiting I–V
characteristics for an optically thin medium and a
medium with an infinitely large optical thickness are
presented in order to illustrate the role played by the
balance of the excited particles in the formation of the
I–V characteristic of a discharge. The results obtained
are seen to differ markedly among different approxima-
tions for resonant radiation transport. We find good
agreement between the curve calculated by solving
Eq. (1) exactly and the experimental curve. Figure 3
displays the radial profiles of the electron density and
the density of the excited atoms in the Xe* state; the
corresponding calculations were carried out by apply-
ing the decay time approximation for a plasma cylinder

0.4

0.020 0.04
r, cm

0.8

1.2
rt, cm

Fig. 4. Radial profile of the thermalization length rt  calcu-
lated for the same parameter values as in Fig. 3.
(Fig. 3a) and by solving Eq. (1) numerically (Fig. 3b).
The figure also shows the radial profiles of the transla-
tional gas temperature. A comparative analysis of the
profiles in Figs. 3a and 3b shows that the decay time
approximation overestimates the density of Xe* atoms
at the tube axis by a factor of two and gives a two times
smaller full width at half-maximum (FWHM) of the
radial profile of the density of Xe* atoms. This is also
true for the electron density. Because of the gas heating,
the reduced electric field E/N is the strongest at the tube
axis; as a result, the ionization and excitation processes
are most intense in the central region of the discharge.
The resonant radiation transport smoothes the degree of
excitation over the tube cross section and increases the
discharge current density in the peripheral region,
thereby resulting in the expansion of the discharge
plasma.

The efficiency of resonant radiation transport can be
characterized in terms of the thermalization length
[20], which satisfies the following relationship in the
case of collisional spectral line broadening:

(6)

where τ is the spontaneous lifetime of the Xe* state and
νst is the total collisional quenching rate of this state.
Since, for Lorentzian broadening, the probability for a
photon to be emitted at the spectral line wings is pro-
portional to (k0r)–1/2, where r is the distance from the
plasma boundary, the thermalization length can be
regarded as the spatial scale on which the emitted radi-
ation strongly affects the balance of Xe* atoms. Deep
in the discharge plasma (at distances from the plasma
boundary greater than the thermalization length), the
density of the Xe* atoms is governed exclusively by
collisional processes, so that the emitted radiation plays
a negligible role. Figure 4 shows the radial profile of the
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Fig. 5. Profiles of the density of Xe* atoms in the plasma of an RF discharge in an Ar : He : Xe = 50 : 50 : 0.5 mixture for (a) W =
50 W/cm3 and P = 60 torr, (b) W = 50 W/cm3 and P = 120 torr, (c) W = 100 W/cm3 and P = 120 torr, and (d) W = 100 W/cm3 and
P = 240 torr: (1) the results of solving Eq. (1) numerically, (2) the results obtained using the decay time approximation for a plasma
slab, and (3) the results obtained using the effective lifetime approximation.
thermalization length rt calculated from formula (6) for
the same parameter values as those in Fig. 3. Since the
thermalization length is the shortest at the discharge
axis, Fig. 4 refers only to a small axial region. We can
see that, even in this region, the thermalization length
markedly exceeds the tube radius, thereby evidencing
the crucial role of the resonant radiation transport.

5.2. RF Discharge

We simulated an RF discharge in a 2-mm plane gap
in a He : Ar : Xe = 50 : 50 : 0.5 mixture at pressures of
60–240 torr, mean power densities of W = 50–
100 W/cm3, and the frequency of the exciting electric
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
field of 100 MHz. Figure 5 shows the profiles of the
density of Xe* atoms in the discharge gap. The profiles
were calculated by using the decay time approximation
for a plasma slab and the effective lifetime approxima-
tion, as well as by solving Eq. (1) numerically, for the
following values of the power density and pressure:
50/60, 50/120, 100/120, and 100/240, where the first
numerals refer to the power density in W/cm3 and the
second numerals refer to the gas pressure in torr. It is
seen that the approximate methods overestimate the
density of the Xe* atoms near the electrodes by a factor
of about 2 to 3 in comparison with the density obtained
by exact numerical integration. At the same time, the
approximate methods give somewhat lower central
Table 2.  Period-averaged absolute values of the reduced electric field E/N [Td] and the translational gas temperature [K] (in
parentheses) at the midplane of the discharge

W, W/cm3 P, torr Equation (1) Holstein approximation (3) Biberman approximation (5)

50 60 2.49 (447) 3.07 (453) 2.93 (452)

50 120 3.23 (507) 3.80 (519) 3.70 (517)

100 120 3.25 (586) 3.82 (602) 3.72 (599)

100 240 3.36 (692) 3.61 (710) 3.57 (706)
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100 W/cm3 and P = 240 torr: (1) the results of solving Eq. (1) numerically, (2) the results obtained using the decay time approxima-
tion for a plasma slab, and (3) the results obtained using the effective lifetime approximation.
densities of the Xe* atoms in comparison with the
numerical density, in which case results obtained from
the effective lifetime approximation are in better agree-
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Fig. 7. Calculated profiles of the thermalization length rt in
the plasma of an RF discharge in an Ar : He : Xe = 50 : 50 :
0.5 mixture for (1) W = 50 W/cm3 and P = 60 torr, (2) W =
50 W/cm3 and P = 120 torr, (3) W = 100 W/cm3 and P =
120 torr, and (4) W = 100 W/cm3 and P = 240 torr.
ment with the exact numerical integration. Table 2 lists
the period-averaged absolute values of the reduced
electric field E/N and the translational gas temperatures
at the midplane of the discharge. An analysis of the cal-
culated results shows that, at the midplane, the electron
density remains in local balance: the stepwise ioniza-
tion rate is equal to the recombination loss rate.
According to the numerical solution of Eq. (1), which
exactly describes the resonant radiation transport, the
excitation is transferred from the peripheral to the cen-
tral region, the density of the excited xenon atoms
increases, and the reduced electric field E/N at which
the ionization–recombination balance is maintained
decreases. Note that, in contrast to a DC discharge, dif-
ferent approximations for modeling an RF discharge
give nearly the same values of the voltage applied to the
discharge gap. This circumstance can be explained by
the fact that, across the positive column of an RF dis-
charge, the voltage drops only slightly. Figure 6 pre-
sents the electron density profiles averaged over the
electric field period for the same parameter values as in
Fig. 5. We can see that different approximate models
for resonant radiation transport and the exact solution
of Eq. (1) yield close results. The approximate methods
somewhat underestimate the electron density at the
midplane and somewhat overestimate it near the elec-
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
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trodes. Figure 7 illustrates the thermalization length for
different excitation conditions corresponding to Fig. 5.
Since, under all conditions, the thermalization length is
markedly longer than the slab thickness, the resonant
radiation transport plays an important role.

Note that, for the Xe 5d[3/2]1 state, which is the
highest excited state for laser transitions at 2.65, 2.03,
and 1.73 µm, the thermalization length is about 3 ×
10−2 cm (because of the strong collisional relaxation),
so that the resonant excitation transfer (λ = 119 nm)
plays an insignificant role in the population balance of
this state.

6. CONCLUSION

We have investigated the effect of the transport of
Xe 147-nm resonant radiation on the parameters of
low-temperature plasmas of DC and RF discharges in
gas mixtures used in lasers based on infrared transitions
in Xe. Applying the Biberman–Holstein equation, we
have developed for the first time a realistic approach to
describing resonant radiation transport in the gas-dis-
charge model.

For DC discharges, we have achieved good agree-
ment between the I–V characteristics calculated with
allowance for the resonant radiation transport and the
experimentally measured I–V characteristics. We have
revealed that the radiation transport weakens the con-
traction of the discharge column. It is found that, when
modeling an RF discharge, the effective lifetime
approximation for a plasma slab (the Biberman approx-
imation) and the decay time approximation (the Hol-
stein approximation) overestimate the density of the
excited Xe atoms near the electrodes by several times
and underestimate this density at the midplane of the
discharge gap. For the distribution of the excited Xe
atoms under the conditions prevailing in our experi-
ments, the results from the Biberman approximation
are closer to the exact ones than the results from the
Holstein approximation.
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Abstract—The spontaneous emission efficiency of an  excimer and its amplification properties at a wave-
length of 126 nm are studied using a numerical model of the weakly ionized plasma of a pulsed discharge in Ar
at elevated pressures. It is shown that, under real experimental conditions, it is possible to achieve a net gain
coefficient of the active medium equal to ≈0.065 cm–1 by increasing the gas density up to 4.0 × 1020 cm–3 at an
initial gas temperature of 170 K. The internal conversion efficiency of discharge energy into spontaneous emis-
sion depends weakly on the gas temperature and attains 75% for a gas density of 2.7 × 1020 cm–3, but with exci-
tation powers much lower than for the maximum gain. The applicability of the model at low excitation powers
is tested by comparison with the experimental data. © 2001 MAIK “Nauka/Interperiodica”.

Ar2*
1. INTRODUCTION

Progress in microelectronics is largely related to
increasingly smaller scale technology. High-power effi-
cient short-wavelength radiation sources are needed for
this purpose. The use of high-energy photons is also
more preferable in other applications, such as medicine
and chemistry. At present,  excimer molecules emit
coherent radiation with the shortest wavelength (for

 excimers, only fluorescence was observed). Gen-
eration with the  excimer was achieved only by
exciting a gas at pressures higher than 10–20 atm by a
high-power electron beam [1, 2]. From a practical
standpoint, the use of pulsed electric discharges is more
attractive. However, attempts to achieve generation in
pulsed discharges have been unsuccessful. To our
knowledge, there are only two papers concerning the
possibility of achieving generation using dimers of
inert gases in electric discharges [3, 4]. In [3], stable
homogeneous discharges with a duration of 50–200 ns
were produced in pure Kr at pressures of up to 1.5 atm
and in a Kr/Ne mixture at pressures of up to 10 atm.
In [4], the amplification at a wavelength of 126 nm for
the  excimer was observed at pressures of up to
3.5 atm in pure Ar. In recent papers [5–7], the kinetics
of the  excimer excited by a beam of fast electrons
was studied in detail. Based on recent experimental
data [4–7], we have developed a modified zero-dimen-
sional model [8, 9] describing the kinetics of the 
excimer excited by a beam of fast electrons or by a
pulsed electric discharge [10]. The model in [10] pro-
vides a good description of the experimental data
obtained by different authors on excimer excitation by
an electron beam and satisfactorily describes experi-
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ments with pulsed discharges. Thus, the small-signal
gain coefficient (corrected for absorption) predicted by
this model is 0.002 cm–1, which is nearly one-third of
its value estimated from the amplification of spontane-
ous emission [4]. In this paper, the model [10], whose
applicability at low excitation powers has been tested
by comparison with experimental data, is used for sim-
ulations and theoretical studies of the amplification
properties and emission efficiency of pure Ar plasma
excited by a pulsed electric discharge. For definiteness,
here we use the parameters of device [4]; i.e., the dis-
charge is excited with the use of the same electric cir-
cuit at the same voltages and the same interelectrode
distances as in [4]. It is also assumed that, by varying
the electrode width, it is possible to vary the discharge
area. In addition, the gas density is chosen to be a
parameter of the problem. In fact, both these parame-
ters affect the excitation power of the active medium.

2. NUMERICAL MODEL

The numerical model is described in detail in [10].
Here, we only present a brief description of it. The
model is based on the package of programs for zero-
dimensional modeling of Ar and Xe electric-discharge
excimer lamps [8] and also a  electric-discharge
laser using Xe/Ne or Xe/He mixtures [9]. The model
includes

(i) electric-circuit equations;

(ii) the quasistatic Boltzmann equation in the two-
term approximation;

(iii) balance equations for neutral, charged, and
excited plasma particles and photons;

Xe2*
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(iv) an equation for calculating the gas temperature;
and

(v) equations describing the excitation and ioniza-
tion of Ar by an electron beam.

In [4], the discharge was excited with a Blumlein
double forming line. The model uses an equivalent LC
electric circuit (Fig. 1). The capacitances C and C1 are
known [4], and the values of the inductances Ls , L0, and
Lm and resistances Rs, R0, and Rm are chosen in model
[10] by comparing the calculated and measured oscillo-
grams of the voltage Um and the intensity of excimer
radiation. The voltage Um in the prebreakdown phase is
determined by the parameters Rs and Ls , whereas the
voltage and radiation oscillations after breakdown
depend on the total inductance L = L0 + Lm and total
resistance R = R0 + Rm. The oscillogram shape is very
sensitive to these parameters, which makes it possible
to determine their values.

As was noted in [5, 6], gas heating affects the ion
composition. Good agreement with experimental data
was achieved in [5] assuming the gas temperature to be
~350 K (for an initial temperature of 300 K). In [5, 6],
it was also noted that the gain coefficient of the active
medium increases as the gas temperature decreases. For
this reason, in order to describe the temperature effects,
the model was supplemented with an equation for cal-
culating the gas temperature. The gas temperature is
calculated from the energy balance. Gas motion is
ignored because the characteristic times of processes
observed (≤10–6 s) are short compared to the gas-
expansion time (≥10–5 s). As the temperature varies, the
values of the constants and cross sections dependent on
it are recalculated. The temperature effects are dis-
cussed in more detail in [10].

The set of kinetic equations was modified in accor-
dance with new data on Ar plasma [4–7]. The scheme
of the main processes is illustrated in Fig. 2a.

The kinetic scheme includes three basic parts:
(i) processes involving electrons (the constants and

rates are taken from [7, 8]);

(ii) processes involving Ar+, , and  ions (the
constants and rates are taken from [6, 7]); and

(iii) processes involving excited particles (the con-
stants and rates are taken from [5, 6, 8]).

Unlike previous models [5–8], model [10] includes
the vibrational relaxation of lower levels of the 

(1Σ) and  (3Σ) states (Fig. 2b). This is necessary for
correctly determining the gain coefficient of the active
medium when the gas temperature varies. The follow-
ing expression for the gain coefficient of the active
medium is used: g = , where σ is the cross

section for stimulated radiation and  is the

population of the lower vibrational singlet state of an
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Fig. 1. Equivalent electric circuit of discharge excitation:
R = Rs = 0.3 Ω , Ls = 9 nH, L = 4.5 nH, and C = C1 = 4.25
nF; the distance between the electrodes is d = 2.2 mm.

Fig. 2. (a) Diagram of the processes in pure argon plasma
excited by an electric discharge or a fast-electron beam, and
(b) a detailed diagram of the excitation of singlet and triplet
states of the  excimer. The main processes are indicated

by heavy arrows.
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excimer. The data on the cross section for stimulated
radiation are given in [10].

Unfortunately, experimental data on the VT con-
stants of vibrational relaxation are lacking. However,
indirect data from spectral measurements [11, 12]
allow us to conclude that the rates of these processes
are high. At pressures above 1 atm, the Boltzmann dis-
tribution over vibrational levels with the vibrational
temperature equal to the translational gas temperature
is established. In this case, the ratio between the popu-
lation of the lower vibrational level, which determines
the gain coefficient of the active medium, and the total
population at lower vibrational states depends on the
gas temperature and equals

where E10 is the energy of the vibrational transition ν =
1  ν = 0 (E10 = 292 cm–1 = 420 K). Accordingly,
incorporating vibrational relaxation in the model
decreases the gain coefficient by a factor of about γ.
Since γ depends on the gas temperature, incorporating
vibrational relaxation under high energy deposition
and, consequently, strong heating can affect the time
dependence of the gain.

In view of the insufficient information on the vibra-
tional relaxation constants, it is reasonable to use a sim-
plified approach to describing the vibrational kinetics
of excimer molecules, which was previously used to
describe a XeCl laser [13]. In this case, vibrational
relaxation is described by an effective process of

γ
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  ,exp–= =

1014
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Fig. 3. Comparison of the measured (symbols) and calcu-
lated electron densities ne as a function of the argon pressure
P for different currents of a fast-electron beam: Jeb = (1)

0.023, (2) 0.086, (3) 0.28, (4) 2, and (5) 10 A/ cm2.
energy exchange between the “reservoir” of vibrational
energy and the ν = 0 state:

Ar2(3Σ) + Ar  Ar2(3Σ, ν = 0) + Ar,

Ar2(1Σ) + Ar  Ar2(1Σ, ν = 0) + Ar.

For the constant of the forward reaction, we take a
typical value kf = 9 × 10–11 cm3/s. The reverse rate con-
stant is chosen to be kr = kf/γ. Note that, to describe the
vibrational relaxation more adequately, an experimen-
tal study of this process is required.

Hence, the reduced electric field E/N (where E is the
electric field strength and N is the total particle density)
or the source of secondary electrons (when the excita-
tion is produced by an electron beam) are used in the
model as entry parameters when solving the quasistatic
Boltzmann equation in the two-term approximation.
The model incorporates electron–ion recombination
and elastic and inelastic electron losses in collisions of
electrons with atoms and molecules in the ground and
excited electronic states; electron–electron collisions
and superelastic collisions are also taken into account.
The constants of direct processes are determined from
the calculated electron energy distribution function and
from the cross sections for corresponding processes;
the constants of reverse processes are calculated from
the detailed balance principle. The constants of the pro-
cesses involving electrons are used to determine the
densities of the plasma components and photons from
the balance equations solved simultaneously with the
equations for the gas temperature and electric circuit.
To solve the balance equations, the Kirchhoff equation
for the electric circuit, and the temperature equation,
we use the Gear method as the most appropriate
method for stiff systems typical of the problems under
consideration. Note that the time variation of the elec-
tron and excited-particle densities is taken into account
when solving the Boltzmann equation. The density of
electrons and their mobility, which are found from the
Boltzmann equation, determine the plasma conductiv-
ity needed to calculate the currents and voltages in the
electric circuit and, finally, E/N.

In [10], the model was tested using the experimental
results [4–6] obtained at high excitation powers
(>10 MW/cm3) needed to achieve generation with the

 excimer. For efficient fluorescence (see below),
such conditions are not optimal because of the fast
quenching of excimer molecules by electrons. For this
reason, model [10] was tested for low currents of the
fast-electron beam and, accordingly, low pump powers.
In Fig. 3, the measurement results [7] are compared
with the calculated dependences of the electron density
on pressure over a wide range of fast-electron beam
currents Jeb (from 0.023 to 10 A/cm2). It is seen that
model [10] is also applicable for low pump powers.
Note that, for a fast-electron beam current of 0.1 A/cm2,
the plasma-excitation power is nearly the same as for

Kf

Kr

Kf

Kr

Ar2*
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the electric-discharge excitation in device [4], but for a
discharge area of S ≈ 1500 cm2. In this case, the maxi-
mum discharge-current density is ~10 A/cm2.

3. AMPLIFICATION PROPERTIES
In [4], the gain coefficient at a pressure of 3.5 atm

was too small (~0.006 cm–1). Hence, the question arises
of whether it is possible to achieve a higher gain by
using the same device with the same discharge voltage
and interelectrode distance. Obviously, the higher the
pump power of the active medium, the higher the gain.
Taking into account that the discharge current is con-
trolled by the electric circuit, the excitation power for a
given discharge area (and, accordingly, a given electron
density) increases as the gas density increases due to
the increase in the discharge voltage. However, at too
high a gas density, the discharge may not be ignited. In
our case (see Fig. 4), the highest relative density n (n =
N/NL , where NL = 2.7 × 1019 cm–3 is the Loschmidt
number) at which the discharge can occur is equal to
n ~ 15.

Here, we assume that instabilities have no time to
develop. The plasma stability is a separate complicated
problem, which is beyond the scope of this study.

As the discharge area decreases, the excitation
power increases due to an increase in the electron den-
sity. Note that, in [4], knifelike electrodes with a thick-
ness of 6 mm and total length of 40 cm were used. To
improve the discharge stability, the electrodes were
rounded, so that the maximum discharge area in device
[4] was at most 24 cm2 (most likely, it was even smaller
because the discharge was contracted toward the center
of the discharge gap). The closest agreement of calcu-
lations [10] with experiment [4] was achieved for a dis-
charge area of 4 cm2. As the electron density increases,
the quenching rate of excimer molecules by electrons
and the dissociation rate of excimer molecules in upper
vibrational states increase [10], thus decreasing the
pumping rate of excimer molecules. In addition, the gas
temperature increases with the pumping power, which
also decreases the gain [10]. The existence of an opti-
mal value of the discharge area S is illustrated in Fig. 5,
which shows the maximum net gain coefficient of the
active medium g – α and the absorption coefficient α as
functions of the discharge area. For the relative gas den-
sity n = 10, the net gain is maximum for S ≈ 2 cm2,
whereas for n = 15, the maximum of the dependence is
displaced toward smaller areas (S ≈ 1 cm2), because the
decrease in the net gain is primarily due to gas heating,
which reduces the cross section for stimulated emission
[10]. For n = 15 and S ≈ 1 cm2, the increase in the gas
temperature attains ∆T ≈ 270 K. For n = 10 and
S ≈ 2 cm2, the gas temperature increases by nearly the
same value: ∆T ≈ 240 K. As the discharge area
increases, the gas temperature increases approximately
in inverse proportion to the discharge area. For a dis-
charge area S > 10 cm2 and n = 10–15, gas heating can
PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
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be neglected. As is expected, the net gain coefficient is
maximum for the relative gas density n = 15 and the
low initial temperature T0 = 170 K and can attain
0.065 cm–1, which is one order of magnitude higher
than the estimate of [4].
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Fig. 5. Maximum net gain, g – α (solid lines), and the
absorption coefficient α (dotted lines) vs. discharge area S
for n = 15 and T0 = 300 K (without symbols); n = 15 and
T0 = 170 K (squares); and n = 10 and T0 = 170 K (circles).

Fig. 6. Time dependences of the net gain, g – α (solid lines),
and the absorption coefficient α (dashed-and-dotted lines) at
n = 15 and T0 = 170 K for a discharge area of S = 2 cm2

(squares and dashed line) and 24 cm2 (circles and dotted
line).
Because of the large difference between the break-
down voltage and the discharge voltage, it is impossible
to match the impedances of the Blumlein line and the
electric discharge at high excitation powers. For this
reason, the current oscillations in the circuit result in
oscillations in the time dependences of the net gain and
the absorption coefficient α (Fig. 6). The smaller the
discharge area, the sharper the spikes and the greater
their number. The maximum net gain occurs at the first
spike (at a time of ~40 ns). Note that, at this time, dis-
charge instabilities probably have no time to develop.

The efficiency with which the energy is extracted
from the active medium in a resonator is determined by
the ratio of the small-signal gain coefficient to the
absorption coefficient; the higher this ratio, the higher
the resonator efficiency. Thus, for excimer lasers, the
typical values of g/α are ≥10. In our case, i.e., for n =
15, T0 = 170 K, and a discharge area of ~2 cm2, this
ratio is relatively low—about 3.4 (Fig. 7).

4. FLUORESCENCE EFFICIENCY

The intensity of the spontaneous emission of the
 dimer is proportional to the  density and

increases (along with the gain coefficient) as the pres-
sure increases or the discharge area decreases (i.e., the
electron density increases). Thus, as the discharge area
varies from 24 to 1 cm2, the intensity increases by
almost one order of magnitude (Fig. 8). The difference
between the time dependences of the net gain (Fig. 6)
and the intensity of spontaneous emission (Fig. 8) is
explained by the increase in the gas temperature with
time, which results in the decrease in the net gain in the
second and third spikes compared to the first one
(Fig. 6).

The spontaneous emission energy (Fig. 9) and the
conversion efficiency ηin of the discharge energy into
radiation (Fig. 10) decrease as the discharge area
decreases, because the quenching rate due to collisions
with electrons increases and the excitation rate of
dimers decreases due to dissociation of upper vibra-
tional dimer states by electrons [10]. Figure 9 also
shows the dependences of the energy deposited in the
discharge on the discharge area. In this case, the energy
stored in the Blumlein line (C = C1 = 4.25 nF and U0 =
20 kV) is equal to 1.7 J.

The total emission efficiency η (i.e., the conversion
efficiency of the energy stored in capacitors into radia-
tion) is determined by the efficiency ηc with which the
energy is transferred from the electric circuit to the dis-
charge and the internal conversion efficiency ηin of the
discharge energy into radiation. In turn, the internal
efficiency ηin can be represented as the product of the
efficiency η* of the production of  excited states

and the conversion efficiency ηsp of the excited states

Ar2* Ar2*

Ar2*
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into the  excimer and its spontaneous emission:

η = ηcηin , 

where ηin = η∗ ηsp.

The lower the resistive losses in the circuit and the
better the matching between the wave impedance of the
circuit and the resistance of the discharge gap (here, we
only consider the forming lines or circuits that contain
inductances and are commonly used for exciting elec-
tric-discharge lasers), the higher the electric circuit effi-
ciency ηc. Thus, for an ideal LC circuit (with zero resis-
tance), matching is achieved when the circuit wave
impedance is equal to the discharge resistance. In this
case, the total energy stored in the capacitor is trans-
ferred to the discharge during the first half-period of
current oscillations. In the absence of matching, the
energy stored in the capacitor is also completely trans-
ferred to the discharge, but over a longer period of time
(the discharge resistance is usually smaller than the cir-
cuit wave impedance), until oscillations in the electric
circuit relax. Actual circuits always have nonzero resis-
tance; hence, the improvement of matching reduces
energy losses in an actual electric circuit. As is seen
from Fig. 9, for n = 10–15 and S < 100 cm2, only one-
third of the stored energy is transferred to the discharge
because of poor matching between the supply circuit
and discharge and, accordingly, large losses in the
resistances R0, Rs, and Rm (Fig. 1). For lower gas densi-
ties, matching becomes even poorer, losses increase,
and the fraction of the energy deposited in the discharge
decreases. Thus, for n = 3.5 and 1.5, the deposited
energy decreases to 1/6 and 1/10 of the energy stored in
the line, respectively. This is due to the fact that, as the
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PLASMA PHYSICS REPORTS      Vol. 27      No. 5      2001
gas density decreases, the discharge voltage decreases,
whereas the discharge current is controlled by the
external circuit and increases only slightly. Poor match-
ing at small discharge areas is a consequence of the
large difference between the breakdown voltage, deter-
mined by direct ionization, and the discharge voltage,
determined by stepwise ionization (Fig. 11a). Note
that, for S = 10 cm2, the electron density attains the
value ne ~ 1016 cm–3 and, as is seen in Fig. 11a, the exci-
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Fig. 8. Effect of the discharge area S on the time dependence
of the spontaneous emission intensity for n = 15 and T0 =
170 K: S = 1 (solid line), 2 (dashed line), 6 (dashed-and-dot-
ted line), and 24 cm2 (dotted line).

Fig. 9. Discharge energy (dashed line) and spontaneous
emission intensity (solid lines) vs. discharge area S for n =
1.5 and T0 = 300 K (without symbols); n = 10 and T0 =
170 K (circles); and n = 15 and T0 = 170 K (squares).
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tation rate of Ar electronic states and the stepwise ion-
ization rate are nearly equal to each other. As the dis-
charge area increases (S > 100 cm2), the stepwise ion-
ization rate and the electron density decrease (thus, for
S = 104 cm2, the maximum value of ne is ~5 × 1012 cm–3)
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Fig. 11. Time dependences of the total rate R of (1) direct
ionization, (2) stepwise ionization, (3) spontaneous emis-
sion, (4) electron-impact ionization, and (5) quenching due
to collisions with electrons for  at discharge areas of S =

(a) 10 and (b) 104 cm2.

Ar2*
and, starting from S > 103 cm2, direct ionization
becomes dominant. For S = 104 cm2, the direct ioniza-
tion rate exceeds the stepwise ionization rate during the
first spike (Fig. 11b). Only starting from nearly 25 ns,
when the discharge voltage decreases, does the direct
ionization rate become less than the stepwise ionization
rate. The small rate of stepwise ionization is due to the
fact that, in this case, the excited-particle density is
determined by radiative losses and is insufficient for
intense stepwise ionization. As is seen from Fig. 11b,
the radiative loss rate for S = 104 cm2 is two orders of
magnitude higher than the stepwise ionization rate. The
prevailing role of direct ionization leads to an increase
in the discharge voltage (and also to better matching)
and, consequently, to an increase in the energy depos-
ited in the discharge up to ~1J for n = 10–15 and
S > 103 cm2 (Fig. 9). Calculations with zero resistances
R0, Rs, and Rm showed that, for S = 104 cm2 and n = 10,
the energy deposited in the discharge increases to 1.5 J
during the first spike and, as early as at 250 ns, almost
the entire energy stored in the capacitors C and C1 is
transferred to the discharge.

The internal conversion efficiency ηin of the dis-
charge energy into spontaneous emission depends
weakly on the gas temperature and increases as the dis-
charge area increases, attaining ~75% at n = 10 and S >
103 cm2 (Fig. 10). In this case, the discharge current
density decreases to ~1.5 A/cm2, so that it is necessary
to test the numerical model at such low excitation pow-
ers (see above). As the gas density decreases, the effi-
ciency ηin decreases (to ~ 55% at n = 1.5) primarily due
to the decrease in the rate of dimer formation in three-
body processes and also due to the increase in the rela-
tive role of quenching  dimers and their dissocia-
tion by electrons. As the relative density n increases
above 10, ηin decreases insignificantly.

Such a high internal efficiency (higher than an effi-
ciency of ~40–50%, characteristic of the excitation by
a fast-electron beam [15, 16]) is ensured by high values
of both the efficiencies η∗  and ηsp . At low pumping
powers and, accordingly, low electron densities, the
quenching rate of  excimer molecules due to colli-
sions with electrons (this is the main process of 
loss) is negligibly small compared to the radiative loss
rate (Fig. 11b); for this reason, ηsp is close to 100% and
ηin ≈ η∗ . Most of the discharge energy is expended on
the argon excitation. This is seen in Fig. 12, which
shows the time dependences of the ratio between the
total density of excited states (Ar*, Ar**,  (1Σ),

 (3Σ), and ) and the electron density for n = 10.
For S = 104 cm2, this ratio reaches 40 in the second exci-
tation spike, whereas for S = 10 and 100 cm2, the max-
imum value of this ratio is reached even in the first
spike and is equal to 26. The excitation efficiency of
electronic states  at electron densities lower than the

Ar2*

Ar2*
Ar2*

Ar2*
Ar2* Ar2**

η*
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excited-particle density tends to the value hν(1 – ηel)/ε*
≈ 87%, where hν = 10.9 eV is the emission photon
energy, ε* = 11.6 eV is the excitation energy of the
lower excited state of Ar*, and ηel ≈ 6% is the fraction
of discharge energy lost due to elastic processes. A
smaller value of the calculation efficiency ηin (~75%)
can be explained by the fact that a certain fraction of
discharge energy is expended on the excitation of Ar**
states and ionization; another reason is that losses due
to elastic collisions are underestimated because of the
discharge voltage oscillations. To estimate η∗ , we used
the value of ηel at the maximum of the discharge power.

5. CONCLUSION

We have shown that, under the conditions of exper-
iment [4], it is possible to achieve a net gain coefficient
of the active medium equal to g – α ≈ 0.065 cm–1 by
increasing the relative gas density n to 15 at an initial
gas temperature of 170 K, or 0.04 cm–1 at room temper-
ature. In addition, it is necessary to reduce the dis-
charge area to 1 cm2 and, accordingly, increase the
excitation power to 40 MW/cm3 at normal conditions.
In such regimes, the Blumlein line cannot ensure the
optimum pumping of the active medium. At best (at rel-
ative densities of n ≈ 10–15), only one-third of the
energy stored in the line is transferred to the discharge.
For better matching between the electric circuit and the
discharge gap, it is necessary to use supply circuits that
ensure both the high breakdown voltage and the opti-

n*
t/ne

50

40

30

20

10

0 0.06 0.12 0.18 0.24 0.30
t, µs

Fig. 12. Time dependences of the ratio of the total excited-
particle density to the electron density for the gas density
n = 10 and discharge areas of S = 10 (solid line), 100 (dashed
line), and 104 cm2 (dotted line).
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mum discharge voltage (e.g., double-pulse excitation
circuits).

The internal conversion efficiency of the discharge
energy into spontaneous emission depends weakly on
the gas temperature and increases as the discharge
power decreases, attaining ~75% at n = 10 and an exci-
tation power of <700 kW/cm3. Under these conditions,
the discharge voltage is close to the breakdown voltage;
consequently, simple electric circuits (e.g., a single-
contour LC circuit) can be used to efficiently excite the
discharge.
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Abstract—Data from the Freja satellite experiment on the lower hybrid turbulence in the Earth’s magneto-
sphere are analyzed. It is shown that the observed threshold energy density of lower hybrid waves required for
the excitation of localized wave packets is in good agreement with theoretical predictions. © 2001 MAIK
“Nauka/Interperiodica”.
Observations from the instrumented Freja satellite
indicated the existence of localized wave packets in the
lower hybrid (LH) frequency range in the Earth’s mag-
netosphere [1–5]. In this paper, we consider the origin
of these localized wave packets. The excitation of LH
turbulence in the magnetospheric plasma is character-
ized by a certain threshold value of the LH wave energy
density. We compare the threshold LH wave energy
density predicted by the theory of the modulational
interaction of broad wave spectra [6] with that obtained
from observations [4].

The Freja project is a joint Swedish–German
research project. Its purpose is to investigate the inter-
action between the hot magnetospheric plasma and the
upper atmosphere (ionosphere). This interaction results
in a significant increase in the energy of magneto-
spheric and ionospheric plasmas and is associated with
loss of substance from the Earth’s atmosphere. The
Freja satellite was launched on October 6, 1992, into a
63°-inclination orbit with a 1760-km apogee over the
Northern Hemisphere and a 600-km perigee over the
Southern Hemisphere. The most outstanding feature of
this mission was the high resolution of the plasma and
field (both electric and magnetic) measurements and a
high telemetry rate (up to 512 kbits/s) [7, 8].

The high resolution and high telemetry rate ensured
the observation of electrostatic fields in the LH fre-
quency range. The measurements were carried out at
altitudes of about 1760 km. Purely electrostatic wave
fields were observed (no perturbations of the magnetic
field were detected). The characteristic feature of these
fields was the presence of density cavities in the regions
where the field was localized (Fig. 1) [1–5]. The char-
acteristic frequency range of LH waves was [4] ω ≈
2π(3.5–4.5) × 103 s–1. The characteristic LH resonance

frequency was ωLH ≡ ωpi(1 + / )–1/2 ~ 2π ×
103 s–1 [3], where ωpe (i ) is the electron (ion) plasma fre-
quency and ωBe is the electron gyrofrequency. We note
that the above value of ωLH is only an estimate. The

ωpe
2 ωBe

2
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measured values of the plasma parameters were the fol-
lowing [3]: the unperturbed electron density was n0 ≈
1.1 × 103 cm–3, the electron plasma frequency was ωpe ≈
1.87 × 106 s–1, and the proton gyrofrequency was ωBp ≈
2π × 400 s–1. The latter corresponds to an external mag-
netic field of |B0 | ≈ 0.263 G. The most abundant ions in
the region of the magnetosphere where the measure-
ments were performed were O+, He+, and H+.

An important result of the instrumented Freja satel-
lite experiment was that it proved the existence of a
threshold for the excitation of localized LH oscilla-
tions. The dependence of the energy density of LH
oscillations on the magnitudes of relative perturbations
of the plasma density in the regions where the oscilla-
tions were localized was investigated (Fig. 2) [4]. It was
shown that the relative perturbations of the plasma den-
sity correlated with the energy density of LH oscilla-
tions. The threshold energy density was defined as the
energy density at which the density perturbations van-
ish. The threshold for the excitation of wave packets
corresponds to the energy density of LH oscillations,
which is on the order of WLH ~ 10–14 J/m3.

Localized LH oscillations observed in the Freja
experiment were associated [3–5] with the envelope
LH solitons that can be formed due to the modulational
interaction between LH waves (see, e.g., [9, 10]). Thus,
it is of interest to calculate the threshold energy density
for the modulational instability under the conditions of
the Freja experiment and to compare it with the
observed value. Let us compare the threshold LH wave
energy density obtained from the instrumented Freja
satellite with the theoretical value, which can be found
from the following condition [6]:

(1)
dkWk

LH

n0Te
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ωpe

2

k 2v Te
2
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th
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1
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2
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where Te is the electron temperature, k is the wave vec-

tor, WLH = dk, vTe = (Te/me)1/2 is the electron

thermal velocity, and me(i) is the electron (ion) mass.
Condition (1) is obtained for LH waves propagating
under the angles θ with respect to the external magnetic
field such that the inequalities

(2)

Wk
LH∫

me
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------ 
 

1/2

θcos  ! 1≤
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Fig. 1. Two examples of localized LH wave packets in the
Earth’s magnetosphere (data from the Freja satellite [4]).
The LH wave electric fields are shown in the upper panels.
The signal has a bandwidth of 0–16 kHz. The lower panels
show the low-frequency relative plasma density perturba-
tions. Solid and dashed curves refer to the signals from two
Langmuir probes with which the plasma density was mea-
sured. The correlation between the regions where the wave
field is localized and the plasma density cavities is clearly
seen.
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are satisfied. In this case, the linear dispersion relation
for LH waves is

(3)

When deriving Eq. (1), it is also assumed [6] that (i) the
inequality |δk |vs < δω is satisfied (here, δk is the spec-
tral width in k space, δω is the spectral width in fre-
quency space, and vs = (Te/mi)1/2 is the ion acoustic
velocity) and (ii) the spectrum occupies the entire
region in k space where LH waves can exist; i.e., (2–
3)|k|||vTe ≤ ωk, where the subscript || denotes the vector
component parallel to the external magnetic field (for
(2–3)|k|||vTe ≥ ωk, waves rapidly decay due to Landau
damping). It is these spectra for which the threshold for
the LH wave modulational interaction exists [6].

The parameters of the plasma and waves to which
Eq. (1) applies correspond to the conditions of the Freja
experiment. Indeed, the broad frequency range of LH
waves (δω ~ ωLH ~ ωch, where ωch is the characteristic
frequency of the spectrum) indicates that the waves sat-
isfying dispersion relation (3), which corresponds to
the situation (me/mi)1/2 ≤ |cosθ| ! 1, play an important
role. Furthermore, an LH soliton contains harmonics
with all the possible k for which LH waves can exist
((2–3)|k|||vTe ≤ ωch). This means that the LH wave spec-
trum can be considered broad; thus, it is meaningful to
use the concept of the modulational instability thresh-
old. In addition, the following inequalities are satisfied:

When calculating the theoretical threshold energy
density of LH waves from Eq. (1), it is natural to
assume that the characteristic value of (1 +

ωk ωLH 1
mi

me

------ θ2cos+ 
 

1/2

.≈

δk v s δk || v Te me/mi( )1/2/ θcos≈
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Fig. 2. The dependence [4] of the LH wave energy density
on the ratio of the plasma density perturbation to the unper-
turbed plasma density.
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/ )−1 /|k|2  ≈ /  is on the order of
ten. Indeed, if the LH wave energy density tends to zero
and the broad LH wave spectrum includes all possible
k (for which LH waves can exist), then the only charac-
teristic wave vector of the problem under study is that
satisfying the condition (2–3)|k|||vTe ≈ ωch. Using the
characteristic value of the electron temperature of the
magnetospheric plasma at an altitude of about 1760 km
(Te = 0.3–1 eV [11]), we obtain from Eq. (1) that W LH ~
2.1 × 10–13 erg/cm3 (here, for definiteness, we assume
that Te = 0.3 eV and that the most abundant ions are H+

ions). For Te = 0.3 eV and O+ ions, we obtain WLH ~
1.3 × 10–14 erg/cm3.

Thus, the theoretical values of the threshold LH
wave energy density obtained from Eq. (1) agree well
with the results of the Freja experiment. This also
allows us to conclude that the formation of localized
wave structures in the Earth’s magnetosphere is indeed
associated with the development of modulational pro-
cesses.
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Ksenia Aleksandrovna Razumova
(In Honor of Her 70th Birthday)
On January 23, we celebrated the 70th birthday of
Ksenia Aleksandrovna Razumova, a doctor of sciences
and laboratory head at the Institute of Nuclear Fusion,
Russian Research Centre Kurchatov Institute. Her sci-
entific activity is related to experimental research in the
field of high-temperature plasma physics. She took part
in the pioneering works on the magnetic confinement of
a plasma in toroidal systems. In 1962, K.A. Razumova
and her colleagues were the first to observe the disrup-
tion instability in a tokamak.

Experiments carried out by K.A. Razumova in the
TM-2 tokamak, along with the results of experiments in
1063-780X/01/2705- $21.00 © 20451
the T-3 and T-4 tokamaks, convinced the scientific com-
munity that the pessimistic forecasts concerning the
prospects of magnetic confinement that follow from the
Bohm formula are unfounded. In 1971, K.A. Razu-
mova, together with her colleagues, was awarded a
State Prize for creating and investigating high-temper-
ature thermonuclear plasmas in tokamaks. The investi-
gations carried out by K.A. Razumova led to the toka-
mak becoming the leader of nuclear fusion research in
the world.

During the past twenty years, her scientific interests
have been related to investigations of the interaction of
electron-cyclotron waves with a tokamak plasma. In
1983, for the second time, K.A. Razumova, together
with her colleagues from Nizhni Novgorod, was
awarded a State Prize for their cycle of investigations
on creating powerful gyrotrons and applying them to
plasma heating in nuclear fusion devices. In 1992, for
her investigations on EC heating and EC current drive,
she was awarded the Academician Artsimovich Prize,
which was given for the first time by the Presidium of
the Russian Academy of Sciences. During the entire
25-year cycle of experiments in the T-10 tokamak, she
has participated in all of the experimental programs and
headed many of them.

Time has no power over Ksenia Aleksandrovna.
She is as active now as she was in her younger years is
as engaged in her work as before, and is always eager
to discuss new ideas and experiments. Until recently,
every summer, she went on rowing tours. She has two
children and, during her vacations, looks after her
three grandchildren at her country house, 450 km from
Moscow.

The friends and colleagues of Ksenia Aleksan-
drovna heartily congratulate her and wish her many
more years of fruitful scientific activity.

E.P. Velikhov, V.P. Smirnov, V.A. Alikaev,
Yu.N. Dnestrovskij, G.E. Notkin, A.M. Stefanovskiœ,

V.S. Strelkov, and V.D. Shafranov
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Viktor Pavlovich Silin
(In Honor of His 75th Birthday)
On May 26, we celebrate the 75th birthday of Viktor
Pavlovich Silin, a world-famous theoretical physicist, a
sector head at the Lebedev Institute of Physics of the
Russian Academy of Sciences, and a corresponding
member of the Russian Academy of Sciences.

His entire professional life has been linked with the
Lebedev Institute of Physics, where he began to work
after graduating in 1949 from Moscow State University
and where he progressed from a junior researcher to
head of the Division of Solid-State Physics (1989–
1995). Over this period, he published more than 600
papers in different fields of physics and four mono-
graphs, which are well known among plasma physi-
cists.

During the first ten years, when working in the The-
oretical Department at the Lebedev Institute of Physics,
V.P. Silin was occupied with the quantum field theory
and the theory of elementary particles. Among his stud-
ies in this field, it is necessary to mention his works on
1063-780X/01/2705- $21.00 © 20452
the development of the Tamm–Dankov method; these
works provided a better understanding of the nature of
nuclear interactions. At that time, V.P. Silin began to
work on the theory of many particles and obtained a
number of important results on the theory of Fermi gas
of weakly interacting charged particles; these results
laid the foundations of the Fermi fluid theory. His stud-
ies in this field led to the development of two lines of
investigations—the theory of normal metals and the
physics of a gaseous plasma.

Silin’s works on the physics of metals were further
developed by his numerous followers. This concerns
not only his works on the theory of a normal-metal
electron fluid, but also the theory of sound absorption
in metals, the quantum theory of transport in a mag-
netic field, the theory of quantum electron spin-acous-
tic waves, and the theory of electron fluids of magneti-
cally ordered metals. At present, he is actively working
on the theory of Josephson junctions.

In the field of gaseous plasma physics, it is worth
noting, first of all, his works on the collision integrals
of charged particles in high-frequency and strong
fields. In the 1960s, the kinetic theory of various trans-
port effects in plasmas was developed based on these
studies. His works on the theory of relativistic plasma,
the theory of fluctuations of microscopic distributions,
the theory of transport caused by ion-acoustic waves,
the kinetic theory of drift-dissipative instabilities, and
the kinetic theory of plasma wave interaction are also
widely recognized.

Silin’s paper on the parametric resonance in plasma,
which was published in 1965, received much attention
and provided a basis for many subsequent investiga-
tions. Since that time, his scientific interests have been
concentrated on the development of the theory of para-
metric instabilities and parametric turbulence and
applying this theory to the problem of the interaction of
strong laser radiation with plasma. Among the works
on the theory of laser plasmas, it is worth noting his
investigations on the generation of laser radiation har-
monics, which he has continued since the 1960s.

A series of his works on nonlinear electrodynamics
(a theory of self-consistent nonlinear waveguides and a
dynamical theory of the action of strong radiation on a
moving plasma) is devoted to the theory of penetration
of a strong electromagnetic field into a plasma. Many of
the results of these studies have been verified experi-
mentally.
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V.P. Silin was twice awarded the USSR State Prize:
in 1970, for the cycle of works on the Fermi fluid theory
and, in 1987, for the works on the nonlinear plasma the-
ory. For his scientific activity, V.P. Silin was awarded
two Orders of the Red Banner of Labor. He was con-
ferred the title of an Honored Scientist of the Russian
Federation. V.P. Silin is a member of the editorial
boards of several scientific journals. He is a member of
a number of scientific councils and a member of the
Scientific Council on Plasma Physics of the Russian
Academy of Sciences.

Along with intensive scientific activity, V.P. Silin
devotes much time to the education of young scientists.
For many years, he has been engaged in pedagogical
work. He is a professor at the Moscow Engineering
Physics Institute (Technical University). As a consult-
ant to UNESCO, he gave lectures on plasma theory at
Delhi University (India).

V.P. Silin is a founder and leader of a powerful sci-
entific school. Among his pupils are more than 30 can-
didates of science and ten doctors of science. For many
years, he has guided a seminar on plasma and solid-
state physics, whose meetings sometimes transform
into heated, long, and temperamental discussions.
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Being a socially active man, V.P. Silin has long
worked in various social organizations and has held
administrative positions in science. However, his per-
sistent interest in physics and his passion for knowl-
edge has not let him turn aside from actual science.
Now, as in youth, he works with enthusiasm and pub-
lishes about ten papers every year. He is surrounded by
students and young scientists, as well as by his older,
established pupils. V.P. Silin shows a particular concern
for young scientists, tries to support them, and passes
on to them his deep interest and devotion to science,
which has had a very difficult time over the last decade
in Russia.

Viktor Pavlovich greets his 75th birthday full of
ideas and plans. His friends and colleagues wish him
robust health and fulfillment of all of his creative inten-
tions.

Yu.M. Aliev, N.E. Andreev, L.M. Anosova,
G.M. Batanov, K.Yu. Vagin, L.M. Gorbunov,

S.E. Grebenshchikov, A.V. Gurevich, A.M. Ignatov,
A.I. Isakov, L.M. Kovrizhnykh, A.S. Malishevskiœ,

R.R. Ramazashvili, A.Yu. Romanov, A.A. Rukhadze,
P.S. Strelkov, S.A. Uryupin, and A.A. Frolov
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