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Abstract—Results from particle-in-cell simulations of the three-dimensional regime of proton acceleration
in the interaction of laser radiation with a thin spherical target are presented. It is shown that the density of
accel erated protons can be several times higher than that in conventional accel erators. The focusing of fast pro-
tons created in the interaction of laser radiation with a spherical target is demonstrated. The focal spot of fast
protonsis localized near the center of the sphere. The conversion efficiency of laser energy into fast ion energy
attains 5%. The acceleration mechanism is analyzed and the electron and proton energy spectra are obtained.
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1. INTRODUCTION

The development of laser technology has made it
possible to create table-top superintense lasers, which
may find applications in the field of charged-particle
acceleration, nuclear fusion research, and medicine [1—
5]. One of the most important applicationsisrelated to
the acceleration of dense proton beams by ultraintense
laser radiation. As was shown previously in two- and
three-dimensional computer simulations of the interac-
tion of laser radiation with thin dense targets [6-8], the
ions are accel erated most efficiently at the back side of
the target in the laser-pulse propagation direction.
High-energy ions accelerated at the rare side of a thin
foil were observed experimentaly in [9]. Previous
investigations showed that optimum conditionsfor effi-
cient proton acceleration are created in a slab of mar-
ginally underdense plasma with a thickness of several
tens of laser wavelengths [6-8, 10] or in a thin dense
target (foil) with a thickness of severa laser wave-
lengths [6-8]. This means that only the leading part of
the pulse causes the generation of fast particles. There-
fore, ultrashort (femtosecond) laser pulses seem to be
the most appropriate for proton acceleration. This cir-
cumstance initiated a discussion of the modified fast
ignition concept [11-13]. Recall that, according to the
fast ignition concept, first formulated by Tabak et al.
[2], the thermonuclear fuel isinitially compressed by a
long laser pulse up to a high density at arelatively low

temperature. Then, asmall fraction of compressed fuel
is rapidly heated to the ignition temperature. The fast
ignition concept implies that the thermonuclear reac-
tionisignited in the final stage of compression by rela-
tivistic electrons accelerated by a petawatt laser pulse
(the third pulse) in adense target, into which laser radi-
ation penetrates through athin channel produced by the
second laser pulse. One can find a detailed discussion
of this scheme in [2, 14-18] and the literature cited
therein. In [11-13], it was proposed to ignite the ther-
monuclear reaction by high-energy ions (instead of
electrons), which can be produced in the interaction of
apetawatt laser pulsewith athinfoil. Thefoil, whichis
to be deformed in a desired fashion, should ensure the
focusing of the accelerated ions onto the target.

Thegoal of thispaper isto quantitatively investigate
the efficiency of proton acceleration in the interaction
of apetawatt laser pulse with athin dense spherical tar-
get, to identify the acceleration mechanism, and to
study how the energy of fast protons depends on the
radiation intensity. We present the results of three-
dimensional particle-in-cell (PIC) simulations of the
laser acceleration of protons. As applied to the problem
under study, we emphasize the necessity of three-
dimensional simulation, which isrelated to the qualita-
tively different behavior of the electrostatic potential in
three-dimensional geometry as compared to one- or
two-dimensional geometries.
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When formulating the initial and boundary condi-
tions, we follow the approach used previously to simu-
late the interaction of laser radiation with a thin foil in
one-dimensional geometry [19] and two- and three-
dimensional geometries [6-8, 20]. In the problem as
formulated, the ions are accelerated due to the irradia-
tion of apart of aspherical target by ahigh-power laser.
Aswasshownin[7, 8], acurved target ensures the effi-
cient collimation of the fast-ion beam. Therefore, in our
simulations, athin spherical foil isused to focus proton
beams.

2. FORMULATION OF THE PROBLEM
FOR NUMERICAL SIMULATION

We use a fully three-dimensional, electromagnetic
relativistic PIC code. At each time step, the coordinates
and momenta of the particles and the electromagnetic
field are calculated for the given initial and boundary
conditions. All the variables to be calculated are func-
tions of time and three spatial coordinates x, y, and z
The code used complies with the mass conservation
law and the continuity equation. Adapting the particle
form-factor to the spatial grid ensured that energy inthe
system was conserved with a high accuracy (about
0.1%) and substantially decreased artificia plasma
heating inherent in the PIC method. The code will be
described in more detail in a separate paper. One simu-
lation run required about 10 h of a 32-processor Cray
T3E supercomputer at about 14GB RAM.

The simulation box is 30 um wide, 30 um high, and
40 um long. Inside the simulation box, a target—a
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Fig. 1. Filamentation of laser radiation: distribution of
Ei(x,y)inthez:8umpIane(inthetargetsheII)att:69fs

The characteristic distance between the filaments is on the
order of the laser wavel ength.
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spherical shell of radius 22 um with the center at x =
15 um, y = 15 um, and z = 30 um—is placed. The shell
thickness is 5 um. Since, at the laser intensities under
consideration, the shell material is ionized amost
instantaneously, we assume that the target consists of a
dense electron—proton plasma. The proton-to-electron
mass ratio is taken to be 1836. The initia electron and
proton densitiesin the shell are equal to 1.6 x 10?! cn3.
In this case, theratio of theinitial plasma density to the
critical density is n/n, = 1.5 for a laser wavelength of
1um. The spatia grid consists of 3.6 x 107 cells
(300 cells aong the x-axis, 300 cells along the y-axis,
and 400 cells along the z-axis). Such spatia resolution
corresponds to the collisionless skin depth c/w,.. The
total number of quasi-particles is 1.6 x 107 for each
plasma species (electrons and protons). This corre-
sponds to about four particles per cell for electrons
(protons) in the shell. Initialy, both the electrons and
ions are cold.

Thelaser pulseisinitialized in the vacuum region to
the | eft of thetarget. The pulseislinearly polarized (the
electric field is directed along the y-axis) and propa-
gates along the z-axis. We consider linear polarization
because we are interested in the effect of polarization
on the collimation and transportation of fast protons.
The transportation of fast protons toward the target
requires ahigh degree of collimation aswell asthe neu-
tralization of the electric charge of the accelerated pro-
ton beam by electrons. Obviously, azimuthal asymme-
try can only worsen the beam collimation. The undesir-
able effect of azimuthal asymmetry should be most
pronounced in the case of linear polarization. We
assume that the laser wavelength is 1 um. The laser
pulse is Gaussian in shape. The pulse length is 24 pm
(theduration is 70 fs), and the pulse width (at half-max-
imum of theintensity) is 15 um. We carried out a series
of runs for different laser intensities in the petawatt
power range: 10%!, 5 x 10?!, and 102 W cm. These
intensities correspond to dimensionless laser ampli-
tudes of a = 27, 60, and 80, where a = eE/m,wc.

We assume the periodical boundary condition over
the x and y coordinates. At the left and right boundaries
(the maximum and minimum values of z), we impose
the absorption conditions for the field and particles.

The simulations are stopped at 400 fs. By thistime,
the laser pulse hasleft the box and thefirst protons have
passed their focal spot near the center of the spherical
shell.

3. SSIMULATION RESULTS

As was mentioned above, we carried out simula-
tions for several laser intensities. Figures 1-8 present
theresultsfor | = 10> W/cm? only, because the interac-
tion pattern varies insignificantly in the intensity range
under study.

Figure 1 showstheinitial stage of the interaction of
an intense laser with a thin dense shell. In this stage,
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 2. (a) Surface of a constant value of Ef, (X, y), demon-

strating the shape of the pulse, and (b) electron cloud pro-
duced by laser radiation near the target surface at t = 139 fs
in the region (subbox) 5 < x < 24 pm, 5 <y < 24 um, and
4<z<32pum.

small-scale nonlinear self-modulation of laser radiation
occurs. The figure presents the high-resolved distribu-

tion of the squared y-component of the electric field Ef,

inthe (x, y) planeat z= 8 um. The laser field induces a
strong electric current along the y-axis; the nonlinear
evolution of this current resultsin the formation of thin
current filaments with a transverse size of about the
laser wavelength. These filaments survive throughout
the entire process of the laser—target interaction and are
till visible after the pul se has passed the target. Similar
filamentation resulting in the electron density modula-
tion along the electric field of a relativistically strong,
linearly polarized electromagnetic wave in a dense
plasma was observed in computer simulations reported
in[21]. Inthat paper, it was shown theoretically that fil-
amentation occurs due to the onset of a parametric
instability in adense plasma. It was aso shown that, in
a dense plasma, filamentation develops mainly in the
polarization direction of the electromagnetic wave.

Figure 2a shows the laser pulse penetrating through
the target. The pulse propagates from left to right. The
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 3. (a) Electron energy distribution function averaged
over the subbox shown in Fig. 2 and (b) the z-component of
theelectricfield calculated by formula (1) (E; = —TeOyNe/ENe
with To=1.9 MeV) asafunction of z(dashed curve) and that
obtained from computer simulations (solid curve) at t =

69 fs. The characteristic electric field is E, = 1012 V/em.

figure presents the di stribution of the squared y-compo-

nent of the electric field Ei, but with a lower spatial

resolution as compared to Fig. 1. For thisreason, small-
scale filaments are not seen here. Under the action of
laser radiation, the electrons acquire mechanical
momentum in the direction of the pulse propagation
and leave the target. The resulting distribution of the
electron density is shown in Fig. 2b. The characteristic
electron density is 1.6 x 102! cm. Figure 2 shows the
subbox 5<x<24um,5<y<24um,and4<z< 32 um
near the target.

At thisintensity, heavy protons are not accelerated
directly by the laser field but acquire mechanical
momentum in the charge-separation field, mainly along
the normal to the target surface. We note that, in addi-
tion to the acceleration in the charge-separation field,
there may be other acceleration mechanisms such as
Coulomb explosion [4, 6-8, 21, 22] and acceleration
caused by eddy electric fields induced by rapidly vary-
ing quasistatic magnetic fields that are generated by
fast electronsin aplasma[6, 23, 24]. The relative con-
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(b)

Fig. 4. Distributions of the proton density (a) at t = 200 fs
and (b) by thetime the laser pulse has already left the simu-
lation box. The higher spatial resolution in plot (b) makesit
possible to see the details of the fast ion distribution in the
subbox shown in Fig. 2.

tributions from these mechanisms depend on the
parameters characterizing the laser—target interaction.
However, for the currently discussed laser intensities
corresponding to at most multipetawatt laser pulses, the
laser energy is first transferred to the electrons; then,
the ions are accelerated by quasistatic collective fields
arising due to the redistribution of the electron compo-
nent (see the discussion in [25, 26]). The characteristic
energy of fast electrons observed in experiments on the
interaction of petawatt laser pulses with matter is
100 MeV [27].

For the parameters of the laser—target interaction
under consideration, the ions are accelerated by the
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charge-separation field. Thisisconfirmed by the depen-
dences plotted in Fig. 3. Figure 3a presents the el ectron
energy spectrum averaged over the subbox shown in
Fig. 2. It is seen that the electron distribution function
has the second maximum at an energy of 2 MeV. The
z-component of the electric field can be cal culated from
the Vlasov equation with the known electron distribu-
tion function. After averaging over x and y, we obtain

UVEId ppzva
O eJ’d pf D

d,N,
= Te eff S~
ene

E(2)=-

)

where L, and L, are the subbox dimensionsin the x and
y directions.

Substituting as T, «; the energy corresponding to the
second maximum in the electron distribution function
into the right-hand side of expression (1) and calculat-
ing the partial derivative of the electron density over z,
we obtain the electric field profile shown in Fig. 3b
(dashed curve). The solid curve in Fig. 3b shows the
dependence obtained from simulations. The satisfac-
tory agreement of the two curves indicates that the
main effect is the generation of the charge-separation
electric field along the z-axis. The electric field is pro-
portional to the mean electron energy and the effective
electron density gradient. The field is approximately
normal to the target surface.

The plasma density in the shell is higher than the
critical one. Nevertheless, the laser pulse penetrates
through the target due to nonlinear effects such that the
change in the plasma refractive index in the relativisti-
cally strong electromagnetic field and the ponderomo-
tive pressure, which leads to a local reduction of the
density in the target. As a result, after the pulse has
passed through the target, a region with a reduced
plasmadensity isformed near the axis (Fig. 4a). Dueto
the destruction of the target, proton acceleration termi-
nates. Thisisrelated to violating the conditions that are
necessary for the formation of a strong charge-separa-
tion field due to the abrupt decrease in the plasma den-
sity. Although the accelerating field acts on the ions
during a finite time, it is so strong that the ions start
moving, as is seen in Fig. 4b. The figure presents the
spatial distribution of the density of fast protonsin the
subbox shown in Fig. 2.

Fast protons form a well-collimated beam (Fig. 5).
Protons are focused due to the spherical shape of the
target. Figure 5 shows the distributions of the proton
density in the (x, y) plane at distances of 6z = 11 and
19 um from the target surface. Sincetheleft edge of the
target islocated at z= 8 um, Fig. 5ashowstheregionin
front of the focal spot and Fig. 5b shows the region just
behind the focal spot. The geometric center of the
spherical target is at z = 30 um. Figures 5¢ and 5d
present the distributions of the x-component of the pro-
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 5. Distributions of (a, b) the fast proton density and (c, d) x- and (g, f) y-components of the proton momentum (p,; and py;) in

theplanesz= (g c, €) 19and (b, d, f) 27 umat t = 347 fs. Plots (¢, €) and (d, f) demonstrate the focusing and defocusing of protons,
respectively. The geometric center of the spherical target islocated at z= 30 pm.

ton momentum p,; in the planes z = 19 and 27 um,
respectively. The distributions of the y-component of
the proton momentum p,; in the planes z = 19 and
27 um are presented in Figs. 5e and 5f, respectively.
The distributions are shown for a time of 347 fs. Fig-
ures 5¢c and 5e demonstrate the focusing of the proton
beam, and Figs. 5d and 5f demonstrate the defocusing
of the proton beam. The direction of the particle motion
is shown by shades of gray, from which it is also seen
that the plane dz= 19 um lies behind the focal spot. The
results of simulations demonstrate that the position of
the proton focal spot is determined by the curvature of
the target shell. It is seen in Figs. 5¢-5f that the focal
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spot lies near the geometric center of the spherical tar-
get.

The gray scale on theright of Fig. 5b showsthe pro-
ton density in units of 1.66 x 10?' cm=3. Figure 5c pre-
sents the distribution of the transverse component of
the proton momentum. It is seen that the proton density
in the beam attains avalue on the order of 10'° cm. We
note that the proton density changes insignificantly in
the course of focusing (as it might be in the case of
focusing a cold beam of noninteracting particles). This
isrelated to the fact that, in our case, the particle distri-
bution over momenta is nonuniform along the longitu-
dinal coordinate. The distribution of fast ions over the
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Fig. 6. Distribution of electronsin the planesz= (a) 19 and (b) z=27 um at t = 347 fs.
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Fig. 7. (a) Proton energy distribution function and proton distributions in the phase planes (b) (py, py) and (c) (p, 2) in the subbox
showninFig.5att =347fs.
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longitudinal momentais shownin Fig. 7c, whichisdis-
cussed below. As aresult, an elementary volume con-
tracts in the transverse direction due to focusing and
stretches in the longitudinal direction. The number of
protonsin the subbox 8 <x< 22 um, 8 <y <22 um, and
18 < z< 28 um is approximately equal to 10'°. These
aremainly fast protons with energies of 4-50 MeV. For
comparison, the total number of protonsin the simula-
tion box is 7 x 10'2. The maximum value of the laser
energy in the simulation box is about 50.2 J for a
dimensionless amplitude of a = 27. By the time the
laser pulse leaves the simulation box, the total energy
of fast protons in the above subbox is ~2.4 J. Hence, in
simulations with a = 27, the conversion efficiency of
laser energy into the energy of fast protonsis about 5%.

Another interesting result is that the fast protons
polarize the electron component. Under the action of
the radia electric field produced by the protons, the
electron density changes and the local minimum of the
electron density, which correl ates with the maximum of
the proton density, isformed at the axis. Thisis clearly
seeninFig. 6. We emphasi ze, however, that the el ectron
density at the axis is much lower than the proton den-
sity. Note that, in simulations carried out for the other
parameters of the |aser—target interaction [6, 8, 10], the
local values of the proton density were so high that the
conditions for the Coulomb explosion mechanism for
particle acceleration were satisfied (for details, see [26]
and the literature cited therein).

The final proton distribution function and the struc-
ture of the proton distribution in phase space are shown
in Fig. 7. The mean energy (effective temperature) of
protonsin the tail of the distribution functionis 7 MeV
(see Fig. 74). At the same time, the mean energy of fast
electronsis5.4 MeV (Fig. 3a). The structure of the pro-
ton distribution in phase space (Figs. 7b, 7c) indicates
that the divergence of the proton beamisrelatively low.
The characteristic value of the transverse component of
the proton momentum is approximately ten times|ower
than that of the longitudinal component. For a =27, the
maximum kinetic energy of fast protons is approxi-

mately equal tomc?(./1+ 0.1 —1) =50 MeV (here, we
take into account that the maximum value of the proton
momentum is 0.33mc). This energy agrees with the
estimate for the energy that the protons can acquire in
the electric field E, shown in Fig. 3.

Asthe laser intensity increases (a = 60 and 85), the
maximum value of the longitudinal component of the
proton momentum increases. The momentum and
energy increaseto p,; = 0.4m,c and 87 MeV for a = 60
and to p; = 0.44mc and 112 MeV for a = 85, respec-
tively. The dependence of fast proton energy on the
laser amplitude is described by the approximate for-
mulaE; = KaP, whereK = 5, 3 = 0.7, and energy ismea-
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Fig. 8. Distributions of the (a) transverse and (b) longitudi-
nal components of the quasistatic magnetic field (both aver-
aged over theregion 11 <z< 16 pm) at t = 347 fs. The azi-
muthal component of the magnetic field is directed clock-

wise. The magnetic field ismeasured in units of 2.9 x 10°G.

sured in MeV. This formula may aso be written in
the form

(E[MeV]) = 5(1[W/ecmZAZ[um]/1.38 x 1018)035_ (2)

The directed electron flows produce the slowly
varying electric current in the plasma, which, in turn,
generates the magnetic field. In our case, the magnetic
field whose structure is shown in Fig. 8 is generated
near thetarget. Figure 8apresentsthe distributionin the
(%, y) plane of the absolute value of the transverse com-

ponent of the magnetic field By(x, y) = +/B; + By, aver-
aged over theregion 11 < z < 16 um. Figure 8b shows

the distribution of the z-component of the magnetic
fieldinthe (x, y) plane. It is seen that the magnetic field
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possesses a pronounced multipole structure. The azi-
muthal component of the magnetic field is generated by
the eectric current produced by fast electrons as they
move aong the normal to the target surface. For this
reason, the azimuthal magnetic field mainly defocuses
fast protons. Various aspects of the influence of sponta-
neous magnetic fields on the dynamics of fast protons
arediscussed in [6, 7, 26, 27], where, in particular, the
focusing effect of the magnetic field generated by fast
protons was demonstrated for the other regimes of
|aser—plasma interaction.

4. CONCLUSIONS

We have presented the results of computer ssimula-
tions of the three-dimensional regime of proton accel-
eration in the interaction of a high-intensity laser pulse
with athin spherical plasmashell. The beam of fast pro-
tons is amost axisymmetric, which indicates that the
laser polarization insignificantly affects proton acceler-
ation. The linear polarization of a laser pulse only
affects the structure of small-scale filamentation, and
does not cause the azimuthal asymmetry of the proton
beam. In our simulations, the density of fast protons
attains 10 cm3. The maximum momentum of fast
protons is 0.3mc. Protons are accelerated for a rela
tively short time until the plasma is redistributed sub-
stantially and the plasma density in the axia region
strongly decreases. The reduction of plasma density
under the action of the ponderomotive force of laser
radiation resultsin violating the conditions for the gen-
eration of a strong charge-separation electric field. It is
shown that profiling the target in a proper manner cre-
ates the conditions for the generation of dense colli-
mated beams of fast protons. Accelerated protons are
focused near the geometric center of the spherical tar-
get. Thelinear polarization of laser radiation causes no
appreciable azimuthal asymmetry of the focused fast-
proton beam. It is worth noting the observed multipole
structure of thelongitudinal component of the magnetic
field generated by fast electrons. It is found that, after
the acceleration process comes to an end, the electric
field of the proton beam leads to plasma polarization.
The electric field attracts the €l ectrons, which resultsin
the regime of quasineutral propagation. Thisregimeis
more pronounced in three-dimensional simulations
than in two-dimensional simulations. On the one hand,
the transition to the quasineutral propagation regime
results in the termination of acceleration. On the other
hand, this regime makes possible the transportation of
fast-ion beams over large distances. Obvioudly, this
effect isfavorable for igniting thermonucl ear targets by
fast ions. It is found that the energy of fast ions
increases relatively slowly with increasing laser inten-
sity. We anticipate that the use of multilayer targets sub-
stantiadly increases both the conversion efficiency of
laser energy into the energy of fast particles and the
number of accel erated protons, because, in such targets,

RUHL et al.

the protonswill be successively accelerated in each fol-
lowing shell.
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Abstract—The energy characteristics of an electron bunch accelerated by a wakefield are largely determined
by theinitial bunch dimensions. Present-day injectors are still incapable of ensuring theinitial spatial parame-
ters of the bunches required for their acceleration without increasing the energy spread of the bunch electrons.
In connection with this, the possibility is studied of improving the energy characteristics of an accelerated
bunch by precompressing it in the longitudinal direction in the stage of trapping by awakefield. Analytic for-
mulas are derived that describe the one-dimensional dynamics of the spatial and energy characteristics of ashort
(much shorter than the wakefield wavelength) electron bunch in both the trapping and acceleration stages. The
analytical results obtained are shown to agree fairly well with the results from one-dimensional and three-
dimensional simulations, provided that the electrons are injected into the region that is optimum for accelera-
tion. The possihility is discussed of forming compressed bunches so as to ensure the high quality of the bunch
in the course of its acceleration to high energies. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Successful experiments on the generation of super-
strong (~100 GV/m) accelerating fields by high-power
short laser pulses in plasmas have stimulated increased
interest in theoretical investigations of the main princi-
ples of electron acceleration by a wake plasma wave
[1-5]. At present, one of the most important problems
is that of providing a high quality of the electron
bunches. Among the usual requirements for the quality
of an accelerated bunch is the requirement that the rel-
ative energy spread of the bunch electrons be small
(see, e.g., [6]). In many applications (see[7] and thelit-
erature cited therein), avery important parameter of the
accelerated electrons is the smallness of the bunch
length in the propagation direction. Previous investiga-
tions on the acceleration of electron bunches [8] have
shown that the degree to which the bunch electrons are
monoenergetic depends strongly on the bunch length. 1t
is desirable that the bunch be as short as possible
throughout the entire acceleration process for the rela
tive energy spread of the accelerated electrons not to
increase. However, present-day injectors are still inca-
pable of forming bunches of the desired length. For this
reason, before proceeding to acceleration, it is neces-
sary to additionally shorten the bunchinthedirectionin
which it is to be accelerated. In particular, the bunch
can be precompressed in the longitudinal direction via
the bunching of the electronsin the course of their trap-
ping by the wakefield, provided that they are injected at
a velocity much lower than the phase velocity of the
wake wave. The effect of bunching on the electron dis-
tribution in the coordinate-velocity phase plane was
demonstrated more than once in investigations of the
dynamics of long electron bunches during their trap-
ping and acceleration by apotential wave. Local bunch-

ing of electrons was found to occur not only in real
space (along a physical coordinate) [7, 9] but also in
energy space [9-11]. In particular, the possibility of
using the bunching mechanism to additionally com-
press afairly short injected el ectron bunch was demon-
strated in our previous numerical [12] and theoretical
[13] studies.

Here, we present amore detailed, analytic investiga-
tion of the main features of the dynamics of both the
spatial and energy characteristics of aone-dimensional,
short (in comparison with the wakefield wavelength)
electron bunch during its trapping and acceleration by
the wakefield, provided that theinjection velocity of the
electrons is lower than the phase velocity of the wake
wave. In Section 2, we derive the main formulas, study
the compression of a short electron bunch, and analyze
the evolution of the energy characteristics of the bunch
during its trapping by the wakefield. This stage of
acceleration is usually referred to as the bunching
stage. In Section 3, we study the evolution of the energy
characteristics of a bunch during its injection into the
accelerating stage, where the bunch electrons move
with a velocity higher than the phase velocity of the
wake wave. Our investigations may find important
applications, e.g., in developing a multistage accelera-
tion scheme, in which the bunch is accelerated to high
energies in successive accelerating stages. The analytic
formulas obtained in different limiting cases are com-
pared with the results from both one-dimensional
numerical simulations and simulations of the trapping
and acceleration of three-dimensiona (axisymmetric)
bunches. In the Conclusion, we summarize the results
obtained.

1063-780X/01/2705-0372$21.00 © 2001 MAIK “Nauka/ Interperiodica’



DYNAMICS OF AN ELECTRON BUNCH ACCELERATED BY A WAKEFIELD

2. BASIC EQUATIONS DESCRIBING
THE LONGITUDINAL COMPRESSION
OF A SHORT ELECTRON BUNCH
BY A WAKEFIELD

The longitudinal compression of a monoenergetic
electron bunch in the acceleration direction or, equiva-
lently, in the direction of the wave phase velocity V;,
(the z-axis) is studied using a one-dimensional model.
This approach is valid when the radius R, of the
injected bunch is much smaller than the characteristic
radius of the optimum injection region [14]. We
consider a spatial axisymmetric wake wave with the
potential

9E 1) = —peos(®)ep(r7R;), (D)
where & = ky(z—Vyb), K, = wy/c isthe wavenumber, wy, =

A/4nezne/ m, is the Langmuir frequency of the plasma
electrons, R, isthe characteristic transverse scalelength
of the wakefield, and @, is the maximum potential. In
such a wave, the maximum radius of the optimum
injection region for bunch electrons injected at an
energy E;; is estimated as [14]

172

O
Roac o = RoAN Ll }m .2)
Y.

U [Einj—BA/Eizm-—m2 *—mc’ry) O

For R, < R, opn WE Can assume that the wave
potential @ is one-dimensiondl; i.e., in the laboratory
frame, it depends only on the variable & = Ky(z - Vyit).
It is assumed that the phase velocity of the wake wave
iscloseto the speed of light (Vy, = ), asisthe case with
awakefield generated by alaser pulse in an underdense
plasma (w, > @y, where wy, isthe laser frequency).

In order for an electron bunch to be compressed by
a wakefield, the energy E;, of the injected electrons
should be such that their vel ocity islower than the wake

phase velocity; i.e., Ej; < mc?y, wherey = l/A/1—|32
and 3 = V/c. Physicdly, the bunch is compressed by
the longitudinally nonuniform force F, = |e|0@dz, in
which case the leading part of the accelerated electron
bunch experiences aweaker force than the trailing part.
Consequently, the compression is most pronounced for
the electrons that pass through the region where the
negative force gradient is the largest, 0°@/0Z> < 0. Usu-
ally, this region occurs in the vicinity of the maximum
of the potential @&) of a plasma wave. On the other
hand, it is desirable that the bunch energy in thisregion
beaslow aspossible, inwhich casetherelativistic elec-
tron mass will be lower and the longitudinally nonuni-
form force F, = |e|o@/0z will more strongly affect the
electron trajectories and will better compress the
bunch. Hence, in order for a bunch with the above
injection energy to be compressed most efficiently, it
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should be injected into the vicinity of the point of the
maximum wave potential. It is this situation that we
will consider below.

In the rest frame of the wave, the motion of an indi-
vidual electron is described by the equation

dp _ 449
where p' is the longitudinal electron momentum, Z is
the coordinate in the propagation direction of the wave,

@(k,Z) is the wave potential (which is time indepen-

dent in this frame), and k, is the wavenumber. The
injection conditions are such that the bunch electrons
move initially in the negative direction along the Z-axis
and start moving in the positive direction after reflec-
tion from the turning points.

Equation (3) has thefirst integral
E'—|e|(l>'(k'pz) = Ei'nj —|e|(P'(k;azi'nj)f 4

which indicates the conservation of €ectron energy in
the potential wave. Solving EQ. (3) in quadratures
yields the electron trajectory up to the turning point:

tl_tinj
z

_ 1 dn 5)

CZ;nj /\/1 i mect ’
[Epny + 16l(@ (ko) — Bk Zim )]

where Z and E' are the instantaneous coordinate and
energy of the electron at timet'.

Our formulas can be converted from the wave rest
frame to the laboratory frame by means of relativistic
transformations of the coordinates and time. In particu-

1

lar, thetimeinterval At'=t'—t;,, inthewaverest frame
satisfies the relationship

cAt' = y{cAt—B(z—z,)}. (6)

The spatial coordinate Z satisfies the relationship Z =
Y{Z — Vgit}; thus, it is expedient to introduce the self-
similar variable & = ky(z— Vit) in the laboratory frame.

Using these relationships and applying relativistic

transformations to the electron energy and wave poten-
tial, we reduce expressions (4) and (5) to

E—BWJE —m’c'-|e(¥)
= Einj_B’\/Eian_mz 4_|e|(p(Einj)1

)
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Expressions (7) and (8) relate the parameters of the
injected electrons (z E, etc.) at theinitial timet;, to the
parameters for all subsequent times. If two electronsin
the bunch are initially separated by the sufficiently
short distance A, then the electron trajectories will
aways be close to one another. The distance Ag
between the trajectories at any time and the energy dif-
ference AE between the electrons can be determined
from expressions (7) and (8). This can be done by
expanding these expressions in powers of the small
variations of the coordinates, A&, = kAZ,; < 1 and AE =
kAz < 1, and energy AE < mc? (recall that, at theinitial
time, we have AE;; = 0). Since the bunch is injected
into the vicinity of the point of the maximum potential,
it is convenient to choose as the reference electron
(about which the variations will be made) the bunch
electron that isinjected exactly at the point at which the
potential is maximum &;; = &, where @&,) = @y
Note that, in this case, we have d@(&;, )/d¢ = O; conse-
guently, in the expansions, it is necessary to take into
account terms on the order of ~(A&;, ).

In this way, we can solve the corresponding equa-
tions to obtain

_EP@) 18V PE), 000 i) s 2
8 E(E)pi'njAE'”J+2mcE(g)'1(E) prE (AEszg)

= 0, (8) AL, + 0,(8)(AE;)",

CE; P(€) dop(§)

AE = |elyo———— AEinj

OE(E) piny dg
(10)
_Y|d (&) p(&)c{ Ein (8) I} Ag 2D
o LG RTINS E
where

11(8)

13
= [dn{[Egy + lely(o(n) — Q&M -1,
&m

2c4y O _ dor
£ dr]lelmcywn T

1,(8) = 7
J{ [Enm +Vlel(@(n) — (&))" —m'c’} ™

Einj/\/l—
yz[(Einj_

B.JEZ, —m’c’) + el (@(n) = @(En))]

Using formula (9), we can determine the degree to
which a bunch of finite length L,,, can be compressed,
provided that it is properly injected into the vicinity of
the point of the maximum potential, i.e., into the region
[Em + A&, &nl, Where A&, = A& = KLy istheinitial
dimensionless bunch length such that |Ag)| < 1.
According to formula (9), the length L, of a homoge-
neous monoenergetic electron bunch accelerated by the
wakefield in the & direction decreases according to
the law

Lo(8) _ EnP'®), 18Y°P(E) (5y[0°0(E,)
LbO E(E)pilnj ' szE(E’) Il(E)‘ 652 kplzol)
=04(&) + a,(&)KyLpo-

An important consequence of formula (11) is the
fact that the bunch rapidly shortensin thevicinity of the
point &, at which the bunch electrons become trapped
by the wave and start to move in the reverse direction
and p'(§) and, accordingly, a,(§) approach zero. The
minimum length of the bunch is determined only by its
initial length and the shape of the wave potentia at the
points where the potential is maximum and where the
wave traps the electrons:

KoLpo|0°@(E )/OE”
Lb = GZ(Etr)katz)o = p2b0| 0$E§t ;/aé |

In particular, for alinear harmonic wave with the poten-
tia &) = —@,cos(§), which is maximum at the point
&, =T formula (12) impliesthat the bunch isthe short-
est when the electrons are trapped by the wave at the
point &, = 12, the minimum bunch length being

(12)

Ly = KyLpo/2 (13)

Note that, in a homogeneous plasma (as well asin a

plasma channel wider than k;l), the three-dimensional

structure of a linear wake wave with potential (1) is
such that the turning point &, = T2 lies at the boundary
of thefocusing phase of thewakewave, § 0 [172, 3172],
where the radial force of the wave has afocusing effect
on the electrons (this is the necessary condition for sta-
ble electron acceleration in rea three-dimensiona
geometry) [15, 16].

According to formula (13), for the compression to
be efficient, the initial bunch length should not exceed
PLASMA PHYSICS REPORTS  Vol. 27
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the skin depth k;l. Moreover, the degree of compres-
sion L,/L, increases with decreasing the initial bunch
length and does not depend directly on the amplitude of
the wake wave and its phase velocity (of course, pro-
vided that the wave traps the injected electrons).

In order for the bunch electronsinjected at an energy
E;, into thevicinity of the point of the maximum poten-
tial @, to betrapped by the wake wave at agiven point
&, the difference between the maximum wave poten-
tial and the wave potentia at the trapping point should
satisfy the condition

|e| [(pmax - (p(Etr)]

B} 12 (14)

= B —[(1=y ) (Ery —m’cH] ™ —mc?ly.
In this case, in order to achieve stable compression
(with allowance for the transverse motion of the bunch
electrons), the trapping point should be chosen so that
the electrons moving in the wakefield in the longitudi-
nal direction in the region ¢ [ [&,, &, dways remain
inside the focusing phase of the wave. From formula
(14), we can draw the following, physically obvious,
conclusion: the higher the phase velocity and the lower
the energy of the injected bunch, the higher wakefield
amplitude is required for the bunch to be trapped. For
present-day injectors operating at E, =10mc?, the
amplitude of the wakefield capable of trapping the
injected bunch turnsout to berelatively small. Thus, for
the bunch energy E;; = 20mc* and y = 50, a wakefield
amplitude of |e|q,/mc®> = 0.01 is sufficient to trap the
injected bunch.

Figure 1 shows the bunch length in the trapping
stage as a function of the initial bunch length for two
values of the normalized acceleration distance L c./L
where L, is the distance the bunch propagates in the

laboratory frame and L, = 211y k;l is the maximum

acceleration distance that the bunch passes when mov-
ing from the point of the minimum potentia @,,;, to the
point of the maximum potential @,,.. The bunch is
injected at the dimensionless energy E;; /mc? = 20 into
awake wavewithy =50 and |e|@/mc? = 0.01. The solid
and dotted lines present analytical results obtained for
Lace/Lpn = 0.1 and 0.234, respectively, from formula
(12), in which coordinate ¢ is expressed in terms of
Lacc/Lpn Viathe solution of the equations of motion; the
symbols demonstrate the numerical results obtained
from one-dimensiona simulations of the bunch
dynamics for the same acceleration distances. For a
sufficiently short injected bunch such that kL, < 1,
which isthe applicability condition for expression (11),
Fig. 1 showsagood agreement between the one-dimen-
sional analytical and numerical results on the decrease
in the relative bunch length. For a more detailed graph-
ical illustration of the comparison between analytical
and numerical (in particular, three-dimensional) results
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Fig. 1. Compression factor of an electron bunch vs. the ini-
tial bunch length kL. The dotted and solid linesillustrate

the analytical results obtained from formula (9) for the
acceleration distances Lye/Lon = 0.1 and 0.234, respec-

tively. The numerical results obtained for the same two
acceleration distances are demonstrated by circles and
squares, respectively.

on bunch compression, we refer the reader to our paper
[14]. Note that the applicability range of the simple
asymptotic expressions (12) and (13) for the minimum
length to which the accel erated bunch is compressed at
the trapping instant is broader than the range deter-
mined by the condition kjL,, < 1, under which formu-
las (11) and (12) were derived. In fact, according to
Fig. 1, the expression for the compression factor at the
trapping instant, o = kyL,,/2, which follows from for-
mula (13) and isillustrated by the solid line, describes
well one-dimensional numerical results for a broad
range of theinitial bunch lengths up to k Ly, = 172, the
acceleration distance being L,/Ly, = 0.234, which
indicates that the electrons injected at the point &, = Tt
where the potential is maximum are trapped at the point
&, = 1.67 = 192. For shorter acceleration distances (see,
e.g., the dotted line obtained for L,./Ly, = 0.1), the
expression derived for the compression factor from for-
mula (11) is in good quantitative agreement with the
numerical results only in the range koL, < 1.

We now make one more comment on the changein
the energy of an electron bunch in the trapping stage.
The above analysis revealed that, even in sufficiently
short bunches, the electron trgjectories, although close
to each other, are different. It is this circumstance that
provides the possihility of compressing bunches in the
acceleration direction. On the other hand, the differ-
ence between the electron trajectories inevitably gives
rise to the energy spread of the electronsin theinitially
monoenergetic bunch. Using formula (10), we can
obtain the following estimate for the energy spread of a
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Fig. 2. Energy spread of the electronsin abunch injected at
the energy Ej, = 20mc? into the vicinity of the point of the
maximum potential vs. the acceleration length in a wake
wave with the parameters y = 50 and |e|q,/mc” = 0.01. The
solid curveillustrates the results of one-dimensional numer-
ical simulation, and the dashed curve gives the results

obtained from analytic formula (13). The resultsfrom three-
dimensional simulations for two bunches with Ry/Ry =

0.033 and 0.067 are demonstrated by circles and squares,
respectively.

short bunch injected into the vicinity of the point of the
maximum potential :

AE = koL
OE(&) Pin dg P
(15)
y|d%Q(&,)| PE)C| o, Ein 20
K [B+pi'njjc+|2}(kab°)B

where AE is the difference in energy between the elec-
trons in the trailing and leading edges of the bunch.

Figure 2 illustrates the dependence of the energy
spread of an electron bunch with theinitial length L, =

0.1k;1 on the acceleration distance in the trapping

stage. The remaining parameters are the same as in
Fig. 1. The solid curve shows the results of one-dimen-
sional numerical simulation, and the dashed curve

KUZNETSOV, ANDREEV

gives the results obtained from analytic formula (15).
The dight discrepancy that remains at short accelera-
tion distances (which, however, are unimportant for
practical purposes) stems from the fact that we
neglected some terms in the expansions in formulas (9)
and (10). In the most important range of sufficiently
long acceleration distances over which the bunch is
compressed significantly, the analytical and numerical
results are seen to agree well.

The symbols in Fig. 2 demonstrate the results of
three-dimensiona simulations of the electron dynam-
ics [11, 17] for two bunches with the relative dimen-
sionless radii R,/R, = 0.033 (circles) and 0.067
(squares) and for k)R, = 3.0. The simulations were per-
formed for a Gaussian radia profile of the wakefield
potential, @&, r) = —@cos(§)exp[—(r/Ry,)*]. The good
agreement between the numerical and analytical results
completely confirms the following conclusion that was
drawn in [14]: the dynamics of the energy characteris-
tics and spatia (in the longitudinal direction) parame-
ters of electron bunches whose radii are much smaller
than the radius R, o Of the optimum injection region

(in the example at hand, we have R, o = k;l , S0 that
theinequality R, < R, o h0lds) and which asawhole

are injected into the optimum region can be estimated
using formulas of one-dimensional theory.

Our cal culations and estimates also show that, under
certain conditions, the second term on the right-hand
side of formula (15) may be much smaller than the first
term and, thus, can be neglected. Asan example, for the
above parameter values y = 50, Ej;/mc? = 20, and
le]@,/mc? = 0.01, the energy spread of an electron

bunch with the initial length Ly, = 0.1k;" is calculated

to within an error of lessthan 0.25%. Such asmall error
is attributed to the fact that, in formula (15), the condi-

tions|l,| < 1and|B+ E;; /cpiy | < 1 hold for the elec-
tron trajectories under consideration, for which the
energy of theinjected bunch is much lower than theres-
onant energy for the wave with the above parameters,
E, < yme?, and the bunch is trapped in the region
where the wave potential is amost linear (e.g., a &, =
172). In this case, the energy spread of the bunch in the
trapping stage can be estimated from the approximate
formula

(16)

O Ein' d 0
0E| = ey 998y | g
d =

pinj|

For a linear plasma wave with the potential of the
form @&, r) =-@cos(§), the energy spread at the
boundary of the region of the focusing phase of the cor-
responding linear three-dimensional wake wave near
the point &, = /2 can be estimated from formula (16)
PLASMA PHYSICS REPORTS  Vol. 27

No. 5 2001



DYNAMICS OF AN ELECTRON BUNCH ACCELERATED BY A WAKEFIELD

with allowance for the trapping condition (14):

1 2

L) 2.

IAE| = EiyKpLyo
B, + mc

(17)

For E;; > mc?, we obtain the following, simpler
estimate for the energy spread of the bunch electrons
near the trapping region after the bunch is compressed
by the linear wave: |AE| = EjKLy.

In connection with the problem of optimizing the
process of the trapping and acceleration of an electron
bunch in order to achieve such bunch parametersin the
trapping stage that will not substantially deteriorate
during the subsequent accel eration of the bunch to high
energies, it is of interest to consider the trapping and
acceleration of a one-dimensional bunch. In this
respect, the short length of the compressed bunch and
the minimized energy spread of the bunch electrons
may be used as a criterion of the quality of one-dimen-
sional compression. In order to achieve the desired
quality, it is necessary to choose the optimum parame-
ters of the wakefield and injected bunch. Recall that the
compression is most efficient when the bunch is
trapped near the boundary of the region of the focusing
phase of the three-dimensional wake wave. However,
from formula(12), we can seethat alinear small-ampli-
tude wake wave is not the best means of compressing
the bunch, because, for such awave, a,(§;,) = 1. For a
nonlinear wave, theratio of the derivatives of the poten-
tia in the coefficient a,(§,) can be markedly smaller,
because the larger the wakefield amplitude, the
smoother the potentia profile near its maximum and
the steeper the slope of the profile at the trapping point
near the boundary of the region of the focusing phase
of the wave. It iswell known [18] that, in the limiting
case of a strongly nonlinear potential wave with the
total potential difference |e|Agmc? = |e|2@,/mc > 1,
the wave potential over the period is nearly parabolicin
shape: @(&) = @,(4&/m— 2818 — 1), where0< & <211 In
this case, the boundary of the region of the focusing
phase of the corresponding, strongly nonlinear, three-
dimensional wake wave lies in the vicinity of the point
of the minimum potential (in the case at hand, near the
point & = 0), so that the electron bunch can be trapped
in the entire region corresponding to the total potential
difference in the wave, Ap= 2@, [19]. We thus arrive at
the coefficient a, = T!, which indicates that the com-
pression of a bunch by a strongly nonlinear wave is
approximately three times higher than that by a linear
wave. The energy spread of the electrons in a bunch

injected at an energy E/\,; > mc* and then trapped by a
strongly nonlinear wave can be estimated as |AE| =
Ein KoLso2/TT, which is smaller than the energy spread of
a bunch in a linear wave. That the compression by a
nonlinear wave is more efficient than that by a linear
wave is also confirmed by relationship (14), which
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implies that, for the same trapping point, the larger the
wave amplitude, the lower the energy of the injection
bunch. We thus can conclude that nonlinear large-
amplitude wake waves are most preferable from the
standpoint of the efficient compression of one-dimen-
siona bunches. Physically, this conclusion is easy to
explain: the stronger the wave nonlinearity, the smaller
the energy spread of the bunch electrons and the closer
the electron trajectories to each other.

3. DYNAMICS OF THE BUNCH PARAMETERS
IN THE ACCELERATION STAGE

In the accel eration stage, the el ectron bunch injected
at an energy such that the electron velocity is higher
than the phase velocity of the wake wave experiences
no longitudinal compression (this point was considered
in Section 2). In this case, the wake field immediately
starts to accel erate the bunch to high energieson atime
scale much longer than the duration of the compression
stage. Of course, the bunch should be injected into the
region of the appropriate phase of the wake wave. It is
obvious that the optimum injection region in the prop-
agation direction of the wave is now the vicinity of the
boundary of the focusing phase, where the potential
gradient is the largest, provided that the electrons are
focused by a positive force. For the wakefield potential
@&, 1) = —@cos(§)exp[—(r/R,)*], the optimum injection
regionis &y = 192.

In the accel eration stage, the dynamics of the energy
characteristics and spatial parameters of an initialy
monoenergetic, short electron bunch can be investi-
gated by applying the approach described in Section 2
and using relationships analogous to formulas (4) and
(5). In this way, we must keep in mind that, in expres-
sion (5), the integral over electron trgjectoriesis of the
opposite sign, because, in the wave rest frame, the elec-
tronsimmediately start moving in the positive direction
along the Z-axis. In the expansions, we can take into
account only the first-order terms in the small varia-
tions A€ = kL, and AE, because the condition dg/dg # 0
holds over the entire electron trgectory. As the refer-
ence electron (about which the variations will be
made), we choose the last electron in the bunch, in
which case AZ and AE are equal, respectively, to the dif-
ferences between the coordinates and energies of the
first and last electrons in the bunch. As a result, we
arrive at the relationships

0 de(Giy) 0
L, = |_b0\/0|0(§)§[3Jr d¢E'(Q) | |0(E)§ (18)
U

E(€) do(&) cp'(€)
dg 0
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Fig. 3. Energy characteristics of different electron bunches
in the acceleration stage vs. the acceleration length (E,, is
the averaged electron energy and AE is the root-mean-
sguare energy spread of the bunch electrons). The computa-
tion parameters corresponding to different plots are
described in the body of the paper.

_ 2 cp(&)

AE = |dv kabO E(E)
(€0, d (19)

EBBFI(S(EE) (pdzlnj E_,_ (p(E)Io(E)D
where
1o(€)
d@(&; ;) d’Qroeri?

; dnd—E]Rﬂi_nD (20)

) E{j{l—mzc“[E;nj +ylel(o(n) - @ENT

These relationships can be simplified using the sim-
ple estimate

1
. 2, 12
{1-m’c'[E" + vlel(0(n) — 9(&in))] ™}

L EG)

cp'(€)
which is valid over the entire electron trgectory (i.e.,
for & <n <&). Using inequdity (21), we can readily
show that, in the acceleration stage, the bunch length
does not increase. Thisis quite evident, because, in the
wakefield with the above potential, the last electron in

the bunch injected in the above manner always experi-
ences a stronger accelerating force than the first elec-

21)
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tron. Accordingly, the lower estimate for the energy
spread of the bunch electrons after acceleration is

p(&) |dp(g) dp(&in)
|AE(€)I>kabovle|p.(E) -~ dEJ .

If, after acceleration, the electron momentum in the
wave rest frame is sufficiently large, p'(§) > mc, then
the lower estimate for the maximum energy spread of
the electrons in an initially monoenergetic accelerated
bunch can be obtained from the simpler approximate
formula

(22)

Cd@(&iny)  de(é)
4 d€  dE g

which is, however, far more exact than the correspond-
ing formula derived in [20]. All of the above formulas
for the energy spread of the bunch electrons show that,
first, the longer the region where the accelerating
potential isnonlinear, the larger the energy spread, and,
second, the energy spread islinearly proportional to the
initial bunch length.

In order to check the above estimates for the energy
spread of an accelerated el ectron bunch, we carried out
a series of test simulations. First, we simulated the
acceleration of aone-dimensional bunch formed by the
compression of aone-dimensional monoenergetic elec-
tron bunch with the initial energy E; = 20mc? in a
plasmawave with the parametersy = 50 and |e|@,/mc* =
0.01. The length of the injected bunch in the trapping
stage was chosen such that the electrons occupied the
entire optimum injection region in the longitudinal
direction [14], in which case, throughout the trapping
stage, all of the bunch electrons remained in the focus-
ing phase of the corresponding linear wake wave (this
way of forming acompact bunch was described in more
detail in[13]). By the time the electrons acquired ares-
onant energy of about =50mc? in the trapping stage, the

length of thebunchwasL,, = 0.1 k;l . After the trapping
stage, the bunch wasinjected into the accel erating stage
with the plasma wave parameters |e|@,/mc? = 0.3 and
y = 50.0, specificaly, into the region of the strongest
accelerating field; for the potential @) = —@,cos(§),
thisis &y = 2. In Fig. 3, the change in the relative
root-mean-square energy spread of an electron bunch
accelerated in such amanner isillustrated by the dotted
curve.

Thesolid curvein Fig. 3 demonstratesanincreasein
the relative root-mean-square energy spread of the
bunch electrons accelerated by the same wake wave.
This curve was obtained using the analytic formula (23)
for an initially monoenergetic electron bunch with the
injection energy E;,; = 50mc* and theinitial length Ly, =

0.1 k;l . The root-mean-sguare energy spread was esti-

mated under the assumption that the electrons are dis-
tributed uniformly over the energy interval determined

|AE]

=~ 2y°|efk, Lo (23)
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by formula (23). We can see that, even when the initial
energy spread of theinjected bunch isnonzero (asisthe
case in the first example), the solid and dotted curves
approach one another and, after a certain time, remain
very close together. Such a coincidence of the curves
confirms our analytical results and indicates that the
approximate formula (23) for the smallest energy
spread of the electronsin the accelerated bunch is actu-
ally quite exact and can be used directly for estimates,
provided that the acceleration length is not too short in
comparison with the maximum acceleration length.
The unimportance of the initial energy spread of the
electrons at the time at which the bunch isinjected into
the accelerating stage indicates that, during accelera-
tion, the bunch electrons acquire an additional energy
spread: the final energy spread of the bunch eventually
becomes larger than the initial energy spread and thus
plays the governing role.

The dashed curve in Fig. 3illustrates the change in
the root-mean-square energy spread of the bunch that

hasthe sameinitial length L, = O.1k;1 andisformedin

the same way as in the first example but by the same
plasma wave in which the bunch is accelerated, i.e., by
the wave with the parameters |e|@,/mc*> = 0.3 and
y =50.0. Since the amplitude of this plasma wave is
larger than that in the first example, the energy of the
injected electron bunch from which the bunch to be
accelerated was formed in the compression stage is
smaller, E; = 1.87mc?. This series of simulations differs
from thefirst seriesonly in theinitial energy spreads of
the bunches injected into the accelerating stage. Note
that, in the examples at hand, the initial energy spread
is well estimated from formula (17). The good agree-
ment between the results of these two series of simula:
tions for long acceleration distances indicates that, for
the same parameters of the acceleration process, the
spatial (longitudinal) and energy characteristics of the
bunches accelerated to high energies do not differ fun-
damentally between these two model examples,
although the latter example better fits the anaytical
results.

It is of interest to compare the results of one-dimen-
sional simulations and analytic predictions with the
results of three-dimensional simulations. In Fig. 3, the
closed squares illustrate the root-mean-sguare energy
spread of the accelerated bunch that is formed from a
three-dimensional monoenergetic bunch of radius R, =

0.5 k;l and, at the beginning of the compression stage
(at theinstant of injection), occupies the entire optimum
injection region in the longitudinal direction. In three-
dimensional simulations, both the compressing and
accelerating wake waves were specified by the same
potential @&) = —@cos(§exp(—(r/R)*) with R, =
3.0 k;l and the wakefield parameters were chosen to be
y =50 and |e|@,/mc? = 0.01 (in the compression stage)
and y = 50 and |e|@/mc* = 0.3 (in the acceleration

PLASMA PHYSICS REPORTS  Vol. 27

No. 5 2001

379

stage). The remaining parameters of the three-dimen-
siona extended injected bunch and the compression
and acceleration scheme corresponded to the first
example (see[14] for more details). The closed squares
are seen to agree well with the plots obtained from one-
dimensional simulations and analytic formulas. This
agreement is predictable, because the electrons of the
given bunch were injected into the optimum injection
region and, for the above parameters of the bunch and
of the compressing field, the initial radius of the
injected bunch in the compression stage was smaller

than Rmax, opt-

4. CONCLUSION

Our analytic investigation provides better insight
into the mechanism for changesin both the spatial (lon-
gitudinal) and energy characteristics of electron
bunches injected into wake waves under different con-
ditions.

We have studied the compression of short (k,L, < 1)
electron bunches by wake waves when the bunches are
injected at energies such that the initial electron veloc-
ity is lower than the wave phase velocity. We have
shown how the bunch length decreasesin the course of
the bunch trapping by the wakefield and how the energy
spread of an initially monoenergetic bunch increases.
We have derived smple analytic formulas that make it
possible to estimate these bunch parameters. Our ana-
lytical results agree well with the results of numerical
simulations. We have shown that the proposed mecha-
nism for compressing an electron bunch can be used to
optimize the precompression of the trapped bunchesin
order to raise the quality of the subsequent acceleration.

We have considered how the parameters of a short
electron bunch change in the acceleration stage, pro-
vided that the bunch electrons are injected at avelocity
higher than the phase velocity of the wake wave. The
length of the accel erated bunch isfound to change only
slightly; at least, it does not increase, whereas the
energy spread of the bunch éectrons increases. The
final energy spread islinearly proportiona to theinitial
bunch length; consequently, for the quality of accelera-
tion to be high, it is desirable to use the shortest possi-
ble bunches or to precompress the bunches to be accel-
erated. Our analytic formulas are shown to provide
guite exact estimates for the spatial (longitudinal) and
energy characteristics of the electron bunches in both
the compression and the acceleration stages, provided
that the bunch is injected into the optimum injection
region.
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BEAMS

IN PLASMA

Cherenkov Excitation of Spatial Waves by a Straight
Nonrelativistic Electron Beam in a Plasma Waveguide
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Abstract—The problem of the excitation of plasma waves by a thin-walled annular electron beam in a
waveguide filled entirely with a plasma is analyzed in the quasistatic approximation. The instability growth
rates are derived and are studied as functions of the waveguide parameters. The evolution of different seed per-
turbations in the nonlinear stage of the instability isinvestigated. © 2001 MAIK “ Nauka/Interperiodica” .

1. Much attention has recently been devoted to
experimental [1, 2] and theoretical [3, 4] studies of the
Cherenkov mechanism for the excitation of surface
waves of an annular plasma by a straight electron beam
in a metal waveguide. The spectrum of the surface
waves of an annular plasmaisfairly sparse (the disper-
sion curves of the surface waves consist of asmall num-
ber of branches and the surface waves themselves are
easy to excite under both single-particle and collective
Cherenkov resonance conditions), which makes it fea-
sible to achieve a single-mode regime of the generation
of surface waves and to control the frequency range of
the excited waves. These circumstances have stimu-
lated increased interest in the Cherenkov excitation of
surface plasma waves in waveguides. However, spatia
plasmawaves are of no lessinterest from the standpoint
of the Cherenkov excitation mechanism and may also
hold great promise for practical applications. A number
of digtinctive features in which spatial waves differ
from the corresponding surface waves are the focus of
our theoretical analysis. For simplicity, we restrict our-
selves to the quasistatic approximation and, accord-
ingly, consider a nonrelativistic electron beam. A rela-
tivistic electron beam in the nonquasi static approxima-
tion will be studied in a separate paper.

2. Let us consider an infinitely thin (needle-shaped)
nonrelativistic electron beam in a meta waveguide
with an arbitrary, simply connected cross section. Let
us assume that the waveguide is filled entirely with a
homogeneous (over the waveguide cross section)
plasma and is immersed in an external longitudinal
magnetic field strong enough for the transverse motion
of the beam and plasma electrons to be neglected (the
ions are assumed to be immobile). We a so assume that
the beam and plasma are both cold and that the beam
density is sufficiently low so that the motion of the
plasma electrons can be described in the linear approx-
imation. It is well known that the only waves that can
be excited in awaveguide filled entirely with a plasma
are spatial plasmawaves [5].

The potentia perturbationsin the system under con-
sideration are described by the equations

a2
%swa—zgcb = —ATS,3( 5 — 1) (P — Pon) — 4TTP,

02pp _ wﬁazq) _

e T ANCEROL RO
of, dfy, epgap0f, _
ot Voz "miadav

Here, ¢ isthe scalar potential, zisthe coordinate along
the waveguide axis, r is the radial coordinate in the
waveguide cross section, A is the transverse Laplace
operator, v is the electron velocity, e and m are the

charge and mass of an electron, w, = A/4ne2nop/ m and
Ny, are the Langmuir frequency and unperturbed den-
sity of the plasma electrons, p,, is the perturbed charge
density in a plasma, p, is the beam charge density, py,
isthe density of the electrostatic charge that neutralizes
the beam charge, f,, is the distribution function of the
beam electrons, S, is the cross-sectional area of the
beam, and r, is the average radial coordinate of the
beam in the waveguide cross section. We assume that,
at theinitial time, the distribution function of the beam
electrons satisfies the condition

fb(o! Zvv)EfO(V) = nOba(V_u)1 (2)

where n, is the unperturbed beam density and u is the
unperturbed beam velocity. Obviously, we have pg, =
€N

It iswell known [6] that the general solution to the
kinetic equation for the distribution function f, is
expressed in terms of the following integral over the

1063-780X/01/2705-0381$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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initial solutions to the characteristic system for theVla-
Sov equation:

fo(t,z v) = J-J-dzodvofo(Vo)a[Z—Zb(t, 5 Vo)l 3

xO[v —Vvy(t, zy, V)],

where z(t, z,, V) and v(t, z, v,) are the solutions to
the characteristic system

)

dz, _

a - & moz X
supplemented with theinitial conditions
Zb|t:0 = ZO’ Vb|t:0 = VO' (5)

We substitute function (3) into Egs. (1) and, using rela-
tionship (2), perform the vel ocity integration in order to
arrive at the following equations, which will serve asa
basis for further analysis:

o 2 = efsam)
x {Idzoa[z—zb(t, z)] -1} + wipb’

2 1
0 Pp
ot’

2.4,
=29 ®)
0z

an_ vy ow
GV G 9z b )

Zblt:o = ZO’

Here, ¢' =—edp/m, p, = py/en,, and w, = JATEe ng,/m
is the Langmuir frequency of the beam electrons. For
the beam, an exact analog of the dimensionless plasma

charge density p, isthe function

Vpli=o = U

Py = _[dZof)[Z—Z(t, )] -1, )

which enters the right-hand side of the first equation in
set (6). Note that, in expression (7) [as well as in
Egs. (1) and (6)], we eliminate a constant background
charge, because we assume that the electrostatic beam
charge in the plasma is completely neutralized [7]. In
the linear approximation, we can use the third and
fourth equationsin set (6) and theinitial conditions for
these equations in order to show that the beam charge
density (7) satisfies the equation

0, o, - O
O + Uz Po Pk (8)

Finaly, replacing S,0(ry — rp,) with unity in the first
equation in set (6), we arrive at the eguations that
describe awaveguide in which the plasmaand beam are
both uniform over the waveguide cross section. Below,

KARTASHOV, KUZELEV

such awaveguide will serve as acertain reference point
for acomparative analysis of the results obtained.

3. Let the characteristic longitudinal scale (period)
of theinitia perturbation in the waveguide under con-
sideration be L. Then, all the perturbed quantities (in

particular, the potential ¢' and density p,) can be rep-
resented as

1 1 H
o' = zzl[tbn(ru, t)exp(inkz) +c.c],
" )
1 1 -
pp = ézl[ppn(rm, t)exp(inkz) + c.c.],
where k = 217L is the mean longitudinal perturbation
wavenumber. Inserting expressions (9) into Egs. (6)
and using the orthogonality of the functions exp(inkz),
we obtain the following equations for the expansion
coefficients ¢, and py,:
(B0 =nK) 0y = 0 S,8(7 = 1b)Pon + WPy,
2 (10)
28 = ey,
ot
where functions p,,, have the form

2n

1 .
Pon = 1‘.[‘[ exp(=inyp)dyo, Yy, = Kz,. (11)
0

Now, we assume that all the transverse eigenfunctions
and eigenvalues of the waveguide are known; i.e., we
know the solutions to the problem

AD(pm = _kém(pm:
Punls-0 = 0,

(12)

where @, isan eigenfunction, kém isthe corresponding
eigenvalue(m=1,2,...),and o =0o(rp) = 0 isthe equa-
tion for the metal waveguide surface. With the expan-
sions

00 = S Bun(O9(r0),

(13)
Pon = P m(1)@n(r ),
m=1
Eqgs. (10) become
2
~ ~ W,
(K2 + 02K B+ 2PP o = y “T;cpm(rb)pbm
L @ (1)
d————p’;”‘ —n’K*dym = O.
dt
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Here and below, the subscript n specifies the longitudi-
nal (along the z-axis) mode number and the subscript m
defines the transverse waveguide mode number (bel ow,
we will always put the subscript n in front of the sub-
script m). Now, we substitute Egs. (14) with relation-
ships (9) and (13) into the equations of beam electron
motion in set (6), in which case it is expedient to
exclude coefficients an,m from consideration. As a
result, we arrive at the equations

dzpp 2 2

dtr;m + (A)pC(n’ mpf?,m = _bin, mPbn»
dy, 1. 1 .
%’4'é'wszﬁ[gnpbn@(p(my)—C-C-] (15)

- Ll  axn(iny) —
= zlwpzn Zanvmpn,mexp(lny) C.c}.

Here, we set p,‘i m = (pm(rb)f),? m and introduce the nota-
tion

_ SOy K’
2 2 2, 27
W~ Kom DK
ol K+

Onh = Z Bn,m-

Equations (15) arerather peculiar and have acompli-
cated structure, because each value of n corresponds to
alarge (generdly, infinite) set of thevaluesm=1,2, ... .
In other words, each longitudinal mode p,,, of the beam
wave generates a large number of spatial plasma waves

Py ., which correspond to all possible transverse wave-
numbers k-, The reason for thisis that the modes of a
thin beam are surface waves, whereas the modes a con-
tinuous plasma are spatial waves. In such a waveguide
system, the transverse modes not only interact with each
other in a complex manner, but the nonlinear nature of
the beam also gives rise to the interaction between lon-
gitudinal modes with different numbersn.

4. Let usexamine Egs. (15) in the linear approxima-
tion. In accordance with the initia conditions for
Egs. (6), we assumethat y, =y, + kut + Y. Linearizing
expression (11) and the second equation from set (15)
in y and performing simple manipulations yields the
equations

dzpp 2 2
n,m p —
2 +wpan, mpn,m - _bin, mpbnf
dt
(17)
|:|d . [:F 2 _ 2 p
Qﬁ + InkuD Pon + Wy InPon = _wpzan, mpn,m-
m
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Since, in the linear approximation, longitudinal modes
with different numbers n do not interact with each
other, Egs. (17) refer to a mode with an arbitrary num-
ber n.

Inthe linear approximation, we as usual seek a solu-
tionintheformpy, p,ﬁ’, m ~exp(=iwt), inwhich casewe

can find the amplitudes pr’f’ m from the first equation in

set (17) and substitute them into the second equation in
order to obtain the linear dispersion relation

(w—nku)®
_ 2| S0n(r) i (18)
- bz 2 2 22 2, 2\ "
Lol kom+ nK(L-wp/w)

The poles of theright-hand side of Eq. (18), or the zeros
of the functions

0 w0
kim+n°k°M-—20=0, m=12.., (19
O w0

determine the spectra of spatial plasma waves with the
longitudinal wavenumber nk in awaveguide free of the
electron beam. In Eq. (18), spatial plasma waves with
different numbers m are coupled through the surface
wave of the beam. This brings about the question of the
competition between different plasmamodes and of the
conditions under which the beam excitesasingle trans-
verse plasma mode or the desired set of transverse
modes. Usually, this question is answered asfollows. If
the beam density is low, then only those transverse
plasma modes can be excited that satisfy the inequality

(20)

the remaining modes being stable. According to the
perturbation theory for beam-driven modes [8], the
growth rate of the excited mode [which should satisfy
inequality (20)] is calculated from Eg. (18), on the
right-hand side of which we must retain only the term
with the number of the excited mode. Under the condi-
tions of exact Cherenkov resonance between the beam
and the mth mode with the longitudinal number

nk = Jo/u® =k, 1)

the growth rate of the mth transverse plasma mode is
equal to

2 2 2
Wy, > Ko,

. 2 2 Dl/3
dw = _1;'“/§nku58°(pm(2b)ibzﬂ :
O Jlenl” 20050

(22)

This mode grows as aresult of an instability associated
with the single-particle Cherenkov effect. As for the
collective Cherenkov effect, it does not manifest itself
in a waveguide filled entirely with a plasma (at least
within the limits of the theory of the interaction
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between a thin-walled annular beam and a thin-walled
annular plasma[9, 10]). The above analysis applies to
asituation in which different spatial plasma waves are
excited independently. However, in awaveguide with a
thin beam (and, especially, when the beam is dense),
the spatial plasma waves are coupled to each other. In
this connection, it is of interest to compare the interac-
tion between athin beam and a continuous plasmawith
the interaction between a solid beam and a continuous
plasma. In the latter case, the linear approximation
clearly implies that different transverse plasma modes
are decoupled.

L et us specify the geometry of the problem. We con-
sider athin-walled annular electron beam propagating
in acircular waveguide of radius R, which is assumed
to be filled entirely with a homogeneous plasma. Such
a beam can be regarded as a tube with a mean radius
r, < R, the thickness of the tube wall being A,. Under
the assumption that A, << ry,, the beam cross-sectional
areaisequal to §, = 21tA .. Inacircular waveguide, the
eigenfunctions and the associated eigenval ues have the
form @, = J, (ko) and kg, = Wy /R, Where , , is the
root of the Ith order Bessal function. For comparison,
we also briefly analyze the case in which the beam is
solid and homogeneous, asis the plasma.

For the interaction of an annular electron beam with
a homogeneous plasma in a circular waveguide with
the adopted parameters, we can use the corresponding
formulas of the theory of Bessel functions to rewrite
dispersion relation (18) in an explicit form [10]:

(w—nku)®
_ 2.2 2T 2 N(XR) N,(Xrp)7 (23)
= w,nk érbAb\L (Xrb)[Jl'(XR) - J||(Xr;)}’

w, 1010571

0 2 4 6
-1

k,, cm

Fig. 1. Dispersion curves for an annular electron beam of
radius r, = 0.4 cm in a waveguide filled entirely with a
homogeneous plasmaat v = 0.01. The beam isin resonance
with the first three transverse plasma modes.
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where X? = nzkz(wf) /o’ — 1) and N, (X) is the Neumann
function. For the interaction of a solid homogeneous
beam with a continuous homogeneous plasmain acir-
cular waveguide, we arrive at an infinite number of
independent dispersion relations for the decoupled
transverse modes:

K2, + nzkz[l—(ﬁ —L} =0

m=12...

Since the structures of dispersion relations (23) and
(24) are radically different, the relevant dispersion
curves differ in shape. By the dispersion curves, we
mean the plots of the real functions w(k,) obtained by
solving the corresponding dispersion relations with
respect to w. Parenthetically, we assume that the reader
is familiar with the shapes of the dispersion curves of
the growing modes under consideration, including
those driven by the beam instabilities[3, 4, 9-12]. Dis-
persion relation (24) is analogousto that describing the
excitation of plasmawaves when both the beam and the
plasma are homogeneous over the entire space. For
low-density beams, unstable modes are those with
numbers from zero to approximately the number corre-
sponding to the point at which the dispersion curve of
the plasma wave intersects the Cherenkov resonance
line w = ku = nku. The transverse mode can be either
stable or unstable, without any impact on the remaining
modes. In other words, when both the beam and the
plasma are homogeneous over the entire cross section
of acircular waveguide, we may speak of the excitation
of an individua transverse mode with a specific num-
ber m.

5. Here, we analyze the consequences of the linear
dispersion relation (23). To do this, we specify the
parameters of the waveguide system. We assume that
the waveguideradiusis R = 2 cm, the beam thicknessis
A, = 0.1 cm, the azimuthal number is| = 0, the plasma

frequency is w, =5 x 10" rad/s, and the beam density

(24)

is such that the parameter v = wﬁ / wﬁ takes on the val-

ues0.01 and 5 x 10-. We fix these parameters and vary
the mean radius r,, of the beam and its velocity u.

First, we choose the beam velocity in such a way
that condition (20) is satisfied for the first three trans-
verse modes (with the numbersm=1, 2, 3) and failsto
hold for the fourth mode. For example, we set u =
10'° cm/s. We also choose the beam radius to be r,, =
0.4 cm. With this choice of r,, the interaction of abeam
with the first three transverse modes of the plasma
waveguide is fairly efficient. This interaction is illus-
trated by the dispersion curves in Fig. 1, which were
obtained by solving Eqg. (23) and are marked by the
transverse mode numbers m. In Fig. 1, the abscissa is
the longitudinal wavenumber nk =k, (in cm™) and the

ordinate is frequency w (in units of 10'° rad/s). We can
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see that the dispersion curves differ greatly in shape
from the familiar dispersion curves obtained for the
interaction of a solid beam with a continuous plasma.
For a thin-walled annular beam, the only unstable
transverse modeisthefirst one, while the higher modes
are stable. However, this does not contradict the situa-
tion with a solid beam: we only need to refine the
notion of the transverse mode for plasma waveguides
with and without a beam.

For a solid beam, each transverse mode with the
number m=1, 2, ... is characterized by its own disper-
sion curve and, accordingly, by the corresponding
waveguide mode described by the eigenfunction (the
digphragm function) @, = J(ky,f) for an empty
waveguide. We call such modes transverse modes of a
plasma waveguide without a beam. For a thin-walled
annular beam, the dispersion curves in Fig. 1 can also
berenumbered (p=1, 2, ...) in the usual manner (from
top to bottom)—see the numeral's above the curves. In
this case, each dispersion curve is aso characterized by
a certain waveguide mode, but the corresponding
eigenfunction

lij(l') = Z am‘]l(kDmr) (25)
m=1

is now determined not only by the plasma but also by
the beam. We call these modes transverse modes of a
beam—plasmawaveguide. From Fig. 1, we can seethat,
interms of eigenfunctions (25), the only unstable mode
of aplasmawaveguide with an annular beam isthefirst
(p =1) transverse mode. In contrast, interms of the dia-
phragm functions @, at least thefirst three (m=1, 2, 3)
transverse modes of a plasma waveguide are unstable.
The latter conclusion is illustrated by Fig. 2a, which
shows the function Im dwversus k, for the same param-
etersasin Fig. 1. Here, the complex growth rate dwis
defined as
dw = w—k,u, (26)
where wistheroot of Eq. (23). Asisusua for Cheren-
kov instability, the real part of the complex growth rate
owis negative, in which case we can say that the beam
overtakes the plasma wave. The function Imdw has
three peaks, which reflect the interaction between the
beam and the corresponding transverse mode of a
plasmawaveguide: theright peak isfor them= 1 mode,
the middle peak isfor them =2 mode, and the | eft peak
isfor the m= 3 mode. When the beam is not too dense,
the growth rate dw at the point at which its imaginary
part is maximum can be calculated from formula (22),
inwhich case we can speak of the Cherenkov excitation
of acertain transverse mode of a plasma waveguide by
a thin-walled annular beam. However, the denser the
beam, the smoother the peaks in the function Imdw so
that the transverse modes of a plasma waveguide
becomeindigtinguishable. In this case, eigenfunction (25)
is composed of a large number of terms, and it would
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Fig. 2. Growth rate of theinstability for acontinuous plasma
and an annular electron beam at v = 0.01. The beams of radii
r, = (&) 0.4, (b) 0.871, and (c) 0.556 cm are in resonance
with thefirst three modes; the beams of radii r, = (d) 0.4 and
(e) 0.871 cm are in resonance with the first two modes; and
(f) the beam of radius r, = 0.4 cm is in resonance with the
first mode.

be more correct to speak of the instability of the first
(p = 1) transverse mode of a beam—plasma waveguide.
Note that, in terms of Egs. (23) and (24), the limiting
transition from a thin-walled annular beam to a solid
beam is impossible. The above analysis of a low-den-
sity beam isillustrated by Fig. 3a, which refers to the
vaue v = 5 x 10. We can see that the three peaks,
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with thefirst three modes; the beams of radii r, = (d) 0.4 and

(e) 0.871 cm are in resonance with the first two modes; and
(f) the beam of radius r, = 0.4 cm is in resonance with the

first mode.

which correspond to transverse modes with different
numbers m, are well separated from each other, thereby
providing evidence that, in a plasma waveguide, the
modes are excited almost independently.

KARTASHOV, KUZELEV

Now, we set r, = R, /Mo, , = 0.871 cm, keeping the
remaining parameters unchanged. A beam with suchr,
propagates in the region where the field of the second
transverse mode of a plasma waveguide vanishes, so
that this mode cannot be excited. For this value of r,,
Figs. 2b and 3b show the growth rates Im dw cal cul ated
from expression (26). One can seetwo regionsin which
the growth rateis nonvanishing: theright region reflects
the interaction of the beam with the first (m = 1) trans-
verse mode of a plasma waveguide and the left region
corresponds to the interaction with the third (m = 3)
transverse plasma mode. The zone between these
regions s free of instability, because the beam with the
adopted radius r,, cannot interact with the second (m =
2) transverse mode of a plasma waveguide. However,
this situation can be interpreted in a different way:
Figs. 2b and 3b show the growth rates of thefirst (p = 1)
unstable mode of a beam—plasma waveguide, in which
case eigenfunction (25) is composed of alarge number
of terms, except for the second one.

Now, we choose r, = Ry, /My ; = 0.556 cm and
again fix the remaining parameters. A thin-walled
annular beam with such r, propagates in the region
wherethefield of the third transverse mode of a plasma
waveguide vanishes, so that this mode cannot be
excited. For thisbeam, Figs. 2c and 3c show the growth
rates Imdw cal culated from expression (26). For small
values of k,, we have Imdw= 0, as expected. For larger
wavenumbers, there are two regions where the growth
rate is nonzero: the right region reflects the interaction
between the beam and thefirst (m= 1) transverse mode
and the left region corresponds to the interaction with
the second (m = 2) mode. The regions in Fig. 2c are
seen to overlap; this effect was discussed above.

Now, we again set r, = 0.4 cm but increase the beam
velocity to u= 1.3 x 10'° cm/s. With such a beam, con-
dition (20) is satisfied for the first two (m =1, 2) trans-
verse modes of aplasmawaveguide and failsto hold for
the third mode. The related functions Imdw are dis-
playedin Figs. 2d and 3d. We can seethat them= 1 and
m = 2 transverse modes of a plasma waveguide do not
overlap: the pronounced peaksin their growth rates are
separated by the zone where the growth rate vanishes.
Then, we set ry, = Ry, /Mo, = 0.871 cm, keeping the
values of the remaining parameters fixed. In this case,
the m = 2 transverse mode cannot be excited. The cor-
responding growth ratesIm dware presented in Figs. 2e
and 3e. From Fig. 2e, we can see that Imdw = 0 for k,
from approximately 1 to 3 cm™: the right high peak
corresponds to the m = 1 unstable transverse plasma
mode and the left low peak refers to the nonresonant
instability of the m= 3 mode, which can be made unsta-
ble only by a sufficiently dense beam and becomes sta-
ble as parameter v decreases (Fig. 3d).

Finally, we again set r, = 0.4 cm but consider abeam
with a higher velocity u =2 x 10'° cm/s, with which
condition (20) is satisfied only for the first (m = 1)
2001
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transverse mode of a plasma waveguide and fails to
hold for the second and third modes. The relevant func-
tions Imow are shown in Figs. 2f and 3f. The above
analysis makes clear the structure of thefigures(e.g., in
Fig. 2f, theright peak correspondsto the resonant insta-
bility of the first transverse plasma mode and the left
peak refers to the nonresonant instability of the second
transverse mode of a plasma waveguide).

Hence, even in the linear approximation, different
transverse modes of a uniform plasma waveguide with
a thin-walled annular electron beam are strongly cou-
pled to each other. The only exceptions are the modes
excited by beams with low densities, high velocities u,
and specially chosen radii ry, The results of linear the-
ory (seeFigs. 2, 3) show that, by aspecial choice of the
parameters of a beam—plasma waveguide, it is possible
to drive unstable modes with different transverse num-
bers in different wavelength ranges. This makes it fea-
sible (at least according to linear theory) to control the
emission spectrum of a thin-walled annular electron
beam in a waveguide filled entirely with a homoge-
neous plasma, which is impossible for a waveguide
with athin-walled annular beam and thin-walled annu-
lar plasma [4]. Nonlinear phenomena that occur in an
electron beam give rise to an additional coupling
between the transverse modes of a plasma waveguide.

6. Here, weturn to nonlinear equations (15) in order
to analyze the saturation stage of the beam—plasma
instability. The problem as formulated accounts for the
nonlinear nature of the beam and describes the plasma
by the linearized equations of cold hydrodynamics. We
model the beam by the particle method; i.e., we deter-
mine the beam density from the positions of quasi-par-
ticles, whose motion is traced by solving Newton's
equations. We supplement Egs. (15) with the initia
conditions that specify the seed perturbation, the initial
positions of the beam particles, and their initial veloci-
ties. We examine several different seed perturbations.
First, we consider amonochromatic perturbation. To do
this, we set the initial parameters of the perturbations
driven by the n = 1 longitudinal mode to be nonzero and
the parameters of the perturbations associated with the
remaining longitudinal modes to be zero. Then, we
specify theinitial parameters of alarge number of lon-
gitudina modes, assuming equal mode amplitudes and
zero mode phases. This seed perturbation has the form
of aregular sequence of pulsesat thetimet = 0. Finally,
we specify random phases of a large number of longi-
tudinal modes; i.e., we consider a noisy seed perturba-
tion.

We start with amonochromatic seed perturbation. In
the sumsover n, weretain thefirst fiveterms, and, in the
sums over m, we keep at least the first ten terms. We set
u= 10 cm/s, r, = 0.4 cm, and v = 0.01. These param-
eter valuesrefer to the instability growth rateillustrated
in Fig. 2a. We assume that the wavelength of the seed
perturbation corresponds to the Cherenkov resonance
between the beam and the first (m = 1) transverse mode
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Fig. 4. Time evolutions of the amplitudes of the first three
(n=1, 2, 3) longitudina modes of the perturbed plasma
electron density for v = 0.01 and rp, = 0.4 cm.

of a plasma waveguide; i.e., we choose k = 4.85 cnr!.
Figure 4 showsthe time evol utions of the amplitudes of
thefirst three (n=1, 2, 3) longitudinal modes of the per-
turbed plasma charge density f)pn(rb) at the surface
whose radius is equal to the beam radiusr,, It is seen
that, in the initial stage, the first longitudinal mode
(curve 1) grows exponentially with the rate Imdw As
the first mode saturates, the nonlinear effects in the
beam come into play and give rise to the second and
third longitudinal modes.

Now, we analyze the relative roles played by trans-
verse modes with large numbers m for two different
beam densities. For v = 0.01 and 5 x 103, the develop-
ment of the first several transverse modes driven by the
n = 1 longitudinal mode isillustrated in Figs. 5 and 6,
respectively. Figure 6 demonstrates that a dominant
roleis played by the first transverse mode, which isin
resonance with the beam; the second and third trans-
verse modes are seen to be of lesser importance. For a
higher density beam (v = 0.01), the second and third
transverse modes play a greater role, even though the
beam interacts resonantly with the first transverse
mode. As discussed above, these effects stem from the
fact that the transverse structure of the beam differs
from that of the plasma.

Let us consider a seed perturbation in the form of a
large number of longitudinal modes with different
numbers n. The spatial spectra of oscillations calcu-
lated at the times T = wyt = 0, 90, 120, and 240 for the
same parameters of the system but for a pulsed (in the
form of aregular sequence of pulses) seed perturbation
arepresented in Fig. 7. At theinitia time, the spectrum
consists of the first fifty longitudinal modes. In the lin-
ear stage of the instability, the longitudinal modes that
arein exact (or amost exact) resonance with the beam
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Fig. 5. Time evolutions of the amplitudes of the first four
(m=1, 2, 3, 4) transverse modes of the perturbed plasma
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Fig. 7. Spatial mode spectra for a pulsed seed perturbation
at thetimest = (1) 0, (2) 90, (3) 120, and (4) 240.

grow faster than the remaining modes. In the case at
hand, the mode that isin exact resonance with the beam
isthe n = 20 longitudinal mode. The growing resonant
modes play an increasingly important role, so that the
spectrum narrows and thus becomes more monochro-
matic. Then, the nonlinear effects comeinto play. Thus,
the spectrum calculated at the time T = 120 is seen to
contain alow peak at n = 40. Further, the modes with
different longitudinal (n) and transverse (m) numbers
start to interact with each other, giving rise to more and
more modes. As aresult, the spectrum again broadens
and its structure becomesirregular. From Fig. 8, we can
see that similar processes are also characteristic of a
system in which the noisy seed perturbation is specified
as aset of longitudinal modes with random phases.

Finaly, we consider the dynamics of energy transfer
from the directed beam motion to plasmawaves. Figure 9
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Fig. 6. Time evolutions of the amplitudes of the first three
(m=1, 2, 3) transverse modes of the perturbed plasma elec-

tron density forv =5 x 10~ and r,, = 0.4 cm.
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Fig. 9. Time evolutions of the relative energy lost by the
beam for (1) pulsed and (2) noisy seed perturbations.
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shows the relative energies lost by the beam electrons
for pulsed (curve 1) and noisy (curve 2) seed perturba-
tions. In both cases, the energy-conversion efficiency in
the saturation stage is about 30%. For a regular seed
perturbation when the phases of all the longitudinal
modes are the same, the field has the form of aregular
sequence of pulses because of the superposition of dif-
ferent harmonics. Consequently, there are spatial
regions where the longitudinal component of the elec-
tric field is weak and, accordingly, the field itself does
not interact with the beam electrons. Thiseffectisillus-
trated in Fig. 9: for a regular seed perturbation, the
beam electrons lose their energy at a dower rate than
for a noisy seed perturbation (curve 2 is steeper than
curve ).
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Abstract—The dispersion properties and field distribution of plasma waves in a periodic plasma-filled
waveguide are correctly analyzed for thefirst time with allowance for all spatial harmonics. It is shown that the
plasma wave spectrum has a zonal structure and a lower cutoff frequency. The widths of the forbidden bands
and the lower cutoff frequency are determined by the waveguide corrugation depth. For a planar periodic
plasma-filled waveguide, the allowed and forbidden frequency bands are eval uated analytically. The waveguide
periodicity substantially influences the field of the plasma waves at frequencies close to the forbidden bands.
This leads to the formation of regionsin which the energy density of plasma waves exceeds the average level
by more than one order of magnitude. This effect is related to the contribution from the higher spatial harmon-

ics. © 2001 MAIK * Nauka/Interperiodica’ .

1. INTRODUCTION

Periodic plasmafilled waveguide structures are
widely used in plasma microwave electronics. To date,
several types of microwave sources[1-4] that are based
on periodic plasma-filled structures and are better than
vacuum devices of the same class in a number of tech-
nical parameters have been developed. Periodic
plasma-filled structures can also be used to develop
new efficient methods for charged-particle acceleration
and plasma heating.

However, in spite of a number of theoretical and
experimental studies (see, e.g., reviews [4, 5)]), the
mechanisms through which the plasma influences the
generation of electromagnetic waves in periodic struc-
tures are till poorly understood. To date, several mech-
anisms have been suggested to describe the effect of a
plasma on the increase in the output power and the effi-
ciency of microwave generation in plasmafilled
devices. The mechanisms can be divided into three
groups, which are briefly analyzed below.

(i) Theinfluence of the plasma as diel ectric medium
manifests itself in a decrease in the phase velocity of
the working mode [6] and an increase in the detuning
of the wavenumber of a slow beam wave from the exact
beam—plasma resonance k, = wy/V [7], where w is the
working frequency and V isthe beam velocity. Thefirst
effect increases the spatial growth rate of the synchro-
nous mode, whereas the second effect increases the
efficiency with which the beam energy is converted into
the energy of the working mode. However, the pre-
dicted increase in the efficiency is much lower than that
observed in experiments. Moreover, an appreciable
influence of the plasma is observed at significantly
lower densities than those predicted in [6, 7]; at these
densities, the plasma permittivity is close to unity and

does not affect the electrodynamic properties of the
waveguide structure. Note that somewhat different
mechanisms for the influence of the plasma as dielec-
tric medium were discussed in [8-10]. However, these
mechanisms, aswell as those mentioned above, predict
an increase in the microwave generation efficiency at
substantially higher plasma densities as compared to
the experimentally determined optimal density.

(if) The formation of periodic plasma inhomogene-
ities under the action of strong electromagnetic fields
[11, 12] increases the feedback coupling between the
direct and backward electromagnetic waves, which, in
turn, substantially decreases the starting current and
increases the generation efficiency. The predicted
increase in the efficiency isin fact high, but at plasma
densities much higher than the experimental ones. In
addition, the strong coupling between the direct and
backward waves may take place even without plasma
filling, when a vacuum device operates near the Tt
mode; however, the efficiency does not increase so
much in this case. On the other hand, with plasmafill-
ing, no decrease in the starting current was observed.

(iii) There is a parametric interaction between the
plasma waves and electromagnetic waves that are
simultaneously excited by the electron beam. Severa
mechanisms for this interaction were considered in
[13-15]. However, dl these mechanisms either do not
predict such a substantial increase in the efficiency or
predict it for higher plasma densities.

Therefore, the mechanisms through which the
plasma influences the microwave generation efficiency
in plasma-filled microwave sources based on periodic
waveguide structures still remain unknown.

Note that an even more specia problem of the spec-
tral properties of plasma-filled periodic structures at
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Fig. 1. Qualitative pattern of the dispersion curves of plasma waves forming a dense spectrum. For clarity, only five transverse and

five longitudina harmonics are depicted.

frequencies below the plasma frequency also remains
unstudied. However, without knowledge of these prop-
erties, an analysis of the mechanisms for the influence
of the plasma may be incomplete or incorrect.

As is known, the spectrum of a plasma-filled peri-
odic waveguide structure contains € ectromagnetic and
plasma modes, which, in the simplest case of a trans-
versely uniform plasma, are separated in frequency
[16].

Thedispersion properties of high-frequency electro-
magnetic modes do not substantially differ from the
corresponding modes of a vacuum periodic structure
and can be described using the same technique [13].
Thus, if we represent the waveguide field in the form of
a superposition of spatia harmonics and require that
thetangential components of the electric field vanish on
the periodic surface of the structure, we arrive at the
dispersion relation in the form of an infinite determi-
nant. Taking into account afinite number of spatial har-
monics, we pass to afinite determinant whose roots can
be found numerically. For periodic structures with typ-
ical experimental parameters, taking into account five
to ten harmonics is usualy quite sufficient to achieve
the required accuracy, which is confirmed by acompar-
ison with experimental data[17].

The first theoretical investigations of plasma waves
in periodic plasma-filled waveguides were aso based
on the traditional approach [8, 18]. An analysis of the
beam—plasma instability in a periodic plasma
waveguide with allowance for the fundamental and two
neighboring spatial harmonics showed that the growth
rate of plasmawaves is much less than that of electro-
magnetic waves. However, it was shown later [19] that,
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contrary to the Floguet theorem, the dispersion curves
of plasma waves become nonperiodical with respect to
the wave vector as the number of spatial harmonics
increases. In addition, the number of dispersion curves
increases as the next spatial harmonic is taken into
account (Fig. 1). Inthis case, the allowed and forbidden
bands change substantially as new, even very high, har-
monics are taken into account. It seems that the results
obtained with any finite number of incorporated har-
monics are incorrect. In the limiting case when all
transverse and longitudinal harmonics are incorpo-
rated, the entire domain below w, inthe (w, k,) planeis
compactly filled by the dispersion curves, which thus
become indistinguishable.

In fact, each point in the (w, k,) plane below w, isa
solution to the dispersion relation. Therefore, we arrive
at a specia type of spectrum, the so-called “dense’
spectrum, which was first described in [20]. The prop-
erties of dense spectra have not yet been studied even
qualitatively, athough plasma waves in periodic
plasmafilled structures have been observed in many
experiments [17, 21] and the fact of their existence is
beyond question. Nevertheless, the question arisesasto
whether it is possible, in principle, to adequately
describe plasma waves by certain dispersion curvesin
the (w, k) plane. Theoretical studies reported in this
paper provide a positive answer to this question.

The analysis is based on the method proposed in
[22]. According to this method, it is possible to pass
from representation in the form of spatial harmonics to
an integral representation for the fields inside the peri-
odic structure. As aresult, instead of a dispersion rela-
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tion in the form of an infinite determinant, we obtain a
uniform integral equation for the electric field at the
axis of the periodic structure. In the quasistatic limit
c — oo, this equation transforms into the functional
equation. A detailed study of the latter and an analysis
of the results obtained are the subject of this paper.

In Section 2, a basic integral equation for the total
field at the axisis derived by a new method that is more
efficient than that used in [22]. In Section 3, the basic
equation is transformed into aform admitting a numer-
ical analysis. In Section 4, possible methods for numer-
ically analyzing the equation obtained are described. In
Section 5, the numerical results are analyzed. As an
example, a waveguide with sinusoidal corrugation is
considered.

It is shown that the dense spectrum has a zonal
structure. The widths of the forbidden and allowed
bands depend on the corrugation depth. In the range of
lower frequencies (w < wy,), the forbidden bands over-
lap and periodic solutions are seemingly absent.

In the Conclusion, the results obtained are summa-
rized and some findings are formul ated.

2. FORMULATION OF THE PROBLEM.
DERIVATION OF THE BASIC INTEGRAL
EQUATION

We consider a simple periodic waveguide struc-
ture—a planar waveguide filled with a uniform colli-
sionless cold plasmain an infinitely strong longitudinal
magnetic field (Fig. 2). The choice of such amodel is
reasonable in many aspects, even although experimen-
tal plasmafilled periodic structures are, for the most
part, cylindrical. First, many specific features of the
wave processes in planar geometry do not change qual-
itatively when passing to cylindrical geometry. Second,
planar geometry is of particular interest because it can
successfully be used to model coaxial plasmafilled
structures [23] and periodic structures with rectangular
cross sections. Planar plasma-filled devices have not
yet been studied experimentally, but devices with this

Perfect conductor

Fig. 2. Geometry of the problem.
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type of geometry are widely used in vacuum electron-
ics. For harmonic TM waves (E,, Hy, E,) ~ exp(-iwt),
the set of Maxwell eguations reduces to one equation
for H

y

Ebax + s— +K sEHy(x 2) = (1)

wheree =1 - oof)/oo2 isthe permittivity of a cold colli-

sionless plasma, k= wy/c, and c is the speed of light ina
vacuum. The other field components are expressed

through H, by the formulas
1 0H, _ 10H,
SR L T @

In the range where plasma waves exist (w — @), we
have £ < 0. Changing to a new variable [g]'/*x = X,
Eqg. (1) transformsinto

2 ~ ~
e Kbk =o 3)

where I:|y(5<, 2) = Hy(x, 2).

Equation (3) is hyperbolic. Its solution can be
expressed through integrals of the sought function and
its derivative at the waveguide axis (x = 0) [24]:

Ay(% 2) = f(z+ >~<)erf(z—>~<)

Z+X

#3 [ Wkle-0" g @
R

+5 k f({)dd,
I W(z-0)*-
wheref(z) = I:|y(0, 2) and g(2) = ‘M
0X %=0

For the fields symmetric about x (E,(—X) = E,(-X)),

we have I:|y(0, 2) = 0. Then, passing to the old vari-
ables, we obtain the following representation for the
magnetic field in the waveguide:

Jo(kn/(z=2)* ~lelx*)g(2)dC. (5)

z+\s\1/2x

y(xz)-2 I

7 ‘s‘llzx

The requirement that the tangential component of
the electric field should vanish at the waveguide wall
X' (2)Ex+ E,| =0

X = X(2)

PLASMA PHYSICS REPORTS Vol. 27 No.5 2001
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is equivalent to the condition for H,(x, 2):

., yOH, 10H, _
S IR LG

where x = X(2) is the coordinate of the periodic bound-
ary of the waveguide (X(z + d) = X(2)) and the prime
stands for differentiation with respect to the argument.
Substituting Eq. (5) into Eq. (6), after simple manipu-
lations, we arrive at the integral equation

9(z+¢(2)(1+¢'(2) +9(z-0(2)(1-9'(2)
z+¢(2)
+ I G(z ¢)g(g)dC = 0,
2-9(2)
where ¢(2) = [€]'?X(2),

()

G(z Q)
_ kdi(kd(z-3)°-9°(2))
N(z-0)7-9°(2)

In the quasistatic limit ¢ — oo, Eq. (7) coincides
with an equation obtained in [22] using a traditional
approach based on the expansion of fields in seriesin
spatial harmonics. The full mathematical equivalence
of these approaches under the condition ¢'(z2) < 1 isalso
proved in [25].

Below, we will consider in detail quasistatic oscilla-
tions, in which casetheintegral equation (7) transforms
into the functional equation

(0(2)-9'(9)(z-1Q)).

e“PW(z+9(2)(1+0'(2)

-ik,(2) : ®)
te W(z-¢(2))(1-¢(2) =0,
where W(2) = E,(0, 2€ " and k, is the oscillation
wavenumber.

Note that taking into account the correction for el ec-
tromagnetic effects, which contribute to the integral
term in Eqg. (7), presents no problems. In view of the
fact that the kernel of theintegral equation (7) iscontin-
uoudly differentiable with respect to both variables,
Eq. (7) can be solved by iterations. As an initial func-
tion, we can use the solution to Eg. (8). The procedure
for solving this equation will be described below.

3. REDUCTION OF THE FUNCTIONAL
EQUATION DESCRIBING A DENSE SPECTRUM
TO THE EQUATION DESCRIBING
AN ORDINARY SPECTRUM

The functional equation (8) is the equation for
eigenfunctions and eigenvalues. Although the ampli-
tudes of spatial harmonics do not enter this equation
explicitly, it describes, again, a dense spectrum; i.e.,
any point in the (w, k,) plane that lies below w, is the
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solution to Eg. (8). Hence, it is hardly possible to ana-
lyze Eq. (8) numerically.

Indeed, let us assume that k,(w) is the eigenvalue
corresponding to the eigenfunction W, (2), wherem=0,
1, 2, ..., wisthetransverse index. A direct substitution
shows that the wavenumbers K,,(w) = k,(w) + nk,
shifted by nk,, where k, = 217d, are also the eigenvalues
of Eq. (8), which, however, correspond to other eigen-
functions: W,,(2) = W(2exp(-ink,2). Thelatter feature
can be used to separate out the shifted branches. Such a
separation was performed analytically in [22] for
l&(w)| < 1.

Below, we will separate out the shifted branches in
the general case, without any additional assumptions. It
should be noted that al shifted branches determine the
same total field; i.e., E;(0, 2) = exp(iky(w)2W (2 =
exp(ikym(W)2)W (2. Therefore, to completely deter-
mine the field distribution in the waveguide, it is suffi-
cient to know, e.g., K,(w) and ¥.(2). The other solu-
tionsto Eq. (8) with the same transverse index are spu-
rious and do not provide new information about the
waveguide field. The eigenvalues k,,(w) and eigenfunc-
tions W,(2) describe an ordinary spectrum of transverse
modes, which correspond to the modes of a smooth
plasma-filled waveguide (Trivel piece-Gould modes).

In order to eliminate spurious solutions, we intro-
duce a new unknown function F(2) = [ E,(0, Z)dZ.
Then, Eq. (8) reduces to the problem

F(z+9(2) +F(z-9(2) = 0,
ik,d (9)
F(z+d) = e “ F(2).

The solution to Egs. (9) issought in the form F(2) =
p(2)exp(ik,z + i6(2)). From Egs. (9), we obtain two
independent problems for two new unknown real func-
tions p(2) and 6(2):

P(z+9(2) = p(z-9(2),

p(z+d) = p(2); (10
L[6(z+ 6(2)) ~0(z- $(2))]
= (m+1/2)t-k,$(2), (11

08(z+d) = 2rnk,z+ 6(2).

Equations (10) have a smple and obvious solution
p(2) = const. According to the uniqueness theorem for
the Maxwell equation with boundary conditions, the
obtained solution is unique; otherwise, we would have
two (or more) field distributions corresponding to the
same frequency and the same wavenumber, which are
independently determined from Egs. (11).

A family of Egs. (11) taken for different n deter-
mines a family of shifted branches, index m being the
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transverse mode number. Hence, it isEgs. (11) that pro-
vide the separation of shifted branches. In addition, fix-
ing n and m, we not only eliminate spurious solutions,
but also arrive at the problem for a fixed transverse
mode, which substantially facilitates numerical calcu-
lations.

4. NUMERICAL METHODS FOR SOLVING
THE FUNCTIONAL EQUATION

Setting n = 0in Egs. (11), we arrive at the problem
LB(2) = (m+1/2)t—k,0(2),

B(z+d) = 6(2),
which describes an ordinary spectrum of transverse
modes; here, L 6(2) = % [6(z+ $(2) — 6(z— §(2)]. Itis

easily seen that, for X(2) — X, the eigenvalues and
eigenfunctions of problem (12) (k,, — (m +
1/2)17(|Je|'?%,) and 6,(2) — const, respectively) corre-
spond to the ordinary Trivelpiece-Gould modes of a
smooth waveguide filled with a magnetized plasma.

Equations (12) were solved numerically by two dif-
ferent methods. The first method was based on the Fou-
rier expansion of the unknown function 8(2): 6(z) =

:: . Cqexp(igky2). As aresult, we arrive at a set of

linear algebraic equations for the Fourier coefficients
Cq, Which alows us to determine 8(2) and k, with any
prescribed accuracy. We took into account af most
90 Fourier harmonics. However, as arule, it was suffi-
cient to take into account ten to twenty Fourier harmon-
icsin order to calculate 8(z) accurate to 10-2%.

(12)

w
T T T T T T T T T T i —
W, ///
W, [ =z ‘—___50.90.2,
(A)_l [ / /’—— = - 08(1?,
L 2 ]
W, 4 “ 0'7("27
@yt e o 0.6,
s b ' A ] 10.50),
_3 = ™2
W s 0.4,
1 1 1 1 1 1 1 1 1 1 kz, cm™!
0 [ \1 2 3 4 5
ko/8 kol2
ko/6 k4

Fig. 3. Dispersion curvesfor thefirst three transverse modes
of aperiodic plasmawaveguide: a = (1) O and (2) 0.1, Xy =

1.4 cm, and ky = 3.67 cm™!.
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The second method was based on the approximation
of 6(2) by the spline functions,

N-1

0(2) = Y aB(2), (13)
i=0

where B!‘ (2) are the spline functions of the kth order:

k-1 (Q%+k+1—Z k-1
@+ B

%3)' (2) Eti+k+1_zi+15bl !
k>1,

Dlv Zi<Z<Zi+1 i
EO’ zU (2, 741) TN

Bi() = B2

i+k—4

B'(2) =

i=0,.. N-1
To achieve an accuracy of <1072%, it is sufficient to
take N [ 100 for the spline functions of the first order.

The numerical solutions obtained by the two methods
coincide within the given accuracy.

5. ANALYSIS OF NUMERICAL RESULTS

Figure 3 shows the dispersion curves for a sinusoi-
dal corrugated plasma waveguide X(2) = x(1 +
acos(ky2) for x,=1.4cm, a =0.1, and k, = 3.67 cm'.

Asis seen from Fig. 3, the interaction between the
fundamental and higher spatial harmonics producesthe
forbidden bands w, < w < w,;, where w,, are the upper
and lower boundaries of theIth forbidden band (1=1, 2,
..., ). The expressionsfor the boundary frequencies of
each forbidden band can be found analytically: w, =
Wy/(1 + (Tl /xk(1 £ 0))?) 2. It isinteresting that, for the
frequencies within the forbidden band, operator L has
asingular point in which IA_e(z)|Z:ZO =0. Thesingular
point is determined by the condition 2¢(z,) = Id. From
here, in view of Egs. (12), it follows that, at the bound-
aries of the Ith forbidden band, we have Kk, (w) —
2m+ Dm/(d), wherem=0,1, ...,0and 1 =1,2, ...,
. At large |, the forbidden bands overlap; i.e, thereis
alower cutoff frequency. The forbidden bands overlap
at frequencies satisfying the inequality axk|e['> = T72;
however, our consideration is valid for axyk,|e[? < 1
[25]. Asisthe case of electromagnetic waves, the group
velocity of plasmawavestendsto zero asthe frequency
approaches the forbidden band.

To analyze the influence of periodicity on the field
distribution, werepresent E(0, z) intheform E/0, 2) =
A(2exp(ikz + 18(2). For a smooth plasmafilled
waveguide, we may assume A(z) = 1 and 6(2) = 0.

Figure 4 shows the profiles of the amplitude A(z) for
different frequencies. For frequencies far from the for-
bidden band, the amplitude A(2) differs slightly from
unity; i.e., the periodicity slightly perturbsthefield of a
smooth waveguide. As the frequency approaches the
PLASMA PHYSICS REPORTS  Vol. 27
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A2)

—-15 .

Fig. 4. Effect of periodicity onthe profile of the fundamental
mode amplitude for different frequencies: w/wy, = (1) 0.9,

(2) 0.88, (3) 0.875, and (4) 0.874.
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6(2)
2~

Fig. 5. Effect of periodicity on the phase shift 6(2) of the
fundamental mode for different frequencies: ww, = (1) 0.9,
(2) 0.88, (3) 0.875, and (4) 0.874 at a = 0.1, X, = 1.4 cm, and

ko=3.67 cm™\.
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Fig. 6. Amplitudes of the spatial harmonics of the fundamental mode for different frequencies: w/cy, = (a) 0.9, (b) 0.88, (c) 0.875,

and (d) 0.874.

upper boundary frequency of the first forbidden band
(w,; = 0.874w, for our parameters), the amplitude per-
turbation caused by periodicity becomes stronger. Near
the boundary frequency w,,, A(2) has sharp peaks in
which A(z) exceedsits averaged value by morethan one
order of magnitude. In this case, the width of the peaks

PLASMA PHYSICS REPORTS Vol. 27 No.5 2001

decreases and the maximum field strongly increases as
w — w,;. Similar behavior of the field is observed
when the frequency approaches the boundaries of the
other forbidden bands.

Figure 5 shows the profiles of the phase shift 8(2)
caused by periodicity for different frequencies. Far
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from the boundary frequency w,,, the profile 6(2) is
nearly sinusoidal and the absolute value of 6(z) israther
small. Asthe frequency approaches w, ;, the profile 6(2)
changes substantialy: the sinusoidal profile transforms
into a sawtooth profile, and the maximal values of 6(2)
increase substantially. It is also of interest to analyze
the amplitudes of spatial harmonics.

Figure 6 shows the amplitudes of spatial har-
monics of the longitudinal electric field A, =

%Uﬁ E0, 2exp(-ilky(w) + nky]2)dz| at different fre-

guencies. Asis seen from Figs. 6a—6d, the contribution
from higher spatial harmonics to the total field
increases substantially as w — w,,. The spatia har-
monic with n = =1 has a maximum amplitude; its
amplitude becomes comparable with the amplitude of
the fundamental spatial harmonic in the vicinity of w, .

The amplitudes of higher harmonics are signifi-
cantly lower. However, they fall Slowly asthe harmonic
number increases, so that their total contribution is sub-
stantial (especialy, near the boundary frequencies),
which explains the formation of regions with the high
energy density of the electromagnetic field.

6. CONCLUSION

The dispersion properties and field distribution of
plasma waves in a periodical plasma-filled waveguide
have been thoroughly analyzed for thefirst time. Using
the new approach proposed in [22], the problem of the
dense spectrum of plasma waves in a periodic plasma
waveguide is solved. Specific features of both the spec-
trum of plasma waves and the distribution of electro-
magnetic fields are revealed.

The forbidden bands for plasma waves in periodic
plasma waveguides are predicted and correctly investi-
gated for the first time. It is shown that the effect of
periodicity is negligibly small for frequencies far from
the forbidden bands, even when the corrugation depth
is relatively large. As the frequency approaches the
boundary of the forbidden band, the effect of periodic-
ity on the dispersion characteristics and the field distri-
bution becomes stronger. At the boundaries of the for-
bidden bands, the wave group vel ocity tendsto zero. At
the sametime, the plasmawave field strongly increases
in narrow spatia regions: the closer the frequency to
the boundary freguency, the higher the field amplitude
and the narrower the region where the field is concen-
trated. Such an unusua behavior is due to the contribu-
tion from higher spatial harmonics, which, unlike the
case of electromagnetic waves in a periodic vacuum
waveguide, are volumetric in character.

Such diversity of the dispersion characteristics and
field distributions is favorable for implementing vari-
ous regimes of the interaction between plasma waves
and charged-particle beams. Previously, the modula-
tion of an electron beam in a nearly sinusoidal plasma

ZAGINAILOV

wave field was studied in detail. However, the modula-
tion character may change substantially as the fre-
guency approaches the forbidden band.

The results obtained may aso be of interest for the
development of plasma-based charged-particle acceler-
ators, becauseit is shown that, under certain conditions,
the local values of the plasma wave fields in periodic
plasma waveguides can be very high.

Although we have considered in detail one of the
simplest plasma-filled periodic structures (a planar cor-
rugated waveguide filled with a fully magnetized, cold
uniform collisionless plasma), we can anticipate that
the results obtained are general in character and the
method used may be extended to researching plasma
structures that are closer to the experimental ones.
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Abstract—A study is made of the generation of electromagnetic waves during the merging of two Langmuir
plasmonsin a hot plasmawith amagnetic field. It is shown that the frequency of Langmuir plasmons can vary
in the range from 0.8 to 1.1 of the electron Langmuir frequency. The spectrum and polarization of the emitted
electromagnetic radiation are analyzed. It is found that the thermal motion of plasma particles may lead to the
generation of electromagnetic wavesin the frequency range from 1.6 to 2.2 of the electron Langmuir frequency.
In a plasmawith an isotropic Langmuir turbulence spectrum, the degree of circular polarization of the emitted
radiation can amount to 50%. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Conditions favorable for the onset of Langmuir tur-
bulence may often arise in both laboratory and space
plasmas. In aturbulent plasma, electromagnetic radia-
tion can be generated during the merging of two Lang-
muir plasmons, 1, + 1, — t [1]. This process in the
absence of a magnetic field was thoroughly examined
in monographs [1-3]. The presence of a magnetic field
significantly alters the generation of electromagnetic
radiation. For a weak magnetic field, the generation
process was investigated by Zlotnik [4], who analyzed
both the polarization and power of the electromagnetic
radiation generated during the merging of two Lang-
muir plasmons in a cold plasma without allowance for
the effect of the thermal motion of plasma particles on
the plasma dielectric tensor and, accordingly, on the
dispersion of Langmuir waves.

In this paper, we investigate how the thermal motion
of plasma particles affects the merging process in a
plasma with Langmuir turbulence in a magnetic field.
We treat the case in which the electron gyrofrequency
islower than the electron Langmuir frequency. Assum-
ing that the plasma particles obey a Maxwellian energy
distribution and taking into account thermal correc-
tions, we investigate the polarization of the generated
electromagnetic radiation.

2. DISPERSION RELATION FOR LANGMUIR
WAVES IN A HOT PLASMA WITH A MAGNETIC
FIELD

The expression for the dielectric tensor of a plasma
in amagnetic field can be found, e.g., in monographs
[3, 5]. We use the expression presented in the book by

V.L. Ginzburg and A.A. Rukhadze [5]. Under the con-
ditions

28 = ((KpVre)wae) < 1,

Y, = =il g W
€ Ulky v O
wheres=...,-1,0, 1, ..., the plasma dielectric tensor
elements are
S {1-2.+Z2(5/8)
S)()( =
2(*)1(0\)1 Wge)
x {1+ Bie + 3PBre —i J/(TU2)Breexp(—B1e/2)}
wz (2)

2—_—-_-_0)1(0)1 " (*)Be){ 1-Z.+ z? -(5/8)}

x {1+ Bre + 3B — i /(TU2) BieeXp(—B2e/2)}

2
wpele 2
= = {17 +
SXZ SZX Zwleeklz{ l Ze Ze(5/8)}
x{ B te— B1a+ 3Bl — 3P1e 3)

+ i /(T02) (B1eXP(—B1e/2) — B_ro€XP(—BZ1e))} -
b {1-Z,+Z2(3/4))

klz Te
x { = oo — 3Boe + i /(TU2) Boe€XP(—Boe/2)}

pe(wl (*)Be)z

w

€, =1+

{1-2Z,+Z2(5/8)}
2001k1z Te
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x{=PB1o—3PBe + i J(TU2)Br&XP(-B1/2)}  (4)

2
+ Wpe(W + Wge)Z

2

- e(1-2Z, +Z%(5/8)}
20:K1,V 1e

x { = Be =3Bt + i /(TU2)B_yeXp(—B1e/2)} -

The dispersion relation for the longitudinal Lang-
muir waves in a magnetic field has the form

KKy = 0. s)
ky

For ahot plasmain which the electron gyrofrequency is
lower than the electron Langmuir frequency, the solu-
tion to Eqg. (5) can always be represented as the sum of
the Langmuir frequency and small terms (thermal cor-
rections and corrections introduced by the magnetic
field).

We substitute the tensor elements (2)—(4) expanded
about the electron Langmuir frequency w, into Eq. (5)
to obtain the following dispersion relation for Lang-

muir turbulent pulsations in a plasma with a magnetic
field:

w XC+E+yG’

(6)

pe

where
_ 1 _ 2 22 -4
A= 1_2—(1—a){1 bxa " +b"x"a (5/8)}

x{1+by(1-a)"+3b%y*(1-a)"'}
1
“2(1+a)

x{1+by(1+a)”+3b%y’(1+a)”},

)
2.2 -4

{1-bxa+Db’x’a *(5/8)}
C= %{1—bxa_2+ b>Ca(5/8)}

4+a + 4—a}
(1+a)° (1-a)" ®

6+a 6—a U
6+ 6:|D
(1+a) (1-a)-0O

U2+a
XD >
(1+a)

+ 2_a2+by[
(1-a)

+ 3b2y2[

2.2_-4

F = 1+{1-bxa’+b’x*a*(3/4)}{-1-3by}

+ DX 01 bxa?+ biCa(5/8)}
2a 9)

1 .1

l-a 1+a (1-a)° (1+a)*Q

PLASMA PHYSICS REPORTS Vol. 27 No.5 2001

399

2.2 _—4

G = {1-bxa’+b’x’a "(3/4)}{ 2 + 12by}
+ DX 01 bxa? + biCa(5/8))
2a (10)
O _ —_a 10
>(DZ+a2+ 2 a2+ y[ 4+a4 4 aJD
Ol+a)” (1-a) (1+a) (1-a)-0O

2.2 _-4

D = g{l—bxa_2+b x’a™(5/8)}

"5 y[(l-i-la)z_(l—la)z} (11)

+3b2y2[ 1 - 1 4}%
(1+a) (1-a)-0O

2.2 -4

E = g{l—bxa_2+b x*a(5/8)}

3— 3
"5 [(1—:)3_(1:;3}

5-a 5+a 70
5 5:|D
(1-a)” (1+a)-0O

(12)

+ 3b2y2[

K2v2
a= == b=-23% x-= sin’e,,
Wpe Wpe (13)

y = coszel.

Expression (6), whichisvalid under conditions (1), can
be reduced to asimpler form containing only first-order
(in parameter b) thermal corrections:

0 (K1) = Wpe _
()

§b + lazx - %xz.

27 27 55 (14)

pe

Note that, according to expressions (13), the parameter
b/a? isthe squared ratio of the electron gyroradiusto the
wavelength of the Langmuir plasmon. Figures 1 and 2
show the dependence of the ratio (w — W)/t in for-
mula (6) on the angle 6, between the wave vector and
the magnetic induction vector for different values of
b/a> and b. We can see that, under conditions (1), the
Langmuir plasmon frequency w for the maximum pos-
sible values of b/a? and for 6, closeto 90° islower than
the electron Langmuir frequency by 20%, whereas for
B, closeto zero, wis higher than wy,, by approximately
5-10%. Notethat, in accordancewith formula (14), this
difference is pronounced even in the linear approxima-
tion in parameter b. Hence, we can conclude that, if the
Langmuir turbulence spectrum contains plasmons with
wavelengths close to the electron gyroradius, then the
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AGYG,

—04 I I I ]

Fig. 1. Dispersion of Langmuir waves (Aw = w| — tpe) VS.
the angle between the magnetic induction vector and the
wave vector for b = kf v?e / wﬁe = 0.01 and different ratios
of the squared electron gyroradius to the squared wave-
length: b/a” = (a) 0.09, (b) 0.16, and (c) 0.36.

Aww,
0.4

-0.4 L I I |

Fig. 2. Sameasin Fig. 1, but for b= 0.03 and b/a® = (a) 0.27
and (b) 0.48.

merging of two such plasmons can result in the gener-
ation of electromagnetic radiation in the frequency
band from 1.6, t0 2.2, (in accordance with the con-
servation of energy and momentum during the merging
process). Below, wewill beinterested precisely in these
mergings, assuming that the plasmon wavelengths in
the Langmuir turbulence spectrum range from 1.4
((b/a?) = 0.5) to several electron gyroradii.

TIRSKY et al.

3. MERGING OF TWO LANGMUIR PLASMONS
ACCOMPANIED BY THE GENERATION
OF AN ELECTROMAGNETIC WAVE

We consider the merging process in a hot plasma
with amagnetic field. Wetake into account thermal cor-
rections through the first order in the expansion in
parameter b and assume that a < 1/3. In the Langmuir
turbulence spectrum, we are interested in plasmon
wavelengths 217k, that range from 1.4 to severa elec-
tron gyroradii, in which case the wavenumbers of the
Langmuir plasmons are much larger than the wave-
numbers of the generated electromagnetic radiation

and the conditions ZZ < 1 and B2 > 1 hold.

The merging process under
described by the equation [1]

2+ Btz 100

investigation is

15
_ 4 3200, 2t e, 22 2t ()
= 4(2m°w [%(w sK)} B(K°c” - el )Ry (K).
Here,
a
Von(K) = [ (- e [ (e
(16)

Reij = IdKldK25(K —K;—K,)

X ' (K )1 (K)A(K, Kg, K)AF (K, Ky, Ky),

where K(w, k) is the four-dimensional wave vector of
the generated electromagnetic wave, K,(w,, k,) and
K,(w,, k,) are the four-dimensional wave vectors of the

Langmuir plasmons, a,t( is the plasma dielectric func-
tion, and I;; (k) isthe spectral matrix of electromagnetic
radiation. When the electron gyrofrequency is much
lower than the electron Langmuir frequency (i.e., the
dispersion of the Langmuir wave is determined by
small correctionsintroduced by the plasmatemperature
and magnetic field), we have

1'(K2) = W (ky)8[ 0, (ky)1/4TT, -

1'(K2) = W (kz)8[ 02, — w (ko) 1/4TT,

where W'(k,) and W!(k,) are the spectral functions of
the Langmuir turbulence.

Consequently, we can take the integrals over w, and
w, in formula (16) and use expressions (17) to arrive at

RK,ij = Idkldkzé(k -k, - kz)é[w—w'(kl)
— 00 (k) 1(4T0) "W (K )W (K)A A,
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where quantities A; are functions of variables k, k,
k -k, w, wk;), and ok — k).

In the last expression, we take the integrals over the
absolute value of dk, and over the vector dk,. As a
result, we obtain

R

K, i
-1
. 0o | | 0
= 0,d6,d —w(ky)-w(k—-k
Ism L 1<pl%m[oo w(ky) —w( 1)]% (18)

x (418) "W (k)W (K =k )M

where k.. 1S the solution to the following algebraic
equation, which reflects the conservation of energy (or,
equivalently, frequencies) in the merging process:

w- (k) —w (k—k;) = 0.

kl = klcons !

(19)

To first order in parameter b,
2 2 2
| _ 3k1VT (L)B . 2
w(kl) - (‘ope+—2—0—‘);e—e+§(:)'pism 0,
22 (20)
.4
_ 21 £ 0W,eSiN 6y,
Wge
3(k —k,)?v2
Q)l(k—kl) = W+ ( 1) Ve
2Wpe (21)

, Wee(ksin® —k;sinB,)* V7.0, (ksin® —k,sin@y)"
260pe(k —ky)” 2050(k —ky)”

where 8 is the angle between the wave vector of the
electromagnetic wave and the magnetic induction vec-
tor.

When the absol ute val ue of vector k ismuch smaller
than the absolute values of vectors k; and k,, vector
K, .ons 1S related to the frequency of the generated elec-
tromagnetic wave by the formula

2
leOnSt
Bv2, viw,. .. 022
= (W= 20050 — Wped X)/ — — —1=P2qin'g,
(0Wpe Wge U

in which the terms on the order of k/k, are neglected.

It is seen that, under the above conditions, expres-
sion (22) with a negative denominator describes the
generation of electromagnetic waves whose frequen-
cies are lower than the doubled Langmuir frequency.
When the denominator is positive, expression (22)
describes the generation of electromagnetic waves at
frequencies higher than the doubled Langmuir fre-
guency. Notethat, by virtue of the resonant character of
the frequency conservation during the generation of
electromagnetic waves, the thermal corrections prima-
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rily affect the relationship between the absolute value
of vector k, and the expression for the frequency of the
emitted electromagnetic radiation. Note aso that,
although expression (22) containsterms proportional to
a2, the relationship between the wave vector k; of the
Langmuir waves and the frequency w of electromag-
netic radiation is described by terms of thefirst order in
parameter a, because the left-hand side of expression
(22) is the squared wavenumber of Langmuir turbul ent
pulsations.
To first order in the parameter k/k,, we obtain
002,SiN’0
Wpe— Bew—l —£12(6,84, k vy
pe
2 2 . 4 1(23)
3V7e V7eWpeSin 0,
W

w-2

1
2
klconst -

2
pe Wge
where

K O 3K gong Vre(KKy)
Wpekky

fy =

klconst O

(kky)
Kk,

2
Wgel . 2
+—Be[sm 0,
Wpe

(24)

—sinelsine}

2

2
_M[én“e () —Zs‘”egnel} :

1
Wee Kk, 0

According to expressions (23) and (24), first-order
effectsin k/k, can only affect the generation of electro-
magnetic waves at frequencies that differ from the fre-

quency
2 . 2
Ws.SIN"0
W = 20, + ——t
Wpe

at which theradiation is emitted most intensively by the
amount

2
A= L Vrekks

2co,§e P
Below, when analyzing the generation of electromag-
netic radiation during the merging process, we will
exclude from consideration thisfrequency range (under
conditions typical of, e.g., the plasma in the solar
corong, itswidth isusually smaller than 5% of the elec-
tron plasma frequency).

For high-frequency Langmuir turbulent pulsations
in a magnetic field, quantities A; can be expanded in
powers of the small parameters wg./w and b (the latter
parameter accounts for the thermal motion of plasma
particles) [1]. In such expansions, it is sufficient to
retain terms up to first order in both wg./w and b. The
higher order terms are neglected because they are much
smaller.
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In this approximation, quantities A; have the
form [1]

}\i(K! Kll K2)

¢ - | | (25)
= Mpi(h, n)2Smi(K, Ky, Ko)€p(Kq)€ (K2).

K K .
Here, e'p(Kl) = K—l e (Ky) = K—z; the matrices
1

2
M, (h, n) describe the transition from the laboratory
frame of reference to the frame related to the generated
electromagnetic wave [6]; and the tensor elements S,
have the form [1]

Sx, ip(K! Ky, KZ) EBXI Beéyl [Sp(KZ) (26)
S\/,ip(K1 Kll KZ) Eﬁyl Beém [Sp(KZ) (27)
S, ip(K, Ky, Ko) = 0,4S,(Ky), (28)
2
Sp(KZ) = —er[Sr (K2) 6r ] (29)
(4)’nglele i
where n, is the electron plasma density, |e| is the abso-
lute value of the electron charge, and elp isthe dielec-
tric tensor for Langmuir plasmons.
In this case, expression (25) reduces to
k,singO R O
Moy ) = oS00 ool (k)
(41'[) nyew O
k,sinpO Wge
—(pD3| 2)"" y(Kz)D
(4T[) nyew] O
(30)
o000 ) e k)
(4n) noeooD
W ek cosopU R
— Lo S (k) i '<K2)D
(4T[) noewD

Ay(K; Ky, Kp)

2
k,cos0 cosgl] O
= S (k) + e (k)

(411) new [

TIRSKY et al.

wek cos6 cosg] o O
# Lt B0 () + 12 (K)
(411) Nyew O a1

2 .
w,.K,cos0sinel]
+ Lo 0 ST (k) —i 2 '(Klm
(4 ngew O

k cosGsmch .( 2)_| Wge '(KZ)D
(411) nyew D
w2.Sn0
— 22— fe,(K )k, + €,(Ko)Ky}
(410 new

We expand expressions (30) and (31) in powers of the
small parameter k/k, and retain terms up to second
order. As aresult, we obtain

)\X(K,Kll KZ)
2ke(|<1)s'n(pD [EL(K, )+| Dee I(Kl)D
e 0 (32
wezke Ky) cos@U]
o (1) @ e, (K 1)—| e(Kl)D
(41'[) Nyew D
Ay (K, K, Ky)
2 |
_ Wpe2ke (Ki) CoSBCOSQL! (k) + el (k)
(am’new 0 C
0>.2Ke'(K,) cosesingD (33)
e ! “e l
p > By (Ky) —1—= = (Kl)D
(41) " npew O

2 | .
wy.2ke (K;)sinB
L)

(4n)2n0eoo

In a plasma with a magnetic field, Langmuir turbu-
lence is often generated during the injection of arela
tivistic electron beam. In laboratory instalations (e.g.,
in the GOL-3 device at the Budker Institute of Nuclear
Physics, Siberian Division of the Russian Academy of
Sciences), arelativistic eectron beam isinjected along
the magnetic induction vector. In a laboratory plasma
with amagnetic field such that the gyrofrequency of the
plasma electrons is lower than the electron Langmuir
frequency, the ions are, as a rule, unmagnetized and
obey an isotropic velocity distribution [7]. Langmuir
plasmons scattered by the plasmaions become distrib-
uted isotropically on time scales T on the order of [1]

1 W
T DmpeneTe'
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In such devices, the spectrum of Langmuir plasmons
may become isotropic when the characteristic isotro-
pization rate T~' ismuch higher than both the frequency
of binary collisions between the plasma electrons and
the inverse duration of the electron beam. This situation
can arise when the plasma density is about 10—
10 cm~3 and the density of the relativistic electronsis
about 10''-10"2 cm3 (the energy of relativistic elec-
trons being about 1 MeV); in this case, the gyrofre-
guency of the plasma €electrons is lower than their
Langmuir frequency. In space plasmas, the Langmuir
turbulence spectrum often becomes isotropic under
conditions analogous to those in the solar corona and
the Earth’sionosphere. For such space plasmas, theiso-
tropic Langmuir turbulence approximation, which is
often used in model calculations, wasjustifiedin[1, §].
Hence, when arelativistic electron beam propagates in
laboratory or space plasmas with a magnetic field, the
Langmuir turbulence spectrum may often become iso-
tropic.

We consider an isotropic Langmuir turbul ence spec-
trum of theform (n # 3)

| | 2°W (3
WkZ:_kl - Wkl - ( Sr]?] !
kl(klmax 1min
such that
I(1max dk
[w, S w,
(2m)

k

1min

where W' is the energy density of Langmuir turbulent
pulsations and Ki,,,, and k;;, are the maximum and
minimum wavenumbers in the Langmuir turbulence
spectrum. We take into account the relationships [1]

dw[lK XX K —l(lK X K,X)]
F[* I yy y y

26(00 € )D
X% G o(w—w,),
where
0(w'e) _ o(w'n’) _
o dw @ VRT M

We also take into account the fact that the functions I
and I, of electromagnetic waves with left-hand and
right-hand circular polarizations are related to the func-
tionslg , and 1, by the expressions[1]

| ¢ = Kl &

“r L

Under the above conditions, we can a so use the foll ow-

ing expression for the refractive index of the electro-
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magnetic waves [4]:

0 0

0 wieDZD _ wﬁewBel cos6| O

nB = [ﬂ.——ZD [ﬂ.+ 5 U
c U 0 3 w-.00
0 2w O-—200

0 0 oo 00

Then, substituting expressions (32) and (33) for A; into
formula (18), we arrive at the equation describing the
generation of electromagnetic radiation during the
merging of two Langmuir plasmonsin amagnetic field:

|:2 + Vt _a_i|| = I[_(W_llz_
at QBOI’ 00? 8n0mec4
Wpe (3Vre)"

(klmax

15
(3-n)’(1-p?°
—N\2 2

lmin

(34)

[[15 ap’lcos| (5 p?)
[1 e h’sne d6,[U,(6,8,)

+2apU,(8, 8,)] 1" "(w, 8,) 3 7°(8,),
where

U,(8,0,) = sin*Bsin’0, —

- 2 2 .2 2
—6sin"Bcos Bsin"6,cos 6,

0.75sin"0sin’6,

2 2 4 4
+2cos 6cos B, —2cos Bcos 0,

U,(8, 0,) = sin°Bcosdsin’e,
—23inzecosesinz(-)lcoszel + cossesinzelcoszel,
p = wpe/w.
For w < 20y, We have
f (w0, = 2—p ' +a’sn’0,,

1

f,(8;) = —sin'0, -1,
3a

& = Oyim = arCS'nEB

U
5 W0 g
U = 11— By,

For w = 2wy, we have

f,(w0,) = p —2-a’sin’6,,

fz(el) = 1_%9-”4911 E = 0! u= ellim'

3a
Formula (34) impliesthat, for n = 2, the power of elec-
tromagnetic radiation (right- and left-polarized waves)
emitted into a unit solid angle from the unit volume of
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Fig. 3. Spectral powers (1) J g and (2) J,y of the generated
electromagnetic waves with right- and left-hand circular
polarizations vs. the angle between the wave vector and the
magnetic field for a= wpe/tye = 1/3 and (1/p) = e = 2.1.

Joors Joar» @D, units
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Fig. 5. Sameasin Fig. 3, but for 1/p = 1.95.

aturbulent plasma per unit frequency interval is equal
to

_ W)’ Buwpevre (1-p)
R =
“T 8 r]Omecs(klmax - k1min)2 p2

J

3 3 2
9 [11 ap | coso| -ap |cosB|(5—p )} (35)

2(1-p% 2(1-p%)
£%(8y)
£7%(0,0,)

For estimates, we consider the case in which k.., =
Kpe/4, Where Ky, is the wavenumber corresponding to

x [ 96,08, [U;(8, 6,)  2apUs(8, 6,)]
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Fig. 4. Sameasin Fig. 3, but for 1/p=2.2.

Joor> Joar» @D, units
6 —

Fig. 6. Same asin Fig. 3, but for 1/p = 1.8.

the Debye radius. The spectral power of the generated
right- and left-polarized waves as a function of the
angle between the magnetic induction vector and the
direction along which electromagnetic radiation is
emitted isillustrated in Figs. 3—7, which were obtained
for different values of parameter p and for a = 1/3. One
can seethat, for p~! > 2, the maximum intensities of the
emitted right- and left-polarized waves are nearly the
same and the corresponding intensity profiles are
peaked in the angular range 0 < 6 < 1. The degree to
which the generated radiation is polarized is smaller
than 0.1.

For p! < 2, the right-polarized waves are emitted
preferentialy in the angular range 6 ~ 1, while the
intensity profile of the generated | eft-polarized wavesis
PLASMA PHYSICS REPORTS  Vol. 27
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Joor> Jr» &D. UNits
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Fig. 7. Same asin Fig. 3, but for 1/p = 1.6.

Jo
200

100+

1.6 1.8 2.0
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Fig. 9. Sameasin Fig. 8, but fora=1.4.

peaked at 8 ~ 2. The degree of polarization can amount
to05(forp'=1.6 and 6 =2).

Figures 8-10 display the radiation spectra obtained
by integrating the spectral power of the generated right-
and left-polarized waves over the angle in the ranges
W> 20y and w < 2wy, for different values of the
parameter a and for K., V1e/Wge = 1/1.4. From Fig. 8,
we can see that, for a = 1/3, electromagnetic radiation
is primarily generated at frequencies in the range w >
2ye. On the other hand, for smaller a values (i.e., for
weaker magnetic fields), the radiation spectrum is
peaked in the frequency range w < 2w, because, in
dispersion relation (14), the term that accounts for the
magnetic field effect becomes smaller. That is why, in
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Fig. 8. Angle-averaged spectrum of the generated electro-
magnetic radiation for a = 1/3.
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Fig. 10. Sameasin Fig. 8, but for a=1.6.

Figs. 9 and 10, we present radiation spectraprecisely in
this frequency range.

Note that, in formula (35), the frequency band of the
emitted radiation does not depend explicitly on the
plasmatemperature. However, from relationships (19)—
(21), we can find that the minimum frequency in the
emission spectrum is approximately equal to w,,;, =

2 k2 2
('oBe | max VTe

200+ — ———— W}, and the maximum frequency
Ope Wge

i 3k’ v? . .

is about 0, = 20 + %; i.e., the bandwidth

pe
of the radiation spectrum is governed by the plasma
temperature. For the parameter values a = 1/3 and
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KimaxV1e/Wge = /1.4, for which formulas (19)—<21)
indicate that the frequency spectrum of the Langmuir
turbulence extends between 0.8 and 1.1 of the electron
Langmuir frequency, the electromagnetic radiation is
seen to be generated at frequencies from wy,, = 1.6y,

10 8 Wyax = 2.20Wpe

4. CONCLUSION

We have shown that, when the ratio of the electron
Langmuir frequency to the electron gyrofrequency lies
in the range 3-8, the frequency of the electron Lang-
muir waves in a hot plasma with a magnetic field can
vary from 1.1w, (for oscillationsin the direction of the
magnetic induction vector) to 0.8wy, (for oscillationsin
the transverse direction). According to the energy con-
servation law, this circumstance provides the possibil-
ity of generating electromagnetic radiation in the fre-
quency band from 1.6, t0 2.2, inthel; + 1, —t
merging process. The closer the radiation frequency to
20y, the higher the radiation power (this is valid for
generation at frequencies both above and below 2w,).
However, for a sufficiently strong magnetic field such
that the ratio of the electron Langmuir frequency to the
el ectron gyrofrequency isequal to three, theradiationis
generated predominantly at frequencies in the range
w> 2w, As the magnetic field decreases, the peak in
the radiation spectrum is displaced into the frequency
range w < 2.

The degree of circular polarization of the generated
electromagnetic radiation can be as high as 50%.

When the minimum wavenumber of the Langmuir
turbulence spectrum is much larger (by a factor of ten
or more) than the inverse gyroradius of the plasmaelec-
trons, electromagnetic radiation can only be generated
at frequencies equal to the doubled electron Langmuir
frequency or higher (this process was investigated by
Tsytovich[1]). When the maximum wavenumber of the
Langmuir turbulence spectrum is much smaller than
the inverse electron gyroradius, the energy conserva
tion law (19) and dispersion relations (20) and (21) for

TIRSKY et al.

the frequencies of Langmuir plasmons imply that elec-
tromagnetic radiation is also generated exclusively at
frequencies above the doubled electron Langmuir fre-
quency.

For an arbitrary Langmuir turbulence spectrum (i.e.,
for an arbitrary anisotropic Langmuir turbulence spec-
trum with arbitrary ratios of the minimum and maxi-
mum wavel engths to the gyroradius of the plasma el ec-
trons), the minimum and maximum frequencies of the
spectrum of the generated electromagnetic waves are
determined from the energy conservation law (19) and
dispersion relation (20) for the frequency of Langmuir
plasmons.
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Abstract—A multifluid MHD model is applied to study the magnetic field dynamics in a dusty plasma. The
motion of plasma electrons and ions is treated against the background of arbitrarily charged, immobile dust
grains. When the dust density gradient is nonzero and when the inertia of the ions and electrons and the dissi-
pation from their collisions with dust grains are neglected, we are dealing with a nonlinear convective penetra-
tion of the magnetic field into the plasma. When the dust density is uniform, the magnetic field dynamicsis
described by the nonlinear diffusion equations. The limiting cases of diffusion equations are analyzed for dif-
ferent parameter values of the problem (i.e., different rates of the collisions of ions and electrons with the dust
grains and different ratios between the concentrations of the plasma components), and some of their solutions
(including self-similar ones) are found. The results obtained can a so be useful for research in solid-state phys-
ics, in which case the electrons and holes in a semiconductor may be analogues of plasma electrons and ions
and the role of dust grains may be played by the crystal lattice and impurity atoms. © 2001 MAIK

“Nauka/Interperiodica” .

Dust structures are frequently encountered in
space plasma: these are, e.g., planetary rings, inter-
stellar clouds, and comet tails. It isinevitable that the
dust is present in plasmas of experimental and indus-
trial devices. Thus, the dust adversely affects the per-
formance of computer chips produced by the plasma-
etching method. Thisimportant and challenging prob-
lem has stimulated theoretical and experimental
efforts aimed at studying dust-related processes in
plasmas [1].

The presence of dust in plasmas substantially mod-
ifies the picture of plasma phenomena that is usually
found in the two-fluid MHD approach [2]. There are
many papers devoted to charge-exchange and recombi-
nation processesin real dusty plasmas. Here, in order to
concentrate our attention on the characteristic features
of the magnetic field dynamics in a multicomponent
plasma, we assume that the dust plasma component is
represented by point grains having a constant charge
(see, e.g., [3]), in which case the plasma electrons and
ions experience purely Coulomb collisions with the
grans. In the steady-state and linear approximations,
analogous problems have been treated in solid-state
physics [4], in which case the electrons and holes are
analogs of plasma electrons and ions and the role of
dust grainsis played by the crystal lattice of a semicon-
ductor. In this paper, we derive equations for the mag-
netic field dynamicsin adusty plasma. In particular, we
describe an effect that i s anal ogous to the magnetoresis-
tance effect, which iswell known in solid-state physics.
The term “ magnetoresistance” has not yet found wide-
spread use in plasma physics, although the effect itself
has been rediscovered by many plasma physicists.

We describe the magnetic field dynamics in a dusty
plasma by the standard set of equations consisting of

the equation of mation for ions and electrons without
consideration of the inertia terms (Aristotle’'s equa-
tions)

e m
—eE ~$1ve B] - TV, ~vo) ~Mveeve = 0, (1)

Z.e n
ZeE + _(|: [vi,B] + ?He(vi —Ve) —=Mviqv; = 0, (2)
i

j = eZnyv;—eny,, 3)

where vy and v,y are the rates of the collisions of
plasma electrons and ions with the dust grainsand 1 =

Ty = v;il , Vg IS the electron—on collision rate; the con-
tinuity equation

on, . _ oA
5 Tdvneve =0, a =ie “

the condition for the plasma to be electrically neutral
(the electroneutrality condition)
Zini+Zgng—ne = 0, )

where Z, isthe grain charge and ny is the grain density;
and Maxwell’s equations

_ 198
curlE = St (6)
curlB = 4—:]. (7)

The main difference of the set of equations pre-
sented here from the standard two-fluid MHD equa-
tionsisthat we incorporate the dust component into the
electroneutrality condition (5), which now implies that
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Fig. 1. Geometry of the problem.

the plasma electrons and ions are not directly coupled
to each other, but occupy such spatial positions that the
difference between their charge densitiesis equal to the
prescribed dust charge density.

In Egs. (1) and (2), we neglect electron and ion iner-
tia, respectively, and, in Eq. (6), weignore the displace-
ment current. The corresponding strong inequalities
under which these simplifying assumptions are valid
will be presented below. In Egs. (1) and (2), we discard
terms with the gas-kinetic pressure and thermal forces;
i.e., we assume that

N, T, < Bz, a=ie.

If,in Egs. (1) and (2), we also omit terms accounting
for collisions of plasmaelectrons and ionswith the dust
grains, we can sum Egs. (1) and (2) multiplied by n, and
Zn;, respectively, to obtain

-—ZdndeE-+[£,B} = 0. )

Under this condition, the characteristic spatial and tem-
poral scales a and T on which the inertial terms in
Egs. (1) and (2) can be disregarded satisfy the inequal-
ities

c Zn
Wpi ZgNg'

We divide Eq. (8) by the dust density and take acurl

of the resulting equation:
0B ]

— + —_

ot curl [Zd ny€’

When the transverse (with respect to the magnetic field)
dust density gradient is nonzero, we are faced with a
situation similar to that described by Kingsep et al. [5].
The exact solution that they derived in terms of the
electron magnetohydrodynamic (EMHD) model,
which makes it possible to treat electron motion
against the background of immobileions, implies that
the magnetic field either penetrates into the plasma
due to the transverse ion density gradient or islocked

-1
a> T < Wy

B}zo.
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at the plasma boundary. In our problem, therole of the
ion density gradient is played by the dust density gra-
dient [6].

The equation for the magnetic field dynamics (the
Hopf equation) has the form

0B 0B _
E*‘kB& =0,

c 0l g

- 4medzlZ n U

The magnetic field penetrates into the plasma in the
form of a shock wave moving at a constant speed v =

2
by the competition between the nonlinear effects and
diffusion. In our problem, the diffusion term is omitted.
However, as the shock front steepens, the spatial scale
a shortens; when it becomes as short as a =
(C/wyi)Zini/Zgng, €lectron and ion inertia should be
taken into account (see [7]).

In order to clarify the consequences of the el ectron—
grain and ion—grain collisions, we consider the simpl est
one-dimensional problem, setting 0 = . Sincetheions
are much heavier than the electrons, M > m (see aso
[2]), we take into account only ion—grain collisions.
Stricter inequalities, under which electron—grain colli-
sions may be neglected, will be presented below. We
direct the y-axis along the magnetic field (B = B,) and
consider the magnetic field dynamics along the x-axis
only (Fig. 1). We aso assume a uniform dust distribu-
tion.

In planar geometry, Eqg. (6) reduces to the simple
equation

. In[5], the shock front is assumed to be governed

10
cul E = eyE&vexB. 9)
We find the electron vel ocity from Egs. (1)—(3) and use
Maxwell’s equation (7) to obtain

2
Vex = - 2 (10)
n
8TZINIMV, 4[5 Ty + ——0
O ZynyO

Substituting expression (10) into Eq. (9) yields (cf. [3])

oB° U
7nBL=
a_B = 1 25 n ox E (11)
at 8T[Z§n§MVidaxl:| 2 _2 ns E
%oBi id ZjndZD

Since the electroneutrality condition (5) indicates that
the dust grains redistribute plasmaelectronsand ionsin
space, we must supplement the equation for the mag-
netic field dynamics with the continuity equation for
one of the plasma components, e.g., for plasma elec-
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trons. To do this, we insert the electron velocity (10)
into the continuity equation (4):

Z’nin 08"
on, _ 1 0 ' 0x
5 = 7> . (12)
t 8T[ZdndMVid Xl:l 2 2 ns |:|
(W Tig + —50
ZyngO

According to Eq. (9), the magnetic field isfrozenin the
electron plasma component. However, since the mag-
netic pressure forces the plasma electrons and ions to
“squeeze” between the immobile grains, we deal with
diffusion-like equations in which the diffusion coeffi-
cients depend on the magnetic field strength and the
electron and ion densities. Consequently, the plasma
resistivity also depends on the magnetic field strength.
In solid-state physics, this effect is known as the mag-
netoresi stance effect (see, e.g., [8]); in plasma physics,
this effect was revealed in many theoretical and exper-
imental studies (see, e.g., [3, 9]).

Now, we examine the different limiting cases of
Egs. (11) and (12).

1. First, we assume that the magnetization parame-
ter is large in comparison with the ratio of the total
charge of the plasma electrons to the total dust charge:

2 2 Ne
Wi Tig > ——.
dNg

Recall that, in the equations of motion, the inertial
terms are omitted. In the limiting case under consider-
ation, this can be done under the following conditions
on the characteristic spatial (a) and temporal (1) scales
of the problem:
2
25 Vig ¢ (Zinf

T < wg, V,
Wi wii (Z4ngd” By e
We thus arrive at the equations

oB__D 0p 0BQ
ot |Zdnd|ax%'n'6xﬂ

on; _ D 0 (Zin+Z4nq)dBn
at  |ZgngoxU B oxU

where

_—Ci - Z||Zd| nde2
4o’ Mviq

Depending on the sign of the dust charge Z;, we can
distinguish between the following four cases.

1.1. The dust chargeis negative, Z, < 0.

1.1.1. If the dust charge is much smaller than theion

charge, Ne | > 1, we can follow the evolution of the
Zyng
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giveninitia profile of the magnetic field by performing
the self-similar change of variablest =t,t, x=x,X, & =

X

=B = By I~3(E), and n(x, t) = -rlo-ﬁ (%), wherethe
t

~1/3 ~1/3

t t

zero subscript refers to the dimensional quantities and
the tilde identifies the dimensionless quantities. One of
the solutions to our problem has the form

A = A(B) = B,

y yZ4n X
5 dNd Xo g2 2

= — —_ > 0.
B (E,) GZinODtO(EO E )l y O

1.1.2. If the plasma contains only a few electrons,
then the ions are confined to the dust component and
the magnetic field evolves in the usual way, with the
diffusion coefficient

C_2 - Z||Zd| nde2
4mo’ Mv,y

1.2. The dust chargeis positive, Z, > 0.

1.2.1. If the plasma contains many more ions than
ne
Zyng

analogousto that in case 1.1.1.

1.2.3. The opposite case, in which the grain positive
Zin,
Zyny

the grains, > 1, the magnetic field dynamics is

charge substantially exceedsthe ion charge, <1,
is described by the equations
B _ D dn 9B
ot Zdndax%'n'axﬂ

ani =D 6 |j1|aB|:|

(13)

ot ox[Boxd

We can see that the magnetic field evolves much more
slowly than the ion density: it varies at a rate propor-
tiona to the small quantity Z;n,/Z;ny, which drops out
of the ion continuity equation (14). Consequently, we
can follow the behavior of the ion plasma component
while keeping the magnetic field profile fixed, in which
case the magnetic field gradient is found to expel the
ions from the plasma. Thus, for a magnetic field of the

form B(x) = Boe_xz, Eqg. (14) can be integrated by the
method of characteristics (Fig. 2):

n(xt) = ng(xe ™"

(14)

)e—ZDt
where n; is the initial ion density profile. In contrast,
for the initial magnetic field profile in the shape of a

well, B(x) = BoeX , the ions tend to concentrate in the
magnetic well (Fig. 3):

n(x t) = ng(xe™")e*™
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Fig. 2. Evolution of theion density in amagnetic field with
aprofilein the shape of ahump. Theion density profilescal-
culated at successivetimest; < t, < t; are shown.

n(x)

Fig. 3. Evolution of theion density in amagnetic field with
aprofilein the shape of awell. Theion density profiles cal-
culated at successivetimest; < t, < t; are shown.

2. Now, we analyze another limiting case of
Egs. (11) and (12); i.e., we assume that the magnetiza-
tion parameter ismuch smaller than theratio of thetotal

charge of the plasma electrons to the total dust charge:
2

n o N .
Wo T < = . In this limit, the inertial termsin the
dMNd

equations of motion can be neglected if the characteris-
tic scales of the problem satisfy the conditions

2

2 W c ONerf
a> ——=——=, T <Wg, Vg
Vig wsi [7;n,0 8 d
Under these conditions, the evolutions of the magnetic
field and electron density are described by the equa-

tions

B _ _Z ime_zdndea_BD
ot  4mMv,,0x0 n? axt!

(15)

one _ _Z 9 Me=ZyndBp
ot  4mMv,ox0  n, axt

(16)
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Asbefore, depending on the sign of the dust charge and
on the dust-to-electron and dust-to-ion density ratios,
we can distinguish between several cases.

2.1. The dust charge is negative, Z, < 0.
2.1.1. If the dust component isinsignificant in com-

ZgNy < 1, then,

ne
by analogy to case 1.1.1, we again arrive at a solution
in terms of the self-similar variables

parison with the electron component,

X
13’

t = tf, X = XX, &

—+

n(x, t)

B(x, 1) = fT%é(z), ;T%ﬁﬁ),

specifically,

2yT[Mvianx_§

2 2
e L&E)

i=A(B) = B, B'(E) =
y>0.

2.1.2. If the dust component dominates over the
Zad > 1 Egs (15) and (16)

electron component,

e
have another self-similar solution, which can also be
obtained by switching to the self-similar variables & =

X ~ ~ 1~
ETz,t:tot, X = XX, B(x, t) = f_uzB(E)’ and n(x, t) =

1 -~
—=n():
tJJZ

i=AB) =B, B = YE-E),

Zi |Zd| nd
= — <

4TMV, 4’ Osy<i

2.2.1. Findly, if the dust component is charged pos-
itively, Z; > 0, and if theion component dominates, we
arrive at aself-similar solution analogousto that in case
2.1.1.

It should be noted that the symmetry properties of
the equations of motion (1) and (2) alow usto apply an
anal ogous treatment to the problem in which the major
role is played by the electron—grain collisions and the
ion—grain collisions are neglected.

The genera equations for a dusty plasmain which
the electron—grain and ion—grain collisions are both
important is far more complicated. Thus, the dynamic
equation for the magnetic field has the form
PLASMA PHYSICS REPORTS  Vol. 27
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MMV, 4V oy C° U

BZ(MVidni + MVggNne) + —Eld‘ggd“‘(zizm\’edni +Mvgn,) U

B _ 10 z o83
ot 4mox E(Zizmvedni + MVidne)2 + ezzczing Bz% 6XB
O z? ¢ 0 O

This equation makesit possible to determine the condi-
tionsfor the rates of the collisions of electronsand ions
with the grains under which the electron—grain colli-
sions can be ignored (cf. [2]):

Vg mle mZn om0 1
Vog MnNn’ M n,’ Mn wéiTiZI

Hence, we have established that, in a dusty plasma
in which the electron—grain collisions are unimportant,
the magnetic field is frozen in the plasma electrons,
which move under the action of the magnetic pressure
force. Although, in an electrically neutral dusty plasma,
the electrons are coupled to the ions, they are freer to
move than predicted by the standard two-fluid MHD
theory. As a result, the time evolution of the magnetic
field and plasma components is described by the non-
linear diffusion equations. In such a plasma, hest is
released from the friction between the plasmaions and
immobile grains, in which case the plasma resistivity
depends on the magnetic field strength.
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NONLINEAR PHENOMENA

IN PLASMAS

Calculation of the Second-Order Polarizability
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Abstract—An analysis is made of the general expression for the density of a nonlinear charge induced in a
magnetized plasma in the interaction between two arbitrary waves. Asymptotic expressions for the nonlinear
induced charge density are derived for the first time in the case where both of the interacting waves are short-

scale. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

In plasma physics, the theory of nonlinear phenom-
ena has been developed fairly well. Thereis substantial
literature on the analysis of three-wave interactions and
the derivation of explicit expressions for the nonlinear
current in the second-order approximation (see, e.g.,
[1-3]). Thus, we can mention the familiar expression
for the nonlinear current in an isotropic plasma, which
is widely used to describe waves with arbitrary wave-
lengths [1]. An explicit expression for the nonlinear
current in an anisotropic plasma in an externa mag-
netic field was derived only in the hydrodynamic
approximation and applies exclusively to an interaction
between large-scale waves [2, 3]. Recently, Bindsev
[4] has generalized this approach to the scattering prob-
lem in which the “cold” hydrodynamic approximation
can only be used to describe the scattered wave. On the
other hand, a number of physical applications require
an analysis of the interaction between three short-scale
waves, none of which can be correctly described using
the hydrodynamic approach. We can mention, e.g., the
problem of describing wave scattering from the upper
hybrid resonance region (this phenomenon is used to
diagnose spontaneous small-scale plasma fluctuations
and regular short-wavelength plasma oscillations [5]).
The only thing simplifying the theoretical analysis of
such experiments is that the frequency of the scattered
signal deviatesfrom the frequency of the probing signal
only slightly and that the short-wavelength oscillations
are, as arule, potential. The latter circumstance allows
one to restrict analysis to the expression for the nonlin-
ear induced charge density.

In this paper, we develop a systematic kinetic theory
of three-wave interaction under the assumption that the
frequency of the scattered wave differs insignificantly
from the frequency of the probing wave. We derive and
analyze an expression for the induced charge density,
which provides an adequate description of the interac-
tion between three short-scale waves, regardiess of
their dispersion properties.

2. KINETIC MODEL

In acollisionless plasma, the dynamics of the elec-
tron distribution function f is described by the kinetic
equation

o3 I8 vrenat

¢ Uov
Equation (1) can be solved by expanding functionfin a

power series in the parameter 6 U vg/v,, where vg is
the electron oscillatory velocity in the wave field and

= /TJm, isthe electron thermal velocity:

= 0. 1)

t= 2%+ Y% )+ 2+ @
Here, f© is a Maxwellian distribution function and
fO(p, r, t) 00 &M,

To first order in 8, the function f®(p, r, t) is found
from the equation

Fe() _ (1)af()
Lf FH— 3)
Here, the linear operator L hasthe form
i -0,,0 ldvxB®o
ot ar my, c av “)
and FW - _lg %(m YxB™H, y=ab.

For two harmonic plasma waves with frequencies wxa)
and w(b) and wave vectors k(a) and k(b), we have
FO = Fda 4 FUb gnd O = f(1a 4 {10 \where the solu-
tions 1@ and f(P to Eq. (3) are well known from linear
theory (see, eg., [1, 3]):

a(n) E(V)

ie SiPmsne c exp(=ing)
Me - kz(y)vz+nwce_w(y),

f (1y) —
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A = [kz(v)vuaf(")
" w(y) dv,

k(Y)V,pf97 n
e el RGOS 5
m _ rky)voaf® k) vt .
= v ey [ B,
(0)
O = S Bo)

+[ z(y)VDaf

K, (v)vzaf“’)} n
w(y) ovy

o) ov, Em P

Here, Bu(Y) = Viko(Y)/ode and ke(y) = o/k5(Y) + K (Y)
withy=aandb.

The nonlinear interaction of two harmonic waves
gives rise to harmonic oscillations of the induced

charge density p2o = e f“”d’v , whose frequency
w(0) and wave vector k(o) satisfy the resonant decay
conditions

w(o) = w(a) +w(b), k(o) = k(a) +k(b). (©)

For convenience, we choose a coordinate system in
which

k(a) = (k«(a), 0, k(a)).

At the combination frequency, the second-order (in o)
correction f?9 to the distribution function is found
from the equation

=_F(1a)6f( _F(1b6f( 2

i £(20)
L ov ov

()

Since we are interested in the interaction between
amost potential short-scale waves, we define F(Y by

Fv) = % E(Y with y = a, b. Note also that, when the
e

frequency of the scattered wave is close to the fre-

quency of the probing wave, w®/w® < 1, wecanretain

only the first (main) term on the right-hand side of

Eq. (7), because the second term is small. In this case,

the solutionto Eq. (7) is

¢2o) _ 1 cibo(o)sin(o+ ()

ce
"~ ia(0)t +iBo(0) Sn(9—T+ 6(0) ®)
—10(0)T +1 og)sn(e—T1+09(0
e : ? O(p-T1, vy, v,)dr,
0
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where B(0) = Viky(0)/0e, 0(0) = (VK(O) — 0X(0))/0e,
¢@= arccos(v,/vp), and

B(y) = arccos(k.(y)/ku(y)), Y =ab,o,
_ caadf (16) &)
o, vy Vv, = —F v

The corresponding expression for the induced charge
density has the form

“od

—(ia(0)T +iBy(a)sin(g—T +8(a)))
xJ’e

0 = [ o BH(@sin(o+6(0)

(10)
@((p—r)dr}dv

0

where dv = v dvdv,do.

In expression (10), we pass over from @ to the vari-
able @+ Ttoobtain

(20) _ € iBp(o)sin(p+6(0))
S |
wC

—ia(o)t+iBy(o)sin(e+1+6(0))

(1)

00

O((p)dT}dv

0

According to formulas (9), expression (11) can be
structurally represented as

(1b)
(20) I a(v )F(la)aafv v,

J

This allows us to integrate expression (11) by part:

(20) _ 0 LU iB,(0)sin(e+86(c))
P w, J|:avk|:|
(12)

x‘[e—ior(cr)T—il?u(cr)sin(cwt+9(0))dT %:I((la)f(lb)i|dvl

0 g

Taking the derivative within an integral sign yields
od|

N .
XITke a(0)-iB(0)sn(e+ T +0(0)) | %:I((la)f(lb):|dv,
[l

0 — {D iB(0)sin(9+6(0))

(13)
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where vector T, has the components

D(G)(sne(o) sin(t +6(0))),
D o (14)
k( )(cose(c) cos(t + 8(0))), —|k(0) 3
ce ce |:|

The condition uXb)/w. < 1 dlowsusto retain only the

main term (with n = 0) in the sum in expression (5) for

the linear correction to the distribution function intro-

duced by the low-frequency wave:
a0 _ i ABu(b)sin(p+o(b) a"E"”

me kz(b)vz_w(b)

We substitute formula (15) into expression (13) and,
using decay conditions (6), reduce the product of two
oscillating exponential functions to one exponential
function:

15)

iBo(o)sin(e+6(a)) —iBy(b)sin(e+6(b))
e e

= epH < Dangf]

Hence, in order to obtain the desired expression for
P29, we must calculate the fourfold multiple integral

(20) _ | 00

4anJ [{e

—ia(0)T-iBp(o)sin(e+T+6(0))

o Fo@sine
(16)
OF(D O g }

I Tee BV~

Here, according to formulas (5), vector a® has the
components

dt

00, ~L0i3(Bu(b)) ¥ —235(Bu (b)) 10
0 |

Vi Vi

Now, we turn to the familiar representation of the
Bessal function, efsin@ = Z:= _Jn(Bo)e™™, in order
to rewrite expression (16) intermsof the product of two

infinite series:
. 2
(20) _ 1 Wpe
ATIW,,

D 0
T Jm(Bo
[EZ 3 [Tioa6-(a)

<3 (B (O_))eim(p—in((p+1+9(0))e—ia(0)TdTE
n(Po
O

F(la) O ap) N
k,(b)v,—w(b)
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Integrating this expression with respect to ¢, we obtain
a delta function, which makes one of the infinite series
summable:

2
020 = '229‘* dv,vedvf [; TeR(De e gn

e E(la) (O)E(lb)

*m K, (b)v,—w(b)’
Here, we have introduced the notation R(T) =
ge_'m(T+e(o))Jm(BD(a))Jm(BD(o)). Using the addition
theorem for Bessel functions, Jy(B;) =
Z::_mJn(Bl)Jn(Bz)gi”U’, where the argument is ) =

(T + 6(0)) and By = ./B; + B; — 28,008y , we can
take the sum of the remaining series. As a result, we
arrive at the following expression for the induced
charge density:

. 2

(20) - | ':‘pe d
= -——=(dv,vdv
2w, 28 0E

0 (17)

| K
x g Tdo(@)e™ " de
0

Oe E(la) (O)E(lb)
e z(b)vz_w(b)

where

<= 22K () + Ki(0) ~ 2kc(@)ks(0) cos(t + B(0)).

Note that, in expression (17), integration over variable
v can be performed with the help of the familiar for-
mulas for the second Weber exponential integral :

00

jexp(—pztz)aomt)Jo(Bt)tdt
0

L ep (0 +£Ig B0, L a B]
2p2

1 _k(b)

p = ’ ’
/\/éVt Wee

= L i (@) + K(0) ~ 2k (@)ko(0) cos(t + 8(0)).

Performing integration over variable v, in expres-
sion (17) givesthe probability integral

- eexp(=xY)dx
2(8) = 1/ mf FEZI
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in which case the above expression for the induced
charge density becomes

o) _ i w eE(la)E(lb)
271/2 Wee mk (b)vt
o (18)
xJ‘dTTk(T)W|(T)exp% g\ (2) 0 |(*)(A()0)TEr
0
Here, vector W, has the components Ep;
O
Z(u) _0 A T
(B (), {"); —(1 + MZ(M))A(B (b),
BID)aBb) ’

O :
(" O, the components of vector T, are given by
0

formulas (14),

= JBL(a)” + Bl(0)* — 2BL(a)B(0) cos(T + 8(a)),

Bg=ﬁkmvt AT «/ékvt’u= (o(lT)) Land i =
Oce Oce WeeA, (b)
;
wb) |, A(0)

Weeh; (b) 2

3. LONG-WAVELENGTH LIMIT

Expression (18) makes it possible to determine the
asymptotics of the nonlinear charge density for differ-
ent relationshi ps between the wave vectors of the three
waves. We start by considering the long-wavelength

limit for a probing or a scattered wave: [35 (o)<1lor
Bl(a) < 1.Weasoassumethat A, (0)A, (D)w/eb) < 1.

Note that, in the long-wavelength limit, 6(o) is the
angle that vector k(o) makes with the X-axis and,
accordingly, with the vector k(a), in which case
expression (18) is symmetric in the vectors k(o) and
k-(a). Consequently, we can treat only the first case,

namely, BE(O') < 1, because the corresponding result

in the second case(BE (@) < 1) can be obtained simply
by changing the indices.

In order to expand expression (18) in powers of
Bl (0) and A, (o), we need to determine W, = W' +

W( ) in which case vector W % has the components
{0, —ZWAy; —(1 + HZ(U)A}, where A, =

T 2
0 Bo(o)’, Ba(o)’y
eXp DIOD >0 Inturn, vectorW ) canbe
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represented as the sum of two vectors, W(l) W(l Yy
w*? | whose components are equal to

ik
Wl(l 1y _ W|(1 ) z(U)VtT
/\/éwce
~ (11) . ,
Wi = {0; =i Ag; 1A} LZ'().
k
w2 = W 2KlDVe o606 - cos(t + 6(a))),
20

Wi = {0; iBIB)ZWY AS; -BIBY(L + HZ() Ao}

We thus arrive at the final expression for the induced
charge density:

(20) (20)(0) (20)(1)

p"=P P ) (19)

where

1n( )A(O)
2nN

(20)(0) _

[w(0)]EL?, (20)

N, is the unperturbed plasma density, and n® =
J’ av Here, we use summation over repeated indi-

ces and introduce the vector G A( ) [uX(0)] representing

the convolution of the conduct|V|ty tensor o, [wX(0)] of

a cold plasma at the frequency w(0): cﬁo) [w(0)] =

ki (0)0i[0X(0)]/0X(0).

The second term on the right-hand side of expres-
sion (19) hasthe form

oo _ 1 @41,1) n(b) 5 .2 6a)
p = 21_[[ Oy No }E ,

where

(1,1)
. i2eEPWi
n(b) = k—No,
m.v k,(b)

. (1b), % ,(1.2)
n(b) = i12eE, "W N,,
mev K,(b)

PCI k(o)v, 0

“ T /2 0w(o)

¢ [0(0)],
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A(1 2 _

Plw(0)]

(0) A()

__(0 [00(0') + (*)ce] +0 [(*)(0-) wce])D

+ k() B (6 [(0) + 0] - 6" [w(0) - wce])D%

where G [W(0) % Wl = K (0)T3[6X(O) * 0xel/6XO).

In expression (19), the first term coincides with that
obtained by Bindslev [4] and the remaining two terms
are corrections that are linear in the parameters

BL(0)< 1 and A] (0) < 1. Recal that taking limit
Bl(@ < 1 and A} (0)A, (b)w./wxb) < 1 requires a

. . . T
simple replacement 0 —— ain the expressionsfor 3
in formula (20).

4. SHORT-WAVELENGTH LIMIT

Here, we consider the interaction of short-scale
waves satisfying the conditions 1 < Bg(a), BE (b),

BE (0). We also assume that )\ZT (G)A:(b)u)oe/w(b) <1.
Notethat thislimiting caseis, in particular, characteris-
tic of the scattering of a high-frequency wave (after it
has been converted in the upper hybrid resonance
region) by a low-frequency Bernstein wave [6]. In the
short-wavelength limit, the desired asymptotics of
expression (18) can be obtained by the method of steep-
est descent:

p(20) O IdTTk (T)CXP E g\z (20-)-[%
( )

eXP(@(T))

The main contribution to the integral over dt comes
from the poi nts at which the function (1) = -("%/4 +

BL(b)
In EOE{ 2 DD

are determined from the formula

O'(1)

is maximum. The extremes of O(T)

= 5@ - 1@ 1T BL(B))BI(D)) = 0
in which case the relationship

15T B B(0))BA(D) = 0 (1)
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gives the maximum ©(t) of this function, while the
relationship

=0 22)
gives its minimum.
Using the approximate equality B (0)Z7 > 1, which

holds under the condition 1 "B ()/1,C"BL () = 1,
we can rewrite solution (21) as

T = BL(b). (23)

The corresponding values of 1,,,, are equal to T(l) =

2™ and r(z) =21 - 26(0) with n O (0, »). The value

of the derivative ©'"(1) at the point at which the function
itself is maximum is determined by the relationship

(1,2

o'ty = -5 @ -l (15/10))

~_ %(Bg(a)ﬁg(o)sin(e(o))/|l3£(b)|)2 <O0.

To apply the method of steepest descent, we need to
impose the restriction |©"(1,,,,)| = 1, which can be
reduced to the following condition for the transverse
components of the three interacting waves.

BZ ()BL (9)sin(B(0))/|BE (0)] > 1.
The sum of the remaining series
% o )
> evfemif2-FEEET

ce
n=0

can be taken as follows. Introducing the notation n =

211;)0(0) dy-E2 Z( )D , werewritethe seriesas
d(y, Nn) = z:: 0exp(lnr| —yn?). The function ®(y, n)

2
satisfies the diffusion equation (% Dy, n) = a—a—z dy, )
n
with theinitial condition ®(0, n) = z:zoexp(inn) .
Since the seriesin theinitia condition is an infinite
geometric series, we have

1

2,°°0M) = oy

which allows us to represent the solution to the diffu-
sion equation for the function ®(y, n) as

®(y,n) = J’G(n -n")®(0,n")dn’,
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2
where G(n) = %yexp %—%E isthe Green’s function of

the diffusion equation.
w(0) —Mw,,
k(o) Vv,

J’G(n -n")®(0,n")dn’ =

=®(0.n)[G(n-n)dn" = ®(0,n).
Hence, we arrive at the asymptotics

For > 1 withm 0O Z, we obtain

2
N . Wy ky(b)
o, = 4/\/"_'"&['_
" WeeV1Kp(a)
. . (24)
. w(0) .w(0)
x eXpHi20(o)——< =l — expi——=
PL-i26( )wceD%l iz 0
1 n™, (1a)
Qo) =1
where p 2T N oE. .
When the frequency of the scattered waveis closeto
. w(0) —Mw,,
amultiple of the cyclotron frequency, k(o).
withm O Z and Wee 5, 1, we have
k(o) V¢
(1b)
20 _ 1N "~ —(a
~ 2 N, OxEx 7, (25)
where
Gy

_ 205, ky(b)_92(0) — Mo,
k,(c)vZKa(@) U k(o)v,

Cxpri26(0) X9
0 Wee [
(26)

and Z is the dispersion function.

A comparison of expressions (24) and (25) with
expression (20) enables us to conclude that the MHD
expression (20) substantialy (by a factor of k+(0)pe)
overestimates the nonlinear induced charge density.

5. CONCLUSION

We have analyzed the general expression for the
density of a nonlinear charge induced in a magnetized
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plasmain the interaction between two arbitrary waves.
The proposed approach for caculating the induced
charge density is based on the addition theorem for
Bessel functions and thus provides the most complete
analytic treatment. Thisenabled usto derivefor thefirst
time asymptotic expressionsfor the density of anonlin-
ear charge induced in the interaction between three
short-scale waves. Thislimiting case is of interest for a
theoretical description of the diagnostics of spontane-
ous short-scale plasma fluctuations or regular short-
wavelength oscillations by means of the scattering in
the upper hybrid resonance region [6]. We have shown
that, for a long-scale scattered wave, the nonlinear
charge density is described by the same expression as
in the MHD theory [4], whereas, in the opposite limit
k-(0)p. > 1, the MHD expression substantially (by a
factor of ky(o)p) overestimates the nonlinear induced
charge density. Presumably, this result explains the
comparatively low intensity of the waves backscattered
by the ion Bernstein modes in the upper hybrid reso-
nance region [6].
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Abstract—The electrode region of an electrode microwave discharge in hydrogen at pressures of 0.54 torr
and absorbed powers of up to 12 W is studied using emission spectroscopy and actinometry. It is shown that the
gastemperatureisat most 700 K and the degree of dissociation does not exceed several percent. Direct electron
impact is shown to be the main factor governing all the processes in the electrode region of the discharge,
including the excitation of the recorded emission. In particular, the Balmer-series H, line emission isrelated to
the dissociative electron-impact excitation of hydrogen molecules in the ground state. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

At present, initiated microwave discharges attract
considerable interest [1-3]. This interest is related to
both the fundamental problems of the interaction of a
highly nonuniform electromagnetic field with the
plasma created by this field and numerous possible
applications of such discharges. A characteristic feature
of the electrode microwave discharge (EMD), which
belongsto this type of discharges, isthat energy is sup-
plied to the discharge chamber along an initiating
antenna. Although EM Ds possess a number of interest-
ing features and there is a wide range of their possible
applications (e.g., in plasmochemistry [4]), they till
remain the least studied microwave discharges. The
EMD phenomenology, the spatial structure of a dis-
charge for different electrode configurations, and the
results of optical and probe measurements are
described in [5-9]. The observed discharge structure
was suggested to be a superposition of two discharges
with different properties, namely, a bright thin region
near the electrode and an external spherical region. It
was aso shown that an EMD could be an efficient
source of charged particles, whose density isfairly high
throughout the entire discharge chamber. Thus, it is
important to study physicochemical processesin differ-
ent discharge regions and the mechanisms for sustain-
ing the EMD.

The aim of this study is to investigate the eectrode
plasmaof an EMD in amixture of hydrogen with 5 vol %
of argon at pressures of 0.5—4 torr using emission spec-
troscopy and actinometry.

2. EXPERIMENTAL SETUP

The discharge chamber was a metal cylinder 8.5 cm
in diameter with an antennainserted through itsend via
avacuum joint [8]. The antenna (acylindrical stainless

steel tube 6 mm in diameter) was part of a coaxial-to-
waveguide converter, which was adjusted with the help
of a short-circuiting piston. The dimensions of the dis-
charge, which was excited around the antenna (the
igniting electrode), were much less than the chamber
diameter and the distance from the chamber lower end.
The measurements were carried out in a gas flow. The
output power of the microwave generator operating at a
frequency of 2.45 GHz was up to 170 W. The discharge
emission was withdrawn from the discharge chamber
through awindow onitssidewall. Then, it was focused
by a collecting lens onto the entrance dlit of an MDR-4
monochromator. A spectral range of 400-800 nm was
investigated. An FEU-79 was used as an emission
detector. For actinometry measurements, 5 vol % of
argon was added to hydrogen.

The power absorbed in a plasma is usually deter-
mined from the difference between the incident power
and the power reflected from the discharge section. In
this case, it is hot known a priori what fraction of the
power is absorbed in the plasma and what fraction is
lost in the feeding system. To determine the latter, we
measured the powers absorbed with and without ignit-
ing the discharge. The difference between them was
assumed to be the power absorbed in the plasma
(Fig. 1), although it is not improbable that igniting the
discharge changes the field distribution and, corre-
spondingly, the fraction of the power lost in thefeeding
system.

3. RESULTS AND DISCUSSION

3.1. Spectral Characteristics of the Discharge
and Comparison with an Electrodel ess Microwave
Discharge in a Cavity

The spectral measurements of plasma emission in
the mixture H, + 5 vol % Ar showed that, asin the case
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of an electrodeless microwave discharge in a cavity
[10], the emission spectrum in the range 400-800 nm
consists of hydrogen molecular bands corresponding to
1t 1t It 3t 3t
the 3, — %,,MNyg— 2, %, — %,,°Nyg—
’n,, and3M, — 32; transitions and atomic hydrogen
and Ar lines. The most intense band is the Fulcher a
system (d°MN, — &'z, transition), whose intensity is
used to determine the gas temperature. The most
intense atomic lines are the Balmer-series hydrogen
lines H,, Hg, and H, and Ar lines corresponding to the
4p — 4stransitions. It was shown in [10] that emis-
sion lines and bands can be divided into two groups
with different dependences of theintegral (over thedis-
charge volume) intensity on the power absorbed in the
plasma. Thefirst group consists of hydrogen molecular
bands and the Ar 4p — 4slines, whose intensitieslin-
early increase with power. The other group consists of
atomic hydrogen lines, whose intensities depend non-
linearly on the absorbed power. In [10], this fact was
explained by the difference in the excitation mecha-
nisms—stepwise excitation of atomic hydrogen lines
and direct electron-impact excitation of hydrogen
molecular bands and Ar lines.

Inan EMD, the observed emission intensities of the
Balmer-series atomic hydrogen lines H,, Hg, and H,,
the Ar 696.5-nm ling; and the H, 752.4-nm band
increase linearly with power (Figs. 2-5). Thedifference
between the above two groups manifests itself in that
the intensities of atomic hydrogen lines increase some-
what faster. For the same change in power, the intensi-
ties of the Ar 696.5-nm line and H, 752.4-nm band
increase by afactor of 1.5-2, whereas the intensities of
atomic hydrogen lines increase by a factor of 2-5

(Fig. 6).

3.2. Spatial Sructure of Emission

An interpretation of the measurements of the emis-
sion intensity is hindered by the complicated structure
of the discharge, which consists of two regions—a
bright thin region near the electrode and a less bright
spherical region surrounding the first one. A compari-
son of the integral emission intensities of the two
regions shows that the electrode region contributes
most to the observed emission [8]. Space-resolved
measurements show that the contribution from the el ec-
trode region to the line emission is also much larger
than that from the spherical region. Although the rela-
tive contribution from the spherical region increases
with power, the contribution from the electrode region
remains dominant throughout the entire power and
pressure ranges under study. Thisindicatesthat the data
from spectral measurements are mainly related to the
bright layer near the electrode.
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Fig. 1. The powers W, absorbed in the system (1) with and

(2) without igniting the discharge and (3) the difference
between them vs. the incident power Wip..

1, arb. units
4.0+

35rF
3.0r
25
2.0
1.5
1.0F
0.5

My

1 |
0 2 4 6 8 10 12 14
Wabs’ W

Fig. 2. Thelineintensities vs. the absorbed power Wy, &t a
pressure of 0.5 torr: (1) H(H,, 434.0 nm), (2) H(Hg,
486.1 nm), (3) H(Hy, 656.3 nm), (4) Ar(696.5 nm), and
(5) H, (752.4 nm).
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Fig. 3. Sameasin Fig. 2 at a pressure of 1 torr.
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Fig. 4. Sameasin Fig. 2 at a pressure of 2 torr.

3.3. Gas Temperature near the Electrode

The gas temperature is an important parameter that
determines both the interaction of the electromagnetic
field with the plasma (via the ratio v/w, where v isthe
effective collision frequency of electrons with heavy
particles) and the kinetics of the plasma processes. The
gas temperature can be determined from the relative
intensities of the vibrational lines that belong to the
Fulcher a system of electronically excited molecular
hydrogen [11] (the Hy(d*M,, — &’Z,) radiative transi-
tion). Strictly speaking, the Fulcher a system alows
one to determine the rotational temperature of the
upper excited state d’, of molecular hydrogen. The
relation between the rotational and gas temperatures
was studied in detail in [12-14]. In view of the above
said, the obtained gas temperatureisrelated to the el ec-
trode region. The gas temperature was calculated from
the intensities of the Q and R branches of the diagonal
(v'=v" =0, 1, and 2) bands of the Fulcher a system.
The rotational temperature of the d’I'1,, state was calcu-
lated by the formula

I . hc _,.
In—=- 0= _ F(j') + const, 1
wherel. _ .istheintensity of emission corresponding to

the transition between the rotational levels of the vibra-
tionally excited electronic molecular states, v. . isthe
frequency of this transition, S is the H6nl-London
factor, and F(j') is the rotational energy of the upper
state. The temperature is determined from the slope of

.
the linear dependence of In EI;T;S_E onF(j'). The
S

rotational temperature of the ground state is calculated

LEBEDEV, MOKEEV
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Fig. 5. Same asin Fig. 2 at a pressure of 4 torr.

by the formula[11, 15]

« B
rot BH

where B? and B' are the rotational constants of the
ground and excited states, respectively. The rotational
temperature of the ground state was assumed to be
equal to the gas temperature. The estimated rotational

temperature of the excited state is Ty, = 310 + 40 K;
the gas temperature is twice as high due to the differ-
ence between the rotational constants.

Thus, estimates show that the gas heating is insig-
nificant and the gas temperature near the electrode isno
higher than 700 K. This result is of importance for
determining the mechanisms responsible for sustaining

T =T )

Imax/lmin
5.0+
4.5+
4.0F i

3.5F
3
DAO/O‘/,?E

3.0
|

2.5
0 0.5

2.0
1.5
1.0
0.5

1 1 1 1 1 1 1 ]
1.0 1.5 20 25 3.0 35 40 45
P, torr

Fig. 6. The ratios between the line intensities I, /I i, & the
maximum (12.4 W) and minimum (1.8 W) values of W,y &t dif-
ferent pressures P: (1) H(Hpg, 486.1 nm), (2) H(H, 656.3 nm),
(3) Ar(696.5 nm), and (4) H, (752.4 nm).

PLASMA PHYSICS REPORTS Vol. 27 No.5 2001



CHARACTERISTICS OF THE ELECTRODE PLASMA

the discharge. One of these mechanisms may be energy
absorption in the plasma resonance region. The role of
this mechanism decreases as the ratio v/w increases.
Under our experimental conditions, this resonance is
feasible. However, taking into account that identical
discharge structures were observed at a pressure of
15 torr and approximately the same power [7], itisrea
sonable to assume that the gas heating does not ensure
the conditions under which the resonant mechanism
plays a decisive role in the formation of the electrode
layer within the entire pressure range under study.

3.4. Plasma Processes near the Discharge Electrode

The linear dependences of the intensities of the
atomic hydrogen lines on the absorbed power (and,
consequently, on the electron density [10, 16]) and an
analysis of the balance of the excited particles allow us
to conclude that the excitation of atomiclinesinthedis-
chargeis not caused by stepwise processes of the form
H(Q2S 2D) + e —= H* (here, thetwo lowest metastable
states and two resonant hydrogen states are considered
asinglestate H(2S 2D)), which would result in a stron-
ger dependence on n,. Indeed, in this case, the balance
equation for excited particles would be

KstNh(2s 20)Ne = KemNps, 3)

whereky =4 x 107 cm?¥s[17] isthe coefficient of exci-
tation from the metastable state, Ny(,5 »p) isthe density
of metastable particles, kg, = 1/T=4.4 x 1010571 [18] is
the coefficient determined by the lifetime of the excited
(emitting) state, and Ny is the density of the excited
atoms. Comparing the contributions from different
excitation and deexcitation channels, such as[17]

(i) direct electron-impact excitation, H + e —
H(Q2S 2D), with athreshold of 10.2 eV;

(ii) excitation due to the radiative transition from a
higher level, H* — H(2S 2D) + hv, with therate con-
stantk=35 x108s7';

(i) dissociative excitation, H, + e — H(2S 2D) +
H + e, with a threshold of 15 eV and k = 10! —
10710 cm?/s;

(iv) diffusion toward the electrode surface;

(v) electron-impact quenching, HQ2S 2D) + e —
H + e withk=6.8 x 10~ cmd/s;

(vi) electron-impact ionization, H2S 2D) + e —
H* + 2e, with a threshold of 3.4 eV and k = 7.3 x
1078 cmd/s;

(vii) stepwise electron-impact ionization, H(2S 2D) +
e — H* + ¢, with athreshold of 1.9 €V and kg = 4 %
107 cmd/s;

(viii) emission viathe transition HQ2S 2D) — H +
hv with 1= 2.1 x 10°/(g.,. S) (one can find the expres-
sion for g, in[19, 20));
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(ix) quenching in collisions with molecules, H(2S,
2D) + H, — H+H+H,withk=1.3 x 10 cm/s;
and

(x) quenching in collisions with atoms, H(2S 2D) +
H — H+H,withk=3 x 10! cm?s,

and taking into account the main processes, we
arrive at the following bal ance equation for metastable
particles:

KmNuNe + KgNp,Ne = KyNy, Ny2s 20y 4)

Here, k,,, is the coefficient of the direct electron-impact
excitation of a metastable state, Ny is the atom density,
kyisthe coefficient of dissociative excitation, Ny, isthe
density of hydrogen molecules calculated taking into
account the gas temperature near the €lectrode, and k,
is the coefficient of quenching in collisions with mole-

cules. Thus, we obtain Ny: 0 NeNyog 2p) O ni, which
disagrees with experimental results. A comparison
between the stepwise and direct processes based on the
value of N5 2p, derived from Eq. (4) shows that the
former process is of minor importance.

There are two possible channels of direct electron-
impact excitation, namely, the excitation from the
ground atomic state, H + e — H* + ¢, and dissociative
excitation, H, + ¢ —= H* + H + ¢. Thus, we can write

kexNHne+ kdexNHzne = kemNH*1 (5)

where k,, is the coefficient of direct electron-impact
excitation and kg, isthe coefficient of dissociative exci-
tation.

An analysis of the balance of hydrogen atoms shows
that direct electron-impact dissociation is the main
mechanism for their formation. Here, the following
processes are taken into account:

(i) direct electron-impact dissociation, H, + ¢ —
H + H + ¢, with a threshold of 9 eV and k = 3.7 x
10710 cm?/s;

(i) dissociation in collisions of metastable particles
with molecules, H(2S 2D) + H, — H + H + H, with
k=1.3 x10°cmds,

(iii) dissociation in collisions of excited particles
withmolecules, H* +H, — H + H+ H, withk=2.2 x
107° cm¥/s; and

(iv) recombination on the electrode surface, H +
H — H, [17].

Under our conditions, the main channel of the loss
of hydrogen atoms is recombination on the electrode
surface with a characteristic time of

_2R _F

vy 97 6D’
Here, T, isthe characteristic time of reaction at the elec-
trode surface; 14isthe characteristic diffusiontime; R=

2
Ts = Tt Ty, Ty

(6)
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Degree of dissociation (%) calculated based on the experimental data (the minimum and maximum absorbed powers are 3.7
and 9.4 W for a pressure of 0.5 torr and 1.8 and 12.4 W for other pressures)

0.5 torr 1torr 2torr 4 torr
E, V/cm _ _ . _

min max min max min max min max

60 0.89 1.29 0.60 0.90 0.42 0.80 0.23 0.59
100 137 2.06 0.86 1.40 0.57 125 0.31 1.02
150 1.59 2.58 0.88 164 0.49 1.46 0.18 1.23
200 1.66 2.89 0.78 173 0.30 152 - 1.27
300 164 3.23 05 1.74 - 1.48 - 121
400 153 3.38 0.21 1.65 - 1.36 - 1.07
500 1.38 3.42 - 151 - 1.20 - 0.90

1 mm is the distance from the electrode; v, is the ther-
mal velocity of atoms; y = 0.05 [21] isthe coefficient of
recombination on steel; and D is the diffusion coeffi-
cient

_pOord -3
D = D0E273D/(1'3 x 10 "P), 7
where D, = 0.184 cn? s, T is the gas temperature in K,
a=1.728, and P isthe pressurein torr.

The balance equation for atomsis

VY

KaissNp,Ne = —ﬁ‘NH, ®)

where ky;, is the diffusion coefficient, Ny, = Nﬁz -

0.5Ny isthe density of hydrogen molecules, and N,ﬂz is

the density of molecules at zero dissociation. As a
result, a high degree of dissociation in the discharge is
required to ensure the linear dependences of the inten-
sities on the electron density in the case of direct elec-
tron-impact excitation from the ground atomic state.
Otherwise, we have Ny O n,, which leads to a square-

law dependence | O n.Ny O ns. However, it follows

from Eq. (8) that, under our conditions (n, = 10!! cm™
[7]), the degree of dissociation should be within the
range 102-1073. Therefore, dissociative excitation is
the main process responsible for the atomic line emis-
sion. It is seen from Eq. (5) that it takes place when

N H kdex
—H e )
N H, kex

Estimates made with allowance for the ratio of the
rate constants Ky /ke calculated from the Boltzmann
equation [17] show that condition (9) is satisfied when
the degree of dissociationislessthan 0.1-3%. Sincethe
microwave field amplitude near the electrode is

unknown, the calculations were carried out for E =
100-500 V/cm.

The threshold for dissociative excitation (17 eV for
H,) is higher than that for direct electron-impact exci-
tation of hydrogen molecular bands (915 eV) and Ar
lines (13.3 eV for A = 696.5 nm). The processes with a
higher threshold are much more sensitive to the change
in the microwave field amplitude, which can increase
with power. This circumstance can explain the fact that
the intensities of atomic hydrogen lines increase faster
than the intensities of hydrogen molecular bands and
Ar lines as the power increases (Fig. 6).

3.5. Determination of the Degree of Dissociation

The degree of dissociation was measured using act-
inometry. For this purpose, 5 vol % of argon was added
to hydrogen. In [10], it was shown that, at low argon
concentrations in a molecular gas, Ar line emission is
related to direct electron-impact excitation from the
ground state, which is confirmed by the linear depen-
dence of the intensity of the Ar 696.5-nm line on the
absorbed power. This result is aso applicable for our
experiments. With alowance for process (5), the ratio
of theintensities of H, and Ar 696.5-nm linesis

Ih, _ KaexNu, + K Ny

I_Ar - kArNAr
. (10)
_ I(dexNHz + (kex_o-5kdex)NH
kArNAr ,
hence,
Kk O, Nj kO
NH — Ar Hg H, dex|:L (11)

N, — A GH_
Arkex - O'5kdex%; N kAr [l

where Kk, is the coefficient of electron-impact excita-
tion of the emitting argon state and N,, is the argon
atom density.
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Thetable presents the ranges of the degree of disso-
ciation calculated from the measured ratios Iy /I, a

different pressures and powers. The estimates were
obtained for different values of the microwave field
amplitude because its actual value was unknown. It is
seen that, within the range of pressures and powers
under study, the degree of dissociation near the elec-
trode is no more than 3.5%.

4. CONCLUSION

An EMD in hydrogen at pressures of 0.5-4 torr and
absorbed powers up to 12 W has been studied using
spectroscopy methods. The volume-averaged emission
intensities of lines and bands are measured within the
wavel ength range 400-800 nm. It is shown that, due to
the substantial inhomogeneity of the discharge, the
observed emission stems from the bright region near
the electrode. Based on the relative intensities of the
rotational lines, the rotational temperature of the
excited state is determined and, taking into account the
rotational constant, the rotational temperature of the
ground state of hydrogen in the electrode region is esti-
mated. This temperature is at most 700 K. Taking into
account the fact that a similar discharge structure was
previously observed at much higher pressures, we can
conclude that gas heating is insufficient for the plasma
resonance regime to be realized within the entire pres-
sure range under study.

It is shown experimentally that the intensities of all
the lines and bands depend linearly on the absorbed
power. An analysis of plasma processes shows that the
recorded emission lines and bands are excited by direct
electron impact; in particular, the H, line emission is
related to the dissociative electron-impact excitation
from the H, ground state. The degree of hydrogen dis-
sociation in the electrode region is determined using
actinometry and is shown to be no higher than several
percent. All this indicates that the microwave field
amplitude in the bright electrode region is high (as pre-
dicted for the electrodynamic system under study). At
the sametime, the steady-state densities of the particles
whose decay is determined by diffusion (e.g., atoms
and metastable states) cannot be high because the dis-
tance from the el ectrode and, accordingly, the diffusion
time are short.
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Abstract—The features of the relaxation of a quasi-steady glow discharge after extra excitation by a nanosec-
ond high-voltage pulse are studied experimentally. It is shown that the plasmarelaxation is characterized by the
existence of atimeinterval with alow emission intensity—aglow pause. A kinetic model of the helium plasma
relaxation is developed. It is shown that the nanosecond discharge that creates extraionization and metastable
atoms enables one to keep the electron temperature at a quasi-steady level within the range 0.05-0.5 eV for sev-
eral hundred microseconds during the glow pause. The effect of the helium temperature on the glow pause fea-
turesisinvestigated. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

A combined discharge in which the main ionization
is produced by a short pulsed discharge has a number
of advantages. Applying nanosecond pulses to a cur-
rent-carrying plasma enables efficient ionization and
makes it possible to easily control the electron temper-
ature. Between the pulses, the electric field may be
maintained at a lower level. Such a scheme was used
when creating powerful lasers pumped by a combined
discharge[1, 2].

When applying nanosecond pulses to a glow dis-
charge, a specific time interval during plasma decay in
which the intensity of plasma emission was lower than
inthe glow dischargewasfound in [3, 4]. Apparently, a
similar effect was observed in [5] at the instant of dis-
charge ignition. This paper is devoted to studying the
decay of ahelium plasma carrying adc current.

The recombination of a current-free helium plasma
after pulsed excitation has been extensively studied [6, 7].
An analysis of the results obtained shows that metasta-
ble atoms and mol ecules substantially affect the helium
plasma decay. Long-lived metastable states, which
accumulate the excitation energy, act as sources of fast
electrons with an energy of ~18 eV. Cooling helium to
cryogenic temperatures (e.g., T = 77 K) decelerates the
decay of atomsin metastable states and increases their
total density.

Metastable atoms significantly affect the voltage-
current characteristic of a glow discharge in helium at
cryogenic temperatures [8]. At low currents, thereis a
region in which dE/di > 0 (whereE and i arethe electric
field and current, respectively) and E is one-half of the
field in aglow discharge at room temperature.

In this study, we investigate a plasma state that, on
the one hand, resembles an ordinary afterglow and, on
the other hand, issimilar to acryogenic glow discharge.
Immediately after the nanosecond discharge, recombi-
nation occurs as in an ordinary afterglow; then, the
plasma relaxation is mainly governed by metastables
and the glow discharge current, as is the case with a
cryogenic glow discharge.

2. EXPERIMENTAL SETUP

The schematic of the experimental device is shown
in Fig. 1. A steady-state glow discharge was ignited in
a discharge cell (1) with the help of a microsecond
pulse generator (2). The discharge cell wasa 7-cm-long
and 1.6-cm-diameter molybdenum glass tube, which
was placed between two molybdenum electrodes and
was surrounded by a metal shield. The duration of a
glow discharge, which could be varied within the range
100-1200 ps, was determined by the duration of the
pulse produced by a G5-7A synchronizing generator
(3). When the glow discharge current had relaxed to a
steady-state value, the same synchronizing generator
triggered the generator of nanosecond pulses (4), which
initiated a nanosecond discharge in the discharge cell.
The glow discharge current was kept constant during
the plasma decay and was determined by aballast resis-
tor (5) and the internal resistance of the microsecond
pulse generator (2). The current varied within the range
1-15mA, and the voltage and duration of the nanosec-
ond pulse varied within the ranges 1.5-3.5 kV and 2—
40 ns, respectively. The synchronizing generator (3)
ensured repetitive operation at a repetition rate of 10—
100 Hz. To cool the gas to cryogenic temperatures (T =
77 K), the gas-discharge tube was housed in acell filled

1063-780X/01/2705-0424%$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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with liquid nitrogen. The reduced pressure of heliumin
the discharge tube varied from 2 to 50 torr. The total
average specific power of acombined discharge did not
exceed 200 mW/cm3; at such powers, the estimated dif-
ference between the gas temperatures at the tube axis
and wall attained several percent.

We measured the glow discharge current and volt-
age and the plasma emission intensity (both integral
and in individual helium spectral lines) during plasma
decay. A D6-1 capacitive divider (9) with an attenua-
tion factor of 1 : 100 and a passband of 10 MHz was
used to measure the voltage. The glow discharge cur-
rent was measured by a shunt (8) with a resistance of
1kQ.

Radiation emitted from the plasmain the transverse
direction was applied to an SPM-2 monochromator
(11) with the help of an optical fiber and alens. Emis-
sion from different discharge regions was recorded by
displacing the fiber along the discharge tube. Emission
detectors (6) (FEU-97 and FEU-84-3 photomultipliers)
were gated for atime of 1-10 ps by a pulse supplied
from a G5-15 generator (10), which was synchronized
with the G5-7A generator (3). The delay time of the
gating pulse was controlled by the G5-15 generator. All
the electrical and optical parameters were recorded
with an HP-1701B oscillograph (12).

3. EXPERIMENTAL RESULTS

The main feature of the relaxation of the plasma of
aglow discharge positive column after extra excitation
with a nanosecond discharge is the existence of atime
interval (aglow pause) in which the emission intensity
is substantially lower than in an unperturbed glow dis-
charge.

Figure 2 shows the time evolution of the intensity of
the Hel 587.6-nm spectral line for two different gas
temperatures. After the nanosecond discharge, the line
intensity sharply drops and remains at a low steady-
state level for severa tens or even hundreds of micro-
seconds. Then, the intensity rapidly increases and
reaches the initial value characteristic of a glow dis-
charge. During this process, the discharge current
remains constant and equal to that before applying the
nanosecond pulse.

The intensities of the following spectral lines were
measured: 706.5 nm (23S 0 2°P), 388.8 nm (3°P [
239), 587.6 nm (3°D O 23P), 667.8 nm (3'D O 2'P),
501.5 nm (3'P O 2'S), 447.2 nm (4°D O 33P), and
396.4 nm (4°P O 3!S). The glow pause with the same
duration of the steady-state phase was observed simul-
taneously in all these lines. However, the ratio between
the intensitiesin the glow pause and the glow discharge
phase varied in awide range for different lines.

A qualitative explanation of the glow pauseisasfol-
lows. Applying the high-voltage nanosecond pulse
sharply increases the electron density in the plasma. At
a constant glow discharge current, the voltage drop
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Fig. 1. Schematic of the experimental device for studying
the decay of a current—carrying plasma: (1) discharge cell,
(2) microsecond pulse generator, (3) G5-7A synchronizing
generator, (4) nanosecond pulse generator, (5) ballast resis-
tor, (6) FEU 84-3 photomultiplier, (7) VSV-1 power supply,
(8) shunt, (9) D6-1 capacitive divider, (10) G5-15 generator,
(11) SPM-2 monochromator, and (12) HP-1701B oscillo-
graph.
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Fig. 2. Time evolution of the intensity of the Hel 587.6-nm
spectral line after applying a nanosecond pulse to the glow
discharge (at t = 0) at gas temperatures of (1) 298 and
(2) 77 K; the helium atom density and the glow discharge

current are equal to 6.8 x 10'7 cm™ and 4.8 mA, respec-
tively.

across the plasma column and, consequently, the elec-
tric field decrease due to the decrease in the discharge
resistance; this is confirmed by the recorded voltage
oscillograms. The electron temperature T, in the dis-
charge is determined by the reduced electric field E/N
(where N isthe atom density); asthe field decreases, T,
and, consequently, the emission intensity decrease.

There is no glow pause in the cathode sheath of a
glow discharge. After extraexcitation of the plasma, the
emission intensity of the cathode sheath rapidly
increases and then monotonically relaxes to the value
typical of a steady-state discharge. The characteristic
relaxation timeis about several microseconds. Itisrea
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Fig. 3. Profile of the intensity of the Hel 587.6-nm spectral
line along the discharge tube in (Z, 2) the glow pause and
(3, 4) the glow discharge phase for different gas pressures P
and discharge currentsi: (1, 3) P=23.3torr andi = 13 mA
and (2,4) P=>5torrandi = 10 mA.
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Fig. 4. Duration of the glow pause vs. the nanosecond pulse
amplitude for the pulserisetimeof (1) 2and (2) 5nsat P =
22 torr andi = 3 mA.
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Fig. 5. Duration of the glow pause vs. the glow discharge
current for different helium pressures: P = (1) 21, (2) 13.7,
and (3) 9.5torr. Solid curves arethe simulated dependences;
dots show the experimental results.

sonable to assume that the structure of the cathode
sheath does not appreciably change during relaxation,
because it depends mainly on the electron emission
from the cathode surface. Thus, during the glow pause,
which lasts for several tens or hundreds of microsec-
onds, the cathode sheath is adjacent to the plasma col-
umn that carries the same current as in the steady-state
glow discharge, but at a higher electron density and
lower electron temperature.

The distribution of the plasma emission intensity in
the Hel 587.6-nm spectral line along the discharge tube
for different gas pressures and discharge currents is
shown in Fig. 3 for both the glow discharge phase and
the glow pause. It is seen that the length of theregionin
which the glow pause occurs coincides with the length
of the positive column in the glow discharge phase.

The duration of the glow pauseis determined by the
time during which the excessive electron density
relaxes, which, in turn, depends on the amplitude of the
high-voltage nanosecond pulse; as the amplitude
increases, the duration of the glow pause monotonically
increases (Fig. 4). Moreover, the difference between
curves 1 and 2 in Fig. 4 indicates that the degree of
extraionization increases as the rise time of the voltage
pulse decreases.

Therelaxation time of the excessive el ectron density
depends also on the helium pressure and glow dis-
charge current (Fig. 5). Theincreasein the gas pressure
increasesthe glow pause duration, whereasthe increase
in the glow discharge current reduces it. Lowering the
helium temperature from the room temperature to 77 K
increases the glow pause duration and changes the dis-
tribution of the emission intensity along the discharge
tube in both the glow discharge phase and the glow
pause. Figure 6 shows the distribution of the emission
intensity in the Hel 587.6-nm spectral line aong the
discharge tube during the glow discharge phase and the
glow pause for both of these temperatures. At a con-
stant current and helium atom density, the lineintensity
in the glow pause, as well as the pause duration,
increases as the temperature decreases.

4. KINETICS OF HELIUM PLASMA
DURING THE GLOW PAUSE

Plasmadecay is determined by the plasmacomposi-
tion. Theion composition of helium plasma dependson
the pressure and can vary in time. Immediately after the
nanosecond discharge, the most abundant ions are the

He* ions, which are produced by electron-impact ion-

ization of helium atoms. The He, ions are produced
both in the Hornbeck—Molnar reaction He* + He [

He, with the participation of the He* excited state and

the conversion reaction He* + 2He O He, + He. The
conversion rate isequal tov, , =3 x 10T IN? 571 [8];
here and below, the temperature T isin K and the atom
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density Nisin cm. The diatomic ions can convert into

triatomic onesinthereaction He, +2He He; + He.
At T = 77 K, the rate constant of the latter reaction is
k,_; > 1.7 x 107! cm® s7! [8]. Thus, the increase in the
pressure and decrease in the temperature enhance the
fraction of heavy ions.

The most abundant metastable particles in helium
are He,2°5, He2'S, and He23S. The He,2°S, mole-
cules are produced via the conversion of atomic parti-
cles, He23S+ 2He 0 He,2%%, + He (with a rate con-
stant of 1.8 x 10 cm® s™! [6]), and the electron—-ion
recombination of He, ions. We do not take into

account the He,2 32: mol ecul es because the conversion
time of He23S exceeds the glow pause duration; the

production of He,2 32: molecules viarecombination is
also inefficient due to the relatively low electron den-
sity.

The density of He2'S singlet metastable atoms is
lessthan that of He2*Satoms due to the different statis-
tical weights and high rate of the conversion reaction
He2'S + e 0 He23S (with a rate constant of 3.5 x
107 cm? s7! [9]). Taking into account the high conver-
sion rate and minor difference in the rates of reactions
involving He2'Sand He23S atoms, we assume that only

He23S atoms take part in the reactions characteristic of
metastable atoms.

The main channels of electron losses are the recom-
bination and ambipolar diffusion with the coefficient
D,= % (Te+ T), where y; istheion mobility and T, and
T arethetemperatures of electrons and neutrals, respec-
tively. The electron recombination rate depends on the
ion species. For the He* ions, three-body recombination
with an electron as a third body is the dominant loss
channel. According to [6], the coefficient of three-body

81 x 10—20 D-LGD—44
1+0.079PLT U
where n,isin cm™ and P isin torr. At cryogenic tem-

recombination is a, = Ne cm? s,

peratures, when the He; ions can be dominant, disso-
ciative recombination prevails. We considered the fol-

lowing recombination mechanisms involving He,
[6, 10]:

He, + 2e 0 He2 S+ He+e,

20 Ted" 3 4
0, =4x10 "n=F cm s ,

[T O
3
He, + e+ He O He2 S+ 2He,
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Fig. 6. Profile of the intensity of the Hel 587.6-nm spectral
line along the discharge tubein (1) the glow discharge phase
and (2) the glow pause for different gas temperatures:
(A) 293 and (B) 77 K.
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_ T _
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To evaluate the rates of the excitation and ionization
of metastable atoms, we used the Fabrikant approxima-
tion[11] for the energy dependences of the correspond-
ing cross sections. The electron energy distribution
function (EEDF) was assumed to be Maxwellian; cross
sections for atomic metastabl e states and cross sections
for ionization from the ground state were taken from
[12] and [13], respectively. The cross sections for elec-
tron elastic collisions were taken from [14].

Collisions between metastable atoms lead to their
deexcitation and the formation of fast eectrons in the
reactions

He23S+ He23SO He*+He+ e+ 15eV,

04 = 1.8x10°

He23S+ He23SO He, + e+ 17.4¢V.

Metastable atoms are the so-called S-source of fast
electrons[8], whose intensity can be represented as J,=
0.5B[He2’S)?, where 3= (1.5+£0.3) x 102 cm’ s! [6] is
the total rate constant of the two latter reactions. Diffu-
sion decreases the excessive metastable atom density.
For He23Satoms, in the temperature range under study
(T = 77-293 K), the diffusion coefficient is approxi-
mated by the formula[15, 16]

Dy, = 1.2x10 °N'T/(11.5+ T em® s ™.
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In accordance with the above processes, the equa-
tionsfor the el ectron temperature, el ectron balance, and
He23S metastable atom balance are incorporated into
the set of kinetic equations describing the plasma
behavior during the glow pause. These equations are
complemented with the requirement that the current be
constant during the helium plasmarelaxation. Thesetis
written for the densities averaged over the tube radius
under the assumptions that the electron radial distribu-
tion is diffusive and the ion temperature is equal to the
gas temperature.

The equation for the electron temperature is

dT, Me 2_D, 2€°F’
—_— = -2 —T)-=T=q+=—+
dt 2MaV(Te ) 3T/\2q 3my Q

wherem, and e are the electron mass and chargeand M,
is helium atom mass. The first term on the right-hand
side describes the cooling of electrons due to elastic
collisions with atoms (with the collision frequency v);
it istaken into account that inelastic collisions are of no
importance at electron temperatures T, less than 10 V.
The second term describes diffusive cooling; here, A is
the diffusion radius and the parameter g, which depends
on the plasma parameters and tube radius, istaken from
calculations[17]. Electron heating is determined by the
electric field strength and fast el ectrons, which are pro-
duced in reactions involving metastable atoms. The
metastable atom density determines the quantity Q =

%B[He2332nlAs + %y[He23S]A£, where y = (4.2
e

|
0 100 200 300 400 500 600

t, Us

Fig. 7. Calculated relaxation of (1) the electron density N,
(2) electron temperature T, and (3) the density of metasta-
ble atoms He2381; the pressureis P = 9.5 torr, the glow dis-

charge current isi = 5 mA, and the gas temperature is T =
293 K.
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0.6) x 102 cm?® s! [6] isthe rate constant of superelas-
tic collisions between electrons and metastable atoms,

He23S+ e[ He+e+19.8¢eV.

The quantity Ac is the average energy transferred by a
fast electron to the bulk electrons. According to [6], it
is equal to Ae = 1.39 x 107%(n,T/P)"2, where P is the
pressure in torr. The latter expression is valid for
(ng/P) < 2 x 10! cm3 torrL. At low pressures, Ag =
3.3 x 107“n,T/P for the fast electron energiesfrom 18 to
20 eV and Ae = 5.7 x 107“n,T/P for the fast electron
energies<15eV [6].

For the diffusive radial electron distribution, the bal-
ance equation for the average electron density in a
cylindrically symmetric plasmais

dn D

d_te = —/T;‘ne—oms +ngV; + J..
Here, the first and second terms on the right-hand side
describe the electron losses due to ambipolar diffusion
and recombination, respectively; the third term
describes ionization (both direct and stepwise); and the
last term isthe intensity of the S-source.

The balance of He23S metastable atoms is deter-
mined by the losses due to diffusion toward the tube
wall, deexcitation by electrons, conversion into molec-
ular metastable states, and pair collisions between
atoms. The He2’S atoms are produced due to electron-
impact excitation from the ground state and electron—
ion recombination. The metastable atom balance equa
tionis

dM _ Dy

TGt = M =BM—ynM —5NM
A

TNy + klalne[He+] + kzazne[He;]’

where 0 is the rate constant of conversion into molecu-
lar metastable states, v, is the rate of electron-impact
excitation of metastable atoms from the ground state,
and a, is the total recombination rate constant of the

He, ions. In this equation, the quantities k; and k,
(which are equal to 1 and 0.7, respectively [5]) charac-
terize the relative contributions of atomic and molecu-
lar ionsto the recombination processesthat yield He23S
atoms.

In our experiments, the current is determined by the
external circuit and remains constant during relaxation;
hence, the electric field in the plasma obeys Ohm'slaw,
E=]j ";ev :

en,

wherej isthe current density.

In smulations, the initial conditions are set at a cer-
tain instant after the nanosecond pulse when the rapid
collisional cooling of electrons has already occurred,
PLASMA PHYSICS REPORTS  Vol. 27
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but the particle density has not yet changed. The densi-
ties of electrons and He23S atoms are chosen such that
the calculations match the experimental data. To esti-
mate the ratio between the excessive density of meta-
stable atoms and the electron density, we calculated the
EEDF for thereduced electric field that is characteristic
of the nanosecond discharge. Simulations were per-
formed using the code based on the approach devel-
oped in [18]. The electric field was estimated as E =
2U/L, where U is the amplitude of the high-voltage
pulse and L isthe discharge tube length. The coefficient
2 isrelated to the doubling of the pulse voltage due to
the mismatch between the impedances of the cable and
the discharge tube.

Figure 7 shows the cal cul ated relaxation of the elec-
tron temperature, €l ectron density, and metastable atom
density. We emphasi ze the quasi-steady behavior of T,
during the glow pause and its abrupt rise at the end of
the pause. We can distinguish three characteristic
stages of plasma decay: first, the early afterglow with a
rapid decrease in the electron temperature due to colli-
sions; then, the glow pause, during which T, variesonly
dlightly; and, finally, arapid increase in T, to the value
typical of aglow discharge. The end of the T, relaxation
exactly coincides with the decay of the excessive elec-
tron density. The excessive metastable atom density
relaxes more slowly than n,.

Figure 5 presentsthe cal culated duration of the glow
pause versus the glow discharge current for different
helium pressures. It is seen that the calculated depen-
dence is in good agreement with the experimental
results. The calculated initial densities of the electrons
and metastable atoms are proportional to the current.
The increase in the duration of the glow pause with
pressureis explained by the decreasein therate of elec-
tron loss due to diffusion. The decrease in the duration
of the glow pause with increasing the discharge current
is related to the increase in the electric field, which
raises the electron temperature and the rate of diffusion
toward the discharge tube wall.

Metastable atoms determine the behavior of the
electron temperature during the glow pause. The calcu-
lated relaxation of the electron temperature for differ-
entinitial densities of He23Smetastable atomsis shown
in Fig. 8. The higher the metastable atom density dur-
ing the decay, the fewer the variations in the electron
temperature and the lower the temperature T, during the
glow pause. The increase in the duration of the glow
pauseisrelated to the decreasein the loss rate of exces-
sive electrons due to the action of the S-source. The
increasein T, isdueto heating by the fast el ectrons that
are produced in superelastic collisions and pair colli-
sions between metastable atoms.

The quasi-steady behavior of the electron tempera-
ture is related to the combined action of the electric
field and metastable atoms on T. In theinitial stage of
the glow pause, the densities of electrons and He23S
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Fig. 8. Calculated relaxation of the electron temperature for
different initial densities of He23S, metastable atoms:

(1) 4x10'° (2) 6 x10'%,(3) 8 x 10'°, and (4) 10! cm™;
the pressure is P = 8 torr, the glow discharge current isi =
5mA, and the gastemperatureis T = 293 K.

drT,/dt, eV/s
800

600
400

200

200
t, Us

Fig. 9. Timeevolution of the el ectron heating rate during the
glow pause: (1) heating caused by the electric field and
(2) heating caused by metastable atoms. Initial conditions

are T,= 55 eV, [He2’S] =1.6 x 10?2 cm™, ny = 2 x

10 cm3, the pressureis P = 4 torr, and the glow discharge
currentisi =5 mA.

atoms are high; hence, electron heating caused by the
eectric field isweak (E ~ 1/n.) and T, is mainly deter-
mined by heating caused by metastable atoms. As the
excessive densities of electrons and metastable atoms
decrease, the contribution of the electric field to heating
increases, whereas the role of metastable atoms
decreases; i.e., the decrease in heating due to the inter-
nal sourceis balanced by the increase in heating caused
by the external electric field.

Figure 9 showsthe contribution from different terms
in the electron temperature bal ance equation to electron
heating during relaxation. It is seen in Fig. 9 that,
within 200 us after the start of plasma decay, heating
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Fig. 10. Calculated relaxation of the electron temperature
for different gas temperatures (other conditions being the
same): (1) 293 and (2) 77 K.

caused by the electric field is weaker than that caused
by metastable atoms because

2.2myv 1 3921 2 3
31 27 < 3[3[He2 Sy neAe + 3y[HeZ SlAg,

e
where the term on the | eft-hand side characterizes Joule
heating. After the recombination of a certain fraction of
the excessive electrons, the inequality changesits sign;
i.e., heating caused by the eectric field, which main-
tains the constant current through the plasma, becomes
dominant. The total heating remains almost constant
and equal to the total cooling of electrons dueto elastic
collisionsand diffusion. Such abehavior of the electron
heating sources ensures that the electron temperature
varies insignificantly.

Lowering the gas temperature from room tempera-
tureto 77 K leads to a threefold decrease in the diffu-
sion coefficient of metastable atoms, which, in turn,
results in an increase in the metastable atom density
during plasma decay. An analysis shows that the
increase in the duration of the glow pause as the gas
temperature decreases is mainly due to this effect. Fig-
ure 10 shows the relaxation of the electron temperature
during the glow pause for two different gas tempera-
tures.

Plasma decay in aglow discharge resembles a cryo-
genic dc discharge, namely, T-discharge [19]. In both
cases, the current flows at an anomalously low electric
field in the plasma. In the glow pause, the electric field
is such that the electron-impact ionization rate is not
egual to the rate of electron loss due to ambipolar dif-
fusion.

A characteristic feature of the glow pause is the
quasi-steady behavior of the electron temperature at a
level that cannot be realized in steady-state discharges.
This temperature can be controlled by varying the cur-

AMIROV et al.

rent, pressure, or the parameters of the nanosecond
pulse.

Metastable atoms act as sources of fast electrons,
which enrich the EEDF near the thresholds for inelastic
processes, thus increasing the corresponding rate con-
stants. Moreover, at ahigh density of metastable atoms,
stepwise excitation becomes important. Accurate cal-
culations of the spectral line intensities monitored in
the experiment during the plasma relaxation require
calculating the EEDF with allowance for the time evo-
lution of the electric field and the density of He23S
metastable atoms.

5. CONCLUSION

The kinetic model of decay of a helium plasma car-
rying a dc current has been developed. The results of
computer simulations are compared with the experi-
mental data. Plasmadecay is characterized by the exist-
ence of atimeinterval with alow emission intensity—
a glow pause. It is shown that the He2?S metastable
atoms affect the duration of the glow pause and the
behavior of the electron temperature. Lowering the gas
temperature decreases the rate of He23S losses and
increases the glow pause duration. During the glow
pausein helium plasma, the electron temperature varies
only slightly and is much less than that in a glow dis-
charge.
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Abstract—A study is made of the effect of the transport of Xe 147-nm resonant radiation on the parameters of
alow-temperature plasmaof DC and RF dischargesin gas mixtures used as the working medium in lasers based
on infrared transitionsin xenon. RF discharges are treated in the planar geometry typical of slab lasers. DC dis-
charges in tubes are treated in cylindrical geometry. The trapping of resonant radiation is described using dif-
ferent approximate models: the decay time approximation for a plasma slab (the Holstein approximation) and
the effective lifetime approximation (the Biberman approximation). The transport equation for resonant radia-
tion is solved numerically. The effect of the radiation transport on both the current—voltage characteristics of a
discharge and the spatial distribution of the excited Xe atomsis investigated. The current—voltage characteris-
tics calculated for aDC discharge with allowance for the resonant radiation transport agree well with the exper-
imental characteristics. It isfound that, for an RF discharge, the effective lifetime approximation overestimates
the density of the excited Xe atoms near the el ectrodes by several times and underestimates this density at the

midplane of the discharge gap. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The efficiency of dectric-discharge lasers based on
atomic transitions in Xe excited by a DC current in a
tubeislow and decreases sharply with pressure because
of the discharge current contraction. The excitation of a
gas by RF discharges [1, 2] has made it possible to
increase the laser efficiency and to create fairly com-
pact slab lasers capable of generating output powers of
several watts in the continuous mode at wavelengths
corresponding to the atmospheric transparency region.
The parameters of the RF capacitive discharge are usu-
ally calculated for pure noble gases at pressures of sev-
eral torr and lower (see, eg., review [3]). A numerical
model of RF discharges for lasers operating with Xe-
containing gas mixtures was developed by II"yukhin
etal. [4].

The typical pressure of the working mixture of a
laser is 100-200 torr. The gas mixture consists of
amost equal proportions of He and Ar, with a small
(about 0.5%) amount of Xe. The distance between the
electrodes is 1-2 mm, the frequency of the exciting
electric field is about 100 MHz, and the specific excita-
tion power is about 100 W/cm?® [1, 2]. It was shown
experimentally that the amplification coefficient of a
weak signal has high sharp peaks near the electrodes
[5]. Such a shape of the amplification coefficient is
explained as being due to the increase in the electric
field near the electrode surfaces [2, 4]. The laser and
discharge parametersare largely governed by the distri-

bution of the electronically excited states of Xe atoms
in the interelectrode gap. One of the two lowest elec-
tronic states of Xe atoms—specifically, the
6s[3/2]5 (°P,) state—isresonant (A = 147 nm), theradi-
ation lifetime being g = 3.79 ns [6]. Under the condi-
tions corresponding to a highly nonuniform distribu-
tion of the density of the excited atoms, an important
role may be played by the excitation transfer by reso-
nant radiation, which lowers the density of the excited
atoms near the electrodes and raises their density at the
midplane of the discharge.

The aim of this study is to analyze how the excita-
tion transfer by resonant radiation affects the calculated
parameters of a DC discharge and an RF discharge. We
consider a DC discharge in a tube and investigate the
effect of the resonant radiation transport on the current—
voltage (I-V) characteristic of a DC discharge. The
computed |-V characteristics are compared with the
measured ones. The structure of an RF discharge under
the conditions prevailing in lasersis numerically calcu-
lated.

There are several approximate models for describ-
ing the trapping of radiation, such as the decay time
approximation for a plasma slab or cylinder (the Hol-
stein approximation [7]) and the effective lifetime
approximation (the Biberman approximation; see, e.g.,
[8]). We compare the results calculated using different
approximate models with the results from the numeri-
cal solution of the transport equation for resonant radi-
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ation. A significant difference in the spatial distribu-
tions of the population density of thelowest excited res-
onant state of Xe atomsis revealed.

2. DESCRIPTION OF THE EXPERIMENT

Figure 1 shows the scheme of the experimental
devicefor measuring the |-V characteristic of aDC dis-
charge. The discharge isinitiated in a quartz tube with
aninner diameter of 0.3 cm, whichiscooled by running
water. The discharge length is 28 cm. The discharge is
initiated by a controlled high-voltage source connected
to the cathode through a 94-kQ ballast resistor. The
deviceis capable of sustaining stable dischargesup to a
pressure of 100 torr. As the pressure increases, the
luminous column becomes smaller in diameter. The
voltage drop across the discharge and the discharge
current are measured with two FLUKE 8026B multim-
eters. The electric field is cal culated without allowance
for the voltage drop at the cathode. Note that, in an
Ar:He: Xe =50 :50: 1 mixture at a pressure of
38 torr, we achieved an output power of 0.4 mW, which
was mostly generated at a wavelength of 2.65 um.

3. DISCHARGE MODEL
3.1. DC Discharge

The radia profiles of the parameters of DC dis-
charges were calculated under the assumption that the
plasma column is uniform along the discharge axis. We
solved a time-dependent equation for the plasma den-
sity with allowance for ambipolar diffusionin theradial
direction and the processes of direct ionization, step-
wise ionization, and dissociative recombination. In our
model, we took into account only one effective excited
state of Xe atoms, specifically, the Xe* state, which is

a combination of the 65[3/2]2 metastabl e state and the

6s[3/2](1’ resonant state. For this effective state, we

solved atime-dependent balance equation. The popul a-
tions of the sublevels were assumed to be proportional
to the statistical weights. Wetook into account the exci-
tation from the ground state, stepwise ionization, and
the production of excited atoms via dissociative recom-
bination. The model for describing the excitation trans-
fer by resonant radiation will be discussed in Section 4.
The radial profile of the trandational temperature was
determined by solving the time-independent heat con-
duction equation at a constant pressure. The basic set of
equations was supplemented with the relevant bound-
ary and initial conditions. All of the transport and
kinetic coefficients were calculated as functions of the
reduced electric field E/N by numerically solving the
Boltzmann equation for the spherically symmetric part
of the electron energy distribution function.

The basic set of equations was solved in finite differ-
ences by direct integration on a mesh with 25-51 mesh
points along the radial coordinate.
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No. 5 2001

433

Fig. 1. Schemeof the experimenta device: (1) anode, (2) con-
trolled high-voltage source, (3) ballast resistor, (4) cathode,
(5) water-cooled tube, (6) output window installed at the
Brewster angle.

3.2. RF Discharge

In accordance with [4, 9], our model of an RF dis-
charge was devel oped with allowance for three species

of positive ions (Xe*, ArXe*, and Xe,) and one effec-

tive excited state of Xe atoms (Xe*). The basic set of
eguations consisting of the balance equations for the
densities of the above four plasma components, the
equation for the electron density, and Poisson’s equa-
tion for the electric field was integrated over space and
time with alowance for drift and diffusion of the
charged particles. The gas temperature and density
were determined by solving the time-independent heat
conduction equation.

Under the conditions of our experiments with RF
discharges in aHe-Ar—Xe mixture, the electron energy
relaxation rate at the midplane of the interel ectrode gap
islower than the frequency of the exciting electric field,
whereas at the electrodes, it is higher than the field fre-
guency. The electron energy relaxation length is com-
parable to the electrode sheath thickness. Conse-
guently, nonlocal effects play animportant role near the
electrodes. In order to describe these nonlocal effects
correctly, it is necessary to solve the Boltzmann equa-
tion with allowance for the spatial distributions of the
discharge parameters. However, since this problem is
very involved (a similar problem for pure He was
solved by Feoktistov et al. [9]), we applied asimplified
approach described in [3]: atime-independent equation
for the mean electron energy was solved with allow-
ance for both electron drift and diffusion [10]. At each
time step, the mean electron energy was calculated at
every mesh point within the interelectrode gap. Then,
the mesh values of the mean electron energy were used
to calculate the rate constants (found in advance as
functions of the mean electron energy by numerically
solving the Boltzmann equation for the electron energy
distribution function) of direct ionization, stepwiseion-
ization, and the excitation of the effective Xe* level. We
also tabulated the transport coefficients that were used
to solve the time-independent equation for the mean
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electron energy and the balance equations. The terms
that describe the excitation transfer by resonant radia-
tion will be discussed in Section 4. The basic equations
were supplemented with the corresponding boundary
and initial conditions. The voltage drop across the dis-
charge was found from the given RF field power. The
basic set of equations was solved numerically by the
difference scheme that was devel oped by Sharfetter and
Gummel [11] in order to describe the processes in
semiconductor devices (Boeuf [12] was the first to
apply this scheme to model RF discharges).

The basic equations were integrated on a nonuni-
form grid with a spatia step that was shortened when
approaching the electrodes. As a rule, we used about
100 spatial steps. In order to achieve a steady-state
solution, it was necessary to simulate several thousands
of periods of the RF field, so that the cal culation of one
version took about 20 hours of computer time on an
IBM-compatible computer with a Celeron-466 micro-
processor.

4. MODELS OF THE RESONANT RADIATION
TRANSPORT

The balance equation for the density of the excited
atoms in the Xe* state with alowance for collisiona
and radiative processes has the form [8]

oxe* .
ot = KedeXe—KgeNeXe™ + Bxegnexez
+ BAr><e+neArxe+ - KiXdk nexe* - KkArArXe*ArAr (1)
— KixeneX€* XeHe — Kiyen Xe* XeAr — K Xe* Xe

+J'Xe*(r')K(|r —r'|)dr‘—XTe*.

Here, K, is the rate constant of the electron-impact
excitation of the Xe* state from the ground state; K, iS
the rate constant of the electron-impact deexcitation of
the Xe* dtate; BXe; and B, . aretherate constants of

dissociative recombination of electrons with Xe, and

Xe*

ArXe* ions, respectively; Ki isthe stepwise-ioniza-
tion rate constant; Kya,a,» Kierre» 80 Kixen @€ therate
constants of three-body reactions producing the ArXe*
and Xe; excimer molecules; and K, is the quenching
rate of excimer molecules by heavy particles. Being the
function of the absolute value of the coordinate differ-
encer = |r —r'|, the kernel of the integral equation (1)
has the form

1 9f(r)
K(r) = —— "\, 2
") 4’y Or @
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Here, the spontaneous lifetime T of the Xe* state is

defined as T = TRQTRQ; 15 is the lifetime of the reso-

R m

nant state; and g and g,, are the statistical weights of
the resonant and metastabl e states, respectively. In the
case of acollisional spectral line broadening, the prob-
ability f(r) for a photon to move a certain distance r
without being absorbed or scattered is described by the
asymptotic expression f(r) = 1/,/Tik,r , where k, is the
absorption coefficient at the line center (we assume that
the rate of mixing of the metastable and resonant states
is much higher than the spontaneous deexcitation rate).
In pure Xe at room temperature, the collisional broad-
ening becomes comparabl e to the Doppler broadening
at a pressure of severa torr. However, in order to
describe the trapping of radiation, it is important to
know the radiation transport at the collision-induced
line wings. For discharges with sufficiently large geo-
metric dimensions (larger than 1 mm) in pure Xe [13],
the Doppler broadening can be neglected, in particular,
in the pressure range P > 1072 torr. Consequently, in
simulations, we took into account only the collisional
spectral line broadening. The data on the broadening of
the spectra lines due to collisions with Xe and He
atoms were taken from [13] (these data are needed to
calculate the absorption coefficient). The broadening
dueto collisions with Ar atoms was assumed to be two
times smaller than that due to collisionswith He atoms.
Under the conditions of our experiments, the typical
value of k,was 1.4 x 10° cmr™.

The rate constants of the elementary processes
incorporated into Eq. (1) aresummarizedin Table 1. An
analysis of the results obtained shows that the main
contribution to the quenching rate of the Xe* state
comes from stepwise ionization.

The method proposed by Holstein [7] to describe
the trapping of radiation consists in the replacement of
the last two termsin Eq. (1) by the term Xe*/1,,, where
T, isthe deexcitation time of aplasmadab or cylinder.
In the literature, this time is also called the effective
decay time of the fundamental mode [17]. For a colli-
sional broadening in the case of a planar plasma dab,
the decay time of the fundamental mode is calculated
from the formula[7]

= T./TK,d
H™ 1150

where d is the sab thickness.

For a collisional broadening in the case of a cylin-
drical plasma, the decay time of the fundamental mode
is calculated from the formula[7]

_ TJTkR

3)

™= 7115 @
where Risthe radius of the plasma cylinder.
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Table 1. Collisional processes of the excitation and quenching of Xe* states
Reaction Designation K, cm3n-1 g1 Reference
Xe+e—— Xe* +e Kew Kaex Defined from the Boltzmann equation
+ 1.7 x 107
Xe, e —= Xe* + Xe BXe; [1— exp(~180/T)] T;1/2
ArXe* +e —» Xell+Ar Barxer 82> 10" e
[1—exp(-180/T)] T,
Xe*+e —» Xet+e+e KX Defined from the Boltzmann equation
Xe* + Ar+Ar —~ ArXel+ Ar Kiarar 107 [14]
Xe* + Xe+He —» X€& +He Kixee 1.7 x 1073%(300/T)°66 [15]
Xe* + Xe+Ar —» Xé& +Ar Kixear 2.3 x 103%(300/T)°%6 [16]
Xe* + Xe —» Xe+ Xe Kq 32x107° [17]

n isthe number of reagents; the gas temperature T and electron temperature T, are expressed in degrees and electronvolts, respectively.

The approximation proposed by L.M. Biberman
(see, e.g., [8]) incorporates the dependence of the effec-
tive lifetime on the distance from the plasma boundary.
For a planar discharge, the asymptotic expression for
the effective lifetime has the form

1

=)
+ , (5
2+3,/Tkgx 2+ 3,/1ky(d —X)

where x isthe distance from the boundary of the plasma
dlab. For a cylindrical discharge, the analytic expres-
sion for the effective lifetime in terms of hypergeomet-
ric functionsis presented in [17].

Tal) = /]

An exact solution to Eqg. (1), supplemented with the
other equations required for describing the discharge,
was found numerically using the algorithm developed
in[18, 19].

5. DISCUSSION OF THE RESULTS OBTAINED

In discharges in noble gases, the main ionization
mechanism is stepwise ionization. Consequently, we
can expect that the reduced electric field E/N (where E
isthe electric field strength and N is the density of neu-
tral particles) at which the discharge is sustained is
highly sensitive to the quenching rate constant of the
electronically excited states. The collisional quenching
rate of the lowest electronic statesislow in comparison
with the stepwise ionization rate because of the large
energy defect. In the pressure range under investiga-
tion, the quenching rate of the lowest electronic states

in three-body collisions producing Xe5 and ArXe*
excimer moleculesis aso unimportant (see Table 1).
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5.1. DC Discharge

The results obtained when studying the effect of the
radiative lifetime of a DC discharge on the reduced
electric field E/N can be interpreted very smply. The
corresponding calculations were carried out for the
conditions of our experiments with DC dischargesin a
tube of radius R=0.15 cmfilled withan Ar : He: Xe=
50:50: 1 mixture at apressure of 76 torr. InFig. 2, we
compare the |-V characteristics cal culated using differ-
ent approximation models for the resonant radiation

Fig. 2. Comparison between the calculated and measured
|-V characteristics of a DC dischargein an Ar : He: Xe=
50: 50 : 1 mixture at a pressure of P = 76 torr: the experi-
mental results are represented by the squares; curves I and
2 refer to an optically thin and optically thick medium,
respectively; curve 3 is obtained using the decay time
approximation for a plasma cylinder; and curve 4 is calcu-
lated by solving Eq. (1) numerically.
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Fig. 3. Radid profiles of (1) the density of Xe* atoms, (2) the electron density, and (3) the trandlational gas temperaturein aDC

dischargein an Ar : He: Xe =59 : 40 : 1 mixture at a pressure of P = 50 torr and a mean power density of W= 14 W/cm?: (a) the
results of solving Eq. (1) numerically and (b) the results obtained using the decay time approximation for a plasma cylinder.

transport with the experimentally measured |-V char-
acteristic (squares). The calculations were carried out
for an optically thin medium (curve /) and a medium
with an infinitely large optical thickness (curve 2). The
figure also shows the |-V characteristics calculated by
using the Holstein approximation (curve 3) and by
solving Eq. (1) numerically (curve4). Thelimiting -V
characteristics for an opticaly thin medium and a
medium with an infinitely large optical thickness are
presented in order to illustrate the role played by the
balance of the excited particles in the formation of the
|-V characteristic of a discharge. The results obtained
are seen to differ markedly among different approxima-
tions for resonant radiation transport. We find good
agreement between the curve calculated by solving
Eq. (1) exactly and the experimental curve. Figure 3
displays the radial profiles of the electron density and
the density of the excited atoms in the Xe* state; the
corresponding calculations were carried out by apply-
ing the decay time approximation for a plasmacylinder

(Fig. 3a) and by solving Eqg. (1) numericaly (Fig. 3b).
The figure also shows the radial profiles of the trandla-
tional gas temperature. A comparative analysis of the
profiles in Figs. 3a and 3b shows that the decay time
approximation overestimates the density of Xe* atoms
at the tube axis by afactor of two and gives atwo times
smaller full width at half-maximum (FWHM) of the
radial profile of the density of Xe* atoms. Thisis aso
truefor the electron density. Because of the gas heating,
the reduced electric field E/N isthe strongest at the tube
axis; as aresult, theionization and excitation processes
are most intense in the central region of the discharge.
Theresonant radiation transport smoothes the degree of
excitation over the tube cross section and increases the
discharge current density in the peripheral region,
thereby resulting in the expansion of the discharge
plasma.

The efficiency of resonant radiation transport can be
characterized in terms of the thermalization length
[20], which satisfies the following relationship in the
case of collisional spectral line broadening:

2
" r, = E—VSI Er 1 (6)
1.2r tT h 0 k.’
E+vad
08k where T isthe spontaneous lifetime of the Xe* stateand
V4 is the total collisional quenching rate of this state.
Since, for Lorentzian broadening, the probability for a
0.4 F photon to be emitted at the spectral line wingsis pro-
portional to (k,r)'2, where r is the distance from the
plasma boundary, the thermalization length can be
. ! regarded as the spatial scale on which the emitted radi-
0 0.02 0.04 ation strongly affects the balance of Xe* atoms. Deep
r,cm

Fig. 4. Radia profile of the thermalization length r; calcu-
lated for the same parameter values asin Fig. 3.

in the discharge plasma (at distances from the plasma
boundary greater than the thermalization length), the
density of the Xe* atoms is governed exclusively by
collisional processes, so that the emitted radiation plays
anegligiblerole. Figure 4 showstheradial profile of the
PLASMA PHYSICS REPORTS  Vol. 27

No. 5 2001
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Fig. 5. Profiles of the density of Xe* atoms in the plasma of an RF dischargein an Ar : He: Xe=50: 50 : 0.5 mixture for (a) W=

50 W/cm? and P = 60 torr, (b) W= 50 W/cm?® and P = 120 torr, (¢) W = 100 W/cm® and P = 120 torr, and (d) W = 100 W/cm® and
P =240torr: (1) theresults of solving Eq. (1) numerically, (2) the results obtained using the decay time approximation for aplasma
slab, and (3) the results obtained using the effective lifetime approximation.

thermalization length r, calculated from formula (6) for
the same parameter values as those in Fig. 3. Since the
thermalization length is the shortest at the discharge
axis, Fig. 4 refers only to asmall axial region. We can
see that, even in this region, the thermalization length
markedly exceeds the tube radius, thereby evidencing
the crucial role of the resonant radiation transport.

5.2. RF Discharge

We simulated an RF discharge in a 2-mm plane gap
inaHe:Ar: Xe=50:50: 0.5 mixture at pressures of
60-240 torr, mean power densities of W = 50—
100 W/cm?, and the frequency of the exciting electric

field of 100 MHz. Figure 5 shows the profiles of the
density of Xe* atomsin the discharge gap. The profiles
were calculated by using the decay time approximation
for a plasma slab and the effective lifetime approxima-
tion, as well as by solving Eqg. (1) numerically, for the
following values of the power density and pressure:
50/60, 50/120, 100/120, and 100/240, where the first
numerals refer to the power density in W/cm? and the
second numerals refer to the gas pressure in torr. It is
seen that the approximate methods overestimate the
density of the Xe* atoms near the electrodes by afactor
of about 2 to 3 in comparison with the density obtained
by exact numerical integration. At the same time, the
approximate methods give somewhat lower centra

Table 2. Period-averaged absolute values of the reduced electric field E/N [Td] and the translational gas temperature [K] (in

parentheses) at the midplane of the discharge

W, W/cm?3 P, torr Equation (1) Holstein approximation (3) | Biberman approximation (5)
50 60 2.49 (447) 3.07 (453) 2.93 (452)
50 120 3.23(507) 3.80 (519) 3.70 (517)
100 120 3.25 (586) 3.82 (602) 3.72 (599)
100 240 3.36 (692) 3.61 (710) 3.57 (706)
PLASMA PHYSICS REPORTS Vol. 27 No.5 2001



438

STAROSTIN et al.

(b)
3 x 1012,
s 2
3 x10'2 : " ‘
2 x 1012
2 %1012
12
L% 1012 1 x10
T 0
5 6 % 102
:m

4 x 1012

2 x 1012

4 %102

2% 10121

1
0 0.05 0.10 0.15

0.20 0 0.05 0.10 0.15 0.20

X, cm
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tion for aplasmadlab, and (3) the results obtained using the effective lifetime approximation.

densities of the Xe* atoms in comparison with the ment with the exact numerical integration. Table 2 lists

numerical density, in which case results obtained from
the effective lifetime approximation arein better agree-
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Fig. 7. Calculated profiles of the thermalization lengthr; in
the plasmaof an RF dischargeinanAr: He: Xe=50:50:
0.5 mixture for (1) W=50 Wi/cm?® and P = 60 torr, QW=
50 W/cm?® and P = 120 torr, (3) W = 100 W/cm3 and P =
120 torr, and (4) W = 100 W/cm? and P = 240 torr.

the period-averaged absolute values of the reduced
electric field E/N and the tranglational gas temperatures
at the midplane of the discharge. An analysis of the cal-
culated results shows that, at the midplane, the electron
density remains in local balance: the stepwise ioniza-
tion rate is equal to the recombination loss rate.
According to the numerical solution of Eq. (1), which
exactly describes the resonant radiation transport, the
excitation is transferred from the peripheral to the cen-
tral region, the density of the excited xenon atoms
increases, and the reduced electric field E/N at which
the ionization—recombination balance is maintained
decreases. Note that, in contrast to aDC discharge, dif-
ferent approximations for modeling an RF discharge
give nearly the same values of the voltage applied to the
discharge gap. This circumstance can be explained by
the fact that, across the positive column of an RF dis-
charge, the voltage drops only dlightly. Figure 6 pre-
sents the electron density profiles averaged over the
electric field period for the same parameter valuesasin
Fig. 5. We can see that different approximate models
for resonant radiation transport and the exact solution
of Eq. (1) yield close results. The approximate methods
somewhat underestimate the electron density at the
midplane and somewhat overestimate it near the elec-
PLASMA PHYSICS REPORTS  Vol. 27
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trodes. Figure 7 illustrates the thermalization length for
different excitation conditions corresponding to Fig. 5.
Since, under all conditions, the thermalization lengthis
markedly longer than the slab thickness, the resonant
radiation transport plays an important role.

Note that, for the Xe 5d[3/2], state, which is the
highest excited state for laser transitions at 2.65, 2.03,
and 1.73 ym, the thermalization length is about 3 x
1072 cm (because of the strong collisional relaxation),
so that the resonant excitation transfer (A = 119 nm)
plays an insignificant role in the population balance of
this state.

6. CONCLUSION

We have investigated the effect of the transport of
Xe 147-nm resonant radiation on the parameters of
low-temperature plasmas of DC and RF discharges in
gas mixtures used in lasers based on infrared transitions
in Xe. Applying the Biberman—-Holstein equation, we
have developed for the first time a realistic approach to
describing resonant radiation transport in the gas-dis-
charge model.

For DC discharges, we have achieved good agree-
ment between the |-V characteristics calculated with
allowance for the resonant radiation transport and the
experimentally measured |-V characteristics. We have
revealed that the radiation transport weakens the con-
traction of the discharge column. It is found that, when
modeling an RF discharge, the effective lifetime
approximation for aplasmasdlab (the Biberman approx-
imation) and the decay time approximation (the Hol-
stein approximation) overestimate the density of the
excited Xe atoms near the electrodes by several times
and underestimate this density at the midplane of the
discharge gap. For the distribution of the excited Xe
atoms under the conditions prevailing in our experi-
ments, the results from the Biberman approximation
are closer to the exact ones than the results from the
Holstein approximation.
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Abstract—The spontaneous emission efficiency of an Ar} excimer and its amplification properties at awave-
length of 126 nm are studied using a numerical model of the weakly ionized plasmaof a pulsed dischargein Ar
at elevated pressures. It is shown that, under real experimental conditions, it is possible to achieve a net gain
coefficient of the active medium equal to =0.065 cm! by increasing the gas density up to 4.0 x 102 cm™ at an
initial gastemperature of 170 K. Theinterna conversion efficiency of discharge energy into spontaneous emis-
sion depends weakly on the gas temperature and attains 75% for agas density of 2.7 x 10?° cm3, but with exci-
tation powers much lower than for the maximum gain. The applicability of the model at low excitation powers
istested by comparison with the experimental data. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Progress in microelectronics is largely related to
increasingly smaller scale technology. High-power effi-
cient short-wavel ength radiation sources are needed for
this purpose. The use of high-energy photons is aso
more preferablein other applications, such as medicine

and chemistry. At present, Ar; excimer moleculesemit
coherent radiation with the shortest wavelength (for

Ne5 excimers, only fluorescence was observed). Gen-

eration with the Ar; excimer was achieved only by
exciting a gas at pressures higher than 10-20 atm by a
high-power electron beam [1, 2]. From a practical
standpoint, the use of pulsed el ectric dischargesismore
attractive. However, attempts to achieve generation in
pulsed discharges have been unsuccessful. To our
knowledge, there are only two papers concerning the
possibility of achieving generation using dimers of
inert gases in electric discharges [3, 4]. In [3], stable
homogeneous discharges with a duration of 50-200 ns
were produced in pure Kr at pressures of up to 1.5 atm
and in a Kr/Ne mixture at pressures of up to 10 atm.
In[4], the amplification at a wavelength of 126 nm for

the Ar; excimer was observed at pressures of up to
3.5am in pure Ar. In recent papers [5-7], the kinetics

of the Ar3 excimer excited by a beam of fast electrons
was studied in detail. Based on recent experimental
data [4—7], we have devel oped a modified zero-dimen-

sional model [8, 9] describing the kinetics of the Ar}
excimer excited by a beam of fast electrons or by a
pulsed electric discharge [10]. The model in [10] pro-
vides a good description of the experimental data
obtained by different authors on excimer excitation by
an electron beam and satisfactorily describes experi-

ments with pulsed discharges. Thus, the small-signal
gain coefficient (corrected for absorption) predicted by
this model is 0.002 cm!, which is nearly one-third of
its value estimated from the amplification of spontane-
ous emission [4]. In this paper, the model [10], whose
applicability at low excitation powers has been tested
by comparison with experimental data, isused for sim-
ulations and theoretical studies of the amplification
properties and emission efficiency of pure Ar plasma
excited by apulsed electric discharge. For definiteness,
here we use the parameters of device [4]; i.e., the dis-
charge is excited with the use of the same €electric cir-
cuit at the same voltages and the same interelectrode
distances asin [4]. It is also assumed that, by varying
the electrode width, it is possible to vary the discharge
area. In addition, the gas density is chosen to be a
parameter of the problem. In fact, both these parame-
ters affect the excitation power of the active medium.

2. NUMERICAL MODEL

The numerical model is described in detail in [10].
Here, we only present a brief description of it. The
model is based on the package of programs for zero-
dimensional modeling of Ar and Xe electric-discharge
excimer lamps [8] and also a Xe; electric-discharge
laser using Xe/Ne or Xe/He mixtures [9]. The model
includes

(i) electric-circuit equations;

(ii) the quasistatic Boltzmann equation in the two-
term approximation;

(iii) balance equations for neutral, charged, and
excited plasma particles and photons;

1063-780X/01/2705-0440$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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(iv) an equation for calculating the gas temperature;
and

(v) equations describing the excitation and ioniza-
tion of Ar by an electron beam.

In [4], the discharge was excited with a Blumlein
double forming line. The model uses an equivalent LC
electric circuit (Fig. 1). The capacitances C and C, are
known [4], and the values of theinductancesL, L, and
L, and resistances R, R, and R, are chosen in model
[10] by comparing the cal culated and measured oscillo-
grams of the voltage U,,, and the intensity of excimer
radiation. The voltage U ,, in the prebreakdown phaseis
determined by the parameters R, and L, whereas the
voltage and radiation oscillations after breakdown
depend on the total inductance L = L, + L,,, and total
resistance R = R, + R,,. The oscillogram shape is very
sensitive to these parameters, which makes it possible
to determine their values.

As was noted in [5, 6], gas heating affects the ion
composition. Good agreement with experimental data
was achieved in [5] assuming the gas temperature to be
~350 K (for aninitial temperature of 300 K). In [5, 6],
it was also noted that the gain coefficient of the active
medium increases as the gas temperature decreases. For
thisreason, in order to describe the temperature effects,
the model was supplemented with an equation for cal-
culating the gas temperature. The gas temperature is
calculated from the energy balance. Gas motion is
ignored because the characteristic times of processes
observed (<10 s) are short compared to the gas-
expansion time (=107 s). Asthe temperature varies, the
values of the constants and cross sections dependent on
it are recalculated. The temperature effects are dis-
cussed in more detail in [10].

The set of kinetic equations was modified in accor-
dance with new data on Ar plasma [4—7]. The scheme
of the main processesisillustrated in Fig. 2a.

The kinetic scheme includes three basic parts:

(i) processes involving electrons (the constants and
rates are taken from [7, 8]);

(i) processesinvolving Ar*, Ary, and Ary ions (the
constants and rates are taken from [6, 7]); and

(iii) processes involving excited particles (the con-
stants and rates are taken from [5, 6, 8]).

Unlike previous models [5-8], model [10] includes
the vibrational relaxation of lower levels of the Ar3
('Y)and Ars (3%) states (Fig. 2b). Thisis necessary for
correctly determining the gain coefficient of the active

medium when the gas temperature varies. The follow-
ing expression for the gain coefficient of the active

mediumisused:g=oN, ., .. _ _,wherecisthecross
Ars(°Z, v =0)

section for stimulated radiation and N A s, v = 0)
55, v =
population of the lower vibrational singlet state of an

isthe
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Voltage source ¢

L=Ly+L,,R=Ry+R,,
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Fig. 1. Equivalent electric circuit of discharge excitation:
R=R;=03Q,L,=9nH,L=45nH,andC=C, =4.25
nF; the distance between the electrodesisd = 2.2 mm.

Electron beam

Ar*

Electron beam

2Ar

Ar,(3%)

Ary

Fig. 2. (a) Diagram of the processes in pure argon plasma
excited by an electric discharge or afast-electron beam, and
(b) adetailed diagram of the excitation of singlet and triplet
states of the Arj excimer. The main processes are indicated

by heavy arrows.
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excimer. The data on the cross section for stimulated
radiation are given in [10].

Unfortunately, experimental data on the VT con-
stants of vibrational relaxation are lacking. However,
indirect data from spectra measurements [11, 12]
allow us to conclude that the rates of these processes
are high. At pressures above 1 atm, the Boltzmann dis-
tribution over vibrational levels with the vibrational
temperature equal to the trandational gas temperature
is established. In this case, the ratio between the popu-
lation of the lower vibrational level, which determines
the gain coefficient of the active medium, and the total
population at lower vibrational states depends on the
gas temperature and equals

_ o

_Z_fi:]__exp

where E,, isthe energy of the vibrational transitionv =
1 — v =0 (E, =292 cm! = 420 K). Accordingly,
incorporating vibrational relaxation in the model
decreases the gain coefficient by a factor of about v.
Since y depends on the gas temperature, incorporating
vibrational relaxation under high energy deposition
and, consequently, strong heating can affect the time
dependence of the gain.

In view of the insufficient information on the vibra-
tional relaxation constants, it isreasonableto useasim-
plified approach to describing the vibrational kinetics
of excimer molecules, which was previously used to
describe a XeCl laser [13]. In this case, vibrational
relaxation is described by an effective process of
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Fig. 3. Comparison of the measured (symbols) and calcu-
|ated electron densities ng asafunction of the argon pressure

P for different currents of a fast-electron beam: Jgy, = (1)
0.023, (2) 0.086, (3) 0.28, (4) 2, and (5) 10A/ cm?.
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energy exchange between the “reservoir” of vibrational
energy and thev = 0 state:

AR(Z) + Ar <= An,(°%,v = 0) + Ar,

AR (') + Ar == An('Z,v = 0) + Ar.

For the constant of the forward reaction, we take a
typical valuek; =9 x 10! cm?¥s. The reverse rate con-
stant is chosen to be k, = ki/y. Note that, to describe the
vibrational relaxation more adequately, an experimen-
tal study of this processis required.

Hence, the reduced electric field E/N (where E isthe
electric field strength and N isthe total particle density)
or the source of secondary electrons (when the excita-
tion is produced by an electron beam) are used in the
model as entry parameters when solving the quasi static
Boltzmann equation in the two-term approximation.
The model incorporates electron—ion recombination
and elastic and inelastic electron losses in collisions of
electrons with atoms and molecules in the ground and
excited electronic states; electron—electron collisions
and superelastic collisions are also taken into account.
The constants of direct processes are determined from
the calculated el ectron energy distribution function and
from the cross sections for corresponding processes,
the constants of reverse processes are calculated from
the detailed balance principle. The constants of the pro-
cesses involving electrons are used to determine the
densities of the plasma components and photons from
the balance equations solved simultaneously with the
equations for the gas temperature and electric circuit.
To solve the balance equations, the Kirchhoff equation
for the electric circuit, and the temperature equation,
we use the Gear method as the most appropriate
method for stiff systemstypical of the problems under
consideration. Note that the time variation of the elec-
tron and excited-particle densitiesis taken into account
when solving the Boltzmann equation. The density of
electrons and their mobility, which are found from the
Boltzmann equation, determine the plasma conductiv-
ity needed to calculate the currents and voltages in the
electric circuit and, finally, E/N.

In[10], the model wastested using the experimental
results [4-6] obtained at high excitation powers
(>10 MW/cm?) needed to achieve generation with the

Ars excimer. For efficient fluorescence (see below),

such conditions are not optimal because of the fast
guenching of excimer molecules by electrons. For this
reason, model [10] was tested for low currents of the
fast-electron beam and, accordingly, low pump powers.
In Fig. 3, the measurement results [7] are compared
with the cal culated dependences of the electron density
on pressure over a wide range of fast-electron beam
currents Jg, (from 0.023 to 10 A/cm?). It is seen that
model [10] is aso applicable for low pump powers.
Notethat, for afast-electron beam current of 0.1 A/cm?,
the plasma-excitation power is nearly the same as for
PLASMA PHYSICS REPORTS  Vol. 27
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the electric-discharge excitation in device [4], but for a
discharge area of S= 1500 cn?. In this case, the maxi-
mum discharge-current density is~10 A/cm?.

3. AMPLIFICATION PROPERTIES

In [4], the gain coefficient at a pressure of 3.5 atm
wastoo small (~0.006 cm). Hence, the question arises
of whether it is possible to achieve a higher gain by
using the same device with the same discharge voltage
and interelectrode distance. Obviously, the higher the
pump power of the active medium, the higher the gain.
Taking into account that the discharge current is con-
trolled by the electric circuit, the excitation power for a
given discharge area (and, accordingly, agiven electron
density) increases as the gas density increases due to
the increase in the discharge voltage. However, at too
high a gas density, the discharge may not be ignited. In
our case (see Fig. 4), the highest relative density n (n =
N/N_, where N, = 2.7 x 10 cm is the Loschmidt
number) at which the discharge can occur is equal to
n~15.

Here, we assume that instabilities have no time to
develop. The plasma stability is a separate complicated
problem, which is beyond the scope of this study.

As the discharge area decreases, the excitation
power increases due to an increase in the electron den-
sity. Note that, in [4], knifelike el ectrodes with a thick-
ness of 6 mm and total length of 40 cm were used. To
improve the discharge stability, the electrodes were
rounded, so that the maximum discharge areain device
[4] was at most 24 cm? (most likely, it was even smaller
because the discharge was contracted toward the center
of the discharge gap). The closest agreement of calcu-
lations [ 10] with experiment [4] was achieved for adis-
charge area of 4 cm?. As the electron density increases,
the quenching rate of excimer molecules by electrons
and the dissociation rate of excimer moleculesin upper
vibrational states increase [10], thus decreasing the
pumping rate of excimer molecules. In addition, the gas
temperature increases with the pumping power, which
also decreases the gain [10]. The existence of an opti-
mal value of the discharge area Sisillustrated in Fig. 5,
which shows the maximum net gain coefficient of the
active medium g — a and the absorption coefficient a as
functions of the discharge area. For the rel ative gas den-
sity n = 10, the net gain is maximum for S= 2 cm?,
whereas for n = 15, the maximum of the dependenceis
displaced toward smaller areas (S= 1 cm?), because the
decreasein the net gain is primarily due to gas heating,
which reduces the cross section for stimulated emission
[10]. For n=15and S= 1 cm?, the increase in the gas
temperature attains AT = 270 K. For n = 10 and
S=2 cn?, the gas temperature increases by nearly the
same value: AT = 240 K. As the discharge area
increases, the gas temperature increases approximately
in inverse proportion to the discharge area. For a dis-
charge area S> 10 cm? and n = 10-15, gas heating can
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Fig. 6. Time dependences of thenet gain, g— a (solid lines),
and the absorption coefficient a (dashed-and-dotted lines) at

n=15and Ty = 170 K for a discharge area of S= 2 cm?

(squares and dashed line) and 24 cm? (circles and dotted
ling).

be neglected. Asis expected, the net gain coefficient is
maximum for the relative gas density n = 15 and the
low initia temperature T, = 170 K and can attain
0.065 cm!, which is one order of magnitude higher
than the estimate of [4].

DEM’YANOV, LO

Because of the large difference between the break-
down voltage and the discharge voltage, it isimpossible
to match the impedances of the Blumlein line and the
electric discharge at high excitation powers. For this
reason, the current oscillations in the circuit result in
oscillationsin the time dependences of the net gain and
the absorption coefficient a (Fig. 6). The smaller the
discharge area, the sharper the spikes and the greater
their number. The maximum net gain occurs at the first
spike (at atime of ~40 ns). Note that, at thistime, dis-
charge instabilities probably have no time to devel op.

The efficiency with which the energy is extracted
from the active medium in aresonator is determined by
the ratio of the small-signal gain coefficient to the
absorption coefficient; the higher this ratio, the higher
the resonator efficiency. Thus, for excimer lasers, the
typical values of g/a are =10. In our casg, i.e., for n =
15, T, = 170 K, and a discharge area of ~2 cn?, this
ratio is relatively low—about 3.4 (Fig. 7).

4. FLUORESCENCE EFFICIENCY

The intensity of the spontaneous emission of the
Ar3 dimer is proportional to the Ar> density and
increases (along with the gain coefficient) as the pres-
sure increases or the discharge area decreases (i.e., the
electron density increases). Thus, as the discharge area
varies from 24 to 1 cm?, the intensity increases by
almost one order of magnitude (Fig. 8). The difference
between the time dependences of the net gain (Fig. 6)
and the intensity of spontaneous emission (Fig. 8) is
explained by the increase in the gas temperature with
time, which resultsin the decrease in the net gainin the
second and third spikes compared to the first one

(Fig. 6).

The spontaneous emission energy (Fig. 9) and the
conversion efficiency n;, of the discharge energy into
radiation (Fig. 10) decrease as the discharge area
decreases, because the quenching rate due to collisions
with electrons increases and the excitation rate of
dimers decreases due to dissociation of upper vibra-
tional dimer states by electrons [10]. Figure 9 also
shows the dependences of the energy deposited in the
discharge on the discharge area. In this case, the energy
stored in the Blumleinline (C=C, =4.25nF and U, =
20kV) isequa to 1.7 J.

The total emission efficiency n (i.e., the conversion
efficiency of the energy stored in capacitorsinto radia-
tion) is determined by the efficiency n. with which the
energy istransferred from the electric circuit to the dis-
charge and the internal conversion efficiency n;, of the
discharge energy into radiation. In turn, the internal
efficiency n;, can be represented as the product of the

efficiency n. of the production of Ar; excited states
and the conversion efficiency ng, of the excited states

PLASMA PHYSICS REPORTS Vol. 27 No.5 2001
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Fig. 7. Maximum ratio of the small-signal gain coefficient
to the absorption coefficient g/a vs. discharge area Sfor n =
15 and T, = 300 K (solid line); n = 15 and T, = 170 K
(dashed line); and n= 10 and T, = 170 K (dotted line).

into the Ar; excimer and its spontaneous emission:
N =NcNin>
where N, = N

The lower the resistive losses in the circuit and the
better the matching between the wave impedance of the
circuit and the resistance of the discharge gap (here, we
only consider the forming lines or circuits that contain
inductances and are commonly used for exciting elec-
tric-discharge lasers), the higher the electric circuit effi-
ciency n.. Thus, for anideal LC circuit (with zeroresis-
tance), matching is achieved when the circuit wave
impedance is equal to the discharge resistance. In this
case, the total energy stored in the capacitor is trans-
ferred to the discharge during the first half-period of
current oscillations. In the absence of matching, the
energy stored in the capacitor is also completely trans-
ferred to the discharge, but over alonger period of time
(the discharge resistanceis usually smaller than the cir-
cuit wave impedance), until oscillations in the electric
circuit relax. Actua circuits always have nonzero resis-
tance; hence, the improvement of matching reduces
energy losses in an actual electric circuit. As is seen
from Fig. 9, for n = 10-15 and S< 100 cm?, only one-
third of the stored energy istransferred to the discharge
because of poor matching between the supply circuit
and discharge and, accordingly, large losses in the
resistances R, R,, and R, (Fig. 1). For lower gas densi-
ties, matching becomes even poorer, losses increase,
and the fraction of the energy deposited in the discharge
decreases. Thus, for n = 3.5 and 1.5, the deposited
energy decreasesto 1/6 and 1/10 of the energy stored in
the line, respectively. Thisis due to the fact that, asthe
No. 5
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Fig. 8. Effect of the discharge area Son the time dependence
of the spontaneous emission intensity for n= 15 and T, =
170K: S=1(solidline), 2 (dashed line), 6 (dashed-and-dot-
ted line), and 24 cm? (dotted line).

gas density decreases, the discharge voltage decreases,
whereas the discharge current is controlled by the
external circuit and increases only slightly. Poor match-
ing at small discharge areas is a consequence of the
large difference between the breakdown voltage, deter-
mined by direct ionization, and the discharge voltage,
determined by stepwise ionization (Fig. 11a). Note
that, for S = 10 cm?, the electron density attains the
valuen,~ 10' cm™ and, asisseenin Fig. 11a, the exci-
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Fig. 9. Discharge energy (dashed line) and spontaneous
emission intensity (solid lines) vs. discharge area Sfor n =
1.5 and Ty = 300 K (without symbols); n = 10 and T =

170K (circles); and n= 15 and T = 170 K (squares).
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sion, (4) electron-impact ionization, and (5) quenching due
tocallisionswith electronsfor Ar; at dischargeareasof S=

(a) 10 and (b) 10* cm?.

tation rate of Ar electronic states and the stepwise ion-
ization rate are nearly equal to each other. As the dis-
charge area increases (S > 100 cn??), the stepwise ion-
ization rate and the electron density decrease (thus, for
S=10* cn??, the maximum value of n,is~5 x 10'2 cm?)

DEM’YANOV, LO

and, starting from S > 10° cm?, direct ionization
becomes dominant. For S= 10* cm?, the direct ioniza-
tion rate exceeds the stepwise ionization rate during the
first spike (Fig. 11b). Only starting from nearly 25 ns,
when the discharge voltage decreases, does the direct
ionization rate become lessthan the stepwise ionization
rate. The small rate of stepwise ionization is due to the
fact that, in this case, the excited-particle density is
determined by radiative losses and is insufficient for
intense stepwise ionization. As is seen from Fig. 11b,
the radiative loss rate for S= 10* cm? is two orders of
magnitude higher than the stepwise ionization rate. The
prevailing role of direct ionization leads to an increase
in the discharge voltage (and also to better matching)
and, consequently, to an increase in the energy depos-
ited in the discharge up to ~1J for n = 10-15 and
S> 10° cm? (Fig. 9). Calculations with zero resistances
R,, R, and R,, showed that, for S= 10* cm? and n = 10,
the energy deposited in the discharge increasesto 1.5 J
during the first spike and, as early as at 250 ns, almost
the entire energy stored in the capacitors C and C, is
transferred to the discharge.

The internal conversion efficiency n;, of the dis-
charge energy into spontaneous emission depends
weakly on the gas temperature and increases asthe dis-
charge areaincreases, attaining ~75% at n= 10 and S>
10* cm? (Fig. 10). In this case, the discharge current
density decreases to ~1.5 A/cm?, so that it is necessary
to test the numerical model at such low excitation pow-
ers (see above). As the gas density decreases, the effi-
ciency n);, decreases (to ~ 55% at n = 1.5) primarily due
to the decrease in the rate of dimer formation in three-
body processes and also dueto theincreasein the rela
tive role of quenching Ar; dimers and their dissocia-
tion by electrons. As the relative density n increases
above 10, n;, decreases insignificantly.

Such ahigh internal efficiency (higher than an effi-
ciency of ~40-50%, characteristic of the excitation by
afast-electron beam [15, 16]) is ensured by high values
of both the efficiencies npand ng,. At low pumping

powers and, accordingly, low electron densities, the
quenching rate of Ary excimer molecules due to colli-
sions with electrons (this is the main process of Ar}

loss) is negligibly small compared to the radiative loss
rate (Fig. 11b); for thisreason, ng, is closeto 100% and
Nin = N Most of the discharge energy is expended on

the argon excitation. This is seen in Fig. 12, which
shows the time dependences of the ratio between the
total density of excited states (Ar*, Ar**, Ar; ('Y),
Ar; (’%), and Ar3™) and the electron density for n = 10.
For S=10* cm?, thisratio reaches 40 in the second exci-
tation spike, whereas for S= 10 and 100 cm?, the max-
imum value of this ratio is reached even in the first
spike and is equal to 26. The excitation efficiency of
electronic states n, at electron densities lower than the
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 12. Time dependences of the ratio of the total excited-
particle density to the electron density for the gas density
n = 10 and discharge areas of S=10 (solid line), 100 (dashed

line), and 10* cm? (dotted line).

excited-particle density tendsto the value hv(1 — ng)/e*
= 87%, where hv = 10.9 eV is the emission photon
energy, €* = 11.6 eV is the excitation energy of the
lower excited state of Ar*, and ng = 6% is the fraction
of discharge energy lost due to elastic processes. A
smaller value of the calculation efficiency n;, (~75%)
can be explained by the fact that a certain fraction of
discharge energy is expended on the excitation of Ar**
states and ionization; another reason is that losses due
to elastic collisions are underestimated because of the
discharge voltage oscillations. To estimate n; we used

the value of ny at the maximum of the discharge power.

5. CONCLUSION

We have shown that, under the conditions of exper-
iment [4], it is possible to achieve anet gain coefficient
of the active medium equal to g — a = 0.065 cm™! by
increasing the relative gas density n to 15 at an initia
gastemperature of 170 K, or 0.04 cm~! at room temper-
ature. In addition, it is necessary to reduce the dis-
charge area to 1 cm? and, accordingly, increase the
excitation power to 40 MW/cm? at normal conditions.
In such regimes, the Blumlein line cannot ensure the
optimum pumping of the active medium. At best (at rel-
ative densities of n = 10-15), only one-third of the
energy stored in the lineis transferred to the discharge.
For better matching between the electric circuit and the
discharge gap, it is necessary to use supply circuits that
ensure both the high breakdown voltage and the opti-
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mum discharge voltage (e.g., double-pulse excitation
circuits).

The internal conversion efficiency of the discharge
energy into spontaneous emission depends weakly on
the gas temperature and increases as the discharge
power decreases, attaining ~75% at n = 10 and an exci-
tation power of <700 kW/cm?. Under these conditions,
the discharge voltageis close to the breakdown voltage;
consequently, simple electric circuits (e.g., a single-
contour L C circuit) can be used to efficiently excite the
discharge.
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Abstract—Data from the Freja satellite experiment on the lower hybrid turbulence in the Earth’s magneto-
sphere are analyzed. It is shown that the observed threshold energy density of lower hybrid waves required for
the excitation of localized wave packets is in good agreement with theoretical predictions. © 2001 MAIK

“ Nauka/Interperiodica” .

Observations from the instrumented Freja satellite
indicated the existence of localized wave packetsin the
lower hybrid (LH) frequency range in the Earth’s mag-
netosphere [1-5]. In this paper, we consider the origin
of these localized wave packets. The excitation of LH
turbulence in the magnetospheric plasma is character-
ized by a certain threshold value of the LH wave energy
density. We compare the threshold LH wave energy
density predicted by the theory of the modulational
interaction of broad wave spectra[6] with that obtained
from observations [4].

The Freja project is a joint Swedish—German
research project. Its purpose is to investigate the inter-
action between the hot magnetospheric plasma and the
upper atmaosphere (ionosphere). Thisinteraction results
in a significant increase in the energy of magneto-
spheric and ionospheric plasmas and is associated with
loss of substance from the Earth’s atmosphere. The
Freja satellite was launched on October 6, 1992, into a
63°-inclination orbit with a 1760-km apogee over the
Northern Hemisphere and a 600-km perigee over the
Southern Hemisphere. The most outstanding feature of
this mission was the high resolution of the plasma and
field (both electric and magnetic) measurements and a
high telemetry rate (up to 512 kbits/s) [7, 8].

The high resolution and high telemetry rate ensured
the observation of electrostatic fields in the LH fre-
guency range. The measurements were carried out at
atitudes of about 1760 km. Purely electrostatic wave
fields were observed (no perturbations of the magnetic
field were detected). The characteristic feature of these
fieldswasthe presence of density cavitiesin theregions
where the field was localized (Fig. 1) [1-5]. The char-
acteristic frequency range of LH waves was [4] w =
211(3.5-4.5) x 10° sL. The characteristic LH resonance

frequency was w y = wy,(1 + wﬁe/wée)-l/z ~ 27T X
10° s [3], where Wpe(i) isthe electron (ion) plasmafre-

guency and wy, is the electron gyrofrequency. We note
that the above value of w, is only an estimate. The

measured val ues of the plasma parameters werethe fol-
lowing [3]: the unperturbed electron density was n, =

1.1 x 10° cm, the electron plasma frequency was wy, =
1.87 x 10° 57!, and the proton gyrofrequency was wg, =
21t% 400 s~!. Thelatter correspondsto an external mag-
netic field of [By| = 0.263 G. The most abundant ionsin
the region of the magnetosphere where the measure-
ments were performed were O*, He*, and H*.

An important result of the instrumented Freja satel-
lite experiment was that it proved the existence of a
threshold for the excitation of localized LH oscilla-
tions. The dependence of the energy density of LH
oscillations on the magnitudes of relative perturbations
of the plasma density in the regions where the oscilla-
tionswerelocalized wasinvestigated (Fig. 2) [4]. It was
shown that the relative perturbations of the plasmaden-
sity correlated with the energy density of LH oscilla-
tions. The threshold energy density was defined as the
energy density at which the density perturbations van-
ish. The threshold for the excitation of wave packets
corresponds to the energy density of LH oscillations,
which is on the order of WHH ~ 10714 J/m3,

Localized LH oscillations observed in the Freja
experiment were associated [3-5] with the envelope
LH solitons that can be formed due to the modulational
interaction between LH waves (see, e.g., [9, 10]). Thus,
it isof interest to calcul ate the threshold energy density
for the modulational instability under the conditions of
the Freja experiment and to compare it with the
observed value. Let us compare the threshold LH wave
energy density obtained from the instrumented Freja
satellite with the theoretical value, which can be found
from the following condition [6]:

dkw," b, |
InOTe ||(|2V-2|—e " miD:JL)peE|
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Fig. 1. Two examples of localized LH wave packets in the
Earth’s magnetosphere (data from the Freja satellite [4]).
The LH wave electric fields are shown in the upper panels.
The signal has a bandwidth of 0-16 kHz. The lower panels
show the low-frequency relative plasma density perturba-
tions. Solid and dashed curves refer to the signals from two
Langmuir probes with which the plasma density was mea-
sured. The correlation between the regions where the wave
field is localized and the plasma density cavities is clearly
seen.

where T, isthe electron temperature, k is the wave vec-
tor, WtH = I W dk, vy, = (To/my)'?2 is the electron

thermal velocity, and my;, is the electron (ion) mass.
Condition (1) is obtained for LH waves propagating
under the angles 6 with respect to the external magnetic
field such that the inequalities

/2
Cne
1= <
OnO < |cosB| < 1 )
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Fig. 2. The dependence [4] of the LH wave energy density
on theratio of the plasma density perturbation to the unper-
turbed plasma density.

are satisfied. In this case, the linear dispersion relation
for LH wavesis

Wy = W %L + ﬁl coszeg1 : 3)
e

When deriving Eq. (1), it isalso assumed [6] that (i) the
inequality |0k |vs < dwis satisfied (here, Ok is the spec-
tral width in k space, dw is the spectral width in fre-
quency space, and v, = (T,/m)'? is the ion acoustic
velocity) and (ii) the spectrum occupies the entire
region in k space where LH waves can exist; i.e., (2—
3)|kylvre < w0, Where the subscript || denotes the vector
component parallel to the external magnetic field (for
(2-3)|ky|vre 2 0, waves rapidly decay due to Landau
damping). It isthese spectrafor which the threshold for
the LH wave modulational interaction exists [6].

The parameters of the plasma and waves to which
Eq. (1) applies correspond to the conditions of the Freja
experiment. Indeed, the broad frequency range of LH
waves (dw~ Wy 4 ~ Wy, Where wy, is the characteristic
frequency of the spectrum) indicates that the waves sat-
isfying dispersion relation (3), which corresponds to
the situation (m,/m)' < |cos 8| < 1, play an important
role. Furthermore, an LH soliton contains harmonics
with al the possible k for which LH waves can exist
((2-3)Ik|Vre < wp,). Thismeansthat the LH wave spec-
trum can be considered broad; thus, it is meaningful to
use the concept of the modulational instability thresh-
old. In addition, the following inequalities are satisfied:

|5k v ¢ = [3k)| v re(me/m;) /| cosB)
0|k Vre(me/m;) 2
When calculating the theoretical threshold energy
density of LH waves from EqQ. (1), it is natura to
assume that the characteristic value of (1 +

/|cosB)| < w,, Odw.
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Whe/Wae)  Wie /KR V%, = Wi /i v 5, is 0N the order of
ten. Indeed, if the LH wave energy density tendsto zero
and the broad LH wave spectrum includes all possible
k (for which LH waves can exist), then the only charac-
teristic wave vector of the problem under study is that
satisfying the condition (2-3)|k|Vr = w,,. Using the
characteristic value of the electron temperature of the
magnetospheric plasmaat an altitude of about 1760 km
(T.=0.3-1eV [11]), weobtain from Eq. (1) that W-H ~
2.1 x 10713 erg/cm’? (here, for definiteness, we assume
that T, = 0.3 eV and that the most abundant ions are H*
ions). For T, = 0.3 eV and O* ions, we obtain W-H ~
1.3 x 1071* erg/cm’.

Thus, the theoretical values of the threshold LH
wave energy density obtained from Eq. (1) agree well
with the results of the Fregja experiment. This also
allows us to conclude that the formation of localized
wave structures in the Earth’s magnetosphere is indeed
associated with the development of modulational pro-
Cesses.
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K senia Aleksandrovna Razumova
(In Honor of Her 70th Birthday)

On January 23, we celebrated the 70th birthday of
KseniaAleksandrovna Razumova, a doctor of sciences
and laboratory head at the Institute of Nuclear Fusion,
Russian Research Centre Kurchatov Institute. Her sci-
entific activity isrelated to experimental research in the
field of high-temperature plasma physics. Shetook part
in the pioneering works on the magnetic confinement of
aplasmain toroidal systems. In 1962, K.A. Razumova
and her colleagues were the first to observe the disrup-
tion instability in atokamak.

Experiments carried out by K.A. Razumova in the
TM-2 tokamak, along with the results of experimentsin

the T-3 and T-4 tokamaks, convinced the scientific com-
munity that the pessimistic forecasts concerning the
prospects of magnetic confinement that follow from the
Bohm formula are unfounded. In 1971, K.A. Razu-
mova, together with her colleagues, was awarded a
State Prize for creating and investigating high-temper-
ature thermonuclear plasmas in tokamaks. The investi-
gations carried out by K.A. Razumova led to the toka
mak becoming the leader of nuclear fusion research in
the world.

During the past twenty years, her scientific interests
have been related to investigations of the interaction of
electron-cyclotron waves with a tokamak plasma. In
1983, for the second time, K.A. Razumova, together
with her colleagues from Nizhni Novgorod, was
awarded a State Prize for their cycle of investigations
on creating powerful gyrotrons and applying them to
plasma heating in nuclear fusion devices. In 1992, for
her investigations on EC heating and EC current drive,
she was awarded the Academician Artsimovich Prize,
which was given for the first time by the Presidium of
the Russian Academy of Sciences. During the entire
25-year cycle of experiments in the T-10 tokamak, she
has participated in al of the experimental programsand
headed many of them.

Time has no power over Ksenia Aleksandrovna.
Sheisas active now as shewasin her younger yearsis
as engaged in her work as before, and is always eager
to discuss new ideas and experiments. Until recently,
every summer, she went on rowing tours. She has two
children and, during her vacations, looks after her
three grandchildren at her country house, 450 km from
M oscow.

The friends and colleagues of Ksenia Aleksan-
drovna heartily congratulate her and wish her many
more years of fruitful scientific activity.

E.P. Velikhov, V.P. Smirnov, V.A. Alikaev,
Yu.N. Dnestrovskij, G.E. Notkin, A.M. Stefanovskit,
V.S Srelkov, and V.D. Shafranov
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Viktor Pavlovich Silin
(In Honor of His 75th Birthday)

On May 26, we celebrate the 75th birthday of Viktor
Pavlovich Silin, aworld-famous theoretical physicist, a
sector head at the Lebedev Institute of Physics of the
Russian Academy of Sciences, and a corresponding
member of the Russian Academy of Sciences.

His entire professional life has been linked with the
Lebedev Institute of Physics, where he began to work
after graduating in 1949 from Moscow State University
and where he progressed from a junior researcher to
head of the Divison of Solid-State Physics (1989—
1995). Over this period, he published more than 600
papers in different fields of physics and four mono-
graphs, which are well known among plasma physi-
Cists.

During thefirst ten years, when working in the The-
oretical Department at the Lebedev Institute of Physics,
V.P. Silin was occupied with the quantum field theory
and the theory of elementary particles. Among his stud-
iesinthisfield, it is necessary to mention his works on

the development of the Tamm-Dankov method; these
works provided a better understanding of the nature of
nuclear interactions. At that time, V.P. Silin began to
work on the theory of many particles and obtained a
number of important results on the theory of Fermi gas
of weakly interacting charged particles; these results
laid the foundations of the Fermi fluid theory. His stud-
iesin thisfield led to the development of two lines of
investigations—the theory of normal metals and the
physics of a gaseous plasma.

Silin’s works on the physics of metals were further
developed by his numerous followers. This concerns
not only his works on the theory of a normal-metal
electron fluid, but also the theory of sound absorption
in metals, the quantum theory of transport in a mag-
netic field, the theory of quantum electron spin-acous-
tic waves, and the theory of electron fluids of magneti-
cally ordered metals. At present, heis actively working
on the theory of Josephson junctions.

In the field of gaseous plasma physics, it is worth
noting, first of all, his works on the collision integrals
of charged particles in high-frequency and strong
fields. In the 1960s, the kinetic theory of various trans-
port effects in plasmas was developed based on these
studies. His works on the theory of relativistic plasma,
the theory of fluctuations of microscopic distributions,
the theory of transport caused by ion-acoustic waves,
the kinetic theory of drift-dissipative instabilities, and
the kinetic theory of plasma wave interaction are also
widely recognized.

Silin’s paper on the parametric resonance in plasma,
which was published in 1965, received much attention
and provided a basis for many subsequent investiga-
tions. Since that time, his scientific interests have been
concentrated on the development of the theory of para-
metric instabilities and parametric turbulence and
applying thistheory to the problem of the interaction of
strong laser radiation with plasma. Among the works
on the theory of laser plasmas, it is worth noting his
investigations on the generation of laser radiation har-
monics, which he has continued since the 1960s.

A series of hisworks on nonlinear electrodynamics
(atheory of self-consistent nonlinear waveguides and a
dynamical theory of the action of strong radiation on a
moving plasma) is devoted to the theory of penetration
of astrong electromagnetic field into aplasma. Many of
the results of these studies have been verified experi-
mentally.
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V.P. Silin was twice awarded the USSR State Prize:
in 1970, for the cycle of works on the Fermi fluid theory
and, in 1987, for the works on the nonlinear plasmathe-
ory. For his scientific activity, V.P. Silin was awarded
two Orders of the Red Banner of Labor. He was con-
ferred the title of an Honored Scientist of the Russian
Federation. V.P. Silin is a member of the editoria
boards of several scientific journals. He is a member of
a number of scientific councils and a member of the
Scientific Council on Plasma Physics of the Russian
Academy of Sciences.

Along with intensive scientific activity, V.P. Silin
devotes much time to the education of young scientists.
For many years, he has been engaged in pedagogical
work. He is a professor at the Moscow Engineering
Physics Institute (Technical University). As a consult-
ant to UNESCO, he gave lectures on plasma theory at
Delhi University (India).

V.P. Silin is afounder and leader of a powerful sci-
entific school. Among his pupils are more than 30 can-
didates of science and ten doctors of science. For many
years, he has guided a seminar on plasma and solid-
state physics, whose meetings sometimes transform
into heated, long, and temperamental discussions.
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Being a socially active man, V.P. Silin has long
worked in various social organizations and has held
administrative positions in science. However, his per-
sistent interest in physics and his passion for knowl-
edge has not let him turn aside from actual science.
Now, as in youth, he works with enthusiasm and pub-
lishes about ten papers every year. He is surrounded by
students and young scientists, as well as by his older,
established pupils. V.P. Silin shows aparticular concern
for young scientists, tries to support them, and passes
on to them his deep interest and devotion to science,
which has had a very difficult time over the last decade
in Russia

Viktor Pavlovich greets his 75th birthday full of
ideas and plans. His friends and colleagues wish him
robust health and fulfillment of all of his creative inten-
tions.

Yu.M. Aliev, N.E. Andreev, L.M. Anosova,

G.M. Batanov, K.Yu. Vagin, L.M. Gorbunov,

SE. Grebenshchikov, A.\V. Gurevich, A.M. Ignatov,
A.l. Isakov, L.M. Kovrizhnykh, A.S. Malishevskir,
R.R. Ramazashvili, A.Yu. Romanov, A.A. Rukhadze,
P.S. Srelkov, SA. Uryupin, and A.A. Frolov
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