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Abstract—Kormendy’s relation (µe– ) is used to investigate the structure of the compact Ursa Major
supercluster of galaxies (11h30m + 55°, cz = 18 000 km s–1); this relation allows the distances of early-type galaxies
to be estimated. The relative distances of 13 clusters in the supercluster and their peculiar velocities are determined
with a mean statistical accuracy of 6%. In general, the supercluster obeys the Hubble relation between radial veloc-
ity and distance. However, there is reason to suggest that the supercluster consists of two subsystems with mean
radial velocities of 16 200 and 19 700 km s–1. For a velocity dispersion in the subsystems of ~1100 km s–1, the fact
that each of them is gravitationally bound is not ruled out. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The distribution of galaxies and clusters of galaxies
is revealed by redshift measurements. Its pattern is dis-
torted by peculiar motions additional to the Hubble
expansion that arise as space structures grow due to
gravitation. The most contrasting structures on scales
of 30–300 Mpc are superclusters of galaxies. It follows
from galaxy redshift surveys that the sizes of superclus-
ters reach 20–100 Mpc and their masses are ~1016M(

(below, we use H0 = 50 km s–1 Mpc–1 and q0 = 0.5). The
growth of nonuniformities in the matter distribution at
the linear stage of the development of gravitational
instability or at the onset of gravitational collapse in the
most compact systems can be traced by the distribution
and motion of clusters in superclusters.

The observationally determined peculiar velocities
of galaxy clusters generally do not exceed 1000 km s–1.
One might expect larger velocities in rare, compact, and
rich superclusters of galaxies, which exhibit elongation
along the line of sight if their distances are assumed to
be directly proportional to the redshifts of their constit-
uent galaxy clusters. The Ursa Major and Corona Bore-
alis superclusters in the northern sky are of greatest
interest in this respect (Rood 1992).

For the component additional to the Hubble compo-
nent (peculiar velocity) to be separated from the
directly observed velocity (cz), the positions of clusters
within the supercluster along the line of sight must be
determined by a method independent of redshift deter-
mination. We used Kormendy’s relation for early-type
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1063-7737/01/2706- $21.00 © 20345
(E and S0) galaxies, which dominate at the cluster cen-
ter, as this method.

Using this purely photometric method, we investi-
gated the structure and peculiar motions in various sys-
tems of galaxies: in two compact superclusters of gal-
axies and in the system of galaxy clusters surrounding
a void (Kopylov and Kopylova 1998). Our sample
includes 39 clusters, in which we measured ~440 gal-
axies in total. Our study of the compact Corona Borea-
lis supercluster (Kopylova and Kopylov 1998) shows
that the nucleus of this system composed of eight rich
Abell clusters is gravitationally bound and is at the
stage of gravitational collapse. Preliminary estimates of
peculiar cluster motions around the void revealed a small
outward-directed motion of clusters (Kopylov and Kopy-
lova 1998). Here, our goal is to determine the structure
(along the line of sight) of the second compact superclus-
ter in the northern sky, Ursa Major (11h30m + 55°,
cz = 18 000 km s–1). In comparison with our previous
paper (Kopylov and Kopylova 1996), we made more
accurate measurements for a larger number of galaxies
and added two additional clusters (A1452 and A1507)
located on the periphery of the supercluster.

OBSERVATIONS 
AND PHOTOMETRIC MEASUREMENTS

Ursa Major is one of the nearest (z . 0.06) compact
superclusters. Figure 1 shows the cluster positions in
the sky in equatorial coordinates. As we see from the
figure, the supercluster is a compact group of clusters,
at least in projection onto the sky. The apparent density
contrast of the system, if it is determined with respect
to the number of Abell clusters in the surrounding
region of ~200 Mpc in size, is 30. A more detailed
001 MAIK “Nauka/Interperiodica”



 

346

        

KOPYLOVA, KOPYLOV

                                                                                       
description of the clusters in the supercluster and their
luminosity function can be found in Kopylov and
Kopylova (2001), where the sample of objects (bright E
and S0 galaxies in clusters) was drawn by using the B–R
color index. We determined the redshifts of galaxies
and clusters from the spectra taken in 1991–1993 with
a 1024-channel photon counter—the scanner (IPSC)
mounted at the Nasmyth-1 focus of the 6-m telescope
on the SP-124 spectrograph (Drabek et al. 1986;
Afanas’ev et al. 1986). The observations were carried
out with the B1 grating (600 lines mm–1) in the spec-
tral range 3600 to 5500 Å with a dispersion of
1.9 Å per channel. The accuracy of measuring radial
velocities was 100–200 km s–1.

We determined the photometric parameters for
107 galaxies in 13 clusters from direct (Cron–Cousins) Rc

images obtained with the 6-m Special Astrophysical
Observatory (SAO) telescope in 1992–1994 and with
a  1-m telescope in 1996–1998. The images were
obtained at a mean seeing of 1 7 ± 0 3 measured as the
FWHM profiles of stars. We used an ISD015A 520 ×
580 CCD array with a pixel size of 18 × 24 µm, which
corresponded to angular sizes of 0 28 × 0 37 and
0 154 × 0 205 on the 1-m and 6-m telescopes, respec-
tively. The exposure time was 200 and 500 s on the 6-
m and 1-m telescopes, respectively. For photometric
calibration, standard stars from Landolt (1992) were
observed several times during each night. The 1-m tele-
scope observations were performed on most of the pho-
tometric nights.
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Fig. 1. The positions of clusters from the Ursa Major super-
cluster in equatorial coordinates at epoch B1950. Cluster num-
bers and mean radial velocities rounded off to 100 km s–1 are
shown. Clusters from the catalog by Abell et al. (1989) are
marked by circled crosses; other clusters (Baier 1980;
Shectman 1985) are marked by circles.
The observational data were reduced with the
PC VISTA (Treffers and Richmond 1989) and MIDAS
(Munich Image Data Analysis System) (Grosbol 1989)
packages. We also used the RING code (Georgiev
1991), which we adapted for surface photometry of gal-
axies through circular apertures. The standard image
processing procedures were applied: median-dark-
frame subtraction, flat fielding, and subtraction of the
sky background fitted by a second-degree surface.
Based on multi-aperture photometry, we determined
the asymptotic total magnitudes of galaxies. The total
magnitude was then used to determine the effective
radius re at which the galaxy luminosity decreased by
half and the effective surface brightness µe at this radius
[see Kopylova and Kopylov (1998) for more details on
this technique]. The photometric parameters were cor-
rected for seeing by the method described in Saglia
et al. (1993). By comparing independent measure-
ments for 15 galaxies that we observed twice, we found
the rms measurement errors of µe and  to be 0 09
and 0.02, respectively.

For several large galaxies with extended envelopes,
i.e., those of type cD (these include galaxies 61 in
Anon1, 157 and 97 in A1377, and 80 and 19 in A1318),
we determined the parameters by fitting an r1/4 profile
(de Vaucouleurs 1948) to the observed surface bright-
ness profile. We had to do this, because the extended
envelopes of these galaxies were partially outside our
images.

Our photometric and spectroscopic measurements
are given in Table 1.1 The table lists the following gal-
axy parameters: Abell cluster numbers; galaxy num-
bers [all numbers correspond to those from Kopylov
and Kopylova (2001)]; galaxy equatorial coordinates at
epoch B1950; total (asymptotic) Rc magnitudes; helio-
centric radial velocities, in km s–1; effective galaxy
radii, in arcseconds, corrected for seeing; effective sur-
face brightnesses (mag arcsec–2) at the effective radius
corrected for seeing; and mean effective surface bright-
nesses (mag arcsec–2) within the effective radius cor-
rected for seeing. In A1377, the radial velocities for the
four galaxies marked in Table 1 by an asterisk were
taken from Humason et al. (1956). In the same cluster,
we give the coordinates for two other galaxies, desig-
nated as D45 and D47, from Dressler (1980). They are
located near the region we studied (Kopylov and Kopy-
lova 2001) and were additionally included in the list for
CCD photometry, because they were classified by
Dressler (1980) as S0 and E, respectively.

Data for the two additional clusters, A1452 and
A1507, which we have not studied previously, are pre-
sented in Table 2. It gives the same parameters as those
in Table 1 and the coordinates of galaxies at epoch
B1950. The radial velocities for the galaxies in A1452

1 Table 1 is published in electronic form only and is acces-
sible  via  ftp cdsarc.u-strasbg.fr/pub/cats/J (130.79.128.5) or at
http://cdsweb.u-strasbg.fr/pub/cats/J.
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Table 2.  Data for two additional clusters

Cluster Galaxy α δ mR Vh, km s–1 re µe 〈µe〉

A1452 2 12h00m34 23 51°57′12 3 14.00 19014 8 97 22.03 20.74

1 12 00 55.48 51 59 37.8 14.04 18272 7.18 21.64 20.30

5 12 00 49.46 52 05 57.4 15.34 18333 2.48 20.56 19.29

10 12 00 36.85 51 57 22.8 15.77 18173 2.72 21.19 19.94

A1507 5 12 12 21.83 60 11 01.5 13.91 18100 9.02 21.83 20.67

4 12 12 52.81 60 14 42.2 14.43 18106 5.26 21.17 20.03

10 12 13 57.45 60 18 33.4 15.03 2.79 20.55 19.26

8 12 13 01.50 60 15 51.3 15.11 18045 2.51 20.31 19.10

11 12 12 24.89 60 11 09.3 15.21 18348 3.38 21.09 19.86

.s .″ .″
and A1507 were measured by Ulrich (1978) and
Huchra et al. (1990), respectively.

Our measured radial velocities for several galaxies
that were not observed with the CCD array are listed in
Table 3. Most of these galaxies are either field galaxies
or cluster members of late morphological types (spiral
and irregular). In addition to the cluster and galaxy
numbers, Table 3 gives the heliocentric radial velocities
of galaxies and an indication (column 4) of whether
they belong to the foreground (fg) or background (bg)
relative to the corresponding cluster. Coordinates of
these galaxies can be found in Kopylov and Kopylova
(2001).

DETERMINING THE DISTANCES 
AND PECULIAR VELOCITIES

The relation of Kormendy (1977) relates the effec-
tive radius Re within which half of the light from the
galaxy is contained to the effective surface brightness
µe at this radius (or the mean effective surface bright-
ness within this radius). Being the projection of the
“fundamental plane,” which is specified by adding a
third parameter: the central velocity dispersion of gal-
axy stars (Dressler et al. 1987; Djorgovski and Davis
1987), onto the plane specified by the photometrically
determined parameters µe and , Kormendy’s
relation (KR) allows cluster distances to be estimated in
a simpler way.

KR is

(1)

The free term in this relation (C) changes with dis-
tance. When using KR, the following assumptions are
made: (1) KR is the same for all clusters; (2) all clusters
are studied in their central parts, with the size of the
selected region being .3 × 3 Mpc; and (3) a magnitude
of  .–21 5 is chosen as the limit, because galaxies fainter
than this magnitude deviate greatly from KR.

Relog
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Figure 2 shows a common µe–  diagram for
our entire sample (434 galaxies from 39 clusters
reduced to the same distance by applying cosmological
corrections corresponding to our measured individual
cluster distance to the measured magnitudes). Relativ-

Relog

Table 3.  Additional radial velocities

Cluster Galaxy Vh,
km s–1

B
ac
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Cluster Galaxy Vh,
km s–1

B
ac

kg
ro
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d/
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ou

nd

Anon1 28 21568 A1318 66 22120 bg

″ 38 21045 ″ 85 20756 bg

″ 66 19957 ″ 97 17540

″ 94 21349 ″ 105 18760: bg

Anon2 39 12 655 fg A1377 22 14408

Anon3 20 14240 fg ″ 23 14332

″ 59 19930 ″ 76 14110

″ 60 8240 fg ″ 88 15373

″ 73 11490 fg ″ 107 23440 bg

Anon4 30 18796 ″ 112 23397 bg

″ 34 18950: ″ 113 14671

Sh166 95 19350 bg ″ 115 14874

A1270 25 19930 ″ 124 14700

″ 93 20150 ″ 126 15507

A1291 17 22070 bg ″ 127 23364 bg

″ 18 14850 ″ 161 14916

″ 31 21367: bg A1383 55 16972

″ 106 6101 fg ″ 98 18613

″ 120 15109 A1436 30 18895

″ 132 15950 ″ 47 21515 bg

A1318 13 5574 fg ″ 52 18860

″ 24 17543 ″ 73 20995 bg

″ 40 5749 fg ″ 100 18950

″ 54 17100
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Fig. 2. The ( –µe) diagram for our 434 program galaxies. The filled circles, open circles, and crosses denote, respectively, gal-

axies brighter than –23 5, with –21 5 < MR < –23 5, and fainter than –21 5. The straight lines represent the regression relations:
direct (2) (thin line) and inverse (3) (heavy line). The cosmological corrections correspond to  zspec. The data were corrected for seeing.
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istic effects and changes in the geometry of the Uni-
verse determine the correction δµe = 10  + zspec),
where zspec is the measured redshift that includes the
object’s peculiar velocity. We denote the redshift corre-
sponding to the actual cosmological distance by zphot.
We also applied the K correction [KR(z) = 1.1z]. The
angular size re was converted to the linear size Re (in kpc).
The galaxy parameters were corrected for seeing by the
method described in Saglia et al. (1993). Thus, all data in
Fig. 2 are shown in a comoving coordinate system for the
“standard” cosmological model (H0 = 50 km s–1 Mpc–1,
q0 = 0.5). All the data shown in Fig. 2 were obtained at
seeing 1 1–2 0. The thin line in Fig. 2 indicates the
direct regression relation

(2)

which was constructed by using 381 galaxies from our
entire sample brighter than –21 5. The error in the free
term is given per single galaxy.

The inverse relation (heavy line in Fig. 2) is

(3)

The rms scatter determined from the direct and
inverse relations for the selected limit is equivalent to
the error in the distance estimated from a single galaxy
and is 25 and 23%, respectively (uncorrected for pecu-
liar velocities). We see from the figure that galaxies
brighter than –23 5 (filled circles) are better described
by the direct regression (these are the brightest galaxies
with one to three galaxies in each cluster). At the same
time, as our determinations show, the error in the dis-

(1log

.″ .″

µe 2.437 0.054±( ) Relog 18.976 0.266±( ),+=

.
m

Relog 0.3468 0.0080±( )µe 6.4588 0.100±( ).–=

.
m

tance estimated from a single galaxy and the total for-
mal error in the cluster distance are smaller than those
inferred from the inverse regression, because most of
the galaxies are fainter. To determine cluster distances,
we took the mean coefficients between the direct and
inverse regressions and derived KR in the final form

(4)

The coefficient and the free term depend on the
selected limit. If we take a different magnitude limit,
for example, –22 0, then the coefficients in the direct (2)
and inverse (3) relations will be 2.555 and 0.338,
respectively, while the errors in the distance estimated
from a single galaxy will be 23 and 21%, respectively.
In Fig. 2, galaxies fainter than ~–21 5 (crosses) devi-
ate from KR, as was previously noted by Capaccioli
et al. (1992). Figure 3 shows KR for the Ursa Major
supercluster (open circles) against the background of
the complete sample.

Figure 4 illustrates the displacement of galaxies of
individual clusters in the µe–  diagram from the
mean regression relation (4) under the assumption that
the cluster distances follow the Hubble law (the cosmo-
logical corrections were determined from zspec). We did
not use galaxies outside the 2.5σ range. They are
marked by crosses in Fig. 4 and include galaxies 40 in
A1270, 73, 74, and 85 in A1291, and 49 in Sh166.
Three of them (40, 74, 49) are radio galaxies, 74 and 73
are interacting galaxies, and 85 is probably a back-
ground galaxy. In addition, the crosses mark galaxies
within the 2.5σ range, but with different peculiarities:
51 in Anon3 and 27 and 24 in Sh166 are, respectively,

Relog 0.3786µe 7.123.–=

.
m

.
m
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Fig. 3. The same as Fig. 2, but the galaxies belonging to the Ursa Major supercluster are indicated by open circles. The straight line
represents the regression relation (4).
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a high-surface-brightness galaxy, an interacting galaxy,
and a high-surface-brightness radio galaxy.

Since all cluster members are roughly at the same
distance, we can perform averaging over several galax-
ies (from 5 to 20, depending on the cluster richness)
and considerably increase the statistical accuracy of
determining the distance to the cluster as a whole. To
determine the distances for each of the clusters, we cal-
culated the mean value of the free term in relation (4),
Crms =  – 0.3786µe, which must be the same for
all clusters when there no deviations from the Hubble
relation between velocity and distance.

The residuals from KR are defined as ∆ =  –
0.3786µe + 7.123, and, consequently, the measured dis-
tances depend on the galaxy magnitude. This makes the
method of determining distances in question sensitive
to sample incompleteness (generally at faint magni-
tudes), which was also pointed out by Scodeggio et al.
(1997). Figure 5 shows this effect, and it may be noted
that this relation is nearly quadratic. In order to reduce
the sensitivity to sample incompleteness, we fitted the
relation in Fig. 5 by a second-degree polynomial:

(5)

We obtained the following coefficients: a1 = –2.001820,
a2 = –0.041696, a3 = –23.949609. The rms deviation of
the regression is 0.081. The mean statistical error in Crms
when averaged over 5 to 14 cluster galaxies is 0.033
(8%) and 0.026 (6%) without and with allowance for
the galaxy magnitude, respectively. The derived Crms

Relog

Relog

Relog 0.3786µe– 7.123+ a1MR a2MR
2

a3.+ +=
for each cluster was used to determine the deviation
from the mean supercluster distance Cmean and to calcu-
late the photometric redshift

, (6)

i.e., the redshift that corresponds to the cosmological dis-
tance of the cluster when there is no peculiar velocity
caused by gravitational interaction in the supercluster.

Table 4 contains the following data: Abell cluster
numbers; the number of galaxies with measured photo-
metric parameters; mean relative distances with their
errors; zspec and zphot determined from the redshift and
the photometric distance, respectively; peculiar cluster
velocities relative to the supercluster centroid, which
were calculated from the formula

(7)

and their errors δVpec.
The Hubble diagram for the Ursa Major superclus-

ter that corresponds to Table 4 is shown in Fig. 6. An
analysis of this figure leads us to the following conclu-
sions. In general, the supercluster obeys the Hubble
relation between radial velocity and distance. However,
there is a significant gap at zphot ~ 0.06 that separates the
supercluster into two subsystems composed of five and
eight clusters with mean radial velocities of 16 200 and
19 700 km s–1. The statistical significance of this sepa-
ration is rather low, because the gap is comparable with
the distance measurement error and is determined by
the distance estimates for a mere two or three clusters

zphot zspec 10
Cmean Crms–

×=

Vpec czspec czphot–( )/ 1 zphot+( )=
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Table 4.  Peculiar velocities in the Ursa Major supercluster

Cluster N Ccl zspec zphot Vpec δVpec

A1377 11 –7.106 ± 0.033 0.0507 0.0505 53 ±1140

Sh166 6 –7.137 ± 0.015 0.0512 0.0548 –1023 ±570

A1291 8 –7.104 ± 0.039 0.0550 0.0546 124 ±1500

A1318 8 –7.103 ± 0.035 0.0572 0.0566 170 ±1380

A1507 5 –7.059 ± 0.024 0.0592 0.0530 1768 ±900

A1383 10 –7.127 ± 0.019 0.0603 0.0631 –787 ±840

Anon4 9 –7.168 ± 0.023 0.0614 0.0705 –2583 ±1260

A1452 4 –7.107 ± 0.031 0.0631 0.0630 25 ±1350

A1436 12 –7.117 ± 0.036 0.0642 0.0656 –387 ±1620

Anon3 7 –7.080 ± 0.029 0.0683 0.0641 1190 ±1140

A1270 6 –7.119 ± 0.020 0.0689 0.0707 –502 ±990

Anon1 7 –7.113 ± 0.022 0.0699 0.0708 –242 ±1080

Anon2 5 –7.059 ± 0.016 0.0703 0.0629 2080 ±690
with zspec ~ 0.06. If the subsystems are real, then, for a
velocity dispersion of ~1100 km s–1 in each of them,
each of the subsystems may be gravitationally bound.
Judging by the deviation of the subsystem centroids
from the Hubble relation, the interaction between them
appears to be insignificant.

Note that the five poorest clusters (Kopylov and
Kopylova 2001)—Anon2, Anon3, Anon4, Sh166, and
A1507—exhibit the largest peculiar velocities. In these
cases, the derived peculiar velocities may be affected
by an age difference between the stellar populations of
galaxies in poor and rich galaxies (Jörgensen and
Jönch-Sorensen 1998).
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Fig. 6. The Hubble diagram for the Ursa Major supercluster.
The errors correspond to the error in the mean cluster dis-
tance. The two clusters lying aside (in projection onto the
sky) are marked by open circles.
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CONCLUSION

We have obtained photometric parameters (mR , µe ,
) of 107 galaxies (CCD measurements virtually

for all galaxies and spectroscopic measurements for
90% of the galaxies have been made for the first time)
in the Rc band for 13 clusters of the Ursa Major super-
cluster. We have also estimated for the first time the rel-
ative distances and peculiar velocities in this superclus-
ter using Kormendy’s relation by taking into account
the dependence of residuals from KR on the galaxy
absolute magnitude. The photometrically measured
cluster distances allowed us to estimate the dynamical
state of the supercluster more accurately and to deter-
mine the peculiar velocity field within it.

The strong correlation between distance and veloc-
ity leads us to conclude that the Hubble expansion law
holds, within the limits of the measurement errors, for
the Ursa Major supercluster (Fig. 6). The apparent
compactness of the Ursa Major supercluster in the sky
results from a chance line-of-sight projection of an
elongated supercluster, which may consist of two sub-
systems. However, even in this case, the volume density
contrast for the supercluster is high (~7). This provides
evidence that the supercluster is actually a physically
isolated system rather than a chance association of
clusters.
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Abstract—The model of a presupernova’s carbon–oxygen (C–O) core with an initial mass of 1.33M(, an initial

carbon abundance  = 0.27, and a mean rate of increase in mass of 5 × 10–7 M( yr–1 through accretion in a

binary system evolved from the central density and temperature ρÒ = 109 g cm–3 and TÒ = 2.05 × 108 K, respec-
tively, by forming a convective core and its subsequent expansion to an explosive fuel ignition at the center. The
evolution and explosion equations included only the carbon burning reaction 12C + 12C with energy release cor-
responding to the complete conversion of carbon and oxygen (at the same rate as that of carbon) into 56Ni. The
ratio of mixing length to convection-zone size αÒ was chosen as the parameter. Although the model assumptions
were crude, we obtained an acceptable (for the theory of supernovae) pattern of explosion with a strong depen-
dence of its duration on αÒ. In our calculations with sufficiently large values of this parameter, αc = 4.0 × 10–3

and 3.0 × 10–3, fuel burned in the regime of prompt detonation. In the range 2.0 × 10–3 ≥ αc ≥ 3.0 × 10–4, there was
initially a deflagration with the generation of model pulsations whose amplitude gradually increased. Eventually,
the detonation regime of burning arose, which was triggered from the model surface layers (with m . 1.33M()
and propagated deep into the model up to the deflagration front. The generation of model pulsations and the for-
mation of a detonation front are described in detail for αc = 1.0 × 10–3. © 2001 MAIK “Nauka/Interperiodica”.

Key words: supernovae and supernova remnants; plasma astrophysics, hydrodynamics, and shock waves; det-
onation and deflagration

XC
0( )
INTRODUCTION

The evolution of a degenerate stellar C–O core with
a mass close to the Chandrasekhar limit of 1.43M( for
a carbon white dwarf (see, Bisnovatyœ-Kogan 1989)
leads to the growth of thermal instability and an explo-
sion. The critical central density ρc cr at which an explo-
sion begins can take on values from ~2 × 109 to
~1010 g cm–3. It grows with decreasing rate of increase

in core mass , which is given by the 'Paczynski–Uus
relation (Paczynski' 1970) in a single asymptotic-giant-
branch (AGB) star:

(1)

and can take on values from 10–8 to 5 × 10–7M( in an
accreting white dwarf (Iben 1982; Hachisu et al. 1996).

Here, we chose  = 5 × 10–7M(, which may corre-

Ṁ

Ṁ 6 10
7–

M/M( 0.5–( )M( year 1– ,×=

Ṁ
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1063-7737/01/2706- $21.00 © 0353
spond both to a single AGB star and to a component of
a binary system.

Explosion calculations, including those with con-
vection, have been performed repeatedly (Arnett 1969;
Ivanova et al. 1974; Nomoto et al. 1976; see also the
review by Niemeyer and Woosley 1997). In Ivanova
et al. (1974), carbon burned in the deflagration regime
with the generation of pulsations, but these authors
ignored convection at the supernova stage and obtained
the initial temperature profile by estimating the contri-
bution of convection rather than evolutionarily.

Woosley (1997) performed a series of one-dimen-
sional explosion calculations for accreting white
dwarfs (unfortunately, this author gave no accretion
rates) with critical central densities from 2 × 109 to
8.2 × 109 g cm–3 and with the inclusion of nucleosyn-
thesis for 442 isotopes. However, he considered only
adiabatic convection at the presupernova stage, with
convection being artificially turned off (because main-
taining an adiabatic temperature gradient in his model
any further would result in a prompt detonation) at the
onset of a thermal flash (at Tc = 7 × 108 K). The burning-
2001 MAIK “Nauka/Interperiodica”
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front velocity was determined as prescribed by Woos-
ley and Timmes (1992) by taking into account the frac-
tal dimension of the front.

BASIC EQUATIONS FOR A CONVECTIVE 
HYDRODYNAMIC MODEL

When calculating the evolution of a presupernova
(on time scales of ~104 years), most authors (see, e.g.,
Iben 1982) use a hydrostatic system of equations with
adiabatic convection in the stellar core, which is justifi-
able at this stage but can be too crude for a transition to
an explosion. Here, based on the hydrodynamic model
previously developed by Blinnikov and Rudzskii
(1984), Blinnikov and Bartunov (1993), and Blinnikov
and Dunina-Barkovskaya (1993, 1994), we performed
calculations both at the presupernova stage and at the
stage of explosive burning. In the latter two papers, this
hydrodynamic model was used to calculate the evolu-
tion of white dwarfs. Our equations also included non-
adiabatic unsteady convection in the standard mixing-
length approximation:

(2)

(3)

(4)

(5)

(6)

where XC is the mass fraction of 12C, εCC is the energy
release through carbon burning, εν are the standard neu-
trino energy losses [calculated from the formulas of
Schinder et al. (1987); see also Haft et al. (1994)], εg is
the energy release through gravitational contraction,
Frad is the radiative energy flux, Fconv is the convective
energy flux, uc is the velocity of unsteady convection,
and vc is the velocity of steady convection in the mix-
ing-length approximation calculated from the follow-
ing formula (see, e.g., Bisnovatyœ-Kogan 1989):

(7)

The convective energy flux Fconv and the quantity
(∂XC/∂t)conv , which is equal to the change in carbon
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mass fraction XC through convection, were calculated
by using the formulas

(8)

(9)

The arrangement and sizes of (generally several) con-
vection zones are determined by the Schwarzschild cri-
terion [in accordance with Eqs. (7) and (8)]. Unsteady
convection was disregarded at the presupernova stage,
while Eqs. (8) and (9) included vc from Eq. (7) instead
of uc. The calculations with steady and unsteady con-
vection at the presupernova stage are compared in Dun-
ina-Barkovskaya and Imshennik (2000).

The mixing length in the ith mass zone, , is
given by

(10)

where ∆rc is the size of the convection zone that
includes the ith zone, and αP was taken to be unity in
our calculations.

Thermodynamic quantities (pressure P, entropy S,
etc.) were calculated for an electron-positron gas by
using Nadyozhin’s asymptotics described in Blinnikov
et al. (1996) and for an ion gas with screening by using
the formulas of Yakovlev and Shalybkov (1988).

INITIAL AND BOUNDARY CONDITIONS. 
CALCULATIONS AT THE PRESUPERNOVA STAGE

It is appropriate to choose the initial state of a pre-
supernova’s C–O core from reliable evolution calcula-
tions. We began our calculation with the central density
ρc = 109 g cm–3. At this density, the central temperature

must be approximately equal to  = 2.05 × 108 K, as
follows from the calculations of Iben (1982). Below, by
the onset of explosion and, accordingly, by the end of
the presupernova stage, we arbitrarily mean the instant
in time when the temperature in the central mass zone
reaches 5 × 109 K.

The initial carbon mass fraction  = 0.27 (con-
stant throughout the C–O core) was chosen to be the
same as that in Iben (1982). With the above central
parameters of the C–O core and with a total mass of
1.33M(, we calculated a hydrostatically equilibrium
adiabatic configuration, which was used below as the
initial condition. Note that its deviation from the model
of Iben (1982) is most likely insignificant.

When calculating the evolution of this model with a
constant mass accretion rate of 5 × 10–7 M( yr–1, which
may be typical of accreting white dwarfs in binary sys-
tems (see above), it makes sense to specify a nonzero
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external boundary condition for the pressure. Previ-
ously (Dunina-Barkovskaya and Imshennik 2000), we
included the entire accreted mass in the external bound-
ary condition for the relatively small changes in total
mass before the onset of explosion confirmed by calcu-
lations.

This condition can be straightforwardly derived in
the approximation of a thin (∆R/R ! 1), light (∆M/M ! 1)
envelope. Indeed, integrating the equation of hydro-
static equilibrium

over the envelope thickness yields an expression for the
pressure Pb at the outer boundary of the zone with
Lagrangian coordinate M:

(11)

where ∆M = t and R = R(t) during the hydrostatic
evolution; i.e., the external pressure Pb (11) increases
through accretion with time t measured from the initial
time of the C–O core calculation. In this case, the total
mass MN + ∆M (where MN is the mass of N Lagrangian
zones included in the hydrodynamic model) increased
to ~1.351M(; accordingly, the evolution time is 4.25 ×
104 years (Dunina-Barkovskaya and Imshennik 2000).

Here [by analogy with Woosley (1997)], we gradu-
ally, in the course of accretion, added new Lagrangian
zones to the model; their mass decreased in geometric
progression from 7.83 × 10–3M( (zone no. 151) to
7.50 × 10–5M( (the last zone no. 170). The equality (11)
was found to be inaccurate (clearly because ∆R/R was
not small enough), and, as a result, the evolution time
at the presupernova stage almost doubled. For our cal-
culations with nonzero αc, the model mass reached
1.3658M( in t . 7.2 × 104 years, and the number of
Lagrangian zones was N = 170. Subsequently, we
added no Lagrangian zones and modeled the accretion
by increasing the boundary pressure. At the time of
explosion (t . 7.9 × 104 years after the beginning of our
calculations), the boundary pressure corresponded to
an additional external mass from 2.316 × 10–3M( (for
αc = 3.0 × 10–4) to 2.342 × 10–3M( (for αc = 4.0 × 10–3).
In the check calculation with αc = 0, the temperature in
the central zone rose to 5 × 109 K in 6.789 × 104 years;
therefore, the model mass had time to increase only to
1.3636M(, which corresponded to the number of zones
N = 161.

Let us consider the boundary condition (11) during
an explosion for the calculation with αc = 1.0 × 10–3

when ∆M = 2.338 × 10–3M( and R0 = 1.85 × 108 cm
(see Fig. 1):
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(12)

where P0 = 5.72 × 1022 dynes cm–2. This value should
be compared with the central density of a C–O core,
which has the standard lower limit, Pc(0) > GM2/(8πR4).
The boundary-to-central pressure ratio, Pb(M)/Pc(0) <
2∆M/M = 3.42 × 10–3, is then definitely small at the
onset of explosion. Subsequently, it certainly changes
and can increase several-fold when pulsations emerge,
but it still remains small enough, as we see from this
calculation.

It is easy to estimate that the relative contribution of
the inertial term to the boundary condition (12) with
characteristic pulsation parameters of a C–O core

(4vp/τp)( /(GM)] is minor, no more than a few per-
cent. This justifies ignoring this term in Eq. (11) even
for the largest pulsation amplitude ∆R . R0 and τp . 5 s
by the end of deflagration (see Fig. 4). The close match
between this boundary condition attributable to mass
accretion onto the surface of a C–O core and the exter-
nal boundary condition assumed previously (Ivanova
et al. 1974, 1977a) is lucky: with the same dependence
on outer radius R, Pb(M) ∝  R–4 (Eq. (12)). Recall that in
the cited papers, this external pressure simulated the
presence of an outer envelope of the stellar C–O core,
and it was taken to be small enough, approximately
twice the value of Eq. (12). Thus, the effect of the exter-
nal boundary condition in the above papers was more
pronounced than here, but less pronounced than in

Pb 1.33M(( ) P0
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R
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Fig. 1. The evolution of a presupernova after the formation
of a convective core: central temperature Tc, central density ρc,
convective-core mass Mconv, and radius RN of the last (Nth)

mass zone versus time for αc = 1.0 × 10–3.
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Dunina-Barkovskaya and Imshennik (2000). It should
also be noted that the presence of an external pressure,
Pb(M) ≠ 0, violates the energy conservation law during
an explosion (see Figs. 4, 5) when pulsations emerge
and when the radius of the C–O core R changes. Natu-
rally, allowance for the accreted matter in the external
boundary condition (11) and (12) implies its addition to

Fig. 2. Temperature profiles at the onset of supernova explo-
sion (at the times when the central temperature reaches 5 ×
109 K) for various αc.
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the evolving C–O core without any additional energy
release, i.e., simply adhesion. In reality, this matter,
which generally has a different chemical composition,
can experience thermonuclear reactions with energy
release and even with the partial outward ejection of
accreted matter. Of course, we ignore such processes.
On the other hand, the external boundary condition (12)

Fig. 3. Central temperature Tc and total energy Etot of a C–O
core versus time for αc = 4.0 × 10–3 and 3.0 × 10–3 (rapid
detonation).
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pulsational regime with delayed detonation).

0

0.10 0.2 0.3 0.4 0.5
–5

5

10

15

E
to

t, 
10

50
 er

g
T c

, 1
09  K

αc = 3.0 × 10–3

αc = 4.0 × 10–3

t, s
ASTRONOMY LETTERS      Vol. 27      No. 6      2001



TYPE Ia SUPERNOVAE 357
plays a crucial role during an explosion, especially dur-
ing the formation of a detonation wave from the surface
(see below).

DISCUSSION

Here, we systematically and numerically analyzed
models with various values of αc in the mixing length
(10): 4.0 × 10–3, 3.0 × 10–3, 2.0 × 10–3, 1.0 × 10–3, and
3.0 × 10–4. From a physical point of view, it is difficult
to prefer any αc from this wide range in the approxi-
mate theory of nonadiabatic convection we use. The
energy release in the thermonuclear reaction of carbon
burning, 12C + 12C   24Mg + γ, was taken, first, from
the crude formula derived by Fowler and Hoyle (1965)
with the electron screening factor from Salpeter (1954)
(see also Salpeter and Van Horn 1969; Arnett 1969)
and, second, with the maximum possible energy release
of burning corresponding to instantaneous burning of
the entire carbon-oxygen mixture up to 56Ni. The
energy release used here was taken from Ivanova et al.
(1974), but with a correction for the presence of oxygen
in the fuel. It is convenient for the subsequent compar-
ison of all previous calculations with those performed
here. This simplification of thermonuclear energy
release cannot significantly affect our results, because
the ignition conditions for a C–O mixture are only
slightly sensitive to all pre-exponential quantities in the
expression for the rate of thermonuclear burning.

Our calculations of a presupernova’s evolution
revealed that the density slightly decreased immedi-
ately before the onset of explosion; this decrease
depended nonmonotonically on αc and was at a maxi-
mum for αc = 4.0 × 10–3. The initial critical central density,
ρc cr 9 . (1.88–2.03) (in units of 109 g cm–3) proves to be
close to that taken by Ivanova et al. (1974, 1977a)
(ρc9 = 2.33) as the initial one, although it is slightly
lower. Recall that at that time, the view of the evolution
of intermediate-mass single stars along the convergent
track of Paczynski' (1970) after the formation of a car-
bon (or carbon-oxygen) core was most popular. The
current interpretation of presupernovae suggests their
evolution in a close binary system with an accreting
white dwarf. In this case, according to Yungelson (1998),
all main-sequence stars with masses in the range 2.5 ≤
M/M( ≤ 10, which differs only slightly from the same
range for previously considered single stars, 3.5 ≤
M/M( ≤ 8 (Paczynski' 1970), can become carbon-oxy-
gen white dwarfs in close binary systems.

Figure 1 shows some of the quantities that charac-
terize a stellar C–O core before the onset of explosion:
mass Mconv of the convective core, central temperature Tc,
central density ρc, and radius RN of the C–O core in the
evolution time from 6 × 104 years (the beginning of the
C–O core formation) to 7.87 × 104 years for αc = 1.0 ×
10–3. The small jumps in radius RN of the last (Nth)
mass zone (see Fig. 2) clearly demonstrate the above
procedure of adding new Lagrangian zones. The phase
ASTRONOMY LETTERS      Vol. 27      No. 6      2001
of the star’s slow expansion before its explosion (see
above) is barely noticeable in this figure, because its
duration (~3 × 102 years) is short compared to the total
evolution time (during which the star slowly con-
tracted) and is virtually independent of αc. By the onset
of explosion, convection encompasses the entire C–O
core; i.e., Mconv = 1.3658M( for all the values of αc ≠ 0
considered. In the immediate vicinity of αc = 0, the
development of the convective core is incomplete—it
does not reach the C–O core surface, and no explosion
occurs (see below).

Figure 2 shows temperature profiles as a function of
mass coordinate at the time of explosion onset corre-
sponding to the specified αc (see above). The temperature
for the calculations with convection is seen to be apprecia-
bly higher within the convective core than that for the cal-
culation without convection. Even at αc = 3.0 × 10–4, the
temperature is twice as high as this value in the central
part of the convective core. For comparison, Fig. 2
shows approximate temperature profiles from Ivanova
et al. (1977b); an explosion developed for two (upper)
profiles. It therefore comes as no surprise that in this
calculation, the explosion developed into the compete
destruction of the entire star for all αc ≥ 3.0 × 10–4 (see
below). For the calculations with αc = 2.0 × 10–3 and
3.0 × 10–4, which constrain pulsational deflagration
(see below), the figure also shows adiabatic tempera-
ture profiles with an entropy equal to the entropy of the
second mass zone for each calculation. We see that our
profiles lie well below the corresponding adiabatic pro-
files and have a different shape at m < 0.1M(, which,
clearly, affects the development of an explosion with
the absence of spontaneous burning (Blinnikov and
Khokhlov 1986).

Interestingly, the smooth temperature profile in the
second mass zone (with m = 2.24 × 10–4M() at the larg-
est αc = 4.0 × 10–3 touches the third steep profile, for
which no explosion developed in the calculations of
Ivanova et al. (1977b). By contrast, the initial tempera-
ture profile for the calculation with the smallest αc =
3.0 × 10–4, which barely exploded (see Fig. 5), lies well
below the third profile from Ivanova et al. (1977b) at
m < 7 × 10–4M( (in the first four mass zones). In gen-
eral, it may be assumed that there is qualitative agree-
ment between our results and the calculations of
Ivanova et al. (1977b).

The explosion develops differently for αc ≥ 3.0 × 10–3

(Fig. 3) and αc ≤ 2.0 × 10–3 (Fig. 4). In these figures, the
central temperature Tc and total energy Etot of a C–O
core are plotted against time. The latter is eventually
equal to ~1.5 × 1051 erg, which corresponds to complete
burning up to 56Ni in all calculations, irrespective of αc.
Etot at the onset of explosion (–4.3 × 1050 erg) is also
virtually the same in these calculations.

The main result of our numerical calculations
should be considered to be the emergence of a deflagra-
tion-pulsational regime at a sufficiently small mixing
length, αc ≤ 2.0 × 10–3. We found a rapid detonation to
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take place at αc ≥ 3.0 × 10–3 (see Fig. 3). Thus, we deter-
mined an accurate boundary of the transition from a
rapid detonation to a pulsational deflagration.

Figure 4 shows ten and fourteen pulsations in the
calculations with αc = 2.0 × 10–3 and 1.0 × 10–3, respec-
tively. In both cases, the burning ends with a powerful
energy release in the last pulsation, with the burning
regime changing abruptly. Whereas the burning in pre-
vious pulsations was in the deflagration regime, in the
last pulsation the remaining mass of unburned fuel
(about 90%) burns in the detonation regime. Tc reaches
its maximum value of (2.5–2.9) × 1010 K slightly later,
immediately after a collision of the detonation front
propagating from the surface with the deflagration
front, when the remaining fuel burns in the central
zone. Thus, there is a mixed regime of the thermonu-
clear explosion of a carbon-oxygen white dwarf, which
is most promising from the viewpoint of explosive
nucleosynthesis (Niemeyer and Woosley 1997). On the
other hand, Fig. 3 illustrates burning without noticeable
pulsations in the ordinary detonation regime from the
center (at αc ≥ 3.0 × 10–3).

In Fig. 5, central density and total energy are plotted
against time for the calculation with the smallest
αc = 3.0 × 10–4. Here, the total number of pulsations is
considerably larger than that in the preceding figure,
but only fourteen of them were accompanied by the
deflagration of another mass zone, which is clearly seen
from the characteristic, narrow peaks of temperature Tc.
Note that the small jumps in Etot correspond to these
narrow peaks because of energy release. In the calcula-
tion with αc = 1.0 × 10–3, from one to three mass zones
burned out during each pulsation (except for the fifth
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Fig. 6. Density versus radius for αc = 1.0 × 10–3 (pulsational
deflagration).
and seventh pulsations), so almost all pulsations had the
above temperature peaks (Fig. 4).

The deflagration regime is clearly characterized by
the density profiles as a function of Euler radius r
shown in Fig. 6 for αc = 1.0 × 10–3. At the deflagration
front, the density abruptly decreases approximately by
a factor of 1.5. Depending on the pulsation phase, the
front sometimes retreats inward (compression phase),
sometimes goes forward (expansion phase) against the
general propagation (through mass zones). Pulsations
are seen even more clearly in the behavior of the outer
stellar shells, in as yet-unburned matter. The amplitude
of these pulsations of the outer radius increases with
time and reaches ~1.5 (this is clearly seen on the loga-
rithmic density scale in Fig. 6).

The density profiles ρ(r) for more intense convec-
tion are displayed in Fig. 7 for αc = 3.0 × 10–3. The tem-
perature profiles T(r), which clearly show (in the form
of a jump) the location of the burning front, are dis-
played in the same figure on a small scale. We see that
the matter density appreciably increases at the burning
front, revealing the detonation regime of burning. The
supersonic detonation is also revealed by the fact that
the outer (with respect to the burning front) stellar
shells are static.

Convection is completely characterized by the pro-
files of specific entropy, which are shown in Fig. 8 for
αc = 1.0 × 10–3 as a function of mass coordinate m (on a
logarithmic scale). At several typical instants of time,
the convective zones that, according to the Schwarz-
schild criterion, correspond to the segments of a nega-
tive entropy gradient are marked on these profiles. This
figure shows that the initial convective core breaks up
during the explosion into several convective zones; the
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Fig. 7. Density and temperature versus radius for αc = 3.0 ×
10–3 (rapid detonation).
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largest of them includes one or two mass zones behind
the burning front and the remnant of the convective
core ahead of this front. The breakup is unsteady in
nature and suggests that it is important to take into
account unsteady convection.

Figure 8 shows entropy profiles before the emer-
gence of detonation to the center. After this detonation
emerges, the entropy behind the detonation front natu-
rally increases in a short time of ~0.1 s to (2–3) ×
108 erg g–1 K–1, which are also characteristic of defla-
gration, i.e., a factor of 4 to 6 larger than the initial
entropy of ~0.5 × 108 erg g–1 K–1, with the gradient
being positive. A negative entropy gradient remains
only in the outermost shells (with m * 1.36M(), and,
consequently, convection that partly hampers the above
detonation takes place.

The important role of the convection intensity char-
acterized by αc attracts particular attention. Clearly, the
deflagration-pulsational burning (of course, deflagra-
tion is not necessarily accompanied by pulsations, but
subsonic deflagration is a necessary condition for the
latter) takes place over the entire range of αc, αc min & αc &
2 × 10–3. αc min is essentially higher than zero, because a
hydrodynamic explosion at αc = 0 did not develop at all
in our calculations, although the first mass zone burned
out. Note that at higher critical central densities ρc cr,
which, in principle, increase with decreasing accretion
rate (see above), αc min can decrease virtually to zero
(Zmitrenko et al. 1978). At high densities ρc cr, how-
ever, it becomes necessary to take into account neutrino
energy losses and the kinetics of matter neutronization
(Ivanova et al. 1977a, 1977c). In the case under consid-
eration (ρc cr . 2 × 109 g cm–3), these complex processes
do not play a significant role, as was already shown by
directly comparing the calculations of Ivanova et al.
(1974), on the one hand, and Ivanova et al. (1977b), on the
other, at a similar central density, ρc = 2.33 × 109 g cm–3.
Thus, convection can prevent the development of pulsa-
tions in the deflagration regime of burning and can result
in a detonation if αc exceeds some critical value αc crit.
Here, we found that αc crit . 3 × 10–3.

QUALITATIVE ANALYSIS OF PHYSICAL 
CONDITIONS FOR A DELAYED DETONATION

The formation of a detonation after the prolonged
period of deflagration accompanied by the develop-
ment of pulsations of an entire C–O stellar core may be
called a delayed detonation (Niemeyer and Woosley
1997): several tens of seconds, i.e., much longer than
the hydrodynamic time scale equal to the pulsation
period (2–3 s) in order of magnitude, elapses since the
central ignition of fuel. An analysis of the results shows
that a detonation front forms approximately at a mass
coordinate of 1.33M( or, to be more precise, in zone
no. 150 for the total number of zones equal to 170, with
this coordinate being almost independent of αc. In our
model, zone no. 150 is distinguished, because
Lagrangian zones decreasing in geometric progression
ASTRONOMY LETTERS      Vol. 27      No. 6      2001
were added after it at the presupernova stage. In the
study by Dunina-Barkovskaya and Imshennik (2000), a
detonation front formed in zone no. 127 (for the total
number of zones equal to 150), after which the
Lagrangian zones also decreased in geometric progres-
sion. Therefore, the effect of a nonuniform Lagrangian
grid on the formation of detonation must be investi-
gated in subsequent calculations. However, we will
attempt to physically justify the increase in entropy that
gives rise to a detonation.

Immediately after the first several pulsations, i.e.,
long before the formation of a detonation front, the
entropy in the outer mass zones begins to increase (Fig. 9).
Two local entropy peaks, closer to (m . 1.36M() and
slightly farther from the stellar edge (m . 1.33M(), are
formed by t = 45.098 s (the beginning of the last pulsa-
tion). Although the specific entropy at the inner peak is
smaller than that at the outer peak, the temperature at
the former immediately before the onset of detonation
increases more rapidly (because of the higher density).
A detonation front forms near this peak (see Fig. 11).
We can see that the increase in entropy was large even
between close times, t = 2.577 and 2.850 s. These times lie
between the minimum and maximum of the second (!)
pulsation (see Fig. 4), which, however, is smaller in
amplitude than the subsequent pulsations.

Based on the corresponding density profiles (Fig. 10),
we can make sure that times close to the pulsation max-
ima are accompanied by the subsequent emergence of
a compression wave on the stellar surface. Ivanova
et al. (1982) estimated the increase in entropy (∆S) in
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such compression waves, which should be treated as weak
shock waves with a jump in pressure ∆P with the well-
known growth of entropy (Landau and Lifshitz 1954):

(13)

It is easy to apply this relation to the case under consid-
eration, because only the pressure of a completely
degenerate ultrarelativistic electron gas may be taken
into account when calculating the adiabatic second

derivative from Eq. (13): P1e = K , where K = 4.90 ×
1014 cm3 g–1/3 s–2; hence

(14)

This approximation is possible, because the values of
ρ1 and T1 at t = 2.577 s may be taken as their estimates
in front of a weak shock wave in the zone with m =
1.33M( under consideration: ρ1 = 1.073 × 107 g cm–3

and T1 = 6.64 × 107 K. After simple transformations, we
derive the final expression for the increase in specific
entropy from Eq. (13) (S is in units of 108 erg g–1 K–1;
see Fig. 9):

(15)
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The amplitude of a weak shock wave should also be
specified in expression (15). The data of Fig. 10 yield
ρ2 = 1.35 × 107 g cm–3 (for t = 2.850 s). Finally, we
obtain from Eq. (15): ∆S8 . 0.085, whereas the increase in
entropy between the same times in Fig. 9 is ∆S8 . 0.06.
Thus, we can justifiably interpret the increase in
entropy revealed by our calculations as resulting from
the dissipation of weak shock waves in the region of a
steep decrease in density. According to Eq. (15), the
increase in entropy closer to the surface falls, because
the density decreases to the edge; it most likely also
falls inward because of the reduction in wave amplitude
(see also Fig. 10). Nevertheless, the local entropy peak
(Fig. 9) does not vanish in the course of time, but is pre-
served and greatly increases further by a factor of ~2.7
until the formation of detonation. It reaches 1.6 ×
108 erg g–1 K–1. Note that, unfortunately, this is not seen
in Fig. 8, where the outer stellar shells are shown on a
logarithmic mass scale, which is unsuitable in this
region.

Figure 11 shows the temperature profiles from the
formation of a detonation front (t = 45.098 s) until its
collision with the deflagration front at r . 5 × 107 cm
(which corresponds to a mass from the center of
0.14M() at t = 45.212 s. In this figure, we clearly see
the started expansion of matter behind the detonation
wave—the outer radius increased from 2.3 × 108 to
3.5 × 108 cm at a temperature of ~109 K. In the detona-
tion wave that propagates in the direction of increasing
density, the temperature rises, in particular, because the
heat capacity falls to 1010 K. The compression at the
front is modest and characteristic—by a mere one and
a half times (see Fig. 7). The jump in pressure is also
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core for αc = 1.0 × 10–3 (pulsational deflagration until the
formation of detonation).
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modest, approximately twofold until the end of burn-
ing. Remarkably, a detonation front is actually gener-
ated (t = 45.137 s) near the inner entropy peak (see Fig. 9),
which corresponds to the inner temperature peak (t =
45.098 s) in Fig. 11.

The legitimate question arises as to whether this det-
onation front is stable against the galloping instability
recently considered by Imshennik et al. (1999). This
question requires an additional analysis, but stability
intuitively seems more natural here: after all, the den-
sity ahead of the detonation front increases, which pre-
vents the escape of the shock front from the burning
zone. In all probability, stability against multidimen-
sional perturbations is also supported by the large width
of the burning zone, which is comparable to the radius
of a C–O core at densities ρ ~ 107 g cm–3 (Imshennik
and Khokhlov 1984). This also means that the burning
of a C–O mixture in the detonation wave “from the
edge” actually does not reach the iron-peak elements, but
is restricted mainly to the nuclides of Si etc. However,
the problems of nucleosynthesis in the inferred regime of
delayed detonation must be investigated further.

CONCLUSION

We have managed to derive the evolutionally justi-
fied initial conditions for the thermonuclear explosion
of a carbon-oxygen stellar core with a mass close to the
Chandrasekhar limit by taking into account accretion
specified by a constant rate of 5 × 10–7M( yr–1. The lat-
ter was qualitatively justified in theoretical works on
the evolution of C–O cores in close binary systems. In
such a calculation, the explosion of a C–O core starts at
some instant of time determined during this calcula-
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tion. This removes the complex problem of choosing
initial conditions, on which the very formation of
explosion largely depended. Previously (Ivanova et al.
1974, 1977a–1977c), initial temperature profiles were
specified as the initial conditions, strictly speaking,
without an adequate justification.

Our series of calculations includes the standard
approximate model of nonadiabatic convection—the
mixing-length approximation specified with the only
arbitrary parameter αc (the ratio of mixing length lmix to
radial convection-zone size ∆rc). This parameter can
most likely be determined from currently available
multidimensional approaches (see Lisewski et al.
2000); i.e., the arbitrariness assumed in the approxi-
mate theory can be removed. Our calculations revealed
that a delayed detonation takes place at a sufficiently
low value of this parameter over a wide range, 3 × 10–4 &
αc & 2 × 10–3, with the lower limit of this range being
determined as a maximum estimate. At large values,
αc * 3 × 10–3, our calculations yielded an ordinary det-
onation from the center of a C–O stellar core, which is
unlikely to exist in reality because of burning-front
instability etc. It would be of interest to establish
whether the above range falls within the range of effec-
tive mixing-length parameters justified by the multidi-
mensional theory of turbulence. However, the parame-
ter αc can be constrained by parametrically modeling
the burning-front velocity. In particular, note that for
αc = 1.0 × 10–3, this velocity is close to the laminar
front velocity inferred by Woosley and Timmes (1992)
when the first mass zone burns.

Here, using a new hydrodynamic code with a vari-
able Lagrangian (difference) grid and taking into
account the external boundary pressure attributable to
accretion, we obtained a scenario for the development
of a delayed detonation from the edge of a star to its
center. The detonation is most likely stable against gal-
loping instability and is determined by the preceding
stage of the deflagration–pulsational regime of burning.
This may prove to be important in connection with the
recently appeared skepticism (Lisewski et al. 2000)
over the previously published (Khokhlov et al. 1997)
scenario for the deflagration-to-detonation transition
due to the destruction of a laminar burning front by tur-
bulent vortices.
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Low State of the X-ray Burster SLX 1732-304
in the Globular Cluster Terzan 1 

According to RXTE Data
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Abstract—Observations of the X-ray burster SLX 1732-304 in the globular cluster Terzan 1 with the
PCA/RXTE instrument in April 1997 are presented. The source was in a low state; its flux in the standard
X-ray band was half the flux recorded by the ART-P/Granat telescope in 1990 also during its low state. At the
same time, its spectrum was softer than the ART-P spectrum; it was well described by a power law with a photon
index of 2.3 without any evidence of a high-energy cutoff. © 2001 MAIK “Nauka/Interperiodica”.

Key words: neutron stars, bursters, X-ray sources, and globular clusters
INTRODUCTION

Globular clusters stand out from the Galactic stellar
population by a high abundance of low-mass binary
systems, with one of their components being a relativ-
istic, degenerate object—a neutron star or a white
dwarf. X-ray sources were discovered in twelve globu-
lar clusters (Hut et al. 1992). Type I X-ray bursts were
observed from most of them, which is indicative of the
nature of their compact object, a neutron star with a
weak magnetic field.

X-ray emission from the region of the globular clus-
ter Terzan 1 was first detected by the HAKUCHO sat-
ellite precisely during bursts (Makishima et al. 1981;
Inoue et al. 1981). The two detected bursts were identi-
fied with a persistent X-ray source later, in 1985, when
first X-ray images of this region were obtained with the
XRT telescope of the SPACELAB-2 space laboratory
(Skinner et al. 1987). The flux from the source, designated
as  SLX 1732-304, was 1.8 × 10–10 erg cm–2 s–1 in the
3–30-keV energy band. Subsequent observations of
several X-ray missions showed that the source’s emis-
sion was highly variable in intensity. The most cata-
strophic decline in flux was recorded in 1999 by the
BeppoSAX observatory. The 2–10-keV flux fell to
4.8 × 10–13 erg cm–2 s–1 (Guainazzi et al. 1999). The
data obtained with the ART-P X-ray telescope onboard
the Granat observatory in the fall of 1990 (Pavlinsky
et al. 1995, 2001) were of considerable importance in
investigating the variability of SLX 1732-304. The
source was detected in two different intensity states, a

* E-mail address for contacts: msv@hea.iki.rssi.ru
1063-7737/01/2706- $21.00 © 20363
low state similar to that observed by the XRT telescope
and a high state with 3–20-keV fluxes of 1.6 × 10–10 and
7.0 × 10–10 erg cm–2 s–1, respectively. Variations in
intensity were apparently accompanied by hardness
variations: whereas the source during its high state had
the thermal spectrum with a distinct exponential cutoff
at high energies typical of bright low-mass X-ray bina-
ries, its low-state spectrum could be satisfactorily fitted
by a power law with a photon index α . 1.7. Here, we con-
tinue to analyze the spectral states of SLX 1732-304
based on its RXTE observations.

OBSERVATIONS

The PCA instrument onboard the RXTE (Rossi X-ray
Timing Explorer) orbiting X-ray observatory consists
of five identical proportional counters with a total area
of 6500 cm2, the operating energy range 2–60 keV, and
an energy resolution &18% at 6 keV (Bradt et al. 1993).
Because of its large area, the instrument is sensitive
enough for a spectral analysis of emission even from
weak X-ray sources to be performed. The PCA field of
view is limited by a collimator with a FWHM of 1°.
Depending on peculiarities of the suggested study,
observational data during their initial onboard reduc-
tion can be written in various telemetric formats. In the
observations discussed here, we use data in three for-
mats with a time resolution of 0.125 s, 16 s, and 1 µs
and an energy breakdown into 1, 129, and 256 chan-
nels, respectively. By the time the paper was written,
SLX 1732-304 had been within the PCA field of view
four times (table). The total exposure was eight hours.

We see from the table that during two observations,
the flux from the source was approximately the same
001 MAIK “Nauka/Interperiodica”
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with an insignificant (~10%) trend toward its increase.
The mean 3–20-keV flux was 6.7 × 10–11 erg cm–2 s–1;
i.e., it was almost the flux recorded by ART-P in 1990
during the low state of SLX 1732-304. For this esti-
mate, we subtracted the contribution of the 6.7-keV line
of diffuse emission from hot gas in the Galactic bulge
(see below). An analysis of the source’s light curve
revealed no appreciable variability of its emission on
time scales of tens and hundreds of seconds. An analy-
sis of the power spectra obtained from data written with
a high time resolution revealed no variability at fre-
quencies 1–1000 Hz either (the 3σ limit on the total
power in this frequency range was 15%).

SPECTRUM

Since the spectra of SLX 1732-304 measured during
different observing sessions were similar in shape, we
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Fig. 1. PCA pulse-height spectrum of SLX 1732-304 in
1997. The histogram and the solid line indicate its best fit
and the corresponding photon spectrum, respectively. The
6.7-keV line is attributable to the diffuse emission of hot
plasma in the Galactic-center region.

PCA/RXTE observations of SLX 1732-304 in 1997

Observation Date Starting time 
(UT) Exposure, s Flux, 

mCrab*

20071-10-01-00 April 18 06h02m08s 5300 2.59 ± 0.06

20071-10-01-01 April 18 20 37 04 9200 2.70 ± 0.04

20071-10-01-02 April 19 17 20 16 10 800 2.75 ± 0.04

20071-10-01-03 April 20 01 04 48 3500 2.80 ± 0.09

* Mean 3–20-keV flux.
performed a detailed analysis for the mean spectrum.
Data written with a 16-s time resolution in the 3–20-keV
energy band were used. The PCA response matrix at
lower and higher energies is known with a large uncer-
tainty. The pulse-height spectrum of the source is
shown in Fig. 1 together with its power-law fit (histo-
gram). The best-fit parameters are photon index α =
2.332 ± 0.007 and intensity at 10 keV I10 = (2.236 ±
0.023) × 10–4 phot. cm–2 s–1. The interstellar absorption
(atomic hydrogen column density) was fixed at NH =
1.8 × 1022 cm–2, which was measured by the ROSAT
observatory under the assumption of solar elemental
abundances (Johnston et al. 1995). In the PCA operat-
ing range, the effect of such absorption is essentially
weak. As can be seen from the figure, the measured
spectrum exhibits an intense emission line at energy
~6.7 keV. This line is most likely unrelated to the source
SLX 1732-304 itself, but is a superposition of the dif-
fuse 6.64-, 6.67-, 6.68-, and 6.7-keV lines of Fe XXV,
whose ions recombine in clouds of hot plasma near the
Galactic center. Using LAC/GINGA observations
(Yamauchi and Koyama 1993), we estimated the
expected intensity of the iron-line emission to be

 . (6–8) × 10–4 phot. cm–2 s–1 toward the globular
cluster Terzan 1. Direct measurements of the line inten-
sity in the measured spectrum yielded F6.7 . (4.92 ±
0.22) × 10–4 phot. cm–2 s–1. The line has the center at
energy 6.662 ± 0.011 keV and a width of 339 ± 21 eV
(σ in a Gaussian profile). Thus, the observed line can be
entirely attributed to the diffuse emission of ionized iron.

Figure 2 shows that the above slight trend in the
source’s flux during the PCA observations was accom-
panied by changes in its spectrum. The figure presents
the ratio of the April 18 (open circles) and April 20
(filled circles) spectra to the best fit to the mean spec-
trum. We see that maximum changes (up to 40%) took
place at soft energies below 7 keV. We also see that
there is a small excess of photons at energies ~8 keV in
both spectra (or a deficit at energies ~10 keV) com-
pared to the power-law fit to the mean spectrum.

DISCUSSION

Figure 3 shows the X-ray photon spectrum of
SLX 1732-304 reconstructed from PCA data. The
component attributable to the background diffuse
6.7-keV emission was removed. We ignored the possi-
ble contribution of the diffuse continuum emission.
This spectrum was taken during the source’s low state,
in which it spends most of its time. Significantly, the
observed spectrum is not just very hard, but it is well
described by a power law over the entire PCA operating
range without any evidence of a high-energy cutoff.
The X-ray flux was a factor of ~2 lower than that
recorded by ART-P in 1990, also during the source’s
low state. At the same time, the spectrum was steeper:
the spectral slope had a photon index α . 2.3, whereas
the ART-P spectrum had a slope α . 1.7. Discrepancies

F6.7*
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in the spectra are clearly seen in Fig. 3, in which the
ART-P spectra of SLX 1732-304 observed in 1990 dur-
ing its low and high states are indicated by open and
filled circles, respectively. In particular, we see that the
ART-P low-state spectrum is in better agreement with a
hard Comptonized spectrum than with just a power law.
This can serve as evidence that this spectrum originated
in an optically thicker plasma than did the PCA spec-
trum. It is much more similar to the source’s high-state
spectrum. In general, it should be said that the PCA
data contribute appreciably to the study of various
spectral states of SLX 1732-304.
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Relativistic Gravitational Collapse of a Cool White Dwarf 
with Allowance for the Neutronization Kinetics
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Abstract—We consider and numerically solve the problem of the relativistic gravitational collapse of a spher-
ically symmetric cool nonrotating white dwarf with allowance for the neutronization kinetics. We propose a
model equation of state and analyze the neutronization kinetics under simplifying assumptions. A comprehen-
sive mathematical model is constructed for the phenomenon. The system of equations is integrated numerically.
The gravitational collapse of a white dwarf that lost its stability is shown to lead to the envelope ejection and to
the final state of a hot static neutron star. For comparison, we solve the problem with an equilibrium equation
of state. We show that in this case, the entire mass ultimately goes under the gravitational radius to form a black
hole. © 2001 MAIK “Nauka/Interperiodica”.

Key words: general relativity, hydrodynamics, and kinetics
INTRODUCTION

The mechanism for the transformation of a white
dwarf into a neutron star has always aroused great inter-
est. At present, this issue has not lost its topicality. Pre-
viously (Voropinov and Podurets 1976), we performed
the first numerical calculations of relativistic gravita-
tional collapse for a cool white dwarf under the most
simplified assumptions. The main assumption was that
of a single equation of state with the separation of pres-
sure and energy density into cold and warm parts. The
result of our calculations depended markedly on the
asymptotics of the cold components of the equation of
state. Collapse gives rise to a black hole for the ultrarel-
ativistic asymptotics, εx = 3px, and ceases for the hard-
est asymptotics, εx = px. No envelope ejection is
observed; the formation of accretion shock waves at the
late stages of motion has no significant effect on
the  fate of the star. Note that these outgoing shock
waves are the only source of entropy growth; the matter
would remain cold without them during the entire
motion.

At the same time, it has long been clear that there is
another source of matter heating which acts virtually
from the very beginning of the motion and therefore is
capable of affecting the pattern of motion. This is non-
equilibrium heating via the neutronization reaction.
The nonequilibrium state takes place because the neu-
tronization kinetics results from weak-interaction reac-
tions and the corresponding time scales are comparable
to the hydrodynamic time scales. It should be borne in

* E-mail address for contacts: Podurets@albatross.md08.vniief.ru
1063-7737/01/2706- $21.00 © 0366
mind that, strictly speaking, heating is inevitable for a
closed system, while our system (star) is open: neutri-
nos leave it freely. The net heating is therefore deter-
mined by the difference of two processes: nonequilib-
rium entropy production and heat losses into outer
space. If these processes differ markedly in nature, then
the result can be either: heating and cooling. In our
case, however, these mechanisms are closely related.
Both are determined by the neutronization kinetics;
therefore, the result will be of fixed sign, and the net
nonequilibrium heating will take place (see below for
more details).

Thus, for a comprehensive mathematical model to
be constructed, we must write the system of equations
in general relativity, including the field equations and
the equations of motion, kinetics, and state.

The system of field equations and the equations of
motion and neutrino transfer for spherically symmetric
motion in a comoving coordinate system was derived
previously (Podurets 1998). For a numerical calcula-
tion, it was modified in much the same way as we did
previously (Voropinov and Podurets 1976). Here, we
do not use the neutrino transfer equation, because at
this stage, our objective is to elucidate the role of the
neutronization kinetics. The effect of the fact that neu-
trinos do not leave the system instantaneously will be
elucidated in a different paper.

In addition to the system of equations, our model
contains two important components: the equation of
state and the kinetics. Below, we describe them succes-
sively.
2001 MAIK “Nauka/Interperiodica”
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EQUATION OF STATE

The main requirements for the equation of state are
as follows:

(a) The equilibrium (in phase composition) cool
equation of state must give a correct set of cool stellar
configurations with two characteristic (Chandrasekhar
and Oppenheimer–Volkov) maxima of the dependence
of stellar mass on central density M(ρ0);

(b) The equation of state must be thermodynamically
consistent and must satisfy the Nernst theorem to prop-
erly describe the heat capacity near zero temperature;

(c) The equation of state must be a multiphase one
and must enable the natural introduction of neutroniza-
tion kinetics.

A simple model of matter—a mixture of ideal gases
of protons, electrons, and neutrons with equal number
densities, as in the real matter composed of Fe56 (as
well as C12, O16, and the so-called α-particle nuclei)—
satisfies all these conditions. Condition (a) should be
considered separately. The point is that the neutroniza-
tion by the reaction p + e  n + ν for an electron-pro-
ton gas begins in cold matter at too low a density, ρ =
3.3 × 107 g cm–3, while in reality, the neutronization
begins at ρ ≈ 109 g cm–3. As a result, we obtain a notice-
able displacement of the first maximum toward lower
densities, which is undesirable, because this can affect
the dynamics of collapse. We use the following artifi-
cial method to correct this defect. In the mixture of
three gases, the proton component is least valuable (the
pressure is determined by electrons at low densities and
by neutrons at high densities). Therefore, we move
the point of phase equilibrium from ρ = 3.3 × 107 g cm–3

to ρ = 109 g cm–3 by artificially reducing the proton rest
mass. To this end, it will suffice to assume that the mod-
ified proton rest mass accounts for 0.997 of the actual
mass. Below, we assume the proton rest mass to be
modified.

Each component is described by the equation of
state for an ideal relativistic Fermi gas. For simplicity,
we use not a quadrature form of the equation of state,
but asymptotic expansions at low temperatures of the
corresponding Fermi–Dirac integrals, retaining only
the first temperature terms proportional to T2 for the
density, pressure, and internal energy and to T for the
entropy. Recall that each term of the series is the prod-
uct of a function of the chemical potential by the power
of temperature. For example, we have for the particle
number density

(1)

However, this form is not convenient, because the
equations of motion do not contain the chemical poten-
tials, but contain the densities (along with the pressures
and internal energy densities). We, therefore, reverse
equations of the type (1) and write with the same accu-
racy in T

n µ T,( ) n0 µ( ) T
2
n1 µ( ).+=
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(2)

where

(3)

(4)

Substituting this expansion in other formulas, we
can easily obtain an equation of state for each phase in
the following form:

pressure

(5)

internal energy density

(6)

entropy density

(7)

The entropy does not appear in the equation of state, but
it is useful in interpreting the results.

Since, as was noted above, the system is a mixture
of three noninteracting ideal gases, the pressure is addi-
tive: it is equal to the sum of partial pressures. In addi-
tion, the energy and entropy are also additive. We also
assume that the volume and temperature are common to
the three ideal gases under consideration. The former
assumption is natural, and the latter assumption implies
that the components are in thermal equilibrium with
each other.

From the viewpoint of dynamics, the Gruneisen
coefficient Γ—the ratio of thermal pressure to thermal
energy—is an important parameter in the equation of
state. In our case, based on relations (5) and (6), we have

(8)

Thus, the coefficient Γ does not depend on the tem-
perature and varies with density in the range 1/3 to 2/3.
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NEUTRONIZATION KINETICS

Before analyzing the kinetics proper, let us show
how nonequilibrium heating proceeds in our open sys-
tem. Previously, this kind of question was considered
for different conditions (Bisnovatyœ-Kogan and Seidov
1970; Imshennik and Chechetkin 1970).

Thus, let us specify a system with heat sinks whose
power is dQ. For this system, the energy conservation
law is

(9)

We denote the quantities that refer to the entire volume
by capital letters.

Since the system is a mixture of three noninteracting
ideal gases, we write

(10)

(11)

(12)

The following equality holds for each component:

.

Using relations (9)–(12), as well as the conditions
for electrical neutrality, Ne = Np, and for the conserva-
tion of the number of baryons, Np + Nn = const, and
denoting the number of neutrons by N, we obtain

(13)

The first and second terms are responsible for the
loss and production of entropy, respectively, because
µp + µe > µn in the nonequilibrium case and dN > 0 dur-
ing the neutronization. Note that in the inverse process,
the signs of the inequalities would be reversed, while
the sign of the entropy production would be the same.
The entropy production is seen to become zero in two
extreme cases: when the reaction is either balanced
(µp + µe = µn) or frozen (dN = 0). Note also that if the
sinks do not depend on the kinetics, then both the
increase and decrease in entropy are possible.

In our instance, this is not the case. The heat sinks
and the entropy production have a common nature,
which enables us to estimate the right-hand part of
Eq. (13). First note that the proportionality

(14)

takes place, where the mean energy lost by the system
per single reaction event, i.e., the mean energy carried
away by neutrinos, is denoted by . Thus,

(15)

Let us consider strong degeneracy when the chemi-
cal potentials can be replaced by the corresponding
Fermi energies. We then have

(16)

dQ– dE pdV .+=

S Sp Se Sn,+ +=

E Ep Ee En,+ +=

p pp pe pn.+ +=

TdSk dEk pkdV µkdNk–+=

TdS dQ– µp µe µn–+( )dN .+=

dQ ε̃dN=

ε̃

TdS µp µe µn– ε̃–+( )dN .=

TdS εF p εFe εFn– ε̃–+( )dN .=
If the system is close to equilibrium, then only pairs
(proton and neutron) with the Fermi energies can react;
the newly produced neutron also has the Fermi energy,
while the neutrino energy is zero. Since the energy is
conserved in each unit event, i.e., εp + εe = εn + εv , the
energy conservation law coincides in form with the
chemical equilibrium condition. The increase in
entropy is zero, as must be the case in equilibrium.

We have a different situation when the system is far
from equilibrium, i.e., when

εFp + εFe > εFn. (17)

In this case, the neutrino energy can change from min-
imum to maximum, with

(18)

This case takes place when a pair for which εp + εe = εFn
interacts. If, however, particles with the Fermi energies
react, then neutrinos are produced with the maximum
energy

(19)

Thus, the mean energy carried away by neutrinos
lies between its minimum and maximum, i.e.,

where 0 < a < 1. We then obtain for the sink power

(20)

and, according to Eq. (14), we have for the increase in
entropy

(21)

Thus, for strong degeneracy of all three gases, we
rigorously proved that the nonequilibrium heating
accompanying the neutronization reaction was inevitable.
Notice that both terms in the right-hand part of Eq. (13)
are proportional to the same quantity dN. Therefore,
possible errors in specifying the kinetics proper (time
dependence of N) cannot affect in any way, at least the
sign of the effect.

Let us now turn to the general case of incomplete
degeneracy. Here, the situation is much more complex,
and the mean neutrino energy is difficult to estimate, as
we did for strong degeneracy. We will not do this now,
because we pursue mainly methodological objectives,
and the model simplicity should be preferred at the
early stage.

On these grounds, we assume that the heat sinks and
the total increase in entropy have the same form as
those for strong degeneracy (20) and (21), but with the
Fermi energies replaced by the chemical potentials:

(22)

(23)

Let us consider the kinetics in more detail; this will
allow us to refine the parameter a. The neutronization

εvmin 0.=

εvmax εF p εFe εFn.–+=

ε̃ a εF p εFe εFn–+( ),=

dQ a εF p εFe εFn–+( )dN=

TdS 1 a–( ) εF p εFe εFn–+( )dN .=

dQ a µp µe µn–+( )dN ,=

TdS 1 a–( ) µp µe µn–+( )dN .=
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kinetics of stellar matter was first analyzed by Frank-
Kamenetskiœ (1962) for the gravitational collapse of a
star. In a different formulation, as applied to the early
stage of an expanding cold Universe, the problem was
considered by Yakubov (1964). This problem is more
complex. The reason is that the neutrino statistics has to
be taken into account, because neutrinos cannot leave
the system in a homogeneous Universe. By contrast, as
we already noted above, the neutrino chemical poten-
tial in stars can be assumed to be zero. Subsequently,
Frank-Kamenetskiœ’s result was used in a slightly sim-
plified form by Zel’dovich and Guseœnov (1965). We
emphasize that, in essence, the above authors did not
aimed at determining the effect of neutronization on the
dynamics of matter motion. On the contrary, the motion
of matter was assumed to be specified. In our case,
however, it is also important to take into account the
effect of neutronization on the dynamics of matter
motion; therefore, apart from an expression for the
kinetics, an expression for the energy carried away by
neutrinos should be derived in the same approximation.
Only in this way will we be able to derive the correct
relation between entropy production and heat losses.
Below, we follow Frank-Kamenetskiœ’s method.

Thus, we consider a neutronization reaction of the
type

A + e–  B + ν – ∆,

where A and B are the nuclei, and ∆ is the energy dif-
ference.

Before continuing our discussion, let us make one
fundamental remark. Since the kinetics is generally
completely independent of the equation of state, we
will consider the general case of nuclear composition
of matter. As we pointed out above, our assumption of
a neutron-proton composition is nothing more than a
modeling equation of state. When analyzing the kinet-
ics, we therefore have the right to take into account the
nuclear composition of matter. Apart from the fact that
this assumption is more realistic, it is also important
that including sufficiently heavy nuclei in the analysis
greatly simplifies the problem of determining the prob-
ability of elementary neutronization. More specifically,
the presence of nuclei dispenses with the need for con-
sidering the momentum conservation law, while the
energy conservation law can be used in a simplified
form by taking into account only the energy transfer
from electrons to neutrinos. Accordingly, the complex
integration over multidimensional phase space reduces
to the integration over the electron energy alone. In this
case, ∆ is simply a constant, the rest-energy difference
between the corresponding nuclei. We also use the sim-
plifying assumption of electron-gas degeneracy. For the
probability differential, we have

(24)

where nε and ρε are, respectively, the densities of elec-
tron and neutrino states per electron energy interval ε;

dW H '〈 〉 2
nερεdε,∝
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and 〈H'〉 is the corresponding matrix element. Since the
density of electron states is proportional to the volume
of momentum space,

(25)

For neutrinos, we have

(26)

where the simplified energy conservation law discussed
above was used in the last equality. The energies ε and
∆ are measured in units of mec2.

We may then write

(27)

Here, the product of all constants by the square of the
modulus of the matrix element that does not depend on
the electron energy is denoted by const. It is important
to us that the differential probability of the inverse pro-
cess (β decay) has exactly the same form. The only dif-
ference is that when the total reaction probability per
unit time is calculated, the integration within different
limits should be performed.

We have

(28)

for the probability of β decay and

(29)

for the probability of neutronization.
The constant can now be expressed from relation (28)

and substituted in Eq. (29). We introduce the following
notation:

where tβ is the experimentally measured mean time per
single reaction event, and

is the Fermi statistical function. The neutronization
probability can then be written as

(30)

where the dimensionless function is

(31)
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with

(32)

The introduced time tβ is nothing but the time in
which the number of particles decreases by a factor of e.
This follows from the fact that the equation for the
kinetics of β decay can be written as

The half-life t1/2 = tβln2 is commonly used.

The equation for the neutronization kinetics is writ-
ten in the same form

(33)

We now make a more general remark. In our
approximation, εF is the Fermi electron energy (relative
to the rest energy), and ∆ is a constant reaction thresh-
old. Below, we use the derived formula both for incom-
plete electron degeneracy and for an inconstant thresh-
old. In this case, we change

(34)

Now, having the neutronization kinetics, we may
consider the energy loss through neutrino escape (heat
sink) so as to compare it with the entropy production
because of the nonequilibrium state, i.e., to compare
the mean energy proportional to

(35)

with the maximum energy proportional with the same
proportionality factor to

(36)

Having these values, we can calculate the important
ratio a in Eqs. (22) and (23), which characterizes the
total increase in entropy:

w ε( ) ε ε2
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1

ε

∫=

=  
1
60
------ 12ε4

30ε3∆– 4 5∆2
1–( )ε2

15ε∆+ +{

– 4 5∆2
2+( ) } ε2

1–
1
4
---∆ ε ε2

1–+( ).ln+

dn
dt
------

n
tβ
----.–=

dne

dt
-------- ne

W
tβ f
-------.–=

εF

µe

mec
2

----------- and ∆
µn µp–

mec
2

-----------------.

ε ∆–( ) wd
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∆

εp

∫
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------- ε.d

∆

εF

∫

(37)

The integral in the denominator was calculated above
[see Eq. (32)]. Let us calculate the integral in the numer-
ator. It is the sum of integrals; the second of them also
reduces to the previously calculated integral. Denote

(38)

Then, we have

(39)

The function z(ε) is calculated in elementary functions
and appears as follows:

(40)

As an illustration, let us calculate the functions α(εF)
for various parameters ∆. Consider three parameters
corresponding to three cases:

(a) Nucleus A is a proton and nucleus B is a neutron;
(b) Nucleus A is a proton with a modified mass (see

Section 3) and nucleus B is a neutron;
(c) Nucleus A is Fe56 and nucleus B is Mn55.
In the first, second, and third cases, ∆ = 2.75, 8.017,

and 22.4, respectively (Frank-Kamenetskiœ 1962).
Before performing our calculations, let us consider

the limiting cases εF = ∆ and εF = ∞. Calculating the
second value is straightforward. Retaining the highest-
degree terms in w and z, we easily find that, irrespective
of ∆,

(41)

The second limiting case is also simple. If the non-
zero factors in the integrands are replaced with their
values at point ε = ∆, then we obtain

(42)
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Table

εF/∆ 1 1.1 1.5 2 2.5 4 10 ∞

∆ = 2.75 0.75 0.7574 0.7773 0.7912 0.7997 0.8123 0.8255 0.8333

∆ = 8.017 0.75 0.7570 0.7764 0.7904 0.7990 0.8120 0.8249 0.8333

∆ = 22.4 0.75 0.7569 0.7763 0.7903 0.7989 0.8119 0.8249 0.8333
It would be natural to introduce a single variable,

εF/∆, and to examine the behavior of a ,  for var-

ious parameters. The dependence on the parameter can-
not be completely avoided, because the functions w and
z are not homogeneous in ε and ∆. Nevertheless,
numerical calculations show that the dependence on the
parameter is very weak; virtually three significant dig-

its of a  coincide for various parameters. The

results of our calculations are given in the table. We see
from this table that the essentially unified dependence
a(εF/∆) is a monotonically increasing function within
the limits

(43)

Thus, we managed to considerably improve the previ-
ously obtained estimate (0 ≤ a ≤ 1). Accordingly, the
fraction of the energy that goes into nonequilibrium
heating lies in the range

(44)

Our estimate yields a maximum fraction of the
energy that goes into heating equal to 1/4. As Bisno-
vatyœ-Kogan et al. (1974) showed, this value can be
even larger (1 – a = 0.4) if the excitation of nuclei is
taken into account.

Knowing the numerical value of a, we can specify
the sink power in the form (20). We emphasize that this
specification has an advantage over the direct calcula-
tion with our model. Recall that nonequilibrium heat-
ing results from the action of two opposite factors:
entropy production and heat sinks. The formula for the
production of entropy, TdS = (µe + µp – µn)dn, is exact
and depends neither on the equation of state nor on the
kinetics model. By contrast, dQ is completely deter-
mined by models. As we have seen above, the net effect
is a relatively small difference between the two quanti-
ties, and it may turn out that the sought-for effect will be
appreciably distorted because of the mismatch between
the equation of state and the kinetics. We therefore pre-
fer to specify the sink power as a quantity proportional
to the power of entropy production. In conclusion, we
make one important addition. Equation (33) is valid
only for stationary matter and describes the change in
density via the neutronization reaction. In order to
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derive the equation of kinetics that is also applicable to
moving matter, we change from density to number den-
sity. Let us introduce the proton number density relative
to the total number of baryons,

(45)

Then, since np + nn = const for stationary matter and
since ne = np because of electrical neutrality, we obtain

(46)

In this form, the equation of kinetics is valid along a
streamline in stationary and moving matter. For a
comoving frame, changing from the proper time to the
coordinate time yields

(47)

because the proper time t is related to the coordinate

time τ by dt = dτ, where S = –g00 (the metric func-

tion S is not to be confused with entropy).

RESULTS OF CALCULATIONS

Below, we describe the solutions of two problems:
problem no. 1 with an infinitely rapid kinetics and, con-
sequently, with an equilibrium phase composition and
problem no. 2 with a finite rate of kinetics and a non-
equilibrium phase composition.

Problem No. 1 

The equation of state for cold matter with an equi-
librium phase composition can be derived from
Eqs. (1)–(6) at T = 0 and with the constraint µp + µe = µn.
The composition was assumed to be equilibrium at ρ ≥
109 g cm–3. At lower densities, the number densities of
all particles were assumed to be 1/3, as for Fe56. The
equation of state for cold matter was tabulated, with the
number of points being of the order of 100 000, to
achieve an accuracy of quadratic interpolation between
tabulated points at a level of eight significant digits.

In our case, specifying a purely cold equation of
state is admissible, because, as we will see below, no
shock waves emerge here; i.e., there are absolutely no
sources of heating. This problem was essentially solved

λ
np

np nn+
----------------.=

dλ
dt
------ λ W

tβ f
-------.–=

S
∂λ
∂τ
------ λ W

tβ f
-------,–=

1

S
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previously (Voropinov and Podurets 1976), but with a
slightly different equation of state taken from Harrison
et al. (1967). Running ahead, note that the result of the
problem with an equilibrium equation of state is quali-
tatively the same—relativistic collapse, while the
details of the flow became different, mainly because the
accuracy of our calculations is much higher. To specify
the initial conditions, we computed a set of static solu-
tions. In Fig. 1, stellar mass is plotted against central
rest-mass density.

The first maximum corresponds to the initial condi-
tions of the problem. Figure 2 shows the initial-state
pressure profile, in stellar units (see below). In ordi-
nary units, the central stellar density is ρc = 1.079 ×
109 g cm–3, and the stellar radius is 2.405 × 108 cm. The
system of field equations and equations of motion was
integrated in a comoving coordinate system. We chose
the observer’s proper time at the stellar boundary as the
coordinate time and the radius (the circumference
length divided by 2π) of the initial static solution as
the comoving (Lagrangian) radius. The number of
computational points (zones) chosen uniformly in radius
was 200.1 We also performed calculations with a larger

1 For a smaller number of points, some important features of the
solution (for example, oscillations; see below) do not show up
any longer. This is the reason why we overlooked them in our pre-
vious study (Voropinov and Podurets 1976), where the number of
computational points was a mere 100.

0.5

8 10 12 14 16 18 206

1.0
M

/M
(

0

logρc [g cm–3]

Fig. 1. Mass of equilibrium configurations versus central
density.
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Fig. 2. The initially equilibrium pressure profile (stellar
units).
number of points (up to 1000). It turned out that in this
case, no new physical features of the solution emerged,
while the computational time increased dramatically.
We used an implicit difference scheme. The iteration
accuracy was specified at 10–8 in pressure. The time
step was chosen automatically. The selection criterion
was the accuracy of the match between the results of a
single step and the results of two successive computa-
tions of half-steps. The relative error in velocity was
specified at 10–5. In our stellar system of units, the
speed of light and the gravitational constant are equal to
unity, while the unit of time is 10–3 s. In this case, the
unit of length is 2.99776 × 107 cm, the unit of mass
is  4.0382 × 1035 g, and the unit of density is 1.499 ×
1013 g cm–3.

The initially equilibrium star was disturbed from an
equilibrium condition by the following artificial
method. At the initial time, the centrally directed veloc-
ity was specified as

where R0 is the stellar radius.
The entire contraction of the star is clearly divided

into four stages in time:
(1) The initial stage lasts from τ = 0 to τ ≈ 300 ms.

The density (as well as pressure and energy) profiles
become steeper, but generally retain their shapes, in
particular, essentially preserve their monotonic behav-
ior. This is the stage of comparatively slow contraction.
Its rate and completion time depend to some extent on
how the system is disturbed from an equilibrium condi-
tion.

(2) Starting from τ ≈ 300 ms, after the density
reaches 1010 g cm–3 at the central points, the rapid con-
traction attributable to an abrupt decrease in Poisson
adiabatic index begins. The separation of the entire star
into a dense compact core and a considerably less
dense, highly extended envelope begins at τ ≈ 380 ms
and ends at τ ≈ 450 ms. The core mass roughly corre-
sponds to the first equilibrium minimum in the plot of
equilibrium configurations (Fig. 1).

(3) The third stage appears as follows. Since the
core was produced by a rapid process, its state is far
from the state of rest; it oscillates about the equilibrium
position corresponding to its mass. The core mass is not
constant, and the envelope onflow on it continues,
increasing its mass. Accordingly, the oscillation fre-
quency increases. This regime takes place until the core
mass becomes equal to the mass of the second maxi-
mum in Fig. 1 (Oppenheimer–Volkov maximum).

(4) The fourth stage, relativistic collapse, begins at
τ ≈ 710 ms.

The initial stages are conveniently illustrated by
plots of central density ρc against time τ. In Fig. 3, cen-
tral density is plotted against time in our stellar units for
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the first two stages: the slow initial acceleration and the
rapid stall completed with the core separation.

The third stage, the stage of oscillations with a
slow  increase in core mass, cannot be illustrated by a
single plot because of the large number of (quasi-)peri-
ods. We therefore illustrate the situation by two figures.
Figures 4 and 5 show central-density oscillations at the
position of an equilibrium minimum mass and near an
equilibrium maximum mass, respectively. The figures
illustrate a smooth increase in density, with oscillations
whose period decreases with time occurring against its
background. Accordingly, the core radius oscillates in
antiphase. The oscillation period decreases in accor-
dance with the elementary theory of stellar pulsations
with Newtonian gravitation. In this theory, the oscilla-
tion period is proportional to ρ–1/2. An important point
is that the period depends on the combination M/R3,
i.e., on the density, rather than separately on the stellar
radius R and mass M. We see from Figs. 4 and 5 that an
increase in density by two orders of magnitude causes
the period to decrease by almost an order of magnitude,
in agreement with the pulsation theory.

Since the last, fourth stage is characterized by a
rapid, catastrophic increase in central density, the ρc(τ)
plot is not very informative here. The R–τ diagram in
Fig. 6 illustrates this stage. At the stage of catastrophic
contraction, streamlines’ crossings of their gravitational
radii are major events. A set of these events gives a line
in the R–τ plane whose equation is r = 2m. Also shown
here are r = const lines and the start of the line of fall to
the center (r = 0). We see that the crossings, as is usual
for stars, do not take place simultaneously. The curve
has a characteristic appearance with a minimum. Point
no. 40 crosses most early, followed by adjacent points
on both sides. The computation was interrupted at
τ = 711.066278, when the density at the central point
became equal to ρc = 0.61027 × 1014, and the computa-
tion became impossible. By this time, point no. 70 had
crossed its gravitational radius. The total rest mass
enclosed within the sphere corresponding to this point
accounts for ≈45% of the star’s total rest mass. For this
reason, we do not worry that we had to interrupt the
computation. The fate of the star has already been
decided—the gravitational collapse of the entire star is
inevitable.

Problem No. 2 

In the problem under consideration, the neutroniza-
tion rate is finite, and the equation of state is a three-
phase equation with a nonzero temperature. The time
constant in Eq. (47), tβ f, was set equal to 1200 s. The
dimensionless parameter that characterizes the sink
power (22) and (33) is set equal to a = 0.75, in accor-
dance with the estimate (44).

The problem was also computed for three cases:
with 200, 500, and 1000 points. No marked difference
ASTRONOMY LETTERS      Vol. 27      No. 6      2001
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was found between them (particularly the last two).
Qualitatively, the pattern of motion appears as follows.

The first two stages are similar to those described in
problem no. 1: an almost equilibrium core breaks away,
and the onflow of a highly rarefied envelope continues.
However, there is also a marked difference. Since the
equation of state lags behind the equilibrium state (the
effective Poisson adiabatic index is larger than that in
the previous case) and since the effective second vis-
cosity attributable to the same factor is in action, the
core breaks away in a much softer regime. In particular,
the amplitude of the oscillations characteristic of the
third stage in the preceding problem is considerably
smaller, and they are damped our rapidly. However, the
principle difference is that the onflow of matter on the
core gives way to the inverse process—a collisionless,
smooth envelope ejection takes place. This feature
steadily shows up in all three computations with differ-
ent numbers of points. At the same time, the core itself
remains in static equilibrium; the central pressure, den-
sity, and other quantities remained constant in five sig-
nificant digits for hundreds of milliseconds as long as
the computation continued. The velocities in the enve-
lope increase from the center out to the periphery, so
the boundary velocity reaches ~0.10–0.12 of the speed
of light by the end of our computation. It is of interest
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Fig. 7. The distributions of velocities u and v∞ in points
(stellar units).

Fig. 9. The temperature distribution in points (the tempera-
ture is in units of mec

2).
to compare the gas velocities in the envelope with the

parabolic velocity v∞ =  (we use the Newto-

nian formulas, because the general-relativity correc-
tions in the envelope are small). Since the pressure in
the envelope decreases with increasing distance from
the center, the point at which the velocity becomes
equal to v∞ moves to the center as time passes. At the
completion time of the computation (t = 1250 ms in the
problem with 500 points), all points from no. 384 to
no. 500 are bound to go to infinity. The mass carried
away by them accounts for 6.2% of the total mass.
However, this estimate is not accurate, but only a lower
limit, because the matter at the inner points continues to
accelerate, and its velocity can reach v∞. Note also that
the mass of the envelope points with positive velocities
accounts for 35% of the total stellar mass. An estimate
of the ejected mass is required to predict the subsequent
fate of the stellar remnant. As we saw above (see Fig. 1),
the second mass maximum of cold configurations is
considerably lower than the first maximum, so, for the
stellar remnant to become an equilibrium one (both
mechanically and thermodynamically) after cooling,
no less than 48% of the mass must be ejected. There-
fore, the above estimates most likely suggest that, in the
long run, the remnant collapse is inevitable. It is impor-
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Fig. 10. The distribution of proton number density.
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tant to emphasize that this is valid only when the effect
of baryon repulsion on the matter compressibility is
ignored. Note also that we limited our computation to
times of the order of 1000 ms not only because the com-
putational time greatly increases, but also because the
computation of an essentially nonrelativistic flow from
the general-relativity equations becomes unreliable.

Thus, based on our computations, we established
the very fact of envelope ejection. As regards the final
fate of the stellar remnant, strictly speaking, the ques-
tion is still largely an open question.

In conclusion, we provide parameter profiles that
refer to the last computational time (t = 1250 ms for the
computation with 500 points). Figure 7 shows the dis-
tributions of mass velocities u =  and escape velocities
of free particle to infinity v∞ in points.

Figure 8 shows the distribution of rest-mass density
in radius r. We see that in the unsteady-state case, the
stellar radius at the last time is more than an order of
magnitude larger than the initial radius.

Figure 9 shows the temperature distribution. The
temperature is given in energy units mec2. 

Figure 10 shows the distribution of λ: the proton
number density relative to the total number of baryons.
We see that the core at rest is a neutron star.
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Abstract—UBVRI observations of circular polarization in WW Vul are presented. A positive polarization of
~0.1% was detected with a signal-to-noise ratio from 3 to 5 in each of the bands and more than 5 when averaged
over all five bands. This observed polarization roughly corresponds to a 1% circular polarization of the radiation
scattered in a circumstellar disk, which is most likely attributable to the significant alignment of scattering non-
spherical dust grains. Since grain alignment is possible only in a magnetic field, this result provides circumstan-
tial evidence for the existence of a magnetic field in the circumstellar disk of WW Vul. © 2001 MAIK
“Nauka/Interperiodica”.

Key words: young stars, polarization
INTRODUCTION

Circular-polarization measurements for young stars
are few in number. A statistically significant polariza-
tion of ~0.05% was first detected in T Tau, RY Tau, and
SU Aur by Nadeau and Bastien (1986) and confirmed
by observations with other instruments on other tele-
scopes (Bastien et al. 1989). Hutchison et al. (1994)
recorded a circular polarization exceeding 5σ in RU Lup,
AK Sco, HD 144 669, and HD 97 048. For each of the
stars, this result was obtained only on one of the nights and
only in one band. Such a high polarization (0.07–0.5%)
was observed in these stars neither on other nights nor
in other filters on the same night. Of the 60 objects, a
circular polarization exceeding 5σ was detected in sep-
arate series of measurements only in RY Lup and
HD 163 296 (see the review article by Yudin and Evans
1998).

In UX Ori stars, which constitute a separate subclass
of young stars with unusually high polarization activity
(linear-polarization variability ∆P ~ 5%) (Grinin et al.
1991), circular polarization was detected only once.
Observations of UX Ori at minimum light (∆V ~ 2 5)
are given in Voshchinnikov et al. (1988). These authors
observed a circular polarization of ~1% with an error of
0.3% on two successive nights. Averaging the results
over these two nights yields v = 1.1 ± 0.2%. In the state
of high brightness, the circular polarization in UX Ori
does not exceed 0.3% and 0.1% as inferred from the
data of the above authors and Hutchison et al. (1994),
respectively.
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WW Vul (A2e, V = 10.3–12.7) is one of the best-
studied UX Ori stars. Its linear polarization at mini-
mum light reaches 7% (Grinin et al. 1991). A peculiar-
ity of WW Vul is the abnormal behavior of its linear
polarization observed when the star was emerging from
some of its minima (Grinin et al. 1988; Berdyugin et al.
1992), which cannot be explained in terms of the uni-
versally accepted model for this class of objects (Grinin
1988). According to this model, the variable linear
polarization results solely from an increase in the con-
tribution of the polarized radiation scattered in the cir-
cumstellar disk when the star is eclipsed by dust clouds.
One of the probable causes of this behavior is the exist-
ence of an additional mechanism for the formation of
linear polarization, absorption by aligned nonspherical
particles (Berdyugin et al. 1992). Of particular interest
in this connection is investigating circular polarization
in WW Vul, because scattering by aligned nonspherical
dust grains is an efficient formation mechanism of cir-
cular polarization (Dolginov et al. 1979).

OBSERVATIONS 
AND THEIR STATISTICAL ANALYSIS

We observed WW Vul at the Crimean Astrophysical
Observatory on one night in 1996 and on five nights in
1997 using the 1.25-m telescope (AZT-11) equipped
with the UBVRI photometer-polarimeter designed by
Piirola (1975). A quarter-wave phase plate rotated dis-
cretely at steps of 90° every 20 s was placed in front of
the polarization analyzer (a plane-parallel calcite
plate). The intensities of the ordinary and extraordinary
rays that emerged from the analyzer were measured
quasi-simultaneously with a modulation frequency of
001 MAIK “Nauka/Interperiodica”
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Table 1.  Observations of circular polarization in WW Vul

Date JD 245 mV N vU , % vB , % vV , % vR , % vI , % P, %

June 18, 1996 0314 10.51 29 0.104 ± 0.089 0.099 ± 0.034 0.074 ± 0.038 0.031 ± 0.040 0.076 ± 0.040 –

July 3, 1997 0633 11.25 39 0.171   0.127 0.005   0.045 0.140   0.052 0.024   0.032 0.115   0.041 2.3

July 5, 1997 0635 11.45 60 0.305   0.130 0.150   0.041 0.210   0.056 0.110   0.027 0.120   0.034 –

July 6, 1997 0636 11.27 39 0.422   0.183 0.041   0.097 –0.067   0.083 0.099   0.062 0.089   0.064 –

July 11, 1997 0641 11.22 20 0.180   0.224 0.049   0.110 0.031   0.077 –0.007   0.044 0.014   0.057 1.2

July 12, 1997 0642 11.20 27 0.098   0.190 0.180   0.059 0.000   0.110 0.050   0.040 0.098   0.052 1.2
25 Hz. All measurements were made through a 150 aper-
ture. The instrumental polarization was determined
from observations of the unpolarized standard stars
HD 18 803 and HD 144 287 and did not exceed 0.02%
in all bands. Our observations are given in Table 1.

As we see from the table, a circular polarization
exceeding 3σ was observed on JD 2 450 635 (July 5,
1997) in BVRI and on JD 2450642 (July 12, 1997) in B.
On the remaining nights, the measurement accuracy
was too low for a circular polarization to be detectable
even at a 3σ level. To increase the accuracy, all the 1997
observations during which the star had virtually the
same brightness, were combined into a single set and
reprocessed. The results are presented in Table 2. The
last two columns of this table list the measurement
errors of circular polarization: σ is the error of the mean
calculated from the actual scatter, and σ0 is the
expected error from the photon noise alone.

As we see from Table 2, the mean polarizations in
different bands are similar and exceed 3σ in all bands,
suggesting that the polarization is actually nonzero;
moreover, its wavelength dependence is flat. In that
case, it makes sense to average the polarization over all
bands. This averaging with weights w = σ–2 yields
〈v 〉  = 0.086 ± 0.015%.

In attempting to detect the lowest possible polariza-
tion, there is generally always a danger that the detected
effect is attributable to one degree or another to disre-
garded instrumental errors. The entire observational
procedure and our observational data were therefore
critically analyzed at the St. Petersburg State Univer-
sity. As a result, we found the following: first, no possi-
ble instrumental errors could significantly affect the
results of our observations, and, second, reprocessing
our data by an independent method confirmed the
results of Table 1 with insignificant (within the limits of
observational error) discrepancies. In particular, the
circular polarization averaged over all six observing
nights and over all five bands was found to be 〈v 〉  =
+0.091 ± 0.009%, while its value averaged over the five
nights in 1997 is 〈v 〉  = +0.090 ± 0.018%, which is seen
to be close to the above values.

In general, the results of this reprocessing match
those given above. The circular polarization averaged
over the five bands is 〈v〉 = 0.088 ± 0.006% for the
ASTRONOMY LETTERS      Vol. 27      No. 6      2001
entire set of observations and 〈v〉 = 0.099 ± 0.022% for
the 1997 observations.

DISCUSSION

Thus, we not only detected circular polarization in
WW Vul, but also obtained information about its wave-
length dependence (it is apparently flat) and about the
pattern of its variability (it varies only slightly on a time
scale of several days, because the signal-to-noise ratio
improved considerably when the observations were
averaged over eleven days).

Note that the circular polarization observed in UX
Ori, an object of the same class as WW Vul, is an order
of magnitude higher than that in WW Vul. This may be
attributable to the fact that UX Ori was observed at
minimum light (∆V ~ 2 5), while WW Vul was
observed in an intermediate state (∆V ~ 0 7). For any
of the possible formation mechanisms of circular polar-
ization:

—transformation from linear polarization as light
propagates in an anisotropic interstellar medium,

—multiple scattering by nonaligned dust grains, and
—scattering by aligned dust grains,
it would be natural to expect an increase in the

observed polarization with increasing amount of dust
on the line of sight and with increasing fraction of the
scattered light in the observed radiation, which is the
case at minimum brightness.

The high intrinsic circular polarization in WW Vul
suggests scattering by aligned dust grains as the most
plausible mechanism.

Indeed, the first mechanism can most likely be
ignored, because the interstellar polarization is low,
Pis ~ 1.0% for WW Vul (Grinin et al. 1988).

.m

.m

Table 2.  Mean circular polarizations in WW Vul

Band v, % σ, % σ0, %

U 0.245 0.049 0.067

B 0.090 0.022 0.025

V 0.102 0.025 0.031

R 0.063 0.015 0.016

I 0.099 0.019 0.021
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If the source of circular polarization is the scattered
disk radiation, then, knowing its intensity determined
by analyzing observed color-magnitude diagrams for
WW Vul, Isc ~ 0.05I∗  (Grinin 1988), we obtain Isc = 0.1Iobs
at the time of measurements (V = 11.2). Consequently,
the intrinsic circular polarization of the scattered disk
radiation is v ~ 0.9%.

For multiple scattering by spherical particles in cir-
cumstellar disks, the circular polarization differs in sign
during scattering in different disk quadrants (Bastien
1988), and the total circular polarization from the entire
disk must be zero under axially symmetric conditions.
Therefore, in the case of multiple scattering, one might
expect circular polarization to emerge only when the
disk shape deviates appreciably from axial symmetry.
In principle, such deviations are possible under the
effect of tidal perturbations in young binary systems.
However, as an analysis of the above calculations by
Bastien (1988) shows, the maximum circular polariza-
tion in such cases can hardly be comparable to the
above estimate (v ~ 0.9%).

For this reason, the third of the above mechanisms
seems most plausible, because circular polarization in
this case emerges even after a single scattering and can
be high (Notni 1985). Note also that the emergence of
circular polarization during scattering by aligned dust
grains is well known for the solar zodiacal light, with its
polarization (~0.5%; Dolginov and Mitrofanov 1975)
being close to v for WW Vul and UX Ori.

CONCLUSION

We have concluded that the circular polarization in
WW Vul is most likely attributable to scattering by
aligned nonspherical particles. Since the alignment of
nonspherical particles in most astrophysical situations
is impossible without a magnetic field being involved
(Dolginov and Mitrofanov 1975), this fact can be con-
sidered as circumstantial evidence for the existence of
a magnetic field in the star’s circumstellar disk.

Our estimates show that the circular polarization of
the scattered radiation from the circumstellar disk of
WW Vul is ~0.9%. One might expect such a polariza-
tion at the deepest minima of WW Vul, when the star is
completely obscured from the observer by a dust cloud,
and the scattered radiation from circumstellar dust
dominates.

In conclusion, note that our observations revealed a
positive circular polarization in WW Vul. Circular
polarization of the same sign was observed in two of
the three young objects of Bastien et al. (1989), in three
of the four objects of Hutchison et al. (1994), in the two
objects of Yudin and Evans (1998), and in UX Ori
(Voshchinnikov et al. 1988); i.e., a positive polarization
clearly dominates. This fact is of considerable interest
and deserves a special study.
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Abstract—Photoelectric (UBVR) observations of the eclipsing variable EQ Ori are presented. The ephemerides
of primary minima are refined, and the range of the star’s light variations is determined. All light curves are
solved by Lavrov’s direct method, and highly accurate photometric orbital elements are obtained for the system.
The magnitudes and colors of each component are calculated and analyzed in two-color (U–B)–(B–V) and
(U–B)–(V–R) diagrams. The system’s primary component is classified as a metallic-line Am star. The absolute
parameters of the components are estimated, and the binary is classified as a detached system with a subgiant:
A0 V and K2 IV. EQ Ori has a faint physical companion, which causes the epochs of primary minimum to be
systematically displaced with a period of about 30 years. The expected parameters of the distant companion are
estimated. The system’s components are at a pre-ZAMS evolutionary stage, with their age being 2 × 106 years.
EQ Ori is thought to be a member of the Ori I association. © 2001 MAIK “Nauka/Interperiodica”.

Key words: stars—variable and peculiar
INTRODUCTION

The variable EQ Ori (= BD –3°945 = 43.1929, m =
10.2–13.3 pg; Sp: A0:) was discovered by Hoffmeister
(1929), who established its variability type and deter-
mined the range of its light variations. Subsequent visual
and photographic observations of the variable provided
information about the binary’s light curve and light ele-
ments. The General Catalog of Variable Stars (GCVS)
gives the following ephemeris:

Min I = JDH 2 431 438.743 + 1 746057E.

The eclipse at primary minimum lasts for 0 12, and
a significant fading (3 1) takes place. Whitney (1957)
noted that the period of EQ Ori was variable.

A spectrum of EQ Ori was taken with a resolution
of 2.5 Å on the ascending branch of its primary mini-
mum using the 2.1-m Kitt Peak Observatory telescope,
and a search for emission in the spectral range between
Hβ and Hγ was made (Kaœtchuk and Honeycutt 1982;
Kaœtchuk et al. 1985). The search yielded no positive
results. There are two observations of the variable at
maximum light in Strömgren’s four-color photometric
system. These observations were carried out with the 40-
and 90-cm Kitt Peak Observatory telescopes (Hilditch
and Hill 1975) in an effort to determine its color.

Approximate photometric and absolute parameters
of the close binary were determined by Gaposhkin
(1953), Brancewicz and Dworak (1980), and Svechni-
kov and Kuznetsova (1990). The authors used unsolved
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photographic light curves and relations between funda-
mental stellar parameters, including statistical relations.

OBSERVATIONS

We performed observations of EQ Ori as part of our
program of research on close binaries in star-forming
regions in the Ori I association (Zakirov 1996). Photo-
electric (Johnson’s UBVR) measurements of EQ Ori
were obtained with the 1-m Maidanak Observatory
telescope from September through November 1998.
The observations were reduced by a standard method
using monthly mean atmospheric extinction coeffi-
cients at Mount Maidanak (Zheleznyakova 1984). On
clear nights and for a sufficient number of measure-
ments of the standard star, the extinction coefficients
were estimated by Bouguer’s method. The magnitudes
and colors of the comparison stars were determined rel-
ative to a photometric standard in Kapteyn’s square
area SA 95 (Landolt 1983). The coefficients of transfor-
mation from the instrumental photometric system to
Johnson’s system were calculated by the method of
Hardy (1967). BD –3°953 (V = 6 983 ± 0 001, U–B =
–0 018 ± 0 008, B–V = 0 475 ± 0 002, V–R = 0 481 ±
0 017; Sp: F5) and BD –3°948 were chosen as the
comparison and check stars, respectively. Our observa-
tions of the close binary are summarized in Table 1.1

A total of 445, 443, 445, and 440 measurements were
obtained in U, B, V, and R, respectively. The light

1 Table 1 is published in electronic form only and is acces-
sible  via  ftp at cdsarc.u–strasbg.fr/pub/cats/J (130.79.128.5) or
http://cdsweb.u–strasbg.fr/pub/cats/J.
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curves of EQ Ori are shown in Fig. 1. The magnitudes
and colors of the variable at maximum and minimum
are given in Table 2.

ORBITAL PERIOD

Whitney (1957) pointed to variability of the period
of EQ Ori, but he failed to establish its pattern. Instabil-
ity of the variable’s orbital period is also noted in the
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Fig. 1. Light curve of EQ Ori.

Table 2.  Photometric parameters of the light curve for EQ Ori

Phase V U–B B–V V–R

Max 10.43 0.16 0.15 0.17

Min I 13.53 0.10 0.64 0.83

Min II 10.49 0.16 0.12 0.14
GCVS. We collected all the available observations of
the close binary’s minima and improved their ephemer-
ides by least squares. The epochs of observed minima
for EQ Ori were mostly published by Döppner (1962)
and Dworak (1977); there are also numerous amateur
observations of the variable in the BBSAG (Bedeck-
ungsveränderlichen Beobachter der Schweizerischen
Astronomischen Gesellschaft. Bulletin). We managed
to find 110 epochs of minima, including our three
determinations (JDH 2 451 127.272, 2 451 132.514,
and  2 451 134.259), in the interval of observations
JD 2451087–2451134. We fitted the epochs of minima
for EQ Ori by linear and parabolic laws and analyzed
the O–C residuals with a harmonic function. If the sum
of (O–C)2 obtained with a linear law is taken as 100%,
then this sum obtained with a parabolic law is 80% and,
given the harmonic term, 53%. Based on the least sum
of (O–C)2, we chose a linear law with a sinusoidal term:

Min I = JDH 2 445 344.328 + 1 7460579E 

– 0 022sin(338 5 + 0 058E),

±0.003 ± 0.0000005 ± 0.008.

Deviations of the observed minima from the linear
part of this ephemeris are shown in Fig. 2. There is a
harmonic term with a period of about 30 years in the
variable’s light elements. Some points in the plot devi-
ate greatly from this sinusoid. In the overwhelming
majority of cases, the epochs of minima of the variable
were determined from photographic and amateur visual
observations. The exact epoch of maximum fading in
eclipsing systems with sharp, deep minima lasting for
no more than several tens of minutes is difficult to
establish photographically, because the exposure time
(typically 30–40 min) “smears” the accuracy of fixing
minima (Zakirov 1993). For EQ Ori, the photoelectric
duration of the eclipse at primary minimum is longer
than its photographic duration by 0 04, and the fading
is 0 5B in B. During amateur visual observations with
small instruments, EQ Ori can be completely unseen at
primary minimum (V = 13 5). Of course, observers can
interpolate their observations to the epoch of maximum
fading from the ascending and descending branches of
minima, but it is not known how accurately this is done.

Thus, we managed to establish that the variability of
the orbital period of EQ Ori previously noted by other
authors was attributable to the close binary’s rotation
about a common center of mass of the triple system.

LIGHT CURVE AND ITS SOLUTION

The light curve of EQ Ori is typical of Algols with
an indistinct phase effect and a deep, sharp primary
minimum. A secondary minimum is clearly seen only
in the V and R light curves. The surprising thing is that
the secondary minimum (0 1 pg) was revealed by pho-
tographic observations. The shallow secondary mini-

.d

.d .° .°

.
p

.m

.m

.m
ASTRONOMY LETTERS      Vol. 27      No. 6      2001



   

CLOSE BINARY SYSTEMS IN STAR-FORMING REGIONS 381
mum suggests that the system’s faint component is a
late-type star. The eclipse duration at primary (DI) and
secondary (DII) minima is approximately the same,
0 16. Our observations yielded a slightly larger DI than

did photographic data (0 12).

We solved all light curves by the direct method of
Lavrov (1993), which is based on Russell-Merrill’s rec-
tifiable model. Limb darkening coefficients were taken
from Rubashevskiœ (1985), who calculated them in
Johnson’s photometric system. Fourier decomposition
of the light curves outside eclipse revealed a noticeable
reflection effect in the V (A1 = –0.0114 ± 0.0025) and
R  (A1 = –0.0172 ± 0.0033) light curves. The light
curves of EQ Ori were solved for circular and elliptical
orbits. Minimizing the sum of the squares of deviations
(O–C)2 of normal points from a theoretical light curve
is a major significance criterion for the data in solving
the light curves of eclipsing variables. Minimization of
the sum of (O–C)2 gave rise to a large orbital eccentric-
ity. Because of the shallow secondary minimum, the
eccentricity e and the longitude of periastron ω can be
determined only by solving the V- and R-light curves.
We obtained ω = 86° ± 1°, i.e., an angle close to 90°,
and e = 0.37. The duration ratio of secondary and pri-
mary minima can be easily estimated from the follow-
ing simple relation at i ≈ 90° (Martynov 1971):

We found this ratio to be ~2, which is not confirmed
by observations. Applying the χ2 test to the deviations
of normal points at secondary minimum from a theoret-
ical R light curve, which clearly exhibits this minimum,
shows that this parameter for a circular orbit is a factor
of 5 smaller than that for an elliptical orbit. Thus, we
assumed the orbit of EQ Ori to be circular and derived
its photometric orbital elements.

At primary minimum, a total eclipse of the brighter,
but smaller (in radius) component takes place (the
G  S hypothesis). Solving all light curves of EQ Ori
indicates that the photometric phase in the middle of its
primary minimum is α = 1.000. We, therefore, assume
that a total eclipse occurs at minimum, although this is
not evident from the binary’s light curve. The duration

.
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.
p
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--------

1 e ωsin+
1 e ωsin–
------------------------.=
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of the total eclipse at primary minimum is short (dI =
0 009 ± 0 001 or about 13 ± 1 min). The results of
light-curve solution for EQ Ori are given in Table 3,
where the last row lists the weighted mean deviations of
normal points from a theoretical light curve. The quan-
tities that refer to the cool and hot components are
marked by the subscripts “c” and “h,” respectively. The
relative radii of the components are given in units of the
orbital radius. Since the derived geometric elements of
the close binary in all bands are similar, the sixth col-
umn gives their means. The last column lists the param-
eters obtained by Svechnikov and Kuznetsova (1990)
from an analysis of the photographic light curve. A com-
parison of our photometric orbital elements with those of
these authors shows that they differ by no more than 7%.

DISCUSSION

Table 4 gives the photometric parameters of each
component calculated from the data of Tables 2 and 3.
These values refer to the far, unlit sides of the compo-
nents and thus reflect the true quantities. The necessary
corrections can be determined by using the program of
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Fig. 2. Deviations of the epochs of primary minima for
EQ Ori from a linear law.
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Table 3.  Photometric orbital elements for EQ Ori

Parameter U B V R 〈UBVR〉 Svechnikov and 
Kuznetsova (1990)

rc 0.264 0.260 0.256 0.259 0.260 ± 0.002 0.261

rh 0.242 0.230 0.231 0.234 0.234 ± 0.003 0.249

xc 0.95 0.90 0.70 0.60

xh 0.50 0.51 0.42 0.35

i° 90.0 89.9 90.0 89.7 89.9 ± 0.1 90

Lc 0.046 ± 0.001 0.050 ± 0.001 0.074 ± 0.001 0.110 ± 0.001 0.09

σm 0.027 0.024 0.026 0.021
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Lavrov (1993), and the method of calculation is simple
(Martynov 1971). The photometric quantities of the hot
component were calculated with an accuracy higher
than 0 01. For an independent spectral classification of
the components, we plotted their positions on two-
color (U–B)–(B–V) and (U–B)–(V–R) diagrams (Fig.
3). The hot component of EQ Ori lies below the stan-
dard color curve for main-sequence (MS) stars and
does not cross it when moving along the reddening line.
This behavior is typical of metal-rich stars whose
absorption lines produce an additional absorption of
energy—the blanketing effect (Hack and Struve 1970;
Straizys 1977; Wolff 1983). We will return to the com-
ponents’ spectra below after discussing their nature.

We estimated the expected absolute parameters of
the components of EQ Ori by our method outlined in
Zakirov (1996). The main point in this method is estab-
lishing the fundamental parameters of the primary star,
which the hot component of the close binary is in our

.m

Table 4.  Photometric quantities for the components of EQ Ori

Component V U–B B–V V–R

Hot 10.51 0.16 0.12 0.13

Cool 13.25 ± 0.01 0.24 ± 0.02 0.59 ± 0.02 0.60 ± 0.02
case. The hot component mainly contributes to the
close binary’s light (see Table 4), and this star is char-
acterized by the spectral type A0. Assigning the tabu-
lated parameters of an A0 V star (Straizys 1982) to it,
we calculated the same quantities for the cool compo-
nent. The temperature of the cool component as
inferred from Planck’s formula in U is almost 10%
higher than that in the remaining bands. We took into
account the mean temperature of this component
derived from the photometric orbital elements in BVR.
Our search for the best correspondence of the cool
component’s parameters with allowance for the cosmic
dispersion of these quantities to the same spectral type,
radius, mass, and luminosity showed that the hot and
cool components were A0 V and K2 IV stars (Table 5),
respectively. For comparison, the table gives the abso-
lute parameters of the components of EQ Ori estimated
by other authors. The discrepancy in mass estimates for
the cool component is largest: the value of Svechnikov
and Kuznetsova (1990) is a factor of 3 smaller than that
of other authors.

Our mass ratio of the close binary’s components is
q = 0.82, and their critical radii are rh, crit = 0.393 and
rc, crit = 0.356 (Plavec and Kratochvil 1964). Both stars
are deeply embedded in their Roche lobes. There is no
+

0.5

0 0.5

B–V

0

U
–B

A0

K2

+

(a)

0 0.5
V–R

K2

+

A0

.

(b)

2

3

2

3

+

Fig. 3. Two-color diagrams: (a) (U–B)–(B–V) and (b) (U–B)–(V–R). Open circles are the components of EQ Ori (Table 4), filled
circles are the components on the standard curves, triangles are the expected positions of the close binary’s components, crosses are
stars near the variable, and dots are Am stars.
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Table 5.  Expected absolute parameters of EQ Ori

Parameter

Hot component Cool component

this paper Brancewicz and 
Dworak (1980)

Svechnikov and 
Kuznetsova (1990) this paper Brancewicz and 

Dworak (1980)
Svechnikov and 

Kuznetsova (1990)

M/M( 2.24 2.87 2.4 1.83 1.90 0.62

R/R( 2.29 1.88 2.2 2.53 2.14 2.3

MV 0.72 0.85 3.46 3.0

T, K 9600 9640 4860 5550

Spectral type A0 V A0 A0 K2 IV G2 IV
mass transfer in the system, and the orbital period has
been constant for six decades. EQ Ori belongs to detached
systems, which consist of a MS star and a subgiant.

In two-color diagrams, the hot component of EQ Ori
exhibits an ultraviolet deficit, δ(U–B) = 0 10 (Fig. 3),
characteristic of metallic-line Am stars (Straizys 1977;
Wolff 1983). On the same color diagrams, we plotted
the positions of Am stars determined photometrically
(Jaschek and Jaschek 1957; Mendoza et al. 1978). The
blanketing effect on B–V causes this color to decrease,
on the average, by 0 07 (Hack and Struve 1970). In the
B–V range 0 1–0 2, the mean ratio δ(U–V)/δ(B–V) =
2.4 ± 0.4 (Gomez et al. 1981) [the differences δ(U–V) =
(U–V)–(U–V)0 and δ(B–V) = (B–V)–(B–V)0 if the star
undergoes no interstellar extinction]. Allowance for
blanketing of the close binary’s hot component yields
the correction δ(U–B) = –0 10 ± 0 03; its corrected
U–B = 0 06 ± 0 03 and B–V = 0 05 ± 0 03 (we took a
formal error of ±0 03 for B–V). The new position of
the hot component is marked in Fig. 3 by a triangle.
When moving along the reddening line, the star crosses
the standard curves at points near A0, in complete
agreement with its spectral classification. The color
excess of the hot component is EB–V = 0 07, and the
visual absorption is AV = 0 23 for R = 3.36 (Straizys
1977). The distance modulus for the close binary is 9 3.
Our estimate of the distance to the variable matches
that of Brancewicz and Dworak (1980).

The position of the cool component in the two-color
diagrams does not correspond to its expected spectral
type K2 IV (the notation for the cool component in Fig. 3
is the same as that for the hot component). This may be
attributable to the star’s unusual spectral energy distri-
bution. The star’s spectrum at primary minimum, when
only the cool component is seen, would be informative
in interpreting the nature of the faint component.

The fact that one of the components of EQ Ori
belongs to subgiants suggests that the star is either at a
pre-MS or post-MS evolutionary stage. We studied the
positions of the close binary’s components in the
Hertzsprung–Russell diagram constructed for moder-
ate-mass single stars evolving toward and away from
the MS (Maeder 1976; Palla and Stahler 1993). Having
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analyzed these diagrams, we managed to establish that
the close binary’s components evolve toward the
ZAMS (Fig. 4). The system’s age is estimated to be 2 ×
106 years. We estimated the gravitational contraction
time for pre-ZAMS moderate-mass (M∗  < 8M() stars
by using the formula (Masevitch and Tutukov 1988)

τ ≈ 5 × 107(M(/M∗ )2.5 years.

The hot and cool components of EQ Ori will reach
the ZAMS in 7 × 106 and 1.1 × 107 years, respectively.
The massive component of EQ Ori was classified as an
Am star. Stars of this class have previously been dis-
covered in several OB associations and in open clusters
with ages ≥106 years (Hack and Struve 1970; Abt 1979).

As was shown above, EQ Ori is a triple system that
rotates about a common center of mass with a period of
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Fig. 4. Positions of the components of EQ Ori in the Hertzs-
prung–Russell diagram constructed for single stars from the
calculations of Palla and Stahler (1993). The numbers near
tracks are stellar masses (in units of the solar mass); the cir-
cles mark the positions of the hot (upper) and cool (lower)
components in the Hertzsprung–Russell diagram.
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Table 6.  Photometry of stars in the vicinity of EQ Ori

Star BD V U–B B–V V–R n Q method* EB–V m–M

1 11 484 ± 0.003 1 003 ± 0.022 1 069 ± 0.005 0 859 ± 0.004 12 K4 0 02 4 5

2 11.223 ± 0.002 0.158 ± 0.006 0.608 ± 0.003 0.565 ± 0.005 12 B8 0.71 8.8

3 –3°948 11.067 ± 0.003 0.074 ± 0.004 0.316 ± 0.002 0.302 ± 0.003 14 B9 0.39 9.3

* The Q method is the method of determining the spectral type of a star from its measured  U–B and B–V color indices (Straizys 1977).
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29.5 years. Let us estimate basic parameters of the dis-
tant component by using the so-called mass function
(Martynov 1947; Kopal 1959):

where M is the mass of the third body, i ' is the orbital
inclination of the triple system, a' is the semimajor axis
of its orbit (in AU), and P' is the orbital period of the
entire system (in sidereal years). Suppose that the
orbital planes in the triple system are coplanar, i.e., i = i '.
Recall that i is the orbital inclination of the close pair.
Assuming the orbit be circular, we can easily determine
its radius from the amplitude of the light equation,
(3.7 ± 1.5) AU. We find the companion’s mass from the
mass function to be M/M( = 1.2 ± 0.5. Taking the age
of the distant companion to be equal to the age of the
binary system, we find the star’s radius and temperature
from the Hertzsprung–Russell diagram constructed by
Palla and Stahler (1993): R/R( = 2.2 ± 0.5 and T = 4500 ±
600 K, respectively. We also calculated the apparent
magnitude of this companion, V = 14 0 ± 1 5. The
error in the parameters of the distant companion proved to
be large because of inaccurate determination of the ampli-
tude of the light equation (signal-to-noise ratio = 2.8). The
distant companion apparently does not contribute

M
3

i 'sin
3

Mh Me M+ +( )2
---------------------------------------

a ' i 'sin
3

P'
2

-----------------,=

.m .m

N

W

1

2

3

( EQ Ori

Fig. 5. Finding chart for EQ Ori. The field is 12′ × 12′.
appreciably to the total brightness, as it is even unde-
tectable when searching for a third light with the pro-
gram of Lavrov (1993). Interestingly, although a total
eclipse takes place in the close binary, the brightness in
the middle of its primary minimum is lower than the
brightness of the cool component in all bands except
for R.

There is a small group of stars of approximately the
same brightness near the variable, which clearly stands
out against a poor stellar background (Fig. 5). We per-
formed photometry of these stars in an effort to find out
whether this stellar grouping is real (Table 6). Star no. 3
served as the check star during the variable’s observa-
tions. In the two-color diagrams, we plotted only two
stars (Fig. 3), while the third star (no. 1) was a late-type
star without any appreciable absorption. When moving
along the reddening line, the stars cross the standard
curves twice. If we chose earlier spectral types for these
stars and estimated their distance moduli, then they
would lie at approximately the same distance as the
variable (Table 6).

As was pointed out above, EQ Ori is located in the
large Ori I association, whose distance is 450 pc (m –
M = 8 4). Given the cosmic dispersion of the star’s
absolute parameters, this distance modulus for the vari-
able (m – M = 9 3) can be assumed to suggest that it lies
in the association. The proper motions of EQ Ori are very
low (Rözer and Bastian 1993), like those for physical
members of the association (Parenago 1954). Taking into
account the system’s youth and the aforesaid, we expect
EQ Ori to be at a pre-ZAMS evolutionary stage and is a
physical member of the Ori I association.

CONCLUSION

The first photoelectric (UBVR) observations have
been obtained for the eclipsing variable EQ Ori in the
Ori I association. We refined the ephemeris of minima
and found its periodicity with an amplitude of 0 022
and a period of about 30 years. We determined basic
photometric parameters of the close binary’s light
curve and solved all its light curves by Lavrov’s direct
method. Highly accurate photometric orbital elements
were derived for EQ Ori. The absolute parameters of
the components were estimated; the system consists of
A0 V and K2 IV stars. The hot component was classi-
fied as an Am star, and the system’s age is 2 × 106 years.
There is no correspondence between the color indices
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of the cool component and its estimated spectral type.
We discovered a third, distant component in the system
and estimated its parameters. The variable is expected
to be a member of the association and is at a pre-ZAMS
evolutionary stage.
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Abstract—Hipparcos trigonometric parallaxes are used to estimate the distances to the maximum possible
number of open star clusters (OSC); distance moduli are estimated for 45 clusters with maximum heliocentric
distances of about 1000 pc. The latter value can serve as an estimate of the limit to which it still makes sense to
use Hipparcos trigonometric parallaxes to determine the distances to small groups composed of 6–10 suffi-
ciently bright stars. A systematic correction to the distance moduli of clusters from the homogeneous catalog
of OSC parameters (Loktin et al. 1997, 2000) is estimated, which turns out to be independent of the cluster age.
© 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The determination of trigonometric parallaxes for a
large number of relatively faint stars from the Hippar-
cos satellite radically changed the situation with estab-
lishing a reliable distance scale for open star clusters
(OSCs), which provides a basis for the Galactic dis-
tance scale. Until recently, the OSC distance scale has
been essentially based on the Hyades distance esti-
mated by using various modifications of the moving-
cluster method. However, because of a metal overabun-
dance in the Hyades stars, the complex problem of
allowing for the effect of deviations in chemical com-
position on the location of the Hyades main sequence
arises. Hipparcos data allowed the distances to about
twenty OSCs of different ages to be estimated [see,
e.g., Robichon et al. (1999) and references therein] by
using a method that required no allowance for the devi-
ation of the chemical composition of cluster stars from
the solar one. The wide age range of clusters with mea-
sured parallaxes makes it possible to directly investi-
gate the reliability of the distance scale without resort-
ing to ZAMS construction by cluster main-sequence
fitting.

In the summer of 1999, a group of researchers from
the Astronomical Observatory of the Ural State Univer-
sity completed their work on the second version of the
Homogeneous Catalog of Open Star Cluster Parame-
ters (Loktin et al. 1997, 2000). This paper appeared,
because it was necessary to check the reliability of the
distance scale of this catalog. We set the following
objectives:

* E-mail address for contacts: Alexhander.Loktin@usu.ru
1063-7737/01/2706- $21.00 © 20386
1. Determining the distances to the maximum possi-
ble number of OSCs with different ages by using Hip-
parcos trigonometric parallaxes.

2. Estimating the errors in the ZAMS location over
the widest possible ranges of absolute magnitude, partic-

ularly in the range MV ≤ –1 0, which is critical for deter-
mining the distance moduli and ages of young OSCs.

3. Determining the corrections to the OSC distance
scale of the “Homogeneous Catalog.”

4. Estimating the limit to which Hipparcos paral-
laxes can still be used to determine the distances to
small (6 to 10 objects) groups of stars.

ANALYSIS OF THE TRIGONOMETRIC 
PARALLAXES OF OSC STARS

To achieve the above objectives, we used a sample
that included all clusters from the “Homogeneous Cata-

log” with distance moduli less than 10 1 and contain-

ing at least ten stars brighter than V = 11 0 in the color-
magnitude diagram (below referred to as the HR dia-
gram) while exhibiting a well-defined main sequence.
Hipparcos proper motions and a photometric criterion
based on Hipparcos B and V magnitudes (star positions
relative to the main sequence and the giant branch in
the HR diagram) were used as the membership crite-
rion to separate cluster members. To distinguish the
maximum possible number of cluster members, we ana-
lyzed wide regions with diameters from 5 5 for the
Hyades to 2 5 for the most distant clusters of the sample.

The cluster distances were estimated as follows. For
each cluster, we constructed the frequency distribution
of trigonometric parallaxes for its probable members,
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and the position of the maximum of this distribution
(mode) served as an estimate of the cluster trigonomet-
ric parallax. In our case, the mode of the distribution
was chosen to estimate the parallax of the cluster as a
whole, because the distribution of trigonometric paral-
laxes for cluster stars is generally asymmetric. The lat-
ter stems from the fact that the trigonometric parallax is
nonlinearly related to the object distance.

To estimate the error of the mode, for clusters with
more than 30 members, we broke down the sample into
three equal parts and determined the positions of the
maxima for the three distributions. An estimate of the
variance of these three positions of the maxima was
used as the error in the mode of the entire distribution.
Alternatively, for clusters with less than 30 members,
an estimate of the sample variance of the mean over the
distribution was used as the error in the cluster trigono-
metric parallax. If the parallax distribution of cluster
members exhibited no distinct maximum, then the clus-
ter was excluded from the sample.

Figure 1 shows the frequency distributions of trigo-
nometric parallaxes for probable members of three
OSCs. The third cluster (Cr 70) is shown to illustrate
the possibility of determining the distances to distant
clusters from Hipparcos data: the parallax distribution
for this cluster exhibits a distinct maximum. In princi-
ple, the cluster distances can be estimated from the
modes of distance distributions, but it is better to use
the distributions of parallaxes, because they are deter-
mined directly.

Note that the frequency distribution of trigonomet-
ric parallaxes for Hyades stars is slightly asymmetric,
in contrast to the distance distribution for these stars
shown in Fig. 2. The asymmetry of the parallax distri-
bution is probably caused by selection: the number of
more distant stars is underestimated, because the cata-
log completeness falls rapidly with distance for stars
with V magnitudes fainter than 9m. The second cause of
the possible asymmetry is an increase in the mean
errors of distance estimates with the increasing distance
to objects itself. These effects necessitate abandoning
the calculation of the sample mean (of both the distance
and the parallax) when estimating the Hyades distance
modulus. The mode of the distribution is also slightly
affected by the asymmetry, but to a considerably lesser
extent. In any case, it should be noted that the Hyades
distance estimated from our data might be slightly
underestimated.

The Pleiades cluster is of particular interest. The
trigonometric parallaxes for this cluster yield a distance
modulus that is appreciably smaller than its value
obtained photometrically (Robichon et al. 1999).
Note that the trigonometric-parallax distribution for the
Pleiades stars (Fig. 1) clearly exhibits a secondary max-
imum, which gives a distance estimate that is in consid-
erably better agreement with the photometric distance
modulus (see the table). Narayanan (1999) found spa-
tial correlations between the errors of Hipparcos trigo-
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Fig. 1. The frequency distributions of trigonometric paral-
laxes for probable members of three open clusters.
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Fig. 2. The frequency distribution of distance estimates (R)
for probable members of the Hyades cluster.
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OSC distance moduli

No. Cluster (V0 – MV)π σπ (V0 – MV)ph σph logt N

1 Hyades 3.357 0.015 3.420 0.052 8.896 33

2 Pleiades 5.284 0.094 6.035 0.200 8.131 20

Pleiades 5.874 0.094 6.035 0.200 8.131 9

3 Coma 4.737 0.042 5.063 0.050 8.652 13

4 α Per 6.209 0.061 6.504 0.047 7.854 25

5 Praesepe 6.202 0.114 6.507 0.141 8.863 16

6 IC 2391 5.827 0.076 6.340 0.049 7.661 12

IC 2391 7.089 0.165 6.340 0.049 7.661 7

7 IC 2602 5.797 0.023 6.179 0.020 7.507 14

8 NGC 7092 7.258 0.007 7.721 0.079 8.445 14

9 Cr 135 7.204 0.091 7.649 0.200 7.407 12

10 NGC 2232 7.803 0.104 7.987 0.200 7.727 9

11 NGC 6475 7.287 0.143 7.549 0.109 8.475 21

12 NGC 6633 8.174 0.167 8.032 0.200 8.629 22

13 Cr 359 7.188 0.184 7.136 0.200 7.506 5

14 NGC 752 8.493 0.232 8.450 0.140 9.050 6

15 Cr 69 8.150 0.190 8.377 0.200 7.050 11

16 NGC 2516 7.879 0.018 8.213 0.129 8.052 16

17 Cr 140 7.706 0.110 8.183 0.072 7.548 16

18 Cr 173 7.773 0.386 8.277 0.200 7.142 13

19 Ros 5 8.785 0.275 8.100 0.200 7.832 13

20 Tr 10 7.828 0.033 8.173 0.185 7.542 16

21 Cr 70 8.080 0.142 8.091 0.200 6.980 35

22 Ru 98 9.710 0.310 8.622 0.200 8.508 11

23 NGC 2422 8.570 0.160 8.604 0.060 7.861 12

24 NGC 2547 8.395 0.158 8.399 0.014 7.557 18

25 Cr 132 8.460 0.250 8.330 0.200 7.080 16

26 δ Lyr 7.311 0.126 8.110 0.200 7.731 15

27 NGC 2451 7.884 0.287 7.562 0.412 7.648 15

28 NGC 3532 9.910 0.370 8.587 0.130 8.492 17

29 Bo 14 9.883 0.452 8.964 0.200 6.996 11

30 NGC 2395 8.908 0.323 8.701 0.200 9.070 8

31 IC 2395 9.344 0.133 9.360 0.200 7.220 9

32 NGC 7160 9.830 0.290 9.630 0.020 7.280 15

33 Cr 121 8.810 0.200 9.040 0.200 7.050 27

34 NGC 2169 9.270 0.240 10.260 0.080 7.070 10

35 NGC 2168 10.086 0.389 9.720 0.180 7.980 9

36 NGC 2264 8.120 0.120 9.180 0.130 6.950 8

37 NGC 2301 9.440 0.330 9.860 0.030 8.220 12

NGC 2301 9.560 0.360 9.860 0.030 8.220 10

38 NGC 6281 9.580 0.292 8.707 0.243 8.497 6

39 NGC 3114 9.445 0.296 9.950 0.200 8.090 9

40 NGC 6530 9.005 0.255 10.740 0.200 6.870 7

41 NGC 1960 8.854 0.311 10.660 0.200 7.470 8

42 IC 348 8.303 0.092 8.080 0.257 7.641 6

43 NGC 2323 8.961 0.205 9.990 0.350 8.100 11

44 NGC 6025 10.736 0.209 9.550 0.090 7.890 4

45 NGC 6087 9.375 0.377 9.910 0.080 7.980 6
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Fig. 3. Comparison of the OSC distance moduli calculated by using trigonometric parallaxes and by the photometric method.
nometric parallaxes and gave a new estimate of the Ple-

iades distance modulus: 5 58 ± 0.18. However, this
estimate is also far from the photometric distance mod-
ulus (see the table). The possible causes of the Pleiades
discrepancy should probably be sought more thor-
oughly in Hipparcos measurements. This was pointed
out by Pinsonneault et al. (1998), who concluded that
the Hipparcos trigonometric parallaxes contained small
systematic errors on scales of the order of 1°.

There are two more clusters, IC 2391 and NGC 2301,
with two maxima in the parallax distributions of their
members, so the primary maximum is difficult to
choose. The summary table of results for the Pleiades
and for the two clusters mentioned above gives two
estimates of the distance modulus for each of them, and
these three clusters were included in the subsequent
analysis twice with half the weight in each case.

The columns of the table provide the following data:
cluster numbers and names; distance moduli, as estimated
from trigonometric parallaxes, and the corresponding
errors; photometric estimates from the “Homogeneous
Catalog” and the corresponding errors; logarithms of the
cluster age and the number of stars used to determine the
distances based on trigonometric parallaxes.

CLUSTER DISTANCE MODULI

Figure 3 compares the distance moduli estimated
from Hipparcos trigonometric parallaxes with the pho-
tometric distance moduli from the “Homogeneous Cat-
alog” (Loktin et al. 1997). To determine the corrections
to the distance moduli from the “Homogeneous Cata-
log” and to reveal a possible dependence of these cor-
rections on the age (which is related to the absolute

.m
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magnitudes of the brightest main-sequence stars), we
consider the regression model

(1)

Here, (V0 – MV)π is the distance modulus estimated
from Hipparcos parallaxes, and (V0 – MV)ph is the dis-
tance modulus from the “Homogeneous Catalog”; the
logarithms of ages  were also taken from this cat-
alog. A regression analysis of this relation is difficult to
perform directly, because the standard least-squares
method yields unbiased estimates for the regression
model coefficients only in the case of zero errors in the
factors [see, e.g., Vuchkov et al. (1987) for more
details]. The methods of determining the corresponding
corrections to the coefficient estimates have been well
developed for two-factor models and errors in the factor
that do not depend on the factor values. In our case,
however, the errors in the factors and responses gener-
ally increase with distance modulus (see Fig. 3). It is
difficult to use numerical simulations to model the
behavior of the errors because of the difficulty involved
in determining the parameters of the distribution of dis-
tance errors calculated from trigonometric parallaxes
of unequal accuracy. We therefore applied the follow-
ing, perhaps artificial method. We first estimated
the coefficients of model (1) for the entire sample: a =
–1.96 ± 0.69; b = 0.991 ± 0.026, and c = 0.23 ± 0.07

with the residual dispersion σ = 0 55, and then we
gradually removed clusters with the largest residuals
(one to three clusters) while solving the regression
problem by least squares at each step. In this way, we
artificially reduced the dispersions of the responses and
factors, which gives hope for an insignificant bias of the
final coefficient estimates. After removing the fifteen
clusters with the largest deviation from the cluster rela-
tion, we obtained the following estimated for the coef-

V0 MV–( )π a b V0 MV–( )ph c t.log+ +=

tlog

.m
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ficients of model (1): a = –0.58 ± 0.31; b = 1.013 ± 0.012,
and c = 0.032 ± 0.033 with the residual dispersion
σ = 0 28 for the conditional equations. As the rms
error of the coefficient of the age logarithm shows, the
factor containing the age in model (1) proves to be sta-
tistically insignificant; i.e., the distance scale is gener-
ally the same for clusters of various ages. The statistical
insignificance of this coefficient and the insignificant
deviation of the coefficient b from unity allows us to
use the same (for all clusters) weighted mean difference
between the two series of distance-modulus estimates,

〈(V0 – MV)π – (V0 – MV)ph〉 = –0 153 ± 0 072, to deter-
mine the correction to the distances scale of the
“Homogeneous Catalog.” To test the age independence
of our OSC distance scale more reliably, we broke
down our cluster sample into two parts. The first
(young) group included all the clusters with  < 8.0
(29 objects), and the second (old) group included the
remaining clusters (19 objects). The unequal division
into groups stems from the fact that the old group
contains such nearby clusters as the Hyades, the Coma,
and the Praesepe with the most reliable distances. The

mean distance-modulus difference is –0 13 ± 0 10

and –0 20 ± 0 10 for young and old clusters, respec-
tively. As the derived errors of the mean show, the cor-
rections differ insignificantly, so we may actually use

the same correction of –0 153 to the distance moduli
of the clusters of all ages.

In Fig. 4, the mean error in the distance modulus
(for a single star) is plotted against object distance. As
we see from the figure, the error for a group of ten stars
located at a distance of 1000 pc is, on the average,

~0 3, which is close to the typical accuracy of the pho-
tometric distance moduli for poor OSCc. We can prob-
ably consider 1 kpc to be the limit for using Hipparcos
trigonometric parallaxes for groups of stars, while this
distance for single stars must be reduced by several
times, depending on the required distance accuracy.

.m

.m .m

tlog
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Fig. 4. Mean error in the distance modulus of a single star
(S) as inferred from Hipparcos trigonometric parallaxes ver-
sus distance modulus.
CONCLUSION

We have determined the distances to 45 OSCs by
using Hipparcos trigonometric parallaxes. Data on the
clusters for which more or less reliable distance esti-
mates were obtained here will be included in the next
version of the “Homogeneous Catalog” and will be
used to estimate the mean OSC distance moduli. Note
that Narayanan and Gould (1999) have recently esti-
mated the Hyades distance modulus by the geometric

method, 3 34 ± 0 02. This value virtually matches our

distance modulus, 3 357 ± 0 015, so the agreement
between the moving-cluster and trigonometric-parallax
methods is excellent.

To construct an accurate distance scale, an age-inde-

pendent correction of –0 153 should be applied to the
distance moduli from the “Homogeneous Catalog”
(Loktin 1997, 2000). The OSC distance scale is appar-
ently uniform, because no age dependence of the cor-
rection to the distance scale was found. Currently, this
conclusion is being tested by determining the absolute
magnitudes of O and B field stars using Hipparcos trig-
onometric parallaxes.

Hipparcos parallaxes can be used to determine the
mean distances for groups of several tens of stars up to
distances of 1 kpc. The plot shown in Fig. 4 can help
estimate the number of stars needed to achieve the
required distance accuracy or to estimate the accuracy
of determining the mean distance, which might be
expected for the available number of stars.
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Abstract—We analyze the series of relative positions of the hierarchical triple system ADS 48 ABF (AB = 6″,
AF = 327″) obtained with the 26-inch Pulkovo refractor during 1961–1995 and measured with the Fantazia
automated measuring system. A new relative orbit of pair AB is determined by the method of apparent-motion
parameters using new observations and all the available astrometric and astrophysical data on this star, includ-
ing its Hipparcos parallax. The new orbit for pair AB is reliably reconciled with all the new and previous obser-
vations of this star for the sum of the components’ masses equal to 1.4M(. The Pulkovo observations (1961–1995)
revealed a perturbation with a period of 15 years and an amplitude ρ ~ 0 01, suggesting the presence of an
unseen companion with a mass as large as 0.05M(. Since the oscillation amplitude is at a noise level, the orbit
of the suspected companion cannot be determined. Assuming that stars A and B have the same mass, which
corresponds to astrophysical data, we computed the parameters of apparent motion of component F relative to
the center of mass of system AB and determined the family of orbits that satisfied the Pulkovo observations. All
the computed orbits are steeply (more than 55°) inclined to the orbital plane of AB. The orbital motion of star F
has been investigated for the first time. © 2001 MAIK “Nauka/Interperiodica”.

Key words: multiple systems, orbit improvement, component motion parameter calculation

.″
INTRODUCTION

The visual binary ADS 48 AB has a long observa-
tional history. According to the WDS1996 catalog
(Worley and Douglass 1996), the AB pair has been
observed since 1876. In the 1960s two highly dis-
crepant orbits have been computed for this pair by
Guntzel-Lingner (1955)—a = 6 2, P = 362 yr and
Hoppmann (1964)—a = 11 7, P = 1507 yr. If com-
bined with the Hipparcos parallax (0 085), the first orbit
yields a total mass of MA + B = 3.0M( for the two com-
ponents, which is too high given the spectral type of the
star. The second orbit yields MA + B = 1.1M(. Both orbits
are significantly at variance with post-1975 observa-
tions. The third component (in terms of brightness)
was  observed in 1887, and it has never been measured
ever since.

Table 1 gives basic data for the components of the
system.

We took the coordinates, proper motions, spectral
types, and magnitudes from the catalog of Gliese
(1969); the parallax pt, from the Hipparcos catalog, and
radial velocities, from Tokovinin’s (1990) catalog. We
determined bolometric corrections (B.C.) according to
Kulikovskiœ (1985), and we computed the component
masses in the solar units from the mass-luminosity rela-
tion using the following formulas:

.″
.″

.″

* E-mail address for contacts: kiyaeva@gao.spb.ru
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Mbol = 6.76 – 3.80

for Mbol > +7.5 (components A and F),

Mbol = 4.62 – 10.03

for Mbol < +7.5 (component B).

Anosova et al. (1987) compared the spectra of
stars A, B, and F obtained with the 6-meter telescope of
the Special Astrophysical Observatory of the Russian
Academy of Sciences and found both A and B stars to
have the same spectral type of dM0, implying a mass of
MA = 0.53M( for star A. It can therefore be concluded
that stars A and B are of the same origin and nature.

The visual binary ADS 48 AB has been observed
with the 26-inch Pulkovo refractor since 1961, and we,
have published many papers dedicated to this object.
Distant component F can also be seen in many plates
taken under good observing conditions. The results of
our relative-position measurements of all three compo-
nents allowed us to include this stellar system into the
list of stars with suspected unseen companions.

The AB pair proved to be a very promising object
for the application of the technique of apparent-motion
parameters (hereafter AMP), which was designed for
computing binary orbits from short-arc observations
(Kiselev 1989). This pair was therefore used as a proto-
type for most of the simulations performed to test the
technique, and its orbit was computed several times
(Kiselev and Kiyaeva 1980; 1988; Kiyaeva 1994).

Recall that to compute an orbit with the AMP tech-
nique, one must know five parameters of the apparent

Mlog

Mlog
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Table 1.  Parameters of the star ADS 48

Component α1950
δ1950

SP V µx
µy

pt Vr, km s–1 B.C. M/M(

A 0h0.3m0.2s dK6 8.93 +0 877 0 0851 + 0.8 –0.7 0.50

+45°32 2 –0.127      ±27 ±0.2

B 0 03 02 dM0 8.97 +0.877 0.0851 –2.2 –1.2 0.53

+45 32.1 –0.189      ±27 ±0.2

F 0 02 32 dM2 9.89 +0.86 0.0870 –1.0 –1.5 0.47

+45 30.6 –0.14      ±14 ±0.3

.″ .″

.′
relative component motion. These parameters include
position (ρ, θ), relative velocity µ and its position angle Ψ,
curvature radius ρc, relative radial velocity Vr = (VrB –
VrA)/4.74, and the trigonometric parallax pt .

Here ρ and ρc are in arcsec; µ, in arcsec yr–1; VrA and
VrB, in km s–1, and Vr, in AU yr–1.

The following formula is used to compute the sep-
aration of the components (in AU) independently of Vr
and pt:

(1)

Here k2 = 4π2MA + B [AU3 yr–2] is the dynamical con-
stant of astrocentric motion.

The projection condition and the energy integral for
the physical pair imply that:

(2)

where V2 = (µ/pt )2 + .

Two uncertainties remain, the unknown parameters
being (1) the total mass of the two components MA + B
and (2) the sign of the inclination (angle β) of the
radius-vector of the star with respect to the sky plane
(the point is that only cosβ can be confidently deter-
mined):

(3)

Both uncertainties are easily resolvable if the old
observations are available providing long enough time
baseline. We select from our family of orbits the trajec-
tory that fits the old observations best (Kiyaeva 1983),
thereby constraining the total mass of the two compo-
nents.

This work resulted from long-term observations and
research. The necessity and topicality of this study stem
from the fact that the new data allow a much more accu-
rate orbit of the AB pair to be objectively computed.
The Hipparcos catalog has been released giving for the

r
3

k
2ρρc

µ2
-------- Ψ θ–( )sin .=

ρ/ pt r 2k
2
/V

2
,≤ ≤

Vr
2

βcos
ρ

ptr
-------, βsin 1 βcos

2
– .±= =
AB and F stars the parallaxes that differ appreciably
from those hitherto adopted (0 094). In addition, the
arc covered by homogeneous Pulkovo photographic
observations, all of them made with the same telescope,
has grown in length and now spans a time baseline of
34 years. We measured all 137 plates with the auto-
matic Fantazia measuring complex using our original
algorithms, which ensure minimum equipment error.
The size of the arc and the accuracy of measurements
proved to be sufficient to allow confident determination
of the curvature radius at the center of the apparent
orbit at epoch 1980.0. All procedures described by
Kiyaeva (1985) and which we later refined yielded the
same values for the curvature radius in what is by all
means an extremely rare result. According to Tokovinin
(1990), the relative radial velocity is equal to –3.0 ±
0.3 km s–1.

DETERMINATION OF THE ORBIT 
OF THE AB PAIR

We used the Fantazia automatic complex to measure
a total of 137 plates bearing images of stars A, B, and F.
Our measurements thus yielded a total of 137 positions
(ρ, θ) of star B relative to star A, 128 positions of star F
relative to A, and 124 positions of star F relative to B.
The annually-averaged positions are shown in Tables 2,
3, and 4,1 which are presented in electronic form. 

We performed astrometric reduction of our mea-
surements using the so-called trail/scale method, which
is detailed in the Introduction to the catalog of 200 visual
double stars (Kiselev et al. 1988). No reference stars
are required for this method, which uses diurnal-trail
based orientation, a preset geometric scale, and allows
for differential refraction. We measured 6 to 20 posi-
tions per plate. The mean single plate position errors,
which are equal to 0 030, 0 053, and 0 054 for the
AB, AF, and BF pairs, respectively, provide objective
estimates of the mean observing conditions in Pulkovo

1 Tables 2–4 are published in electronic form only and are avail-
able at ftp cdsarc.u–starsbg.fr/pub/cats/J (130.79.128.5) or at
http://cdsweb.u–strasbg.fr/pub/cats/J.
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Fig. 1. Cartesian coordinates of star B in the rectangular reference frame. Here origin 0 determines the position at epoch 1980.0 and
the X- and Y-axes are directed tangentially and normally to the star’s motion, respectively.
(the state of the atmosphere and tracking mechanism)
for 15–20 min single-plate exposures. Naturally, resid-
ual refraction was stronger in the case of large separa-
tions (3270) than in that of a close pair (60). Thus, the
single plate measurement error, as inferred from inter-
nal agreement, is 0 007 for AB pair and 0 012 for AF
and BF pairs. The parameters of the apparent relative
motion and the corresponding single-plate rms errors
based on the external consistency checks of the entire
data set are summarized in Table 5.

Here µ, Ψ, and ρÒ are computed using the following
formulas:

(4)

As is evident from Table 5, the inferred relative-
motion parameters for the AB pair are very precise (in
particular, our relative component motion is one order
of magnitude more accurate compared to that listed in
the Hipparcos catalog), thus testifying to the high qual-
ity of the computed orbit.

We now consider in more detail the determination of
the curvature radius ρc of the apparent orbital arc of the
AB pair. The point is that in the AMP method, ρc is one
of the key parameters for computing the orbit and
determining the total mass of the two stars. Figure 1
shows coordinates of star B in the tangent-normal ref-
erence frame whose origin coincides with the position
of star B relative to star A at epoch 1980.0; the X and

.″ .″

µ ρ'( )2 ρθ'( )2
+ ,=

Ψ θ π/2 ρ'/µ( ),arcsin–+=

ρc µ3
/ θ' µ2 ρ'

2
+( ) ρ ρ'θ'' ρ''θ'–( )+( ) .=
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Y  axes are aligned tangentially and normally to the
orbital motion, respectively. The deviations from the
X-axis characterize the curvature of the observed
orbital arc. As is evident from the figure, the observed
arc is curved conspicuously and its curvature can be
confidently inferred. We computed the curvature radius
in three ways: (1) according to exact formula (4);
(2) using iterations; and (3) fitting a circle to the observed
arc. Plate measurements and annually-averaged posi-
tions yielded the following ρc values:

Table 5.  Relative-motion parameters for epoch 1980.0

Pair BA FA FB FC

ρ 5 957 327 821 326 877 327 336

     ±2           ±3           ±2           ±3

θ 173 42 253 782 254 811 254 296

     ±1           ±2           ±2           ±2

µ 0 0459 yr–1 0 0174 yr–1 0 0283 yr–1 0 0055 yr–1

    ±1     ±4     ±4 ±18

ψ 250 69 252 6 67 6 59 7

    ±25   ±6.7 ±4.0 ±18.2

ρc 2 9 – – –

 ±2

σ1(ρ) 0 021 0 040 0 040 –

σ1(θ) 0 136 0 04 0 04 –

(0 014) (0 22) (0 23)

.″ .″ .″ .″

.° .° .° .°

.″ .″ .″ .″

.° .° .° .°

.″

.″ .″ .″

.° .° .°

.″ .″ .″
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Fig. 2. The orbit of the AB pair compared to the observations made from 1961 through 1995 with the 26-inch Pulkovo refractor:
(a) ρ and (b) τ. Here ∆τ = ρ∆θ/57.3. The line shows the smoothed behavior of residuals.
annually-averaged positions of plates 

We finally adopted the mean value of ρc = 2 9 ± 0 1
based on normal (annually-averaged) places, which we
considered to be the most accurate.

We then used the above initial data and previously-
determined component masses to compute the AMP
orbit of the AB pair. We adopted for our binary the Hip-
parcos parallax of the F component (0 087), which we
consider to be more accurate than those of the other two
components. Old observations fit well the orbits com-
puted for MA + B ≥ 1.4M( without imposing any rea-
sonable upper mass limit: increasing the mass to 5M(,
which looks unrealistic in the case considered, changes
the resulting ephemeris insignificantly. The inferred
lower limit MA + B = 1.4M( somewhat exceeds the
luminosity-based total mass of 1.1M(. Astrometric and
astrophysical data can, therefore, be best reconciled by
adopting the minimum allowed total mass of 1.4M(

that is still consistent with observations. Below, we give

Plates Annually Averaged positions

1 2 76 ± 0 14 2 94 ± 0 16

2 2.84 ± 0.20 2.99 ± 0.23

3 2.60 ± 0.18 2.79 ± 0.18

.″ .″ .″ .″

.″ .″

.″
the AMP orbital elements of the AB pair (Table 5) for
the adopted MA + B = 1.4M(, β = +26°, pt = 0.0870,
and ∆Vr = –3.0 km s–1

Here, the ascending node and the longitude of peri-
astron are determined unambiguously, whereas the
orbital inclination is based on the usual convention. The
errors of the orbital elements are based on those of the
initial data. The rms residuals for a single Pulkovo
observation (plate) are equal to ±0 018 and ±0 014 in
the radial and tangential directions, respectively. As is
evident from a comparison of these errors with those of
the polynomial fit (Table 5), the orbit fits the Pulkvo
data somewhat better than the second-order polyno-
mial.

In Fig. 2 we compare the orbital ephemeris against
the Pulkovo observations (normal places) in ρ and τ
(∆τ = ρ∆θ/57.3). The rms residuals of normal places
are equal to 0 014 and 0 006 in the radial and tangen-
tial directions, respectively. The continuous line shows
the smoothed behavior of five-year sliding average
residuals.

a P e ω i Ω Tp

6 21 509 65 0.22 267 2 54 9 13 5 2115 80

±.77 ±96.99 ±.04 ±27.4 ±2.4 ±2.3 ±123.47

.″ .
y .° .° .° .

y

.″ .″

.″ .″
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Fig. 3. The orbit of the AB pair compared to the sky-plane observations from 1876–1996: (a) ρ and (b) τ. Here ∆τ = ρ∆θ/57.3.

Fig. 4. The parameters of the family of orbits of the (AB)F pair. Eccentricity (a), true anomaly (b), and the angle between the (AB)F
and AB orbital planes (c) plotted as functions of parameter β.
In Fig. 3, we compare the orbital ephemeris against
all available observations, which are shown as annu-
ally-average positions separately for those based on
WDS catalog observations and those based on Pulkovo
measurements.
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It is evident from the figure that, on the whole, the
orbit fits all observations satisfactorily. Pulkovo obser-
vations show well-defined oscillations in ρ with a
period and amplitude of 15 years and 0 01, respec-
tively. If due to an unseen companion, these oscillations

.″
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Table 6.  Family of orbits of star F relative to the AB pair

β a P, year e ω i Ω Tp, year ε

–78 3 – – 1.00 191 4 87 6 62 2 – 55 6

–38.2 280 3 132 683 .49 32.5 81.9 67.8 62 548 56.4

.0 205.1 83 037 .81 345.6 75.9 74.3 26 357 58.1

38.2 280.3 132 683 .98 300.3 50.6 114.6 28 090 75.9

78.3 – – 1.00 191.2 86.3 236.0 – 124.3

.° .° .° .° .°

.″
yield for the latter a mass on the order of 0.02–0.05 in
the solar units. However, the insufficient accuracy of
our data prevents the determination of the orbit of the
unseen body.

DETERMINATION OF THE FAMILY OF ORBITS 
OF STAR F RELATIVE TO THE AB PAIR

The hierarchical system (AB)F can be considered as
a wide double star and hence the motion of star F can
be determined with respect to the center of mass of the
AB pair, which we hereafter refer to as component C.

Consider vectors r and m of the apparent relative
positions and motions:

r(F–C) = r(A–C) + r(F–A) = r(B–C) + r(F–B),

m(F–C) = m(A–C) + m(F–A) = m(B–C) + m(F–B).

Stars A and B can be treated as twin companions of
equal mass. We then have

r(F–C) = (r(F–A) + r(F–B)),

m(F–C) = (m(F–A) + m(F–B)).

The inferred apparent-motion parameters are listed
in the last column of Table 5. The relative radial veloc-
ity is equal to

∆Vr(F–C) = VrF – (VrA + VrB)/2 

= –0.3 ± 0.4 km s–1.

No radius of curvature was inferred and we there-
fore can only compute a family of possible orbits that
depend on the adopted total mass MA + B + F and inclina-
tion β of the radius vector of star F to the sky plane. We
now assume that MA + B + F = 1.9M( and find, according
to formula (2):

3762.5 ≤ r ≤ 9803.7MA + B + F = 18 627.0 AU.

This implies that the angle β should be constrained
to the –78 3 ≤ β ≤ +78 3 interval.

Table 6 gives the elements of selected orbits of the
family constricted corresponding to the extreme β val-
ues and to β = ±38 2, which, according to Kleiber’s
theorem, correspond to the average statistical positions.

1
2
---

1
2
---

.° .°

.°
The last column gives angle ε between the orbital
momenta of pairs AB and (AB)F. If both orbits are
coplanar, ε = 0° ± 180°.

Figure 4 shows eccentricity e, angle ε, and true
anomaly v plotted as functions of β. As is evident from
the figure, the overwhelming majority of orbits are
highly eccentric and have star F is at their apoastra.
Angle ε ≥ 55° for all orbits of the family. The orbit of
star F cannot be made coplanar to that of the AB pair
even by varying the apparent-motion parameters and
radial velocity within their quoted errors.

CONCLUSION

Our main results are as follows:
(1) The orbit for the relatively close pair AB (MA + B =

1.4M() was computed by using the apparent-motion
parameters deduced from the 35-year-long series of
Pulkovo observations and currently available data on
the components' parallaxes and radial velocities. This
orbit is consistent with previous observations and can
be considered best under the conditions in question.

However, some uncertainty remains in the sum of
the pair’s masses. For example, the conditions (1) and
(2) imply that the minimum sum of the masses of com-
ponents A and B is

Mmin = 1.05 ± 0.08M(.

This result agrees better with the mass-luminosity
relation, but the orbit computed with this mass appre-
ciably and systematically deviates from previous obser-
vations. To satisfy them, we must significantly change
the initial parameters ρc, Vr , and pt, which is unaccept-
able.

On the other hand, even for masses greater than
1.4M(, the orbit can be reconciled, without changing
the initial AMP, with old observations. However, this
must be done at the expense of the mass-luminosity
relation, which implies that the total mass of the two
components is approximately equal to 1.1M(. Our
final decision was to adopt MA + B = 1.4M(, which is
the minimum mass that allows an orbit to be computed
that is consistent with observations for the given AMP,
Vr, and pt. We thus allow the existence of a hidden mass
(possibly, an unseen companion) in the AB system.
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(2) The Pulkovo residuals exhibit a wavelike behav-
ior in ρ with a period and amplitude of 15 years 0 01,
respectively, possibly indicative of a ~0.05M( com-
panion.

(3) We have obtained for the first time an extensive
set of relative-position measurements of star F. Assum-
ing that stars A and B have equal masses, as indicated
by their spectral types and luminosities, we computed a
family of orbits for the distant component F relative to
the AB pair. A comparison of the orbit of the AB pair
with that of (AB)F leads us to conclude that:

(a) The orbit of the close pair AB has a small eccen-
tricity, whereas the family of orbits of star F is domi-
nated by highly eccentric trajectories;

(b) The orbits are not coplanar. The angle between
the orbital planes exceeds 55°.

ACKNOWLEDGMENTS

We are grateful to all observers of the 26-inch
refractor. This work was supported by the Russian Foun-
dation for Basic Research (project no. 98-02-16757) and
the Ministry of Science of the Russian Federation
(project no. 57-01).

REFERENCES

1. Zh. P. Anosova, E. V. Berdnik, and L. G. Romanenko,
Astron. Tsirk., No. 1517, 1 (1987).

2. W. Gliese, Veroff. Astron. Rechen Inst., No. 22, 3 (1969).

.″
ASTRONOMY LETTERS      Vol. 27      No. 6      2001
3. U. Guntzel-Lingner, Mitt. Astrophys. Obs. Potsdam 41,
183 (1955).

4. J. Hoppmann, Ann. Sternw. Wien 26, 7 (1964).
5. A. A. Kiselev, Theoretical Foundations of Photographic

Astrometry (Nauka, Moscow, 1989), p. 236.
6. A. A. Kiselev and O. V. Kiyaeva, Astron. Zh. 57, 1227

(1980) [Sov. Astron. 24, 708 (1980)].
7. A. A. Kiselev and O. V. Kiyaeva, Astrophys. Space Sci.

142, 181 (1988).
8. A. A. Kiselev and L. G. Romanenko, Astron. Zh. 73, 875

(1996) [Astron. Rep. 40, 795 (1996)].
9. A. A. Kiselev, O. A. Kalinichenko, G. A. Plyugin, et al.,

in Catalog of Relative Positions and Motions of
200 Visual Binary Stars from Pulkovo Observations with
the 26-inch Refractor in 1960–1986 (Nauka, Leningrad,
1988), p. 3.

10. O. V. Kiyaeva, Astron. Zh. 60, 1208 (1983) [Sov. Astron.
27, 701 (1983)].

11. O. V. Kiyaeva, Izv. Glavn. Astron. Obs. Akad. Nauk
SSSR, No. 201, 44 (1985).

12. O. V. Kiyaeva, Izv. Glavn. Astron. Obs. Akad. Nauk,
No. 208, 17 (1994).

13. P. G. Kulikovskiœ, Stellar Astronomy (Nauka, Moscow,
1985), p. 246.

14. A. A. Tokovinin, Radial Velocities of Dwarfs in the Solar
Neighborhood (Mosk. Gos. Univ., Moscow, 1990), p. 4.

15. C. E. Worley and G. G. Douglass, The Washington Visual
Double Star Catalog, 1996.0 (US Naval Observatory,
1996).

Translated by A. Dambis



  

Astronomy Letters, Vol. 27, No. 6, 2001, pp. 398–403. Translated from Pis’ma v Astronomicheski

 

œ

 

 Zhurnal, Vol. 27, No. 6, 2001, pp. 464–469.
Original Russian Text Copyright © 2001 by Aslan, Bikmaev, Vitrichenko, Gumerov, Dembo, Kamus, Keskin, Kiziloglu, Pavlinsky, Panteleev, Sakhibullin, Selam, Sunyaev,
Khamitov, Yaskovich.

                                                                                           
Preliminary Results of the Alignment and Hartmann Tests 
of the AZT-22 Telescope

Z. Aslan1, I. F. Bikmaev2, É. A. Vitrichenko3*, R. I. Gumerov2, L. A. Dembo4, S. F. Kamus4, 
V. Keskin5, U. Kiziloglu6, M. N. Pavlinsky3, L. N. Panteleev4, N. A. Sakhibullin2, 

S. O. Selam7, R. A. Sunyaev3, I. Khamitov1, 8, and A. L. Yaskovich3

1 TUBITAK National Observatory, Antalia, Turkey
2 Kazan State University, Kremlevskaya ul. 18, Kazan, 420008 Tatarstan, Russia

3 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya ul. 84/32, Moscow, 117810 Russia
4 LOMO Joint-Stock Company, St. Petersburg, Russia

5 Aegean University, Izmir, Turkey
6 Middle East Technical University, Ankara, 06531 Turkey

7 Ankara University, Ankara, Turkey
8 Astronomical Institute, Academy of Sciences of Uzbekistan, Astronomicheskaya ul. 33, Tashkent, 700052 Uzbekistan

Received October 6, 2000; in final form, November 27, 2000

Abstract—The AZT-22 telescope installed in Turkey (Antalia) was aligned and tested on stars by the Hartmann
method. The rms normal deviation of an equivalent optical system is 0.040 ± 0.016 µm. The circle of confusion
is 0.40 ± 0.04 arcsec in diameter at a 50% energy level. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The assembly of a new Russian telescope (AZT-22),
which was installed at the TUBITAK (Scientific and
Technical Council of Turkey) National Observatory
50  km from Antalia at Mount Bakyrlytepe (2550 m,
2h01m20s E, 36°49′30″ N), was completed in 1999. The
telescope was installed in the context of an interna-
tional project between Russia and Turkey. The main
scientific objective is to provide ground-based support
for observations carried out onboard the Spectrum–
X-Gamma Orbiting Astrophysical Observatory. The
AZT-22 observing time was allocated to the project par-
ticipants: the Kazan State University, the Space Research
Institute, and the TUBITAK National Observatory.

The telescope was produced by the LOMO Joint-
Stock Company (St. Petersburg). The primary mirror is
1.5 m in diameter. The optical system is based on the
Ritchey–Chretien scheme (Gruzdeva et al. 1987; Arta-
monov and Tertitskiœ 1987). The telescope is supplied
with three replaceable secondary mirrors and three lens
correctors, allowing observations to be performed with
various aperture ratios (1 : 3c, 1 : 7.7, 1 : 7.8c, 1 : 16,
1 : 17c, and 1 : 48). The optical system with aperture
ratio 1 : 48 is used in Coude observations.

A similar telescope was installed at Mount Maid-
anak in Uzbekistan. It was tested under factory condi-

* E-mail address for contacts: vitrich@nserv.iki.rssi.ru
1063-7737/01/2706- $21.00 © 20398
tions, and its optics proved to be of excellent quality:
the circle of confusion at an 80% energy level is 0.2–
0.4 arcsec in diameter for all optical systems (Arta-
monov et al. 1990; Artamonov 1997). Test observations
at the Observatory yielded an estimate of ~0.5 arcsec
for the circle-of-confusion diameter at a 50% energy
level. Since the atmospheric effect was not eliminated,
this value is an upper limit on the optics quality. No
Hartmann tests were conducted.

After the AZT-22 assembly was completed in Tur-
key (November 1999), the telescope was aligned
(August 2000), and the system with aperture ratio 1 : 77
without corrector (below, 1 : 8) was certified by the Hart-
mann method. Here, we present the results of this work.

HARTMANN DIAPHRAGM

The Hartmann diaphragm was designed by the Rus-
sian side and produced at the TUBITAK National
Observatory. The arrangement of holes, their diame-
ters, and separations between them were taken from the
recommendations described in Vitrichenko et al. (1990).
The diaphragm characteristics are

—The arrangement of holes in the nodes of a square
grid;

—The total number of holes is 256, but 231 holes
were not vignetted;

—The hole diameter is 35 mm;
—The separation between hole centers is 75 mm.
001 MAIK “Nauka/Interperiodica”
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Yet another hole, 20 mm in diameter, was made near
the end of the middle horizontal row between ordinary
holes in an effort to uniquely reference the processed
Hartmann images to coordinates on the primary-mirror
surface.

The diaphragms were made with accuracy
σ1 < 0.2 mm. By this accuracy, we mean the rms devi-
ation of the coordinates of hole centers from the node
coordinates of the square grid that describes the Hart-
mann diaphragm. This deviation was estimated by
measuring the coordinates of the centers of several
holes located in the horizontal, vertical and diagonal
directions.

The required accuracy can be estimated from the
formula (Vitrichenko et al. 1990)

(1)

where f ' = 11 600 mm is the equivalent focal length,
z = 50 mm is the distance from the focus to the Hart-
mann image plane, and δ ~ 0.01 mm = 0.18 arcsec is the
measured rms transverse aberration. Formula (1) yields
an estimate for the rms error of the Hartmann dia-
phragm in the case where this error introduces (ficti-
tiously) the same transverse aberration as the actually
measured rms transverse aberration of the telescope
optics itself. In order that the diaphragm error affected
the optics measurement accuracy only slightly, it will
suffice to take a factor of 2 smaller error with which the
diaphragm is made: σ2 = 1 mm. A comparison of σ1 and
σ2 shows that the diaphragm was made with a sufficient
accuracy.

OBTAINING, MEASURING, 
AND PROCESSING HARTMANN IMAGES

Since the diaphragm was made with a high accu-
racy, we obtained only post-focal Hartmann images.
Obtaining pre-focal images is technically difficult. For
imaging, we mounted the CCD array in such a way
that the distance from the focus to the image plane
was ~50 mm. For this arrangement, the Hartmann pat-
tern completely fits into the CCD array, and the image
scale is large enough to provide a high accuracy of mea-
suring the coordinates of spot centers.

We used a SBIG ST-8E 1530 × 1020 CCD array
with a pixel size of 9 × 9 µm. The telescope was pointed
at stars near zenith with magnitudes V ~ 4m.

The zenith angle was <20°. Series of images were
taken to eliminate atmospheric seeing. The exposure
time of each image was ~40 s. The best-quality images
were used for the processing.

The Hartmann image quality is significantly
affected by diffraction, which gives rise to a complex
pattern between spots, making it difficult to measure
the spots. Imaging practice shows that a satisfactory
image quality can be obtained by choosing a filter and
a distance from the focus to the CCD array.

σ2 f 'δ/z 2 mm,= =
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A good image was most commonly obtained in B. In
this band, the contribution of atmospheric seeing is
large compared to Johnson’s VRI, but the diffraction
pattern in other bands was bright, making it difficult to
measure the images.

Images were measured twice by various techniques.
We measured the coordinates of spot centers, first, by
using a set of astronomical procedures from the IDL
software package and, second, by manually pointing
the cursor at the spot center using the CCDOPS code
from the CCD software. The two measurements
yielded similar results. Three images were obtained for
the final telescope certification. The transverse aberra-
tions were determined on each of them and then aver-
aged; the optics parameters were calculated with these
average aberrations. When averaging, we estimated the
error of a single measurement of the transverse aberra-
tion, σ3 = 1.5 µm, and the error of the mean for three
measurements, σ4 = 1 µm. A comparison of σ4 with the
rms transverse aberration of the telescope optics, δ ~
10 µm, shows that the measurement error has virtually
no effect on the optics quality estimates.

The Hartmann images were processed by using a
slightly modified HART5 code (Vitrichenko et al. 1990).

MIRROR MAP

Figure 1 shows a map of normal deviations for the
AZT-22 optical system with aperture ratio 1 : 8. Below,
we attribute all errors to the primary mirror for conve-
nience while bearing in mind that the secondary-mirror
and telescope-alignment errors contribute to the normal
deviations as well.

An examination of Fig. 1 leads us to the following
conclusions:

—The largest (in amplitude) errors are located in the
northeast and southwest (bumps), as well as in the
southeast and northwest (pits);

—These errors are similar in nature to astigmatism,
but their values are so small that they have virtually no
effect on the star image quality;

—The coma is unnoticeable.
The rms normal deviation is σ5 = 0.040 µm, and the

mapping error is σ6 = 0.016 µm. By comparing the
squares of these errors, it is easy to estimate the accu-
racy of measuring the mirror map by the Hartmann
method, ~10%.

This accuracy is high enough for the locations and
amplitudes of the largest optics defects to be deter-
mined.

The map of normal deviations in Fig. 1 was fitted by
a function that allowed the primary aberrations to be
estimated. The equation is (Born and Wolf 1973)

(2)
h x y,( ) a1 a2x a3y a4r

4
+ + +=

+ a5r
3 Θ a7–( )cos a6r

2 Θ a8–( )cos
2

,+
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where h(x, y) are the normal deviations of the mirror
map, which is given in units of 0.01 µm in our case; the
first three terms were introduced to reselect the com-
parison sphere, the fourth term describes spherical
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Fig. 1. The map of normal deviations in the form of isolines.
The heavy line represents a zero level. The isoline step is
0.02 µm. The plus and the minus mark the largest and small-
est normal deviations, respectively.

Fig. 2. The shadow pattern of an F/8 equivalent optical sys-
tem. North is at the top (in the spider direction), and east is
to the left. The knife was introduced from north; the colors
were reversed.
aberration, and the last two terms describe coma and
astigmatism, respectively; x, y, and r are the current
coordinates and radius on the primary-mirror surface
normalized to the mirror radius; and Θ is the position
angle.

The coefficients ai calculated by least squares are
listed in the table. The errors in the coefficients are
given in parentheses, in units of the last digit.

For the even-degree expansion terms (a1, a4, a6), the
coefficients represent the total amplitude of the error, in
units of 0.01 µm; for the odd-degree coefficients, they
represent half the amplitude, in the same units. The
coefficients a7 and a8 are the coma and astigmatism ori-
entation angles, in radians.

An examination of the table leads us to conclude
that astigmatism is the largest aberration. This aberra-
tion cannot be removed by alignment.

Astigmatism is extremely difficult to remove by
retouching the mirror. However, it is interesting to note
that, if astigmatism were removed, the rms error of the
optics would be 0.016 µm, i.e., better than the Marechal
limit (0.02 µm), which characterizes an upper limit on
the error for a virtually ideal mirror.

Figure 2 shows an example of the shadow pattern.
An examination of the shadow pattern leads us to con-
clude that it qualitatively confirms the results obtained
by the Hartmann method. It should be kept in mind that
the shadow pattern shows a map of derivatives of the
optical surface, from south to north in our case; there-
fore, the map of normal deviations is difficult to
directly compare with the shadow pattern. However,
the shadow pattern has an order of magnitude higher
spatial resolution than the Hartmann method, revealing
the fine structure of the mirror surface. In our case, cir-
cular furrows are noticeable on the mirror, which are
the traces of finishing by a small instrument.

The amplitude of these errors is not large, so they do
not deteriorate the star image. However, local defects
are dangerous for the Hartmann method, because they
displace the spot in the Hartmann image to produce
spurious transverse aberrations. As a result, the circle of
confusion calculated by the Hartmann method proves
to be slightly worse than in reality (Vitrichenko et al.
1990).

THE ENERGY CONCENTRATION FUNCTION

The Hartmann total constant with the transverse
aberrations along the x and y axes was computed by
using the HART5 code, T = 0.22(2) arcsec. By this
The coefficients of expansion of the map of normal deviations in primary aberrations.  a1–a6 are in units of 0.01 µm, while a7 and a8 are in
radians

i 1 2 3 4 5 6 7 8

ai 2.36(2) 2.22(3) 4.14(3) 2.73(3) 3.86(3) –12.08(3) –2.05(2) 0.54(1)
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parameter, the telescope belongs to the class of high-
quality instruments (Vitrichenko et al. 1990).

Figure 3 shows the energy concentration function
calculated by the Hartmann method. We see from the
figure that 80% of the energy is contained in a circle of
diameter 0.55 arcsec. By this parameter, the telescope
belongs to highly rated instruments.

The results of the factory tests are indicated in Fig. 3 by
circles. There is a statistically significant discrepancy
for a diameter of 0.3 arcsec. However, it should be kept
in mind that the factory tests were performed under dif-
ferent mirror support conditions, and that the factory
and Observatory tests were made by the interferometric
and Hartmann methods, respectively.

The former and the latter are the wave and geomet-
ric methods, respectively. The results obtained by these
two methods can differ by several times. This by no
means implies that one method yields correct results,
while the other yields incorrect results. In the interfer-
ometric method, a laser that produces monochromatic
light with a large coherence length (hundreds of
meters) is used as the source of light. The light from a
real star is not monochromatic, and the coherence
length is a few tens of a millimeter. Therefore, the data
on the circle of confusion obtained in terms of geomet-
rical optics yield results that are closer to the actual star
image. This issue remains the subject of debate; it is
detailed in Vitrichenko et al. (1990).

The dashed line in Fig. 3 indicates the energy con-
centration function for ideal optics with central screen-
ing. At an 80% energy level, the deviation of the circle-
of-confusion diameter from that measured with the
telescope and at the factory is a factor of 2.8 and a
mere 1.5, respectively. These data suggest that the
optics quality is comparable to the theoretical limit.
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Fig. 3. The energy concentration function calculated by the
Hartmann method (solid line) and constructed from factory
tests (circles) and a theoretical function for an ideal optical
system (dashed line).
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Figure 4 shows a point diagram. We see from this
diagram that most points fall within a circle of diameter
0.5 arcsec. The density of points with large aberrations
is considerably lower. For this reason, a faint halo visi-
ble only on overexposed images will be observed
around star images.

A direct image of the star field near zenith was
obtained with the same CCD array that was used to
obtain the Hartmann image in Johnson’s I band. The
effect of atmospheric seeing in this band is weakest
compared to the other bands of this photometric sys-
tem. The exposure time was 40 s. Figure 5 shows a
three-dimensional star image. The Gaussian parame-
ters (in arcsec) calculated by fitting the observed star
profile with a bivariate Gaussian are given in the right
corner of the figure. The image was obtained on one of
the nights with the best seeing in the alignment period.
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Fig. 4. A point diagram. The transverse aberrations calcu-
lated by the Hartmann method are plotted along the axes.
The circle diameters are 0.5 and 1.0 arcsec, respectively.
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Fig. 5. A three-dimensional image of a field star. Arbitrary
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We see from Fig. 5 that the seeing-disk diameter at
half maximum along the declination axis is ~1 arcsec,
which is a factor of 2.5 larger than the same parameter
that characterizes the telescope optics (Aslan et al.
1989). Thus, atmospheric seeing rather than the tele-
scope optics limits the resolution even on nights with
good seeing.

The seeing-disk diameter along the right ascension
axis is slightly larger than that along the declination
axis, which is the result of telescope tracking errors.
Special tests show that the clock drive has a periodic
error with a period of ~3 min and semi-amplitude of
~1 arcsec. At present, steps are taken to remove this
effect. The CCD software contains the Track and Accu-
mulate mode. Observations in this mode allow the tele-
scope tracking error to be eliminated.

It is of interest to compare the AZT-22 optics quality
with the optics quality of other world telescopes, which
are listed in Vitrichenko et al. (1990). The circle of con-
fusion at an 80% energy level is 0.55 arcsec in diameter.
A comparison of this parameter for AZT-22 with that
for other telescopes indicates that AZT-22 ranks 12th
among all the studied telescopes. For example, the cir-
cle of confusion for the best 2.7-m telescope at the
McDonald Observatory (USA) is 0.12 arcsec in diame-
ter, while the circle of confusion for the worst 2.1-m
telescope installed at the same Observatory is 2.7 arc-
sec in diameter (Kuiper and Middlehurst 1963).

TELESCOPE ALIGNMENT

In the previous sections, we presented the results of
the telescope certification. This certification was made
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Fig. 6. The scheme of a two-mirror telescope. 1, 2 are the
primary and secondary mirrors; é1, é2 are the mirror opti-
cal axes; Ç1, Ç2 are the mirror vertices; é3 is the telescope
geometric axis; and IP is the image plane.
after the telescope alignment. In this section, we
describe the basic principles of alignment. Figure 6
schematically shows a two-mirror telescope. This
scheme is clear from the caption to the figure. Note,
however, that, according to this scheme, the vertices of
the mirrors generally do not coincide with their geo-
metric centers.

The coma was removed as follows. A Hartmann
image was obtained and processed by the above
method. We analyzed the constructed map of normal
deviations by using Eq. (2) and obtained data on the pri-
mary aberrations similar to those in table. The coeffi-
cients a5 and a7 were used for the alignment. The
former and the latter are the coma amplitude and direc-
tion, respectively (a7 specifies the direction in which
the secondary mirror should be displaced relative to the
cardinal points).

The displacement ∆ and tilt α of the secondary mir-
ror were determined from the relation

(3)

hence

(4)

Equation (3) was derived by differentiating the
equation of a conic section. In this equation, r = 501 mm
is the light diameter of the secondary mirror for an on-
axis beam, R0 = 4840 mm is its radius of curvature at
the vertex, and e2 = 7.8 is the square of the eccentricity
(Gruzdeva et al. 1987); h are the normal deviations of
an equivalent optical system along the coma axis. In
this case, we attribute the errors of the optical system to
the secondary mirror, but analyze the coma alone,
because the coma is assumed to be produced by the
decentering of the primary and secondary mirrors.

Model calculations show that the required displace-
ment accuracy of the secondary mirror is ~0.02 mm.
Unfortunately, the alignment mechanisms were used in
such a way that this accuracy could not be achieved. For
this reason, the alignment was ceased when the dis-
placement was unfeasible (∆ = 0.08 mm).

CONCLUSION

The tests of the AZT-22 optics have led us to the fol-
lowing conclusions:

—By the errors of the optical surface and by the
energy concentration function, the telescope is rated
highly in quality, allowing it to be used to solve a wide
range of scientific problems;

—The optics errors are of a local nature resembling
astigmatism, but the errors of the telescope optics have
virtually no effect on star images even on nights with
good seeing;
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—One of the immediate problems is to eliminate the
error of the telescope clock drive, which prevents high-
quality imaging of stars.
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Abstract—Data on three recently discovered satellites of Uranus are used to determine basic evolutional
parameters of their orbits: the extreme eccentricities and inclinations, as well as the circulation periods of the
pericenter arguments and of the longitudes of the ascending nodes. The evolution is mainly investigated by ana-
lytically solving Hill’s double-averaged problem for the Uranus–Sun-satellite system, in which Uranus’s orbital
eccentricity eU and inclination iU to the ecliptic are assumed to be zero. For the real model of Uranus’s evolving
orbit with eU ≠ 0 and iU ≠ 0, we refine the evolutional parameters of the satellite orbits by numerically integrat-
ing the averaged system. Having analyzed the configuration and dynamics of the orbits of Uranus’s five outer
satellites, we have revealed the possibility of their mutual crossings and obtained approximate temporal esti-
mates. © 2001 MAIK “Nauka/Interperiodica”.

Keywords: Uranus’s outer satellites, orbital evolution
INTRODUCTION. INPUT DATA

The discovery of three new celestial objects, proba-
ble satellites of Uranus, was first reported in August
1999. Two of them were found by Kavelaar, Gladman,
Holman, Petit, and Scholl (Marsden 1999a), and the
third was found by Gladman, Nicholson, and Burns
(Marsden 1999b). It was initially assumed that the Ura-
nus-centric orbits of all three probable satellites had an
eccentricity of about 0.4, while the satellites them-
selves executed direct motion. In March 2000, three
systems of elements were obtained for these satellites
of Uranus, designated as S/1999 U 1, 2, and 3 (Marsden
2000a, 2000b). In these systems, only one of the new
satellites had direct motion, while the orbits of the other
1063-7737/01/2706- $21.00 © 20404
two had inclinations to the ecliptic larger than 90°. Finally,
in July–August 2000, refined orbital elements were calcu-
lated for the new satellites (Marsden 2000c–2000e), while
the satellites themselves received official names:

Uranus XVIII = S/1999 U 3 (Prospero),
Uranus XIX = S/1999 U 1 (Setebos),
Uranus XX = S/1999 U 2 (Stephano) (Green 2000).
Table 1 gives the orbital elements for these satellites

taken from Marsden (2000c–2000e). In this table, t0 is
the initial epoch, T is the time of pericenter passage, e is
the eccentricity, q is the pericenter distance, a is the
semimajor axis, n is the mean motion, and P is the
orbital period. The angular elements ω—the argument
of the pericenter latitude, Ω—the longitude of the
* E-mail address for contacts: vashkov@spp.keldysh.ru

Table 1.  Orbital elements for Setebos, Stephano, and Prospero

Elements Setebos Stephano Prospero

t0 2000 September 13.0 2000 September 13.0 2000 September 13.0

T 2003 March 31.3912 2000 July 17.8212 2001 September 17.7268

e 0.494329 0.145863 0.327449

q, AU 0.061537 0.045348 0.072442

a, AU 0.121694 0.053092 0.107712

n, deg/day 0.1535250 0.5327706 0.1843682

P, year 6.420 1.850 5.346

ω, deg 2.1890 29.8432 173.5689

Ω, deg 249.8452 189.4991 320.1468

i, deg 148.8285 141.5385 146.3403
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ascending node, and i—the inclination refer to the
ecliptic plane and equinox 2000.0.

The discovery of Setebos, Stephano, and Prospero
considerably supplemented the family of Uranus’s
outer satellites. Together with Caliban and Sycorax dis-
covered in 1997, they formed a distinctive system of
distant satellites with retrograde motion. The semima-
jor axes of the system’s highly eccentric orbits take on
values from 0.045 to 0.12 AU (or from 7.2 to 18.2 mil-
lion km), so the solar attraction has a major perturbing
effect on the motion of all these satellites. Below, we
therefore use a general solution of Hill’s double-aver-
aged problem to analyze the orbital evolution of Sete-
bos, Stephano, and Prospero. Of course, this evolu-
tional model can serve only as the initial approximation
of the real model and can give nothing but crude esti-
mates of the parameters that characterize variations in
the elements of satellite orbits with the longest periods.
These estimates can be obtained by qualitatively ana-
lyzing an integrable satellite version of the double-
averaged circular restricted three-body problem (Lidov
1961) and its general solution (Vashkov’yak 1999),
which has already been used to study the orbital evolu-
tion of Caliban and Sycorax. Jacobson (1999) numeri-
cally integrated the strict (nonaveraged) equations of
motion for these satellites by taking into account per-
turbations from the Sun, Jupiter, Saturn, and Neptune.
A comparison of the results shows that the analytic
solution of the evolutional problem yields mean eccen-
tricities, inclinations, and circulation periods of the
pericenter arguments and of the longitudes of the
ascending nodes that differ approximately by 10%
from their values obtained by numerical integration.
This gives grounds to use the proposed analytic solu-
tion as the zero approximation (intermediate orbit)
when constructing a comprehensive theory of the
motion of Uranus’s distant satellites.

ORBITAL EVOLUTION OF SETEBOS, 
STEPHANO, AND PROSPERO

The basic characteristic evolutional parameters of
satellite orbits can be obtained by solving Hill’s aver-
aged problem. For each of the three satellites, Table 2
gives the first integrals of the problem,

c1 = (1 – e2)cos2i, c2 = e2(2/5 – sin2isin2ω),

the extreme eccentricity e and inclination i, as well as
the circulation periods of the pericenter argument ω and
of the longitude of the ascending node Ω .

The orbital evolution of the three satellites in ques-
tion is qualitatively the same as that of Caliban and
Sycorax. The variations in eccentricities and inclina-
tions are oscillatory in pattern with twice the frequency
of variations in pericenter argument (Figs. 1a, 1b, 2a,
2b, 3a, 3b). The elements ω and Ω increase while
changing mainly in a secular fashion with small peri-
odic variations (Figs. 1c, 1d, 2c, 2d, 3c, 3d). There is a
clear quantitative difference in the evolutional parame-
ASTRONOMY LETTERS      Vol. 27      No. 6      2001
ters of the farthest (and most perturbed by the Sun) sat-
ellite Setebos; the circulation periods of ω and Ω for its
orbit are shortest among all five outer satellites of Ura-
nus and do not exceed a few thousand years.

The solid lines in Figs. 1–3 correspond to the ana-
lytic solution of Hill’s double-average problem with
eU = iU = 0. The values obtained by numerically inte-
grating a fuller evolutional system that includes small
variations in iU and eU with time [to be more precise,
long-period variations in eUcos(ωU + ΩU), eUsin(ωU +
ΩU), siniUcosΩU, and siniUsinΩU, according to the

Table 2.  Characteristic evolutional parameters for Setebos, Steph-
ano, and Prospero

Parameters Setebos Stephano Prospero

c1 0.5532 0.6001 0.6185

c2 0.09765 0.00647 0.04247

emin 0.494 0.127 0.326

emax 0.603 0.314 0.469

imin, deg     149     141     146

imax, deg     159     145     153

Tω, year     691   5148   1035

TΩ, year     944   5300   1407
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Fig. 1. Setebos’s orbital elements versus time for eU = iU = 0:
(a) eccentricity, (b) inclination, (c) pericenter argument, and
(d) longitude of the ascending node.
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Lagrange–Brower–Wurkom theory (Sharaf and Budni-
kova 1967)] are marked by circles. Here, ωU and ΩU
denote the argument of the perihelion latitude and the
longitude of the ascending node of Uranus’s orbit,
respectively. This evolutional system in elements is
obtained by using an expression for the normed per-
turbing function W of Hill’s double-averaged problem
(at eU = iU = 0) supplemented by terms ~siniU (Vash-

kov’yak and Teslenko 1998), ~ , and ~aeU/aU (aU is
the semimajor axis of Uranus’s orbit):

W = {2e2 + (5e2cos2ω – 3e2 – 2)[sin2i 

– 0.5sin2iUsin2icos(ΩU – Ω) – 0.5sin2iUsin2i(3 

+ cos2(ΩU – Ω))] – 5e2sin2iUsin2ωsinisin(ΩU – Ω) 

– e2sin2iU[3 – 5(cos2ωcos2(ΩU – Ω) 

+ sin2ωsin2(ΩU – Ω)cosi)]}(1 – )–3/2 

+ Be{(4 + 3e2)[(5sin2i – 4)cosωcos(Ω – gU) 

+ (4 – 15sin2i)cosisinωsin(Ω – gU)] 

+ 35e2sin2i[cosisin3ωsin(Ω – gU) 

– cos3ωcos(Ω – gU)]},
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Fig. 2. Stephano’s orbital elements versus time for eU = iU = 0:
(a) eccentricity, (b) inclination, (c) pericenter argument, and
(d) longitude of the ascending node.
where B = , gU = ωU + ΩU + 180° is the

Uranus-centric longitude of the Sun’s orbital peri-
center.

In the parallactic terms of W(~B), we discarded
terms ~aeUsiniU/aU.

Allowing for Uranus’s orbital evolution results only
in insignificant quantitative changes (compared to
Hill’s problem) in the time dependences of satellite
orbital elements. These changes show up most clearly
in the dependences i(t) (Figs. 1b, 2b, 3b). For Steph-
ano’s orbit, they are most pronounced, because imin and
imax are close (Fig. 2b).

If a time interval much longer than the circulation
periods of ω and Ω is considered, then the effect of Ura-
nus’s orbital inclination may cause a significant devia-
tion from the analytic solution of the integrable prob-
lem, because 0 5 ≤ iU ≤ 2 5. Note that, although Uranus’s
orbital eccentricity is also nonzero (0.012 ≤ eU ≤ 0.07), its

effect shows up only in terms ~  and ~aeU/aU and is
marginal for the satellites under consideration.

Figures 4–6 show projections of the numerical solu-
tion of the fuller evolutional system with variations in
eU, iU, ωU, and ΩU in the interval 400 000 years (an

5aeU
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Fig. 3. Prospero’s orbital elements versus time for eU = iU = 0:
(a) eccentricity, (b) inclination, (c) pericenter argument, and
(d) longitude of the ascending node.
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approximate libration period of ΩU) onto the (ω, e) and
(Ω, i) planes. The circles in these figures correspond to
times separated by 500 years. We see from Figs. 4a, 5a,
and 6a that the elements e and ω change virtually along
the integral curve of the integrable problem (eU = iU = 0),
while the extreme Â differ from those in Table 2 by no
more than 0.01. At the same time, the ranges of varia-
tions in satellite orbital inclinations can differ from ana-
lytic estimates approximately by 2 5 (this is the maxi-
mum of iU).

MUTUAL CROSSINGS OF THE ORBITS 
OF URANUS’S OUTER SATELLITES

The configuration and evolution of the orbits of Ura-
nus’s satellites under consideration are such that their
mutual crossings can occur (and actually occur) in the
course of time. The significant variations in orbital
eccentricities and, as a result, the corresponding varia-
tions in pericenter and apocenter distances are a pecu-
liarity of the system of Uranus’s outer satellites. Table 3
gives the ranges of these variations for all five outer sat-
ellites with the constraint a = const (this is the integral
of the averaged problem).

Figure 7 serves as a graphical illustration of this
table. For each of the five semimajor axes a, this figure
shows the bars that correspond to the variations in rπ
(below the dashed line) and rα (above the dashed line).
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the (ω, e) plane; (b) projection onto the (Ω, i) plane.
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Table 4.  Approximate times of mutual crossings of the orbits of Uranus’s outer satellites in the recent past (in years)

Satellite Caliban Stephano Sycorax Prospero Setebos

Caliban 0 385 135 >400000 491
Stephano 385 0 15 744 468
Sycorax 135 15 0 134 44
Prospero >400000 744 134 0 17
Setebos 491 468 44 17 0

Table 3.  Ranges of variations in pericenter (rπ) and apocenter (rα) distances of the orbits of Uranus’s outer satellites

Satellite a, million km rπ min, million km rπ max, million km rα min, million km rα max, million km

Caliban 7.17 5.12 6.62 7.72 9.22
Stephano 7.94 5.45 6.93 8.95 10.43
Sycorax 12.21 5.07 6.15 18.27 19.35
Prospero 16.11 8.55 10.86 21.36 23.67
Setebos 18.21 7.23 9.21 27.21 29.18
The apsidal points of each orbit can lie within the
spherical layers

If the condition

is satisfied for two evolving orbits with numbers j and k,
then these orbits cannot cross for any i, ω, and Ω . An
analysis of Table 3 and Fig. 7 indicates that this condi-
tion is not satisfied for any pair of the above orbits.
Consequently, as i, ω, and Ω vary, the conditions under
which the orbits will cross can be satisfied. Our numer-
ical calculations with allowance for Uranus’s orbital
evolution yielded approximate times of mutual cross-

rπmin rπ rπmax, rα min rα rα max.≤ ≤ ≤ ≤

rα max j( ) rπmin k( )<
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Fig. 7. Ranges of variations in pericenter and apocenter dis-
tances for various orbital semimajor axes of Uranus’s outer
satellites.
ings of the orbits for each pair of satellites and, in par-
ticular, the times most recent in the past (Table 4).

By comparing the data in Tables 3 and 4 and in Fig. 7,
we can note that for the pairs of orbits (1–2) Stephano–
Sycorax and Prospero–Setebos with the closest times
of crossing in the past, the following conditions are sat-
isfied:

i.e., the spherical apsidal layers of Stephano and Pros-
pero are entirely within the wider layers with the
boundaries rπmin(2)  rα max(2) of Sycorax and Sete-
bos, respectively. Thus, the crossing frequency of the
above pairs of orbits also increases.

By contrast, for the pair orbits (1–2) Caliban–Prospero
without any crossings, at least over the libration period
of ΩU (≈400000 years), the following conditions are
satisfied:

rπmin(1) < rπmin(2) < rα max(1) < rα max(2),

the difference rα max(1) – rπ min(2) ≈ 0.67 million km is
relatively small, so the spherical apsidal layers intersect
only slightly. Under these conditions, there may not be
any crossings of the orbits at all, or they cross rarely.

CONCLUSION
We have studied the key features of the orbital evo-

lution of Uranus’s outer satellites in terms of Hill’s dou-
ble-averaged problem (a satellite version of the
restricted circular three-body problem). Our estimates
yielded approximate extreme parameters of the evolv-
ing orbits (eccentricities and inclinations), as well as
circulation periods of the pericenter arguments and of
the longitudes of the ascending nodes. These estimates
were refined for the model of Uranus’s evolving orbit.
Allowing for additional perturbations, which are pri-
marily attributable to Uranus’s orbital motion and to the
attraction by Jupiter, Saturn, and Neptune, modify the
estimates of evolutional parameters, with these modifi-

rπmin 2( ) rπmin 1( ) rα max 1( ) rα max 2( ),< < <
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cations being particularly noticeable during crossings
of the orbits of outer satellites. Therefore, the data in
Table 4 should be perceived more as mean times that
characterize the intervals between successive crossings
of the orbits, when the probability of close satellite
encounters increases. For the actual possibility of their
close encounters to be analyzed, accurate theories of
the motion must be constructed.
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