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Abstract—The novel observation of an exotic strangeness S = +1 baryon state at 1.54 GeV is to trigger an
intensified search for this and other baryons with exotic quantum numbers. This state was predicted long ago
in topological soliton models. We use this approach together with the new datum in order to investigate its
implications for the baryon spectrum. In particular, we estimate the positions of other pentaquark and septu-
quark states with exotic and with nonexotic quantum numbers. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In a recent paper [1], Nakano et al. report on an
exotic strangeness S = +1 baryon state observed as a
sharp resonance at 1.54 ± 0.01 GeV in photoproduction
from neutrons. The confirmation of this finding would
give formidable support to topological soliton models
[2, 3] for the description of baryons in the nonperturba-
tive regime of QCD. Higher multiplets containing
states carrying exotic quantum numbers arise naturally
in the SU(3) version of these models. These were called
exotic because such states cannot be built from only
three valence quarks within quark models; additional
quark-antiquark pairs must be added. The terms pen-
taquark and septuquark therefore characterize the quark
content of these states. Strictly, there is nothing exotic
about these states in soliton models; they simply come
as members of the next higher multiplets.

Indeed, beyond the minimal {8} and {10} baryons,

a  baryon multiplet was also mentioned earlier by
Chemtob [4]. Within a simple SU(3) symmetric
Skyrme model, Biedenharn and Dothan [5] estimated

the excitation energy of the  multiplet having a
spin of J = 1/2 to be only 0.60 GeV [sic] above the
nucleon. Both this multiplet and the {27} multiplet
with a spin of J = 3/2 contain low-lying S = +1 states,
called Z and Z* in what follows. The first numbers for
these exotic states, taking into account the configura-
tion mixing caused by symmetry breaking, were given
in [6], although they are around 0.1 GeV too high if the
value found in [1] proves to be correct. Diakonov,
Petrov, and Polyakov [7] postulated the experimental

P11(1.71) nucleon resonance of a member of the 
multiplet, and hence the Z state again with a low exci-
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tation energy (0.59 GeV). Weigel [8] showed that sim-
ilar low numbers (0.63 GeV) can be obtained in an
extended Skyrme model calculation that includes a sca-
lar field.

It should be added that the excitation energies of
similar exotic states have been estimated for arbitrary
baryonic numbers [9]. All these states appear to be
above the threshold for the decay due to strong interac-
tions. In general, the excitation energies for the B > 1
systems are comparable to those for baryons; e.g., the

S = 1 dibaryon state belonging to the  multiplet
was calculated to be only 0.59 GeV above the NN
threshold [10].

In this paper, we address the following questions
concerning the B = 1 sector. Is the exotic Z state at
1.54 GeV reported in [1] compatible with soliton mod-
els and the known baryon spectrum? If Z is actually
located at this position, what does it imply for the other
exotic states?

2. SU(3) SOLITON MODEL

A large number of different soliton models exist:
pure pseudoscalar ones, models with scalar fields
and/or vector and axial-vector mesons, and even mod-
els that include quark degrees of freedom. There is also
a vast number of possible terms in the effective action
for each of these models, partly with free adjustable
parameters. However, the SU(3)-symmetric part always
leads to the same collective Hamiltonian with only two
model-dependent quantities determining the baryon
spectrum (Section 2.1). The situation with the symme-
try breaking part is less advantageous, unfortunately,
but still there appears one predominant standard sym-
metry breaker, which is to be the third model-depen-
dent quantity needed (Section 2.2). Thus, instead of
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referring to a specific model (which also involves a
number of free parameters), we adjust these three quan-
tities to the known {8} and {10} baryon spectra and to
the recently reported Z state [1]. Using this input, we try
to answer the questions posed in the Introduction. We
also show that the values needed for the three quantities
are not too far from what can be obtained in the stan-
dard Skyrme model.

In the baryon sector, the static hedgehog soliton
configuration located in the nonstrange SU(2) subgroup
is collectively and rigidly rotated in the SU(3) space.
There are other approaches, such as the soft rotator
approach and the bound state approach, but the rigid
rotator approach is probably most appropriate for B = 1.

2.1. SU(3)-Symmetric Part

The SU(3)-symmetric effective action leads to the
collective Lagrangian [11]

(1)

depending on the angular velocities , a = 1,…, 8. It
is generic for all effective actions whose nonanomalous
part contains at most two time derivatives, the term lin-
ear in the angular velocity depends on the baryon num-
ber B and the number of colors NC, and it appears due
to the Wess–Zumino–Witten anomaly.

The soliton mass M and the pionic and kaonic
moments of inertia Θπ and ΘK are model-dependent
quantities. The latter two are relevant to the baryon
spectrum. The soliton mass M, subject to large quantum
corrections, enters the absolute masses only. With the
right and left angular momenta

(2)

which transform according to Wigner functions Dab

depending on the soliton orientation, the Hamiltonian
obtained by the Legendre transformation

(3)

can be expressed by the second-order Casimir operators
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of the SU(3) group and its nonstrange SU(2) subgroup,

(4)

For a given SU(3) irrep (p, q) with the dimension

,

the eigenvalues of these operators are given by

(5)

where (YRJJ3) denote the right hypercharge and the
baryon spin. The latter relation is due to the hedgehog
ansatz that connects the spin to the right isospin. The
states are still degenerate with respect to the left (flavor)
quantum numbers (YTT3) suppressed here. The con-
straint

fixes

(see [11]) and is written as the triality condition [5]

(6)

with Ymax representing the maximal hypercharge of the
(p, q) multiplet. Thus, baryons belong to irreps of
SU(3)/Z3 . With the octet being the lowest B = 1 multi-
plet, the number of colors must be NC = 3. We also
obtain the spin-statistics baryon number relation

which allows only half-integer spins for B = 1 [5].

From the standpoint of the quark model, the integer
m in combination with (p, q) is related to the number of
additional  pairs present in the baryon state [9].
When B = 1, we obtain the minimal multiplets {8} and
{10} for m = 0; the family of penta- and septuquark

multiplets , {27}, {35}, and {28} for m = 1; and

, {64}, and {81}, for m = 2 (Fig. 1). For the
masses of the multiplets {8} J = 1/2, {10} J = 3/2,
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 J = 1/2, {27} J = 3/2, and  J = 3/2, simple
relations

(7)

hold. We note that the mass difference of the minimal
multiplets depends on Θπ only,1 whereas the mass dif-
ferences between minimal and nonminimal multiplets
depend on ΘK and Θπ. With the values Θπ ≈ 5 GeV–1

and ΘK ≈ 2.5 GeV–1 from a naive Skyrme model, the
estimate  – M{8} ≈ 0.60 GeV [5] was obtained in
agreement with (7). The mass of {27} then lies approx-
imately 0.10 GeV higher. In Fig. 1, we show the spec-
trum of all baryon multiplets with the excitation energy
up to 2.5 GeV using these moments of inertia for illus-
tration. The sequence of the lowest baryon multiplets

(8)

turns out to be unique within a large range of moments
of inertia Θπ/3 < ΘK < Θπ/2, covering the realistic cases.
Diagrams for the lowest nonminimal baryon multiplets

 and {27} that accommodate the interesting S =
+1 states are shown in Fig. 2.

So far, we have considered the SU(3)-symmetric
case. To explain the splitting of baryon states within
each multiplet, we must take the explicit symmetry
breaking into account.

2.2. SU(3) Symmetry Breaking

The predominant standard symmetry breaker comes
from the mass and kinetic terms in the effective action
that account for different meson masses and decay con-
stants, e.g., mK ≠ mπ and FK ≠ Fπ,

(9)

(the first term). There can be further terms of minor
importance that depend on the specific effective action
used. As an example, we optionally include such a term

1 It was shown for arbitrary B [9] that the factor at 1/2ΘK in (3),

C2(SU(3)) – R2 – 3B2/4 = 3B/2 for any minimal multiplet with
p + 2q = 3B; Nc = 3.
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arising from ρ – ω mixing in vector meson Lagrangians
(the second term). This can serve as a test for the model
dependence of our results. The corresponding Hamilto-
nian is

(10)

The quantities Γ and ∆ are again model-dependent
quantities; they determine the strength of symmetry
breaking. We first consider only the standard symmetry
breaker Γ.

It was noticed earlier that a perturbative treatment of
this symmetry breaker leads to the splitting

for the {8} baryons [4, 11], at variance with the obser-
vation. Because symmetry breaking is strong, Eq. (10)
must be diagonalized in the basis of the unperturbed
eigenstates of HS. Under this procedure, the states of a
certain multiplet acquire components of higher repre-
sentations. We nevertheless call the mixed states {8}
states, {10} states, etc., according to their predominant
contribution.

The best values for the moments of inertia Θπ and
ΘK and the symmetry breaker Γ are listed in Table 1
(fit A). Optionally, the symmetry breaker ∆ is also
included (fit B). In Fig. 3, we show the dependence of
the Z and Z* energies on the kaonic moment of inertia
ΘK with the other parameters kept fixed. The sensitive
dependence expected from Eq. (7) persists when sym-
metry breaking is included. If the experimental datum
for Z proves correct, a relatively large kaonic moment
of inertia (Table 1) is required.

We now compare this with the implications of the
standard Skyrme model [2, 3] with only one adjustable
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Fig. 1. B = 1 baryon multiplets with the excitation energy
less than 2.5 GeV for Θπ = 5 GeV–1 and ΘK = 2.5 GeV–1.
The number m (see relation (6)) is also given.
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10{ } J 1 2⁄= {27}J = 3/2
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Fig. 2. The T3–Y diagrams for the baryon multiplets  and {27} that include the lowest S = +1 states.10{ }
parameter e = 4.05. The mass and kinetic symmetry
breakers are included with mesonic parameters. The
kinetic symmetry breaker involves time derivatives that
were neglected in [6] (in the adiabatic approximation)
in accordance with the argument that they are sup-
pressed by two orders in the 1/NC expansion and this
order must include many other symmetry breaking
terms that are not taken into account either. This leads
to Θπ = 5.88 GeV–1, Γ = 1.32 GeV, and a relatively
small kaonic moment of inertia ΘK = 2.19 GeV–1 (con-
nected with larger Z and Z* masses, Fig. 3). However,
the nonadiabatic terms in the kinetic symmetry breaker
are not actually small, and they make a sizeable contribu-
tion to the kaonic moment of inertia ΘK = 2.80 GeV–1

together with symmetry breaking terms and even terms
that are nondiagonal in the angular momenta. Because
the latter were never properly treated, these numbers
should be compared with reservation to those in
Table 1. Nevertheless, it seems that the standard
Skyrme model can potentially provide values close to
fit B. Relative to fit A, the standard symmetry breaker
from the Skyrme model appears too weak, indicating
that an important symmetry breaking piece is missing
in this model. Concluding this discussion, we empha-
size that the nonadiabatic terms in the kinetic symmetry
breaker are of course not the only possibility of obtain-
ing larger kaonic moments of inertia. Inclusion of other
degrees of freedom or of additional terms in the effec-
tive action influences this quantity sensitively. In this

Table 1.  Moments of inertia and symmetry breakers
obtained from a fit to the baryon spectrum including the
novel Z datum

Θπ, GeV–1 ΘK, GeV–1 Γ, GeV ∆

fit A 5.61 2.84 1.45 –

fit B 5.87 2.74 1.34 0.40
JOURNAL OF EXPERIMENTAL 
respect, the position of the exotic Z baryon proves an
important constraint on soliton models.

The resulting baryon spectrum is shown in Fig. 4. It
can be seen that for fit A, with the standard symmetry
breaker alone, the Σ − Λ mass difference is too large,
the splitting in the J = 1/2 multiplets relative to that in
the J = 3/2 multiplets is overestimated, and the corre-
sponding SU(2) symmetry breaker can account for only
half of the neutron–proton split (not shown here; see,
e.g., [6]). All three deficiencies can be remedied by
including the second symmetry breaker, fit B. Of
course, this does not mean that the additional symmetry
breaker must be exactly of form (10); other operator
structures are possible. As mentioned, we include fit B
mainly to illustrate the model dependence of our

results. It seems that the levels of the  multiplet
are relatively stable in contrast to the {27} multiplet,
whose states depend sensitively on the specific form of
the symmetry breakers such that even the ordering of
the levels is changed.

All states of the  and {27} multiplets are listed
in Tables 2 and 3. We distinguish states with exotic
quantum numbers from those with nonexotic quantum
numbers –2 ≤ Y ≤ 1 and T ≤ 1 + Y/2. Generally, the
former are “cleaner,” because they cannot mix with
vibrational excitations (apart from their own radial
excitations). Because additional vibrations on top of
these states can only enhance the energy, these turn out
to be the lowest states with exotic quantum numbers
starting with the S = 1 baryon states Z and Z*. The latter
are experimentally accessible via the reactions

10{ }

10{ }

γN KZ KKN ,

πN KZ KKN ,

NN Λ Σ,( )Z Λ Σ,( )KN ,
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and in KN scattering. The novel measurement [1] was a
photoproduction experiment of the first type. The S ≠ 1
exotic states are more difficult to measure, e.g., X in
Table 2 via the reactions

We also included the lowest exotic states with
strangeness S = +2 and S = –4 with the main compo-

πN πX ππ∆,

NN ∆X π∆∆.

1.8
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1.6

1.5

1.4

E
ne

rg
y,

 G
eV

Kaonic moment of inertia, 1/GeV

Z*

Z

Fig. 3. The masses of the S = 1 baryons Z and Z* depending
on the kaonic moment of inertia. Θπ = 5.87 GeV–1 and Γ =
1.34 GeV are kept fixed.
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nents in the respective multiplets  and {35}. The
S = +2 state Z** can still be produced in binary reac-
tions, e.g.,

but the energy of this state is already quite considerable,
approximately 2.4 GeV. On the other hand, the S = –4
state is more difficult to produce, but detection seems to
be simpler because the final Ω– and K– are easy to see.

In contrast, the states with nonexotic quantum num-
bers in Table 3 mix strongly with vibrational excitations
of the {8} and {10} baryons. For example, the N* rota-
tional state, identified with the nucleon resonance
P11(1.71) in [7], mixes strongly with a 2"ω radial exci-
tation, which can even lead to a doubling of states as
found in [8]. This situation renders an easy interpreta-
tion difficult. Probably the cleanest of these states with
nonexotic quantum numbers is the one called Λ*,
which predominantly couples with the nonresonant
magnetic dipole mode. But even here, it is not excluded
that the good agreement with the position of the exper-
imental Λ resonance P03(1.89) is accidental. Also,
there is not even a candidate for the rotational state
called ∆* listed by the PDG in the required energy
region with the empirical ∆ resonance P33(1.92) lying
approximately 0.1 GeV too high. On the other hand, do
we have candidates close to the estimated energies in
five cases. There is certainly some evidence that the
numbers presented are not unreasonable.

35{ }
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10{ } J 1 2⁄= {27}J = 3/2 {35}J = 5/2{10}J = 3/2{8}J = 1/2

Fig. 4. The lowest rotational states in the SU(3) soliton model for fits A and B. The experimental masses of the {8} and {10} baryons
are depicted for comparison. Not all states of {35} are shown.
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It should be added that the energies for the 
baryons presented here differ substantially from those
obtained in [7] using simple perturbation theory. Their

 total splitting is overestimated by more than a
factor of 2.

3. THE S = 1 BARYON SPECTRUM

So far, we have considered only the rotational states.
The real situation is complicated because there is an
entire tower of vibrational excitations connected with
each of these rotational states. We briefly address this

10{ }
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KN, S = 1
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P13

D15

D03

{27}P13

10{ } P01

Fig. 5. Tentative baryon spectrum for the S = 1 sector.
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issue on a qualitative level, particularly for the S = 1
sector. This may possibly be of help to experimentalists
in search of more exotic baryons.

The lowest states in the S = 1 sector are the rota-
tional states Z and Z* discussed in the previous section.
As mentioned, we believe that the energies of these two
states must be close to each other and the energy of Z*
somewhat larger (about 0.10–0.15 GeV). Such rota-
tional states appear as sharp resonances with small
widths relative to the broader vibrational states. The
width of Z was given in [1] to be smaller than 25 MeV,
and that of Z* must be somewhat larger due to phase
space arguments. The Z* state will probably be the next
exotic state detected.

In soliton models, radial excitations (breathing
modes) certainly exist for each rotational state. For
most of the {8} and {10} baryons, such excitations cor-
respond to the well-known resonances; e.g., the Roper
resonance for the nucleon. The breathing mode excita-
tion energy of Z calculated in [8] is approximately
0.45 GeV, and that of Z* should be considerably
smaller because the latter object is more extended due
to centrifugal forces related to a larger spin (similarly to
the Roper resonance and the ∆ resonance P33(1.60)).
We can therefore expect the excited P01 and P13 states
to occur close to each other, as indicated in Fig. 5 (the
order may be reversed!).

In addition, there must be strong quadrupole excita-
tions, as those obtained in soliton models [12] and seen
empirically in the well-studied S = 0 and S = –1 sectors
(with roughly 0.4 and 0.6 GeV excitation energy). In
Table 2.  Rotational states of nonminimal multiplets with exotic quantum numbers below 2 GeV including all members of

{ } and {27}. The experimental Z datum enters the fits. The lowest exotic Y = ±3 baryon states are also included

J Y T Decay modes
Estimated energy, GeV

A B

Z { } 1/2 2 0 KN 1.54 1.54

Z* {27} 3/2 2 1 KN 1.69 1.65

{27} 3/2 0 2 πΣ, πΣ*, ππΛ 1.72 1.69

X {35} 5/2 1 5/2 π∆, ππN 1.79 1.76

{ } 1/2 –1 3/2 πΞ, πΞ*, Σ 1.79 1.78

{27} 3/2 –1 3/2 πΞ, πΞ*, Σ 1.85 1.85

{35} 5/2 0 2 πΣ, πΣ* 1.92 1.90

{35} 5/2 2 2 K∆, KπN 2.06 1.96

{27} 3/2 –2 1 πΩ, Ξ, Ξ* 1.99 2.02

{35} 5/2 –3 1/2 Ω , Ξ 2.31 2.36

Z** { } 3/2 3 1/2 KKN, KK∆ 2.41 2.38

10

10

10 K

K

K K

K K K

35
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Table 3.  Rotational states of higher multiplets with nonexotic quantum numbers below 2 GeV including all members of the

{ } and {27} multiplets

J Y T Candidate
Estimated energy, GeV

A B

N* { } 1/2 1 1/2 N P11(1.71)*** 1.66 1.65

Σ* { } 1/2 0 1 Σ P11(1.77)* 1.77 1.75

Σ* {27} 3/2 1 3/2 1.83 1.75

{27} 3/2 1 1/2 N P13(1.72)**** 1.78 1.76

{27} 3/2 0 1 Σ P13(1.84)* 1.90 1.86

Σ* {27} 3/2 0 0 ∆ P03(1.89)**** 1.88 1.87

{27} 3/2 –1 1/2 Ξ ??(1.95)*** 1.97 1.97

10

10

10
these sectors, a number of S-wave resonances appear
via , KΛ, KΣ, and KΞ bound states just below the
corresponding thresholds [12]. Although such an inter-
pretation seems less clear in the S = 1 sector, a low-
lying S01 resonance is nevertheless expected, simply
by inspection of the other sectors.

Tentatively, this leads to an S = +1 baryon spectrum,
depicted in Fig. 5. The T-matrix poles P01(1.83),
P13(1.81), D03(1.79), and D15(2.07) extracted from
early KN scattering experiments [13] qualitatively fit
such a scheme, but the spacings are considerably
smaller than in Fig. 5. Therefore, if these T-matrix poles
prove correct, a strong quenching of the spectrum
shown in Fig. 5 has to be understood. The existence of
such poles, particularly in the D-waves, would likewise
favor the location of Z considerably below these reso-
nances, compatible with the datum 1.54 GeV.

4. CONCLUSIONS

We have shown that a low position of the exotic S =
+1 baryon Z with quantum numbers J = 1/2 and T = 0
at the reported energy 1.54 GeV is compatible with
soliton models and the known baryon spectrum. For all

members of the  and {27} multiplets with nonex-
otic quantum numbers, we find candidates close to the
estimated energies, with one exception: the empirical ∆
resonance P33(1.92) lies approximately 0.1 GeV too
high. A strong mixing of these states with vibrational
modes of the {8} and {10} baryons may lead to consid-
erable energy shifts and even to a doubling of states.
Also, the T-matrix poles of early KN scattering experi-
ments favor a low Z baryon sufficiently below these res-
onances, with the caveat that when these poles are cor-
rect, a strong quenching of the S = 1 baryon spectrum
compared to other sectors has to be explained.

K N

10{ }
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However, the soliton model by itself does not
exclude a Z baryon at higher energies. Confirmation of
this datum, which proves a stringent constraint on these
models, is therefore extremely important.

Under the assumption that the exotic Z baryon is
actually located at the reported position, we have esti-
mated the energies of other exotic baryons. First of all,
there is a further S = +1 baryon Z* with quantum
numbers of J = 3/2 and T = 1, some 0.10–0.15 GeV
above Z. This will probably be the next state to be dis-
covered in similar experiments, also as a sharp reso-
nance with a somewhat larger width. Moreover, there
will be a tower of vibrational excitations built on these
two exotic states, which should appear as broader reso-
nances several 0.1 GeV above these energies.

There are also several low-lying S ≠ 1 baryons with
exotic isospin, starting with a J = 3/2 state with quan-
tum numbers Y = 0 and T = 2 at approximately 1.7 GeV.
These states are more difficult to access experimentally.
The lowest S = +2 and S = –4 baryon states may also be
of some interest, although they are already expected at
high energies of about 2.3–2.4 GeV.
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Note added in proof (September 2, 2003). In a recent
paper by V.V. Barmin et al. [hep-ex/0304040], the Z+

hyperon is observed in K+ collisions with Xe nuclei.

The spectrum of the p effective mass shows an
enhancement at M = 1539 ± 2 MeV with a width of
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Γ ≤ 9 MeV, in agreement with the results of T. Nakano
et al. [1]. 

Further confirmation of the existence of Z+ comes
from CLAS collaboration [hep-ex/0307018] and from
SAPHIR collaboration [hep-ex/0307083]. Discussion
of the Skyrme model predictions for the baryon antide-
cuplat spectrum was presented recently by M. Prasza-
lovicz [hep-ph/0308114].
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Abstract—We develop a QCD description of the breakup of photons into forward dijets in small-x deep inelas-
tic scattering off nuclei in the saturation regime. Based on the color dipole approach, we derive a multiple scat-
tering expansion for intranuclear distortions of the jet–jet transverse momentum spectrum. Special attention is
paid to the non-Abelian aspects of the propagation of color dipoles in the nuclear medium. We report a nonlinear
k⊥ -factorization formula for the breakup of photons into dijets in terms of the collective Weizsäcker–Williams
glue of nuclei defined in [5, 6]. For hard dijets with the transverse momenta above the saturation scale, the azi-
muthal decorrelation (acoplanarity) momentum is on the order of the nuclear saturation momentum QA .
For minijets with the transverse momentum below the saturation scale, the nonlinear k⊥ -factorization predicts
a complete disappearance of the jet–jet correlation. We comment on possible relevance of the nuclear decor-
relation of jets to the experimental data from the STAR-RHIC Collaboration. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION 

From the parton model point of view, the opacity of
heavy nuclei to high-energy projectiles entails a highly
nonlinear relation between the parton densities of free
nucleons and nuclei. The trademark of the conventional
pQCD factorization theorems for hard interactions of
leptons and hadrons is that the hard scattering observ-
ables are linear functionals of the appropriate parton
densities in the projectile and target [1]. The parton
model interpretation of hard phenomena in ultrarelativ-
istic heavy ion collisions calls upon the understanding
of factorization properties in the nonlinear regime. A
priori, it is not obvious that nuclear parton densities can
be defined such that they enter different observables in
a universal manner. Indeed, opacity of nuclei brings in
a new large scale QA that separates the regimes of
opaque nuclei and weak attenuation [2–5]. Furthermore,
for parton momenta below the saturation scale QA, the
evolution of sea from gluons was shown to be dominated
by the anticollinear, anti-DGLAP splitting [5]. In our
early studies [5, 6], we have demonstrated that such
observables as the amplitude of the coherent hard dif-
fractive breakup of a projectile on a nucleus or the
transverse momentum distribution of forward quark
and antiquark jets in deep inelastic scattering (DIS) off
the nucleus and/or the sea parton density of nuclei can

¶This article was submitted by the authors in English.
1063-7761/03/9703- $24.00 © 0441
be cast in precisely the same k⊥ -factorization form as
for a free nucleon target. Specifically, this only requires
replacing the unintegrated gluon structure function
(SF) of the free nucleon with the collective nuclear
Weizsäcker–Williams (WW) unintegrated nuclear glue,
which is the expansion over the collective gluon SF of
spatially overlapping nucleons of a Lorentz-contracted
ultrarelativistic nucleus. This exact correspondence
between the BFKL unintegrated glue of the free
nucleon [7] and the nonlinear collective WW glue of
the nucleus in the calculation of these observables is a
heartening finding. It persists despite the sea quarks and
antiquarks with the transverse momenta below QA

being generated by the anticollinear, anti-DGLAP split-
ting of gluons into sea, when the transverse momentum
of the parent gluons is larger than the momentum of the
produced sea quarks.

In [5], we noticed that less inclusive quantities like
the spectrum of leading quarks from the truly inelastic
DIS or coherent diffractive breakup off nuclei are non-
linear functionals of the collective nuclear WW glue.
Consequently, in the quest for factorization properties
of nuclear interactions, we must go beyond the linear
observables such as the amplitude of coherent diffrac-
tive breakup of pions or photons into back-to-back
dijets, single-jet inclusive cross section, and/or nuclear
sea parton density. In this paper, we discuss the truly
inelastic hard interaction with nuclei followed by a
2003 MAIK “Nauka/Interperiodica”
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breakup of the projectile into forward hard dijets.1 We
illustrate our major point in the example of DIS at small
x with a breakup of the (virtual) photon into a hard,
approximately back-to-back dijet with a small separa-
tion in rapidity, such that the so-called lightcone plus-
components of the jet momenta sum up to the lightcone
plus-component of the photon momentum; i.e., the so-
called xγ = 1 criterion is fulfilled (see, e.g., [10] and ref-
erences therein). In the familiar collinear approxima-
tion, such a dijet originates from the photon–gluon
fusion γ*g  , often referred to as the interaction
of the unresolved or direct photon. Allowing a trans-
verse momentum of gluons leads to a disparity of the
momenta and to an azimuthal decorrelation of the
quark and antiquark jets, which can be quantified in
DIS off free protons within the k⊥ -factorization in terms
of the unintegrated gluon SF of the target (see [11, 12]
and references therein). A substantial nuclear broaden-
ing of the unintegrated gluon SF of nuclei at small x and
of the nuclear sea parton distributions [2, 5] points to a
stronger azimuthal decorrelation of jets produced in
DIS off nuclei. Furthermore, our finding of anticol-
linear, anti-DGLAP splitting of gluons into sea strongly
suggests the complete azimuthal decorrelation of for-
ward quark and antiquark jets with the transverse
momenta below the saturation scale, p± & QA. In this
paper, we quantify these expectations and formulate a
nonlinear generalization of the k⊥ -factorization for the
inclusive dijet spectrum.

The technical basis of our approach is the color-
dipole multiple-scattering theory of small-x DIS off
nuclei [13, 14]. We derive a consistent k⊥ -factorization
description of the azimuthal decorrelation of jets in
terms of the collective WW unintegrated gluon SF of
the nucleus. In this derivation, we closely follow our
early work [5] on the color-dipole approach to satura-
tion of nuclear partons. We focus on DIS at x & xA =
1/RAmN ! 1, which is dominated by interactions of 
Fock states of the photon. Here, mN is the nucleon mass
and RA is the radius of the target nucleus of the mass
number A. Nuclear attenuation of these  color
dipoles [13, 15] quantifies the fusion of gluons and sea
quarks from spatially overlapping nucleons of the
Lorentz contracted nucleus ([16], see also [3, 4]). Here,
we also report some of the technical details, especially
on the non-Abelian aspects of propagation of color
dipoles in nuclear matter, which were omitted in the let-
ter publication [5].

We focus on genuinely inelastic DIS followed by
color excitation of the target nucleus. For heavy nuclei,
equally important is the coherent diffractive DIS, in
which the target nucleus does not break up and is
retained in the ground state. Coherent diffractive DIS
makes up 50% of the total DIS events at small x [14]; in

1 Preliminary results of this study have been reported elsewhere
[8, 9].

qq

qq

qq
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these coherent diffractive events, quark and antiquark
jets are produced exactly back-to-back with a negligi-
bly small transverse decorrelation momentum

|D| = |p+ + p–| & 1/RA ~ mπ/A1/3.

This paper is organized as follows. We work at the
parton level and discuss the transverse momentum dis-
tribution of the final state quark and antiquark in inter-
actions of  Fock states of the photon with heavy
nuclei. In Section 2, we set up the formalism with a
brief discussion of the decorrelation of jets in DIS off
free nucleons. In Section 3, we report the derivation of
the general formula for the two-body transverse
momentum distribution. Color exchange between the
initially color-neutral  dipole and the nucleons of the
target nucleus leads to intranuclear propagation of the
color-octet -states. Our formalism, based on the
technique described in [17, 18], consistently includes
the diffractive attenuation of octet dipoles and effects of
transitions between color-singlet and color-octet 
pairs, as well as between different color-octet states of
the  pair. The hard jet–jet inclusive cross section is
discussed in Section 4. For hard dijets, diffractive atten-
uation effects are weak and we obtain a nuclear k⊥ -fac-
torization formula for the broadening of azimuthal cor-
relations between the quark and antiquark jets, which is
reminiscent of that for a free nucleon target and is still
a linear functional of the collective WW gluon SF of the
nucleus. We relate the decorrelation (acoplanarity)
momentum to the nuclear saturation scale QA . In Sec-
tion 5, working in the large-Nc approximation, we
derive our central result, a nonlinear nuclear k⊥ -factor-
ization formula for the inclusive dijet cross section, and
prove the complete disappearance of the jet–jet correla-
tion for minijets with the transverse momentum below
the saturation scale QA . In Section 6, we present numer-
ical estimates for the acoplanarity momentum distribu-
tion based on the unintegrated glue of the proton deter-
mined in [19]. We point out a strong enhancement of
decorrelations from the average to central DIS and
comment on the possible relevance of our mechanism
of azimuthal decorrelations to the recent observation of
the dissolution of the away jets in central nuclear colli-

sions at RHIC [20]. The next-to-leading order 1/ -
corrections to the large-Nc results in Section 5 are dis-
cussed in Section 7. Here, we derive a nonlinear k⊥ -fac-

torization representation for the 1/  corrections and
establish a close connection between the l/Nc and
higher twist expansions. In Section 8, we summarize
our principal findings.

Some of the technical details are presented in the
Appendices. In Appendix A, we present the calculation
of the matrix of 4-body cross sections that enters the
evolution operator for the intranuclear propagation of
color dipoles. In Appendix B, we revisit the single-jet

qq

qq

qq

qq

qq

Nc
2

Nc
2
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spectrum and total cross section of DIS off nuclei and
demonstrate how the color-dipole extension [13, 14] of
the Glauber–Gribov results [21, 22] is recovered
despite a nontrivial spectrum of eigen–cross sections
for the non-Abelian propagation of color dipoles in the
nuclear matter. The properties of the collective uninte-
grated gluon SF for overlapping nucleons of a Lorentz-
contracted ultrarelativistic nucleus are discussed in
Appendix C.

2. k⊥ -FACTORIZATION FOR BREAKUP 
OF PHOTONS INTO FORWARD DIJETS 

IN DIS OFF FREE NUCLEONS

We briefly recall the color dipole formulation of DIS
[13, 14, 23–25] and set up the formalism in the example
of jet–jet decorrelation in DIS off free nucleons at mod-
erately small x, which is dominated by interactions of

 states of the photon. The total cross section for the
interaction of the color dipole r with the target nucleon
is given by [26, 27]

(1)

where σ0 is an auxiliary soft parameter and αS is the
running coupling constant for the gauge group SU(Nc).

The function f(k) is normalized, as f(k) = 1 and is

related to the BFKL unintegrated gluon SF of the target
nucleon ̂ (x, κ2) = ∂G(x, κ2)/∂lnκ2 ([7], see also [19, 28]
for the phenomenology and review) by

(2)

For DIS off a free nucleon target (see Figs. 1a–1d),
the total photoabsorption cross section is given by [13]

(3)

where Ψ(Q2, z, r) is the wave function of the  Fock
state of the photon and Q2 and x are the standard DIS
variables. In the momentum representation,

(4)

where p+ is the transverse momentum of the quark, the
antiquark has the transverse momentum p– = –p+ + k,
and z+ = z and z– = 1 – z are the fractions of the photon
lightcone momentum carried by the quark and anti-

qq

σ r( ) αS r( )σ0 k f k( ) 1 eik r⋅–( )d∫=

=  
1
2
---αS r( )σ0 k f k( ) 1 eik r⋅–( ) 1 e–ik r⋅–( ),d∫

kd∫

f k( )
4π

Ncσ0
------------ 1

κ4
-----^ x κ2,( ).=

σN Q2 x,( ) rd z Ψ Q2 z r, ,( )
2σ x r,( ),d∫=

qq

σNd
p+ zdd

--------------
σ0

2
-----

αS p+
2( )

2π( )2
---------------=

× k f k( ) γ∗ z p+,〈 〉 γ ∗ z p+ k–,〈 〉–
2
,d∫
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quark, respectively. The variables z± for the observed
jets add up to unity, xγ = z+ + z– = 1, which in the realm
of DIS is said to be the unresolved or direct photon
interaction.

Summing over the helicities λ and  of the final
state quark and antiquark, we obtain

(5)

for transverse photons and quarks of flavor f and

(6)

for longitudinal photons, where ε2 = z(1 – z)Q2 + .

We now note that the transverse momentum of the
gluon is precisely the decorrelation momentum D =
p+ + p–, and in the differential form, we have 

(7)

The small-x result in Eq. (7) shows that in DIS, for-
ward dijets acquire their large transverse momentum
from the intrinsic momentum of the quark and anti-
quark in the wave function of the projectile photon;
hence, it is appropriate to call this process the breakup
of the photon into forward hard dijets. In addition to the
criterion xγ = 1, the experimental signature of photon
breakup is a small rapidity separation of forward jets,
z+ ~ z–. The perturbative hard scale for our process is set

by  =  + Q2z(1 – z), and the gluon SF of the proton

enters Eq. (7) at the Bjorken variable x = (  + Q2)/W2,
where W is the γ*p center-of-mass energy. The purpose
of our study is an extension of Eq. (7) to the breakup of
photons into dijets in truly inelastic DIS on nuclear
targets.

λ

γ∗ z p,〈 〉 γ ∗ z p k–,〈 〉– λγ 1±=
2

2Nce f
2α em=

× z2 1 z–( )2+[ ] p

p2 ε2+
---------------- p k–

p k–( )2 ε2+
------------------------------– 

 
λ λ+ 0=

2





+ m f
2 1

p2 ε2+
---------------- 1

p k–( )2 ε2+
------------------------------– 

 
λ λ+ λγ=

2





γ∗ z p,〈 〉 γ ∗ z p k–,〈 〉– λγ 0=
2

=  8Nce f
2α emQ2z2 1 z–( )2

× 1

p2 ε2+
---------------- 1

p k–( )2 ε2+
------------------------------– 

 
λ λ+ λγ=

2

m f
2

dσN

dzdp+dD
----------------------

σ0

2
-----

αS p+
2( )

2π( )2
--------------- f D( )=

× γ∗ z p+,〈 〉 γ ∗ z p+ D–,〈 〉–
2

=  
αS p+

2( )
2πNc

---------------
^ x D2,( )

∆4
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2
.
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Fig. 1. pQCD diagrams for the cross section of inclusive DIS off nucleons (a–d) and nuclei (g–k) and the amplitude of diffractive
DIS off protons (e, f). Diagrams a–d show the unitarity cuts with color excitation of the target nucleon; g is a generic multiple scat-
tering diagram for the Compton scattering amplitude off nucleus; h is the unitarity cut for a coherent diffractive DIS with retention
of the ground state nucleus A in the final state; i is the unitarity cut for quasielastic diffractive DIS with excitation and breakup of
the nucleus A*; and j and k are the unitarity cuts for truly inelastic DIS with single (j) and multiple (k) color excitation of nucleons
of the nucleus.
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3. BREAKUP OF PHOTONS INTO DIJETS
ON NUCLEAR TARGETS

We focus on DIS at x & xA = 1/RAmN ! 1, which is
dominated by interactions of  states of the photon.
This is a starting term of the leading ln(1/x) expansion;
extension to interactions of higher Fock states of the
photon and the corresponding ln(1/x) evolution to
smaller x will be discussed elsewhere. For x & xA , the
propagation of the  pair inside the nucleus can be
treated in the straight-path approximation.

We work in the conventional approximation of two
t-channel gluons in DIS off free nucleons. The relevant
unitarity cuts of the forward Compton scattering ampli-
tude shown in Figs. 1a–1d describe the transition from
the color-neutral  dipole to the color-octet  pair.2

The two-gluon exchange approximation amounts to
neglecting unitarity constraints in DIS off free nucle-
ons. As a quantitative measure of unitarity corrections,
one can take the diffractive DIS off free nucleons,
whose amplitude is described by higher order diagrams
in Figs. 1e and 1f [23, 24, 27] and which is only a small
fraction of the total DIS, ηD ! 1 [29–31]. The unitarity
cuts of the nuclear Compton scattering amplitude that
correspond to the genuine inelastic DIS with color exci-
tation of the nucleus are shown in Figs. 1j and 1k. The
diagram in Fig. 1k describes a consecutive color excita-
tion of the target nucleus accompanied by the color-
space rotation of the color-octet .

Let b+ and b– be the impact parameters of the quark
and antiquark, respectively, and SA(b+, b–) be the
S-matrix for the interaction of the  pair with the
nucleus. We are interested in the truly inelastic inclu-
sive cross section summed over all excitations of the
target nucleus when one or several nucleons are color
excited. A convenient way to sum such cross sections is
offered by the closure relation [21]. Regarding the color
states ckm of the  pair, we sum over all octet and
singlet states. Then the 2-jet inclusive spectrum is cal-
culated in terms of the 2-body density matrix as

(8)

2 To be more precise, for arbitrary Nc , the color-excited  pair is
in the adjoint representation and quarks are in the fundamental
representation of SU(Nc); our reference to the color octet and
triplet must not cause any confusion.

qq

qq

qq qq

qq

qq

qq

qkqm

dσin

dzdp+dp–
------------------------

1

2π( )4
------------- b+'d b–'d b+d b–d∫=

× ip+ b+ b+'–( ) ip– b– b–'–( )⋅–⋅–[ ]exp

× Ψ∗ Q2 z b+' b–'–, ,( )Ψ Q2 z b+ b––, ,( )

× 1; A SA* b+' b–',( ) A∗ ; ckm〈 〉
km

∑
A∗
∑




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In the integrand in Eq. (8), we subtracted the coherent
diffractive component of the final state. We note that
four straight-path trajectories b± and  enter the cal-
culation of the full-fledged 2-body density matrix and
SA and  describe the propagation of two quark-anti-

quark pairs,  and q' ', inside a nucleus.

The further analysis of the integrand in Eq. (8) is a
non-Abelian generalization of the formalism developed
by one of the authors (B. G. Z.) for the in-medium evo-
lution of ultrarelativistic positronium [32]. Upon appli-
cation of the closure relation to sum over nuclear final
states A*, the integrand in Eq. (8) can be considered as
an intranuclear evolution operator for the 2-body den-
sity matrix

(9)

(for a related discussion, also see [33]). Let the eikonal
for the quark–nucleon and antiquark–nucleon QCD

gluon exchange interaction be  and ,

where  and  are the SU(Nc) generators for the
quark and antiquark states, respectively. The vertex Va

for excitation of the nucleon, gaN  , into the
color octet state is normalized such that after applica-
tion of the closure relation, the vertex gagbNN in the
diagrams in Figs. 1a–1d becomes δab. In the two-gluon
exchange approximation, the S-matrix of the ( )–
nucleon interaction is then given by

(10)

The profile function for the interaction of the  dipole
with the nucleon is Γ(b+, b–) = 1 – SN(b+, b–). For a

color-singlet dipole, (  + )2 = 0 and the dipole

× ckm; A∗ SA b+ b–,( ) A; 1〈 〉

– 1; A SA* b+' b–',( ) A; 1〈 〉 1; A SA b+ b–,( ) A; 1〈 〉




.

b±'

SA*

qq q

A 1〈 |SA* b+' b–',( ) ckm| 〉{ } A∗〈 〉
km

∑
A∗
∑

× A∗ ckm〈 |SA b+ b–,( ) 1| 〉{ } A〈 〉

=  A〈 | 1〈 |SA* b+' b–',( ) ckm| 〉 ckm〈 |SA b+ b–,( ) 1| 〉
km

∑
 
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qq
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cross section for the interaction of the color-singlet 
dipole with the nucleon equals

(11)

The nuclear S-matrix of the straight-path approxima-
tion is

where the ordering along the longitudinal path is under-
stood. We evaluate the nuclear expectation value in (9)
in the standard dilute gas approximation. In the two-
gluon exchange approximation, for each and every
nucleon Nj , only the terms quadratic in χ(bj) must be
kept in the single-nucleon matrix element

that enters the calculation of SA . Following the tech-
nique developed in [17, 18], we can reduce the calcula-
tion of the evolution operator for the 2-body density
matrix (9) to the evaluation of the S-matrix S4A(b+, b–,

, ) for the scattering of a fictitious 4-parton state
composed of the two quark–antiquark pairs in the over-

all color-singlet state. Because ( )* = – , the quarks

entering the complex-conjugate  in (9) can be
viewed as antiquarks within the two-gluon exchange
approximation, and therefore,

(12)

where S4A( , , b+, b–) is the S-matrix for the prop-
agation of two quark-antiquark pairs in the overall sin-
glet state. While the first  pair is formed by the initial
quark q and antiquark  at the respective impact
parameters b+ and b–, the quark q' in the second 
pair propagates at the impact parameter  and the

antiquark  at the impact parameter . In the initial
state, both quark–antiquark pairs are in color-singlet
states, |in〉  = |11〉 .

qq

σ b+ b––( ) 2 b+ N〈 |Γ b+ b–,( ) N| 〉d∫=

=  
Nc

2 1–
2Nc

--------------- b+ χ b+( ) χ b–( )–[ ] 2.d∫

SA b+ b–,( ) SN b+ b j– b– b j–,( ),
j 1=
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∏=
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∑

=  δklδmj ckmc jl〈 |S4A b+' b–' b+ b–, , ,( ) 11| 〉 ,
kmjl

∑

b+' b–'

qq
q

q'q'
b–'

q' b+'
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We introduce the normalized singlet–singlet and
octet–octet states

(13)

where Nc is the number of colors and Ta are the gener-
ators of SU(Nc) in the fundamental representation.
Using the color Fiertz identity,

(14)

we can represent the sum (12) over color states of the
produced quark–antiquark pair as

(15)

If σ4( , , b+, b–) is the color-dipole cross section
operator for the 4-body state, evaluation of the nuclear
expectation value for a dilute gas nucleus in the stan-
dard approximation of neglecting the size of color
dipoles compared to the radius of a heavy nucleus
gives [21]

(16)

where T(b) =  is the optical thickness of

the nucleus at the impact parameter3

and nA(bz, b) is the nuclear matter density with the nor-

malization  = A. 

3 One should not confuse b with the center of gravity of color
dipoles, where the impact parameters b± and  must be

weighted with z±; the difference between the two quantities is
irrelevant here.

11| 〉 1
Nc

------ qq( ) q'q'( ),=

88| 〉 2

Nc
2 1–

------------------- qTaq( ) q'Taq'( ),=

δj
kδl

m 1
Nc

------δl
kδj

m 2 Ta( )l
k

Ta( ) j
m

,
a

∑+=

ckmckm〈 |S4A b+' b–' b+ b–, , ,( ) 11| 〉
km

∑
=  11〈 |S4A b+' b–' b+ b–, , ,( ) 11| 〉

+ Nc
2 1– 88〈 |S4A b+' b–' b+ b–, , ,( ) 11| 〉 .

b+' b–'

S4A b+' b–' b+ b–, , ,( )

=  
1
2
---σ4 b+' b–' b+ b–, , ,( )T b( )–

 
 
 

,exp

bznA bz b,( )d∫

b±'

b
1
4
--- b+ b+' b– b–'+ + +( )=

bT b( )d∫
AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003



NONLINEAR k⊥ -FACTORIZATION FOR FORWARD DIJETS 447
b–

b+

N

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

b'–

b'+

Fig. 2. pQCD diagrams for the matrix of color dipole cross section for the 4-body ( )( ) state. Sets a–d and e–h show the dia-
grams for the scattering without changing the color state of the  and  dipoles, and sets i–l show only half of the diagrams for
scattering with rotation of the color state of dipoles.

qq q'q'
qq q'q'
Single-nucleon S-matrix (10) contains transitions
from the color-singlet to both color-singlet and color-
octet  pairs. However, only color-singlet operators
contribute to

and hence the matrix σ4( , , b+, b–) only includes
transitions between the |11〉  and |88〉  color-singlet
4-parton states; the |18〉  states are not allowed.

The pQCD diagrams for the 4-body cross section
are shown in Fig. 2. It is convenient to introduce

(17)

for the variable conjugate to the decorrelation momen-
tum, and r = b+ – b–, r' =  – , in terms of which

(18)

Performing the relevant color algebra, we find (some

qq

N j〈 |SN* b+' b j– b–' b j–,( )SN b+ b j– b– b j–,( ) N j| 〉 ,

b+' b–'

s b+   b + '–=

b+' b–'

b+ b–'– s r', b– b+'–+ s r,–= =

b– b–'– s r r'.+–=
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details of the derivation are presented in Appendix A)

(19)

(20)

(21)

The term in (8) that subtracts the contribution from dif-
fractive processes without color excitation of the target
nucleus is given by

(22)

σ11 11〈 |σ4 11| 〉 σ r( ) σ r'( ),+= =

σ18 11〈 |σ4 88| 〉=

=  
σ s( ) σ s r– r'+( ) σ s r'+( )– σ s r–( )–+
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---------------  σ r ( ) σ r '( )+ [ ] .–

1; A〈 |SA* b+' b–',( ) A; 1| 〉 1; A〈 |SA b+ b–,( ) A; 1| 〉

=  
1
2
--- σ r( ) σ r'( )+[ ] T b( )–

 
 
 

exp
1
2
---σ11T b( )–
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 
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In the discussion of nuclear effects, it is convenient
to use the Sylvester expansion

(23)

where Σ1, 2 are the two eigenvalues of the operator σ4,

(24)

For the integrand in (8), application of the Sylvester
expansion to (15) gives

(25)

4. BREAKING OF PHOTONS
INTO HARD DIJETS: 

A STILL LINEAR NUCLEAR k⊥ -FACTORIZATION

Diagonalization of the 2 × 2 matrix σ4 is a straight-
forward task, and therefore, technically, Eqs. (8) and
(25) allow a direct calculation of the jet–jet inclusive

1
2
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 
 
 
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1
2
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2
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 
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–
1
2
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1
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σ11 Σ2–
Σ1 Σ2–
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2
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1
2
---Σ2T b( )–exp–
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cross section in terms of the color dipole cross section
σ(r). But evaluation of the 6-fold Fourier transform is
a nontrivial task.

We first note that the difference between Σ2 and
σ11 = σ(r) + σ(r') is of the second or higher order in the
off-diagonal σ18, see Eq. (24). Consequently, the first
two lines in Sylvester expansion (25) start with terms

proportional to , whereas the last line starts with
terms proportional to σ18. It is then convenient to repre-
sent (25) as the impulse approximation (IA) term times
the nuclear distortion factor DA(s, r, r', b),

(26)

whence

(27)

As an introduction to nuclear k⊥ -factorization, we

start with forward hard jets with the momenta  *

, which are produced from interactions with the tar-
get nucleus of small color dipoles in the incident photon
such that diffractive nuclear attenuation effects can be
neglected. We proceed with the formulation of the Fou-
rier representations for each factor in (26). The applica-
tion of integral representation (1) gives

(28)

Hard jets correspond to |r|, |r'| ! |s|. Then, the two
eigenvalues are Σ2 ≈ σ11 and Σ1 ≈ σ88 ≈ 2λcσ(s) with

λc = /(  – 1) = CA/2CF , where CF and CA are the
Casimir operators for the fundamental and adjoint rep-
resentations of SU(Nc). Because Σ2 ≈ σ11 ≈ 0, only the
last term, proportional to σ18, must be kept in the

σ18
2

1; A〈 |SA* b+' b–',( ) A∗ ; ckm| 〉
km

∑
A∗
∑

× ckm; A∗〈 |SA b+ b–,( ) A; 1| 〉

– 1; A〈 |SA* b+' b–',( ) A; 1| 〉 1; A〈 |SA b+ b–,( ) A; 1| 〉
=  T b( )Σ18 s r r', ,( )DA s r r' b, , ,( ),
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1

2 2π( )4
---------------- sd rd r'd∫=

× i p+ p–+( )s– ip– r' r–( )+[ ]Ψ∗ Q2 z r', ,( )exp

× Ψ Q2 z r, ,( )T b( )Σ18 s r r', ,( )DA s r r' b, , ,( ).
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2
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2

Σ18 s r r', ,( )

=  σ s( ) σ s r'+( ) σ s r–( )– σ s r r'+–( )+–[ ]
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2
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Sylvester expansion (25), and the nuclear distortion
factor takes the simple form

(29)

The Fourier representation for the nuclear distortion
factor DA(s, r, r') is readily obtained from the NSS rep-
resentation [5, 6] for the nuclear attenuation factor,

(30)

in terms of the nuclear WW glue per unit area in the
impact parameter plane, φWW(νA(b), k), defined in [5],

(31)

Here,

(32)

and

(33)

is the probability of finding j spatially overlapping
nucleons in a Lorentz-contracted nucleus; and

(34)

DA s r r' b, , ,( )
2
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---------------------------------=

× 1
2
---Σ1T b( )–exp

1
2
---Σ2T b( )–exp–
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2
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∞

∑
=  kΦ νA b( ) k,( )d∫ eik s⋅ ,

Φ νA b( ) k,( ) w j νA b( )( ) f j( ) k( )
j 0=
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νA b( )
1
2
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is a collective gluon field of j overlapping nucleons. As
usual, the strong coupling in (32) must be taken on the
hardest relevant scale [34].

The denominator Σ1 in (29) is problematic from the
point of view of the Fourier transform but can be elim-
inated by the integral representation,

(35)

Here, β has the meaning of the fraction of the nuclear
thickness that the  pair propagates in the color octet
state. The introduction of this distortion factor in (27) is
straightforward and gives our central result for the hard
jet–jet inclusive cross section:

(36)

Because r2 ~ 1/  for hard jets, we must use αS( ) in
the evaluation of νA(b). For a thin nucleus with νA(b) ! 1,
we have  = δ(D – k) [see Eq. (31)]
and recover the IA result

(37)

Our result (36) for nuclear broadening of the acoplanar-
ity momentum distribution of hard dijets can be
regarded as a nuclear counterpart of the k⊥ -factorization
result (7) for a free nucleon target.

The probabilistic form of convolution (36) for
the differential cross section on a free nucleon target
with the manifestly positive-definite distribution

 can be understood as follows. Hard
jets originate from small color dipoles. Their interac-
tion with gluons of the target nucleus is suppressed by
the mutual neutralization of color charges of the quark
and antiquark in the small-size color-singlet  state,
which manifests itself from the small cross section for
a free nucleon target, see Eq. (7). The first inelastic
interaction inside the nucleus converts the  pair into
the color-octet state in which color charges of the quark
and antiquark do not neutralize each other, rescatterings
of the quark and antiquark in the collective color field
of intranuclear nucleons become uncorrelated, and the

DA s( ) β 1
2
---βΣ1T b( )–expd

0

1

∫=

=  β kΦ 2βλcνA b( ) k,( )eik s⋅ .d∫d

0

1

∫

qq
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----------------------------- T b( ) kd∫=

× βd
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dσN

dzdp+dk
----------------------.
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2 p+

2
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dbdzdp+dD
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dσN
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qq
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broadening of the momentum distribution with nuclear
thickness follows a probabilistic picture.

5. NONLINEAR NUCLEAR k⊥ -FACTORIZATION 
FOR BREAKUP 

OF PHOTONS INTO SEMIHARD DIJETS:
LARGE-Nc APPROXIMATION

We can now relax the hardness restriction and con-
sider semihard dijets, |p±| ~ QA . In this section, we
give a consistent treatment of this case in the venera-
ble large-Nc approximation. Our formulation can be
called a nonlinear nuclear generalization of the k⊥ -fac-
torization.

The crucial point is that in the large-Nc approxima-
tion, Σ2 = σ11 = σ(r) + σ(r'), and therefore only the last
term in Sylvester expansion (25) contributes to the jet–
jet inclusive cross section. The nuclear distortion factor
is still given by Eq. (29), but for finite Σ2. Slightly gen-
eralizing (35) and using

(38)

we can recast the distortion factor in the form

(39)

where the different exponential factors admit a simple
interpretation. The first and the second describe the
intranuclear distortion of the incoming color-singlet

 and  dipole state, whereas the last two factors
describe the distortion of the outgoing color-octet ( )
and ( ) states. Application of the NSS representa-
tion [6] to the attenuation factors in (39) yields

(40)

Σ1 σ s( ) σ s r' r–+( ),+=
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2
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2
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qq q'q'
qq

q'q'

DA s r r' b, , ,( )

=  β k1Φ 1 β–( )νA b( ) k1,( ) ik1– r⋅( )expd∫d

0

1

∫
× k2Φ 1 β–( )νA b( ) k2,( ) ik2 r⋅( )expd∫

+ k3Φ βνA b( ) k3,( ) ik3 s r' r–+( )⋅[ ]expd∫
× k4Φ βνA b( ) k4,( ) ik4 r⋅( ).expd∫
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The integral representation in (39) furnishes two impor-
tant tasks: it removes Σ1 – Σ2 from the denominator
in (25) and gives the Fourier transform (40) of the
nuclear distortion factor as a product of manifestly pos-
itive-definite nuclear WW gluon distributions. Finally,
the jet–jet inclusive cross section takes the form

(41)

This is our central result for the inclusive cross section
of the photon breakup into dijets on nuclei. It demon-
strates how the broadening of the transverse momen-
tum distribution of dijets is uniquely calculable in terms
of the collective WW glue of a nucleus and as such
must be regarded as a nonlinear k⊥ -factorization for the
inclusive dijet cross section.

The last form of (41) shows clearly that the inte-
grand is manifestly positive-valued. Returning to (39)
and (40), we can identify the convolution of the collec-
tive nuclear WW glue Φ((1 – β)νA(b), k1) with the pho-
ton wave functions in the last form in (41) as an effect
of distortions of the photon wave function when the 
pair propagates in the state that is still color-singlet.

We finally consider the limiting case where |p–|,
|D| & QA. In our analysis [5] of the single particle spec-
trum, we discovered that the transverse momentum dis-
tribution of sea quarks is dominated by anticollinear,
anti-DGLAP splitting of gluons into sea when the
transverse momentum of the parent gluons is larger
than the momentum of sea quarks. As stated in the

dσin

dbdzdp–dD
-----------------------------

1

2 2π( )2
----------------αSσ0T b( )=

× β k1 k2 k3d kd f k( )dd∫d
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× γ∗ z p– k2 k3+ +,〈 〉 γ ∗ z p– k2 k3 k+ + +,〈 〉–{ }

z p– k1 k3+ +, γ∗〈 〉 z p– k1 k3 k γ∗+ + +,〈 〉–{ }×

=  
1

2 2π( )2
----------------αSσ0T b( ) β k3 k f k( )dd∫d

0

1

∫

× Φ βνA b( ) D k3– k–,( )Φ βνA b( ) k3,( )

× k1Φ 1 β–( )νA b( ) k1,( )d∫
× γ∗ z p– k1 k3+ +,〈 〉 γ ∗ z p– k1 k3 k+ + +,〈 〉–{ }

2
.
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Introduction, this strongly suggests a complete azi-
muthal decorrelation of forward minijets with the trans-
verse momenta below the saturation scale, p± & QA .
Our analysis of f (j)(k) in Appendix C shows that for the

average DIS on realistic nuclei,  does not exceed

several (Gev/c)2, and hence this regime is a somewhat
academic one (see Section 6, however). We neverthe-
less assume that QA is so large that jets with p± & QA are
measurable.

We note that |ki| ~ QA , and we can therefore neglect
p– in the photon wave functions and the decorrelation
momentum D in the argument of Φ(βνA(b), D – k3 – k).
The approximation

(42)

is then justified in (41). The principal point is that the
minijet–minijet inclusive cross section is independent
of either the minijet or the decorrelation momentum,
which proves the disappearance of the azimuthal deco-
rrelation of minijets with the transverse momentum
below the saturation scale.

6. AZIMUTHAL DECORRELATION 
OF DIJETS IN DIS OFF NUCLEI: 

NUMERICAL ESTIMATES

The azimuthal decorrelation of two jets is quantified
by the mean transverse acoplanarity momentum

squared , where D⊥  is transverse to the axis of
the jet with the higher momentum (Fig. 3). Here, we
present numerical estimates for hard dijets, |p+| @ QA .
The convolution property of hard dijet cross section (35)
suggests that

(43)

where  refers to DIS on a free nucleon and

QA
2

k1Φ 1 β–( )νA b( ) k1,( )d∫ γ∗ z p– k1 k3+ +,〈 〉{

– γ∗ z p– k1 k3 k+ + +,〈 〉 }
2

≈ γ∗ z k3,〈 〉 γ ∗ z k3 k+,〈 〉–
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2 σNd
zd p+ p–dd

-----------------------d
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2 b( )〈 〉 A D⊥

2〈 〉 N ,+≈

D⊥
2〈 〉 N
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 is the nuclear broadening term:

(44)

The sign “≈” in (43) reflects the kinematical limitations
# on p– and k in the practical evaluation of the acopla-
narity distribution. In a typical final state shown in
Fig. 3, it is the harder jet with the larger transverse
momentum that defines the jet axis and the acoplanarity
momentum D is defined in terms of components of the
momentum of the softer jet with respect to that axis
(see, e.g., [20]). For definiteness, we present numerical
estimates for the Gedanken experiment in which we
classify an event as a dijet if the quark and antiquark are
produced in different hemispheres; i.e., if the azimuthal
angle π–φ between the two jets is below π/2, the quark
jet has fixed |p+ |, and the antiquark jet has a higher
transverse momentum, |p+ | & |p– | & 10|p+ | (in the dis-
cussion of the experimental data, one often refers to the
higher momentum jet as the trigger jet and the softer jet
as the away jet [20]).

The free-nucleon quantity  is evaluated from
Eq. (43) with free nucleon cross section (7). For eval-
uation purposes, we can start with the small-D expan-

sion for excitation of hard  @ ε2 = z(1 – z)Q2, light
flavor dijets from transverse photons,

(45)

k⊥
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∂ D2( )ln
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ε2 p+
2+( ) ε2 p+

2 D2+ +( )
-------------------------------------------------------.

∆⊥
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φ
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Fig. 3. The definition of the dijet configurations considered
and of the transverse component of the acoplanarity
momentum D⊥ .
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Q2 = 0

Q2 = 10 GeV2

Q2 = 50 GeV2
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Fig. 4. The mean acoplanarity momentum squared  for DIS off a free nucleon target with production of trigger jets with a

transverse momentum higher than p+ for several values of Q2. The numerical results are for x = 0.01, and the input unintegrated
gluon structure of the proton is taken from [19].

D⊥
2〈 〉 N

D⊥
2〈 〉 N
The form of the last factor in (45) only mimics its lev-

eling off at D2 * , see Eq. (7). In the denominator
of (43), we then find the typical logarithmic integral

, (46)

to be compared with the numerator of the form

(47)

More accurate numerical estimates for the selection cri-
teria of our Gedanken experiment suggest a numerical
factor of ≈0.7 in (47); the expression

(48)

correctly describes the numerical results shown in

Fig. 4. As far as the dijets are hard,  * z(1 – z)Q2 ~
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, the acoplanarity momentum distribution is inde-

pendent of Q2, which holds even better if we consider
σT + σL . This point is illustrated in Fig. 4, where we

show  at z = 1/2 for several values of Q2. Because
of this weak dependence on Q2, we make no distinction
between DIS and real photoproduction, Q2 = 0, in what
follows.

In practical evaluations of the nuclear contribution

, we can use the explicit expansion

(49)

where

is the incomplete gamma-function. The properties of
the collective glue for j overlapping nucleons, f (j)(k),
are presented in Appendix C. For a heavy nucleus,
Eq. (49) can be approximated by its integrand at β ≈

1
4
---Q2

D⊥
2〈 〉 N

k⊥
2 b( )〈 〉 A

βΦ 2βλcνA b( ) k,( )d

0

1

∫ wA b j,( ) f j( ) k( )
j 0=

∞

∑=

=  
1
j!
----

γ j 1+ 2λ cνA b( ),( )
2λ cνA b( )

-------------------------------------------- f j( ) k( ),
j 0=

∞

∑

γ j,  x ( ) yy 
j

 
1– e 

y
 

– d 

0

 

x

 ∫ =                                      
AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003



NONLINEAR k⊥ -FACTORIZATION FOR FORWARD DIJETS 453

                  
1/2, i.e., by Φ(λcνA(b), k). A slightly more accurate
evaluation of the numerically important no-broadening
contribution from j = 0 gives

(50)

where  is given by Eq. (108) and

(51)

is the probability of the no-broadening contribution,
which is still substantial for realistic nuclei. In our

Gedanken experiment,  must be evaluated
over the constrained phase space #, κ⊥  ≤ |p+| and
κL > 0, and analytic parameterization (50) gives

(52)
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Fig. 5. The atomic mass number dependence of the nuclear

broadening contribution, , to the mean acoplanar-

ity momentum squared for real photoproduction off nuclei
at x = 0.01. The input unintegrated gluon SF of the proton is
taken from [19].
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We recall that (43) and (52) must only be used for
|p+| @ QA(b).

For the average DIS off heavy nuclei, the reference

value is  = 0.9 (GeV/c)2 (see Appendix C).
The atomic mass number dependence of the nuclear

broadening  for jets with p+ = 4 GeV/c in the
average DIS off nucleus is shown in Fig. 5. The princi-

pal reason for  being numerically small com-

pared to  is that even for such a heavy nucleus
as 197Au, the no-broadening probability in the average
DIS is large, 〈wAu(b, 0)〉  ≈ 0.5. Comparison of the free

nucleon broadening  in Fig. 4 with the nuclear

contribution  in Fig. 5 shows that the nuclear
mass number dependence of the azimuthal decorrela-
tion of dijets in the average DIS off nuclei is relatively
weak.

However, nuclear broadening is substantially stron-
ger for a subsample of central DIS events at b ~ 0. In
Fig. 6, we show the dependence of the β-averaged

nuclear broadening  on the impact parameter
at several values of p+ for the gold—197Au—target.
There are two related sources of the p+ dependence of

. First, because r, r' ~ 1/p+ for hard dijets, the

strong coupling enters Eqs. (33) and (108) as αS( ).

Then, for hard jets, νA(b) ∝  αS( ) and wA(b = 0, 0)
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Fig. 6. The impact parameter dependence of the nuclear

broadening contribution, , to the mean acoplanar-

ity momentum squared from peripheral DIS at a large
impact parameter to the central DIS at b = 0 for several val-
ues of the away jet momentum p+. The numerical results are
for x = 0.01, and the input unintegrated gluon SF of the pro-
ton is taken from [19]
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rises substantially with p+ in the region p+ of practical
interest, 1 & p+ & 5–10 GeV/c, where the strong cou-
pling varies rapidly. For a nucleus with a mass number
of A = 200, it rises from wA(b = 0, 0) ≈ 0.12 at p+ =
2 GeV/c to ≈0.20 at 4 GeV/c, and to ≈0.25 at p+ =
10 GeV/c (see [39] for the nuclear density parameter-
ization). Second, for the same reason that νA(b) ∝
αS( ), the contribution from large j in (49), and hence

, diminishes gradually with rising p+, proportion-

ally to / . In the region p+ & 10 GeV/c of

practical interest, we find that  ~ .

We now compare the numerical results in Figs. 5
and 6 for p+ = 4 GeV/c and the 197Au target. According
to Eq. (109) in Appendix C,

(53)

The no-broadening probability wA(b = 0, 0) ≈ 0.20 for
central DIS is substantially smaller than 〈wAu(b, 0)〉  ≈
0.5 for average DIS. In conjunction with (53), this

entails an enhancement of  by a factor 2.5–3
from the average to central DIS. The same point is illus-
trated by the expectation value of j in (49) for the Au
target: for jets with p+ = 4 GeV/c, it decreases by a fac-
tor of about 3 from 〈 j(b = 0)〉  = 2.86 to 〈 j 〉A = 0.87 from
the central to average DIS.

One can enhance  and the nuclear contribution

 even further by selecting the DIS events

where the photon breaks up into a  pair on the front
face of the nucleus, which in the language of (36) cor-
responds to the contribution from β  1 [see the dis-
cussion of (49)]. Experimentally, precisely such events
are isolated by selecting very large multiplicities or very
high transverse energies of the secondary particles pro-
duced (see [20] and references therein). Equation (36)
then shows (also see the discussion of the β ≈ 1/2
approximation in (49)) that for a very high multiplicity

central DIS off the Au nucleus,  ≈ 2.5 GeV2 is quite
feasible. Equation (52) shows that for such a large

 ≈ 2.5 GeV2 and p+ = 5–10 GeV/c of practical inter-

est,  grows slower rather than proportion-

ally to  and therefore the value of  for
a high-multiplicity central DIS off Au nucleus is

enhanced by a factor of 4–5 from  for an aver-
age DIS.

We have an overall good understanding of the gross
features of nuclear azimuthal decorrelations in DIS off
nuclei. We now comment on the recent finding by the
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STAR Collaboration of the disappearance of a back-to-
back high-p⊥  hadron correlation occurring in passing
from peripheral to central gold–gold collisions at
RHIC [20]. Our experience with application of the
color dipole formalism to hard hadron–nucleus interac-
tions [17] suggests that our analysis of acoplanarity of
forward hard jets can be generalized to mid-rapidity
jets. This only requires choosing an appropriate system
of dipoles, for instance, the open heavy flavor produc-
tion can be treated in terms of the intranuclear propaga-
tion of the gluon–quark–antiquark system in the overall
color-singlet state. At RHIC energies, jets with moder-
ately large p⊥  are mostly due to gluon–gluon collisions.
In our language, this can be treated as a breakup of glu-
ons into dijets, and azimuthal decorrelation of hard jets
must be discussed in terms of intranuclear propagation
of color-octet gluon–gluon dipoles. For such gluon–

gluon dipoles, the relevant saturation scale  is
larger than that for the quark–antiquark dipoles by a
factor of 2λc = CA/CF = 9/4 [24]. Arguably, distortions
in the target and projectile nuclei add up in central
nucleus–nucleus collisions and the effective thickness
of nuclear matter is about twice that in DIS. The
results shown in Fig. 5 then suggest that for central
gold–gold collisions, the nuclear broadening of
gluon–gluon dijets could be quite substantial,

 ~ 3–4 (GeV/c)2 for average central
Au–Au collisions and even twice as large if collisions
occur at the front surface of colliding nuclei.

The principal effect of nuclear broadening is a
reduction of the probability of observing back-to-back
jets,

(54)

where  is to be compared to . Equation
(48) for the free nucleon case also holds for gluon–
gluon collisions. The results shown in Fig. 3 then entail

that  ≈  ~ 3–4 (GeV/c)2 at the jet
momentum p+ = pJ = 6–8 GeV/c and our nuclear broad-
ening becomes substantial for all jets with p+ below the
decorrelation threshold momentum pJ . In practice, the
STAR Collaboration studied the azimuthal correlation
of two high-p⊥  hadrons; for a quantitative correspon-
dence between the STAR observable and the azimuthal
decorrelation in the parent dijet, one must model the
fragmentation of jets into hadrons (see [35] for the
modern fragmentation schemes). We note here that the
cutoff p+ in our Gedanken experiment is related to the
momentum cutoff pT, min of the associated tracks from
the away jet, whereas our jet with the momentum p– can
be regarded as a counterpart of the STAR trigger jet.
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The STAR cutoff pT = 2 GeV/c corresponds to parent jets
with transverse momentum p+ ~ (2–3)pT = 4–6 GeV/c,
which is comparable to, or even smaller than the deco-
rrelation threshold momentum pJ = 6–8 GeV/c. Equa-
tion (54) then suggests that in the STAR kinematics, the
probability of observing back-to-back away and trigger
jets approximately reduces to half, and perhaps even
more strongly, from peripheral-to-central Au–Au colli-
sions, and our azimuthal decorrelation may therefore
substantially contribute to the STAR effect.

In practical consideration of azimuthal decorrela-
tions in central heavy ion collisions, the above distor-
tions of the jet–jet inclusive spectrum produced due to
interactions with the nucleons of the target and projec-
tile ions must be complemented by rescatterings of the
parent high-p⊥  partons on the abundantly produced sec-
ondary hadrons. Our nuclear decorrelation effect must
be predominant and reinteractions with secondary par-
ticles must be marginal in pA collisions, where we

expect  ≈ 1.5 (GeV/c)2 for central collisions

and even  ≈ 3 (GeV/c)2 is feasible for cen-
tral collisions in the regime of β  1, i.e., with the
limiting high multiplicity.

7. NUCLEAR k⊥ -FACTORIZATION 

FOR 1/  CORRECTIONS
TO THE PHOTON BREAKUP

Having established nuclear k⊥ -factorization proper-
ties of the dijet cross section to the leading order of the

large-Nc approximation, we turn to the 1/ -correc-
tions and demonstrate that with one simple exception,

the 1/ -expansion can be regarded as the higher twist

expansion. The two sources of the 1/ -corrections to
the nuclear distortion factor are higher-order terms in
the off-diagonal σ18 matrix element and the terms pro-

portional to 1/(  – 1) in σ88, Eq. (21). We note that σ88

can be decomposed as

(55)
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where

, (56)

and we have exactly reabsorbed one part of the 1/ -
correction into the leading large-Nc term of σ88 by scal-
ing it with the color factor λc .

After some algebra, we find

(57)

The first term in (57) is canceled by the subtraction
of coherent diffractive term (22) in (8) and (25), and
therefore only the subleading term in (57), proportional

to 1/(  – 1), contributes to the dijet cross section.
Evaluation of corrections to the leading term of the
Sylvester expansion is somewhat more complicated,

(58)
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The first term in (58) contains the attenuation factor,
where σ88 is still the exact diagonal matrix element, and

we must isolate the leading term and the 1/(  – 1)-
correction,

(59)

The fundamental reason for which the different compo-

nents of the second term, proportional to 1/(  – 1), in
Eq. (21) are treated differently is that the NSS represen-
tation [6] with a positive-valued Fourier transform
holds only for attenuating exponentials of the dipole
cross section. The related expansion for the rising expo-

nential  can easily be written, but its

Fourier transform is a sign-oscillating expansion,

(60)

Therefore, combining the two exponentials with similar
exponents proportional to [σ(r) + σ(r')] in the first term
of (57) is not guaranteed, because the sign of the expo-
nent changes from attenuation to growth in the course
of the β integration,

(61)

and it is advisable to work with the perturbative expan-
sion in (59).
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The final result for the nuclear absorption factor to

an accuracy of 1/(  – 1) is given by

where

(62)
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(66)

Equation (66) is the leading large-Nc result, Eqs. (62)
and (63) describe contributions to the dijet cross section
of the second and third order in the off-diagonal matrix
element σ18, and Eqs. (64) and (65) come from expan-
sion (59).

As an illustration of salient features of the 1/(  – 1)-
corrections, we expose the contribution from the first
term (62) in detail. Following the considerations in Sec-
tions 4 and 5, we readily obtain

(67)

Of particular interest is the large-|p–| behavior of (67).

We note that for  @ , we can neglect κ1,3 in the
argument of the photon wave function, and hence 

(68)
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where we used the normalization property

Next, we can readily verify that

(69)

Incidentally, by a similar analysis of the onset of the
high-p+ limit, one would obtain the linear nuclear
k⊥ -factorization (36) for hard dijets from the nonlinear
nuclear k⊥ -factorization (41).

The combination of the photon wave functions
in (68) corresponds to the second finite difference in q1

and q2, and therefore, for jets with  @ ε2, we have the
estimate

(70)

which shows that the contribution to the dijet cross sec-

tion from terms of the second order in  is the higher
twist correction. Compared to the leading large-Nc

cross section, it contains extra  and an

extra power of αSσ0T(b), which combine to precisely

the dimensional nuclear saturation scale , see
Eq. (52), such that the resulting suppression factor is

(71)

As far as the expansion in higher inverse powers of

the hard scale  is concerned,  has the form of a
higher twist correction. In the retrospect, we observe
that the principal approximation (68) in the above deri-
vation for hard dijets amounts to setting |r|, |r'| ! |s| in
the attenuation factors in the β, β1 integrand in (62).
However, the exact r, r'-dependence must be retained in
the prefactor Σ18(s, r, r'), because it vanishes if either
r = 0 or r' = 0. It is precisely the latter property that pro-
vides the finite-difference structure of the combination
of the photon wave functions in (67) and (68) and is

behind higher twist property (71) of the 1/(  – 1)-cor-
rection.

k1Φ 1 β– β1+( )νA b( ) k1,( )d∫ 1.=

k3Φ β β1–( )νA b( ) D k3– q1– q2–,( )d∫
× Φ β β1–( )νA b( ) k3,( )

=  Φ β β1–( )νA b( ) D q1– q2–,( ).

p–
2

γ∗ z p–,〈 〉 γ ∗ z p–, q1+〈 〉– γ∗ z p– q2+,〈 〉+

– γ∗ z p– q1 q2+ +,〈 〉 2 γ∗ z p–,〈 〉 2 q1
2q2

2

p–
2( )2

------------,≈

σ18
2

q2q2
2 f q2( )d∫

QA
2 b( )

d∆σin
1( )

σind
---------------- 1

Nc
2 1–( )

--------------------
QA

2 b( )
p–

2
---------------.∼

p–
2 ∆σin

1( )

Nc
2
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The second term, Eq. (63), gives the correction

(72)

The combination of the photon wave functions in (72)
corresponds to the third finite derivative in q1, 2, 3 . Start-
ing from (72), we can readily repeat the analysis that
leads to an estimate (71). Alternatively, we can take the
simplified form of the attenuation factors, as explained
below Eq. (71). Either way, we find that the contribu-
tion from third-order terms in σ18 is of an even higher
twist and has the smallness

(73)

Apart from a slight difference in the structure of the
β integrations, correction (64) does not differ from
d∆σ(1) in Eq. (68),

d∆σin
2( )

bdzdp–dDd
-----------------------------

αS
3σ0

3T3 b( )

8 2π( )2 Nc
2 1–( )

------------------------------------- β β1d

0

β

∫d

0

1

∫=

× β2 q1 q2 q3 k3 f q1( ) f q2( ) f q3( )dddd∫d

0

β1

∫

× Φ 1 β– β1 β2–+( )νA b( ) D k3– q1– q2– q3–,( )

× Φ 1 β– β1 β2–+( )νA b( ) k3,( )

× k1Φ β β1– β2+( )νA b( ) k1,( )d∫
× γ∗ z p– k1 k3+ +,〈 〉 γ ∗ z p– k1 k3 q1+ + +,〈 〉–{

– γ∗ z p– k1 k3 q2+ + +,〈 〉

+ γ∗ z p– k1 k3 q1 q2+ + + +,〈 〉

– γ∗ z p– k1 k3 q3+ + +,〈 〉

+ γ∗ z p– k1 k3 q3 q1+ + + +,〈 〉

+ γ∗ z p– k1 k3 q3 q2+ + + +,〈 〉

– γ∗ z p– k1 k3 q1 q2 q3+ + + + +, γ∗〈 〉 }
2
.

d∆σin
2( )

dσin
---------------- 1

Nc
2 1–

---------------
QA

2 b( )

p–
2

--------------
 
 
 

2

.∼

d∆σin
3( )

dbdzdp–dD
-----------------------------

αS
2σ0

2T2 b( )

4 2π( )2 Nc
2 1–( )

-------------------------------------–=

× β 1 β–( ) q1 q2 k3 f q1( ) f q2( )ddd∫d

0

1

∫
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(74)

Consequently, the same estimate (71) is also valid
for d∆σ(3).

The correction d∆σ(4) requires a bit more scrutiny. It
contains a product of the first and second finite deriva-
tives of the photon wave function,

(75)

and in the interesting case of hard dijets,

(76)

× Φ 1 β–( )λ cνA b( ) D k3– q1– q2–,( )

× Φ 1 β–( )λ cνA b( ) k3,( ) k1Φ(βνA b( ) k1 ),d∫
× γ∗ z p– k1 k3+ +,〈 〉 γ ∗ z p– k1 k3 q1+ + +,〈 〉–{

– γ∗ z p– k1 k3 q2+ + +,〈 〉

+ γ∗ z p– k1 k3 q1 q2+ + + +,〈 〉 }
2
.

d∆σin
4( )

dbdzdp–dD
-----------------------------

αS
2σ0

2T2 b( )

2 2π( )2 Nc
2 1–( )

------------------------------------- β 1 β–( )d

0

1

∫=

× q1 q2 k1d k2d k3 f q1( ) f q2( )ddd∫
× Φ βνA b( ) k1,( )Φ βνA b( ) k2,( )

× Φ 1 β–( )λ cνA b( ) D k3– q1– q2–,( )

× Φ 1 β–( )λ cνA b( ) k3,( )

× γ∗ z γ∗ z p, – k1 k3+ +,〈 〉{

– γ∗ z γ∗ z p, – k1 k3 q1+ + +,〈 〉 }

× γ∗ z p– k1 k3+ +,〈 〉 γ ∗ z p– k1 k3 q1+ + +,〈 〉–{

– γ∗ z p– k1 k3 q2+ + +,〈 〉

+ γ∗ z p– k1 k3 q1 q2+ + + +,〈 〉 } ,

d∆σin
4( )

dbdzdp–dD
-----------------------------

αS
2σ0

2T2 b( )

2 2π( )2 Nc
2 1–( )

------------------------------------- β 1 β–( )d

0

1

∫=

× q1 q2 f q1( ) f q2( )Φ 2 1 β–( )λ cνA b( ) D q1 q2––,( )dd∫
× γ∗ z γ∗ z p–, ,〈 〉 γ ∗ z γ∗ z p– q1+, ,〈 〉–{ }

× γ∗ z p–,〈 〉 γ ∗ z p– q1+,〈 〉–{

– γ∗ z p– q2+,〈 〉 γ ∗ z p– q1 q2+ +,〈 〉 } .+
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The leading term of the small-q1, 2 expansion of the
product of the photon wave functions in (74) is a qua-
dratic function of q1 and a linear function of q2 of the
form

(77)

The leading nonvanishing term comes from the expan-
sion of the nuclear WW glue,

(78)

Namely, upon azimuthal averaging of (77) in conjunc-
tion with (78), we find the leading nonvanishing term of

the form 2(p–q2)(Dq2)  (p–D)  and therefore

(79)

which is reminiscent of a higher twist-3 correction.
To summarize, nonlinear nuclear k⊥ -factorization

allows a consistent evaluation of the 1/ -corrections.

We demonstrated how the expansion in 1/(  – 1)
accompanies a higher twist expansion. One exception
is the reabsorption of one of the terms proportional to

1/(  – 1) in σ88 into the renormalization of the leading
term in σ88 by the Nc-dependent factor λc . We conclude
this discussion by a comment that all the arguments in
Section 5 regarding the disappearance of azimuthal cor-

relations of minijets hold for the 1/ -corrections
as well.

8. CONCLUSIONS
We formulated the theory of the breakup of photons

into dijets in DIS off nuclear targets based on the con-
sistent treatment of propagation of color dipoles in a
nuclear medium. The non-Abelian intranuclear evolu-
tion of color dipoles gives rise to a nontrivial spectrum
of the attenuation eigenvalues, but the familiar
Glauber–Gribov multiple-scattering results are recov-
ered for the nuclear total cross sections. However, in
more special cases like DIS, in which the photon breaks
up into color-singlet dijets, the cross section depends on
the complete spectrum of the attenuation eigenstates.

We derived the nuclear broadening of the acoplanar-
ity momentum distribution in the breakup of photons
into dijets, see Eqs. (35) and (41). Our principal finding

γ∗ z p–,〈 〉 2 p– q1⋅( )2 p– q2⋅( )
p–

6
------------------------------------------.

Φ 2 1 β–( )λ cνA b( ) D q1 q2––,( )

– Φ 2 1 β–( )λ cνA b( ) D,( ) Φ 2 1 β–( )λ cνA b( ) D,( )∼

×
D q1 q2+( )⋅

2 1 β–( )λ cQA
2 b( ) D2+

----------------------------------------------------.

q2
2

d∆σin
4( )

dσin
---------------- 1

Nc
2 1–

---------------
p– D⋅

p–
2

-------------,∼

Nc
2

Nc
2

Nc
2

Nc
2
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is that all nuclear DIS observables—the amplitude of
coherent diffractive breakup into dijets [6], nuclear sea
quark SF and its decomposition into equally important
genuine inelastic and diffractive components per-
formed in [5], and the jet–jet inclusive cross section
derived in the present paper—are uniquely calculable
in terms of the NSS-defined collective nuclear WW
glue. This property can be regarded as a nuclear k⊥ -fac-
torization theorem that connects DIS in the regimes of
low and high density of partons. For the generic dijet
cross section, nuclear k⊥ -factorization is of a highly
nonlinear form, which must be contrasted to the linear
hard factorization for the free nucleon target. This
result is derived to the leading order in large Nc; further

evaluation of the 1/ -corrections shows a close rela-

tionship between the 1/  and high-twist expansions.

Furthermore, the 1/ -corrections themselves admit
the nonlinear nuclear k⊥ -factorization representation.

We demonstrated the disappearance of azimuthal
jet–jet correlations of minijets with momenta below the
saturation scale. Based on the ideas on generalization of
the dipole picture to hadron–nucleus collisions [17, 18],
we presented qualitative estimates of the broadening
effect for mid-rapidity jets produced in central nucleus–
nucleus collisions and argued that our azimuthal deco-
rrelation may contribute substantially to the disappear-
ance of back-to-back high-p⊥  hadron correlation in cen-
tral gold–gold collisions observed by the STAR Collab-
oration at RHIC [20].

We conclude by the comment that all the results for
hard single-jet and jet–jet inclusive cross sections can
be readily extended from DIS to the breakup of projec-
tile hadrons into forward jets. Indeed, as argued in [6],
the final state interaction between the final state quark
and antiquark can be neglected and the plane-wave
approximation becomes applicable as soon as the
invariant mass of the forward jet system exceeds a typ-
ical mass scale of prominent meson and baryon reso-
nances. Here, we confine ourselves to the statement that
although our principal point about a nonlinear nuclear
k⊥ -factorization is fully retained, we find important dis-
tinctions between the breakup of pointlike photons and
nonpointlike hadrons.

This work has been partly supported by INTAS
(grant nos. 97-30494 and 00-00366) and the DFG
(grant no. 436RUS17/119/02).

APPENDIX A

Calculation 
of the 4-Body Color Dipole Cross Section 

The Feynman diagrams for the matrix of 4-parton
dipole cross section σ4(s, r, r'), Eqs. (19)–(21), are

Nc
2

Nc
2

Nc
2
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shown in Fig. 2. The profile function for the color-sin-
glet  pair is given by the diagrams in Figs. 2a–2d,

(80)

which has already been cited in the main text, Eq. (11).
Upon adding the contribution from diagrams in
Figs. 2e–2h, we obtain the obvious result in Eq. (19).

The color-diagonal contribution of the same dia-
grams to the interaction of the color-octet  pair with
the nucleon is given by 

(81)

The contribution to the matrix element 〈88|σ4|88〉  from
color-diagonal interactions of the  pair is obtained

from (81) by the substitution b±  ,

(82)

The diagrams in Figs. 2i–2l describe processes with
color-space rotation of the  pair,

(83)

qq

2Γ Figs. 2a–2d; qq( )1N ; b+ b–,( )

=  
1
Nc

------δab χ2 b+( ) χ2 b–( )+[ ] Tr TaTb( ){

– 2χ b+( )χ b–( )Tr TaTb( ) }
Nc

2 1–
2Nc

--------------- χ b+( ) χ b–( )–[ ] 2,=

qq

2Γ Figs. 2a–2d; qq( )8N ; b+ b–,( )

=  
2

Nc
2 1–

---------------δab χ2 b+( ) χ2 b–( )+[ ] Tr TcTaTbTc( ){

– 2χ b+( )χ b–( )Tr TcTaTcTb( ) }
Nc

2 1–
2Nc

---------------=

× χ2 b+( ) χ2 b–( )+[ ] 2

Nc
2 1–

---------------χ b+( )χ b–( )+
 
 
 

.

q'q'

b±'

Γ4 Figs. 2a–2d Figs. 2e–2h; 88( )N ; b+ b– b+' b–', , ,+( )

=  Γ Figs. 2a–2d; qq( )8N ; b+ b–,( )

+ Γ Figs. 2a–2d; qq( )8N ; b+' b–',( ).

qq

2Γ4 Figs. 2i–2l; 88( )N 88( )N ; b+ b– b+' b–', , ,( )

=  
8

Nc
2 1–

---------------δab χ b+( )χ b–'( ) χ b–( )χ b+'( )+[ ]{

× Tr TcTaTd( )Tr TcTbTd( )

– χ b+( )χ b+'( ) χ b–( )χ b–'( )+[ ]

× Tr TcTaTd( )Tr TdTbTc( ) }
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The (11)N  (88)N transition matrix element
comes from the diagrams in Figs. 2i–2l,

(84)

Upon the rearrangement

we can readily verify that the terms proportional to
χ2(bi) cancel each other and the 4-body cross section
matrix contains only linear combinations of σ(bi – bj),
recalling the discussion in [24].

APPENDIX B

Non-Abelian vs. Abelian Aspects 
of Intranuclear Propagation of Color Dipoles

and the Glauber–Gribov Formalism 

The intranuclear propagation of color-octet 
pairs is part and parcel of the complete formalism for
DIS off nucleus. It is interesting to recover the quasi-
Abelian color-dipole results for the nuclear cross sec-
tions [13, 14] that are of the Glauber–Gribov form [21,
22]. We first consider the total inelastic cross section
obtained from (8) upon the integration over the trans-
verse momenta p± of the quark and antiquark, which

amounts to putting b+ =  and b– = . Then we are
left with the system of two color dipoles of the same
size r = b+ – b– = r' =  – , and the matrix of the

=  
Nc

2 1–
Nc

--------------- 2

Nc
2 1–

--------------- χ b+( )χ b–'( ) χ b–( )χ b+'( )+[ ]




–

+  
N
 

c
 

2

 
2–

 
N

 

c

 
2

 
1–

--------------- χ b + ( ) χ b + '( ) χ b – ( ) χ b – '( )+ [ ]




 .    

2Γ4 Figs. 2i–2l; 11( )N 88( )N ; b+ b– b+' b–', , ,( )

=  
4

Nc Nc
2 1–

--------------------------δab χ b+( )χ b–'( ) χ b–( )χ b+'( )+[ ]{

× Tr TcTa( )Tr TcTb( ) χ b+( )χ b+'( ) χ b–( )χ b–'( )+[ ]–

× Tr TcTa( )Tr TcTb( ) }
Nc

2 1–
Nc

--------------- 1

Nc
2 1–

-------------------=

× χ b+( )χ b–'( ) χ b–( )χ b+'( )+[ ]{

– χ b+( )χ b+'( ) χ b–( )χ b–'( )+[ ] } .

2χ bi( )χ b j( )– χ bi( ) χ b j( )–[ ] 2 χ2 bi( )– χ2 b j( ),–=

qq

b+' b–'

b+' b–'
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4-body cross section has the eigenvalues

(85)

(86)

with the eigenstates

(87)

(88)

The existence of the nonattenuating 4-quark state with
Σ1 = 0 is quite obvious and corresponds to an overlap of
two  dipoles of the same size with neutralization of
color charges. The existence of such a nonattenuating
state is shared by an Abelian and non-Abelian quark–
gluon interaction. The intranuclear attenuation eigen–
cross section (86) differs from σ(r) for the color-singlet

 pair by the nontrivial color factor

which occurs because the relevant 4-parton state is in
the color octet–(anti)octet configuration.

The crucial point is that the final state that enters the
calculation of the genuine inelastic DIS off a nucleus,
see Eq. (15), is precisely the eigenstate |f1〉 . Then, even
without invoking the Sylvester expansion (23) and (25),
the straightforward result for the inelastic cross sec-
tion is

(89)

which is precisely the color-dipole generalization [14]
of the Glauber–Gribov formula [21, 22] in which no
trace of a non-Abelian intranuclear evolution with the
nontrivial attenuation eigenstate (88) with eigen–cross
section (86) is left.

When the photon breaks into a color-singlet  di-
jet, the net flow of color between the  pair and color-
excited debris of the target nucleus is zero. This sug-

Σ1 0,=

Σ2

2Nc
2

Nc
2 1–

---------------σ r( )=

f 1| 〉 1
Nc

------ 11| 〉 Nc
2 1– 88| 〉+( ),=

f 2| 〉 1
Nc

------ Nc
2 1– 11| 〉 88| 〉–( ).=

qq

qq

2λ c 2Nc
2/ Nc

2 1–( ) CA/CF,= =

σin rd z Ψ Q2 z r, ,( )
2

bd∫d∫=

× Nc f 1〈 | 1
2
---σ4T b( )– 11| 〉exp σ r( )T b( )–[ ]exp–

 
 
 

=  b γ∗〈 | 1
2
---Σ1T b( )–exp σ r( )T b( )–[ ]exp–

 
 
 

γ∗| 〉d∫
=  b γ∗〈 | 1 σ r( )T b( )–[ ]exp–{ } γ ∗| 〉 ,d∫

qq
qq
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gests that a rapidity gap can survive hadronization,
although whether the rapidity gap in genuine inelastic
events with the color-singlet  production is stable
against higher order corrections remains an interesting
open question. Although the debris of the target nucleus
have zero net color charge, the debris of color-excited
nucleons are spatially separated by a distance on the
order of the nuclear radius, which suggests the total
excitation energy of the order of 1 GeV times A1/3, such
that such rapidity-gap events look like a double diffrac-
tion with multiple production of mesons in the nucleus
fragmentation region (see [36] for a theoretical discus-
sion of conventional mechanisms of diffraction excita-
tion of nuclei in proton–nucleus collisions; experimen-
tal observation has been reported in [37]). As such,
inelastic excitation of color-singlet dijets is distinguish-
able from quasielastic diffractive DIS followed by cita-
tion and breakup of the target nucleus without produc-
tion of secondary particles.

Using the Sylvester expansion (23)–(25) and eigen-
states (87) and (88), we readily obtain

(90)

(91)

These expressions depend on the entire non-Abelian
spectrum of attenuation eigenstates.

Several features of the result in (90) are noteworthy.
First, the color neutralization of the  pair after the
first inelastic interaction requires at least one more sec-
ondary inelastic interaction, and the expansion of the
integrand of σin(A*( )1) begins with the term qua-
dratic in the optical thickness,

(92)

qq

σin A∗ qq( )1( ) bd( ) γ∗〈 | 1 σ r( )T b( )–[ ]exp -–




∫=

–
Nc

2 1–

Nc
2

--------------- 1
1
2
---Σ2T b( )–exp– 

 




γ∗| 〉 ,

σin A∗ qq( )8( )
Nc

2 1–

Nc
2

---------------=

× b γ∗〈 | 1
1
2
---Σ2T b( )–exp–

 
 
 

γ∗| 〉 .d∫

qq

qq

1 σ r( )T b( )–[ ]exp
Nc

2 1–

Nc
2

---------------––




× 1
1
2
---Σ2T b( )–exp– 

 




=  
1

2 Nc
2 1–( )

-----------------------σ2 r( )T2 b( ) …+
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Second, in the large-Nc limit, the color-octet state tends
to oscillate in color remaining in the octet state. This is
clearly seen from (92). Third, in the limit of an opaque
nucleus,

(93)

This remains a constant fraction of DIS in contrast to
the quasielastic diffractive DIS or inelastic diffractive
excitation of a nucleus, whose cross sections vanish for
an opaque nucleus [14, 36].

The analysis of the single-parton, alias single-jet,
inclusive cross section is quite similar. In this case, we
integrate over the momentum p– of the antiquark jet

such that  = b–. The corresponding matrix σ4 has the
eigenvalues

(94)

(95)

with exactly the same eigenstates |f1〉  and |f2〉  as given
by Eqs. (87) and (88). Again, the cross section of the
genuine inelastic DIS corresponds to the projection on
the eigenstate |f1〉 , and hence,

(96)

which is precisely Eq. (10) in [5].

σin A∗ qq( )1( )
1
Nc

------ b γ∗〈 |d∫=

× 1 σ r( )T b( )–[ ]exp–{ } γ ∗| 〉 1

Nc
2

------σin.=

b–'

Σ1 σ r r'–( ),=

Σ2

Nc
2

Nc
2 1–

--------------- σ r( ) σ r'( )+[ ] 1

Nc
2 1–

---------------σ r r'–( )–=

dσin

b pdzdd
-------------------

1

2π( )2
------------- r' r ip r' r–( )⋅[ ]expdd∫=

× Ψ∗ Q2 z r', ,( )Ψ Q2 z r, ,( )
1
2
---Σ1T b( )–exp





–
1
2
--- σ r( ) σ r'( )+[ ] T b( )–





exp
1

2π( )2
-------------=

× r'd r ip r' r–( )⋅[ ]Ψ∗ Q2 z r', ,( )Ψ Q2 z r, ,( )expd∫

× 1
2
---σ r r'–( )T b( )–exp





–
1
2
--- σ r( ) σ r'( )+[ ] T b( )–exp





,
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At this point, we emphasize that, for the fundamen-
tal reason that the relevant final state is precisely the
eigenstate |f1〉 , the calculations of the integrated inelas-
tic cross section (89) and of the one-particle inclusive
inelastic spectrum (96) are essentially Abelian prob-
lems, and the final result in (96) is identical, apart from
a very different notation, to that for the propagation of
relativistic positronium in dense media derived by one
of the authors [32]. As can be seen from inspection of
the relevant four-parton states, all contributions from
the propagation of color-octet dipoles cancel, and the
results can be obtained from studying the propagation
of color-singlet dipoles without any reference to the full
cross section matrix σ4. Our formalism makes these
cancellations nicely explicit. These quasi-Abelian
problems have also been studied in [2, 38].

APPENDIX C

Weizsäcker–Williams Glue of Spatially 
Overlapping Nucleons 

According to [5, 6], the multiple convolutions
f (j)(k2) have the meaning of a collective unintegrated
gluon SF of j nucleons at the same impact parameter
such that their Weizsäcker–Williams gluon fields over-
lap spatially in a Lorentz-contracted nucleus. These
convolutions can also be viewed as a random walk in
which f(k2) describes the single walk distribution.

To the lowest order in pQCD, the large-k2 behavior
is f(k2) ∝ α S(k2)/κ4. The phenomenological study of
the differential glue of the proton in [19] suggests a use-
ful large-k2 approximation f(k2) ∝ 1/(k2)γ with the
exponent γ ≈ 2 (a closer inspection of numerical results
in [19] gives γ ≈ 2.15 at x = 10–2). The QCD evolution
effects enhance f(k2) at large k2: the smaller x, the
stronger the enhancement.

Because f(k2) decreases very slowly, we encounter a
manifestly non-Gaussian random walk. For instance, as
argued in [6], a j-fold walk to large k2 is realized by one

large walk,  ~ k2, accompanied by j – 1 small walks.
We simply quote the main result in [6],

(97)

where G(k2) is the conventional integrated gluon SF.
Then the hard tail of unintegrated nuclear glue per
bound nucleon,

k1
2

f j( ) k2( ) j f k2( ) 1
4π2 j 1–( )γ2

Ncσ0k2
------------------------------G k2( )+ ,=

f WW b k2,( ) φWW νA b( ) k2,( )/νA b( ),=
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can be calculated parameter-free,

(98)

In the hard regime, the differential nuclear glue is not
shadowed; furthermore, because of the manifestly pos-
itive-valued and model-independent nuclear higher
twist correction, it exhibits a nuclear antishadowing
property [6].

We now present the arguments in favor of the scal-
ing small-k2 behavior

(99)

with

(100)

In the evolution of f (j)(k2) with j at moderate k2,

(101)

the function f (k2) is steep compared to the smooth and
broad function f (j)((k – k)2), and we can therefore
expand

(102)

where  indicates azimuthal averaging. The expan-

sion (102) holds for k2 & , and after the dk integra-

f WW b k2,( )
1

νA b( )
------------- w j νA b( )( ) j f j( ) k2( )

j 1=

∞

∑=

× 1
4π2γ2

Ncσ0k2
------------------ j 1–( )G k2( )+

=  f k2( ) 1
2π2γ2αS r( )T b( )

Nck
2

--------------------------------------G k2( )+ .

f j( ) k2( )
1

Q j
2

------ξ k2

Q j
2

------
 
 
  1

π
---

Q j
2

k2 Q j
2+( )2

-------------------------≈≈

Q j
2 jQ0

2.≈

f j 1+( ) k2( ) k f k2( ) f j( ) k k–( )2( ),d∫=

f j( ) k k–( )2( ) f j( ) k2( )
f j( ) k2( )d

k2d
---------------------- k2 2k k⋅–[ ]+=

+
1
2
--- f j( ) k2( )d

k2d( )2
----------------------4 k k⋅( )2 f j( ) k2( )

+ k2 d f j( ) k2( )

k2d
--------------------- k2d2 f j( ) k2( )

k2d( )2
-----------------------+

=  f j( ) k2( ) k2

k2d

d k2d f j( ) k2( )

k2d
--------------------- ,+

Q j
2
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tion in (101), we obtain

(103)

where

(104)

This is a smooth function of j. It is easy to verify that
our approximation preserves the normalization condi-

tion  = 1.

For small k2 and large j, recurrence relation (104)
amounts to the differential equation

(105)

with the solution

(106)

Expansion (102) holds up to the terms proportional to
k2 and its differentiation at k2 = 0 gives a similar con-

straint on the j-dependence of .

f j 1+( ) k2( ) f j( ) k2( ) g j( )
k2d

d k2 f j( ) k2( )d

k2d
--------------------- ,+=

g j( ) kk2 f k2( )d

Q j
2

∫ 4π2

Ncσ0
------------G Q j

2( ).= =

k f j( ) k2( )d∫

Q j 1+
2 Q j

2–

Q j 1+
2 Q j

2
------------------------

1

Q j
4

------
Q j

2d
dj

--------- 1

Q j
4

------ξ' 0( )
ξ 0( )
-----------g j( )–= =

Q j
2 ξ' 0( )

ξ 0( )
----------- j'g j'( )d

j

∫–= jg j( )
ξ' 0( )
ξ 0( )
-----------.–≈

Q j
2

10

4

2
j = 1

101

100

10–1
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10–3

10–4 10–3 10–2 10–1 100 101
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f(j)(κ2), (GeV/c)2

Fig. 7. The nuclear dilution for soft momenta and broaden-
ing for hard momenta of the collective glue of j overlapping
nucleons, f (j)(k2). The numerical results are for DIS at x =
0.01, and the input unintegrated gluon SF of the proton is
taken from [19].
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We note that expansion of the plateau with j entails
a dilution of the differential collective glue f (j)(k2) in the
plateau region,

We conclude by the observation that, when extended to

k2 * , the parameterization in (101) and (100)

behaves as j /(k2)2, which nicely matches the
j-dependence of the leading twist term in the hard
asymptotic form (99).

For a heavy nucleus, the dominant contribution to
the expansion in (31) comes from j ≈ νA(b), and hence

(107)

where Eq. (106) gives the width of the plateau,

(108)

The explicit dependence on the soft parameter σ0 that is
manifest in (104) cancels in (108). For DIS within the

saturation domain, Q2 & , the strong coupling
in (33) must be taken at r ~ 1/QA , and the right-hand
side of Eq. (108) exhibits only a weak dependence on

the infrared parameters via the  dependence of the
running strong coupling constant and scaling violations
in the gluon SF of the nucleon. For instance, at x = 10−2,
the numerical results [19] for G(Q2) correspond to a
nearly Q2-independent αS(Q2)G(Q2) ≈ 1. For the aver-
age DIS on a heavy nucleus,

, (109)

where r0 ≈ 1.1 fm. For lighter nuclei with the Gaussian

density profile,  ≈ . Then for Nc = 3 and

A1/3 = 6, Eqs. (108) and (109) give  ≈
0.8 (GeV/c)2.

The utility of approximation (99), (100) is illus-
trated in Fig. 7, where we show the j-dependence of the
collective glue of j overlapping nucleons calculated for
the unintegrated gluon SF of the proton from |19]. For
the interaction of  color dipoles in the average DIS

on gold, 197Au target, we find  ≈ 0.9 (GeV/c)2,
in good agreement with the above estimate in Eq. (108).

f j( ) k2
 & Q j

2( ) 1/Q j
2 1/ j.∝ ∝

Q j
2

Q0
2

φWW νA b( ) k2,( )
1
π
---

QA
2 b( )

k2 QA
2 b( )+( )2

---------------------------------,≈

QA
2 b( ) 2νA b( )g νA b( )( )≈

≈ 4π2

Nc

--------αS QA
2( )G QA

2( )T b( ).

QA
2

QA
2

T b( )〈 〉 3
4
---T 0( )

9

8πr0
2

-----------A1/3≈≈

T b( )〈 〉 1
2
---T 0( )

QA
2 b( )〈 〉

qq

Q3A
2 b( )〈 〉
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For the g Fock states of the photon, the leading lnQ2

configurations correspond to small  pairs that act as
a color-octet gluon [24]; for such gluon–gluon color

dipoles,  ≈ 2.1 (GeV/c)2. We note in passing
that the standard collinear splitting sets in, and the
DGLAP evolution [34, 39] becomes applicable to the

nuclear structure, only at Q2 @ .
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Abstract—We have solved a boundary-value problem for a ball probe interacting with a flat dielectric surface
in an external optical radiation field. This interaction gives rise to the optical size resonance at frequencies sig-
nificantly different from the natural frequencies of two-level atoms both in the medium and in the probe with
allowance for the local field corrections. These resonances depend significantly on the distance from the probe
center to the surface, on the ball probe size, on the concentration of two-level atoms in the probe and in the
medium, on the spectral line width, and on the atomic inversion. The field strengths inside and outside the ball
probe and a semiinfinite dielectric medium have been calculated in the near-field and wave zones. It is shown
that the proposed electrodynamic theory of optical near-field microscopy agrees with the results of experimen-
tal measurements. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In an interpretation of the near-field optical micros-
copy results, the probe is approximated by a sphere of
radius a = 10–20 nm interacting with a sample surface
occurring at a distance of R ! λ from the probe, where
λ is wavelength of an external radiation exciting the
probe–sample system. A response signal generated in
the region of the probe–sample interaction has the same
wavelength as that of the external radiation and propa-
gates in the direction opposite to that of the incident
radiation [1–4]. The spatial resolution of such near-
field optical microscopes is on the order of 10 nm.

Theoretical justification of the experimental data of
near-field optical microscopy is based on calculations
of the probe polarizability and the probe–sample inter-
action within the framework of the electrostatic approx-
imation. In some cases, this approach provides for a
qualitative agreement with experiment. However, com-
plete agreement of the theory and experiment can be
achieved only based on a quantitative electrodynamic
theory of the near-field optical microscope.

This study is devoted to solving a typical boundary-
value problem for a probe interacting with the flat sur-
face of a semiinfinite dispersive dielectric medium
(Fig. 1a). The proposed theory describes the formation
of a near-field wave propagating in the direction oppo-
site to that of the incident wave. Based on the obtained
solution, we will study the amplitude and phase proper-
ties of the radiation field in the near-field and wave
zones relative to the probe–sample interaction.

Theoretical description of the method of scanning
near-field optical microscopy has been developed in a
number of papers [5–14] using both macroscopic and
microscopic approaches. However, the optical radiation
1063-7761/03/9703- $24.00 © 20466
field in the near-field zone was described in the point
dipole approximation. In this approximation (consis-
tent with the electrostatic approximation), the electric
field strength varies in the space according to the 1/R3

law, where R is the distance from the probe center to the
point of observation. The field inside the probe is
assumed to be homogeneous.

Below, we will solve a boundary-value problem for
a ball probe of finite size with allowance for an inhomo-
geneous field inside the probe and dispersive properties
of the probe. In this description, the radiation field in
the near-field and wave zones may vary according to
the laws of 1/R4, 1/R3, 1/R2, and 1/R. In the near-field
zone, the predominant role is played by the 1/R4 law
describing a decrease in the electric field strength with
increasing distance from the probe center. Based on this
description, we will calculate geometrical factors deter-
mining the field inside and outside the probe taking into
account the self- consistent probe–sample interaction in
the external radiation field.

We believe that it is important to distinguish
between the boundary-value problems of three main
types in near-field optical microscopy. In the optical
scheme of Fig. 1a, a ball probe interacts with the clean
surface of a semiinfinite medium. Besides the Fresnel
reflection component, this system features a wave that
propagates in the direction opposite to that of the inci-
dent radiation field. Figure 1b illustrates the boundary-
value problem of another type, in which particles on the
substrate surface are studied under the conditions of a
highly selective interaction, when the influence of other
particles can be ignored. Figure 1c shows the case when
the role of “third” particles present on the substrate sur-
face is significant. The present study is devoted to solv-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Three main types of boundary-value problems for near-field optical microscopy: (a) probe 1 interacts with a clean flat sample
surface Σ; (b) probe 1 interacts with particle 2 occurring on a flat surface of a semiinfinite dielectric sample surface Σ; (c) probe 1
interacts with particle 2 in the presence of a polarizing action of particle 3 and a semiinfinite dielectric medium (sI , sR , and –sI are
the unit vectors in the directions of the incident wave, Fresnel reflection, and backscattered signal, respectively).
ing the boundary-value problem of the type illustrated
in Fig. 1a. The solution of this problem determines the
analysis of the other typical boundary-value problems
of near-field optical microscopy.

Previously [15–17], we reported on the optical size
resonances in two-level systems, the frequencies of
which were significantly different from the frequencies
of transitions in the spectra of interacting atoms.
Recently [18], it was reported that the optical size reso-
nances are experimentally observed in the spectra of
anisotropic light reflection from arsenic and gallium
dimers on the surface of gallium arsenide. We believe
that the optical size resonances must also be present in
other systems involving small numbers of atoms, such
as composites, clusters, fullerenes, self-organized
atomic chains on solid surfaces, etc.

As will be shown below, the ball probe–sample sur-
face system features optical size resonances of a new
type depending on the probe composition and the opti-
cal properties of the substrate. It should be noted that
Keller et al. [19, 20] mentioned the so-called configu-
ration resonances arising in the interaction of a metal
ball probe with the surface of a semiinfinite medium,
but the quantum properties of electrons in the micro-
probe were ignored. In the case of optical size reso-
nances, an important role is played by the quantum
properties of interacting atoms. In the ball probe–sub-
strate system, the important role of the quantum proper-
ties of two-level atoms is manifested via the inversion.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In this paper, a ball probe represents a system of
two-level atoms, which implies that the probe is consid-
ered as a dielectric particle. In particular, two-level
atoms can be considered as impurity atoms in a glass
matrix, whereby the spectral line width varies depend-
ing on the concentration of these impurities. As will be
shown below, the smaller the spectral line width, the
better the spatial resolution and the sensitivity of a near-
field optical microscope. However, the two-level
approximation can be also used for description of the
ball probes of other types (semiconductor and metal
probes) employed in near-field optical microscopy. It
must be taken into account that ball probes with a
radius of 10–30 nm exhibit a dimensional quantization
of electrons and holes, so that such probes behave as
quantum dots.

2. MAIN EQUATIONS

The radiation field in an arbitrary observation point
r is determined by the strength of the electric E(r, t) and
magnetic H(r, t) fields obeying the following integro-
differential equations:

(2.1a)
E r t,( ) EI r t,( ) curlcurl

P1 t R1' /c–( )

R1'
---------------------------- V1'd∫+=

+ curlcurl
P r' t R1' /c–,( )

R'
--------------------------------- V ',d∫
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(2.1b)

where EI(r, t) and HI(r, t) are the electric and magnetic
field strengths of the incident external wave, respec-
tively;  = |r – |; is a radius vector in a ball of
radius a that serves as the probe (Fig. 1a) in the problem
under consideration;  = |r – r '|; r ' is an arbitrary
radius vector inside or on the surface of the dielectric
medium studied; P1 is the induced dipole moment per
unit volume of the probe; P is the polarization vector of
the medium; and c is the velocity of light in vacuum.

In Eqs. (2.1), the differentiation is performed with
respect to the coordinates of the observation point,
while the integrals are taken over all coordinates r' and

 for all points outside the medium and probe; for a
point in the medium, the integrals are taken over the
entire volume of the medium bounded by the external
surface Σ and a small spherical surface σ0 with the
radius L0  0 containing the observation point. The
field of discrete dipoles distributed inside the Lorentz
sphere σ0 of radius L0 is assumed to be zero. This con-
dition is obeyed with good precision for closed Lorentz
spheres in the absence of near-field effects [15]. In our
analysis, an analogous situation takes place for the
observation points inside the probe in the absence of the
near-field effect (i.e., with neglect of the contribution
from discrete dispersed atoms).

In calculating the polarization vectors P and P1 for
the boundary-value problem under consideration, we
take into account only the electric vector and neglect
the relativistic contribution related to the magnetic vec-
tor. The magnetic field strength will be taken into
account in calculations of the dipole radiation in the
wave zone relative to the probe position. The polariza-
tion vectors can be presented in the following form:

(2.2)

where ω is the radiation field frequency and N, N1 are
the coordinate-independent densities of induced dipole
moments inside the medium and probe, respectively.
The quantum-mechanical means X and X1 obey the
modified optical Bloch equations [17]. For the bound-
ary-value problem under consideration, these equations

H r t,( ) HI r t,( )=
1
c
--- curl

∂/∂t( )P1 t R1' /c–( )

R1'
-------------------------------------------- V1'd∫+

+
1
c
--- curl

∂/∂t( )P r' t R1' /c–,( )
R'

------------------------------------------------ V ',d∫

R1' r1' r1'

R1'

r1'

P1 N1p1
1
2
---N1X1 iωt–( )exp c.c.,+= =

P Np
1
2
---NX iωt–( )exp c.c.,+= =
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are as follows:

(2.3a)

(2.3b)

Here ∆ = ω01 – ω is the detuning from an isolated reso-
nance at a frequency of ω01 in the probe; d01 is the
dipole moment of the transition in the probe; w1 is the
inversion; w01 is the initial inversion in the probe, which
determines the difference of populations of the quan-
tum states involved in the allowed dipole quantum tran-
sitions;  and T11 are the characteristic times of the
phase and energy relaxation in the probe for a given
quantum transition; and E01 is the effective field
strength at the probe center.

By the same token, we can write the modified opti-
cal Bloch equations for the induced dipole moments of
the medium in the vicinity of an isolated resonance at a
frequency of ω0:

(2.4a)

(2.4b)

where ∆ = ω0 – ω is the detuning from the isolated res-

onance; the quantities w, w0, d0, , and T1, having the
corresponding physical meaning, characterize the
allowed dipole quantum transitions in the spectra of
atoms (molecules) of the medium studied.

The effective microscopic fields E01 and E0 entering
Eqs. (2.3) and (2.4) can be presented in accordance
with Eqs. (2.1) (the time factor exp(–iωt) is omitted):

(2.5a)

(2.5b)

where E01 is the external wave amplitude, k0 is the cor-
responding wavevector, |k0 | ≡ k0 = ω/c, r1 is the radius

vector of the ball probe center (Fig. 1a), and , ,

,  are geometrical factors calculated in the
Appendix.

Equations (2.3)–(2.5) form a closed system of equa-
tions. The solution of this system describes the self-
consistent interaction of the probe with a semiinfinite
dielectric medium and allows the fields to be calculated
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at various observation points in the near-field and wave
zones.

3. STATIONARY SOLUTION
OF THE EQUATIONS OF MOTION

In the field of continuous optical radiation, the
induced dipole momenta and inversion variations are
compensated by relaxation processes. For this reason,
Eqs. (2.3) and (2.4) will be solved under the conditions

(3.1)

which lead, in the general case, to a system of nonlinear
algebraic equations.

Let us introduce the quantum polarizabilities

(3.2)

where e and m are the electron charge and mass, respec-
tively;

(3.3)

are the oscillator strengths of the transitions in the
probe and the medium, respectively; and γ1 and γ are the

dX1

dt
--------- dX

dt
------- 0,

dw1

dt
--------- dw

dt
------- 0,= = = =

α1
e2

m
---- f 1

1
ω01 ∆1 iγ1/2–( )
------------------------------------,=

α e2

m
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1
ω0 ∆ iγ/2–( )
------------------------------,=

f 1

2mω01

"e2
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2, f
2mω0

"e2
-------------- d0

2= =
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spectral line widths for atoms (molecules) in the probe
and the medium, respectively, which obey the relations

(3.4)

Consider the case when the induced dipole moments
in the probe and in the medium are linear functions of
the field:

(3.5)

which is possible provided that w1 ≈ w01 and w ≈ w0.
Indeed, substituting (3.5) into Eqs. (2.3b) and (2.4b),
we obtain

(3.6)

As can be seen, the inversion w1 will only slightly differ
from the equilibrium value if

(3.7)

where  is determined using (2.5). Thus, in the lin-
ear approximation, the induced dipole moments will be
calculated using Eqs. (2.3a) and (2.4a) with inversions
ω1 and ω replaced by the corresponding equilibrium
values.

Using Eqs. (2.3a) and (2.4a) and taking into account
conditions (3.1), we obtain the following expressions,

γ1
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1
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2
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2

(3.8)

where  and  are the effective polarizabilities of the probe and the medium for the induced dipole moments
polarized perpendicularly to the plane of incidence xz. For the polarization vectors lying in the incidence plane,
we obtain

(3.9)
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where β = x, z. The geometrical factors aT1 and  in

Eqs. (3.8) and (3.9) are as follows:
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(3.10)

These quantities are determined using the angles ϕ, ϑT ,
and ϑR as described in the Appendix (see Eqs. (A.14)
and (A.17), respectively). For the Fresnel reflection and
refraction of an external wave incident at an angle ϑ I

onto the surface Σ (Fig. 1a),

(3.11)

Below we will consider the dispersion dependences of
the effective polarizabilities (3.8) and (3.9) for various
angles ϕ, ϑT , and ϑR .

4. OPTICAL FIELD IN THE NEAR-FIELD
AND WAVE ZONE RELATIVE 

TO THE SURFACE OF A SEMIINFINITE MEDIUM

Using induced dipole moments (3.8) and (3.9), it is
possible to determine the field at any observation point.
Indeed, for any r outside the probe and medium,
Eq. (2.1a) yields

(4.1)

Here

 is given by formulas (3.10), and the geometrical
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factor  is determined from the relation

(4.2)

where Gp = exp(ik0 )/  is the Green function depen-
dent on the observation point r. The surface integral is
calculated in the Appendix. In a particular case of r || z,
this integral is determined by formula (A.14), where
calculation of the (curlcurl) operator reduces to taking
the second derivative with respect to z0 of the surface
integral (4.2). For an arbitrary observation point, the

geometrical factor  is determined by formula (4.2)
with the (curlcurl) operator in the general form. Then,
Eq. (4.1) gives expressions for the field in the near-field
and wave zones.

Let us consider the optical field in the wave zone for
k0r @ 1. In this case, we may retain only the terms pro-

portional 1/  in the geometrical factor  (  is
the distance from the probe center to the observation
point r), which yields

(4.3)

where  = / .

By the same token, the magnetic field strength in the
wave zone for k0r @ 1 is determined using Eq. (2.1b).
According to this, vector H has the following form (the
time factor exp(–iωt) is omitted):

(4.4)

where  and  are the geometrical factors given by
the formulas

(4.5)

The energy flux via an element of the spherical sur-
face ∆σ = ( )2∆Ω per unit time is determined using
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expressions (4.1) and (4.4) for the field vectors:

(4.6)

In the wave zone (k0  @ 1), the fields are determined
in terms of geometrical factors (4.3) and (4.5) and
effective polarizabilities (3.8) and (3.9), which depend
on the near-field geometrical factors (3.10), (A.14),
and (A.17).

In the above formulas, the refractive indices n1 and
n can be determined using Eq. (2.1a) by placing the
observation point inside and outside the dielectric
medium. Separating the terms determined for the corre-
sponding points, we obtain

(4.7)

where the polarizabilities are given by formulas (3.2).
These expressions correspond to the case of a closed
Lorentz sphere containing the observation point. In a
strict theory, allowance of the discrete atoms distributed
inside a truncated Lorentz sphere leads to the near-field
effect [15]. In our study, the role of this effect is negli-
gibly small.

5. LINEAR STATIONARY OPTICAL SIZE 
RESONANCES IN THE SYSTEM

OF A BALL PROBE 
OVER A SEMIINFINITE OPTICAL MEDIUM

Let us study the dispersion dependences of effective
polarizabilities (3.8) and (3.9) in various physical situ-
ations. First, consider a probe consisting of a glass ball
containing impurity sodium atoms characterized by a
resonance absorption at λ = 589 nm due to the transi-
tion from ground state 3S to excited state 3P (yellow
emission line of sodium atom). The natural width of the
3S–3P transition is 10 MHz, the dipole moment of this
transition is d01 = 6.236 × 10–18 esu, and the transition
frequency is ω01/c = 1.066 × 105 cm–1. The correspond-
ing refractive index n1 is given by the formula

(5.1)

where N01 and α01 are the density and polarizability of
atoms (molecules) of the glass. Let us assume that

(5.2)

and the refractive index (n1 ≈ 1.5) remains constant
within a wide frequency range. We consider a probe

S∆σ c
4π
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R1'
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n1
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4π
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2 1–

n1
2 2+
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4π
3

------ N01α01 N1α1+( ),=

N01α01 N1α1≈
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with a radius of a1 = 20 nm and an impurity (sodium)
concentration of N1 = 1018–1021 cm–3. The density of
atoms in the glass is N01 = 1022 cm–3.

Consider a sample representing a semiinfinite, iso-
tropic optical medium in the vicinity of a small reso-
nance at a wavelength of λ0 = 694.3 nm (R1 line of a
ruby crystal at T = 300 K) with a transition frequency
of ω/c = 0.905 × 105 cm–1, a dipole moment of the tran-
sition of d = 1.8 × 10–20 esu, and a spectral line width of

 = 3 × 1011 Hz. Let the concentration of impurity

(Cr3+) ions in the medium be N = 2 × 1019 cm–3, which
corresponds to a pink ruby [21].

The atoms of impurities in the probe and in the sam-
ple are immersed in the media, the influence of which
is manifested as follows. First, surrounding atoms mod-
ify the natural frequencies, dipole moments of the tran-
sitions, and spectral line widths of the impurity atoms.
Second, the media surrounding impurity atoms produce
an additional polarizing action upon the probe–sample
interaction. In the boundary-value problem under con-
sideration, this action is taken into account by adding
vectors P ' = N0α0E and  = N01α01E to the polariza-
tion vectors P and P1 for the observation points inside
the sample and probe, respectively. With allowance for
the linearity of Eqs. (2.3) and (2.4) and the expressions
for the effective fields (2.5), this transformation of the
polarization vectors results in that the solution of
Eqs. (3.8) and (3.9) will acquire the corresponding cor-
rections to the acting field, while the geometrical fac-
tors  and  have to be determined using refractive
indices given by formulas (5.1) and

(5.3)

where N0 and α0 are the density and polarizability of
atoms (molecules) surrounding the two-level impurity
atoms in the sample.

The fields acting at the center of the probe, deter-
mined with allowance for the polarizing action of the
nonresonant atoms, are as follows:

(5.4)
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âR1 âR
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Fig. 2. Plot of the real part of the geometrical factor  of

a ball probe versus the relative distance z0/a1 from the probe
center to the sample surface, calculated for n1 = 1.5, k0 =

1.066 × 105 cm–1, and a1 = 20 nm.
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where

(5.5)

In order to determine the other components of the act-
ing fields, it is necessary to determine coefficients (5.5)
using the corresponding geometrical factors calculated
using expressions (3.10), (A.14), and (A.17). The
induced dipole moments of the resonance atoms
acquire the following form:

(5.6)

which, in contrast to expressions (3.8) and (3.9), takes
into account the polarizing action of nonresonant sub-
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Fig. 3. Typical dispersion dependences of the real and imaginary parts of the effective polarizabilities of (a, c) two-level Na atoms
in the probe and (b, d) Cr3+ ions in the sample, calculated with allowance for the polarizing action of the glass and corundum, respec-
tively, for probe–sample distances of z0 = 30 (1), 50 (2), and 60 nm (3); and n01 = 1.5, n0 = 1.78, and a1 = 20 nm.
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systems both in the probe and in the sample. Figure 2

shows a plot of the geometrical factor  versus the
relative distance z0/a1 from the top of the probe center
to be sample surface. For small distances, such that
k0z0 ! 1 (e.g., in the near-field zone relative to the sur-
face of the semiinfinite medium), the main role is

played by terms proportional to 1/  (rather than 1/ ,
as in the case of point dipoles [15]). At large distances
from the probe, such that k0z0 @ 1, the main role is
played by terms proportional to 1/z0.

Figure 3 presents the dispersion dependences for the
effective polarizabilities of two-level Na atoms in the
probe and Cr3+ ions in the sample, calculated with
allowance for the polarizing action of the glass and
corundum, respectively.

For external radiation polarized in the incidence
plane xz, the probe–sample system exhibits a single
optical size resonance at a frequency significantly dif-
ferent from the natural frequencies of both Na atoms
and Cr3+ ions (with neglect of the interaction). The opti-
cal size resonance frequency depends strongly on the
distance z0 from the probe center to the sample. Indeed,
the frequency is ω/2πc = 19320 cm–1 for z0 = 30 nm and
decreases to 19140 cm–1 for z0 = 50 nm and to
19070 cm−1 for z0 = 70 nm (Fig. 3). For external radia-
tion polarized perpendicularly to the incidence plane,
the optical size resonance frequencies are the same: in
a system of the ruby–glass probe with sodium, the
effect is independent of polarization. According to the
results of calculations, a change in the spectral line
widths of Na atoms and Cr3+ ions leads to broadening
of the optical size resonances, but the resonance fre-
quencies remain unchanged.

6. NEAR-FIELD OPTICAL MICROSCOPY
IN THE REGION 

OF CONTINUOUS SPECTRA

Thus, we have solved the boundary-value problem
corresponding to the scheme of Fig. 1a, in which a
dielectric ball probe interacts with the flat surface of a
semiinfinite dielectric optical medium. The spectra of
both probe and sample contain narrow lines corre-
sponding to two-level impurity atoms. Using expres-
sions (5.4) and (5.6), it is possible to take into account
the polarizing action of the probe and the sample. There
are various possible situations in which the polarizing
effects on the optical fields in the near-field and wave
zones of impurity atoms and the environment are either
comparable or the polarizing action of a nonresonant
surrounding is significantly greater than that of the
impurity. In the latter case, the probe–sample interac-
tion is determined by the static polarizabilities of atoms
in the probe and the sample.

aR1
x y,

z0
4 z0

3
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The interaction of a sample and a probe made of
semiconductor materials can also be described based
on the solution of the boundary-value problem, with
allowance for the corresponding quantum polarizabili-
ties. In the approximation of a homogeneously broad-
ened line, the quantum polarizability is given by
Eq. (3.2) [22, 23], where d0(1) are the dipole moments of
the recombination transitions in the sample and probe
and ω0(1) are the frequencies of transitions between lev-
els in the corresponding two-level systems. For a bulk
GaAs sample, the dipole moment of the transition is
about 1.5 × 10–17 esu [24]. Although the probe repre-
sents a quantum dot, it is still possible to assume that
the dipole moment of the transition coincides with that
in the bulk semiconductor. According to [24], the
homogeneous broadening for a bulk semiconductor at
room temperature amounts to 2π/  ≈ 1013 s–1. The
main contribution to this value is due to the interaction
between charge carriers. For a quantum dot, we may
expect that the corresponding 2π/  value is deter-
mined by the electron–phonon and hole–phonon inter-
actions. According to the theory of semiconductor
lasers, the carrier–phonon interaction is one order of
magnitude smaller than that between the charge carri-
ers; therefore, we can assume that 2π/  ≈ 1012 s–1.

However, we must also take into account the line
broadening related to the probe size scatter in various
directions. The positions of energy levels for a spherical
quantum dot depend on the radius a1 as [25]

(6.1)

where αnk is the kth root of the Bessel function Jn + 1/2(z).
This formula can be obtained by using a stationary
spherically symmetrical solution of the Schrödinger
equation [26]. The uncertainty ∆Enk of the energy levels
is proportional to the uncertainty ∆a1 of the quantum
dot radius, so that

(6.2)

where me, h are the effective masses of a hole and elec-
tron, respectively. The inhomogeneous line broadening,

is the sum of two terms representing the contributions
from the electron and hole levels. Assuming that the lin-
ear dimensions of a quantum dot can be set to within
99% (∆a1/a1 ≈ 0.01), we obtain for GaAs (me = 0.067m,
mh = 0.45m, m being the mass of free electron) an esti-
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mate of ∆E01/" = 1012 s–1, which is comparable with the

homogeneous broadening 2π/ .

Now let us consider the interaction of a metal probe
with the surface of a semiinfinite dielectric medium.
Hillenbrand et al. [27] experimentally studied light
backscattering from a sample with gold islands. A ball
probe with a radius of a1 = 10–30 nm was made of gold,
silver, or platinum, while the sample was made of polar
dielectric SiC featuring residual rays in a range from
790 to 950 nm. In this frequency interval, the reflec-
tances of massive gold and SiC are frequency-indepen-
dent and amount to approximately 0.99 and 0.97,
respectively [27]. For a 10-nm gold ball probe, the tran-
sition frequency according to formula (6.1) is E01/" =
1.44 × 1012 s–1.

In the range of residual rays for SiC, the quantum
polarizability of the probe is virtually independent

T21'

900 950 1000 1050 1100850
ω/2πc, cm–1

0.1

0.01

1

10 (a)

T
T

SSiC/SAu

900 950 1000 1050 1100850
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1

10 (b)

1
2

3T
T
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Fig. 4. Dispersion dependences of the backscattered signal
in the system of a Pt probe over a semiinfinite medium
(SSiC/SAu is the ratio of the signals scattered from a SiC sub-
strate and Au islands): (a) experimental and theoretical data
from [27]; (b) experimental data from [27] compared to the
results of calculations according to formula (4.6) with z0 =
30 (1), 50 (2), and 80 nm (3); “T ” indicates experimental
points on the background level.
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of frequency and can be determined using the for-
mula [20]

(6.3)

where

(6.4)

ωp is the plasma frequency, Γ is a phenomenological
damping constant, and n(R1) is the normalized electron
density in the ball. The latter quantity is determined as

(6.5)

where Jl , Jl + 1 are the Bessel functions of the lth and
(l + 1)th order, αkl is the kth root of the lth-order Bessel
function, N1V1 is the number of electrons in the ball, R1

is the distance from the ball center normalized to the
radius a1, and ε0 = 1/4π is the dielectric constant. Thus,
the probe–sample interaction in the near-field micros-
copy experiments described in [27] takes place in the
region of a continuous spectrum with respect to the
probe.

Figure 4a presents the experimental data obtained
in [27] on the frequency dependence of a normalized
signal |SSiC/SAu | of dipole radiation from a SiC surface
partly covered with gold islands. A plane wave of the
external radiation was incident on the sample at an
angle of ϑ I = π/4, and the response signal was detected
in the direction opposite to that of the incident wave.
The probe radius was a1 = 20 nm and the external wave
was polarized in the incidence plane xz (Fig. 1a). The
distance between the probe and the sample surface was
varied from 0 to 40 nm [27]. In Fig. 4a, the solid curve
shows the results of theoretical calculations performed
in [27] based on the theory developed in [5–14],
according to which SSiC ~ |αeff |2, where

(6.6)
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--------------------- 

 
2

,
k l,
∑=

α eff
α 1 β+( )

1 αβ /16π a1 z0+( )3–
---------------------------------------------------.=

β
εs 1–
εs 1+
-------------,=
 AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003



BOUNDARY-VALUE PROBLEMS IN NEAR-FIELD OPTICAL MICROSCOPY 475
εs is the dielectric permittivity of the sample,

is the polarizability of a spherical probe, and εm is the
permittivity of the probing metal. In Fig. 4a, the sym-
bols (triangles and circles) correspond to various
regions on the SiC sample surface surrounded by gold
islands. As can be seen from these data, the theoretical
interpretation proposed in [27] provides for a rather
rough approximation. The dashed curve in Fig. 4a
shows the signal of dipole radiation from a platinum
probe near the SiC surface.

Figure 4b shows the frequency dependences of the
normalized signal |SSiC/SAu | for various distances z0
from the probe center to the SiC sample surface, which
were calculated using the theory proposed in this paper.
These curves were constructed using formulas (4.6),
(4.7), (3.9), (3.2), and (6.3); in the region of the contin-
uous spectrum of the probe, the refractive index is n1 =
2.63 + 3.54i, while the frequency dependence of the
dielectric permittivity of SiC is described by the expres-
sion

(6.7)

where ε∞ = 6.49, ω0 = 788 cm–1 is the transition fre-
quency, ρ = 0.257 is the oscillator strength for the
phonon transition, and Γ = 6.8 × 10–3 cm–1. The refrac-
tive index n in (3.10) is determined using formula (4.7),
where n2 is replaced by ε.

As can be seen in Fig. 4b, the signal intensity
reaches a maximum at 927 cm–1, which coincides to a
high precision with the experimental value. According
to our theory, this peak corresponds to the optical size
resonance formed as a result of the self-consistent inter-
action of the platinum ball probe with the SiC surface.
For narrow resonances, even a small change in the dis-
tance between the interacting dipoles leads to a signifi-
cant shift in the optical size resonance frequency. This
takes place for the interacting atoms considered as
point dipoles [15]. The same situation is observed for a
probe–sample system possessing narrow resonances
(see Section 5). In the experiments reported in [27], the
probe possessed a continuous spectrum and, hence, the
optical size resonance at ω/2πc = 927 cm–1 was less
sensitive to a change in the distance z0 from the probe
center to the sample surface. However, as can be seen
from Fig. 4b, an additional optical size resonance
appears for z0 = 30 nm at ω/2πc = 990 cm–1. Since the
frequency interval from 950 to 1030 cm–1 was not stud-
ied in [27], it is impossible to check for the presence of
this resonance in the experimental spectrum.

A comparison of our theory to the experimental data
presented in Fig. 4a suggests that a polarizing action of

α 4πa1
3 εp εm–( ) εp 2εm+( )=

ε ε∞
4πρω0

2

ω0
2 ω2– iΓω–

----------------------------------,+=
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the edges of gold islands is rather insignificant for fre-
quencies close to resonance, but this action can make a
significant contribution to the resulting response at small
amplitudes of the signal scattered from the sample sur-
face. This probably explains the discrepancy between
experiment [27] and the results of our calculations using
formula (4.6) in the region of 1000–1100 cm–1. The
polarizing action can be readily taken into account
based on the proposed theory, but this requires more
detailed information about the shape of island edges. In
our opinion, the significant difference in resonance
width between the theoretical and experimental curves
can be explained by different values of the relaxation
times used in [27] and in our calculations, but this ques-
tion requires additional investigation.

Thus, we have developed an electrodynamic theory
of near-field optical microscopy based on the descrip-
tion of a self-consistent interaction between a ball
probe and a flat sample surface. The proposed theory is
applicable to the probes and samples of various materi-
als in the regions of both discrete and continuous spec-
tra. The presence of foreign particles or islands on the
sample surface can be taken into account by introduc-
ing those corresponding volume integrals into the the-
ory that take into account the polarizing action of such
objects.
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APPENDIX

Calculation of Geometrical Factors 

Let us calculate the volume integral entering
Eqs. (2.5),

(A.1)

for the observation points inside the medium, where

Taking into account that

where n is the refractive index of the medium and Q is
the function of coordinates which obeys the equations

P0M r( ) curlcurlP0 r'( )GM R( ) V 'd∫=

≡ NâTX iωt–( ),exp

P0
1
2
---NX,    G M 

exp
 

ik
 

0 
R

 
'

 
( )

 
R

 
'

--------------------------.==

P0 n2 1–( )k0
2Q, k0

ω
c
----,= =

∇ 2Q n2k0
2Q+ 0, divQ 0,= =
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and using a lemma [28] for exporting the (rotrot)
operator out of the integral and the Green theorem,
we obtain

(A.2)

Here, the surface integral is expressed as

(A.3)

and ∂/∂ν' denotes differentiation along the external nor-
mal to the surface Σ. The value of P0M in Eq. (A.2) is
determined at observation point r inside or on the sur-
face of the medium. If the point is outside the medium,
for example, inside the probe, then

(A.4)

where  differs from IΣ by the position of the observa-
tion point.

Let Q have the following form:

(A.5)

where Q0 is a constant vector and sT is a unit vector
determined by the refraction angle ϑT in the incidence
plane xz. Introducing a unit vector s, such as

the surface integral (A.3) can be written as

(A.6)

where

(A.7)

As was demonstrated in [15], the surface integral has
the same value on the surface Σ and in the vicinity of
this surface inside the medium. Assuming the surface Σ
to be homogeneous, so that

and considering a particular case of the normal inci-
dence (ϑ I = 0), we obtain

Substituting this value into (A.2), we obtain the follow-

P0M curlcurlIΣ
4π
3

------ n2 2+( )k0
2Q.+=

IΣ Q
∂GM

∂ν'
----------- GM

∂Q
∂ν'
-------– 

  S',d

Σ
∫=

P0M' curlcurlIΣ' ,=

IΣ'

Q Q0 ik0nr sT⋅( ),exp=

sx ϕ , sysin– 0, sz ϕ ,cos–= = =

IΣ IΣ
0( )Q0 ik0r s⋅( ),exp=

IΣ
0( ) 2π

ϕ ϑ T+( )sin
ϕ ϑ Tsincos

-----------------------------.–=

s sI, ϕ ϑ I,= =

IΣ
0( ) 2π n 1+( ).–=
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ing expression (valid on the surface Σ):

(A.8)

For observation points outside the medium, including
point r1 (Fig. 1a), Eq. (A.4) yields

(A.9)

For observation points outside the medium (z > 0),
the surface integral  is calculated similarly to (A.6).
The difference is that the coordinate z' changes sign,
which is equivalent to changing sz to −sz , or ϕ to ϑR

(ϑR is the angle of reflection). Now let us introduce a
unit vector sR (instead of s) such that

Then, the surface integral is as follows:

(A.10)

For ϑ I ≠ 0, the values of  and  are determined
using general expressions for the integrals (A.6)
and (A.10).

Now let us calculate the geometrical factor 
entering expression (2.5b) by placing the observation
point at a distance z0 from the probe center:

(A.11)

where V1 = (4π/3) , a1 is the probe radius, n1 is the
refractive index of the probe material,

and

(A.12)

According to the Green theorem, the volume integral

P0M P0
4π

n2 1–
-------------- n2 2+

3
-------------- n 1+

2
------------– 
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P0M 2πP0
n 1+

n2 1–
--------------– P0aR.≡=

IΣ'

sRx ϑ R, sRysin– 0, sRz ϑ R.cos–= = =

IΣ' 2π
ϕ ϑ T–( )sin
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----------------------------Q ik0r sR⋅( ).exp–=

âR âT

âR1

curlcurlN1

p1 t Rc' /c–( )
R1'
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V1

∫
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2Q1 iωt–( ),exp= =
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in (A.11) has the following form:

(A.13)

where ∂/∂  denotes a derivative along the external

normal  to the probe surface Σ1.

The surface integral in (A.13) can be calculated tak-
ing into account that

(A.14)

satisfies wave equation (A.12), where Q01 is a constant
vector and R1 is a point inside the probe. Passing to the
spherical coordinates and calculating integral (A.13), we
obtain

(A.15)

By the same token, the geometrical factor  for
the observation points inside the ball probe can be cal-
culated taking into account that

(A.16)

Exporting the (curlcurl) operator out of the integral
and using the Green theorem, we obtain (A.16) in a
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∫ 1
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different form:

(A.17)

where σ0 is a spherical surface surrounding the obser-
vation point at the center of the ball probe. Taking into
account the shape of the function Q (A.14), let us cal-
culate the surface integrals in (A.17). The integral over
the external surface Σ1 of the ball probe is as follows:

An analogous expression for the surface integral over
the internal surface σ0 is obtained by replacing a1 with
L0, where L0 is the radius of sphere σ0. For k0a1 ! 1,
tensor  becomes a scalar and, hence,

(A.18)
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Abstract—Propagation of an electromagnetic wave in a smooth one-dimensionally inhomogeneous isotropic
medium is considered in the second approximation of geometrical optics. The polarization evolution is studied
extensively. It is known that in the first (Rytov) approximation of geometrical optics, there is only the rotation
of the plane of polarization (with no change in the polarization shape and sign) for rays with torsion. In the case
considered, both the shape of polarization ellipse and the sign of polarization change proportionally to the inte-
gral of the squared ray curvature even for plane rays. The effect is of nonlocal geometrical nature and can be
described in terms of the generalized geometrical phase incursion between two linear polarizations. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The change in electromagnetic wave polarization in
a smoothly inhomogeneous isotropic medium in a geo-
metrical optics approximation was revealed for the first
time by Rytov and Vladimirsky [1, 2] (see also [3, 4]).
Later, Berry rediscovered this phenomenon in terms of
the adiabatic quantum evolution [4–6]. The essence of
the effect is as follows. The zero-order geometrical
optics approximation does not carry any information on
wave polarization: two modes of different polarization
are found to be degenerate [3]. In the first approxima-
tion, the well-known Rytov law is valid: “The plane of
polarization rotates with respect to the natural trihedron
of the ray through an angle equal to the integral of the
ray torsion along the ray.” Interesting geometrical prop-
erties of this law were treated in [2] by Vladimirsky
and, subsequently, in [4–6] by Berry and his followers.
The effect has also been measured experimentally [4, 6].
It is significant that in the first geometrical optics
approximation, the polarization ellipse does not change
its shape (i.e., the eccentricity), and the polarization
does not change its sign, i.e., the direction of the elec-
tric field vector rotation [3]. In addition, when the ray
represents a plane curve, there is no rotation of the
polarization since the torsion is equal to zero. Such a
situation takes place, for example, in a one-dimension-
ally inhomogeneous medium.

In this paper, we study the change in the electromag-
netic wave polarization in the second geometrical
optics approximation. We will show that, in this case, in
contrast to the first-order approximation, there are sub-
stantial changes in the shape of the polarization ellipse
and the sign of polarization, as well as limited rotations
1063-7761/03/9703- $24.00 © 20479
of the polarization plane. The changes occur in such a
way that the elliptical polarization, having passed
through the linear polarization stage, becomes elliptical
with another sign. Similarly, the linear polarization,
having passed through an elliptical stage, becomes lin-
ear in another plane. Thus, the polarization of the elec-
tromagnetic wave may vary substantially as a conse-
quence of the phenomenon in question.

The Rytov rotation of the polarization plane occurs
as a result of changes in the phase difference between
two modes with opposite circular polarizations. In the
case of linear polarization, it is the same as variations in
relative amplitudes of two modes with orthogonal lin-
ear polarizations. The variations of the polarization
shape and sign, derived in this paper, arise from the
increase in the phase difference between two modes
with orthogonal linear polarizations. The latter phe-
nomenon, like the former one, has a nonlocal geometri-
cal basis. The phase difference accumulating between
two modes is in direct proportion to the integral of the
squared ray curvature and, hence, is nonzero even for a
plane curve. While the Rytov–Vladimirsky–Berry
effect of the rotation of the polarization plane is
described now in terms of the so-called Berry geomet-
rical phase [4–6], the effect under study (i.e., the effect
of the change in the shape of the polarization ellipse)
can be described in the context of the generalized geo-
metrical phases introduced in [7, 8]. The generalized
geometrical phases are defined as the extension of
Berry’s geometrical phases to higher orders of the adia-
batic approximation, which makes it possible to describe
nonlocal geometrical effects of second and higher
orders. 
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Note also that the quantum analog of the classical
effect under discussion is given in [9] (see also [4]),
where the author discovered that the probability of tran-
sition of the radiation from a state with a polarization of
a certain sign to the state with a polarization of the
opposite sign is proportional to the square of the abso-
lute value of the integral of the ray curvature squared.1

Since the phase incursion π between two polarization
modes changes the polarization sign, it becomes clear
that the phase incursion between polarization modes
and the probability of the change of polarization sign
are directly related to each other.

2. BASIC EQUATIONS

Consider the propagation of a monochromatic elec-
tromagnetic wave in an isotropic dielectric nonabsorb-
ing medium characterized by permittivity ε. Let the
medium be smoothly inhomogeneous in one coordinate
x: ε = ε(x). Then the propagation of an electromagnetic
wave is described by the stationary Maxwell equations
(the fields are assumed to be proportional to exp(–iωt)):

(1)

where k0 ≡ ω/c (ω is the wave frequency and c is the
velocity of light in vacuum), and E and H are the
strengths of the electric and magnetic fields, respec-
tively. Taking into consideration the medium homoge-
neity in the y and z directions, we carry out the follow-
ing change of variables:

(2)

We can assume without loss of generality that ky = 0. 
System (1) is then reduced to two second-order ordi-

nary differential equations:

(3)

(4)

Here and below, the prime stands for an ordinary deriv-
ative with respect to x, and

(5)

1 It is interesting to note that, in a two-level system, the probability
of the transition to another level is exponentially small in the gen-
eral case [10]. The fact that in the case of the change in the polar-
ization of the wave, the transition probability is in direct propor-
tion to the fourth power of the curvature (i.e., to the fourth power
of the adiabaticity parameter) is a consequence of the polarization
degeneracy in a zero-order approximation.

curlH ik0εE+ 0,=

curlE ik0H– 0,=

E E x( ) ikyy ikzz+( ),exp

H H x( ) ikyy ikzz+( ).exp

Ey'' kx
2Ey+ 0,=

Ez''
kz

2

kx
2

----ε'
ε
---Ez' kx

2Ez+– 0.=

kx
2 x( ) k0

2ε x( ) kz
2.–=
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Note also that the derivatives of ε are related to the geo-
metrical optics small parameter,

(6)

where L is the characteristic scale of the inhomogene-
ity. Since we are interested in the second geometrical
optics approximation, we retain only the first-order
derivatives of ε, their squares, and the second-order
derivatives.

After the substitution

Eq. (4) takes a form similar to Eq. (3):

(7)

We have derived two equations, (3) and (7), describ-
ing the oscillations of y and z components of the electric
field. Solving these equations with an accuracy of the
second order of the adiabatic approximation in param-
eter (6), one can find the difference in the evolution of
the field phases and amplitudes (the derivation of the
higher order adiabatic approximation; see [7, 8, 11]).
Let us represent the relative change of the field compo-
nents as

(8)

The quantities α and ψ determine the changes in the
relative amplitudes and phases, respectively, of two
electric field components.

Equations (3) and (7) coincide in the first geometri-
cal optics approximation; consequently, the amplitudes

of Ey and  vary identically in the system considered
(the second-order terms affect the phase only [8, 11]).
Thus, we find that

(9)

The change in the phase difference of the field compo-
nents is determined only by the phase incursion of the
two last correction terms in expression (7) for u. Taking
into consideration that
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ε
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2π
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k
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we arrive at

(10)

where ψ0 = ψ(0).

3. CHANGES
IN THE POLARIZATION SHAPE

Let us proceed from the y and z components of the
electric field to the field projections onto the principal
normal and the binormal of the ray. In our case, the
binormal points toward the y axis (by = – ),
and the unit normal vector is

Thus, the ratio of the normal to the binormal compo-
nent is given by

(11)

Taking into consideration the relation between the x
and z components of the electric field, in the zero-order
geometrical optics approximation

we obtain

(12)

where the ratio of the electric field components is rep-
resented similarly to (8).

Comparing relation (12) with Eqs. (8) and (9), we
obtain

(13)

The quantities  and ψ determine the relative ampli-
tude and phase of two electric field components related
to the coordinate system of the natural ray trihedron. It
is convenient to use these coordinates in geometrical
optics.

In the case of linear polarization (ψ = 0, π), 
is the angle between the electric field vector and the
principal normal to the ray, which varies according to
the Rytov law [1–4] in the first approximation. The
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constancy of  here is also a consequence of the Rytov
law, since the ray is a plane curve and the polarization
plane does not rotate. With a fixed ψ, the change in the
amplitude factor  results in a change of both the
ellipse orientation relative to the principal normal to the
ray and the eccentricity, whereas the polarization sign
(the direction of the field vector rotation in the polariza-
tion ellipse) remains unchanged.

The phase difference ψ in oscillations of ν and b (or
y and z) components of the electric field affects both the
ellipse eccentricity and the polarization sign. The
change in ψ with  fixed may reverse the polarization
sign. When ψ = 0, π, the polarization is linear and the
angle between the electric field vector and the normal

to the ray is equal to  (Figs. 1a, 1c). When
ψ = π/2, 3π/2, the axes of the polarization ellipse are in
the y and z directions, with the ratio of the “normal”
semiaxis to the “binormal” one equal to  (Figs. 1b,
1d). When ψ ∈  (0, π) and ψ ∈  (π, 2π), the polarization
has opposite signs.

Thus, a variation of the relative phase ψ from 0 to π,
with fixed , turns the polarization ellipse between two
limiting directions (corresponding to linear polariza-

tions) at angles  to the normal. The polar-
ization sign remains constant in this case. While pass-
ing through the linear polarization, the direction of
rotation changes and the variation of ψ from π to 2π
turns the ellipse in the same way, but in the opposite
direction and with the opposite polarization sign (see
Fig. 1).

It should be noted that Eqs. (3) and (7) are indepen-
dent in the approximation considered. If only one elec-
tric field component (y or z) is excited, the other com-
ponent is not excited in this case and, hence, the wave
preserves its linear polarization along the correspond-
ing axis.

4. THE GENERALIZED GEOMETRICAL PHASE ψ
To analyze expression (10), we must invoke the for-

malism of generalized geometrical phases [7, 8] (the
alternative formalism of higher order geometrical
phases, see [12]). Indeed, in the integral in Eq. (10),
some terms may be local and, hence, may cause small
deviations (on the order of δ) of ψ. Other terms, on the
contrary, may be nonlocal with a consequent
unbounded growth of ψ. Local (nonlocal) terms form
the terms of the integrand in Eq. (10) that have (do not
have) antiderivatives depending only on the boundary
values. The nonlocal terms contain information not
only on the boundary points but also on the function
values along the whole integration path. These terms
can be nonvanishing even in the case when the integra-
tion path is a closed curve (loop).

To separate local and nonlocal terms, let us turn to
the geometrical formalism and introduce the general-

α̃

α̃

α̃

α̃ 1–( )arctan±

α̃

α̃
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Fig. 1. Evolution of field polarization upon a change in relative phase ψ from 0 to 2π for  = 2. Figures 1a–1d correspond to values
0, π/2, π, and 3π/2.

α̃

ized space of the parameter ε:  ≡ (ε, ε') [7, 8]. Then
expression (10) can be written as a contour integral of a
certain field over this space:

(14)

where l is the contour along which the representative

point of the wave moves in the  space. The quantity
ψ is nonlocal and can assume significant values only if

field  is nonpotential, i.e., if

By substituting Eq. (14) into this expression, we find
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that field  complies with the condition

(15)

Hence, we can already state that, for a cyclic evolu-
tion of the parameters that correspond to closed con-

tours in the  space (e.g., in a periodically inhomoge-
neous medium), the phase ψ incursion over one cycle is

(16)

Here, lc is a closed contour in the  space, S is the ori-

ented surface with a unit normal  spanning over the
contour lc, and n = ±1 corresponds to the motion along
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the contour in the anticlockwise and clockwise direc-
tions, respectively. Thus, for cyclic evolutions, we
notice that ψc is the generalized geometrical phase
determined by the geometry of the closed contour lc in

the  space. 
In order to isolate the geometrical component from

the phase ψ in Eq. (14) in the general case, we separate

the nonpotential component from field . Then the
field in (14) can be written as

(17)

and the phase in (14) takes the form

(18)

Apparently, the second term arising from  is a local
term, which is determined only by the boundary values
of the parameters. It is always small, being on the order
of δ. The last term is the required nonlocal geometrical
phase

(19)

In spite of the fact that the integrand is small (on the order
of δ2), the geometrical phase can be equal to or on the
order of unity for x ≥ δ–2. This is a direct consequence of

its nonlocality or nonpotentiality of field ( ).
Note that initial expression (10) and final expres-

sion (19) differ considerably. The phase in Eq. (19) is
the essential component of Eq. (10). We could not have
isolated it without using the geometrical formalism or
the functional approach [7, 8, 13].

Expression (19) can easily be written in ray terms as

(20)

Here,

is the ray curvature squared, l is the unit tangent vector
to the ray (lx = kx/k, lz = kz/k), and σ is the ray arc length
(dσ = dx/lx).

Let us note that the approximation considered is
good at distances x ! k–1δ–3, as long as the remainder
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term O(δ3kx) in the used asymptotic formulas (see [7, 8])
is small. Taking into consideration the fact that the
third-order terms contribute only to the amplitude vari-
ations (see [7, 8]), we can conclude that the formulas
derived for the difference of the phase incursion of two
polarizations are applicable for x ! k–1δ–4.

The formulas obtained for the polarization evolution
follow from the asymptotic solutions to the Maxwell
equations and, in the framework of these equations, fail
to account for only the backward scattering (reflection).
It is known that in the case of one-dimensional inhomo-
geneity, the reflections are exponentially small in
parameter δ (see, for example, [14]). The length over
which the reflections begin to manifest themselves can
be roughly estimated as k–1expδ–1. This length is much
larger than the length k–1δ–m over which the m-order
effects manifest themselves, when (–δlnδ)–1 > m. For
the second-order effect in question, we obtain the
restriction δ < 0.3, which is guaranteed to hold by virtue
of Eq. (6) (numerical verification of the example in the
next section shows that the applicability of the formulas
obtained for δ = 0.3 is satisfactory). For δ < 0.2, we can
disregard the backward scattering already at lengths x ~
k–1δ–4, where the next phase corrections of the fourth
order begin to manifest themselves.

5. EXAMPLE 

Consider the inclined propagation of light in a peri-
odic one-dimensionally inhomogeneous medium. Let
the ε(x) dependence be determined by the formula

(21)

with ε1 < ε0 and w/k0 ! 1 (in accordance with Eq. (6)).

If the medium is slightly inhomogeneous and ε1 !
ε0, for nonlocal geometrical phase (19) in the first non-
vanishing approximation in ε1/ε0, we have

(22)

where

For x @ π/w, integral (22) is close to

(23)

As noted above, the substantial change in a shape of
polarization occurs when the phase incursion is ψ ~ 1.
This takes place over distances

(24)
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In this example, the absolute value of the local term
in formula (18) can be estimated as

This confirms the general conclusion about its smallness.
The agreement of the polarization evolution (Fig. 1)

and the accumulated incursion of phase ψ with formu-
las (19) and (23) has been verified via numerical calcu-
lation of the initial Maxwell equations in the periodic
medium (21). For k0 = 1, kz = 0.5, ε0 = 1, ε1 = 0.3, and
w = 0.3, the discrepancy between Fig. 1 and formulas (19)
and (23) is within 10 and 30%, respectively. The above
values of the parameters are close to the limits of the
applicability of geometrical optics (parameter δ = 0.3,
see (6)) and the weak inhomogeneity approximation
(ε1/ε0 = 0.3). According to estimate (24), phase ψ by π
varies for these values of the parameters over the dis-

tance xπ = 800λ ≈ 250L, where λ = 2π  is the wave-
length and L = 2πw–1 is the spatial period of the inho-
mogeneity.

6. CONCLUSIONS

The evolution of the polarization of an electromag-
netic wave propagating in a smooth one-dimensionally
inhomogeneous isotropic medium has been studied.
The problem has been considered in the second geo-
metrical optics approximation.

It is known that, in the first geometrical optics
approximation, the polarization evolution is described
by the Rytov law [1–4]. According to this law, typically
the relative amplitude of the normal and binormal elec-
tric field components changes in the medium where a
ray of the wave exhibits torsion. This results in the rota-
tion of the polarization ellipse of the wave; however, the
ellipse eccentricity and the polarization sign remain
unchanged. In the case of a one-dimensionally inhomo-
geneous medium, the ray represents a plane curve and
the change of polarization in the Rytov approximation
does not occur.

We have shown that in the second geometrical
optics approximation, in contrast to the first-order
approximation, a change in the relative phase of the
normal and binormal electric field component is
observed. This leads to changes in the eccentricity of
the polarization ellipse, to its limited rotation, and to a
change in the polarization sign (Fig. 1). It is shown
above that the change in the relative phase, similar to
the Rytov rotation of the polarization plane, is a geo-
metrical nonlocal effect, the change being proportional
to the integral of the ray curvature squared. As a conse-
quence, the relative phase grows even under cyclic evo-
lution, when both the medium parameters and the ray
direction return to their initial values. Specifically, in a
periodically inhomogeneous medium, the relative

ψloc

kz
2

4kx
3
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ε1w wx( )sin

ε0
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wkz
2

4kx
3

---------
ε1

ε0
----  ! 1.≤≈

k0
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phase grows continuously with consequent continuous
changes in polarization (see Section 5).

Since the revealed phenomenon causes the polariza-
tion sign reversal, its quantum analog is nonadiabatic
transitions between two states of a photon, which cor-
respond to the “+” and “–” polarizations. In [9], the for-
mula for the probability of this kind of transition in a
smoothly curved waveguide is presented. Assuming
that kx = k in formula (20) (since the wave propagates in
the waveguide transversely to the inhomogeneity), we
find that the square of the modulus on the right-hand side
of Eq. (20) coincide, to a factor of 1/4, with the probabil-
ity of the nonadiabatic transition obtained in [9] (if it is
assumed there that the torsion is equal to zero).

It should be pointed out that the discovered effect is
rather weak, as it corresponds to the second approxima-
tion of geometrical optics. As evident from the above
example, even for a relatively strong inhomogeneity
and at the boundary of the region of applicability of the
geometrical optics approximation, the changes in
polarization are observed over distances on the order of
a thousand wavelengths and a hundred inhomogeneity
scales. Nevertheless, this phenomenon is the only one
that causes the change in polarization (in the approxi-
mation considered) in a one-dimensionally inhomoge-
neous medium, which is why it can be observed.
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Abstract—A model of a two-pole pair t-matrix for the description of three-boson systems with r0/a0 ! 1 is
studied. The position of the second pole on the nonphysical sheet is treated as a parameter of the Faddeev inte-
gral equation. Close agreement with the calculations performed for realistic potentials was obtained, and inter-
action parameters for three bosons that were not calculated earlier were predicted. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The discovery of a weakly bound state of two
helium atoms [1] and problems concerning stability of
the Bose condensate of alkali metal atoms (e.g., see [2])
stimulated the appearance of many calculations for the
properties of three-particle systems determined by pair
interaction with a large scattering length a0 compared
to the range of pair forces r0,

(1)

Studying such three-particle systems, which is of
importance for practice, entails considerable difficul-
ties in numerical calculations, which require the inclu-
sion of very large distances to determine the asymptotic
behavior of the wave function of a three-particle sys-
tem. Calculations of the helium atom spectrum are
numerous (e.g., see [3] and the references therein). Lit-
tle work, however, has been done to determine
the lengths of helium atom scattering by the helium
dimer [3, 4]. What is more, there is a cutoff dependence
of scattering-length values obtained in numerical calcu-
lations [4]. Still greater difficulties arise with recombi-
nation coefficients, which determine Bose condensate
stability.

The three-particle systems that we are considering
are of interest not only because of their importance for
practice but also because their two-particle interaction
parameters are close to the conditions of Efimov effect
manifestations [5]. In particular, the ln(|a0 |/r0)/π value,
which determines the number of Efimov levels in a
three-particle system for helium–helium interactions,
approximately equals 0.9. This leaves open the possi-
bility that the second bound state of the trimer will
exhibit anomalous behavior when pair interactions

r0

a0
-----  ! 1.
1063-7761/03/9703- $24.00 © 20485
become shallower. Indeed, numerical simulations of
such a situation lead to an increase (in magnitude) in
the excited-state energy of the system [6]. For this rea-
son, the system of three helium atoms is the first system
of three particles with equal masses whose properties
are determined by the effective self-similar interaction
proportional to 1/R2 with the coupling constant –γ2

independent of pair interaction details [5]. Pair interac-
tion parameters only limit the range of such an effective
potential, r0 ! R ! |a0|. The obvious properties of solu-
tions for this potential are indicative of the determining
role played by one dimensionless parameter, namely,
|a0|/r0. When this parameter tends to infinity, the num-
ber of bound states of the three-particle system does the
same. In particular, if |a0 |  ∞, the spectrum crowds
to zero, which determines the Efimov effect proper. If
r0  0, the spectrum is unbounded from below [7],
which is equivalent to falling on the center [8]. Accord-
ing to [9], the integral equations for three-particle sys-
tems with a nonzero range of pair forces [10] do not
have a unique solution and are determined by one free
parameter. This situation determines a possible proce-
dure for describing such systems via fixing the free
parameter according to a known spectral point [9]. This
idea has been repeatedly used to describe real physical
systems. In particular, in recent years, the effective field
theory (EFT) was applied to construct phenomenologi-
cal three-particle equations that included a free param-
eter from the outset, based on the additional condition
of the convergence of the EFT series [11]. The use of
three-particle equations with zero-range pair forces to
describe real physical systems implies the smallness of
finite-range corrections. However currently, no rigor-
ous conclusions concerning the magnitude of correc-
tions for finite |a0|/r0 values have been made. For this
reason, three-particle systems are considered in this
003 MAIK “Nauka/Interperiodica”
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work using the effective pair interaction range as a
parameter. The main stages of solving the problem
remain unchanged. The effective range is used as a
parameter in the Faddeev integral equations and is
tuned to bring one of the two levels in the system of
three helium atoms (trimer) in coincidence with the
existing data. Next, the second level and the length of
helium atom scattering by a bound pair of two other
helium atoms are calculated. It is shown below that the
calculations performed according to this scheme agree
with the results of calculations using the Faddeev dif-
ferential equations to within several percent. Finally,
recombination coefficients are calculated.

In order that the Faddeev equations explicitly
include the effective range of forces, we use the two-

pole pair matrix t(p, p'; /m). One of its poles corre-
sponds to the bound state of the pair, and the position of
the other determines the effective range. In particular, if
the separable pair interaction is used in the form of the
Yamaguchi potential

, (2)

the two-particle matrix t(p, p'; /m) has poles at p0 =
iκ and p0 = –i(2β + κ). Here, p is the relative motion

momentum; m is the mass of the atom; κ =  is the
wave number of the state of the dimer with energy ε;
and β determines the expansion parameters for the
effective range,

Note that, if β @ κ, the scattering length is a0 ≈ κ –1 and
the effective range is r0 ≈ 3/β. The zero-range limit is
attained by turning β to infinity. Because β is explicitly

p0
2

v p p',( )
8π
m
------ β β κ+( )2

β2 p2+( ) β2 p'2+( )
---------------------------------------------–=

p0
2

mε–

a0
2 β κ+( )2

βκ κ 2β+( )
----------------------------, r0

κ2 2βκ 3β2+ +

β β κ+( )2
-------------------------------------.= =
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related to the effective range, precisely this value will
be used as the problem parameter.

2. SCATTERING LENGTH 
AND BOUND STATES 

OF THE HELIUM TRIMER
The energies of the bound states of three helium

atoms and the amplitudes of elastic helium atom scat-
tering by the helium dimer (He2) below the breakup
energy were calculated by solving the Faddeev equa-
tions with separable pair potentials (2). The procedure
for constructing and symmetrizing the Faddeev equa-
tions in the specified problem has repeatedly been
described (e.g., see monograph [12]). In the next sec-
tion, we give a scheme for constructing the equation for
the inelastic transition amplitude. For comparison, the
main stages of deriving the equation for the elastic scat-
tering amplitude will also be presented. Here, we note
only that the scheme considered in [13] is used.
According to this scheme, the integral equations for the
amplitude of boson scattering by a bound state of two
other bosons have the simple quasi-two-particle form

(3)

where

is the total energy of the system, k is the momentum of
the relative motion of the particle and the bound pair,

and  is the S-wave projection of the effective poten-
tial. The three-particle effective potential for the
Yamaguchi pair interaction has the form

f ki k0,( ) V0
eff ki k0,( )=

+
2
π
---

V0
eff ki k,( )k2 kd

k2 Z ε–( )4m/3–
----------------------------------------- f k k0,( ),

0

∞

∫

Z
3k0

2

4m
-------- ε i0+ +=

V0
eff
(4)V eff ki k j,( )
16
3
------

β κ+( )2βS ki( )

β2 k j ki/2+( )2+( ) –mZ ki
2 k j

2 ki k j⋅+ + +( ) β2 ki k j/2+( )2+( )
----------------------------------------------------------------------------------------------------------------------------------------------------,=
where the notation

is used. Note that potential (4) remains finite and (3)

S k( ) β ak+( )2 κ ak+
2β κ ak+ +
---------------------------,=

ak m Z
3k2

4m
--------– 

 –=
transforms into the Skornyakov–Ter-Martirosyan equa-
tion [10] as β  ∞.

The scattering length was calculated by two meth-
ods to estimate the accuracy of the effective range
expansion, namely, by solving the limiting equation for
k0 = 0 and by finding the limit of the solution (ampli-
tude) a(3) = f(k0, k0) as k0  0. A homogeneous equa-
tion with the same kernel is solved in the problem for
the bound state. Equation (3) was solved numerically
following the scheme described in [14]. The parameters
 AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003
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Calculated energies of helium trimer bound states, lengths of helium atom scattering by the helium dimer, and recombination
coefficients for helium atoms; see text for explanations

HFD-B, ε = –1.685411 mK

Method β, Å–1 E1, K E2, mK a(3), Å C

1 0.3305 –2.7899 116.60 0.977

2 0.3200 –0.12597 121.58 0.704

[3] –0.1325 –2.74 135 ± 5

[4] 121.9

LM2M2, ε = –1.303483 mK

1 0.3305 –2.3163 109.48 2.513

2 0.3220 –0.12070 114.25 2.145

[3] –0.1259 –2.28 131 ± 5

[4] 115.4

SAPT, ε = –1.898390 mK

1 0.33111 –3.0501 118.23 0.521

2 0.31730 –0.12763 124.35 0.276

[15, 4] –0.13637 –2.986 123.7

SAPT1, ε = –1.732405 mK

1 0.33130 –2.8507 116.74 0.868

2 0.31785 –0.12539 123.00 0.554

[15, 4] –0.13382 –2.790 122.4

SAPT2, ε = –1.81500 mK

1 0.33130 –2.9507 117.51 0.686

2 0.31735 –0.12638 123.86 0.396

[15, 4] –0.13516 –2.887 123.1
given below were calculated accurate to no less than six
decimal places. Such an accuracy was attained using
the algorithm with a floating integrand discretization
mesh. The method for selecting a mesh for numerically
solving integral equations of the type f = V + Vg0 f with
a completely continuous kernel is based on a prelimi-
nary estimative integration of the Vg0V value with the
required accuracy. This can be done because the f value
is a “smoother” function than V for compact equa-
tions. The details of selecting the class of functions for
which a unique solution is attained can be found in
monograph [12].

As has been mentioned, the β value was treated as
the problem parameter. Its value was adjusted to bring
one of the helium trimer levels in coincidence with the
level earlier calculated by other authors [3, 15] using
the realistic Aziz potentials, namely, HFD-B [16],
LM2M2 [17], SAPT [18], SAPT1 [18], and SAPT2 [18].
The helium trimer has two bound states, and we per-
formed calculations to fit both the first and second lev-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
els. The results are summarized in the table. The
through table rows contain the pair potential types and
the corresponding dimer binding energies. The energies
for the HFD-B and LM2M2 potentials were calculated
in this work, whereas those for the SAPT potentials
were taken from [15]. The references in the leftmost
column (under the heading “method”) indicate the
sources of information for fitting the ground E1 or
excited E2 trimer state, and the index 1 or 2 is the num-
ber of the level (E1 or E2) that was fitted by the β param-
eter given in the second column. Note that [3] contains
both helium trimer binding energies and the lengths of
helium atom scattering by the dimer, whereas the calcu-
lated trimer binding energies and scattering lengths for
the SAPT potentials are given in different works, [15]
and [4], respectively. To simplify the table, the fitted
levels are omitted. The column with C values refers to
the results described in the next section, which will be
considered later on. The tabulated calculation results
are evidence of satisfactory agreement for such a sim-
SICS      Vol. 97      No. 3      2003
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ple model. The maximum error in the position of the
ground state obtained by fitting the excited level is
6.5%, and the maximum error in the excited state
energy obtained by fitting the ground-state level is
2.2%. As to agreement between the scattering lengths
obtained by fitting the excited state level and calculated
in [4], it is close (relative error less than 1%) to the
extent that it can serve as a criterion for the accuracy of
calculating these values. Recall that the difference in
the scattering lengths reported in [3] and [4] arises
because of different cutoff conditions used to numeri-
cally solve the Faddeev differential equations [4].

High-accuracy calculations of scattering amplitudes
allow us to draw conclusions about the possibility and
applicability region of the quasi-two-particle effective
range expansion

.

Here, δ is the phase of helium atom elastic scattering by
the dimer in the S-wave and reff is the effective scatter-
ing range. This expansion in even powers of momen-
tum is often used in analyzing low-energy scattering
and is valid for fairly rapidly decreasing potentials
(e.g., see [19]).

The first and second derivatives were calculated to
determine the momentum dependence of k0 .
The HFD-B potential was selected by way of example.
This function and its first derivatives are not plotted
here because they contain little information. Note only

k0 δ k0( )cot 1

a 3( )--------
reffk0

2

2
------------ …+ +–=

δ k0( )cot

4 8 12 16

k0, 10–3 Å–1

52
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64

48
0

r, Å

Fig. 1. Dependence r(k0). See text for explanations.
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that the coefficient of the linear term in the expansion
of k0  is zero to within the error of computa-
tions. Figure 1 shows the second derivative,

which coincides with the effective range as k0  0.

It is clearly seen from Fig. 1 that the parabolic
momentum dependence near zero (admixture of k4)
changes in the region of momenta on the order of
10−3 Å–1 and then exhibits a well-defined linear depen-
dence up to momenta on the order of 4 × 10–3 Å–1. It fol-
lows that the applicability region of the expansion in
integer powers of energy does not exceed 10–5 K, which
prevents us from describing the amplitude of helium
atom scattering by the dimer with the simple pole equa-
tion

(e.g., see [20]). Moreover, substituting reff = 62.6 Å and
a(3) = 121.58 Å into this equation shows that the ampli-
tude has poles at energies containing both real and
imaginary components rather than at the trimer bind-
ing energy. Note that substituting a0 = 88.601 Å and
r0 = 7.278 Å, which are the parameters of the expan-
sion of the effective range for pair collisions of helium
atoms (the HFD-B potential), into the equation for the
amplitude gives positive poles with a relative error of
4 × 10–5.

3. RECOMBINATION COEFFICIENTS

The recombination coefficient α is related to the
number of 3  2 transitions (1 + 1 + 1  2 + 1) per
unit time from unit volume as αn3, where n is the con-
centration of atoms. By definition, the total energy of
the system of three particles is Z = 0.

The recombination of atoms at low temperatures is
of special interest because this phenomenon breaks up
Bose condensation. At the same time, calculations of
this recombination coefficient involve large uncertain-
ties. For instance, it is claimed in [2] that the dimen-
sionless coefficient C introduced from dimensional
considerations,

is universal for all systems and equals 3.9 if condition (1)
is satisfied. The authors of [21] note that such a univer-
sality cannot be ensured, and the give a C = 0–65 spread

δ k0( )cot

r k0( )
d2 k0 δ k0( )cot( )

dk0
2

-----------------------------------,=

f k( ) 1

1/a– reffk
2/2 ik–+

-----------------------------------------------=

α C
a0

4
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m
--------,=
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of C values. The EFT model is used in [22] to obtain the
phenomenological equation

(5)

whose parameters are determined from the integral
equation of the EFT model. In this equation, s0 ≈ 1.0063
and Λ is the parameter of the theory and can be deter-
mined by the procedures described above, that is, by
comparing it with binding energy or scattering length
calculations for three-particle systems.

Our task was to find a solution from the exact three-
particle Faddeev equations and determine its asymp-
totic behavior as β  ∞ (r0  0).

The recombination coefficient can be written via the
3  2 transition amplitude as

(6)

where kf = κ. Note that this equation describes the
two-particle flow in the exit channel multiplied by a
factor of 1/6. This flow arises when we take into
account the number of triple combinations.

Equation (3) for the elastic scattering amplitude was
given above without derivation. For this reason, we will
describe the scheme for deriving the Faddeev integral
equation that determines the 3  2 inelastic transition
amplitude for an arbitrary separable pair interaction v  =
|ν〉〈ν| . Let the in state of the continuous spectrum be
labeled by index “0,” and the bound-pair state, by a
Greek letter. The Greek momentum index will deter-
mine one of the three sets of Jacobi coordinates. Below,
we use Liepmann–Schwinger-type integral equations.
The methods for deriving these equations can be found
in many monographs (e.g., see [19]). To emphasize the
generality of constructing equations for elastic and
inelastic processes, we will write common equations as
far as it is possible. For instance, common equations
will be given for transitions from the continuous spec-
trum and from the subsystem numbered one. For this
reason, we define the channel T matrix by the equation
(see [19]) with a double subscript in parentheses,

where  is the standard denotation of the sum of the
pair potentials except for the interaction that binds sub-

system α,  is the three-particle wave function in
the continuous spectrum for index 0 or the three-parti-
cle wave function with a bound pair subsystem in the
in state, and 〈ϕ α | is the wave function of the bound pair
state in the end channel. For simplicity, the quantum
numbers of continuous spectrum states are omitted. In

C Cmax s0 a0Λ( )ln δ+[ ] ,cos
2

=

Cmax 67.9 0.7, δ± 1.74 0.02,±= =

α π
k f

m
----- f 3 2→

2,=

4/3

Tα 0 1,( ), ϕα v α Ψ 0 1,( )
+〈 〉 ,=

v α

Ψ 0 1,( )
+| 〉
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particular, the state of the continuous spectrum of two

interacting particles in channel α is denoted by .

Since the particles are identical, the inelastic transi-
tion amplitude is given by the sum of three amplitudes,

Here, m* = (2/3)m is the reduced mass of the three-par-
ticle system. Note that the elastic scattering amplitude
is written similarly,

The integral equations for the continuous spectrum
wave function,

can be used to obtain the Faddeev equations for Uα, 0 =

vα ,

(7)

Here, G0 = (Z – H0)–1 is the Green function of the three-
particle system with free Hamiltonian H0, Gα = (Z –
H0 – vα)–1 is the Green function with interaction in the
pair subsystem α, tα is the pair t matrix in the three-par-
ticle space that satisfies the integral equation

and Z is the total three-particle system energy whose
positive imaginary part tends to zero.

Note that the wave function of transitions from the
in state with bound subsystem 1 is described by other
equations, namely,

Accordingly, the Uα, 1 = vα  values are given by the
equations

(8)

which have the same kernel as (7) but different free
terms. Here, τα = vα|ϕα〉  and δi, j is the standard Kro-
necker symbol. We will use two different two-particle
Green functions with differently written energy param-
eters, namely, g0(εα) for the free motion of a pair of par-

ϕα
+| 〉

f 3 2→
m∗
2π
-------T inel, T inel– Tα 0, .

α
∑= =

f 2 2→
m∗
2π
-------Tel, Tel– Tα 1, .
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+| 〉 Gαv α Ψ0
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α β γ.≠ ≠
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α β γ,≠ ≠
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ticles in subsystem α and g0(Z – εα) for the free motion
of the third particle with respect to subsystem α. Taking
into account the representation of the pair t matrix for
separable potentials [13]

via the off-shell wave function of the subsystem

whose projection  coincides with

 on the energy shell, when 

we can introduce the off-shell T matrix

with the obvious property   Tα, (0, 1) as k 
kf . Faddeev equation (7) can then be used to obtain the
equation for the off-shell T matrix,

(9)

tαG0 v α ϕα| 〉g0 Z εα–( ) ϕ̃α〈 |=

ϕ̃α〈 |
ϕα〈 |v αG0 Z( )

ϕα〈 |v αg0 εα( )G0 Z( ) να| 〉
-------------------------------------------------------,=

ϕ̃α kα pα,〈 〉
kα| 〉 ϕα pα〈 〉

3kα
2

4m
--------

pα
2

m
------+

3k f
2

4m
-------- ε+ Z ,= =

T̃α 0 1,( ), ϕ̃α〈 | Uβ 0 1,( ), Uγ 0 1,( ),+( )=

T̃α 0 1,( ),

T̃
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6R 2Vg0 Z εα–( )T̃
inel

,+=

Fig. 2. Dependence of C on pair interaction parameters. The
solid line corresponds to calculations by (11), and the
dashed line, to calculations by EFT model (5). The two solid
circles show the maximum and minimum C values for real-
istic potentials. See text for explanations.
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where

Equations (8) give equations for elastic transitions in
the form

(10)

Precisely this equation written for the Yamaguchi
potential (2) gives (3). In the preceding section, (3) was
used to determine the amplitude of elastic particle scat-
tering by a bound pair and the spectrum of the three-
particle system.

Prior to further transformations, note that the inho-
mogeneous term in (9) is written via V,

This allows 3D to be factored out from the equation by
the mere substitution f3 → 2 = 3DF. The complex equa-
tion for F can conveniently be reduced to two real equa-
tions using the simple relation F = F0 + ikfF1F.

After transforming the Faddeev equations this way
to the form convenient for solving them, we can express
C via two-particle interaction parameters and the solu-
tions to the Faddeev equations for F0 and F1,

where the F0 and F1 amplitudes correspond to the solu-
tions of the integral equations with the same kernel but
different free terms,

(11)

The integration in the vicinity of the Cauchy singularity
is understood in the sense of the principal value. The
effective potential Veff = –(m*/π)V is as previously deter-
mined by (4).

Note that one of the equations in (11) coincides with
the equation for elastic scattering. More exactly,
F1(kf) = /kf , where δ is the phase of atom elastic
scattering by the dimer at the three-particle threshold
energy.

Equations (11) were solved numerically. The C val-
ues corresponding to different pair potentials are listed
in the table. It is noteworthy that, the difference in scat-
tering lengths being small, the recombination coeffi-
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cients differ almost by an order of magnitude. To study
the reason for such a difference, we plotted the depen-
dence of C on the κ/β ratio (Fig. 2). This dependence
shows that C logarithmically oscillates with a large
amplitude.

Our numerical calculations lead us to conclude that
the remark made in [21] concerning the nonuniversality
of the C value was justified. It can also be stated that the
empirical formula from [22] is only valid in the asymp-
totic region, far outside the region of real r0/a0 values.
To illustrate this statement, two curves are plotted in
Fig. 2. The results of our calculations are given by the
solid line, and the results of calculations by (5), by the
dashed line. The solid circles are the C values for two
helium–helium potentials (see table), which give the
largest and smallest C values. These values lie on the
curve that depends only on the r0/a0 ratio (the κ/β ratio
in this work) but does not coincide with the curve given
in [22]. Note that our curve differs in amplitude from
the curve constructed according to (5) exactly by a fac-
tor of 2. Curve (5) was therefore normalized by a factor
of 0.5. The difference of C values by a factor of 2 was
already mentioned in [21], where a comparison with
the data from [2] was made, and that the results of [22]
were in agreement with those obtained in [21]. Unfor-
tunately, the reason for this difference is unclear. The
limiting form of (11) (β  ∞) shows that the inhomo-
geneous terms of this equation and the EFT model

equation obtained in [22] by a factor of . The final
results differ by a factor of 2 precisely for this reason.
The brief description of the derivation of the integral
equation for the (3  2) amplitude given in [22] is
insufficient for drawing conclusions on the origin of
this difference.

4. ONE-PARAMETER DEPENDENCES

Equations (3) and (11) can be made dimensionless
by the simple change of variables k = xκ. We then
obtain equations that depend on a single dimensionless
parameter (κ/β) and describe not only the C value but
also the dimensionless scattering amplitude fκ and the
dimensionless trimer binding energies E1/ε and E2/ε.
We can therefore exclude the κ/β adjustable parameter
and construct the curves that interrelate the bond ener-
gies, scattering length, and C.

The dependences of the C value, dimensionless
length of boson scattering by a bound pair, and the
dimensionless trimer ground state energy on the dimen-
sionless trimer excited-state energy are shown in Fig. 3.
The values marked by crosses were taken from [3, 4, 15];
they refer to bond-energy and scattering-length calcula-
tions for the system of three helium atoms. The degree
to which the results of our calculations performed
using the simple pair interaction model agree with
those obtained for realistic atom–atom interaction
potentials inspires hopes that, generally, these depen-

2
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dences apply to arbitrary three-boson systems that sat-
isfy condition (1).

5. CONCLUSIONS

The calculations performed with the simple two-
pole t matrix for the helium–helium pair interaction
give spectra and scattering lengths for the system of
three helium atoms that closely agree with those
obtained using realistic potentials. We can therefore
hope that the recombination coefficients, which were
calculated for the first time, will also be close to the
results of future calculations with realistic pair interac-
tions.
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Abstract—The coupling of electron momenta is considered for the resonant charge exchange process in slow
collisions. Because the electron transfer in this process occurs at large distances between the colliding atomic
particles, where ion–atom interactions are relatively weak, we can separate different types of interaction and
find the character of coupling of the electron momenta in the quasi-molecule, consisting of the colliding ion and
its atom, for real collision pairs. Since the real number of interaction types for colliding particles exceeds that
used in the classical Hund coupling scheme, there are intermediate cases of momentum coupling outside the
standard Hund scheme. This occurs for the resonant charge exchange involving halogens and oxygen where the
quantum numbers of the quasi-molecule in the course of the electron transfer are the total momenta J and j of
the colliding ion and atom and the projection M or MJ of the atom orbital or total momentum on the quasi-mol-
ecule axis. The ion–atom exchange interaction potential is independent of the ion fine state, and under these
conditions, the resonant charge exchange process is not entangled with the rotation of electron momenta, as in
case “a” of the Hund coupling. The partial cross section of the resonant charge exchange process depends on
quantum numbers of the colliding particles. The average cross sections depend weakly on the coupling scheme.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The process of resonant electron transfer in slow
collisions of an ion and the parent atom results in tran-
sition of a valence electron from one core to another. In
the simplest case of the transition of an s-electron, this
process is determined by the interference of two elec-
tron terms of the quasi-molecule consisting of the col-
liding ion and the atom. Correspondingly, the probabil-
ity of this transition is expressed through the energy dif-
ference for the even and odd quasi-molecule states and
the cross section of this process [1]. In the case of the
transition of a p-electron involving an ion and an atom
with unfilled electron shells, the resonant charge pro-
cess becomes more complex because the electron trans-
fer can be entangled with the processes of rotation of
electron momenta and transitions between fine states of
the colliding particles. One can simplify the analysis of
this process by constructing a hierarchy of interactions
in the quasi-molecule and thus choosing a suitable case
of the Hund coupling [2–4] that corresponds to certain
quantum numbers of the quasi-molecule. Although this
scheme is related to diatomic molecules when the dis-
tance between the nuclei is fixed, it can be extended to a
quasi-molecule consisting of colliding particles [5–8].
According to the general method by Nikitin [5–8], the
trajectory is then divided into several parts such that the
Hund coupling of a certain type is realized in each part.

¶This article was submitted by the author in English.
1063-7761/03/9703- $24.00 © 20493
If the transition range between different cases of the
Hund coupling is narrow, one can construct the wave
function of colliding particles and the S-matrix of the
transition by sewing the wave functions on different
sides of the transition range [7]. This allows one to sep-
arate different processes and to find the probabilities for
the variation of quantum numbers of the colliding par-
ticles at a given collision trajectory.

This general scheme can be used in analyzing the
resonant charge exchange process involving an ion and
an atom with unfilled electron shells when the electron
momenta can be coupled via different schemes, and the
resonant charge exchange process can therefore be
entangled with other processes (rotation of the electron
momenta and transitions between fine structure states)
in different ways. Indeed, within the framework of the
classical Mulliken scheme of the momentum summa-
tion [2], three types of interactions are introduced for a
quasi-molecule: the electrostatic interaction Ve is
responsible for the energy splitting of different angular
momentum projections onto the molecule axis; δf cor-
responds to the spin-orbit interaction and other relativ-
istic interactions; and the rotational energy or the Cori-
olis interaction Vrot accounts for the interaction between
the orbital and spin electron momenta with the rotation
of the molecular axis. Depending on the ratio between
these interaction energies, one can construct six cases
of the Hund coupling [2–4]; each of these cases corre-
sponds to a certain scheme of momentum summation
003 MAIK “Nauka/Interperiodica”
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and is characterized by certain quantum numbers of the
diatomic molecule. These cases are used as model
ones in the analysis of some transitions in atomic col-
lisions [7–9].

For the resonant charge exchange in slow collisions,
the electron transfer from one core to another proceeds
at large distances between the colliding particles, where
interactions of different types are weak. This simplifies
the general analysis of the charge exchange process and
gives additional experience in understanding the
momentum coupling. As a result of this analysis, we
find a number of interactions to be actually greater than
within the framework of the Hund scheme. Indeed, the
electrostatic interaction Ve includes the exchange inter-
action Vex inside the atom, which leads to certain orbital
momenta L of the atom and I of the ion, and to certain
spins S and s of these atomic particles, that is, Vex char-
acterizes the energy splitting of states with different
quantum numbers LSls. The long-range interaction
U(R) and the ion–atom exchange interaction ∆(R) are
added to this. In addition, the fine splitting of levels
refers to the atom (δa) and ion (δi) separately, and com-
petition between all these interactions gives rise to
many other cases of momentum coupling compared to
the Hund coupling scheme. In analyzing this problem
for real ion–atom systems, we deal with a restricted
number of momentum couplings. Below, we consider
this problem for the resonant charge exchange of halo-
gens and oxygen in the case where the ions and atoms
are found in the ground state and the collision energies
vary from thermal ones up to tens of electronvolts (this
energy range is of interest for a low-temperature
plasma).

2. ASYMPTOTIC THEORY 
OF RESONANT ELECTRON TRANSFER

We first formulate a general method to analyze this
problem. We use the asymptotic theory of the resonant
charge exchange [9–12], where the electron transfer has
the tunnel character and large impact parameters of col-
lisions make the main contribution to the cross section
of this process. A reciprocal value of a typical impact
parameter of collisions is a small parameter in the
asymptotic theory of the resonant charge exchange pro-
cess. Expanding the cross section over this small

Table 1.  The cases of Hund coupling

Hund case Relation Quantum numbers

a Ve @ δf @ Vrot Λ, S, Sn

b Ve @ Vrot @ δf Λ, S, SN

c δf @ Ve @ Vrot Ω
d Vrot @ Ve @ δf L, S, LN, SN

e Vrot @ δf @ Ve J, JN
JOURNAL OF EXPERIMENTAL
parameter and restricting ourselves by two expansion
terms, we can express the ion–atom exchange interac-
tion potential and the cross section via the asymptotic
parameters of the transferring electron in an isolated
atom and quantum numbers of the ion and atom elec-
tron shells. In contrast to models, the asymptotic theory
allows us to find the correct value of the cross section
with an estimated accuracy. For p-electron transitions
in the collision energy range under consideration, this
accuracy is better than 10% [13, 14].

The asymptotic theory allows us to determine the
ion–atom exchange interaction potential. The cross sec-
tion of the electron charge exchange is then expressed
via the exchange interaction potential for given quan-
tum numbers of the quasi-molecule consisting of the
colliding ion and atom at a given distance R between
them. In constructing this interaction potential, we start
from the Hund coupling scheme [2–4], represented in
Table 1 together with the quantum numbers of the
quasi-molecule for each case of Hund coupling. We
introduce the following notation: L is the total electron
angular momentum of the molecule, S is the total elec-
tron spin, J is the total electron momentum of the mol-
ecule, n is the unit vector along the molecular axis, N is
the rotation momentum of nuclei, Λ is the projection of
the angular momentum of electrons on the molecular
axis, Ω is the projection of the total electron momen-
tum J on the molecular axis, Sn is the projection of the
electron spin on the molecular axis, and LN , SN , and JN

are projections of these momenta onto the direction of
the rotation momentum N of the nuclei. We adopt this
scheme as a basis in considering the momentum cou-
pling of the quasi-molecule consisting of a colliding ion
and the parent atom.

We note two momentum coupling schemes for the
atom and ion [4, 15, 16]. In the LS scheme, which is
realized under Vex @ δa, δi, we have LMLS as the quan-
tum numbers of the atom and lms as the quantum num-
bers of the ion, where L and l are the angular momenta,
M and m are their projections onto the molecular axis,
and S and s are the spins of the atom and the ion, respec-
tively. In the j–j coupling scheme for an individual
atomic particle, which occurs at Vex ! δa, δi , we use
JMJ as the atom quantum numbers and jmj as the ion
quantum numbers, where J and j are the total electron
momenta and MJ and mj are their projections on the
molecular axis for the atom and the ion respectively.
These quantum numbers are the basis for the limiting
cases of electron terms of the quasi-molecule.

The possible interaction potentials in the quasi-mol-
ecule under consideration are

(1)

V ex, UM

QMM

R3
-----------,=

Um

QMMqmm

R5
-------------------- ∆ R( ) δi δa and V rot., ,, ,=
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We divide the electrostatic interaction Ve in Table 1 into
four parts: the exchange interaction Vex inside the atom
and ion responsible for electrostatic splitting of levels
inside the isolated atom and ion with given electron
shells; the long-range interaction UM of the ion with the
quadruple atom moment; the long-range interaction Um

responsible for splitting of the ion level; and the ion–
atom exchange interaction potential ∆ that determines
the resonant charge exchange cross section. The fine
splitting δf of levels in Table 1 is written separately for
the ion (δi) and the atom (δa). Here, M and m are the
projections of the atom and ion angular momenta onto
the molecular axis, R is the ion–atom distance, Qik is the
tensor of the atom quadruple moment, and qik is the
quadruple moment tensor of the ion. As can be seen, the
number of possible coupling cases increases signifi-
cantly in this description in comparison with the classi-
cal case. Of course, a small part of these cases can be
realized, and we verify this below for certain cases of
resonant charge exchange.

To find the suitable momentum coupling scheme,
we evaluate the above ion–atom interaction potentials
at distances that determine the resonant charge
exchange cross section. Constructing the hierarchy of
interactions, we find the quasi-molecule quantum
numbers in this distance range and the partial cross
sections corresponding to these quantum numbers.
This allows us to ascertain the momentum summation
scheme in slow ion–atom collisions with a resonant
electron transfer. We note that the character of momen-
tum coupling influences the value of the average cross
sections. Below, we realize this operation for certain
cases of ion–atom collisions where the colliding ion
and atom are found in the ground electron states.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
3. HIERARCHY
OF ION–ATOM INTERACTIONS 

FOR HALOGENS
We start with the resonant electron transfer involv-

ing a halogen atom and an ion in the ground electron
states,

(2)

where X is the halogen atom. In this case, the atom and
ion ground states are (p5)2P and (p4)3P, respectively,
and all the interactions in (1) are therefore realized in
this case. In Table 2, we collect some parameters of the
colliding atomic particles in this case. We note that the
lower fine structure states include states with the total
electron momenta j = 2, 1, 0. The parameter δi in Table 2
is the splitting of the 2P2–2P0 ion levels. Next, the value
Vex is the splitting between the ground ion level 2P2 and
the level 1D2 in the notation of the LS momentum cou-
pling scheme. Because the ratio δi/Vex is small for all
ions, the LS momentum coupling scheme is valid in the
ion, and we adopt it as a basis.

As a characteristic of the resonant charge exchange
process, we take the average cross section σex of the res-
onant charge exchange in the case “a” of the Hund cou-
pling [13, 14, 19], and the corresponding impact param-
eter R0 of collision is determined from the relation

(3)

In Table 2, we give the values of R0 (in units of the Bohr
radius a0) at the collision energies 0.1, 1 (in parenthe-
ses), and 10 eV (in square brackets). These energies

X+ X X X+,++

σex
π
2
---R0

2.=
Table 2.  Parameters of halogen atoms and ions [17, 18]

F Cl Br I

δa, cm–1 404 882 3685 7603

δi, cm–1* 490 996 3840 7087

Vex, cm–1 20873 11654 11410 13727

δi/Vex 0.023 0.085 0.34 0.52

R0, a0 11.7 (10.6) [9.54] 15.1 (13.8) [12.3] 16.5 (15.1) [13.6] 19.1 (17.2) [15.8]

1.54 4.06 5.22 7.20

UM , cm–1 253 (341) [467] 311 (407) [575] 306 (448) [546] 272 (372) [481]

UM/δa 0.63 (0.84) [1.16] 0.35 (0.46) [0.65] 0.08 (0.12) [0.15] 0.036 (0.049) [0.063]

Vrot , cm–1 8.6 (30) [106] 4.9 (17) [60] 3.0 (10) [36] 2.0 (7.1) [25]

∆(R0), cm–1 7.0 (23) [78] 4.2 (14) [46] 2.6 (8.4) [29] 1.8 (6.1) [21]

* Energy differences for levels of the states 3P2 and 3P0.

r2 a0
2,
SICS      Vol. 97      No. 3      2003



496 SMIRNOV
pertain to the laboratory reference frame, where the
atom is motionless and the parent ion has its energy
indicated. Using these values of R0, we evaluate various
interaction potentials and refer them to a given collision
energy. The value UM in Table 2 is equal to

(4)

where e is the electron charge and r is the distance of a
valence atomic p-electron from the nucleus inside the
atom. In Table 2, we list the corresponding values of UM

and the ratio UM/δa , which is usually less than unity,
and therefore the fine structure of level splitting is
important for processes involving halogens.

If the colliding particles move along straight trajec-
tories, the quasi-molecule rotation energy is given by

(5)

at the closest approach and at the impact parameter R0
of the ion–atom collision, where v  is the relative ion–
atom velocity. According to the data in Table 2, the
rotation energy is smaller than the other interaction
potentials (UM, δi, δa). This determines the character of
momentum coupling in this case.

Based on the above analysis, we can construct a
hierarchy of interactions for a quasi-molecule consist-
ing of a halogen ion and the parent atom at the distances
between these particles that determine the cross section
of resonant charge exchange (2). The following hierar-
chy of interactions is valid for more or less all halogens
in the range of collision energies 0.1–10 eV:

(6)

In terms of the data in Table 1, this is an intermediate
case between cases “a” and “c” of the Hund coupling.
In addition, we evaluate the exchange ion–atom inter-
action potential ∆(R) using the formula for the resonant
charge exchange cross section σex for the transition of
an s-electron [1, 10, 11],

(7a)

where

(7b)

and γ is the asymptotic parameter of the wave function
of the transferred valence electron (∆(R) ∝  exp(–γR)).
From this, we can compare the exchange interaction

UM U00 U11–
Q00 Q11–

R0
3

----------------------
6e2r2

5R0
3

------------,= = =

V rot
"v
R0
-------=

V ex @ δi δa @ UM @ Um V rot.,,

σex

πR0
2

2
---------,=

1
v
----

πR0

2γ
---------∆ R0( ) 0.28=
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potential ∆(R0) at a distance of R0 (Eq. (3)) with rotation
energy (5) of the quasi-molecule at the impact parame-
ter R0 of collision and the minimal distance between the
colliding ion and atom,

(8)

A small parameter of the asymptotic theory is

(9)

At collision energies of several electronvolts, we have
γR0 ≈ 10–15, and the above values are therefore compa-
rable, ∆(R0) ~ Vrot . The values of the exchange interac-
tion potential given in Table 2 confirm this statement.

The hierarchy of interactions in (6) leads to the
quantum numbers LSJMJlsjmj of the quasi-molecule,
where L and l are the atom and ion angular momenta, S
and s are the atom and ion spins, J and j are the total
electron momenta of the atom and ion, and MJ and
mj are their projections onto the molecular axis. The
wave function is then given by

(10)

where Φ and ψ are the respective wave functions of the
weakly interacting atom and ion; the atom (LMSMS)
and ion (lmsms) quantum numbers are given with the
spin-orbit and other relativistic interactions neglected.

Guided by the hierarchy (6) of interactions, we now
find positions of the energy levels for the quasi-mole-
cule under consideration and apply this to the case of
halogen atoms. In the first approach, LSls are the quasi-
molecule quantum numbers, and in the case of halogen
atoms, we are restricted by the lowest electron terms 2P
for the atom and 3P for the ion. The second approach
gives the quantum numbers J and j of the quasi-mole-
cule with the splitting between the fine-structure levels
determined by the corresponding values δa and δi for
the isolated atom and ion. The third approach leads to
the quantum number MJ of the quasi-molecule, i.e., the
projection of the total atom electron moment on the
molecular axis; the splitting between the levels with

∆ R0( ) 0.28v
2γ

πR0
--------- 0.22 γRV rot.= =

1
γR0
--------- ! 1.

ΨLSJ MJlsjm j

L S J

M MS MJMMSmms

∑=

× l s j

m ms m j

ΦLMSMS
ψlmsms

,
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different MJ is then determined by the interaction of the
ion charge and the atom quadruple moment,

(11)

For the interaction of the halogen atom and the ion
X(2P) + X+(3P), where X is the halogen atom, this for-
mula becomes

(12)

where QMM is the component of the quadruple moment
tensor of the atom, ra is the distance of the valence elec-
tron from the nucleus, and the bar denotes the average
over electron positions in the atom.

The fourth approach corresponds to the quantum
number mj of the quasi-molecule, with the interaction
potential between the ion and atom quadruple momenta
given by

(13)

where qmm is the component of the ion quadruple
moment tensor. We note that the electron terms of the
quasi-molecule under consideration are degenerate
with respect to the sign of the total momentum projec-
tions. For the interaction of atomic particles X(2P) +
X+(3P), where X is a halogen atom, this formula can be
rewritten as

(14)

∆U MJ( ) ΨLSJ MJ j
lsjm j

QMM

R3
----------- ΨLSJ MJ j

lsjm j
=

=  
QMM

R3
----------- L S J

M MS MJ

2

.
MMS

∑

∆U JMJ jm j( ) V0 2 L S J

0 MJ MJ

2





=

– L S J

1 MJ 1– MJ

2





, U0

2ra
2

5R3
---------,=

∆U JMJ jm j( )
1

R5
----- QMM

L S J

M MS MJ

2

MMS

∑=

× qmm
l s j

m ms m j

2

,
mms

∑

∆U JMJ jm j( )
V0

-------------------------------- 2 L S J

0 MJ MJ

2



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–=

– L S J

1 MJ 1– MJ

2





2 l s j

0 m j m j

2





– l s j

1 m j 1– m j

2





,
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where

(15)

and the distances ra and ri pertain to the atom and ion,
respectively.

As an example, we construct the lowest-energy lev-
els for the chlorine ion–atom system at R = 14a0 that
characterizes the resonant charge exchange cross sec-
tion at a collision energy 1 eV (see Table 2). At this dis-
tance, the energy of charge-quadruple interaction
(Eq. (12)) and quadruple-quadruple interaction
(Eq. (15)) are U0 = 130 cm–1 and V0 = 0.6 cm–1. In this
case, we therefore have the following hierarchy of
interactions (6):

(16)

In Table 3, we list the level energies E for chlorine
given by

(17)

V0
4ra

2ri
2

25R5
------------=

V ex @ δi,  δ a  @  U M  @  ∆ ,  V rot  @  U m .

E δi δa UM ε0,+ + +=
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where ε0 is taken such that the lowest electron term has
zero energy, E = 0. The quasi-molecule energies in
Table 3 pertain to the ground electron state of the atom
and ion, i.e., L = 1, l = 1, S = 1, s = 1/2 for this term. In
this approximation, we include the quantum numbers
JMJj for interacting particles; the states with other
quantum numbers, i.e., LSls, are characterized by
higher energies. Indeed, the excitation energy of the ion
state 1D2 is 11654 cm–1 and the excitation energy of the
ion state 1S0 is 27878 cm–1; these ion states pertain to
the same electron shell 3p4. A nonexcited electron shell
of halogen atoms is characterized by one electron term
L = 1, s = 1/2, which simplifies the analysis.

The data in Table 3 are obtained with the interaction
potentials ∆, Vrot, and Um neglected. These potentials
give additional quantum numbers for the quasi-mole-
cule, and therefore the accuracy of the data in Table 3 is
determined by these values: ∆(R) ~ Vrot ~ 10 cm–1 and
Um ~ 1 cm–1. In this approximation, the statistical
weight of the quasi-molecule states is

(18)

where the first factor accounts for the degeneration with
respect to the sign of MJ , the second factor corresponds
to the separation of quasi-molecule states into odd and
even ones, and this degeneration is therefore removed
by the exchange interaction ∆(R); and the third factor
in (18) accounts for the degeneration with respect to mj,
which is removed by all the neglected interactions ∆,
Vrot, and Um .

Thus, the above analysis of the interaction of a halo-
gen ion and atom at large separations shows that the
character of electron momentum coupling differs from
that of the Hund coupling scheme. Along with the
quantum numbers of electron shells of an isolated atom
and an ion in the framework of the LS coupling scheme,
the quantum numbers of the quasi-molecule are JjMJ

(the total electron momenta of the atom and the ion and
the projection of the total atom momentum on the
molecular axis). Other quantum numbers are mixed due
to the rotation energy Vrot , exchange ∆, and quadruple-
quadruple interaction potentials Um between the atom
and the ion.

4. ION–ATOM EXCHANGE INTERACTION
FOR HALOGENS

We now determine the exchange ion–atom interac-
tion potential that allows us to evaluate the resonant
charge exchange cross section. For this, we represent
the wave function of the atom having n valence elec-

g 2 2 2 j 1+( ),×=
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trons with the momentum le in the framework of the LS
coupling scheme as [15, 16, 20]

(19)

where Φ, ψ, and ϕ are the respective wave functions of
the atom, the ion, and the valence electron with the
quantum numbers indicated; µ and σ are the projections
of the angular momentum and spin of the valence elec-
tron; the argument of the wave function indicates the
electrons contained by this atomic particle; the operator

 permutes the electrons; and the parentage coefficient

 is responsible for addition of the valence
electron to the ion for construction of an atom for given
quantum numbers of these atomic particles.

The exchange interaction potential is given by [8, 12]

(20)

where Ψ1 is the wave function of the quasi-molecule
with the valence electron located near the first core (the
atom is located near the first nucleus), Ψ2 corresponds

to the atom location near the second nucleus, and  is
the Hamiltonian of electrons. We note that an accurate
evaluation of this interaction requires the accurate wave
functions of the quasi-molecule that take into account
the interaction of the valence electron with both cores
simultaneously; this is achieved in the framework of the
asymptotic theory. Using the general method to evaluate
the exchange interaction potential ∆(R) similarly to case
“a” of the Hund coupling in [12, 14, 19, 21], we obtain

(21)
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We here take into account the character of coupling of
the electron momenta in the quasi-molecule, such that
the atomic core quantum numbers lsm'  and the

valence electron atomic numbers  are first

summed in the atomic quantum numbers LSMLMS and
the atom quantum numbers are then summed over the
quantum numbers LSJMJ; and the ion quantum num-
bers lsmms are summed over the ion quantum numbers
lsj. We sum or average over the other quasi-molecule
quantum numbers and use the relations

for the Clebsch–Gordan coefficients. In Eq. (21), 
is the one-electron exchange interaction potential that
corresponds to the case where a valence electron with
these quantum numbers is located in the field of two
structureless cores and has the same asymptotic wave
function as in real atoms. As a result, we find by anal-
ogy with [6, 12, 14, 19, 21] that

(22)

where the argument contains the quantum numbers of
the quasi-molecule and the distance R between the
interacting ion and atom. This formula reduces the
problem of the exchange interaction between an atom
and an ion with unfilled electron shells to the transition
of one electron between structureless cores. It is impor-
tant that the exchange interaction potential is indepen-
dent of the ion momentum j.

The one-electron exchange interaction potential
 is given by [6, 8, 12, 22]

(23)

It decreases with the increase of µ as . Here, le and
µ are quantum numbers of the valence electron and γ
and A are the parameters of the asymptotic wave func-

ms'
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tion of this electron. This formula contains the first term
of the asymptotic expansion over the small parameter
1/γR for the ion–atom exchange interaction potential at
large distances between the nuclei.

From (22), we thus obtain the exchange interaction
potential involving the halogen atom X(2P) and its ion
X+(3P),

(24)

where we extract the dominant term in the sum in (22)
that is proportional to ∆10(R) (see Eq. (23)). In Table 4,
we give the values of the exchange interaction potential
for the ground electron states of the halogen atom
X(2PJ) and ion X+(3PJ) with different fine-structure
quantum numbers for these particles.

To demonstrate these results, we return to the above
example of the interaction Cl(2P) + Cl+(3P) at a distance
of R = 14a0 between the nuclei. The energy splittings
between even and odd quasi-molecule states are ∆10 =
14 cm–1 and ∆11 = 2.0 cm–1 if we consider the cores
structureless. Table 4 contains the values of the
exchange interaction potential under these conditions
for given quantum numbers of the interacting particles.
We ignore the quadruple-quadruple ion–atom interac-
tion and the rotation energy; the energy of the even or
odd state with given quantum numbers is E ± ∆(R)/2.
The data in Table 4 confirm the above hierarchy of
interactions between halogen atoms and their ions.

5. RESONANT CHARGE EXCHANGE
FOR HALOGENS

The above results allow us to determine the resonant
charge exchange cross section in slow collisions of
halogen atoms and their ions in the ground electron
states. To determine the partial cross section of the res-
onant charge exchange, we use the asymptotic formula
[10, 11] (see Eq. (8))

(25)

where v  is the collision speed and the asymptotic coef-
ficient γ is expressed via the atom ionization potential I

as γ =  in atomic units (also see Eq. (23)). Equa-
tion (25) is valid for s-electron transitions or in the case
where electron transfer transitions for states with given
quantum numbers can be separated from other transi-
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Table 4.  The exchange interaction potential ∆(R) for the halogen atom and ion in the ground electron states, Cl( ) + Cl+(3Pj),

and different states of the fine structure JMJj for these particles. The total energy E of these states (Table 3) refers to the dis-
tance R = 14a0 between the nuclei and is obtained ignoring the quadruple-quadruple ion–atom interaction and the rotation
energy of the quasi-molecule

JMJj ∆(R) ∆, cm–1 E, cm–1 σex, Å2

ε = 0.1 eV
σex, Å2

ε = 1 eV
σex, Å2

ε = 10 eV

87 0 110 92 76

29 260 93 77 62

87 696 110 92 76

29 956 93 77 62

87 996 110 92 76

∆0 58 1012 104 86 71

29 1256 93 77 62

∆0 58 1708 104 86 71

∆0 58 2009 104 86 71
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tions. In particular, the partial cross sections of resonant
charge exchange are given in Table 4 for chlorine.

We introduce the resonant charge exchange cross
section averaged over fine states assuming the initial
population of atom and ion fine states to be propor-
tional to their statistical weights,

(26)

where the atom quantum numbers J and MJ are given in
the partial cross section argument. If we expand the res-
onant charge exchange cross section over the small
parameter 1/Rγ, keep only two terms in the expansion,
and take Eq. (24) into account, we can write Eq. (25) for
average cross section (26) as

(27a)
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where

(27b)

and ∆00(R) is the ion–atom exchange interaction poten-
tial for the transferred s-electron with the given asymp-
totic parameters γ and A of its wave function. This value
is related to the one-electron exchange interaction
potential ∆10(R) for a transferred p-electron ∆10(R) =

2.7
v

-------
πR0

2γ
---------∆00 R0( ) 0.28=

Table 5.  The average cross sections (in 10–15 cm2) for the halo-
gen atom and ion in the ground electron states X(2P) + X+(3P)
at the indicated collision energies ε in the laboratory
reference frame for hierarchy (6) of interactions and in the
case “a” of the Hund coupling [13, 19] (in parentheses)

ε = 0.1 eV ε = 1 eV ε = 10 eV

F (γ = 1.132, A = 1.6) 6.2 (6.0) 5.1 (4.9) 4.1 (4.0)

Cl (γ = 0.976, A = 1.8) 10 (10) 8.7 (8.4) 7.1 (6.9)

Br (γ = 0.932, A = 1.8) 13 (12) 11 (10) 8.9 (8.2)

I (γ = 0.876, A = 1.9) 16 (16) 14 (13) 12 (11)
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3∆00(R) in accordance with (23). Table 5 contains the
average cross sections of resonant charge exchange for
halogen atoms and their ions in the ground electron
state, X(2P) + X+(3P), for hierarchy (6) of interactions
for the quasi-molecule constituted by the colliding
atom and ion. These cross sections practically coincide
with the average cross sections for the ground fine
states of the colliding particles, i.e., for the process
X(2P3/2) + X+(3P2). Thus, averaging over fine states of
the ground electron states and over momentum projec-
tions of the ground fine states of colliding particles leads
to results that are close to each other. In addition, these
data are compared with the cross sections in case “a” of
the Hund coupling taken from [13, 14]. As follows from
the comparison, the real hierarchy of interactions in a
quasi-molecule increases the resonant charge exchange
cross section by several percent compared with case “a”
of the Hund coupling.

One more feature of the resonant charge exchange
for momentum coupling follows from hierarchy (6) of
the interactions. The exchange interaction potential that
determines the cross section of this process is given
by (24), where we restrict ourselves to only a transition
of a p-electron with zero momentum projection on the
molecular axis. As follows from this formula, such
states are present in any fine-structure state, and we can
therefore ignore the transition of the electron whose
momentum projection on the molecular axis is unity.
We note that in contrast to the case “a” of the Hund cou-
pling, where rotation of the molecular axis leads to
transitions between states with different momentum
projections on the molecular axis, such transitions are
absent in the case of halogen atoms and ions because of
separation of fine-structure states by energy. Next, we
evaluate the resonant charge exchange cross section
with accounting for the coupling between the trans-
ferred electron momentum and the momenta of atomic
cores. We can estimate the error in the cross sections if
we compare the cross sections with and without the
momentum coupling taken into account. We take a
p-electron that has the same asymptotic parameters as
valence electrons of halogen atoms, but which is
located in the field of structureless cores. For the reso-
nant charge exchange cross section in chlorine at the
respective energies 0.1, 1, and 10 eV, we then obtain the
values 87, 71, and 57 Å instead of those in Table 5. We
see that ignoring the coupling between the momenta of
the transferred electron and atomic cores leads to a sig-
nificant error.

Thus, it follows from the above analysis that in the
course of collision and electron transfer, a quasi-mole-
cule consisting of the colliding halogen ion and atom is
characterized by the quantum numbers JMJj, and tran-
sitions between these states are absent during the elec-
tron transfer. The partial cross sections of resonant
charge exchange depend on quantum numbers, whereas
the average cross sections for the correct scheme of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
momentum coupling and in case “a” of the Hund cou-
pling are close to each other.

6. RESONANT CHARGE EXCHANGE
FOR OXYGEN

We now consider one more example of resonant
charge exchange with a p-electron transition,

, (28)

involving the oxygen atom and ion in the ground electron
states. Constructing the hierarchy of interactions (1) in
this case, we take the previous case in Eq. (6) as a basis,
with the quantum numbers JMJ of the quasi-molecule
consisting of the colliding particles. In accordance
with (12), the interaction potential of the ion charge
with the atom quadruple moment is then given by

(29)

where we use the same notation as in (12); the values
a(JMJ) are contained in Table 6. It follows from (22)
that instead of Eq. (24) for the ion–atom exchange
interaction potential for halogens, the exchange inter-
action potential for oxygen is given by

(30)

with the coefficients in this formula given in Table 6.
We note that the excitation energies of oxygen atom

fine states from the ground fine state 3P2 are 158 cm–1

for the state 3P1 and 220 cm–1 for the state 3P0. These
values are comparable to the long-range ion-quadruple
interaction potential (29) at distances that make the
main contribution to the resonant charge exchange
cross section. Hence, we have an intermediate case of
momentum coupling for oxygen, and in the above-
mentioned halogen example with δa @ ∆U, the quan-
tum numbers of the quasi-molecule are JMJj, while in
the other limiting case where δa ! ∆U, the quantum
numbers of the quasi-molecule are JMj (where M and
MJ are the projections of the orbital and total atom
momentum on the quasi-molecule axis). We consider
the first limiting case below; Table 6 contains the values
of the quasi-molecule energies E calculated in accor-
dance with Eq. (17), where we take into account the
fine-structure splitting of levels and charge-quadruple
ion–atom interaction in the limit δa @ ∆U. The energies
are taken at an ion–atom distance of R = 12a0 corre-

O+ S4( ) O P3( ) O P3( ) O+ S4( )++

∆U JMJ( )
2ra

2

5R3
---------=

× 2 1 1 J

0 MJ MJ

2
1 1 J

1 MJ 1– MJ

2

–
 
 
  2ra

2

5R3
---------a JMJ( ),=

∆ J MJ R,( )( ) 4
3
--- 1 1 J

µ MJ µ– MJ

2

∆1µ R( ),
µ
∑=
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Table 6.  The interaction potentials for the system O+(4S3/2)–O( ) at R = 12a0 and the partial cross sections σex of reso-

nant charge exchange at the indicated collision energy ε

JMJ a(JMJ) ∆(JMJ) E, cm–1 ∆, cm–1 σex, Å2

ε = 0.1 eV
σex, Å2

ε = 1 eV
σex, Å2

ε = 10 eV

22 –1 0 6.8 63 51 40

21 1/2 153 20 77 62 49

20 7/6 220 27 81 66 52

11 1/2 311 20 77 62 49

10 –1/2 209 4.4 56 44 34

00 1/3 363 13 72 57 45

P
3

J MJ

4
3
---∆0

2
3
---∆0

8
9
---∆0

2
3
---∆0

2
3
---∆1

4
9
---∆0
sponding to the impact parameters typical of the reso-
nant charge exchange cross section at the collision
energy about 1 eV. We note that rotation energy (5) is
29 cm–1 under these conditions and exceeds or is com-
parable to the exchange interaction potential.

The average resonant charge exchange cross sec-
tion is

(31)

where the quantum numbers of the fine-structure atom
state are given in parentheses, and we assume the pop-
ulation of these states to be proportional to their statis-
tical weights. If we ignore the electron transitions due
to rotation of the molecular axis, we find by analogy
with Eqs. (25) and (27) that the average cross section is
given by

(32a)

where

, (32b)

and we use the same notation as in (25) and (27). Aver-
aging the cross sections in Table 6 in accordance
with (31) and (32) gives the values 71, 57, and 45 Å2 for
the average cross section of resonant charge exchange

σex
2
9
---σex 22( )

2
9
---σex 21( )

1
9
---σex 20( )+ +=

+
2
9
---σex 11( )

1
9
---σex 10( )

1
9
---σex 00( ),+ +

σres

πR0
2

2
---------,=

2.9

v R0γ( )1/3
----------------------

πR0

2γ
---------∆00 R0( ) 0.28=
JOURNAL OF EXPERIMENTAL 
at the respective collision energies 0.1, 1, and 10 eV. On
the other hand, the respective cross sections in case “a”
of the Hund coupling are given by 73, 60, and 48 Å2

[13, 14]. Similarly, for the partial cross sections for the
ground fine-structure state, i.e., for the process
O+(4S3/2) + O(3P2), we obtain the values 72, 55, and
46 Å2 at the respective collision energies of 0.1, 1, and
10 eV; the difference of these average cross sections
from the above average cross sections does not exceed
their accuracy. Next, if we ignore the coupling of the
transferred electron with cores, i.e., if we consider the
transition of a p-electron between structureless cores at
the same asymptotic parameters of the electron wave
function as in the above cases, we obtain the values 64,
51, and 40 Å2 for the average cross sections of resonant
charge exchange at the indicated collision energies.

The other limiting case of the interaction hierarchy,
δa ! U0, between the fine splitting of atom levels and
the ion–atom quadruple interaction potential leads to
the molecular quantum numbers JMj, where M is the
projection of the atom angular momentum on the quasi-
molecule axis. In this limiting case, Eq. (22) for the ion–
atom exchange interaction potential for process (28)
becomes

(33)

Averaging the cross sections in Table 7 over fine states
of the ground electron state gives the values 70, 56, and

∆ R( )
4
3
--- 1 1 1

µ M µ– M

2

µMS

∑=

× 1 1 J

M MS MS M+

2

∆1µ R( ).
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44 Å2 for the average cross section of resonant charge
exchange at the respective collision energies of 0.1, 1,
and 10 eV. For the ground fine state J = 2, these values
are 79, 64, and 50 Å2, respectively. In this case, the
average cross section differs from that for the lowest
fine state. Next, with the logarithmic dependence of the
cross section on the collision velocity taken into
account, we find that instead of (32), the cross section
averaged over fine states is given by

(34a)

where

(34b)

which only slightly differs from Eq. (32). We find that
the average cross sections are close to those for case “a’
of the Hund coupling. However, the partial cross sec-
tions can be different in these cases.

7. CONCLUSIONS

Studying the character of momentum coupling for
the resonant charge exchange process in slow colli-
sions, we have found that the number of real cases of
momentum coupling is considerably larger than that

σres

πR0
2

2
---------,=

2.6

v R0γ( )1/3
----------------------

πR0

2γ
---------∆00 R0( ) 0.28,=

Table 7.  The ion–atom interaction potential for the quasi-
molecule O+(4S3/2)–O(3PJ) with its quantum numbers given
by J and M (the total atom momentum and the projection of
the atom orbital momentum on the molecular axis) and the
partial resonant charge exchange cross sections σex for the
indicated quantum numbers and collision energies ε in the
laboratory reference frame

JM ∆(JMJ)
σex, Å2

ε = 0.1 eV
σex, Å2

ε = 1 eV
σex, Å2

ε = 10 eV

20 69 56 40

21 84 68 55

10 63 51 45

11 77 62 49

00 51 41 31

01 63 50 38

20
9
------∆11

10
9
------∆10

4
3
---∆11

2
3
---∆10

4
9
---∆11

2
9
---∆10
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following from the classical Hund scheme of momen-
tum coupling. Constructing the hierarchy of interac-
tions for the quasi-molecule consisting of the colliding
ion and atom has allowed us to find a suitable scheme
for momentum coupling. The strongest interaction for
nonheavy atoms is the exchange interaction of elec-
trons inside these atomic particles, and therefore, the
quasi-molecule quantum numbers for the ion and atom
electron shells are LSls (the orbital momentum and spin
of the atom and the same quantum numbers for the ion).
For halogen and oxygen, the rotation energy Vrot of col-
liding particles is small compared to the fine splitting of
the atom (δa) and ion (δi) levels; it is also small com-
pared to the long-range charge-quadruple interaction U
between the ion and the atom. Hence, the resonant
charge exchange proceeds at certain quantum numbers
JMJj or JMj depending on the ratio δa/U (where J and j
are the total atom and total ion momenta and M and MJ

are the projections of the atom orbital and total atom
momenta on the quasi-molecule axis). This character of
momentum coupling does not correspond to cases in
the Hund coupling scheme.

In contrast to the case “a” of the Hund coupling,
where the electron transfer process is entangled with
the rotation of the atom and ion orbital momenta, the
resonant charge exchange process for halogen and oxy-
gen proceeds separately for each fine-structure state.
This increases the accuracy of evaluation of the elec-
tron transfer cross section. The resonant charge
exchange cross section depends on the initial quantum
numbers of the quasi-molecule; according to the analy-
sis for halogens and oxygen, the cross sections in case
“a” of the Hund coupling scheme and for the real
momentum coupling are close to each other.
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Abstract—The ways of achieving limiting waveguide enhancement of nonlinear-optical processes in micro-
structure and photonic-crystal fibers are studied. The waveguide enhancement of nonlinear-optical processes is
shown to be physically limited because of the competition of diffraction and refractive-index-step radiation
confinement. In the case of the limiting refractive-index step values for fused silica fibers, the maximum
waveguide enhancement of nonlinear-optical processes is achieved with submicron fiber core diameters. The
maximum waveguide enhancement of coherent anti-Stokes Raman scattering in a hollow microstructure fiber
relative to the regime of tight focusing is shown to scale as λ2/α2a4 with radiation wavelength λ, the inner fiber
radius a, and the magnitude of radiation losses α. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The advent of microstructure and photonic-crystal
fibers [1–10] has opened a new phase in the nonlinear
optics of guided waves. Such fibers provide a strong
confinement of electromagnetic radiation in the fiber
core [11, 12] and offer many degrees of freedom in dis-
persion tailoring via variations in the core–cladding
geometry of the fiber [13, 14]. Due to their unique prop-
erties, microstructure and photonic-crystal fibers
enhance the whole catalog of nonlinear-optical pro-
cesses, making nonlinear optics accessible to unampli-
fied femtosecond laser pulses and suggesting new solu-
tions for the frequency conversion and spectral trans-
formation of ultrashort laser pulses, as well as for the
phase and temporal control of such pulses [4, 15]. The
enhancement of a broad class of nonlinear-optical phe-
nomena, including self-phase modulation [12], four-
wave mixing and parametric processes [16–21], sti-
mulated Raman scattering [17, 18], and soliton forma-
tion [22], leads to efficient generation of radiation with
a very broad continuous spectrum—a supercontin-
uum [23, 24]. Supercontinuum generation in micro-
structure fibers is the backbone of femtosecond systems
for high-precision measurements [25–29], changing the
paradigm of optical frequency metrology. Supercontin-
uum generation also holds much promise for the
measurement and control of the phase of ultrashort
pulses [30, 31] and offers attractive solutions for
ultrafast photonics [32], spectroscopy [33], and bio-
medical optics [34]. Supercontinuum generation is a
result of a complicated interplay between many nonlin-
ear-optical processes, in fact, serving as an anthology of
basic nonlinear-optical phenomena. Physical scenarios
1063-7761/03/9703- $24.00 © 20505
of supercontinuum generation in microstructure fibers
is an exciting subject for basic research in the interdis-
ciplinary area of ultrafast nonlinear optics and the phys-
ics of micro- and nanostructures.

Fibers with a cladding in the form of a two-dimen-
sionally periodic microstructure (two-dimensional pho-
tonic crystal) and a hollow core, first demonstrated by
Cregan et al. [35], is one of the most interesting and
promising types of microstructure fibers. Photonic
band gaps in the transmission spectrum of a two-
dimensional periodic cladding in these fibers provide
high reflection coefficients for electromagnetic radia-
tion propagating along the hollow core of the fiber,
allowing a specific regime of waveguiding to be imple-
mented [35–37]. This mechanism of waveguiding is of
special interest for telecommunication applications,
opening, at the same time, ways of enhancing nonlin-
ear-optical processes. Benabid et al. [38] recently dem-
onstrated a radical enhancement of stimulated Raman
scattering in hollow-core photonic-crystal fibers. Such
fibers can be also employed for laser manipulation of
small-size particles [39]. The structure of hollow-core
photonic-crystal fibers is ideally suited for the transpor-
tation of high-power laser radiation [40], high-order
harmonic generation [41], transmission of ultrashort
laser pulses [35, 37], and fiber-optic delivery of laser
radiation in technological laser systems [42].

In view of the exciting possibilities offered by
microstructure and hollow-core photonic-crystal fibers
in nonlinear optics, the physical factors determining the
limiting efficiencies of nonlinear-optical processes in
such fibers are of special interest. Understanding of
these factors would allow the strategy for optimizing
003 MAIK “Nauka/Interperiodica”
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the structure and parameters of microstructure and hol-
low-core photonic-crystal fibers to be developed for the
maximum enhancement of nonlinear-optical processes.
The analysis of these factors is the main task of this
paper. We will consider the processes of stimulated
Raman scattering (SRS) and coherent anti-Stokes
Raman scattering (CARS) in hollow-core photonic-
crystal fibers, examine the factors determining the lim-
iting SRS and CARS efficiencies in such fibers, and
find the optimal fiber lengths for these processes taking
into consideration waveguide losses, as well as group-
delay and phase-mismatch effects. We will show that
microstructure fibers open ways toward limiting
waveguide enhancement of nonlinear-optical pro-
cesses. Physically, the existence of this limit for
waveguide enhancement is associated with competition
between diffraction and radiation confinement in a
waveguide due to the refractive-index step. We will
derive asymptotic expressions providing in several
important cases an adequate qualitative description of
the waveguide enhancement of nonlinear-optical pro-
cesses and making it possible to estimate with satisfac-
tory accuracy the optimal fiber core diameters for the
maximum enhancement of nonlinear-optical interac-
tions.

2. THE PHYSICS BEHIND THE WAVEGUIDE 
ENHANCEMENT

OF NONLINEAR-OPTICAL PROCESSES

Optical fibers represent a natural way to increase the
interaction length and to reduce the beam diameter of
light fields involved in nonlinear processes. These two
factors underlie a successful and rapidly growing area
of nonlinear fiber optics [43], substantially improving
the efficiency of many nonlinear-optical processes
(including stimulated Raman scattering, as well as self-
and cross-phase modulation) and lowering thresholds
for a certain class of nonlinear-optical effects (e.g., pro-
cesses involving stimulated Raman scattering). The
product Ileff , where I is the light field intensity in an
optical fiber and leff is the effective interaction length,
gives a figure of merit [43] for the efficiency of a broad
class of nonlinear-optical interactions, including self-
and cross-phase modulation, stimulated Raman scatter-
ing, and certain types of parametric wave-mixing pro-
cesses. The interaction length for tightly focused light
beams is confined to the beam waist length. In the case
of a Gaussian beam, the beam waist length is approxi-
mately equal to

where w0 is the waist radius of the focused beam and λ
is the radiation wavelength. The waveguide enhance-
ment of a nonlinear-optical process in a fiber with the
magnitude of losses α (αl @ 1, l is the fiber length) with

leff
f πw0

2/λ ,≈
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respect to the regime of tightly focused pump beams is
then given by the well-known expression [43]

(1)

where If and It are the radiation intensities calculated for
the fiber and the regime of tight focusing, respectively.

It is straightforward from Eq. (1) that the waveguide
enhancement of nonlinear-optical processes is associ-
ated with the possibility of achieving high radiation
intensities for a given radiation power due to the light-
field confinement in a fiber core with a small radius and
large interaction lengths attainable for nonlinear-opti-

cal processes in fibers with low radiation losses (  ≈
1/α). The waveguide enhancement factor and the figure
of merit quantifying the lowering of the threshold for
nonlinear-optical processes involving stimulated
Raman scattering, as can readily be seen from Eq. (1),
grows with a decrease in the fiber core diameter.

This recipe for enhancing nonlinear-optical pro-
cesses remains applicable, however, within a finite
range of fiber core diameters. The physical limit is, of
course, determined by diffraction effects. As the fiber
core radius becomes smaller and smaller, less and less
radiation power remains confined to the fiber core. To
quantify the influence of this factor on the waveguide
enhancement of nonlinear-optical processes, we repre-
sent the product of the intensity of electromagnetic
radiation and the effective interaction length in an opti-
cal fiber in the following form:

(2)

where η is the ratio of the laser power confined to the
fiber core to the total laser power guided by a fiber
mode and a is the radius of the fiber core.

Calculating the integral in Eq. (2) and assuming that
αl @ 1, as before, we arrive at

(3)

Formula (3) allows the distribution of radiation
power between the fiber core and the fiber cladding to
be included in the waveguide enhancement factor for
nonlinear-optical processes in fiber-guided modes. In
what follows, we will employ Eq. (3) to determine the
optimal core radius for nonlinear fibers providing the
maximum enhancement of nonlinear optical processes
and explore the applicability of different asymptotic

I f leff
f

Itleff
t

----------- λ
πw0

2α
-------------,≈

leff
f

I f leff
f Pη

πa2
-------- αz–( )exp z,d

0

l
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ξ
I f leff

f

Itleff
t

----------- λη
πa2α
------------.≈=
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expressions for estimating the optimal parameters of
nonlinear fibers.

3. THE ROLE OF DIFFRACTION
AND THE PHYSICAL LIMIT 

FOR THE WAVEGUIDE ENHANCEMENT 
OF NONLINEAR-OPTICAL PROCESSES

To calculate the radiation power confined to a fiber
core in the HE1m waveguide mode, we use the following
expression known from the theory of optical fibers [44]:

(4)

where

(5)

(6)

nco is the refractive index of the fiber core, ncl is the
refractive index of the fiber cladding, u is the eigen-
value of the characteristic equation for the waveguide
mode (also known as the mode parameter in the fiber

core), V = ka(  – )1/2 is the waveguide parameter,

k = 2π/λ, β = [k2  – (u/a)2]1/2 is the propagation con-

stant of the waveguide mode, W = a(β2 – k2 )1/2 is the
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mode parameter in the fiber cladding, 

 

J

 

n

 

(

 

x

 

) are the first-
kind Bessel functions, and 

 

K

 

n

 

(

 

x

 

) are the modified sec-
ond-kind Bessel functions.

The solid line 

 

1

 

 in Fig. 1 shows the dependence of
the factor 

 

ξ

 

 on 

 

a

 

 calculated with the use of Eqs. (3)–(6).
The maximum values of 

 

ξ

 

 are achieved with a certain
optimal core radius 

 

a

 

opt

 

. For the factor 

 

ξ

 

 represented by
curve 

 

1

 

 in Fig. 1, 

 

a

 

opt

 

 = 0.27 

 

µ

 

m.

To understand the physical factors controlling the
behavior of the waveguide enhancement of nonlinear-
optical processes as a function of the fiber core radius,
we will examine in greater detail the limiting cases of

 
V

 
 

 
@

 
 1 and 

 
V

 
 

 
!

 
 1, corresponding to fibers with small

and large ratios of the core radius to the radiation wave-
length. Physically, these two situations differ by the
relation between diffraction and index-step waveguide
confinement effects. To illustrate this argument, we
introduce the characteristic angular beam width 

 

θ

 

d

 

,
which will serve as a measure of diffraction and which
is given, in the case of a Gaussian profile of intensity
distribution with a width of 

 

w

 

0

 

, by the well-known for-
mula [44]

(7)

Using Eq. (7), we represent the waveguide parame-
ter 

 

V

 

 as [44]

(8)

θd
λ

πncow0
----------------- 

 arctan
λ

πncoa
--------------.≈=

V
2θc

θd

--------,=
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ξ

a, µm

2
1

3

Fig. 1. The factor ξ of the waveguide enhancement of non-
linear-optical processes as a function of the fiber core radius
a for a fiber with a refractive index of the core of nco ≈ 1.45
and a refractive index of the cladding of ncl ≈ 1 (∆ ≈ 0.26)
and radiation with a wavelength of 1 µm calculated (1) with
the use of Eqs. (3)–(6), (2) with the use of approximate for-
mula (11) with the mode parameter u determined by solving
the relevant characteristic equation, and (3) with the use of
approximate formula (11) under the assumption that u ≈ 2.4.
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where θc is the critical angle of grazing incidence,

Thus, the waveguide parameter V can be considered
as a measure of balance between diffraction and
waveguide confinement of a light beam. For fibers with
large core radii having V @ 1, diffraction is negligible
and most of the laser power is confined to the fiber core
(see Fig. 2). In the opposite case of fibers with small
core radii having V ! 1, diffraction becomes significant
and a considerable fraction of radiation power is guided
in the fiber cladding (Fig. 2).

For the fundamental mode of a weakly guiding opti-
cal fiber, ∆ ! 1, the fraction η of electromagnetic radi-
ation power confined to the fiber core in the limiting
case of V ! 1 can be calculated with the use of the fol-
lowing asymptotic expression [44]:

(9)

Because of diffraction effects, the factor η, as can be
seen from Eq. (9), rapidly tends to zero as V  0
(curve 5 in Fig. 2).

For large V, the ratio η is given by the following
asymptotic formula [44]:

(10)

θc 1 ncl
2 /nco

2–( )[ ] 1/2
arcsin 1 ncl

2 /nco
2–( )1/2

.≈=

η 1.261
V2 2+

V4
--------------- 4

V2
------– 

  .exp≈

η 1
u2

V3
------.–≈

0.2

2 4 60

0.4

0.6

0.8

1.0

1
2 34

5

η

a, µm

Fig. 2. The fraction η of electromagnetic radiation power
confined in the core of a weakly guiding (∆ ≈ 5 × 10–3) fiber
as a function of the fiber core radius a for radiation with a
wavelength of 1 µm calculated (1) with the use of
Eqs. (4)–(6), (2) with the use of approximate formula (10)
with the mode parameter u determined by solving the rele-
vant characteristic equation, (3) with the use of approximate
formula (10) under the assumption that u ≈ 2.4, (4) with the
use of approximate formula (9) in the regime when V ! 1,
and (5, asterisks) with the use of approximate formulas (10)
and (15).
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For V ≥ 3, Eq. (10) provides satisfactory agreement
with the results of calculations performed for the ratio
η with the use of Eqs. (4)–(6) (cf. curves 1 and 3 in
Fig. 2). As the fiber core radius increases, the ratio η, in
accordance with Eq. (10), tends to unity, since the role
of diffraction becomes negligible as compared with the
waveguide confinement of the laser beam due to the
refractive-index step.

4. ASYMPTOTIC EXPRESSIONS
FOR THE FACTOR 

OF THE WAVEGUIDE ENHANCEMENT
OF NONLINEAR-OPTICAL PROCESSES

AND NUMERICAL SIMULATIONS

We now use the approximation of Eq. (10) to esti-
mate the waveguide enhancement of nonlinear-optical
processes. Substituting Eq. (10) into Eq. (3), we find

(11)

The applicability of the estimate given by Eq. (11)
requires additional analysis, since this formula was
derived with the use of asymptotic expressions valid for
the regime of V @ 1. Such an approach is intrinsically
contradictory as the existence of the physical limit for
the factor ξ and the optimal value of the fiber core
radius is related to diffraction effects, which become
negligibly small when V @ 1 [see Eq. (8)]. The
waveguide enhancement factor for nonlinear-optical
processes calculated with the use of Eq. (11) is shown
by curve 2 (asterisks) in Fig. 1. Comparison of the
results of these calculations using approximate rela-
tions with the predictions of Eqs. (4)–(6) (curve 1 in
Fig. 1) demonstrates that Eq. (11) provides a rather
accurate description of the factor ξ for large fiber core
radii, i.e., in the regime of weak diffraction. The esti-
mate for the optimal fiber core radius obtained with the
use of Eq. (11) (aopt ≈ 0.24 µm, curve 2 in Fig. 1) also
agrees well with the optimal value of the fiber core
radius predicted by Eqs. (4)–(6) (aopt ≈ 0.27 µm,
curve 1 in Fig. 1).

The use of Eqs. (10) and (11) implies the solution of
the characteristic equation for the mode parameter u for
the relevant waveguide mode. Let us examine now the
accuracy of a simplified estimation procedure that uses
Eq. (11) with limiting values of the waveguide mode
parameter corresponding to large V. Setting u ≈ 2.4 for
the fundamental guided mode, differentiating Eq. (11)
in a, equating the resulting expression to zero, and solv-
ing the equation thus obtained, we derive the following
simple formula for the optimal value of the fiber core
radius, providing the maximum waveguide enhance-
ment of nonlinear-optical processes:

(12)

ξ λ
πa2α
------------ 1 u2

V3
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aopt
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2
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where

Setting nco ≈ 1.45 and ncl ≈ 1, we arrive at the follow-
ing estimate for the optimal fiber core radius: aopt ≈
0.37λ. In view of the approximation u ≈ 2.4, the accu-
racy of Eq. (12) is lower than the accuracy of Eqs. (10)
and (11). Curve 3 in Fig. 1 shows the dependence of the
factor ξ on the fiber core radius calculated with the use
of Eq. (11) in the approximation of u ≈ 2.4 for radiation
with a wavelength of 1 µm and the above-specified
refractive indices of the core and the cladding. Expres-
sion (12) can provide only order-of-magnitude esti-
mates on the optimal fiber core radius and the maxi-
mum enhancement factor for nonlinear-optical pro-
cesses (curve 3 in Fig. 1). This approximation
systematically overestimates factor ξ, since it employs
Eq. (11) where the V-dependent mode parameter u is
replaced by its upper-bound value. The maximum value
of the factor ξ in the dependence represented by curve 3
in Fig. 1 is achieved with the core radius meeting
Eq. (12), aopt ≈ 0.37 µm. Being correct in its order of
magnitude, this estimate still noticeably differs in its
value from the result obtained with the use of
Eqs. (3)–(6).

The main advantages of the estimate given by
Eq. (12) are associated with its simplicity and the
insights it gives into the influence of fiber parameters
on the optimal core radius and the maximum value of
the factor ξ. The waveguide enhancement factor in this
approximation is given by

(13)

where

(14)

When the mode parameter u is estimated by its
upper-bound value (u ≈ 2.4 for the fundamental mode),
the function ψ(V) depends only on the type of the
waveguide mode and reaches its maximum value with
Vopt = (5/2)1/3u2/3. Expression (13) shows, in particular,
that a decrease in the optimal core radius and, conse-
quently, the increase [in view of Eq. (3)] in the maxi-
mum waveguide enhancement of nonlinear-optical pro-
cesses can be achieved by increasing the refractive-
index step (parameter ∆) between the core and the clad-
ding of the fiber.

Figure 3 displays the dependences of the factor ξ on
the fiber core radius for weakly guiding fibers with ∆ ≈
5 × 10–3. The maximum value of the factor ξ for 1-µm
radiation is achieved in this case with a core radius

κ u2

2π( )3 nco
2 ncl

2–( )3/2
-------------------------------------------.=

ξ 4π
αλ
------- nco

2 ncl
2–( )ψ V( ),=

ψ V( )
1

V2
------ 1 u2

V3
------– 

  .=
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equal to 1.5 µm (curve 1 in Fig. 3). The factor ξ under
these conditions is nearly 40 times less than in the case
of a fiber with a limiting, for fused silica structures,
refractive-index step (∆ ≈ 0.26, Fig. 1). In the case of
weakly guiding fibers, approximate formula (11) also
provides a sufficiently accurate estimate for the optimal
fiber core radius and the maximum value of the factor ξ
(curve 2 in Fig. 3). Finally, Eq. (11), where the mode
parameter u is replaced by its upper-bound value
(u ≈ 2.4), can provide only order-of-magnitude esti-
mates for these parameters (curve 3 in Fig. 3). This lat-
ter approximation, however, gives a qualitatively cor-
rect prediction for the decrease in the maximum value
of the factor ξ with a decreasing refractive-index step.

The difference of the refractive indices squared,  –

, appearing in Eq. (13) is approximately 50 times
higher in the case of the dependences presented in

Fig. 1 than the parameter  –  for the depen-
dences of Fig. 3. The corresponding ratio of the values
of the factor ξ, calculated with the use of the exact for-
mulas (3)–(6), is approximately 40 (cf. curves 1 in
Figs. 1 and 3). In practice, the highest values of the
parameter ∆ can be achieved with tapered fibers [45, 46]
and microstructure fibers with high air-filling fractions
[12, 20, 47–49]. Fibers of these types, therefore, open
ways for attacking the physical limit of the waveguide
enhancement of nonlinear-optical interactions.
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ncl
2
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2
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a, µm

Fig. 3. The factor ξ of the waveguide enhancement of non-
linear-optical processes as a function of the fiber core radius
a for radiation with a wavelength of 1 µm in a weakly
guiding (∆ ≈ 5 × 10–3) fiber calculated (1) with the use of
Eqs. (3)–(6), (2) with the use of approximate formula (11)
with the mode parameter u determined by solving the rele-
vant characteristic equation, (3) with the use of approximate
formula (11) under the assumption that u ≈ 2.4, (4) with the
use of approximate formula (9) in the regime when V ! 1,
and (5) with the use of approximate formulas (11) and (15).
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The analysis performed above shows that the
approximation where the mode parameter in Eqs. (11),
(13), and (14) is replaced by its upper-bound value does
not always provide a high accuracy of estimates for the
factors η and ξ. The accuracy of Eqs. (13) and (14) can
sometimes be improved by using the following asymp-
totic representation for the parameter u of the funda-
mental waveguide mode [44]:

(15)

Formulas (13) and (14), in combination with the
asymptotic representation of Eq. (15), provide satisfac-
tory accuracy in calculations of the power guided in the
fiber core (curve 5 in Fig. 2) and the waveguide
enhancement factor ξ (curve 5 in Fig. 3), allowing the
optimal values of the fiber core radius and the maxi-
mum values of the factor ξ to be calculated with reason-
able accuracy. The error in the estimation of the factor
∆ with the use of Eqs. (10) and (15) in the intermediate
range of V corresponding to the maximum values of the
waveguide enhancement increases with the growth in
the parameter ∆. The accuracy of estimates on the opti-
mal value of the fiber core radius and the maximum
value of the factor ξ decreases under these conditions.

5. STIMULATED RAMAN SCATTERING
AND COHERENT ANTI-STOKES RAMAN 

SCATTERING IN GUIDED MODES 
OF HOLLOW PHOTONIC-CRYSTAL FIBERS

In this section, we will discuss the generic idea of
enhancing SRS- and CARS-type nonlinear-optical pro-
cesses with the use of hollow-core microstructure and
photonic-crystal fibers. Hollow fibers are currently
widely employed [50] for the generation of ultrashort
pulses using Kerr-nonlinearity-related self- and cross-
phase modulation [51–53] and stimulated Raman scat-
tering [54], as well as for high-order harmonic genera-
tion [55–58] and improving the sensitivity of gas-
phase analysis based on four-wave mixing spectros-
copy [59–61].

In hollow fibers, the refractive index of the core, nco ,
is lower than the refractive index of the cladding, ncl =

. Therefore, the propagation constants of guided
modes in hollow fibers,

(where kco = ncoω/c, kcl = nclω/c, un is the eigenvalue of
the characteristic equation for a waveguide mode with
a system of mode indices n, and Wn is the transverse
wave number of the fiber cladding mode) have nonzero
imaginary parts. The propagation of light in such fibers
is accompanied by radiation losses. For EHmn modes of
a hollow fiber with an inner radius a and a refractive

u 2.405 1 ∆+
V

------------– 
  .exp≈

εcl

β kco
2 un/a( )2– kcl

2 Wn/a( )2–= =
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index of the gas filling the fiber core of nco ≈ 1, the radi-
ation intensity attenuation coefficient is given by [62, 63]

(16)

where n = ncl .
Such a behavior of the magnitude of optical losses

prevents one from using hollow fibers with very small
inner diameters in nonlinear-optical experiments.
Using Eq. (16), we find that the magnitude of radiation
losses for the fundamental mode of a hollow fiber with
a fused silica cladding and an inner radius of 7 µm may
exceed 6.5 cm–1 for 1-µm radiation, which, of course,
imposes serious limitations on the applications of such
fibers.

To qualitatively illustrate the idea of lowering the
magnitude of optical losses in a hollow fiber with a
periodic microstructure cladding relative to the magni-
tude of optical losses in a hollow waveguide with a
solid cladding, we will employ the result well known
from the analysis of radiation propagation in a planar
waveguide with a periodic cladding [64]. The decrease
in the magnitude of optical losses in a hollow planar
waveguide with a periodic cladding relative to the mag-
nitude of optical losses in a hollow planar waveguide
with a solid cladding can be quantified by determining
the ratio of the logarithm of the coefficient of reflection
from a periodic structure to the logarithm of the coeffi-
cient of reflection from the wall of a hollow waveguide.
Around the center of the photonic band gap in the
reflection spectrum of the periodic structure in the
waveguide cladding with a sufficiently large number of
layers N, the coefficient of optical losses in a hollow
planar waveguide with a periodic cladding αPBG

decreases exponentially, as shown in [64], relative to
the coefficient of losses in a hollow waveguide with a
solid cladding αh with the increase in the number of
modulation periods of the refractive index in the
waveguide cladding:

where κ is the coupling coefficient of the forward and
backward waves in the periodic structure of the
waveguide cladding and d is the modulation period of
the refractive index in the waveguide cladding. Thus,
hollow waveguides with a periodic cladding allow a
considerable reduction in optical losses characteristic
of hollow-waveguide modes.

Hollow-core photonic-crystal fibers seem ideally
suited for highly efficient waveguide SRS and CARS
interactions. Transmission spectra of hollow photonic-
crystal fibers display isolated peaks [35, 37], which can
be employed to radically enhance nonlinear-optical
interactions of spectrally isolated optical signals. SRS

α
umn

2π
-------- 

 
2λ2

a3
----- n2 1+

n2 1–
------------------,=

αPBG

αh

------------ a 2 κ Nd–( ),exp∝
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Fig. 4. The intensity of the SRS signal as a function of the fiber length L and the attenuation coefficients of (a) the pump and
(b) Stokes signals for gI0 = 0.3 cm–1, (a) αs = 0.1 cm–1, and (b) αp = 0.1 cm–1.
and CARS belong to this class of nonlinear-optical pro-
cesses. In the following sections, we will consider ways
to optimize parameters of hollow photonic-crystal
fibers for maximum enhancement of SRS and CARS
processes.

6. STIMULATED RAMAN SCATTERING

6.1. The Influence of Waveguide Losses 
and the Optimal Fiber Length 

To assess the influence of waveguide losses on stim-
ulated Raman scattering in a hollow-core fiber with a
solid or photonic-crystal cladding having a length l, we
employ the solution to the equation for the intensity of
the Stokes signal of the stationary SRS neglecting
pump-depletion effects [43]:

(17)

where g is the SRS gain; I0 is the initial intensity of the
pump signal; αp and αs are the coefficients of losses at
the pump and Stokes frequencies, respectively; and

(18)

is the effective interaction length.
The intensity of the SRS signal, as can be seen from

Eqs. (17) and (18), is determined by the SRS gain, the
intensity of pump radiation, and the coefficients of
losses at the frequencies of pump and Stokes radiation.
Hollow-core microstructure fibers with a core diameter
on the order of 13–15 µm [35, 37] allow pump radiation

Is l( ) Is 0( ) gI0leff α sl–( ),exp=

leff
1
α p

------ 1 α pl–( )exp–[ ]=
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intensities on the order of 5 × 1010–5 × 1012 W/cm2 to
be achieved with 100-fs pulses having an energy of
0.01–1 µJ. Figure 4 displays the Stokes signal intensity
as a function of the fiber length and the coefficients of
losses at the frequencies of pump (Fig. 4a) and Stokes
(Fig. 4b) radiation calculated for the magnitudes of
losses characteristic of photonic-crystal fibers with a
core diameter of 13–15 µm under the assumption that
gI0 = 0.3. Such values of the gI0 factor can be achieved
in the case of hollow-core fibers filled with molecular
hydrogen (b2 = [Sp(∂αij/∂Q)/3]2 ≈ 4 × 10–34 cm4, where
∂αij/∂Q is the derivative of the electronic polarizability
of molecules in the generalized coordinate Q defining
the nuclear configuration) or nitrogen (b2 ≈ 1.6 ×
10−33 cm4) at atmospheric pressure with the above-
specified levels of laser radiation intensity.

As can be seen from Eqs. (17) and (18), the Stokes
signal grows only with gI0 > αp . Otherwise, waveguide
losses result in an exponential decay of the Stokes sig-
nal. For small l, such that αpl, αsl , gI0l ! 1, the Stokes
signal grows linearly as a function of l (Figs. 4, 5). For
lengths l substantially exceeding the attenuation length
of pump radiation, αpl @ 1, waveguide losses lead to a
noticeable attenuation of pump radiation. The intensity
of the Stokes signal exponentially decreases under
these conditions upon an increase in l with a character-
istic spatial scale defined by the attenuation length of
the Stokes signal (Figs. 4, 5). SRS in a fiber with losses

can be thus optimized with some fiber length , pro-
viding the maximum efficiency for the generation of the
Stokes component (see Figs. 4, 5). Using Eqs. (17)

lopt
SRS
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Fig. 5. The intensity of the SRS signal as a function of the fiber length L and the attenuation coefficients of (a) the pump and
(b) Stokes signals for gI0 = 0.3 cm–1, (a) αs = 0.01 cm–1, and (b) αp = 0.01 cm–1.
and (18), we derive the following expression for the

optimal fiber length  (with gI0 > αp):

(19)

Substituting this expression for the optimal fiber
length into Eq. (17), we find that the maximum integral
SRS gain in a hollow fiber is given by

(20)

In the case of gI0 @ αs , αp , the second term in
Eq. (20) is small as compared to the first term. The
maximum increase in the integral SRS gain in a hollow
fiber relative to the regime of tight focusing is then
equal to

(21)

Comparing Eqs. (3) and (21), we find that the upper
bound of the increase in the integral SRS gain predicted
by Eqs. (17)–(20) for stationary SRS coincides with the
estimate for the waveguide enhancement factor of non-
linear-optical processes given by Eq. (3), which was
derived from general physical considerations. As can be
seen from Eq. (21), even short, hollow, photonic-crystal
and microstructure fibers can provide a substantial SRS
enhancement (see Figs. 4, 5). A radical lowering of the
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SRS threshold in hollow microstructure fibers was
observed earlier by Benabid et al. [38]. We will show in
Section 7 that such fibers may allow an even more sub-
stantial enhancement of nonlinear signal generation in
the case of coherent anti-Stokes Raman scattering.

6.2. Group-Delay 
and Group-Velocity-Dispersion Effects 

Group-delay effects limit the length of nonlinear-
optical interaction, giving rise to a walk-off of the pump
and Stokes pulses within the characteristic length

where v p and v s are the group velocities of the pump
and Stokes pulses, respectively, and τ is the pump pulse
duration. Group-velocity dispersion leads to the
spreading of light pulses within the characteristic
length ld = τ2/|β2|. In view of these factors, the effective
length of pump–Stokes pulse interaction should be re-
defined as

The influence of the group-velocity mismatch and
group-velocity dispersion can be reduced, with an
appropriate choice of fiber and gas parameters, by using
the dispersion of waveguide modes [65]. Physically,
this opportunity can be understood by comparing the

lw
τ

v p
1– v s

1––
-------------------------,=

Leff min leff lw ld, ,( ).=
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group velocity of a light pulse propagating in a gas-
filled hollow fiber (the solid line in Fig. 6a),

(22)

where Kpq is the propagation constant corresponding to
the relevant waveguide mode of a hollow fiber with
mode indices p and q, with the group velocity of a light
pulse in the same gas, but in the absence of a waveguide
(the dashed line in Fig. 6a),

(23)

where k = nω/c and n is the refractive index of the gas.
The propagation constant of a light pulse in a gas-filled
hollow fiber, involved in Eq. (22), is related to the wave
number k of this pulse in the same gas by the expression

where the quantity hpq can be found from the character-
istic equation for the waveguide mode of a hollow fiber.

In particular, using the well-known formulas for
the propagation constants of guided modes in hollow
fibers [62], we arrive at the following expression for the
group velocity of a light pulse with a transverse field
distribution corresponding to the EH1m mode of a hol-
low fiber:

(24)

where

is the group velocity of the light pulse in the gas in the
absence of a hollow fiber.

The group-velocity mismatch in a gas-filled hollow
fiber can be then represented as a sum of two terms:

(25)

where ∆K0 and  are the components of the group-
velocity mismatch due to the gas and waveguide disper-
sion, respectively.

The waveguide component of the group-velocity
mismatch, as follows from Eq. (24), is inversely pro-
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portional to the square of the inner radius of a hollow
fiber, scaling as

Physically, this circumstance implies that larger group-
velocity mismatches can be compensated in hollow
fibers with smaller inner diameters. The dashed lines in
Figs. 6a and 6b present the group index and the group-
velocity dispersion of molecular hydrogen at a pressure
of 0.5 atm as functions of the wavelength. The dotted
lines in the same figures show the wavelength depen-
dences of the group index and the group-velocity dis-
persion for the EH11 mode of a hollow fiber with an
inner radius of 68 µm. The resulting wavelength depen-
dences of the group index and the group-velocity dis-
persion, including the waveguide dispersion compo-
nent, are shown by the solid lines. With an appropriate
choice of hollow-fiber parameters, as can be seen from
the dependences presented in Figs. 6a and 6b, the

∆Km
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Fig. 6. (a) The group index ng = c/vg and (b) group-velocity
dispersion calculated as functions of the wavelength
(dashed lines) for molecular hydrogen, (dotted lines) the
EH11 waveguide mode, and (solid lines) the EH11 mode of
a hollow fiber filled with molecular hydrogen. The gas pres-
sure is 0.5 atm. The inner radius of the fiber is 68 µm.
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waveguide dispersion can reduce the group delay and
the group-velocity dispersion for the pump and Stokes
pulses. At a certain wavelength (560 nm in Fig. 6b), the
waveguide component of group-velocity dispersion
exactly compensates for the material group-velocity
dispersion, giving rise to a point of zero group-velocity
dispersion, which is missing from the dispersion profile
of the gas (the dashed line in Fig. 6b). The wavelength
of zero group-velocity dispersion can be found by dou-
bly differentiating the expression for the propagation
constant of guided modes. This procedure yields

(26)

where k2 is the material component of group-velocity
dispersion.

As can be seen from Eq. (26), the wavelength of
zero group-velocity dispersion can be tuned by chang-
ing the inner radius of the fiber and the type of the
waveguide mode, as well as by varying the pressure and
the sort of the gas filling the fiber core. The waveguide
component of group-velocity dispersion scales as λ3/a2

when the radiation wavelength and the inner fiber
radius are varied.

7. COHERENT ANTI-STOKES RAMAN 
SCATTERING

CARS [66–71] is one of the most convenient, effi-
cient, and practical methods of nonlinear coherent
spectroscopy. Waveguide regimes [59, 72–75] substan-
tially improve the sensitivity and extend the applicabil-
ity range of CARS spectroscopy. The enhancement of
CARS in gas-filled hollow fibers was experimentally
demonstrated back in the 1970s [59]. These experi-
ments have opened a nonlinear-optical chapter in the
history of hollow waveguides.

Similar to SRS, CARS is enhanced in hollow fibers
due to the confinement of electromagnetic radiation in
a small-size fiber core and large interaction lengths. We
will show below that the waveguide enhancement in the
case of CARS in hollow microstructure fibers with a
small inner radius may exceed an analogous enhance-
ment attainable for the SRS process. We will demon-
strate that the waveguide enhancement of CARS in a
hollow microstructure fiber relative to the regime of
tight focusing scales as λ2/α2a4 with radiation wave-
length λ, radiation losses α, and the fiber inner radius a,
allowing substantial enhancement factors to be
achieved with hollow-core microstructure fibers having
small inner diameters.

k2 v 0
2– λ

2πn
--------- 

 
3 um

a
----- 

 
2

,=
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We start with the expression for the power of the
CARS signal generated via a three-color process ωs =
ω0 + ω1 – ω2 [76]:

(27)

Here, k0, k1, k2, and ks are the wave numbers of light
fields (propagation constants of waveguide modes)
with frequencies of ω0, ω1, ω2, and ωs , respectively; P0,
P1, and P2 are the powers of the fields with frequencies

of ω0, ω1, and ω2, respectively;  is the effective
combination of cubic nonlinear-optical susceptibility
tensor components corresponding to the chosen set of
polarization vectors of pump and signal fields; D is the
frequency degeneracy factor of the four-wave mixing
process defined after Maker and Terhune [77]; and

(28)

is the phase-matching integral, 

b = njωj /c is the confocal parameter, w0 is the beam
waist diameter, and

(29)

In the limiting case of tight focusing, when the con-
focal parameter b is much less than the length of the
nonlinear medium l, b ! l, no increase in the CARS
power can be achieved by reducing the pump beam
waist radius because of the simultaneous decrease in
the interaction length. Mathematically, this well-known
result is a consequence of the tight-focusing limit exist-
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Fig. 7. The factor M, describing the influence of propagation effects on waveguide coherent anti-Stokes Raman scattering, as a func-
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ing for the phase-matching integral [76]:

(30)

In the case of small phase mismatches, ∆kl ! π, this
limit is written as

(31)

F2 4π2 k''/k'( ) ∆k b–[ ]exp

1 k''/k'+( )2
----------------------------------------------.=

F2
4π2

1 k''/k'+( )2
---------------------------.=
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In the opposite limiting case of loosely focused
pump beams, b @ l, the phase-matching integral in the
regime of weak absorption is reduced to [76]

(32)

In the case of small phase mismatches, Eq. (32) gives

(33)

F2
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k''
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Assuming that the beam waist radius of focused
pump beams is matched with the inner radius of a hol-
low fiber a having the length l, we find from Eqs. (32)
and (33) that the waveguide CARS enhancement factor
scales as λ2l2/a4 (see also [59, 60, 76]). The mode-over-
lapping integral should be generally included to
describe the influence of transverse field profiles in the
waveguide modes involved in the CARS process [72].
The length l can be made very large in the case of fibers,
but the fundamental limitation of waveguide CARS in
hollow fibers, experimentally demonstrated in [59–61],
comes from optical losses, whose magnitude scales as
λ2/a3 in the case of conventional, solid-cladding hollow
fibers [62]. The influence of optical losses and phase-
mismatch effects on the CARS process in the loose-
focusing regime can be included via the factor [67]

(34)

where ∆α = (α1 + α2 + α3 – α4)/2 and α1, α2, α3, and α4

are the magnitudes of optical losses at frequencies ω0,
ω1, ω2, and ωs , respectively.

It is straightforward to see from Eq. (34) that the
amplitude of the CARS signal in a lossy waveguide

M ∆α α 4+( )l–[ ]exp∝

× ∆α l/2( )sinh
2 ∆kl/2( )2sin+

∆α l/2( )2 ∆kl/2( )2+
------------------------------------------------------------------- l2,
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reaches its maximum at some optimal length 
(Figs. 7, 8), which is given by

(35)

With α1 ≈ α2 ≈ α3 ≈ α4 = α, Eq. (35) yields

(36)

Then, setting w0 = 0.73a for the best matching of
input beams with the fiber mode radius [62], assuming
that the refractive index of the gas filling the fiber core
is approximately equal to unity, and taking into consid-
eration that M = (31/2 – 3–1/2)2/(3ln3)2 ≈ 0.123 for ∆k =

0 and l =  = ln3/α, we substitute Eq. (36) for the
optimal interaction length into Eqs. (33) and (34) to
arrive at the following expression for the waveguide
CARS enhancement factor in the regime of phase
matching:

(37)

Plugging optical losses of a solid-cladding hollow
fiber into the CARS enhancement factor by substituting
Eq. (16) into Eq. (37) with un = 2.4 for the limiting

lopt
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lopt
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eigenvalue of the EH11 mode, we derive the following
expression for the factor of CARS enhancement in a
solid-cladding hollow fiber relative to the tight-focus-
ing regime in the case of exact phase matching, ∆k = 0:

(38)

The dependence of the CARS enhancement factor ρ
in a solid-cladding hollow fiber on the inner fiber radius
is shown by curve 1 in Fig. 9. Optical losses, growing
with a decrease in the inner radius of the hollow fiber,
limit CARS enhancement in hollow fibers of this type.

The situation radically changes in the case of a
microstructure fiber. The waveguide enhancement of
the CARS process in such fibers relative to the tight-
focusing regime is given by Eq. (37). Waveguide losses
in this case still represent the main physical factor lim-
iting the waveguide CARS enhancement (Figs. 7, 8).
However, the magnitude of optical losses in hollow
microstructure fibers may be sufficiently low even for
fibers with small inner diameters. The magnitude of
optical losses for such fibers, as shown in [38], may be
on the order of 1–3 dB/m in the case of fibers with a
hollow core diameter of about 15 µm. Curves 2 and 3
in Fig. 9 show the CARS enhancement factor µ calcu-
lated as a function of the inner radius of a hollow
microstructure fiber for two magnitudes of optical
losses, α = 0.1 and 0.01 cm–1. In the case of small inner
radii, microstructure fibers, as can be readily seen from
Eqs. (37) and (38) for the parameters ρ and µ, provide
much higher CARS enhancement factors than solid-
core hollow fibers. The CARS enhancement factor in
hollow microstructure fibers with the magnitude of
optical losses equal to 0.1 and 0.01 cm–1 (curves 2 and
3 in Fig. 9) starts to exceed the CARS enhancement
factor in a solid-cladding hollow fiber (curve 1 in
Fig. 9) for core radii less than 20 and 45 µm, respec-
tively. For hollow fibers with small core radii, the
waveguide enhancement factor for the CARS process
provided by microstructure fibers, as can be seen from
Fig. 9, may be several orders of magnitude higher than
the waveguide enhancement factor attainable with
solid-cladding fibers. We assume in this consideration
that the core–cladding geometry in a hollow micro-
structure fiber supports at least one air-guided mode
even for small values of the inner radius of the fiber. A
qualitative analysis of the number of air-guided modes
supported by hollow photonic-crystal fibers has been
provided by Cregan et al. [35]. More detailed, numeri-
cal simulations of air-guided modes in such fibers have
been performed by Broeng et al. [78].

Comparison of Eqs. (21) and (37) shows that the
scaling law of the waveguide CARS enhancement fac-
tor as a function of the magnitude of optical losses, fiber
inner radius, and radiation wavelength differs from a
similar scaling law of the waveguide SRS enhancement

ρ 6.1 10 2– k' k''+( )2

k'k''
---------------------- a

λ
--- 

 
2 n2 1–

n2 1+( )2
---------------------.×=
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factor (curve 4 in Fig. 9). Physically, this difference
stems from differences in scattering mechanisms
involved in SRS and CARS, with SRS and CARS sig-
nals building up in different fashions as functions of the
interaction length and pump field amplitudes [cf.
Eqs. (17) and (27)]. The difference in waveguide
enhancement factors for SRS and CARS suggests dif-
ferent strategies for optimizing fibers designed to
enhance these processes. Due to the stronger depen-
dence of the CARS efficiency on the inner radius of a
hollow fiber, the limiting waveguide enhancement for
CARS in hollow microstructure fibers may noticeably
exceed similar factors for SRS (cf. curves 2–4 in
Fig. 9).

Phase mismatch, resulting from the difference in
propagation constants of guided modes involved in the
CARS process, is another important factor limiting the
efficiency of CARS in a hollow fiber. In the case of non-
zero phase mismatch, the optimal length for the CARS
process can be found from a transcendental equation
that immediately follows from Eq. (34):

(39)

Curve 1 in Fig. 10 shows the optimal length calcu-
lated by numerically solving Eq. (39) as a function of
the phase mismatch ∆k. The growth in the phase mis-

∆α ∆α lopt
CARS( )sinh ∆k ∆klopt
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+ ∆α α 4+( ) ∆klopt
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Fig. 9. Figures of merit for the efficiency of waveguide
CARS in (1, s) a standard hollow fiber with a solid cladding
and (2, 3) a hollow microstructure fiber with an attenuation
coefficient α = 0.1 (2, e), 0.01 cm–1 (3, +) as functions of
the inner radius of the fiber a. (4, h) The figure of merit ζ
for SRS efficiency in a hollow microstructure fiber with an
attenuation coefficient α = 0.01 cm–1 as a function of the
inner radius of the fiber a. Dotted line 5 corresponds to the
efficiency of CARS in the regime of tight focusing. The
radiation wavelength is 0.5 µm.
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match ∆k, as can be seen from this dependence,
reduces the optimal fiber length for the CARS pro-
cess. Curves 2 and 3 of the same figure show the
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Fig. 10. The optimal length for the CARS process (line 1, +),

parameter θ = 0.123( )2 (line 2, e), and the factor M

(line 3, s) calculated as functions of the phase mismatch ∆k
by numerically solving Eq. (39) with α1 = α2 = α3 = α4 =

0.1 cm–1.

lopt
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parameter 0.123( )2, corresponding to the approx-
imation of Eq. (37), and the factor M calculated by
numerically solving Eq. (39). Comparison of these
curves visualizes the deviation of the factor M, which
includes the influence of waveguide losses and the
phase mismatch, from the approximate dependence
given by Eq. (37), which was employed in our analysis
to find the limiting waveguide enhancement factors for
the CARS process in hollow fibers (Fig. 7). The results
presented in Fig. 10 show that the approximation of
Eq. (37) works well in the case of perfect phase match-

ing, when the factor M coincides with 0.123( )2.

The deviation of the factor M from 0.123( )2

increases, as can be seen from Fig. 10, with the growth
in the phase mismatch ∆k.

Figure 11 displays the waveguide CARS enhance-
ment factor in hollow microstructure fibers as a func-
tion of the inner fiber radius for different values of the
phase mismatch, ∆k = 0 (curve 1, +), 0.3 cm–1 (curve 2,
s), and 0.5 cm–1 (curve 3, e), and magnitudes of optical
losses, α1 = α2 = α3 = α4 = 0.02 cm–1 (Fig. 11a) and α1 =
α2 = α3 = α4 = 0.1 cm–1 (Fig. 11b). Phase mismatch, as
indicated by the results presented in Figs. 10 and 11,
reduces the maximum waveguide CARS enhancement
attainable with a hollow microstructure fiber, with the
power of the CARS signal becoming an oscillating
function of the fiber length (Figs. 7a, 8a, 8b, and 10).
The characteristic period of these oscillations is deter-
mined by the coherence length. Oscillations become
less pronounced and then completely flatten out as opti-
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Fig. 11. The figure of merit for CARS efficiency in hollow microstructure fibers as a function of the inner radius of the fiber for
different values of the phase mismatch, ∆k = 0 (line 1, +), 0.3 cm–1 (line 2, s), and 0.5 cm–1 (line 3, e), and attenuation coefficients,
α1 = α2 = α3 = α4 = 0.02 cm–1 (a) and α1 = α2 = α3 = α4 = 0.1 cm–1 (b). Dotted line 4 corresponds to the efficiency of CARS in
the regime of tight focusing.
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cal losses build up (see also [79]). No oscillations are
observed when the attenuation length becomes less
than the coherence length (Figs. 7c, 8b). An important
option offered by hollow microstructure fibers is the
possibility of compensating for the phase mismatch
related to the gas dispersion with an appropriate choice
of waveguide parameters due to the waveguide disper-
sion component [50, 65].

8. CONCLUSIONS

The analysis performed in this paper shows that hol-
low microstructure and photonic-crystal fibers allow
coherent anti-Stokes Raman scattering to be substan-
tially enhanced relative to the regime of tight focusing,
as well as relative to waveguiding regimes in hollow
solid-cladding fibers. Based on the analysis of
waveguide losses, as well as phase-mismatch and
group-delay effects, we have determined the optimal
fiber lengths providing maximum waveguide enhance-
ment for SRS and CARS. Our analysis also reveals the
existence of a physical limit for the waveguide
enhancement of nonlinear-optical processes. Physi-
cally, this limit stems from the competition of diffrac-
tion and waveguide confinement of radiation due to the
refractive-index step. Optimal confinement of electro-
magnetic radiation, allowing maximum enhancement
of nonlinear-optical processes, is achieved in submi-
cron waveguiding threads with an air cladding. Such
waveguide structures with the maximum refractive-
index step have been recently implemented in micro-
structure fibers. We have derived approximate asymp-
totic expressions that provide in several important cases
an adequate qualitative understanding of the influence
of fiber parameters on the optimal values of the fiber
core radius and the maximum values of the waveguide
enhancement factor and that allow these quantities to be
estimated with satisfactory accuracy.

The maximum CARS enhancement in a hollow
microstructure fiber relative to the tight-focusing
regime was shown to scale as λ2/α2a4 with radiation
wavelength λ, inner fiber radius a, and magnitude of
radiation losses α. Due to a rapid growth in CARS effi-
ciency with a decrease in the inner radius of a hollow
fiber, the limiting waveguide CARS enhancement fac-
tor in hollow microstructure fibers may substantially
exceed analogous factors attainable with solid-cladding
hollow fibers, as well as the waveguide enhancement
for stimulated Raman scattering in hollow microstruc-
ture and photonic-crystal fibers. We have shown that the
influence of group-delay effects on CARS and SRS
processes in hollow fibers can be radically reduced due
to the dispersion of waveguide modes with an appropri-
ate choice of the gas pressure, the inner diameter of a
hollow fiber, and the waveguide modes involved in the
nonlinear-optical process.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Hollow-core microstructure and photonic-crystal
fibers thus suggest ways of creating highly efficient gas
sensors based on CARS spectroscopy, as well as SRS
frequency converters. Waveguiding regimes supported
by hollow-core photonic-crystal fibers allow the
amount of sample gas required for spectroscopic anal-
ysis to be substantially reduced and provide the oppor-
tunity for performing nonlinear-optical experiments
using low-power laser pulses.
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Abstract—The scattering of atoms by a resonance standing light wave is considered under conditions when
the lower of two resonance levels is metastable, while the upper level rapidly decays due to mainly spontaneous
radiative transitions to the nonresonance levels of an atom. The diffraction scattering regime is studied, when
the Rabi frequency is sufficiently high and many diffraction maxima are formed due to scattering. The dynamics
of spontaneous radiation of an atom is investigated. It is shown that scattering slows down substantially the radi-
ative decay of the atom. The regions and characteristics of the power and exponential decay are determined.
The adiabatic and nonadiabatic scattering regimes are studied. It is shown that the wave packets of atoms in the
metastable and resonance excited states narrow down during scattering. A limiting (minimal) size of the wave
packets is found, which is achieved upon nonadiabatic scattering in the case of a sufficiently long interaction
time. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The scattering of atoms by a resonance standing
light wave has been studied in many papers (see, for
example, monographs [1–3] and references therein). Of
special interest are papers [4–9] devoted to the study of
a peculiar type of scattered atoms, which were initially
excited to one of the long-lived metastable states. The
corresponding metastable level Em is the lower level of
a resonance two-level system, whereas the upper level
Ee of this system has a large width Γ caused mainly by
the spontaneous radiative decay to states different from
the metastable state (Fig. 1). In experiments described
in papers [6, 9], metastable Ar* atoms were used
[Em ≡ 1s5 (J = 2)]. The field of a 801-nm standing wave
1063-7761/03/9703- $24.00 © 20522
performed the resonance interaction of the Em level
with the Ee ≡ 2p8 level (J = 2). About 72% of the width
of the excited level Ee was caused by radiative transi-
tions to the levels different from Em .

The assumption about a large width Γ of the Ee level
means that Γ @ ωr , where ωr = k2/2M is the recoil fre-
quency or energy (" = 1), M is the atom mass, k =
2π/λ = ω/c, and ω is the field frequency. Typically,
ωr/Γ ~ 10–3 ! 1.

Another important parameter characterizing the
interaction of atoms with the field is the Rabi frequency
Ω = 2dme · E0, where dme = 〈m|d |e〉  is the matrix element
of the dipole moment of the transition between reso-
|e〉

|m〉

ω

Γ
p0

θ

k

–k
x

z

Fig. 1. Scheme of scattering of an atom by a standing light wave and the energy level diagram.
003 MAIK “Nauka/Interperiodica”
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nance levels and E0 is the amplitude of the field strength
of each of the counterpropagating light waves forming
a standing wave. Depending on the relation between Ω
and , either Bragg {for Ω ! } or dif-

fraction {for Ω @ } scattering can occur (see
Section 3). Bragg scattering is characterized by a strong
dependence of the scattering efficiency on the direction
of the initial atomic momentum p0: scattering is effi-
cient only if the angle θ between the vector p0 and per-
pendicular to the direction of light wave vectors ±k (the
z axis in Fig. 1) is close to the Bragg angle ±θBr , where
θBr = k/p0 ! 1. In this case, the direction of propagation
of scattered atoms approximately corresponds to spec-
ular reflection from the plane perpendicular to k; i.e.,
the angle between the direction of the momentum of
scattered electrons and the z axis is close to . The
efficiency of diffraction scattering is almost indepen-
dent of the angle θ. In addition, many diffraction max-
ima appear due to a more intense interaction upon scat-
tering. The directions of propagation of metastable
atoms in them are determined by the angles θn = θ +
2nθBr , where n = 0, ±1, ±2, … In papers [4–9], Bragg
scattering was mainly considered. In this paper, we
studied diffraction scattering, which assumes greater
values of the Rabi frequency Ω. We showed that these
two cases of scattering substantially differ from each
other. In particular, while an atom always decays expo-
nentially in the case of Bragg scattering, in the case of
diffraction scattering, as is shown below, the nonexpo-
nential decay can occur when the time-dependent prob-
abilities of finding an atom at levels Em and Ee decrease
according to a power law. We also showed that the
region of the nonexponential decay is restricted in time.
The decay becomes exponential at very long times.
However, the decay rate in this case substantially dif-
fers from the decay rate Γ for a free atom. The modified

decay rate  decreases with increasing Γ and depends
on the value and sign of the resonance detuning ∆ =
Ee – Em – ω, as well as on the Rabi frequency Ω and the
recoil frequency ωr . Finally, the dynamics of the popu-
lation decay proves to be closely related to the forma-
tion of narrow wave packets of the “center of mass” of
an atom, which are in the metastable and excited states.
We will show below that there exists a limiting, mini-
mal packet size, which can be achieved at very long
interaction times and can be important for practical pur-
poses.

2. BASIC EQUATIONS

The wave function of an atom interacting with a
light field depends on the radius vector r of the center

4 Γωr 4 Γωr

4 Γωr

θBr+−

Γ̃
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of mass of the atom, the intra-atomic variables, and on
time t, satisfying the Schrödinger equation

(1)

where Hat is the Hamiltonian of intra-atomic motion,
∇ = ∂/∂r, and E(r, t) is the electric-field strength, which
has the form

(2)

for a standing light wave (the x axis is directed along k)
(Fig. 1).

In the rotating wave approximation, the wave func-
tion of an atom can be written in the form

(3)

where ϕm(x, t) and ϕe(x, t) are the wave functions of the
perturbed motion of the center of mass of the atom in
the states |m〉  and |e〉 , respectively. Equations for
ϕm(x, t) and ϕe(x, t) follow directly from the
Schrödinger equation (1):

(4)

(5)

We assume that the radiative width Γ of the excited
level Ee is mainly caused by transitions to levels differ-
ent from Em , spontaneous radiation due to the Ee 
Em transitions being neglected within the framework of
the model.

We assume that the interaction of the atom with the
field is switched on instantly at the moment t = 0, while
for t < 0, the atom is in the metastable state |m〉 and the
wave function of its center of mass is a purely plane
wave with the momentum p0, which corresponds to the
initial conditions

(6)

in system of equations (4), (5).

i
t∂

∂ Ψ 1
2M
--------∇ 2– Hat d E r t,( )⋅–+

 
 
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Ψ r t,( )
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2π( )3/2
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The squares of the modulus of functions ϕm, e(x, t)
determine the probability densities of finding atoms in
states |m〉  or |e〉  at instant t in the vicinity of point x:

(7)

The probability densities dWm, e(x, t)/dx (7) inte-
grated over the entire interval of the change in variable
x from 0 to π/k give the total probabilities of finding the
atom at instant t in the metastable or excited states:

(8)

An alternative method for describing the interaction
of scattered atoms with the field is based on the use of
the periodic dependence of the field E(r, t) (2) on vari-
able x, which makes it possible to expand the function
ϕm, e(x, t) in a Fourier series with time-dependent coef-
ficients:

(9)

The physical meaning of coefficients  is that
they are the partial amplitudes of the probability of
finding atoms in the metastable and excited states at
instant t in beams deflected from the initial propagation
direction by the angle nθBr , n = 0, ±1, ±2, … Functions

 satisfy equations that follows from Eqs. (4),
(5), and (9):

(10)

(11)

where

dWm e, x t,( )
dx

--------------------------
k
π
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2 . d 

0
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0
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ϕm e, x t,( ) an
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an
m e,( ) t( )

k
π
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an
m e,( ) t( )

an
m e,( ) t( )

iȧn
m( ) t( ) n2ωr nδ+( )an
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e( ) an 1+
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It is obvious that functions  should satisfy the
initial conditions

(12)

It follows from Eqs. (10)–(12), in particular, that only
even or odd values of n are possible for atoms in the
metastable or excited states, respectively.

The squares of the modulus of functions 
are the partial probabilities of finding atoms at instant t
in beams deflected by angles nθBr:

(13)

Sums of partial probabilities  and  deter-
mine the total probabilities of finding atoms in the
metastable and excited states after scattering,

(14)

Definitions (14) and (8) are equivalent, as well as the
groups of Eqs. (4)–(6) and (10)–(12), corresponding to
two different but equivalent approaches to the solution
of the problem in the coordinate and momentum repre-
sentation.

3. BRAGG SCATTERING 
AND THE BORRMANN EFFECT

Consider first Bragg scattering when the Rabi fre-
quency |Ω| is sufficiently low, while the excited-level
width Γ is large. We assume that interaction time t is
also large compared to 1/Γ, so that

(15)

Such a scattering regime was theoretically studied in
papers [7, 8], and it corresponds to the experimental
conditions described in [6, 9]. Here, we will briefly dis-
cuss this regime to distinguish it distinctly from diffrac-
tion scattering.

According to conditions (15), we can omit the terms

, nδ , , and  in Eqs. (11) to obtain

(16)

an
m e,( ) t( )

an
m( ) t 0=( ) δn 0, , an

e( ) t 0=( ) 0.= =

an
m e,( ) t( )

Wn
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2
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Wn
m( ) t( ) Wn

e( ) t( )

W tot
m e,( ) t( ) Wn

m e,( ) t( ).
n

∑=

Γ  @ n2ωr nδ 1
t
--- Ω ∆ ., , , ,

n2ωran
e( ) an

e( ) ∆an
e( ) iȧn

e( )

an
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iΩ∗
2Γ
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m( ) t( ) an 1–
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By substituting (t) (16) into Eqs. (10), we obtain

(17)

For δ ≈ ±2ωr or  ! ωr (i.e., when the Wolf–
Bragg condition θ ≈ ±θBr is fulfilled), the sum n2ωr + nδ
is zero for n = 0 and is small for n = . The smallness
condition  can be considered as the Bragg res-
onance condition at which the angle of incidence of an
atomic beam is close to the Wolf–Bragg angle. For a
low Rabi frequency |Ω| and a small Bragg resonance
detuning , only the probability amplitudes

 with n = 0 and  are not small in Eqs. (17).
Retaining only these terms, we reduce the entire infi-
nite-dimensional system of equations (17) to only two
equations

(18)

(19)

where the probability amplitudes  and 
are related to the unscattered and scattered atomic
beams, respectively, which are directed approximately
at angles ±θBr and  to the z axis (Fig. 1).

Equations (18) and (19) have stationary solutions of
the type

where γ is the quasi-energy determined from the condi-
tion that the determinant of the system of equations (18)
and (19) is zero:

(20)

which gives

(21)

an
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iȧn
m( ) t( ) n2ωr nδ+( )an

m( ) t( )=

– i
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As follows from these equations, far from the reso-
nance, for

the decay rates of two quasi-energy levels are identical:

(22)

On the contrary, for the exact resonance, when
 = 0, we have

(23)

The first of these solutions decays slower
(∝ exp[−t|Ω|2/8Γ]), while the second solution decays
faster (∝ exp[–3t|Ω|2/8Γ]), than solutions far from the
resonance (∝ exp[–t|Ω|2/4Γ]). Therefore, a solution
appearing at the resonance (for θ = ±2θBr) has a longer
lifetime than that beyond the resonance. If t|Ω|2/4Γ * 1,
then a fraction of atoms remaining at the metastable
level in the case of resonance will be greater than that
beyond the resonance. It is this effect that was experi-
mentally observed in papers [6, 9] and was interpreted
as an anomalous propagation of metastable atoms
through a standing light wave in the case of Bragg res-
onance or as an optical analog of the Borrmann effect
(anomalous penetration of X-rays into a crystal inci-
dent at the Wolf–Bragg angle on the crystal lattice
plane) [10].

In the problem of scattering of atoms under the con-
ditions considered, the decay remains exponential, in
accordance with experimental data [6, 9]. In this case,
the product of the decay constant |Ω|2/4Γ by interaction
time t cannot be too large. Otherwise, the number of
metastable atoms remaining at the metastable level will
be so small that it will be impossible to detect them
both beyond and in the resonance. The resonance
width with respect to parameter δ is |Ω|2/8Γ, while the

width of the population peak  depending on θ/θBr

is |Ω|2/16Γωr . If |Ω|2/16Γ ! ωr , Bragg scattering takes
place. In the opposite case, when |Ω|2/16Γ @ ωr , dif-
fraction scattering occurs.

4. ADIABATIC APPROXIMATION
Let us now analyze the case of high Rabi frequen-

cies |Ω| @  corresponding to diffraction scatter-
ing. Because in this case the dependence of the scatter-
ing pattern on the angle of incidence θ is weak, we con-
sider the case of normal incidence θ = 0. In addition, at
the first stage, we will treat the scattering and radiative
decay of atoms in the adiabatic approximation. In this

2ωr δ± Ω 2

8Γ
---------,>

Im γ+ Im γ–
Ω 2

4Γ
---------.–= =

2ωr δ+−

Imγ+
Ω 2

8Γ
---------, Imγ–– 3

Ω 2

8Γ
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W tot
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4 Γωr
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approximation, the kinetic energy of the motion of the
center of mass of an atom in the direction parallel to k
is assumed so small,

(24)

that the corresponding terms can be omitted in both
Eqs. (4) and (5). As a result, these equations take the
form

(25)

(26)

Moreover, these two equations can easily be reduced to
one second-order equation:

(27)

Finally, Eqs. (25) and (26) can be written as one matrix
equation of the Schrödinger type,

, (28)

for the two-component wave function

(29)

with the Hamiltonian

(30)

In terms of the partial probability amplitudes

 (9), the adiabatic approximation is equivalent
to neglecting the terms proportional to n2ωr in Eqs. (10)
and (11), which take the form

(31)
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in the case of normal incidence (θ = 0).
Similarly to passage from (25), (26) to (27), two

groups of first-order equations (31) and (32) can be
reduced to one group of second-order equations:

(33)

5. NONEXPONENTIAL DECAY 
AND NARROWING DOWN 

OF ATOMIC WAVE PACKETS

Consider first of all a region of sufficiently long
interaction times t. The second derivative with respect
to time in Eq. (27) is small compared to the term pro-
portional to the first derivative:

(34)

The real meaning of this assumption is explained
below. Here, using condition (34), we omit in Eq. (27)
the term containing the second derivative to obtain the
equation of the type

(35)

where VCY(x) is the complex Chudesnikov–Yakovlev
potential [4]

(36)

It is obvious that the solution of Eq. (35) has the form
(see also [5])

(37)

Now, the function ϕe(x, t) also can be easily found using
Eq. (25):

(38)

According to (7), the probability densities of finding
atoms in the metastable and excited states in the vicin-
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ity of the point x are determined by the squares of abso-
lute values of functions ϕm(x, t) (37) and ϕe(x, t) (38):

(39)

and

(40)

The dependences

of (39) and (40) on the x coordinate for a fixed interac-
tion time t are presented in Fig. 2. The width of the dis-
tributions dWm, e(x, t)/dx (39) and (40) is on the order of

(41)

where

(42)

Equation (41) shows that for t > t0, the width ∆x(t)
decreases with increasing interaction time t; i.e., the
wave packets of atoms appearing in the metastable and
excited states narrow down and their widths become
smaller than the wavelength of light, λ = 2π/k.

Solution (37) of Eq. (35) and the width of wave
packets (41) make it possible to specify condition (34)
for the passage from second-order Eq. (27) to first-
order Eq. (35). Indeed, the first and second derivatives
of function ϕm(x, t) entering Eq. (34) can be easily
found from (37). In the case of narrow wave packets,
the quantity cos(kx) can be replaced by the quantity –
k∆x determined by expression (41), which finally
reduces condition (34) to the form

(43)

Equation (43) determines the region of applicability of
first-order equation approximation (35). The character-
istic time t0 (42) introduced above can lie both outside
and inside this region depending on whether the Rabi
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frequency |Ω| is higher or lower than |∆ + iΓ/2|. There-
fore, in the general case, instant t, beginning from
which the narrowing of the wave packets appears, can
be defined as

(44)

According to (41), we formally have ∆x(t)  0
for t  ∞. It is clear that, indeed, the narrowing of the
wave packets should be restricted in some way. We will
show below that the narrowing process becomes lim-
ited outside the region of applicability of the adiabatic
approximation (see Section 7).

The total probabilities of finding an atom in the
metastable and excited states at instant t are determined
by the integrals over x from the probability density
dWm, e(x, t)/dx (8), which can easily be calculated:

(45)

(46)

where I0 and I1 are the modified Bessel functions [11, 12].
In the limit t @ t0. Eqs. (45) and (46) give

(47)

(48)

Therefore, under the conditions considered, a slow
nonexponential decay of atoms occurs [13]. The physi-
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cal reason for the slow decay is very simple. This is
explained by the fact that the atom at the metastable Em

level does not decay directly but should first undergo
the transition to an excited state, and only then does it
spontaneously emit a photon during a transition to
some other levels. The probability of such a process is
determined by the product of the probabilities of exci-
tation of the Ee level and its spontaneous decay. The
excitation probability is determined by the Rabi fre-
quency. However, even if the Rabi frequency Ω is large
compared to the inverse interaction time 1/t, the effec-
tive Rabi frequency Ωeff(x) = Ωcos(kx) can locally be
small for the atoms having an x coordinate (where
cos(kx) is small, i.e., in the vicinity of the nodes of a
standing wave). Therefore, the effective decay rate
Γeff(x), defined according to (37) and (38) as

(49)

can also be small. Hence, the slowing down of the
decay compared to the law exp(–Γt) is determined by
the contribution from the atoms (more exactly, parts of
the atomic wave function) for which Ωeff(x) and Γeff(x)
are relatively small, i.e., for which the value of cos(kx)
is small, which takes place near the nodes x ≈ π/2k of
the standing wave.

The appearance of the nonexponential, power decay
can be also explained quite simply. According to (37)
and (38), the decay law for each given x is exponential.
Therefore, if an unperturbed state of an atom were char-
acterized by a nonspreading localized wave packet of a
size much smaller than ∆x, the decay would be purely
exponential and the decay rate for this state would be
equal to Γeff(x). However, if the initial state of the atom
is a plane wave or a broad wave packet (of a size much
greater than ∆x), then the decay of this state is deter-
mined as a whole by a superposition of exponentials
with different decay rates. It is obvious that a sum of
exponentials is not an exponential. Therefore, the decay
dynamics of the atomic state is characterized by a
power rather than an exponential law.

Expression (41) describing the atomic wave-packet
width ∆x during scattering can be also used to specify a
general formal condition for the applicability of the adi-
abatic approximation (24). Assuming ∂/∂x ~ 1/∆x, we
can reduce condition (24) to the form

(50)

where the expressions in the right-hand side of inequal-
ities are large because of a small recoil energy.

Note finally that, similarly to passage from Eqs. (27)
to (35), we can also simplify Eq. (33) for the probability

Γ eff x( ) 2ImVCY x( )–
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amplitudes  by omitting the second derivative
with respect to time in (33) in the limit of large t. Then,
using the replacement

where n' = n/2 and n is an even number, n = 2n', we find
from (33) that functions bn'(t) satisfy the well-known
Raman–Nath equation [14]

(51)

which has the solution

(52)

As a result, the nonzero probability amplitudes 
take the form (primes at n' are omitted)

(53)

Obviously, the same result can be obtained using the
Fourier transform of the function ϕm(x, t) (37). The

probability amplitudes  can be found similarly
(for example, using the Fourier transform of the func-
tion ϕe(x, t) (38)):

(54)

Sums of the squares of the modulus of functions

 (53) and  (54) give the same expressions
for the total scattering probabilities as (45) and (46).

Therefore, a general conclusion concerning the
Raman–Nath approximation used in the problem under
study is that this approximation is not identical and is
more particular with respect to the adiabatic approxi-
mation. For the Raman–Nath approximation to be
valid, it is necessary, along with fulfillment of the adia-
batic approximation, to neglect the second derivatives

of functions ϕm(x, t) and  with respect to time in
Eqs. (27) and (33), respectively. As follows from the
above analysis, the latter approximation is valid only
when the interaction time is long enough, t > 1/Γ (43).
We will show in the next section that for t & 1/Γ, the
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expressions for (t) and (t) are much more
complicated than (45) and (46).

6. QUASI-ENERGIES AND SUPPRESSION 
OF RABI OSCILLATIONS

Thus, the treatment based on the solution of simpli-
fied first-order equation (35) is quite satisfactory in the
limit of sufficiently long interaction times (t > 1/Γ);
however, it cannot be used to analyze the dynamics of
the population of levels Em and Ee in the range of
shorter times t. This time range is of independent inter-
est, and to study it, second-order equation (27) or the
equivalent two-component equation (28) with matrix
Hamiltonian (30) should be solved. To solve these
equations with the same initial conditions as before, it
is necessary to preliminarily find the eigenvalues and
the eigenfunctions for these equations. In physical
terms, the eigenvalues and eigenfunctions are the quasi-
energies and quasi-energy wave functions of the sys-
tem. Further, because Hamiltonian (30) does not con-
tain, in the adiabatic approximation, derivatives with
respect to x, the x coordinate is a parameter or a quan-
tum number of the problem. Taking into account these
remarks, we will write the expressions for quasi-energies
γ±(x) defined as the eigenvalues of Hamiltonian (30):

(55)

The quasi-energies can be conveniently and dis-
tinctly represented graphically as broadened levels with
the boundaries

The distance between the upper and lower boundaries
of each band is equal to the width of the corresponding
quasi-energy level Γ±(x) = –2Imγ±(x), while the “cen-
ters of gravity” Re±(x) of the bands characterize the
shift of the levels in the field with respect to their posi-
tion Ω = 0 in the absence of field. A typical structure of
quasi-energy bands is shown in Fig. 3.

As follows from Eq. (55), one of the quasi-energies,
γ+(x), is transformed to the potential VCY(x) (36) when

In this case, the approximate equality γ+(x) ≈ VCY(x) is
valid over the entire range of variation of x only if the

Rabi frequency is small, |Ω| ! . If, how-
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ever, the Rabi frequency is large, |Ω| @ ,
then we have γ+(x) ≈ VCY(x) only in a relatively small
vicinity of a node of the standing wave, where the effec-
tive Rabi frequency Ωeff = Ωcos(kx) is small. In this
case the approximation of γ+(x) by the potential VCY(x)
is satisfactory for describing the behavior of the system
at long interaction times when the dynamic evolution of
atomic populations is determined by the region of the
most long-lived quasi-energy states. At shorter times,
the approximation γ+(x) ≈ VCY(x) is incorrect, and the
problem should be solved taking into account all the
quasi-energy states and correct expressions for quasi-
energies and quasi-energy wave functions. The latter
are defined as the eigenfunctions of Hamiltonian (30)
and, as can be easily verified, have the form

(56)

where x' is a quantum number and x is a dynamic
variable.

Note that, because Hamiltonian Had (30) is non-Her-
mitian, its eigenfunctions (56) are not orthogonal and
do not form a complete system of functions. To formu-
late the conditions of orthogonality and completeness,
it is necessary to additionally introduce a system of
eigenfunctions the Hermitian-conjugated Hamiltonian

. The eigenvalues of  are equal to , and

the corresponding eigenfunctions  differ from
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Fig. 3. Quasi-energy bands of an atom in the field of a stand-

ing light wave for ∆ = 0 and |Ω| = .2Γ
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 (56) only by the replacement of Γ by –Γ. For

this reason, the complex conjugate functions 
differ from  (56) only by the replacement of Ω

by Ω*. The functions  and  form a sys-
tem of biorthogonal functions [15], and the conditions
of their orthogonality and completeness are written in
the form

(57)

. (58)

Completeness condition (58) makes it possible at once
to write the solution to the initial problem:

(59)

For the initial conditions (6) under study, we have
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Fig. 4. Time-dependent partial probabilities  of

scattering into different diffraction maxima of atoms in a
metastable state. |Ω|/Γ = 5, ∆ = 0.
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Φ(x'', 0) = , and, finally, Eq. (59) gives

(60)

(61)

(62)

(63)

where Jn is the Bessel function [11, 12] (see the Appen-

dix). The dependences of functions  (62) on
interaction time t are shown in Fig. 4.

The partial probabilities  summed over n
determine the interaction, time-dependent, total resid-

ual probability  of finding an atom in a metasta-

ble state. The dependence  is shown in Fig. 5.

One can easily see that, for Γt & 1, the function 
oscillates at a frequency equal to the Rabi frequency.
For a purely two-level system in a homogeneous reso-
nance electric field with the strength amplitude 2E0, the
dependence of the lower-level population W (m)(t) is
shown by the dashed curve. One can see from Fig. 5
that the Rabi oscillations are strongly suppressed in the
case of scattering atoms compared to the oscillations of
the population for a purely two-level system [13]. This
is explained by the fact that the oscillations of partial
probabilities are not harmonic and the positions of min-

ima and maxima of the functions  (62) depend
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on the number n (Fig. 4). This leads to the suppression
and smoothing of oscillations upon summation over n
[see (14)]. One can see from Fig. 5 that the degree of
smoothing of Rabi oscillations increases with interac-
tion time t, and for Γt @ 1, oscillations are absent alto-
gether. In addition, the curves in Fig. 5 clearly demon-
strate that, according to the results of analysis per-
formed in the previous section, the decay of the

population  noticeably slows down in the limit
of large t compared to the purely exponential decay in
a two-level system in a homogeneous resonance field

(dashed curve). The dependences  calculated
numerically agree well with analytic asymptotic
expressions (47).

The partial, , and total, , probabili-
ties of finding an atom in the excited state are described
by curves similar to those presented in Figs. 4 and 5.

7. BEYOND THE SCOPE 
OF THE ADIABATIC APPROXIMATION

7.1. Basic Approximations and Equations 

According to the conclusion made in Section 4, the
kinetic energy operator (–1/2M)∂2/∂x2 is omitted in the
adiabatic approximation both in Eq. (4) for ϕm(x, t) and
Eq. (5) for ϕe(x, t). A general condition for the applica-
bility of these simplifications is written in the
form (24). On the other hand, Eqs. (4) and (5) are not
symmetrical: Eq. (5) contains a large term proportional
to , whereas Eq. (4) does not contain such a
term. In addition, when the interaction time is long,
t  @ 1, two parameters in the right-hand side
of Eq. (24) are of substantially different orders of mag-
nitude. For this reason, a range of parameters exists
where the kinetic energy is small compared to

 but not small compared to 1/t,

(64)

Under these conditions, it is reasonable to use in the
formulation given in Section 4 an alternative approxi-
mation, in which the kinetic energy operator is omitted
in Eq. (5) but retained in Eq. (4). Further, since, accord-
ing the analysis performed in Section 4, the main con-
tribution to the long-lived states of atoms comes from
the region near the nodes of a standing wave, where

 ! 1, we will approximate the cosine by a lin-
ear function, cos(kx) ≈ –ξ, where ξ = kx – π/2. Finally,
as before, we will only consider the case of normal inci-
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dence, p0x = 0. In this case, Eqs. (4) and (5) take the
form

(65)

and

(66)

where

(67)

Similarly to passage from Eqs. (25), (26) to
Eq. (27), Eqs. (65) and (66) can be replaced by one
equivalent higher order equation:
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smallness of 1/t compared to  (64), we omit
the corresponding small terms in Eq. (68) and reduce it
to the equation for the wave function of a quantum har-
monic oscillator with a complex potential:

(69)

for

(70)

Equation (69) has stationary or quasi-energy solu-
tions:

In the range |α| < π, the stationary solutions vanishing
for |ξ|  ∞ are usual wave functions of a harmonic
oscillator, but with a complex argument

(71)

where n = 0,1, 2, …, Hn are Hermitian polynomials and

(72)

The eigenvalues of Eq. (69), i.e., the complex quasi-
energies γn , are

(73)

where γ0 is the complex energy of the ground state of
the oscillator with the complex potential

(74)

The functions , corresponding to the found func-

tions  (71), are determined from Eq. (70).

Unlike the adiabatic approximation (Section 4), the
eigenvalue equation in the case of condition (64) is the
equation for one-component functions ϕm(ξ) (69), for
which the conditions of normalization and complete-
ness should be formulated. As before, the system of

functions  (71) belongs to the class of biorthog-
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onal functions. The eigenvalues of the Hermitian-con-
jugated Hamiltonian are , while the eigenfunctions

 differ from  only by the replacement of

α by –α (67). This means that functions [ ]*

coincide with . The conditions of normaliza-
tion and completeness are determined by equations of
type (57) and (58) and have the form

(75)

(76)

7.2. Solution of the Initial Problem 

Using the completeness condition (76) for the initial
condition ϕm(ξ, t = 0) ≡ 1 (6), the solution of the initial
problem is written in the form

(77)

The sum over n can be calculated explicitly using the
Möller formula [11] as

(78)

where

(79)

is the dimensionless time and t1 is a new characteristic
value of the interaction time:
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Because the recoil frequency ωr is small, as a rule, t1 >

 (44), although the interval between  and t = t1 can-
not be too large. It is interesting that when the detuning
is very large, |∆| @ Γ, the value of the parameter

can be comparable to

(for |∆| ≈ (Γ|Ω|)2/3/4 ).

The probability density (7) determined by
ϕm(ξ, t) (78) is

(81)

where

(82)

∆ξ(t) is the time-dependent width of the distribution
dWm(ξ, t)/dξ,

(83)

The time-dependent total probability  (8) of
finding an atom in the metastable state is obtained
from (81) by integrating over ξ:

(84)
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bility density of finding atoms at the excited level is
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related to 
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 (81) by the expression

(85)

which, after integration with respect to 

 

ξ

 

, gives

(86)

 

7.3. Limiting Cases and Discussion of Results

 

7.3.1 Adiabatic limit. 

 

In the limiting case of small
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, 
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!

 

 1, general formulas (81)–(86) are transformed to
the expressions for distributions of the probability den-
sity, the width of the distributions (41) and total proba-
bilities (45) and (46) found earlier. Therefore, accord-
ing to definitions (79) and (80), the region of existence
of a power decay described in the adiabatic approxima-

tion is restricted by the condition  < 

 

t

 

 < 

 

t

 

1

 

. According

to the above discussion,  can become greater than 

 

t

 

1

 

at large detunings, resulting in the disappearance of the
region of existence of a power decay.

To compare in more detail the results obtained in the
adiabatic approximation in Sections 4–6 with the
results of this section, it is interesting to compare the
corresponding quasi-energy functions and quasi-ener-
gies. It is clear that in passing from the quasi-energy
problem to the initial problem, the quasi-energy 
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 is
replaced by the time derivative 

 

∂

 

/

 

∂
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, which is on the
order of 1/

 

t

 

, i.e., 
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 ~ 1/
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. It follows from this relation
and Eqs. (73), (74) that the characteristic values of 
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contributing to the solution of the initial problem (77)
are on the order of 
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eff

 

 ~ 1/
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. In the adiabatic limit, for
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 1, we have neff @ 1. This means that a great number
of terms with n ~ neff @ 1 make a substantial contribu-
tion to the sum over n in (77), which makes it possible
to replace the summation over n in (77) by integration.
Further, the wave functions of a harmonic oscillator
with the complex arguments of type (71) possess quite
interesting properties and can noticeably differ from the
wave functions of an oscillator with a real potential. Fig-

ure 6 shows an example of the function  (71)
(for ∆ = 0), which has one distinct maximum. Analysis
of such curves for arbitrary n shows that the position of
their maxima is determined by the condition |η|0(n) =

21/4  or

(87)
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By using ξ0 (87) instead of n as a new quantum number,
we reduce the sum over n in Eq. (77), transformed to
the integral with respect to dn, to the integral with
respect to dξ0, in accordance with Eq. (59) obtained in
the adiabatic approximation. The power decay law
appearing in this case is explained by the fact that,
although each term in the sum over n in (77) depends
on exponentially time, their sum (or integral) is not an
exponential.

In terms of ξ0 (87), for n @ 1, the expressions for
quasi-energies (73) and (74) take the form
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Fig. 7. Asymptotic width ∆ξas (89) of the wave packet of
atoms in a metastable state as a function of the resonance
detuning ∆; ∆ξas is expressed in units (4ωrΓ)1/4|Ω|–1/2 ∆—
in units Γ/2.
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For ∆ = 0, Eq. (88) gives

where γ+(x) and VCY(x) are described by Eqs. (55) and
(36), kx ≡ ξ0, and |ξ0 | ! 1. This result shows that, in the
limit τ ! 1 for ∆ = 0, the imaginary part of the quasi-
energy is transformed to expressions obtained in the
adiabatic approximation. However, there also exists the
real part γ(ξ0), equal to the modulus of the imaginary
part, which does not appear in the adiabatic approxima-
tion. Therefore, there is no, in a certain sense, complete
passage to the adiabatic limit at τ  0 or ωr  0,
and point ωr = 0 for a quantum harmonic oscillator with
a complex potential [Eq. (69)] is an essential singu-
larity.

7.3.2. Nonadiabatic scattering. As follows from
the above discussion, nonadiabatic scattering occurs in
the case opposite to that considered above, when τ @ 1.
This is the asymptotics of a long interaction time.
According to the estimate neff ~ 1/τ obtained earlier,
when τ @ 1, only the term with n = 0 makes the main
contribution to the sum over n in (77). This is explained
by the fact that in the limit τ @ 1, all terms with n ≥ 1
become exponentially small compared to the term with
n = 0. Therefore, for τ @ 1, the width of the distribution
dWm(ξ, t)/dξ tends to its asymptotic value ∆ξas , which
is determined by the width of the region of localization
of the wave function of the ground state of the oscillator

with the complex potential  (71), which, in turn,
is determined by the condition Re(η2) ≈ 1, giving

(89)

Of course, the same result follows from general expres-
sion (83) in the limit of large τ. The width ∆ξas (89) is
independent of time t. Therefore, the wave packet of
atoms in the metastable state narrows down with
increasing interacting time t until the power decay
begins (t < t1), and the wave packet ceases to narrow
down for t @ t1. The asymptotic behavior of the wave
packet width at long interaction times (see below) and
the asymptotic value of the width (89) depend on the
value and sign of the resonance detuning ∆. The depen-
dence of the asymptotic width ∆ξas (89) on the reso-
nance detuning ∆ is shown in Fig. 7. One can easily see
that this dependence is asymmetric with respect to the
sign of the detuning. For large negative detunings ∆, the
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asymptotic width of the distribution ∆ξ rapidly
increases,

The condition of smallness of the asymptotic width of
the wave packet compared to the wavelength of light,
∆ξas ! 1, restricts in this case the value of detuning,

This restriction coincides with the above-discussed
condition of the existence of the nonzero region of adi-
abatic nonexponential decay t0 ! t1. The value of the
asymptotic width ∆ξas (89) of the wave packet mini-
mized by the resonance detuning ∆ is achieved for

2∆/Γ = 1/  and is equal to

(90)

Using the minimal width ∆ξmin (90) of the wave
packet, we can specify the restriction on the value of the
Rabi frequency |Ω| at which the condition of small-
ness of the kinetic energy of atoms compared to

 (64) is fulfilled. Assuming that ∂/∂x ~
k/∆ξmin and |∆| ~ Γ, we find the restriction on |Ω|:

(91)

which follows from (64). Because Γ @ ωr (usually Γ ~
103ωr), restriction (91) does not contradict the assump-
tion on the realization of diffraction rather than Bragg

scattering, |Ω| ≥ .

As for the asymptotic behavior of the packet width
∆ξ(t) tending to its asymptotic value (89), it is deter-
mined in the general case by Eq. (83). Figure 8 shows
the dependences ∆ξ(t) for different values and signs of
the resonance detuning ∆. One can see that the specific
feature of the case of positive detunings ∆ > 0 is that the
width ∆ξ(t) of the atomic wave packet tends to its
asymptotic value (89), exhibiting distinct oscillations
(curve 1 in Fig. 8). The oscillations appear due to the
presence of terms with different n in superposition (77).
The oscillation frequency is equal to the eigenfre-
quency of an oscillator with the complex potential
Reγ0, where γ0 is determined by Eq. (74). The specific
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feature of the case of sufficiently large positive detun-
ings is determined by the fact that we have

(for not very large values of n). For this reason, both
superposition (77) and the width of the corresponding
distribution over ξ have time to perform a few oscilla-
tions for the time (~|Imγ0 |–1) when the total probability

 takes its asymptotic value. Because only the
term with n = 0 remains in the superposition of quasi-
energy wave functions (77) in the long-time interaction
asymptotics τ @ 1, the asymptotic dependence of

 is determined by the factor

This means that, in the nonadiabatic regime (when t @ t1),

the power decay occurring in the interval  & t & t1

passes to the exponential decay with the modified
decay constant

(92)

which differs substantially from the decay constant Γ of
a free atom.

Because, as was shown, the wave packets of atoms
in the metastable and excited states do not narrow down
in the region t > t1 and the absolute value of populations
in these states decreases, it is useless in practice to
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increase the interaction time above t1. Let us present
some estimates. For t = d/v0, where d and v0 are the
diameter of a laser beam and the velocity of atoms,
respectively; v0 ~ 105 cm s–1; |Ω| = 10Γ; ωr = 10–3Γ; and
Γ ~ 108 s–1, condition t = t1 and Eqs. (80) and (90) give
d ~ 3 × 10–3 cm and ∆xmin ~ 10–6 cm.

8. CONCLUSIONS

In this paper we have studied the dynamics of spon-
taneous radiation of atoms scattered by a resonance
standing wave under the conditions when (i) diffraction
rather than Bragg scattering occurs; (ii) the lower of the
two resonance levels of an atom is narrow (metastable),
while the upper level is broad; (iii) the width of the
upper (excited) level is mainly determined by spontane-
ous radiative transitions to the levels other than the
metastable level; and (iv) the Rabi frequency Ω, the
decay rate Γ of the excited level, and the recoil fre-
quency ωr satisfy the conditions |Ω| ≥ Γ @ ωr .

We have shown that in this case, substantially differ-
ent regimes of adiabatic and nonadiabatic scattering
can be realized. The conditions of the existence of these
regimes are t < t1 and t > t1, respectively, where t is the
interaction time and t1 is determined from Eq. (80).

We have found that, in the adiabatic regime when
the recoil of an atom can be completely neglected, the
metastable and excited levels decay according to a
power law rather than an exponential one. We have also
shown that, at small times, t < 1/Γ < t1, the populations
of working levels oscillate at the Rabi frequency |Ω|,
their oscillations being strongly suppressed compared
to the case of an atom in a homogeneous resonance
field.

In addition, in this regime, the spatial region of
localization of the wave packets of atoms remaining in
the metastable and excited states narrows down, the
appearing narrow wave packets being localized in the
vicinity of the nodes of a standing wave.

We also have shown that the narrowing down of the
wave packets ceases in the nonadiabatic regime and
their width achieved its minimal value determined by
Eq. (89). In this case, the power decay of atomic levels
transforms to the exponential decay with the decay con-

stant  (92), which is lower than the decay rate Γ of a
free atom, decreases with increasing Γ, and depends
both on the value and sign of the resonance detuning ∆
and on the Rabi frequency |Ω|. We believe that the
effects discovered and described in this paper are quite
interesting and can be observed experimentally.
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APPENDIX

Derivation of Expressions (62) and (63)

Consider in more detail the derivation of expres-

sions (62) and (63) for partial probabilities .
This can be most simply demonstrated for the function

. For this purpose, we represent the function
ϕe(x, t) (61) in the form

(A.1)

Using the expression

(A.2)

which is valid for any complex a and b [16], we repre-
sent Eq. (A.1) in the form

(A.3)

Thus, the calculation of the amplitude of the partial

probability  (9) is reduced to the calculation of
the Fourier transform of the product
cos(kx)cos[(|Ω|tz/2)cos(kx)] over x:

(A.4)

The integral with respect to the variable ϕ in the
right-hand side of Eq. (A.4) can be calculated by sub-
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stituting the well-known expression for a sum contain-
ing Bessel functions J2n [12, 16]

(A.5)

into the integrand, which gives

(A.6)

Here, δn, 2m + 1 is the Kronecker delta and m = 0, ±1,
±2, …

By substituting expression (A.6) into Eq. (A.4) for

the amplitude , we obtain expression (63) for the

probability .

To calculate the Fourier components for the function
ϕm(x, t), we convert Eq. (60) to the form

(A.7)

The Fourier transform of the first term in the right-
hand side of Eq. (A.7) is calculated using a similar for-
mula [16]:
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where the quantities t(∆ + iΓ/2)/2 and |Ω|tcos(kx)/2 are
used, as before, as parameters a and b, respectively.
Using Eqs. (A.2) and (A.8), we represent the function
ϕm(x, t) (A.7) in the form

(A.9)

Therefore, the problem of calculating the amplitude

of the partial probability  (9) is reduced to the
calculating the Fourier transform of the function
cos[(|Ω|tz/2)cos(kx)] over x:

(A.10)

Expression (A.10) can be calculated by substituting
Eq. (A.5) into the integrand, which gives

(A.11)

By substituting expression (A.9) into expression (9)

for the partial amplitude  and taking into account
Eq. (11), we obtain expression (62) for the probability

.
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Abstract—The stationary condition is derived taking into account the polarization of radiation in the general
case of a scattering inhomogeneous medium in an arbitrary-shape emitter. The necessary stationary condition
for an emitter in which radiation is emitted and extinguished simultaneously is complete extinction of the entire
emitted radiation. Radiation extinction as a result of absorption by the medium and the emergence of radiation
from the emitter is analyzed. The stationary condition is an analytical form of writing that extinction of radia-
tion is a sure event whose probability is equal to unity. The passage of radiation through the medium is
described on the basis of the linear transport theory with the help of the matrices of the Green functions. The
stationary condition includes the characteristics of polarized radiation extinction of which is analyzed, the
absorption coefficients of the medium, and the elements of the matrices of the Green functions, which are deter-
mined by optical and geometrical parameters of the emitter. The stationary condition obtained is used for deriv-
ing the relations between the components of scalar intensity observed in an arbitrary region of the emitter. These
relations include, in addition to the absorption coefficients and the matrix elements of the Green functions, the
powers of the primary radiation. Possible applications of the stationary condition and the relations between
intensity components in computations and experimental studies are considered. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

In this study, stationary radiation in scattering media
is investigated taking polarization into account. Radia-
tion is characterized by four Stokes parameters or,
which is the same, by the vector intensity [1, 2]. The
vector intensity is usually described by the stationary
transport equation similar to the scalar equation used in
the absence of polarization effects. The results of solu-
tion of this equation are diversified and are determined
by specific conditions in the emitter. The solutions of
stationary transport equations are treated in a large
number of publications in this field.

In the following, a different approach will be devel-
oped to describe the emission of objects with scattering
media. This study is aimed at deriving relations con-
necting the characteristics of radiation, which are valid
under various conditions, i.e., independent of the shape,
inhomogeneities, and other specific features of the
emitter. Such relations cannot be obtained from an
analysis or solution of equations describing the process
of radiation transport in question. In order to derive
these relations, general conditions that are not con-
tained in the equations are required. The necessary con-
dition for stationary radiation will be analyzed and used
here as such a condition.

In a stationary emitter, radiation appears and van-
ishes continuously. Radiation is usually emitted as a
result of transformation of the energy of a substance in
1063-7761/03/9703- $24.00 © 20539
the emitter into the radiant energy or as a result of the
arrival of radiant flux from without. Radiation may van-
ish as a result of opposite or other processes. It is
important that the entire radiation of a preset frequency,
appearing over a certain time interval, disappears over
the same time period. Extinction might not occur in the
same parts of the emitter where radiation appears; i.e.,
a detailed balancing that takes place under equilibrium
conditions alone is not required. The condition of com-
plete extinction of the emerging radiation is a necessary
stationary condition. Radiation forming any stationary
flux must vanish since all fluxes result from the passage
of primary radiation through the medium.

The necessary stationary condition was derived ear-
lier [3–6] without taking into account the polarization
of radiation. The stationary condition was written as the
condition that extinction of the emerging radiation is a
sure event whose probability is equal to unity. It was
proved that the stationary condition provides new ways
for describing radiation and may be helpful in experi-
ments and computations. The stationary condition was
derived both in the case when the radiation transport
theory is valid and when this theory cannot be applied
to the interior of a scattering medium.

In this study, the necessary stationary condition is
treated as the condition of complete extinction of radi-
ation in the case when polarization has to be taken into
account (including the polarization of primary radiation
003 MAIK “Nauka/Interperiodica”
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and the effect of dispersion in the medium on the polar-
ization. The passage of radiation through the medium is
described using the matrices of the Green functions.
The analysis is carried out under the assumption that
the linear theory of radiation transport is applicable for
describing both the observed radiant fluxes as well as
extinction of radiation. The transport theory can be
used under the assumption that the processes of radia-
tion emergence and extinction in the emitter are com-
pensated instantaneously since the radiation averaged
over time periods much longer than the times of radia-
tion emergence, extinction, and propagation is usually
considered.

In a quite general case, the emitter occupies a certain
volume containing a heterogeneous emitting, absorb-
ing, and dissipative medium. The volume is surrounded
by a limiting surface. Primary radiation can emerge in
the medium in the bulk or penetrate the volume from
the surface. The preset intensity of radiation arriving
from outside plays the role of the boundary condition of
the problem involving the solution of the transport
equations. Generally speaking, the boundary surface
can be chosen arbitrarily. It is only important that the
radiation entering the volume be specified on the
boundary surface. Often, a real surface such as the sur-
face of the walls of a gas-discharge or plasma emitter is
chosen as the boundary surface. The radiation intensity
in any region of the emitter is determined by solving the
transport equation if primary sources of radiation in the
volume, the characteristics of interaction between radi-
ation and the substance in the volume, and the radiation
entering in the volume are known.

Let us consider the conditions for the applicability
of the linear transport theory in emitters with consider-
able dispersion. The linear transport theory can be used
when the following basic requirements are satisfied.

First, it is necessary that geometrical optics be appli-
cable in the description of propagation of radiation in
the medium in the emitter volume [7, 8]. In a scattering
medium, the requirement of a large distance between
strong inhomogeneity regions from which scattering
takes place is important. Scatterers must be separated
by distances larger than the distance between a scatterer
and the wave region. At such distances, electromag-
netic waves can be regarded as quasi-plane, and geo-
metrical optics is applicable [8]. Geometrical optics
must be applicable everywhere within the boundary
surface.

Second, the linear theory must be valid. All charac-
teristics of the interaction between radiation and the
substance in the volume must be preset; i.e., these char-
acteristics must be independent of the radiation under
study. The flux entering the emitter from outside
through the boundary surface must also be independent
of the radiation in question. This is taken into account
in the above boundary condition, according to which
the intensity of incoming radiation must be preset.
However, the requirement that the incoming flux must
JOURNAL OF EXPERIMENTAL
be independent of the radiation being analyzed means
that the flux falling on the same boundary surface from
inside should not return to the emitting volume. In other
words, radiation falling on the boundary surface from
the interior must disappear completely from the emitter,
as assumed in this study.

Thus, radiation in the given problem emerges and
disappears in the same region, namely, in a volume sur-
rounded by a bounding surface and on this surface. The
linear transport theory must be applicable precisely in
this region.

Extinction of radiation emerging at a certain real
surface is ensured when the surface absorbs this radia-
tion completely or completely transmits radiation to the
surroundings. Cases of reflection or scattering from the
boundary surface will not be considered in the subse-
quent analysis. It appears at first glance that this consid-
erably limits the range of possible application of the
results. In fact, the problem can be solved easily in
many cases since the boundary surface is chosen, as
mentioned above, quite at random and can often be cho-
sen in such a way that the condition for complete
extinction of the emerging radiation is satisfied.

In the derivation of the necessary stationary condi-
tion, we will consider the extinction of any radiant flux
in the emitter. Extinction of radiation is determined by
absorption in the substance in the volume of the emitter
and complete extinction of radiation falling on the
bounding surface.

The stationary condition forms the basis for deriving
a relation between the radiation intensity components.
The relation contains quantities which have to be inves-
tigated both theoretically and experimentally. Since the
stationary condition and the relation between the com-
ponents are valid in a quite general case, these can be
used in theoretical and experimental studies of various
emitters.

2. CHARACTERISTICS OF RADIATION 
AND ITS INTERACTION WITH A MEDIUM

We will consider below elliptically polarized radia-
tion since radiation with an arbitrary degree of polariza-
tion can be represented as a superposition of two inde-
pendent elliptically polarized radiations [1].

Polarized radiation will be described using the
Stokes parameters I, Q, U, and V. Here, I is the total sca-
lar intensity defined as a specific radiant flux calculated
for unit intervals of time, radiation frequency, solid
angle, and area element perpendicular to the flux. This
flux includes the entire radiation irrespective of the
polarization and does not differ from the scalar inten-
sity used in the case when polarization is not taken into
account. The polarization state is described by parame-
ters Q, U, and V. Parameters Q and U depend on the
ellipticity (the ratio of the major and minor axes of the
polarization ellipse) and the ellipse orientation, while
parameter V is determined by the ellipticity and the
 AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003
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direction of motion of electric vector E (Fig. 1). In
Fig. 1, the ellipticity is determined by angle β and ori-
entation in the coordinate system x, y, z is determined
by angle χ. Parameters Q, U, and V can be defined
as [1]

(2.1)

All the Stokes parameters are proportional to the total
radiation intensity I and have the same dimension. In
the case of nonpolarized radiation, Q = U = V = 0, while
for linearly polarized light, for χ = 0, we have U =
V = 0.

We introduce the following notation for the trigono-
metric factors appearing in Eqs. (2.1):

(2.2)

All the Stokes parameters are usually written as inten-
sity vector I, i.e., in the form of a 1 × 4 matrix. Using
notation (2.2), we can represent the intensity vector in
one of the following forms:

(2.3)

Here and below, the symbol T denotes transposition.
In the vector equation for radiation transport, the

change in the Stokes parameters in each act of scatter-
ing is determined by the phase matrix, which can be
written in the general case in the form

(2.4)

Here, u' and u are the unit vectors determining the
direction of radiation before and after scattering. The
phase matrix and its elements depend on these direc-
tions.

Individual elements of matrix (2.4) describe the
transformation of each of the Stokes parameters as a
result of a single act of scattering. In accordance with
the generally accepted notation, the second subscript on
each element indicates the parameter being transferred,
while the first subscript indicates the resultant parame-
ter. For example, ZQI describes the variation of parame-
ter Q as a result of variation of parameter I.

Q I 2β( )cos 2χ( ),cos=

U I 2β( )cos 2χ( ),sin=

V I 2β( ).sin=

q 2β( )cos 2χ( ), u 2β( ) 2χ( ),sincos≡cos≡
v 2β( ).sin≡

I

I

Q

U

V

I

1

q

u

v

× I 1 q u v, , ,[ ] T .×= = =

Z u' u( )[ ]

ZII ZIQ ZIU ZIV

ZQI ZQQ ZQU ZQV

ZUI ZUQ ZUU ZUV

ZVI ZVQ ZVU ZVV

= .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
Phase matrix Z[r, (u'  u)] determines the trans-
formation of intensity vector I(r, u') into vector
Iscat1(r, u) upon single scattering via the relation

(2.5)

Here, it is noted that phase matrix Z in the general case
may be different in different regions of the emitter; i.e.,
it can be a function of radius vector r (Fig. 2). When
scatterers possess symmetry, the characteristics of scat-
tering may satisfy certain symmetry relations [9]. In the
subsequent analysis, the reciprocity relation connecting

Iscat1 r u,( ) Z r u' u( ),[ ] I r u',( ).×=

A

D

B

E

χ

β

y

x

z

C

Fig. 1. Polarization ellipse: x, y, and z represent an arbitrary
system of coordinates; AB and CD are the major and minor
axes of the ellipse; χ is the angle determining the orientation
of the ellipse in the x, y, z system; and β is the angle deter-
mining the ellipticity of polarization.
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Fig. 2. Schematic diagram illustrating the passage of radia-
tion through a scattering medium: b is the light ray, r, r', r'',
and r* are radius vectors of points in the bulk of volume V;
r0, , and rS are the radius vectors of points on surface S;

u, –u, u', –u', , and  are the unit vectors determining

the direction of radiation.
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ur' u0'

u
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the phase functions in forward and backward scattering
will be required. It was shown in [10] that the reciproc-
ity relation in the case of scattering from arbitrarily ori-
ented particles possessing a symmetry plane has the
form

(2.6)

Here, (u'  u) and (–u  –u') determine the change
in the direction of emission as a result of single direct
and backward acts of scattering, respectively, and e3 ≡
diag[1, 1, –1, 1] is a diagonal matrix. In accordance
with Eq. (2.6), multiplication by this matrix reverses
the signs of nondiagonal elements of the third column
and the third row of matrix ZT, which describes the sign
reversal of Stokes parameter U [10, 11]. This is
required since the reversal of the direction of the radiant
flux changes the sign of angle χ (see Fig. 1) and, in
accordance with formulas (2.1), the sign of U also.

When scatterers have an arbitrary shape, reciprocity
relation (2.6) holds only in certain special cases, for
example, in the case of Rayleigh scattering, when ran-
domly oriented scatterers are small as compared to the
radiation wavelength.

In this study, the interaction of radiation with a sub-
stance is described not only by the phase matrix, but
also by the coefficients of absorption (kabs), scattering
(kscat), and extinction (kext = kabs + kscat). It is assumed
that the coefficients of absorption and scattering (as
well as of extinction) are independent of the direction
of radiation and its polarization, but may depend on the
position of the region in the emitter under investigation.
The refractive index of the medium, which determines
the propagation of radiation between acts of scattering,
is assumed to be equal to unity.

In this study, we consider only elastic scattering,
when the radiation frequency does not change as a
result of scattering. All the characteristics of radiation
and its interaction with the medium introduced above
are usually functions of frequency; for the sake of brev-
ity, the notation for frequency will be omitted.

3. MATRICES OF THE GREEN FUNCTIONS
AND EXPRESSION OF INTENSITY IN TERMS 

OF PRIMARY RADIATION SOURCES

In this section, we will write the transport equation
in the general case, introduce the matrices of the Green
functions, and represent the solution to the equation
with the help of these matrices. The Green function will
be used in Section 4 for deriving the stationary condi-
tion. The solution to the transport equation will be
required for deriving the relation between the radiation
intensity components in Section 5.

Z u u'––( ) e3ZT u' u( )e3.=
JOURNAL OF EXPERIMENTAL
We will write the steady-state transport equation for
polarized radiation. Suppose that volume V contains an
inhomogeneous scattering, absorbing, and emitting
medium (see Fig. 2). Primary radiation emitted by the
medium can be polarized. Volume V is surrounded by
an arbitrary nonconcave surface S from which radiation
with a preset vector intensity IS(r0, u0) can enter the
volume. This determines the boundary conditions of
the problem. The transport equation for the intensity
vector has the form [1, 12]

(3.1)

Here, ∂/∂b denotes differentiation along ray b passing
through point r in direction u. Vector j is a function of
sources, which describes the emission of radiation by a
unit volume of the medium in unit intervals of solid
angle, frequency, and time. In the case considered here,
we can write

(3.2)

where the first term on the right-hand side is the source
determined by scattering of radiation arriving from all
directions,  is the direction of arriving radiation, d
is an element of the solid angle, pV(r, u) is the primary
source of radiation in volume V, and pS(r, u) is the pri-
mary stepwise radiation source determined by the
expression:

(3.3)

The boundary conditions specified on surface S are
introduced into the transport equation with the help of
such a surface source, as was done in [13] for nonpolar-
ized radiation. The vectors pV and IS of primary volume
sources and intensities of radiation entering the volume
are assumed to be preset.

Vectors j and p of sources introduced above are
determined by the Stokes parameters analogously to
the intensity vector defined by formulas (2.3). For
example, the vector of primary sources can be repre-
sented in the form

(3.4)

Here, pV(r, u) is the total power of the primary source,
including radiation of any polarization. The polariza-
tion of the primary source is determined by vector
[1, qp, up, v p]T; for the sake of brevity, arguments (r, u)
have been omitted in the notation of this vector. Sub-
scripts p denote the trigonometric characteristics of
polarization of the primary sources. It can be seen from

∂I r u,( )
∂b

------------------ j r u,( ) kextI r u,( ).–=

j r u,( ) kscat r( ) ur' Z r ur' u,( )I r ur',( )d

4π
∫=

+ pV r u,( ) pS r u,( ),+

ur' ur'

pS r u,( ) IS r0 u0,( )δ r r0–( )δ u u0–( ).=

pV r u,( ) pV r u,( ) 1 qp up v p, , ,[ ] T .=
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Eq. (3.3) that polarization pS of the source does not dif-
fer from polarization of intensity IS(r0, u0).

The solution to the linear transport equation, i.e., the
expression for intensity vector I in terms of primary
sources pV and pS , can be written in terms of the matrix
of the Green functions G [14–17]. In the general case,
a matrix of the Green function has the form

(3.5)

This matrix describes the variation of Stokes parame-
ters as a result of passage of radiation from point (r', u')
to point (r, u) in the emitter volume. The meaning of the
indices of the matrix elements is similar to that of the
indices of the phase matrix in the sense that the second
subscript indicates the Stokes parameter being trans-
formed and the first subscript denotes the resultant
parameter. The significant difference is that the param-
eter being transformed characterizes radiation at the
initial point (r', u') of radiation transport through the
medium, while the resultant parameter characterizes
radiation at the final point (r, u). Each matrix element
describes this transformation of the initial parameter to
the final one. For example, GUI describes the transfor-
mation of parameter I characterizing radiation at point
(r', u') into parameter U corresponding to radiation at
final point (r, u).

Function G has the meaning of the response func-
tion. To be more precise, function G[(r', u')  (r, u)]
describes the part of the radiant flux having direction u'
at point r', which arrives at point r in direction u. The
polarization state of radiation changes in this case.
When radiation passes through the emitter, scattering
may occur in any region of volume V any number of
times, the last scattering occurring at any point r* of ray
b between points r0 and r (see Fig. 2). If radiation gets
from volume V to surface S, it is excluded from the sub-
sequent analysis since the intensity of radiation enter-
ing volume V from surface S has already been taken
into account in the given problem by specifying the
boundary intensity IS(r0, u0).

Function G is calculated for unit area elements and
unit intervals of the solid angle at the final point of radi-
ation trajectory, i.e., at (r, u). Since radiation transport
is a statistical process, functions G have a probabilistic
meaning. For example, G[(r', u')  (r, u)] is the
probability density that radiation passes through the
medium along arbitrary paths in volume V from point
(r', u') to point (r, u).

The equation determining the matrix of the response
function can be written on the basis of probabilistic
meaning, taking into account all possible paths of radi-
ation in the scattering medium from one point to

G r' u',( ) r u,( )[ ]

GII GIQ GIU GIV

GQI GQQ GQU GQV

GUI GUQ GUU GUV

GVI GVQ GVU GVV

.=
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another without taking into account the polarization as
was done in Section 3.2 of [3]. We will not write this
equation here to avoid repetition.

Matrix G and all its elements are determined by the
set of optical parameters of the interaction of radiation
with the substance introduced above; consequently, the
matrix and its elements can be functions of radiation
frequency. The response functions also depend on the
geometrical parameters of the emitter. On the other
hand, the matrices of the response function describe the
propagation of an arbitrary radiation of the given fre-
quency in the medium and are independent of the char-
acteristics of this radiation and on whether or not the
radiation in question is primary radiation.

It can be proved that a similar relation holds for the
matrices of the Green functions in the case when the
reciprocity relation holds for phase functions (2.6) and
the coefficients of absorption and extinction are inde-
pendent of the direction:

(3.6)

The correctness of this relation can be proved in the
same way as in [13] for nonpolarized radiation on the
basis of analysis of equations for the Green function.
Similar relations are successfully used in various appli-
cations (see, for example, [14, 15]).

The expression for the intensity vector in terms of
primary sources with the help of the matrices of the
Green functions at an arbitrary point of the emitter can
be written in the form

(3.7)

Here, d3r' and d2  are elements of the volume and the

surface and du' and d  are elements of solid angles.
Here and below, the representation of the intensity vec-
tor in the form of sums and integrals is a consequence
of the linearity of the transport equation and of the lack
of correlation for primary sources of radiation.

The first term in Eq. (3.7) takes into account the
arrival of radiation from all primary volume sources
pV(r', u') at point (r, u), while the second term takes into

account all surface sources . We denote by
IV(r, u) and IS(r, u) the first and second terms on the
right-hand side of Eq. (3.7). In addition, we introduce
instead of the integrands the partial intensity compo-
nents i of radiation observed at point (r, u). Each partial
component of intensity i is due to primary radiation
emitted in a certain region of the volume or the surface,

G↑↓ r –u,( ) r' –u',( )[ ]

=  e3GT r' u',( ) r u,( )[ ] e3.

I r u,( ) r'3 u'G r' u',( ) r u,( )[ ] pV r' u',( )d

4π
∫d

V

∫=

+ r3 '0d

S

∫ u0' G r0' u0',( ) r u,( )[ ] IS r0' u0',( ).d

2π
∫

r0'

u0'

IS r0' u0',( )
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the primary radiation being calculated per unit volume
or surface per unit solid angle:

(3.8)

(3.9)

(3.10)

Let us write in greater detail the partial scalar inten-
sities, i.e., partial components of the Stokes parame-
ter I. We assume that iV and iS are determined by the
integrands from Eq. (3.7), where the Green functions
are described by matrices (3.5), while primary sources
are described by vectors (3.4) for (r = r', u = u') or by
Eq. (2.3) for I = . Then the partial scalar inten-
sities are determined by the product of the first row of
matrix (3.5) and a column of vector (3.4) or (2.3). We
also take into account the fact that the trigonometric
factors of primary sources depend on the radius vectors
and directions of these sources. This gives

(3.11)

(3.12)

It follows hence that the partial scalar intensities
depend to a considerable extent on the scalar and trigo-
nometric characteristics of primary sources as well as
on all geometrical and optical parameters of the object
(via the elements of the Green function).

4. NECESSARY STATIONARY CONDITION

The statement that the emergence of radiation in a
steady-state emitter must be compensated by its extinc-
tion refers to any radiant flux. Let us analyze all possi-
bilities for the extinction of a steady-state flux having
direction u at point r and characterized by intensity
I(r, u).

In the problem considered here, radiation extinction
can be due only to the absorption by the medium or

I r u,( ) IV r u,( ) IS r u,( ),+=

IV r u,( ) r'3 u'd

4π
∫ iV r' u',( ) r u,( )[ ] ,d

V

∫=

IS r u,( ) r2 '0 u0'd

2π
∫ iS r0' u0',( ) r u,( )[ ] .d

S

∫=

IS r0' u0',( )

iV r' u',( ) r u,( )[ ]
=  pV r' u',( ) GII r' u',( ) r u,( )[ ]{
+ GIQ r' u',( ) r u,( )[ ] qp r' u',( )

+  G IU r ' u ' ,( ) r u ,( )[ ] u p r ' u ' , ( )

+

 

G

 

IV

 

r

 

'

 

u

 

'

 
,( )

 

r u

 
,( )[ ]

 

v

 

p

 

r

 

'

 

u

 

'

 
,

 

( )

 
}

 

,

iS r0' u0',( ) r u,( )[ ]

=  IS r0' u0',( ) GII r0' u0',( ) r u,( )[ ]{

+ GIQ r0' u0',( ) r u,( )[ ] q r0' u0',( )

+ GIU r0' u0',( ) r u,( )[ ] u r0' u0',( )

+ GIV r0' u0',( ) r u,( )[ ] v r0' u0',( ) } .
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emergence beyond the emitter, i.e., to the surrounding
surface

 

 S.

 

 In contrast to scattering, the extinction of
radiation affects only scalar parameters of fluxes and
does not influence their polarization since absorption
by the medium, which is determined by absorption
coefficient 

 

k

 

abs

 

, as well as extinction on the surrounding
surface, is independent of polarization.

The flux in question passes through the emitter and
can, generally speaking, reach any point in volume 

 

V 

 

or
surface 

 

S

 

 as a result of scattering. If the passage of radi-
ation is described with the help of the Green functions,
the arrival from point (

 

r

 

, 

 

u

 

) to any point (

 

r

 

', 

 

u

 

') can be
represented in the form

(4.1)

Analogously to expressions (3.11) and (3.12), we
can write expressions for the partial scalar intensities of
radiation arriving from point (

 

r

 

, 

 

u

 

) to various parts of
the emitter volume and surface:

(4.2)

(4.3)

These fluxes were calculated per unit area element per-
pendicular to directions 

 

u

 

' and , respectively. In
order to determine the flux absorbed by the medium in
a unit volume surrounding 

 

r

 

', we must multiply the
obtained expression by the absorption coefficient

 

k

 

abs

 

(

 

r

 

'). To find the fraction of scalar flux 

 

I

 

(

 

r

 

, 

 

u

 

)
absorbed in the vicinity of point 

 

r

 

' in the same unit vol-
ume, we must divide the result by the flux. As a result,
we find that a unit volume in the vicinity of (

 

r

 

', 

 

u

 

')
absorbs the following fraction of the radiation that had
direction 

 

u

 

 at point 

 

r:

(4.4)

i r u,( ) r' u',( )[ ]
=  G r u,( ) r' u',( )[ ] I r u,( ).

iV r u,( ) r' u',( )[ ]
=  I r u,( ) GII r u,( ) r' u',( )[ ]{
+ GIQ r u,( ) r' u',( )[ ] q r u,( )

+ GIU r u,( ) r' u',( )[ ] u r u,( )

+ GIV r u,( ) r' u',( )[ ] v r u,( ) } ,

iS r u,( ) r0' u0',( )[ ]

=  I r u,( ) GII r u,( ) r0' u0',( )[ ]{

+ GIQ r u,( ) r0' u0',( )[ ] q r u,( )

+ GIU r u,( ) r0' u0',( )[ ] u r u,( )

+ GIV r u,( ) r0' u0',( )[ ] v r u,( ) } .

u0'

DV r u,( ) r' u',( )[ ]
=  kabs r'( ) GII r u,( ) r' u',( )[ ]{
+ GIQ r u,( ) r' u',( )[ ] q r u,( )

+ GIU r u,( ) r' u',( )[ ] u r u,( )

+ GIV r u,( ) r' u',( )[ ] v r u,( ) } .
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Similarly, we can write the expression for the fraction
of the same radiation emitted at point (r, u) and arriving
at the arbitrary region of bounding surface S, in which
radiation vanishes completely according to the condi-
tion of the problem:

(4.5)

The fractions of the flux introduced above have a
probabilistic meaning as functions of the response;
namely, each such fraction is the probability density
that radiation that had direction u at point r passes arbi-

trarily to point (r', u') or ( ), where it vanishes in a
unit volume or at a unit surface area. In order to derive
the expression for the complete extinction of radiation
I(r, u) in an arbitrary region, we must integrate DV and
DS over the volume and the surface, respectively. In
addition, we must integrate with respect to the solid
angle to take into account the fact that radiation can
arrive in the region of its extinction from different
directions:

(4.6)

This is the necessary stationary condition, i.e., the
condition that the entire radiation in question, which
had direction u at point r, disappears completely in the
bulk or at the surface of the emitter. In other words,
equality (4.6) indicates that the extinction of the radia-
tion observed in any region of the emitter is a sure
event. Condition (4.6) includes the characteristics of
polarization of primary radiation, absorption coeffi-
cients, and the elements of the first row of the Green
matrix (3.5). It is important to note that integration and
summation in Eq. (4.6) account for all possibilities of
extinction of the chosen radiation both in the bulk and
at the surface.

When condition (4.6) is not satisfied, radiation can-
not be steady-state radiation.

DS r u,( ) r0' u0',( )[ ]

=  GII r u,( ) r0' u0',( )[ ]

+ GIQ r u,( ) r0' u0',( )[ ] q r u,( )

+ GIU r u,( ) r0' u0',( )[ ] u r u,( )

+ GIV r u,( ) r0' u0',( )[ ] v r u,( ) } .

r0' u0',

r'3d

V

∫ u'DV r u,( ) r' u',( )[ ]d

4π
∫

+ r0'
3

d

S

∫ u0' DS r u,( ) r0' u0',( )[ ]d

2π
∫ 1.=
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In the case of natural radiation at point (r, u), for q =
u = v  = 0, expressions (4.4) and (4.5) for the fractions
of vanishing radiation are simplified:

(4.7)

In the absence of scattering (kext = kabs), radiation is
absorbed in the medium only along the path from point
r in direction u along ray b (at points r''), right up to
point rS , at which it vanishes at the surface (see Fig. 2).
In this case, for the Green function, we have

(4.8)

where

(4.9)

is the optical density between points r and r''. Integra-
tion is carried out along ray b passing through these
points. The exponential function in Eq. (4.8) describes
the probability that radiation passes from r to r'' with-
out interacting with the medium.

Instead of Eq. (4.6), in this case we obtain

Let us now consider the extinction of radiation
emerging primarily at point r in direction –u. The flux
of such radiation emerging from a unit volume is deter-
mined by the vector pV(r, –u) of the primary source in
accordance with formula (3.4). This radiation forms at
point r a flux whose direction is opposite to that of the
flux described by formulas (3.7)–(3.12) and used for
deriving the stationary condition (4.6). In this case, the
signs of trigonometric parameter u and, hence, the
Stokes parameter U are opposite to the signs of the
same parameters of radiation observed at (r, u).

Let us write the primary source vector at point
(r, −u) using formula (3.4):

(4.10)

Let us consider all possibilities of extinction of the cho-
sen radiant flux in the bulk of volume V and at surface
S with the help of the Green functions G↑↓  describing
the arrival of radiation from (r, −u) to an arbitrary

DV r u,( ) r' u',( )[ ]
=  kabs r'( )GII r u,( ) r' u',( )[ ] ,

DS r u,( ) r0' u0',( )[ ]

=  GII r u,( ) r0' u0',( )[ ] .

G r u,( ) r'' u,( )[ ] t r r''( )–[ ] ,exp=

t r r''( ) kext r( ) rd

r

r''

∫=

kabs r''( ) t r r''( )–[ ]exp r''d

r

rS

∫
+ t r rS( )–[ ]exp 1.=

pV r u–,( ) pV r u–,( )=

× 1 qp r u–,( ) up r u–,( ) v p r u–,( ), , ,[ ] T .
ICS      Vol. 97      No. 3      2003



546 VASILIEVA
region in the bulk or on the surface of the emitter. For
example, the partial intensity of radiation passing
through a unit area element in a unit solid angle in the
vicinity of point (r', –u') in the bulk of volume V is
given by

(4.11)

We can write matrix G↑↓  in a form similar to Eq. (3.5):

(4.12)

After multiplication, in accordance with Eq. (4.11), we
obtain the following expression for the scalar intensity
of the flux arriving from point (r, –u) to point (r', −u'):

(4.13)

This flux is calculated for a unit area element perpen-
dicular to direction –u'. Now, we must completely
repeat the arguments concerning radiation extinction,
which led to formulas (4.4)–(4.6). Instead of these for-
mulas, we obtain

(4.14)

(4.15)

(4.16)

i↑↓ r u–,( ) r' u'–,( )[ ]
=  G↑↓ r u–,( ) r' u'–,( )[ ] pV r u–,( )

=  G↑↓ r u–,( ) r' u'–,( )[ ] pV r u–,( )

× 1 qp r u–,( ) up r u–,( ) v p r u–,( ), , ,[ ] T .

G↑↓ r u–,( ) r' u'–,( )[ ]

=  

G↑↓ II G↑↓ IQ G↑↓ IU G↑↓ IV

G↑↓ QI G↑↓ QQ G↑↓ QU G↑↓ QV

G↑↓ UI G↑↓ UQ G↑↓ UU G↑↓ UV

G↑↓ VI G↑↓ VQ G↑↓ VU G↑↓ VV

.

i↑↓ r u–,( ) r' u'–,( )[ ] G↑↓ II G↑↓ IQqp r u–,( )+[=

+ G↑↓ IUup r u–,( ) G↑↓ IVv p r u–,( )+ ] pV r u–,( ).

DV r u–,( ) r' u'–,( )[ ]
=  kabs r'( ) G↑↓ II r u–,( ) r' u'–,( )[ ]{
+ G↑↓ IQ r u–,( ) r' u'–,( )[ ] qp r u–,( )

+ G↑↓ IU r u–,( ) r' u'–,( )[ ] up r u–,( )

+ G↑↓ IV r u–,( ) r' u'–,( )[ ] v p r u–,( ) } .

DS r u–,( ) r0' –u0',( )[ ]

=  G↑↓ II r u–,( ) r0' –u0',( )[ ]

+ G↑↓ IQ r u–,( ) r0' –u0',( )[ ] qp r u–,( )

+ G↑↓ IU r u–,( ) r0' –u0',( )[ ] up r u–,( )

+ G↑↓ IV r u–,( ) r0' –u0',( )[ ] v p r u–,( ).

r'3d

V

∫ u'–( )DV r u–,( ) r' u'–,( )[ ]d

4π
∫

+ r0'
2

d

V

∫ –u0'( )DS r u–,( ) r0' –u0',( )[ ]d

2π
∫ 1.=
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The latter expression is also a necessary stationary
condition; i.e., the entire radiation emerging initially at
point r in direction –u vanishes completely in the bulk
or on the surface of the emitter. The only difference
from Eq. (4.6) is that Eq. (4.16) is written for the extinc-
tion of primary radiation and that its direction is –u and
not u. The fractions DV and DS include the characteris-
tics of polarization of radiation whose absorption is
analyzed.

If the radiation analyzed at point (r, –u) is not polar-
ized (qp = up = v p = 0), we obtain, analogously to
Eq. (4.7),

(4.17)

These fractions DV and DS do not differ from the prob-
abilities of extinction of steady-state radiation in the
bulk and on the boundary surface obtained earlier [3].

In the absence of scattering, the radiation in ques-
tion is absorbed only on its path from point r in direc-
tion –u along ray b to point r0, while the remaining
radiation disappears at the surface at point r0.

Stationary conditions (4.4)–(4.6) and (4.14)–(4.16)
derived above are necessary but not sufficient. In order
to obtain a sufficient condition, we must impose a con-
straint on radiation sources. The sources must not
change with time. It is clear that if radiation sources
decay, the resultant radiation will be damped.

The necessary condition (4.4)–(4.6) or (4.14)–(4.16)
for the extinction of emerging radiation can be written
in the form of relations between the matrix elements of
the Green functions with preset coefficients of medium
absorption and polarization characteristics of the radia-
tion being analyzed. The Green functions are deter-
mined by all optical and geometrical parameters of the
object; consequently, the stationary condition obtained
above is the implicit relation between these parameters,
which is required for stationarity. Let us consider a sim-
ple example of violation of the stationary condition
because of geometrical features of the emitter. Suppose
that a steady-state source of radiation is placed in a
purely scattering medium surrounded by a closed abso-
lutely reflecting medium. In this case, we can choose
the bounding surface S with a given intensity of radia-
tion entering the emitter only outside the mirror. How-
ever, the radiation emitted by the object does not reach
this surface; i.e., the corresponding response functions
and the fractions of arriving radiation are equal to zero.
Since, in addition, radiation is not absorbed inside the
emitter, DV = DS = 0, and condition (4.6) or (4.16) can-
not be satisfied. Obviously, radiation in this case is
accumulated and cannot be steady-state radiation.

DV r u–,( ) r' u'–,( )[ ]
=  kabs r'( )G↑↓ II r u–,( ) r' u'–,( )[ ] ,

DS r u–,( ) r0' –u0',( )[ ]

=  G↑↓ II r u–,( ) r0' –u0',( )[ ] .
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5. RELATION 
BETWEEN RADIATION COMPONENTS

The stationary conditions derived above make it
possible to obtain relations between the radiation inten-
sity components. In order to derive the required rela-
tions, we will use the steady-state condition (4.16) and
the solutions to the steady-state transport equation in
the form (3.11), (312). We will connect the partial
intensity of radiation arriving at point (r, u) from point
(r', u') or from point  with the fraction of radi-r0' u0',( )
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ation propagating in the opposite direction from (r, –u)
and absorbed at these points.

Using Eqs. (3.11) and (4.14), we obtain

(5.1)

where the following notation is introduced:

DV r u–,( ) r' u'–,( )[ ]

=  
kabs r'( )iV r' u',( ) r u,( )[ ]

pV r' u',( )
--------------------------------------------------------------------gV r' u',( ) r u,( )[ ] ,
(5.2)

Similarly, we obtain from Eqs. (3.12) and (4.15)

(5.3)

where

(5.4)

gV r' u',( ) r u,( )[ ]
G↑↓ II G↑↓ IQqp r –u,( ) G↑↓ IUup r –u,( ) G↑↓ IVv p r –u,( )+ + +

GII GIQqp r' u',( ) GIUup r' u',( ) GIVv p r' u',( )+ + +
-----------------------------------------------------------------------------------------------------------------------------------------------.≡

DS r u–,( ) r0' –u0',( )[ ]   =   
i
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r
 

0 
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r u

 
,( )[ ]

 
I

 

S

 
r

 

0

 
'

 
u

 

0

 
'

 
,( )

 ----------------------------------------------------- g S r 0 ' u 0 ' ,( ) r u ,( )[ ] ,

gS r0' u0',( ) r u,( )[ ]
G↑↓ II G↑↓ IQqp r –u,( ) G↑↓ IUup r –u,( ) G↑↓ IVv p r –u,( )+ + +

GII GIQq r0' u0',( ) GIUu r0' u0',( ) GIVv r0' u0',( )+ + +
-----------------------------------------------------------------------------------------------------------------------------------------------.≡
The arguments of functions Gmk are [(r', u') 
(r, u)] in the expressions for gV and [( )  (r, u)]
in the expressions for gS . The arguments of functions
G↑↓ mk are [(r, –u)  (r', –u')] in the expressions for gV

and [(r, –u)  ( )] in the expressions for gS .

Functions gV and gS depend on the first rows of the
Green matrices, which determine the scalar intensities
at the final point of the path of polarized radiation
between two points. In addition, functions gV and gS

depend on the polarization of radiation at the initial
point of each such path.

The following important feature of expressions (5.1)
and (5.3) is worth noting. It can be seen from formu-
las (3.11) and (3.12) that the ratios

appearing in these expressions are determined by the
polarization of the primary radiation and by the Green
functions, but are independent of the intensities pV

and IS of scalar primary sources. Consequently,
expressions (5.1) and (5.3) make sense for infinitely

r0' u0',

r0' –u0',

iV r' u',( ) r u,( )[ ]
pV r' u',( )

----------------------------------------------------,
iS r0' u0',( ) r u,( )[ ]

IS r0' u0',( )
-----------------------------------------------------
small values of these intensities also. When pV  0
and IS  0, indeterminacies of the 0/0 type can be
expanded with the help of formulas (3.11) and (3.12)
and are equal to the denominators of the expressions for
gV and gS .

Using formulas (5.1) and (5.3), we can write the sta-
tionary condition (4.16) in the form

(5.5)

where

(5.6)

(5.7)

DV r u–,( ) DS r u–,( )+ 1,=

DV r u–,( )

=  r'3d

V

∫ u'–( )d

4π
∫

kabs r'( )iV r' u',( ) r u,( )[ ]
pV r' u',( )

--------------------------------------------------------------------

× gV r' u',( ) r u,( )[ ] ,

DS r u–,( ) r0'
2

d

S

∫ u0'–( )d

2π
∫

iS r0' u0',( ) r u,( )[ ]
IS r0' u0',( )

-----------------------------------------------------=

× gS r0' u0',( ) r u,( )[ ] .
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Stationary condition (5.5) combined with relations (5.6)
and (5.7) reflects the relation between the partial terms
iV and iS of the scalar intensity of radiation. This relation
includes the quantities iV, kabs/pV, iS, and IS which have
been investigated in spectroscopic experiments and
computations.

The following two remarks should be made con-
cerning the above relations. First, relation (5.5) is valid
for any radiation frequency, although the quantities kabs,
iV , iS, pV, and IS appearing in it can change radically
with the frequency. Second, the relations for the neces-
sary stationary condition were derived using the solu-
tion of the steady-state transport equation which pre-
sumes the invariability of the primary sources of radia-
tion. Consequently, we can assume that this relation is
not only necessary, but also sufficient.

From the integrals in the expressions for DV and DS ,
one can separate individual components. This is conve-
nient in the cases when these components can be deter-
mined directly from experiments. For instance, at least
two components of the integral in Eq. (5.7) can be
determined experimentally in different cases.

First, the relative partial intensity of radiation arriv-
ing directly from point r0 of surface S to point r in
direction u in the absence of interaction with the
medium is determined by the exponential function
exp[–t(r  r0)] of the optical density. Integral from
formula (5.7) for DS implicitly contains the correspond-
ing exponential component. If we separate this compo-
nent from integral DS , the remaining partial intensity
describes radiation arriving from surface S to point
(r, u) only after scattering. In order to emphasize this,
we can denote the corresponding partial intensities as
iS, scat[   (r, u)]. The optical density can be
measured experimentally from the damping of external
radiation. The measurement can be made most easily
when the point of observation r also lies on the surface
and is opposite to point r0 of the emitter; i.e., r = rS (see
Fig. 2).

Second, if surface S consists of a radiating part Srad ,
where IS ≠ 0, and a nonradiating part Snonrad that is not
illuminated from outside, where IS = 0, we can write

It is possible to measure the fraction of primary radia-
tion emerging from surface Snonrad (see Section 5.3). We
denote this fraction of primary radiation by DS, ex . The
measurement of DS, ex is especially simple when the
point of observation lies on the surface, i.e., r = rS .

r0' u0',( )

S Srad Snonrad.+=
JOURNAL OF EXPERIMENTAL 
Separating both of the above terms from DS(r, –u),
we can write

(5.8)

Here,

(5.9)

The quantity  differs from DS(r, –u)
in the domain of integration over the surface and in the
fact that it takes into account the emergence of radiation
on surface S only after scattering. Substituting
Eqs. (5.8) and (5.9) into relation (5.5), we obtain a rela-
tion between radiation components, which is similar to
that obtained earlier in [3] for the case when polariza-
tion was disregarded. Clearly, other components can
also be separated in DS(r, –u) when required.

Thus, the radiation extinction characteristics D(r, –u)
appearing in formulas (5.5)–(5.9) depend on the polar-
ization of the radiation under study at point (r, –u) and
the matrix elements of the Green functions G↑↓ ,
describing the passage of this radiation in various parts
of the object. In addition, the application of the inten-
sity of radiation having direction u at point r (see
Eqs. (5.1) and (5.3)) resulted in the characteristics of
polarization of primary radiation and matrix elements
of the Green functions, which describe the arrival of
this radiation at point (r, u). These quantities appear in the
denominators of functions g defined by formulas (5.2)
and (5.4).

5.1. Functions gV and gS 

Functions gV and gS in relations (5.5)–(5.7) directly
take into account the polarization of radiation. Let us
consider these functions in greater detail in some spe-
cial cases.

1. We will use reciprocity relation (3.6) between
functions G and G↑↓  in order to replace the elements of
matrix G↑↓ [(r, –u)  (r', u')] by elements of matrix
G↑↓ [(r', u')  (r, u)]. For this purpose, we must carry
out the multiplication of matrices on the right-hand side
of Eq. (3.6) and compare, element by element, the
result with the matrix on the left-hand side. Such a com-
parison of matrix elements leads to the quite expected
result for the elements appearing in expression (5.2):

DS r u–,( ) DSrad scat, r u–,( )=

+ DS ex, r u–,( ) t r r0( )–[ ] .exp+

DSrad scat, r u–,( ) r0'
2

d

Srad

∫ u0'–( )d

2π
∫=

×
iS scat, r0' u0',( ) r u,( )[ ]

IS r0' u0',( )
-------------------------------------------------------------gS r0' u0',( ) r u,( )[ ] .

DSrad scat, r u–,( )
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(5.10)

G↑↓ II r u–,( ) r' u'–,( )[ ]
=  GII r' u',( ) r u,( )[ ] ,

G↑↓ IQ r u–,( ) r' u'–,( )[ ]

=  GQI r' u',( ) r u,( )[ ] ,

G↑↓ IU r u–,( ) r' u'–,( )[ ]
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Taking into account these expressions in relation (5.2),
we obtain

=  –GUI r' u',( ) r u,( )[ ] ,

G↑↓ IV r u–,( ) r' u'–,( )[ ]
=  GVI r' u',( ) r u,( )[ ] .
(5.11)gV r' u',( ) r u,( )[ ]
GII GQIqp r u–,( ) GUIup r u–,( )– GVIv p r u–,( )+ +
GII GIQqp r' u',( ) GIUup r' u',( ) GIVv p r' u',( )+ + +
-----------------------------------------------------------------------------------------------------------------------.=
Here, all elements of the Green matrix depend on the
initial and final points of the radiation path, i.e., on
[(r', u')  (r, u)].

The elements of the Green matrices appearing in
expression (5.4) for gS satisfy relations similar
to (5.10). In order to write these relations, we must
replace (r', u') by  and (r', –u') by .

Thus, when relation (3.6) holds, functions gV and gS

are determined by the polarization of primary sources,
as well as by the first row and column of the matrix of
the response function describing the passage of radia-
tion from the points where it emerges to the point (r, u)
where it is observed.

2. Let us now consider function g in particular cases
of different polarization of primary radiation.

Let us suppose that the radiation initially emerging
in the emitter is nonpolarized natural radiation typical
of thermal sources. In this case, at points (r', u') and
(r, –u), we have qp = up = v p = 0. If radiation entering
the emitter from surface S is also natural, we also have
q = u = v  = 0 at points  of the surface.

In this case, we obtain from expressions (5.2)
and (5.4)

(5.12)

If the reciprocity relation (3.6) and, hence, (5.10), is
also valid, we have

r0' u0',( ) r0' –u0',( )

r0' u0',( )

gV

G↑↓ II r u–,( ) r' u'–,( )[ ]
GII r' u',( ) r u,( )[ ]

------------------------------------------------------------------,=

gS

G↑↓ II r u–,( ) r0' –u0',( )[ ]
GII r0' u0',( ) r u,( )[ ]

--------------------------------------------------------------------.=
(5.13)

Thus, the relation between radiation components
derived from stationary condition (5.5) combined with
relations (5.8) and (5.9) exactly coincides with that
obtained for the case when polarization was not taken
initially into account, i.e., radiation was regarded as
natural everywhere, and the reciprocity relation was
satisfied in each scattering act [3].

It is well known that natural radiation passing
through a scattering medium can be polarized in it [18].
This also follows from formula (2.5) describing single
scattering. Indeed, if at least one nondiagonal element
of the first column of phase matrix Z differs from zero,
expression (2.5) for Iscat1 acquires, after multiplications
on the right-hand side, nonzero characteristics of polar-
ization even for q' = u' = v ' = 0. The first column of
matrix Z usually contains nonzero nondiagonal ele-
ments. In spite of polarization emerging during scatter-
ing of natural radiation, the value of the general (scalar)
intensity of scattered radiation is determined only by
the scalar quantity of primary flux and the first element
of the response function GII (or G↑↓ II).

When the radiation emerging initially in the bulk of
the emitter or on its surface is plane-polarized, we have
up = v p = 0 and u = v  = 0 in the regions of its emergence,
and the corresponding terms in the numerators and
denominators of functions gV and gS are absent. Various
combinations of the type of primary radiation are pos-
sible. Let us suppose, for example, that only natural
radiation emerges in the bulk of the emitter and the
outer radiation is plane-polarized. This can be realized
when a thermal emitter is illuminated from outside by a
laser. In this case, gV = 1 everywhere in the volume,
while for gS , we find from (5.4)

gV r' u',( ) r u,( )[ ]

=  gS r0' u0',( ) r u,( )[ ] 1.=
(5.14)gS r0' u0',( ) r u,( )[ ]
G↑↓ II r u–,( ) r0 –u0',( )[ ]

GII r0' u0',( ) r u,( )[ ] GIQ r0' u0',( ) r u,( )[ ] q r0' u0',( )+
----------------------------------------------------------------------------------------------------------------------------------------------.=
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If relations (5.10) hold, from (5.4) we obtain

(5.15)gS r0' u0',( ) r u,( )[ ] 1
1 GIQ r0' u0',( ) r u,( )[ ] q r0' u0',( )/GII r0' u0',( ) r u,( )[ ]+
----------------------------------------------------------------------------------------------------------------------------------------------------.=
Thus, in various specific cases of polarization, func-
tions g are simplified.

5.2. Relations between Radiation Components
in Special Cases 

Relation (5.5) taking into account Eqs. (5.6) and
(5.7) has been obtained in the general form and is not
commonly used for practical applications, However,
relations for various special cases can be easily derived
from it. Let us consider three such cases.

1. It is often assumed in experimental and theoreti-
cal studies of radiation that the main characteristics of
the medium, as well as primary sources in the bulk of
the emitter and on its surface, remain unchanged. Let us
suppose that ratio pV/kabs in the bulk of the volume,
intensity IS on the boundary surface, and functions gV

and gS are constant, i.e., independent of coordinates r,
r0 and directions u, u0. Removing these functions from
the integrands in formulas (5.6) and (5.7) and taking
into account expressions (3.9) and (3.10) for intensities,
we can write stationary condition (5.5) in the form

(5.16)

This relation connects the components of scalar inten-
sity I.

2. Let IS differ from zero and be constant only on
radiating surface Srad . In this case, we can use rela-
tions (5.8) and (5.9) for DS(r, –u) and obtain, instead of
relation (5.16),

(5.17)

The meaning of the terms and corresponding subscripts
is the same as in relations (5.8) and (5.9).

3. Let a scattering and radiating medium be a mix-
ture of k different components, and let the following
relation hold:

IV r u,( )
pV /kabs
------------------gV r u,( )

IS r u,( )
IS

-----------------gS r u,( )+ 1.=

IV r u,( )
pV /kabs
------------------gV r u,( )

ISrad scat, r u,( )

IS

----------------------------gS r u,( )+

+ DS ex, r –u,( ) t r r0( )–[ ]exp+ 1.=
JOURNAL OF EXPERIMENTAL A
(5.18)

Analogously to Eq. (3.4), we can write the vector of the
primary source of the kth component, assuming that the
polarization of primary radiation is the same for all the
components:

(5.19)

The scalar partial intensities ik and ik↑↓  for each compo-
nent can be written analogously to expressions (3.11)
and (4.13), where pV is replaced by pk . The absorption
of radiation in the vicinity of point (r', –u') at individ-
ual components is summed in accordance with rela-
tions (5.18). Consequently, instead of relation (4.14),
we obtain the following expression for the relative frac-
tion of the primary radiation of the kth component of
the mixture, which emerges at point (r, –u) and is
absorbed at point (r', –u'):

(5.20)

This expression is written analogously to Eq. (5.1).
Here, gV is defined by formula (5.2).

Integrating Eq. (5.20) over volume and directions,
we obtain

(5.21)

This expression can be used instead of DV in the rela-
tion (5.5) connecting the intensity components.

pV r u,( ) pk r u,( )
k

∑ ,=

kabs r( ) kabs k, r( )
k

∑ ,=

kext r( ) kext k, r( )
k

∑ .=

pk r u,( )

=  pk r u,( ) 1 qp r u,( ) up r u,( ) v p r u,( ), , ,[ ] T .

DV k, r u–,( ) r' u'–,( )[ ]
ik r' u',( ) r u,( )[ ]

pk r' u',( )
---------------------------------------------------=

× kabs k, r'( )gV r' u',( ) r u,( )[ ] .
k

∑

DV k, r u–,( ) r'3d

V

∫ u–( )
ik r' u',( ) r u,( )[ ]

pk r' u',( )
---------------------------------------------------d

4π
∫=

× kabs k, r'( )gV r' u',( ) r u,( )[ ] .
k

∑
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Radiation passing through the emitter interacts with
all components of the medium; consequently, the ele-
ments of the Green matrices, as well as functions gV and
gS , depend on the optical properties of all these compo-
nents.

5.3. Possible Applications
of Stationary Conditions and Relations 

The stationary condition (4.6) (or (4.16)), including
all elements of the Green matrices, is independent of
the shape or size of the emitter. This condition remains
valid irrespective of the radiation frequency, character-
istics of radiation scattering and absorption, or their
variation in the medium. On the other hand, the Green
functions depend considerably on all these quantities.
The stationary condition is exact when the linear theory
of radiation transport is applicable and the main
assumptions concerning the interaction of radiation
with the medium hold (scattering is elastic, the absorp-
tion coefficients are independent of the direction and
polarization of radiation, and the refractive medium of
the medium remains equal to unity between acts of
scattering). It follows hence that condition (4.6) can be
useful for determining the Green functions. Indeed, the
matrices of the Green functions are calculated for vari-
ous specific emitters (see, for example, [14–17, 19]). In
spite of numerous specific circumstances, the necessary
stationary condition must hold. This corresponds to any
region and direction of radiation in the emitter; preset
primary sources of radiation can also be arbitrary and
may be located in the bulk of volume V or on surface S.
If the characteristics of radiation polarization are spec-
ified in a region of the object as well as the absorption
coefficients in the emitter, expression (4.6) combined
with (4.4) and (4.5) describes the relation between
matrix elements of the Green functions. Since these
elements are determined only by the optical parameters
of the medium and affect the polarization, remaining
independent of the polarization of the radiation being
analyzed, one can specify various characteristics of
polarization at point (r, u), thus separating individual
matrix elements in accordance with formulas (4.4) and
(4.5). For example, for natural radiation, only elements
GII will be left in the expressions for DV and DS , while
term GIQ is added in the case of plane-polarized radia-
tion. The stationary condition can be used in different
ways in different problems; in particular, the correct-
ness of computation of the Green function can be veri-
fied with the help of this condition analogously to [3],
where computations of radiation were verified without
taking polarization into account.

Relations (5.5)–(5.7), (5.16), and (5.17) include
quantities that have been investigated in many experi-
ments. In spectroscopic experiments, the total intensi-
ties of radiation and some of their components are mea-
sured at different frequencies. The values of DS, ex can
also be measured in some cases, e.g., when radiation in
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
a medium illuminated from outside is considered. In
order to determine the value of DS, ex in this case, it is
necessary to obtain the ratio of the flux emerging in all
directions from the medium to the incident flux [3]. It
was mentioned above that optical density t also must be
measured.

On the other hand, such quantities as ratios pV/kabs

and characteristics of polarization of primary radiation
together with the Green functions gV and gS are of inter-
est in spectroscopic experiments, but cannot be mea-
sured easily. The stationary conditions may help in
determining the values of these quantities.

It was mentioned above that relations (5.5) and
(5.16) do not differ from those in which polarization is
not taken into account if primary radiation is not polar-
ized and g = 1 (see relations (5.2) and (5.4). It follows
hence that all the applications of the relations connect-
ing intensity components [3] can also be used here.
Among such applications, we can mention the determi-
nation of individual unknown terms to the resultant
radiation from other known components and determi-
nation of relative populations of the levels or corre-
sponding temperatures of the emitter when all radiation
components are known. Individual terms were deter-
mined in real experiments where the effect of macro-
particles on the profiles of atomic spectral lines in a
dusty plasma was studied. The temperature of strongly
scattering solid porous materials was measured using
the stationary relations between the terms. In this case,
the theory of radiation transport is inapplicable, but (see
Introduction) steady-state relations between the radia-
tion components were derived in this case also.

0

r1

–u1
u1

r2

r02

–u2

u2

S

Fig. 3. Schematic diagram of experiments studying the
effect of polarization on the passage of radiation through a
scattering medium: r1 and r2 are the radius vectors of the
regions of external illumination and measurements on sur-
face S; u1, –u1, u2, and –u2 are the unit vectors determining
the directions of illumination and measurements; r02 is the
radius vector of the point at which radiation from (r2, –u2)
can arrive without being scattered.
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Let us consider a possible application of relations
connecting the radiation components in the experimen-
tal study of the effect of polarized radiation on the pas-
sage of external radiation through a purely scattering
medium surrounded by a transparent surface. Let us
suppose that collimated external radiation can be
directed onto the scattering medium alternatively from
the neighborhoods of two arbitrarily chosen points r1
and r2 (Fig. 3). Let the direction of radiation in the
vicinities of points r1 and r2 be defined by the vectors
u1 and –u2, respectively. In the same regions, we can
also measure the scalar intensity of radiation emerging
from the medium (in particular, in directions –u1 and
u2, respectively). The regions of illumination and
observation can be interchanged.

Let us suppose that a neighborhood of point (r1, u1)
is illuminated by arbitrarily polarized radiation of sca-
lar intensity I1, the scalar intensity of scattered radia-
tion measured in a neighborhood of point (r2, u2) being
I2. We assume that scalar intensities and polarization do
not change in the regions of illumination and measure-
ments. If the regions of illumination and observation are
not very large, function gS in these regions are also con-
stant. In this case, we can use formula (5.17). For IV = 0,
we obtain

(5.22)

This relation directly contains the quantity DS, ex
describing the passage of scattered radiation through
the medium. In order to determine the value of this
quantity, we must measure intensity ratio I2/I1 and opti-
cal density t(r2  r02). In addition, we must know the
polarization characteristic gS . In order to calculate the
value of this quantity using formula (5.4), it is sufficient
to measure the same scalar intensities, changing the
type of polarization of external radiation and using illu-
mination at both points r1 and r2. Indeed, we can write
the expression for the observable scalar intensity using
the solution to transport equations (3.10), (3.12) and the
above assumptions. In the case when point (r1, u1) is
illuminated, we have

(5.23)

Let the external radiation not be polarized at point
(r1, u1); in this case, we have

(5.24)

I2

I1
----gS r1 u1,( ) r2 u2,( )[ ] DS ex, r2 u2–,( )+

+ t r2 r02( )–[ ]exp 1.=

I2 I1 GII r1 u1,( ) r2 u2,( )[ ]{=

+ GIQ r1 u1,( ) r2 u2,( )[ ] q r1 u1,( )
+ GIU r1 u1,( ) r2 u2,( )[ ] u r1 u1,( )

+ GIV r1 u1,( ) r2 u2,( )[ ] v r1 u1,( ) } .

I1 r1 u1,( ) I0 1 0 0 0, , ,[ ] T .=
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Only the first term then remains on the right-hand side
of Eq. (5.23), and we can use the measured intensities
to determine the element

Let the external radiation at point (r1, u1) be plane-
polarized (e.g., produced by a laser) and

(5.25)

In this case, two terms remain on the right-hand side of
Eq. (5.23). Since the first element GII has already been
determined, we can find GIQ by measuring scalar inten-
sities. Thus, by complicating the polarization of inci-
dent radiation, it is also possible to find the remaining
two elements.

In exactly the same way, it is possible to measure the
elements of the Green matrix, which describe the pas-
sage of radiation in the opposite direction (from point
(r2, –u2) to point (r1, –u1)).

The above procedure for measuring scalar intensi-
ties makes it possible to determine the required matrix
elements of the Green function using formula (5.23)
and to analyze the effect of polarization on the passage
of radiation through a scattering object using steady-
state relation (5.22).

6. CONCLUSIONS

1. The necessary stationary condition (4.4)–(4.6)
or (4.14)–(4.16) for a scattering medium has been
derived from an analysis of extinction of radiation as a
result of absorption of radiation by the medium and its
emergence at the emitter surface. The stationary condi-
tion is derived under the assumption that the linear
transport theory is valid for describing radiation and its
extinction as well as the following assumptions con-
cerning the interaction of radiation with a substance:
scattering is elastic, the absorption and extinction coef-
ficients of the medium are independent of the direction
of radiation and its polarization, and the refractive
index of the medium between scattering centers is
equal to unity.

2. The stationary condition describes the relation
between the elements in the first rows of the matrices of
the Green functions for given polarization characteris-
tics of radiation whose extinction is being analyzed and
for the preset absorption coefficients of the medium.
The condition is valid for an arbitrary radiation fre-
quency.

3. Relations between the scalar intensity compo-
nent of steady-state radiation are derived in integral
form (5.5)–(5.9). The function taking into account the
effect of polarization of radiation is separated as a fac-
tor in the integrands.

4. Special cases of the general relation connecting
the scalar intensity components have been considered

GII r1 u1,( ) r2 u2,( )[ ] .

I1 r1 u1,( ) I1 r1 u1,( ) 1 1 0 0, , ,[ ] T .=
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for different characteristics of the polarization of pri-
mary radiation, when the reciprocity relations hold,
and in the case of a multicomponent medium (see Sec-
tions 5.1 and 5.2). Useful relations have been derived in
algebraic form in the case when the primary sources
of radiation do not change in the bulk of the emitter
and on radiating parts of its surface (see (5.16), (5.17),
and (5.22)).

5. It is shown that the stationary conditions and the
relations between intensity components in the case
when primary radiation is not polarized do not differ
from those in the absence of polarization. Conse-
quently, the stationary conditions and the relations can
be used in computations and experimental studies in the
same way as in the absence of polarization, although
radiation can be polarized as a result of scattering.
When primary radiation is polarized, additional possi-
bilities appear, in particular, for analyzing the matrix
elements of the Green functions.
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Abstract—The generation of low-order harmonics by a short ionizing laser pulse passing through a gas is
investigated in regard to the space–time phase-synchronism conditions. This investigation is based on the
results of hydrodynamic calculations for the model of [1] supplemented by taking into account the ionization
current [2–5] and on the numerical solution of a one-dimensional time-dependent Schrödinger equation. As
applied to the description of the third-harmonic spectrum, the hydrodynamic model with ionization current is
shown to be in good agreement with a quantum-mechanical model. In this case, the amplitude of the third har-
monic is determined by the intensity of the laser field at the moment of maximal ionization rate; this fact allows
one to relate the amplitude of the third harmonic to the residual energy of electrons [5–8] and may provide
grounds for the diagnosis of the residual energy by the spectrum of the third harmonic, which is important
for the development of X-ray lasers based on ionization nonequilibrium plasma. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

In the last decade, the processes associated with the
optical ionization of a gas by a short high-power laser
pulse have been intensively studied (see, for example,
[1–10] and references cited therein). In addition to its
fundamental interest, this fact is related to the prospects
of application of laser-frequency harmonics generated
during these processes to the fabrication of short-wave-
length radiation sources and the generation of attosec-
ond electromagnetic pulses [11, 12], as well as to the
possibility of using the information about the spectrum
of these harmonics for the diagnosis of processes in an
ionized gas. 

The harmonics of a high-power laser pulse may be
generated due to cooperative processes—bremsstrahl-
ung of electrons as they collide with any ions generated
by the plasma ionization [13]—as well as due to the
individual nonlinear response of the “ionized electron +
parent ion” system to the laser field. An efficient gener-
ation of harmonics by the first mechanism requires a
high density of a substance, close to the solid-state den-
sity [14]; in this case, the efficiency of the bremsstrahl-
ung mechanism can be increased due to the preliminary
excitation of a gas ionized by a laser pulse [15]. In the
present paper, we consider the generation of low-order
harmonics in the field of a femtosecond laser pulse for
a relatively low density of the ionized gas when the
bremsstrahlung mechanism of the harmonic generation
is neglected.

At present, the following viewpoint is widely
adopted: the generation of high-order harmonics that
1063-7761/03/9703- $24.00 © 20554
manifest themselves as a plateau region in the trans-
verse-field spectrum [10] occurs under the radiative
recombination of an electron during its return motion in
the field of the parent ion. To describe this process, both
quantum-mechanical [10, 16] and semiclassical [17]
methods have been applied. At present, there is no gen-
erally adopted viewpoint about the mechanisms of low-
order harmonic generation whose total energy is much
greater than the energy of high-order harmonics in the
plateau region. It is assumed that the generation of low-
order harmonics is associated with the bound–bound
transitions of electrons between energy levels of an
atom [18]. Moreover, there exists a simple hydrody-
namic model proposed in [1] in which one considers
harmonic generation due to the fact that the electron
density increases under tunneling ionization two times
within a laser period, at the moments corresponding to
the maximal intensity of the laser field. This model is
very attractive due to its simplicity and allows one to
carry out a self-consistent analysis of the harmonic gen-
eration in regard to the propagation of a laser pulse to
considerable distances. However, until recently, the
question has remained unsolved as to how adequately
the phenomenological model of [1] may describe a real
physical situation.

To clear up this question, in Section 3, we investi-
gate the generation of harmonics using both the hydro-
dynamic and quantum-mechanical models (which are
described in Section 2). Moreover, we investigate the
behavior of the amplitudes of the harmonics depending
on the number of bound states in a potential well. In
contrast to [18], where the authors investigated the
003 MAIK “Nauka/Interperiodica”
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spectrum of the third-order time derivative of the dipole
moment of an atom in the field of a given laser pulse, in
the present paper, we investigate the spectrum of the
generated radiation propagating in an ionized gas with
regard to the space–time phase-synchronism condi-
tions. The latter conditions are naturally taken into
account in the self-consistent solution of the
Schrödinger equation and the Maxwell equations. We
show that the third harmonic of the carrier frequency of
laser radiation is well described by the hydrodynamic
model of [1] supplemented by taking into consideration
the ionization current that guarantees the energy and
momentum conservation laws of the laser pulse during
the gas ionization [2–5]. This means that the amplitude
of the third harmonic is fully determined by the param-
eters of the ionization front and the intensity of the laser
field near the ionization front. In this case, one can
associate the amplitude of the third harmonic with the
residual energy of electrons. The latter is the energy
that is irreversibly transferred from the laser field to
electrons during their nonadiabatic interaction at the
moment of ionization [6]. The magnitude of the resid-
ual energy determines the generation efficiency of
coherent X-ray radiation in circuits with recombination
pumping [8]. Therefore, the possibility to diagnose the
residual energy of electrons by the third-harmonic
spectrum is important for designing X-ray lasers with
an active medium formed when a gas is ionized by an
intense optical laser pulse. Note that three-dimensional
propagation of the third harmonic in a nonlinear
medium was investigated, in particular, in [19].

A model that associates the spectrum of the third
harmonic with the residual energy of electrons is con-
structed in Section 4. The absorption of the residual
energy by an electron generated by the gas ionization,
just like the harmonic generation, is, strictly speaking,
a quantum-mechanical process. Therefore, the compar-
ison presented in Section 4 between the hydrodynamic
formulas [6] used for calculating the residual energy
and the quantum-mechanical calculation of the residual
energy is of interest.

2. BASIC EQUATIONS

In the most general form within classical electrody-
namics, the generation of laser-radiation harmonics in
an ionized gas can be described by the Maxwell equa-
tions

(1)

and the corresponding equations for the dipole moment
of electrons in a unit volume of the gas,

rotE
1
c
---∂B

∂t
-------, rotB–

1
c
---∂E

∂t
------- 4π

c
------

∂3333
∂t

--------+= =

3333 e r j〈 〉
j

∑–=
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(where the sum is taken over all electrons in this vol-
ume; the angular brackets denote averaging over the

wave functions of these electrons,  = 〈Ψ| |Ψ〉,
for the operator ; e is the absolute value of the elec-
tron charge; and the contribution of the motion of ions
is neglected). In the approximation of a medium con-
sisting of noninteracting one-electron atoms, we have

(2)

Here, nat is the total concentration of atoms and ions,
which is equal to the initial concentration of the gas
(henceforth, we assume that it is independent of time);
ra are internal atomic coordinates with the origin at an
appropriate atomic nucleus; r is the radius vector of an
atomic nucleus; Ψ is a one-electron wave function sat-
isfying the Schrödinger equation

(3)

where the spatial differentiation is carried out with
respect to the internal atomic coordinates; U(ra) is the

atomic potential; and  is the operator of inter-
action between electrons and the field.

From formulas (1) and (2), we obtain the following
wave equation for the dimensionless high-frequency
field a = eE/mω0c:

(4)

(5)

Here, ξ = k0(x – ct) and η = k0x are coordinates tied to
the laser pulse (the laser pulse propagates along the x
axis),

ω0 and k0 = ω0/c are the frequency and the wave vector
of laser radiation in vacuum, N ≡ nat/nc,

is the critical concentration,
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is the atomic field strength, ta is time in atomic units,

is the atomic frequency, and the source R is expressed
in atomic units as e = " = m = 1, c = 137. Using the fact
that, according to (3),

where  = –i∇  is the operator of canonical momentum,
and taking into account the explicit form of the operator

 in the length calibration, in the dipole approxima-
tion (neglecting the dependence of the field on the coor-
dinate ra), we obtain

(6)

Using Eq. (3), one can easily reduce expression (6) to
the form (in the dipole approximation)

(7)

Thus, according to (5), (6), and (7), to calculate the
source R, one has to determine any of the three follow-
ing quantities: 〈ra〉 , 〈 〉 , or . This problem
can be realized in the most consistent form (under a
minimal number of assumptions) by numerically solv-
ing the Schrödinger equation (3). Recently, various meth-
ods have been developed for such a solution [20–23];
however, this problem is still laborious, especially as
one has to solve it repeatedly to integrate wave equa-
tion (4). Therefore, approximate methods for calculat-
ing R, such as the numerical solution of a one-dimen-
sional Schrödinger equation for a one-dimensional
model atom [24, 25], as well as the approximate analyt-
ical calculation of 〈ra〉  [16] and ∂〈 〉/∂ ta [10] under dif-
ferent assumptions, have become important. Among
these assumptions, the basic ones are the following:
first, the assumption that the binding potential weakly
affects the part of the wave function that corresponds to
the continuous spectrum; second, the assumption that
all bound states, except the ground state, are neglected;
and, third, the assumption that the depletion of the
ground state and its Stark broadening are not substan-
tial. Note that the assumption about the insignificant
role of the binding potential in the continuous-spectrum
region suggests that, strictly speaking, the correspond-
ing analytic theories can hardly be applied to the low-
order harmonics considered in this paper, with numbers
smaller than U1/"w0 [16], where U1 is the energy of the

ta∂
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ground state of the binding potential. Another reason
for the possible inaccuracy of analytic quantum-
mechanical theories as applied to the calculation of the
third harmonic associated with the third above assump-
tion is discussed in [26].

The difficulties associated with the calculation of
the wave function of an electron and the subsequent
calculation of the source 

 

R

 

 in one of the forms (5)–(7)
seem inevitable in the case of high-order harmonics
that manifest themselves as a plateau region in the
transverse-field spectrum [10]. These harmonics are
generated due to a radiative recombination of the elec-
tron during its return motion in the field of the parent
ion [10, 16]. At the same time, we show below that the
low-frequency part of the transverse-field spectrum that
contains the third harmonic and in which the greater
part of the field energy (except for the carrier-frequency
energy) is concentrated can be described much more
simply. To this end, in the tunneling-ionization regime
considered below [27], which is realized in the case of
sufficiently short and intense laser pulses [28], it suf-
fices to know the instantaneous ionization frequency,
for example, in the form given in [29]. The idea of such
a description was first put forward in [1]. Below, we
will show that the phenomenological model presented
in [1] can well describe the low-frequency part of the
spectrum provided that one takes into account—in
addition to the free-electron current 

 

J

 

 = –

 

en

 

e

 

V

 

, where 

 

n

 

e

 

is the concentration and

 

 V

 

 is the hydrodynamic velocity
of electrons—the “ionization” current associated with
the loss of energy and momentum of laser radiation due
to the gas ionization [2–4]:

(8)

Here, 

 

U

 

z

 

 is the ionization potential of ions with the ion-
ization multiplicity 

 

z

 

 – 1, 

 

n

 

z

 

 – 1

 

 is the concentration of
these ions, 

 

W

 

z

 

 is the ionization frequency, and 

 

z

 

n

 

 is the
charge of the nucleus. In this case, the derivative of the
polarizability is defined as a sum of currents 

 

J

 

 + 

 

J

 

ion

 

. As
a result, according to Eqs. (1) and definition (4), the
source 

 

R

 

 is calculated as

(9)

(in dimensionless coordinates). Thus, to determine 

 

R

 

within this model (which is called a hydrodynamic
model in what follows), it suffices to find the concentra-
tions 

 

n

 

z

 

 – 1

 

, the ionization frequencies 

 

W

 

z

 

, and the
hydrodynamic velocity 

 

V

 

. The electron concentration is
defined as
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under the assumption that it does not differ from its
quasineutral value. In the weak-relativity approximation,
the velocity V is determined from the equation [6, 7, 30]

(10)

where S = nat∂Z/∂t,

(11)

is the average charge of ions and S is the ionization rate.
In the approximation of successive ionization of elec-
tron levels, S satisfies the equations

(12)

In the approximation of weak relativity and slowly
(within a laser period) varying amplitude of the carrier
signal, we can derive from Eqs. (8)–(11) the following
final expression for R in the hydrodynamic model:

(13)

where α ≡ e2/"c and UH is the ionization potential of
hydrogen. The second term on the right-hand side
of (13) is attributed to the ionization current. For-
mula (13) is supplemented by the formula for the ioniza-
tion frequencies Wz. In the tunneling ionization regime
considered here, when the Keldysh parameter [27] is

we can apply the adiabatic approximation by substitut-
ing the modulus of the instantaneous field |E| into the
formula for the ionization frequency [31]. In this case,
we can represent Wz as

(14)
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where Cz and βz are constants that depend on the shape
of the atomic potential. Equations (11)–(14) fully
define the problem of finding R in the hydrodynamic
model.

3. COMPARISON OF HYDRODYNAMIC 
AND QUANTUM CALCULATIONS

OF THE HARMONIC AMPLITUDES

Consider the problem concerning the applicability
of the hydrodynamic model considered above by com-
paring the solutions of the wave equation with the
hydrodynamic source (13) with those obtained with a
quantum-mechanical source. As was mentioned above,
analytical quantum-mechanical models for calculating
R may not be sufficiently accurate in the low-frequency
region of the spectrum. Therefore, it is expedient to
compare, first of all, the solutions obtained with the
hydrodynamic source (13) with the results of numerical
quantum-mechanical calculations. To this end, it is con-
venient to use R in form (7).

Assuming that the transverse dimension σr of a laser
pulse is sufficiently large and that the distance x travels

in an ionized gas is sufficiently small, x < k0 /2, and
taking into account that the radiation patterns of the
harmonics are narrow [32], we solve the wave equa-
tion (4) in the one-dimensional geometry, neglecting
the transverse Laplacian. We assume that the polariza-
tion of the laser pulse is linear and directed along the y
axis, a = aey . The Schrödinger equation is also solved
in the one-dimensional geometry for a model one-elec-
tron binding potential; here, we use the length calibra-
tion and the dipole approximation:

(15)

We assume that the potential U(ya) is short-range,

(16)

where the quantities σy ~ 1 and u ~ 1 are chosen so that
the ground state of energy coincides with the corre-
sponding atomic level from which the ionization
occurs. For potential (16), the constants β
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in (14) are equal to 
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 = 0 and
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respectively, where  Ψ 1 ( y a ) =  Ψ ( y a ,  t  = 0) is the wave
function of the bound state. In addition to the simplicity

σr
2

i
∂Ψ
∂ta
-------- 1

2
---∂2Ψ

∂ya
2

----------–
a

aa.u.
-------- 

  yaΨ U ya( )Ψ.+ +=

U ya( ) 2u
ya

2

σy
2

-----–
 
 
 

,exp–=

C1
U1

UH
------- Ψ1 ya( ) ya

U1

UH
-------

 
 
 

exp
ya ∞→
lim

2

,=
SICS      Vol. 97      No. 3      2003



558 ANDREEV et al.

                 
arguments, such a choice of the potential is associated
with the fact that, for moderately small gas concentra-

tions nat , the oscillation amplitude 2rE = 2eE/m  of an
electron in the field of laser radiation may be so large
that the effect of a neighboring atomic residual is iden-
tical to the effect of the parent atom; to this end, 2rE

must be greater than half the distance between neigh-

boring atoms /2, which is achieved for

where I(ξz) is the laser intensity at the moment of max-
imal ionization rate. Thus, even for sufficiently small
intensities of laser radiation and moderate densities of
a gas, the potential of an ionized atom cannot be con-
sidered as the potential of an isolated atom. For
instance, this means that part of the energy levels of
excited states of an isolated atom that condense toward
the boundary of the continuum of states of a free elec-
tron turn into a continuous spectrum. Thus, the poten-
tial well of the atomic residual contains only a finite
number of energy levels of bound states, as is exactly
the case for a short-range potential.

In what follows, we apply potential (16) to investi-
gate the dependence of the spectrum of radiation prop-
agating in an ionized gas on the number of bound states
in the atomic potential well. The number of bound
states may be varied by changing u and σy so that, in
addition to the bound state with the ground-state
energy, the potential well will contain two, three, etc.,
energy levels. In this case, the constants σy and u are
chosen so that the energy of the ground state is constant
and equal to U1 = 24.6 eV, which corresponds to the
potential of single ionization of helium from the ground
state.

For σy = 1 and u = 0.807, the ground state with U1 =
24.6 eV proves to be the only state in the potential well.
For this case, Fig. 1a represents the calculated values of
the dimensionless ionization rate

the Keldysh parameter γ, and the average ion charge Z,
which is determined by formula (11) in hydrodynamic
calculations and by the formula

(18)

in quantum-mechanical calculations; here, |n〉  is the
wave function of the nth bound state. Figure 1b shows
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the calculated spectrum of a transverse electromagnetic

field normalized by its maximum, , and

is the Fourier image of the high-frequency field. Fig-
ure 1a shows that, in the case of tunneling ionization
(γ ≈ 0.2 in the region of maximal ionization rate),
Eqs. (12), (14), (11) well describe the time variation of
the average charge of ions. At the same time, the dia-
gram of the ionization rate plotted versus the coordinate
(x – ct)/λ0 related to the momentum, which is obtained
from the Schrödinger equation (15), shows additional
peaks as compared with the calculations by formulas (12)
and (14). These peaks are attributed to the processes of
trapping of electrons generated due to the gas ioniza-
tion by the parent ions (which manifest themselves at
negative values of the ionization rate S (see Fig. 1a))
and to the nonadiabatic response of an atomic dipole to
the rapidly changing electric field [33].

A comparison of the harmonic spectra (see Fig. 1b)
obtained by Eqs. (4), (7), and (15) with the results of
hydrodynamic calculations by formulas (4) and (11)–
(14) both with and without regard for the ionization
current (in the latter case, the second term in (13) is set
to zero) shows that the source (13) with the ionization
current well describes the amplitudes of the third and
fifth harmonics and, satisfactorily, the amplitude of the
seventh harmonic. Moreover, this source well describes
not only the amplitude but also the shape of the third-
harmonic spectrum. Higher order harmonics calculated
by the hydrodynamic model have substantially under-
stated amplitude values compared with the quantum-
mechanical results. This is associated with the fact that
the basic generation mechanism of these harmonics is
the electron trapping by the parent ions [10, 16], which
is not taken into consideration within the hydrodynamic
model and manifests itself in the aforementioned addi-
tional peaks on the S(ξ) curve.

Further, we change σy and u so that additional
energy levels appear in the potential well while the
ground-state energy remains unchanged, U1 = 24.6 eV.
For σy = 1.5 and u = 0.685, an additional level with
energy U2 = 4.85 eV appears; for σy = 2.4 and u = 0.602,
two additional levels appear with energies U2 = 10.4 eV
and U3 = 1.5 eV; and, for σy = 3.4 and u = 0.553, three
additional levels appear with energies U2 = 14.54 eV,
U3 = 6.63 eV, and U4 = 1.35 eV. The spectra corre-
sponding to these values of σy and u are shown in
Fig. 2. The constant C1 in formula (14), calculated
by (17), is approximately equal to 4, 8, 24, and 130 for
the cases a, b, c, and d, respectively. Figure 2 shows that
an increase in the number of bound states in the poten-
tial well leads to a substantial increase in the amplitudes

â k( ) 2

â k( ) a ξ( ) ikξ–( )exp ξd
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∞

∫=
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Fig. 1. (a) Dimensionless ionization rate S(t)/natω0 and the average ion charge Z; solid lines represent the results obtained by solving
the Schrödinger equation (15); the dashed lines represent the results of hydrodynamic calculations by formulas (11), (12), and (14);
and the dotted line represents the Keldysh parameter γ. (b) The spectrum of transverse electromagnetic field radiated due to the prop-
agation of a laser pulse through a gas layer of thickness x = 6LFWHM. The solid line represents the result of calculation with the
“quantum-mechanical” source (7), the dashed line represents the calculation with the “hydrodynamic” source (13), the dot-and-dash
curve illustrates the hydrodynamic calculation without ionization current (the second term in (13) equals zero), and the dotted line
represents the initial spectrum of the laser pulse before entering the gas. The parameters of the laser pulse are as follows: intensity
Imax = 1016 W/cm2, a Gaussian envelope with a full width at half maximum τFWHM = LFWHM/c = 13 fs, and the wavelength λ0 =

0.8 µm; the gas concentration is nat/nc = 10–2, and the ionization potential of a single energy level is U1 = 24.6 eV.

â 2
of the fifth, seventh, and higher order harmonics. The
amplitude of the third harmonic depends weakly on the
number of bound states in the potential well and is well
described by the hydrodynamic model (with the ioniza-
tion current). The amplitude of the fifth harmonic is
also well described by the hydrodynamic model when
there are no excited energy levels and transitions
between them (Figs. 1 and 2a). However, in the pres-
ence of exited energy levels and transitions between
them, the amplitudes of the fifth, seventh, and ninth har-
monics calculated by the quantum-mechanical methods
prove to be much greater than the results obtained by
the hydrodynamic model. Note that the conclusion that
the transitions between excited energy levels are impor-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tant for the generation of such harmonics is in agree-
ment with the results of [18].

4. THE RELATION 
BETWEEN THE THIRD-HARMONIC 

AMPLITUDE AND THE RESIDUAL ENERGY
OF ELECTRONS

It follows from Section 3 (see Figs. 1 and 2) that the
amplitude of the third harmonic of fundamental fre-
quency ω0 is well described by the hydrodynamic
model. Hence, the amplitude of the third harmonic is
fully determined by the laser-field intensity at the
moment of the maximal ionization rate. However, the
SICS      Vol. 97      No. 3      2003
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Fig. 2. Spectra of the third, fifth, seventh, and ninth harmon-
ics for atomic potentials with different numbers of energy
levels (U1 = 24.6 eV): (a) with a single energy level U1,
(b) with additional energy level U2 = 4.85 eV, (c) with two
additional energy levels U2 = 10.4 eV and U3 = 1.5 eV;
(d) with three additional energy levels U2 = 14.54 eV, U3 =
6.63 eV, and U4 = 1.35 eV. The solid lines represent quan-
tum-mechanical calculations, and the dashed lines represent
hydrodynamic calculations. The spectra obtained after a
laser pulse has passed through a gas layer of thickness x =
2.2LFWHM; τFWHM = 25 fs; other parameters are the same
as in Fig. 1.
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JOURNAL OF EXPERIMENTAL
residual energy of electrons is also determined by the
latter quantity [6]. This fact allows us to express the
residual energy of electrons in terms of the amplitude of
the third harmonic, which can be used for diagnosis of
the residual energy by the third-harmonic spectrum.

For this purpose, we use the Fourier transformation
of Eqs. (12) and (4) with source (13) with respect to ξ.
Thus, we obtain the following equation for the Fourier
image  of the high-frequency field, expressed
neglecting the second derivative with respect to η in
Eq. (4):

(19)

where  is the Fourier image of the dimensionless
ionization rate

and  is the Fourier image of S(z)/|a |2.
For further transformations of Eq. (19), we assume

that the dimensionless distance η = k0x traveled by a
laser pulse in a gas satisfies the inequality η !
6(nat/nc)−1; this allows us to neglect the saturation phe-
nomena of the third harmonic that are associated with
the difference between the group velocities of the first
and third harmonics and with the attenuation of the
laser pulse during ionization. In this case, taking into
account that the intensity of higher order harmonics is
small compared with that of the fundamental harmonic,
we obtain from (19) the following linear dependence of
the third-harmonic intensity  on η:

(20)

where ∆1 is the characteristic width of the first-har-
monic spectrum, which is determined by the laser-pulse
duration. Note that the term proportional to α2 is attrib-
uted to the ionization current Jion .

Formula (20) enables one to express the amplitude
of the third harmonic of the laser field in terms of the
spectrum of the ionization rate. As will be shown below,
the residual energy Q∞ of electrons can also be
expressed in terms of this characteristic. Within the
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â 3( )
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hydrodynamic model, the residual energy can be repre-
sented as Q∞ = Qfin(ξ  –∞), where Qfin(ξ) is a part of
the total energy that determines the fraction of energy
irreversibly transferred from the laser field to the elec-
trons generated during the gas ionization [6]. When the
ionization occurs in the tunneling regime (γ ! 1) and
the intensities are nonrelativistic, according to [6, 7],
Qfin(ξ) can be represented as

(21)

Here,  is the energy component (reduced to the
dimensionless form by the coefficient mc2 [7]) of a
group of electrons that are generated by z-fold ioniza-
tion, κ(z) = nz/nat is the degree of the z-fold ionization,
and

is the dimensionless energy obtained by the moment ξ
by an electron generated at the moment ξ*. Note that,
just as in the case of the third harmonic, the hydrody-
namic calculation of the energy fraction Qfin(ξ) is in
good agreement with the results of the quantum-
mechanical calculation of the total energy of electrons
by the formula

(see Fig. 3). Figure 3 shows that, everywhere except for
the initial stage where the ionization occurs, the curve
Qfin(ξ) represents the lower envelope of the curve Q(ξ).

To establish a relation between Q∞ and , we
rewrite expression (21) for

as
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where  is the Fourier image of the energy

Qe(−∞, ξ*) and  = κ(z)(ξ  –∞). To analytically

determine the relation between Q∞ and , one has to
simplify expressions (22) and (20). To this end, we con-
sider the approximation of a given laser pulse:

(23)

where aL(ξ) is the envelope. For a(ξ) and Qe(ξ) in form
(23) under the assumption that

(where  is the characteristic width of the ionization

front when z-fold ionized ions are being formed and
LFWHM is the full width at half maximum of the laser
pulse), one can substitute the following approximations

for the Fourier images  and  into each sum-
mand in the sum over z in Eqs. (20) and (22):

where ξz is the moment of maximum of the zth ioniza-
tion front. As a result, we obtain the following algebraic

Q̂e k( )

κ∞
z( )

â 3( )

a ξ( ) aL ξ( ) ξ ,cos=

Qe ξ ξ∗,( )
1
2
---aL

2 ξ∗( ) ξ2 ∗ 1
2
---aL

2 ξ( ) ξ2sin+sin≈

– aL ξ∗( )aL ξ( ) ξ∗ ξ ,sinsin

k0LFWHM @ k0L
S
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L
S

z( )

â k( ) Q̂e k( )

â k( ) aL ξ z( )2π δ k 1–( )
2
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2

--------------------+ ,=

Q̂e k( ) 1/4( )aL
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2
------------------– δ k 2+( )

2
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Energy, eV

Fig. 3. Quantum-mechanical calculation of electron energy
(solid line) and hydrodynamic calculation of the part of
energy transferred from the field to electron (dashed line)
for the parameters given in Fig. 1.
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equations for  and Q∞ from (20) and (22):

(24)

(25)

where

and aL(ξz) is the value of the envelope at ξ = ξz . When
deriving (25), we used the equality

which is valid in the approximation of slowly varying
amplitudes. Moreover, we took into account that

.

To calculate  for real multielectron atoms, we
use a formula for the ionization frequencies Wz

from [29], according to which the constants in (14) are
equal to

where  and  = z  is the princi-
pal quantum number. Next, consider the approximation
of slowly varying amplitudes and take into account that
the maximal contribution to the harmonics of the ion-
ization rate are made by the neighborhood of its maxi-

â 3( )
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zn
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mum point ξz . Then, we obtain the following expres-

sion for :

(26)

where

is a quantity that is small in the ionization region
(εz & 1/3).

Using the fact that εz is small, we can obtain

from (26) the following asymptotic expansion for ,

which is written below up to terms on the order of :

(27)

A similar asymptotic series can also be written for

; however, this series converges more poorly than
series (27). At the same time, the general expression
(26) is inconvenient for computations. Therefore, it is
expedient to apply the following approximate expres-

sion for , which is based on the results of numerical
calculations:

(28)

According to (25) and (28), in the tunneling regime,

 makes a small contribution as compared with 

to the calculated value of ; therefore, the possible

error in determining  by formula (28) is insigni-
ficant.

Generally speaking, Eqs. (24)–(28) allow one to
express Q∞ in terms of  only in the case of single
ionization of a gas. In the case of multiple ionization,
information about the amplitude of the third harmonic
is insufficient for determining the residual energy; one
also needs information on the spectrum of this har-
monic; to this end, one has to consider the original sys-
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tem of integral equations (21), (20). However, in this
case, system (24)–(28) allows one, in principle, to

determine the residual energy  of a group of elec-
trons that are generated during the formation of ions of
maximal multiplicity of ionization. To this end, it is
necessary that the ionization peaks corresponding to
the ionization of various electron levels should be sep-
arated sufficiently clearly (as in the case of helium). To
put it more precisely, it is necessary that the inequality

should hold. Let us substitute the threshold field for the
zmax-fold ionization instead of  [34],

It is convenient to rewrite this inequality as

(29)

When inequality (29) holds, one can omit all the terms
in (25) except for those proportional to , which

make the maximal contribution. Taking into account
the numerical result (28) as well, we obtain

(30)

Substituting expression (27) for  into Eq. (30),

we obtain that the quantity aL( ) can be expressed in

terms of the ratio /Nη .1 This is achieved by
calculating the quantity

which represents the root of the following equation

1 The quantity η must not be too large in order that the saturation
phenomena of the third harmonic should not manifest them-
selves.
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derived from (30) and (27):

(31)

with the coefficients

(32)

.

Here, Cn , n = 2, 3, ..., are the coefficients of the asymp-
totic expansion

(see (27)). Taking into account that ε is small, we can
easily represent the solution to (31) as the power series

(33)

where Dn is the coefficient multiplying εn, n = 1, 2, ...,
in Eq. (31).

Having determined the root ε and the quantity

(34)

from formulas (24) and (27), one can easily find the

value . The dependence of this value on the
amplitude of the third harmonic will be determined by
the dependence of the obtained value of ε on coeffi-
cient A (32). Equations (31)–(34), (24), and (27) show
that the residual energy can be experimentally deter-
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Comparison of the residual energy (expressed in terms of (3)) calculated by formulas (31)–(34), (24), and (27) with that
obtained by formula (21)

Parameters of the problem
Data of hydrodynamic
calculations of (3)

calculated 
by formulas 
(31)–(34), 
(24), and 

(27)

calculated 
by formula 

(21)zmax , eV Imax,
W/cm2 λ0, µm τFWHM, fs (3)

1 13.6 1015 0.8 13 10–2 1.86 × 10–4 3 8.2 6.6

1 13.6 1015 1.08 50 10–2 2.22 × 10–4 2 6.7 7.0

1 24.6 5 × 1015 0.8 13 10–2 8.8 × 10–4 3.0 40 42

1 24.6 5 × 1015 0.8 50 10–2 10.7 × 10–4 1.3 25 27

2 54.4 4 × 1016 0.8 13 5 × 10–3 13.1 × 10–4 2.1 215 205

2 54.4 4 × 1016 0.8 50 5 × 10–3 14.75 × 10–4 0.66 172 127

5 97.9 4 × 1017 0.8 20 2 × 10–3 13.66 × 10–4 1.5 484 305

â

â
Q∞

zmax( )

Q∞
zmax( )

Uzmax

nat

nc
------ â

η /c
τFWHM
----------------
mined in principle by the optical measurements of the
third harmonic of laser radiation that generates the
plasma.2 

The comparison of the values of  calculated
by formulas (31)–(34), (24), and (27) with those
obtained by formula (21) is shown in the table. These

results are obtained in the case when terms up to 

are taken into account in asymptotic series (27), while,
when finding the root of polynomial (31), terms up to
ε(2) are taken into account. These calculations show
that, with respect to the amplitude of the third har-
monic, the diagnosis of the residual energy of electrons
ionized from internal energy levels satisfactorily (to an
accuracy of no worse than 50%) agrees with the results
of calculating the residual energy of this group of elec-
trons by formula (21). Note that the best agreement
between the above results is observed in the case of sin-
gle ionization of helium because, on the one hand, for-
mulas (24) and (25) contain only one term with z = 1 in
this case and, on the other hand, the tunneling ioniza-
tion condition γ ! 1 is satisfied by a sufficiently large
margin (γ & 0.3 in calculations). The accuracy of calcu-
lations for hydrogen is lower because, in this case, the
parameters chosen are on the verge of the tunneling
ionization regime (γ ~ 0.5). For doubly ionized helium,
the approach proposed also allows one to describe sat-

isfactorily the quantity  since the ionization
peaks corresponding to the successive ionization of the
first and second electrons are sufficiently well sepa-

2 The degree of ionization  must be estimated from indepen-

dent considerations. Below, we assume that  = 1.

κ∞
zmax( )

κ∞
zmax( )

Q∞
zmax( )

εzmax

3

Q∞
zmax( )
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rated,3 which is also manifested in the fact that the left-
hand side of inequality (29) is approximately equal to
2.5 in this case. For nitrogen, the accuracy of the
approach proposed is somewhat lower because the
appropriate ionization peaks in nitrogen are less sepa-
rated (in this case, the quantity on the left-hand side of
inequality (29) is approximately equal to 1.3).

5. CONCLUSIONS

Thus, we have shown that the spectrum of radiation
due to the ionization of a gas by an intense femtosecond
laser pulse strongly depends on the structure of atomic
levels in the region of the harmonics with frequencies
ω ≥ 5ω0. The intensity of these harmonics proves to be
the higher, the greater the number of energy levels of
bound states in the field of the atomic potential. The
maximum of the spectral density and the shape of the
line corresponding to the third harmonic of laser radia-
tion are virtually independent of the intra-atomic struc-
ture of the energy levels and are determined by the ion-
ization potential and the parameters of the laser pulse.
This fact allows one to construct a simple hydrody-
namic model using the quantum probabilities of ioniza-
tion in the laser-pulse field to describe the third-har-
monic generation due to ionization. Within this model,
one can determine the residual energy of electrons gen-
erated due to ionization by the amplitude of the third-
harmonic spectrum. This means that the third-harmonic
spectrum can be used for the optical diagnosis of a sub-
stance during its ionization.

3 The separation of these peaks in the calculations presented in the
fifth row of the table is more pronounced than those represented
in the sixth row. This fact accounts for the higher accuracy of cal-
culations represented in the fifth row.
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Abstract—The self-consistent field model is modified to take into account the effect of orientation correlations
on the behavior of an electron solvated in a polar liquid. This model is used as the basis for calculating the max-
imum of the absorption spectrum as well as the temperature dependence of this maximum for an electron sol-
vated in water and ammonium. The results are in accord with experimental data and with the results of calcu-
lation by the quantum molecular dynamics method. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in the problem of excess electrons solvated in
a polar liquid has persisted for several decades [1–4].
This attention to the problem is due to the fact that, on
the one hand, a large body of experimental data have
been obtained [5–7] on the effect of a polar liquid on
the behavior and parameters of solvated electrons; on
the other hand, excess electrons in a liquid are the sim-
plest examples of a quantum-mechanical–classical sys-
tem. A solvated electron may serve as an excellent test
for verification of various theoretical approaches [8–10].
However, the simulation of the behavior of excess elec-
trons in a liquid taking into account the detailed micro-
scopic structure of the medium involves considerable
computational expenditure. The application of various
approaches of statistical physics (group-theoretical
expansion, the apparatus of correlation functions, etc.)
makes it possible to reduce the problem to computation
of average equilibrium characteristics and, in some
cases, to use analytic estimates instead of computa-
tions [9, 10]. In fact, the problem can be reformulated
as the problem of self-consistent calculation of the
effective field, which determines the behavior of a clas-
sical ensemble of particles in a liquid as well as the
wave function of the excess electron [10].

Recently, we used this approach for analyzing the
behavior of excess electrons in Coulomb liquids [11, 12]
and calculated the absorption spectrum for an electron
solvated in alkali-halide melts as well as the variations
of these spectrum, associated with changes in tempera-
ture, density, and composition of the solution. These
calculations were made in the standard format of the
mean-field model. For strong electrolytes, this
approximation is sufficient for obtaining correct esti-
mates of energy and structural parameters of a sol-
vated electron [13]. However, in the case of dipole liq-
1063-7761/03/9703- $24.00 © 20566
uids, this approximation leads to a wrong estimate on
the dielectric properties of the liquid due to the long-
range nature of orientational correlations and can
hardly be used for calculating the parameters of sol-
vated electrons.

Here, we generalize our approach to polar liquids.
The main difficulty in the analysis of such system is that
orientational correlations between particles must be
taken into account for such liquids. Consequently, this
study is aimed at the development of a modified mean-
field model for calculating the characteristics of an
electron solvated in a polar liquid. The paper is con-
structed as follows. In Section 2, the theory is described
briefly, while the results are given in Section 3, where
the calculations are performed for a solvated electron in
a polar liquid with parameters typical of water and
ammonium.

2. THEORY

We consider an excess electron in a polar liquid with
density n0, which consists of classical particles with a
dipole moment m. The behavior of such a system is
determined by the large partition function Ξ,

(1)

where symbols 〈…〉e and 〈…〉S indicate averaging over
the electron coordinate and over classical degrees of
freedom, the latter including both the coordinates

Ξ –β T uej r Ri wi, ,( )
i

N

∑+
 
 
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+
1
2
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,

003 MAIK “Nauka/Interperiodica”



        

MODIFIED MODEL OF SELF-CONSISTENT FIELD FOR AN ELECTRON 567

                                                                                 
R{N} = {R1, R2, …, RN} of the centers of mass of parti-
cles in the liquid and the orientations w{N} = {w1, w2,
…, wN} of the dipole moments of the particles. In rela-
tion (1), β is the inverse temperature, T is the electron
kinetic energy, µ is the chemical potential of particles in
the liquid, uss is the potential of interaction between
these particles, and uej is the electron–solvent potential;
we assume that these are paired potentials.

When the electron ground state predominates, the
averaging over the electron coordinate can be reduced
to the averaging over the wave function φ(r) of the elec-
tron ground state [25]. In fact, this leads to the replace-
ment of potential uej in formula (1) by its mean value

(2)

This potential  can be regarded as an
external field acting on an ensemble of classical parti-
cles. The source of this external field is an excess elec-
tron. Thus, the problem can be reduced to the estima-
tion of the large partition function for a classical liquid
in an external potential. Having obtained such an esti-
mate, we must self-consistently calculate the electron
density ne(r) = φ2(r) for the excess election inducing
this field.

In the general case, potential uej includes both the
electrostatic interaction and the short-range compo-
nent. These contributions exert different effects on the
solvent. The short-range component leads to the forma-
tion of a cavity (solvatophobic effect), while the long-
range component induces the polarization of the
medium and orientation ordering of particles in the liq-

uid. Since the size re =  of the electron density
distribution is much larger than the characteristic size
of variations of the short-range component, we can
characterize the short-range contribution uec by only
one parameter a > 0 and write uej(R, w) in the form

(3)

Similarly, we can separate in the interparticle potential
uss the short-range component us and the long-range
contribution associated with the dipole–dipole inter-
action:

(4)

(5)

uej R w,( )〈 〉 e uej r R– w,( )φ2 r( ) r.d∫=

uej R w,( )〈 〉 e

r2〈 〉 e
1/2

uej R w,( ) uec m w j( )∇ 1
R j

--------+=

=  aδ R( ) m∇ 1
R j

--------.+

uss Ri R j i,– w j–( ) us Ri R j–( )=

+ m wi( )M Ri R j–( )m w j( ),

M R( ) 3RR

R5
------------

I

R3
-----,–≡
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where M(Ri – Rj) is the dipole interaction tensor and
I is a second-order unit tensor.

We introduce the collective variable nes(R, w), i.e.,
the generalized number density of particles in the
liquid,

(6)

Then we can write the large partition function in func-
tional form:

(7)

In this relation, the dot indicates convolution,

Our task is to find the functional dependence Esolv[nes]
and then calculate the distribution nes(R, w) of particles
in the liquid. For this purpose, we must carry out aver-
aging of the solvation energy Esolv; this, in turn, requires
knowledge of the Jacobean J(nes, Rw) of the transition
from the coordinate representation {Rw} to collective
variables nes . Naturally, relation (7) formally does not
simplify the averaging procedure, but the bilinear func-
tional dependence Esolv[nes] makes it possible to obtain
the approximate estimate (7) from physical consider-
ations.

First of all, we note that the polarization induced by
an electron makes the main contribution to the solva-
tion energy. Thus, the estimation of the polarization
contributions in Eq. (7) makes it possible to estimate
Esolv on the whole. For this purpose, we transform
Eq. (7) into a continual integral with respect to the elec-
tric field strength E (see the Appendix) and then esti-
mate this integral by the steepest descent method:

(8)

where Em is the mean field strength, which is deter-
mined from the extremum condition

After a series of manipulations, we obtain an explicit

nes R w,( ) δ R R j–( )δ w w j–( ).
j

N

∑=

Ξ βEsolv nes[ ]–[ ]exp〈 〉 S,=

Esolv nes[ ] T nes

uss mTm+( )
2

-------------------------------- nes⋅ ⋅+=

+ ne uec m∇ 1
R
-------+ 

  nes⋅ ⋅ µ nes.⋅–

a b⋅ a R1w1( )b Rw R1w1–( ) Rd 1 wd 1.∫≡

βΩsolv–[ ]exp βEsolv–[ ]exp〈 〉 s=

D E[ ] β S E( )–[ ] β S Em( )–[ ] ,exp≈exp∫∝

∂S E Em=( )
∂E

---------------------------- 0.=
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expression for the thermodynamic potential,

(9)

where hss(R) is the correlation function for a pure sol-
vent, which is determined by the short-range repulsion:

(10)

In relation (9), P(R) is the polarization of the liquid and
f is the Mayer function; these quantities can be
expressed in terms of the generalized density and the
mean field strength:

(11)

(12)

Variation of functional Ωsolv with respect to chemi-
cal potential µ leads to the following expression for the
density nes(Rw) of the solvent:

(13)

Thus, combining Eqs. (12) and (13), we can find
Ωsolv[nes]. In order to determine the functional
Ωsolv[nes], we must also know the explicit dependence
µ[nes], which can be obtained by inverting relation (13).
However, this inversion can be carried out only with the
help of additional approximations in view of the non-
linearity and nonlocality of relation (13). For example,
in the standard format of the mean field model, we
assume that the chemical potential µ = const [15]. In
view of the long-range nature of orientational correla-
tions, this approximation for dipole liquids is not quite
correct because of a wrong estimate of the dielectric
properties of the liquid [16].

In principle, the µ[nes] dependence can be obtained
on the theory of density functional [15]; in the general
case, this dependence leads to integral equations of the
Ornstein–Zernike type [16]. However, this problem can
apparently be solved in the simplest way by using the
local approximation

(14)

Ωsolv nesµ( )
1
2
---P M P⋅ ⋅–=

– β 1– n0 f nes( ) 1
1
2!
-----n0hss f nes( )⋅+ 

  ,⋅

n0
2 1 hss R R'–( )+[ ]

=  δ R R1–( )δ R' R2–( )
β
2
--- uss Rm Rk–( )

mk

N

∑–exp
S

.

P R( ) m w( )nes Rw( ) w,d∫=

f nes( ) β uec ne mM P⋅ µ–+⋅( )–[ ]exp 1.–=

δΩsolv

δµ Rw( )
------------------- nes Rw( ) n0 1 hes Rw( )+[ ]= =

=  n0 1 n0 f nes( ) hes⋅+[ ] f nes( ) 1+[ ] .

βµ R( ) βmEm[ ]exp wd∫( ).ln≈
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This approximation takes into account two physical
effects: the asymptotic behavior of chemical potential
µ(R  ∞) and the saturation of dipole orientations for
R  0. Using this approximation, we obtain an
explicit expression for the Mayer function in terms of
the electric field strength:

(15)

Here, the mean field strength Em is determined through
the Maxwell equation (26) and can be expressed in
terms of polarization P, whose longitudinal component
Pr is, in turn, connected with Em via the relation

(16)

where

If we disregard the short-range interaction, expres-
sion (15) corresponds to the point dipole model [17]; a
similar model was used for estimating the absorption
spectrum of a solvated electron in amorphous ice [18].

Using standard thermodynamic relations between
the thermodynamic functional and the free energy of
the system,

we obtain the final relations for functional F[φ, Em] of
the free energy of a solvated electron:

(17)

Minimizing this functional with respect to the electron
wave function, we arrive at the Schrödinger equation
with the self-consistent potential V(r):

(18)

The mean field strength Em is determined from
Eqs. (26) and (16). Thus, in order to calculate the char-
acteristics of an electron solvated in a polar liquid, we

f es Rw( )
β uec ne mEm+⋅( )–[ ]exp

βmEm–[ ]exp wd∫
------------------------------------------------------------- 1.–=

Pr R( ) n0m βmEm( )coth βmEm( ) 1––[ ]–=

× 1 n0 f es hss⋅–[ ] –βuec ne⋅[ ] ,exp

f es –βuec ne⋅[ ]exp 1.–=

F µN– Ωsolv,=

F
1
2
--- r ∇φ r( )[ ] 2d( ) r φ2 r( )

∇ Em

2π
-----------–∫–d∫=

× φ2 R( )
2 r R–
------------------- Rd∫ β 1– n0 f es 1

1
2
---n0hss f es⋅+ 

 ⋅–

–
1
2
---Em M 1– Em⋅ ⋅ P Em( ) Em.⋅+

–
1
2
--- ∇ 2 ∇ Em

4π
----------- φ2 r( )–

rd
r R–
---------------∫+

--+ n0a f es 1+( ) 1 n0hss f es⋅+( ) φ r( ) E0φ r( ).=
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must find self-consistent solutions to Eqs. (16), (18),
and (26). Then we can calculate the first excited level
for the fixed self-consistent potential V(r) and estimate
the maximum in the absorption spectrum of a solvated
electron as

3. RESULTS

We have calculated the characteristics of a solvated
electron, namely, its mean radius re , free energy F, total
E, potential 〈V 〉 and kinetic 〈T〉  energies, the absorption
spectrum peak ∆E, and the temperature dependence of
this peak ∂∆E/∂t for the parameters typical of water
and ammonium. For water under standard conditions,
we used the following values of parameters: m =
1.854 D, n0 = 0.0334 Å–3, thermal expansion coeffi-
cient ∂lnn0/∂t = 2.5 × 10–4 grad–1 [20], and hard sphere
diameter σ = 3.15 Å.

It should be noted that among the parameters of our
problem, it is most difficult to estimate parameter a. We
estimated this parameter on the basis of the electron–
hydrogen ueH(r) and the electron–oxygen ueO(r) inter-
action potentials used for calculating hydrated electron
by the methods of quantum molecular dynamics or
integral equations [21–24]. In these calculations, we
assume that this potential at small distances differs
from the Coulomb interaction potential, i.e.,

Usually, RO = 0 Å, while 0 < RH < 1 Å. In our calcula-
tions, we used the value of RH = 0.5 Å. Taking into
account approximation (3), we find that

where zH are partial charges of atoms. We calculated
correlation function hss(r) in the hard sphere model by
numerically solving the integral equation with Percus–
Yewick closure [25].

In the case of ammonium, for t = –33°C, we took
m = 1.471 D, n0 = 0.024 Å–3, thermal expansion coeffi-
cient ∂lnn0/∂t = 1 × 10–3 grad–1, and hard sphere diam-
eter σ = 3.65 Å. Parameter a was estimated and corre-
lation function hss(r) was calculated in the same way as
for a hydrated electron.

In the general case, a detailed analysis of the charac-
teristics of a solvated electron requires numerical
solution of Eqs. (16) and (18); our previous investiga-
tions [13] proved, however, that these characteristics
can be estimated accurately by the variational method

∆E E0 E1– .=

uei r Ri<( ) uei Ri( ) i O,  H=  ( ) .=

a 4π ueO 2ueH zO 2zH+( )/r–+[ ] r2 rd

0

∞

∫=

=  4πzHRH
2 /3,
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also by choosing a certain type of trial functions for the
electric field and the electron wave functions, after
which function (17) for these functions is minimized
directly. For such trial functions of the ground and first
excited electron states, we used the following approxi-
mations:

(19)

here, 

 

α

 

 and 

 

α

 

1

 

 are variational parameters characterizing
the electron density distribution in the ground and
excited states. We approximated the electric field
strength 

 

E

 

m

 

 as

(20)

It should be noted that the variational parameter 

 

γ

 

 has
the meaning of reciprocal permittivity; i.e., 

 

γ

 

–1

 

 = 

 

e

 

e

 

f

 

,
which the choice of approximation (20) for the electric
field is dictated by the fact that this approximation
becomes accurate in the asymptotic limit correspond-
ing to the continual model of the liquid, when the radius
of short-range interactions tends to zero, and 

 

γ

 

–1

 

 = 

 

e

 

.

The results of calculations compared to experimen-
tal data are given in the table. A comparison of these
data shows that our model makes it possible to estimate
correctly the structural and thermodynamic parame-
ters of electrons solvated in water and ammonium.
Our calculations are also in qualitative agreement with
the data obtained by the quantum molecular dynamics
method. For example, for an electron solvated in ammo-
nium, we obtained 

 

E

 

 = –1.84 eV and 

 

∆

 

E

 

 = 1.32 eV [29],
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2

 

π

 

---------
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 1  r  ( )  

α
 

1
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 π  
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 
 

3/2

 
r  θ α

 1 
r –  [ ] ;expcos=

Em r( )
γ
r2
---- φ2 R( )R2 R.d

0

r

∫=

 

Characteristics of an electron solvated in water and ammo-
nium (experimental values are given in the parentheses)

Water (

 

t

 

 = 25

 

°

 

C) Ammonium
(

 

t

 

 = –33

 

°

 

C)

 

re , Å 2.5 3.0

〈T 〉 , eV 1.32 0.96

〈V〉 , eV –4.82 –3.51

E, eV –3.5 –2.55

F, eV –1.01 (–1.6 [26]) –0.72

∆E, eV 1.59 (1.72 [27]) 1.16 (0.8 [28])

∂∆E/∂t,
10–3 eV K–1

–1.15 (–2.9 [28]) –2.2 (–1.5 ± 0.2 [28])
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while for a hydrated electron, we have E = –2.4 eV and
∆E = 2.2 eV [30]. These values are close to our esti-
mates; however, our model predicts a slightly higher
value of the mean radius for a hydrated electron and a
slightly lower value for an electron solvated in ammo-
nium (the calculations based on the quantum molecular
dynamics method give re = 2.3 Å [29] and 3.8 Å [30]).
In our opinion, this is associated with the peculiar way
the short-range contribution uec is included in the elec-
tron–solvent interaction potential. We analyzed the

0.05

1.51.0 2.0 2.5 3.0 3.5 4.0
0

0.10

0.15

0.20

0.25

1

2

3

a

Fig. 1. Relative variations of the total energy δE (1), absorp-
tion peak δ∆E (2), and the mean radius re (3) for a hydrated
electron as functions of parameter a characterizing the
short-range repulsion between an electron and the solvent.
All quantities are normalized to the corresponding values
for a = 1.4 at. units.

80 90
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7060504030
T, °C

–0.96

–0.98

–1.00

–1.02

–1.04

–1.06

–1.08

F, eV

Fig. 2. Temperature dependence of the free energy of a
hydrated electron. The solid curve corresponds to our calcu-
lations, while the dashed curve corresponds to the results
obtained in [24].
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effect of parameter a, characterizing this contribution,
on the results of calculations. Figure 1 shows the rela-
tive variation of the total energy E, the absorption max-
imum δ∆E, and the mean radius re for a hydrated elec-
tron as functions of parameter a. It can be seen that a
fourfold increase in this parameter does not lead to an
appreciable change in the total energy, while the mean
radius increases by 10% and the transition energy
increases by 20%. Thus, our results show that a more
detailed account of the short-range contribution to the
electron–solvent interaction potential is required for
estimating the characteristics of a solvated electron
mode accurately.

Another important feature of our model is that it
enables us to calculate the temperature variations of the
transition energy also (see table). Our calculations are
in quantitative agreement with experimental data for an
electron solvated in ammonium, while only a qualita-
tive agreement is observed for a hydrated electron. This
peculiarity is due to anomalous temperature properties
of water [20], for which the thermal expansion coeffi-
cient is almost an order of magnitude smaller than for
other polar liquids. In our opinion, this feature is in turn
determined by the peculiarity of formation of hydrogen
bonds in water, which is not taken into account in our
simple model in any way. By way of example (see
Figs. 2–4), let us compare our results with the results of
calculations for the temperature dependences of the
free, kinetic, and total energies of a hydrated electron,
which were obtained by the method of integral equa-
tions taking into account the molecular structure of
water [24]. It can be seen that our calculations for the
free and total energies lead to shifts opposite to those
obtained in [24]. This is apparently associated with the
specific way in which the effects of cavity formation in

90

2.0

T, °C

T, eV

807060504030

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Fig. 3. Temperature dependence of the kinetic energy of a
hydrated electron. Notation is the same as in Fig. 2.
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the molecular model of water are taken into account
(short-range interactions and the temperature factor are
significant for these effects). It should be noted that an
analysis of such changes requires a very accurate calcu-
lation of the parameters of a hydrated electron. For
example, a change in the free and total energies of a
hydrated electron in the range of 0–50°C amounts to
only 5%, which is obviously at the margin of accuracy
in our simple model. In our opinion, more adequate
molecular models are required for estimating such tem-
perature variations.

It should be noted in conclusion that our model
makes it possible to calculate the behavior of an elec-
tron solvated in a polar liquid taking into account
microscopic parameters of the medium and its thermo-
dynamic state. We believe that the methods developed
in this study enable one to quite easily obtain self-con-
sistent estimates for an excess electron in various polar
disordered media and then to adapt the results to real
systems. The proposed approach reduces the problem
to the calculation of average equilibrium parameters
and permits the replacement of the calculation by vari-
ational estimates. This makes it possible to consider-
ably reduce the computer time as compared to a direct
simulation by the Monte Carlo or quantum molecular
dynamics methods without deteriorating the accuracy
of computations.
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Fig. 4. Temperature dependence of the total energy of a
hydrated electron. Notation is the same as in Fig. 2.
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APPENDIX

Transformation of Partition Function 

Transforming a functional to an integral continual in
the field, we must take into account the degeneracy of
dipole interaction with respect to orientations of parti-
cles in a liquid. The physical meaning of this effect is
that an additional charge may induce in the general case
not only the longitudinal, but also a transverse electric
field. Taking this into account, we transform the large
partition function (7) into a continual integral with
respect to electric field strength E, using the relation

(21)

where T–1 is a matrix inverse to the dipole interaction
tensor. Applying the Hubbard–Stratonovich transfor-
mation [19], we ultimately obtain

(22)

As a result, action S(E) is factorized, and we can obtain
an explicit equation for this quantity in terms of one-
and two-particle irreducible correlation functions,

(23)

where f(E) is the Mayer function,

(24)

The extremum of action S(E) with respect to the elec-
tric field strength leads to an integral relation between
the field strength and polarization:

(25)

which can be written in the form of the Maxwell equa-
tion

(26)

Using Eqs. (24) and (25), we obtain Eq. (9).
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Disregard of the short-range interactions in (23)–(26)
leads to the Debye–Hückel limit, while the lineariza-
tion of dependence (24) (for P ∝  E) leads to the linear-
ized Debye–Hückel model. We can also write an auxil-
iary relation between P and E,

(27)

which serves as the definition of permittivity e. Com-
bining this expression with Eq. (26) in the case when an
excess electron charge is considered as a point charge,
we arrive at the Clausius–Mossotti relation for permit-
tivity e. Thus, various approximations can be obtained
with the help of Eqs. (24)–(27). The choice of an
approximation is determined by the accuracy required
for calculating the microscopic structure of the liquid.
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Abstract—The paper presents results obtained in studying 139La and 55Mn nuclear magnetic resonance spectra
and nuclear magnetic relaxation in the temperature range 21–220 K augmented by data on the magnetic and
transport properties of ferromagnetic (La1 – xSrx)1 – δMnO3 manganites (x = 0, 0.075, and 0.125, δ ≈ 0.03−0.05).
The transition from the ferromagnetic state with semiconductor-type conductivity to the ferromagnetic state
with metallic conductivity as the degree of doping x increased was related to the redistribution of the volumes
of two phases (two types of regions) with different degrees of freedom of electron holes on manganese sites.
The ferromagnet–paramagnet phase transition was a smooth redistribution of the volumes of ferromagnetic and
paramagnetic (or antiferromagnetic) regions in a wide temperature range. Ferromagnetic conductivity was
caused by the “double exchange” mechanism, whereas, in comparatively nonconducting regions, double
exchange was considerably weakened and involved fairly slow thermally activated motion of Jahn–Teller
polarons. The dynamics of nuclear spins was evidence of internal inhomogeneity of each of these phases.
© 2003 MAIK “Nauka/Interperiodica”.

s
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1. INTRODUCTION

Ferromagnetic La1 – xAxMnO3 manganites (A = Ca,
Sr, Ba, or Pb) with perovskite-like structures have been
the objects of extensive studies in recent years because
of the so-called giant magnetoresistance effect close to
the temperature of magnetic ordering of manganese
spins [1–3]. The close relation between the magnetic
and electric properties of these compounds is explained
in terms of the double exchange model [4], according to
which electron holes induced by doping exhibit a ten-
dency to easily jump between neighboring manganese
sites if both sites have parallel orientations. As a result,
ferromagnetic ordering, for instance, in “optimally”
doped samples (x ≈ 0.3) is accompanied by a sharp
decrease in electric resistance directly below the Curie
temperature TC [5, 6]. More recent studies, however,
showed that the transition to metallic conductivity often
occurred far below TC [7–9]. What is more, with a low
concentration of holes, strong disorder or lattice distor-
tions, and substitutions in manganese sites, the ferro-
magnetic state can be formed without a decrease in
resistance. Such a state (the ferromagnetic insulating
state) has a semiconductor-type conductivity even to
the lowest temperatures [7, 10, 11]. The nature of such
states, which do not fit in with the base concept of dou-

† Deceased.
1063-7761/03/9703- $24.00 © 20573
ble exchange, remains unclear. For this reason, other
models are currently being actively discussed, such as
the phase separation into ferromagnetic metallic and
insulating clusters with charge ordering, ferromagnetic
superexchange, charge and/or orbital ordering, cluster
spin glass, or a nonuniform ground state (e.g., see [3,
12–15]).

Because of its local nature, nuclear magnetic reso-
nance (NMR) allows valuable information to be
obtained about the special features of the magnetic state
of such systems. The 139La NMR spectra of various fer-
romagnetic insulating LaMnO3 + δ and La1 – yCayMnO3 + δ
manganites were studied in [16]. A substantial decrease
in the intensity or the complete disappearance of the
NMR signal was observed for all samples in a certain
temperature range. The authors of [16] related this
observation to slow diffusion of lattice excitations. The
source of such excitations was assumed to be small
Jahn–Teller polarons. Similar results were obtained in
studies of the 139La NMR spectra of La1 – xCaxMnO3

[17]. A decrease in the intensity of the NMR signal was
explained in [17] by quasi-static distortions of manga-
nese octahedra in the ferromagnetic insulating phase.
The 55Mn NMR spectra of the corresponding systems
were studied in [18–21]. The dynamics of nuclear
spins, which contains important information about the
003 MAIK “Nauka/Interperiodica”
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special features of the structure of the ferromagnetic
state of such systems, has not, however, been studied.

This work presents the results of a detailed study of
the NMR spectra and nuclear magnetic relaxation for
the 139La and 55Mn nuclei in the (La1 – xSrx)1 – δMnO3

system with comparatively low concentrations of Mn4+

ions (x = 0, 0.075, and 0.125). These data are aug-
mented by the results obtained in measuring the mag-
netic and transport properties of the system. Our pur-
pose was to study the transition between the ferromag-
netic insulating (FMI) and ferromagnetic metallic
(FMM) states. The objects of study were selected from
the following considerations. It is known that, apart
from doping with strontium atoms, manganese variable
valence and, accordingly, the ferromagnetic state can
be formed in manganites by creating cationic vacancies
predominantly in lanthanum sites [11, 22–25]. Depend-
ing on synthesis conditions, both the ferromagnetic
metallic and ferromagnetic insulating states can be
obtained. An increase in the degree of doping with
strontium under constant synthesis conditions increases
TC and stabilizes the ferromagnetic metallic state. A
similar system was studied in [26] by elastic neutron
scattering (PDF analysis). The authors advanced the
suggestion that carriers in self-doped lanthanum man-
ganites (xSr = 0) could be captured by cationic vacan-
cies, which explains the low thermally activated elec-
tric conductivity, whereas doping with strontium
caused the formation of mobile polarons responsible
for metallic conductivity. The NMR data obtained in
this work show that the compounds under study simul-
taneously contain two types of ferromagnetic regions
with different electron hole mobilities in manganese
sites. Depending on the relative volumes of these
regions, the ground state may be either conducting or
semiconducting. We also found that the phase transition
from the ferromagnetic to the paramagnetic state was
smeared and occurred as a smooth redistribution of the
volumes of ferromagnetic and paramagnetic (or antifer-
romagnetic) regions in a wide temperature interval.

2. EXPERIMENTAL

Polycrystalline (La1 – xSrx)1 – δMnO3 samples (x = 0,
0.075, and 0.125) were synthesized by the standard
ceramic technique with sintering in air, because pre-
cisely this method of synthesis allows the required con-
centration of carriers to be obtained via the formation of
vacancies in La/Sr sites [27]. The initial materials were

Crystal lattice parameters of (La1 – xSrx)1 – δMnO3 samples

x a, Å c, Å V/formula 
unit, Å3

0 5.523(1) 13.359(1) 58.8

0.125 5.5265(15) 13.336(3) 58.8
JOURNAL OF EXPERIMENTAL 
La2O3, MnO2, and SrCO3 powders of high purity.
These materials were mixed in a stoichiometric ratio
and thoroughly ground in an agate mortar under recti-
fied ethanol. After drying, the batch mixture was
pressed into bars. The samples were preliminarily
heated at 1000°C for 21.5 h. They were then thoroughly
ground, pressed into bars, and eventually sintered at
1100°C for 30 h.

The crystal structure of the samples was determined
by X-ray diffraction, NiKα radiation. According to the
X-ray data, the samples were single-phase and had a

rhombohedral structure (R c symmetry). The cell
parameters of the samples of the limiting compositions
are listed in the table. The parameter values are in
agreement with the literature data on similar composi-
tions [22, 27]. The δ values were estimated by compar-
ing the lattice parameters (table) with the data reported
in [22, 27]; this gave δ ≈ 0.05 and δ ≈ 0.03 for x = 0 and
x = 0.125, respectively. Note that the reflections from
the sample with x = 0 were broadened compared with
the doped x = 0.125 sample; this is likely to be evidence
of a greater defect structure of the sample with x = 0
because of the presence of cationic vacancies.

Magnetization and initial magnetic susceptibility
measurements were performed on a SQUID magne-
tometer. The magnetization curves were recorded in
fields up to 5 T. Spontaneous magnetic moment values
were obtained by extrapolating the curve portions
recorded at fields above the saturation field to a zero
magnetic field. The resistive measurements were per-
formed by the four-point-probe method. The results of
these measurements are shown in Fig. 1, according to
which the ferromagnet–paramagnet transition in the
sample with x = 0 is smeared over a wide temperature
range. The transition becomes sharper as the concentra-
tion of strontium grows. Simultaneously, the Curie tem-
perature TC , determined as the inflection point of the
susceptibility curve, systematically increases. In addi-
tion, the sample with x = 0 has semiconductor-type
resistance in the entire temperature range of measure-
ments, whereas the transition from semiconductor-type
to metallic conductivity is observed for the samples
with x = 0.075 and 0.125 as temperature decreases.
Note that the temperature of the insulator–metal transi-
tion is substantially lower than TC for the doped sam-
ples, especially for the sample with x = 0.075.

NMR measurements were performed on an NMR
spectrometer with a slow frequency sweep and boxcar
detector signal averaging. The NMR spectra were
recorded using the two-pulse spin echo sequence
τ−τ1−2–τ, where τ1–2 is the time interval between excit-
ing pulses of width τ ≈ 0.5–1.0 µs. Because of rapid
relaxation, the spectra given in this work were recorded

using a minimum  time interval limited by the
“dead” time of the detector and transition processes.

The  time was 15 µs for measurements on 139La

3

τ1–2
min

τ1–2
min
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nuclei and 3–3.5 µs for 55Mn nuclei. Spin–spin relax-
ation was studied by recording the dependences of the
area under the envelope of the spin-echo signal on the
τ1–2 time interval in two-pulse T2 experiments. Spin–
lattice relaxation was studied by recording signal resto-
ration curves versus time t after the inversion of nuclear
spins by a 180° pulse at a fixed τ1–2 value, 180°–t–90°–
τ1–2–180° (three-pulse T1 experiments). All recorded
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
signals had a large NMR amplification factor, η ≥ 600,
which was evidence that they originated from ferro-
magnetic regions.

3. THE NMR RESULTS

The 139La and 55Mn NMR spectra of
(La1 − xSrx)1 − δMnO3 at T = 77 K are shown in Fig. 2.
0.2
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Fig. 1. Temperature dependences of (a) initial magnetic susceptibility and (b) specific electric conductivity of (La1 – xSrx)1 – δMnO3
samples with x = 0 (1), 0.075 (2), and 0.125 (3).
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Fig. 2. (a) 139La and (b) 55Mn NMR spectra of (La1 – xSrx)1 – δMnO3 at T = 77 K. The intensities of the spectra of the x = 0 sample
are increased 10 times.
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Fig. 3. Temperature evolution of the 55Mn NMR spectra of LMO recorded using τ1– 2 = 3.5 µs (T = 21–50 K) and τ1– 2 = 3 µs (T ≥
63 K). The dashed lines schematically represent the contribution of phase I (see text) to the NMR spectra at low temperatures.
The 139La NMR spectrum consists of a fairly broad sin-
gle line centered at an f ≈ 17 MHz frequency for x =
0.125 and 0.075. The signal is not observed at x = 0.
This is in agreement with the data reported in [16, 17],
according to which the 139La NMR signal disappears at
nitrogen temperatures in ferromagnetic insulating man-
ganites such as the sample with x = 0 because of a sharp
decrease in the spin–spin relaxation time T2. Note that
the amplitude of the signal for the composition with x =
0.075 is two times lower than for x = 0.125, which cor-
responds to the tendency mentioned above toward a
decrease in time T2 in compositions in which the type
of conductivity changes from metallic to semiconduc-
tor at T < TC . A similar situation is observed in the 55Mn
NMR spectra. The amplitude of the NMR signal for the
line centered at about 380 MHz in the spectrum of the
sample with x = 0.125 is 2.5 times larger than for the
sample with x = 0.075 and 60 times larger than for the
JOURNAL OF EXPERIMENTAL
sample with x = 0. In addition to the line at f ≈ 380 MHz
caused by averaging superfine fields on 55Mn nuclei by
fast motions of electron holes over manganese sites
Mn4+  Mn3+ (with a characteristic hopping fre-
quency fhop > fNMR), the NMR spectra of the samples
with x = 0.125 and 0.075 contain a line at f ≈ 325 MHz,
which corresponds to quasi-localized (fhop < fNMR) Mn4+

states [28].

Further, we concentrate on the samples with x = 0
(LMO) and x = 0.125 (LSMO), which, at T < TC , as fol-
lows from Fig. 1, are manganites with semiconductor-
type and metallic conductivities, respectively. The tem-
perature evolution of the 55Mn NMR spectra of LMO is
shown in Fig. 3. The data given in this figure were cor-
rected to exclude the A ∝  1/T temperature factor of the
NMR signal amplitude caused by the Curie law for
nuclear magnetization. The behavior of the intensity of
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Fig. 4. Dependences of the spin echo amplitude of 55Mn nuclei in LMO on the τ1–2 interval at various temperatures: (1) 21 K (f =
385 MHz), (2) 30 K (f = 384 MHz), (3) 50 K (f = 382 MHz), (4) 63 K (f = 380 MHz), (5) 100 K (f = 369 MHz), (6) 130 K (f =
356 MHz), and (7) 160 K (f = 337 MHz).
                 
the principal line (f ≈ 380 MHz at T = 77 K) is indicative
of the existence of three characteristic temperature
intervals. In the temperature range 63 K < T < 120 K,
the reduced line intensity is virtually constant. At T <
63 K, the intensity of the signal substantially increases,
which is evidence of the appearance of some additional
contribution at f ≈ 390 MHz (T = 21 K). Moreover, a
new line at f ≈ 310–325 MHz corresponding to quasi-
localized Mn4+ states appears in the spectrum. Its inten-
sity rapidly increases as temperature decreases. Lastly,
at T > 120 K, the NMR signal amplitude decreases
because of a decrease in the T2 time for 55Mn nuclei,

which becomes comparable with the  time, and, as
shown below, because of a decrease in the number of
nuclei that contribute to the resonance, that is, a
decrease in the volume of ferromagnetic regions.

Note that, along with the signal of Mn4+ ions, the
low-temperature NMR spectrum of LMO contains a
satellite line at f ≈ 295–300 MHz. It is likely that this
line corresponds to the presence in LMO of manganese
sites with a decreased Mn–O distance, that is, Mn–O
bonds more covalent in character. The presence in

τ1–2
min
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LMO of manganese sites with different Mn–O dis-
tances along with a large number of vacancies in lan-
thanum sites can also be the reason for broadening
X-ray reflections in this sample compared with LSMO.
A similar shape of 

 

55

 

Mn NMR spectra was observed
in [19] for self-doped lanthanum manganite.

The temperature evolution of the 

 

55

 

Mn NMR spectra
of LMO shown in Fig. 3 is evidence of the presence of
two types of ferromagnetic regions with different
dynamics of electron holes in manganese sites. The
NMR spectrum of regions of type I consists of a single
line (

 

f

 

 

 

≈

 

 380 MHz at 

 

T

 

 = 77 K) corresponding to fast
motion of electron holes over manganese sites; this line
is observed in a broad temperature range. The NMR
spectrum of regions of type II is complex. It consists of
two lines corresponding to quasi-localized Mn4+ ions
(f ≈ 325 MHz) and, as shown below, Mn3+ ions (f ≈
390 MHz); this spectrum is only observed at low tem-
peratures. The contributions of regions of two types to
the line at f ≈ 380–390 MHz is clearly seen in the
dependences of the spin echo amplitude on the τ1–2 time
interval at various temperatures (Fig. 4). At T ≥ 63 K,
SICS      Vol. 97      No. 3      2003
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these dependences are well described by a single expo-
nential function, namely,

(1)

where T2 is the spin–spin relaxation time in regions of
type I. At T < 63 K, 55Mn nuclei in regions of type II
make an additional rapidly relaxing contribution to the
spin echo amplitude. Such a contribution in ferromag-
nets can in principle be related to an admixture of a sig-
nal of more rapidly relaxing nuclei in domain bound-
aries. The NMR amplification coefficient η for nuclei
in domain boundaries should then be substantially (as a
rule, by one to two orders of magnitude) larger than for
nuclei within domains because of the high susceptibil-
ity of reversible domain boundary displacements [29].
However, it follows from Fig. 5 that, for our samples,
the optimal radiofrequency field amplitude Brf for excit-
ing the rapidly relaxing component of the NMR signal
is substantially larger than for the slowly relaxing com-
ponent. It follows that, as distinguished from the situa-
tion with domains and domain boundaries, the η value
for the rapidly relaxing component in our spectra is four
times lower than η for the slowly relaxing component.
We therefore deal with signals of two types of ferro-

A τ1–2( ) A0 2τ1–2/T2–( ),exp=

100
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0.50 1.0
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A

Fig. 5. Dependences of the spin echo signal amplitude for
55Mn nuclei in LMO on the τ1– 2 interval at f = 385 MHz
and various radiofrequency field Brf amplitudes, T = 21 K:
(1) 0.125, (2) 0.25, and (3) 1 G. Shown in the inset are the
Brf dependences of the amplitudes of the rapidly relaxing
(T2 = 5 µs, the solid curve) and slowly relaxing (T2 = 17 µs,
the dashed curve) echo signal components obtained by
decomposing experimental curves into two constituents.
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magnetic regions (further called phases I and II) with
different effective magnetic fields of crystallographic
anisotropy HA . For phase II, this anisotropy is approxi-
mately four times larger (η ~ Hn/HA , where Hn is the
hyperfine magnetic field).

The presence of the contributions of two phases to
the line at f ≈ 380–390 MHz also follows from spin–lat-
tice relaxation measurements. The curves of restoration
of the longitudinal nuclear magnetization component
M(t) at two τ1–2 interval values are shown in the insets
in Fig. 6. At τ1–2 = 14 µs, when the observed signal is
determined by the contribution of nuclei in phase I, the
curve is well described by the exponential function:

(2)

where T1 = 1.04 ms is the spin–lattice relaxation time in
phase I. At τ1–2 = 3.5 µs, the curve of restoration of M(t)
can be described by the superposition of two exponen-

tial functions with relative amplitudes of  = 0.36 and

 = 0.64 determined from T2 measurements and
relaxation times T1 = 1.02 and 0.143 ms for phases I and
II, respectively. Note the close agreement between the
T1 times for phase I obtained in two independent exper-
iments. The contribution of phase I to the NMR spectra
recorded at low temperatures is schematically shown in
Fig. 3 by dashed lines. The amplitude of this contribu-
tion was determined by decomposing the dependences
of the spin echo amplitude on the τ1–2 interval (Fig. 4)
into two components.

The results of studying the dynamics of nuclear
spins for the line at f = 325 MHz, which corresponds to
phase II alone, show that the dependence of the spin
echo amplitude on the τ1–2 interval is only approxi-
mately described by a simple exponential function; that
is, in this phase also, we observe a distribution of times
T2. Interestingly, the shape of the curves obtained at
various Brf field amplitudes remains almost unchanged,
which is evidence of the homogeneity of the NMR
amplification factor and, therefore, magnetic anisot-
ropy in phase II.

The temperature evolution of the 55Mn NMR spectra
of LSMO is shown in Fig. 7. The shape of the spectrum
for this composition weakly changes as temperature
varies. The observed decrease in signal intensities as
the temperature increases is caused by a decrease in
both the T2 time for nuclei within domains and the vol-
ume of the ferromagnetic phase.

At low temperatures (T < 120 K), the shape of the
line at f ≈ 385 MHz depends on the τ1–2 interval
(Fig. 8a) because of the characteristic frequency depen-
dence of T2 with a minimum at the center of the NMR
line (Fig. 8c). This feature is related to the Suhl–Naka-
mura interaction between nuclear spins via virtual spin

A t( ) A0 1 2t/T1–( )exp–[ ] ,=

A0
I

A0
II
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Fig. 6. Dependence of the amplitude of the 55Mn echo signal in LMO on the τ1– 2 interval at f = 385 MHz, Brf = 0.25 G, and T =
21 K. Shown in the insets are the curves of restoring the longitudinal nuclear magnetization component M(t) recorded with τ1– 2 =
3.5 and 14 µs.
waves [29], which has the highest intensity at the center
of the line because most nuclear spins precess at the
corresponding frequency or near it. Interestingly, this
mechanism is not effective for the line at f ≈ 330 MHz,
not only at T = 63 K, as is shown in Fig. 8, but also at
the lower temperatures.

Another frequency-dependent dynamics of nuclear
spins that make contributions to the line at f ≈ 385 MHz
appears at T > 120 K. Namely, as the τ1–2 time interval
increases, the width of the NMR line first decreases and
then, after a certain τ1–2 value is attained, ceases to
change. According to [30], this behavior can be
described on the assumption that two unresolved NMR
lines (A1 and A2) with different times T2 are present
rather than one line. Such a dynamics of nuclear spins
is evidence that, as in many manganites with metallic
conductivity, ferromagnetic phase I in LSMO is itself
spatially inhomogeneous and consists of nanoscopic
regions with different mobilities of electron holes and
different double exchange intensities [30].

The data obtained in studying spin–spin relaxation
of 139La nuclei in LMO and LSMO are shown in Fig. 9.
At all temperatures, the dependences of the spin echo
amplitude on the τ1–2 time interval were recorded at the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
center of the NMR line. For LMO, these dependences,
like those for 55Mn nuclei in phase II, are not described
by a simple exponential function. An increase in tem-
perature causes a sharp acceleration in relaxation.
Simultaneously, the amplitude of the slowly relaxing
contribution decreases (the dashed lines in Fig. 9). As a
result, the NMR signal completely disappears at T >
60 K. This is evidence of inhomogeneous relaxation of
139La nuclei with a broad distribution of times T2,
which corresponds to the results obtained in [16, 17].
For LSMO, spin–spin relaxation is slower and weakly
depends on temperature, and the NMR signal ampli-
tude is approximately constant up to T = 160 K. A fur-
ther increase in temperature decreases the intensity of
the signal because of a decrease in the volume of the
ferromagnetic phase. Note that the data on LSMO
given in Fig. 9 were not corrected for the A ∝  1/T tem-
perature dependence of the NMR signal amplitude to
prevent the superposition of the curves. Also note that,
at low temperatures (T ≤ 90 K), the shape of spin echo
decay curves contains a Gaussian contribution of the
form A = A0exp[–(τ/T2G)2] along with the Lorentz con-
tribution of form (1). The Gaussian contribution causes
deviations of the experimental dependence at large
SICS      Vol. 97      No. 3      2003
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time lags from the Lorentz component shown by the
dashed line.

4. DISCUSSION

The main results that follow from the NMR spectra
and relaxation data on LMO and LSMO are summa-
rized in Figs. 10–12. Figure 10 contains the tempera-
ture dependences of spin–spin relaxation times T2 of
55Mn and 139La nuclei. If the relaxation cannot be
described by a simple exponential function (Mn4+ and
lanthanum sites in LMO), the T2 values for the slowly
relaxing component are given, which, as follows, for
instance, from Fig. 9, well characterizes the tempera-
ture evolution of the dynamics of nuclear spins. For the
same reason, the T2 values for 139La in LSMO at low
temperatures correspond to the initial exponential por-
tion of the spin echo decay curves (τ1–2 < 400 µs). The
relative volume of regions A1 with a higher mobility of
electron holes for phase I in LSMO is shown in the inset
in Fig. 10 as a function of temperature. The temperature
dependences of the relative 55Mn NMR frequency
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Fig. 7. Temperature evolution of the 55Mn NMR spectra in
LSMO. The spectra were recorded with τ1– 2 = 3 µs.
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changes are compared in Fig. 11 with the relative
change in the spontaneous magnetic moment. Lastly,
the temperature dependences of the volumes of mag-
netic phases are shown in Fig. 12; these volumes are
proportional to the areas of the corresponding 55Mn
NMR lines corrected taking into account spin–spin
relaxation and the NMR amplification factor. They are
shown in comparison with the temperature depen-
dences of the spontaneous magnetic moment. For
LMO, only estimates of the corresponding volumes at
21 K are given because of the inhomogeneous distribu-
tion of times T2 in phase II.

Taking into account these data, the phase composi-
tion and properties of separate phases in the manganites
under consideration can be interpreted as follows. The
ferromagnetic state in the LMO and LSMO samples is
inhomogeneous and contains two ferromagnetic phases
with different mobilities of electron holes in manganese
sites. The 55Mn NMR spectrum of phase I contains a
single line corresponding to fast motion of electron
holes over manganese sites. The temperature depen-
dence of the spin–spin relaxation time (Fig. 10) obeys
the exponential law with a slope (on the logarithmic
scale) characteristic of single-phase manganites with
metallic conductivity below TC [31]. Lastly, as in other
conducting manganites [30], the dynamics of nuclear
spins in LSMO is indicative of the appearance of inter-
nal nanoscopic inhomogeneity of this phase at T >
100 K; this refers to the mobility of electron holes and,
accordingly, double exchange intensity. Taking these
observations into account, phase I should be treated as
a ferromagnetic metallic phase with the double
exchange conductivity mechanism. This phase predom-
inates in LSMO, which results in its metallic conductiv-
ity at T < TC . In LMO, this is a residual phase whose
volume only amounts to 1.5–3% of the total volume of
ferromagnetic regions at low temperatures (Fig. 12).

The results obtained for ferromagnetic phase II in
LMO are of the greatest interest. This phase gives a
complex 55Mn NMR spectrum, and its spin–spin relax-
ation time sharply decreases as temperature increases.
As a result, the corresponding NMR signals of LMO
can only be observed at T < 60 K. Important character-
istics of this phase are also a sharp decrease in the spin–
spin relaxation time of 139La nuclei as temperature
increases and inhomogeneous relaxation of both 55Mn
and 139La characterized by a broad distribution1

 of
times T2. In [16], the anomalously fast spin–spin relax-
ation of 139La nuclei in ferromagnetic insulating man-
ganites is related to electric field gradient fluctuations
caused by the diffusion of lattice distortions as a result
of the slow motion of Jahn–Teller polarons. This sce-

1 Note that, for LSMO, where the 139La NMR signal largely orig-
inates from the ferromagnetic metallic phase, the spin–spin
relaxation of 139La nuclei (Fig. 10, LSMO) comparatively
weakly depends on temperature, as in other conducting manga-
nites [31, 32]. 
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Fig. 8. Evolution of the shape of the 55Mn NMR spectra of LSMO at T = 63 K and τ1– 2 values of (a) 3, 6.5, 11, 17, 24, and 31 µs
(curves from top to bottom) and (b) 3 µs [the spectrum is decomposed into two lines (the dashed curves)]; (c) frequency dependence
of time T2.
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nario is in agreement with the results obtained in this
work. The motion of Jahn–Teller polarons causes not
only electric field gradient fluctuations on 139La nuclei,
but also slow manganese valence fluctuations, which
explains the sharp temperature dependence of T2 for
55Mn nuclei, similar to that observed for 139La ones
(Fig. 10). This dependence is, however, caused by fluc-
tuations of the longitudinal component of the local
magnetic field Hn on 55Mn nuclei. As distinguished
from the ferromagnetic metallic phase, where spin–
spin relaxation is explained by field Hn fluctuations
caused by rapidly moving electron holes (f @ fNMR) [31],
we here deal with slow (f ≤ fNMR) field Hn fluctuations.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The mean frequency of these fluctuations passes the
fNMR value as temperature decreases to 60 K, and indi-
vidual contributions, which, in the ionic approxima-
tion, correspond to the Mn4+ and Mn3+ states, appear in
the NMR spectrum. The time T2 sharply increases as
the characteristic frequency of fluctuations decreases
compared with the NMR frequency. It follows that
phase II can be identified with the ferromagnetic insu-
lating phase, in which double exchange is considerably
weakened and is largely caused by comparatively slow,
thermally activated motions of Jahn–Teller polarons.
This phase predominates in the LMO sample (Fig. 12)
and, as shown below, is responsible for semiconductor-
SICS      Vol. 97      No. 3      2003
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1

type conductivity together with paramagnetic and/or
antiferromagnetic regions. Although its slope is smaller
than that observed for LMO, the line corresponding to
Mn4+ in the spectrum of LSMO is likely to originate
from the residual ferromagnetic insulating phase
because the temperature dependence of time T2 for this
line is sharper than the corresponding dependence in
the ferromagnetic metallic phase (Fig. 10). In principle,
the presence of the line corresponding to Mn4+ ions in
the 55Mn NMR spectrum is not sufficient proof that the
system is not single-phase and can also be a conse-
quence of ferromagnetic state nonuniformity, when
JOURNAL OF EXPERIMENTAL 
part of the holes are localized at low temperatures
because of local disorder. However, the spin–spin relax-
ation of 55Mn nuclei in Mn4+ sites should then be slower
than in Mn4+/Mn3+ sites, and an increase in temperature
and hole delocalization can level times T2 [33, 34]. As
follows from Fig. 10, no such behavior is observed in
our experiments.

It should be stressed that, according to the NMR
data, it is precisely slow valence fluctuations rather than
the localization of the Mn3+ and Mn4+ states that occur
in the ferromagnetic insulating phase. If localized Mn3+

ions with nonzero orbital momenta, which are relax-
AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003
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Mn4+
ation centers with a strongly anisotropic spectrum of
fluctuations, were present, it might be expected that
nuclear magnetic relaxation would be determined by
the spin–lattice contribution and, in the limiting case,
we would have the equality T2 = 2T1. The time T1 for
the ferromagnetic insulating phase in LMO is substan-
tially shorter than for the ferromagnetic metallic phase.
Nevertheless, T2 ! T1 in both cases, at least at T ≥ 21 K
(see Fig. 6), which corresponds to an isotropic spec-
trum of local field fluctuations on 55Mn nuclei. The dis-
tribution of the times T2 for the ferromagnetic insulat-
ing phase specified above is evidence of the inhomoge-
neity of Jahn–Teller polaron activation energies
resulting from lattice disorder largely caused by vacan-
cies in lanthanum sites in the system under consider-
ation. Such an inhomogeneity can also be the reason for
the strong magnetic crystallographic anisotropy of the
ferromagnetic insulating phase compared with the fer-
romagnetic metallic phase. Note that antiferromagnetic
interactions between localized states can frustrate the
ferromagnetic order when holes slowly move over
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
manganese sites; that is, the specified characteristics of
the ferromagnetic insulating phase can also correspond
to a state of the type of a cluster spin glass, whose fea-
tures were observed in self-doped lanthanum mangan-
ites [14].

Next, consider the temperature dependences of the
volumes of the ferromagnetic metallic and insulating
phases. The temperature dependence of the 55Mn NMR
frequencies corresponds to a good approximation to the
temperature dependence of local magnetic moments on
the corresponding manganese sites [35, 36]. Figure 11
shows that the magnetic moment on Mn4+ sites (the fer-
romagnetic insulating phase) decreases as temperature
increases more rapidly than the magnetic moment on
Mn4+/Mn3+ sites with a rapidly changing manganese
valence (the ferromagnetic metallic phase), especially
in LMO. A similar behavior was reported in [19]; it cor-
responds with the interpretation given above, according
to which double exchange is weakened in the ferromag-
netic insulating phase. It is noteworthy that, for both
compositions, relative temperature-induced changes in
SICS      Vol. 97      No. 3      2003
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M0

(h)M0
the NMR frequencies of both the ferromagnetic metal-
lic and insulating phases are substantially smaller than
changes in the spontaneous magnetic moment. This is
evidence that a decrease in magnetization as tempera-
ture increases is largely caused by a decrease in the vol-
ume of ferromagnetic regions rather than the local
moment on manganese sites. In other words, the transi-
tion from the ferromagnetic to the paramagnetic state is
a smeared first-order phase transition, which occurs as
a smooth redistribution of the volumes of ferromag-
netic and paramagnetic (or antiferromagnetic) regions
in a wide temperature range. This is clear from Fig. 12,
where the temperature dependence of the spontaneous
magnetic moment of LSMO is compared with the tem-
JOURNAL OF EXPERIMENTAL
perature dependences of the relative volumes of the fer-
romagnetic metallic and insulating phases determined
from the NMR data.2 The smeared character of the fer-
romagnet–paramagnet transition is the obvious reason
why the dielectric–metal transition temperature for
LSMO (T = 170 K) is lower than the Curie temperature
TC = 232 K formally determined as the inflection point
of the susceptibility curve. This discrepancy does not
contradict the double exchange concept. Actually, the
dielectric–metal transition occurs when ferromagnetic

2 Note that, because of a decrease in time T2 , the NMR spectra at
T > 210 K contain only the contribution of line A1 , which
amounts to 50% of the total volume of the ferromagnetic metallic
phase according to the data given in the inset in Fig. 10.
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metallic regions with metallic conductivity occupy the
larger part of the crystal volume.

For LMO, the NMR data can only be used to reli-
ably determine the temperature dependence of the rela-
tive volume of the more slowly relaxing residual ferro-
magnetic metallic phase. The volume of the major fer-
romagnetic insulating phase is difficult to estimate
because of inhomogeneity of spin–spin relaxation and
its rapid acceleration at higher temperatures. Estimates
based on the most reliable data obtained at T = 21 K
show that the volume of the ferromagnetic insulating
phase is about 97% of the total volume of ferromag-
netic regions. Accordingly, the ferromagnetic metallic
phase volume amounts to about 3% (see Fig. 12). The
relative volume of the ferromagnetic metallic phase in
this compound can also be estimated by directly com-
paring the intensities of the NMR signals of LMO and
LSMO at T = 77 K, which gives a value of about 1.5%
of the total volume of ferromagnetic regions. Although
we were able to determine the temperature dependence
of local magnetic moments in the ferromagnetic insu-
lating phase only to T ≈ 60 K, the NMR frequency
already at these comparatively low temperatures
decreased slower than the spontaneous moment (see the
inset in Fig. 11). We can therefore suggest that the tem-
perature dependence of the spontaneous magnetic
moment in LMO is largely determined by a decrease in
the volume of the ferromagnetic insulating phase. The
interpretation given above, according to which mag-
netic interactions are considerably weaker in the ferro-
magnetic insulating phase, leads us to expect a more
rapid decrease in the volume of the ferromagnetic insu-
lating phase in LMO compared with the volume of the
ferromagnetic metallic phase in LSMO. Also note that
the spontaneous magnetic moment of LSMO per man-
ganese ion at T = 20 K, M0 ≈ 3.53µB , is close to the spin
value M0 ≈ 3.8µB expected for the complete ferromag-
netic ordering of magnetic moments. At the same time,
the observed magnetic moment of LMO is substantially
smaller, M0 ≈ 2.31µB , which can either be related to
phase separation into the ferro- and paramagnetic (or
antiferromagnetic) phases even at this temperature or
be evidence of a spin glass–type state, as mentioned
above.3 The complex shape of the temperature depen-
dence of resistance in LMO with a temperature-depen-
dent activation energy (see Fig. 1) can therefore be

3 In principle, the decreased magnetic moment value can also be
related to magnetic structure noncollinearity. According to
numerous experimental and theoretical results (e.g., see [1, 37),
phase separation or spin glass state models should, however, be
given preference for the compounds under consideration. In addi-
tion, a homogeneous noncollinear model of the magnetic struc-
ture of LMO is incapable of explaining the observed temperature
dependences of the magnetic moment and NMR frequency. Such
an explanation would require us to assume that the magnetic
structure continuously changes toward antiferromagnetic order-
ing as temperature increases. At the same time, magnetic ordering
in LMO exists up to T ≈ 200 K, which is substantially higher than
the antiferromagnetic ordering temperature TN ≈ 140 K in the sto-
ichiometric LaMnO3 compound.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
related to a redistribution of the volumes of paramag-
netic (or antiferromagnetic at low temperatures) and
ferromagnetic insulating regions in a wide temperature
range.

Interestingly, the relative volume of the ferromag-
netic metallic phase in LMO shows some tendency to
increase in the temperature range 60–130 K in spite of
the temperature-induced sharp decrease in the volume
of ferromagnetic regions (see the inset in Fig. 12). This
behavior can be explained by the delocalization of part
of holes in the ferromagnetic insulating phase as tem-
perature increases [33, 34]. Accordingly, the volume of
the residual ferromagnetic insulating phase in LSMO
also shows a tendency to decrease, however, at higher
temperatures (T ≥ 130 K), which can be explained by a
lower mean activation energy of Jahn–Teller polarons
in LSMO compared with LMO. According to the above
interpretation of the relaxation of 55Mn nuclei in the fer-
romagnetic insulating phase, the decrease in activation
energy should manifest itself by slower relaxation than
in LMO, which is actually observed.

The substantial magnetic inhomogeneity of ferro-
magnetic manganites with cationic vacancies observed
in this work by the NMR method is not likely to be
related to the defect structure of the polycrystalline
samples. Rather, it is the intrinsic property of these
samples. Because the NMR method is local, polycrys-
talline sample defects, whose volume is substantially
smaller than that of crystallites, have a weak influence
on the reliability of the results obtained in both record-
ing NMR spectra and studying the dynamics of nuclear
spins. This, for instance, follows from the results
obtained in [21], in which magnetic inhomogeneity of
La1 – xCaxMnO3 single crystals (0 ≤ x ≤ 0.15) grown by
zone melting and polycrystalline samples (x = 0.2 and
0.3) was studied.

5. CONCLUSIONS

We used the local NMR method to show that the fer-
romagnetic state in (La1 – xSrx)1 – δMnO3 manganites
was spatially inhomogeneous because of the simulta-
neous presence of two types of qualitatively different
ferromagnetic regions with different mobilities of elec-
tron holes in manganese sites. The ferromagnetic con-
ducting phase is determined by the double exchange
mechanism, whereas double exchange is considerably
weakened in the ferromagnetic insulating phase and
mainly occurs as a result of slow, thermally activated
motions of Jahn–Teller polarons at a characteristic fre-
quency comparable with the NMR frequency. The
dynamics of nuclear spins is evidence of the internal
inhomogeneity of both phases. Additional inhomoge-
neity is caused by the smearing of the ferromagnet–
paramagnet phase transition. A comparison of the
NMR and magnetization data shows that this transition
occurs as a smooth redistribution of the volumes of fer-
romagnetic and paramagnetic (or antiferromagnetic)
SICS      Vol. 97      No. 3      2003
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regions in a wide temperature range. The ferromagnetic
conducting phase is a residual phase in self-doped
La1 − δMnO3 but becomes predominant as the concen-
tration of strontium increases to x = 0.125. Combined
with a narrowing of the temperature interval of the fer-
romagnet–paramagnet transition, this causes a change
in the character of electric conductivity from semicon-
ductor-type conductivity at x = 0 to metallic conductiv-
ity at low temperatures for the x = 0.075 and 0.125 com-
positions.
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Abstract—An exact expression for the random magnetic field distribution function is obtained for a simple
model of a random system of Ising magnetic dipoles. The magnetic phase diagram for such a system is deter-
mined within the framework of the random mean field theory. The magnetic characteristics of individual phases
of this system are described. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetic state of a random system of interact-
ing magnetic dipoles cannot be described within the
framework of the traditional mean field theory since the
latter is applicable only for homogeneous systems in
which local fields are identical for all interacting mag-
netic fields. In contrast to thermal fluctuations, spatial
fluctuations of a local field, which exist in a random
system, prevent the establishment of a magnetic order
even at zero temperature. For this reason, a correct
description of such systems requires a more general
approach.

Zhang and Widom [1] used one of the possible ways
for generalizing the mean field theory to analyze a ran-
dom system of Ising spherical dipoles of a finite diam-
eter.1 They proved that the ground state of such a sys-
tem becomes ferromagnetic only when the mean dis-
tance between spherical dipoles is comparable to their
size; otherwise (in the case of large distances between
dipoles), the system is paramagnetic even at T = 0. In
other words, the ferromagnetic state is possible only in
a system in which the dipole concentration exceeds a
certain critical value; this is generally in accordance
with tendencies in the behavior of dipole system with
configuration disorder [3].

However, the above result was obtained under two
assumptions, both of which are dubious. First, the spa-
tial dipole distribution function was factorized as is
usually done in an analysis of random systems. This
function was represented by the product of two identi-
cal one-particle distribution functions g(r) each of
which depends on only one spatial coordinate, viz., the
distance r between a given particle (dipole) and the
other particle placed at the origin): g(r) ∝  r2 for r > a

1 The energy of interaction of uniformly magnetized spherical
dipoles (one-domain spherical grains) coincides with the energy
of interaction of two equivalent point dipoles [2].
1063-7761/03/9703- $24.00 © 20587
(a is the particle diameter) and g(r) = 0 for r < a. This
is justified for a system of point particles (a = 0) but is
not observed in the case considered here since the
arrangement of a finite-size particle is determined by
the position of not one, but many neighboring particles
even in the absence of magnetic correlations. One could
hope that this approximation would not lead to consid-
erable errors in the case of strongly rarefied systems,
for which the probability of a close neighborhood of
more than two particles is low (na3 ! 1, n being the par-
ticle concentration), but it was used in [1] for na3 ~ 1.
Second, the approximation used is equivalent to the
assumption that the correlation length of spatial fluctu-
ations of the magnetic moment directions of dipoles is
larger than the dipole diameter, which can also only be
justified for strongly rarefied systems.

These assumptions set a limit on the applicability of
the obtained conclusions. In this study, another
approach is proposed, which makes it possible to obtain
an exact result for point Ising dipoles and to trace the
modification of this result for finite-size dipoles. Using
this approach, a magnetic phase diagram is obtained for
a random system of Ising dipoles and the magnetic
parameters of individual phases of this system are
determined.

2. GENERALIZED MEAN FIELD THEORY
FOR POINT (SPHERICAL) DIPOLES

The magnetic moment mi of Ising dipoles can
assume only two values: mi = ±me0, where e0 is the unit
vector parallel to the direction of the dipoles. In the tra-
ditional theory, it is assumed that each dipole is acted
upon by the same local field H0, which determines the
mean value 〈mi〉T of the magnetic moment of any mag-
netic dipole (angle brackets correspond to averaging
over the ensemble and subscript T corresponds to ther-
003 MAIK “Nauka/Interperiodica”
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modynamic averaging). For Ising dipoles, H0 || e0 and
we obtain

(1)

where I is the system magnetization and n is the dipole
concentration. For a sample in the form of a long cylin-
der whose axis is parallel to the direction of magnetic
dipoles, the local field H0 is also parallel to the cylinder
axis and is proportional to the magnetization:

(2)

Here,

(3)

is the component of the local field produced by all
dipoles of the Lorentz sphere along the direction of e0;
ρikl is the distance between the chosen dipole placed at
the center of the sphere (origin of the coordinate sys-
tem) and a dipole in position (ikl); and αikl is the angle
formed by the line connecting these dipoles with the
direction of e0.

Let us suppose that a system with a random arrange-
ment of dipoles is in the ferromagnetic state character-
ized by the average magnetization I || e0. Local mag-
netic fields H3 are different for different dipoles and can
be characterized by the distribution function F(j; H3),
which generally depends on the relative magnetization
j ≡ I/mn of the system determined by the fraction η =
(1/2)(1 + j) of dipoles whose average magnetic
moments are directed along the magnetization I of the
system [F(1; H3) is the distribution function in the case
when all the dipoles in the Lorentz sphere are parallel
to one another].

The generalized mean-field theory proposed in [1]
for a random system of spherical dipoles is based on an
approximate and not quite correct (see the Introduc-
tion) method for calculating the distribution function
F(1; H3) for local magnetic fields. At the same time, this
function can be determined exactly using a simple but
quite reasonable model. For this purpose, we apply the
Markov method for determining the probability of the

mi〈 〉 T

m mH0/kT( )exp
m me0±=

∑
mH0/kT( )exp

m me0±=

∑
--------------------------------------------------------- me0

mH0

kT
----------- 

  ,tanh= =
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4π
3
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3 α iklcos

2
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3
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ikl

∑=
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sum of a large number of random quantities [4], accord-
ing to which

(4)

where h(ρ, α) = m(3cos2α – 1)/ρ3 is the effective mag-
netic field produced by a point dipole with coordinates
ρ, α at the origin (in the case considered here, this field
is equal to the component of the magnetic field of the
dipole along its direction), τ(ρ, α) is the distribution
function for these coordinates, and N is the number of
dipoles in a sphere of radius ρmax over which integra-
tion is carried out. If we assume further that (i) the ran-
dom nature of arrangement of dipoles does not change

their average concentration n (i.e., N  4π
for ρmax  ∞); (ii) the distribution of angles α is uni-
form; and (iii) coordinates ρ and α are not correlated,
then

(5)

Substituting Eq. (5) into (4), we obtain

(6)

While integrating with respect to ρ, we must use the
above expression for h(ρ, α) and take into account the
fact that

This gives

(7)

where h0 = 8π2mn/9  is the characteristic field
approximately equal to the field of a dipole separated
from the origin by a distance on the order of the mean
distance n–1/3 between dipoles; factor 2 takes into
account the existence of two regions equivalent to the
angular interval 0 < α < π/2.

F 1; H3( )
1

2π
------ A s( ) isH3–( )exp s,d

∞–

∞

∫=

A s( ) ish ρ α,( )[ ]τ ρ α,( )exp αsρd

ρ 0=

ρmax

∫
α
∫

N

,
N ∞→
lim=

ρmax
3 n/3

τ ρ α,( )dρdα ρ2dρ 2π αdαsin⋅
4πρmax

3 /3
-------------------------------------------.=

A s( ) nC s( )–[ ] ,exp=

C s( ) 2π αsin α 1 ish ρ α,( )[ ]exp–{ }ρ 2 ρ.d

0

∞

∫d

α
∫=

1 eiu–

u2
--------------- ud

0

∞

∫ π
2
---.=

nC s( ) 2
π2mns

3
---------------- α 3 αcos

2
1–sin αd

0

π/2

∫ sh0,= =

3

AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003



MAGNETIC ORDERING IN A RANDOM SYSTEM OF POINT ISING DIPOLES 589
For the distribution function F(1; H3), we finally
obtain

(8)

This is a Lorentzian distribution2 of width h0, which is
centered at the mean field 〈H3〉  = 0. The result obtained,
which differs in principle from the Gaussian distribu-
tion predicted in [1] for a similar system (in the approx-
imate model), can be easily interpreted if we assume
that strong fields H are mainly produced by nearest
neighbors. The law wρ(ρ) for distribution of distances ρ
to the nearest neighbor is defined by the formula [4]

while the field H produced by this distribution is pro-
portional to 1/ρ3. It follows hence that

which correctly describes the “wings” of the Lorentz-
ian distribution in the range of strong fields.

A remarkable property of the obtained distribution,
which is not obvious at first glance, is that it predicts
equal probabilities for fields H3 of opposite polarities.3

It will be shown below that such a symmetric spread of
Lorentzian fields “hampers” the emergence of mag-
netic ordering in the system under investigation. As a
matter of fact, the noted property is preserved for any
random distribution of these directions in spite of the
fact that distribution (8) was obtained for a random sys-
tem in which the directions of the magnetic moments of
all dipoles coincide. In other words, the emergence of a
magnetic order in a random system of dipoles does not
in any way affect the form of the distribution function
for the Lorentzian field; i.e., F(j; H3) ≡ F(1; H3).

2 The fact that distribution (8) predicts that  = ∞ is obviously

connected with the assumption that the distance between dipoles
can be infinitely small. Deviations from this distribution should

be expected for fields H3 > m/ , where ρmin is the minimal

possible spacing of dipoles (e.g., their characteristic size).
3 This is formally connected with the specific form of the angular

dependence of the field of a point dipole, h(ρ, α) ∝  (3cos2α – 1),
which, together with the angular dependence of distribution
τ(ρ, α) ∝  sinα, ensures the equality of the “angular factors” for
the regions 3cos2α – 1 < 0 and 3cos2α – 1 > 0 corresponding to
negative and positive values of field H3 .

F 1; H3( )
1

2π
------ H3 s( ) s h0–( )expcos sd

∞–

∞

∫=

=  
1
π
---

h0

h0
2 H3

2+
------------------ 

  .

H3
2〈 〉

ρmin
3

wρ ρ( ) 4πρ2n 4πρ3n/3–( ) ρ2,∝exp=

F H( ) wρ ρ H( )[ ] dρ/dH 1/H2,∝=
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Let us now demonstrate that magnetic ordering can-
not exist in the random system of point Ising magnetic
moments considered here. The magnetization of the
system is defined as I = n , where the average

magnetic moment  must be calculated taking

into account the spread in Lorentzian fields H3 using the
obvious generalization of relation (3) pertaining to a
regular system:

(9)

Using expression (8) for the distribution function
F(1; H3) ≡ F(j; H3), we derive the generalizing equation
for mean field:

(10)

where j = I/Is (Is = nm) is the reduced magnetization of
the system, Θ = kT/m2n is the reduced temperature
(equal to the ratio of the thermal energy to the charac-
teristic energy of magnetic interaction between

dipoles), and A = 8π2/9  ≈ 5.065. The paramagnetic
state (j = 0) is obviously a solution to this equation.
Analysis shows that this equation has no other solu-
tions;4 this obviously corresponds to the absence of fer-
romagnetic ordering in a random system of point Ising
dipoles. This conclusion coincides with the result
obtained in [4], according to which the system could
become ferromagnetic only for a high dipole concen-

tration n  > 0.300, where ρmin is the minimal spac-
ing of spherical dipoles.5 In our model, we assume that
ρmin = 0 (not spherical but pointlike dipoles); for this
reason, the dipole concentration is always “low.”

4 As Θ  0, the right-hand side of Eq. (10) asymptotically
approaches (2/π)  < 8j/3A = 0.526j < j.

5 In [4], the criterion for the emergence of spontaneous magnetiza-
tion in a random system of rigid spherical Ising dipoles of diame-
ter a is written in the form (π/6)na3 > 0.157. The minimal dis-
tance between the centers of dipoles in this system is ρmin = a,

which leads precisely to the above condition n  > 0.300.

mi〈 〉 T

mi〈 〉 T

I n mi〈 〉 T=

=  mn
m 4πI/3 H3+( )

kT
------------------------------------ F j; H3( )tanh H3.d

∞–

∞

∫

j
1
π
--- 1

Θ
---- Au

4π
3

------ j+ 
  ud

1 u2+
--------------tanh

∞–

∞

∫=

≡ A
πΘ
-------- u udarctan

1
Θ
---- Au

4πj
3

--------+ 
 cosh

--------------------------------------------------,

∞–

∞

∫–

3

4πj/3A( )arctan
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3
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3
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The impossibility of unlimited decrease in the dis-
tance between dipoles leads to a “truncation” of the val-
ues of magnetic field from above by a value of Hmax ~

m/ . For this reason, we can easily pass to sphericalρmin
3

1 2 3 4
Θ

0.2

0.4

0.6

0.8

1.0
j

Hmax/h0 = 1.05 1 0.8 0.5

Fig. 1. Temperature dependences of spontaneous magneti-
zation j of a system with a random field distribution trun-
cated from above for different values of the truncation
parameter (external field He = 0).
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1.2

0

nρ3
min Hmax/h0

Fig. 2. Temperature dependences of the threshold value of

parameter n  for which a spontaneous magnetic

moment arises in a system of random Ising dipoles and of

the maximum value Hmax = m/  of random field H3 cor-

responding to this value (He = 0).

ρmin
3

ρmin
3

0
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dipoles in the framework of our model by truncating the
wings of distribution function (8), which correspond to

fields |H3| > Hmax = m/ :

(11)

In this case, instead of Eq. (10), we obtain the following
equation for the mean field:

(12)

An analysis shows that this equation acquires the
second (nonzero) root corresponding to spontaneous
magnetization of the system for Hmax/h0 < 1.08 (at zero
temperature). This condition can be written in the form
of a criterion for the concentration of spherical dipoles
(which is required for the emergence of spontaneous

magnetization): n  > 0.183; this criterion differs

significantly from that obtained in [4] (n  > 0.300).
In order to ensure a ferromagnetic ordering at T > 0, the
truncation of the distribution function F(1; H3) upon an
increase in temperature must be more radical; at a con-
stant concentration of dipoles, this can be ensured only
by increasing the minimal dipole spacing. (Parameter
ρmin is bounded from above by the natural “geometri-
cal” condition nρmin & 1.) However, at a high tempera-
ture (Θ * 4.2), the system remains paramagnetic even
for ρmin  ∞. The corresponding temperature depen-
dences of spontaneous magnetization and threshold

values of n  and Hmax are shown in Figs. 1 and 2,
respectively.

The magnetization of the system in question in the
paramagnetic state is determined by the external mag-
netic field He . In order to find the magnetization, it is
sufficient to carry out the substitution 4πI/3 
4πI/3 + He in Eq. (9), after which the argument of the
hyperbolic tangent in Eq. (10) is supplemented with the
term (He/h0)Θ–1. The solution of the equation obtained
in this way describes the temperature dependence of the
system magnetization in the applied magnetic field.
Figure 3 shows a series of such dependences for various
magnetic fields. As expected, these dependences differ
considerably from the Langevin dependence, according
to which magnetization I = Is under saturation (i.e., at
low temperatures), which means that j = 1. It can be

ρmin
3

F 1; H3( )
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2
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h0
----------- 

 arctan
1– h0

h0
2 H3
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  , H3 Hmax≤

0, H3 Hmax.>





j 2
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 arctan
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× 1
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seen from Fig. 3 that the saturation of the magnetization
of a random system always corresponds to j = j0 < 1.6

The field dependence of the low-temperature magneti-
zation j0(He) is shown in the inset to Fig. 3.

3. NUMERICAL EXPERIMENT: 
COMPARISON WITH THEORY

The magnetic “behavior” of random systems of
point Ising dipoles is obviously determined to a consid-
erable extent by the distribution function F(1; H3) of
local magnetic fields. In this connection, it is expedient
to obtain an additional proof of the correctness of the
theoretical scheme used for determining this function.
For this reason, in addition to the derived analytic
expression (8) for function F(1; H3), we calculated this
function by simulating a random system of Ising
dipoles.

The system was “created” using a random uniform
arrangement of dipoles in a sphere (the total number of
dipoles is 5 × 103 or 4 × 104), after which the magnetic
field H3 was calculated at the center of this sphere.

Function F(1; H3) was found by sorting out a large
number (approximately 104) of realizations of such a
system. The distribution function determined in this
way is shown in Fig. 4. It can be seen that the shape of
this function is close to the Lorentzian (solid curve),
especially on the wings, where the function remains
Lorentzian up to very high values of field H3 ≈ 100mn
(see the inset to Fig. 4). At the same time, an attempt to
approximate function F(1; H3) by a Gaussian function
proved futile (dashed curve in Fig. 4). Since strong
fields are mainly created by nearest neighbors, the
shape of the distribution function in this region is not
sensitive to the choice of the total number of dipoles
taken into account in calculations. This, however, does
not apply to the range of weak magnetic fields (H & h0)
produced by a more or less symmetric aggregate of a
large number of neighboring dipoles. Verification
(involving an increase in the number of dipoles taken
into consideration) confirms the correctness of the
results depicted in Fig. 4.

4. CONCLUSIONS

We have proved that the system studied here can be in
the ferromagnetic state in the case of appropriate trun-
cation of the region of strong random fields (which is
equivalent to a transition from point dipoles to finite-
size dipoles). To find out whether this is the ground
state, note that the energy density of the system at T = 0

6 For Θ  0, Eq. (10) assumes the form j =
(2/π) ; for j ! 1, we have j0 =

(2/π)(A – 8/3)–1He = 0.265He .

4πj/3A He/Ah0+( )arctan
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Fig. 3. Temperature dependences of magnetization j of a
system in the paramagnetic state for different values of the
external magnetic field He . The inset shows the field depen-
dence of magnetization at T = 0 (the dashed straight line
depicts the linear dependence j0 = 0.265He).
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Fig. 4. Distribution function F(1; H3) for a random system
of point Ising dipoles, approximated by the Lorentzian
(solid) and the Gaussian (dashed) curves. The inset gives a
representation of function F(1; H3) demonstrating the cor-
rectness of the Lorentzian approximation in the range of
strong fields.
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is W = n〈w〉 , where the mean energy of a dipole is
given by

(averaging is carried out over the ensemble of parti-
cles), and I = mn(1 – 2η), η being the fraction of dipoles
with magnetic moments directed along the magnetiza-
tion. Since the distribution function F(1; H3) is even, we
obtain

and finally

The paramagnetic state (η = 1/2) corresponds to W = 0;
in the ferromagnetic state, we have W < 0; conse-
quently, the ferromagnetic phase predominates at low
temperatures.

It should be emphasized that all the results obtained
in this study pertain exclusively to a “liquid” random
system, in which magnetic dipoles can be arranged in

w〈 〉 m H0⋅〈 〉– –ηm 1 η–( )m+[ ] 4π
3

------ I H3+= =

4π
3

------ I H3+
4π
3

------ I H3+ 
  F 1; H3( ) H3d

∞–

∞

∫=

=  
4π
3

------ I
4π
3

------mn 1 2η–( )=

W m2n2 2η 1–( )2 0.≤–=
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any spatial region. For this reason, it would be incorrect
to apply these results for describing the properties of
“crystalline” random systems, in which dipoles can
occupy (with a certain probability) only quite definite
positions in a certain crystalline structure. The method
applied here is unsuitable for studying such systems
since these are not random systems in the Markovian
sense. In this case, the initial crystal should be divided
into nonequivalent sublattices and the distribution func-
tions for random fields in each sublattice should be cal-
culated numerically.
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Abstract—A generalized mean field theory is constructed for a system of rodlike Ising magnetic dipoles of a
finite length a with configuration disorder. The theory is based on an analysis of the local magnetic field distri-
bution function. It is shown that the magnetic state of such a system is determined by the dipole concentration n:
the system is paramagnetic for na3 & 5 × 102, while ferromagnetic ordering exists for na3 * 5 × 102. The sus-
ceptibility of the system in the paramagnetic state is determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetic state of a system of interacting mag-
netic dipoles is determined by a complex “game” of
long-range interaction and anisotropy of such an inter-
action with thermal and spatial magnetic field fluctua-
tions (the latter are associated with a random arrange-
ment and orientation of dipoles). In the traditional
mean field theory, thermal fluctuations are included, but
the mean local field is assumed to be the same for all
dipoles. Consequently, spatial fluctuations of a local
field, which are significant in a random system and pre-
vent the establishment of a magnetic order even at zero
temperature, are not taken into account.

To obtain a correct description of the magnetic sys-
tems in question, the traditional mean field theory must
be generalized appropriately. One possible way for
doing this was proposed by Klein et al. [1] and then
used by Zhang and Widom [2] to analyze a random
system of spherical dipoles.1  They proved that the
ground state of such a system is paramagnetic as long
as the mean distance between spherical dipoles is
larger than their size. The ferromagnetic state is possi-
ble only in a system in which the dipole concentration
exceeds a certain critical value. The same result was
obtained in [4] by a different method.

However, many real systems of this type (e.g., fer-
roliquids or patterned media, which are promising
materials for magnetic recording [5]) consist of essen-
tially nonspherical dipoles. For this reason, for a high
concentration of such dipoles (when the mean distance
between the dipoles is comparable with their size), the
type of their interaction differs considerably from the

1 The energy of interaction of uniformly magnetized spherical
dipoles (one-domain spherical grains) coincides with that of two
equivalent point dipoles [3].
1063-7761/03/9703- $24.00 © 200593
interaction of point dipoles. We will illustrate this state-
ment for a system of rodlike uniformly magnetized rod-
like dipoles with magnetic moments m. The interaction
energy for two such dipoles with parallel magnetic
moments (the center of one dipole is at the origin and the
center of the other dipole is determined by radius vec-
tor R) is given by the relation [6]

(1)

where e0 is the unit vector in the direction of the mag-
netic moment of the dipoles and 2a is the length of each
dipole. If the angle between vectors e0 and R is equal to
α, Eq. (1) can be written in the form

(2)

where ρ = |R|/a. For ρ @ 1, relation (2) is transformed
into the well-known expression for the energy of inter-
action between point dipoles: wd = m2(1 – 3cos2a)/|R |3.

The sign of energy wd determines the type of the
ground state of a system of two dipoles: if wd < 0, the
magnetic moments of the dipoles are parallel (ferro-
magnetic state); otherwise (wd > 0), these moments are
antiparallel (antiferromagnetic state). The plane con-
taining both dipoles under investigation (for definite-
ness, the xz plane; the magnetic moments are directed
along the z axis) splits into two regions with different

wd
m2

4a2
-------- 2

R
------- 1

R 2ae0+
-------------------------– 1

R 2ae0–
------------------------– 
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wd
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ρ
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ρ2 4 4ρ αcos+ +
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ρ2 4 4ρ αcos–+
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signs of wd (and, hence, with different types of the
magnetic ground state). Figure 1 shows these regions
for point and rodlike dipoles. For point dipoles, the
relation between the sizes of these regions is indepen-
dent of the distance between the dipoles, while the
fraction of space corresponding to the antiferromag-
netic ground state of a pair of closely spaced rodlike

dipoles (ρ =  & 1) is much larger.

However, this does not lead to a conclusion on a
strong tendency of a system of a large number of rod-
like dipoles toward antiferromagnetism since the
degree of anisotropy of the interaction of rodlike
dipoles differs significantly from that for point dipoles.

Thus, nonsphericity of dipoles must considerably
affect the magnetic state of a dipole system. This study
is devoted to generalization of the mean field theory for
a random system of rodlike dipoles.

2. GENERALIZED MEAN FIELD THEORY
FOR RODLIKE DIPOLES

Let us suppose that a system consisting of randomly
arranged dipoles is in the ferromagnetic state character-
ized by average magnetization I || e0. Local effective
fields –wd/m produced at the origin of coordinates by
randomly arranged dipoles are different for different
dipoles, and the random value of their sum H3 can be
characterized by the distribution function F(j; H3),
which generally depends on the relative magnetization

x/a( )2 z/a( )2+

–4 –2 0 2 4 z/a
–4

–2

0

2

4
x/a

FM AFM FM

+1 +1
–10 0

Fig. 1. Boundaries of the regions of ferromagnetic (FM) and
antiferromagnetic (AFM) ground states of a system of two

Ising dipoles. Dashed lines x = ±z  correspond to point
dipoles and solid curves are rodlike dipoles of length 2a.
Solid curves correspond to a constant energy of interaction
of rodlike dipoles (the digits on the curves indicate energy wd

in units of m2/4a3).

2
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j ≡ I/mn of the system (n is the dipole concentration)
determined by the fraction η = (1/2)(1 + j) of dipoles
whose average magnetic moments are directed along
the magnetization I of the system (F(1; H0) is the distri-
bution function in the case when all the dipoles in the
Lorentz sphere are parallel to one another).

In order to determine the form of this function, we
apply the Markov method [7], according to which

(3)

where (see Eq. (2))

(4)

is the effective magnetic field produced by a point
dipole with random coordinates ρ, α at the origin (in
the case considered here, this field is equal to the com-
ponent of the magnetic field of the dipole along its
direction); the random parameter ζ assumes values +1
and −1 (with a probability η and 1 – η, respectively)
and determines the direction of the magnetic moment
of the dipole, τ(ρ, α, ζ) is the distribution function for
random values of coordinates and parameter ζ, and
N is the number of dipoles in a sphere of radius ρmax,
over whose volume the integration is carried out. If
we assume further that (i) the random nature of the
arrangement of dipoles does not change their average
concentration n (i.e., N  4π(aρmax)3n/3 for
ρmax  ∞); (ii) the distributions of coordinates and
parameter ζ are uniform; and (iii) correlations are
absent, then

(5)
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Substituting Eqs. (4) and (5) into (3), we obtain

(6)

In particular, it follows from Eqs. (3) and (6) that in the
absence of magnetization (j = 0), the distribution func-
tion F(0; H3) of local fields is even, i.e., symmetric with
respect to H3 = 0.

Relations (6) do not lead to a simple analytic expres-
sion for the distribution function F(j; H3). For this rea-
son, we determined this function using two mutually
complementing methods: (i) the “small q approxima-
tion” based on the fact that the region of large values of
q is insignificant in the inverse Fourier transformation
of (3) [2] and (ii) numerical calculations for a model
random system of rodlike Ising dipoles.

In the first approach, functions cos[qh(ρ, α)] and
sin[qh(ρ, α)], which are to be integrated in Eq. (6), are
replaced by their approximate power expansions in the
small argument qh (up to the first nonvanishing term
in qh). After this, it becomes possible to carry out inte-
gration, leading to 

(7)

A q( ) na3C q( )–[ ] ,exp=
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Substituting Eqs. (7) into (6), we obtain

(8)

Thus, in the small q approximation, distribution func-
tions F(j; H3) have the form of Gaussian functions
whose maximum (H3 = –jHj) is shifted linearly upon an
increase of magnetization to the region of negative val-
ues of magnetic field H3.2 The approximation used here
is valid if the probability of the emergence of strong
local fields for which qh * 1 is low. The Gaussian dis-
tribution function obtained above (with exponentially
decreasing “wings”) does not possess such a property.
However, as the concentration of rodlike dipoles
decreases, their finite size becomes less and less signif-
icant, and such dipoles can be treated as point dipoles
for na3 ! 1. In this case, the system is known to be char-
acterized by a Lorentzian distribution function [4] with
“long” wings decreasing according to a power law.
Consequently, distribution (8) holds only in the concen-
tration region na3 * 1. On the other hand, strong fields
are mainly created by the nearest neighbors [7], and the
probability of their production increases with the dipole
concentration n, when the mean distance between
dipoles becomes smaller than the dipole size a. Conse-
quently, the approximation used becomes inapplicable
for na3 @ 1. In order to determine the limits of its appli-
cability more precisely, we numerically calculated the
local field distribution functions in a model random
system of rodlike Ising dipoles.

The system was “created” via a uniform random
arrangement of dipoles over a sphere (the total number
of dipoles is 104), after which the magnetic field H3 at
the center of this sphere was calculated. Functions F(j;
H3) were determined by running through a large num-
ber (about 104) of realizations of such a system. Figure
2 shows the distribution functions F(j; H3) determined
as a result of such a numerical calculation for a system
with na3 = 1. It can be seen that these functions are
close to Gaussian functions, their widths and the posi-
tions of peaks being close to those predicted by rela-
tions (8). Figure 2 also shows that the shape of the dis-
tribution functions in the wings differs considerably

2 Formally, this is connected with the specific form of the angular
dependence (4) of the rodlike dipole field. As was mentioned ear-
lier, there is an increase (as compared to point dipoles) in the
fraction of space corresponding to the antiferromagnetic interac-
tion of a pair of closely spaced rodlike dipoles (ρ & 1).
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from the Gaussian shape especially for fields lying to
the left of the peak). These region correspond to strong
(in absolute magnitude) fields which cannot in princi-
ple be described correctly by the approximation of

10 15–15 –10 –5 0 5
H3/h0

0.1

0.2

0.3

0

h0F(j; H3)

j = 1

–0.2 0 0.2
H3/h0

2

4

6

0

h0F(1; H3)

0

Fig. 2. Distribution functions F(0; H3) and F(1; H3) of local
fields for a model system of randomly distributed rodlike
Ising dipoles with na3 = 1. Solid curves correspond to
approximated Gaussian functions. The discrepancies are
most noticeable on the left wings of the distributions. The
inset shows the distribution function F(1; H3) for a system

with na3 = 0.01 close to a system of point dipoles (the solid
curve corresponds to the Lorentzian approximation, and the
dashed curve, to the Gaussian function).
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Fig. 3. Concentration dependences of calculation parame-
ters (position of the Hj peak and width σ) of distribution
F(1; H3) for a model system. The inclined dashed line cor-

responds to the  power dependence, while the verti-
cal dashed line is the left boundary between the ferromag-
netic (FM) and paramagnetic (PM) phases.

na
3
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small q. The shape of the distribution function F(1; H)
in this region will be determined in the Appendix.

As the dipole concentration decreases to values
na3 ! 1 and the system becomes equivalent to a ran-
dom system of point dipoles, the shape of the distribu-
tion indeed becomes close to Lorentzian shape. This
can be seen from the inset to Fig. 2, corresponding to a
system with na3 = 0.01: the right wing of the distribu-
tion function is close to the Gaussian distribution, while
its left wing is already Lorentzian.

Figure 3 shows the dependences of parameters Hj

and σ of the distribution function F(1; H3) on the dipole
concentration determined by the value of na3. It can be
seen that the functional dependences Hj /h0 = const and
σ/h0 ∝  (na3)–1/2, which are predicted by the small q
approximation, are observed in the concentration range
1 & na3 & 103, i.e., for systems in which the mean dis-
tance between dipoles is 1–10 times smaller than their
size.

3. MAGNETIC PROPERTIES 
OF A RANDOM SYSTEM
OF RODLIKE DIPOLES

The considerable shift of the distribution function
F(1; H3) to the range of negative magnetic fields for
na3 * 1 “prevents” the formation of magnetic ordering
in the system considered here. The system magnetiza-
tion is I = n〈mi〉T , where the mean magnetic moment
〈mi〉T must be calculated taking into account the spread
of local fields H3 via the obvious generalization of the
equation

corresponding to a regular system (here, the term 4πI/3
corresponds to the magnetic field produced by dipoles
on the surface of the Lorentz sphere):

(9)

Obviously, Eq. (9) may have the solution j = 1 at T = 0
only under the necessary condition F(1; H3 < 4πI/3) = 0,
which can never be realized in a system of dipoles
arranged absolutely at random. As in the case of point
dipoles [4], the emergence of ferromagnetism can be
“facilitated” by limiting the configuration randomness
(e.g., by appropriately setting the lower limit on dipole
spacing, which is equivalent to “trimming” the wings of
the random field distribution function).

I
mn
-------

m 4πI/3 H3+( )
kT

------------------------------------ ,tanh=

I
mn
-------

m 4πI/3 H3+( )
kT

------------------------------------ F j; H3( )tanh H3.d

∞–

∞

∫=
 AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003



MAGNETIC PROPERTIES OF A RANDOM SYSTEM OF RODLIKE ISING DIPOLES 597
Using expression (8) for the distribution function
F(j; H3), we arrive at an equation generalizing the stan-
dard equation for mean field:

(10)

where Θ = kT/m2n is the reduced temperature (equal to
the ratio of the thermal energy to the characteristic
energy of magnetic interaction between dipoles).

The paramagnetic state (j = 0) is obviously a solu-
tion to this equation since its right-hand side is equal to
zero for j = 0. In order to find out whether this equation
has a solution corresponding to the ferromagnetic state
(j ≠ 0), we note that this equation for Θ  0 assumes
the form

(11)

where

is the probability integral and z0 = (Hj/h0 –

4π/3)(h0/ σ). Equation (11) has a solution j ≠ 0 only

in the case when z0 < 0, |z0 | > /2, i.e., for

(12)

The meaning of the last condition is that the collec-
tive field (4π/3)mn created by dipoles on the surface of
the Lorentz sphere must “overcome” local fields of the
reverse sign with the mean value –Hj and a spread ±σ.
It can be seen from Fig. 3 that this condition holds only
for na3 * 5 × 102, i.e., for a fairly high dipole concen-
tration. In this case, the system is ferromagnetic and
Eq. (10) can be used for deriving the temperature
dependence of its magnetization, which is shown in
Fig. 4. The temperature range in which the magnetiza-
tion differs from zero expands upon an increase in the
dipole concentration na3. The corresponding concen-
tration dependence of the Curie temperature is given in
Fig. 5. It can be seen from Fig. 3 that Hj , σ  0 for
na3  ∞. This means that the distribution function
F(j; H3) approaches a delta function centered in the
vicinity of H3 = 0. In this case, Eq. (10) can be reduced
to the equation j = ; for Θ ≈ ΘC (for

j
1

2π σ/h0( )
--------------------------- 1

Θ
---- 4π

3
------ j u+ 

 tanh

∞–

∞

∫=

×
u jH j/h0+( )2

2 σ/h0( )2
--------------------------------– du,exp

j – z0( )Φ z0 j( ),sgn=

Φ x( )
2

π
------- x2–( )exp xd

0

x

∫=

2

π

4π
3

------mn H j σ π
2
---.+>

4πj/3Θ( )tanh
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j ! 1), this equation shows that ΘC = 4π/3 for high
dipole concentrations.

In the limit of low dipole concentrations (na3 ! 1),
the system under study resembles a random system of
point dipoles without ferromagnetic ordering [4].3

3 We are speaking of a system in which dipoles can be arranged at
infinitely small distances relative to one another and the distribu-
tion function is Lorentzian. In such a system, strong random
fields corresponding to long wings characteristic of such func-
tions suppress ferromagnetism.
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0.4
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1.0
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na3 = 103 104 105

Fig. 4. Temperature dependences of the system magnetiza-
tion in the ferromagnetic state for different dipole concen-
trations.
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Fig. 5. Concentration dependences of the low-temperature
susceptibility of the paramagnetic phase and the Curie tem-
perature of the ferromagnetic phase of a random system of
rodlike Ising dipoles. As the dipole concentration increases
(na3  ∞), the Curie temperature attains saturation
(ΘC  4π/3). The vertical dashed line is the left bound-
ary of the ferromagnetism region.
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Nevertheless, complete equivalence between the sys-
tems of linear and point dipoles is attained only in the
limit of their vanishingly low concentration. As a mat-
ter of fact (see the Appendix), the distribution function
in the region of strong fields for any finite dipole con-
centration decreases much more rapidly than the
Lorentz function, namely, according to the law 1/H4

(see Eq. (20)) (naturally, the low-field boundary of this
region depends on the dipole concentration and is
shifted towards stronger fields upon a decrease in the
concentration).

One of the model distribution functions correspond-
ing to the dipole concentration na3 = 10–3 is shown in
Fig. 6, demonstrating the wings of this function rapidly
decreasing according to the 1/H4 law corresponding to
formula (20).

In the range of low concentrations (na3 & 5 × 102),
the system is paramagnetic. In order to describe the
properties of this system in an external magnetic field
He , it is sufficient to carry out the substitution H3 
H3 + He in the argument of the hyperbolic tangent in
Eq. (9). This will lead to the substitution u  u +
He/h0 in Eq. (10). In a weak external field (He/h0 ! 1),
the magnetization of the paramagnetic system is low
(j ! 1). Expanding the functions appearing in Eq. (10)
in He and j, we obtain

(13)j I1
4π
3

------ j
He

h0
------+ 

  I2

H j

h0
------ j,–=

103 102 10 102 103 104104

|H3|/h0

10–6

10–5

10–4

10–3

10–7

(a) (b)
1

22

1

h0F(1; H3)

Fig. 6. Left (a) and right (b) wings of the distribution func-
tion F(1; H3) of local fields for rodlike dipoles with a concen-

tration corresponding to na3 = 10–3: Lorentzian function (1)
and power dependences 1/H4(2).
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where

(14)

Relation (13) makes it possible to find the low-field
magnetic susceptibility of the system χ = I/He =
j/(He/h0) and its temperature dependence.

At high temperatures (Θ @ 1), we have I1 = 1/Θ 
0, I2  0 and it follows from Eq. (13) that χ(Θ @ 1) =
1/Θ, or I = mn(mHe/kT) is the conventional Curie law
for noninteracting Ising dipoles.

At low temperatures (Θ ! 1), we have

which gives

i.e., a temperature-independent susceptibility. In the
vicinity of the ferromagnetic transition (whose bound-
ary is determined by condition (12)), it increases indef-
initely. The concentration dependence of χ0 is shown in
Fig. 5.

4. CONCLUSIONS

As applied to random systems, the mean field theory
for a system with magnetic interaction requires a gen-
eralization taking into account nonequivalence of indi-
vidual magnetic moments forming the system. We have
considered a version of such a theory, based on the
determination and analysis of the distribution functions
for random magnetic fields produced by magnetic
moments with an irregular spatial distribution. These
distribution functions have been determined by two
methods: analytically, with the help of the Markov
method [7], and numerically, by processing statistically
the results of calculations of random fields in a model
system. In the case considered here, the former method
makes it possible to derive only approximate equations
for distribution functions in a limited range of dipole
concentrations; however, these expressions give a reli-
able qualitative idea on the form of these functions in
the magnetic state of the system under study.

The main results were obtained by numerically sim-
ulating a random system of rodlike Ising dipoles. It has
been shown in the framework of the generalized mean
field theory that the magnetic state of such a system is
determined by the dipole concentration n: for dipole

I1
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2π
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Θcosh σ/h0Θ( )x[ ]2
---------------------------------------------- x,d
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σ
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---------x e x

2/2–tanh x.d
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I1 I2
2
π
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h0

σ
-----,= =
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2
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σ
h0
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H j
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concentrations exceeding na3 * 5 × 102, the system is
ferromagnetic, while for lower concentrations, it is
paramagnetic. In the region of low concentrations
(na3 ! 1), the system is close to an ensemble of point
dipoles but is not equivalent to such an ensemble since
the distribution function in the region of strong random
fields is characterized not by long Lorentzian wings,
but by a more rapid decay (the 1/H4 law).
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APPENDIX

We can get an idea of the form of the distribution
function F(1; H) in the region of strong fields by assum-
ing that field H is mainly produced by the nearest
dipole. The wR(R) law describing the distribution of dis-
tances R to the nearest neighbor for a random (noncor-
related) distribution of dipoles is given by [7]

(A.1)

while the distribution wα(α) of angles α between vector
e0 and vector R determining the position of the nearest
dipole will be regarded as uniform: wα(α) = |sinα|dα.

In contrast to the energy of interaction of point
dipoles, which increases indefinitely upon a decrease in
their spacing, the energy of interaction of rodlike
dipoles has three (infinitely large) extrema (see Fig. 1)
corresponding to the convergence of their centers
(R ! a) or ends (R – 2a ! a, sinα  0). It follows
from Eq. (2) that

(A.2a)

in the vicinity of these extrema for R ! a, while

(A.2b)

for R – 2a ! a, α' = α or α' = π – α, where H1 = m/a3.
The three indicated regions determine the shape of the
distribution function f(H) for large absolute values
of H. For the function corresponding to negative values
of the magnetic field (A.2a), we obtain

(A.3)

wR R( ) 4πR2n 4πR3n/3–( ),exp=

H
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---------------∝ π
2
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H
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 
4

=

× π
6
---na3 H1

H
------- 

 
3

– , H 0.<exp
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For regions with positive magnetic field (A.2b), we
can use the following rule of transformation of random
quantities [8]: if the distribution functions fr(r) and fχ(χ)
for independent random quantities r and χ are known,
the distribution function for the random quantity Λ =

 is given by

It follows hence that the distribution function fh(h) for

random quantity h = 1/Λ = 1/  is given by

In our case, r = R – 2a, χ = 2aα', H = (m/4a2)h and
fr(r) = wR(2a + r), fχ(χ) = (1/2a)fα(χ/2a). Consequently,

(A.4)

(factor 2 on the right-hand side of the first relation
in (A.4) takes into account the existence of two extrema
of the positive magnetic field). For fields H/H1 @

, distribution function (A.4) has a form similar to
Eq. (A.3):

(A.5)

It follows from Eqs. (A.3) and (A.5) that the left
wing of the distribution function F(1; H) must be higher
than its right-hand wing. This can clearly be seen in the
inset to Fig. 2. For a low dipole concentration (na3 ! 1),
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both wings of the distribution function have, in accor-
dance with Eqs. (A.3) and (A.5), identical power form

(A.6)

which considerably differs, however, from the Lorentz-
ian profile.4 

As regards the region of weak magnetic fields (H <
H1), such fields are produced by a more or less symmet-
ric set of all neighboring dipoles and it is impossible to
determine the form of the corresponding distribution
function f(H) using the nearest neighbors approxima-

4 In contrast to Eq. (A.6), the wings of the Lorentzian distribution
decrease at a much slower rate (according to the law 1/H2), i.e.,

so slowly that the root-mean-square value  of the random
field is infinitely large. It is for this reason that ferromagnetism is
impossible in the system of point dipoles; consequently, the
wings of the Lorentzian distribution corresponding to |H| * 5h0
must be trimmed for the emergence of spontaneous magnetiza-
tion [4].

F 1; H( )
na3

H1
--------

H1

H
------ 

 
4

,∝

H
2〈 〉
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tion. In this case, an appropriate statistical method (e.g.,
the Markov method) has to be used.
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Abstract—The strong effect of a magnetic field on the starting stress and mobility of individual dislocations is
discovered in silicon grown by the Czochralski method with a high concentration of dissolved oxygen. It is
shown that exposure of dislocations preliminarily introduced into the sample to a magnetic field considerably
reduces the starting stresses for the motion of these dislocations. The effect is not observed in samples with a
low oxygen concentration. It is assumed that the magnetic field induces singlet–triplet transitions in thermally
excited states of silicon–oxygen complexes in the dislocation core, thus stimulating a change in the state
(atomic configuration) of oxygen already located at dislocations. As a result, the mean binding energy of oxy-
gen with a dislocation decreases. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Analysis of the interaction between dislocations in
silicon and intrinsic and impurity point defects is essen-
tial for the development of modern electronic technolo-
gies involving, in 90% of cases, silicon crystals grown
by the Czochralski method. In integrated circuit tech-
nologies, such studies are important, first, due to the
wide use of the dislocations for gettering harmful impu-
rities and, second, in view of the dislocation pinning
required for preventing their multiplication and pene-
tration into the active regions of integrated circuits dur-
ing technological operations involved in production. In
the past few years, the interest in studies of the interac-
tion between dislocations and impurities has grown still
further in connection with the use of cheap polycrystal-
line silicon for manufacturing solar cells. Dislocations
strongly affect the lifetime of minority carriers in this
material and determine the efficiency of solar cells to a
considerable extent. It is well known that “pure” and
defect-free 60° dislocations in silicon determine the
existence of comparatively shallow (about 70–80 meV)
one-dimensional bands that weakly affect the lifetime
of minority carriers; consequently, dislocations are
effective recombination centers only due to the pres-
ence of some specific defects and impurities in their
cores [1]. For this reason, it is important to study the
interaction and reactions between impurities and dislo-
cations, as well as the effect of impurities on the prop-
erties of dislocations, and to find methods for control-
ling these properties.

In some cases, the interaction between impurities
and dislocations has the form of solid-state chemical
reactions (see, for example, [2, 3]); at the intermediate
stages of such a reaction, “broken” valence bonds with
1063-7761/03/9703- $24.00 © 20601
an unpaired electron spin may appear. Hence, it cannot
be ruled out that an external magnetic field mixing trip-
let and singlet states at intermediate stages of reactions
may strongly affect the kinetics and course of such
reactions. Some spin-dependent chemical reactions
strongly affected by magnetic field were discovered in
liquids and gases and studied in detail [4]. Unfortu-
nately, spin-dependent reactions of defects in crystals
have been studied insufficiently.

The measurement of dislocation mobility is a sensi-
tive integrated method for detecting various reactions
of defects in crystals. The effect of magnetic field on
plastic properties of alkali–halide and some other crys-
tals has been established quite reliably [5–7]. This phe-
nomenon is known as the magnetoplastic effect. It is
generally assumed that a change in the dislocation
mobility as a result of exposure of samples to magnetic
field is associated with changes in the properties of
intrinsic and impurity defects; however, the micro-
scopic mechanisms of such processes have not been
studied in detail.

In view of the considerable practical importance of
silicon as a basic material for electronics, analysis of
spin-dependent processes in silicon is of prime impor-
tance (especially on account of growing interest in
spintronics). Only spin-dependent recombination of
electrons and holes at defects has been investigated ear-
lier in detail (see, for example, [8]), while reactions
between defects and impurities have been studied insuf-
ficiently. It should be noted that the effect of magnetic
field on some electrical and mechanical properties of sil-
icon samples, which can apparently be attributed to reac-
tions with defects, was observed in some cases [9, 10].
However, the effects described in these publications
have not only been insufficiently studied, but also
003 MAIK “Nauka/Interperiodica”
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poorly reproducible. For example, in spite of several
attempts, we failed to reproduce the results presented
in [9, 10]. The effects described in [9, 10] are deter-
mined by certain poorly controllable factors and require
additional experiments for clarifying their origin.

In this study, we report on the results of analysis of
the effect of a magnetic field on starting stresses and
mobility of individual dislocations in silicon single
crystals.

2. EXPERIMENTAL TECHNIQUE

The experiments were performed on initially dislo-
cation-free n-type silicon single crystals with a phos-
phorus concentration of (3–5) × 1013 cm–3. We used two
types of crystals differing in the concentration of dis-
solved oxygen, viz., crystals grown using the Czochral-
ski method (Cz–Si) and those containing 1018 cm–3 of
dissolved oxygen and grown using float zone method
(Fz−Si) with an oxygen concentration on the order of
1016 cm–3.

Samples having a shape of right prisms with a size

of 35 × 4 × 1 mm3 and with (111), (11 ), and (1 0)
face orientations (the symbols of faces are given in
decreasing order of their areas) were cut by a diamond
saw and polished mechanically by diamond powder to
obtain an optically smooth surface. Then the surface
layer, 20–50 µm in thickness, which was damaged dur-
ing mechanical treatment, was removed by chemical
polishing in a 7HNO3 : 1HF solution.

After polishing, dislocations were introduced into
the samples by pricking the wide (111) face with an
indenter (diamond pyramid). The load applied to the
pyramid during indentation, reduced shear stresses τ,
duration ∆t, and loading temperature T were chosen so
that individual dislocation half-loops 10−20 µm in
diameter were generated, as a rule, as a result of each
indentation. In our experiments, these parameters were
as follows: T = 600°C, τ = 50 MPa, and ∆t = 10 min.
Then the dislocation sources (in the indentation
regions) were removed by chemical polishing and the
samples were loaded again at T = 600°C to increase the
size of the initial dislocation half-loops increased to a
diameter on the order of 500–600 µm.

After slow cooling of the samples (together with the
furnace), the dislocation outcrops at the sample surface
were revealed by selective chemical etching (Sirtl
etchant: 1CrO3 + 2H2O + 3HF); the samples prepared
in this way were used for measuring the velocity of dis-
locations and starting stresses for their motion.

The mobility of individual dislocations at a fixed
stress τ was measured by loading the samples using

four-point bending around the [11 ] axis over time ∆t.
The track lengths L of individual dislocations over the
loading time ∆t were determined by repeated selective
etching. Length L of the dislocation tracks was mea-

2 1

2
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sured using a Neophot-32 optical microscope with a
micrometer eyepiece having a scale division value of
about 0.2 µm/division. In order to measure the depen-
dence of dislocation velocity V = L/∆t on stress τ and to
determine starting stresses τst for moving dislocations,

we use three-point bending around the [11 ] axis lead-
ing to a linear law of τ distribution along the long edge
of the sample.

In order to improve the precision of measurements
of dislocation velocity for a fixed load, we determined
in each experiment the velocity of several tens of dislo-
cations and determined the average velocity. The defor-
mation temperature T was monitored by a platinum–
platinum-rhodium thermocouple and was maintained at
a constant level to within ±0.5 K in the course of the
experiment.

In order to study the effect of magnetic field, the
samples with introduced dislocations were held for a
certain time at room temperature in a field of B =
20 kOe prior to velocity measurements. The magnetic
vector was perpendicular to the (111) face.

The experimental results considered below were
obtained for 60° segments of dislocation half-loops of

the (1 1) [011] slip system, which had been introduced
on the compressed, as well as extended, side of the
sample.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

It was found that the average velocity of individual
60° dislocations in Cz–Si crystals after exposure of the
samples to magnetic field at room temperature
increases by 30–40% as compared to the average
velocity of dislocations in the same sample, measured
before exposure to magnetic field. Figure 1 shows the
relative variation (VB – V0)/V0 of the dislocation veloc-
ity under a load of τ = 50 MPa at a temperature of
550°C as a function of the exposure time in field B =
20 kOe at room temperature. Here, V0 and VB are the
average velocities of dislocations measured before and
after exposure of the sample to magnetic field. The
average velocities of dislocations depicted in Fig. 1
were obtained as a result of averaging the path lengths
of 50−100 individual dislocations in each sample. It can
be seen that the strongest effect is attained after 3 h of
exposure to magnetic field; a further increase in the
exposure time does not lead to a considerable change in
the effect. For this reason, the samples were treated in
magnetic field for three hours in hour experiments.

Within the measurement error, the effect of an
increase in the dislocation velocity due to exposure of
the samples to magnetic field remains unchanged after
holding for 100−150 h at room temperature and
decreases by half only after 300−400 h. This means that
magnetic field induces changes in the system of defects

2
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that become active immediately after exposure to the
field. The effect persists for a long time.

The measurements of the temperature dependence
of the velocity of individual dislocations before and
after exposure to magnetic field proved that such expo-
sure in the temperature range 500−650°C studied in our
experiments does not lead to an appreciable change in
the activation energy Ud = 2.15 ± 0.01 eV of the mobil-
ity of dislocations.

Similar measurements were made on Fz–Si single
crystals. It was found that within the experimental
error, exposure of the samples to magnetic field does
not change the mobility of individual dislocations in
Fz–Si. Since the main difference between Cz–Si and
Fz–Si samples is that the oxygen concentration in the
former samples is two orders of magnitude higher than
in the latter, it is natural to assume that the effect is
associated with spin-dependent reactions involving
oxygen.

It is well known that a large number of impurities
and defects (including oxygen-containing complexes in
silicon) may affect the motion and multiplication of
dislocations to a considerable extent [11]. A natural
question arises whether the observed effect of magnetic
field is associated with a change in the state of oxygen
in the bulk of the sample or with a change in the state of
oxygen accumulated directly at dislocations in the
course of sample preparation.

Our measurements of optical absorption spectra at
T = 77 K in a region of 1100–1150 cm–1, which are
associated with vibrational modes of oxygen in silicon,
have not revealed any significant difference between
the states of oxygen in the bulk of the samples before or
after the action of magnetic field. This suggests that the
observed effect is associated with the change in the
state of oxygen located directly at dislocations, which
is stimulated by magnetic field.

The only sensitive method revealing changes in the
system of defects and impurities in the vicinity of a dis-
location core is the measurement of starting stresses,
i.e., the minimal stresses under which dislocations
begin to move [12, 13]. It was shown in [12, 13] that the
magnitude of starting stresses τst is directly connected
with the interaction of a dislocation core with surround-
ing impurities and point defects. In the first (rough)
approximation, we have τst ~ NUB , where N is the num-
ber of impurity atoms per unit dislocation length and
UB is the binding energy between the impurity atoms
and the dislocation core.

We measured the starting stresses in Cz–Si samples
before and after the action of magnetic field. For this we
measured the dependences of dislocation path length L
on the shearing stress (T = 600°C, ∆t = 10 min) before
and after exposure to magnetic field using the three-
support bending method. Figure 2 shows typical depen-
dences of L/∆t on τ obtained in this way. Each point
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
corresponds to the path length of an individual disloca-
tion, while continuous curves were obtained by averag-
ing (parabolic smoothing) over 13 points (dislocations).
It can be seen that exposure of the sample to magnetic
field leads to a noticeable (to almost one-half the initial
value) decrease in starting stresses for dislocation
motion.

Thus, these results can be used to formulate the fol-
lowing preliminary model of the observed effect.

10 20 30 40 50 60 70
τ, åPa

2
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12
L/∆t, 10–6 cm/s

1

2

0

Fig. 2. Dependence of the velocity of individual 60° dislo-
cations on the shearing stress, measured at 600°C on a
Cz−Si sample before (curve 1) and after (curve 2) exposure
of the sample for 3 h to a magnetic field of B = 20 kOe at
room temperature. Symbols represent data for solitary dis-
locations, while the curves were obtained by averaging
(parabolic smoothing) over 13 dislocations. Arrows indicate
starting stresses.
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Fig. 1. Variation of the velocity ∆V/V0 = (VB – V0)/V0 of 60°
dislocations in Cz–Si as a function of exposure time for a
sample in a magnetic field of B = 20 kOe at room tempera-
ture. The dislocation velocity was measured at 550°C under
a shearing stress of τ = 50 MPa.
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The Cz–Si samples exhibiting a decrease in the
starting stresses and an increase in the mobility of indi-
vidual dislocations as a result of their exposure to mag-
netic field differ from the Fz–Si samples in which this
effect is not observed at a considerably higher concen-
tration of interstitial oxygen.

Theoretical calculations [2, 3] show that the energy
of oxygen molecules in dislocation cores is consider-
ably lower than the energy of interstitial molecular oxy-
gen in the ideal silicon lattice; i.e., we can speak of the
presence of a considerable binding energy between
oxygen molecules and a dislocation. Oxygen molecules
in dislocation cores in silicon may be in several differ-
ent configurations differing in binding energy. Thus, we
can assume that the dislocations implanted into the
crystal accumulate oxygen in their cores due to reac-
tions between dissolved oxygen and a moving disloca-
tion; this must reduce the dislocation mobility and lead
to the emergence of considerable starting stresses. It is
known from experiments that the presence of oxygen in
silicon indeed increases the starting stresses for dislo-
cation motion [12, 14].

The diffusion coefficient for interstitial oxygen at
room temperature is very small (below 10–22 cm2/s)
[15]; for this reason, the average diffusion length for
oxygen over the time of magnetic field treatment (3 h)
hardly exceeds the unit cell size for silicon. Thus, we
can disregard the effect of a magnetic field on the
growth of oxygen precipitates or the mean oxygen con-
centration in the bulk of the crystal. We can assume that
the magnetic field leading to singlet–triplet transitions
in thermally excited states of silicon–oxygen com-
plexes stimulates the change in the state (configuration)

6 7 8 9 10
V0, 10–6 cm/s

5

6

7

8

9

10
VB, 10–6 cm/s

∆V

Fig. 3. Velocity VB of 60° dislocations after exposure to
magnetic field as a function of velocity V0 of these disloca-
tions before exposure to the field for several different Cz–Si
samples. The dashed line shows the dependence in zero
magnetic field, i.e., for VB = V0. The velocity of dislocations
was measured at 600°C under a sharing stress τ = 50 MPa.
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of oxygen molecules, which have already occupied dis-
location cores, so that the average binding energy UB

between oxygen and dislocations decreases. The
decrease in the binding energy reduces starting stresses
(τst ~ NUB). This also leads to oxygen loss by disloca-
tions after their motion begins [16]. Impurities located
in a dislocation core decelerate its motion; conse-
quently, a decrease in the oxygen concentration in a
dislocation core increases the velocity of the dislo-
cation.

It should be noted that the amount of oxygen accu-
mulated by a dislocation during the formation of a dis-
location half-loop depends on the path traversed by the
dislocation, the time the sample is held at a high tem-
perature, the concentration of the defects of dislocation
core reconstruction, and other parameters depending on
past history. This must lead to a spread in the values of
starting stress and velocity of dislocations in different
samples (the larger the amount of accumulated oxygen,
the smaller the dislocation velocity V0 at a fixed load
must be). Assuming that the magnetic field stimulates
the detachment of oxygen from a dislocation, we can
expect that the dislocation velocities VB in different
samples exposed to magnetic field must tend to a cer-
tain value typical of “pure” dislocations. This is actu-
ally observed in experiment. Figure 3 shows the depen-
dence of the average velocity VB of dislocations after
the action of magnetic field on velocity V0 of these dis-
locations before the action of magnetic field measured
for a large number of samples with different past his-
tories. It can be seen that magnetic field weakly affects
the velocity of dislocations in samples with a high ini-
tial velocity of dislocations, in which the concen-
tration of oxygen strongly coupled with dislocations
is low.

The proposed model is a preliminary one; a number
of additional experiments are required for determining
the microscopic mechanisms of spin-dependent reac-
tions occurring in the oxygen-dislocation system.
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Abstract—Stationary states of molecular negative ions (anions) near the surface of a solid are investigated. The
lone electron is assumed to interact with a diatomic molecule and the surface of the solid. The energies of elec-
tron levels are determined by solving the 2D Schrödinger equation. It is shown that its stable solutions exist at
distances from the surface greater than some critical distance, otherwise the electron is detached from the anion.
In the case of attraction between the electron and the solid, the interaction potential between the anion and the
solid appears to have the Lennard–Jones form and the ion is separated from the surface by some equilibrium
distance. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of electronegative molecules and
negative molecular ions (anions) with surfaces of con-
densed state has extensively studied within the last
decades. One of the problems most interesting to us is
the formation and evolution of negative ion resonances
(NIRs) on surfaces [1–4]. As in the gas phase, NIRs
can also be generated at surfaces by the attachment of
free electrons to absorbed molecules at a defined
energy [1–3]. It has been recognized that the photo-
chemical behavior of adsorbed molecules can effec-
tively be governed by the photoinduced electron trans-
fer from the substrate to the adsorbed molecule [5–7].
In some systems, NIRs thus formed are considered the
driving force for the respective photochemical reaction.

The formation and evolution of NIRs are usually
appreciably modified when passing from the gas phase
to the surface [8, 9]. This concerns the energy of the
temporary negative ion, its lifetime (with respect to the
electron loss and dissociation), and the branching ratios
between the dissociative attachment channels.

Some electron scattering experiments have been
performed on molecules deposited on cold noble gas
substrates (solids). Here, a noble gas layer of variable
thickness can be used to study the influence of the
metallic substrate on the particular process, e.g., the
(dissociative) attachment cross section or the energy
shift of the negative ion resonance [8–10]. In addition,
substrate-induced electron transfer reactions via the ini-
tial formation of an electron exciton precursor in the
noble gas layer could be observed [3, 13].

¶This article was submitted by the authors in English.
1063-7761/03/9703- $24.00 © 0606
The stability of molecular negative ions at or near
the surface is an essential point in the investigation of
low-energy electron-driven reactions on adsorbed and
condensed molecules [14]. In addition to its importance
from the standpoint of basic science, the stability of
negatively charged particles at or near a solid surface is
an important issue in many technological processes like
photocopying, laser printing, etc.

In [15], it was shown that the interaction of a nega-
tive ion with a nonpolar liquid results in a considerable
shift of its photodetachment threshold. Apparently,
noticeable shifts can be expected in the interaction of an
anion and the surface of a solid. In [16–18], the dynam-
ics of the processes of charge transfer and production of
molecular anions in the vicinity of a surface were inves-
tigated. It was recognized that an accurate calculation
of electron energies requires solving the 2D
Schrödinger equation, because the spherical symmetry
for the lone electron is broken at a short distance from
the surface [18]. Consequently, on the basis of one-
dimensional perturbation theory, sufficiently accurate
values of the electron energy cannot be found at short
distances from the surface because higher order terms
require nonspherical corrections to the wave function.

The objective of this paper is to calculate the station-
ary-state energy of the lone electron of a molecular
anion near the surface of a solid by solving the station-
ary 2D Schrödinger equation. The interaction of the
lone electron with the diatomic molecule is described
by a polarization pseudopotential; the interaction with
the solid is characterized by a single parameter, the
effective energy of the electron inside the solid, V0.

In this formulation, the problem has a two-dimen-
sional axial symmetry with the axis perpendicular to
the surface, and we must therefore solve the 2D
2003 MAIK “Nauka/Interperiodica”
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Schrödinger equation. Solutions of the multidimen-
sional Schrödinger equation are known in the cases
where spatial variables can be separated (as in the the-
ory of the Stark effect). In the case of inseparable vari-
ables, due to the complexity of the general mathemati-
cal formulation, no regular methods, either analytic or
numerical, have been developed to date. As a rule, the
multidimensional Schrödinger equation is reduced to a
quasi-one-dimensional one, specific for the problem
under consideration. There are several approaches to
the treatment of multidimensional equations. Among
them, the split-step Fourier scheme [19] was used
in [20] for the investigation of white noise in the 2D
nonlinear Schrödinger equation. The 3D wave packet
propagation method was used in [21] to describe the
propagation of an electron near the surface of a solid.

We propose a solution of this problem assuming that
the electron state is in fact a superposition of states with
different values of the angular momentum in the corre-
sponding effective spherically symmetric potentials.
The state with zero angular momentum is assumed to
predominate. An exact solution of the Schrödinger
equations is then sought as a linear combination of the
wave functions corresponding to different values l of
the angular momentum. Thus, the 2D Schrödinger
equation is reduced to an infinite set of one-dimen-
sional equations for the radial wave functions. It can be
shown that its solution can be approximated to a very
good accuracy by the truncation of the infinite set to
two equations for l = 0 (zero approximation) and l = 1
(first approximation). The latter is easily solved numer-
ically by the iteration method. This makes possible cal-
culation of the lone electron energy as a function of the
parameters characterizing its total interaction potential.

Two cases must be distinguished, the repulsive sur-
face (potential barrier) and the attractive surface (poten-
tial well). Repulsion of the electron from the surface
causes pure repulsion of the anion from the surface;
there is a minimum distance at which a stationary state
is possible. At shorter distances, nonstationary states
emerge, which prove to have decay times too short to be
detected experimentally. Thus, detachment of the elec-
tron from a diatomic molecule occurs, and the electron
is removed into the vacuum.

In the case of an attractive surface, the existence of
an electron stationary state depends on the values of
potential parameters. If the potential well in a solid is
too deep, no stationary state is possible and the electron
is detached from the anion at the distance where the
anion decay time becomes shorter than its residence
time near the surface of the solid. If the well depth is
moderate, there is a finite range with some minimum
and maximum distances from the surface where a sta-
tionary solution exists. If the potential well is shallow,
there is only the minimum distance, as in the case of a
potential barrier. In the case of surface attraction,
detachment of the lone electron implies its tunneling
into the potential well of a solid. If stationary states
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
exist, the curve of interaction between the anion and the
surface of the solid has a form characteristic of the
interatomic interaction (the Lennard-Jones potential).
As is known, this potential has an equilibrium distance.
Hence, a molecule-like equilibrium state of the anion
near the surface emerges. This makes it possible to pre-
dict not only the shift of the electron level (of the elec-
tron photodetachment threshold), but also the distance
from the surface at which the anion can be found.

This paper is organized as follows. In Section 2, the
interaction potential for the lone electron and the
Schrödinger equation to be solved are written; in Sec-
tion 3, its asymptotically exact solution is found and the
first-order approximation to this solution is considered.
Potential curves for anions near the surface are calcu-
lated in Section 4; the results obtained are analyzed in
Section 5.

2. PROBLEM FORMULATION

We consider a system consisting of a highly polariz-
able diatomic molecule, the surface of a solid, and a
lone electron. The interactions between the molecule
and the surface are assumed to be negligibly small, and
we can therefore take into account only the interactions
between the lone electron and molecule, and between
the electron and the surface. We let Vp and Vs denote the
respective interaction potentials.

We introduce the spherical coordinate system with
the origin at the point of location of the molecule and
with the polar axis perpendicular to the surface. The
polar axis is directed toward the surface. The corre-
sponding spherical coordinates are denoted by r and θ.
The distance between the molecule and the surface is
z0. The half-space rξ < z0 (ξ = cosθ) is the vacuum, and
the other half-space rξ ≥ z0 is occupied by the solid; the
surface is defined by the equation rξ = z0. At a suffi-
ciently large distances from the molecule in the vac-
uum, r ≥ rc , where rc is the molecule hard-core radius,
the lone electron polarizes core electrons of the mole-
cule, and the interaction can be described by the polar-
ization potential

where α is the molecule polarization in the units of 
(a0 is the Bohr radius) [22]; the length and energy are
measured in the units of a0 and in Ry, respectively (in
contrast to atomic units, we measure the energy in Ry).
At small distances r < rc , due to the Pauli principle, a
short-range repulsion occurs, and we can therefore set

(see [22]). Thus, we use a spherically symmetric
pseudopotential to describe a lone electron. Because a
real diatomic molecule is not spherically symmetric,

V p αr 4– ,–=

a0
3

V p +∞ at r rc<=
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this assumption is made for simplicity. We also assume
that the electron charge is screened inside the solid and
therefore does not interact with the molecule, which
allows us to set Vp = 0 for rξ ≥ z0.

The lone electron polarizes the surface of the solid,
and the arising electrostatic image force is responsible
for the interaction between the electron and the surface
at large distances. At short distances and inside the
solid, the electron experiences attraction caused by
polarization of surrounding molecules by its charge and
the Pauli repulsion. For simplicity, we do not take the
details of this interaction into account and use its sim-
plest form instead.

We note that the characteristic length of variation of
the image force potential is given by several a0,
whereas the characteristic length of the lone electron
localization (the width of the electron wave function) is
about 10a0. Obviously, Vs must be uniform inside the
solid. This enables approximation of Vs by a simple
“step” potential Vs = 0 for rξ < z0 and Vs = V0 for rξ ≥ z0.
The interaction between the electron and the surface is
therefore allowed by a single parameter V0. This
parameter characterizes the interaction as a whole and
is essentially an effective one. Its sign depends on the
ratio between the strengths of the attractive electrostatic
image force outside the solid and the Pauli repulsion
inside it. This ratio is defined by constants characteriz-
ing the molecule and the solid. In some cases (e.g., the
surface of a metal), the image force predominates, and
V0 < 0. In this case, a potential well occurs, which
causes attraction, at large distances at least. If V0 > 0,
the solid is represented by a potential barrier and the net
effect is repulsion.

Although the details of the potential Vs can be
included (as, e.g., in [21]), this can considerably com-
plicate the analysis of the results obtained and mask the
nature of the effects that we want to demonstrate. At the
same time, any complicated form of the electron-sur-

U(r, 1)

Es

rc z0

V0

r

Fig. 1. Interaction potential for the attractive surface along
the polar axis.
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face interaction potential can be included in our formal-
ism if necessary.

Thus, the total electron interaction potential

is given by

(1)

It is shown in Fig. 1. Because potential (1) has axial
symmetry, the electron energy is found from the 2D sta-
tionary Schrödinger equation

(2)

where ψ(r, ξ) is the electron wave function and Es is the

energy. In spherical coordinates, the Hamiltonian  is
given by

(3)

The boundary conditions for the wave function are

(4)

3. METHOD OF SOLUTION

To solve Eq. (2), we have to additionally assume that
its solution has the same symmetry as the potential
U(r, ξ) in Eq. (1), i.e., axial symmetry. This is correct
for the ground state, which is a single state for most
diatomic anions in the approximation of the simplified
electron–molecule interaction potential Vp .

A solution of Eq. (2) can be represented as an expan-
sion in any complete set of functions of ξ. Similarly to
the quantum scattering theory, we use the Legendre
polynomials Pl(ξ). However, in contrast to scattering,
we seek a stationary bound state localized in a finite
spatial region with the real energy Es less than the min-
imum value of potential (1) at r  ∞. Thus, we can
represent the solution as a series in the Legendre poly-
nomials

(5)

U V p Vs+=

U r ξ,( )

+∞, r rc<

αr 4– , ξrc ξr z0<≤–

V0, ξr z0.≥





=

Ĥψ Esψ,=

Ĥ

Ĥ
1

r2
----

r∂
∂

r2

r∂
∂

 
 –=

–
1

r2
---- 1 ξ2–( )

ξ2

2

∂
∂

2ξ ξ∂
∂

– U r ξ,( ).+

ψ rc ξ,( ) ψ ∞ ξ,( ) 0.= =

ψ r ξ,( )
1
r
--- ϕ l r( )Pl ξ( ).

l 0=

∞

∑=
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The wave function ψ is normalized to unity,

(6)

It follows from the discussion above and condition (6)
that ϕl(r) are real functions. Substituting (5) into (6) and
recalling the normalization and orthogonality condition
for the Legendre polynomials,

we obtain the normalization condition for the functions
ϕl(r),

(7)

Because the Legendre polynomials are eigenfunctions
of the square angular momentum operator,

(8)

substitution of expansion (5) into Schrödinger equa-
tion (2) yields

(9)

We multiply both sides of Eq. (9) with Pl(ξ) and inte-
grate over ξ from –1 to 1 to derive

(10)

where the matrix elements

(11)

are the effective spherically symmetric potentials; they
are related by the ratio

(12)

2π r2 r ψ r ξ,( ) 2 ξd

1–

1

∫d

0

∞

∫ 1.=

Pl
2 ξ( ) ξd

1–

1

∫ 2
2l 1+
--------------, Pl ξ( )Pk ξ( ) ξd

1–

1

∫ 0,= =

l k,≠

4π 1
2l 1+
-------------- ϕ l

2 r( ) rd

0

∞

∫
l 0=

∞

∑ 1.=

ξ2 1–( )
d2Pl

dξ2
---------- 2ξ

dPl

dξ
--------+ l l 1+( )Pl,=

Pk

d ϕ2
k

dr2
----------

k 0=
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1
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+ U Pkϕk
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∑=

d2ϕ l

dr2
---------- Es

l l 1+( )
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-----------------– ϕ l Vlkϕk

k 0=
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Vlk r( ) l
1
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1
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Vlk
2l 1+
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The boundary conditions for set of equations (10) are

(13)

Thus, we have reduced the 2D Schrödinger equation to
an infinite set of ordinary differential equations (10),
each of which corresponds to a certain value of the
angular momentum.

Solution of Eqs. (10) makes sense only if series (5)
converges fast. This means that some state must pre-
dominate in superposition (5). Because the increase in
the hard-core parameter rc of the potential Vp by a few
percent leads to the disappearance of the bound state of
an isolated anion, we can assume that if the lone elec-
tron is localized on the molecule, the deviation of its
wave function from the spherically symmetric form is
moderate. Hence, the s-state (l = 0) must predominate,
and we can truncate the set of equations (10) at some
finite value of l. The error involved in this truncation
can easily be estimated by inclusion of a higher order
equation. Thus, (10) can be regarded as a key to obtain
an asymptotically exact solution.

In the zero approximation (l = 0), Eqs. (10) are
reduced to the one-dimensional Schrödinger equation
for the radial wave function ϕ0(r)/r in the spherically

averaged interaction potential  in Eq. (1),

(14)

where

(15)

In the zero approximation, nonsphericity is obviously
not allowed. Far from the surface, the lone electron
wave function can be approximated by that of an iso-
lated anion ϕ∞(r)/r. By definition,

(16)

where

ϕ l rc( ) ϕ l ∞( ) 0.= =

V00 r( )

d2ϕ0

dr2
----------- Es V00 r( )–[ ]ϕ 0+ 0,=

V00 r( )
1
2
--- U r ξ,( ) ξd

1–

1

∫ V p r( )
1
2
--- Vs r ξ,( ) ξd

1–

1

∫+= =

=  

+∞, r rc,<

αr 4– , rhc r z0,<≤–

V0

2
------ 1

z0

r
----– 

  α
2r4
------- 1

z0

r
----+ 

  , r z0.≥–








d2ϕ∞

dr2
------------ E0 V p r( )–[ ]ϕ ∞+ 0,=

E0 Es
z0 ∞→
lim=
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is the electron energy of an isolated anion (–E0 is the
electron affinity of an isolated molecule), and we can
therefore obtain the electron energy from (14) as

This coincides exactly with the result of perturbation
theory if Vs is treated as a small perturbation.

At the surface (small distance z0), Vs is not small and
the first order of perturbation theory therefore does not
provide high accuracy. Calculation of higher order cor-
rections of perturbation theory is impossible, because
the nonsphericity effect is not included. But we can
handle small distances z0 even in the first approxima-
tion on the basis of set of equations (10). In this approx-
imation, (10) is truncated into two equations for l = 0
and 1,

(17)

(18)

where relation (12) is used,

(19)

(20)

and the wave function is the sum of two terms

(21)

normalized by the condition

Es E0 2π ϕ∞
2 r( )Vs r ξ,( ) ξ .d

1–

1

∫+≈

d2ϕ0

dr2
----------- Es V00 r( )–[ ]ϕ 0 V01 r( )ϕ1–+ 0,=

d2ϕ1

dr2
----------- Es

2

r2
---- V11 r( )–– ϕ1 3V01 r( )ϕ0–+ 0,=

V01 r( )
1
2
--- U r ξ,( ) ξd

1–

1

∫=

=  

0, r z0<

1
z0

2

r2
----–

 
 
  α

4r4
-------

V0

4
------+ 

  , r z0,≥






V11 r( )
3
2
--- U r ξ,( )ξ2 ξd

1–

1

∫=

=  

+∞, r rc<

αr 4– , rc r z0<≤–

V0

2
------ 1

z0
3

r3
----–

 
 
  α

2r4
------- 1

z0
3

r3
----+

 
 
 

, r z0,≥–








ψ r ξ,( )
1
r
--- ϕ0 r( ) ξϕ 1 r( )+[ ]≈

4π ϕ0
2 r( ) ϕ1

2 r( )/3+[ ] rd

0

∞

∫ 1.=
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We can estimate the accuracy of this approximation by

comparing the electron energy  obtained from (14)

with that calculated using (17) and (18), .

Set of equations (17) and (18) can be solved numer-
ically using the iteration method. First, we set

and (17) becomes a one-dimensional equation. This
equation is solved with the boundary conditions

where C0 is an arbitrary number; the parameter Es

appearing in the equation is adjusted to satisfy the
boundary condition

The obtained value of Es and the calculated function
ϕ0(r) are then substituted into Eq. (18), which is solved
with the boundary conditions

The value of C1 is then varied to satisfy the boundary
condition

For the next iteration, the calculated function ϕ1(r) is
substituted into Eq. (17), etc. This iteration procedure
terminates when the difference in the values of Es

obtained from successive iterations,  – , is suf-
ficiently small. Obviously, the procedure described can
also be used for a set containing more than two equa-
tions.

4. CALCULATION RESULTS

For numerical calculations, we considered two mol-
ecules, O2 with a moderate polarizability and highly
polarizable Br2. The molecule O2 was selected because
it is widely used in experiments. In addition, in spite of
the obvious internal asymmetry, the excess electron can
be approximately treated as a lone electron, which
makes it possible to solve the one-electron problem. Br2
is an example of a dimer with a very high polarizability.
Polarizabilities α and electron affinities –E0 for these
molecules [23] are listed in table. The values of hard-
core radii rc of the potential Vp were adjusted to fit the
corresponding experimental electron affinities by the
values of –E0 obtained from the ground state solution of
Eq. (16).

Es
0( )

Es
1( )

ϕ1 r( ) 0,≡

ϕ0 rc( ) 0,
dϕ0

dr
--------- 

 
r rc=

C0,= =

ϕ0 ∞( ) 0.=

ϕ1 rc( ) 0,
dϕ1

dr
--------- 

 
r rc=

C1.= =

ϕ1 ∞( ) 0.=

Es
0( ) Es

1( )
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Set of equations (17) and (18) was solved numeri-
cally using the procedure discussed in the previous sec-
tion for different values of the interaction potential
parameter V0. We first consider positive V0. Figure 2

illustrates the solution of Eqs. (17) and (18) for  at
V0 = 1 eV and z0 = 2a0. In this figure, wave function (21)
is plotted in the XZ plane (Y = 0) of the Cartesian coor-
dinate system whose Z axis is parallel to the polar axis
of the spherical coordinate system used in the forego-
ing. The spherical coordinates are related to the Carte-
sian ones as follows:

It is seen in Fig. 2 that the front of the wave function is
lowered near the repulsive surface. This is indicative of
a considerable repulsion of the wave function from the
surface. The ratio

is moderate, however.
The lone electron energy as a function of the dis-

tance from the solid surface is shown in Fig. 3. It is seen

that the results are similar for  and , although the
differences in polarizabilities and electron affinities for
these molecules are about an order of magnitude. Each

Br2
–

r x2 z2+ , ξ z/r,= =

x 0.075 X 200–( ), z 0.075 Z 200–( ).= =

Es
1( ) Es

0( )–
E0

----------------------- 0.17=

O2
– Br2

–

|ψ(X, 0, Z)|2

0.004

0.002

325

280

235

190

145

X

100

190
235

280
Z

100

Fig. 2. Wave function for  in the XZ plane (repulsive

surface, V0 = 1 eV). The plane Z = 227 (z0 = 2a0) indicates
the location of the surface of the solid.

Br2
–
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curve drops abruptly at some small distance, and E0

vanishes, which is indicative of the existence of a min-
imum distance at which a stable state of the anion is
possible (at this distance, Es = 0). At shorter distances,
the electron is detached from the anion and is removed
to infinity in the vacuum, which means electron detach-
ment. Fast vanishing of the effect of the surface as the
anion moves away from the surface is also seen in this
figure. We note that the electron energy at a short
distance from the surface cannot be calculated on the
basis of perturbation theory; at moderate distances, the
results of the latter are of no interest due to this
vanishing.

In the case of an attractive surface, the form of the
wave function is qualitatively similar to the previous
case, but the front of the wave function is raised near the
attractive surface, which is indicative of the attraction
of the wave function. The potential curve Es(z0) is more
complicated, however. In Fig. 4, the relative energy
shifts are shown for the values of V0 that coincide with
the corresponding energies E0 of isolated anions. For
both molecules, potential curves have the form of the

1.0

0.8

0.6

0.4

0.2

2 4 6 8

1
2

3

4

Es/E0

z0, a0

Fig. 3. Lone electron energy as a function of the distance

from a repulsive surface. 1—  for V0 = 0.5 eV; 2—

for V0 = 1 eV; 3—  for V0 = 0.5 eV; 4—  for V0 = 1 eV.

Br2
–

Br2
–

O2
–

O2
–

Parameters of diatomic molecules

Molecule
Polarizability 

α, 
Electron affinity

E0, eV
Cutoff radius 

rc, a0

O2 10.6 0.46 0.909

Br2 43.6 2.6 1.457

a0
3
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Lennard–Jones interatomic potential with a short-range
repulsion and vanishing long-range attraction. This
behavior of a potential curve holds for any negative
value of V0. The reason of such behavior is as follows.

At a large separation z0 from the surface,  <V p z0( )

0

–0.02

–0.04

–0.06

–0.08

4 6 8

1 2

(Es – E0)/E0

z0, a0

–0.10
10

Fig. 4. Relative electron energy shifts as functions of

the distance from an attractive surface at V0 = E0. 1— ;

2— .

Br2
–

O2
–

8

6

4

0.2 0.6 0.8

1

2

V0/E0

zeq, a0

0 1.00.4

Fig. 5. Equilibrium distance as a function of V0 for an

attractive surface. 1— ; 2— .Br2
– O2

–
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, and the effect of the surface amounts to lowering

the energy Es . Because  @ , the inequality

 >  holds at sufficiently short distances
(interaction of the electron with the molecule is stron-
ger than with the surface), which results in the increase
of Es due to the confinement of space available for the
electron and in the consequent increase in its kinetic
energy.

A stable electron state is realized only if the energy
Es is less than the minimum value ; other-

wise, the tunneling to the region of the lower potential
must lead to electron detachment. In the previously
considered case of a repulsive potential (V0 > 0), this
minimum is equal to zero at ξ = –1. If V0 < 0, it is equal
to V0 at ξ = 1. In the latter case, the region of stable
states is therefore limited by the condition Es < V0.

In the case of an attractive surface, the existence of
a stable state depends on the ratio of parameters E0 and
V0. If  > , a bound state is possible at z0  ∞
at least, where Es = E0. Therefore, a bound state exists
at a sufficiently large distance z0 > zmin, where zmin is a
single root of the equation Es(z0) = V0. If  < ,
electron detachment occurs at large distances and the
region of possible bound states is finite: zmin < z0 < zmax,
where zmin and zmax are two roots of the equation
Es(z0) = V0. As V0 increases, zmin  zmax, and at some
value V0 = Vmin, zmin = zmax. Obviously, this case corre-
sponds to the bottom of the potential curve Es(z0). At

 > , no stable state is realized; in this case,
only electron detachment is possible.

We note that independently of z0 and the sign of V0,
the interaction with a surface leads to a decrease in
anion stability,  < , due to broken
spherical symmetry of the lone electron state in an iso-
lated anion.

If we neglect the interaction between the molecule
and the surface, which is most likely a hard-core attrac-
tion at small distances, then the energy Es – E0 is that of
the anion as a whole. The condition

defines some distance zeq at which the energy Es(z0)
reaches the minimum and an equilibrium bound state of
the anion at the solid surface is realized. We note that
the interaction between the molecule and the metal sur-
face may noticeably contribute to the total energy of the
anion, especially in the region of short distances z0, but
we can expect that this does not change the situation
qualitatively. Equilibrium distances zeq and the corre-
sponding equilibrium state energies Eeq = Es(zeq) are
shown in Figs. 5 and 6 as functions of the potential well

V0

V p rc( ) E0

V p z0( ) V0

U r ξ,( )
r ∞→
lim

E0 V0

E0 V0

V0 Vmin

Es Vmin( ) Vmin– E0

dEs

dz0
-------- 

 
z zeq=

0=
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depth V0. It is seen in Fig. 5 that the equilibrium dis-
tance increases sharply as V0  0 and that the curves

for  and  almost coincide. The quantities

 increase with  until the condition Es = V0

(dashed curve in Fig. 6) is satisfied. In Fig. 6, the inter-
section points of solid curves with the dashed curve
indicate the maximum well depths at which bound

states can occur. For , the maximum value of V0/E0

is 1.04; for , it is 1.12.

5. DISCUSSION

In this paper, we have solved the 2D Schrödinger
equation for a lone electron interacting with a diatomic
molecule and the surface of a solid. Our solution makes
it possible to calculate electron energies of an anion at
the surface. In the case of an attractive surface, we pre-
dict molecule-like bound states of the anion, which are
realized if the potential well depth  characterizing
the interaction with the surface does not exceed some
threshold value. We have determined this value, above
which the electron detachment occurs and the lone
electron is removed either into the vacuum or into the
solid.

Molecule-like states of the system under consider-
ation can exist only if the vibrational energy quantum
"ωv is much smaller than the well depth E0 – Es. For the
potential curves shown in Fig. 4, the estimate

is valid, where M is the mass of a diatomic molecule.
Because the ratio m/M is small, the resulting condition

is satisfied for both  and  (the product in the left-

hand side is on the order of 10–3 for  and 10–2 for

). We note that a similar phenomenon of levitation
above the surface is known for liquid helium [24].

The objective of introducing potential (1) was to
qualitatively include all possible cases of the interac-
tion between the lone electron and the solid. For some
particular anion and a surface, the interaction potential
may not be reduced to its simplest form (1). A rigorous
answer to the question concerning the existence of an
equilibrium state for the given experimental conditions
implies calculation of a real interaction potential
between the lone electron and the surface. This compli-
cated problem (see, e.g., [21]) requires additional
investigation.

It is natural to discuss the lifetimes of transient
anion states near the surface. The lifetime of an anion

O2
– Br2

–

Eeq V0( ) V0

O2
–

Br2
–

V0

"ωv
"

zeq zmin–
--------------------

2 E0 Eeq–( )
M

---------------------------∼

4m
M
-------a0

2 zeq zmin–( ) 2– Ry E0 Eeq–( ) 1–
 ! 1

Br2
– O2

–

Br2
–

O2
–
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above the electron detachment threshold can be esti-
mated as the time of tunneling under the barrier with
the height –E0 and width z0,

For typical values used in our calculations, τ reaches
the minimum time necessary for experimental detec-
tion of an anion (10–3 s) at z0 > 60a0, i.e., at mesoscopic
distances, where its interaction with the surface is neg-
ligibly small. Therefore, it is impossible to observe an
anion in the instability region: the electron detachment
is very fast.

It is clear that the higher the value of l is at which set
of equations (10) is truncated, the higher the accuracy
of the calculated electron energy. Because (5) is an
exact solution of (10), the sequence of approximations

, , , … converges to the exact energy Es .
From the standpoint of the variational principle, the
higher the approximation order, the closer the “trial”
wave function

is to the exact solution for which the energy reaches the
minimum. Therefore,

τ 2π"
E0

----------
z0

a0
-----

E0

Ry
------- 

  .exp∼

Es
0( ) Es

1( ) Es
2( )

ψ k( ) r ξ,( ) r 1– ϕ l r( )Pl ξ( )
l 0=

k

∑=

Es  ≤  E s
k
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and the accuracy of  can be roughly estimated as

. In our calculations, this accuracy
depends primarily on the relative energy shift (Es –
E0)/E0, and the accuracy is better than 4% for an attrac-
tive surface. If necessary, higher values of l can be
included. The iteration method discussed above can
also be applied for the solution of the corresponding set
of equations.

It is interesting to note that for truncated set of equa-
tions (17) and (18) for an attractive potential, a stable
solution disappears at some threshold value of Es some-
what higher than V0; that is, the limit condition Es = V0
does not automatically hold. However, the threshold

value of Es converges to V0 as l increases. Thus, for 
in the zero approximation, this threshold value is Es ≈
1.4 eV; in the first approximation, Es ≈ 0.8 eV; the exact
value is 0.52 eV.

One can expect that the accuracy of the method
described in this paper is very high and that it is com-
patible with the accuracy of spectroscopic measure-
ments. Thus, calculation results could be directly com-
pared with, e.g., measurements of electron photode-
tachment threshold shifts.

We now discuss possible experimental realization of
the effects proposed in this paper. Layers of noble gases
are frequently used as simple model surfaces to study
the effect of a condensed environment [25]. In a typical

experiment,  anions are deposited on a metal surface
covered with approximately ten monolayers of a noble
gas (krypton). Because the energy of the electron inside
the solid (relative to the vacuum) can range from –2 to
–1 eV, the case of attraction would be realized in such
an experiment. The case of repulsion could occur when
the metal is coated with a polyethylene film. If this film
is sufficiently thick, the energy of the electron inside the
solid can vary from 0.5 to 1 eV. The problems of possi-
ble experimental investigation are also generally
related to the photochemistry of adsorbed molecules
via phototransfer of substrate electrons to the adsorbate
molecules. Such problems can be treated experimen-
tally by charging experiments.

We hope that the solution of the 2D Schrödinger
equation proposed in this paper is sufficiently universal
to be used in other applications where the effect of the
wave function nonsphericity is not negligibly small.

A more detailed investigation of the stability of
anions requires solution of the time-dependent
Schrödinger equation, because electron detachment
occurs as a tunnel process. In addition, the effect of the
image force has to be included more accurately in the
calculation of the overall interaction potential.
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Abstract—The possibility of realizing a quantum plateau of magnetization in [Mn(hfac)2BNOR] metal–organic
compounds is investigated theoretically. A model of a one-dimensional ferrimagnetic chain (5/2, 1) is used for
calculating the magnetization as a function of an external field by the method of discrete path integral represen-
tation (DPIR). Within this model, the coexistence of classical and quantum plateaus of magnetization is
revealed. It is shown that the critical field Hc1 that destroys the classical plateau (ground-state magnetization) is
determined by the optical gap in zero field, which is estimated by the matrix-product method and a numerical
method of exact diagonalization (recursion method). © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The quantization of magnetization is one of the most
interesting phenomena in the physics of low-dimen-
sional magnetic materials. Magnetization plateaus
were observed in strong magnetic fields in many quasi-
one-dimensional compounds: in spin chains with spin
S = 1 [1], organic spin ladders [2], etc.

In [4], the authors applied the Lieb–Schultz–Mattis
theorem [3] to derive a general condition for the exist-
ence of a magnetization plateau,

(1)

where  and m are the sum of spins over all sites of a
unit cell and the magnetization per period (magnetiza-
tion of a unit cell), respectively.

Ferrimagnetic spin chains are of special interest
among the above-mentioned systems. Real prototypes
of such compounds include MCu(pbaOH)(H2O)3 ·
2H2O bimetal chains [5], where M = Mn (S = 5/2), Fe
(S = 2), Co (S = 3/2), and Ni (S = 1). Methods of modern
synthesis have made it possible to realize a new class of
quasi-one-dimensional ferrimagnets—metal–organic
compounds with the general formula
[Mn(hfac)2BNOR] (R = H, F, Cl, Br) [6].

One-dimensional ferrimagnets, including metal–
organic compounds, exhibit many interesting thermo-
dynamic properties. Due to the existence of an optical
gap in the excitation spectrum, these materials are sim-
ilar to antiferromagnets with integer spin at high tem-
peratures, whereas, at low temperatures, they exhibit
properties characteristic of ferromagnets due to the
existence of spontaneous magnetization [7, 8].

S̃ m– Z,∈

S̃

1063-7761/03/9703- $24.00 © 20615
The quantization of magnetization for one-dimen-
sional ferrimagnets has been intensively studied via an
example of model (1, 1/2). In this model, the magneti-
zation curve of the ground state has a plateau. However,
the existence of this plateau may have a classical expla-
nation due to the presence of an optical gap in the spec-
trum of elementary oscillations (classical plateau) [9].
In [7], it was pointed out that quantum ferrimagnets
consisting of two types of spins (S, s) each greater than
1/2 may exhibit other kinds of plateaus (quantum pla-
teaus) with the magnetization

The origin of these plateaus cannot be accounted for
either in the classical Ising model or in the classical
Heisenberg model. Bimetal compounds of the type
MCu(pbaOH)(H2O)3 · 2H2O cannot be used in search-
ing for quantum plateaus since the copper spin S(Cu) is
equal to 1/2. Metal–organic compounds are more
promising in this respect.

To describe the magnetic properties of
[Mn(hfac)2BNOR] (Fig. 1), one can apply the model of
a ferrimagnet consisting of two types of spins (5/2, 1).
This approximation is justified when the ferromagnetic
interaction between the spins of NO groups (s = 1/2) is
sufficiently strong so that one can consider these spins
as a single spin s = 1 [10].

According to condition (1), a plateau of magnetiza-
tion M is realized under the condition that Smax(1 – M) ∈
Z, where Smax is the maximal value of spin per unit cell
(Smax = 7/2), and the magnetization M is normalized by
its saturation value ±1. Thus, one can expect that the
magnetization has a plateau at M = 3/7, which corre-
sponds to the ground state (a classical plateau) at M =

m S s– 1 S s– 2 … S s 1.–+, ,+,+=
003 MAIK “Nauka/Interperiodica”
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5/7 (a partially polarized state or a quantum plateau),
and at M = 1 (a completely polarized state).

The aim of this paper is to investigate the possibility
of realizing a quantum plateau of magnetization within
the model of a one-dimensional quantum ferrimagnet
(5/2, 1). To take into consideration strongly developed
quantum fluctuations when calculating magnetization,
in Section 2 we apply the method of discrete path inte-
gral representation (DPIR) [11]. This method allows us
to transform the original one-dimensional quantum
spin Hamiltonian into a classical two-dimensional one
according to the generalized Trotter formula [12],
which is used for numerical investigations by the
Monte Carlo method. In [7], it was demonstrated that it
is the classical scenario (spin-wave excitations against
the background of Néel ordering), rather than excita-
tions, that destroys singlet bonds (valence-band states
(VBSs)) [13], which is more appropriate for explaining
the nature of the initial plateau. From the viewpoint of
spin-wave theory, the ground-state magnetization per
unit cell (m = 3/2) as a function of applied field h
increases by one when the field value reaches the antifer-
romagnetic excitation gap ∆. Therefore, in Sections 3
and 4, we calculate this quantity by the recursion
method [14, 15] and the matrix-product method [16].

2. CALCULATION OF MAGNETIZATION

A one-dimensional quantum ferrimagnetic chain
consisting of two types of spins S = 5/2 and s = 1 and
placed in an external magnetic field h is described by
the Heisenberg Hamiltonian

(2)

where N is the total number of unit cells in the system
and J > 0 is the integral of antiferromagnetic exchange
interaction. Concerning Hamiltonian (2), note that the
basic feature of one-dimensional ferrimagnets is the
presence of long-range ordering at zero temperature,
which manifests itself under strongly developed quan-
tum fluctuations. As applied to these systems, a spin-
wave description of the properties of the ground state
gives sufficiently good results, which, however, can be
refined by the variational matrix-product method,
which takes into account the formation of VBSs [10].

H J Si si⋅( ) si Si 1+⋅( )+[ ]
i 1=

N

∑ h Si
z si

z+[ ] ,
i 1=

N

∑+=

R

N
O Mn

N
OMn

Fig. 1. The structure of the spin chain of [Mn(hfac)2BNOR]
compound.
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This fact specifies the difference between one-dimen-
sional ferrimagnets and antiferromagnets in which fluc-
tuations destroy long-range ordering so that the spin-
wave theory becomes inapplicable. From a theoretical
viewpoint, for antiferromagnets with integer spin, first
of all, with S = 1, it is more convenient to consider a
generalization of the Heisenberg Hamiltonian that
takes into account biquadratic exchange terms,

(3)

Although less realistic, this consideration explicitly
demonstrates the possibility of realizing, as the ground
state of an antiferromagnet, a VBS with singlet bonds
(for example, an Affleck–Kennedy–Lieb–Tasaki
(AKLT) model with β = –1/3) that does not break the
translational symmetry and is characterized by the
exponential behavior of correlation functions and an
energy gap above the ground state. Moreover, for β = 1,
such a model can be solved exactly [17]. A qualitative
picture of the evolution of the ground state of an anti-
ferromagnetic model with spin S = 1 and biquadratic
exchange terms, proposed by Affleck [18], was con-
firmed in numerical analysis with the Monte Carlo
method [19], by calculating the spectrum of low-energy
excitations with the matrix-product method [20], and
by the magnetization curves that exhibit a cusp singu-
larity in moderate fields [21].

Since one does not face the above-mentioned funda-
mental difficulties when studying the properties of the
ground state of a ferrimagnetic chain, the description of
this chain within the Heisenberg Hamiltonian proves to
be acceptable and realistic.

Note that the decomposition of interactions into
intrablock (Hi, i) and interblock (Hi, i + 1) ones is artifi-
cial. Therefore, for further analysis, it is convenient to
rewrite the original Hamiltonian as

where the original Hamiltonian (2) is represented as a
sum of “two-particle” operators Hi, i + 1 . When Hamilto-
nian (2) becomes a sum of operators Hi, i + 1 , two such
operators are contained in a single unit cell.

Let us estimate the statistical sum of the original
system:

H Si Si 1+⋅( ) β Si Si 1+⋅( )2–[ ] .
i

∑=

H
1
2
--- si

+S1 1+
– si

–Si 1+
++( )

i 1=

2N

∑ si
zSi 1+

z+=

+
h
2
--- si

z Si 1+
z+( ) Hi i 1+, ,

i 1=

2N

∑=

Z Tr e βH–( ) u βH–( )exp u〈 〉 ,
u

∑= =
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where β = 1/kBT. Since the Hamiltonian cannot be
exactly diagonalized, we apply the so-called discrete
path integral representation (DPIR). The basic idea of
this method is to convert a quantum spin of each site
into a p-component vector u = (u1, u2, …, up), where
p  ∞. Each component ut (t = 1, 2, …, p) is a classi-
cal spin variable—a set of eigenvalues of appropriate
operators, i.e., u = 0, ±1 for sz and u = ±5/2, ±3/2, ±1/2
for Sz. The introduction of an additional dimension
defined by the parameter p represents quantum indeter-
minacy by producing replicas of the original variable.
The quantum spin Hamiltonian can be transformed into
the classical one; then,

The matrix

is decomposed into subblocks that relate the states with

identical full projections  +  per unit cell. Cal-
culating the eigenvalues of these matrices, in the limit
as p  ∞, we obtain

Z u〈 | β–( )
Hi i 1+,

p
-------------- 

 exp
i 1=

2N

∏
p

u| 〉
u

∑=

=  … ui
t( )ui 1+

t( )〈 |
i 1=

2N

∏
t 1=

p

∏
u

p( )

∑
u

2( )

∑
u

1( )

∑

× β
Hi i 1+,

p
--------------– 

  ui
t 1+( )ui 1+

t 1+( )| 〉 .exp

Q ui
t( )ui 1+

t( )〈 | β
Hi i 1+,

p
--------------– 

  ui
t 1+( )ui 1+

t 1+( )| 〉exp=

ui
t( ) ui 1+

t( )

λ1 1 7sz 5yz, λ2–+ 1 7sz– 5yz,–= =

ui
t( ) ui 1+

t( )+
7
2
---,±=

λ3 1 5sz– 5yz, λ4+ 1 5sz– 2yz,+= =

ui
t( ) ui 1+

t( )+
5
2
---,=

λ5 1 5sz 5yz, λ6–+ 1 5sz 2yz,+ += =

ui
t( ) ui 1+

t( )+ –
5
2
---,=
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where s = βh/4, y = β/2, and z = 1/p. Since the original
quantum model has been reduced to the classical two-
dimensional model, one can apply the double-chain
approximation (DCA) [22], where a two-dimensional
system is represented by parallel double chains in an

effective external field . In this case, the statistical
sum is calculated exactly along a “fictitious” direction
p and, in the mean-field approximation, along a direc-
tion in a real space

A direct calculation yields

The free energy per unit cell is f = F/N = –2TlnZDCA.
The magnetization per unit cell is given by the exp-
ression

λ7 1 3sz– 5yz, λ8– 1 3sz– 2yz,+= =

λ9 1 3sz 7yz, ui
t( ) ui 1+

t( )+
3
2
---,=+–=

λ10 1 3sz 5yz, λ11–+ 1 3sz 2yz,+ += =

λ12 1 3sz 7yz, ui
t( ) ui 1+

t( )+ –
3
2
---,=+ +=

λ13 1 sz– 5yz, λ14– 1 sz– 2yz,+= =

λ15 1 sz– 7yz, ui
t( ) ui 1+

t( )+
1
2
---,=+=

λ16 1 sz 5yz, λ17–+ 1 sz 2yz,+ += =

λ18 1 sz 7yz, ui
t( ) ui 1+

t( )+ –
1
2
---,=+ +=

h̃

Z ZDCA
2N , ZDCA

2N λ i
p

i 1=

18

∑
p ∞→
lim .= =

ZDCA
5

2T
------– 

 exp
1
T
--- 

 exp
7

2T
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 exp+ + 
 =

× h̃
4T
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 cosh
3h̃
4T
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 cosh+ 
 

+ 5
2T
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 exp
1
T
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 exp+ 
  5h̃

4T
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 cosh

+ 5
2T
------– 

  7h̃
4T
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  .coshexp
(4)

where  = h + m.

m
∂f
∂h
------–

1
2
---[ –5/2T( )exp 1/T( )exp 7/2T( )exp+ +( ) h̃/4T( )sinh 3 3h̃/4T( )sinh+( )= =

+ 5 –5/2T( )exp 1/T( )exp+( ) 5h̃/4T( )sinh 7 –5/2T( )exp 7h̃/4T( )sinh+ ]

[ –5/2T( )exp 1/T( )exp 7/2T( )exp+ +( ) h̃/4T( )cosh 3h̃/4T( )cosh+( )×

+ –5/2T( )exp 1/T( )exp+( ) 5h̃/4T( ) –5/2T( ) (7h̃/4T )]sinhexp+cosh
–1

,
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Fig. 2. The curves of magnetization m of the chain (5/2, 1) versus applied external field h for various temperatures T: (a) 0.05,
(b) 0.1, (c) 0.15, (d) 0.4, (e) 0.7, and (f) 1.0J.
The dependence m(h) calculated by formula (4) for
different temperatures is shown in Fig. 2. As expected,
the calculation demonstrates the coexistence of classi-
cal and quantum plateaus in this model.

One can propose the following qualitative interpre-
tation for this dependence relying on the analysis of the
ground state of mixed ferrimagnetic chains for the gen-
eral case (S, s) [23] and the particular cases (3/2, 1) and
(2, 1) [24], where each spin is greater than 1/2, as a
function of the external field h, as well as using the
analysis of the ground state of the chain (5/2, 1) [10].
The process of magnetization saturation corresponds to
the scheme represented in Fig. 3. The initial plateau
with m = 3/2 corresponds to the state with a broken
translational symmetry with two singlet bonds and a
noncompensated spin S = 3/2, which is responsible for
the spin-wave “ferromagnetic” branch of excitations
[8] (Fig. 3a). The initial plateau begins to destruct at a
certain critical value Hc1 of the field due to a break of
one singlet bond in a block and the formation of a trip-
let. This fact gives rise to a partially polarized phase
JOURNAL OF EXPERIMENTAL
with one singlet bond that corresponds to the magneti-
zation plateau with m = 5/2 (Fig. 3b). A transition to the
saturation magnetization m = 7/2 takes place under full
destruction of the remaining singlet bonds (Fig. 3c).

Such an evolution of the ground state accounts for
the fact that the linear spin-wave theory provides a suc-
cessful explanation for the properties of the ground
state and low-energy excitations. A classical picture—
spin-wave excitations above the Néel ordering—proves
to be adequate [25]; at the same time, it fails to describe
the optical mode of excitations, where local singlet–
triplet excitations play the key role. The magnitude of
the optical gap ∆ = 3J proves to be strongly understated
compared with the numerical result and the value
obtained by the matrix-product method, which takes
into account local quantum fluctuations. The optical
excitation mode, called an antiferromagnetic mode in
what follows, is formed in the same way as that in one-
dimensional ferrimagnets with integer spin (in particu-
lar, for S = 1) with the Haldane gap, which are different
from antiferromagnets of half-integer spin with gapless
excitations and linear k dependence [20].
 AND THEORETICAL PHYSICS      Vol. 97      No. 3      2003
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Thus, from a theoretical point of view, investigation
of the magnetization curve is very important since the
curve m(h), while reflecting the structure of the ground
state in finite fields, contains information about excited
states in zero field.

3. NUMERICAL ANALYSIS

To obtain the acoustic and optical excitation
branches in zero external field, we calculate the
dynamic structural factor

for the ferro- and antiferromagnetic excitation
branches, respectively. Here, |n〉  is the eigenstate of the
Hamiltonian corresponding to energy En and E0 is the
energy of the ground state, which, according the Lieb–
Mattis theorem [26], has the spin (S – s)N. To obtain this
state, one has to diagonalize the original Hamiltonian (2)
of a finite chain with periodic boundary conditions
applying, for example, the restarted Lanczos method.

Since the total magnetization M =  is
invariant, one can diagonalize Hamiltonian (2) in each
subspace with fixed M. For instance, when dealing with
the ground state of a chain of length N = 7 sites, instead
of approximately 6.12 × 108 states of the total Hamilto-
nian, we have states of the subspace N(S – s) with an
approximate dimension of 5.54 × 106. The subspace
corresponding to the acoustic mode of excitations has a
magnetization of M = N(S – s) – 1, while the optical
mode corresponds to the total magnetization of the
chain M = N(S – s) + 1.

Let us express the dynamic structural factor in terms
of the appropriate Green function as

where σ = ±1 and  = –σ. This Green function is
defined as a continued fraction,

where the coefficients an = 〈fn|H|fn〉/〈fn|fn〉 ,  =
〈fn|fn〉/〈fn – 1|fn – 1〉 , and b0 = 0 are determined by the set of

S–+ k ω,( ) n〈 |Sk
– sk

– 0| 〉+
2δ ω En E0–( )–( ),

n

∑=

S+– k ω,( ) n〈 |Sk
+ sk

+ 0| 〉+
2δ ω En E0–( )–( )

n

∑=

S j
z s j

z+
j∑

Sσσ k ω,( )
1
π
---ImGσσ k ω,( ),–=

σ

Gσσ k ω,( )
0〈 | S k–

σ s k–
σ+( ) sk

σ Sk
σ+( ) 0| 〉

ω a0–
b1

2

ω a1–
b2

2

ω a2– …–
---------------------------–

------------------------------------------------–

---------------------------------------------------------------------,=

bn
2
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orthogonal states

When implementing the method, the initial state is
chosen as the lowest energy state with the quantum
number M = N(S – s). The Fourier images of spin oper-

ators are determined by the relations  =

N−1/2  and  = N–1/2 .

The energy of elementary excitations is determined
from the position of the maximum of spectral intensity.
The results obtained by the recursion method are dis-
played in Fig. 4 for selected values of the wave vector
k = 2πm/N, m = 0, 1, …, n – 1. The dots on the diagram
are obtained on chains of length N = 4, 5, 6, 7.

As applied to the given system, the recursion
method rapidly converges to the thermodynamic limit.
The table presents the ground-state energy per unit cell
as a function of the number N of unit cells. Such fast
convergence is attributed to the small correlation
length, which is on the order of the lattice constant; cor-
relation lengths in various approximations were esti-
mated in [10]. In numerical calculations, the shape of
the density of states of spin excitations stabilizes suffi-
ciently rapidly even for small values of n. The optical
gap proves to be equal to ∆ ≈ 3.793J, which is much

f n 1+| 〉 H f n| 〉 an f n| 〉 bn
2 f n 1–| 〉 ,––=

f 0| 〉 sk
σ Sk

σ+( ) 0| 〉 .=

Sk
±

eik j 1/4–( )
j∑ S j

± sk
± eik j 1/4+( )

j∑ s j
±

(a)

(b)

(c)M = 7/2

M = 5/2

M = 3/2

Fig. 3. Schematic representation of the ground state of the
spin ferrimagnetic chain (5/2, 1) versus external magnetic
field. The arrow denotes a spin of 1/2. The dashed (solid)
lines correspond to the formation of a singlet (triplet) pair.
The ovals represent the construction of spin 5/2 or 1 by
symmetrizing five (one) spins inside them.

The ground-state energy per unit cell, E0/JN, as a function of
chain length N, calculated by the recursion method

N 3 4 5 6 7

E0/J –5.9281 –5.9161 –5.9141 –5.9135 –5.9133
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greater than the result obtained by spin-wave theory but
is in excellent agreement with the variant of this theory
that takes into account the spin–wave interaction [27].

4. MATRIX-PRODUCT METHOD

The method of the density matrix renormalization
group (DMRG) proposed by White [28] turns out to be
very fruitful for investigating the properties of one-
dimensional quantum systems. Based on the idea of
renormgroup in a real space, the DMRG method allows
one to construct quantum states of an infinite chain sub-
ject to periodic conditions in the form of special prod-
ucts (matrix products) composed of the states of a unit
cell. The numerical implementation of the DMRG
algorithm by an iterative method involves the construc-
tion of a projector from the states of a single cell to the
basis of the new lowest energy effective states of the
cell; the calculation of observables on these states
yields the results of the thermodynamic limit. Later, it
was shown in [20] that these states can be obtained via
a simple variational ansatz without using the renorm-
group procedure. This is the idea of the matrix-product
method.

As applied to quantum ferrimagnets, this method
has been applied mainly to the spin chain (1, 1/2).
Unfortunately, this model does not illustrate the poten-
tials of the matrix-product method because there are a
relatively small number of quantum states in a magnetic
cell. This applies, for example, to the choice of the
number of effective states. Therefore, we first consider
in detail the calculation of the ground-state energy of
the spin chain (5/2, 1) by using matrix products of dif-
ferent dimensions.

4.1. The Ground-State Energy 

The translation-invariant wave function of the
ground state of a chain of length N with cyclic bound-
JOURNAL OF EXPERIMENTAL 
ary conditions can be represented as [16]

The site matrices  are constructed as follows:

where [...] are the Clebsch–Gordan coefficients, 

is the spin function of the ith magnetic cell, and  =

 are basis matrices. The matrices  represent a
matrix representation of irreducible tensor operators of
the rotation group of rank k. The quantity j is the
“hyperspin” of the ith magnetic cell in the “expanded”
space, which represents a direct product of the matrix
space and the Hilbert space of the cell. The value of j
should be specified when constructing |Ω〉. If all the
cells are assumed to be identical, then j = S – s, or 3/2

as in our case. The variational coefficients  are
determined from the condition that the ground-state
energy is minimal. The wave functions of the magnetic
cell are constructed in a standard way:

where possible values of S are 3/2, 5/2, and 7/2. The

problem of choosing the matrix basis  does not have
a unique solution. The rank of the basis matrices of
dimension (N + 1) × (N + 1) may take values from 0 to
N. Apparently, an optimal size of matrices should be
specified for each particular problem. We have calcu-
lated the ground-state energy for the spin chain (5/2, 1)
by using the basis of matrices of dimensions 2 × 2 and
3 × 3. On the basis of 2 × 2 matrices [10], we have
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jj( ).=

ĝi
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where the following notations are used: u = , v  =

, and w = . For such a choice of the basis, we

take into account only the states  of the magnetic

C3/2
0,3/2

C3/2
1,3/2 C3/2

1,5/2

3
2
---M
cell and the lowest state . Introducing a transfer

matrix  = , we can represent the ground-

state energy per unit cell as
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(6)
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where the symbol ⊗  stands for the external product of
matrices. Since formula (6) contains the powers of the

matrix , it is convenient to reduce this matrix to the

Jordan form (  is nonsymmetric). Fortunately, the Jor-

dan form of  proves to be diagonal; this fact substan-
tially simplifies the calculations and allows us to repre-
sent the ground-state energy in the thermodynamic
limit N  ∞ in an analytic form. Formula (6) also
shows that the number of independent variable param-
eters equals two. The numerical minimization of the

Ĝ

Ĝ

Ĝ
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expression for the energy by the simplex method yields
the following result:

with variational coefficients

This value of energy proves to be somewhat greater
than that obtained by the recursion method. On the
basis of 3 × 3 matrices, the matrix  is expressed as
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 
 
 
 
 
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 
 

 

.=
Although this matrix contains a much greater number
of variable parameters

the expression for  contains the whole family of
wave functions of the magnetic cell.

An attempt to calculate the ground-state energy by

reducing the matrices  to the Jordan form gives an
incorrect result in this case. The analysis of the matrix

 shows that it has two nearly coinciding eigenvalues;

α
C3/2

1,3/2

C3/2
0,3/2

------------, β
C3/2

2 3/2,

C3/2
0,3/2

------------, γ
C3/2

1,5/2

C3/2
0,3/2

------------,= = =

δ
C3/2

2,5/2

C3/2
0,3/2

------------, η
C3/2

2,7/2

C3/2
0,3/2

------------,= =

g
3
2
---3

2
---

Ĝ

Ĝ

therefore, the transfer matrix that reduces  to the Jor-
dan form proves to be degenerate. An alternative is a
direct calculation by formula (6) for a chain of finite

length (N ≈ 200) without reducing matrix  to the
diagonal form. This yields the value of the ground-state
energy close to that obtained by the recursion method,

The values of the variable coefficients are as follows:

Note that the contribution of the state  cannot

be assumed negligible. We have also calculated the
ground-state energy on the basis of 3 × 3 matrices with-

Ĝ

Ĝ

E0/N 5.903J .–≈

α 1.90, β 1.32, γ 0.84, δ 0.12, η 0.72.≈≈≈≈≈

5
2
---1

7
2
---M
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out taking into account the state  (the coeffi-

cient η was assumed to be zero; the minimization was
carried out with respect to the remaining parameters).
The value thus obtained is

which is closer to the value obtained on the basis of
2 × 2 matrices. One can conclude that the dimension of
the basis matrices must be so that it allows one to take
into account the whole family of wave functions of the
magnetic cell. For the chains (1, 1/2) that have been

5
2
---1

7
2
---M

E0/N –5.840J ,≈

1

–π –π/2 0 π/2 π

2

3

4

5

6

0

ω/J

Fig. 4. Dispersion curves of the ferrimagnetic and antiferro-
magnetic branches of elementary excitations. The results
obtained by spin-wave theory without taking into account
the interaction of spin waves [25] and with regard to their
interaction [27] are shown by solid and dashed lines,
respectively. Calculation by the matrix-product method on
the basis of 2 × 2 matrices is illustrated by circles, while the
squares represent the results obtained by the recursion
method.

–100
20 4 6 8 10 12 14 16 18 20

–80

–60

–40

–20

0

20

–5.9127N + 3.7995

N

E/J

Fig. 5. Total energy of the spin chain (5/2, 1) with excitation
Ek = 0 as a function of its length N calculated by the matrix-
product method on the basis of 3 × 3 matrices. The solid
curve represents a linear approximation of the results
obtained.

k
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intensively studied in the literature, the basis of matri-
ces 2 

 

×

 

 2 is quite sufficient. For the chain (5/2, 1) con-
sidered in this paper, the choice of such a basis makes
it possible to obtain quite reasonable results. The use of
the extended 3 

 

×

 

 3 basis allows one to obtain the
ground-state energy with an accuracy comparable to
that of numerical calculations, although at the expense
of considerable complication of calculations.

 

4.2. Calculation of the Optical Gap 

 

The simplest form of the wave function of an optical
magnon with momentum 

 

k 

 

was proposed in [29]:

The matrix  is constructed for the state of a magnetic

cell with the hyperspin 

 

j

 

 + 1 (  in our case).

The total energy of the chain with excitation is given
by the expression

(7)

and the value of the optical gap is given by

(8)

where 

 

E

 

0

 

 is the ground-state energy. A detailed account
of the calculation technique in the one-magnon approx-
imation is given in [20]. Our calculation on the basis of
2 

 

×

 

 2 matrices yields the following value for the optical
gap: 

 

w

 

(0) 

 

≈

 

 3.61527 (in the thermodynamic limit

 

N

 

  

 

∞

 

).
The calculation of the antiferromagnetic gap on the

basis of 3 

 

×

 

 3 matrices has been carried out on chains
with the lengths ranging from 5 to 15 unit cells. The
results obtained are presented in Fig. 5. The linear
dependence of the total energy 

 

E

 

k

 

 = 0

 

 on 

 

N

 

, which fol-
lows from (7), is clearly displayed even for chains of
length greater than five sites. Application of the least-
squares method to the linear dependence yields the fol-
lowing value for the optical gap:

which coincides with the result of the recursion method
up to three decimal places.

5. CONCLUSIONS

As predicted in many publications, the analysis car-
ried out has confirmed that metal–organic compounds

k| 〉 eikn n| 〉 ,
n

∑=

n| 〉 Tr g1…gn 1– g̃ngn 1+ …gN{ } .=

g̃
5
2
---

Ek
k〈 |Ĥ k| 〉

k k〈 〉
-----------------,=

w 0( ) Ek 0= NE0,–=

w 0( ) 3.7995J ,≈
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are suitable objects for searching a quantum plateau of
magnetization. The model of a quantum ferrimagnetic
chain (5/2, 1) proposed for describing such materials
reveals the coexistence of classical and quantum pla-
teaus. The value of the first critical field Hc1 (at which a
transition form the ground-state plateau to the plateau
with magnetization 5/2 occurs) obtained by the discrete
path integral representation in the double-chain approx-
imation is closer to the result of linear spin-wave theory
(3J) and smaller than the values of the optical gap
obtained by the recursion method (3.793J) and the
method of matrix products (3.7995J). The values of the
latter quantities are closer to the center of the quantum
plateau (about 3.5–3.6J).

In conclusion, note that the fields that enable one to
observe quantum plateaus of magnetization are suffi-
ciently high, on the order of the exchange integral, and
amount to about 106–107 Oe.
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Abstract—The paper discusses the development of the method for studying the dynamics of an overdamped
Josephson junction biased by a periodic current with controlled parameters, suggested earlier by the authors.
The results obtained allow several known experimental observations to be explained. Analytic expressions for
the rate of transient process damping and energy expenditures necessary for switching a Josephson junction
from one quantum state to another are derived. Problems of interactions between the bias current and supercur-
rent and the influence of cosϕ-type terms on the rates of transient process damping and energy conversion are
discussed. The results for junction biasing by short (uni- or bipolar) δ function-shaped pulses are obtained in
the form of exact analytic expressions. Diagrams illustrating the dependence of the Shapiro step width on the
shape of biasing pulses are given. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, an important practical application of the
Josephson effect is its use in DC voltage standards. The
Volt unit is reproduced by apparatus based on this effect
in nearly all countries having national metrological
centers. The success in the development and wide prac-
tical use of DC voltage standards has stimulated works
on creating quantum AC voltage synthesizers [1–4].

Instantaneous electric voltage V(θ) applied to a
Josephson junction is known [5, 6] to be related to
changes in the ϕ(θ) function by the Josephson equation

(1)

where ϕ(θ) is the phase difference of order parameter
functions in weakly coupled Josephson junction super-
conductors (in what follows, junction phase function or
merely junction phase), θ is the current dimensional
time, Φ0 = h/2e is the magnetic flux quantum, h is the
Planck constant, and e is the charge of the electron.
Note that, in metrology, the electric current voltage unit
is reproduced using the Josephson constant KJ – 90 ≡
KJ = 483597.9 GHz/V ≈  GHz/V ≈  rather than
the Φ0 constant, which may be refined as new knowl-
edge is accumulated [7, 8].

The principle of the generation (synthesis) of AC
voltage using the Josephson effect is based on control-

V θ( )
Φ0

2π
------dϕ

dθ
------,=

Φ0
1– Φ0

1–
1063-7761/03/9703- $24.00 © 20624
ling the dynamics of the ϕ(θ) phase in such a way that
the alternating “step” voltage (1) has the desired shape
with fundamental accuracy. The dynamics of the ϕ ≡
ϕ(θ) phase of a Josephson junction with a finite electric
capacitance C when the junction is biased by an exter-
nal current is described by the solution to a second-
order differential equation (e.g., see Eq. (2.42) in [5]).
Under the conditions of phase ϕ locking by an external
alternating bias current with frequency f, constant-volt-
age regions, so-called Shapiro steps [5], appear in the
I−V characteristics of Josephson junctions. Within a
certain time, the reproducible (observed) voltage
defined by the equation

(1')

becomes equal to kf/KJ to within the width of these
steps. Here, k = 0, ±1, ±2, ±3, … is the ordinal number
of the Shapiro step and ∆θ @ f–1.

The nonzero capacitance C leads to a hysteresis of
the junction I–V characteristics [6] and, as a conse-
quence, a nonunique dependence of the U(θ) on bias
current parameters. In particular, at equal bias current
parameters, voltage U(θ) can take on values corre-

U θ( )
1

∆θ
------- V θ'( ) θ'd

θ

θ ∆θ+

∫=

=  
1

2πKJ

-------------ϕ θ ∆θ+( ) ϕ θ( )–
∆θ

----------------------------------------
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sponding to different numbers k depending on the pre-
history of phase evolution. This makes it difficult to the
use of such Josephson structures for synthesizing AC
voltage.

To minimize the undesirable effect of capacitance C
on the dynamics of the Josephson junction phase, it is
necessary that the condition [5, 6]

(2)

be satisfied, where RN is the normal resistance, ωc =
2πIcRNKJ is the critical frequency, and Ic is the critical
junction current. This condition is met in so-called
overdamped Josephson structures. In these structures,
the dynamics of the ϕ(θ) phase can be described by the
first-order differential equation [6], which, in dimen-
sionless variables, has the form

(3)

Here, t = ωcθ is the dimensionless time; i(t) = i0 + i1(t)
is the dimensionless external bias current with

 = 0; i0 = I0/Ic and I0 are the dimensionless and
dimensional constant bias current components, respec-
tively; i1(t) = I1(t)/Ic and I1(θ) are the dimensionless and
dimensional high-frequency bias current components,
respectively; and the dot denotes the differentiation
with respect to time.

Equation (3) was obtained based on the RSJ (Resis-
tively Shunted Junction) model of the Josephson junc-
tion on the assumption that ωcRNC ! 1. As far as we
know, no rigorous theoretical proof of the applicability
of this model to real Josephson structures has been
found. However, the results of numerous experimental
studies of overdamped Josephson junctions [6], includ-
ing studies of the I–V characteristics of two-barrier
SINIS structures [9–11], are in good agreement with
this model. What is more, currently, the quality of
SINIS- and SNS-type Josephson structures is some-
times estimated by the correspondence of their I–V
characteristics to that derived from the model based on
Eq. (3).

At present, there are several competing scientific
and technical approaches to the development of quantum
AC synthesizers based on model (3). One of these is via
controlling the dynamics of the Josephson junction phase
by biasing the junction with a sinusoidal [1, 12–14] or
short-pulse [2, 15–17] high-frequency current having
variable parameters (amplitude and pulse repetition
rate).

We used model (3) of the Josephson junction, in par-
ticular, to show [16, 17] that, for the biasing current of
the form

(4a)

ωc ! RNC( ) 1–

ϕ̇ t( ) ϕ t( )sin+ i t( ).=

i1 t( )〈 〉

i t( ) i0* 2πi01 δ t nT–( )
n

∑+=
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(unipolar pulses) or

(4b)

(bipolar pulses) [17], the phase ϕ locking condition can
be expressed as the inequality |D| > 1. Here, δ(t) is the
Dirac δ function, T = ωcf –1 is the dimensionless pulse
repetition period, τ is the dimensionless lapse between
pulses of different polarities within one period (0 < τ ≤
T/2),  = i0 – 2πi01T–1, and i01 =  is the
dimensionless “integral” amplitude of a separate pulse.
The function D ≡ D(i0, i01, T) is defined by the equations

(5a)

for bias current (4a) at  < 1 and

(5b)

for bias current (4b) at  < 1. [If  > 1 in (5a) or

 > 1 in (5b), we must use the analytic continuations
of the hyperbolic functions to trigonometric functions,

which corresponds to the substitution  

.] Note that the use of δ functions as a math-
ematical model of a high-frequency junction bias current
pulse is admissible if the pulse width is much smaller than

the time  (a short pulse or shock pulse excitation).

Equations (5) determine the ranges of i0, i01, and T
bias current parameter variations within which phase
locking conditions is satisfied. A complete description
of U(t), however, requires knowledge of the evolution
of the phase difference in the last multiplier in the right-
hand side of (1'). For phase locking, Eq. (1') for the
phase difference can be written in the dimensionless
form [16]

(6)

where ∆t = NT, N = 1, 2, 3, …; the µ(t, ∆t) term
describes the additional phase contribution related to

i t( ) i0 2πi01+=

× δ t
T τ+

2
------------– nT– 

  δ t
T τ–

2
------------– nT– 

 –
 
 
 

n

∑

i0
* Ic

1– I1 t( )〈 〉

D
T
2
--- 1 i0

*2
– 

  πi01( )coscosh=

–
i0
*

1 i0
*2

–
-------------------- T

2
--- 1 i0

*2
– 

  πi01( )sinsinh

i0
*

D
1
2
---T 1 i0

2– 
 cosh

πi01( )sin
2

1 i0
2–

------------------------–=

× T
2
--- 1 i0

2– 
 cosh T

2
--- τ– 

  1 i0
2– 

 cosh–

i0 i0
*

i0

1 i0
2–

–1 i0
2 1–

ωc
1–

ϕ t ∆t+( ) ϕ t( )– 2πk
∆t
T
----- µ t ∆t,( ),+=
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transient processes, µ(t, ∆t) tending to zero as t  ∞
at fixed bias current parameters.

To illustrate the aforesaid, the functions U(t) and
ϕ(t) plotted in arbitrary units are shown in Fig. 1
(curves 1 and 3, respectively). These dependences were
obtained by the direct numerical integration of (3) with
the right-hand side of (4a) for T = 5.3. Bias current i(t)
was set as follows. For t < 0, i(t) = 0.6 and ϕ(t) = const;
for 0 ≤ t < 5T (phase locking conditions are met for the
zeroth step),

and for t ≥ 5T (phase locking conditions are met for the
first step),

The  function is also shown in Fig. 1
(curve 2). This function characterizes the accuracy of
the voltage generated. The figure shows that the µ(t, T)
function can be comparatively large for parameter t
variation intervals on the order of several periods T.

The purpose of this work was to further develop the
method suggested in [16, 17] for studying the dynamics
of the phase and transient processes in an overdamped
Josephson junction based on model (3), to obtain new

i t( ) 0.6 0.22 2π δ t 0.5T– nT–( )
n 0=

4

∑× ,+=

i t( ) 0.6 0.22 0.9+( )2π δ t 0.5T nT––( ).
n 5=

10

∑+=

µ t T,( )log

–2 0 2 4 6 8 10

–6

–4

–2

0

2

4

6

1 3

2

t/T

U, log |µ|, ϕ, arb. units

Fig. 1. Plots of (1) U(t), (2) , and (3) ϕ(t) func-
tions.

µ t T,( )log
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results, substantiate the most important and fundamen-
tal old results, and determine particular analytic depen-
dences for exactly solvable bias current models (4).

2. PROBLEM STATEMENT 
AND ANALYTIC SOLUTION

2.1. Problem Statement

The dynamics of transient processes in an over-
damped Josephson junction will be studied by the
method suggested by us in [17]. In place of phase ϕ(t),
we introduce two real functions x(t) and y(t) according
to the equation

(7)

This equation defines the functions x(t) and y(t) to
within some factor, which is a nonzero real function.
This function can be selected in such a way that x(t) and
y(t) related to ϕ(t) that satisfies (3) be solutions to the
following system of equations [17]:

(8)

Note that an arbitrary nonzero solution to system (8)
determines the solution to (3) (see Section 3) to within
a summand multiple to 2π.

Two points should be mentioned. First, system (8)
can be reduced to a second-order Hill-type equation if
the i(t) function is periodic. Solutions to such equations
have been well studied and proved to play a key role in
many practically important applications. In particular,
the solution to the Schrödinger equation that deter-
mines the form of the allowed energy bands for the
electron in a rectangular periodic field [18] leads to a
dependence formally similar to (5).

Secondly, system (8) with the replacement t 
jωcθ becomes formally similar to the system of quan-
tum-mechanical equations first used by Josephson to
describe the Josephson effect. Hopefully, this similarity
can be used as a basis for rigorously substantiating
mathematical model (3) of some overdamped Joseph-
son structures.

Next, note that system (8) of linear differential
equations satisfies the conditions of the Lyapunov the-
orem [19] if i(t) = i0 + i1(t) is periodic. According to this
theorem, provided the criterion for phase ϕ locking by
periodic external current i(t) is satisfied, any solution
to (8) can be represented in the form

(9a)

e jϕ x jy–
x jy+
--------------.=

  2 x  ̇ t ( ) x t ( ) i t ( ) y t ( ),+=

–2

 

y

 

˙

 

t

 

( )

 

i t

 

( )

 

x t

 

( )

 

y t

 

( ).+=

x t( )

y t( )
L t( )

x1 t t0–( )

y1 t t0–( )
,=
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where L(t) is a periodic 2 × 2 matrix, that is,

and the x1(t) and y1(t) functions generally have the form
x1(t) = exp(λ1t) and y1(t) = exp(λ2t) or x1(t) = [t +
x1(t0)]exp(λt) and y1(t) = exp(λt) in the degenerate case,
where λ1, λ2, λ, and x1(t0) are some real constants and t0
is some initial time. Note that the degeneracy takes
place at the boundary of the regions of the i0, i01, and T
parameter values which satisfy the conditions of phase
locking and does not correspond to the phase locking
conditions.

Moreover, it can be shown that λ1 = –λ2 = λ0,
because the trace of the matrix of system (8) is zero.
Under phase locking conditions, λ0 ≠ 0. Further, for
definiteness we assume that λ0 > 0. Equation (9a) is
then simplified and can be rewritten in the form

(9b)

2.2. Phase Locking Regions 
and Exactly Solvable Models

If an overdamped Josephson junction is biased by
external current i(t) (4a) or (4b), the λ0 value can be
found from the equation [17]

(10)

where D ≡ D(i0, i01, T) is, as previously, defined by (5).

Examples of the regions of the presence (absence)
of phase locking calculated from the condition |D| > 1
(|D| ≤ 1) by (5) are shown in Fig. 2. The same figure
shows levels of equal κ values given by thin lines within
phase locking regions (zones). Such graphic maps can
be used to construct any I–V characteristic of an over-
damped Josephson junction corresponding to fixed
parameters i0, i01, and T of the bias current (4).

Note in particular that the I–V characteristic of a
Josephson junction biased by unipolar pulses (4a) is
asymmetric with respect to the axis of an direct bias
current component i0. This is related to the presence of
an additional constant component equal to 2πi01T–1 in
bias current (4a).

If a Josephson junction is biased by bipolar pulses (4b),
the τ parameter becomes important. The projections of
the ϕ phase locking region [Eq. (3)] onto the direct bias
current i0–high-frequency bias current 2πi01 plane are
shown in Figs. 2b and 2c for τ = T/2 and τ/T ! 1,
respectively, at T = 5.3. The series of graphic maps
shown in Fig. 2 demonstrates the dependence of the

Lp q, t T+( ) Lp q, t( ), p 1 2, q, 1 2,,= = =

x t( ) L11 t( ) λ0 t t0–( )[ ]   + L 12 t ( ) – λ 0 t t 0 – ( )[ ] ,expexp=  

y t

 

( )

 

L

 

21

 

t

 

( )

 

λ

 

0

 

t t

 

0

 

–

 

( )[ ]   + L 22 t ( ) – λ 0 t t 0 – ( )[ ] .expexp=

κ 2λ0T 2 D D2 1–+( ),ln= =
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(c)

Fig. 2. Influence of the shape of bias current pulses on phase
locking zones. Phase locking zones are shown by light
regions; zones without phase locking are shaded. The con-
stant κ = 1, 2, 3, 4, 5 value levels (κ increases from the
boundaries to the center) are shown by lines. (a) Unipolar
pulse, (b) bipolar “centered” pulse (τ = 0.5T), and (c) bipo-
lar “noncentered” pulse (τ = 0.005T).
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configuration of the phase locking regions of system (3)
on the shape of high-frequency bias current pulses.

2.3. Analytic Solution

Equation (7) determines the x(t) and y(t) entering
into system (8) of linear equations to within some fac-
tor, which is a nonzero real function. We will now com-
plete the definition of these functions by representing
them in the form

(11a)

Here and throughout, the ρ(t) ≡ ρ(t, λ0) function is
defined by the equation

(11b)

and the ϕ(t) phase function, by (7).
Substituting (11a) into (8) and performing certain

transformations yields a system of linear homogeneous
equations for sin(ϕ(t)/2) and cos(ϕ(t)/2), namely,

(12)

The compatibility condition for (12) can be written in
the form

(13a)

or, taking into account the initial equation i(t) –  =
sinϕ(t) [Eq. (3)], in the form of two equations

(13b)

Two remarks should be made. First, the sign “+” is cho-
sen for cosϕ term in the second equation in (13b)
because the equation with –cosϕ(t) does not corre-
spond to a solution of (8). Secondly, the compatibility

    x t ( ) λ 0 t 
1
2
--- ρ t ( )+ ϕ

 
t

 
( )
2

---------,cosexp=
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y t
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1
2
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t

 

( )+
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t

 

( )
2

---------.sinexp=

ρ t( )[ ]exp L11 t( ) L12 t( ) 2λ0t–( )exp+[ ] 2{=

+ L21 t( ) L22 t( ) 2λ0t–( )exp+[ ] 2 } ,

1 2λ0– ρ̇ t( )–[ ] ϕ /2( )cos i t( ) ϕ̇ t( )–[ ] ϕ /2( )sin+ 0,=

i ϕ̇ t( )–[ ] ϕ /2( )cos 1 2λ0 ρ̇ t( )+ +[ ] ϕ /2( )sin+ 0.=

1 2λ0 ρ̇ t( )+[ ] 2– i t( ) ϕ̇ t( )–[ ] 2– 0,=

ϕ̇ t( )

ϕ t( )sin i t( ) ϕ̇ t( ), ϕ t( )cos– 2λ0 ρ̇ t( ).+= =
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conditions for (13) mean that the 

 

λ

 

0

 

 constant and the
“new”  function can be used to describe the dynam-
ics of the phase 

 

ϕ

 

 in (3) if they are given an explicit
physical interpretation. It should at the same time be
emphasized that the quantities 

 

λ

 

0

 

 and  are not inde-
pendent parameters.

Next, note that, for phase locking at 

 

N

 

  

 

∞

 

, the

 

ρ

 

(

 

t

 

 + 

 

NT

 

) term in (13b) becomes a periodic function of
time

 

 t

 

; therefore,  = 0, where the

angle brackets denote averaging over time interval 

 

T

 

.
Taking this and (13b) into account, we obtain

and, therefore, 

 

λ
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 1/2. Similarly, we obtain

.

Further, let us express cos[
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)] via the
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p, q
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t

 
 

 
±

 
 NT) functions. The equations for λ0 then take

the form

(14)

3. THE DYNAMICS OF TRANSIENT PROCESSES 
AND THE ASYMPTOTIC PROPERTIES 

OF THE PHASE FUNCTION
3.1. The Dynamics of the Phase

Although Eqs. (9)–(14) do not yield a complete ana-
lytic solution of system (8) of linear differential equa-
tions, they nevertheless can be used for analysis of the
evolution of the ϕ(t) phase determined by (3) and there-
fore transient processes if the conditions of the phase
locking by a periodic external bias current i(t) are satis-
fied. Indeed, using the transformation

, (15)

inverse to (7), and the solution to system (8) in form (9b),
we obtain

ρ̇ t( )

ρ̇ t( )

ρ̇ t NT+( )〈 〉
N ∞±→
lim

λ0
1
2
--- ϕ t NT+( )[ ]cos〈 〉

N ∞→
lim=

–λ0
1
2
--- ϕ t    N –  T ( ) [ ] cos  〈 〉 

N
 

∞→
 lim=

λ0
1
2
---

L11
2 L21

2–

L11
2 L21

2+
---------------------

N ∞→
lim

1
2
---

L22
2 L12

2–

L22
2 L12

2+
---------------------

N – ∞→
lim .= =

ϕ t( ) 2 y t( )
x t( )
--------arctan 2πχ t( )+–=
(16)ϕ t( ) 2
L21 t( ) λ0 t t0–( )[ ]exp L22 t( ) –λ0 t t0–( )[ ]exp+
L11 t( ) λ0 t t0–( )[ ]exp L12 t( ) –λ0 t t0–( )[ ]exp+
----------------------------------------------------------------------------------------------------------- 2πχ t( ),+arctan–=
where the χ(t) function in (15) is some step function
experiencing jumps of ±1 at the points at which the x(t)
denominator vanishes. As previously, the Lp, q(t) ≡
Lp, q(t; t0, T, i0, i01) functions in (16) are periodic func-
tions of time t, which depend on parameter t0 and bias
current i(t).
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As t changes in the range –∞ < t < ∞, the ϕ(t) phase
function in (16) changes from

(17)

to

(18)

It follows that, for –∞ < t < ∞, the solution to (16)
describes the natural (that is, depending on the prehis-
tory) transition of system (3) to the only possible “sta-
ble” asymptotic state given by (18) [20]. The rate of the
transition of system (3) from one state to another and
the rate of transient process damping in (16) are char-
acterized by the λ0 exponent. This means that, no mat-
ter what the initial conditions at time t = t0 for the phase
0 ≤ ϕ(t0) < 2π, system (3) sooner or later (depending on
the λ0 ≠ 0 value) experiences the transition to a stable
state with a priori known properties determined exclu-
sively by bias current parameters.

So far, we assumed that 

λ0 ≡ λ0(t0; T, i0, i01) > 0.

If λ0 < 0, we similarly obtain the second solution
to (3) to which (17) corresponds when t  ∞. In these
conditions, (16) describes the natural transition of sys-
tem (3) in the –∞ < t0 < t < ∞ interval to the only possi-
ble stable asymptotic state given by (17).

3.2. The Asymptotic Properties 
of the Phase Function

Consider the behavior of  as N  ∞.
Taking into account the periodicity of Lp, q(t) and the
properties of the function χ(t) introduced in (16), we
can write

(19)

where, as previously, k ≡ k(i0, i01, T) is the number of the
Shapiro step.

Further, (19) and (3) can be used to show that, in the
stationary (asymptotic) state, the equation

(20)

is valid. By its physical meaning, ι 2 ≡ i2(k, ϕ0) corre-
sponds to the mean superconduction current (supercur-
rent) that flows through the Josephson junction.

ϕ ∞– t( ) 2
L22 t( )
L12 t( )
-------------arctan 2πχ t( )+–=

ϕ∞ t( ) 2
L21 t( )
L11 t( )
-------------arctan 2πχ t( ).+–=

ϕ̇ t NT+( )〈 〉

ϕ̇ t NT+( )〈 〉
N ∞→
lim

=  ϕ t N 1+( )T+( ) ϕ t NT+( )–
T

-------------------------------------------------------------------
N ∞→
lim

2πk
T

---------,=

ϕ t NT+( )[ ]sin〈 〉
N ∞→
lim i2 i0

2π
T

------k–= =
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Indeed, using (13b), we obtain

(21a)

where, for the phase function in the form ϕ∞(t) = ϕ1(t) +
ϕ0, the following equations are valid:

(21b)

We then have i2 = ∆iSh(k)sinϕ0. Here and throughout, ϕ0
is some constant defined only under phase locking con-
ditions that characterizes the state of system (3) and is
equal to the phase difference between the external bias

current with frequency  and the supercurrent with

mean frequency . If |i0 | < 1 and i01 = 0, we obtain
k = 0 and ∆iSh(k) = 1 and arrive at the well-known
Josephson relation i2 = sinϕ0 [5, 6].

4. ENERGY CONVERSION AND BALANCE

Let us consider the physical meaning of the func-
tions , , sin[ϕ(t)], and cos[ϕ(t)] functions and
the constant λ0. For this purpose, we will use the RSJ
model of Josephson junctions [5, 6]. According to this
model, an overdamped Josephson junction can be rep-
resented by two functional elements. The first element
is a supercurrent generator; the generated supercurrent
direction and value are determined by sin[ϕ(t)]. The
second element is the “Ohmic” normal resistance of the
Josephson junction. The voltage drop across the normal
Josephson junction resistance [according to (3)] and the
current and supercurrent that flow through this resis-
tance are described by .

Next, differentiating the second equation in (13b)
yields the  = –sin[ϕ(t)]  equation for the power
spent (acquired) by the supercurrent of unit strength in
overcoming the  potential of the barrier to the tran-
sition. In other words,  determines the interaction
power between the supercurrent of unit strength and the
bias current (high-frequency current absorption or
emission, bias current transformation into a direct or
high-frequency supercurrent, etc.). Then =

 + const describes the work performed by the

supercurrent of unit strength in some time interval.

It follows (also see [6, p. 31]) that changes in the
E(ϕ) barrier energy of a Josephson junction related to

ϕ0tan
ϕ∞ t( )[ ]sin〈 〉
ϕ∞ t( )[ ]cos〈 〉

-------------------------------
i2

2λ0
--------

i0 2πkT 1––
2λ0

---------------------------,= = =

ϕ1 t NT+( )[ ]sin〈 〉
N ∞→
lim 0,   =  

ϕ1 t NT+( )[ ]cos〈 〉
N ∞→
lim ∆iSh k( ).=

f ωc
1–

ϕ̇ t( )〈 〉

ϕ̇ t( ) ρ̇ t( )

ϕ̇ t( )

ρ̇̇ t( ) ϕ̇ t( )

ϕ̇ t( )
ρ̇̇ t( )

ρ̇ t( )

ρ̇̇ t'( ) t'd∫
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the work of the supercurrent of unit strength with phase
ϕ(t) can be described by the equation

(22a)

where  = "ωc = 2eVc and Vc = RNIc is a constant, the
so-called critical voltage determined by the gap width
of the superconductor.

By way of example, consider the case of |i0 | < 1 and
i01 = 0. The supercurrent that flows through the junction
is then i2 = sinϕ0, and the barrier potential is zero.
Changes in the E(ϕ) barrier energy caused by the inter-
action with the supercurrent, should also be zero.
Indeed, as  = 0 for |i0 | < 1 and i01 = 0 and the expo-

nent 2λ0 = +  = cosϕ0, we find from (22a) that
E(ϕ0) = 0 for all ϕ0 in the interval –π/2 < ϕ0 < π/2.

Next, note that the 2λ0 = 2∆iSh(k)cosϕ0 value corre-
sponds to the current flowing through the barrier by its
physical meaning [see (20) and (21a)]. For this reason,

the equality  = hIc/2e should preferably be used in
Eq. (22a) for the kinetic energy of the supercurrent.
Taking this into account, let us rewrite (22a) in the form

(22b)

where value β = /  = RN/(h/4e2) = RN/R0 plays
the role of the “viscosity” parameter of the medium and
R0 ≈ 6.4 kΩ is the fundamental constant, the so-called
quantum Hall resistance [7, 8]. In our problem, the β
parameter characterizes (according to the widely used
but, probably, not quite adequate, terminology) the
degree of “strong shunting” (or screening) of the
junction.

To summarize, we showed that the  function
corresponds to the E(ϕ) energy of the interaction
between the Josephson junction barrier and the super-
current by its physical meaning. Comparing the second
equation in (13b) with (22a), we then eventually obtain

(23)

For real overdamped Josephson junctions produced
by the SNS or SINIS technology, the RN normal junc-
tion resistance is in the range of 0.01–0.1 Ω. We there-
fore have β ~ 10–6–10–5. This means that the duration
of transient processes, which has the same order
of magnitude as the 1/2λ0 value, can amount to (0.01–
0.5)f –1 under real operation conditions of overdamped
Josephson junctions.

E ϕ t( )( ) E0
1( ) 2λ0 ϕ t( )cos–[ ] ,=

E0
1( )

ϕ̇ t( )

1 i0
2–

E0
2( )

E ϕ t( )( ) βE0
2( ) 2λ0 ϕ t( )cos–[ ] ,=

E0
1( ) E0

1( )

ρ̇ t( )

ρ̇ t( )
2πβ

T
----------E ϕ( )

hf
-----------.–=
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5. CONCLUSIONS

The approach to studying the dynamics of the phase
and transient processes suggested by us in [16, 17] was
developed based on model (3) of an overdamped
Josephson junction. The results explained several most
important and fundamental experimental facts that
determined the dynamics and asymptotic properties of
the phase of the Josephson junction biased by an exter-
nal current.

In particular, (16) can be used to describe the
dynamics of the Josephson junction when it is switched
from one quantum state into another by an external bias
current and to determine the rate of transient process
damping and the rate at which asymptotic operation
conditions are reached. Simultaneously using (16) and
(23), we can determine energy expenditures necessary
for establishing such conditions.

In addition, we touched upon problems of the inter-
action of the bias current with the supercurrent flowing
through the junction. It was shown that the rate of
energy conversion was determined by the barrier poten-
tial of the junction, which was, in turn, determined
(controlled) by bias current parameters. Several ques-
tions, however, remain open, for instance, the question
of the influence of the function ϕ1(t) in (21b) on the
∆iSh(k) function, which requires additional study.

The results obtained in this work can find applica-
tions in the physics of processes whose dynamics is
described by (3) and in designing Josephson chips for
quantum AC voltage synthesizers for telecommunica-
tion purposes and metrology.
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Abstract—The interaction of strongly correlated electrons with phonons in the framework of the Hubbard–
Holstein model is investigated. The electron–phonon interaction is considered to be strong and is an important
parameter of the model, in addition to the Coulomb repulsion of electrons and the band filling. This interaction
with nondispersive optical phonons is transformed to the problem of mobile polarons using the canonical trans-
formation of Lang and Firsov. We discuss the case where the on-site Coulomb repulsion is exactly canceled by
the phonon-mediated attractive interaction. It is suggested that polarons exchanging phonon clouds can lead to
polaron pairing and superconductivity. The fact that the frequency of the collective mode of phonon clouds is
larger than the bare frequency then determines the superconducting transition temperature. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Since the discovery of high-temperature supercon-
ductivity by Bednorz and Müller [1], the Hubbard
model and related models such as RVB and t–J have
been widely used to discuss the physical properties of
the normal and superconducting states [2–6]. However,
a unanimous explanation for the origin of the conden-
sate in high-temperature superconductors has not
emerged so far. One of the unsolved questions is how
far phonons can be involved in the formation of the
superconducting state. In experimental and theoretical
works, the change in phonon frequencies and phonon
lifetimes associated with the superconducting transi-
tion was mostly discussed. For example, the decrease
in frequencies of Raman-active phonons at the transi-
tion [7], observation of the isotope effect for nonopti-
mally doped superconductors [8], and observation of a
phonon-induced structure in the tunnel characteristics [9]
are evidence in favor of strong electron–phonon cou-
pling in the cuprates.

The aim of the present paper is to gain further
insight into the mutual influence of strong on-site Cou-
lomb repulsion and strong electron–phonon interaction
using the single-band Hubbard–Holstein model and a
recently developed diagram approach [10–14].

¶This article was submitted by the authors in English.
1063-7761/03/9703- $24.00 © 20632
For simplicity, we consider coupling to dispersion-
less phonons only, although this might not be the most
interesting case as regards superconductivity. However,
previous investigations [15–17] have shown that the
Hubbard–Holstein model [18, 19] constitutes a formi-
dable problem of its own. Other authors have also
intensively studied this model Hamiltonian [20–23].

Because the interactions between electrons and
between electrons and phonons are strong, we include
the Coulomb repulsion in the zero-order Hamiltonian
and apply the canonical transformation of Lang and
Firsov [24] to eliminate the linear electron–phonon
interaction. In the strong electron–phonon coupling
limit, the resulting Hamiltonian of hopping polarons
(i.e., hopping electrons surrounded by clouds of
phonons) can lead to an attractive interaction among
electrons mediated by the phonons. In this limit, the
chemical potential, the on-site Coulomb energy, and the
frequency of the collective mode of phonon clouds
(which is much larger than the bare frequency of the
Einstein oscillators) are strongly renormalized [17, 25,
26], which affects the dynamical properties of the
polarons and the character of the superconducting tran-
sition. In our discussion of this, we assume that the
renormalized on-site Coulomb repulsion and attractive
electron–electron interaction completely cancel each
other. We suggest that the resulting superconducting
state with polaronic Cooper pairs is mediated by the
003 MAIK “Nauka/Interperiodica”
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exchange of phonon clouds during the hopping pro-
cesses of the electrons.

2. THEORETICAL APPROACH

2.1. Lang–Firsov Transformation
of the Hubbard–Holstein Model 

The initial Hamiltonian of correlated electrons cou-
pled to optical phonons with bare frequency ω0 is given
by

(1)

(2)

(3)

(4)

where  (aiσ) and  (bi) are creation (annihilation)
operators of electrons and phonons, respectively; i
refers to the lattice site, and σ to the spin; qi is the
phonon coordinate; g is the electron–phonon interac-
tion constant; U is the on-site Coulomb repulsion;
t(j − i) is the two-center transfer integral; and e0 =  –

µ, with a local energy of  and a chemical potential
of µ. The Fourier representation of t(j – i) is related to
the tight-binding dispersion ε(k) of bare electrons,

with a bandwidth of W. The energy scale of this model
is fixed by the parameters W, U, g, and "ω0. An addi-
tional parameter is given by the band filling.

After applying the Lang–Firsov transformation [24]

(5)

* *e *ph
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i j σ, ,
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0
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2
---+ 

  ,
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∑=

*e–ph g niqi,
i

∑=

ni niσ, niσ

σ
∑ aiσ

† aiσ,=

qi
1

2
------- bi bi

†+( ),=

aiσ
† bi

†

e0

e0

t j i–( )
1
N
---- ε k( ) –ik R j Ri–( )⋅{ } ,exp

k

∑=

*p eS*e S– , ciσ eSaiσe S– ,= =

ciσ
† eSaiσe S–=
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with

(6)

where pi is the phonon momentum and  is the dimen-
sionless interaction constant, we obtain the polaron
Hamiltonian:

(7)

(8)

(9)

where

(10)

(11)

To derive the polaron Hamiltonian, it was necessary to
include the shift of the phonon coordinate qi of the form

which is responsible for the elimination of the linear
electron–phonon interaction. The polaron Hamiltonian
is a polaron–phonon operator by its nature; i.e., the cre-

ation operator  and the destruction operator *p

entering ciσ must be interpreted as creation and destruc-
tion operators of polarons (electrons dressed with dis-
placements of ions) that couple dynamically to the
momentum of the optical phonon. In the zero-order
approximation (omitting *int), polarons and phonons
are localized with the strongly renormalized chemical
potential  and on-site Coulomb interaction . The
operator *int describes tunneling of polarons between
lattice sites, i.e., tunneling of electrons surrounded by
clouds of phonons.

2.2. Expansion around the Atomic Limit 

The problem is now to deal properly with the impact
of electronic correlations on the polaron problem. This
can be done best using Green’s functions provided one
finds a key for dealing with the spin and charge degrees

S ig ni pi, g
i

∑–
g

"ω0
---------,= =

pi
i

2
------- bi

† bi–( ),=

g

*p *p
0 *ph

0 *int,+ +=

*p
0 *ip

0
, *ip

0

i

∑ e niσ

σ
∑ Uni↑ ni↓ ,+= =

*int t j i–( )c jσ
† ciσ,

i j σ, ,
∑=

ciσ
† aiσ

† ig pi–( ), ciσexp aiσ ig pi( ),exp= =

e e0 µ, µ– µ α"ω0,+= =

U U 2α"ω0, α–
1
2
---g2.= =

eSqie
S– qi gni,–=

ciσ
†

µ U
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of freedom. In the general case where  is different
from zero, the Coulomb interaction must be included in
the zero-order Hamiltonian. As a consequence, conven-
tional perturbation theory of quantum statistical
mechanics is an inadequate tool because it relies on the
expansion of the partition function around the noninter-
acting state (achieved using the traditional Wick theo-
rem and conventional Feynman diagrams). A similar
situation occurs for composite particles such as
polarons,

involving operators for the electron and phonon sub-
systems.

Hubbard [27] proposed a graphical expansion for
correlated electrons about the atomic limit in powers of
hopping integrals. This diagram approach was system-
atically reformulated for the single-band Hubbard
model by Slobodyan and Stasyuk [28] and indepen-
dently by Zaitsev [29], and further developed by
Izyumov [30]. In these approaches, the complicated
algebraic structure of the projection or Hubbard opera-
tors was used. It therefore appeared to be more appro-
priate to develop a diagram technique involving simpler
creation and annihilation operators for electrons at all
intermediate stages of the theory (see [10, 11] for
details). In the latter approach, the averages of chrono-
logical products of interactions are reduced to the n-
particle Matsubara Green’s functions of the atomic sys-
tem. These functions can be factorized into independent
local averages using a generalization of the Wick theo-
rem (GWT), which takes strong local correlations into
account (details are given in [10, 11, 25]). Application of
the GWT yields new irreducible on-site many-particle
Green’s functions, or Kubo cumulants. These new
functions contain all local spin and charge fluctuations.
A similar linked-cluster expansion for the Hubbard
model around the atomic limit was recently reformu-
lated by Metzner [31].

2.3. Averages of Phonon Operators 

We define the temperature Green’s function for
polarons in (7) in the interaction representation by

(12)

with

U

ciσ aiσ ig pi( ),exp=

& x σ τ, , x' σ' τ', ,( ) Tcxσ τ( )cx'σ' τ'( )U β( )〈 〉 0
c–=

cxσ τ( ) *0τ( )cxσ *0τ–( ),expexp=

cxσ τ( ) *0τ( )cxσ
† *0τ–( ),expexp=
JOURNAL OF EXPERIMENTAL 
where *0 =  +  and the evolution operator is
given by

(13)

x, x' are site indices; τ, τ' stand for the imaginary time
with 0 < τ < β; T is the time-ordering operator; and β is

the inverse temperature. The statistical average 
is evaluated with respect to the zero-order density
matrix of the grand canonical ensemble of localized
polarons and phonons,

(14)

The superscript c in (12) indicates that only con-
nected diagrams must be taken into account. Density
matrix (14) is factorized with respect to the lattice sites.
The phonon part is easily diagonalized using the free

phonon operators bi and , while the on-site polaron
Hamiltonian contains the polaron–polaron interaction
proportional to the renormalized parameter , which
can only be diagonalized using Hubbard operators [18].
At this stage, no special assumption is made about the
quantity  and its sign; we set up the equations of
motion for the dynamical quantities in this general
case, but investigate the equations in detail only in the
special case where  = 0.

The Wick theorem of weakly coupled quantum field
theory can be used in evaluating statistical averages of
phonon operators; e.g., the propagator of the phonon
cloud,

(15)

(16)
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0 *ph

0
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 
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----------------------------------
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--------------------------------------.
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∏
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†

U
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U
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2
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where

(17)

We now discuss the problem of calculating chrono-
logical averages of combinations of polaron operators.
Here, we use the above-mentioned new diagram tech-
nique and the GWT [10, 11]. The many-particle on-site
irreducible Green’s functions are the main element of
diagrams in this approach.

3. POLARON
AND PHONON GREEN’S FUNCTIONS

In the zero-order approximation, the one-polaron
Green’s function is given by

(18)

where x = (x, σ, τ). The simplest new element of the
diagram technique is the two-particle irreducible
Green’s function, or Kubo cumulant, which is equal to

(19)

where

(20)

The first term in the right-hand side of Eq. (20) is

(21)

As the number of polaron operators increases, more
complicated irreducible Green’s functions like

(x1…xn | … ) with n ≥ 3 and all possible

σ τ1 τ2–( ) g2 T p τ1( ) p τ2( )〈 〉 0=

=  α

"ω0
β
2
--- τ1 τ2––

 
 
 

 
 
 

cosh

β"ω0

2
------------- 

 sinh

--------------------------------------------------------------.

&p
0

x x'( ) Tcxσ τ( )cx'σ' τ'( )〈 〉 0–=

=  Taxσ τ( )ax'σ' τ'( )〈 〉 0Φ τ τ'( )– & 0( )
x x'( )Φ τ τ'( ),=

&2
0( )ir

x1 x2 x3 x4,,( ) δx1 x2, δx1 x3, δx1 x4,=

× &2
0( )ir σ1 τ1; σ2 τ2 σ3 τ3; σ4 τ4,,,,( ),

&2
0( )ir σ1 τ1; σ2 τ2 σ3 τ3; σ4 τ4,,,,( )

=  Tcσ1
τ1( )cσ2

τ2( )cσ3
τ3( )cσ4

τ4( )〈 〉 0

– Tcσ1
τ1( )cσ4

τ4( )〈 〉 0 Tcσ2
τ2( )cσ3
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+ Tcσ1
τ1( )cσ3
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Tcσ1
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0( )ir

x1' xn'
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terms of their products appear. The sum of all strongly
connected diagrams (i.e., those that cannot be divided
into two parts by cutting a single hopping line) contain-
ing all kinds of irreducible Green’s functions in the per-
turbation expansion of the evolution operator defines
the special function Z(x |x') (see [10, 11] for details).
This function contains all contributions from charge
and spin fluctuations. Together with the mass operator
(which is the hopping matrix element in our case), it
allows us to formulate a Dyson-type equation for the
one-polaron Green’s function [10–14],

(22)

where

(23)

(24)

Here, x again denotes x, σ, τ, and the sum is over the
discrete indices and includes integration over τ. Using
the Fourier representation for these quantities,

(25)

we obtain Dyson equation for the renormalized one-
polaron Green’s function,

, (26)

& x x'( ) Λ x x'( ) Λ x 1( )t 1 2–( )& 2 x'( ),
1 2,
∑+=

Λ x x'( ) &p
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x x'( ) Z x x'( ),+=
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1
N
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β
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k
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× –ik x⋅ iωnτ–( )&σ k iωn( ),exp
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∑
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1
N
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β
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k
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ωn

∑

&σ x iωn( )
1
2
--- τ iωnτ( )&σ x τ( ),expd

β–
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1
2
--- τ iωnτ( )Λσ x τ( ),expd
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1 ε k( )Λ k iωn( )–
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where

is the odd Matsubara frequency.

To discuss &σ(k|iω) further, we need the Fourier rep-
resentation of the zero-order one-polaron Green’s func-

tion  defined in (18). In order to facilitate the inves-
tigation, we have evaluated the propagator of the
phonon cloud (16) in the strong-coupling limit α @ 1
[15, 16, 26]:

(27)

(28)

where Ωn = 2nπ/β. To find , we use the Laplace
approximation [32] for integral (28), which contains an
exponential function with the parameter α. In the
strong-coupling limit α @ 1, we obtain

(29)

This term is the harmonic propagator of the collective
mode of phonons belonging to the polaron clouds.
There are further terms describing anharmonic devia-
tions. For α @ 1, these terms can be omitted because
they are small compared with the harmonic contribu-
tion. Using the Laplace approximation [32] and

(30)

(31)

we then obtain the Fourier representation of the phonon
correlation function,

(32)

ωn
2n 1+( )π
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------------------------=
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2
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2 ωc
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-------------------, ωc≈ "αω0
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-------------.= =
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≈ δΩ1 Ω3, δΩ2 Ω4, δΩ1 Ω4, δΩ2 Ω3,+[ ]Φ iΩ1( )Φ iΩ2( ),
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which corresponds to

(33)

This implies that in what follows, we can keep only the
free collective oscillations of phonon clouds (29) sur-
rounding the polarons and use the Hartree–Fock
approximation: (32) and (33) for their two-particle cor-
relation functions. In particular, we investigate the
influence of the absorption and emission of this collec-
tive mode by polarons on the superconducting phase
transition.

With the harmonic mode given by (29), the Fourier
representation of the local polaron Green’s function

(34)

becomes

(35)

where

(36a)

(36b)

(37)

Equation (35) shows that the on-site transition energies
of polarons are changed by the collective-mode energy
±ωc of the phonon clouds. The delocalization of
polarons due to their hopping between lattice sites
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causes the broadening of the polaron energy levels.
Equation (35) can be further simplified for a small on-

site interaction energy  of polarons. For  = 0, we
obtain

(38)

This function has the antisymmetry property

(39)

which also holds for the renormalized polaron quantities,

(40)

Setting  ≈ 0, we assume that the strong on-site Cou-
lomb repulsion of polarons can be canceled by the
attraction induced by the strong electron–phonon inter-
action. We consider this as a model case that allows us
a transparent discussion of the polarons exchanging
phonon clouds during hopping between lattice sites.

4. TWO-PARTICLE IRREDUCIBLE 
CORRELATION FUNCTIONS

In what follows, we discuss the influence of a strong
electron–phonon interaction on the two-particle irre-

ducible Green’s function. For  = 0, the electronic cor-
relation function in (22) is given by

(41)

because the standard Wick theorem is now applicable.

U U
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Using (33), we obtain the relation

(42)

for the two-particle irreducible Green’s function (21).
In the absence of exchange of phonon clouds by
polarons, this quantity must vanish. Indeed, if the elec-
trons keep their initial phonon clouds during the time of
propagation of two polarons, then the irreducible two-
polaron Green’s function (21) vanishes for .
However, because two electrons can be exchanged
(independently of the exchange of phonon clouds), we
obtain new contributions corresponding to two
polarons with the exchanged phonon clouds. Alterna-
tively, we can say that for , the Wick theorem
applies separately to free electrons and free phonons;
however, it does not apply to polarons as composite
particles and their cumulants do not therefore vanish.

The Fourier representation of (42),

(43)

is given by 
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with Ω1 = ω2 – ω3. The summation leads to

(46)
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The function  contains contributions of the dif-
ferent spin channels to the two-particle on-site Green’s
function. The spin structure in Eq. (44) is due to the
conservation law for the spins of the polarons.

5. SUPERCONDUCTING PHASE TRANSITION

In what follows, we check whether the polaronic
system can have a superconducting instability in the
absence of a direct attractive interaction for the
polarons, i.e., for  = 0. In this case, the attraction is
only induced dynamically by polarons exchanging
phonon clouds. To describe superconductivity, we need
the anomalous propagators [33] in addition to the nor-
mal state Green’s function (13). For simplicity, we limit
the discussion to the s-wave superconductivity as in
previous investigations of superconducting instabilities
in the Hubbard model [13, 14] and in the Hubbard–Hol-
stein model in the strong-coupling limit α @ 1 [26].

To describe the superconducting state, we need
three irreducible functions Λσ, Yσ, –σ, and  that
represent infinite sums of diagrams containing irreduc-
ible many-particle Green’s functions. In order to obtain
a closed set of equations, we restrict ourselves to a class
of rather simple contributions, which nevertheless con-
tain the most important charge, spin, and pairing corre-
lations; see [26] for details. This class of diagrams is
obtained by neglecting contributions for which the Fou-
rier representation of the superconducting order param-
eters Yσ, –σ and  depend on the polaron momen-
tum k. In this approximation, Yσ, –σ is to be obtained
from

(47)

In the same approximation, Λσ is to be computed from
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(48)

with

(49)

The corresponding equation for  can be
obtained from the expression for .

Together with the equations for the one- and two-
particle Green’s functions, the above equations com-
pletely determine the properties of the superconducting
phase, provided it exists. In order to gain further insight
into the physics contained in (47) and (48), we linearize
the equations in terms of the order parameter 
that determines the critical temperature Tc . The result-
ing equation for the order parameter is

(50)
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Dσ k iω,( ) 1 ε k( )Λσ iω( )–[ ] 1 ε –k( )Λ–σ –iω( )–[ ]=

+ ε k( )ε k–( )Yσ σ–, iω( )Y–σ σ, iω( ).

Y–σ σ, iω( )
Yσ σ–, iω( )

Yσ σ–, iω( )

Yσ σ–, iω( )
1

βN
-------–=

×
ε k( )ε –k( )Yσ σ–, iωl( )

1 ε k( )Λσ iωl( )–[ ] 1 ε –k( )Λ–σ –iωl( )–[ ]
---------------------------------------------------------------------------------------------

k ωl,
∑

× &2
0( )ir

σ iω; σ iω σ iωl; σ iωl–,–,–,–,( ).
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This equation must be solved together with the equa-
tion for Λσ(iω), which can be approximated by setting
the order parameters to zero, with the result

(51)

To determine Tc , we must solve (51) for Λσ and
insert the result in (50). The irreducible functions

Λσ iω( ) &pσ
0( )

iω( )
1

βN
-------

ε2 k( )Λσ iωl( )
1 ε k( )Λσ iωl( )–
--------------------------------------

k ωl,
∑–=

× &2
0( )ir

σ iω; σ iωl σ iωl; σ iω,,,,( )

–
1

βN
-------

ε2 k( )Λ σ– iωl( )
1 ε k–( )Λ σ– iωl( )–
------------------------------------------

k ωl,
∑

× &2
0( )ir

σ iω; σ iωl –σ iωl; σ iω,,,–,( ).
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in (50) and (51) can be written as

(52)

(53)

&2
0( )ir

σ iω; σ iωl σ iωl; σ iω,,,,( )

=  
ω ωl–( )2

∆2∆l
2

---------------------- 2ωc
2 x xl+( ) βe/2( )tanh{

–
βωc/2( )coth

ωc iω iωl–( )2 4ωc
2–[ ]

-----------------------------------------------------

× xxl ωc
2+( ) ∆∆l 8ωc

4+( ) 2ωc
2 ∆ ∆l+( ) xxl ωc

2–( )–[ ] } ,

&2
0( )ir

σ iω; σ iωl –σ iωl; σ iω,,,–,( )
2ωc

∆2∆l
2

-----------–=

× ωc x xl+( ) ∆ ∆l+( ) βe/2( )tanh{

+ βωc/2( ) x xl+( )2 xxl ωc
2–( )coth }

+
βωc/2( ) xxl 3ωc

2+( )coth
ωc∆∆l

-----------------------------------------------------------,
(54)

&2
0( )ir

σ iω; σ –iω σ iωl; –σ –iωl,,,–,( )

=  –
2e 2ωc( )2 βe/2( ) iωiωl e

2 ωc
2–+[ ]tanh

ω2
e ωc+( )2+[ ] ω2

e ωc–( )2+[ ] ωl
2

e ωc+( )2+[ ] ωl
2

e ωc–( )2+[ ]
-------------------------------------------------------------------------------------------------------------------------------------------------------------

+
2ωc βωc/2( ) iωiωl 2ωc e ωc–( ) e ωc–( )2–+[ ]coth

ω2
e ωc–( )2+[ ] ωl

2
e ωc–( )2+[ ] ω ωl–( )2 2ωc( )2+[ ]

--------------------------------------------------------------------------------------------------------------------------------

+
2ωc βωc/2( ) iωiωl 2ωc e ωc+( )– e ωc+( )2–[ ]coth

ω2
e ωc+( )2+[ ] ωl

2
e ωc+( )2+[ ] ω ωl–( )2 2ωc( )2+[ ]

---------------------------------------------------------------------------------------------------------------------------------,
where

(55a)

(55b)

To analyze (50) and (51) further, we introduce the nota-
tion

(56)

x iω e, ∆– iω e–( )2 ωc
2,–= =

xl iωl e, ∆l– iωl e–( )2 ωc
2.–= =

φσ iω( )
1
N
----

ε2 k( )Λσ iω( )
1 ε k( )Λσ iω( )–
------------------------------------

k

∑=

=  
1
N
---- ε k( )

1 ε k( )Λσ iω( )–
------------------------------------,

k

∑

(57)

(58)

We also assume that ε(k) = ε(–k) holds with

gσ iω( ) &σ x x' iω=( )=

=  
1
N
----

Λσ iω( )
1 ε k( )Λσ iω( )–
------------------------------------,

k

∑

φσ
sc iω( )

=  
1
N
---- ε k( )ε k–( )

1 ε k( )Λσ iω( )–[ ] 1 ε –k( )Λ–σ –iω( )–[ ]
------------------------------------------------------------------------------------------

k

∑

=  
φσ iω( ) φ σ– iω–( )–
Λσ iω( ) Λ σ– iω–( )–
--------------------------------------------.

ε k( )
k

∑ ε3 k( )
k

∑ 0.= =
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We replace sums with integrals,

(59)

(60)

where W is the bandwidth and ρ0 is the model density
of states of a semielliptic form. Since we do not con-
sider magnetic states here, the spin subscript can be
omitted in the paramagnetic phase,

(61a)

(61b)

(61c)

However, the spin subscript is essential for the super-
conducting order parameter Yσ, –σ(iω),

(62a)

(62b)

where Y(iω) is an even function of the frequency,

(63)

We finally add the equation that determines the chemi-
cal potential,

(64)

where Np is the number of polarons and N is the number
of lattice sites. With (59) and (60), functions (56) and
(57) can be written as

(65)

1
N
----

k

∑ ερ0 ε( ),d∫=

ρ0 ε( )
4

πW
-------- 1

2ε
W
----- 

 
2

–
1 ε W

2
-----<,

0 ε W
2
-----,>,






=

Λσ iω( ) Λ σ– iω( ) Λ iω( ),= =

φσ iω( ) φ σ– iω( ) φ iω( ),= =

φσ
sc iω( ) φ σ–

sc iω( ) φsc iω( ).= =

Yσ σ–, iω( ) gσ σ–, Y iω( ),=

gσ σ–, δσ ↑, δσ ↓, ,–=

Y iω( ) Y iω–( ).=

1
β
--- &σ x x'= iω( ) iωn0+( )exp

σ
∑

ωn

∑

=  
2
β
--- gσ iω( ) iωn0+( )exp

ωn

∑ N p

N
------,=

φ iω( )
W
2
-----

1 1 λ2 iω( )–– 
 

2

λ3 iω( )
------------------------------------------------=

=  
W
2
----- λ iω( )

1 1 λ2 iω( )–+ 
 

2
------------------------------------------------,
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(66)

where

In order to check whether the state determined from
Eq. (51) is metallic or dielectric, we must analyze the
renormalized density of states given by

(67)

where λ(E + i0+) is the analytic continuation of λ(iω).

6. ANALYTIC SOLUTIONS

The expressions for Λ(iω) and Y(iω) can be simpli-
fied using notation (56) and (57) and symmetry prop-
erty (62),

(68)

(69)

To find the solution of Eq. (68), we insert (54), replace
Y(iωn) with

(70)

g iω( )
4
W
-----

1 1 λ2 iω( )–– 
 

2

λ iω( )
------------------------------------------------=

=  
4
W
----- λ iω( )

1 1 λ2 iω( )–+ 
 

2
------------------------------------------------,

λ iω( ) W /2( )Λ iω( ).=

ρ E( )
1
π
---Img E i0++( )–=

=  
1
π
---Im

1 1 λ2 E i0++( )––

λ E i0++( )
--------------------------------------------------

 
 
 

,–

Y iω( )
1
β
--- φsc iωl( )

ωl

∑=

× &
0( )ir

σ iω; σ iω σ iωl; σl iωl–,–,–,–,( )Y iωl( ),

Λ iω( ) &p
0( )

iω( )=

–
1
β
--- φ iωl( ) &

0( )ir
σ iω; σ iωl σ iωl; σ iω,,,,( )[

ωl

∑

+ &
0( )ir

σ iω; σ iωl –σ iωl; σ iω,,,–,( ) ] .

Y iωn( ) φsc z0( )χ iωn( )Y z0( ), z0 0,≈=
(71)

χ iωn( )
1
β
--- &

0( )ir
σ iωn; σ iωn σ iωl; σ iωl–,–,–,–,( )

ωl

∑=

=  
2ωc ωc e βe/2( )tanh βωc/2( )cosh–[ ] βωc( ) –ωc

2
e

2 ωn
2+ +( ) βωc( )cosh 1–( ) 1–cosh+

ωn
2 ωc e+( )2+[ ] ωn

2 ωc e–( )2+[ ]
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,
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and use the Poisson summation formula

(72)

where C denotes the usual counterclockwise contour of
the imaginary axis. With the help of the analytically
continued function χ(z) for Z = Z0 = 0, we then obtain
an equation for the critical temperature Tc from
Eq. (68),

(73)

(74)

This quantity is even in e, and therefore only the abso-

lute value of e =  –  determines kBTc = .
From (58) and (65), we can make a rough guess
on the quantity φsc(0),

(75)

1
β
--- f iωn( )

ωn

∑ 1
2πi
-------- z

f z( )

eβz 1+
----------------,d

C

∫–=

χ 0 e( )φsc 0 e( ) 1,=

χ 0 e( ) 2ωc ωc e βce/2( )tanh βcωc/2( )coth–[ ] -
=

+
e

2 ωc
2–( ) βcωc( )cosh

βcωc( )cosh 1–
--------------------------------------------------

 ωc
2

e
2–( ) 2–

.

e0 µ βc
1–

φsc 0( )
W
4
----- 

 
2 1

γ2
-----,≈

γ 1
2
--- 1 1 λ2 0 iδ+( )–+( ),=
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where γ must satisfy the condition γ(–e) = γ(e). This
quantity can be obtained self-consistently from Eq. (64)
for the chemical potential. For simplicity, we here

replace [1 + ] with 2γ. Then (64) can be
written as

(76)

Using (69) together with (52) and (53), we can express
Λ(iωn) as

(77)

with unknown coefficients Ai and Bi . They can be found
from Eq. (69) or more easily from the asymptotic
behavior of (77) as |ωn|  ∞,

1 λ2 0 iδ+( )–

2
γ
---1

β
--- Λ iωn( ) iωn0+( )exp

ωn

∑ N p

N
------.=

Λ iωn( )
iωn e–( )A1 e( ) ωcB1 e( )+

iωn e–( )2 ωc
2–

------------------------------------------------------------=

+
ωc

2 iωn e–( )A2 e( ) ωcB2 e( )+[ ]

iωn e–( )2 ωc
2–[ ] 2

-----------------------------------------------------------------------,
(78)

Λ iωn( )
ωn ∞→

A1

iωn

--------
A1e ωcB1+

iωn( )2
---------------------------+=

A1 ωc
2

e
2+( ) 2eωcB1 ωc

2A2+ +

iωn( )3
------------------------------------------------------------------------+

+
A1 e

3 3eωc
2+( ) B1 ωc

3 3e
2ωc+( ) ωc

2 3eA2 ωcB2+( )+ +

iωn( )4
------------------------------------------------------------------------------------------------------------------------------- …+
If we compare this with the asymptotic behavior of the
full one-polaron Green’s function (see the Appendix)
by invoking the methods of moments together with the
asymptotic behavior of g(iωn) in (66), we obtain

(79a)

(79b)

(79c)

(79d)

A1 e( ) 1,=

B1 e( )
1
ωc

------ M1 e+[ ] ,–=

A2 e( )
1

ωc
2

------ M2 2eM1 e
2 ωc

2–
W
4
----- 

 
2

–+ + ,=

B2 e( )
1

ωc
3

------=

× –M3 3eM2– M1 ωc
2 3e

2– 3
W
4
----- 

 
2

+ 
 +

+ eωc
2

e
3– 3e

W
4
----- 

 
2

+ ,
where Mi is the ith moment of the one-polaron Green’s
function. The results in (A.5) for the moments in the
lowest order allow us to evaluate Ai and Bi , see (A.7).
A1 = 1 describes the asymptotic freedom of the
polarons. B1 =  is identical to its value in the
zero-order polaron Green’s function (38). The two new
quantities A2 and B2 are small, being proportional to
ω0/ωc = 1/α.

Inserting (77) in the left-hand side of Eq. (76) and
performing the summation, we obtain

(80)

βe/2( )tanh

1
β
--- Λ iωn( ) iωn0+( )exp

ωn

∑ n e( )=

+
βe/2( )tanh βωc/2( )tanh 1–[ ] 1 βe/2( )tanh

2
–[ ]

2 1 βωc/2( )tanh
2 βe/2( )tanh

2
–[ ]

-------------------------------------------------------------------------------------------------------------------

+
B2 e( )

4
------------ βωc/2( )tanh

1 βe/2( )tanh
2

–

1 βe/2( )tanh
2 βωc/2( )tanh

2
–

-----------------------------------------------------------------------
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which is equal to (γ/2)(Np/N) in accordance with
Eq. (76). Because the collective frequency is large,
βωc @ 1, we can omit exponentially small quantities
like exp(–βωc). Since we are interested in the results for
electron numbers that are close to half-filling (e = 0),
also |e| ! ωc holds. We also neglect contributions on
the order of 1/α. Then the equation for chemical
potential (74) is simply

(81)

If we set γ = 1 (free polarons), we obtain from (75) that

(82)

which allows us to write the equation for the critical
temperature Tc as

(83)

In this approximation, Tc depends only on the local
parameters, but we expect that close to half-filling, this
should give an indication of which of the local quanti-
ties is most important for superconductivity in the
strong-coupling limit of the Hubbard–Holstein model.
Precisely at half-filling, Eq. (83) can only be satisfied if
ωc = W/4. This might be an unphysically large value for
a renormalized quantity. It also shows that the specific
limit  = 0 is probably the critical value for the occur-
rence of superconductivity in the framework of the
Hubbard–Holstein model. It is clear that superconduc-
tivity is possible for  < 0, but in this case, it would
have to compete in energy with the energies of charge-
ordered states.

For the special case where ωc = W/4, we obtain

(84)

Because e/ωc < 3 holds (which we do not discuss in
detail), we can seek solutions in the case where |e| !
ωc , leading to

(85)

In spite of the many approximations used (all of
which are reasonable, however) the result for Tc is
remarkable because it shows that the critical tempera-
ture depends on the bandwidth (corresponding to the
largest cutoff energy of the model) and not on the effec-

–
βωc

16
---------

A2 e( ) B2 e( )+

β ωc e+( )/2[ ]cosh
2

----------------------------------------------
A2 e( ) B2 e( )–

β ωc e–( )/2[ ]cosh
2

---------------------------------------------– ,

n e( ) γnp/2, np N p/N .= =

φsc 0( ) W /4( )2,=

e
2 ωc

2 2eωc βe/2( )tanh–+ ωc
2

e
2–( )2

4/W( )2.=

U

U

e
ωc

------ 
  2

3
e

ωc

------ 
  2

–
2 e
ωc

--------
βc e

2
----------- 

  .tanh=

kBTc

ωc

3
------ 1

5
12
------ e

ωc

------ 
  2

– …+=

=  
W
12
------ 1

20
3
------ e

W
----- 

 
2

– …+ .
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tive mass of the ions. For small deviations from half-
filling, Tc decreases and is independent of the sign of e.

For different values of ωc,

(86)

with y ≠ 0, there are only solutions other than at half-
filling. In this case, Eq. (84) can be written as

(87)

(88)

The condition κ < 1 is equivalent to

(89)

On the other hand, the condition κ > 0 is reformulated
differently depending on the parameter y:

(90)

(91)

(92)

For small y, we can simplify (87) and (88) as

(93)

with the following restrictions for e:

(94)

(95)

Large values of Tc can be achieved for κ ÷ 1 and in the
vicinity of half-filling (e ≠ 0),

(96)

but only for y < 0, and hence, ωc > W/4.

7. CONCLUSIONS

We have discussed the occurrence of superconduc-
tivity in the strong-coupling limit (  @ 1) of the Hub-

ωc W /4= y,–

βc e
1 κ+
1 κ–
------------,ln=

κ
e

2 ωc
2 4/W( )2 ωc

2
e

2–( )2
–+

2 e ωc

-----------------------------------------------------------------, 0 κ 1.< <=
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e

2
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2 ,< <><
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2 ,< <<>

emax min,
2 ωc

2 1
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--- W

4
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8ωc
2+ .±+=

κ 2
W e
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2 3 e
2 4
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–


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4 4
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bard–Holstein model. Strong coupling leads to a renor-
malization of the one-polaron Green’s function already
in the local approximation. For  @ 1, we found a col-
lective mode for the phonon clouds estimated by evalu-
ating integrals in the Laplace approximation. Because
of the absorption and emission of this mode by
polarons, the on-site energies of polarons are renormal-
ized. Similarly the irreducible two-particle Green’s
functions are renormalized. Allowance for the
exchange of polarons, including their phonon clouds,
leads to a new irreducible Green’s function that has
been used to study spin–singlet pairing of polarons.
Analytic results for the superconducting phase have
been obtained in the limiting case where the local repul-
sion of polarons is exactly canceled by their attractive
interaction. The resulting equation for the critical tem-
perature has been obtained by assuming a large collec-
tive-mode frequency and a nearly half-filled band case.
The parameters that determine Tc are ωc (ωc ≥ W/4), e
(with e = 0 corresponding to half-filling), and the band-
width W. In the strong-coupling limit, we obtain a crit-
ical temperature on the order of ωc/3.

It is interesting to note that a similar result for the
value of Tc has been established in [34, 35] for such
anomalous low-temperature superconductors as Pb,
Hg, and Nb realized within the framework of Eliash-
berg’s theory [36].

In the Eliashberg theory, the retarded nature of the
photon-induced interaction and the pseudopotential
treatment of the screened Coulomb interaction are
taken into account. For example, in [35], the maximum

value of the critical temperature  is equal to
〈ω〉/exp(3/2), where 〈ω〉 is the average phonon fre-
quency taken over the phonon density of states 〈ω〉 ≈
0.5ω0. Our equations involve only the collective fre-
quency ωc = αω0, α > 1.

It is possible to estimate the values of Tc not only
analytically, but also via calculations using Eq. (83), or
mere precisely, Eq. (73). Indeed, such numerical results
have been obtained by assuming certain values of the
theory’s parameters and of the interval of interesting
values of Tc . From the three parameters in our theory
(ωc , W, and e), we first choose the value of the collec-
tive frequency ωc . Assuming that ω0 is equal to 0.07 eV
for cuprates and that the dimensionless interaction con-
stant  is equal to 3, we obtain α = 4.5 and ωc =
0.315 eV. Next we fix the value of Tc , e.g., as equal to
100 K. With these values of ωc and Tc , the following
pairs of the other two parameters are compatible:

e = 0.10515 eV and W = 1.68057 eV,

e = 0.20348 eV and W = 2.07383 eV,

e = 0.30149 eV and W = 2.46594 eV.

g

Tc
max

q
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APPENDIX

The Method of Moments 

Using the Heisenberg representation of the one-
polaron Green’s function

(A.1)

where

(A.2a)

(A.2b)

we can write the asymptotic expansion of the Fourier
representation in (25) for |ωn|  ∞ as

(A.3)

(A.4)

where the statistical average 〈…〉H is defined with
respect to the full density matrix of the grand canonical
ensemble. In the simplest approximation, we obtain the
first three moments of the Green’s functions as

(A.5a)

(A.5b)

(A.5c)

The expressions for the moments can be used to deter-
mine the unknown coefficients An(e) and Bn(e) in the
relation for Λσ(iω), Eq. (78), by also considering the

&c x x'– τ τ '–( ) Tĉxσ τ( )ĉx'σ' τ'( )〈 〉 H,=

ĉxσ τ( ) e
*τ

cxσe
–*τ ,=

ĉxσ τ( ) e
*τ

cxσ
† e

–*τ ,=

&σ x 0= iωn( ) gσ iωn( )=

=  1
iωn

--------
M1

iωn( )2
---------------–

M2

iωn( )3
---------------

M3

iωn( )4
---------------– …,+ +

Mn {cxσ
† [*[*… * cxσ,[ ]…]…] },〈 〉

H
,

n

=

          

M1 e ωc βe/2( )tanh+( ),–=

M1 e
2 ωc

2 W /4( )2 2eωc βe/2( )tanh+ + +=

+ ω0ωc βωc/2( ),coth

M3 e
3 3e ωc

2 ωcω0 βωc/2( )cosh W /4( )2+ +[ ]+{–=

+ ωc βe/2( ) 3e
2 3 W /4( )2 ωc

2 ω0
2+ + +[tanh

+ 3ω0ωc βω0/2( )coth ] } .
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asymptotic behavior of gσ(iω) in (66) for small values
of λσ(iω),

(A.6)

We then insert the asymptotic form of λσ(iω) from (78).
Comparison of the corresponding equations fixes the
coefficients An(e) and Bn(e) as

(A.7a)

(A.7b)

(A.7c)

(A.7d)
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Abstract—We propose a semiclassical theory of dc magnetotransport in a two-dimensional electron gas mod-
ulated along one direction with weak electrostatic modulations. We show that oscillations of the magnetoresis-
tivity ρ|| corresponding to the current driven along the modulation lines observed at moderately low magnetic
fields can be explained as commensurability oscillations. © 2003 MAIK “Nauka/Interperiodica”.
The theory of dc magnetotransport in modulated a
2D electron gas is well developed at present, and most
of the effects observed in such systems at low magnetic
fields have been explained by both quantum mechani-
cal (in a semiclassical limit) [1–7] and classical [8–12]
transport calculations, giving consistent results. One of
the few exceptions is the effect of oscillations of the
resistivity component ρ|| that corresponds to the current
driven parallel to the modulation lines. These oscilla-
tions were observed along with the commensurability
oscillations of the other resistivity component ρ⊥  corre-
sponding to the current driven across the modulation
lines. The ρ|| oscillations have the same period as the ρ⊥
ones and the opposite phase. The oscillations of ρ|| have
been explained as an effect that originates in quantum
oscillations of the electron density of states in the
applied magnetic field [1, 3].

On the other hand, the observed coincidence of peri-
ods of the low-field commensurability (Weiss) oscilla-
tions of the resistivity component ρ⊥  and the weaker
antiphase oscillations of ρ|| provides grounds for the
assumption that these oscillations have the same nature
and origin for both resistivity components. The purpose
of the present paper is to demonstrate that the most
important characteristic features of the low-field oscil-
lations of the resistivity ρ|| can be qualitatively repro-
duced within the semiclassical transport theory. To sim-
plify the following calculations, the anisotropy effects
in electron scattering are neglected and the relaxation
time approximation is used. It is also assumed that the
external magnetic field is moderately weak, such that
the electron cyclotron radius R is considerably smaller
than the electron mean free path l but larger than the

period of modulations λ, and that R @ . This pro-lλ

¶This article was submitted by the author in English.
1063-7761/03/9703- $24.00 © 20645
vides the preferred conditions for observation of com-
mensurability oscillations of transport coefficients of
the 2D electron gas.

We consider electrostatic modulation with a single
harmonic of the period λ = 2π/g along the y direction
given by

The screened modulation potential V(y) is parameter-
ized as

where EF is the Fermi energy of the 2D electron gas. We
examine weak modulations, and hence,  ! 1. The
electron current density in the 2D electron gas modu-
lated along the y direction also depends on y and can be
written as

(1)

where N = m/π"2 is the electron density of states on the
Fermi surface, and m and e are the effective mass and
charge of the electron. The electron velocity vector
v(y) has a direction of u(ψ) = (cosψ, sinψ) and a mag-
nitude of

where vF is the Fermi velocity in the unmodulated 2D
electron gas. The distribution function Φ(y, ψ) satisfies

∆E y( )
dV y( )

yd
--------------.–=

eV y( ) eEF gy,sin=

egl

j y( ) Ne2 ψd
2π
-------v y ψ,( )Φ y ψ,( ),

0

2π

∫=

v y( ) v F 1 e gysin+ ,=
003 MAIK “Nauka/Interperiodica”



 

646

        

ZIMBOVSKAYA

                                       

      
the linearized Boltzmann transport equation

(2)

where E is the electric field. The collision term C[Φ] is
written in the relaxation tune approximation with the
relaxation towards the local equilibrium distribution,

(3)

and the drift term is given by

(4)

where Ω is the electron cyclotron frequency. Linearized
transport equation (2) with the collision and drift terms
of form (3), (4) was used in [8] and agrees with the
transport equations in [9–11].

Following the standard approach [10], we write
Φ(y, ψ) as

(5)

where ρ0 is the Drude resistivity and τ is the relaxation
time. The homogeneous distribution function

describes the linear response of the 2D electron gas to
the field E in the absence of modulations, and the func-
tion χ(y, ψ) satisfies the transport equation

(6)

Here, as before, j0 is the current density for the unmod-
ulated 2D electron gas.

To proceed, we expand χ(y, ψ) in a Fourier series in
the spatial variable y, which leads to a system of differ-
ential equations for the Fourier components. Solving
these equations and keeping the terms on the order of or
larger than (egR)2, we obtain the approximation for the
distribution function χ(y, ψ)

(7)

D Φ[ ] C Φ[ ]+ E v,⋅=
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1
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v F
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Ωτ
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---egR gR ψcos( )cos gy---cos
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1
2
--- gR ψcos( ) 2gysinsin





,
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where

(8)

and J0(gR) is the Bessel function. Using the distribution
function obtained, we can easily calculate the electron
current density given by (1).

Keeping only the leading terms in the expansion of
χ(y, ψ) in powers of the small parameter (Ωτ)–1, we find
that only the jx component receives a correction due to
the modulations along the y direction, whereas the

component jy remains equal to  and does not depend
on spatial coordinates. This agrees with the continuity
equation

which is necessary in order to obtain correct results
for electron transport coefficients in a modulated 2D
electron gas [10].

To proceed, we define the effective conductivity ten-
sor σeff as

(9)

To justify the definition adopted in (9), we note that the
expressions for transport coefficients obtained with
either quantum mechanical or classical calculations
must be consistent at low magnetic fields. Quantum
mechanical calculations of magnetoconductivity [3, 6, 7]
yield an expression that passes to the classical conduc-
tivity tensor averaged over the period of modulations.
The latter is therefore an accurate semiclassical analog
of the conductivity calculated within the proper quan-
tum mechanical approach, and our definition of σeff
agrees with this.1 The same definition was previously
used in [11].

As a result, we find that only  is affected by the
modulations,

(10)

where σ0 = 1/ρ0 is the Drude conductivity of the elec-
tron system. The second term in (10) represents the

1 For electrostatic modulations, definition (9) actually gives the
same results for magnetoresistivity components as the alternative
definition ρeff〈j〉 ≡ E used in [10]. However, there is a significant
difference in results based on these definitions when magnetic
modulations are considered.

Q
J0 gR( )

1 J0
2 gR( )–

-------------------------=

jy
0

∇ j⋅ 0,=

j j y( )〈 〉 g
2π
------ j y( ), yd

0

2π/g

∫ σeffE.≡ ≡ ≡

σeff
xx

σeff
xx σ0

1 Ωτ( )2+
-----------------------

1
4
--- egR( )2σ0

J0
2 gR( )

1 J0
2 gR( )–

--------------------------,+=
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electron diffusion along the x direction caused by the
guiding center drift [8].

The effective magnetoresistivity tensor is here
defined as the inverse of the effective conductivity,

For the current driven across the modulation lines, the
corresponding resistivity is

(11)

Assuming that the current flows along the modulation
lines, we obtain

(12)

For moderately weak magnetic fields (gR @ 1), the
results in (12) and (13) describe oscillations of both
magnetoresistivity components periodic in the magni-
tude of the inverse magnetic field. The oscillations of ρ⊥
and ρ|| have the same period in 1/B and opposite phases,
which corroborates the experimental results in [1]. The
amplitude of the oscillations of ρ|| is considerably
smaller than that of ρ⊥ , and this also agrees with the
experiments of [1] and with the results of numerical
quantum mechanical calculations in the limit of a weak
magnetic field [3]. The result for the resistivity ρ⊥  also
agrees with the corresponding results in [8–11]
obtained within the classical magnetotransport theory.

However, expression (12) for ρ|| differs from the
well-known result in the current semiclassical theory.
To analyze this discrepancy, we now calculate the cur-
rent density taking into account the next terms in the
expansion of distribution function (7) in powers of
(Ωτ)–1. Keeping terms on the order of not less than
(egR/Ωτ)2, we find that the grating-induced correction
to the Drude conductivity tensor  is given by

(13)

Here, correction α(y) is on the order (egR)2. With some
formal transformations of transport equation (6), we
can represent 〈α (y)〉  in the form

(14)
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where G(y, ψ) satisfies the equation

(15)

This gives expressions for σeff and ρeff that are totally
consistent with the existing semiclassical theory [8–12].
However, expression (13), which is the starting point in
the derivation of these results, is obviously incorrect
because it violates the continuity equation for the cur-
rent density. This gives grounds to seriously doubt the
results of earlier works [8–12], especially those con-
cerning ρ||.

A detailed analysis shows that simplified transport
equation (2) can be successfully used in calculating the
leading terms in the expansions of transport coefficients
in powers of (Ωτ)–1, and expressions (12)–(14) are
therefore valid. To obtain the next terms in these expan-
sions, we must modify transport equation (2) in both
the drift and collision terms. For this, we must consis-
tently and systematically consider effects of the internal
electrochemical field arising due to grating-induced
inhomogeneity of the electron density. This is impor-
tant because redistribution of the electron density in the
presence of modulations provides the local equilibrium
of the system.2 Taking into consideration magnetic
modulations, we arrive at similar results [13].

Finally, the novel result in this paper is a qualitative
explanation of the low-field oscillations of the magne-
toresistivity component ρ|| in the 2D electron gas mod-
ulated along one direction within a semiclassical
approach. We have shown that these oscillations of ρ|| at
low magnetic fields are commensurability oscillations.
At low temperatures, with the quantum oscillations of
the electron density of states at the Fermi surface
resolved, Shubnikov–de Haas oscillations can be super-
imposed on the geometric oscillations of the magne-
toresistivity. However, this does not change the classi-
cal nature of the effect itself.

The author thanks G.M. Zimbovsky for help with
the manuscript.
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