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Abstract—For a plasma with β ! 1 confined in a system of two simple axisymmetric mirror cells separated
by a divertor cell, a radial plasma pressure profile is obtained that is stable against convective modes and drops
off to zero at the separatrix. The shape of the marginally stable pressure profile depends on the geometric
parameters (such as mirror ratios and the localization of the divertor cell), the ratio of the pressure in the mirrors
cells to the pressure in the divertor cell, and the degree of pressure anisotropy. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Among the methods for plasma stabilization in axi-
symmetric open confinement systems (see reviews [1–
3]), stabilization by divertors [4–6] is especially attrac-
tive because of the simplicity and universality (rough-
ness) of the main stabilizing effect [5, 6] and the possi-
bility of placing the required number of stabilizers
(divertors) at desired positions along the system (in
contrast to, e.g., a cusp stabilizer, which can only be
installed at the end of the device). Such stabilizers can
also be used in systems with closed magnetic field
lines, in which cusp stabilizers cannot be installed. The
stabilizing effect of the divertor was observed in exper-
iments on the TARA [7] and HIEI [8] devices.

Divertor stabilization has one point in common with
the average minimum-B stabilization: the contribution
of the stabilizing element to the potential energy W of
the perturbation competes with that of the adjacent mir-
ror cells. On the other hand, there is an important dif-
ference between these stabilization methods. In an
average minimum-B mirror system, the cells with
favorable magnetic field line curvature give rise to a
“radial” magnetic well, which ensures the stability of
any pressure profile that decreases with increasing
radius (or, more precisely, flux coordinate ψ). In a
divertor cell, the magnetic field line curvature in the
vicinity of the equatorial plane (i.e., in the region that
plays a decisive role in ensuring stability) is unfavor-
able, and the stabilizing effect comes from the non-
paraxial nature of the magnetic field (the corresponding
contribution to W is quadratic in the curvature). In this
case, stability can only be achieved for a certain class of
gradually decreasing profiles and not for an arbitrary
decreasing pressure profile p(ψ): for example, it is
impossible to stabilize a sharp (in terms of ψ) boundary
such that dp/dψ = –pδ(ψ – ψ∗ ). This is an important fea-
ture in which divertor stabilization differs from average
minimum-B stabilization.
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The problem is to determine the marginally stable
profile p(ψ) corresponding to the stability boundary
ω2 = 0. The marginal profile can be found from the
Kruskal–Oberman criterion [9]. (In the models in
which the potential energy W is replaced by a limiting
expression like W< ∝  —p · —U + γp(—U)2/U, where U =

, the marginal pressure profile obeys more strin-

gent restrictions.) The related profile was calculated by
Sokolov [6] for a periodic chain of cells with divertors
and for a plasma with an isotropic pressure and β = 0.
In fact, he found the profile corresponding to the self-
stabilization of the divertor. The problem in a more gen-
eral formulation should involve the following aspects.
First, it is necessary to consider other types of confine-
ment systems with built-in divertors, in which case the
contributions to W that come from each of the cells
(including the divertor cells) cannot be calculated inde-
pendently because there are passing particles common
to all of these cells. Second, anisotropic particle distri-
butions that are characteristic of open confinement sys-
tems should be taken into consideration. Finally, the
analysis should be extended to systems with finite β
values (up to the maximum possible values consistent
with equilibrium).

Here, we will focus on the aspects associated with
the multicell character of a confinement system and the
effects of anisotropic plasma pressure and will restrict
the discussion to systems with β ! 1 (formally, we
assume that β = 0). We investigate plasma stability in a
confinement system consisting of two simple identical
mirror cells separated by a divertor cell. The magnetic
field at the outer ends of the mirror cells is assumed to
be stronger than that at the ends of the divertor cell, so
that there exists a population of passing particles that
ensures the electric coupling between the cells. The
plasma pressure is assumed to be anisotropic, p⊥  ≠ p||.
We analyze how the shape of the marginally stable
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ψ-profile of the plasma pressure depends on both the
degree of pressure anisotropy and the ratio between the
pressures of the particles trapped in the mirror cells and
in the divertor cell.

2. FORMULATION OF THE PROBLEM

The Kruskal–Oberman criterion (a necessary and
sufficient condition) for the stability of a low-pressure
(β  0) collisionless plasma against flute perturba-
tions of the electric potential ϕ(ψ)exp(imθ) (where θ is
the azimuthal angle and the flux coordinate ψ is defined
so that dψ = Brdn, with r being the distance from the
axis and dn being an element of length along the normal
to the magnetic field line) has the form [10]

(1)

(2)

where J(ε, µ, ψ) =  is the longitudinal

adiabatic invariant, τ(ε, µ, ψ) = , ε = v 2/2,

µ = /2B, and the integration is carried out along a
magnetic field line. For simplicity, we assume that one
of the plasma components (electron or ion) is much
hotter than the other; the distribution function F in
expression (2) refers to the hotter component. The
potential of the unperturbed electric field eΦ0 is
assumed to be low in comparison with the mean energy
of the hotter component and thus has no effect on the
particle motion. For a multicell mirror system, the dis-
tribution function has the form F = (ε, µ, ψ, ζ),
where the invariant ζ determines which cell the particle
belongs to. In the problem as formulated, it is necessary
to calculate the contribution of all of the particle popu-
lations in the system to the potential energy W. In con-
sidering a system of two mirror cells separated by a
divertor, we deal with four particle populations, which
can be treated independently: particles trapped in each
of the two mirror cells, particles trapped in the divertor
cell, and passing particles that are common to all of the
cells. Each population is characterized by its own range
of integration over l. We assume that the particle distri-
butions in the mirror cells are the same. Since the pass-
ing particles cross the divertor’s equatorial plane,
which coincides with the symmetry plane of the sys-
tem, they can be considered together with the particles
trapped in the divertor cell. We will denote the quanti-
ties referring to the divertor cell by subscript 1, which
will also be used to label the “combined” particle dis-
tribution. The quantities referring to the mirror cells
(including the distribution of the particles that are
trapped in the mirror cells and do not enter the divertor
cell) will be marked by subscript 2, in which case the
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“variable” ζ is simply the number of the cell. Note that
the contribution from the distribution function of the
particle population 2 to W should be doubled, because
there are two mirror cells. In the collisionless approxi-
mation, function F can be chosen with a certain free-
dom, because the particle and heat sources in different
cells of the system are independent; in particular, the
distribution function may be discontinuous in the pitch
angle. However, in the problem of flute instability,
which we are interested in here, these factors do not
play a decisive role (although the ratio between the
plasma pressures in the divertor cell and in the mirror
cells that is required for stability and the exact shape of
the marginally stable ψ-profile of the pressure, of
course, both depend on the particle distribution,
because the latter determines the quantities averaged
over the magnetic field lines). Below, we will merely
choose the distribution function F assuming a form
convenient for calculations.

We assume that, in the divertor’s equatorial plane,
the particles obey the distribution function

(3)

We also assume that, along with the particles that
escape from the divertor cell and obey distribution (3),
each mirror cell contains a population of particles that
obey the distribution function

(4)

It is expedient to express the normalizing constants C1, 2
in terms of the pressures in the equatorial plane in the
divertor and mirror cells, e.g., in the following form:

(5)

where

(6)

The condition for stability against convective modes
that are arbitrarily localized in the ψ direction has the
form

(7)

We introduce the variable λ = µ/ε in order to represent
this stability condition as

(8)

where

(9)

(10)

(11)
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(12)

(13)

and summation is implied over populations 1 and 2
(over ζ). This representation was used by K.M. Loba-
nov (Efremov Research Institute of Electrophysical
Apparatus) for a particular form of G, and, later, it was
applied, e.g., by Mikhailovskaya [11]. The left-hand
side of condition (8) can be rewritten as

(14)

Stable profiles are those for which the condition u'/u ≥
–S/A holds everywhere. The pressure profile at mar-
ginal stability (w = 0), which will be marked by an
asterisk, is

(15)

Note that, if the anisotropy of the plasma in one of
the cells is so strong that the plasma is almost com-
pletely concentrated in an equatorial layer whose thick-
ness is smaller than the radius of curvature of the mag-
netic field lines, then the contribution of this equatorial

layer to w reduces to the expression const

[12, 13], where P∗  = , B is the magnetic field in

the equatorial plane, and χ is a coordinate orthogonal to
ψ (—χ = B). For a single mirror cell with such a strong
anisotropy, a marginally stable profile is determined
from the condition P∗ /B3 = const.

In an open confinement system, there are no parti-
cles in the loss cone. However, in a periodic system
(which models a chain of mirror cells with, e.g., ambi-
polar end plugs), function G can be nonzero even for
λ < 1/Bmax. In order to take into consideration such dis-
tributions, we assume that, at the end plugs (z = ±zmax),
the particles with λ < 1/Bmax experience ideal reflection.
Hence, for particles capable of traversing the entire
periodic system of mirror cells, integration over dl can
only be carried out for one period and the potential
energy W can also only be calculated for one period.

As the distribution function F1, we adopt the sum of
an isotropic “pedestal,” which produces pressure pi ,
and the additional trapezoidal distribution function of
the particles trapped in the divertor cell, i.e., between
the magnetic mirrors B1max (Fig. 1). We use P to denote
the ratio of the pressure pi to the total pressure p1 =
(p⊥ 1 + p||1)/2 of the passing particles and all the popula-
tions of trapped particles. The anisotropy of the parti-
cles obeying the trapezoidal distribution function
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depends on the parameter δ1 = (λδ 1 – 1/B1max)/(1/B1min –
1/B1max) in the following way: for δ1 = 0, the particle
distribution outside the loss cone is uniform and, for
δ1 = 1, this distribution is peaked at λ = 1/B1min, which
corresponds to the particles that are accumulated near
the surface on which the minima of the magnetic field
are located. For the particles trapped in the mirror cells,
we also assume a trapezoidal distribution function F2
with its own parameter δ2. The ratio between the pres-
sures at the center of a mirror cell and at the center of a
divertor cell, p2(0)/p1(0), will be denoted by Π .

Since the configuration with a divertor exhibits a
field null near which |∂lnB/∂ψ|  ∞, we have
S/A  ∞ as ψ  ψs (where ψs is the flux coordinate
of the separatrix), in which case function (15) that van-
ishes at the separatrix exists.

3. RESULTS OF CALCULATIONS

The magnetic field of a mirror system was calcu-
lated for given currents in a discrete set of external ring
coils. Varying the current in the coils makes it possible
to model different magnetic configurations (see
Figs. 2–4).

Figure 2b shows marginal (w = 0) pressure profiles
in the equatorial plane of the divertor cell for different
distribution functions G1(λ). As ψ increases, the pres-
sure profile is seen to fall off more gradually toward the
separatrix than the profile p = const U–5/3 in collisional
MHD theory. Recall that, according to [6], in a plasma
with isotropic pressure, the pressure profile that is mar-
ginally stable in the sense of the Kruskal–Oberman cri-
terion satisfies the relationship  ~ (ψs – ψ)k with

k ≈ 0.55. In this case, the hydrodynamic model gives
 ~ |ln(ψs – ψ)|–5/3. The fact that the profile p(ψ)

in the axial region falls off more sharply as the degree
of anisotropy increases [compare the curves in pairs
(2, 3) and (4, 1) in Fig. 2b] can be explained as follows.
In condition (8), the contribution from the region in
which the magnetic field is weak and the magnetic field
line curvature is strong (i.e., the region where the aniso-
tropic plasma is concentrated) to the terms that are qua-
dratic in the curvature is larger (because of the addi-
tional power of 1/B) than the contribution of this region

p ψ ψs→

p ψ ψs→

G1

λ1/B1min0 λδ 1

Ga

Gi

1/B1max

Fig. 1. Plot of the function G1(λ).
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to the term that is linear in the curvature and contains
the derivative du/dψ.

The law according to which the quantity u*(ψ) and,
accordingly, the marginal profile p(ψ) drop off to zero
as the separatrix is approached is governed by the par-
ticles that cross the equatorial plane of the divertor cell,
because their contributions to S and A become infinite
as ψ  ψs , in which case the contributions of the par-
ticles trapped in the mirror cells remain finite. How-
ever, as illustrated in Fig. 3b, the plasma in the mirror
cells affects the entire shape of the marginal pressure
profile.
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Fig. 2. The results of calculating a divertor in the absence of
mirror cells: (a) divertor geometry (shown is half of the
divertor; the current-carrying ring coils are indicated by the
crosses and points in the rectangles) and (b) marginally sta-
ble pressure profiles for (1) P = 0.2 and δ = 0.9, (2) P = 0
and δ = 0.1, (3) P = 0 and δ = 0.9, and (4) P = 0.2 and δ =
0.1. Also shown is the profile const U–5/3 (curve 5). The mir-
ror ratio at the axis is Bmax/Bmin = 2.89.
The stable pressure profiles that drop off to zero at
the separatrix exist for any ratio between the pressures
in the mirror cells and in the divertor cell. The larger the
ratio Π = p2(0)/p1(0) and the weaker the magnetic field
in the mirror cells (and the stronger the magnetic field
line curvature), the narrower the interval along the ψ
direction near the separatrix in which the divertor man-
ifests itself. This effect is illustrated in Fig. 4b, which
refers to strongly nonparaxial, “fat” mirror cells, in
which the magnetic field is weaker than in the main vol-
ume of the divertor cell and the curvature of the mag-
netic field lines is strong. Even for Π ~ 1, the shape of
the stable pressure profile over almost the entire plasma
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Fig. 3. The same as in Fig. 2 but for two mirror cells sepa-
rated by a divertor: (a) geometry of the system and (b) mar-
ginally stable pressure profiles obtained for Π = (1) 1.0 and
(2) 3.0 and for the parameter values P = 0.2, δ1 = 0.1, and
δ2 = 0.1. The mirror ratios at the axis are B1max/B1min = 2.85,
B2min/B1min = 0.92, and B2max/B1min = 2.96.
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volume is governed by mirror cells (the allowable sig-
nificant decrease—but not to zero—in the pressure
away from the axis stems from the stabilizing effect of
the magnetic field line curvature; see also [14]) rather
than by the effect of the divertor, which only comes into
play near the separatrix. This result is confirmed, in
particular, by a comparison with curve 3, which was
calculated for Π = 100, i.e., for a system with a nearly
empty divertor cell. Of course, in such a system, the
divertor also manifests itself but in an even narrower
layer near the separatrix (the nonmonotonic behavior of
profile 3 is partially attributed to the ψ-dependence of
the degree of anisotropy [15]).

4. DISCUSSION

The calculated pressure profiles that are stable in the
sense of the Kruskal–Oberman criterion and drop off to
zero at the separatrix differ from the profiles of the form
U–5/3 predicted by the simplest hydrodynamic model in
that they decrease more sharply in the plasma interior
(far from the separatrix).

This result is important because it indicates that
only a small fraction of plasma particles experience
nonadiabatic motion in the region near the magnetic
field null-line and, especially, in a thin layer (with a
thickness on the order of the Larmor radius ρ of the hot-
ter plasma particles), from which they can escape
(owing to the nonadiabatic nature of motion) through
the separatrix in the transverse direction. Let us recall
that the description of stability in the sense of the
Kruskal–Oberman criterion is based on the conserva-
tion of µ, and, formally, criterion (1) was derived in the
approximation ρ = 0. Theoretically, the fact that the
pressure near the separatrix is low indicates that a more
detailed description is only necessary for a small frac-
tion of the particles. Note that stability is automatically
guaranteed for pressure profiles that decrease in the
region of adiabatic motion, ψ < ψad, in the same manner
as the marginal profile (15) and then, starting from the
surface ψ = ψad, approach a constant value. The small-
ness of the ratio p(ψad)/p(0) makes such profiles easy to
maintain in practice.

The restrictions imposed by the adiabaticity of the
particle motion may be important in choosing both the
divertor geometry and the ratio of the pressure in the
mirror cells to the pressure in the divertor cell. The
larger the ratio p2/p1 and the more “local” the divertor
(or, equivalently, the lesser the extent to which the
divertor perturbs the magnetic field near the axis), the
smaller the thickness ∆ψ of the layer across which the
marginal pressure profile (15) has the steepest drop
near the separatrix and the larger the part of this layer
where the particles experience nonadiabatic motion.
(The same effect occurs in long rippled systems in
which there are many mirror cells between neighboring
divertors.) The pressure profiles corresponding to a rel-
atively low energy content in particles near the separa-
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
trix exist when the ratio p2/p1 is not too large and the
divertor is not too small, such that the derivative ∂B/∂ψ
at the axis is on the order of R–2, where R is the charac-
teristic radius of the separatrix surface.
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Abstract—A set of nonlinear differential equations that describe moving relativistic solitons is investigated
analytically and solved numerically. The influence of the ion motion on the soliton structure is investigated. It
is demonstrated that, depending on the propagation velocity, relativistic solitary waves can occur in the form of
bright solitons, dark solitons, or collisionless electromagnetic shock waves. In the limit of a low propagation
velocity, a dark soliton can trap the ions and accelerate them. In the case of a bright soliton, the effects of ion
dynamics limit the soliton amplitude. The constraint on the maximum amplitude is related to either the breaking
of ion motion or the intersection of electron trajectories. The soliton breaking provides a new mechanism for
ion and electron acceleration in the interaction of high-intensity laser pulses with plasmas. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

For a long time, solitons have attracted great atten-
tion because of their resilient, robust behavior [1]. In
many cases, solitons are regarded as elementary entities
comprising turbulence. Inside a soliton, the dispersion
effects are balanced by the nonlinearity of the media. In
the interaction of high-intensity laser pulses with plas-
mas, the dispersion effects come into play due to the
finite electron inertia to respond the electromagnetic
field action, while the nonlinearity is due to the relativ-
istic increase in the electron mass, as well as to the
plasma density redistribution under the action of the
ponderomotive force, which pushes the plasma parti-
cles (electrons and, for a longer time, ions) away from
the region where the electromagnetic field is maximum.

Relativistic solitons were observed in multidimen-
sional particle-in-cell (PIC) simulations of the interac-
tion of laser pulses with underdense [2–5] and over-
dense [6, 7] plasmas. Solitons are generated in the wake
behind the laser pulse and propagate toward the
plasma–vacuum interface with a velocity well below
the speed of light. Here, they suddenly disappear, radi-
ating away their energy in the form of low-frequency
electromagnetic bursts [8]. Solitons can also be
regarded as coherent structures that form electromag-
netic turbulence and that can be detected via low-fre-
quency backscattered radiation. In this context, we
mention paper [9], in which an anomalous regime of
stimulated backward Raman scattering with the fre-
quency downshifting and spectrum broadening of
backscattered laser radiation in an underdense plasma
was observed. An analytical theory of relativistic elec-
tromagnetic solitons was developed in [10–17]. In
those papers, apart from the paper by Kozlov et al. [12],
the ions were assumed to be at rest. In [12], it was
pointed out that the ion contribution limits the soliton
1063-780X/01/2708- $21.00 © 0641
propagation velocity from below and modifies the dis-
tribution of the electromagnetic field inside the soliton.
For a relativistic soliton amplitude, which, however, is

less than ac = , the ions can be assumed to be at

rest during approximately  periods of electro-
magnetic field oscillations inside the soliton. Here, a =
eE/meωc is the normalized amplitude and ω ≈ ωpe is the
frequency of electromagnetic field oscillations inside

the soliton. The time 2π  = 2π , for
which an analytical solution for a low-frequency zero-
velocity soliton [16] provides a rather good description,
is substantially longer than the period of electromag-
netic field oscillations inside the soliton; in an under-
dense plasma, this time is much longer than the laser
period. However, over a time period longer than

2π , the ponderomotive pressure of the electromag-
netic field inside the soliton starts to dig a hole in the
ion density and the parameters of the soliton change.
We note that solitons were also observed in 2D PIC
simulations of the interaction of laser pulses with plas-
mas with allowance for ion motion (see Fig. 1 in [8]).

When the laser power reaches the petawatt range
[18], the ion dynamics begin to play the key role in
laser–plasma interaction, even in the case of ultrashort
(femtosecond) laser pulses. Particularly, for multitera-
watt and petawatt laser pulses, ion acceleration
becomes highly efficient [19–24]. The discussed mech-
anisms for ion acceleration are related to charged-parti-
cle acceleration in the charge-separation electric field
[19–22, 25] and in the wake field behind an ultrashort
laser pulse [20, 26]. On the other hand, solitary waves
propagating with velocities close to the speed of light
were discussed in [15, 27] in connection with charged-
particle acceleration. In those papers, it was pointed out

mi/me

mi/me

mi/meωpe
1– ωpi

1–

ωpe
1–
2001 MAIK “Nauka/Interperiodica”
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that charged particles can gain energy when interacting
with regular electric and magnetic fields inside the soli-
ton. When a soliton propagates in an inhomogeneous
plasma, the intersection of charged particle trajectories
eventually occurs and the soliton energy transforms
into the energy of fast particles (ions and electrons).

The aim of this paper is to investigate the role of ion
dynamics in relativistic solitary waves in plasmas.

The paper is organized as follows. In Section 2, we
derive a set of nonlinear differential equations describing
solitons according to the method of [12]. In Section 3,
we analyze the electric quasineutrality approximation.
In Section 4, we obtain analytic solutions that describe
finite-amplitude solitary waves in the limit of weak
nonlinearity. In Section 5, we present the results of
numerical solution of the equations obtained in Section 3
and discuss the properties of bright solitons. In the con-
clusion, the results obtained are summarized.

2. BASIC EQUATIONS

We use the hydrodynamic approximation to
describe both the electron and ion components. We
assume the plasma to be cold (both the ion and electron
temperatures are zero). Maxwell’s equations are
written in the Coulomb gauge for the vector potential:
— · A = 0. As a result, we have

(1)

(2)

(3)

(4)

where the subscript α = e, i refers to electrons and ions,
respectively; pe, i is the particle momentum; qe = –e is
the electron charge; qi = e is the ion charge; vα is the
particle velocity; and

(5)

is the relativistic factor. By applying the curl operator to
Eq. (4), we obtain

(6)

where Wα = — × (pα + qαA/c) is the curl of the general-
ized momentum, which is also referred to as the gener-
alized vorticity. If we assume that at t = 0, Wα = 0, then,
in view of Eq. (6), it also holds at subsequent times.

∆A
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∂
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c
-----A+ 

 ×× ,+

γα 1 pα
2
/mα

2
c

2
+=

∂tWα — vα Wα×( )× ,=
We introduce the following dimensionless vari-
ables:

(7)

where ωpe = (4πn0e2/me)1/2 is the electron plasma fre-
quency and n0 is the unperturbed electron density. We
consider the 1D case, in which ∂y = ∂z = 0. For localized
solutions, we have A|| = 0. From Eq. (6), it follows that
p⊥ e = A⊥  and p⊥ i = –ρA⊥ , where the subscripts || and ⊥
refer to the x direction and the perpendicular direction,
respectively, and ρ = me/mi is the electron-to-ion mass
ratio.

We transform to the variables

(8)

and look for a solution to set (1)–(4) in the form

(9)

while all the other quantities (φ, nα, γα, and p||α) are
assumed to depend only on variable ξ. Here, ω is the
wave frequency, V is the group velocity, 1/V is the phase
velocity, and k = V is the wavenumber. Then, set (1)–(4)
transforms into

(10)

(11)

(12)

(13)

(14)

(15)

(16)

where the prime denotes the derivative with respect
coordinate ξ,

(17)

From Eqs. (15) and (16), we find the x-component of
the kinetic momentum and the energy as functions of
the scalar and vector potentials:

(18)

(19)
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with , and

(20)

(21)

Constants %e and %i must be specified by the bound-
ary conditions at infinity. If, at x  ±∞, the amplitude
of the electromagnetic field vanishes (a  0), φ  0,
and the plasma is at rest (p||α = 0), then we have %e =
%i = 1. If, at x  ±∞, the amplitude of the electro-
magnetic field is finite (a  ±a0), φ  0, and the

plasma is at rest (p||α  = 0), then we have %e = 

and %i = .

From the electron and ion continuity equations (13)
and (14), we obtain the relation for the density

(22)

Finally, we obtain a closed set of equations for the
potentials

(23)

(24)

This set admits the first integral

(25)

The limiting case of immobile ions (see [12, 15–17])
corresponds to setting ρ = 0 in Eqs. (23)–(25).

The set of Eqs. (23)–(24) describes the coupled lon-
gitudinal plasma wave and circularly polarized trans-
verse electromagnetic wave. For a = a0 = 0, it describes
a longitudinal plasma wave,

(26)
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The influence of ion motion on the structure of a plasma
wave was analyzed in [26, 28].

For a transverse electromagnetic wave with φ = 0
and a = a0, from Eq. (10) we have

From this equation, we obtain the dispersion relation
for the frequency as a function of the wave velocity and
amplitude

(27)

The dispersion relation can also be rewritten in the form
containing the wavenumber k,

(28)

Dispersion relation (28) is a modification of the
Akhiezer–Polovin result [29] to the case of mobile ions.
In other words, the plasma frequency, modified with
allowance for ion motion and relativistic effects, is
equal to

(29)

This expression can also be written as Ω2 = ω2(1 – V 2).
We see that, in view of Eq. (27), the effective plasma
frequency Ω does not depend on the wave propagation
velocity.

3. QUASINEUTRAL APPROXIMATION

In the quasineutral approximation, which is valid in
the long-wavelength limit (φ'' ! 4πe(ne – ni)), the elec-
tron and ion densities are assumed to be equal to each
other, ne = ni . As a result, we obtain the equation

(30)

Its solution allows us to express the electrostatic
potential via the vector potential:
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When %e = %i = 1, the electrostatic potential is equal
to [12]

(32)

Using dispersion relation (28), we obtain the equation
for the vector potential in the quasineutral approxi-
mation

(33)

where

(34)

and

(35)

The above equations have the following first integral

(36)

where K is a constant and

(37)

The phase plane (a, a') of Eq. (36) can be investi-
gated by varying V at a given value of a0. The stationary
points on the phase plane are given by

(38)

(39)

Equation (39) has the solution a = a0 for any value of V.

We leave a detailed analytical study of the properties
of nonlinear modes described by Eq. (36) in the elec-
tron–ion plasma for further publications. In this paper,
we restrict ourselves to the weak nonlinearity limit.

4. WEAK NONLINEARITY LIMIT

We consider the limit of a small (but finite) wave
amplitude (|a0 |, |a | ! 1) and expand the right-hand side
of Eq. (33) in powers of the amplitude. Then, in view of
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the smallness of parameter ρ, in the third order in a and
in the first order in ρ, we obtain

(40)

We rewrite this equation in the form

(41)

We see that the sign of 1 – ρ/V 2 determines whether the
nonlinear shift of the frequency is negative (for V >

) or positive (for V < ). It is well known that the
nonlinear downshifting of the wave frequency corre-
sponds to the breakup of a homogeneous wave into
bright solitary waves. On the other hand, nonlinear fre-
quency upshifting manifests the possibility of dark soli-
ton formation [30].

4.1. Small-Amplitude Bright Soliton

We consider fast solitons with the propagation

velocity V > . In this case, we have bright solitons
whose amplitude is maximum at a certain point and
vanishes at infinity. This solution to Eq. (40) is consis-
tent with the boundary conditions when a0 = 0. The
bright soliton is described by the well known expres-
sion a = am/  (see [12]) or

(42)

where the inverse soliton width is

(43)

and the frequency is

(44)

It can be seen that, when the soliton propagation veloc-

ity approaches , the soliton width κ–1 tends to infin-
ity for a fixed soliton amplitude am . On the other hand,
if we assume the soliton width to be fixed, then its

amplitude becomes infinite as V  . In this case,
we can expect soliton breaking accompanied by the
self-intersection of charged particle trajectories.
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4.2. Small-Amplitude Dark Soliton

If velocity V is smaller than , then Eq. (40) has a
solution which describes a dark soliton. Equation (40)
has three equilibrium solutions: a = 0 and a = ±a0. It is
easy to show that, in the vicinity of the first solution
a = 0, we have a periodic wave. The second and third
solutions, a = ±a0, require that the frequency be equal to

(45)

Taking into account this relationship, we rewrite
Eq. (40) as

(46)

Equation (33) admits an exact solution for a dark
soliton [30, 31], a = a0  or

(47)

where the soliton inverse width is given by

(48)

and the frequency is given by Eq. (45). These expres-
sions describe a small-amplitude dark soliton (kink
state): the wave amplitude changes monotonically from
–a0 (or a0) at x = –∞ to a0 (or –a0) at x = +∞.

In the case of a dark soliton, we have a minimum of
the electromagnetic energy density and a minimum of
the plasma density that propagate at velocity V without
changing their shape. Dark solitons are known to occur
in optical systems [30]. Recently, they were observed in
the Bose–Einstein condensate [32]. We see that, at low
propagation velocities, an electron–ion plasma exhibits
properties similar to those in the Bose–Einstein con-
densate with a positive scattering length [33]. In an
electron–positron plasma, dark solitons are natural
nonlinear modes [34].

Calculating the electrostatic potential with expres-
sion (31), we obtain that there is an electrostatic well

inside the soliton: φ = – / . Thus, the dark
soliton can trap positively charged ions and advect
them. To illustrate this, we write the Hamiltonian of a
charged particle:

(49)

Here, P is the longitudinal component of the ion
momentum. Performing the canonical transformation
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to variables P and ξ = x – Vt, we obtain

(50)

Since this Hamiltonian is time-independent, it is con-
served and the problem becomes integrable. At low

soliton velocities (V < ), we can use the nonrelativ-
istic approximation. In this case, we obtain that the
momentum of a trapped particle is given by

(51)

4.3. Weak Electromagnetic Shock Wave

The case V =  requires careful investigation
because, in this case, the nonlinear term on the right-
hand side of Eq. (41) vanishes. Assuming a0 = 0, we
expand the right-hand side of Eq. (33) in a power series
up to the fifth order in a and the second order in ρ:
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Now, we assume that V 2 = ρ(1 + ε), where ε ! 1. Then,
retaining the leading order terms, we obtain
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This equation has the integral
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and set the constant on the right-hand side of Eq. (54)
to zero, then Eq. (53) can be rewritten as
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where aw = . The solution to this equation,

(57)

describes a collisionless electromagnetic shock wave
with an amplitude equal to aw. The shock wave velocity

is relatively low (on the order of ). The shock wave
is compressional; the carrying frequency of the electro-
magnetic field is equal to

(58)

The width of the shock wave front is equal to

(59)

We see that the larger the shock wave amplitude aw =

, the steeper the shock wave front.
The above collisionless shock wave corresponds to

a nonlinear regime of the penetration of a relativisti-
cally strong electromagnetic wave into an overdense
plasma. Previously, the regimes of relativistic transpar-
ency were considered in which an electromagnetic
wave could propagate through an overdense plasma due
to the relativistic correction to the electron mass (see
[29, 35–39]). In our case, the effective plasma fre-
quency changes owing to both the relativistic correc-
tion to the electron mass and the change in the plasma
density. In contrast to collisionless shock waves discov-
ered by Sagdeev [40], the formation of the above colli-
sionless shock wave with a steady-state monotonic pro-
file does not require any dissipative process.

In what follows, we will address the detailed discus-
sion of the properties of fast bright solitons, leaving a
more detailed study of dark solitons and collisionless
shock waves to our subsequent publications.

5. BRIGHT SOLITONS IN THE GENERIC CASE

So far, we have considered solitons in the plasma
quasineutrality approximation. This approximation
fails for narrow solitons with sufficiently high ampli-
tudes. In particular, it fails for solitons that are close to
breaking. To study these processes, we have to solve the
full set of Eqs. (23) and (24). Due to the complexity of
the problem, Eqs. (23) and (24) were solved numeri-
cally.

As was already pointed out in Section 2, the set of
Eqs. (23) and (24) describes the coupled longitudinal
plasma wave and circularly polarized transverse elec-
tromagnetic wave. It admits the following steady-state
solutions consistent with the boundary conditions: φ = 0
and a = 0 for a0 = 0 and φ = 0, a = a0, and ω2(1 – V2) =

ε ρ/2+
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1/%e + ρ/%i for a0 ≠ 0. Linearizing Eqs. (23) and (24) for
φ ! 1 and |δa | ! 1 with δa = a – a0, we obtain

(60)

(61)

where

Note that the set of linear equations (60) and (61) is
decoupled for a0 = 0 or ρ = 1. Below, we will focus on
the case with a0 = 0 (bright solitons). We will be look-
ing for solutions of the form exp(λξ). Equation (60) has
two purely imaginary eigenvalues

(62)

and Eq. (61) has two eigenvalues

(63)

which are either real or imaginary for ω2 smaller or
larger than (1 + ρ)/(1 – V2), respectively. Thus, soliton

solutions can occur for  ≡ ω2(1 – V2) < 1 + ρ.
In this paper, we are interested in localized solutions

to Eqs. (23) and (24). Note that these equations are
reversible with respect to the transformation of the inde-
pendent and dependent variables: ξ  –ξ, φ  φ,
and a  ±a. Thus, the solution for the vector poten-
tial a can either be symmetric or antisymmetric, while
the electrostatic potential φ is always symmetric. In
particular, we will look for solutions with single-
humped φ profiles and a profiles with even or odd num-
ber p of the zeros (nodes) of the electromagnetic field.

Note that Eqs. (23) and (24) can be written in a
Hamiltonian form. Thus, from the mathematical stand-
point, the problem reduces to that of finding homoclinic
orbits for a four-dimensional reversible autonomous
Hamiltonian system, for which the point ξ = 0 is a sad-
dle center (see [41]). To numerically obtain the soliton
solution, we proceed in a way similar to that of [12].
For fixed V, we integrate the set of equations with the
following initial conditions at ξ = –ξ1: φ' = φ = 0 and
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 = –λa1, assuming that a1 is small and λ = [(1 + ρ)/(1 –
V 2) – ω2]1/2. We look for ω values for which, at ξ = 0,
we have φ' = 0 and a = 0 (for odd p) or φ' = 0 and a' = 0
(for even p).

5.1. Electron Relativistic Solitons

We first analyze the case in which the ion dynamics
is neglected; i.e., we set ρ = 0. In this case, we can speak
about purely electron solitons. For p = 0, no soliton
solutions can be found for nonzero propagation veloci-
ties V > 0. For a number of nodes of the electromagnetic
field p ≥ 1 and ρ = 0, moving solitons are found to occur
for V larger than a certain critical value Vc , which
depends on p. For p = 1, the critical velocity is approx-
imately 0.00165, which is substantially smaller than the
lower limit for the propagation velocity of a weak

bright soliton  at ρ = 1/1836. The critical velocity
increases with increasing p. The corresponding fre-
quency is an increasing function of V as can be seen in
Fig. 1, in which the value of ω2(1 – V 2) = ω2 – k2 is plot-
ted versus the soliton velocity V for p = 1, 2, 3, and 4.
Figure 1 also shows the square of the frequency of a
soliton with a zero velocity and zero number of nodes
(p = 0, ρ = 0) [16]. This dependence is shown at the
V = 0 axis by a dotted line. According to Eq. (28), the
value of ω2 – k2 can be interpreted as the effective
plasma frequency inside the soliton. The maximum val-
ues of φ and a occur at the critical soliton velocity Vc

(see Fig. 2) and increase as the number of nodes p
increases.

We see that there is no continuous transition from
the V = 0 soliton (the so-called half-cycle soliton [16])
to moving solitons (p ≠ 0). As is well known, an approx-
imate analytical solution can be found in the small-
amplitude limit at V close to 1 (see [12, 15, 42, 43]).
The approximate analytical solution shows a continu-
ous transition from moving solitons to V = 0 solitons.
However, the full system does not allow for such a tran-
sition. The same result was obtained by Kuhel et al.
[44] in the limit ω @ 1 and by Krammer et al. [45] for
Langmuir solitons. We note that half-cycle standing
solitons with p = 0 in the limit ρ = 0 exist and are stable
[16] and that this type of soliton was observed in PIC
simulations of laser–plasma interaction (see [2–4]).

As was mentioned above, in the case of a relativistic

(but lower than ) soliton amplitude, the ions
can be assumed to be at rest during the period of time

on the order of 2π  = 2π . Over this time
period, the analytical solution obtained in [16] provides
a rather good description of a low-frequency zero-

velocity soliton. However, for times longer than 2π ,
the ponderomotive pressure of the electromagnetic
field inside the soliton starts digging a hole in the ion
density, and the parameters of the soliton change [46].

a1'

ρ

mi/me

mi/meωpe
1– ωpi

1–

ωpi
1–
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5.2. Electron–Ion Relativistic Solitons

When the ion dynamics is taken into account (i.e.,
ρ ≠ 0), the picture drastically changes. In what follows,
we choose ρ = 1/1836.

Let us first investigate the case p = 1 (which corre-
sponds to a soliton with one node in the profile of the
vector potential) in more detail. In Fig. 3, the value of
ω2(1 – V 2) is plotted versus V. At V smaller than the
bifurcation velocity Vbif ≈ 0.175, no solutions exist. For
Vbif < V < Vbr ≈ 0.32, two solutions are found, while, for
V > Vbr, we have a single solution with a frequency
close to that of a soliton obtained in the approximation
of immobile ions (ρ = 0). In Fig. 3, the values of Vbif and
Vbr are shown for the p = 1 soliton.

We call Vbr the breaking velocity, because, as will be
shown below, at V = Vbr, a singularity appears in the
soliton solution described by the lower branch of the
curves presented in Fig. 3. At high frequencies (and
velocities), the ion dynamics is negligible. However, its
role increases as the velocity decreases. The ions tend
to pile up at the soliton center, while the electrons pile
up at its edges. In the range Vbif < V < Vbr, the lower
branch has features quite different from the higher
branch. In the solitons described by the lower branch,
the amplitudes of the potentials are larger and the den-
sity profiles are much more peaked, as is seen in Fig. 4,
in which the maximum value of the electrostatic poten-
tial (Fig. 4a) and the vector potential (Fig. 4b) inside the
soliton are plotted versus V for the same parameters as
in Fig. 3. At V = Vbr and ω2 ≈ 0.224, the lower branch
ends because of the soliton breaking; accordingly, ni
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Fig. 1. The square of the effective plasma frequency inside
the soliton, ω2(1 – V 2), vs. the soliton velocity for p = 1, 2,
3, and 4 (the ions are assumed to be at rest) and the square
of the frequency of a soliton with p = 0 and V = 0 (dotted
line).
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and (b) vector potential inside the soliton vs. the soliton
velocity for the same parameters as in Fig. 1.
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Fig. 3. The square of the effective plasma frequency inside
the soliton, ω2(1 – V2), vs. the soliton velocity for p = 1, 2 in
the case of mobile ions (ρ = 1/1836).
tends to infinity at ξ = 0 (i.e., Ri  0). From the con-
dition Ri = 0 [see Eq. (21)], we obtain the peak value of
the potential

(64)

It away seen in Fig. 4 that both the electrostatic poten-
tial and the vector potential are substantially larger at
the breaking point than can be from it. For the p = 1
soliton, the breaking velocity is approximately equal to
Vbr = 0.32.

After breaking, a portion of ions are injected into the
acceleration phase. Moving together with the soliton,
the ions can be accelerated to higher energies. We can
estimate the ion energy gain as

(65)

For Vbr = 0.32, the energy of the accelerated ions is on
the order of 70 MeV. This shows that the soliton break-
ing can provide an additional mechanism for the gener-

φbr 0, 1 1 Vbr
2

––( )/ρ.=

Eion φbr 0, / 1 Vbr–( ).≈
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Fig. 4. The maximum values of (a) the electrostatic potential
and (b) vector potential inside the soliton vs. the soliton
velocity for the same parameters as in Fig. 3.
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ation of fast ions in plasmas irradiated with high-inten-
sity lasers.

As can be seen in Fig. 5, the ion velocity becomes
equal to Vbr in the soliton center, while the electron
velocity in the center is close to –1. For small ρ values,
the electron velocity is equal to v ||e(ξ = 0) ≈ –1 + O(ρ2).
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Fig. 5. (a) Electrostatic and vector potentials, φ and a;
(b) electron and ion velocities, v ||e and v ||i; and (c) electron
and ion densities vs. ξ inside the p = 1 soliton for V = 0.32
(close to the breaking conditions).
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Figure 5a shows the profiles of the electrostatic poten-
tial φ and the vector potential a, and Fig. 5b shows the
velocity of electrons v ||e and ions v ||i versus ξ inside the
p = 1 soliton. In Fig. 5b, a cusp in the ion velocity pro-
file is seen. Such a cusp is evidence of nonlinear wave
breaking. The corresponding dependence of the ion
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Fig. 6. Same as in Fig. 5 for the p = 2 soliton and V = 0.45.
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density on ξ (see Fig. 5c) shows a very peaked distribu-
tion in the center (the ion density tends to infinity at this
point).

For p = 2 (i.e., for a soliton with two nodes in the
vector potential profile), similar behavior is observed
(see Fig. 6). For p ≥ 3, we still observe the soliton
breaking at a certain finite velocity, but now it occurs
due to the self-intersection of electron trajectories and
the ion response is relatively weaker. Estimates show
that, in this case, the fast electron energy is on the order
of 125 MeV.

An analysis of the dependence of the maximum
electron and ion velocities on the soliton propagation
velocity (which in turn depends on p) demonstrates
that, at relatively low propagation velocities, the ion
velocity at the breaking point is higher than the electron
velocity. At higher propagation velocities, the soliton
breaking is related to electron motion.

As the number of the nodes inside the soliton
increases, both the bifurcation velocity and the break-
ing velocity increase. This is seen in Fig. 7, in which the
soliton carrier frequency ω is plotted versus the soliton
wavenumber k = V for p = 1, …, 6. The dotted lines
show the dispersion curves for linear electromagnetic
waves in a vacuum (ω = k) and in plasma (ω =

).
An analysis of the dependences of the soliton

parameters (the soliton velocity V, the square of the
soliton frequency ω2, and square of the effective plasma
frequency ω2(1 – V 2)) at the breaking point on p shows
that they increase with the number of nodes inside the
soliton. Also, the dependence of the maximum electron
and ion velocities at the breaking point on p demon-
strates that, for the lowest node number (p = 1, 2), the
ion velocity is larger than the electron velocity. As p
increases, the ion velocity becomes less than the elec-
tron velocity. This is in agreement with the previous
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23
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Fig. 7. Soliton frequency ω vs. the soliton wavenumber k = V
for solitons with p = 1, …, 6.
results that demonstrate the increase in the electron
velocity and the decrease in the ion velocity at the
breaking point with increasing soliton propagation
velocity.

The dependence of the soliton energy (the electro-
magnetic field energy plus the kinetic energy of the
plasma) at the breaking point on the number of nodes is
nonmonotonic. We found that, in the range of low node
numbers, the soliton energy first increases; reaches its
maximum at p = 4, 5; and then decreases.

6. CONCLUSION

We have investigated in detail the influence of ion
motion on the dynamics of relativistic electromagnetic
solitons in a collisionless plasma. We have found vari-
ous nonlinear modes in the limit of low wave propaga-
tion velocities. It is shown that, in addition to the well-
known bright solitons with a localized maximum of the
electromagnetic energy density, there are also dark soli-
tons with a localized minimum of the electromagnetic
energy density and collisionless electromagnetic relativ-
istic shock waves. We have shown that a dark soliton can
advect the particles trapped inside an effective well
formed by the radiation pressure. The trapped particles
can gain an energy higher than the kinetic energy of the
particles of the background plasma inside the soliton.
The shock wave is compressional; it separates the region
with no electromagnetic field and the region with a
slowly propagating electromagnetic wave and the mov-
ing electron–ion plasma. The collisionless shock wave
also describes the penetration of a relativistically strong
electromagnetic wave into an overdense plasma.

We have studied bright solitons by numerically
solving the boundary problem for the set of nonlinear
differential equations. We have shown that, under the
assumption that the ions are at rest, there is no continu-
ous transition from the V = 0 soliton (the half-cycle
soliton [16]) to moving (p ≠ 0) solitons. In the small-
amplitude limit, an approximate analytical solution can
be found that shows a continuous transition from mov-
ing solitons to the V = 0 soliton. However, this solution
does not satisfy the full set of equations.

When the ion dynamics is taken into account, the
picture drastically changes. Solitons were found to
exist at propagation velocities larger than Vbif. In the
range Vbif < V < Vbr, two types of solitons can exist.
High-frequency solitons exist at V > Vbif, and low-fre-
quency solitons exist in the velocity range Vbif < V < Vbr .
At V = Vbr, the soliton breaks. As a result, some ions are
injected into the acceleration phase and gain energy.
Thus, the soliton breaking can provide a new mecha-
nism for electron and ion acceleration in a plasma irra-
diated with high-intensity lasers. The investigation of
mechanisms for ion acceleration is of great importance
for various applications. Among them, the fast ignition
of fusion targets by intense laser-accelerated proton
beams is one of the most important [47, 48].
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Abstract—The initial stage of the one-dimensional expansion of a hot electron cloud into a “warm” plasma
(i.e., into a plasma with a finite electron temperature) is studied with allowance for plasma turbulence. It is
shown that, in a nonturbulent plasma or in a plasma with sufficiently weak turbulence, counterstreaming warm
plasma flows interpenetrate one another; in this process, the plasma flows are accelerated and form beams
escaping from the heating region. A stronger turbulence gives rise to electron heat waves that also propagate
away from the heating region. © 2001 MAIK “Nauka/Interperiodica”.
Rapid local heating of plasma electrons is often
observed in laboratory experiments [1] and space plas-
mas, e.g., in solar flares [2]. The initial stage of the
expansion of hot electrons from the heating region in a
collisionless plasma can be described under the
assumption that hot electrons interact only with cold
plasma electrons and do not interact with plasma ions.
For a plasma in a magnetic field, the problem reduces
to that of studying the one-dimensional expansion of
hot electrons. In this case, it is also necessary to take
into account the possible onset of plasma instability
within the front of the expanding electron cloud [3]. In
this formulation, the problem under consideration was
solved by Ivanov et al. [4]. They determined the param-
eters of a so-called electron heat wave, or a jump in the
density of hot electrons expanding from the heating
region. On the other hand, it is of interest to investigate
the behavior of the cold electrons that are accelerated
by the electric field produced by an expanding hot elec-
tron cloud. It is clear that, sooner or later, the initial
heating region will be dominated by cold electrons. If
the temperature of the cold electrons is zero, the poten-
tial barrier produced by the excess electrons reflects the
incoming electrons. If the temperature of the cold elec-
trons is finite (such electrons will be called “warm”
electrons), the potential barrier produced by the excess
electrons, on the one hand, decelerates the incoming
flows of cold electrons and, on the other, accelerates
cold electrons with energies high enough to overcome
the potential barrier, in which case the counterstream-
ing flows of cold electrons interpenetrate one another.
These flows may give rise to a two-stream instability in
the heating region [5]. It would be also of interest to
analyze this aspect of the problem. Our purpose here is
to trace the evolution of the distribution function of the
cold electrons that fill the initial heating region and to
follow the temporal and spatial evolutions of both the
1063-780X/01/2708- $21.00 © 20652
distribution function of the hot electrons and their
density.

Let the plasma electrons be rapidly heated in a local
plasma region. It is well known that locally heated elec-
trons tend to escape from the heating region, thereby
giving rise to a return current of cold electrons, which
ensures plasma quasineutrality. In this case, the ions,
having large inertial mass, remain essentially immo-
bile. In the one-dimensional approximation, the elec-
tron motion and the interaction between hot electrons
and cold electrons with a finite temperature (below, the
latter will be called warm electrons) are described by
the set of equations

(1)

Here, fh and fc are the distribution functions of the hot
and warm electrons, respectively; ϕ is the electric
potential; n0 is the background plasma density; and e
and m are the charge and mass of an electron. The first
two equations in set (1) describe the behavior of the
one-dimensional distribution functions of hot and
warm electrons, and the third equation is Poisson’s
equation.

In simulations, we used a componentwise splitting
scheme based on one-dimensional monotonic schemes
with a SUPERBEE limiting procedure and Harten
compression [6]. The length of the heating region was
equal to four Debye radii, the spatial step was 0.2 of the
Debye radius, and the temperature ratio between the
warm and hot electrons was 1/100.

To illustrate the states of the system at different
times, Figs. 1 and 2 show the contours of the distribu-
tion functions of the hot and warm electrons (Fig. 1),

∂ f h /∂t v ∂ f h /∂x( ) e/m( ) ∂ϕ /∂x( ) ∂ f h /∂v( )+ +  = 0,

∂ f c /∂t v ∂ f c /∂x( ) e/m( ) ∂ϕ /∂x( ) ∂ f c /∂v( )+ +  = 0,

∂2ϕ /∂x
2

4πe f c vd∫ f h vd∫ n0–+( ).=
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Contours of the distribution functions of the hot (left) and warm (right) electrons at the times  t = (a) 3.2/ωpe, (b) 16/ωpe, and
(c) 30.4/ωpe. On the abscissa, a division is the spatial step (0.2 of the Debye radius) adopted in simulations. The ordinate is the nor-
malized electron velocity.
the density distributions of the hot (Fig. 2a) and warm
(Fig. 2b) electrons, the distribution function of the hot
electrons at the center of the heating region (Fig. 2c),
and the electric potential distribution (Fig. 2d). The cal-
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
culated results shown in Figs. 1 and 2 were obtained for
Maxwellian initial distributions of the hot and warm
electrons and a rectangular initial distribution of the
density of hot electrons.
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From Figs. 1 and 2, we can see that the expansion of
hot electrons is accompanied by the acceleration of
warm electrons, which form a counterstreaming flow
and replace hot electrons in the heating region. As
warm electrons accumulate in the heating region and
produce a potential barrier, the counterstreaming elec-
tron flows interpenetrate one another, because the most
energetic warm electrons overcome the barrier and are
accelerated by the electric field produced by the excess
electrons. In this case, the distribution function of the
accelerated electrons that have overcome the potential
barrier has a distinctly beamlike character (Fig. 1c). As
for the two-stream instability, it does not occur in the
case at hand, presumably because the counterstreaming
electron flows interact in a finite-size region (although
the initial stage of the formation of vortices in phase
space is seen in Fig. 1b).

Another effect that should be taken into account is
the possible onset of a plasma instability at the front of
an expanding electron cloud [1, 3, 4]. In the case under
consideration, this instability is most likely a beam
instability [3], which develops as hot electrons escape
from the heating region. The instability can be included
in the analysis by supplementing the right-hand sides of
the kinetic equations with diffusion terms in which the
diffusion coefficients are proportional to the spectral
energy density of the plasma turbulence. The related
simulations were carried out by the method of separat-
ing the physical processes [7]. The basic set of equa-
tions for this case has the form

(2)

where the constant A determines the level of plasma
turbulence. In set (2), the first and third equations
describe the expansion of hot and warm electrons with
allowance for the electric field, and the second and
fourth equations describe turbulence-driven electron
diffusion in velocity space.

The results computed for A = 10–4 are shown in
Figs. 3 and 4, and the results obtained for A = 10–2 are
displayed in Figs. 5 and 6. In the simulations, the initial
length of the heating region was equal to ten Debye
radii and the spatial step was 0.5 of the Debye radius.
In order of magnitude, coefficient A corresponds to the

∂ f h/∂t v ∂ f h/∂x( )+

+ e/m( ) ∂ϕ /∂x( ) ∂ f h/∂v( ) 0,=

∂ f h/∂t ∂/∂v( ) A/v( ) ∂/∂v( ) f h– 0,=

∂ f c/∂t v ∂ f c/∂x( ) e/m( ) ∂ϕ /∂x( ) ∂ f c/∂v( )+ +  = 0,

∂ f c/∂t ∂/∂v( ) A/v( ) ∂/∂v( ) f c– 0,=

∂2ϕ /∂x
2

4πe f c vd∫ f h vd∫ n0–+( ),=
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Fig. 3. The same as in Fig. 1 but for a low turbulence level at the times  t = (a) 3.2/ωpe, (b) 16/ωpe, and (c) 28.8/ωpe. On the abscissa,
a division is the spatial step equal to 0.5 of the Debye radius.
ratio of the energy density of the plasma waves to the
energy density of the hot electrons. Since A ! 1, we can
assume that, in our problem, plasma turbulence does
not perturb the energy balance. For simplicity, we
assumed that the energy density of the plasma turbu-
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
lence is uniformly distributed in the region occupied by
hot electrons. From Fig. 3–6, one can see that, at low
and high levels of plasma turbulence, the interaction
between hot and warm electrons occurs in different
ways. At a lower turbulence level (Figs. 3, 4), electron
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Fig. 4. The same as in Fig. 2 but for a low turbulence level at the times  t = 3.2/ωpe (solid curve), 16/ωpe (dotted curve), and 28.8/ωpe
(dashed curve).
diffusion, although pronounced, does not play a domi-
nant role. As is the case in a nonturbulent plasma, the
main effect is the acceleration of warm electrons
toward the heating region, followed by the formation of
electron beams escaping from the heating region
(Figs. 3b, 3c). At a higher turbulence level (Figs. 5, 6),
the main effect is the diffusion of warm electrons in
velocity space, i.e., their heating to substantially higher
temperatures. In this case, the heated electrons occupy
a finite-size region with sharp boundaries, thereby
forming an electron heat wave moving away from the
heating region at a speed on the order of the electron
thermal velocity. On the other hand, Figs. 5 and 6 show
that the rate at which the initial hot plasma region cools
is markedly lower.

DISCUSSION

Our simulations of the initial stage of the expansion
of hot electrons from the heating region and their
replacement by warm electrons have shown that the
expansion process is accompanied by the acceleration
of warm electrons toward the heating region, in agree-
ment with the simulation results described in mono-
graph [1]. However, further evolution of the plasma
may proceed in two different ways, depending on the
level of turbulence that develops at the front of the
expanding electron cloud. At a low turbulence level (for
energy densities of W < 10–3W0, where W0 is the energy
density of the hot electrons), the main effect is the
acceleration of a small fraction of warm electrons dur-
ing the interpenetration of the counterstreaming elec-
tron flows moving toward the initial heating region
(Figs. 3, 4). The accelerated electrons move away from
the initial heating region, and their distribution func-
tions are distinctly beamlike in character. The energy of
these electrons is one order of magnitude higher than
the warm-plasma energy, provided that the latter is two
orders of magnitude lower than the hot-plasma energy.
Although the electron diffusion is pronounced, it plays
a very minor role. At higher energy densities of the
plasma turbulence, W > 10–3W0 (Figs. 5, 6), the plasma
evolution is radically different. The main effects are the
diffusion of warm electrons in velocity space and the
formation of an electron heat wave (Fig. 5) [4]. This
wave is represented by the warm electrons that are
heated to higher temperatures and occupy a region with
sharp boundaries, whose characteristic dimension is
approximately equal to the Debye radius. The wave
front moves away from the heating region at a speed on
the order of the thermal velocity of the heated electrons.
Inside the heating region, the speed of the wave front is
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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Fig. 5. The same as in Fig. 1 but for a high turbulence level at the times  t = (a) 3.2/ωpe, (b) 8/ωpe, and (c) 11.2 /ωpe. On the abscissa,
a division is the spatial step equal to 0.5 of the Debye radius.
significantly lower; this indicates a markedly lower rate
at which the hot plasma region cools at a high turbu-
lence level.
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
We emphasize that we have considered only the ini-
tial stage of cooling of the region of hot electrons, spe-
cifically, cooling on time scales shorter than the ion
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Fig. 6. The same as in Fig. 2 but for a high turbulence level at the times  t = 3.2/ωpe (solid curve), 8/ωpe (dotted curve), and 11.2/ωpe
(dashed curve).
plasma period. At this stage, the plasma ions still
remain almost immobile. On longer time scales, it is
necessary to take into account ion motion under the
action of an electrical potential gradient created in the
initial heating region.
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Abstract—Hydrodynamic equations are presented that describe the dynamics of a plasma with two ion species
in a magnetic field such that B2 @ 8πp. It is shown that there exists a range of values of the ratio of the plasma
density to the magnetic field, νii/ωBi < (Z2M/m)1/4, within which the frictional force caused by ion–ion collisions
dominates over that caused by electron–ion collisions. In this range, the effective conductivity, which governs

the magnetic field diffusion, is lower than the conventional electron–ion conductivity by a factor of  and
can be as low as σ . enc/B. The equations derived for this three-component plasma make it possible to self-
consistently incorporate local changes in the partial mass and partial charge of each of the ion species in relative
motion. The characteristic features of the equations obtained are analyzed by applying them to describe the
propagation of a current sheath in a transmission line filled with a multispecies plasma. An analogy is drawn
between magnetic phenomena in a plasma with two ion species and in a so-called dusty plasma. © 2001 MAIK
“Nauka/Interperiodica”.

M/m
1. Vacuum transmission lines with magnetic self-
insulation make it possible to efficiently transmit
energy in the form of relatively short electromagnetic
pulses from the generator to the load [1–3]. For gener-
ators in which the current rises fairly slowly, it is more
convenient to use transmission lines filled with gas or
plasma. In this case, the current in the generator rises as
an electromagnetic pulse propagates in the line and
becomes maximum when the pulse reaches the load.
This peaking effect underlies the operation of various
devices in which the transmission line is filled by a gas
with an optimum density ensuring efficient energy
transmission. A classical example of such systems is a
plasma focus device [4–7], in which the current sheath
is observed to propagate in a peculiar way along the
surface of the positive electrode. For plasma focus
devices, the transmission processes that occur before
the focusing phase are usually investigated by numeri-
cal methods [8].

Here, hydrodynamic equations are presented that
describe the dynamics of a current-carrying plasma in
devices of the Mather type [5]. In such devices, the cur-
rent sheath propagates along the coaxial line for a fairly
long time before it reaches the edge region and gives
rise to current focusing. The equations obtained are
analyzed by applying them to describe precisely this
initial stage of the propagation of a current sheath along
a plasma-filled coaxial transmission line. The charac-
teristic current in a coaxial line is assumed to be J ≥ 1
MA, and the characteristic radius of the line is taken to
be r < 1 cm, the coaxial electrodes being separated by a
distance of the same order. These parameter values cor-
respond to a magnetic field of B ≥ 105 G. The character-
1063-780X/01/2708- $21.00 © 0659
istic plasma density in the interelectrode gap is
assumed to be about ne ~ 1018–1019 cm–3.

A current flowing through a gas-filled interelectrode
gap ionizes the gas, causing the appearance of ions with
different charge-to-mass ratios Z/M. Braginskii [9]
showed that, in this situation, collisions between heavy
particles may substantially increase transverse plasma
resistance. This effect stems from the fact that the cur-
rent flowing across the magnetic field gives rise to the
relative motion of the various ion species present and,
accordingly, to high friction between them, thereby
resulting in additional energy dissipation. However,
Braginskii [9] pointed out that, when the ion motion is
slow, so that the plasma is in a nearly equilibrium state,
the ion density obeys a Boltzmann temperature distri-
bution and the plasma resistivity does not increase. In
my paper [10], allowing for the inertial motion of the
ions made it possible to demonstrate that the effect of a
significant increase in transverse resistivity also takes
place in a plasma with two ion species. The increase in
transverse resistivity is accompanied by the spatial sep-
aration of ions with different ratios Z/M at the wave
front [11, 12]. In this multispecies plasma, there exists
a certain range of values of the ratio of the plasma den-
sity to the magnetic field, νii/ωBi < (Z2M/m)1/4, within
which the dissipation due to ion–ion collisions domi-
nates over the conventional dissipation due to electron–
ion collisions. Thus, it can be suggested that ion–ion
collisions play a particularly important role in the for-
mation of a plasma focus, because ion–ion dissipation
is associated precisely with heavy ion species and
occurs in the volume they occupy, while electron–ion
dissipation can occur at a certain distance from the front
2001 MAIK “Nauka/Interperiodica”
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of the propagating ions, because the magnetic field is
frozen in the electrons (this effect is known as “run-
away” of the current sheath).

It should be noted that an analogous effect of the
increase in resistivity will inevitably occur during the
magnetic contraction of a liner. A significant decrease
in resistivity due to ion–ion collisions should result in a
partial suppression of the Rayleigh–Taylor instability
and a more efficient contraction of the liner.

Note also that ion–ion collisions play a dominant
role in the dynamics of dusty plasma, which contains,
in addition to ordinary charged particles, dust grains
carrying an electric charge. Modeling charged dust
grains by very massive ions provides a qualitative
description of the dynamics of a dusty plasma in a mag-
netic field.

The paper is organized as follows. The main esti-
mates that confirm the applicability of the basic hydro-
dynamic equations are obtained in Section 2. In Sec-
tions 3 and 4, the basic equations are used to derive
equations describing a plasma with two ion species and
with zero thermal pressure. The equations derived are
analyzed in Sections 5–8. In Section 9, the dissipation
effect is explained and additional references are given
to studies dealing with this effect. In Section 10, the
equations derived are briefly analyzed by applying
them to describe a dusty plasma. The results obtained
are summed up in Section 11.

2. Below, we restrict ourselves to analyzing the
effect of the increase in plasma resistivity due to ion–
ion collisions and its influence on the plasma dynamics.
To simplify matters, we start with the equations in
which we exclude from consideration the effects that
are irrelevant. We use the hydrodynamic equations
derived by Braginskii in his review [9]. In these equa-
tions, we can neglect the thermal force because all of
the quantities are independent of the coordinate along
the magnetic field and the electrons are strongly mag-
netized, ωBe ≡ eB/mc @ νei. For the same reason, the
longitudinal conductivity can also be ignored.

The main assumption in our analysis is that the
plasma thermal pressure is much lower than the mag-
netic field pressure,

(1)

In this case, however, the particle temperature cannot
be assumed to be zero if, e.g., ωBe @ νei . Combining
this inequality with conditions (1) and using the con-
ductivity estimated in [9], σ = 0.5 × 1031T3/2, we obtain
the following inequality, which is important for further
analysis:

(2)

Here, the magnetic field and density are expressed in G
and cm–3, respectively. It can be easily seen that inequal-
ity (2) holds for B ~ 105 G and n ~ 1018 cm–3. Note that

B
2

8π
------  @ niTi, neTe.

B
2
 @ 1.9 10

14–
n

5/4
.×
using condition (50) (see below) instead of ωBe @ νei

insignificantly affects inequality (2).
The question to be addressed is whether or not tak-

ing into account plasma heating by strong currents (for
small radii of the current sheath and strong magnetic
fields) and enhanced ion–ion dissipation will violate
condition (1). To answer this question, we should, first
of all, note that, in the stage of current propagation
along the transmission line, a nonequilibrium plasma
strongly emits radiation, so that the plasma tempera-
ture, as a rule, does not exceed T ~ 102 eV. However, in
order to appreciate the level to which the plasma is
heated, we make the required estimates under the char-
acteristic heating conditions [9]:

(3)

We set B ~ 105 G and n ~ 1018 cm–3 and assume that the
current rise time and characteristic length scale are
τ ~ 10–7 s and δ ~ 1 cm, respectively. As a result, we can
estimate the plasma temperature for two limiting cases:
(i) for the conventional electron–ion dissipation and
(ii) for the effective conductivity σ . enc/B (see
below).

In the first case, for the adopted parameter values,
the above estimate for σ gives T < 10 eV. In the second
case, in which the conductivity is σ . enc/B, the corre-
sponding estimate is T ~ 102 eV, which still satisfies
inequality (1) for the above values of B and n. For stron-
ger magnetic fields, this inequality may fail to hold.
However, below we will assume that, in accordance
with the measurement results, emission from the
plasma and ion heat conduction substantially reduce
the plasma temperature. Hence, the applicability of the
equations to be derived is closely associated with the
possibility of satisfying condition (1).

In order to determine whether the viscosity can be
neglected, we estimate the ratio |w |/δνii, where δ is the
characteristic length scale and w is the relative ion
velocity. Here, we are interested in estimating the max-
imum (ion) viscosity. Using formula (48) for the con-
ductivity due to ion–ion collisions (see below) and tak-
ing into account the fact that the corresponding Hall
parameter σB/enc is on the order of unity, we obtain

(4)

When δ ≤ 1 cm and n ~ 1018 cm–3, this inequality holds
not only for a hydrogen plasma but also for plasmas
with heavier ions. This estimate was derived by setting
|w | ~ |j |/en.

Now, we consider the form of the dissipative terms
that account for ion–ion collisions. According to the
appendix to review [9], the form of the terms that incor-
porate ion–ion collisions into Eqs. (7)–(9) (see below)
is consistent with, e.g., Maxwellian distribution func-

3
2
---n

∂T
∂t
------  . 

j⊥
2

σ⊥
------.

w
δνii

--------- c
2

δ2ωpi
2

------------- ! 1.∼
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tions if the relative ion velocity is much lower that the
characteristic ion thermal velocity, |w | ! vTi . This con-
dition yields an additional restriction:

(5)

For a magnetic field B ~ 105 G and for a hydrogen
plasma with the parameters T ~ 30–50 eV, n ~ 1018 cm–3,

and δ ~ 1 cm, the quantity δ2 /c2 is on the order of
3 × 103. This is why inequality (5) can be satisfied not
only for a hydrogen plasma but also for plasmas with
heavier ions.

The main feature of the equations to be derived is
that the thermal effects are neglected compared to the
effect of the magnetic field, in which case the plasma
temperature will be chosen to lie in the range 30–50 eV
because of the serious radiative losses from the plasma
and high ion heat conduction to the wall. Since thermal
effects are neglected, Eqs. (7)–(9) apply actually to
individual particles whose accelerations are governed
by the frictional forces between them and by the elec-
tromagnetic fields. Clearly, these equations cannot be
used to describe the focusing stage of the plasma focus,
when the plasma temperature significantly increases.

Hence, our aim here is to analyze the set of equa-
tions capable of describing, in particular, the propaga-
tion of a current sheath along a coaxial transmission
line—a phenomenon that plays an important role in the
formation of a plasma focus.

Of course, the fairly simple equations derived below
do not provide a detailed description of the dynamics of
a multispecies plasma in a magnetic field. The thermal
effects in such a plasma are difficult to incorporate cor-
rectly (see, e.g., [13]); here, to demonstrate the role of
these effects, the equations are used at their applicabil-
ity limits. However, as will be shown below, even these
simplified equations are capable of describing an inter-
esting effect—the simultaneous diffusion of different
ion species and the magnetic field in a frame of refer-
ence moving with the mass velocity. This effect is anal-
ogous to magnetoresistance, which is well known in
solid-state physics and occupies an important place in
modern plasma physics.

It is notable that, in the context of the present paper,
the dominant role of ion–ion dissipation does not imply
that the ions can be heated to high temperatures, e.g.,
due to ion heat conduction to the wall. Consequently, in
what follows, the dominance of ion–ion dissipation
means merely that the energy is transmitted preferen-
tially via ion–ion collisions. In this case, the ion energy
balance equation

(6)

implies that, for ωBi ~ ν0 (which corresponds to unmag-
netized ions) and σ ~ enc/B [see formula (47)], at the

1 ! 
B

2

8πnT
------------- ! 

δ2ωpi
2

c
2

-------------.

ωpi
2

3
2
---ni

diTi

dt
--------- pi ∇ v⋅ i+ Qi ∇ κ i⊥ —⊥ Ti( )⋅+=
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validity limit 4πniTi/B2 & 1 of our model, the ion heat
loss Qi to the wall is governed by the ion heat conduc-
tion due to ion–ion collisions.

In principle, the effect of the increase in resistivity
can also be observed in a plasma with one (rather than
two) ion species and one neutral species [14]. This
issue has recently received much attention [15–17].
Also, multispecies plasmas attract increased interest
because they are in a sense analogous to dusty plasma
[18, 19].

3. Having obtained the necessary estimates, we go
on to describe a multispecies plasma by the basic set of
equations, which includes the equation for the elec-
trons,

(7)

and the equations for the two ion species,

(8)

(9)

Here, m is the mass of an electron, M1 and M2 are the
masses of ions of different species, and Z1 and Z2 are
the related ion charge numbers. The frequencies of col-
lisions between the different ions, ν12, and between the
electrons and the ions, νe1 and νe2, satisfy the obvious
relationships

In Eqs. (7)–(9), the derivatives

are the total derivatives along the trajectories of ions of
different species. In what follows, we will assume that
the electrons and ions move only in the r and z direc-
tions and do not move along the magnetic field, which
has only the ϕ-component. We will also assume that all
of the physical quantities do not depend on ϕ.

Equations (7)–(9) should be supplemented with the
ion continuity equations

(10)

m
dv
dt
------ eE–

e
c
-- v B×[ ]– mνe1 v V1–( )–=

– mνe2 v V2–( )

M1

d1V1

dt
------------ Z1eE

Z1e
c

-------- V1 B×[ ]+=

– M1ν12 V1 V2–( ) M1ν1e V1 v–( ),–

M2

d2V2

dt
------------ Z2eE

Z2e
c

-------- V2 B×[ ]+=

– M2ν21 V2 V1–( ) M2ν2e V2 v–( ).–

α1 nmνe1 N1M1ν1e,= =

α2 nmνe2 N2m2ν2e,= =

α12 N1M1ν12 N2M2ν21.= =

dk

dt
----- ∂

∂t
----- Vk —⋅( ), k+ 1 2,= =

∂Nk

∂t
--------- ∇ NkVk( )⋅+ 0, k 1 2,= =
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and the quasineutrality condition

(11)

where n is the electron density and N1, 2 are the densities
of the ions of different species.

For further analysis, it is expedient to introduce the
relative charge and density of each ion species:

(12)

where ρ = M1N1 + M2N2 is the plasma density.
Using the expressions for the current density j and

relative velocity w of the ion species,

(13)

we obtain the following useful relationships, which
make it possible to remove from consideration the elec-
tron velocity:

(14)

We neglect electron inertia and use Eq. (7) to elimi-
nate the electric field in Eqs. (8) and (9). With the help
of relationships (14), we reduce the equations of
motion of the ion species to the form [10]

(15)

(16)

where F ≡ ξ1ξ2(en/c)[w × B] – (α12 + )w – (j/en).
In accordance with [9], the kinetic coefficients in the
expression for F are defined in the same manner as in
[10]:

.

For further analysis, it is important to write out the rela-

tionship α12/αk ~  @ 1 and to note that, in a cer-
tain range of plasma parameters, the electric conductiv-
ity is governed by ion–ion (rather than electron–ion)
collisions. In this relationship, M is the characteristic
ion mass or the geometric mean mass (if the masses of
the ions of different species are very different).

4. When studying a plasma with two ion species, it
is convenient to switch from Eqs. (15) and (16) to their

n Z1N1 Z2N2,+=

ξk

Zk Nk

n
------------, ηk

Mk Nk

ρ
-------------, k 1 2,,= = =

j eZ1N1 V1 v–( ) eZ2N2 V2 v–( ),+=

w V1 V2,–=

V1 v– j
en
------ ξ2w, V2 v–+ j

en
------ ξ1w.–= =

η1ρ
d1V1

dt
------------ ξ1

1
c
--- j B×[ ] F,+=

η2ρ
d2V2

dt
------------ ξ2

1
c
--- j B×[ ] F,–=

α e'' α e'

α e = α1 α2, α e'+  = α1ξ2 α2ξ1, α e''–  = α1ξ2
2 α2ξ1

2
,+

α k nNk m
4 2π

3
--------------

Zk
2
e

4λ

T
3/2

--------------, k 1 2,,= =

α12 N1N2
M1M2

M1 M2+
---------------------

4 2π
3

--------------
Z1

2
Z2

2
e

4λ

T
3/2

---------------------=

M/m
linear combination. The equation

(17)

describes the motion of the center of mass of the two
ion species. To see this, we introduce the mass velocity

(18)

and, using Eqs. (10), obtain

(19)

Consequently, the dynamics of the plasma density ρ is
determined by the mass velocity V. In this case, the
velocities of the ion species are expressed in terms of
the mass velocity V and relative velocity w as

(20)

We substitute expressions (20) for V1, 2 into Eq. (17)
and perform simple algebraic manipulations to obtain

(21)

where the expression η1dη2/dt – η2dη1/dt = –dη1/dt
can be changed from one form into another with the
help of the equation

(22)

which follows immediately from Eqs. (10) and (19) and
relationships (20).

As a result, we arrive at the final form of the equa-
tion for the hydrodynamic mass velocity V:

(23)

where

We can see that the hydrodynamic equation of
motion (23) contains a term that is similar in structure
to the kinetic pressure tensor pik = ρη1η2wiwk and in
which the relative velocity w plays the role of a thermal
velocity.

The relative velocity w in Eqs. (22) and (23) can be
deduced from the equation

(24)
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dt
------------+

1
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d
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By analogy with the derivation of Eq. (21), the final
equation for the relative velocity w can be obtained by
inserting expressions (20) for the velocities V1,2 into
Eq. (24) and using Eq. (21) for the total derivative of the
mass velocity:

(25)

where µ ≡ η1ξ2 – η2ξ1 and the inertial term Dw has the
form

5. Equations (19), (22), (23), and (25) for functions
ρ, η1, V, and w describe the dynamics of a plasma with
two ion species in a prescribed magnetic field Bϕ. The
equation for the magnetic field Bϕ will be derived
below. Now, we briefly discuss the equations obtained
above. Equation (25) is in a sense analogous to the elec-
tron equation (7). Formally, we can say that Eq. (23)
describes plasma mass motion with velocity V and
Eq. (25) describes the relative motion of the ion compo-
nents with velocity w. The latter equation is similar to
the electron equation in the sense that the inertial term
Dw on the left-hand side of Eq. (25) is as important as
the magnetic and collision terms on the right-hand side,
which contain the relative velocity w. Note that, in
place of the electron equation, the final set of equations
includes an equation for the magnetic field. It is also
necessary to take into account the fact that, over a broad
range of plasma parameters, the inertial term in
Eq. (25) can be significantly smaller than the magnetic
and collision terms. In fact, we compare the inertial
term with the magnetic term in order to show that the
former can be discarded under the condition

(26)

where ωBi is the ion cyclotron frequency and τ is the
characteristic duration of an electromagnetic field
pulse.

If we set τ ~ 10–8 s, then we can see that inequality (26)
holds for a hydrogen plasma in the field Bϕ @ 104 G.
An analogous inequality can be written for the collision
term. Using the estimate that was obtained in [10] for
the kinetic coefficient α12 and setting T ~ 30 eV, we can
see that the condition

(27)

holds for N @ 1015 cm–3. Of course, the shorter the
pulse duration τ, the stronger the magnetic field and the

µ
c
--- j B×[ ] ρη 1η2Dw+

=  ξ1ξ2
en
c

------ w B×[ ] α 12 α e''+( )w– α e'
j

en
------,–

Dw dw
dt
------- w —⋅( )V η2 η1–( ) w —⋅( )w+ +≡

+ w w —η2⋅( ).

ωBi @ 
1
τ
---,

α12 @ ρ1
τ
---
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higher the density for which conditions (26) and (27)
are satisfied.

Under inequalities (26) and (27), Eq. (25) takes the
form

(28)

We introduce the notation α ≡ α12 +  and β ≡
ξ1ξ2(enBϕ)/c in order to obtain an explicit expression
for w:

(29)

Below, we will be interested primarily in the case in
which the ion–ion dissipation dominates over the elec-
tron–ion dissipation. Following [10], the criterion of
neglecting electron–ion dissipation can be derived from
the law of energy conservation in the collisional plasma
under consideration. The hydrodynamic equations and
the evolutionary equation for the magnetic field,

(30)

yield the law of energy conservation in the form

(31)

where

By virtue of the relationship α12 ~ , the
ion–ion dissipation plays a dominant role under the
condition

(32)

From Eq. (29), we can readily see that condition (32)
can be satisfied for the following relationship between
the plasma parameters:

(33)
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It is obvious that this inequality can only hold for
β @ , which implies that the electrons are magne-
tized. In this case, it is also necessary to satisfy the con-
dition β/α @ (m/MZ2)1/4; in other words, the ion–ion
dissipation can dominate the plasma with unmagne-
tized ions when 1 @ β/α @ (m/MZ2)1/4.

6. Here, we derive an evolutionary equation for the
magnetic field from Eq. (30). Equations (13) and (20)
give the following expression for the electron velocity v:

(34)

Substituting expression (34) into Eq. (30), we obtain
the following equation for the only nonzero component
Bϕ of the magnetic field:

(35)

This equation closes the above set of hydrodynamic
equations, thereby making it possible to calculate the
dynamics of a plasma with two ion species in a mag-
netic field.

We substitute the above expression for w into
Eq. (35) and express the current from Maxwell’s equa-
tion

(36)

As a result, we arrive at the final equation describing
the magnetic field dynamics. Here, we write out this
equation for a plasma with no electron–ion dissipation:

(37)

This is a diffusion equation incorporating the ion–
ion dissipation and containing the convective terms that
account for the Hall effect. It should be emphasized that
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.

electron–ion collisions are ignored and, by virtue of
Eq. (30), the magnetic field is frozen in the electron
plasma component. From the electron continuity equa-
tion, expression (34) for the electron velocity, and
Eq. (29) for w, we can see that the electron density sat-
isfies the following quasi-diffusion equation in a frame
of reference moving with the mass velocity:

(38)

Consequently, in order to satisfy the frozen-in condi-
tion

(39)

the magnetic field should experience diffusive motion.
The mechanism by which the ion motion affects the
magnetic field can be understood in terms of the
quasineutrality condition, which implies that the rela-
tive ion motion changes the electron density and,
accordingly, the magnetic field, which is frozen in the
electron component.

The ion density redistribution due to the magnetic
field diffusion is described by the equation

(40)

Hence, further analysis will be based on Eqs. (19),
(23), (25), (37), and (40) for ρ, V, w, Bϕ, and η1. Of
course, Eq. (23) should be taken with the above expres-
sion for the relative velocity w, in which case the
remaining parameters, namely, ξ1, 2, η2, µ, and the elec-
tron density n are expressed in terms of the calculated
value of η1. Thus, quantity µ has the form

(41)

7. Now, we make some comments about the equa-
tions derived and discuss the relevant boundary condi-
tions. We start by imposing the boundary conditions for
the problem of the propagation of an electromagnetic
pulse in a transmission line filled with a plasma with
two ion species.

The standard boundary conditions for hydrody-
namic equations imply that the flow velocities of the
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ions of both species should vanish at the conducting
surfaces:

. (42)

We stress that it is not quite correct to describe the
regions near the surfaces of the conducting electrodes
using Eq. (28) instead of Eq. (25). Let us discuss this
point in more detail. With the relationships wr = 0 and
(Dw)r = 0, which are both satisfied at the electrode sur-
faces, Eq. (25) yields the exact equations

(43)

(44)

As was mentioned in Section 5, the term with (Dw)z is
usually much smaller than the remaining terms, and it
seems likely that it can be omitted. However, this is not
always the case. The reason is that, along with the
above boundary conditions, there is an additional stan-
dard boundary condition at the surfaces of the conduct-
ing electrodes, specifically, Ez = 0. If we take into
account this boundary condition and neglect electron
inertia in Eq. (6), we obtain the relationship

(45)

Comparing expression (45) with expression (44) taken
with wz extracted from formula (43), we can easily see
that neglecting the small term with (Dw)z leads to a
homogeneous set of equations for jr and jz , in which
case, at the conducting electrode surfaces, we have jz =
jr = 0. This means that there is no magnetic field front
at the electrode surfaces, ∂Bϕ/∂z = 0. Consequently, to
describe a nonlinear magnetic field wave propagating
along the electrode surfaces, it is necessary to keep the
term with Dw and to include electron–ion dissipation.

8. As was mentioned above, the dissipation due to
ion–ion collisions may play an important role in the
problem under study. Here, we explicitly introduce the
conductivity due to ion–ion dissipation and briefly dis-
cuss its physical meaning. The coefficient of friction
α12 can be represented as

(46)

where

By analogy with the conventional conductivity σ =
e2n/(mνei), the effective conductivity in terms of ν0 can
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be introduced through the relationship

(47)

The final expression for the conductivity is

(48)

in which case the above coefficients α12 and β are equal
to

(49)

The dimensionless ratio of these coefficients is the
dimensionless Hall coefficient corresponding to ion–
ion dissipation:

(50)

Hence, in order for the ion–ion dissipation to dominate
over electron–ion dissipation, the dimensionless Hall
coefficient should not be too small.

It should be noted that the dominant role of ion–ion
dissipation is directly related to unsteady processes
resulting in the separation of different ion species at the
wave front [10–12]. In the absence of unsteady pro-
cesses, the ion species evolve to steady-state distribu-
tions and the dissipation is governed by electron–ion
collisions [9]. If the ion–ion dissipation dominates, we
can neglect electron–ion collisions and assume that the
magnetic field is frozen in the electron component.
According to the quasineutrality condition, the electron
density changes owing to the spatial separation of dif-
ferent ion species, leading to the redistribution of the
frozen-in magnetic field. In this case, the relative ion
motion is described by Eq. (40).

Collisions between ions of different species but with
the same charge-to-mass ratio have no impact on dissi-
pation. In this case, the above formula for µ gives µ = 0,
so that the relative velocity w, which is associated
directly with ion–ion dissipation, is governed by elec-
tron–ion collisions and turns out to be low. Conse-
quently, ion–ion dissipation plays an important role
only during the separation of ions of different species at
the wave front.

Let us make one more remark. The value of the
transverse electric conductivity adopted in [6, 8] when
calculating the dynamics of a plasma focus was two
orders of magnitude lower than the conventional con-
ductivity, associated with electron–ion collisions. The
primary reason for this choice was to take into account
turbulence-driven anomalous conductivity. Although
the possibility of this effect cannot be denied, it should
be noted that an analogous effect of the decrease in con-
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ductivity may also be associated with ion–ion dissipa-
tion [see formula (48)].

9. Here, we briefly discuss the physical causes of
ion–ion dissipation. For this purpose, in Eq. (28), we
neglect electron–ion collisions and, for simplicity, omit
the Hall term, which is proportional to w × B. We thus
arrive at Ohm’s law for the current carried by the ions:

(51)

where

and σ0 is the ion–ion conductivity introduced above.
Consequently, the assumption that the magnetic field is
completely frozen in the electron component [see
Eq. (30) in which electron–ion collisions are neglected]
indicates that, as compared to the frame of reference
moving with the electron velocity v, the magnetic field
in the frame moving with the mass velocity V [see
expression (34)] experiences a diffusive motion.
According to Ohm’s law (51), the magnetic field diffu-
sion is caused by the relative motion of different ion
species in the effective electric field in a plasma in
which ion–ion collisions play an important role.

It is clear that the relative velocity w, which deter-
mines the magnetic field diffusion in Eq. (35), can be
significant only if the inertial term ρdV/dt is taken into
account and the ion species have different charge-to-
mass ratios Z/M such that µ ≠ 0. If, in a quasi-equilib-
rium situation (dV/dt . 0), the inertial term is unimpor-
tant and the first term on the left-hand side of Eq. (28)
is omitted, then the relative velocity w is determined by
electron–ion dissipation and cannot lead to any signifi-
cant effects. In this case, the isotope separation
described by Eq. (40) is also determined by the value of
the parameter µ and is certainly possible only for ions
with different charge-to-mass ratios.

As early as 1963, Braginskiœ [9] noted that plasma
diffusion due to ion–ion friction may play a significant
role only in the relaxation stage, in which the inertial
term in Eq. (24) is important; in the subsequent qua-
sisteady stage, the relative ion velocity w becomes low.
Presumably, it is for this reason that, in review [20],
devoted to tokamaks with multispecies plasmas, Hirsh-
man and Sigmar did not analyze the related effect of
ion–ion collisions on the transverse conductivity.

It should be kept in mind that, in solid-state physics,
the effect of the increase in resistivity is analogous to
magnetoresistance, whose description can be found,
e.g., in [21]. In this context, of particular interest are
kinetic simulations carried out by Surzhikov [22],
which showed that the presence of two ion species in a
shock wave that expels the magnetic field from the
region occupied by an expanding plasma leads to an
additional damping of this wave.

ji σ0Eeff,=

Eeff
µ2

ξ1ξ2
---------- 1

enc
--------- j B×[ ] , ji µenw,–= =
To conclude this section, note that the effect under
consideration may play an important role in the dynam-
ics of an imploding liner. Thus, in the paper by Deeney
et al. [23], which was presented at the 13th Interna-
tional Conference on High-Power Particle Beams
(Nagaoka, Japan), it was experimentally shown that a
multiwire liner in which some of the metal wires are
coated with a different metal can be contracted to more
compact dimensions. Presumably, this can be explained
by the high ion–ion dissipation, which partially sup-
presses the liner instability. For α ~ β, Eq. (37) gives
σ ~ enc/Bϕ; consequently, for n ~ 1019 cm–3 and Bϕ ~
106 G, the conductivity is on the order of σ ~ 1014 s–1.
Such conductivity should act to help stabilize the liner
against perturbations with characteristic spatial and
temporal scales of r ~ 1 mm and τ ~ 10–8 s, respectively.

10. The above set of equations for a plasma with two
ion species can also be applied to describe a dusty
plasma [18, 19] in which dust grains with rather large
dimensions (<1 µm) acquire a fairly large electric
charge owing to collisions with electrons. In describing
this plasma, the total mass of the electron and ion
plasma components can be neglected in comparison
with the mass of the grains and the charge of the grain
can be assumed to be relatively small. Consequently,
using subscript 2 to denote the quantities that refer to
the dust grains, we can work under the condition
Z2/M2 ! Z1/M1. Of course, the above method fails to
describe electron–ion collisions; however, the equa-
tions derived provide a qualitative description. Note
also that, in a real dusty plasma, the dust grains differ in
the charge number Z2, which can, in addition, change
with time. With allowance for the above considerations
and under the assumption β @ α, we can neglect dissi-
pation and write the dynamic equation for the magnetic
field as

(52)

On the left-hand side of this equation, we also omitted
the term that describes the motion of dust grains. As
usual, we assume that the electron density n and the
quantities µ, ξ1, and ξ2 depend only on r.

In such dusty plasma, the convective propagation of
a magnetic field is described by the equation [24]
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in which case the convective velocity in the plasma has
the form

(54)

Since the mass of the plasma is mostly concentrated in
the dust component, the definition of µ yields µ ≡
η1ξ2  – η2ξ1 . –η2ξ1 . –ξ1. As a result, we have 1 +
µ2/ξ1ξ2 . 1 + ξ1/ξ2 = 1/ξ2, so that the velocity of the
convective propagation of the magnetic field is deter-
mined by the dust density gradient:

(55)

If we take into account a possible fractal structure of
the spatial distribution of the dust density, we find that
the convective velocity can increase substantially
because the density profile N2 is highly irregular. For
dust grains with a characteristic dimension l, separated

by the distance d ! l, the relationship ∂ /∂r ~
1/(N2d) gives rise to the additional factor l/d @ 1 in the
expression for the convective velocity [25].

For a dusty plasma, Eq. (40), which now describes
the motion of light ion species against the background
of heavy grains, takes the form

(56)

On the left-hand side of this equation, we neglected the
low macroscopic velocity V, which is governed by the
inertia of heavy grains.

In the case of high dissipation (α2 @ β2), we arrive
at the quasi-diffusion equation for N1. When the dissi-
pation is negligible (β2 @ α2), we deal with ion flows
around immobile dust grains, in accordance with the
equation

(57)

where

11. The set of equations describing a plasma with
two ion species in a magnetic field such that B2 @ 8πp
has been analyzed with allowance for friction between
ions of different species. In this limiting case, the
hydrodynamic equations (7)–(9) are actually one-parti-
cle equations accounting for friction between the parti-
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cles. The plasma thermal pressure can be neglected
because of the intense emission from the plasma and
high ion heat conduction to the wall. Of course, the
effects related to ion–ion collisions also remain in the
presence of thermal effects. It is shown that there exists
a certain range of values of the ratio of the plasma den-
sity to the magnetic field, νii/ωBi < (MZ2/m)1/4, within
which ion–ion dissipation dominates over the conven-
tional electron–ion dissipation, in which case the low-
est value of conductivity is about σ ~ enc/|Bϕ|. Such a
low conductivity may partially suppress the Rayleigh–
Taylor instability of an imploding liner. Also, the effect
of the decrease in conductivity may play an important
role in the physics of a plasma focus: a decrease of two
orders of magnitude in the conductivity (as is usually
assumed in simulations) may be caused not only by
plasma turbulence but also by the effects of ion–ion dis-
sipation. Another important property of the ion–ion dis-
sipation is that it always occurs within the front of a
nonlinear wave.

The equations obtained can be used to describe a
current-carrying dusty plasma in which the magnetic
field dynamics plays an important role. The main dissi-
pative effect in a dusty plasma with a magnetic field is
related to collisions of ions with individual grains
(along with time variations in the dust grain charge).
The new equations (37) and (40) provide a qualitative
description of the magnetic-field and particle dynamics
in a dusty plasma.
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Abstract—The principles of plasma relativistic microwave electronics based on the stimulated Cherenkov
emission of electromagnetic waves during the interaction of a relativistic electron beam with a plasma are for-
mulated. A theory of relativistic Cherenkov plasma microwave oscillators and amplifiers is developed, and
model experimental devices are elaborated and investigated. The emission mechanisms are studied theoreti-
cally. The efficiencies and frequency spectra of relativistic Cherenkov plasma microwave oscillators and ampli-
fiers are calculated. The theoretical predictions are confirmed by the experimental data: the power of the devices
attains 500 MW, the microwave frequency can be continuously tuned over a wide band with an upper-to-lower
boundary frequency ratio of 7 (from 4 to 28 GHz), and the emission frequency bandwidth can be varied from
several percent to 100 percent. These microwave sources have no analogs in vacuum microwave electronics.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

1.1. The Subject of Plasma Relativistic
Microwave Electronics

Microwave electronics is one of the main branches
of physical electronics—an extensive (fundamental and
applied) science. The subjects of investigation of
microwave electronics are oscillations and waves in the
frequency band 1–100 GHz, how these may be excited
by electron beams, and many practical applications.

Since a plasma consists of charged particles (elec-
trons and ions), it is subject to numerous natural oscil-
lations in the microwave frequency range. For this rea-
son, a device filled with plasma may serve as a source
of microwave radiation.

There are two types of plasma-filled microwave
sources. Devices of the first type are conventional vac-
uum microwave sources filled with plasma. Filling a
vacuum source with plasma makes it possible to
improve some of its parameters (to increase the micro-
wave power, to vary the frequency, etc.). Such sources
are called hybrid microwave devices. Since the mecha-
nism for microwave excitation in hybrid devices is
essentially the same as that in vacuum analogs (back-
ward-wave tubes, gyrotrons, etc.), they can also operate
in plasma-free modes. That is why such hybrid devices
are not a significant concern for plasma microwave
electronics.

Plasma-filled devices of the second type are based
on the resonant interaction of an electron beam with a
plasma. This interaction leads to the excitation of
eigenmodes of plasma-filled systems (plasma
waveguides or plasma resonators), which cannot be
excited in the absence of plasma. For this reason, such
sources are called plasma microwave devices. Plasma
microwave electronics is primarily concerned with the
mechanisms for microwave excitation (emission) by an
1063-780X/01/2708- $21.00 © 20669
electron beam in plasma systems and the creation of
related plasma microwave devices. Accordingly,
plasma microwave devices and their physical justifica-
tion are the focus of our investigation.

The considerable progress in plasma microwave
electronics is associated with the development of meth-
ods for generating relativistic electron beams (REBs)
(i.e., beams in which the electron velocity is close to the
speed of light). In a plasma, REBs excite electromag-
netic waves with relativistic phase velocities. Plasma
microwave electronics dealing with REBs are called
relativistic.

Below, we will review the results obtained in studies
on plasma relativistic microwave electronics. We also
formulate the general principles underlying this new
area of modern physics, survey the relevant theoretical
and experimental advances, and discuss the prospects
of plasma relativistic microwave devices as well as
their possible practical applications.

1.2. Historical Review

The beam–plasma instability was discovered as
early as 1949 by A.I. Akhiezer and Ya.B. Fainberg [1]
and independently by D. Bohm and E. Gross [2]. Fur-
ther research on this instability gave birth to plasma
microwave electronics. Physically, the beam–plasma
instability consists in an anomalously strong interaction
of a fast electron beam with a dense plasma. The theory
predicted that a monoenergetic electron beam should be
fairly efficiently decelerated by a plasma, thereby giv-
ing rise to plasma oscillations. In a spatially unbounded
beam–plasma system, the characteristic time scale on
which an electron beam is decelerated has the form

(1.2.1)τ 1/δ, δ ωp nb/2np( )1/3
.= =
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Here, nb and np are the electron densities of the beam
and plasma, respectively (it is assumed that nb ! np); ωp

is the Langmuir frequency of the plasma electrons; and
δ is the temporal growth rate of the beam instability.
The characteristic distance l over which the beam elec-
trons are decelerated is approximately equal to l ≈ uτ =
u/δ, where u is the electron beam velocity.

The growth rate δ and, accordingly, the deceleration
distance l are achieved when the frequency ω of the
excited plasma waves satisfies the condition

(1.2.2)

i.e., when the phase velocity of the plasma wave is close
to the beam velocity. Here, k is the projection of the
wave vector of the plasma wave onto the propagation
direction of the beam. Condition (1.2.2) made it possi-
ble to understand the mechanism for the anomalously
strong interaction of a dense electron beam with a
plasma as being due to the stimulated emission of
plasma waves by the beam electrons (stimulated Cher-
enkov effect). As a result, the beam kinetic energy is
converted into the energy of plasma waves. The conver-
sion efficiency Q, which can also be regarded as the
emission efficiency of plasma waves by an electron
beam, is estimated to be

(1.2.3)

where E2/8π is the field energy in a plasma wave and
mu2/2 is the kinetic energy of a beam electron. This esti-
mate implies that, for nb ≈ 0.01np and u ≈ 1010 cm/s
(which corresponds to a beam electron energy of about
30 keV), the fraction of the beam energy that can be
converted into the energy of plasma waves amounts to
20%. If, in addition, np ≈ 1012 cm–3 and nb ≈ 1010 cm–3

(which corresponds to the beam current density jb ≈
15 A/cm2), then the electron beam loses 75 kW/cm2 of
its initial energy; this energy loss occurs during a time
interval of 10–10 s, i.e., over a distance of about l ~ 1 cm.

The first experiments in this field, which were car-
ried out in 1960 in the Soviet Union (at the Kharkov
Institute of Physics and Technology [3] and the Vekua
Institute of Physics and Technology [4]) and abroad
confirmed that the efficiency of a collective interaction
of the electron beam and the plasma is fairly high. On
the other hand, electromagnetic radiation emitted from
the plasma turned out to be insignificant: the fraction of
the beam energy lost in the form of microwaves was
smaller than 1%.

An investigation of the general properties of the
beam–plasma instability was followed by research on
the possibility of creating microwave emitters based on
this instability, thereby marking the beginning of
plasma nonrelativistic microwave electronics. Signifi-
cant contributions to this scientific direction were made
by the physicists of the Institute of Radio Engineering
and Electronics of the Russian Academy of Sciences,

ω ωp ku,≈ ≈

Q
E

2

8π
------ 

  / nb
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2

2
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  nb

2np

-------- 
 

1/3

,≈=
who published the first review [5] on plasma nonrela-
tivistic microwave electronics. This review, as well as
review [6], demonstrated that it is possible to excite dif-
ferent modes of the plasma waveguide by an electron
beam and thus create the relevant Cherenkov plasma
microwave oscillators and amplifiers.

A serious difficulty in creating effective plasma
microwave emitters is associated with the development
of a system for transforming a slow plasma wave into a
fast mode of a vacuum waveguide. The most difficult
point in this way is that of making the device broad-
band. That is why it was impossible to make use of an
important advantage of plasma microwave devices over
vacuum ones—the possibility of tuning the radiation
frequency over a broad band by varying the plasma
density. As a result, plasma microwave devices driven
by nonrelativistic electron beams have not been imple-
mented in practice.

The situation in plasma microwave electronics had
changed drastically by the early 1970s, when, first,
encouraging theoretical results were obtained and,
then, scientists learned to produce high-current REBs
with current densities of 1–10 kA/cm2 and electron
energies of about 1 MeV. As the relativistic factor γ of
the electron beam increases, the growth rate δ of the
beam instability decreases [7, 8],

(1.2.4)

and, accordingly, the relaxation length l ≈ u/δ of the
beam in the plasma increases, which seems to be evi-
dence of a weakening of the beam–plasma interaction.
However, in actuality, this is not the case: it is precisely
because of the longer beam relaxation length that the
efficiency of the beam energy transfer to plasma waves
increases up to the value [9]

(1.2.5)

Notably, for large values of γ, the approximate formula
(1.2.5) implies that the efficiency can be on the order of
unity. However, this formula is valid only when the effi-
ciency is low. Actually, numerical experiments [10]
show that the maximum conversion efficiency is usu-
ally at most 20–30%.

We should also mention two theoretical results that
had an important impact on the development of plasma
relativistic microwave electronics. The first is the for-
mula for the limiting current at which an electron beam
can be transported through a vacuum waveguide. In
particular, in a cylindrical metal vacuum (plasma-free)
waveguide, the current of a thin-walled annular beam
cannot exceed the limit known as the Bogdankevich–
Rukhadze current [11]

(1.2.6)
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where R is the waveguide radius, rb is the mean beam
radius, and ∆b is the beam wall thickness. The current
(1.2.6) stems from the deceleration of the beam elec-
trons by the field of their own space charge and is thus
the limiting beam current for vacuum microwave
devices. However, even if the electron beam current is
neutralized either by the ions or by the plasma, there is
another limit, which is known as the Pierce current and
is governed by the condition for the beam transport to
be stable [12]:

(1.2.7)

Consequently, owing to the complete (or partial) neu-
tralization of the beam charge, plasma-filled systems
can operate with beam currents that are not attainable in
vacuum microwave devices.

The second important theoretical result is the condi-
tion for exciting the eigenmodes of a plasma waveguide
by an electron beam. The eigenmodes can be excited
only in a sufficiently dense plasma, such that the
plasma frequency ωp is higher than a certain threshold
frequency ωthr [13]:

(1.2.8)

where the transverse wavenumber k⊥ p of the plasma
wave is determined by the plasma density profile and
waveguide radius (see below) [10].

The currents J0 and JP are the characteristic limiting
currents of electron beams in vacuum and plasma rela-
tivistic microwave sources, respectively. Condition
(1.2.8) determines the threshold plasma density above
which the plasma wave can be excited by an REB.

By 1976, the basic elements of plasma relativistic
microwave electronics were comprehended in general
principles [14–16]. Since that time, a long-term close
collaboration between experimental and theoretical
groups began, which led to the development a new
branch of microwave electronics—plasma relativistic
microwave electronics. Our combined efforts made it
possible to devise an optimum scheme of plasma rela-
tivistic microwave sources—an annular REB and an
annular plasma column in a metal waveguide with a
strong longitudinal external magnetic field. We con-
structed linear and nonlinear theories of plasma relativ-
istic microwave oscillators and amplifiers, investigated
the emission mechanisms in these devices, and calcu-
lated the emission efficiency and emission spectra.

Our first successful experiment with a relativistic
Cherenkov plasma maser (RCPM) was carried out in
1982 at the Institute of General Physics of the Russian
Academy of Sciences [17, 18]. Then, the theory devel-
oped was used to design and investigate high-power
Cherenkov plasma microwave oscillators and amplifi-
ers tunable over a broad frequency band. We also elab-
orated new original diagnostics for measuring and con-
trolling the parameters of high-current pulsed relativis-
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tic electron beams and high-power microwave
radiation.

2. THEORETICAL PLASMA RELATIVISTIC 
MICROWAVE ELECTRONICS

2.1. Linear Theory of the Plasma Relativistic 
Microwave Amplifier

The simplest theoretical model of a plasma micro-
wave amplifier assumes a straight REB propagating
along the axis of a plasma-filled metal waveguide of
radius R in a strong longitudinal external magnetic
field. The beam is injected into the waveguide through
the plane z = 0. A collector is placed in the plane z = L
and is coupled to the emitter (the outlet horn). The
beam and plasma are homogeneous along the
waveguide axis, cold, and completely charge- and cur-
rent-neutralized. In the waveguide cross section, the
plasma and beam are annular, with the mean radii rb < R
and rp < R and wall thicknesses ∆b and ∆p such that
∆b, p ! rb, p.

In the linear approximation, the spectra of the natu-
ral oscillations in this waveguide system are deter-
mined from the following dispersion relation [19, 20],
which is derived from Maxwell’s equations, the hydro-
dynamic equation for a cold plasma, and the Vlasov
equation for the beam electrons:

(2.1.1)

Here,

(2.1.2)

are the dispersion functions, whose zeros determine the
wave spectra in the plasma and electron beam, provided
that they do not interact with one another [10]; param-
eter θ characterizes the degree to which the beam and

plasma waves are coupled; and quantities  and 
are the squared transverse wavenumbers of the beam
and plasma waves. The rest of the notation in formulas
(2.1.1) and (2.1.2) is as follows: ω is the frequency, kz is
the longitudinal wavenumber, ωp and ωb are the Lang-
muir frequencies of the plasma and beam electrons,

χ2 =  – ω2/c2, u is the unperturbed velocity of the
beam electrons, and γ = (1 – u2/c2)–1/2 is the relativistic
factor.

The coupling parameter θ possesses an important
property: θ = 1 for rb = rp and θ < 0 in other cases. Thus,
for azimuthally symmetric low-frequency perturba-
tions such that ωR/uγ ! 1, parameter θ is equal to

(2.1.3)
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As the frequency ω increases, the coupling parame-
ter θ decreases substantially in comparison with that in
formula (2.1.3).

The values of ω and kz that are close to those at
which the dispersion functions (2.1.2) vanish simulta-
neously correspond to a strong (single-particle or col-
lective) Cherenkov resonance between the beam and
plasma. Cherenkov resonance can occur only in the fre-
quency range ω < kzc, in which the beam and plasma
waves are surface waves. In particular, in the most
important long-wavelength limit (kz  0), the dis-
persion relation for the surface plasma wave has the
form [10]

(2.1.4)

where the squared transverse wavenumber of the
plasma wave is equal to

(2.1.5)

with l being the azimuthal wavenumber. An azimuth-
ally symmetric wave that obeys dispersion relation
(2.1.4) with l = 0 is also called a cable plasma wave [10,
21]. This wave has the highest phase velocity and thus
plays an especially important role in plasma relativistic
microwave electronics. In the classification accepted in
the waveguide theory, this wave is designated as E01. As
the wavenumber increases (kzR > 1), the wave phase
velocity (2.1.4) decreases abruptly, so that the wave
acquires the nature of a potential wave and becomes
trapped in the plasma.

In the long-wavelength limit, the squared transverse

wavenumber  is also described by formula (2.1.5)
with subscript b in place of p, in which case the spectra
of both fast and slow beam waves can easily be found
from the dispersion functions (2.1.2) (see [10, 19, 20]
for details). A slow beam wave has negative energy, so
that the beam in the plasma is unstable. The frequency
at which the phase velocity of a surface plasma wave
with frequency (2.1.4) coincides with the beam velocity
is called the frequency of the single-particle Cherenkov
resonance (the wave–particle resonance). The fre-
quency at which the phase velocity of the plasma wave
is equal to the phase velocity of the slow beam wave is
referred to as the frequency of the collective Cherenkov
resonance (the wave–wave resonance). One can readily
show that the frequency of the single-particle resonance
decreases with ωp and vanishes at [19, 20]

. (2.1.6)
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If the plasma frequency is below the threshold fre-
quency (2.1.6), then the single-particle Cherenkov res-
onance is impossible. The threshold frequency (2.1.6)
is the lowest for an azimuthally symmetric cable
plasma wave. The absence of resonance does not imply
that there is no stimulated Cherenkov emission and,
accordingly, that the generated microwaves are not
amplified. Below, we will show that, for electron beams
with sufficiently high densities, the threshold plasma
frequency ωp is significantly below the threshold
(2.1.6) [19, 20].

In a beam–plasma system, microwaves can be
amplified in different frequency bands, depending on
the system parameters (primarily, on ωp and |rb – rp |/R).
Thus, if the coupling coefficient is close to unity (θ . 1),
then the microwaves are amplified over a broad fre-
quency band—from nearly zero to a frequency higher
than the wave–wave resonance frequency. In the litera-
ture, such broadband plasma microwave sources are
referred to as Thomson amplifiers [19, 20, 24]. If the
coupling coefficient is much smaller than unity (θ ! 1),
then microwaves are amplified in a narrow frequency
band. In the literature, such narrowband plasma micro-
wave sources are referred to as Raman amplifiers
[19, 20, 22].

The frequency characteristics that are most impor-
tant for the beam–plasma interaction are shown in
Fig. 1 as functions of the plasma frequency ωp. Curves 1
and 2 are, respectively, the upper and lower boundary
frequencies of the amplification band: the amplification
is possible only at frequencies lying between curves 1
and 2. Curve 3 shows the frequencies at which the
amplification coefficient is maximum. Curves 4 and 5
reflect the collective and single-particle resonance fre-
quencies, respectively. All of the curves were computed
for an experimental waveguide with the parameters R =
1.8 cm, rp = 1.1 cm, rb = 0.6 cm, ∆b = ∆p = 0.1 cm,
Ib = 2 kA, and γ = 2 (u = 2.6 × 1010 cm/s).

As can be seen in Fig. 1, microwaves can be ampli-
fied only when the plasma frequency ωp is above a cer-
tain threshold, which is marked by the vertical line A
and, because of the high beam current, is lower than the
threshold (2.1.6) by a factor of approximately two. For
higher plasma frequencies (i.e., those lying between the
vertical lines A and D), the lower boundary frequency
of the amplification band is equal to zero (the zone of
Thomson amplification). For even higher plasma
frequencies (i.e., those lying to the right of the vertical
line D), the lower boundary frequency of the amplifica-
tion band becomes nonzero and the amplification band
itself narrows as ωp increases (the zone of Raman
amplification). In turn, the zones of Thomson and
Raman amplification regimes can be divided into sub-
zones (bounded by the vertical lines B, C, and E). From
Fig. 1, we can also see that, as ωp increases, the ampli-
fication band becomes significantly narrower and the
frequency at which the amplification is most efficient
(curve 3) increases and eventually becomes equal to the
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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collective resonance frequency (curve 4). Conse-
quently, the higher the plasma frequency and the beam
current, the clearer the collective nature of the beam–
plasma interaction, because coefficient θ decreases as ω
increases. In contrast, as the plasma frequency
increases, the single-particle resonance frequency
(curve 5) progressively deviates from the frequency at
which the amplification coefficient is maximum (curve 3).
Moreover, Fig. 1 demonstrates that amplification at the
single-particle resonance frequency ceases above a cer-
tain plasma frequency [19].

In Fig. 2, curve 1 shows the maximum amplification
coefficient (the quantity δk = |Im(kz)|) calculated as a
function of ωp along curve 3 in Fig. 1 for microwave
sources with the same parameters as in Fig. 1. We can
see that there is a certain optimum plasma frequency at
which the amplification coefficient has an absolute
maximum.

Figure 3 illustrates the amplification coefficients for
a system with the same parameters as in the previous
two figures but calculated as functions of the frequency
ω for different plasma frequencies ωp: 15 × 1010, 25 ×
1010, 35 × 1010, and 45 × 1010 rad/s. In this figure, curves 1
and 2 are very similar to the ω-profiles of the amplifica-
tion coefficients for a broadband Thomson amplifier,
whereas curves 3 and 4 are characteristic of the Raman
amplification regime.

Figures 1 and 3 and curve 1 in Fig. 2 refer to an azi-
muthally symmetric cable plasma mode E01. The other
waves described by dispersion relation (2.1.4) obey
analogous dependences. The mode with the phase
velocity closest to the phase velocity of the E01 mode is
the first azimuthally asymmetric E11 (l = 1) mode,
whose amplification coefficient is represented by curve 2
in Fig. 2. For high plasma densities, the amplification
coefficients of these two modes are approximately the
same. Consequently, in terms of the transverse wave-
number  defined by formula (2.1.5), the plasma
microwave amplifier is not, generally speaking, a sin-
gle-mode amplifier. The single-mode regime takes
place only in a comparatively narrow range of plasma
frequencies (as is shown in Fig. 2). The dependences
displayed in Figs. 1–3 make it possible to determine (in
the linear approximation) the frequency spectra of the
microwave radiation and the frequency bandwidths for
microwave amplification in a plasma relativistic micro-
wave amplifier.

2.2. Nonlinear Theory of the Plasma Relativistic 
Microwave Amplifier

The general nonlinear equations for the electromag-
netic field of an E-wave and the currents induced in the
plasma and beam in a plasma relativistic microwave

k ⊥ p
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Fig. 1. The most important frequencies of a plasma ampli-
fier vs. the plasma frequency: ωp: (1) upper boundary of the
amplification band, (2) lower boundary of the amplification
band, (3) frequency corresponding to the maximum ampli-
fication coefficient, (4) collective-resonance frequency, and
(5) one-particle resonance frequency. The curves are calcu-
lated for a system with the following parameters: R =
1.8 cm, rp = 1.1 cm, rb = 0.6 cm, ∆b = ∆p = 0.1 cm, Ib = 2 kA,
and γ = 2.

Fig. 2. Maximum amplification coefficient vs. the plasma
frequency: (1) azimuthally symmetric E01 mode and (2) azi-
muthally asymmetric E11 mode.

Fig. 3. Frequency dependences of the amplification coeffi-
cient for different plasma frequencies: ωp = (1) 15 × 1010,

(2) 25 × 1010, (3) 35 × 1010, and (4) 45 × 1010 rad/s.
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amplifier have the form [19, 20]

(2.2.1)

where Ez is the longitudinal electric field, ψ is the polar-
ization potential, and nb is the unperturbed density of
the beam electrons. In Eqs. (2.2.1), current jp induced in
the plasma is described in the linear approximation (the
effects of plasma nonlinearity and the possibility of
neglecting them were considered in [23]), and the beam
current jb is determined using a model based on the cal-
culation of the characteristics of the Vlasov equation
for the beam electrons and the representation of the dis-
tribution function of the beam electrons by an integral
over the initial conditions [10, 24]. In this case, t(z, t0)
and v (z, t0) are solutions to the characteristic set of
equations for the Vlasov equation,

(2.2.2)

supplemented with the initial (injection) conditions
t(z = 0) = t0 and v (z = 0) = u. Equations (2.2.1) and
(2.2.2) yield dispersion relation (2.1.1) and, hence, the
remaining results of linear theory.

The general equations (2.2.1) and (2.2.2) can be
reduced to a form that is convenient for solving the
problem of microwave amplification with allowance for
the following circumstances: (a) in a beam–plasma
waveguide, the transverse structure is not known a pri-
ori and is established self-consistently with increasing
distance from the injection plane along the z-axis;
(b) the frequency spectrum of an amplified signal may
not be specified a priori, so that it is necessary to con-
sider the simultaneous amplification of waves with dif-
ferent frequencies, which interact with each other in the
nonlinear stage; and (c) the longitudinal wavenumbers
of the waves that are efficiently amplified by the beam
are close to the wave frequency divided by the unper-
turbed beam velocity. These considerations allow the
polarization field potential ψ to be represented as
[19, 20]
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Here, Ω is a certain small frequency value, which
serves to “discretize” the frequency spectrum of the
amplified signal and is equal in order of magnitude to
Ω = 2π/T, where T is the characteristic time scale on
which the current of an electron beam changes (the
beam pulse duration). With expression (2.2.3),
Eqs. (2.2.1) and (2.2.2) reduce to the following nonlin-
ear equations for a plasma relativistic microwave
amplifier [19, 20]:

(2.2.4)

Here,

(2.2.5)

and the quantities (s), (s), and θ(s) coincide
with their linear analogs correct to the replacement
ω  sΩ . The dimensionless parameters and variables
in Eqs. (2.2.4) are defined as

(2.2.6)

The amplification efficiency is defined as a relative
fraction of the kinetic energy flux of the beam electrons
that is transferred into the microwave energy flux:

(2.2.7)

For a spatially unbounded beam–plasma system, the
amplification efficiency (2.2.7) reduces to the effi-
ciency described by formula (1.2.5) in linear theory.

Equations (2.2.4) should be supplemented with the
boundary conditions. In the amplification problem,
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they are specified in the injection plane z = 0 [19, 20]:

(2.2.8)

Here, js0 are the amplitudes of the current harmonics of
the plasma oscillations at the entrance to an amplifier,
y0 ∈  [0, 2π] refers to an unperturbed beam, and the sec-
ond term on the right-hand side of the third condition
describes the electron density modulation of a beam.
Generally, nonlinear theory deals with problems in
which there are no plasma oscillations at the entrance to
an amplifier (i.e., all of the amplitudes of the plasma-
current harmonics js0 are equal to zero), whereas the
density of the injected beam is assumed to be weakly
modulated: |bs | = 0.01–0.05.

Below, we will present the maximum amplification
efficiency, the length corresponding to the maximum
output power (the optimum length), and the spectrum
of the amplified signal, all obtained by numerically
solving the nonlinear equations for a plasma amplifier
with the same parameters as in Figs. 1–3. In order to
find the maximum amplification efficiency and opti-
mum length, it is sufficient to consider the amplification
of a monochromatic signal, i.e., to use the boundary
conditions (2.2.9) with only one nonzero term b1 ≠ 0,
setting the remaining terms, b2, 3, … = 0, to zero. On the
other hand, determining the spectrum requires taking
into account many nonzero terms bs ≠ 0, which corre-
sponds to the amplification of a large number of waves.

Figure 4 shows the maximum amplification effi-
ciency of a monochromatic signal as a function of ωp ,
and Fig. 5 displays the optimum length L on which the
maximum efficiency is achieved. These results were
obtained for frequency Ω [see formula (2.2.3)] corre-
sponding to curve 3 in Fig. 1 and for b1 = 0.01.

As can be seen from Figs. 4 and 5, the operation effi-
ciency of the amplifier is fairly high over the entire
range of the plasma frequencies under consideration
[25] and the length of the amplifier is not too large and
is essentially independent of ωp over a fairly broad fre-
quency range.

The operation efficiency is especially high near the
threshold for amplification [19, 20, 25], in which case
the length of the amplifier sharply increases (in Figs. 4
and 5, the threshold plasma frequency ωp = 10.1 ×
1010 rad/s is shown by the vertical line). Of course, the
optimum length depends on the depth b1 of the initial
beam modulation, but this dependence is weak and, for
a beam with a different initial modulation depth , it
can be recalculated from the formula L' – L =
δk−1ln | /b1|, where δk is represented in Fig. 2.

For several plasma frequencies, Fig. 6 illustrates the
spectral densities of microwave radiation at the exit

js ξ 0= js0, η ξ 0= 0,= =
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1
2
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s 1=

∑+=
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from an amplifier with an optimum length correspond-
ing to the maximum output power. The spectral density
of the input signal was assumed to be uniform over the
entire frequency range under consideration. Curves 1–4
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Fig. 4. Amplification efficiency Q vs. the plasma fre-
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Fig. 6. Spectral density of radiation at the amplifier output
for different plasma frequencies: ωp = (1) 15 × 1010,

(2) 25 × 1010, (3) 35 × 1010, and (4) 45 × 1010 rad/s.
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were computed for the same parameters for which the
relevant curves δk(ω) in Fig. 3 were obtained from lin-
ear theory. We can see that, because of the nonlinear
competition between different microwaves, the emis-
sion spectra are somewhat narrower than those pre-
dicted by linear theory. On the other hand, the maxi-
mum spectral density corresponds to the maximum in
the linear amplification coefficient δk(ω). The relative
widths of the emission spectra and their central fre-
quencies depend strongly on the plasma frequency.

2.3. Linear Theory of the RCPM

The theory behind a plasma relativistic microwave
amplifier assumes that electromagnetic radiation
amplified by the beam escapes freely from the amplifier
through the boundary z = L. However, in reality, the
plasma wave amplified by the beam is partially
reflected from the exit boundary z = L and returns to the
entrance plane z = 0. This effect may result in the self-
excitation of the amplifier (i.e., in the start-up of micro-
wave generation). An RCPM is usually assumed to be
equipped with a metal grid that is placed at the entrance
boundary z = 0, is transparent to the beam electrons,
and is opaque to radiation. The exit boundary z = L of
the plasma waveguide is coupled to the emitter (the out-
let horn) in the form of a coaxial vacuum waveguide
with an outer radius R equal to that of the plasma
waveguide and with an inner radius r0 somewhat larger
than the radius rp of the plasma tube. When passing
through the boundary z = L, a cable plasma wave con-
verts into a cable vacuum wave, in which case the phase
velocity of the microwave field and its structure change.
As a result, the plasma wave incident on the emitting
horn from the left is partially reflected.

Special numerical methods [26] developed to deter-
mine the reflection coefficients of the boundary z = L for
a plasma wave in terms of the power (κ2) and amplitude
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Fig. 7. Frequency dependences of the reflection coefficient
for different plasma frequencies: ωp = (1) 15 × 1010,

(2) 25 × 1010, (3) 35 × 1010, and (4) 45 × 1010 rad/s.
(κ) are based either on the direct solution of the steady-
state diffraction problem or on the determination of the
time during which the microwave field escapes from a
plasma resonator. The reflection coefficients can also be
obtained from approximate analytic formulas [27].
Since all of these approaches yield nearly the same
results, the RCPM theory is constructed under the
assumption that the reflection coefficient in terms of the
field amplitude, κ, is known. Figure 7 illustrates the fre-
quency dependence of the reflection coefficient in
terms of the amplitude, calculated for rp = 1.1 cm and
r0 = 1.15 cm and for the same four values of the plasma
frequency as in Figs. 3 and 6.

The vertical lines in Fig. 7 refer to the frequencies at
which the amplification coefficients (Fig. 3) and the
spectral densities of microwave radiation at the exit
from an amplifier (Fig. 6) reach their maxima. The
reflection coefficients are seen to be fairly large,
although, in the cases at hand, the reflection coefficient
in terms of the power, κ2, does not exceed 0.5. The
peaks and breaks in the profiles in Fig. 7 occur at fre-
quencies close to any of the cutoff frequencies of the
system.

The basic equations of the linear theory of the RCPM
are the linearized equations (2.2.1), whose general solu-
tion in the plasma region of the system (0 < z < L) has
the form

(2.3.1)

where kzj = kzj(ω) are the roots of dispersion relation
(2.1.1). Since this dispersion relation is fourth-order in
kz, solution (2.3.1) contains four terms, in which con-
stants Aj are determined with allowance for the above
properties of the boundaries z = 0 and z = L. This
approach results in the following equation for the com-
plex frequencies of an RCPM [10, 27]:

(2.3.2)

where αj4 are known theoretical wave conversion coef-
ficients at the boundary z = 0 [10]. Hence, if the depen-
dence κ(ω) is known, then an RCPM can be calculated
in the linear approximation by solving a complicated
but purely algebraic problem (2.3.2).

The main result of linear theory is that the expres-
sion for the working frequency of an RCPM (i.e., a fre-
quency close to the collective resonance frequency)
contains an imaginary correction introduced by the
energy transfer from the beam to the resonator and the
escape of microwave energy through the horn [10, 27,
28]:

(2.3.3)
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where ω is the resonant frequency, the amplification
coefficient δk is determined from Fig. 2, and q is a con-
stant whose value lies between 2 and 3. Formula
(2.3.3), which is a simplified version of a far more gen-
eral expression [10, 28], is valid if ωL/u @ 1 and the
group velocity of the plasma wave is close to the beam
velocity u.

Formula (2.3.3) gives the self-excitation condition
for a beam–plasma resonator [19, 20, 28]:

(2.3.4)

which determines the parameters for the onset of
microwave generation (usually, these are the starting
beam current and starting resonator length). If the beam
current and/or resonator length exceed their starting
values, the amplification regime goes over to the gener-
ation regime. From Figs. 2 and 7, one can readily esti-
mate the starting length. If the plasma frequency is not
too close to the critical frequency, then the starting
length is between 10 and 20 cm and equals, on average,
15 cm. However, as can be seen from Fig. 5, the opti-
mum length of the amplifier exceeds the starting length.
Consequently, such an amplifier will operate in the gen-
eration regime. There are two ways of achieving the
amplification regime: first, to make the amplifier
shorter while simultaneously increasing the level of the
input signal (in order to keep the efficiency optimum)
and, second, to improve the coupling of the plasma res-
onator to the outlet horn.

2.4. Nonlinear Theory of the RCPM

The general nonlinear equations for an RCPM are
Eqs. (2.2.1) with the beam current jb represented by a
different expression. In the RCPM theory, the most
convenient model for determining the beam current is
that based on the macroparticle method, which yields
[27–29]

(2.4.1)

Here, λ is a characteristic length, N is the number of
macroparticles (electrons) in an unperturbed beam
region of length λ, and zj(t) and v j(t) are solutions to
the equations of motion for the jth macroparticle:

(2.4.2)

These equations are supplemented with the initial
(injection) conditions zj(t = t0j) = 0 and v j(t = t0j) = u,
where t0j is the time of injection of the jth macroparticle
into a plasma resonator. Length λ is usually determined
using the procedure for regularizing the delta-functions
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in expression (2.4.1); however, this length can also be
chosen in a different way.

Clearly, the most general approach to the RCPM
problem consists in the direct solution of nonlinear
equations (2.2.1) and (2.4.1), which should be supple-
mented with an additional boundary condition for the
polarization potential at the open end z = L of the
plasma resonator. This unsteady partial condition for
the emission of microwave radiation into the coaxial
waveguide was stated by Bobylev et al. [30] and was
applied to solving the RCPM problem in the most gen-
eral formulation (paper [30] also contains a detailed
bibliography on the subject). One of the most important
results of the general nonlinear theory of an RCPM is
that the spectrum of electromagnetic radiation excited
during a long-term quasisteady injection of an electron
beam is fairly narrow:

(2.4.3)

which agrees with the predictions made in the nonlinear
theory of a plasma microwave amplifier (Fig. 6). Of
course, in the low-frequency range, in which the spec-
tral density of the microwave radiation is described by
curve 1 in Fig. 6, inequality (2.4.3) fails to hold, so that
the only way to adequately describe the nonlinear
regime of RCPM operation is to solve the general non-
linear equations (2.2.1), (2.4.1), and (2.4.2).

Assuming that inequality (2.4.3) is satisfied, we can
construct a fairly simple and very illustrative physical
model that allows a detailed analysis of the main
parameters of an RCPM. Based on this inequality, we
consider a wave with a fixed mean frequency and a
slowly varying amplitude. In particular, we use the fol-
lowing representation of the polarization potential of
the plasma wave that accompanies (resonates with) the
beam [see formula (2.2.3)]:

(2.4.4)

where the amplitudes An vary with the z coordinate and
time much more slowly in comparison to the related
exponential functions. The equations for the slowly
varying amplitudes can be obtained using the averaging
procedure

(2.4.5)

where Φ is the quantity to be averaged and λ is the char-
acteristic length in representation (2.4.1). The expres-
sion for λ can be found from formulas (2.4.4) and
(2.4.5):

(2.4.6)

We substitute representation (2.4.4) into Eqs. (2.1.1)
and (2.4.1), apply the above averaging procedure, and
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perform fairly involved manipulations. As a result, we
arrive at the following RCPM equations [27–29]:

(2.4.7)

Here,

(2.4.8)

θ is the coupling coefficient for beam and plasma
waves; quantities αb and αp are defined by formulas
(2.2.5); and the remaining dimensionless variables have
the form

(2.4.9)

where Vg is the group velocity of a plasma wave obey-
ing dispersion relation (2.1.4).

Although Eqs. (2.4.7) and expressions (2.4.8) are
time-dependent, they correspond exactly to the above
equations for the plasma amplifier, specifically, to
Eqs. (2.2.4) and (2.2.5) with s = 1. Quantity 〈ρ〉  is the
complex amplitude of the perturbed beam charge den-
sity and corresponds to one of the quantities ρs in the
equations for the plasma amplifier. In formula (2.4.8)
for 〈ρ〉 , we introduced the function f(τ0j) (where τ0j is
the time at which the jth electron enters the plasma res-
onator) in order to model the fronts and density modu-
lation of the beam. Quantity J+ is a slowly varying
amplitude of the plasma wave accompanying the beam
and corresponds to one of the functions js in
Eqs. (2.2.4).

The RCPM theory cannot be constructed only on the
basis of Eqs. (2.4.7). We must also take into account the
counterpropagating plasma wave, which is responsible
for feedback in an RCPM. The counterpropagating
wave does not resonate with the beam and, on the aver-
age, does not even interact with it. The accompanying
and counterpropagating waves interact only at the side
boundaries of the plasma resonator, at which they trans-
form into one another. This transformation can be
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described by the following feedback boundary condi-
tion [10, 28]:

(2.4.10)

where κ is the reflection coefficient introduced above,
ξ+ = ωL/u is the dimensionless length of a plasma reso-
nator, and the minus sign indicates that the wave phase
changes as the wave is reflected from the metal grid at
the boundary z = 0. Equations (2.4.7) with boundary
condition (2.4.10) constitute a closed set of equations
of the nonlinear RCPM theory [27–29]. The results of
linear theory that were presented in Section 2.3 can nat-
urally be obtained from the above sets of equations and
the feedback condition.

Equations (2.4.7) with boundary condition (2.4.10)
can be successfully used in the theory of an RCPM
based on pulsed electron beams, provided that ωT @ 1
[see condition (2.4.3)], where T is the characteristic
time scale on which the beam current changes. Thus,
under certain conditions during the steady injection of
an electron beam, it is possible to achieve a steady-state
regime of microwave generation [31], in which case we
have ∂/∂τ = 0, so that Eqs. (2.4.7) pass over to
Eqs. (2.2.4) (in which J+ should be replaced by js) and
the feedback condition (2.4.10) becomes

(2.4.11)

Equations (2.2.4) with boundary condition (2.4.11)
constitute an eigenvalue problem whose solutions
determine the steady-state regimes of RCPM operation.
In this problem, the eigenvalue is J+(ξ = 0). Whether or
not steady-state operation regimes exist is not a priori
clear. However, if steady-state regimes do exist, they
can be determined through a simple iteration proce-
dure. First, for a very small value of J+(ξ = 0), it is nec-
essary to solve Eqs. (2.2.4) and to determine the new
value J+(ξ = ξ+). Then, it is necessary to calculate the
new value J+(ξ = 0), to solve Eqs. (2.2.4) again, and so
on. If this iteration process converges, then a possible
steady-state regime of RCPM operation will be deter-
mined. However, instead of iterating, one can directly
look for a solution to the time-dependent equations
(2.4.7) with boundary condition (2.4.10). This some-
what more involved approach makes it possible to
investigate the achievement of not only steady-state but
also quasi-steady-state generation regimes.

Let us consider some results of modeling an RCPM
operating with a steady injection of an electron beam
[31]. In the corresponding calculations, we varied the
plasma frequency and the length of the plasma resona-
tor while keeping the remaining parameters fixed: Ib =
2 kA, R = 1.8 cm, rb = 0.6 cm, ∆b = ∆p = 0.1 cm, γ = 2,
and rp = 1.1 cm (see above). Figure 8 shows the gener-
ation efficiency obtained as a function of the length L of
the plasma resonator for the same four values of the
plasma frequency as in Figs. 3, 6, and 7 and for the
reflection coefficients in Fig. 7. A sharp increase in the
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generation efficiency from zero to a fairly high level
stems from the fact that the resonator length exceeds its
starting value. As can be seen from Fig. 8, the starting
lengths are very close to those determined by condition
(2.3.4). In a longer plasma resonator, the generation
efficiency is seen to oscillate, because the point of sat-
uration of the beam instability is periodically displaced
from the exit boundary z = L toward smaller values of z
and back. In this case, the maximum values of the gen-
eration efficiency even turn out to be somewhat higher
than those in the case of the amplification of a mono-
chromatic signal. However, a comparison between
Figs. 8 and 4 confirms that the generation efficiency
decreases as the plasma frequency increases. On the
whole, different methods and models for calculating
Cherenkov plasma microwave oscillators and amplifi-
ers based on dense electron beams yield close results on
the efficiencies, spectra, critical plasma frequencies,
starting characteristics, and the dependences on the
main parameters of the beam–plasma system. These
theoretical results agree well with the data from the
experimental investigations that will be described
below.

3. EXPERIMENTAL PLASMA RELATIVISTIC 
MICROWAVE ELECTRONICS

3.1. Relativistic Cherenkov Plasma Maser

3.1.1. Scheme of the RCPM. The first experiments
on the excitation of waves in a plasma waveguide by a
high-current REB were carried out in 1982 [17, 18].
The RCPM scheme, which has changed insignificantly
since that time, is illustrated in Fig. 9. A high-voltage
pulse is applied to an accelerator cathode (1). An REB 2
is injected along the axis of a circular metal waveguide
(3) prefilled with an annular plasma (4). The beam and
the plasma are immersed in a uniform longitudinal
magnetic field B. The beam electrons have a longitudi-
nal velocity component only. The electron beam termi-
nates at the end of the central conductor (5) of the coax-
ial emitter (6). Microwaves are generated in the plasma
waveguide, propagate through the vacuum coaxial
waveguide (6) and are emitted through the outlet horn
(7). The basic ideas underlying this scheme are the fol-
lowing.

The annular plasma diameter is larger than that of
the electron beam, so that the plasma does not penetrate
into the diode of the high-current accelerator. In exper-
iments on the injection of an REB into a plasma, the
method of separating the diode from the plasma with
the help of a thin metal foil transparent to relativistic
electrons was also used. However, the use of a foil leads
to the appearance of the transverse velocity component
of the beam electrons, which substantially decreases
the efficiency of the Cherenkov interaction.

The transverse dimensions of the waveguide, beam,
and plasma, as well as the electron densities in the plasma
and beam and the magnitude of the magnetic field, are
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
constant along the device axis. This circumstance signif-
icantly simplifies the theoretical analysis. The plasma is
immersed in a strong uniform magnetic field such that
the electron cyclotron frequency Ωe is higher than the
microwave radiation frequency ω (Ωe > ω). This ensures
the absence of a resonant absorbing layer in which the
radiation frequency is equal to the hybrid frequency:

ω2 =  + .

A substantial fraction of the energy of the excited
plasma wave is concentrated inside the vacuum gap
between the plasma and the waveguide wall. In this
region, the field structure of the plasma wave is similar
to that of the TEM mode of the coaxial outlet emitter.
This fact, along with a high phase velocity close to the
speed of light guarantees the high conversion efficiency
of the energy of the slow plasma wave into microwave
energy. The coaxial outlet emitter used in the scheme
provides efficient extraction of radiation from the
RCPM in a broad frequency band.
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Fig. 8. Maximum generation efficiency Q vs. the plasma-
resonator length for different plasma frequencies: ωp =

(1) 15 × 1010, (2) 25 × 1010, (3) 35 × 1010, and (4) 45 ×
1010 rad/s.

Fig. 9. Schematic of the RCPM: (1) accelerator cathode,
(2) REB, (3) metal waveguide, (4) plasma, (5) REB collec-
tor, (6) coaxial vacuum waveguide, and (7) output horn.
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Fig. 10. Dispersion of modes of a plasma waveguide in a finite magnetic field at Ωe = 1.4ωp (on the left) and the radial profiles of
the plasma density np(r) and longitudinal component Ez(r) of the microwave electric field for points A–G (on the right). Curve HAB
corresponds to the vacuum Ö01 mode modified in the presence of a plasma; curve 0CDE corresponds to the lowest radial mode
(i = 1) of the slow azimuthally symmetric plasma wave; curve 0FG is the same for i = 2; and the dashed line 0CA corresponds to
the slow wave of the beam space charge.
The maximum value of δk in Fig. 3 at fixed values of
the electron energy and the electron beam current
depends on the coupling between the beam and the
plasma wave. In the experiment, the coupling was var-
ied by varying the gap length between the annular REB
and plasma. As the gap length decreases, both field Ez in
the electron beam (see the distribution Ez(r) at point C
in Fig. 10) and δk increase.

Figure 10 shows the calculated dispersion curves for
the waves in the plasma waveguide and the radial pro-
files of the electric field of the plasma wave for the fol-
lowing experimental conditions: the radius of the metal
waveguide is R = 1.8 cm, the radius of the annular
plasma is rp = 1 cm, the plasma thickness is ∆rp =
0.1 cm, γ = 2, Ib = 2 kA, and Ωe = 1.4ωp.

When the waveguide is filled with a plasma, the fast
wave of the vacuum waveguide Ö01 (whose phase
velocity exceeds the speed of light) is converted into the
mode presented by curve HAB. This mode of the
plasma waveguide remains fast at low frequencies, but
it becomes slow as the frequency increases: ω  Ωe

for kz  ∞. In Fig. 10 (on the right), the radial profiles
of the component Ez of the microwave electric field are
also shown. It is seen that, as kz increases, field Ez

becomes more concentrated inside the plasma (com-
pare the Ez(r) profiles for points A and B).

Now, we consider the dispersion of slow plasma
waves whose frequencies lie below ωp. Figure 10 shows
the dispersion curves of two axisymmetric plasma
modes 0CDE and 0FG. For large values of the longitu-
dinal wavenumber kz, the frequency ω of both modes
approaches ωp. The 0CDE mode is the lowest radial
mode (see the Ez(r) profiles for points C, D, and E),
whereas the 0FG mode is a higher radial mode (see the
Ez(r) profiles for points F and G). As is the case for the
faster mode represented by curve HAB, field Ez
becomes more concentrated inside the plasma as kz

increases (compare the Ez(r) profiles for points C and E
and points F and G, respectively). This means that, at
large kz values, the wave transforms into the longitudi-
nal wave of an infinite cold plasma with frequency ωp

and the group velocity close to zero.

The straight line ω = kzu in Fig. 10 corresponds to a
beam with an electron energy of 500 keV. For the finite
value of the beam electron density, the dispersion curve
of the slow beam wave takes the form of line 0CA. The
electron beam interacts with only one of two slow
plasma waves 0CDE and 0FG, namely, with the lowest
radial mode: curve 0CA (electron beam) intersects
curve 0CDE (plasma) at point C, but does not intersect
curve 0FG. Thus, it is possible to avoid the intersection
of curve 0CA with all the curves (curve 0FG and,
maybe, another) except one (curve 0CE), if the slope of
these curves near the coordinate origin is sufficiently
low. This example illustrates the principle of mode
selection for the slow plasma waves: it is possible to
suppress the excitation of all of the slow plasma waves
except one if their group velocities are sufficiently low
at kz  0.

The intersection of the curves at point A in Fig. 10
shows that there is a possibility of coupling between the
electron beam (curve 0CA) and the wave represented by
curve HAB. In this case, the selection of modes (the
plasma wave 0CDE and wave HAB) is based on another
principle, namely, on the difference between the elec-
tric field profiles Ez(r) shown on the right in Fig. 10. We
note that, near the waveguide axis (at small values of r),
the field Ez of the fast wave at point A almost vanishes.
In the same region near the axis, the slow plasma wave
(at point C) has a substantially higher amplitude of the
longitudinal electric field Ez. In the case of the Cheren-
kov interaction with the electron beam, the wave with a
higher field will predominantly be excited. Therefore,
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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1 2

Fig. 11. Pattern of the electric field in a plasma waveguide for point D in Fig. 10: (1) plasma waveguide region and (2) metal coaxial
waveguide.
the slow plasma wave will only be excited if the elec-
tron beam radius is not too large.

Figure 11 shows the pattern of the electric field at
point C; this picture qualitatively confirms the Ez(r)
profile presented in Fig. 10.

It can be seen in Fig. 11 that the field Ez is maximum
inside the plasma and decreases both toward the axis
and toward the waveguide wall. It is also easy to infer
that the field outside the plasma is high when the wave-
length satisfies the inequality 2π/kz > R – rp .

From Fig. 11, we can draw two important infer-
ences. First, the field distribution in the gap between the
plasma and the waveguide wall is similar to the field
distribution of the TEM mode of a coaxial plasma
waveguide. This favors the good conversion of this
wave into the wave of the metal coaxial waveguide,
through which microwave energy is emitted into space.
Second, the field at the wall of the metal waveguide is
relatively low (particularly, at short wavelengths) and
only has a radial component. This circumstance, along
with the presence of a strong external longitudinal mag-
netic field, decreases the probability of microwave
breakdown on the waveguide wall.

The frequency dependence of the electric field
amplification coefficient δk for different values of the
plasma density was given above in Fig. 3. It is seen that,
for a fixed value of the plasma density, the linear theory
predicts the broadband microwave excitation. An
important point is that, over a wide range of plasma
densities, the maximum value of the amplification coef-
ficient varies only slightly within a wide frequency
band (in our case, from 12 to 20 GHz). This shows
promise for creating an oscillator (or amplifier) in
which a broadband frequency tuning at a constant effi-
ciency could be achieved by varying only the plasma
density, without changing the geometry of the device.
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
3.1.2. Experimental results and comparison with
theory. Typical parameters of RCPMs are the follow-
ing. In different experiments [17, 32–35], the radius of
the metal waveguide was in the range R = 18–35 mm,
the waveguide length was L = 10–50 cm, the REB
radius was rb = 6–14 mm, and the plasma radius was
rp = 7–20 mm. The plasma waveguide was in a uniform
magnetic field B = 1.7–2.2 T. The energy of beam elec-
trons was in the range 500–700 keV; the beam current
was Ib = 2–3 kA; and the current pulse duration in dif-
ferent experiments was 30, 100, or 1000 ns.

The presence of a threshold plasma density [see for-
mula (1.2.8)] above which microwave radiation is gen-
erated confirms the Cherenkov mechanism for the
plasma wave excitation. For comparison, the experi-
mental [35] and calculated values of the threshold
plasma density are presented in the table for two plasma
resonator lengths L = 10 and 20 cm. The other parame-
ters are the following: R = 1.8 cm, rp = 1 cm, rb =
0.6 cm, ∆p = ∆b = 0.1 cm, γ = 2, and Ib = 2 kA.

Taking into account the measurement accuracy and
the inevitable difference between the experiment and
the theoretical model, we can conclude that the table
demonstrates quantitative agreement between calcula-
tions and experiment.

Figure 12 shows the RCPM spectra [35] for R =
1.8 cm, rp = 1 cm, rb = 0.6 cm, L = 20 cm, γ = 2, Ib =
2 kA, B = 2.2 T, and different values of the plasma den-
sity. It follows from the figure that the mean microwave

Threshold plasma density

Experiment Calculation

L = 10 cm 5 × 1013 cm–3 2 × 1013 cm–3

L = 20 cm 3 × 1012 cm–3 2 × 1012 cm–3
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Fig. 12. Spectra of an RCPM for several values of the plasma density: np = (a) 4 × 1012, (b) 9 × 1012, (c) 2 × 1013, (d) 4.5 × 1013,

(e) 6 × 1013, and (f) 7 × 1013 cm–3. The total energy of the microwave pulse is given in each figure.
frequency increases from 4 to 28 GHz as the plasma
density increases from 4 × 1012 to 7 × 1013 cm–3.

In Fig. 13, the experimental dependence of the mean
RCPM frequency on the plasma density is compared
with the results of calculations. Calculations were per-
formed for an amplifier at given input frequencies from
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Fig. 13. Microwave frequency f vs. the plasma density np
and the plasma frequency fp = ωp/2π. The bold line and
points correspond to the experiment, the vertical bars show
the measured spectral width (corresponding to Fig. 12). The
calculated spectrum width at a level of 0.3 of the maximum
value of the emission spectral density is shown by shading.
The calculation is performed for Ωe/2π @ fp; in the experi-
ment, we have Ωe/2π = 62 GHz.
0 to 40 GHz. We stress the fact that calculations were
carried out for an amplifier; i.e., we did not take into
account the possible effect of the reflection of the gen-
erated radiation from the ends of the plasma waveguide
(as is in the experiment) on the emission spectrum.
Nevertheless, the experimental dependence of the mean
frequency on the plasma density, for the most part,
coincides well with calculations; the discrepancy is
only observed at high plasma densities.

The experimental spectrum width is shown in
Fig. 13. However, the accuracy of measurements of the
spectrum width was rather low; it may be only asserted
that the spectrum width is no larger than the value given
in the figure and is no less than one-half of this value.
Therefore, it follows from Fig. 13 that the RCPM spec-
trum width is greater than or equal to the calculated
value of the amplifier spectrum width. The microwave
pulse duration was equal to 25 ns over the entire range
of plasma densities. Consequently, 1 J corresponds to a
power of 40 MW. Note that, as the plasma density var-
ies from 9 × 1012 to 7 × 1013 cm–3, the microwave power
varies insignificantly (from 30 to 50 MW) and the effi-
ciency varies from 3 to 5%.

According to calculations (Fig. 8), the efficiency of
a microwave oscillator of length L = 20 cm varies from
13 to 8% as the plasma density varies from 7 × 1012 to
6 × 1013 cm–3. Consequently, the degree to which the
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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calculated power is constant within this range of
plasma densities coincides well with the experiment:
the ratio between the maximum and minimum efficien-
cies is equal to 1.6. However, the experimental value of
the efficiency is nearly half as large as the calculated
one. According to Fig. 8, the maximum value of the cal-
culated efficiency is achieved at a plasma resonator
length of L = 12 cm. Qualitatively the same dependence
(i.e., the increase in the efficiency with decreasing
length L) was observed in the experiment: as the length
decreased from 20 to 10 cm, the power increased from
50 to 60 MW and the efficiency reached 6%.

The results presented in Figs. 12 and 13 were
obtained with a plasma waveguide length of L = 20 cm,
B = 2.2 T, and np = (0.4–7) × 1013 cm–3, in which case
we have Ωe/ωp = 3.5–0.82. We note that, in calcula-
tions, it was assumed that Ωe @ ωp . From Fig. 13, it can
be seen that the calculated and experimental data coin-
cide at ωp < Ωe . Note that, in the experiment with a
lower magnetic field of B = 1.2 T, the coincidence
between calculations and experiment was also
observed at ωp < Ωe .

Hence, the characteristic experimental dependences
are qualitatively confirmed by calculations (except for
the absolute value of the efficiency). The coincidence of
the calculated and experimental dependences of the
emission frequency on the plasma density implies that,
indeed, an axisymmetric lowest radial mode of the slow
plasma wave is excited in the experiment. The width of
the emission spectrum and the generation efficiency are
determined by the frequency dependence of the linear
amplification coefficient δk(ω) and the nonlinear pro-
cesses of trapping the beam electrons by the microwave
field.

Thus, an RCPM has been created whose mean fre-
quency can be continuously tuned over a wide band
with an upper-to-lower boundary frequency ratio of 7.
The frequency can be tuned during ~30 µs; the tuning
time is limited from below by the rate at which the
plasma density can be varied in the electrodynamic sys-
tem. Such a tuning cannot be achieved in vacuum rela-
tivistic oscillators. The maximum microwave power
(0.5 GW) in our experiments was obtained by using an
electron beam with an energy of 1 MeV and current of
5 kA (i.e., at an efficiency of 10%) [36].

As was mentioned in the Introduction, one of the
advantages of plasma-filled microwave devices is the
possibility of transporting the currents exceeding the
vacuum limiting current [see formula (1.2.6)]. At the
same time, calculations [28] show that the RCPM effi-
ciency is maximum when the current is nearly half as
large as the vacuum limiting current. In the experiment
described above, we used a current of 2.0 kA, whereas
the vacuum limiting current was equal to I0 = 3.5 kA.
The increase in the REB current up to 3 kA [35] is not
accompanied by the increase in the microwave power,
which confirms the results of calculations [28].
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The limiting electron beam current in RCPMs can
also be increased by increasing the electron beam
radius. In [32], the waveguide radius was R = 14.5 cm
and the electron beam radius was rb = 10 or 12.7 mm.
The corresponding values of the vacuum limiting cur-
rent were 10 and 30 kA, respectively. In this case, the
diameter of the annular plasma was smaller than that of
the REB and was equal to rp = 7 mm. For a beam with
a current of 6 kA, an electron energy of 420 keV, and a
radius of rb = 12.7 mm, the microwave power was
≈300 MW; i.e., the efficiency reached ≈12%. Further
increase in the current did not result in an increase in
the microwave power.

For some applications, it is important to excite the
ç11 mode at the output of the microwave oscillator. In
[32], a TEM-to-ç11 mode converter was installed at the
RCPM output. It was shown that an REB with an elec-
tron energy of 570 keV and a current of 3 kA generated
only the ç11 mode in the emitting horn, the emission
power being 100 MW and the efficiency being ≈6%.

3.1.3. Microsecond RCPMs. One of the main prob-
lems of high-power microwave electronics is the
“microwave pulse shortening” effect which shows up
as follows. After injecting into the electrodynamic sys-
tem, the REB starts to generate high-power micro-
waves; however, after a certain time, the generation ter-
minates although the electron beam continues to prop-
agate through the device. Because of the shortening
effect, the duration of the microwave pulse is limited by
tens of nanoseconds. This effect is the most pronounced
in microwave oscillators with a relatively long duration
of the current pulse (on the order of one microsecond
and longer).

The cause of the microwave pulse shortening is the
appearance of a plasma in different sections of the
device. The plasma produced by the explosive-emis-
sion cathode expands across the magnetic field; as a
result, the shape of the REB changes and the conditions
for its optimum interaction with the electrodynamic
structure are violated. The plasma produced at the col-
lector bombarded by electrons expands toward the
high-current REB at a velocity of up to 108 cm/s and
can penetrate into the electrodynamic structure or
merely lock-in microwaves, which thus cannot be emit-
ted from the device. Furthermore, a plasma can be pro-
duced immediately in the electrodynamic structure by
microwave breakdown.

Our long-term investigations permitted us to resolve
the problem of the cathode plasma. We have created an
original magnetically insulated diode [37, 38] in which
the shape of an annular thin-walled REB formed at an
explosive-emission cathode remained unchanged for
one microsecond. It turned out that the diode also had
other advantages. By using the method we developed
[39] for measuring the transverse velocities of relativis-
tic electrons in a strong magnetic field, we revealed that
their pitch angles did not exceed several degrees over
the entire cross section of the dense electron beam
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throughout the entire microsecond current pulse. This
means that such an electron beam completely satisfies
all the requirements for using it in high-power long-
pulse microwave oscillators.

We have also created an original collector unit with
unique properties [40]. This unit not only completely
protects the oscillator from the penetration of the col-
lector plasma into it, but also acts so that relativistic
electrons reflected from the collector do not propagate
along the magnetic field lines back into the electrody-
namic structure.

The most serious problem associated with the
microwave pulse shortening effect is the generation of
a plasma on the walls of the electrodynamic structure.
We have revealed the mechanism for the formation and
accumulation of this plasma [41]. This mechanism is as
follows. When passing through the electrodynamic
structure, the electron beam is partially degraded under
the action of the strong microwave field. A relatively
small fraction of electrons fall onto the wall. Neverthe-
less, the bombardment of the wall by electrons initiates
the formation of a plasma, the amount of which
increases rapidly due to the surface microwave dis-
charge on the wall.

The only way of decreasing the number of electrons
arriving at the wall and increasing the microwave pulse
duration is to increase the distance between the electron
beam and the surface of the electrodynamic structure.
Unfortunately, in vacuum high-current electronics, the
possibility of increasing this distance is strongly lim-
ited by the electron-beam space charge (which also
determines the REB vacuum limiting current (1.2.6)).
Indeed, as the distance increases, the electrostatic
potential of the beam increases and the kinetic energy
of electrons and, consequently, the microwave power
decrease. In actual high-current electronic devices, the
gap between the electron beam and the metal wall usu-
ally does not exceed several millimeters.

Thus, there is a mechanism limiting the microwave
pulse duration. This effect is difficult to avoid in vac-
uum relativistic electronic devices; however, this prob-
lem can be resolved in plasma electronics.

As was mentioned above, the electron beam in a
coaxial RCPM (Fig. 9) is shielded from outside by a
dense plasma that is placed at a short distance (on the
order of several millimeters) from the beam. In this
case, the electrostatic field of the REB does not pene-
trate into the plasma. Both the electron beam and the
plasma can be placed inside a metal waveguide with an
arbitrarily large radius, in which case the REB electrons
cannot reach the wall. In addition, the electric compo-
nent of the microwave field decreases rapidly with dis-
tance away from the plasma (Fig. 10) and the electric
field amplitude at the waveguide wall is much less than
that in the plasma–beam coaxial line. Therefore, in the
RCPM, it is relatively easy to avoid one of the main
causes of the microwave pulse shortening—microwave
breakdown on the wall of the electrodynamic structure.
Increasing the waveguide cross section is one of the
traditional ways of decreasing the microwave field
amplitude and, consequently, the probability of break-
down. In vacuum microwave electronics, this problem
involves difficulties because efforts to suppress the gen-
eration of modes other than the main oscillation mode
(the so-called “multimode oscillation”) are not always
successful. The described structure of the microwave
field in the RCPM provides an opportunity to avoid
multimode oscillation, which arises when the
waveguide radius is increased, and to obtain a single-
mode generation over a broad frequency band.

The advantages of using a plasma were realized in
an RCPM designed by us [42]. In this device, we used
a microsecond REB (500 keV, 2 kA, 1000 ns) to obtain
microwave pulses with a duration of 800 ns at a power
of 40 MW.

3.2. Plasma Relativistic Microwave Amplifier

Experiments with the RCPM demonstrated its unique
property: the possibility of varying the microwave gener-
ation frequency over a wide range (4–28 GHz) by vary-
ing the plasma density at an almost constant microwave
power. The broad spectrum of the RCPM (~30% of the
mean frequency) is of interest for solving a number of
applied problems. However, the creation of monochro-
matic microwave sources that can be tuned over a fre-
quency range as wide as in RCPMs is also of great prac-
tical importance.

The problem of the amplification of a monochro-
matic signal is the simplest for theoretical consider-
ation and allows a detailed theoretical description.
Therefore, it was reasonable to begin experimental
studies with investigations of a plasma relativistic
microwave amplifier rather than of an oscillator. How-
ever, the experimental implementation of a microwave
amplifier occurred to be very complicated. The reason
for this was the self-excitation of the device, i.e., the
change of the amplification operating mode to the gen-
eration mode. The amplification of the microwave field
over a broad frequency band and the simultaneous sup-
pression of self-oscillations turned out to be a very
laborious problem. That is why experiments on the
plasma relativistic microwave amplifier have only been
performed recently [43, 44].

3.2.1. Scheme of the microwave amplifier. The
scheme of a plasma relativistic microwave amplifier
[44] is shown in Fig. 14. An annular plasma (1) with a
mean radius of rp = 7.5 mm and thickness of ∆p = 1 mm
is immersed in a uniform longitudinal magnetic field
B = 1.6 T in a cylindrical metal waveguide (2) of radius
R = 22 mm. A hollow thin-walled REB (3) with an elec-
tron energy of 550 keV, a current of 1.5 kA, and a pulse
duration of 150 ns propagates along the waveguide
axis. The mean radius of the electron beam is rb =
10 mm, and the beam thickness is ∆b = 1mm.
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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At the amplifier input, there is a microwave con-
verter (4) exciting the TEM mode, which is converted
into a fast and slow eigenmodes of the plasma
waveguide (Fig. 10). The slow plasma wave is ampli-
fied by the REB. Then, it is converted into the TEM
mode of the output metal coaxial waveguide and the lat-
ter is emitted by an output coaxial horn (5) with a large
cross section. The plasma waveguide length over which
the REB interacts with the plasma is 29 cm.

A microwave absorber (6) with an outer radius of
22 mm, an inner radius of 11.5 mm, and a length of
14 cm is placed at a distance of 3 cm from the conical
collector of the REB at the outlet from the system. The
absorber is intended to prevent the self-excitation of the
device. The microwave absorption coefficient is equal
to 20 dB for the TEM mode of a coaxial waveguide
with an inner radius of 5 mm and an outer radius of
22 mm, and it is equal to 50 dB for the íå01 mode of a
circular waveguide with a radius of 22 mm. The mea-
surements were conducted at a frequency of 9.1 GHz.

As a source of input microwave signals, we used one
of two pulsed magnetrons. One of them had a frequency
of f1 = 12.9 GHz, pulse duration of 2 µs, and power of
Pin = 75 kW. The parameters of the second magnetron
were f2 = 9.1 GHz, 20 µs, and 40 kW, respectively.

The output microwave power and the emission spec-
trum were measured by two detectors installed in a 23 ×
10 mm2 receiving waveguide. The first (broadband)
detector measured the total microwave power in the
receiving duct. At the input of the second (narrowband)
detector, there was one of two narrowband microwave
filters tuned to the magnetron frequency; the filter pass-
band was ∆f = 0.29 GHz for f1 = 12.9 GHz and ∆f =
0.51 GHz for f2 = 9.1. GHz. Both detectors had nearly
the same sensitivity. When the emission spectrum was
narrower than the microwave filter passband, the ratio
between the signals from the narrowband and broad-
band detectors was equal to unity. When the emission
spectrum was wider than the microwave filter pass-
band, this ratio decreased. In this way, we could esti-
mate the spectrum width of the output microwave radi-
ation.

3.2.2. Experimental results. Figure 15 shows the
ratio between the signals from the narrowband and broad-
band detectors 75 ns after the REB has started to be
injected into the amplifier. It can be seen that, in the range
of plasma densities 5 × 1012 < np < 1.5 × 1013 cm–3, the
output signal of the microwave amplifier always lies
within the passband of the narrowband detector (the
power ratio is close to unity). The power of the ampli-
fied signals in this range of plasma densities always
exceeded a level of 3 MW, the maximum power being
8 MW.

A comparison of the experimental dependence P/Pf

(Fig. 15a) with the calculated dependence for the sin-
gle-pass linear power amplification coefficient K on the
plasma density (Fig. 15b) shows that the effect of
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microwave amplification takes place for the range of
plasma densities predicted by the theory.

We note that, in the absence of an input microwave
signal, no microwave radiation was detected in this
range of plasma densities. This means that Fig. 15 dem-
onstrates the amplification effect, rather than another
well-known effect—the narrowing of the spectrum of a
microwave oscillator under the action of an external
controlling monochromatic signal.

Calculations show the frequency of the amplified
radiation can be tuned over a broad band (Fig. 3). To
verify this theoretical result, we also carried out exper-
iments on microwave amplification at the frequency
f1 = 12.9 GHz (Pin = 75 kW). At this frequency, ampli-
fication was observed for higher plasma densities,
namely, in the range 1013 < np < 3 × 1013 cm–3, which
coincides with the calculation results.

Thus, a stable amplification regime was obtained for
the first time for the slow plasma wave in a beam–

1 2 34 56

B

Fig. 14. Schematic of the plasma relativistic microwave
amplifier: (1) plasma, (2) metal waveguide, (3) REB,
(4) amplifier inlet, (5) coaxial conical emitting horn, and
(6) microwave absorber.
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Fig. 15. (a) Ratio of the powers measured by the narrow-
band Pf and broadband (P) detectors at a frequency of f2 =
9.1 GHz (1) in the presence of an input signal with a power
of 40 kW and (2) in the absence of an input signal; (b) sin-
gle-pass linear power amplification coefficient K as a func-
tion of the plasma density np .
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plasma system. It is shown that, at an input signal fre-
quency of 9.1 GHz, there is a range of plasma densities
for which the spectrum of output microwave radiation
lies within the 0.5-GHz band during the entire period of
REB propagation through the plasma (150 ns). The out-
put power of the amplified signals attains 8 MW, and
the power amplification coefficient is on the order
of 200. It was experimentally demonstrated that the same
device can also operate at a frequency of 12.9 GHz. The
experiment has confirmed the theoretical prediction
that there is a plasma density value at which the beam–
plasma system amplifies radiation at both frequencies.

4. EXPERIMENTAL TECHNIQUES

4.1. Diagnostic of a High-Current REB
and High-Power Pulsed Microwave Radiation

A high-current relativistic electron flow is a specific
medium that had no analogues in the experimental
physics until the advent of high-current accelerators in
the early 1970s. Of course, voltages of hundreds of
kilovolts and powers of several gigawatts had been used
before in electrical power engineering. However, these
were slowly varying (50 Hz) voltages and the power
was transferred with the help of facilities tens of meters
in size. Nanosecond current pulses can be generated
using relatively small-sized devices; however, the
requirements on the electric strength remain as strin-
gent as earlier.

These mutually contradictory requirements,
namely, that the devices should be compact and could
withstand voltages up to hundreds of kilowatts and
carry kiloampere currents, determine the specifics of
the facilities employed in high-current relativistic elec-
tronics, in particular, the diagnostic equipment. For this
reason, it was necessary to develop special methods for
measuring the parameters of high-current REBs.

Concurrently, methods for diagnosing microwave
pulses of unique (for those times) power (on the order
of 108 W) generated with REBs were developed.

4.1.1. Diagnostics of a high-current REB. In the
first place, the complex diagnostics of a high-current
REB includes the measurements of the electron energy
(the absolute value of the electron velocity) and the
total current of an electron beam. Another important
parameter is the distribution of the electron current over
the beam cross section. Moreover, since the electron
beam propagates in the magnetic field, it is also no less
important to have information about the direction of the
electron velocity with respect to the field.

The total electron energy depends on the potential of
the accelerator cathode, at which the electron beam is
produced. The cathode potential was measured with a
capacitive divider. However, in order to be convinced
that the diode of the high-current accelerator indeed
forms a monoenergetic electron beam and also to cali-
brate the capacitive divider, the electron energy was
measured directly (in absolute units) with the help of an
original electrostatic analyzer [45].

The total electron beam current is difficult to mea-
sure because it is fairly high (several kiloamperes) and
the current pulse is rather short. To resolve this prob-
lem, we designed special shunts made of metal conduc-
tors [46, 47] and low-inductance shunts based on con-
ducting rubber [48].

The spatial and temporal uniformity of the electron
current density over the beam cross section is the key
requirement for various devices of high-current relativ-
istic electronics. In all of our experiments, an explo-
sive-emission cathode was used to generate the REB.
The plasma emitter of this cathode varies with time,
which can result in the variations in the electron beam
size. To measure the distribution of the electron beam
current density over the beam cross section, we
designed a sectioned current-density meter [49] using a
slit diaphragm.

The REB phase portrait depends on the electron
kinetic energy and the orientation of the electron veloc-
ity relative the magnetic field, along which the beam
propagates. The pitch angle is the angle between the
electron velocity and the magnetic field. At a fixed
value of the cathode potential, it is the pitch angles of
electron trajectories that determine the efficiency with
which the electron beam is used during plasma heating,
microwave generation, etc. The development of the
methods for measuring the pitch angles of electron tra-
jectories is the most important component of the REB
diagnostics.

Our first experiment on the measurements of the
electron distribution over pitch angles with the help of
the “pinhole method” was described in [50]. In [51], for
the first time, this method was grounded theoretically
and the criterion of its applicability was determined.
The use of rapidly varying magnetic fields allowed us
to further improve this method and substantially
increase the accuracy of measurements [39]. In addi-
tion, the domain of applicability of the method was
extended so that it became possible to perform mea-
surements in stronger magnetic fields and longer (by
one order of magnitude) electron current pulses.

We also mention a unique method for visualizing
the electron trajectories [52], which is based on the
glow of a thin dielectric film under the action of relativ-
istic electrons penetrating through it. This method
allowed us to carry out the first simultaneous measure-
ments of the electron energy and the transverse size of
the beam and estimate the angular distribution of parti-
cle trajectories simultaneously at different points over
the beam cross section.

4.1.2. Diagnostics of high-power microwave
pulses. The methods for measuring the parameters of
microwave pulses produced with high-current REBs
differ substantially from the methods that existed
before the advent of gigawatt microwave electronics. In
the first place, the requirements on the electric strength
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of the facilities have changed, because the microwave
field amplitude in relativistic microwave electronic
devices reaches 106 V/cm. Certain difficulties arise
from the short pulse duration. Moreover, microwave
pulses are usually generated in individual shots; i.e., the
pulses appear rather rarely (one pulse per several min-
utes). The latter circumstance, as well as the rather high
cost of each microwave pulse, makes it necessary to
search for techniques capable of measuring all the
parameters of the generated microwave radiation dur-
ing a single pulse. Original methods developed by us
make it possible to trace the behavior of microwave
radiation throughout the entire pulse and resolve the
spatial structure of radiation.

For a number of reasons, conventional semiconduc-
tor microwave detectors are difficult to use to record
high-power radiation pulses in high-current microwave
devices. First, they do not withstand overloads. Second,
they produce very weak response signals that are diffi-
cult to discriminate against the stray background that
unavoidably arises during the operation of high-current
accelerators. To study the time characteristics of micro-
wave radiation, an original method for measuring the
microwave pulse envelope was proposed in [53] (and
then improved in [54]). The method is based on the
effect of “hot electrons” in semiconductors. A special
semiconductor monocrystal does not break down at
almost any incident microwave power and reproduces
the shape of the microwave pulse envelope with an
accuracy of up to ≈1 ns, the signal amplitude being
from tens to hundreds of volts. This instrument allows
the direct detection (without preliminary attenuation)
of the microwave power in a waveguide at a level of
hundreds of kilowatts and substantially increases the
accuracy and reliability of measurements. At present,
this method is standard in both Russia and other coun-
tries.

An important microwave characteristic is the wave
mode. We have proposed an original method for deter-
mining the wave mode [55] from the trace produced by
the microwave pulse on a dielectric surface with a spe-
cial coating. As compared to the other ways of visualiz-
ing the microwave mode (e.g., a thermovisor or a panel
of gas-discharge lamps), this method has an important
advantage: we have a direct print of a nanosecond
microwave pulse and need no additional equipment.

The methods described above allow us to trace the
spatial and temporal characteristics of the microwave
field, but do not ensure a sufficient accuracy in deter-
mining the total microwave energy. In the early experi-
ments, the procedure of calculating the power was the
following. The microwave power was measured (in rel-
ative units) in different points over the cross section of
the radiation flow with the help of a microwave detector
(see, e.g., [54]). Then, the detector was calibrated with
a reference microwave source whose frequency was
close to the frequency of the measured radiation.
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Finally, the results obtained were recalculated to the
total pulse power.

This procedure was time-consuming, required good
reproducibility of experimental results, could not
ensure a necessary accuracy, and, more importantly,
was unsuitable for studying microwave oscillators with
broad emission spectra. For this reason, we have
designed an original wide-aperture broadband calorim-
eter [56].

The energy of a single pulse of a relativistic micro-
wave oscillator is difficult to measure because the pulse
power is high (~100 MW), whereas its energy is low
(W ≈ 2 J at T ≈ 20 ns). Because of the high pulse power,
the diameter of the window through which the gener-
ated radiation is output from the vacuum chamber into
atmosphere should be sufficiently large in order to
avoid microwave breakdown on the window surface, as
well on the surfaces of microwave receivers. It follows
from this that the calorimeter surface should also be
large; in view of this circumstance, the problem of
detecting low microwave energy by a large-area (large-
volume) absorber arises.

This problem was successfully resolved in [56]: a
microwave calorimeter with a diameter of 40 cm and
sensitivity of 0.05 J was created. The calorimeter was
situated in air behind the emitting microwave horn. The
operation principle of the calorimeter is to detect how
the volume of an absorbing liquid increases under the
action of microwave radiation. It is important that the
calorimeter has nearly the same sensitivity within a
broad frequency band: the microwave absorption coef-
ficient of the calorimeter varies from 0.8 to 0.95 as the
frequency varies from 5 to 40 GHz.

With this instrument, along with the methods
described above, we were able to measure the micro-
wave power in each pulse with a sufficient accuracy and
reliability, determine its absolute value, and find its dis-
tribution in space and time.

One of the most important characteristics of micro-
wave radiation is its spectrum. The traditional methods
dealing with continuous or pulse-periodic radiation are
of little use for measuring the radiation frequency in
single short high-power pulses. We have developed and
successfully used two methods (local and integral) for
measuring microwave spectra.

The local method [57] is intended to measure the
time-resolved microwave spectrum at one spatial point
and is based on the use of “hot-carrier” microwave
detectors [54]. Several detectors are built into low-Q
resonators (necessary for measuring short pulses) fed
with radiation arriving from the same resonator. This
spectrometer has a relatively narrow frequency band
(a few tens percent) determined by the waveguide
dimensions. In this case, the instrument has all the
above advantages: it is reliable, withstands overload,
does not require preliminary attenuation of the micro-
wave power, and produces output signals on the order
of tens of volts.
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The integral method is needed to measure the spec-
trum of the total radiation flux integrated over the
microwave pulse. Such an instrument is necessary for
studying a broadband microwave source (RCPM)
whose mean frequency can be varied severalfold (from
4 to 28 GHz). In microwave electronics, spectral mea-
surements are usually conducted for a small fraction of
the total radiation flux. If the spectrum is broadband,
then the spectral density can be different in different
cross sections of the microwave beam, so that it is
hardly possible to reconstruct the integral microwave
spectrum from these measurements. The integral spec-
trum measured in absolute units (in MW/GHz) is the
fundamental RCPM characteristic, which is calculated
numerically and is important for applications.

To measure the integral radiation spectrum, we have
designed a calorimetric spectrometer [58]. It is based
on a wide-aperture calorimeter [56] that is successively
masked with microwave filters with different cutoff fre-
quencies. The filter is shaped as a disc with apertures of
the same diameter; each aperture is a waveguide whose
diameter determines the threshold frequency of the fil-
ter. By comparing the energy measured in two shots by
the calorimeter with two filters that have different
threshold frequencies, we can measure the microwave
energy in the frequency range between the threshold
frequencies of these filters. The calorimetric spectrom-
eter [58] measures the energy spectrum in units
of J/GHz. Independent measurements of the envelope
of the microwave pulse allow us to determine the spec-
trum of the total radiation power in units of MW/GHz.

Thus, all the parameters of high-current REBs and
high-power microwave pulses were carefully mea-
sured. Often, the same parameter was measured by sev-
eral methods. For the most part, we used original mea-
surement methods; the reason is merely the absence of
available alternatives to most of them.

2.5
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Fig. 16. Radial profile of the plasma density np: (1) mag-
netic field in the cathode region Bc is less than the magnetic
field in the drift space B (Bc < B) and (2) Bc = B.
4.2. Method of Plasma Creation

The successful creation of an RCPM would have
been impossible if had we been unable to find a method
for creating a thin-walled annular plasma. A potential
of –600 V relative to the vacuum chamber wall was
applied to a tungsten wire ring heated to a temperature
of ~2100 K. The tungsten cathode immersed in a strong
longitudinal magnetic field created an annular electron
beam whose cross-section area was equal to that of the
cathode. The annular electron beam ionized the gas
(xenon at a pressure of 5 × 10–3 torr) and produced a
plasma by impact ionization. However, it is hardly pos-
sible to create the plasma with a necessary density of
1012–1013 cm–3 at currents of up to 100 A and a plasma
length of ~30 cm by impact ionization only. The dense
plasma was produced in a beam–plasma discharge due
to the onset of the beam–plasma instability and the ion-
ization of the gas by the microwave field. These effects
are well known. A new and fundamentally important
experimental observation is that ionization by the
microwave field does not increase the thickness of the
annular plasma.

Figure 16 shows the radial profile of the plasma den-
sity. It can be seen that the thickness of the annular
plasma is nearly equal to the thickness of the tungsten
cathode wire. Due to the sharp outer plasma boundary,
the diameter of the plasma is equal to that of the collec-
tor (Fig. 9). This, in turn, makes it possible to produce
a transition from the plasma waveguide to the vacuum
coaxial waveguide (Fig. 11) with a minimal reflection
coefficient. The sharp inner boundary of the annular
plasma allows us to have a narrow gap between the
electron beam and the plasma and, at the same time, to
ensure the absence of plasma in the accelerator diode.

The coupling between the beam electrons and the
electric field of the slow plasma wave depends on the
gap length between the electron beam and the plasma.
For this reason, we have developed a method for con-
trolling the plasma diameter in the course of the exper-
iment [59].

The possibility of varying the plasma diameter from
17 to 21 mm is demonstrated in Fig. 16. The plasma
diameter is varied by the pulsed decrease in the mag-
netic field near the plasma source cathode. The REB
was surrounded by a shield, so that the pulsed magnetic
field did not penetrate into the axial region where the
REB propagated. As a result, the REB propagated in a
uniform magnetic field from the accelerator cathode to
the collector. This eliminates the possibility of pumping
the transverse electron velocity of the REB in a nonuni-
form magnetic field.

The plasma source operated in the pulsed mode and
was switched on usually 30 µs before the accelerator
current pulse. The plasma density at the time the beam
current was switched on could be controlled by varying
the delay time between switching on the plasma source
and the accelerator and by varying the gas pressure or
the plasma-source current.
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It turned out that the plasma source had a disadvan-
tage: the annular plasma was azimuthally nonuniform.
It was proved experimentally that this nonuniformity
was caused by the drift instability of the radially non-
uniform plasma placed in the longitudinal magnetic
field [59]. In particular, according to theoretical predic-
tions, the increase in the annular plasma thickness
resulted in a decrease in the measured azimuthal mod-
ulation depth. Fortunately, the azimuthal plasma non-
uniformity had no effect on the RCPM efficiency and,
in this sense, was unimportant.

5. APPLICATION OF PLASMA RELATIVISTIC 
MICROWAVE SOURCES IN SCIENCE

AND TECHNOLOGY

The unique frequency characteristics of high-power
plasma relativistic microwave sources can find wide
applications in different fields of science and technol-
ogy such as plasma chemistry and plasma technologies
[including fusion reactors, plasma sources (plas-
motrons), and plasma thrusters]. These problems have
been discussed in many reviews and monographs.
Here, we only consider the possible applications of
high-power plasma relativistic microwave sources in
plasma chemistry and radiolocation.

5.1. Plasma Chemistry

Short high-power microwave pulses make it possi-
ble to efficiently excite electronic and vibrational states
of molecules, thus increasing the rates of chemical
reactions by several orders of magnitude as compared
to traditional methods. In this case, the gas temperature
varies only slightly, which is very important for plas-
mochemical processes involving weakly bonded reac-
tion products, such as complex ions. The swiping of the
microwave frequency can be useful, e.g., in ECR plas-
mochemical reactors. In the case of a nonuniform mag-
netic field, the frequency swiping is equivalent to the
spatial scanning of the discharge region. This makes it
possible to excite a discharge in a larger volume, in par-
ticular, in a gas layer adjacent to a large-area surface, in
accordance with the technological requirements of
modern microelectronics.

5. 2. Radiolocation

In radiolocation, the maximum distance at which the
target Ld can be located is given by the formula [60]

(5.2.1)

Here, P is the radar power (in W), λ is the wavelength
(in m), GA = 4πSeff /λ2 is the antenna emission coeffi-
cient (where Seff = βSg is the effective antenna area, β ≈
0.5–0.7 is the antenna utilization factor, and Sg is the
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geometric area of the antenna), σ is the effective reflect-
ing area of the target (in m2), Pmin is the dimensionless
factor characterizing the sensitivity of the radar, and
K ≈ 5 is the resultant loss factor.

It follows from formula (5.2.1) that, in order to
locate a small-sized target with σ = 0.01 m2 (this is the
effective area of the reflecting surface of modern air-
crafts made by stealth technology) at a distance of Ld =
100 km at Sg = 4 m2 and Pmin = 0.1, the radar should
have a power of P ≈ 50 MW in the centimeter wave-
length range. Actually, a radar operating at this power
level was successfully used to locate a long-range air-
craft [61]. The plasma relativistic microwave sources
provide this power level.

However, there is a problem in radiolocation that is
difficult to solve using vacuum microwave sources, but
which can be solved by plasma relativistic microwave
electronics. This is the location of aircrafts coated with
materials that absorbant microwaves. The absorbant
coating is applied to the surface by sputtering the
microwave-absorbing materials with plasma and by
implanting charge carriers or magnetic domains into
the surface layer. From a variety of the microwave-
absorbing materials, we can distinguish two main
classes: the resonant narrowband absorbers and nonres-
onant broadband absorbers. The resonant coatings effi-
ciently absorb microwaves within a relatively narrow
frequency band; e.g., radiation in the X band (8–
12 GHz) is absorbed completely. The broadband
absorbing materials are based on composite semicon-
ductors consisting of free charge carriers and different
kinds of implanted magnetic domains. Different
domains resonantly absorb microwaves at different fre-
quencies. Consequently, to absorb microwaves in a
broad frequency band, the resonant absorption bands of
different domains should overlap. The materials
absorbing microwaves in the 1.5- to 15-GHz frequency
range are produced precisely in this way.

It is obvious that, aircrafts coated with microwave-
absorbing materials can be located only with a broad-
band microwave source or a tunable source. It is neces-
sary that the frequency band of the emitter be wider
than the frequency band of the absorbing coating. Such
broadband high-power pulses can be produced by
plasma relativistic microwave sources.

6. CONCLUSION

In recent years, a new field of physical electronics—
plasma relativistic microwave electronics—has been
created. The theory has been developed and new high-
power microwave sources with broadband frequency
tuning—plasma relativistic microwave oscillators and
amplifiers—have been designed. The unique properties
of these devices distinguish them from other high-
power microwave sources. The results obtained can be
summarized as follows:
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(i) The emission frequency of plasma relativistic
microwave sources can rapidly be varied within a very
wide band. An RCPM whose frequency can be contin-
uously tuned in a band with an upper-to-lower bound-
ary frequency ratio of 7 (from 4 to 28 GHz) at a power
of 50 MW has been created. The frequency can be
retuned within several tens of microseconds.

(ii) The emission spectrum width of a plasma rela-
tivistic source can be varied in a wide range. We have
obtained high-power microwave radiation with a spec-
trum width from <5% (in a plasma relativistic micro-
wave amplifier) to 20–100% (in an RCPM). There are
no other tunable high-power microwave sources with
such a wide spectrum.

(iii) The level of microwave power achieved
(0.5 GW at an efficiency of 10%) does not exceed the
maximum parameters of vacuum microwave sources.
However, in plasma relativistic microwave sources, it is
possible to use electron currents comparable to or even
exceeding the limiting current in a vacuum system of
the same geometry. Moreover, the maximum efficiency
of vacuum relativistic microwave sources is achieved
when the current is about 20–25% of the limiting cur-
rent, whereas, in plasma devices, the maximum effi-
ciency is achieved at nearly 50–70% of the vacuum lim-
iting current. This provides the possibility of substan-
tially increasing the microwave power and utilizing the
resources of high-current accelerators more efficiently.

(iv) We have clarified the mechanism responsible
for the suppression of high-power microwave genera-
tion in relativistic microwave devices and the shorten-
ing of microwave pulses to several tens of nanoseconds.
Because of the specific design of vacuum microwave
oscillators, it is hard to eliminate this effect. Plasma rel-
ativistic microwave devices can generate microwave
pulses with considerably longer durations and higher
powers.

The reliability of the results obtained is confirmed
by unique diagnostic methods that we have developed.
Among these, we should mention a wide-aperture
broadband microwave calorimeter, a high-power
microwave radiation spectrometer, and a method for
visualizing electrons in an REB.
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Abstract—The degree of linear polarization of radiation from an ionized gas is calculated analytically. The
analytical results on the resonant transition in Al XII atoms agree (to within 4%) with the numerical results
obtained from the ATOM code. The applicability of the analytic expressions derived to the analysis of the
degree of linear polarization of radiation from this atomic transition and the related excitation cross section is
discussed. The plots of the degree of linear polarization of radiation from an ionized gas as a function of the
electron parameters are presented. The question of whether the spectropolarimetry can provide an independent
optical diagnostic tool is discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Measurements of the Stokes parameters of radiation
from an ionized gas make it possible to determine the
anisotropic properties of electrons. The degree of linear
polarization of radiation can be found from the quadru-
pole moment of the electron distribution function [1–5].
The parameters characterizing the anisotropy of elec-
trons can be calculated using the model of superthermal
electrons [6, 7].

In order to interpret the diagnostic data on the
degree of linear polarization of radiation from a vac-
uum spark plasma and, in particular, the data on the line
emission from the Al XII resonant transition, Walden
et al. [4] calculated the excitation cross sections for the
m sublevels in the Born–Coulomb approximation by
using the ATOM code package [8–10]. The results of
their calculations of the degree of linear polarization of
line radiation from the Al XII resonant transition
excited by a monoenergetic electron beam agree with
the results obtained by Kieffer et al. [11] to within 5%.

The anisotropy of an ionized gas leads to the align-
ment of atomic states, i.e., to the spatial ordering of the
angular momenta of the atoms. In this case, the degree
of linear polarization of radiation can be calculated
with the help of the electron impact alignment cross
section [1, 12, 13]. In turn, this cross section can be cal-
culated from the excitation cross sections for the mag-
netic sublevels or obtained as the quadrupole moment
of the total excitation cross sections of the level, e.g.,
the cross section found experimentally for ArI [3].

2. FORMULATION OF THE PROBLEM

In [1, 5, 14], it was shown that the electron impact
alignment cross section can be expressed in terms of the
total excitation cross section of the level and the degree
of linear polarization of radiation from the transition in
1063-780X/01/2708- $21.00 © 0692
a collision between a beam electron and an atom. By
using the analytic expressions for the total cross section
[15–24] and for the degree of linear polarization of
radiation from the transition in beam experiments [25]
and by choosing an appropriate model, it is possible not
only to analytically calculate the degree of linear
polarization of radiation from an ionized gas but also
to analyze how this degree depends on the model para-
meters [8].

The degree of linear polarization of radiation from
an ionized gas can be written as

(1)

where

(2)

(3)

In formulas (2) and (3), we introduce the following
notation: I (0) and I (2) are the total and quadrupole inten-
sities of radiation emitted by an atom per unit solid
angle, Q(ε) is the total excitation cross section, Γ is the
decay constant, Q(2)(ε) is the electron impact alignment
cross section, Γ(2) is the quadrupole moment of the
decay constant, W(J, J1) is the polarization moment of
the transition, f(ε, Θ, ϕ) is the electron distribution func-

tion, (ε) is the quadrupole moment of the electron
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distribution function, and P0(ε) is the degree of linear
polarization of radiation from the transition excited by
an electron beam.

The calculations will be carried out in the atomic
system of units in which e = h = m = 1 and the energy
is expressed in rydbergs (1 Ry = 13.6 eV).

3. MODEL FOR PLASMA ELECTRONS

For an axisymmetric (about the z-axis) plasma, the
total electron distribution function (with allowance for
thermal and nonthermal electrons) can be written as
[17]

(4)

Here, Nt is the density of thermal electrons; the Max-
wellian distribution function ft (ε) for thermal electrons
with the temperature T0 has the form

(5)

Nnt is the density of superthermal electrons; and the
high-energy part fnt(ε) of the distribution function of the
superthermal electrons can be either a Maxwellian
function with the temperature T1 @ T0 or a power func-
tion of the form [4]

(6)

where ε1 and γ are the characteristic constants. An anal-
ysis of the spectral line intensities [4] calculated for
Maxwellian and power distribution functions shows
that the power function is more preferable for describ-
ing superthermal electrons. Haug [6] proposed the fol-
lowing angular dependence for the distribution func-
tion of the superthermal electrons:

(7)

where a =  and ε2 is the anisotropy constant. The

dependence of the pitch angle of the superthermal elec-
tron distribution on ‡ can be found in [6]. Thus, for a
beam, we have a  ∞, whereas, as a  0, the dis-
tribution function becomes isotropic. Using the angular
dependence (7), the authors of [4, 26] calculated the
general polarization of radiation from an ionized gas.

The energy dependence of the quadrupole moment

(ε) of the distribution function can be found by the
method of expansion in spherical functions [27]:
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By using formulas (4)–(6) for fnt(ε, Θ) and the relation-

ship (Θ, ϕ) = sin2Θei2ϕ [27], we obtain

(8)

4. ANALYTIC EXPRESSIONS 
FOR THE EXCITATION CROSS SECTION 

AND THE POLARIZATION OF RADIATION 
FROM THE TRANSITION

Analytical expressions for the total excitation cross
section can be taken from [15–24]. As a rule, semiem-
pirical expressions for the excitation cross sections are
derived from the Bethe formula for dipole transitions
by modifying the functional dependence on the elec-
tron energy and by analyzing the experimental data in
order to determine the necessary parameter values.
However, the parameter values obtained in this way
cannot be regarded as being universal; i.e., they do not
ensure the same accuracy of calculations for different
atomic systems. In addition, some of the semiempirical
expressions are fairly involved and, accordingly, are
difficult to apply to practical analytic calculations of the
degree of linear polarization of radiation from an ion-
ized gas.

The excitation cross sections for dipole transitions
in various highly ionized atoms can be calculated from
the expression [16]

(9)

where f is the dipole oscillator strength, R0 is a constant,
and ∆ε is the threshold energy.

Formula (9) is based on the model dipolar interac-
tion potential. A comparison between the results
obtained from formula (9) and from the ATOM code
[28] on the excitation cross sections for dipole transi-
tions in ions (including highly ionized atoms such as
Al XII) makes it possible to determine the accuracy of
formula (9). Near the excitation threshold, it gives
accuracies of 100%, and, in the energy range above the
five excitation thresholds, the accuracy is within 20%.
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Below, the polarization of radiation from multicharged
ions will be calculated using formula (9).

In the literature, the question of whether it is expe-
dient to calculate the degree of linear polarization of
radiation from atoms and ions by using semiempirical
expressions has been studied to a much lesser extent.
The degree of linear polarization of radiation from the
resonant dipole S–P transition is well described by the
interpolation formula [12]

(10)

where ε0 is the energy at which the polarization passes
through zero and then changes sign and P1 is the polar-
ization at the threshold energy. Formula (10) for the
polarization of radiation from atoms and singly and
multiply charged ions gives an accuracy of no worse
than 10%.

5. GENERAL EXPRESSIONS FOR THE 
INTENSITIES I (0) AND I (2) OF RADIATION 
FROM THE RESONANT S–P TRANSITION

IN A MULTICHARGED ATOM

The general analytic expression for I (2) can be
obtained by substituting expression (8) for the quadru-

pole moment (ε) of the electron distribution func-
tion into formula (3):

(11)

In order to calculate the intensity I0, we substitute
expressions (4)–(7) for the electron distribution func-
tion into formula (2) and integrate the resulting for-
mula, first, over the angles Θ and ϕ and, then, over the
energy:
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We insert expressions (11) and (12) for I (2) and I (0)

into formula (1) and introduce the notation n = Nt/Nnt .
As a result, we arrive at the final expression for the
degree of linear polarization of radiation from an ion-
ized gas:
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In order to simplify expression (13) into a form suitable
for calculating the degree of linear polarization, we
must consider the following four integrals:
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(14d)

First, we rewrite expression (13) in terms of the symbol
notation for the integrals:

(15)

Before evaluating expression (15) with formula (9)
for the total excitation cross section Q(ε) for the transi-
tion, formula (10) for the degree of linear polarization
of radiation P0(ε), formula (5) for the Maxwellian dis-
tribution function ft(ε) of the thermal electrons, and for-
mula (6) for the power distribution function fnt(ε) of the
superthermal electrons, we make the identity replace-

ment  = 1 –  in the integral I3 in expression

(14d):

In terms of the integrals I2 and I1 in expressions (14c)
and (14b), the integral I3 takes the form

in which case the expression for the degree of linear
polarization reduces to

(16)

Expression (16) is similar in structure to the expres-
sions derived in [1, 29]. If we insert the explicit expres-
sions for Q(ε), P0(ε), ft(ε), and fnt(ε) into formulas (14),
we obtain the integrals I0 and I1 in explicit form and
thus arrive at the following formula for the degree of
linear polarization of radiation from an ionized gas:

(17)

We divide the right-hand side of expression (17) by
f  and ∆ε and perform the necessary manipulations.
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As a result, we obtain

(18)

The functionals F0 and F1 are governed by the parame-
ters of the ionized gas and atomic system. Thus, the
functional F0 is determined by the quantities ∆ε, R0, and
T0, and the functional F1 depends on ∆ε, R0, P0, ε0, ε2,
and γ. The degree of linear polarization of radiation
from an ionized gas is independent of both the dipole
oscillator strength and the decay constant for the transi-
tion. Recall that the calculations were carried out in the
atomic system of units in which the energy is expressed
in rydbergs. The method of calculation restricts the
parameter γ to half-integer values.

The analytical expression derived for the polariza-
tion of radiation from the resonant S–P transition in an
ion in an ionized gas makes it possible to analyze the
polarization as a function of the parameters character-
izing the distribution of superthermal electrons. With
the given characteristics ∆ε, R0, P0, and ε0 of the atomic
system, expression (18) contains five parameters of the
plasma electrons: n, T0, ε1, γ, and ε2. Therefore, we can
say that spectropolarimetric methods provide an addi-
tional diagnostic tool, supplementing the well-known
techniques used to diagnose ionized gases in order to
determine the parameters ε1, γ, and ε2 of the model of
anisotropic electron distribution.

The radiation intensity can be analyzed using
expression (2) for I (0); in the above notation, this
expression takes the form

(19)

6. CALCULATION OF THE DEGREE OF LINEAR 
POLARIZATION OF RADIATION 

FROM THE RESONANT S–P TRANSITION 
IN Al XII ATOMS

The analytic calculations based on expression (18)
for the degree of linear polarization of radiation from an
ionized gas were carried out with the help of the
MATHCAD package, which provides, in particular, a
graphical illustration of the numerical results.

The accuracy of the analytic model was tested by
repeating the calculations done by Walden et al. [4]
with the ATOM code in order to interpret the measure-
ment data on the polarization of the line radiation from
the Al XII resonant transition in a vacuum spark
plasma. It seems that, at present, the results from these
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calculations are the most reliable. In accordance with
the data of [4], we can work with the known parameter
values n = 100 and T = 26. In [4], for the measured
polarization P = 0.12, the pitch angle was calculated to
be 50°.

According to the analytical calculations carried out
in [4] for γ = 4.5, the analytic formula (18) with the
energies ε1 = 139 and ε2 = 110 (expressed in rydbergs)
gives a polarization degree of 0.12. In order to calculate

the pitch angle, it is necessary to find the ratio a =  of

the mean energy  of superthermal electrons, whose
distribution function fnt(ε) is described by formulas
(4)–(6), to the anisotropy constant ε2 (7). The mean
energy for the power distribution function fnt(ε) (6) is
found to be

(20)

In this case, for γ = 4.5 and ε1 = 139, we obtain  = 194
and, accordingly, a = 1.76. In [6], the pitch angle was
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Fig. 1. Degree of linear polarization of radiation from an
ionized gas vs. the ratio n of the number of thermal elec-
trons to the number of superthermal electrons for γ = 4.5,
ε1 = 139, and ε2 = 110.
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Fig. 3. Degree of linear polarization of radiation from an
ionized gas vs. γ for ε1 = 139 and ε2 = 110.
calculated to be 48°, and, in [4], it was found to be 50°.
Thus, we can conclude that the above analytic calcula-
tions agree to a high accuracy with the numerical calcu-
lations based on the ATOM code [4].

A polarization degree of 0.12 can also be obtained
analytically with other numerical combinations of the
parameters γ, ε1, and ε2 of superthermal electrons. For
example, the degree of polarization turns out to be
equal to P = 0.12 for the combination γ = 3.5, ε1 = 173,
and ε2 = 270, for which the pitch angle is about 59°.
Consequently, for an adequate description of superther-
mal electrons, the range of the parameters γ, ε1, and ε2
should be determined, e.g., from the spectral measure-
ments of the intensity ratio [4], in which case it is pos-
sible to use expression (19).

Analytic expression (18) for the degree of linear
polarization of radiation from an ionized gas allows the
polarization to be analyzed as a function of all of the
parameters of the plasma electrons.

Figures 1 and 2 show how the polarization depends
on n and T0. The shapes of the profiles in these figures
are governed by the form of the functional F0.
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100 20 30 40 50 60 70 80 90
í0, Ry

0.50

0.75

1.00
P

Fig. 2. Degree of linear polarization of radiation from an
ionized gas vs. the temperature T0 for γ = 4.5, ε1 = 139, and
ε2 = 110.
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Fig. 4. Degree of linear polarization of radiation from an
ionized gas vs. ε1 for γ = 4.5 and ε2 = 110 (P = 0.12 for
ε1 = 139).
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Figure 3 displays the polarization as a function of
the parameter γ.

Figure 4 shows the dependence of the degree of lin-
ear polarization on the parameter ε1 for γ = 4.5 and ε2 =
110. Notably, in the limit ε1  ∞, the polarization
approaches P = 1. Formulas (4)–(7) imply that, in this
limit, a  ∞ and the pitch angle vanishes. Conse-
quently, this limit can be regarded as the “beam” limit,
in which, however, the maximum degree of linear
polarization of radiation from a gas ionized by a beam
is equal to 0.6. Presumably, the analytical model makes
it possible to predict a certain collective effect for
which the degree of linear polarization of radiation
from the atoms in an ionized gas exceeds the threshold
value in the beam experiment. The shape of the profile
in Fig. 4 is independent of the value of γ.

Figures 5 and 6 show the degree of linear polariza-
tion as a function of the parameter ε2 of the electrons in
an ionized gas for γ = 4.5 and 3.5, respectively. We can
see that the profiles calculated for these γ values are
radically different. For γ = 2l + 1/2, where l is an inte-
ger, the degree of linear polarization remains positive
over the entire range of the parameter ε2. According to
formula (7), the limit ε2  0 is analogous to the beam
limit. For γ = 2l +3/2, the degree of linear polarization
changes sign at a certain value of ε2. This dependence

0.25

0 100 200 300 400 500
ε2, Ry

0.50

0.75

1.00
P

0.2200
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60 120 180 240 300 360 420 480
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Fig. 5. Degree of linear polarization of radiation from an
ionized gas vs. ε2 for γ = 4.5 and ε1 = 139 (P = 0.12 for ε2 =
110).

Fig. 6. Degree of linear polarization of radiation from an
ionized gas vs. ε2 for γ = 3.5 and ε1 = 173 (P = 0.12 for ε2 =
270).
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is similar to the energy dependence of the degree of lin-
ear polarization in the case of excitation by the beam.
An analysis of the profiles presented in Figs. 5 and 6
clearly shows that spectropolarimetric measurements
should be supplemented with measurements that would
make it possible to adequately determine the parame-
ters of superthermal electrons. However, the parameter
ε2 can be determined only by spectropolarimetric tech-
niques.

7. CONCLUSION

The analytical results on the degree of linear polar-
ization of radiation from the resonant S–P transition in
multicharged Al XII ions in an ionized gas agree with
the numerical results from the ATOM code to within
4%. The accuracy of the analytic model is governed by
the accuracy of expression (9) for the excitation cross
sections for the resonant transition and expression (10)
for the degree of linear polarization. We can anticipate
that the polarization of radiation from the S–P transi-
tions in other ions can be described by expression (18)
for the degree of linear polarization within an accuracy
of 20%. This circumstance may extend the applicability
range of the analytic model developed here.

The above model can also be used to calculate the
degree of linear polarization of radiation from atomic
transitions. To do this, the analytic expression for the
excitation cross section for each particular atomic tran-
sition should be chosen so as to provide a good calcula-
tion accuracy and to take integrals (14a) and (14b)
explicitly.

An obvious advantage of the analytic model is that
the degree of linear polarization of radiation from an
ionized gas is derived as an explicit function of the
parameters of both thermal and superthermal electrons.
This circumstance makes it possible to analyze the
dependence of the degree of linear polarization on all of
the parameters of superthermal electrons and to plan
the operating modes of technical devices.
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Abstract—The distributions of the electron density in a plasma produced by helicon waves and the correspond-
ing wave amplitudes and phases are studied experimentally. The measurements were carried out in an argon
plasma at a pressure of 3 mtorr and at an input RF power of up to 600 W. The magnetic field was varied in the
range from 0 to 200 G. The efficiency of plasma production in both uniform and nonuniform fields is investi-
gated. It is shown that, in a nonuniform magnetic field, the electron density can be substantially increased (up
to 5 × 1012 cm–3) by placing an antenna in the region in which the magnetic field is weaker than in the main
plasma. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, helicon plasma sources hold great prom-
ise for plasmochemical technologies in microelectron-
ics. Helicon sources are capable of creating a plasma
with an electron density from 1012 to 1013 cm–3 at a gas
pressure of about 1 mtorr in relatively weak magnetic
fields in the range 50 to 100 G. In such a plasma, the
electron temperature is, as a rule, no higher than 3–
4 eV. The parameters of a helicon plasma and the struc-
ture of helicon waves (helicons) were studied in [1–8].
Among the most challenging problems are those
related to the observed rapid damping of helicons and
the high efficiency of gas ionization in the field of a hel-
icon wave. Thus, in order to interpret the experimen-
tally observed values of the absorption coefficients of
helicon waves, it is necessary to introduce an effective
electron collision frequency that exceeds the binary
collision frequency by one order of magnitude or more.

The main collisionless mechanisms responsible for
high ionization efficiency are the trapping of electrons
by the longitudinal electric field of a helicon wave [8].
The phase velocities of helicons along the magnetic
field correspond to electron energies in the range 20–
100 eV and, accordingly, to peaks in the ionization
cross sections for most gases. That these mechanisms
are indeed important is confirmed by the observed
emission spectra of argon ions (ArII) that move along
the magnetic field at a speed corresponding to the phase
velocity of a helicon wave [8, 9]. However, the lack of
data about the amplitude of the longitudinal electric
field of a helicon wave raises the question of whether
the wave is capable of trapping a sufficient number of
electrons to provide the observed level of ionization
and the wave damping rate [10].

A mechanism for the efficient damping of a helicon
wave was proposed in [11, 12] and was refined in [13–
17]. This mechanism is associated with the possible
conversion of helicons into electrostatic waves in a
magnetized plasma [18]. In contrast to helicon waves,
1063-780X/01/2708- $21.00 © 0699
electrostatic waves, which are often referred to as Triv-
elpiece–Gould (TG) waves, are damped in a plasma at
a fairly high rate. In particular, in [11, 13, 14], it was
suggested that both helicons and TG waves can be
strongly coupled at the jump in the plasma density near
the dielectric wall that confines the plasma. As a result,
helicons are damped by their linear conversion into TG
waves at the plasma boundary, while TG waves experi-
ence a strong collisional damping by the plasma elec-
trons. Strictly speaking, at the plasma boundary, the
electron density does not undergo a jump but instead
decreases to zero across a transitional layer, so that the
question remains open of whether the plasma inhomo-
geneities are strong enough to explain the damping of
helicon waves as being due to their conversion into
electrostatic waves.

Most studies devoted to helicon waves deal with a
uniform magnetic field. As was shown by Chen [19],
who studied helicon waves in a plasma column 4 cm in
diameter in a nonuniform magnetic field of 560 G, the
magnetic field nonuniformities may act to substantially
increase the electron density. However, the physical
nature of this phenomenon remained unclear. Further
research on helicon plasma sources [20–22] showed
that, even for the same input power, the electron density
in a nonuniform magnetic field may be markedly higher
than in a uniform field. Our purpose here is to investi-
gate the spatial distribution of the electron density and
to determine the structure of a helicon wave in both uni-
form and nonuniform magnetic fields for plasma
dimensions characteristic of helicon plasma sources
used in microelectronic technologies.

2. EXPERIMENTAL DEVICE

A schematic of the helicon plasma source is shown
in Fig. 1. The plasma is produced in a cylindrical glass
tube 15 cm in diameter and 40 cm in length. A steel
chamber 26 cm in diameter and 24 cm in length is con-
2001 MAIK “Nauka/Interperiodica”
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nected to the tube. The tube and the chamber are placed
in a constant magnetic field created by three 32-cm-
diameter individual coils (a, b, and c) separated by a
distance of 30 cm. The magnetic field was varied from
0 to 200 G. The three coils make it possible to create a
uniform magnetic field as well as a magnetic field with
the desired gradients inside the tube and chamber. The
experiments were carried out with two magnetic con-
figurations: a uniform configuration created by the
three coils carrying the same current and a nonuniform
configuration created by the two lower coils (the cur-
rent in the upper coil a was switched off). Figure 2 illus-
trates the magnetic field strength along the common
symmetry axis of the tube and the discharge chamber
for both of these configurations. The zero point of the
z-axis corresponds to the position of the antenna. Heli-
con waves are excited by a loop antenna in the form of
a two-turn coil 16 cm in diameter wrapped around the
glass tube in the plane perpendicular to the symmetry
axis. The antenna, which excites an m = 0 helicon wave,
is connected by a matching unit to a 13.56-MHz RF
oscillator with a power of up to 700 W. In the experi-
ments, we measured the powers of the incident and
reflected waves and the RF voltage at the antenna. The
power of the reflected wave was always measured to be
lower than 7% of the power of the incident wave. The
experiments were carried out with the discharge cham-
ber, which was pre-evacuated to a pressure of 10–5 torr
and through which argon was passed at a pressure of
3 mtorr.

‡

b

c

123

Matching 
unit

13.56-MHz
oscillator

Fig. 1. Schematic of the experimental device: (1) Langmuir
probe, (2) magnetic probe for measuring the magnetic field
of a helicon wave, and (3) ion energy analyzer.
The electron density and plasma potential were
measured by a Langmuir probe (1) 300 µm in diameter
and 2 mm in length. Inside the chamber, the probe
could be moved in both the longitudinal and radial
directions. The electron density was determined
from the ion saturation current at a probe potential of
−100 eV:

(1)

where Isat is the ion saturation current, e is the electron
charge, A is the probe area, mi is the mass of an ion, and
Te is the electron temperature.

The RF magnetic field of a helicon wave (or, more
precisely, the Bz-component, parallel to a constant mag-
netic field) was measured by a one-turn magnetic probe
10 mm in diameter oriented perpendicular to the con-
stant magnetic field. The magnetic probe was placed
inside a quartz tube 15 mm in diameter coaxial with the
discharge chamber and could be moved in the longitu-
dinal direction. Our investigations of helicon dis-
charges showed that placing the quartz tube at the dis-
charge axis reduces the electron plasma density by at
most 10%. The signal from the probe was fed to an
oscillograph through a cable loaded with a resistance
equal to the wave impedance. The voltage V(t) at the
probe was calculated by the formula

(2)

Ne Isat/0.54eA( )
mi

Te

-----,=

V t( ) πr
2ω

c
----Bz,=

20
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z, cm
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1
2

Fig. 2. Configurations of (1) uniform and (2) constant non-
uniform magnetic fields H.
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where Bz is the z-component of the magnetic field of a
helicon wave, r is the probe radius, ω is the angular fre-
quency of the RF magnetic field, and c is the speed of
light.

3. EXPERIMENTAL RESULTS

Figure 3 shows how the electron density Ne in a hel-
icon discharge plasma depends on the strength H of the
constant magnetic field. The profiles presented were
measured in a uniform magnetic field at different dis-
tances z from the center of the antenna for an input
power of 300 W. The input power is defined as the dif-
ference between the powers of the incident and
reflected waves.

From Fig. 3, we can see that, near the antenna (z =
4.5 cm), the electron density reaches its maximum at
H ~ 25 G and then decreases with increasing magnetic
field. At distances farther away from the antenna (z =
10 cm), the electron density decreases from its maxi-
mum value more gradually and then starts to increase
again, reaching a second maximum at H ~ 45 G. At dis-
tances of 15 and 22 cm, the electron density in a plasma
produced by helicons propagating from the antenna is
the highest at a magnetic field of about 60 G. We can
also see that, the stronger the magnetic field, the more
gradual is the decrease in the electron density with dis-
tance from the antenna.

An analysis of Fig. 3 allows us to conclude that, for
an input power of 300 W, the optimum magnetic field
near the loop antenna is about 20 G. Within about 20 cm
from the antenna, the optimum magnetic field for
plasma production ranges between 50 and 60 G. These
two optimum magnetic field strengths can be made
consistent by reducing the magnetic field in a local
region near the antenna (or, in other words, by produc-
ing the plasma in a nonuniform magnetic field). For this
purpose, we carried out a series of experiments in
which the current in magnetic coil a was switched off.
As a result, the magnetic field near the antenna became
approximately two times weaker than in the discharge
chamber (Fig. 2). Figure 4 displays the dependence of
the electron density on the strength of a nonuniform
magnetic field at the chamber axis at a distance of
30 cm from the antenna. The profiles shown in Fig. 4
were measured for an input power of 300 W. A compar-
ison between Figs. 3 and 4 shows that, in a nonuniform
magnetic field, the behavior of the electron density dif-
fers radically from that in a uniform magnetic field. In
fact, even near the antenna, we observe no substantial
reduction in Ne as the magnetic field increases. At a dis-
tance of 22 cm from the antenna, the electron density Ne

increases monotonically with the magnetic field; this
indicates that, in a nonuniform field, the electron den-
sity decreases far more gradually with distance from
the antenna. As a result, at distances of 15 and 20 cm,
the electron density in a nonuniform field is, respec-
tively, three and seven times the maximum electron
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
density of the plasma produced in a uniform magnetic
field, provided that the input RF power is the same
(300 W). Hence, with a nonuniform magnetic field, it is
possible to achieve significantly higher electron densi-
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Fig. 3. Electron density Ne vs. uniform magnetic field ç for
W = 300 W at different distances from the antenna: z =
(1) 4.5, (2) 10, (3) 15, and (4) 22 cm.

Fig. 4. Electron density Ne vs. nonuniform magnetic field H
for W = 300 W at different distances from the antenna: z =
(1) 4.5, (2) 15, and (3) 22 cm.
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ties; moreover, the greater the distance from the
antenna, the larger is the amount by which the electron
density Ne can be increased.

In order to gain a clearer insight into the effect of the
magnetic field nonuniformity on the plasma properties
of a helicon discharge, we measured the electron den-
sity as a function of the strength of both uniform and
nonuniform magnetic fields for three different input
powers (300, 450, and 600 W) at two fixed distances
from the antenna (4.5 and 22 cm). For a uniform mag-
netic field, the profiles of the electron density Ne mea-
sured at a distance of 4.5 cm from the antenna for input
RF powers of 300, 450, and 600 W are displayed in
Fig. 5. Figure 6 presents the same profiles but for a non-
uniform magnetic field. We see from Fig. 5 that, regard-
less of the value of the input power, the electron density
Ne decreases as the magnetic field is increased to more
than 20 G. However, for input powers of 450 and
600 W, the electron density Ne starts to increase again
when the magnetic field exceeds 100 G. For a nonuni-
form magnetic field, the electron density behaves in a
radically different manner (Fig. 6): for an input power
of 300 W, Ne increases as the magnetic field is increased
up to 80 G; for an input power of 450 W, it increases as
the field is increased up to 100 G; and, for an input
power of 600 W, it increases as the field is increased up
to 120 G. Moreover, the maximum achievable electron
density is approximately three times that for a uniform
magnetic field. Analogous profiles measured at a dis-
tance of 22 cm from the antenna are displayed in Figs. 7
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Fig. 5. Electron density Ne vs. uniform magnetic field H at
a distance of 4.5 cm from the antenna for different input RF
powers: W = (1) 300, (2) 450, and (3) 600 W.
and 8. We again see that, for a nonuniform magnetic
field, the electron density Ne increases monotonically
with the magnetic field and reaches values seven times
higher than those for a uniform magnetic field.

An important point here is that, in a nonuniform
magnetic field, the electron density increases only
when the field near the antenna is weaker than the field
in the main plasma. If this is not the case, the situation
is reversed.

Radial profiles of the electron density measured at
distances of 4.5 and 22 cm from the antenna for an
input power of 300 W are shown in Figs. 9 and 10,
respectively. We can see that, in a nonuniform magnetic
field, the profiles are somewhat narrower. Conse-
quently, the increase in the electron density at the dis-
charge axis in a nonuniform magnetic field cannot be
attributed to the radial redistribution of the electron
density Ne. The density Ne increases because, in a non-
uniform field, the helicon wave field ionizes the gas
more efficiently.

In order to clarify the physical nature of such a sig-
nificant increase in the efficiency of plasma production
in a nonuniform magnetic field, we carried out mag-
netic probe measurements of the amplitude and phase
of a helicon wave as well as their profiles along the
plasma axis. Specifically, we measured the Bz compo-
nent of the RF magnetic field of a helicon. Figure 11
shows the amplitude of a standing helicon wave mea-
sured as a function of distance from the antenna for an
input power of 600 W in uniform magnetic fields of 50,
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Fig. 6. Electron density Ne vs. nonuniform magnetic field H
at a distance of 4.5 cm from the antenna for W = (1) 300,
(2) 450, and (3) 600 W.
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100, and 150 G, which correspond to the regions where
the electron density Ne in Figs. 5 and 7 is decreasing, at
a minimum, and increasing, respectively. Analogous
longitudinal profiles measured in nonuniform magnetic
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Fig. 7. Electron density Ne vs. uniform magnetic field H at
a distance of 22 cm from the antenna for W = (1) 300,
(2) 450, and (3) 600 W.

Fig. 9. Radial profiles of Ne at a distance of 4.5 cm from the
antenna in uniform magnetic fields of H = (1) 45 and
(2) 90 G and in nonuniform magnetic fields of H = (3) 45
and (4) 90 G.
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fields are presented in Fig. 12. It is of interest to note
that, the stronger the magnetic field, the larger the
amplitude of a helicon wave, although there is a dip in
the dependence of Ne on the uniform field H at
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Fig. 8. Electron density Ne vs. nonuniform magnetic field H
at a distance of 22 cm from the antenna for W = (1) 300,
(2) 450, and (3) 600 W.

Fig. 10. Radial profiles of Ne at a distance of 22 cm from the
antenna in uniform magnetic fields of H = (1) 45 and
(2) 90 G and in nonuniform magnetic fields of H = (3) 45
and (4) 90 G.
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H ~ 100 G. It can be seen in Figs. 11 and 12 that the
wave amplitudes in uniform and nonuniform magnetic
fields are comparable. An important difference is that,
in a uniform magnetic field, the main peaks in the wave
amplitude occur to the left of the antenna (i.e., they are
remote from the reaction chamber). In a nonuniform
magnetic field, the main peaks occur in the region
where the field is stronger (i.e., they are closer to the
reaction chamber). Thus, at a distance of 22 cm from
the antenna, the wave amplitudes in uniform and non-
uniform magnetic fields differ by a factor of approxi-
mately five. This value is close to the ratio of the related
electron densities Ne. However, at a distance of 4.5 cm
from the antenna, the wave amplitudes are comparable,
while the corresponding electron densities Ne differ by
a factor of three. Hence, we can conclude that there is
no direct correlation between the amplitude of a helicon
wave and the electron plasma density.

Figure 13 shows how the phase of a helicon wave
changes with distance from the antenna in both uniform
and nonuniform magnetic fields. The longitudinal pro-
files were measured in a plasma with a magnetic field
of 100 G for an input power of 600 W. One can see that
the wave phase velocities in uniform and nonuniform
fields differ only slightly: in both cases, they are equal
to about ~3.5 × 108 cm/s.

4. DISCUSSION OF THE RESULTS

In order to estimate the efficiency of a helicon dis-
charge, we determine the fraction of the input RF power
that is expended directly in ionizing the gas. To do this,
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Fig. 11. Amplitude Bz of the longitudinal component of the
helicon field vs. z for W = 600 W in uniform magnetic fields
of H = (1) 60, (2) 100, and (3) 140 G.
we must find the electron losses from the plasma. In a
plasma cylinder in a longitudinal uniform magnetic
field, the diffusion equation for the electrons can be
written as [23]

(3)

Here, Da is the coefficient of the ambipolar diffusion of
the electrons along the magnetic field (for an argon pres-
sure of 3 mtorr and an electron temperature of about
3 eV, we have Da = 106 cm2/s) and Si(r, z) [cm–3 s–1] is
the number of electrons produced in a unit gas volume
per second. The coefficient of electron diffusion across
the magnetic field, Dh, has the form

(4)

where De and Di are the electron and ion diffusion coef-
ficients, µe and µi are the electron and ion mobilities,
ωce and ωci are the electron and ion cyclotron frequen-
cies, and νe and νi are the electron–neutral and ion–neu-
tral collision frequencies.

The term Si(r, z) can be represented as

(5)

where R is the plasma radius, li is the characteristic ion-
ization length (for the conditions of our experiments, it
is approximately equal to 10 cm), χ01 = 2.44 is the root

Da
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Fig. 12. Amplitude Bz of the longitudinal component of the
helicon field vs. z for W = 600 W in nonuniform magnetic
fields of H = (1) 60, (2) 100, and (3) 140 G.
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of the Bessel function, and S is the number of electrons
produced near the antenna at the discharge axis per
1 cm3. As a result, Eq. (3) reduces to

(6)

where K = .

The boundary conditions for Eq. (6) have the form

 = 0 and n(L) = 0, where L = 35 cm and the point

z = 0 corresponds to the position of the antenna.

The total power Pi expended on gas ionization is
equal to

(7)

The results of calculations of the electron density at
distances of 4.5 and 22 cm from the antenna and the
total power Pi for magnetic fields of 50, 100, and 150 G
are summarized in the table. The ionization rate was
chosen so as to equate the electron densities to those
shown in Figs. 5 and 7 for an input power of 600 W. In
the table, the fraction of the input power expended on
ionizing the gas is denoted by η.

The electron temperature can be estimated from the
calculated results by using the empirical formula Ki =
7.93 × 10–8exp(–18.9/Te) [cm3/s] for the ionization rate
of argon gas [24] (see the corresponding column in the
table). The calculated temperatures are close to the tem-
peratures typical of helicon plasmas (about 3 eV). Note
that the calculations carried out with a Maxwellian dis-
tribution function and an ionization cross section in the
form of a step function with the height σi = 2 ×
10−16 cm2 yield somewhat higher temperatures: 3.7,
3.2, and 3 eV for magnetic fields of 50, 100, and 150 G,
respectively.

We can see that, in weak magnetic fields, the frac-
tion of the input power expended on gas ionization is
fairly high and amounts to 10%.
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In a nonuniform magnetic field, the electron losses
from the plasma are far more difficult to estimate. Nev-
ertheless, even under the assumption that the electron
losses in a nonuniform field are comparable to those in
the uniform field, the power expended on gas ionization
is markedly higher than 10% of the total input power.

Hence, the observed electron density can be main-
tained by heating the electrons to a temperature of
about 3 eV. The damping of helicons by electron colli-
sions is too weak to explain why the wave amplitude
decreases with distance from the antenna (as is shown
in Figs. 11 and 12). Consequently, the most probable
mechanism for gas ionization in a helicon discharge is
the conversion of helicon waves into electrostatic
waves, which are strongly damped by collisions of
electrons with neutral gas atoms, in which case the
electrons are heated to a temperature of about 3 eV.

Another possible mechanism by which the helicons
ionize the gas is the trapping of electrons by the helicon
field and subsequent gas ionization by the trapped elec-
trons, which move at the phase velocity of the wave.
Figure 11 shows that the longitudinal component Bz of
the magnetic field of a running helicon wave is about

0

50
z, cm

Phase, rad

1
2

2

6

30200–20–30 4010–10

3

4

5

7

1

Fig. 13. Phase of a helicon wave vs. z for W = 600 W in (1) a
uniform magnetic field of H = 100 G and (2) a nonuniform
magnetic field of H = 100 G.
Table

H, G Dh × 10–4 Ne × 10–11

(z = 22 cm)
Ne × 10–11

(z = 4.5 cm) S × 10–16 Pi , W Te , eV η, %

50 7.3 3.2 10 2 65 3.1 11

100 2 2.7 7 0.62 20 2.8 3.3

150 0.87 4.7 10 0.63 20.5 2.65 3.4
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6 G. The component Bz is related to the longitudinal
component Ez of the helicon field by [16]

(8)

where γ = 1 + iνe/ω, ωp is the plasma frequency, the
total wave vector k of a helicon wave is defined as k =

; k⊥  = 3.83/R is the transverse wave vector,
and k|| is the longitudinal wave vector. From Fig. 10, we
can see that k|| ~ 0.2–0.3 cm–1 and k = 0.56 cm–1. As a
result, using relationship (8), we find that the longitudi-
nal component Ez of the helicon field is about 1 V/cm.

The number of electrons that can be trapped by a
helicon wave is equal to [10]

(9)

where n is the number of electrons per unit volume, Vph
is the wave phase velocity (for our experimental condi-
tions, it is about ~3.5 × 108 cm/s), Vt is the thermal
velocity of electrons with a temperature of 3 eV, Vtr
denotes the width of the velocity range in which the
electrons can be trapped by the helicon field, ωtr is the
bounce frequency of the trapped electrons, and νph is
the rate of elastic collisions of an electron moving at the
wave phase velocity with neutral gas atoms. The quan-
tities Vtr , ωtr, and νph have the form

(10)

where m is the mass of an electron, σe is the elastic col-
lision cross section, and N0 is the gas density.

Using expression (9), we find that, for n = 1012 cm–3,
the number of electrons that can be trapped by a helicon
wave per unit volume is equal to ntr = 2.3 × 109 cm–3.
For a mean electron energy of 35 eV (which corre-
sponds to Vph = 3.5 × 108 cm/s), the ionization cross
section for argon atoms can be set equal to σI = 2 ×
10−16 cm2. As a result, the rate at which argon gas is ion-
ized by the trapped electrons is estimated as S = 1.6 ×
1016 cm–3 s–1, which is comparable to the above values
of the rates of the ionization of argon atoms by thermal
electrons with a temperature of about 3 eV (see table).
Hence, under our experimental conditions, both of the
possible ionization mechanisms are comparable in
importance.

We emphasize that a substantial increase in the elec-
tron density in a nonuniform magnetic field can also be
explained in terms of the collisionless ionization mech-
anism. According to formula (9), the number of elec-
trons that can be trapped by a helicon wave increases
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sharply as the wave phase velocity decreases. In turn,
the weaker the magnetic field, the lower the phase
velocity of a helicon. Consequently, in a nonuniform
magnetic field, a helicon wave near the antenna (where
the magnetic field is weaker and, accordingly, the phase
velocity is lower) can trap a larger number of electrons
than a wave with a phase velocity corresponding to the
strongest magnetic field. As the wave phase velocity
increases, the trapped electrons are accelerated to
higher energies [21]. However, the wave phase velocity
also depends on the electron plasma density Ne, Vph ~

, which is, in turn, far from being uniform. In
Fig. 11, the behavior of the wave phase in uniform and
nonuniform magnetic fields is nearly the same. How-
ever, since the number ntr of electrons that can be
trapped by the wave per unit volume is highly sensitive
to the wave phase velocity, even a slight difference in
the phase velocity may result in a significant difference
in the gas ionization rates.

It should be noted that the magnetic field gradients
in a plasma can enhance the coupling between the hel-
icon and electrostatic waves, thereby causing the heli-
cons to damp at a higher rate and the electron density to
increase. In fact, if there is a surface in the plasma col-
umn at which the wave vectors of the helicon and elec-
trostatic waves are the same, then the helicons are effi-
ciently converted into electrostatic waves near this sur-
face. The critical magnetic field at this surface is equal
to [13]

(11)

This formula shows that, for electron densities of
(3–4) × 1012 cm–3 (Fig. 6), the critical magnetic field
ranges between 120 and 140 G. Recall that, in the non-
uniform magnetic configuration under investigation,
the magnetic field near the antenna is two times weaker
than in the main plasma. Consequently, near the
antenna, the magnetic field is approximately equal to
30–60 G. This indicates that, between the antenna and
the main plasma, there may be a critical magnetic-field
region, in which the helicon waves are efficiently con-
verted into electrostatic waves.

5. CONCLUSION

We have investigated the electron density distribu-
tion in a magnetized plasma produced by helicon
waves. The measurements were carried out in both uni-
form and nonuniform magnetic fields. We have shown
that, in certain nonuniform magnetic configurations,
the efficiency of plasma production can be significantly
higher than in uniform configurations. We have also
investigated the distributions of the amplitude and
phase of a helicon wave in uniform and nonuniform
magnetic fields. We have analyzed the relative impor-
tance of two principal mechanisms for the damping of
helicons: the trapping of electrons by the longitudinal

Ne
1/2–

Hc 2ωp
mω
ek ||
--------.=
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helicon field and the conversion of helicon waves into
electrostatic waves. We have found that, under our
experimental conditions, these mechanisms may be
equally important.
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Abstract—The conversion of ethylene (ë2H4) at concentrations of 400 and 930 ppm in an air flow at a temper-
ature of 295 K is simulated. Ethylene is added to air either upstream of the discharge chamber or in the reaction
tube, downstream of a pulsed corona discharge. It is taken into account that the distribution of the gas compo-
nents in the discharge zone is nonuniform due to the streamer nature of the discharge. In the reaction tube, all
of the components are assumed to be uniform. Simulation results agree with the experiments carried out at volt-
age pulse amplitudes of 30 and 40 kV, a gas flow rate of 2–10 l/min, and a specific energy deposition of up to
0.15 J/cm3. It is shown that the ozone produced plays a governing role in the ë2ç4 conversion. It is found that
it is possible to minimize the energy spent on conversion by choosing the optimum pulse repetition rate and the
specific energy deposited per pulse. The presence of water vapor impedes the ethylene conversion and increases
the concentration of formaldehyde and methane. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Current interest in the conversion of hydrocarbons
with the help of nonequilibrium plasmas is related, on
one hand, to the problem of decreasing their concentra-
tion in diesel engine exhaust and, on the other hand, to
the influence of hydrocarbons on the decomposition of
nitrogen oxides.

The conversion of hydrocarbons in a barrier or
streamer discharge was studied experimentally in [1–
5]. The results from simulations [6] of the conversion of
some hydrocarbons (including ethylene, which is one
of the constituents of diesel engine exhaust) in a barrier
discharge are in reasonable agreement with the experi-
mental data. In [6], ethylene was assumed to be oxi-
dized by an OH radical via the production of an acti-
vated complex and the rate constants for the reactions
of the further ethylene conversion were estimated.
However, ozone was not considered to be a reagent,
although it was shown experimentally [1, 7] that é3
plays a governing role in the conversion of a number of
volatile organic compounds, including ethylene.

Interest in ethylene oxidation kinetics stems from
the following. Ethylene is one of the simplest hydrocar-
bons, and its oxidation exhibits features typical of the
oxidation of unsaturated hydrocarbons. For example, in
the production of soot, ethylene is an intermediate
reagent in the process of decomposition of more com-
plex hydrocarbons. It is also a key agent in the photo-
chemical production of urban smog. The mechanism
for C2H4 conversion depends substantially on the tem-
perature, pressure, and composition of the bulk gas and
the impurity composition [2, 8–11].

This paper is devoted to simulations of the removal
of ethylene from air with the help of a nanosecond
1063-780X/01/2708- $21.00 © 20708
streamer corona discharge. The experimental data are
taken from [7].

2. EXPERIMENTAL SETUP

Experiments on the removal of ethylene from air
were performed at the Institute for Environmental Pro-
tection Technology (Berlin, Germany). The experimen-
tal setup is described in [1, 7]. Air at atmospheric pres-
sure and room temperature was pumped through a reac-
tor, which consisted of a discharge chamber and
reaction tube. The gas composition was analyzed after
leaving the reaction tube. The discharge chamber was a
900-mm-long metal cylinder with an inner diameter of
100 mm. Voltage pulses were applied to a 2-mm-diam-
eter wire electrode located at the cylinder axis. The
reaction tube volume was 3.77 l. The energy deposition
in the streamer corona was varied by changing the rep-
etition rate f of nanosecond pulses from 1.1 to 26 Hz at
a constant voltage pulse amplitude. The maximum
value of the specific energy deposition W was
0.15 J/cm3 (42 W h m–3).

Three series of experiments were carried out. In the
first series, the direct and indirect methods for treating
synthetic air (20.5% of O2 in N2) at a constant gas flow
rate were compared in regard to the ethylene removal
efficiency. When treating air directly, ethylene was
added to the air before entering the discharge chamber.
When treating air indirectly, ethylene was added to the
air after passing through the discharge chamber, just
upstream of the reaction tube. The voltage pulse ampli-
tude was 30 kV. In the second series of experiments, the
efficiency of ethylene removal from synthetic air via
direct treatment was studied as a function of the gas
flow rate at a constant voltage pulse amplitude of 40 kV.
001 MAIK “Nauka/Interperiodica”
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In the third series of experiments, the removal of ethyl-
ene from room air was studied under the same condi-
tions.

3. SIMULATION OF ETHYLENE CONVERSION

Numerical simulations of ethylene removal are
based on an approximate mathematical model for
cleaning gas of toxic additives using a pulsed streamer
discharge [12–15]. The model takes into account that
the distribution of gas components in the discharge
chamber is nonuniform because of the production of
active particles in the streamer channels. Calculations
were performed for a sequence of pulses. After each
pulse, the change in the gas composition caused by
chemical reactions and diffusion processes inside and
outside the streamer channel was examined. The gas
composition at the outlet of the discharge chamber was
taken as the initial composition in simulations of chem-
ical kinetics in the reaction tube. The distribution of gas
components in the reaction tube was assumed to be uni-
form. The RADICAL numerical code [12, 13, 16] and
a chemical kinetics code developed by M.B. Zhelezn-
yak and E.A. Filimonova [16] were employed to model
the processes in the discharge chamber and reaction
tube, respectively. Simulations incorporated 179 com-
ponents and 881 reactions.

In simulations, we used the following experimental
data: the energy deposited in the gas in the discharge
chamber (both per pulse Wdc and total W), the discharge
pulse repetition rate f , the gas flow rate Q, and the vol-
umes of the discharge chamber and reaction tube. We
specified the streamer radius (according to calculations
[17]); the specific energy deposited in the streamer Wst;
its fraction q spent on the production of active particles;
and the parameter F0 = Wdc/Wst , which determines the
volume fraction of the discharge chamber occupied by
streamers immediately after the end of the current
pulse. The parameter q, which depends on the discharge
conditions, implicitly accounts for the deviation of the
effective electric field from the theoretical value, the
mutual influence of the streamers, etc. It was set so as
to match the results of calculations to the experimental
data. The value of q was assumed to be independent of
the species and concentration of the toxic additive and,
for a given gas composition, independent of the pulse
repetition rate and gas flow rate.

The densities of active particles immediately after
the discharge pulse are determined by formula

(1)

where ni is the density of the ith component, which is
produced in collisions between the molecules of the jth
component of the bulk gas with electrons; xj is the mole
fraction of the jth component; wst = qWst is the specific

ni

Gijx jwst

j
∑

100
---------------------------,=
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
energy spent on the production of active particles; and
Gij are the G factors, which determine the number of
particles of the ith species produced from the molecules
of the jth species per 100 eV of energy deposited in the
gas. The G factors depend on the electric field E at the
streamer head and the gas composition. They were
taken from [17, 18] for E = 100 kV/cm, which is char-
acteristic of a streamer discharge in air [17], and were
recalculated taking into account the gas molar compo-
sition.

The variations in the concentrations of the gas com-
ponents due to chemical reactions and diffusion inside
and outside the streamer channel were determined by
solving the set of ordinary differential equations [12–
15]. The densities calculated by formula (1) were taken
as the initial conditions.

4. RESULTS AND DISCUSSION

4.1 Comparison of the Direct and Indirect Methods
for Treating Synthetic Air

The simulated dependences of the ethylene removal
efficiency (with allowance for chemical processes in
the reaction tube) on the specific deposited energy W
are shown in Fig. 1. The figure also shows the experi-
mental data from [7]. Each point (both experimental
and simulated) corresponds to a certain repetition rate
within the 1.79- to 11.13-Hz range and the specific
energy deposition Wdc = (1.9–3.5) × 10–5 J/cm3. The ini-
tial ethylene concentration [C2H4]0 was 400 ppm; for
both direct and indirect treating, the gas flow rate was
Q = 2 l/min. The simulation results are in good agree-
ment with the experiment. The gas stays in the dis-
charge chamber and reaction tube for 212 and 113 s,
respectively. It can be seen in Fig. 1 that the ethylene
removal efficiency is higher when ethylene is prelimi-

20

0.010 0.02 0.03 0.04 0.05 0.06
W, J/cm3

40

60

80

100
DeC2H4, %

1
2

Fig. 1. Degree of ethylene removal vs. specific energy dep-
osition for (1) direct and (2) indirect treating of synthetic air
at a voltage pulse amplitude of 30 kV and gas flow rate of
2 l/min. The curves and symbols show the simulation and
experimental results, respectively.
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narily treated in the discharge chamber. For a degree of
ethylene removal of 90%, the energy spent on the
decomposition of one C2H4 molecule is about 40 eV.

When modeling these experiments, it was assumed
that all of the specific energy Wst deposited in the
streamer was spent on the production of active particles;
i.e., q = 1. In simulations, Wst was set at 0.002 J/cm3. The
initial densities of active particles calculated by for-
mula (1) are shown in the table.

The main reactions governing the ethylene conver-
sion in the discharge chamber after the first and 380th
discharge pulse at f = 1.79 Hz, Wdc = 3.5 × 10–5 J/cm3,
and W = 0.0133 J/cm3 are presented in diagrams in
Fig. 2. In both diagrams, there is a horizontal separating
string that indicates the sign of the time derivative of the
ethylene density. The main reactions (numbered as in
the full list of reactions) that lead to ethylene produc-
tion or loss are listed above and below this string,
respectively. Arrows show the directions of the pro-
cesses. The reactions are arranged in descending order
of their integral contribution, which is shown in the
right column in cm–3. The resultant change in the ethyl-
ene density is shown at the right end of the separating
string. The numerals in the central parts of the diagrams
show the time evolution of the reaction ratings. The
minus sign indicates that the rating is the same as at the
previous instant; a blank means that the rating is lower
than a certain threshold value. The rating is determined
by the absolute value of the time derivative of the den-
sity of the corresponding component due to its produc-
tion or loss at a given instant. The time scale and the
ethylene density are given at the bottom and top of each
diagram, respectively. Because of limited space, we do
not present here the data on the other reactions incorpo-
rated in the model.

It is seen in Fig. 2 that the reactions involving oxy-
gen atoms are the most important in the initial phase of

Initial densities of active particles in the streamer

No. Component Density, cm–3

1 O 2.25 × 1014

2 O2 (1∆) 2.15 × 1013

3 N 8.43 × 1013

4 3.00 × 1013

5 e 1.31 × 1014

6 O(1D) 1.34 × 1014

7 N+ 7.93 × 1012

8 9.32 × 1013

9 3.74 × 1014

10 N(2D) 7.93 × 1011

11 N(2P) 3.97 × 1011

O2
+

N2
+

N2
*

the diffusive expansion of the streamer channel during
a time of up to 10–3 s (reaction nos. 237 and 206).
Within the time interval 10–3–1 s, the reaction with
ozone (no. 875) is dominant. The rating of this reaction
changes with time: from 7 after the first pulse to 3 after
the 380th pulse. The rate constants of the reactions gov-
erning ethylene removal were taken as follows:

O + C2H4 ⇒  CHO + CH3,

k = 3.45 × 10–18T 2.08 cm3/s [19],

O + C2H4 ⇒  CH2CHO + H,

k = 2.0 × 10–18T 2.08 cm3/s [20],

O3 + C2H4 ⇒  products,

k = 1.2 × 10–14exp(–2630/T) cm3/s [21].

The time evolutions of the densities of some compo-
nents are plotted in Fig. 3. The ethylene density has a
feeble minimum due to the diffusive expansion of the
streamer channel and changes only slightly during one
pulse. In the reaction tube, the main reaction is the reac-
tion with ozone, which is produced in the discharge
chamber and does not react there. Thus, at f = 11.13 Hz
and Wdc = 3.5 × 10–5 J/cm3, the ethylene concentration
decreases from 400 ppm to 136 ppm in the discharge
chamber and to 88 ppm downstream of the reaction
tube.

Simulations show (Fig. 4) that the ethylene concen-
tration after the discharge chamber and before the reac-
tion tube is determined not only by the total energy dep-
osition but also the energy deposited per pulse, the
pulse repetition rate, and the duration of air treatment.
When treating air directly, the decrease in the pulse rep-
etition rate and the increase in the time during which air
stays in the discharge chamber (i.e., the increase in the
effective length of the chamber) stimulate ethylene con-
version in the discharge chamber. The circles in Fig. 4
show the final value of the ethylene concentration after
treating air in the reaction tube.

A comparison of curves 2 and 4 in Fig. 4 shows that,
for the same total energy deposition W = 0.0133 J/cm3

and the same energy Wdc deposited per pulse, the con-
version efficiency in the discharge chamber is higher
for a lower repetition rate. Thus, at a repetition rate of
f = 1.79 Hz (mode 2), the decrease in the ethylene con-
centration in the discharge chamber is larger than that
at f = 11.13 Hz (mode 4) by 55 ppm. However, the
amount of ozone produced in mode 4 is larger; as a
result, the resultant degree of ethylene conversion
downstream of the reaction tube in mode 2 is higher
than that in mode 4 by only 2.5%. The reason for this is
that ozone begins to be produced with a certain delay
after the current pulse; hence, it starts to actively react
with ethylene only at the end of the pause between the
pulses (see Figs. 2, 3). The longer the pause between
the pulses (i.e., lesser the repetition rate f), the larger the
number of ozone molecules that react with C2H4.
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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520 C2H5 + O2 ⇒ C2H4 + HO2
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Fig. 2. Main reactions governing ethylene conversion in the discharge chamber after (a) the first and (b) 380th discharge for f =
1.79 Hz, Wdc = 3.5 × 10–5 J/cm3, and W = 0.0133 J/cm3.

(a)

(b)
For the same repetition rate and a fixed value of W,
it is preferable to decrease the energy deposited per
pulse and increase the duration of gas treatment. This is
seen from the comparison of curves 3 and 4 in Fig. 4 for
W = 0.0566 J/cm3 and f = 11.13 Hz. At Wdc = 2.4 ×
10−5 J/cm3 (mode 3), the decrease in the ethylene con-
centration in the discharge chamber is higher than that
at Wdc = 3.5 × 10–5 J/cm3 (mode 4) by 30 ppm. Again,
since the amount of ozone produced in mode 4 is larger,
the resultant degree of ethylene conversion downstream
of the reaction tube in mode 3 is higher than that in
mode 4 by only 3%. The reason for this is that the num-
ber of pulses in mode 3 is larger than in mode 4 (2360
and 1586, respectively) and the rate at which active par-
ticles are produced increases from pulse to pulse.

We note that, in simulations, not only the energy
deposited per pulse, but also the volume fraction occu-
pied by streamers is larger for mode 4 [15]. In principle,
this stimulates the conversion process in the discharge
chamber. Thus, for Wdc = 3.5 × 10–5 J/cm3 (mode 4), we
have F0 = 0.0175, whereas for Wdc = 2.4 × 10–5 J/cm3

(mode 3), we have F0 = 0.012. However, this factor has
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a smaller effect on the conversion efficiency than the
increase in the number of pulses at a constant repetition
rate.
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10
n, 1015 cm–3

C2H4

O
O3

 Time, s

Fig. 3. Densities of the components vs. time after the 151th
discharge at W = 0.0053 J/cm3, the other parameters being
the same as in Fig. 2.
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In experiment [7], the value of Wdc was fairly large
(larger than in many experiments with corona streamer
discharges). Consequently, the volume fraction occu-
pied by streamers was also high, which means that the
experimental conditions of [7] were not optimum for
ethylene conversion (providing that conversion occurs
in the discharge chamber only).

This is not the case for indirect treating because the
ozone production in the discharge chamber is indepen-
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DeC2H4, %
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Fig. 4. Simulated ethylene concentration vs. specific energy
deposition under different conditions: (1) f = 1.79 Hz and
Wdc = 2.4 × 10–5 J/cm3, (2) f = 1.79 Hz and Wdc = 3.5 ×
10−5 J/cm3, (3) f = 11.13 Hz and Wdc = 2.4 × 10–5 J/cm3,

and (4) f = 11.13 Hz and Wdc = 3.5 × 10–5 J/cm3. The curves
and the circles show the simulated concentrations in the dis-
charge chamber and downstream of the reaction tube,
respectively. Conditions 2 and 3 are the same as in expe-
riment.

Fig. 5. Degree of ethylene removal from synthetic air vs.
specific energy deposition for (1) Q = 2 l/min and [C2H4]0 =
400 ppm, (2) Q = 5 l/min and [C2H4]0 = 400 ppm, and
(3) Q = 2 l/min and [C2H4]0 = 934 ppm. The voltage pulse
amplitude is 40 kV. The curves and symbols show the sim-
ulation and experimental results, respectively.
dent of both f and Wdc and depends only on the total
energy deposition W (e.g., for W = 0.045 J/cm3, the
ozone concentration amounts to 425 ppm). In the dis-
charge chamber, only ozone is produced; i.e., the dis-
charge chamber acts as an ozonizer and é3 reacts with
ethylene only in the reaction tube.

4.2. Efficiency of Ethylene Removal from Synthetic Air 
as a Function of the Gas Flow Rate and Initial Ethylene 

Concentration

The data on the ethylene removal efficiency for dif-
ferent gas flow rates and initial concentrations of C2H4
are presented in Fig. 5. Experiments were carried out at
a voltage pulse amplitude of 40 kV. In this series of sim-
ulations, we set q = 0.85 and wst = 0.85 × Wst; conse-
quently, the concentration of active particles amounted
to 85% of the previous value. Such an approach was
previously used in [12–17]. Each experimental point
corresponds to a certain pulse repetition rate at a nearly
constant deposited energy of Wdc = 9 × 10–5 J/cm3. For
an initial concentration of [C2H4]0 = 400 ppm, the rep-
etition rate varied from 1.1 to 6.42 Hz for a gas flow rate
of Q = 2 l/min and from 1.81 to 12.5 Hz for Q = 5 l/min.
For [C2H4]0 = 934 ppm, the repetition rate varied from
1.1 to 8.3 Hz. The lower energy deposition W corre-
sponded to the lower repetition rate.

In both simulations and experiments, for an interme-
diate energy deposition of W = 0.04–0.09 J/cm3, the
degree of ethylene conversion at Q = 2 l/min was higher
than at Q = 5 l/min by 15%. This is related to the differ-
ent repetition rates f (and, therefore, different durations
of gas treatment between the pulses) and different times
during which the gas stays in the reaction tube: 113 s
for Q = 2 l/min and 45 s for Q = 5 l/min.

It can be seen in Fig. 5 that, under the above param-
eters, simulations are in reasonable agreement with the
experiment.

4.3 Efficiency of Ethylene Removal from Room Air
as a Function of the Gas Flow Rate

Both simulations and experiments were carried out
under the same conditions as for synthetic air (see Sec-
tion 4.2). According to the measurements of the dew
point, the concentration of water vapor in air was
approximately 0.45%. The simulation results for
[C2H4]0 = 400 ppm and Q = 2, 5, and 10 l/min are shown
in Fig. 6. As in the case of synthetic air, for Q = 2 and
5 l/min, agreement between the simulations and exper-
iment is good, whereas for Q = 10 l/min, it is worse. It
is experimentally shown that ozone production is lin-
early proportional to the gas flow rate and decreases as
the water content in air (both room and synthetic)
increases in the absence of ethylene. This behavior is
more pronounced at a voltage pulse amplitude of 30 kV
than at 40 kV. The production of ozone at Q = 10 l/min
exceeds that at Q = 2 l/min by 15%. This difference,
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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which is possibly related to the wall effect, was not
taken into account in the simulations.

In the presence of water vapor in the discharge cham-
ber, the reaction of ethylene with hydroxyl (reaction
no. 390 in Fig. 2, k = 3.32 × 10–12exp(–483/T) cm3/s [8])
becomes more important. Downstream of the discharge
chamber, a decrease in the ethylene concentration is
more pronounced than in the case of synthetic air. On
the other hand, the presence of hydroxyl radicals
reduces the oxygen atom density and impedes ozone
production; as a result, the role of the reaction tube
decreases. With this tube, under the same conditions,
the degree of ethylene removal from room air is lower
than that from synthetic air by 2–4% over the entire
range of Q under study. At Q = 2 l/min, the energy spent
on the conversion of one ethylene molecule is about
50 eV at a conversion efficiency of 90%. Moreover, an
additional amount of formaldehyde and methane is pro-
duced; their concentrations increase by a factor of 2 as
compared to the case of synthetic air and attain 40–
50 ppm. The substitution of one toxic component with
another (e.g., with unreacted ozone) makes it necessary
to determine the total gas toxicity before and after treat-
ment.

5. CONCLUSION

The removal of ethylene from air is simulated under
different conditions of the excitation of a pulsed corona
discharge. Simulation results are in good agreement
with the experiment. Simulations show that it is possi-
ble to increase the removal efficiency at a constant total
energy deposition by choosing the optimum pulse rep-
etition rate and the energy deposited per discharge
pulse and by using a reaction tube placed downstream
of the discharge chamber.

It is shown that the removal of ethylene from air is
related to the synthesis of ozone, whose concentration
in the discharge chamber increases from pulse to pulse.

DeC2H4, %
100

80

60

40

20

0 0.02 0.04 0.06 0.08 0.10

1
2
3
1a
2a
3a

W, J/cm3

Fig. 6. Degree of ethylene removal from room air vs. spe-
cific energy deposition for Q = (1, 1a) 2, (2, 2a) 5, and
(3, 3a) 10 l/min at [C2H4]0 = 400 ppm and a voltage pulse
amplitude of 40 kV. The curves and symbols show the sim-
ulation and experimental results, respectively.
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Between the discharge pulses, the ozone concentration in
the streamer channel reaches its maximum 10–4–10–2 s
after the discharge. If the repetition period is longer
than this time, then most of the produced ozone has
enough time to react with ethylene between the dis-
charge pulses. In the presence of water vapor, the ethyl-
ene concentration decreases in reactions with hydroxyl;
however, in this case, the concentrations of formalde-
hyde and methane increase. At Q = 2 l/min, the energy
spent on the conversion of one ethylene molecule is ~40
and ~50 eV for voltage pulse amplitudes of 30 and
40 kV, respectively. The dependence of the ethylene
removal efficiency on the gas flow rate at a constant
energy deposition is related to the different pulse repe-
tition rates and different times during which the gas
stays in the reaction tube.

The ozone produced that has not reacted with ethyl-
ene in the discharge chamber acts to decrease the ethyl-
ene concentration in the reaction tube, thus increasing
the overall efficiency of ethylene removal and decreas-
ing the energy spent on the conversion of one ethylene
molecule. The rate constant of the reaction between
ozone and C2H4 is low; hence, an important role is
played by the time during which they interact. The
same is true for the removal of nitrogen oxides from air
with the help of a barrier discharge [22]. For other toxic
additives (such as formaldehyde), only the processes in
the discharge chamber are important because, in this
case, the main reactions are those with hydroxyl and
atomic oxygen [15, 22].
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Abstract—Results are presented from experimental studies of the destruction of chlorofluorocarbon (CF2Cl2)
molecules in a methane–oxygen (air) gas mixture whose combustion is initiated by a high-current slipping sur-
face discharge. It is found that a three-component CH4 + O2(air)+ CF2Cl2 gas mixture (even with a considerable
amount of the third component) demonstrates properties of explosive combustion involving chain reactions that
are typical of two-component CH4 + O2 mixtures. Experiments show the high degree of destruction (almost
complete decomposition) of chlorofluorocarbons contained in the mixture during one combustion event. The
combustion dynamics is studied. It is shown that the combustion initiated by a slipping surface discharge has a
number of characteristic features that make it impossible to identify the combustion dynamics with the forma-
tion of a combustion or detonation wave. The features of the effects observed can be related to intense UV radi-
ation produced by a pulsed high-current surface discharge. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the problem of the destruction of chlo-
rine- and/or fluorine-containing materials attracts much
attention because these chemical compounds play a
major detimental role in worldwide ecology. Here, we
should mention, first of all, chlorofluorocarbons
(CFCs), which destroy the Earth’s ozone layer (e.g.,
CF2Cl2 and CFCl3); compounds capable of contributing
to the greenhouse effect (such as CF4); poison gases
accumulated in a number of countries; etc.

The above compounds are usually destroyed in
high-temperature furnaces. However, successful
attempts have recently been made to use thermally non-
equilibrium plasma chemistry to solve this problem.
For example, in [1], results are presented on the CFC
decomposition in pulsed discharges excited by high-
power microwave beams. In [2], data are reported on
the plasmochemical destruction of CFCs by a slipping
surface discharge or a spark excited in a gaseous
medium by a pulsed CO2 laser.

Experiments were performed in nitrogen, argon, or
air mixed with different chlorine- and fluorine-contain-
ing compounds. Experiments demonstrated a relatively
high efficiency of the plasmochemical decomposition
that was achieved at the cost of the electric energy
expenditure only. The energy cost of decomposition is

W = Pt/M ≈ 1 kW h/kg,

where P is the mean electric power consumption, t is
the treatment time, and M is the mass of material
treated. It follows from here that, for P . 1 kW, the pro-
duction rate of a plasmochemical reactor η is on the
order of 1 kg/h.
1063-780X/01/2708- $21.00 © 0715
This paper presents the results from experimental
studies of the decomposition of chlorine- and fluorine-
containing materials in a reactor in which the combus-
tion in a methane–oxygen (air)–CFC mixture is initi-
ated by an electric discharge. This experimental scheme
was adopted because it makes it possible to substan-
tially decrease the energy cost of plasmochemical
destruction and increase the reactor production rate by
utilizing chemical energy (i.e., the energy released dur-
ing the combustion of the mixture).

2. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in
Fig. 1. The reactor chamber (1) is a cylindrical quartz
tube with a diameter of ≈ 50 mm and length L = 100–
200 mm. The chamber is evacuated down to a pressure
of p0 < 10–2 torr and filled with a CH4 + O2 (air) + CFC
mixture at a pressure of 50 ≤ p ≤ 300 torr. Combustion
in this three-component gas mixture is initiated with the
help of a multispark discharge system (2).

The multispark discharge system is a set of elec-
trodes placed in a special way (see [3–6]) on a dielectric
(quartz, Teflon, or ceramic) tube with a diameter of
6 mm. The length of the metal–dielectric cylindrical
discharge chamber is ≈40 mm. The discharge system is
located near one of the end flanges of the reactor cham-
ber.

A high-voltage pulse applied to the electrodes ini-
tiates a high-current (I ≤ 1–10 kA) low-threshold slip-
ping discharge, which results in the formation of an
extended plasma sheath around the surface.
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental setup: (1) reactor chamber, (2) multispark discharge system, (3) high-voltage source, (4) FER-7 streak camera,
and (5) FEU-106 photomultipliers.
Such discharge systems have been widely used at
the Institute of General Physics of the Russian Acad-
emy of Sciences to generate dense hot collisionless
plasmas [3], produce metal plasmas [4], excite con-
verging toroidal shock waves in gaseous media [5, 6],
etc.

In this study, a discharge system based on a slipping
surface discharge is used for the first time to initiate the
combustion of a gas mixture.

The advantage of multielectrode metal–dielectric
discharge systems [3–6] is that they can be used in
almost any gas and gas mixtures over a wide range of
pressures (10–4 ≤ p ≤ 760 torr) and can produce fairly
dense plasma sheaths, which are the sources of intense
UV radiation [7].

As sources of high-voltage pulses, we used two gen-
erators with the following pulse parameters:

(i) A low-energy G1 generator with a pulse ampli-
tude of U . 40 kV, pulse duration of τ . 40 ns, and
pulse energy of E ≤ 0.2 J.

(ii) A high-energy G2 generator with U . 20 kV, τ .
20 µs, and E ≤ 30 J.

Below, the operation mode with the use of the G1 or
G2 generator will be referred to as the G1 or G2 mode,
respectively.

The content of CFCs and their destruction products
was measured from the absorption spectra of the gas-
eous phase with the help of a SPECORD M-80 infrared
spectrometer. The gas samples were taken after com-
bustion initiated by the multielectrode discharge sys-
tem.

The time evolution of the reactor luminescence was
studied with the help of an FER-7 (4) streak camera.
The slit of the streak camera was oriented along the
Z-axis of the chamber and its position was adjusted so
that one of the discharge gaps was in the viewing field
of the camera. The time characteristics of the lumines-
cence integrated over the spectrum were measured with
two FEU-106 photomultipliers (5); the light was fed to
them through fibers positioned at different distances
along the Z-axis of the reactor chamber (at distances of
Z1 ≤ 1 cm and Z2 = 8 cm from the discharge system).
Pyrometric measurements of the temperature of the
reactor chamber allowed us to estimate the temperature
of the gaseous medium after combustion initiated by a
slipping surface discharge.

3. EXPERIMENTAL RESULTS

The excitation of a pulsed slipping surface dis-
charge near the end of the reactor is accompanied by
gas combustion throughout the entire chamber volume.
As a result, the chemical composition of the gas mix-
ture changes substantially.

The table lists the characteristic compositions of
three-component CH4 + O2 + CF2Cl2 mixtures in which
explosive combustion can be initiated with discharges
excited along the multielectrode system in the G1 or G2
mode. The table also presents the degree of CFC
destruction produced by a single discharge initiating
combustion (in the table, NCFC is the density of
destroyed CFC molecules and ϕ is the degree of
destruction in percent).

As follows from the table, it is possible to initiate
combustion accompanied by substantial (from 80 to
99%) decomposition of initial CFC molecules over a
wide range of the total and partial pressures of the gas
components in the initial mixture. Note that the degree
of CFC decomposition depends only slightly on the
energy released in a slipping surface discharge initiat-
ing combustion. The CFC content in the initial gas mix-
ture is rather high: the partial CFC pressure ranges from
14 to 40% of the total pressure of the working mixture.

In spite of a substantial difference in the energy
released in the discharge during the high-voltage pulse,
the degree of CFC decomposition in the G1 and G2
modes is almost the same. On the other hand, the lumi-
nosity dynamics measured by the streak camera and
photomultipliers changes significantly when passing
over from the G1 mode to the G2 mode.

Figure 2 presents typical streak images obtained in
the G2 mode for different proportions of CH4, O2, and
CF2Cl2 in the mixture. Figure 3 shows typical wave-
forms of the signals from two photomultipliers posi-
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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Table

Original mixture, torr Mode NCFC, cm–3 ϕ, % Tube length L, cm

CH4 : O2 : Fr12 = 30 : 60 : 60 1 1.7 × 1018 85 14 (quartz)

Same 2 1.67 × 1018 83 Same

″ 2 1.62 × 1018 80 ″
″ 1 1.73 × 1018 86 ″
″ 1 1.73 × 1018 86 ″

CH4 : O2 : Fr12 = 30 : 60 : 15 2 4.8 × 1017 96 ″
CH4 : O2 : Fr12 = 30 : 60 : 60 2 1.68 × 1018 84 ″
CH4 : O2 : Fr12 = 60 : 60 : 60 2 1.62 × 1018 81 ″
CH4 : O2 : Fr12 = 60 : 120 : 60 2 1.99 × 1018 99.4 ″
CH4 : O2 : Fr12 = 60 : 120 : 90 2 2.94 × 1018 97.8 ″
CH4 : O2 : Fr12 = 60 : 120 : 120 2 3.6 × 1018 90 ″
CH4 : O2 : Fr12 = 60 : 120 : 60 1 1.98 × 1018 99 ″
CH4 : O2 : Fr12 = 60 : 120 : 60 1 1.98 × 1018 99 ″
CH4 : O2 : Fr12 = 30 : 60 : 30 1 9.54 × 1017 95.4 ″
CH4 : O2 : Fr12 = 30 : 60 : 45 1 1.49 × 1018 94.6 ″
CH4 : O2 : Fr12 = 30 : 60 : 60 1 1.75 × 1018 87.5 ″
CH4 : O2 : Fr12 = 15 : 30 : 9 1 2.87 × 1017 96 ″
CH4 : O2 : Fr12 = 15 : 30 : 9 1 2.94 × 1017 98 ″
CH4 : O2 : Fr12 = 15 : 30 : 9 2 2.86 × 1017 95.3 ″
CH4 : O2 : Fr12 = 30 : 60 : 60 2 1.8 × 1018 90 ″
CH4 : O2 : Fr12 = 30 : 60 : 30 2 9.84 × 1017 98.4 ″
CH4 : O2 : Fr12 = 15 : 30 : 15 2 4.77 × 1017 95.4 20 (glass)

CH4 : O2 : Fr12 = 15 : 30 : 15 2 4.76 × 1017 95.2 Same

CH4 : O2 : Fr12 = 15 : 30 : 15 2 4.76 × 1017 95.2 ″
CH4 : O2 : Fr12 = 15 : 30 : 15 2 4.81 × 1017 96 ″
CH4 : O2 : Fr12 = 60 : 120 : 30 1 9.66 × 1017 96.6 ″
CH4 : O2 : Fr12 = 60 : 120 : 30 1 9.9 × 1017 99 ″
CH4 : air : Fr12 = 30 : 300 : 15 2 4.6 × 1017 92 14 (quartz)

CH4 : air : Fr12 = 15 : 150 : 7.5 2 2.3 × 1017 92 ″
tioned on the reactor chamber axis (also obtained in the
G2 mode).

Typical streak images obtained with FER-7 in the
G1 mode and the corresponding waveforms of the pho-
tomultiplier signal are shown in Figs. 4 and 5.

The horizontal coordinate in the streak images cor-
responds to time, and the vertical coordinate corre-
sponds to the spatial displacement along the Z-axis.
The slit of the streak camera was oriented along the
Z-axis and covered one of the discharge gaps. Thus, it
was possible to trace the axial dynamics from the
instant of discharge ignition to times substantially
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exceeding the discharge duration. A vertical strip in the
left part of the image indicates the instant when the
high-voltage pulse is switched on. A bright spot in the
lower part of the strip shows the position of one of the
discharge gaps of the discharge system. The viewing
field of the streak camera extends to the opposite (free)
end of the reactor chamber. It is seen in Fig. 2 that,
when the discharge is excited by the G2 generator, the
combustion zone propagates from the discharge system
to the chamber in the form of a glowing wave whose
velocity varies in the range v z . (2.5 – 5.0) × 104 cm/s
depending on the CFC content in the mixture. This
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wave will be referred to as the primary wave. The glow
of the gas mixture in this wave is observed in a narrow
layer adjacent to the wave front.

It can be seen in Fig. 2 that the wave reaches the
opposite end of the chamber, reflects from it, and then
makes several oscillations related to the reflections
from the opposite ends of the reactor chamber. Then, a
secondary glow wave arises at the free end of the cham-
ber and starts propagating toward the discharge system
(Figs. 2b, 2c). The structure and propagation velocity
of the secondary wave differ from those of the primary
wave. The initial velocity of the secondary wave is
much higher than that of the primary wave (v z ≥ 2 ×
105 cm/s). As the secondary wave approaches the dis-
charge system, its velocity decreases to v z ≈ 2 ×
104 cm/s. Unlike the primary wave, the propagation of
the secondary wave is accompanied by a relatively uni-
form glow throughout the entire reactor volume filled
with a gas mixture under study. This allows us to con-

t

z

0.75 ms

1 
cm (‡)

(b)

(c)

Fig. 2. Typical streak images obtained with FER-7 in the G2
mode: (a) CH4 : O2 : CF2Cl2 = 30 : 60 : 0 torr, τd = 0;
(b) CH4 : O2 : CF2Cl2 = 30 : 60 : 15 torr, τd = 0; and
(c) CH4 : O2 : CF2Cl2 = 30 : 60 : 30 torr, τd = 0 (τd is the
delay time between the high-voltage pulse applied to the
discharge system and the start of sweeping).
clude that the secondary wave gives rise to a uniform
combustion of the gas mixture throughout the entire
volume of the reactor chamber.

A flare that appears near the free end and gives rise
to the volume combustion of the mixture also manifests
itself in the waveforms of the photomultiplier signals
shown in Fig. 3.

In both the streak images and the waveforms of the
photomultiplier signals, glow oscillations associated
with the waves propagating between the chamber ends
are seen against the background of uniform combus-
tion. The frequency of these oscillations depends only
slightly on the mixture composition and is determined
by the tube length. Thus, as the tube length decreases
from L1 = 20 cm to L2 = 13 cm, the oscillation fre-
quency increases from f1 = 2.2 × 103 Hz to f2 = 3.3 ×
103 Hz, so that the relation L1f1/L2f2 . 1 holds.

In the G1 mode, the dynamics of the mixture com-
bustion is generally the same (Figs. 4, 5); in particular,
the slipping surface discharge is accompanied by the
appearance of a glow wave near the left (initiating) end
of the chamber. This wave propagates toward the right
(free) end of the chamber. After a certain time delay, the
volume combustion begins and then occupies the entire
reaction zone of the chamber. However, the combustion
processes in the G1 and G2 modes differ quantitatively.
Thus, the velocity of the primary wave in the G1 mode
is nearly one order of magnitude lower than that in the
G2 mode (v z ≤ 3 × 103 cm/s) (Fig. 4a). Another charac-
teristic feature of the combustion process in the G1
mode is the generation of glow waves that follow the
primary wave at nearly the same velocity toward the
free end, but have a higher brightness and smaller front
width and originate outside the discharge system at a
certain distance ∆Z from it (Figs. 4a, 4b).

From a comparison of the waveforms of the photo-
multiplier signals in Figs. 3 and 5, it follows that the
combustion time of the gas mixture depends substan-
tially on the energy released in the initiating discharge
(it decreases with the pulse energy). Thus, this time
determined from the full width at half-maximum of the
photomultiplier signal is equal to nearly ∆τ ≈ 11 ms for
the G1 mode and G2 – ∆τ ≈ 3 ms for the G2 mode.

Pyrometric measurements of the temperature of the
reactor chamber allowed us to determine the tempera-
ture of the gaseous medium after combustion initiated
by a slipping surface discharge. The temperature is on
the order of 1000 K.

4. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

Electric discharge is one of the most widely used
tools for initiating the combustion of flammable gas-
eous mixtures (see, e.g., [8, 9]). As a rule, this is a low-
power spark excited between two electrodes immersed
in a flammable gaseous medium (as in an internal-com-
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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bustion engine). In this study, instead of a spark, we use
a high-current pulsed slipping surface discharge.

First of all, we note that the reactor glow, which is
detected by a streak camera and photomultipliers, can
certainly be ascribed to either the processes preceding
the combustion of a gas mixture under study or the
combustion itself. This is evidenced by the following
observations:

(i) The characteristic rise time and lifetime of the
glow last for ten milliseconds, which substantially
exceeds the discharge duration in the multielectrode
system (of about 0.5–5 µs) and the recombination time
of the discharge plasma.

(ii) The prolonged afterglow exists only in a flam-
mable gas mixture and is not detected, e.g., in argon,
nitrogen, or oxygen.

Therefore, the observed behavior of the glow can be
explained by neither the plasma propagation into the

1 ms

2

1

Fig. 3. Typical waveforms of the photomultiplier signals in
the G2 mode for CH4 : O2 : CF2Cl2 = 30 : 60 : 15 torr. The
upper and lower curves are the signals from the photomulti-
pliers positioned at distances of Z1 ≤ 1 cm and Z2 = 8 cm
from the discharge system, respectively.
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cylindrical chamber nor gasdynamic processes (a shock
wave generated by the discharge).

The measurements of the reactor chamber lumines-
cence reveal the following features that allow us to con-
clude that combustion initiated by a slipping surface
discharge is of particular interest for the physics of
combustion and explosion in gases.

The most interesting phenomenon in a three-compo-
nent gas mixture is the high rate of the combustion reac-
tion. Two-component flammable mixtures (such as a
methane–oxygen mixture) were studied in detail, e.g.,
in [8, 10, 11]. The ignition of a methane–oxygen mix-
ture (which is characterized by an explosive energy
release) is related to chain branching processes
described by the well-known reaction scheme.

With an addition of CFCs as a third component at a
partial pressure comparable with the methane and oxy-
gen (air) pressures, the realization of the chain process

t

z

0.75 ms

1 
cm

(‡)

(b)

(c)

Fig. 4. Typical streak images obtained with FER-7 in the G1
mode: (a) CH4 : O2 : CF2Cl2 = 30 : 60 : 10 torr, τd = 0;
(b) CH4 : O2 : CF2Cl2 = 30 : 60 : 10 torr, τd = 3.0 ms; and
(c) CH4 : O2 : CF2Cl2 = 30 : 60 : 10 torr, τd = 10.8 ms (τd is
the delay time between the high-voltage pulse applied to the
discharge system and the start of sweeping).
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becomes problematic, because the presence of a con-
siderable amount of chlorine- and fluorine-containing
molecules can suppress the chain interactions between
the constituents of the two-component methane–oxy-
gen mixture.1 Nevertheless, as follows from our exper-
iments, the chain combustion process occurs even in
the presence of the CFC (chlorine- and fluorine-con-
taining) component.

Hence, the new result is that the combustion of a
three-component methane–oxygen–CFC mixture is a
fast process.

From a physical standpoint, the time evolution of
the combustion initiated by a pulsed slipping surface
discharge is of considerable interest. When operating in
the G1 or G2 mode, the combustion of the gas mixture

1 Indeed, according to [9], under the conditions of high-tempera-
ture ignition, even a small addition of a noble gas to a methane–
oxygen mixture impedes its fast ignition.

2

1

2.5 ms

Fig. 5. Typical waveforms of the photomultiplier signals in
the G1 mode for CH4 : O2 : CF2Cl2 = 30 : 60 : 15 torr. The
upper and lower curves are the signals from the photomulti-
pliers positioned at distances of Z1 ≤ 1 cm and Z2 = 8 cm
from the discharge system, respectively.
and the destruction of its CFC component can be
divided into two stages: an induction stage preceding
the volume combustion of the mixture and the main
stage in which most of the chemical energy is released
and the two- or three-component mixture combusts.
The durations of these characteristic combustion stages
depend substantially on the energy released in the slip-
ping surface discharge initiating combustion; both of
these stages shorten with increasing energy.

A characteristic feature of the induction stage is
that, near the initiator surface, a glow wave arises that
propagates away from the discharge system toward the
free end of the chamber. In the G2 mode, this wave has
time to reflect several times from the ends of the cham-
ber during the induction stage. In the G1 mode, the pri-
mary wave only has time to approach the free end dur-
ing the induction stage.

The experimentally observed primary glow wave
cannot be identified with a slow combustion wave or
fast detonation wave described in the literature. First of
all, the presence of a relatively narrow glow region
adjacent to the wave front is not typical of both these
waves: the chain process initiated by a combustion or
detonation wave continues to develop explosively
behind the front and occupies the entire region through
which the wave has propagated. Moreover, the velocity
of the observed primary wave is higher than that of a
usual combustion wave, but much lower than the deto-
nation wave velocity.

The next combustion stage, in which the oscillatory
motion of the primary wave changes to a flare occupy-
ing the entire chamber and relatively uniform combus-
tion of the mixture as a whole, seems to be even more
unusual.

Hence, when combustion is initiated by a high-cur-
rent slipping surface discharge, the ignition process in
the regions far from the initiator differs substantially
from ignition by a usual low-power two-electrode spark
or metal filament heater. The conventional combustion
dynamics described by a thermal or detonation wave
propagating from the local heating (or breakdown)
region of a gas changes to a complicated sequence of
effects—the excitation of a glow wave propagating
away from the initiator and the subsequent relatively
uniform gas combustion occurring throughout the reac-
tor volume. In this case, the primary glow wave cannot
be identified as a combustion or detonation wave.

The combustion time of the gas mixture depends
substantially on the energy released in the initiating dis-
charge and decreases with increasing energy. This fea-
ture of the combustion initiated by a high-current slip-
ping surface discharge is also interesting from a physi-
cal standpoint. This effect also offers new opportunities
for applications, making it possible to influence the
combustion time of the methane–oxygen mixture
through the initiator parameters.

An analysis of the results obtained allows us to
assume that emission from a high-current surface dis-
PLASMA PHYSICS REPORTS      Vol. 27      No. 8      2001
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charge plays a decisive role in the observed combustion
dynamics. Presumably, the intensity of this emission
and its spectrum differ substantially from those of a
spark, which is usually employed as an initiator of com-
bustion in gas mixtures.

Specific features of a high-current (I . 102–5 × 103 A)
slipping discharge as a radiating object were previously
addressed in a number of papers. In particular, in [12],
it was pointed out that the emission spectrum of a slip-
ping discharge contains a considerable fraction of rela-
tively hard UV radiation, which ionizes the gas sur-
rounding the discharge and produces an anomalously
long-living plasma. In [13], the efficient volume
decomposition of CFCs in a gas mixture (argon–CFC
or air–CFC) filling the reactor was also attributed to the
specific features of the slipping discharge emission
resulting in photoionization, photoexcitation, and pho-
todissociation of the gas far from the region where
energy was released. In [7], UV emission from a slip-
ping surface discharge was measured directly for the
first time and it was shown that this emission was
enriched with the hard component as compared to the
Planckian spectrum.

The ability of a high-current surface discharge to
substantially influence (through its emission) the prop-
erties of a gas medium in a volume substantially
exceeding the volume occupied by the plasma can be
considered one of the distinctive features of this type of
gas discharge.

We may suggest that, in experiments with methane–
oxygen–CFC mixtures, a high-current discharge that
propagates along the surface of the discharge system
and occurs over a short period of time (from tens of
nanoseconds to several microseconds) not only initiates
plasmochemical reactions in the immediate vicinity of
the surface, but also changes the parameters of the gas
medium throughout almost the entire reactor volume by
irradiating the gas with UV radiation.

We note that the significant role of UV radiation in
the initiation and dynamics of combustion in gas mix-
tures has long been known. As early as 1911, Andreev
[14] revealed the chemical action of UV radiation on
the water-formation reaction. In [10, 15], a number of
experiments were described that demonstrated an
increase in the hydrogen-oxidation reaction rate due to
the dissociation of hydrogen molecules when a hydro-
gen–oxygen mixture was irradiated by a UV lamp. In a
number of experiments, it was shown that the dissocia-
tion of hydrogen molecules (via the sensibilization
mechanism) significantly accelerates the combustion of
a H2 + O2 mixture.

In the relatively recent paper [16], the initiation of
explosive combustion in a propane–air mixture by a
ëé2 laser spark was demonstrated. The authors
ascribed the effect observed to the substantial change in
the original composition of a flammable gas mixture
under the action of a spark.
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The process of combustion acceleration by a laser
spark is probably similar to the processes occurring in
our experiment, in which an open (without quartz walls
peculiar to UV lamps) high-power surface discharge
determining the specific features of the combustion of a
flammable gaseous medium was used for the first time
as an irradiating source.

A hypothesized picture of physicochemical pro-
cesses accompanying a high-current surface discharge
in a CH4 + O2 (air) + CF2Cl2 mixture is described in the
Appendix. Of course, the general considerations pre-
sented here and in the Appendix must be supported by
a detailed theoretical analysis based on both the kinetic
model and a gasdynamic model describing the specific
conditions of our experiment.

We note however that even the first experiments
described above are of practical importance, because
they indicate the possibility of creating an efficient
reactor for the utilization of ozone-destroying CFCs
and also CFCs that contribute to the greenhouse effect.

Based on the results our experiments, it is easy to
estimate the production rate of a reactor consisting of a
discharge system (similar to that described above) that
is placed in a cylindrical chamber with the cross section
S and length L. To do this, we use the following simple
relation:

η ≈ 2 × 10–7 pCFCMSL/τc kg/h, 

where pCFC is the partial pressure of CFC to be decom-
posed (CF2Cl2) in torr, M is its molecular weight (M .
120), and τc is the mixture combustion time in s. For
pCFC = 100 torr, S = 20 cm2, L = 50 cm, and τc = 10–2 s,
we obtain

η ≈ 200 kg/h.

In this case, the consumed electric power will not
exceed 50 W. This means that the energy cost of decom-
position (related to the electric energy consumption) is
approximately equal to

W ≈ 2 × 10–4 kW h/kg,

which is many orders of magnitude lower than that for
the plasmochemical decomposition of nonflammable
gas mixtures (see [1, 2]).

To ensure such a high decomposition rate, the gas
flow rate through the chamber should be on the order of

v  ≈ L/τc ≈ 5 × 103 cm/s,

which can be rather simply realized.
The production rate of the reactor can be controlled

by varying the energy deposition in the electric dis-
charge initiating combustion and, thereby, varying the
combustion time of the gas mixture τc.
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APPENDIX

The experimental data were analyzed based on the
well-known physicochemical model of the explosive
combustion of a methane–oxygen mixture (see [8, 11,
17]). The main point of this model is the following:
when the ignition of the mixture is caused by an
increase in the temperature to 400–500°ë, the combus-
tion can be divided into two stages—the so-called
“cold” flame and the subsequent explosive combustion.
The chain of reactions leading to explosive combustion
originates in the slow endoenergy reaction [8]

CH4 + O2  CH3 + HO2 – 2.5 eV,

whereas the chains of combustion reactions are formed
with the participation of CH3, OH, HCOH, and HO2
molecules, e.g.,

CH3 + O2  HCOH + OH + 1.5 eV.

The guiding active particle in subsequent reactions is
formaldehyde (HCOH), the accumulation of which
transforms slow combustion into explosive combus-
tion.

An analysis shows that, based on the existing mod-
els of the explosive combustion of a CH4 + O2 mixture,
it is impossible to explain the relatively rapid appear-
ance of the primary glow wave and the fact that a sub-
stantial admixture of CFC-12 (comparable with the
methane and oxygen content) does not suppress the
mixture ignition.

Hence, it seems reasonable to formulate a kinetic
scheme of ignition of CH4 + O2 and CH4 + O2 + CF2Cl2
gas mixtures, taking into account the effect of the UV
component of emission from the slipping surface dis-
charge. We assume that, near the discharge system (in
both the G1 and G2 modes), the following photoioniza-
tion reactions occur [18, 19]:

(A.1)

(A.2)

(A.3)

A specific feature of these reactions is that a substantial
fraction of the photon energy is converted into the
translational degrees of freedom of the reaction prod-

CH4 "ω  CH3 H ∆1 T( )'+ + +

CH2 H2 ∆1 T( )''+ +

CH H2 H ∆1 T( )''' ,+ + +

O2 "ω  O P3( ) O P3( ) ∆2 T( )'+ + +

O P3( ) O D1( ) ∆2 T( )'' ,+ +

CF2Cl2 "ω  CF2Cl Cl ∆3 T( )'+ + +

CF2 Cl2 ∆3 T( )'' .+ +
ucts.2 As a result, the gas mixture is heated and the
molecular states are excited via VT relaxation. At the
same time, the infrared (IR) component of discharge
emission provides the nonequilibrium pumping of het-
eronuclear molecules:

(A.4)

Photodissociation and photoexcitation processes
lead to the ignition of the heated gas mixture in the
vicinity of the discharge according to the scheme

H +   H2 + CH3 (∆5 ⇒  –0.032 eV), (A.5)

H +   OH + O (∆6 ⇒  –0.72 eV), (A.6)

H + CF2Cl2  HCl + CF2Cl + 0.71 eV, (A.7)

(A.8)

O +   OH + CH3 (∆9 = –0.11 eV), (A.9)

Cl +   HCl + CH3 (∆10 = –0.08 eV), (A.10)

 

Reactions (A.11) and (A.12) correspond to the cata-
lytic cycle of the combustion of a CH4 + O2 mixture and
lead to the accumulation of HCOH and water mole-
cules.3 The catalytic cycle represented by reactions

2 According to [18], for 8.9 ≤ "ω ≤ 9.5 eV, we have  > 0.5 and

4.4 ≤  ≤ 5.0 eV [where  is the quantum yield of the first

channel of reaction (A.1)]. For "ω = "ωLα ⇒  10.2 eV, we have

 ≈ 5.69 eV (  ≈ 0.44),  ≈ 5.77 eV (  ≈ 0.50), and

 ≈ 0.27 eV (  ≈ 0.06). It follows from [20] that, for 5.1 ≤
"ω ≤ 7.1 eV, we have 0 ≤  ≤ 2 eV, whereas for 7.1 ≤ "ω ≤
9.3 eV, we have 0 ≤  ≤ 2.2 eV. According to [19], for 6.1 ≤
"ω ≤ 7.3 eV, the values of  and  fall into the intervals

2.4 ≤  ≤ 3.6 eV and 1.25 ≤  ≤ 2.45 eV (0.75 ≥  ≥
0.59 and  +  = 1).

3 The possibility of realizing the selective process of methane oxi-
dation in reactions (A.11) and (A.12) at a high vibrational tem-

perature of oxygen (i.e., at  @ Tg) was discussed in [21,
p. 355]. In our case, these reactions become dominant due to the
excitation of vibrational degrees of freedom of the reacting parti-
cles in the primary combustion wave.

Φ1'

∆1 T( )' Φ1'

∆1 T( )' Φ1' ∆1 T( )'' Φ1''

∆1 T( )''' Φ1'''

∆2 T( )'

∆2 T( )''

∆3 T( )' ∆3 T( )''

∆3 T( )' ∆3 T( )'' Φ3'

Φ3' Φ3''

CH4 "ω  CH4*,+

CF2Cl2 "ω  CF2Cl2*.+

CH4*

O2*

CF2Cl CH4* CHClF2 CH3+ +

CHClF2 CFC-22≡( ),

CH4*

CH4*

CH3 O2 HCOH OH 1.52 eV+ + +

Ea 0.8 eV=( ),

OH CH4 H2O CH3 0.61 eV+ + +

Ea 0.2 eV=( ),

A.11( )

A.12( )

OH CF2Cl2 HCl CF2ClO,+ +

CF2ClO CH4 C2H3F2Cl OH.+ +

 A.13( )

A.14( )

Tv

O2( )
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(A.13) and (A.14) demonstrates the possibility of con-
verting CF2Cl2 (CFC-12) into the more stable (against
photodissociation) compound C2H3F2Cl (HCFC-142)
without suppressing the combustion of a methane–oxy-
gen mixture. However, reactions (A.13) and (A.14)
decrease the accumulation rate and quantity of the
formaldehyde produced (this, in turn, may result in the
additional delay of the volume combustion and a
decrease in its rate). Presumably, the described pro-
cesses of the photochemical action of gas-discharge
plasma emission on a CH4 + O2 + CF2Cl2 flammable
mixture determine the mechanism for the generation
and maintenance of the primary glow wave.

The generation of a secondary glow wave (more
precisely, the beginning of volume combustion) is asso-
ciated with the accumulation of a sufficient amount of
HCOH molecules and vibrationally excited molecules
in the volume and at the free end of the reactor chamber.
It is reasonable to assume that the accumulation is
related to the oscillatory propagation of the primary
glow wave or, in other words, to the treatment of the gas
mixture by this wave. Here, we note that the tempera-
ture of the gas mixture is not too high and the concen-
tration of free H, O, Cl, OH, and CH3 radicals beyond
the primary glow wave is fairly low. Otherwise, the
conditions for initiating the mixture ignition outside a
narrow (3–4 mm wide) combustion region would be
satisfied, which contradicts the experimental data. Con-
sequently, it is reasonable to assume that the concentra-
tion of free H, O, Cl, OH, and CH3 radicals in the gas
treated by the primary wave is low and the accumula-
tion of HCOH cannot be suppressed by the fast reac-
tions:

(A.15)

(A.16)

O + HCOH  OH + HCO + 0.63 eV, (A.17)

H + HCOH  H2 + HCO + 0.71 eV, (A.18)

CH3 + HCOH  CH4 + HCO + 0.74 eV. (A.19)

Furthermore, the concentration of radicals outside the
combustion region are governed by the reactions

Cl + CH4  HCl + CH3 – 0.08 eV,

(A.20)

k20 ≈ 2.7 × 10–12 cm3/s),

(A.21)

Cl HCOH HCl HCO 0.66 eV,+ + +

k15 8.1 10
11–

30/T–( ), Òm
3
/s 22[ ] ,exp×=

k15

OH HCOH H2O HCO 1.35 eV,+ + +

k16 1.1 10
11–

Òm
3
/s 22[ ] ,×=

k16

k20

k20 1.1 10
11–

1400/T–( ), cm
3
/s 22[ ]exp×=

(for T 1000 K the rate constant is =

CH3 O H HCOH 2.24 eV,+ + +

k21 1.1 10
10–

 Òm
3
/s,×=

k21
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(A.22)

(A.23)

Cl + CH3  HCl + CH2 + 0.031 eV, (A.24)

O + CH3  OH + CH2 + 0 eV, (A.25)

H + CH3  H2 + CH2 + 0.078 eV, (A.26)

OH + CH3  H2 + HCOH + 2.32 eV. (A.27)

Estimates show that, for T = 1000 K, the following
relations hold: 5 × 10–12 ≤ kj ≤ 2 × 10–10 cm3/s, where
j = 17, 18, 19, 24, 25, 26, and 27.

The primary glow wave, which heats and irradiates
the free end, removes various impurities from its sur-
face. For example, in the case of a methane–oxygen
mixture, it is the original-gas molecules that should be
primarily adsorbed on the cleaned active centers Sa of
the surface (see [23], chapter VIII, section 2):

O2 + Sa  (O2Sa), (A.28)

CH4 + Sa  (CH4Sa). (A.29)

Then, the following exoenergy reactions occur with a
high probability:

(A.30)

As a result, processes (A.28)–(A.30) ensure a more
intense accumulation of HCOH at the wall and in the
wall region of the free end than inside the reactor. In
this case, the experimentally observed effect that the
secondary glow wave usually originates near the free
end of the reactor chamber can be consistently
explained by the kinetic model based on the following
reactions:

HCOH + O2  H2O + CO2 + 5.33 eV, (A.31)

HCOH + O  H2 + CO2 + 5.41 eV. (A.32)

When describing the kinetics of the combustion of
CH4 + O2 and CF2Cl2 mixtures initiated by emission
from a slipping surface discharge, we tried to reveal the
dominant mechanisms for initiating and maintaining
the process under study. For this reason, reactions that
are of minor importance are omitted in the kinetic
scheme.

Hence, it may be suggested that the first stage of
combustion is associated with the production of a flam-
mable mixture containing formaldehyde, water vapor,
and a certain amount of HCl and HCFC-142 in a narrow
glow region. Outside this region, the primary glow
wave, which heats and irradiates the gas with UV radi-
ation, creates favorable conditions for transformation

H CH4 H2 CH3 0.032 eV–+ +

for T 1000 K k22– 3–5( ) 10
10–

 Òm
3
/s×⇒=( ),

k22

OH O O2 H 0.72eV,+ + +

k23 2.2 10
11–

120/T( ) Òm
3
/s 22[ ] ,exp×=

k23

O2 CH4Sa( )  H2O HCOHSa( )+ +

H2O HCOH Sa+ +

CH4 O2Sa( )  HCOH H2OSa( ).+ +
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reactions with low activation barriers (Ea ≤ 1 eV). This
means that, in most of the volume, the vibrationally
excited molecules produced ( , HCOH*, CF2 ,
etc.) accelerate both the reactions

(A.33)

(A.34)

(where CH3Cl, HCClO, and CHClF2 are methyl chlo-
ride, formyl chloride, and CFC-22 molecules) and the
reactions revealed in [1, 2]:

CF2Cl2 + CF2   CF3Cl + CFCl3, (A.35)

CF2Cl2 + CF2   CF4 + CCl4, (A.36)

CF2Cl2 + CF2   C2F4Cl2 + Cl2, (A.37)

CF3Cl + CF3Cl*  CF4 + CF2Cl2, (A.38)

CFCl3 + CF   CF2Cl2 + CCl4, (A.39)

CF3Cl + CF3Cl*  C2F6 + Cl2. (A.40)

Here, CF3Cl ⇒  CFC-13, CFCl3 ⇒  CFC-11, CF4 ⇒
CFC-14, C2F4Cl2 ⇒  CFC-114, and C2F6 ⇒  CFC-116.

The second stage of the combustion of CH4 + O2 +
CF2Cl2 mixtures is the volume ignition of the gas
treated by the primary glow wave; this process is asso-
ciated with reactions (A.31) and (A.32). The second
stage is characterized by a rapid growth of the temper-
ature and intense photodissociation and thermodissoci-
ation reactions. First of all, unstable CCl4 halocarbons
and CFCl3 and CF2Cl2 chlorofluorocarbons will be
involved in the reactions of photodissociative decom-
position [18, 20]:

(A.41)

(A.42)

(A.43)

We illustrate the thermodissociation process by the
example of the decomposition of carbon tetrachloride:

 + M  CCl3 + Cl + M, (A.44)

CH4* Cl2*

CF2Cl2 CH4*+

CF2Cl2* CH4+
 CH3Cl CHClF2,+

HCOH* CF2Cl2+

HCOH CF2Cl2*+
 HCClO CHClF2+

Cl2*

Cl2*

Cl2*

Cl3*

CCl4 "ω  CCl3 Cl+ +

CCl2 Cl2 for "ω 5.5 eV,≥+

CCl Cl2 Cl+ +

CFCl3 "ω CFCl2 Cl+ +

CFCl Cl2+
 for "ω 5.8 eV,≥

CF2Cl2 "ω CF2Cl Cl+ +

CF2 Cl2+
for "ω 6.1 eV.≥

CCl4*
 + M  CCl2 + Cl + M, (A.45)

 + M  CCl + Cl + M, (A.46)

CCl* + M  C + Cl + M. (A.47)

The appearance of a large amount of radicals (Cl,
CCl, C, etc.) during volume combustion can lead to the
formation of Cl2 and C2 gas components, e.g., in the
reactions

CCl + CCl*  C2 + Cl2 (∆48 ⇒  1.1 eV), (A.48)

Cl + Cl + M  Cl2 + M, (A.49)

C + C + M  C2 + M. (A.50)

The above said agrees with the experimental obser-
vation that, if CFC-12 is added to a methane–oxygen
mixture, then both the duration and intensity of the light
burst in the reactor volume decrease. Furthermore, tak-
ing into account the present-day concepts and the
experimental data on the mechanisms for oxidation of
hydrogen and hydrocarbons (see [11, 24]), as well as
our concept of the mechanism for the combustion of
CH4 + O2 + CF2Cl2 mixtures, it may be suggested that,
at the optimum content of oxygen in a flammable gas
mixture, the final products of the combustion of a meth-
ane–CFC mixture will be CFCs that are relatively sta-
ble against photodissociation (such as CFC-13, CFC-
116, CFC-114, CFC-22, and CFC-14) and H2O, CO2,
and Cl2 molecules (the content of C2, H2, HCl, and
other molecules in the resulting mixture will be small).
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