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Abstract—A new theory for the formation of the main structures of galaxies is proposed: these structures
are viewed as low-frequency normal modes in disks consisting of precessing stellar orbits. Mathematically,
the theory is based on an integral equation in the form of a classical eigenvalue problem, with the
eigenvalues being equal to the angular velocities Ωp of the modes. Analysis of the general properties of the
master integral equation (without finding concrete solutions) shows that it admits two types of solutions:
barlike and spiral. The numerical algorithms are discussed and particular solutions of the integral equation
are presented. If resonance interaction can be neglected, the bar mode represents a neutral perturbation of
the disk. This mode can be amplified by the effect of the long-range gravitational field of the mode on stars
located in the vicinity of the corotation and outer-Lindblad resonances. Spiral perturbations are waves
with zero total angular momentum, and spiral modes are excited at the inner-Lindblad resonance. The
approach proposed is compared to currently accepted mechanisms for the formation of galactic structures.
In particular, Toomre’s application of the swing amplification mechanism to explain the formation of global
modes is critically discussed. In addition, we show that it is not correct to simulate the real stellar velocity
dispersion in a galaxy using softened gravity. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we assume, as has been assumed
in many previous studies, that the observed spiral
and barlike structures in galaxies represent normal
modes in a flat, axisymmetric disk. Strictly speaking,
the computation of normal modes is a rather diffi-
cult problem. General integral equations for normal
modes were derived long ago by Kalnajs [1] and Shu
[2]. However, these equations are quite complicated,
and have rarely been used. For the same reason,
neither the physical mechanisms nor the instabilities
responsible for the formation of the modes could be
understood by analyzing the general equations. At
present, analyses of stellar disks are usually carried
out via numerical N-body simulations, which are
difficult to interpret. In addition, most analytical stud-
ies have replaced the stellar disk with an “effective”
gaseous disk.

The situation becomes much simpler if we are
interested in low-frequency rather than arbitrary
modes. Let us explain why. Let an axisymmetric
disk be characterized by the unperturbed potential
Φ0(r) and the corresponding angular velocity Ω(r) of
its circular rotation. Consider an orbit precessing at
an angular velocity Ωpr and subject to a perturbing
potential rotating at the angular velocity Ωp. Lynden-
Bell [3] pointed out that the orbit varies little during
1063-7729/04/4811-0877$26.00 c©
one orbital period of the star if

ε =
δΩ
Ω
=

|Ωp − Ωpr|
Ω

� 1. (1)

We can therefore assume that the orbit as a whole
(and not just individual stars moving in the orbit)
should respond to the perturbation. We thus come to
a model with the disk viewed as a set of precessing
orbits. In this model, galactic structures are com-
pression and rarefaction waves in the orbit density
traveling in the azimuthal direction at some angular
velocity Ωp, which is of the same order of magnitude
as Ωpr. The velocity of the orbital precession is small
compared to the angular rotational velocity of the
central regions of the disk, so that, in this sense, bars
and spirals are low-frequency structures.

The resulting description of stellar systems is sim-
ilar to the drift approximation in the physics of a
magnetized plasma (see, e.g., [4]), but for orbits of a
much more general form: Larmor circles in a plasma
correspond to orbits with, strictly speaking, an ar-
bitrary degree of oblateness. It is important that, in
plasma physics, low-frequency (drift) waves are most
likely to become unstable [5].

Let us hypothesize that observed galactic struc-
tures can be described as low-frequency modes. At
first glance, it appears that this cannot be plausible,
since bars and spirals usually reach the corotation
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) CurvesΩ(r) andΩpr(r) for a Plummer potential, which AS used to compute bar modes. Horizontal lines correspond
to various possible angular velocities of the wave, Ωp. (b) The δΩ(r)/Ω(r) curves corresponding to the left-hand plot.
radius, when the pattern speed is equal to the angular
rotational velocity of the disk. Note, however, that the
disk mode may be determined by the central part of
the disk, due to the strong central concentration of
the mass and the rapid decrease in the density with
radius.

We now show that published computations and
estimates of the angular velocities of galactic bars and
spirals justify the use of a model that treats the disk
as a set of precessing orbits; i.e., that justify use of
inequality (1).

Athanassoula and Sellwood [6] (hereafter AS)
usedN-body simulations to analyze the development
of normal modes in more than 30 model stellar disks
with various distribution functions in a Plummer
potential Φ0(r) = −1/

√
r2 + 1. Figure 1a shows the

dependences of the disk rotational angular speedΩ(r)
and the precessional speed Ωpr(r) in the epicycle
approximation adopted by AS, with several horizontal
lines corresponding to the rotational velocities of bar
modes. Recall thatΩpr(r) = Ω(r)− κ(r)/2 for nearly
circular orbits, where κ(r) is the epicyclic frequency
and κ2 = 4Ω2 + rdΩ2/dr. The thin solid, dash–
dotted, and dashed horizontal lines correspond to
the minimum (Ωmin

p = 0.14), average (Ωmid
p = 0.21),

and maximum (Ωmax
p = 0.3) angular velocities of the

bar modes, according to the list given by AS in their
Table 1. Figure 1b shows the ratios δΩ/Ω for the three
modes mentioned above. These ratios are smaller
than 0.1 for the first of these modes, which is localized
at r < 2 according to AS (thin dashed line in Fig. 1b).
However, δΩ/Ω < 0.3 even for the highest-frequency
bar mode (Ωp = Ωmax

p = 0.3), if we take into account
the fact that this mode is more concentrated toward
the center. We show below that, even if some of the
orbits obey an appreciably weaker inequality than (1),
δΩ/Ω < 1 (e.g., by a factor of a few but not by an
order of magnitude), the accuracy of the final results
remains high.
Figures 2a and 2b show plots for the Milky Way
similar to those shown in Figs. 1a and 1b. Here, we
have adopted the data of the classic paper of Lin et al.
[7]. The horizontal line in Fig. 2a corresponds to the
mean value Ωp = 12 km s−1 kpc−1 for the pattern
speed interval Ωp = 11−13 km s−1 kpc−1 recom-
mended in [7]. It follows from Fig. 2b that δΩ/Ω� 1
for this Ωp. Here, we must make the reservation that
no consensus has been reached about the angular
speed of the spiral pattern in our Galaxy. Some au-
thors have reportedΩp values twice as high as the one
we use above.1 However, even in this case, inequality
(1) is satisfied, and the eigenmodes of the Galactic
disk can be analyzed in terms of a low-frequency-
mode approximation.

Thus, the aim of this paper is to develop the the-
ory of low-frequency modes of stellar disks. In Sec-
tion 2, we use perturbation theory in the small pa-
rameter ε to derive a master integral equation for
the low-frequency normal modes. Section 3 gives
a general qualitative analysis of this equation. Note
that an initial integral equation for the low-frequency
modes of a stellar disk has already been derived by one
of us (VLP) in [9]. Since then, a simplified version
of this equation has been used only once [10], to
compute the anomalously slow bar modes found by
AS in their N-body simulations. Our return to and
enhanced interest in this equation was due first and
foremost to the transformation of the initial integral
equation proposed by one of us (EVP). Although this
transformation is very simple (we simply exchange
one of the unknown functions for a different function),
it results in an integral equation in the form of a clas-
sical eigenvalue problem, where the eigenvalues are
equal to the pattern speeds Ωp themselves. Standard

1 Blitz [8] gives approximately the sameΩp values for the four-
armed spirals beyond the solar circle. In this case, we must
be dealing with a separate peripheral tier of the spiral pattern
of our Galaxy.
ASTRONOMY REPORTS Vol. 48 No. 11 2004



FORMATION OF GALACTIC STRUCTURES 879

 
70

0 2

0.4

20 4 6 8 10 12

0.3

0.2

0.1

60

50

40

30

20

10

4 6 8 10 12

 

r r

 

Ω(

 

r

 

)

Ω

 

pr

 

(

 

r

 

)

 

(a) (b)

 

δΩ(

 

r

 

)
Ω(

 

r

 

)

Fig. 2. Same as Fig. 1 for the model of the Galaxy of Lin et al. [7].
mathematical program packages can be used to solve
this equation numerically and identify all of its eigen-
modes, making it possible to appreciably enhance
the efficiency of the computations. More importantly,
the integral equation in the transformed form can be
easily analyzed in general, enabling us to derive the
main properties of its solutions. In particular, we can
demonstrate the crucial role of the derivative of the
distribution function F0 with respect to the angular
momentum L for a fixed value of the Lynden-Bell
invariant Jf [3], F ′

0 ≡ ∂F0(Jf , L)/∂L. Depending on
the behavior ofF ′

0, a general (unified) theory of barlike
and spiral modes can be developed (Section 3).

In Sections 4–6, we analyze specific numerical
solutions of our master integral equation for bisym-
metric modes (with azimuthal wavenumber m = 2).
To demonstrate the potential of the proposed theory,
we begin in Section 4 by analyzing test models stud-
ied earlier by AS using an N-body approach, and
show that the results of our theory agree well with
the N-body simulations of AS. Bearing in mind the
somewhat artificial nature of the models considered
by AS, we analyze first and foremost in Sections 5
and 6 other, much more realistic and general models,
based on a general Schwartzschild distribution func-
tion [2] to obtain a more adequate representation of
spiral modes.

In the Conclusion (Section 7), we make a de-
tailed comparison of our approximation with exist-
ing theories. The most important among these are
based on the swing-amplification mechanism [11].
A detailed criticism of the swing mechanism, which
has enchanted most specialists in stellar dynamics for
more than 20 years,2 is the second important aim of
this paper. We show that the current unsatisfactory
situation in the theory of galaxy dynamics is due, first,

2 Acceptance of the swing ideology unified even competing
(with regard to other issues) teams of theoreticians dealing
with the formation of galactic structures. An excellent review
of the modern history of achievements in the theory of spiral
structure is given by Pasha [12].
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to the lack of an adequate theory of global modes
(resulting in attempts to analyze these modes in the
language of local density-wave theory, which is ill
suited for this) and, second, to the application of
a beautiful but not entirely successful analogy with
lasers (testified to by the adoption of terms that speak
for themselves, such as the “waser mechanism”).

Appendix I gives some additional arguments in
support of our approach, based on thematrix equation
derived in this Appendix, which is a natural general-
ization of the master integral equation of Section 2.
Appendix II describes the numerical algorithms used
to solve the master integral equation. Appendix III
analyzes the very popular (but fundamentally flawed)
method of simulating stellar-velocity dispersions us-
ing softened gravity. This issue is very important,
because, among other things, such simulations have
been used by the authors of certain classic books, and
have then migrated into textbooks on stellar dynam-
ics (see, e.g., [13]).

2. DERIVATION OF THE MASTER
INTEGRAL EQUATION

FOR THE LOW-FREQUENCY MODES
OF A STELLAR DISK

The unperturbed motion of a star in a flat, axisym-
metric field with the potential Φ0(r) is described by
the Hamiltonian

H0 =
v2

2
+ Φ0(r), (2)

where v is the velocity of the star. Let us now intro-
duce in the standard way the action and angle vari-
ables (I, w). Actions are defined as integrals over the
complete period for the variation in the coordinates of
the star:

I1 =
1
2π

∮
prdr, I2 =

1
2π

∮
pϕdϕ = L, (3)

where pr = [2(H0 − Φ0(r))− L2/r2]1/2 and pϕ = L
are the generalized momenta (see, e.g., [14]) and L is
the angular momentum.
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The angular variables w = (w1, w2) are canon-
ically conjugate to I = (I1, I2). The unperturbed
Hamiltonian depends solely on the action variables:
H0 = H0(I).

Consider now a time-dependent perturbation of
the initial system:

H = H0 +Φ(r, ϕ; t), (4)

where Φ is the perturbation of the potential, which
can be expanded into a Fourier series in the angular
variables w:

Φ(r, ϕ; t) = Ψ(I, w1)ei(mw2−ωt) (5)

= ei(mw2−ωt)
∑

l

Ψl(I)eilw1 ,

where ω is the frequency. The expansion (5) is a
single-variable series in l, since we are interested only
in configurations with a certain azimuthal wavenum-
ber m. Below, we analyze the bisymmetric modes,
m = 2.

Since Ωi(I) = ∂H0/∂Ii, we can write the dynam-
ical equations in the form

İi = − ∂Φ
∂wi

, ẇi = Ωi(I) +
∂Φ
∂Ii
. (6)

Recall that Ω1 = κ(r) and Ω2 = Ω(r) for nearly cir-
cular orbits.

In the first-order perturbation theory (in Φ), the
forces in (6) can be calculated by substituting the
unperturbed orbits. We then have for the first order
corrections to Ii [15]

∆1Ii = ∂χ/∂wi, (7)

where

χ =
ei(2w2−ωt)

i

∑
l

Ψl(I)eilw1

lΩ1 + 2Ω2 − ω
. (8)

This expansion contains one dominant term, which
corresponds to l values for which the sum (2Ω2 +
lΩ1) in the denominator is small and equal to 2Ωpr

(Ωpr(I) = Ω2(I)− Ω1(I)/2 is the precessional veloc-
ity of the orbit); i.e., l = −1. It follows that the denom-
inator of the dominant term is equal to ω − 2Ωpr =
2(Ωp − Ωpr); it is natural to call this term the inner-
Lindblad-resonance (ILR) term. Similarly, the coro-
tation (CR) and outer-Lindblad-resonance (OLR)
terms correspond to l = 0 and l = 1; compared to
the ILR term, they are small in the Lynden-Bell pa-
rameter ε from (1). Of course, this is true only for
the central regions of the disk, which are sufficiently
far from the corotation radius (where the CR term
becomes important). At first glance, this means that
the corotation term must be taken into account when
describing bars, since bars extend approximately out
to the corotation radius. However, in reality, the am-
plitude of the bar is large only in the central region
and decreases rapidly with galactocentric distance.
Therefore, the corotation term does not play a sig-
nificant role compared to the ILR term. We confirm
this statement via detailed numerical computations in
Appendix I.

We thus have in the first-order perturbation theory

χ ≈ e−iωt

i
Ψ−1(I)

e2i(w2−w1/2)

2(Ωpr − Ωp)
. (9)

We obtain from (9)

∆I1 =
∂χ

∂w1
≈ −iχ, ∆I2 =

∂χ

∂w2
≈ 2iχ. (10)

Consequently,

∆I1 +∆I2/2 ≡ ∆Jf = 0,

i.e., the quantity

Jf = I1 + I2/2

is an invariant. Note that Jf was first introduced by
Lynden-Bell [3].

It is now natural to change to new action vari-
ables, I = (I1, I2)→ J = (Jf , L). In addition, Eq. (9)
suggests the convenient change of angular variables
w = (w1, w2)→ w̄ = (w̄1, w̄2):

w̄1 = w1, w̄2 = w2 − w1/2. (11)

The new variable w̄2 is slow compared to w̄1. Indeed,
w̄2(t) = Ωprt for unperturbed orbits, whereas w̄1(t) =
Ω1t. Note that the variables J and w̄ introduced in
this way are canonically conjugate.

If we now write the perturbed potential as a func-
tion of the new variables in the form

Φ(r, ϕ; t) = Φ(J, w̄1)ei(mw̄2−ωt) (12)

= ei(mw̄2−ωt)
∑

l

Φl(J)eilw̄1 ,

we can easily see that the quantityΨ−1 in (9) is equal
to the function Φ(J, w̄1) averaged over w̄1:

Ψ−1 = Φ̄ =
1
2π

2π∫
0

dw̄1Φ(J, w̄1). (13)

We then use (9) and (10) to obtain (dropping the
dependence e2iw̄2−iωt)

∆L = − Φ̄(J)
Ωpr(J)− Ωp

. (14)

Let us suppose that the distribution of the orbits is de-
scribed by the functionF0(Jf , L) at the initial time t0.
Let∆L be a small variation in the angular momentum
arising due to a small perturbing potential that acts
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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from time t0 until the current time t. Since the flow of
phase fluid is incompressible, a phase-space element
with density F0(Jf , L−∆L) arrives at point (Jf , L)
at time t. The perturbation of the distribution function
can therefore be computed as the Euler difference

F̄ = F0(Jf , L−∆L)−F0(Jf , L) (15)

≈ −∆L∂F0

∂L
=
∂F0

∂L

Φ̄
Ωpr − Ωp

.

This expression relates the distribution function F̄
and the slowly varying component of the perturbed
potential. This relation is proportional to the deriva-
tive

F ′
0 ≡ ∂F0

∂L

∣∣∣∣
Jf

= −1
2
∂F0(I)
∂I1

+
∂F0(I)
∂I2

. (16)

We show below that precisely this derivative plays a
crucial role in our theory of low-frequency modes; we
will refer to it as the Lynden-Bell derivative of the
distribution function.3

We now compute the perturbed surface density

Σ =
∫
dvF̄ (17)

and use the formula for the potential of a simple layer
to obtain

Φ(r) = −G
∫
dr′
Σ(r′)
r12

= −G
∫
dr′dv′ F̄

r12
, (18)

where G is the gravitational constant

r12 = [r2 + r′
2 − 2rr′ cos(ϕ′ − ϕ)]1/2.

Changing in formula (18) from the variables r′, v′ to
J′, w̄′, using the fact that dr′dv′ = dJ′dw̄′, we obtain

Φ(J, w̄1) = −G
∫
dJ′dw̄′ F̄(J′) exp[imδw̄2]

r12
, (19)

where δw̄2 ≡ w̄′
2 − w̄2. Finally, we average the poten-

tial Φ over w̄1 to obtain the integral equation

Φ̄(J) =
G

2π

∫
dJ′Π(J,J′)

F ′
0(J

′)
Ωp − Ωpr(J′)

Φ̄(J′), (20)

where

Π(J,J′) =
∫
dw̄1dw̄

′
1dδw̄2

exp(imδw̄2)
r12

. (21)

The coordinates r and ϕ of the star in (21) must
be written in terms of J, w̄. The radius r = r(J, w̄1) is
determined by the solution of the equation

w̄1(r,J) (22)

3 Lynden-Bell [3] used a similar derivative of the precessional
velocity of stellar orbits, ∂Ωpr/∂L.
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= Ω1

r∫
rmin(J)

dr′√
2[E(J) −Φ0(r′)]− L2/r′2

,

if 0 ≤ w1 ≤ π,
2π − w̄1(r,J)

= Ω1

r∫
rmin(J)

dr′√
2[E(J) −Φ0(r′)]− L2/r′2

,

if π < w1 ≤ 2π.

The slow variable w̄2 is related to the azimuth ϕ as

w̄2 = ϕ+ ϕ1(J, w̄1), (23)

where
ϕ1(J, w̄1) (24)

= Ωpr(J)

r∫
rmin(J)

dr′√
2E(J) − 2Φ0(r′)− L2/r′2

− L
r∫

rmin(J)

dr′

r′2
√
2E(J)− 2Φ0(r′)− L2/r′2

.

The primed quantities r′ and ϕ′ are expressed by
similar formulas.

We now use the obvious symmetry properties of
the orbit,

r(2π − w̄1) = r(w̄1), (25)

ϕ1(2π − w̄1) = π − ϕ1(w̄1),

to show that the functionΠ can be written in the form

Π(J,J′) = 8

π∫
0

dw̄1 cosmϕ1

π∫
0

dw̄′
1 cosmϕ

′
1ψ(r, r

′),

(26)

where

ψ(r, r′) =

π∫
0

dα
cosmα√

r2 + r′2 − 2rr′ cosα
. (27)

It is obvious from (26) that Π is real.
It is remarkable that the integral equation (20)

written in terms of the function F̄ has the form of a
classical eigenvalue problem, where the eigenvalues
are equal to the angular velocities Ωp of the modes:

ΩpF̄(J) =
∫
dJ′K(J,J′)F̄(J′), (28)

where the kernel is

K(J,J′) =
G

2π
F ′

0(J)Π(J,J
′) + Ωpr(J)δ[J − J′].

(29)
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Equation (28) is the master integral equation of our
theory. Since the integration on the right-hand side is
performed over the variables Jf and L, only unstable
(Im ω > 0) or neutral modes can be correctly com-
puted with (28), provided that Ωp > 0 lies outside the
variation interval for Ωpr.

Like the general integral equations of Kalnajs [1]
and Shu [2], Eq. (28) can be used to compute the
eigenfrequency and the corresponding form of the
mode. The most important advantage of our equa-
tion is that it gives insight into the physical pro-
cesses leading to the formation of structures in galaxy
disks. These physical mechanisms would be difficult
to identify using Kalnajs’s and Shu’s integral equa-
tions or N-body simulations. This is quite clear from
the current situation in the theory of the formation of
galactic structures (see the Conclusion).

The physical picture becomes more transparent if
we derive an integral equation equivalent to (28) in a
different way, using explicitly the fact that each orbit
as a whole participates in the slow perturbations in
which we are interested. Consider now a distribution
function for the closed precessing orbits,

ftot(J, α, t) = f0(J) + f(J, α, t), (30)

|f | � |f0|,
such that dM = fdJfdLdα is the perturbed mass of
stars in orbits in the interval dα, where α denotes the
azimuth of the minor axis, so that its precessional
velocity isΩpr(J) = α̇. We will assume that this mass
is distributed in proportion to the time spent by the
particle at a given point of the orbit4 ; i.e., the mass
element located in an orbit Jwithminor-axis azimuth
α is

dµ(r) = dMdγ, (31)

dγ =
dt

T1
=
Ω1(J)
2π

dt =
dw̄1

2π
.

Let Φ̄ be the potential produced by all other orbits
of the system and averaged along the chosen orbit:

Φ̄(J, α, t) =
∫
dγΦ(r) (32)

= −G
∫
dγ
dµ(r′)
|r − r′|

= G
∫
dw̄1

2π
dJ ′fdL

′dα′
dw̄′

1

2π
f(J, α, t)
|r − r′| .

Formula (32) uses the same notation Φ̄ for the poten-
tial as does (20), since it is the same quantity in both

4 Arnold [16] has pointed out that Gauss suggested long ago
to spread the mass of each planet along its orbit in proportion
to the time spent at each point and substitute the attraction
of such rings for that of the planets.
cases. To make this clear, we must take into account
the fact that f, Φ̄ ∝ exp(−iωt+ imα), and prove that
α coincides with w̄2. To this end, we transform (23)
into the form

w̄2 = ϕ−∆ϕ+Ωpr∆t, (33)

where ∆t is the time required for the star to turn
through an angle ∆ϕ between the minor-axis az-
imuth and the current azimuth, ϕ. The identity w̄2 =
α then follows from Fig. 3.

The collisionless kinetic equation for such a distri-
bution function is

dftot

dt
=
∂ftot

∂t
+Ωpr

∂ftot

∂α
+M

∂ftot

∂L
= 0, (34)

where we have used the facts that (∂ftot/∂Jf )J̇f = 0
for the slow modes in which we are interested and
L̇ =M , whereM is the torque acting on an orbit with
a given Jf , L, α:

M1 =
∫
dγ[r × dF ] (35)

= G
∫
dγdµ(r′)

rr′ sin(δϕ)
|r − r′|3

= −G
∫
dγ

∂

∂δϕ

dµ(r′)
|r − r′| = −∂Φ̄

∂α
,

where δϕ = ϕ− ϕ′ is the difference of the azimuths
of the vectors r and r′. Note that the distribution
function (30) and kinetic equation (34) were proposed
earlier by Polyachenko [9]. We now linearize (34) to
obtain an equation analogous to (15):

−i(ω −mΩpr)f = −M∂f0
∂L
. (36)

We finally use (32) for the two-dimensional potential
of the disk to obtain an integral equation that coin-
cides with (28).

3. GENERAL ANALYSIS OF THE MASTER
INTEGRAL EQUATION

It follows from (26) that the function Π is real and
symmetric:Π(J,J′)∗ = Π(J,J′),Π(J,J′) = Π(J′,J).
It follows from (15) that F̄ ∝ F ′

0, and we can therefore
divide both sides of (28) by F ′

0, multiply them by F̄∗,
and integrate over J. We then compute the imaginary
part of the resulting equation to obtain

ImΩp

∫
dJ

|F̄ |2
F ′

0

= 0. (37)

Formula (15) can be used to reduce (37) to the form

ImΩpLm = 0, (38)
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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where Lm denotes the angular momentum of the
mode (or, to bemore precise, the quasi-momentum—
see, e.g., [17]), which can be obtained from the gen-
eral formula of Lynden-Bell and Kalnajs [15] by drop-
ping all terms except the one that dominates for the
low-frequency modes:

Lm = −
∫
dJ

|F̄ |2
F ′

0

= −
∫
dJF ′

0
|Φ̄|2

|Ωp − Ωpr|2
. (39)

The type of solution of themaster integral equation
depends crucially on the behavior of the derivativeF ′

0.
We consider two cases below.

(1) Let us suppose that F ′
0 is strictly positive ev-

erywhere in the phase space of the system. In this
case, Lm is negative, like the energy Em of the mode,
since Em = ΩpLm [15]. We therefore find from (38)
that ImΩp = 0. The corresponding real eigenfunc-
tions F̄ describe nonspiral solutions. These solutions
represent the central parts of bar modes; i.e., the bars
proper.

It is obvious that, in this case, when F ′
0 > 0, the

integral equation (28) determines only the angular
velocity ReΩp of the mode. The amplification of this
mode is due to the exchange of angular momentum
with resonance stars at the corotation radius and the
OLR.5

We now estimate the corresponding rate of the
mode amplification6 using the formula

γ = L̇m/2Lm, (40)

where L̇m = L̇(1)
m + L̇(2)

m , and we derive formulas for
the rate of exchange of angular momentum at the

corotation radius (L̇(1)
m ) and the OLR (L̇(2)

m ) from the
general formulas of Lynden-Bell and Kalnajs [15] by
slightly transforming these relations:

L̇(l)
m = − 1

4π

∫ (
l

2
∂F0

∂Jf
+
∂F0

∂L

)
|Φl|2 (41)

× δ[Ω(l)(J)− Ωp]dJ,

5 Strictly speaking, if the disk is immersed in real (and not pas-
sive, as ismost often assumed) nonplanar components (a ha-
lo), we must also take into account the resonance exchange
of angular momentum between the bar mode and stars of the
components considered. Polyachenko and Shukhman [18]
were the first to analyze dynamical friction due to resonance
interactions of stars of the spherical system with a wave.

6 The estimate given below is only a rather crude approxima-
tion. For example, strictly speaking, Φl in (41) is the Fourier
transform of the perturbed potential, which includes, in ad-
dition to the bar potential, the potential of the spiral density
wave excited at the resonance (see, e.g., [19]). Moreover, the
components of the potential not included in the first-order
perturbation theory may prove to be important for computing
the increment. See Appendix I for a more detailed discussion
of these issues.
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where Ω(l)(J) ≡ Ω2(J) + (l − 1)Ω1(J)/2 and Φl are
the Fourier coefficients corresponding to the CR
(l = 1) and OLR (l = 2) terms in the expansion
of the perturbed potential (12) in a series in eilw̄1 .

The interaction of stars in resonance regions with
the gravitational potential of the mode results in spiral
responses (see, e.g., [20, 21]).

(2) Let us now suppose that F ′
0 becomes negative

in some regions of the phase space. We show below,
using a generalized Schwartzschild model as an ex-
ample that, for realistic distribution functions, such
regions, if they exist at all, can occupy only a small
fraction of the total volume of the phase space (see
Section 5 for details). In this case, unstable spiral so-
lutions may develop in addition to the bars considered
above. In contrast to the bars, these new modes grow
as a result of the inherent “internal” instability of the
mode itself. It follows from (38) that, for an unsta-
ble mode (ImΩp > 0), the angular momentum Lm =
0; i.e., the contributions to Lm provided by regions
with opposite signs of the Lynden-Bell derivative F ′

0,
exactly cancel each other: Lm = L+ + L− = 0. The
instability criterion F ′

0 < 0 exactly coincides with the
condition for the excitation of waves at the ILR as de-
rived by Lynden-Bell and Kalnajs [15]. Note, however,
that these authors assumed that F ′

0 > 0 throughout
the entire phase space. Therefore, negative-energy
waves at the ILR must have decayed.
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The increment of the unstable mode can be esti-
mated as

γ =
L̇+

2L+
=
L̇−

2L− , (42)

where

L̇± = − 1
4π

∫
Γ±

F ′
0|Φ̄|2δ[Ωpr(J)− Ωp]dJ, (43)

and Γ+ and Γ− denote the phase-space domains
with positive and negative values of the Lynden-Bell
derivative F ′

0.

4. BARLIKE AND SPIRAL SOLUTIONS
FOR TEST MODELS

We solved the master integral equation (28) nu-
merically. We considered both the unknown function
F(J) and the kernelK(J,J′) on a 31× 31 network in
the phase space (E,L). The resulting matrix equa-
tion can then be solved using standard methods of
linear algebra. See Appendix II for a more detailed
description of the specific features of the numerical
algorithms employed.

We will now demonstrate the potential of the
theory using test models as examples. We analyzed
about ten models investigated earlier by AS using
N-body simulations. The results of the computations
agreed well in all cases: the accuracy of the computed
angular velocities of the modes was better than 10%.
We report below the results of ourmode computations
for two typical models displaying different behavior
of the Lynden-Bell derivative of the distribution
function.

The unperturbed potential for all the models de-
scribed by AS [6] has the form of a Plummer potential:

Φ0(r) = −GM(1 + r2/b2)−1/2, (44)

where M and b are the mass of the galaxy and the
scale length, respectively. The total potential is equal
to the sum of the potentials of the disk and the passive
spherical component. The surface density of the disk
is

σ0(r) =
Mq

2πb2
(1 + r2/b2)−3/2, (45)

where q is the ratio of the disk mass to the total
massM . If q < 1, the system has a passive halo with
volume density

ρ0(r) =
3M(1− q)
4πb3

(1 + r2/b2)−5/2, (46)

and the same scale length b as in the disk. Such a halo
produces a Plummer-type potential like the potential
produced by the disk.
The series for the distribution functions for the
models we consider here can be written in the form
of the series used by AS, and depends on two param-
eters: a positive integer7 m and a real parameter β. In
the case of a disk at rest, this series has the form

f0(e1, x) =
exp β
2π3/2

em−1
1

∞∑
k=0

(−β)k
k!

e2k
1 (47)

×
∞∑
l=0


 ∞∑

j=0

βj

j!



3
2
− m

2
l − j




(−1

4

)l

× Γ(2k + 2l +m+ 1)

Γ
(
l +

1
2

)
Γ(2k + 2m+ l)

x2l,

where e1 = E/Φ0(0), x = −(−2E)1/2L/r∗Φ0(0),
E and L are the energy and angular momentum
of the star, respectively, r∗ = lim

r→∞
rΦ0(r)/Φ0(0),

and


a
b


 = Ca

b is the number of permutations of

b of a elements. The distribution functions (47) are
normalized so that

∫
drdvf0 = 1. When β = 0, they

become the distribution functions of Kalnajs [22].
Rotation of the disk is produced by introducing
another parameter—the angular momentum of the
cutoff of retrograde stars, Jc. Thus, the distribution
functions under study are

f
(Jc)
0 =




0, L < −Jc,

f0p−, −Jc < L < 0,
f0(1− p−), 0 < L < Jc,

f0, L > Jc,

(48)

where p− = (1− |L|/Jc)3/2. Further details (in par-
ticular, plots of the rotational velocity, velocity disper-
sion, etc.) can be found in [6]. Below, like AS, we use
units such that G = 1, M = 1, and b = 1; when q �=
1, the gravitational constant G in our master integral
equation must be replaced by the product qG.

All Kalnajs’s models describe disks with rela-
tively low central radial stellar-velocity dispersions.
Kalnajs’s model with m = 6, β = 0, q = 1, and
Jc = 0.25 is representative of such disks. From the
viewpoint of our theory, the most important property
of this model is that its Lynden-Bell derivative is
positive everywhere in the phase space.

7 To facilitate the comparison of the results, we adhere to the
notation adopted by AS. That is why m in this section is a
parameter of the distribution function and not the azimuthal
number, which is fixed and equal to 2.
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Fig. 4. Spectrum of the angular velocities of the bar (bold
dots) computed as eigenvalues of (28) for Kalnajs’s model
(m = 6, β = 0, q = 1, and Jc = 0.25). The crosses show
the “theoretical” complex velocities of the bar, whose
imaginary parts are estimated by (40) and (41). The di-
amonds denote the “experimental” complex bar velocities
according to AS. The arrows indicate the minimum and
maximum precessional velocities of the stars.
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Fig. 5. Spectrum of the complex angular velocities of the
bar (bold dots) computed as eigenvalues of (28) for the
model withm = 6, β = 3, q = 1, and Jc = 0.6. The cross
shows the “theoretical” complex velocity of the bar with
the increment computed using (40) and (41). The dia-
monds show the “experimental” complex velocities of the
mode according to AS. The arrows show the minimum
and maximum precessional velocities of the stars.

Figure 4 shows the computed eigenvalue spec-
trum. It is obvious that the full spectrum includes
both discrete and continuous components. All the
frequencies are real, due to the positiveness of the
Lynden-Bell derivative. The set of frequencies be-
tween the minimum and maximum precessional ve-
locities (−0.051, 0.126) approximates a continuous
spectrum. These frequencies correspond to modes
narrowly localized in the phase space. Five discrete
modes can be discerned to the right of the continuous
spectrum. When analyzing galactic structures, we
will be interested only in these modes. For exam-
ple, the barlike and spiral structures observed in the
N-body simulations of AS developed from discrete
modes. The various eigenfunctions of the discrete
spectrum correspond to perturbed profiles of the sur-
face brightness and potential with different numbers
of radial nodes, and the nodeless mode is always the
one with the maximum bar velocity.
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Fig. 6. Pattern of spirals for the unstable mode in the
model withm = 6, β = 3, q = 1, and Jc = 0.6 of [6]. The
dashed circle indicates the position of the inner ILR (the
outer ILR for this model is located at r = 5).

The bar velocities for the first and second modes
(counting from the right) derived by solving (28)
agree with the velocities obtained in theN-body sim-
ulations to within 6%. The other three modes have
substantially lower increments, and could not be ob-
served in the numerical simulations.

We roughly estimated the increments for the
fastest two modes using (40), assuming that the stars
move in nearly circular orbits. The total amplification
increments γ1 = 0.1167 and γ2 = 0.0544 are sums
of two components, corresponding to corotation and
the OLR: γ1CR = 0.0199, γ1OLR = 0.0968; γ2CR =
0.0107, γ2OLR = 0.0437. It is clear that the OLR
makes the dominant contribution to the amplification.
We show in Appendix I that this is quite natural for
disks with nearly circular orbits. The mode with the
maximumbar velocity also has the highest increment.
This is obviously due to the fact that this mode has
the smallest radii for corotation and the OLR, so that
the disk surface brightness is still fairly high at these
radii. The estimate of the amplification increment for
the fastest mode obtained above is about twice the
value derived by AS from their N-body simulations,
whereas the “experimental” and “theoretical” incre-
ments for the second mode are fairly close to each
other.

In the second model, whose parameters in the
notation of AS are m = 6, β = 3, q = 1, and Jc =
0.6, the unperturbed distribution function describes
a stellar disk with a fairly high central radial-velocity
dispersion. From the viewpoint of our theory, themost
important difference between this model and the one
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Fig. 7. (a) Rotation curve of the type displayed by our
Galaxy (solid); the dashed curve corresponds to the con-
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and a model with a small “peak” near r = 8−10 (dashed).
The horizontal lines correspond to various velocities of the
spiral pattern (pattern speeds). (c) Lynden-Bell derivative
F ′

0
(m0) for circular orbits.

considered above is that its Lynden-Bell derivative is
not everywhere positive in the phase space.

Figure 5 shows the computed eigenfrequency
spectrum for this model. As in the previous example,
the complete spectrum has both a continuous and a
discrete part.

Since the Lynden-Bell derivative does not have
the same sign throughout the phase space of the
model, the discrete spectrum contains complex fre-
quencies, which correspond to unstable spiral modes.
The existence of these modes is associated with the
fact that the Lynden-Bell distribution function has
different signs in different regions of phase space. The
interpretations suggested earlier (see [6, 10]) were
inaccurate.

We see in Fig. 5 one unstable, complex and one
real frequency. The complex frequency obtained by
solving the master integral equation is very close
to the “experimental” frequency determined by AS.
Figure 6 shows the spiral pattern corresponding to
this mode. The poor resemblance between the mode
obtained and the observed spirals can be explained
by our use of the distribution functions (47), which
are not fully adequate for describing the spiral pattern
(as was already pointed out by AS). It is also evident
that the presence of such short and open spirals is due
to the fact that the instability increment is compa-
rable to the real part of the frequency (this relation,
likewise, has no particular practical meaning). Both
a spiral mode and a bar are excited in the numerical
experiment described by AS, and it is the latter that
survives in the competition between the two, while the
spiral mode gradually decays and disappears. Note,
however, that this scenario is by no means inevitable.
In particular, there may well exist situations where the
spiral mode is the only mode possible (e.g., in the case
of disks with sufficiently low masses).

The velocity of the pattern of the real mode agrees
with the velocity of the bar obtained in the N-body
simulations to within 3%. A crude estimate of the
mode increment in the approximation of nearly circu-
lar orbits yields γ = 0.018 and, as in the first model,
the OLR is the main contributor. This estimate is only
30% higher than the γ given by AS.

Despite the somewhat artificial nature of the mod-
els considered above, our analysis points toward a
general mechanism for bar formation. Moreover, sce-
narios for bar formation can be derived proceeding
exclusively from the general properties of our master
integral equation (see Section 3 and the Conclu-
sions).

5. ANALYSIS OF THE LYNDEN-BELL
DERIVATIVE FOR A TYPICAL MODEL

OF THE GALACTIC DISK

Consider the generalized Schwartzschild distribu-
tion function [2]

f0(E, r0) =
2Ω(r0)
κ(r0)

σ0(r0)
2πc20(r0)

exp
(
−E − Ec(r0)

c20(r0)

)
,

(49)

where E is the energy of the star, r0 the radius
of the guiding center (L = r20Ω(r0)), κ = (4Ω

2 +
r, dΩ2/dr)1/2 is the epicyclic frequency, Ec(r0) =
v20(r0)/2 + Φ0(r0) is the energy of the star in a circu-
lar orbit, v0(r0) = r0Ω(r0) is the circular velocity, and
Φ0(r0) is the equilibrium potential. The specific model
is specified by the functions σ0(r0) and c0(r0). In the
epicyclic limit, when v0/c0 � 1, σ0(r0) = Σ0(r0) and
c0(r0) = cr(r0), where Σ0(r0) and cr(r0) are the disk
surface density and the radial-velocity dispersion,
respectively. In the general case, Σ0(r0) and cr(r0)
can be expressed in terms of σ0(r0) and c0(r0) in a
more complex way.

The Lynden-Bell derivative of the distribution
function (49) is

∂F0

∂L
=

2Ω(r0)
r20κ

2(r0)
F0

{
r0
Ω′(r0)
Ω(r0)

− r0
κ′(r0)
κ(r0)

(50)

+ r0
σ′0(r0)
σ0(r0)

− r0
2c′0(r0)
c0(r0)

+
r20κ

3

2mΩ(r0)c20(r0)

+ r0
2c′0(r0)
c30(r0)

(E − Ec(r0))
}
,
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where m again denotes the azimuthal number,
F0(J) = f0(E(J), r0(L)), and a prime indicates dif-
ferentiation with respect to r0. As a rule, F ′

0 > 0 in
all or nearly all of the phase space. This property
is ensured by the term r30κ

3/2mΩc20 in (50). For
example, in the case of a flat rotation curve (v0 =
const), this term is equal to (

√
2/m)(v0/c0)2. It is

the dominant term, v0/c0 � 1, almost everywhere in
disk galaxies.

However, certain narrow domains where this term
does not dominate may exist. This is possible in re-
gions where the function κ(r) is sufficiently small.
For example, for a rotation curve resembling that of
our Galaxy, such regions are located at r ≈ 2.5 and
8–10 kpc. Likely origins of such features in rotation
curves include the transition from the potential of the
spherical subsystem to that of the disk or a sharp edge
of one of the disk components. Second, the function
c0(r0) increases rapidly toward the galactic center, so
that the rotational velocity v0 in the central regions
becomes comparable to c0.

Let us summarize the main factors affecting the
properties of the solutions of the master integral
equation. First, the solutions can change substan-
tially due to small variations in the rotation curve.
Second, the mass of the disk is also an important
factor. This is due to the fact that the self-gravity
of the disk ensures that the angular velocity of the
mode exceeds the maximum precessional velocity
of the orbits. Therefore the solutions for sufficiently
massive disks have barlike forms, whereas only spiral
modes can be obtained for disks with relatively
low masses. A third factor is the importance of
the velocity dispersion. It is obvious from (50) that
an increase in c0 decreases the dominance of the
positive term r30κ

3/2mΩc20. Finally, the number of
highly elongated orbits is of considerable importance.
We show in the next section that an excess of the
number of such orbits over the number predicted
by the generalized Schwartzschild distribution func-
tion (49) strongly increases the increments of spiral
modes. This comes about because, in this case,
(50) implies an increased influence of the negative
term 2r0c′0(r0)(E − Ec(r0))/c30(r0), resulting in an
increase in |F ′

0| (F ′
0 < 0).

6. SPIRAL SOLUTIONS OF THE MASTER
INTEGRAL EQUATION

When the Lynden-Bell derivative is negative in
some regions of the phase space, a great variety of
spiral modes appear—both leading and trailing. In
this section, we briefly discuss these solutions, defer-
ring a more detailed analysis to a separate paper.
ASTRONOMY REPORTS Vol. 48 No. 11 2004
We adopt the generalized Schwartzschild distri-
bution function described in Section 5 as a basis
distribution function for analyzing spiral solutions. By
the standard model, we mean a model with a rotation
curve similar to that of our Galaxy (Fig. 7a) and
exponents σ0(r0) = σ0e

−r0/rd , c0(r0) = c0e−r0/rc

specifying a particular Schwartzschild function. In
our units, 1 kpc corresponds to unity (1), rd = 3,
rc = 2rd, the gravitational constant G = 1, and σ0 =
(πrd)−1.

The disk provides the dominating contribution to
the rotation curve at r0 > 5−6. The maximum rota-
tional velocity is (v0)max = 1.2 and c0 � 0.83, so that
v0(r0)/c0(r0) � 4 for r0 = 8. With these parameters,
the galactic disk is exponential almost everywhere
except in its innermost part. With this rotation curve,
the equilibrium potential can be computed asΦ0(r) =
r∫
v20(r

′)/r′dr′. We thus obtain a model galaxy that
resembles our Galaxy (but, of course, is not identical
to it8).

Figure 7c shows the Lynden-Bell derivative F ′
0 for

the standard model computed using (50) on the line of
circular orbits (E = Ec(r0)). There is only one narrow
region with F ′

0 < 0, located near the center. Figure 8
demonstrates how deeply negative F ′

0 values extend
into the phase domain of the system.

The frequency spectrum for the standard model
has both continuous and discrete parts. The con-
tinuous spectrum occupies a wide band of real fre-
quencies, Ωmin

pr < Ωp < Ωmax
pr . However, we will be

interested only in the spiral modes of the discrete
spectrum. For the standard model, the growth rates of
these modes are low, corresponding to an amplitude
increase by a factor of e in about (3−5)× 109 yr
(given that (v0)max = 1.2 corresponds to a rotational
period of T = 2.5× 108 yr). Themain reason for these
low growth rates becomes clear from Fig. 8, which
shows that the curveΩpr(E,L) = ReΩp (for a typical
unstable mode) crosses the band of negative values
of the Lynden-Bell derivative, F ′

0, deeply inside the
phase space of the system considered—where (E,L)
corresponds to highly elongated orbits. However, the
number of such orbits is small for a Schwartzschild
distribution function, which decreases exponentially
with (E − Ec(r0))/c20(r0).

The growth rates of spiral modes can be made
substantially higher if we take into account the fact
that there are many more such orbits in real galaxies.

8 Here, we have in mind structures similar to the spirals of the
galaxy NGC 2997, whose image is shown on the cover of
the well-known textbook by Binney and Tremaine [13]. Note
that the existence of a “grand design” pattern in our Galaxy
remains an open question.



888 V. L. POLYACHENKO, E. V. POLYACHENKO

 

1.0

 

E

 

4.2

 
L
 

4.4 5.0 5.2 5.4

1.5

2.0

4.5

5.0

4.6 4.8 5.6 5.8 6.0 6.2

2.5

3.5

3.0

4.0

5.5

6.0

Fig. 8. The band of negative values of the Lynden-Bell derivative F ′
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the systems is bounded by the line of circular orbits (above) and the line corresponding to 0.02(F0)max, where (F0)max is the
maximum of the distribution function F0(E, L) at each fixed E (right). The solid curves Ωpr(E, L) = Ωp show the positions
of resonance orbits in the phase plane for several values of Ωp.
Of great importance for the modes considered are the
central regions of galaxies, which are characterized
by a substantial contribution from nonplanar compo-
nents with radially elongated velocity diagrams. This
also indicates that the spherical component may play
an important active role, not just the passive role
of an unperturbed halo that is usually ascribed to
it. Computations made using an appropriately mod-
ified standard model yield a tenfold increase in the
growth rate of spiral modes. Themodification consists
of the substitution c0(r0)→ 2c0(r0) under the con-
dition that (E − Ec(r0)) > c20(r0). This modification
has virtually no effect on the observed surface bright-
ness and the radial-velocity dispersion of the stars.
It is also important that thismodification results in the
dominance of trailing spiral modes. Observed galactic
spirals probably correspond to such modes (or to
similar modes in other modifications of the standard
model). These modes usually have the form of half-
turn spirals, as in most real galaxies. Figure 9 shows
the eigenfrequency spectrum for the modified model.

One interesting modification of the standard model
is the formation of a small “peak”9 in the Ωpr curve
at fairly large r, where the Lynden-Bell derivative
can be either positive or negative. We do not de-
scribe all possibilities here, and note only that, in this
case, the patterns differ substantially for the spiral

9 In the case of our Galaxy, such a peak was first pointed out
in the well-known paper of Lin et al. [7].
modes with angular velocities Ω(1)
p and Ω(2)

p shown in
Fig. 7b: in the first case, we have one ILR, whereas
there are three such resonances in the second case.
Figure 10 shows the typical pattern of a spiral mode

for Ωp = Ω(1)
p .

7. CONCLUSIONS:
SUMMARY AND COMPARISON

WITH PREVIOUS WORKS

In our theory, galactic structures are viewed as
normal modes of the stellar disk. In this respect, our
theory has its roots in the pioneering work of Lindblad
(see, e.g., [23]). A similar approach was adopted in
the classic studies of Lin and Shu [24], Lin et al. [7],
Kalnajs [25], and many others. The most advanced
version of this theory has been developed in the recent
work of Bertin and Lin [26]. However, these authors
compute modes of an “effective” gaseous disk, not
those of the original stellar disk. As a result, most
of the specific features that distinguish the dynamics
of the stellar systems are lost, so that the results ob-
tained in these papers have only a limited applicability
to real galaxies.

The main distinctive feature of our approach is
that we suppose that low-frequency modes whose
angular velocities are of the order of the precessional
velocity of the stellar orbits are of greatest importance
for describing galactic structures. This assumption,
which we have tried to substantiate in detail above
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Fig. 9. Spectrum of complex angular velocities for a
modified Schwartzschild model. Also shown are the ex-
traneous roots with Im Ωp < 0.

(Section 1), is crucial for all the simplifications in
our theory. As a result, we were able to derive a
simple integral equation for the low-frequency modes
of the stellar disk. The properties of the solutions of
this equation are determined by the behavior of the
Lynden-Bell derivative of the distribution functionF ′

0
in the phase space of the disk. The solutions have
barlike or spiral shapes depending on whether F ′

0 is
positive everywhere in the phase domain or whether
there are narrow regions with negative values of this
derivative.

Below, we give a detailed critical analysis of vari-
ous other approaches used to explain the formation of
galactic structures.We analyze bars and spirals sepa-
rately, considering bars in more detail. We restrict our
analysis of spirals to a few introductory comments,
deferring a more detailed study to other papers.

7.1. Formation of Galactic Bars

In our theory, a bar mode develops as a result
of azimuthal tuning of the orbits. The allowed fre-
quency (angular velocity) of the bar is equal to one
of the eigenvalues of the master integral equation.
This means that the corresponding waves remain un-
changed over many galactic rotations, despite differ-
ences in the precessional velocities of the orbits. The
mode grows due to the exchange of angular momen-
tum with stars at the corotation resonance and OLR.
Half-turn spirals adjacent to the bar also develop as a
result of resonance interactions.

The mechanism of bar formation considered here
imposes a natural constraint on the angular velocity
of the corresponding modes: Ωp > (Ωpr)max. Other-
wise, inner Lindblad resonances appear, where the
mode should decay (at F ′

0 > 0). The excess of Ωp

over (Ωpr)max is provided by the self-gravitation of
the system, so that bars can form only in galaxies
with sufficiently massive disks. If the mass of the disk
is small, specific numerical computations imply that
only a continuous spectrum exists at F ′

0 > 0, while
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Fig. 10. Pattern of one of the typical spiral modes whose
angular velocity corresponds to Ω

(1)
p in Fig. 7b. The

dashed circles indicate the positions of the three ILRs.

an unstable spiral mode develops if the phase space
contains a region with negative F ′

0. Note that the
inequality Ωp > (Ωpr)max becomes difficult to satisfy
for disks with low masses and high central mass
concentrations.

After this brief summary of our results, we now
turn to a critical analysis of various approaches to
studying bar formation that have been discussed ear-
lier in the literature. A comparatively recent review
of possible bar-formation mechanisms is given by
Lynden-Bell [27], who lists six different approaches:

(1) Attempts to associate observed stellar bars
with classical figures of a gravitating, incompressible
Jacoby and Riemann fluid.

(2) Representing the bar as a pair of oppositely
propagating density waves with almost equal inten-
sities, which are amplified via Toomre’s swing mech-
anism.

(3) Tidal excitation of the bar as a result of close
encounters with other galaxies.

(4) Formation of bars as a result of the deforma-
tion of circular orbits, which turn into rotating ovals
(Contopoulos’s approach).

(5) Instability related to the well-known instability
of radial orbits, which results in the formation of slow
Lynden-Bell bars.

(6) An unconventional (and so far poorly devel-
oped) statistical approach that considers the forma-
tion of barlike structures from rotating initial config-
urations when their energy is lower than some critical
limit.
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Leaving the last of these possibilities without
comment, we give here brief explanations of the first
and third approaches as a prelude to discussing the
remaining approaches in more detail.

Although the direct use of incompressible liquid
figures to represent collisionless (stellar) systems
is clearly not an optimal approach, it was believed
for a long time that bars form when the galactic
disks rotate sufficiently rapidly, as happens with
classical, incompressible MacLaurin spheroids that
are strongly oblate (and, consequently, have very high
rotational velocities). However, Toomre [11] noted
that real galactic bar modes have little in common
with incompressible “edge” modes, and therefore
must have a different formation mechanism.

Tidal interaction of close galaxies may result in the
formation of bars. However, Lynden-Bell [27] pointed
out that barred galaxies are much more numerous
than is predicted by this mechanism. It follows that
we must look for internal mechanisms for the forma-
tion of barlike structures in galaxies.

7.1.1. Slow Lynden-Bell bars. Our theory is
closest in spirit to Lynden-Bell’s [3] theory of slow
bars, which also has to do with slowly precessing
orbits. According to Lynden-Bell, the alignment of
orbits is possible if ∂Ωpr(J)/∂L > 0. Polyachenko [9]
showed that this inequality is actually a necessary
condition for instability similar to the instability of
radial orbits (instability develops only if the dispersion
of the precessional velocities of the orbits is not too
high).

Note that Kalnajs [28] has already pointed out
the possibility of the alignment of freely precessing
orbits (and, in particular, of the formation of a bar
via this process) in his theory of kinematic waves.
In the theory of Kalnajs, who considered the case of
nearly circular orbits, it is very important that the
precessional velocityΩpr(r) be independent of the ra-
dius. Lynden-Bell [3] likewise requires that Ωpr(r) be
approximately constant in his more general treatment
of the problem.

According to Lynden-Bell, the bar must rotate at
some average precessional velocity for its constituent
orbits. In contrast, we assume that bars (like spirals)
can move faster than the medium, fully analogous to
numerous other wave phenomena. Numerical com-
putations of bar-rotation velocities viaN-body simu-
lations yield results that agree with the predictions of
our mechanism (and not that of Lynden-Bell).

We consider the disk to consist of a large num-
ber of slowly deforming and rotating quasi-elliptical
orbits. Compared to the motion of the orbits, the
motions of individual stars are so rapid that they can
be considered to be “spread” along the orbit. Small
variations in the shape and orientation of the orbits
lead to the development of regions of high surface
density. In the absence of self-gravitation, any region
with an excess surface density winds up, since the
part of the pattern located at radius r should precess
at a velocity Ωpr(r), which in reality varies strongly
with r. Individual orbits change their mutual positions
under the action of gravity. The slow variations of
the angular momenta and the radial actions of orbits
due to these interactions result in deformations of the
orbits themselves and changes in the surface-density
distribution. Such variations can display wavelike be-
havior and generate a pattern that rotates with an an-
gular velocity that exceeds themaximumprecessional
velocity of the orbits in the disk.

7.1.2. Contopoulos’s theory. The properties of
families of periodic orbits in rotating barred potentials
found by Contopoulos [29] are of fundamental impor-
tance for the theory of galactic bars. The so-called
x1 family of orbits, which are elongated along the bar
inside the corotation circle, plays a central role. The
theory assumes (and this appears to be quite reason-
able) that these periodic orbits and nonperiodic orbits
close to them are the building blocks of the figures
of galactic bars. However, these statements refer only
to already formed bars and, strictly speaking, are not
directly related to the bar-formation mechanism. This
is particularly true of the linear stage of bar-forming
instabilities. It is clear that the orbits considered by
Contopoulos are captured in the potential of the bar,
but the capture process is obviously a nonlinear phe-
nomenon. However, it is common practice to analyze
the pattern of a bar’s constituent orbits described
above to draw conclusions about mechanisms for
bar formation that seem natural at first glance. It
is believed that a growing bar forces circular orbits
to change their shapes to adjust to the increasingly
stronger and thinner bar [30, 31] (see also [27] and
the end of [3]). The possible importance of this effect
even in the linear stage is justified in the theory of
weak bars (see, e.g., [32]), where a linear perturbation
theory is used to show that the bar potential changes
initially circular orbits into weakly oblate or prolate
ovals whose orientations relative to the bar are the
same as those of the general orbits of the x1 family.

However, in reality, circular orbits cannot be typ-
ical representatives of the orbits of an unperturbed
disk (except in “cool” disk models, which are of little
interest for the problem we are considering), before
the velocity perturbations due to the action of the
bar exceed the velocity dispersion in the initial ax-
isymmetric disk. It is clear that this is true, first and
foremost, of the initial stage of the development of the
instability (starting from a fairly low level).

The eccentricity of the orbits participating in
the perturbation is important for the bar modes
considered here: it is the deviation of an orbit from
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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circularity that produces the irregularities that are
“hooked” by the axisymmetric gravitational field
of the mode, thereby producing a torque. In turn,
the eccentricity of the orbits is determined primar-
ily by the radial-velocity dispersion of the stars.
Here, we can clearly see the flaws of the com-
mon approach of simulating the velocity dispersion
using softened gravity [11, 33, 34]; i.e., using an
effective decrease of the gravitational constant G
while preserving purely circular motion of the stars.
Since circular orbits have no irregularities (these
appear only when the orbits are perturbed), it is
clear that such simulations cannot be valid10 : in
this case, all modes of the type considered here
would be lost. The only phenomenon that can be
correctly described qualitatively in this way is the
stabilization of the Jean’s instability of the disk
by the stellar velocity dispersion. We give a de-
tailed quantitative analysis of these problems in
Appendix III.

7.1.3. Swing amplification mechanism. The
pattern of global modes considered here leaves vir-
tually no room for the currently popular swing ampli-
fication mechanism of Toomre [11] or related models,
such as over-reflection (the waser mechanism of
Mark et al. [36]).11 Recall that a swing description
of global modes in galaxies can be divided into two
parts. The first is the mechanism of swing ampli-
fication, which has been known since the classic
works by Goldreich and Lynden-Bell [37] and Ju-
lian and Toomre [38]: an initial perturbation in the
form of a leading (preferably tightly wound) spiral
ultimately becomes a tightly wound trailing spiral
with an amplitude higher than its initial amplitude.
Quantitatively, the amplification depends on many
factors, most importantly, how “hot” the galactic disk
is (as measured by the extent to which Toomre’s
parameter Q exceeds unity). However, for typical
conditions (Q ≈ 1.5), the amplitude is enhanced by
a factor of thirty or so.

However, swing amplification alone is not suffi-
cient for a global mode to form, because the leading
and trailing wave packets considered in the swing
approach propagate radially with a group velocity that
is usually estimated from the local dispersion equa-
tion of Kalnajs [1] and Lin and Shu [24]. Leading

10 If, of course, the system considered is not so “cool” that
the velocity dispersion is lower than the perturbed velocities
for any perturbations of interest. This may be the case in
planetary rings when they are perturbed by satellites, which
trigger so-called “wave trains” (see, e.g., [35]).

11 The essence of the brief critical commentary about this ap-
proach given by Lynden-Bell [27] (item 2 in his list of bar-
formation mechanisms) is that this mechanism cannot ex-
plain the formation of barred, early-type spirals with extended
and strong bars and a very small external spiral wave.
ASTRONOMY REPORTS Vol. 48 No. 11 2004
waves move from the center toward the corotation
radius, while trailing waves move in the opposite di-
rection. Swing amplification occurs in the corotation
region when leading waves are transformed into trail-
ing waves, and is thus a single act for each initial
wave packet. Therefore, in order for a global mode
to be established, the trailing wave must somehow
be reflected from the central region of the galaxy, so
that it is transformed into a leading wave and travels
back toward the corotation region, where it is again
amplified and transformed into a trailing wave, etc.

It follows that the swing approach replaces the
direct resonance interaction of the bar mode with
the disk stars due to the long-range nature of the
mode’s gravitation with an interaction with traveling
waves [11, 13] (which are transformed at the corota-
tion radius). 12

Representing a standing wave (bar mode) using
two waves traveling in opposite directions is quite
justified from a formal mathematical viewpoint. How-
ever, from a physical viewpoint, we must consider
an intrinsic standing wave due to the angular re-
grouping of the stellar orbits. Since the bar mode is
concentrated in the central region of the galaxy and
its amplitude at the corotation radius is very small, the
general swing ideology must be supplemented by an
explanation of why the waves traveling away from the
center decay in a well-defined way (so as to exactly
match the radial dependence of the amplitude of the
bar mode), while the waves moving toward the center
grow in a similar manner. Where can we find such
an explanation without returning to the language of
global standing waves?

Moreover, in reality, the long-range gravitational
field of the bar mode results in a resonance exchange
of angular momentum not only at the corotation ra-
dius (which is the only active region in the swing
mechanism), but also at other resonances (the OLR
in the disk and, strictly speaking, at resonances with
stars of the nonplanar components of the galaxy).
Note that, for example, the effect of the OLR plays the
dominant role in some cases (including the specific
models considered here—see Section 4).

We also believe that it is not correct to shift the
focus onto the problem of wave amplification. We
focus our attention not on the mechanism for the
amplification of an initially small perturbation, but on
how possible mode velocities ReΩp are selected. The
problem considers the degree to which the rotations

12 The bar modes investigated by Toomre [11] and then dis-
cussed by Binney and Tremaine [13] are actually edge modes
due to the sharp edges of the Gaussian disks these authors
used in their simulations. The rotational velocities of these
modes can be computed using the technique we used to
analyze bar modes.
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of the orbits are differential (or, to be more precise,
the degree to which the precessional velocities of the
orbits differ). This problem is virtually absent in the
case of lasers, which swing analyses consider to be
almost direct analogs of galaxies. In the case of lasers,
we are dealing with an essentially predetermined
frequency (a narrow frequency interval within the
bandwidth of the operating transition: only these
frequencies are amplified by the active medium).
The role of resonators (mirrors) is only to return the
wave many times toward the active medium, thereby
providing subsequent amplification and adjustment of
the frequency of the wave (monochromatization). In
a “differentially” rotating disk of orbits, modes (i.e.,
angular perturbations that are not destroyed by the
differential rotation) can develop only at individual
frequencies corresponding to certain specific com-
pressions and rarefacations of the initial distribution
of orbits in the phase space of the system (their
mutual “tuning”), primarily in regions where there are
many orbits. It stands to reason that perturbations of
the density of the stellar orbits do not need to travel
from the center to the corotation radius and back.
Thus, in the case of a bar mode, the monochromatic
wave (mode) acquires the required amplification at
the locations of resonances (in particular, at the
corotation radius) due to the long-range nature of the
gravitational force; the wave need not travel directly to
these resonance regions. It is obvious that the mode
with the highest growth increment will be singled out.
This is usually the fastest mode, so that its corotation
radius and other resonances are closer to the center
than are those of other modes.

The unfortunate analogy with lasers is also mis-
leading, since it focuses attention on a “correct” mu-
tual phasing of waves, which, in the swing theory,
propagate radially from the corotation radius to the
center and back. It is obvious that the real problem
instead consists in determining the azimuthal redis-
tribution of the precessing orbits, which results in
the formation of a mode that rotates rigidly at some
angular velocityΩp. The swing explanation of barred-
spiral structures could be justified earlier by the lack
of an adequate theory of global modes. Now, when we
believe we have developed such a theory, the entire
complex architecture of the swing pattern, with its
wave packets traveling in the galaxy, the need for a
special mechanism to reflect the waves, a feedback
loop, and phase correspondences, etc., becomes un-
necessary.

Athanossoula and Sellwood [6] performed the
most detailed attempt to interpret the results of
N-body computations of bar modes in terms of
Toomre’s swing theory, and we accordingly now
use their paper to carry out a more detailed critical
analysis of the main points of this approach.
In Toomre’s theory (as in all cases involving over-
reflection), the increment is determined by two fac-
tors. The first is the amplification in a single act of the
swing transformation of a leading wave into a trailing
wave; AS call this quantity the NGF (net growth
factor). The second factor is the time τ required for
the wave to travel toward the center and return to
the initial point, thereby closing the feedback loop.
Given the NGF and τ , the mode-growth increment
can be calculated using the obvious formula γ =
logNGF/τ .

An (obviously rough) estimate of the gain factor
can be obtained in terms of the simplest local the-
ory, which Toomre [11] calls the GLB+LSK theory,
corresponding to the first letters of the names of
its principal authors—Goldreich, Lynden-Bell, Lin,
Shu, and Kalnajs. We must first choose the radius
(which, strictly speaking, will be different for differ-
ent modes) at which to compute the characteristic
“shear velocity” Ω′ (currently available local theories
use the approximation of a constant shear velocity),
some typical value of Toomre’s parameter Q, and
the wavelength of the perturbation. We now simply
quote the corresponding passage from AS, since it is
impossible to rephrase this passage in any logically
consistent way: “It is clear from Toomre’s (1981)
[11] Fig. 8 that the outgoing wave turns back before
reaching corotation, and that its amplitude and pitch
angle change continuously with radius. [Therefore]
No single radius can be identified as the radius on the
cycle, where all amplification occurs. Thus any radius
we choose has to be a compromise where the NFG
is reasonably representative of the amplitude around
the cycle. After experimenting with several choices,
we found that the radius where m(Ω− Ωp) = −κ/2
seems appropriate.” This quotation clearly shows the
(forced!) level of argumentation.

The arguments used to choose the formula for
estimating the NGF appear equally arbitrary: “The
maximum growth factor (MGF) obtainable requires
an optimal initial phase for the leading wave. Since
all other phases produce less amplification, and could
even result in a reduced amplitude, Toomre (private
communication) now favors (!) NGF = (MGF+
1/MGF)/2 as a more representative estimate of the
actual amplification.” It is evident from this passage
that the authors found nothing more convincing than
to say that Toomre “favors” this estimate.

Estimating the group velocity involves finding the
interval of radii where there exist solutions of the Lin–
Shu–Kalnajs [7, 1] dispersion equation (which was
derived from the WKB theory for short-wavelength
perturbations) for each of the bar modes analyzed by
AS (which, on the contrary, have maximum wave-
lengths). This is again a forced procedure, neces-
sitated by the fact that these authors had no other
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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suitable theory at hand. It is therefore quite natural
that some of the modes had no appropriate WKB
solutions (so that no estimate can be found for these
modes). However, AS nevertheless could coarsely es-
timate (in accordance with Toomre [39]) the group
velocity and, consequently, the time τ . AS combine all
these results to obtain local estimates for the growth
velocities of modes, which are typically about half of
the “experimental” increments.

We computed the angular velocities and growth
rates of the modes obtained earlier in the N-body
simulations of AS in our approach without swing
amplification, and found our results to agree well with
those of the above authors. The bar mode grows due
to the direct effect of its gravitation on the stars lo-
cated in the vicinity of the resonances, resulting in an
exchange of angular momentum between these stars
and the bar mode.

AS overlooked this simple possibility, although
they computed a large number of barmodes and could
have easily estimated their growth rates as a reso-
nance interaction effect. They instead turn to the lan-
guage of swing amplification and the concepts of local
amplification, waves propagating inward and outward
with group velocities that depend on the radius, etc.
This was essentially an attempt to use an obviously
inadequate language to describe global modes (this is
especially true of the bar modes). AS were therefore
forced to adopt a large number of unjustified assump-
tions when estimating the growth rates of the modes
(as we could see above). However, they choose the
source of the instability of the bar modes to be a
“global” counterpart of the local mechanism, which
can quite realistically operate (especially if we remain
within the limits prescribed by the approximation
used). This may explain why the estimates obtained
by AS are correct to an order of magnitude. That
is also why we believe that, first and foremost, the
swing explanation for bar formation does not provide
a satisfactory language for this problem. However,
the fact that both the general theory (Section 3) and
specific computations (Section 4 and Appendix I)
show that both the corotation and other resonances
(most importantly, the OLR) can play important
(and sometimes even dominant) roles casts doubt on
whether the swing approach can be applied in any
way to galactic bars. The entire swing pattern is fun-
damentally tied exclusively to the corotation region.

To avoid confusion, we emphasize that we ana-
lyze here only standard “fast” bars. The slow bars
considered by Lynden-Bell [3] are probably just the
central parts of unstable spiral modes (and have a
secondary nature in this sense). We do not consider
here the possible formation of slow bars in the very
hot centers of galactic disks (fully analogous to the
ellipsoidal deformation of spherical systems in the
ASTRONOMY REPORTS Vol. 48 No. 11 2004
case of instability of radial orbits). In contrast, fast
bars are primary objects and the spirals adjacent to
them are secondary features, since they form as a
response of the disk to the gravitation of the bar in
the resonance region.

We conclude this section by briefly mentioning
our preprint [40] and the related paper [41], where
we give some arguments supporting the possibility of
developing a unified theory for galactic bars. Themore
detailed analysis we have undertaken here shows that
these arguments and the hopes to which they gave
rise have been fulfilled only partially. On the one hand,
we have succeeded in achieving a deeper generaliza-
tion that unites spiral and bar modes. On the other
hand, we have not been able to develop a theory for
fast bars based on the same scheme as the Lynden-
Bell theory for slow bars (i.e., instability of elongated
orbits or an appropriate generalization).

7.2. Formation of Spirals

The commonly adopted approach to studies of
the formation of structures in normal (SA) galaxies
consists of applying either the swing mechanism [11]
or some type of over-reflection, such as the waser
mechanism (see, e.g., [26]). These concepts (and, of
course, the idea of swing amplification) gave a great
push to the development of theories of galactic dy-
namics and associated observational studies. How-
ever, we believe that these ideas are outdated. Let us
note some of the problems faced by the swing mech-
anism as applied to normal spirals. First, a swing
is not a true instability, and a global spiral mode
can develop only if there is a closed feedback loop.
Moreover, waves must be able to cross the galaxy
many times (during its lifetime). The analogy between
galaxies and lasers, which seems so attractive at first
glance, in part because it is so unexpected, proves
to be flawed, due to the very different nature of the
two objects (which is not a formal, but a fundamental
difference). Specific estimates are required to justify
this analogy, and they fail to support it. One crucial
factor is the time τ required for the wave packet to
cross the galaxy. Toomre [39] himself estimated τ ≈
109 yr for our Galaxy. With such values of τ , we can
hardly imagine global spiral modes reaching a steady
state as a result of swing amplification.

The damping of waves at the ILR poses an even
more serious problem. If the Lynden-Bell derivative
F ′

0 is everywhere positive, the waves in low-mass
galaxies must inevitably meet the ILR and decay.
If F ′

0 > 0 but the mass of the disk is sufficiently
high, bar modes should form. Finally, if F ′

0 < 0
somewhere in the disk, we face the new situation
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considered above (Section 3) and a spiral mode
should form.

The swing amplification mechanism may some-
times be the only way for an initial perturbation to
grow. Such galaxies probably possess no regularly
organized spiral structure with a modal nature. Note
that it is global modes that are unlikely to be due to
the swing mechanism. It stands to reason that this
mechanism is capable of amplifying transient wave
perturbations.

The corotation region plays the central role in
traditional mechanisms. In our approach, spiral per-
turbations are unstable waves with zero total angular
momentum. Such waves can exist only in the pres-
ence of regions with a negative Lynden-Bell deriva-
tive: F ′

0 < 0. We already pointed out at the end of
Section 3 that F ′

0 < 0 is the condition for the growth
of a negative-energy wave at the ILR.

In conclusion, we would like to make another
general comment. Our theory (like most earlier theo-
ries) considers the formation of structures in a “ready
made” stellar disk. Of course, such an approach can-
not be considered to be fully satisfactory in view of
both the long evolution of the galaxy prior to the
formation of the disk and the complex composition of
thematerial of which the galaxy is made. In particular,
the gaseous component may play an important role
(during both late and earlier stages of the evolu-
tion). A detailed theory of processes involving galactic
gaseous disks can be found in the works of Fridman
and his coauthors (see, e.g., [42]).
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Appendix I

SOME ADDITIONAL ARGUMENTS
IN SUPPORT OF OUR APPROACH

(1) Let us begin by generalizing our master inte-
gral equation so that it includes all the resonances (at
fixed azimuthal numberm). We can write the Fourier
expansions of the perturbed potential and distribution
function:

Φ(I, w1) =
∑

l

Φl(I)eilw1 , (AI.1)
f(I, w1) =
∑

l

fl(I)eilw1 ,

where I = (I1, I2) are the common actions and w1 is
the radial angle variable. We then substitute the full
potential and full distribution function

Φ0 +Φ(I, w1)eimw2 , f0 + f(I, w1)eimw2 (AI.2)

into the linearized collisionless Boltzmann equation
to obtain the following relations between Φl(I) and
fl(I):

fl(lΩ1 +mΩ2 − ω) = Φlf
′
0,l, (AI.3)

where we have used the notation

f ′0,l(I) = l
∂f0(I)
∂I1

+m
∂f0(I)
∂I2

. (AI.4)

We now derive a relation between the amplitudes
of the Fourier expansions (AI.1), which follows from
the Poisson equation:

Φ(I, w1)eimw2 = −G
∫
dI′dw′ f(I

′, w′
1)e

imw′
2

r12
.

(AI.5)

Multiplying both sides of this equation by eimw1/2 and
introducing the function

ϕ1(w1) = w2 − w1/2 − ϕ, , (AI.6)

we can rewrite (AI.5) in the form∑
l

Φl(I)ei(l+m/2)w1 = −G (AI.7)

×
∫
dI′dw1

∑
l′

fl′(I′)ei(l
′+m/2)w′

1eimδϕ1ψ(r, r′),

where δϕ1 = ϕ′1 − ϕ1. We now denote

Πl,l′(I, I′) (AI.8)

=
∫
dw1dw

′
1ψ(r, r

′)ei(l
′+m/2)w′

1−i(l+m/2)w1eimδϕ1 ,

to find the desired second relation between the ampli-
tudes of the Fourier expansions of the potential and
the distribution function:

Φl = − G
2π

∫
dI′Πl,l′(I, I′)fl′(I′) (AI.9)

(here and below, summation over repeated subscript l′

is implied). We finally use (AI.3) to express fl in terms
of Φl in order to derive from (AI.9) a set of equations
that is a natural generalization of (20):

Φl(I) = − G
2π

(AI.10)

×
∫
dI′Πl,l′(I, I′)f ′0,l′(I

′)
Φl′(I′)

lΩ1 +mΩ2 − ω
.
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For numerical computations it is more convenient
to rewrite (AI.10) in the form of a classical eigenvalue
problem. Formula (AI.3) enables us to obtain the
following set of equations for the amplitudes fl in
place of (AI.10):

fl(I)(lΩ1 +mΩ2 − ω) (AI.11)

= − G
2π
f ′0,l(I)

∫
dI′Πl,l′(I, I′)fl′(I′).
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Note that our master integral equation (28) is a
special case of the set of equations (AI.11) for l =
l′ = −1.

We now apply a discretization of the integrals,∫
dI′ →

∑
∆I′, to obtain the following characteristic

equation for the mode eigenfrequencies:
det

∣∣∣∣ G2πf ′0,l(I)Πl,l′(I, I′)∆I′ +E(lΩ1(I) +mΩ2(I)− ω)
∣∣∣∣ = 0, (AI.12)
where E is the identity matrix.

Equations (AI.11, AI.12) represent a new formu-
lation of the general eigenvalue problem for the stellar
disk. This can be viewed as an alternative to the well-
known matrix approach of Kalnajs [43].

(2) We now use (AI.12) to perform a more detailed
analysis of the eigenfrequencies of the bisymmetric
modes,m = 2. For definiteness, we will use Kalnajs’s
model (6, 0, 1, 0.25). We showed in Section 4 that
the Lynden-Bell derivative of the distribution function
for this model is positive everywhere in the phase
space, so that bar modes are the only modes possible.
The rotational frequencies of these modes can be
determined using the master integral equation (28).
The results are given in the table (see version 1—
computation including only the ILR term). For com-
parison, the first row of the table gives the “exper-
imental” values of the eigenfrequencies obtained by
AS in theirN-body simulations.

Leaving only the three most important terms in
(AI.11)—those with l = −1, l = 0, and l = 1 (which
we call the ILR, CR, and OLR terms, respectively)—
we can separately analyze the effect of each of the
three resonances on the growth rate of the modes
(it is obvious from the table that the real part of the
frequency remains virtually unchanged in the various
versions). We first found the unstable barmodes when
all three terms are included (version 2). Note that the
eigenfrequency is close to the “experimental” value
for the main mode 1. We then analyzed the effect of
each of the terms by dropping various combinations of
them from (AI.11). The pattern of the unstable modes
in the complex ω plane was more or less the same in
all cases considered, provided that the ILR term was
present, but changed drastically when the ILR term
was dropped. In this case, we obtained numerous
unstable modes with increments of the order of 10−3

and obviously incorrect frequencies that had nothing
in common with the experimental frequencies. This is
indicative of the dominant role of the ILR term.
The table gives the eigenfrequencies of (AI.11)
computed including various combinations of the
terms of the expansion (AI.1) with |l| ≤ 1.

It is clear from the table that the contribution of
the OLR term to the growth increment of the most
unstable mode, 1, exceeds that of the corotation term.
A comparison of the eigenfrequencies of mode 2 com-
puted in versions 2 and 4 shows that the growth of
this mode is due entirely to the interaction of the
gravitational potential of the mode with resonance
stars at the OLR.

In principle, any number of expansion terms can be
included in (AI.11). However, intuition suggests that
higher-order harmonics (with |l| ≥ 2) cannot have a
significant effect on the large-scale modes that are of
interest for us. Numerical computations confirm this
hypothesis. Thus, including terms with l = ±2 does
not lead to the appearance of any new modes. The
growth rates for the fastest modes increase some-
what: γ1 = 0.08, γ2 = 0.032.

Recall that the rough estimates of the growth rates
of the modes yielded γ1 = 0.117 and γ2 = 0.054, with
the OLR providing the dominant contribution in both
cases.

(3) Let us now explain why the corotation term is
less important than both the ILR andOLR terms (de-
spite the fact that corotation is the closest resonance
to the ILR). The ratio of the denominators of the ILR
and CR terms,

A =
|ω −mΩpr|
|ω −mΩ2|

=
δΩ

|Ω− Ωp|
, (AI.13)

is equal to the small parameter ε from (1) in Section 1
for |Ω| � |Ωp|; i.e., in the central regions, which are
fairly far from corotation. However, it is important to
take into account the fact that, according to (AI.3),
the coefficient fl of the Fourier expansion is propor-
tional to a linear combination of the derivatives of the
unperturbed distribution function f0(I):

fl ∼ f ′0,lm(I), (AI.14)
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Eigenfrequencies of equation (AI.11)

Version Resonances Mode 1 Mode 2

AS N body 0.465 + 0.066i 0.33 + 0.058i
1 ILR 0.44 0.33
2 ILR, CR, OLR 0.48 + 0.058i 0.38 + 0.024i
3 ILR, CR 0.43 + 0.015i 0.38

4 ILR, OLR 0.49 + 0.036i 0.38 + 0.024i

where f ′0,lm is given by (AI.14). Therefore, the relative
importance of the corotation and ILR terms is deter-
mined by the ratio

A′ =
f ′0,0(I)

|ω −mΩ2|
:
f ′0,−1(I)

|ω −mΩpr|
, (AI.15)

and not by (AI.13). In an epicycle approximation,
which is usually valid for the galactic disk,∣∣∣∣∂f0∂I1

∣∣∣∣�
∣∣∣∣∂f0∂I2

∣∣∣∣ . (AI.16)

However, l = 0 for the corotation term, so that the
ratio (AI.15) contains a small factor in addition to A.
This factor evidently extends the domain of applica-
bility of the master integral equation (28), allowing it
to be used even for the fastest modes.

Appendix II

SOME SPECIFIC FEATURES
OF THE NUMERICAL ALGORITHMS

FOR THE SOLUTION OF THE MASTER
INTEGRAL EQUATION

Let us now consider some specific features of the
homogeneous Fredholm equation of the second kind

λf(x) =

b∫
a

K(x, z)f(z)dz, (AII.1)

of which our master integral equation is a special
case. In (AII.1), K(x, z) is the kernel, f(x) is an
unknown function, and λ is the parameter of the
equation. Solutions f(x) that are not identically equal
to zero exist only at the eigenvalues λ, which form
the spectrum of the integral equation. Solving the
integral equation (AII.1) consists in finding these
eigenvalues and the corresponding eigenfunctions.

The number of eigenvalues depends on the form of
the kernel K(x, z). If K(x, z) = g(x)δ(x − z), where
δ(x) is the Dirac delta function, the eigenvalues and
corresponding eigenfunctions are equal to λ = g(x0)
and f(x) = δ(x− x0). Thus, in this example, we have
an uncountable number (continuum) of eigenvalues.
On the contrary, if the kernel of the integral equation
obeys the Hilbert–Schmidt condition,

b∫
a

b∫
a

|K(x, z)|2dxdz <∞, (AII.2)

the number of eigenvalues is at most countable; i.e.,
the spectrum is discrete (see, e.g., [44]).

One characteristic of the kernel K(J,J′) of our
integral equation is that it contains the termΩpr(J)×
δ(J − J′), so that the condition (AII.2) is not satis-
fied. Therefore, strictly speaking, the spectrum of this
integral equation contains both a continuous and a
discrete component.

Nearly all methods for the numerical solution of
integral equations use quadrature formulas. These
formulas make it possible to associate linear inte-
gral equations that relate functions in an infinite-
dimensional space with ordinary linear algebraic
equations for vectors in a finite-dimensional vector
space. Let us suppose that we must solve an integral
equation of the form (AII.1). We first choose some
quadrature formula

b∫
a

f(z)dz =
N∑

j=1

wjf(zj).

Here, {wj} are the weights of the quadrature for-
mula and {zj} are some points in the interval [a, b].
Thus, for example, to integrate using the trapezoid
method,13 which we used to solve the master in-
tegral equation (16), w1 = wN = 1/2, wj = 1, (j =
2, . . . , N − 1), zj = a+ (b− a)(j − 1)/(N − 1), j =
1, . . . , N . We next compute (AII.1) at the quadrature
points to obtain

λf(xi) =
N∑

j=1

wjK(xi, zj)f(zj). (AII.3)

We now denote fi ≡ f(xi), Kij ≡ K(xi, zj) and de-
fine

K̃ij = wjKij

to obtain a finite-dimensional analog of (AII.1),

N∑
j=1

(K̃ij − λδij)fj = 0, (AII.4)

13 Since the computation of eigenfunctions and eigenvalues re-
quires O(N3) operations, the most efficient way to do this is
to use high-order quadrature formulas (see, e.g., [45]). Here,
however, we restrict our analysis to applying the trapezoid
formula.
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which can be solved using standard methods of linear
algebra.

The state of the system we analyze here is de-
termined by the unknown distribution function F ,
which depends on two independent variables; i.e.,
the phase space of the system is two-dimensional.
In our numerical computations, the variables in
question were the energy E and angular momentum
L of the star. The quadrature grid {Ei} in energy
was always uniform, E1 = Emin ≡ Φ0(rmin), ENE

=
Emax ≡ Φ0(rmax) + v2(rmax)/2, where Φ0(r) is the
equilibrium potential, rmin and rmax are the inner
and outer cutoff radii of the disk, and v(rmax) is
the circular velocity at r = rmax. We used various
grids {Lj} in angular momentum, depending on
the degree to which the equilibrium distribution
function f0(E,L) was concentrated toward the line
of circular orbits, L = ±Lc(E). The upper boundary
of the grid for this energy always coincided with the
line of prograde circular orbits: Li

NL
= Lc(Ei). If the

equilibrium distribution function was more or less
uniformly spread throughout the phase space, the
lower boundary coincided with the line of retrograde
circular orbits, Li

1 = −Lc(Ei) (or Li
1 = 0, if there are

no retrograde stars). The advantage of such a grid
is that it depends only on the potential Φ0(r) and is
independent of the particular distribution function f0
of the model. It follows that different models with the
same equilibrium potential can be analyzed without
recomputing the function Π(J,J′). If, on the other
hand, f0(E,L) is concentrated toward the line of
circular orbits Lc(E), this is not a practical way to
define the lower boundary. In this case, we define
Li

1 so that the distribution function f0(Ei, L) at
−L(Ei) ≤ L ≤ Li

1 (i.e., in the part of the phase plane
that we discarded) is less than 2% of its maximum
value f0(Ei, L).

The integral equation on a two-dimensional phase
space can be easily reduced to the one-dimensional
integral equation considered above via a simple
renumbering of the subscripts: i, j → ν. We used the
simplest method for such renumbering in accordance
with the rule

ν = (NE − 1)i+ j.
In most of our computations, each of the grids in E
and L consisted ofNE = NL = 31 points; i.e., the full
grid of the phase space consisted of N ≡ NENL =
961 points. Consequently, to approximately determine
the eigenvalues and eigenfunctions for our master
integral equation, we must solve the eigenvalue prob-
lem for theN ×N matrixMνν′ ≡ Kνν′wν′ :

N∑
ν′=1

Mνν′Fν′ = ΩpFν , (AII.5)
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where

Kνν′ =
G

2π
F ′

0νΠνν′ + (Ωpr)νδνν′ (AII.6)

is the finite-dimensional analog of the kernel of the
integral equation, Fν = F(Jν) is the unknown grid
function, wν is the weight function introduced above,
Ωp is the unknown eigenfrequency, F ′

0ν = F ′
0(Jν),

Πνν′ = Π(Jν ,J′
ν′), (Ωpr)ν = Ωpr(Jν), and δνν′ is a

Kronecher delta function.
The 31× 31 grid can adequately be calculated us-

ing the computer we employed. All the eigenvalues
and eigenvectors could be computed in several min-
utes. A twofold densification of the grid in each of the
phase-space coordinates increases the computation
time by a factor of 64, while yielding no qualitatively
new results.

Appendix III

IMITATION OF THE STELLAR VELOCITY
DISPERSION USING SOFTENED GRAVITY

In Section 7.1.2, we pointed out the flaws of imi-
tating the effects of the real dispersion of the particle
velocities using softened gravity14 ). Toomre, among
others, used this approach in his paper [11], where he
also reports the results computations of the stability
of a Gaussian disk (which is cool but has softened
gravity). Toomre believed that a comparison of these
results with the classical bar modes in liquid incom-
pressible MacLaurin spheroids should demonstrate
how the “true” bar modes in stellar systems differ
from classical bar modes (which are obviously due
to the edge instability). Toomre [11] then considers
the results of these computations to provide the main
argument in favor of the swing mechanism for bar
formation, which he proposed in the same paper [11].
Binney and Tremaine [13] used the same example in
their famous textbook on stellar dynamics. Following
Toomre [11], they tried to give a physical interpreta-
tion for the bar instability based on swing amplifica-
tion; they call Toomre’s example “one striking clue,”
which allegedly supports this viewpoint. The persis-
tent popularity of this idea is testified to, for example,
by the recent paper by Tremaine [34], who used the

14 To prevent misunderstanding, we note that the procedure of
softening gravity that has been used in many N-body sim-
ulations (including those of AS cited above) has a different
goal—ensuring reasonable accuracy of computations of the
forces of gravitational attraction between stars during close
encounters. The initial velocities of the stars are modeled in
accordancewith the equilibriumdistribution function studied
(and are not assumed to be purely circular as in the imitation
approach discussed here).
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Fig. 11. Angular velocities of various (m = 2) modes of a Gaussian disk (see text for details) as a function of 1/q, where q is
the mass fraction that participates in the perturbations, (a) in a softened-gravity approximation [11] and (b) with the actual
velocity dispersion corresponding to the approximation shown in (a).
same approach to analyze slow, single-armed modes
(m = 1) in nearly Keplerian disks.

The arguments presented above justify the need for
a more detailed analysis of this imitation. This idea
was first suggested by Miller [46, 47], who noted that
substituting the softened potential Φ = −GM/(b2 +
d2)1/2 (where b is the smoothing scale length) for the
exact potential Φ = −GM/d due to the massM at a
distance d results in the following dispersion equation
for short-wavelength axisymmetric perturbations of a
cool disk:

ω2 = κ2(r)− 2πGσ0(r)|k|e−|k|b, (AIII.1)

which differs from the well-known standard disper-
sion equation in an exponential reduction factor.
We can easily show using (AIII.1) that all the ax-
isymmetric perturbations described by this equation
are stable if

b > bmin = max
[
2πGσ0(r)
eκ2(r)

]
. (AIII.2)

In particular, for a Gaussian disk with surface density
σ0(r) = e−r2/2/2π (so that the mass of the disk is
M = 1), we obtain from (AIII.2)

bmin = max[B(r)], B(r) = e−r2/2−1/κ2(r),
(AIII.3)

where we set G = 1, as did Toomre [11]. The subse-
quent computation of bmin must be performed numer-
ically. The potential produced by a disk with surface
density σ0(r) can most easily be computed using the
formula

Φ0(r) = −4Gr
π/2∫
0

dψ sinψ

∞∫
0

chϕσ0(r sinψchϕ)dϕ.

(AIII.4)
We can now compute the square of the angular ve-
locity of rotation, Ω2(r) = Φ′

0/r, and κ
2(r) = 4Ω2 +

r(Ω2)′. This yields the function B(r), whose max-
imum is equal to Bmax = bmin ≈ 0.2, in accordance
with Toomre [11].

Having thus determined the b = bmin at which all
radial instabilities are suppressed, Toomre [11] sets
b = 0.25 (which is somewhat higher than bmin), then
analyzes possible nonaxisymmetric instabilities—
primarily bisymmetric instabilities (m = 2). Fig-
ure 11a shows the velocities of Ωp modes A, B, C,
E . . . as a function of 1/q, adopted from Toomre
[11]. Here, q is the mass fraction of the active disk
(the fraction of mass that participates in the per-
turbations); our parameter q is related to Toomre’s
parameter f as q = 1/(1 + f). These modes differ
in their radial wavelength, which progressively de-
creases from A to E such that mode A corresponds to
the most open spirals.

However, as we noted in Section 7.1.2, this
type of imitation is itself inadequate. Moreover,
we can directly compute the velocities Ωp for the
linear modes that had to be imitated using soft-
ened gravity and compare our results with those
of Toomre. It is clear from an analysis of the limit
of the dispersion equation (AIII.1) as kb� 1 (or
from dimensional considerations) that the velocity
dispersion c is related to b as c2 = 2πGσ0(r)b. Note
that, when b = 0.25, the Toomre parameter for a
Gaussian disk is Q(r) ≈ 0.93κ(r)er

2/4; numerical
computations show that Q(r) ≈ 1.5 = const in most
of the disk. The disk considered is therefore rather
“cool.” Such a disk can be adequately represented
by a generalized Schwartzschild model with known
σ0(r) and c(r) (see Sections 3 and 4). We then solve
our master integral equation for this model to find
the eigenfrequencies Ωp of the bisymmetric modes.
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Figure 11b shows these eigenfrequencies as functions
of q. Here, A′, B′, C′, and E′ correspond to various
radial wavelengths (similar to the modes A, B, C, and
E in Fig. 11a). A comparison of Figs. 11a and 11b
shows that imitation using softened gravity yields
very overestimated mode velocities Ωp (by about a
factor of two in the example considered). To obtain
frequencies close to those shown in Fig. 11a, the
velocity dispersion must be decreased by a factor
of 2.5 over the value we used in the computations
illustrated in Fig. 11b, yielding totally unrealistic
values for Toomre’s parameter, Q < 1.
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Abstract—VLBI observations of several quasars and BL Lacertae objects were carried out at 1.66 GHz in
November–December 1999 using six antennas (Medvezh’i Ozera, Svetloe, Pushchino, Noto, HartRAO,
and Shanghai). Maps of six sources (0420+022, 0420−014, 1308+326, 1345+125, 1803+784, and
DA 193) obtained with milliarcsecond resolution are presented and discussed, together with their broad-
band (1–22 GHz) spectra obtained on the RATAN-600 radio telescope at epochs close to those of the
VLBI observations. Comparison of the VLBI maps with maps of these sources obtained on standard VLBI
networks and with the RATAN-600 quasisimultaneous total-flux measurements indicates the reliability
of the results obtained on this Low Frequency VLBI Network and the good efficiency of this network.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Low Frequency VLBI Network (LFVN)
project has been in operation since 1996 [1]. Its
main goal is to help organize international VLBI
experiments at low frequencies with the participation
of Russian radio telescopes. During this time, 13
antennas have been equipped with the necessary ra-
dio astronomy receivers and data acquisition instru-
mentation: the Medvezh’i Ozera (64 m), Pushchino
(22 m), Zimenki (15 m), and Staraya Pustyn’ (14 m)
telescopes in Russia, the Evpatoria (70 m) and
Simeiz (22 m) telescopes in the Ukraine, as well
as the Ventspils (32 m, Latvia), Noto (32 m, Italy),
Toruń (14 m, Poland), Pune (45 m, India), Urumqi
(25 m, China) and Shanghai (25 m, China) antennas
and the Ooty 500×30 parabolic cylinder (India).
Eighteen VLBI experiments using various combina-
tions of radio telescopes located in England, India,
Italy, Canada, China, Latvia, Poland, Russia, USA,
1063-7729/04/4811-0900$26.00 c©
Ukraine, South Africa, and Japan were organized, as
well as correlation centers in Canada, Russia, and the
USA.

At present, three aspects of the LFVN project are
being developed: (1) a subsystem based on a Mk-2
data acquisition terminal and the NIRFI-3 correlator
in Nizhni Novgorod for studies of the solar wind and
solar microflares (spikes) at 327 and 610MHz; (2) an
international network based on the S2 broadband
Canadian recording terminal [2, 3] and the Dominion
Radio Astronophysical Observatory (DRAO) corre-
lator at Penticton (Canada) [4] for studies of active
galactic nuclei, maser sources, and active stars at
1.66 and 4.82 GHz; and (3) VLBI radar at 5010 MHz
with retransmission of the received echo signals to
the Noto processing center [5] via the Internet for
measurements of the motions of the terrestrial plan-
ets, asteroids approaching the Earth, and so-called
“space garbage.”
2004 MAIK “Nauka/Interperiodica”
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The international network of radio telescopes
equipped with S2 recorders included the Medvezh’i
Ozera, Svetloe (32 m), Pushchino telescopes in
Russia, the Green Bank (43 m) and Arecibo (300 m)
telescopes in the USA, and the Noto (Italy), Har-
tRAO (26 m, South Africa), and Shanghai (China)
telescopes. Since 1998, the experiments INTAS98.2,
INTAS98.5, INTAS99.4, INTAS00.3, and LFVN03.1
have been performed at 18 cm. The first four of these
have been successfully correlated on the Penticton
correlator; our results for INTAS99.4 are presented
and discussed in this paper. The results for the other
experiments will appear in subsequent publications.

In this paper, we will use the values of the Hubble
constant H0 = 70h km s−1 Mpc−1 and the decelera-
tion parameter q0 = 0.5.

2. OBSERVATIONS AND REDUCTION

The LFVN observations were carried out from
November 30 to December 3, 1999 (epoch 1999.91),
at a frequency of 1.66 GHz. The total duration of the
experiment was 43 h, with a mean duration for each
scan of about 30 min. Each source was observed in
5–8 scans. Figure 1 shows the resulting coverage of
the (u, v) plane for DA 193 as an example.

The Medvezh’i Ozera, Pushchino, Svetloe, Noto,
Shanghai, and HartRAO antennas participated in the
experiment. Some parameters of the radio telescopes
communicated to us by the staff of the observatories
are listed in Table 1 (diameter, system temperature,
and system equivalent flux density, SEFD). The
participation of the HartRAO antenna (South Africa)
considerably improved the angular resolution in
the north–south direction. The maximum projected
baseline between Shanghai and HartRAO reached
10 170 km. The Canadian S2 data acquisition system
was used. The bandwidth was 4 MHz (256 spectral
channels, each 15.625 kHz). Left-circular polariza-
tion was recorded with one-bit signal sampling. The
correlation of the data was performed on the DRAO
correlator in Penticton with an averaging time of 2 s.

The data analysis, editing, calibration, and imag-
ing (for more details, see [6]) were done using stan-
dard procedures in the AIPS package (NRAO). For
the amplitude calibration of the data, we used gain
curves and system temperatures measured for each
of the antennas involved in the observations. The pri-
mary phase calibration was done using the AIPS task
FRING with a coherent integration time of 120 s,
with subsequent phase corrections for the residual
delays being found for the entire duration of the ex-
periment, with the Medvezh’i Ozera telescope used
as the reference antenna. A point source at the phase
center was used for the initial models in the hybrid
mapping.
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Fig. 1. Coverage of the (u, v) plane for DA 193 for LFVN
observations INTAS99.4 at 18 cm.

The observations of the broadband spectra of
the sources were carried out as part of an ongoing
program of monitoring of compact extragalactic
objects on the largest Russian radio telescope—the
RATAN-600 (Special Astrophysical Observatory,
Russian Academy of Sciences). A description of this
program, the procedure used for the observations, and
the data processing are given by Kovalev et al. [7].

3. DISCUSSION

Our results for six extragalactic objects are pre-
sented below. Figures 2–7 show the LFVN maps,
together with the broadband spectra of the sources
obtained on the RATAN-600 at epochs close to the
date of the VLBI experiment. We have modeled the

Table 1. Antennas and their parameters at 1.66 GHz

Antenna Diameter,
m

Tsys, K
SEFD,
Jy

Svetloe (Russia) 32 71 394

Medvezh’i Ozera (Russia) 64 95 156

Pushchino (Russia) 22 111 1586

HartRAO (South Africa) 26 50 500

Noto (Italy) 32 107 1070

Shanghai (China) 25 100 1250
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Fig. 2. Left: 1.66-GHz LFVN map of 0420−014. The lowest contour is drawn at a level of 1.4% of the peak value of
1370 mJy/beam, and the contours increase in steps of

√
2. The restoring beam is 3.6 × 2.2 mas in position angle −8◦.

Right: the broadband spectrum measured on the RATAN-600. Individual measurements are shown with ±1σ errors and are
connected with lines. The filled triangles and solid line segments show the measurements for September 1999, and the filled
squares and dashed line segments show those for April 2000.
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2. The restoring beam is 3.2 × 2.2 mas in position angle −35◦. Right:

same as Fig. 2b for 0420+022.
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VLBI structures of the sources with circular Gaus-
sian components by fitting the models to the fully
calibrated observational data in the visibility (u, v)
plane using the Brandeis VLBI package [8]. The
source models are listed in Table 2, which gives the
(1) object name, (2) total flux density of the model
component, (3), (4) component position on the map
in polar coordinates r and ϕ relative to the brightest
component, (5) the FWHM of the Gaussian compo-
ASTRONOMY REPORTS Vol. 48 No. 11 2004
nent. The formal errors are given at the 1σ level; this
corresponds to an increase in the value of χ2 for the
obtained model by unity (for details see [9]). For the
object 1345+125, which has a composite structure, it
was not possible to derive an adequate model of the
source due to the sparse coverage of the (u, v) plane.

Let us proceed to a discussion of each of the stud-
ied objects.
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0420−−−014. This source is a strongly variable and
highly polarized quasar (redshift z = 0.915) with a
flat radio spectrum (Fig. 2). 0420−014 was identified
with a gamma-ray source based on analysis of Comp-
ton Gamma-Ray Observatory EGRET data [10, 11].
In 1992, simultaneous optical and gamma-ray flares
were observed together with a considerable increase
of the radio emission, which was subsequently iden-
tified with the appearance of a new component in the
jet. Analysis of the data for the 1992 flare suggest the
presence of a binary black hole in this source [12].

Our map of 0420−014 demonstrates a domi-
nant VLBI core and several weak components in
the southward jet (Fig. 2). The morphology of the
ASTRONOMY REPORTS Vol. 48 No. 11 2004



QUASI-SIMULTANEOUS VLBI AND RATAN-600 OBSERVATIONS 905
Table 2. Models of the sources

Source I ± σI , mJy r ± σr, mas ϕ± σϕ, deg θ ± σθ, mas

0420−014 1309 ± 42 . . . . . . <0.5

110 ± 23 1.78 ± 0.12 159 ± 5.5 <0.5

30 ± 4 7.06 ± 0.22 −176 ± 0.7 <0.5

20 ± 5 12.59 ± 0.38 −176 ± 0.8 <0.5

0420+022 772 ± 28 . . . . . . <0.5

52 ± 9 1.78 ± 0.14 −41 ± 4.6 <0.5

61 ± 8 2.31 ± 0.21 −86 ± 4.8 0.63 ± 0.25

73 ± 8 4.53 ± 0.25 −93 ± 3.3 <0.64

DA 193 1872 ± 8 . . . . . . 0.55 ± 0.05

1308+326 1389 ± 44 . . . . . . 1.11 ± 0.10

925 ± 68 2.33 ± 0.13 35 ± 3.1 1.97 ± 0.23

299 ± 60 4.99 ± 0.15 54 ± 1.8 1.45 ± 0.61

1803+784 1459 ± 87 . . . . . . 1.10 ± 0.26

80 ± 16 2.80 ± 0.23 −100 ± 4.1 0.89 ± 0.31

322 ± 31 4.83 ± 0.46 −104 ± 5.2 1.99 ± 0.88

36 ± 9 26.24 ± 0.87 −103 ± 1.2 1.18 ± 0.35
source on kiloparsec scales shows a similar south-
ward core–jet structure [13]. The jet component
closest to the VLBI core, at an angular distance of
1.78 mas from the core (Table 2), can be identified
with a feature observed in October 1995 (1995.83)
at 5 GHz [14]. The proper motion of the component
is ∼0.035 mas year−1, which corresponds to an
apparent projected linear speed of βapp = 1.3h−1. The
speed of this component between 1992 and 1995 was
higher, βapp = 4.1h−1 [14]; this is consistent with the
possibility that the jet is decelerated, with the speed of
the VLBI component decreasing with distance from
the core.

0420+++022. 0420+022, which has a flat radio
spectrum (Fig. 3), was originally classified as a prob-
able BL Lacertae object [15]. However, its redshift
was soon found to be z = 2.28 [16]. Such a large
redshift is not typical of BL Lacertae objects, whose
redshifts, as a rule, do not exceed unity [17]. Following
[16], we will consider this source to be a quasar.

RATAN-600 monitoring of the broadband spec-
trum of this object revealed unusual variability. In
some time intervals (on scales of months), strong
variability of the total flux density at frequencies be-
low 10 GHz was observed together with weak vari-
ability above this frequency, with the variability am-
plitude increasing with decreasing frequency. VLBI
ASTRONOMY REPORTS Vol. 48 No. 11 2004
observations were carried out to identify the mech-
anism responsible for the observed atypical variabil-
ity. A detailed analysis of this behavior incorporat-
ing the results presented here and other VLBI and
RATAN-600 observations will appear in a forthcom-
ing paper by Kovalev et al.

The LFVN map of the source (Fig. 3) reveals a
core—jet structure on milliarcsecond scales. The jet
extends westward to a projected distance of about
5 mas (∼28 pc) at a level of about 10 mJy.

DA 193. The variable quasar 0552+398 (DA 193,
z = 2.36) is classified as a GPS source [18], reflecting
the fact that its broadband radio spectrum peaks at
decimeter-centimeter waves (Fig. 4). DA 193 was
observed as a calibrator in our VLBI observations; it
is one of the most compact radio sources currently
known. Figure 1 shows the (u, v) plane coverage for
this source obtained in INTAS99.4. Our 1.66-GHz
observations do not detect any jet emission—only a
“naked” 0.55-mas VLBI core (Fig. 4). The westward
VLBI jet becomes visible at 5 GHz [14] and higher
frequencies. The jet components’ speeds measured
using 43 GHz VLBI maps turn out to be superlumi-
nal, which is not typical of GPS sources [19].

1308+++326. This variable, flat-spectrum source
(z = 0.996; Fig. 5) belongs to a complete sample
of radio-bright northern BL Lacertae objects [20],
although there are reasons to suppose that the
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source should, in fact, be classified as a quasar
[21]. 1308+326 is a candidate microlensed object.
The structure of 1308+326 on kiloparsec scales
represents a bright core, a component ∼11′′ to the
north, and a fainter component ∼6′′ to the east [22].

In our experiment, this object was observed to link
the emission detected on arcsecond (kiloparsec) and
milliarcsecond (parsec) scales. The image (Fig. 5)
shows that the source structure at 18 cm is compact,
consisting of a VLBI core and two jet components,
with the outer component lying 5 mas (30 pc) to the
northwest of the core (ϕ = 54◦). Thus, the jet we have
detected is too short to trace the outflow direction
on intermediate scales; it may be possible to image
this structure using an array with a combination of
relatively long and small VLBI baselines (for example,
the EVN+MERLIN or the VLBA+NMA).

1345+++125. This object (z = 0.122) is one of the
nearest bright GPS sources (Fig. 6). The host galaxy
contains a western and eastern component. The ra-
dio source 1345+125 is identified with the western
component, which is an elliptical galaxy [23]. We
may be observing the merger of two galaxies, which
stimulates the activity at radio frequencies [24].

The observations of this object were of interest
from the point of view of its classification: it is prob-
ably a compact symmetrical object (CSO). Sources
of this class are powerful and compact objects with
a total size not larger than one kiloparsec. As a rule,
the emission is dominated by regions of the jet and
hot spots on either sides of the “central engine,” and
these sources are probably not subject to consid-
erable Doppler brightening [25]. The small sizes of
these sources may be a consequence of their youth
(< 104 years). This hypothesis was confirmed after
the detection of motion of the hot spots in CSO
sources and estimation of their speeds [26]. Most
identified CSO sources are also classified as GPS ob-
jects based on their broadband radio spectra. Due to
the high compactness of these objects, their structure
can be resolved only by VLBI observations.

Our 18-cm map of 1345+125 displays a very rich
structure. The VLBI jet is detected to distances of up
to 50 mas (103 pc) to the southeast of the core in
position angle ∼150◦. According to Fey et al. [27],
the core is not detected at 1.6 GHz because of strong
self-absorption in the circumnuclear region. Our ob-
servations confirm the results of (EVN+GEO) ob-
servations of 1345+125 at 8.4, 2.3, and 1.6 GHz
[28], and the conclusion that this object is a CSO
source. Unfortunately, the lack of data for this source
on the short Medvezh’i Ozera–Pushchino baseline
has hindered the detection of emission from the most
extended regions of the source [29]; in turn, this has
resulted in a considerable underestimation of its inte-
grated flux (Table 3).
1803+++784. This flat-spectrum source (Fig. 7) is
a BL Lacertae object, and is included in the 1-Jy
catalog of such objects [20] (z = 0.68 [30]).

The purpose of our observations of 1803+784 was
to study the structure of this BL Lacertae object and
to link the source morphology on parsec and kilopar-
sec scales.Maps on kiloparsec scales [31, 32] demon-
strate the presence of two extended components, one
located 2′′ to the southwest of the core and the other,
weaker, component located approximately 45′′ in po-
sition angle ∼−165◦; there is also very faint emission
between these features [33, 34]. The total size of the
observed radio structure is ∼180 kpc. On the other
hand, VLBI observations with the HALCA orbiting
radio telescope [35] made it possible to study the
subparsec structure of the source and the direction of
the VLBI jet at∼0.5 mas, close to the central engine.
The jet extends first to the northwest in position angle
∼−65◦ and then turns to the southwest [36].

Figure 7 shows our 18-cm LFVN map of the
object. The source has a number of jet components to
the southwest of the core in position angle ∼−100◦.
The most distant component detected on our map is
26 mas (143 pc) from the core. The jet direction and
the location of this component are consistent with the
results obtained on a more sensitive network (VLBA,
VLA, Goldstone) at epoch 1998.55 [37].

Thus, 1803+784 displays a considerable differ-
ence in the projected jet directions on parsec and
kiloparsec scales (∼100◦ in the plane of the sky).
This can be explained by the effect of projection or
interaction of the jet with the surrounding medium.

Modeling of the broadband spectra presented in
this paper (see details in [38]) and literature data
for VLA observations of these sources indicate the
presence of extended radio structures in half of these
objects. Table 3 lists the total fluxes of the sources
from the LFVN maps and the total fluxes obtained
by interpolating the RATAN-600 data. Based on the
accuracy of the calibration curves and system tem-
peratures used, the total uncertainties in the inte-
grated fluxes on VLBI scales are≈10%.We estimate
the uncertainties in the total flux densities for the
RATAN-600 data to be not larger than 5% (allowing
for uncertainties in the interpolation and the mea-
surements themselves; Figs. 2–7).

The excess of the integrated fluxes from the VLBI
maps (decaparsec scales) above the RATAN-600 flux
densities for 0420+022 and 1308+326 could be due
to inaccuracy of the LFVN amplitude calibration and
by the fact that the VLBI and RATAN-600 obser-
vations were not strictly simultaneous (the minimum
interval between the two sets of observations was two
months). This may also play some role for 0420+022,
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Table 3. Comparison of the total flux densities of the sources measured on the LFVN and the RATAN-600

Instrument Total flux density at 18 cm, Jy

0420−014 0420+022 DA 193 1308+326 1345+125 1803+784

RATAN-600∗ 2.0 0.76 1.9 2.0 4.7 <2.4

LFVN 1.51 0.96 1.9 2.6 2.0 1.92

∗ Values obtained by interpolating the 31- and 13-cm data.
1 The source is significantly resolved on kiloparsec scales.
2 The epochs of the LFVN and RATAN-600 observations differ by 1 year.
which is variable at low frequencies (this will be de-
scribed in more detail in a forthcoming paper by Ko-
valev et al.).

4. CONCLUSION

We have presented the results of observations of
six extragalactic radio sources on the Low Frequency
VLBI Network, involving three Russian and three
foreign radio telescopes. We have restored the in-
tensity distributions of the objects with millisecond
angular resolution by processing the data using the
standard method and with the standard software
package.We have discussed our results in the context
of our the broadband RATAN-600 spectral obser-
vations and previously published EVN and VLBA
maps. Comparison of our maps with those from other
studies indicates the reliability of the LFVN images
and the efficiency of the LFVN. It is desirable to refine
the calibration curves of some of the LFVN telescopes
to improve the accuracy of amplitude calibration of
the data.

We have also obtained positive experience in con-
nection with planning and realizing VLBI experi-
ments. Using the available fully steerable Russian
radio telescopes in these experiments helped to main-
tain them in working condition and to equip them
with new radio astronomical instrumentation. The
collaboration between the Russian and foreign obser-
vatories and the correlation centers allows the Low
Frequency VLBI Network to carry out yearly obser-
vating sessions aimed at acquiring data for the solu-
tion of a broad variety of scientific problems, including
observations of active galactic nuclei.
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Abstract—The positions of star-forming complexes (SFCs) in color–luminosity, color–color, and chem-
ical composition–luminosity diagrams are determined by the star-formation regime (history). Taking into
account the fraction of Lyman continuum photons that are not absorbed by hydrogen, we find a strong
correlation between the observed color indices and the total Lyman continuum flux from the stars in SFCs.
The distribution of extragalactic SFCs in a plot of the slope of the initial mass function (IMF) versus the
density of stars cannot be distinguished from this distribution for clusters in the Galaxy and the Large
Magellanic Cloud, where the IMF slopes were derived directly from star counts. c© 2004 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The stellar populations of star-forming complexes
(SFCs) in galaxies contain information about the
star-formation history and evolution of the chemical
abundances in the SFCs, as well as the evolution
of the galaxy as a whole. To understand the pro-
cesses involved in galaxy formation, it is important
to interpret the observed characteristics of SFCs
in terms of physical parameters such as age, star-
formation regime, and the initial mass function
(IMF). Two main approaches to this problem have
been developed. The first is population synthesis,
in which the spectral evolution of a star-forming
region is computed based on stellar-evolution theory
and databases of stellar spectra for given IMFs,
star-formation rates (SFRs), star-formation regimes,
and chemical-composition evolutions (cf. [1–5] and
references therein). The results depend on the adopted
stellar-evolutionary tracks, IMF, and star-formation
regime. Within the adopted assumptions, variations
in the colors in star-forming regions are usually
attributed to variations of age, chemical abundances,
and internal reddening.

The second approach is stellar-population synthe-
sis based on the observed parameters of stars and star
clusters, or empirical population synthesis [6–9]. This
method was most extensively developed in compu-
tations of synthetic spectra of galaxies using empir-
ically constructed spectra of star clusters (cf. [7, 10–
14] and references therein). The main problem with
empirical population synthesis is that the solutions
are not unique, due to the need to solve a strongly
1063-7729/04/4811-0909$26.00 c©
degenerate set of algebraic equations. The first ver-
sion of the method [7] used 35 parameters combined
in various ratios to calculate nine absorption-line
equivalent widths in galactic spectra. Combinations
of parameters giving 10% agreement between the
nine computed equivalent widths and observations
were considered acceptable solutions. The final set of
parameters was calculated as the arithmetic mean of
all the acceptable solutions.

There has been considerable progress in recent
years in combating the lack of a unique solution in
empirical population synthesis. Along with reducing
the number of parameters from 35 to 12 [11] using
the color indices in the stellar continuum [12], and
extending the observational data for star clusters to-
ward the far ultraviolet [13], a statistical procedure for
finding the most probable solution has been proposed
and formalized [14].

Our earlier papers [15, 16] presented an evolution-
ary synthesis method applied to young SFCs (giant
HII zones) in external galaxies. The internal redden-
ing and chemical abundances were determined from
spectroscopic observations, making it possible to re-
duce the number of parameters (basic elements) to
three: the slope and upper mass limit of the IMF and
the cluster age. There were four computed parameters
(integrated colors) to be compared with the observed
values. Thus, the set of equations is overdetermined.
However, even in this case, different combinations of
IMFs, ages, and star-formation scenarios can some-
times correspond to the same combination of the
four color indices; this is the so-called IMF–star-
formation history degeneracy [17]. To remove this
2004 MAIK “Nauka/Interperiodica”
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degeneracy, we considered the star-formation history
in a complex to correspond with one of two extreme
scenarios: an instantaneous burst (IB) or continuous,
extended burst (EB) of star formation. This approach
does not completely resolve the IMF–star-formation
history ambiguity, since other star-formation regimes
are possible. However, consideration of these two ex-
treme cases can serve as a first rough approximation
to removing the IMF–star-formation history degen-
eration.

We encountered another ambiguity that is related
to the fraction of Lyman continuum photons that
do not ionize gas, which can either be absorbed
by dust or leave the SFC freely. This fraction can
vary strongly from object to object, in the range
(10−90)%. The SFC star-formation parameters
in [15, 16] were obtained by fixing the fraction of
Lyman continuum photons that did not participate in
ionizing the HII region, and were accordingly either
absorbed by dust or left the SFC freely, ionizing the
diffuse interstellar gas, at 30%. It is natural to suppose
that the fraction of Lyman continuum quanta that
are not absorbed by neutral hydrogen cannot be the
same for all SFCs, but instead varies over a wide
range for various complexes and various galaxies. It
was demonstrated in [18, 19] that up to 50% of the
galaxies’ combinedHα flux came from diffuse, ionized
gas, and was not directly associated with HII regions.
Based on a study of the diffuse, ionized gas in six
spiral galaxies that demonstrated a spatial correlation
between HII regions and the diffuse, ionized gas, it
was suggested in [20] that the diffuse, ionized gas was
ionized by the Lyman continuum photons that had
freely left giant HII regions. The expected equivalent
widths of the hydrogen Hβ line in young HII regions
is 450−500 Å. However, such HII regions are known
from observations to be very rare. This inconsistency
between theory and observation also indicates that a
large fraction of Lyman photons do not take part in
ionization processes.

We used the empirical relation between age and
size for star-forming regions, first found in [21], as
an additional constraint to avoid these ambiguities.
We were not able to remove the ambiguity in the
star-formation regime for all SFCs. The remaining
SFCs were considered to have no solution in the
models considered. The use of the empirical age–size
relation together with evolutionary-synthesis models
to derive the star-formation parameters enables us
to consider this approach to be “empirical popula-
tion synthesis,” an extended evolutionary population-
synthesis method. The best objects for studies of
stellar populations and their evolution using empirical
evolutionary synthesis are young SFCs in spiral and
irregular galaxies. At least three photometric observ-
ables corrected for reddening and a known chemical
composition for the computation of the synthetic val-
ues are needed to determine the slope and upper mass
limit of the IMF and the age of the SFC. We collected
the required observational data for 180 SFCs in 22
spiral and irregular galaxies [22].

The proposed empirical evolutionary-synthesis
method is an integrated, indirect method, with larger
uncertainties compared to direct star counts, but
enables us to determine both the slope and upper
mass limit of the IMF, age, and SFR for a large
number of objects in distant galaxies, for which
direct star counts are not possible. This approach
is helpful for studies of systematic differences in the
properties of SFCs in different galaxies with different
physical conditions. The derived relations of the star-
formation characteristics in individual SFCs to local
and global properties of the parent galaxy can provide
useful input to the theory of star formation in galaxies.

Our previous papers [15, 16] concentrated on the
method itself. The present study concerns intercom-
parisons and interpretations of the resulting IMF and
SFR parameters and their application to investiga-
tions of star formation in a galaxy as a whole. The
goals of the study are (i) to present a modified version
of the method for deriving the star-formation param-
eters from the observed colors of an SFC, taking in
into account the possible variations in the fraction of
Lyman photons that are not absorbed by hydrogen
in individual complexes; (ii) to analyze the method’s
sensitivity to the star-formation regime in a complex;
(iii) to compare the results to IMFs derived directly
using star counts in clusters; and (iv) to study the
SFR in SFCs. To fulfill these goals, we propose the
following plan for presenting our work. Section 2 de-
scribes the modified method for determining the IMF
and SFR parameters and Section 3 the method’s
uncertainties. Section 4 discusses the distribution of
star-formation regimes for the studied SFCs. The
sensitivity of the observed SFC parameters to the
star-formation regime is discussed in Section 5. The
Lyman continuum luminosities of the SFCs are pre-
sented in Section 6. We compare the resulting IMF
slopes to the results of direct star counts in Section 7,
and apply our results to derive the SFR in the galaxies
in Section 8. A discussion of the results is given in
Section 9, and the main results and conclusions are
summarized in Section 10.

This paper does not discuss the observational ma-
terial used, since this information is presented and de-
scribed in detail in [22, 15, 16]. Note that the numbers
of objects in the color–luminosity, color–color, and
age–size diagrams can vary since observations are
not available for all the objects in our sample in all
the bands used (U , B, V , and R), and linear dimen-
sions are likewise unknown for some objects. Pro-
cedures to correct for peculiarities of the extinction
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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in some SFCs in which absorption in emission lines
is systematically in excess of the stars’ continuum
reddening are described in [23] and discussed in detail
in [15]. We use the evolutionary-synthesis models
for star clusters presented in detail by Myakutin and
Piskunov [24] and discussed in our earlier papers
[15, 16].

2. THE MODIFIED METHOD

Our method to derive the IMF and SFR param-
eters from the observed colors of a star cluster is
described in detail in [15, 16]. A combination of col-
ors (U −B, B − V , V −R, LCI) predicted by the
evolutionary theory adopted and corresponding to the
observed color combinations is identified by search-
ing for the optimal values of the IMF parameters
(slope, α, and upper mass limit, Mmax), age (t), and
SFR. When computing the model colors, we fixed
the cluster’s chemical composition based on the ob-
servational data and corrected the observed colors
for interstellar reddening. Two extreme cases of star-
formation history were considered: an instantaneous
burst (IB) and a continuous, extended burst (EB)
of star formation. All other possible star-formation
regimes are intermediate between these two extreme
cases. When deriving the IMF parameters, age, and
star-formation regime, we assume that only one of
the considered regimes (IB or EB) operates within
an individual SFC, namely, that corresponding to the
observed spectral energy distribution, luminosity, and
size. Problems associated with the lack of a unique
star-formation regime in some of the complexes are
considered in Section 4. When analyzing the IMF
parameters, we treated the IB and EB complexes as
separate groups. Those complexes with no accept-
able solution or displaying ambiguity in their star-
formation regime were not included in the subsequent
analysis. We call the IMF and SFR parameters ob-
tained in this way for 100 SFCs in 20 spiral and
irregular galaxies the first-approximation parameters.
The first-approximation star-formation parameters
derived in [15, 16] are collected in Table 1 for the entire
sample of 100 SFCs, without separation based on
their star-formation regimes.

Note that SFCs with an IB star-formation regime
are, on average, much younger than those with a con-
tinuous, EB regime. We demonstrated in [16] that the
ages of complexes with an EB regime are correlated
with their luminosities and linear sizes:

t ≈ 5.37 × 10−2 × 10−(0.14±0.02)MB , (1)

t ≈ 0.11S1.02±0.30,

where t is the complex’s age in millions of years,
MB is its absolute magnitude, and S is its linear
size in parsecs. A correlation between the duration
ASTRONOMY REPORTS Vol. 48 No. 11 2004
of the burst of star-formation and the size of the
star-forming region was found earlier by Efremov and
Elmegreen [21] for star clusters in the LMC.

We found for the IB SFCs that high-metallicity
regions (Z > 3Z�) show an inverse correlation be-
tween their ages and sizes. IB complexes with normal
chemical composition show a direct, though weak,
correlation between their ages and sizes. In this paper,
we do not consider the high-metallicity SFCs, all
of which show IB star formation, for the following
reasons.

(1) There are no evolutionary models available for
clusters with metallicities higher than three times
the solar value, and the high-metallicity SFCs were
compared to the existing highest-metallicity (Z =
2.35Z�) model.

(2) About 30% of the high-metallicity SFCs in
our sample belong to the peculiar interacting galaxy
system NGC4038/39, in which a strong burst of star
formation is observed [25]. The intense star formation
in this system leads to an increased supernova rate,
which may be partially responsible for the ionization
of the HII regions. Thus, the observed line ratios
are biased by the presence of an additional ionization
source, and can lead to overestimation of the metal
abundance in regions with normal chemical compo-
sition.

The first-approximation star-formation parame-
ters were derived by fixing the fraction of Lyman-
continuum photons that were partially absorbed by
dust or left the SFC freely to be 50%. In this new
study, we reject this assumption, and treat the frac-
tion 1 − f of Lyman continuum photons that did not
participate in the ionization of the HII region as a
free parameter that can vary from 0 to almost 100%.
The modified procedure for determining the refined
(second-approximation) IMF and SFR parameters
can be divided into two stages.

In the first stage, we simultaneously derived the
IMF and SFR parameters from the observed colors
of a star cluster as described in [15, 16], using 1 − f
values from 0 to 90%, with a 10% increment. We
treated 1 − f as a free parameter at this stage. We
thus obtained ten combinations of the IMF param-
eters (α,Mmax) and SFR parameters (t, regime) cor-
responding to the ten adopted 1 − f values. Here, the
star-formation regime can take on one of two possible
values: instantaneous burst (IB) or extended-burst
(EB).

In the second stage, the best set of parameters is
selected from among the ten sets of IMF (α, Mmax)
and SFR (t, regime) parameters based on additional
constraints: the empirical age–absolute magnitude
(t–MB) and age–size (t–S) relations (1), whichwere
independently confirmed in [21]. Using the refined
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Table 1. First-approximation star-formation parameters for 100 SFCs in 20 galaxies

Parameter Range Mean Standard deviation Uncertainty

IMF slope, α −0.5 . . .−4.35 −2.42 0.91 0.51

Mmax,M� 30–120 74 20 33

log t (years) 5.9–8 6.84 0.55 0.29
estimates of the ages and star-formation regimes, we
determined new empirical age–luminosity and age–
size relations and then repeated the second stage of
the procedure for the IMF and SFR parameters. The
process of determining the star-formation parameters
and the coefficients of the empirical relations (1) con-
verged, and no further iterations were needed.

Below, we present the statistical characteristics
of the distributions of the IMF parameters and ages
separately for the IB and EB complexes. Complexes
with ambiguous star-formation regimes (see Sec-
tion 4) were not included in our subsequent analysis
of the star-formation parameters. The new SFC age
estimates occupy a narrower range than the first-
approximation estimates (from log t = 5.9 to log t =
7.5). The IB complexes have ages from 0.8 to 6.0 mil-
lion years, with a mean age of 1.8+1.4

−0.8 million years.
The ages for the EB complexes range from 6.2 to
31.6 million years, with a mean age of 14.1+7.3

−5.8 million
years. In both cases, the age of a complex is taken to
be the entire period of the complex’s existence, rather
than the burst duration. The physical interpretation
of the age gap between the IB and EB complexes
is considered in Section 9. The IMF slope varies in
the range −0.5 to −4.0, with the mean values α =
−2.81 ± 0.79 for the IB complexes and α = −2.40 ±
0.52 for the EB complexes. Our estimates of the upper
mass limit of the IMF range from 45 M� to 120 M�
for the IB complexes and from 60 M� to 110 M�
for the EB complexes, with a mean of 80 M� and
standard deviation of σMmax(obs) = 20 M�.

3. UNCERTAINTIES OF THE METHOD

We discussed the uncertainties of our method
in [15, 16]. These include both the observational
uncertainties and uncertainties in the empirical re-
lations between the absorption of the light emitted
by gas and by stars in SFCs [23], and between
the chemical abundances and the observed relative
intensities of the oxygen and nitrogen lines [26],
as well as uncertainties in the calibrations used
to convert the ratios of monochromatic continuum
fluxes into broadband color indices in the standard
UBV R system [22]. Additional errors can result from
disregarding the contribution of radiation by gas to
the stellar continuum [26], and also in the estimates of
the fraction of Lyman continuum photons that do not
take part in ionizing the HII region. In [26], we used
a semiempirical model to estimate the contribution of
radiation by gas to various stellar-continuum bands
for 96 SFCs (HII regions) in the galaxies NGC2403,
NGC2903, NGC4038/39, and NGC5194. It turns
out that this contribution does not exceed 7 Å
even for the interacting galaxies NGC4038/39, in
which a burst of star-formation is occurring. For the
remaining galaxies without star-formation bursts,
the contribution of radiation by gas to the stellar-
continuum bands is less than 5 Å. The influence
on the star-formation parameters derived from the
observed color indices of uncertainties in the color
indices (σobs = 0.15m–0.25m), metallicities (σZ =
50%), and interstellar reddening (Av ≤ 0.30m) is
discussed in detail in [15, 16].

Since the IMF represents the statistical mass dis-
tribution of the stars, having a small number of stars
in an SFC leads to uncertainties in the IMF pa-
rameters. In complexes with IMF slopes less steep
than α = −3.32, for the stellar luminosity function
L∗(m) [27], 80% of the luminosity LB is due to stars
with masses m > 4 M�. The uncertainties in the
input photometric data are 15−20% [22]. Thus, the
estimated slopes can be considered reliable only for
the high-mass (m > 4 M�) part of the IMF. If a
small number of massive stars produce 80% of the
flux in a low-luminosity complex with a flat IMF, the
upper-mass limit Mmax can also be uncertain. Mmax
can be considered reliable only when the number of
stars with masses exceeding the upper limit of the
IMF isNp (m > Mmax) ≥ 1.

Otherwise, the IMF estimates can represent
chance deviations from the mass distribution of the
stars in the SFC. In [15], we used the condition
that at least three stars have masses in the interval
(Mmax, Mmax + 30 M�) for a given luminosity of the
SFC as a criterion for the trustworthiness of the
IMF parameters α and Mmax. Taking into account
variations of the fraction 1 − f of Lyman-continuum
photons that do not ionize the gas in the SFC
reduced the initial uncertainties of the parameters,
which become σα = 0.35 ± 0.02 for the IMF slope,
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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σMmax = 10 ± 1 M� for the IMF upper-mass limit,
and log t = 0.20 ± 0.02 for the SFC age.

4. STAR-FORMATION REGIMES

We noted in [15] that it was either not possible
to find a good solution within the two star-formation
regimes considered or the solution was ambiguous
for 67 of the 180 SFCs studied. In ambiguous
cases, when there were acceptable solutions for both
regimes, we treated the SFCs as having no good
solution. The reliability criterion adopted for the IMF
parameters was not satisfied for 12 SFCs, and these
objects were also excluded from our further analysis.
The absence of acceptable solutions for some SFCs
could be due to several reasons.

First, the colors of some of these objects are out-
side the range permitted by the theoretical models [15,
Fig. 1]. For example, in the theory, U −B cannot
be bluer than −1.2 and B − V cannot be bluer than
−0.5. Similarly, according to the theory,B−V values
redder than +0.2 should correspond to redder U −B
values than those observed for these SFCs. The ob-
served SFC colors could be outside the theoretically
permitted range due to observational uncertainties,
incorrect reddening corrections, or unidentified fore-
ground stars overlapping the SFC image. These stars
must be rather faint, but they can strongly bias the
color indices.

Second, some objects can have solutions for both
star-formation regimes. This means that the object’s
observed spectral energy distribution corresponds to
the IB regime for one IMF and age, and to the EB
regime for some other IMF and age. In other words,
there is no unique solution. This is clearly visible
in Fig. 1, which displays the distribution of star-
formation regimes for the studied SFCs. We have
chosen to represent the IB regime with the num-
ber 1 and the EB regime with the number 2. These
two regimes are extremes among the possible star-
formation regimes, and the SFCs with no solution
for these two regimes probably have a more complex
SFR history, and must be considered as intermediate
cases between the IB and EB regimes. Accordingly,
we have assigned all SFCs with no acceptable solu-
tion the number 1.5. There are not complete sets of
input parameters for all of the 180 objects, and the ab-
sence ofU −B values for some of them leads to ambi-
guity and hence the impossibility of finding an accept-
able solution. This color index is sensitive to the star-
formation regime, and the availability of U −B data
makes it possible to refine the solutions obtained; i.e.,
to make them more definite. For this reason, the frac-
tion of SFCs with no solutions is smaller for objects
with U −B measurements (56/145 = 38.6%). This
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Fig. 1. Distribution of the star-formation regimes for
SFCs with observed U − B color indices. Objects with
abnormally high metallicities are not considered here (see
the text).

fraction for the SFCs without U −B measurements
is 23/35 = 65.7%, almost twice as high.

Third, objects with abnormally high metallicities
display abnormally blue colors (both U −B and B −
V ). This could be due to the use of incorrect reddening
corrections. The reddening–absorption relation was
derived for interstellar dust with a normal chemi-
cal composition. The absorption ratios at different
wavelengths may not be the same in the presence of
high heavy-element abundances. Our semiempirical
model for the ratio of the extinctions of radiation by
gas and by stars [23] may also not be fully applicable
in the case of high metal abundances. In addition,
many of these SFCs are heavily absorbed, further
complicating the determination of the correct redden-
ing corrections.

Fourth, there exist physical reasons for the lack
of an acceptable solution for some objects. We
have considered two extremely simple star-formation
regimes, with all stars formed simultaneously t years
ago (IB) or the star formation beginning t years ago
and continuing until the present (EB). The real situa-
tion is probably different from this simple model. The
stars in an SFC began to form t years ago and were
formed during some interval ∆t. Depending on ∆t/t,
we consider the star formation to have been instan-
taneous or to continue until the present. If ∆t/t� 1,
we have the IB regime, while, if ∆t/t ≈ 1, we have
the EB regime. If the ratio has an intermediate value,
our approach does not yield a unique solution.

All three possibilities are about equally probable;
i.e., we expect to obtain no unique solution in approx-
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imately one-third of cases, or slightly more often, as
is observed (Fig. 1).

5. SENSITIVITY OF THE OBSERVED SFC
PARAMETERS TO THE STAR-FORMING

REGIME

Let us consider the differences between the SFCs
with the two different star-formation regimes and
plot model-independent diagrams for their observed
parameters. We begin with the distributions of the
SFCs in color–luminosity and color–linear size di-
agrams (Fig. 2). We can see in Fig. 2 that the IB
SFCs are systematically bluer than the EB SFCs at
a given luminosity (size). The low accuracy of the
observations and our choice of considering two dis-
tinct star-formation regimes lead to a low correlation
for the relations shown in Fig. 2 (r ≈ 0.5−0.7). The
coefficients for all the empirical relations derived in
this study are presented in Table 2.

The trend toward redder color indices for increas-
ing luminosity (size) that is characteristic of both
IB and EB SFCs is in agreement with the age–
luminosity and age–linear size relations derived ear-
lier [16, 21], as well as with the age–U −B re-
lation (see Fig. 9 below; the relationship between
Fig. 2 and Fig. 9 will be discussed in Section 9).
The actual difference between the SFCs with differ-
ent star-formation regimes is readily visible in the
(U −B)−(B − V ) two-color diagram for the aver-
aged color indices (Fig. 3). The curve for the EB
SFCs displays a constant displacement along the
U −B axis; i.e., these SFCs have redder U −B val-
ues for a given B − V . The displacement is 0.1m −
0.2m, and is approximately equal to the dispersion of
the averaged indices (and to the uncertainties in the
observed color indices). This difference primarily indi-
cates that these SFCs have a different distribution of
stellar spectral types. The U −B color index reflects
the ratio of the number of O + early B stars to the
number of late B + early A stars, whileB − V reflects
the ratio of the numbers of B and A stars. Thus, the
shift in the diagram provides clear evidence that the
two types of SFCs have different ages, assuming that
the stellar IMF is a power law without any breaks.

The third difference in the parameters of the SFCs
with different star-formation regimes is presented in
Fig. 4, which shows that the SFCs with high heavy-
element abundances always display the IB regime,
never the EB regime. Either star-formation regime
can occur in complexes with low (solar or lower)
metallicities. The direct relation between metal abun-
dance and luminosity was first noted by us in [16].

6. LYMAN-CONTINUUM LUMINOSITIES

The number of Lyman-continuum photons emit-
ted by a cluster’s stars is usually estimated from
the flux in the Balmer lines observed from the HII
region. However, as is discussed above, a consider-
able fraction of the Lyman-continuum photons may
not participate in the ionization of this gas, possi-
bly resulting in underestimation of the number of
Lyman-continuum photons emitted by the cluster
stars. In turn, this leads to inconsistencies in the
cluster’s spectral energy distribution. One of the pa-
rameters determined in ourmodified method for deriv-
ing the IMF and SFR parameters from the observed
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Table 2. Empirical relations and correlation coefficients for the SFCs

Relation Regime Correlation equation r Figure

(U −B)–log
(
LB(obs)
L�

)
IB y = −(1.86 ± 0.09) + (0.12 ± 0.03)x 0.57 2a

(U −B)–log
(
LB(obs)
L�

)
EB y = −(2.00 ± 0.12) + (0.18 ± 0.03)x 0.70 2a

(U −B)–log S [pc] IB y = −(1.75 ± 0.10) + (0.35 ± 0.14)x 0.55 2b

(U −B)–log S [pc] EB y = −(1.82 ± 0.14) + (0.54 ± 0.12)x 0.71 2b

log
(
NLyc

LB

)
–(U −B) IB y = (6.71 ± 0.06) − (4.15 ± 0.10)x 0.99 5

log
(
NLyc

LB

)
–(U −B) IB y = (8.92 ± 0.11) − (1.97 ± 0.13)x 0.94 5

logSFR [M� yr−1]–logS [pc] IB+EB y = −(10.15 ± 0.80) + (3.82 ± 0.44)x 0.80 7

log t [years]–logS [pc] IB y = (4.59 ± 0.22) + (0.77 ± 0.19)x 0.58 9a

log t [years]–logS [pc] EB y = (5.85 ± 0.013 + (0.64 ± 0.10)x 0.78 9a

log t [years]–(U −B) IB y = (8.29 ± 0.09) + (2.06 ± 0.18)x 0.89 9b

log t [years]–(U −B) EB y = (7.95 ± 0.12) + (1.08 ± 0.16)x 0.77 9b

logS [pc]–log
(
LB(obs)
L�

)
IB+EB y = −(0.51 ± 0.13) + (0.36 ± 0.02)x 0.92 10
integrated colors of an SFC is the fraction of Lyman-
continuum photons that are not absorbed by hydro-
gen. Using this fraction and the flux in the Balmer
lines, we can predict the Lyman-continuum flux from
a particular SFC. The Lyman-continuum fluxes for
the sample of SFCs predicted in this way are strongly
correlated with the integrated U −B colors (Fig. 5).
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7. COMPARISON OF DIRECT
AND INDIRECT IMF-SLOPE ESTIMATES
The SFCs analyzed here include two objects in

the Large Magellanic Cloud (LMC) whose IMF
slopes have been estimated directly using star counts:
30 Doradus and Dem 152 [28–32]. Our indirect
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Fig. 5. Ratio of the predicted number of Lyman-
continuumphotons to the B luminosity versusU −B for
IB SFCs (crosses) and EB SFCs (triangles).

IMF slopes, α = −2.00 ± 0.35 for 30 Dor and α =
−2.70 ± 0.35 for Dem 152, are close to the IMF
slopes derived directly: α = −2.2 ± 0.3 and α =
−2.3 ± 0.3, respectively. To compare our IMF slope
estimates and direct estimates derived from star
counts, we plotted our objects on the plot of the IMF
slope versus the surface density of stars with masses
m > 10 M� from [33].

The surface density of stars withmasses exceeding
10 M�, σNst(m > 10 M�), can be determined from
the IMF parameters, age, star-formation regime, in-
tegrated luminosity, and linear size of the SFC.

In the IB SFCs, all the stars were formed simul-
taneously t years ago, and the number of stars with
masses in excess of 10M� will be

Nst(m > 10 M�) = A

Mmax∫
10 M�

mαdm, (2)

where the constantA is determined from the equation

LB(initial, at t = 0) (3)

= A

Mmax∫
Mmin

L∗(m)mαdm.

On the left-hand side of (3), we have the SFC’s B
luminosity at the initial time, t = 0. L∗(m) is the
knownB stellar luminosity function [27],m is a star’s
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cles) for which direct star counts are available.

mass, α is the slope of the IMF, and Mmax is the
upper mass limit of the IMF. For the given stellar
luminosity function, L∗(m) [27], and an IMF slope
less steep than α = −3.32, the main contribution to
the cluster’sB luminosity function (80%) comes from
stars with masses exceeding 4 M�; we accordingly
took the lower limit of the integral in (3) to beMmin =
4 M�. The luminosity LB at time t = 0 is determined
using the evolutionary model for the cluster adopted
here, together with the observed absolute magnitude,
MB(obs), and the derived IMF parameters and age,
t. Finally, the surface number density of stars with
masses exceeding 10 M� is determined from the re-
lation

σNst(m > 10 M�) =
Nst(m > 10 M�)
SFC area (pc2)

. (4)

The total number of stars formed in EB SFCs can
be determined from the SFR, Nst (m > 10 M� per
year), multiplied by the age of the SFC, t. The star-
formation rate was taken to be the ratio of the number
of stars formed at the initial time (2) to the lowest
possible age of the EB SFC given by the evolution-
ary model. The surface number density of stars with
masses exceeding 10 M� was derived as the total
number of stars withmasses exceeding 10M� formed
during the time t divided by the area of the SFC in
square parsecs. Thus, the surface density of stars,Nst
(m > 10 M�), is a function of the luminosity, size,
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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IMF, SFR, age, and the star-formation regime of the
complex.

Figure 6 shows the IMF slope plotted against the
surface number density of stars with masses in excess
of 10M�. We compare the direct IMF slope estimates
derived from star counts for star clusters in the Milky
Way (crosses) and LMC (circles) to our indirect esti-
mates (squares and triangles). We can see from Fig. 6
that the distribution of objects with indirect IMF es-
timates is indistinguishable from that for the Milky
Way and LMC star clusters for which there are direct
estimates from star counts. Both groups of objects
cover the same range, with the density varying over
approximately a factor of 200. Figure 6 confirms the
conclusion of [33] that there is no correlation between
the IMF slope and the star density in SFCs.

8. SFC STAR-FORMING RATE

The SFR in the complexes was derived as the ratio
of the total mass of stars formed at the initial time
for the adopted IMF and the minimum lifetime of the
SFC determined by the evolutionary model. We com-
puted the total mass of initially-formed stars using the
IMF, age, star-formation regime, and the luminosity
of the SFC determined as is described above, simi-
lar to the technique used in the previous section to
estimate the number of stars in the SFC. The SFR
plotted against the size of the SFC is shown in Fig. 7.
Though the IB SFCs (crosses) show systematically
higher SFRs than the EBSFCs (triangles) for a given
size, the distributions for both types of complexes
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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are satisfactory described by a single relation (the
solid line) with the correlation coefficient r = 0.80.
The dotted lines delineate an area of three standard
deviations from this correlation.

The SFR estimates for the SFCs are independent
of their observed linear sizes. Thus, the correlation
between the SFRs and the SFC sizes may relate the
diameter distributions of HII regions found for many
galaxies and the star formation rates in the disks
of these galaxies. Figure 8 compares the calibration
of the star-formation rates based on the SFR–size
relation and the calibration of Kennicutt et al. [34],
which is based on Hα fluxes.

9. DISCUSSION

The separation of the SFCs with different star-
formation regimes in the U −B–luminosity or
U −B–size diagrams appears natural in our ap-
proach, as we can see in the age–size and age–U −B
diagrams in Fig. 9. As noted above, the age–size
relation for star-forming regions was first established
by Efremov and Elmegreen [21] for LMC star clusters
and then in [16] for SFCs in other galaxies.

The two different relations for the IB SFCs and
EB SFCs in the diagrams in Fig. 9 reflect the exis-
tence of the two regimes. For a given age or luminos-
ity, the IB complexes are considerably younger than
the EB complexes. The observed shift in the two-
color diagram (Fig. 3) provides additional evidence
for the age difference between the IB and EB SFCs.
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This age gap can be explained in a natural way. A re-
gion with a continuous star-formation regime and an
age of less than six million years will contain most
of the first-generation high-mass (>40 M�) stars.
The SFR is insufficient to distort the IMF of the
forming stars within such a short time interval, and
the color characteristics of the complex will not differ
from those for an SFC with an instantaneous star-
formation regime: our approach will assign such a
complex to the IB SFC group. The typical gas ve-
locities in an individual HII region are 15–30 km/s—
the velocity of hydrogen atoms at a temperature of
10 000 K, as well as the stellar-wind velocity. For such

 

IB
EB

5 6 7 8 9
log(

 

L

 

B

 

/

 

L

 

�

 

)

1.2

1.6

2.0

2.4

2.8

log
 
S
 
 [pc]
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velocities, the lifetime of an HII region with a typical
size of about 100 pc is three to sevenmillion years. For
this region to exist for a longer time, a gas reservoir
is needed, with a wave of star formation propagating
across it; i.e., a continuous star-formation regime
will be observed in this case. Thus, IB SFCs will
be observed as HII regions until a time equal to the
lifetime of an isolated region of ionized hydrogen, four
to six million years. Older IB SFCs can no longer
contain giant regions of ionized hydrogen.

Our sample includes only those complexes that
are giant HII regions, and thus our approach is not
capable of finding IB SFCs older than six to eight
million years. This is probably one of the physical
distinctions between the regions with instantaneous
and extended star-formation bursts. The presence of
two different relations in Fig. 9 should distinguish
the IB and EB complexes on this model-independent
color–luminosity diagram. This conclusion is justi-
fied if there exists a direct relation between the linear
size and luminosity that is the same for both IB and
EB SFCs. Figure 10 demonstrates that the linear
size–luminosity (S (pc)–LB) relation for both SFC
types is satisfactory described by the same line, with
a correlation coefficient of r = 0.92.

An additional factor should be taken into account
when discussing the different star-formation regimes
in SFCs, having to do with the computed rather
than the observed parameters. The IB complexes are
younger than the EB complexes. In our models, this
means that the burst duration, ∆t, is different for
SFCs with different star-formation regimes: about
one to two million years or less for the IB SFCs
(considerably less than the age of the complex) or
several (or tens of) million years for the EB SFCs
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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(comparable to the age). In other words, our study
indicates that the difference between the regimes is
real. The star-formation burst is either very short or
more prolonged. The SFCs with no acceptable solu-
tions are probably close to the EB group. Their burst
of star formation is over, but the B stars providing
the Lyman photons are still alive. The ages t of some
of the EB SFCs exceed 20 million years, and only
some of them have star-formation-burst durations
that long. Formost complexes that old, star formation
was finished some 10 million years ago, though it was
underway for approximately the same amount of time
(∆t ≈ 10 million years). Stars of different generations
in the upper part of the mass spectrum will have
enough time to form during this period. A generation
lasts only several million years for OB stars.

In this scenario, which seems realistic, the star-
formation history for some of the complexes should
not give a unique solution corresponding to one of
the two considered regimes. We can imagine that,
if we translated the observed SFC colors into star-
formation parameters using a discrete series of mod-
els between the instantaneous-burst and extended-
burst star-formation models considered here, we
would fill the area between the two relations in the
age–size and age–color diagrams with a discrete
series of similar relations. The color–luminosity
diagram would demonstrate a gradual transition
from the instantaneous-burst to the extended-burst
regime. We may return to this problem once the
needed series of theoretical models is available. The
processes regulating the IMF and the SFR history
in the complexes are so diverse and complicated
that they cannot be described fully in a single uni-
fied model. We have considered two extreme star-
formation scenarios in order to cover the whole space
of models for more complex star-formation regimes.
The IB and EB models we used should be considered
tools to remove the ambiguity in the IMF and SFR
regime.

10. CONCLUSIONS

Our main conclusions and results are the follow-
ing.

For the first time, we have been able to distin-
guish SFCs with different star-formation histories in
color–luminosity and two-color diagrams. The po-
sition of an SFC in the color–luminosity (size) dia-
gram depends on the star-formation history (regime).
Instantaneous-burst (IB) complexes are systemati-
cally bluer than extended-burst (EB) complexes, for
a given luminosity (size). In the (U −B)−(B − V )
diagram, the EB complexes have redder U −B color
indices than the IB complexes, for the same B − V
color. The high-metallicity SFCs display only the
instantaneous star-formation regime, never extended
ASTRONOMY REPORTS Vol. 48 No. 11 2004
star formation. Complexes with low metalliticies (so-
lar and lower) can have either star-formation regime.

The differences we have found in the distribu-
tions of SFCswith different star-formation regimes in
three model-independent diagrams for the observed
parameters of SFCs provide direct confirmation of
the sensitivity of empirical evolutionary synthesis to
the star-formation regime. The method’s sensitivity
to different star-formation regimes enabled us to find
for the first time a formal way to resolve the IMF–
SFR-history ambiguity when determining the star-
formation parameters of the complexes. The fraction
of Lyman-continuum photons that do not partici-
pate in the ionization of the HII region (and were
accordingly either absorbed by dust or freely left the
SFC, ionizing the diffuse interstellar gas) was varied
over a wide range, from 10% to 90% in individual
complexes, in agreement with the recent observations
of emission from interstellar diffuse gas [18–20]. The
strong correlation between the predicted number of
Lyman-continuum photons and U −B can be used
to estimate the fraction, 1 − f , of Lyman-continuum
photons that leave the HII region or are absorbed
in the complex itself, contributing to the galaxies’
infrared luminosity.

We found a single correlation between the star-
formation rate and the linear size of the SFCs for both
star-formation regimes, making it possible to study
the distribution of the star-formation rate in galactic
disks using a single observable—the linear size. This
opens wide possibilities for comparisons between the
radial distributions of the star-formation rate and of
matter and luminosity in the disks, as well as for
searches for connections between the distribution of
the star-formation rate and the dynamic properties of
the disks and the spiral structure.
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Abstract—Three-dimensional hydrodynamical simulations of the development of a large-scale instability
accompanying deflagration in the degenerate cores of rotating white dwarfs—progenitors of type-Ia
supernovae—are presented. The numerical algorithm used is described in detail. An explicit, conservative,
Godunov-type TVD difference scheme was employed for the computations. Large-scale convective pro-
cesses are important as the deflagration front propagates. The supernova explosion is strongly nonspher-
ically symmetric; a large-scale front structure emerges and propagates most rapidly along the rotational
axis. The arrival of fresh thermonuclear fuel to the central region of the core can result in flares and the
destruction of the core. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is usual to classify supernovae according to their
optical spectra. Supernovae are classified as type I
(SNI) if hydrogen lines are absent from their spectra
and type II (SNII) if hydrogen lines are present. In
turn, SNI’s are subdivided into types Ia, Ib, and Ic.
SNIa’s are distinguished by the presence of a Si
absorption line at about 6150 Å in the period following
the explosion and by strong Fe emission lines at later
times. Conversely, Si lines are absent from the initial
spectra of SNIb’s and SNIc’s. Relatively strong He
lines (especially near 5876 Å) are typical of SNIb’s,
while they are not observed (or are very faint) in
SNIc’s. Type II, Ib, and Ic supernovae are believed
to be the products of the explosions of massive single
stars (SNII) or binary systems (SNIb and SNIc). The
progenitors of SNIa’s are white dwarfs with masses
close to the Chandrasekhar limit,Mch ∼ 1.44 M� [1],
consisting of a mixture of carbon and oxygen nuclei
and a highly degenerate electron–positron gas. We
study type Ia supernovae here.

The numerous unresolved issues in the theory of
stellar evolution raise some questions in connection
with the choice of an initial model for the presuper-
nova star. Various SNIa models have been proposed.
One type of model involves explosions in binary sys-
tems where the secondary in the system is either
a similar degenerate white dwarf or an evolved red
giant. Models for explosions of white dwarfs with
masses M ∼ Mch or M < Mch are also considered
in the literature. Various evolutionary scenarios have
1063-7729/04/4811-0921$26.00 c©
been suggested for binary systems, including the ab-
sorption of the white dwarf by the secondary or the ac-
cretion of hydrogen and helium onto the white dwarf
due to the transfer of matter from the secondary [2]. It
is necessary to introduce binary systems asSNIa pro-
genitors, since, otherwise, the white dwarf, whose ini-
tial mass is∼0.6 M�, cannot acquire the mass∼Mch
needed for the explosion. As the mass approaches the
Chandrasekhar limit, the temperature in the central
region of the star grows, providing the conditions
required for the ignition of thermonuclear reactions
and the propagation of a deflagration front. Numerical
simulations of this process are rather difficult, since
the deflagration front travels in an extended medium,
with important roles played by gravity and, in the case
of a rotating star, centrifugal forces. These factors
are prerequisites for the development of various large-
scale disturbances. Since some parameters of the
process are indeterminate, it is possible to consider
various scenarios for the explosion [2, 3].
The usual scheme for the classification of super-

novae is based on the spectra of their envelopes, while
the formation of the dense central cores in such stars
is determined by the evolution of the progenitors. This
is a complex process controlled by many factors—
the character of the rotation, the presence of heavy
elements, magnetic fields, convective processes, etc.
A fully consistent evolutionary theory has not yet
been developed, and the formation of a dense carbon–
oxygen core surrounded by a massive envelope seems
quite possible. In this case, the supernova could be
observed as an SNIb, SNIc, or SNII [4].
We describe here our three-dimensional numer-

ical simulations of the convective instability for the
2004 MAIK “Nauka/Interperiodica”
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thermonuclear-deflagration front in the degenerate
matter of a white dwarf with mass M ∼ Mch. We
neglect the influence of the secondary in the system;
i.e., we do not include its gravitational field or mass
exchange between the stars. Our results can also
be used to describe mechanisms for other types of
supernova explosions provided their progenitors have
dense carbon–oxygen cores.

2. FORMULATION OF THE PROBLEM

After a star with a mass of less than 8M� leaves
the main sequence in the course of its evolution and
becomes a red giant, a degenerate carbon–oxygen
core begins to form. This core is a developing white
dwarf. Energy is released in the star by shell energy
sources, with the innermost shell being located at
the core–envelope interface. The mass of the core
increases due to the inflow of deflagration products
from this interface. The temperature and density of
the core gradually increase if nuclear reactions do
not occur. Ultimately, a temperature of ∼3 × 108 K
is reached at the center of the star, and deflagration of
the COmixture sets in. The development of a thermal
carbon–oxygen flash begins, which eventually results
in the thermonuclear explosion of the star. During
the deflagration, an “iron” core forms, which consists
of the products of thermonuclear burning of carbon
and oxygen; energy is released, increasing the entropy
of the core material [5, 6]. Thermal and mechanical
equilibrium is disrupted in the system, and pulsations
begin to develop, giving rise to large-scale hydrody-
namic instabilities, as we show below. It is important
that, as shown by Imshennik et al. [7], a deflagration
regime is characteristic of thermonuclear burning of a
degenerate carbon–oxygen core.
We consider the rotating core of a presupernova

in which the development of thermal instability in a
deflagration regime has begun. The inner portion of
the core consists of iron-peak elements (we denote
this region the “iron core”) and an outer CO layer.
The outer helium layer does not appreciably affect
the processes in the central regions, and we did not
include it in our computations. According to themod-
ern theory of stellar evolution [8], the mass of the CO
layer together with the iron core is about 1.5 M�,
close to the Chandrasekhar limit.Wewill assume that
the mass fractions of carbon and oxygen are equal.
The ratio of the rotational energy T to the gravita-
tional energyW is T/|W | = 0.01, which corresponds
to an angular rotational rate of Ω0 = 2.0732 s−1 [9].
The radius of the star is R0 = 1.5 × 108 cm, and the
density at the center is ρ0 = 2 × 109 g/cm3. We will
use a tabulated equation of state for fully ionized mat-
ter p = p(ρ, S) that describes the electron–positron
component in terms of Fermi–Dirac statistics using
various asymptotics and the ion component in an
ideal-gas approximation [10].

3. EQUILIBRIUM CONFIGURATION

We construct an equilibrium configuration for a
rotating CO sphere with constant entropy S = S0 =
const. It follows from the thermodynamic relation-
ship TdS = dH − V dp that, when S = const, the
enthalpy H =

∫
dp/ρ depends solely on the density:

H = H(ρ). In this case, the equilibrium equation has
the form [11]

H + Φg −
R∫

0

Ω2ω̃dω̃ = C, (1)

where Φg is the gravitational potential, Ω is the an-
gular rotational velocity, ω̃ is the distance from the
rotational axis, andC = const. In a rigid-rotation ap-
proximation, Ω = Ω0 = const, Eq. (1) can be written

H + Φg − Ω2
0

ω̃2

2
= C. (2)

The constant C can be found from (2) when ω̃ = 0:
C = H(ω̃ = 0) + Φg(ω̃ = 0). (3)

We calculate the gravitational potential using the for-
mula [11]

Φg = −G
∫

ρ(r′)
|r− r′|dr

′ = −4πG

∞∫
0

dr′ (4)

×
1∫

0

dµ′
∞∑

n=0

f2n(r, r′)P2n(µ)P2n(µ′)ρ(µ′, r′),

where

f2n(r, r′) =

{
(r′)2n+2/r2n+1, r′ < r,

r2n/(r′)2n−1, r′ > r,

µ = cos θ is the cosine of the angle to the rotational
axis, and P2n(µ) are the Legendre polynomials. We
will use the following algorithm to calculate the dis-
tributions of the density ρ = ρ(r, θ) and gravitational
potential Φg = Φg(r, θ) of the rotating sphere.
(1) Using the known spherically symmetric den-

sity distribution ρ = ρ(r) as a zeroth approximation,
we calculate Φg from (4).
(2) Since H = H(ρ) is a known function when

S = const, we find C from (3).
(3) We computeH = H(r, θ) using (2).
(4) Based on the tabulated functionH = H(ρ), we

obtain ρ(r, θ) fromH(r, θ).
(5) We calculate Φg(r, θ) using (4).
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We then return to step (2) and repeat the cycle
until the condition |Cn −Cn−1|/|Cn| < 1 × 10−12 is
satisfied; here, Cn is the nth iteration for the con-
stant C.
The spherically symmetric density distribution ρ =

ρ(r) can be obtained for a nonrotating CO sphere by
solving the system of equations


dp

dr
= −ρGm

r2
,

dm

dr
= 4πρr2,

(5)

where p is the pressure and m is the mass of the
sphere of radius r. For a barotropic equation of state
p = P (ρ), (5) assumes the form


dp

dr
=

1
dP/dρ

(
−ρGm

r2

)
,

dm

dr
= 4πρr2

and can be solved using a Runge–Kutta method with
the boundary conditions ρ = ρ0 and m = 0 at the
center.
Thus, we have constructed a stable equilibrium

configuration for a rotating CO sphere with constant
entropy, S = S0.

4. DEFLAGRATION

We will consider here and below a carbon–oxygen
core with a burned central region consisting of iron-
peak elements. The boundary of the iron core is a de-
flagration front, whose width we will neglect. We will
also neglect the propagation speed of the deflagration
front, since it is much smaller than the sound speed.
The heat release Q due to the reaction

212
6C+ 216

8O −→ 56
26Fe+ Q

is determined as Q = (2mC + 2mO −mFe)c2. The
mass m(A,Z) of the element A

ZX can be calcu-
lated using the formulam(A,Z)c2 = (A−Z)mnc

2 +
Zmpc

2 −Qb(A,Z), where Qb is the bond energy:

Qb(126C) = 0.92165 × 108 eV,

Qb(168O) = 1.27624 × 108 eV,

Qb(5626Fe) = 4.92280 × 108 eV.

The burned region of the core has an increased
entropy. This disrupts the equilibrium and gives rise
to a large-scale convective instability, which we will
study by solving the appropriate three-dimensional
hydrodynamic equations. It can be shown that the
lowest perturbation modes should develop most
rapidly [12]. The core and envelope are described by
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different equations of state: P = PFe(ρ, S) and P =
PCO(ρ, S). We will use the function S = S(r, θ) as
the initial data for our calculations, which undergoes a
jump at the interface. In a first approximation, we can
assume that the functions describing the density, ρ =
ρ(r, θ), and gravitational potential, Φg = Φg(r, θ), are
continuous at t = 0 and coincide with those obtained
for a CO sphere.

5. HYDRODYNAMICAL EQUATIONS

If the stellar material can be considered a com-
pressible inviscid fluid, the hydrodynamical equations
in Eulerian variables are:



∂ρ

∂t
+ divm = 0,

∂mi

∂t
+

∂Πik

∂xk
= ρgi,

∂(ρS)
∂t

+ div(ρSv) = 0,

(6)

where Πik = Pδik + ρvivk, m = ρv is the momen-
tum, and g is the free-fall acceleration. We chose a
spherical coordinate system in which (x1, x2, x3) =
(r, θ, φ) and the Lame coefficients are (h1, h2, h3) =
(1, r, r sin θ). Formulas for the divergences of a vector
and of a second-rank tensor in a curvilinear coordi-
nate system are given in the Appendix. It is conve-
nient to represent the system (6) in a divergence form.
To this end, we introduce a symbolic density vectorw,
which appears in the second derivative with respect to
time, and the density-flux vectors F(w), G(w), and
H(w), which appear in the spatial partial derivatives:

wt +
1
r2

∂

∂r
(r2F) +

1
r sin θ

∂

∂θ
(sin θG) (7)

+
1

r sin θ
∂

∂φ
H = S,

where

w = (ρ,mr,mθ,mφ, ρS)T ,

F = (mr, p + ρv2
r , ρvθvr, ρvφvr,mrS)T ,

G = (mθ, ρvrvθ, p + ρv2
θ , ρvθvφ,mθS)T ,

H = (mφ, ρvrvφ, ρvθvφ, p + ρv2
φ,mφS)T ,

S = (0, ρgr +
1
r

[2p + ρ(v2
θ + v2

φ)],

ρgθ +
1
r

(p + ρv2
φ) cot θ − 1

r
ρvrvθ,

ρgφ − ρvφ

r
(vr + vθ cot θ), 0)T .

The system (7) is hyperbolic, so that the Jacobians
A = ∂F/∂w, B = ∂G/∂w, and C = ∂H/∂w have a
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full set of left and right eigenvectors corresponding to
real eigenvalues. The matrices A, B and C have the
form

A =




0 1 0 0 0

(pρ)s −
S

ρ
(ps)ρ − v2

r 2vr 0 0
1
ρ

(ps)ρ

−vrvθ vθ vr 0 0

−vrvφ vφ 0 vr 0

−vrS S 0 0 vr



,

B =




0 0 1 0 0

−vθvr vθ vr 0 0

(pρ)s −
S

ρ
(ps)ρ − v2

θ 0 2vθ 0
1
ρ

(ps)ρ

−vθvφ 0 vφ vθ 0

−vθS 0 S 0 vθ



,

C =




0 0 0 1 0

−vφvr vφ 0 vr 0

−vφvθ 0 vφ vθ 0

(pρ)s −
S

ρ
(ps)ρ − v2

φ 0 0 2vφ
1
ρ

(ps)ρ

−vφS 0 0 S vφ



.

The following eigenvalues form the solution of the
characteristic equation det |λE −A| = 0: λ1 = vr +
c, λ2 = vr − c, λ3 = λ4 = λ5 = vr, where c =

√
(pρ)s

is the sound speed. The solution of the equation
Aei = λiei yields the corresponding right eigenvec-
tors ei:

e1 =




1

vr + c

vθ

vφ

S



, e2 =




1

vr − c

vθ

vφ

S



,

e3 =




1

vr

0

0

−ρ(pρ)s

(ps)ρ
+ S



, e4 =




0

0

vθ

0

0



, e5 =




0

0

0

vφ

0



.

Similarly, we have for the matrix B λ1 = vθ + c, λ2 =
vθ − c, λ3 = λ4 = λ5 = vθ, and

e1 =




1

vr

vθ + c

vφ

S



, e2 =




1

vr

vθ − c

vφ

S



,

e3 =




1

0

vθ

0

−ρ(pρ)s

(ps)ρ
+ S



, e4 =




0

vr

0

0

0



, e5 =




0

0

0

vφ

0



.

For the matrix C, we find λ1 = vφ + c, λ2 = vφ − c,
λ3 = λ4 = λ5 = vφ, and

e1 =




1

vr

vθ

vφ + c

S



, e2 =




1

vr

vθ

vφ − c

S



,

e3 =




1

0

0

vφ

−ρ(pρ)s

(ps)ρ
+ S



, e4 =




0

vr

0

0

0



,

e5 =




0

0

vθ

0

0



.

6. NUMERICAL SIMULATIONS

To find a numerical solution to system (7), wemust
break up the computational domain into cells. The
solution will be a piecewise-smooth function. We ref-
erence the density vectorw to the cell centers and the
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density-flux vectors F,G and H to their boundaries.
The method of Roe [13] was used to construct the
finite-difference scheme.

Let us consider two adjacent cells in which the
state of the substance is characterized by the quanti-
ties wL and wR, which are close to some mean state
w. We expand ∆w = wR − wL in the eigenvectors
of each of the matrices A, B, and C; i.e., we find
the coefficients α1, α2, α3, α4, and α5 satisfying the
relationship

∆w =
5∑

i=1

αiei. (8)

We obtain the following algebraic system for the ma-
trixA:



∆ρ = α1 + α2 + α3,

∆(ρvr) = α1

(
vr +

√
(pρ)s

)
+ α2

(
vr −

√
(pρ)s

)
+ α3vr,

∆(ρvθ) = (α1 + α2 + α4)vθ,

∆(ρvφ) = (α1 + α2 + α5)vφ,

∆(ρS) = α1S + α2S + α3

(
−ρ(pρ)s

(ps)ρ
+ S

)
.

(9)

Since wL and wR are close to some mean w, we can
use the expression ∆(ρU) = U∆ρ + ρ∆U + O(∆2),
where U = vr, vθ, vφ, or S. Then, to second order, the
solution of (9) is




α1 =
1
2

(ps)ρ

(pρ)s
∆S +

1
2

∆ρ +
1
2
ρ∆vr

1√
(pρ)s

,

α2 =
1
2

(ps)ρ

(pρ)s
∆S +

1
2

∆ρ− 1
2
ρ∆vr

1√
(pρ)s

,

α3 = −(ps)ρ

(pρ)s
∆S,

α4 =
ρ

vθ
∆vθ −

(ps)ρ

(pρ)s
∆S,

α5 =
ρ

vφ
∆vφ − (ps)ρ

(pρ)s
∆S.

(10)

Similarly, the coefficients α1, α2, α3, α4, and α5 sat-
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isfying (8) for the matrix B have the form


α1 =
1
2

(ps)ρ

(pρ)s
∆S +

1
2

∆ρ +
1
2
ρ∆vθ

1√
(pρ)s

,

α2 =
1
2

(ps)ρ

(pρ)s
∆S +

1
2

∆ρ− 1
2
ρ∆vθ

1√
(pρ)s

,

α3 = −(ps)ρ

(pρ)s
∆S,

α4 =
ρ

vr
∆vr −

(ps)ρ

(pρ)s
∆S,

α5 =
ρ

vφ
∆vφ − (ps)ρ

(pρ)s
∆S.

(11)

We have for the matrix C


α1 =
1
2

(ps)ρ

(pρ)s
∆S +

1
2

∆ρ +
1
2
ρ∆vφ

1√
(pρ)s

,

α2 =
1
2

(ps)ρ

(pρ)s
∆S +

1
2

∆ρ− 1
2
ρ∆vφ

1√
(pρ)s

,

α3 = −(ps)ρ

(pρ)s
∆S,

α4 =
ρ

vr
∆vr −

(ps)ρ

(pρ)s
∆S,

α5 =
ρ

vθ
∆vθ −

(ps)ρ

(pρ)s
∆S.

(12)

We now consider two radially adjacent cells. We can
easily check that the coefficients (10) also satisfy the
relationship

∆F =
5∑

i=1

λiαiei, (13)

for these cells, where∆F is the difference of the radial
density fluxes for the stateswL andwR:

∆F = (∆(ρvr),∆p + ∆(ρv2
r ),∆(ρvθvr),

∆(ρvφvr),∆(ρvrS))T ,

∆(ρU1U2) = U1U2∆ρ + ρU1∆U2

+ ρU2∆U1 + O(∆2),
(U1,2 = vr, vθ, vφ or S).

Equations (8) and (13) are satisfied for wL and wR

that are close to some mean state w. Let us now
assume that wL and wR are arbitrary; instead of (8)
and (13), we require that{

∆w =
∑5

i=1 α
′
ie

′
i,

∆F =
∑5

i=1 λ
′
iα

′
ie

′
i,

(14)

where

λ′1,2,3,4,5 = v′r + c′, v′r − c′, v′r, v
′
r, v

′
r,
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e′1 =




1

v′r + c′

v′θ

v′φ

S′



, e′2 =




1

v′r − c′

v′θ

v′φ

S′



,

e′3 =




1

v′r

0

0

−ρ′ (pρ)′s
(ps)′ρ

+ S′



,

e′4 =




0

0

1

0

0



, e′5 =




0

0

0

1

0



,

α′
1 =

1
2

(ps)′ρ
(pρ)′s

∆S +
1
2

∆ρ +
1
2
ρ′∆vr

1√
(pρ)′s

,

α′
2 =

1
2

(ps)′ρ
(pρ)′s

∆S +
1
2

∆ρ− 1
2
ρ′∆vr

1√
(pρ)′s

,

α′
3 = −

(ps)′ρ
(pρ)′s

∆S, α′
4 = ρ′∆vθ −

(ps)′ρ
(pρ)′s

v′θ∆S,

α′
5 = ρ′∆vφ −

(ps)′ρ
(pρ)′s

v′φ∆S.

Wehave factored out v′θ and v
′
φ from e′4 and e′5 to avoid

indeterminacy of α′
4 and α′

5 at v
′
θ = 0 and v′φ = 0.

Upon writing (14) explicitly and solving the resultant
algebraic system of equations in ρ′, v′r, v

′
θ, v

′
φ, and S

′,
we can show that [14, 15]

ρ′ =
√
ρLρR, U ′ =

√
ρLUL +

√
ρRUR√

ρL +
√
ρR

, (15)

U = vr, vθ, vφ, S.

To derive (15), we used the relationship

∆p = (pρ)′s∆ρ + (ps)′ρ∆S.

Similarly, using (11) and (12) instead of (10), we
can show that Eqs. (15) are valid not only for cells
adjacent in radius but also for cells adjacent in θ or φ.
In the calculations, the derivatives of the pressure

(pρ)′s and (ps)′ρ must be computed according to the
formulas [16]

(pρ)′s = (pρ)′′s

(
1 +

(pρ)′′s∆ρ(
(ps)′′ρ∆S

)2 + ((pρ)′′s∆ρ)2
δp

)
,

(ps)′ρ = (ps)′′ρ

(
1 +

(ps)′′ρ∆S(
(ps)′′ρ∆S

)2 + ((pρ)′′s∆ρ)2
δp

)
,

where

δp = ∆p−
(
(pρ)′′s∆ρ + (ps)′′ρ∆S

)
.

The derivatives (pρ)′′s and (ps)′′ρ can be determined
from the tabulated equation of state p = P (ρ, S) in
terms of the known quantities ρ′ and S′.
In the Roe scheme, the density fluxes at the

boundary between two adjacent cells (e.g., those with
radial numbers i and i + 1) are calculated using the
formula

Fi+1/2 =
Fi + Fi+1

2
− 1

2

5∑
i=1

|λ′i|α′
ie

′
i. (16)

To construct the finite-difference scheme, we must
carry out some simple manipulation of the original
system (7). We write the equations for mθ and mφ

explicitly:

∂mθ

∂t
+

1
r2

∂

∂r
(r2ρvrvθ) (17)

+
1

r sin θ
∂

∂θ

[
sin θ(p + ρv2

θ)
]

+
1

r sin θ
∂

∂φ
(ρvθvφ)

= ρgθ +
1
r

(
p + ρv2

φ

)
cot θ − ρvrvθ

r
,

∂mφ

∂t
+

1
r2

∂

∂r
(r2ρvrvφ) (18)

+
1

r sin θ
∂

∂θ
(sin θρvθvφ) +

1
r sin θ

∂

∂φ
(p + ρv2

φ)

= ρgφ − ρvφ

r
(vr + vθ cot θ).

It is convenient to introduce the term −1/rρvrvθ in
(17) into the differentiated quantity:

1
r2

∂

∂r
(r2ρvrvθ) +

ρvrvθ

r
=

1
r3

∂

∂r

(
r3ρvrvθ

)
.

Similarly, we have for (18):

1
r2

∂

∂r
(r2ρvrvφ) +

ρvrvφ

r
=

1
r3

∂

∂r

(
r3ρvrvφ

)
,

1
r sin θ

∂

∂θ
(sin θρvθvφ) +

ρvθvφ cot θ
r

=
1

r sin2 θ

∂

∂θ
(sin2 θρvθvφ).

System (7) then assumes the form
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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∂ρ

∂t
+

1
r2

∂

∂r
(r2mr) +

1
r sin θ

∂

∂θ
(sin θmθ) +

1
r sin θ

∂

∂φ
mφ = 0,

∂mr

∂t
+

1
r2

∂

∂r

[
r2(p + ρv2

r )
]

+
1

r sin θ
∂

∂θ
(sin θρvrvθ) +

1
r sin θ

∂

∂φ
(ρvrvφ) = ρgr +

2p
r

+
ρ

r

(
v2
θ + v2

φ

)
,

∂mθ

∂t
+

1
r3

∂

∂r

(
r3ρvrvθ

)
+

1
r sin θ

∂

∂θ

[
sin θ(p + ρv2

θ)
]

+
1

r sin θ
∂

∂φ
(ρvθvφ) = ρgθ +

1
r

(
p + ρv2

φ

)
cot θ,

∂mφ

∂t
+

1
r3

∂

∂r

(
r3ρvrvφ

)
+

1
r sin2 θ

∂

∂θ
(sin2 θρvθvφ) +

1
r sin θ

∂

∂φ
(p + ρv2

φ) = ρgφ,

∂

∂t
(ρS) +

1
r2

∂

∂r
(r2mrS) +

1
r sin θ

∂

∂θ
(sin θmθS) +

1
r sin θ

∂

∂φ
(mφS) = 0.

(19)
We will replace the derivatives by finite-difference
expressions of the form

∂w
∂t

=
wn+1 − wn

τ
,

1
r2

∂

∂r
(r2F) = 3

r2
i+1/2Fi+1/2 − r2

i−1/2Fi−1/2

r3
i+1/2 − r3

i−1/2

,

1
r3

∂

∂r

(
r3F

)
= 4

r3
i+1/2Fi+1/2 − r3

i−1/2Fi−1/2

r4
i+1/2 − r4

i−1/2

,

1
r sin θ

∂

∂θ
(sin θG)

=
sin θj+1/2Gj+1/2 − sin θj−1/2Gj−1/2

ri

(
cos θj−1/2 − cos θj+1/2

) ,

1
r sin2 θ

∂

∂θ
(sin2 θG)

=
sin2 θj+1/2Gj+1/2 − sin2 θj−1/2Gj−1/2

ri sin θj

(
cos θj−1/2 − cos θj+1/2

) ,

1
r sin θ

∂

∂φ
H =

Hk+1/2 − Hk−1/2

ri sin θj(φk+1/2 − φk−1/2)
,

where wn is the density vector at the nth time step,
τ is the time step, integer indices refer to cell centers,
and half-integer indices refer to cell boundaries. Note
that all quantities are actually numbered by three
indices on a three-dimensional grid; however, to avoid
makng the formulas unwieldy, we will omit repeated
indices. The indices i, j, and k vary with r, θ, and
φ, respectively. The term 2p/r on the right-hand side
of the second equation of (19) cancels out the cor-
responding term on the left-hand side. To preserve
this property in the finite-difference approximation,
the following relationship must be satisfied when p =
const:

3
r2
i+1/2 − r2

i−1/2

r3
i+1/2 − r3

i−1/2

p =
2p
r
.
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We then find that

rs =
2
3

r2
i−1/2 + ri−1/2ri+1/2 + r2

i+1/2

ri−1/2 + ri+1/2

and use 2p/rs instead of 2p/r in the finite-difference
equation. Similarly, for the term p cot θ/r on the
right-hand side of the third equation of (19), we
should set r = ri and

cot θ =
sin θj+1/2 − sin θj−1/2

cos θj−1/2 − cos θj+1/2
.

The free-fall acceleration is determined by the formula
g = −�Φg. We neglect perturbations of the gravita-
tional potential; i.e., we specify Φg in tabulated form
as the initial condition and assume it to be time-
independent. The components of g can be calculated
using the formulas

gr = −
Φgi+1/2 − Φgi−1/2

ri+1/2 − ri−1/2
,

gθ = −
Φgj+1/2 − Φgj−1/2

ri(θj+1/2 − θj−1/2)
.

In view of the axial symmetry, Φg = Φg(r, θ) and
gφ = 0. All other quantities on the right-hand sides
of (19) are specified at the cell centers. The time step
τ is determined by the Courant condition and can be
calculated at each, nth, step according to the formula

τ = CCour min
i,j,k

{
ri+1/2 − ri−1/2

|vr| + c
,

ri(θj+1/2 − θj−1/2)
|vθ| + c

,
ri sin θj(φk+1/2 − φk−1/2)

|vφ| + c

}
,

where CCour = const is the Courant number, 0 <
CCour < 1, and c is the sound speed. The minimum is
taken over the entire computational domain, but τ is
determined by cells with small r due to the properties
of the spherical grid.
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Fig. 1. Changes in the shape of the iron core during the
development of large-scale convection.

7. RESULTS

In our computations, we made all quantities di-
mensionless using the following characteristic pa-
rameters:
(1) radius R0 = 1 × 108 cm,

(2) density ρ0 = 2 × 109 g/cm3,

(3) pressure p0 = 1.2132 × 1027 dyn/cm2,

(4) entropy S0 = kb/µ = 8.3141 × 107 cm2/s2 K,
where kb is Boltzmann’s constant and µ is the atomic
mass unit,
(5) free-fall acceleration gr0 = p0/R0ρ0 = 6.0663×

109 cm/s2,

(6) velocity v0 =
√
p0/R0 = 3.4832 × 109 cm/s,

and
(7) time t0 = R0/v0 = 0.0287 s.
The dimensionless radius of the computational do-

main is 1.5. However, the initial equilibrium configu-
ration was calculated for a radius of 1.8. In this way,
we take into account the gravitation of layers of mat-
ter located outside the computational domain. The
radius of the iron core formed by the time of the onset
of the convective instability was assumed to be 0.25.
The background entropy (the entropy of the rotating
CO sphere) is S0 = 0.3564, which corresponds to a
temperature at the center of the star of T0 = 1× 108 K
and a density of ρ0 = 2 × 109 g/cm3. The angular
rotational speed is Ω0 = 2.0732 s−1. At t = 0, we
pass to the equation of state for iron in the central
region, r ≤ 0.25, and increase the entropy by a factor
of ten. The values rcore = 0.25 and Score = 10S0 are
free parameters of the problem. They are determined
by the deflagration process, which controls the speed
of propagation of the front, and by the dynamics of
the core pulsations. We do not consider the relation-
ship between these processes here. In a future study,
using a more consistent formulation of the problem,
and taking into account the deflagration rate, these
parameters will be automatically determined during
the computations.
We carried out our computations on an Nφ ×

Nθ ×Nr : 40 × 80 × 40 grid with a Courant num-
ber of CCour = 0.8 using historical boundary condi-
tions. In the course of the evolution, iron is mixed
with unburned carbon and oxygen. Accordingly, we
calculated the pressure using the formula p = (1 −
α)pCO + αpFe; i.e., we assumed a superposition of
two equations of state. Since the entropy depends
on the amount of matter that has burned (the iron
content of the mixture), the coefficient α = α(S) is a
function of the entropy. We used the linear approxi-
mation α = (S − S0)/(Score − S0).
Figure 1 shows entropy contours at the boundary

of the iron core. Since the calculations implement
a locally adiabatic approximation, i.e., they assume
conservation of the entropy at any point of the La-
grangian coordinate space, these entropy levels char-
acterize the transfer of material. As the computations
progress, the entropy contours illustrate the departure
of the shape of the core from the initial, nearly spheri-
cally symmetric configuration up until the time when
the core breaks up and the regions of outflow acquire
a jetlike structure.
Figure 2 illustrates the development of the explo-

sion shown by the entropy contours and the momen-
tum field in the meridional plane. Two blobs con-
sisting of a mixture of the deflagration products with
the initial carbon and oxygen begin to rise along the
rotational axis. We can see that, by 0.05–0.07 s,
the core loses its ellipsoidal shape, and its inner part
begins to resemble two oppositely directed jets. Note
the formation of two toroidal eddies encircling the jets
(Fig. 3). This flow structure is due to the mushroom
instability of a jet penetrating into a medium. Another
interesting feature is the formation of streams from
the unburned layers of the core to the central region.
These streams have an equatorial configuration. The
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Fig. 4. Density distribution.
last two graphs in Fig. 2 (t = 0.085 and 0.105 s)
exhibit only the jet pattern. During the explosion, vir-
tually all the burned material emerges at the surface,
with a carbon–oxygen mixture again appearing at the
center.

The speed with which the blobs rise increases to
a Mach number of about 1.5, which should result in
the formation of a shock wave with an entropy jump
behind the shock front. However, we cannot trace the
formation of this shock, since we use hydrodynamical
equations in a form that does not admit discontinuous
solutions for the entropy (we approximate local adia-
baticity). To resolve the shock-front structure in detail
and study its influence on the explosion, the following
ASTRONOMY REPORTS Vol. 48 No. 11 2004
system must be used in place of (6):


∂ρ

∂t
+ div(ρv) = 0,

∂ρvi

∂t
+

∂Πik

∂xk
= ρgi,

∂

∂t

(
ρv2

2
+ ρε

)
+ div

[
ρv
(
v2

2
+

p

ρ
+ ε

)]
= ρvg,

(20)

where ε is the internal energy per unit mass of the
substance. Switching the computations from (6) to
(20) and back as necessary is also possible. This
version of the procedure will be analyzed in a future
study.
Figure 4 shows the evolution of the density dis-

tribution. The xy plane is the meridional plane, ro-
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tation occurs about the y axis, and density is plotted
along the z axis. We can see that the density in the
central region again grows during convection and
the transport of material from the outer layers to the
center. This is due to the fact that the unburned pri-
mary material has a lower temperature. Therefore, the
conditions required for deflagration again arise in the
central region, and a cyclic process forming a series
of emerging large-scale structures is possible in the
system.

During the formation of the iron core, its pressure
increases by a factor of about 3.5. As a result, the
primary disturbance is in the form of an acoustic
wave, whose speed corresponds to a Mach number of
no more than 0.5. The formation of this wave is prede-
termined by the initial configuration of themodel. This
disturbance does not substantially affect convective
processes, since it leaves the computational domain
long before convection begins. Furthermore, recall
that the initial disturbance is spherically symmetric.
The velocity field behind this disturbance becomes
spherically symmetric, and the velocity is fairly low, so
that it does not disrupt the core. The pressure jump
rapidly becomes smoothed. This process could give
rise to damped pulsations if there is no convective
instability.

8. CONCLUSIONS

We have carried out numerical simulations of
the development of a large-scale instability of the
thermonuclear-deflagration front during the explo-
sion of a type Ia supernova. Large-scale structures
form in the rotating presupernova, which rise from
the center to the outer layers of the star. This pro-
cess is of paramount importance for understand-
ing the explosion mechanism. The propagation of
the deflagration front in type Ia supernovae is a
strongly nonspherically symmetric process, and a
large-scale front structure emerges, traveling most
rapidly along the rotational axis. Fresh thermonuclear
fuel continuously arrives at the center of the core,
which should result in new flashes of burning. The
fraction of burned CO fuel remains an open question.
This quantity affects the peak height of the light
curve of the supernova, and is commonly used to
estimate cosmological distances. Another question
concerns the production of chemical elements and
the interpretation of light curves for an explosion
lacking spherical symmetry. Khokhlov [17] carried
out numerical simulations of the development of
large-scale structures in a nonrotating supernova
core. These resemble the structures that, according
to [18], emerge during the development of large-scale
convection.
Our results are indirectly supported by observa-
tions of SN 1987A, which is located in the Large
Magellanic Cloud at a distance of 180 000 light
years from the Earth. Although SN 1987A is a
type II supernova, to all appearances, a similar
explosion mechanism was realized there. Optical
images of the SN 1987A explosion were obtained
in 1995–2002 using the Hubble Space Telescope
with violet, yellow, and red filters (see http://cfa-
www.harvard.edu/cfa/oir/Research/sins.html). It is
likely that there is no compact object at the center,
so that the presupernova star exploded completely.
During the destruction of this star, an elongated
structure aligned with the rotational axis and normal
to the plane of the ring is observed. This corresponds
to the development of thermal instability in the
degenerate CO core of the presupernova during its
complete destruction. A Chandra X-ray image of
SN 1987A obtained in January 2000 can be found at
http://chandra.harvard.edu/photo/cycle1/sn1987a/).
The results of our three-dimensional hydrodynamic
calculations agree with this model for the explosion.
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Appendix

1. The divergence of a vector diva has the form

diva =
1

h1h2h3

[
∂

∂x1
(h2h3a1) +

∂

∂x2
(h1h3a2)

+
∂

∂x3
(h1h2a3)

]
.

2. The divergence of a second-rank tensor divT
has the form

(divT)(1) =
1

h2h3

[
∂

∂x1

(
h2h3

h1
T11

)
+

∂

∂x2
(h3T12)

+
∂

∂x3
(h2T13)

]
− T11

h2
1

∂h1

∂x1
− T22

h1h2

∂h2

∂x1
− T33

h1h3

∂h3

∂x1

+
(T12 + T21)

h1h2

∂h1

∂x2
+

(T13 + T31)
h1h3

∂h1

∂x3
,

(divT)(2) =
1

h1h3

[
∂

∂x1
(h3T21) +

∂

∂x2

(
h1h3

h2
T22

)

+
∂

∂x3
(h1T23)

]
− T11

h1h2

∂h1

∂x2
− T22

h2
2

∂h2

∂x2
− T33

h2h3

∂h3

∂x2
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+
(T12 + T21)

h1h2

∂h2

∂x1
+

(T23 + T32)
h2h3

∂h2

∂x3
,

(divT)(3) =
1

h1h2

[
∂

∂x1
(h2T31) +

∂

∂x2
(h1T32)

+
∂

∂x3

(
h1h2

h3
T33

)]
− T11

h1h3

∂h1

∂x3
− T22

h2h3

∂h2

∂x3

− T33

h2
3

∂h3

∂x3
+

(T13 + T31)
h1h3

∂h3

∂x1
+

(T23 + T32)
h2h3

∂h3

∂x2
.
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Abstract—The impact of variations in the fraction of binary stars producing type Ia supernovae, β, on the
chemical evolution of spiral galaxies is analyzed numerically. Even modest variations in β appreciably affect
the evolution of the relative abundances of iron-group and alpha-process elements. If a substantial number
of the damped Lα systems manifest in the spectra of quasars are due to spiral galaxies, the large scatter
of the abundances of various elements displayed by these systems can be accounted for by variations in β.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that a substantial fraction of stars
are members of binary or multiple systems [1]. Es-
timates for the solar neighborhood show that nearly
half of all G and M dwarfs are in binaries [2, 3].
According to available observations, depending on
the type of star and the stellar population to which it
belongs, the fraction of stars in binary systems varies
from 30 to 60% [1–6].

In spite of the fact that nearly half of all stars are in
binaries, as a rule, models for galactic evolution have
taken into account only single stars in calculations of
type Ia supernovae. Since it is thought that type Ia
supernovae result from the thermonuclear explosion
of accreting CO white dwarfs in intermediate-mass
close binaries, of the entire range of possible binary
masses, systems with total masses from 3 to 16 M�
are explicitly included in the modeling. The fraction
of binary systems giving rise to type Ia supernovae is
a parameter in models for the chemical composition
of galaxies, whose value is determined from observa-
tions of the rate of type Ia and type II supernovae.

The parameter β specifying the fraction of
intermediate-mass binary stars whose evolution ends
in type Ia supernovae in the standard scenario was
first defined by Matteucci and Greggio [7], who
derived the value β = 0.1 based on the observed
supernova rate in the solar neighborhood. This value
has been adopted in nearly all subsequent models for
the chemical evolution of galaxies, although it is not
clear that it is universal. We showed earlier [8] that,
in the case of spiral galaxies, it is feasible to allow β
to vary and determine its value based on agreement
between the theoretical and observed [9] supernova
rates. Depending on the type of spiral galaxy con-
sidered, good agreement with the observations of [9]
1063-7729/04/4811-0934$26.00 c©
was obtained for β = 0.05−0.1. Analysis for a more
complex, multizone model for the chemical evolution
of the Galaxy leads to similar values, β = 0.05−0.09
[10], but the specific value derived depends on the
choice of the initial mass function.

Thus, the model for spiral galaxies studied in [8]
yielded β values in the range 0.05−0.1 that were con-
sistent with the observed supernova rates. We inves-
tigate here the applicability of this result to the chem-
ical evolution of the absorbing systems producing
saturated lines in quasar spectra, and whether the in-
ferred variations of β can, to some extent, explain the
observed dispersion in the elemental abundances in
these systems. Section 2 gives a general description
of the model and its parameters, Section 3 contains
our results, and Section 4 presents a discussion of the
problem studied, with our conclusions summarized in
Section 5.

2. DESCRIPTION OF THE MODEL

Our model for the chemical and photometric evo-
lution of spiral galaxies, including a self-consistent
calculation of the dust component of the interstellar
medium, was presented in [8]. The model is based
on the standard chemical-evolution equations in the
one-dimensional approximation of [7]:

dG(X, t)/dt = −Ψ(t)Z(X, t) (1)

+

Mmin
b∫

mlow

Ψ(t− τm)Qm(X, t− τm)ϕ(m)dm

+ β

Mmax
b∫

Mmin
b

ϕ(Mb)

[ 0.5∫
µmin

f(µ)Ψ(t− τm2)
2004 MAIK “Nauka/Interperiodica”
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×Qm(X, t− τm2)dµ

]
dMb + (1 − β)

×
Mmax

b∫

Mmin
b

Ψ(t− τm)Qm(X, t− τm)ϕ(m)dm

+

mup∫
Mmax

b

Ψ(t− τm)Qm(X, t− τm)ϕ(m)dm

+ ZA(X)A(t) − ZW (X)W (t),

where ϕ(m) is the initial mass function (IMF) for
stars with masses in the range (mlow,mup), normal-
ized to unity, Ψ(t) is the star-formation rate in the
galaxy, G(X, t) = M(X, t)/Mt(t) is the total relative
mass concentration of chemical element X in the
gaseous and solid phases, Z(X, t) = G(X, t)/G(t)
the total mass concentration of element X in the
gaseous and solid phases, τ(m) the lifetime of stars
with mass m on the main sequence, ZA(X) is the
mass concentration of element X in the accreting
gas, and ZW (X) is the mass concentration of ele-
ment X in the galactic wind.Qm(X, t− τm) = (m−
mi)/m is the mass fraction of element X ejected by
a star of mass m. It is known that supernovae are
the main sources of heavy elements in the interstellar
medium. The mass fraction Qm(X, t) of element X
ejected by a star of mass m for type Ia supernovae
determined for model W7 in [11] is in good agree-
ment with the observed spectra of typical type Ia
supernovae. The data presented in [12] are commonly
accepted for the nucleosynthesis occurring during
type II supernovae. In our calculations, we used the
results of [11] and model B for the nucleosynthesis in
type II supernovae from [12].

The system of equations (1) was solved together
with equations describing the spectrophotometric
evolution of galaxies and the evolution of dust in
their interstellar media. More detailed descriptions
of all notation used, the observational constraints on
the model, and the star-formation scenario and IMF
adopted are given in [8]. Like the generally accepted
scenario [7], our model is concerned only with those
binary systems that lead to the formation of type Ia
supernovae. The contribution of these supernovae to
the chemical evolution of galaxies is described by
the third term on the right-hand side of (1). Let us
consider this term in more detail [13]:

RIa(t) = β

Mmax
b∫

Mmin
b

ϕ(Mb)/Mb (2)
ASTRONOMY REPORTS Vol. 48 No. 11 2004
×




0.5∫
µmin

f(µ)Ψ(t− τm2)dµ


 dMb.

Here,Mb = M1 +M2 is the total mass of the binary,
M1 is the mass of the initially more massive star,
ϕ(Mb) is the IMF for binary stars, which has the same
form as the IMF for single stars, µ = M2/(M1 +M2)
is the relative mass of the secondary in the binary,
and f(µ) is the distribution function of this quan-
tity. According to [14], f(µ) is defined in the inter-
val 0 < µ ≤ 0.5 and has the form f(µ) = 21+γ(1 +
γ)µγ , where γ = 2. Since the Chandrasekhar limit is
MCh = 1.44 M� and stars more massive than 8 M�
produce type II supernovae, only binary stars with
total masses from Mmin

b = 3 M� to Mmax
b = 16 M�

are considered as type Ia supernova precursors. All
other stars in the galaxy are taken to evolve as single
stars. In the system (1), the type II supernova rate is
determined as

RII(t) = (1 − β)

Mmax
b∫

8M�

Ψ(t− τm)ϕ(m)/mdm (3)

+

mup∫
Mmax

b

Ψ(t− τm)ϕ(m)/mdm.

This means that all stars more massive than 8 M�,
both single and in binaries with total masses exceed-
ing 8 M�, produce type II supernovae at the end of
their evolution.

Varying the parameter β in the interval 0.05−0.1
indicated by the observational constraints on mod-
els for spiral galaxies primarily influences the abun-
dances of iron-group elements (Fe, Ni, Cr,Mn). Such
variations could be one origin of the observed spread
in the elemental abundances of galaxies. In the fol-
lowing section, we will consider the results of varying
β in the models for spiral galaxies, and compare these
with the observed elemental abundances for damped
Lyα systems.

3. RESULTS OF THE COMPUTATIONS

Damped Lyα systems (DLA systems) are objects
with neutral-hydrogen column densities N(HI) >
2 × 1020 cm−2 that produce absorption lines in the
observed spectra of quasars. As a rule, emission lines
due to these objects are not observed. A few that
have been identified at small redshifts confirm that
DLA systems are associated with galaxies of various
morphological types (spirals, dwarfs, low-surface-
brightness galaxies) united by the presence in them
of appreciable quantities of gas.We showed in [8] that
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Fig. 1. Evolution of the relative content [Fe/S] with redshift z for models of (a) Sa and (b) Sd galaxies. The curves show
the evolution of [Fe/S] for β = 0.1 for the total Fe and S abundances (“total,” solid), and for the Fe and S abundances in
the gaseous phase taking into account the condensation of some Fe and S atoms into the solid phase, forming dust (“dust,”
dotted). The thin curves show the same dependences for β = 0.05. The bottom panel shows the sums of all the curves presented
in the upper and middle panels.
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Fig. 3. Same as Fig. 1 for the ratio [O/Fe].
the chemical compositions of Lyα systems can be
reproduced in model computations of the evolution
of Sa to Sd spiral galaxies in the early stages of
their evolution. Based on these results, we consider
here the consequences of varying β in the interval
0.05−0.1 for DLA systems that are associated with
spiral galaxies.

Figure 1 presents the evolution of the abundance
ratio [Fe/S] as a function of redshift z. The points
correspond to the observed abundances of these ele-
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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ments inDLA systems, while the various curves show
the results of our numerical modeling. In particular,
Fig. 1a shows, for the adopted evolutionary scenario
for Sa galaxies, the evolution of [Fe/S] (solid bold
curve) and the evolution of this abundance ratio for
these elements in the gaseous phase, taking into ac-
count the condensation of Fe and S atoms into the
solid phase (dust; dotted bold curve). Both scenarios
were computed for β = 0.1. The thin curves show the
corresponding results for β = 0.05. Figure 1b shows
analogous curves for the evolution of [Fe/S] for the
models of Sd galaxies, while Fig. 1c sums the in-
formation presented in the previous two panels for
the models of Sa and Sd galaxies for β = 0.1 and
β = 0.05, with and without a dust component.

Figures 2 and 3 show the evolution of [Cr/S] and
[O/Fe] as functions of redshift z. The evolution of
the relative abundances [Cr/S] and [O/Fe] for Sa
galaxies is presented in Figs. 2a and 3a, and for Sd
galaxies in Figs. 2b and 3b. As in Fig. 1c, Figs. 2c and
3c show summed computational results. The results
for all intermediate models for galaxies between Sa
and Sd, which are not shown here, can also satisfy
the observations.

It is obvious that such regularities can be shown
by the relative abundances of any iron-group ele-
ment and any alpha-process element. They are also
preserved when the evolution of [Fe/S], [Cr/S], or
[O/Fe], for example, is considered as a function of
the absolute elemental abundances. In this case, it is
likewise possible to obtain a good agreement with the
observations for DLA systems.

Since β is determined by the fraction of binary
systems whose evolution leads to type Ia supernovae,
which, in turn, determines the abundances of iron-
group elements (Fe, Ni, Cr, Mn) in the correspond-
ing galaxies, varying β within admissible limits is
equivalent to varying the abundances of iron-group
elements. This is why in Fig. 1 the relative abundance
of Fe to S, which is a typical alpha-process element
(together with O, Si, Ca), is sensitive to variations in
β; naturally, Figs. 2 and 3 show this same behavior.

4. DISCUSSION
In accordance with the scenario of [7, 11], we

specified the parameter β, determined by the fraction
of binaries evolving into type Ia supernovae, to be
constant. We then considered the interval of admis-
sible values that were consistent with the observed
supernova rates in spiral galaxies, and considered
the consequences to the chemical evolution of spiral
galaxies produced by variations within this interval.

Note that attempts tomodify the classical scenario
of [7, 11] and consider different models for the pro-
duction of type Ia supernovae and their influence on
ASTRONOMY REPORTS Vol. 48 No. 11 2004
the chemical evolution of galaxies were undertaken
recently in [15]. These results showed that, as before,
among various scenarios considered, that of [7, 11]
can describe most adequately the chemical evolution
of galaxies of early morphological types and the ob-
served supernova rate.

It is known that the rate of formation of binaries
is proportional to the metallicity of the interstellar
medium [16, 17]. In general, we expect that β is
a function of both the metallicity of the interstellar
medium and of other properties determining the evo-
lution of galaxies:

β = β[Z(t,Ψ(t), φ(m), Qm(m,X, t)]. (4)

We can see in (2) and (3) that this last assertion is also
true for the rates of type Ia and type II supernovae,
RIa and RII. Thus, variations in β are physically fully
justified even by the simple example considered in
Section 3: we can see that even small variations in
this parameter lead to appreciable changes in the
relative abundances of iron-group and alpha-process
elements.

It was already shown in the earliest studies that
explicitly took into account the evolution of massive
binaries [18, 19] that it was important to include the
influence of binary systems on the photometric evolu-
tion of galaxies in computations of the star-formation
rate. Due to the mass exchange between the compo-
nents in massive, close binary systems, a population
of O andWR stars is continuously generated even five
million years after a burst of star formation; i.e., on
time scales which are impossible to compute in evo-
lutionary models that include only single stars [20].
Due to the presence of these O andWR stars in bina-
ries, a star-forming region will appear younger than
its actual age, and so evolutionary models including
only single stars artificially underestimate the ages
of active star-forming regions [20]. This conclusion
was confirmed in other studies [21, 22] and further
developed in [23, 24], where it was also confirmed that
the situation is similar for the spectral characteristics
of star-forming regions in the ultraviolet.

Another important consequence of taking into ac-
count binary systems in models of galactic evolution
is the possibility of computing the rates of not only
type Ia and type II, but also type Ib/c supernovae.
Type Ib and Ic supernovae are produced either during
the evolution of massive single stars that have lost
their outer hydrogen layer due to their strong stellar
winds or in massive close binary systems. Most mod-
ern models for the chemical evolution of galaxies con-
sider only type II and type Ia supernovae. An excep-
tion is the two recent studies [16, 17], which were the
first to consider in detail the evolution of binary stars
of all masses and consequently producing all types
of supernovae; it was shown that the relative rate of
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supernovae in the solar neighborhood is appreciably
influenced by the evolution of close binary systems. It
was also demonstrated in [16, 17] that the evolution of
the abundances of several elements was sensitive to
the fraction of the stars in binary systems. However,
these results are not unambiguous. They differ quan-
titatively from standard models by no more than a fac-
tor of two to three. Since theoretical and observational
uncertainties in models for galactic evolution are of
the same order, it is currently difficult to interpret
these results. Attempts to correctly describe and take
into account all binary systems, on the one hand,
provide more realistic models for stellar systems, but,
on the other hand, appreciably complicate the models
and increase the already comparatively large number
of free parameters.

5. CONCLUSION

We have studied here the sensitivity of models
for the chemical evolution of spiral galaxies to the
paramter β, determined by the fraction of binary
systems producing type Ia supernovae during their
evolution. If damped Lyα systems are associated
with spiral galaxies, the observed spread in elemental
abundances for such systems could be due to differ-
ences in the morphological types of the galaxies, the
selective condensation of heavy elements into dust,
and variations in the parameter β. We have shown
that varying β within admissible limits can produce a
scatter in the abundances of heavy elements in DLA
systems that is comparable to the scatter produced
by selective condensation from the gaseous into the
solid phase.
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Abstract—A large number (∼2 million) of VLBI observations have been reduced in order to refine
the measured coordinates of the observed radio sources. The data reduction was carried out in the
OCCAMpackage using the least squares colocationmethod. Corrections to the coordinates of 642 objects
were derived. The accuracy of the catalog is no worse than 0.2 milliseconds of arc for stable sources.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Very Long Baseline Interferometry (VLBI) mea-
sures the difference in the arrival times of a wavefront
emitted by an extragalactic radio source at two dif-
ferent radio telescopes. Such radio sources form the
most stable realization of an inertial reference frame
that is achievable at the current time. Because of
their large distances from the Earth, their transverse
shifts do not exceed 1 microarcsecond/year (µas/yr)
on the sky, which is within the accuracy of VLBI
measurements. Usually, from 3 to 20 radio telescopes
separated by up to several thousand kilometers par-
ticipate in a single 24-hour geodetic VLBI session.
This network of telescopes carries out observations of
a sample of quasars during a 24-hour session (from
10–15 sources at the beginning of the 1980s to 100 in
modern observations). Scans of duration 1–3 min are
simultaneously recorded for each source onto mag-
netic tapes at several stations. Observations are car-
ried out at two frequencies: S band (2.3 GHz) and
X band (8.4 GHz). This is done to enable correction
for the frequency-dependent velocity of propagation
of the wave in the ionosphere; only the X-band data
are used directly for the analysis. When the observing
session is finished, all the tapes are transported to
a correlation center, where the data are correlated
and the time delays to be used in the analysis are
calculated.
During a 24-hour session, each radio telescope

observes radio sources located in all directions, in
order to exclude geometric correlations. Each ra-
dio source is observed many (sometimes more than
100) times with various combinations of antennas. In
subsequent sessions, other groups of radio sources
are observed using other VLBI networks. Thus, the
large number of observations on intersecting quasar
samples that has been accumulated makes it possible
to derive the angular distances (arcs) between the
1063-7729/04/4811-0941$26.00 c©
sources on the sky, which can then be used to make
a transformation to the usual coordinates of right
ascension and declination, once a coordinate origin is
chosen.
At the basis of constructing modern inertial ref-

erence frames lies the theoretical concept of the In-
ternational Celestial Reference System (ICRS). The
practical realization of this system is the Interna-
tional Celestial Reference Frame (ICRF), which is
a catalog of objects whose coordinates have been
referenced to a particular epoch. In accordance with
a resolution of the IAU General Assembly in Kyoto
in 1997, beginning in 1998 the ICRF has been de-
fined using the coordinates of quasars derived from
VLBI observations. This frame is now specified using
212 objects observed from 1979–1995, whose coor-
dinates have been referenced to epoch J2000.0. The
quasars that have been included in this list have a long
observational history. The mean positional error for
these quasars is∼0.25mas [1]. In addition, the ICRF
catalog includes 294 so-called “candidate” objects,
for which there are not yet a sufficient number of
observations, as well as 102 unstable sources that are
included to fill otherwide empty fields. Thus, the com-
plete ICRF catalog consists of 608 quasars uniformly
distributed over the celestial sphere [1].
Many sources have variable structure, leading to

apparent shifts in the center of gravity of the ra-
dio brightness during short time intervals. Although
these shifts can be much larger than the measure-
ment accuracy, the quasar-based coordinate system
is roughly a factor of 100more accurate than the most
accurate optical catalog—the FK5 catalog [2].
The ICRF catalog was obtained in 1996 by reduc-

ing ∼1.6 million observations carried out in 1979–
1995 using the CALC/SOLVE program package de-
veloped at Goddard Space Flight Center (GSFC) [1].
All the sources are checked for their stability during
2004 MAIK “Nauka/Interperiodica”
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the solutions. If the coordinates of some source dis-
play an apparent linear trend or random fluctuations,
the source coordinates are considered to be variable,
and are estimated separately for each session.
Work to improve the ICRF is ongoing. The ICRF-

Ext. 1 supplement to the ICRF catalog came out in
2000; this contains 59 new quasars whose coordi-
nates have been derived from ∼600 thousand obser-
vations in 1995–1999 [3]. However, the need to re-
examine the main list of 212 ICRF quasars has arisen
in recent years.
The construction of a catalog of radio sources from

VLBI observations differs considerably from the con-
struction of a fundamental catalog based on optical
observations. For example, the optical FK5 catalog
is comprised of a combination of individual catalogs
containing objects in various declination zones, with
each individual catalog being acquired using some
particular instrument [2]. The ICRF radio catalog
is constructed as a result of reducing all available
observations with all radio telescopes; i.e., it is based
on a single global solution. The advantage of this
approach is that there is no need to combine various
individual catalogs with their individual errors. The
disadvantage is the impossibility of analyzing possible
systematic errors. The use of only one software pack-
age in the construction of the ICRF can also be con-
sidered a disadvantage, since the derived coordinates
could be subject to the influence of systematic errors
associated with the reduction method realized in the
SOLVE program. It is therefore important to have
catalogs obtained using independent programs ap-
plying different estimation methods. We present here
the results of reducing VLBI observations using the
OCCAM package and the least squares colocation
method.

2. OBSERVATIONAL MATERIAL
AND REDUCTION METHOD

Nearly two million VLBI observations obtained
in 1983–2001 were processed to construct the cat-
alog. The observations were divided into two sam-
ples: those carried out on the IRIS-A and NEOS-A
networks in 1983–2001 and those carried out on all
other networks in 1988–2001. The former sample is
of special interest, since precisely these observations
were used by the International Earth Rotation Ser-
vice (IERS). Only VLBI stations located north of
the equator took part in the IRIS-A and NEOS-A
programs, which limited the list of observed quasars
to those with declinations δ = −45◦. Quasars located
within 45◦ of the South pole were observed by only
a few antennas in the Southern hemisphere, so that
the number of observations, and consequently the
positional accuracy, for these quasars were lower. The
total number of studied objects was 642, of which 330
radio sources fell into the first sample and 620 into the
second sample.
The IERS 2000 standards were used for the re-

duction of the data in theOCCAMpackage [4]. In ac-
cordance with the recommendations of the IERS, the
effects of free-core nutation (FCN) were not included
in the MHB2000 nutation reduction model [5]. We
used the mapping function of Niell [6] when reducing
the wet component of the troposphere delay to the
zenith value. All radio sources observed at zenith
distances z > 85◦ were automatically reweighted.
Each sample was processed in two regimes: with

and without estimation of the gradients of the wet
component of the tropospheric delay. This enabled us
to estimate the influence of these gradients on sys-
tematic errors in the quasar coordinate estimates. The
coordinates of the reference stations and the Earth-
rotation parameters were refined for each 24-hour ob-
serving session, and no-net-translation (NNT) and
no-net-rotation (NNR) conditions were imposed for
all the observing stations in order to avoid degeneracy
of the matrix of normal equations. An NNR condition
is also applied to the coordinates of the radio sources
when corrections to these coordinates are being esti-
mated.
Note also that we included all the radio sources

(not only the 212 from the main ICRF list) in our
list of “global” sources; i.e., those whose coordinates
were taken to be constant over the entire observing
interval. This is the main difference of our solution
from that obtained at GSFC.
The second important difference is that

CALC/SOLVE uses a segmented least-squares
method [7, 8], while the OCCAM package uses a
least squares colocation method in a three-group
parametric model [9]. All the estimated parameters
are divided into three groups:

—“global” parameters that are constant over
the entire observational interval (corrections to the
quasar coordinates);

—“daily” parameters that are constant over
24 hours (corrections to the nutational angles, cor-
rections to the station coordinates, daily estimates
of the tropospheric parameters and differences in
the phases and clock rates for a given series of
observations);

—“stochastic” parameters, which are variable
over 24 hours (intraday fluctuations of the tropo-
spheric delay at the zenith and of the clock phase
differences).
To find the estimates, we formed the three-group

parametric model

Аx+By + Cz + w = h, (1)
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Table 1. Statistics of the solutions

Solution 1 Solution 2 General solution

Number of series 1066 1400 2466

Number of observations 741.751 1.206.319 1.948.070

Time interval 1983–2001 1988–2001 1983–2001

Number of radio sources 330 620 642

Number of stations 21 51 51
where x, y, z are vectors for the global, daily, and
stochastic parameters, respectively. A, B, C are ma-
trices of partial derivatives for the indicated parame-
ters, w is a vector of the observational errors, and h is
a vector of the O–C values for the observations. Ma-
trices of the a priori covariations for the stochastic
parameters QZ and the observational errors QW are
also introduced.
In accordance with the principles of the least

squares colocation method, in order to estimate
some unknown parameters, we must minimize the
functional

S = wTQ−1
W w + zTQ−1

Z z. (2)

After extensive manipulation, the expression for
the estimate of the global parameters has the form

x̂ = (ATRA)−1ATRh (3)

or, allowing for the independence of the local and
stochastic parameters in different observational se-
ries,

x̂ =

(∑
i

(ATRA)i

)−1∑
i

(ATRh)i, (4)

where the sum is taken over all series included in the
analysis. The matrix R in (2) and (3) is calculated
using the formula

R = Q−1 −Q−1B(BTQ−1B)−1BTQ−1, (5)

and the matrix Q, in turn, is a combination of the
matrices

Q = CQZC
T +QW . (6)

Further, we can estimate the vectors y and z:

ŷ = (BTQ−1B)−1BTQ−1(h−Ax̂), (7)

ẑ = QZC
T (CQZC

T +QW )−1(h−Ax̂−Bŷ). (8)

The least squares error in the estimates of the
global parameters (4) is

σX̂ = (χ2diag(ATRA)−1)1/2 (9)
ASTRONOMY REPORTS Vol. 48 No. 11 2004
=


χ2diag

(∑
i

(ATRA)i

)−1



1/2

,

where χ2 is a normalized chi-squared calculated us-
ing the formula

χ2 =
(h−Ax̂−Bŷ)TQ−1(h−Ax̂−Bŷ)

N −Ny − nx
, (10)

whereN , nx, andNy are, respectively, the total num-
ber of observations in all series, the number of global
parameters, and the number of daily parameters, like-
wise summed over all series, Ny =

∑
i ny.

The a priori autocovariance functions for the dif-
ferences in the clock rates and the wet component
of the tropospheric delay at the zenith were taken
from [10]. The possibility of using the least squares
colocation method for the reduction of VLBI data was
demonstrated earlier in [9].

3. DISCUSSION OF THE RESULTS

Our reduction of the data using formulas (4)–(10)
yielded the coordinates of 642 radio sources. Table 1
summarizes information about our two solutions ob-
tained for the various samples, as well as about the
overall solution. A full catalog of the radio sources is
published on the web site of the Astronomical Scien-
tific Research Institute of St. Petersburg State Uni-
versity (http://astro.pu.ru/astro/win/researches/ivs.
html).
Figures 1 and 2 illustrate the influence of the tro-

pospheric gradients on the corrections ∆α cos δ and
∆δ for the IRIS-A/NEOS-A observations and for
the remaining data, respectively, while Fig. 3 dis-
plays the same information for all the observations to-
gether. These plots indicate that including the tropo-
spheric gradients has virtually no effect on ∆α cos δ,
and influences only ∆δ. The maximum effect (about
0.3 mas) is observed near the equator. It is believed
that this is due to the thickening of the atmosphere
from the polar regions toward the equator. Thismeans
that the radio waves from sources observed near the
southern horizon from the Northern hemisphere must
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Fig. 1. Difference between the results with and without
including the gradients of the tropospheric delay for the
correction∆α cos δ (upper) and∆δ (lower) based on the
observations on the IRIS-A/NEOS-A networks. Only
radio sources with more than 20 observations are shown.

pass through a thicker layer of atmosphere than do
radio waves for sources observed near the northern
horizon with these same stations [11].

We can distinguish two groups of objects in Fig. 1:
at declinations from −15◦ to 90◦ and from −45◦ to
−15◦. For objects in the first group, differences in the
declination estimates are due to whether or not the
tropospheric gradients are taken into account. For
the second group, the determining role is probably
played by imperfection of the mapping function at
large zenith distances, since, as a rule, these ob-
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Fig. 2. Same as Fig. 1 but excluding the
IRIS-A/NEOS-A data.

jects were observed near the horizon. A similar, al-
though weaker, effect is observed for the estimated
right ascensions. We therefore conclude that anal-
yses of the observations for the IRIS-A/NEOS-A
programs (i.e., carried out from the Northern hemi-
sphere) can yield accurate coordinates only for radio
sources north of declination δ = −15◦.
The systematic shift between the two solutions

is not as large in Fig. 2, but the random scatter of
points about the mean curve is larger than in Fig. 1.
This is due to the fact that the first solution is more
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Fig. 3. Difference between the results with and without
including the gradients of the tropospheric delay for the
corrections∆α cos δ (upper) and∆δ (lower) based on all
the observations. Only radio sources with more than 20
observations are shown.

uniform, being based on observations carried out on
(as a rule, four to six) northern stations that were
well distributed in latitude and longitude, which made
it possible to observe the radio sources at a range
of zenith angles. The second solution was obtained
using various networks, including some for which the
distribution of the stations is not as uniform. There-
fore, the systematic effects in Fig. 1 are associated
with the absence of VLBI stations in the Southern
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Fig. 4.Distribution of the formal errors in the coordinates
∆α cos δ (upper) and∆δ (lower).

hemisphere, and in Fig. 2 with insufficient accuracy
of the observations themselves.
Figure 3 displays the same shifts obtained using

all the observations together. Overall, Fig. 3 repeats
the behavior shown in Fig. 2, although a small asym-
metry is visible in the plot for ∆δ, due to the addition
of observations from the Northern hemisphere.
Figure 4 depicts the distributions of the errors

in each coordinate. These histograms show that
the median position error is approximately 0.3 mas.
To estimate the external accuracy of the catalog,
we compared our errors with those for two other
catalogs, obtained by the US Naval Observatory
(USNO) [12] and the Leipzig Cartography Institute
(BKG). Both of these catalogs were obtained using
the CALC/SOLVE package. It has recently come
to light that many sources in the main ICRF list
have variable structure. Therefore, the calculations
were carried out for the list of 199 quasars compiled
by Feissel-Vernier [13] based on an analysis of time
series of coordinate measurements for 1979–2002
at the USNO [12]. The quasars in this list passed
several tests to verify the stability of their positions
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Table 2. RMS deviation for the coordinate differences for
three catalogs in mas (in cells above the empty diagonal)
for∆α cos δ (upper values) and∆δ (lower values), together
with the number of quasars included in the statistical anal-
ysis (in cells below the empty diagonal). Quasars in the list
of Feissel-Vernier [13] are used

BKG USNO SPSU

BKG 0.212 0.195

0.127 0.225

USNO 181 0.209

0.201

SPSU 195 180

[13]. The formal positional errors for these quasars
are ∼0.1mas.
In the comparisons, we included only quasars with

at least 20 observations for each of the catalogs.
The results are presented in Table 2, which shows
that the agreement between all three catalogs for the
sample of stable quasars from [12] is 0.1–0.2 mas.
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Fig. 5. Differences in the coordinates ∆α cos δ (upper)
and ∆δ (lower) for the SPSU and USNO catalogs in
projection onto the declination axis.
The estimated accuracies for the BKG–USNO ∆δ
differences are nearly a factor of two better than for the
SPSU–USNO and SPSU–BKG differences. This
may be associated with the different methods used
to correct for the tropospheric delay at the zenith in
the OCCAM and CALC/SOLVE packages, as well
as with the fact that, in contrast to CALC/SOLVE,
the OCCAM package estimates all the quasar coor-
dinates as global parameters.
Figure 5 presents as an illustration the differ-

ence in the SPSU–USNO coordinate corrections
∆α cos δ and ∆δ projected onto the declination axis.
It is interesting that, while a sharp degradation in
the accuracy of ∆α cos δ is observed in near-polar
regions, the ∆δ differences show a smooth increase
in the scatter with distance further into the Southern
hemisophere, presumably due to the smaller number
of observations in this part of the sky. Similar effects
are observed for the other combinations of catalogs.
Thus, the errors in the estimated coordinates for

“stable” quasars are at the level of 0.2 mas, which
is a factor of two higher than the formal errors for
this group of objects (0.1 mas), confirming the con-
clusions of other studies [14, 15]. This is due to the
influence of various systematic factors, which, for var-
ious reasons, have not been taken into account when
deriving corrections based on VLBI observations.
One such factor is instability in the apparent po-

sitions of the quasars. In order to estimate the level
of this instability, we carried out additional stud-
ies aimed at estimating the coordinates as daily pa-
rameters. As an example, Fig. 6 shows variations
in the estimated corrections ∆α cos δ for the quasar
0923+392 (4C 39.25) from 796 daily sessions, de-
rived from the IRIS-A/NEOS-A observations for
1986–2001. We can see a trend on which are su-
perposed systematic fluctuations. A spectral analy-
sis enabled us to identify oscillations with a period
of ∼2070 days and an amplitude of 72 ± 17 µas.
A least-squares estimate of the linear trend (66.2 ±
2.6 µas/yr) is in agreement with the result of [13]
for data obtained in 1986–1997 (59.8 ± 2.2 µas/yr).
The presence of this trend in the derived corrections
∆α cos δ for this quasar had been reported earlier in
[16, 17]. Astrophysical studies of 0923+392 showed
the presence of rapid apparent motions associated
with the emergence of a superluminal component
in 1980 [17]. A quadratic model was also used in
[14], which yielded the quadratic term−13.6 µas/yr2,
suggesting deceleration of the motion of the super-
luminal component. The extrapolation carried out in
[14] showed that the motion should have ceased in
the middle of 1997. New estimates incorporating the
results of observations obtained in 1998–2001 and
taking into account the 2070-day period yielded the
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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deceleration −2.4 ± 0.5 µas/yr2. Thus, the decelera-
tion of the superluminal component was not as rapid
as originally believed, and, in fact, its motion should
have ceased in the middle of 1999, as can be observed
in Fig. 6. At present, it is difficult to suggest a likely
origin for the periodic oscillations.
It appears that the specified scale for the linear shift

(60–70 µas/yr) is fairly unique, but it is possible that
linear trends due to instability of the radio structure
will be a more common phenomenon at levels of
<10 µas/yr. This complicates the creation of a high-
accuracy celestial coordinate system. This problem
can be solved only by comparing radio images, cal-
culating the structural delays for each source individ-
ASTRONOMY REPORTS Vol. 48 No. 11 2004
ually, and using this information during the analysis
of the VLBI observations. Detailed experiments of
this kind have already been carried out for the quasar
3C273 [18]. However, the construction of maps for
several hundreds of quasars would require appreciable
computational resources.

4. CONCLUSIONS

Modern VLBI observations can be used to create
a reference frame based on the coordinates of radio
sources with accuracies of 0.2–0.4 mas. Further in-
crease in the coordinate accuracy is limited by various
factors. Most of the observed objects have variable
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structures, with the scale for the variations exceeding
the formal accuracies obtained during the coordinate
estimation. These effects are not predictable, making
it difficult to model them.
Another source of errors is the troposphere, which

introduces errors at a level of 0.1–0.2 mas, especially
for observations at large zenith distances.
In addition, the effect of aberration due to the

revolution of the solar system around the center of the
Galaxy can lead to systematic shifts in the quasar co-
ordinates at a level of 5 microseconds/yr [19]; this has
led to errors of 0.1 mas over 20 years of observations.
Further improvement of the accuracy of the ICRF

requires work in several directions: increasing the
number of observations, increasing the number of
radio sources, especially in the Southern hemisphere,
the creation of more flexible observational programs,
studies of the apparent motions of radio sources via
mapping of the radio structure, and the construction
of more accurate models for the motions of VLBI
stations.
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Abstract—The small-scale dynamo inherent to mirror-asymmetric turbulence can generate a magnetic
field characterized by substantial mirror asymmetry of the associated electric currents. In general, the
corresponding helicity should be taken into account in calculations of the helicity balance, which is now
used as a basis for models describing the suppression of the large-scale dynamo. However, the mirror
asymmetry of the fluctuating magnetic fields is concentrated on scales much shorter than the magnetic-
loop diameter. Therefore, the unaccounted-for contribution to the helicity balance is, in fact, not important.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The origin of the large-scale magnetic fields of
celestial bodies via the dynamo mechanism is com-
monly attributed to the joint action of differential
rotation and the helicity of turbulent (or convective)
flows. As this mechanism operates, the originally
weak magnetic field grows exponentially, although
this growth will obviously be stabilized at a later time.
In principle, various factors can be responsible for this
stabilization. However, it seems likely for the solar
and galactic dynamos that it results from the suppres-
sion of the weakest link in the chain of magnetic-field
self-excitation: helicity.

Until recently, this idea was largely speculative,
since all considerations of helicity and its role in
magnetic-field generation were based exclusively
on theoretical calculations (which can hardly be
entirely realistic) and order-of-magnitude estimates.
Recently, considerable progress has been achieved
due to observations of one helicity component at
the solar surface. These observational data can be
interpreted in the framework of dynamo theory to
some extent, and a nonlinear-stabilization scenario
for the dynamo that reproduces at least the basic
outline of the observed pattern can be derived (see [1]
and references therein). For definiteness, we will
consider here the solar dynamo, since it is precisely
for the solar dynamo that an observational basis for
helicity estimates was first found.

Far from all stages of this scenario have been
developed theoretically, and many of the assumptions
on which it is based await justification. We will sub-
stantiate one of these assumptions here.

The root of the matter is as follows. Helicity is a
measure of the breaking of mirror symmetry in an
1063-7729/04/4811-0949$26.00 c©
MHD system. This includes contributions from the
velocity field and magnetic field, which are called the
hydrodynamic and the magnetic helicity, respectively.
It is the magnetic helicity that can be obtained from
observations, and themagnetic helicity is, in addition,
a conserved quantity. In turn, the magnetic helicity
is composed of parts produced by the mean and the
fluctuating magnetic field. The mean magnetic field
and its helicity grow due to the action of the solar dy-
namo; thus, to conserve helicity, wemust assume that
variations in the helicity of the small-scale magnetic
field have the same magnitude but are opposite in
sign. It is this helicity that appears in the coefficients
of the mean-field-dynamo equations (the so-called
α effect) and stabilizes the field-generation process.
Relevant calculations are presented in [1, 2].

The gap that we are going to fill is as follows.
We are interested in the behavior of the mean solar
magnetic field and the fluctuating magnetic fields that
originate together with the mean field and participate,
for instance, in the solar-activity cycle. However, the
generation of fluctuating magnetic fields is not neces-
sarily associated with the mean field. Naturally, such
fluctuating fields are not involved in the solar cycle.
For the corresponding generationmechanism, known
as the small-scale dynamo, the α effect does not
play any role; starting from the pioneering work of
Kazantsev [3], this has been studied for the case of
nonhelical velocity fields. The magnetic field gener-
ated by this mechanism is likewise not helical, and
this field should be taken into account when analyzing
the suppression of the generation of the large-scale
field.

However, solar convection is actually helical, and
both theoretical and observational evidence for this
is now available [1]. The α effect, which has the
2004 MAIK “Nauka/Interperiodica”
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dimension of velocity, can reach 10% of the con-
vective velocity (although it may be much smaller).
Therefore, we cannot rule out the possibility that the
helicity of the small-scale magnetic field, which is not
coupled with the large-scale field, is not negligible.
We will give some relevant calculations below. In-
deed, it turns out that the small-scale dynamo asso-
ciated with mirror-asymmetric convection does gen-
erate helical magnetic fields. However, this helicity is
fortunately concentrated on small spatial scales on
which the conservation of helicity is violated, which
are very small compared to those on which the mean
magnetic field is expected to be generated. Therefore,
the already cumbersome helicity-balance equations
used to calculate the stabilization of the mean-field
dynamo need not be made even more unwieldy by
including this phenomenon.

Note that the concepts of the mean magnetic field
and small-scale magnetic fields were introduced the-
oretically, and some care should be takenwhen identi-
fying them with concepts suggested by observations.
For this reason, we particularly avoid denoting the
mean magnetic field as a large-scale field. However,
we assume that the scale of the mean field localized
deep in the convection zone and penetrating to the
surface, e.g., in the form of sunspots, is comparable
with the solar radius. The spatial scale of the fluctuat-
ing magnetic fields is assumed to be comparable with
the size of supergranules.

Two technical points should be noted before con-
sidering the results of our computations.

There are various (but expressible in terms of one
another [4]) measures for the mirror asymmetry of
the magnetic field. These can be found by calculat-
ing the number of linkages between magnetic field
lines, electric field lines, or other lines related to the
magnetic field [5]. The magnetic helicity is a con-
served quantity (the coefficient of magnetic-field line
linkage), but it is technically simpler to trace the
dynamics of the current helicity; i.e., the coefficient of
electric-current line linkage.

To describe convection, we use a short-correlation
convective (or turbulent) velocity field as a model;
i.e., we assume that its memory time τ is much
shorter than the ratio of its correlation scale l0 to
the rms velocity v0 of the convective motions: τ �
l0/v0). This assumption enormously simplifies the
analysis, and it is used, to some degree, in virtually
all analytical approaches to studying small-scale dy-
namos. The short-correlation approximation repro-
duces fairly well the properties of interstellar turbu-
lence produced by supernova explosions, although
there are obviously no reasons to expect its applica-
bility to solar convection. However, as far as can be
investigated (see, e.g., [6]), the use of more realistic
models for convective (turbulent) fields yields similar
results. Therefore, it seems sufficient to us to restrict
our analysis to this simple model.

2. GOVERNING EQUATIONS

The correlation tensor of a homogeneous, isotropic,
and mirror-symmetric random velocity field in an
incompressible fluid is

〈τvi(x)vk(x + r)〉 (1)

= 2τv2
0/3[F (r)δik + rF ′/2(δik − rirkr

−2)]
− v0χ(r)eiklrl/3,

where v0 is the rms velocity, τ is the correlation
time of the velocity field, eikl is the antisymmetric
tensor, F (r) is the longitudinal-correlation function

(F (0) = 1), χ(r) =
τ

v0
〈v(x)∇v(x + r)〉, and χ(0) is

the hydrodynamic helicity [7]. Here, 〈. . .〉 denotes av-
eraging, and a prime symbolizes differentiation with
respect to r. In turn, the correlation tensor of the fluc-
tuating magnetic field can similarly be expressed in
terms of the longitudinal-correlation function W and
the current helicity µ = 〈H(x)∇H(x + r)〉. Recall
that themagnetic-field line linkage coefficient is mea-
sured by the magnetic helicity ν(r) = 〈A(x)H(x +
r)〉, where A is the vector potential of the magnetic
field H.

The evolutionary equation for the correlation
tensor of the magnetic field in a short-correlation
flow was obtained by Kazantsev [3]; we use it in the
form suggested in [8]. The Kazantsev equation for
the correlation tensor of the magnetic field and the
Steenbeck–Krause–Rädler equation for the mean
magnetic field can be derived by averaging the in-
duction equation over an ensemble of convective
pulsations. However, the Kazantsev equation in its
general form is very cumbersome, and we will write
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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it only for the particular case of interest to us. To this
end, it is useful to introduce an auxiliary quantity R
instead of the longitudinal-correlation functionW for
the magnetic field and an auxiliary quantity κ instead
of the current helicity µ (the definitions of R and κ
will be given below). We will then utilize the fact that
the magnetic Reynolds number Rm is large in the
solar convection zone (up to 108), so that the inverse
quantity ε = Rm−1 can be used as a small parameter.

This will reduce the Kazantsev equation to the
form

(2m)−1R′′ + (E − U)R = −4(2m)1/2r(χ− χ(0))κ,
(2)

(2m)−1κ′′ + (E − Ũ)κ = 2(2m)−1/2rV (R,χ), (3)

where (2m)−1 = 2R−1 + F (0) − F (r), U(r) =
1/mr2 + 1/(2r)f ′ − 1/(8m3)(m′)2, Ũ(r) = 2F ′/r,
f(r) = 〈vivi〉, W =

√
2mR/r2 (this relationship de-

fines the auxiliary function R), µ(r) = 2mκ/r (this
relationship defines the auxiliary function κ), γ = −E
is the growth rate of the magnetic energy, V (R,χ) =
(χ− χ(0))(R′′ + MR′ + 3M2/4 − 2/r2 + mF ′′)R +
χ′(2R′ + MR) + χ′′R, and M = (lnm(r))′. To be
specific, we set χ(r) = χ(0) exp(−r2/r2

0), F (r) =
exp(−r2/r2

0), and choose r0 as the unit length.

A typical form of the potential Ũ(r) is shown in
Fig. 1. The boundary conditions can be obtained us-
ing the condition that the correlations vanish at in-
finity, a smoothness condition, and the normalization
condition 〈H2〉 = 1:

R(0) = 0, R(∞) = 0, κ(0) = 0, (4)

κ(∞) = 0.

To analyze the Kazantsev equation, it is useful
to break the region of the variations of r into three
parts [9]—0 ≤ r ≤ a

√
ε (region I), a

√
ε ≤ r ≤ b (re-

gion II), and b ≤ r ≤ ∞ (region III), where a and
b are constants of order unity. The behavior of the
solution in regions I and III ensures that the boundary
conditions are satisfied, while the magnetic-energy
growth rate is determined by region II, which is thus
of most interest to us. In this region, the Kazantsev
equation reduces to

ξ2R′′ + (4 − γ)R = 4ε1/2χ(0)ξ2κ, (5)

ξ2κ′′ + (4 − γ)κ (6)

= −2ε1/2χ(0)ξ2(ξ2R′′ + 6ξR′ − 2R),

where ξ = ε−1/4r is a new variable. After this subdi-
vision, we can use the small parameter ε = Rm−1.
ASTRONOMY REPORTS Vol. 48 No. 11 2004
3. NONHELICAL VELOCITY FIELD

Our aim is to study the magnetic field generated
by a helical flow. To this end, however, we must con-
sider the properties of the Kazantsev equation for the
nonhelical case (χ(r) = 0) in more detail than was
done in [9, 10]. In this case, R(r) and κ(r) are not
coupled, and the corresponding eigenfunctions can
be found independently. Recall that the highest-order
derivative in the first of these equations is to leading
order

R(ξ) ∼ ε5/4 ln εξ1/2 sin
(

4π
ln ε

ln ξ

)
, κ = 0, (7)

γR =
15
4

−
(

4π
ln ε

)2

+ O(ln−3 ε).

We will need below the form of this solution in re-
gion I: R(r) ∼ ε1/2r2. This solution is normalized to
〈H2〉 = 1.

The fundamental eigenfunction for κ is similar:

κ(ξ) ∼ ε1/4ξ1/2 sin
(

4π
ln ε

ln ξ

)
, R = 0, (8)

γκ =
15
4

−
(

4π
ln ε

)2

+ O(ln−3 ε).

In region I, it has the form κ(I)(r) ∼ ε−1/8r × ln−1 ε.
It is more convenient here to use the normalization
condition

∫∞
0 κ2dξ = 1. It is important that not all

solutions to the Kazantsev equation are physically
realizable; i.e., correspond to the correlation functions
of any random fields. In particular, the solution (8)
is not realizable, since the magnetic energy vanishes,
while the current helicity does not.

4. HELICAL RANDOM FLOW

Let us return to our consideration of a helical flow.
The equations for R and κ are now coupled by an
operator that has the following form in region II (the
first row corresponds to R and the second to κ):

V̂ =


 0 −4ε1/2χ(0)ξ2

χ(0)
(
ξ2 ∂2

∂ξ2
+ 6ξ

∂

∂ξ
− 2
)

0


 .

(9)

We do not aim to solve this problem fully, but instead
will utilize the fact that the helicity is normally small,
treat χ(0) as a small parameter, and apply a perturba-
tion technique. We will only find out via calculations
how the perturbation “admixes” the eigenfunctions
(8) and (7). We emphasize that, although the function
(8) is not physically realizable, this does not prohibit
such “admixing,” since the mixed state is realizable.
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We assume that the eigensolutions (7) and (8) are
not degenerate. This is obviously a severe restriction.
It means that we neglect χ(0) compared to quantities
of order (ln ε)−3. For the solar convection zone, a
straightforward application of this condition implies
that χ(0) does not exceed 10−3. This condition may
not be satisfied in the solar convection zone, although
the uncertainties of the estimates admit the possibil-
ity that it is. If it is not satisfied, we must use the
perturbation theory for degenerate levels. According
to our estimates, the admixture of the helicity to the
eigenfunction (7) will not exceed the value given by
the formulas for the nondegenerate case. The basic
conclusions of our study are not sensitive to this
difference [which depends on the logarithmic factor
in (12), rather than the power-function factor in the
final formula (13)]. We present here the calculation for
nondegenerate levels as our basic calculation, since
we cannot be sure of the applicability of the logarith-
mic asymptotics (7) and (8) to high orders, and, in
general, two Schrödinger-type equations for different
potentials will have different eigenvalues. Of course,
this subtle point should be clarified numerically, but
this goes beyond the scope of this study.

Standard calculations based on the perturbation
formulas [11] reveal that the fundamental eigenfunc-
tion of the small-scale dynamo problem in the case of
helical turbulence is

T =


 R0

C(ln ε)3χ(0)κ0


 , (10)

where C = O(1) is a constant, and the functions R0

and κ0 have unit norms, as is conventional in pertur-
bation theory. After implementing the normalization
〈H2〉 = 1 natural to the dynamo problem and return-
ing to the variable r, we obtain

µ(r) = CRm−9/8 ln3(Rm−1)χ(0)
2m
r
κ0(r). (11)

Figure 2 shows the spatial distribution of the cur-
rent helicity. The function µ(r) reaches its maximum
at r = 0, which can be found using the expression for
κ in region I:

µ(0) = C ln2(Rm−1)χ(0). (12)

The estimated value (12) is fairly large, so that the
helicity must obviously be included in the calculation
of the helicity balance. However, the distribution of
current helicity (11) is concentrated on scales of order
r0Rm−1/2, while the dynamo operates on scales r ∼
r0Rm−1/4. For these two scales (see Fig. 2),

µ � CRm−5/8 ln3(Rm−1)χ(0), (13)

and the degree of mirror asymmetry of the small-scale
magnetic field proves to be small, since Rm  1.

5. DISCUSSION
The small-scale dynamo mechanism generates a

magnetic field in the form of twisted ropes of thick-
ness r0Rm−1/2. On scales of the rope thickness, the
electric currents are helical. One implication of this
helicity is present in the physical pattern of magnetic-
field generation suggested by Zel’dovich, according
to which a magnetic loop is stretched and twisted
into a figure eight. This figure is, indeed, twisted,
and the mirror asymmetry of the turbulence is able
to choose the preferred sign of twisting. However,
the real dynamo mechanism is associated with larger
spatial scales, on which this asymmetry is negligible,
providing hope that analyses that neglect the genera-
tion of helicity by the dynamomechanism nonetheless
give fairly reliable results. Therefore, calculations of
the helicity balance can be restricted to including the
production of helicity by the large-scale dynamo and
the compensation of this process by the small-scale
magnetic field coupled with the large-scale field. For
example, the helicity balance in the solar convection
zone was taken into account in a similar way in [1],
and the result of this calculation was compared with
the observed current helicity at the solar surface.

We have analyzed here the helicity of fluctuating
magnetic fields in the context of the solar dynamo.
However, our results are, naturally, also applicable to
stellar dynamos, and probably galactic dynamos as
well, although the role of the multiphase composi-
tion of the interstellar medium requires further study.
The application of our findings to the geodynamo
and planetary dynamos is most problematic, since
the magnetic Reynolds number is not large in these
cases.
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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Original Russian Text Copyright c© 2004 by Kobanov, Makarchik.
Pulsating Evershed Flows and Propagating Waves in a Sunspot

N. I. Kobanov and D. V. Makarchik
Institute for Solar-Terrestrial Physics, P.O. Box 4026, Irkutsk, 664033 Russia

Received March 19, 2004; in final form, May 27, 2004

Abstract—A comparative analysis of oscillatory spectra based on 66 time series for 14 active regions
observed in 2001 shows that, although the chromospheric and photospheric oscillations in the Evershed
flow zone possessmany common features, there is no firm evidence that the direct and inverse flows have the
same physical origin. The interactions between the various oscillationmodes and stationary flows results in
a complex pattern of wave motions in a sunspot. We studied the Doppler-velocity variations in the sunspot
NOAA 0051 during its motion over the disk. The spatial–temporal distribution of the line-of-sight velocity
in the chromospheric umbra displays a chevron structure, clearly indicating the presence of propagating
waves. These waves move from the center of the umbra to outer regions with a phase speed of 45–60 km/s,
a period of 2.8 min, and a measured Doppler speed of 2 km/s. The amplitude of these oscillations decreases
abruptly at the boundary between the umbra and penumbra, and the observed waves are not directly
related to propagating penumbral waves. Furthermore, the observed pattern of the photospheric velocities
shows periodic motions (with a period of 5 min) directed from the inner boundary of the penumbra and
superpenumbra toward the line of maximum Evershed velocity. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many puzzles are associated with sunspots, whose
solutions will enable considerable progress in under-
standing fundamental problems in solar physics [1].
A sunspot involves a large number of interactions
between motions of material and the magnetic field.
The umbra, where the magnetic field is vertical at the
photospheric level, is characterized by a downflow
of material and weak five-minute oscillations of the
entire region [2, 3]. The umbral chromosphere is
dominated by powerful three-minute oscillations,
which have been interpreted as standing acoustic
waves [2, 4]. An even more complex pattern of
motions is observed in the sunspot penumbra, where
the magnetic field is approximately horizontal.
The former type of motion is associated with oscil-

lations and waves, while the latter is quasi-stationary,
and corresponds to so-called Evershed radial flows.
These flows are characterized by a fairly clear radial
symmetry and a height inversion: they are directed
outward from the geometric center of a sunspot in
the photosphere and inward in the chromosphere. Is
there any relation between these two types of motion?
Do the direct and inverse flows represent two inde-
pendent systems, or do they form a single system?
These are only a few questions that arise in studies
of the plasma motions in a sunspot penumbra. Ac-
cording to our current understanding, the approxi-
mately horizontal magnetic field is concentrated in
narrow penumbral filaments. Such filaments appear
as dark structures in white light and are oriented
1063-7729/04/4811-0954$26.00 c©
in the radial direction for regularly-shaped sunspots.
The motions of the material inside the filaments are
commonly explained by the siphonmechanism, due to
the difference in the gas pressures at the ends of the
filaments [5, 6]. It is reasonable to suppose that the
preferred direction for the propagation of all waves in
the penumbra should be horizontal, with propagation
in the vertical direction being suppressed by the hor-
izontal magnetic field. Nevertheless, as follows from
observations, penumbral oscillations also propagate
upwards, at least those at frequencies of 3–6 mHz [2].

This is quite natural, because the horizontal mag-
netic field does not cover the entire surface of the
penumbra, and there are radial gaps between the
dark filaments. When acoustic oscillations propa-
gate in the penumbra atmosphere, they can excite
oscillations at various frequencies. The possibility
of such a transformation of oscillations in sunspots
was first noted by Pikel’ner and Lifshits [7], and later
by Zhugzhda and Dzhalilov [8]. In addition, there
are traveling waves in the penumbra chromosphere,
which propagate in the direction opposite to the
quasi-stationary flow identified with the St. John
effect. In general, the motions in a sunspot are
quite complex, and comparing the characteristics of
photospheric and chromospheric oscillations in order
to identify the relationships between them is difficult.
There is hope that studying the characteristics of
oscillations observed simultaneously in a penumbra
photosphere and chromosphere may provide new
2004 MAIK “Nauka/Interperiodica”
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information about the possibly unified origin of Ev-
ershed and St. John effects.
We believe that this work should include two

stages. First, it is necessary to identify oscillations
associated in some way with radial flows. Next,
close frequencies at two heights (photospheric and
chromospheric) should be separated out for these
oscillations and used for a comparative analysis. The
first stage by itself is observationally quite difficult.
Various researchers have obtained substantially dif-
ferent results for the spectral components of oscilla-
tions in the penumbra. Some [2] believe that there are
no clear oscillations in the penumbra photosphere,
while the period of oscillations at the chromospheric
level varies from 4–5 min at the inner boundary of the
penumbra to 8–10 min at the outer boundary. In con-
trast, other researchers [9] have detected oscillations
with 5–7 min periods in the penumbra photosphere,
whose amplitude is maximum at the outer boundary.
Oscillations with longer periods are also observed in
the penumbra photosphere, which may be related to
the direct Evershed flow [10–12]. There have been far
fewer attempts to identify chromospheric oscillations
with the inverse Evershed flow [13, 14].
Another important area of study is the spatial–

temporal characteristics of the oscillatory motions
in a sunspot umbra as a probable source of trav-
eling waves in the penumbra, and of oscillations
observed recently in the transition zone and corona
above sunspots [15–17]. Although oscillations in
sunspot umbras have been widely studied during
the last 30 years, the number of questions associ-
ated with such oscillations has not decreased (see,
for example, the recent reviews on this subject [2,
18, 19]). It was commonly believed that the three-
minute oscillations represent standing waves in the
umbra chromosphere. However, it is often argued
that these oscillations are identical to the “umbral
flashes,” and are responsible for traveling waves in
the penumbra [4, 20]. In addition, we still have few
high-quality experimental data that can be used to
determine whether waves in an umbra chromosphere
are standing or traveling, and to directly measure their
phase velocity in the latter case.

2. METHODS AND INSTRUMENTS

The degree to which we can accomplish the tasks
outlined above depends on the observational method
used. As was noted earlier, the differential method [21]
makes it possible to separate out waves propagating
in some specific direction from the noiselikemixture of
the various wave motions in the sunspot penumbra.
In our case, we are interested in the radial direction,
along the penumbra filaments. Therefore, precisely
those wave motions whose direction coincides with
ASTRONOMY REPORTS Vol. 48 No. 11 2004
the Evershed flows are predominantly detected even
at the observing stage. However, the stationary com-
ponent of the Evershed velocity, which is the same for
both regions of the penumbra under consideration, is
excluded from the signal when the differential method
is used. This leads to some uncertainty in choosing
regions of the penumbra with the most clearly ex-
pressed direct and inverse Evershed flows.

Nonmodulational methods for measuring line-of-
sight velocities and magnetic fields using modern
multichannel photodetectors developed at the Insti-
tute for Solar and Terrestrial Physics of the Siberian
Division of Russian Academy of Sciences [22] com-
bine the advantages of differential and ordinary meth-
ods. Observations were carried out using the hori-
zontal solar telescope of the Sayany Observatory. The
coelostat plane mirror with a diameter of 800 mm
and the spherical principal mirror with a diameter
of 900 mm and a focus of 20 m were made from a
glass ceramic to ensure thermal stability. There is a
hole in the center of the principal mirror, where an
auxiliary spherical mirror with a diameter of 100 mm
and a focal length of 19 m is fixed by quartz wedges
inclined slightly to the optical axis of the principal
mirror. A photoguide–coordinatograph with moving
photodetectors for the tracking system is located at
the focus of the auxiliary mirror. The photoguide also
compensates for the drift of the image due to the rota-
tion of the Sun, and is used for automatic scanning of
a specified surface. The scanning parameters can be
input both from a control desk or by computer. The set
of optical–mechanical units of the telescope provide
fixing or scanning of an image with an accuracy of 1′′

or better.

The form, amount, and quality of the observational
information obtained depend substantially on the
characteristics of the multichannel CCD photodetec-
tor used. We used two such devices: a Toshiba CCD
line (4096 pixels with height 200 µm and width 7 µm)
and a Princeton Instruments RTE/CCD-256H array
(256×1024 pixels of size 24×24 µm). One pixel
corresponds to 0.24′′ in the vertical direction. The
array is equipped with a cooling system, which can
automatically maintain a temperature down to−40◦C
with an accuracy of 0.05◦C, substantially reducing
the thermal noise in the receiver and increasing
the measurement sensitivity. The array is operated
using an ST-133 controller operated by either the
WinSpec-32 or WinView-32 software package. This
software controls the observations and also provides
a number of tools for the preliminary processing of the
data obtained.

The observations of velocity oscillations in the Ev-
ershed flow zone using the CCD line in the Doppler
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Fig. 1. Primary data: (a) the time series obtained using
the CCD line and (b) a single frame obtained with the
CCD array. The horizontal axis coincides with the direc-
tion of the spectrograph dispersion, and the vertical axis
is directed along the entrance slit.

compensation regime have certain characteristic fea-
tures that must be taken into account. In particu-
lar, the control software always sets the first mea-
surement to zero. Thus, the time series must be-
gin with measurements in a region of undisturbed
photosphere, usually located at the same meridian
as the penumbral region to be studied (so that the
rotational velocity will not contribute to the signal).
After two or three measurements, without interrupt-
ing the running of the software, we began to study
the target object. This procedure enabled us to select
regions with maximumEvershed velocities. Note that
the positions of the maxima in the photosphere and
chromosphere may not coincide. As usual, the inverse
Evershed effect is observed further from the outer
boundary of the penumbra than in the photosphere.

3. OBSERVATIONAL MATERIAL

We shall analyze here data obtained in 2001–
2002. We focused our observations on large, isolated,
regularly-shaped sunspots. When these were absent,
we observed sunspots incorporated into active re-
gions. Examples of the primary data obtained using
the CCD line and array are shown in Fig. 1. The
CCD-line observations are organized so that a com-
puter calculates the line-of-sight velocity, magnetic-
field intensity, and brightness during the measure-
ments and writes them into a common file. An ex-
ample of our reconstruction of the line-of-sight ve-
locity using the standard software package Excel is
presented in Fig. 1a. The CCD-array data cannot be
processed using this same procedure directly during
the observations due to their large volume. The data
volume was slightly reduced by writing only selected
parts of the spectrum containing interesting lines into
the data file, rather than the entire image. The file
for a time series contains a sequence of frames with
selected fragments. One frame from such a sequence
is presented in Fig. 1b. We can see here two compo-
nents of the FeI 6569 Å line that result from the action
of a deflector [22], which is amplified in the region of
the magnetic field.

We used the simple criterion that one of the lines
be formed in the deep photosphere and the other in
the chromosphere to select the spectral lines to be
observed. Since both lines must be measured simul-
taneously by the same photodetector, they must also
be located close to each other in the solar spectrum.
The most suitable pairs of spectral lines were Hβ and
FeI 4859.8 Å, and Hα and FeI 6569.2 Å; their char-
acteristics are listed in Table 1. A very useful property
of the photospheric lines is their magnetic sensitivity,
characterized by the Landé factor. Due to this sen-
sitivity, we also obtained, in some of the observations,
additional valuable information about the longitudinal
component of the magnetic field. The strong Hβ and
Hα lines possess very deep and broad profiles, so that
we can easily identify separate parts associated with
specific heights in the chromosphere. Note that the
sensitivity of the measurements of the line-of-sight
velocity or the magnetic-field intensity depends on
the steepness of the profile, and is maximum in the
steepest parts of the profile (i.e., in the middle of the
wings, where the profile is almost linear). The width
of the spectrograph entrance slit was chosen to find
a reasonable compromise between the following two
requirements.

On the one hand, the slit width must be large
enough to ensure sufficient illumination of the spec-
trograph, due to a number of effects: the large depth
of the Hβ and Hα lines, the decrease of the inten-
sity in the sunspot umbra and penumbra, and limb
darkening (in some of our observations, the sunspots
are located near the limb, where the Evershed effect
is more prominent). On the other hand, increasing
the width of the entrance slit can worsen the spectral
resolution, first and foremost, for narrow photospheric
lines, due to broadening of the instrumental contour.
In most cases, the width of the entrance slit was taken
to be between 100 and 200 µm, which corresponds to
1′′−2′′ on the image and is in satisfactory agreement
ASTRONOMY REPORTS Vol. 48 No. 11 2004



PULSATING EVERSHED FLOWS 957
Table 1. Spectral lines used

Spectral line λ, Å
Equivalent
width, mÅ

Landé factor
Behavior in the

sunspot
(S/s/W/w)

Parts of the line
wing used, Å

Height of
formation, km

Hβ 4861.3 3680 1.1 w ±0.2 1000–1500

Hα 6562.8 4020 1.1 W ±0.2; 0.4; 0.7 1500–2000

FeI 4859.8 108 s ±0.1 300–350

FeI 6569.2 71 1.4 w ±0.15 250–300
with the actual attainable spatial resolution, which is
limited by the influence of the Earth’s atmosphere.
A short description of the observational data for

2001 is presented in Table 2. The number of obser-
vations of penumbral regions near the limb and near
the center of the solar disk are denoted NL and NC,
respectively. As we can see in the table, the sunspots
were usually observed at longitudes of 20◦−60◦. This
is quite natural, since the direct and inverse Evershed
effects are most clearly visible in these positions. We
were sometimes able to track the sunspots along their
entire path across the observable part of the disk.
For convenient localization of the required object in
the spectrograph entrance slit, we used a Dove prism
installed just in front of the slit. When working with
the CCD array, a sunspot was usually rotated so
that the slit was parallel to a line of solar latitude
(east–west). As a result, we were able to observe
Evershed flows and oscillatory processes simulta-
neously in two radially-opposite penumbral regions,
with the penumbral filaments being located predomi-
nantly along the slit. For sunspots of moderate size,
the aperture also covered the superpenumbra. The
corresponding time series enabled us to study both
the characteristics of Evershed flows, and possible re-
lationships between the umbral oscillations and trav-
eling waves in the penumbra.

4. RESULTS
4.1. Spectral Components of Variations

in the Line-of-Sight Velocity
in the Evershed-Flow Zone

The observational material for 2001 was obtained
using the CCD line, while the 2002 observations were
carried out using CCDarray (1024×256). We can see
in Fig. 1 that both the form of the primary data and
their informational and quantitative characteristics
for these two types of photodetectors are substantially
different. In the former case, the primary material
can be used directly for a rough visual analysis of
the periods, phases, and amplitudes of the observed
oscillations. In the latter case, a number of reduc-
tion procedures must be applied before beginning the
ASTRONOMY REPORTS Vol. 48 No. 11 2004
analysis of the above characteristics. One advantage
of the CCD-array observations is the possibility of
considering the studied process simultaneously in
256 spatial elements, for example, along the east–
west section of the sunspot. Such data are most
suitable for the analysis of traveling waves.

In 2001, we obtained 66 time series for 14 sunspots.
These can be separated into two groups: those in
which low-frequency oscillations were detected visu-
ally (i.e., were dominant) at both heights and those in
which such oscillations were observed at one height
only (Fig. 2).

 

–2

0 20

L
in

e-
of

-s
ig

ht
 v

el
oc

ity
, k

m
/s

Time, min

–3

–1

0

40 80 140

(b)

60 100 120

1

–0.5

0 20
–1.0

0

1.0

40 80

(a)

60 100

1.5

0.5

Fig. 2. Explicit manifestation of low-frequency variations
in the line-of-sight velocity: (a) at both heights simulta-
neously and (b) at one height only.



958 KOBANOV, MAKARCHIK
Table 2. Characteristics of the observational data for 2001

Active region,
NOAA

Date of
observations

Coordinates of the
sunspot observed

Number of time series
(NC, NL) Spectral lines

9433 20−24.04 15◦N, 60◦E–10◦E 9C, 5L Hβ, FeI 4859.8 Å

9435 23.04 20◦S, 15◦W 1C Hβ, FeI 4859.8 Å

9436 24.04 10◦S, 44◦E 1C, 1L Hβ, FeI 4859.8 Å

9484 03.06 6◦S, 21◦E 1C Hα, FeI 6562.9 Å

9487 03−04.06 20◦N, 70◦E–58◦E 2C, 2L Hα, FeI 6569.2 Å

9488 03−04.06 18◦S, 77◦E–63◦E 1C, 2L Hα, FeI 6569.2 Å

9529 05, 11−12.07 7◦N, 60◦E–27◦W 1C, 3L Hα, FeI 46569.2 Å

9535 12.07 6◦N, 61◦E 1C Hα, FeI 6569.2 Å

9575 17−20.08 12◦N, 6◦E–36◦W 4C, 7L Hα, FeI 6569.2 Å

9580 17−24.08 25◦N, 46◦E–40◦W 8C, 2L Hα, FeI 6569.2 Å

9616 17−19.09 12◦S, 16◦E–14◦W 2C, 3L Hα, FeI 6569.2 Å

9620 17−19.09 13◦N, 67◦E–42◦E 2C, 4L Hα, FeI 6569.2 Å

9621 18.09 16◦N, 61◦E 1C Hα, FeI 6569.2 Å

9624 19.09 3◦N, 57◦E–54◦E 2C, 1L Hα, FeI 6569.2 Å
Amore accurate quantitative analysis of the power
spectra of the line-of-sight velocity carried out using
a fast Fourier transform reveals a number of other
hidden periods. The histogram in Fig. 3 represents
the frequency of occurrence of specific periods in the
complete set of 66 series. The periods presented in
the histogram denote groups covering all the detected
periods. For example, the 5-min group contains all
periods greater than 4 min and less than 6 min, the
14-min group covers the interval from 12 to 17 min,
and so on.
The low frequency of occurrence of the 3-min (2

to 4 min) oscillations is striking. These oscillations
dominate in the chromosphere over sunspot umbras,
as well as in the undisturbed chromosphere, beyond
active regions. Using the CCD line, we observed
primarily oscillations in the middle of the penumbra.
Therefore, this result may reflect the fact that there
was no significant scattered light in most of our im-
ages, so that such light did not lead to faulty periods
associated with neighboring regions.
Note the large fraction of simultaneous observa-

tions of oscillations with the same periods in the pho-
tosphere and chromosphere. This is especially clear
for the groups of 5- and 8-min oscillations. There
are far fewer such coincidences in two other groups
of periods in the middle of the histogram (14 and
11 min), although precisely these periods are com-
monly assumed to be associated with variations in the
Evershed flows at the photospheric level [10, 23, 24].
The phase relations between the photospheric and
chromospheric line-of-sight velocity in these groups
of periods are random. This provides indirect evidence
that the direct and inverse Evershed flows are prob-
ably not part of a unified system, with variations in
the velocities of photospheric flows leading to corre-
sponding variations in the velocities of chromospheric
flows. The periods of 35 min or more observed in
the measured Evershed velocity may be produced by
torsional oscillations of the sunspots [25, 26].

4.2. Spatial–Temporal Characteristics
of the Oscillations, Wave Motions

At the end of July and the beginning of August
2002, we were able to conduct a series of obser-
vations of the isolated sunspot NOAA 0051 during
its passage across the disk. Using the CCD array,
we obtained ten time series from July 29 to August
6, 2002. The average duration of each series was
45 min, with an interval between frames of 5 s. The
Doppler velocity in the Hα line was determined as the
difference of the intensities in the red and violet wings
normalized to their sum at levels of ±0.2 Å, ±0.4 Å,
and ±0.7 Å; and in the FeI 6569 Å line at a level
of ±0.15 Å. The instrumental shifts of the spectrum
were determined using an H2O telluric line located
near Hα. These shifts were subtracted from the cal-
culated signals after recalculation to the equivalent
Doppler velocity.
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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The resulting gray-scale images of the spatial and
temporal distributions of the line-of-sight velocity in
the Hα line show a clear periodic structure resem-
bling a chevron. The location of this chevron on the
time axis directly demonstrates the presence of trav-
eling waves in the umbra chromosphere (the right-
hand diagrams in Fig. 4 and the left-hand image in
Fig. 5). First and foremost, this structure indicates
the spatial symmetry of the process: the observed
motions are directed from the center to outer regions
of the umbra. The light areas in all the gray-scale
diagrams correspond to velocities directed toward the
observer, whereas dark areas denote motion away
from the observer.
It is difficult to imagine any artificial mechanism

that could create such a structure. In addition, the
influence of an artefact should be the same in the pho-
tosphere, so that the two distributions should be sim-
ilar to each other. In fact, they differ sharply (Fig. 4)
in terms of both the periodicity and the location of
the structures. The chevron pattern in some parts
of the time series is so clear that the period T and
phase velocity V = L/T of the traveling wave can be
derived directly from the pattern (left-hand image in
Fig. 5). After averaging over several parts of the series
with the most clearly expressed chevron structure, we
obtained the approximate values T = 3 min and V =
45−50 km/s. According to our estimates, the top of
the chevron coincides with the center of the umbra.
If the distance between the elements corresponding
to points B and C in Fig. 5 is 2′′, the temporal dis-
tributions of the line-of-sight velocity at Hα ±0.2 Å
should resemble the right-hand plot of Fig. 5. The
signal for the line-of-sight velocity at point C is char-
acterized by an average time delay of about 25 s
relative to the signal at point B. Since the distance
between these points is 1500 km, the phase velocity
turns out to be slightly less than 60 km/s, which
almost coincides with the values derived directly from
the chevron pattern.

Thus, the estimates of the phase velocity obtained
using the two methods coincide. There is a maximum
in the power spectrum at 2.8 min. The horizontal size
of the region assumed to be the source of the wave
motions and localized at the center of the umbra can
be estimated as 1.5′′−2′′. Note that the amplitude
of the line-of-sight velocity measured at Hα±0.2 Å
exceeds the corresponding values at the levels±0.4 Å
and±0.7 Å.We did not find a phase delay between the
line-of-sight velocities measured at Hα ±0.2 Å and
Hα±0.7 Å for the same spatial element. This may in-
dicate that the vertical extent of the source is compa-
rable to the observed height scale (1000–1500 km); in
any case, it should not be below this value. Therefore,
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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the problem of more accurate height localization of
the source remains unsolved. Our preliminary study
shows that the 3-min oscillations are very weakly
expressed in the brightness of the Hα line, and the
chevron structure is absent. In the first stage, we
did not detect any definite phase relation between the
observed oscillations in the line-of-sight velocity and
the intensity. Note that the chevron structure is also
manifest to some degree in other time series. It is
expressed most clearly in the observations of July 31,
2002. We have analyzed these data most completely,
and will discuss them here.
The well-defined localization of the wave motions

within the boundaries of the sunspot umbra, deter-
mined by the intensity of the continuous spectrum, is
striking. The spatial size of the chevron pattern (11′′)
coincides with the size of the umbra (10′′). Our pri-
mary observations on July 31 show that there are no
appreciable features associated with the continuation
of the wave motions to the penumbra region in the
directions observed. They finish at or just behind the
boundary of umbra, as we can see in both Fig. 4 and
Fig. 6. The traveling penumbral waves are probably
not seen in Fig. 4 (upper right-hand diagram) due
to the small amplitude of the line-of-sight velocity
(1 km/s). However, the direct and inverse Evershed
flows are expressed very clearly in Fig. 4, although
their projection onto the line of sight in this position of
the sunspot yields a close velocity (1.1 km/s). Thus,
it seems that traveling penumbral waves are very
weak or completely absent in the observed directions.
Nevertheless, we applied a special procedure to try to
detect them.
The initial spatial–temporal distributions of the

Doppler velocities (upper right-hand diagram in
Fig. 4) involve both Evershed flows and oscillatory–
wavemotions. This representation may be convenient
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(Hα ±0.2 Å). The Evershed velocities in the bottom row
are decreased by a factor of four to show the weak wave
motions. The vertical lines denote the inner and outer
boundaries of the penumbra.

for investigating the relationship between these phe-
nomena. In this case, the Evershed flows presented
in the pictures can serve as additional calibration
information. However, the speeds of the direct and
inverse Evershed flows are substantially greater than
the speeds associated with other types of motions.
As a result, motions with small velocities will not
be seen in the initial gray-scale diagrams due to
the insufficient dynamic range of the gray scale. In
order for the structure of weak wave motions to be
presented more broadly, the constant component of
the Evershed velocity should be subtracted (or sub-
stantially reduced).
The results of such a transformation are presented

by the two bottom diagrams in Fig. 4, which show
weak wave structures in the penumbra chromosphere
at various time intervals. A more detailed analysis
shows that these structures usually correspond to
those parts of the diagram where the chromospheric
chevron in the umbra becomes more gently sloping
and flat. Such behavior may indicate an increase in
the velocity of propagation of the wave in the umbra
in the corresponding time intervals. We can suppose
that such waves cross the boundary of the penum-
bra before they lose energy and disappear. In fact,
precisely the high speed of propagation of the wave
combined with insufficient frequency of exposure of
the sunspot may be responsible for the fact that the
umbral chevrons in the spatial–temporal diagrams
published in [20, 27, 28] degenerated into flat struc-
tures. The typical intervals between the exposures in
these works were 12 to 36 s, while this interval was
5 s in our study. Naturally, the authors of [20, 27, 28]
could not quantitatively estimate the speed of propa-
gation of the wave based on their diagrams directly in
the sunspot umbra, since this would lead to extremely
large values for the phase velocity. (A standing wave
possesses an infinite phase velocity.) In this situation,
these incorrect quantitative estimates would seem to
provide evidence against the propagation of waves in
the umbra.
It is interesting to compare the velocity oscillations

at points located symmetrically about the top of the
chevron (± 3′′). The phases of the signals are close to
each other, especially in the time interval 20–40 min
(Fig. 7b). This suggests the synchronous propaga-
tion of chromospheric oscillations from the center of
the umbra to the east and west. It is natural to sup-
pose that the dominant direction of the wave motions
in the umbra coincides with the magnetic field, i.e.,
it is approximately vertical. In this case, the measured
horizontal velocity of propagation is a projection of the
true velocity, whichmay be substantially greater. If we
consider the Doppler velocities at both sides of the fir-
tree-like structure observed at the photospheric level,
the situation will be exactly the opposite: the signals
will be in antiphase (Fig. 7a). Since two oppositely-
directed wave motions take place here, there should
be a considerable decrease in their amplitude due to
interference. Precisely this effect is observed near the
maximum of the Evershed velocity in Fig. 7a.
We do not know now if this is a typical situation

that also occurs in other sunspots, or if it is character-
istic of the particular sunspot studied here. This may
be related to the double structure of the Evershed-
velocity maximum in Fig. 4. Features with such dou-
ble structures were noted by Bumba et al. [29].
ASTRONOMY REPORTS Vol. 48 No. 11 2004



PULSATING EVERSHED FLOWS 961

 

–1

20 25

L
in

e-
of

-s
ig

ht
 v

el
oc

ity
, k

m
/s

Time, min

–2

0

1

30 35 40

 

L

T

 

B

C

2

3

4
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(b) from the phase delay of the signals at points B (solid curve) and C (dashed curve).
Wecan see in Fig. 4 that the pattern of themotions
at the photospheric level is quite complex, even for
this isolated sunspot with a regular shape. Oscillatory
motions are observed in the sunspot umbra, and it
seems that the Evershed flow itself pulsates with the
5-min period in some regions; in any case, the curves
representing the maxima Evershed velocity are wavy.
The observed line-of-sight velocity can be repre-

sented as the sum of two orthogonal components: the
vertical (perpendicular to the solar surface) compo-
nent Vr and the horizontal component Vh. The same
approach was used in [30]. Due to the axial symmetry
of the motions in a sunspot, the Evershed flow and its
variations will be presented primarily by the horizontal
component. Therefore, this provides a new means for
identifying the oscillations associated with Evershed
flows.
We can study the separate oscillatory modes in

more detail using frequency filtration. We performed
a direct wavelet transformation of the data on the
space and time distribution of the analyzed velocity
component. Next, we identified interesting frequen-
cies and restored the initial distribution using the in-
verse wavelet transformation. The resulting patterns
describe more clearly the behavior of individual os-
cillatory modes. For example, Fig. 8a shows that the
5-min photospheric oscillations experience a sharp
phase jump near the middle of the penumbra. The
10–12-min oscillations in the photosphere (Fig. 8b)
experience two such jumps; the first appears approx-
imately in the same place as for the 5-min mode,
2′′−3′′ closer to the inner boundary, while the second
jump occurs just behind the outer boundary of the
penumbra. The zone ofmaximumEvershed flow plays
an unclear, but obviously important, role in the propa-
gation of oscillations in the sunspot photosphere. It is
ASTRONOMY REPORTS Vol. 48 No. 11 2004
difficult to interpret the corresponding data, and more
extensive observational data, supplemented by series
of sensitive filtergrams with high temporal resolution,
are needed.

5. DISCUSSION AND CONCLUSIONS

Could the well-known umbral flashes [31–34] and
the traveling umbral waves observed in our study
represent the same phenomenon? They have a num-
ber of common features: the periods of oscillations
are close to 170 s, the proagation velocities nearly
coincide (40 km/s for umbral flashes and 45–50 km/s
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in our case), the scales are no greater than 3′′, and
both phenomena are observed within the sunspot um-
bra. Differences between the two phenomena are as
follows. First, no brightening in Hα is observed in
our case. The intensity variations are very small and
do not show an unambiguous phase relation relative
to the velocity variations. Second, the periods of the
umbral flashes are different for different positions in
the sunspot umbra, and several umbral flashes with
different periods can be observed simultaneously. In
our case, the period remains constant over the entire
observed umbra (which is not small).

Next, let us consider the possible relation of the
observed phenomenon to the traveling penumbral
waves [35, 36]. Giovanelli [35] found an absence
of oscillations propagating in the radial direction
inside the sunspot umbra (r = 0.9). According to
his observations, the traveling waves are formed in
a narrow zone of the umbra (between r = 0.9 and 1)
and propagate outwards with speeds of 20 km/s in
the sunspot penumbra. The period of these waves is
about 300 s, and the amplitude of the line-of-sight
velocity is 1 km/s.
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modes of the photospheric oscillations: (a) 5-min period
and (b) 10.5-min period. The distance is measured in
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Our results are substantially different. We ob-
served waves propagating in the radial direction di-
rectly from the center of the sunspot umbra. More-
over, these waves disappeared abruptly at or near
the boundary between the umbra and penumbra. The
propagation velocity in the radial direction was 45–
60 km/s, the period ∼170 s, and the amplitude of the
line-of-sight velocity about 2 km/s.
The later works [20, 27] report that the traveling

waves are formed in the umbra and next propagate
through the penumbra with speeds of 20–30 km/s.
Unfortunately, these authors do not discuss the dis-
agreement between the two periods (170 s in the
umbra and 280–300 s in the penumbra). They ob-
served several oscillatory elements with various pe-
riods and amplitudes in the sunspot umbra, and also
found some features oscillating with a period of 80 s.
In addition, they did not estimate quantitatively the
propagation velocity for the wave in the umbra, only
noting that the phase velocity was very large. They
suggest that the umbral oscillations and the traveling
waves are produced by the same resonator.
Moore and Tang [32] believe that the sources of

umbral oscillations and traveling penumbral waves
are physically independent, and are localized in deeper
subphotospheric layers. Returning to the bottom left-
hand diagram in Fig. 4, we can see a sharp difference
of the spatial–temporal distributions for the line-of-
sight velocity in the photosphere measured by the FeI
6569 Å and Hα lines. There are no 3-min oscillations
in the umbra at the photospheric level, but there are
ASTRONOMY REPORTS Vol. 48 No. 11 2004
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weak 5-min-oscillation features. On the other hand,
the penumbra region is characterized by a clear peri-
odic structure, whose center of symmetry is the line
of maximum Evershed velocity. The period of this fir-
tree-like structure is about 5 min or, according to a
more accurate spectral analysis, 5.2 min. The wave
motions are directed in opposite directions, from the
inner part of the penumbra and the outer penumbra.
The waves flow into the zone of maximum Evershed
velocity, simulating pulsations of the Evershed flow
with a 5-min period.
In fact, our results contradict the suggestion of

[4, 28] that the 3-min oscillations in the umbra chro-
mosphere are composed primarily of standing waves
[37]. In the photosphere of the inner penumbra, there
are waves directed inwards, toward the sunspot um-
bra, whereas the waves in the outer penumbra (0.7
of the distance between the umbra and penumbra
boundaries) are directed outwards from the sunspot.
The wave pattern is repeated with a period of 5 min.
The speed of propagation of the wave in both direc-
tions is about 0.5 km/s, and the wave has a horizontal
wavelength of 2500 km. The reason for these discrep-
ancies with our results is unclear. It is likely that the
individual characteristics of sunspots determine the
oscillatory processes to a much greater degree than
we believe. Further studies of data for a large number
of sunspots are necessary.
It is interesting that some of the patterns seen

in the most recent numerical simulations of wave
propagation in sunspots [38] are very similar to the
chevron structures observed by us.
Let us now briefly summarize our results. Our

analysis of variations in the line-of-sight velocity us-
ing 66 data series for 14 active regions does not sup-
port the hypothesis that the direct and inverse flows
form a single system. We believe that the similarity
of the oscillatory spectra for the direct and inverse
flows in the period range 25–35 min could be asso-
ciated with torsional oscillations of the sunspots. The
chevron structure in the spatial–temporal distribu-
tion of the line-of-sight velocity in the sunspot con-
vincingly indicates the presence of traveling waves
in the umbra chromosphere. These waves propagate
from the center of the sunspot outwards with a pe-
riod of 2.8 min and a phase velocity of 45–60 km/s.
The measured amplitude of the Doppler velocity is
about 2 km/s. These waves disappear quite abruptly
at the inner boundary of penumbra and, therefore, do
not propagate into the penumbra itself. The spatial
coherence of the motions does not exceed 2′′. There
are periodic motions (with a period of 300 s) at the
photospheric level directed from the inner boundary
of the penumbra and from the superpenumbra toward
the line of maximum Evershed velocity.
ASTRONOMY REPORTS Vol. 48 No. 11 2004
We believe that the wave motions observed in
the sunspot umbra chromosphere are not directly re-
lated to traveling penumbral waves. This conclusion
is supported by the absence of a clear continuation of
the wave motions from the umbra to the penumbra,
and also by the difference of the periods found in
the studies cited above. However, oscillations with a
period of about 300 s may sometimes be excited at
the boundary between the umbra and penumbra when
the amplitude of the umbral oscillations becomes suf-
ficiently large (6–8 km/s), accompanied by the ap-
pearance of umbral flashes. Thus, this is not a direct
continuation of the wave motions. An alternative ex-
planation is that the observed traveling 5-min waves
from the lower layers (photosphere) penetrate directly
into the penumbra chromosphere. Longer time series
of spectral observations (up to 2 h) supplemented by
filtergrams in calcium lines and the Hα line, as well
as information about the magnetic structures in the
sunspots, are necessary for the further development
of such investigations.
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