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Abstract—The problem of the evolution of a perturbation in a dusty plasma and its transformation into a non-
linear wave structure is considered. A computational method that allows one to solve the set of nonlinear evo-
[utionary eguations describing variable-charge dust grains, Boltzmann electrons, and inertial ionsis devel oped.
Exact steady-state sol utions corresponding to ion-acoustic shock structures associated with anomal ous dissipa-
tion originating from dust grain charging are found taking into account the effect of electron and ion charge
separation. The role of this effect increases with the speed of the shock. The evolutions of an initial soliton
(which is asteady-state wave solution in a plasma containing dust grainswith a constant charge) and aninitially
immobile perturbation with a constant increased ion density are investigated. In a charge-varying dusty plasma,
the soliton evolvesinto a nonsteady shock wave structure that propagates at a constant speed and whose ampli-
tude decreases with time. Theinitially immobile perturbation with a constant increased ion density evolvesinto
ashock structure similar to a steady-state shock wave. In the latter case, the compression shock wave is accom-
panied by a rarefaction region (dilatation wave), which finally leads to the destruction of the shock structure.
The solution of the problem of the evolution of a perturbation and its transformation into a shock wave in a
charge-varying dusty plasma opens up the possibility of describing real phenomena (such as supernova explo-

sions) and laboratory and active space experiments. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Plasma—dust systems usually cannot survive in the
absence of either external sources of electrons and ions
or plasma particle fluxes from dust-free regions. The
electron and ion fluxes are absorbed by dust grains; as
a result, the charges of the latter vary. The enhanced
dissipativity of the plasma—dust system originating
from dust grain charging [1] points to the decisive role
of dissipative structures (similar to shock waves) in
dusty plasmas.

Shock waves often arise in nature because of the
balance between nonlinear effects leading to wave
breaking and dispersion or dissipative effects. For col-
lisional and collisionless shock waves, the shock struc-
tureis determined by the friction between the particles
[2] or the wave—particleinteraction [3], respectively. In
dusty plasmas, anomalous dissipation that originates
from dust charging resultsin the possibility of the exist-
ence of anew kind of shock wave related to this dissi-
pation. These shock waves are collisionlessin the sense
that they do not involve electron-ion collisions. How-
ever, in contrast to classical collisionless shock waves,
the dissipation dueto dust charging involvesinteraction
of the electrons and ionswith dust grainsin the form of
microscopic grain currents. The case of afairly intense
shock wave corresponds to ion-acoustic wave propaga-
tion. The main results concerning this new kind of ion
acoustic shock were obtained in [4-6]. Recently, the
first laboratory experimental results confirming the

effect of negatively charged dust on the formation of an
ion-acoustic shock were obtained [7, 8].

The importance of shock waves in dusty plasmasis
associated with different astrophysical applications[5].
For example, according to modern concepts [9], the
formation of stars occurs mainly in interstellar dust—
molecular clouds after compression shock waves have
propagated through them, creating the initial density
condensationsfor further gravitational contraction. The
presence of dust in interstellar clouds can significantly
influence the magnitude of the sound velocity, not to
mention the shock wave propagation. The investigation
of shock waves related to the dissipation originating
from dust particle charging may also beimportant [5, 6,
10] for the description of shocks in supernova explo-
sions, particle acceleration in shocks, the explanation
of the results of active space experiments involving the
release of a gaseous substance in the Earth’'s iono-
sphere, etc.

In spite of the importance of shock structures in
dusty plasmas, the question of whether the evolution of
an arbitrary perturbation leads to the formation of
shocks in a charge-varying dusty plasmais still open.
All previous investigations have dealt with steady or
guasi-steady shocklike solutions. However, it is the
solution of the problem of the evolution of a perturba-
tion and its transformation into a shock wave that will
allow us to investigate in detail (taking into account
charge-varying macroparticles) real phenomena (such
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as supernova explosions) and laboratory and active
space experiments. Furthermore, the solution of this
problem makes it possible to understand whether the
shock structures are the main nonlinear wave structures
in dusty plasmas.

This paper is the first one that deals with the prob-
lem of the evolution of a perturbation in a charge-vary-
ing dusty plasmaand itstransformation into anonlinear
wave structure. We consider the case of the plasma and
wave parameters corresponding to those of [4], in
which the possibility of the existence of steady-state
shock wave solutions related to the dissipation originat-
ing from dust particle charging was shown. In Section 2,
we describe the main assumptions and basic equations
and present the exact steady-state solutions of the prob-
lem. We take into account the effect of charge separa-
tion, which was neglected in [4], and, thus, refine the
results of [4]. In Section 3, we describe the numerical
method used to investigate the evolution of a perturba-
tion in adusty plasma. In Sections 4 and 5, we consider
the evolution of different initial perturbations. In Sec-
tion 4, the evolution of asoliton (which is asteady-state
wave solution in a plasma containing macroparticles
with a constant charge[11]) isstudied. In Section 5, we
consider the evolution of an intense, initially immobile
perturbation with a constant increased ion density. A
summary of our findings and conclusions are given in
Section 6.

2. STEADY-STATE SHOCK WAVE SOLUTIONS

We assume that a dusty plasma possesses the fol-
lowing properties[4, 5]:

(i) The electron and ion plasma components are col-
lisionless and unmagnetized. The plasma contains dust
grains; in an unperturbed state, it is uniform.

(i) Thetime scale corresponds to ion-acoustic wave
propagation.

(iii) The dust grain charge varies solely due to the
microscopic electron and ion grain currents originating
from the potential difference between the plasma and
the grain surface.

(iv) The average radius a of dust grains is much
smaller than the electron Debye length Ay, the spatial
scale of perturbations, and the distance between the
plasma particles.

(v) Dust grains are negatively charged (the absolute
charge value can exceed 10°e, where —e is the electron
charge).

(vi) Dust grains are massive (mZy < my, wherem 4
aretheion and dust masses and g4(x) = —Zseisthe aver-
age dust grain charge). In this case, the dust can be con-
sidered immobile and the density ny is constant on the
ion-acoustic time scale.

(vii) In the absence of perturbations, the quasineu-
trality condition n,, = ny, + Zyny (Where the subscript O
denotes unperturbed quantities) holds.
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(viii) The orbit-limited probe model [12, 13] is
valid.

(ix) Nonlinear waves propagate along the x-axis.

To consider the problem of the evolution of apertur-
bation and its transformation into a nonlinear wave
structure in a charge-varying dusty plasma, we use the
same set of equations as in [4]. The average charge of
theimmobile dust grainsis governed by the charge con-
servation law [11, 14, 15]

0dq = le(qq) +1i(9g), (D

where the microscopic electron and ion grain currents
(for equilibrium electrons and kineticions) are[13, 15—

17]
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Here, m, isthe electron mass, T; and v; are the temper-
ature and thermal velocity of the jth species(j =1, €), v;
istheion fluid velocity, and erf(x) is the error function.
We use the complete formula for I; [16] in order to
account for slow ions, which should be included for
physical consistency in the low-¢ region of the shock
structure [4]. The ions and electrons entering the dust
grain recombine into neutral atoms, which then reenter
the plasma and reionize, thus preserving the number of
ions and electrons.

The electron density is assumed to obey the Boltz-
mann distribution (n, = hy,exp(edp/T,)) with a constant
temperature T,. The ion density n; and velocity v; obey
the ion conservation equations (continuity and momen-
tum transfer equations); we aso assume that v; > v,
which imposes a lower limit on the magnitude of the
electrostatic potential ¢ of nonlinear waves. Further-
more, we use Poisson’s equation for the electrostatic
potential:

Ogd = 4Te(Ng + Zgng—n,). 4)

In [4], quasi-steady structures moving with a speed
V (V4 < V < vqp) in the x direction and satisfying the
above equations were considered. Such structures are
shock waves that exist because of the efficient dissipa-
tion related to dust grain charging. In [4], the profiles of
steady-state shocks (whose parameters depend on & =
X —Vt only) were obtained under the assumption that
the left-hand side of Poisson’s equation is negligibly
small. Thus, the effect of charge separation was
neglected.
PLASMA PHYSICS REPORTS  Vol. 27
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We investigated the influence of this effect on the
propagation of steady-state shocks. This effect does not
influence the conditions under which shock waves
exist. In particular, steady-state shocks exist for the
Mach numbers M = V/c, (where ¢, = (T/m)'? is the
ion-acoustic speed) that obey the inequalities

_h
G+ 2zyZ4d’

where G = [1 + (z + Ti/To) ', d = ng/ng, and z, =
Z4€*/aT,. The range of Mach numbers that is deter-
mined by inequalities (5) israther narrow. For example,
for Zy,d =2, T/T; = 10, and a/Ap = 0.01 we have M, =
1.42 and M, = 1.73.

The effect of the electron and ion charge separation
manifests itself in the appearance of oscillations in the
shock wave profile. The effect becomes stronger as M
increases. Thisis seen from Figs. 1 and 2, which show
steady-state shock wave solutions for two cases. In
Fig. 1, the profiles of the potential ¢(g); the electric
field E = —d;¢; the normalized charge perturbation &z
and the ion density n;, normalized to the unperturbed
electron density ny,, are presented for Z,,d = 2, T,/T, =
10, a&/Ap = 0.01, and M = 1.5. Here, we introduced the
following dimensionless variables: ep/T, — ¢,
&Mp — &, 0z = —edqy/aT,, and 3Gy = Gy — Q- IN this
case, oscillationsin the shock structure profilesare very
small and the effect of charge separation is suppressed.
Figure 2 shows the same profiles for the same plasma
and dust parameters asin Fig. 1, but for M = 1.68. In
Fig. 2, the effect of electron and ion charge separation
is significant. The fact that the dust does not contribute
to this effect is clearly seen in Fig. 2c; one can see that
there are no oscillations in the profile of the perturba-
tions of the normalized dust grain charge 6z. We
emphasize that oscillations in the ion-acoustic shock
wave profilerelated to the effect of charge separationin
adusty plasma were observed experimentally in [7].

1+Z4d = M=2M*>Mi=1+ 5)

3. COMPUTATIONAL METHOD

To consider the evolution of a perturbation in a
charge-varying dusty plasma and its transformation
into a nonlinear wave structure, we have devel oped the
following computational method.

To solve the continuity equation and the momentum
transfer equation for ions, we use the modification
LCPFCT of the flux-corrected transport (FCT) algo-
rithm with fourth-order phase accuracy, second-order
time accuracy, and minimum residual diffusion [18].
The FCT is a monotonic, conservative, and positivity-
preserving algorithm. This means that the algorithm is
accurate and resolves steep gradients (including grid
scale resolution). When a convected quantity (such as
the ion density) isinitially positive, it remains positive
and no new maxima or minima are introduced due to
numerical errors during convection.
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Fig. 1. Profilesof (&) $(Z), (b) E(€) =—dgd(&), (c) dz(&), and
(d) nj(§)/ng in a steady-state shock wave structure for
Zgod =2, T/T; = 10, a/Ap = 0.01, and M = 1.5.

Theformulation of the LCPFCT transport algorithm
consists of the following four sequential stages:

(i) computation of the intermediate val ue of the con-
vected quantity taking into account stabilizing diffu-
sion and selection of the diffusion coefficients in order
to satisfy monotonicity,

(if) computation of the raw antidiffusive fluxes,

(iii) correction or limitation of these fluxesto assure
monotonicity, and

(iv) performance of the indicated antidiffusive cor-
rection.

To solve Eq. (1) for dust grain charging, we use the
well-known Runge-Kutta method [19] with fourth-
order accuracy. Poisson’s equation (4) is solved numer-
ically using the sweep method [18].
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Fig. 2. Profilesof (&) $(Z), (b) E(€) =—dgd(&), (c) (&), and
(d) nj(€)/ng in a steady-state shock wave structure. The
parameters are Zy,d = 2, To/T; = 10, &/Ap = 0.01, and M =
1.68.

Thetotal set of equationsis solved using the follow-
ing operation sequence (at every time step):

(i) integration of the conservation equations,

(i) integration of the equation for dust grain charg-
ing, and

(i) integration of Poisson’'s equation.

These three stages are related to each other by the
iteration procedure, which is controlled by the charge
density convergence.

The above computational method was tested by the
examples of steady-state soliton solutionsin dusty plas-
mas (without allowance for dust grain charging) and
the steady-state shock wave solutions presented in
Figs. 1 and 2 (with allowance for dust grain charging).
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The tests showed that the corresponding steady-state
solutions remained the same when solving time-depen-
dent problems.

4. EVOLUTION OF A SOLITON

As was mentioned above, a soliton is a steady-state
wave solution propagating with aconstant speed M ina
plasma containing macroparticles with a constant
charge. Under assumption (vi) of Section 2, the soliton
solution in such a plasma can exist for the Mach num-
bers obeying the inequalities

M*> 1+ Z,d, (6)
and

exp(M%/2) + M°Zyod/2 < 1+ (1 + Zgod)M?.  (7)

Comparing inequalities (5) and (6), we can easily see
that the soliton velocities are higher than the velocities
of steady-state shocks (of course, we should remember
that steady-state solutions in the form of solitons and
shocks exist in plasmas containing macroparticles with
constant and variable charges, respectively).

Here, we consider the problem of the evolution of an
initial soliton (which is a steady-state wave solution in
a plasma containing macroparticles with a constant
charge) and its transformation into a nonlinear wave
structure in a charge-varying dusty plasma. We con-
sider the situation when, in the absence of wave pertur-
bations, the initial dust grain charge is in equilibrium.
We use the normalization x/Ap — X for the spatial
variable and tc,/Ap; — t for time. The results of calcu-
lations describing the evolution of aninitial solitonina
dusty plasmawith Z,d =2, T./T; = 10, and a/Ap = 0.01
are presented in Fig. 3. The initial Mach number is
M, = 1.8. The initial normalized dust grain charge
number is z, = 1.23 [4]. Figure 3 shows the profiles of
the potential ¢(x); the electric field E = —d,¢; the nor-
malized charge perturbation oz, and the ion density n;,
normalized to the unperturbed electron density ng,, at
theinstantst = 0, 30, 60, 90, and 120 (dz=0att=0).

It can be seen in the figure that, in a charge-varying
dusty plasma, the soliton (which is a steady-state solu-
tion in a plasma containing macroparticles with a con-
stant charge) evolves into a nonsteady shocklike solu-
tion, whose amplitude decreases with time. The Mach
number M of the perturbation also decreases down to
the value My, = 1.68. Then, the velocity of the non-
steady shocklike solution remains amost constant. We
note that, for the plasma parameters of Fig. 3, the value
Mg, = 1.68 satisfies inequalities (5) for the Mach num-
bers of steady-state shocks. The oscillations in the pro-
file of the shocklike solution are related to the charge
separation effect. The front width of the shocklike
structure Ax is on the order of 10 (or 10Ap in dimen-
sional variables). This value corresponds to the theoret-
ical value of the front width Ax ~ ¢y/v, of an ion-acous-
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tic shock wave that exists because of efficient dissipa-
tion dueto dust grain charging (here, v, = oof)i a(l+z+

T./To)/ /2Tt vy, isthe dust grain charging rate and wy =
(4Tn,e/m) 2 is the ion plasma frequency). The reason
for both the decrease in the amplitude of the shocklike
solution and the fact that the steady-state shock wave
solution similar to those shown in Figs. 1 and 2 is not
formed under these conditions is the small intensity of
theinitial soliton.

5. EVOLUTION OF AN INITIALLY IMMOBILE
PERTURBATION WITH A CONSTANT
INCREASED ION DENSITY

Now, we consider the situation in which the initial
perturbation can evolve into ashock wave structure that
iscloseto asteady-state shock wave. For simplicity, we
consider an initially immobile perturbation with a con-
stant increased ion density. The intensity of the initial
perturbation is chosen from the following consider-
ations. In a frame of reference related to the wave, it
follows from the momentum transfer equation that

¢+ vizlcs2 = const. ®)

In the region occupied by theinitia perturbation, v; =0,
but ¢ — ¢, # 0, whereas ahead of the front of a steady-
state shock, we have ¢ = 0 and |v,|/c; = M. Thus, we
obtain ¢, = M?2. The initia ion density is evaluated
using the continuity equation.

The results of calculations describing the evolution
of an initially immobile perturbation with a constant
increased ion density that corresponds to the Mach
number M = 1.5 (i.e,, ¢, = M?/2 = 1.125) for the plasma
parameters Zy,d =2, T/T, = 10, and a/Ap = 0.01 are pre-
sented in Fig. 4. It is assumed that the initial charge of
the dust grainsisin equilibrium in the absence of wave
perturbations (z, = 1.23). Figure 4 shows the profiles of
the potential ¢(x); the eectric field E = —d,¢; the nor-
malized charge perturbation &z, and the ion density n;,
normalized to the unperturbed electron density ny, at
theinstantst = 100, 1000, and 1500. Theinitial profiles
(t=0) of the potential ¢ and the normalized ion density
n;/ng are presented by the light curves on the left of the
corresponding plots. The light curves on the right of
Fig. 4 show the corresponding profiles of the steady-
state shock wave solution with M = 1.49.

Itisseen from Fig. 4 that an intense, initially immo-
bile perturbation with a constant increased ion density
evolves into a shock wave solution similar to the exact
steady-state solution with the Mach number M = 1.49.
The difference between these two solutions is that, in
the former, the compression region is accompanied by
ararefaction region (dilatation wave). During the evo-
[ution of the shock wave, the distance between the rar-
efaction and compression regions decreases. Finaly,

PLASMA PHYSICS REPORTS  Vol. 27

No. 6 2001

459

¢ t=0 (a)
1.0

30

05F 60
9 120

0z
(b)

0.1

Vi /cs 1 1 1 1 1 J
0.8 (c)

047

nilheo ()

1
0 100

1
200 X

Fig. 3. Profilesof (a) ¢(x), (b) E(x) =—d,$(X), (c) dz(x), and
(d) nj(x)/ngy at t =0, 30, 60, 90, and 120 (6z = O at t = 0)
showing the evolution of an initial soliton. The parameters
are Zgd=2, To/T; = 10, and a/Ap = 0.01. Theinitial soliton
Mach number is M;, = 1.8, and the initial normalized dust
grain charge number isz, = 1.23.

the presence of the dilatation wave |eads to the destruc-
tion of the shock structure.

We have studied the influence of theinitial charge of
dust grains on the evolution of an initially immobile
perturbation with a constant increased ion density. In
Fig. 5, the profiles of the potential ¢ at t = 100 are pre-
sented for the cases in which the initial dust grain
charge is equa to zero (heavy line) and is in equilib-
rium in the absence of perturbations; i.e., z, = 1.23
(light line). The remaining parameters of Fig. 5 are the
same as those of Fig. 4. In Fig. 6, the results of calcu-
lating the dust grain charging process are presented for
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Fig. 4. Profilesof (a) ¢(x), (b) E(X) =—d,$(x), (C) dz(x), and
(d) n;(x)/ngg at t = 100, 1000, and 1500 showing the evolu-
tion of an initially immobile perturbation with a constant
increased ion density. The parameters are Zy,d = 2, To/T; =
10, and a/Ap = 0.01. The initial normalized dust grain
charge number is Z, = 1.23. The nitial profiles (t = 0) of ¢
and nj/ng are presented by the light curves on theleft of the

plots. Thelight curves on theright of the plots show the pro-
files of the steady-state shock wave solution with M = 1.49.

twoinitial valuesof z(z=0and z=1.5z)) and for Z,,d =
2, T/Ti=10,a/Ap =0.01, and n; = 1.66 x 10!! cm~. Sat-
uration (z, = 1.23) is reached at a time on the order of
vy ~ 10 (here, vy isnormalized as vg'c/Ap —= V).
In both cases (in which the initial dust grain charge

equals zero and in which it is in equilibrium in the
absence of perturbations) at t = 100 (and the more so at

the fact that the characteristic charging time vgl isfar

less than the time during which the structure similar to
the steady-state solution is established (see Figs. 4, 6).

6. SUMMARY

To summarize, we have considered a plasma with
variable-charge dust grains, Boltzmann electrons, and
inertial ions. We have studied the influence of electron
and ion charge separation on steady-state ion-acoustic
shock structures that are associated with an anomalous
dissipation originating from dust grain charging. The
charge separation effect manifests itself in the appear-
ance of oscillations in the shock wave profile. This
effect increases as the shock wave propagation vel ocity
increases.

We have considered the problem of the evolution of
a perturbation and its transformation into a nonlinear
wave structure. For this purpose, we have developed a
computational method that allows us to numerically
PLASMA PHYSICS REPORTS  Vol. 27
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solve the set of equations describing the evolution of a
nonlinear structure in a charge-varying dusty plasma.
We have investigated the evolutions of both an initial
soliton (which is a steady-state wave solution in a
plasma containing macroparticles with a constant
charge) and an intense, initially immobile perturbation
with a constant increased ion density.

It is shown that a soliton in a charge-varying dusty
plasma evolves into a nonsteady shocklike structure
that propagates at a constant speed and whose ampli-
tude decreases with time. The Mach number of this
structure satisfiesinequalities (5) for the Mach numbers
of steady-state shocks. The charge separation effect
manifests itself in the appearance of oscillationsin the
profile of the shocklike structure. The width of its front
corresponds to the theoretical value of the front width
of an ion-acoustic shock wave that exists because of
efficient dissipation dueto dust grain charging. Therea-
son for the decrease in the amplitude of the shocklike
structure isthe low intensity of theinitial soliton.

An intense, initially immobile perturbation with a
constant increased ion density evolves into a shock
wave solution that is similar to a steady-state shock
wave. The difference between these two solutions is
that, in the former, the compression region is accompa-
nied by ararefaction region (dilatation wave). Finaly,
the presence of the dilatation wave |eads to the destruc-
tion of the shock structure. These shocks are aso
related to the efficient dissipation due to dust grain
charging. However, the influence of the initial dust
grain charge on the evolution of an initially immobile
perturbation with a constant increased ion density is
insignificant. Thisis related to the fact that the charac-
teristic charging time of dust grainsis far less than the
time during which the structure similar to the steady-
state shocklike solution is established.

The solution of the problem of the evolution of a
perturbation in a charge-varying dusty plasma and its
transformation into a shock wave opens up the possibil-
ity of describing real phenomena (such as supernova
explosions) and laboratory and active space experi-
ments. Furthermore, the solution of this problem con-
firms that, in real dusty plasmas, shock structures are
the main nonlinear wave structures.
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Abstract—The classical motion of an electron in the Coulomb field of anion and in auniform externa electric
field isanalyzed. A nondimensionalization method that makesit possible to study electron maotion in arbitrarily
strong electric fields is proposed. The possible electron trajectories in the plane of motion in a static field are
classified. It isnoted that, from apractical standpoint, the most interesting trajectories are snakelike trajectories,
which are absent in the problem with aweak externa field. An adiabatic approximation for transverse electron
motions in quasistatic (strong) fields is constructed. A one-dimensional equation of motion is derived that
accounts for transverse electron oscillations and the increase in the effective electron mass as an electron
approaches anion. An analytic model is used to calcul ate the spectra of bremsstrahlung generated by individual
electrons. The calculated results are shown to agree well with the results of direct numerical integration of the
basic equations. It is predicted that, at frequencies higher than the frequency of the incident light, pronounced
peaks can appear in the spectrum of the transverse dipole moment of an electron; as a result, an electron is
expected to effectively emit radiation at these frequencies in the direction of the external field. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, interest has grown in the electron
dynamics in the field that is a superposition of a Cou-
lomb field and an electromagnetic field of subatomic
(and even relativistic) strength [1-12]. Investigationsin
this area have revealed not only the expected effects
(such as self-focusing [2] and self-defocusing [3], the
penetration of radiation into an overdense plasma [4],
and harmonic generation [5]) but aso a number of
unexpected phenomena, among which we must, first of
al, mention the effective cascading of the radiation
energy to the ultraviolet spectral region [6], the genera-
tion of high harmonics of the incident light at targets
and atomic clusters [7], and the production of acceler-
ated electrons [8]. With this rich store of accumulated
experimental data, it becomes relevant to investigate
the expected effectstheoretically in order to plan future
experiments. That is why it is very important to study
phenomenathat occur in the interaction of ultraintense
electromagnetic radiation with matter [9, 10]. The elec-
tron—ion (e) collisions, which may play aspecial role
in these phenomena, were analyzed numerically in a
number of interesting papers (see, e.g., [11]). Sofar, no
adequate explanation of the above effects has been
given; in some cases, they have not been discussed even
at aqualitative level.

In [12], we showed that taking into account the
focusing properties of the Coulomb potential when an
electron repeatedly returns to the strong field region
substantially modifies the traditional picture of the
interaction of an electron with anion (e.g., the effective
interaction cross section and the energy exchange pro-

cesses). Actualy, the study presented here was carried
out before that reported in [12]. Analyzing the known
results on the scattering of charged particles in a Cou-
lomb field and auniform static field, we noticed that the
problem of e interaction isa particular case of amore
complicated three-body problem, specifically, the prob-
lem of asatellitethat orbits aplanet and experiencesthe
gravitational force of aremote, very massive body. This
problem has been thoroughly investigated in celestia
mechanics (see, eg., [13]). We found that the most
striking were trajectories similar to those in Fig. 4 (see
below), which we caled snakelike trajectories. An
important point here is that these are fundamentally
(qualitatively) new trajectories in the problem of scat-
tering inapurely Coulomb field: acharged particle that
moves in the external decelerating field and is attracted
by an ion oscillates with a certain characteristic fre-
guency on one side of the region around the ion.
Clearly, such motion can strongly influence the overall
picture of scattering in an alternating field if the field
amplitude is sufficiently large.

Here, we consider natural questions related to the
effect of external, uniform, quasistatic fields on the
electron dynamics. In Section 2, we show that the prob-
lem under consideration involves only two dimension-
less parameters (the integrals of motion) and can be
reduced to the problem for two noninteracting nonlin-
ear oscillators by switching to the Levi-Civita vari-
ables. In Section 3, we classify the possible electron
trajectories in the plane of these two parameters (the
bifurcation diagram) and obtain analytic solutions in
explicit form (in particular, the solutions describing the

1063-780X/01/2706-0462$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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above snakelike trgjectories near the separatrix). In
Section 4, we construct an adiabatic approximation by
the method of averaging over fast transverse (with
respect to the external field) electron oscillations. As a
result, we arrive at the conclusion that the effective
mass of an electronincreases asit is attracted toward an
ion. In Section 5, we consider the spectral properties of
such e- collisons and, in particular, the possible
appearance of characteristic peaks in the spectra of
bremsstrahlung generated by decelerated electrons. In
Section 6, we discuss some of the consequences of the
resulting picture of the electron dynamics.

2. FORMULATION OF THE PROBLEM

In order to consider the classical trgjectories, we
start with the equation

mr = —z?—r+eE (D

r?
which describes the electron motion in the field of an

ionwith charge Ze and in auniform electrostatic field E.
By analogy with [12], we nondimensionalize Eq. (1) as

follows:
2
/eZ 1 mZ
r- = _— te = — = —_— 2
E E ) E (l)E 4 eE31 ( )

where rg is the radius of the spherical surface around
the ion at which the Coulomb field is equal to the uni-
form electrostatic field E and w is the electron revolu-
tion frequency along a Keplerian orbit of radiusre.

Asaresult, we obtain

T
r———3+n

r

: 3)

where n is a unit field-aligned vector (E = En).

With an alternating electric field Ecoswt varying at
the frequency w, the problem contains a dimensionless
parameter—the dimensionless frequency Q equal to

1a
Q___wEmZD ~121 Z -,
We oES A [em] (E [V/em])™ (4)

which includes the frequency of the field and its
strength through the combination w*/E>. This indicates
that, in the limiting case of aninfinitely strong field, the
field can be considered static (Q — 0). In this limit,
the problem allows separation of variables, thereby
providing away of classifying electron tragjectories. In
fact, the characteristic time scale of the electron motion
in an electrostatic field is tz; consequently, for wtg =
Q < 1, the electron trgjectories can be analyzed within
the assumption of a static field.

Inamorerealistic situation with an electric field that
changes slowly in time, we can investigate adiabatic
variations of the electron trgjectories. In this case, it is
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convenient to switch to the Levi-Civita variables [14],
which are better suited than parabolic coordinates [15,
16] for the description of aCoulomb system in an exter-
nal unsteady field, because an electron moving in a
Coulomb field at small distances from an ion can
abruptly change its direction of motion, in which case
calculations by means of perturbation theory or numer-
ical computations lose accuracy. On the other hand, the
shapes of electron trajectories at short distances from
an ion are important in following the long-term motion
of an electron. Consequently, the problem arises of how
to transform the coordinates and time in such away as
to regularize the equation of electron motion (i.e., to
eliminate the singularity at the position of theion). The
equation of motion isregularized in two steps. For sim-
plicity, we consider the electron motion in the (X, 2)
plane, which containsthe electric field vector E(0, 0, E)
and passes through the center of the Coulomb field.

First, we introduce a new (fictitious) time s through
the equation

dt _

where r = /x* +Z° is the distance from the center of
the Coulomb field. This transformation acts to slow
down the e interaction in real time t: the closer the
electron is to the ion (to the Coulomb singularity), the
larger the slowing-down factor. Asaresult, the equation
of motion (3) takes the form

d’r drdr _
rg_d_sd__ r+rn. (6)

Then, in place of the position vector r, it is convenient
to introduce an equivalent vector in the complex plane:

q = x+iz (7
in which case we have
d2q drdq _
g dsds 97 ®)

wherer = |q]. Following the Levi-Civita approach, we
introduce the new function

g=n° n=u+iv. ©)
In the variables u and v, we have
r=u+ v2, zZ= uz—vz, X = 2uv. (10)
The equation for n,

d’ 2
2|n|2—r2‘—2n‘9'ﬂ‘ = -+t an
ds ds
can be substantially simplified by expr ng |dn/ds|in

terms of the energy W = ‘dr‘ of the Coulomb

system, in which case we read|ly obtain |dn/ds|* =
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(InPW - 1)/2 and thus arrive at the following regular-
ized equation describing nonlinear electron oscilla-
tions:

In

N+ 20 ", (12)

Equation (12) should be supplemented with the equa-
tion for real time:

t' = Inl” (13)

The desired set of equations will become especialy

simpleif we introduce the electron energy in the exter-
nal field,

h = W+z = const. (14)

This allows us to separate the variables in the equation
of motion (12):

« N 3
+-u =
u 2u u
w, N 3 (15)
+-v = —
v 2v v
t' = u2+ ve.

The transformation from the Levi-Civita variables
to the physical coordinatesr and t has the form

22 L2, .
zZ=Uu-v’, Z—F(uu—vv)
X = 2uv (16)
r=u+v’ x-= %(vu'+uv‘)

the inverse transformation being

u= /122, P,=u = %(uz+ v X)

_Xu _ ,_1_ .
V_r+z’ P,=Ev —2(ux VZ).

(17)

We also write down the expression for the Hamiltonian
h of the system:

= l'_ﬁ+2: LZ-FVIZ)+UZ_V2

=5 ; . (18)

u+v
which may be used to control the results of the numer-
ical solution of the problem.

The transformation to the Levi-Civita variables is
analogous to the transition to parabolic coordinates
(which are traditionally used to analyze the problems
with a spatially uniform field) and, for a static field,
reduces our problem to that of two anharmonic oscilla-
tors.

One of the most interesting features of Egs. (15) is
that they differ only in the sign of the nonlinear terms.
Consequently, changing the sign of the field converts

BALAKIN et al.

the equations for u and v into each other. For a positive
direction of the field, the variables u and v play the
roles of “longitudinal” and “transverse” coordinates,
respectively, and vice versa. This property of Egs. (15)
can be used to qualitatively analyze the long-term
motion of an electron, in particular, to search for peri-
odic electron trgjectories.

Hence, passing over to the Levi-Civita variables
makesit possibleto removethe singularity at the center
of the Coulomb field and to separate the variablesin the
equation of motion, as is the case with the parabolic
coordinates used to analyze problemswith astatic field.
Problems with an aternating field would involve a
larger number of equations of motion. Although the
resulting equations are more complicated in compari-
son with the basic equations, they are better suited for
both numerical simulations and the application of per-
turbation theory.

Now, we proceed to the classification of electron
trajectoriesin astatic field.

3. CLASSIFICATION OF TRAJECTORIES

We have derived two independent equations
describing nonlinear electron oscillations. Taking the
product of thefirst two equationsin (15) with u' and v',
respectively, we arrive at the two integrals of motion,

2 4 4 (19)
That the constants ¢, and ¢, are not independent can be
easily verified by multiplying the Hamiltonian h for
Egs. (15) by (U1? + u?)/4 and by collecting all like terms
with u and v. After some trivial manipulations, we find

1+ 1-
= gt o s

In Cartesian coordinates, the quantity {3 isthe famil-
iar integral obtained in [15] by transforming the Hamil-
ton—Jacobi equation to parabolic coordinates and by
separating the variables:

(20)

2
—Z iy oy X
B = ; + X(XZ—-2X) 5 (21)

Figure 1 illustrates possible types of the phase tra-
jectories of anharmonic oscillators described by
Egs. (19), and Fig. 2 presents the parameter plane and
the representative trajectories for a static field aligned
with the z-axis.

An analysis of the phase portraits of the system
leads to the following conclusions.

(i) Region 3 < -1 is characterized by unbounded
(infinite) self-intersecting trajectories that do not encir-
cle the center of the attracting Coulomb field. In the
(u, p,) phase plane, the trgjectories are found to be only
on one side of the separatrix. In the (x, z) plane, there
exist unusual “ self-recovering” trajectories: an electron
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 1. Phase planes (u, p,) and (v, p,) for h> 0 (top) and h < O (bottom).

moves until its velocity vanishes; then, it starts moving
along the same trgjectory but in the opposite direction.
Near the boundary, the el ectrons can move along snake-
like trajectories, which, however, are not characteristic
of this region and will be considered below in more
detail.

(i) Region-1<B<1,h< J2(B +1) ischaracter-
ized by infinite self-intersecting trajectories that encir-
cle the center of the attracting Coulomb field. In the
(u, p,) phase plane, the trgjectories are found to be both
above and below the separatrix. The most interesting
trajectories are snakelike trajectories, which occur in
the vicinity of one of the saddle points in the (u, p,)
No. 6
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phase plane for h > 0 (Fig. 1). Thistype of trgjectories
will be examined below.

(iii) Region-1 < B <1, h> J/2(B + 1) isthe only
region where the finite trgjectories, which are charac-
teristic of an electron trapped by an ion, are possible.
Infinite trajectoriesin this region are similar to thosein
region (ii). In the vicinity of one of the saddle pointsin
the (u, p,) phase plane (Fig. 1), the electrons can move
along snakelike trajectories, as in region (ii). Among
the finite trajectories, there are self-recovering trajecto-
ries, which are similar to those in region (i).

(iv) Region3>1,h<—./2(B—1) isprimarily char-
acterized by infinite non-self-intersecting trajectories
that smoothly encircle the center of the Coulomb field.
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1

Fig. 2. Parameter plane for an electrostatic field. The regions of possible electron motion in the (x, 2) plane are hatched (seetext for
details). The snakelike trajectory is presented in a separate frame, and the region where the snakelike trajectories can exist is indi-

cated by an arrow.

(V) Inregionf3>1,h>-4/2(f —1), electron motion
is forbidden.

We stress that the division of the phase plane in
Fig. 2 into five regions remains the same regardless of
the field direction. Note also that, in an anal ogous prob-
lem of celestial mechanics, the trajectories were classi-
fied by analyzing the integrals of motion (see, e.g.,
[13]).

Equations (15) do not include the centrifugal force
arising in the three-dimensional problem. In the case of
nonplanar motion, Egs. (15) contain the term —M/u?
and, accordingly, the term —M/v?3, which reflect the
angular momentum conservation. We can show that, in
quasi-planar geometry (M < 1), the electron trajecto-
ries differ from planar only dightly. Taking into
account the angular momentum does not lead to new
No. 6
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Fig. 3. Phase planes (u, p,) without (left) and with (right) allowance for the centrifugal force.

physical effects. In this case, the phase planes for the
coordinates u and v are each divided into two similar
regions (cf. Figs. 1, 3), which are “confined” to the
u=0 and v = 0 axes, provided that the field is suffi-
ciently strong. Calculations show that, in the genera
case, the situation is essentially the same.

To conclude this section, we present the exact solu-
tions u(s) and v (s) in terms of Jacobian elliptic func-
tions:

—H
Urin(S) = /\/T% - 1_# T\E

x i -H— J_Vz_y_\fF‘E,
=

_ [H+JH*+2(1-B) 22
v(s) = >

Uint (S)

xcn% ———-———-—————“H2+§(1_B)+¢,
HA/H’ +2(1 B) + H? +2(1— B)D

2H? +4(1-p) D

wherey=2(1 + B)/H? and H = —h is the Hamiltonian of
the system. Thefirst solution, u;,(S), describes electron
trajectories that are localized about the center of the

PLASMA PHYSICS REPORTS  Vol. 27
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Coulomb field and are modified Keplerian €liptic
orbits. The characteristic feature of these trajectoriesis
that they do not close upon themselves because of the
different periods of electron oscillationsin the uand v
directions. The second solution describes unbounded
trajectories of the electrons that come from and go to
infinity. These trajectories contain snakelike paths,
which indicates that the electron may remain near the
ion for along time.

L et us examine these trajectories in more detail. An
analysis of the phase portraitsin Fig. 1 shows that the
trajectories pass near a saddle point in the (u, p,) phase
plane. In other words, such “resonant” electrons are
characterized by the parameters (Fig. 4)

(1) h<0, B=-1,
(2) h>0, h’=2(B+1).

Along the separatrices in the phase plane for the
u-coordinate, the v(s) coordinate oscillates according
to the law

(23)

H+ H+4

vi(s) = >
xcn% dH 4 HeJH 4 (o
2 H?+4 O

vy(s) = [1- gcn% + o, 2%“%.

Since the parameter of the Jacobian elliptic functionsis
smaller than 1/2, these oscillations can be regarded as
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Fig. 4. Electron trgjectories near the saddle point in Carte-
sian coordinates.

being amost harmonic. Below, this circumstance will
be used to construct the adiabatic approximation.

The behavior of the u coordinate is qualitatively dif-
ferent. When approaching the saddle point in the phase
plane (Fig. 1), the electron velocity decreases, so that
the electron remains near the saddle point with the
coordinates

u(s) = Jﬁsinh%/g%_l,

Uy(s) = —ﬁtmh%rg_

for quite a long time s,, which can be estimated from
the known formula as

%zzﬁlné,

where & is the minimum distance between the electron
trajectory and the saddle point in the (u, p,) phase plane
(Fig. 1). For an alternating electric field, this time can-
not be longer than the half-period of the electric field.
As aresult of transverse oscillations, an electron

acquires a dipole moment that is perpendicular to the
external field. The dipole moment governs the charac-

(25)

(26)
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teristic features of the bremsstrahlung spectrum (see
Section 5 for details).

Note that the snakelike trajectories satisfy the con-
dition
s> 1, (27)
which implies that the electron has enough time to
experience many oscillations in the v direction before
its u coordinate changes substantially. This circum-
stance enables us to predict that the bremsstrahlung
spectrum will be peaked at frequencies that are multi-
ples of the frequency we! Such factors as intense radi-
ation emitted by an electron moving along a snakelike
trajectory and low electron energy raisethe hopethat an
alternating electric field will act to enhance recombina-
tion and bond an electron to an ion.

4. ADIABATIC APPROXIMATION

Above, we have analyzed electron motion in astatic
external electric field. For a lowly changing external
field, we can use an adiabatic approximation. Recall
that, in the most interesting case of snakelike trajecto-
ries, the electron motioninthe v directionisperiodicin
the fictitious time s and is weakly sensitive to changes
in the external field. These circumstances enable us to
introduce the action variable |, and the phase variable
associated with the v coordinate and to construct the
desired adiabatic approximation.

In Cartesian coordinates, an el ectron moving along
asnakeliketrajectory experiences oscillations along the
arc of a parabola, which itself moves slowly along the
external field (see Fig. 5, which is amodel representa-
tion of the snakelike trgjectories shown in Fig. 4).

The adiabatic description actually implies that the
characteristic frequency of the external field is much
lower than the frequency of fast electron oscillations:

Q)<<(,q5:1:4£_ (28)
le m°Z

Inequality (28) corresponds to the condition for an
electron to interact with anion for ashort time in com-
parison with the external field period. This permits us
to describe the e interaction in the sameway asin the
case of a static field. We can see that the adiabaticity
condition (28) failsto hold as E — 0, where E is the
instantaneous external field at thetimewhen acollision
event occurs. However, the above considerations do not
imply that this approach can be used to describe the
globa parameters of the electron distribution in the
plasma, because, in [12], we showed that, in an alter-
nating field, it isimportant to take into account the el ec-
trons that repeatedly return to anion.
PLASMA PHYSICS REPORTS  Vol. 27
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In the adiabatic approach, we can find an adiabatic
invariant for the periodic motion in the v direction:

_ 24/n* +4fc,

J = fpvdv =3 T
0 Em L KmE

x [
Q./h2+afc,—h)y N O
m = 1+L’
Jn’+afc,

where E(m) and K(m) are complete elliptic integrals of
the first and second kind, respectively.

Let us convert the integrals of motion (19) to aform
convenient for interpreting the results obtained. Note
that the equation for v describes a nonlinear oscillator.
Consequently, we can introduce the action—phase vari-
ables J and © such that

c,=c,(J, hf), (30)

inwhich case the constant ¢, for u satisfiesthe equation

2
2u'
——Z——fu
u u

._1-4c,(3,0 1) _

2

(31

Introducing the new time

dt = u’ds (32)
and the new coordinate
£ = U (33)
we obtain
1..2 1-4c, _
QET—fE— 7 = h. (34)

Hence, we reduce the problem to that of describing
one-dimensional motion in both the external field f and
the Coulomb field that is produced by an effective
charge 1 -4c,, distributed over a paraboloid with aver-
tex a the point z = &. The condition ¢, = 1/4 corre-
sponds to an electron that comes from infinity and
becomes trapped near the center of the Coulomb field.
For ¢, = 1/4, the electron remains trapped by an ion for
a finite time. The relevant electron trajectories are
described by the analytic formulas (24) and (25).

The smadlness of ¢, aong the snakdlike trgjectories
under consideration allows usto smplify expression (29).
To first order in the small parameter fc,/h?, wefind

J=4c,./h = =E./h(h+Hy,), (35)
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Fig. 5. Explanation of the motion along snakelike trajecto-
ries.

.2
2p; 1 FrafE 1
whaeo= S —p e gT oz T
.2
rneff% - :E—L —f& and m,;; has the form
2
meff:%-‘l'g%- (36)

According to formula (35), the first-order Hamiltonian
H=-his

_fE.

-2
2% 1-4
+ 30 % S (37)

&

We emphasize that, in contrast to the problem that is
originally formulated in four-dimensional phase space,
Hamiltonian (37) describes one-dimensiona electron
motions, which allows asignificant amount of progressin
the qualitative analysis of the problem. Expression (37)
implies that, when an electron approaches an ion, its
effective mass increases. This effect is attributed to the
conversion of the longitudinal energy of an electron
into its transverse energy; as a result, an electron is
reflected at alarge distance from the ion.

Note that the coordinate & introduced in the above
manner is positive. In other words, in Hamiltonian (37),
the transition of & through zero is forbidden (one can

readily see that the velocity & vanishes as & — 0).
Nevertheless, Hamiltonian (37) also describes periodic
electron motions.

Qualitatively, electron motions at small (§ < 1) and
large (§ > 1) distances from the ion are well described
by Hamiltonian (37). At large distances, the electron
motion is a superposition of fast oscillations along the
radial coordinate r_ and a slow drift in the Coulomb
field of an ion with renormalized charge. When
approaching the region & < 1 (or, in dimensional vari-
ables, r < rp), an electron sharply changes its direction
of propagation on a very short time scale. This change
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isvery similar to the jumplike transition of aslow elec-
tron from one trajectory to another.

Now, we apply the adiabatic approximation con-
structed above in order to determine the radiation spec-
trum of an electron.

5. RADIATION SPECTRUM

The radiation spectral intensity 1, is related to the
dipole moment spectrum d,, by the well-known expres-
sion |, = w’d,,. In order to determine the spectrum d,,,

we turn to the adiabatic approximation. In Levi-Civita
variables, we have

i er ds

d, = eIre rds. (38)

The spectrum of the transverse component of the
dipole moment is of the greatest interest for our study,
because the spectrum of the longitudinal component
corresponds to the bremsstrahlung spectrum that was
analyzed in detail when solving the one-dimensional
problem. Thisisrelated to the fact that, for small-angle
scattering, the longitudinal oscillating component of v
is small. As a result, the bremsstrahlung spectrum is
determined by the spectrum of &.

Let us analyze the qualitative features of the dipole
moment spectrum (39). For a portion of the trgjectory
along which the variable u changes gradually over the
period of oscillationsin the v direction, we arrive at the

approximate dependence t = (rds = rys (wherer, =
0. Consequently, we can expect that the spectrum

0.8

0.61

0.4

0.2
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will be peaked at frequencies that are multiples of the
frequency w = w/r,, where @ = 1 is the frequency of
oscillations in the v direction. Note that, under condi-
tion (27), an electron will emit radiation at frequencies
that are multiples of the frequency equal to unity (or, in
dimensional variables, to wg) for a long time. This
effect significantly increases the efficiency of emission
at higher harmonics. The above conditions are well sat-
isfied for snakelike trajectories, i.e., for electrons that
remain near theion for along time. In the (u, p,) phase
plane, the corresponding trajectories pass near the sad-
dle point.

Let us estimate the shape of the spectrum of the
transverse dipole moment. In the adiabatic approxima-
tion, the variable v changes harmonically in the ficti-
tioustime:

V = v ,cos(®s). (39)
We al so assume that u = u, = const, which corresponds
to electron motion near the saddle point in the phase

plane. In this case, we can make simple estimates to
obtain

uozﬁ, w=1, uvy=4JdlJh<1,u,. (40

As a result, the spectrum of the transverse dipole
moment in dimensionless variables has the form

doy = 20y J,E%hgé%ng+ 1+2tH. @1

A At | |

1.5 2.0 25 3.0

wWwg

Fig. 6. Analytic spectrum of the normalized transverse dipole moment.
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Fig. 7. Numerical spectrum of the normalized total dipole moment.

6 8
wWwg

Fig. 8. Numerical spectrum of the normalized transverse dipole moment.

In dimensional variables, the Hamiltonian his close to
unity, so that the spectrum hastheform of aset of delta-
functions at frequencies equal to 2w (2n + 1).

To concludethis section, note that formula(41) does
not account for the effects associated with the changein
the longitudinal coordinate u, in which case the
No. 6

PLASMA PHYSICS REPORTS  Vol. 27 2001

bremsstrahlung generated by an electron broadens the
spectral linesto awidth of about 1/1, wheretisthetime
scale on which an electron remains near the saddle
point (Fig. 1). Note also that the appearance of anarrow
peak at low frequencies (w =0) is associated with the
conventional bremsstrahlung. As a result, we arrive at
the spectrum shown in Fig. 6.
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Integrating the basic equations numerically yields
analogous spectra (see Figs. 7, 8). We can see that the
numerical spectra are also peaked at frequencies that
are multiples of the frequency weg. The higher the fre-
guency of the emitted electromagnetic wave, the wider
the peaks in the radiation spectrum.

Notethat the peaksin the spectrum of the transverse
dipole moment (Fig. 8) are more pronounced compared
to those in the spectrum of the total dipole moment
(Fig. 7). Individual electrons emit radiation preferen-
tially in the direction of the external field. The total
radiation emitted by an ensemble of electrons is qua-
drupole in character, because the center of mass of the
ensembleis not accelerated in the transverse direction,
in which case, however, the shape of the frequency
spectrum of the dipole moment remains the same.

In accordance with the simplest analytic approxima-
tion (41), the main difference between the spectrum
shown in Fig. 6 and the spectrum in a weak external
field is in the presence of two additional peaks in the
intensity of radiation emitted by an electron. It is
important to note that the height of the second peak,
which is associated with fast transverse electron oscil-
lations, is equal in order of magnitude to the height of
the main peak. For this reason, we can expect that the
electromagnetic waves will be efficiently excited at the
corresponding frequencies.

6. DISCUSSION OF THE RESULTS

We have carried out an analytic investigation of the
characteristic features of the scattering of an electron
by an ion with a Coulomb potential in the presence of
an externa eectrostatic field. The most interesting
result is that we have revealed the existence of snake-
like trgjectories. The other results can be summarized
asfollows.

(i) The equation of electron motion in the Coulomb
field of an ion has been regularized by switching to the
Levi-Civita variables [14]. The regularization proce-
dure makesit possible not only to simplify analytic cal-
culations of the electron trgjectories in a prescribed
static field but also to increase both the accuracy and
rate of numerical computations of the electron mation
in an alternating electric field and in the Coulomb field
of anion. A dightly modified version of thisregulariza-
tion method was also applied in our paper [12].

(ii) The electron motionsin a static field have been
classified, and an explicit time-dependent solution has
been derived. It should be noted that the explicit expres-
sion for the time-dependent electron coordinates,
which has been obtained here for the first time, will
make it possible to clarify possible applications of our
results and, in particular, to determine all of the param-
eters of electron scattering by anionin auniform elec-
trostatic field. Thiswill be done in subsequent papers.

(iii) The equations of the adiabatic approximation
developed here enabled us to formulate the problem in

BALAKIN et al.

three-dimensional phase space. Using the adiabatic
approximation, we have shown that snakelike trajecto-
ries, which are most interesting in the problem under
investigation, can substantially modify the spectra of
radiation emitted by electrons during stimulated scat-
tering in a strong field. In accordance with expression
(41), the spectrum of the dipole moment of the “opti-
mum” electrons (Figs. 6, 8) is peaked at frequencies
that are multiples of the frequency 2we. We emphasize
that the spectra of the dipole moment of the trapped
particles are peaked in an anal ogous manner. Of course,
in this case, the equations of the problem should be
guantized. However, the atoms in Rydberg states are
obvioudly subject to the transverse focusing effect that
stems from the large asymmetry of the classical trajec-
tories of trapped electrons (as well as to the longitudi-
nal polarization effect). These questions will be ana
lyzed in a separate paper.
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Abstract—The polarization bremsstrahlung from thermal electrons scattered by the Debye sphere of anionin
aplasmais studied in the quasiclassical approximation. The model of the local plasma frequency is used to
check the validity of the asymptotic expression for the polarizability of the electron cloud of anion in the high-
frequency range. This asymptotic expression isthen used to derive aformulafor theintensity of the total effec-
tive polarization bremsstrahlung. The R factor (the ratio of the contribution from the polarization bremsstrahl-
ung to the contribution from conventional static bremsstrahlung) is obtained as a function of the plasma cou-
pling parameter and electron density in order to analyze the role of the polarization bremsstrahlung in the total
bremsstrahlung of the thermal plasmaelectrons. The spectral intensity of the effective polarization bremsstrahl-
ung is calculated in the rotational approximation, which was previously employed in the theory of conventional
static bremsstrahlung. It is shown that the spectral intensity of the polarization bremsstrahlung from thermal
electrons scattered by the Debye sphere around an ion, as compared with the polarization bremsstrahlung by
fast superthermal electrons, decreases more gradually with increasing frequency. © 2001 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

The polarization bremsstrahlung from the Debye
clouds surrounding colliding charged particles in a
plasmais associated with the emission of a photon asa
result of scattering of the incident particle by the polar-
ization charge. Previously, the polarization
bremsstrahlung (the transition bremsstrahlung in the
terminology introduced originally by Akopyan and
Tsytovich [1, 2]) was studied in the context of super-
thermal charged particles in the Born approximation.
This approach makes it possible to describe the interac-
tion of a photon-emitting charged particle with the scat-
tering center by perturbation theory [3]. Then, the spec-
tral intensity of the polarization bremsstrahlung can be
calculated by the method of nonlinear current [1] or the
method of the dynamic form factor of the plasma com-
ponents [3].

The study of transition bremsstrahlung in the Born
approximation is certainly of much physical interest. In
fact, the higher the particle energy, the larger the rela-
tive contribution of the transition bremsstrahlung to the
total bremsstrahlung generated by charged particlesin
aplasma, because the frequency range w <y wy,. (Where
y=(1-v?c*~2isthereativistic factor, wy istheelec-
tron plasma frequency, and v isthe velocity of theinci-
dent particle), in which the conventional bremsstrahl-
ung is suppressed by adensity effect, broadenswith the
particle energy.

On the other hand, the Born parameter n = Ze*/Av
for thermal plasmaelectronsis, asarule, larger than or
on the order of unity; consequently, for most of the
plasma electrons, the bremsstrahlung intensity should
be calculated in the opposite (quasiclassical) approxi-
mation (n > 1). In fact, the semiclassica approach
developed by V.I. Kogan and his collaborators [4, 5] on
the basis of the quasiclassical approximation (in partic-
ular, the methods of the so-called Kramers electrody-
namics [6], which are aimed at investigating collision
and emission processes during the motion of charged
particles along strongly curved trajectories) proved to
be very efficient when calculating conventional static
bremsstrahlung in the Coulomb field as well as in the
atomic field. The relative error in using the semiclassi-
cal approach to calculate bremsstrahlung is no larger
than severa percent, as compared to the consistent
quantum-mechanical approach [5].

Accordingly, it isnatural to expect that the semiclas-
sical approach can also be used to determine the contri-
bution of the polarization bremsstrahlung to the total
bremsstrahlung intensity. For the polarization
bremsstrahlung of the bound electrons, this problem
was solved in [7, 8] by using the Brandt—Lundqvist
plasma model [9] for the polarizability of the electron
shell of the target atom (ion).

Our purpose here is to apply the methods of the
Kramers electrodynamicsin order to calculate the total
and spectral intensities of bremsstrahlung from thermal

1063-780X/01/2706-0474$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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plasma electrons by the Debye clouds around the ions
in aplasma.

2. METHOD OF CALCULATION

The method of calculation used here is based on
both the semiclassical approach mentioned in the Intro-
duction and thelocal plasmamodel of the polarizahility
of the Debye sphere around an ion in a plasma (the
Brandt—Lundqvist model). This model was originally
developed in order to describe the photoionization of
atoms[9] in the frequency rangein which the main con-
tribution to the photoeffect comes from such distances
from the nucleus that are on the order of the corre-
sponding Thomas—Fermi radius.

In the Brandt—Lundgvist model, the polarizability
of the electron subsystem of the target (the Debye
cloud) at the frequency w hasthe form

Ro 2,.\.2
GBL((O) =J. zwp(r)rzdr.
Ooop(r)—oo —id

local plasma frequency () =

= J'BBL(r, w)dr. (1)

Here, the

4n(e2/ m.)n.(r) depends on the electron density at a
given point in the plasma and BB-(r, w) is the dynamic
polarizability of a spherical layer of unit radius (the
spatial density of the target polarizability).

In [7, 8], it was shown that the local approach to
describing the target polarizability (1) makesit possible
to introduce the nondipolar polarization potential of the
interaction of an incident parti cle with the target,

RE(w)

Vil (R, @) = J’B(r w)4Tr 2dr 2)

and the related induced dipole moment of the electron
shell of the target,

R

Dy (R, @) = —RBBIB(r, w)4r’dr, 3)
0

which determines the effective spectral intensity of the
polarization bremsstrahlung:

deoI((*))
dw

I|Dpo|(co o)l pdp: )

where the Fourier transformed polarization dipole
moment (3) of the Debye sphere at the frequency

D;’OI (w, p) iscalculated along the trajectory of theinci-
dent particle with the impact parameter p.

It is worth noting that, from a physical standpoint,
the Brandt—Lundgvist model is even better suited for
the problem under consideration than for the problem
of the polarization bremsstrahlung from bound elec-
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Fig. 1. Ratio of the polarization bremsstrahlung intensity in
the Brandt—L undqvist plasmamodel for the polarizability of
the Debye sphere to that in the high-frequency limit vs. the
ratio of the polarization bremsstrahlung photon frequency to
the plasma frequency. The profiles were calculated in the
rotational approximation for T= 1€V and for different elec-

tron plasma densities n, = (1) 108, (2) 107, and
(©)] 10712 atomic density units (one atomic density unit is
equal to ~8 x 10%* cm™).

trons[7, 8]. In fact, the maotion of plasma electrons that
occur inside the Debye sphere and emit polarization
bremsstrahlung photons is only dlightly affected by
guantum-mechanical effects.

On the other hand, from Fig. 1, we can see that, in
the Brandt—Lundqvist model, the polarizability of the
Debye sphere in the frequency range w > w, essen-
tially coincides with its value in the high-frequency
limit, in which the spatial polarizability density has the
following form (here and below, we use atomic units):

Woe(r) _  Ne(r)
ane 0

Bo(eo, 1) = ©)

Inside the Debye sphere, the electron density is
equal to

Z exp(— r/rDe)

ne(r) = (6)

4TtrDe r

where rp, is the electron Debye radius. With this
expression, the induced dipole moment (3) becomes

1R

S(wR) = Ne(R); (7
W'R’
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where the number N.(R) of plasma electrons within a
sphere of radius Risequal to

R
N,(R) = I4nne(r)r2dr "

R/rDe

= Z[l-e (1+ R/rpe)].

3. TOTAL BREMSSTRAHLUNG LOSSES

In order to calculate the intensity of the total (inte-
grated over the impact parameter and frequency) effec-
tive bremsstrahlung generated by an electron with
energy T scattered by the Debye sphere of an ion, we
start with the expression

Tih

KpoI = J-deoI(w)- (9)

Substituting formulas (4) and (7) into expression (9),
we obtain

K (T) = — J'pdp Hdtdt
(10)

Tih
gt t)MN[R(t)]N[R(t )] dw
I Rorw©

Here, the lower limit of integration over frequency is
set equal to zero. However, in redlity, the transverse
photons are known to propagate in a plasmaonly under
the condition w > wy,.. Consequently, this choice of the
lower limit of integration corresponds to an ideal
plasma, in which the characteristic correlation time
scalefor the motion of the scattered electronsis smaller
than the inverse plasma frequency.

Then, we turn to the equality 7 e e = &t -

t"), inwhich, in accordance with the quasiclassical con-
dition# — 0, we extend the upper limit of integration
to infinity. In formula (10), we pass over to the new
integration variables R, in which case the lower limit of
integration becomes equal to the minimum impact
parameter r..(p) (or, equivalently, the minimum dis-
tance between the incident electron and theion) and the
integral itself should be doubled, because the integrand
in formula (10) is an even function of time. We also
integrate over the impact parameter p in the same way
aswasdonein [4]. Asaresult, we abtain

(D)
Kpo' =

L, 1220

eyl

ASTAPENKO

Here, Up(r) = -Zexp(—I/rpe)/r isthe Debye screening
potential of an ion in a plasma and the polarization
forcef,, (r) hasthe form

Ne(r)

r

fpol(r) = (12)

Therepulsive force (12) is exerted by electronsthat are
inside a sphere of radius R on the incident electron.
According to Newton's third law, the incident electron
exerts an equal force on the electronsinside the sphere,
thereby accelerating a negatively charged electron
cloud around an ion as a single entity and driving the
polarization bremsstrahlung.

We also present the expression for the intensity of
the total effective static bremsstrahlung [4]:

D(r) 2

kY = J’fst( ) [1-=2-2%dr;  (13)

3/\/—
where f(r) = —dUp/dr is the ordinary “static” force,
which governs the trgjectory of the incident particle.

Note that, although formulas (11) and (13) are very
similar in structure, thereisan important difference: the
integral in expression (13) diverges at the lower limit
(in the quasiclassical approximation, as 5/Zdr) and

should be truncated, whereas, in formula(ll), the inte-
gral at the lower limit is converging. The latter is
explained by the fact that, according to formula (8), the
charge N.(R) of the plasma €l ectronsthat emit polariza-
tion bremsstrahlung photons approaches zero as R
decreases.

Using relationships (8), (11), and (12) and the above
formula for the Debye potential, we arrive at the fol-
lowing expression for the intensity of the total effective
polarization bremsstrahlung:

(0 - 8T z! Zi o230
Pl 3,\/_TrDe Crpe

where we introduce the function

(14)

00

d(x) :J'[l—(1+r)e"]2 1+ (xIr)edr/r®. (15)
0

The parameter a; = Z;/2T isthelength of Coulomb scat-
tering of an electron W|th energy T by the Debye cloud
of anion of charge Z;.

Note that the ratio 2a;/rp. is inversely proportional
to the plasma coupling parameter. For an ideal plasma,
we have 2a;/rp. < 1.

The plot of the function ®(x) isshown in Fig. 2. We
can seethat the functionisgradually increasing, so that,
PLASMA PHYSICS REPORTS  Vol. 27
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for an ideal plasma, we can set ®(§) = 0.5, in which
case expression (14) becomes

(O _ 4m z?
Kp0| -_ 3 - .
3¢°./2Toe

When applied to one ion, formula (14a), which is
valid for quasiclassical motion of the incident particle,
coincides with the corresponding formula derived by
Tsytovich [10] for the intensity of the total polarization
bremsstrahlung generated by superthermal electrons
moving along straight trajectories.

Hence, we can conclude that, in an ideal plasma, the
total effective polarization bremsstrahlung generated
by an incident particle is weakly sensitive to the shape
of the particle trajectory.

For effective static bremsstrahlung in the Coulomb
field of an ion, expression (13) with the integral trun-
cated at the lower limit takes the form

8TZ /2T ¥y + 232
o= [g‘x Zg —1}; (16)

wherex,, = (2./2T /Z,)*3.
For x,, < 1, formula (16) simplifiesto

s = 8,\/231'[23.
9c
Formula (16a) differs from the Kramers formula
only inanumerical coefficient of about 0.8, because the
radius at which the integral in expression (13) is trun-
cated is taken with an approximate numerical factor.
Using the familiar expression for the Debye radius,
we obtain from formulas (16a) and (14a) theratio of the
contribution of the polarization bremsstrahlung to that
of static bremsstrahlung:

(14a)

(16a)

D
D _ KpoI . Ne
R°(n, T) = r 3.

Thisrelationship impliesthat, in order for the polariza-
tion effects to make a significant contribution to the
total bremsstrahlung of an incident electron scattered
by the Debye screening cloud around an ion, the
plasma should be sufficiently dense and cold.

For a laser plasma with the parameters n, = 7 x
108 cm= and T = 1 eV, the ratio RP is estimated as
RP =0.1.

For n,= 7 x 10%° cm, we have RP = 1, in which
case, however, the plasma is nonideal, because the
plasma coupling parameter is smaller than unity.

It is of interest to estimate the contribution of the
polarization bremsstrahlung for a plasma in the solar
interior, where n, = 5.7 x 10% cm> and T = 1550 eV.
With these parameter values, formula (17) gives RP =
0.15.

(17)
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Fig. 2. Plot of the function ®(x), which is defined by for-
mula (15) and enters expression (14) for the intensity of the
total effective polarization bremsstrahlung from a thermal
electron scattered by the Debye cloud of anionin aplasma.

In terms of the plasma coupling parameter { =
(4TY3)r N, the ratio RP has the form

6

R°(n, ) = 1.24%3. (17a)

One can see that, for afixed coupling parameter ¢,
the ratio RP is amost insensitive to the density of the
plasma electrons.

The above analysis shows that the contribution of
the polarization effects to the total bremsstrahlung
losses suffered by the thermal plasma electrons scat-
tered by the Debye cloud around an ion in a nondegen-
erate plasma may be comparable with that of conven-
tiona static bremsstrahlung only when the plasma is
sufficiently cold and dense, such that the coupling
parameter  ison the order of unity. Otherwise, theratio
of these contributionsis no larger than 10-15%.

4. SPECTRAL BREMSSTRAHLUNG LOSSES
IN THE ROTATIONAL APPROXIMATION

Here, we calculate the spectral intensity of the effec-
tive polarization bremsstrahlung (the  spectra
bremsstrahlung losses) in the rotational approximation,
which was previoudy used to determine the spectra
intensity of the conventional static bremsstrahlung [4-6].
Formally, this approximation implies that expression
(11) should be supplemented with the delta function of
the frequency difference w— w,(r), where the angular
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frequency w,,(r) of rotation of the incident particleat a
given point in the plasma has the form

W(r) = /2—(1— +r|;J(I’)|)

Then, we arrive at the following expression for the

(18)

spectral  intensity of the effective polarization
bremsstrahlung:
(rot)(w)
T dw
0 (19)
w_J'fpd(r) 1-—— D —2 =3[0 Wy(r)] rdr.
Taking theintegral in this expression, we find
dKp (@) _ 8T 5 (1) o _
= ; (19a)
dw

3¢%/2T 1+|U(ry)|/(w’ry)
where the quantity r, satisfies the equation
W = Wu(r). (20)
The expression for the spectral intensity of the
effective static bremsstrahlung is analogous to expres-
sion (19a):
dkg (@) _
dw

smfi(r,) re

3¢%/2T 1+|U;(ro)|/(w’ry)

Formula (21) differs from formula (19a) only in that it
contains an ordinary static force exerted by a plasma
ion on the incident electron instead of the polarization
force (12).

Asaresult, using formulas (19a) and (21), we obtain
the following expression for the spectral R factor in the
rotational approximation:

21)

(rot)
R(rot)( ) ((.0)
d (rot)
() )
— |:fpol(rw)i| e(rw)
fSt(r(o) U (r )

With the above formulas for N.(r) and U(r), expres-
sion (22) becomes

R™ (@) = [1 3 exp(rw/rDe)}2

1+r,/r
o (22a)
10w
= (roo< rDe) = 45. D
When deriving expression (224a), we used the inequality
I'e < I'bes Which applies to an ideal plasma and is valid
in the frequency range w= w = v3/Z, i.e., for frequen-

ASTAPENKO

ciesthat are on the order of (or higher than) the charac-
teristic Coulomb frequency.

From expression (22a), we can see that, in the rota-
tional approximation, the polarization bremsstrahlung
at frequencies w > wy, makes only asmall contribution
to the spectral cross section for bremsstrahlung from
thermal electrons scattered by the Debye sphere of an
ion. Estimates show that R™(w) < 0.01 in this case.

For a Coulomb field, the quantity r, has the form

rg = 3A/22i/oo2 . From this expression and from formula

(22a), the law according to which the factor R™9(w)
decreases can be obtained in an explicit form:

1 (22)"
4 8/3
D (1)

In the frequency range under consideration, the
spectral intensity of the static bremsstrahlung depends
weakly on the frequency. Conseguently, in the rota-
tional approximation, formula (23) can be used to
determine the frequency dependence of the spectral
intensity of the effective polarization bremsstrahlung
from thermal plasma electrons scattered by the Debye
sphere around an ion:

dkpa (@)
dw
The frequency dependence (24) is somewhat differ-
ent from the dependence [10]

di (g (w)/dw 0 o™, (25)
which describes a decrease in the spectral cross section
for bremsstrahlung from superthermal electrons in the

frequency range w > (V/Ve) Wpe.

Rp (W) =

(23)

(24)

5. CONCLUSION

The polarization bremsstrahlung from thermal
plasma el ectrons scattered by the Debye sphere around
anioninaplasmahas been studied in the quasiclassical
approximation. This work complements papers [1-3],
in which a related problem was solved for fast super-
thermal electrons. The total polarization bremsstrahl-
ung losses have been determined as functions of the
plasma coupling parameter and electron plasma den-
sity. It is shown that the Rfactor (theratio of the contri-
bution of the polarization bremsstrahlung to that of
static  bremsstrahlung) increases gradually with
increasing the density of the thermal electrons and is
usually no larger than 10-15%.

The spectral intensity of the effective polarization
bremsstrahlung generated by the thermal electrons has
been caculated using the rotational approximation,
which was previously applied in the theory of static
bremsstrahlung [4—6]. Analysis hasrevealed that, inthe
frequency range w > wy,, the polarization bremsstrahl-
PLASMA PHYSICS REPORTS  Vol. 27
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ung from the thermal electrons makes only asmall con-
tribution to the total bremsstrahlung. A comparison
between the asymptotic expressions (24) and (25)
shows that the spectral intensity of the effective polar-
ization bremsstrahlung decreases more gradually than
that of the transition bremsstrahlung in the Born
approximation (see[2]).
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Abstract—Microwave generation by an electron beam in a coaxia transmission line in which the inner and
outer conductorsare both corrugated i s studied theoretically. An annul ar electron beam propagatesin atransport
channel filled entirely with plasma. The eigenmodes of the plasma-filled coaxial line are studied, aswell ashow
they are affected by the plasmadensity. It is shown that, in the presence of aplasma, the microwaves are ampli-
fied to a significantly greater extent and the spectrum of the generated microwaves is broader. The nonlinear
amplification regime is analyzed. The maximum possible amplitude of the longitudinal electric field and the
interaction efficiency are determined as functions of the plasma density. A comparison between the results
obtained and the analogous parameters of a vacuum structure shows that plasma-filled hybrid structures are
more promising than vacuum sources. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A vacuum slow-wave structure acquires the well-
known hybrid properties when its interaction chamber
(the transport channel, where an electron beam propa-
gates) is filled with a plasma. The principles of opera-
tion of hybrid plasma-filled slow-wave structures were
first described in [1-3]. Filling the transport channel
with a plasma makes it possible to substantialy
enhance the longitudinal electric field, so that the cou-
pling constant increases and, accordingly, the amplifi-
cation coefficient of the generated microwaves
becomes larger. Under proper conditions, the beam
interacts with the natural waves of a vacuum structure,
thereby generating intense microwave power fluxes.
Experimental investigations [4—6] confirm the theoret-
ica predictions that hybrid slow-wave structures pro-
vide a basis for the creation of high-power oscillators
and amplifiers.

Recall that, in research on hybrid plasma structures,
the first experiments were carried out with vacuum
slow-wave structures in the form of a chain of coupled
cavity resonators. In such hybrid plasma structures,
generation is most efficient when the frequency of the
synchronously excited microwaves is equa to the
plasma frequency. As a result, in a waveguide with a
given plasma density, the spectrum of the excited
microwaves is narrow (on the order of the instability
growth rate). Kornilov et al. [7] suggested that filling a
vacuum structure in which abroadband cable wave can
propagate with a plasma makes it possible to increase
the amplification coefficient, while maintaining the
broadband amplification.

This paper is aimed at investigating the amplitude—
frequency characteristics of an amplifier based on a
coaxia transmission line in which the inner and outer
conductors are both corrugated and the transport chan-
nel isfilled entirely with a plasma. The linear and non-
linear theories of an amplifier based on an analogous
vacuum structure were reported at the Seventh Crimea
Conference on Microwave Techniques and Telecom-
munication Technology (Sevastopol, Ukraine) and the
Twelfth International Conference on High-Power Parti-
cle Beams (Haifa, Israel) and were also published inthe
proceedings of these conferences ([8] and [9], respec-
tively) and in [10]. It was shown that, in such a
waveguide structure, microwaves are actualy gener-
ated in a broad frequency band. The objective of our
paper is to investigate how the dispersion properties,
amplification coefficients, and microwave amplitude
change in a coaxia slow-wave transmission line in
which the transport channel is filled with a plasma. It
should be noted that Kornilov et al. [7] carried out pre-
liminary calculations of the amplification coefficients
and coupling impedancesin aplasmafilled coaxial line
in which only the inner conductor is corrugated. They
showed that the presence of a plasma can substantially
alter the electrodynamic parameters of the waveguide
structure if the radius of the transport channel is com-
parable with or larger than the wavelength of the ampli-
fied microwaves. This effect is attributed to the surface
nature of the resonant wave (in [7], the electron beam
was assumed to interact with the zeroth spatial mode of
the cable wave). The overall picture of the microwave
amplification changes substantially only if the plasma
density isvery high.

1063-780X/01/2706-0480$21.00 © 2001 MAIK “Nauka/ Interperiodica’



MICROWAVE AMPLIFICATION IN A COAXIAL SLOW-WAVE PLASMA

2. LINEAR REGIME

The slow-wave structure under consideration
(Fig. 1) isacoaxia transmission linein which the inner
and outer cylindrical conductors (of radii p and b,
respectively) are both corrugated. The transport channel
with aninner radius o and outer radiusaisfilled entirely
with a plasma of density n,. The microwaves in the
trangport channel are generated by a thin annular elec-
tron beam with a radius r, velocity v, and current I,,.
Let the period of the structure be D and let the resona-
tors be the same width equal to d. The inner conductor
can be displaced with respect to the outer conductor by
an arbitrary distancel.

In the linear approximation, the dispersion relation
describing the generation of a monochromatic wave by
an electron beam can be obtained by the method of sep-
arate regions. We conditionally divide the dlow-wave
structureinto four regions: (1) a<r <b, (IL.) 0<r <1y,
(IL)rp<r<a,and (1) p<r < o. For each of these
regions, we must solve Maxwell’s equations and match
the solutions (with arbitrary constants) at the bound-
aries. The periodicity of the slow-wave structure
enables us to represent the perturbations of al of the
guantitiesin the transport channel in the same manner:

m=o

= Z Xmexp(iBmZ_iwt)i (1)

where B3,, = B, + 2m/D, w is the wave frequency, and
the z-axis is directed along the symmetry axis of the
structure. Inside the resonators, we restrict ourselves to
considering the fundamental spatial mode of a standing
wave. The boundary conditions imply that, first, the
tangential components of the electric field should van-
ish at the metal surfaces and, second, the tangential
components of the electric and magnetic fields should
be continuous at the boundaries between the transport
channel and the resonators. The jump in the compo-
nents E, and H,, of the electric and magnetic fields at the
beam surface is proportional to the beam current

2ewl,

2 3
(W= BnVo) Yomecvry

wherey, = 1/,/1— vglcz.

For better convergence of the numerical method, we
takeinto account a quasi static singul arity of the tangen-
tial electric field at the steps of the corrugations [11,
12]:

E,m(rp), (2)

| ", Dl\/ll, |z+nD| <d/2
EZ = EZ r=a (3)
ED d/2<|z+nD| <D/2’
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Fig. 1. Configuration of a coaxial slow-wave structure.
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where M, and M, are arbitrary constants, the integer n
is the number of the resonator, and the origin z = 0 of
the longitudinal coordinate isin the middie of theinner
resonator.

Taking into account conditions (2) at the beam sur-
face and conditions (3) and (4), we match the longitu-
dinal components of the electric field at the bound-
ariesr =0 andr = a. Asaresult, we obtain the follow-
ing expressions for the components of the
electromagnetic field of the E-wave in each of the
above four regions:

Fo(k, 1, b) | Fi(k r,b)
E = Mip ey e = MEan ©
EIZII _ MzeiBol Fo(k, 1, p)’
FO(k! g, p) (6)
HIII — M iBol Fl(k! r, p)
¢ 2¢ Fo(k, 0,p)’

—i mq)o FO(kDmv r, a.)
Fo(kom 0, @)

Fo(kom 1, 0)  OnFo(Kam T 1) Fo(Kom T, O) 0
! Fo(Kom @, 0) (w— Bmvo)2 Fo(kom @, 0) 0

. d " —ikegW,, gz
Hy = 5 Z e

m
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|:| —imq)o Fl(kDm’ I', a) Fl(kDm, r, 0)
x [M,e —_— —+ M| =—————=
572 Fokom0,8) Y Folkom @ 0)
, (7
amFl(kDm! r! rb) FO(kDmv rbv 0) D
(w— [3mv0)2 Fo(Kom @, 0)

r

” d - _IBmSSlIJm IBm
=5 Z

m

D —im¢0 Fl(kDI’W r, a) Fl(kDm’ r, 0)
x M, e +M
577 Folkom0,a) Y Folkom & 0)
aranl(kDmv r,rp) Fo(Kogm My, 0) | O
(w-B,v,)° Folkom a,0)

||<

d _ W Bz
= _D_ZAme

[ FO(kDm! ’ )

(kDm1r1a)
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5 Y T
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M —_ 7
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—imd,
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* {Fo(kum, 0,a)
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Informulas (7) and (8), the expressions for the electro-
magnetic field components symbolized by “>" and “<”
arevalid in the regionsr > r, and r < ry, respectively.
Therest of the notation is as follows:

Fa(a, X, y) = Ja(ax)Yo(ay) — Ya(ax)Jo(ay),
€5 = 1—w§/m2,

Kom = /(K =B2)es, k = wic,

0o = 21/D, W, = sn(B,d/2)/(B,d/2),

2 2
w, = 4meny/m,

0 Fo(Kom Mo 8) Fo(Kom I, O)

A =1+
; (w=B.v,)? Folkoma,0)’
I 3 k2_ 2
o’ = I_EZ[E_(_g___@Ln_) I, = 17 KA,
A YoVo

where J, and Y,, are nth order Bessel and Weber func-
tions.
The condition that the radial microwave fluxes be

continuous at the surfaces of the transport channel, r = a
and r = g, yields the desired dispersion relation

Yo — Y11 Y = 0, 9)
v - d Z @wm Fi(kema0) __ On
. Dm: ook Om&m FO(kIZImf a, 0) ((;\)—[3mvo)2

Fo(kDmy o 0) Fl(k’ a b)
X Fl(kDm! a, rb) Fo(kDm’ a, O‘) - FO(k’ a, b)’
1(kom 0,8) O

d « kesWs
Y32=52 3l|J{

Fo(kem 0.8)  (co— B vo)°

X F1(Kgms O, Tp)

10
Folkom 1w 2)] Fukoaip) "
FO(kDmv a! 0) FO(k! G! p)’

i @w_fneim%a(kum, a, a)
- kDmAm FO(kDmi o, a)’

|m(p0Fl(kDm, g, O')
Fo(Kom & 0)

The quantities le and Y;, have a clear physica mean-
ing: they describe the eigenmodes of a slow-wave
structure whose outer (Y, = 0) and inner (Y5, = 0) con-
ductors are both corrugated. The way in which the dis-
persion relation is derived gives the following relation-
ship between the arbitrary constants M, and M,:

M2 = _MlYlZIYll or Mz = _M1Y33/Y32. (11)
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In order to investigate the microwave amplification
coefficient, we reduce the dispersion relation (9) to the
characteristic equation for a traveling-wave tube
(TWT) [13]. To do this, we transform expressions (10)
to the identities

F1(Kom @, @) Fo(Kom 'y, O)
FO(kDm! o, a) FO(kDm! rb! a),

= Zy— D§k83 2

F1(Kom 0, 0) Fo(Kom, ', @)
Fo(Kom @, 0) Fo(Kom 'y, 0)’

1-A,

(12)

83 21_AmF1(kDmi a, a) im(po
W A Fo(kom 0, ) ’

d°°k
Yll_zll Bz

0(kDm! a, 0)

_, .d <k
Y33—Z33+DZ

Here, the quantities Z,, Z,, Z,,, and Zs; are independent
of the beam current and are defined as

;- d < kesWnFu(kona 0) Fi(kab)
215 Z KomAm Folkom @, 0)  Fo(k, @, b)’

F1(Kom O, a) Fi(k, 0,p)

Fo(kom 0,2)  Fo(k 0, p)’
(13)

d < kesWnF
27D 2 icubuF

KEg
- k
20

83 2 F1(Kgm @, @) img,

Zu = Ve (kom 0,2)°

d
D

83 2 Fl(kDml g, a) —i M@y
"Fo(kom @, 0)

_d

2% = B 2
The form of expressions (12) implies that the contribu-
tions of the beam current to the functions Y;,, Ys,, Y{i,
and Y;; are important near the resonance w = ByV,. To
be specific, we set N = 0; i.e., we take into account only
the zeroth spatial mode of the perturbed beam current.
It isthis case for which the nonlinear analysis of micro-
wave amplification will be carried out. We substitute
expressions (12) into Eq. (9) and perform the necessary
manipulationsin order to arrive at the following disper-
sion relation in which the terms proportiona to the
2001
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beam current are singled out in explicit form:

(212, = Z11 Zg3) [(w— BOVO)Z - erf]

dk 2

= Sawi(a’-0")Z, "

o(kDOa Iy, O) 233 (Ko, s a)
Fo(Koo, @, 0) Zz o(Kgo: 0, @)

41, c3

(@2 = 0?)Y2v,
ficient I' is defined as

M=k -B@

X Fo(Kao, by 0)/Fo(Ko, @, 0).

When deriving the dispersion relation (14), we used the
approximate equality Z,, = —0Z;;/a, which is satisfied
exactly for @, = 0 and rtand holds with an ample margin
inthe remaining cases, because the functions Fy(k,,, &, 0)
and Fy(Kn, 0, @) in the denominators of Z;, and Z;;
increase exponentially with the mode number m# 0.

In the absence of a beam (Q, = 0), dispersion rela-

where Q§ = and the depression coef-

~0°)Fo(Kogs & ) s

tion (14) determines the wavenumbers [38 of the eigen-
modes of the waveguide structure:

Z(w, Bg) =2,2,-2y7Z5 = 0.

The expansion Z(w, By) = (B, — Bo) (aBOBO) B, = B

near the wavenumbers of the eigenmodes converts dis-
persion relation (14) to the characteristic equation for a
TWT:

(16)

(Bo—Bo)[(w— Bovo)’ ~TQf]

2y 104250 (17)
—07)(Bo) Re-

W~2,.2

Here, the coupling impedance Rg has the form

_ o

Ko T, 2
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1

y |:a2Fl(kDmv a, 0) +
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Fo(Kom @, 0)
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where all of the quantities that depend on 3, are calcu-
lated at B, = Bq -

From expressions (7) and (8) for the field compo-
nents and relationship (11) between the constants M,
and M,, we can see that, for I, = 0, the expression in
bracesinformula(18) is proportional to the energy flux
averaged over the period of the structure. The numera-
tor in formula (18) is the squared absolute value of the
longitudinal electric field of the zeroth spatial mode,
which interactswith the beam €l ectrons. Asaresult, the

coupling impedance Rf is seen to be described by the
standard expression used in theoretical research on
microwave electronics [13, 14].

ImB,, cm™!

0.15
0.10

0.05

Ref,, cm™!
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Fig. 2. Rea (Ref) and imaginary (Imf) parts of the lon-
gitudinal wavenumber of the eigenmode of a coaxial vac-
uum slow-wave structure with abeam vs. frequency for b =
53cm,a=4.0cm,0=35cm,p=19cm,D=0.7cm,d=
0.5cm, ¢ =0, and rp, = 3.6 cm; the beam current and beam
energy are I, = 5.0 A and W, = 35 keV, respectively.

SOTNIKOV

Dispersion relation (9) was solved for the following
parameters of the electron beams and the hybrid struc-
ture used in the experiments at the Kharkov Institute of
Physics and Technology, Nationa Academy of Sci-
ences of Ukraine [15]: b=53cm,a=4.0cm, 0 =
35cm,p=19cm,D=0.7cm,d=0.5cm, §,=0,r, =
3.6cm, 1,=5.0A, and W, = 35 keV. For comparison, in
Fig. 2, we aso present the dispersion curves for a vac-
uum slow-wave structure. The plotsin Fig. 2 reflect the
dependence of the real and imaginary parts, Re[3, and
Im 3,, of the longitudinal wavenumber on the frequency
f = w210 In the frequency band f = 0-5.3 GHz, the
hybrid dow-wave structure provides two passbands:
first, the lower frequency passband f = 0-3.6 GHz, in
which the dispersion properties of microwaves are
analogous to those in a spiral sow-wave structure [16,
17] and the microwave phase velocity is equal to

Vpn/C= JIn(a/o)/[In(a/o) + dIn(bo/ap)/D], and,
second, the higher frequency passband f = 4.5-
5.3 GHz. The lower cutoff frequency is determined by
the inner, more corrugated, conductor, and the upper
cutoff frequency is governed by the outer, less corru-
gated, conductor. This circumstance should be kept in
mind when the eigenmodes of the structure are excited
by a thin-walled electron beam that does not com-
pletely fill the transport channel. The beam should be
confined to the conductor that governs the eigenmode
of the structure. It is worth noting that the two fre-
guency passbands can exist simultaneoudly only in a
slow-wave transmission line in which both the inner
and outer conductors are corrugated. In a slow-wave
structure in which only one (outer or inner) conductor
is corrugated, there exists only a coaxial wave with an
upper cutoff frequency, which is determined by the res-
onator radius. The frequency dependence of the imagi-
nary part of thelongitudinal wavenumber, Im 3, isalso
characterized by two different ranges. In the first range
(f = 03 GH2), the dowed coaxia wave is amplified
(the amplification band is narrower than the passband).
The frequency profile of the amplification coefficient is
peaked at the resonance of the beam with the eigen-
mode of the structure. The low-frequency portion of the
profile goes to zero amost linearly, while the high-fre-
guency portion falls off to zero in ajumplike manner. In
the second, very narrow, range, the frequency profile of
the amplification coefficient has a sharp peak, which
reflects the resonance of the beam with the eigenmode
of the structure in the higher frequency passband. Since
the group velocity of this eigenmode is substantially
lower than that of the slowed coaxia wave, the maxi-
mum amplification coefficient in the higher frequency
passband is about three times larger than that in the
lower frequency passband, whilethe resonancewidthis
much narrower.

Figure 3 shows the dispersion curves for a slow-
wave structure filled entirely with a plasma of density
n, = 1.8 x 10" cm=, in which case the plasma fre-
quency f, = w,/2tis higher than the upper cutoff fre-
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guency of the coaxial mode. In addition to the waves
that exist in the structure in the absence of plasma, there
are many waves associated with the radial modes as
well as with the Floquet modes of the natural waves of
the coaxia plasma column. If the el ectron beam veloc-
ity is close to the phase velocity of the wave corre-
sponding to the intersection point of the dispersion
curves of a pair of eigenmodes of the plasmafilled
structure, then a narrow pronounced peak appears in
the frequency profile of the imaginary part of the longi-
tudinal wavenumber, because, at this point, the group
velocity of the waves, which usually determines the
amplification coefficient, vanishes. In this case, the spa-
tial growth rateis determined by the higher order deriv-
atives of the wave frequency with respect to the longi-
tudinal wavenumber. A comparison between Figs. 2
and 3 shows that, in a plasmafilled transport channel,
the amplification band broadens by 10%, while the
amplification coefficient increases simultaneously by
the same amount, 10%.

Figure 4 shows the plots of the maximum amplifica-
tion coefficient and the frequency at which the amplifi-
cation coefficient is maximum as functions of the
plasma density. In the frequency band under investiga-
tion, the amplification coefficient isalmost linearly pro-
portional to the plasma density. Presumably, such
behavior of the amplification coefficient can be
explained by the fact that, as the plasma density
increases, the frequency of the wave that resonates with
the beam grows linearly and its group velocity
decreases.

Expressions (7) and (8) imply an antisymmetric spa
tial structure of the longitudinal electric field of the
zeroth spatial mode of the cable wave, whichisin res-
onance with the beam. Conseguently, the amplification
coefficient should become zero for a beam whose
radius is chosen to be equal to the radius of the cylin-
drical surface at which the longitudinal electric field
vanishes. This situation is illustrated in Fig. 5, which
shows how the maximum amplification coefficients in
the lower and higher frequency passbands depend on
the beam radius. In the higher frequency passband, the
amplification coefficient increases monotonically when
the beam radius increases from the radius of the inner
conductor to the radius of the outer conductor.

An important parameter inherent in a slow-wave
structure isthe wave impedance. In theoretical research
on microwave electronics, it is usually defined as[12]

2

12pP,,

2
Edl
J

where the line integral is calculated aong a straight
path between two points lying on the conducting sur-
face in the same transverse cross section of the slow-
wave system and P, is the longitudinal energy flux in

Pw = (19)
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same parameters of the structure and beam asin Fig. 2; the

plasma density isn, = 1.8 x 10! em™.
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Fig. 4. Maximum amplification coefficient and the fre-
quency at which the amplification coefficient is maximum
vs. plasma density for the same parameters of the structure
and beam asin Fig. 2.
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same parameters of the structure and beam as in Fig. 2,
except for the beam current, which isegual to 1, = 0.01 A.
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Fig. 6. Wave impedance of the coaxial slow-wave structure
vs. frequency for the same parameters of the structure and
beam asin Fig. 2 and different plasma densities: n, = (1) 0,

(2) 1.8 x 10", and (3) 7.2 x 10 em3.

the system. For the slow-wave structure under consid-
eration, the wave impedance (in Q) isequal to

a 2

IE:'dr

Figure 6 displays the wave impedance of a coaxial
slow-wave structure calculated as a function of fre-
guency for different plasma densities. We can see that,
in the presence of a plasma, the wave impedance
changes insignificantly; i.e., it remains nearly constant
over almost the entire main passband. Since the disper-
sion curves for a plasma-filled structure exhibit linear
behavior over a broader frequency interval in compari-
son with those in the absence of a plasma, the fre-

a

o, = 60 /IEL'HQ*rdr. (20)

SOTNIKOV

guency interval over which the wave impedance
remains essentially unchanged is also broader. Hence,
we can conclude that, as vacuum structures, plasma-
filled slow-wave hybrid transmission lines also provide
the possibility of achieving good matching of the slow-
wave structure with devicesfor inputting and extracting
microwave power in a broad frequency band.

3. NONLINEAR REGIME

In order to investigate the nonlinear stage of the
interaction between an electron beam and the natural
waves of a coaxial slow-wave transmission line, we
start with the equation for the averaged (over the cross
section of thetransport channel) amplitude E of thelon-
gitudinal electric field [13],

2n

T +i(Be-BYE = (B 15RO [€°d0y (21
0

and the equations of motion of the beam electrons,

dv(z) _ e vz _io
i -mv(z)%l— s Re(Ee™),

(22)
d _ 0% 0
dz BeE\/(z) ani
In Egs. (21) and (22), we introduce the following

notation: 3, = w/v,, w and 38 are the frequency and

longitudinal wavenumber of the eigenmode of the
structure that satisfy the dispersion relation (9) with
I, = 0; I, isthe beam current; and v (2) isthe beam el ec-

tron velocity. The coupling impedance RS isdefined as

112

Rg _ Ez,o(rb) , (23)
C 0,2 1] 1*
E.,_.[(BO) z IEr,mH¢,mdS
m=-wg

where S is the cross-sectional area of the transport

channel; r, is the beam radius; and Egm, Elfm, and

H l;,' n arethe electromagnetic field components (7) and

(8) of the eigenmode of the hybrid structure in the
absence of abeam (a,,=0).

Expression (23) for the coupling impedance is the
standard formula used in theoretical research on micro-
wave electronics [13, 14]. For a vacuum coaxial slow-
wave transmission line, the related explicit expression
is presented in [11]. If we substitute the electromag-
netic field components (7) and (8) with a,, = 0 into
expression (23) and take the relevant integrals, then we
arrive at the explicit expression (18) for the coupling
impedance of a coaxial plasma-filled slow-wave trans-
mission line.
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R, Q
10

£, GHz

Fig. 7. Coupling impedance of the coaxial slow-wave struc-
ture vs. frequency for the same parameters of the structure
and beam asin Fig. 2 and different plasma densities: n, =

(1)0,(2) 1.8 x 10", and (3) 7.2 x 10" cm 3.,

In the equations of motion (22), we assume that the
beam electrons are affected only by the synchronous
harmonic of the total electric field; in other words, we
neglect the space-charge effect on both the beam
dynamics and the electromagnetic field structure. This
approach is quite justified because we are interested in
beam currents far below the vacuum limiting current
[2, 18].

Inthelinear approximation, Egs. (21)—(23) yield the
characteristic equation (17) for a TWT. In accordance
with the above analysis, Eq. (17) should be taken with
I = 0. This equation makes it possible to determine the
amplification coefficients of the generated microwaves.
The standard nonlinear theory of microwave generation
and amplification in waveguides [14] is constructed, in
particular, on the basis of the known dispersion proper-
ties of a“cold” slow-wave structure (i.e., the structure
without a beam). At present, the theory of transversely
nonuniform beam—plasma amplifiers is being actively
developed (see[2, 19]), which alows one to derive the
linear dispersion relation for a cold structure from the
nonlinear equations of microwave generation.

Figures 7-10 illustrate the results of a numerical
solution of Egs. (21)—23) for the above parameters of
the experimental device [15]. The beam current and
electron beam energy areequal to 1, =5.0A and W, =
35 keV, respectively. Figure 7 shows the frequency pro-
files of the coupling impedance calculated for the
plasma densitiesn, =0, 1.8 x 10!, and 7.2 x 10! cm>.
In comparison with the vacuum case, the coupling
impedance of a plasmafilled slow-wave structure is
somewhat lower over most of the frequency passband,
but the maximum coupling impedance in the presence
of a plasma is higher than the vacuum one. As a func-
2001
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100

tion of frequency, the coupling impedance behaves in
essentially the same manner as the amplification coef-
ficient (Figs. 2, 3). For aplasma-filled slow-wave struc-
ture, the amplification coefficient is also somewhat
smaller over most of the frequency passband, but the
passband itself is broader and the maximum amplifica-
tion coefficient is larger than those in the vacuum case.

Fig. 9. Amplitude of the longitudinal electric field vs. the
wavefrequency and thelength of acoaxial vacuum structure
for the same parameters of the structure and beam as in
Fig. 2.
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Fig. 10. Amplitude of the longitudinal electric field vs. the
wave frequency and the length of a coaxial plasmafilled
structure for the same parameters of the structure and beam

asin Fig. 2 and the plasma density n, = 1.8 x 10'! cm ™3,

Figure 8 shows how the amplitude of the longitudi-
nal electric field depends on the length of the slow-
wave structure. Each of the profiles was calculated for
the frequency and wave vector corresponding to the
maximum amplification coefficient in the linear
regime. For aplasmadensity of 1.8 x 10'! cm3, thelon-
gitudinal electric field saturatesat 1.42 k\/cm, the opti-
mum length of a hybrid structure being 43.6 cm. For a
plasma density of 7.2 x 10!! cm?, the saturation level
is 1.93 kV/cm and the optimum length of the structure
is 34.8 cm. For the vacuum case, the relevant parame-
ters are equal to 1.3 kV/cm and 48 cm. The profiles of
the interaction efficiency indicate that the maximum
losses in the energy of the electron beam are nearly the
same (about 24-26%) for both vacuum and plasma-
filled coaxial slow-wave structures. For the maximum
energy losses, the plasmadfilled structure is signifi-
cantly shorter in length than the vacuum structure.
Hence, our nonlinear analysis confirms the assumption
that filling the structure with a plasma results primarily
in an increase in the frequency at which resonant inter-
action occurs. Of course, this conclusion refers specifi-
cally to the problem as formulated; i.e., in contrast to
the analyses carried out in [3, 7] for other hybrid struc-
tures, we do not fix the frequency at which microwaves
are generated but study the microwave amplification
over the entire frequency passband. Naturally, in this
case, the resonant frequency of interaction increases
with the plasma density.

We note that the above dependences of the optimum
interaction length and the energy losses by the beam
electrons through radiation on the plasma density agree

SOTNIKOV

gualitatively with the results obtained by Krasil’ nikov
et al. [2] for a plasma-filled dielectric waveguide. The
most important effect of the plasma is a substantial
shortening of the optimum amplification length, in
which case, however, the amplification efficiency
changes insignificantly. This is the main difference
from the case of microwave generation in a hybrid
slow-wave structure in the form of a chain of coupled
cavity resonators[1, 3].

The amplitude of the longitudinal electric field, cal-
culated as a function of the length of the structure for
different eigenfrequencies, is shownin Fig. 9 for avac-
uum structure and in Fig. 10 for a structure filled
entirely with a plasma of density n, = 1.8 x 10" cm.
The frequency profile of the first maximum in the
amplitude corresponds to the frequency dependence of
the amplification coefficient in Figs. 2 and 3. We can
see that, over the entire main frequency passband, the
optimum length of the structure changes only dlightly.
The results of nonlinear numerical modeling validate
the predictions made in linear theory about the broad-
ening of thefrequency band over which microwavesare
generated and the increase in the amplification effi-
ciency after the transport channel of a vacuum slow-
wave structureisfilled with a plasma.

4. CONCLUSION

Investigations of the electrodynamic parametersof a
coaxia plasma-filled slow-wave transmission line have
shown that it holds promise for creating high-power
plasma-based microwave devices. The plasma
waveguide, like the vacuum one, is characterized by a
broad frequency passband. Moreover, in a plasma
waveguide, the amplification efficiency is higher and
the frequency amplification band is broader in compar-
ison with the vacuum case. In the first (lower fre-
guency) passband, the amplification coefficient
depends linearly on the plasma density. The electron
beam interacts most strongly with the T-wave. The gen-
eration efficiency of the plasma modes corresponding
to the eigenmodes of an annular plasma column in
which the electron beam propagatesislow, and the fre-
guency band over which the plasma modes are ampli-
fied is narrow. In the first passband, the wave imped-
ance of the slow-wave structure is only weakly depen-
dent on frequency; in a plasmafilled structure, the
frequency interval over which the wave impedance is
constant is even broader than in a vacuum structure.
Nonlinear numerical modeling showsthat, in aplasma:
filled slow-wave structure, the maximum amplitudes of
the saturated microwaves are larger than those in the
vacuum case. The optimum length of acoaxia plasma-
filled slow-wave transmission line is significantly
shorter than that of a vacuum structure. As functions of
frequency, the saturation amplitude and the interaction
efficiency behave in the same manner as the amplifica-
tion coefficient: they are both peaked near the reso-
nance of the beam with the eigenmode of the plasma
PLASMA PHYSICS REPORTS  Vol. 27
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filled structure and the low-frequency portions of their
profile decrease with frequency.
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Abstract—The quasilinear equation for the ion Weibel instability is solved for waves propagating along the
magnetic field. The energy of the excited waves is estimated and the moments of the ion distribution function
in the saturation stage are determined as functions of the current velocity for parameters characteristic of the
neutral sheet of the Earth’s magnetotail. The question is studied of whether the current disruption at the begin-
ning of the explosive phase of a substorm can be explained as being dueto the onset of theion Weibel instability.

© 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

I nstabilities associated with the current flowing per-
pendicular to the magnetic field (the cross-field current)
in a plasma have been actively studied for many years.
Interest in these instabilities stems primarily from
investigations of collisionless shock waves in labora-
tory and space plasmas and from research on the
Earth’s magnetospheric tail. Under such conditions, the
ions are usually assumed to be essentially unmagne-
tized, while electrons are regarded as strongly magne-
tized. In studies of related instabilities, special attention
has been paid to the modified two-stream instability
and to the lower hybrid drift instability. Previoudly,
these instabilities were described assuming that ions
play anegligible role because their massislarge. How-
ever, Chang et al. [1] found that ions respond to el ectro-
magnetic perturbations propagating strictly (or nearly
so) along the magnetic field by giving rise to an aperi-
odic electromagnetic mode. This mode was called the
ion Weibel instability [1], because its properties are
analogous to those of the classical Weibel instability,
which is excited by an electron flow in a plasma with-
out a magnetic field [2]. Numerical solution of the dis-
persion relation for the purely growing mode [3]
showed that the ion Weibel instability occurs in a

plasmawith high values of the parameter B = 8TT/B;

(theratio of the gas-kinetic plasma pressure to the mag-
netic field pressure) and grows at a rate comparable
with the ion gyrofrequency. This circumstance gave
rise to the idea that the ion Weibel instability may play
an important role in the initiation of a magnetospheric
substorm and, in particular, in the observed decrease of
the transverse current density in the magnetotail (cur-
rent disruption) [3-6].

It is not surprising that the study of the mechanism
for current disruption has been, and will continueto be,
one of the main problems in magnetospheric physics.

Among the numerous models developed to describe
this phenomenon (see, e.g., [4, 6]), we can mention
those based on the tearing instability, the ballooning
instability, thermal catastrophe, and the crossfield cur-
rent instabilities. The latter mechanism for current dis-
ruption was analyzed quite thoroughly by Lui et al. [6]
for waves propagating parallel to the magnetic field. In
the model developed in that paper, theion Weibel insta-
bility plays an important role. First of al, it increases
the anomalous resistance to alevel high enough to sub-
stantialy change the current density. In addition, it was
estimated that the ion Weibel instability can ensure the
energy level required to initiate fast magnetic reconnec-
tion or, at least, to trigger another kind of instability
(e.g., unstable tearing modes) [4].

The nonlinear stage of theion Weibel instability was
considered in[1, 7] for aquasi-perpendicular collision-
less wave. The nonlinear stage of the evolution of the
ion Weibel instahility in different regions of the neutral
sheet of the magnetotail was studied in [3, 5]. In all of
the papers cited, the kinetic equation was solved
numerically in order to obtain the moments of the elec-
tron and ion velocity distribution functions. The
authors assumed that the electron and ion temperatures
and the drift velocity were all time-dependent, while
the initial shape of the distribution functions remained
unchanged.

Here, we show that the quasilinear equation for the
ion Weibel instability admits an analytic solution. We
aso determine how the ion distribution function
changes in time and derive equations for its moments.
Having done this, we then obtain the steady-state
plasma parameters in the saturation stage of the insta-
bility and find the maximum possible energy of the
magnetic field generated during the collective interac-
tionsin aplasma.

1063-780X/01/2706-0490$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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2. FORMULATION OF THE PROBLEM
AND THE LINEAR THEORY
OF THE INSTABILITY

The coordinate system and the geometry of the
problem are presented in Fig. 1. Unmagnetized ions
move at a mean velocity v, = vy = vq = 2T;/m)"?
(where v4; istheion thermal velacity) perpendicular to
the external magnetic field B, = Byz. Here, x, y, and z
stand for unit basis vectors in aright-handed Cartesian
coordinate system: the x-axis points from the Earth to
the Sun and the z-axis is directed from the south to the
north pole. The electron component is assumed to be
magnetized and immobile. Hence, we are working
under the conditions

|kv1d < |wed,
|kv | > o, (1)
we < ol < 0l

where wy = §By/mc is the cyclotron frequency of the
particles of speciesj and k is the wave vector.

We also assumethat the plasmais homogeneous and
theinitial electron and ion temperatures are both isotro-
pic. We are interested in the waves propagating along
the external magnetic field; i.e., we set k = kz. In our
model, the electrons obey a Maxwellian distribution,
while the ions are described by a Maxwellian distribu-
tion shifted by the magnitude of the current velocity:

2 2
n O v+ (vy—vy)+ v

fi(v) = 32 3 ( z 2 0) D (2)
Vi O Vi 0

The dispersion relation for waves propagating along
the external magnetic field was derived and thoroughly
investigated in [5, 7, 8]. Under conditions (1), the dis-
persion relation without allowancefor the displacement
current hasthe form [3, 7]

LK TZ'@), w’
2 . 2 2 '
wy T 2 1+k2 L TinZ' &)
wy T 2 3)

Ve TZ(&)Z'(E)
V2TZ'(&)+TZ'(E)

where w, is the ion plasma frequency. The function Z
is defined as

:O’

VTJ v (V)

v =&’
where the prime denotes the first derivative of the func-
tion with respect to its argument §;, which is defined as

& = wkvy. For a Maxwellian plasma, this function
coincides with the familiar plasma dispersion function.

Z(g)) = “)
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Fig. 1. Schematic representation of the coordinate system
and thedirections of the magnetic field, wave vector, and ion
velocity.

By analogy with [5], we consider the ion Weibel
instability for two sets of parameter values, typical of
the inner and middle regions of the neutral sheet of the
Earth’'s magnetotail [9]. The parameters of the inner
part (~10Ry) of the tail are asfollows: T;/T.=4, T, =
12keV, n,=n;=n=0.6 cm>, and B, = 25 nT [6, 10].
The midtail neutral sheet (~40Ry) is characterized by
the parameter values T;/T,=10, T, =2keV,n.=nj=n =
0.3cm, and B, =5nT [6, 10, 11]. Since theinequality
T, < T, holds for both cases, we will neglect small
terms on the order of T,/T; in further analysis.

The above dispersion relation has a solution
describing a purely growing mode (for which the real
part of the mode frequency vanishes). For aperiodic
instabilities, the quasilinear theory can be applied only
under the condition y, << kv, [12-14], inwhich case the
instability growth rate y; can be obtained by expanding
thefunction Z(€; ) inapower seriesin thelimit |&;| < 1:

N 2 2
0 1+KC 5
L} 2
kVT. 7 Wy; O
Y = —0= Ty— ol
Jmg2 mve+ T,
O O )
O O
/7 T 92 °1(v) al
|H
D G—n— >y —5-5(v z)d\ﬂ :

where misthe massof anionand Z; —4 af(v) dv
2njv, v,

is the first term of the expansion of Z'(§;) in powers
of &;.
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Since any function f having a maximum at v, = 0
satisfies the inequality
d°f (v

J'—(Z)B(vz)dv<0, (6)

ov,

the condition for the onset of the instability has the
form

Z(l)i S Ti||

. 7
2 mvi+T,
In turn, the condition y; << kv holds when
2T,
Y =1+ - <1, (8)

Z(')i(mV§+TiD)

which is valid for the above parameter values of the
neutral sheet of the magnetotail.

3. QUASILINEAR THEORY

The larger the wave amplitude, the stronger the
influence of the nonlinear effects on the wave dynam-
ics. Sincethe crossfield current is carried mainly by the
ions, we can neglect the influence of magnetized elec-
trons and write the quasilinear kinetic equation for the
ion distribution function as

of, _ _e i<EEk+

1 g*
5 v VXBg 6fk>dk. )

g

Here, the angular brackets denote averaging over the
random phases; the asterisk stands for complex conju-
gation; E, and B, are the Fourier harmonics of the elec-
tric and magnetic field fluctuations; and the Fourier
component &f, of the rapidly oscillating part of the ion
distribution function is determined in terms of the inte-
gral along the unperturbed ion trajectories

—i(w—kv )t

5, = ——I% " v(t)xBDaf dt, (10)
where v, (t) = vsin (0 — wyt), vy (t) = Vi + Vicos (B — wgt),

v,()=v,, vé = vf + vi,andeistheazimuthal angle
in velocity space. The electric and magnetic fields are
related by Maxwell’s equations,

w

Exk = EBykv
o (11)
Eyk = _k_CBXk.
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Taking the integral in Eg. (10), we obtain the perturbed
ion distribution function:

w_, 00 9
e% [EK_VUOVD-FVDGVJﬁ
of, = i—[ -
megs w—kv,+w, +i0

(12)
VOBxk ﬂ

X (BkaOSG —B,sinB) + ma ;

I

The differential operator in front of the function of, in
Eq. (9) can be rewritten as

a& 1 o*
So[Ex+ =V x By
OVD C 0
Lt p_ 0 9
_C[Dk VEvDavDVD”Davz
L (13)
*x
x (Byycos6 — Bxksne)——%%—vg
0 0
x Fae(Byksme + B,,.cOS8) + 0Bxka

From expression (12) and Eqg. (13), the quasllnear
kinetic equation for the ion distribution function can be
obtained by averaging over the azimuthal angle:

dkﬁ ——VEV 6VD

Bl + B
w—kv,+w, +i0

of, |e
ot 4mc

9
¥ VDW}

w_, 00
X[Ek Vv,

(14)
Vgt Vmaiv}fi

L0 vo|Bul® 0f; O
ov,w—kv +|06VZD

When studying the linear dispersion relation, Wu et al.
[3] arrived at the condition |By /(B + [B«P) =

C«Ei2 < 1, which indicates that the wave polarization is
amost linear. For this reason, we can neglect the
sguared Fourier amplitudes |B,,|* of the magnetic field.
Since the ions are unmagnetized, we can take the limit
B, —= 0, inwhich Eq. (14) reduces to

of; _ _ie’ w00

- = dk v

ot 2mic? Ok EVDa vg o
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. 2
+VD5%_i|(|yk:kV§)|?ykl ,
z VK+k VZ (15)
0 0
[Ek*) ga VD+VDa }f

. 2 2

IVVo|Byl 0f; O
B
aVZyk+k v, asz

The evolution of the electromagnetic field energy is
described by the equation

a%||3k|2 = 2y,BJ> (16)

The kinetic equation (15) describes the adiabatic
interaction of the waves with all plasmaions. However,
the coefficient that accounts for the quasilinear diffu-
sion is especialy large for v, < v4. Consequently, in
the range of low velocities v, theion distribution func-
tion f, variesmost strongly [13, 14]. The above analysis
shows that we can neglect the derivatives with respect
to the transverse velocity component in Eg. (15). Asa
result, using Eq. (16), we obtain

dfi _ d e2 |BXk| D/ q:l af
at dthiZCZI 2 Klgy oz Ve - voov.
Integrating Eq (17) over v and introducing the nota-
|Bxk|
k2

(A7)

tionh=
2mic
tion [13, 14]

— dk, we arrive at the simple equa-

01, _ 8 Vot Vi, /201,

ah ~ av (18)

2 1
mv? av,

which admits an analytic solution. For the initial ion
distribution function (2), we obtain [13]

3/ 2

v z|
v

f(h) =

ill
—4(vi+vy 12)A*him

o o VTy 43

e J_3a(AV z)
Ji =

2
0 +

(19)

|£H

[/
IS
O

vV
il
This solution shows that, as the wave energy increases,
aplateau appears in the ion distribution function in the
vicinity of v, =0, indicating possible suppression of the
ion Weibel instability.
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4. MOMENTS OF THE ION DISTRIBUTION
FUNCTION

The mechanism for the ion Weibel instability is
unrelated to any specific group of resonant ions, and the
instability growth rate is determined by the mean val-
ues of Tp, T}, and v, [12, 15]. Consequently, we can
restrict ourselves to considering the quantities that are
averaged over the vel ocity, specifically, the moments of
the distribution function. Using Egs. (9)—(13), we can
readily obtain the equati ons[7]

dT.m _ yk|Bxk| |D D
= J’dk %1 T|||Z
dTy, ylexk| DTn: 2K,
— i = dk zZ, (0
dt mc I DT.u T,
dK _ ylexkl 2K
— = dk—————=—7',
dt mc I Ty

where K = mvZ/2 and Z' is defined by formula (4).

Taking the limit & < 1, we expand the function
Z'(&;) in EQs. (20) in apower series and retain the low-
est order termsin order to arrive at the following set of
differential equations describing the evolution of the
moments of the ion distribution function in terms of h:

dTig _ ., Tioo.
dT, T.,+2K
Ty _ Tin* 2K, g
dK _ 2K
@ T.||ZO'(1 Y).

Here, for the solution obtained above, i.e., for the ion
distribution function (19), the function Zy, (h) has the

form

(22)

. Tig+ 2K¥4
zm(h):—z[l—agm'ﬂ—g }

2
il
where a isa constant on the order of unity.
On the other hand, in the saturation stage (y, — 0),
condition (8) implies that
iof f
—Zy; (h) — Ti||

2 2K'+ T,

(23)

Weset Ty =T+ 8T, T{n=T, +8T;g, and K= K, + 3K
and assume, for simplicity, that theinitial ion tempera-
tureisisotropic, Ty = Ti; = T;. Obviously, the contribu-
tions of the terms oT;, 8T;,, and oK to Eq. (23) are on
the order of h and thus can be neglected in comparison
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Fig. 2. Normalized ion current velocity v(f) /v vs. itsinitial
value.

with the contribution of theterm Z, ~ h'/4. Asaresult,
it is an easy matter to obtain

2

YT
AT 2K,

(24)
We neglect the terms of the higher ordersin Y and,

on the right-hand sides of Egs. (21), replace the quanti-

1.2

1.1k

1.0

]
1.00
Vol Vri

1 1 1
0.25 0.50 0.75

Fig. 3. Transverse and longitudinal ion temperatures, Tlf|

and Té , VS. current velocity.
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ties Ty, Ty, and K by their initial values (this replace-
ment also corresponds to neglecting the terms of the
higher ordersin Y). In addition, we change al of the
differentials by & to arrive at

_ 2Ko-T,
OTio = 2k, w T,
8Ty = 2h, (25)
- __ 4K
K = g

From Eg. (5) and the definition of h, one can seethat
the wave energy is a quantity of the next higher order
in Y. If we assume that the fastest growing waves are
those whose wave vectors are close to the wave vector
k., a which the instability growth rate is maximum,
then the energy gained by these waves, normalized to
the energy of the external magnetic field, can be esti-
mated as

B

O BT 3 (26)

J'dk

The steady—state moments of the ion distribution
function in the saturation stage of the ion Weibel insta-
bility areillustrated in Figs. 2 and 3 as functions of the
ratio v,/vy. The figures show the ion current velocity

vé and the longitudinal and transverse ion tempera-

tures, Tlf and Té , dl normalized to their initial values.
Within the accuracy of calculations, the relative varia-
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0 L | | |
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Fig. 4. Total wave energies 3B2 vs. current velocity.
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tionsin the current vel ocity and temperature do not dif-
fer between the inner and middle regions of the neutral
sheet of the magnetotail. As expected, during the exci-
tation of electromagnetic waves, the longitudinal ion
thermal energy increases due to adecrease in the cross-
field ion current, in which case the transverse ion tem-
perature remains essentially unchanged.

Figure 4 shows the wave energy dB? in the inner
(Fig. 4a) and middle (Fig. 4b) regions of the neutral
sheet of thetail. In Fig. 4b, the amplitude of the fluctu-
ating fieldsis seen to be substantially larger, because, in
the midtail, the external magnetic field B, isweaker and
the parameter [ is larger than those in the central part.

5. CONCLUSIONS

We have investigated the evolution of theion Weibel
instability in the neutral sheet of the Earth’s magneto-
tail. The results obtained show that the suppression of
theinstability is associated with the formation of apla-
teau in the ion distribution function. The ion Weibel
instability is found to resemble (both formally and
physically) the firehose instability described by Sha-
piro and Shevchenko [12]: the development of these
instabilitiesis accompanied by an increase in the longi-
tudina thermal plasma energy at the expense of the
transverse plasma energy.

The level at which the ion Weibel instability satu-
rates depends on the cross-field current vel ocity and on
the values of the plasma parameters. For parameters
typical of the neutral sheet of the magnetotail, the
moments of theion distribution function and the ampli-
tude of the magnetic field fluctuations in the saturation
stage are all substantialy smaller than those obtained
by Lui et al. [5] by numerically solving the equations
for the moments of the ion distribution function during
theion Weibel instability. Even for v, = vy, the current
velocity and longitudinal temperature change by
approximately 5.8 and 17%, respectively. These values
are smaller by afactor of approximately 4.5 than those
obtained in [4, 5]. The reason for this is the following.
When solving the equations for the moments of theion
distribution function numerically in the quasilinear
approximation, the authors of [4, 5] assumed that the
shape of the distribution function remains unchanged,
and, at each time step, they varied only the global
parameters such as v and v,,. Mathematically, this pro-

cedure implies that the function Zy in conditions (8)

and (23) is constant, in which case the instability satu-
rates at amuch higher level (at substantially larger val-
ues of the moments of the distribution function),

because the dependence of Z,; (h) on h makes the larg-

est contribution to condition (23). Although our analy-
sis deals only with longitudinal waves, there is no rea-
son to suggest that transverse waves could substantially
affect the saturation level (cf. [12]). However, obliquely
propagating waves may be the subject of ongoing
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investigations, although, with the transverse compo-
nent of the wave vector taken into account, the calcula
tions become much lengthier.

The calculated change in the current velocity is
smaller than that obtained by processing the data from
observations made by the IMP 6 and ISEE 1 satellites
(which was estimated to be about 25%) [5]. Thus, we
can conclude that, in our model, the ion Weibel insta-
bility cannot increase the anomalous resistance to a
level required to initiate magnetic reconnection. Never-
theless, the ion Weibel instability can trigger another
kind of instability, e.g., thetearing instability, which, in
turn, can ensure the required level of anomalous resis-
tance.

Since our analysis is very preliminary, we cannot
assert that the ion Weibel instability is completely use-
less for describing the substorm onset and current dis-
ruption. In order to investigate the ion Weibel instabil-
ity more completely, it isnecessary to take into account
the magnetic field nonuniformity in the Earth’s magne-
totail. The relevant analysis for a cold plasma was car-
ried out by Yoon and Lui [16], who described the mag-
netic field using the Harris model of a plane neutral
sheet. Their calculations showed that the threshold for
theion Weibel instability is higher than that in ahomo-
geneous plasma. However, they neglected kinetic
effects, which can substantially ater the dispersion
relation. Another important point is that the ion distri-
bution function may be non-Maxwellian. In particular,
an analysis of the experimental data obtained when the
Galileo spacecraft traveled near the current sheet of the
Earth’'s magnetotail confirmed the non-Maxwellian
nature of the ion distribution function [17]. The prob-
lem of the excitation of low-frequency electromagnetic
waves by ions obeying a non-Maxwellian distribution
requires a separate analysis, and the question of
whether non-Maxwellian ions are stable against these
waves remains open.
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Abstract—Broadband approximate expressions for calculating the broadening of the spectral lines of hydro-
gen-likeions in a multicomponent plasma are derived taking into account both the influence of the interaction
between plasma particles on the distribution function of the plasma microfield and the effect of the microfield
dynamics on the broadening of the central component of the spectral line. With the approximate expressions
proposed, the calculation of the shape of a given spectral line of acertain ion in aplasmawith agivenion com-
position requires only a few seconds of computer time. The approximate expressions provide a good com-
putational accuracy not only for the central component of the spectral line but also for the spectral line wings.
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1. INTRODUCTION

The development of a new alternative electric
energy source—an inertial confinement fusion (ICF)
reactor—is a problem of current interest. ICF targets
should be designed with allowance for the absorption
and reemission of light by the hot target material. In tar-
get computations, one of the most important problems
is that of calculating the absorption spectral lines of
plasma ions and atoms [1]. The shape of the spectral
lines provides atool for diagnosing the plasmatemper-
ature and density. Note also that microfield fluctuations
affect the population of the energy levels of plasmaions
and atoms and thus should be incorporated into the
equation of state for the plasma|[2].

The Stark broadening of the spectral lines of plasma
ions and atoms occurs under the action of low-fre-
guency ion electric fields and high-frequency electron
electric fields. Asarule, the contribution of electronsto
the Stark broadening is described using the impact
model, while the contribution of ionsis treated as qua-
sistatic. These assumptions make it possible to describe
a significant part of the spectral line; however, a com-
parison between the theoretical and experimental spec-
tral-line profiles reveals a systematic discrepancy
between the calculated and measured profiles of the
central partsof theline. Thus, inthe Lyman and Balmer
series of spectral lines, the measured full widths at half-
maximum (FWHMSs) of the unshifted components are
several times larger than the calculated ones [3, 4].
Demuraet al. [5] showed that, near the line center, the
effects associated with the rotation of ion microfields
play agoverning role. The corrections for the influence
of electron thermal motion that were obtained in [5, 6]
using perturbation theory refer to a low-temperature
plasma. In ahot plasma, the effect of ion motion on the
spectral line broadening is so strong that it cannot be

treated perturbatively and the anaytic corrections
obtained in [5, 6] fail to be valid.

For practical calculations, it is necessary to develop
models of spectral broadening that are simple and at the
same time applicable to broad temperature and density
ranges. Present-day broadband models of quasistatic
plasmamicrofields [7] and dynamic microfields [8] are
fairly involved, because they require solving integrod-
ifferential equations. This paper isdevoted to construct-
ing simple approximate analytic expressions for the
static distribution function of the ion microfield in a
plasma with an arbitrary ion content. The approximate
expressions proposed here, on the one hand, have
amost the same accuracy and applicability range as
those of the known models and, on the other hand, pro-
vide computations that are thousands of times faster.
The approximate expressions were constructed using
analytic expansions in the Coulomb coupling parame-
ter for the distribution function of the microfield in the
limiting cases of a dlightly nonideal plasma (the
Debye—Hiickel model) and a highly compressed hot
plasma (the model of harmonic oscillators). It is well
known that the ranges of validity of these models do not
overlap. In this paper, however, a universal approxi-
mate analytic expression is obtained that describes both
of these limiting cases and the intermediate region
between them. The physical accuracy and the range of
validity of the approximate expressions are sufficient
for most practical applications, moreover, with the
approximate expressions proposed, the calculation of
the distribution function of the microfield in a plasma
with aprescribed ion composition requires several sec-
onds of computer time.

This paper a so presents aderivation of the universal
semiempirical analytic model of theion motion—related
broadening over the entire intermediate region between
the impact broadening and quasistatic broadening. The

1063-780X/01/2706-0497$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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model is constructed in two steps. first, a qualitative
functional dependence of the broadening on the plasma
parameters is obtained using simplified physical mod-
els and, second, the free coefficients of the model are
adjusted to achieve satisfactory agreement with both
the experimental data and the results from computer
simulations based on the molecular dynamic (MD)
method.

2. INDIVIDUAL SPECTRAL-LINE COMPONENT
APPROXIMATION

We consider a plasma containing k ion species with
charge numbers Z, and relative (normalized to the total
density of the heavy particles) concentrations x:

Zxk =1, ZZ"X" = X,
k k

We assume that the plasma isin loca thermodynamic
equilibrium and apply a two-temperature model, in
which the electron temperature T, may differ from the
ion temperature T. The plasma electrons may also be
partially degenerate, in which case the related plasma
state is described by introducing the parameter © =

ks To/€r, Where g = (3n2)2/3(h2/2me)N§/ *. The mean
radius R, of the electron cell is determined from the

relationship (4173) R: N. = 1, where N, is the electron
plasmadensity. Theion microfield is expressed in units

of E, = e/R‘f, and the electron plasma parameter isT™ =

€/RKgT.

In order to calculate the intensity distribution
| .5(Aw) in the spectral line resulting from the transition
a — b, we express |, in terms of the correlation
function @, (t) of the dipole moments of a radiating
particle [9]

00

|b(Aw) = %Rej'dbab(t)exp(—iAmt)dt.
0

Then, we use the model of the isolated Stark compo-
nentsa — B, a 0 a, B Obwiththe Stark constant Cyg
[10]. In this model, the correlation function has the
form

®(t) = O (DL OOt (1)

[l
T o

FOO0000
S 0oM
o
o s

where d)f';i (t) and ngiB (t) are the normalized autocor-

relation functions of the dipole moment of a radiating
particle in the case of its interaction exclusively with

GOLOSNOY

plasma ions and exclusively with plasma electrons,
respectively. For example, we have &3 (t) =
exp(—Wqgt), where w,g is the electron impact—related

: 0 weu?
FWHM and the function ®y,(t) = exp 3 Oz't%
g c 0O
accounts for the Doppler broadening. The rest of the
notation is as follows: wy, is the unperturbed transition

rate, ui2 = 2kgT/m, isthe squared mean thermal velocity
of aradiating particle, and c isthe speed of light. In the
quasistatic model of the ion-related broadening, we
have

®fon(t) = 21p[Q(CapEot) + CapEatQ'(CagEgt)] ()
where | g isthe intensity of the Stark component under

consideration and Q(L) is the Fourier transformed dis-
tribution function of the plasmamicrofield [7],

E,p(E/E,) = n—z—EE—JdLsin(LE/EO)Q(L)L. 3)
0

Inthisexpression, p(E) isthe probability density for the
appearance of an instantaneous ion microfield of
strength E at the point where a particle with charge
number Z, occurs.

In expression (1), the summation is carried out over
all Stark components of the spectral line with apositive
Stark constant. For the unshifted component of the line
in the quasistatic model of the ion-related broadening,

aoBo

we have C, g =0and ®;,, (1) = 1. In other words, in

the quasistatic model, the central component broadens
exclusively due to the Doppler effect and collisions
with electrons.

Hence, in order to arrive at the desired broadband
approximate expressions, we need to approximate the
function Q(L), which accountsfor the static distribution

AoBo

of the microfield, and the function ®;,, (t), which

describesthe dynamics of theion microfield. Theinflu-
ence of the microfield dynamics on the shifted compo-
nent of the spectral line is less significant than on the
central component and thus can be neglected in thefirst
approximation.

3. APPROXIMATE EXPRESSION
FOR THE QUASISTATIC MICROFIELD
DISTRIBUTION IN THE MODEL
OF NONINTERACTING PARTICLES

3.1. Basic Formulas

The models used to calculate various physical prop-
erties of the plasma were derived under additional
assumptions regarding the influence of plasma elec-
trons on the distribution function of the ion microfield.
Among the most widely used models, we can mention,
PLASMA PHYSICS REPORTS  Vol. 27
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first, the model of ahomogeneous neutralizing electron
background [the so-called one-component plasma
(OCP) model, which is often used to describe a rela
tively cold dense plasma] and, second, the model of the
ions surrounded by a polarization electron cloud [the
so-called low-frequency plasma microfield component
(LFMC) model, which is used to describe a hot plasma
with multicharged iong]. It is well known that the
microfield distribution functions cal culated using these
models for anonideal plasmadiffer by several times. It
turns out, however, that the microfield distribution
functions in these models can be determined using the
same mathematical apparatus. The models differ only
in the approximate expressionsfor the effective interac-
tion potentials and the effectiveion fieldsin the plasma.

In the noninteracting quasi-particle approximation,
which was originally developed for the OCP mode, the
function Q(I) (suchthat L = IE) isapproximated by [11]

InQ(l)

E (N D
E (1) i
where g, (1) isthe pair distribution function of atest ion

with charge number Z, and an ion with charge number
Z,, E.(r) isthe field generated by anion of specieskin
the vicinity of the test ion, and E; (1) is the effective
field of anion of specieskin the plasma.

Inthe OCP model, we have Ei(r) = Zg/r?, and, in the

LFMC model, we have Ei(r) = Z&(1 + Qg )exp(—geh)/r?
with

Sin[lEf(f)]D 4)
IEX () O

——Z 4T[n J’ drr QOk(r)

= (4T (2meksTo) 2eh 1 (WK To).
Here, Iv are Fermi—Dirac functions and the electron
chemical potential n isrelated to the electron density by

Ne = /210 (Meks Teh ) 1 1o(u/ks o).

The effective field E; (1) is chosen so that the function

p(E) determined from formulas (3) and (4) satisfies the
second moment rule

00

[EE0 = J’Ezp(E)dE, 5)

3 K istheion microfield vector, which

where E = zk

is not averaged over directions, and the angular brack-
ets denote statistical averaging, i.e., averaging over all
possible configurations of charges with allowance for
the Boltzmann probability of the given distribution of
charged particles. Note that, up to this point, the shape

of E; (r) has been arbitrary. The following approxi-
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mate expression for E;, (r) appears to be the most con-
venient:

Ex(r) = Z(1+oyr)exp(=o,r)/r®. (6)

Hereand below, r isin unitsof R,, the parametersa, are

in units of Rgl, and the €ectric microfield is in units

of E,. Let us determine the explicit expressions for a,
that we will use to approximate the function Q(L).

3.2. OCP Modd

Theoreticaly, the case of an OCP has been studied
in most detail. For I' < 1, al of the parameters a, are

the same and have the form (3I')'?Z, where Z =
(Y %)™

In the limit T — oo (when the interaction between
the charges is very strong), we can apply the model of
simple harmonic oscillators [12], which can be readily
extended to include ions with different charges:

InQ(L) = -% %, Z L212Z,T X, (7)
k

For Z, = 0, the parameters a, = a with arbitrary values
of k are expressed in terms of the energy AE; of the
Coulomb interaction between charged particles in an
arbitrarily nonideal plasma[13]:

a = —2AE(Z2TN.T) ™. 8)

These expressions will be used to construct an analytic
approximation for Q(I) in the OCP model with an arbi-
trary temperature, density, and ion composition of the
plasma.

L et usexpand thefunction Q(L) in powersof L inthe
case of aweakly nonideal plasmasuch that a — 0 and
Oo(r) = exp(=Z,Z[I exp(=ar)/r). To do this, we intro-
duce the notation

sin[t(z, x)]D

1z , (9)

- 2, O
o(x, y) = It(%) exp(-ye 1)1 -
0

where t(z, X) = (1 + x2)exp(—x2)/Z>. Then, in the OCP
model, formula (4) takes the form

InQ(L) 10)

= - ¥ 3/xZDe{a@ 0" 2,25 @)
k

The argument x in function (9) approaches zero as
I — 0. Consequently, to thefirst order in x, we obtain

O y)=(1+xy)O(0,y)—x/6, x—0. (11)
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Fig. 1. Distribution function of the ion microfield p(E) in a
plasma with singly charged ions (x; = 1, Z; = 1) for Z;=0
and I' = 10 in the OCP model. The profiles obtained from
MC [13] (solid curve) and MAPEX (dashed curve) calcula
tions are shown.
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Fig. 2. Microfield distribution function obtained using the
OCP model of a plasma with singly charged ions (x; = 1,
Z, = 1) for Z, = 1 and for different values of the coupling

parameter (numerals near the curves show the I' values).
The profiles obtained from MC [11] (solid curve) and
MAPEX (dashed curve) calculations are shown.

Using this expression, we easily arrive at the relation-
ships

O(x,y) = 1/3-1y/8—X/6,

O(x, y) = 1/(6y),

which permit us to approximate the function ©(x, y) by
O(x,y)

= (U3)[1+x/2+ 1.2y + 0.8y*(1+y")) .

X—0, y—=0,

X—»O, y—>00,

(12)

Note that, for Z,Z, — oo, the mean term in this
approximate expression corresponds to expression (7)
inthe model of harmonic oscillators; consequently, for-
mula (12) also applies to a dense plasma such that
ZyZ[l —~ oo,

GOLOSNOY

For Z, = O, the parameter a, in the approximate
expression (6) is determined by expression (8). The
energy AE. in expression (8) can be calculated using
one of the many simple approximations proposed pre-
viously. We chose the following approximate formula,
which isvalid within an accuracy of about 10%:

a = 2(3r)"z.n tarctan(2.418(3r) 22 )

Zs Xe

+0.64r 222 (1 + 251 Z2x2%

For ZZr < 1, this formula was derived using the
method of collective variables [14] and was continued

into the region ZSZF > 1 with the help of the familiar
relationship

5/2 2 -13

AEJN.T =097 Y Z¢ %%, = -0.9T Z2x,
k

The above formulais also valid for Z, # 0, because, for
IF < 1, it is subject to the regular Debye limit and, for
> 1 and Z, # 0, the coefficient a is unimportant [see
formula (12) for y — oo].

For ZS2 I ~ 1, the parameter a is on the order of

unity and expansion (11) applies only to small values
of L. For L > 1, we can apply the method of stegpest
descent [15] to the approximate expressions (4) and (6)
in order to obtain thefirst term of the asymptotic expan-
sion of the function Q(L) at infinity for Z, # 0:

InQ(L)

=-y (X /%) Z Lo~ (7/6 — (3sin1 + cos1)/10)
K (13)

= —15Y (x/x)Z.La .
2

Hence, for L > 1, themain term in formula (13) differs
from that in the approximate expression (12) only inthe
coefficient (1.5 in place of 2). Since this difference is
insignificant, formula (12) yields fairly good results

even for Z2I =10 (Fig. 1).

Below, the approximate expression (10) with for-
mula (12) will be referred to as the modified adjustable
parameter exponential (MAPEX) approximation.
Recall that the MAPEX approximation provides agood
description of a weakly nonideal plasma and highly
compressed, hot, ionized fluid. Let us compare the
MAPEX results with the results from test Monte Carlo
(MC) calculations of the distribution function p(E) for
intermediate values of the coupling parameter T, i.e.,

for ZSZI' ~1.

Figure 2 shows the microfield distributions in the
vicinity of atest ion calculated for different I' valuesin
PLASMA PHYSICS REPORTS  Vol. 27
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a plasma with singly charged ions. Figures 3 and 4
compare the MAPEX and MC results on the microfield
distribution p(E) against the homogeneous electron
background in a plasma with two ion species. We can
see that, even in the most unfavorable cases, the accu-
racy of the MAPEX approximation is no worse than
10%.

3.3. Low-Frequency Microfield Component (LFMC)
Model

The LFMC model is often used to cal cul ate the opti-
cal plasma properties in order to determine the shape
and intensity of the spectral lines.

In the LFMC model, the electric fields are assumed
to be generated not by the point ions but by charged
spheres centered on the point ion and filled with elec-
trons correlated with the ion. The electron—ion correla-
tionsare, asarule, treated in the random phase approx-
imation, which applies to a weakly nonideal plasma
and yields the familiar Debye expression for the static
dielectric constant of an electron gas:

£(q,0) = 1+qc/q”.

In this case, the effective field produced by an ion
with charge number Z, at the position of theith ion has
the form

E(ri) = Zk(1+qerik)exp(_qerik)/rizk- (14)
Formula (14) can be used for weak electron—electron
and electron—ion interactions (such that the conditions
N<1landZI <1holdfor all ion speciesk). The corre-
sponding calculations show that, under the above
restrictions, the distribution function p(E) inthe LFMC
model can be obtained with an accuracy of 20% by
treating the ion—on correlations in the Debye appro-
ximation, in which case, in formulas (4) and (6), we
can set

oo = (g+g)
Jok(r) = exp{—(Z,Z[I /r)exp(-ar)} .

Hence, in the LFMC model, the desired approximate
expressions can be constructed in the same way as in
the OCP model. We set

O.(x,y) = Jt(%)(l + x2) exp(~9x2)
0

(15)

—~xz,_ L sin[t(z, x)]U

- / ——— A

x exp(-ye z)%l 0 -
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Fig. 3. Microfield distribution function obtained using the
OCP model of a plasma with two ion species (x; = 0.97,
Z; =1,%=0.03,Z,=3)for =1 (numeralsnear the curves
show the Z;, values).
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Fig. 4. Microfield distribution function obtained using the
OCP modd of aplasmawith twoion species(x; =0.5,Z; =1,

% =0.5,2 = 17) for ;"3 =1and Z, = 17.

wheret(z, X) = (1 + x2)exp(—x2)/Z> and ¢ = g./a. Then,
in the LFMC model, formula (4) can be written as

InQ(L) a6
-1/2,

==y 3x/x(Z.L) 0 {az.)" 2,2 Z.L) ™3 .
k

In the case at hand, we have a < 1; consequently, to
arrive at the desired approximate expression, it is suffi-
cient to consider the limit x — 0 in relationship (15).
Retaining only the first-order term in the expansion
in X, we obtain

Oc(X, ¥) = (1+xy)O0, y) — (L + ¢ + 0 *)x/(6 + 6¢),

X —»0, (17
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Fig. 5. Microfield distribution function obtained using the
LFMC model of aplasmawith singly charged ions (x; = 1,
Z,; = 1) for the charge number Z, = 9 of atestion (numerals
near the curves show the I' values). The profiles obtained
from the approximate expression (21) (dashed curve) and
more exact APEX calculations (solid curve) are shown.
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Fig. 6. Microfield distribution function obtained using the
LFMC model of aplasmawith singly charged ions (x; = 1,
Z; =1) for I =0.12 (numerals near the curves show the 7,

values). The profiles obtained from the approximate expres-
sion (21) (dashed curve) and more exact APEX calculations
(solid curve) are shown.

which gives

Oc(X, ) = U3 —Ty/8— (1 + ¢ + %) x/(6 + 6),
x—0, y—0,
Oc(X, y) = (1 + xy)/(6y)

~(1+¢ +d7)x/(6+60) = 1/(6y) —d°x/(6+6¢),
(19)

(18)

X—»O, y—>00,

©c(0,y) = 1/(6y), y—> .

We consider a slightly nonideal (Z2I' < 1) plasma
with Z, ~ 10, in which case we have A\, = Z,Z [ a > 1
(this situation is encountered in diagnosing the spectral

GOLOSNOY

lines from a small population of noble-gas impurity
ions in a hydrogen plasma). For such a plasma, the
quantity Xy in expansion (17) islarger than unity, so that
the expansion itself no longer holds. Consequently, in
order to obtain the desired approximate expression, it is
sufficient to analyze the region Za’L < A,. In this
region, we can expand the expression in braces in for-
mula (15) in powers of L and replace the lower limit of
integration by z,, = (InA, — InlnA)/a, settingy = 0. As
aresult, we obtain

dz(l +¢2)(1+2)
62° exp(z+ zd)

InQ(L):—Z(3L Z2x /%, )f
k

=3 (L°Zéx)/(2ZoZ,T %)
k

xu+¢mAuu+¢n9%%D

Using relationships (15)—(20), we can construct the fol-

lowing approximate expression for Q(L) in the LFMC
model:

32 ~-1

INQ(L) = =% (X/X)(ZL)™"G
k

G=1+050(ZL)2(1+d +07)/(1+0)
+ 1.2y [1+ 2y, f ] (1+1.2y) 7,
Yk = ZOZkr(ZkL)

_112 21)

_OA

DI—D [1+¢Ian/(1+¢)]

W, = A+ (1+05A)"

Figure 5 compares the distribution functions p(E) cal-
culated from formula (21) and those calculated from
the more exact adjustable parameter exponential
(APEX) approximation in the LFMC model for a
plasmawith singly charged ions and with different cou-
pling parameters. Figure 6 presents the distribution
functions p(E) calculated from formula (21) and from
the APEX approximation for different charge numbers
Z, of the test ion and for I' = 0.12. The accuracy of
approximate expression (21) is seen to be about 15%,
which is quite sufficient for most applications.

4. SEMIEMPIRICAL ANALYTIC MODEL
OF THE DYNAMIC ION-RELATED
BROADENING

In order to construct the desired broadband approx-
imate expression, we apply perturbation theory to the
PLASMA PHYSICS REPORTS  Vol. 27
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autocorrelation function of the central component of
the spectral line. In [5, 6], it was shown that

OBO

Dion (t) = exp(_WOt)[l Sptt t. ] (22)

According to[16], the coefficient s, for amulticom-
ponent plasma can be readily written as

172 -1

EXZ V1
2/3 k<k k
ks TN K

_ B
= 41562
° DE szfﬁ

k

(23)

/3’

where u[l = m[l + mgl is the reduced mass of aradi-
ating—perturbing pair of particles and N = Ng/X is the
total ion plasma density.

In a hot plasma, the ion spectral lines can be
described in terms of the impact broadening with the
FWHM wy, ~ Zlk Nx,C/ /v,, where v = 2kgT/p, and
Cy isthe mean splitting of the Stark components under
the action of theion of speciesk. For simplicity, we will
approximate areal system of the Stark energy sublevels
by asystem of n =2 |levels of ahydrogen atom; in other
words, we will describe the dynamic effects of the ion
microfield in terms of the Ly, line with the effective
Stark constant

Z.h

Ck = 1.5n[n1 - n2] dfm,
e

2
lap (N —1y)
[nl_nz]sff - G,B,nl>n

5

a,B,n;>n,

Here, n, n;, and n, are the principal and parabolic quan-
tum numbers and Z,, + 1 is the nuclear charge number
of the emitting particle.

Hence, we have derived approximate expressions
for al of the limiting cases. In order to construct the
desired approximations in the intermediate region, it is
necessary to know the functional dependence of the
FWHM of the spectral line on the plasma parameters.
This dependence can be established using the simpli-
fied physical model developed by Lisitsa and Sholin
[17], who showed that, in the single-particle approxi-
mation, the profile of the hydrogen spectral line can be
described in terms of the quadratures of the Bateman
functions [18] without any assumptions regarding the
character of binary collisions. An analysis of these
guadratures for the central component of the Ly, line
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yields the following profile:
1(Aw) = dyn Xka’
Aw k
(24)
kaCk v Rk + Ck
Weyn O z In [ Ck ,

where %’TNXKRE = 1. Consequently, the quantity Wy,

can be interpreted as the ion dynamic FWHM. Note
that the FWHM wy,, in formula (24) represents (to
within a numerical factor) both the impact-related
FWHM of the ion spectral lines and the dynamic cor-
rectionsto the static profile. Using formula(24) for wy,
and formulas (22) and (23), which were obtained per-
turbatively, we can approximate the autocorrelation
function for the ions by

D(t) = exp(-st?),

% |\|xkckI {Kv Rk+Ck} (25)

5= Z Vi Ck

k

Here, the coefficient K incorporates the multicompo-
nent nature of the plasma,

1/2

4
EZXkZiJZUk]D

k

K O
- 1/6 ’
@Z kaf’% EZ xku[”%
k g k O

and the coefficient &, isintroduced in order to take into
account multiparticle effectsin arelatively cold plasma
(in [17], these effects were neglected) and to ensure a
smooth transition from the impact-related corrections
to dynamic corrections to the static profile. Here, it is
proposed to approximate the coefficient &, by

|:| ’

+1}%L+xlog[ o

where n corresponds to the impact broadening limit.
For example, for the Ly, line, we haven =2 and C, =

(26)

Ek—%+22xlog[ +1}D

Vi k kRk

3ZA(Zy + 1)} mgl, and, for the Ly, line, we have n =

2.74 and G, = 14.7Z#(Z, + 1)"'m;". The empirical
coefficient x in the approximate expression (27) is
adjusted to achieve the best agreement of the cal cul ated
line profiles with the experimental data [3] or with the
basic MD results on spectral line broadening [4]. This
coefficient, which was specially chosen for each of the
lines (Ly,, LYy, Hy, €tc.) isindependent of the radiating-
particle charge number Z,, theion composition, and the
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Fig. 7. Comparison between the experimental and theoreti-
cal profilesof the Ly, line of hydrogenin aplasmawith sin-
gly charged argon ions and with T = 13200 K and Ng = 2 %
10'7 cm3: (1) the measured profile and the approximate
profiles calculated (2) with and (3) without allowance for
the ion microfield dynamics. The emission intensity on a
logarithmic scale is normalized to the spectral line intensity
calculated using the quasistatic model of the ion-related
broadening for A\ = 0.

plasma parameters. For example, we have x = 0.4 for
the Ly, line and x = 0.6 for the Ly, line.

5. COMPARISON WITH THE EXPERIMENT

In [3], the experiments were carried out with a
plasma containing singly charged argon ions and a
small hydrogen admixture, the ion temperature and
electron density being T ~ 10* K and N, ~ 10'7 cm3.
These experimental conditions made it possible to
avoid strong absorption at the frequencies of the hydro-
gen lines under investigation: the plasma was optically
thin even for the Ly, line emission. The difference
between the spectral line profiles measured experimen-
tally and those cal culated from the approximate expres-
sions (2) and (21) in the quasistatic model and with
allowance for the dynamic ion autocorrelation function
(25)«27) isiillustrated in Fig. 7. In order to compare
both the central component of the line and the farthest

GOLOSNOY

components of the line wings, the profilesin Fig. 7 are
plotted on a logarithmic scale. We see that the results
obtained from the approximate expressions (1), (2),
(21), and (25)—«27) agree well with the experimental
data. At the sametime, the quasi static model of theion-
related broadening underestimates the FAVHM of the
spectral line by afactor of 2.

The results of experiments carried out in [3] are
summarized in the table. One can see that the results
obtained from the approximate expressions proposed
here lie within the measurement errors and are close to
the experimental data, while the quasistatic model of
the ion-related broadening underestimates the FWHM
of the line by a factor of approximately 2. Hence, we
can concludethat, in plasmadiagnostics, it isimportant
to take into account the ion microfield dynamics. The
approximate expressions (25)—27) provide a way of
doing this with an expenditure of only a small amount
of computer time.

The effect of the reduced mass on the approximation
accuracy has also been investigated. Thus, the ratio of
the intensities of the central components of the Ly,
lines of deuterium and hydrogen was measured in the
experiments of [20]. At T = 15500 K and N, = 2 %
10'7 cm3, this ratio was found to be 1.17. The above
approximate expressions yield essentially the same
result: 1.18; this value differs from the experimental
one by less than 1%.

Stamm et al. [4] calculated the spectral lines of the
hydrogen-likeions Al*'? and Ar*'7 at T~ 10° K and N ~
10?> cm and the spectra lines of hydrogen for the
experimental conditions of [3]. The results obtained for
hydrogen turned out to be close to the experimental
data. This supports the conclusion on the reliability of
the assumptions underlying MD simulations. In [4], the
calculations were performed without allowance for the
fine structure splitting and Doppler effect. Conse-
quently, the MD results obtained in [4] (especidly,
those on the Ly, line of Ar*'?) are likely to be regarded
as test (rather than practical) results. However, these
test results can be used to check particular models of
the spectral line broadening dueto the plasmainfluence
on the emitting ion.

Figures 8-10 compare the results calculated for the

Lyman series of spectral lines from the Al*!2 and Ar*"’
ions by the MD method, the standard spectral-line

FWHM of the Ly, line (in nm) in an Ar* plasma. The measurement errors are ANg/No< £0.1 and AT/T < +0.03

Calculated
N, 1017 cm3 T, K — S M easurements (+0.002)
quasistatic model [19] | proposed approximation

1 12700 0.014 0.021 0.023

2 13200 0.016 0.028 0.030

3 13200 0.019 0.034 0.036

4 14000 0.022 0.040 0.042
PLASMA PHYSICS REPORTS Vol. 27 No.6 2001
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Fig. 8. Ly, line of Ar*!7 ionsin a100% Ar*!” plasma with

T=10" K and Ng= 1.5 x 10 cm™>. The profiles are obtained
from (1) the approximate expressions (25)—«27), (2) MD
simulations, and (3) the quasistatic model. The abscissais
the parameter a = ANE, with A\ given in angstroms.
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Fig. 10. Ly, line of AI*!?ionsin a100% AI*'? plasmawith

T=10’K and N, =4 x 10*! cm™>. Notation is analogous to
that in Fig. 8.

broadening model, and the approximate expressions
(25)<27). Note that, in accordance with theoretical
predictions, the wings of the lines are well described by
the quasistatic model of the ion-related broadening.
However, the results obtained for the central part of the
lines disagree considerably with computer simulations.
On the other hand, the approximate expressions pro-
posed here givereliable resultsfor both the central parts
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Fig. 9. Ly, lineof Al*!2 ionsin a100% Al*!? plasmawith

T=2.7 x10°K and Ng=4 x 10?! cm™3. Notation is analo-
gousto that in Fig. 8.
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Fig. 11. Ly, line of Ar*!7 ionsin a hydrogen plasma with
theion temperature T = 107 K and electron density Ne=5x

10%* cm™3. The profiles are obtained from (1) the approxi-

mate expressions (25)—27), (2) MD simulations [21], and
(3) MD simulations [22].

and the line wings and thus can be applied to a broad
range of plasma parameters (the plasma parameters in
the experiments of [3] and the MD simulations of [4]
differ by several orders of magnitude).

In order to determine the actual applicability range
of the approximate expressions, it is necessary to com-
pare the results calculated from formulas (25)—27)
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with the MC results obtained for the Ly, line with
allowance for the fine structure components[21, 22]. In
[21, 22], it was shown that, for Art!” ionsin ahydrogen
plasma, the Stark mixing of the 2s,,,, 2p,,,, and 2p;;,
levels occurs at the electron density N, = 5 x 10?4 cm3
and higher. At such densities, nonlinear interference
effects are unimportant [21], which makesit possible to
assume that, for the Ly, line of Ar*!7 ions, the approxi-
mate formulas (25)—27) apply to the density range N, >
5 x 10** cm>. In fact, under these conditions, the
approximate results agree fairly well with the MD
results (Fig. 11). Hence, it is possible to conclude that
the approximate expressions (25)—27) are valid when
the calculated FWHM of the line exceeds the separa-
tion between the fine structure components by a factor
of more than 2.
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Abstract—Results are presented from experimental studies of the interaction of a modulated relativistic elec-
tron beam with aplasma. The electron energy spectra at the exit from the interaction chamber are measured for
electron beams with energies of about 50 and 20 MeV. The coherent interaction of an electron beam with a
microwave-driven plasmais studied. It is shown that, in strong electric fields that can be generated in the coher-
ent interaction, the beam current is very sensitive to the phase of the microwave field. © 2001 MAIK

“Nauka/Interperiodica” .

At present, plasma methods for the acceleration of
charged particles are being actively developed (see,
e.g., [1], the reviews by Ya.B. Fainberg [2-4], and the
literature cited therein). Theoretical and experimental
papers aimed at investigating the mechanisms for the
generation of strong wakefields show that one of the
main directions in this area—the wakefield excitation
by relativistic electron bunches—has many useful
applications (see, e.g., [5-11]), in particular, in creating
the conditions for the coherent interaction of arelativ-
istic electron beam with aplasma. These conditions can
be achieved, e.g., intheinteraction of amaodulated el ec-
tron beam with a plasma driven by a microwave pulse
at the frequency of the accelerating field in an acceler-
ator.

We carried out experiments with a decaying plasma
and a microwave-driven plasma. The experimenta
device consists of a four-stage linear accelerator
(linac), a plasma chamber, magnetic anayzers, and
other elements shown in Fig. 1. The parameters of the
electron beam are as follows: the peak value of the
beam current is 0.1-0.15 A, the modulation frequency
isf, =2797.3 MHz, the beam diameter is about 1 cm,
and the length of electron bunches is about 1 cm. The
plasma chamber is an 8-cm-diameter glass tube with
the electrodes separated by a distance of about 40 cm.
The plasma is created by applying a dc voltage to the
hollow electrodes of the discharge chamber through a
high-voltage modulator, which is switched on synchro-
nously with the linac operating in the pulsed mode.
During the pulse, the peak plasma current is 100—
150 A. The plasma density is measured both with a
radio interferometer at a wavelength of 3 cm and from
the cutoff of the probing signal. The optimum plasma
density is chosen by delaying the current pulse of an
electron beam with respect to the plasma current pulse.

Our experiments were conducted in the absence of an
external magnetic field.

We begin by describing experiments with a decay-
ing plasma The electron energy spectrawere measured
over times much longer than the repetition period of the
current pulses; i.e., we measured the integral spectra. In
order to improve the measurement accuracy, a mag-
netic analyzer installed behind the interaction chamber
was equipped with an additional solenoid (23) (Fig. 1)
in which the number of coils was two orders of magni-
tude smaller than that in the main magnet. Both the
magnets and solenoids were powered by a dc source
with an instability of about 0.03%, the instability of the
voltage source that supplied the linac being about 0.1%.
The current of the electrons that traversed the entire
plasma region was measured with an accuracy of about
10%, the accuracy of the measurements of the electron
energy being about 0.3%.

Figures 2 and 3 show the electron energy spectra of
a beam with the maximum current before and after the
interaction with the plasma. The energy spectra of the
beam electrons are incomplete (the wings of the spec-
trum are absent) because, at the exit from the interac-
tion chamber, the average electron beam current was
too low (I, < 0.1 HA) to be measured reliably when the
field of the magnetic analyzer changed substantially.
For this reason, the measurements were aimed at
revealing the largest displacement of the energy spec-
trum toward high energies. In a plasma with a density
of about ~4 x 10'' cm3, the increment in the energy of
the beam electrons injected at energies of about
50 MeV was found to be 0.6 MeV. For an injection
energy of about 20 MeV and a plasma density of about
~10'"" cm™ (which corresponds to the electron plasma
frequency close to the modulation frequency of the
beam), the peak in the energy spectrum was observed to
be displaced toward higher energies by approximately
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Fig. 1. Experimental scheme of the device: (1) electron source, (2) diaphragmatic waveguide, (3) electron source modulator,
(4) matched microwave load, (5) high-power Klystron (Ppys = 20 MW), (6) Klystron modulator, (7) attenuator, (8) phase shifter,
(9) plasmachamber, (10) modulator supplying the plasmachamber, (7 1) forevacuum pump, (12) magnetic analyzer, (13) collimator,
(14) Faraday cup, (15) emitting and receiving antennas, (16) radio interferometer, (/7) load resistor, (18) beam-deflecting magnet,
(/9) microwave oscillator, (20) microwave amplifier, (27) synchronization unit, (22) microammeter, (23) additional solenoid,
(24) antenna emitting a high-power microwave signal, (25) reflector, (26) signals fed to an oscilloscope, and (27) electron beam

escaping from the linac.
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COHERENT INTERACTION OF A RELATIVISTIC ELECTRON BEAM

0.2 MeV. Thisresult agrees with the conclusion drawn
in [6]: the higher the energy of the injected electron
beam, the higher the beam-plasma interaction effi-
ciency.

The second series of experiments was carried out
with a plasma created by a microwave pulse in an open
resonator (Fig. 1). The electric field vector E of the
microwave field was oriented along the plasma cham-
ber, i.e., in the propagation direction of the electron
bunches. In order for the plasma to be produced most
intensively, the distanced (d ~ A = 10.72 cm, where A is
the radiation wavelength) between reflector (25) and
the emitting open end of the waveguide was chosen in
such a way that the antinode of the standing wave of
microwave oscillations occurred at the symmetry axis
of the plasma chamber. Microwave radiation was fed
into the plasma chamber from the accelerator micro-
wave power supply system (klystron 5). Asaresult, the
plasma was created by the same microwave field that
was used to form electron bunches and to accelerate
them to an energy of 20 MeV. Consequently, the inter-
action of electron bunches with a plasmawhose density
n, was constant during the microwave pul se was coher-
ent in character. This is illustrated in Fig. 4, which
shows the current of the electrons accelerated to an
energy of 20 MeV after they passed through the entire
plasma region versus the microwave field phase, which
was biased with respect to the phase of a periodic
sequence of electron bunches. Unfortunately, with a
klystron whose nominal microwave power was about
20 MW, the maximum microwave power did not
exceed ~100 kW because of the low electric strength of
the waveguide. Also, the intense scattering of electro-
magnetic waves in the open resonator did not allow us
to concentrate the microwave energy and to achieve
strong microwave fields at the axis of the plasma cham-
ber. For this reason, the plasma density in our experi-
ments was too low to achieve resonance interaction
conditions. That is why our measurements of the elec-
tron energy spectrum at different beam currents (see
Fig. 4) revealed no significant difference in the spectral
distribution of the beam electrons.

By increasing the plasma density at the expense of
the constant voltage component of a pulsed modulator
while simultaneously feeding microwave and high-
voltage pulses, we observed that the electron beam cur-
rent became completely independent of the wave
phase. This effect can be explained as being due to the
high voltages and high currents generated by a pulsed
modulator: after switching on the modulator, the micro-
wave discharge was observed to decay, because the
constant component of the plasma current destroyed
the spatial periodicity of the distribution of the electron
plasma density; as a result, the electron beam current
became independent of the wave phase. This phenome-
non can be used to obtain indirect estimates of the
amplitude of the microwave field generated in the
plasma. Under the coherent interaction conditions
(Fig. 4), the fraction of the scattered (absorbed) beam
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Fig. 4. Current of the electrons of an injected 20-MeV beam
that pass through the plasmavs. the phase of the microwave
field. The plasma was produced by a microwave pulse with
a power of about Py s~ 100 KW. The phase of the micro-

wave field was biased with respect to the phase of aperiodic
sequence of electron bunchesthat were formed and accel er-
ated to 20 MeV by the same microwave pulse in the accel-
erating sections of the linac.

current in amicrowave field with acomparatively small
amplitude (<0.05 of the amplitude of the microwave
field that was used to accel erate the beam) amounted to
70-80%. Inthiscase, therelativeincreasein the current
can attain 10% per degree of the phase of the micro-
wave field. This effect can find applications, in particu-
lar, in fusion devices in which the plasma is heated by
high-current relativistic electron beams [3]. In closed
electrodynamic systems, varying the amplitude of the
microwave field and biasing its phase with respect to
the phase of a periodic sequence of electron bunches
provides more efficient control of the generation of
potential waves without energy losses due to the exci-
tation of radiation at the combination frequencies. The
strong coupling of the phase of the oscillations at the
combination frequencies to the phase of the original
microwave field can provide optimum interaction con-
ditions (the polarization losses change sign [12, 13]) for
raising the wakefield amplitude. Also, under the coher-
ent interaction conditions, the so-called zero method
makes it possible to find the relation between the beam
and plasma parameters, i.e, to estimate the beam—
plasma interaction efficiency. In our experiments, a
20-MeV electron beam was completely scattered
(absorbed) over a distance of about 10-20 cm (with
allowance for the nonuniform character of ionization)
in the plasma chamber, thereby providing evidence of
the possible onset of strong microwave fields (both
transverse and longitudinal). Hence, the plasma experi-
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enced both internal and external forces exerted by the
electron beam and microwave pulse, respectively.

Therevealed strong coherent dependence of the cur-
rent of arelativistic eectron beam on the phase of the
microwave field holds promise for increasing the elec-
tron acceleration rate through the direct excitation of
high-power parametric oscillations[14]. The pump fre-
quency wy,mp (the same as the frequency of the plasma-
producing microwave field) can generaly be higher
than (or equal to) nwy,,, where w,,, isthefrequency of the
accelerating field or, equivaently, the modulation fre-
guency of an electron beam. This relationship between
the frequencies can play an important role at high
plasma densities. It is well known that the most stable
parametric resonance occurs under the condition
Wpump = 2Wp,. This condition is especialy important
because the difference combination frequency is equal
to the frequency of the accelerating field, Wympy =
Wpump — W = W, [15]. The plasma excitation by high-
power microwaves at the second harmonic of the accel-
erating field can be achieved through frequency multi-
plication followed by the amplification of the input sig-
nal power. Controlling the amplitude of the microwave
field under the coherent interaction conditions makes it
possible to equate the frequencies, wy, = w, (where w,
is the plasma frequency), i.e., to achieve the resonant
interaction conditions. For higher plasma densities
(e.g., those corresponding to the optical range), the
coherent interaction condition Wy, = 20y, can be
achieved by using the free electron laser (FEL) scheme
[3, 16]. Hence, in the three-wave approximation, the
energy of Langmuir oscillations, the wakefield of a
periodic sequence of electron bunches, and the pump
field can act to enhance the wake potential (provided
that the waves are properly phased) and thus increase
the electron acceleration rate.
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Abstract—(i) Thefocusing of anion beam by aMorozov lensformed by acurrent ringin aplasmaiscal culated
using an exact expression for the magnetic field and taking into account the nonparaxial character of the focused
beam. The possible ways of optimizing such alens are considered. (ii) Different versions of extended plasma-
optic devices in which spherical aberrations are minimized are analyzed. It is proposed to optimize extended
plasma-optic devices by changing the magnetic field from the entrance end to the exit end of the solenoid in
such away that the boundary magnetic surface always coincides with the boundary surface of the focused beam.
It isshown that, under the same conditions, the focusing power of the optimized devicesis oneto two orders of
magnitude higher than that of traditional thin plasma lenses. (iii) The problem of creating a magnetic field
whose strength is optimized as a function of the longitudinal coordinate is solved by the Tikhonov regulariza-
tion method. (iv) An extended plasma-optic device with an optimized solenoid for focusing 1-MeV ion beams
is calculated, and theion trajectories in the device are traced. (v) It is proved expedient to devel op special -pur-
pose computer codes aimed at modeling and optimizing the existing and planned experimental plasma-optic

focusing devices. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Investigations on focusing intense ion beams of
moderate and high energies play an important role in
plasma physics and controlled fusion. These investiga-
tions are related, in particular, to the problems of iner-
tial light- and heavy-ion confinement fusion, colliding-
beam fusion reactors, examination of the resistance of
thefirst wall of areactor to radiation damage, and study
of plasma hesating in a reactor by injecting neutral
beams produced by the charge exchange of intenseion
beams. The problems of focusing intenseion beams are
also important for nuclear physics, high-energy phys-
ics, accelerator physics and designs, and beam technol -
ogies. An essential feature of the focusing of intense
ion beamsisthat, in order for the beam to be indestruc-
tible, it should be completely charge-neutralized. For
these purposes, it is expedient to use plasma-optic
focusing devices (lenses) whose development was ini-
tiated by A.l. Morozov et al. [1-3] and is now being
successfully continued by A.A. Goncharov et al. [4-7].
At present, the main problem in thisareaisthat of opti-
mizing such lenses, i.e.,, minimizing spherical aberra-
tions and maximizing the focusing power.

Here, we continue to study these optimization prob-
lems. In Section 2, we calculate the focusing of anion
beam in a Morozov lens formed by a current loop in a
plasma and by a set of external ring electrodes. Since
this problem is very important for calculating electro-
static plasma lenses, we investigate it more thoroughly
thanin [3] by taking into account the nonparaxial char-

acter of the focused beam and by using an exact expres-
sion for the magnetic field.

In Sections 3 and 4, we propose and analyze differ-
ent versions of extended plasma-optic devicesin which
thering electrodes are placed at the side cylindrical sur-
face near the two ends of the device, i.e., in the regions
where the magnetic field lines enter and leave the sole-
noid. In this case, the spherical aberrations are the low-
est. For auniform solenoid (whichisconsidered in Sec-
tion 3), the focusing length isindependent of the radius
of the injected beam; this provides the possibility of
focusing large-aperture beams. In Section 4, we pro-
pose to optimize extended plasma-optic devices by
changing the magnetic field from the entrance end to
the exit end of the solenoid in such away that the radius
of the boundary magnetic surface always coincides
with the radius of the focused beam: as the magnetic
surfaces converge, the focusing field becomes stronger,
thereby increasing the focusing power of the device.
We solve the problem analytically in the paraxia
approximation. We show that, under the same condi-
tions, the focusing power of extended plasma-optic
devices is one to two orders of magnitude higher than
that of traditional thin plasma lenses.

In order to calculate the parameters of the solenoid
and trace ion trajectories, we developed special-pur-
pose computer codes. This is the subject of Section 5.
The problem of generating nonuniform axisymmetric
magnetic fields with a prescribed dependence on the
longitudinal coordinate belongs to the class of the so-
called ill-posed problems in the sense that, for a given
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accuracy, it has an infinite number of solutions. We
solve the problem by the Tikhonov regularization
method, which implies that, among the possible solu-
tions, it is necessary to choose the solution optimized
for a certain criterion. Specifically, we optimize the
solution with respect to the thickness of solenoidal
coils of rectangular cross section. We calculate an
extended plasma-optic device with an optimized mag-
netic field for focusing a 1-MeV ion beam and follow
the ion trgjectories. Since, in any cross section of such
adevice, the focusing force acting on anion is propor-
tiona to its distance from the axis, there are no spheri-
cal aberrations.

2. MOROZOV LENS FORMED
BY A CURRENT RING

In a Morozov plasma electrostatic lens, the mag-
netic surfaces are equipotential surfaces of the electric
field [1, 3]. Usualy, Morozov lenses are treated in axi-
symmetric geometry under the assumption that thereis
no current transverse to the magnetic field and that the
strength of the electric field and its spatial distribution
in a plasma are governed completely by the magnetic
field geometry and the boundary condition on the exter-
nally defined electric potential ® in the form of a con-
tinuous function ®(R, z), where R is the radius of a
cylindrical surface. In practice, the electric potentials
are generated by discrete ring electrodes, which thus
give rise to a system of charged magnetic surfaces in
the plasma. Although the experimenta investigations
[2—7] on thewhole confirm the theoretical model devel-
oped in[1, 3], they leave unanswered certain questions
(in particular, the reasonsfor fairly significant spherical
aberrations and how to remove them). The experimen-
tal experience gained in this area allows us to suppose
that the possible corrections to the theory can be taken
into account in the form of additional aberrations.

Different plasma-optic problems were studied theo-
retically in a paper by Morozov and Lebedev [3]. In
particular, they considered axisymmetric electrostatic
plasma lenses. Among other things, they estimated the
focal length of the simplest plasma lens formed by a
current-carrying ring. Since this problemisvery impor-
tant for practical calculations of electrostatic plasma
lenses, we analyze it in more detail by taking into
account the nonparaxia character of the focused beam
and by using an exact expression for the magnetic field.

The azimuthal component of the vector potential of
the magnetic field of aring with radius a, and current J
has the form (see, e.g., [8])

_4d |a kzg
A = G 2| B -SHK (0 -ECK) |
_ da.r
(ac+1)’+(z-1)"

ey
k2

BUTENKO, IVANOV

wherel isthe coordinate along the z-axis, c isthe speed
of light, and K and E are complete dliptic integrals of
the first and second kind. Following [3], we introduce
the magnetic flux function g = rA,, so that the equation
W(r, 2 = const serves as an equation for the magnetic
surfaces and also an equation for the magneticfield lines
in the (r, 2) plane. (The calculated families of the mag-
netic field lines will be presented below in the corre-
sponding figures.) In a Morozov lens, the equipotential
magnetic surfaces are described by the relationship [3]
D = O(YP), where ® isthe electric field potential.

We express the components of the electric and mag-
netic fieldsin terms of Y and Ay

e - _dody _ _ dody _ _do dA,
' dydr’ 7 dy dz dy dz’ 2
_ dA, _1d
Ho= =g H= g
which gives
_ do _ _do
E, = derr, E, = deZr. 3)

Let us consider a number of practically important
profiles of the electric potential ® as a function of the
magnetic flux .

2.1.Case1l

Let the radial electric field in the plane z = z, of the
current ring be specified by the normalized linear dis-
tribution

E(r,2) = E(11, %) = Enir-. “)
1 1

In practice, this distribution can be achieved directly by
specifying the electric potential distribution at the elec-
trodes adjacent to the plasma boundary and by measur-
ing the distribution of the electric field strength in the
plasma. (The method of local contactless measure-
ments of the electric field strength was proposed and
justified experimentally by Ivanov et al. [9].)

In this paper, the electric field in the plasma is
obtained by calculation. The functions ® = ®(y) and
dd/dy are specified parametricaly,

1Er1 2

1l
oy z) = 57
Hb(r, 20) = rA(r, 20)

)
Edm(w(r,zo)) _ E.s
O dl-IJ I'le(I’, ZO)
Hb(r, 2) = AT, 29)
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Fig. 1. Proton trajectories during the focusing of a 20-keV proton beam with an initial radius of 3.5 cm in a Morozov lens with a
4-cm-radius current ring at z = 0 and with 4-cm-radius electrodes. The radial distribution of the electric field strength at z= 0 is

E, = Ajr, where A, = 285V/cm?.

On the cylindrical surface of radius R,,, we impose
the following boundary condition on the electric poten-
tial distribution (in practice, this condition can be
achieved with a set of ring electrodes [4-7]):

P(Y(Re1, 2)) = P(RerAy(Rens 2)). (6)
The motion of beam ionswith mass M and charge g
is described by the equations
d’r d’z
M— = —gE,, M— = —qE,. (7
dt? dt®

In the case at hand (H, ~ H,), the magnetic field effects
can be neglected in an energy range of about
10 keV/nucleon and, for the paraxia ions, in an energy
range of about 1 MeV/nucleon.

Theinitial conditionsat t = 0 are as follows;
z = 2, r=ro, 8)

wherethe beam injection radiusr, ischanged from zero
to avalue smaller than the radius of the electrodes; z, =
—10 cm; and v, and v, are the radial and longitudinal
components of the ion velocity, respectively.

The ion trgjectories can be followed by using rela-
tionships (4)—(6) with the electric field found from for-
mulas (3) and by solving the equations of motion (7)
with the initial conditions (8).

Figure 1 shows the ion trajectories computed in the
case at hand. We can see that the best-focused ions are
the paraxial ones. The nonparaxia ions (which domi-
nate the beam because their number is proportiona to
theinjection radius) are focused to amuch lesser extent
(i.e., underfocused); moreover, the larger the radius at
which the nonparaxial ions are injected, the farther
away the point of intersection of their tragjectories with
the z-axisfrom the origin of the coordinates. This stems
from the fact that, due to the curvature of the magnetic
surfaces, the nonparaxia ions injected at large radii
experience strong focusing forces over an insufficiently

v, =0, v, =V,
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long time. (In Section 3, we show that, in a magnetic
field whose surfaces are concentric cylinders and in an
electric field such that E; O r, theion focusing is free of
spherical aberrations.)

Case 1 can be optimized as follows. Formula (4)
for the radial electric field is supplemented with the
second- and third-order (in r) terms. At this point, the
coefficients of these terms were merely adjusted by
the trial and error method. With the radial electric field
optimized in such a manner, the focusing is seen to be
much better (Figs. 2, 3): for theinjection current | = 1A,
the maximum current density isj = 170 A/cm?, the half-
width of the focal spot isdr = 0.03 cm, and the relative
fraction of the beam ions focused to the half-width of
the spot is about 30%.

In principle, the problem of optimizing the electric
field distribution can be solved by using a specialy
developed algorithm.

2.2. Case 2

In [3], Morozov and Lebedev very briefly consid-
ered a plasmalens formed by a current ring in an elec-
tric field with the potential distribution

® = by = brA,, where b = const. 9)
They estimated the focal length of this lensto be F =
a W/2qd,0, where Wistheion kinetic energy, ®, isthe
ring potentia, and the dimensionless parameter 8 = 1
depends on the geometry of the system.

Here, we consider this problem (with linearly
related ® and ) in more detail by applying computer
modeling. We impose the boundary condition by spec-
ifying the potential distribution over a cylindrical sur-
face of radius Ry,:

D(Rezr 2) = bRAG(Re 2). (10)
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Fig. 2. Proton trgjectories for the same conditions asin Fig. 1 but for an optimized radial distribution of the electric field strength
(inVicm) at z=0: E, = Ajr + Ayr > + Ayr3 with A, = 210 V/iem?, A, = 10.5V/em®, and A; = 19.5 V/em™.

According to formulas (3) and (9), the electric and
magnetic fields are related by

E, = brH,, E, = -brH,. (11)

The constant b, which governs the focusing power of
the lens, is determined by the given electric field
strength E,, produced by the electrodes at the point

(r2’ ZO)
b= _Er2/r2Hz(r2’ ZO) (12)

These relationships are supplemented with the equa-
tions of motion (7) and the initial conditions (8).

The ion trgjectories computed in case 2 are pre-
sented in Fig. 4, which shows that (as in case 1) the
best-focused ions are the paraxial ones. However, in
case 2, the nonparaxia ions are over-focused; more-
over, thelarger the radius at which they areinjected, the
closer the point of intersection of their trajectories with
the z-axisisto the origin of the coordinates. This stems
from the fact that the potential ®, which is proportional

j, Alem?
160
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Fig. 3. Radia profile of the proton current density in the
cross section in which the radius of the focused beam isthe
smallest (for the same conditions asin Fig. 2).

to rA,, increases sharply when approaching the current
loop surface.

Case 2 can be optimized as follows. The condition
for the focusing to be ideal is the requirement that the
focusing force be proportional to the deviation of anion
from the symmetry axisin any cross section of thelens,
i.e, E, Or. Formula(11) convertsthisrequirement into
the equality H,r) = congt, which holds for long sole-
noids (see Sections 3, 4). In case 2, the focusing can be
optimized by reducing the relative role of the immedi-
ate vicinity of the current ring, or, equivalently, by
increasing the radius of the ring (while keeping the
radius of the electrodes equal to theinitial beam radius)
and the focusing length (by decreasing the constant b).
The corresponding simulations show that, for | = 1.3 A,
j =135A/cm?, and &r = 0.045 cm, the relative fraction
of the beam ions focused to the half-width of the focal
spot is about 40% (Figs. 5, 6).

It should be noted that the field superposition prin-
ciple makes it possible to readily generalize the prob-
lem with a single current ring to the problem with an
arbitrary solenoid, in which case one can devise a spe-
cial computer model for a particular experimental lens
in order to optimize its parameters and modes of oper-
ation.

3. EXTENDED PLASMA-OPTIC LENS
IN A UNIFORM MAGNETIC FIELD

In order to increase the focusing power and to lower
the spherical aberrations, it is expedient to use
extended plasma-optic devices (which will also be
referred to as lenses for the sake of brevity). In an
extended focusing device (adevicein which the length
of the solenoid is much larger than its diameter and the
end solenoidal fields have an insignificant impact on
the ion focusing), the ring electrodes can be installed
at the side cylindrical surface near thetwo ends, i.e., in
the regions where the magnetic field lines enter and
leave the solenoid. In order for the end regions where
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 4. Proton trgjectories during the focusing of a 20-keV proton beam with an initial radius of 3.9 cm in a Morozov lens with a
4-cm-radius current ring at z = 0 and with 4-cm-radius electrodes. The beam is focused in the electric field with the given potential

distribution ® [V] = brAy with b = 6 V/Oe cm?.
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Fig. 5. Proton trajectories for the same conditions asin Fig. 4 but for a current ring of radius 5 cm and for the optimized radial dis-
tribution of the electric potential (inV): ® = brAy withb =3V/Oe cm?.

the ring electrodes are to be installed to be as small as
possible, it isexpedient to use oppositely directed coils
[5-7], thereby increasing the deviation of the magnetic
field lines from the symmetry axis. In order to mini-
mize the spherical aberrations (e.g., when focusing a
large-aperture beam onto a small spot), it is expedient
to consider whether it is possible to install a set of thin
concentric electrodes in the planes orthogona to the
symmetry axis near the entrance and exit ends of the
device in the regions where the magnetic field is uni-
form. In this case, it is desirable for an array of beam-
forming electrodes of an ion injector (e.g., of the
MEVVA type[10]) to be geometrically similar to a set
of lens electrodes and to shield the ring electrodes
from the ion flux. It should be noted that ion implanta-
tion technologies alow no thermal damage of the sam-
ples, so that the lens electrodes will not be destroyed.
However, when studying the thermal effects of the
focused beam on the sample, one should keep in mind
that the density of the ion flux onto the electrodes is
lower than that onto the sample.
PLASMA PHYSICS REPORTS  Vol. 27
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The focusing power of a plasma-optic lens has the
form

Fe = aE, = 222, (13)

With the electrodes placed at the ends of the solenoid
(or near the ends), it is possible to create an electric

j, Alem?
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20}

0.20

Z cm
Fig. 6. Radial profile of the proton current density in the
cross section in which the radius of the focused beam isthe
smallest (for the same conditions asin Fig. 5).

| +
0 0.05 0.10 0.15



516

field with the radial potential profile ¢ = ¢,r¥/a’
(where the initial radius a, of the boundary magnetic
surface is equal to the initial beam radius and ¢, is the
potential at the boundary surface) over amost the entire
extended uniform lens. In this case, the motion of the
focused ionsis described by the equation

g—£+kMr =0,

dz

r = rocoskyz, (14)

where ki = 2qb,/(Mv2a?) and r,, is the beam injection
radius, so that the focusing length is equal to

-1 _ TV a4
2 N2qd,
If thelength of alensissuchthat | < L;, then we have

=1+ k;,llcotkMI ; for kyl < 1 (e.g., when the potential
of the injector is much higher than the potential of the
lens), we arrive at the focusing length |; = (k,zv,l )y!ofa
thin lens. Note that the above expressionsfor the focus-
ing length are independent of the injection radius,
thereby providing the possibility of focusing large-
aperture beams.

L = 1(2ky) (15)

4. EXTENDED PLASMA-OPTIC LENS
IN AN OPTIMIZED MAGNETIC FIELD

An extended plasma-optic lens can be optimized by
increasing the magnetic field strength from the entrance
end to the exit end of the lens in such a way that the
boundary magnetic surface always coincides with the
boundary surface of the beam, provided that, a the
entrance end, the radius of the boundary magnetic sur-
face is equa to the beam radius. As the magnetic sur-
faces converge, the focusing electric field strength
increases, thereby increasing the resulting efficiency
and focusing power of the lens.

When solving the related optimization problem, we
treat both the beam ions and magnetic field in the
paraxia approximation. The equation for the paraxial
magnetic surfaces has the form

2

az(z) = aOB?g)) ;

where a(2) is the varying radius of a magnetic surface
and B(2) isthelongitudinal magnetic field at the axis of
the lens. The quantities B(0) and a, are determined
from the boundary conditionsat z= 0.

Clearly, Eq. (16) implies that, if some of the mag-
netic surfaces are equidistant at a certain cross section
of the lens, they will remain equidistant everywhere,
but the distance between them may change. Conse-
guently, the parabolic radial potential profile specified
at the entranceto the solenoid (at z= 0) will also remain

(16)
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parabolic everywhere, thereby providing the possibility
of creating alensfree of spherical aberrations, because,
in this case, the electric force that directs an ion toward
the axisis proportional to the distance between the ion
and the axis. As aresult, for the parabolic radial poten-

tial profile = ¢,r2/a; of the electric field produced by
the electrodes (here, a, is the radius of the boundary
magnetic surface at z= 0 and ¢, is the potential at the
boundary surface), we can use Eq. (16) to obtain the
following equation for the motion of the focused beam
ions:

___+_B_(_Z_)_kf/| = ,

dZ B(0)

206,
M vzag
Generally, thetrajectories of the focused ions can be
traced only by computer calculations.

In amagnetic field with a converging boundary sur-
face, some of the ions (specificaly, those that are
injected at large distances from the lens axis) may fall
to enter the focusing channel and thus will not be
focused to acommon focal spot. In order to focusall of
the beamionsto afocal spot, it isnecessary to optimize
the shape of the magnetic surface bounding the focus-
ing channel. Then, one needs to calculate the parame-
ters of the solenoid that produces the optimum mag-
netic surface and to follow the trgectories of the
focused ions. The desired magnetic surface is deter-
mined by the condition that its radius a be equal to the
radius R of the focused beam. The function R(z) and, by
virtue of Eqg. (16), the function B(2) satisfy the equation

2
_+_ = 0'
dZ R

(17)

where kf,, =

(18)

290,
Myv?

Using the initial conditionsR=R, and R =

wherek =

Ry at
z=0and making the replacement t> = ( R{')Z/K) —2InR/R,,
we arrive at the following solution to Eq. (18):

_ Ry
zZ= i&%ap%
{ %/ 2|n5|j qapDJ_D}

where @, is the probability integral. The radius of the
focusing channel decreases to a certain value R, at the
exit end z, from the lens. Then, the charge-neutralized

(19)
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beam ions leave the lens and continue to be focused by
inertia. When al of the beam ions areinjected parallel to
the lens axis, the coordinate of the focal spot isequal to

Ry
z, = [Rocpp( /2InRO/Rg)+m (20)

As anumerical example, we consider the focusing
of al-MeV beam of radius R, = 3 cm. Let the potential
¢, at the boundary magnetic surface be equal to 5 kV.
Then, we have k = 2g,/(Mv?) = ¢,/U = 0.005, where
U is the accelerating potential. As a result of focusing
in converging magnetic surfaces, we arrive at the ratio
Ry/Ry = 2.72. Inserting this ratio into formula (20)
yields the focusing length z = 56 cm, which is substan-
tialy shorter than that in auniform lens. The shortening
is especially pronounced for the focusing of diverging
beams. The corresponding parameters of the solenoid
and the associated ion trgectories were computed
numerically (see below).

To conclude this section, we note that, as was men-
tioned in many papers (see, eg., [1, 11]), the focusing
length Ly O (U/¢,)? in thin electron-plasma lenses is
much shorter than L; 0 (U/¢,) in vacuum electrostatic
lenses. Our formulas (15) and (20) show that, in extended
electron-plasma lenses, the focusing length obeys the
dependence L; [0 (U/d,)'? and thus is even shorter.

5. CALCULATION OF A SOLENOID
GENERATING THE DESIRED PREFORMED
MAGNETIC FIELD

5.1. The creation of axisymmetric magnetic fields
with the given dependence on the longitudinal coordi-
nate isimportant for some applicationsin plasma phys-
ics, the physics of charged-particle beams, etc. One sig-
nificant problem is the so-called reverse (or reconstruc-
tion) problem, which implies the reconstruction of the
original solenoid configuration from the known profile
of the magnetic field along the z-axis. Similar problems
belong to the class of ill-posed problems in the sense
that, for a given accuracy, each of them has an infinite
number of solutions. We solve the problem by the
Tikhonov regularization method [12], which implies
that, among the possible solutions, it is necessary to
choose the solution that satisfies certain criteria

As arule, magnetic fields with the above longitudi-
nal profile are created by sectioned solenoids, i.e., sole-
noids composed of discrete coaxia sections (cails). In
the literature devoted to this problem (see, e.g., [13]),
the sought-for parameters were the current densitiesin
the solenoidal coils. Thisisthe simplest formulation of
the problem, because the equation for the strength of
the solenoidal magnetic field is linear in the current
density. However, for a solenoid with a sufficiently
large number of coils, the problem reduces to that of
solving a set of nonlinear equations and thus may turn
out to be ill-posed, which may lead to some loss of
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computational accuracy. This approach aso does not
hold promise from atechnical viewpoint because each
solenoidal coil requiresits own power supply.

Here, we turn to the Tikhonov regularization
method in order to solve a more general problem, spe-
cifically, we look for the parameters of the solenoidal
coils in which the magnetic field strength is nonlinear,
e.g., the cail thicknesses, the lengths of the coils, and
their inner radii.

5.2. We consider a discrete (sectioned) solenoid
consisting of n coaxial coils with arbitrary cross sec-
tions. Let the solenoid create a magnetic field whose
strength over the interval [a, b] on the solenoid axisis
described by the function f(2) with a given accuracy 0.

Let the magnetic field strength created by the ith
solenoidal coil at the point z be described by the func-
tion H;(N;, 2), which depends on the geometric shape of
this coil as well as on its dimensions and its position
relativeto this point through the parameter N;. Then, the
total magnetic field strength at the solenoid axis can be
written as

B(2) = § Hi(N,,2). Q1)

We define the deviation of B(z) from f(z) as
b 1/2

p(B. 1) = O [B(z)_f(z)]zdzé

a

(22)

For a given accuracy, the problem of searching for the
desired set of coils has an infinite number of solutions;
for asufficiently large number of coils, the solutionsare
unstable against small variations in the initial parame-
ters. Consequently, among all of the solutions satisfy-
ing the condition p(B, f) < 8, where d isagiven number,
it isnecessary to choose the solution optimized in acer-
tain criterion (e.g., in the volume of the solenoidal coils
or the power consumption). The problem at hand can be
formulated as follows [12]: it is necessary to find the
parameter set (N;, N,, ..., N,) that minimizes the func-
tiona

F(N4, ..., N, B)

b n 2

_ I{Z Hi(Ni,z)—f(Z)} dz+ BN, ... N,).

Here, Q(N,, ..., N, isthe stabilizing functional, which
is determined by the optimization criterion, and 3 isthe
regularization parameter. The conditions for functional

OF(Ny ., NwB) _ yield the

(23) to be minimum, N,

set of nonlinear equations

b
0Q

I{ZH(N,,z) f()}ade aNk—o, (24)
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Fig. 7. Optimized longitudinal profile of the magnetic field
strength at the solenoid axis in an extended plasma-optic
lens.
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Fig. 8. Configuration of the solenoid creating a magnetic
field with the desired profile B(2).
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Fig. 9. lontragjectoriesin an extended lenswith an optimized
magnetic field.

which can be solved by one of the gradient methods
(see, eg., [14)]).

5.3. Themethod for solving the problem of calculat-
ing the solenoid consists of the following steps: the
choice of the quantities governed by the parameters of
the physical device; the choice of theinitial approxima-

tion Ni0 and the regularization parameter (3 in such a

way that the iterative procedure converges; the solution
of Egs. (24) by iteration with a given accuracy; the
adjustment of both the initial approximation (it is set
equal to the current value of the sought-for parameter)
and the regularization parameter {3 (if the iterative pro-
cedure converges too slowly, the parameter B is
decreased); the reiteration of Egs. (24); and so on until
the desired solution is achieved.

We applied the above method to cal culate a solenoid
that is composed of coils with rectangular cross sec-
tions and creates a magnetic field shaped in a desired
fashion. As the sought-for parameters N;, we adopted
the coil thicknesses d, = R - r;, in which case the
approximating functions H;(d;, 2) and their first deriva-
tives (in a Gauss system of units) have the form [15]

Hi(Z) = ﬁ{(z_zi)lnRi*—/\l Ri +(Z_Zi)

¢ ri +'\/ri2+(Z_Zi)2 (25)
2 2
—(z—ai—Zi)InRiJrJFi +(Z_ai_Zi)2,
ri"’«/ri +(z-a-()
OH,
ad,
:zmi{ -4, z-a-% } 20
¢ LIR+@-1) JR+(z-a-7)

Here, J; isthe current density; ¢; isthe smallest coordi-
nate of the cross sections of the cail; r; and R are the
inner and outer radii of the coil, respectively; and g, is
the cail length along the solenoid axis.

As the stabilizing functional, we adopted the
squared Euclidean norm of the solution: Q(d,, ..., d,) =
3 7-1(d; — df)2 where df isthe initial value of the
sought-for parameter of the ith coil. This choice corre-
sponds to the criterion of minimizing the total volume
of the solenoidal coils. In each of the coils, the current
density was taken to be the samein order to economize
the wire for coils and to lower the power consumption
in comparison with the solenoid in which the magnetic
field with the desired longitudinal profile is created by
redistributing the current between the cails. Also, the
solenoid under consideration is easier to supply with
power: the coils carrying the same currents can be con-
nected in series and supplied from a common power
source. All of the above factors will ultimately affect
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the dimensions, weight, and cost of the resulting sole-
noid.

5.4. Here, we describe the computation of asolenoid
aimed at creating amagnetic field with the desired lon-
gitudina profile in the extended plasma-optic lens
whose parameters were given in Section 4, inwhich we
also presented the results of theoretical analysis and
numerical calculation of this lens. The desired mag-
netic surface is determined from the condition that its
radius a be everywhere equal to the radius R of the
focused beam. In turn, the beam radius is found from
Eqg. (18) at k = 0.005 with allowance for theinitia con-
ditionsR=R,,R= R, =0, and B(0) =1kOeat z=0. In
the paraxial approximation, the magnetic surface satis-
fiesEq. (16). From this equation and the corresponding
initial conditions, we find the longitudinal profile of the
magnetic field at the solenoid axis. For the lens under
consideration, the magnetic-field profileis presented in
Fig. 7. Then, we apply the above approach in order to
determine the configuration of the solenoid that pro-
duces the magnetic field with the desired longitudinal
profile B(z) (Fig. 8). The main parameters of the sole-
noid (which is assumed to be supplied by power from a
pulsed source) are asfollows: the length isabout 65 cm,
the number of coilsis equal to five, the inner coil radii
areall equal to 10 cm, the length of each coil is6.5 cm,
and the mean current density over the cross section of
each coil is 100 A/mm? (the coils are assumed to be
made of a 65-mm-wide metal strip). The thicknesses of
the coils (from the first to fifth) are 0.18, 0.12, 0.13,
0.95, and 4.92 cm. Over the entire solenoid, the relative
error in approximating the magnetic field is no worse
than A=4 x 1072 (such an accuracy is quite sufficient for
our purposesin the example at hand). Further optimiza-
tion assumes the use of the solenoidal coils whose radii
decrease as the radius of the focused beam decreases.

Figure 9 shows ion trgjectories in a plasma-optic
lens with an optimized magnetic field. In accordance
with Sections 3 and 4, the ions are focused to the same
point, because, in each cross section of the lens, the
focusing force acting on each ion is proportional to the
distance between the ion and the axis. Note that the
focusing length L; = 56 cm, which was calculated ana-
Iytically in the previous section, is exactly equal to that
obtained in this section by tracing the ion trajectories
numerically.

In conclusion, we will say a few words about the
usefulness of computer modeling of plasma-optic
focusing devices. Our study demonstrates that, in this
way, one inevitably will be faced with fairly involved
computations, which include a preliminary choice of
the geometric and el ectric parameters of the device, the
analysis and reconstruction of two-dimensional mag-
netic and electric fields, tracing of the trajectories of
charged particles in these fields, and the variations of
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these fields (and possibly other parameters) in order to
minimize aberrations and to achieve the desired output
characteristics of the focused beam. Such simulations
require the development of special-purpose computer
codes aimed at modeling particular plasma-optic con-
figurations. Such numerical codeswill makeit possible
to efficiently optimize the existing and planned experi-
mental devices.
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Abstract—The pulsed mode of a negative corona discharge in air has long been known; however, in electro-
positive gases, this mode has not been previously observed. This paper presents the results from a systematic
study of a newly discovered pulsed mode of a nhegative corona in nitrogen over a wide range of experimental
parameters. The conditions under which the pulsed mode isrealized are described in detail. The dynamic char-
acteristics of current pulses are determined. The shapes and parameters of current pulsesin nitrogen and air are

compared. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A low-current discharge in a strongly inhomoge-
neous electric field (corona) has avariety of forms and
current modes, which depend on the geometry of the
electrodes, the gas type and pressure, and the polarity
and amplitude of the applied voltage. The time aver-
aged current—voltage (I-V) characteristic of a corona
discharge is its generdlized characteristic. A more
detailed classification of corona modes requires a com-
parison of the -V characteristic with the visual picture
of a discharge glow and the time behavior of the dis-
charge current.

Regular current pulses at a constant value of the
applied voltage are one of the interesting features of a
corona discharge. The pulsed mode of a negative
coronain air wasdiscovered by Trichel as early as 1938
[1]. The pulsed mode correspondsto initial coronacur-
rents of | < 130 pA. In this mode, the majority of the
discharge gap remains dark and the glow is concen-
trated in aregion of about 1 mm near the cathode point.
Thetip of the point is covered by awide glow, whichis
overlain by a diffuse lilac aureole (corona), strongly
diverging toward the anode.

Later (see, e.g., [2, 3)]), it was found that the current
pulses are due to the instability (and, accordingly, the
nonsteady behavior) of the glow cathode sheath of a
corona discharge at low currents, so that negative ions
play a secondary role in the generation of Trichel
pulses.

Unlikein air, the pulsed mode of a coronadischarge
in electropositive gases (nitrogen, helium, etc.) can be
realized only through a certain experimental procedure
that is not necessarily employed in usual gas-discharge
experiments. For this reason, in the well-known work
by Veksler (1943) [4], in which the same approach was
used to study corona discharges in both air and nitro-
gen, no regular current pulses were observed in nitro-
gen. Based on the results of those experiments, it was

concluded (see, e.g., [5, 6]) that the pulsed mode of a
negative corona does not exist in electropositive gases.

We have observed the pulsed mode of a negative
corona in nitrogen in the needle—plane electrode con-
figuration, investigated the dynamic characteristics of
the discharge, and compared them with Trichel pulses
in acoronadischarge in air under similar conditions.

To explain the essence of our experimental
approach, we briefly revisit the general features of a
negative corona in air and note its important distinc-
tions from a negative coronain nitrogen.

Itiswell known [5—7] that the averaged |-V charac-
teristic of a negative coronain air can be approximated
with reasonable accuracy by the parabolic dependence

| = kKU(U=U,), )

where | isthe corona current; U is the applied voltage;
kisadimensional factor dependent on both the geomet-
rical parameters of the electrodes and the mobility of
charge carriersin the drift region of the corona; and U,
is the so-called initial corona voltage, which is usualy
determined experimentally as the point at which the
straight line representing the reduced current 1/U inter-
sects the voltage axis (in the literature, the dependence
of 1/U on U isreferred to as the reduced |-V character-
istic). Expression (1) also reflects the fact that the cur-
rent of a negative coronain air is nonzero only for U >
U, (here, we will not consider subnanoampere currents
corresponding to voltages below U,; detailed measure-
ments of the |-V characteristic of a corona discharge at
very low currentswithin thisvoltage range were carried
outin[4, 8]).

In the literature, the initial corona voltage is often
identified with the ignition voltage, i.e., the voltage at
which the generating sheath (glow cathode sheath) sus-
tained by electron avalanche processes is formed near
the coronaelectrode (see, e.g., [5, 6]). The physical rea-
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sons for such an identification are not quite clear,
although, for centimeter interelectrode gaps, the value
of U, in air coincides fairly well with the ignition volt-
age calculated from the condition for the existence of a
self-sustained steady-state electron avalanche for the
vacuum configuration of the electric field in the gap
(this condition is analogous to the condition for the
existence of a sdf-sustained steady-state cathode
sheath of a glow discharge):

d

[o—on)ox= In%/, @)
0

where a; — a, is the resultant electron avalanche gain
factor, which is governed by ionization (a;) and attach-
ment (a,) processes; d is the size of the region near the
coronaelectrode in which ; = a,; and yisthe effective
positive feedback factor for electron avalanches, which
is determined by electron emission from the cathode
surface bombarded by photons, positive ions, and
excited particles.

At high electric fields, the ionization coefficients a;
in nitrogen and air are close to each other. Because of
the sharp exponential dependence of a; on the field
strength, the corona ignition voltage in nitrogen,
according to Eq. (2), differs slightly from the ignition
voltage in air (the corresponding experimental data are
presented in Fig. 1). The values of the voltage drop
across the cathode sheath also differ insignificantly for
these coronas. The potential drop U, across the glow
cathode sheath is usually equal to several hundred volts
(i.e, U, < Ug), wheress, in air, it contributes insignifi-
cantly to the total voltage drop across the corona

In a negative corona in nitrogen, the main current
carriers are electrons rather than positive ions. Conse-
guently, the voltage across the drift region required for
carrying the same current in nitrogen is substantialy
less than that in air. Thus, after ignition, the corona in
nitrogen occurs under overvoltage conditions and its
current abruptly increases to a fairly high value Iy,
determined by the 1-V characteristic of the corona and
the load resistance in the external circuit. Thisis quali-
tatively illustrated in Fig. 2.

At atmospheric pressure, centimeter-scaleinterel ec-
trode distances, and a resistance in the external circuit
of R= 1-10 MQ, the corona current in nitrogen is usu-
aly established at a steady level of about 100 pA. At
such currents, thevisual picture of the coronaglow near
the cathode point differs significantly from that in air.
In nitrogen, asmall bright spot is observed on the cath-
ode point [4] instead of a broad and diffuse glow, char-
acteristic of acoronain air.

We note another experimental observation that is
important from a methodological standpoint. When
studying a corona discharge and measuring its 1-V
characteristic, the measurement procedure is usualy
the following. After the corona ignition, we gradually
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Fig. 1. Ignition voltage of a negative coronain (1) nitrogen
and (2) air as afunction of the interelectrode distance. The
cathode-point radiusis r, = 0.06 mm, and the gas pressure
isP =760 torr.
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Fig. 2. Qualitative time-averaged |-V characteristics of neg-
ative coronasin (1) nitrogen and (2) air. Thecritical currents
arethefollowing: 1,4, isthe discharge current that is rapidly

established after corona ignition, |.;, is the minimum

corona current below which the coronais quenched, and | *
is the current separating the steady-state mode of a corona
discharge from the pulsed mode; Uy, is the corona ignition

voltage. Characteristic current waveforms in the steady-
state and pulsed modes are shown in insets. The character-
istic period of current pulsesis 3 umsfor nitrogen and 30 s
for air. The hysteresis region of the coronais shown by the
dashed line.

increased the power-source voltage, thereby moving
upward along the |-V characteristic (Fig. 2, path a-b).
In this case, the pulsed mode of a negative corona in
nitrogen does not occur.

We have found that, if the applied voltage is
decreased after igniting the corona (Fig. 2, path a<),
then the corona exists even at currents below lig,. In
other words, a corona discharge in nitrogen is charac-
terized by hysteresisin acertain range of parameters. In
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our experiments, we studied the corona at currents |
both higher and lower than Iy, This alowed us to
observe the pulsed mode of a negative corona in nitro-
gen, because under most experimental conditions (P =
1 am, R<10MQ, andd = 3 cm), regular current pulses
can only be observed in the hysteresisregion at currents

| <lign

2. EXPERIMENTAL TECHNIQUE

Corona experiments were carried out in the needle—
plane electrode configuration within wide ranges of
interelectrode distances (d = 0.1-21 cm) and cathode
point radii (r, = 0.06-5 mm). To avoid the edge effects
due to the limitation of the transverse size of the
corona, the diameter of the anode disk was aways
larger than the interel ectrode distance by at least afac-
tor of 3 (in special experiments, it was established that
the edge effects are unimportant at this ratio between
the anode diameter and the interel ectrode distance).

11U, pA/kV
160 (a)

140+
120+
100+
80+
60 ! 2
40F

L]
28 E-

.

1 2 3 4 5 6 7 8

10

0 10 20 30 40 50
U,kV

Fig. 3. (d) Time-averaged reduced |-V characteristic of a
negative corona (a) in nitrogen at P = 1 atm, r, = 0.06 mm,
(1) d =10 mm and Uj,, = 2.8 kV, and (2) d = 30 mm and
Ujgn = 4 kV (Ug < Uj,,) and (b) inair at P =1 atm, re =
0.06 mm, (1) d = 10 mm and Uy, = 28 kV, and (2) d =
30mm and Uj, = 4.5 kV (Uy = Uj,,). The hysteresis
region in plot (@) is shown by the dashed curve; minimum
corona currents of 3-5 pA are indicated by open symbols.
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The anode was made of either stainless-steel or
resistive-material plates. The thickness and resistivity
of a resistive plate were chosen such that, at typical
corona currents, the voltage drop across the plate was
no higher than several tens of volts. To measure the cur-
rent distribution over the anode, we used a sectioned
anode consisting of ten nested metal rings separated by
thin dielectric layers.

In experiments, we used chemically pure (99.999%)
nitrogen. To maintain the certified purity of nitrogen
and remove possible products of plasmochemical reac-
tions from the discharge, the gas flowed continuously
through the discharge chamber. The gas flow rate was
set sufficiently low in order to avoid any perceptible
gas-dynamic effect on the corona. The nitrogen pres-
sure was from 1 torr to 25 atm. Pressures below atmo-
spheric were measured by an M110 aneroid barometer;
pressures above atmospheric were measured by an MO
(model 1120) reference manometer.

The power supply was a stabilized high-voltage
source (6U/U < 10-°) with avoltage of up to 60 kV. The
voltage at the interelectrode gap was measured by
either an S-196 electrostatic voltmeter or a calibrated
high-voltage divider with an arm ratio of 1 : 10000.
The ballast resistance in the externa circuit was from
1MQ to 1.5 GQ. The averaged corona current was
measured with a Ts$4311 pointer instrument. The
corona current pulses were recorded with an S1-104
analog oscillograph and a Tektronix TDS 520 digital
oscillograph with a 500-MHz passband and 0.7-ns sig-
nal risetime. Some measurementsin the low-frequency
range were carried out with an S8-17 oscillograph.

3. EXPERIMENTAL RESULTS

3.1. Specific Features of the -V Characteristic,
Critical Currents, and the Visual Picture of the Glow of
a Corona Discharge in Nitrogen

First, we describe the general properties of a corona
with ametal anode. Figure 3a shows the time-averaged
reduced |-V characteristic of anegative coronain nitro-
gen for two values of the interel ectrode distance, d = 10
and 30 mm. The hysteresisregionsinthe I-V character-
isticsareindicated by the dashed lines. For comparison,
Fig. 3b shows the reduced |-V characteristic of a
coronadischarge in air for the same interelectrode dis-
tances and point radii.

It is seen that, in the current range in which pulses
are absent, the |-V characteristic of a corona in both
nitrogen and air can be approximated by expression (1).
We note that, in nitrogen (unlike in air), the voltage U,
at which the straight line 1/U intersects the voltage axis
does not coincide with the corona ignition voltage. At
nitrogen pressures of P < 1 atm and centimeter inter-
electrode distances, the initial voltage U, determined
from the |-V characteristic is always lower than the
ignition voltage, U, < U;4,. However, as the interelec-
trode distance and the nitrogen pressure increase, the
No. 6
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voltage U, approaches U;y,. For example, at P = 1 atm
andd>20cmor P=7amandd> 1.0 cm, theinitial
voltage almost coincides with the ignition voltage.

A comparison of the slopes of the reduced 1-V char-
acteristic in nitrogen and air in the absence of pulses
showsthat their ratio (at the same values of P, r, and d)
is about 60-80. Thisvalue is nearly four times smaller
than the mability ratio between electrons and negative
ions, Yo/l = 250-300. This circumstance may be evi-
dence of the difference between the effective current
cross sections of nitrogen and air coronas.

Indeed, the effective cross section for an axisym-
metric corona in air can be determined from the so-
called Warburg distribution [9], according to which the
current density at the metal anode falls monotonically
with distance from the axis. It was found in [10] that a
nitrogen coronahad a nonmonotonic radial current pro-
filewith adeep and rather broad minimum in the center,
which increased the effective current cross section of
the corona.

Our experiments with a sectioned anode show that
the nonmonotonic cross section is only typical of
coronacurrentsthat lie outside the hysteresisregion. In
the hysteresis region, the radial current distribution
over the anode is monotonic and resembl esthe Warburg
distribution (Fig. 4). Hence, inthe hysteresisregion, the
current cross section of a corona discharge in nitrogen
is close to that in air, which reflects a steeper depen-
dence of the reduced current on the voltage and a closer
coincidence between the ratios of the slopes of the
reduced 1-V characteristics in nitrogen and air and the
ratio Ya/|;.

According to Fig. 2, several characteristic current
values can be distinguished in the I-V characteristic of
a negative corona the initia current Iy, which is rap-
idly established after igniting the corona; the minimum
corona current 1., below which the corona is
guenched; and the critical current 1*, which separates
the pulsed mode of the corona from the steady-state
mode. Let us consider in more detail how each of these
currents depends on the discharge parameters.

The value of the initial current I;y, depends on the
dimensions of the electrode system (i.e., the point
radius r and the interel ectrode distance d), the nitrogen
pressure P, and the ballast resistance R. By varying
these parameters, it is possible to decrease the corona
current, but not to an arbitrary small value. It turns out
that, in the hysteresis region, the corona exists only
when the current is above a certain level. In the experi-
ment, this manifested itself in the fact that, as the
applied voltage and, accordingly, the current slowly
decreased, the corona was abruptly quenched at a cer-
tain threshold current | =1 ;...

It was found that the minimum coronacurrent | ,;, in
nitrogen increases as the curvature radius of the cath-
ode point increases. In contrast, as the interelectrode
distance d and the ballast resistance R increase, the
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Fig. 4. Radial distribution of the current density over the

anode in a negative corona in nitrogen at P = 1 am, r, =
0.1mm, d =30 mm, and R = 7.8 MQ: (/) a steady-state
coronamode at acurrent of | =108 pA and U = 3.05kV and
(2) apulsed corona mode at a mean current of 1C= 40 pA
and U = 2.4 kV; j, isthe current density at the anode center

(6 = 0); B isthe angle (in degrees) measured from the dis-
charge axis.
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Fig. 5. Minimum current of a negative coronain nitrogen as
afunction of the interelectrode distance for different point
radii: r. = (1) 0.1, (2) 0.5, and (3) 1.1 mm. The gas pressure
isP = 750 torr, and the ballast resistanceisR=5MQ.

minimum corona current decreases. The corresponding
experimental results are shown in Fig. 5. Increasing the
pressure at fixed values of r and d also results in an
increasein the current at which the coronais quenched.
The experimental data obtained for apoint radius of r =
0.06 mm, an interelectrode distance of d = 0.4 cm, and
R =18 MQ are summarized in Table 1.

The hysteresis and the threshold current |, were
not observed in an air corona at atmospheric pressure.
However, at low pressures P < 20 torr, when the attach-
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Tablel

P, am 1 2 3 7 | 10 18
Limire HA 26 | 30 | 40 | 50 | 60 | 80

ment of electrons to oxygen was significantly weaker,
the above effects were also observed in an air corona.

According to Fig. 2, regular current pulsations in
nitrogen exist in the hysteresis region of the |-V charac-
terigtic at currentslower than a certain critical current | *.
The study of the evolution of the visual picture of the
corona glow allowed us to reveal the key effect related
to the appearance (or disappearance) of the pulsed
mode.

At the current equal to | *, the spatial structure of the
glow near the cathode point rearranges abruptly. In the
pulsed mode (I < |*), the point is covered with a wide
glow spot that is overlain by a diffuse corona glow
diverging toward the anode. This structure of a corona
glow in nitrogen is similar to that observed in air in the
range of initial corona currents at which Trichel pulses
exist.

For | > | * (steady-state corona), the transverse size
of the steady-state cathode sheath is appreciably
smaller to the eye than the average size of the pulsed
sheath. The structure of the sheath and the surrounding
glow depend on the nitrogen pressure. At higher pres-
sures (P= 0.5 atm), the point glow is bright and is
localized in one (or more) small current spots. Such a
picture was usually observed in all of the known exper-
iments with a nitrogen corona (see, €.9., [4, 5]).

At lower pressures (P < 0.5 atm), the contraction of
the glow cathode sheath during the transition from the
pulsed mode to the steady-state mode is less pro-
nounced. After the transition, the steady-state glow
cathode sheath appreciably reduces in diameter, but a
small bright cathode spot on the point does not occur in
this case (the spot can arise at higher currents). A simi-
lar structural rearrangement of the corona glow is
observed in air when Trichel pulses disappear. The only
differenceisin the values of the currents | *: the critical
current in nitrogen issubstantially lower thanthat in air,
so the current rangein which regular pulsesexist is nar-
rower for nitrogen.

At atmospheric pressure and centimeter gaps, the
current boundary |* between two visually different
forms of the cathode sheath (a wide glow spot and a
small bright spot) can vary approximately from 40 to
60 PA. This scatter in the currentsis mainly due to the
dependence | * on the direction of motion (1 or 1)
along the hysteresis |-V characteristic (1 corresponds
to the motion from lower to higher corona currents, and
| corresponds to the motion in the opposite direction).
In other words, the transformation of the cathode
sheath from one form to another is characterized by
hysteresis. The current at which the glow disappears,
[*1, exceeds the current at which it arises | *1. Thus,
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eg., l*l =42 pA and | *1 =56 pA ford=3.5cm. As
the interelectrode distance increases, the | * hysteresis
becomesless pronounced and, for d = 15 cm, the differ-
ence between | *1 and | *1 disappears. At point radii
larger than 0.1 mm, the value of the critical current | *
depends weakly on the radius.

At atmospheric pressure, centimeter gaps, small
point radii (r < 0.5 mm), and small ballast resistances
(R< 10 MQ), the ignition current usually exceeds the
critical current | *. In this situation, the region in which
regular current pulsations exist is determined by the
condition I* > |_... This condition becomes invalid for
large point radii and also small interelectrode distances
because, in this case, the corona is spontaneously
guenched even before the pulsed regime (1* < ;)
OCCUrsS.

By significantly increasing the interelectrode dis-
tance (up to 20 centimeters or higher) and the ballast
resistance (up to 100 MQ or higher) or by decreasing the
point radius and the nitrogen pressure, it is possible to
reduce the current |, a which the coronais quenched
and to create conditions a which I, < lig, < 1*. In this
case, the corona is ignited in the pulsed mode with a
glow cathode sheath surrounded by a diffuse glow.

The parameters of the pulsed mode of a negative
coronain nitrogen differ substantially for anodes made
of different materias. For this reason, the results for
coronas with metal and resistive anodes will be
described individually.

3.2. Pulsed Mode of a Negative Corona
with a Metal Anode

We studied the pul sed mode of acoronadischarge at
both atmospheric and reduced nitrogen pressures. The
fact is that the current 1., a which the corona is
guenched decreases rapidly as the pressure decreases.
The magnitude of the current 1* corresponding to the
upper boundary of the pulsed mode a so decreases with
decreasing pressure, but not as rapidly. Hence, the cur-
rent rangein which the pulsed mode exists (I, < 1 <1 %)
broadens as the pressure decreases, which facilitates
the study of thismaode. In addition, at low pressures, we
can use lower ballast resistances in order to redlize the
pulsed mode of a corona discharge (the current 1*
depends only slightly on the resistance). Thus, for
P < 100 torr, we can use resistances about several MQ.
The corresponding experimental data are presented in
Table 2.

First, we compare the shapes and characteristic
parameters of oscillograms of the current pulses in
nitrogen and room air, other conditions being the same.
A comparative experiment was carried out at P =1 atm,
an interelectrode distance of d = 30 mm, a point radius
of r =0.1 mm, and a ballast resistance of R= 750 MQ.
The corresponding current oscillograms are shown in
Figs. 6 and 7. It can be seen that the peak amplitudes of
the pulses are close to each other and the durations of
PLASMA PHYSICS REPORTS  Vol. 27
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Table2
P, torr 750 300 100 100 100 100 750 | 750 750 750 | 750 300 100
R MQ 2 2 2 5.1 51 102 10 34 51 102 10 10 10
100 100 100
d, mm 35 30 30 30 30 30 15 15 15 15 5 5 5
I*, A 42-56 | 3826 | 13-16 | 15 15 15 - 40 40 40 - - -
45 35 25
| nine MA 40 40 25 | 10 <2 <1 45 11 10 9 45 40 30
35 30 10

their steep (=2 ns) leading edges are nearly the same
(the equal amplitudes are observed for nitrogen and dry
air); however, the duration of their trailing edges is
markedly different.

A typical trailing edge duration of Trichel pulsesin
air ison the order of 100 ns; over thistime, the current
decreasesto 1-3 pA. The trailing edge duration of cur-
rent pulses in nitrogen lies in the millisecond range.
Accordingly, the pulse periods are also different. Thus,
for amean corona current of | = 10 HA, the period T of
Trichel pulsesisequal to 6 us, whereasin nitrogen, itis
T=2ms

The shape of the pulse trailing edge in nitrogen is
more complicated than that in air. During the first 70—
80 ns after the pulse peak, the current fallsasrapidly as
it doesinair. Inthisstage, the current fallsrapidly from
A, = 1.6 mA to A, = 150-300 YA (here, A, isthe peak
amplitude of the current pulse). Then, over about 6—
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Fig. 6. Oscillogram of the current pul se of anegative corona
with ametal anode in nitrogen at P =1 atm, R= 750 MQ,
d=30mm, r, = 0.1 mm, D=8 pA, and U = 2.7 kV: (a) a
general structure of the current pul se (the pul se amplitude at
the leading edge is depicted only roughly, the time scaleis
20 pg/division, and the current scale is 40 pA/division);
(b) a detailed structure of the leading edge of the current
pulse (thetime scaleis 2 ng/division, and the current scaleis
400 pA/division).
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7 us, the current increases by several percent. Thetime
it takesfor the current to arrive at agently sloping max-
imum (a hump) turned out to be linearly dependent on
the interel ectrode distance; at atmospheric pressure, we
havet,, [1Us] = 0.2d [mm]. After the hump, the current
fallsmonotonically to nearly 35 pA. After reaching this
critical value, the current falls rapidly (over about sev-
eral microseconds) to 1-3 pA and remains at this level
until the next pulse begins. In some cases, the rapid fall
of the current at the pulsetrailing edge is al so observed
inair. Trichel pulses with such shapeswererecorded in
[11] and aso in our experiments.

A monotonic decrease in the current at the pulse
trailing edge after the current hump is characteristic of
high pressures (P = 0.5 atm), when the pulse current
approaches the critical value | = 35 pA quite rapidly
(the characteristic current-fall rateis|dl/dt |= 1 A/s). At
lower pressures, there is a current quasi-plateau phase

Fig. 7. Oscillogram of the current pulse of anegative corona
with a metal anode in air (Trichel pulse) at P =1 am, R=
750 MQ, d =30 mm, r, = 0.1 mm, 00= 10 pA, and U =
11 kV: (a) agenera structure of the current pulse (the time
scaleis 10 ngdivision, and the current scale is 400 pA/divi-
sion); (b) adetailed structure of the leading edge of the cur-
rent pulse (the time scale is 2 ng/division, and the current
scaleis 400 pA/division).



Fig. 8. High-frequency oscillationsat thetrailing edge of the
current pulse of a negative corona with a metal anode in
nitrogen at P = 120 torr, R = 34 MQ, d = 30 mm, r. =
0.1 mm, O= 10 pA, and U = 1.35 kV: (a) agenerd struc-
ture of the current pulse with high-frequency oscillations at
the trailing edge (the time scale is 20 pg/division, and the
current scale is 20 pA/division); (b) a detailed structure of
high-frequency oscillations at the trailing edge of the cur-
rent pulse (the time scale is 5 pg/division, and the current
scaleis 20 pA/division).

at the pulsetrailing edge, in which the current decreases
rather slowly (the characteristic current-fall rate can be
aslow as|dl/dt| = 0.01 A/s). In this case, severa tens
of microseconds before the rapid fall, high-frequency
oscillations with increasing amplitude and a period of
3-6 us arise at the pulse trailing edge (Fig. 8).

As the nitrogen pressure decreases, both the ampli-
tude and period of high-frequency oscillationsincrease,
whereasthe values of the critical currentsat thetrailing
edge before and after the rapid fall become closer.
Thus, at P = 100 torr, the critical current before the fall
isequal to 20 pA, whereas after thefall, it isequal to 7—
8 HA. At even lesser pressures P < 80 torr, these oscil-
lations arise not only at the pulse trailing edge, but also
immediately after the current peak at the leading edge
(Fig. 9). In this case, the oscillation amplitude
decreases as the pulse current increases. The high-fre-
guency oscillations observed in nitrogen with a metal
anode are very similar to Trichel pulsesin air with sm-
ilar corona parameters.

As the interelectrode distance decreases, the two-
humped shape of the pulse in nitrogen becomes more
pronounced (e.g., a d = 3 mm, the hump height is

Table3

T, ms 1.6 2 4
T, US 75 150 340
d, mm 5 30 150
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Fig. 9. High-frequency oscillations at the leading edge of
the current pul se of a negative coronawith ametal anodein
nitrogen at P =80torr, R=34MQ, d=30mm, r, = 0.1 mm,
0= 10 pA, and U = 1.0 kV: (a) a detailed structure of
damping high-frequency oscillationsthat arise immediately
after the leading edge of the current pulse (thetime scaleis
2 pugdivision, and the current scaleis 20 pA/division); (b) a
general structure of low-frequency current oscillations (the
interval A-B corresponds to high-frequency current oscilla-
tionsshownin plot (a), thetimescaleis 100 pg/division, and
the current scale is 20 pA/division).

nearly 50 times larger than the amplitude of a sharp
peak at the leading edge). A decrease in the pressure
leads to the same effect. As the mean current (or the
applied voltage) increases, the hump progressively
increases, and, finaly, the corona transforms into a
spark. If the interelectrode distance d and the point
radius r decrease substantially, then the pulses in air
also become two-humped in shape (provided that P <
1 atmand r/d > 0.5).

Unlike the Trichel pulsesin air, for which the repe-
tition rate is always proportiona to the mean current,
the dependence of the pulse repetition rate f on the
corona current in nitrogen is more complicated. In a
certain range of initial currents, the pulse repetition rate
varies linearly with the current. For example, a P =
1 atm, an interelectrode distance of d = 5 mm, and a
point radius of r = 0.1 mm, the linear dependence takes
place up to the mean current | = 15 pA. At coronacur-
rents up to 30 YA, the repetition rate remains almost
constant at a level of f = 1.5 kHz. Above 30 pA, the
pul se repetition rate decreases with the current until the
current reaches the value at which the glow cathode
sheath transforms into a small bright spot.

Because of the complicated structure of the pulse
trailing edge in nitrogen, it is necessary introduce
(adlong with the period T = 1/f) one more parameter
(Fig. 6), namely, the duration T of the phase of slow
decrease of the pulse current from A, (i.e., from severa
hundred microamperes) to severa tens of microam-
peres (to 35 YA at P = 1 atm). Experiments show that
the quantities T and T depend differently on the current.
PLASMA PHYSICS REPORTS  Vol. 27
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Table4

P, torr 30-750 30-750 750 750 750 750 750

R MQ <18 100 18 35 18 18 2750

d, mm <50 =5 50 100-200 210 210 100-200

(I =26 pA) (I =17 pA)

Ao, A No pulses Pulses are present 150 150 150 150 180200

T, ms (Imin =210 pA) 05 2 05 0.55 0.35

T, ms 1.25 17-20 4 2 4

At atmospheric pressure and d = const, the quantity
T remains constant in the range of corona currents cor-
responding to the linear growth of the repetition rate and
beginsto increase with the current outside thisrange. As
the interelectrode distance increases (at afixed current),
the quantities T and T increase (see Table 3 for P =
1am, r =0.1 mm, Il 10 yA, and R=750 MQ).

We carried out experiments for different values of
the ballast resistance R in the external circuit (from
1.0MQto1.5GQ). It wasfound that, for an air corona
at atmospheric pressure, the value of R has little effect
on the shape of Trichel pulses and their repetition rate.
Thisisexplained by the fact that a parasitic capacitance
(on the order of several picofarads) rather than the
ohmic resistance makes the main contribution to the
total impedance of the external circuit at times on the
order of the pulse period. In thiscase, the voltage across
the gap remains constant throughout the pulse period
and is independent of R.

In nitrogen, asfor Trichel pulses, the value R has no
effect on the shape of the short leading edge and the
pulse amplitude A, (the pulse amplitude can be changed
primarily by changing the point radius; A, increases
with radius). At the sametime, the structure of thetrail-
ing edge (i.e., the values of A,, T, and, accordingly, the
pulse period T) varies when varying R. The results
obtained at r = 0.1 mm and a mean current of 0=
10 pA are summarized in Table 4.

Itisseenthat, at low resistances (on the order of sev-
eral MQ), the values of T and T substantially exceed
analogous values for R > 10 MQ. A plausible explana-
tion is that the low R contributes significantly to the
total impedance of the external circuit at times of about
tens of milliseconds. At higher resistances, the pulse
parameters depend only dlightly on R (T decreases
dlightly with R) because, at times on the order of or
shorter than one millisecond, the impedance of the
external circuit containing a large resistance is gov-
erned by its parasitic capacitance.

3.3. Pulsed Mode of a Negative Corona
with a Resistive Anode

Experiments demonstrated that using a resistive
anode stabilizes a nitrogen corona in the point glow
PLASMA PHYSICS REPORTS  Vol. 27
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mode. This also allows one to extend the existence
domain of this mode toward smaller interelectrode dis-
tances and ballast resistances and larger point radii,
including the use of flat-ended rods up to 5 mm in
diameter. With a resistive anode, the upper current
boundary 1 * for the existence of a pulsed mode consid-
erably exceeds the analogous value for a corona with a
metal anode. With aresistive anode, the scenario of the
disappearance of the pulsed mode in nitrogen at any
pressure is similar to that of the disappearance of
Trichel pulsesinair; i.e, at | = 1*, arapid and insignif-
icant (by afactor of about 1.5-2) decrease in the diam-
eter of the glow cathode sheath occurs instead of the
formation of a bright small spot at the cathode point.

Experiments show that the anode resistivity substan-
tially affects the shape of current pulses in nitrogen.
With aresistive anode, the pulse leading edge is almost
the same as that with a metal anode; however, the trail-
ing edge no longer demonstrates a complicated and
rather extended structure. The pulses significantly
shorten and become very similar in shape to Trichel
pulsesinair for acoronawith aresistive anode (Fig. 10).

Fig. 10. Oscillograms of current pulses of anegative corona
with a resistive anode at P = 100 torr, R = 15 MQ, d =
30mm, and r, =1 mm (@) in air for 0= 40 pA and U =
1.1 kV (the time scale is 0.5 pg/division, and the current
scaleis 1.5 mA/division) and (b) in nitrogen for [ C= 38 pA
and U =0.9kV (thetimescaleis 1 pgdivision, and the cur-
rent scaleis 2 mA/division).
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Fig. 11. Duration of the leading edge t; of the current pulse

of a negative corona with a resistive anode in (1) nitrogen
(pty = 2.5 nsatm) and (2) air (pt; = 1.5 nsatm) asafunc-

tion of the gas pressure; the results presented refer to differ-
ent interelectrode distances and cathode radii, because 1

depends only slightly ond and r...

Comparing the Trichel pulses of air coronas with a
metal and resistive anode, we can see that the anode
resistivity has no effect on the structure of the leading
edge, but it nearly doubles the duration of the trailing
edge.

We compared the parameters of the leading edges of
pulses in nitrogen and Trichel pulsesin air under the
same experimental conditions. Figure 11 shows the
duration of the pulse leading edge T, in nitrogen and air
as a function of the pressure P. It was found that the
value of the product Pt, = 2.5 atm ns for nitrogen is
close to the corresponding constant for air, Pt; =
1.5 atm ns. The constant for air measured by us coin-
cides with the corresponding constant presented in
[12].

Figure 12 shows the repetition rates of the current
pulsesin nitrogen and air at P = 100 torr and r = 1 mm
as functions of the mean corona current. It can be seen
that, with aresistive anode, the region in which the rep-
etition rate of pulsesin nitrogen dependslinearly onthe
current is significantly wider and the rate itself is close
to the repetition rate of Trichel pulses. The latter cir-
cumstance indicates that the charges produced by indi-
vidual current pulses are almost the same in nitrogen
and air.

4. DISCUSSION OF EXPERIMENTAL RESULTS
4.1. Hysteresisin a Negative Corona in Nitrogen

The hysteresis effect in a negative corona in nitro-
gen is related to the difference between the voltages
providing the self-maintenance condition (2) for elec-
tron avalanches in the gap before the corona ignition
and after it. Before ignition, the avalanches develop in
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Fig. 12. Repetition rate of current pulses of a negative
coronawith aresistive anodein (1) nitrogen and (2) air asa
function of the mean current ford=1mm, re=1mm, P =

100 torr, and R=15MQ.

arelatively weak field at alarge distance from the cath-
ode point, which can occur only if a sufficiently high
voltageisapplied. After ignition, strong fieldsarelocal-
ized near the point, so that the self-maintenance condi-
tionis satisfied at avery short length equal to the thick-
ness of the glow cathode sheath. In this case, the volt-
age across the gap is lower. Let us discuss thisin more
detail.

The distribution of the electric field along the dis-
charge axis before and after ignition is shown schemat-
icaly in Fig. 13. It can be seen that the positive charge
of the cathode sheath formed near the point shields and
strongly reduces (in comparison with the initial vac-
uum electric field) the electric field E, at the cathode
boundary of the drift region. At the same time, the
space electron chargein thedrift regionissmall (in par-
ticular, at small initial coronacurrents and a centimeter-
scal einterel ectrode distance); consequently, the config-
uration of the axial electric field E(x) in this region
remains very similar to the vacuum configuration.

To illustrate this, we consider the configuration of
the vacuum field E(x) between the paraboloidal point
and the plane[5, 6]: E(x) = Eyr/(r + 2x), where E, isthe
field on the surface of the point of radius r before the
coronaignition. According to the above discussion, the
field distribution in the drift region after the corona
ignition takesthe form (Fig. 13) E(x) = E.r/(r + 2x) (the
functional dependence r/(r + 2X) remains the same
because the cathode sheath thickness is usually much
less than the point radius).

It is easy to ascertain that the initial voltage U,
across the gap after the coronaignition is equal to U =
U, + U, E./E,, Where U, iseither the voltage acrossthe
glow cathode sheath of the corona (which is close in
2001

PLASMA PHYSICS REPORTS Vol. 27 No. 6



PULSED MODE OF A NEGATIVE CORONA IN NITROGEN: |I. EXPERIMENT

magnitude to 0.5-1.0 kV [13]) or the voltage at the
prearc cathode spot (which is close to 100 V [14]).
Obviously, the initial voltage is lower than the ignition
voltage. The voltage difference is equa to AU =
Uie(1 — E/Ep) — U,. Its upper boundary can be esti-
mated at AU = U,,, — U,.. In this case, the corona gap
after the ignition turns out to be under the overvoltage
conditions, which results in the current jump and the
hysteresis of the -V characterigtic.

After igniting a coronain air, the interelectrode gap
is rapidly (over the time during which the ions drift
from the cathode toward the anode) filled with negative
ions produced due to electron attachment. In this case,
the electric field produced by the space charge of these
ionsin the drift region is much higher than the vacuum
field and the total voltage drop across the cathode
sheath and the drift region exceeds the ignition voltage;
i.e., hysteresis at air pressures of tens of torr or higher
is absent.

4.2. Contraction of the Diffuse Glow Cathode Sheath
of a Negative Corona

The mechanism for the transition of the glow cath-
ode sheath of a coronato the regime with asmall bright
current spot is similar to that for the contraction of the
normal cathode sheath of a glow discharge to a prearc
spot. This effect was revealed and studied in [14]. In
that paper, the transformation into a spot is explained
by the onset of the ionization instability in the glow
sheath due to the accumulation of nitrogen metastables
in the sheath up to the critical density at which their
contribution to ionization becomes dominant. In this
case, the voltage drop across the sheath decreases and
the current density increases.

The critical currents corresponding to the transfor-
mation of the glow sheath into a prearc spot depend on
the geometric parameters of the electrodes and the gas-
mixture composition. The presence of efficient quench-
ers of metastable nitrogen states, such as oxygen and
water vapor, increases the critical current considerably.
This is why the regime with bright prearc spots at the
corona electrode is easily realized in nitrogen but is
hard to realize in a negative coronain air (particularly,
in humid air).

4.3. Minimum Currents in a Negative Corona
in Nitrogen

In our opinion, both of the threshold currents (the
minimum mean current |, below which the coronais
guenched and the critical current at the pulse trailing
edge below which the pulse current fallsrapidly) are of
the same nature. Indeed, as the corona current
decreases, the transverse size of the glow cathode
sheath at the point also decreases. Presumably, at suffi-
ciently small transverse dimensions, diffusion comes
into play and destroys the glow cathode sheath, which
No. 6
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Fig. 13. Qualitative profile of the electric field along the dis-
charge axis (1) before and (2) after theignition of anegative
coronain the needle—plane electrode configuration; E isthe

field at the cathode point before the coronaignition; E; isthe

field at the cathode boundary of the drift region after the
coronaignition; d, isthe region of the positive space charge
(the cathode sheath); dp is the drift region.

results in corona quenching. The stabilizing action of a
large ballast resistance on the corona (i.e., the possibil-
ity of decreasing the current | ;. by increasing R) does
not contradict the aforesaid.

4.4. Sructure of the Trailing Edge of Current Pulsesin
the Negative Corona in Nitrogen

The two-humped shape of current pulsesin nitrogen
in the case of a metal anode is very similar to that
observed when initiating the transformation of the
coronainto aspark [15, 16] and is associated with ion-
ization processes, which strongly differ in their time
scales. The first process (with a characteristic time on
the order of 100 ns at atmospheric pressure) is related
to electron-impact ionization and is identical to that
occurring in Trichel pulses; i.e, it is related to the
dynamics of the glow cathode sheath of a corona (see
[2, 3, 15, 16]). The rapid decrease in the sheath thick-
ness corresponds to the short leading edge of the pulse,
whereas the slow growth in the sheath thickness corre-
sponds to a current drop by nearly one order of magni-
tude from its maximum value.

The second process occurring on the millisecond
time scaleis reflected in the oscillogram as arather flat
hump and is probably related to the formation of anon-
steady plasmaregion in the corona. In thisstudy, wedid
not examine the spatiotemporal evolution of the plasma
region. Thus, we can only suppose two scenarios of this
process: either the plasma region arises near the cath-
ode sheath and then slowly expands toward the anode
or the plasmaisinitiated near the axisin the vicinity of
the anode due to the formation of the anode sheath (see
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[17] and the literature cited therein) and then slowly
expands toward the cathode.

In other words, the process occurring on the milli-
second time scale is similar to the expansion of a slow
anode- or cathode-directed streamer through the gap
(which corresponds to the current growth up to the
hump maximum); after passing a certain distance, the
streamer decays (which correspondsto the current drop
after the hump). We note that the term “streamer” is
used here only by analogy. By virtue of the ionization
mechanism for the processes maintaining the slow
streamer, the latter may substantially differ from the
well-known fast streamer by spatial, temporal, and cur-
rent scales.

The above results demonstrating that the amplitude
of the second hump increases monotonically with the
applied voltage show that the second processis respon-
sible for the formation of an expanding plasma region
inthe coronagap. In thiscase, when the plasmaat acer-
tain voltage bridges the interelectrode gap, the corona
should transform into a spark, as was observed in
experiments.

A resistive anode significantly modifies the current
distributions both along the discharge and over the
anode. The strong influence of the anode resistivity on
the amplitude of a gently sloping current hump indi-
rectly indicatesthat, at the beginning of the second pro-
cess, the ionization and electrodynamic instabilities
developing near the anode play a decisive role in the
formation of a plasmaregion (or aslow streamer).

4.5. Comparison of the Results Obtained
with the Published Data

Published experimental data on the dynamic charac-
teristics of regular current pulsesin anegative coronain
nitrogen are lacking. We can only refer to papers [16,
18], which are devoted to studies of the structure of a
current pulse (P = 50 and 100 torr) arising in nitrogen
when avoltage pulseis applied across the needle—plane
gap. The structure of this single pulseis also governed
by ionization processes, but under the condition of the
ignition of acoronadischarge. Therefore, it isnot obvi-
ous, first, that aregular pulsed mode will be established
after the first pulse associated with the corona-ignition
processes and, second, that the shape of the ignition
pulse will coincide in shape with regular pulses in a
steady-state corona.

The current pulse accompanying the coronaignition
was studied in [16, 18] at a small value of the ballast
resistance (R = 6 kQ and in arather narrow time inter-
val 50 ns-1 ps. Thus, our results cannot be compared in
full measure with datafrom those papers. Nevertheless,
we note that, in the given time interval, the current
oscillograms presented in [16, 18] also demonstrate the
nonmonotonic behavior of the pulse current.

As was mentioned above, the resistive anode effi-
ciently suppresses the development of the second pro-
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cess (i.e., the origination and expansion of a plasma
region or a slow streamer). In this case, the parameters
of current pulsesin nitrogen are close to the parameters
of Trichel pulsesin air. In the literature, Trichel pulses
are well studied over a sufficiently wide range of
parameters, so we can compare our results in nitrogen
at low pressures with the available data on Trichel
pulses in air at the same pressures. The main effect
from the lower voltage in the case of Trichel pulses
reduces to an increase in the duration of the pulse trail-
ing edge. Thus, in [19], the shape of the pulsein air at
apressureof P =47 torr ispresented, the duration of the
trailing edge being 3.54 us. Our experiment at the
same nitrogen pressure gives close val ues.

4.6. Mechanism for the Current Pulse Generation
in a Nitrogen Corona with a Resistive Anode

The results obtained indicate that, in the case of a
resistive anode, the mechanisms for current pulse gen-
eration in negative coronas in nitrogen and air are the
same and that the negative ions play aminor rolein the
pulse generation. The key point in this mechanism is
the negative derivative of the dynamic -V characteris-
tic of a low-current glow cathode sheath sustained by
electron avalanches. This problem is discussed in more
detail in the second part of our paper [20], in which we
present the results of numerical calculations.
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Abstract—A simplified model of a cathode sheath sustained by electron avalanchesis presented. The model is
used to calculate the pulsed mode of a negative coronain nitrogen in order to establish the physical picture of
the processes occurring in a pulsed corona. The most important point isthat, in the pulsed mode, both the aver-
aged and dynamic current—voltage characteristics of a glow cathode sheath are found to have a negative slope.
L owering the degree to which the glow cathode sheath is subnormal (by sharply reducing the sheath area) or
switching on additional ionization mechanisms (e.g., stepwise ionization) that force the cathode sheath to
evolveinto aprearc spot causes the negative slopes of the averaged and dynamic current—voltage characteristics
of the sheath to become more gradual and even positive, thereby stabilizing the discharge current. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The development of a negative corona is usualy
attributed to the formation of a glow sheath at the cath-
ode point. The so-called ignition voltage of the corona
is determined from the condition for the avalanche pro-
cesses in avacuum electric field in the discharge gap to
be steady and self-sustaining [1]. For nitrogen, thiscon-
dition has the form

d
Iaidx: Inlj—\—l, (D
! Y

where qa; is the gain factor of an electron avalanche
caused by direct ionization processes,; d is the distance
between the electrodes; and v is the effective positive
feedback factor for electron avalanches, which is deter-
mined by electron emission from the cathode surface
bombarded by photons, positive ions, and excited par-
ticles.

On the other hand, condition (1) is also the condi-
tion for a glow cathode sheath to be self-sustaining, in
which case d stands for the sheath thickness. For a
steady cathode sheath, condition (1) reflects the charge
conservation in the sheath.

With regard to the cathode sheath, condition (1) can
be understood not only as a steady-state condition but
also as a condition that holds on average over certain
timeintervals:

(v
{1 +y) (D)0~ <Vjic(t)eXpEJ O((X)0|>4é'>, 1)
0

wherej;. isthe flux density of positive ions at the cath-
ode.

The modified condition (1) implies that the time-
averaged conduction currents at the left and right
boundaries of the cathode sheath are equal to one
another (or, in other words, the charge in the cathode
sheath is conserved). Consequently, according to con-
dition (1), it is possible to achieve a steady discharge
mode with an unsteady glow cathode sheath. The time-
averaged parameters of such a sheath should corre-
spond to the subnormal state, becauseit isthe state that
isunstable dueto the negative slope of the current—volt-
age (I-V) characteristic of the sheath [1] and, conse-
guently, can force the discharge to evolve into the
pulsed mode.

The area of the cathode spot, which was determined
from visual observations, allowed us to estimate the
mean current density at the cathode point as j = 2—
6 A/cm?. According to this estimate, the above situation
istypical of negative coronasin air, which are unstable
in the range of initial currents and exist in a pulsed
mode (Trichel pulses [2]). In the experimental part of
our work [3], an analogous situation was achieved for
thefirst timein a coronain nitrogen.

The steady-state pulsations of a negative coronain
air were calculated for the first time by Napartovich
etal. [4]. The current pulse generated by a voltage
pulse applied to a unionized gasin the gap between the
point and plane electrodes was calculated in a number
of earlier and subsequent papers (see [5, 6] and the lit-
erature cited therein). It should be noted that both the
shape and the parameters of the initial current pulse
during the discharge ignition (the pulse amplitude and
the durations of the leading and trailing edges of the
pulse) differ markedly from those of the regular pulses
in a steady-state corona, because the conditions for the
formation of these pulses are different [7-10].

1063-780X/01/2706-0532$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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The difference is especially pronounced for a nega-
tive coronain nitrogen, in which casethe |-V character-
istic of the corona describes a hysteresis loop [3]. The
hysteresis effect manifestsitself in the fact that the volt-
age required to drive the ignition pulse is higher than
that supplying regular pulses. As a result, the ignition
and regular pulses differ substantialy in shape, ampli-
tude, and characteristic duration. This conclusion is
confirmed by Fig. 1, which compares the experimental
dataon ignition and regular pulses.

However, it should be kept in mind that, after the
ignition, a corona does not inevitably evolve into a
pulsed mode; whether such atransition occurs depends
on the sort of gas and discharge parameters [3]. The
possihility of such evolution should be assessed in each
particular experiment. Consequently, when analyzing
steady-state pulsations, special care is needed in using
the experimental data (see, e.g.,[11, 12]) and numerical
results[5, 6] on the ignition pulses.

In the first part of our work [3], we arrived at the
conclusion that the current pulses in negative coronas
in air and nitrogen are generated by identical mecha
nisms. The key factor in the generation of regular
pulsesis the negative slope of the dynamic |-V charac-
teristic of the glow cathode sheath of a corona in the
range of initial corona currents. In this paper, which is
the second part of our study, we present the results of
numerical calculations aimed at justifying this conclu-
sion for a negative coronain nitrogen.

In[3], we established that the pul sed mode of aneg-
ative corona in nitrogen can be achieved over a broad
range of experimental parameters, in particular, inlong
and short discharge gaps. Consequently, the physical
nature of the pulsed mode is not governed by the dis-
tance between the el ectrodes. On the other hand, a neg-
ative corona in a short interelectrode gap is simpler to
model than that in along gap. For this reason, we will
focus below on the calculation of steady-state pulsa-
tions of a coronain a short discharge gap.

The numerical results are tested against the experi-
mental data for coronas with a resistive anode, which
makes it possible to prevent plasma production in the
corona, thereby avoiding current pulses with compli-
cated double-humped profiles. In this case, current
pulsesin nitrogen are similar in shape to Trichel pulses
in air. The scheme of the discharge circuit is presented
inFig. 2.

2. DESCRIPTION OF THE MODEL

The experimenta results were obtained for dis
chargesin short interel ectrode gapsin which the effects
of geometric expansion of the electric field lines are
unimportant. Such discharges can be modeled under
the assumption that the discharge-current cross section
is constant. We are particularly justified in using this
approach because the main discharge processes to be
modeled occur in a comparatively thin cathode sheath,
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Fig. 1. (a) Sequence of the first four current pulses during
the evolution of the cathode sheath to the pulsed mode in
nitrogen for P = 760 torr, d = 15 mm, r. = 0.1 mm, R =
51 MQ, 0= 15 pA, U = 2.3 kV, and Uign =3.1kV. The
amplitude of thefirst pulseisla=3.5 mA. Thetimescaleis
2 mg/division, and the current scale is 0.2 mA/division.
(b) Current pulseigniting the corona during the evolution to
the steady-state regime for P = 760 torr, d = 15 mm, r. =
0.1mm, R=0.75MQ, = 15 pA, U = 25KV, and Ujg, =
3.1kV. The pulse amplitudeisl,=7 mA. Thetime scaleis

0.1 mg/division, and the current scale is 0.4 mA/division.
The lower horizontal line correspondsto azero current, and
the upper horizontal line corresponds to the steady-state
coronacurrent | = 80 pA.

whichisusually much shorter than theinterel ectrode gap.
Without alowance for geometric effects, the problem can
be reduced to that of modeling a one-dimensiona
unsteady glow discharge in a short interel ectrode gap.

Our model is based on the familiar continuity equa-
tions describing the dynamics of the electron density n,
and positive ion density n;:

on

—(ﬁf}—divjez Aj.+S —R, ()
%+divji = aj,+S -R, 3)
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Fig. 2. Scheme of the discharge circuit: (1) discharge gap.

where j, and j; are the electron and ion flux densities, a
is the Townsend coefficient for gas (N,) ionization by
direct electron impact, S* is the power of the stepwise
ionization source, and R is the power of charged-parti-
cle losses due to volumetric processes.

Equations (2) and (3) are supplemented with Pois-
son’s equation, Kirchhoff’s equation, and the boundary
conditions at the electrodes:

dive = SNizNd, 4)
€

Uy = Uy+ Uy, ®))

yjic = jec’ jia = 0. (6)

Here, e is the electron charge, €, is the permittivity of
free space, E is the electric field strength in the dis-
charge, U, isthe amplitude of the applied voltage, U, is
the voltage drop across the discharge gap, Uy is the
voltage drop at the ballast resistor, y = 0.03 isthe coef-
ficient of secondary electron emission from the cathode
(the electron flux j ) caused by theion flux j;. (the elec-
tron emission due to metastable nitrogen atoms and
photons is neglected), and j;,, is the ion flux emitted by
the anode (which is assumed to emit no ions). The
guantities Uy and Ug have the form

d t

Ug = [Edx, Ug = Rip = %, Q = fiet.
0 0

I (t) = S(eIJ-eneE + el-J-iniE + SOE)’

where d isthe length of the interelectrode gap, Q isthe
charge at the capacitor plates, C is the capacitance of
the capacitor, Sis the cross-sectional area of the dis-
charge column, u, and |, are the electron and ion
mobilities, and I(t) is the total discharge current with
allowance for the displacement current (the contribu-
tion of diffusive processes to the total current is
ignored).
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Equations (2)—(7) describe the longitudinal struc-
ture of atransversely homogeneous discharge over the
entire interelectrode gap and make it possible to follow
the discharge evolution. Unfortunately, these integrod-
ifferential equations are fairly difficult to solve numer-
icaly: to calculate the steady-state discharge mode
requireslarge amounts of computer time. Under certain
simplifying assumptions regarding the longitudinal dis-
charge structure, integration of Egs. (2)—«7) over the
interelectrode gap can result in a (formally) zero-
dimensional set of the differential equations for anum-
ber of parameters. Numerical integration of the reduced
equationsrequiresfar less computer time, thereby mak-
ing it possible to calculate a large number of versions
and to establish many parametric dependences charac-
teristic of the discharges under investigation. In many
cases, this advantage of reduced equations can compen-
sate for the insufficient accuracy of the model.

We tried to simplify the mathematical model by tak-
ing into account the familiar features of thelongitudinal
structure of glow discharges and their kinetics at low
currents corresponding to a negative corona:

(i) The main components of aglow discharge arethe
cathode and anode sheaths and the plasma column
between them.

(if) The potential drop across the anode sheath is
usually small enough not to seriously influence thetotal
voltage drop across the discharge and thus can be
ignored.

(iii) The entire plasma column can be regarded as
being homogeneous.

(iv) Because of the high mobility of the electrons,
their dynamics can be treated in the quasisteady
approximation, in which the term on./dt in Eq. (2) is
omitted.

(v) In aglow cathode sheath, the processes of step-
wise ionization and charged-particle recombination can
be neglected.

Hence, we can model glow discharges by analyzing,
first, a cathode sheath sustained by electron impact—
driven avalanche ionization and, second, a quasineutral
plasma column with a uniform electric field.

Let us discuss additional simplifying assumptions
that can be made when modeling a cathode sheath at
high pressures. It is worth noting that, in a steady dis-
charge, the positive space charge is distributed almost
uniformly within a normal glow cathode sheath [1], in
which casethe e ectric field decreaseslinearly with dis-
tance from the cathode. In an unsteady discharge, the
cathode sheath may be thicker than the steady-state
normal sheath; accordingly, the electric field within the
sheath may be lower. As a result, the drifting positive
ions do not have enough time to equalize the positive
space charge distribution in the sheath, so that the elec-
tric field profile will progressively deviate from being
linear.
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One-and-a-half-dimensional simulations of an
unsteady cathode sheath in air [4] clearly show that,
during the sheath compression, the space charge in the
cathode region is distributed nonuniformly: it is con-
centrated preferentially inside a narrow layer at a cer-
tain distance from the cathode, while the space charge
density near the cathodeislow (Fig. 3). Inthis case, the
electric field decreases gradually in the region where
the space charge is low and decreases sharply in the
region where the space charge is high; moreover, the
profile of the electric field that decreases with distance
from the cathode can be approximated by a straight
line.

The strong electric field region near the cathode
(where the space charge density islow) makes the most
important contribution to both the voltage drop across
the cathode sheath and the intensity of ionization pro-
cesses in the sheath. Consequently, the length of the
strong field region can be regarded as the effective
thickness of the cathode sheath. In order to estimate the
sheath thickness, we turn to the idea originated by Cer-
nak et al. [12], who suggested that the cathode sheath
thickness d, is close to the scale length on which the
avalanche ionization power described by the source
term a(E(x))j.(X) reaches its maximum.

In the quasisteady approximation, the electron ava-
lanche formation in the strong field region near the
cathode can be described by the relationships

X

Je(X) = vjiceXpIG(E(X))dx, (®)
0
_ jic e
E(x) = E°_uiEc8_oX’ )

where E, isthe electric field at the cathode surface and
thefield profile E(x) in the region of alow space charge
isformed by the drift flux j;. of positiveionstoward the
cathode.

For the given field profile (9), the condition for the
function a(E(X))]j.(X) to be maximum yieldsthefollow-
ing equation for the effective thickness d. of the cath-
ode sheath:

a’(E(@) = &2 Sa(Ed).

(10)
Taking into account the above characteristic fea-
tures of the discharge, we can integrate the integrodif-
ferential equations (2)—7) over the x coordinate in
order to arrive at afar simpler set of the formally zero-
dimensional differential equations. The reduced set,
which should be solved with allowance for relationship
(10), consists of the balance equations for the compo-
nents of the total discharge current I(t) in four cross
sections of the discharge column.
No. 6
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Fig. 3. Evolution of the electric field at the front of a Trichel
pulsein the cathode sheath in air. Thelongitudinal field pro-
files were calculated in [4] at (1) 89999.07, (2) 89999.52,
(3) 90000.00, (4) 90000.50, and (5) 90001.25 ns.

The first reduced eguation is the condition that the
total discharge current be continuous at the right and
left boundaries of the cathode sheath:

8oSEc +eS(1+Y)jic
= eSyexp(a(E.)d8)ji. +eSn,dc = ().

Here, the area S of the current spot at the cathode
surface serves as afree model parameter (this areawas
measured visually by observing the discharge and was
used as an input parameter for each of the calculation
versions) and the plasma density n, in the discharge
column serves as an adjustable parameter.

When deriving Eq. (11), we used the relationship
J‘; o (Ex)dx = a(E.)d.0 (where the parameter 6 is

close to unity) and took into account the fact that the
total rate of change of the space charge in an unsteady
cathode sheath depends on the time rate of change of
the sheath thickness.

The second reduced equation is the condition that
the total discharge current be continuous at the bound-
ary between the cathode sheath and the plasma column:

1(t) = eSHen,E, +&,SEp, (12)

where E, isthe electric field in the plasma column.

The third equation implies that the total current at

the cathode surface is equal to the total current in the

external circuit:

I(t) = Ig+ IrRC. (13)

The fourth eguation reflects the voltage balance in
the circuit under investigation:

o = UO_ (Ecdc + Ep(d _ dc))

R — R ’

(11)

(14)
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where E,(d - d.) is the voltage drop across the plasma
column, E.d, is the voltage drop across the cathode
sheath, d is the interelectrode distance, C is the capaci-
tance of a capacitor in the external circuit, and Risthe
ballast resistance of the discharge.

The dependence of the experimental ionization
coefficient for nitrogen, a(E), on the electric field
strength was taken from [13] and was approximated by
the expression

G(E) = Xlexp(_EcrllE) + XzeXp(_«/ Ech/E),

where the parameter valuesx; = 7.3 x 10° cm!, E,, =
2.1 x 10°V/em, x, = 3.1 x 10* cmr!, and E, = 4.1 x
10% V/cm correspond to the nitrogen pressure P =
750 torr.

Below, we will present the results of calculations of
the steady-state current pulsations in nitrogen at pres-
sures of 10 < P < 100 torr. The calculations were also
carried out for lower and higher pressures. However, an
analysis of the results obtained shows that our simpli-
fied model isvalid only in the indicated pressure range.

For low pressures, our approach fails to correctly
determine the cathode shesth thickness d.. The reason
for thisis as follows. In the cathode sheath, the mean
space charge density decreases with pressure as P2
This indicates that, at low pressures, the electric field
decreases very gradually with distance from the cath-
ode, so that the ionization source term a(E(x))j.(X) has
a very flat peak. As a result, intense ionization pro-
cesses will efficiently generate electron avalanches
over a fairly long distance from the cross section at
which the ionization source term is maximum. How-
ever, this situation contradicts the assertion that, near
the cathode, the main contribution to both the intensity

I, mA
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Fig. 4. (1) Experimental and (2) numerical waveforms of a
current pulse in nitrogen for P = 10 torr, d = 3 mm, 0=
60 pA, and U = 0.60 kV (the cathode is a 10-mm-diameter
rod with aflat end).
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of ionization processes and the voltage drop across the
cathode sheath comes from the strong field region
whose length d, is determined by the condition that the
function a(E(X))j<(x) be maximal.

At high pressures, the cathode sheath evolves so
rapidly that the calculated rise time of the pulse front
becomes comparable to the time required for electrons
to drift across the sheath. In this case, the quasisteady
approximation fails to describe the electron dynamics.

Note that the above range of nitrogen pressures is
merely the range in which the calculated results are
expected to agree quantitatively with the experimental
data. However, beyond this pressure range, the simula-
tions based on the simplified model will yield a quali-
tatively correct picture of the physical mechanism for
generating current pulses.

3. NUMERICAL RESULTS AND COMPARISON
WITH THE EXPERIMENT

In the pressure range 10 < P < 100 torr, the results
obtained with the simplified model were found to agree
quite well with the experimental data. Note that, in our
experiments, an interelectrode gap of length d = 3 mm
was filled with nitrogen at the pressure P = 10 torr. In
this case, the cathode was a 10-mm-diameter rod with
aflat end. In experiments with nitrogen at the pressures
P = 30 and 100 torr, the interel ectrode gap was as long
as 1 mm and a 2-mm-diameter wire with a hemispher-
ical end served as the cathode.

3.1. Calculation of the Waveforms of Current Pulses
in a Negative Corona in Nitrogen

As an example, Figs. 46 show numerical wave-
forms and experimental oscilloscope traces obtained
for the pressures P = 10, 30, and 100 torr. We can see
that the calculated pulse amplitude and pulse front
duration agree qualitatively with the experimental data.
However, for the same discharge parameters, the calcu-
lated period of the current pulsesis aways longer than
the measured one.

We attribute this discrepancy to the characteristic
features of the dynamics of the cathode sheath at the
trailing edge of the current pulse. These features were
noticed in thefirst part of our study [3]: in experiments,
the current at the trailing edge of the pulse was found to
decrease sharply (in a jumplike manner) after reaching
acertain critical value. A jumplike decrease in the cur-
rent was accompanied by the decay of the cathode
sheath due to diffusion; in turn, the decay of the sheath
hastened the establishment of conditions favorable for
the formation of the next current pulse. In our simula-
tions, this effect was neglected, so that the current at the
trailing edge of the pulse decreased gradually, thereby
leading to a longer period of pulsations in comparison
with the experimentally measured period. Neverthe-
less, the experimentally observed increase in the repe-
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 5. (1) Experimental and (2) numerical waveforms of a
current pulse in nitrogen for P = 30 torr, d = 1 mm, 0=
15 pA, and U = 0.57 kV (the cathode is a 2-mm-diameter
wire with a hemispherical end).

tition rate of the pulses with increasing mean current
was captured qualitatively by our calculations.

In our model, the plasma density in the discharge
column served as an adjustabl e parameter and was cho-
sen in such a way that the calculated pulse parameters
coincided with the experimental ones. We found that,
the larger the pulse amplitude A and/or the higher the
pressure P, the larger the adjustable plasma density nj,
should be (see table). Adjusting the plasma density in
such a fashion does not contradict the accepted views
regarding the physical nature of glow discharges.

3.2. Parametric Dependences of the Voltage Drop
across the Pulsed Cathode Sheath
and the Sheath Thickness

Figures 7 and 8 present the thickness d.. of the cath-
ode sheath and the voltage drop U, across the sheath
calculated as functions of the mean current. The verti-
cal bars at the corresponding magnitudes of the current
reflect the range of changes of the quantities d, and U,
during pulsations. The horizontal dashes indicate the
time-averaged values of the sheath thickness and the
voltage drop across the sheath. We can see that, as the
mean discharge current increases, the ranges over
which the quantities d, and U, change become narrower

I, mA

Fig. 6. (1) Experimental and (2) numerical waveforms of a
current pulse in nitrogen for P = 100 torr, d = 1 mm, 0=
38 YA, and U = 0.9 kV (the cathode is a 2-mm-diameter
wire with a hemispherical end).

and the time-averaged values of the sheath thickness
and voltage drop across the sheath decrease. Figures 7
and 8 clearly demonstrate that the time-averaged
parameters of a pulsed cathode sheath correspond to
the subnormal state, in which the |-V characteristic of
the sheath has a negative slope.

3.3. Calculation of the Currents at Which the Pulsed
Mode Terminates

The pulsed mode of the discharge in nitrogen termi-
nates above a certain value | * of the mean current, asis
the case with dischargesin air. Observations show that,
when the current approaches the critical value | *, the
amplitude of pulsations does not decrease gradually to
zero; instead, the pulsations decay in a jumplike man-
ner. During thisjumplike transition from a pul sed mode
to a steady-state discharge, the cathode spot is clearly
seen to become smaller in size. Recall that, after the
jumplike transition, the cathode sheath at low pressures
(P < 0.5 atm) remains in the glow regime, whereas the
cathode sheath at high pressures evolves into a prearc
spot.

Aswasmentioned above, the area Sof the glow cath-
ode spot serves as a free parameter of the model; for
each of the calculation versions, the value of Swastaken
from experiments. Calculations in which the area Swas

Table
P, torr 10 10 10 30 30 100 100
OCuA 13 30 60 15 35 38 108
A, mA 4 3.4 18 18 0.85 12 11
N, c3 14x102 | 87x10" | 48x104 6 x 102 4 x 1012 45x 108 | 1.8x10%
PLASMA PHYSICS REPORTS Vol 27 No. 6 2001
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Fig. 7. Calculated cathode sheath thickness d., vs. the mean
discharge current for the pressure P = 30 torr, the cathode

spot area S= 0.34 mm?, and the interelectrode distance d =
1 cm. The vertical bars reflect the range of changes of the
thicknessd,, over the period of pulsations, and the horizontal

dashes indicate the period-averaged sheath thickness.

determined from visual observations of the cathode
spot in the pulsed mode and was assumed to be inde-
pendent of the mean current in a corona yielded much
higher critical currents than the experimental ones.
However, calculations in which the area Swas assumed
to decrease abruptly when the current approached the
measured critical value | * showed that the pulsations
terminated when the critical current was reached, in
agreement with the experimenta data.

Note that, as the cathode spot area decreases at a
constant mean current, the degree to which the glow
cathode sheath is subnormal decreases and the negative
slope of the 1-V characteristic of the sheath becomes
more gradua; in this case, the sheath itself becomes
more stable. At the same time, it still remains unclear
what the physical reasons are for such a sharp decrease
in the area of the glow cathode sheath when the current
approaches the critical value | *.

Our simulations also show that switching on addi-
tional ionization mechanisms (e.g., stepwise ioniza-
tion) that force the cathode sheath to evolve into a
prearc spot causes the negative slopes of both the aver-
aged and dynamic |-V characteristics of the sheath to
become more gradual and even positive, thereby also
stabilizing the discharge current.

3.4. Dynamics of the Parameters of a Pulsed Sheath

Figures 9-11 illustrate the dynamics of the total
current in a pulse, the displacement current at the
cathode, the cathode sheath thickness, the electric
field at the cathode, and the el ectron-avalanche multi-

Y X
T+ yexp ﬁ o (X)dx. Theresults of

simulations make it possible to reconstruct acomplete

plication factor @ =
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Fig. 8. Calculated voltage drop U, across the cathode sheath
vs. the mean discharge current for the pressure P = 30 torr,
the cathode spot area S= 0.34 mm?, and the interelectrode

distance d = 1 cm. The vertical bars reflect the range of
changes of the voltage drop U, over the period of pulsations,

and the horizontal dashesindicate the period-averaged volt-
age drop.

picture of the evolution of a discharge in the pulsed
mode.

As the current in a pulse increases, the cathode
sheath is compressed and the electric field at the cath-
ode increases sharply, causing the efficient production
of electrons in the sheath. In this stage, the displace-
ment current makes a significant contribution to the
total discharge current at the cathode (Fig. 9). A
decrease in the pulse current is accompanied by the
expansion of the decaying cathode sheath, in which the
electron-avalanche multiplication factor is negative
(P < 1), so that the electron avalanches are gradually
damped. This stage lasts until the expanding cathode
sheath acquires a sufficiently high space charge from
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Fig. 9. Time evolutions of (1) thetotal current |5 in apulse
and (2) the displacement current | ;g at the cathode for the

pressure P = 30 torr, the cathode spot area S = 0.34 mm?,
and the interelectrode distance d = 1 cm.
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Fig. 10. Time evolutions of (1) the electric field E, at the
cathode and (2) the cathode sheath thickness d,, for the pres-

sure P =30torr, the cathode spot area S= 0.34 mm?, and the
interelectrode distanced = 1 cm.

the plasma, so that the electric field in the sheath again
starts increasing and eventually gives rise to electron
avalanches. Then, the sheath rapidly evolves into the
compression stage, and the process repeats itself.

An analogous dynamic picture of the cathode sheath
was obtained by Napartovich et al. [4], who calculated
Trichel pulsesin air. Hence, in contrast to the conclu-
sion drawn by Yu.P. Raizer [15], we can state that the
presence of negative ions near the corona-€l ectrode sur-
face does not play a governing role in the onset of the
pulsed mode in a negative corona or in a glow dis-
charge.

The periodic behavior of the main discharge param-
etersin the pulsed mode can beillustrated in the corre-
sponding phase planes. The phase trgjectories of the
currents, the sheath thickness, and the electric field at
the cathode are presented in Fig. 12, which shows that,
at low mean currents, the pulsations of a glow cathode
sheath are associated with the fact that the dynamic dif-
ferential resistance of the sheath is negative.

3.5. Condition for the Pulsed Sheath
to be Self-Sustaining

Here, we should point out an important circum-
stance associated with the pulsed mode of a cathode
sheath. Our examination shows that, in an unsteady
glow discharge, the condition for the pulsed cathode
sheath to be self-sustaining can only be satisfied on
average over certain time intervas; i.e., the modified
condition (1') is satisfied. As a result, the seemingly
plausible assertion that the mean electron-avalanche

C _ Y X
multiplication factor [P = < T+ yexpﬁ: (x(x)dx>
equals unity turns out to be wrong for the pulsed mode.
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Fig. 11. Time evolutions of (1) the electron-avalanche mul-
tiplication factor ® and (2) the voltage drop U, across the

cathode sheath for the pressure P = 30 torr, the cathode spot
areaS= 0.34 mm?, and theinterel ectrode distance d = 1 cm.

According to our simulations of the pulsed mode, we
have [ 1.

3.5. Discussion of the Data from the Literature
in Light of the Results Obtained

We have established that, in the pulsed mode, the
time-averaged and dynamic |-V characteristics of the
cathode sheath in a negative corona both have a nega-
tive slope. Lowering the degree to which the cathode
sheath is subnormal (by sharply reducing the cathode

I, mA; d., mm E., kVicm
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Fig. 12. Phase trajectories of the currents, the sheath thick-
ness, and the electric field at the cathodefor the pressure P =

30 torr, the cathode spot area S= 0.34 mmZ, and the inter-
electrode distance d = 1 cm: (/) the electric field E; at the
cathode, (2) the cathode sheath thickness d., (3) the total
current | inthe pulse, (4) thedrift current at the cathode, and
(5) the displacement current |45 at the cathode. The arrows
point in the direction of motion along the phase trajectories
during the pulse.
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spot area) or switching on additional ionization mecha:
nisms (e.g., stepwise ionization) in the sheath will
cause the negative slopes of the averaged and dynamic
I-V characteristics to become far more gradua and
even positive, thereby stabilizing the corona.

In this context, we should mention theoretical
papers [16, 17], in which the termination of Trichel
pulses at the current | = | * is attributed to gas heating
near the cathode in a negative corona. In order to check
this conclusion, we carried out a special series of exper-
imentswith acoronain air in acoaxial device. Since, in
these experiments, the corona electrode (a thin wire)
was strongly heated (up to 1100 K), the gasin the major
portion of the interelectrode gap was maintained at
room temperature by air puffing along the discharge
axis.

We found that such strong gas heating near the cath-
ode did not prevent the corona from evolving into the
pulsed mode but acted merely to reduce the amplitude
of the Trichel pulses at most by afactor of 2. Hence, the
results obtained in this paper enable usto conclude that
the gas heating is not the main factor that causes the
pulsed mode in a negative corona to terminate, but
merely accompanies the termination process.

In thefirst part of this study [3], we established that
the onset of ionization instabilities in a glow cathode
sheath (especially at high nitrogen pressures, P >
0.5 atm) can force the sheath to evolve into a prearc
spot [14], which suppresses the pulsed mode of the
corona. The stabilizing role of the prearc spot in sup-
pressing the current pulsations of a negative corona has
not yet been discussed in the literature.

Thus, Hernandez-Avila et al. [18] reported their
observations of the pulsed mode of adischargein chem-
ically pure (99.999%) nitrogen at pressures of tens of
atmospheres. In those experiments, the radius of the
corona-electrode point was very smal, r = 1-10 pm.
The pulsations were observed to occur in the kilohertz
frequency range at mean currentsfrom 10 to 60 pA dur-
ing repeated ignitions of the corona (immediately after
the nitrogen gas puffing, the coronawas ignited only at
high currents, | = 100600 pA, and experienced no pul-
sations).

The authors of [18] pointed out a certain similarity
between the pulses recorded in their experiments and
Trichel pulsesin air and, by way of analogy, explained
the onset of pulsations in terms of the increase in the
partial pressure of electronegative impurities, which
accumulated in the discharge chamber during the high-
current stage of the corona, to a level of about ~3 x
1073 torr, the nitrogen pressure being about 20 atm.

In our opinion, such low densities of electronegative
impurities (about ~10' cm~) are insufficient to ensure
conditions analogous to those under which the actual
Trichel pulses are initiated, because, for impurity den-
sities such as in the experiments of [18], the effective
electron attachment length exceeds the interelectrode
distance (d = 10 mm) by many orders of magnitude.

AKISHEYV et al.

Under these conditions, only a small amount of nega-
tive ions can be produced in the corona; therefore, the
influence of impurities on the discharge parameters is
insignificant.

Presumably, the onset of Trichel pulsesin the exper-
iments of [18] can be explained by an effect that iswell
known in gas-discharge practice—the conditioning (or
cleaning) of the electrode by adischarge (in the case at
hand, by a high-current corona). During repeated igni-
tions, the prearc spot appears at the preliminary cleaned
electrode (and, accordingly, the corona evolvesinto the
high-current pulsation-free regime) after the voltage
drop across the interel ectrode gap becomes sufficiently
high (rather than just after ignition). In other words, the
conditioning of the corona electrode alows one to
obtain aglow cathode sheath at the el ectrode point in an
unsteady subnormal state, in which the corona current
pulsates.

4. CONCLUSION

In the experimental part of our study [3], we have
revealed that the averaged |-V characteristic of anega-
tive corona in nitrogen exhibits a hysteresis loop. The
regular current pulsations are found to occur in the hys-
teresisregion. Thefreguency spectrum and shape of the
pulsations areradically different for metal and resistive
anodes. In a negative corona with a resistive anode in
nitrogen, the parameters of current pulses are close to
those of Trichel pulsesin air.

Here, we have presented the results of numerical
calculations and have shown that both the time-aver-
aged and dynamic |-V characteristics of aglow cathode
sheath of a negative corona have a negative slope. This
circumstance plays akey rolein the onset of the pulsed
mode of alow-current discharge.

Our simulations have also shown that lowering the
degree to which the glow cathode sheath in a negative
corona is subnormal (by sharply reducing the cathode
spot area), or that switching on additional ionization
mechanisms (e.g., stepwise ionization) in the sheath
causes the negative slopes of the averaged and dynamic
-V characteristics of the sheath to become far more
gradual and even positive, thereby stabilizing the dis-
charge current.
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Abstract—Conditions for the simultaneous production of argon and xenon chlorides and excited nitrogen mol-
ecules in alongitudinal dc glow discharge in Ar/Cl,/air, Xe/Cl,/air, and Ar/Xe/Cl,/air mixtures are studied.
The electrical parameters of the plasmaand its optical characteristics in the 130- to 350-nm wavelength range
are investigated. It is shown that a small admixture of air added to argon or xenon leads to the production of
excited nitrogen molecules, whose decay is accompanied by the molecular band emission in the range AA =
176-271 nm. The conditions for simultaneous emission of the ArCl(B-X), XeCl(B-X), and nitrogen molecular
bands are determined. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A low-pressure glow discharge in the mixtures of
noble gases with chlorine has been systematically stud-
ied over thelast twenty years[1, 2]. Interest in thistype
of discharge is related to its applications in plasmo-
chemistry [3], lighting engineering [4-6], quantum
electronics[7], and other fields of science and technol-
ogy. Low-pressure excimer lamps pumped by adc glow
discharge, which emit in the XeCl 308-nm (Xe/Cl,
mixture) or KrCl 222-nm (Kr/Cl, mixture) bands, pro-
vide (without forced cooling) aradiation power of W=
10-20 W with an efficiency of 12-23% [4, 5]. To oper-
ate at shorter wavelengths and create multiwavelength
excimer lamps, it appears promising to use argon-based
working mixtures, such as the Ar/Cl, mixture (the sys-
tem of ArCl 175-nm and Cl,(D'-A") 258-nm bands) and
the more complicated Ar/Xe/Cl, mixture (A = 308,
258, 236, and 175 nm [8]). At present, there are no data
ontheVUV and UV emission spectra of adc glow dis-
charge in Ar/Cl, and Ar/Xe/Cl, mixtures. In most
cases, the working mixtures of excimer lamps contain
residual air at apressure of P < 10-30 Pa; under certain
conditions, this air can significantly affect the optical
characteristics and the service life of excimer lamps.

In this paper, we study the emission from alongitu-
dinal dc glow discharge in the Ar/Cl,/air, Xe/Cl,/air,
and Ar/Xe/Cl,/air mixtures under experimental condi-
tions close to those in low-pressure excimer lamps.

2. EXPERIMENTAL SETUP

A dc longitudinal discharge isignited in a cylindri-
cal quartz tube with an inner diameter of 5 mm. The
distance between 10-mm-long and 5-mm-diameter hol -
low cylindrical electrodes made of aNi foil is 100 mm.

Theelectrodes are placed inside the discharge tube with
open ends. To increase the service life of the excimer
lamp, replace the gas mixture heated in the discharge,
and prevent cataphoresis, the discharge tube is housed
in a 10-1-volume buffer chamber. The chamber is her-
metically connected to a half-meter-long vacuum
monochromator equipped with a 1200-line/mm diffrac-
tion grating. The axis of the discharge tube coincides
with the centers of both the entrance and exit mono-
chromator dlits. The recording systemisthe sameasin
[8-10]. The discharge is powered by a high-voltage dc
power supply (Ug, <30 kV, |4, < 100 mA). To stabilize
the discharge, aballast resistor (r, = 0.4-0.7 MQ) is set
into the anode circuit.

3. ELECTRICAL AND OPTICAL
CHARACTERISTICS OF THE PLASMA

Figure 1 shows the current—voltage characteristics
of a discharge in Ar/Xe/Cl,/air mixtures. In the high-
current phase, the glow discharge operates in the sub-
normal mode (I, = 2-6 mA), which is used most exten-
sively in low-pressure excimer lamps [6]. At I, <
6 mA, the discharge switches into the normal mode, in
which the discharge voltage U, is almost independent
of the current. An increase in the argon content (and,
consequently, the total pressure of the mixture)
increases the ignition voltage and the value U, without
changing the current-voltage characteristic.

The emission spectraof aglow dischargein the mix-
tures of Ar and Xe with small admixtures of chlorine
and air are shown in Fig. 2. The spectrum of the Ar/air
plasma (as well asthat of Kr(Xe)/air plasmas under the
same experimental conditions) consists of a set of nar-
row, 1.5-nm-wide, molecular bands with awing on the
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Fig. 1. Current-voltage characteristics of dc glow discharges
in the Ar/Xe/Cly/air = (1) 1.33/0.08/0.08/0.013- and

(2) 2.8/0.08/0.08/0.013-kPa mixtures.

short-wavelength side and a sharp edge on the long-
wavelength side. Therelative intensities of these bands,
which are determined taking into account the relative
spectral sensitivity of the vacuum monochromator—
FEU-142 system, are presented in the table. With small
admixtures of chlorine to Xefair and Ar/air mixtures,
the spectra contain both the ArCl(B-X) 175-nm,
XeCl(D-X) 236-nm, XeCl(B-X) 308-nm, and Cl,(D'-
A’) 258-nm bands and the above listed molecular bands
in the range AN = 176-271 nm (Fig. 2). Only the most
intense bands of argon and xenon chlorides, as well as
the Cl,(D'-A") 258-nm band, survive as the chlorine
partial pressure increases to 250-300 Pa at an Ar (or
Xe) pressure of 2-3 kPa. Under these conditions, the
total power of spontaneous emission from the entire
lamp surface is 0.7-1.0 W, the efficiency being 3-5%.
The highest power of spontaneous emission in the band
system with A = 175, 199, 222, 236, 258, and 308 nm
(W= 2.2 W with an efficiency of 9%) is attained with
an Ar/Kr/Xe/Cl, = 2.0/0.24/0.24/0.08 kPa mixture.
Since the occurrence of molecular bandsin the 176- to
271-nm range is independent of the noble gas species
(Ar, Kr, or Xe), these bands can be related to the pres-
ence of asmall air admixture in the working mixtures.

The emission spectra were identified using the data
from [11]. In Fig. 2, the most intense bands in the 214-
to 271-nm range belong to the third Kaplan system of
N, (A’S! —E), whereas the band with an edge at A =
235 nm belongs to the fourth positive system of molec-
ular nitrogen (B D%}, ). All of the spectra contain a
weak Cl, (D'-A") 258-nm band; presumably, thisis due

to chlorine emerging from the wall and the inner ele-
ments of the buffer chamber.

The simultaneous production of argon and xenon
chlorides and excited nitrogen molecules is found to
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Fig. 2. Emission spectra from the plasma of alongitudinal
glow dischargein argon and xenon with small admixtures of

chlorine and air: (1) Ar/air = 4.0/0.013-kPa mixture and
(2) Xe/Cl,/air = 2.0/0.013/0.013-kPa mixture.

175 nm ArCl(B-X)

258 nm CL,(D'-A")

147 nm

1. 0
Xel 57 Sy-6s[3/211 308 nm XeCl (B—X)

N,
¥ 308 nm XeCl(B—X)
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Xel 5' §4-6s[3/217
2 1 1 1 1

150 200 250 300
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Fig. 3. Emission spectra from the plasma of a glow dis-
charge in the Ar/Xe/Cl,/air = (1) 6.0/0.04/0.08/0.013- and

(2) 6.0/0.4/0.08/0.013-kPa mixtures for I, = 8 mA and
Ug, = 12kV.
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Intensities of the emission bands of nitrogen molecules in a dc glow discharge in the Ar/air = 4.0/0.013-kPa mixture at

lgy=5mMA
A, nm 176 186 194 204 215 227 237 247 259 271
Jlky, rel. units | 0.07 0.07 0.11 0.36 0.62 0.76 1.00 0.71 0.38 0.20

occur in a glow discharge plasma in Ar/Xe/Cl, mix-
tureswith small admixtures of air. The emission spectra
of such plasmas are shown in Fig. 3. At alow content
of xenon (Py, < 0.10 kPa), thistype of plasma actsasa
multiwavelength source of radiation in the ArCl and
XeCl 175/236/308-nm molecular band system, the Cl,
(D'-A") 258-nm band, and nitrogen molecular bandsin
therange 215-271 nm. The spectraal so contain the Xel
147-nm resonant line. The dependence of the intensi-
ties of the ArCl(B-X) and XeCl(B-X) bandsand theN,
band with the 247-nm edge on the xenon pressure is
shown in more detail in Fig. 4. At Py, = 0.08 kPa, the
intensities of the excimer bands are approximately the
same and the intensity of the 247-nm nitrogen band
does not exceed 25-30% of the intensity of the
XeCl(B-X) 308-nm band. As the xenon content
increases (Px. = 0.08 kPa), the intensity of the 247-nm
band varies dlightly, whereas the intensity of the
175-nm band decreases significantly. Since the experi-
ments are carried out at afairly high argon pressure, the
increase in the xenon pressure above 0.13 kPa leads to
a contraction of the discharge and a decrease in the
band intensities.

J, rel. units 3
1.0
0.5} 1
2
1 1 1
0 0.1 0.2 0.3
Py, kPa

Fig. 4. Intensities of the emission bands of excimer mole-
cules and nitrogen in a dc glow discharge in the
Ar/Xe/Cly/air = 6.0/Px,/0.08/0.013-kPa mixture vs. the
xenon pressure: (1) ArCl(B—X) 175-nm, (2) N;‘ 247-nm,
and (3) XeCl(B—X) 308-nm bands.

4. CONCLUSION

In the emission spectrum of alongitudinal dc glow
discharge in mixtures of noble gaseswith small admix-
tures of chlorine and air, a system of equidistant narrow
(AA = 1.5 nm) bands of excited molecular nitrogen in
the 176- to 271-nm range has been found. The condi-
tions for the simultaneous production of argon and
xenon chlorides and excited nitrogen molecules at a
total pressure of <6.0 kPaand | 4, = 2-20 mA have been
determined (Py. = 0.08 kPa and the air pressure is
0.13 kPa). A discharge in the Ar/Xe/Cl, mixture (P,, =

Pxe = 2-3 kPaand P, = 0.25-0.3 kPa) is a source of

multiwavelength radiation with maxima at 175, 236,
258, and 308 nm, an output power of <1 W, and effi-
ciency of <5%. It is of interest to use the system of
nitrogen bands in short-wavelength lamps with various
types of pumping (longitudinal glow discharge, trans-
verse nanosecond discharge, and different types of RF
discharges) in order to expand the operating spectral
range of low-pressure lamps.
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