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Abstract—We consider a cosmological model in which part of the Universe, Ωh ∼ 10−5, is in the form of
primordial black holes with masses of∼ 105M�. These primordial black holes were the centers for growing
protogalaxies, which experienced multiple mergers with ordinary galaxies and with each other. The galaxy
formation is accompanied by the merging and growth of central black holes in the galactic nuclei. We show
that the recently discovered correlations between central black hole masses and galactic bulge parameters
naturally arise in this scenario. c© 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Recent observations have shown that no less than
20% of the regular galaxies contain supermassive
black holes (SMBHs) in their nuclei (Kormendy and
Richstone 1995; Ho 1998). Various scenarios were
proposed for the origin of the central SMBHs: (i) the
gravitational instability and collapse of a supermas-
sive star (e.g., Gurevich and Zybin 1990; Lipuno-
va 1997); (ii) the collapse of a dynamically evolv-
ing dense star cluster (e.g., Rees 1984; Dokuchaev
1991); or (iii) the collapse of the central part of a mas-
sive gaseous disk (e.g., Eisenstein and Loeb 1995).
In all these scenarios, the SMBHs are formed deep
inside the gravitational potential well of galactic or
protogalalctic nuclei. A specific possibility is the
formation of primordial SMBHs in the early Universe
(Zel’dovich and Novikov 1967; Carr 1975).
Three types of correlations are observed between

the mass of the central SMBH MBH in a galac-
tic nucleus and (i) the stellar mass of the galactic
bulgeMb (Kormendy and Richstone 1995; Ho 1998),
MBH � (0.003 − 0.006)Mb, (ii) the bulge luminos-
ity LB (Richstone 1998), MBH/LB � 10−2M�/L�,
and (iii) the velocity dispersion σe at the bulge half-
optical-radius (Gebhardt et al. 2000):

MBH = 1.2(±0.2) × 108
( σe

200 km s−1

)3.75(±0.3)
M�.

(1)

The correlations of types (i) and (ii) are indistinct,
and there is a large scatter of data about the mean
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values of MBH . Therefore, recent observations are
only consistent with correlations (i) and (ii), despite
the absence of a proportionality between LB andMb.
On the other hand, correlations (iii) are more definite.

The origin of the discussed correlations is quite
uncertain. The simplest assumption that the growth
of the SMBH mass depends on the bulge processes
runs into the problem of different scales: the galac-
tic bulge scale is several kpc, whereas the linear
scale of the accretion disk around SMBHs is much
less than 1 pc. Some deterministic mechanism is
needed for a huge mass transfer from the bulge to
its innermost part. Silk and Rees (1998) proposed
a feasible solution of this problem by considering a
self-adjusting accretion flow from the bulge under the
radiation pressure on the early quasar phase of galac-
tic evolution. However this model predicts a definite
type of correlation,MBH ∝ σ5

e , with the power index
differing from the observed one.

The presumed primordial BHs are mixed with dark
matter due to their cosmological origin. Therefore,
the total mass of these BHs in any galaxy

∑
Mh is

proportional to the galactic dark matter halo mass
M . As a result, the correlation

∑
Mh ∝M is pri-

mary in this model, but the aforementioned observed
correlationsMBH ∝Mb, L and σα

e are secondary and
approximate in origin due to the complex process of
galactic formation. We show below that the required
relation MBH ∝ σα

e with a power index α close to
the observed one follows from our primary relation∑
Mh ∝M with the value of σe determined by the

dark matter halo mass M . The model considered
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760 DOKUCHAEV, EROSHENKO
also reproduces the correlation MBH ∝Mb but with
a lower accuracy.
Another necessary requirement of our model is the

multiple merging of primordial BHs with mass Mh

into a single SMBH with mass MBH in the Hubble
time. In Section 4, we justify this requirement. It
is well known that for a single BH with mass Mh �
107M�, the dynamical friction in the galactic halo is
ineffective (Valtaoja and Valtonen 1989). Neverthe-
less, for the early formed primordial BHs, the pro-
cess of dark matter secondary accretion is possible.
As a result, the primordial BHs are enveloped by a
dark matter halo with the mass of a typical dwarf
galaxy and a steep density profile, ρ ∝ r−9/4. Indeed,
the gravitationally bound objects formed at redshifts
z ∼ 10 from the density fluctuations δ ∼ 10−3 (at the
recombination epoch). In a homogeneous Universe,
BHs with mass Mh ∼ 105M� produce this fluctua-
tion inside a sphere containing the total massMh/δ ∼
108M�. We will call this combined spherical volume
BH +halo an induced halo. The characteristics of
these induced halos are defined in Sections 2 and 3.
Our assumption of the multiple merging of primordial
BHs may break down in galaxies of the late Hubble
types. In fact, observations (Zalucci et al. 1998)
show that the masses of the central BHs in these
galaxies are less than in the E and S0 galaxies, and
there are no correlations (i)—(iii).
Here, we consider for simplicity a flat cosmological

model without the cosmological constant. We use the
subscript i for quantities at the time ti � 6 × 1010 s of
the transition from a radiation dominated to a matter
(dust) dominated phase. The subscript 0 is used for
quantities at the recent time t0. We call all BHs
existing at the recombination epoch the primordial
ones. The other possible mechanisms of BH forma-
tion are important only in Section 2. We use the term
bulge both for elliptical galaxies and for the central
spheroidal parts of spiral galaxies that resemble dwarf
ellipticals.

1. PRIMORDIAL BLACK HOLES

Noncompact objects (NCOs) of the mass∼ (0.1–
1)M� composed of weakly interacting nonbaryonic
dark matter particles such as neutralinos were pro-
posed by Gurevich et al. (1997) to explain mi-
crolensing events in the Large Magellanic Clouds
(Alcock et al. 2000). The hypothesized NCOs
or neutralino stars originate from the cosmological
fluctuations with a narrow sharp maximum ∼ 1 in
the spectrum on some small scale. In addition to
neutralino stars, the same maximum in the spectrum
of cosmological fluctuations also produces massive
primordial BHs with the mass∼ 105M� (Dokuchaev
and Eroshenko 2002). Therefore, the hypothesized
dark matter NCO and primordial BHs may be in-
directly associated with their common origin from
the same cosmological fluctuations. The spectrum
with a sharp maximum on some scale arises in some
inflational models (Starobinsky 1992; Ivanov et al.
1994; Yokoyama 1995; Garcia-Bellido 1996). At
the same time, the spectrum beyond the maximum
may be of the standard Harrison-Zel’dovich form and
reproduces the ordinary scenario for the large-scale
structure formation in the galactic distribution.
Adiabatic density fluctuations of matter on a scale

smaller than the horizon grow logarithmically with
time at the radiation-dominated epoch. These fluctu-
ations with amplitude δi ∼ 1 at the time ti correspond
to radiation density fluctuations ∼ 0.05 at the time
th when the disturbed region goes under the horizon
(Dokuchaev and Eroshenko 2002). Therefore, large
fluctuations at the radiation-dominated epoch pro-
duce BHs near the time th (Zel’dovich and Novikov
1967; Carr 1975).
BHs are formed at the tail of the Gaussian fluctua-

tion distribution, whereas most NCO are formed from
the rms fluctuations. Therefore, only a small fraction
of the fluctuations which result in the formation of
NCO can produce BHs at the radiation-domination
epoch. In other words, due to the large threshold
of BH formation, most fluctuations do not collapse
into BHs and evolve continuously up to the end of
the radiation-dominated epoch. At the radiation-
dominated epoch, the mass in the comoving volume
varies asM(t) = Mxa(ti)/a(t), where the scale fac-
tor of the Universe a ∝ t1/2 andMx is the comoving
mass at the time of transition to the matter domi-
nation. The mass Mx is approximately equal to the
mass of nonrelativistic matter inside the fluctuation,
i.e., the mass of NCO that can be formed from this
fluctuation. On the other hand,

M(t) =
4π
3

(2ct)3ρ(t), (2)

where ρ(t) = 3/32πGt2. From these relations for
M(t), we derive the BH formation time th and mass
Mh as a function the NCOmass

th = (MxG)2/3c−2t
1/3
i (3)

= 1.1
(
Mx

M�

)2/3 (
ti

6 × 1010 s

)1/3

s,

Mh = cM2/3
x G−1/3t

1/3
i (4)

= 2.3 × 105

(
Mx

M�

)2/3 (
ti

6 × 1010 s

)1/3

M�.

In our model, the NCOs and BHs originate from
fluctuations of the same type but at a different time.
Whereas the large difference in the masses of NCOs
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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and BHs is accounted for by the mass variation with
time inside the fixed comoving volume: the mass of
the radiation at the radiation-dominated epoch (e.g.,
at t ∼ 1 s) far exceeds the cold dark matter mass at
the matter-dominated epoch in the same comoving
volume.
There are definite astrophysical limitations on the

number and mass of primordial BHs. (1) It follows
from the Universe age limit that the fraction of BHs
is Ωh ≤ 1. In addition, PBHs with Ωh ∼ 1 would
disturb the microwave background spectrum if they
were formed ∼ 1 s after electron–positron pair anni-
hilations (Carr 1975). (2) The possibility of the tidal
destruction of globular clusters by primordial BHs
gives a BH mass limit Mh ≤ 104M� if these BHs
mainly contribute to the dark matter (Moore 1993).
(3) Model-dependent calculations of the contribution
from matter accretion by PBHs at the pre-galactic
and recent epochs to the background radiation give
approximately Ωh ≤ 10−3 ÷ 10−1 for Mh ∼ 105M�
(Carr 1979). (4) The absence of reliable gamma-ray
burst (GRB) lensing events yielded a limit Ωh < 0.1
for PBHs in the intergalactic medium with masses
105M� < Mh < 109M� (Nemiroff et al. 2001). An
even more stringent limit Ωh < 0.01 for 106M� <
Mh < 108M� is obtained from VLBI observations of
the lensing of compact radio sources (Wilkinson et
al. 2001).

In this paper, we consider the case Ωh ∼ 10−5

where none of the above constraints breaks down.

2. THE FORMATION
OF AN INDUCED HALO

Amassive induced halo (IH) or a heavy dark mat-
ter envelope around a PBH is formed due to dark
matter accretion in an expanding Universe. Spherical
matter accretion onto a compact object (an SMBH or
a galaxy) produces a stationary matter density profile
of the form ρ ∝ r−9/4 (e.g., Ryan 1972; Gunn 1977).
Here, we reproduce similar calculations in a form
suitable for relating the PBH mass to the mass of
gravitationally trapped matter and the corresponding
redshift.
The matter in a spherical layer of radius r around

a PBH in a homogeneous Universe undergoes the
acceleration

d2r

dt2
= −G

r2
(Mh +

4π
3
r3i ρi), (5)

where ri and ρi = 4.4 × 10−18(h/0.6)8 g cm−3 are,
respectively, the radius of the spherical layer and the
Universe density at time ti when a large growth of
fluctuations begins; and h is the Hubble constant in
units of 100 km s−1Mpc−1. Let usmultiply Eq. (5) by
ASTRONOMY LETTERS Vol. 27 No. 12 2001
db/dt and integrate it using the normalization r(t) =
rib(ri, t) and the initial condition b(ti) = 1, ḃ(ti) =
H(ti)b. Let us introduce also the normalization τ =
(t− ti)α1/2, where

α =
(

2GMh

r3i
+

8πG
3
ρi

)
, (6)

the integrated Eq. (5) then takes the form

b(db/dτ)2 = 1 − bE, (7)

with E ≡ (α−H2(ti))/α. An equation of this type
admits an exact solution (Saslaw 1989). From this
solution, we derive the expansion termination time of
the layer under consideration

ts ≈
3π
4
ti

(
Ms

Mh

)3/2

. (8)

Here, Ms = 4πρir
3
i /3 is the mass inside the layer

except for the central PBH mass. At the time of ex-
pansion termination b(ts) = 1/E and, subsequently,
the layer contracts until tcol ≈ 2ts. From (8) using the
relation t = t0/(1 + z)3/2 for a flat Universe without
the cosmological constant, we obtain

zcol ≈ 0.36zi
Mh

Ms
− 1 ≈ 2 × 103Mh

Ms
− 1, (9)

where zi = 2.4 × 104h2.
We assume that the spherical layer is detached

from the cosmological expansion and virialized and
after its expansion termination and the subsequent
contraction from radius rib(ri, ts) to radius rcol =
rib(ri, ts)/2. For this virialization radius of the IH
around the central PBH, we find

rcol =
ri
2E

=
M

4/3
s

2Mh

(
3

4πρi

)1/3

(10)

= 0.45
(

Mh

105M�

)1/3 (
15

1 + zcol

)4/3

kpc,

hence, we derive the required relation for the IH mass
and radius

Ms(rcol) = (2Mhrcol)3/4

(
4πρi

3

)1/4

(11)

= 3.7 × 107

(
Mh

105M�

)3/4 (
rcol

1 kpc

)3/4 (
h

0.6

)2

M�

and the density distribution in the IH

ρ(r) =
1

4πr2
dMs(r)
dr

= 1.7 × 10−25

(
Mh

105M�

)3/4

(12)

×
(

r

1 kpc

)−9/4 (
h

0.6

)2

g cm−3.
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The dependences zcol(Mh) andM(Mh) derived by solv-
ing the system of equations (17) and (19).

3. PROTOGALAXY GROWTH TERMINATION

The growth of IH terminates at the epoch of the
nonlinear growth of ambient density fluctuations with
mass M and radius R producing the same gravita-
tional acceleration:

g =
GMs(rcol)
(2Rcol)2

=
GM

(2R)2
, (13)

where the radii 2rcol and 2R correspond to the time
of expansion termination. Under this condition, the
capture of new spherical layers ceases [see (10)].
The rms fluctuation on the mass scaleM is given

by (Barden et al. 1986)

σ2(M,z) =
1

2π2(1 + z)2

∫
dkk2P0(k)W 2(k,M),

(14)

Here, W (k,M) is the filtering function and P (k) is
the power spectrum

〈δ∗kδk′〉 = (2π)3P (k)δ(3)D (k − k′), (15)

δk =
∫
δ(r)eikrd3r,

where δ(3)D (k − k′) is the Dirac delta-function and the
angular brackets denote an ensemble averaging. Let
us choose P0(k) for the model with cold dark matter
(Barden et al. 1986) with the Harrison-Zel’dovich
initial spectrum

P0(k) =
ak ln2(1 + 2.34q)

(2.34q)2
(1 + 3.89q + (16.1q)2

(16)

+ (5.46q)3 + (6.71q)4)−1/2,

where q = kΩ−1
d h

−2 is written in comoving coordi-
nates with units Mpc−1. For simplicity, we take
the dark matter density parameter Ωd = 1. The nor-
malization constant a is chosen from the condition
σ0 = 1 on the scale 8h−1 Mpc. The condition for the
formation of an object with massM at redshift zcol is

σ(M,zcol) = δc, (17)
where for the model of spherical contraction δc =
3(3π/2)2/3/5 (White 1994). The radius of an ordinary
protogalaxy (without PBH) after its cosmological ex-
pansion termination and virialization is (Saslaw 1989;
White 1994)

R =
3Ri

10δi
, Ri =

(
3M
4πρi

)1/3

. (18)

Given (10), (17), and (18) and assuming δi =
σi(M), condition (13) can be rewritten as

M =
(

3π
2

)10/3 (
3
5

)6 (1 + zi)
(1 + zcol)

Mhδ
−6
c . (19)

It follows thatMs = M , because in (10) and (18),
we assume that IHs and ordinary protogalaxies have
the same coefficient of nonlinear contraction, 0.5. We
solve numerically the system of equations (17) and
(19) for the independent variables zcol and M with
Mh as a parameter. Figure 1 shows the dependences
zcol(Mh) and M(Mh) = Ms(Mh). For Mh = 2.3 ×
105M� we find zcol = 8.8 andM = 7.2 × 107M�. As
a result, up to the epoch z = 8.8, the PBHs withmass
Mh = 2.3 × 105M� had time to capture an additional
mass, which is a factor of ∼300 larger than the PBH
mass.

4. MERGING OF BLACK HOLES
In the preceding section, we showed that massive

IHs with the mass Ms = 7.2 × 107M� are formed
around PBHs. These IHs are massive enough to sink
to the galactic center in the Hubble time under the ef-
fect of dynamical friction. However, the fate of nested
PBHs inside the central parsec of the host galaxy
is unclear. Valtaoja and Valtonen (1989) considered
the interaction of central BHs after the merging of
galaxies. The late phase of two BHs merging in
the galactic center depends on many factors (Menou
et al. 2001). Without a detailed elaboration, we will
followMenou et al. (2001) by assuming that multiple
PBHsmerge into a single SMBH in the Hubble time.
Note that the density (12) dramatically grows to-

ward the center and is smoothed out only at the
distance rh whereMs = Mh, as follows from (11). For
Mh = 2.3 · 105M�, we find rh ∼ 1 pc and a density
ρ ∼ 104M� pc−3. By using the Chandrasekhar time
for dynamical friction (see, e.g., Saslaw 1989) of a
PBH with mass Mh = 2.3 × 105M�, we obtain an
estimate of the characteristic time for PBH merging
Mh = 2.3 × 105M�:

tf ∼ v3

4πG2ΛBρMh
∼ 5 × 105 years, (20)
ASTRONOMY LETTERS Vol. 27 No. 12 2001



A STOCHASTIC MODEL FOR CORRELATIONS 763
where v ∼ (GMh/rh)1/2 is the PBH velocity, Λ ≈
10, and B ≈ 0.426. A more massive PBH would
merge even faster. As a result, the late phase of
PBHs merging is very quick, and the probability of
the simultaneous presence in the galactic nucleus of
three or more BHs is low.
The merging of PBHs in galaxies must be ac-

companied by a strong burst of gravitational radia-
tion. The LISA interferometric detector is capable
of detecting merging events up to redshifts z ∼ 10
if the BH masses are no less than 103M� (Menou
et al. 2001). For the gravitational burst distribu-
tion to be calculated, hierarchical BHs and galactic
merging must be numerically simulated. Menou et
al. (2001) carried out such simulations for ordinary
galaxies. The burst rate from the observable Universe
is estimated to be

Ṅgrav ∼
4π
3

(ct0)3 ng
N

t0
∼ 10

(
ng

10−2Mpc−3

)
(21)

×
(

t0
1010years

)2 (
N

100

)
year−1,

where ng is the mean number density of structured
galaxies and N is the mean number of mergings per
galaxy. So, there is a principal possibility for the
verification of the model under consideration by the
LISA detector.

5. THE ORIGIN OF CORRELATIONS

The fluctuation spectrum (16) in a limited mass
range can be fitted by a power law with the effective
index n = d lnP0(k)/d ln k. According to the for-
mation condition (17) for a power-law spectrum, the
effective galactic mass formed at redshift z is (White
1994)

M = M0(1 + z)−
6

n+3 , (22)

where M0 = const. For the galactic mass M =
1010M�, we obtain n = −2.28 and M0 = 2.5 ×
1016M�; for M = 1012M�, we find, respectively,
n = −1.98 and M0 = 7 × 1014M�. The velocity
dispersion is estimated as

σ2
e � GM

R
, R =

(
3M

4πρ(z)

)1/3

, (23)

ρ(z) = ρ0(1 + z)3.

For the PBH cosmological density parameter Ωh and
effective PBH merging in galaxies, the preceding re-
lation gives the final mass of the central BH

MBH =ψΩhM=ψΩhσ
12

1−n
e M

−n+3
1−n

0

(
4πG3ρ0

3

)− 2
1−n

,

(24)
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where the factor ψ allows for for the possible addi-
tional growth of the central BH via accretion. From
(24) with h = 0.6, we have

MBH = (1.1 − 1.7) × 108

(
ψΩh
10−5

)
(25)

×
(

σe

200 km s−1

)(3.66−4.03)

M�,

where the coefficients 1.1 and 3.66 correspond to
M = 1010M�, and the coefficients 1.7 and 4.03 corre-
spond toM = 1012M�. Thus, the model considered
is in good agreement with the observational data (1).
The fluctuation spectrum on the galactic scale, n ≈
−2, completely determined the power index α ≈ 4
in the relation MBH ∝ σα

e . It is easy to verify that
for Ωh ∼ 10−5, the contribution of IHs [their mass is
determined in section (3)] to the total galactic mass is
negligible.

A correlation of the formMBH ∝Mb is explained
by the common relation of dark matter mass in galax-
ies of all types with their total baryonic (star) mass
with the main input from old stars. In the hierarchical
model of galaxy formation, recent galaxies formed
from the multiple merging of low-mass protogalaxies
with on-going early star formation. In this case,
the old star population of the spherical subsystem is
protogalactic in origin.

The part of the galactic mass contained in stars
becomes a fixed and independent part of the total
galactic massM due to the statistical averaging after
a large number of protogalactic mergings. So, the
total star mass in the galaxy is Mb = fbfsM , where
fb ≈ 0.05 is the baryonic mass fraction of the Uni-
verse, fs is the fraction of baryons passing into stars.
After sinking to the galactic center and the merging
of all PBH, the resulting BH mass is

MBH � ψΩh
fbfs

Mb � 10−3

(
ψΩh
10−5

)(
fbfs
0.01

)−1

Mb,

(26)
which, in order of magnitude, corresponds to obser-
vationsMBH � (0.003 − 0.006)Mb.

The central BH masses in Sa, Sb, Sc galaxies
are, on the average, smaller than those in E and S0
galaxies (Salucci et al. 1998). In our model, this
is attributable to the relatively late formation of the
Sa, Sb, Sc galaxies when most of the PBHs did not
have enough time to sink to the galactic center. In
particular, ∼ 102 PBHs of mass Mh ∼ 105M� can
inhabit our Galaxy.
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6. CONCLUSIONS

We explain the observed correlations between
bulge parameters and central BH masses in galaxies
by the multiple merging of PBHs of mass ∼ 105M�
generated in the early Universe. This model predicts
the existence of BHs with mass ∼ 105M� beyond
the dynamical centers of spiral galaxies and in the
intergalactic medium. One of these BHs may have
been detected by the Chandra Observatory in the
galaxy M 82 (Kaaret et al. 2000). An observa-
tional signature for the verification of this model is
a gravitational burst after BH merging in the galactic
nuclei which can be detected by LISA-type laser
interferometric detectors.
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Abstract—The peculiarities of non-Hubble bulk motions of galaxies are studied by analyzing a sample
of 1271 thin edge-on spirals with distances determined using a multiparametric Tully–Fisher relation
that includes the amplitude of the galaxy rotation, the blue and red diameters, surface brightness, and
morphological type. In the purely dipole approximation, the bulk motion of galaxies relative to the cosmic
microwave background frame can be described by the velocity of 336± 96 km s−1 in the direction l = 321◦,
b = −1◦ within radiusRmax = 10000km s−1. An analysis of more complex velocity fieldmodels shows that
the anisotropy of the Hubble expansion described by the quadrupole term is equal to∼ 5%on scale lengths
Rmax = 6000 − 10000 km s−1. The amplitude within the Local Supercluster (Rmax = 3000 km s−1) is as
high as∼ 20%. The inclusion of the octupole component reduces the dipole amplitude to 134± 111 km s−1

on scale lengths of ∼ 8000 km s−1. The most remarkable feature of the galaxy velocity field within
Rmax = 8000 km s−1 is the zone of minimum centered on l = 80◦, b = 0◦ (the constellation of Cygnus)
whose amplitude reaches 18% of the mean Hubble velocity. c© 2001 MAIK “Nauka/Interperiodica”.

Key words: galaxies, large-scale motions
INTRODUCTION

Analyses of non-Hubble motions and of the veloc-
ity field of galaxies on various scale lengths require
extensive galaxy samples with measured radial veloc-
ities Vh and redshift-independent distance estimates.
The RFGC catalog of flat galaxies (Karachentsev
et al. 1999) constitutes a homogeneous sample of
4236 edge-on spirals providing rather uniform cover-
age of the entire sky. Starting with the first version
of FGC (Karachentsev et al. 1993), we carried out
our own observations and compiled published radial-
velocity and HI line width data for the galaxies in
our catalog. In 1995 we estimated the absolute ve-
locity and apex of the bulk motion of flat galaxies
in the dipole approximation to be V = 260 km s−1,
l = 319◦, b = +28◦ based on observational data for
about 800 FGC galaxies and the direct Tully–Fisher
relation (Karachentsev et al. 1995). At the next
stage (Karachentsev et al. 2000a), we used a gen-
eralized multiparametric Tully– Fisher relation to es-
timate redshift-independent distances to about 1000
flat galaxies, and inferred the parameters of the dipole
solution for the bulk motion V = 300 km s−1, l =

*E-mail: par@observ.univ.kiev.ua
1063-7737/01/2712-0765$21.00 c©
328◦, and b = +7◦, in good agreement with the re-
sults obtained for the entire MarkIII catalog: V =
370 km s−1, l = 305◦, and b = +14◦ (Dekel et al.
1999).

As of now, we have compiled observed radial ve-
locities and HI widths for a total of ∼ 1300 RFGC
galaxies (Karachentsev et al. 2000b), which we
used in this paper to determine the parameters of the
bulk motion of flat galaxies. We determined galaxy
distances using a different form of relation from that
adopted by Karachentsev et al. (2000b), and consid-
ered various approximations for bulk motion: simple
dipole (D), quadrupole (DQ), and octupole (DQO)
models.

Two groups of discrepant results are known con-
cerning the characteristic velocities relative to the
cosmic microwave background (the so-called 3K-
frame) either equal to 400–700 km s−1 or close to
zero [Strauss and Willik 1995; Willik and Strauss
1998; Willik 2000]. We decided to analyze the effect
of high-order miltipole terms using the sample of
flat galaxies as an example. We show below that
the inclusion of the octupole term can substantially
reduce the magnitude of the dipole velocity term for
galaxies with cz > 7000 km s−1.
2001 MAIK “Nauka/Interperiodica”
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The role of the quadrupole component in the mod-
els of galaxy bulk motion was first discussed by Lilje
et al. (1986) in their pioneering work and then by a
number of other authors (Staveley-Smith and Davies
1989; Dekel 1994; Willik et al. 1997; Willik and
Strauss 1998; Dekel et al. 1999; Hoffman et al.
2001). The quadrupole term is interpreted as the
tidal component of the bulk velocity field due to the
galaxies that are external to the sample considered.
The estimates of the parameters of the quadrupole
term reported in some of the works mentioned above
point to its important role in the description of the
dynamics of galaxy streams. As far as we know, no
numerical estimates of the octupole term have been
published so far.

MULTIPOLE EXPANSION OF THE GALAXY
BULK VELOCITY FIELD

Model of Bulk Velocity

Let us assume that the field of velocity vector V
of bulk motion for the galaxy ensemble considered is
a continuous analytic function of the radius-vector
r = rn drawn from the observing point to the point
at a distance r in the direction of unit vector n. Let
us expand V in powers of Cartesian coordinates r =
{x1, x2, x3} and limit our analysis to the first three
terms of the expansion

Vi = Di +Aijxj +Bijkxjxk (1)

(hereafter, summation is taken over repeated indices).
Galaxy redshift observations give only the radial com-
ponent of velocity (1)

Vr ≡ Vini = Dini + rAijninj + r2Bijkninjnk. (2)

It is evident from this that tensors A and B can be
considered symmetric with respect to their indices,
thus implying the potentiality of the velocity field. Let
us now decompose tensor А into a sum of traceless
tensor Q and a tensor proportional to the unity tensor

Aij = Qij +Hδij , H =
1
3
Aijδij . (3)

We then similarly decompose the third-order tensor
B into a traceless component O and the component
containing its vector trace P

Bijk = Oijk + Piδjk, Pi =
3
5
Bijkδjk (4)

(here indices in brackets are symmetrized). Substitu-
tion of formulas (3) and (4) into formula (2) yields the
following model of galaxy bulk velocity field:

Vr = Hr +Dini + r2Pini (5)

+ rQijninj + r2Oijkninjnk.
The Physical Meaning of Individual Motion
Components

We now assume that Vr values in formula (5) are
radial velocities of galaxies inferred from their ob-
served redshifts z and reduced to the 3K reference
frame according to Kogut et al. (1993). Relation
(5) is a generalization of the Hubble law. The first
term corresponds to the Hubble expansion with the
Hubble constant H . The remaining terms in formula
(5) determine the deviation from the Hubble law—
the so-called non-Hubble bulk motions. The second
term corresponds to the dipole approximation of this
motion, i.e., to the averaged bulk motion of all galax-
ies at a constant velocityD relative to the adopted 3K
reference frame.

Hereafter, we refer to the model of galaxy velocity
field including only the first and the second terms in
formula (5) as the D-model.

Including the fourth term in formula (5) corre-
sponds to the quadrupole approximation to the bulk
motion, and its contribution can be interpreted as
the measure of anisotropy of the expansion velocities.
Such anisotropic expansion can be described by the
direction-dependent “Hubble constant”

H(n) = H +Qijninj. (6)

If we drew a family of vectors of the length H(n)
from the coordinate origin, their end points would lie
on the surface of a three-axial ellipsoid whose axes
coincide with the eigenvectors of tensorQ. Expansion
is fastest and slowest along the major and minor axis,
respectively.

Hereafter, we refer to the bulk motion model de-
scribed by the combination of the first, second, and
fourth terms in formula (5) as the DQ-model.

The third term in formula (5), which is obtained by
extracting the trace of tensor B, acts effectively as a
quadratic (in distance) addition to the dipole compo-
nent, i.e., contributes to the variation ofD obtained in
the dipole approximation for various sample depths.

In the linear approximation of the theory of per-
turbations (Peebles, 1980) the density of matter is
proportional to the divergence of the velocity field.
Assuming the potentiality of the velocity field, we see
that in the approximation used [formula (1)], vector
P is proportional to the gradient of the matter density
distribution.

Finally, the fifth term in formula (5) yields the
octupole component of the bulk velocity. These two
components are, like the dipole component, asym-
metric and have opposite signs at opposite points of
the sky. By contrast, the quadrupole component is
symmetric.

Hereafter, we refer to the bulk motion model de-
scribed by all five components in formula (5) as the
DQO-model.
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Table 1. The coefficients of the generalized Tully–Fisher relation, their errors, and statistical signifciance

i
D-model DQ-model DQO-model

ci Fi ci Fi ci Fi

Rmax = 8000 km s−1 (951 galaxies)

1 16.1 ± 1.9 70 16.7 ± 1.9 75 16.7 ± 1.9 74

2 2.31 ± 0.24 90 2.29 ± 0.25 86 2.32 ± 0.25 86

3 −0.796 ± 0.152 27 −0.785 ± 0.152 27 −0.777 ± 0.153 26

4 8.24 ± 1.64 25 7.79 ± 1.65 22 7.70 ± 1.65 22

5 (−4.79 ± 1.80)× 10−3 7.1 (−5.45 ± 1.80)× 10−3 9.2 (−4.99± 1.92) × 10−3 6.8

6 −860 ± 101 72 −871 ± 101 74 −874 ± 103 72

Rmax = 10000 km s−1 (1134 galaxies)

1 18.2 ± 1.6 123 18.8 ± 1.7 126 18.8 ± 1.7 124

2 2.03 ± 0.22 82 1.99 ± 0.23 74 2.02 ± 0.23 76

3 −0.846 ± 0.146 34 −0.851 ± 0.146 34 −0.809 ± 0.148 30

4 6.68 ± 1.42 25 6.02 ± 1.45 17 6.20 ± 1.45 18

5 (−7.59 ± 1.21)× 10−3 39 (−7.79 ± 1.23)× 10−3 40 (−7.55± 1.35) × 10−3 31

6 −815 ± 98 68 −817 ± 99 68 −873 ± 100 76
Model Parameters
Associated with Multipole Components

The first term in formula (5) characterizes the
distances to individual objects of the sample. We
determine this term using a generalized Tully–Fisher
relation, which we describe below. This method does
not allow the Hubble constant H to be determined,
and, therefore, we use instead of distance r the coor-
dinate R = Hr, i.e., the distance measured in km s−1

that is equal to the radial velocity of the galaxy in the
absence of non-Hubble motions. Equation (5) then
acquires the following form:

Vr = R+ (Di +R2Pi)ni (7)

+RQijninj +R2Oijkninjnk,

where tensors Pi, Qij , and Oijk are redenoted in an
obvious way.

The dipole component is determined by three pa-
rameters Di and the quadrupole component is deter-
mined by five parameters qi:

V quad
r = R{q1(n2

1 − n2
3) + q2(n2

2 − n2
3) (8)

+ q3n1n2 + q4n1n3 + q5n2n3}.
The octupole component is determined by seven pa-
rameters d

′
i:

V r
r = R2{d′1(3n1n

2
2 − n3

1) + d′2(3n1n
2
3 − n3

1)

+ d′3(3n2n
2
1 − n3

2) + d′4(3n2n
2
3 − n3

2) (9)

+ d′5(3n3n
2
1 − n3

3) + d′6(3n3n
2
2 − n3

3) + d′7n1n2n3}.
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Together with three parameters of the vector part Pi

of tensor B, we have a ten-parameter, quadratic (in
distance) component of the model. Hereafter, we
refer to this component as the octupole component
of the model. We hope that this will not lead to
misunderstanding. We parametrize it as follows:

V oct+P
r = R2{d1n

3
1 + d2n

3
2 + d3n

3
3 + d4n1n

2
2

+ d5n1n
2
3 + d6n2n

2
1 + d7n2n

2
3 (10)

+ d8n3n
2
1 + d9n3n

2
2 + d10n1n2n3}.

Parameters di in formula (10) can be expressed lin-
early in terms of d′i and Pi.

Thus, if distances R are known, the most general
DQO model is determined by eighteen parameters;
the DQ model, by eight parameters, and the D-
model, by three parameters of multipole expansions.

We use the 3K reference frame whose axes are
associated with galactic coordinates l and b:

n1 ≡ nz = sin b, n2 ≡ nx = cos l cos b, (11)

n3 ≡ ny = sin l cos b.

DETERMINATION OF DISTANCES
TO GALAXIES

In our previous work (Karachentsev et al. 2000a),
we analyzed the bulk motion of galaxies in the dipole
approximation. We fitted the distance R to each
galaxy using a set of regressors, which are some
nonlinear combinatuons of galaxy parameters taken
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Table 2. Statistical significance of the tensor components of the models according to Fisher’s test

Mo-
del

Com-
po-
nent

Sample,Rmax, km s−1 Quantiles, %

3000 4000 5000 6000 7000 8000 9000 10000 Entire 99 99.9

n = 224 n = 395 n = 537 n = 723 n = 829 n = 951 n = 1064 n = 1134 n = 1271

D D 5.54 4.25 3.60 3.12 5.37 9.83 9.33 8.16 5.96 3.78 5.42

DQ D 4.58 3.60 4.07 3.95 4.89 7.96 7.36 6.62 6.12 3.78 5.42

Q 3.35 2.59 3.05 2.38 1.86 4.36 2.82 2.53 1.78 3.02 4.10

D + Q 4.28 3.24 3.28 2.67 3.19 6.48 5.29 4.66 3.36 2.51 3.27

DQO D 3.41 2.91 2.66 2.81 1.85 0.49 1.12 2.31 4.59 3.78 5.42

Q 2.65 2.80 3.38 2.14 1.38 2.58 2.07 2.58 2.49 3.02 4.10

P 1.20 1.08 0.27 1.01 0.85 2.27 1.32 1.20 0.52 3.78 5.42

O 1.41 1.70 4.60 2.00 4.34 2.62 2.11 2.49 5.64 2.64 3.47

D + P 2.69 2.15 3.28 2.78 2.79 4.73 3.80 4.06 2.81 2.80 3.74

O+ P 1.30 1.57 3.43 1.65 3.32 2.36 2.04 2.23 4.84 2.32 2.96

Table 3. Parameters of the dipole component of the bulk velocity of galaxies in the galactic coordinate system

Model
Rmax Dz Dx Dy D l,

deg
b,
deg σ, km s−1

km s−1

D 8000 17 ± 55 224 ± 68 −277 ± 69 356 ± 94 309 3 1065

DQ 8000 −32 ± 59 266 ± 73 −201 ± 73 335 ± 69 323 −5 1062

DQO 8000 −14 ± 90 116 ± 119 −65 ± 120 134 ± 111 331 −6 1054

D 10000 −7 ± 56 261 ± 68 −212 ± 71 336 ± 96 321 −1 1162

DQ 10000 −32 ± 61 263 ± 75 −173 ± 71 316 ± 71 327 −6 1159

DQO 10000 34 ± 87 121 ± 112 −248 ± 118 277 ± 105 296 7 1152
from the RFGC catalog. Our analysis of the statis-
tical significance of possible regressors based on the
Fisher tests led us to the following fit that generalizes
the Tully–Fisher relation (in its “linear size–HI line
width” form):

R =
W

ar
(c1 + c2B + c3BT ) (12)

+ c4
W

ab
+ c5

(
W

ar

)2

+ c6
1
ar
,

where W is the width of the HI line in km s−1 mea-
sured at 50% level of its maximum value and cor-
rected for cosmological expansion and turbulence; ar

and ab, the angular major axes in arcmin as mea-
sured on red and blue copies of POSS and SERC
plates, respectively, and corrected for the inclination
to the line of sight and Milky-Way extinction; T , the
centered index of morphological type of the galaxy
equal to the type index It given in the catalog minus
the approximate mean index – T = It − 5.35; and
B, the centered index of surface brightness of the
galaxy equal to the catalog surface brightness index
ISB minus the approximate mean value of this index
– B = ISB − 2.

We applied regression relation (12) to all RFGC
galaxy samples considered and to all models. We
obtained our subsamples by imposing upper limits on
galaxy distances R < Rmax computed in terms of the
dipole model. In our computations, we used the data
for a total of 1271 galaxies.

Relation (12) differs somewhat from the one we
used in our previous work (Karachentsev et al.
2000a). We excluded the term with the ratio of the
major to minor axis, because its insignificance de-
creases substantially for the subsamples considered
in this paper. We substituted the discarded term
with the new regressor W/ab, including the blue
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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diameter that proved to be statistically significant for
all subsamples considered.

DETERMINATION OF THE PARAMETERS
OF BULK MOTION

AND OF THE GENERALIZED
TULLY–FISHER RELATION

We estimate all model parameters using the least
squares method and assuming that the deviations
of galaxy velocities from the velocities computed in
terms of the adopted model are exclusively due to
chance fluctuations. Generally speaking, the lat-
ter assumption is not quite correct, because inho-
mogeneities of the matter density distribution inside
and in the vicinity of the sample boundaries pro-
duce “small-scale” (compared to the 100 Mpc scale
length) nonaccidental motions that are not consid-
ered in our models.

Note that substitution of model distances (12) into
the DQ and QDO models of bulk motion makes
them nonlinear in determined parameters. However,
we do not linearize the models but determine their
parameters via iterations in distances R.

The computed parameters and their errors for the
subsamples with different Rmax are summarized in
Tables 1–6, which also give the parameters F of
statistical significance according to the Fisher test for
the corresponding terms in the approximation of the
velocity field.

RESULTS

Generalized Tully–Fisher Relation

Table 1 gives the parameters of the generalized
Tully–Fisher relation (12) for all three models (D,
DQ, and DQO) and two Rmax – Rmax = 8000 and
10000 km s−1. Parameters of regression (12) for all
six versions considered agree well with each other.
All deviations are within the 1σ errors. The statisti-
cal significance according to the Fisher test exceeds
99.95% in all cases, except the fifth term in formula
(12) for Rmax = 8000 km s−1 whose statistical sig-
nificance reduces down to 99.5%. The same trend
can be seen for subsamples with lowerRmax for which
we do not give the computational results. It is well
known that the statistical significance levels of 95,
99, 99.5, 99.9, and 99.95% correspond to F = 3.8,
6.6, 7.9, 10.8, and 12.1, respectively, for the case
where the numerator has one degree of freedom and
the denominator has an infinite number of degrees of
freedom.
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Fig. 1. The absolute value of the velocity of the dipole
component as a function of the maximum distance to the
galaxies of the subsample. Triangles, squares, and circles
indicate the results of computations made in terms of D-
model, DQ-model, and DQO-model, respectively. For
convenience, the error bars of the latter two models are
slightly shifted sideways.

Statistical Significance of Multipole Components

The computed statistical significances of tensor
multipole components using the Fisher test are listed
in Table 2. For comparison, the last columns of the
table give the quantiles of Fisher’s F-distribution for
the case where the denominator has infinite number
of degrees of freedom and the number of degrees of
freedom of the numerator is equal to that of the model
parameters tested for significance.

It also follows from Table 2 that:
(1) The statistical significance of the dipole term

in the D and DQ models exceeds 99.9%, at least for
subsamples with Rmax > 7000km s−1;

(2) The statistical significance of the quadrupole
term in DQ model exceeds 95% for most of the sub-
samples;

(3) The statistical significance of the quadrupole
term in the DQOmodel changes substantially, with a
minimum value close to 99%;

(4) The statistical significance of the octupole
term exceeds 95% for all samples and reaches values
higher than 99.9% for some of the samples;

(5) Octupole trace P is statistically insignificant
for all subsamples.
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Table 4. Parameters of the quadrupole component of the bulk motion of galaxies in the galactic coordinate system

Rmax = 8000 km s−1 Rmax = 10000 km s−1

i DQ-model DQO-model DQ-model DQO-model

qi, % Fi qi, % Fi qi, % Fi qi, % Fi

1 5.5 ± 1.8 9.4 4.0 ± 2.2 3.5 4.3 ± 1.6 6.8 5.7 ± 2.1 7.5

2 1.8 ± 1.9 0.9 3.3 ± 2.3 2.0 0.8 ± 1.7 0.2 1.0 ± 2.1 0.2

3 −2.1 ± 2.6 0.7 −1.5 ± 2.9 0.3 2.9 ± 2.2 1.8 2.6 ± 2.6 1.0

4 −2.5 ± 2.7 0.9 0.2 ± 3.1 0.0 0.0 ± 2.3 0.0 0.4 ± 3.0 0.2

5 5.1 ± 3.3 2.4 1.5 ± 3.6 0.2 0.4 ± 3.0 0.0 −1.0 ± 3.5 0.8
It thus follows that the dipole, quadrupole, and oc-
tupole components of the models are statistically sig-
nificant, whereas the octupole trace P can be dropped
from the model.

Dipole Component of Bulk Motion

Table 3 gives the parameters of the dipole compo-
nent of bulk velocity (velocity components and their
errors, absolute velocity and its error, and the position
of the apex) for all six cases, as well as the standard
deviations σ of galaxy velocities from the correspond-
ing approximation. All models yield similar apexes,
which are close to that determined by Karachentsev
et al. (2000a): l = 328◦ ± 15◦ and b = 7◦ ± 15◦.
The situation with the magnitude of velocity is quite
different. To analyze it in more detail, let us study
Fig. 1, which shows the magnitude of the velocity of
the dipole component and its error for three models
with different Rmax. It can be seen from this figure
that the inclusion of the quadrupole term has virtually
no effect on the magnitude of the dipole term for all
Rmax. However, in the case of 7000 km s−1 < Rmax <
9000 km s−1, the inclusion of the octupole term
significantly decreases the magnitude of the dipole
component of velocity. The latter can be seen to have
a minimum in the vicinity of Rmax = 8250 km s−1,
and this minimum is almost three times lower than
in the D- and DQ models. Note that the velocity
given by the DQO model insignificantly exceeds its
standard error and is, therefore, close to zero. It is
evident from this that the reduction of the same data
using the same technique in terms of models with and
without the octupole component yields qualitatively
different conclusions about the absolute value of the
bulk velocity. This result is of interest for the esti-
mates of the minimum scale length on which density
inhomogeneities are smoothed out and the absolute
bulk velocity converges.

The closeness of the dipole components of the D
and DQ models and the strong sensitivity of these
components to the introduction of the octupole com-
ponent are apparently due to the fact that the dipole
and octupole terms are symmetric and the quadrupole
is asymmetric with respect to spatial reflections.
Identical symmetry properties result in strong dipole-
octupole interaction (if the octupole component is
dropped, the dipole component overtakes its role in
describing the asymmetric properties of the velocity
field), which can lead to overestimating the bulk
velocity in the dipole approximation because of the
inadequacy of the D-model.

Quadrupole Component
of Bulk Motion

Table 4 lists the parameters qi of the quadrupole
component (8) of the velocity field, their errors and
statistical significances according to the Fisher test.
For better illustration, Table 5 gives the eigenvectors
and eigenvalues of tensorQ.

In the DQ-model with Rmax = 10000 km s−1, the
maximum eigenvalue of 4.8± 1.5% is associated with
the eigenvector pointing toward l = 1◦ and b = 70◦
(Bootis, in the vicinity of Virgo) and its opposite
(Cetus, in the vicinity of Pisces). The minimum
eighenvalue of –5.1 ± 1.7% is associated with the
direction l = 272◦ and b = 0◦ (Vela) and its oppo-
site (Cygnus). The third axis is directed along l =
182◦, b = 20◦ (Gemini) and its opposing constellation
of Sagittarius is characterized by the statistically in-
significant value of 0.3 ± 1.5%. As follows from our
analysis, the anisotropic “Hubble constant” varies
from 94.9 to 104.8% of its mean value.

Table 5 gives the quadrupole eigenvectors and
eigenvalues for Rmax = 10000, 9000, 8500, 8000,
6000, and 3000 km s−1. It is evident from the data
listed in the table that the amplitude of the quadrupole
component increases with decreasing sample depth,
because the tidal influence of external gravitating
masses is more important for small volumes than
for large ones. The directions corresponding to the
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Table 5. Eigenvectors and eigenvalues of the tensor of quadrupole component

Rmax, km s−1 Maximum Minimum Third axis

Q1, % l, deg b, deg Q2, % l, deg b, deg Q3, % l, deg b, deg

DQ-model

3000 24 ± 6 339 5 −17 ± 5 75 54 −7 ± 5 245 35

Staveley-Smith and Davies, 1989

6000 6.1 5 22 –9.7 166 66 3.6 272 8

Willick et al., 1997

Willick and Strauss, 1998

3000 15.9 ± 5.7 282 16 −21.1 ± 5.9 78 73 5.1 ± 7.0 191 7

6000 5.0 ± 1.9 168 45 −7.8 ± 2.3 69 10 2.9 ± 1.9 329 44

8000 6.1 ± 1.7 205 69 −8.1 ± 1.9 104 4 2.0 ± 1.9 13 20

8500 5.0 ± 1.5 294 84 −6.5 ± 1.9 107 6 1.5 ± 1.7 197 1

9000 4.7 ± 1.5 10 69 −6.2 ± 1.8 104 2 1.5 ± 1.6 195 21

10000 4.8 ± 1.5 1 70 −5.1 ± 1.7 92 0 0.3 ± 1.5 182 20

DQO-model

3000 16.8 ± 6.1 304 15 −18.4 ± 6.4 88 72 1.5 ± 7.7 211 10

6000 5.4 ± 2.3 161 13 −7.7 ± 2.5 70 4 2.4 ± 2.4 324 76

8000 4.5 ± 1.9 183 58 −7.4 ± 2.1 274 1 2.9 ± 2.0 5 32

8500 3.9 ± 1.8 10 70 −6.6 ± 2.0 272 3 2.7 ± 2.1 182 20

9000 4.8 ± 2.1 50 85 −6.2 ± 2.1 274 4 1.4 ± 2.2 184 4

10000 6.1 ± 2.0 1 76 −6.7 ± 2.2 266 1 0.7 ± 2.0 176 14

Table 6. Parameters of the octupole component of the bulk velocity field of galaxies in the galactic coordinate system

i
Rmax = 8000 km s−1 Rmax = 10000 km s−1

di × 106 Fi di × 106 Fi

1 3.2 ± 4.8 0.5 −7.5 ± 3.8 3.8

2 6.5 ± 6.7 1.0 7.7 ± 4.7 2.7

3 −2.8 ± 6.5 0.2 −2.0 ± 5.8 0.1

4 4.1 ± 8.2 0.2 13.3 ± 5.8 5.2

5 −14.4 ± 8.3 3.0 −2.8 ± 7.0 0.2

6 13.0 ± 8.8 2.2 7.7 ± 6.4 1.4

7 0.0 ± 11.2 0.0 −5.8 ± 9.3 0.4

8 0.0 ± 9.3 0.0 15.2 ± 7.0 4.7

9 −37.9 ± 10.9 12.2 −8.6 ± 8.2 1.1

10 20.1 ± 11.8 2.9 10.7 ± 8.6 1.6
maximum and minimum do not remain constant for
differentRmax. AsRmax decreases, the shape of the el-

lispoid H(l, b) approaches that of an oblate spheroid.
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This effect manifests itself in the fact that the eigen-
values of the third axis are positive and the difference
between these eigenvalues and the maximum eigen-
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Fig. 2. Contours of the constant radial velocity of the octupole component of the bulk motion of galaxies for two subsamples
with (a) Rmax = 8000 km s−1 and (b) Rmax = 10000 km s−1. (c) Contours of the constant velocity for the entire bulk motion
forR = 8000 km s−1. DQO-model withRmax = 10000 km s−1 is used.
value decreases in absolute value with decreasing
Rmax.

Thus, all models yielded statistically significant
quadrupole components of the velocity field. The
deviation from the Hubble law is equal to about 5%
and 18% on the scale lengths 6000–10000 km s−1

and that of the Local Supercluster (3000 km s−1),
respectively.
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Staveley-Smith and Davies (1989) estimated the
magnitude of the quadrupole effect for a sample with
a characteristic depth of ∼ 3000 km s−1. Willick and
Strauss (1998) estimated the quadrupole component
on a scale length of 3000–6000 km s−1 assuming
that it is due to masses located beyond 12800 km s−1.
(These data are given in the first and second lines
of Table 5). One can see that the magnitiudes of
the quadrupole effect determined by different authors
agree satisfactorily with each other.

Octupole Component
of Bulk Motion

The parameters of the octupole component of the
bulk velocity field are listed in Table 6 for two samples
with Rmax = 8000 km s−1 and Rmax = 10000 km s−1.
To visualize the effect of the octupole component,
we show in Fig. 2 the contours of function F (l, b) =
106(Oijkninjnk + Pini). According to equation (7),
the latter quantity determines a contribution to the
radial velocity of the galaxy that is quadratic in
distance. It is evident from the figure that F (l, b)
has two maxima at l > 210◦ and two minima located
symmetrically with respect to these maxima. The
highest maximum lies at l = 320◦, b = −20◦ and
l = 355◦, b = 20◦ for the subsamples with Rmax =
8000 km s−1 and Rmax = 10000 km s−1, respectively.
The second maxima associated with the directions
l = 220◦, b = 0◦ and l = 210◦, b = 10◦ are even closer
to each other. For the two subsamples in the southern
circumpolar region, the third maximum is associated
with directions l = 90◦, b = −40◦ and l = 80◦, b =
−70◦, respectively. For the subsample with Rmax =
10000 km s−1 this maximum is second in magnitude.
Although the overall patterns of the contours of
F (l, b) are rather similar to each other, their maxima
differ by a factor of two to three.

As is evident from Table 6, the components of
the octupole term of the bulk velocity differ more
importantly from one subsample to another than do
those of the quadrupole and dipole terms. This also
applies to the statistical significance of the octupole—
the fact that seems to be due to the higher sensitivity
of the octupole to “small-scale” motions associated
with the inhomogeneities of the field of matter density
near the subsample boundary. This effect is especially
conspicuous for large distances, because local field
inhomogeneities have weights proportional to R2.

Crosses in Figs. 2a and 2b indicate the directions
of the dipole component of velocity. It is evident
from the figure that the octupole component for this
direction is positive and close to its maximum value
over the sky. As a result, the deviation of the bulk
velocity from the Hubble velocity for galaxies seen
ASTRONOMY LETTERS Vol. 27 No. 12 2001
toward the apex of the dipole component increases
with distance. After averaging over the sample, the
D-model yields larger magnitude of the bulk velocity
than the DQO-model, as is evident from Fig. 1. For
subsamples with Rmax > 11000 km s−1 and Rmax <
7000 km s−1, function F (l, b) in the direction of the
apex of the dipole component becomes negative, and,
as a result, the relation between the results of compu-
tations made in terms of the two models reverses.

Since vector P is proportional to the gradient of
matter density, its statistical insignificance indicates
that the data and velocity field models used in this pa-
per allow no definitive conclusions to be made about
large-scale density fluctuations.

Overall Pattern of Velocity Field

We obtain the velocity field pattern in vectorial
form (1), which allows us to compute not only the
radial but also the tangential components of galaxy
velocities. However, direct comparison with obser-
vational data is possible only for radial velocities (7).
The field of radial velocities of the DQO model is
rather complex. This fact is illustrated in Fig. 2c,
which shows the contours of constant peculiar veloc-
ity computed by summing three radial components at
R = 8000 km s−1 for the DQO model with Rmax =
10000 km s−1. Recall that to obtain the velocity
of recession, one must add to the values shown in
Fig. 2c the much greater Hubble velocity of R =
8000 km s−1. The velocity field pattern exhibits a
conspicuous minimum at l = 80◦, b = 0◦ (Cygnus)
and a much more blurred maximum. The amplitude
of the minimum is equal to about 18% of the Hubble
velocity, whereas that of the maximum is smaller by a
factor of 1.5.

At the distance corresponding to the Hubble ve-
locity of about 6000 km s−1 the dipole, quadrupole,
and octupole components are of comparable magni-
tude. This distance can be considered to be the scale
length of velocity field irregularities in the models
considered. At smaller distances, bulk velocities of
galaxies are dominated by the dipole component.

CONCLUSIONS

An analysis of the bulk velocities of galaxies from
the RFGC catalog using new observational data
(Karachentsev et al. 2000b) confirmed the apex
direction of the dipole velocity component inferred
in our earlier work. The transition to the DQ-
model has virtually no effect on the magnitude of this
velocity. Inclusion of the octupole component (DQO
model) significantly decreases the magnitude of the
velocity of the dipole component for subsamples with
7000 km s−1 < Rmax < 10000 km s−1.
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The quadrupole and octupole components of bulk
velocity are statistically significant. The former re-
sults in a small (5–8%) anisotropy of galaxy ex-
pansion, which can be described by introducing a
direction-dependent “Hubble constant” (5).

The amplitude of the quadrupole effect is equal to
about 18% on the scale of the Local Supercluster
and decreases to ∼ 5% on scales of Rmax = 6000–
10000 km s−1, in accordance with the results of other
authors.

The parameters of the octupole component depend
significantly on the sample depth Rmax. This must
be due to the intricate pattern of the distribution of
matter in the volume considered. On the whole, the
allowance for the octupole component reduces the
amplitude of the dipole effect, which for the sample
withRmax = 8000 km s−1 drops to 134± 111 km s−1.
Thus, the analysis of the same data with and without
allowance for the octupole can yield significantly dif-
ferent conclusions as to whether the amplitude of the
dipole component of the bulk velocity of galaxies re-
mains constant or decreases with increasing volume
of the sample.
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Abstract—We propose a model for the particle acceleration to energy E ≈ 1021 eV in Seyfert galactic
nuclei. The model is based on the theory of active galactic nuclei by Vilkoviskij et al. (1999). The
acceleration takes place in hot spots of relativistic jets, which decay in a dense stellar kernel at a distance
of 1–3 pc from the center. The maximum energy and chemical composition of the accelerated particles
depend on the jet magnetic-field strength. Fe nuclei acquire the largest energy, E ≈ 8 × 1020 eV, if the
jet field strength is B ≈ 16 G. At a field strength B ∼ 5–40 G, the nuclei with Z ≥ 10 acquire energy
E ≥ 2× 1020 eV; the lighter nuclei are accelerated toE ≤ 1020 eV. In a fieldB ∼ 1000G, only the particles
with Z ≥ 23 gain energyE ≥ 1020 eV. The protons are accelerated toE < 4 × 1019 eV, and they do not fall
within the energy range concerned at any field strength B. Interactions with infrared photons do not affect
the accelerated-particle escape from the sources if the galactic luminosityL ≤ 1046 erg s−1 and if the angle
between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the galactic-disk
axial ratio is comparatively large. The particles do not lose their energy through magnetodrift radiation if
their deflection from the jet axis does not exceed 0.03–0.04 pc at a distance R ≈ 40–50 pc from the center.
The synchrotron losses are small, because the magnetic field frozen in the galactic wind at R ≤ 40–50 pc
is directed (as in the jet) predominantly along the motion. If this model is correct, then the detected protons
are nuclear fragments or are accelerated in other sources. The jet magnetic fields can be estimated by using
the cosmic-ray energy spectrum and chemical composition. c© 2001 MAIK “Nauka/Interperiodica”.

Key words: cosmic rays, nonthermal radiation
INTRODUCTION

Cosmic rays (CRs) with energies (4 × 1019–
3 × 1020) eV have been detected with various facil-
ities (Hillas 1998). The existence of such particles
raises the question as to where and how they are
accelerated to such high energies. Cocoons of radio
galaxies (Norman et al. 1995), topological-defect
annihilation (Berezinsky and Vilenkin 1997), quasars
(Farrar and Biermann 1998), gamma-ray bursts
(Totani 1998), massive primordial particle decays
(Kuzmin and Rubakov 1998), and interactions of
H-dibaryons predicted by quantum chromodynamics
with the Earth’s atmosphere (Koshelev 1999) have
been proposed as the possible particle sources. Pre-
viously (Uryson 2001; Uryson 1996, 1999a, 1999b),
we directly identified the sources by assuming that
CRs were deflected only slightly by intergalactic
magnetic fields and that the possible sources were no
more than 100 Mpc away (for the Hubble constant
H = 75 km s−1 Mpc−1). As the possible sources,
we considered radio galaxies from the catalogs by
Spinrad et al. (1985) and Kuhr et al. (1981), X-
ray pulsars (as the strongest ones) from the catalog

*E-mail: uryson@sci.lebedev.ru
1063-7737/01/2712-0775$21.00 c©
by Popov (2000), and BL Lac objects and Seyfert
galaxies from the catalog by Veron (1998). For our
analysis, we took the extensive air showers triggered
by particles with errors in the arrival direction in
equatorial coordinates (∆α,∆δ) ≈ 3◦ [the effect of
the error on the identification of sources was analyzed
previously (Uryson 1999b)]: 48 showers detected
with the AGASA facility (Takeda et al. 1999), one
Navera Park shower [Watson 1995; its error was
calculated by Farrar and Biermann (1998)], and
four Yakutsk showers [Afanas’ev et al. 1996; the
errors were calculated previously (Uryson 1999b)].
For the showers that arrived from different Galactic
latitudes, we calculated the probabilities that the
possible sources fell within the triple-error region
(3∆α, 3∆δ) ≈ 9◦ by chance. The showers were
selected by latitudes to exclude from our analysis
the low-latitude sky regions known as the zones of
avoidance of galaxies. The probabilities were found
to be low, P > 3σ (σ is the Gaussian distribution
parameter), for the showers with |b| > 31◦ and Seyfert
galaxies with moderate luminosities and radio and X-
ray fluxes, as well as for BL Lac objects: P ≈ 1.47 ×
10−3 (≈ 3.15σ) and P ≈ 1.77 × 10−3 (≈ 3.10σ), re-
spectively. The number of showers with |b| > 31◦ was
2001 MAIK “Nauka/Interperiodica”



776 URYSON
26. Previously (Uryson 1999a, 1999b), we searched
for the sources using the catalog by Veron (1993) and
estimated the probability for BL Lac objects to be
P < 3σ. In our recent paper (Uryson 2001), we used
the catalog by Veron (1998), in which the statistics of
BL Lac objects at δ > −10◦ tripled, 159 compared to
55. This is the reason why the probability estimates
for BL Lac objects differ.
Kardashev (1995) found that particles could be

greatly accelerated in active galactic nuclei (AGNs):
in the vacuum approximation, charged particles near
a supermassive black hole are accelerated by an elec-
tric field to energy E ∼ Z × 1027 eV. The accelerated
particles lose their energy through magnetodrift radi-
ation. As a result, their energy decreases to 1021 eV, a
value that is high enough to explain themaximum en-
ergy 3 × 1020 eV observed in CRs (Bird et al. 1995).
Particles are injected along the black-hole spin axis.
If the black hole has such a magnetosphere that the
magnetic field lines do not curve near the poles, then
particles with energy∼ Z × 1027 eV can be present in
CRs. Norman et al. (1995) considered the conditions
under which the energy losses of particles in AGNs
near a black hole are so large that the injection of CRs
with E ≈ 1020 eV is definitely ruled out.
In the model by Kardashev (1995), particles are

accelerated in AGNs with extended jets. Among the
AGNs (possible CR sources), BL Lac objects have
such jets. Jets are generally unseen in moderate-
luminosity Seyfert galaxies. Here, we consider
the mechanism of CR acceleration to energy E ≥
1020 eV in Seyfert galactic nuclei and show that the
accelerated particles can leave the sources without
substantial energy losses.

CR ACCELERATION IN SEYFERT NUCLEI

We use the AGN theory by Vilkoviskij and Kar-
pova (1996) and Vilkoviskij et al. (1999) to analyze
the CR acceleration in moderate Seyfert nuclei. Ac-
cording to this theory, relativistic jets are formed near
a massive black hole in most Seyfert galaxies, but
they decay (are significantly, by 90% , absorbed) at
a distance of 1–3 pc inside a massive stellar kernel.
The jet parameters are: the cross section in the kernel
S = 3 × 1031 cm2 and the relativistic factor γ = 10.
In our model, particles are accelerated at the shock
front in a hot spot of the jet. The jet field is parallel
to the axis, and the particles are accelerated through
scattering by turbulence-producedmagnetic-field in-
homogeneities to energy

Ej ≈ ZeβjBRj erg, (1)

whereZe is the particle charge, βj is the ratio of the jet
velocity to the speed of light, B is the magnetic field
in the hot spot, and Rj is the spot diameter (Norman
et al. 1995). For the above jet parameters, the
jet velocity and diameter are βj ≈ 0.99 and Rj ≈ 6 ×
1015 cm, respectively; the maximum particle energy is

Ej ≈ 1.9 × 1018ZB eV. (2)
In the hot-spot magnetic field, a particle loses its
energy through synchrotron radiation simultaneously
with its acceleration. From the condition of equality
between the rates of energy gain and loss, we find that
the energy does not exceed (Norman et al. 1995)

Es ≈ (Mc2ZeβjBcts)1/2 erg, (3)
whereM is the particle mass; ts is (Ginzburg 1987)

ts = (1.58 × 10−15)−1B−2(A/Z)3 (4)

× Z−1(mp/me)2(mpc
2)−1,

whereme andmp are the electron and proton masses,
respectively. For nuclei, A/Z ≈ 2, and their maxi-
mum energy is

EsA ≈ 6.6 × 1020(Z/B)1/2 eV. (5)
The maximum proton energy is

Esp ≈ 1.65 × 1020B−1/2 eV. (6)
In a random magnetic field (Ginzburg 1987), the
energy of both protons and nuclei increases by a factor
of 1.2.
From the condition Ej = Es, we find the field BCR

in which the particles with different numbers Z gain
the maximum energy

BCR = (3.5 × 102)2/3Z−1/3. (7)
In a field B < BCR, the maximum particle energy is
E = Ej; in a field B > BCR, the energy is E = ESA.
For protons, Bp ≈ 19.6 G and Emax p ≈ 3.7 ×

1019 eV; for He nuclei (Z = 2), BHe ≈ 39.5 G and
EmaxHe ≈ 1.5 × 1020 eV; and for Fe nuclei, BFe ≈
16 G and EmaxFe ≈ 8 × 1020 eV. The strength of
the field frozen in the jet in the model by Vilkoviskij
and Karpova (1996) and Vilkoviskij et al. (1999)
is presently unknown. If the field is within the
range B ∼ 5–40 G, then the nuclei with Z ≥ 10 gain
energy E ≥ 2 × 1020 eV and the lighter nuclei are
accelerated to E ≤ 1020 eV. In a field B ∼ 100 G, the
particles with сZ > 2 are accelerated toE ≥ 1020 eV.
In a field B ∼ 1000 G, only the particles with Z ≥ 23
gain such energy. Protons are accelerated toE < 4×
1019 eV, and they do not fall within the energy range
concerned at any B. Consequently, if this model
is correct, then, first, the protons with energy E >
4 × 1019 eV detected in CRs were not accelerated
in Seyfert nuclei and are nuclear fragments or they
were accelerated in other sources (probably in BL Lac
objects), and, second, the jet magnetic fields can
be estimated by using the CR energy spectrum and
chemical composition.
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PARTICLE ESCAPE FROM THE SOURCES

The accelerated particles that left the hot spot do
not interact with the bow shock generated by the jet
in a flow of hot gas, since the wave propagates more
slowly than the jet because the gas density is lower
than the jet density (Chakrabarti 1988). The particles
lose their energy in photopion reactions with infrared
photons and through synchrotron and magnetodrift
radiation.
The 10–100-pc region is surrounded by a geo-

metrically and optically thick dusty torus that emits
infrared photons (Pier and Krolik 1993). Inside the
torus, the infrared radiation is absorbed and rescat-
tered by clouds. The photopion losses in this radiation
are small if the source luminosity L < 1046 erg s−1

(Normal et al. 1995). The CR sources are identified
precisely with such Seyfert galaxies. An accelerated
particle does not enter the torus if it flies at such
an angle i to the normal to the galactic plane that
tan i < l/h, where l is the inner radius of the torus,
and h is its thickness; i.e., the galactic plane is viewed
at a comparatively small angle. The angle i is charac-
terized by the galactic axial ratio e1/e2 (Simcoe et al.
1997): cos i = e2/e1, since i = 55◦ at e2/e1 = 0.6,
the source galaxies must have a comparatively large
e2/e1 ratio.
The synchrotron losses in the gas flow are neg-

ligible, because its field is directed (as in the jet)
predominantly along the motion. The magnetodrift
losses of a particle with change Z are (Zheleznyakov
1997)

−dE/dt = 2/3(Ze)2c(E/Mc2)4(ρc)−2, (8)

where ρc is the radius of curvature of a field line.
Hence, the particle energy decreases by half in time

Tcurv = 7/2(Mc2)8E−3(Ze)−2ρ2
cc

−1. (9)

The particle travels along a field line to a distance
Rline. The particles with energy Emax traverse this
distance in time

t ≈ Rline/c ≈ 4.6 × 109 s. (10)

The magnetodrift losses are small if the particle will
lose nomore than half of its energyEmax whilemoving
along field lines:

Tcurv > t. (11)

The distance Rline can be determined as follows. An
accelerated particle freely leaves the galaxy, reaching
a region where the field decreases to such an extent
that the particle gyroradius is rL ≥ 5 kpc (Pochepkin
et al. 1995) (here, the characteristic sizes of spiral
galaxies, to which most Seyferts belong, are assumed
to be the same as those of our Galaxy). For ultrarela-
tivistic particles, the gyroradius is rL ≈ E/(300ZB)
(the energy E is in eV, the field B is in G, and rL
is in cm) (Berezinsky et al. 1990); for particles
ASTRONOMY LETTERS Vol. 27 No. 12 2001
with differentZ and energiesE = Emax, the condition
rL ≥ 5 kpc is satisfied in a fieldB ≤ 10−5 G . Assum-
ing that the magnetic field decreases with distance as
B ∼ R−3 (Vilkoviskij 2000) and that the field is B ∼
1 G at a distance R ∼ 1 pc (Rees 1983), we obtain
Rline ≈ 46 pc. In a dipole magnetic field, the radius of
curvature of field lines is ρc = 4R2/3a, where R and
a are the distances from the dipole center and axis,
respectively (Kardashev 1995). Hence, using (9)–
(11), we estimate the maximum deflection from the
jet axis of the particles with E = Emax that traversed
a distance R ≈ 46 pc with small magnetodrift losses:
ap ≈ 0.01 pc for protons, aHe ≈ 0.03 pc for He nuclei,
and aFe ≈ 0.04 pc for Fe nuclei.
Let us determine what fraction of the acceler-

ated particles leave the source without magnetodrift
losses. The angle of deflection from the jet axis for
such particles is

θ ≤ a/Rline = 6.5 × 10−4. (12)

Since the particles are scattered isotropically in the
wave frame, we calculated the fraction concerned as
follows. The angle θ∗ between the velocity vector and
the jet axis in the wave frame is related to the angle θ
by (Landau and Lifshitz 1990)

tan θ = (1 − β2)1/2(β + cos θ∗)−1 sin θ∗ (13)

= 0.14 sin θ∗(0.99 + cos θ∗)

at β ≈ 0.99. For θ < 0.02, sin θ∗ ≈ θ∗, cos θ∗ ≈ 1,
and θ ≈ 0.07θ∗. Consequently, θ∗ ≈ 0.01, and the
fraction of the particles deflected from the jet axis
through angles (12) is η ≈ 0.01/π ≈ 3 × 10−3; i.e.,
approximately one of the 300 accelerated particles
leaves the source without magnetodrift losses.
Hence, using the CR flux measured near the

Earth, we can estimate the observed ultrahigh-energy
cosmic-ray luminosity of the host galaxy LUHECR:

LUHECR =

∞∫
E

Fg(E)EdE, (14)

where Fg(E) = KE−γ is the differential particle
generation spectrum in a Seyfert galaxy. If the high-
energy CR spectrum is distorted only slightly by
interactions in intergalactic space (this is possible
on condition that the sources lie within ∼ 50 Mpc),
then the spectrum of particle generation in the source
Fg(E) and the observed CR spectrum I(E) at E >

5 × 1019 eV have the same shape and Fg(E) =
KE−γ , γ ≥ 3.1. The intensity of CRs with energy
E in the Universe is (Berezinsky et al. 1990)

I(E) = (c/4π)Fg(E)nSyTMg, (15)

where nSy = 2 × 10−77 cm−3 is the density of Seyfert
galaxies, and TMg = 1.3 × 1010 years is the age of
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the Universe. I(E) at E > 5 × 1019 eV measured
with various facilities (Watson 1996) is ≈ 10−39–
10−40 (cm2 s sr eV)−1. From (14) and (15), we
obtain the observed luminosity in CRs with E >
5 × 1019 eV of the host galaxy LUHECR ≈ 1039–
1040 erg s−1 (γ ≈ 3.1). The actual luminosity is
higher than the observed one by a factor of 1/η and is
LUHECR, eff ≈ 3 × 1041–3 × 1042 erg s−1.

PARTICLE PROPAGATION
IN MAGNETIC FIELDS

Identifying the possible sources, we assumed that
the particles were deflected in intergalactic magnetic
fields through an angle α0 ≤ 9◦. In the simplest
case where a particle with energy E moves in a
plane perpendicular to the field and where the field
inhomogeneities may be ignored, our estimate of
the field outside clusters (Uryson 1999a) is B ≤
(2α0E)/(300Zr), where r is the distance between
the source and the facility, the energy E is in eV, the
field B is in G, and r is in cm. Because of the energy
losses in interactions with background radiation, the
distance r traversed by a particle is limited (Greisen
1966; Zatsepin and Kuzmin 1966; Stecker 1998):
protons interact with cosmic microwave background
radiation, and if E < 1020, then r ≈ 40–50 Mpc; at
E ≈ 2 × 1020 and 3 × 1020 eV, the distance r is 30
and 15 Mpc, respectively. Nuclei lose their energy
in photodisintegrations in the infrared background
and can arrive from large distances: for Fe nuclei
with E ≈ 2 × 1020 eV, r ≈ 100 Mpc. Using r for
protons, we obtain a field estimateB < 2.3× 10−9 G;
from r for Fe nuclei, we derive B ≤ 2.7 × 10−11 G.
The inferred constraints on B agree with theoretical
estimates (Kronberg 1994): B < 10−9 G as deter-
mined from measurements of the rotation measure
for quasars at Z = 2.5; B 	 10−9 G if the ultrahigh-
energy protons propagate in interplanetary space
rectilinearly; the regular magnetic field, if it exists,
has a strength B < 10−11 G.
The field can be much stronger inside galactic

clusters: according to Kronberg (1993), B ∼ 10−6–
10−7 G at distances up to ∼ 0.5 Mpc from the clus-
ter center. Consider the case where the CR source
belongs to a cluster. According to Zasov (1999), the
sizes of galactic clusters range fromD ≈ 1 toD ≈ 5–
7 Mpc. If the distance to the cluster is 40 Mpc, then
its angular size is αcl ≈ 1.4◦ forD ≈ 1Mpc and αcl ≈
10◦ for D ≈ 7 Mpc (at larger r, the cluster angular
sizes are smaller). In both cases, the cluster with
the source entirely falls within the region of search,
because the latter is larger in angular size than the
cluster, 2α0 ≈ 18◦ > αcl. The particle propagation in
intergalactic space in random fields B ∼ 10−7 G was
considered by Tanko (1997).
In the Galaxy, the particles move in fields B ∼

10−6 G. In the disk, the magnetic field is regular in
the spiral arms and directed along them; and in the
halo, the regular field component is perpendicular to
the disk; the nonregular field component fluctuates
with the main scale δL ∼ 100 pc, δB ∼ 10−6 G (Kro-
nberg 1994). Various models are used to describe
the large-scale galactic-field structure (Cronin 1996;
Stanev 1997). The deflection of a charged particle in
a galactic field with a regular component depends on
the initial particle direction and can be negligible. In
a random magnetic field, the particle deflection does
not depend on the initial direction. We estimate the
rms angle of particle deflection on path d in a random
field from the relation (Cronin 1996)

ψ ≈ 1.7◦
(

d

30Mpc

)1/2 (
δL

1Mpc

)1/2

(16)

× δB

10−9G

(
E

1020 eV

)−1

Z ≈ 0.014◦
(

E

1020 eV

)−1

Z

for a path in the halo of d ≈ 2 kpc (the main scale
of the halo magnetic field). It follows from (16) that
the particles with energy E ≈ 1021 eV and charges
Z ≤ 26 are deflected through angles ψ < 0.4◦, while
the particles with E ≈ 1020 eV and Z ≤ 10 are de-
flected through ψ < 1◦. These deflections may be
disregarded.
Thus, our identifications of the CR sources are

valid if, first, the intergalactic magnetic fields out-
side clusters do not exceed B < 10−9 G; second, the
particles arrived from directions where the deflections
in a regular galactic magnetic field are small; and,
third, the particles with energy E ≤ 1020 eV have
charges Z < 10. However, even for large particle
deflections in the galactic magnetic field, the identi-
fication of possible CR sources is not meaningless:
if the sources are actually astrophysical objects, then
the particles with E > 1020 eV arrive from them with
small deflections, while the particles with E > 4 ×
1019 eV form a halo around their arrival directions.
For large shower statistics, Stanev (1997) suggests
investigating the large-scale structure of the galactic
magnetic field by analyzing the shower arrival direc-
tions and the angles between them.

COSMIC RAYS WITH ENERGY E > 1020 eV

In our acceleration model, the maximum energy is
proportional to particle charge Ze, and the CRs with
energy E ≥ 1020 eV are nuclei. The sources of the
nuclei can be up to ∼ 100Mpc away (Stecker 1998).
To test the model, we considered eleven showers
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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with E ≥ 1020 eV, seven showers detected with the
AGASA facility (Takeda et al. 1999), two Navera
Park showers [Watson 1995; the errors in the arrival
directions were calculated by Farrar and Biermann
(1998)], one Yakutks shower (Afanas’ev et al. 1996),
and one shower detected with the Fly’s Eye facil-
ity (Bird et al. 1995). The chemical composition
of the CRs with energy E ≥ 1020 eV is presently
unknown. Since the probability estimates for these
showers are unsuitable because of the poor statistics
and large errors in the arrival directions of some par-
ticles, we checked whether moderate Seyfert galaxies
up to 100Mpc away fell within the triple-error region
around the arrival directions of these particles. No
such galaxy was found in the region of search of two
showers, the Yakutsk shower and one of the AGASA
showers. However, these showers fell within a zone
of avoidance of galaxies, because they arrived from
Galactic latitudes b = 3 ± 2◦ and −4.8◦, respectively.
For the nine remaining showers, there are Seyfert
galaxies in their regions of search: galaxies at red-
shifts z ≤ 0.0092 for seven showers and galaxies at
z = 0.016 and z = 0.018, i.e, up to 72 Mpc away, for
two showers. This is consistent with the assumption
that the showers could be triggered by nuclei. For
seven of these nine showers, BL Lac objects also
fell within their field of search; the redshifts of most
of them are z > 0.1 or unknown. However, this is
consistent with the pattern of CR propagation for
the following reasons. If the CRs in BL Lac objects
are accelerated to energiesE ∼ 1027Z eV (Kardashev
1995), then the particles can arrive as nuclear frag-
ments with E ≥ 1020 eV probably from considerably
larger distances than 100 Mpc. The redshifts can
be unknown because of the absence of obscuring
material on the line of sight, which is more likely for
objects within ∼ 100Mpc than for distant galaxies.
Therefore, BL Lac objects with unknown z are most
likely∼ 100Mpc away (Kardashev 2000).

CONCLUSIONS

Our model of CR acceleration to energies 1021 eV
in hot spots of Seyfert galaxies is based on the AGN
theory by Vilkoviskij and Karpova (1996) and Vilko-
viskij et al. (1999). The magnetic-field strength in
the jet is an unknown model parameter. We assumed
that the field could take on values in a wide range,
B ∼ 5–1000 G. The maximum energy in the model
depends on the field strength and is proportional to
the particle charge Ze. The Fe nuclei gain the largest
energy, E ≈ 8 × 1020 eV, if the field strength in the
jet is B ≈ 16 G. For a field B ∼ 5–40 G, the nu-
clei with Z ≥ 10 gain energy E ≥ 2 × 1020 eV; the
lighter nuclei are accelerated to E ≤ 1020 eV. In a
field B ∼1000 G, only the particles with Z ≥ 23 gain
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energy E ≥ 1020 eV. The protons are accelerated to
E < 4 × 1019 eV and do not fall within the energy
range concerned at any B.
The accelerated particles leave the host galaxy

without energy losses under the following conditions.
First, they do not lose their energy in photopion re-
actions if the galactic luminosity is L < 1046 erg s−1

(Norman et al. 1995). In our previous papers, we
identified the CR sources with such galaxies. In
addition, the angle between the normal to the galactic
plane and the line of sight is small for the host galax-
ies; i.e., the galactic-disk axial ratio is comparatively
large. Second, the particles do not lose their energy
through magnetodrift radiation if their deflection from
the jet axis does not exceed a ≤ 0.03–0.04 pc at R ∼
40–50 pc. The synchrotron losses are small if the
magnetic field frozen in the galactic wind at R ≤ 40–
50 pc is directed (as in the jet) predominantly along
the motion.
If this model is correct, then the detected protons

with energy E > 4 × 1019 eV are nuclear fragments
or were accelerated in other sources (possibly, in
BL Lac objects). In addition, the jet magnetic fields
can be estimated by using the CR energy spectrum
and chemical composition.
The CR spectra and composition will be measured

with the AGASA facility, with the future giant Pierre
Auger (Cronin 1992) and EAS-1000 (Fomin et al.
1999) facilities, and on satellites (Ormes et al. 1997).
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Abstract—We analyze 175 sessions of Galactic-center observations with the TTM/COMIS telescope
onboard the Mir–Kvant observatory from 1987 until 1998. Because of its wide field of view (∼ 15◦ × 15◦),
much of the Galaxy and, hence, a large number of X-ray sources were simultaneously within the telescope
aperture. During the observations, 47 X-ray bursts were detected, 33 of which are most likely type I
bursts related to unstable helium burning on the surfaces of neutron stars. All the detected type I
bursts were identified with known X-ray sources; the pre- and post-burst luminosities of these sources
measured with the TTM telescope were high. No bursts were detected from voids, i.e., from sources whose
luminosities in quiescence did not exceed the TTM detection threshold. This result allows us to constrain
the combination of the number of binary sources with low accretion rates and the properties of X-ray bursts
from such sources, in particular, the peak luminosity during bursts and the frequency of their occurrence.
c© 2001 MAIK “Nauka/Interperiodica”.

Key words: Mir–Kvant, Roentgen, TTM, neutron stars, X-ray binaries, bursters, accretion, type I
bursts
INTRODUCTION
In 1975, the SAS-3 and Ariel satellites discovered

bursting X-ray sources with burst recurrence periods
from several hours to several days and burst durations
from several seconds to several tens or even hundreds
of seconds. Such sources were called X-ray bursters.
The burster flux between bursts varied slowly, and the
luminosity was ∼ 1036–1037 erg s−1. Woosley and
Taam (1976) and, independently, Marashi and Cav-
aliere (1977) assumed that these X-ray bursts were
attributable to unstable thermonuclear burning on
the surface of a neutron star (NS) with a weak mag-
netic field. The radiation between bursts is mainly
attributable to gas accretion onto the NS. On the
NS surface, hydrogen turns into helium through the
CNO cycle. As helium accumulates on the NS sur-
face, favorable conditions arise for a thermonuclear
flash to occur when the rate of energy release exceeds
the rate of energy removal. The bursts that result are
characterized by a sharp rise and a subsequent slower
decline in the X-ray flux. Their distinctive feature is
also a gradual softening of the spectrum at the flux
decline phase. Such bursts were called type I bursts.

After the discovery of МХВ 1730-335, which was
called the Rapid Burster (Lewin 1976) and which ex-
hibited a continuous series of bursts with a recurrence
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1063-7737/01/2712-0781$21.00 c©
period of∼ 100 s, it became clear that to provide such
a burst period required a very high accretion rate,
which was not confirmed by observations. A more
thorough analysis revealed that all bursts from the
Rapid Burster could be separated into two classes
(Hoffman et al. 1978). Some of the bursts were
classified as type I bursts, i.e., those related to unsta-
ble helium burning; the remaining bursts were called
type II bursts. When averaged over a sufficiently long
period, the energy emitted in type II bursts turned
out to exceed the energy emitted in type I bursts by
approximately a factor of 100. The ratio of the grav-
itational energy released during mass accretion onto
the NS surface to the energy of thermonuclear helium
burning has the same order of magnitude. Thus,
it was concluded that type II bursts are associated
with unsteady mass accretion onto a NS and bear no
relation to thermonuclear burning.

Here, we mainly investigate classical bursters, in
which X-ray bursts are related to helium burning.
About 50 X-ray bursters are currently known, most of
which lie toward theGalactic center or in the Galactic
plane (see, e.g., van Paradijs and White 1995; in’t
Zand 2001). Detailed overviews of the observational
data and theoretical models were given by Lewin
et al. (1993) and Bildsten (1998, 2000).
2001 MAIK “Nauka/Interperiodica”
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A catalog of X-ray bursts as compiled from the ТТМ/Mir–Kvant data (1987–1998)

no. Pointing R.A.; DEC Date of observation UT Time of observation UT f imb /f
im
avr Burst source

1 255.022; –49.355 Mar. 24, 1989 19h32m10s–19h32m17s 9.2 ± 2.4 4U 1702–429
2 249.015; –39.852 Mar. 25, 1989 19 4 2–20 4 10 11.6 ± 3.4 4U 1702–429
3 267.192; –37.840 Mar. 31, 1989 19 56 12–19 56 27 3.8 ± 0.4 GX 354–0
4 266.913; –30.889 Apr. 01, 1989 19 4 6–19 4 13 15.1 ± 4.5 SLX 1744–300
5 264.108; –41.633 Apr. 02, 1989 17 56 28–20 56 35 36.1 ± 8.8 4U 1702–429
6 263.086; –27.054 Aug. 16, 1989 14 8 48–17 9 3 10.1 ± 0.9 KS 1731–260
7 262.644; –26.268 Aug. 20, 1989 12 2 37–15 2 44 10.2 ± 0.9 KS 1731–260
8 262.605; –26.455 Aug. 20, 1989 13 31 50–16 31 57 19.4 ± 5.9 MXB 1743–29
9 266.598; –32.203 Aug. 22, 1989 3 46 48–3 47 3 23.2 ± 9.3 MXB 1743–29
10 266.584; –32.398 Aug. 22, 1989 5 32 51–4 32 58 12.3 ± 3.3 A 1742–294
11 266.587; –32.711 Aug. 22, 1989 8 31 4–8 31 19 8.0 ± 0.6 GX 354–0
12 267.037; –32.776 Aug. 23, 1989 7 27 44–7 27 51 8.5 ± 1.9 A 1744–361
13 262.544; –26.464 Aug. 31, 1989 1 52 53–1 53 0 5.0 ± 0.7 KS 1731–260
14 262.610; –26.485 Aug. 31, 1989 3 12 5–3 12 12 6.8 ± 0.7 KS 1731–260
15 263.119; –26.568 Sept. 04, 1989 2 44 37–2 44 44 5.5 ± 0.9 KS 1731–260
16 269.731; –33.653 Sept. 09, 1989 4 47 29–4 47 36 10.4 ± 1.3 GX 354–0
17 269.736; –33.713 Sept. 09, 1989 7 45 28–7 45 43 6.9 ± 0.7 GX 354–0
18 265.957; –29.760 Oct. 23, 1992 23 21 20–23 21 27 7.2 ± 1.3 A 1742–294
19 266.313; –29.649 Mar. 16, 1994 13 39 42–13 39 57 21.2 ± 10.3 SLX 1744–300
20 265.989; –29.893 Mar. 18, 1994 13 25 21–13 25 36 27.7 ± 13.6 MXB 1743–29
21 265.932; –29.446 Mar. 19, 1994 12 27 8–12 27 15 4.1 ± 0.5 GX 354–0
22 266.295; –29.627 May 06, 1994 7 36 0–7 36 15 10.7 ± 2.7 A 1742–294
23 266.045; –29.743 May 09, 1994 12 23 47–12 24 10 7.9 ± 1.1 Rapid Burster
24 266.045; –29.743 May 09, 1994 12 28 11–12 28 18 6.7 ± 1.7 Rapid Burster
25 266.045; –29.743 May 09, 1994 12 30 51–12 30 58 8.9 ± 1.7 Rapid Burster
26 266.045; –29.743 May 09, 1994 12 37 41–12 37 46 7.9 ± 1.2 Rapid Burster
27 266.045; –29.743 May 09, 1994 12 42 19–12 42 26 9.4 ± 1.7 Rapid Burster
28 266.123; –29.811 May 12, 1994 14 15 53–14 16 8 6.9 ± 1.2 Rapid Burster
29 266.123; –29.811 May 12, 1994 14 18 17–14 18 32 6.1 ± 0.7 KS 1731–260
30 266.123; –29.811 May 12, 1994 14 23 29–14 23 44 9.2 ± 1.3 Rapid Burster
31 266.055; –29.828 May 12, 1994 15 55 47–15 55 54 9.1 ± 2.4 Rapid Burster
32 266.055; –29.828 May 12, 1994 16 0 51–16 1 6 15.9 ± 2.8 Rapid Burster
33 266.133; –29.869 May 15, 1994 3 56 2–3 56 17 3.4 ± 0.4 GX 354–0
34 266.073; –29.838 May 15, 1994 5 29 23–5 29 30 6.5 ± 1.7 Rapid Burster
35 266.073; –29.838 May 15, 1994 5 36 11–5 36 26 11.7 ± 2.6 A 1742–294
36 266.410; –29.625 Aug. 29, 1994 17 34 27–17 34 34 2.8 ± 0.3 GX 3+1
37 266.408; –29.882 Aug. 31, 1994 19 4 22–19 4 37 4.3 ± 0.5 GX 354–0
38 266.111; –29.573 Sept. 28, 1994 3 10 13–3 10 28 5.7 ± 0.9 KS 1731–260
39 266.037; –29.547 Apr. 02, 1994 18 55 1–18 55 8 8.8 ± 1.9 KS 1731–260
40 266.038; –29.507 Apr. 02, 1994 20 18 2–20 18 9 5.4 ± 0.8 GX 354–0
41 266.038; –29.507 Apr. 02, 1994 20 24 2–20 24 17 8.7 ± 1.6 A 1742–294
42 265.695; –29.734 Sept. 17, 1995 6 15 7–6 15 22 3.3 ± 0.4 KS 1731–260
43 265.695; –29.734 Sept. 18, 1995 11 28 47–11 28 54 5.3 ± 0.6 GX 354–0
44 266.802; –28.452 Feb. 06, 1996 2 24 17–2 24 32 27.3 ± 1.2 GRO J 1744–280
45 266.712; –28.510 Feb. 06, 1996 16 19 31–16 19 38 2.7 ± 0.2 GRO J 1744–280
46 266.801; –28.601 Mar. 01, 1996 20 5 9–20 5 24 3.2 ± 0.2 GRO J 1744–280
47 266.583; –28.442 Mar. 04, 1996 15 49 51–15 50 6 2.6 ± 0.2 GRO J 1744–280

Note: f imb is the source flux during a burst in the image (bursts), f imavr is the source flux in the session-averaged image.
OBSERVATIONS AND ANALYSIS
The Kvant module with astrophysical instruments

onboard was docked with the Mir Space Station
in 1987. Its payload included four instruments sensi-
tive to photons in the energy range from 2 to 800 keV:
TTM/COMIS, HEXE, GSPC, and Pulsar X-1.
TTM/COMIS (Shadow-Mask Telescope/ COded
Mask Imaging Spectrometer) was a coded-aperture
telescope that could image the sky in the X-ray band.

The height of the Mir orbit was ∼ 400 km, its in-
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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clination was 52◦, and the orbital period was 92 min.
Since the charge-particle background was too strong
at high latitudes and when the Brazilian anomaly was
crossed, only the equatorial segment of the orbit was
used for observations, and the integration time on a
single turn did not exceed 26min. TheMir orientation
could be maintained over this period with an accuracy
of the order of one arcminute. At each instant of time,
only a 20◦-wide band of the sky along the Mir orbital
plane was observable (this restriction was imposed by
the solar-panel orientation). Since the orbital plane
precessed with a period of 2.5months, in general, only
regions around the north and south celestial poles
were inaccessible to the Mir instruments.

The TTMX-ray telescope (Brinkman et al. 1985)
used a coded mask as the entrance aperture to de-
termine the source positions. The instrument oper-
ated in the energy range 2–30 keV with a 15◦ × 15◦
total field of view. The detector geometric area was
655 cm2. The nominal angular resolution per mask
cell was ∼ 2 arcmin, and the TTM energy resolution
was 18–20% at energy 6 keV. The TTM detector
was a multi-wire proportional counter that recorded
the energy, coordinates, and arrival times of X-ray
photons.

In our analysis, we used 175 sessions (from
∼1500) of TTM observations when the telescope
was pointed toward the Galactic-center region. The
total exposure time in these observations was∼ 1.7×
105 s. Since the TTM star tracker was inoperational
beginning in 1989, the accurate pointing of the
telescope was determined from the positions of bright
X-ray sources with known coordinates. The TTM
source location accuracy of bright X-ray sources was
higher than ∼ 30 arcsec.

Information on the charged-particle background
and on the TTM detector load was recorded by five
counters whose data were read every 8 s. It is
this information that was used to search for X-ray
bursts. Figure 1 shows the typical light curve during
a session of Galactic-center observations recorded
by these counters: the X-ray photon and charged-
particle count rates are shown in panels (a) and (b),
respectively. The increase in charged-particle count
rate at the end of the session stemmed from the fact
that the satellite approached high latitudes, at which
the charged-particle background was appreciably
higher. An increase in charged-particle count rate
caused a decrease in detector efficiency because of
the dead time and, accordingly, a smooth decrease in
X-ray photon count rate by the end of the session,
which is clearly seen in panel (a). When searching
for X-ray bursts, we fitted the photon count rate by a
fourth-degree polynomial (smooth curve). Spikes by
more than five standard deviations above the analytic
fit were singled out for a more thorough analysis.
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Fig. 1.The light curve during a session of Galactic-center
observations: (a) the X-ray photon count rate and (b)
the charged-particle count rate (see the text for a detailed
explanation). The burst seen on the light curve belongs
to the burster GX 354-0.

First, we analyzed the behavior of the charged-
particle background in an effort to exclude false
triggerings unrelated to X-ray bursts. Subsequently,
we constructed an image from the observational
data over the entire session and during a burst. A
comparison of the source fluxes during a burst and
over the entire session allowed the burst source to be
uniquely identified. In particular, the burst detected
during the session shown in Fig. 1a is associated with
the well-known burster GX 354-0 (see Fig. 2).

A catalog of detected bursts is presented in the
table: it gives burst numbers, TTM pointings during
sessions (the position of the TTM field of view at
epoch 2000), session dates, burst detection times and
durations, and ratios of the flux during a burst (f imb )
to the average source flux during the entire session
(f imavr). Note that although the TTM time resolution
was 1 s, we used information with a time resolu-
tion of 8 s to construct images and to analyze the
light curves. This is because the telemetric channel
capacity was limited; information on no more than
224 events per second were transmitted to Earth
through this channel. The typical count rates during
observations of theGalactic-center region containing
several very bright sources and, in particular, during
an X-ray burst appreciably exceeded this value. As a
result, some of the X-ray events and detailed informa-
tion on their temporal structure were lost during data
transmission to the Earth. Therefore, we determined
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Fig. 2. Images of the Galactic-center region: (а) the session-averaged image (∼ 20 min); (b) the burst image (averaged over
8 s). A burst from the burster GX 354-0 is clearly seen in the 8-s-averaged image.
the burst beginning and end by using readings from
onboard TTM counters (see above) with a resolution
of 8 s. A correction for the losses related to the
telemetric channel capacity was made by comparing
the onboard counter readings and the 8-s-averaged
photon count rate in the telemetric information.

As we see from the table, 47 bursts were detected
during the observations: 33 type I bursts, 10 bursts
from MXB 1730–335 (Rapid Burster), and 4 bursts
from the transient pulsar GRO J1744–280, which
also exhibits flaring activity (Bildsten and Brown
1997; Strohmayer et al. 1997). Here, the clas-
sification of bursts as type I bursts is based only
on the identification of bursts with known classical
bursters. We do not perform a detailed analysis of
the burst spectral evolution, which is of no crucial
importance in the context of our study. Note that the
TTM telescope detected one burst from А 1744–361.
Judging by published data, this is the first detection
of a burst from A 1744–361, which strongly suggests
the existence of an accreting neutron star in this
source.

Apart from the 47 bursts listed in the table, we
found features on the light curves in two more events,
which suggest the presence of X-ray bursts. How-
ever, we found no convincing peaks in the images
constructed at the burst time that were indicative of
a cosmic nature of these bursts: either these bursts
are related to charged-particle background variations
or the TTM sensitivity is too low to localize the burst
source. These two events were rejected and are not
considered below.
DISCUSSION

According to the standard model of type I X-
ray bursts, helium accumulates on the stellar surface
during mass accretion onto a neutron star, which
results in explosive energy release when a critical
surface density, Ccr, is reached. The critical surface
density depends on the accretion rate, on the chem-
ical composition of the accreted matter, and on the
temperature of deep NS shells (Bildsten 1998, 2000).
At high accretion rates approaching the Eddington
value, the helium shell heats up, and stable burn-
ing without bursts begins. The brightest binaries
in the Galactic-center region, such as, for example,
GX 5–1, are definitely not sources of X-ray bursts.
At lower accretion rates, unstable burning is virtually
inevitable. The sources with medium accretion rates
(luminosities ≤ 0.01–0.1LEdd) are classical bursters.
A sizeable fraction of the bursts from such sources
have a peak luminosity of the order of the Eddington
luminosity. The critical surface density Ccr not only
becomes lower but even increases with decreasing
accretion rate. Therefore, binaries with even lower
accretion rates can potentially be the sources of rare
but, possibly, stronger type I bursts. In quiescence,
the luminosity of such sources is too low (because
of accretion) to be detectable by TTM at a distance
of ∼ 8.5 kpc. During a burst, however, if the peak
luminosity is comparable to the Eddington luminos-
ity, such sources can be easily detected. If the lu-
minosity function is such that the number of low-
accretion-rate (low-luminosity) sources is very large,
then, in addition to bursts from comparatively bright
(in quiescence) sources, the TTM telescope must
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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detect bursts from voids. As was noted above, the
sources of all the bursts detected by ТТМ are also
visible in quiescence. The absence of bursts from
voids allows us to impose constraints on the number
of low-accretion-rate sources and on the time it takes
for them to accumulate helium for a burst. Below, we
briefly discuss these constraints.

The TTM Sensitivity to Sources
in Quiescence (as Inferred from the Image)

The duration of a TTM observing session was
typically 15–20 min. When observing regions with-
out bright X-ray sources, the TTM sensitivity (in
20 min of observations) was ∼ 7–10 mCrab (5σ).
In the ТТМ energy range (2–20 keV), 1 mCrab is
∼ 3 × 10−11 erg s−1 cm−2. However, when observ-
ing the Galactic-center region, several very bright
sources, such as GX 5–1, GX 3+1, and GX 9+1,
were within the TTM field of view. An increase
in the X-ray photon count rate and a saturation of
the telemetric channel caused the sensitivity to de-
crease appreciably. The sensitivity (during a single
session) when observing the Galactic-center region
was typically ∼ 15–20 mCrab at the center of the
field of view. For a source at a distance of 8.5 kpc,
this value (15 mCrab) corresponds to a luminos-
ity ∼ 4 × 1036 erg s−1 and an accretion rate ∼ 3 ×
10−10M�/year (when the conversion efficiency of the
rest mass of accreted material to radiation is 0.2).
Weaker sources cannot be reliably detected during a
single observing session. It should be noted that the
transformation coefficient of the TTM flux to the bolo-
metric luminosity depends on the spectral shape of
the source and the low-energy absorption associated
with neutral or molecular gas on the line of sight. The
uncertainty in this transformation can reach a factor
of 2 or 3. However, for order-of-magnitude estimates,
this accuracy is quite sufficient.

The TTM Sensitivity to X-ray Bursts (as Inferred
from the Light Curves and the Image)

As was already noted above, we searched for X-
ray bursts by analyzing the TTMX-ray photon count
rates with an 8-s resolution. The detection threshold
of 5 standard deviations (the excess over the smooth
analytic fit) roughly corresponds to an increase in the
source flux by 200–300 mCrab, depending on the
background conditions and on the source position
within the TTM field of view. For a source at the
center of the TTM field of view, the sensitivity in the
image reconstructed during a burst (in 8 s) is ∼ 20%
lower, 300–400 mCrab.

Most of the observed type I bursts have a peak
luminosity that account for a fraction f = 0.1–1 of
the Eddington luminosity for a neutron star (Lewin
ASTRONOMY LETTERS Vol. 27 No. 12 2001
et al. 1993, 1995). For a burst that maintains the
Eddington luminosity for 8 s, the ТТМ telescope can
reliably detect such a burst (both in the light curve
and in the image) provided that the distance to the
source does not exceed 9.5 kpc.

We can estimate the fraction of the bursters whose
bursts must be reliably detected with ТТМ by as-
suming that the burst has the Eddington luminosity
and that the distribution of low-mass X-ray binaries
follows the distribution of visible stars in the Galaxy.
As the distribution of stars in the Galaxy, we may
choose the three-component model by Bahcall and
Soneira (1986), which consists of a spheroid, a disk
component, and a bulge. Most of the bursters lie to-
ward the Galactic center or in the Galactic plane (van
Paradijs 1995). When observing the Galactic-center
region, according to the three-component model, the
volume bounded by the 15◦ × 15◦ TTM field of view
and by a distance of 9.5 kpc contains 0.28 of the
total mass of the Galactic stars. Allowance for the
decrease in sensitivity to the edge of the field of view
yields 0.17 of the total Galactic mass. Thus, we
conclude that when observing theGalactic center, the
TTM telescope simultaneously monitored ≈ 17% of
all the potential burst sources in the Galaxy.

Constraints on the Number
of Low-Accretion-Rate Sources

As was said above, all type I bursts (33 events)
detected by ТТМ were identified with sources whose
fluxes in quiescence were significant. No burst was
detected from a source whose flux in quiescence did
not exceed the TTM detection threshold. Let us
estimate the expected number of such sources.

The number of bursts from sources with fluxes in
quiescence above the TTM detection threshold is

Nb,p =
∫ ∞

0

dM

dr
dr

∫ ∞

4πr2Sp

Pb (1)

× (L,Lb > 4πr2Sb)
dN

dL
dL,

where dM/dr is the source density distribution (per
unit distance) in distance r within the TTM field of
view, Sp is the TTM detection threshold for a source
in quiescence, dN/dL is the luminosity function of
sources in quiescence, and Pb (L, Lb > 4πr2Sb) is
the generation rate of X-ray bursts (with fluxes above
the burst detection threshold Sb) by a source with
luminosity L in quiescence.

The number of bursts from sources with fluxes
in quiescence below the TTM detection threshold is,
respectively,

Nb,e =
∫ ∞

0

dM

dr
dr

∫ 4πr2Sp

0
Pb (2)
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× (L,Lb > 4πr2Sb)
dN

dL
dL.

Below, we consider not the absolute values of Nb,p

andNb,e but their ratio.

The simplest estimate can be obtained by assum-
ing that all sources are at the same distance (e.g.,
at the Galactic-center distance, 8.5 kpc) and that all
the emerging X-ray bursts have approximately equal
luminosities of the order of the Eddington luminosity
(such bursts must be detected by ТТМ up to dis-
tances ∼ 9.5 kpc). In that case,

Nb,e

Nb,p
=

∫ 4πr2Sp

0 Pb(L)
dN

dL
dL

∫ ∞
4πr2Sp

Pb(L)
dN

dL
dL

. (3)

This simplified expression depends only on the source
luminosity function and on the rate of burst gener-
ation by sources with specified luminosities. This
expression can be further simplified by assuming that
a fixed amount of accreted matter is required for a
burst to occur, i.e., Pb(L) ∝

.
M/∆M ∝ L. In that

case,

Nb,e

Nb,p
=

∫ 4πr2Sp

0 L
dN

dL
dL

∫ ∞
4πr2Sp

L
dN

dL
dL

. (4)

In this approximation, the ratio of the numbers of
bursts from weak and strong sources reduces to the
ratio of the total rates of accretion onto the set of all
weak and strong sources, respectively. At Nb,p = 33
and Nb,e < 31, this estimate leads us to conclude
that the total rate of accretion onto sources with
luminosities below ∼ 4 × 1036 erg s−1 is at least a
factor of 10 lower than the total rate of accretion
onto stronger sources; i.e., relation (4) reflects the
contribution of bright and faint sources to the total
Galactic luminosity. The luminosity function can be
fitted by a power law with a slope ∼ 1.5: dN/dL ∝
L−1.5 (Grimm et al. 2001) up to luminosities of
1038 erg s−1, above which the luminosity function
falls sharply. In reality, the upper integration limit
must be chosen even lower (L ∼ 5 × 1037 erg s−1),
because no X-ray bursts occur at higher luminosities
(accretion rates). In that case, Nb,e/Nb,p ≈ 0.3; i.e.,
it is several times higher than the upper limit esti-
mated from observations. Thus, given our simplifica-
tions, the observed deficit of bursts fromweak sources
either suggests a flatter luminosity function or allows

1The absence of bursts from weak sources over the observing
period implies that, at 95% confidence, the mean expected
number of bursts from such sources over this period does not
exceed 3.
the generation rate and properties of bursts from low-
accretion-rate sources to be judged.

There are several reasons why bursts from low-
accretion-rate sources can be absent. Below, we
consider the most obvious ones.

(1) First, a situation is possible where there are
simply no sources with accretion rates lower than
some value. For example, even for a comparatively
weak magnetic field on the NS surface, the source
can pass to a propeller state (Illarionov and Sunyaev
1975). In this state, matter is thrown away from the
star and does not reach its surface. For a magnetic-
field strength B ∼ 108 G and for a NS spin period
P ∼ 10−2 s, the propeller effect arises at a luminosity
of ∼ 4 × 1034 erg s−1.

(2) Another natural explanation is a sharp increase
in the accreted-matter surface density required for the
generation of a burst (Ayasli and Joss 1982; Wal-
lace et al. 1982). In reality, the absence of bursts
from weak sources imposes a constraint only on the
product of the burst occurrence frequency and the
number of weak sources, provided that the charac-
teristic burst parameters, such as the peak X-ray flux
and the burst duration, do not strongly depend on the
luminosity in quiescence.

(3) Finally, the peak X-ray luminosity of bursts
from weak sources may be appreciably lower than
the peak luminosity of bursts from classical bursters.
For example, when observing the source EXO 0748–
676 (Gottwald et al. 1986, 1987), whose luminosity
varied approximately by a factor of 5, the peak lumi-
nosity of the detected bursts was found to generally
decrease with decreasing luminosity in quiescence.
A similar pattern was observed when studying some
other sources. In the calculations by Taam et al.
(1993), this behavior of the peak fluxes was explained
by a complex and irregular pattern of sequential X-ray
bursts on the NS surface accompanied by the incom-
plete consumption of thermonuclear fuel. It followed
from the calculations that this regime was realized
at accretion rates higher than several 10−10M� per
year. At lower accretion rates, bursts occurred more
regularly; their peak luminosity increased appreciably.
The theoretical pattern of burst generation at low
accretion rates is very complex, and there is no unique
answer to the question of what the characteristic
parameters of bursts from weak sources are.

Thus, we can slightly reformulate the results of
our TTM observations: all sources from which bursts
were observed have luminosities in quiescence within
the range from several 1036 to several 1037 erg s−1

(to estimate the luminosity, we used the known dis-
tances to several best studied sources and assumed
the distances to the remaining sources to be 8.5 kpc).
Thus, we reach a conservative conclusion that of
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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∼30 detected bursts from sources with luminosities
L ∼ 1037 erg s−1 in the luminosity band∆L ∼ L, we
detected no burst with a comparable (or higher) peak
luminosity from sources with lower luminosities in
quiescence.

The above estimates are very rough. We only
wanted to show that a more thorough analysis of
the detection statistics of X-ray bursts from bright
and faint sources was needed. Such an analysis can
give important information for constructing models of
unstable thermonuclear burning on weakly accreting
neutron stars. Since the time between bursts for
such sources can be very large, even long-duration
observations of individual sources cannot provide the
necessary information. A different approach based
on the simultaneous monitoring of many sources is
required to search for and study bursts from weak
sources. Consequently, we need observations by X-
ray telescopes with wide fields of view that cover large
areas of the sky, in contrast to typical observations of
small sky areas containing the well-known burster.
The efficiency of telescopes in searches for bursts from
low-accretion-rate sources is determined by three
factors: the sensitivity to bursts, the size of the field
of view, and the total integration time. Assuming the
distribution of binary sources to roughly follow the
mass distribution in the Galaxy, the expected number
of bursts is proportional to the product of the observ-
ing time by the mass of the matter within the tele-
scope field of view and at the distance determined by
the telescope sensitivity to bursts. Since the Galactic
center is the region of the highest concentration of
sources in the Galaxy, it makes sense to talk about
observations exactly of this region. At present, the
best results can be obtained by using data from the
BeppoSAX wide-field camera (Jager et al. 1997).

The BeppoSAX wide-field camera (WFC) is sen-
sitive to photons in the energy range 1.8–28 keV and
has a 20◦ × 20◦ field of view (FWHM), although a
source can be detected with a lower sensitivity within
a 40◦ × 40◦ total field of view (Jager et al. 1997). The
BeppoSAX sensitivity at a 5σ level is ∼ 200 mCrab
in 8 s. Consequently, it can detect a burst (with the
Eddington luminosity) at a distance of ∼ 11.7 kpc.
Taking into account its field of view, we find that it
observes ≈ 0.4–0.5Mgal . The total exposure time of
the WFCGalactic-center observations was 4× 106 s
from 1996 until 2000 (in’t Zand 2001), during which
more than 2000 bursts were detected from low-
mass X-ray binaries: ∼ 400 bursts belong to the
Rapid Burster MXB 1730–335 and ∼ 200 bursts
belong to the bursting pulsar GRO J1744–280
(Ubertini 2000). The WFC telescope detected a total
of ≈ 1500 type I bursts from 35 classical bursters
(compared to ≈ 30 bursts detected by ТТМ), which
accounts for ∼ 75% of the total number of bursters
ASTRONOMY LETTERS Vol. 27 No. 12 2001
(in’t Zand 2001). Thus, the WFC/BeppoSAX da-
ta provide the most comprehensive information on
bursts from weak sources. Indeed, this telescope
detected several bursts from sources whose fluxes
in quiescence were below the detection threshold
(in’t Zand et al. 1998). Given the total number of
bursts detected by the WFC telescope, the detection
of several bursts from voids is consistent with the
TTM results: it follows from a comparison of the
TTM and WFC burst detection statistics that the
expected number of bursts from weak sources during
the TTM observations is ≈ 0.1–0.2. Below, we
discuss the possibility of using the burst occurrence
statistics to obtain information on the time of matter
accumulation on the NS surface.

The Mass of the Matter Accumulated by the Source
before a Burst

In this section, we discuss the possibility of de-
termining (from experimental data) the mass of the
matter accumulated on the NS surface that is re-
quited for the generation of an X-ray burst. Assume
that the distance to the burst source is known. For
bursts whose peak luminosities reach the Edding-
ton level, the distance can be determined directly
from observations of the burst itself. For typical
bright bursters, the mass of the accumulated matter
can be calculated from the flux in quiescence, FX =
LX/(4πD2) = η

.
Mc2, and the time interval τ be-

tween sequential bursts, i.e., ∆M ≈ τ(FX4πD2/η).
For very weak sources, the time between sequential
bursts is too large (it can exceed several months or
even several tens of years), and it is not possible to
observe sequential bursts. However, this information
can be obtained by analyzing the detection statistics
of bursts from sources with various luminosities in
quiescence. A simple expression for the accumulated
mass is derived if two assumptions are made: the
source luminosity function dN/dL in quiescence is
known, and, irrespective of the source luminosity, the
bursts have sharp fronts and equal peak luminosities.
Denote the number of bursts from sources with lumi-
nosities (in quiescence) in the range fromL toL+ dL
detected by the telescope when observing a given area
of the sky in a certain time interval by dNb/dL. It is
then clear that

∆M(L) ∝ L
dN/dL

dNb/dL
∆t. (5)

When determining the form of ∆M(L), we can use
the set of all telescope observations, irrespective of the
exposure time and the telescope pointing.2 The only

2A more detailed analysis is required to determine the numer-
ical coefficient of the luminosity dependence of the accumu-
lated mass [∆M(L)].
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Fig. 3. The number of expected bursts from voids
versus slope of the function of burst generation rate:
(1) for Lgran = 1038 erg s−1 and (2) for Lgran = 5 ×
1037 erg s−1.

requirement is a wide field of view of the telescope lest
a single peculiar source give a dominant contribution
to the total number of observed bursts.

In principle, such information can be obtained
from the WFC data. Clearly, ∆t/(dNb/dL) is the
reciprocal of the X-ray burst generation rate Pb(L)
[formulas (1)–(3)]. Thus, if we estimate Pb(L) more
accurately than when we derived formula (4), then we
obtain an estimate of the mass accumulated by the
source before the generation of bursts using a power-
law fit to the luminosity functionwith an index∼ −1.5
(Grimm et al. 2001).

To a first approximation, we can obtain such an
estimate by using the BeppoSAX results on bursts
from persistent sources and on bursts from voids (in’t
Zand 2001). Assume that the burst generation rate
is represented as Lβ for L < Lgran, where Lgran is
the luminosity (close to the Eddington luminosity)
up to which X-ray bursts are observed. Substituting
the three-component model by Bahcall and Soneira
(1986), the power luminosity function with a slope of
−1.5, and the proposed function of burst generation
rate in formulas (1) and (2) and performing integra-
tion over the region observed by BeppoSAXwithin its
sensitivity range, we then obtain the expected number
of bursts from voids as a function of the parameter
β(Lgran). Figure 3 shows the curves for the expected
number of bursts from voids for limiting luminosi-
ties of 1038 erg s−1 (curve 1) and 5 × 1037 erg s−1

(curve 2). We see that β at which the observed
number of bursts from voids is reached is ≈ 2.5. In
that case, ∆M(L) ∝ L−3.0. This result is consistent
with theoretical calculations, which predict a sharp
increase in the accumulated mass required for the
generation of a burst at low accretion rates and a de-
crease in the amount of the accreted matter required
for the generation of a burst at high accretion rates
(Bildsten 1998, 2000). The intensities of the bursts
themselves also change (increase for long integration
times and decrease for short integration times).

However, there are several technical difficulties
that limit the efficiency of such an analysis: (1) the
WFC telescope carried out observations in separate,
short time intervals, and we cannot rule out the pos-
sibility that the source luminosity was slightly higher
than at the time when no observations were per-
formed; (2) the upper limits on the source luminosity
in quiescence were not very stringent (for a source at
a distance of 8.5 kpc, the upper limit on the luminosity
in quiescence is ≈ 1036 erg s−1). The most effec-
tive strategy seems to be continuous observations of
large sky areas with X-ray monitors to detect the
bursts themselves and to roughly localize them sup-
plemented with direct observations of the source with
high-sensitivity telescopes to accurately determine
its luminosity in quiescence. Such a problem can
be effectively solved by the Spectrum–X–Gamma
observatory, which includes both the MOXE all-sky
monitor and several high-sensitivity telescopes, JET-
X or SODART.

CONCLUSIONS

During our TTM/Mir–Kvant observations of the
Galactic-center region, we detected 47 X-ray bursts,
most of which can be classified as type I bursts as-
sociated with unstable helium burning on the NS
surface. One of the bursts was detected from the
source A 1744–361. Judging by published data, this
is the first detection of a burst from A 1744–361,
which strongly suggests the existence of an accreting
neutron star in this source.

All the detected bursts were identified with known
X-ray sources; the pre- and post-burst luminosities
of these sources measured by the ТТМ telescope
was fairly high. No burst was detected from voids,
i.e., from sources whose luminosities in quiescence
did not exceed the TTM detection threshold. The
absence of bursts from weak sources allows us to
constrain the combination of the number of binary
sources with low accretion rates and the properties
of X-ray bursts from such sources, more specifically,
the peak luminosity during bursts and the frequency
of their occurrence. The occurrence statistics of
bursts from low-accretion-rate sources can be ana-
lyzed in detail by the Spectrum–X–Gamma observa-
tory, which includes the MOXE all-sky monitor and
several high-sensitivity telescopes, JET-X or SO-
DART.
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Spectrum Slope for the X-ray Source Cygnus X-2: RXTE/PCA Data

S. I. Kuznetsov*

Space Research Institute, Russian Academy of Sciences, Profsoyuznaya ul. 84/32, Moscow, 117810 Russia
CEA, DSM/DAPNIA/SAp Centre d’Etudes Nucleaires de Saclay, 91191 Gif-sur-Yvette Cedex, France

Received June 25, 2001

Abstract—We present RXTE observations of the X-ray source Cyg X-2 during 1996–1999. Its power-
density spectra in the 0.1–128-Hz band are fitted by amodel that takes into account the power-law spectral
behavior at frequencies below and above the break frequency, with an introduction of one or more Lorenz
lines to describe the peaks of quasi-periodic oscillations that correspond to the horizontal branch of the
Z track. TheRXTE observations revealed a positive correlation between the break frequency and the indices
of the two parts of the spectrum. The spectrum steepens with increasing break frequency both above and
below the break frequency. c© 2001 MAIK “Nauka/Interperiodica”.

Key words: X-ray and gamma-ray sources, Cygnus X-2
INTRODUCTION

Cygnus X-2 belongs to low-mass binaries with
accreting neutron stars and is one of the brightest X-
ray sources. By its spectral characteristics, Cyg X-
2 belongs to the class of Z-type sources (Hasinger
and van der Klis 1989), which are characterized by a
Z-shaped track in the color–color diagram. In this
interpretation, the spectral properties are presented
in the hard–soft color indices, each of which is the
harder-to-softer flux ratio in the corresponding en-
ergy band. The Z-shaped track is commonly divided
into three parts called branches: the horizontal (HB,
the upper part of the diagram), normal (NB, the
intermediate part), and flaring (FB, the lower part)
branches. The position along the Z track is generally
believed to be associated with an increase in the rate
of mass accretion in the direction from HB to FB.
Six sources are currently known to exhibit Z tracks in
the color-color diagram: Scorpius X-1, Cygnus X-2,
GX 17+2, GX 5-1, GX 340+0, and GX 349+2.

The power-density spectra (Fourier transforms of
the flux) of Z-type sources exhibit low-frequency (5–
100 Hz) quasi-periodic oscillations (QPOs) of the
X-ray flux. The names of the QPOs correspond
to the branch with which their origin is identified:
horizontal- (HBO), normal- (NBO), and flaring-
branch (FBO) oscillations. HBOs (15–100 Hz) can
also be detected in the NB spectral state. How-
ever, as one recedes from HB, the significance of

*E-mail: sik@hea.iki.rssi.ru
1063-7737/01/2712-0790$21.00 c©
the QPO peaks decreases, and they become unde-
tectable. When moving along the Z track in its NB–
FB segment, a QPO peak in the range 5–20 Hz
(NBO/FBO) emerges in the power-density spectra.

All three types of QPOs characteristic of the low-
frequency part (<100 Hz) of the power-density spec-
trum have been detected for the source Cyg X-2. The
NBO and FBO frequencies are very close to the break
frequency, which introduces a large uncertainty in its
determination. For this reason, we excluded from
our analysis those observations in whichNBO/FBOs
were detected.

DATA AND OBSERVATIONS

For our time analysis, we used the archival data
of the PCA (Proportional Counter Array) instrument
(Jahoda et al. 1996) onboard the RXTE observatory
(Bradt et al. 1993) retrieved from the Goddard Space
Flight Center Electronic Archive.

The X-ray source Cyg X-2 was observed at the
RXTE observatory during nine series of directed
observations (10063, 10065, 10066, 10067, 20053,
20057, 30046, 30418, 40017): in March, August,
October 1996, June, July, September 1997, July
1998, and in separate sessions from July until Oc-
tober 1998 and from January until August 1999. The
observations of Cyg X-2 over this period correspond
to three different observational epochs of RXTE/PCA
(2, 3, and 4 in the adopted classification), for which
the boundaries of the PCA energy channels were
changed.
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Two power-density spectra for Cyg X-2 in the 5–60-Kev energy band. The power of the lower spectrumwas reduced by
a factor of 100. The spectra are fitted by the break model and by Lorenz lines (solid curves); the dotted lines represent scalable
fits to each of the spectra. The peaks in the upper and lower spectra correspond to the first and second harmonics of HBOs and
only to its first harmonic, respectively.
To construct the power-density spectra, we used
observations with a resolution of ∼122 µs (2−13 s)
from the 14th to 249th PCA energy channels. This
range corresponds to the flux of detectable photons up
to ∼60 keV, whose lower limit begins from ∼4.3 keV,
∼5.0–5.3 keV, and ∼5.8 keV for epochs 2, 3, and
4, respectively. In this energy band, the detection
of QPOs corresponding to the horizontal branch of
the Z track is most significant. The power-density
spectra were obtained by the standard method of Fast
Fourier Transform (van der Klis 1989).

We combined the observational data that were not
represented by a single format for all channels from
14th to 249th. Of all the observations, we used only
those during which the angle between the source
direction and the horizon of the Earth was more than
10◦ and the PCA axis was offset from the target
by no more than 0.02◦. Among the observations
of Cyg X-2, all five proportional counters were not
always switched on to record events. If the operating
condition of one of the counters changed during a
continuous observation (whose duration did not ex-
ASTRONOMY LETTERS Vol. 27 No. 12 2001
ceed the duration of one orbit and was, on the average,
3 − 3.5 × 103 s), then the short time interval during
which the total count rate changed abruptly was ex-
cluded from the analysis. Because of this filtering, the
total usable observational time for Cyg X-2 was more
than 4 × 105 s.

To analyze the low-frequency (<100 Hz) variabil-
ity of Cyg X-2, we constructed power-density spectra
in the range 0.03125–128 Hz. No corrections were
made for background radiation and for dead time
(attributable to the instrumental delay in recording
events).

RESULTS

Fitting the power-density spectra by a constant
and by a power law at frequencies below and above
the break frequency did not yield acceptable results
(according to the χ2 test). The main reason was
the absence of a sharp break and the uncertainty in
the measurement of its position in the power-density
spectrum. The model in which, at frequencies much
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was drawn by taking into account errors in the break
frequency and in the index β, respectively.

higher (ν/νbreak � 1) and much lower (ν/νbreak �
1) than the break, each part of the spectrum could be
fitted by its own power law and in which the transition
between them was not jumplike proved to be more
suitable:

P = C
ν−α

1 + (ν/νbreak)
β
. (1)

Thus, P ∝ ν−α at ν/νbreak � 1 and P ∝ ν−α−β at
ν/νbreak � 1.

The power-density spectra were fitted in the 0.1 −
128 Hz band by this model with the additional intro-
duction of one or two Lorenz lines to allow for the
peaks of QPOs and their harmonics. To take into
account the PCA dead-time effect, which causes the
total level to be shifted to the negative region [because
of this effect, the Poissonian noise level subtracted
from all spectra differs from 2.0 in Leahy units; see van
der Klis (1995) for more details], we added a constant
to the general model.

Figure 1 shows typical power-density spectra of
Cyg X-2 for various measured break frequencies
νbreak. The upper spectrum was constructed from
the observations on August 31, 1996 (7:04–8:00
UTC), and has the following best-fit parameters:
νbreak = 3.1 ± 0.3, α = −0.13 ± 0.04, β = 1.45 ±
0.03, νLorenz = 20.17 ± 0.05, ν2Lorenz = 39.0 ± 0.4,
χ2 = 236 (217 d.o.f.). The lower power-density
spectrum was obtained on March 24, 1996 (2:27–
3:19 UTC), which was scaled by a factor of 0.01
and has the following parameters: νbreak = 12 ± 1,
α = 0.30 ± 0.03, β = 2.0 ± 0.2, νLorenz = 45.0 ± 0.7,
χ2 = 242 (220 d.o.f.). In Fig. 1, we clearly see a
difference between the two spectra. The best fits to
each of the spectra (solid curves) are shown on the
corresponding scale.

For all the selected data, we obtained satisfactory
best-fit parameters. The break frequency turned out
to positively correlate with the indices for the low-
frequency and high-frequency parts of the power-
density spectrum (0.3–128 Hz). In Fig. 2, the in-
dices α and β of model (1) are plotted against break
frequency νbreak, although in reality, the power-law
spectral slope for ν/νbreak � 1 tends to −α− β, and
the correlation is preserved. The open circles in Fig. 2
indicate the data whose power-density spectra exhibit
two QPO peaks. The ratio of the peak frequencies
is close to 2. As the break frequency increased, the
significance of the HBO peaks reduced. The filled
circles indicate the same data in which only the main
QPO peak was detected and the second harmonic
(probably) of the main peak was either undetectable
or its significance was at a confidence level lower than
3σ.

The data in Fig. 2 were fitted by straight lines. For
each of the indices, we derived the following parame-
ters: α ≈ −0.18 + 0.04νbreak;β ≈ 1.23 + 0.06νbreak.

DISCUSSION

For the Z-type sources (to which Cyg X-2 be-
longs), the typical power-law index for the part of
the spectrum above the break frequency lies within
the range ∼ 1.5–2.0 (van der Klis 1995). In pa-
pers on a time analysis of the low-frequency part of
the power-density spectrum (< 100 Hz) for Cyg X-
2 (e.g., Kuulkers 1999), the variability of the source
below the break frequency is assumed to be constant
and is fitted by a constant. We see from Fig. 2 that
the indices are equal to their assumed values for the
spectra with break frequencies below ∼ 10 Hz. This
range of break frequencies roughly corresponds to the
position of the source on the horizontal branch of the
Z track. For the other spectral states (NB and FB),
the break frequency is difficult to determine because of
the emergence of NBOs/FBOs at close frequencies
or because of the absence of a visible break in the
power-density spectrum (a power-law spectrum in
the range 0.1–128 Hz).
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Here, we analyzed all the available RXTE obser-
vations of Cyg X-2. The correlation between the
power-law indices below and above the break fre-
quency has been found for the first time. One might
expect a similar correlation to be a common property
of the Z-type sources.

ACKNOWLEDGMENTS

This study was supported by a French GDR
PCHE grant, which made my visit to the Service
d’Astrophysique possible. The work was supported
in part by the Russian Foundation for Basic Research
(project no. 00-15-96649). I used the RXTE archival
data retrieved from the High Energy Astrophysics
Science Archive Research Center (HEASARC), pro-
vided by the NASA/Goddard Space Flight Center. I
wish to thank L. Titarchuk, B. Stone, Ph. Laurent,
N. White, G. Swank, F. Newman, and J. Repaci for
the opportunity to work with the RXTE archival data
ASTRONOMY LETTERS Vol. 27 No. 12 2001
on compact disks. I am also grateful toM. Revnivtsev
for valuable remarks.

REFERENCES
1. H. Bradt, R. Rotschild, and J. Swank, Astron. Astro-

phys., Suppl. Ser. 97, 335 (1993).
2. G. Hasinger and M. van der Klis, Astron. Astrophys.

225, 79 (1989).
3. K. Jahoda, J. Swank, A. Giles, et al., Proc. SPIE

2808, 59 (1996).
4. E. Kuulkers, R. Wijnands, and M. van der Klis, Mon.

Not. R. Astron. Soc. 308, 485 (1999).
5. M. van der Klis, in Timing Neutron Stars, Ed. by H.
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Abstract—An analysis of our observations of the Geminga object with the GT-48 ground-based gamma-
ray telescope has shown that its very-high-energy gamma-ray flux is modulated with a 59-s period. The
59-s period and its time derivative previously inferred from satellite data have been confirmed. According
to our data, the period was 61.94 s in 1997 at MSD = 50573. The statistical significance of this result is
(1−4.5)× 10−4. c© 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The Geminga object was discovered as a very-
high-energy gamma-ray source from the SAS-2
satellite about thirty years ago (Kniffen et al. 1975).
It had long been unidentifiable with a particular astro-
physical object, because the accuracy of determining
the coordinates with a spark chamber recording high-
energy gamma rays, (> 100 MeV), was low, (∼ 1◦).
This object was first identified with the X-ray source
1E 0630+178 discovered from the Einstein satellite
(Bignami et al. 1983) and, subsequently, with an
optical object (Bignami et al. 1987). Observations in
other spectral ranges were facilitated by the discovery
of a 0.237-s periodicity in the X-ray flux (Halpern
and Holt 1992). It became clear that the Geminga
object is a pulsar. Knowledge of the period made
it possible to construct the light curves from SAS-
2, COS-B, and EGRET high-energy gamma-ray
flux measurements (Bignami and Caraveo 1992;
Hermsen et al. 1992; Mattox et al. 1992; Bertsch
et al. 1992). According to data from the Gamma-1
telescope, the total pulsating 300–5000-MeV flux is
(1.1 ± 0.3) × 10−6 cm−2 s−1 (Akimov et al. 1993).
Pulsating emission with a 0.237-s period was also
found in the the very-high-energy gamma-ray data
obtained with Cherenkov detectors (Bowden et al.
1993; Vishvanath et al. 1993). For a long time,
no radio pulsations could be detected. The pulsating
nature of the radio emission was established through
a complex analysis of observations at the Astrospace
Center of the Lebedev Physical Institute, Russian
Academy of Sciences (Kuz’min and Lisovskii 1997;

*E-mail: arnold@crao.crimea.na
1063-7737/01/2712-0794$21.00 c©
Shitov and Pugachev 1997; Malofeev and Malov
1997).

It should be noted that an analysis of the SAS-
2 gamma-ray data pointed to flux variability with a
59 s period (Thomson et al. 1977). Two years
later, the COS-B satellite discovered a periodicity
in the high-energy gamma-ray flux, but the period
proved to be 0.2 s longer (Masnou et al. 1977).
Subsequently, the Einstein (in 1979 and 1981) and
Exosat (in 1983) satellites detected periodic X-ray
flux variations. The period continuously increased
and was > 60 s in 1983. A variable (with a 59-s
period) very-high-energy gamma-ray flux recorded
with Cherenkov detectors was first noted by Zyskin
and Mukanov (1983) based on the 1979 and 1981
observations and, subsequently, by Zyskin (1998)
based on the 1983 observations. An analysis of
the very-high-energy gamma-ray observations per-
formed from December 1984 through February 1985
by an Indian team of researchers (Kaul et al. 1985)
also revealed a 60.25-s periodicity. More recent ob-
servations of Geminga at the Whipple (Akerlof et al.
1993) and HEGRA (Aharonian et al. 1999) obser-
vatories yielded no positive results, probably because
the source is variable. According to Bignami et al.
(1984), an analysis of the HEAO 3 data confirmed the
presence of a periodicity (with a 59-s period) in the
gamma-ray emission with energy ∼ 1 MeV. How-
ever, this result was called into question by Buccheri
et al. (1985). In 1996 and 1997, the Geminga
gamma-ray source was observed with the GT-48
gamma-ray telescope at the Crimean Astrophysical
Observatory. Below, we present the results of our
analysis of the observational data.
2001 MAIK “Nauka/Interperiodica”
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DESCRIPTION OF THE GT-48 GAMMA-RAY
TELESCOPE

The GT-48 gamma-ray telescope records gamma
rays with energy E > 1012 eV by detecting the
Cherenkov flashes produced by the interaction of
very-high-energy gamma rays with the atomic nu-
clei of the Earth’s atmosphere. Since the area
illuminated by a Cherenkov flash is large, tens of
thousands of square meters, weak gamma-ray fluxes
(∼ 10−11 cm−2 s−1) can be detected. The main
obstacle to the detection and analysis of very-high-
energy gamma-ray sources is a substantial back-
ground of cosmic rays, which produce Cherenkov
flashes in the Earth’s atmosphere; the latter are
difficult to distinguish from the flashes produced
by gamma rays. To cut off most of the flashes
produced by the charged cosmic-ray component, new
detectors, multielement cameras, are used. The GT-
48 camera consists of 37 photomultipliers, which
are used to obtain discretized images of Cherenkov
flashes.

Up to 99% of background events (flashes) can
be cut off by using differences in the parameters
of flashes from gamma rays and from the charged
cosmic-ray component (background).

The GT-48 gamma-ray telescope consists of two
identical altazimuthal mountings (sections), northern
and southern, separated by a distance of 20 m in
the north–south direction and located at an altitude
of 600 m above sea level. Apart from flashes in
the atmosphere, Cherenkov detectors are known to
record the passage of particles through the camera.
Note that the parameters of the flashes produced by
local charged particles and recorded by multichan-
nel Cherenkov detectors are similar to those of the
Cherenkov flashes in the atmosphere generated by
very-high-energy gamma rays. Using dual detectors
separated by a distance of 20m or more and operating
in the coincidence mode excludes the detection of
charged-particle-triggered events almost completely
(Chalenko et al. 1997).

The GT-48 gamma-ray telescope differs from
other operational telescopes in that it simultaneously
records Cherenkov flashes in the ultraviolet, in the
wavelength range 200-300 nm. The total area of
the GT-48 telescope mirrors is 54 m2. The facility
is driven by a control system with a tracking accuracy
of ±0.1◦. Observations can be carried out both in the
mode of coincidences between the two sections and
independently by each section. The flash detection
time is recorded with an accuracy of 1microsecond. A
quartz oscillator with a relative accuracy of 5 × 10−9

during the observing period is used as the clock.
The GT-48 telescope has been repeatedly described
(Vladimirskii et al. 1994; Neshpor et al. 1998).
ASTRONOMY LETTERS Vol. 27 No. 12 2001
OBSERVATIONAL DATA REDUCTION

The Geminga object (α = 6h33m37s and δ =
17◦46′25′′) for 1996) was observed with two aligned
sections in the coincidence mode with a time reso-
lution of 100 ns using the object tracking method by
comparing the observations of the gamma-ray source
with those of the cosmic-ray background shifted
in time by 40 min. The background observations
preceded the source observations, and they were
made at the same azimuthal and zenith angles. The
excess in the number of recorded on-source events
over that of off-source events was attributed to the
presence of a gamma-ray flux. This difference turns
out to be comparable to or even smaller than the
statistical error, because the count rate was low (1
or 2 flashes in 1 s), while the number of flashes from
gamma rays was several hundred times smaller than
that of background flashes. One must exclude the
largest possible number of flashes that are definitely
produced by background events. To this end, we used
the difference between the parameters of the flashes
produced by gamma rays and those of the flashes
produced by the cosmic-ray background.

Five and eight 35-min-long observing sessions
were carried out in 1996 and 1997, respectively; the
total duration of the observations was 175min in 1996
and 280 min in 1997.

We subjected our data to an initial reduction,
which was required to properly calculate the first and
second moments of the brightness distribution. To
this end, we excluded the flashes whose brightness
distribution peaked in the outer ring of photomultipli-
ers and the flashes for which the signal amplitude was
larger than the maximum possible value accessible
to the analog-to-digital converter at least in one
photomultiplier. The derived brightness distribution
made it possible to determine the parameters of
the Cherenkov flash: effective length A, width B,
and Xc, Yc coordinates of the brightness centroid.
Through this initial data reduction, 3867 on-source
events and 3826 off-source events were left from the
1996 data; and 5725 and 5690 events, respectively,
were left from the 1997 data for the subsequent
analysis.

An analysis of these data led us to conclude
(Neshpor et al. 2001) that there was a flux of gamma
rays with energy > 1 TeV pulsating with a 0.237-s
period. Monte Carlo simulations yielded a flux of
(24 ± 8) × 10−12 photons cm−2 s−1. Based on these
data, we show below that the gamma-ray flux from
Geminga varies with a period of ∼ 60 s.
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Fig. 1. Fragments of the period dependence of χ2
ν , for ν = 10: (a) as constructed from the 1996 data; (b) as constructed from

the 1997 data: (1) on-source observations, (2) off-source observations.
PULSATING GAMMA-RAY EMISSION

We analyzed the observations described above in
an effort to find the pulsating component with a 59-s
period in the very-high-energy gamma-ray emission.
To limit the range of trial periods, we extrapolated the
Einstein X-ray measurements in 1979 and 1981 and
the EXOSAT X-ray measurements in 1983 (Bignami
et al. 1984) to 1996 and 1997. A linear least-squares
fit yielded the following expression for the period:

T (t) = (59.4863 ± 0.0599)
+ (0.000401314 ± 0.00003868)t,
where t = t(i) − t(0), t(0) is the mean detection time
on the X-ray satellites, and t(i) is the current time.
The time t is in Julian days, and the period T is in
seconds. Given the errors, the ranges of expected
periods are (61.698–62.302) s in 1996 and (61.826–
62.457) s in 1997. We analyzed our data within these
ranges of periods. We took into account the time
derivative given by

dT

dt
=

(T (t) − T (0))
(t(i) − t(0))

.

The analysis was performed by the epoch-folding
technique for the following selected gamma-ray-like
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Luminosity

Radio Optical X-ray Gamma-ray Total losses

logLp logLopt logLX logLh.e. logLv.h.e. energy log Ė

26.5 27.7 30.6 33.8 32.7 34.5

[1] [2] [3] [4] [5]

[1] Kuzmin and Losovskiı̆ 1999; [2] Bignami et al. 1996; [3] Halpern and Holt 1992; [4] Masnou et al. 1981; [5] Neshpor et al. 2001.
events: 176 and 103 on- and off-source events in
1996 and 109 and 86 on- and off-source events, re-
spectively, in 1997. For each event, we determined
the phase from the specified period and from the
corresponding time derivative. The trial period was
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Fig. 2. The total phase histogram as constructed from the
1996–1997 data: ϕ is the phase in fractions of the period,
N is the number of gamma-ray-like events.
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Fig. 3. The time dependence of period as derived from
published data: 1—Thomson et al. (1977), 2—Masnou
et al. (1977), 3—Zyskin and Mukanov (1983), 4—
Bignami et al. (1984), 5—Bignami et al. (1984), 6—
Zyskin (1988), 7—Bignami et al. (1984), 8—Kaul et al.
(1985), 9—this paper.
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varied for the measurements at independence steps
of 0.00078 and 0.00056 s in the 1996 and 1997 da-
ta, respectively). We broke down the entire period
into eleven phase bins and constructed the phase
distribution of events (light curve). Figures 1a and
1b show fragments of the dependence of χ2 on trial
period for the 1996 and 1997 data, respectively. The
χ2 value peaks at T = 61.80921(78) s for MJD =
50401 and at T = 61.94066(54) s for МJD = 50753,
as inferred from the 1996 and 1997 data, respectively
[the independence step (the last two digits) is given
in parentheses]. Figure 1 also shows χ2 for the off-
source data. We see that in the off-source data,
the χ2 values show no appreciable peculiarity. The
probabilities of a random on-source distribution are,
respectively, 3.3 × 10−6 and 7.5 × 10−6. Given the
number of independent trials, these probabilities are
2.5 × 10−3 and 8.4 × 10−3, respectively. The peri-
ods for maximum χ2 are obtained for virtually the
same time derivative (4.3222 × 10−9 s s−1), which
allows us to combine the light curves for 1996 and
1997 after applying a small (within the independence
step) correction to the periods in different years. As
a result, we obtained refined periods: 61.80922(11)
and 61.94067(11) s for 1996 and 1997, respectively.
The period derivative remains the same. Figure 2
shows the gamma-ray light curve constructed from
the combined data of 1996 and 1997. Given the
number of trials, the probability of a random phase
distribution is 4.5 × 10−4. The flux of the periodicity
at the peak of the light curve is (9 ± 3) × 10−11 pho-
tons cm−2 s−1.

Neshpor et al. (2001) found the mean gamma-
ray flux with energy > 1 TeV to be (2.4 ± 0.9) ×
10−11 photons cm−2 s−1, implying that 1/3 of the
total flux is emitted at the peak of the light curve. The
light curve (Fig. 2) suggests that the phase curve has
yet another peak, but its confidence level is rather low
(0.995).

CONCLUSIONS

The very-high-energy (> 1 TeV) gamma-ray ob-
servations of the Geminga pulsar have allowed the
59-s period and its time derivative to be accurately
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determined. Figure 3 shows the published values
of the 59-s period for the Geminga pulsar and the
straight line drawn with our period derivative. We
see that most of the data lie near this straight line.
The table gives published data on the pulsar lumi-
nosity (L, erg s−1) in various spectral ranges under
the assumption of their isotropicity. The distance to
Geminga was taken to be 160 pc (Bignami et al.
1996). These authors also gave the magnitude of
the object and the total losses of rotational energy
by the neutron star. Note that the intensity of the
gamma-ray emission accounts for 20% of the total
energy losses at high energies (> 100MeV) and for a
mere 1.5%, i.e., an order of magnitude lower, at very
high energies. The origin of the 59-s period is not
yet clear. The uncertainty in the results of analyses
of the observational data may have not stimulated
theoretical research in this regard. The results of
our analysis of very-high-energy gamma-ray obser-
vations will increase the confidence in the reality of
the 59-s period.
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Abstract—The inclination of low-eccentricity orbits is shown to significantly affect orbital parameters,
in particular, the Keplerian, nodal precession, and periastron rotation frequencies, which are interpreted
in terms of observable quantities. For the nodal precession and periastron rotation frequencies of low-
eccentricity orbits in a Kerr field, we derive a Taylor expansion in terms of the Kerr parameter at arbitrary
orbital inclinations to the black-hole spin axis and at arbitrary radial coordinates. The particle radius,
energy, and angular momentum in the marginally stable circular orbits are calculated as functions of
the Kerr parameter j and parameter s in the form of Taylor expansions in terms of j to within O[j6].
By analyzing our numerical results, we give compact approximation formulas for the nodal precession
frequency of the marginally stable circular orbits at various s in the entire range of the Kerr parameter.
c© 2001 MAIK “Nauka/Interperiodica”.

Key words: black holes, precession, disk accretion
INTRODUCTION

The X-ray quasi-periodic oscillations (QPOs)
discovered in low-mass X-ray binaries (LMXBs)
commonly show a variety of modes. In particular,
there are horizontal-branch oscillations at low fre-
quencies νHBO 1–100 Hz and two peaks at frequen-
cies ν1 and ν2 (∼1 kHz) in the power spectrum (van
der Klis 2000). In many Z-type sources, as well as
in several atoll sources, the frequencies νHBO exhibit
an almost quadratic dependence on ν2 (Stella and
Vietri 1998; Psaltis et al. 1999). For several sources
(e.g., for Sco X-1, 4U 1608–52, 4U 1702–43,
4U 1735–44, and XTE J2123–058), the frequency
difference ν2 − ν1 ≡ ∆ν decreases with increasing
ν2. At the same time, for many Z-type (GX 5-
1,GX 17+2, Cyg X-2, GX 340+0, GX 349+2) and
atoll (4Γ 0614+09, 4Γ 1636–52, 4Γ 1705–44, and
Aq1 X-1) sources, the difference ∆ν is constant,
which allows it to be associated with the stellar
rotation frequency (van der Klis 2000). The frequency
ν2 is currently identified with the Keplerian rotation
frequency of clumps of matter near a compact object
(ν2 ≡ νK) in almost all interpretations.
Cui et al. (1998) pointed out that the nodal

precession of circular orbits1 slightly inclined to the
equatorial plane of a black hole could be of importance

*E-mail: sibgat@mech.math.msu.su
1Lense–Thirring (1918) effect.
1063-7737/01/2712-0799$21.00 c©
in interpreting the stable QPOs: for several black-
hole candidates and microquasars, they found the
predicted frequencies of nodal precession agree (if the
Kerr parameter is chosen in the range 0.37− 0.9) with
the observed QPO frequencies.
Stella and Vietri (1998) justified the formula for

the nodal precession frequency νnod of orbits slightly
inclined to the equatorial plane and identified its even
harmonics with the frequency νHBO. The frequency
ν1 was associated with the periastron rotation fre-
quency νper = νK − νr of a low-eccentricity orbit (a
general-relativity effect). They showed that the theo-
retical dependence νr(νφ) for an appropriately chosen
mass of the object in the range 1.8 − 2.2M� was
in good agreement with the experimental points in
the (ν2,∆ν) plane for various sources with evolving
frequencies. In the Kerr solution, the frequency νr be-
comes zero in the marginally stable orbit. Therefore,
when a radiating clump of matter passes from one
Keplerian orbit to another2 by increasing its rotation
frequency, the frequency difference between the peaks
∆ν = νr decreases and even approaches zero in the
marginally stable orbit. This tendency was observed
for some of the sources (see above).
Morsink and Stella (1999), Stella and Vietri

(1998), and Psaltis et al. (1999) showed that the
theoretical dependences νnod(νK) agreed with the

2Through turbulent viscosity and radiative deceleration.
2001 MAIK “Nauka/Interperiodica”
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measured source frequencies in the ν2, νHBO plane
if νHBO was identified with an appropriate even
harmonic of the nodal frequency.
The proper rotation of the source (a neutron star

or a black hole) remains a free parameter, and it can
be chosen by using the stable frequency observed in
LMXBs in the X-ray band during outbursts.
Another free parameter is the orbital inclination s

to the equatorial plane, of a neutron star or a black
hole, which significantly affects the observed nodal
precession, periastron rotation, and Keplerian fre-
quencies near the marginally stable orbit. Below, we
give an example based on our results. If the mass of a
black hole or a neutron star isM , then for the Keple-
rian frequency in the marginally stable orbit νφ = 1.2
(2.2M�/M ) kHz, the frequency of nodal precession
νnod is, respectively, 123 (2.2M�/M ) Hz at s = 0;
93.6 (2.2M�/M ) Hz at s = 10◦; 65.3 (2.2M�/M ) Hz
at s = 30◦; 52.6 (2.2M�/M ) Hz at s = 45◦; 45.5
(2.2M�/M ) Hz at s = 60◦; 41.18 (2.2M�/M ) Hz
at s = 80◦; and 41.11 (2.2M�/M ) Hz at s = 90◦.
The nodal precession frequency changes by almost a
factor of 3 as the inclination changes from π/2 to 0!
Thus, by simultaneously measuring three quantities,
M , νHBO, and ν2, we can determine the inclination of
the marginally stable orbit to the spin axis!
In general, the tilt of an accretion disk to the

equatorial plane of a compact object can be finite.
The Bardeen–Petterson (1975) hypothesis of the
accretion-disk transition into the equatorial plane
breaks down even when the radiative forces that twist
the inner edge of the disk are taken into account.
Pringle (1996) showed that a flat disk was unstable
to disturbances in the presence of a central radiation
source.
Below, we derive formulas for the Keplerian, nodal

precession, and periastron rotation frequencies of
low-eccentricity orbits at an arbitrary (finite) orbital
inclination to the equatorial plane in the form of
Taylor expansions in terms of the Kerr parameter.
In contrast to previous studies, in which calcu-
lations were performed for selected values of the
constant Q [with an unclear physical meaning, as
was noted by de Felice (1980), and coinciding with
the square of the total angular momentum only in
the weak-field approximationQ], we consistently use
the smallest latitudinal angle θ− = s reached on a
bounded trajectory3 as a trajectory parameter. At
s = π/2, the derived formulas (51) transform into
Taylor expansions of the formulas by Okazaki et al.
(1987). An analysis of our numerical results has

3Below, s is called the inclination angle between the angular
velocity vector of a compact object and the orbital surface for
short.
yielded compact approximation formulas for the nodal
precession frequency of the marginally stable circular
orbits in the entire range of the Kerr parameter for
several finite orbital inclinations.
In contrast to rotating black holes, an intrinsic

quadrupole component appears in the external fields
of rapidly rotating neutron stars (NSs). For NSs with
a stiff equation of state, this component can be several
times larger than the Kerr quadrupole moment. The
effect of a non-Kerr NS field induced by rapid NS
rotation on the parameters of the marginally stable
orbit and energy release in the equatorial boundary
layer was analyzed bySibgatullin and Sunyaev (1998,
2000a, 2000b) using an exact solution for a rotat-
ing configuration with a quadrupole moment (Manko
et al. 1994) [approximate approaches with multipole
expansions of the metric coefficients at large radii
were developed by Laarakkers and Poisson (1998)
and Shibata and Sasaki (1998)]. Our results refer
to nonequatorial, nearly circular orbits in the fields
of black holes and NSs with a soft equation of state
at a moderate rotation frequency (up to 400 Hz).
Markovic (2000) considered finite-eccentricity orbits
in a Kerr field and in the post-Newtonian approxima-
tion for a field with a finite quadrupole moment. The
precession of orbits slightly inclined to the equatorial
plane in the fields of rotating NSs was numerically
calculated by Morsink and Stella (1999) and Stella
et al. (1999).

GEODESICS IN THE KERR SOLUTION

It is well known that the equations of geodesics
in Riemannian spaces can be written in Hamiltonian
form. The corresponding Hamilton–Jacobi equation
is

Q ≡ (gi,jS,i S,j +1)/2 = 0, S,i ≡
∂S

∂xi
, (1)

i, j, ... = 0, 1, 2, 3.
The generalized momenta pi = S,i are related to the
4-velocity components by the Hamilton equations
dxj

dτ
=
∂Q

∂pj
= gjkpk,

dpj
dτ

= − ∂Q
∂xj

= −∂g
kl

∂xj
pkpl.

(2)

For the Kerr solution in Boyer–Lindquist coordi-
nates, the contravariant metric components are

g00 = −(r
2 + a2)2 −∆a2 sin2 θ

ρ2c2∆
, (3)

gφφ =
(1− 2rGM/c2ρ2)

∆ sin θ
,

g0φ =
−2ar
ρ2∆

, grr =
∆
ρ2
, gθθ =

1
ρ2
.

∆ ≡ r2 + a2 − 2rGM/c2; ρ2 ≡ r2 + a2 cos2 θ.
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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The constant a is related to the angular momentum
of a rotating black hole described by the Kerr solution
by the equality J =Mac = GM2j/c, where j is the
dimensionless Kerr parameter. Because of axial sym-
metry and stationarity, the Hamilton–Jacobi equa-
tion (1) for the Kerr metric has two cyclic coordinates,
t and φ; therefore, Eq. (1) with the first integrals pt =
−E = const and pφ = L = const for the Kerr metric
can be written as

(1− E2)((r2 + a2)2 −∆a2 sin2 θ) (4)

+ 4arLEGM/c3 + (ρ2 − 2GMr/c2)
× L2/(c sin θ)2 +∆2S,2r +∆S,

2
θ

= 2r(r2 + a2)GM/c2.
The existence of the complete integral of the Hamil-
ton–Jacobi equation established by Carter (1968) is
less obvious:

S = −Etc2 + Lφ+
∫ √

Θ(θ)dθ +
∫ √

R(r)
dr

∆
,

Θ(θ) ≡ Q− cos2 θ(a2c2(1− E2) + L2/(sin θ)2),
(5)

R(r) ≡ (cE(r2 + a2)− La)2 (6)

−∆(r2 + (L− aEc)2 +Q.
Instead of the constant Q, we introduce a constant
s < π/2, which has the meaning of the minimum
angle θ (turning point) reached on the bounded tra-
jectory in question [in the notation of Wilkins (1972),
the constant s ≡ θ−; see also Shakura (1987)]. Ac-
cording to (5), the constant Q can be expressed in
terms of s:

Q = cos2 s(a2c2(1− E2) + L2/(sin s)2). (7)

In that case, the angle θ on a bounded trajectory
varies over the range s < θ < π − s.
For stable trajectories on the r = const surfaces,

the following conditions must be satisfied:
R(r) = 0, dR(r)/dr = 0 (8)

(Bardeen et al. 1972; Wilkins 1972).

THE NEWTONIAN ANALOG OF THE KERR
SOLUTION

The Newtonian Analog of the Supercritical Kerr
Solution and its Potentials

In the Newtonian limit, E2 ≈ 1 + 2H/c2 and∆ ≈
r2 + a2. Substituting these expressions in Eq. (4)
yields an approximate Hamilton–Jacobi equation:

2H =
L2

(r2 + a2) sin2 θ
+

r2 + a2

r2 + a2 cos2 θ
S,2r (9)

+
1

r2 + a2 cos2 θ
S,2θ +

4arLGM/c
(r2 + a2)(r2 + a2 cos2 θ)
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− 2GMr
r2 + a2 cos2 θ

+
4(GMra sin θ)2

(r2 + a2 cos2 θ)c2(r2 + a2)
.

Note that Eq. (8) describes the trajectories of test
particles in the field of a flat disk with the radius a
in special curvilinear coordinates r, θ, φ, which are
related to the Cartesian coordinates x, y, z by

r =
1
2
(
√
x2 + y2 + (z − ia)2 (10)

+
√
x2 + y2 + (z + ia)2),

a sin θ =
1
2i
(
√
x2 + y2 + (z + ia)2 (11)

−
√
x2 + y2 + (z − ia)2), φ = arctan y/x.

When passing from Cartesian coordinates x, y, z to
orthogonal curvilinear coordinates r, θ, φ using for-
mulas (10) and (11), the nonzero metric tensor com-
ponents are expressed in terms of the curvilinear co-
ordinates as

grr =
r2 + a2 cos2 θ
r2 + a2

, gθθ = r2 + a2 cos2 θ, (12)

gφφ = (r2 + a2) sin2 θ.

Hamiltonian (9) contains the contravariant metric
tensor components (12), and it can be written in the
Cartesian coordinates as

H =
(p+A/ñ)2

2
− Φ.

The corresponding Hamilton equations are

dpk
dt

= Φ,k −(p+A/ñ)
∂A/ñ
∂xk

,
dxk

dt
= pk +Ak/c.

(13)

Eqs. (13) can be rewritten as the equations of motion
in a gravitomagnetic field in the quasi-Newtonian
approximation

dv

dt
= ∇Φ+ curlA× v/c, (14)

where the Newtonian potential Φ and the gravito-
magnetic vector potential A in a vacuum satisfy the
Laplace equation. The equations of relative motion
in a rotating coordinate system can be derived from
Eqs. (14) if Ω ×R, R = (x, y, z), is substituted for
A. In that case, curlA/c = −2Ω and the second term
on the right-hand side of (13) represents the Coriolis
force.
For a flat Kerr disk, the Newtonian potential Φ is

(Israel 1970; Zaripov et al. 1995)

Φ =
GM

2
√
x2 + y2 + (z + ia)2

(15)

+
GM

2
√
x2 + y2 + (z − ia)2

.
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The vector A consists of the components −g0α/g00,
α = 1, 2, 3 (Landau and Lifshitz 1980). In theNewto-
nian limit in a vacuum, the vector of the gravitomag-
netic field Ψ can be introduced instead of the vector
potentialA:

curlA = 2∇Ψ. (16)

The scalar Ψ in an axisymmetric case matches the
imaginary part of the Ernst complex potential. For
the special case of a Kerr disk, the scalarΨ is (Zaripov
et al. 1995):

Ψ =
GM

2i
√
x2 + y2 + (z − ia)2

(17)

− GM

2i
√
x2 + y2 + (z + ia)2

.

Clearly, expressions (15) and (17) for Φ and Ψ satisfy
the Laplace equation.
As follows from definition (10), the r = const sur-

face is neither a sphere nor an ellipsoid.

The Precession of Circular Keplerian Orbits in the
Field of a Gravitating Rotating Mass

For the Newtonian analog of a supercritical Kerr
disk, a > GM/c2. However, since a < GM/c2 for
black holes, in this subsection, we discard terms of
the order of a2 in expressions (15) and (17) for Φ and
Ψ lest the order of accuracy of the model be exceeded.
In that case, Φ ≈ GM/r,Ψ ≈ −azGM/r3.
Let us introduce a coordinate system with the

origin at the gravitating mass with the z axis directed
along the spin axis. The equations of motion for free
particles in this coordinate system are
du

dt
= −GMx

r3
+

(
6a(yw − zv) z

r5
+ 2v

a

r3

) GM
c
,

(18)
dv

dt
= −GMy

r3
+

(
6a(zu− xw) z

r5
− 2u a

r3

) GM
c
,

(19)
dw

dt
= −GMz

r3
+

(
6a(xv − yu) z

r5

) GM
c
. (20)

In our approximation, the complete integral of the
Hamilton–Jacobi equation is [cf. formulas (5)–(6)]

S = −Ht+ Lφ+
∫ √

Θ(θ)dθ +
∫ √

2R(r)dr,

Θ(θ) ≡ L2 cot2 s− L2 cot2 θ. (21)

R(r) ≡ H + GM
r

− L2

2r2 sin2 s
− 2LaGM

r3c
. (22)

In formulas (21) and (22), we chose the turn-
ing point for the angle θ as a constant: according
to (20), θ varies over the range s < θ < π − s, with
0 < s < π/2.
For stable circular trajectories, the equalities

R(r) = 0 and dR(r)/dr = 0 must be satisfied. Sub-
stituting expression (21) for a fixed radius r in these
equations yields the corresponding energy H and
angular momentum L:

H ≈ −GM
2r

− a
√
(GMr)3

sin s
cr4

, (23)

L ≈ sin s
√
GMR− 3aGM sin2 s

cr
.

Consider the precession of circular orbits. From the
Hamilton equations θ̇ = ∂H/∂pθ and φ̇ = ∂H/∂L,
we have

dθ

dt
=
L

r2

√
cot2 s− cot2 θ, (24)

dφ

dt
=

L

r2 sin2 θ
+
2aGM
r3c

. (25)

Integrating Eq. (24) yields

φ− φ0 =
∫

Ldt

r2 sin2 θ
+
2aGMt
r3c

(26)

=
∫

dθ

sin2 θ
√
c2s− c2θ

+
2aGMt
r3c

= arcsin
(
cot θ
cot s

)
+
2aGMt
r3c

.

When changing the variable in formula (26), we used
Eq. (24).
Consider the case where all particles at t = 0

were in the sinφ sin θ = cos θ cot s plane or, introduc-
ing Cartesian coordinates, in the y = z cot s plane.
According to equality (26), the particles will lie
on the y cos (2aGMt/r3c) − x sin (2aGMt/r3c) =
z cot s surface at time t. The closer the particles
to the rotating gravitating center, the faster their
precession. For a given radius r, the particle motion
in an accretion disk can be represented as the rotation
of a circumference inclined to the z spin axis at angle s
with angular velocity 2aGM/r3c. In a coordinate
system corotating with the circumference, the particle
rotates with a Keplerian velocity. Thus, if viscous
friction between adjacent orbits is disregarded, a tilted
accretion disk cannot be in a steady state.

THE ENERGY AND ANGULAR MOMENTUM
OF PARTICLES MOVING ALONG

GEODESIC ORBITS
IN THE KERR SOLUTION

ON THE r = const SURFACES

In this section, for simplicity, we choose a system
of units in which c = G =M = 1. To find stable
orbits on the r = const surfaces, we must solve the
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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algebraic equations (8). The corresponding solutions
in the s = π/2 equatorial plane were found by Ruffini
and Wheeler (1970) for j = 1 and by Bardeen et
al. (1972) for arbitrary j. For s = 0 and arbitrary
j, the particle angular momentum L is zero. The
corresponding expression for the energy was derived
by Lightman et al. (1975). Inclined orbits were
investigated by Wilkins (1972). For charged rotat-
ing black holes, the selected tilted bound geodesics
were studied by Johnston and Ruffini (1974). Finally,
Shakura (1987) derived formulas for the energy and
angular momentum at arbitrary j and s by a complex,
indirect method. Below, we show that deriving ex-
pressions for E and L from Eqs. (8) can be reduced
to solving a quadratic equation and factorizing the
numerator and denominator in the resulting fraction
(to be subsequently canceled by a common factor).
Let us introduce new unknowns instead of E

and L:

xc ≡
E

L
, yc =

E2 − 1
L2

. (27)

Eqs. (8) can then be written as

yca1 + xca2 + (x2
c − yc)(a1 + a3) + a0 = 0, (28)

ycb1 + xcb2 + (x2
c − yc)(b1 + b3) + b0 = 0, (29)

bi ≡
∂ai

∂r
|j,s, i = 0, 1, 2, 3.

Here,

a0 = −(r2 − 2r +∆cos2 s),
a1 = r4 + 2j2 + j2r + j2∆cos2 s,

a2 = −4jr, a3 = −p∆, p ≡ r2 + j2 cos2 s. (30)
Eliminating yc from Eqs. (28) and (29) yields the
quadratic equation

x2
c(a1b3 − a3b1) + xc(a2b3 − a3b2)

+ a0b3 − a3b0 = 0,
whose solution is given by

xc =
E

L
=
A+ qB
D sin s

, q ≡
√
r − j2 cos2 s/r. (31)

In formula (31), we use the notation

A ≡ j sin s(3r4 − 4r3 + j2r2 cos2 s(j2r2 − r4)),
B ≡ rp∆, (32)

D = −à1b3 + a3b1 = (r2 − j2 cos2 s) (33)

× (r2 + j2)2 − 4j2r3 sin2 s.

The numerator and denominator in (31) can be fac-
torized as

A+ qB = r((r2 + j2)q + 2jr sin s) (34)

× (j sin sq + r2 + j2 cos2 s− 2r),
D = r((r2 + j2)q + 2jr sin s) (35)
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×((r2 + j2)q − 2jr sin s).
Therefore, cancelling a common factor in the numer-
ator and denominator in (31), we obtain

xc =
E

L
=
jq sin s+ r2 + j2 cos2 s− 2r
(r2 + j2)q − 2jr sin s) sin s . (36)

Multiplying Eq. (28) by b1 and Eq. (29) by a1 and
subtracting (29) from (28) yields

x2
c − yc =

1
L2
=
x(à1b2 − a2b1) + à1b0 − a0b1

D
(37)

=
A1 + qB1

D sin s
,

A1 ≡ 2jrp(2r4 − 3r3 + j2r2 + cos2 sj2(r − j2)),
B1 ≡ p2(r3 − 3r2 + j2 + j2r).

The expression A1 + qB1 can also be factorized as

A1 + qB1 = p((r2 + j2)q + 2jr sin s) (38)

× (2rjq sin s+ r3 − 3r2 + j2 cos2 s(r + 1)).
Hence,

L =

√
D sin s
A1 + qB1

(39)

=
((r2 + j2)q − 2jr sin s) sin s√

p(p− 3r + j2 cos2 s/r + 2jqr sin s)
.

Using formula (36) for E/L, we obtain with (39)

E =
p− 2r + jq sin s√

p(p− 3r + j2 cos2 s/r + 2jqr sin s)
. (40)

Formulas (39) and (40) are the sought-for expres-
sions for the particle energy and angular momentum
in inclined circular orbits.
We determine the coordinate radius of themarginally

stable orbit, r∗, from the condition of E given by (40)
being at a minimum. Representing r∗ as a Taylor
expansion in terms of j, we obtain r∗ as a function of
j, s:

r∗ ≈ 6− 4
√
2
3
j sin s+ .. ≈ 6− 3.266j sin s (41)

− j2(0.5 + 0.1111 cos 2s) + j3(−0.2532 sin s
− 0.0567 sin 3s) + j4(−0.1196 + 0.0206 cos 2s
+ 0.0162 cos 4s) + j5(−0.11 sin s− 0.02 sin 3s

+ 0.0025 sin 5s) . . . .

At s = 0, the first expansion terms for r∗ are

r∗ ≈ 6− 0.6111j2 − 0.0828j4 − 0.211j6

− 0.0066j8 − 0.0023j10 + . . . .
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Substituting the Taylor expansion (41) in (39)
and (40) yields Taylor expansions for the binding en-
ergy and angular momentum in the marginally stable
orbit:

1− E∗ ≈ 0.0572 + 0.0321j sin s+ j2(0.0131
− 0.0087 cos 2s) + j3(0.0143 sin s− 0.002 sin 3s)
+ j4(0.0065 − 0.006 cos 2s + 0.0003 cos 4s)
+ j5(0.0087 sin s− 0.002 sin 3s) . . . ,

L∗
sin s

≈ 3.4641 − 0.9428j sin s− j2(0.1123 (42)

+ 0.1443 sin2 s)− j3(0.1178 sin s+ 0.0175 sin3 s)

+ j4(−0.0138 − 0.0878 sin2 s+ 0.0138 sin4 s)

+ j5(−0.0327 sin s
+ 0.0467 sin3 s+ 0.016 sin5 s) . . . .

We supplement expansions (41) and (42) with the
values of the corresponding functions at j = 1 nu-
merically constructed by least squares for an arbitrary
fixed orbital inclination to the black-hole spin axis:
1− E∗ ≈ 0.4222 − 0.8314 cos2 s+ 0.264 cos4 s

+ 0.8605 cos6 s− 0.656 cos8 s,
r∗ ≈ 1 + 6.2005 cos4 s

− 7.1816 cos8 s+ 5.1365 cos12 s,

L∗ ≈ sin s
(
1.1876 + 2.5913 cos2 s (43)

− 0.9948 cos4 s+ 0.494 cos6 s
)
.

Note that for s = 0 and j = 1, the radius of the
marginally stable orbit is 1 +

√
3 +

√
3 + 2

√
3 ≈

5.2745 (in units ofGM/c2).

PERIASTRON AND NODAL PRECESSION
OF ORBITS ON THE r = const SURFACES
Choose the angle θ as a parameter on a bounded

trajectory. It then follows from (5)–(7) that
dφ

dθ
=
(2jEr + L(∆/ sin2 θ − j2))

∆
√
Θ

,

− Θ ≡ (sin
2 s

sin2 θ
− 1)

(
sin2 θj2(1− E2) +

L2

sin2 s

)
,

dt

dθ
=
(−2jrL+ E((r2 + j2 cos2 θ)∆ + 2r(r2 + j2))

∆
√
Θ

.

(44)

Expressions (39) and (40) for the energy and angular
momentum in circular orbits must be substituted in
these formulas for E and L.
Integrating the right-hand parts of expressions

(44) over θ from s to π/2 yields an expression for a
quarter of the change in azimuthal angle∆φ and for a
quarter of the period T in which the particle runs from
a minimum latitudinal angle s to its maximum π − s
and back. The integration result can be expressed
in terms of the elliptic functions that contain E, L,
and s as parameters [instead of the constant Q, we
inserted the constant s into formula (7), which has
the meaning of orbital inclination to the black-hole
spin axis). Using the notation for the complete elliptic
integrals of the first, K(x); second, E(x); and third,
Π(n, x), kinds, we have

T = 4A
(
K(k)

(
jL− j2E + (Er2 + Ej2 − jL)

× (r2 + j2)
∆

)
+ (K(k) − E(k)) E

A2(1− E2)

)
;

∆φ = 4A(LΠ(− cos2 s, k) + j(2rEj − j2L)K(k)),

A ≡ (L2/ sin2 s+ j2(1− E2))−1/2; (45)

k ≡ cos2sj2(1− E2)A2.

In contrast to Johnston and Ruffini (1974), who first
wrote the corresponding formulas in the form of el-
liptic integrals for any j, in formulas (45), we inserted
explicit expressions for all quantities in terms of the
smallest angle θ− ≡ s in the orbit. Expressions (39)
and (40) must be substituted for E and L, respec-
tively.

For low-eccentricity orbits4 (δr = ε sin ξ, ε

r), it follows from the Hamilton–Jacobi equation (4)
that

dξ

dθ
=

√
−R′′/2√
Θ

, R′′ ≡ d2R

dr2
(46)

= −2
(
6(1− E2)x2 − 6x

+(1−E2)j2 sin s2 +
L2

sin2 s

)
.

From Eq. (46) for the periastron rotation frequency
νr, we have

νr =
∆ξ
T
= 4A

√
R′′/2
T

K(k). (47)

Note that the frequencies∆φ/2πT and 1/T are com-
monly denoted by νφ and νθ, respectively, so the
sought-for nodal precession frequency is νnod = νφ −

4Syer and Clarke (1992) considered the possible existence of
stationary disks in the equatorial plane in which the particle
orbits were constant-eccentricity ellipses. Clearly, allowance
for general-relativity effects will result in the intersection of
orbital trajectories in such disks, because the orbital perias-
tron precesses. However, in the Newtonian theory, unstable
disturbance modes with a radially variable eccentricity dis-
turbance exist in such disks (Lyubarskij et al. 1994). Arbi-
trary accretion-disk disturbances apparently produce spiral
waves in the disk structure (Spruit 1987).
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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νθ. The periastron precession frequency of an orbit is
νper = νφ − νr (Merloni et al. 1999).

To clearly present the result, let us derive asymp-
totic formulas from (45) and (47) in the form of Taylor
expansions in powers of j by taking into account the
dependence of the first integrals E, L, and Q on j and
s given by formulas (39), (40), and (7).

The constants E and L̃ enter into the formu-
las for ∆φ and ∆T via the ratios E/L̃ and (1−
E2)/L2, Q/L2. Let us write out the series expan-
sions of these ratios with the accuracy that will be
required to calculate the nodal precession frequency
(∆φ/2π − 1)/T up to terms of the order of j3 inclu-
sive:

E

L
=

r − 2
r3/2 sin s

+ j
3r − 4
r3

+ j2
(r + 0.5r2 + sin2 s(8 + 7r − 1.5r2))

r9/2 sin s
+ . . . ,

1−E2

L2
=

r − 4
r3 sin2 s

+ j
8(r − 2)
r9/2 sin s

+ . . . ,

Q

L2
= cot2 s(1 + j2

(r − 4) sin s
2r3

− (48)

− j3 4(r − 2) sin s
r9/2

+ . . . ).

Using (48), we obtain from expressions (45) and (47)
for∆φ, T , and∆ξ

∆φ
2π

− 1 = 2j
r3/2

− j2

2r3
3(r − 4) sin s

+
j3

r9/2
(2− 1.5r + (18− 7.5r) sin2 s) + . . . ,

T

2π
= r3/2 + 3j sin s+

j2

4r3/2

× (8 + 3r + (24− 9r) sin2 s) + . . . ,(
∆ξ
2π

)2

=
r − 6
r

+
12j
r5/2

(r − 2) sin s+ j
2

r4
× (49)

×
(
3
2
r2 + 15r − 12− sin2 s(r − 4)(15

2
r − 21)

)

+ . . . .

In the limit s→ 0, when the spin axis becomes par-
allel to the tangential plane to the accretion-disk sur-
face, the following formulas hold:

∆φ
2π

− 1 = 2j
r3/2

+
j3

r9/2
(2− 1.5r)

+
3j5

r15/2

(
3
2
− 7
4
r +

19
32
r2

)
+ . . . ,

T

2π
= r3/2 +

j2

4r3/2
(8 + 3r)
ASTRONOMY LETTERS Vol. 27 No. 12 2001
+
3j4

64r9/2
(7r2 − 48r + 80) + . . .

(
∆ξ
2π

)2

=
r − 6
r

+
3j2

2r4
(
r2 + 10r − 8) (50)

+
3j4

32r7
(−352 + 576r − 286r2 + 9r3)

)
+ . . . .

From formulas (49) for the Keplerian frequency νφ,
the nodal precession frequency νnod, and the perias-
tron rotation frequency νr of a low-eccentricity orbit
around the black-hole spin direction, we derive the
compact formulas

2πνφ =
∆φ
T
=

1
r3/2

(
1 +

(2− 3 sin s)j
r3/2

+
((12 + 9r) sin2 s− 8− 9r)j2

4r6
+ . . .

)
;

2πνnod = (∆ϕ− 2π)/T ≈ 2j
r3

− j2 1.5 sin s
r7/2

+ j3
−2− 3r + (6 + 1.5r) sin2 s

r6
+ . . . ,

(2πνr)2 =
r − 6
r4

+
6j
r11/2

sin s(r + 2) (51)

+
j2

r7
(12 + 20r − 3 sin2 s(1 + r)(10 + r)) + . . . .

The first term in the formula for nodal precession
was found by Lense and Thirring (1918) (see also
Wilkins 1972). In a coordinate system rotating with
the frequency νnod, the Keplerian orbit is stationary.

In the limit s→ 0, when the black-hole spin axis
becomes tangential to the disk surface, we can de-
rive the following expansions for the nodal precession
frequency, the periastron rotation frequency, and the
Keplerian meridional frequency from formulas (45)
and (47) using (50)5

2πνnod = (∆φ− 2π)/T ≈ 2j
r3

(
1− j2 3r + 2

2r3

+j4
8 + 54r + 27r2

16r6
+ . . .

)
,

(2πνr)2 =
r − 6
r4

+

+
4j2

r7
− 3j4

r10
(r3 + 128r2 + 172r + 32) + . . . ,

2πνθ =
1
r3/2

− j2

4r9/2
(3r + 8) (52)

5Caution must be exercised when passing to the limit s → 0;
for example, when s → 0, L/(

√
Θsin2 θ) → δ(sin θ), where

δ(x) denotes the Dirac δ function.
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+
j4

64r15/2
(16 + 336r + 15r2) + . . . .

To compare formulas (51) and (52) with observations,
we should eliminate the radius from them and ex-
press the frequencies νnod and νr as functions of the
Keplerian frequency νφ. The functions νnod(νφ) and
νr(νφ) may be said to be given by (51) and (52) in
parametric form. An increase in ν2 and a decrease
in the frequency difference between the two peaks
ν2 − ν1 during observations implies the transition of
a radiating clump to an orbit closer to the black
hole and the approach of its orbit to the marginally
stable orbit. When observations are accumulated,
formulas (51) and (52) make it possible to determine
the orbital inclination to the spin axis of a slowly
rotating black hole or neutron star. When analyzing
the energy release in the boundary layer and in an
extended disk for a rapidly rotating neutron star, we
should took into account the appearance of an intrin-
sic quadrupole moment that exceeds the Kerr one (see
Sibgatullin and Sunyaev 1998, 2000a, 2000b). We
emphasize that formulas (51) and (52) are not related
to the weak-field approximation and are valid up to
the marginally stable orbit.
If the disk lies almost in the equatorial plane of a

black hole (s = π/2), then formulas (51) give Taylor
expansions of the formulas by Okazaki et al. (1987)
and Kato (1990) (see also Merloni et al. 1999):

2πνφ =
1

r3/2 + j
,

2πνnod =
1−

√
1− 4j/r3/2 + 3j2/r2

r3/2 + j
,

(2πνr)2 =
1− 6/r + 8j/r3/2 − 3j2/r2

(r3/2 + j)2
. (53)

The Nodal Frequency of the Marginally Stable Orbit
for an Arbitrary Orbital Inclination s

The following relations (Sibgatullin and Sunyaev
1998, 2000a) hold for the marginally stable orbit in
the equatorial plane in a Kerr field, in which the re-
ciprocal radius of the marginally stable orbit acts as a
parameter:

j =
4
√
x−

√
3− 2x

3x
, E =

√
3− 2x
3

,

L =
2

3
√
3x
(2
√
x
√
3− 2x+ x), x ≡ 1/r.

Let us substitute these expressions in (53):

ωφ =
3x3/2

3−√
x
√
3− 2x+ 4x

,

2πωnod = ωφ(1 +

√
2
3
(
√
x−

√
3− 2x)), νr = 0.

(53а)

If the parameter x is eliminated from (53a), then we
derive the following dependence by least squares:

ωnod ≈ 0.1872(ωφ −
√
6/36)

+ 1.7246(ωφ −
√
6/36)2 + 1.2064(ωφ −

√
6/36)3.
(53b)

We emphasize that formula (53b) accurately de-
scribes the limiting dependence of the nodal preces-
sion frequency on Keplerian frequency at s = π/2 in
the marginally stable orbit over the entire νφ range
from 1/26 to 0.5, which corresponds to the range of
Kerr parameters from −1 to 1. To derive dimensional
dependences, we must make the following substitu-
tions in all formulas: 23.1ωnod = νnod(M/1.4M�),
23.1ωφ = νφ(M/1.4M�), . . . , where, hereafter, all
frequencies are given in kHz.
To determine the nodal precession frequency of the

marginally stable orbit for an arbitrary orbital inclina-
tion s, we use formulas (45) in which for E,L, r, we
substitute their expressions in the marginally stable
orbit as functions of j and s, (41) and (42). Below, we
give the highly accurate approximation dependences
for the nodal precession frequency and the Keplerian
frequency of the marginally stable orbit, in kHz, on
the Kerr parameter in the entire j range (−1 ≤ j ≤ 1)
that we derived by analyzing our numerical calcula-
tions for various inclinations of this orbit to the black-
hole spin axis:

s = 0 : ν∗nod ≈
1.4M�
M

(0.2139j + 0.0448j3

+ 0.0308j5 + 0.007j7),

νφ ≈ 1.4M�
M

(1.5716 + 0.1933j + 0.1539j2

+ 0.0712j3 + 0.0852j4 + 0.0533j5);

s = 10◦ : ν∗nod ≈
1.4M�
M

(0.2139j + 0.0431j2

+ 0.0674j3 + 0.054j4 + 0.0004j5 − 0.0414j6

+ 0.038j7 + 0.0432j8),

νφ ≈ 1.4M�
M

(1.5716 + 0.3875j + 0.2206j2

+ 0.0675j3 + 0.1681j4 + 0.1289j5);

s = 30◦ : ν∗nod ≈
1.4M�
M

(0.2139j +
0.1394j2

1− 0.82j ),

s = 45◦ : ν∗nod ≈
1.4M�
M

(0.2139j +
0.1923j2

1− 0.87j ),

s = 60◦ : ν∗nod ≈
1.4M�
M

(0.2139j +
0.2499j2

1− 0.92j ),
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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s = 80◦ : ν∗nod ≈
1.4M�
M

(0.2139j +
0.2535j2

1− 0.976j ).
(54)

Note that, in contrast to the preceding formulas, the
last two formulas in (54) approximate the numerical
data in the range −1 ≤ j ≤ 0.99.
The corresponding limiting dependence of the

nodal precession frequency on Keplerian frequency
for s = π/6, π/4, π/3, 4π/9 can be derived from nu-
merical calculations by least squares (here, ω̃φ ≡
ωφ −

√
6/36):

s = 30◦ : ωnod ≈ 0.3189ω̃φ + 0.5205(ω̃φ)2

+ 4.37(ω̃φ)3, 0.049 ≤ ωφ ≤ 0.171;
s = 45◦ : ωnod ≈ 0.2416ω̃φ + 1.5953(ω̃φ)2

− 0.2723(ω̃φ)3, 0.044 ≤ ωφ ≤ 0.257;
s = 60◦ : ωnod ≈ 0.2031ω̃φ + 1.7744(ω̃φ)2

+ 0.5149(ω̃φ)3, 0.041 ≤ ωφ ≤ 0.414;
s = 80◦ : ωnod ≈ 0.1846ω̃φ + 1.7929(ω̃φ)2

+ 1.0862(ω̃φ)3, 0.039 ≤ ωφ ≤ 0.485. (54а)

In formulas (54a), we give the ranges of Keplerian fre-
quencies that correspond to the range of Kerr param-
eters from −1 to +1. Consider an example. Let the
black-hole mass be 2.2M� and the Keplerian rotation
frequency be 1.2 kHz. Since the rotation frequency in
the innermost Keplerian orbit of a nonrotating black
hole with M = 2.2M� is 23.1 × 1.4/2.2 ×

√
6/36 ≈

1 kHz, ω̃φ = 0.2× 2.2/(1.4 × 23.1) ≈ 0.0136. Ac-
cording to (54a), the nodal precession frequency of
the marginally stable orbit is: νnod ≈ 41.1 Hz for s =
π/2; νnod ≈ 52.6 Hz for s = π/4; νnod ≈ 65.3 Hz for
s = π/6; νnod ≈ 93.6 Hz for s = π/18; and νnod ≈
123 Hz for s→ 0. We see that the nodal precession
frequency significantly depends on the orbital incli-
nation and changes by a factor of 4 as the inclina-
tion changes! If the nodal precession frequency is
identified with the horizontal-branch oscillation fre-
quency νHBO, then it becomes possible to determine
the inclination of the marginally stable orbit from the
known black-holemass, the Keplerian frequency, and
the nodal precession frequency. The figure shows
the νnod = f(νφ) curves for inclinations s = 0, s =
π/18, s = π/6, s = π/4, , s = π/2. The frequencies
are given in kHz. For an arbitrary mass, the corre-
sponding plots are obtained by stretching the axes
by a factor of 2.2×M�/M . At j << 1, the nodal
precession frequency of the marginally stable orbit is
related to the Keplerian frequency by

ωnod ≈
2

2 + 9 sin s
ω̃φ. (54b)
ASTRONOMY LETTERS Vol. 27 No. 12 2001
 

0.05

1.1 1.2 1.3

 

ν

 

φ

 

, kHz

0.10

0.15

 

ν

 

no
d

 

, k
H

z

 

s

 

 = 0°

 

s

 

 = 10°

 

s

 

 = 30°

 

s

 

 = 45°

 

s

 

 = 90°

Figure.

At a fixed inclination s, the precession frequency ν
in the marginally stable orbit monotonically increases
with j and reaches a maximum at j = 1. For themass
M = 1.4M� and s = 0, it is 296 Hz.
The larger the inclination s at fixed j, the larger

the precession frequency ωnod. As an illustration, let
us write out the approximation formula for νnod at
j = 0.998 [Thorne (1974) number]6:

νnod ≈ 0.29 + 0.7783 sin s+
17.1094 sin6 s

1 + 1.35 sin4 s
in kHz.

(55)

CONCLUSIONS

According to the ideas explicitly formulated by
Bardeen and Petterson (1975) and Bardeen (1977),
a geometrically tilted accretion disk is most com-
monly modeled as a set of rings with the center at
the coordinate origin that smoothly turn with chang-
ing radius under the effect of viscous torques and
gravitomagnetic forces. This approach underlies the
existing theories of tilted accretion disks [Papaloizou
and Pringle (1983) and Markovic and Lamb (1998,
2000) for small disk deviations from the equatorial
plane; Pringle (1992, 1997) for finite disk deviations
from the equatorial plane], which are based on a vec-
tor equation for the conservation of angular momen-
tum. Some ideas developed by Shakura and Sunyaev

6Studying the evolution of a black hole under the effect of disk
accretion in the equatorial plane, Thorne adduced arguments
that the Kerr parameter cannot be larger than 0.998 in this
case when the radiation from inner disk regions is taken
into account. Since the black hole mostly captures photons
with a negative angular momentum (opposite to the black-
hole rotation), the black-hole spinup by disk accretion is
counteracted by its spindown via the predominant capture of
the photons propagating against the rotation.
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(1973, 1976) for flat disks can be used to study the
physics of tilted accretion disks. Van Kerkwijk et al.
(1998) explained the puzzling spindown and spinup
of some X-ray pulsars by the fact that the accretion-
disk tilt in the inner regions could become larger than
90 degrees!
The effects considered above take place for the

inner nonstationary part of the disk, where viscous
torques may be disregarded. Matter is not accu-
mulated in the marginally stable orbit because of its
instability. In contrast to the statement by Stella
et al. (1999) that the orbital inclination weakly
affects the nodal precession frequency, our detailed
analysis shows that this effect is significant. There
are probably preferential inclinations of themarginally
stable orbits [or the inner orbits of the disk can turn
through a finite angle because of the intense radiation
(Van Kerwijk et al. 1998)], and there is no need to
introduce even harmonics of the nodal frequency to
reconcile observations with theory.
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Abstract—We analyze IUE spectra of the star 1016 Ori. Together with previously obtained visible spectra,
they have allowed the wavelength range from 1150 to 7000 Å to be studied. Atmospheric parameters of
the star were refined: log g = 4.5(1), Teff = 30000(1000) K, and ξt = 15(5) km s−1. We measured the
equivalent widths of ∼ 500 lines and used them to compute the chemical composition. It turned out that
the He, B, Mg, P, and S abundances were nearly solar; Ne, Ti, and Cr were overabundant; and C, N, O, Al,
Si, Mn, Fe, Ni, and Zn were underabundant. c© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The IUE satellite obtained ∼ 100000 spectra at
short wavelengths unobservable from the ground.
The IUE data archive is publicly available and is
stored in a usable form (ASCII files).
Previously, the chemical composition of the star

V1016 Ori has been studied by using visible spectra
(Cunha and Lambert 1992, 1994; Vitrichenko and
Klochkova 2000). The elemental abundances turned
out to be anomalous. For example, the light elements
were found to be underabundant by ∼ 0.3 dex in
both studies. According to Ismailov (1988), the star
exhibits a helium overabundance.
It is highly desirable to use IUE spectra to com-

pare the results of spectral analysis for ultraviolet and
visible lines.

SPECTRA AND THEIR REDUCTION

Table 1 provides data on all the spectra of
V1016 Ori that we could find in the IUE archive.
Columns 1 and 2 list mid-exposure heliocentric
Julian dates and IUE numbers, respectively. The
cameras used are given in the next column. The
SWP camera took spectra in the wavelength range
1150–2000 Å, while the LWR and LWP cameras
obtained spectra in the range 1900–3200 Å. Below,
the former and latter ranges are called uv1 and uv2,
respectively. Column 4 contains dispersions: L
denotes low dispersion, 6 Å per pixel; H denotes high
dispersion, 0.05 Å per pixel for the SWP camera and
0.2 Å per pixel for the other two cameras. Column 5
gives apertures. The letter L denotes an entrance

*E-mail: vitrich@nserv.iki.rssi.ru.
1063-7737/01/2712-0809$21.00 c©
aperture in the shape of an ellipse with 10 × 20 arcsec
axes, and the letter S denotes a circular entrance
aperture 3 arcsec in diameter.

Photometric phases of the star are listed in the
next column. Since the minimum begins at phase
0.990, none of the spectra falls within the region of
the minimum. The phases are followed by exposures
in seconds. In the last column, the letter D marks
defective spectra unsuitable for analysis, and the plus
sign mark those spectra that were used in the subse-
quent analysis.

Some of the spectra in Table 1 were used to an-
alyze the interstellar extinction (Franco 1982; Bohlin
and Savage 1981) and to investigate boron lines in В-
type stars (Profitt 2001). The line equivalent widths in
the spectrum of V1016 Ori have not been measured
previously.

The spectrum reduction involved averaging two
spectra for the uv1 and uv2 ranges. The first and
second ranges were filtered with 0.2-Å and 0.4-Å-
wide windows, respectively. Numerical experiments
show that with this filtering, the spectral resolution
decreases only slightly (by 5–10%), but the signal-
to-noise ratio increases severalfold. To reduce our
spectra to continuum, we measured the observed
spectrum at ∼ 20 points that were relatively free from
spectral lines, calculated an eighth-degree polyno-
mial fit by least squares, and divided the observed
spectrum by this fit. The continuum-reduced spec-
trum was compared in several parts with the syn-
thetic spectrum computed using the STARSP soft-
ware package and corrected by taking into account
the differences revealed by this comparison. As a
result, the continuum was drawn with an accuracy
2001 MAIK “Nauka/Interperiodica”
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Table 1. A list of spectra

JD 2440000+ No. Camera Dispersion Aperture Phase Exposure, s Notes

3921.609 03783s LWR L S 0.875 18.7

3921.612 03783 LWR L L 0.875 5.6

3921.642 04282s SWP L S 0.875 360

3921.645 04282 SWP L L 0.875 6.8 D

4289.437 07990s SWP H S 0.496 360 D

4291.453 08005 SWP H L 0.527 270

4822.368 11252 LWR L L 0.641 17.5

4822.371 11252s LWR L S 0.641 9.7

4822.377 14667 SWP H L 0.641 310

8518.020 21274 LWP H L 0.121 360

9284.917 49002 SWP H S 0.841 2100 +

9284.945 26614 LWP H S 0.841 1800 +

9284.976 49003 SWP H S 0.842 2100 +

9285.006 26615 LWP H S 0.842 2400 +

9425.373 50204 SWP H S 0.988 900 D

9777.660 54001 SWP H L 0.371 120
∼5%, which is not enough for it to be used to mea-
sure the line equivalent widths. Therefore, we deter-
mined a local continuum near each line.
Figure 1 shows a portion of the average spectrum

for V1016 Ori (lower curve). The synthetic spectrum
(upper curve) computed with the STARSP software
package (Tsymbal 1995) is given for comparison. It
was computed by using the VALD line list (Kupka
et al. 1999). Ions and line wavelengths are indicated
at the top. The first two digits were discarded. Inter-
stellar ions and wavelengths are given at the bottom
with a label IS.
The most interesting observed line is Lyα, which

bears no resemblance to the synthetic line. The ob-
served line is much broader and deeper than the syn-
thetic one. This is most likely because the Lyα pho-
tons are scattered in the circumstellar medium. The

Table 2. Statistical data on the uv1 and uv2 ranges

Parameter
uv1 range uv2 range

Star IS Star IS

Number of lines 258 30 85 19

Continuum 0.996 1.002

σ, Å 0.35(14) 0.32(10) 0.48(21) 0.29(9)

Vr, km s−1 39(14) 8(11) 154(19) 115(6)
other Orion Trapezium stars exhibit the same phe-
nomenon, implying that the Lyα photons are scat-
tered in the Orion Nebula rather than in the imme-
diate vicinity of the star.

When measuring the line equivalent widths, we
singled out a ∼ 1-Å-wide portion of the spectrum
centered on the expected line position. Here, two
difficulties arise. For the uv1 lines of the star, the
mean radial velocity is 39(14) km s−1. The error of
a single measurement is given in parentheses. Since
the velocity of interstellar lines is 8(11) km s−1, the
portion of the spectrum for stellar and interstellar lines
had to be centered differently. The second difficulty
lies in the large systematic wavelength shift between
the uv1 and uv2 spectra, as can be seen from Table 2
and Fig. 2.

Table 2 gives the total number of measured lines
for each spectral range. IS mark the columns that
refer to interstellar lines. The second row gives the
mean continuum level; its deviation from unity char-
acterizes the systematic error, which is seen to be
small. The next row gives the parameter of the Gaus-
sian fit to the observed line profile. The error of a single
measurement is given in parentheses.

In Fig. 2, the displacement of interstellar lines
from laboratory wavelengths is plotted against wave-
length. This figure clearly shows an abrupt change
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Fig. 1. A portion of the observed spectrum for V1016 Ori (1) and the synthetic spectrum computed with Teff = 30000 K,
log g = 4.5, [M/H] = −0.2, and ξt = 15 km s−1 (2). Wavelengths, in Å, and intensities, in fractions of the continuum, are
plotted along the horizontal and vertical axes, respectively. The observed spectrum was arbitrarily displaced downward.
in displacement near the boundary of the two spec-
tral ranges. The straight lines were drawn by least
squares. The straight line for the uv2 range exhibits
an appreciable slope. The equations for these straight
lines are

∆λ1 = 0.043(9) − 0.00004(4)(λ − 1150), (1)

∆λ2 = 0.86(1) − 0.000211(7)(λ − 1900).

Here, ∆λ1 and ∆λ2 refer to the uv1 and uv2
ranges, respectively, and the wavelength is given in Å;
the errors of the coefficients are given in parentheses.
We see from Eqs. (1) that there is no wavelength

dependence of the dispersion for the uv1 range, while
for the uv2 range, this dependence is strong. It also
follows from these equations that there is a break in
the wavelength scale between the two ranges, which
for λ = 1900 Å is 0.86 − 0.04 = 0.82(1) Å. Its most
plausible explanation is that the first four points of
the uv2 spectrum were missed. The connectedness
ASTRONOMY LETTERS Vol. 27 No. 12 2001
of the line measurements within each of the ranges
suggests that no points were missed within them.

REFINING THE ATMOSPHERIC
PARAMETERS

We were able to measure ∼ 300 lines in the ultra-
violet spectra. Since ∼ 170 lines were measured in
the visible spectra, the total number of lines increased
by a factor of ∼ 3, which allows the atmospheric
parameters to be reconsidered.
Tables 3–61 list the equivalent widths of ultraviolet

lines. Table 3 and 4 give, respectively, stellar and
interstellar lines in the uv1 range. The interstellar
lines differ from the stellar lines in the following.
First, occasionally, there are no interstellar lines in

1Tables 3–6 are published in electronic form only and
are accessible via ftp cdsarc.u-strasbg.fr/pub/cats/J
(130.79.128.5) or http://cdsweb.u-strasbg.fr/pub/cats/J.
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the synthetic spectrum. Second, the radial-velocity
difference between the interstellar and stellar lines
is so large (see Table 2) that the line classification
is beyond question. Third, the interstellar lines are
narrower (see Table 2). Fourth, the interstellar lines
often belong to ions with a lower degree of ionization
than do the stellar lines. Lists of interstellar lines
can be found in Holberg et al. (1998). The authors
make a note that also pertains to our study: “The
identification of features in the IUE echelle spectra is
more likely an art than a science.”
Tables 5 and 6 give stellar and interstellar lines in

the uv2 range. If a line was rejected as an outlier
when computing the chemical composition, a colon
is placed near the equivalent width.
We failed to find any circumstellar lines.
Before determining the atmospheric parameters,

we carried out numerical experiments aimed at an-
swering the question: How accurate must these pa-
rameters be? We chose a grid of models in the
vicinity of the atmospheric parameters known from
spectroscopic studies and determined the chemical
composition for each model from the entire ensemble
of line equivalent widths. The problem was formu-
lated as follows: Howmuch does a given atmospheric
parameter change so as to obtain a mean change in
abundance by 0.1 dex? This is the most typical error.
Our numerical experiments led us to the following

conclusions.
Since the elemental abundances computed from

lines of species with a lower degree of ionization (e.g.,
He I, C II, N II, Si III, Cr III, and Fe III) depend
weakly on atmospheric parameters, a larger weight
must be assigned to these data in an abundance
 0
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Fig. 3. Functions S versus microturbulence.

analysis. Conversely, the chemical composition com-
puted from lines of species with a higher degree of
ionization (e.g., He II, C III, N III, Si IV, Cr IV, and
Fe IV) depend critically on the assumed atmospheric
parameters.
Since the chemical composition of the star is

anomalous, it would be natural to choose εi − εi+1,
the differences between the elemental abundances in
two adjacent ionization states, as the criteria that are
convenient for refining the atmospheric parameters.
An analysis of these differences allowed us to infer

the required accuracy of the atmospheric parameters:
the surface gravity, temperature, andmicroturbulence
must be determined with errors no larger than 0.1,
1000 K, and 5 km s−1, respectively.
Below, we present the results of our analysis. All

models were constructed with [M/H] = −0.2, which
was established in a spectroscopic analysis of the
visible spectral range.

The surface gravity has previously (Vitrichenko
and Klochkova 2000) been estimated from line equiv-
alent widths to be log g = 4.4(2). The discovery of
secondary lines (Vitrichenko and Plachinda 2001)
hasmade it possible to determine themasses and radii
of the components and, consequently, the surface
gravity: log g = 4.6(1). Since the two values are
equal, within the error limits, and since the errors
themselves are similar, we take log g = 4.5(1) in our
subsequent calculations. The error is satisfactory.

The effective temperature. There is a large set of
line equivalent widths for several species, with the line
excitation potentials lying within a wide wavelength
range. It would be natural to attempt to calculate
the effective temperature by using the Boltzmann for-
mula. We performed these calculations and obtained
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Table 7. Chemical composition of the stellar atmosphere

Species Sun
Ultraviolet spectral range Visible spectral range Entire spectral range

[A] σ N [A] σ N [A] σ N

He I −1.05 0.58 0.16 6 −0.15 0.09 8 0.12 0.14 16

He II 0.0 0.3 2 −0.26 0.12 2 −0.1 0.2 4

B III −9.44 0.2 1 0.2 1

C II −3.48 −0.1 0.5 5 −0.36 0.03 7 −0.41 0.11 16

C III −0.03 0.18 10 0.0 0.10 5 0.15 0.14 17

N II −3.99 −0.3 1 −0.14 0.03 23 −0.19 0.04 28

N III −0.6 0.5 5 −0.2 1 −0.5 0.4 6

O II −3.11 0.8 1 −0.29 0.03 52 −0.29 0.04 58

O III −0.77 0.06 3 0.02 1 −0.58 0.17 4

Ne I −3.95 0.4 1

Ne II 0.7 0.3 2 0.40 0.07 4 0.55 0.14 6

Mg II −4.46 −0.06 0.10 2 −0.2 1 −0.08 0.07 3

Al III −5.57 −0.59 0.19 4 −0.24 0.09 3 −0.43 0.14 7

Si III −4.49 −0.61 0.12 12 −0.33 0.14 12 −0.45 0.10 24

Si IV −0.4 0.2 7 0.03 0.10 3 −0.25 0.17 10

P III −6.59 0.3 1 0.2 1

S III −4.83 −0.4 0.4 5 0.24 0.14 3 −0.2 0.3 8

S IV −0.23 0.12 2 −0.18 0.12 2

Ti IV −7.05 0.8 1 0.9 1

Cr III −6.37 0.6 0.2 4 0.5 0.2 4

Cr IV 0.5 0.2 4 0.6 0.3 4

Mn IV −6.65 −0.20 0.02 2 −0.18 0.02 2

Fe III −4.37 −0.17 0.05 93 0.07 0.04 17 −0.19 0.05 124

Fe IV −0.46 0.06 78 −0.47 0.07 92

Ni III −5.79 −0.56 0.11 17 −0.66 0.12 18

Ni IV −0.31 0.16 13 −0.4 0.2 14

Zn III −7.44 −0.35 0.06 9 1.04 0.01 2 −0.40 0.09 10
incomprehensible results: the temperature is deter-
mined with satisfactory accuracy, but its value lies
within the range 40000–50000 К, which is in conflict
with the spectrum shape. We leave this result without
an explanation.

To determine the temperature using our grid of
models, we calculated the following three functions:

S1 = |Σ(εi − εi+1)|,
S2 = Σ|(εi − εi+1)|, (2)

S3 = Σ(|εi| + |εi+1|).
ASTRONOMY LETTERS Vol. 27 No. 12 2001
The parameter is considered to be properly chosen
if all three functions simultaneously reach a mini-
mum. We used a total of nine pairs of species.

The first sum shows the extent to which the
abundances determined from two adjacent ionization
states disagree. Ideally, S1 = 0.
Ideally, the second function is also zero, but here,

the outliers of opposite signs are not offset, in contrast
to the sum S1.
The third sum shows how anomalous the chemical

composition is. Clearly, definitely incorrect atmo-
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spheric parameters yield a more anomalous chemi-
cal composition than do more accurate parameters;
therefore, the sum S3 reaches a minimum at exact
parameters.
An analysis of functions (2) shows that Teff =

30000(1000) K, which is in good agreement with the
spectroscopically determined Teff = 29700(700) K.
The error is satisfactory. We take Teff =
30000(1000) K.

Microturbulence. We attempted to determine
the microturbulence ξt by a classical method: ξt is
chosen in such a way that there is no dependence of
the abundance on equivalent width. All attempts of
this kind failed: under any reasonable assumptions
about ξt, the slope of the straight line is essentially
positive.
The method that uses the functions S proves to

be more suitable. Figure 3 shows plots of S against
ξt. An examination of the figure indicates that the
function S1 has a distinct symmetric minimum at ξt =
15 km s−1, the function S2 is flat, and the function S3

exhibits a clear minimum at ξt = 10 km s−1. We take
ξt = 15(5) km s−1.

CHEMICAL COMPOSITION

We computed the chemical composition of the
star from the equivalent widths of ultraviolet lines
and from the set of equivalent widths for the entire
spectrum under study. The results of our abundance
analysis are presented in Table 7. Also given here
for comparison are the results for the visible spectral
range.
An examination of Table 7 leads us to conclude

that all three abundance determinations are in sat-
isfactory agreement. The number of lines in the last
column differs from the sum of the numbers of lines
in the two corresponding columns. This difference is
associated with the outlier rejection technique. In the
first two analyses, a line was rejected if the difference
between the abundance derived from this line and
the mean abundance derived from all lines exceeded
2σ, where σ is the error of a single determination.
The last columns give the data that were analyzed by
using a less stringent criterion 2.5σ, which caused an
increase in the number of lines. We rejected ∼ 5% of
all the measured lines.
Below, we make several notes on individual ele-

ments.
Helium. The He I abundances determined in

different spectral ranges differ significantly because of
the different outlier rejection techniques used, well-
known difficulties in determining equivalent widths,
and line saturation. Therefore, the helium abundance
is most likely to be nearly solar, as follows from an
analysis of the He II lines.
Boron.We found one boron line at λ = 2065.78 Å
in the spectrum. The boron abundance is nearly
solar. This line is peculiar in that its radial velocity
is abnormal: it is by 30 km s−1 lower than the mean
velocity for stellar lines. The identification error is
highly unlikely, because the line is single and no
blends were detected. The paper by Profitt (2001) is
specially devoted to an analysis of boron lines in early
B stars.

Carbon. For this element, the discrepancy be-
tween the abundances determined from two adjacent
ionization stages is largest and exceeds the error lim-
its. Carbon is most likely to be underabundant, as
inferred from C II, because its abundance depends
weakly on atmospheric parameters.

Nitrogen. Nitrogen was found to be underabun-
dant from both ionization stages; the abundance de-
termined from N II is more reliable.

Oxygen clearly shows a 0.3 dex underabundance,
which confirms the result by Cunha and Lambert
(1992).

Neon, titanium, and chromium exhibit an over-
abundance by 0.5–0.6 dex. The result is unreliable for
titanium, because only one line was measured.

Magnesium, phosphorus, and sulfur have solar
abundances, but the result is unreliable for phospho-
rus.

Aluminum, silicon, manganese, iron, nickel,
and zinc are clearly underabundant. The large zinc
overabundance found by Vitrichenko and Klochkova
(2000) is an artifact associated with line identification
errors.

CONCLUSIONS

IUE spectra of the star V1016 Ori, together
with its previously obtained visible spectra, have
allowed us to study the wavelength range from 1150
to 7000 Å.
Based on numerical simulations with model at-

mospheres, we were able to estimate such errors in
the stellar atmospheric parameters that led to a sys-
tematic error in the abundance by ∼ 0.1 dex. These
errors for the star in question are: 0.1 for the surface
gravity, 1000 K for the temperature, and 5 km s−1 for
the microturbulence.
The atmospheric parameters were refined: log g =

4.5(1), Teff = 30000(1000) K, and ξt = 15(5) km s−1.
We measured the equivalent widths of ∼ 500 lines

and used them to compute the chemical composition.
It turned out that theHe, B,Mg, P, and S abundances
were nearly solar; Ne, Ti, and Cr were overabundant;
and C, N, O, Al, Si, Mn, Fe, Ni, and Zn were under-
abundant.
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Abstract—We generalize the concept of zero-velocity surface and construct zero-kinetic-energy surfaces.
In the space of three mutual distances, we determine the regions where motion is possible; these regions
are in the shape of an infinitely long tripod. Motions in the three-body problem are shown to be unstable
according to Hill. c© 2001 MAIK “Nauka/Interperiodica”.
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Solving the three-body problem, just as any other
model problem of celestial mechanics, reduces to
integrating the system of ordinary differential equa-
tions that describe the set of celestial bodies under
study. However, the concept of solving the system
of equations of motion itself has evolved with time.
Since the publication of Newton’s book Mathemati-
cal Principles of Natural Philosophy until the 20th
century, the problem had been considered integrable if
the general integral of the equations of motion could
be expressed in terms of the quadratures of known
functions. Only a few problems of celestial mechanics
are integrable in quadratures: Kepler’s problem, the
two-body problem, the photogravitational two-body
problem, the problem of two stationary centers, the
generalized problem of two stationary centers, the
problem of motion in a uniform force field, and the
like. The fundamental studies by Bruns, Poincaré,
and Painlevé revealed the futility of one-and-a-half-
century-long searches for new first integrals of the
problem of three or more bodies other than the ten
classical integrals representable by algebraic or tran-
scendental single-valued functions. By the beginning
of the 20th century, the development of the analytical
theory for differential equations had led to a different
treatment of integrability: a problem was considered
integrable if its general solution could be represented
by infinite series converging for given system pa-
rameters; the convergence of these series must be
absolute and uniform for any real values of time in the
entire interval from −∞ to +∞. In the 20th century,
attempts were repeatedly made to construct general
solutions of the three-body problem in the form of
infinite series, including power series of time. These
attempts did not produce the desirable result, because

*E-mail: ural@sai.msu.ru
1063-7737/01/2712-0816$21.00 c©
the series had never satisfied the above requirements
of absolute and uniform convergence. The principal
difficulties were associated with the elimination of
the singularities that resulted from possible collisions
of gravitating masses. Luck was only on the side
of Sundman (1912), who proved the theorem on a
general solution of the three-body problem in the form
of infinite power series of an auxiliary variable that
was similar to time but that regularized pair colli-
sions. Sundman’s series have not yet been used in
practice, although they give an impeccable (in terms
of mathematical rigor) general solution of the three-
body problem. The question as to how rapidly these
series converge is yet to be explored. On the one
hand, as was shown by Belorizky (1933), for a special
choice of initial data, Sundman’s series converge so
slowly that to provide a practically acceptable accu-
racy requires a portion of the series composed of such
a number of terms that is inaccessible to currently
available computers. On the other hand, an opposite
example is also known: in 1955, Vernik showed that
for a different special choice of initial data, the sums of
Sundman’s series with three significant figures could
be calculated in a three-body system by retaining only
the first three terms of these series (Balk 1965).

Subsequently, the integrability in celestial me-
chanics came to be qualitatively treated as the con-
struction of a universal classification of all possible
solutions by various properties. It assumes a break-
down of the entire phase space of a dynamical system
into several regions containing only the solutions of
one class (restricted, periodic, conditionally periodic,
asymptotic, and others), which are sought by approx-
imate analytical or numerical methods, if necessary.
A characteristic feature of the qualitative methods
of celestial mechanics is that their application does
not require knowledge of the general solution to the
2001 MAIK “Nauka/Interperiodica”
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equations of motion. In particular, a first integral is
widely used to qualitatively analyze the properties of
the motion.

The zero-velocity surfaces in a restricted three-
body problem were first investigated by Hill in 1878
using the Jacobi integral. The results were published
in his fundamental paper on the theory of motion
of the Moon (Hill 1905). In his study, he estab-
lished the possible existence of satellite orbits and
orbits bounded by a dumb-bell-shaped surface that
enclosed the main bodies and formulated a stability
criterion for orbits, which was subsequently called
stability according to Hill. The zero-velocity sur-
faces in this problem are called Hill’s surfaces.

The zero-velocity surfaces have been considered in
many other problems. Their analysis in Hill’s problem
allows the possible existence of satellite motions to be
established.

A global qualitative analysis of the general proper-
ties of the motion in a two-planet three-body prob-
lem was performed by V.G. Golubev (Golubev and
Grebenikov 1985). Based on Sundman’s famous
inequality, V.G. Golubev discovered and studied the
class of stable (according to Hill) motions in a two-
planet system.

In the problem of two stationary centers, apart
from satellite orbits, the zero-velocity surfaces allow
restricted motions inside the dumb-bell-shaped re-
gion that encloses the two stationary centers to be
established. Furthermore, in this case, the motions
always take place in some bounded region at negative
energy.

The zero-velocity surfaces have a more com-
plex shape in a restricted photogravitational three-
body problem (Luk’yanov 1988) and in a restricted
variable-mass three-body problem (Luk’yanov 1992).
In the photogravitational problem, the families of
zero-velocity surfaces at different free parameters
admit about a hundred different topological types.

In the two-body problem, the zero-velocity sur-
faces are very simple. They are concentric spheres
with the center in one of the bodies, where the relative
motion is always restricted by some sphere at nega-
tive energy.

In the general three-body problem, the concept of
zero-velocity surface should be replaced by the con-
cept of zero-kinetic-energy surface, i.e., the surface
on which the velocities of all three bodies simultane-
ously become zero. The existence of such surfaces for
negative total mechanical energies follows from the
energy integral. We know no references in the liter-
ature on celestial mechanics to studies of the regions
where motion is possible in the general (unrestricted)
three-body problem using zero-kinetic-energy sur-
faces.
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Fig. 1. Zero-kinetic-energy surface.

Constructing zero-kinetic-energy surfaces in the
three-body problem in a rectangular (Cartesian) co-
ordinate system involves introducing a nine-dimen-
sional coordinate space for the three bodies. However,
the zero-kinetic-energy surfaces can be represented
in the three-dimensional space of three mutual dis-
tances r12, r23, and r31 between the corresponding
bodiesM1,M2, andM3.

Below, we consider a rectangular coordinate sys-
tem with the x axis r12, y axis r23, and z axis r31.
The part of the space of mutual distances where they
are nonnegative and satisfy the following triangle in-
equalities has the dynamical meaning
r12 ≥ 0, r23 ≥ 0, r31 ≥ 0, r12 + r23 ≥ r31,

(1)

r23 + r31 ≥ r12, r31 + r12 ≥ r23.

The domain of allowable values (1) in the space of
mutual distances is a regular triangular pyramid with
an infinite height whose vertex is at the coordinate
origin and whose edges are the bisectors of the coor-
dinate planes (pyramid OABC in Fig. 1). The pyramid
faces correspond to the arrangement of the bodies
on a single straight line; the height corresponds to
the arrangement of the bodies at the vertices of an
equilateral triangle; and the edges and the coordinate
origin correspond to double and triple collisions, re-
spectively.

We write the energy integral in the three-body
problem as

T − U = h, (2)

where T is the kinetic energy of the system, U is the
force function, and h is the energy constant (h ≤ 0).
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Fig. 2. The sections of zero-kinetic-energy surfaces.

The condition T ≥ 0 defines the regions where motion
is possible as

U ≥ C, (3)

where

U = f
(m1m2

r12
+
m2m3

r23
+
m3m1

r31

)
,

f is the universal gravitational constant; m1, m2,
and m3 are the masses of bodies M1, M2, and M3,
respectively; and C = −h is an arbitrary constant,
which varies over the range [0, +∞).

The zero-kinetic-energy surfaces are
F (r12, r23, r31) (4)

= f
(m1m2

r12
+
m2m3

r23
+
m3m1

r31

)
= C.

The singularities of the family of surfaces (4) are
given by the system of three equations

∂F

∂rij
= −f mimj

r2ij
= 0, (5)

where i and j take on the values 1, 2, and 3 with i �= j.
System (5) has the unique (improper) solution

r12 = ∞, r23 = ∞, r31 = ∞. (6)

Consequently, if the constant C is changed from +∞
to 0 (as was done in the restricted three-body problem
when constructing Hill’s surfaces), then all surfaces
recede from the coordinate origin and from the pyra-
mid edges and contract to an infinitely distant singu-
lar point (6) when C → 0.

These surfaces bound the regions where the three
bodies can move that are adjacent to the coordinate
origin and to the pyramid edges. Figure 1 shows a
typical appearance of one of the regions where motion
is possible using the sections by planes that are par-
allel to the coordinate planes and that pass through
points A, B, and C, as well as the sections by planes
OCD and EFG (the sections of the region by these
five planes are hatched).

It is convenient to represent the entire family of
surfaces (4) using the sections by planes parallel to
one of the coordinate planes. Consider, for example,
the section by plane r12 = a = const. We then obtain
from (4)

fm2m3r31 + fm3m1r23 = br23r31, (7)

where b = C − fm1m2/a.
This section is a hyperbola, which can be reduced

through the transformation r23 = r′23 + α, r31 =
r′31 + β to the form

r′23r
′
31 = γ, (8)

where α = fm2m3/b, β = fm3m1/b, γ = αβ.
Figure 2 shows the sections of the family of sur-

faces (4) by the r12 = a plane, i.e., hyperbola (7). Not
all of the hyperbola but only its part in the domain of
allowable values (1) has a physical meaning. Only
these parts of the hyperbola are shown in Fig. 2. They
lie within the half-band

r23 + r31 ≥ a, | r23 − r31 |≤ a.

Similar hyperbolas take place for the sections by the
r23 = const and r31 = const planes.

For the three-body problem, sections (7) show
that the regions where motion is possible are tripods
with the vertices at the coordinate origin. Each of the
three infinitely long “legs” is adjacent to one of the
pyramid edges and is formed by two pyramid faces
and surface (4). As the constant C changes from ∞
to 0, the region where motion is possible changes
from the degenerate tripod (of zero volume) formed
by the pyramid faces to the entire infinite volume of
the pyramid. For C ≤ 0, the motion becomes unre-
stricted.

We see from Fig. 2 that, in contrast to the re-
stricted three-body problem, the closed surfaces (4)
that enclose one, two, or all three bodies do not exist
in the general problem. On the contrary, any zero-
kinetic-energy surface extends to infinity; therefore,
the motions in the three-body problem may be said to
be unstable according to Hill.

In the general three-body problem, the zero-
kinetic-energy surfaces always allow for the capture
and breakup of a close pair and even the exchange
— the formation of a new close pair, as well as the
recession of one of the bodies to an infinite distance.
In this case, double and even triple collisions are
possible in principle. Our results are consistent with
the classification of final motions by Chazy (1928–
1930).
ASTRONOMY LETTERS Vol. 27 No. 12 2001
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Similar zero-kinetic-energy surfaces exist in the
general n-body problem, but their specific analysis is
difficult to perform, because the dimensionality of the
space of mutual distances increases. The family of
such surfaces also have the only infinitely distant sin-
gular point. As C changes from ∞ to 0, all surfaces
monotonically recede from the coordinate origin and
contract to an infinitely distant point. For more than
three bodies, the motions appear to be also unstable
according to Hill.
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