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Abstract—The electronic spectrum of the three-dimensional Penrose lattice with “central” decoration by
atoms is investigated using the tight binding model with nearest-neighbor interaction. Inverse participation
ratios, higher moments of density probabilities, and fractal dimensions of the system are determined. The WFs
are critical (they have a power-law dependence on the distance) at all energies in the band and are multifractal
measures leading to the entire spectrum of the exponents. The results show that the system is in the critical state
of the metal-insulator transition. On critical WFs, the cubic root temperature dependence of the conductivity is
obtained. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Measurements of conductivity show that at low tem-
peratures, perfect quasicrystals (QCs) behave similarly
to conventional disordered conductors (disordered met-
als and heavily doped semiconductors in the vicinity of
the metal-insulator transition (MIT)), and the possibil-
ity of electron localization–delocalization (LD) in QCs
now is being actively discussed. It is known that in dis-
ordered conductors, the electrons can undergo a transi-
tion to the insulating state (Anderson localization) with
an increasing degree of disorder. The electron diffusion
coefficient takes a finite value in the conducting phase
and vanishes in the insulating phase, which is revealed
by crossing of the Fermi level at a certain value of
energy, called the mobility edge. Localization occurs
for a sufficiently strong disorder because of quantum
interference effects brought about by randomness of the
disorder. At a finite temperature, according to the scal-
ing theory of the Anderson transition with interacting
electrons [1], the correction to the conductivity in the
region L < LT and ξ < LT (where L is the sample size,

LT =  is the interaction length, and D is the dif-

fusion coefficient) is proportional to . In the region
where ξ @ LT > L, σ ~ T1/3. Sufficiently far on the insu-
lating side, the conductivity follows the Mott law for a
variable range hopping (VRH) conductivity, σ =

σ0 .

QCs have an extremely high resistivity value with a
pronounced negative temperature coefficient and a
finite small electronic contribution to the specific heat.
In contrast to the conventional disordered conductors,
QCs become more insulating with increasing sample

D"/T

T

e
T0/T( )1/4–
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1063-7761/03/9705- $24.00 © 1005
quality and annealing of defects. The quality measure
of QCs is the resistivity ratio 5 = ρ(4.2 K)/ρ(300 K).
The more perfect samples have higher 5, as well as 5
ranges from several units to two hundred and even
higher depending on the object and sample quality.

Empirically, R can therefore serve as a parameter to
control the MIT. The highest resistivity of all the known
QCs occurs in icosahedral i-Al-Pd-Re QCs, where the
value of resistivity at 4.2 K exceeds 1 Ω cm. Recent
experiments for i-Al-Pd-Re [2, 3] show that for samples
all having different ratios 5, a square root temperature

dependence of conductivity σ ~  is ordinarily
observed at T < 20 K. For samples with 5 on the order
20 or higher, this dependence is replaced by the σ ~ T1/3

law at T < 5 K. For samples with high 5 (~45 or
higher), a VRH conductivity obeying the Mott law, σ =
σ0exp(–(T0/T)1/4), or even the Efros–Shklowski law,
σ = σ0exp(–( /T)1/2), is observed. (The same temper-
ature dependences of σ were obtained by other authors
for samples with slightly different values of 5 [4, 5].)
We thus see that an obvious analogy exists in the behav-
ior of low-temperature conductivity in perfect QCs and
in disordered conductors near the MIT, although the
reasons for the electron localization in these objects are
different. This analogy is also valid at the microscopic
level.

In the theory of Anderson localization in disordered
conductors, one is interested in the effect of a random
potential on quantum-mechanical WFs (WFs). When
the randomness is weak, the WFs are extended through-
out the entire system (metallic side of the MIT),
whereas at sufficiently high disorder, all WFs become
localized (insulator side of the MIT). In the vicinity of
the critical point of the MIT, the WFs are neither
extended nor exponentially decaying; as numerical cal-
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culations show, they display scaling behavior and
decrease with distance following a power law (“criti-
cal” WFs) [6–8].

Discussions of the problem of localization of elec-
tronic states in QCs began immediately after their dis-
covery (see, e.g., [9]). Highly resistive QCs are usually
attributed to the existence of a deep pseudogap in the
density of electronic states (DOS) at the Fermi level
(DOS at the Fermi level in QCs is low but finite) and to
the tendency of the electrons at the Fermi level to be
localized. However, the presence of a pseudogap is not
sufficient to explain the high value of resistivity; the
main reasons for this are seen in the low electron mobil-
ity, which is obviously caused by the specific symmetry
of QCs. From the general standpoint, one can conclude
that due to the self-invariant structure of QCs, the WFs
must be critical. The critical behavior of the WFs in
QCs has been well established in the cases of one- and
two-dimensional QCs [10, 11–13]. However, for three-
dimensional systems (icosahedral QCs), the first publi-
cations were controversial [14–16], and even some
recent publications contain the claim that in the three-
dimensional case, the critical nature of WFs may be lost
to some extent [17, 18]. At the same time, other numer-
ical investigations of the electron spectra of low-order
periodic approximants of icosahedral QCs show that
most of the WFs are still critical, although the electron
spectrum does not come into contact with a hierarchical
gap structure typical of the Cantor set of measure zero
in one-dimensional QCs [19–21]. Thus, the problem
exists and more information on the electron spectra and
WFs is required in order to judge the electron localiza-
tion in three-dimensional (icosahedral) QCs.

In this paper, we present the results of a numerical
investigation of the scaling behavior of the electron
spectrum and WFs of the three-dimensional Penrose
lattice. The main information needed to characterize
the LD transition in QCs is obtained. The inverse par-
ticipation numbers (the second moments of the density
probabilities) and the generalized inverse participation
numbers (higher moments) are obtained. Fractal
dimensions of the spectrum are obtained and the critical
behavior of the WFs is studied. The results are impor-
tant for understanding the electron LD transition in
icosahedral QCs. This work is a continuation of the pre-
vious studies [19, 20], where the singularities of the
electron spectrum of icosahedral QCs and the effect of
small perturbations on it have been studied using tight-
binding and level-statistic methods. In [19], singulari-
ties of the electron spectrum were analyzed, and it was
shown that the spectrum is not Cantorian, but contains
a singular part. In [20], we studied the influence of
chemical disorder and phasons on the electron spec-
trum by changing on-site energies and transfer inte-
grals.

This paper is organized as follows. In Section 2, we
consider the main model approximations and calcula-
tion technique. In Section 3, the results of investigation
JOURNAL OF EXPERIMENTAL 
of the scaling behavior of the electron spectrum are dis-
cussed. Section 4 contains our conclusions.

2. MODEL APPROXIMATIONS
AND CALCULATION TECHNIQUES

The electronic spectrum of the three-dimensional
Penrose lattice (the Amman–Kramer network) treated
as a structural limit of a sequence of periodic cubic
approximants with increasing period has been studied
in the tight-binding approximation (TBA). The first five
cubic approximants to the icosahedral QCs (1/1, 2/1,
3/2, 5/3, and 8/5) were investigated. We considered the
central decoration of approximants with “atoms” of one
type, namely, atoms with one s-orbital per atom located
at rhombohedral centers. The unit cells of these approx-
imants contained 32, 136, 576, 2440, and 10 330 atoms,
respectively. The projection technique for construction
of approximants was described previously [19]. To
minimize the number of adjustable parameters of the
model, we used a Hamiltonian with constant hopping
integrals between nearest neighbors (atoms).

The Hamiltonian was expressed as

(1)

If atoms of only one type are present, the diagonal ele-
ments εi can be omitted. In this case, the Schrödinger
equation in the TBA can be written as

(2)

where the transfer integrals are set equal to a nonzero
constant tij = –1 only in the case of the nearest-neighbor
atoms. The periodic boundary conditions were used to
help reduce the size-dependence effects.

We study the localization problem in the TBA by
calculating the inverse participation numbers (moments
or 2q-norms of the wave function) defined by the rela-
tion

(3)

from which “participation ratios” and fractal dimen-
sions Dq can be determined. P is called the participation
number because it is the measure of the number of sites
that contribute to a state of a given energy Ei . The cor-
responding fraction p = P/N of all the sites is called the
participation ratio. The value of p for q = 2 is frequently
used in the problem of electron localization. The WFs

H i| 〉εi i〈 |
i

∑ i| 〉tij j〈 | .
i j≠
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were classified in accordance with their normalization
integrals. They are considered delocalized if

where d is the space dimensionality. They are assumed
localized when their finite norms exist, and are defined
as critical, Ψ ~ rα, when they cannot be normalized in
an infinite space and are not delocalized. Strongly
localized WFs correspond to the case where α = ∞, and
freely extended WFs correspond to the case where α =
0; Ψ can be normalized in the three-dimensional case
only for α ≥ 3/2. For extended states, the moments of

the WF depend on the system size as  ~ N1 − q,
as follows from Eq. (3). For exponentially decaying

localized functions, we have  ≈ N0. We can
therefore obtain the exponent of the WFs by analyzing
the system size dependence of the moments calculated
in a system of a sufficient size. For the relative number
of states with moments ||Ψ||2q ≤ Nγ, the integrated dis-
tribution function defined as

gives the integrated distribution of the exponent of
power-law decay for a specified system if the finite-size
correction is negligible. The procedure of finding the
exponent α has been described in [19] (see also [13] for
two-dimensional Penrose lattice), and we here note that
the behavior of the function γ(q, α) has been analyzed
for the first five approximants. As a result, the “localiza-
tion” exponent α was found for each approximant
under investigation.

From the relation Pq ~ , which applies near
the critical point, we obtained the fractal dimensions Dq

of the system (here, N is the number of atoms in the unit
cell of an approximant).

3. RESULTS AND DISCUSSION

The results of calculations are presented in Figs. 1–4.
The behavior of the inverse participation numbers, par-
ticipation ratios (Fig. 1), and fractal dimensions (Fig. 2)
shows that the electronic states are neither localized nor
delocalized in all the considered approximants (the first
five approximants were considered). Indeed, the
inverse participation numbers P are proportional to Nγ,
where γ must vanish for localized states because they fit
into a sample of a given size, and γ = 1 for states uni-
formly extended over the entire sample. Because the
calculated value of P does not satisfy both of these lim-
its, we can assume that the WFs, or rather their enve-

Ψ r( ) 2 rd

r R<
∫ Rd,∼

Ψ 2q
extended

Ψ 2q
exp.loc

I2q γ( )
1
N
---- θ γ ΨN 2qlog–( )

n 1=

N

∑=

N
Dq q 1–( )–
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lopes, drop as an inverse power of the distance Ψ ~ r –α.
We see next (Fig. 2) that the calculated dimensions Dq

of the system satisfy the inequalities D0 > D1 > D2 > …,
where for all approximants, D0 is equal to topological
dimension (3) and the dimensions are therefore not
simply fractal, but multifractal. The multifractality
regime means that the system is in the critical state and
the WFs at criticality are multifractal measures leading
to the entire spectrum of critical exponents. The spec-
trum of multifractal dimensions has universal features
for states in the vicinity of the MIT. We can therefore
conclude that the ground state of three-dimensional
perfect QCs is a critical state of the MIT.

The results in Fig. 3 show that the WF is critical at
all energies in the band. The dependence Ψ ~ r –α is typ-
ical of the critical state of the system. It is known that
systems without characteristic intrinsic length scales
obey homogeneity laws under rescaling. The absence
of length scales means that some observable F shows a
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Fig. 1. Inverse participation numbers P–1 and the participa-
tion ratio (q = 2) for the five rational approximants.
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Fig. 3. Distribution of the localization exponent α (Ψ ~ r−α) on the energy band. The eigenstates are critical at all energies.
typical homogeneity law F(sx) = skF(x), where k is
called the homogeneity exponent and s is a real number.
This implies that the rescaling of x can be compensated
by a rescaling of the observable F. For real-valued func-
tions F(x), the solution of the homogeneity equation is
a power-law function F(x) ~ xk. The function Ψ ~ r –α is
therefore a solution of the homogeneity equation with
the homogeneity exponent k = α, and we have a scale-
invariant behavior of the system, typical of critical
states. If F(x) is a functional of degree q of the observ-
ables involved in the definition of F(x) (i.e., moments in
our case), F(x) = F [q](x), then in the simplest situation,
k(q) defined by

is a linear function of q. If k(q) significantly deviates
from linearity, the scaling behavior of F(x) is anoma-
lous and the system therefore demonstrates multifractal
behavior [22]. Calculations show that the multifractal
behavior of the system becomes pronouncedly apparent
for higher order approximants (5/3).

Taking into consideration the behavior of the local-
ization exponent α, we see that α tends to a certain
value in the thermodynamic limit (N  ∞). It is
known from the theory of Anderson transitions that
near the transition into the dielectric (metallic) state,
the correlation (localization) length ξ tends to infinity.
As mentioned above, the theory of Anderson localiza-
tion for interacting electrons implies that σ ∝  T1/3 at the
critical point of the MIT, where ξ @ LT > L, with LT =

 being the interaction length [3]. For QCs, the
conventional picture of the Anderson localization in
disordered systems is not relevant. In QCs, the elec-

F q[ ] sx( ) sk q( )F q[ ] x( )=

D"/T
JOURNAL OF EXPERIMENTAL 
tronic states can be localized by the quasiperiodic
potential itself, and as we have shown (Fig. 3), the WFs
in three-dimensional QCs behave as in the critical state
of the MIT for conventional disordered systems. As
shown in [23], it is possible to obtain the σ ∝  T1/3

dependence by considering a VRH conductivity on the
critical WFs. Following the Mott procedure, we define
the tunneling integral on the critical WFs as

(4)

We then define the conductivity

where ∆E = 3/(4πR3N(EF)) is the minimal activation

I Ψ 2 R α– 2
2α Rln–( ).exp≡∼ ∼

σ I ∆E–( )/ kT( ),exp∝

Fig. 4. The localization exponent α (averaged over the
band) for different approximants.
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energy for hopping over the distance R. The expression

(5)

has a maximum when the exponent (–2α lnR – ∆E/kT)
has a minimum. Substituting ∆E and finding this mini-
mum, we obtain σ ∝  T2α/3. In order to obtain σ ∝  T1/3,
the exponent α must be equal to 0.5. The results of cal-
culations of α (Fig. 4) show that α decreases as the
order of the approximant increases. It is difficult to say
to what value α tends in the thermodynamic limit, but
the tendency is obvious. The results of calculations also
show that the value of α depends on the moment num-
ber, and the last expression for σ should involve some
realization of α. Therefore, the result coincides with the
experiment and predictions of the scaling theory of
localization for the critical region of the MIT.

4. CONCLUSIONS
The results of investigation of the scaling behavior

of the electron spectrum for several periodic approxi-
mants (1/1, 2/1, 3/2, 5/3, 8/5) of the three-dimensional
Penrose lattice with central decoration are presented.
The critical behavior effects are visible even for these
low-order approximants. The calculated WFs are criti-
cal for all energies in the band and are multifractal mea-
sures with the entire spectrum of critical exponents.
The electronic states are more localized at the Fermi
level than at the bottom of the band. The results show
that the background state of perfect regular icosahedral
QCs should be the critical state of the LD transition.
The nature of electron localization in icosahedral QCs
has been discussed previously [9, 19, 20], and it was
shown that this localization is unstable under small per-
turbations (phasons, chemical disorder, and magnetic
fields). The critical behavior of WFs can explain the
experimentally observed power-law dependence of
conductivity, σ ∝  T1/3. Calculating the VRH probability
on critical WFs, we immediately obtain the σ ∝  T2α/3

law. To coincide with experiment, the realization of
exponent α should be equal to 0.5 in the thermody-
namic limit. At the same time, it is impossible to obtain
the Mott law on critical WFs for VRH conductivity on
the insulating side of the MIT. New ideas are necessary.

We are grateful to the Russian Foundation for Basic
Research (project no. 03-02-16970) and the Royal
Swedish Academy of Sciences for financial support.

2α Rln–( ) ∆E/kT–( )expexp
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
REFERENCES

1. B. L. Altshuler and A. C. Aronov, JETP Lett. 37, 410
(1983).

2. J. Delahaye and C. Berger, Phys. Rev. B 64, 094203
(2001).

3. V. Srinivas, M. Rodmar, R. König, et al., Phys. Rev. B
65, 094206 (2002).

4. Chang-Ren Wang and Shui-Tien Lin, J. Phys. Soc. Jpn.
68, 3988 (1999).

5. C. R. Wang, T. I. Su, and S. T. Lin, J. Phys. Soc. Jpn. 69,
3356 (2000).

6. M. Schriber and M. Grussbach, Phys. Rev. Lett. 67, 607
(1991).

7. M. Grussbach and M. Schriber, Phys. Rev. B 51, 663
(1995).

8. A. D. Mirlin and F. Evers, Phys. Rev. B 62, 7920 (2000).
9. S. J. Poon, Adv. Phys. 41, 303 (1992).

10. P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, Pis’ma
Zh. Éksp. Teor. Fiz. 41, 119 (1985) [JETP Lett. 41, 145
(1985)].

11. P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, Zh. Éksp.
Teor. Fiz. 91, 692 (1986) [Sov. Phys. JETP 64, 410
(1986)].

12. M. Khomoto, B. Sutherland, and Chao Tang, Phys. Rev.
B 35, 1020 (1987).

13. H. Tsunetsugu, T. Fujiwara, K. Ueda, and T. Tokihiro,
Phys. Rev. B 43, 8879 (1991).

14. G. Kasner, H. Schwabe, and H. Bottger, Phys. Rev. B 51,
10454 (1995).

15. M. A. Marcus, Phys. Rev. B 34, 5981 (1986).
16. K. Niizeki and T. Akamatsu, J. Phys.: Condens. Matter

2, 2759 (1990).
17. E. S. Zijlstra and T. Janssen, Mater. Sci. Eng. A 294–296,

886 (2000).
18. E. S. Zijlstra and T. Janssen, Phys. Rev. B 61, 3377

(2000).
19. D. V. Olenev, E. I. Isaev, and Yu. Kh. Vekilov, JETP 86,

550 (1998).
20. Yu. Kh. Vekilov, E. I. Isaev, and S. F. Arslanov, Phys.

Rev. B 62, 14040 (2001).
21. T. Reith and M. Schriber, J. Phys.: Condens. Matter 10,

783 (1998).
22. M. Janssen, Int. J. Mod. Phys. B 8, 943 (1994).
23. Yu. Kh. Vekilov and E. I. Isaev, Phys. Lett. A 300, 500

(2002).
SICS      Vol. 97      No. 5      2003



  

Journal of Experimental and Theoretical Physics, Vol. 97, No. 5, 2003, pp. 1010–1014.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 124, No. 5, 2003, pp. 1127–1132.
Original Russian Text Copyright © 2003 by Zvyagin, Mironov, Ormont.

           

SOLIDS
Electronic Properties
The Effect of Exchange Interaction on the Energy Spectrum
of Electrons in Doped Intentionally Disordered Superlattices

I. P. Zvyagin, A. G. Mironov, and M. A. Ormont*
Moscow State University, Moscow, 119992 Russia

*e-mail: scon281@phys.msu.su
Received March 25, 2003

Abstract—The electron density distribution is calculated for a doped superlattice with controlled vertical dis-
order caused by fluctuations of the layer thicknesses (quantum well widths) in the growth direction. At low tem-
peratures, the exchange interaction leads to an increase in the scatter of quantum confinement levels and the
formation of a soft gap in the electron density distribution over quantum wells of the superlattice. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Intentionally disordered superlattices (IDSLs) rep-
resent the structures with quantum wells (QWs) in
which the distribution of quantum confinement (dimen-
sional quantization) levels can be modified by control-
ling the thicknesses of layers (QW widths) in the
growth stage. The creation of such structures makes it
possible to study the influence of the degree and type of
disorder on the electron states and their kinetic proper-
ties [1–4].

This paper addresses doped IDSLs. The results of
recent investigations of GaAs/GaAlAs-based structures
homogeneously doped with silicon revealed nontrivial
features in the low-temperature vertical (in the SL
growth direction) conductivity [5]. In particular, it was
found that the vertical conductivity weakly (nonexpo-
nentially) depends on temperature (“quasimetallic”
behavior) even in strongly disordered systems where
the width of a random distribution of the quantum con-
finement levels significantly exceeds the width of a
miniband in the corresponding ordered SL, so that
localization of all states in the miniband can be
expected. This feature was explained [5] in terms of the
Coulomb interaction between electrons.

Recently [6, 7], the equilibrium charge distribution
and the electron energy spectrum of an IDSL was cal-
culated in the Hartree approximation (screening of the
disorder) with allowance for the Coulomb fields caused
by the redistribution of electrons between QWs. It was
found that screening of the disorder leads to significant
narrowing of the distribution of quantum confinement
levels in the QWs. In the case of sufficiently strong dop-
ing [6], whereby all QWs in the structure are filled with
electrons, the analysis was performed by the method of
the local density functional using a standard variational
procedure. However, later [7] it was shown that, in the
general case (e.g., for moderate doping), the variational
problem is nonlinear. The algorithm for solving this
1063-7761/03/9705- $24.00 © 21010
problem in the Hartree approximation and the results of
numerical calculations can be found in [7].

It is known, however, that the Hartree approxima-
tion may be inadequate in the region of low densities,
where SLs can feature exchange–correlation effects
leading, for example, to the formation of electron
superstructures [8]. The aim of this study was to assess
the influence of the Coulomb exchange interaction on
the electron density distribution in doped composite
IDSLs.

2. CALCULATION 
OF CHARGE DISTRIBUTION

IN SUPERLATTICES
WITH CONTROLLED DISORDER

We consider an IDSL homogeneously doped with a
donor impurity. According to the standard model [6, 7],
we assume that QWs in this structure are separated by
barriers of constant width and that the positions of
quantum confinement levels, calculated in the approxi-
mation of isolated wells, fluctuate as a result of con-
trolled random fluctuations of the QW width. The trans-
fer of electrons from donors occurring inside the barri-
ers to the region of QWs leads to the appearance of an
internal electric field shifting the quantum confinement
levels. This shift is accompanied by a change in the
electron population of QWs, which implies the need for
self-consistent calculation of the electric fields and the
electron density distribution in QWs of the IDSL.

As in [6–8], we assume that QWs are narrow,
whereby the consideration can be restricted to the lower
subband of the quantum confinement levels in each
QW. Indeed, for a GaAs/GaAlAs superlattice with the
usual QW width of L = 6 nm (corresponding to the
maximum of the distribution of quantum confinement
levels), the difference in energy between edges of the
first and second subbands is about 150 meV. At the
003 MAIK “Nauka/Interperiodica”
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same time, the characteristic energies (the scatter of
levels and the miniband width in the corresponding reg-
ular SL) usually do not exceed 30–40 meV. In addition,
the small width of QWs allows the charge of carriers in
a QW to be approximately considered as concentrated
in a plane (see [6–8]). This model is analogous to the
Visscher–Falikov model of charged layers used for the
description of screening related to the charge redistri-
bution in the planes of layers [9]. In this approximation,
the action of both an external field applied in the growth
direction and the internal field appearing as a result of
the charge redistribution between QWs of the SL can be
readily described by considering “classical” shifts of
the quantum confinement levels Vi in the QWs [8].

The problem of finding the equilibrium charge den-
sity distribution with allowance for the Coulomb inter-
action is conveniently solved by the method of local
density functional (see [6–8]). For calculating the elec-
tron density distribution over QWs of an IDSL, we per-
formed direct minimization of the free energy consid-
ered as a nonlinear electron density functional with
allowance for both Hartree and exchange contributions
to the system energy.

In the approximation of narrow QWs, the electron
density can be expressed as

(1)

where z is the coordinate in the growth direction; νi is
the two-dimensional (2D) electron concentration in the

ith layer; νi = ; σ is the projection of the elec-
tron spin; i = 1, 2, …, N; N is the total number of QWs
in the given structure; and zi is the coordinate of the ith
QW. Thus, the electron density functional is defined on
a discrete manifold ν = {νi}, merely as a function of
many variables νi .

At T = 0, the system energy per unit area can be writ-
ten as [8]

(2)

where  is the energy level in the ith QW in the
absence of free electrons (seeding energy); ρ0 = m/(π"2)
is the 2D density of states in the QW; Vij is the electron
interaction energy calculated within the framework of
the classical Hartree approximation (with allowance for
interaction between electrons and a homogeneous pos-
itive background); Vij = –2πe2|zi – zj|/ε; ε is the permit-
tivity (for simplicity, we assume the permittivities of
barriers and QWs to be the same); e is electron charge;

n z( ) ν iδ z zi–( ),
i

∑=

ν iσσ∑

E ν( ) Ei
0( )ν i

i

∑ ν i σ,
2

2ρ0
--------

i σ,
∑+=

+
1
2
--- Vij ν i ν0–( ) ν j ν0–( )

i j,
∑ Cx

e2

ε
----ν i σ,

3/2 ,
i σ,
∑–

Ei
0( )
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ν0 = Ndd is the average 2D electron density in the layer;
d is the average period of the structure; zi = id; Nd is the
volume concentration of the doping impurity; and Cx =
(32/9π)1/2 ≈ 1.06. The last term in the right-hand side of
Eq. (2) describes the exchange interaction to the total
energy of the system.

As is known [10], the ground state of the electron
gas at low temperatures and not too large electron den-
sities in the QW is spin-polarized (the Stoner ferromag-
netism of a 2D electron gas). The spin-ordered state is
realized when the concentrations νi are below a certain

critical value νp = 8(3 – 2 )(Cxe2ρ0/ε)2 (see, e.g., [8]).
In an IDSL with inhomogeneous distribution of elec-
trons over the QWs, it is possible that the electron gas
is polarized in some QWs, while being unpolarized in
others (with sufficiently large electron densities). We
consider the case of sufficiently weak doping, whereby
the electron states are ordered with respect to spin in all
QWs of the given IDSL. The distribution of electrons
over QWs was determined by minimizing the free
energy (2) considered as a nonlinear electron density
functional.

The algorithm of minimization was as follows. Let
ν = {νi↑, νi↓} be a certain seeding electron density dis-
tribution over the QWs. Selecting two QWs, a and b,
we can write the following expressions for the corre-
sponding electron densities:

(3)

Here,  = (νa + νb)/2 is the average QW population in
the given pair, xa = (νa↑ – νa↓)/νa is the degree of elec-
tron gas polarization in the well a, and u = νab = (νa –

νb)/2  is the asymmetry of the QW population in the
given pair. The free energy (2) can be rewritten as fol-
lows:

2

νa↑
νab

2
------- 1 u+( ) 1 xa+( ),=

νa↓
νab

2
------- 1 u+( ) 1 xa–( ),=

νb↑
νab

2
------- 1 u–( ) 1 xa+( ),=

νb↓
νab

2
------- 1 u–( ) 1 xa–( ).=

νab

νab

E Ea
0( ) Eb

0( )+( )νab Ea
0( ) Eb

0( )–( )νabu+=

+
νab

2

4ρ0
-------- 1 u+( )2 1 xa

2+( ) 1 u–( )2 1 xb
2+( )+{ }

+ Vab νab 1 u+( ) ν0–( ) νab 1 u–( ) ν0–( )
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(4)

where  is the part of the total energy independent of
the densities νa and νb:

(5)

+ Vaj νab 1 u+( ) ν0–( ) ν j ν0–( )
j b≠
∑

+ Vbj νab 1 u–( ) ν0–( ) ν j ν0–( )
j a≠
∑

– Cx
e2

ε
----νab

3/2 1 u+( )3/2 1 xa+( )3/2 1 xa–( )3/2+( ){

+ 1 u–( )3/2 1 xb+( )3/2 1 xb–( )3/2+( ) } Ẽab,+

Ẽab

Ẽab
ν iσ

2

2ρ0
--------

i a b,≠
σ

∑ Ei
0( )ν i

i a b,≠
∑+=

+
1
2
--- Vij ν i ν0–( ) ν j ν0–( )

i a b,≠
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∑

– Cx
e2

ε
---- ν i↑

3/2 ν i↓
3/2+( ).

i a b,≠
∑
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Since the electron density is positive, the above
quantities obey the condition –1 ≤ xa, xb, u ≤ 1. The free
energy minimization was performed taking into
account that, for νi < νp , the electron gas in the ith QW
is polarized, xi = 1, while for νi > νp , the densities of
electrons with up and down spins are equal (νi↑ = νi↓)
and xi = 0. A minimum of the free energy as a function
of u can be achieved both inside and on the boundaries
of the [–1, 1] segment. Inside this segment, the points
of extrema of the E(u) function can be determined from
the condition

(6)

In the absence of exchange, the value of u(0) corre-
sponding to a minimum of E(u) within the [–1, 1] seg-
ment is

dE u( )
du

-------------- Ea
0( ) Eb

0( )–( )νab=

+
νab

2

2ρ0
-------- 1 u+( ) 1 xa

2+( ) 1 u–( ) 1 xb
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– 2Vabνab
2 u Vbj Vaj–( )νab ν j ν0–( )

j a b,≠
∑–

–
3
2
---Cx

e2

ε
----νab

3/2 1 u+( )1/2 1 xa+( )3/2 1 xa–( )3/2+( ){

+ 1 u–( )1/2 1 xb+( )3/2 1 xb–( )3/2+( ) } 0.=
(7)u 0( ) 2
νab

-------

ρ0 Eb
0( ) Ea

0( )–( ) ρ0 Vbj Vaj–( ) ν j ν0–( ) 1/2( )νab xa
2 xb

2–( )+
j a b,≠
∑+

1 xa
2 xb

2
4ρ0Vab–+ +

---------------------------------------------------------------------------------------------------------------------------------------------------------.=
A solution to Eq. (6) with allowance for exchange
was found by the method of successive approximations,
using (7) as the initial approximation. Accordingly, the
system energy was successively minimized for each
pair of QWs with allowance for both spin-ordered and
nonpolarized states in the wells: for each QW pair (i, j),
the total energy was minimized with respect to the con-
centrations νi↑, νi↓, νj↑, νj↓. If the iterative procedure
converges to a point u inside the [–1, 1] segment, this u
value corresponds to an extremum of the function E(u).
The energy can also reach a minimum on the bound-
aries of the segment; the corresponding u value was
taken on the boundary where the energy minimum was
lower. Then the energy was minimized with respect to
populations of the next QW pair and so on (in each
stage, the total energy of the system usually decreases).
Upon trying all possible pairs of QWs, the procedure
was repeated until the system energy ceased to change.
The independence of the final charge density distribu-
tion of the initial approximation indicated that the
obtained distribution corresponds to the ground state of
the system studied.

3. DISCUSSION OF RESULTS

The electron density distributions ν = {νi} were cal-
culated, with allowance for the Coulomb fields caused
by the redistribution of electrons between QWs, for a
given seeding Gaussian distribution of the quantum
confinement levels,

(8)

Figure 1 shows the 2D electron density distributions
in QWs calculated without allowance for the exchange
energy (Hartree approximation, Fig. 1a) and with
allowance for such exchange (Hartree–Fock approxi-
mation, Fig. 1b). These calculations were performed
for the following parameters: ρ0 = 3 × 1013 eV–1 cm–2;

P0 Ei
0( )( ) 1

2πw
---------------

Ei
0( ) Em–( )2

2w2
----------------------------–

 
 
 

.exp=
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Fig. 1. Plots of the 2D electron density versus QW number calculated (a) without and (b) with allowance for the exchange interac-
tion.
w = 10 meV; ε = 10; d = 33 Å; Nd = 1017 cm–3. These
values correspond to a spin-ordered state of electrons in
all QWs, whereby all densities νi are below the critical
level νp ≈ 2.9 × 1011 cm–2. As can be seen from Fig. 1,
allowance for the exchange leads, on the one hand, to a
decrease in the number of populated QWs and, on the
other hand, to an increase in the 2D densities in the
occupied QWs, the levels of which correspond to the
low-energy tail of the distribution.

Previously [6, 7], it was demonstrated that allow-
ance for the Coulomb interaction in the Hartree approx-
imation results in the fact that the step in the density of
states becomes steeper; that is, the distribution of levels
becomes narrower due to the vertical screening caused
by the redistribution of electrons between QWs of the
IDSL. As is known [1], the 2D density of states ρ(E)
(per QW) is related to the distribution function P(E) as

(9)

so that the density of states determines the number of
levels with energies below E.

The results of calculations of the electron density
distribution (Fig. 1) can be interpreted in terms of the
one-particle energies. An expression for the chemical
potential is as follows:

(10)

ρ E( )
m

π"
2

--------- P E( ) E,d

∞–

E

∫=

µ ∂E
∂ν i

-------
ν i

ρ0
----- Ei

0( )+= =

+ Vij ν j ν0–( )
i

∑ 3
2
---Cx

e2

ε
---- 

  ν i
1/2.–
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The effective energies of the quantum confinement lev-

els  (edges of the lower subbands) can be defined

using a relation of the type µ = ∂E/∂νi = νi/ρ0 + .
Accordingly, the number of effective levels with the

energies below E determines the effective density of

states .

Figure 2 shows the seeding density of states ρ0(E)
calculated without allowance for the Coulomb interac-
tion for the distribution (8) (curve 1), the density of
states ρ(E) calculated in the Hartree approximation

(curve 2), and the effective density of states  cal-
culated with allowance for exchange (curve 3). As can

Ẽi

Ẽi

Ẽi

ρ̃ E( )

ρ̃ E( )

–0.01 0 0.01 0.02–0.02 0.03 0.04

E, eV

0

100

200

300

400

ρ/ρ0

2

31

Fig. 2. Plots of the IDSL density of states versus energy
(measured relative to the chemical potential): (1) the seed-
ing density of states of a doped SL; (2) the density of states
in the Hartree approximation; (3) the effective density of
states with allowance for exchange.
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be seen, the presence of exchange leads to a certain
broadening of the distribution function (cf. curves 2
and 3), that is, to an increase in the degree of disorder.

Figure 1 reveals another important feature in the dis-
tribution of electrons over QWs of an IDSL: the
exchange significantly decreases the proportion of
QWs with small electron densities. This implies that
there appears a soft gap in the electron density distribu-
tion over QWs of the SL, the width of this gap being
about 2 × 1010 cm–2. The presence of such a gap is
manifested by a plateau in the density of states (Fig. 2,
curve 3). According to distribution (9), this is accompa-
nied by a dip in the distribution of renormalized energy
levels. For the parameters adopted in this calculation,
the width ∆ of a step in the density of states is about
1 meV.

The appearance of a gap in the electron density is
related to the fact that exchange leads to a rigid regime
of QW occupation by electrons with increasing average
electron density in the structure. This situation resembles
the one that takes place in the absence of disorder, during
the formation of electron superstructures in SLs [8]. The
features of QW occupation in the SLs with disorder can
be illustrated in the case of a double QW. Evidently, at
a small average density ν0, only the lower QW is occu-
pied (ν = 2ν0), while the upper QW is empty (ν = 0).
Accordingly, the system energy as a function of the
electron density in the upper QW has a single minimum
at ν = 0 (Fig. 3, curve 1). As the average density ν0
increases, the upper QW becomes populated as well.

0.5 1.0 1.5 2.0 2.50
–5

ν, 1010 cm–2

0

5

10

15

∆E, rel.units

1

2

3

Fig. 3. A change the electron energy ∆E in an asymmetric
double QW versus electron density ν in the upper QW for
various average densities ν0: (1) small ν0, the upper QW is
empty; (2) critical average density, the upper QW starts to
fill; (3) ν0 above the critical level.
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The electron density in the upper well increases in a
jumplike manner as soon as the energy of the side min-
imum becomes equal to that at ν = 0 (curve 2). At large
average densities ν0, the side minimum becomes the
main (curve 3) and then the only one. For the parame-
ters adopted, a minimum value of the density ν corre-
sponding to the onset of filling of the upper QW is
about 1.2 × 1010 cm–2. This estimate agrees reasonably
well with the gap in the electron density obtained by
numerical calculations.

It should be noted that the effects related to the
exchange interaction are manifested only at a suffi-
ciently low temperature. Indeed, the exchange energy
decreases with increasing temperature [11, 12] and, in
addition, the temperature broadening of the step in the
electron energy distribution leads to a more homoge-
neous electron density distribution over QWs. Accord-
ingly, an increase in the temperature makes the effects
of exchange interaction significantly less pronounced.
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Abstract—We present summarized data on the tunneling emission in p–n heterostructures based on GaN and
on a series of cubic AIIIBV semiconductors, including GaAs, InP, GaSb, and (Ga, In)Sb. The emission in p–n
heterostructures of the InGaN/AlGaN/GaN type in a spectral interval from 1.9 to 2.7 eV predominates at small
currents (J < 0.2 mA). The position of maximum "ωmax in the spectrum approximately corresponds to the
applied potential difference U: "ωmax = eU. The tunneling emission is related to a high electric field strength in
GaN-based heterostructures. The radiative recombination probability is higher in the structures with piezo-
electric fields. The observed spectra are compared to the spectra of tunneling emission from light-emitting
diodes based on GaAs, InP, and GaSb. The experimental results for various semiconductors emitting in a broad
energy range (0.5–2.7 eV) are described by the equation "ωmax = eU = 0.5–2.7 eV. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Tunneling radiative recombination in the p–n junc-
tions in semiconductor structures, accompanied by the
emission of light quanta with energies below the band-
gap width, is a phenomenon inverse to the interband
optical absorption in a strong electric field (Franz–
Keldysh effect). This phenomenon was previously
studied in cubic semiconductor compounds of the
AIIIBV type [1, 2]. Later [3–5], it was demonstrated that
the tunneling emission band predominates in the spec-
tra of light-emitting diodes (LEDs) based on
InGaN/AlGaN/GaN heterostructures with a single
InGaN quantum well operating at small currents. The
model of diagonal tunneling developed in [1, 2] was
successfully used for description of the emission spec-
tra of the above GaN based LED structures [3, 4]. The
spectra and electrical characteristics of such LEDs
were analyzed in detail in [5, 6]. More recently, tunnel-
ing radiative recombination at low currents was also
studied in some other GaN-based LED structures [7–9].
It was demonstrated that this phenomenon plays an
important role in the structures featuring high electric
fields in active two-dimensional layers.

This paper continues the previous study [10] and
summarizes the experimental results obtained for GaN
heterostructures grown in various laboratories. All data
were treated within the framework of the diagonal tun-
neling theory. The role of the piezoelectric fields is dis-
cussed. It is established that tunneling emission, both in
hexagonal GaN-based structures and in p–n junctions
based on cubic AIIIBV semiconductors (GaAs, InP,
1063-7761/03/9705- $24.00 © 21015
GaSb), in a broad spectral range from IR to UV can be
considered from a common standpoint.

2. EXPERIMENTAL RESULTS

We summarize the data obtained using LEDs based
on InGaN/AlGaN/GaN heterostructures grown using
metalorganic vapor phase epitaxy (MOVPE) by various
research groups, including Nichia Chemical [3–6],
Hewlett-Packard [7, 8], CRHEA–CNRS [9], and
UniRoyal, LumiLeds [10, 11]. Special attention was
devoted to the emission spectra measured at small cur-
rents (J < 0.2 mA, j ≤ 0.2 A/cm2).

The typical emission spectra of LEDs are presented
in Fig. 1. Measured at small currents, the spectra dis-
play the high-energy fundamental band clearly sepa-
rated from a longwave band. Figure 2 shows the evolu-
tion of the LED spectrum depending on the applied
voltage U [9, 10]. At high currents (J > 10 mA), the fun-
damental violet emission band predominates. The max-
imum of a longwave band significantly shifts when the
applied voltage is varied (the black circles in Fig. 2
indicate positions of the energy level "ω = eU). The
integral intensity Φ of the longwave band exponentially
depends on U as depicted in Fig. 3. Figure 4 shows how
the position of the longwave band maximum varies
with the applied voltage for various LEDs. As can be
seen, the peak energy "ωmax is approximately equal to
the applied voltage: "ωmax = eU. The low-energy emis-
003 MAIK “Nauka/Interperiodica”
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sion band is related to the tunneling radiative recombi-
nation.

3. DISCUSSION OF RESULTS

The theory of tunneling radiative recombination [1, 2]
was originally developed for homogeneous p–n junc-

1.81.6 2.0 2.2 2.4 2.6 2.8 3.0

E, eV

10–4

10–3

10–2
I, rel. units 458 nm

eU = 2.25 eV

eU = 2.02 eV

497 nm

a

b

Fig. 1. Electroluminescence spectra of LEDs based on
InGaN/AlGaN/GaN heterostructures with quantum wells
operating at low currents J: (a) blue LED of Nichia Chemi-
cal [3–5]; (b) green LED of Hewlett-Packard [8]. Open cir-
cles show the approximation according to formula (1) with

the parameters E0 = 77 meV, E = 0.5 MV/cm,  = 2.7 eV,

and mkT = 26 meV for blue LED; E0 = 260 meV,

E = 2.8 MV/cm;  = 2.7 eV, and mkT = 31 meV for green

LED. Arrows indicate the positions of maxima of the funda-
mental and tunneling emission bands.
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Fig. 2. Evolution of the emission spectrum of LEDs based
on InGaN/AlGaN/GaN heterostructures (CRHEA samples
[9, 10]) in response to the diode current varied in a broad
range. Black circles indicate positions of the energy level
"ωmax = eU.
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tions. Assuming that the electric field in the active
region is constant, the tunneling emission spectrum
according to this model can be described by the
equation

(1)

where Eg is the effective bandgap width and m is a
parameter depending on the effective mass ratio. The
denominator E0 in the exponent is determined from the
theory of the Franz–Keldysh effect,

(2)

where  is the reduced effective mass, E is the elec-
tric field strength assumed to constant in the region of
overlap of the electron and hole wave functions. The
integral emission intensity Φ exponentially depends on
the applied voltage:

(3)

We used Eq. (1) to describe the spectra of hetero-
junctions in crystals of the wurtzite type. Let us con-
sider changes in the theory that are necessary to
describe heterostructures of the InGaN/AlGaN/GaN
type with InGaN quantum wells. Figure 5 shows the
energy band diagram of such a structure. The electric
field E in this system depends on the levels of doping in

I "ω( )
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 exp 1–

---------------------------------------------∝

× 4
3
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  ,exp

E0 "/(2mcv* )
1/2( )eE[ ]

2/3
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Fig. 3. Plots of the integral intensity Φ(U) ∝  exp(eU/E0)
versus applied voltage U: (a) for blue LED (Fig. 1a) with
E0 = 67 meV; (b) for green LED (Fig. 1b) with E0 = 71 meV.
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TUNNELING RADIATIVE RECOMBINATION IN p–n HETEROSTRUCTURES 1017
the p and n regions (NA and ND, respectively), on the
AlGaN layer thickness, and on the widths of GaN bar-
riers and quantum wells. Assuming that the contact
potential difference φc in the structure is on the order of
≈3 V and the total length of the space charge region is
w ≈ 80–100 nm [6–8], the electric field can be estimated
as

(4)

The width w in relation (4) depends on the distribu-
tion of charged impurities (sharp versus smooth) in a
complex heterostructure. The values of  in the struc-
tures under consideration are significantly higher than
typical electric field strengths in the p–n junctions in Si
or GaAs. Note that E enters into the exponent of Eq. (1)
and that the tunneling emission probability critically
depends on this quantity.

The effective field strength E also depends on the
piezoelectric fields and the spontaneous polarization
fields Ep in the barriers and quantum wells. In the quan-
tum wells, the polarization fields are antiparallel to the
field of a p–n junction in the structures grown on Ga-
polar (0001) c-planes. In the barriers, the fields are par-
allel to the latter field (due to charging of the hetero-
boundaries). The tunneling effects depend on the over-
lap of the electron and hole wave functions under
AlGaN barriers. For this reason, the tunneling emission
is more probable in the structures featuring strong elec-
tric fields in the barriers caused by polarization.

For the InGaN/AlGaN/GaN structures under con-
sideration, the values of electric fields were estimated at
Ep ≈ 0.5 × 106 V/cm [11–14], which is on the same
order of magnitude as the E value in Eq. (4). The exper-
imental data presented in Fig. 2 were obtained for sam-
ples strongly doped with Si in the wells on the n side of
the junction. This fact confirms the model of emission
related to electron tunneling under barrier of the p
region. In Fig. 5, this model is illustrated by a thick
arrow pointing from the n region of the InGaN quantum
well to the p region of the AlGaN barrier.

In a hexagonal semiconductor, the value of the
reduced mass in Eq. (2) depends on the crystallo-
graphic direction:

(5)

where  and  are effective masses in the conduc-
tion and valence bands, respectively. For the analysis,
we adopted the values of  for the c axis in
InxGa1 − xN, corresponding to the fundamental band
position for each sample (by data from [15],  =

(0.20–0.15)m0 for x = 0–0.2). The value of  was
taken equal to the effective mass for the upper valence

Eφc
φc/w 0.4–0.3( ) 106 V/cm.×≈≈

Eφc

mcv* 1/mc* 1/mv*+( ) 1–
,=

mc* mv*

mc*

mc 0001〈 〉*

mv*
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band of AlyGa1 – yN at the point Γ (  = 0.27m0);
tunneling from lower valence bands was ignored.

Approximation of the experimental tunneling emis-
sion spectra by Eq. (1) with allowance for the changes
considered above is illustrated in Fig. 1. The shortwave
(blue) band was separated from the spectra in [5, 6].
The voltage U in Eq. (1) was taken equal to than mea-
sured on the structure, U = V, which is possible at small
currents. In selecting the bandgap for the approxima-
tion, this value was varied within the limits of the effec-
tive bandgap Eg for the quantum wells.

As for the parameter E0 in Eq. (1) selected for better
approximation of the spectra, this value was varied
within E0 = 0.15–0.4 eV. This interval is significantly
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Fig. 4. A plot of the position of maximum of the tunneling
emission band versus applied voltage U for various LEDs
based on InGaN/AlGaN/GaN heterostructures: (1) CRHEA,
violet (2001); (2) UniRoyal, violet (2001); (3–5) Nichia
Chemical, blue (1996); (6) Hewlett-Packard, green (2000).

– –

+

h– ωmax = eU + δ

Fn
h– ω

eU = Fn – Fp
Eg

*

+

Fp

Ev

Ec

E

Fig. 5. The energy band diagram of an InGaN/AlGaN/GaN
heterostructures with a single InGaN quantum well with
allowance for piezoelectric polarization. The arrow indi-
cates a tunneling transition from the quantum well to the p
region with emission of the "ω quantum (diagonal tunnel-
ing); Fn − Fp is the difference of Fermi quasilevels.
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higher than the value E0 ≈ 0.07 eV determined from the
dependence of the integral intensity on the applied volt-
age (Eq. (3) [5–7], see Fig. 3). The discrepancy can be
explained as follows: the longwave slope of the spectrum
depends on the tunneling emission at the band tails,
which are not taken into account by the theory [1, 2]. The
integral intensity determined by the density of states in
the bands agrees better with the theory of parabolic
bands in the junction plane and is less dependent on the
tails of the density of states.

The electric field E was determined from descrip-
tions of the tunneling radiative recombination spectra.
This value amounts to E = (1.2–5) × 106 V/cm for E0 =
0.15–0.4 eV selected above for approximation of the
spectra, and to E = (0.3–0.5) × 106 V/cm for E0 = 0.07–
0.08 eV, corresponding to the dependence of the inte-
grated intensity Φ on the applied voltage U. The latter
value is more realistic and agrees better with the values
obtained from the capacitance measurements and the
charge distributions (formula (4)).

The theory [1, 2] predicts the dependence of the tun-
neling emission peak position on the temperature. The
value of "ωmax – eU depends on the statistical factor
exp(("ω – eU)/mkT) – 1 in Eq. (1). According to this,
the difference "ωmax – eU is positive at low tempera-
tures (kT ! E0) and negative at high temperatures
(kT @ E0). The maximum "ωmax coincides with eU for
kT = (1/3)E0 [2]. For E0 = 0.07–0.08 eV, we obtain
"ωmax = eU at room temperature (kT = 0.026 eV), in
good agreement with the experimental results (Fig. 4).

The theoretical value of the electric field in the
structure takes into account neither inhomogeneities of
the heterojunctions nor fluctuations of the potentials

0.5 1.0 1.5 2.0 2.5 3.00

0.5

1.0

1.5

2.0

2.5

3.0
1
2
3
4
5
6
7
8

U, V

h– ωmax, eV

h– ωmax = eU

Fig. 6. A plot of the position of maximum of the tunneling
emission band versus applied voltage U for various LEDs
based on AIIIBV semiconductors: (1) InGaN (CRHEA, vio-
let, 2001); (2) InGaN (UniRoyal, violet, 2001); (3) InGaN
(Nichia Chemical, blue, 1996); (4) InGaN (Hewlett-Packard,
green, 2000); (5) GaAs (1966) [1]; (6) InP (1966) [1];
(7) GaSb (1969) [1, 16]; (8) InGaSb (1975) [17].
JOURNAL OF EXPERIMENTAL 
related to variations of the InGaN composition. The
tunneling is more probable at “hot spots” where the
electric field strength is maximum. Previously [7, 8],
we observed the tunneling emission bands in LEDs
with a low quantum yield. This is apparently related to
a nonradiative tunneling caused by the presence of
inhomogeneities in the samples with low quantum
yield.

In the spectra of high-efficiency LEDs grown at the
LumiLeds laboratory [11], no tunneling emission band
was observed at small currents. The samples contained
four InGaN quantum wells with GaN barriers doped
with Si donors. The donated electrons compensate for
the polarization charges in such LED structures. These
data confirm the model in Fig. 5, in which the diagonal
tunneling is more probable due to high piezoelectric
fields in the barriers.

It is interesting to compare the results for GaN-
based structures to the earlier data reported on the tun-
neling emission in other (cubic) AIIIBV semiconductors,
including GaAs [1], InP [1], GaSb [1, 16], and
(Ga, In)Sb [17]. The plot of "ωmax versus U presents
remarkable results: the experimental points fit to the
theoretical curve "ωmax = eU in a broad range of wave-
lengths from IR to UV.

4. CONCLUSIONS

Tunneling radiative recombination (diagonal tun-
neling), being a phenomenon inverse to the Franz–
Keldysh effect, is observed in the p–n junctions of
GaN-based heterostructures with quantum wells at low
currents and high electric field strengths (E = (0.3–1) ×
106 V/cm). The probability of this phenomenon
increases in AlGaN/InGaN heterojunctions with pro-
nounced piezoelectric and spontaneous polarizations.

The experimentally observed emission spectra of
GaN-based LEDs at low currents are described well by
the theory of tunneling emission. The position of max-
imum "ωmax of the tunneling emission band at room
temperature approximately corresponds to the potential
difference U applied to the InGaN/AlGaN/GaN struc-
ture: "ωmax = eU in the range from 1.9 to 2.7 eV.

Tunneling radiative recombination is a basic phe-
nomenon for the p–n junctions in both homo- and het-
erostructures based on the direct-band semiconductors
of the AIIIBV type in a broad spectral range from IR to
UV ("ω = eU = 0.5–2.7 eV).
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Abstract—Structural fluctuations  (in the squares of the electric field strength) and  (in current density),
averaged over the sample volume, are considered in various inhomogeneous conducting systems. Explicit

expressions are obtained for  and  in the case of a weakly inhomogeneous medium as well as in an

approximation linear in one of the components. The critical behavior of quantities  and  for a system with
the metal–insulator phase transition is considered in the framework of the standard phenomenological similar-
ity hypothesis. Structural fluctuations are determined and tabulated in the course of a numerical experiment on
disordered lattices in a wide range of variation of the parameters of the problem. © 2003 MAIK “Nauka/Inter-
periodica”.
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1. INTRODUCTION

The distribution of current and field is obviously
nonuniform in an inhomogeneous conducting medium.
As a result, the value of the squared electric field E
strength or current density j averaged over the sample
volume is not equal to the square of the average value
〈E〉  or 〈j〉 . For this reason, structural fluctuations of the

field, , and of the current, , calculated by formu-
las (3) and (4) from Section 2, can serve as the charac-
teristics of the nonuniformity in the distribution of
these quantities and also (indirectly) of the system
inhomogeneity. In order to avoid confusion, it should

be emphasized that quantities  and  are deter-
mined by the geometry (structure) of the medium and
are not associated with temperature fluctuations, which
also exist in homogeneous systems and have, as a rule,
a small order of magnitude.

Systems with the metal–insulator phase transition
are strongly inhomogeneous; it can be expected that
field and current fluctuations in such systems are espe-
cially strong in the vicinity of the critical concentration
(percolation threshold) pc . For example, it follows from
the exact expressions derived by Dykhne [1] for 2D
two-component system with critical composition

(p = pc = 1/2) that the values of  and  increase
indefinitely for h = σ2/σ1  0, where σi (i = 1, 2) is
the conductivity of the ith component. According to [2],
an indefinite increase in fluctuations must also be
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observed for p  pc and h = 0 both in the 2D and in

the 3D case. General expressions for the quantities 

and  obtained in [3] connect these quantities with the
dimensionless effective conductivity f. The correspond-
ing relations make it possible to generalize the results
obtained in [1, 2] and provide a complete description of
the critical behavior of structural fluctuations in field
and current.

We will consider the structural fluctuations in field,

, and current, , in a wide range of variation of the
concentration p and the parameter h = σ2/σ1. Explicit

analytic expressions will be obtained for and  in
the case of a weakly inhomogeneous medium as well as
in the approximation linear in the impurity concentra-
tion. The general relations derived in [3] are used to
determine (in the framework of the similarity hypothe-
sis [4]) the critical behavior of structural fluctuations.

We will also consider the results of a numerical
experiment for disordered lattices (the problem of asso-
ciations), in which the effective conductivity σe and the

quantities  and  were determined. Structural fluc-
tuations are represented in graphic form in the entire
range of variation of concentration p for a number of
fixed values of parameter h. From the behavior of quan-

tities  and  in the vicinity of the percolation
threshold pc , their critical indices are determined,
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which match the corresponding indices of effective
conductivity.

It follows from the analytic and numerical results

obtained in this study that structural fluctuations 

and  in a certain range of parameters p and h are con-

nected via a certain relation:  =  in the 2D case

and  = 2  in the 3D case. The substitution of the

general expressions for  and  (see formulas (13)
and (14) in the text) into these equalities leads to differ-
ential equations for the dimensionless effective conduc-
tivity f. The solutions to these equations are expres-
sions coinciding with the corresponding formulas
for f, derived in the so-called theory of an effective
medium [5].

2. GENERAL RELATIONS

In the problem of conductivity of a heterogeneous
medium, it is necessary to solve the equations for direct
current, 

(1)

where E = E(r) is the electric field strength, j = j(r) is
the current density, and  is the conductivity tensor
for the medium at point r. The effective conductivity
tensor  is defined in the usual manner:

(2)

Here, 〈…〉  denotes averaging over volume V of the sam-
ple for V  ∞. Apart from conductivity, it is also
important to analyze the quantities

(3)

(4)

which will be called the structural fluctuations of the
electric field strength and of current density.

In view of the familiar identity (see, for example, [1])

(5)

the effective conductivity of an isotropic medium can
be written in the form

(6)

For an N-component system (composite), in accor-
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curlE 0, div j 0, j σ̂ r( )E,= = =

σ̂ r( )

σ̂e

j〈 〉 σ̂ e E〈 〉 .=

∆E
2 E E〈 〉–( )2〈 〉

E〈 〉( )2
--------------------------------,=

∆ j
2 j j〈 〉–( )2〈 〉

j〈 〉( )2
----------------------------,=

E j⋅〈 〉 E〈 〉 j〈 〉 ,⋅=

σe
σE2〈 〉
E〈 〉( )2

----------------.=
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dance with relation (6), we have

(7)

Here, 〈…〉 (i) indicates an integral over the volume Vi of
the ith component, divided by the sample volume V, and
σi is the conductivity of the ith component. It also fol-
lows from relation (5) that

(8)

We can verify the validity of this equality, multiplying
it by σi and summing over all values of i. This leads to
the identity

in which the left-hand side is equal to σe in accordance
with relations (7), while the right-hand side is equal to
σe by virtue of the Euler theorem on homogeneous
functions. Expressions (3) and (4) combined with
Eqs. (7) and (8) lead to

(9)

or

(10)

For an isotropic binary system, we can write the
effective conductivity σe in the form

(11)

where p is the concentration (fraction of the occupied
volume) of the first component. In this case, expres-
sions (8)–(10) give [3]

(12)

(13)

(14)

Eliminating derivative f ' from Eqs. (13) and (14), we
obtain the relation [2]

(15)

σe σiψi, ψi

i 1=

N

∑ E2〈 〉 i( )
/ E〈 〉( )2.= =

ψi

∂σe

∂σi

--------.=

σiψi

i

∑ σi

∂σe

σi

--------,
i

∑=

∆E
2 ψi 1, ∆ j

2–
i

∑ 1

σe
2

----- σi
2ψi 1–

i

∑= =
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2 ∂σe

∂σi
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i

∑ 1, ∆ j
2–

1

σe
2

----- σi
2∂σe

∂σi

-------- 1.–
i

∑= =

σe p; σ1 σ2,( ) σ1 f p h,( ), h σ2/σ1,= =

ψ1 f h f ', ψ1– f ', f ' ∂ f p h,( )/∂h,≡= =

∆E
2 f 1 h–( ) f ' 1,–+=

∆ j
2 f 1 f–( ) h 1 h–( ) f '–[ ] f 2– .=

h∆E
2 f 2∆ j

2+ 1 f–( ) f h–( ).=
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For h = 0, relation (15) implies (for p ≥ pc) that

(16)

Since f(p, 0)  0 as p tends to the critical concentra-

tion pc , we have   ∞ for h = 0 and p  pc + 0.

For a two-dimensional randomly inhomogeneous
system with the critical composition (p = pc = 1/2), we
have, in accordance with [1],

(17)

Substituting this relation into Eqs. (13) and (14), we
obtain

(18)

which coincides with the corresponding result obtained
in [1]. It follows from relation (18) that in this case

 =   ∞ for p = pc and for h  0. It should be
noted that expressions (17) and (18) are valid for arbi-
trary values of h.

For an anisotropic N-component medium, instead of
relation (8), we have

(19)

where 〈…〉 (i) is the same as in relation (7),  = ( )γδ,

and  = ( )αβ . In this case, we have

(20)

(21)

It should be noted that the quantities 〈E2〉  and 〈j2〉  in the
anisotropic case depend on the direction of 〈E〉 .

3. WEAKLY INHOMOGENEOUS MEDIUM

For an isotropic weakly inhomogeneous medium,
we have, in accordance with [6],
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where D is the dimension of space (D = 2, 3). Using the
method developed in [6], we can also find the structural
fluctuations

(23)

(24)

Expressions (22)–(24) are valid for an arbitrary coordi-
nate dependence of conductivity σ; 〈…〉  is the average
over the sample volume or, which is the same, over the
ensemble. In particular, for an N-component medium,
we have

(25)

where pi is the concentration of the ith component.

For a two-component system, the system of equa-
tions (22)–(24) leads to

(26)

(27)

(28)

where h is the same as in Eq. (11). Formulas (26)–(28)
are valid to within the terms on the order of (1 – h)2

inclusively in the entire concentration range. In partic-
ular, for D = 2 and p = 1/2, we have, in accordance with
Eqs. (26)–(28),

The same results follow from exact formulas (17) and
(18) for |1 – h | ! 1. It can easily be verified that the sub-
stitution of Eq. (26) into the general relations (13)
and (14) leads to expressions (27) and (28).

For a weakly inhomogeneous anisotropic medium,
the method developed in [6] (see also [7]) gives

(29)
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Here, m is the unit vector and the bar in Eq. (30)
denotes averaging over angles. If the principal axes of
tensor  coincide with the Cartesian coordinate
axes, matrix qαβ is diagonal and

(31)

where n(α) are the depolarization coefficients of the
ellipsoid with the semiaxes

(32)

In the same approximation, we find that

(33)

(34)

Here, qαβ is the same as in Eq. (30) and

(35)

(36)

It can be verified that, in the case of an isotropic
medium, expressions (22)–(24) follow from Eqs. (29),
(33), and (34). It should be noted that results (22)–(24)
are also valid for disordered lattices (the problem of
associations), e.g., for a square lattice for D = 2 and for
a simple cubic lattice for D = 3.

4. APPROXIMATION LINEAR
IN CONCENTRATION

For an arbitrary relation between the conductivities
of the components of a medium, the application of the
method described in the preceding section for deter-

mining the quantities σe ,  and  involves certain
difficulties since in this case we must sum an infinite
series in perturbation theory. However, we can calcu-
late the effective conductivity σe and the structural fluc-

tuations  and  in a quite general form for a binary
system with a small concentration of one of the compo-
nents.

Let us suppose that an isotropic medium with con-
ductivity σ1 contains an inclusion (body) of an arbitrary
shape with conductivity σ2, which is in an external uni-
form electric field E0. At large distances from the body,
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the expression for potential ϕ(r) has the conventional
dipole form

(37)

in the 3D case and

(38)

in the 2D case. Here,

(39)

where v  is the volume (area for D = 2) of the body
(inclusion). In the problem of permittivity, p is the elec-
tric dipole moment of the body and  is the dimension-
less tensor of dipole polarizability, which depends on
the shape of the inclusion and on the ratio ε2/ε1 of the
permittivities of the components. In the problem of
conductivity considered here, we must replace the ratio
ε2/ε1 by h = σ2/σ1.

In the approximation linear in the concentration c of
the second component, the effective conductivity of the
binary system has the form (see, for example, [8])

(40)

Here and below, we assume that the inclusions are iden-
tical and oriented at random. In the same approxima-
tion, for quantities 〈E〉  we have (cf. [8])

(41)

where E0 is the electric field strength in the medium in
the absence of inclusions. While deriving formulas (40)
and (41), we have used relations (A.5) and (A.6).

The expression for function ψ1 (see Eq. (7)) can be
transformed as

(42)

where p = V1/V. Taking into account relation (A.17), we

r ∞: ϕ E0 r⋅ p r⋅
r3

---------- …+ +–=

r ∞: ϕ E0 r⋅ 2
p r⋅
r2

---------- …+ +–=

pα ΛαβE0β, Λαβ v ααβ,= =

α̂

σe σ1 1 c
4π
D
------Trα̂+

 
 
 

.=

E〈 〉 E0 1 c
4π
D2
------Trα̂–

 
 
 

,=

E〈 〉( )2ψ1
1
V
--- E2 Vd

V1

∫=
1
V
--- E E〈 〉–( )2 Vd

V1

∫≡

+ 2 E〈 〉 1
V
--- E Vd

V1

∫ p E〈 〉( )2,–
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obtain

(43)

Using relation (A.5), we find that

(44)

In relations (43) and (44), summation is carried out over
all Na inclusions so that c = vNa/V. In expression (43),
Ve = Va – v, where Va = V/Na is the sample volume per
inclusion (Va @ v). Substituting Eqs. (43) and (44) into
relation (42), we obtain

(45)

Accordingly, for ψ2, we obtain, taking into account
Eq. (A.12),

(46)

Substituting relations (45) and (46) into Eq. (9), we
finally obtain

(47)

(48)

It can easily be seen that expressions (40) and (45)–(48)
satisfy relations (12)–(14). For a “weakly inhomoge-
neous” body (|σ1 – σ2 |/σ1 ! 1), we have, in accordance
with [8], the relation

(49)

which is valid to within terms on the order of (1 – h)2,
inclusively. The substitution of this relation into

1
V
--- E E〈 〉–( )2 Vd

V1

∫ 1
V
--- E E〈 〉–( )2 Vd

Ve

∫
a

∑=

=  c
4π
D
------ 1 h+

1 h–
------------Trα̂ h

h∂
∂

Trα̂+ 1+
 
 
 

E〈 〉( )2.–

1
V
--- E Vd

V1

∫ E〈 〉 1
V
--- E Vd

v

∫
a

∑–=

=  1 c
4π
D
------ 1

1 h–
-----------Trα̂+

 
 
 

E〈 〉 .

ψ1 1 c
4π
D
------ Trα̂ h

h∂
∂

Trα̂–
 
 
 

.+=

ψ2 c
4π
D
------

h∂
∂

Trα̂ .=

∆E
2 c

4π
D
------ Trα̂ 1 h–( )

h∂
∂

Trα̂+
 
 
 

,=

∆ j
2 c

4π
D
------ Trα̂ h 1 h–( )

h∂
∂

Trα̂+
 
 
 

.–=

Trα̂ 1
4π
------ D 1 h–( ) 1 h–( )2+[ ] ,–=
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Eqs. (40), (47), and (48) leads to expressions (26)–(28)
in the approximation linear in c = 1 – p.

For inclusions of a spherical (circular for D = 2)
shape, ααβ = αδαβ , where

consequently, it follows from Eqs. (40), (47), and (48)
(c ! 1) that

(50)

(51)

Expression (50) is in accordance with the result
obtained in [6]. In the discrete case (problem of associ-
ations), results (50) and (51) are valid for square
(D = 2) and simple cubic (D = 3) lattices.

5. CRITICAL REGION

For a randomly inhomogeneous system with a
metal–insulator phase transition, the dimensionless
effective conductivity f in the critical region (h ! 1,
|τ| ! 1, where τ = (p – pc)/pc) in the framework of the
similarity hypothesis has the form [4] (see also [9, 10])

(52)

(53)

(54)

(55)

Here, ∆0 = hs/t is the size of the smearing region [4] and
pc is the critical concentration (percolation threshold).
Critical indices t, s, and q are positive (s < 1) and are
connected via relation (55), which is a consequence of
the similarity hypothesis [4]. The numerical coeffi-
cients in expansions (52)–(54) are on the order of unity;
coefficients A0, A1, a0, a, and B1 are positive and B2 < 0.
In accordance with relation (17), s = 1/2 and a0 = 1 in
the 2D case. It follows from the reciprocity relation [1]

α D
4π
------ 1 h–

D 1– h+
----------------------;–=

f 1 cD
1 h–

D 1– h+
----------------------,–=

∆E
2 cD

1 h–
D 1– h+
---------------------- 

 
2

, ∆ j
2 D 1–( )∆E

2 .= =

τ 0, ∆0 ! τ  ! 1:>

f τ t A0 A1
h

τ t /s
------ …+ +

 
 
 

,=

τ  ! ∆0: f hs a0 a1
τ

hs/t
------- …+ +

 
 
 

,=

τ 0, ∆0 ! τ  ! 1:<

f
h

τ–( )q
------------ B1 B2

h

τ–( )t /s
-------------- …++

 
 
 

,=

t
s
-- t q.+=
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that t = q, A0B1 = 1, A0B2 + A1B1 = 0, … for a 2D sys-
tem [9].

Taking into account relations (52)–(54), we obtain
from Eqs. (13) and (14) the critical behavior of the

structural fluctuations  and  (we write only the
principal terms in the corresponding expansions):

(56)

(57)

(58)

here,

(59)

If relation (55) is satisfied, we have t' = t and q' = q

so that the critical indices of the quantity  (as well as

) above and below the phase-transition point (out-
side the smearing region) turn out to be identical. For a

2D system, in addition, the ratio /  ≈ const in this
case in all three regions where formulas (56)–(58) are
valid.

6. RESULTS OF NUMERICAL EXPERIMENT

The numerical experiment on disordered lattices
(problem of associations) was carried out in the stan-
dard manner [5] (see also [9, 10]). We ascribe potential
Vr to each lattice site r. The conductivity of the bond
between neighboring sites assumed the value σ1 = 1
with probability p (“pure” bonds) and σ2 = h with prob-
ability 1 – p (“defective” bonds). For a certain fixed
concentration p, a “realization” was observed; i.e., the
corresponding fraction of 1 – p bonds in the initially
pure lattice was randomly replaced by defective bonds.
Then the system of Kirchhoff equations for preset
boundary conditions was solved on a computer. The
potentials Vr obtained in this way were used for calcu-
lating various effective parameters of the lattice model,
e.g., the dimensionless conductivity f and the structural

fluctuations  and . (The procedure of the numeri-
cal experiment is described in greater detail in [9, 10].)
In the 3D case, we considered a simple cubic lattice
with a size of 51 × 51 × 51 sites, while in the 2D case,
we used a square lattice with a size of 401 × 401 sites.

∆E
2 ∆ j

2

τ 0, ∆0 ! τ  ! 1:>

∆E
2 A1

τq'
------, ∆ j

2 1
A0
------ 1

τ t
---,≈≈

τ  ! ∆0: ∆E
2 sa0

1

h1 s–
----------, ∆ j

2 1 s–
a0

----------- 1

hs
----,≈≈

τ 0, ∆0 ! τ  ! 1:<

∆E
2 B1

τ–( )q
------------, ∆ j

2 B2

B1
----- 1

τ–( )t'
------------;–≈≈

q' t
s
-- t, t'– t

s
-- q.–= =

∆E
2

∆ j
2

∆E
2 ∆ j

2

∆E
2 ∆ j

2
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While analyzing the critical region for each fixed con-
centration, we carried out 20 realizations for D = 3 and
15 realizations for D = 2. The results of the numerical

experiment for quantities  and  are shown in
Figs. 1–4.

In the 2D case, the processing of the results of

numerical experiment for  and  in the critical
region gives the following estimates for indices and
coefficients:

(60)

(61)

these estimates refine the results obtained in [9] to a
certain extent. The value of index t corresponds to data
available from the literature.

∆E
2 ∆ j

2

∆E
2 ∆ j

2

t 1.3 0.1, t'± 1.3 0.2, s± 0.50 0.05,±= = =

q 1.3 0.1, q'± 1.3 0.2,±= =

A0 = 1.8 0.2, A1±  = 1.0 0.2, a0±  = 1.00 0.05,±
B1 0.60 0.05, B2± 0.8– 0.3;±= =

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

20

p

60

100

40

80

120

140

160

12

3

4

5

∆j
2

pc

Fig. 1. Quantity  as a function of concentration p for five

values of argument h: h = 10–1 (1), 10–2 (2), 10–3 (3),
10−4 (4), and 10–5 (5). Two-dimensional case.

∆ j
2

SICS      Vol. 97      No. 5      2003



1026 BALAGUROV, KASHIN

                    
Since q' ≈ q and t' ≈ t, we have /  ≈ const in the
concentration ranges indicated in relations (56) and
(58). This gives

(62)

Finally, from the ratio of the quantities (τ >

0)/ (τ < 0) and (τ > 0)/ (τ < 0) taken at points
symmetric relative to τ = 0 (outside the smearing
region), we obtain

(63)

It should be noted that the accuracy in determining the
combinations of coefficients (62) and (63) is higher
than the accuracy in determining the coefficients them-
selves (see Eq. (61)).

In the 3D case, the processing of the numerical

experiment for  and  gives

(64)

(65)

∆E
2 ∆ j

2

A0A1 1.80 0.06,
B2

B1
2

-----± 2.20– 0.05.±= =

∆E
2

∆E
2 ∆ j

2 ∆ j
2

A1

B1
------ 1.65 0.05, A0

B2

B1
-----± 2.30– 0.05.±= =

∆E
2 ∆ j

2

t 2.0 0.1, t'± 2.0 0.1, s± 0.7 0.1,±= = =

q 0.8 0.1, q'± 0.8 0.1,±= =

A0 0.4 0.1, A1± 3.0 0.2, a0± 1.0 0.1,±= = =

B1 0.7 0.2, B1± 1.0– 0.6.±= =

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

1.0

p

1.5

2.0

2.5
∆j

2 /∆E
2

1

2

3

4

5

pc

0.5

Fig. 2. Ratio /  as a function of concentration p for the

same values of argument h as in Fig. 1. Two-dimensional
case.

∆ j
2 ∆E

2
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From the ratio of the values of  (as well as ) above
and below the phase-transition point, we obtain, fol-
lowing an analogy with (63),

(66)

Estimates (64) and (65) are in accordance with the results
obtained in [10]. The values of critical indices (64) cor-
respond to the available data from the literature.

Here, we calculate the values of  and  only for
h < 1. However, the system under investigation is ran-
domly inhomogeneous; the macroscopic properties of
this system do not change as a result of simultaneous
substitutions p  1 – p and σ1  σ2. This means,
in particular, that the effective conductivity satisfies the
equality σe(p; σ1, σ2) = σe(1 – p; σ2, σ1), which leads to
the following relation:

(67)

∆E
2 ∆ j

2

A1

B1
------ 4.2 0.1, A0

B2

B1
-----± 0.6– 0.2.±= =

∆E
2 ∆ j

2

     

f p h,( ) hf 1 p– 1/h,( ).=

                    

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

20

40

 

p
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160

180

200

220
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4

∆j
2
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Fig. 3. Quantity  as a function of concentration p for four

values of argument h: h = 10–1 (1), 10–2 (2), 10–3 (3), and
10−4 (4). Three-dimensional case.

∆ j
2
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For a low concentration p of the first component, we
obtain from Eq. (67) taking into account relation (50)

(68)

For structural fluctuations  and , it follows from
relations (13) and (14) combined with equality (67) that

(69)

For small values of p, we obtain from Eq. (51) with the
help of Eq. (69)

(70)

p ! 1: f h 1 pD
1 h–

D 1–( )h 1+
------------------------------+

 
 
 

.=

∆E
2 ∆ j

2

∆E
2

p 1/h,( ) ∆E
2 1 p– h,( ),=

∆ j
2

p 1/h,( ) ∆ j
2 1 p– h,( ).=

p ! 1:

∆E
2 pD

1 h–
D 1–( )h 1+

------------------------------
2

, ∆ j
2 D 1–( )∆E

2 .= =

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

2

p

4

6

8

10

12

14

16

18

20

22

1

2

3

4

∆j
2 /∆E

2
pc

Fig. 4. Ratio /  as a function of concentration p for the

same values of argument h as in Fig. 3. Three-dimensional
case.

∆ j
2 ∆E

2
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Relations (67) and (69) make it possible to determine

quantities f as well as  and  for h > 1 if these quan-
tities are known for h < 1 in the entire range of concen-
tration.

For small values of h and for arbitrary p, we have

Since f(p, 0) ≡ 0 for p < pc, in this case we obtain the fol-
lowing expression for function ψ1 from relations (12):

(71)

Calculating ψ1 in accordance with definition (7), we
obtain the second derivative ∂2f/∂h2 for h = 0 in the
entire interval 0 < p < pc (Figs. 5 and 6).

7. INTERPOLATION FORMULAS

In accordance with formulas (18), (28), (51), and

(70), the values of  and  in all limiting cases for
D = 2 are equal:

(72)

∆E
2 ∆ j

2

h   0:  f p h , ( ) f p 0 , ( ) h ∂
 

f ∂ 
h

 ------  
 

 

0

 
h

 

2

 
2
----- ∂

 

2

 
f 

∂
 

h
 

2
 --------  

 
 

0

 … .+ + +=

h 0: ψ1
h2

2
----- ∂2 f

∂h2
-------- 

 
0

, p pc.<–≈

∆E
2 ∆ j

2

∆ j
2 ∆E

2 .=
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Fig. 5. Second derivative f '' = ∂2f/∂h2 for h  0 as a func-
tion of concentration p (p < pc). Two-dimensional case.
ICS      Vol. 97      No. 5      2003
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If we assume that this equality is valid for intermedi-
ate values of p and h also, the substitution of expres-
sions (13) and (14) into Eq. (72) gives the following
differential equation for function f:

(73)

Dividing Eq. (73) by (1 – h)2f 2, we note that this equa-
tion can be written in the form

whence

(74)

where C is the integration constant depending on
parameter p.

Relation (74) is a quadratic equation in f; the solu-
tion to this equation is the quantity

(75)

Constant C can be determined by comparing Eq. (75)
with expression (26) for f in the case of a weakly inho-

1 h–( ) f 2 h+( )∂f
∂h
------ f f 2 1–( )+ 0.=

h∂
∂ 1

1 h–
----------- f

h
f
---– 

  0,=

1
1 h–
----------- f

h
f
---– 

  C,=

f
1
2
--- G 1 h–( ) C2 1 h–( )2 4h+[ ] 1/2

+{ } .=

0.05 0.10 0.15 0.20 0.25 0.300
p

–50

–40

–30
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–10

0

–60

f '' × 10–3

h = 10–6

Fig. 6. Quantity f '' for h  0 as a function of p (p < pc).
Three-dimensional case.

pc
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mogeneous medium. The corresponding “boundary
condition,” which is valid for any D, can be written in
the form

(76)

This gives C = 2p – 1 so that we finally obtain

(77)

Thus, equality (72) for function f leads to an expression
coinciding with the formula in the theory of an effective
medium (see, for example, [5], where the case D = 2
corresponds to z = 4).

It follows from the results of the numerical experi-
ment (see Fig. 2) that equality (72) is satisfied approxi-
mately for h ≥ 0.1 so that formula (77) for such values
of h is a satisfactory interpolation expression for all
functions f in the entire range of concentrations p. Tak-
ing into account relation (67), we can write the condi-
tion of applicability of Eq. (77) in the form 0.1 ≤ h ≤ 10
for all values of p.

For an arbitrary D, in the limiting cases (28), (51),
and (70), we have

(78)

Substituting expressions (13) and (14) into Eq. (78), we
obtain the following differential equation for f:

(79)

Dividing Eq. (79) by (1 – h)2f 2, we reduce this equation
to the form

whence we obtain the following expression for f:

(80)

Constant C can be determined from condition (76):

(81)

∂f
∂h
------

h 1=

1 p.–=

f p
1
2
---– 

  1 h–( ) p
1
2
---– 

  2

1 h–( )2 h+
1/2

,+=

D 2.=

∆ j
2 D 1–( )∆E

2 .=

1 h–( ) D 1–( ) f 2 h+[ ] ∂f
∂h
------

+ D 1–( ) f 1+[ ] f f 1–( ) 0.=

h∂
∂ 1

1 h–
----------- D 1–( ) f D 2–( ) h

f
---––

 
 
 

0,=

f
1

2 D 1–( )
--------------------- C 1 h–( ) D 2–+{=

+ C 1 h–( ) D 2–+( )2 4 D 1–( )h+[ ] 1/2 } .

C pD D 1–( ).–=
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For a 3D system, relations (80) and (81) imply that

(82)

This expression also coincides with the corresponding
formula for f from [5], where the case D = 3 corre-
sponds to z = 6.

The results of numerical experiment (see Fig. 4)
show that equality (78) for D = 3 is valid to within a few
percent for h ≥ 0.1 so that, in accordance with [5], expres-
sion (82) for these values of h satisfactorily describes
function f for all values of p in the case of the problem of
associations. Taking into account relation (67), we find
that the condition of applicability of Eq. (82) is the ine-
quality 0.1 ≤ h ≤ 10. If, however, the value of h does not
satisfy these inequalities, it follows from Fig. 4 that
equality (78) holds in a fairly wide range of concen-
trations (for D = 3) and interpolation formula (82) is
applicable.

8. LAYERED MEDIUM

It is also interesting to consider structurally (geo-
metrically) anisotropic media whose anisotropy is
determined by the shape, distribution, and orientation
of inclusions with an isotropic conductivity of the
components. For such a system, we have, instead of
relation (8),

(83)

Here, σαe (α = x, y, z) are the principal values of the
effective conductivity tensor. Index α on E(α) indicates
that field 〈E(α)〉  is directed along axis α. Accordingly,
instead of relation (10), we obtain

(84)

It should be noted that structural field and current fluc-
tuations for such media depend on the direction of the
average field strength 〈E(α)〉 .

The limiting case of a structurally anisotropic
medium is a layered medium, whose local isotropic
conductivity depends on only one coordinate, e.g., z:
σ = σ(z). For such a medium, the quantities σαe , as well

as  and , can be determined in the general form.

f
1
4
--- 3 p 1– 2 3 p–( )h+{=

+ 3 p 1– 2 3 p–( )h+( )2 8h+[ ] 1/2 } , D 3.=

ψα i
E α( )( )2〈 〉

i( )

E α( )〈 〉 2
--------------------------≡

∂σαe

∂σi

-----------.=

∆αE
2 ∂σαe

∂σi

-----------
i

∑ 1,–=

∆α j
2 1

σαe
2

-------- σi
2∂σαe

∂σi

-----------
i

∑ 1.–=

∆αE
2 ∆α j

2
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If field 〈E〉  is directed along the x axis, E(z) = E = const
and we have

(85)

Accordingly, for 〈E〉  || z, the condition j(z) = j = const is
preserved so that

(86)

It can easily be verified that expressions (85) and (86)
for an N-component medium satisfy relations (84). For
a two-component layered medium, Eqs. (85) and (86)
lead to

(87)

(88)

APPENDIX

Let us suppose that a body having a conductivity σ2
is in a medium with conductivity σ1 and is placed in a
uniform electric field of strength E0. The asymptotic
expression for the corresponding potential has the
form (37)–(39). We will prove that a series of integrals
containing the electric field strength E = E(r) can be

expressed in terms of the dipole polarizability tensor .

1. Let us consider the vector

(A.1)

where integration is carried out over the entire space.
Since the integrand in Eq. (A.1) differs from zero only
within the body, we have, on the one hand,

(A.2)

where integration is carried out over the volume v  of
the body. On the other hand, in view of the equality

σxe σ〈 〉 , ∆xE
2 0,= =

∆xj
2 σ σ〈 〉–( )2〈 〉 / σ〈 〉( )2.=

σze
1
σ
--- 

 
1–

,=

∆zE
2 σ 1– σ 1–〈 〉–( )2〈 〉

σ 1–〈 〉( )2
---------------------------------------, ∆zj

2 0.= =

σxe pσ1 1 p–( )σ2, ∆xE
2+ 0,= =

∆xj
2 p 1 p–( )

σ1 σ2–( )2

pσ1 1 p–( )σ2+[ ] 2
----------------------------------------------,=

σze

σ1σ2

pσ2 1 p–( )σ1+
---------------------------------------,=

∆zE
2 p 1 p–( )

σ1 σ2–( )2

pσ2 1 p–( )σ1+[ ] 2
----------------------------------------------, ∆zj

2 0.= =

Λ̂

A j σ1E–( ) V ,d∫=

A σ1 σ2–( ) E V ,d

v

∫–=
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divj = 0, quantity A can be written in the form

(A.3)

Transforming this integral into a surface integral (over
a sphere of radius R  ∞) and evaluating this integral
with the help of the asymptotic forms (37)–(39), we
obtain

(A.4)

A comparison of Eqs. (A.2) and (A.4) gives

(A.5)

Evaluating by the same method the integral

we obtain

(A.6)

where D is the dimension of the space; integration in
Eq. (A.6) is carried out over the entire space.

2. Let us now consider the integral 

(A.7)

where the symbol tilde marks the quantities pertaining
to the same problem, but with changed conductivities
(σ1   and σ2  ). Since the integrand in
Eq. (A.7) differs from zero only within the body, we
have

(A.8)

where  = / . On the other hand, the quantity (A.7)
can be written in the form

(A.9)

Transforming this integral into a surface integral and
evaluating it with the help of the asymptotic forms (37)–
(39) and analogous expressions for , we obtain

(A.10)

where  = (h) and  = ( ). A comparison of

Aα xβ∂
∂∫ xα jβ σ1ϕδαβ+( )dV .=

A 4πσ1p 4πσ1Λ̂E0.= =

E Vd

v

∫ 4π
1 h–
-----------Λ̂E0, h–

σ2

σ1
-----.= =

E E0–( ) Vd∫ — ϕ ϕ 0–( ) V ,d∫–=

ϕ0 r( ) E0 r,⋅–=

E E0–( ) Vd∫ 4π
D
------p–

4π
D
------Λ̂E0,–= =

J
1
σ1
----- j Ẽ⋅ 1

σ̃1

----- j̃ E⋅–
 
 
 

V ,d∫=

σ̃1 σ̃2

J h h̃–( ) E Ẽ⋅( ) V ,d

v

∫=

h̃ σ̃2 σ̃1

J ∇ 1
σ1
----- jϕ̃ 1

σ̃1

----- j̃ϕ–
 
 
 

V .d∫–=

ϕ̃

J 4πE0 Λ̂ Λ̃–( )E0,
ˆ

=

Λ̂ Λ̂ Λ̃ˆ Λ̂ h̃
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Eqs. (A.8) and (A.10) gives

(A.11)

Using the limiting transition   h, we obtain the
relation

(A.12)

3. Finally, let us consider the integral

(A.13)

where  is the same as in Eq. (A.7). The quantity (A.13)
can be written in the form

(A.14)

Transforming this integral into a surface integral and
evaluating it with the help of the asymptotic relations
for ϕ(r) and , we find that I = 0. Consequently, it
follows from Eq. (A.13) that

(A.15)

On the left-hand side of this equality, integration is car-
ried out over the entire space except the volume v  of the
body. Evaluating the right-hand side of Eq. (A.15) with
the help of relations (A.5) and (A.11), we obtain

(A.16)

Using the limiting transition   h, we obtain from
Eq. (A.16)

(A.17)

h h̃–( ) E Ẽ⋅( ) Vd

v

∫ 4πE0 Λ̂ Λ̃–( )E0.
ˆ

=

h̃

E2 Vd

v

∫ 4π E0
∂Λ̂
∂h
-------E0 

  .=

I
1
σ1
----- j E0– 

  Ẽ E0–( ) V ,d∫=

Ẽ

I ∇ 1
σ1
----- j E0– 

  ϕ̃ ϕ0–( )
 
 
 

V .d∫–=

ϕ̃ r( )

E E0–( ) Ẽ E0–( )⋅ Vd

Ve

∫

=  hE E0–( ) Ẽ E0–( )⋅ V .d

v

∫

E E0–( ) Ẽ E0–( )⋅ Vd

Ve

∫ 4π
h h̃–
-----------=

× h̃
1 h–

1 h̃–
----------- E0Λ̃E0( ) h

1 h̃–
1 h–
----------- E0Λ̂E0( )–

 
 
 

v E0
2– .

ˆ

h̃

E E0–( )2 Vd

Ve

∫

=  4π–
1 h+
1 h–
------------ E0Λ̂E0( ) h E0

∂Λ̂
∂h
-------E0 

 +
 
 
 

v E0
2.–
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Using relations (A.5) and (A.12), we also find that

(A.18)

Summing relations (A.17) and (A.18), we obtain

(A.19)

where integration is carried out over the entire space.

E E0–( )2 Vd

v

∫

=  4π 2
1 h–
----------- E0Λ̂E0( ) E0

∂Λ̂
∂h
-------E0 

 +
 
 
 

v E0
2.+

E E0–( )2 Vd∫

=  4π E0Λ̂E0( ) 1 h–( ) E0
∂Λ̂
∂h
-------E0 

 +
 
 
 

,
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Abstract—The superconducting order parameter that emerges owing to pairing of charge carriers with a large
total momentum of the pair during screened Coulomb repulsion in a degenerate quasi-two-dimensional elec-
tronic system is determined as a function of the momentum of relative motion of the pair. In view of the kine-
matic constraint associated with Fermi filling, the ordered state exists in a limited domain of the momentum
space, the shape and size of this domain being determined by the total momentum of the pair. The order param-
eter is not a constant-sign function of the momentum and reverses its sign on a certain line in a kinematically
allowed domain. Superconducting instability arises for an arbitrarily small value of the repulsive interaction for
certain momenta of the pair, for which the mirror nesting condition is satisfied; this results in the formation of
a pair Fermi contour, i.e., the line of coincidence of segments of the Fermi contour with the isoline of the kinetic
energy of relative motion of the pair. The temperature dependence of the superconducting order parameter is
studied. Owing to the proximity effect in the momentum space, superconducting ordering is extended to the
kinematically forbidden domain. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quasi-two-dimensional (2D) high-temperature
superconducting (HTSC) cuprates in the superconduct-
ing (SC) and the normal (N) state exhibit a number of
properties which distinguish these compounds from
conventional superconductors that can be successfully
described in the Bardeen–Cooper–Schrieffer (BCS)
theory [1]. In accordance with the BCS theory, the
phase transition from the N state (Fermi liquid with a
clearly defined Fermi surface) to the SC state is caused
by the instability of the ground state of the N phase to
the formation of singlet Cooper pairs with zero total
momentum for an indefinitely weak attraction between
the components of a pair. Since the electron (or hole)
dispersion relation is an even function of the momen-
tum, ε(k) = ε(–k), the SC instability evolves on the
entire Fermi surface ε(k) = µ (µ is the chemical poten-
tial of electrons); this results in the formation of an
s-wave energy gap in the elementary excitation spec-
trum. The effective attraction between electrons in the
BCS model is due to the electron–phonon interaction
and takes place in a narrow (on the order of the charac-
teristic Debye momentum) layer in the momentum
space embracing the Fermi surface; this leads to certain
considerations concerning the upper limit imposed on
the superconducting transition temperature [2].

Undoped (or weakly doped) cuprates are antiferro-
magnetic (AF) insulators; for this reason, the properties
of HTSC compounds are determined to a considerable
extent by the competition or coexistence of SC, AF,
and, probably, other ordered states [3]. Strong electron
1063-7761/03/9705- $24.00 © 21032
correlations in cuprates [4, 5] suggest that the state
from which the system passes to the SC state formed in
doped compounds upon a decrease in temperature dif-
fers from the state of a Fermi liquid [4]. However,
angle-resolved photoemission spectroscopy (ARPES)
not only unambiguously indicates the presence of the
Fermi contour (FC) (which is an analog of the Fermi
surface in the electronic 2D system) in doped cuprates,
but also makes it possible to determine the size and
shape of this contour as a function of the doping level x
(the deviation of the carrier concentration from the
half-filling). For example, in cuprates with the p-type
doping, a “large” FC is observed, which is determined
by the total hole concentration (1 + x), has the shape of
a “square with rounded corners” [5], and, hence, exhib-
its a clearly manifested nesting (as a rule, in the direc-
tions along the sides of the 2D Brillouin zone). The very
existence of the FC is evidence of the fact that, in spite of
the important role of electron correlations [4, 5], many
properties of HTSC cuprates can be correctly described
in terms of the momentum space in the framework of
the band theory.

The SC ordering in HTSC cuprates exists in a lim-
ited doping interval; at the boundaries of this interval,
the SC transition temperature Tc vanishes, attaining its
maximum value for an certain optimal doping level xopt
within this interval. For x < xopt , the density of states can
be considerably suppressed in the temperature range
Tc(x) < T < T*(x), which is interpreted as the emergence
of a pseudogap; this can be associated [6] with a low
phase stiffness of the SC order parameter. As the doping
003 MAIK “Nauka/Interperiodica”
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level increases, the temperature Tp of pair formation,
corresponding to the emergence of the modulus of the
order parameter, decreases, while the temperature Tϑ ,
corresponding to the establishment of phase coherence,
increases so that the phase coherence is established for
x * xopt directly during the formation of pairs as in con-
ventional superconductors. For x < xopt , incoherent
states of pairs exist at T < T* and the SC phase transi-
tion can be treated as the Bose condensation of pairs
that already exist.

In the case of singlet pairing, the angular depen-
dence of the SC gap (as well as the pseudogap)
observed in HTSC cuprates with the p-type doping can
correspond to either d-wave or anisotropic s-wave sym-
metry. In the latter case, the order parameter ∆k as a
function of the angular coordinate has a constant sign in
contrast to the d-wave symmetry, when the sign
changes four times during a complete turn of ∆k (this is
confirmed in a number of experiments sensitive to the
phase of the order parameter [7, 8] for some cuprate
compounds). In the case of extended s-wave symmetry,
the order parameter can change its sign depending on
the magnitude of the momentum with a constant
momentum direction [6].

The momentum dependence of the SC order param-
eter is associated with the electron–hole asymmetry,
which is manifested in the tunnel characteristics of
HTSC cuprates [9, 10]; in interpreting these character-
istics, it is assumed [11] that the order parameter is a
linear function of the hole kinetic energy,

(1)

with constant coefficients a and b. The presence of coef-
ficient b determining the slope of the SC gap leads to a
certain shift of the chemical potential µ during SC con-
densation so that the line corresponding to the pair excita-
tion energy minimum does not coincide with the FC [12].

According to some indications [6], the SC pairing in
cuprates results from the repulsion between charge carri-
ers. In contrast to the BCS theory, the gain in the ground-
state energy in the SC condensation of pairs is mainly due
to the renormalization of kinetic energy [13, 14]. In the
case of repulsion, the replacement of the matrix ele-
ment of interaction U(|k– k'|), which is a function of the
momentum k = k – k' transferred during scattering by
its certain constant value U0 > 0 in the BCS equation,
leads only to the trivial solution ∆ = 0. Consequently,
the U(κ) dependence in the kinematically allowed scat-
tering domain is significant for the SC pairing with
repulsive interaction and must lead to a nontrivial
(depending on the momentum) solution for the SC
order parameter ∆k ≠ 0.

The superconductivity mechanism [15–19] based
on the assumption that the formation of pairs with a
large total momentum K (K ≈ 2kF , where kF is the
Fermi momentum in the direction of the momentum of
a pair) is the main channel of the SC pairing in the case

∆k a bεk,–=
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of screened Coulomb repulsion makes it possible to
interpret qualitatively the main experimental results
obtained for HTSC cuprates.

In this study, the main conditions required for the
SC pairing based on this mechanism are formulated and
the SC order parameter depending on the momentum of
relative motion of a pair and on temperature is deter-
mined and investigated. In Section 2, kinematic con-
straints imposed on pairing of like-charged particles
with a nonzero total momentum of a pair are discussed
together with the condition of mirror nesting for seg-
ments of the FC that play the role of a pair Fermi con-
tour for the kinetic energy of the relative motion of a
pair. Examples of realization of mirror nesting in
cuprates are considered. The procedure of reducing the
self-consistency equation determining the SC order
parameter to an integral equation with a degenerate ker-
nel is described in Section 3. Section 4 is devoted to an
analysis of the general structure of the solution to the
equation obtained. The parameters determining the
general solution are determined and investigated in
Section 5 at zero temperature and in Section 6 at a non-
zero temperature. In Section 7, the relation between the
SC transition temperature and the order parameter at
zero temperature is analyzed. In Section 8, a class of
discontinuous solutions of the self-consistency equa-
tion, which approximately represent an exact solution
continuous in the momentum of relative motion of a
pair, is considered. The proximity effect in the momen-
tum space, i.e., the extension of SC ordering to a kine-
matically forbidden domain, is considered in Section 9.
The results obtained, which correspond to the internal
structure of the SC order parameter (its dependence on
the momentum of relative motion of a pair) and its pos-
sible symmetry properties in HTSC cuprates, are dis-
cussed in the Conclusions (Section 10).

2. PAIRING WITH A LARGE MOMENTUM: 
MIRROR NESTING

As a result of the kinematic constraints associated
with the filling of states inside the FC, momenta k± of
identically charged particles forming a pair with a pre-
set total momentum K = k+ + k– (K pair) must both lie
either inside or outside the FC. Thus, these momenta
belong to a certain domain ΞK of the momentum space,
which depends on the momentum of the pair [20, 21]
and determines the statistical weight, i.e., the number of
quantum states whose linear combination forms the
pair. In the general case, this domain is symmetric to
the inversion transformation k  –k of the momen-
tum k = (k+ – k–)/2 of the relative motion of the pair and

consists of two parts  and , which are inner and
outer domains relative to the FC.

The excitation energy of the K pair, i.e., the kinetic
energy of the particles forming this pair,

(2)

     

ΞK
–( ) ΞK

+( )

2ξKk εs K/2 k+( ) εs' K/2 k–( ) 2µ,–+=
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measured from the chemical potential 2µ of the pair,

vanishes at the boundary separating the filled, , and

the vacant, , parts of the domain of definition of the
momentum of relative motion; here, εs(k±) is the elec-
tron (or hole) dispersion relation in the sth energy band.
The particles forming the K pair may belong either to
the same (s = s') energy band or to different (s ≠ s')
energy bands. In the case of excitation of a pair of par-
ticles in the same band, the excitation spectrum (2) is
symmetric relative to the inversion transformation
k  –k of the momentum of relative motion, while
for s ≠ s' such symmetry is not observed in the general
case.

For K = 0, the momenta ±k of the relative motion
coincide with the momenta of the particles constituting
the pair; for this reason, the boundary between the filled

part  of domain  coinciding with the 2D Bril-

louin zone and the vacant part  is the total FC. For

K ≠ 0, the boundary between  and  generally
degenerates into a set of several points. However, such
a boundary may be formed by individual segments of
the FC for a special form of the dispersion relation and
for a definite momentum of the pair. These segments
coincide with segments of the isoline of the kinetic
energy of relative motion of the K pair,

(3)

which corresponds to the difference between the chem-
ical potential 2µ of the pair and the energy of its center
of mass:

(4)

ΞK
–( )

ΞK
+( )

     

Ξ0
–( ) Ξ0

Ξ0
+( )

ΞK
–( ) ΞK

+( )

εss'
r( ) K k,( ) εs K/2 k+( ) εs' K/2 k–( ) εss'

c( ) K( ),–+=

εss'
c( ) K( ) εs K/2( ) εs' K/2( ).+=

                     

ΞK
(+)

ΞK
(–)

–k
PFC

k

K
2
----

FC

Fig. 1. Intraband mirror nesting. The formation of the PFC
(bold lines) when the isoline of the kinetic energy of relative
motion of a pair with momentum K along a certain direction
coincides with a segment of the FC.
JOURNAL OF EXPERIMENTAL 
            

In this case, the boundary between  and  plays
the role of a sort of FC with respect to the relative
motion of the pair and can be referred to as the pair
Fermi contour (PFC). The condition determining the
PFC has the form

(5)

Since k  –k, both momenta of the relative motion
(k and –k) belong to the PFC. In this case, the boundary

between  and  possesses mirror symmetry rel-
ative to vector K; for this reason, relation (5) can be
called the condition of mirror nesting. In order to sat-
isfy condition (5), vector K must coincide with one of
symmetry directions in the 2D Brillouin zone. In the
case of tetragonal symmetry, these are either the direc-
tions along the sides of the Brillouin zone or along its
diagonals. It should be noted that the inversion transfor-
mation k  –k under the mirror nesting condition
leads to the coincidence of filled states with filled states
and vacant states with vacant states.

We can consider several examples of the emergence
of a PFC for a certain total momentum of a pair. For
instance, suppose that an FC is simply connected and
has the shape of a square with rounded corners in accor-
dance with the results of ARPES experiments for
cuprates with the p-type doping [5]. Then even a small
change in the sign of curvature of nearly rectilinear seg-
ments of the FC lying in an extended neighborhood of
the saddle point of the dispersion relation for holes [5]
may ensure the fulfillment of the mirror nesting condi-
tion owing to strong anisotropy of the effective masses
(this is shown schematically in Fig. 1).

In the case when the Fermi level intersects two
energy bands, a doubly connected FC is formed [22]
and two segments of the FC belonging to different
bands may also ensure the fulfillment of the mirror
nesting condition [18] (Fig. 2). In the cases considered
above, the PFC is only a part of the total FC on which
the excitation energy of a pair with a definite momen-
tum vanishes.

However, we can also consider the case when a PFC
in fact coincides with the total FC. For example, in
underdoped cuprates, the FC may have the shape of
several hole pockets [23, 24] centered at points belong-
ing to symmetric directions as shown in Fig. 3 (as the
doping level increases, such pockets are continuously
transformed into a large FC [24]). In this case, the mir-
ror nesting condition is perfectly satisfied on the entire
line bounding a pocket if one-half of the momentum of
the pair corresponds to the center of the pocket. It should
be noted that an exactly similar situation takes place in
degenerate multivalley semiconductors [25, 26].

The formation of a PFC can also be associated with
instability of the ground state of the normal phase, lead-
ing to a change in the FC shape as a result of redistribu-
tion of charge carriers in the momentum space upon the

ΞK
–( ) ΞK

+( )

εss'
r( ) K k,( ) 2µ εss'

c( ) K( ).–=

     

ΞK
–( ) ΞK

+( )
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formation of a strip structure [16, 17]; this is shown
schematically in Fig. 4. Due to the hyperbolic metric of
the momentum space, the corresponding increase in the
kinetic energy, which is compensated either by a partial
restoration of the AF order in hole-depleted regions of
the real space, or by the emergence of an orbital AF
order according to [3], can be minimized.

3. SELF-CONSISTENCY EQUATIONS

In this section we consider the necessary conditions
for SC pairing for the repulsive interaction between the
particles constituting a pair with a large total momen-
tum. We propose a procedure which reduces the equa-
tion for the SC order parameter to an approximate lin-
ear singular equation with a degenerate kernel.

The screened Coulomb repulsion between the com-
ponents of the pair is defined in the entire kinematically
allowed domain ΞK . The Fermi filling and the singular-
ity in the permittivity associated with it leads to the
emergence of the familiar Friedel oscillations of the
effective potential; the spatial scale of these oscillations is

on the order of the reciprocal Fermi momentum  [27].
It should be noted in this connection that the interaction
leading to pairing in the BCS model is defined only in
a narrow strip along the FC with the characteristic
width 2∆ε ! EF , where EF is the Fermi energy and ∆ε
in the case of the electron–phonon interaction has the
meaning of the Debye energy.

The self-consistency equation defining the SC order
parameter determined by pairing of particles with a
large total momentum K for a finite temperature T can
be written in the form

(6)

where k and k' are the momenta of the relative motion
of pairs with the same total momentum K, U(κ) is the
matrix element of the effective interaction potential for
the particles constituting a pair, and S is the normalizing
area. The momentum k = k – k' appearing in the matrix
element, which is transferred during scattering and is

equal to the difference k+ –  between the final and
initial momenta of a particle, is also equal to the change
in the momentum of the relative motion as a result of
scattering. The temperature factor in the self-consis-
tency equation has the form

(7)

Summation in Eq. (6) is carried out over the entire kine-
matically allowed domain ΞK , in which the SC order
parameter is defined.

kF
1–

∆Kk
1

2S
------

U k k'–( )∆Kk'

ξKk'
2 ∆Kk'

2+
---------------------------------hKk' T( ),

k' ΞK∈
∑–=

k+'

hKk' T( )
ξKk'

2 ∆Kk'
2+

2T
-----------------------------

 
 
 

.tanh=
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We will solve Eq. (6) by passing from summation to
integration. Omitting index K, which corresponds to
the total momentum of a pair, we will treat the quanti-
ties ∆Kk = ∆(k) and ξKk = ξ(k) as continuous functions
of the momentum of relative motion. Introducing the
notation

(8)

we can write the self-consistency equation (6) in the
form

(9)

The repulsion between the particles of a pair corre-

η k( ) ξ2 k( ) ∆2 k( )+ , f k( ) h k( )/4πη k( ),= =

∆ k( )
1

2π
------ U k k'–( ) f k'( )∆ k'( ) k'.2d

Ξ
∫–=

ΞK
(+) ΞK

(–)

–k k

PFC

FC FC

K
2
----

Fig. 2. Interband mirror nesting. The formation of the PFC
in the two-band model of the energy spectrum. The Fermi
contour consists of two simply connected parts. Only the
upper half of the 2D Brillouin zone is shown.

ΞK
(+)

ΞK
(–)

–k k
FC/(PFC)

FCFC

K
2
----

Fig. 3. Fermi contour in the form of hole pockets in strongly
underdoped cuprates. Only the upper half of the 2D Bril-
louin zone is shown.

ΞK
(+)

ΞK
(+)

ΞK
(–)

–k PFC

k

FC

K
2
----

Fig. 4. Formation of the PFC in the case of a strip structure.
The PFC (bold lines within ΞK) is formed owing to a redis-
tribution of particles in the momentum space. Only the
upper half of the 2D Brillouin zone is shown.
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sponds to the positive matrix element U(k – k') con-
nected to the effective interaction potential U(r) in the
r space via the Fourier transformation:

(10)

We can establish a simple criterion for the absence of
nontrivial solutions to Eq. (9). For this purpose, we
multiply this equation by the function f(k)∆(k) and
integrate the relation obtained with respect to k within
domain Ξ. Expressing U(k – k') in accordance with
relation (10) and changing the order of integration with
respect to k, k', and r, we obtain

(11)

where the following notation has been introduced for a
nonnegative function of argument r:

. (12)

Integration with respect to r in Eq. (11) is carried out
over the entire 2D space. By virtue of definition (8), the
inequality f(k) ≥ 0 holds and, hence, the left-hand side
of Eq. (11) is nonnegative. If potential U(r) is positive
for all values of r, the right-hand side of Eq. (11) is, on
the contrary, negative; consequently, equality (11) can
hold in this case only if ∆(k) ≡ 0 everywhere in
domain Ξ. Thus, if the interaction is purely repulsive in
the real space and if U(r) > 0 for all values of r, the self-
consistency equation has only a trivial solution. Conse-
quently, the SC ordering is possible only in systems for
which the effective interaction potential of particles is
an alternating function of the distance between these

U k k'–( ) U r( ) i k k'–( ) r⋅( )[ ]exp r2 .d∫=

∆2 k( ) f k( ) k2d

Ξ
∫ 1

2π
------ U r( )L r( ) r2 ,d∫–=

L r( ) ∆ k( ) f k( ) ik r⋅( )exp k2d

Ξ
∫

2

=

~ kF
–1 ~ kp

–1

r

1 2

Fig. 5. Curves describing schematically the functions defin-
ing the integral on the right-hand side of Eq. (11): function
rU(r) (1), function L(r) averaged over the angular variable
(2) and defined in Eq. (12).
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particles. It was mentioned above, in particular, that the
screened Coulomb potential in a degenerate Fermi sys-
tem, which exhibits the Friedel oscillations, is a poten-
tial of this kind [27]. Figure 5 shows schematically the
dependence rU(r) such that condition (11) can be satis-
fied for ∆(k) ≠ 0.

Indeed, the alternating function rU(r) in the integral
on the right-hand side of Eq. (11) evaluated in polar
coordinates, whose maximum (positive) value is
attained for r = 0 (see Fig. 5), is multiplied by the non-
negative function L(r) whose general dependence on
the argument can be easily established. The modulus of
the product ∆(k)f(k) attains its maximal value on the
PFC (where ξ(k) = 0), decreasing rapidly with increas-
ing distance from the PFC. For this reason, the main
contribution to the integral defining L(r) comes from a
small part of domain Ξ in the form of a narrow strip
adjoining the PFC. It follows directly from Eq. (9) that,
for U(k – k') > 0, the nontrivial solution ∆(k), if it
exists, must be an alternating function of its argument
in domain Ξ, which changes its sign (see below) on a
certain line intersecting the PFC. Consequently, the
integral in Eq. (12) is a function of r with peaks
decreasing upon an increase in the argument and sepa-
rated by the characteristic distance π/kP , where kP is a
quantity on the order of the length of the PFC. The first
and highest peak corresponds to the fact that the prod-
uct of the alternating factor ∆(k)f(k) and the exponent
in integral (12) is generally constant in sign. The value
of L(0), which is determined by the integral of the prod-
uct ∆(k)f(k) over domain Ξ, is generally a small quan-
tity in view of partial mutual compensation of the con-
tributions to this value from the parts of domain Ξ in
which function ∆(k) has opposite signs. Thus, we can
assume that function L(r) is close to zero for small val-
ues of r. For complete compensation of contributions
from ∆(k) with opposite signs, L(r) ∝  r4, which leads to
a considerable suppression of the main (positive) extre-
mum of function rU(r), which has a finite limit for
r  0. In the opposite limiting case of large r, this
function is also small due to the presence of the rapidly
oscillating factor exp(ik · r) in integral (12). Since the
value of kP is obviously smaller than kF , the value of the
first maximum of function (12) satisfies the condition
r1 ~ π/kP > π/kF so that the first maximum naturally falls
in the region of Friedel oscillations (see Fig. 5). It can
be seen that in a considerable region of the r space, the
integrand on the right-hand side of Eq. (11) is essen-
tially negative, while the contributions from the regions
in which it is positive are comparatively small; conse-
quently, the integral itself is negative. In this case,
equality (11) can be ensured by the fact that function
f(k), appearing to the first power on the left-hand side
of Eq. (11) and to the second power on the right-hand
side of this equation, has a singularity on the PFC at
T = 0 and may become indefinitely large upon a
decrease in ∆(k). The amplitude of oscillations of func-
tion L(r) depends on ∆(k) since it is function ∆(k) that
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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determines the effective bandwidth in the vicinity of the
PFC, which makes the main contribution to integral (12).
Thus, condition (11) can be satisfied for quite small val-
ues of ∆(k) ≠ 0.

Equation (9) is a nonlinear integral Hammerstein
equation with the symmetric kernel U(|k – k'|). It is well
known [28] that all characteristic numbers of such a
kernel are real-valued and form a discrete spectrum λn

having a condensation point |λn|  ∞ for n  ∞ in
the case of a nondegenerate kernel. If kernel U(|k – k'|)
is the Fourier transform (10) of the effective potential
U(r) which is positive everywhere, it can easily be seen
that it is positive definite and, accordingly, all its char-
acteristic numbers are positive. In this case, as was
shown earlier, Eq. (9) has only a trivial solution. Con-
sequently, the necessary condition for the existence of
a nontrivial solution of the self-consistency equation is
the presence of at least one negative characteristic num-
ber in the spectrum of kernel U(|k – k'|).

The functions determining the nonlinearity of the
integral operator in Eq. (9) has a special form ∆f(∆),
where f(∆) is the nonlinearity factor defined in accor-
dance with Eq. (8). In this sense, Eq. (9) can be classi-
fied as a quasi-linear integral equation [28], whose impor-
tant feature is that, in the case of a degenerate kernel, the
solution (if it exists) of the quasilinear equation, as in the
case of a linear integral equation, has a form repeating the
structure of this kernel [28]. Kernel U(|k – k'|) can be
approximately reduced to a degenerate kernel if we take
into account the fact that both variables k and k' are
defined in a relatively small domain Ξ of the momen-
tum space. Consequently, in the Taylor expansion of
function (10) in argument κ = |k – k'|, we can confine
our analysis to only a few first terms. It follows from
definition (10) that all coefficients of odd powers of
vector k – k' in this expansion vanish identically so that
the Fourier transform of the interaction potential can be
written as

(13)

where

(14)

If we truncate the series in expansion (13), retaining
only a few first terms, we obtain a degenerate kernel
which successfully approximates the true nondegener-
ate kernel in the case of a small domain Ξ.

It should be noted that the Fourier transform U(κ)
corresponding to the repulsive interaction for small κ is
a decreasing function of its argument; consequently,
u0 > 0 and u2 > 0. While solving Eq. (9), it is convenient
to pass to dimensionless variables, using constants U0

and r0 defined by the relations  = u0 and  = u2

as the characteristic scales of energy and length. It

U κ( ) 2π u0
1
2
---u2κ

2–
3
8
---u4κ

4 …–+ ,=

un
1
n!
----- U r( )rn 1+ r.d

0

∞

∫=

U0r0
2 U0r0

4
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should be noted that, in the case of the screened Cou-
lomb potential, parameters r0 and U0 = e2/r0 have the
meaning of the screening radius and the characteristic
Coulomb energy, respectively. Thus, energy U0 deter-
mines the scale of quantities ∆(k), ξ(k), and T; the

momentum is measured in units of ; and the dimen-

sion of the matrix element is . In order to preserve
the previous notation for the dimensionless quantities
introduced in this way, we must assume in self-consis-
tency equation (9), which does not change its form
upon a transition to the dimensionless quantities, that
domain Ξ of the momentum space over which the inte-
gration in Eq. (9) is carried out is also reduced to
dimensionless variables (momentum components k1
and k2). If this domain is small enough, we can retain
the first two terms in expansion (13) and, hence, arrive
at the degenerate kernel

(15)

We can verify that degenerate kernel (15) has four char-
acteristic numbers, from which three are positive, while
the fourth number is negative. Two of the positive char-

acteristic numbers are identical, λ1, 2 ~ , and the

third positive number is λ3 ~ . The negative charac-

teristic number is λ4 ~ / . Obviously, in the case of
repulsive interaction, approximation (15) can be
regarded as sufficient if (k + k')2 < 2; consequently, in
the subsequent analysis, we will assume that domain Ξ
is such that any momentum of the relative motion
defined in this domain satisfies the condition

(16)

Thus, if we assume that the screening radius r0 amounts
to several atomic spacings, condition (16) implies that
the characteristic size of domain Ξ must be a fraction of
the size of the Brillouin zone. In addition, disregard of
the third term in expansion (13) of the next order of
smallness is justified only under the condition [29, 30]
that the root-mean-square value over domain Ξ is much
smaller than the reciprocal of the magnitude of any of
the characteristic numbers of degenerate kernel (15):

(17)

For positive characteristic numbers, this inequality is
satisfied under the natural condition that the third term of
expansion (13) is small as compared to the second term.
For the negative characteristic number of kernel (15),
inequality (17) can be reduced to the condition u0|u4| <
c , where c ! 1. This relation is obviously violated in

r0
1–

U0r0
2

Ud k k'–( ) 2π 1 k k'–( )2/2–[ ] .=

u0
1–

u2
1–

u0
1– u2

2

k2 1/2.<

2 u4 k2d

Ξ
∫ k' k k'–( )82

d

Ξ
∫  ! λ 1– .

u2
2
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the case of the potential U(r) that is positive every-
where, since the quantities un defined in (14) must be
connected in this case via the opposite inequality fol-
lowing from the Cauchy–Buniakowski inequality for
integrals (14). Thus, approximating the actual kernel
U(k – k') by the degenerate kernel (15), we presume
that conditions (16) and (17) are satisfied.

4. GENERAL SOLUTION 
OF THE SELF-CONSISTENCY EQUATION

WITH A DEGENERATE KERNEL

Substituting kernel (15) into Eq. (9) and grouping
the terms independent of momentum, linear in the
momentum, and quadratic in the momentum on the
right-hand side, we can verify that the dependence of
the order parameter on the momentum of relative
motion of a pair must have the form

(18)

where a and b are certain coefficients and c is a con-
stant vector. Thus, the solution to Eq. (9) indeed repeats
the form of the momentum dependence of degenerate
kernel (15) and can be reduced to determining parame-
ters a, b, and c. In order to find these parameters, we
substitute the expression for the matrix element (15)
and the explicit form of solution (18) into Eq. (9), after
which we equate the coefficients of identical powers
of k. As a result, we obtain a system of integral equa-
tions in a, b, and c; one of these equations, obtained
from the comparison of the coefficients of k to the first
power, has the form

(19)

This equation implicitly defines vector c with com-
ponents χi , i = 1, 2, since the right-hand side of this
equation contains the dependence on c in ∆. It can eas-
ily be verified that Eq. (19) has only one solution. In
order to prove this, we introduce an auxiliary function
H(∆) ≡ ∆f(η(∆)), which is a monotonically increasing
function of its argument since H'(∆) > 0, where the
prime indicates differentiation with respect to ∆. Writ-
ing Eq. (19) in components, we can prove that its right-
hand side is a decreasing function of χi . Indeed, differ-
entiation of the integral in Eq. (19) with respect to
parameter χi , taking into account the fact that
dH(∆)/dχi = H'(∆)ki , shows that this derivative is nega-
tive everywhere,

(20)

so that the right-hand side of Eq. (19) is a decreasing
function of χi , while the left-hand side increases

∆ k( ) a c k⋅( ) bk2,–+=

c f k( )∆ k( )k k2 .d

Ξ
∫–=

H' ∆( )ki
2 k2d

Ξ
∫– 0,<
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with χi . Thus, equality (19) is possible for only one
value of c.

In the case when excitation corresponds to a pair of
particles in the same energy band, the obvious solution
to Eq. (19) is c = 0. Indeed, in view of the central sym-
metry of the integration domain Ξ, the right-hand side
of Eq. (19) for c = 0 also vanishes as an integral of an
odd function over a symmetric domain since the energy
gap for c = 0 is an even function of the momentum and
the excitation energy satisfies the condition ξ(–k) =
ξ(k). Equation (19) has no other solutions. Thus, in the
case of intraband mirror nesting and for the nondegen-
erate kernel (15), Eq. (9) has a simple solution of the
form

(21)

defining the energy gap in Ξ as a parabolic function of
the momentum of the relative motion. Coefficients a
and b defining the position of the vertex and the curva-
ture of the parabola are determined by the size and
shape of domain Ξ, the form of the one-particle disper-
sion relation, and the temperature. It should be noted
that a and b in relation (21) are dimensionless quantities

in units of U0 and .

The procedure of determining parameters a, b, and
c gives, in addition to Eq. (19), two more equations
which, on account of the fact that c = 0, assume the
form

(22)

where the following notation is used for similar inte-
grals in domain Ξ:

(23)

All three integrals (23) appearing in system of equa-
tions (22) for n = 0, 1, 2 are positive and depend on a
and b as parameters. Thus, Eqs. (22) form a system of
two quasi-linear equations in two unknowns a and b.

Multiplying the condition k2 < 1/2 under which the
approximate kernel (15) can be used first by f(η(k)) and
then by k2f(η(k)), and integrating the obtained inequal-
ities over domain Ξ, we obtain two inequalities J1 < J0/2
and J2 < J1/2. From these inequalities, we can conclude
that both coefficients of the unknowns in the first equa-
tion in system (22) are positive. Consequently, solu-
tions a and b of system (22) have the same (e.g., posi-
tive) sign. Consequently, the superconducting order
parameter defined by expression (21) changes its sign

∆ k( ) a bk2,–=

U0r0
2

J0
1
2
---J1– 1+ 

  a J1
1
2
---J2– 

  b– 0,=

1
2
---J0a

1
2
---J1 1– 

  b– 0,=

Jn f k( )k2n k2 .d

Ξ
∫≡
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for a certain k = k0, where  = a/b, and can be written
in the form

(24)

Parameter b characterizes the energy scale of the super-
conducting gap, and k0 determines the radius of the cir-
cle in the momentum space, on which the energy gap
becomes zero. In the case of the repulsive interaction
discussed here, the vanishing of the superconducting
order parameter takes place in domain Ξ, since Eq. (9)
for U(|k – k'|) > 0 obviously has no solutions of con-
stant sign. On the circle k = k0, the order parameter
changes its sign (the phase of the order parameter
changes by π); consequently, this line can be referred to
as the line of the π phase shift of the order parameter.

The second equation of system (22) implies that the
conditions a > 0 and b > 0 indicate the fulfillment of the
inequality J1 > 2, which imposes certain constraints on
possible values of the parameters of the problem. This
relation is a consequence of a stronger inequality fol-
lowing from the condition of nontrivial compatibility of
system of equations (22). Evaluating the determinant of
the system, we can write this condition in the form

(25)

which shows that the inequality J2 > 4 must hold; con-
sidering that J1 > 2J2, we can obtain J1 > 8 from this
inequality.

Taking into account the explicit form of integral J2,
as well as the inequality f(k) ≤ (8πT)–1, condition J2 > 4
can be written in the form

(26)

Condition (26) sets the upper limit on the temperature
of the emergence of the superconducting order and also
indicates that the order associated with the formation of
the condensate of pairs with the total momentum K at a
finite temperature may arise for a fairly large size of the
corresponding domain Ξ.

Instead of the pair of the unknown parameters a and
b characterizing the superconducting gap, it is conve-

nient to consider another pair of parameters, b and ,
which can be determined using any two equations
from (22) and (25). It is convenient to take the second
equation from system (22) as one such equation, writ-

ing this equation (provided that  = a/b) in the form

(27)

Expressing the left-had side of Eq. (25) with the use of
the second equation from system (22), we rewrite

k0
2

∆ k( ) b k0
2 k2–( ).=

J1/2 1–( )2 J0 J2/4 1–( ),=

T
1

32π
--------- k4 k2 .d

Ξ
∫<

k0
2

k0
2

J1 k0
2J0– 2.=
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relation (25) as

(28)

System of equations (27) and (28) is completely equiv-
alent to initial system (22) and can be used for deter-

mining parameters b and  of the superconducting
gap. It should be noted in this connection that integrals
J0, J1, and J2, which are functions of ∆, depend on b

and  themselves.

In the case of interband mirror nesting (s ≠ s'), the
pair excitation energy (2) generally is not an even func-
tion of the momentum of relative motion, ξ(–k) ≠ ξ(k).
In this case, Eq. (19) defining vector c also has a unique
solution which might be nonzero. Indeed, writing
Eq. (19) in components and analyzing the asymptotic
behavior of its right- and left-hand sides for χi  ±∞,
we can verify that the left-hand side increases mono-
tonically from –∞ to + ∞ with increasing χi , while the
right-hand side decreases monotonically from a finite
positive value for χi  −∞ to a finite negative value
for χi  +∞. Two functions exhibiting such a behav-
ior necessarily have a single point of intersection corre-
sponding to the solution of Eq. (19). It follows from the
mirror nesting condition that such a solution may lead
to a vector c ≠ 0 collinear to the total momentum K of
a pair, which reflects the asymmetry of pair excitation
energy (2) in different energy bands (when s ≠ s').

The equations describing the case when c ≠ 0 can be
reduced to the equations considered above for c = 0.
For this purpose, it is sufficient to displace the origin of
the momenta of the relative motion from the center of
domain Ξ to the point corresponding to the vertex of
paraboloid (18). Setting in Eq. (18) k = p + q0, where
q0 = c/2b is the position of the vertex and p is the
momentum measured from the new origin, we can
arrive at the previous expression (21) for the order
parameter as a function of momentum p, in which a and
b are the parameters to be determined. The system of
equations for a and b can be derived, using the above
method, from fundamental equation (9) by passing in it
to new variables p = k – q0 and p' = k' – q0, and it has
exactly the same form (22) as in the case when c = 0.
However, the coefficients of the system of equations
obtained in this way, which contain integrals Jn over
domain Ξ of functions of the form f(p)p2n, where f(p) is
defined by formula (8), generally depend on vector q0,
which must now appear in the definition (2) of the pair
excitation energy. Thus, solution a, b to system of equa-
tions (22) turns out to be a function of q0 as a parameter.
In order to determine this parameter, we must use the
additional conditions

(29)

J2 k0
4J0– 4.=

k0
2

k0
2

f p( ) a b p2–( )pd p2

Ξ
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emerging from Eq. (19) upon a transition to the new
variable p. For c = 0, condition (29) is satisfied identi-
cally in view of the system symmetry. For c ≠ 0, this con-
dition implicitly defines the relation between vector q0
and parameters a and b.

Thus, for c ≠ 0, the SC order parameter is also a
simple quadratic function of the form (21), which
depends on momentum p = k – q0, with parameters a
and b defined by system of equations (22) under the
additional condition (29). Consequently, we can con-
fine the subsequent analysis to the case c = 0.

5. ORDER PARAMETER FOR T = 0

In the limiting case of zero temperature, the function
h(T) defined in Eq. (7) is equal to unity and Eqs. (27)
and (28) assume the form

(30)

here and below, n = 1, 2. It is impossible to obtain an
analytic solution of Eq. (30) in the entire range of the

unknowns (b > 0, 0 <  < 1/2), since the integrals in
Eq. (30) depend on the shape of the integration domain.
However, the form of these integrals can easily be estab-
lished in two limiting cases of very large (b  ∞) and
very small (b  +0) values of the energy scale of the
gap. For example, for large values of b, we can disre-
gard the first term in the radicand in each of the inte-
grals as compared to the second term so that the inte-
grals in Eq. (30) turn out to be proportional to 1/b and
the solution of system (30) can be easily found.

While analyzing the behavior of the integrals in
Eqs. (30) in the physically interesting case of small b,
we must take into account the fact that the pair excita-
tion energy (2) vanishes on the line separating the filled,
Ξ(–), and the vacant, Ξ(+), parts of domain Ξ, since this
line (PFC) is a part of the FC. Consequently, for b 
+0, the integrals in Eqs. (30) diverge. The solution to
system of equations (30) for small values of b is deter-
mined by the type of this divergence, which can be
established by taking into account the fact that the main
contributions to the integrals in Eqs. (30) comes from a
small part of domain Ξ in the form of a narrow strip
along the line ξ(k) = 0. We denote the width of this strip
by 2∆k and describe the shape of the line ξ(k) = 0 in
polar coordinates: k = k(ϕ). Let us consider the integral
of the general form,

(31)

where F(k) is a continuous function without singulari-
ties. We will determine the behavior of this integral for

1
4π
------
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∫=
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b  +0, taking a narrow strip of width 2∆k along the
PFC for the integration domain. Integrating externally
with respect to the polar angle between ϕ1 and ϕ2 corre-
sponding to the end points of the PFC (line ξ(k, ϕ) = 0)
and internally with respect to argument k between
k(ϕ) – ∆k and k(ϕ) + ∆k, we pass to the new variable ξ
in the internal integral. In view of the small width ∆k of
the strip, variables k and ξ are connected with each
other via the linear relation

In addition, in the approximation adopted here, argu-
ment k in the integrand of Eq. (31) can be replaced by
its constant (for a given ϕ) value on the PFC, k = k(ϕ).
Integrating with respect to ξ, we can obtain the singular
(logarithmic in b) contribution to integral (31). In addi-
tion to the singular contribution, a regular (without a
singularity for b  +0) contribution also exists. This
contribution is determined by an integral over the entire
domain Ξ and, hence, depends on its size and shape as
well as on the form of the one-particle dispersion rela-

tion and on  as a parameter. Thus, integral (31) can
be written in the form

(32)

where the coefficient of the logarithm has the form

(33)

Integration in Eq. (33) is carried out along the PFC, i.e.,
along the line ξ(k, ϕ) = 0 on which k = k(ϕ) and  =
(∂ξ/∂k)k = k(ϕ). The part of the integral regular in b and
denoted by C can be taken equal to its value for b = 0 in
the case of small b.

Thus, for small values of b, the system of equa-
tions (30) assumes the form

(34)

where An is defined by expression (33) with F(k) = k2n,
while the right-hand sides of Eqs. (34) are functions of

 and are given by

(35)

Here, Cn are the regular parts of integrals (23) at T = 0.
Using relation (34), we can show that system of

equations (30) obviously has a solution determining the

parameters of the SC gap (b and ). For this purpose,
we consider each of the equations (30) separately as the

equation defining a certain line on the plane b, . The

ξ dξ k ϕ( )( )/dk( ) k k ϕ( )–( ).≈
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solution of the system corresponds to the point of inter-

section of these two lines. We set  = 0 in Eqs. (30);
then the left-hand sides of each of these equations
define certain functions of argument b, which decrease
monotonically from +∞ for b  +0 to zero for b 
+∞. In view of inequality (16), the second of these func-
tions, corresponding to n = 2, is obviously smaller than
the first one (with n = 1) for any given b. Consequently,
the solution b1(0) to the first equation in system (30),

corresponding to  = 0, turns out to be always larger
than solution b2(0) to the second equation whose right-
hand side is greater than the right-hand side of the first
equation (Fig. 6). Let us now consider the other limiting
case when b  +0 and use the asymptotic form of
Eqs. (30) in the form (34). Since the right-hand sides of
Eq. (34) are finite and ln(1/b)  +∞ for b  +0, the

values of (0) corresponding to b  +0 are defined

as  = A1/A0 for n = 1 and  =  for n = 2.
Taking into account condition (16), we can verify that

 < 1/2. The quantities A0, A1, and A2 defined by inte-
grals of type (33) satisfy the Cauchy–Buniakowski ine-

quality  ≤ A0A2; consequently,  ≤ , as shown
in Fig. 6. It is obvious from this figure that the lines in
question intersect at a single point and, hence, system
of equations (30) has a solution.

In order to obtain this solution in the case of small
values of b, we must divide the equations in (34) term-
wise, which leads to a closed equation for determining

parameter  (it was proved above that this equation

always has the required solution  < 1/2). In this case,
the energy scale of the superconducting gap at T = 0 can

be determined from the obtained value of  with the
help of any equation from system (34), for example,

(36)

in accordance with Eq. (24), this relation completely
defines the dependence of the energy gap on the
momentum of relative motion of a pair at T = 0. Since
b ! 1, the fraction in the exponent is obviously posi-
tive.

The following important circumstance is worth not-
ing. In the case of small b considered here, the value of
parameter k0 determined from system of equations (30)
is such that the line of the π phase shift of the SC order
parameter (k = k0) corresponding to this value necessar-
ily intersects with the PFC. Indeed, let us suppose that
b and k0 are the solutions of system (30). For b  +0,
the integrals in Eq. (30) are determined by their singu-
lar parts emerging from integration over a small neigh-
borhood of the PFC. If the circle k = k0 did not intersect
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the PFC, the PFC, together with its small neighbor-
hood, would lie completely inside or outside this circle.
Consequently, either inequality k < k0 or the opposite
inequality k > k0 would be satisfied everywhere within
this neighborhood so that the functions in the inte-
grands of system (30) would preserve a constant sign in
this neighborhood (obviously, this sign is positive since
the sign of the right-hand sides in Eqs. (30) matches the
inequality k > k0). In this case, the integral with n = 2 in
system (30) would be smaller than the integral with

n = 1 in view of the inequality k2 +  < 1 following
from condition (16). Thus, under the above assumption
that the circle k = k0 and the PFC do not intersect, the
equations in system (30) are incompatible. Conse-
quently, for b  +0, parameter k0 is necessarily such
that the intersection of the PFC and the circle k = k0

takes place and, hence, the quantity k2 –  has differ-
ent signs on different segments of the PFC (on both
sides of the circle k = k0). This conclusion, which is
valid for b  +0, remains in force for fairly small
finite values of parameter b also.

For values of b and k0 that are solutions to Eqs. (30),
the integral appearing in the second equation (with
n = 2) must be greater than the integral in the first equa-
tion (with n = 1), although it contains an additional

weighting factor k2 +  < 1. Consequently, the positive
and negative contributions to the second integral, which
stem from regions of domain Ξ where the integrand is
positive (k > k0) and negative (k < k0), are compensated
to a much lesser extent than in the case of the first inte-
gral. Since it is sufficient, while evaluating the integrals
for small b, to take into account only the contributions
from a small neighborhood of the PFC, the presence of

the weighting factor k2 +  is manifested the more
strongly, the larger the difference between the minimal
(km) and the maximal (kM) distances from the center of
domain Ξ and the PFC. If the values of km and kM are

k0
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k0
2
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2

b

b1(0)

b2(0)

k2
01 k2

02 k2
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Fig. 6. Schematic illustration of the solution to the system
of equations (30).
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close, i.e., the PFC is near the line of the π phase shift
of the SC order parameter (k = k0) over its entire length,

the presence of the weighting factor k2 +  may
become significant only in the case when the other fac-
tor in the integrand of Eqs. (30) varies strongly in the
vicinity of the PFC (this is observed for extremely
small values of b). Thus, as the PFC approaches the line
of the π phase shift, the energy scale of the SC gap must
decrease considerably.

Since the circle k = k0 intersects the PFC, we have
km < k0 < kM . Therefore, using explicit expressions (33)
for quantities An (for F(k) = k2n), we can easily estimate

the combination A1 – A0 appearing in expression (36)
as

(37)

where ∆ϕ = ϕ2 – ϕ1 is the angular measure of the PFC
and 〈vF〉  is a certain dimensionless Fermi velocity aver-
aged over the PFC:

(38)

(since the PFC is a certain part of the FC, the estimate
 = k–1|(k, ∇ kξ(k))| ≈ vF holds for this entire part).

Thus, expression (36) and estimate (37) show that the
width of the SC gap decreases exponentially with the
angular measure ∆ϕ of the PFC, i.e., upon a decrease in
the PFC length. In addition, the width of the SC gap
decreases exponentially upon a decrease in the differ-
ence kM – km characterizing the degree of anisotropy of
the PFC.

6. ORDER PARAMETER FOR T ≠ 0

The SC gap parameters for a nonzero temperature
are determined by the same equations (27) and (28), in
which the temperature dependence of integrals (23) is
contained in the function f(η(k, T)) defined by the sec-
ond relation in (8). It is convenient to write Eqs. (27)
and (28) in the form

(39)

where we have introduced a new dimensionless vari-
able τ = 2T. It follows from (26) that system (39) has a
solution in a bounded interval of values of parameter τ
(0 ≤ τ ≤ τ*); it is clear from physical considerations that
the energy scale b of the SC gap is a monotonically
decreasing function of τ, which vanishes at τ = τ*. It is
impossible to obtain an analytic solution to Eqs. (39),

k0
2

k0
2

A1 k0
2A0–

∆ϕ
2π
-------

kM
3 km

3–
v F〈 〉

-----------------,≤

1
v F〈 〉

------------
1

∆ϕ
------- ϕd

ξk'
-------

ϕ1

ϕ2

∫=

ξk'

In b τ,( ) k2n k0
2n–( ) f k( ) k2d

Ξ
∫≡ 2n,=
JOURNAL OF EXPERIMENTAL
which would determine two functions b(τ) and k0(τ) in
the entire range of variation of temperature τ. However,
using simple transformations, we can reduce these
equations to a form enabling us to analyze the behavior
of the solutions to these equations in the two important
limiting cases: in the vicinity of absolute zero (τ 
+0) and in the vicinity of temperature τ* corresponding
to the disappearance of the SC gap (τ  τ* – 0).

Let us differentiate the integrals on the left-hand
sides of Eqs. (39) with respect to parameter τ:

(40)

It is natural to assume that the energy scale of the range
of variation of the pair excitation energy ξ(k), corre-
sponding to domain Ξ in the momentum space, is much
larger than the energy corresponding to the SC transi-
tion temperature. In this case, the main contribution to
integrals (40) comes from a small neighborhood of the
PFC, while the integrand is vanishingly small in the
remaining part of Ξ, where the ratio η(k)/τ is large. For
this reason, analogously to the procedure used for eval-
uating the integrals in Eqs. (30), we pass in Eq. (40) to
integration with respect to the angular variable ϕ and
the reduced excitation energy u = ξ/τ, whose range of
variation can be extended to infinity. Returning from
the partial derivatives (40) to the initial quantities
In(b, τ), we can write these quantities in the form

(41)

where In(b, 0) = Jn –  are the vales of the integrals
in question for τ = 0. Using the change of variables τ =

b /v, we transform the integral appearing in
Eq. (41) to

(42)

where the external integration with respect to angle ϕ is
carried out, analogously to Eq. (33), over the PFC; k =
k(ϕ); and ϕ1 and ϕ2 correspond to the end points of the
PFC. Finally, the double integral over the half-space of
variables u and v in Eq. (42) can be reduced, after
transformation to polar coordinates ψ and w =

) and elementary integration with respect

∂In

∂τ
-------

1

4πτ2
-----------

k2n k0
2n–

η k( )/τ( )cosh
2

---------------------------------- k.2d

Ξ
∫–=

In b τ,( )
∂In

∂τ
------- τd

0

τ

∫ In b 0,( ),+=

k0
2J0

k2 k0
2–

∂In

∂τ
------- τd

0

τ

∫
k k2n k0

2n–( ) v u ϕddd

4π ξk' v u2 v 2+( )cosh
2

------------------------------------------------------------,

v

∞

∫
∞–

∞

∫
ϕ1

ϕ2

∫–=

u2 v 2+
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to w, to a single integral. After the substitution sinψ =
1/ , Eq. (42) assumes the form

(43)

where symbol G(v) stands for the auxiliary function

(44)

which decreases rapidly upon an increase in its argu-
ment. In accordance with Eq. (43), the first term in
Eq. (41) is a function of the ratio b/τ. The explicit form
of this dependence cannot be established in the general
case since it is determined by the specific form of the
PFC and, in addition, integral (44) cannot be
expressed in terms of the known functions. However,
expression (43) makes it possible to analyze the form
of the solution to system (39) for τ  0 and τ  τ*
and to trace qualitatively the behavior of this solution in
the entire interval 0 ≤ τ ≤ τ*. We assume that the SC gap
width for τ = 0 is quite small, so that we can use repre-
sentation (32) for integrals Jn and write Eqs. (39) com-
bined with Eq. (41) in the form

(45)

where An and Pn have the same meaning as in Eq. (34).

In order to the determine the form of functions k0(τ)
and b(τ) in the low-temperature limit, it is sufficient,
in evaluating integrals (43), to confine the analysis to
the range of large values of b/τ, since parameter b for
τ  0 is close to its value b(0) for τ = 0. In this case,
the main contribution to the values of integrals (43)
comes from the segments of the PFC for which the

value of  is minimal; i.e., this contribution
comes from the segments adjoining the points of inter-
section of the PFC with the line k = k0 of the π phase
shift of the SC order parameter. In the case of small b,
in view of the symmetry of Ξ, such an intersection takes
place at least at four points of the momentum space,
arranged symmetrically in each quadrant of the coordi-
nate system with the center at K/2.

The contributions to integral (43) from each such
point are identical and are determined by their small
neighborhood in which the quantity q = k – k0 should be
regarded as small and the dependence q(ϕ) should be
treated as linear. Integrating in Eq. (43) over this neigh-
borhood, it is convenient to pass from angle ϕ to vari-
able q, confining the analysis to the first terms of the

expansion of difference  into a power series

zcosh

∂In

∂τ
------- τd

0

τ

∫ G
b k2 k0

2–
τ

--------------------- 
  k ϕ k0

2n k2n–( )d

π ξk'
-----------------------------------,

ϕ1

ϕ2

∫=

G v( )
zd

1 2v zcosh( )exp+
---------------------------------------------,

0

∞

∫=

An k0
2nA0–( ) 1

b
--- 

 ln
∂In

∂τ
------- τd

0

τ

∫+ Pn,=

k2 k0
2–

k2n k0
2n–
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in q in view of the smallness of this quantity and assum-
ing that the quantity  is constant. Since the ratio b/τ
is large for τ  0, function (44) rapidly approaches
zero upon an increase in |q |; consequently, integration
with respect to q can be extended to the entire numeri-
cal axis, after which it can be carried out easily with
respect to variables q and z and leads to the expression

(46)

where Qn are coefficients depending on parameter k0.
Thus, in the low-temperature limit, the system of equa-
tions (39) assumes the form

(47)

The second terms on the right-hand sides of these equa-
tions are small corrections; consequently, this system of
equations for τ  0 can be solved by the method of
successive approximations. Using the solution to sys-
tem of equations (34) as the zeroth approximation, we
assume that the quantities k0 and b in the additional
terms are equal to their values for τ = 0. The values of
b(τ) and k0(τ) can now be determined by the same
method as that used for solving system (34). The pres-
ence in Eqs. (47) of small terms on the order of τ3 leads
to corrections of the same order of magnitude in the
solution,

(48)

where γ1 and γ2 are certain coefficients, the second of
which must be a positive number, since the energy scale
of the gap obviously decreases upon an increase in tem-
perature. Expressions (48) define the first two terms in
the expansions of functions b(τ) and k0(τ) into power
series in τ for τ  0. It follows from Eqs. (48) that the
SC order parameter in the vicinity of τ = 0 decreases
according to a cubic law upon an increase in tempe-
rature.

The decrease in b with increasing temperature must
lead to the vanishing of the SC order parameter at a cer-
tain temperature τ = τ*: b(τ*) = 0. In order to determine
this temperature and establish the way in which the
value of b(τ) approaches zero, we must analyze the
behavior of integrals (43) for small values of the ratio
b/τ. For small values of its argument, the function G(v )
defined by Eq. (44) can be written in the form

(49)

where c1 ≈ 1 and c2 > 0; the singular term (for v   0)
in expansion (49) can be derived from Eq. (44) if we

ξk'

∂In

∂τ
------- τd

0

τ

∫ Qn
τ3

b3
-----,≈

An k0
2nA0–( ) 1

b
--- 

 ln Pn Qn
τ3

b3
-----.–=

k0 τ( ) k0 0( ) γ1τ
3, b τ( )+ b 0( ) γ2τ

3,–= =

G v( )
1
2
---

c1

v
---- 

 ln c2v
2,+≈
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replace the exponent in Eq. (44) by the two terms of its
series expansion in view of the smallness of v. The reg-
ular part of expression (49) does not contain a term lin-
ear in v, since function G(v) is the primitive of an odd
function of argument v, which appears in the integrand
in expression (42). Substituting expression (49) into
Eq. (43), we can transform the system of equations (45) to

(50)

where Sn and Rn are coefficients depending on k0.
If we set τ = τ* in Eqs. (50), these equations assume

the form

(51)

in view of the condition b(τ*) = 0. System (51) is simi-
lar to (34) and can be solved analogously. This enables
us to determine the temperature τ* at which the SC
order parameter vanishes, as well as the value of param-
eter k0 for τ = τ*.

Dependences b(τ) and k0(τ) for τ  τ* – 0 can be
determined from system of equations (50), in which the
terms proportional to b2/τ2 are small corrections
because b  0. Consequently, Eqs. (50) can be solved
by the method of successive approximations using the
solution τ*, k0(τ*) to system (51) as the zeroth approx-
imation. In view of the formal analogy between
Eqs. (50) and (47), we can easily find that the behavior
of parameters b and k0 for τ  τ* – 0 can be described
by the relations

(52)

An k0
2nA0–( ) 1

τ
--- 

 ln Rn Sn
b2

τ2
-----,+=

An k0
2nA0–( ) 1/τ∗( )ln Rn=

b τ( ) 1 τ /τ∗– , k0 τ( )∝ k0 τ∗( ) γ3 τ∗ τ–( ),+=

Φ

τ/b

b(0)

τ
τ* τ

Fig. 7. Graphic solution to Eq. (53), determining the tem-
perature dependence of the order parameter. The inset at the
bottom shows the temperature dependence of the SC order
parameter.

Ψ

JOURNAL OF EXPERIMENTAL 
where γ3 is a certain coefficient. It should be noted that
the first of these coefficients corresponds to the temper-
ature dependence of the order parameter in the nonsym-
metric phase in the vicinity of the transition point,
which follows from the general theory of second-order
phase transitions. For this reason, the formally intro-
duced temperature τ* can be treated as the phase-tran-
sition temperature below which the system passes to
the SC state.

Using Eqs. (45), we can trace qualitatively the b(τ)
dependence in the entire temperature range 0 ≤ τ ≤ τ* if
we preliminarily transform these equations as follows.
We subtract from the second equation (with n = 2) the

first equation multiplied by 2  and then add the quan-

tity (A2 – 2 A1 + A0)lnτ to both sides of the equality
obtained. Taking into account the explicit form of
Eqs. (33) for An as integrals along the PFC, as well as
expression (43), we can obtain an equation of the form

(53)

where

(54)

is a simple logarithmic function with a positive coeffi-
cient of the logarithm, while the function on the left-
hand side of Eq. (53) is defined as

(55)

Taking into account definition (44) for G(v), we can
prove that the integrand in Eq. (55) is nonnegative and
that function (55) decreases monotonically upon an
increase in its argument; this function has a finite limit
Φ0 > 0 for τ/b  ∞ and a logarithmic singularity of
the form ln(b/τ) for τ/b  0. The definitions of func-
tions Φ and Ψ imply that these functions preserve their
behavior for any values of parameter k0. Taking into
account a comparatively small range of this parameter

(0 <  < 0.5), we can qualitatively analyze the depen-
dence of τ/b on τ using relation (53) and assuming that

 is equal to its certain mean value in the interval 0 <

 < 0.5. Plotting the graphs of functions Φ and Ψ of
arguments τ/b and τ, respectively, in the first and third
quadrants of the coordinate system, and the straight line
Φ = Ψ in the second quadrant, we can obtain the curve
describing the dependence of τ/b on τ in the fourth
quadrant (Fig. 7). It can be seen that, for small values

k0
2

k0
2 k0

4

Φ τ/b( ) Ψ τ( ),=

Ψ τ( )
1
τ
--- 

  k k2 k0
2–( )2 ϕd

2π ξk'
-------------------------------- P2 2k0
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∫ln=
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1

2π
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k k2 k0
2–( )2

ξk'
-------------------------
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ϕ2

∫=

× 2G
b k2 k0
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  b

τ
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 ln+ dϕ .
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2
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2

k0
2
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of τ, the curve has a segment on which τ/b ∝  τ, which
corresponds to the fact that function b(τ) for τ  0 is
close to constant b(0). As τ  τ* – 0, the curve
describing the dependence of τ/b on τ asymptotically
approaches the straight line τ = τ*, which corresponds
to a decrease in parameter b to zero for τ  τ*. The
general form of the dependence of the gap parameter b
on τ is depicted in Fig. 7.

7. ENERGY GAP 
AND THE SUPERCONDUCTING TRANSITION 

TEMPERATURE

The SC transition temperature can be connected to
the mean value ∆0 of the order parameter at zero temper-
ature. Indeed, the gap parameters at zero temperature,
b(0) and k0(0), are defined by system of equations (34),
while the transition temperature τ* and the parameter k∗
corresponding to it are defined by system (51); it is con-
venient to write this system in greater detail, explicitly
indicating the argument of all functions:

(56)

In writing this equation, we have taken into account the
fact that, as follows from the derivation of Eqs. (51),
Rn  = Pn + Tn , where Tn denote the integrals along
the PFC,

(57)

while Pn( ) are defined in accordance with Eq. (35);
however, in contrast to system (34), these quantities are
calculated for k0 = k∗ .

Our aim is to establish approximately, to within an
order of magnitude, the relation between the mean

value ∆0 ≡  of the SC gap,

(58)

at τ = 0 and the transition temperature. First of all, we
will prove that the quantities k0(0) and k∗  differ insig-
nificantly from each other and can be treated as identi-
cal to a good approximation. Indeed, the value of k∗  can
be determined from system (56) by termwise division
of the equations constituting this system. This leads to
a relation defining the quantity k∗ , which differs from
the equation for k0(0) following from system (34) in
that it contains additional terms of the form

(59)

An k*
2nA0–( ) 1/τ∗( )ln Pn k*

2( ) Tn k*
2( ).+=

Tn k*
2( )

k k2n k*
2n–( )

2π ξk'
----------------------------

c1

k2 k*
2–

------------------- 
 ln ϕ ,d

ϕ1

ϕ2

∫=

k*
2

∆0 k( )

∆0 k( ) b 0( ) k0
2 0( ) k2–( ),=

A1 k*
2 A0–( )T2 k*

2( ) A2 k*
4 A0–( )T1 k*

2( ).–
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It can easily be verified that the last expression is gener-
ally quite small. Indeed, in accordance with relation (57),

the quantity Tn( ) differs from the corresponding

quantity (An – A0) written in the form of an integral
along the PFC in the presence of an additional logarith-
mic term in the integrand. However, owing to the fact

that the presence of factor k2 –  in integrals (57) van-
ishes at the points k = k∗  where the PFC intersects the
line of the π phase shift of the order parameter, the log-
arithmic singularity is considerably suppressed. In

addition, the absolute value of difference k2 –  on the
entire PFC assumes values which are much smaller
than 1/2. Under these conditions, the logarithmic factor
can be replaced by a constant value corresponding to a

certain value  taken on the PFC. If, accidentally, these
values for T1 and T2 were identical, expression (59)
under investigation would precisely vanish. In view of
the small difference between these values, this expres-
sion is very small (although it differs from zero) and
can be neglected. In this approximation, the equation
defining parameter k∗  coincides in form with the equa-
tion for k0(0); consequently, we can assume that k∗  =
k0(0). Taking this fact into consideration, we subtract
the equations forming system (34) from the corre-
sponding equations of system (56) and replace the log-
arithms in Tn by their average values. Cancelling out
An – k2n(0)A0 in the equalities obtained and disregarding
the difference between the above-mentioned mean val-
ues within the approximation used here, we arrive, for
n = 1 as well as for n = 2, at the approximate relation

(60)

where  is the value of k at a certain point of the PFC
and, as was noted in connection with Eq. (49), c1 ≈ 1.
Relation (60) leads to the conclusion that the relation

(61)

holds to within a factor on the order of unity, where
integration is carried out along the PFC whose end
points correspond to polar angles ϕ1 and ϕ2, and ∆ϕ =
ϕ2 – ϕ1. In accordance with relation (61), the SC transi-
tion temperature is equal in order of magnitude to the
absolute value of the order parameter at zero tempera-
ture, averaged over the PFC.

Taking into account the explicit form (58) of quantity
∆0(k), we can conclude that the integral in relation (61) is
numerically equal to the product of 2b(0) by the area of
the domain enclosed between the PFC and the line of

k*
2

k*
2n

k*
2

k*
2

k̃

b 0( )
τ∗

---------- 
 ln

c1

k̃
2

k0
2 0( )–

------------------------- 
  ,ln≈

k̃

τ∗ 1
∆ϕ
------- ∆0 k( ) ϕ ∆0,≡d

ϕ1

ϕ2

∫∼
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the π phase shift of the SC order parameter in the inter-
val of polar angles from ϕ1 to ϕ2. This immediately
leads to the following estimate for the SC transition
temperature:

(62)

where, as before, km and kM are the minimal and maxi-
mal distances from the center of domain Ξ to the PFC.
It should be noted that estimate (62) differs consider-
ably from the known result in the BCS theory, accord-
ing to which the ratio 2∆/TC of the doubled width of the
SC gap at T = 0 to the transition temperature TC is a
universal constant equal to 3.52. In accordance with
relation (62), the fraction b(0)/T* depends on the
degree of anisotropy of the PFC; for a low degree of
anisotropy (for close values of km and kM), the value of
this fraction may in principle be an indefinitely large
number.

8. DISCONTINUOUS SOLUTIONS
OF THE SELF-CONSISTENCY EQUATION

In addition to the exact continuous solution ∆(k),
self-consistency equation (9) can also have approxi-
mate discontinuous solutions. In order to obtain such
solutions, we must arbitrarily divide domain Ξ into a
certain number of subdomains Ξp (p = 1, 2, …, m) so
that each of these subdomains contains a segment of the
PFC and define the mean value of the order parameter,

, (63)

in each such subdomain. Then the mean value of the
order parameter in the entire domain Ξ can be written as

(64)

where the area of Ξ is equal to the sum of the areas
of Ξp . Averaging over each subdomain directly in the
self-consistency equation (9), we can obtain, using cer-
tain approximations, a closed system of m equations in
the unknown quantities ∆p . The set of m values of ∆p ,
which is a solution to the obtained system, determines
the piecewise-constant function of the momentum of
the relative motion, which describes “on average” the
behavior of function ∆(k) in domain Ξ. With increasing
number m of the subdomains, the discontinuous solu-
tions obtained in this way represent the exact continu-
ous solution more and more accurately.

It should be noted that, in contrast to the BCS model
with attraction between particles, in the case of repul-
sive interaction, we cannot confine the analysis to only
one value of ∆ (64) averaged over the entire domain Ξ;

T∗  & b 0( ) kM
2 km

2–( ),

∆p
1
Ξp

------ ∆ k( ) k2d

Ξp

∫=

∆ 1
Ξ
--- ∆ k( ) k2d

Ξ
∫

Ξp

Ξ
------∆p,

p 1=

m

∑= =
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i.e., we cannot set m = 1 since, as noted above, the self-
consistency equation (9) in the case of repulsion has no
solutions of constant sign. Consequently, the simplest
discontinuous solution for repulsion corresponds to
m = 2, for which domain Ξ is divided only into two sub-
domains Ξ1 and Ξ2, while the self-consistency equation
is reduced to a system of two equations defining the
unknown quantities ∆1 and ∆2, which, obviously, have
opposite signs. In the subsequent analysis, we consider
only this simplest case.

We write the self-consistency equation (9) at T = 0
in the form

(65)

and represent the integral on its right-hand side in the
form of the sum of integrals over domains Ξ1 and Ξ2.
Averaging Eq. (65) written in this way over domain Ξ1
in accordance with rule (63), we obtain quantity ∆1 on
the left-hand side of this equation and the sum of the
integrals with respect to variables k and k' on its right-
hand side. In the first of these integrals, both variables
vary within the same domain Ξ1, while in the second
integral, the integration with respect to k is carried out
over Ξ1, and with respect to k', over domain Ξ2. Simi-
larly, averaging Eq. (65) over domain Ξ2, we can obtain
the second equation with the left-hand side equal to ∆2
and the right-hand side in the form of the sum of two
integrals with appropriate ranges of variables k and k'.

Since the kernel U(k – k') of the integral equation
depends on the difference k – k' = k of the arguments,
it is convenient to pass to the new pair of variables k
and k' in each of the integrals obtained. If the integra-
tion with respect to the old variables k and k' is carried
out over the same domain (say, Ξ1), variable k will vary
in a certain domain of the momentum space, which will

be denoted by ; this domain corresponds to all such
vectors of momentum transfer upon scattering, when
the initial (k) and final (k') momenta belong to Ξ1. If,
however, integration with respect to k and k' is carried
out over different domains (e.g., over Ξ1 and Ξ2, respec-

tively), variable k is defined in a certain domain 
that corresponds to values of k for which the initial
momentum k is defined in Ξ1 and the final momentum

k' is defined in Ξ2. Generally speaking, domains ,
where p, p' = 1, 2, depend on momentum k'; however,
in the approximate evaluation of the integrals, we can
assume that these domains are identical for all values
of k', having determined the corresponding averaged
Jacobians Jpp' of transformation of the integration vari-

∆ k( )
1

8π2
-------- U k k'–( )∆ k'( )

ξ2 k'( ) ∆2 k'( )+
-------------------------------------- k'2d

Ξ
∫–=

Ξ11
*

Ξ12
*

Ξp p'
*
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ables from the condition of conservation of the number
of states,

(66)

It follows from this relation that Jpp' = Ξp/ . Using
such averaged Jacobians, integration with respect to
variables k and k' can be carried out independently. It

should be noted that  = .

Let us introduce the values of the matrix element of

interaction averaged over domains ,

(67)

and define functionals fp{∆(k)} via the relations

(68)

Replacing the functionals defined in these relations by
their values corresponding to the values ∆1 and ∆2 of
their argument, averaged over Ξ1 and Ξ2, i.e., setting

(69)

and introducing the notation α = Ξ1/Ξ and, accordingly,
1 – α = Ξ2/Ξ, we can obtain the integral relations con-
necting two unknown quantities ∆1 and ∆2:

(70)

After evaluation of functions (69), Eqs. (70) form a
closed system of transcendental equations in ∆1 and ∆2,
which is similar to system (22), which emerges in deter-
mining the exact continuous solution of the self-consis-
tency equation (9) with the degenerate kernel (15). The
integrals over domains Ξp, which appear in relation (69)
and contain segments of the PFC, are completely anal-
ogous to integrals (23) for T = 0 and have logarithmic
singularities associated with the PFC as those in func-
tion ∆p . Consequently, for small values of ∆p , these
integrals can be represented in the form (32), where b is
replaced by ∆p . Analysis of the condition of nontrivial
compatibility of the system of equations (70) shows
that this system may have a nonzero solution only
under the condition

(71)

which in our case plays the role of the Cauchy–Bunia-

kowski inequality  – A0A2 < 0 for quantities A0, A1,
and A2 introduced above in the analysis of the continu-
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Ξp p'*

Ξp p'
* Ξp' p

*

Ξp p'*

U p p' U p' p
1

Ξp p'*
--------- U

Ξp p'
*
∫ κ( ) κ2 ,d= =

∆p f p ∆ k( ){ } 1

2π( )2Ξp

-------------------- ∆ k'( ) k'2d

ξ2 k'( ) ∆2 k'( )+
--------------------------------------.

Ξp

∫=

f p f p ∆p( )
1

2π( )2Ξp

-------------------- k'2d

ξ2 k'( ) ∆p
2+

------------------------------,

Ξp

∫=

2∆1 αΞU11∆1 f 1– 1 α–( )ΞU12∆2 f 2,–=

2∆2 αΞU21∆1 f 1– 1 α–( )ΞU22∆2 f 2.–=

U12U21 U11U22– 0,>

A1
2
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ous solution to the self-consistency equation. It should
be noted that disregard of the dependence of the matrix
element U(k – k') on its argument, which is usual in the
BCS theory, leads to identical mean values of the
matrix element (U11 = U22 = U12), which leads the
equality U12U21 – U11U22 = 0. This corresponds to the
statement that, under the condition U(k – k') = const,
the self-consistency equation in the case of repulsive
interaction may have only a trivial solution. Naturally,
system of equations (70) leads only to a trivial solution
also for α = 0 or α = 1, i.e., in the case when one of sub-
domains Ξ1 or Ξ2 coincides with the entire domain Ξ.

We can reduce system of equations (70) to a more
symmetric form by multiplying the first of the equa-
tions by α and the second by (1 – α), and by assuming
that αΞU11 ≈ (1 – α)ΞU22 ≡  and α(1 – α)ΞU12 ≈
β , where  and β are certain parameters. Thus,
system (70) assumes the form

(72)

System of equations (72) written in an equivalent form,

(73)

where γ = β2 – α(1 – α), was obtained and analyzed
in [19], where the filled, Ξ(–), and vacant, Ξ(+), parts of
domain Ξ, separated by the PFC, were chosen as
domains Ξ1 and Ξ2 for averaging the order parameter. In
the general case, the quantities Upp' appearing in the
system of equations (70) should be treated as phenom-
enological parameters depending on the method of
division of domain Ξ into two parts Ξ1 and Ξ2. In this
sense, the system of equations (73) leads to a family of
discontinuous solutions from which we must choose
the one that approximates the exact continuous solution
in the best way. If we choose the standard deviation

(74)

as the measure of the proximity of the approximate dis-
continuous solution ∆d(k) to the exact solution ∆(k), the
minimum condition for δ2 taking into account defini-
tion (63) for the mean values ∆1 and ∆2 leads to the

requirement that the quantity α  + (1 – α)  must
have a maximum. Since this quantity is nonnegative
and vanishes for α = 0 (when Ξ2 = Ξ) and α = 1 (when
Ξ1 = Ξ), this quantity obviously attains its maximal
value for a certain choice of division of domain Ξ into

U0'

U0' U0'

2α∆1 αU0' ∆1 f 1– βU0' ∆2 f 2,–=

2 1 α–( )∆2 βU0' ∆1 f 1– 1 α–( )U0' ∆2 f 2.–=

2 1 α–( ) α∆1 β∆2–[ ] U0' γ∆1 f 1,=

2α 1 α–( )∆2 β∆1–[ ] U0' γ∆2 f 2,=

δ2 1
Ξ
--- ∆ k( ) ∆d k( )–[ ] 2 k2d

Ξ
∫=

∆1
2 ∆2

2
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two parts and, accordingly, for a certain value of α from
the interval 0 < α < 1. From solutions ∆1 and ∆2, the one
matching such a method of division of domain Ξ can be
chosen as the best approximate solutions.

Since the continuous solution (24) to the self-con-
sistency equation possess circular symmetry relative to
the center of domain Ξ, the subdomains Ξ1 and Ξ2 in the
case when domain Ξ is, for example, a circle of a cer-
tain radius k2 can be naturally chosen so that they pos-
sess the same symmetry. If Ξ1 is a circle 0 < k < k1 and

Ξ2 is a ring k1 < k < k2 (k1 < k2), the domains  intro-

duced above are also circles:  has radius 2k1, 

has radius 2k2, and  =  has radius k1 + k2. For the
sake of simplicity, we can confine our analysis to a PFC
in the form of a closed line bounding an anisotropic
pocket. In this case, the radius k1 of the filled domain
should be chosen so that the circle k = k1 intersects the
PFC in such a way that one part of the PFC belongs
to Ξ1 and the other to Ξ2.

For the degenerate kernel (15) of the integral equa-
tion (9), the mean values of the matrix element (67)
assume the form 

(75)

which implies that inequality (71) definitely holds and,
hence, the system of equations (73) has a nontrivial solu-
tion depending on k1 as on the parameter to be deter-
mined from the minimum condition for quantity (74).

After this, parameters b and  determining the contin-
uous solution to the self-consistency equation and con-
nected (in the case of the circular domains considered
here) with the discontinuous solution ∆1 and ∆2 via the
relations

(76)

following from definition (63) and the form of continu-
ous solution (24).

9. PROXIMITY EFFECT
IN THE MOMENTUM SPACE

The emergence of a condensate of pairs with the
total momentum K, which is accompanied by transition
of particles through the PFC, leads to a change in the
chemical potential of the subsystem of particles
belonging to domain Ξ of the momentum space. Only
such particles are taken into account in the Hamiltonian
of the BCS type, which therefore acts in the subspace
of pairs with momentum K. It follows from the general
condition of thermodynamic equilibrium that a change
in the chemical potential in subsystem Ξ changes the
chemical potential of the entire electron system, i.e., the

Ξp p'*

Ξ11* Ξ22*

Ξ12* Ξ21*

U p p' 2π 1 kp kp'+( )2/4–[ ] ,=

k0
2

∆1
1
2
---b 2k0

2 k1
2–[ ] , ∆2

1
2
---b 2k0

2 k2
2 k1

2+( )–[ ] ,= =
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redistribution of particles in the momentum space.
Thus, the filling of states both outside and inside the FC
changes:

(77)

Here,  is the occupation number for a state of a par-

ticle with momentum k± and with spin σ = ↑ , ↓ ;  is
the corresponding occupation number in the nonsuper-

conducting phase:  = 1 for k± < kF and  = 0 for
k± > kF , kF being the Fermi momentum in the direction
of the particle momentum k±. The change in the distri-
bution function δnkσ associated with a small shift of the
chemical potential upon condensation differs substan-
tially from zero only in a small neighborhood of the FC,
whose width is determined by the emerging SC order
parameter. In order to simplify notation in the subse-
quent analysis, we will use ↑  and ↓  instead of combined

indices k+↑ and k–↓. Thus,  can be treated as the
characteristic function of domain Ξ(–), equal to unity
inside this domain and to zero outside this domain.

Similarly, (1 – )(1 – ) is the characteristic func-
tion of domain Ξ(+). Therefore, the characteristic func-
tion of the entire kinematically allowed domain Ξ can
be written as

(78)

where k is the momentum of the relative motion of a
pair of particles. The redistribution of particles in the
momentum space associated with the condensation of
pairs with momentum K leads to effective “expansion”
of domain Ξ: the states which can also participate in the
formation of a pair with momentum K are filled (with a
small weight in view of the smallness of the SC order
parameter) outside this domain. The superconducting
order emerging in the previously inaccessible domain
of the momentum space outside Ξ must be described, as
a certain secondary effect (the proximity effect in the
momentum space), by a self-consistency equation tak-
ing into account the partial filling of states participating
in the pairing of particles with the total momentum K.
Introducing the corresponding function Θ(k), which
characterizes the distribution of particles forming a pair
with a given K, in the entire Brillouin zone,

(79)

we can write the self-consistency equation for T = 0 in
the form

(80)

where summation is carried out over the entire 2D Bril-

nk±σ nk±σ
0( ) δnkσ.+=

nk±σ

nk±σ
0( )

nk±σ
0( ) nk±σ

0( )

n↑
0( ) n↓

0( )

n↑
0( ) n↓

0( )

Θ0 k( ) n↑
0( )n↓

0( ) 1 n↑
0( )–( ) 1 n↓

0( )–( ),+=

Θ k( ) n↑ n↓ 1 n↑–( ) 1 n↓–( ),+=

∆k
1
2
--- U k k'–( )

ξk'
2 ∆k'

2+
-----------------------Θ k( )Θ k'( ),

k'

∑–=
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louin zone. Factor Θ(k)Θ(k') on the right-hand side of
Eq. (80) takes into account the fact that both states of
the relative motion of a pair (k', from which the scatter-
ing takes place during the interaction, and k, to which
the pair is scattered) must have a nonzero occupation
number. The replacement of this factor by Θ0(k)Θ0(k')
confines the summation over k' to domain Ξ and leads
to an equation of type (6), which implies, by the way,
that factor Θ(k)Θ(k') plays a role similar, to a certain
extent, to that of the temperature factor hKk(T).

The product Θ(k)Θ(k') can be written in the form

(81)

where

(82)

Then, Eq. (80) can be written in the form

(83)

for the momenta of the relative motion belonging to the
kinematically allowed domain Ξ (i.e., for k ∈ Ξ ), while
for the momenta of the relative motion, which do not
belong to Ξ (i.e., for k  Ξ), Eq. (80) can be written as

(84)

It can be seen from Eq. (82) that functions δΘ(k)
and δΘ(k') noticeably differ from zero only in a narrow
strip of states in the vicinity of the FC. Consequently,
we can disregard in Eq. (84) the contribution propor-
tional to the product of these functions and write this
equation in the form

(85)

The quantity

(86)

Θ k( )Θ k'( ) Θ0 k( ) δΘ k( )+[ ] Θ 0 k'( ) δΘ k'( )+[ ] ,=

δΘ k( ) 2n↓
0( ) 1–( )δn↑=

+ 2n↑
0( ) 1–( )δn↓ 2δn↑ δn↓ .+

∆k
1
2
---

U k k'–( )∆k'

ξk'
2 ∆k'

2+
------------------------------ 1 δΘ k'( )+[ ] 1 δΘ k( )+[ ]

k' Ξ∈
∑–=

–
1
2
---

U k k'–( )∆k'

ξk'
2 ∆k'

2+
-----------------------------δΘ k'( ) 1 δΘ k( )+[ ]

k' Ξ∉
∑

∉

∆k
1
2
---

U k k'–( )∆k'

ξk'
2 ∆k'

2+
------------------------------ 1 δΘ k'( )+[ ]δΘ k( )

k' Ξ∈
∑–=

–
1
2
---

U k k'–( )∆k'

ξk'
2 ∆k'

2+
-----------------------------δΘ k'( )δΘ k( ).

k' Ξ∉
∑

∆k ∆k
0( )δΘ k( ),  k Ξ∉ .=

∆k
0( ) 1

2
---

U k k'–( )∆k'

ξk'
2 ∆k'

2+
------------------------------

k' Ξ∈
∑–≡
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is the sum over the kinematically allowed domain Ξ;
however, momentum k belongs to the forbidden
domain in which, in accordance with Eq. (85), the order
parameter differs noticeably from zero only in a small
neighborhood of the FC. Therefore, Eq. (86) can be
treated approximately as the value of the order param-
eter at a certain point on the boundary of the kinemati-
cally allowed domain, which corresponds to a momen-
tum close to k.

Functions δΘ(k) and δΘ(k') in the brackets in
Eq. (83) substantially differ from zero only in a neigh-
borhood of the PFC, whose statistical weight is small as
compared to the weight of the entire summation
domain Ξ. Consequently, these functions can be
neglected as compared to unity so that the first sum in
Eq. (83) is exactly the solution for the SC order param-
eter, which was determined taking into account the
kinematic constraints imposed on the momentum of the
relative motion of a pair. This solution, which has the
form (86) provided that k ∈ Ξ , is the contribution from
the kinematically allowed domain to the SC order
parameter that depends on the momentum of the rela-
tive motion of the pair. In the second sum in Eq. (83),
summation with respect to k' is carried out over the
kinematically forbidden domain of the momentum
space, which contains the part of the isoline of the
kinetic energy of the relative motion, whose segments
form the PFC in the kinematically allowed domain
(Fig. 8). On this isoline, ξk' = 0 and, hence, summation
with respect to k' could lead to a singular (logarithmic)
contribution to the second sum in Eq. (83), which partly
compensates the smallness of the function δΘ(k') if the
isoline passes sufficiently close to the FC, where
δΘ(k') ≠ 0. However, the role of the parameter truncat-
ing the logarithm from above is played in this case by
the small energy scale corresponding to the continua-
tion of the order parameter to the kinematically forbid-
den domain. For this reason, the contributions from the
terms equal approximately to δΘ are small as compared
to the main contribution and can be neglected.

Thus, the SC order parameter outside the kinemati-
cally allowed domain Ξ is defined by Eq. (85), in which
the function δΘ(k) itself depends on the order parame-
ter ∆(k) outside domain Ξ and, hence, has to be deter-
mined. However, in order to analyze the proximity
effect in the momentum space qualitatively, we can
assume that

(87)

where ξ1(k) = ε(K/2 + k) – µ is the excitation energy of
a particle beyond the kinematically allowed domain
(which contains, however, the state K/2 – k). Such a
representation of function δΘ(k) was chosen analo-

gously to the distribution function  emerging in the
BCS theory, but differs from this function in factor 2

δΘ k( ) 1
ξ1 k( )

ξ1
2 k( ) ∆2 k( )+

------------------------------------,–=

v k
2
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taking into account the fact that a particle with any spin
component may be located outside the kinematically
allowed domain. Omitting argument k, we can write
Eq. (85) in the form

(88)

where the following nonnegative quantities have been
introduced:

(89)

Condition s ≥ 0 stems from the fact that −k ∈ Ξ  if k 

Ξ; consequently, if, for example,  = 0 and δn↑ > 0,

1 s–
x

x2 s2+
-------------------,=

s ∆ k( )/∆ 0( ) k( ), x ξ1 k( )/ ∆ 0( ) k( ) .≡≡

∉
n↑

0( )

ΞK
(+)

ΞK
(–)

PFC

FC

K
2
----

IL

∆(k)

ξ(k)

Fig. 8. Kinematically allowed domain ΞK (hatched), in
which the SC order parameter is defined. A quarter of the
Brillouin zone is shown. The isoline (IL) of the excitation
energy for a pair with the total momentum K (fine curve),
coinciding with the FC (bold curve), forms the PFC separat-

ing the filled ( ) and vacant ( ) parts of domain ΞK .

The dependence of the SC order parameter ∆(k) on the exci-
tation energy ξ(k) in the kinematically forbidden domain of
the momentum space is shown below. Curves 1 and 2 are the
solutions of the self-consistency equation, which are
extended continuously to the forbidden domain of the SC
and N solution in the kinematically allowed domain.

ΞK
–( ) ΞK

+( )

1

2
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we have  = 1 and δn↓ < 0 so that definition (82)
implies that δΘ(k) ≥ 0. Since a particle with momentum
–k of the relative motion corresponds to a state lying
deeply in the domain of Fermi filling, we have δn↑ @
|δn↓ |; in this case, we can approximately assume that
δΘ(k) ≈ δn↑ (exactly this approximation was used in
relation (87)).

The obvious solution s = 0 to Eq. (88) for any x cor-
responds to the N phase. It can also be seen from
Eq. (88) that one more solution, s = 1, corresponding to
a continuous transition of the SC solution from the
kinematically allowed domain to the forbidden one,
exists on the FC, where x = 0, in addition to solution
s = 0. For x > 0, two nontrivial solutions exist, which
are transformed to s  1 and s  0 as x  0.
Therefore, the SC order parameter in the kinematically
forbidden domain must be a continuous extension of
the SC solution s = 1 at the boundary of this domain.
Since Eq. (87) raised to the second power can be
reduced to a cubic equation in s, both nontrivial solu-
tions can be written in the explicit form

(90)

where the upper (lower) sign corresponds to the con-
tinuation of solution s = 1 (s = 0) at the boundary of
domain Ξ,

(91)

Both (real-valued) solutions exist for 0 ≤ x ≤ xm , coin-

ciding for x = xm = . The value of the

order parameter corresponding to xm is sm = (3 – )/2.
Thus, the SC order parameter penetrates to a finite
depth in the kinematically forbidden domain, differing
from zero in a narrow strip in the vicinity of the FC (see
Fig. 8). With increasing distance from the FC, the order
parameter decreases monotonically and abruptly van-
ishes at x = xm .

10. CONCLUSIONS

Self-consistency equation (9), defining the SC order
parameter in a quasi-two-dimensional electronic sys-
tem (whose ground state in the N phase is the domain
of Fermi filling in the momentum space, which is sepa-
rated from the domain of vacant one-particle states by
the Fermi contour) has a nontrivial solution in the case
of the repulsive interaction between electrons, i.e., in
the case of a positive scattering length for the relative
motion of a pair in the singlet s state (for u0 > 0, where
the quantity u0 defined in Eq. (14) is obviously propor-
tional to the corresponding scattering length).

n↓
0( )

s
2
3
--- 1 1 3x2– ω

3
----

π
3
---+− 

 cos– ,=

ωcos
1 18x2–

1 3x2–( )3/2
---------------------------.=

5 5 11–( )/2

5
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The necessary condition for the existence of the
nontrivial solution is the existence of at least one nega-
tive eigenvalue for the kernel U(k – k') of the integral
equation (9). In the case of a nonnegative kernel, this
condition can be satisfied if the interaction potential
U(r) for particles in the real space (the Fourier trans-
form of this potential is the kernel of Eq. (9)) assumes
negative values within at least one finite segment on the
semiaxis 0 < r < ∞. This property is observed, for exam-
ple, for the screened Coulomb potential in a Fermi sys-
tem, which exhibits Friedel oscillations owing to the
presence of the FC at large distances as compared to the
screening radius: U(r) ∝  r –3cos2kFr [31].

However, the existence of a negative eigenvalue for
the kernel of Eq. (9) is not a sufficient condition for the
emergence of the bound state of a pair, i.e., the emer-
gence of a nontrivial solution to the self-consistency
equation. It is necessary that this eigenvalue λ be small
in absolute value, as follows from condition (17). It
should be noted that an eigenvalue of an integral oper-
ator is defined [29] as the factor in front of the integral;
therefore, the energy of the bound state emerging in
potential U(r) is equal approximately to |λ|–1. It should
also be noted here that the smallness of the amplitude
of Friedel oscillations apparently rules out the emer-
gence of bound states in a three-dimensional Fermi sys-
tem; however, for a quasi-two-dimensional system, it
can be expected that at least one local level will appear
even in a shallow potential well, owing, among other
things, to peculiarities of 2D screening [32]. For this
reason, the superconducting order in the case of repul-
sion is inherent, in all probability, precisely in quasi-
two-dimensional systems.

For a large total momentum of a pair, the kinemati-
cally allowed domain Ξ in the momentum space, which
corresponds to the momenta of relative motion, is quite
small. Therefore, small momenta of the relative motion
correspond to large relative distances between particles
in pairs, which correspond exactly to the region of
Friedel oscillations. It should be noted in this connec-
tion that, in the case of pairing with K = 0, when the
momenta of the relative motion coincide with the
momenta of the particles and are approximately equal

to kF, region r & , in which the screened Coulomb
potential is definitely positive, is the region of the real
space in which the interaction between particles is sig-
nificant. It should also be noted that the relative small-
ness of domain Ξ makes it possible to replace the true
kernel of integral equation (9) by degenerate kernel (15)
which can be used, under condition (17), to obtain a
nontrivial solution for the SC order parameter in the
explicit form (24).

Mirror nesting, which gives rise to the PFC (i.e., the
line on which the segment of the FC coincide with seg-
ments of a certain isoline of the kinetic energy of the
relative motion of a pair), is the most important condi-
tion for the existence of solution (24) in the case of pair-
ing with a large total momentum. It is because of mirror

kF
1–
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nesting that SC instability under the necessary addi-
tional condition (17) can emerge for an arbitrarily small
value of repulsive interaction u0 > 0. In a quasi-two-
dimensional system such as HTSC cuprates, the mirror
nesting condition can be naturally satisfied (at least
approximately) for certain total momenta K of a pair. A
deviation from mirror nesting ultimately leads to sup-
pression of SC pairing [18]. It should be noted that this
suppression becomes much weaker beyond the frame-
work of the point-particle potential approximation,
when the screened Coulomb interaction is taken into
account [33].

It follows from Eq. (24) that the SC order parameter
changes its sign on a certain line (arc of a circle of
radius k0) intersecting the PFC; in this case, the ampli-
tude of the order parameter substantially depends on
the degree of anisotropy of the PFC (if the PFC coin-
cides with the circle k = k0, nontrivial solution (24) does
not exist). ARPES experiments show, for example, that
strong anisotropy of the electron (hole) dispersion rela-
tion in the vicinity of the Fermi level is inherent in
HTSC cuprates; the Fermi velocity components for
these compounds may differ by more than an order of
magnitude [34].

The dependence (24) of the SC order parameter on
the momentum of the relative motion corresponds to a
certain momentum K of a pair, which is determined by
the mirror nesting condition. The symmetry of the order
parameter, corresponding to the zero-current state of a
superconductor, is determined by the coefficient in the
linear combination of crystallographically equivalent
pairs and, hence, depends on the interaction mixing
such pairs. A trivial irreducible representation (A1g) of
the 2D symmetry group of the crystal corresponds to an
extended s-wave symmetry of the order parameter,
while the other one-dimensional irreducible representa-
tion (B1g) corresponds to the d-wave symmetry [19].
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Abstract—A principally new approach ensuring secure key distribution via an open quantum communication
channel is proposed. In contrast to the existing schemes, in which the security is based upon special properties
of nonorthogonal states in the Hilbert space, the security of the proposed scheme relies on a spacetime structure
of states and on certain constraints imposed by special relativity. Using these factors, it is possible to provide
for secure key transmission using practically arbitrary quantum states. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The main task in cryptography is to provide for the
security of information exchange between two or sev-
eral legitimate parties. Secret information is transmitted
via open (insecure) communication channels after being
encoded in various systems. Absolutely stable (secure,
unintelligible to a third party) are the “one-time pad” sys-
tems, frequently called Vernam schemes [1]. The claim
of absolute stability (security) of the one-time pad
encrypting scheme seems to be the only strictly proven
result in cryptography. Originally, the conditions of
absolute stability were rationalized by Kotel’nikov in
1941. In 1944, an analogous statement was proved by
Shannon (published in 1949 [2]).

In formal terms, a cryptosystem is absolutely secure
provided that the information shared by legitimate par-
ties obeys the condition

(1)

where M is a bit sequence from an ensemble of mes-
sages to be transmitted and C is the bit sequence
describing the encoded message from M. Equation (1)
directly indicates that a conditional probability of the
appearance of a particular encoded text c, provided that
message m was selected, is

This implies that the cryptosystem is absolutely secret
provided that the probability of appearance of the
encoded message c is independent of the message m.

As noted above, an example of an absolutely secure
cryptosystem is offered by the Vernam scheme [1] with
one-time pad keys k (k is a bit sequence known only to
legitimate parties). Messages from the ensemble M are
compressed to m-bit sequences with a length of H(M),

I M; C( ) H C( ) H C M( )– 0,= =

p c m( ) p c( ).=
1063-7761/03/9705- $24.00 © 21053
after which a random key k is selected with the same
length H(M) and the encoded text is obtained in the
form of a binary sequence

The condition of unambiguous decoding is

(2)

The encoded message is decoded by the receiving party
via the inverse operation

This implies that, provided the key k is random, is
known only to the legitimate parties, has a length equal
to that of the message, and is used only once, the
encryption scheme is absolutely secure (unintelligible).
The main difficulty encountered in the implementation
of this scheme consists in distributing a secrete bit
sequence (key) between spatially distant legitimate
parties.

The above considerations are purely mathematical
and bear no relation to the laws of physics. However,
the problem of key distribution between spatially dis-
tant legitimate parties cannot be solved without exercis-
ing recourse to the physical reality, since the very
notions of space and time are physical. Although the
information is a mathematical entity, the information
carriers are always particular physical objects.

In classical physics, both nonrelativistic and relativ-
istic, the states of physical objects are described in
terms of real functions of coordinates and time. It is
postulated (and confirmed in experiment) that the state
of a physical object can be, in principle, measured to
any desired accuracy without perturbing the system
state. Therefore, secure key distribution via an insecure

c m k.⊕=

I M; C K( ) I M( ).=

m c k⊕ m k⊕( ) k.⊕= =
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communication channel cannot in principle be ensured
within the framework of classical physics, since it is
impossible to provide for guaranteed detection of an
attempt at passive eavesdropping in the course of the
information transfer between legitimate parties. For
this reason, one-time pad cryptosystems are not widely
used in practice.

In view of the impossibility of ensuring secure key
distribution by classical signals via an insecure commu-
nication channel, cryptosystems with open keys have
found rather wide application. This was rendered possi-
ble by a remarkable discovery of Diffi and Hellman [3].
Use of the open-key cryptosystems, also referred to as
Rivest–Shamir–Adleman (RSA type) systems [4], does
not require a common secret key to be preliminarily
distributed. The secrecy of open-key cryptography
relies on the unproven complexity of calculating the
inverse of certain functions with secrets (for example, a
discrete logarithm). The known classical algorithms
performed using a computational device operating
according to the laws of classical physics are character-
ized by exponentially growing complexity with respect
to the volume of input data. At the same time, no poly-
nomial algorithms are known (nor has it been proved that
such algorithms cannot exist). Strictly speaking, RSA
type systems are not absolutely secure since Shor [5]
suggested a quantum algorithm of polynomial com-
plexity for the inversion of a discrete logarithm. This
implies that, in principle, any RSA type system is intel-
ligible because no principal prohibitions are known, at
least presently, for the creation of a quantum computer.
On the other hand, considerable (albeit purely techni-
cal) difficulties encountered in realization of the quan-
tum computer can delay the appearance of such devices
by several decades. At the same time, another danger
still exists for RSA type systems, since there are no strict
guarantees that a classical algorithm of polynomial com-
plexity cannot be developed. Thus, RSA type systems
are apparently secure in classical physics, but cease to be
such in the quantum domain [5].

The task of ensuring a secure key distribution via an
insecure communication channel can be solved by
means of quantum cryptography. In contrast to the sit-
uation with a quantum computer, where only the oper-
ation of separate gates for a small amount of qubits have
been demonstrated so far, achievements in the practical
implementation of quantum cryptography are much
more impressive. There are functioning prototypes cov-
ering distances on the order of several dozens of kilome-
ters (the present-day record length is 67 km [6]) both via
fiber optic lines (e.g., a 23-km communication line
under Lake Geneva [7]) and via open space.

The approach to ensuring unconditional security
proposed in this paper may prove to be more convenient
in practice, since it employs the frequency properties of
states that are more stable than polarization degrees of
freedom with respect to external perturbations. In addi-
tion, most realized cryptosystems represent one or
JOURNAL OF EXPERIMENTAL 
another modification of an interferometer of the Mach–
Zehnder type. The proposed scheme does not employ
interferometers.

2. NONRELATIVISTIC QUANTUM 
CRYPTOGRAPHY

The laws of quantum mechanics are more restrictive
than those of classical physics in that, generally speak-
ing, any measurement (observation) of a quantum sys-
tem changes the state of this system. The quantum
mechanics offers possibilities of realizing uncondition-
ally secure key distribution between spatially distant
legitimate parties, thus providing for the creation of an
absolutely secure one-time pad cryptosystem. By
unconditional security is implied the security guaran-
teed by the laws of quantum mechanics representing
the basic laws of nature.

The idea of quantum cryptography, originally for-
mulated by Wiesner [8], has become commonly known
in the paper of Bennett and Brassard [9]. The uncondi-
tional security of nonrelativistic quantum cryptography
is based on two closely related prohibitions dictated by
the postulates of nonrelativistic quantum mechanics: (i)
an unknown quantum state cannot be copied (no-clon-
ing theorem) [10]; (ii) no information can be obtained
about nonorthogonal quantum states without perturb-
ing these states [11].

Let us reproduce an elegant proof of the second
statement, as suggested by Bennett [11], since this prin-
ciple will be used in the following analysis. Consider
two pure states of a quantum system, described by vec-
tors (rays) in the Hilbert space |ϕ0〉 , |ϕ1〉 ∈  *, which are
assigned to the classical bits 0 and 1, respectively. One
of the states is presented unidentified to an observer.
His task is to recognize the state, leaving it, if possible,
unperturbed.

The proof is based on reduction ad absurdum. It is
assumed that the observer (or eavesdropper)1 can per-
form general manipulations over the state according to
the laws of quantum mechanics. In the general case,
these manipulations reduce to the following. The eaves-
dropper possesses an auxiliary quantum system occur-
ring in a certain standard quantum state |a〉 ∈  *a .
Switching on the interaction between the presented
state (|ϕ0〉  or |ϕ1〉) and the auxiliary quantum system, the
eavesdropper allows them to evolve jointly for some
time, which is formally described as follows:

(3)

(4)

where U is the unitary operator functioning in * ⊗  *a .
Assume that the system upon interaction and joint uni-
tary evolution remains in the initial state, while the aux-

1 In many papers on the subject, the legitimate parties are referred
to as A (Alice) and B (Bob) and the eavesdropper is called Eve.

ϕ0| 〉 U ϕ0| 〉 a| 〉⊗( ),

ϕ1| 〉 U ϕ1| 〉 a| 〉⊗( ),
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iliary quantum system passes to a new state depending
on the unknown presented state as

(5)

(6)

Complex conjugation of one of these equations, for
example, the latter, yields

(7)

Taking a scalar product of Eqs. (5) and (7), we obtain

(8)

and by virtue of the unitarity of U,

(9)

The pure states being normalized vectors, we have

There are only two possibilities, according to which the
states are (i) nonorthogonal, whereby  ≠ 0, or

(ii) orthogonal, whereby  = 0. In the former
case, both parts of Eq. (9) can be divided by the factor

 ≠ 0 to obtain

(10)

Since the pure states are edge points of a convex set of
states, the latter condition implies that |a1〉  = |a0〉 . 

Thus, the initial assumption that the message state
remains unperturbed, while the state of the auxiliary
quantum system changes depending on the input state,
is incorrect. In other words, it is impossible to obtain
information about nonorthogonal states without per-
turbing these states. Any observation (measurement) of
such states introduces a perturbation. The perturbation
changes transition probabilities in the channel, thus
allowing any attempts of eavesdropping to be detected.
Various theoretical variants and practical realizations of
quantum cryptosystems unavoidably employ the idea
of nonorthogonality.

A basically different situation takes place when the
states are orthogonal, so that  = 0. In this case,
it is impossible to divide both parts of Eq. (9) by a zero
factor and there are no formal limitations on the possi-
bility of extracting information from the orthogonal
states without perturbing these states. Strictly speaking,
the above theorem poses no prohibitions in this case.
The fact that information concerning orthogonal states
can be obtained in a nonperturbing manner is readily
demonstrated by explicitly presenting a measurement
that leaves the states unperturbed while gaining infor-

U ϕ0| 〉 a| 〉⊗( ) ϕ0| 〉 a0| 〉 ,⊗=

U ϕ1| 〉 a| 〉⊗( ) ϕ1| 〉 a1| 〉 .⊗=

a〈 | ϕ 1〈 |⊗( )U 1– a1〈 | ϕ 1〈 | .⊗=

a〈 | ϕ 1〈 |U 1– U ϕ0| 〉 a| 〉⊗⊗ ϕ 1 ϕ0〈 〉 a1 a0〈 〉=

a a〈 〉 ϕ 1 ϕ0〈 〉 a1 a0〈 〉 ϕ 1 ϕ0〈 〉 .=

a a〈 〉 1.=

ϕ1 ϕ0〈 〉
ϕ1 ϕ0〈 〉

ϕ1 ϕ0〈 〉

a1 a0〈 〉 1.=

ϕ1 ϕ0〈 〉
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
mation. Indeed, a measurement exists that provides
information (reliable with a probability of unity) about
orthogonal states without introducing perturbations.
Like any measurement, this operation can be described
by an orthogonal of nonorthogonal subordinate parti-
tion of unity in *.

In the given case, the measurement is described by
an orthogonal subordinate partition of unity in a sub-
space of * generated by vectors |ϕ0, 1〉 , for which

(11)

The corresponding space of results is the discrete set
Ω = {0, 1}. The instrument (also called a superopera-
tor) describing the state of the quantum system upon
obtaining a particular measurement outcome, has the
following form:

(12)

The probability of obtaining mutually excluding out-
comes for any pair of states is

(13)

and a change in the state upon obtaining the ith out-
come is

(14)

Thus, it is possible to gain reliable information about
orthogonal states without perturbing these states. For
this reason, using orthogonal states for quantum cryp-
tography purposes in the nonrelativistic case is not wor-
thy of consideration, since an eavesdropper can obtain
this information without altering states in the commu-
nication channel.

There is one circumstance of principal significance
for the following analysis. The orthogonal states can be
reliably distinguished without perturbation, provided
that such states are entirely accessible for measure-
ments (i.e., as whole objects). This fact is implicitly
used in the above proof. Here, the condition of being
“accessible as whole objects” means that the entire Hil-
bert space of states is accessible in which the state car-
rier is nonzero.

This can be illustrated by an example. Consider the
states |ϕ0, 1〉 ∈  *, and let {|ek〉} be an orthonormal basis
set in *, so that

(15)

I Ω{ } 30 31, 30 1,+ ϕ0 1,| 〉 ϕ 0 1,〈 | .= =

7 …[ ] 30 …[ ] 30 31 …[ ] 31.+=

Pr i{ } Tr 7 ϕ i| 〉 ϕ i〈 |[ ]{ } 1, i 0 1,,= = =

ϕ i| 〉 ϕ i〈 |
7 ϕ i| 〉 ϕ i〈 |[ ]

Pr i{ }
--------------------------.=

ϕ0 1,| 〉 ak
0 1,( ) ek| 〉

k n<
∑ ak

0 1,( ) ek| 〉
k n≥
∑+=

=  ϕ̃0 1,| 〉 ϕ̃ 0 1,
⊥| 〉 .+
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For brevity, we assume that

Let the states be inaccessible as a whole, which for-
mally implies that any measurement has to be described
by a subordinate partition of unity (orthogonal or non-
orthogonal) only in the accessible part of the Hilbert
space of states. For example, let *1 be accessible for
the measurements, so that the subordinate partition of
unity may contain in the expansion only basis vectors
from this subspace. In this case, even orthogonal states
cease to be reliably distinguishable. Moreover, reliably
indistinguishable without perturbation are the orthogo-
nal states with limitations imposed on the subspace *1

accessible for measurements (  = 0). This state-
ment follows essentially from the normalization of the
quantum state.

At first glance, the situation whereby only a part of
the space of states is accessible for measurements may
seem artificial. In fact, this situation is rather typical.
Since quantum objects do not exist beyond spacetime,
all the results of measurements (however complicated
the space of these results) will unavoidably contain the
space and time domains. Therefore, the coordinate rep-
resentation of an abstract Hilbert space of states, albeit
mathematically equivalent to any other representation,
is in a certain sense a special one. A situation in which
the whole space of states is inaccessible is quite readily
realized. To this end, it is sufficient to limit the access
to a part of the coordinate space in which the amplitude
of the state (wave function) is nonzero. In the coordi-
nate representation, the basis vectors in * are related to
the spatial coordinates and time:

In application to problems of quantum cryptogra-
phy, the situation of limited access to the whole quan-
tum state can be realized by using the states (wave func-
tions) in which the spatial length exceeds the channel
length [12, 13]. In this case, the whole propagating state
is never present in the channel [12, 13]. However, this
requirement is not necessary for ensuring security. As
will be shown below, security can be provided using
virtually any quantum state.

Unfortunately, nonrelativistic quantum cryptogra-
phy, posing no restrictions on the maximum propaga-
tion velocity, cannot realize a secure protocol of key
distribution based on the idea of limited access to the
quantum state.

The fact that even orthogonal quantum states are
reliably indistinguishable under the conditions of lim-
ited access to these states has a general character, being

ek| 〉 *1∈{ } , k n,<

ek| 〉 *1
⊥∈{ } , k n,≥

* *1 *1
⊥
.⊕=

ϕ̃1 ϕ̃0〈 〉

ek| 〉 x t,| 〉 .
JOURNAL OF EXPERIMENTAL 
independent of a particular representation of *.
Indeed, any measurement can be described using a sub-
ordinate partition of unity,

(16)

where I1 and  are units in subspaces *1 and .
With a limited access to the states, the measurements
with uncertain outcomes (?) will unavoidably take
place. The probabilities of such outcomes are

(17)

For example, with spatially limited access to a part of
the amplitude of the state, such outcomes can be inter-
preted as taking place in the region of the coordinate
space inaccessible to the observer. While the total prob-
ability of outcomes in the entire space is unity, the
observer can extract information about the state only
from the part of space accessible for his measurements.
If the measuring device did not operate in the accessible
part of the space (formally speaking, this implies that
the event occurs in the inaccessible part of the space),
the observer can assign this uncertain event (?) to any
outcome (0 or 1) with a probability of 1/2. In other
words, the minimum space of results from which the
information about states (0 or 1) can be obtained will
unavoidably include uncertain outcomes, Ω = {0, 1, ?},
which hinders the obtaining of reliable information
even on orthogonal states.

3. RELATIVISTIC 
QUANTUM CRYPTOGRAPHY

As stated above, secure key distribution via an open
channel is impossible in classical physics. The laws of
quantum mechanics, being more restrictive than those
of classical physics, allow secure key distribution via an
open channel to be realized. Here, security is guaran-
teed by detecting any attempts at eavesdropping. The
laws of relativistic quantum field theory are even more
restrictive than those of nonrelativistic quantum
mechanics. Constraints imposed on the measurability
of quantum states in the relativistic domain were origi-
nally discussed by Landau and Peierls as long ago as
1931 [14]. Further investigations were undertaken by
Bohr and Rosenfeld [15].

The aforementioned theorem [11] concerning the
impossibility of obtaining information about nonor-
thogonal states in a nonperturbing way was proved
using only the geometric properties of the Hilbert space
of states, without any recourse to the concept of space-
time and the fact that all events (including measure-
ments on the states transmitted via a communication
channel) occur in spacetime. Nor was any particular
nature of the quantum system specified. However,
abstract quantum systems outside spacetime do not
exist in nature. Moreover, the very fact of the existence
of spacetime results in that only certain elementary

I I1 I1
⊥ ,+=

I1
⊥ *1

⊥

Pr ? i{ } Tr ϕ i| 〉 ϕ i〈 | I1
⊥{ } 0.≠=
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quantum systems (particles) do exist, which implies
that the basis vectors of unitary irreducible representa-
tions of an inhomogeneous Lorentz group in the Hilbert
space are interpreted as the vectors of state (wave func-
tions) of elementary particles (electrons, positrons,
neutrinos, photons, etc.). Although the states of quan-
tum systems in the relativistic case are described by
vectors in the Hilbert space *, the vectors are charac-
terized by an internal “content” in the form of smooth-
ing functions (amplitudes) dependent on the space
coordinates and time [16, 17].

It should be noted that, in any real situation, the only
acceptable carriers for the transmission of information
over large distances in cryptosystems are photons—
massless particles (states of a quantum field) propagat-
ing with the maximum possible velocity (i.e., with the
velocity of light). The existence of this limiting velocity
is the basic law of nature. Also, any transmission of
information in spacetime with both classical and quan-
tum objects implies a causal link between preparation
of an information carrier, distribution via a channel, and
measurements on this carrier.

The fact that information carriers are the states of a
massless quantum field, together with the relativistic
causality principle, allows a new unconditionally
secure cryptosystem to be constructed in which secu-
rity relies on these basic principles rather than on the
Hilbert space geometry (i.e., on the special properties
of nonorthogonal states in this space). In the relativistic
case, secure key distribution is possible using virtually
any states of the quantized photon field (even orthogo-
nal states with an effective length below that of the
communication channel). Any attempt at eavesdrop-
ping is detected by a delay in the results of measure-
ments. In the nonrelativistic case, eavesdropper inter-
ference is detected by a change in the vector of state for
one of the nonorthogonal states.

The delay found in the relativistic case also repre-
sents, in a certain sense, a change in the state, since a
shift (translation) in spacetime means a transition to
another state. This is essentially a new point that will
probably simplify experimental implementation of the
proposed approach. For example, using orthogonal states
with nonoverlapping frequencies as carriers is much
more convenient than encoding into polarization states,
because a change in the frequency of a state is more sta-
ble with respect to noise than the polarization state. In
addition, a change in the state related to a delay can be
experimentally measured by usual photodetectors.

Let us consider a quantized electromagnetic field
(photons). The electromagnetic field operators can be
written (assuming that c = " = 1) as [16]

(18)

Aµ
± x̂( )

1

2π( )3/2
----------------=

× kd

2k0

------------ ik̂ x̂±( )eµ
m k( )am

± k( ),exp∫
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and they obey the commutation relations

(19)

Here,  is the commutation function for the
zero-mass field,

(20)

and quantities with caps denote four-dimensional vec-
tors,

Formally, there are four possible types of photons: two
transverse, longitudinal, and temporal, but the latter
two are fictitious and can be excluded from consider-
ation via introduction of an indefinite metrics [16, 17].
For our purposes, the simplest way consists in using a
particular gauge. In what follows, we consider a sub-
space of physical states in the Coulomb gauge Aµ =
(A, ϕ = 0) and deal with two physical transverse states
of the electromagnetic field. The generalized operator
function represents a vector in the three-dimensional
(3D) space,

(21)

where w(k, s) is a 3D vector describing the photon spi-
rality (s = ±1),

(22)

and e1, 2(k) are the vectors perpendicular to k. The field
operators obey the Maxwell equations:

(23)

Smoothened field operators can be written in the

Aµ
– x̂( ) Aν

+ x'ˆ( ),[ ] – igµνD0
– x̂  –  x 'ˆ( ).=

D0
– x̂  –  x 'ˆ( )

D0
± x̂( )

1

i 2π( )3
--------------- pd

2 p0
-------- i p̂ x̂±( )exp∫±=

=  
1

4π
------ε x0( )δ x̂2( )

i

4πx̂2
------------,±

ε x0( )δ x̂2( )
δ x0 x–( ) δ x0 x+( )–

2 x
--------------------------------------------------------≡

k̂ k0 k,( ), x̂ x0 x,( ).= =

j x̂( )
1

2π( )3/2
---------------- kd

2k0

------------ w k s,( )
s 1±=

∑∫=

× a k s,( ) ik̂ x̂–( )exp a+ k s–,( ) ik̂ x̂( )exp+{ } ,

w k ±,( )
1

2
------- e1 k( ) ie2 k( )±[ ] ,=

e1 k( )⊥ e2 k( ), w k s,( ) 2 1,=

∇ j x̂( )× i
t∂

∂ j x̂( ), ∇ j x̂( )⋅– 0.= =
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following form:

(24)

where f(k, s) are the values of  on the mass sur-

face,  being a 4D Fourier image of an arbitrary
function  from the space of base functions Ω( ).

Let us consider a one-dimensional model. This
approximation is physically justified, since real fiber
optic systems are quasi-one-dimensional objects. The
information carriers are pure states of the massless
quantized electromagnetic field (photons). The general-
ized basis states are generated by the action of field oper-
ators (more precisely, of the generalized functions with
operator values) on a cyclic vacuum vector [16, 17]. Tak-
ing into account the requirements on the Lorentz invari-
ance, the field operators cannot be simple (even unlim-
ited) operators in *. If the field operators were simple

operators, the matrix element , inter-
preted as the generation of a particle in , propagation,
and annihilation in , would be merely a constant
independent of  and , in contradiction to the causal-
ity principle [18].

The generalized functions with operator values are
represented as

(25)

where µ = 0, 1 is the index of polarization (spirality).
The commutation relations are as follows:

, (26)

and the generalized basis vectors (linear continuous
functionals in *) are

(27)

where |0〉  is the vacuum vector and |kµ〉 ,  ∈ Ω * is
the space conjugate to the space of base functions Ω .
The physical states (vectors in *) are obtained by
smoothening generalized operator functions with the
basic functions (amplitudes) from the space Ω( ) (the
space of infinitely continuously differentiable functions

j f( ) j x̂ s,( ) f x̂ s,( ) x̂d∫
s 1±=

∑ 1

2π( )3/2
---------------- kd

2k0

------------∫= =

× w k s,( ) f k s,( )a+ k s,( ) f ∗ k s,( )a k s,( )+{ } ,
s 1±=

∑

f k̂ s,( )

f k̂ s,( )
f x̂ s,( ) x̂

0〈 |ϕ̂ – x'ˆ( )ϕ̂+ x̂( ) 0| 〉
x̂

x'ˆ
x̂ x'ˆ

ϕ̂µ
+ x̂( ) k̂ ik̂ x̂( )aµ

+ k̂( )θ k0( )δ k̂
2

( ),expd∫=

k̂ k0 k,( ), x̂ x t,( ),= =

aµ'
– k'ˆ( ) aµ

+ k̂( ),[ ] k0δ k k'–( )δµ µ',=

aµ
+ k̂( ) 0| 〉 kµ| 〉 , x̂µ| 〉 ϕµ x̂( ) 0| 〉 ,= =

kµ k'µ'〈 〉 k0δµµ'δ k k'–( ),=

x̂µ| 〉

x̂

JOURNAL OF EXPERIMENTAL 
decreasing at infinity faster than any reciprocal polyno-
mial power):

(28)

Here, the amplitude  ( (k, k0 = |k|)) plays the role
of the coefficient of expansion over generalized basis
states. The construction of  ∈ Ω ( ),  ∈
Ω*( ), |ϕµ〉  ∈  *, and Ω ⊂  * ⊂ Ω * is called the
equipped Hilbert space (or the Gelfand triad) [17, 19].

Below we will consider the field states propagating
in one direction of the x axis (k > 0), representing the
very kind of states carrying information between
remote legitimate parties:

(29)

where

(30)

and 

(31)

The physical states in * are determined by the values
of amplitude on the mass surface. The amplitude of
states propagating in one direction depends only on the
difference τ = x – t. This circumstance reflects the fact
that, should a given measurement result take place at
the time t in the vicinity of the point (x, x + dx), the same
result will be obtained at the time t' in the vicinity of the

ϕµ| 〉 x̂ϕ̃µ x̂( )ϕµ
+ x̂( ) 0| 〉d∫

µ
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point (x', x' – x + t + dx). For brevity, we will speak of
the amplitude ϕ(τ) set on a branch of the light cone.

The polarization index µ will be omitted as insignif-
icant unless it will be required. The information states
will be represented by orthogonal states with nonover-
lapping frequency bands. The amplitudes correspond-
ing to the vectors of states 0 and 1 are selected in the
form of

and

respectively. The condition of nonoverlapping fre-
quency bands is

and the vectors of states are automatically orthogonal:

(32)

Here, the generalized function is written in the integral
representation [20]

(33)

As can be seen, the orthogonality of states is a non-
local property in spacetime. This implies that, once the
time t* in τ = x – t* is fixed, the orthogonality “spreads”
over a large—formally, an infinitely large (see
below)—spatial region. If the coordinate x* is fixed on
τ = x* – t, the orthogonality is gained due to a large
interval of time. In what follows, these considerations
will be given operational meaning. The possibility of
distinguishing the orthogonal quantum states by means
of measurements will unavoidably require either a
finite spatial region (at a fixed time section) or a finite
time (at a fixed spatial variable).

Strictly speaking, the exact orthogonality and,
accordingly, reliable outcome of the measurement
would formally require the infinite spacetime region
because of the basic nonlocalizability of states in quan-
tum field theory.

suppϕ0 k( ) ∆k{ } 0∈

suppϕ1 k( ) ∆k{ } 1,∈

∆k{ } 0 ∆k{ } 1∩ ∅ ,=

ϕ0 ϕ1〈 〉 kϕ0* k( )ϕ1 k( )d

∆k{ } 0 ∆k{ } 1∩
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=  τ τ 'ϕ0* τ( )ϕ1 τ'( )
1
2
---δ τ τ'–( )

i
π
--- 1

τ τ '–
------------+dd

∞–

∞

∫
∞–

∞

∫

=  τϕ 0* τ( )ϕ1 τ( )d

∞–

∞

∫ 0.=

x ik x t–( )( ) 1
x t– a+
-------------------expd
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∫
=  iπ k( ) ika–( ).expsgn
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In fact, since the amplitude of states is set on the
mass surface (whereby the values of ϕ(k, k0) as the
function of two variables are determined only for k = k0,
rather than for arbitrary k and k0), this function is
always nonzero in the entire space (i.e., outside any
compact, which is an arbitrarily large but finite region).
The fact of the nonlocalizability of states in quantum
field theory has been known for a long time (see the
physical consideration of this question, e.g., in [21]). In
the given case, the nonlocalizability can be demon-
strated to follow from the Wiener–Paley theorem [22].
Consider a normalized function ϕ(k) such that

(34)

which is equal to zero on the semiaxis k ≤ 0, while
being not identical zero. For the Fourier transform ϕ(τ)
of this function, the rate of spatial decay at infinity is
determined by the convergence of the integral

(35)

From this it follows that the amplitude ϕ(τ) cannot
decrease even exponentially (not speaking of being
zero outside a compact), since otherwise (for ϕ(τ)| ∝
exp(–α|τ|)) the integral in (35) would diverge. However,
the amplitude decay can be arbitrarily close to expo-
nent, with any α > 0, so that

This degree of localization of the photon field can be
also achieved in the 3D case [23], although it was con-
sidered for a long time (after the Newton and Wigner
paper [24]) that the most rapid possible spatial decay
corresponds to a power of 7/2.

The nonlocalizability of the amplitude (differing
from zero outside any compact) has deep roots related
to causality in the relativistic quantum domain. In par-
ticular, Hegerfeld [25] demonstrated that, if the ampli-
tude of a state were localized in a certain finite region
of space at the initial time t0, the free evolution would
make the amplitude nonzero in regions arbitrarily far
(separated by a spacelike interval) from this finite
region at any subsequent time t > t0. This result is
inconsistent with relativistic causality, since this behav-
ior implies that information can be transmitted at a rate
exceeding the velocity of light (even when the probabil-
ity of the measurement’s outcome is less than unity in
the region separated by a spacelike interval from the
initial region). Recently [26], it was demonstrated that
the principle of causality in decay processes is valid in

k ϕ k( ) 2d

0

∞

∫ 1,=

ϕ τ( )ln

1 τ2+
------------------ τd

∞–

∞

∫ ∞.<

ϕ τ( ) α τ
… τln( )ln

---------------------------– 
  .exp∝
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the relativistic domain for the average values of observ-
ables.

Roughly speaking, the state of a free quantized field
is different from zero always and everywhere, that is, in
the entire spacetime (see, e.g., (35)).

The principle of causality in the relativistic domain
was originally formulated in the finite form by Bogoli-
ubov in 1955 (see [16]). In the differential form, it
appears as

(36)

This means that, should the state be perturbed in some
region where the interaction g( ) takes place, this can-
not influence the results of measurements in regions 
separated from the former region by a spacetime interval.

In the following considerations, the role of the cau-
sality principle is to ensure that information about a
quantum state in some spacetime region cannot be
obtained until the state has reached this region. No one
state can enter a given region or leave it at a velocity
faster than that of light. More precisely, no finite infor-
mation about the state can be obtained differing from
zero by more than an exponentially small value. Note
also that the smaller the fraction of a state present in the
region accessible for the measurement, the lower the
probability of obtaining any result in the measurement
on this state. This follows directly from the normaliza-
tion of the quantum state.

The fact that the amplitude of a state differs from
zero in the entire space is not a restrictive condition in
the problems of quantum cryptography, since it is
always possible to select a current spacetime region of
dimensions such that the fraction of the amplitude nor-
malization gained outside this region would be expo-
nentially close to zero to within any preset accuracy.
Although the very fact of strict nonlocalizability of the
amplitude is related to the basic requirements of causal-
ity, the manifestations of this nonlocalizability in par-
ticular problems are rather of a technical character.
Now we will impart more operational meaning to these
considerations.

Let the amplitude of a state in the momentum repre-
sentation be set in a finite but quite arbitrary frequency
band ∆k ∈  (0, ∞). Let us consider the question as to how
the probability of finding a photon inside a spacetime
region of size 2T (at a fixed frequency band) depends on
the shape of the amplitude of this state. These consider-
ations will be required below for the formulation of a
secure bit commitment protocol, because the amplitude
shape will determine the requirements on the size of a
spacetime region necessary for detecting attempts at
eavesdropping by monitoring delays in the results of
measurements.

δS+ g x̂( )( )
δg x̂( )

-----------------------S g ŷ( )( ) 0, x̂ ŷ.<=

x̂
ŷ
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Any measurement on a quantum state is described
by a subordinate partition of unity in the single-particle
subspace of states,

(37)

and the operator value measure

(38)

describes the probability of detecting a photon within
the interval (τ, τ + dτ). Accordingly, the probability of
finding the photon in a finite spacetime region T (it
should be recalled that the amplitude depends only on
the difference τ = x – t) is

(39)

where

(40)

Accordingly, the probability of finding the photon out-
side the (–T, T) region (i.e., in the rest of spacetime) is

(41)

Since the amplitude depends only on the difference τ =
x – t, these relations can be interpreted as follows. First,
as the probability of finding a photon in a coordinate
space region of size ∆x = 2T at a certain fixed moment
of time. Second, as the probability of finding a photon
in the vicinity of a fixed point x within a time interval
of ∆t = 2T (the meaning of this will be refined below).

The maximum possible probability of finding a sin-
gle-photon packet within the interval T is given by the
expression

(42)

where the maximum is taken over all packet shapes
ϕ(k) whose carriers fall within the frequency band ∆k.
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The optimum shape is determined by solving a varia-
tional problem for the maximum of the functional

(43)

which reduces to the eigenvalue problem:

(44)

The maximum eigenvalue gives the maximum of the
functional, while the eigenfunction corresponding to this
eigenvalue describes the optimum shape of the state.
This equation has been previously studied in [27, 28],
where it was established that the eigenvalues λn are pos-
itive and form a sequence decreasing with increasing
number n (1 > λ0 > λ1 … > 0, n = 0, 1, … ∞). The eigen-
values depend on the parameter ∆kT, and several first
members of this sequence were numerically calculated
for various values of ∆kT (at large values of this para-
meter, the λn values rapidly tend to unity; e.g., for
∆kT = 4, λ0 = 0.99589) [27]. The asymptotic behavior
of eigenvalues with a fixed number n at ∆kT @ 1 deter-
mined by Fuchs [28],

(45)

confirms that the eigenvalues are exponentially close to
unity.

Thus, the probability of any measurement in a spa-
tial region (or a time interval) of size 2T for a state with
the carrier within a frequency band ∆k cannot exceed

(46)

Therefore, by selecting the size of the spatial region (or
the time interval), it is possible to ensure that the prob-
ability of detection outside this region (interval) will be
arbitrarily small. For example, a probability of 10–80

can be considered as zero because this value is below
any physically reasonable quantity (the number of
atoms in a visible part of the Universe is estimated at
1080). For this reason, the fact of the nonlocalizability
of states in quantum field theory is not a restrictive con-
dition: it is always possible to select the size of a region
(or the time window) “accommodating” the entire state
with exponential accuracy.

In application to problems of quantum cryptogra-
phy, selection of the necessary region (interval) size
will guarantee that an eavesdropper would be capable
of gaining only exponentially small information about
a transmitted state outside this spatial region (or the

δ
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time interval). This interval size is on the order of 2T.
Accordingly, any attempts at eavesdropping will be
detected by a receiving legitimate party by monitoring
the events outside this interval (for details, see below).

Consider a pair of single-photon states (packets),
each with a frequency band ∆k, and let these frequency
bands not overlap, so that the states are orthogonal and,
hence, reliably distinguishable. However, the very fact
of being reliably distinguishable implies that the whole
space of states should be accessible: the measurements
distinguishing the given pair of states require access to
the space region in which the state is present (otherwise
there is nothing to measure).

Now it will be shown that, when one of the orthog-
onal states (|ϕ0〉  or |ϕ1〉 , with nonoverlapping frequency
bands ∆k) is transmitted via a communication channel,
the obtaining of any information about this state with a
probability exceeding an exponentially small value
O(exp(–2∆kT)) will lead to an unavoidable delay in the
results of measurements performed by the legitimate
receiving party. By this delay, any attempts at eaves-
dropping are detected.

Any information transfer by means of both classical
and quantum objects implies three stages related by
causal links: (i) preparation of an information carrier
(quantum state); (ii) transmission of this carrier via a
communication channel; and (iii) measurement by the
legitimate receiver for gaining the information.

Let the legitimate sender A (Alice) prepare one of
the states (|ϕ0〉  or |ϕ1〉) within a controlled spacetime
region of size 2T at the initial time t = 0 of the bit com-
mitment protocol, this moment being known to every-
body including an eavesdropper (Eve). In this space-
time region, the states can be prepared so as to provide
for a positive outcome with a probability of 1 –
O(exp(−2∆kT)) (an unsuccessful outcome caused by
nonpreparation of the state is of no danger for the key-
distribution security). Here, there are two formally
equivalent possibilities. In the first case, Alice prepares
the state by means of a space-distributed device at t = 0
in the entire spatial region of size ∆x = 2T (Fig. 1a).2 In
the case of using such a distributed device, Alice takes
a decision at t = –T on which of the two states, 0 or 1,
will be prepared. The state appears at t = 0 in the entire
spatial region of x < 0 (x > 0 is the region of the com-
munication channel). In other words, the preparation of
a state by means of the distributed device implies that,
for causality reasons (Fig. 1a), the spatial region 2T has
to be covered by the front part of a light cone with the
apex at Alice.

Although there are no formal prohibitions for pre-
paring the amplitude of the state at the time t = 0 in the
entire spatial region of size 2T, another procedure for

2 An example of the distributed device is given in Section 6. This
device comprises a prism and apertures spaced by 2T from the
prism. The term “distributed” means that the whole device occu-
pies a spatial region of size 2T.
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(a)

2T
–T

A

t = 0

x = ct

x

t

A

2T

t = 0

x = ct

x

t(b)

Fig. 1. Schematic diagrams illustrating the preparation of states using (a) distributed and (b) localized devices.
preparation of the state—more convenient in real situa-
tions and, naturally, equivalent to the above one—
can be performed using a localized source. Here, the
term “localized” means that the source size is small,
δxsource ! T (Fig. 1b). A state prepared by the localized
source immediately enters the communication channel.

Now let us proceed to the question of information
extraction by Eve in the communication channel. Upon
elapse of the time 2T, the entire state occurs in the com-
munication channel with a probability exponentially
close unity. The evolution of the state transmitted in the
channel is described by a unitary operator of transla-
tion,

(47)

where τ0 is the translation magnitude in spacetime. At
the time t > T, the state can be presented as

(48)

Now it will be demonstrated that the extraction of
any information, not exponentially small, by Eve will
lead to a detectable delay at the legitimate receiver end
of the channel. In order to gain any information on the
state in transit, it is necessary to have access to the
region of space in which the amplitude of this state is
nonzero. Let us make recourse to the aforementioned
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Bennett proof [11]. According to Eqs. (3)–(9), distin-
guishing the orthogonal states without perturbing them
is not prohibited. However, this statement is implicitly
based upon the assumption that the states are accessible
as a whole. The whole state cannot be accessed faster
than within a time period of 2T (Fig. 2). Obviously, the
state cannot enter the region x ≥ xE (Fig. 2) more rapidly
than within a propagation time of 2T. This fact is deter-
mined only by the existence of a limiting propagation
velocity, whereas the fact that the state is quantum has
not yet been employed. It should be recalled that Eve
knew the time of the state preparation (i.e., the time when
the whole state, to within exponential accuracy, will
occur in the communication channel).

The quantum nature of the state is important for the
following. The probability of obtaining any result of the
measurement in a certain spacetime region cannot be
greater than the fraction of the normalization of this
state gained in the given region. Obtaining any result of
the measurement (irrespective of whether the states are

t

xE

2T δT

δT

x = ct

Fig. 2. Schematic diagram illustrating the time delay caused
by eavesdropping: the cross-hatched part of a state allows
information to be extracted due to a fraction of the state nor-
malization gained in this region. However, this interaction
unavoidably introduces a delay by δT, since an unaltered
state would propagate forward by δT.
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orthogonal or nonorthogonal) requires a finite time
(Fig. 2). “Collecting” the state in a certain local region
will unavoidably lead to a delay, since otherwise the
initial state would propagate further (Fig. 2). The more
information gained by Eve about the state, the greater
the fraction of the normalization “collected,” and the
longer the delay produced. Since the amplitude
depends only on the difference x – t, the situation can
be considered either by fixing the time and treating the
coordinate as a variable or vice versa. Let us consider
both variants.

Let a state be set with the amplitude ϕ(x – t) (it
should be recalled that this is the amplitude of a mass-
less particle propagating at the velocity of light, c = 1).
The state occupies a region of size 2T, which implies
that

where ϕ(x – t0) is amplitude in the time section t = t0. In
order to obtain the result of any measurement with a
probability arbitrarily close to unity, the values of the
state amplitude at t0 for all x are necessary at once in the
region where the amplitude is nonzero, since the quan-
tum state is normalized. This information can be
obtained by performing a unitary transformation of the
entire state, otherwise the transformation will not be
unitary. The unitary transformation of the amplitude
can be written as

The amplitude (x' – t) can be nonzero in a smaller
spatial region. The minimal size of the region in x' by
the time t is determined by the relativistic causality
principle. The matrix elements of the unitary operator
are nonzero only when the points (x, t0) and (x', t) occur
in the past portion of the light cone originating at point
Γ and covering the region where the state amplitude is
nonzero at time t0. For a time not less than T, the ampli-
tude of the initial state can be transformed in a unitary
manner into the amplitude of a state localized arbi-
trarily strongly in the vicinity of Γ, but this will be a dif-
ferent state. By the time moment of Γ, the state ampli-
tudes are accessible for all x. Now, the measurement
outcome and, hence, complete (with a probability of
unity) information about the state can be instanta-
neously obtained. If the initial states are orthogonal, the
unitary transformation provides a pair of orthogonal
states at Γ, which can be reliably distinguished from
each other. It should be emphasized that these are
essentially new orthogonal states. “Restoration” or
copying (cloning) of the state can also be provided with
an inverse unitary transformation “directed” forward in
time. A state with the same amplitude shape cannot be
obtained earlier than is dictated by the relativistic cau-
sality principle, and the amplitude of this state occurs in

ϕ x t0–( ) 2 xd

T

∫ 1,≈

Uϕ x t0–( ) ϕ̃ x' t–( ), t t0.>=

ϕ̃
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the front part of the light cone originating at Γ. The new
state is also different from the initial one in the sense
that the former is delayed in time relative to the latter
(which would propagate forward along x by the time 2T
to cover a distance of 2T, if it were not an attempt by
Eve to obtain information about the state). Here, we are
speaking about gaining information about a state in the
channel with a probability of unity, whereby Eve will
not pass the test for delay with the same probability.
Analogous considerations are valid in the case of
obtaining information with a probability below unity,
but the delay will be smaller than 2T.

Similar considerations apply to the nonrelativistic
case. Ignoring the special relativity constraints, we
have to omit the part that pertains to the light cone.
Here, the unitary transformations can be formally per-
formed instantaneously and it is possible even to
exclude the explicit coordinate, only implicitly assum-
ing that the whole state is accessible for the unitary
transformation.

Analogous considerations can be reproduced when
the state is transformed in a unitary manner to the state
of an auxiliary localized system (usually atomic, as in
the case of “light stopping” [40]). This unitary transfor-
mation converts the field state into a vacuum state
(because of the massless nature and the impossibility of
propagating at a zero velocity), and an atomic system
state, into a new state. Being unitary, the transformation
also requires access to all values of the amplitude of the
photon packet at the point of localization of the atomic
system. The access is naturally provided in the course
of packet propagation at the velocity of light, on reach-
ing the localized atomic system. This process also
requires a time of 2T for the whole single-photon
packet to reach the atomic system (if we are speaking
of a result obtained with a probability of unity) and the
field occurs in a different (vacuum) state. For the time
2T, it is possible to identify the state and prepare the
same state, but with an unavoidable delay of 2T relative
to the time of free propagation of the initial packet.

The situation whereby the state penetrates through
an auxiliary localized quantum system and locally
interacts with this system at each moment of time (by
analogy with Eqs. (3)–(9)), unavoidably leads to pertur-
bation of the initial state. This will be illustrated by a
simple example. The local interaction implies incom-
plete access to the Hilbert space of states. Consider the
initial state

(49)

where |e0, 1〉  are the basis set vectors. Let |a〉  be an aux-
iliary quantum system |a〉  and the joint unitary evolu-
tion have the form

(50)

Here, the locality of the interaction implies that the uni-
tary transformation involves only the accessible basis

ϕ| 〉 c0 e0| 〉 c1 e1| 〉 , e0 e1〈 〉 ,+=

ϕ| 〉 U ϕ| 〉 a| 〉⊗( )
=  c0U e0| 〉 a| 〉⊗( ) c1 e| 〉 a| 〉 .⊗+
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vectors |e0〉 . Let the auxiliary system evolve into a new
state |a'〉  such that 〈a'|a〉  = 0 (this simplifying assump-
tion is not of principal importance). The state of the
joint system upon evolution is

(51)

The new state of the initial system is calculated as a par-
tial trace over the degrees of freedom of the auxiliary
system,

(52)

which is by no means identical to the state prior to the
local interaction with the auxiliary quantum system,

(53)

Now let us consider in more detail the procedure of
measurement at the legitimate receiver B (Bob), which
allows the delay to be detected. The measurements will
be, first, described formally and, then, illustrated by an
example of technical realization. It turns out that such
measurements are quite readily implemented using fil-
ters with a frequency pass band of ∆k and a usual pho-
todetector (for details, see below).

The measurement at the receiver end is described by
a subordinate partition of unity

(54)

where }i(dτ) (i = 0, 1) is the operator value measure

(55)

The measurement is performed in such a manner that it
“transmits” only states with the frequency bands falling
within {∆k}0 or {∆k}1 (the bands are assumed to be
equal in width and differ only in position on the fre-
quency axis) or, in other words, only states with effec-
tive spacetime lengths not less than T. The probability
that the measurement performed by Bob on the state
|ϕ0〉  will give outcome 0 for the (Lch, Lch + 2T) time win-
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dow (the interval in which the state would occur at a
probability exponentially close to unity in the absence
of delay) is

(56)

where U(Lch) is the unitary operator describing transla-
tion of a state over the channel length Lch. The proba-
bility of detecting states outside the time window is
exponentially small.

Since all measurements performed by Eve are per-
formed in the communication channel and give infor-
mation only while the state is present in the channel,
this scheme of cryptography eliminates the problem of
collective measurements arising in nonrelativistic
quantum cryptography where all protocols are formu-
lated only in the Hilbert space of states (i.e., beyond
spacetime). Therefore, a key value in every event of a
state transfer via the communication channel is the prob-
ability of identifying the bit transmitted by Alice and to
pass the test during Bob’s measurements (54)–(56) on
the receiver end. The test is considered successfully
passed if measurement (54)–(56) gives an outcome
within the (Lch, Lch + 2T) time window. In the subse-
quent key distribution, only messages with an outcome
in this window in Bob’s measurements are left. Natu-
rally, Eve can preliminary send arbitrary states to yield
an outcome within the desired time window in Bob’s
measurements. These attempts can be detected by
means of a protocol whereby a part of the messages are
unveiled to determine the flux of errors.

The probability that an eavesdropper possesses
some information on the transmitted state is restricted
to the extent of her access to a spatial region in which
the state is present. If Eve would like to access a region
(spatial or temporal) of size δT, the probability of a
given outcome of any measurement is determined only
by the size of this region and, by virtue of the state nor-
malization condition, cannot exceed

(57)

The total probability of correct identification of the
given state (without taking into account the temporal
test at the receiver end) consists of two parts. If the
monitoring took place within a spacetime region of size
δT, the state is uniquely identified (due to orthogonality),
the probability of such an event being PrE(δT). In the
absence of monitoring, the probability is 1 – PrE(δT).

Pr i T,( ) Tr }i T( )U Lch( ) ϕ i| 〉 ϕ i〈 |U 1– Lch( ){ }=

=  τ ϕ i τ( ) 2d

Lch

Lch 2T+

∫ λ0 2∆kT( )=

=  1 O 2∆kT–( )exp( ),–

PrE δT( ) Tr } δT( ) ϕ i| 〉 ϕ i〈 |{ } τ ϕ i τ( ) 2,d

T δT–

T

∫= =

δT T T,( ).–∈
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Here, the probability of correct identification is 1/2
(i.e., it equals the probability of simple coin tossing),
since no monitoring took place (the eavesdropping
device fails to operate).

The total probability of correct identification in the
δT time window is

(58)

Due to the finiteness of the velocity of light, access to
the δT region will unavoidably lead to a delay in Bob’s
measurements in the (Lch, Lch + 2T) time window
(Fig. 3), since the measurements are performed so that
states with effective lengths below 2T (or the frequency
band width above ∆k) are not transmitter. More pre-
cisely, the operator measure }(dτ) in Eqs. (54), (55)
describing the measurement contains a projector onto
the subspace of states only with carriers belonging to
the frequency band ∆k. Among these, the states with
shortest lengths are the optimum states corresponding
to Eqs. (44)–(46). Any other states, even nondelayed,
are more lengthy and cannot be transmitted via the tem-
poral (or spatial) window (–T, T) with a probability
exceeding that for the optimum states.

Should Eve extract information about the transmit-
ted bits from the optimum states, these states will
unavoidably acquire a delay (Fig. 3) dictated by the
existence of the limiting velocity, thus yielding out-
comes outside the (Lch, Lch + 2T) window in Bob’s mea-
surements. The probability for a state delayed by δT to
pass the delay test in Bob’s measurements does not
exceed

(59)

The probability of passing the test with a delay of δT
under the condition that the eavesdropping device has
operated (and that Eve knows the transmitted state) is

(60)

For a zero delay (δT = 0), the first multiplier (describing
the probability for Eve to obtain the correct result) is
zero. The second multiplier is the probability of passing
the delay test in Bob’s measurements. Should the delay
be δT = 2T, the probability for Eve to obtain the correct
result is unity (exponentially close to unity), but the
probability of passing the delay test is zero.

PrOK δT( ) 1PrE δT( )
1
2
--- 1 PrE δT( )–( )+=

=  
1
2
--- 1 PrE δT( )+( ) 1

2
---.>

PrB δT( ) Tr } τ Lch Lch 2T+,( )∈( )U Lch( ){=

× ϕi| 〉 ϕ i〈 |U 1– Lch( ) }

=  τ ϕ Lch τ δT–+( ) 2d

Lch

Lch 2T+

∫ τ ϕ τ( ) 2.d

T–

T δT–

∫=

PrE δT( )PrB δT( ) PrE δT( ) 1 PrE δT( )–( ).=
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The total probability for Eve to correctly identify the
transmitted state and pass the test for delay at the
receiver end is

(61)

Here, the first multiplier in the first term describes the
probability that the eavesdropper device would fail to
operate for a given delay δT, the second multiplier gives
the probability of correct identification in the absence
of monitoring (equal to 1/2), and the third term reflects
the probability of passing the time delay test. The latter
probability is unity because, if the detector fails to oper-
ate, the state freely passes through the eavesdropper
without any interactions. The same is valid for the sec-
ond term, where the first multiplier is the probability for
the device to give the outcome 0 or 1. The second term is
the probability of identification, which is equal to unity
because the states are orthogonal, and the third term is
again the probability of passing the time delay test.

The value of δOK(δT) reaches maximum for a certain

value of δT, this maximum being denoted by . For
the following, let us find the minimum Eve’s error, δE,
in determining the transmitted bit while passing the
delay test in Bob’s measurements. Only such outcomes
at the receiver end will be used in the proposed secure
bit commitment protocol. For this error, defined as

(62)

the maximum probability for Eve to identify the trans-
mitted bit while passing the delay test is attained for

δOK δT( ) Pr bitE{=

=  bitA test τ Lch Lch 2T+,( )∈( )∧ O'K }=

=  1 PrE δT( )–( ) 1
2
--- 1××

+ PrE δT( ) 1 1 PrE δT( )–( ).××

δOK
max

δE 1 δOK
max,–=

t

x(Lch, Lch + 2T)

δT

x = ct

Fig. 3. Schematic diagram illustrating the time delay test:
the cross-hatched part of a state delayed in transit does not
contribute to the outcomes of measurements in the time
window (Lch, Lch + 2T) at the receiver end of the communi-
cation channel. 
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PrE(δT) = 1/4. This yields

(63)

Accordingly, the probability that Eve will correctly
identify the bit transmitted by Alice and successfully
pass the delay test in Bob’s measurements is

(64)

Now it will be demonstrated that the probability of
detection in any time window for a noisy channel can-
not be higher than the corresponding probability for the
ideal channel. This will imply that the probability given
by Eq. (61) is the maximum that can be expected by
Eve in extracting information about the transmitted
state. The presence of noise in a communication chan-
nel can increase neither the information obtained by an
eavesdropper nor the probability of passing the time
delay test.

Since the states in the relativistic case are described
by vectors in the Hilbert space of states, a change in the
given state under the action of noise can be described
by an instrument with allowance of the relativistic con-
straints. The general form of such an instrument is [29]

(65)

δE
7
16
------ 1

2
--- 0.0625– 43.75%.= = =

δOK
max 9

16
------ 1

2
--- 0.0625+ 56.25%.= = =

7 …[ ] 6k …[ ] 6k
+
, 6k

k

∑ λ k φk| 〉 ψk〈 | ,= =

λ k6k6k
+

1, λ k 0,≥≤
k

∑

Tr 7 ϕ0 1,| 〉 ϕ 0 1,〈 |[ ] } T( ){ }

=  Tr ϕ0 1,| 〉 ϕ 0 1,〈 | 6k} T( )6k
+( ){ }

k

∑

t x = ct

tB

tA
A

B

< 2T

2T x

Fig. 4. Schematic diagram illustrating violation of the rela-
tivistic causality principle. Hypothetical contraction of the
state leads to the possibility of transmitting information at a
supraluminal velocity between points A and B separated by
a spacelike interval.
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(66)

The last equality in Eq. (66) reflects the fact that the
amplitude ϕ(x) of the state

(67)

is entirely localized in the region of x ∈  (–T, T) at the
time t = 0 and will be entirely localized in the region of
x ∈  (–T, T) + Lch by the time not earlier than Lch and not
faster than within t = dist(Lch). Strictly speaking, the
problem in field theory is not a single-particle one,

since the operator  contains processes involving the
production of particles and the absorption of other pho-
tons falling in the channel as external noise and/or van-
ishing in the channel. However, detecting these photons
apparently does not provide an eavesdropper with addi-
tional information about the transmitted bit.

In other words, if some region Ω of the space gains
some fraction of the normalization of a given state, the
propagation and distortion of the shape of this state
(packet) cannot lead to a situation whereby a greater
fraction of the normalization of this state will be gained
in another region of smaller size (size{Ω'} < size{Ω}}).
If this were possible, the classical information could be
transmitted by quantum states at a velocity higher than
that of light, which contradicts one of the basic laws of
physics.

Indeed, consider a pair of identical quantum states
prepared in the past (Fig. 4). Let an observer at point A
(Alice) perform measurements on one of these states,
while the other is transmitted to another observer at
point B (Bob). Alice can obtain information about the
quantum state not before the time tA (the state must be
covered by the past portion of the light cone originating
at point A). Events will always occur (albeit not with a
probability of unity because of the principal nonlocal-
izability of quantum states) when Alice will obtain a
certain result. Once this result takes place, Alice can
send a classical signal (or arbitrarily strongly localized
quantum signal, see (44)–(46)). According to the rela-
tivistic causality principle, Bob will receive this infor-
mation at time tB (Fig. 4) and will never receive it ear-
lier because these events are separated by a spacelike
interval.

Now let the state to be distorted due to evolution and
under the action of noise, so that the greater part of the
normalization is gained within a smaller spatial region

≤ λ kTr ϕ0 1,| 〉 ϕ 0 1,〈 | ψk| 〉 ψk〈 |( ){ }
k

∑

≤ λ k ψk ϕ0 1,〈 〉 2

k

∑ λ k ψk ψk〈 〉 ϕ 0 1, ϕ0 1,〈 〉
k

∑≤

≤ ϕ0 1, ϕ0 1,〈 〉 x ϕ x( ) 2d

T

∫ x ϕ x Lch–( ) 2.d

T

∫= =

ϕ0 1,| 〉 xϕ x( ) x| 〉d

T

∫ xϕ x Lch–( ) x| 〉d

T

∫= =

Ŝ
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(i.e., the state is contracted). Then, Bob can obtain the
information (with the same probability of positive out-
come as that for Alice) by measurements on the second
quantum state earlier than if he would have received
this information from Alice upon accomplishing the
same measurements at point A. The fact that such
events take place with a probability different from unity
is not of much importance, since the probability can be
rendered arbitrarily close to unity by increasing the
number of quantum states.

Thus, the probability of obtaining any information
about a transmitted quantum state and of passing the
time delay test at the receiver end is always smaller than
unity, irrespective of the quantum state. This fact allows
an unconditionally secure cryptographic bit commit-
ment protocol to be formulated. In this cryptosystem,
detection of the attempts at eavesdropping is guaran-
teed to the legitimate parties by the basic laws of nature,
including quantum mechanics and special relativity.
The fact of orthogonality or nonorthogonality of states,
which was of principal importance for certifying secu-
rity in the nonrelativistic case, is no longer critical in
the relativistic domain. This implies that relativistic
quantum cryptography can employ any quantum states
(naturally, provided that an appropriate procedure of
measurements is developed for detecting time delays).

In concluding this section, it should be noted that the
fact of alteration of the quantum states (except for
orthogonal) as a result of any measurements (observa-
tions) on these states can be, in application to quantum
cryptography, restated in a different way: the obtaining
of any information about a quantum state requires
access to a spacetime region in which the state is
present, which always unavoidably requires a finite
time in view of the finiteness of the velocity of light.
The structure of states (orthogonality or nonorthogo-
nality) is not critical, whereas the fact that any quantum
state has a carrier (amplitude, smoothening function) in
the Minkowski spacetime is of principal importance.
The space of the results of measurements on which the
operator value measure is defined may possess any
structure and unavoidably contains spacetime regions,
since no measurements can be performed outside space
and time. This remark may seem trivial, but the above
circumstance is usually ignored, while being implied
implicitly, in solving the problems of quantum cryptog-
raphy.

It should be also noted that the probabilities of the
results of measurements presented above are essen-
tially expressed via the Landau–Peierls wave function
ϕLP [14]. All these results can be rewritten in terms of
the Bialynicki-Birula wave function ϕB-B [30], the
square modulus of which in the spacetime representa-
tion gives the local energy density. The amplitudes
(wave functions) in these representations are related as

(68)kϕLP k( ) ϕB-B k( ).=
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The existence of spacetime allows some other quan-
tum cryptographic protocols to be formulated, which
would be impossible if only the structure of the Hilbert
space of states were taken into account. One of such
base cryptographic procedures is the so-called coin-
flipping protocol. In the relativistic quantum domain, a
secure protocol can be formulated with an arbitrarily
small displacement.

4. A SECURE KEY DISTRIBUTION
PROTOCOL

Up to the present, several variants of proved uncon-
ditional security in quantum cryptography have been
reported. Since no proof of the security in general can
exist, the considerations have to refer to a particular
exchange protocol. Mayers [31] was undoubtedly the
first to clearly formulate a criterion of security and
prove this in application to the so-called Bennett–Bras-
sard (BB84) protocol [9]; the same protocol was con-
sidered in [32]. The proof of Lo and Chau [33] refers to
a protocol based on the Einstein–Podolsky–Rosen
(EPR) effect, stipulating (in contrast to [31, 32]) that
legitimate parties use a (not yet existing) quantum com-
puter. Shor and Preskill [34] simplified the aforemen-
tioned proofs by explicitly introducing correcting codes
into the cryptographic scheme.

The main difficulty encountered in proving uncon-
ditional security arises from the fact that the aforemen-
tioned protocols are formulated in terms of “exchange”
in the Hilbert space of states and explicitly use neither
the notions of causality nor the fact that legitimate users
are separated in the coordinate space. However, the
transfer of information always implies preparation of
an information carrier (quantum state), transmission of
this state via a communication channel to a remote
receiving party, and subsequent measurement of the
state of the information carrier. The formulation of pro-
tocols using only the properties of the space of states
unavoidably leads to the necessity of proving the stabil-
ity of these protocols with respect to collective mea-
surements (allowance for which presents the most sig-
nificant difficulty).

First, let us formulate a security criterion for the key.
In contrast to [31], we will adopt a different security
criterion that is more convenient in the case under con-
sideration. A secret key must obey two requirements,
informally reduced to the following: the key must be
the same for both legitimate parties A (Alice) and B
(Bob) and not known to anyone else. More formally, let
an m-bit sequence obtained by both Alice an Bob
according to the protocol be mutually agreed upon to be
the key. Then, the key is secret provided that the follow-
ing conditions are satisfied:

Identity of the key. The probability that every bit in
the m-bit sequence adopted as the key is different for
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Alice (bA(i)) and Bob (bB(i)) is exponentially small:

(69)

In terms of mutual information exchange between Alice
and Bob about the resulting bit sequence of length m,

(70)

Security of the key. The probability that an eaves-
dropper (Eve) knows all bits in the key sequence may
only exponentially slightly exceed the probability of
trivial guessing (coin tossing), 2–m (the probability of
error in trivial guessing is 1/2, representing the worst
variant), for a resulting bit sequence of length m. Thus,
the probability that Eve knows every bit in the sequence
is exponentially small as compared to 1/2:

(71)

In other words, Eve possesses exponentially small
information about bit sequences bA(m) and bB(m)
adopted as the m-bit key by legitimate parties:

(72)

The quantities ε1, η1 and ε2, η2 can be selected inde-
pendently of each other. The initial bits transmitted by
Alice should not be identified with the bit sequence
adopted as the key: every bit in the key sequence is a
certain function of the set of initial bits.

Now let us formulate a protocol of secure bit distri-
bution between legitimate parties. Since any receipt of
information about transmitted states is accompanied by
the appearance of errors, an appropriate protocol guar-
antees that a sequence adopted as the key is the same
for both legitimate parties, Alice and Bob, and is not
known to anyone else. The protocol is as follows:

1. Alice and Bob first agree on a large integer N @
1. The protocol employs 2N bits.

2. Alice and Bob synchronize their clocks via an
open (insecure) channel, the length of the communica-
tion channel being known previously. The same open
channel is used to agree on the moments ti (i = 1, 2, …,
2n) of sending messages, such that ti + 1 – ti > 2T.

3. Alice generates a random sequence bi of bits (0
and 1) of length i = 1, …, 2n.

4. Alice transmits the states  at the time
moments ti with carriers in the frequency band ∆k (also
mutually agreed upon prior to beginning the protocol).
The shapes of these states are not necessarily optimum
with respect to localization according to (44)–(46).

ε1 0, M,∃>∀

Pr bA i( ) bB i( )≠{ } e M– ε1.≤ ≤

I A; B( ) m 2 M– .–≥

ε2 0, η2 ζ ,,∃>∀

Pr bA i( ) bE i( )={ } 1
2
--- e

η2–
, e

η2–
ε2.≤+≤

I A; E( ) e
η2–

ε2, I B; E( ) e
η2–

ε2.≤ ≤ ≤ ≤

ϕbi
| 〉
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5. Bob performs measurements on the receiver end,
as described by a subordinate partition of unity (54) and
(55) and informs Alice of receipt via the open channel.

6. After Alice has transmitted all states, Bob com-
municates to Alice via the open channel the numbers of
transmissions in which the results of measurements had
outcomes in the time windows (ti + Lch, ti + Lch + 2T)
(messages with outcomes outside these time windows
are discarded). Let the number of such outcomes be 2n.

7. Alice randomly chooses n of 2n outcomes and
communicates to Bob via an open channel the values of
bits transmitted with these messages.

8. Using the open channel, Alice and Bob compare
bits in each position of the unveiled sequence and esti-
mate the probability of errors. Let nOK be the number of
positions in which the bits coincide, and , the num-
ber of discrepancies. Then, the estimated probability of
error is δerr = /ns . If ns is sufficiently large, the prob-
ability of error in the unveiled part of messages is also
exponentially close to δerr .

9. Alice and Bob correct errors in the remaining
sequence of nonunveiled bits. To this end, a classical
error-correcting code [n, k, d] is selected with a mini-
mum distance d according to Hamming and the number
of code words 2k (d > 2δerrn + 1 for a linear code or d >
δerrn + 1 for a random linear code, see below). For this
purpose, Alice communicates to Bob via the open chan-
nel a series of v i (i = 1, 2, …, r; r = n – k) test sequences
of the given code. In addition, Alice communicates r
test parity bits (parity)i = v inA (nA and nB being the
sequences of nonunveiled bits of Alice and Bob,
respectively). These sequences do not, generally speak-
ing, coincide but differ (with a probability arbitrarily
close to unity) in approximately δerrn positions to be
corrected.

10. Knowing the correct parity of subsequences,
Bob corrects errors in the nsB sequence. In this step, the
sequences of bits for Alice and Bob are identical with a
probability arbitrarily close to unity at sufficiently large
n (see below). 

11. Alice and Bob enhance the key security using
the so-called privacy amplification procedure. For this
purpose, a certain hash function is selected and
declared via the open channel. The privacy amplifica-
tion consists in reducing a k-bit sequence  = {wi},
obtained by Alice and Bob upon correcting errors using
the correcting code in step 9, to a shorter sequence of
length m < k so as to ensure that it is unknown to Eve
(or known with an exponentially small probability
determined by a selected security parameter). To this

end, Alice chooses m sequences  = {li} of length k (i =
1, 2, …, m). The final secret m-bit sequence is obtained

in the form of parity bits: ( ) = .

n
OK

n
OK

ŵ

l̂

kêy ŵl̂
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12. If the length of sequences  is insufficient to
provide for the required security of the key, the protocol
is terminated.

A complete mathematical proof of the uncondi-
tional security of this protocol will be published sepa-
rately. Here we will consider only an outline of this
proof so as to clarify the underlying intuitive ideas.

For a sufficiently large number (2n) of transmissions
in which the results of Bob’s measurements had out-
comes in the correct time windows (see step 6), estima-
tion of the probability of errors in the unveiled ran-
domly selected part of n transmissions chosen from the
total number 2n of such transmissions guarantees (with
a probability arbitrarily close to unity) that the number
of errors (noncoinciding bits) in the nonunveiled n
transmissions is

(73)

This circumstance allows a linear classical error-cor-
recting code [n, k, d] to be selected, which has the code
distance d/n ≥ 2δerr and contains

informative symbols. This code ensures error correc-
tion in (d – 1)/2 positions with a probability arbitrarily
close to unity [35–37]. Here,

(74)

is the binary entropy function. This statement follows
from the achievable Varshamov–Hilbert boundary [37]
for linear codes. The estimate can be improved using
random linear error-correcting codes, for which d/n >
δerr and the remaining number of informative bits is

(75)

(the Shannon limit). However, the estimate following
from the Varshamov–Hilbert inequality is constructive.
There exist linear regular (nonrandom) codes for which
this boundary is achieved (in contrast to the Shannon
limit, which can be achieved only on random codes)
and is essentially a theorem of existence, rather than a
constructive limit: no regular codes are known on
which this boundary can be achieved [37].

The proposed protocol works until the error proba-
bility becomes δerr < δE. The code selected by Alice and
Bob must correct all fluxes of errors with probabilities
below δerr . Eve may know all bits used in the protocol
with an error probability of δE ≈ 43.75%. Using infor-
mation concerning the correction of errors (error-cor-
recting code and verification parity sequences) commu-
nicated via the open channel, Eve may, in principle,
make the probability of her errors arbitrarily close to
zero, provided that δerr > δE.

ŵ

nerr δerrn.=

k n 1 H 2δerr( )–( )≥

H x( ) x x 1 x–( ) 1 x–( )log–log–=

k n 1 H δerr( )–( )<
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For δerr < δE, there exists in principle a random error-
correcting code with a code distance of

(76)

which corrects the errors for Alice and Bob with a prob-
ability arbitrarily close to unity (virtually unity for large
n), but not for Eve. The number of remaining (identical)
bits for Alice and Bob upon correction with sufficiently
large n @ 1 is approximately

(77)

where

(78)

is the transmission capacity of a classical symmetric
binary communication channel.

Under the condition (76), Eve occurs essentially in
the situation of a binary symmetric channel [35–37],
whereby the transmission rate (bit/message) exceeds
the transmission capacity C(δE) of the channel between
Eve and Alice. The error correction by means of codes
unfavorable for an eavesdropper (under the condition
that δerr < δE) appears for Eve as the transmission of
communications at a rate exceeding the transmission
capacity.

For transmission rates exceeding the channel capac-
ity, it is possible to use the Wolfowitz estimate [38] for
the probability of error per symbol. For Eve, this prob-
ability is not less than

(79)

According to this, the limiting permissible probabil-
ity of errors in the communication channel is δerr ≈
21.875%, the corresponding Shannon limit being δerr ≈
43.75%.

It should be pointed out that the permissible proba-
bility of errors (at which a protocol works and allows a
secure key to be created) for quantum cryptography on
nonorthogonal states (using the so-called BB84 proto-
col [9]) is 7.5% (with the corresponding Shannon limit
δerr ≈ 11%). This limit appears because the BB84 proto-
col requires correction of both the phase errors (arising
during measurements in different basis sets) and the bit-
flip errors (switching from 0 to 1 and vice versa) [34].
The threshold is determined from the equation

(80)

d/n δerr (but d/n δE),<≥

nC δerr( ),

C δerr( ) 1 H δerr( )–=

perr 1 4
const

n C δerr( ) C δE( )–( )2
---------------------------------------------–>

–
n C δerr( ) C δE( )–( )

2
-------------------------------------------– .exp

1 2H 2δerr( ),=
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or in the Shannon limit,

(81)

After the error-correcting procedure, the bit sequences
of legitimate users are identical with a probability arbi-
trarily close to unity. In principle, after this procedure
(with n @ 1), the information obtained by an eavesdrop-
per about the correct bit sequence tends to zero. Never-
theless, the security can be enhanced by using a privacy
amplification procedure.

A simple example of the hash function is offered by
the function yielding a bit of parity for an m-bit
sequence, which is the final secret bit. This secrete bit
is the same for both legitimate parties, Alice and Bob,
with a probability arbitrarily close to unity, while Eve
knows this bit with an arbitrarily small preset probabil-
ity. If every bit in a correct sequence is known to Eve
with a probability of pe (in contrast to Alice and Bob,
for which this sequence is exactly known), the error in
determining the secret bit of parity (for certainty,
assuming m to be even) is

(82)

where the sum is taken over odd indices i (an error in
determining the parity bit appears when Eve makes
mistakes in an odd number of positions).

Taking into account that

(83)

and assuming that x = pe and y = 1 – pe , we obtain

(84)

Accordingly, the probability that Eve knows the secret
bit is

(85)

where ε is an exponentially small quantity. According
to (77), the probability that Eve would correctly iden-
tify the secret bit (if the number m of bits remaining
after the correction of errors is large) can be rendered
exponentially small as compared to the probability of
trivial guessing (always existing and equal to 1/2).

5. SECRET KEY GENERATION
IN REAL TIME

Let us turn to the question of secret key generation
in real time. The limiting key distribution rate (in bit/s)

1 2H δerr( ).=

Perr parity( ) Cm
i pe

i 1 pe–( )m i– ,
i odd=

m 1–

∑=

1
2
--- x y+( )m x y–( )m–[ ] Cm

i xiym i–

i odd=

m 1–

∑=

Perr parity( )
1
2
--- 1 1 2 pe–( )m–[ ] .=

POK parity( ) 1 Perr parity( )–=

=  
1
2
--- 1 1 2 pe–( )m–[ ] 1

2
--- ε,+=
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is determined by the properties of a communication
channel, the external noise, and the intensity of eaves-
dropping. Since the activity of an eavesdropper is not
restricted, it is impossible to establish the rate of key
distribution in the general case, with arbitrary noise and
an unpredictable eavesdropper. In particular, an eaves-
dropper can perturb the communication channel so
strongly that the key distribution will be virtually
blocked. All cryptosystems only certify to legitimate
parties that the key distribution is secure, provided that
all tests stipulated by the protocol have been success-
fully accomplished. However, the question of the limit-
ing rate of key generation in real time is quite reason-
able: this rate depends only on the properties of a par-
ticular quantum communication channel (in the case
under consideration, on the frequency pass band),
essentially representing the transmission capacity of
the quantum communication channel. The limiting key
generation rate cannot exceed the channel transmission
capacity.

Elegant and profound results have been obtained in
the theory of transmission capacity of quantum com-
munication channels. These results have been exhaus-
tively reviewed by Kholevo [39]. However, the coding
theorems (being formulated only in terms of the prop-
erties of the Hilbert space of states) for quantum sys-
tems describe the transmission rate as the amount of
bits (≤1) per transmission, rather than as the transmis-
sion capacity in real time. In order to characterize the
real-time capacity of a channel, it is necessary to intro-
duce spacetime into the problem. In particular, the real-
time transmission capacity can be determined in the
case when information is encoded using the polariza-
tion states [41]. Below, preliminary results of the author
are generalized to the case when information is
encoded in the form of a packet, more precisely, when
carriers of the informative states |ϕ0, 1〉  are nonoverlap-
ping on the frequency scale.

A quantum communication channel is set by map-
ping the input operators of density matrices into output
operators, also representing the density matrices. In dif-
ferent terms, such a map is described as an instrument
or a superoperator. It turns out that measurements per-
formed at the receiver end within a finite time window
can be described by introducing a superoperator gener-
ating the operator measures }(T) and I(∆k) – }(T).
According to the Krause theorem [29], any mapping of
the density matrices into density matrices (superopera-
tor) possessing the property of conservation of the
trace, linearity, and complete positive determinacy can
be presented in the following form:

(86)

Here, index k runs over the space of the results of mea-
surements, which can be either a discrete set or contin-
uum. The probability of outcomes of the measurements

7 …[ ] Vk …[ ] Vk
+, Vk

+Vk

k

∑
k

∑ I .= =
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is described by an operator value measure related to the
operators in representation (86) as

(87)

The probability of the kth outcome for the input state
with a density matrix ρ is

(88)

Note that, generally speaking, a superoperator is not
always uniquely reconstructed from its operator value
measure. However, no such difficulties are encountered
in the problem under consideration.

In the case studied, a superoperator can be repre-
sented by a direct sum of operators acting upon the den-
sity matrices with carriers in nonoverlapping frequency

}k Vk
+Vk.=

Pr k( ) Tr ρ}k{ } .=
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bands {∆k}0 and {∆k}1:

(89)

where,

(90)

Here, |?〉  is a state orthogonal to the first term in (90),
which describes the absence of outcomes for operator’s
measurements in the time window (–T, T). Using a
question mark in this notation implies that, in the
absence of outcomes in the (–T, T) window, the operator
always considers the result of such a measurement as
inconclusive. One can readily check that the above
operator value measure obeys the formula

7 …[ ] 70 …[ ] 71 …[ ] ,⊕=

7i ρi[ ] }i T( )ρi }i T( )
+

=

+ Tr Ii ∆k( ) }i T( )–( )ρi{ } ?| 〉 ?〈 | .
(91)
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1
π
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-------------------------------------------

0

∞

∫ λn 2∆kT( ) ϕn i( )| 〉 ϕ n i( )〈 | ,
n 0=

∞

∑=
where

(92)

and ϕn(k) is a function satisfying integral equation (46)
in the corresponding frequency band {∆k}i (i = 0, 1).

The transmission capacity of a channel can be cal-
culated using the Kholevo formula [39],

(93)

where

(94)

is the von Neumann quantum entropy. The input den-
sity matrix is

(95)

where π0 and π1 are the a priori probabilities. The max-
imum in formula (93) is attained at π0 = π1 = 1/2 (i.e.,
when the states 0 and 1 are transmitted with equal prob-
abilities).

ϕn i( )| 〉 kϕn k( ) k| 〉d

∆k{ } i

∫=

C T( ) max π0 π1,{ }=

× H 7 ρ[ ]( ) πiH 7 ρi[ ]( )
i 0 1,=

∑–
 
 
 

,

H ρ( ) Tr ρ ρlog{ }–=

ρ π0 ϕ0| 〉 ϕ 0〈 | π1 ϕ1| 〉 ϕ 1〈 | ,+=

ρi ϕ i| 〉 ϕ i〈 | , i 0 1,,= =
If the initial states are selected as optimum, possess-
ing the minimum possible effective length for a given
frequency band (i.e., the states obeying conditions (42)–
(44)), the real-time transmission capacity is

(96)

Here, the quantity λ0(∆kT) is the maximum eigenvalue
of the integral equation (44). Formula (96) coincides
with an expression for the transmission capacity of a
binary classical channel with erasure. The probability
of erasure, ε, is related to the real-time transmission rate
and the frequency pass band. Thus, even an ideal quan-
tum channel exhibits “noise” related to a finite observa-
tion time at the receiver end.

If the measurements at the output of the communi-
cation channel are performed in a large time window
(formally infinite, T  ∞), the reliable distinguish-
ability of orthogonal states (entirely accessible in this
limit) allows the number of correctly decoded bit
sequences to be 2nH(ρ). For orthogonal states, there is no
need in collective measurements and it is sufficient to
measure states in each individual transmission. Should
the measurements be performed in a finite time window
(–T, T), there will be outcomes in which the measuring
device does not operate within a 2T time interval. The
probability of such outcomes is ε and, accordingly, the
probability of outcomes within the time window is

C T( )
1 ε–

T
----------- 

bit
s

------ , 1 ε– λ0 ∆kT( ).= =
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1 − ε. The device operation within T allows the states to
be identified with confidence. In the absence of out-
comes within the given time window, the state can be
considered as erased (formally speaking, the state is
transformed into a new state (?) at the receiver end; also
formally, the state can be considered as a transmitter
with a probability of p? = 0). As a result, every typical
sequence expands into a Hamming sphere of radius
H(x|y), where H(x|y) is the conditional Shannon entropy
for the input alphabet (x = {0, 1, ?}, with the proba-
bilities {p0 = 1/2, p1 = 1/2, p? = 0}), output alphabet
(y = {0, 1, ?}), and the probabilities of transition in the
channel,

Therefore, the number of correctly decoded bit
sequences for n  ∞ is

(97)

This formula coincides with the expression for the
transmission capacity of a classical binary channel with
erasure [36] and determines the maximum rate of key
transmission for the given frequency pass band and
observation time window.

6. A SIMPLE EXAMPLE
OF THE CRYPTOSYSTEM REALIZATION

Let us consider a simple example of implementation
of the proposed cryptosystem. This example is intended
for illustrative purposes and only demonstrates physi-
cal interpretation of the problem. Consider the prepara-
tion of states within a finite frequency band. Let a
source (e.g., laser) generate a quantum state of suffi-
ciently short duration (and, accordingly, possessing a
sufficiently broad frequency spectrum with an approxi-
mate width of ∆Ω). The time of the protocol start is set
to within ∆t ≈ 1/∆Ω . Then the signal is attenuated down

p 0 0( ) p 1 1( ) 1 ε,–= =

p 0 1( ) p 1 0( ) 0, p 0 ?( ) p 1 ?( ) ε.= = = =

2nH ρ( )

2
nH x y( )

---------------- 2nI x  : y( ), I x : y( ) 1 ε.–= =

∆t

1

0

L

L

0

1

L

1/∆t >> L ~ T

2T

Fig. 5. Schematic diagram illustrating the proposed crypto-
system (see the text for explanations).
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to a single-photon level (e.g., upon passage through an
absorber) and transmitted through a filter (frequency-
dispersive medium) cutting a band with a width of
{∆k}0 ! ∆Ω (or a band of the same width centered at
some other carrier frequency, {∆k}1 ! ∆Ω, see Fig. 5)
from the broad frequency spectrum ∆Ω . This procedure
can be, in principle, performed similarly to the classical
Newton experiment on the dispersion of a “white”
(broadband) light beam.

Each transmission is effected by randomly opening
one of the apertures (Fig. 5). The farther the aperture
from a dispersive element, the higher the accuracy of
cutting frequency bands from the broad spectrum. The
cut frequency bandwidth is approximately equal to
1/T ∝  1/L (L is the distance to the aperture, or the effec-
tive length of the state). The proportionality sign
implies that the actual frequency band width depends
on the prism dispersion (i.e., on the angle of deviation
of the corresponding spectral components). Naturally,
the probability of cutting a narrow band from a broad-
band signal is smaller than unity. Therefore, there will
be events whereby no signals enter the channel, but
such blank preparation outcomes influence only the
efficiency of the scheme, while not affecting security of
the cryptosystem. Past the aperture, a state enters the
communication channel. The leading front enters the
channel within a time period of approximately ∆t + L.

The receiver (Fig. 5) employs a procedure whereby
only the states carried within a frequency band about
{∆k}0 can pass to a detector. This measurement repre-
sents realization of the operator measure cutting (trans-
mitting) only a frequency band of about ∆k (see
Eqs. (54) and (55)). This circumstance does not allow
an eavesdropper to use short-time (broadband) states
for compensating a time delay introduced by his activ-
ity. Undelayed states carried within a frequency band
about {∆k}0 will make counts in a given time window
(Lch, Lch + 2T), naturally, to within a certain accuracy of
∆t. The protocol makes use only of the events involving
measurements in the given time window. The character-
istic intrinsic time constant τd of the detector has to
obey the condition τd ! T. This requirement arises, in
fact, from the need in gaining statistics over a time
interval of 2T for the time delay test.

To the author’s knowledge, detectors with a time
constant of τd ≈ 10–8–10–9 s are among quite standard
devices. The effective length of a detected state should
be on the order of T ≈ 1/∆k @ τd , which provides for a
two-order margin in the monochromaticity, ∆k ≈
106−107 Hz. Accordingly, the effective length is cT ≈
10–100 m, which is a rather soft condition. The accu-
racy of clock synchronization has to be max{τd, ∆t}.

Under real conditions, a fiber optic communication
line is usually not a straight line between the line ends.
This circumstance poses certain additional limitations
on the effective length of transmitted states. Evidently,
this length cannot be smaller than Lcurv – Lch, where
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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Lcurv is the true fiber length and Lch is the length of a
straight segment between the line ends. Moreover,
since the velocity of light in the fiber (c') is somewhat
smaller than that in vacuum (c' < c), the effective length
of the transmitted state cannot be shorter than c(Lcurv –
Lch)/c'.

It should be noted that a cryptosystem employing
frequency states has to be more stable than the system
using polarization states, because the carrier frequency
breakdowns are related to the Raman processes occur-
ring in the second order of perturbation theory.

7. CONCLUSIONS

The main result of this investigation is that allow-
ance for the constraints posed by special relativity
allows the use of practically arbitrary quantum states in
quantum cryptography for ensuring unconditionally
secure key distribution. In contrast to previously devel-
oped cryptosystems, the security of which was based on
the geometry of the Hilbert space and the properties of
nonorthogonal states, the proposed scheme explicitly
takes into account the fact that any quantum states pos-
sess carriers in the Minkowski spacetime. In addition,
the explicit allowance for the spacetime structure of
states allows implementation of other important quan-
tum-cryptographic protocols.
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Abstract—In the leading twist approximation of the Wilson operator product expansion, we show that using
an analytic parameterization for the behavior of the x slope of the structure function F2 at small x in perturba-
tive QCD and applying a flat initial condition in the DGLAP evolution equations leads to very good agreement
with the new precise deep inelastic scattering experimental data from HERA. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Measurements of the deep inelastic scattering struc-
ture function F2 [1–3] and the derivatives dF2/dln(Q2)
[1, 2, 4] and dlnF2/dln(1/x) [4, 5] at HERA made it pos-
sible to access a very interesting kinematical range for
testing theoretical ideas on the behavior of quarks and
gluons [6] carrying a very low fraction of the proton
momentum, the so-called small-x region. In this limit,
one expects that nonperturbative effects can make sub-
stantial contributions. However, reasonable agreement
between the HERA data and the next-to-leading
approximation of perturbative QCD has been observed
for Q2 ≥ 2 GeV2 (see review [7] and references therein),
and therefore, perturbative QCD can describe the evo-
lution of F2 and its derivatives down to very low Q2 val-
ues, traditionally explained by soft processes. It is fun-
damentally important to find the kinematical region
where the well-established perturbative QCD formal-
ism can be safely applied at small x.

The standard program for studying the x behavior of
quarks and gluons is carried out by comparison of data
with the numerical solution of the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP)1

 equations [8] by
fitting the parameters of the x profile of partons at some

initial  and the QCD energy scale Λ [10, 11]. How-
ever, for analyzing the small-x region exclusively, there

Q0
2

¶This article was submitted by the authors in English.
1 At small x, there is a different approach based on the Balitsky–

Fadin–Kuraev–Lipatov (BFKL) equation [9], whose application
is beyond the scope of this paper. However, we sometimes use the
BFKL-based predictions below in discussions and for compari-
son with our results in generalized DAS.
1063-7761/03/9705- $24.00 © 20859
is the alternative of a simpler analysis using some of the
existing analytic solutions of the DGLAP equations in
the small-x limit [12–15]. This was done in [12], where
it was pointed out that the HERA small-x data can be
interpreted in terms of the so-called doubled asymp-
totic scaling phenomenon related to the asymptotic
behavior of the DGLAP evolution discovered many
years ago [16].

The study in [12] was extended in [13–15] to
include the finite parts of anomalous dimensions of
Wilson operators and Wilson coefficients.2  This has led
to prediction [14, 15] of the small-x asymptotic form of
parton distributions in the DGLAP equation starting at

some  with the flat function

(1)

where fa are the parton distributions multiplied by x, Aa

are unknown parameters to be determined from data,
and a = q, g hereafter.

We refer to the approach in [13–15] as the general-
ized doubled asymptotic scaling approximation. In the
generalized doubled asymptotic scaling approximation,
the flat initial conditions in Eq. (1) determine the basic
role of the singular parts of anomalous dimensions, as
in the standard case [12], while the contribution from
finite parts of anomalous dimensions and from Wilson
coefficients can be considered corrections, which are,
however, important for better agreement with expe-
rimental data [14]. In the present paper, similarly

2 In the standard doubled asymptotic scaling approximation [16]
only the singular parts of the anomalous dimensions are used.

Q0
2

f a Q0
2( ) Aa,=
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to [12−15], we neglect the contribution from the non-
singlet quark component.

The use of the flat initial condition given in Eq. (1)
is supported by the actual experimental situation: low-
Q2 data [1, 4, 17, 18] are well described for Q2 ≤
0.4 GeV2 by the Regge theory with the Pomeron inter-
cept:

which is close to the standard one (αP(0) = 1). The
small rise observed in the HERA data [1, 2, 4, 18, 19]
at low Q2 can be naturally explained by including
higher twist terms (see [15, 20]). Moreover, HERA data
[1, 2, 18, 19] with Q2 > 1 GeV2 are in good agreement
with the predictions from the Gluck–Reya–Vogt (GRV)
parton densities [11], which supports our aim of devel-
oping an analytic form for parton densities at small x
because, at least conceptually, our method is very close
to the GRV approach.

The purpose of this paper is to extend the study in
[14] to compare the predictions from the generalized
doubled asymptotic scaling approach with the new
precise H1 data [5] for the F2 slope. The paper is orga-
nized as follows. In Section 2, we address the present
situation with experimental data for the slope
d lnF2/d ln(1/x) and briefly review some approaches to
describe them. For completeness, Sections 3 and 4
contain a compilation of the basic formulas in the
generalized doubled asymptotic scaling approxi-
mation from [14] needed for the present study. In Sec-
tion 5, we compare our predictions for the derivative
d lnF2/d ln(1/x) with the experimental data and discuss
the results.

2. THE SLOPE dlnF2/dln(1/x): 
EXPERIMENTAL DATA 

AND QCD PHENOMENOLOGY

Various teams have been able to fit the available data
(mostly separating the low- and high-Q2 regions) using
a steep input at small x, x–λ, λ > 0. This is clearly differ-
ent from the flat input in the doubled asymptotic scaling
approach of [12–15], which also describes the experi-
mental results reasonably well. In some sense, this is
not very surprising because the modern HERA data (at
large Q2) cannot distinguish between the behavior from
a steep input parton parameterization at quite large Q2

and the steep form acquired after dynamical evolution
from a flat initial condition at quite low values of Q2.

Moreover, for the Q2 evolution based on the full set
of anomalous dimensions obtained at x  0 in [21]
within the Balitsky–Fadin–Kuraev–Lipatov (BFKL)
formalism [9], the results weakly depend on the form of
the initial condition [22], preserving steep ones and
changing flat ones. In working with anomalous dimen-
sions at a fixed order in αs , the initial conditions are

αP 0( ) λP 1+≡ 1.08,=
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important when the data are considered in a wide Q2

range and it is necessary to adequately choose the form

of the parton distribution asymptotic form at some .

As discussed in the Introduction, the use of a flat ini-
tial condition leads to the (generalized) doubled asymp-
totic scaling approximation [13–15]. An alternative to
this is the choice of a steep initial condition at some suf-

ficiently large ,

(subscript c stands for constant), which leads to the

Q2-dependence of fa(x, Q2) [23–27] given by (if  @
const)

(2)

where  is the analytic continuation
(from integer n to real 1 + λc) of the “+” component of
the Mellin moment of fa(x, Q2),

(3)

For  @ const, the slope λc must be Q2-indepen-
dent [24, 25] and the whole Q2-dependence in fa(x, Q2)

comes from the factor  in front of 
in Eq. (2). Approximations similar to Eq. (2) have been
successfully applied in studying the Q2-dependence of
HERA data at large Q2 (see [28] and references
therein).

Considering the low-Q2 region separately, it is also
possible to have good agreement between the F2 data
and its Regge-like behavior [4]. Indeed, at Q2  0, F2
can be determined by the relation

(4)

where αem is the electromagnetic coupling constant and

 is total (virtual) photoproduction cross section.

A large amount of experimental data on hadronic
cross sections for many different processes show a uni-
versal rise at large energies, which makes it possible to
parameterize all these cross sections as the sum of two
different components:

(5)

Q0
2

Qc
2

f a x Qc
2,( ) x

λc–
∝

x
λc–

f a x Q2,( )

f a x Qc
2,( )

---------------------
Ma

+ 1 λ c+ Q2,( )
Ma

+ 1 λ c Qc
2,+( )

------------------------------------,∼

Ma
+ 1 λ c+ Q2,( )

Ma n Q2,( ) xxn 2– f a x Q2,( ).d

0

1

∫=

x
λc–

Ma
+ 1 λ c+ Q2,( ) x

λc–

F2
Q2

4παem

---------------σtot
γ∗ p,=

σtot
γ∗ p

σtot
γ∗ p APs

αP 0( ) 1–
ARs

αR 0( ) 1–
,+=
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where s is the center-of-mass energy squared. The con-
stants AP and AR are process-dependent magnitudes,
and the intercepts aP(0) ≈ 1.08 and aR(0) ≈ 0.5 (see [29])
are universal process-independent constants. The first
and second terms in Eq. (5) correspond to (soft)
Pomeron and Reggeon exchange, respectively.

From Eqs. (4) and (5), we immediately find that as
Q2  0,

and hence

because s = Q2/x at small x.
There have been many attempts to study the entire

Q2 region in the Regge-asymptotic framework (see,
e.g., the reviews in [7]). The reports in [7] contain a
great number of models, but we restrict ourselves to
only two of them.

In [30], the fit to F2 experimental data was sought
with

(6)

and rapidly changing λ(Q2) was found in the transition
range Q2 ~ 5–10 GeV2. Unfortunately, it is rather diffi-
cult to reconcile the Regge-like behavior given by
Eq. (6) with DGLAP evolution in the entire Q2 range.
Some progress along this line achieved in [27] is also
based on the flat initial conditions given by Eq. (1).
However, the parton distribution structure in [27] is
limited by the Regge-like form of Eq. (6), which allows
reconciling it with DGLAP evolution only separately at
low Q2, where λ(Q2) is close to 0 (or to ε), and at large
Q2, where λ(Q2) ~ λc . The structure function F2 and
parton distributions were obtained in [27] for the entire
Q2 range only as a combination of these two represen-
tations.

For other types of models (see [32, 33]), the phe-
nomenological Q2-dependence of λ(Q2) is given by

with a fitted constant c. This produces soft values of the
slope λ(Q2) close to ε at low Q2 and hard ones, λ(Q2) ~
λc ~ 0.2–0.3, at Q2 ≥ 20 GeV2.

New precise experimental data on λ(Q2) became
available very recently [5]. The H1 data points are
shown in Fig. 1, where one can observe that for a fixed
Q2, λ is independent of x in the range x < 0.01 within
the experimental uncertainties. Indeed, H1 data are well
described by the power behavior [5]

(7)

F2 x Q2,( ) x ε– ,∝

f a x Q2,( ) x ε– , ε∝ α P 0( ) 1 0.08≈–=

f a x Q2,( ) x λ Q
2( )– ,∝

λ Q2( ) ε 1 Q2

Q2 c+
---------------+ 

 =

F2 x Q2,( ) Cx λ Q
2( )– ,=
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where

with C ≈ 0.18,  ≈ 0.048, and Λ = 292 MeV. The linear
rise of λ with lnQ2 given by Eq. (7) is plotted in Fig. 2.

As a function of x, λ(Q2) was similarly found by the
ZEUS Collaboration. As can be seen in Fig. 8 in [4], the
ZEUS data for λ(Q2) are compatible with a constant
value on the order 0.1 at Q2 < 0.6 GeV2, as is expected
under the assumption of a single soft Pomeron
exchange within the framework of Regge phenomenol-
ogy. In the case of H1, this behavior can also be inferred
from the new preliminary H1 data [34] at quite low val-
ues of Q2.

We point out that even though our results obtained
in doubled asymptotic scaling approximation
(Eqs. (8)–(11) below) do not have an explicit power-
like behavior, they actually mimic a power-law shape
over a limited region of x and Q2 (see Section 4). In
addition, we observed earlier [14] that in the general-
ized doubled asymptotic scaling approximation, the x
dependence of the effective slopes is not strong and the
F2 effective slope is in good agreement with old (less
precise) H1 data [1]. In Section 5, we repeat the analy-
sis performed in [14], but with the new precise H1 data
for the slope [5].

3. Q2 DEPENDENCE OF F2
AND PARTON DISTRIBUTIONS

IN THE GENERALIZED DOUBLED 
ASYMPTOTIC SCALING APPROXIMATION

We briefly recall the results of the generalized dou-
bled asymptotic scaling approximation first presented
in [14]. The small-x behavior of the parton densities and
F2 in the next-to-leading order approximation is given by3 

(8)

(9)

(10)

(11)

3 Hereafter, z = x/x0, where x0 is a free parameter that limits the
applicability range of Eqs. (8)–(11) and can be fitted from experi-
mental data together with the magnitudes of gluon and sea quark

distributions at . As shown in [14], the fits to the F2 HERA

data depend very slightly on the specific x0 value.

λ Q2( ) â Q2/Λ2( )ln=

â

Q0
2
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+ z Q2,( ) f a

– z Q2,( ),+=

f a
– z Q2,( ) d– 1( )s– D– 1( ) p–( )exp O z( ),+∼

f g
+ z Q2,( ) I0 σ( ) d+ 1( )s– D+ 1( ) p–( )exp O ρ( ),+∼

f q
+ z Q2,( ) f g

+ z Q2,( )∼

× 1 d+–
q

1( )as Q2( )–( )
ρI1 σ( )
I0 σ( )

--------------- 20as Q2( )+ O ρ( ),+

F2 z Q2,( ) e f q z Q2,( )
2
3
--- f as Q2( ) f g z Q2,( )+ 

  ,=
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Fig. 1. The derivative dlnF2/dln(1/x) (the effective slope λ) as a function of x for different values of Q2. Data points are from H1

[5]. Only statistical uncertainties are shown. The solid line is the result of a fit using  in Eq. (15) with fixed  = 1 GeV2 and

x0 = 1. The dotted line is the same but with the parameters from a fit to the F2 data in [14]. The dashed line corresponds to the asymp-

totic expression  in Eq. (16).
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Q0
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eff as,
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is the average charge square of f effective quarks,

(12)

e
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2

i

f

∑
f

------------=

as α s/4π,=
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2( )

as Q2( )
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, pln as Q0
2( ) as Q2( ),–= =
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and β0 and β1 are the first two terms of the QCD
β-function.

The components of the leading order anomalous

dimension d–(n) and the singular ( ) and regular

( ) parts of the leading order anomalous dimension

d+(n) = /(n – 1) +  are given by (at n  1)

(13)

ρ d̂+s D̂+ p+( )
zln

------------------------------
σ

2 1/z( )ln
---------------------,= =

d̂+

d+ n( )

d̂+ d+ n( )

d̂+
12
β0
------, d+ 1( )– 1

20 f
27β0
-----------,+= =

d– 1( )
16 f
27β0
-----------.=
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The corresponding components in the next-to-lead-
ing order can be represented as

(14)

Some interesting features of the results in Eqs. (8)–(12)
are summarized below.

(1) Both the gluon and quark singlet densities given
above are presented in terms of two components (“+”
and “–”) obtained from the analytic Q2-dependent
expressions of the corresponding (“+” and “–”) compo-
nents of parton distribution moments.

(2) The “–” component is constant at small x,

whereas the “+” component increases at Q2 ≥  as
expσ, where σ contains the positive leading order term

sln(1/z) and the negative next-to-leading order one

pln(1/z) (see Eq. (12)). The most important part of
the next-to-leading order corrections (i.e., the singular
part at x  0) is therefore properly taken into account:
it directly enters the argument of the Bessel functions
and does not spoil the applicability of perturbation the-
ory at low values of x.

4. Q2 DEPENDENCE 
OF THE SLOPE dlnF2/dln(1/x) 

IN THE GENERALIZED DOUBLED 
ASYMPTOTIC SCALING APPROXIMATION

The behavior of the parton densities and the struc-
ture function F2 within the generalized doubled asymp-

d̂++
412
27β0
----------- f , d̂+–

q
20, d̂+–

g
– 0,= = =

d++ 1( )
8
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------------–+
=
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2
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13
243
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81
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totic scaling approach, given by Eqs. (8)–(11), can be
represented by a power-law shape over a limited region
of x and Q2 [14, 15],

Since

the effective slopes can be obtained directly from
Eqs. (8)–(11) as

f a x Q2,( ) x
λa

eff
x Q

2,( )–
, F2 x Q2,( ) x

λF2
eff

x Q
2,( )–
.∝∝

xlnd
d

zlnd
d

,=

λg
eff z Q2,( )

f g
+ z Q2,( )

f g z Q2,( )
---------------------ρ

I1 σ( )
I0 σ( )
------------,=

0
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x = 10–4
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Fig. 2. The derivative dlnF2/dln(1/x) (the effective slope λ)

as a function of Q2. Data points are from H1 [5]. Outer error
bars include statistical and systematical errors added in
quadrature. Inner bars correspond to statistical errors. The
solid line corresponds to the H1 parameterization [5] given
in Eq. (7). Dotted and dashed curves are produced as in
Fig. 1. For the lower (upper) curves, the value x = 10–4 (x =
10–2) was used.
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We emphasize that the gluon effective slope 
obtained from Eq. (15) is larger than the quark slope

 [14], which is in excellent agreement with Martin–
Stirling–Roberts [35] and Gluck–Reya–Vogt [11] anal-
yses (see also [10]).

On the other hand, the effective slopes  and 
in Eq. (15) depend on the magnitudes Aa of the initial

parton distribution and on the chosen input values 
and Λ. However, at quite large Q2, where the “–” com-
ponent is negligible, the dependence on the initial par-
ton distribution disappears and the asymptotic behavior
is then given by4

4 The asymptotic formulas in Eq. (16) work quite well at any val-

ues of Q2 ≥ , because the values of  and  are equal

zero at Q2 = . The use of approximations in Eq. (16) instead

of the exact results in Eq. (15) underestimates (overestimates) the

gluon (quark) slope at Q2 ≥  only slightly. For F2, the similar-

ity of the values of  and  are as is shown in Fig. 1.
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2 λa

eff λF2
eff

Q0
2

Q0
2

λF2
eff λF2

eff as,

λg
eff as, z Q2,( ) ρ

I1 σ( )
I0 σ( )
------------ ρ 1

4 1/z( )ln
---------------------,–≈=

λq
eff as, z Q2,( ) ρ=

×
I2 σ( ) 1 d+–

q
1( )as Q2( )–( ) 20as Q2( )I1 σ( )/ρ+

I1 σ( ) 1 d+–
q

1( )as Q2( )–( ) 20as Q2( )I0 σ( )/ρ+
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Fig. 3. The derivative dlnF2/dln(1/x) (the effective slope λ)

as a function of Q2. Data points are from H1 [5]. Error bars
and solid line are as in Fig. 2. The dashed lines were calcu-
lated with Eq. (16) using x = a × 10–4Q2 with a = 0.1, 1, and
10. Upper curves correspond to larger x.
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(16)

where the symbol ≈ denotes that an approximation was
made in the expansion of the modified Bessel functions
In(σ) (n = 0, 1, 2). These approximations are accurate
only at large values of σ (i.e., at large Q2 and/or small x).

Finally, we note that, to the leading order, the F2

slope,  is equal to the quark slope  and it
coincides with the result in [36] for very large values of
σ and a flat input (see also the first paper in [7]). To the

next-to-leading order,  lies between the quark and
gluon slopes but closer to the former (see Fig. 3
in [14]).

5. COMPARISON 
WITH EXPERIMENTAL DATA

Using the results of the previous section, we ana-
lyzed the HERA data from the H1 Collaboration5

 [5]
for the slope dlnF2/dln(1/x) at small x.

Initially, our results for  depend on the five

parameters , x0, Aq , Ag , and  (f = 4). In our pre-

vious paper [14], we fixed  (f = 4) = 250 MeV,
which was a reasonable value extracted from the tradi-
tional (higher x) experiments. All other parameters
were fitted and good agreement with the F2 HERA data

was achieved for  ~ 1 GeV2 (all results depend on x0

very slightly).

In this paper, we take  (f = 4) = 292 MeV, in
agreement with the more recent H1 results [5] and other
analyses (see [37] and references therein), and we
directly fit the data on the slope dlnF2/dln(1/x) using
Eq. (15). The result is shown in Fig. 1. For comparison,
we also plot the curves from a fit to the F2 data in [14],
where the value 250 MeV was used. The results are
very similar and demonstrate the very important feature

5 In this paper, we only use the H1 data [5]. The preliminary ZEUS
data for the slope dlnF2/dln(1/x) are only available through
points in Figs. 8 and 9 of [4]. They shown quite similar properties
in comparison with the H1 data [5]. Unfortunately, the ZEUS
numerical values are as yet unavailable and we cannot analyze
them in the present paper.

≈ ρ 3
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of an approximate x-independence of  given by
Eq. (15), which is in agreement with the H1 data [5].

Figure 1 also gives the asymptotic values for the

slope  obtained from Eq. (16). The agreement
with the data and with the other curves is also rather
good if we take into consideration that no fit is involved
in this case because the only parameters entering
Eq. (16) are the fixed values  (f = 4) = 292 MeV
and x0 = 1.

Thus, the extremely weak x-dependence of the slope
λ(Q2) in the considered region of x and Q2 supports the
possibility of successfully using our generalized dou-
bled asymptotic scaling approximation in the x-inde-
pendent analysis of the F2 slope.

Figure 2 shows the experimental data for  and
the corresponding H1 parameterization [5] written
above in Eq. (7). We also plotted the result from
Eqs. (16) and (15) using the parameters from our previ-
ous paper [14] as in Fig. 1. In both cases, we give it for
two representative values of x.

Visual inspection of Fig. 1 shows that the bound-
aries and mean values of the experimental x ranges [5]
increase proportionally with Q2, which is related to the
kinematical restrictions x ~ 10–4Q2 in the HERA exper-
iments (see [1–3, 18] and, e.g., Fig. 1 in [4]).

Figure 3 shows the H1 experimental data [5] for 
and the H1 parameterization (Eq. (7)) as in Fig. 2, but

this time in comparison to the asymptotic values 
calculated from Eq. (16) using x = a × 10–4Q2 with a =
0.1, 1, and 10. There is reasonable agreement with the
H1 data for Q2 > 2 GeV2 with a between 0.1 and 1 (the
two lower dashed curves in Fig. 3), which approxi-
mately corresponds to the middle points of the mea-
sured x range.

6. CONCLUSIONS

We have studied the Q2 dependence of the slope

at small x in the framework of perturbative QCD. Our
results are in good agreement with the new precise
experimental H1 data [5] at Q2 ≥ 2 GeV2, where pertur-
bation theory can be applicable.

Although our approach, which can be called the
generalized doubled asymptotic scaling approximation,
is based on pure perturbative grounds, flat initial condi-

tions at  ≈ 1 GeV2, dynamical evolution to Q2 ≥ ,
and is conceptually very close to the GRV approach but

λF2
eff

λF2
eff as,

Λ
MS

λF2
eff

λF2
eff

λF2
eff as,

λF2
eff d F2/dln 1/x( )ln=

Q0
2 Q0

2
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involves the exact analytic Q2 evolution, it can be reason-

ably applied for the new precise data of the slope .

The agreement between λ(Q2) data and perturbative
QCD has already been observed by the H1 [2] and
ZEUS [4] collaborations. The obtained linear rise of
λ(Q2) with lnQ2 (see, e.g., Figs. 2 and 3), parameterized
by H1 as in Eq. (7), can naively be interpreted in a
strongly nonperturbative way, i.e.,

Our analysis, however, demonstrates that the rise can be
explained as being proportional to lnlnQ2, which is nat-
ural in perturbative QCD at low x (see [12–16] and ref-
erences therein): when the coupling constant is run-
ning, the renormalization group leads to the small-x
behavior of the parton distribution proportional to
ln(αs(Q2)) in the leading order of perturbation theory
and proportional to αs(Q2) in the next-to-leading order
(see Eqs. (8)–(12) and discussions after Eq. (14)).

The good agreement between the perturbative QCD
and the experiments obtained here and in [14, 15] dem-
onstrates that for Q2 > 2 GeV2, nonperturbative contri-
butions, such as shadowing effects [38], higher twist
effects [39], and others, either are quite small (see
also [40] and references therein) or cancel between
themselves and/or with ln(1/x) terms contained in
higher orders of perturbation theory. We note, however,
that higher twist corrections are important at Q2 ≤ 1
GeV2, as has been demonstrated in [15, 20, 37]. Further
efforts in the development of theoretical approaches are
needed to isolate the correct contributions from nonper-
turbative dynamics and higher orders containing strong
ln(1/x) terms.

Moreover, the good agreement between perturbative
QCD and experimental data at low Q2 can be explained
by a larger effective scale for the QCD coupling con-
stant [14, 15]. A similar behavior has already been
observed in the framework of perturbative QCD [41]
and in BFKL-motivated approaches [42–44] (see the
recent review in [45] and discussions therein).

We note that large next-to-leading order corrections
calculated recently in the BFKL framework [46] (see
also [47]) lead to strong suppression of the leading
order BFKL results for a high-energy asymptotic
behavior of the cross section (see, e.g., [42, 43]). Care-
ful inclusion of next-to-leading order corrections leads
to results that are quite close to those obtained in pure
perturbative QCD [43]. This can give additional
support to the good applicability of perturbation theory
in the small-x range, where, as expected before, non-
perturbative effects should make a substantial contri-
bution.

As the next step, it could be very useful to apply the
generalized doubled asymptotic scaling approach to

λF2
eff

λ Q2( )
1

α s Q2( )
---------------.∝
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perform a combined analysis of the HERA data for F2,
dF2/dln(Q2), d lnF2/dln(1/x), and FL . We hope to con-
sider this in a forthcoming paper, including higher twist
corrections in the Q2-evolution approach given by
Eqs. (8)–(11). It would also be interesting to consider
additional terms in the initial condition given by Eq. (1)
proportional to ln(1/x) and ln2(1/x).

We hope that this analysis will be relevant in finding
the kinematical region where the well-established per-
turbative QCD formalism can be safely applied at small
x. Moreover, the study should clear up the reason of the
good agreement between the small-x relation of FL , F2,
and dF2/d ln(Q2) obtained in pure perturbative QCD
in [48] (based on previous works [26, 49]), the experi-
mental data for these structure functions [2, 50], and the
predictions of [51] in the framework of kt-factorization
[21, 22, 52].
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Abstract—The nonlinear resonance Faraday effect is studied under the condition of coherent population trap-
ping in 87Rb vapor at the D1-line F = 2  F ' = 1 transition. The influence of transverse magnetic fields on
the nonlinear optical Faraday rotation is studied. For the transverse fields perpendicular to the electromagnetic-
wave polarization, a simple theoretical model is proposed, which is in good agreement with experimental data.
The optimal intensity providing the maximum sensitivity is found based on the results obtained. The influence
of working-level depletion on the parameters of Faraday rotation in open systems is studied experimentally and
theoretically. The system was closed in the experiment by using an additional laser to increase the sensitivity
and extend the dynamic range of measured fields. The importance of compensating for the depletion in the pres-
ence of spurious magnetic fields is shown; in particular, the sensitivity was enhanced by a factor of 50 in exper-
iments with a buffer gas. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Coherent population trapping (CPT) and electro-
magnetically induced transparency belong to resonance
interference phenomena, which are currently being
extensively studied. A strong dispersion under the con-
ditions of electromagnetically induced transparency,
along with the suppression of absorption and resonantly
enhanced nonlinearity, makes CPT promising for solv-
ing various problems of physical optics and opens up
numerous possibilities for potential applications [1–3].
In particular, the possibility of using CPT and electro-
magnetically induced transparency in degenerate sys-
tems [4–6] for the development of a new class of optical
magnetometers is being actively discussed [7–16].

The problem of precision measurement of a mag-
netic field is very important from the practical point of
view for many studies and applications. Record sensitiv-
ities (~10 pG/Hz1/2) are now achieved using SQUID
technology; however, the necessity of cryogenic cooling
substantially restricts the range of its applications. Opti-
cal magnetometers often prove to be more convenient for
use in various studies. The use of CPT promises a sub-
stantial increase in the sensitivity of optical methods for
measuring magnetic fields [7−11, 15], achieving the
accuracy of SQUID magnetometers in conjunction with
convenience typical of optical devices.

One of the effects closely related to CPT in degen-
erate systems is the nonlinear resonance Faraday effect
[11–16], which is characterized by large angles of rota-
tion of the polarization plane. The measurement of the
1063-7761/03/9705- $24.00 © 20868
angle of rotation of the polarization plane or, which is
the same, of the phase difference between the right and
left circular polarizations of an electromagnetic wave
proves to be in some cases more convenient than
recording CPT resonances in the absorption spectrum.
For this reason, it is proposed to use the nonlinear res-
onance Faraday effect for the development of CPT
magnetometers.

Nonlinear resonance polarization rotation is stud-
ied, as a rule, in a longitudinal magnetic field, which is
parallel to the direction of propagation of the electro-
magnetic wave. Transverse magnetic fields, which are
inevitably present in a laboratory (the Earth’s magnetic
field), are eliminated by screening or using compensat-
ing schemes. In designing practical magnetometers,
one has to take into consideration the effect of a trans-
verse magnetic field and choose optimal parameters. In
this paper, we studied experimentally the dependence
of the angle of polarization rotation on the magnitude of
a longitudinal magnetic field in 87Rb vapor at the
D1-line F = 2  F ' = 1 transition for different strengths
and directions of a transverse magnetic field. The F =
2  F ' = 1 transition was chosen among other transi-
tions between the hyperfine-structure components of
the 5s1/2 and 5p1/2 levels because it possesses a greater
sensitivity to a magnetic field, thereby being most inter-
esting for practical applications.

Another important problem that we considered in
this paper is the influence of depletion of working lev-
els in open systems on the nonlinear resonance Faraday
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Scheme of the setup: (1) ECDL laser; (2) additional laser; (3) polarizer; (4) semitransparent mirror; (5) cell with 87Rb
vapor; (6) heater; (7) solenoid; (8) Helmholtz coils; (9) polarization beamsplitter; (10, 11) photodiodes. (b) Hyperfine structure if
the D1-line of 87Rb.
effect. Population depletion by optical pumping in an
open system results in a decrease in the angle of polar-
ization rotation. The depletion efficiency increases with
increasing magnetic field, which destroys CPT. A car-
dinal solution of this problem would be the use of
closed systems. However, the distance between the
upper working level and neighboring levels in such sys-
tems is, as a rule, small. For example, this distance for
the close D2-line F = 1  F ' = 0 transition in 87Rb is
smaller than the inhomogeneous Doppler width of the
transition, resulting in population depletion by optical
pumping via nonresonant upper levels. In other words,
the system is no longer closed. In addition, a small dis-
tance to neighboring levels leads to a strong nonreso-
nant interaction, which limits the potential sensitivity
of a magnetometer [10]. In this paper, we propose using
radiation from an auxiliary laser to compensate for
optical pumping out of working levels for obtaining a
closed system. We studied both the case of pure rubid-
ium and rubidium with a buffer gas, which is widely
used to increase the lifetime of the Zeeman coherence.
We experimentally demonstrated the increase in the
sensitivity and dynamic range of the fields being mea-
sured upon compensation of the depletion.

The paper contains five sections. In Section 2, the
scheme of the experimental setup is described. In Sec-
tion 3, the influence of transverse magnetic fields on the
nonlinear resonance Faraday effect is considered. Sec-
tion 4 is devoted to analysis of the influence of the opti-
cal depletion in open systems on the effect under study
and the possibilities of its compensation. In the Conclu-
sions, the results are summarized and analyzed.

2. EXPERIMENTAL

Figure 1a shows the scheme of the experimental
setup. A diode laser 1 with an external cavity (ECDL)
tuned to the F = 2  F ' = 1 transition of the D1-line
of 87Rb was used as a monochromatic radiation source
(Fig. 1b). The laser radiation was linearly polarized.
The polarization was controlled with the help of polar-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
izer 3. The laser beam with a spot size of 2 × 5 mm
passed through a cylindrical cell 5 with a diameter of
56 mm and a length of 55 mm containing vapor of iso-
topically pure 87Rb. Then the beam was incident on a
polarization beamsplitter 9 mounted at an angle of 45°
with respect to the polarization plane of laser radiation.
The polarization rotation angle and absorption in the
cell were calculated from the transmitted intensity
in two arms of the beamsplitter measured by photo-
diodes 10 and 11. A longitudinal magnetic field was
produced by solenoid 7. A transverse magnetic field
was produced with the help of a system of two magnetic
coils—Helmholtz coils 8, 15 cm in diameter. The coils
could be rotated around the system axis through an
arbitrary angle, thereby varying the orientation of the
transverse magnetic field with respect to the direction
of polarization of laser radiation. The concentration of
rubidium vapor in the cell was varied with the help of
heater 6 and was approximately 2 × 1011 cm–3. In this
case, the polarization rotation angle was, on the one
hand, not too large, so that the mutual orientation of the
transverse field and the polarization direction changed
weakly over the cell length, and on the other hand, this
angle was sufficient to ensure the required accuracy of
measurements.

Note that anomalously large polarization rotation
angles were observed only in the case of coherent pop-
ulation trapping. When the laser intensity was below a
certain threshold, polarization rotation disappeared
almost completely. When the laser was tuned to the F =
1  F ' = 2 transition (CPT cannot be achieved at this
transition [2, 4, 5]), the polarization rotation angle was
smaller than the sensitivity of the detecting system
(<0.1°) for any intensities of laser radiation.

The measurements were performed using rather
high laser intensities on the order of 100 mW/cm2.
Under these conditions, the system was low-sensitive to
weak magnetic fields on the order of the Earth’s
magnetic field (~0.5 G) [16], which allowed us to aban-
don shielding. The longitudinal component of the
SICS      Vol. 97      No. 5      2003
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Earth’s magnetic field was determined by the shift of
the zero of the effect and was taken into account in data
processing.

We studied the influence of optical depletion of
working levels using an additional laser 2, which was
tuned to the F = 1  F ' = 2 transition and produced
pumping from the F = 1 level to the working F = 2 level
through the upper F ' = 2 level. The F = 1  F ' = 2
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Fig. 2. (a) Scheme of the mutual orientation of the direc-
tions of polarization and a magnetic field when a transverse
field is orthogonal to polarization. (b) Dependence of the
polarization rotation angle on a longitudinal magnetic field
for different strengths of a transverse field: B⊥  = 0 (1),
3.64 (2), 7.28 (3), 10.9 (4), 14.6 (5), 18.2 G (6). The solid
curves are experimental data; the diamonds are the values
calculated from (1). (c) Dependence of the derivative of the
polarization rotation angle with respect to the longitudinal
magnetic field at field zero (sensitivity) on the transverse
field strength: the solid curve is the dependence calculated
from (2); the diamonds are experimental data.
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transition has no dark states, which provides a high
pumping efficiency. In addition, the F = 1  F ' = 2
and F = 2  F ' = 1 transitions do not have common
levels and are separated in frequency by 7.6 GHz,
which excluded direct influence of radiation from the
additional laser on the working transition. The beams
from both lasers overlapped inside the cell. The inten-
sity of the additional laser was 50 mW/cm2, which, as
follows from numerical calculations, is sufficient for
the efficient compensation for the working-level deple-
tion. Experiments were performed for two cases with
substantially different relaxation constants: pure rubid-
ium vapors and rubidium vapors in the presence of a
buffer gas. As a buffer gas, neon at a pressure of 30 Torr
was used.

3. INFLUENCE 
OF A TRANSVERSE MAGNETIC FIELD 

ON THE NONLINEAR RESONANCE FARADAY 
EFFECT

Our investigations showed that the influence of a
transverse magnetic field on the nonlinear resonance
Faraday effect was different for different orientations of
polarization of laser radiation with respect to the trans-
verse field. Theoretical analysis of this problem in the
general case is rather complicated and can be probably
performed only by numerical simulations.

For a transverse field perpendicular to the polariza-
tion direction, we propose a simple theoretical model,
which is in good agreement with the experiment. In this
case, the total magnetic field B = B|| + B⊥  (longitudinal
plus transverse) proves to be orthogonal to the polariza-
tion direction E (Fig. 2a). From the point of view of
description of processes occurring in the medium, this
situation is similar to the propagation of an electromag-
netic wave along a magnetic field. It is known that, in
the case of a longitudinal propagation of the wave,
polarization rotation is observed, i.e., the response dE
of the medium is orthogonal both to the polarization
direction E and to the magnetic induction B. It is obvi-
ous that the latter will be true in our case as well, but the
contribution to the polarization rotation angle will be
determined not by dE but by its projection dE' on a
plane orthogonal to the propagation direction. Thus, we
obtain the polarization rotation angle

(1)

where ϕ0(B) is the dependence of the polarization rota-
tion angle on the longitudinal magnetic field in the
absence of a transverse field.

ϕ B||( ) ϕ0 B||
2 B⊥

2+( )
B||

B||
2 B⊥

2+
-----------------------,=
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One can easily find from (1) the expression for the
derivative of the polarization rotation angle with
respect to the longitudinal magnetic field at the zero of
the field, which determines the sensitivity of a magne-
tometer:

(2)

The dependence of the polarization rotation angle
on the longitudinal magnetic field for different
strengths of the transverse field is shown in Fig. 2b. The
solid curves are the experimental data, and the diamonds
are theoretical values calculated by expression (1) [the
experimental curve measured in the absence of a trans-
verse magnetic field was used as ϕ0(B)].

Figure 2c shows the dependence  on

the transverse field strength. The diamonds are the
experimental values. The solid curve is calculated
from (2). The 0/0 uncertainty appearing in expression (2)
when B⊥  = 0 and errors in the measurement of ϕ0(B) (in
particular, we neglected the Earth’s magnetic field) did
not allow us to continue the curve correctly to the zero
transverse field. One can see that the model is in excel-
lent agreement with experimental data for all other val-
ues of the transverse magnetic field.

Expression (2) has a simple geometrical interpreta-
tion. The slope of the dependence of the polarization
rotation angle on the longitudinal magnetic field at the
zero of the function  in the presence of

the transverse magnetic field B⊥  is equal to the slope of
a straight line drawn from the coordinate origin to the
point ϕ0(B⊥ ). Therefore, the sensitivity of the magne-
tometer will change weakly when a transverse mag-
netic field is applied, which is perpendicular to polar-
ization and smaller than Bmax (Bmax is the position of the
maximum of the polarization rotation angle in the
absence of transverse fields), and it will drastically
decrease at larger values of the field.

In the case of another orientation of the perturbing
transverse field, the situation was more complicated.
When the transverse field was parallel to the light-wave
polarization and exceeded 2Bmax, the dependence of the
polarization rotation angle on the longitudinal magnetic
field exhibited a singularity near zero (Fig. 3), which
was similar to that observed in paper [13]. The origin of
this singularity is still unclear and requires additional
study. However, as in the case of a transverse field
orthogonal to laser-radiation polarization considered
above, we can state that transverse fields that are
smaller than Bmax only weakly affect the resonance
Faraday polarization rotation.

Therefore, transverse fields of an arbitrary orienta-
tion weakly affect the nonlinear resonance Faraday
effect until their strength exceeds Bmax, which should
be taken into account, in particular, in the development

ϕd
dB||
---------

B|| 0=

ϕ0 B⊥( )
B⊥

----------------.=

dϕ /dB||( ) B|| 0=

dϕ /dB||( ) B|| 0=
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of a magnetometer. In the presence of transverse fields,
which are inevitable in real experimental conditions, it
is expedient to use sufficiently high intensities provid-
ing the required power broadening of the transition and,
hence, the required values of Bmax. The broadening of
the transition reduces the slope of the dependence of the
polarization rotation angle on the longitudinal magnetic
field and seemingly should reduce the potential sensi-
tivity of magnetometers based on the nonlinear reso-
nance Faraday effect. However, in the case of CPT, the
ratio of the slope of dependence of the polarization
rotation angle to absorption is independent of the
light-wave intensity [15]. Therefore, an increase in the
intensity does not result in an increase in the sensitivity
limit, which is determined from the signal-to-noise
ratio. Moreover, when the sensitivity is restricted by
shot noise, the error of measurement of a magnetic
field, which can in principle be achieved, decreases as
the square root of the light-wave intensity [11]. The real
sensitivity of the magnetometer can be increased by
increasing the optical thickness of the medium used, as
well as by measuring more accurately the polarization
rotation angle or, which is the same, the phase shift
between the right-hand and left-hand circularly polar-
ized components of laser radiation.

4. INFLUENCE OF OPTICAL DEPLETION 
OF WORKING LEVELS

AND ITS COMPENSATION
ON THE NONLINEAR RESONANCE FARADAY 

EFFECT IN OPEN SYSTEMS

Figure 4a shows the scheme of the (1) signal and
(2) additional laser used to study the compensation for
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Fig. 3. Dependence of the polarization rotation angle on the
longitudinal magnetic field for different strengths of the
transverse magnetic field directed parallel to the polari-
zation of an electromagnetic wave: B⊥  = 0 (1), 3.64 (2),
7.28 (3), 10.9 (4), 14.6 (5), 18.2 G (6).
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the depletion of the working F = 2  F ' = 1 transition.
The experiment was performed for two cases with sub-
stantially different relaxation constants: in pure rubid-
ium vapor and rubidium vapor in the presence of a
buffer gas. We studied the polarization rotation angle

F ' = 2

F ' = 1

F = 2

F = 1

1 2

(a) (b)

σ+ σ–

δ

2

(c)

8

7

6

5

4

3

2

1

0 5 10 15

ϕ, arb. units

B, Gϕ, arb. units

(d)

4

3

2

1

0 1 2 3 4 5
B, G

Fig. 4. (a) Scheme of the signal laser (1) and additional
laser (2) used for compensating for the optical decay of the
working F = 2  F ' = 1 transition. (b) Simplified model
used for computer simulation of the optical decay: σ+ and
σ– are the right-hand and left-hand polarized components of
the main laser radiation; δ is the Zeeman splitting. (c, d)
Dependences of the polarization rotation angle on the mag-
netic field strength calculated for rubidium without and with
a buffer gas (neon at a pressure of 30 Torr), respectively; the
Rabi frequency for the main laser radiation is 20 MHz. The
solid curve is the dependence in the absence of compensa-
tion; the dotted curve is the dependence calculated for an
infinite intensity of the additional laser’s radiation (closed
system); the dashed curve corresponds to the experiment,
when the intensity of the additional laser’s radiation was
half that of the main laser.
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for the signal laser radiation resonant with the F =
2  F ' = 1 transition as a function of the longitudinal
magnetic field. The additional laser, tuned to the F =
1  F ' = 2 transition, compensated for depletion of
the working levels by populating the lower working
F = 2 level through the upper F ' = 2 level, thus making
the system closed.

According to the plan of the experiment, we per-
formed numerical simulations using a simplified
scheme (Fig. 4b). The F = 2  F ' = 1 transition inter-
acting with the main laser radiation was simulated with
a polarization Λ scheme with the Zeeman splitting of
lower levels δ = 2µBgB/", where µB is the Bohr magne-
ton; g is the Lande g-factor, equal to 1/2 for the F = 2
level of the D1-line of 87Rb; and B is the magnitude of
the applied magnetic field. The F = 1  F ' = 2 tran-
sition, which has no a dark state, was simulated by a
two-level open system excited by an additional laser.
The systems were connected by the relaxation of popu-
lation between levels F = 1 and F = 2 (low-frequency
relaxation) and the relaxation of population of the
upper levels F ' = 1, F ' = 2 (high-frequency relaxation).
The relation between the rates of high-frequency relax-
ation between the sublevels was chosen in accordance
with the optical strengths of the corresponding transi-
tions. The total constant of high-frequency relaxation γ
and the constant of low-frequency relaxation Γ were set
equal to 6 MHz and 16 kHz, respectively, for pure
rubidium vapor and to 150 MHz and 1 kHz, respec-
tively, for rubidium vapor in the presence of a buffer
gas. The Rabi frequency for the main laser radiation
was 20 MHz, which corresponds to a laser radiation
power density equal to 100 mW/cm2. In the calcula-
tions we took into account the Doppler inhomogeneous
broadening of the transitions, which was equal to
270 MHz under our experimental conditions.

The numerical simulations showed that the compen-
sation of the population depletion becomes efficient
when the intensity of the additional laser radiation is
two to three times lower than that of the main laser, and
there is no point in further increasing the additional
laser power. For this reason, we used a comparatively
low-power additional laser emitting 50 mW/cm2. Fig-
ures 4c and 4d show the calculated dependences of the
polarization rotation angle on the magnetic field for
rubidium with and without a buffer gas. The solid curve
shows the dependence in the absence of compensation,
the dotted curve corresponds to the infinite intensity of
the additional laser (closed system), and the dashed
curve corresponds to our experimental conditions,
when the additional laser radiation intensity was half
the intensity of the main laser radiation. One can see
that the compensation for the population depletion
results in a small (approximately twofold) increase in
the slope of the curve at zero, which determines the sen-
sitivity, and in the extension of the range of the fields
 AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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being measured, i.e., in an increase in the position Bmax

of the maximum of the polarization rotation angle.
Note that Bmax also determines the possibility of work-
ing in the presence of a transverse magnetic field (see
section 3). Our calculations showed that the extension
of the dynamic range during the depletion compensa-
tion depends on the relation between the constants of
low-frequency, Γ, and high-frequency, γ, relaxation,
and increases with decreasing Γ/γ.

The experimental dependences of the polarization
rotation angle on the magnetic field for rubidium with
and without a buffer gas are presented in Figs. 5a and
5b. Curves 1 and 2 were obtained with and without the
additional laser, respectively. One can see that the
results of numerical simulations (Fig. 4c) are in good
qualitative agreement with experiments performed in
pure rubidium vapor. The compensation for the popula-
tion depletion resulted in an increase in the sensitivity
by a factor of 1.6 and in a doubling of the dynamic
range (i.e., Bmax was doubled). The results of measure-
ments with a buffer gas (Fig. 5b) strongly differ from
calculations (Fig. 4d). Instead of the expected doubling
of the sensitivity and the tenfold extension of the
dynamic range, only weak extension of the dynamic
range was observed and the sensitivity increased by a
factor of 50. This discrepancy is explained by the influ-
ence of the Earth’s magnetic field, whose strength is
approximately equal to BE = 500 mG. The longitudinal
component of the Earth’s magnetic field was measured
from the shift of the zero of the nonlinear resonance
Faraday effect and was BE|| ≈ 200 mG under our exper-
imental conditions, which was taken into account in
experimental-data processing. The projection of the
Earth’s magnetic field in the direction perpendicular to
the laser beam can be estimated as

which is lower than the width of the dynamic range of
Bmax when the population depletion is compensated and
is substantially greater than the expected width of the
dynamic range in the absence of a transverse field with-
out compensation. Therefore, the transverse Earth mag-
netic field only weakly affected the resonance Faraday
effect when the population depletion was compensated;
however, its influence was dominant in the absence of
compensation.

Therefore, the compensation for the population
depletion from the working levels results in an increase
in the sensitivity and in a substantial extension of the
dynamic range of Bmax, which is especially important in
studies of samples with small constants Γ of low-fre-
quency relaxation in the presence of transverse mag-
netic fields. Note that the constant of low-frequency
relaxation determines the ultimate sensitivity of mag-

BE⊥ BE
2 BE||

2–= 450 mG,≈
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netometers based on the nonlinear resonance Faraday
effect [10, 11, 15].

5. CONCLUSIONS

We have studied the influence of a transverse mag-
netic field on the nonlinear resonance Faraday effect in
the case of coherent population trapping. For the fields
orthogonal to the direction of polarization of an electro-
magnetic wave, a simple theoretical model has been
proposed, which is in good agreement with experimen-
tal data. It is shown that transverse fields of an arbitrary
orientation only weakly affect the nonlinear resonance
Faraday effect until their strength does not exceed Bmax.
Our studies have shown that in the development of CPT
magnetometers based on the Faraday polarization rota-
tion, it is expedient to use sufficiently high laser radia-
tion intensities, which provide the required power
broadening of the transition and, hence, a value of Bmax
exceeding the strength of transverse fields inevitable
under real experimental conditions.

10°
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2
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–1°
30 1 2 4
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1

2
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1°

0

6°

B, G

Fig. 5. Experimental dependences of the polarization rota-
tion angle on the magnetic field strength in the presence (1)
and absence (2) of an additional laser. (a) Pure rubidium
vapor without a buffer gas; (b) rubidium vapor with a buffer
gas (neon at a pressure of 30 Torr).
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Another important problem that we considered in
this paper is the influence of the working-level deple-
tion by optical pumping in open systems on the nonlin-
ear resonance Faraday effect. We have shown that the
depletion in the open system reduced the sensitivity and
the working range of the magnetometer. The choice of
a convenient closed system is often complicated. We
have proposed using an additional laser to compensate
for the depletion in an open system. We have experi-
mentally demonstrated the increase in the sensitivity
and the extension of the dynamic range upon compen-
sation for the depletion. Our studies have shown that
the depletion compensation is especially important in
the case of samples with small constants of low-fre-
quency relaxation in the presence of transverse mag-
netic fields. The use of an additional laser to compen-
sate for the depletion in experiments with a buffer gas
in the presence of the Earth’s magnetic field resulted in
an increase in the sensitivity by a factor of 50. Note that
reducing the low-frequency relaxation constant is the
main method for increasing the ultimate sensitivity of a
CPT magnetometer, which emphasizes the importance
of our results.

Our studies have shown that the optical compensa-
tion for the working-level depletion becomes efficient
when the intensity of the additional laser radiation is
two to three times lower than that of the main laser. In
addition, it is obvious that a laser with a comparatively
broad emission line can be used as an additional laser,
provided the spectral power is retained. All this reduces
the requirements on the quality of the additional laser
and makes the method for compensating for the deple-
tion by optical pumping in open systems convenient in
practice.

Our results allow one to better understand the phe-
nomenon of the nonlinear resonance Faraday effect and
are an important step in the development of real magne-
tometers based on this effect.
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Abstract—We consider scalar (intensity, ellipticity) and gradient vector invariants for monochromatic field
configurations of dimension D > 1. We analyze their spatial structure and peculiarities of the vector invariants
(divergence and ambiguity, vortex fields) near singular regions (intensity extrema, regions of circular and linear
polarizations). We study the convergence and definiteness of physical quantities (the multipole moments of
atoms, the light-induced force, the diffusion tensor) with an invariant representation in the basis of these vector
invariants. Various spatial structures of singular regions are presented for symmetric two- and three-dimen-
sional configurations of a monochromatic field. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The field configurations produced by coherent light
waves with noncoincident directions and different
polarizations are widely used in atomic physics, partic-
ularly for laser cooling and trapping of neutral atoms.
These configurations are distinguished by the presence
of spatial gradients in such field parameters as the ellip-
ticity, intensity, total phase, and the rotation angles of
the polarization ellipse. The correlation between the
polarization and kinetic parameters of an atomic
ensemble in such fields underlies the operation of mag-
netooptical traps and the action of sub-Doppler cooling
mechanisms. The possible new dynamic and polariza-
tion effects in atomic structures optically aligned by
fields with polarization gradients have been subjects of
research in recent years [1]. A common property of
these structures is the formation of periodic [2] or
quasi-periodic [3] lattices both in the distribution den-
sity (dissipative [4] and far-detuned [5] lattices) and in
the distribution of multipole atomic moments ρκ . For
example, dissipative lattices are formed during the
simultaneous action of a dipole force F0, which leads to
the spatial localization of atoms, and a radiative friction

force F1(r, v) =  · v ~ v, which cools the atomic
ensemble to sub-Doppler temperatures kBT ! "γ (γ is
the radiative spontaneous excited-state decay constant).
Clearly, such lattices are formed every time the tech-
nique for sub-Doppler cooling of atoms in light fields
with polarization gradients is used.

In the semiclassical approximation, the kinetics of
slow atoms in a nonuniformly polarized field is
described by the Fokker–Planck equation for the
atomic distribution function in phase space [6]. It was
shown in [7] that the vector structure of F0, as well as

-̂
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the tensor structure of  and the diffusion tensor in

momentum space  in the zero order in velocity, is
determined by the spatial field gradients. Thus, a simple
analysis of the gradient structure for an arbitrary field
configuration can reveal the characteristic features in
the dynamics of individual atoms and the kinetics of an
atomic ensemble by determining, for example, the
topology and symmetry of the localization regions, the
spatial distribution of multipole moments, etc. Our
main goal is to investigate the properties of the field
gradients in monochromatic configurations of dimen-
sion D > 1.

The vector field invariants are defined in Section 2.
The pattern of divergence or ambiguity of these quanti-
ties in singular regions is considered in the next section.
We show that, in contrast to one-dimensional configu-
rations, a vortex structure with the vortex centers in
regions of circular polarization and with divergence of
these gradients on the order of 1/r (r is the distance to
the vortex center) is typical of the gradients of the total
phase and the rotation angle of the polarization ellipse.
This fact is connected to the absence of smoothness in
the continuous ellipticity parameter c = cos(2ε) in these
regions (ε is the ellipticity angle). The regions of linear
polarization where the gradient of the rotation angle of
the minor axis of the polarization ellipse diverges as 1/r
should also be considered singular. The nodes at which
the total field intensity is zero are degenerate regions of
configurations. Here, in general, the regions of circular
and linear polarizations intersect, the field ellipticity is
undefined, and its gradient diverges as 1/r.

In Sections 4 and 5, we investigate the problems of
uniqueness and convergence for the multipole moments

 of ground-state atoms and the kinetic parameters

-̂

$̂

ρκ
g
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F0, , and  defined via vector field invariants. We
show that these quantities are finite everywhere, except
the nodes, while there is ambiguity in some of the con-

tributions to  and  due to the gradients of ellipticity
and total phase (in regions of circular polarization) and
the gradient of the rotation angle of the minor axis of
the field polarization ellipse (in regions of linear polar-
ization).

In Section 6, we consider the spatial structures of
singular regions for well-known and new two- and
three-dimensional configurations and analyze the
asymptotics of the field invariants in these regions. We
show the topological variety of regions with circular
and linear polarizations as well as intensity maxima and
nodes.

In the Conclusions, we discuss the relationship
between the spatial structure of field invariants and the
structure of atomic lattices. In particular, we note a sig-
nificant difference in the structures of (dissipative) lat-
tices, depending on the type of transition. Thus, the pre-
dominant localization regions are the intensity minima
together with the regions of circular polarization for
J  J transitions (J are half-integers) and the inten-
sity maxima together with the regions of circular polar-
ization for J  J + 1 transitions. The largest effect
must be observed at the points of intersection of these
regions. In other cases, extended localized structures,
for example, in the shape of rings in two-dimensional
configurations, can be formed. The peculiarities of the
spatial gradients of total phase and the angular parame-
ters of the polarization ellipse have a direct bearing on
the vortex component of the dipole force F0, which
affects the dynamics of individual atoms in the localiza-
tion regions.

-̂ $̂

-̂ $̂

εεε

φφφ ααα

eaeaea

ebebeb

b'b'b'

aaa a'a'a'

bbb

φφφ
βββ

eaeaea

ebebeb

Fig. 1. The local polarization ellipse (left) and the rotation
angles of the polarization ellipse under variation of r: a, b
and a', b' are, respectively, the initial and modified direc-
tions of the principal axes of the polarization ellipse for
field (1).
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2. INVARIANTS 
OF A MONOCHROMATIC FIELD

Let us consider the field configuration produced by
a superposition of s coherent light beams of the same
frequency ω with wave vectors kn:

(1)

where (…)* is complex conjugation. Formally, we can
separate out the amplitude E ≥ 0, the total phase Φ, and
the unit complex polarization vector (e · e* = 1) in the
frequency components of the field E(r), E*(r):

(2)

We do this by defining them directly in terms of the
field invariants I0 = E · E*, I1 = E · E, and , which are
convenient in analyzing specific configurations:

(3)

Definition (3) implies the choice of c = /I0 ≥ 0 for
the ellipticity parameter c(r) = cos(2ε) = e · e, which is
related to the degree of linear field polarization l = c2 [8]
and the field ellipticity angle ε(r) (Fig. 1), because there
is the relation cexp(2iΦ) = I1/I0 between c(r) and the
phase factor exp(2iΦ(r)). Our analysis of non-one-
dimensional (D > 1) field configurations (see below)
shows that for a different choice of relation to the phase
factor, the function c(r) will be discontinuous near the
typical1 regions with circular field polarization (iso-
lated points and lines in two- and three-dimensional
configurations, respectively). Of fundamental impor-
tance is the fact that the phase factor exp(iΦ(r)) remains
ambiguous in the definition of the unit polarization vec-
tor e(r) in (3) because of the ambiguity in the square
root.

As the vector invariants, we choose the gradient
functions [7] of amplitude, g1 = ∇ E; ellipticity parame-
ter, g3 = ∇ c; and phase,

(4)

in contrast to Φ, vector (4) is uniquely defined.

1 The definitions of a continuous ellipticity parameter, –1 ≤  ≤ 1,
are given in Section 6.

E r t,( ) –iωt ikn r⋅+( )Enexp c.c.+{ }
n 1=

s

∑=

=  iωt–( )E r( )exp iωt( )E* r( ).exp+

E r( ) E r( ) iΦ r( )( )e r( ),exp=

E* r( ) E r( ) iΦ– r( )( )e* r( ).exp=

I1*

E I0, 2iΦ r( )( )exp
I1

I1I1*
--------------,= =

e r( ) E r( )
E iΦ r( )( )exp
--------------------------------.=

I1I1*

c̃

g2 ∇Φ i
4
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I1
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--------------;= = =
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The gradients of the following three angular param-
eters that specify the spatial orientation of the polariza-
tion ellipse can serve as additional vector invariants:
φ(r)—the angle of rotation relative to the e0 axis
orthogonal to the polarization ellipse as well as α(r)
and β(r)—the angles of rotation of the major, ea , and
minor, eb , axes of the polarization ellipse relative to the
initial polarization plane (Fig. 1), where the axes are

(5)

In contrast to the angles themselves, invariant represen-
tations are possible for their gradients. Thus, in the
local cyclic basis

,

the polarization vector is

By considering the vector fields (e∇ ie*) and (e0∇ ie*),
we can obtain the following representations for the gra-
dients of the angular quantities:

(6)

(7)

Since, in contrast to g4, the vectors g5 and g6 in (7)
implicitly contain phase factors of the form exp(±iΦ),
they are not defined uniquely.

There are relations between the vectors gi (i = 1,
…, 6) that follow from the transversality of the fre-
quency components ∇ E(r) = ∇ E*(r) = 0 and the corol-
laries ∇ 2E(r) = – k2E(r) and ∇ 2E*(r) = – k2E*(r) of the
wave equation for the total field of configuration (1).

e0
ie e*×

1 c2–
-----------------, ea

e e*+

2 1 c+( )
------------------------,= =

eb
i e e*–( )
2 1 c–( )

-----------------------– .=

e0  e 1±;
ea ieb±

2
-----------------+−=

 
 
 

e ε π
4
---– 

  iφ–( )e+1expcos=

+ ε π
4
---– 

  iφ( )e 1– .expsin

g4 i, ∇ iφ
Im e∇ ie*( )

1 c2–
--------------------------,= =

g5 i, ∇ iα
2

1 c+
-----------Re e0∇ ie( ),= =

g6 i, ∇ iβ
2

1 c–
-----------Im e0∇ ie( ).= =
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Let us also note an important relation between the gra-
dients of the phase parameters:

(8)

where the Gi = Im(E∇ iE*) is a vortex vector (∇ G = 0).

3. PECULIARITIES OF FIELD INVARIANTS

In one-dimensional field configurations, the wave
vectors kn of the initial fields are collinear and g5 and g6
are always absent. Here, the simplest configurations
with only one gradient are realized [9]: g2 is present in
a plane traveling wave; g1 is present in a standing wave;
g3 is present in two counterpropagating waves of the
same intensity with orthogonal linear polarizations, and
g4 is present in counterpropagating waves with ortho-
gonal circular polarizations (the lin ⊥  lin and σ+–σ–
configurations, respectively [10]). The last three config-
urations, along with the lin–ϑ–lin model [11], are spe-
cial cases of the symmetric ε–ϑ–  model [12, 7]
formed by two counterpropagating waves with the
same intensities and ellipticities and the angle ϑ
between the principal axes of their polarization ellipses.
In these models, the invariants (including the gradient
ones) can be easily defined in the form of smooth func-
tions for the entire configuration region. If the elliptic-
ity parameter is specified in the range –1 ≤  ≤ 1, sin-
gularities emerge only in the limiting cases, for exam-
ple, for ϑ  0 in the lin–ϑ–lin model [11].

A qualitatively different picture takes place in con-
figurations with polarization gradients of dimension
D > 1. Irrespective of the method for reconciling the
signs of c(r) and exp(2iΦ), singularities emerge in the
vector invariants in the limiting cases I0 = 0 (field
nodes), I0 = |I1| (linear polarization), and I1 = 0 (circular
polarization).

In a nondegenerate case, I0(0) = ( > 0, the asymp-
totics near the points with circular polarization is
invariant, I1 ≈ A(0) · R, where, below, ( denotes I0 at
singular points and the radius vector R is assumed to be
given in a local coordinate system with the origin in a
singular region (with linear, circular polarization) or at
an intensity extremum, depending on the context. Here,
A(R) = ∇ I1 is a complex vector: A = A1 + iA2; in gen-
eral, A1 × A2 ≠ 0. The latter property has a direct bearing
on the choice of only a nonnegative ellipticity parame-
ter, c ≈ |A · R|/( ≥ 0, if we want it to be continuous. In
exceptional cases when A = eiαA0, where A0 is a real
vector and α is a constant phase, we can define a con-
tinuous alternating ellipticity parameter in the form

,

1 c2– g4 g2–
G
I0
----,=

ε

c̃

1 c̃≤–
A0 R⋅

(
---------------≈ 1≤
SICS      Vol. 97      No. 5      2003



878 BEZVERBNYŒ
while simultaneously specifying the phase factor e2iΦ ≈
eiα. In general, however, there is a singularity in the
phase factor: e2iΦ ≈ A · R/ |A · R| for R  0. Accord-
ingly, g2 diverges when c  0 as

(9)

and its field has a vortex pattern with the vortex axis
along A1 × A2. Obviously, g4 has the same asymptotics,
because the vector G in (8) is always finite. Being finite,
the vector g3 is undefined at the point c = 0 itself,
because it has the asymptotics

(10)

where Ai ⊗ Ai denote a direct product of the corre-
sponding vectors.

The gradients g5 and g6 are finite in the vicinity of
circular polarization:

where B1 and B2 are, respectively, the real and imagi-
nary components of the everywhere-defined vector

However, as we noted above, sinΦ and cosΦ are not
defined uniquely (in contrast to sin(2Φ) and cos(2Φ)).

The asymptotics of the invariants near the points
with linear polarization in a nondegenerate case (( > 0)
are

where  is a real tensor and  is a complex tensor.
Clearly, the vectors

,

and g4 are finite, and the ellipticity gradient g3 ≈

−2 R is small, because the ellipticity parameter is
extremal, ∇ c = 0, at the points with linear polarization.

g2

A1 A2×[ ] R×
A R⋅ 2

----------------------------------≈
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3̂ 0( ) R⋅
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Here, c ≈ 1 – R ·  · R, with the eigenvalues of the

tensor  being nonnegative. The quantities g5 and g6

for c  1 are

(11)

where the signs of the vectors, being the same, are not
defined uniquely. The vectors introduced above have an

asymptotic behavior: B1 ≈ S × R, while B2 ≈ R,

where the real tensor  also contains a symmetric
component. The vector S, which defines the plane of
the vortex field B1, can be represented via the parame-
ters of the fields that form configuration (1):

Thus, the vector g5 is finite and undefined at c = 1,
while g6 has a vortex pattern and diverges when c  1.

Near the singular points of the invariant I0, which is
proportional to the intensity of the total field (1), where

∇ I0 = 0, its asymptotics is I0 ≈ ( + R ·  · R, and the

eigenvalues qm of the tensor  define the type of extre-
mum or the saddle point.

The nodes (( = 0) where qm ≥ 0 are the degenerate
cases in field configurations. Here, the gradient

is undefined. The asymptotics of the invariant I1 ≈ R ·

 · R; the condition |R ·  · R| ≤ R ·  · R must be

satisfied for the complex tensor . In general, the
ellipticity parameter c = |I1|/I0 is undefined and the vec-
tor g3 diverges as 1/R near the nodes. The vectors g2, 4
have the same pattern of divergence, except for the

cases where  = eiα . The vector g6 also has a
1/R divergence at the nodes.

The dimension of singular regions, obviously,
depends on the dimension of the field configuration.
The regions of circular polarization for I0 > 0 are spec-
ified by two conditions: ReI1 = 0 and ImI1 = 0. Usually,
these are isolated points in two-dimensional configura-
tions and one-dimensional lines in three-dimensional
configurations. However, if I1 ~ |I1|, to within the con-

5̂3

5̂3
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2(3R 5̂3 R⋅ ⋅
---------------------------------------,±≈
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(3/2R 5̂3 R⋅ ⋅
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stant phase factor, which corresponds to the case A =
eiαA0 considered above, then only one condition
remains and the dimension of the region increases. An
example of a two-dimensional model with regions of
circular polarization in the form of closed lines is given
in Section 6.1. The regions of linear polarization that
correspond to the maximum values of c = 1, as well as
the regions of extremal intensities of field (1), satisfy
the conditions ∇ F = 0 (F = {c; I0}), which, in general,
leads to D independent equations that define these
regions in the form of isolated points. However, the
amount of independent equations may turn out to be
less. The various intensity extrema and regions of linear
polarization in the form of isolated points, lines, and
two-dimensional surfaces (in three-dimensional config-
urations) are given in Section 6.

4. THE MULTIPOLE MOMENTS OF ATOMS

Let us consider the problem of uniqueness and
finiteness at the singular points of the physical quanti-
ties with gradient invariants present in their representa-
tions.

It was shown in [13, 14] that the stationary2 multi-
pole moments ρκ of atoms at rest with a total ground-
state angular momentum Jg > 0 aligned by field (1) in a
cycle of resonant optical pumping can be represented in
an invariant way as expansions into a basis of tensor
products of the vectors e and e*. The characteristic
relaxation times for such stationary distributions (in
internal degrees of freedom) are tκ ~ max{γ–1, (γS)–1},
where S is the saturation parameter defined via the Rabi
frequency Ω and the field frequency detuning δ = ω – ω0
from the atomic transition frequency as

(12)

For example, at small saturations, S ! 1, the expansion

of the multipole moments  of ranks 0 < κ ≤ 2Jg for
ground-state atoms at rest is [14]

(13)

Here,  = 2[(κ + 1)/2], where [X] denotes taking an
integer part of the number X. The following notation is
used in (13): {··· ⊗ ···}κ for an irreducible tensor product
of rank κ [15], and {e}l = {··· {{e ⊗ e}2 ⊗ e}3 ··· ⊗ e}l are
the abbreviations suggested in [16, 17].

2 An expansion of form (13) also holds in a nonstationary case for
an equilibrium initial distribution in Zeeman atomic sublevels.

S
Ω2

γ2/4 δ2+
---------------------.=

ρκ
g

ρκ
g aκ l, e{ } l e*{ } κ l–⊗{ } κ .

l κ κ–=

κ

∑=

κ
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For slow atoms under the condition

(14)

where ∆r is the spatial scale for the polarization gradi-
ents, a similar expansion holds for the linear (in veloc-

ity) corrections δ  [14]:

(15)

Here,  =  – 1.

There is no ambiguity in expressions (13) and (15)
because the phase factors exp(±iΦ) in the polarization
vectors e and e* (3) are not uniquely defined. The even-
ness of  ensures an even number of vectors e and e*
for the tensor products with the coefficients aκ, l,

, and . The resulting phase factors are
[exp(±2iΦ)]n and are uniquely defined in accordance
with (3). The phase factors for the contributions with

the coefficients  and  have a similar

structure: for an odd number  of vectors e and e* in
each tensor product, the arising ambiguity is offset by
the corresponding phase factors exp(±iΦ) in the vec-
tors g5, 6.

Analyzing the finiteness of expressions (13) and
(15), we note that the expansion coefficients aκ, l,

, , , and  are fractional
rational functions of the ellipticity parameter c(r) with-
out singularities for c  0, while for c  1, the

coefficients  and  have 1/  and
1/(1 – c2) singularities, respectively. Nevertheless, the

resulting contributions to δ  are everywhere finite,

except for the nodes. For the first-rank moment δ ,
this was shown in [14] for the 1/2  1/2 transition. It
turns out that the gradients that diverge (g2, 4) and that
are undefined (g3) in the vicinity of c  0 enter into
the multipoles of a higher rank at Jg > 1/2 in the finite
combinations cngm , where n ≥ 1 and m = 3, …, 6. The

min γ γS,( ) @ max kv
v
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finiteness in the other limit c  1 can be shown only
after the addition of all contributions by taking into
account the singularities of the tensors {{e}l ⊗ { e∗} L}k

in the region of linear polarization where e∗  ≈ e. There-
fore, the divergences of the individual contributions are
cancelled out and the asymptotics proves to be finite.
For example, the diverging gradient g6 enters in the

finite combination g6. Since the asymptotics of

δ  for specific transitions with J > 1/2 are cumber-
some, they are not given here.

Clearly, expansions (13) and (15) are inapplicable
near the nodes (S = 0): here, tκ  ∞ and conditions (14)
for the ellipticity parameter are violated because
∆r  0. In this case, the structure of the multipole
moments near the nodes is not determined by the local
values of I0, e(r), e*(r), and their gradients but depends
on the averaged (integrated) field parameters.

5. KINETIC COEFFICIENTS

Let us consider the application of vector invariants
to the problem of invariant representation of kinetic
coefficients, which is of relevant interest in analyzing
the localization and cooling of atoms in field configura-
tions with D > 1. It was shown in [7] that in the semi-
classical approximation equivalent to the condition

, (16)

under the approximations given in the preceding sec-
tion, the kinetic evolutionary stage (t @ max(tκ)) of an
atomic ensemble in a light field is described by the Fok-
ker–Planck equation for the atomic distribution func-
tion f(r, p) in phase space,

(17)

(v = p/M is the atomic velocity) with the following
invariant expansions for the coefficients of (17):

(18)

(19)

1 c–

ρκ
g

min γ γS,( ) @ 
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Here, the expansion coefficients F, X, and D are func-
tions of only E, c, and detuning δ of the light field fre-
quency from resonance.3 As an example, we give these
coefficients in explicit form for the 1/2  1/2 transi-
tion in the low-saturation approximation, S ! 1 (these
coefficients are given in [7] for the 1/2  3/2 and
1  2 transitions):

(20)

(21)

(22)

the remaining coefficients are equal to zero. Here, A =

 is the coefficient related to the degree of linear

3 The spontaneous diffusion tensor  has an expansion simi-
lar to (13) and is digonalized in the basis {e0, ea, eb} in accor-
dance with [7].
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polarization A2 in (1),  = δ/γ is the relative detuning,

Since the vectors g5,6 are present in expressions (18)
and (19) only in the form of quadratic combinations, no
ambiguity due to the phase factors arises. Analysis of
closed atomic dipole J  J + 1 (integer and half-inte-
ger J) and J  J (half-integer J) transitions shows

that, at least for J ≤ 2, the physical quantities F0, ,

and  are everywhere finite but nonsmooth at the
singular points if the approximations (14) and (16)
hold. Let us consider this issue for coefficients (20)–
(22) for the 1/2  1/2 transition. 

The contribution with g1 in the expression for the
force F0, along with the analogous contribution in the

expression for the tensor , is everywhere defined,
because it enters in the combination I0g1 (given S ∝ I0).

For the tensor , coefficients (21) are inapplicable
near the nodes for the reasons given in the preceding
section. Here, allowance for the nonlinear (in velocity)
contributions similar to that made in [11] for a one-

dimensional lin–ϑ–lin model is required to refine .

Let us consider the vicinities of the points with cir-
cular polarization. Analysis of the force F0 and the ten-

sor  shows that the contributions with the ellipticity
gradient g3 enters in the finite form cg3. The compo-
nents containing g2, 4 also enter in the finite form c2g2 or
in the combination g2 – g4 ≈ –G/I0 without singularities.
The contributions with g5, 6 in the expression for the

tensor  are also finite, but their asymptotics is funda-
mentally different for c  0 for J  J + 1 and
J  J transitions. Thus, for the 1/2  1/2 transi-
tion, according to (21), this is the antisymmetric tensor

which corresponds to the contribution of the effective

Lorentz force v ≈ Beff × v with the effective field
Beff = "g5 × g6. For the 1/2  3/2 transition, the
asymptotics is

δ̃

N 2 9 c2 36δ̃
2
A2+–( )[ ]
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, A 12δ̃
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B 12δ̃
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where the first term, being a symmetric tensor,
describes the radiative cooling processes due to the
contributions from g5, 6.

Near the points with linear polarization, the singu-

larities of the tensor  are related only to the terms
with g5, 6. We see from expressions (21) that these con-
tributions are finite in accordance with the asymptotics
of the vectors Bi earlier introduced but are undefined at
the point of linear polarization:

(23)

For other transitions, the asymptotics is similar but has
different coefficients of the terms.

The proof of the finiteness of the diffusion tensor

 near the points with linear and circular polariza-
tions is more cumbersome. Let us consider the contri-
butions from the most critical gradients only briefly. In
the region of circular polarization, the terms with the
coefficients D12, D13, D14, D23, and D34 are finite,
because the combinations c2g2, 4 and cg3 are continuous
and finite. The contributions with D22, D24, and D44 are
finite both because the combinations G ⊗ G arise when
the contributions are added and because the vectors
(cg2,4) are finite. The finiteness of the contributions
with g5, 6 can be shown in a similar way. It should be
noted that ambiguities similar to (23) also take place in
the expression for the diffusion tensor both at the points
of circular polarization (due to the contributions
c2g2, 4 ⊗  g2, 4 and g3 ⊗  g3) and at the points of linear
polarization (due to the contributions with g5, 6).

6. LIGHT FIELD CONFIGURATIONS

We supplement and refine our analysis of the field
invariants in singular regions for configuration dimen-
sions D > 1 with characteristic examples that have the
following common features: the initial light beams with

the same amplitude  are arranged in such a way that
there is no drift of atoms that rapidly expels them from
the region of interaction with the field. This implies that
there should be no straightening of the dipole force,
which is expressed by the condition 〈F0(r)〉d = 0 for the
average force in any direction on the scale d @ λ corre-
sponding to the beam diameter. These configurations are
suitable and actively used in experiments (models A2, C,
and D) on the formation of atomic lattices [2, 4] and
their investigation. All of the configurations, except for
case B, are formed by D + 1 light beams, so the struc-
ture of the invariants has a spatial periodicity character-

-̂

-̂
3"
2

------  
(
 
B
 

2 
2

 
δ

 
˜

 
B

 
1 
)

 
B

 
1 

⊗
 

–
 

I
 

0
3

 
R

 
4
 ̃ 

3

 
R

 
⋅ ⋅

 -------------------------------------------. ≈

$̂
ind

Ẽ
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Fig. 2. (Top) two-dimensional field configurations (a) A and (b) B; (bottom) the arrangement of the points corresponding to extremal
invariants I0 and I1.

x x

yy
ized by reciprocal lattice vectors sn = k1 – kn + 1, n = 1,
…, D [18].

6.1. Two-Dimensional Field Configurations 

(A) Let us consider the most general configuration
composed of three beams with the same ellipticity 
that satisfies these conditions. This configuration is a
generalization of the one-dimensional ε–ϑ–  configu-
ration that was first suggested in [12]. Let the wave vec-
tors kn of the three traveling waves lie in the same {k}
plane at an angle of 120° relative to one another
(Fig. 2a) and the inclinations between the major polar-
ization axis of each wave and the normal ez to the plane
be identical and equal to ϑ /2. For this configuration, the
invariants I0 and I1 are

where

ε̃

ε

I0 Ẽ
2

3 C Z*Z 3–( )+[ ] , Z ikn r⋅( )exp ,
n 1=

3
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C ei e j*⋅( )i j≠ ,=

I1 Ẽ
2
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H ei e j⋅( )i j≠ ,=

ei

ez e ki ez×⋅+

1 e
2+

--------------------------------=
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is the polarization vectors of the ith beam and

is specified by the parameters  and ϑ  of the beam
polarization ellipse. Below, we use the notation e =

 and t = tanϑ /2.

Let us separate out the following values of ϑ  and :

A1: for the ellipticity

where C = 0 and the amplitude of the total field E(r) =

 is constant (g1 = 0), while field (1) has isolated
points with circular polarization defined by the condi-
tion Z = 0 (small filled circles in Fig. 2a) that are sup-
plemented with the points (small open circles) for

 = 0 defined by the condition Z2 = 2Z* at Z ≠ 0;

A2: for ϑ  π and   0 (the linear beam polar-
izations lie in the {k} plane), at the points denoted by
small filled circles in Fig. 2a, the maxima of E(r) coin-
cide with the points of circular polarization, while the
field nodes with linear polarization that are formed only
in this and other limiting (ϑ  = 0) cases are located at the
points denoted by large filled circles;

e
t ie+
1 ite–
----------------=

ε̃

ε̃tan

ε̃

tan2ε̃0
3 ϑ 1+cos
3 ϑ 1–cos
-------------------------,=

3 Ẽ

ε̃

ε̃
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A3: for ϑ  ~   0 (the beam polarizations are
nearly linear and almost perpendicular to the {k}
plane), and the minima of E and the points of circular
polarization are very close in the regions denoted by
small filled circles in Fig. 2a, while the maxima of E are
located at the points denoted by large filled circles.

The fixed (independent of  and ϑ) isolated points
with circular polarization defined by the condition Z = 0
and denoted by small filled circles are the first peculiar-
ity of the configuration. For linearly polarized beams,

 = 0, and at inclinations t * 4, they are supplemented
with the closed lines with circular (or nearly circular)
polarization (marked by the dotted lines in Fig. 2a) that
are formed around the fixed points with linear polariza-
tion rlin (see below). Here, the curvature of the lines is

At smaller inclinations ϑ , these lines transform into fig-
ures of six isolated points in the shape of regular hexa-
gons [19] (e.g., the open circles in case A1). As the
ellipticity  of the initial beams increases, this structure
is destroyed.

Near the fixed isolated points with circular polariza-
tion rcirc (below, we chose the point r1 = (x1 = λ/3, y1 =

λ/3 ) in Fig. 2), the asymptotics is invariant,

and is indicative of extremal intensities at these points:
intensity minima at  >  and local intensity maxima

at  < . It follows from the asymptotics of the other
invariant I1 ≈ A · R that

where ex and ey are the Cartesian unit vectors and

is a constant phase. Thus, the phase factor near r1 is
exp(i2Φ(r)) ≈ exp(i(  + ϕ0)), where  = arctan(y/x) is
the polar angle. It can be shown that the signs of 
alternate at the adjacent points rcirc . This implies that
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the vector fields g2, 4 ∝ ± ∇  near the lattice points rcirc

are directed azimuthally and that the circulation direc-
tion of these fields is related to the polarization of the
field E(rcirc).

The fixed isolated points with linear polarization rlin

marked by large filled circles, whose positions are
defined by the condition Z = 3 or cos(kn · rlin) = 1, n =
1, …, 3, are the second peculiarity of the configuration.
Near these points (below, we chose r0 = (x0 = 0; y0 = 0)
in Fig. 2),

These points are also the intensity extrema, but, in con-
trast to rcirc , there will be local maxima for  >  and

minima for  <  at them. Analysis of the fields g5,6

near these points shows their vortex structure: the vec-
tor g(5) ∝  [c1 × r]/r is finite but undefined at the point of
linear polarization; the vector g(6) ∝  [c2 × r]/r2 asymp-
totically diverges, in accordance with the general
results (11). Here,

and ez is the normal to the k plane.

It should also be noted that the field g5 exhibits more
significant vortex structures at the saddle points rsad of
the c(r) surface.

(B) In two-dimensional configurations formed by
four or more beams, the structure of I0 and I1 signifi-

cantly depends on the ratio of the beam phases  [18],
which causes difficulties in the experimental imple-
mentation of time-stable configurations. In addition,
the spatial structure of the invariant fields generally
loses its periodicity [4]. On the other hand, for a certain
choice of parameters, unique topological structures
atypical of three-beam configurations become possible
in principle. Let us consider the four-beam configura-
tion that is a combination of two perpendicular lin–ϑ–
lin configurations [11]: the beams have the same inten-
sity, are linearly polarized, and are inclined at an angle
of ϑ /2 to the normal ez to the {k} plane with mutually
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Fig. 3. Three-dimensional field configurations (a) C, (b) D, and (c) E.
perpendicular adjacent wave vectors kn (Fig. 2b). For
this model,

where ∆Φ is the relative phase shift between the lin–ϑ–

lin configurations. Whereas the relative change of  in
a three-beam configuration leads to a simple shift of the
entire spatial structure of the invariants in the {k}
plane, now the topological field structure of the invari-
ants changes with ∆Φ.

At ∆Φ = π/2 and ϑ  = π/2, the field shape is similar
to case A: circular polarization takes place at the iso-
lated points rcirc (Fig. 2b, small open circles), the vector
fields g2, 4 have the shape of vortices with the centers at

rcirc, and the intensity distribution is uniform (E = 2 ).

At ∆Φ = 0, the vector fields g2 and g4 disappear,
which, for example, implies the disappearance of the
corresponding contributions to the force F0 (18), called
the light pressure force; this cannot be achieved in a
three-beam configuration. The intensity distribution is
nonuniform: the nodes and the maxima in Fig. 2b are
indicated by small and large filled circles, respectively.
The regions of circular polarization have the shape of

closed (x, y) = 0 lines defined by the function
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Ẽ
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Ĩ1 x y,( ) 2kx( )cos 2 kx( ) ky( )coscos 2ky( ).cos+ +=
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This corresponds to the case where an ellipticity param-
eter  in the form of a smooth alternating function

for the entire region of the field configuration can be
introduced.

6.2. Three-Dimensional Field Configurations 

Configurations C, D, and E given below (Fig. 3)
show a wider topological variety of possible spatial
structures of the field invariants even in relatively sim-
ple four-beam three-dimensional models. Cases C and
D are well known [2, 4] and have been commonly used
to study the various processes in light-induced spatial
atomic lattices.

(C) This configuration is formed by four linearly
polarized beams of the same intensity: one pair of
beams with polarizations along the y axis have wave
vectors k1, 2 in the xz plane with the same angle ϑ
between ki (i = 1, 2) and the z axis, and the other pair of
beams with polarizations along the x axis have wave
vectors k3, 4 located in the yz plane at the same angle to
the z axis and are directed toward the first pair (Fig. 3a).
The gradients g5,6 are absent in the configuration,
because there is the symmetry z axis along which the
vector e0 defined in (5) is always directed.

In this model, the invariants are

where X = kxsinϑ , Y = kysinϑ , and Z = kzcosϑ .
The singular regions also have a simple shape: the

field nodes lie on the straight lines specified by the con-
ditions cos(2X) = cos(2Y) = 1, while the maxima lie at

c̃

c̃
Ĩ1 x y,( )

2 1 kx( ) ky( )coscos+[ ]
--------------------------------------------------------=

I0 2Ẽ
2

2 2X( )cos– 2Y( )cos–[ ] ,=

I1 2Ẽ
2

2Z( ) 2X( )cos 2Y( )cos 2–+[ ]cos{=

+ i 2Z( ) 2X( )cos 2Y( )cos–[ ] } ,sin
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the straight lines cos(2X) = cos(2Y) = –1. The regions
of circular polarization are specified by the straight
lines cos(2Z) = cos(2X) – cos(2Y) = 0. The regions of
linear polarization are surfaces. The relative positions
of the singular regions are shown in Fig. 4, where the
part of the periodic structure corresponding to the
halves of the spatial periods in each direction is consid-
ered. The figure shows the structure (3) of the c(r) = 0.1
surface around the line of circular polarization, which
demonstrates the significant difference between the
ellipticity gradients near the nodes (1) and the intensity
maxima (2).

Of considerable interest are the asymptotics of the
invariants near the nodes. For example, near the z axis
containing nodes,

For the ellipticity parameter and the total phase, we
have

where  = Y/X. Near the points of intersection of
the node straight lines and the straight lines correspond-
ing to circular polarization, the phase factor is

and the ellipticity parameter is c ≈ |cos(2 )|. It follows
from their form that, when the signs of exp(2iΦ) and
c(r) are reconciled and if the relation cexp(2iΦ) = I1/I0

holds, it is more convenient to define an alternating
continuous ellipticity parameter –1 ≤  ≤ 1 in this
case.4 For example, we may choose  ≈ cos(2 ) for
exp(2iΦ) = – i. As a result, vector g3 diverges as 1/r at
the degenerate point, while the magnitudes of g2, 4 are
negligible.

(D) The four-beam configuration with the wave vec-
tors ki that form a tetrahedron [2] is more complex: the
circularly polarized wave k4 is aligned with the z axis;
the remaining waves are linearly polarized, with their
polarizations lying in the xy plane (Fig. 3b). Since the
vector e0 (5) is along the symmetry z axis, the gradients

4 The above configuration B at ∆Φ = 0 is also this case.
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g5, 6 are absent here, as in the previous case. The invari-
ants are

where sm = k4 – km (m = 1, …, 3) are the reciprocal lat-
tice vectors [18],

There are no nodes in this configuration, while the

intensity minima, I0 ≈ 0.35 , and maxima, I0 = (11 +

6 ) /2, lie at isolated points. The regions of circu-
lar polarization represent lines of two types. Regions I
defined by the equation

I0 Ẽ
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3

------+⋅ 
 cos

m n<
∑–=

+ 2 sm r⋅( )cos
m

∑ ,

I1 Ẽ
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Fig. 4. Lines of nodes (1), intensity maxima (2), and circu-
lar polarization (3), and the surface of linear polarization (4)
in configuration C.
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3
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---π
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Fig. 5. Points of intensity minima (open circles) and maxima (crosses) and lines of circular polarization in configuration D: (a) top
view and (b) side view.
are straight lines parallel to the z axis. Regions II
defined by the equation

are nonplane closed lines whose projections onto the xy
plane are circumferences of radius kr0 ≈ 1.75. The rela-
tive positions of the singular regions are shown in
Fig. 5. Note that the intensity minima are close to
regions II, while the intensity maxima lie only on lines I
surrounded by regions II. The regions of linear polar-
ization, which are surfaces with a complex structure,
are not shown.

(E) Finally, let us consider a symmetrized four-
beam configuration with the wave vectors ki directed in
the same way as in the previous case and with the same
circular polarizations for all waves (Fig. 3c). All types
of gradients gi (i = 1, …, 6) are available here. Let the

origin O be chosen so that Em · En = – /3 at m ≠ n for
the components Em (m = 1, …, 4) of the configuration
beams. The invariants 

(24)

(25)
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by virtue of the relations

Here, the phase factors

are defined via the operation [a] of taking an integer
part of the number a.

Analysis of invariants (24) and (25) allows the dis-
tribution of singular regions to be determined. The field
nodes lie at the isolated points and form a body-centered
lattice {rmin} specified, according to (24), by relations of

km

m 1=

4

∑ 0, Em Em⋅ 0.= =

Φ̃mn
π
3
--- 1–( ) m n+( )/2[ ] 1–( ) m n 1+ +( )/2[ ]–( )=

1

2

3

4

3
8
---π

kz

ky

kx

2π/

3π/4

0
0

0

Fig. 6. The field node (at the center), the ray directions with
circular (1–4) and linear (remaining) polarizations, and the
surface of maximum intensity around the node in configu-
ration E.
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the form cos(sn · rmin) = 1, where sn at n = 1, …, 3 are
the reciprocal lattice vectors (sn coincide in configura-
tions D and E). The regions of circular polarization are
straight lines specified, according to (25), by the equa-
tions

Four such straight lines pass through each node that is
an isolated point (the c(r) = 0.1 surfaces are shown in
Fig. 6). The regions of linear polarization are also
straight ray lines L. The three straight lines correspond-
ing to linear polarization are mutually perpendicular
and specify the rays perpendicular to the faces of an
imaginary cube (the c(r) = 0.995 surfaces are shown).
Here, we can also easily see a cubic symmetry of the
surfaces corresponding to the maximum field intensity.
The asymptotics of the invariants in the region of nodes
are (we consider the point rmin = 0 and chose the recip-
rocal lattice vectors sm = k4 – km, m = 1, …, 3)

(26)

(27)

Their representations in Cartesian coordinates are

while the representation of the ellipticity parameter c in
the corresponding spherical coordinates,

(28)

shows its complex structure at a singular point. At the
node rmin = 0, the four directions of circular polarization
are specified by the spherical angles 1(θ = 0; ϕ),

k1 k2+( ) r⋅( )cos k1 k3+( ) r⋅( )cos=

=  k1 k4+( ) r⋅( ).cos

I0 Ẽ
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2(α0; 0), 3(α0; 2π/3), and 4(α0; –2π/3) (Fig. 6), where
cosα0 = 1/3, and correspond to the directions of the
diagonals in a body-centered lattice. The explicit form
of (27) and (28) shows that the gradient invariants g2,
g3, and g4 diverge near the nodes at 1/r.

In the above three-dimensional configurations, the
common features in the spatial structure of the vector
invariants gn (n = 1, …, 6) are: the vortex structure of
the phase gradients g2, 4 around the lines of circular
polarization and the vortex structure of the field g6

around the lines of linear polarization (case E).

7. CONCLUSIONS

Let us summarize the main points of our analysis.
There are singular regions in field configurations of
dimension D > 1 in which the vector field invariants are
either undefined or diverge: for the gradients of the total
phase and the rotation angle of the polarization ellipse
around its axis, these are the regions of circular polar-
ization where their fields generally have a vortex struc-
ture and diverge as 1/r; for the gradient of the rotation
angle of the minor axis of the polarization ellipse, these
are the regions of linear polarization where its field also
has a vortex structure and diverges as 1/r. The field
nodes are degenerate regions. The field ellipticity in
them is undefined, and the ellipticity gradient diverges
as 1/r; the regions of circular and linear polarizations
can intersect here. Near the nodes, the semiclassical
approximation is inapplicable in analyzing the kinetics
of atoms.

By analyzing the structure of the invariants in con-
figurations of dimension D > 1, we can qualitatively
distinguish the main features of the kinetics of atomic
ensembles, which follows from the structure of the fric-
tion force F0 and tensor - (18). Aspects related to the
cooling and trapping mechanisms and the physical
interpretation of the various contributions in these
expansions were discussed in [7, 20]. For detunings
|δ| * 10γ, the gradients of amplitude g1 and ellipticity
g3 give the largest contribution to F0 and -. It follows
from the explicit form (21) for the simplest 1/2  1/2
transition that a steady-state kinetic regime is possible
only for detunings δ > 0, when radiative cooling takes
place.5 This is a common property of J  J transi-
tions with half-integer J. It then follows from the
explicit form of F1, 3 from (20) and the properties of g1, 3

that atoms are attracted either to the intensity minima or
to the regions of circular polarization, while they are
expelled from the regions of maxima and linear polar-

5 The coefficient X33 < 0, which is attributable to a manifestation of
the Sisyphus cooling mechanism [10, 11].
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ization. For J  J + 1 transitions, the situation is dif-
ferent [7]: cooling takes place for δ < 0, the regions of
circular polarizations and the intensity maxima are the
localization centers, and the intensity minima and the
regions of linear polarization are the expulsion centers.

Our numerical simulations of the dynamics of atoms
with the 1/2  1/2 and 1/2  3/2 transitions
described by the Langevin equation corresponding to
Eq. (17) for the above two-dimensional configurations A
and B showed [21] that the degree of atomic localiza-
tion near the intensity extrema is appreciably higher
than that in the region of circular polarization if these
singular regions are spatially separated. The remaining
components of F0, called the light pressure force, may
have an effect here. In the regions of circular polariza-
tion, being proportional to the vectors g2, 4, they have a
vortex structure and reduce the localization effects. The
superposition of the localization and expulsion pro-
duced by various gradients can lead to a multiply con-
nected topological structure of the localization regions.
For example, if the center of attraction due to the gradi-
ent g1 (g3) coincides with the center of repulsion due to
the gradient g3 (g1), then the localization regions in two-
dimensional configurations have the shape of a ring at
this point [21]. Obviously, the largest effect in point
localization is achieved at the points of intersection of
circular polarization with the corresponding intensity
extrema. In this sense, the J  J + 1 transitions have
a significant advantage, because the intersection of the
intensity maxima with the regions of circular polariza-
tions is easily realizable in both two-dimensional (A2)
and three-dimensional configurations where there are
such points of intersection6 in models C, D, and E.
These regions, which are quite stable with respect to the
fluctuations that form the field configuration, determine
the main structure of the dissipative lattices currently
implemented in experiments [2, 4]. In contrast, at the
intensity nodes, the ellipticity is undefined and has a
large gradient in their vicinity, while their positions are
sensitive to fluctuations of the initial beams.

The force and diffusion contributions that originate
from the other vector invariants g2, g4, and g5, 6 affect
the dynamics of atoms. These effects are noticeable
even for detunings |δ| ~ 10γ, which is attributable to the
large values of these gradients in certain configuration
regions. As a result, additional structures are formed in
the density of atomic lattices with a topology that does
not reduce to localization points and localized vortex
particle flows emerge. Their influence significantly
decreases the mean time of atomic confinement in the
localization region. The dynamic aspects can be highly
varied here.

6 An example of a configuration where there are no such points of
intersection, but the localization and sub-Doppler cooling effects
also take place, is considered in [22].
JOURNAL OF EXPERIMENTAL
The method of invariants allows us to approach the
problem of a probe light field in a different way. This
problem is of considerable importance in spectroscopy
of atomic lattices and Bragg scattering [4], photorefrac-
tion by atomic lattices [23], etc. Clearly, even at low
probe field intensities, the structure of the invariants for
the general field can change qualitatively. First, the
addition of an extra field disrupts their spatial periodic-
ity. Second, the degenerate points (nodes) can disappear
(or appear at new positions). Third, there is the problem
of estimating the influence of fluctuations in parameters
of the beams that form a configuration on the configura-
tion properties and, eventually, on the kinetic and polar-
ization parameters of atomic ensembles.
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Abstract—We consider the problem of a hydrogen atom in a superstrong magnetic field, B @ Ba = 2.35 ×
109 G. The analytical formulas that describe the energy spectrum of this atom are derived for states with various
quantum numbers nρ and m. A comparison with available calculations shows their high accuracy for B @ Ba .
We note that the derived formulas point to a manifestation of the Zeldovich effect, i.e., a rearrangement of the
atomic spectrum under the influence of strong short-range Coulomb potential distortion. We discuss the rela-
tivistic corrections to level energies, which increase in importance with magnetic field and become significant
for B * 1014 G. We suggest the parameters in terms of which the Zeldovich effect has the simplest form. Anal-
ysis of our precision numerical calculations of the energy spectrum for a hydrogen atom in a constant magnetic
field indicates that the Zeldovich effect is observed in the spectrum of atomic levels for superstrong fields,
B * 5 × 1011 G. Magnetic fields of such strength exist in neutron stars and, possibly, in magnetic white dwarfs.
We set lower limits for the fields Bmin required for the manifestation of this effect. We discuss some of the prop-
erties of atomic states in a superstrong magnetic field, including their mean radii and quadrupole moments.
We calculated the probabilities of electric dipole transitions between odd atomic levels and a deep ground level.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A peculiar effect of rearrangement of the energy
spectrum, which was first pointed out in [1] and was
subsequently called the Zeldovich effect, arises under
certain conditions in systems for which the interaction
potential breaks up into two parts with highly incom-
mensurable radii. In this paper, we show that this effect
manifests itself in the spectrum of hydrogen atomic lev-
els in an extremely strong magnetic field, B @ Ba =
2.35 × 109 G. This problem is of great interest in astro-
physics, solid-state physics, and atomic physics and has
been considered by many authors, starting from the pio-
neering paper by Schiff and Snyder [2]. Magnetic fields
of such strength are characteristic of neutron stars [3, 4]
and magnetic white dwarfs. Dozens of studies in which
the energy spectrum of this atom was calculated by var-
ious numerical methods have been published (see,
e.g., [5–14] and references therein).

Nevertheless, as far as we know, there are no correct
analytical expressions for the energy spectrum of a
hydrogen atom in a strong magnetic field in the litera-
ture. The standard formula for the ground-state binding
energy

(1.1)ε0 B( )
"

2λ
2me

---------≡
mee

4

2"
2

----------- B
Ba

-----ln
2

=

1063-7761/03/9705- $24.00 © 20890
[15, §112], even for B ~ 1013 G, i.e., at the validity
boundary of the nonrelativistic approximation, gives
only order-of-magnitude values of ε0, which are a fac-
tor of 3 larger than the result of an accurate numerical
calculation. Moreover, the dependence that is the
inverse of (1.1),

(1.2)

which is of particular interest for astrophysical applica-
tions, is completely unsatisfactory, because it gives
B(λ) underestimated by two orders of magnitude. The
paper by Hasegawa and Howard [16], who derived a
formula for the ground state of a hydrogen atom that is
asymptotically exact in the limit B  ∞, constitutes
an exception. However, this formula also has a low
accuracy for B & 1015 G (see Table 1) and is inapplica-
ble to excited states.

This discrepancy stems from the fact that both the
derivation of formula (1.1) and some of the remarks on
the properties of the spectrum of excited hydrogen
atomic states given in [15] require significant refine-
ments. In particular, even and odd (with respect to the
reflection of the electron coordinate along the magnetic
field) levels are described by distinctly different expres-
sions and are greatly shifted relative to each other,
which is clearly seen from Fig. 1. In this case, the

B λ( ) Ba λaB( ),exp=
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Table 1.  The ground level of a hydrogen atom in a strong magnetic field

λ2
*

Number Eq. (2.13) [16] Eq. (2.16)

7.5796 100 80 > 128 0.10

9.4543 200 174 > 250 0.071

11.703 400 368 > 488 0.050

15.325 1000 962 > 1181 0.032

18.610 2000 1962 > 2.31(3) 0.022

22.408 4000 3966 > 4.53(3) 0.016

23.747 5000 4970 > 5.63(3) 0.014

28.282 1.0(4) 9991 > 1.11(4) 0.010

32.92 1.878(4) 1.880(4) 3.64(4) 2.05(4) 7.3(–3)

41.159 5.0(4) 5.014(4) 8.96(4) 5.37(4) 4.5(–3)

47.783 1.0(5) 1.003(5) 1.71(5) 1.06(5) 3.2(–3)

55.062 – 2.0(5) 3.27(5) 2.10(5) 2.2(–3)

65.805 – 5.0(5) 7.82(5) 5.21(5) 1.4(–3)

74.772 – 1.0(6) 1.52(6) 1.047(6) 1.0(–3)

98.740 – 5.0(6) 7.16(6) 5.146(6) 4.5(–4)

109.945 – 1.0(7) 1.40(7) 1.024(7) 3.2(–4)

Note: λ2 is the binding energy of the ground 1s(1+) state in rydbergs; * is the reduced magnetic field, * = 18777 corresponds to B = Bcr;

in all tables, a(b) ≡ a × 10b; the second column gives the results of our numerical calculations. The “>” sign means that the corre-
sponding value has an error larger than 100%.

aH

aB
------
hydrogen atomic spectrum,  = –mee4/2"2n2, is rear-
ranged in even states under the influence of short-range
(r & r0 ! aB) Coulomb potential distortion. The possi-
ble manifestation of this effect imposes stringent
requirements on the pattern of Coulomb potential dis-
tortion: for slow particles, it must be resonant in pat-
tern [1].

Let us briefly describe the content of this paper. In
Section 2, we derive the formulas that describe the
energy spectrum of a nonrelativistic hydrogen atom in
a superstrong magnetic field. Their comparison with
available numerical calculations for states with various
magnetic quantum numbers in Section 3 shows that
these asymptotic formulas are highly accurate for fields
B @ Ba . The relativistic corrections to the level spec-
trum are discussed in Section 4.

In Section 5, we consider the general properties of
the Zeldovich effect and point out the variables in terms
of which it has the most natural form. Our numerical
calculations of the energy spectrum for a hydrogen
atom in a magnetic field are analyzed in Section 6. The
correction of the lower-level binding energies deter-
mined in [9–11] for the quantum defects δnl strongly
suggests that the Zeldovich effect (which is actually
contained in the results of numerical calculations of
these works, but was overlooked by their authors) is

En
0( )
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present in the spectrum of atomic levels in magnetic
fields B * 5 × 1011 G. We set a lower limit for the mag-
netic fields Bmin required for this effect to emerge. In
Section 7, we calculate the mean radii of ns-states, the
quadrupole moment of the ground level, and the proba-
bilities of electric dipole transitions to the 1s ground
level when B @ Bmin. In Section 8, we discuss the pecu-
liarities of the Zeldovich effect in a superstrong mag-
netic field and in a three-dimensional potential, the
relationship between Eqs. (2.13) and (5.1), etc. In the
Appendices, we give details of our calculations, discuss
the asymptotic formulas for the ground-state energy for
*  ∞ and the peculiar features of a one-dimen-
sional hydrogen atom, and give formulas related to the
Whittaker function.

In this paper, we use the following notation: ε =
"2λ2/2me is the level binding energy, aB = "2/mee2 is the

Bohr radius, Ba = e3 c/"3 is the atomic unit of mag-
netic field, * = B/Ba is the reduced magnetic field, Bcr =

c3/e" = α–3Ba = 4.414 × 1013 G is the critical or
Schwinger magnetic field [17], m = 0, ±1, … is the
magnetic quantum number, ωL = eB/mec is the cyclo-

tron or Larmor frequency, αH =  = 
is the magnetic length or Landau radius, and " = me =

me
2

me
2

"/meωL "c/eB
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e = 1 (the Hartree atomic units, in which c = α–1 = 137
is the speed of light).

The results presented below were partly announced
in [18, 19].

2. ASYMPTOTIC FORMULAS 
FOR THE ENERGY SPECTRUM 

OF A HYDROGEN ATOM 
IN A STRONG MAGNETIC FIELD

Choosing the vector potential of the external mag-

netic field to be A = [B · r] and directing the z axis

along B, we have the following nonrelativistic Hamil-
tonian of the system under consideration:

(2.1)

For a superstrong magnetic field, where aH ! aB , the
adiabatic approximation can be used to solve the

1
2
---

Ĥ
1
2
---∆⊥–

1
8
---*2ρ2 1

2
---* l̂z σ̂z+( )+ +=

–
1
2
--- ∂2

∂z2
------- 1

ρ2 z2+
--------------------.–

–0.50

–0.25

0

P = 1 P = –1

5s
4s

3s

2s

E, Hartee units

Fig. 1. The energy spectrum of a hydrogen atom for * =
3120, or B ≈ 0.73 × 1013 G. The series of even and odd lev-
els (P = ±1) are shown. The 2s level is halfway between the
odd levels with n = 1 and 2; the binding energy of the
ground 1s level is 6.98 at. units ≈190 eV.
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Schrödinger equation [2, 15]. In this case, the solution
can be written as

(2.2)

Here,  are the standard functions of the trans-
verse electron motion in a purely magnetic field [15],
χn(z) is the wave function of the longitudinal electron
motion, and  is the spin part of the wave func-
tion. The bound-state spectrum for the Hamiltonian can
be represented as

(2.3)

where σz = ±1 is the electron spin component along the
magnetic field, n is the quantum number for the longi-
tudinal motion, and the last term defines the shift of the
corresponding Landau level produced by the attractive
Coulomb potential; for the ground state, nr = m = 0,
σz = –1, and E0 = –λ2/2. This shift can be determined
from the Schrödinger equation for the longitudinal part
of the wave function:

(2.4)

in which the effective (averaged over the rapid trans-
verse electron motion) potential energy is given by the
expression [2, 15]

(2.5)

Note the following properties of the effective poten-
tial (specific expressions for it depend on the quantum
numbers nρ and |m | for the transverse motion).

(1) At |z | & aH ! aB , Ueff(|z |) ~ 1/aH . In this case,
Ueff  ~ 1/aH ! 1, so the effective potential at such dis-

tances is a shallow one-dimensional potential well.
(2) At |z | @ aH , the effective potential is a Coulomb

one.
(3) Note also that Ueff(|z |) + 1/|z | > 0; i.e., the effec-

tive potential energy curve lies above the Coulomb one.
The effective potential for the m = nρ = 0 states is

(2.6)

Ψnnρmσz
r σ,( ) Rnρm r( )χn z( )ϕσz

σ( ).=

Rnρm r( )

ϕσz
σ( )

Ennρmσz
nρ

1
2
--- m m σz 1+ + +( )+ 

  *=

–
1
2
---λn m nρ

2 ,

1
2
---

z2

2

∂
∂

Ueff z( ) λ2

2
-----+ +–

 
 
 

χn z( ) 0,=

Ueff z( )
1

ρ2 z2+
-------------------- Rnρm r( ) 2 ρ2 .d∫∫–=

aH
2

Ueff z( )
2

aH

------- 2 z x
aH

--------------- x2–– 
 exp xd

0

∞

∫–=

=  π
2
---aH

1– erfc
z

2aH

------------- 
  z2

2aH
2

---------
 
 
 

,exp–
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and its limiting expressions are

(2.6')

The solutions of Eq. (2.4) have a certain parity,
P = ±1, relative to the reflection z  –z. We begin
with even states for which χ'(0) = 0.

2.1. The Spectrum of Even Levels 

Since the effective potential in Eq. (2.4) at |z | &
aH ! 1 is a shallow one-dimensional potential well, the
wave functions of even states at such distances change
only slightly, and, in the zeroth approximation, χ(z) = 1
and χ'(z) = 0 if the terms with Ueff and λ2 are considered
as a perturbation. A more accurate value of χ'(z) can be
obtained from (2.4) if we discard the term with the
binding energy, substitute χ(z) with unity in the term
with the effective potential, and integrate the resulting
equation over z. As a result, we obtain

(2.7)

For the subsequent analysis, we will need the values
of χ'(z) at distances aH ! z ! aB , where the effective
potential is a Coulomb one. Taking into account the
dependence of the functions  on ρ (the polyno-

mials in variable ρ2 multiplied by )
and using the integral

(2.8)

where ψ(z) is the logarithmic derivative of the gamma
function, we see that the derivative χ'(z) at the above
distances is1

 

(2.9)

1 We should first integrate 1/  in the effective potential (2.5)
over z and pass to the limit |z |  ∞ by discarding the decreas-
ing expansion terms. The integral with lnz can then be easily calcu-
lated, and the z-independent integral with lnρ can be expressed in
terms of integrals of type (2.8). Note also that, although χ'(z) @ 1
in (2.9), χ(z) ≈ 1 and |aHχ'(z) | ! 1 as previously.

Ueff z( )

=  
π/2aH

1– z /aH
2 , z ! aH,+–

1/ z aH
2 / z 3, z @ aH.+–




χ' z( ) 2 Ueff z( ) z.d

0

z

∫=

Rnρm r( )

ρ m ρ2/4aH
2–( )exp

xs 1– e x– x xdln

0

∞

∫ Γ ' s( ) Γ s( )ψ s( ),= =

z
2 ρ2

+

χ' z( ) 2 z
aH

------ A m nρ
,+ln–≈
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the term  does not depend on B. In particular,
using the expression for the wave functions of transver-
sally nodeless states (with nρ = 0)

(2.10)

we obtain

(2.11)

Recall that ψ(1) = –γ, where γ = 0.5772… is the Euler
constant, and ψ(n + 1) = –γ +  for n = 1, 2,
3, … [20].

On the other hand, the solution of Eq. (2.4) with a
purely Coulomb potential, which exponentially
decreases at large distances, z  ∞, is described by
the Whittaker function

(2.12)

(see Appendix A). At small distances, |z | ! 1, this solu-
tion is (A.3) with x = 2λ|z |. Joining formulas (2.9) and
(2.12) and using (A.4), we obtain an equation for the
spectrum of even states:

(2.13)

We emphasize that this equation directly defines the λ
dependence of the magnetic field for even levels; the
expression  is a universal func-
tion (for a given n) that is the same for states with dif-
ferent quantum numbers |m| and nρ.

Let us explain the derivation of Eq. (2.13). If Ueff(z)
is a shallow short-range potential well, then we may set
z = ∞ in formula (2.7) at distances r @ aH , with

In this case, solution (2.12) takes the form χ(z) =
exp(−λ|z |) and joining the solutions yields the standard
equation

which defines the location of the only discrete level that
exists in a shallow one-dimensional short-range poten-

A m nρ

R0m r( ) π 2aH
2( ) 1 m+( )

m !( ){ }
–1/2

=

× ρ m imϕ ρ2

4aH
2

---------–
 
 
 

,exp

A m 0 2 ψ 1 m+( ).+ln–=

1/k
k 1=
n∑

χ z( ) constWν 1/2, 2 z ν( ), ν 1/λ= =

*ln λ=

+ 2 λln ψ 1 1
λ
---– 

  2γ 2ln+ + + A m nρ
.+

A m nρ
–{ } * λn m nρ

( )exp

χ' z( ) const≈ 2 Ueff z( ) z.d

0

∞

∫=

λ 2 Ueff z( ) z,d

0

∞

∫–=
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tial well (see, e.g., [15, §45]). The same technique was
used in [15, §112] for a distorted Coulomb potential. In
this case, however, the substitutions of the Whittaker
function with exp(–λ|z |) and z with aB in (2.7) and (2.9)
are unjustified. This is the reason why the error of for-
mula (1.1) for the ground state is large and the resulting
equation is inapplicable to all excited states.

The basic properties of the even-level spectrum can
be easily understood if we notice an analogy between
Eq. (2.13) and the equation that defines the s-state spec-
trum in a three-dimensional attractive Coulomb poten-
tial U(r) = –e2/r distorted at small distances, r ! aB , by
a short-range potential Vs(r), which can itself bind the
particle (electron). This equation is (see Section 5)

(2.14)

where a0 is the renormalized (Coulomb-modified) scat-
tering length in the potential Vs . A comparison of
Eqs. (2.13) and (2.14) indicates that an analog of the
inverse scattering length is

(2.15)

In this case, under the validity conditions for the
approach in question, the inequality aH ! a0(B) must be
satisfied. Thus, for * = 104 at m = nρ = 0, we have
a0(B) ≈ 0.15, while aH = 0.01.

Bearing in mind this analogy, we note the following
properties of the even-level spectrum:

(1) For each pair of quantum numbers |m | and nρ,

Eq. (2.13) has an infinite number of roots  > 0.

The lowest (with n = 1) root with  @ 1 corre-
sponds to a deep (on the atomic scale) level.

(2) The remaining roots (n ≥ 2) correspond to
excited states. The corresponding energy levels are
located between the adjacent unshifted Coulomb n's
levels with the principal quantum numbers n' equal to
(n – 1) and n.

Note that an equation similar to (2.13), in which
ψ(1 – 1/λ) was substituted for ψ(1) = –γ, was derived
in [16] for the lower (deep) n = 1+ level. This equation
is definitely inapplicable to excited even states, but it is
asymptotically exact for the ground level. This substi-
tution results in an appreciable loss of accuracy at large
but finite *. However, even the inclusion of the next
expansion term ψ(1 – 1/λ) in λ–1 gives the equation

(2.16)

which has a accuracy of several percent for * ≥ 105

(see Table 1).

λ 2 λln 2ψ 1 1
λ
---– 

 + +
1
a0
-----,=

1
a0 B( )
------------ *ln 4γ– 2 2 A m nρ

.–ln–≡

λn m nρ

+( )

λ1 m nρ

+( )

*ln λ 2 λ 2γ 2 2 A m nρ

π2

3λ
------,–+ln+ +ln+=
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Equations (2.13) and (2.16) explicitly specify the λ
dependence of the magnetic field * and implicitly
specify the inverse function λ = λ(*). The asymptotics
of the ground-level binding energy ε0(*) in the limit
*  ∞ can also be easily obtained. However, since
this asymptotics is established very slowly, we give the
corresponding formulas in Appendix B.

2.2. The Spectrum of Odd Levels 

Let us now discuss the properties of odd states that
follow from Eq. (2.4). The energy spectrum Ens for s
levels in a three-dimensional potential U(r) is known
[21] to coincide with the spectrum for even levels in a
symmetric one-dimensional potential U(|z |) of the
same form. Therefore, taking into account the above
properties of Ueff(|z |), we may assert that, if the poten-
tial in the corresponding three-dimensional problem is
written as

then the last term may be considered as a small distor-
tion of the Coulomb potential and can be taken into
account by using perturbation theory. As a result, we
can write the following expression for the energies of
odd levels:

(2.17)

where ψns(r) are the unperturbed wave functions of ns

states in the Coulomb potential. In this case,  = 1/n2,
and the levels are slightly shifted upward relative to the
Coulomb levels, because the integrand in (2.17) is pos-
itive.

Substituting, at m = nρ = 0, expression (2.5) for the
effective potential into (2.17), writing

and performing the integration yields

(2.18)

Ueff r( ) 1
r
---– Ueff r( ) 1

r
---+ 

  ,+≡

En m nρ

–( ) 1
2
--- λn m nρ

–( )( )2
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2n2
--------–=

+ Ueff r( ) 1
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---+ 

  ψns
2 r( ) r3 ,d∫
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2 r( ) ψns

2 0( )e 2κ r– cn
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2 n 1–( )
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ψns
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πn3
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λn00
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where

Hence, integrating by parts, we can derive the follow-
ing asymptotic expansion for the binding energy when
*  ∞:

(2.19)

where the expansion coefficients for the lower odd lev-
els are2 

(2.20)

3. THE ACCURACY
OF THE ASYMPTOTIC FORMULAS

Let us now discuss our results and compare them
with available numerical calculations. The hydrogen
atomic spectrum was calculated with a precision accu-
racy for several m = 0 states below the ground Landau
level over a wide B range in [9–11, 14]. Table 1 illus-
trates the dependence *(λ) for the ground atomic state.
For the given λ2, this table compares the corresponding
magnetic field strengths taken from [9, 14] and calcu-
lated using both formulas (2.13) and (2.16) and the
asymptotic formula by Hasegawa and Howard [16]. In
addition, it gives the aH/aB ratio, whose smallness is
required for the adiabatic approximation to be applica-
ble. As expected, the binding energy for the ground
state in a strong magnetic field is large on the scale of
ordinary atomic energies.

2 Here, we corrected the misprint made in formula (17) from [18]

in the numerical coefficient .

Ueff n,
4 2
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----------- cn
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----------+ 
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∞

∫
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0( ) 2 2 γ+ln+( ) 3.27036,–≈–=

a2
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a1
1( ) 4 2π 10.0265,≈=

a2
1( ) 4 2π 10.0265,≈=

a3
1( ) 16 2π

3
----------------- 13.3678.≈=
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Note that the dependence λ2(*) is given by
Eq. (2.13) with a much higher accuracy than the inverse
dependence *(λ). Figure 2 shows the errors

(3.1)

where λ2 and * are the exact values, and the tilde
denotes the values calculated using Eq. (2.13). This dif-
ference stems from the fact that *(λ) has a sharp expo-
nential pattern, which is one of the reasons why for-
mula (1.2) is untenable.

Above, in connection with formula (2.13) for the
spectrum of even levels, we pointed out a peculiar scal-
ing relation for  at various magnetic quantum
numbers m:

(3.2)

in which

(3.3)

is a universal function. As we see from Fig. 3, scaling (3.2)
holds good for states with various m at λ2 > 12. A devi-
ation from relation (3.2) is observed at λ2 < 10, but in
this range, the points ξm cluster along a smooth curve
close to (3.3).

δ' λ( )
*̃ *–

*
----------------, δ'' *( )

λ̃
2

λ2–

λ2
----------------,= =

* λn m nρ
( )

ξm * λn m nρ
( ) 4γ– 2 2 A m nρ

–ln–ln≡

=  F λn m nρ
( ),

F λ( ) λ 2 λ ψ 1 1/λ–( )+ln[ ]+=

3 4 52
lnH

0.90

0.95

1.00

1.05

δ'

δ''

δ', δ''

Fig. 2. The accuracy of Eq. (2.13) for the ground level. The
values of δ' and δ'' give the errors of the corresponding
approximations; see (3.1).
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Table 2 presents the binding energies for the lower
excited atomic states with m = 0 from [9] and calculated
using the asymptotic formulas (2.13), (2.18), and (2.19)
for the states with quantum numbers n = 2+, m = nρ = 0
and n = 1–, m = nρ = 0 (in [9], they are classified as the
2s and 2p states with m = 0, respectively). Below, we
make the following remarks regarding the results pre-
sented in Table 2.

(1) A comparison with the data in Table 1 shows that
the approach under consideration provides a higher
accuracy for these (excited in the longitudinal direction
of motion) states. This circumstance has a simple
explanation, because the longitudinal size of the local-
ization region for the wave function increases for
excited states, which results in an extension of the
validity range for the adiabatic approximation to pro-
gressively lower magnetic field strengths.

(2) For the odd n = 1– (2p) state, the level shift in a
magnetic field * * 60 is small and completely con-
firms the remarks made in Section 2.2.

(3) However, the even n = 2+ (2s) state is much more
interesting. As we see from Table 2, the corresponding
level is greatly shifted relative to the unperturbed Cou-
lomb levels, En = –1/2n2, and is almost halfway

10 20 300

2

λ2

4

6

8
ξm

Fig. 3. Checking the scaling relation (3.2): the solid line
represents the function F(λ); s, +, h, d, n, and × represent
the results of numerical calculations [9, 10] for m = 0, –1,
−2, –3, –4, and –5, respectively.
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between the levels with the principal quantum numbers
n = 1 and n = 2 over a wide range of magnetic fields,

* = 2 × 102–2 × 104 (  = 0.625 corresponds to this
level location). Note that a similar situation takes place
for more strongly excited even levels. Thus, for the
n = 3+ level at * equal to 102 and 103, formula (12)
gives λ2 = 0.17471 and 0.18876, respectively, while

 = 0.18056. These properties of the even-state spec-
trum are related to the manifestation of the Zeldovich
effect in them (see Section 5).

4. THE ENERGY SPECTRUM 
OF A RELATIVISTIC ELECTRON

(In this section, we use standard units.) The results
obtained above for the spectrum of Hamiltonian (2.4)
are asymptotically exact for B  ∞. In this case, how-
ever, the transverse electron velocity indefinitely
increases, the Schrödinger equation becomes inapplica-
ble, and the Dirac equation should be used. Thus, at
B = 1013 G (or * ≈ 4000), the kinetic energy of the
transverse electron motion is 0.1mec2 in order of mag-
nitude.

Let us discuss the generalization of our results to
this case and first note the following property of bound
states in the problem under consideration. There is a
wide range of strong magnetic fields in which the trans-
verse electron motion is relativistic (and can even be
ultrarelativistic), while the longitudinal electron motion
is nonrelativistic and can be studied in terms of the
approach outlined in Section 2. This is particularly
clearly seen for the bound states that originate from the
ground Landau level of the transverse electron motion
under the action of a Coulomb potential. From the

Dirac equation for the bispinor ΨE = , we have

the equations

(4.1')

(4.1'')

Considering initially only the transverse electron
motion (neglecting the Coulomb potential), we note
that the (degenerate in energy) electronic states with the

λ̃12
2

λ̃23
2

ϕ r( )
χ r( ) 

 

cs⊥ p⊥
e

2c
------ B r×[ ]+ 

  χ⋅ cσz p̂zχ+

=  E mec
2– e2

r
----+ 

  ϕ ,

cs⊥ p̂⊥
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2c
------ B r×[ ]+ 

  ϕ cσz p̂zϕ+⋅
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2 e2

r
----+ + 

  χ .
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Table 2.  Binding energies λ2(*) for the 2s and 2p states

*
n = 2+ (2s) n = 1– (2p)

[9] Eq. (2.13) [9] Eq. (2.18) Eq. (2.19)

10 0.41790 0.44291 0.76530 0.67081 –

20 0.44768 0.46440 0.82676 0.77299 0.6065

40 0.47640 0.48696 0.87748 0.84901 0.7996

60 0.49261 0.50046 0.90186 0.88287 0.8588

100 0.51236 0.51760 0.92723 0.91619 0.9065

140 0.52496 0.52888 0.94092 0.93330 0.9280

200 0.53794 0.54079 0.95306 0.94804 0.9453

400 0.56206 0.56342 0.97073 0.96856 0.9678

1000 0.59171 0.59207 0.98499 0.98433 0.98418

2000 0.61248 0.61250 0.99119 0.99093 0.99089

3000 – 0.62390 – 0.99348 0.99344

5000 – 0.63766 – 0.99570 0.99569

1.0(4) – 0.65525 – 0.99759 0.99758

2.0(4) – 0.67163 – 0.99866 0.99866

5.0(4) – 0.69150 – 0.99939 0.99939

1.0(5) – 0.70528 – 0.99967 0.99967
quantum numbers nρ = 0, m = –|m | = 0, –1, –2, …, and
σz = –1 correspond to the lower Landau level. For them,

(4.2)

with the radial functions  having the same form
as those in the nonrelativistic case. Using the adiabatic
approximation and assuming3 that e2/aH ! mec2 (or B !
1018 G), we obtain from Eqs. (4.1) and (4.2)

(4.3)

(in this case, |χ| ! |ϕ|) and an equation for the longitu-
dinal part of the wave function ψl(z) that matches the
nonrelativistic equation (2.4). Accordingly, the energy
spectrum now takes the form

(4.4)

where the binding energy is given by Eq. (2.13).

3 The satisfaction of this inequality ensures that the nonrelativistic
approximation can be used to describe the longitudinal electron
motion.

Enρmσz
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The relativistic corrections to formula (4.4) were
considered in many papers, in particular, in [7, 8], based
on an accurate numerical solution of the Dirac equation
and in [5] using the adiabatic approximation. The rela-
tivistic corrections were shown to be very small. Thus,
according to [5, 7], they are about 3 × 10–5 of the non-
relativistic λ2/2 value for * = 5 × 103.

However, for the excited states associated with
higher Landau levels, the situation is slightly different.
At B ~ Bcr , the energy of the transverse motion is no
longer equal to mec2, which, in turn, affects the longitu-
dinal motion. We illustrate this using the Klein–Gordon
equation for a scalar particle as an example:

(4.5)

In the adiabatic approximation, we now have

and the energy of the transverse motion

.

The equation for the longitudinal part of the wave func-

c2 p̂
e

2c
------ B r×[ ]+ 

 
2

ΨE me
2c4ΨE+

=  E
e2

r
----+ 

 
2

ΨE.

ΨE Ψnmnρ
r( ) Rnρm r( )ψl z( )≈≡

Enρm
0( ) me

2c4 2nρ m m 1+ + +( )"ωLmec
2+=
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tion takes the form

(4.6)

where e = /mec2 and ∆E = E – , and the values

averaged over the transverse motion, – ,
are equal to the corresponding effective potential
in (2.5). Thus, we see that the relativistic transverse
particle motion results in charge renormalization:
e2  ee2, which significantly affects the spectra of
both even and odd states. For example, when the distor-
tion of the seed Coulomb potential UC = –e2/|z| at small
distances is neglected, the odd levels are

(4.7)

The generalization of the above approach to the Dirac
equation should be considered separately.

5. THE ZELDOVICH EFFECT
IN ATOMIC SPECTRA

The peculiar properties of the discrete spectrum in a
Coulomb field distorted at small (0 < r < r0) distances
were first considered by Zeldovich [1] in connection
with the energy levels of an electron in an extrinsic
semiconductor with a dielectric constant ε @ 1. This
author showed that at the time (g = g0) when a bound s
level emerges in a short-range potential Vs(r) = –gv(r)
or when there is a resonance in the scattering of low-
energy particles (i.e., a real or virtual level with an
energy close to zero), the atomic spectrum is rear-
ranged: the Coulomb level Ens rapidly sinks to En – 1, s ,
n = 2, 3, …, while the ground level E1s plunges steeply
downward. In this case, the relative width of the rear-
rangement region (in coupling constant g of the strong
potential) is ∆g/g0 ~ r0/aB ! 1.

A similar behavior of the s and p levels of the elec-
tron spectrum was found in the relativistic Coulomb
problem with a nuclear charge Z > 137 [22], where the
1s1/2 level at the critical value of Z = Zcr disappears from
the discrete spectrum,4 going into the lower continuum
E < –mec2 (the Dirac sea). It was pointed out in [29] that
this effect could show up in the nuclear level shifts of
the lightest hadronic atoms ( , K–p, etc.). In particu-
lar, it was noted that the level shift could be positive
(∆Ens > 0, i.e., the level is pushed upward), although the

4 In this case, we should include finite sizes of the nucleus in the
analysis, i.e., cutoff the Coulomb potential at small distances [23],
without which the problem is ill-posed because of the “fall to the
center” [15, 24–26]. Taking this into account, the critical charge
is Zcr ≈ 170 for a spherical superheavy nucleus [27, 28].

–
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short-range potential Vs that produces these shifts is
attractive.

Specific model potentials Vs were used in these cal-
culations: a square potential well v(r) = θ(r0 – r) [1, 29],
a parabolic potential corresponding to a constant vol-
ume charge density inside the nucleus [22], and separa-
ble finite-rank potentials [29–33]. The general pattern
of this phenomenon, which can take place in all sys-
tems for which the interaction potential breaks up into
two parts (short-range and long-range ones) with
highly incommensurable radii and which weakly
depends on the specific form of Vs(r), was pointed out
in [1] and, in more detail, in [32–34].

In [33], the Zeldovich effect was considered based
on the equation

(5.1)

which defines the ns-level locations when the long-
range part of the potential (r > r0) has a Coulomb form.5

Here, c0 = ln2 + 2γ = 1.848, r0 is the joining point, as is
the s-scattering length for the inner potential (at r < r0),
and the small terms on the order of r0 and r0ln(λr0)
were discarded in (5.1). The validity condition for
Eq. (5.1) is r0 ! aB . In the problem considered by Zel-
dovich [1], this condition is ensured by the fact that
aB = εme/meff @ r0 ~ 1 (here, me is the electron mass, meff
is the effective electron mass in the lattice, and r0 is the
ion radius). For hadronic atoms, we have aB = 57.6 Fm
for a  atom, aB = 83.5 Fm for K–p, aB = 51.4 Fm
for Σ–p, etc., while the strong-interaction radius is r0 ≈
2–3 Fm. Therefore, there is also a small parameter
r0/aB ≈ 1/30–1/40 here.

Equation (5.1) shows that the ns-level energies are
rigidly related and can be expressed in terms of the
energy of one of these levels without requiring the solu-
tion of the Schrödinger equation (see [35, Fig. 1]). The
properties of Eq. (5.1) were analyzed in detailed in [41]
in connection with the then available evidence [42] for
a large shift of the 1s level in a proton–antiproton atom.
According to (5.1), a shallow deuteron-type bound state
could exist in a  system, which would be of great
interest in nuclear physics. Subsequently, however, it
emerged that the experimental results [42] are incor-
rect, the level shifts for a  atom are small, and inter-
est in the Zeldovich effect (at least in the field of nuclear
physics) fell sharply. An overview of the main results
obtained in [35, 38–41] and other papers of this period
can be found in [43].

5 See also [36, 37]. Note that the name “Zeldovich effect” was
offered in [33]. The Zeldovich effect for the states with an angu-
lar momentum l ≠ 0 is peculiar [38–40] compared to the s states.
The peculiarities of this effect in the presence of absorption in the
system (which is the case, for example, in hadronic atoms) were
considered in [40, 41].

λ 2 λr0ln ψ 1 λ 1––( ) c0+ +[ ]+ aB/as,=

p p

p p

p p
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Turning to a hydrogen atom in a superstrong mag-
netic field, B @ Ba , we note that such a field compresses
the atom whose characteristic transverse size is equal to
the Landau radius. In this case, aH acts as the cutoff
radius of the Coulomb potential, which is small com-

pared to the Bohr radius for * @ 1: aH/aB =  =

1/ . Therefore, it is not surprising that Eq. (2.13),
similar to (5.1), in which the specific relationship
between r0 and aB depends on the quantum numbers nρ
and m for the electron motion in a magnetic field, is
obtained for the energy spectrum of a hydrogen atom in
this limit. In particular, for the nodeless states with nρ =
m = 0,

(5.2)

and the condition r0 ! aB is satisfied if * @ 1.

Equation (2.13) defines the level energy in a given
field * or the magnetic field strength for the measured
level shift. It is identical to the corresponding equation
in the theory of a  atom, in which the parameter ξ is

(5.3)

where acs is the Coulomb-modified low-energy -
scattering length.6 This shows that the Zeldovich effect
must be observed in the spectrum of hydrogen atomic
levels for * @ 1. The physical causes of this is clear:
the 1s ground level of the atomic spectrum that sank
steeply downward (its binding energy for * * 500 is
several tens of times larger than the ionization potential
of the hydrogen atom) acts as the quasi-nuclear state Qs
that perturbs the Coulomb spectrum (see [35, Fig. 1]).

Let us discuss the cause of the different patterns of
even- and odd-level shifts in a one-dimensional poten-
tial Ueff(|z |) and the relationship to the Zeldovich effect.
As was shown in [1], in the three-dimensional short-
range Coulomb problem, large ns-level shifts are possi-
ble only for a distorting short-range potential Vs(r) in
which an intrinsic shallow s level, real or virtual, is
available. In the remaining cases, the Coulomb level
shifts are small even if intrinsic levels of the discrete
spectrum, deep on the atomic scale, are available in the
potential Vs . In the one-dimensional case, the wave
functions of even and odd states satisfy the same
Schrödinger equation (2.4) on the semiaxis r ≡ |z | > 0

6 Here, we use the approximation of a zero range of action of the
forces, rs = rcs = 0. The influence of the effective range on the
location of the quasi-nuclear level in a  system was analyzed
in detail in [41]. For the scattering lengths as and acs , see
remark (5) in Section 8.

Ba/B
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1
2
--- 2 γ+ln( )– 
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p p
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but different boundary conditions at zero: χ(–)(0) = 0 for
odd levels and χ(+)'(0) = 0 for even levels with χ(+)(0) ≠ 0.
As we noted above, the spectrum of odd levels in a sym-
metric one-dimensional potential coincides with the
spectrum of ns levels in the corresponding centrally
symmetric three-dimensional potential. The wave func-

tions in these cases are related by ψns(r) = .
Therefore, ψns(0) < ∞ and the odd-level shifts relative
to the Coulomb levels are small, because the Coulomb
potential distortion is weak.7

There is no such an analogy for even states, because

now ψns(r) =  ∝  1/r  ∞ when r  0 and
the singular solutions of the Schrödinger equation are
usually excluded from analysis, except for the case of a
zero-range three-dimensional potential (δ potential),
which is specified by the boundary condition (see [44,
p. 27])

(5.4)

or

(5.4')

Here, the parameter κ0 defines the energy E0 =

−"2 /2m of the real (for κ0 > 0) or virtual (κ0 < 0) s

level. Note that the even solutions  of the
Schrödinger equation for a symmetric one-dimensional
potential U(|z |) are uniquely related to the solutions
ψns(r) = χ(+)(r)/r of the three-dimensional Schrödinger
equation for the s states with the same potential U(r),
with

(5.5)

and boundary condition (5.4) with χ(+)'(0) = –κ0 = 0
being satisfied. Thus, the spherically symmetric poten-
tial is the superposition of a potential U(r) ≡ Ueff(r) and
a zero-range potential localized at r = 0, for which
κ0 = 0.

It remains to note that κ0 = 0 implies that a zero-
range potential models the short-range potential Vs(r)
when a bound state emerges in it; in this case, the (non-
renormalized by the effective potential) scattering

length is a0 =  = ∞. However, precisely this property
of the short-range potential is required [1] for the clear-

7 As was noted above, Ueff(|z |) + 1/|z | > 0, so the distorting poten-
tial is repulsive and, hence, cannot be resonant.
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est manifestation of the Zeldovich effect, which corre-
sponds to ξ = 0 in Table 3.

6. THE ZELDOVICH EFFECT 
IN A SUPERSTRONG MAGNETIC FIELD: 

ANALYSIS OF THE NUMERICAL 
CALCULATIONS

The question arises as to what can be said about the
Zeldovich effect based on available experimental data.
Magnetic fields B @ Ba are encountered in astrophysics

2 4 6
ln*

0

0.2

0.4

0.6

δns

–2.5 0 2.5 5.0 7.5 10.0 ξ

n = ∞

n = 2
n = 1

Fig. 4. Quantum defects for ns levels versus ξ = aB/acs or
reduced magnetic field. The solid and dashed curves refer to
the lower states with n = 1 and 2 and to states with n @ 1,
respectively.
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(magnetic white dwarfs, neutron stars), but here an
additional analysis is required. However, there are
numerous works in which the Schrödinger equation for
a hydrogen atom in a uniform magnetic field was
solved on a computer with a high accuracy (up to 10–
12 significant figures) by various numerical methods
for * & 105 or B & 2 × 1014 G. The results of these cal-
culations are in complete agreement [6–14]. We use
these data by considering them as the result of a numer-
ical experiment. First, however, some words should be
said about the distinctive features of the Zeldovich
effect.

Previously, it was noted [35] that the most suitable
variable for describing this effect is not the energy E or

λ =  but the dimensionless parameter

(6.1)

(if the potential V(r) = –Z/r at r > r0 for a hydrogen atom
Z = 1). In atomic physics, this variable is called the
effective quantum number and is usually denoted by n*
[45]. A characteristic property of the Zeldovich effect is
that the νn values for the entire series of shifted atomic
ns levels are (with a high accuracy) periodic in n. This
periodicity is seen from Table 3, which gives the quan-
tum defects δn = νn – (n – 1) for ns states. The change
of δn from n = 2 to n = ∞ (at a given *) does not exceed
1%, which characterizes the degree of periodicity of νn

in the region of the atomic spectrum (i.e., at ν > 1), and
is clearly seen from Fig. 4. On the other hand, for the
lower-lying 1s level, which sinks arbitrarily deeply
with increasing * [21, 46], this change is more signif-
icant (see, e.g., the first column in Table 3, which refers
to an exact resonance: acs = ∞, ξ = 0 (the level formation
time with an allowance made for the Coulomb interac-
tion)). When n  ∞, νn = n – 1/2 and δn = 1/2 in this

2E–

ν Z
λ
---

Z2mee
4

2"
2 E

-----------------= =
Table 3.  The δn and ρn values for a hydrogen atom in a magnetic field

n
* = 11.3 (ξ = 0) * = 1000 * = 3120 * = 105

δn δn/δ∞ ρn δn ρn δn ρn δn ρn

1 0.4695 0.9391 – 0.2541 – 0.2179 – 0.1447 –

2 0.4964 0.9927 0.738 0.2996 0.544 0.2649 0.500 0.1907 0.393

3 0.4987 0.9973 0.641 0.3017 0.441 0.2668 0.399 0.1920 0.302

4 0.4993 0.9986 0.606 0.3022 0.399 0.2672 0.359 0.1923 0.267

5 0.4996 0.9992 0.583 0.3024 0.377 0.2674 0.337 0.1924 0.249

10 0.4999 0.9998 0.539 0.3026 0.337 0.2676 0.300 0.1925 0.218

n  ∞ 0.5000 1.0000 0.500 0.3027 0.303 0.2677 0.271 0.1926 0.193

δ1/δ∞ 0.939 0.839 0.814 0.751

Note: The quantum defects δn for the ns levels of a hydrogen atom (at nρ = m = 0) and the relative level shifts (6.4) are given.
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case. Table 3 also gives the values of δn and ρn for the
case where ρ2 = 1/2; i.e., the 2s level has the binding
energy

The ratio δ1/δ∞ changes more significantly than δ2/δ∞,
more specifically, in the range from 0.95 to 0.75 when
* changes from 100 to 105.

The periodicity property of νn can be easily
explained if, using the identity [20] ψ(1 – z) =
π  + ψ(z), we write (2.13) as (nρ = m = 0)

(6.2)

The function d(ν) is numerically small in the region of
the atomic spectrum:

Hence, for n @ 1,

(6.3)

which is indicative of the νn periodicity at large n; as we
see from Table 3, the latter extends to n = 2.

Occasionally, the opinion that the rearrangement of
the atomic spectrum shows up most clearly in level
shifts is expressed. This is qualitatively true, but quan-
titatively the atomic level shifts do not obey such a sim-
ple law as do νn and δn . Indeed, let us consider the rel-
ative ns-level shift:

(6.4)

(  = –Z2/2n2 is the Coulomb spectrum). In contrast
to δn , the dependence of ρn on the level number is sig-
nificant, as we see from Fig. 5. Similarly, if ρn = 1/2,
i.e., if the ns level is exactly halfway between the adja-
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(6.5)

and for a superstrong magnetic field, where the quan-
tum defects themselves are small,

(6.6)

Thus, the constancy of the quantum defects 

 

δ

 

n

 

 for
2 ≤ n < ∞ is a reliable indicator of the Zeldovich effect
in the atomic level spectrum (in a short-range Coulomb
field).

Note also that our definition of the quantum defect
slightly differs from the definition adopted in atomic
physics [15, 46], where it is commonly assumed that
νn = n – ∆nl (the Rydberg correction ∆nl is virtually
independent of the principal quantum number). In our
case, it is convenient to measure δnl not from the initial
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Fig. 5. Relative ns-level shifts (6.4) versus magnetic field.
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Fig. 6. Numerically calculated quantum defects δnl(*) for even levels [9]. The hydrogen atomic states according to their classifi-
cation [9] with a switched-off magnetic field are given near the curves. The dashed curve refers to ns states with n @ 1.
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ln*
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1.0

δnl

1s

2s

3s

3d

2s

n = ∞

1s
level n in a free (* = 0) atom but from the limiting
value of nf to which the parameter ν tends when * 
∞ in the Schrödinger equation (since aH  0, this cor-
responds to the motion in a one-dimensional Coulomb
potential).

The quantum defects δnl can be easily calculated by

using the binding energies εnl =  (in rydbergs) from
[9–11]. In classifying the states, we will number them
by the quantum numbers n and l for a free hydrogen
atom following [9, 11]. At * @ 1, nρ, m, nf , and P,
where nρ and m describe the rapid motion about the
magnetic field [15], nf is the level number in a one-
dimensional Coulomb potential (the slow electron
motion along *),8 and P = ±1 is the parity of the wave
function relative to the reflection z  –z, become
“good” quantum numbers. Below, we give the corre-

spondence between the quantum numbers (n, l) and 
for nρ = m = 0, because the energies of only these states
were calculated in [9]. As the magnetic field increases,
we have

(6.7)

8 Note that nf is identical to the quantum number n in Eq. (2.4) (but
not to the principal quantum number n in the Coulomb problem).

λnl
2

n f
P

1s 1+, 2s 2+, 3d 3+,

3s 4+…
JOURNAL OF EXPERIMENTAL 
for the even P = +1 states and

(6.7')

for the odd P = –1 states.
The δnl values for them are shown in Figs. 6 and 7.

The Zeldovich effect is established at * > *min ~ 100
for even states and starting from *min ≈ 1 for odd states.
The dashed line in Fig. 6 indicates the limiting curve
(n  ∞) constructed from Eq. (6.3). The difference
between this curve and the curve for the 2s level closely
corresponds to Fig. 4. At the same time, for * < *min,
even the order in the which the δnl(*) curves are
arranged sharply differs from the order characteristic of
the Zeldovich effect. For ns levels, δn ∝  1/ln(*/ln2*)
when *  ∞; i.e., δns  0 slowly. As a result, the
range of magnetic fields in which the Zeldovich effect
shows up for even states is broad and covers B =
1012−1014 G characteristic of neutron stars.

A comment is required on the relative positions of
the 3s and 3d states. In the absence of a magnetic field,
three degenerate states,9 3s, 3p, and 3d, of which 3p has
a negative parity and does not interact with the other
two states, while 3s and 3d are states with the same
symmetry, correspond to the principal quantum number

9 This is the so-called random degeneracy attributable to the hidden
symmetry group of the Coulomb field [47, 48].

2 p 1–, 3 p 2–, 4 f 3–…
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n = 3. These terms are mutually pushed apart with
increasing * (Fig. 8), because their intersection would
be in conflict with the Wigner–Neumann theorem.10 As
we see from Fig. 8, numerical calculations brought in
this case only to * = 10 [9] satisfactorily agree with the
asymptotic equation (2.13). The 3d level lies below the
3s level, which can be qualitatively explained by
the fact that its radial wave function has no nodes.11 Of
course, for complete clarity, we would like to continue
the numerical calculations of the energies ε3s and εsd at
least to * ~ 50.

The quantum defect δ1s for the ground level differs
markedly from δns , n ≥ 2. This quantity can also be used
as a kind of a test for the Zeldovich effect by consider-
ing the ratio

(6.8)

where ε1, 2 are the binding energies of the two lower
states, 1s and 2s, expressed in atomic units mee4/"2 =

10See [15, §79]. Similarly, one may expect the 4s, 4d (even) and
4p, 4f (odd) levels to interact between themselves. Indeed, Fig. 7
shows a clear irregularity in the behavior of the δ4f (*) curve.

11Note also that it follows from the formula for the diamagnetic
level shift in a weak magnetic field [15] that νnl = n + [An –

Bnl(l + 1)]*2 + …, with Bn > 0. Therefore, the larger the orbital
angular momentum l, the lower the values of νnl  (for a particu-
lar n); this is also the case for finite field strengths * in view of
the Wigner–Neumann theorem.

R12 δ1/δ2 ε1/ε2 2ε1–( ) 1–
,= =

–2–4 0 2 4
ln*

0

0.5

1.0

δnl

2p

3p

4f

Fig. 7. The same as the previous figure for the odd 2p, 3p,
and 4f levels corresponding to the 1–, 2–, and 3– states of a
one-dimensional hydrogen atom. The results from [11]
were also used to construct the curve for the 2p level.
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27.21 eV. In Fig. 4 from [19], one curve was recalcu-
lated from the numerical data [9] and the other curve
(curve 2) corresponds to the solution of Eq. (2.13).
These curves approach each other for * * 200, when
a small parameter r0/aB < 1/20 appears in the problem.
In this region, the shift of the 2s atomic level is related
to the location of the lower 1s level by the relation pecu-
liar to the Zeldovich effect.

The δnl(*) curves for three odd states shown in
Fig. 7 indicate that an analog of the Zeldovich effect
can exist for them in the range 1 & * & 103, although
in this case there is no deep quasi-nuclear (or 1s, as for
even states) level in the system. In the above * range,
the quantum defects for the 2p, 3d, and 4f states are
close, which results in the characteristic νnl periodicity.
However, at * * 1000, where the Zeldovich effect is
observed for even states, the odd-level shifts are very
small. Thus, for the 2p level at * = 2000, ε2p =
0.991189… (in atomic units; see [9, Table II]) and δ2p =

 – 1 = 0.00443. According to (6.6), the 2p-level
shift is only 1.2% of the spacing between the unper-

turbed levels  with n = 1 and 2, and it is even
smaller for * *> 104.

Turning to states with a magnetic quantum number
m ≠ 0, we will first obtain a simple estimate for the cut-
off radius r0 of the Coulomb field. In the adiabatic
approximation, the effective potential for the electron

ε2 p
–1/2

En
0( )

–2 0 2 4–4
ln*

2.0

2.5

3.0

3.5

ν

3s

3d

Fig. 8. ν = Z/λ versus magnetic field for the 3s and 3d states:
the solid curves were recalculated from the data of [9], and
the dashed curves were calculated from the asymptotic
equation (2.13).
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motion along the field is given by expression (2.5). For
transversally nodeless states (nρ = 0, m < 0), we have

(6.9)

where ξ = z2/2  and Γ(α, ξ) is an incomplete gamma
function. Hence, at |z | ! aH , we obtain (2.6') for m = 0
and

(6.10)

at |z | @ aH , the effective potential is a Coulomb one:

(6.11)

Joining these expressions, we see that the cutoff radius

Ueff z( )
1

m !aH

---------------eξ m !
j! m j–( )!
--------------------------- ξ–( ) j

j 0=

m

∑–=

× Γ m j– 1
2
---+ ξ, 

  ,

aH
2

Ueff z( )
1

2aH

------------- Γ m 1/2+( )
m !

------------------------------




–=

–
Γ m 1/2–( )

4 m !( )
----------------------------- z

aH

------ 
  2

…+




, m 1,≥

Ueff z( )
1
z
----- 1 m 1+( )

aH

z
------ 

 
2

– …+
 
 
 

.–=

11 12 13
ln B [G]

0.2

0.3

0.4

0.5

0.6

δm

m = 5

m = 0 1

2

Fig. 9. Quantum defects δm for nρ = 0 states in a superstrong
magnetic field. The solid curves were constructed from
Eq. (2.13); the δm values extracted from the numerical cal-
culations [9] are denoted by s (m = 0), d (m = 1), h (m = 2),
and n (m = 5).
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is equal in order of magnitude to

(6.12)

At m = 0, this estimate gives r0 ≈ 0.564aB , which is
close to the exact value of (5.2). At |m| @ 1, the ratio

r0/aB increases as . As a result, the accuracy of
Eq. (2.13) decreases (at a fixed *), which is also con-
firmed by our numerical calculation (Fig. 9).

Note that Eq. (2.13) for the level spectrum at m ≠ 0
is identical to Eq. (5.1) if we set

(6.13)

i.e., r0/aH = 0.530, 0.874, 1.12, 1.32, … for m = 0, 1,
2, 3.

The energies of the states with nρ = 0 and m = 0, 1,
…, 5 in the range of magnetic fields B = 1011–1013 G
were calculated in [10] and used in Fig. 9. We see from
this figure that, as the magnetic quantum number |m|
increases, the validity range for Eq. (2.13) is displaced
toward increasingly large field strengths, and it begins
only from B * 3 × 1012 G for m = 5.

7. THE MEAN ATOMIC RADIUS, 
QUADRUPOLE MOMENT, 

AND RADIATIVE TRANSITION PROBABILITIES

At * @ 1, the size of the hydrogen atom transverse
to the field is equal to the Landau radius aH , while the
longitudinal wave function is expressed in terms of the
Whittaker function (see Appendix A):

(7.1)

where ν = 1/λ, σ = 1 for even states, and σ =  for
odd states. This function is the solution of the
Schrödinger equation for a one-dimensional hydrogen
atom to which the electron motion along the magnetic
field (the z axis) reduces if r0 ~ aH ! aB . The integrals
in the normalization and in the expression for the rms
radius

(7.2)

were calculated in [41], which allows us to derive an
analytical formula for a|| (see Appendix C). Let us intro-

r0 m !/Γ m 1/2+( )[ ] aH.≈

m

r0
1
2
--- 2 γ+ln( ) 1

k
---

k 1=

m

∑+–
 
 
 

aH,exp=

ξλ z( ) constσWν 1/2, 2λ z( ), ∞ z ∞,< <–=

sgnz

a|| z2〈 〉 1/2 1
2λ
------= =

× Wν 1/2,
2 x( )x2 xd

0

∞

∫ / Wν 1/2,
2 x( ) xd

0

∞

∫ 
 
 

1/2
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Table 4.  Characteristic sizes of a hydrogen atom in a superstrong magnetic field

*
a||/aB β

1s 2s 1s 2s

0 – 1.000 3.74 – –

100 0.100 0.353 3.25 3.53 32.5

213 6.85(–2) 0.303 3.10 4.42 45.2

425 4.85(–2) 0.264 2.97 5.44 61.2

851 3.43(–2) 0.232 2.86 6.76 83.4

1000 3.16(–2) 0.225 2.83 7.12 89.6

2000 2.24(–2) 0.200 2.74 8.93 122

2130 2.17(–2) 0.198 2.73 9.12 126

4255 1.53(–2) 0.178 2.66 11.6 174

5000 1.41(–2) 0.173 2.64 12.3 187

1.0(4) 1.00(–2) 0.157 2.57 15.7 257

5.0(4) 4.47(–3) 0.126 2.44 28.2 546

1.0(5) 3.16(–3) 0.116 2.40 36.7 759

Note: The parameter β = a||/aH characterizes the degree of elongation of the electron cloud along the field.

aH

aB
------
duce the ratio β = a||/aH that characterizes the shape of
the atom (i.e., the electron localization region). The val-
ues of aH , a||, and β are given in Table 4. We see from
this table that the atom is cigar-shaped (for 1s at * &
1000) or even needle-shaped (for ns states, n ≥ 2) [49].
Its longitudinal size also decreases with increasing *,
especially for the 1s level, asymptotically when
*  ∞

(7.3)

For excited (n ≥ 2) states, a|| ∝  n2aB is on the order of
the Bohr radius, although it also decreases with increas-
ing *.

The deformation of the electron cloud by the mag-
netic field gives rise to a quadrupole moment of the
atom, which affects the interatomic interaction. In a
strongly magnetized hydrogen plasma, apart from the
ordinary Van der Waals attraction, the quadrupole–qua-
drupole interaction between atoms can also become
significant [50]. Recently, the quadrupole moment has
been numerically calculated for the ground state of a
hydrogen atom [14] by using (i) the variational method
and (ii) the solution of the differential equations that
follow from the expansion of the wave function in
terms of Landau orbitals. Below, we give a simple
asymptotic formula for Q that refers to * > *min.

β
a||

aH

------
*

*/ *
2

ln( )ln
-------------------------------, n∝ 1.= =
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In view of axial symmetry, the quadrupole moment
tensor is

(7.4)

(Qzz < 0, because the electron charge e < 0). Using for-
mula (C.2), we find that

(7.5)

(7.6)

(here, 0 < ν = λ–1 < 1 and λ = λ(*) can be determined
from Eq. (2.13)). As a result, we obtain the solid curve
for Q(*) in Fig. 10. At * ≥ 50, this curve agrees well
with the numerical calculation, especially for method (ii),
which, as was noted in [14], is more accurate. Q
decreases with increasing * (at * ≥ 10), because a
superstrong magnetic field compresses the atom not
only in the direction transverse to B but also in the lon-
gitudinal direction. The asymptotic formula for Q(*)
when *  ∞ (see Appendix B) also clearly follows
from (7.5) and (7.6).

Qxx Qyy
1
2
---Q, Qzz Q,–= = =

Qαβ 0, α β ,≠=

Q 2 z2〈 〉 ρ 2〈 〉–=

Q 2 a||
2 *( ) 1 m+

*
----------------–

 
 
 

, nρ 0,= =

a||
2 18ν2

2 ν–( )2 3 ν–( )2
--------------------------------------=

×
F3 2 ν ν 3; 4 ν 4 ν; 1–,–,–,–( )
F3 2 ν ν 1; 2 ν 2 ν; 1–,–,–,–( )

------------------------------------------------------------------------
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Measurements of the spectrum of the lines emitted
during transitions between atomic levels can also give
useful information. Let us consider the E1 transitions
from the excited odd electron states with m = 0 in the
lower Landau zone, nρ = 0, to the ground 1s level at * >
*min, when aH ! a|| ! aB and the Zeldovich effect takes
place. In the decay probability

,

only the matrix element of the dipole moment compo-
nent along the field, i.e., in a one-dimensional hydrogen
atom, is nonzero. Assuming that the binding energy
ε1s = 1/2ν2 @ 1 (i.e., ν = δ1s ! 1), we substitute the sim-
pler function (A.7) for the Whittaker function (7.1). For
the initial state

(as we noted above, the spectrum of these levels coin-
cides with the spectrum of s levels in a central Coulomb
field). Since function (7.1) cuts off the matrix element
at distances |z | ~ ν ! 1, it will suffice to take the asymp-

w n P 1 1s–=,( ) 4ω3

3c3
--------- d fi

2=

En
– 1

2n2
--------,–=

ψn
– z( ) 2

n3
----- z

n
-----– 

  F1 1 1 n 2; 
2 z
n

--------,– 
 exp=

0–1 1 2 3 4 5 6 7
ln*

0.01

0.1

0.5

Q

Fig. 10. The ground-state quadrupole moment for a hydro-
gen atom. The solid curve was constructed from formula
(7.5); the numerical calculations [14] are denoted by s and
+ (for methods (i) and (ii), respectively; see the text). The
dashed curve corresponds to the asymptotic formula (B.5).
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totics at zero of :  = (z – z2 + …). As
a result, we obtain

(7.7)

where α = 1/137, c1 = 3 – 2ln2 ≈ 1.61 (see (A.7) and
(A.13)), the transition probability is measured here in

units of mee4/"3 = 4.13 × 1016 s–1, and n ≡  = 1, 2, 3,
… is the quantum number of the initial state with a
parity of P = –1. As the ground level deepens, probabil-
ity (7.7) increases, while for a  atom, it decreases:12 

(7.7')

This difference stems from the fact that  ∝  z in a
one-dimensional hydrogen atom at small distances,
while χnp(r) ∝  r2 in a three-dimensional hydrogen atom.
Therefore, the probability of the electron being found
in the localization region of the wave function for the
final 1s state in the latter case is much lower.

Let us compare (7.7) with the probability of a spon-
taneous E1 2p  1s transition with a switched-off
magnetic field:

(7.8)

where [51] wH(2p  1s) = (2/3)8α3 = 6.27 × 108 s–1

(in both cases, we consider the transition from the level
closest to the ground level). Thus, the probability of an
E1-transition to a deep s level in a superstrong magnetic
field is much higher than that in a free (* = 0) hydrogen
atom. At B ~ 1013 G, we have the following estimates:
ε1s ~ 300 eV and ν ~ 0.2, whence w ∝  1012 s–1. Accurate
radiative transition probabilities can be numerically
calculated by using analytical expressions for the inte-
grals with the Whittaker function and the degenerate
hypergeometric function calculated in connection with
the theory of a  atom [41].

To conclude this section, we note that the dipole
approximation is applicable if kR ! 1, where k = w/c is

12A comparison with the numerical calculation [41] shows that the
first two terms of this expansion can be retain for ν ≤ 0.3.
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the photon momentum, and R is the characteristic size
of the radiator. In our case,

and the dimensionless parameter kR ~ a||/2cδ2 changes
within the range from 0.013 at * = 103 to 0.02 at * =
105 (here, δ ≡ δ1s is the quantum defect of the 1s level;
see Table 3). Therefore, the dipole approximation has a
good accuracy, while the angular photon distribution is

(7.9)

where n = ck/ω and θ is the angle between k and B; in
particular, no photons emerge along field B.

Note also13 that these photons have a 100% linear
polarization in the (B, k) plane. The matrix element that
corresponds to the photon emission is M ∝  B · e ∝  ziei ,
where e is the photon polarization vector, and z is a unit
vector along field B. The three-dimensional photon
density matrix is (see [51])

(7.10)

where ξi are the Stokes parameters and the unit vectors
e(1) and e(2) were chosen as follows:

Substituting this into the expression for |M|2 ∝  zizkρik

yields

(7.11)

where the first and second factors define the angular
distribution (7.9) and the photon polarization, respec-
tively. On the other hand, |M|2 ∝  1 + xf xd , where xd and
xf are the Stokes parameters that characterize the detec-
tor and the polarization of the emitted photon [51].
Equation (7.11) yields xf = (0, 0, –1), and we obtain
hence

(7.12)

13This remark, as well as the considerations given below, belong to
M.I. Vysotskiœ.
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This implies that the photon is linearly polarized along
the unit vector e(2), i.e., in the (B, k) plane.

8. CONCLUSIONS
(1) In their work entitled “Interaction and Annihila-

tion of Antinucleons with Nucleons,” which was writ-
ten in 1957 but not published, L.L. Landau, I.Ya.
Pomeranchuk, and K.A. Ter-Martirosyan investigated
the spectrum of atomic levels in a Coulomb field dis-
torted at small distances by strong interaction. As
in [35], these authors joined the inner and outer wave
functions at point r = r0 ! aB , where the strong and
Coulomb potentials are equal in magnitude. They
derived an equation for level energies that is essentially
identical to Eq. (5.1) and qualitatively analyzed the
influence of strong interaction between p and  on the
level shifts in a  atom.

One of us (V.P.) is very grateful to K.A. Ter-Mar-
tirosyan for information about this work and for the
possibility of familiarizing ourselves with it in the
manuscript. Note, however, that it was unknown to us
when studies [35, 41] were performed.

(2) Table 5 gives the binding energies for the first
two s levels, their quantum defects, and the limiting val-
ues of δ∞ for highly excited levels. We took ε1 from [9]
and calculated ε2 from Eq. (2.13)—a procedure that is
inverse to the procedure used previously in the theory
of a  atom [35]. Note that the relative 2s-level
shift (6.4) changes from ρ2 = 0.584 at * = 400 to 0.393
at * = 105. For ε2 = 8.5 eV (* ≈ 3100), this level is
exactly halfway between the unshifted Coulomb levels

 with n = 1 and 2.

We see from Table 5 that the inequality δ∞ < δ2 that
is inverse to the inequality characteristic of the Zeldov-
ich effect is satisfied at * & 200. Therefore, the lower
limit for the magnetic fields required for this effect to
show up in the spectrum of atomic levels is *min ~ 200
(for even states), or B ~ Bmin ~ 5 × 1011 G, which also
follows from Fig. 5. On the other hand, *min ~ 1 for odd
states (1–, 2–, etc.) (see Fig. 6).

(3) There is a significant difference between the Zel-
dovich effects for three-dimensional local potentials
and in the problem with a magnetic field. In the former
case, the rearrangement can be repeated several times
as the coupling constant g increases: thus, for a square
potential well, this occurs [1] at g ≈ gN = (2N +

1)2π2"2/8 , N = 0, 1, 2… In the latter case, only the 1s
ground level can become deep with increasing *, while
the remaining levels lie at ν > 1 (which is a characteris-
tic property of the one-dimensional Coulomb potential;
see Appendix D). Therefore, only one cycle of spec-
trum rearrangement takes place in a magnetic field
(however, each pair of quantum numbers nρ and |m| has
its own cycle).

p
p p

p p

En
0( )

r0
2
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Table 5

B, G * ε1 ε2 δ1 δ2 δ∞

0 0 13.6 3.40 1.0 1.0 1

2.35(11) 100 103.1 6.90 0.3632 0.397 0.3937

4.7(11) 200 128.6 7.31 0.3252 0.363 0.3635

9.4(11) 400 159.2 7.64 0.2923 0.334 0.3357

1.0(12) 425 161.5 7.65 0.2902 0.332 0.3334

2.0(12) 851 198.5 7.96 0.2618 0.307 0.3082

2.35(12) 1000 208.4 8.05 0.2554 0.300 0.3027

4.70(12) 2000 253.2 8.33 0.2318 0.278 0.2807

5.0(12) 2130 257.1 8.35 0.2300 0.276 0.2788

1.0(13) 4255 309.6 8.61 0.2096 0.257 0.2592

1.18(13) 5000 323.1 8.67 0.2052 0.252 0.2549

2.53(13) 1.0(4) 384.8 8.91 0.1880 0.235 0.2378

Bcr 1.878(4) 447.9 9.11 0.1743 0.222 0.2237

1.18(14) 5.0(4) 560.0 9.41 0.1559 0.203 0.2045

2.35(14) 1.0(5) 650.1 9.59 0.1447 0.191 0.1926

5.0(14) 2.13(5) 759 9.81 0.1339 0.177 0.1782

1.0(15) 4.3(5) 868 9.97 0.1252 0.168 0.1688

5.0(15) 2.13(6) 1.16(3) 10.3 0.1082 0.149 0.1501

1.0(16) 4.3(6) 1.31(3) 10.4 0.1021 0.144 0.1431

Note: ε1 and ε2 are the binding energies (in eV) of the 1s and 2s levels in a magnetic field, δ1(2) are their quantum defects, δ∞ is the quantum

defect for highly excited levels, and Bcr = 4.414 × 1013 G is the Schwinger field in quantum electrodynamics [17].
(4) The characteristic magnetic field strengths are Ba

and Bcr = α–2Ba , at which the spacing between the adja-
cent Landau levels is

(8.1)

The ratio η = ε0(*)/"ωH decreases with increasing field
(Fig. 11); in particular, η = 0.831 at B = Ba and η =
8.77 × 10–3 at B = Bcr . Thus, in a superstrong magnetic
field, the energy range of the atomic spectrum, includ-
ing the deep 1s level, accounts for only a small fraction
of "ωH .

Note that "ωH/mec2 = B/Bcr . At B ≥ Bcr , the trans-
verse electron motion is completely relativistic. How-
ever, for the ground state, this has almost no effect on
the energy spectrum (see [5, 7] and Section 4 of this
paper). The validity range for the approach developed
above, including Eq. (2.13), is

(8.2)

"ωH
"eB
mec
----------

mee
4/"2, B Ba,=

mec
2, B Bcr.=




= =

α Bcr B α 1– Bcr, α≤ ≤ e2/"c 1/137.= =
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For even more intense magnetic fields, the influence of
an external field on the vacuum properties and the
anomalous electron magnetic moment should be taken
into account.

(5) Let us explain the relationship between
Eqs. (5.1) and (2.13). They include the “strong” scatter-
ing length as and the Coulomb-modified scattering
length a0 = acs in the l = 0 state. When we pass
from (5.1) to (2.13), the “large” logarithm ln(r0/aB)
goes into the Coulomb renormalization of the scatter-
ing length: 1/as  1/acs , which can be significant if
the system has a (real or virtual) level with a low
energy. At the same time, the effective radius changes
only slightly when the Coulomb interaction is included.
Let us illustrate this behavior for NN scattering in the
1S0 state, where [52]

as = –23.748 ± 0.010 Fm, rs = 2.75 ± 0.05 Fm,

acs = –7.8098 ± 0.0023 Fm, rcs = 2.767 ± 0.010 Fm,

and the subscripts a and cs refer to the np and pp sys-
tems, respectively. The virtual level |e| = 0.067 MeV (a
singlet deuteron) corresponds to a large value of as .
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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The determination of acs and rcs for an arbitrary
potential Vs(r) can be found, for example, in [53–55].

(6) The discussion of hydrogen atomic energy levels
for * @ 1 given in [15, §112] requires some clarifica-
tions.

10 2 3 4 5
ln*

10–3

10–2

10–1

1
η

Fig. 11. The ratio of ground-level binding energy e0 to Lan-
dau energy "ωH .

2 4 60

2

4

6

8

10

12

ln*

λ0

Fig. 12. The dependence λ(*) for the ground level. The
solid curve was constructed from the results of numerical
calculations [9] for * < 105 and from Eq. (2.13) for
* > 105. The dashed and dash-dotted curves correspond to
the asymptotic formula (B.3) and the paper [13].
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First, formula (1.1) derived in [15] is not identical to
the asymptotic formula for the ground-level binding
energy ε0(*) when *  ∞. A comparison of (1.1)
and (B.3) shows that the correct asymptotic formula for

ε0(*) is not ε0 ≈ ln2 * with some constant , but

additionally contains 1/ln2* under the logarithm sign.
In this case, as was noted above, formula (1.1) has vir-
tually no validity range.14 

Further, the assertion [15, 56] that all the levels of
the discrete spectrum, except the ground level, in a
superstrong magnetic field are doubly degenerate (in
parity P = ±1) and are described by the Balmer formula
is unlikely to be true.15 The latter is true for odd levels
(see Fig. 7), but even levels in fields B ~ 1011–1014 G
typical of neutron stars are greatly shifted relative to

, which is seen from Fig. 5 and, particularly clearly,

from Fig. 1. The corresponding quantum defects  ~
[ln(*/ln2*)]–1 < 0.05 only for * > 1011, or B >
1020 G; even in this case, the shifts of even levels rel-
ative to odd levels are not very small (ρ2 ≈ 1/8;
see (6.6)). If such magnetic fields actually existed in
the early universe [57], obviously there were still no
hydrogen atoms at the time.

(7) Thus, the data on the quantum defects of ns levels
extracted from previous numerical calculations [6–11]
indicate that the Zeldovich effect manifests itself in the
energy spectrum of a hydrogen atom in extremely
strong magnetic fields, B * 1012 G. Such fields are typ-
ical of neutron stars and, possibly, magnetic white
dwarfs [3, 4]. The establishment of this effect with
increasing * is clearly seen from Figs. 5–8. These fig-
ures show that, essentially, it has already been observed
(in a numerical experiment). A confirmation of this
conclusion by direct astrophysical observations would
be of great interest.
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APPENDIX A

The Schrödinger equation in a Coulomb field U(r) =
–Z/r has a solution that decreases at infinity:

(A.1)

where ν = Z/λ, λ = , x = 2λr, l is the orbital angu-
lar momentum, and W is the Whittaker function. In gen-
eral, this function has a singularity at zero:

(A.2)

In particular, for the s states,

(A.3)

where c1 = ν, c2 = 1/2 + ν[ψ(1 – ν) – 1 + 2γ], c3 = ,

etc.
Hence, we have for r  0

(A.4)

where ν = 1/λ, c0 = 2γ + ln2, and Z = 1. Using this
expansion when joining with the wave function from
the inner region r < r0 immediately leads to Eqs. (5.1)
and (2.13).

A singularity of type (A.2) disappears for an integer
ν = n ≥ l + 1 when solution (A.1) differs from the wave
function for the discrete hydrogen atomic spectrum
only by the numerical factor:

(A.5)

χ l r( ) Wν l 1/2+, x( )=

=  e x/2– xν 1 l ν+( ) l 1 ν–+( )
x

----------------------------------------- O x 2–( )+ + ,

2E–

Wν l 1/2+, x( )
Γ 2l 1+( )

Γ l 1 ν–+( )
----------------------------x l– …, x 0.+=

Wν 1/2, x( ) 1
Γ 1 ν–( )
--------------------=

× 1 c1x x c2x– c3x2 x O x2( )+ln+ln–[ ] ,

1
2
---ν2

rd
d

Wν 1/2, 2λr( )ln

=  λ 2 λrln ψ 1 λ 1––( ) c0+ +[ ] O r λrln( )+ +{ } ,–

χnl r( )
1–( )n l– 1–

n n l+( )! n l– 1–( )!
----------------------------------------------------=

× Wn l 1/2+,
2r
n
----- 

  2l 1+ ξnl

2l 1+( )!n3/2
-----------------------------rl 1+=

× 1 r
l 1+
----------

2n2 l 1+ +

2l 2+( ) 2l 3+( )n2
--------------------------------------------r2 …+ +– , r 0,
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where

When ν  n, given the identity

,

expansion (A.3) transforms into (A.5) for l = 0.

Let us now determine the form of function (A.1)
for a deep s level. We find from the integral represen-
tation [20]

(A.6)

for ν  0 that

(A.7)

where

(A.8)

and Ei(z) is the integral exponent (see 4.837.1 and 6.223
in [58]); u(0) = –γ, u(x) = lnx + O(x–1) for x  ∞ and
u(x) = 0 for x = x0 = 0.28501…. Taking into account the
integrals

(A.9)

(A.10)

we can easily see that the normalized (to within ν2)
wave function is

(A.11)

whence follows formula (B.4). In the limit ν  0 (a
deep level), we obtain the function

(A.12)

which corresponds to a one-dimensional δ potential.

ξnl 1 12

n2
-----– 

  … l
l2

n2
-----– 

  , ξn0 1,≡=

χnl
2 rd

0

∞

∫ 1.=

ψ 1 ν–( )
Γ 1 ν–( )
--------------------

ν n→
lim 1–( )n n 1–( )!, n 1 2 3 …, , ,= =

Wν 1/2, x( )
e x/2–

Γ 1 ν–( )
-------------------- e t– 1 x

t
--+ 

  ν
td

0

∞

∫=

Wν 1/2, x( ) e x/2– 1 νu x( ) O ν2( )+ +[ ] ,=

u x( ) e t– t x+( )ln td

0

∞

∫ x exEi x–( ),–ln= =

e λx– xb 1– xln xd

0

∞

∫ Γ b( )λ b– ψ b( ) λln–[ ] ,=

e x– xb 1– u x( ) xd

0

∞

∫ Γ b( )ψ b 1+( ), b 0,>=

χν z( ) cνe λ z– 1 νu 2λ z( ) O ν2( )+ +[ ] ,=

cν ν 1/2– 1 1 γ–( )ν– …+[ ] ,=

χλ z( ) λ λ z–( ), λexp 1/ν ,= =
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In Section 7, when calculating the dipole transition
matrix element, we encountered the integral

(A.13)

for integer k = 2, 3, …. Introducing the parameter µ and
denoting

(A.14)

we obtain

(A.15)

(A.16)

(see 6.224.1 in [58]). Hence, for µ = 1/2,

,

etc., which gives the coefficient c1 in (7.7)

APPENDIX B

Here, we consider the asymptotic formula for the
lower-level energy in the limit *  ∞.

In a superstrong magnetic field, this level can, in
principle, sink arbitrarily deeply [46, 56]. Assuming
that λ @ 1 and taking into account the fact that [20]
ψ(n)(1) = (–1)n + 1n!ζ(n + 1), we write Eq. (2.13) as

(B.1)

where k0 = γ + ln2, kn = 2ζ(n + 1), and ζ(s) is the Rie-
mann zeta function: k1 = π2/3, k2 = 2.404, k3 = π4/45,
etc. The first term of this expansion is identical to for-
mula (1.2), while the first three terms correspond to
Eq. (4.25) in the paper by Hasegawa and Howard [16].
The relative error of this approximation is

(B.2)

and slowly decreases with increasing level binding
energy ε (here, ε is in atomic units). If we retain the four

Jk
1
k!
---- e x– u 2x( )xk xd

0

∞

∫=

=  ψ k 1+( ) 2 Fk 1/2( )+ln+

Fk µ( )
1

2k 1+ k!
---------------- eµxxkEi x–( ) x, µ 1,<d

0

∞

∫–=

F0 µ( )
1

2µ
------ 1 µ–( ),ln–=

F1 µ( )
1

4µ2
-------- µ

1 µ–
------------ 1 µ–( )ln+ ,=

Fk µ( )
1

2k
------

µd
d

Fk 1– µ( )=

J0 2 2 γ, J1–ln 2 γ,–= =

J2 2 2 1 γ–+ln 1.809, J3 2.089= = =

* λ 2 λ k0 knλ
n–

n 1=

∞

∑–+ln+
 
 
 

,exp=

δ3
∆*
*

------------ π2

3λ
------≈≡ 2.33

e
----------=
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expansion terms in (B.1), including –π2/3λ, then the
error is δ4 ≈ 1.2ε–1. For example, δ3 = 0.71 and δ4 = 0.06
at * = 105, δ3 = 0.52 and δ4 = 0.037 at * = 106, and δ3 =
0.33 and δ4 = 0.017 at * = 108. Thus, Eq. (2.16), which
contains only elementary functions, defines the depen-
dence *(λ) at * > 105 with an accuracy of several
percent, which is probably high enough for astrophys-
ical applications. At the same time, in the range 100 <
* & 104, only Eq. (2.13) defines the magnetic field for
the 1s-level energy with an acceptable accuracy.

We derive the sought-for asymptotic formula for
ε0(*) = λ2/2 from (B.1) by an iterative method:

(B.3)

(B.4)

where c∞ = 0.2807. In the series of even levels with an
arbitrary magnetic quantum number m, the asymptotic
formula for the deep level is also given by (B.3) but
with a different constant:

(the binding energy of these levels decreases with
increasing |m|).

For the quadrupole moment of the ground state, we
find using formulas (B.3) and (C.4) that

(B.5)

(cf. expansion (4) from [14]). However, the asymptot-
ics (B.3)–(B.5) are established very slowly: even at
* = 105, the ground-level binding energy calculated
from (B.4) differs from its numerically calculated
value [9] by a factor of 1.7; see Fig. 12.

A similar situation also takes place in several other
quantum-mechanical problems, including the Stark
effect in a strong field [59, 60]. If the asymptotics con-
tains not only the degrees of the expansion parameter
but also the logarithms, then its onset is delayed and the
calculation of even a very large number of the coeffi-
cients of the perturbation series does not allow the func-

λ *

*ln
2

------------ln γ 2ln+( ) …+–=

=  
c∞*

*ln
2

------------ln O
*lnln

*ln
---------------- 

  , * ∞,+

ε0 *( )
1
2
--- c∞

*

*ln
2

------------ 
 ln

2
,≈

c∞ c∞
m( ) γ 2ln 1

k
---

k 1=

m

∑+ +–
 
 
 

exp=

Q
1

λ2
----- 5

3λ3
-------- O λ 4–( )+ +=

=  Λ 2– 2 γ 2ln+( ) 5
3
---+ Λ 3– …,+ +

Λ *

*ln
2

------------ln=
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tion represented by this series to be restored at infinity
(see [60]). This requires going outside the scope of the
perturbation theory and studying an exact solution.

APPENDIX C

The longitudinal (along the magnetic field) size of a
hydrogen atom is characterized by the moments of the
electron density distribution Rα. For * @ 1,

(C.1)

where ν = 1/λ and we used (7.1). The integrals appears
in this formula were calculated in [41], whence

(C.2)

(C.3)

where 3F2(…) is the generalized hypergeometric series,
with

.

For a deep level,

(C.4)

(C.5)

where ψ(x) = Γ'(x)/Γ(x). The first term of this expansion
corresponds to the approximation of a δ function
(A.12).

The calculation using formula (C.2) involves no dif-
ficulty, because the power series for 3F2 converge as

, irrespective of ν. As a result, we obtain the

rms radii a|| =  =  given in Table 4. Since
a|| @ aH in a superstrong magnetic field, the size of the
hydrogen atom is determined by a||. It should be noted
that a|| is smaller by an order of magnitude than the
Bohr radius; i.e., the size of the hydrogen atom along
the field also significantly decreases.

When the magnetic field is switched off,

(C.6)

Rα z α〈 〉=

=  2λ( ) α– Wν 1/2,
2 x( )xα x/ Wν 1/2,

2 x( ) x,d

0

∞

∫d

0

∞

∫

Rα A α ν,( )=

×
F3 2 ν ν α 1; α 2 ν α 2 ν; 1–+,–+ +,–,–( )

F3 2 ν ν 1; 2 ν 2 ν; 1–,–,–,–( )
-----------------------------------------------------------------------------------------------------aB

α
,

A α ν,( ) Γ α 1+( )
Γ α 2+( )Γ 2 ν–( )

Γ α 2 ν–+( )
----------------------------------------

2 ν
2
--- 

 
α
,=

A 0 ν,( ) 1, A 1 ν,( ) 2ν/ 2 ν–( )2,= =

A 2 ν,( ) 18ν2 2 ν–( ) 3 ν–( )[ ] 2– …,=

Rα Γ α 1+( )
ν
2
--- 

 
α

=

× 1 2 ψ α 2+( ) ψ 2( )–[ ]ν O ν2( )+ +{ } ,

a||
1

2λ
---------- 1 5

6λ
------ O λ 2–( )+ + , λ  @ 1,=

n α 4+( )–∑
R2 z2〈 〉 1/2

a|| n 5n2 1+( )/6aB,=
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for ns levels [15]; in particular, a|| = aB for the 1s level
and a|| = 3.742aB for the 2s level.

APPENDIX D

A hydrogen atom in D dimensions is described by
the Schrödinger equation

(D.1)

and has a discrete energy spectrum:

. (D.2)

For n > 1, there is a random level degeneracy attribut-
able to the hidden symmetry group SO(D + 1) of the
Coulomb potential [47, 48, 61, 62]. However, the
ground state is nondegenerate for any dimension of
space D. Its energy, mean radius, and the wave function
are

(D.3)

as can be easily verified by the direct substitution into
(D.1). For an arbitrary α > –D, we have

(D.4)

for example, /〈r〉  = , and we obtain
∆r/〈r〉  = D–1/2 for the rms deviation.

The energy E1s  –∞ and the mean radius 〈r〉  0
when D  1, indicative of the “fall to the center”
known from quantum mechanics [15]. This case,
described by the Hamiltonian

(D.5)

was considered in detail in [21]. It was shown in [21]
that Hamiltonian (D.5) is a Hermitian but self-adjoint
operator (according to the general theory of singular
potentials in quantum mechanics [24–26]). However, it
admits a self-adjoint extension. From the physical point
of view, introducing an additional condition16 to Hamil-

16Necessary for the unambiguous determination of the energy
spectrum.

∆Dψ 2 E
1
r
---+ 

  ψ+ 0, r xi
2

i 1=

D

∑ 
 
 

1/2

= =

En
1

2 n D 3–( )/2+[ ] 2
------------------------------------------, n– 1 2 3 …, , ,= =

E1s
2

D 1–( )2
--------------------, r〈 〉–

1
4
--- D2 D–( ),= =

R1s r( )
2D

D 1–( )DΓ D( )[ ] 1/2
------------------------------------------- 2r

D 1–
-------------– 

  ,exp=

R1s
2 rD 1– rd

0

∞

∫ 1,=

rα〈 〉 1/α 1
4
--- D 1–( ) Γ D α+( )/Γ D( )[ ] 1/α ,=

r2〈 〉 1/2
1 D 1–+

Ĥ
1
2
---

z2

2

d

d 1
z
-----, ∞ z ∞,< <–––=
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tonian (D.5) corresponds to choosing a particular
method for cutting off the potential U(z) = –1/|z| at
small distances (in our case, at |z | & aH). The location
of the lower level E1s(*) may be specified as such an
additional condition; cf. the potential [25] U(r) =
−g2/2r2 for g > l + 1/2.

As we see from (D.2), for a dimension D > 1, the
energy spectrum is limited from below and there is no
fall to the center.
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Abstract—Electron transitions and emission of an atom interacting with a spatially inhomogeneous ultrashort
electromagnetic pulse are considered. The excitation and ionization probabilities are obtained as well as the
spectra and cross sections of the reemission of such a pulse by atoms. By way of an example, one- and two-
electron inelastic processes accompanying the interaction of ultrashort pulses with hydrogen- and helium-like
atoms are considered. The developed technique makes it possible to take into account exactly the spatial non-
uniformity of the ultrashort pulse field and photon momenta in the course of reemission. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of atoms with electromagnetic
pulses (e.g., laser radiation) is usually studied for
pulses with a duration much longer than the character-
istic times of the target atom. The interaction of long
pulses with atoms gives rise to an exceptionally rich
pattern for theoretical and experimental investigations.
Such investigations are described in a large number of
reviews and monographs. Contemporary theoretical
investigations correspond in many respects to the
experimental tendency of designing more powerful
lasers and generation of ultrashort pulses. Advances in
laser technology provided sources of laser pulses of
20–30 fs in duration with a peak intensity up to
1021 W/cm2 [1, 2]. The generation of 4-fs pulses was
reported in [3]. Electromagnetic pulses of 0.25 fs in
duration have been observed in recent experiments [4].
Experimental requirements and the complication of the
physical situation stimulated the further development
[5, 6] of the Keldysh theory; the modification and evo-
lution of the Coulomb–Born approximation [7–11],
which made it possible to simultaneously take into
account a strong ac field as well as the Coulomb field of
the atomic core; the development and construction of
relativistic theories of tunnel and multiphoton ioniza-
tion [12, 13]; and the development of numerical
approaches for calculating the probabilities of transi-
tions of atomic electrons in strong fields (see, for exam-
ple, [14, 15] and the references cited therein). At the
same time, the methods for generating ultrashort
subfemtosecond pulses and even shorter pulses 10–21–
10–22 s [19] in duration are being actively discussed in
the literature (see, for example, [16–19]). This may
open new prospects for studying the interaction of
ultrashort electromagnetic pulses with matter. In partic-
ular, it becomes possible to analyze the processes
1063-7761/03/9705- $24.00 © 0915
accompanying the interaction of atoms with strong
electromagnetic pulses of a duration smaller than the
characteristic atomic periods. Let us estimate the value
of the Keldysh parameter,

where & is the atomic ionization potential, m and e are
the electron mass and charge, and E is the strength of
the external field of frequency ω. The atomic time unit
is equal approximately to 2.42 × 10–17 s. For a pulse of
(1/3) × 10–17 s, the photon energy is approximately
equal to 1.24 keV. Let us suppose that the intensity of
incident radiation is on the order of 1021 W/cm2; in this
case, γ ≈ 0.4 for the hydrogen atom. Such a value of the
Keldysh parameter indicates the inapplicability of per-
turbation theory for describing the interaction of atoms
with ultrashort pulses of a strong electromagnetic field.

An additional possibility [20] (see also [21]) of
studying the interaction of atoms with ultrashort elec-
tromagnetic pulses and a direct experimental confirma-
tion of processes in question can be achieved using col-
lision experiments. For example, in experiments
described in [20], double and single ionization of
helium atoms by an impact of the uranium ion U92+ with
an energy of 1 GeV/nucleon was studied and a superin-
tense pulse (I > 1019 W/cm2) of duration 10–18 s was
simulated. The obtaining of such parameters of the
electromagnetic pulse by other methods is extremely
complicated. It is well known [22] that the fields pro-
duced by relativistic and ultrarelativistic charged parti-
cles are close to the field of a light wave. This circum-
stance makes it possible to use the so-called equivalent
photon method [22, 23] based on the replacement of
virtual photons by real light field quanta. For fields cre-

γ 2&m( )1/2ω
eE

---------------------------,=
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ated by fairly large charges (Z > 72), perturbation the-
ory is inapplicable [24] even for infinitely large colli-
sion energies; this necessitates the application of non-
perturbative methods for describing the processes
occurring in such fields. One of the most advanced
approaches is as follows. It is well known [25] that the
field of a charge moving uniformly along a straight line
with an ultrarelativistic velocity is concentrated in the
plane perpendicular to the direction of its motion and
passes through the point at which the charge is located
at a given instant. However, this circumstance is mani-
fested explicitly [26] only after the implementation of
the singular gauge transformation proposed earlier [27]
(see also [28]), when the field potentials can be writ-
ten [26] in the form of a function proportional to the
Dirac delta function concentrated in the above-men-
tioned plane. The latter circumstance suggests an
instantaneous action of such a field on an atom and
makes it possible to solve exactly the Dirac equation for
atomic electrons in the ultrarelativistic limit [29]. In
addition, the effective strengths of the fields produced
by high-charge ions may attain values of 1011 V/cm (cf.
the characteristic atomic electric field strength, which is
on the order of 5 × 109 V/cm). An additional consider-
able enhancement of the field [26] also occurs due to
relativistic compression.

It should be noted that it is often difficult to take into
account the interaction of atoms with strong electro-
magnetic pulses with a duration exceeding the charac-
teristic atomic time periods by using nonperturbative
methods; in this case, numerical methods are required.
By way of example, we mention publication [30], in
which the excitation and ionization of helium atoms by
short pulses of a strong electromagnetic field of
3.8−15.2 fs are considered (see also [14, 15, 31, 32] and
the references cited therein). The necessity of taking
into account the spatial inhomogeneity of the electro-
magnetic field pulse (over the size of the target atom),
which extends beyond the dipole approximation limits,
involves additional difficulties. The number of publica-
tions in this direction (see, for example, [33–36] and the
literature cited therein), in which only the first correc-
tion to the dipole approximation was included, is
scarce.

In many practically important cases, perturbations
are not small enough for the application of perturbation
theory. However, the time of action of perturbations in
many cases is much shorter than the characteristic
atomic times; this makes it possible to solve the prob-
lem without limiting the intensity of perturbations and
to carry out calculations analytically [29, 37–44]. In the
cases considered here, the characteristic atomic time τa

is assumed to be much larger than the duration τ of
ultrashort pulses. For this reason, the approximation of
sudden perturbations [37], which does not limit the per-
turbation intensity and requires only the fulfillment of
the inequality τ/τa ! 1 for its application, may serve as
the basis for the solution.
JOURNAL OF EXPERIMENTAL
In this study, we consider the excitation and ioniza-
tion of light (nonrelativistic) atoms during the interac-
tion with a spatially inhomogeneous ultrashort pulse of
the electromagnetic field and calculate the probabilities
of excitation and ionization as well as the spectra and
cross sections of reemission of such a pulse by an atom.
The developed method makes it possible to take into
account exactly the spatial inhomogeneity of the field
generated by an ultrashort pulse as well as the momenta
of photons during reemission.

2. GENERAL

The potential of electromagnetic waves (the vector
potential A and the scalar potential ϕ) are often chosen
in such a way that the scalar potential is equal to zero.
In such a calibration, the potential of interaction of an
electron with the external electromagnetic field has the
form (here and below, atomic units are used)

(1)

where  is the electron momentum operator and c =
137 atomic units is the velocity of light. We assume that
the vector potential of the wave field is a function of
coordinate r and time t, A(r, t) = A(η), where the wave
phase η = ω0t – k0 · r. Here, the wave vector k0 is such
that |k0 | = ω0/c, ω0 being the cyclic frequency. We carry
out the gauge transformation

where f = A· r. This gives

where

In such a calibration, the potential V(r, t) of interaction
of an electron with the electromagnetic field assumes
the form

(2)

We assume that the estimates p ~ 1 and r ~ 1 (which
obviously hold for an electron in the hydrogen atom or
in atoms with small nuclear charges on the order of
unity) are valid for a nonrelativistic electron. In this
case, in expression (2) we can disregard the first two
terms as compared to the third term, and the potential

V r t,( ) –
1
c
--- p̂ A⋅ A p̂⋅+( ) 1

c2
----A2,+=

p̂

A' A ∇ f , ϕ'+ ϕ 1
c
---∂f

∂t
-----,–= =

A' k0 r
dA
dη
-------⋅ 

  , ϕ'– E– r,⋅= =

E E r t,( ) k0
dA
dη
-------.–= =

V r t,( ) –
1
c
--- p̂ A'⋅ A' p̂⋅+( ) 1

c2
---- A'( )2 E r.⋅+ +=
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of interaction of the electron with the electromagnetic
field assumes the simple form

(3)

The potential of interaction between atomic electrons
and an electromagnetic pulse of the Gaussian form,

(4)

can be written in the form

(5)

where {ra} is the set of coordinates of atomic electrons
(a = 1, …, N), N being the number of atomic electrons.
Let α in formula (4) assume such values that V(t) effec-
tively differs from zero only during a time interval τ ~
α–1, which is much smaller than the characteristic peri-
ods of an unperturbed atom, described by Hamiltonian
H0. Then the amplitude of the transition of the atom
from the initial state ϕ0 to a final state ϕn as a result of
action of a sudden perturbation V(t) has the form [38]

(6)

where ϕ0 and ϕn belong to the complete orthonormal
system of eigenfunctions of the unperturbed Hamilto-
nian H0. In accordance with relation (6). the choice of
the perturbation in the form (5) makes it possible to
express probabilities w0n = |a0n |2 in terms of the well-
known inelastic atomic form factors [45, 46],

(7)

where

(8)

These formulas allow us to easily calculate the proba-
bilities w0n of excitation or ionization of an atom. Thus,
the probabilities of atomic excitation or ionization by a
spatially inhomogeneous pulse are formally the same as
the probabilities of excitation and ionization by a spa-
tially homogeneous electromagnetic pulse (formula (4)
with the formal equality k0 · r = 0). The spatially inho-
mogeneous and homogeneous cases lead to different
results for the probabilities of reemission of a pulse
incident on an atom.

V r t,( ) r E r t,( ).⋅=

E r t,( ) = E0 α2 t
k0 r⋅
ω0

------------– 
  2

– ω0t k0 r⋅–( ),cosexp

V t( ) V ra{ } t,( )≡ E ra t,( )
a 1=

a N=

∑ ra,⋅=

a0n ϕn〈 | i V t( ) td

∞–

∞

∫–
 
 
 

ϕ0| 〉 ,exp=

w0n ϕn〈 | iq– ra

a

∑⋅
 
 
 

ϕ0| 〉exp

2

,=

q tE r t,( )d

∞–

∞

∫ π
α

-------E0
ω0

2

4α2
---------–

 
 
 

.exp= =
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3. REEMISSION OF AN ULTRASHORT PULSE 
BY AN ATOM

In the approximation of sudden perturbations, the
evolution of the initial state ϕ0 has the form

(9)

where Ψ0(t)  ϕ0 as t  –∞. We introduce the
complete and orthonormal system of functions

(10)

where Φn(t)  ϕn as t  ∞. Obviously, amplitude (6)
can be written in the form

(11)

For this reason, we will calculate the amplitude of the
emission of a photon in the first order of perturbation
theory as the corrections to states (9) and (10) in the
interaction of atomic electrons with the electromag-
netic field [22]:1 

(12)

Here,  and akσ are the creation and annihilation
operators for a photon with frequency ω, momentum k,
and polarization σ (σ = 1, 2); ukσ are unit vectors of
polarization; ra are the coordinates of atomic electrons

(a = 1, …, N); and  are the momentum operators for
atomic electrons. In this case, the amplitude of photon
emission associated with a transition of the atom from
state ϕ0 to state ϕn has the form

(13)

Integrating by parts with respect to time and omitting
the terms vanishing upon the elimination of interaction

1 Sudden perturbation V(t) is taken into account in functions Φn(t)
and Ψ0(t) without imposing limitations on the value of V(t). 

Ψ0 t( ) i V t '( ) t 'd

∞–

t

∫– ϕ0,exp=

Φn t( ) i V t '( ) t 'd

t

∞

∫ ϕn,exp=

a0n Φn t( ) Ψ0 t( )〈 〉 .=

U
2π
ω
------ 

 
1/2

a k σ, ,
∑–=

× ukσ akσ
+ ik– ra⋅( )exp akσ ik ra⋅( )exp+[ ] p̂a.

akσ
+

p̂a

b0n ω( ) i
2π
ω
------ 

 
1/2

ukσ t iωt( ) Φn t( )〈 |expd

∞–

∞

∫=

× ik– ra⋅( )p̂a Ψ0 t( )| 〉 .exp
a

∑
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with the electromagnetic field (for t  ±∞), we
obtain

(14)

Representing the element of integration with respect to
the photon momentum in the form

and carrying out the summation of |b0n(ω)|2 over polar-
izations, we obtain the corresponding spectrum for the
photon emission into the unit solid angle dΩk, accompa-
nied by the atomic transition from state ϕ0 into state ϕn:

(15)

Here, (ω) is the Fourier transform of function V(t),
defined in accordance with relation (5),

(16)

(17)

and the vector product is given by

(18)

Formula (15) describes the spectrum of photon emis-
sion accompanied by the atomic transition from state ϕ0
to state ϕn, i.e., the partial spectrum. Carrying out sum-

b0n ω( ) –
2π
ω
------ 

 
1/2

ukσ t
iωt( )exp

iω
---------------------- ϕn〈 |d

∞–

∞

∫=

× ik– ra⋅( )∂V t( )
∂ra

-------------- i V t '( ) t 'd

∞–

∞

∫– ϕ0| 〉 .expexp
a

∑

2π( ) 3– dk c2π( ) 3– dΩkω2dω=

d2W0n

dΩkdω
------------------

1

2π( )2c3ω
----------------------- ϕn〈 | ik– ra⋅( ) exp

a

∑=

 × ∂Ṽ ω( )
∂ra

---------------- n× i V t '( ) t 'd

∞–

∞

∫– ϕ0| 〉exp

2

.

Ṽ

Ṽ ω( ) V t( ) iωt( )exp td

∞–

∞

∫=

=  E0 ra i
ω
ω0
------k0 ra⋅ 

  f 0 ω( ),exp⋅
a 1=

N

∑

f 0 ω( ) = 
π

2α
-------

ω ω0–( )2

4α2
----------------------–

ω ω0+( )2

4α2
----------------------–exp+exp

 
 
 

,

∂Ṽ ω( )
∂ra

---------------- n× f 0 ω( ) –i
ω
ω0
------k0 ra⋅ 

 exp=

× E0 n× i
ω
ω0
------ E0 ra⋅( ) k0 n×[ ]+ 

  .
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mation over all final states ϕn of the atom in formula (15),
we obtain the total emission spectrum

(19)

Thus, we have obtained the total atomic emission
spectrum over the time of action of the sudden pertur-
bation V(t).

In the case of a one-electron hydrogen-like atom,
formula (19) is simplified and assumes the form

(20)

Integrating this formula with respect to the photon
emission angles dΩk , we obtain

(21)

The average over the ground state of the hydrogen-like
atom can be evaluated easily. As a result, the total emis-
sion spectrum of the hydrogen-like atom with nuclear
charge Z has the form

(22)

Since this spectrum is proportional to | f0(ω)|2, the atom,
in accordance with formula (17), mainly emits photons
belonging to the continuous spectrum with characteris-
tic frequencies of |ω – ω0 | ≤ 1/τ.

In order to calculate the total emission spectrum of
a two-electron helium-like atom, we consider sepa-
rately the terms with a = a' and with a ≠ a' in formula (19)
and, accordingly, write the spectrum in the form

(23)

d2W
dΩkdω
------------------

1

2π( )2
------------- 1

c3ω
--------- ϕ0〈 | ik– ra ra'–( )⋅[ ]exp

a a',
∑=

× ∂Ṽ ω( )
∂ra

---------------- n× ∂Ṽ* ω( )
∂ra'

------------------- n× ϕ0| 〉 .⋅

d2W
dΩkdω
------------------

=  
1

2π( )2
------------- 1

c3ω
--------- ϕ0〈 | ∂Ṽ ω( )

∂r
---------------- n× ∂Ṽ* ω( )

∂r
------------------- n× ϕ0| 〉 .⋅

dW
dω
--------

2
3π
------ 1

c3ω
--------- ϕ0〈 |∂Ṽ ω( )

∂r
---------------- ∂Ṽ* ω( )

∂r
------------------- ϕ0| 〉 .⋅=

dW
dω
--------

2
3π
------ 1

c3ω
--------- f 0 ω( ) 2E0

2 1 ω2

Z2c2
----------+ 

  .=

d2W
dΩkdω
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d2W1

dΩkdω
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d2W2

dΩkdω
------------------,+=
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where

(24)

(25)

In formula (24), we can integrate with respect to the
photon emission angles in the general form; this gives

(26)

We can calculate the average over the ground state of
the helium-like atom appearing in this formula by
describing the wave function of the ground state in the
form of the product of one-electron hydrogen-like wave
functions with the effective charge Z. This gives

(27)

Comparing this expression with formula (22), we arrive
at the conclusion that this part of the emission spectrum
of the two-electron atom corresponds to incoherent
emission by two electrons, since formula (27) can be
derived from Eq. (22) by multiplying it by the number
of terms in formula (26), which in our case is equal to
the number of emitting electrons, N = 2. The part of the
spectrum represented by formula (25) contains N(N –
1) = N2 – N terms and corresponds to the mixed (coher-
ent + incoherent) form of emission.

It is difficult to integrate formula (25) with respect
to photon emission angles in the general form; for this
reason, using formula (18), we can write this expres-
sion in the form

(28)

d
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The average over the ground state of the helium atom
appearing in this formula can be evaluated easily, which
gives

(29)

We can now integrate with respect to the photon emis-
sion angle, directing the z axis along vector k0; this
gives

(30)

We denote by I(α) the integral with respect to x appear-
ing on the right-hand side of this formula, where α =
ω2/2c2Z2. The evaluation of this integral is elementary,
but cumbersome; as a result, we obtain

(31)

In accordance with relation (23), the total spectrum can
be represented in the form

(32)
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where dW1/dω can be expressed with the help of for-
mula (27), and

(33)

4. CONCLUSIONS

Thus, we have calculated the total spectra of reemis-
sion of an ultrashort electromagnetic pulse by hydro-
gen-like and helium-like atoms. We managed to take
into account exactly both the spatial inhomogeneity of
the pulse field over the atomic size and the momentum
of the photons being emitted. Using expressions (27)
and (33) and introducing the number N of electrons in
the atom, we can write formula (32) for the total spec-
trum dW/dω in the form

(34)

Such a notation for the spectrum appears as convenient
since formula (34) coincides with formula (22) for
N = 1 and, hence, describes the spectrum of a hydro-
gen-like atom with the effective nuclear charge Z and
the emission spectrum of a helium-like atom for N = 2.
For atoms with an arbitrary number of electrons (N ≥ 2),
formula (34), in accordance with the line of reasoning
following formula (27), may form the basis for a qual-
itative description and for estimating the dependence of
the spectrum of reemission of a spatially inhomoge-
neous pulse on the number of atomic electrons. The
spectrum (34) of reemission of a spatially inhomoge-
neous pulse consists of the incoherent (proportional
to N) and coherent (proportional to N2) parts. Since
I(α)  8/3 for ω  0, the reemission spectrum is
proportional to N2 in the low-frequency range (when
ω2/Z2c2 ! 1) and is coherent by nature. Obviously, the
case of low frequencies corresponds to the coherent
nature of the reemission of a spatially homogeneous
pulse by many-electron atoms, while in the high-fre-
quency range (when ω2/Z2c2 @ 1 and I(α)  0), the
spectrum is proportional to N and is incoherent by
nature.

In accordance with [25], in order to obtain the cross
section of pulse reemission, the spectra defined by for-
mulas (19) and (34) must be multiplied by ω and
divided by the energy flux I expressed in terms of the
integral of the absolute value of the Poynting vector
S(t) = c(4π)–1E2 with respect to time,

(35)

dW2

dω
----------

1
2π
------ 1

c3ω
--------- f 0 ω( ) 2E0

2I α( ).=

dW
dω
--------

2
3π
------ 1

c3ω
--------- f 0 ω( ) 2=

× E0
2 N 1 ω2

c2Z2
----------+ 

  N N 1–( )3
8
--- I α( )+ .

I tS t( )d

∞–

∞

∫ c
4π
------E0

2 π
2 2α
--------------

ω0
2

2α2
---------–

 
 
 

exp 1+ .= =
JOURNAL OF EXPERIMENTAL 
ACKNOWLEDGMENTS
This study was supported financially by the Minis-

try of Education of the Russian Federation (grant
no. E02-3.2-512) and by the Russian Foundation for
Basic Research (project no. 01-02-17047).

REFERENCES
1. G. A. Mourou, Ch. P. J. Barty, and M. D. Perry, Phys.

Today 51, 22 (1998).
2. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545

(2000).
3. N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88,

203901 (2002).
4. E. Hertz, N. A. Papadogiannis, G. Nersisyan, et al., Phys.

Rev. A 64, 051801 (2001).
5. V. I. Usachenko and V. A. Pazdzersky, J. Phys. B 35, 761

(2002).
6. K. Mishima, M. Hayashi, J. Yi, et al., Phys. Rev. A 66,

033401 (2002).
7. S. Basile, F. Trombetta, G. Ferrante, et al., Phys. Rev. A

37, 1050 (1988).
8. C. Leone, S. Bivona, R. Burlon, et al., Phys. Rev. A 40,

1828 (1989).
9. L. Rosenberg and F. Zhou, Phys. Rev. A 46, 7093 (1992).

10. H. S. Reiss and V. P. Krainov, Phys. Rev. A 50, R910
(1994).

11. G. Duchateau, E. Cormier, and R. Gayet, Phys. Rev. A
66, 023412 (2002).

12. N. Milosevic, V. P. Krainov, and T. Brabec, J. Phys. B 35,
3515 (2002).

13. H. K. Avetissian, A. G. Markossian, and G. F. Mkrtchian,
Phys. Rev. A 64, 053404 (2001).

14. A. D. Kondorskiy and L. P. Presnyakov, J. Phys. B 34,
L663 (2001).

15. J. B. West, J. Phys. B 34, R45 (2001).
16. S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894

(1998).
17. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Opt.

Commun. 148, 75 (1998).
18. A. V. Sokolov, D. D. Yavuz, and S. E. Harris, Opt. Lett.

24, 557 (1999).
19. A. E. Kaplan and P. L. Shkolnikov, Phys. Rev. Lett. 88,

074801 (2002).
20. R. Moshammer, W. Schmitt, J. Ullrich, et al., Phys. Rev.

Lett. 79, 3621 (1997).
21. A. V. Selin, A. M. Ermolaev, and C. J. Joachain, Phys.

Rev. A 67, 012709 (2003).
22. V. B. Berestetskiœ, E. M. Lifshitz, and L. P. Pitaevskiœ,

Quantum Electrodynamics, 3rd ed. (Nauka, Moscow,
1989; Pergamon Press, Oxford, 1982).

23. C. A. Bertulani and G. Baur, Phys. Rep. 163, 209 (1998).
24. J. Eichler and W. E. Meyrhof, Relativistic Atomic Colli-

sions (Academic, New York, 1995).
25. L. D. Landau and E. M. Lifshitz, The Classical Theory

of Fields, 7th ed. (Nauka, Moscow, 1988; Pergamon
Press, Oxford, 1975).

26. A. J. Baltz, Phys. Rev. A 52, 4970 (1995).
27. N. Toshima and J. Eichler, Phys. Rev. A 42, 3896 (1990).
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003



EMISSION AND ELECTRON TRANSITIONS IN AN ATOM 921
28. V. I. Matveev and M. M. Musakhanov, Zh. Éksp. Teor.
Fiz. 105, 280 (1994) [JETP 78, 149 (1994)].

29. A. J. Baltz, Phys. Rev. Lett. 78, 1231 (1997).
30. A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997).
31. J. Bauer, J. Plucinski, B. Piraux, et al., J. Phys. B 34,

2245 (2001).
32. G. Lagmago Kamta, T. Grosges, B. Piraux, et al.,

J. Phys. B 34, 857 (2001).

33. C. C. Chiril , N. J. Kylstra, R. M. Potvliege, et al., Phys.
Rev. A 66, 063411 (2002).

34. M. W. Walser, C. H. Keitel, A. Scrinzi, et al., Phys. Rev.
Lett. 85, 5082 (2000).

35. D. B. Milo evi , S. Hu, and W. Becker, Phys. Rev. A 63,
011403 (2001).

36. N. J. Kylstra, R. M. Potvliege, and C. J. Joachain,
J. Phys. B 34, L55 (2001).

37. A. M. Dykhne and G. L. Yudin, Usp. Fiz. Nauk 125, 377
(1978) [Sov. Phys. Usp. 21, 549 (1978)].

38. V. I. Matveev and É. S. Parilis, Usp. Fiz. Nauk 138, 573
(1982) [Sov. Phys. Usp. 25, 881 (1982)].

a

^

c

^

c

^

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
39. J. Eichler, Phys. Rev. A 15, 1856 (1997).
40. G. L. Yudin, Zh. Éksp. Teor. Fiz. 80, 1026 (1981) [Sov.

Phys. JETP 53, 523 (1981)].
41. V. I. Matveev, Fiz. Élem. Chastits At. Yadra 26, 780

(1995) [Phys. Part. Nucl. 26, 329 (1995)].
42. I. C. Percival, in Atoms in Astrophysics, Ed. by

P. G. Burke, W. Eissner, D. G. Hummer, and I. C. Per-
cival (Plenum, New York, 1983; Mir, Moscow, 1998).

43. V. I. Matveev, Zh. Éksp. Teor. Fiz. 121, 260 (2002)
[JETP 94, 217 (2002)].

44. A. B. Migdal, Qualitative Methods in Quantum Theory
(Nauka, Moscow, 1975; Benjamin, Reading, Mass.,
1977).

45. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 3: Quantum Mechanics: Non-Relativistic
Theory, 4th ed. (Nauka, Moscow, 1989; Pergamon, New
York, 1977).

46. A. R. Holt, J. Phys. B 2, 1209 (1969).

Translated by N. Wadhwa
SICS      Vol. 97      No. 5      2003



  

Journal of Experimental and Theoretical Physics, Vol. 97, No. 5, 2003, pp. 922–931.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 124, No. 5, 2003, pp. 1030–1040.
Original Russian Text Copyright © 2003 by Shilkin, Dudin, Gryaznov, Mintsev, Fortov.

                                                 

PLASMA, 
GASES
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Abstract—The results are presented of experiments performed to measure the electron concentration and con-
ductivity of a partially ionized inert gas plasma in a magnetic field. The plasma was generated behind the front
of incident and reflected shock waves excited by explosively driven linear generators. A magnetic field of about
5 T was formed inside a solenoid wound on the generator channel. Measurements were taken at P = 30–650 MPa,
T = 6000–17000 K, and a Coulomb nonideality parameter of 0.01–2.8. Electron concentrations calculated from
measured Hall voltages reached 1.6 × 1021 cm–3. The recorded conductivities were in the range 0.1–200 Ω–1 cm–1.
The experimental results were compared with various models of the thermodynamic and transport properties
of a nonideal plasma. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The determination of the electron concentration of a
low-density plasma does not create difficulties for
either measurements or theory, which calculates ioniza-
tion equilibria and transport properties using well-
grounded models [1, 2]. The situation becomes much
more complex as the plasma density increases, when
the mean potential energy of the interaction between
plasma particles (Ep = e2/rD , where rD is the Debye
shielding radius) is comparable to their mean kinetic
energy (Ek = kT) and the plasma becomes nonideal (the
nonideality parameter is Γ = Ep/Ek ~ 1) [3–5].

Interest in a nonideal plasma stems from both the
necessity of describing the fundamental properties of
media under extreme conditions and the feasibility of
its practical use [4].

A rigorous theoretical description of a dense plasma
is a complex problem [3, 4, 6], primarily because taking
into account interparticle interactions in a plasma
requires a rigorous solution to the quantum-mechanical
many-body problem, which has only been solved in the
simplest cases. For this reason, additional approxima-
tions and simplifications are introduced for selecting
models and methods for solving equations. The calcu-
lation results therefore strongly depend on the initial
assumptions and significantly change when these
assumptions are refined.

This brings to the fore experimental studies of plas-
mas with strong interparticle interactions [4]. However,
a dense plasma is not a simple object for experimental
studies either. Among the difficulties of its generation
and parameter determination, it should be stressed that
measurements are always performed under high tem-
1063-7761/03/9705- $24.00 © 0922
perature and pressure conditions, which entails per-
forming experiments in a pulsed mode. This enhances
the requirements on measuring devices, which must
record the results in submicrosecond times with an
acceptable accuracy. In addition, the unit for measure-
ments should have an energy source of a fairly large
capacitance and provide high-speed energy transfer to
the object under study.

Currently, electric and dynamic methods for gener-
ating nonideal plasmas are widely used [4]. Fairly
extensive experimental studies of their thermodynamic,
transport, and optical properties have been performed
[3, 4]. There remains, however, much uncertainty in the
data on the electron concentration of a nonideal plasma
in the region of its partial ionization. In this parameter
range, a “chemical” model is usually applied to study
ionization equilibria. This model enables reliable data
to be obtained for a weakly nonideal plasma. With a
nonideal plasma, an uncertainty arises in calculations
of plasma parameters, including the concentration of
electrons, because of the absence of a rigorous criterion
for dividing them into free and bound electrons. Direct
experimental measurements of this important parame-
ter are lacking.

In this work, the concentration of electrons in a non-
ideal plasma was determined using the approach based
on Hall voltage measurements, which is extensively
used in solid-state physics [7].

2. PLASMA DIAGNOSTICS
AND GENERATION

Because a high energy concentration is necessary to
produce a nonideal plasma, we used the dynamic
2003 MAIK “Nauka/Interperiodica”
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method based on gas compression and irreversible
heating in the front of high-power shock waves. This
technique is a reliable means of generating spatially
uniform plasma bunches with a characteristic size
(about 1 cm) sufficient for probe diagnostics. For self-
similar flows, the conservation laws at the shock-wave
discontinuity are written in a simple algebraic form [8],
which allows the thermodynamic parameters of a
shock-compressed gas to be calculated from the mea-
sured flow hydrodynamic parameters.

We used explosively driven linear generators [9,
10], one of which is schematically shown in Fig. 1. The
working channel of the generator was a polyvinyl plas-
tic tube approximately 30 cm long with an inner diam-
eter of about 5 cm. The active explosive charge (ammo-
nite or RDX) was loaded into the channel. The total
charge length was 12–15 cm. It was initiated by an elec-
tric detonator. A shock wave was formed when detona-
tion products expanded into the gas to be studied. The
thickness of plasma bunches was determined by the dif-
ference between the velocity D of the shock wave front
and the mass velocity U of plasma motion. Under sta-
tionary conditions, D and U were constant and the
thickness of the plasma bunch linearly increased with
time. Plasma diagnostics were performed in both inci-
dent and obstacle-reflected shock waves. An obstacle
made of organic glass was placed at a distance of 70–
100 mm from the end face of the charge. The interac-
tion between an incident plasma bunch and the obstacle
created a reflected shock wave, which caused further
plasma heating and ionization.

The characteristics of the plasma formed behind the
shock wave front are determined by the initial gas state
and shock wave velocity D. Changing them enables a
plasma with the required parameters to be obtained. In
this work, the initial gas pressure was P0 = 0.4 MPa, the
initial temperature was T0 = 300 K, and the range of
shock wave velocities was D = 2–10 km/s. The velocity
D depended on the selected condensed explosive. Bulk
ammonite gave velocities D of 2–3 km/s in Ar and Xe,
and pressed desensitized RDX gave D of 9–11 km/s in
He. The D, P0, and T0 parameters were used to calculate
the thermodynamic [11] and electrophysical plasma
parameters. The calculations were based on the
assumption that the flow was one-dimensional and sta-
tionary. The validity of this assumption was checked in
a special series of optical (high-speed filming) and elec-
tric contact probe experiments. It was shown that, at a
distance of 50–100 mm from the end face of the charge,
the flow was one-dimensional and stationary, which
allowed a uniform plasma bunch with a characteristic
size of several centimeters to be obtained. One of the
problems was the presence of lateral unloading waves,
which noticeably curved the plane shock wave front as
the wave moved from the end charge face. To solve this
problem, the measuring cell was mounted where the
plane-front region of the plasma bunch had a size (20–
25 mm) sufficient for measuring plasma properties. Of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
no less importance is the selection of the generator
material when a shock-compressed plasma is formed in
explosively driven linear generators. On the one hand,
this material must resist the necessary initial pressures;
on the other, the velocity of shock-wave perturbation
propagation over generator walls must be lower than
the velocity of the shock wave in the gas under study to
prevent the “channel” effect. We studied argon and
xenon plasmas in the region of low shock wave veloci-
ties using generators made of polyvinyl plastic; the
velocity of sound in polyvinyl plastic was cs ≈ 2.3 km/s.

The low-frequency (ω ! ωpe = )
plasma conductivity was measured by the four-probe
method extensively used in solid-state physics. This
method allows the influence of near-electrode phenom-
ena to be avoided in shock-compressed plasma mea-
surements [12, 13]. The transport electric current I was
supplied through two external electrodes (Fig. 1,
probes 1), and the voltage Uc caused by this current was
taken from two internal electrodes (Fig. 1, probes 3).
The conductivity was calculated with an accuracy of
about 30% by the equation

(1)

where h is the plasma thickness and K is the geometri-
cal factor of the measuring cell, which takes into
account the size of the probes and the sample, and their
mutual arrangement. This coefficient was calculated
theoretically and refined by electrolytic modeling. Prior
to an explosion, the obstacle with the probes was placed
into an electrolyte having known parameters; the geom-
etry of measurements was preserved. The conductivity
of the electrolyte was calculated from its concentration
using handbook data [14]. The errors in K, h, I, and Uc

were approximately 10% without taking into account
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Fig. 1. Scheme of the experimental unit: 1, power probes;
2, probes for conductivity measurements; 3, probes for
electron concentration measurements; 4, generator channel;
5, solenoid; 6, obstacle; 7, explosive; 8, electric detonator;
9, solenoid current source; 10, source of current through a
plasma; 11, oscilloscopes; and 12, delayed pulse generator.
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magnetic field effects. This gave a 20% accuracy of
conductivity determinations. With the magnetic field
included, the error in I and Uc increased by a factor of
1.5–2.

The procedure for determining the electron concen-
tration was based on measuring Hall effect parameters.
The Hall effect is the appearance of a Hall electric field
in a medium in magnetic field B when current I noncol-
linear with field B flows through the medium. The Hall
electric field is

(2)

where j is the current density in the sample and RH is the
Hall coefficient. For charge carriers of one type, RH =
±rH/n±e, where n is the concentration of the carriers, the
minus sign corresponds to electronic conductivity, the
plus sign corresponds to the positively charged carriers
(ions and holes), and rH is a theoretical factor on the
order of one that takes into account the velocity distri-
bution of the ions and the mechanism of their scatter-
ing; for scattering by a Coulomb potential, rH = 1.93 [7,
15, 16].

In electron concentration measurements, a plasma
was placed into a magnetic field. The transport current I
was passed through one pair of probes (Fig. 1, probes 1)
immersed into the plasma, and the Hall voltage UH was
taken from the other pair of probes (Fig. 1, probes 2).
The Hall coefficient was calculated with an accuracy of
about 50% by the equation

(3)

EH RH j B×[ ] ,=

RH

UHh
BIQ
----------,=

D1

D2

D3

j

B

T1

T2

L2

C2

L1 C1IGT1

IGT2

Rc

Rc

r

r

EH

1

1

2 2
3

3

R0

Generator channel

Fig. 2. Electrical circuit for measurements: L1C1R0, circuit
that forms current through a plasma; L2C2, solenoid circuit;
D1–D3, Rogovski loops; T1–T2, pulse transformers; IGT1
and IGT2, ignitrons; 1, power probes; 2, probes for electron
concentration measurements; and 3, probes for conductivity
measurements. 
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where Q is the geometric factor of the cell, which was
determined in a special series of measurements with a
weakly nonideal helium plasma.

In an incident wave, the magnetic field penetrates
into the plasma volume during characteristic experi-
ment times on the order of 1 µs (the plasma skin depth
is δ ≈ 5 cm > r = 2.5 cm, where r is the radius of the
plasma bunch). In a reflected wave, we have frozen
magnetic field conditions (δ < r).

The main difficulty that limits probe measurements
in a shock-compressed plasma in a pulsed magnetic
field is a high level of extraneous signals generated by
changes in the magnetic flux through the measuring cir-
cuits. With Hall effect measurements, the problem is
complicated by a decrease in the recorded signal inten-
sity as the concentration of electrons increases. To
solve this problem, the control circuits were minimized
and placed in a plane parallel to the magnetic field. The
probes were arranged symmetrically with respect to the
axis of the solenoid. All measuring leads were con-
nected to the explosive assembly coaxially with the
magnetic field direction. To identify extraneous signals
generated by magnetic field changes against the back-
ground of the total signal, the measuring probes were
made longer than the power probes in several experi-
ments. The moving plasma first connected to the mea-
suring probes. When plasma connected to the power
probes, signal was added to the noise on the measuring
probes.

A pulsed magnetic field was generated by a dis-
charge of a capacitor bank of capacitance C2 = 1 mF
(Fig. 2) through an inductance solenoid L2 = 20 µH
wound on the explosively driven generator. A 20–30 kA
current flowed through it in experiments; the derivative
of the current was measured by a Rogovski loop D2
accurate to about 10%. The magnetic induction in the
center of the solenoid was determined by the equation

where µ0 is the magnetic constant, N = 25 is the number
of solenoid turns, I = 25–30 kA is the electric current
flowing through the solenoid, l = 0.15 m is the length of
the solenoid, and d ≈ 0.05 m is the diameter of the sole-
noid.

The source of the current supplied to the plasma was
capacitor bank C1. Current pulses were formed by an
RLC circuit (C1 = 100 µF, L1 ≈ 300 µH, and R0 ≈ 1 Ω).
Current switching was effected by an IRT-6 ignitron.
Before power probes were closed by a plasma, the cur-
rent flowed through shunt resistance R0. The limiting
voltage of capacitor bank C1 charging was 2–2.5 kV; it
was determined by the absence of breakdown between
power electrodes spaced 12–20 mm apart on the exper-
imental assembly. Inductive sensor D3 measured the
current flowing through the plasma. It was placed

B
µ0NI

l2 d2+
-------------------,=
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directly on the measuring cell. The voltage for conduc-
tivity and electron concentration determinations was
measured by pulsed transformers T1 and T2 made of fer-
rite high-frequency cores. Resistors r limited currents
and thereby prevented core saturation. The transform-
ers were tested to find if they reproduced microsecond
pulse fronts with a time resolution no lower than 0.1–
0.3 µs. Resistances Rc = 50 Ω were placed at oscillo-
scope inputs to correlate measuring circuits. The sig-
nals from the transformers and Rogovski loops were
transferred to a complex of S9-8 dual trace storage
oscilloscopes. To remove currents induced by high-
power electric and magnetic fields, the measuring oscil-
loscopes were placed into a screened room. In each
experiment, two or three independent oscillograms of
each parameter were digitized and sent to a PC through
a general-use channel. The recording apparatus,
devices for switching kiloampere currents, and devices
for blasting explosives were triggered by a delay pulse
generator at the required time instants. The delay times
were selected to ensure maximum currents through the
solenoid and the plasma bunch at the instant when it
flew up to the obstacle.

We also measured the velocity D of the shock wave
front with the use of three pairs of probes of different
lengths. If the times of the arrival of a plasma bunch to
the probes and the distance between the probes are
known, it is easy to calculate D. The accuracy of D
determinations was 1–3%. The thickness of the plasma
bunch was calculated from the Hugoniot curves for
inert gases [17] taking into account the distance from
the charge end face to the obstacle with the probes.

Spatially uniform samples are needed to simplify
interpreting Hall effect data. This requirement predeter-
mined our selection of the method for plasma genera-
tion. The use of shock waves allows uniform dense
plasma bunches several centimeters in size to be
obtained. The procedure is characterized by high repro-
ducibility of measurement results.

Correct Hall voltage measurements also require the
use of a spatially uniform magnetic field freely pene-
trating into a plasma. A plasma is a moving object in
our experiments, and its flow should be such that the
time of magnetic field diffusion into its volume be
much shorter than the characteristic hydrodynamic
time; that is, the magnetic Reynolds number deter-
mined as the ratio between these times should be
smaller than one.

The estimates obtained in [18, 19] for B = 5 T and
r = 2.5 cm show that such flows arise in an argon
plasma at D < 4 km/s and in a xenon plasma at D <
3 km/s. In addition, we may expect the formation of a
plasma with nonideality parameters up to one in argon
and up to three in xenon behind the reflected shock
wave front at the specified velocities of the incident
shock wave front.

To simplify the interpretation of measurement
results, the conductivity of the plasma must be higher
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
than that of detonation products. According to [20], the
characteristic conductivity of detonation products behind
the detonation front is fairly high (0.1–1 Ω–1 cm–1), but
the expansion of detonation products substantially
(10−100 times) decreases it. It follows from our exper-
imental oscillograms that the arrival of detonation
products to the power and measuring probes did not
cause sharp signal changes, which was evidence that
detonation products did not shunt the plasma.

A typical experimental oscillogram taken from [21]
is reproduced in Fig. 3, where the incident and reflected
shock wave regions are shown. The plasma conductiv-
ity increases in reflected waves, its resistance decreases
and becomes smaller than the shunt resistance, and the
current through the plasma therefore increases. The
Hall electromotive force decreases in the reflected wave
because of an increase in the electron concentration
caused by further plasma heating and compression.
Voltage taken from the probes for determining conduc-
tivity in the reflected wave decreases because the resis-
tance of the plasma decreases more rapidly than the
current increases.

3. RESULTS AND DISCUSSION

Measurements were performed in shock-com-
pressed, partially ionized (the degree of ionization α =
10–6–10–1) helium, argon, and xenon plasmas. The elec-

tronic component was not degenerate (ne  ! 1). The
range of parameters that we studied was 0.01 < Γ < 2.8,
P = 20–650 MPa, and T = 6000–22000 K.

The thermodynamic parameters and the composi-
tion of shock-compressed plasmas were calculated
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Fig. 3. Typical oscillogram of experiments with an argon
plasma: (1) current through the plasma, (2) voltage UC on
probes for conductivity measurements, and (3) voltage UH
on probes for electron concentration measurements; t1–t3
are the instants of plasma arrival at probes 1–3, t4 is the
beginning of reflection, and t5 is the end of reflection.
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using the SAHA-IV code based on the chemical plasma
model [1, 4, 5, 22]. In this model, a plasma is treated as
a quasi-neutral mixture of particles of different kinds
(electrons, atoms, and variously charged ions) that
interact with each other. The Coulomb interaction of
the particles was described at the level of the Debye
approximation in a grand canonical ensemble [22],
which was earlier applied in [17, 23] to describe Cou-
lomb effects in a shock-compressed plasma. At high
degrees of plasma compression, the repulsion of atoms
and ions at short distances [24] caused by overlap of
their outer electron shells becomes important. This
effect was described in the approximation of “soft”
spheres [25]. The ratio between the number densities of
the particles of different kinds nj was determined from
the condition of minimum free energy [2]. No correc-
tions to the thermodynamic functions for magnetic field
effects were introduced.

The experimental conductivities are plotted in
Figs. 4–6 in σ–D coordinates, where D is the velocity
of the incident shock wave front and σ is the plasma
conductivity behind the incident and obstacle-reflected
shock wave fronts. All data correspond to an initial gas
pressure of 0.4 MPa. The calculated values are shown
by curves. The lower groups of curves correspond to
the incident wave, and the upper curves, to the reflected
wave. The calculated plasma pressures and tempera-
tures are plotted on additional abscissa axes in Figs. 4
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Fig. 4. Calculated and experimental conductivity of a xenon
plasma: (1) our experimental data, (2) calculations by the
Spitzer equation, (3) calculations by (6), (4) additive
approximation, (5) Coulomb conductivity component, and
(6) conductivity resulting from electron scattering by
atoms.
JOURNAL OF EXPERIMENTAL 
and 5. The lower values correspond to the plasma
parameters in the incident wave, and the upper values,
to the plasma parameters in the reflected wave.

In the presence of an external magnetic field and in
the case of a spherically symmetrical conduction band,
the equation for the transverse conductivity component
obtained from the kinetic equation in the τ approxima-
tion has the form [26]

(4)

where Ω = eH/mec is the electron cyclotron frequency,
ε is the kinetic energy of the electrons, k is the wave
vector modulus, τ is the momentum relaxation time,
and f0(ε) is the equilibrium distribution function of the
electrons, which is related to the electron concentration
by the equation

(5)

Assuming that the conduction band is parabolic (ε =
"2k2/2me) and taking into account that the electrons
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Fig. 5. Calculated and experimental xenon plasma conduc-
tivity: (1) ideal plasma approximation with the number of
energy levels n = 100 for calculating the partition functions
of atoms and ions; (2) the Debye approximation in a grand
canonical ensemble, the partition functions of atoms and
ions are calculated for energy levels En not exceeding I – ∆I,
where ∆I is the decrease in the ionization potential; and
(3) Debye approximation in a grand canonical ensemble,
the partition functions of atoms and ions and calculated for
the ground state only; the experimental values are shown by
symbols.
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obey classical statistics, we obtain the final equation for
conductivity calculations,

(6)

where

(7)

the summation is over ions with different charges; γj is
a factor taking into account electron collisions and
depending on the ionization multiplicity [27]; νei and
νea are the energy-dependent frequencies of electron
collisions with ions and atoms,

(8)

na and ni are the concentrations of atoms and ions,
respectively; and Qea and Qei are the transport cross sec-
tions of electron scattering by atoms and ions, respec-
tively. The cross sections of electron scattering by
atoms were taken from [28]. The cross sections of elec-
tron scattering by ions were calculated as

(9)

where

In the absence of a magnetic field, (6) transforms
into the Frost interpolation equation [29]. The Frost
equation is constructed to give the Lorentz and Spitzer
asymptotic behaviors for weakly and completely ion-
ized plasmas, respectively, in the limiting cases.

The main problems in calculating the conductivity
of a partially ionized plasma are the selection of the
thermodynamic model for determining the component
composition of the plasma and the model for describing
its transport properties. Let us estimate the influence of
each of these factors separately. First, we will perform
calculations using different transport property models
with a set thermodynamic model. Next, we will use dif-
ferent thermodynamic models with a set model of
transport properties.

Different methods for calculating the conductivity
of a partially ionized xenon plasma are compared in
Fig. 4 for a thermodynamic model that takes into
account Coulomb interactions at the level of the Debye
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approximation in a grand canonical ensemble and a
model of soft spheres to describe the repulsion of heavy
particles [25]. Curve 2 corresponds to conductivity cal-
culations by the Spitzer equation [27]. The calculations
according to the model described above (which is
similar to the Frost equation) are shown by curve 3.
Curve 4 corresponds to independent electron scattering
by atoms and ions [30]. We then have

This equation is based on the assumption that the total
resistance of the conducting region is the sum of the
neutral and charged component resistances to the
motion of electrons; σei is the Coulomb conductivity
component, which corresponds [29] to including ion–
electron collisions alone; and σea is the conductivity [29]
only taking into account electron–neutral collisions.
The calculated σei and σea values are shown by curves 5
and 6, respectively. According to Fig. 4, calculations
with different models of the transport properties of a
dense plasma give a large spread of conductivity val-
ues. The experimental data are reasonably described
by (6) only, the other methods exaggerate conductivi-
ties compared with experiment. The dependences for

1
σ
--- 1

σei

------
1

σea

-------.+=
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Fig. 6. Conductivity of a nonideal argon plasma (thermody-
namic properties are described in the Debye approximation
for a grand canonical ensemble): (1) our experimental data,
(2) calculations by the Spitzer equation, (3) calculations by
(6) with B = 0, (4) additive approximation; (5) Coulomb
conductivity component, (6) conductivity resulting from
electron scattering by atoms, and (7) calculations by (6)
with B = 5 T.
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the other thermodynamic models of a dense xenon
plasma have the same shape as those shown in Fig. 4.

Our data on the conductivity of a partially ionized
xenon plasma are compared in Fig. 5 with the results of
calculations by (6) for different thermodynamic mod-
els. The calculated conductivity curves for the incident
wave differ insignificantly and are not at variance with
the measured conductivities. For the reflected wave, the
difference between the experimental and calculated
conductivities becomes noticeable. The conclusion can
be drawn that the “ideal plasma” model with the num-
ber of energy levels n = 100 in the partition functions
for the atoms and ions gives the worst agreement with
the experimental data.

Different methods for calculating the conductivity
of a partially ionized argon plasma at the level of the
Debye approximation in a grand canonical ensemble
are compared in Fig. 6. At velocities D < 2.9 km/s, the
electronic component is magnetized behind the inci-
dent wave front. The magnetic field contribution is seen
when we compare curves 7 (obtained taking the mag-
netic field into account) and 3 (obtained ignoring the
magnetic field). The behavior of the curves in Fig. 6
qualitatively coincides with that of the curves in Fig. 4.
Most models predict exaggerated conductivity values
compared with experiment. Equation (6) satisfactorily
describes our measurement results.

When the contribution of atom–electron collisions
was substantial, the Coulomb conductivity component
(Fig. 7) was separately estimated by a method similar to
that described in [31]. Namely, the frequency of ion–

1
2
3
4
5
6
7
8
9
10
11
12

1 100.1
0.1

1

σ*

Fig. 7. Dependences of the dimensionless conductivities of
nonideal media on the nonideality parameter: σ* = σc/σs for
experimental values and σ* = σ/σs for theoretical models,

σs = 25/2(kT)3/2/e2 ; (1–4) are data from [12, 13];

(5), (6), and (7) are our data for helium, xenon, and argon,
respectively; (8) T-matrix, (9), (10), and (11) are data
from [33, 27, 32, 34], respectively; and (12) is depen-
dence (10) at K = 1 and Ωτ = 0.

me

Γ
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electron collisions  in the equation
for conductivity was multiplied by a factor K that
brought the calculated conductivities in coincidence
with the experimental values. The Coulomb conductiv-
ity component σC was then calculated as

(10)

where τ in the equation for the magnetization parameter
is determined by electron collisions with both ions and
atoms.

The Coulomb contributions to conductivity
obtained as described above are shown in Fig. 7, which
also presents several theoretical approximations and
experimental data from other works. Curve 9 corre-
sponds to the Spitzer theory, which describes well the
conductivity of a completely ionized gas or a gas with
a low degree of ionization. At Γ ≥ 3, Spitzer conductiv-
ities are indeterminate. The experimental data on shock
compression of inert gases and air [12, 13] are shown
by curves 1–4. Curve 12 corresponds to theoretical
dependence (6) at K = 1 and Ωτ = 0. This curve has a
correct asymptotic behavior in the limit of a weakly
nonideal plasma. Curve 10 corresponds to a solution to
the converging kinetic equation from [32], which is
valid to the first order in Γ. Interparticle interactions are
taken into account in this equation through a screened
Coulomb potential.

For charge carriers of two types (electrons and ions
in our problem), calculations give the Hall coefficient in
the form [15]

(11)

Here, index “e” corresponds to electrons; “i,” to ions;
re, i and µe, i are the Hall factors and mobilities of the
charged components, respectively; and ne and ni are
their concentrations.

We studied a singly ionized plasma; that is, ne = ni in
our experiments. Negative Hall electromotive force val-
ues were obtained. This leads us to conclude that the
mobility of the electrons was higher than that of the
ions; that is, µe > µi .

The drift mobility µd of electrons differs from the
Hall mobility µH , rH = µH/µd [16]. This requires esti-
mating the Hall factor rH to refine the electron concen-
tration. The Hall factor was calculated taking into
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account the magnetic field value by the equation taken
from [16],

(12)

where angle brackets denote averaging over all energies
according to the equation

(13)

Here, f0 is the distribution function of the electrons and
µe = µe(ε) = eτ(ε)/me is the energy dependence of the
mobility of the electrons. The energy dependence of the
momentum relaxation time τ(ε) was taken the same as
in conductivity calculations.

The Hall factor shown in Fig. 8 as a function of the
nonideality parameter was obtained only taking into
account electron–ion and electron–electron collisions.
In the limit of a weakly ionized plasma when Γ  0,
we obtain the result known from solid-state physics,
namely, rH  1.93, which corresponds to electron
scattering by ionized impurities. The Hall factor value
is determined by the type of the functional dependence
of the momentum relaxation time on energy. This
dependence changes at Γ ≈ 1, which explains the kink
present in the curve.

Apart from the Debye approximation in a grand
canonical ensemble, the ideal plasma [2] and Debye–
Hückel models, which are chemical model variants [22],
were used to describe Coulomb interaction effects for
comparison with the experimental electron concentra-
tions. The ideal plasma model completely ignores inter-
particle interactions and is therefore only applicable to
a strongly rarefied or high-temperature plasma. Along
with various models of Coulomb nonideality, the influ-
ence of bound states on the total thermodynamic values
and the calculated electron concentrations ne was ana-
lyzed using several variants of imposing limitations on
partition functions [22].

The experimental dependences of the electron con-
centrations obtained taking into account the Hall fac-
tor (12) values on the shock wave front velocity at a
P0 = 0.4 MPa initial gas pressure are compared in Fig. 9
with the data calculated using various theoretical mod-
els. The calculated degrees of plasma ionization are
plotted on the additional abscissa axis in Fig. 9. The
lower and upper values correspond to the plasma
parameters in the incident and reflected waves, respec-
tively.

Two different limitations were imposed on partition
functions when calculations were performed in the
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ideal plasma approximation. In one variant, up to a hun-
dred energy levels of the atom and ion were used; in the
other, the only ground state was included. The Cou-
lomb interaction of free charges was taken into account
not only in the Debye approximation in a grand canon-
ical ensemble but also including terms quadratic in the
nonideality parameter. Calculations in the Debye–
Hückel approximation are only possible in a narrow
range of low shock wave front velocities for both argon
and xenon. The velocities at which we were able to use
this model are denoted by arrows in Fig. 9. The higher
shock compression rates correspond to larger nonideal-
ity parameters, which result in the well-known [22]
model instability sometimes interpreted as a phase tran-
sition.

Moderately nonideal states (Γ < 0.3) are formed in
shock-compressed argon behind the incident wave
front in the velocity range of our measurements (2.3–
3.5 km/s) at an initial pressure of 0.400 ± 0.001 MPa.
At such nonideality parameter values, the theoretical
models diverge insignificantly and do not contradict
our experimental results. The Γ values in argon behind
the reflected wave front reached 1.2. Figure 9a shows
that, on the whole, the experimental ne values behind
the reflected wave front in argon lie below the values
obtained with the theoretical models described above.
This result can, for instance, be explained by the under-
valuation of the Hall factor, which may be caused by
the use of inaccurate cross sections for electron scatter-
ing by atoms and an incorrect functional dependence of
the momentum relaxation time on energy.

The experimental ne values obtained for the xenon
plasma are shown in Fig. 9b. The calculated Coulomb
nonideality parameter Γ for the xenon plasma reached
1.3 behind the incident wave front and 2.8 behind the
reflected wave front. The calculated and experimental
ne values for the incident wave do not contradict each

10–3 10–2 10–1 1 1010–4 Γ
1.0

1.2

1.4

1.6

1.8

rH

Fig. 8. Electronic Hall factor taking into account electron
collisions with charged particles.
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other. Noticeable discrepancies are observed for the
reflected wave. It can be suggested that curves 3 and 4
in Fig. 9b predict exaggerated ne values at Γ > 1.5,
whereas the Debye approximation in a grand canonical
ensemble is valid up to Γ = 3.

If the experimental electron concentrations are ana-
lyzed taking into account the experimental plasma con-
ductivity values, the conclusion can be drawn that, at
the current level of the accuracy of measurements, a
noncontradictory description of the electron concentra-
tion and conductivity is attained using the Debye
approximation in a grand canonical ensemble or the
ideal plasma approximation with partition functions of
atoms and ions calculated for the ground state.

It appears that drawing more definite conclusions on
the applicability of various models requires more pre-
cise measurements.
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Abstract—We investigate the formation of the charge and energy distributions of ions that slow down and ran-
domly change their charges in collisions with particles of the medium. We study the influence that the spread
of ions in charge has on the shape of the Bragg curve. The suggested diffusion approximation for the kinetic
equation of heavy ions allows the parameters of the ion charge and energy distributions to be easily determined
in the entire ion path. The parameters of the ion charge distribution are shown to be related to the ionization–
recombination cross sections. The ion distributions calculated in the suggested analytical model are compared
with the results of numerical calculations. We have obtained good agreement between the analytical, numerical,
and experimental results. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in the slowing down of ions stems from the
possible accomplishment of the thermonuclear fusion
chain reaction using beams of heavy ions. Being ori-
ented to this problem, we will consider the slowing-
down of high-energy ions of heavy elements in a mate-
rial that can be both weakly ionized and almost com-
pletely ionized. Below, we will not be concerned with
the behavior of ions as they slow down to velocities
comparable to the velocities of the material particles,
because the ions almost completely lose their energy in
this case.

The subject of charged particle slowing down in a
material has a long history, beginning with the studies
by Bethe and Bohr. Subsequently, the slowing-down
theory was significantly improved, but attention to how
the charge distribution of ions as they slow down influ-
ences the energy losses has arisen only recently. To
some extent, the influence of a change in charge on the
slowing-down of ions was taken into account in [1−5].
The authors of these papers considered the change in
the charge of an ion during its collision with plasma
particles as a random transition between a few charge
states. Their exact solutions are valid only for several
special cases and are inapplicable to the slowing-down
of highly charged ions in a material.

The suggested approximate method, which is based
on the equation that describes the kinetics of changes in
the charges and energies of heavy ions, is applicable to
ions of heavy elements with a large number of charge
states. This paper has the following structure. In Sec-
tion 2, we consider the dynamic equations for an ion
beam in the charge moment and diffusion approxima-
tions. In Section 3, we analyze the analytical ion charge
1063-7761/03/9705- $24.00 © 20932
and energy dependences of the cross sections for the
processes and compare them with the numerical calcu-
lations and experimental data. Approximate analytical
solutions, equations for the mean charge and the vari-
ance of the charge distribution, and the variance of the
fast ion energy distribution are considered in Sections 4
and 5. In Section 6, we compare our results with the
numerical calculations and published experimental
data.

2. DYNAMIC EQUATIONS
FOR THE SLOWING-DOWN AND CHANGE

IN THE CHARGES OF HEAVY IONS

The problem of heavy ions slowing-down leads to a
system of coupled kinetic equations for the flux densi-
ties of ions in different charge states Z:

(1)

Here,

(2)

(3)

is the stopping power of the material that depends on
the ion charge, ne is the total electron density of the
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medium (including bound electrons), and σi and σr are
the ionization and recombination cross sections that
were reduced to the electron density of the medium by
using the formula

(4)

where α is the ionization or recombination rate, and v
is the ion velocity relative to the particles of the
medium. The condition for a zero ionization cross sec-
tion of a completely stripped atom is obvious; a zero
recombination cross section for an ion with zero
charge, i.e., a neutral atom, is required to exclude from
consideration the negative ions whose formation prob-
ability in the present problem is extremely low.

Below, to analyze the equations, we will use a spe-
cial system of units in which the unit of energy is the
maximum ion energy and the unit of mean free path l is
a value close to the total mean free path of the ion with
a maximum energy and charge equal to the nuclear
charge:

(5)

where E0 is the maximum energy (the initial energy for
a monochromatic ion beam),

(6)

(Z1 is the ion nuclear charge, M is the ion mass, and L is
the Coulomb logarithm of the slowing-down). In this
system of units, the stopping power of the material has
a very simple form (we restrict our analysis to the non-
relativistic case, which is justified up to energies of
~100 MeV/nucleon):

(7)

Formulas for the stopping power were derived long ago
by Bethe [6] and Bohr [7] from the linearized electro-
dynamic equations for a moving particle. A simple
approximate formula for the energy losses can be easily
derived by combining the formulas by Bethe and Bohr
into a single expression:

(8)
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Here,  is the mean excitation energy of the atoms and
ions of the medium, ωp is the plasma frequency, and κ
is the ionization coefficient of the medium. Formula (8)
has many relativistic and nonrelativistic corrections
(see, e.g., [8–10]). For the subsequent analysis, the
exact form of the Coulomb logarithm in formula (8) is
unimportant. We only note that the stopping power does
not increase infinitely as the ion velocity tends to zero,
v   0 (see [10, 11]), but dependence (7) remains
valid down to low energies for the case under consider-
ation.

Let us rewrite Eqs. (1) in the new notation:

(9)

where

Below, we will omit the tilde over the dimensionless
cross sections  and . The dimensionless ionization
and recombination cross sections show the relative rate
of change in charge compared to the ion slowing-down.

In general, the slowing-down of an ion may be con-
sidered to be a slow process against the background of
which fast random changes in charge occur; these
changes force the ion to acquire an equilibrium (at a
given velocity relative to the medium) charge state.
Some of the empirical formulas that describe the
dependence of the equilibrium charge of an ion in a
cold material on its velocity will be considered at the
end of the next section.

This picture, which is always valid for cold targets,
can change for a strongly ionized material [12]. The
most effective recombination process, the recombina-
tion via electron–ion exchange in the medium, is absent
when ions of heavy elements with a high charge state
and a high energy slow down in strongly ionized
plasma. A sharp reduction in recombination causes the
equilibrium charge to shift to the range of high values,
and the ionization–recombination cross sections near
the equilibrium charge prove to be much smaller than
those for the motion of an ion in a cold material. As a
result, all terms of the kinetic equation become of the
same order of magnitude.

Let us obtain the first approximation to the solution
of system (9). We add Eqs. (9) with different Z:
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We assume that the ion spread in charge is negligible,
so only ions with a mean charge  (below, z denotes a
continuous approximation of the discrete variable Z)
may be considered. In this case, the equation reduces to
the well-known approximation of continuous slowing-
down. In this approximation, we obtain the following
system together with the equation for the mean charge:

(11)

Solving Eqs. (11) yields the first approximation to the
solution of problem (9) in which the ion energy is
uniquely related to the coordinate ξ:

(12)

For ions of fixed charge, for example, for the com-
pletely stripped nuclei of light elements, more accurate
kinetic models and their solutions can be found in [13].
For the ions of heavy elements of interest to us, the
most important mechanism responsible for the devia-
tion of the solution from expressions (12) is the spread
of ions in the charge state and the related spread in
energy.

Let us consider the possibility of using the method
of charge moments to obtain the next (in order of accu-
racy) solutions of the problem. In addition to the mean
charge, we introduce the second central moment of the
charge distribution or the charge variance D:

(13)

We also take into account the explicit dependence of sZ

on Z. The variables in the function s(Z, ε) are assumed
to be separable. This is a realistic assumption (see for-
mula (7)). According to this assumption, we write

(14)

and change the variable

(15)

using (7), we obtain
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We also introduce an ion flux density that also depends
on η:

(16)

where , just as N, is assumed to be normalized to
unity:

Given these transformations, system (9) takes the
form

(17)

Summing Eqs. (17) over Z, multiplying them by Z
and Z2, and adding them yields the following equations
for the moments:

(18)

where

and we use the expressions that follow from statistics

and that are valid at least when D ! :

(19)

To close the moment equations, some assumptions
regarding the charge dependences of the ionization and
recombination cross sections should be made to close
the moment equations. We assume that the range of
change in variables important for the solution of the

N ξ η,( ) N ξ ε,( )s1 ε( ),=

N

N ξ 0= η,( ) ηd∫ 1.=

∂NZ

∂ξ
---------- Z2∂NZ

∂η
----------– σi Z( ) σr Z( )+( )NZ–=

+ σi Z 1–( )NZ 1– σr Z 1+( )NZ 1+ .+

∂n
∂ξ
------

∂
∂η
------ Z

2
D+( )n( )– 0,=

∂Zn
∂ξ

----------
∂

∂η
------ Z Z

2
3D+( )n( )– σi σr–( )NZ,

Z

∑=

∂ Z
2

D+( )n( )
∂ξ

--------------------------------
∂

∂η
------ Z

2
Z

2
6D+( )n( )–

=  2 Z σi σr–( )NZ σi σr+( )NZ,
Z

∑+
Z

∑

Z
1
n
--- ZNZ

Z

∑=

Z
2

Z3NZ

Z

∑ Z Z
2

3D+( )n,=

Z4NZ

Z

∑ Z
2

Z
2

6D+( )n.=
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003



FORMATION OF THE CHARGE AND ENERGY DISTRIBUTIONS OF HEAVY IONS 935
problem, more specifically, near the mean charge at a
given ion energy, the cross sections can be fitted by a
linear function (see Fig. 1), so

(20)

In this case, we managed to close Eqs. (18) by writing

(21)

Equations (21) are a closed system of partial differ-
ential equations to determine the charge moments. For
this system to be unambiguously solved, we must spec-
ify initial conditions, for example, the condition for a
monochromatic, singly charged ion beam:

(22)

where δ(η) is the delta function. Since the equations are
linear in variables ξ and η, the solutions of the problem
with an arbitrary initial condition can be obtained from
the solutions of the problems with initial conditions of
the form (22).

Let us consider the influence of particular terms in
the kinetic equation on the solution of the problem. To
this end, we pass to a continuous charge variable in
Eq. (9). Assuming the ionization and recombination
cross sections to be smooth in the charge variable, we
can use a Taylor expansion on the right-hand side of the
equation. Retaining the terms to the second order inclu-
sive, we obtain the equation

(23)

where

(24)

The function βt(ε, z) is positive and has a charge mini-
mum that lies near the equilibrium charge. Recall that
the equilibrium charge is determined by the equality
between the ionization and recombination cross sec-
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tions at a given ion charge. In contrast, the function
βa(ε, z) changes sign as the charge passes through its
equilibrium value. The form of the solution to the
kinetic equation is directly related to these singularities
in the charge dependence of its coefficients. An exam-
ple of the charge dependences of coefficients βa and βt

is shown in Fig. 1.
The initial and boundary conditions for Eq. (23) are

(25)

where φ(ε, z) is the function that describes the energy
and charge distribution of ions in the beam before their
interaction with the medium.

Equation (23) is the charge diffusion equation with
a gathering force. Its solution is qualitatively shown in
Fig. 2. We will return to the solutions of Eqs. (21)
and (23) after considering the singularities of their
coefficients.

3. IONIZATION 
AND RECOMBINATION CROSS SECTIONS

The main difficulty in studying Eq. (9) is that its
coefficients are functions of both ion charge and energy.
Below, we attempt to find suitable fits for the coeffi-
cients of this equation, which, in particular, will help
justify the transformations made in the previous
section.

N ξ 0= ε z, ,( ) φ ε z,( ),=

βaN
∂
∂z
----- βtN( ) Z Z1 0,=– 0,=

βa, βt
5
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1
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–4

–5
25 30 35 40 45 50 55
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Fig. 1. An example of the dependence of coefficients βa
(solid curve) and βt (dashed curve) on ion charge
(1.5 MeV/u iodine ions in a hydrogen plasma). The dash-
dotted straight lines are the linear fits to the cross sections
near the equilibrium charge given by (20). In the range
q − 2 < z < q + 4, the error of these first does not exceed 30%.
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Fig. 2. The qualitative energy and depth distribution of ions with different charges. A monochromatic and singly charged ion beam
is at the entrance.
Note that in our formation of the problem, exact
(taken from a good theory or from experimental data)
cross sections for the processes can be used to solve
Eq. (9). However, “smooth” formulas, including inter-
polation ones, that can satisfactorily fit the behavior of
the real cross sections are required to solve Eq. (23).

Below, we give simple analytical expressions for the
ionization and recombination cross sections. For the
electron impact ionization cross section, the Thomson
ionization cross section may serve as the first approxi-
mation. For the ionization of the target ion by an elec-
tron accompanied by the electron detachment from the
nth level, the cross section is

where ε = v 2/2, and v  is the relative particle velocity;
according to our assumptions, the latter is equal to the
ion velocity. This and other formulas of this section
were written by using the atomic system of units: the
unit of cross sections is "4/m2e4 = 2.8 × 10–17 cm2.

For a collision with a plasma ion, the Thomson ion-
ization cross section is

where Zt is the effective charge of the target ion. It fol-
lows from a comparison of these formulas that the main
ionization mechanism is a collision with ions or atoms

σne π
ε Un–

Unε
2

---------------,=

σni πZt
24ε Un–

4Unε
2

------------------,=
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of the material. Even if the material is not ionized, but
the energies are high, the effective target ion charge Zt

is generally larger than unity (except the case where the
target is hydrogen).

The semiempirical formula by Lotz [20] more accu-
rately describes the ionization cross sections during
collisions with target electrons:

(26)

The Lotz cross section differs from the Thomson cross
section by no more than a factor of 2, as illustrated by
Fig. 3.

According to the classical theory, the ionization
cross section during the collision of a fast ion with a tar-
get ion is described by the formula

(27)

where G(x) was derived in [14, 15] from classical mod-
els for collisions of an external electron with atomic
electrons. The ionization cross sections for an iodine
ion in a hydrogen plasma calculated using these formu-
las are plotted in Fig. 3 (curves I). Even more accurate
methods for calculating the ionization cross sections
based on quantum-mechanical models can be found
in [16].

Consider the recombination cross section. Let us
write the cross sections for the main processes that lead

σne 2.17
ε/Un( )ln
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----------------------.=
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πZt
2
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2

---------G
ε
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  ,=
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to the capture of an electron by a moving ion: the cross
sections for radiative capture, electron–ion exchange,
and three-particle recombination.

Radiative capture is the main recombination process
for completely ionized plasma of moderately high den-
sity. For the radiative capture cross section, we use the
Kramers classical formula

(28)

where

and Un in our case corresponds to unoccupied levels.
Assuming that v 2 > z2/n2, integrating the cross section
over n, and assuming that the last occupied level is

we obtain the following simple expression for the radi-
ative capture cross section:

(29)

If we restrict our analysis to the cross section for
recombination to the ground level, then we will derive
an expression that differs only slightly from the above
expression:

The three-particle recombination rate can become
significant at high target densities. Let us write a for-
mula for the three-particle recombination cross section
following Zeldovich and Raizer [17]:

(30)

Several empirical formulas for the cross sections can
also be found in [18–20].

In a nonionized material or for a incompletely ion-
ized target plasma, the recombination via electron
transfer from a target ion to a penetrating ion plays a
leading role. We will estimate the cross section for
recombination via electron exchange by using the result
obtained in the Oppenheimer–Brinkmann–Kramers
(OBK) theory [21]. According to this theory, the cross
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section for the transition of an electron from a state with
energy Ei to a state with energy Ef is

(31)

To calculate the charge exchange cross section, we
use the correction of the second Born approximation
from [22],

(32)

Approximating the binding energy of the captured elec-
tron by

and assuming that n = (Z1 – Z + 1)1/3 for the last energy
level occupied in the ion, we obtain an approximate
expression for the charge exchange cross section at
high ion velocities:

(33)
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212
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E f
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Fig. 3. Ionization (I) and recombination (II) cross sections
for iodine ions with energy 1.5 MeV/u in a hydrogen plasma
with a temperature of 10 eV and a density of 1017 cm–3 ver-
sus charge Z. Curves I represent the Thomson (solid curve),
Lotz [20] (dashed curve), and Gryzinski [14] (dash-and-
dotted curve) cross sections; curves II represent the cross
sections for photorecombination (29) (solid curve) and
charge exchange (32) (dashed curve). The conditions were
taken from [11]. The electron binding energies were calcu-
lated in terms of the Thomas–Fermi model for the ground
state.
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This formula is suitable for fitting the charge exchange
cross section only for high energies of the moving ion.
The cross sections calculated using Brinkmann–Kram-
ers formula (31) yield correct dependences on the ion
charge and energy, but they unsatisfactorily describe
the experimental data. We note once again that we do
not seek to derive exact formulas for the cross sections.
Thus, a more accurate theory [23, 24] or the following
semiempirical formula suggested in [25] for nonion-
ized targets can be used for the charge exchange cross
section:

(34)

Formulas for the empirical charge exchange cross sec-
tions can also be found in [26].

To write the interpolation formulas of this section,
we used hydrogen-like energy levels. The binding ener-
gies calculated in this way are lower than their true val-
ues. This leads primarily to an underestimation of the
recombination cross sections because of their sharp
dependence on bound electron energy, which, in turn, is
responsible for the low equilibrium ion charge calcu-
lated in this way and can significantly affect the accu-
racy of calculating the parameters of the plasma ion dis-
tribution function. To avoid this, we must use more
accurate binding energies of the electrons in a moving
ion, for example, those obtained in the Thomas–Fermi
model.
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Fig. 4. Calculated ionization and recombination cross sec-
tions for a lead ion with energy 11.6 MeV/u in the plasma
of a capillary discharge in hydrocarbon with a temperature
of 3.3 eV. The dotted lines represent the exponential fits to
the ionization and recombination cross sections near the
equilibrium charge.
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The cross sections with the energy levels calculated
in the Thomas–Fermi model are plotted in Fig. 3.

Note also that the cross sections σi and σr are conve-
niently fitted by exponentials of the form

(35)

The exponential fits to the ionization and recombina-
tion cross sections are shown in Fig. 4. We used the
exponential dependences in our test calculations of the
slowing-down of a beam of heavy ions in a material.

To conclude this section, let us consider an impor-
tant question concerning the equilibrium charge q. The
equilibrium charge is determined by the equality
between the ionization and recombination cross sec-
tions, and the formulas given in this section can be used
to determine it. For example, for an almost completely
ionized target, the ionization cross section (27) should
be equated to the radiative recombination cross sec-
tion (28), while for a cold material, the recombination
will be determined by charge exchange and can be cal-
culated using formula (32). The formulas of this section
allow an ion energy dependence of the equilibrium
charge q to be established. In addition, they can be com-
pared with published empirical formulas, which are
used mainly for a cold target material. Thus, by com-
paring the analytical expressions for the stopping
power of a material derived in [27] with experimental
data, Basko [9] suggested the following formula for the
equilibrium charge:

(36)

while Brown and Moak [28] suggested the expression

(37)

where a ≈ 1. Based on formula (37) and the Bohr rule
for the effective ionization energy, Armel and Funk-
houser [29] derived an expression for the successive
ionization potentials that matched the formulas follow-
ing from the Thomson–Fermi model on the asymp-
totics.

Figure 5 shows the equilibrium charge calculated
using semiempirical formulas and, for comparison,
using the formulas for the ionization and recombination
cross sections from this section. As an example, we again
consider an iodine ion in hydrogen, in completely ion-
ized (solid curve in Fig. 5) and cold (dashed curve) mate-
rials. In addition, this figure shows dependences (36)
(dash-dotted curve) and (37) (dotted curve). We see
from the figure that there is a range of conditions where
the differences between the formulas are large,
although the empirical curves are within the boundaries
defined by the formulas for the cross sections in plasma
and a cold material. Formula (37) is preferred for a cold
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target, while formula (36) is suitable for calculating the
equilibrium charge for a strongly ionized target.

However, in the entire range of states for the target
material, explicit formulas similar to (36) or (37) most
likely cannot be constructed and the only method of
determining the equilibrium charge is to equate the cor-
responding ionization and recombination cross sec-
tions.

4. APPROXIMATE ANALYTICAL SOLUTIONS

Let us consider Eq. (23) by taking into account the
singularities of its coefficients (see Section 2).

Equation (23) is an analog of the diffusion equation
and actually contains the coordinate and energy transfer
and charge diffusion terms. It reduces to the standard
diffusion equation if the charge remains near its equi-
librium value and if the variance of the charge distribu-
tion is so small that the term with βa may be disre-
garded. In this case, the dispersion of the charge distri-
bution must satisfy the condition

(38)

Consider the simplest approximation that allows the
parameters of the ion charge distribution to be deter-
mined. We change variables:

where  is the solution of system (11), i.e., the mean
charge. The equation in these variables can be written
as

(39)

If we disregard the charge dependence, i.e., assume
that s(ε, z) = s(ε, (ε)), then we obtain the equation

(40)

Under certain conditions, the term related to the
slowing-down of ions may be ignored in Eq. (23). This
is appropriate for large values of the sum of the ioniza-
tion and recombination cross sections, βt ! 1, and cor-
responds to a situation in which many collisions take

βa q D±( ) ! βt.
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place in a segment of the path where the slowing-down
is small. In particular, it can be shown that at the onset
of slowing-down, if the ion charge differs significantly
from the equilibrium charge,

An analytical solution for the resulting equation can be
found by using suitable fits for the cross sections. Thus,
for example, let us assume that the following linear fits
(see Fig. 1) can be used for the coefficients βa and βt

near the equilibrium charge:

(41)

where q is the equilibrium charge at a given ion veloc-
ity. In this case, Eq. (23) takes the form

(42)

and its solution can be written as

(43)
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Fig. 5. Equilibrium charge of an iodine ion in hydrogen ver-
sus velocity. The equilibrium charge was calculated from
the equality between the ionization and recombination cross
sections using the formulas in the text for a completely ion-
ized target (solid curve) and a cold material (dashed curve)
and calculated using formulas (36) (dash-dotted curve)
and (37) (dotted curve).
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where

(44)

Thus, we see that the charge dependence of the ion flux
density is roughly Gaussian with a variance whose
increase, according to (44), is limited by the derivative
of the coefficient βa with respect to charge. Note that
this term always prevents the charge variance from
increasing, because the derivative ∂βa/∂z is always neg-
ative. The maximum charge dispersion can easily be
estimated from the second equation in (44) (we assume
that the initial variance does not exceed its limiting
value),

(45)

Occasionally, when the charge changes by one from
its equilibrium value, the ionization or recombination
processes begin to sharply dominate. In this case, an
estimate from formula (45) gives a variance that is
approximately equal to unity. This is in agreement with
the following qualitative considerations. An ion with an
equilibrium charge can both be ionized and capture an
electron with an equal probability. Once the ion has
changed its charge, the return of the ion charge to its
equilibrium value will be most probable. As a result, no
more than three ion charge states will be involved and
the variance of the charge distribution does not exceed
unity.

Without writing out the general solution of sys-
tem (44), we will give the solution in the approxima-
tion of constant coefficients:

(46)

Let us compare the mean charge and variance of the
charge distribution calculated using these formulas for
chlorine ions in cold hydrogen with the experimental
data presented in Fig. 9. As we see, these simple formu-
las describe well the experimental data if the ion
charges are close to their equilibrium value, as in our
case.

Let us return to the system of equations (21) that we
derived by the method of moments. Its solution is sig-
nificantly simplified by the fact that the ion flux density
far from some characteristic curve in the coordinate–
energy plane is very low. We introduce the following
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new coordinates related to this characteristic:

In the new variables, the first equation in (21) can be
written as

(47)

As we see, it does not contain the derivative with
respect to the variable y. Since the function n(ξ, η) rap-
idly decreases sideways from the characteristic, we
require that

(48)

For the variance and the mean charge, we derive the
following equations from Eqs. (21) using these expres-
sions, which are valid on the dy = 0 characteristic:

(49)

Since the variables ξ and η are equivalent in the kinetic
equation, all parameters of the ion charge distribution
must change only along the characteristic. Assuming,
based on these considerations, that

(50)

we obtain the following system of ordinary differential
equations for the mean charge and the variance of the
charge distribution along the characteristic:

(51)

dx dξ 1

z2 D+
---------------dη ,–=

dy dξ 1

z2 D+
---------------dη .+=

2
∂n
∂x
------ n

z2 D+
--------------- ∂ z2 D+( )

∂x
-----------------------– ∂ z2 D+( )

∂y
-----------------------+ 

  .=

∂n
∂y
------ 0.=

∂z
∂ξ
------ z2 D+( ) ∂z

∂η
------– z

2z2 D+

z2 D+
------------------∂D

∂η
-------–

– b q z–( ) 0,=

∂D
∂ξ
-------

z4

z2 D+( )
--------------------∂D

∂η
------- zD

4z2 9D+

z2 D+
--------------------- ∂z

∂η
------––

+ 2bD 2a– 0.=

∂z
∂y
----- 0,

∂D
∂y
------- 0,= =

∂z
∂x
------

z z2 1/2( )D+( )
z2 D+( )2

-----------------------------------∂D
∂x
------- b q z–( )–– 0,=

∂D
∂x
-------

D z2 1/2( )D+( )
z2 D+( )2

-------------------------------------∂D
∂x
-------+

– zD
2z2 9/2( )D+

z2 D+( )2
-------------------------------∂z

∂x
------ 2bD 2a–+ 0.=
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003



FORMATION OF THE CHARGE AND ENERGY DISTRIBUTIONS OF HEAVY IONS 941
(a) (b)

25

20

15

10

5

0 0.5 1.0 1.5 2.0 2.5

ξ

z–

0 0.5 1.0 1.5 2.0 2.5

ξ

5

D

4

3

2

1

6

Fig. 6. The test problem. The mean charge (a) and the variance of the charge distribution (b) calculated using formulas (51) (solid
line) and obtained from the numerical solution (dash–dotted line). The dashed line in panel (a) is the solution of the problem in the
continuous ionization approximation. 
As we see from the first equation in (51), the spread
of ions in charge affects the mean charge only at the
very beginning of the ion path, when the charge vari-
ance changes greatly. However, at the beginning of the
ion path, this term is still small (~D/ ), because the
variance is small. Thus, the mean charge along the ion
slowing-down characteristic can be calculated in the
zero variance approximation (see (44)). The charge
variance can then be determined from the second equa-
tion in (51).

The charge variance and the mean charge on the
characteristic calculated by the method of moments are
shown in Fig. 6 in comparison with their values
obtained by numerically calculating the test problem.
As we see from the figure, the charge variances slightly
differ (by no more than 30%). This difference stems
from the fact that condition (50) is poorly satisfied at
the beginning of the ion path, where the charge differs
greatly from its equilibrium value.

5. THE VARIANCE 
OF THE ENERGY DISTRIBUTION OF FAST IONS

In the model considered above, the distribution of
ions with mean charge z and variance Dz is formed at

z
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each depth ξ. They can be calculated by using
Eqs. (21).

An important physical process that affects the
energy variance Dε is the change in ion charge via col-
lisions with particles of the medium for the energy dis-
tribution formed in the previous segment of the path.
Because of the change in the charge of ions, ions with
charge ∆z = ±1 (or even with a larger charge difference)
may prove to have the same energy. Recall that the ion-
ization rate exceeds the slowing-down rate by many

times (by a factor of M/4π m), particularly at the
beginning of the ion motion if its charge differs from
the equilibrium value.

If there were no change in ion charge, then the
energy variance for different charges would be a result
of only the initial spread of ions in energy. Because of
the change in charge, the accumulated energy variance
is approximately the same for different charges, since a
large charge that lost much of its energy can become
small, causing the energy variance of small charges to
increase and vice versa.

Let us consider the evolution of two extreme

charges in the ion charge distribution, z' =  –  and

Z1
2

z D
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z'' =  + , and the corresponding values of the vari-
ance η:

The difference between these values characterizes the
rms deviation of the variable η:

(52)

The derived expression relates the rms deviation of the

variable η to the rms deviation of the ion charge . It
is valid if the charge variance is small compared to the
mean charge. The mean square of the deviation of the
ion energy can be related to the variance of the variable
Dη as follows (if the higher order moments are disre-
garded):

(53)

On short paths, we can derive an approximate formula
for the energy variance from this expression and

z D

η' η0 z'2 ξ( ) ξ ,d

0

ξ

∫–=

η'' η0 z''2 ξ( )dξ .–=

η'' η'– 2 Dη=

=  z D+( )2
z D–( )2

–( ) ξ'd

0

ξ

∫ 4 z D ξ'.d

0

ξ

∫=

D

Dη η2 η2–
Z1

2

4
----- ε4 ε2( )

2
–( )= =

=  
Z1

2

4
----- ε2 ε2 6Dε+( ) ε2 Dε+( )2

–( ) Z1
2ε2

Dε.=

0.08
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0.03

Fig. 7. Comparison of the variances for the variable u deter-
mined by numerically solving the kinetic equation (solid
line) and calculated using formula (52) (dashed line).
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formula (52):

(54)

Note the difference between the behaviors of the
charge and energy variances. The charge variance rap-
idly increases at the beginning of the path, because the
ionization and recombination rates generally exceed
the ion slowing-down rate, but the increase in charge
dispersion is limited by (45). In contrast, the energy
variance increases over the entire path and becomes
significant at its end. Figure 7 shows the energy vari-
ance calculated using these formulas in comparison
with its numerically calculated value. We see that the
derived formulas describe well the dependence of the
variance on the path depth.

6. COMPARISON OF THE ANALYTICAL
AND NUMERICALLY CALCULATED 

DISTRIBUTIONS

Let us compare our analytical solutions with the
numerical solutions of Eq. (9). To improve the stability
of the solution, we pass to the variables ξ and u, where

(55)

and (ε) can be determined by solving the system of
equations

(56)

We use this method, because the solution of the ion
slowing-down problem in the continuous ionization
approximation, i.e., when the charge and energy
spreads of ions are disregarded, has the simplest form
in these variables. Indeed, in this approximation, the
coordinate is uniquely related to the ion energy and the
solution is trivial:

In the variables ξ and u, Eq. (9) takes the form

(57)

where

Dε
2

Z1ε
-------- z D ξ'.d

0

ξ

∫=

u ξ ε'd
s z ε',( )
----------------,

ε

1

∫–=

z

dε
dξ
------ s z ε,( ),–=

dz
dξ
------ σi z ε,( ) σr z ε,( ).–=

u 0.=

∂ÑZ

∂ξ
----------

∂ÑZ

∂u
----------

∂
∂u
------

sZ

s
---- ÑZ 

 –+ σi Z( ) σr Z( )+( )Ñz–=

+ σi Z 1–( )ÑZ 1– σi Z 1+( )ÑZ 1+ ,+

Z 0 1 … Z1,, , ,=

ÑZ ξ u,( ) NZ ξ ε,( )s z ε,( ).=
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To solve this equation, we used the finite-element rep-

resentation of the function  in variable u,

with the piecewise-linear basis functions ϕm(u). An
explicit Euler scheme was used to obtain the discrete
approximation of the derivative with respect to ξ.

We checked out the numerical scheme by using a test
problem in which the following model dependences of
the coefficients in the equation were specified:

(58)

The results of our solution of the kinetic equation
with the model dependences of the coefficients are
shown in Fig. 8. As we see from this figure, the Bragg
curves in the exact calculation and in the continuous
ionization approximation, which disregards the fluctu-
ations in ion charge, differ significantly. The total ion
flux that is a step in the continuous ionization approxi-
mation, becoming zero at a depth equal to the total ion
path, proves to be smoothed in the exact calculation. In
this case, the point at which the flux is equal to half its
initial value lies near the total path calculated in the
continuous ionization approximation.

Figure 6 shows the numerically calculated mean
charge and mean square of the deviation of the charge
from its mean and the dependences obtained by using
our analytical calculations with formulas (44). As we
see from the figure, the coincidence is quite satisfac-
tory. Figure 7 shows the Du(ξ) curves for the variable u
obtained in our test calculation and using formula (52).
These curves also closely coincide.

7. COMPARISON
WITH EXPERIMENTAL DATA

Experiments on the slowing-down of ions in a cold
material have long been carried out. In recent years, it
has also become possible to experimentally study the
behavior of high-energy ions in plasma. The previously
predicted (see, e.g., [12]) peculiarities of the slowing-
down of heavy charged particles in an ionized material
have been confirmed experimentally. Thus, the stop-
ping power for plasma is anomalously large compared

Ñ

Ñ ξ u,( ) Ñm ξ( )ϕm u( ),
m

∑=

Z0 1,=

Z1 40,=

s Z ε,( ) Z2

Z1
2

-----1
ε
---,=

σi Z ε,( ) 0.1Z–( )exp
100
ε

---------,=

σr Z ε,( ) 0.1Z( ) 1

ε2
----.exp=
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to that for a cold material. This phenomenon is attribut-
able to a decrease in the recombination cross section of
ions in plasma due to a weakening of the charge
exchange with particles of the medium. The decrease in
recombination causes an increase in effective ion
charge and a corresponding increase in energy losses.

The slowing-down of high-energy ions in a plasma
is rather difficult to investigate, because it is necessary
to prepare the plasma with known parameters and to
synchronize the plasma and ion beam production times
with the time of beam entry. Below, we give references
to the experimental studies of the slowing-down of an
ion beam in plasma known to us. The synchronization
and ion access are most easily achieved in laser plasma
experiments. The plasma produced by CO2-laser illu-
mination of an aluminum surface was used, for exam-
ple, by the authors of [30]. The mean charge states of
copper ions were investigated in the experiment
described in this paper. Thus, the measured ion charge
changed from 10 to 16 for the copper nuclear charge
of 29. The authors compared their distributions with a
Gaussian and pointed out a close coincidence in many
cases. It should be noted, however, that the region of ion
charge states lies within one electron shell (except
charge 10).

Plasma with well-known parameters can be pro-
duced in capillary discharge experiments. This plasma
production method was used by the authors of [31].

Note the interesting possibility of determining the
ionization and electron capture cross sections using the
model presented in this paper from experimental data
on the charge distribution of ions slowing down in a
material. To this end, we use data from [30]. This paper
presents the measured charge distributions for Cl13+ and
Cl15+ ions at various depths of penetration into cold
hydrogen and strongly ionized hydrogen plasma.

The plots for the mean charge and the variance of
the chlorine ion charge distribution in hydrogen at var-
ious initial charges shown in Fig. 9 were constructed by
using experimental data from [31]. The solid lines in
this figure indicate the analytical solutions obtained
here using formulas (46). We see from the experimental
data that, irrespective of how the mean charge behaves
(whether it tends to its equilibrium value from high or
low values), the variance of the charge distribution
tends to the same steady-state value. According to the
approximate solutions of the kinetic equation, the
steady-state variance is equal to the ratio of the coeffi-
cients a and b of the linear fit (20) to the ionization and
recombination cross sections. In our case, this ratio is
approximately equal to

Since the ion charge in our case is close to its equilib-
rium value (approximately equal to 13.2), formula (46)
may be used to calculate the variance. As we showed

D
a
b
--- 0.9.= =
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Fig. 8. The results of numerical calculations: Ntot is the total ion flux, zm(N) is the flux-averaged charge, sm(N) are the mean energy
losses per unit path (Bragg curve), and D(N) is the flux-averaged variance of the charge distribution as a function of the dimension-
less path ξ. The dotted lines indicate the solutions in the continuous ionization approximation. The test problem.
above, both the mean charge and the variance tend to
their equilibrium values exponentially, with the coeffi-
cient b being the exponent. Using these dependences,
we can estimate these coefficients:

These values are close to those that were used by the
authors of [31] for their computer simulations of the
slowing-down problem. Thus, for the ionization cross
section of an ion with charge 13, they used 1.5 ×
10−19 cm2, which is close to our equilibrium cross sec-

a 1.35 10 19–  cm2, b× 1.5 10 19–  cm2.×= =
JOURNAL OF EXPERIMENTAL 
tion σi = a = 1.35 × 10–19 cm2. According to the first
equation of system (44), analysis of the behavior of the
mean charge yields a coefficient b close to its value
obtained from the path dependence of the variance.

The asterisks in Fig. 9 separately indicate the points
that correspond to the mean charge and the variance of
the ion charge distribution in a hydrogen plasma. As we
see from the figure, the mean charge in this case
exceeds the mean ion charge in cold hydrogen at an
appropriate density, while the variance of the charge
distribution in plasma is appreciably smaller than that
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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in a cold material. This result agrees with the previously
derived formulas for the variance. Indeed, for the
increased ion charge, the sum of the ionization and
recombination cross sections (coefficient a) becomes
smaller, while the slope of the charge dependence of the
cross section difference (coefficient b) becomes larger.
As a result, the variance decreases.

Thus, the above analysis shows that the depen-
dences of the ionization and recombination cross sec-
tions on ion charge can be estimated by using our ana-
lytical solutions of the ion slowing-down problem in
the diffusion model. Since we can ensure that an ion
during its slowing-down in plasma will pass through
different charge states by varying the initial ion charge
and energy, this method can yield an interesting means
of calculating the ionization and recombination cross
sections from experimental data. On the other hand, the
charge variance is rather easy to estimate. The formula
for the steady-state charge variance can be written in
such a way that the derivatives of the logarithms of the
ionization and recombination cross sections, which are
smoother functions than the cross sections themselves,
will be used in it:

(59)

At the same time, the variance itself rapidly reaches its
steady-state value.

8. CONCLUSIONS

We have suggested a diffusion method for the
kinetic equation that describes the motion of high-
energy ions in plasma or a cold material. Based on our
model, we obtained approximate solutions that
describe the mean ion charge and the variances of the
ion charge distributions as a function of the ion path in
the target. Our calculation of the variance of the charge
distribution is based on the fact that the mean square of
the deviation from the mean charge for heavy ions is
much smaller than the square of the charge, and the ion
charge distribution (at a given energy and the same ini-
tial charge) is a narrow peak localized near the mean
charge. This is attributable to the peculiarities of the
charge behavior of the coefficients of the kinetic equa-
tion that describes the slowing-down of ions in a mate-
rial.

We also described the method for numerically solv-
ing the ion transport equation and performed calcula-
tions whose results were used to test the analytical solu-
tions of the diffusion method. Our numerical calcula-
tions confirm the conclusion that we reached when
analyzing the problem that the ion charge and charge
variance change along the characteristic in the path–
energy plane. The mean charge along this characteristic
can be calculated by using the formulas of the continu-
ous ionization approximation.

D
∂
∂z
-----

σi

σr

----- 
  .ln=
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We considered the problem of determining the vari-
ance of the ion energy distribution. Allowance for the
changes in ion charges leads to a significant increase in
the energy spread of ions at the final stage of their slow-
ing-down, which, in turn, leads to a smearing of the
peak in the Bragg curve for the mean energy losses of
ions in a material.

We compared the analytical solutions of the prob-
lem with available experimental data. In general, the
experimental results agree well with the analytical for-
mulas. In our opinion, the existing differences between
the experimental data and the analytical model calcula-
tions for the slowing-down of high-energy ions in
weakly ionized plasma are attributable to the insuffi-
ciently accurate models of the cross sections. In this
case, the experimental data lead us to conclude that a
particular model is valid, because the analytical method
developed here allows information about the cross sec-
tions to be extracted from the mean charge and the
charge variance.
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Abstract—Evaluations of the energy for thermonuclear ignition of a compressed deuterium–tritium mixture
contaminated by a high-Z material are presented. Mixing at the atomic level is considered and the results are
given as a function of the contaminant fraction. The reference situation is that of cone-focused fast ignition
(CFFI). The numerical 2D simulations for this study were performed by a Lagrangian 2D hydrocode that
includes real matter EoS, real matter opacity coefficients, and packages for finite-range energy deposition by
reaction products and the relative in-flight reactions. A simple estimate is presented for the effects of high-Z
material blobs on the ignition energy (macroscopic mixing). Possible sources for fuel contamination in CFFI
are discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Thermonuclear ignition thresholds for a compressed
deuterium–tritium mixture contaminated by a high-Z
material at the atomic level were evaluated as functions
of the contaminant fraction. A short pulse of protons
was used to start the ignition of a cylindrical assembly
of compressed fuel uniformly contaminated by gold at
the atomic level. As a reference, a study of the ignition
of a clean target at different proton energies was per-
formed first and, after this, the ignition conditions for
contaminated targets were found for the selected proton
energy. Protons with the proper energy can be used to
mock up deposition by fast electrons such that a part of
the study can also be considered useful in predicting the
performances for this energy vector.

The 2D code COBRAN was used to perform the
study. COBRAN includes a “real matter” equation of
state and opacity coefficients. The package for driving
energy deposition includes light/heavy charged parti-
cles, ray-traced laser light, and ray-traced X-rays. The
thermonuclear reaction treatment includes finite-range
charged particle diffusion and nonthermal nuclear reac-
tions. The diffusion and energy deposition of neutrons
is treated by a Monte Carlo code. However, in the cases
considered here, the effect of neutrons was marginal
and this part of the code was normally not activated [1].

A simple estimate for the effects of high-Z material
blobs on the ignition energy (macroscopic mixing) are
presented below. The estimate is given in terms of the
“cool” surface of the high-Z blobs.

¶This article was submitted by the authors in English.
1063-7761/03/9705- $24.00 © 20948
This study can be relevant for the so-called cone-
focused fast ignition (CFFI) [2, 3], because in experi-
ments performed for this scheme, the imploded mate-
rial was found to be contaminated by the cone high-Z
material [3, 4]. In the CFFI, a shell containing a layer of
DT fuel is actually imploded by soft X-rays or laser-
light-induced ablation, sliding along the external sur-
face of a cone composed by the high-Z material (see
Fig. 1a). As a result of the implosion, a blob of com-
pressed fuel is formed near the cone tip (see Fig. 1b). At
this time, a short laser pulse is focused inside the cone

Fig. 1. CFFI scheme. (a) Ablation pressure induced by
X-rays or laser imploding a fuel shell to form a compressed
fuel assembly near the tip of the cone. (b) A short laser pulse
is used to ignite the fuel by fast electrons or energetic light
ions.
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to produce a forward jet of fast electrons. Passing
through the cone material, the electrons can create an
ignition spark on the compressed fuel assembly located
nearby. Alternative energy vectors can be light ions
(e.g., protons) produced either by using the fast elec-
trons as a virtual cathode with respect to a properly com-
posed cone tip [3] or by causing the explosion of a low-
Z foil set in place of the cone terminal portion [1, 5].

High-Z contamination was found in experiments
performed in the indirect drive mode. It was indicated
that vaporization of the cone material (gold) by X-rays
(m-lines) passing through the imploding shell was
responsible for this effect [4]. Such a source of contam-
ination should be absent in the direct-drive mode. How-
ever, another source, potentially also active in this case,
can be excited by the onset of the Kelvin–Helmholtz
instability on the sliding interface between the implod-
ing shell and the cone surface. We have studied this
transient process and found the shell transit near the
cone tip to be the most critical stage.

During the implosion, the pressure in the accelera-
tion stage can range from 1 to 100 Mb on the shell and
from 1000 to 2000 Mb within the shell material at the
transit near the cone tip. Pressures of this order are also
exerted on the interface between the shell and the cone
material. At such values of pressure, the cohesion
forces in the cone material can be neglected and the
shell containment by the cone is inertial. This statement
is valid for gold as the cone material because the maxi-
mum tensile strength of Au estimated from the vapor-
ization specific energy is on the order of 0.14 Mb
(see [6]). A very sketchy representation can be used to
infer some of the basic flow features just near the lead-
ing shell points sliding on the cone (represented by O in
Fig. 1a). Consider a reference frame attached to O and
assume a locally planar 2D flow pattern. In this frame,
the cone material impinges from the left at a velocity of
V0 (|V0 | is the implosion velocity, see Fig. 2a). The
region behind the leading edge of the imploding fuel
shell is roughly mocked up by a stagnating uniform
pressure p-wave starting after a rise-front (f). At f, the
pressure passes from 0 to p over a distance assumed
negligible. The main features of the flow are an oblique
shock wave (angle φ) deflecting the cone material veloc-
ity by angle χ, from V0 to V [7], and a slip surface (s)
between the cone and the shell materials, represented
by the pressure wave.

Assuming the initial pressure on the impinging cone
material negligible and assigning p, V0, and the initial
material (solid-state) density ρs , the shock parameters
follow from the Hugoniot curve

where ε is the internal energy per unit mass [7]
(ε(ρs, 0) = 0) and ρ is the density behind the shock.

ε ρ p,( ) p
1
ρs

----- 1
ρ
---– 

  /2,=
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With p given, ρ follows. To evaluate ε(ρ, p), we took the
equation of state for “real materials” included in the
previously mentioned 2D code COBRAN. In Fig. 3, the
resulting Hugoniot adiabat is shown for Au.

Using mass, momentum, and tangential velocity
conservation at the shock, we easily determine the
quantities V, sinχ, and sinφ (see Fig. 2) as simple func-
tions of the assigned quantities p, ρs , and V0 and of the
density ρ corresponding to p in the Hugoniot adiabat.
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Stationary pressure

wave

χφ
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layer
Cone material flow
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Fig. 2. (a) The hydrodynamical flow induced in the cone
material (black) by the pressure of the imploding shell
(gray). (b) Instabilities at the slip surface s mix cone and
shell materials.
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Fig. 3. Hugoniot adiabat for a shock in gold at the initial
solid-state density ρs and at the initial pressure set to 0. The
adopted equation of state for gold was that on line in the
COBRAN code.
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Table 1

Reference case p V0 ρDT cs DT V ρAu cs Au χ φ

First shock wave 1 6 0.78 1.7 ≈6 26.2 0.42 1 7.5

End of accelerating pulse 100 15 10 4.3 14.8 76 1.6 7.6 10

Near cone tip transit 1200 13 40 7.2 9.6 103 4.4 33 42
We define the quantities

The oblique shock is formed if

The relevant quantities for this study are V, χ, and φ
given by

In Table 1, the above quantities are reported for regimes
that can occur in the implosion of a thin spherical shell
(e.g., with the in-flight aspect ratio equal to 14). The
shell is first set at a low adiabat of α = 0.3 by a pressure
pulse of p0 = 1 Mb (the first shock wave, α is the ratio
of the thermal electronic pressure to the Fermi pres-
sure). A gradual (adiabatic) rise of the pressure up to
p = 100p0 then accelerates the shell to the maximum
velocity. The shell material is finally left to freely
implode towards the cone tip, where the pressure is
expected to be 1000–2000 Mb. The densities (ρDT, ρAu)
and the sound velocities (csDT, csAu) were consistently
estimated at the “real matter” level in the flowing cone
material (gold) and for α = 0.3 in the “DT shell” set at
rest. The units are Mb (pressure), g/cm3 (densities),
cm/µs (velocities), and degrees (angles). The effects of
the shock wave on the gold flow appear relatively mod-
est in the first two stages of the implosion. Severe flow
distortion is produced near the cone tip.

In what follows, we report stability calculations for
the slip surface and the corresponding quasilinear eval-
uation for the mixing layer aperture. Numerical esti-
mates are presented for the reference equilibrium cases
listed in Table 1.

c0
p
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For any mechanism of fuel poisoning, it is not easy
to evaluate the spectrum of sizes or masses of Au finally
mixed into the compressed fuel as they undergo a com-
plex evolution before being trapped in the ignition
spark area. Two types of contamination can be
expected, one in the form of mixing at the atomic level,
and the other as a distribution of Au blobs in the fuel.
For small blobs, a two-step evolution can be expected.
In the first, a gold blob immersed in a DT plasma at a
temperature of 108 K or higher and a density of ρDT =
200 g/cm3 is ablated by electronic thermal conduction
and brought to the temperature and pressure equilib-
rium with the DT fuel. The already mentioned equation
of state predicts a density of ρAu ≈ 435 g/cm3 for gold
and an average charge of ZAu ≈ 70. The second step is
the diffusion of DT ions through the gold plasma. The
diffusion coefficient of the average DT ion through
gold plasma is

and the diffusion length in a disassembling time is
therefore given by

where Rcrit represents the largest blob that can be dif-
fused through during the spark lifetime. The previous
estimate can be set as

by setting the ion temperature to 108 K in the previous
formula, Rs = 0.5/ρDT cm (as typically required for igni-
tion), and ZAu = 70. The mass corresponding to these
values is

For ρAu ≈ 435 g/cm3 and ρDT ≈ 200 g/cm3, Rcrit ≈ 0.1 µm
and Mcrit ≈ 5 × 10–13 g.

Below, we report evaluations for the amount of Au
(atomic mixing) or the sizes of blobs (macroscopic
mixing) necessary to obtain the relevant effect on the
ignition threshold in the two contamination modes.

kDT

7 10 14– Ti
5/2×

ZAu
2 ρAu

------------------------------CGS K,⋅=

Rcrit kDTRs/cs,=

Rcrit
0.003

ρDTρAu

--------------------- cm=

Mcrit ρAuRcrit
3≈ 2.7 10 8–×

ρAu
1/2ρDT

3/2
-----------------------.=
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2. IGNITION STUDIES
The ignition studies for contamination at the atomic

level were performed for cylinders of a compressed
DT + Au uniform mixture at initial densities of approx-
imately 200 g/cm3, irradiated by a proton beam along
the axis. Advantages in using light ions for fast ignition
were considered in [8]. At any rate, proton beams with
the proper pulse and particle energy can be used to
roughly mock up deposition by fast electrons as both
these energy vectors give energy mostly to the electrons
in the target.

The length of the cylinder (S) was taken equal to the
diameter (2R) and set to 300 µm. The intensity distribu-
tion of the beam as a function of the radius r was Gaus-

sian, proportional to exp(–r2/ ) for r ≤ 2R0 and 0 out-
side. The scale R0 was set to 25 µm. The pulse duration
was taken as 15 ps, short enough to make the expansion
negligible during irradiation. The time dependence was
a linear ramp for the first 5 ps and constant for the
remaining 10 ps.

The initial fuel composition was assigned by giving
the numeric fractions

where nAu, nD, and nT are the numeric densities of gold,
deuterium, and tritium. In the simulations, nD = nT was
initially assigned.

The initial target density was either set equal to
200 g/cm3 or adjusted for each value of fAu such that the
total pressure (p) was equal to that of a clean reference
target at 200 g/cm3 and α = 0.3, assuming uniform tem-
perature. The second case was considered to simulate
equilibrium between the contaminated region where
the ignition spark is formed and a contiguous clean fuel
at the specified reference conditions. For our “realistic”
equation of state, this implied that ρ increases with fAu.

In Fig. 4, we show the electron temperature distribu-
tion in a clean reference target (fAu = 0, ρ = 200 g/cm3) at
the end of an igniting proton pulse of 40 kJ and 1 MeV.

2.1. Ignition of a Clean Fuel 

The ignition energy (Eign) for a clean fuel at ρ =
200 g/cm3 is represented in Fig. 5 as a function of the
ion (proton) kinetic energy (Ekin). No ignition occurs at
less than 40 kJ. The total fusion energy released by the
target after complete disassembling is about 540 MJ,
the radiated energy is about 5 MJ, and the burned frac-
tion is fb = 0.38.

The ignition of a compressed clean fuel by light ions
demonstrates several typical features. One, clearly seen
in Fig. 4, is the rather spiked structure of the spark
despite the smooth Gaussian space distribution of the

R0
2

f Au

nAu

nAu nD nT+ +
--------------------------------,=

f D f T, f Au f D f T+ + 1,= =
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irradiation. This feature is simply explained by noting
that the range of the ions increases with temperature,
and this depends on the amount of energy deposited.
The ion range is therefore a self-consistent feature.

During irradiation, a bleaching wave is formed that
allows a deeper ion penetration into the target in the
regions where the temperature is higher, namely, near
the ion beam axis. Neglecting thermal diffusion,
nuclear heating, and the “cold” target range, this effect
can be estimated, for the range (L) equation, as

(1a)ρL Ekin
1/2Te

3/2∝

t = 15 ps

ρ = 200 g/cm3

α = 0.3

axis

S = 300 µm

2R
 =

 3
00

 µ
m

6.0 6.5 7.0 7.5 8.0 8.5
lnT [K]

Fig. 4. Electron temperature distribution in a pure DT cylin-
drical target at the end of the ignition proton pulse (pulse
energy 40 kJ, proton energy 1 MeV).

1 10 100
Ekin, MeV

0.1

40

60

80

100

120
Eign, kJ

20

Fig. 5. Ignition energy for a 200 g/cm3 DT fuel by a proton
beam as a function of the proton kinetic energy.
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and, for the energy equation,

(1b)

where Es(r, t) is the energy deposited per unit surface.

These equations imply that

(2a)

(2b)

The different dependences are presented in Fig. 6. The
spiked structure is clearly shown for both ρL and Te .

ρLTe Es r t,( ),∝

Te Ekin
–1/5Es

2/5 r t,( ) Ekin
–1/5 r

R0
----- 

  4/5

– ,exp∝ ∝

ρL Ekin
1/5Es

3/5 r t,( ) Ekin
1/5 r

R0
----- 

  6/5

– .exp∝ ∝

1 2 3 4 50

0.2

0.4

0.6

0.8

1.0

Gaussian

6/5 dependence

4/5 dependence

Fig. 6. Space distributions for ρL, Te , and Es according to
Eqs. (2a) and (2b).
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Peculiar structures and behaviors can be detected in
burn waves. In Fig. 7, we show the development and
propagation of the burn wave for a target irradiated by
a beam of protons of 40 kJ and 1 MeV. Up to 80 ps, burn
propagation occurs via a mode featured by in-cavity
burning and alpha-particle ablation-driven shock front.
The shock generated by the ablation pressure increases
the density up to approximately 570 g/cm3. In the abla-
tion front, the density drops to about 36 g/cm3 over a
distance of about 40 µm. Near t = 80 ps, a new propa-
gation mode starts. A quasispherical shock wave
detaches from the tip of the ablation front and the reac-
tion propagates as a detonation wave starting from a
point near the initial fuel assembly center. The pro-
duced thermonuclear power WTn and energies are also
shown in Fig. 7; we note the bell-like time dependence
of the power. Density profiles along the z axis of the
cylinder are shown in Fig. 8 for two propagation modes.

The propagation pattern can change substantially if
the igniting pulse energy is well above the threshold.
This can be seen in Fig. 9, where the density maps are
presented in the case where the energy of the igniting
pulse rises from 40 kJ to 70 kJ, with the other parame-
ters remaining unchanged. After a fast radial propaga-
tion, the detonation propagates along the target axis.
The power release of thermonuclear energy presents a
plateau corresponding to the propagation along the axis
of the cylinder.

Highly structured detonation waves can also be
found. In Fig. 10, a 27-MeV beam of protons starts to
ignite at 60 kJ. Both the radial wave and tip starting
150100500

14
12
10
8
6
4
2

WTn, MJ/ps

t, ps

150100500

100

1

0.01

ETn, MJ

t, ps 0.03 cm

40 kJ, 1 MeV

t = 15 ps t = 40 ps t = 70 ps t = 80 ps

t = 100 ps t = 110 ps t = 120 ps t = 130 ps

0 0.5 1.0 1.5 2.0 2.5

lnρ [g/cm3]

Fig. 7. Burn propagation for the ignition spark shown in Fig. 1. Density maps. The propagation for the lowest energy needed to
ignite the considered fuel assembly is represented. After propagation in the α-particle ablation-driven mode, a detonation wave
starts near the initial fuel assembly center, at the tip of the ablation front. The produced thermonuclear (Tn) power and energies are
also shown; we note the bell-like time dependence of the power.
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waves propagate and ultimately coalesce in a single
wave propagating along the axis.

2.2. Ignition of a Fuel Contaminated
by High-Z Au Materials 

In this section, we present the results of simulations
performed to study fast ignition thresholds of a fuel uni-

0 0.02 0.04
z, cm

0.5

1.5

2.5

0.5

1.5

2.5

lnρ [g/cm3]

t = 80 ps

t = 120 ps

Fig. 8. Density profile along the cylinder axis at different
times showing features of the two burn propagation modes.
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formly doped by gold. Studies of the effects of light
impurities (C, Si, and O) on the performances of directly
driven targets have been published in the past [9].

In the case of fAu ≠ 0, the energy Ekin was set to
1 MeV (corresponding to the ignition energy Eign =
40 kJ in the clean case, see Fig. 5) and fAu was increased
from 0.001 to 1.5%. The introduction of high-Z con-
tamination affects the ignition thresholds via several
mechanisms. Some of these are detectable by inspec-
tion of Fig. 11. The electron temperature maps are
given at the end of the igniting pulse for different
degrees of doping. It can be seen that by increasing fAu,
the needed electron temperature increases. At the larg-
est doping, the spark is imbedded in a thick radiation
wave. The presence of gold affects the heat capacity
and, via this, the igniting-beam penetration depth,
which is a self-consistent feature. The spiked structure
disappears. The difference between Te and Ti increases
with fAu. The situation evolves very rapidly, however.
Actually, 10 ps later, for fAu = 1%, for instance, due to
diffusive losses and relaxation effects, the electron tem-
perature decreases to 26 keV and the maximum ion
temperature achieves a value of approximately 39 keV.
In this same case, the simulations show that due to the
reduced DT content (about 57%) and to a smaller
burned fraction (about 25% instead of 38% of the clean
fuel), the yield is decreased to about 40% of that of the
clean fuel case. It is important to remark, however, that
the calculations presented here are relevant to assess
whether ignition occurs for a given contamination of
the spark region. The previous considerations relative
8040200
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8
6
4
2

WTn, MJ/ps

t, ps

120600

100

1
0.1

ETn, MJ

t, ps
0.03 cm

70 kJ, 1 MeV
t = 15 ps t = 30 ps t = 40 ps t = 50 ps

t = 60 ps t = 70 ps t = 80 ps t = 90 ps

0 0.5 1.0 1.5 2.0 2.5

lnρ [g/cm3]

10

0.01

0.001
20 40 80 100

60 100 120

Fig. 9. Burn propagation through a target irradiated by an energy pulse well above the threshold. The detonation propagates first in
the radial direction and then along the axis. The plateau on the burn-rate curve is connected to the axial propagation (to be compared
with the bell-like shape shown in Fig. 7).
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Fig. 10. Burn propagation for a target ignited by a 27-MeV proton beam. Density maps. The burn wave is highly structured. This
results from simultaneous propagation of waves in the radial direction and from the heated cone tip. The situation is a hybrid of the
cases shown in Figs. 5 and 7.

t = 15 ps

ρ = 200 g/cm3

fAu = 0%
Eign = 40 kJ

ρ = 200 g/cm3

fAu = 0.3%
Eign = 70 kJ

ρ = 200 g/cm3

fAu = 1%
Eign = 300 kJ

Temax = 17.4 keV
Tradmax = 1.78 keV
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6.0 6.5 7.0 7.5 8.0 8.5
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Fig. 11. Comparison between the electron temperature distribution maps for increasing fAu at the end of proton-beam irradiation.
We note the change in the spark shape. The thick gray feature for fAu = 1% is due to radiation preheating, and the maximum radiation
temperature increases with fAu. The same trend occurs for the difference in temperature between electrons and ions. This, however,
is a highly transient situation: 10 ps later, for fAu = 1%, for instance, due to diffusive losses and relaxation effects, the electron tem-
perature decreases to 26 keV and the maximum ion temperature achieves the value about 39 keV.

t = 15 ps t = 15 ps
to the yield can be taken as meaningful in the case
where contamination is truly uniform.

The results of the investigation for fAu ≠ 0 are shown
in Fig. 12, where the data for the assigned density or
pressure are shown. The two fitting curves are similar
(exponential functions), with the one for a constant
pressure (circles) being somewhat shifted to the right.
In both cases, Eign represents a steep increase as fAu
JOURNAL OF EXPERIMENTAL 
approaches 0.2% (about 14% by mass). For greater val-
ues of fAu, the increase in Eign is very fast.

3. EFFECTS 
OF MACROSCOPIC CONTAMINATION

With regard to the effects of macroscopic mixing,
we estimate the typical size of the blobs that have a sub-
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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stantial effect on the ignition threshold. Assuming the
surface of a contaminant blob to be a sink for the fuel
energy through the electron thermal flow, we can esti-
mate the order of magnitude of the power Wa absorbed
in the ignition spark by the contaminant as

Here, κe is the Spitzer thermal conductivity coefficient

and  is the sum of the blob radii contained in the
spark. The total energy absorbed before spark disas-
sembling is

this value has to be compared with the spark thermal
energy Eth . For a standard spark (T ≈ 10 keV, ρDTRs ≈
0.5 g/cm2), we find that

Setting this ratio to 0.5 implies that

4. KELVIN–HELMHOLTZ INSTABILITY 
AT THE SHELL–CONE INTERFACE

In the reference cases in Table 1, a treatment of the
Kelvin–Helmholtz instability for compressible fluids
with a discontinuous density and velocity of sound was
required. The adopted geometry is shown in Fig. 13.
The xy plane is taken on the slip surface s and the wave-
number is taken in the xz plane. The flow is assumed at
rest for z < 0, in the region occupied by the imploding
shell material. In the z > 0 region, where the cone mate-
rial flows, the velocity is set to velocity V resulting from
the shock analysis. Assuming that the perturbed quanti-
ties behave as exp[–iωt + i(kxx + kzz)], we write the dis-
persion relation

(3)

where

and the complex frequency ω is normalized by
kxVcosψ/2. The study was performed numerically and
the results are as follows. The interface is always unsta-
ble for waves with 90° ≥ ψ ≥ ψ2, where ψ2 ≥ 0. In this
interval, the growth rate γ (the imaginary part of ω)
starts from 0 at ψ = 90°, achieves a maximum γm at
some ψm , and vanishes again for ψ = ψ2 if ψ2 > 0. Fur-
thermore, unstable modes can be found when γ ≠ 0 for
ψ2 = 0. All these unstable modes correspond either to a
reduced component of velocity V along x (ψ2 > 0) or to
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a sufficiently small value of V itself (for ψ2 = 0 and
γ ≠ 0). It is therefore possible to say that for these
modes, the fluids behave as incompressible. The results
obtained in the reference cases are reported in Table 2,
where ψm and ψ2 are expressed in degrees,

∆ is the shell thickness, ttransit = ∆/V0, and λx = 2π/kx .
When τ(λx/∆) < 1, the instability arises.

γ0

γm

kxcsDT
--------------, τ ∆

γmttransitλ x

-----------------------,= =
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Fig. 12. The ignition energy for 1 MeV protons represented
as a function of the Au doping. Squares correspond to the
fuel at the assigned density (ρ = const = 200 g/cm3); circles,
to fuel at the assigned pressure (p = const). In both cases, the
ignition threshold represents a steep increase as fAu
approaches 0.2% (see magnification in the inset). The
curves are exponential fits.
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Fig. 13. Geometry for the Kelvin–Helmholtz instability cal-
culations.
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In conclusion, the slip surface is always unstable.
The maximum growth rate is found in the regime near
the tip cone, where all perturbations with 0° ≤ ψ < 90°
are unstable. The formation of mixing layers like that
represented in Fig. 2b can be expected over most of the
implosion process.

Semiempirical theory [10] and numerical simula-
tions [11, 12] have been used in the description of mix-
ing layers. Quoted in [10] are experiments and theories
for turbulent mixing in the case of large differences in
density or supersonic flows. Difference in density
seems to slightly affect the width of the mixing layer
(halfwidth h), whereas this becomes somewhat nar-
rower for supersonic flows.

In what follows, we adopt a tentative dimensional
model to estimate h in the reference cases. We assume
that

a is a suitable number, x is the distance from O along V
(see Fig. 2b), and γm is evaluated for a typical wave-
number kx ≈ h–1. Because

we find that

For a ≈ 0.2, the previous model applied to incompress-
ible flows with a uniform density agrees with experi-
ment [10]. In the cases considered here, the angle θmix =
2h/x is

The maximum thickness of the mixing layer is

in the previously assumed reference situations, the
results, ordered for increasing pressure, are θmix ≈ 5, 10,
and 70 mrad, and hence, for ∆ = 100 µm, we have δmix =
0.5, 1, and 7 µm.

It seems safe to conclude that at the sliding surface,
the Kelvin–Helmholtz instability, which is active dur-
ing the shell implosion, is especially effective in the
“near tip” region, where a substantial amount of matter

h2 D x/V( ), D≈ aγmh2,=

γm h 1– ,∝

h x.∝

θmix 2aγ0csDT/V .=

δmix θmix∆;≈

Table 2

Reference case ψm ψ2 γ0 τ

First shock wave 86 70 0.046 10

End of accelerating pulse 82 73 0.11 5

Near cone tip transit 48 0 0.24 1
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can be collected and mixed into the fuel. An indication
for this can be found by the following considerations.

Typically, the fuel masses of interest in CFFI (Mf)
are on the order of 3 mg at a density of about 200 g/cm3.
The typical spark masses (Mspark) are on the order of
3 µg. The quantities Mf and Mspark are to be compared
with that of gold (MAu) involved in the mixing. Estimat-
ing the thickness of the mixing zone as δmix ≈ θmix∆, the
volume involved in mixing by a shell sweeping the
cone surface by a length L along the cone up to the cone
apex is

where θ is the cone half aperture. The amount of gold
involved in mixing can be estimated as 0.5ρAuVmix, and
assuming that a fraction f is entrained to the fuel, it is
found that

If this estimate is applied to the case of a near tip for a
cone with θ = 30°, at L = 400 µm and f = 0.3, it follows
that MAu ≈ 30 µg or MAu ≈ 10Mspark. In the ignition
study, it was found that a 14% mass contamination was
sufficient to make ignition practically impossible.
Under the previous conditions, this critical situation
can be created at a mass of about 30 times that of the
spark. Clearly, the relevance of Kelvin–Helmholtz
instability can be completely assessed only after using
a more complete description that would include the
final space distribution of the contaminant. However,
the previous estimate indicates that substantial
amounts of contaminant can be potentially involved in
the process.

5. CONCLUSIONS

The process of fast ignition by light ions has been
studied, and the ignition thresholds for different ion
kinetic energies have been found for a fuel composed of
50% deuterium and 50% tritium. The self-consistent
structure of the igniting spark has also been determined
by analytic methods. The physics of the burn propaga-
tion has been studied in some detail as a function of the
irradiation parameters. Because the cone material can
contaminate the fuel in CFFI, a parametric study has
been performed to find how the ignition thresholds
depend on the level of contamination. This study, per-
formed for an atomically mixed contaminant, has
shown that a level of atomic contamination of about
0.2% is sufficient to render ignition practically impos-
sible.

Evaluations have also been performed to find the
possible effects on ignition of contaminant blobs mixed
into a pure DT fuel.

Finally, it has been shown that in addition to cone
vaporization due to X-rays passing through the implod-

Vmix π θL2δmix,sin=

MAu 0.5ρAuVmix f .=
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ing shell in the indirect drive mode, another source of
contamination can be a turbulent mixing at the interface
cone-imploding shell. This mechanism could also be
active for directly driven implosions.
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Abstract—It is shown that the contribution of the intersublattice exchange interaction to the magnetic anisot-
ropy energy of a two-sublattice ferrimagnet can come only from higher order constants satisfying the condition
2K2 + 3K3 + … > 0. For this reason, for different signs of the first anisotropy constants of the sublattices, this
contribution may cause a spontaneous spin-reorientation second-order transition, but not first-order transitions
and jumps during magnetization rotation, which are associated with such a transition. Such jumps can appear
only when the opposite inequality is satisfied, and the corresponding contribution to anisotropy can be ensured
only by a fairly strong magnetoelastic interaction. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The field dependences of magnetization of crystals

of the hexagonal system are usually described on the
basis of the standard phenomenological expansion of
their energy,

(1)

The anisotropy constants K1, K2, etc., appearing in this
expansion, can be determined from the condition of the
best coincidence of the dependences of magnetization
M on the external magnetic field H, obtained as a result
of minimization of expression (1), with the experimen-
tal magnetization curves. Usually, it is sufficient to con-
fine analysis to the first two or three terms of the expan-
sion, where the anisotropy constants K2 and K3, which
describe the same contributions to energy that deter-
mine the anisotropy of cubic crystals, are small as com-
pared to K1. However, experimental investigations of
the behavior of compounds of rare-earth (R) and transi-
tion (T) 3d metals often reveal anomalies, which have
to be described using values of K2 comparable to or
even exceeding the value of K1.

Such an increase in the modulus of the ratio |K2/K1|
always indicates the possibility of a spin-reorientation
transition. Depending on the sign of K2, this can be
either a second-order transition (K2 > 0) or a first-order
transition (K2 < 0). In the present study, we are mainly
interested in the first-order magnetization processes
(FOMP), i.e., in the magnetization jumps during mag-
netization rotation. In this case, the angular dependence

% H M,( ) K1 M( ) θcos
2

=

+ K2 M( ) θcos
4 … H M.⋅–+
1063-7761/03/9705- $24.00 © 20958
of energy (1) acquires two minima (Fig. 1a). As a result,
in an external field directed approximately along the
“hard” axis, the smooth rotation of magnetization expe-
riences a jump (Fig. 1b). The list of compounds exhib-
iting such jumps can be found in [1].

In zero magnetic field, two minima appear on the
angular dependence of energy only if the following
condition is satisfied [2]:

(2)

The meaning of this condition is very simple. The term
in expansion (1) proportional to cos4θ (or sin4θ if we
use a power expansion in sinθ) describes a curve which
is a second-order parabola near one of its extrema and
a fourth-order parabola near the other extremum. The
latter extremum is found to be “flat” since the curvature
of the curve K2cos4θ at this point is equal to zero, and
the main of the three condition combined in (2) (K2 < 0)
requires that this extremum is a maximum. If the first
term has a minimum in this region (K1 > 0), this mini-
mum will be preserved after the summation with the flat
maximum. If, in addition, the first term is not very
large, K1 < 2|K2|, the minimum located at the foot of the
flat peak is also preserved (see Fig. 1a). In this simple
model, two minima always correspond to the directions
of magnetization M along (θ = 0) and across (θ = π/2)
the hexagonal axis c (z). Supplementing expansion (1)
with the third term, K3cos6θ, we can shift the minima to
the region 0 < θ < π/2 [3].

Condition (2) is sufficient but not necessary for the
emergence of magnetization jumps. The second mini-
mum on the %(θ) curve may also appear after the appli-

0 K1 2K2.–< <
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Fig. 1. (a) Angular dependence of energy and (b) projection of magnetization on the external field applied along the hard axis as a
function of the field strength 0 < H1 < H2 < Hjump. A jump appears when the metastable state vanishes in the field H = Hjump.
cation of an external field in the hard direction. In this
case, in zero field, the curvature of the %(θ) curve near
the maximum must be smaller than near the minimum
(the curve with a flatter peak). If the Zeeman energy in
the region of the flatter peak is taken into account, the
second minimum appears if

(3)

Thus, only the condition K2 < 0 is necessary for the
emergence of magnetization jumps. If the opposite ine-
quality K2 > 0 holds, it is not the maximum but the min-
imum on the %(θ) dependence that turns out to be flat-
ter. In this case, there is only one minimum; however,
as the value of K2 increases, this minimum can move to
the region 0 < θ < π/2, indicating the emergence of a
spontaneous (zero-field) spin-reorientation second-
order transition (Fig. 2).

Such an approach, which is ideal from the viewpoint
of combining simplicity and quality of fitting in the
phenomenological description, does not explain the
physical reasons for the emergence of magnetization
jumps. As a matter of fact, there are no grounds to
expect the emergence of large second-order constants in
the R or T sublattice. In the former case, this is hardly
probable in accordance with the crystal field theory [4, 5],
while in the latter case, in accordance with experimen-
tal evidence for similar compounds of T metals with
nonmagnetic yttrium and lanthanum, only one first-
order constant is sufficient for describing anisotropy.
Consequently, neither the R nor the T sublattice alone
may have two minima on the angular dependence of
energy. Hence, a meticulous analysis of all contribu-
tions to the magnetic anisotropy energy is required to
find out which interactions are responsible for the
emergence of a large second-order constant in general
and for the formation of metastable states in particular.

K2 0, 4K2 K1 6K2.–< <<
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The two main contributions to the magnetic anisot-
ropy energy come from the exchange interactions
between magnetic moments and from their interaction
with the lattice. These contributions will be considered
in the next two sections of this article. Confining the
analysis to the low-temperature region, we will disre-
gard the change in the exchange energy associated with
the change in the modulus of spin during its rotation [6,
7]. For this reason, we will henceforth assume that the
exchange contribution comes only from the intersublat-

0.50 1.0 1.5
θ, rad

0

0.4

0.8

%, rel. units

z

θR

θT
MT

MR

(KR + KT) cos2θ
z MT

MR
θ

KR cos2θR + KT cos2θT + Eexch

Fig. 2. In the case of an infinitely strong intersublattice
exchange interaction, the magnetic moments of the sublat-
tices are parallel and the anisotropy constant of the crystal
is equal to the sum of the sublattice constants (upper curve).
As the exchange energy decreases, the moments of the sub-
lattices start deviating towards their easy axes in the region
0 < θ < π/2. This gives rise to a new degree of freedom,
which lowers the energy (lower curve). As a result, the max-
imum becomes steeper and the minimum becomes more
gently sloping or is even shifted to the region 0 < θ < π/2.
ICS      Vol. 97      No. 5      2003
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tice exchange interaction whose energy changes with
the angle between the spins of the sublattices. This con-
tribution to the second anisotropy constant of the crys-
tals is always positive and is responsible for the second-
order spin-reorientation transition. As regards magneti-
zation jumps, the only possible negative contribution to
K2 comes from the magnetoelastic interaction (if we
disregard, in contrast to [1], the possibility of formation
of three or more sublattices with specific exchange
interactions between these sublattices). The conclu-
sions drawn will be used for describing the magnetiza-
tion curves for compounds NdxY1 – xCo5.

2. CONTRIBUTION
OF INTERSUBLATTICE EXCHANGE

TO ANISOTROPY

We will first consider a classical two-sublattice
magnet, i.e., a magnet with a very strong exchange
interaction in the sublattices. In this case, their magne-
tization MR and MT can be treated as classical vectors
whose magnitudes depend only on the temperature. It is
clear that, if MR and MT are not parallel to the crystal
axes, these vectors cannot be parallel to each other and
the angle between these vectors changes upon their
rotation. It is shown in [8] that in such a situation we
must explicitly take into account the contribution
−IRT(MR · MT)/MRMT from the intersublattice exchange
interaction to anisotropy, where IRT is the constant of
this interaction. This contribution is most significant
when the easy axes of the sublattices are mutually per-
pendicular (precisely this case will be considered
below).

Confining our analysis to the first anisotropy con-
stants K1R and K1T of the sublattices and denoting by θR,
θT, and θH the angles formed by vectors MR, MT, and
H with the c axis, we write the energy of the system in
the form

(4)

This function of two variables can easily be reduced to
a function of one variable, similar to (1):

(5)

Minimization is carried out here over θR; i.e., we
assume that any rotation of vector MT is accompanied
by the rotation of vector MR to the position correspond-

% θR θT,( ) IRT θR θT–( )cos–=

– K1T θTcos
2

K1R θRcos
2

+

– H MR θH θR–( )cos MTcos θH θT–( )+{ } .

% θR θT,( ) % θT( ) min ER θR θT,( ){ }=

– K1T θTcos
2

HMT θH θT–( ),cos–

ER θR θT,( ) IRT θR θT–( )cos–=

+ K1R θRcos
2

HMR θH θR–( ).cos–
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ing to the minimal value of energy ER. If we now
assume that the Zeeman energy is small as compared to
the anisotropy constants of the sublattices, and the latter
constants are smaller than the intersublattice exchange
energy, we can carry out this minimization in analytic
form in the lowest order in K1R/IRT:

(6)

Since the angle between vectors MR and MT is small in
this case, the crystal magnetization is equal simply to
the sum or difference of the magnetizations of the sub-
lattices depending on the sign of IRT. Comparing rela-
tions (1) and (6), we obtain the total anisotropy con-
stants for a crystal with energy (1) as functions of the
anisotropy constants of the sublattices and the
exchange parameter:

(7)

Thus, the contribution to K2 emerging due to the inter-
sublattice exchange interaction is always positive in
this approximation.

It can easily be verified that this conclusion remains
valid for any value of IRT. Indeed, for an infinitely
strong intersublattice exchange interaction, the
moments of the sublattices are always exactly parallel
to each other. The crystal energy in this case is equal to
the sum of the anisotropy energies of the sublattices
(see the upper curve in Fig. 2). If the intersublattice
exchange becomes finite, a new degree of freedom
appears since the angle between the magnetizations of
the sublattices may change. However, the emergence of
new degrees of freedom for any system leads only to a
decrease in its energy. Consequently, when the
exchange becomes finite, the energy must become
lower, which is indicated by arrows in Fig. 2. However,
in the high-symmetry directions (along the c axis or in
the basal plane), the moments of the sublattices always
remain parallel and the difference in the energies corre-
sponding to these states remains unchanged. In any
other positions, the moments start deviating toward
their easy axes, the angle between these moments
increases, and the energy decreases. Obviously, the
energy peak in this case becomes sharper and the
energy minimum becomes more gently sloping, which
indicates the emergence of a positive anisotropy con-
stant K2.

θR θT–( )sin
K1R

IRT
--------- 2θT( ),sin≈

% θT( ) K1R K1T–( ) θTcos
2 K1R( )

2 IRT
--------------–≈

× 2θT( )sin
2

H MR MT± θH θT–( ).cos–

K1 K1R K1T 2
K1R

2

IRT
----------, K2 2

K1R
2

IRT
----------.≈––≈
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We did not depict in Fig. 2 the curve with a more
gently sloping minimum, confining our analysis to the
case when the value of |IRT| decreases to such an extent
that the following condition holds [8]:

(8)

In this case, the energy minimum, remaining the single
minimum, is displaced to the interior of the region 0 <
θ < π/2; i.e., a noncollinear magnetic structure is
formed as a result of the second-order phase transition.
Minimizing Eq. (4) for H = 0, we can easily determine
the position of the minimum,

(9)

where

In this case, the application of expression (5) for energy
is less effective in spite of its dependence on only one
variable and strongly complicates the derivation of
Eqs. (9). However, approximate formulas (6) and (7)
are very helpful. These formulas make it possible to
estimate the minimal value of the second anisotropy
constant, which must be inherent in at least one of the
sublattices for the emergence of a metastable state. In
the lowest order in K1R/IRT, condition (2) now assumes
the form

(10)

Thus, the conditions under which even small second
anisotropy constants of the sublattices may cause mag-
netization jumps in a classical two-sublattice magnet
still exist. It is necessary that the first anisotropy con-
stants of the sublattices be close in value and have
opposite signs, while the exchange interaction between
the sublattices must be quite strong. It is only in this
case that an essentially positive exchange contribution
to the second anisotropy constant of the crystal may not
play a decisive role. However, as the value of |IRT |
decreases, this contribution becomes predominant and
magnetization jumps cannot appear.

The results obtained for a classical ferrimagnet can-
not be used directly for analyzing the magnetic proper-
ties of real RT compounds. As a matter of fact, the
exchange in the R sublattice is practically absent for the
latter compounds. For this reason, the magnetization of
this sublattice cannot be treated as a classical vector,

IRT K1R K1T–( ) 2K1RK1T.<

θR
1
2
--- 1

1 2αR αR αT–( )–

1 4αRαT+
------------------------------------------+ ,arcsin=

θT IRT αR αT–( )arccossgn θR,–=

αR

IRT

2K1R
------------, αT

IRT

2K1T
------------.= =

2
K1R

2

IRT
----------

K1R K1T–
2

-----------------------
K1R

2

IRT
----------+ K2v ,–< <

v R T.,=
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which results in a radical change in energy ER in
expression (5).

Assuming that only the magnetization of the T sub-
lattice is a classical vector, while R ions are “paramag-
netic” in the exchange field created by this lattice, we
obtain, instead of Eqs. (4) and (5),

(11)

where T is the absolute temperature in energy units and
ki are anisotropy parameters. The magnetic moment MR
of an R ion is now transformed from a classical vector
into an ordinary quantum-mechanical mean:

(12)

Here, J and gJJ are the operators of the total angular
momentum and the magnetic moment of the R ion,1

gJ is the Lande factor, and m is the unit vector directed
along the magnetic moment MT of T sites.

If the intersublattice exchange IJ is very strong, the
free energy FR, which coincides with the ground-state
energy of the R ion at T = 0, is given in the first order of
perturbation theory by

(13)

In this case, condition (2) for the emergence of two energy
minima can be written in explicit form. If the energy of
the R sublattice must have two minima, we obtain the fol-
lowing condition from relations (2) and (13):

1 We assume that these vectors are parallel.

% θT( ) FR m( ) K1T θTcos
2

– HMT θH θT–( ),cos–=

m MT/MT,=
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T
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 ,
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4+ +=

+ … k66 J+
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Fig. 3. Dependences FR(θ) at T = 4 K, J = 9/2. gJ = 8/11. And I = 300 K in the cases when only k1 (a–c) and only k2 (d–f) differ
from zero in Hamiltonian (11). The dashed curves with circles correspond to the results of calculation, while solid curves describe
approximation by functions (16)–(18) and (19)–(21), respectively, for cases (a–c) and (d–f). The values of k1J2/IJ (a–c) and k2J4/IJ
(d−f) are shown near the arrows.
In the general case, |k1| @ |k2|J2 for hexagonal lattices
[4, 5], so that the R sublattice in this model cannot be a
trigger putting in operation the mechanism of magneti-
zation jump formation. However, the total energy %(θT)
in Eqs. (11) in which the contribution FR(θT) plays the
same role as K2cos4θ in Eq. (1) may have two minima
also. For H = 0, function FR(θT) must have a flatter peak
at θT = 0 and a sharp minimum at θT = π/2:

(14)

In this case, when the anisotropy energy –K1Tcos2θT of
the T sublattice is added to FR(θT), the minimum at θT =

0
∂2FR

∂θT
2

-----------
θT 0=

– 2K1T
∂2FR

∂θT
2

-----------
θT π/2=

.< < <
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π/2 is preserved and another minimum is formed at
θT = 0. Substituting relation (13) into (14), we obtain

(15)

Consequently, as in the case of a classical ferrimag-
net, we again come to the conclusion that a magnetiza-
tion jump could in principle emerge if the intersublat-
tice exchange were strong and the first anisotropy con-
stants compensated each other almost exactly.
However, we are not aware of two-sublattice systems in
which the existence of magnetization jumps would be
indeed associated with such a compensation of the first
sublattice anisotropy constants. The anisotropy energy
in such a compound would be much lower that in a sim-
ilar compound of a T metal with yttrium or lanthanum;
the experimentally observed picture is quite different.

K1R 2K2R+ K1T K1R.< <
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In real RT compounds, the anisotropy of the R sub-
lattice is often on the same order of magnitude as the
intersublattice exchange; we numerically calculated the
angular dependence of FR just in this range of the
parameters. For the R element, we took Nd (J = 9/2 and
gJ = 8/11) and carried out calculations for various val-
ues of the ratio kv /IJ , v  = 1, 2.

If we do not confine our analysis to the lowest order

in perturbation theory, any operator from  in the
Hamiltonian HR (11) is sufficient for the simultaneous
emergence of all the terms proportional to even powers
of cosθ in expansion (13). However, the relation
between constants KjR is obviously determined to a
considerable extent by a parameter km that differs from
zero and by the ratio of this parameter to IJ .

Figures 3a–3c show the results of calculation of the
FR(θ) dependence for the case when only k1 in Eqs. (11)
differs from zero. It can be seen that, in accordance with
relation (13), for small values of |k1 |/IJ, we obtain a
symmetric function proportional to cos2θ. However, as
the ratio |k1 |/IJ increases, the peak of the function FR(θ)
becomes steeper and steeper, while the minimum
becomes more and more gently sloping. This tendency
is preserved even after the ground state changes, i.e., for
k1 > IJ/(2J – 1). Naturally, the role of higher order con-
stants in expansion (13) increases simultaneously. The
results of fitting of the numerically calculated functions
FR(θ) to the first three terms in expansion (13) are given
below:

(16)

in Fig. 3a,

(17)

in Fig. 3b, and
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in Fig. 3c. It should be noted here that the conditions for
the emergence of more gently sloping maxima and
minima at θ = 0, π/2 change in expansions with a num-
ber of terms exceeding two (instead of K2 < 0 (K2 > 0),
we have 2K2 + 3K3 + … < 0 (2K2 + 3K3 + … > 0)).

Figures 3d–3f show the results of such computations
for the case when only the value of k2 in expression (11)
for HR differs from zero. The approximation was car-
ried out using the following functions:

(19)

in Fig. 3d,

(20)

in Fig. 3e, and

(21)

in Fig. 3f. In this case, for a small ratio |k2J2/IJ|, the term
proportional to cos4θ plays the leading role and the
FR(θ) dependence may acquire a flatter peak (see
Fig. 3d). However, as the value of |
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contribution from the corrections of the next orders of
magnitude becomes larger, leading to a deviation of 
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. As a result, the expression for 
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considerable exchange contribution and the curvature
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) curve in the vicinity of the maximum turns
out to be larger than in the vicinity of the minimum for
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 (see Figs. 3e and 3f). It should be empha-
sized that this conclusion is valid even for large nega-
tive values of 
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; see
relation (13)) for which the function min{ E R } in rela-
tions (5) would have a more gently sloping peak in the
classical case.
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Thus, a decrease in the intersublattice exchange in a
ferrimagnet with a paramagnetic R sublattice, as well
as in a classical two-sublattice ferrimagnet, leads to an
increase in higher order anisotropy constants of the
crystal. The magnitudes of these constants may become
equal to or even exceed the first constant, but almost in
all cases these constants satisfy the condition 2K2 +
3K3 + … > 0. Consequently, the intersublattice
exchange interaction energy can only lead to the emer-
gence of a second-order spin-reorientation transition. A
first-order transition may take place only for 2K2 +
3K3 + … < 0; however, in order to explain this transi-
tion, we must consider some other interactions that
have been disregarded so far.

3. MAGNETIZATION JUMPS IN THE SYSTEM
OF NdxY1 – xCo5 ALLOYS

At the end of the 1970s, Ermolenko [9] discovered
strong magnetization jumps in alloys of the system
NdxY1 – xCo5 with x ≤ 0.4, which were subsequently
interpreted [10] on the basis of the model of a classical
two-sublattice magnet. In such alloys, Co atoms exhibit
an easy axis anisotropy, Nd atoms exhibit an easy plane
anisotropy, while Y atoms are a nonmagnetic analog of
neodymium atoms. For this reason, the magnetization
and the anisotropy constant of the R sublattice, as well
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Fig. 4. Dependence of energy ENd(θNd, θCo) of the NdCo5
alloy on θNd (first equation in (22)) for the values of the
parameters chosen in [10]. The inset shows the graphic
solution of the second equation in (22); letters L and R mark
the curves corresponding to the left- and right-hand sides.
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as the energy of the intersublattice exchange, are pro-
portional to the concentration 

 

x

 

 of Nd atoms in this sys-
tem of alloys.

The dependences of the total energy on 

 

θ

 

Co

 

 calcu-
lated in [10] for all alloys with 

 

x 

 

> 0.1 have two minima,
one of which lies at 

 

θ

 

Co

 

 = 0 and the other is shifted
towards θCo = π/2 with increasing x. This made it pos-
sible not only to explain the jumps on the magnetization
curves for alloys with x ≤ 0.4, but also to predict the
existence of a magnetization jump in the alloy NdCo5
in a field having a strength on the order of 350 kOe and
parallel to the c axis. This prediction was subsequently
confirmed experimentally [11], which suggests that the
set of parameters and the mechanism for the emergence
of magnetization jumps proposed in [10] should be
considered again more attentively.

According to Ermolenko [10], the key point is that
the first anisotropy constant of the Nd sublattice is
assumed to be zero. This value was chosen since the
magnetization curves for alloys with different values of
x had approximately the same slope for small angles of
deviation of the magnetization from the c axis; in other
words, the contribution from the Nd sublattice to
anisotropy was equal to zero for small values of θNd.
From the viewpoint of the above analysis, this means
that function FNd(θ) has a flatter peak in this case.
Ermolenko [10] obtained the value of this maximum
using model (4) and introducing a term proportional to
sin4θNd. As a result, instead of relations (5), the follow-
ing relations are obtained using the sine expansion
adopted in [10]:

(22)

It can easily be verified that if the intersublattice
exchange INdCo is not very strong, the last equation in
θNd has three solutions in a certain range of θCo. It is this
situation that takes place for the values of parameters
chosen in [10] (see the inset to Fig. 4). For θCo < 12°,
vector MNd may lie only in the vicinity of the c axis,
while for θCo > 18°, this vector lies only in the vicinity
of the basal plane. However, for 12° < θCo < 18°, vector
MNd has two stable states simultaneously (Fig. 4).

Thus, the magnetization MNd of the Nd sublattice in
the model used in [10] behaves as a trigger. It performs
jumplike transitions from the position near the c axis to
the position near the basal plane and back when vector
MCo rotates only through 6° from θCo = 12° to θCo = 18°.
Accordingly, the surface describing the total energy

ENd θNd θCo,( ) INdCo θNd θCo–( )cos–=

– K2Nd θNdsin
4

,

θNd θCo–( )sin
4K2Nd

INdCo
-------------- θNdsin

3 θNd.cos=
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%(θNd, θCo) has two local minima separated by a narrow
“ridge” in the band 12° < θCo < 18°.

It was mentioned above that the assumption used
in [10] not only helped to explain the experimental
results available at that time, but also led to correct pre-
dictions. However, the analysis carried out by us here
indicates that the magnetization of the R sublattice can-
not behave in such a manner. Indeed, on the one hand,
the existence of a crystal field in which |K2R | @ |K1R | is
highly improbable. On the other hand, it was empha-
sized at the end of the previous section that, even in this
case, the flat energy peak for “paramagnetic” R ions
emerges if anisotropy is small as compared to the inter-
sublattice exchange. Since R ions in real compounds of
the RCo5 type are indeed virtually paramagnetic, while
the intersublattice exchange is relatively weak, the R
sublattice itself cannot be a trigger and cannot ensure
the existence of a metastable state for the Co sublattice.

Thus, it becomes important to construct a noncon-
tradictory model in which the contribution of the R sub-
lattice to the energy of the NdxY1 – xCo5 system would
ensure the angular dependence of the total energy close
to that obtained in [10]. The only contribution to the
anisotropy that has not been included so far is the mag-
netoelastic interaction; therefore, it is natural to
attribute the magnetization jumps precisely to this
interaction. Indeed, a rotation of the magnetization vec-
tor deforms the crystal lattice so that the total energy of
the crystal decreases. In particular, in the vicinity of the
hard axis, magnetostriction always reduces the anisot-
ropy constant and flattens the energy peak. This effect,
if it is strong enough, automatically ensures the emer-
gence of magnetization jumps, imparting stability to
the direction of magnetization, which was formerly
hard. Consequently, it only remains to verify whether
the value of the magnetoelastic energy can be suffi-
ciently high.

In order to solve this problem, let us obtain the sim-
plest estimates proceeding in the framework of the gen-
eral theory [12]. In order to estimate the main magne-
toelastic contribution, we must introduce the dependence
of the anisotropy parameters ki in Hamiltonian (11) on
the lattice parameters a, b, c and on strain ε,

(23)

and to take the elastic energy into account. Confining
ourselves to only one elastic constant C, writing the
exchange parameters taking into account the de Gennes

c 1 ε+( )c0, a b 1
1
2
---ε– 

  a0,= = =

k1
c
a
--- 

  k1

c0

a0
----- 

 =

+
3
2
---ε

c0

a0
-----

x∂
∂

k1 x( )
x c0/a0=

… kcf εqme …,+ +≡+
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rule in the form IJ = (gJ – 1)I, and assuming that I is
independent of ε, we obtain the Hamiltonian for the R
ion in the form

(24)

In contrast to relation (11), we are using here, instead of

, the equivalent operator  as is usually done [3, 4].
In addition to the conventional anisotropy constant kcf
associated with the crystal field of the undeformed lat-
tice, the coefficient of this operator now contains the
magnetoelastic contribution εqme. The magnitude of
this contribution depends on strain ε, which is deter-
mined from the minimum condition for the mean value
of energy (24). The sign of the quantity qme is deter-
mined only by the sign of strain ε, and the magnetoelas-
tic correction to energy is always negative,

(25)

where 〈X〉 ≡ Tr(Xρ).

Formulas (11) and (12), which are associated with
computation of the density matrix ρ, mean values, etc.,
remain valid for Hamiltonian (24) also; this Hamilto-

nian must only be self-consistent in . However, the
first formula in Eqs. (11), which describes the angular
dependence of the total energy %(θCo), must be modi-
fied.

In binary RT compounds, the crystal is deformed
uniformly, the mean values are identical for all R sites,
and formula (11) for %(θCo) remains valid. However, it
was mentioned above that, in the solid solution
RxY1 − xCo5, the cells in which R sites are occupied by
yttrium atoms make zero contribution to the anisotropy
energy and the energy of exchange with the Co sublat-
tice. Consequently, when calculated per unit cell,
these energies must be simply proportional to concen-
tration x. The dependence of the magnetoelastic energy
on x turns out to be more complicated. As the concen-
tration deviates from x = 1, strain ε changes and
becomes nonuniform itself, together with the density of
the magnetoelastic energy. For this reason, the magne-
toelastic correction to energy per unit cell is a complex
nonlinear function of x. However, we will not try to cal-
culate this function, since our goal is not to describe the
experiment quantitatively, but only to analyze the pos-
sibility of the emergence of magnetization jumps due to

HR gJ 1–( )I m J⋅( ) kcf Jz
2 J J 1+( )

3
--------------------–+=

+ δHme ε( ) gJµB H J⋅( ),–

δHme ε( ) εqme Jz
2 J J 1+( )

3
--------------------–

1
2
---Cε2.+=

Jz
2 Ô20

δHme〈 〉
qme

2

C
-------- Jz

2〈 〉 J J 1+( )
3

--------------------–
2

,–=

Jz
2〈 〉
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magnetostriction.2 Since we are interested in the range
of low Nd concentrations, we will assume that the
deformed regions in the vicinity of each Nd atom do not
overlap. In this approximation, the magnetoelastic
energy is simply proportional to concentration x and the
total energy of the system RxY1 – xCo5 assumes the form

(26)

This expression differs from the corresponding expres-
sion in Eqs. (11) only in the emergence of the depen-
dence on concentration and in the requirement of self-
consistency.

Figures 5 and 6 show the results of numerical calcu-
lations based on formula (26) for the system
NdxY1 − xCo5 with the following values of parameters:

I = 350 K, J = 9/2, gJ = 8/11, kcf = 10 K, kme ≡ J(J +
1)/C = 20 K, K1Co = 42 K, and MCo = 8µB/structural unit.
These values of the parameters of the Co sublattice are
borrowed from [9, 10], while the values of the parame-
ters of the Nd sublattice show that they were not spe-
cially fitted.

Figure 5 shows the dependence of the energy FNd of
the neodymium atom on angle θCo, obtained from self-
consistent calculations for the above values of the
parameters. It can be seen that the magnetoelastic con-
tribution (curve 1) to the anisotropy energy is relatively
small and amounts to about a quarter of the sum of the
contributions from the magnetocrystal anisotropy and
exchange (curve 2). However, the emergence of this
contribution transforms the sharp peak at θCo = 0 dis-

2 If we assume that the strain is the same in all unit cells and its
magnitude is proportional to x, we will obviously obtain a func-
tion of x2.

% x θCo,( ) xFR θCo( ) F1Co θCo( )cos
2

– H MCo.⋅–=

qme
2

20°0 40° 60° 80°
θCo

50

100

150

250

FNd, K

1

2

3

Fig. 5. Angular dependences of the magnetoelastic contri-
bution (curve 1) and the sum of the contributions from the
magnetocrystal anisotropy and the intersublattice exchange
interaction (curve 2) to the total energy FNd of the Nd sub-
lattice (curve 3) for the NdCo5 alloy. The values of the
parameters are given in the text.
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cussed in the previous section into a broad and gently
sloping peak similar to that obtained in [10]. Taking
into account the anisotropy energy of the Co sublattice,
we now obtain two minima on each angular depen-
dence of the total energy for all NdxY1 – xCo5 alloys with
x > 0.1 (see the insets to Figs. 6). Consequently, the
removal of a magnetic field must lead to the emergence
of jumps on the magnetization curves for these alloys
and to hysteresis phenomena associated with these
jumps. The calculated magnetization curves for alloys
with x = 0.1 and x = 0.2 in a field perpendicular to the c
axis are shown in Fig. 6a. The experimental magnetiza-
tion curves [9] for the alloys with x = 0.1 and x = 0.2 are
marked by bullets and dark squares in this figure. Fig-
ure 6b shows the calculated magnetization curves for
alloys with x = 0.3, 0.4, and 1 in a field parallel to the
c axis and the corresponding experimental values (dark
circles [9], squares [9], and triangles [11]). The insets to
Figs. 6a and 6b show the calculated dependences of the
energies of various alloys on the direction of their mag-
netization.

In spite of the absence of special fitting, the agree-
ment between these results obtained for T = 0 and
experiment can be regarded as satisfactory in our opin-
ion. However, in addition to low-temperature magneti-
zation jumps, compounds NdxY1 – xCo5 and analogous
compounds TbxY1 – xCo5 exhibit spin-reorientation
transitions emerging at higher temperatures. Conse-
quently, to determine the true values of parameters of
the R sublattice, it is necessary to match the experimen-
tal and calculated positions of both magnetization
jumps and the spin-reorientation transitions, which is
beyond the framework of this paper.

It remains for us to find out whether or not so large
magnetoelastic contributions to the anisotropy of
NdxY1 − xCo5 alloys are possible. At low temperatures,
the values of elastic moduli of these compounds were
investigated in [13], where the value of C33 ≈ 2.5 ×
1011 J/m3 was obtained. The magnetostrictive strains

ε ≈ δl/l ≈  in this system of alloys attain values of
about 3 × 10–3 [14]. Consequently, the magnetoelastic
contribution –C(δl/l)2/2 ≈ –106 J/m3 can indeed
approach a value equal to 0.1 of the total magnetic
anisotropy energy, which is equal approximately to 2 ×
107 J/m3 [15]. However, in this case another interesting
question arises: how can the magnetoelastic contribu-
tion to the first anisotropy constant, i.e., the value of qme

in Eq. (17), be so large for ε ≈ 10–3?
Such a ratio of the contributions would be quite nat-

ural for pure rare-earth (RE) metals, for which the coef-
ficient for Y20 in the expansion of the crystal field
potential at a site into a series in spherical functions is
given by [5]

(27)

λ2
α 2,

k1 Q
c
a
--- 

 
id

c
a
---– .≈
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Fig. 6. Magnetization curves in fields parallel to the a (a) and c (b) axes for the alloys NdxY1 – xCo5 for (a) x = 0.1 (circles correspond
to experiment [9]), x = 0.2 (squares correspond to experiment [9]) and (b) x = 0.3 (circles correspond to experiment [9]), x = 0.4
(squares correspond to experiment [9]), x = 1 (triangles correspond to experiment [11]). The insets show the angular dependences
of the energy of these alloys calculated by formula (26).
Here, (c/a)id =  ≈ 1.633 is the ideal value of the
ratio c/a, for which the hcp lattice becomes cubic, and
Q is the coefficient depending on the charges of neigh-
boring ions and on the distance to these ions. Since
c0/a0 ≈ 1.58–1.6 for pure RE metals, the value of kcf =
Q(1.633 – c0/a0) turns out to be approximately two
orders of magnitude lower than Q, and qme =
1.5(c0/a0)Q ≈ 2.5Q. Consequently, the relation
εqme/kcf ≈ 10–1 indeed holds for ε ≈ 10–3.

When the crystal field at a site of an RE metal is cal-
culated, the contributions of different signs come to
relation (27) from ligands lying in “their own” and
“alien” hexagonal planes. It can apparently be expected
that the anisotropy constant must be equal to the sum of
two large and opposite contributions, which compen-
sate each other almost exactly but vary in different
ways upon lattice deformation in other cases also, when
small variations of the lattice parameters lead to large
relative changes in the anisotropy constant.

It should be emphasized that this assumption is not
associated with the desire to explain the emergence of
magnetization jumps. This assumption can be verified
in independent calculations and experiments. In partic-
ular, it is sufficient, knowing the experimental values of
elastic moduli and magnetostriction, to compare the
magnetoelastic energy and the magnetic anisotropy
energy for this purpose.

As regards RCo5 compounds, the crystal field cre-
ated by cobalt ions at an R site was also calculated [16].
In this case, in contrast to pure RE metals, the lattice
geometry is such that the possibility of compensation of
the contributions from different hexagonal planes to the
crystal field is ruled out. For this reason, the values of
the first anisotropy constant obtained in [16] for differ-
ent RE metals are two orders of magnitude higher and
have signs opposite to those in experiment. This contra-
diction could in principle be eliminated by introducing

8/3
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certain effects of strong screening, which reverse the sign
of the effective charge of the ligand [17]. However, on
account of experimental values of magnetostriction
constants and elastic constants [13, 14], another reason
has to be sought in our opinion. It is more natural to
assume the existence of one more contribution to the
crystal field of as yet unknown origin, which has a close
value and the opposite sign.

4. CONCLUSIONS

(1) The contributions of the intersublattice exchange
and magnetoelastic interactions to the magnetic anisot-
ropy of a two-sublattice ferrimagnet lead to an increase
in the values of experimentally determined values of
higher-order anisotropy constants, which may turn out
to be comparable to the first constant. 

(2) Higher order constants associated with the inter-
sublattice exchange satisfy the inequality 2K2 + 3K3 +
… > 0. The same constants emerging when the magne-
toelastic contribution is taken into account satisfy the
opposite inequality 2K2 + 3K3 + … < 0. 

(3) The emergence of jumps during the rotation of
the magnetization vector is possible only if the latter
inequality holds. Consequently, it is precisely magne-
toelastic interactions (provided that their intensity
exceeds a certain threshold value) that can ensure the
emergence of magnetization jumps in two-sublattice
ferrimagnets. 

(4) The possibility of estimating this threshold value
in analytic form for a magnet with a paramagnetic sub-
lattice requires special analysis. For a classical magnet,
the inclusion of magnetostriction only indicates the
addition of the term Kme[cos2θR – 1/3]2 to energy (4).
Consequently, the quantity Kme in this case plays the role
of constant K2R and can be estimated using formula (10).
SICS      Vol. 97      No. 5      2003
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(5) For an appreciable value of the magnetoelastic
correction to the anisotropy constant for small strains,
the magnetic anisotropy energy must be the sum of two
large and approximately equal contributions of oppo-
site signs, which exhibit different dependences on the
lattice parameters. In particular, in the case of RCo5, a
contribution to the crystal field at an R site must exist,
which compensates the potential of cobalt ions. 

(6) If the emergence of magnetization jumps is
indeed associated with magnetoelastic interactions, the
absence of a hysteresis loop on experimental magneti-
zation curves can be explained quite easily. In a real
crystal, strong internal compressive and tensile stresses
are always present; these stresses stabilize the seeds of
the phase with magnetization lying in the vicinity of the
c axis in some regions and with magnetization lying
near the basal plane in other regions. For this reason, a
transition may occur due to shifts in phase boundaries,
as was noted in [18] without specifying the nature of
the phases. 

(7) The calculations of energy (20) of NdxY1 – xCo5
alloys with the above values of parameters at nonzero
temperatures give the region of spontaneous spin reori-
entation, which are in satisfactory agreement with
experiment. However, in contrast to the traditional the-
ory [8], these calculations predict the transformation of
spin-reorientation transitions in temperature into first-
order transitions. The parameter determining whether
the spin reorientation will occur continuously or will
experience a jump is the magnetoelastic interaction
energy. If this energy is small in the transition region,
only one minimum exists and a second-order transition
takes place; if, however, this energy is large, there are
two minima and a first-order transition takes place. This
could be confirmed or rejected experimentally by ana-
lyzing Barkhausen magnetic and/or acoustic noise
upon a change in the temperature in the transition
region.
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Abstract—The ground state of a two-dimensional antiferromagnet having spins S = 1/2 and interacting with
acoustic phonons is investigated in the nonadiabatic approximation using the quantum-mechanical Monte Carlo
method. The critical parameters of the spin–phonon coupling, corresponding to the formation of bound spin–
phonon excitations, crystal symmetry lowering, and the emergence of a gap in the spin excitation spectrum, as
well as the antiferromagnet–quantum spin liquid transition, are determined. The orthorhombicity parameter, the
sublattice magnetization, the violation of the spherical symmetry of spin–spin correlation functions, and the
magnetic moment in Gd2CuO4 and Eu2CuO4 are calculated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intense studies of electronic, elastic, and magnetic
properties of high-temperature superconductors and
manganites with a colossal magnetoresistance have
lead to the conclusion that the electronic structure is
closely related to magnetic and lattice fluctuations. For
weakly doped superconducting cuprates, one of the
hypotheses is associated with the formation of a quasi-
gap due to the generation of coupled spin–phonon exci-
tations. This hypothesis is confirmed by the results of
optical measurements [1]; for example, Raman spectra
are explained on the basis of coupled excitations in a
system consisting of two magnons and a phonon. In the
low-temperature range, a number of observed structural
distortions are due to lattice modulation, and super-
structural reflections exhibit tetragonal symmetry as
well as symmetry lower than the orthorhombic symme-
try. For La1.6 – xNd0.4SrxCuO4, these transitions exist in
the normal phase at T < 80 K [2]. In La2 – xSrxCuO4
(x < 0.05), the isotopic effect is observed with an
intensity comparable to that for traditional supercon-
ductors [3]. Another feature of weakly doped semicon-
ducting cuprates is associated with their thermal con-
ductivity, which cannot be described using the theory of
a Fermi liquid and presumes the existence of certain
delocalized quasiparticles [4]. These experimental facts
indicate the existence of two characteristic energy
scales: the electron–phonon and the spin–phonon inter-
actions.

Some peculiarities in magnetic properties, which
are also observed in allied compounds with a tetragonal
T ' structure and with CuO planes in R2CuO4 (R = Eu,
Gd, Nd), can be due to the interaction between lattice
and spin fluctuations. Such compounds are character-
ized by low values of the magnetic moment of copper
1063-7761/03/9705- $24.00 © 20969
ions (σ ≈ 0.4) and a relatively high Néel temperature
(TN ≈ 230–280 K). The following has been observed:
strong anharmonicity in local displacements in the CuO
plane in the temperature range 145 K < T < 175 K in the
absence of structural transitions up to 393 K and a min-
imum in the temperature dependence of the square of
average displacements of copper ions along the [100]
direction at T = 175 K [5] due to antiferromagnetic spin
fluctuations. The antiferromagnet Gd2CuO4 with a tet-
ragonal symmetry exhibits the electron spin resonance
at ω0 = 18.2 cm–1 [6], which can be explained by the
orthorhombic distortion of lattice planes with a sto-
chastic arrangement of the orthorhombicity vectors
along the c axis. At T = 20 K, the resonance disappears
and the susceptibility increases strongly [7], which can
be attributed to the coherent orthorhombicity state
(although the elastic scattering of neutrons and X-ray
studies do not confirm this effect). These effects are
probably associated with the formation of bound spin–
phonon quasiparticles, i.e., lattice and spin fluctuations
coupled dynamically with each other.

Antiferromagnets with the spin–phonon interaction
were considered in the adiabatic approximation, in
which the interaction between spin and acoustic
phonons can be reduced to the four-spin exchange
interaction and to the effective interaction between the
spins of next-to-nearest neighbors. For certain parame-
ters of this model, a spin nematic state with violation of
the spherical symmetry of the spin–spin correlation
functions is formed [8] and the long-range magnetic
order disappears [9]. The interaction between the spin
and the elastic subsystems leads to nonlinear interac-
tions not only between spins, but also between
phonons. For this reason, a correct solution should be
carried out taking into account the nonadiabatic inter-
003 MAIK “Nauka/Interperiodica”



 

970

        

APLESNIN

                                                           

                  
action between spins and phonons; this can be done
using the quantum-mechanical Monte Carlo method
based on the continuous-time algorithm.

2. COMPUTATIONAL MODEL 
AND METHOD

For quasi-two-dimensional magnets, the interplanar
exchange is several orders of magnitude weaker than
the intraplanar exchange; consequently, we can confine
our analysis to the interaction between the spins of the
nearest neighbors and with acoustic modes of vibra-
tions in the plane of the lattice. In the harmonic approx-
imation, the Hamiltonian for a coupled spin–phonon
system has the form

(1)

where Sz, ± are the components of the spin operator S =
1/2 at a lattice site, ui, j is the displacement of an ion
over the translation vectors of the lattice, M is the ion
mass, and K is the elastic rigidity constant of the lattice
(J > 0). Using the canonical transformation

(2)

we pass from variables ui, j to the creation (b†) and anni-
hilation (b) operators of phonon with momenta qβ =
2πn/L, n = 1, 2, …, L, where β = x, y and the lattice con-
stant a = 1. The transformed Hamiltonian has the form

(3)
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In computations, the spin–phonon interaction con-
stant 

 

α

 

 and the excitation energy 

 

ω

 

 normalized to
exchange are used. As the computational method, we
choose the quantum-mechanical Monte Carlo method
combining the algorithms of world lines and continu-
ous time [10] on a plane of dimensions 

 

N

 

 = 32 

 

× 

 

32 with
periodic boundary conditions at temperature 

 

β

 

 = 

 

J

 

/

 

T

 

 =
50. In accordance with this method, the Hamiltonian is
divided into three parts: the diagonal part,

where 

 

n

 

q

 

 is the occupation number of phonons with the
same momentum; and two nondiagonal parts,

Applying the Trotter formula [11], we can disregard the
commutation of operators 

 

V

 

j

 

 and 

 

V

 

α

 

 to within

 

α

 

J

 

/(2 ). This leads to a systematic error whose
maximal value is 15% for 

 
α

 

 = 4, 

 
ω

 

0 = 8, and τ0 = 0.5.
Following [10] we express operators exp[–τ0(H0/2 +
VJ)] and exp[–τ0(H0/2 + Vα)] on the imaginary time seg-
ment τ0 in terms of the evolution operator σev in the
interaction representation exp(–τ0H) = exp(–τ0H0)σev ,
where

(4)

and

Summation and integration of two operators VJ and Vα
in Eq. (4) are carried out using a stochastic procedure
of sampling various kink–antikink configurations in
accordance with their weights. The probability of the
formation of a kink–antikink pair is given by

A subprocess of kink shift along the time axis with
probability W = exp(∆τEγβ) is possible. The use of glo-
bal spin flips at a site and a change in the occupation
number of phonons with momentum q lead to a finite
transition probability W ~ qγβ on interval τ0. As a result,

H0 JSi
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z
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τ H0V J α, e

τ H0–
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W qγβ J α,( ) 2 τ2 τ1–( )Eγβ[ ] , τ2 τ1 τ0.<–exp=
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the total projection of the spin changes and discontinu-
ities are observed on world lines with even numbers.
Since computations lead to only an even number of

nondiagonal changes of trajectories (J) and (α),
we can avoid obtaining the minus sign due to an
increase in the systematic error. As an eigenfunction of
Hamiltonian H0, we choose the Sz representation of ↑
and ↓  spins; the occupation numbers of phonons with
momentum q are nq = 0, 1, 2, … (the maximum number
is not limited).

The spectral density of magnetic and spin–phonon
excitations can be determined from the corresponding
time correlation functions calculated in imaginary time
for τ > 0. We define the spin correlator in the form

(5)

where |ν〉 is the complete set of eigenstates of Hamilto-
nian H0, H0|ν〉 = Eν|ν〉, H0|vac〉  = E0|vac〉 . For the vac-
uum state, we choose the Néel arrangement of spins
with energy E0/NJ = 1/4. Let us redefine the spin corre-
lator (5) as

(6)

where ρs(ω) defines the spectral density of magnetic
excitations. We treat spin–phonon excitations as cou-
pled excitations of spins, appearing as a result of action

of operators  and , and phonons induced by the
creation operators b† on the wave function of vacuum
nq = 0. We represent the time correlators in the form

(7)

Analogously to (6), we define the spectral density of

qγβ
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coupled spin–phonon excitations in the form

In fact, the Monte Carlo method is used for calculat-
ing the time correlator on a finite interval 0 < τ < τ0. In
order to reproduce the spectral density in a wide range
of energies, we must solve the integral equation (6). For
this purpose, we use the stochastic procedure optimiz-
ing the deviation [12]

(8)

of the computed correlator G(τ) from the true correlator
Gt(τ) with the spectral density ρt(ω).

In order to calculate the nondiagonal operators, we
use a symmetrized representation of the wave function
in the imaginary time interval τ0. For example, we seek

the eigenvalue of operators  for τ  0 on the
basis of the functions

The displacement of an ion at a site is defined as

(9)

The mean square displacement of the ion is defined as

In the ground state, the number of phonons for a har-
monic oscillator with α  0 is equal to zero. There-
fore, it is important to calculate the change in zero-
point vibrations as a result of action of the magnetic
system on the elastic one; i.e.,

In the subsequent analysis, we will use the quantities

Correlated vibrations of ions and their momentum
dependence can be determined from the correlation
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phonon density function 〈n(q)n(q + p)〉 . The wave vec-
tors of incommensurability of lattice and magnetic fluc-
tuations were determined from the ion displacement
structural factor

in two directions, [10] and [01], and the magnetic struc-
tural factor

U q( ) 1
N
---- u0ur〈 〉 eiq r⋅

q

∑=

Sz k( ) 1
N
---- S0

z Sr
z〈 〉 eik r⋅ .

k

∑=

1.0

0.5

0

Uβ(k)/Uβ
max(k)

(a)

1

2

1.0

0.5

(b)

1

2

0

1.0

0.5

(c)

1

2

0 0.5 1.0 1.5 2.0
k

Fig. 1. The lattice structural factor Uβ(k)/ (k) normal-

ized to the maximum value and calculated in two directions
β = [10] (1) and [01] (2) for ω0/J = 6, α/αc3 = 0.3 (a),
0.7 (b), and 1 (c).

Umax
β
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In the computational procedure, the first 20000
Monte Carlo steps per spin were omitted and the aver-
aging was carried out over 8000 Monte Carlo steps per
spin. This value is much larger than the time of attain-
ment of thermodynamic equilibrium calculated from
the sublattice magnetization,

〈σ(0)σ(t)〉  – 〈σ(0)〉〈σ (τmax)〉  = Aexp(–t/t0),

where t is the number of Monte Carlo steps; t0 = 3000
and 7000 Monte Carlo steps per spin for α/αc = 0.3 and
0.75, respectively; and αc is the critical parameter of the
spin–phonon coupling, for which the long-range mag-
netic order disappears. The mean square error amounts
approximately to 3% for the sublattice magnetization,
1% for the energy, 2% for the spin–spin correlation
functions, and 4% for the average phonon occupation
number.

3. DISCUSSION
The processes of inelastic scattering and formation

of magnon and phonon bound states are determined by
the density of states of the initial quasiparticles. In the
two-dimensional Heisenberg model, the density of
magnon states diverges logarithmically at the middle of
the band and the interaction between quasiparticles is
symmetric for points Γ and X of the band. In the case
when the dispersion curves for magnons and phonons
intersect, which is observed for v ph < vm at ω0/J < 2 (v ph

and vm are the velocities of phonons and magnons,
respectively), additional singularities are formed in the
density of states of these quasiparticles. The calcula-
tions were made for ω0/J = 1, 2, 4, 6, 8, and 10; the fig-
ures illustrate the typical cases when ω0/J = 1 and
ω0/J = 6. Under the action of the magnetic system, the
structural factor of lattice fluctuations shown in Fig. 1
becomes spatially anisotropic. Ladder-type fluctuations
containing two nearest chains in the [01] direction and
quasi-one-dimensional chain fluctuations in the [10]
direction, which are separated by distance r ≈ 7–10, are
formed in the magnetic subsystem. The energy per
bond in an antiferromagnet with a square lattice is 1.3
times smaller than the energy in an antiferromagnetic
chain. Consequently, lattice fluctuations facilitate local
extension of the lattice along one of the symmetry
directions of the initial square lattice. Ladder-type fluc-
tuations accompanied by dynamic local lattice dimer-
ization also lower the magnetic energy; the approxi-
mated dependence of this energy has the form

The gain in the magnetic energy is almost an order of
magnitude higher than the loss in the elastic energy.

Em α( ) Em 0( )– A α /α c3( )1.80 6( ),≈

A
0.11 1( ), v m v ph,>
0.18 2( ), v m v ph.<




=
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The average displacement

is depicted in Fig. 2. Anisotropy of lattice fluctuations

leads to anisotropy of displacement  – 
(Fig. 2c) and lowers the crystal symmetry from tetrag-
onal to orthorhombic. With increasing interaction
between the magnetic and elastic subsystems, zero-
point vibrations at a certain wave vector Q are

enhanced, as well as their correlation  ∝
〈N(0)N(Q)〉 , depicted in Fig. 3. The maximal value of
the correlator is attained at the wave vector Qmax =
(0.75–0.9)π, αc2 < α < αc3 and reflects a coherent vibra-
tion of ions with localized spin excitations in the [10]
direction. For vm > v ph , in the interval αc2 < α < αc3 of
the parameters, the local orthorhombicity parameter
shown in Fig. 2c decreases sharply, its value being
within the computational error. The change in the sym-
metry of structural distortions is in qualitative agree-
ment with the replacement of the condensed mode
(π, 0) for δ < 0.5 (δ = Ji, i + 1 – Ji, i – 1) by the optical mode
(π, π) for δ > 0.5, calculated on a square lattice by the
method of exact diagonalization in the adiabatic
approximation [13].

A qualitatively different behavior of elastic and
magnetic properties is observed in the case when vm <
v ph . The lattice volume and the orthorhombicity param-
eter increase monotonically for α > αc2 and the change
in zero-point vibrations is an order of magnitude
smaller as compared to the case when vm > v ph

(Fig. 3a). Anisotropy of correlated vibrations also
increases and the results of calculations can be cor-
rectly described by the power dependence

The changes in the lattice parameters in the region of
the critical values αc2, 3, in which the typical values of
the upper boundary of the region of acoustic vibrations
in quasi-two-dimensional antiferromagnets R2CuO4

(R = La, Gd, Eu, Nd) are M ≈ 4 × 10–22g, and ω0 = J, are
equal to

Uc2 = 0.005(1) Å, Uc3 = 0.04(02) Å

for ω0 ≈ 4 × 1012 Hz [14] and

Uc2 = 0.002(1) Å, Uc3 = 0.007(2) Å

for ω0 ≈1014 Hz. The lattice-averaged change in the
exchange interaction in the region of the antiferromag-
net–quantum spin liquid phase transition constitutes

Uav
β 1

N
---- ui j,

β , β
i j,
∑ x 10[ ]( ), y 01[ ]( )= =

Uav
x Uav

y

Ui
2U j

2〈 〉

Uβ
2〈 〉 Uγ

2〈 〉 0.24 3( ) α α c2–( )/α c3[ ] 0.41 3( ).≈–
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approximately 1% (dJ/J ≈ 0.01), which is an order of
magnitude smaller than local exchange fluctuations.

The linear decrease in the magnetic moment at a site
upon an increase in the spin–phonon coupling constant
can be approximated by the dependence

In the range of parameters 0.15 < α/αc3 < 0.7. For α =

σ
σ 0( )
-----------

1.14 1.3α /α c3, v m v ph,>–

1.12 0.96α /α c3, v m v ph.>–
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Fig. 2. Dependence of lattice-averaged displacements Uβ of

ions, normalized to , for ω0/J = 1 (a) and 6 (b) in

directions β = [10] (1) and [01] (2) on the normalized spin–
phonon interaction constant and the dependence of the

orthorhombicity parameter  –  for ω0/J = 1 (1),

6 (2) on α/αc3 (c).

"/Mω0

Uav
x

Uav
y

SICS      Vol. 97      No. 5      2003



974 APLESNIN
〈U2
β〉

0.10

0.08

0.06

0.04

0.02

0
0 0.4 0.8 1.2

α/αc3

0.003

0.002

0.001

0

–0.001

(a)

1
2

1.00

0.75

0.50

0.25

0
0.4 0.8 1.2

α/αc3

(b)
1

2

3

2

〈 Nα(0)Nα(Q) 〉 nor

Fig. 3. Dependences (a) of the mean square displacement  of ions normalized to "/Mω0 for β = [10] (1, 2) and [01] (3, 4),

ω0/J = 1 (2, 4) and 6 (1, 3) on the normalized spin–phonon interaction constant and (b) of the maximum value of the phonon density
correlator on the wave vector Q for ω0/J = 1, β = [10] (1), [01] (2), and [11] (3) on α/αc3.
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Fig. 4. Normalized magnetic moment σ/σ(0) at a site (a) and the ratio of the correlation functions between the transverse com-
ponents of spins and longitudinal components for r = 1 (b) for ω0/J = 1 (1) and 6 (2) as functions of the spin–phonon interaction
parameter.

3

αc3, the magnetic moment abruptly vanishes. The typi-
cal dependences are shown in Fig. 4a. In the region of
the critical parameters of the spin–phonon coupling, the
spin–spin correlation functions and the correlation
radius are spatially anisotropic,

1

Sz i j,( )Sz i j r+,( )〈 〉
r

∑
Sz i j,( )Sz i r j,+( )〈 〉

r
∑
-------------------------------------------------------– 0.02–0.04,≈
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and anisotropy of the spin correlation functions
between directions [11] and [10] is on the order of 0.1.
For α > αc1, the spherical symmetry of spin–spin corre-
lation functions depicted in Fig. 4b is violated. This fact
serves as a criterion for determining the value of the
spin–phonon interaction parameter αc1 and is in quali-
tative agreement with the results obtained by Andreev
and Grishchuk [8], who obtained a spin-nematic state
in the Heisenberg model with competing antiferromag-
netic interactions and the four-spin exchange. In the
vicinity of the wave vector Q = (π, π) corresponding to
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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Fig. 5. Model densities of states defined analytically, ρ(ω) = (8/π)  (a) and numerically (b) (solid curves). The recon-
structed density of states are depicted by the dashed curves.
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Fig. 6. Density of states for (a) spin and (b) coupled spin–phonon excitations for ω0/J = 6, α/αc3 = 0.8 (1) and 1.14 (2).
the antiferromagnetic structural factor, satellites with
the incommensurability vector of the spin density are
observed in the interval qin = (0.7–0.95)π. The intensity
of the satellites varies in the limits

The procedure of reconstructing the spectral density
of states [12] for given models can be successfully used
for determining the band boundaries and the positions
of the peaks of the function ρ(ω) on the energy scale to
within 5%. The intensity has a saw-tooth shape and
fluctuates in the limits of 10–20%. Figure 5 shows the
reconstructed and model densities of states defined ana-

lytically (ρ(ω) = (8/π) ) and numerically.

Sz qin( )
Sz π π,( )
-------------------

0.05, α α c1,=

0.15, α α c2,=

0.3, α α c3.=





≈

ω 1 ω–( )
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The time correlator

was calculated over 100 points τi , i = 1, 2, …, 100. The
typical densities of spin excitations and coupled spin–
phonon excitations are shown in Fig. 6. For α > αc2, a
gap is observed in the spectral density of spin excita-
tions. The dependence of the gap energy on the magni-
tude of the spin–phonon coupling, together with the
approximating power function

,

is depicted in Fig. 7 (solid curve). In the density of cou-
pled spin–phonon excitations, one can single out a quasi-
gap. The maximal density ρ(ω) corresponds to quasi-
particles with zero energy and with the quasiparticle

G τ( ) e ωτ– ρ ω( ) ωd

0

ωmax

∫=

∆s/J α α c2–( )/α c3[ ] 0.50 8( )≈ , ω0 J=
SICS      Vol. 97      No. 5      2003



976 APLESNIN
excitation energy ω ≈ 2(ω0 + 2J), 2(ω0 + J), and
3(ω0 + J) for v ph > vm and ω ≈ 4(ω0 + J) and 8(ω0 + J)
for vph < vm. For ω0 ≈ 4 × 1012 Hz [14] and J ≈ 0.1 eV,
these estimates are in satisfactory agreement with the
optical data on the absorption spectra of Sr2CuCl2O2 [1],
which show a broad peak in the vicinity of 4000 cm–1,
as well as with the values of excitation energy EMC ≈
4400 cm–1 calculated by the Monte Carlo method. The
observed excitations reveal a close relation between the
spin and lattice degrees of freedom in the CuO2 plane.

On the plane including the upper boundary ω0 of the
region of acoustic vibrations and the spin–phonon cou-
pling parameter α, three critical lines can be singled
out. As the spin–phonon coupling constant attains the
critical value with the approximation dependence αc1 =
0.16(2)ω0/J, coupled spin–phonon excitations are
formed analogously to the formation of polarons in sys-
tems with electron–phonon coupling. As the value of α
increases, the quasiparticle density becomes higher and
the spectral density ρ(ω = 0) of bound spin–phonon
excitations has a finite value at ω = 0 for αc2 =
0.39(6)(ω0/J)0.85(4). A gap ∆s appears in the spin excita-
tion spectrum and the crystal symmetry is lowered. If
we treat the gap width ∆s as an order parameter of sin-
glet pairs of spins, an inhomogeneous state consisting
of a long-range magnetic order and a singlet state is
realized in the range of parameters αc2 < α < αc3. This
resembles the coexistence of the normal and anomalous
phases in liquid helium and in a type II superconductor
in a magnetic field. For constant αc3, which can be
approximated by the power dependence αc3 =
0.62(4)(ω0/J)0.85(6), the long-range magnetic order dis-
appears and a quantum spin liquid is formed.

The correlated state of lattice fluctuations can be
destroyed by thermal phonons. The critical temperature

∆s/J

1.2

0.9

0.6

0.3

0
0.4 0.8 1.2 α/αc3

1

2

Fig. 7. The energy ∆s of the gap in the spin excitation spec-
trum as a function of the spin–phonon interaction parameter
for ω0/J = 1 (1) and 6 (2).
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can be estimated from the condition of equality of the
thermal energy Eheat of phonons and the energy Ebin =
(Nph – Nph, c2)ω0/2 of the bound state of phonons. In the
Debye approximation, Eheat = 3π4kBT4/(5Θ3), where Θ
is the Debye temperature, the corresponding critical
temperature is

The dependence of the average number Nav =

(1/N)  of phonons on the normalized value of the
spin–phonon coupling constant is shown in Fig. 8. Lat-
tice fluctuations are connected with magnetic fluctua-
tions which change under the action of the magnetic
field and temperature at T ~ ∆s . For α > αc3, the lowest
temperature at which the soliton lattice can be broken is
determined by thermal phonons; for θ = 400 K, we have

 ≈ 22 K.

The low values of the magnetic moment σ = 0.4(1)
for Gd2CuO4 and Eu2CuO4 [15], which were obtained
from elastic scattering of neutrons, as well as the values
σ = 0.35(4) determined from the electron spin reso-
nances at Gd3+ ions in Eu2CuO4 [16], are probably due
to the spin–phonon interaction with parameters α/αc3 ≈
0.3 and 0.35 leading to the formation of coupled spin–
phonon excitations. This changes the acoustic excita-
tion spectrum. For example, an anomaly is observed in
the lower branch of the acoustic phonon excitation
spectrum along the ΓX direction in the isostructural
compound Nd2CuO4 [14]. The corresponding changes
in the lattice constant are on the order of 2 × 10–3 Å and
are manifested in the X-ray spectra in the form of an
ellipsoidal displacement of oxygen ions in the ab plane
at right angles to the Cu–O bond [17].

T* 0.74Θ3/4 0.02 α α c3–( )/α c3[ ] 1/4.≈

Nkk∑

Tc3*

Nav

0.04
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0
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Fig. 8. Average occupation number for phonons as a func-
tion of the normalized spin–phonon interaction constant for
ω0/J = 1 (1) and 6 (2).
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The lifetime of coupled spin–phonon quasiparticles
and the average relaxation time are proportional to the
matrix element of the spin–phonon interaction operator
for a phonon transition from the ground state to an
excited state with a simultaneous change in the spin
configurations of the two spins. In accordance with the
“golden Fermi rule,”

the quasiparticle lifetime τ0 = 0.6 × 10–7 s (〈exc| denotes
the excited state). The relaxation time distribution is
described by the power law P(τ) ∝ (τ/τ0)5/4 for τ < τ0.

4. CONCLUSIONS

Let us summarize the main results. The interaction
between the elastic and magnetic subsystems leads to
anisotropy of the elastic vibrations of the lattice as well
as in magnetic properties; the change in the latter prop-
erties occurs at the three characteristic parameters of
the spin–phonon interaction. For α = αc1, coupled lat-
tice and spin fluctuations are formed and the spherical
symmetry of the spin–spin correlation functions is bro-
ken. For α = αc2, a gap opens in the spin excitation
spectrum and the crystal symmetry is lowered. The sin-
glet state and the long-range antiferromagnetic order
may coexist. For α = αc3, the magnetic moment at a site
vanishes and the antiferromagnet–quantum spin liquid
phase transition takes place. The constant of the spin–
phonon coupling corresponding to a decrease in the
magnetic moments of quasi-two-dimensional antiferro-
magnets Gd2CuO4 and Eu2CuO4 are determined.

1
τ0
----

2π
"

------ exc〈 |V̂ sph 0| 〉 2
N ph,=
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Abstract—The influence of high-temperature annealings followed by cooling under different conditions on
changes in the specific resistance and photoconductivity relaxation time in silicon and on the formation of the
acceptor state of gold, when gold diffused from a layer vacuum-deposited on the surface, was studied in exper-
iments including sequences of processes conducted using various temperatures, cooling conditions, and surface
states. The experimental data are analyzed based on the concept of changes in the state of impurities present in
silicon and in the corresponding dynamic and static force fields. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The displacements of impurity atoms under various
thermal treatments and during in-diffusion should
noticeably depend on the spatial characteristics and val-
ues of force (“elastic”) fields created by defects of var-
ious origins. This dependence is, for instance, a basis of
inside gettering, or collecting impurities on the corre-
sponding defect formations such as oxygen precipitates
under specially selected thermal treatment conditions
[1]. Special fields localized near the surface are also
formed under outside gettering conditions, when the
surface of a material contains some imperfections such
as micropores [2]. Clearly, force fields may be both
static and dynamic with respect to the diffusing impuri-
ties. Dynamic fields change as the impurity diffuses
because of the evolution of the spatial distribution of
defects (in particular, vacancies and interstitial atoms),
their concentration, and fluxes. When impurity atom
nanoformations interact in real silicon, changes in their
structure and composition, which influence the spec-
trum of electron levels in the forbidden band, can man-
ifest themselves as various macrocharacteristic pecu-
liarities, for instance, as ultra-accurate compensation
[3], bistability of defects (in particular, impurity atoms)
with a negative electron correlation energy (U– defects)
[4], and changes in photoconductivity spectra, carrier
lifetimes [1], the type of conductivity, and specific
resistance values [5].

The diversity of combinations of various external
conditions of actions on a real crystal, such as temper-
ature, annealing duration and conditions, the rate of
1063-7761/03/9705- $24.00 © 20978
cooling, etc., results in the production of formations
that differ in shape, structure, and composition. These
formations may have different systems of electronic
levels in the forbidden band of the semiconductor,
which results in the diversity of electrophysical proper-
ties. Our goal is to obtain properties of the greatest
interest to science and technology, such as a high spe-
cific resistance and a comparatively long lifetime of
minority carriers for designing detectors of particles.
This requires purposeful studies of interaction phenom-
ena in impurity systems and the influence of their force
fields on the formation of electronic levels by impuri-
ties during their diffusion into a real crystal.

In this work, we performed a system of experiments
to determine to what extent the internal state of a real
silicon crystal changes under cyclic thermal treatments
that precede the in-diffusion of gold and influence the
formation of the acceptor state of gold atoms. These
changes were monitored based on obvious indications
of gold penetration into silicon, such as binding part of
free electrons by impurity atoms in the deep acceptor
state and the formation of a recombination channel. As
a consequence, the specific resistance ρ increased and
the photoconductivity relaxation time τ changed.

2. EXPERIMENTAL
We used KEF-20 electronic silicon grown by the

Czochralski method in the form of plates about 0.15 cm
thick with the specific resistance (determined by the
four-probe method) ρ ≈ 25–31 Ω cm, which cor-
responded to a concentration of free electrons of
003 MAIK “Nauka/Interperiodica”
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n ≈ (1.72–1.39) × 1014 cm–3, their mobility µn ≈
1450 cm2/(V s) [6], and τ ≈ 51–60 µs. Time τ was
determined by a noncontact method from time changes
in the reflected power of a microwave field, which fol-
lowed time changes in nonequilibrium photoconductiv-
ity excited in the material by pulsed laser radiation with
a wavelength of λ = 1.06 µm [7]. The content of oxygen
was 1018 cm–3. Prior to and after thermal treatment, the
material was subjected to mechanical and chemical
treatments according to the well-known scheme [8].
The samples were plates of various shapes. High-tem-
perature treatments were performed under continuous
evacuation at 0.1 Pa in a quartz tube, which was prelim-
inarily etched and calcined at 1150°C for several hours.
The conductivity type was controlled using a thermo-
probe.

Preliminary thermal treatment of the samples was
performed in cycles (the duration of each cycle was 5 h)
during t = 5, 10, 25, 35, and 50 h at annealing tempera-
tures T = 850, 900, 1000, and 1100°C. The samples for
each annealing temperature and each series of measure-
ments were cut in the form of plates from one plate to
achieve uniformity of initial material parameters.

At a high temperature (1100°C), a noticeable
deposit was formed on the walls of the cold quartz tube
section and the surface of the samples turned dull. The
samples were then weighed on a VLR-200 balance
before and after thermal treatment.

Gold was thermally deposited on initial and ther-
mally treated (operation no. 1) silicon samples until a
visible film was formed [9]. Gold diffusion was per-
formed at TAu = 900°C for tAu = 1 h with subsequent
slow cooling (operation no. 2). To reach a region with a
constant specific resistance, the samples were subjected
to layer-by-layer etching. The thickness of the removed
film was 100–150 µm. The next operation (no. 3) was
thermal treatment of the samples at T = 900°C for t =
1 h followed by quenching in air. After the ρ and τ
parameters were measured at T = 300 K, the samples
were again thermally treated at T = 900°C for t = 1 h,
which was followed by slow cooling (operation no. 4).
This procedure was used to reveal various electronic
states of gold atoms present in the material after the ini-
tial diffusion of gold followed by slow cooling and the
transition of the gold atoms from an electrically inac-
tive to the active state and vice versa. Clearly, experi-
ments organized as described above also gave informa-
tion about the thermal stability of the material at 900°C
in a vacuum.

Because the gold diffusion coefficient at 850°C is
lower than at higher temperatures, the diffusion was
conducted for 5, 25, and 50 h with slow cooling after
termination of diffusion. Property variations were con-
trolled by simultaneously performing the diffusion of
gold into the initial material and the thermally treated
samples.

Another series of experiments were conducted to
reveal the influence of preliminary long-term thermal
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
treatment of silicon on lateral gold atom displacements
during high-temperature diffusion. These experiments
were performed using long plates (L ≈ 1–2 cm). Gold
was thermally deposited (in a vacuum) along half the
plate length on one or both plate sides. Prior to deposi-
tion, some plates were subjected to high-temperature
thermal treatment (T = 850°C, t = 50 h); this was done
in 5 h long cycles followed by slow cooling. The diffu-
sion was performed at the temperature of thermal treat-
ment (850°C) in 5-h cycles over 15–50 h with subse-
quent slow cooling (in a furnace) to room temperature.
After each cycle, part of samples were removed from
the process. The surface of the thermally treated sam-
ples was not processed before four-probe and relax-
ation time measurements. This was possible because no
noticeable oxide film was formed at 850°C in vacuum,
and the surface remained visually the same as after
chemical etching. Specific resistance measurements
were performed both on the side opposite to that onto
which gold was deposited (one-sided deposition) and
on the side with deposited gold. Because of the small
thickness of the deposited gold layer, time τ measure-
ments could be performed along the whole plate length;
laser radiation (λ = 1.065 µm) penetrated deeply into
the sample; that is, they excited nonequilibrium carri-
ers, whose presence influenced the microwave field
reflection value. The lateral properties of the plates
were measured at a distance of approximately 0.5 cm
from the edge of the deposited gold film.

We intentionally selected silicon with a majority
carrier concentration lower than that used in [3, 8, 10]
to observe noticeable thermal treatment effects on the
specific resistance of samples at lower temperatures
and reasonable thermal treatment durations [5].

3. RESULTS

3.1. Preliminary Thermal Treatment

The ρ and τ parameters measured after preliminary
thermal treatments are shown in Figs. 1–4. The duration
of thermal treatment t is indicated for each pair of
parameters (Figs. 2–4) or, if possible, by special sym-
bols (Fig. 1). The ρ and τ values decreased 2.5–3 and
14−50 times, respectively, compared with those for the
initial sample. The smallest change in τ was observed
after preliminary thermal treatment at 1100°C. A
decrease in the specific resistance was evidence of the for-
mation of thermal donors with a comparatively low
embedding energy, and a decrease in the photoconduc-
tivity relaxation time τ showed that the embedding
energy of the defects produced in the forbidden band
was sufficient for increasing the probability of recom-
bination.

This can be explained under the assumption that the
produced thermal donors are characterized by a spread
of electron binding energies in the forbidden band, as
suggested in [1, 11], and/or not only shallow thermal
donors but also deep acceptor states, whose concentra-
SICS      Vol. 97      No. 5      2003
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tion is initially lower than that of thermal donors, are
formed. The ρ value increases as the duration of prelim-
inary thermal treatment increases and reaches the initial
ρ0 value. At high temperatures (1000 and 1100°C), it
begins to exceed ρ0 at treatment durations of 20–50 h.
At 1100°C, we invariably observed a peculiar behavior
of the resistance. While remaining higher than the ini-
tial ρ0 value, it decreased as the duration of preliminary
thermal treatment increased. Experiments were
repeated with three series of samples; the same trend
was observed for all of them (Fig. 4). As at equal
annealing temperatures, defects whose size exceeds the
critical value can only grow and smaller defects can

15 25 355
ρ, Ω cm
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τ, µs
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Fig. 1. The influence of duration t of preliminary thermal
treatment at 850°C on specific resistance ρ and photocon-
ductivity relaxation time τ at room temperature: (1) initial
sample, (2) t = 5 h, (3) t = 25 h, and (4) t = 50 h (two series).
The regions of the spread of experimental parameter values
are hatched.
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only continue to diminish with time; the behavior of the
specific resistance described above can reasonably be
related to a size, composition, and structure depen-
dence of the electronic characteristics of the growing
defects [1, 12], namely, to the disappearance of their
donor properties caused by an increase in size and
changes in compositions and structures. Simulta-
neously, acceptor-type formations initially grown from
nuclei of the corresponding critical size continue to
grow and retain their acceptor properties. Their action,
namely, free electron capture from the conduction
band, begins to prevail over that of donor forms, which
donate electrons to the conduction band. At a compara-
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Fig. 2. Distribution of τ and ρ parameters depending on the
duration of thermal treatment (given in hours near symbols)
at 900°C. Parameter values for two different samples after
thermal treatment for 50 h are conventionally shown by a
rectangle. The region of the spread of initial sample param-
eters is hatched.
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Fig. 3. Distribution of τ and ρ parameters depending on the duration of thermal treatment (given in hours near symbols) at 1000°C;
h and s correspond to specific resistance measurements on the opposite sides of each plate subjected to thermal treatment. The
region of the spread of parameters for six samples subjected to thermal treatment for 50 h is outlined. The region of the spread of
initial sample parameters is hatched.
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Fig. 4. Distribution of τ and ρ parameters depending on the duration of thermal treatment (given in hours near symbols) at 1100°C;
s and h correspond to photoconductivity relaxation time measurements using the first and last pulsed laser action peaks in the first
thermal treatment series; , and n, the same for the second series, and e and r, the same for the third series.
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tively low temperature of preliminary thermal treat-
ment (850°C), the ρ value increased but did not exceed
that of the initial sample (Fig. 1). This observation and
the data obtained for high temperatures are evidence of
the influence of the diffusion coefficient of atoms (for
instance, oxygen) that create donor forms on the growth
of these forms. Time τ, which decreased after the first
cycle, remained small during subsequent cycles; that is,
the concentration of defects that determined the rate of
recombination did not change substantially. We can
only note that the τ value after preliminary thermal
treatment at 1100°C was several times larger than at
other temperatures. At this temperature, substantial out-
flow of a substance (supposedly, silicon or silicon com-
bined with oxygen) from the bulk was noticeable for
samples with a free surface, which caused weight loss
in a sample (by 1–2% of 100–150 mg). Under these
conditions, intense generation of vacancies from the
surface to bulk material can occur. Saturation with
vacancies can favor displacements of impurities inside
crystals. These displacements are different from those
that occur at lower temperatures and leave the surface
of the material bright as at the beginning of the process.
Accordingly, the parameters of impurity formations
can be different, which manifests itself by larger τ val-
ues and the peculiarities of ρ variations depending on
the duration of preliminary thermal treatment.

3.2. The Influence of Preliminary Thermal Treatment 
on Manifestations of the Acceptor State of Gold

The data given in Fig. 5 show how preliminary ther-
mal treatment influences manifestations of the acceptor
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
state of gold atoms that are capable of binding free elec-
trons from the conduction band. After the diffusion of
gold into the initial sample during 5, 25, and 50 h at
850°C followed by slow cooling, the resistance did not
increase above the initial ρ0 value. It even slightly
decreased, as is characteristic of the formation of ther-
mal donors accompanied by a decrease in τ. A similar
behavior of ρ and τ after the diffusion of gold was
observed for the sample subjected to preliminary ther-
mal treatment for 5 h. However, the samples that were
preliminarily thermally treated for 25 and 50 h gave
radically different results, namely, the specific resis-
tance ρ increased to (1–8) × 104 Ω cm after the diffu-
sion of gold during 25 and 50 h followed by slow cool-
ing. This is a consequence of binding the majority of
free electrons at deep energy levels capable of localiz-
ing electrons even at room temperature. The conductiv-
ity type remained unchanged, which was evidence of
the predominance of electron exchange between these
levels and the conduction band states.

Note that some of the data given in Fig. 5 refer to the
samples that were heated at 850°C for 50 h, either dur-
ing gold diffusion or during preliminary thermal treat-
ment followed by gold diffusion. Their ρ values are,
however, substantially different. It follows that thermal
treatment causes the appearance of differences in the
static and dynamic internal fields. These fields influ-
ence binding diffusing gold in the electrically active
and inactive states.

The differences in the τ values are less noticeable.
We can only note that the τ value after preliminary ther-
mal treatment for 25 and 50 h at 850°C followed by
SICS      Vol. 97      No. 5      2003
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gold diffusion for 25 h was larger than the τ value after
gold diffusion into the initial material and the material
subjected to preliminary thermal treatment for t = 5 h.
At t = 50 h, an increase in the duration of gold diffusion
increases ρ and decreases τ. It is physically clear that
these changes are related to an increase in the concen-
tration of gold acceptor states.

After the diffusion of gold (TAu = 900°C, tAu = 1 h,
slow cooling) in samples subjected to thermal treatment
at T = 900, 1000, and 1100°C, the specific resistance
increased (Fig. 6, operation no. 2). The longer the time
of preliminary thermal treatment, the larger this
increase. An exception was the sample annealed at T =
1100°C, whose specific resistance increased to a
greater extent in t = 35 h than in t = 50 h (Fig. 6c). This
behavior has something in common with that of the ρ
value after preliminary thermal treatment at 1100°C
(Fig. 4). Quenching the same samples after the removal
of the gold layer that remained on the surface and heat-
ing them at 900°C for an hour increased their resistance

~ ~
~ ~

10 102104 105

ρ, Ω cm

1

5

τ, µs

Fig. 5. The influence of duration t of preliminary thermal
treatment at 850°C followed by gold diffusion at the same
temperature (TAu = 850°C) on specific resistance ρ and pho-
toconductivity relaxation time τ at room temperature: h, t =
tAu = 5 h; s, initial sample, tAu = 5 h; n, t = tAu = 25 h; ,, t =
50 h, tAu = 25 h; e, initial sample, tAu = 25 h; m, t = tAu =
50 h; and d, initial sample, tAu = 50 h. Hatched regions give
the spread of experimental values.
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(Fig. 6, operation no. 3). Subsequent annealing (T =
900°C, t = 1 h) of the samples subjected to thermal
treatment at T = 900°C (t = 5–50 h), 1000°C (t =
5−35 h), and 1100°C (t = 5–25 h) followed by slow
cooling returned ρ to the initial values. After prelimi-
nary thermal treatment at T = 1000°C (t = 50 h) and
1100°C (t = 35–50 h), annealing followed by slow cool-
ing did not decrease ρ, which remained high (Figs. 6b,
6c). After diffusion (TAu = 900°C, tAu = 1 h) and slow
cooling, the range of times τ broadened depending on
the duration of thermal treatment (Fig. 7, operation
no. 2). Subsequent quenching in the absence of gold on
the surface at 900°C for 1 h noticeably decreased the
spread of τ values (Fig. 7, operation no. 3). Further
annealing at 900°C for 1 h again increased the spread of
τ depending on the duration of thermal treatment
(Fig. 7, operation no. 4).

3.3. Diffusion of Nonuniformly Deposited Gold

The dependences of the specific resistance on the
duration of gold diffusion at 850°C are shown in Fig. 8
for various crystal regions; the crystals were subjected
to preliminary thermal treatment at 850°C for 50 h. The
same figure contains data on the initial material
obtained under similar conditions (gold diffusion fol-
lowed by slow cooling).

The behavior of the specific resistance was as fol-
lows:

(1) after gold diffusion, the specific resistance of the
samples subjected to preliminary thermal treatment
was always an order of magnitude higher than that of
the initial samples;

(2) if a gold film was deposited on one side of a sil-
icon plate, an increase in the specific resistance was
larger for the opposite plate side at a distance of plate
thickness from the gold film;

(3) lateral gold diffusion caused a systematically
larger increase in the specific resistance at the side
opposite to that where the gold was deposited;

(4) if gold was deposited on both sides, lateral diffu-
sion equally increased specific resistance on both sides;
this increase was, however, lower than with one-sided
deposition, which could be explained by the influence
of the state of the surface on the penetration of gold
atoms and preserved their electrically active state.

Gold diffusion into the initial material not subjected
to preliminary thermal treatment followed by slow
cooling always decreased the specific resistance in
comparison with its initial value, as is characteristic of
the formation of thermal donors, which occurs in paral-
lel with gold diffusion. A small increase in the specific
resistance with time can be caused by a change in the
structure of thermal donors. Fluxes of atoms (suppos-
edly oxygen) that arise in the formation of thermal
donors can shift gold atoms to regions and into forma-
tions where they are electrically inactive.
 AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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Fig. 6. Dependences of specific resistance on sample processing. Operation numbers: 0, initial sample; 1, thermal treatment at T =
900 (a), 1000 (b), and 1100°C (c) for various time intervals indicated in the figures; 2, TAu = 900°C, tAu = 1 h (slow cooling), etching;
3, T = 900°C, t = 1 h (quenching); and 4, T = 900°C, t = 1 h (slow cooling). For convenience, points corresponding to equal prelim-
inary thermal treatment durations are connected by dashed lines.
As concerns the photoconductivity relaxation time,
it always and everywhere decreased compared with the
initial sample. However, as previously, it was systemati-
cally higher after gold diffusion in the samples that were
subjected to preliminary thermal treatment and equaled
2−5 µs against 0.8–1.4 µs in the initial samples.

4. PRINCIPAL EXPERIMENTAL RESULTS
AND DISCUSSION

1. Under all preliminary thermal treatment condi-
tions, the specific resistance decreased after the first
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
annealing cycle and increased during subsequent
cycles, even to values higher than the specific resistance
of the initial samples (ρ0) at high temperatures. Simul-
taneously, the photoconductivity relaxation time τ
decreased approximately 50 times after the first cycle
compared with the initial samples and remained small,
on the order of 1 µs (Fig. 7). Such parameter behaviors
can be explained using the literature data on thermal
donors originating from oxygen [1, 5, 11–13]. At high
annealing temperatures (550–850°C), thermal donors
different from those formed at comparatively low tem-
SICS      Vol. 97      No. 5      2003
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Fig. 7. Dependences of photoconductivity relaxation times on sample processing. Operation numbers are the same as in Fig. 6.
peratures (450°C) can appear. Small donors that corre-
spond to small oxygen clusters are known to be formed
at 450°C [5, 13, 14]. At higher temperatures (550–
800°C), these thermal donors decay and are replaced by
new ones with the embedding energies of electronic
states near the middle of the forbidden band, which
should manifest itself by a short lifetime of minority
carriers [1]. These thermal donors were called new oxy-
gen donors in [11]; they represented new SiOx phase
formations. At the interface between this phase and the
silicon matrix, surface states providing intense recom-
bination are formed. The electrons transferred from the
high-energy state in the wideband SiOx phase cause an
JOURNAL OF EXPERIMENTAL
increase in the conductivity of the silicon matrix, that
is, a decrease in the resistance of electronic silicon after
thermal treatment [11, 14]. Above 900°C, annihilation
of thermal donors remaining after growth, however,
occurs in hole materials [5]. Transformations in the sys-
tem of oxygen precipitates are determined by the pres-
ence of nuclei of the corresponding structure with a
critical growth size. The structure and size, in turn,
depend on the temperature and, of course, the concen-
tration of dispersedly distributed interstitial oxygen.
According to recent experimental data, these processes
can also be influenced by the presence of carbon, which
can be kicked out of the nodal state by interstitial sili-
 AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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con formed as a result of the removal of stresses as a
result of the growth of oxygen precipitates. This inter-
stitial carbon can easily diffuse to oxygen precipitates,
attach to them, and change their electric activity, that is,
change the system of electron energy levels in the for-
bidden band [13]. In our experiments, we used slow
cooling after every cycle; that is, the system could fairly
longly exist at a low temperature. Under these condi-
tions, a noticeable concentration of defects of various
structures and compositions can be formed after the
first cycle. These defects are responsible for both shal-
low and deep donor states. During subsequent anneal-
ing cycles, when the samples are held at high tempera-
tures, the precipitates responsible for shallow donor
states dissolve because their critical size does not cor-
respond to the critical growth size at these tempera-
tures. The concentrations of larger SiOx phase precipi-
tates with deeper electronic states can remain substan-
tial also during subsequent slow coolings and sufficient
for providing an effective channel of carrier recombina-
tion. This manifests itself by a short photoconductivity
relaxation time, which does not return to the value char-
acteristic of the initial material. The concentration of
disperse oxygen decreases after each cycle because of
the formation of precipitates of various structures. This
follows from a decrease in infrared absorption in the
corresponding wave number range (1100–1300 cm–1),
more exactly, at the absorption maximum of disperse
oxygen (1107 cm–1) [12]. Note that, judging from the
retention of the short photoconductivity relaxation time
observed in all our experiments, the concentration of
deep electronic levels related to thermal donors
remained noticeable in spite of high annealing temper-
atures, at which no noticeable concentration of thermal
donors was detected in [5] in specific resistance mea-
surements, most likely because cooling was fast in [5],
whereas it was slow in our experiments. In addition, the
relaxation time of photoconductivity observed in our
experiments was proportional to the lifetime of carriers
and could serve as a parameter more sensitive to the
formation of a low concentration of deep levels than
specific resistance changes. It is easy to imagine a situ-
ation when the concentration of newly formed defects
adds little to the equilibrium concentration of electrons
or holes, whereas their lifetime decreases rapidly. For
instance, at a 1013 cm–3 concentration of defects and a
recombination coefficient of γ ≈ 5 × 10–8 cm3/s, the life-
time of holes is on the order of 2 µs; that is, it decreases
25 times compared with the initial value of 50 µs,
whereas an increase in the conductivity against the
background of the initial concentration 5 × 1013 cm–3

amounts only to 2%. This increase cannot be reliably
measured, considering measurement error limits. It fol-
lows that preliminary annealings followed by slow
cooling substantially change the internal state of the
material compared with the initial sample; that is, they
change internal force fields. This is substantiated by
changes in the ρ and τ parameters depending on the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
temperature and duration of processes. Experiments
with the gold diffusion lend additional support to this
conclusion. The formation of gold acceptor states capa-
ble of binding conduction electrons and decreasing
conductivity substantially depends on force fields in the
crystal.

2. Under correlated conditions, that is, when the
temperature of gold diffusion equals that of preliminary
thermal treatment, it is reasonable to assume that the
formation of defects and the corresponding elastic
fields more weakly influences the penetration of gold.
If the duration of gold diffusion is shorter than that of
preliminary annealings, the formation of precipitates
and, accordingly, changes in internal fields differently
affect the material that was subjected to preliminary
thermal treatment and the initial material, where gold
diffusion occurs in parallel with the formation of impu-
rity inclusions accompanied by dynamic changes in
elastic fields because of impurity atom fluxes toward
precipitation sites. This is substantiated by the experi-
mental data (Fig. 5), which show that the diffusion of
gold at 850°C for 25 and 50 h after preliminary thermal
treatments increases the specific resistance by orders of
magnitude in comparison with the specific resistance
after the diffusion of gold into the initial sample not
subjected to preliminary thermal treatment. It should be
emphasized that these results were obtained under
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Fig. 8. Changes in ρ depending on the duration of gold dif-
fusion at TAu = 850°C (1–5) into the sample subjected to
preliminary thermal treatment for t = 50 h at T = 850°C fol-
lowed by slow cooling and (6–10) into the initial sample.
Shown at the top by arrows and corresponding denotations
(ρ, ρ1, ρ2) are the points of specific resistance measure-
ments on a plate by the four-probe method; (1, 2, 6, 7) dif-
fusion of gold from both sides, (3–5, 8–10) diffusion of gold
from one side, (3, 8) ρ, (4, 9) ρ1, and (5, 10) ρ2.
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identical conditions for samples that were slowly
cooled after the diffusion of gold. Note that, if the sam-
ples were quenched, we would obtain a high resistance
for both of them [10]. Gold atoms remain in the accep-
tor state after slow cooling; this state binds part of the
conduction electrons and increases the specific resis-
tance of the material compared with the initial sample.
This is evidence of a higher uniformity of force fields
(static and dynamic) in crystals subjected to prelimi-
nary thermal treatment. When gold diffuses into the ini-
tial material, which is subsequently slowly cooled (at a
rate of 1°C/min or in a furnace), gold atoms are kicked
out of nodal positions, where they have acceptor prop-
erties, by interstitial silicon atoms. Simultaneously,
gold atoms travel over interstices toward regions where
they are electrically inactive, that is, where they do not
possess systems of electronic levels within the forbid-
den band of silicon, under the action of elastic force
fields created by oxygen and, possibly, carbon atoms
that move to regions of their accumulation. Such
entrainment of gold atoms during slow cooling gives a
physically reasonable explanation of the difference in
the properties of slowly cooled and quenched samples.

Quite significant are the results of experiments with
diffusion from a nonuniformly deposited source of gold
into the samples subjected to preliminary thermal treat-
ment at 850°C for 50 h and into the initial material
(Fig. 8) with subsequent slow cooling. These results
lend support to the abovementioned peculiarities of an
increase in the resistance both under the deposited layer
and at the side of it at a distance of about 0.5 mm in the
samples that were subjected to thermal treatment.

Also informative are experiments with changes in
the internal crystal fields that influence gold diffusion.
Consider the results presented in Figs. 6 and 7 for dif-
ferent durations of preliminary thermal treatments at
900, 1000, and 1100°C and subsequent two-sided gold
diffusion for 1 h at 900°C followed by slow cooling.
Studies of these samples were continued by annealing
at 900°C for 1 h with quenching (rapid cooling in air)
after the removal of the gold film and subsequent
annealing at 900°C for 1 h followed by slow cooling.
Under correlated conditions (thermal treatment and
gold diffusion at 900°C), the specific resistance notice-
ably increased after gold diffusion (Fig. 6a, operation
no. 2). The longer the duration of thermal treatment, the
larger the increase in the specific resistance, which is in
close agreement with the model described above. How-
ever, the quenching of these samples with gold
removed from their surfaces after annealing at 900°C
for 1 h showed that a noticeable fraction of gold atoms
could leave the regions where they were electrically
inactive, pass to electrically active states, additionally
bind electrons from the conduction band, and increase
the resistance (Fig. 6a, operation no. 3). Subsequent
annealing at 900°C for 1 h followed by slow cooling
allowed gold atoms to return to the regions of their elec-
trical inactivity; the specific resistance then returned to
JOURNAL OF EXPERIMENTAL 
the value it had before quenching (Fig. 6a, operation
no. 4).

A similar specific resistance behavior depending on
the operation performed was observed for thermal
treatments at 1000°C for 5, 10, 25, and 35 h (Fig. 6b,
operation nos. 1–4) and at 1100°C for 5 and 25 h
(Fig. 6c, operation nos. 1–4).

An increase in the resistance after gold diffusion fol-
lowed by slow cooling was, however, maximum in
materials subjected to preliminary thermal treatments
at 1000°C (t = 50 h) and 1100°C (t = 35 and 50 h)
(Figs. 6b, 6c, operation no. 2). Subsequent annealing at
900°C with quenching (operation no. 3) and slow cool-
ing (operation no. 4) did not cause a decrease in the
resistance, which remained unchanged or even
increased (Figs. 6b, 6c, operation nos. 3, 4).

Once more note changes in internal force (elastic)
fields in materials depending on the duration and tem-
perature of preliminary thermal treatment, which man-
ifest themselves in different specific resistance values
after gold diffusion at 900°C for 1 h followed by slow
cooling (Fig. 6, operation no. 2), that is, in different
concentrations of electrically active gold atoms capable
of binding part of the free electrons present in the con-
duction band before diffusion.

As concerns the photoconductivity relaxation time
τ, its changes are also determined by structural changes
in the system of electrically active states after different
preliminary thermal treatments of different durations
(Fig. 7, operation no. 1), after gold diffusion followed
by slow cooling (Fig. 7, operation no. 2), after anneal-
ing followed by quenching (Fig. 7, operation no. 3), and
after annealing at 900°C for 1 h (Fig. 7, operation
no. 4). The influence of the structure of defects on the
rate of recombination after preliminary thermal treat-
ment determines the complex dependence of τ on the
duration of processes (Fig. 7, operation no. 1), namely,
the longer the duration of thermal treatment at 1100°C,
the larger the τ value, whereas a nonmonotonic depen-
dence is observed at 1000 and 900°C. After the diffu-
sion of gold at 900°C for 1 h followed by slow cooling,
the dependence of τ on the duration of thermal treat-
ment remains complex. Sometimes, the sequence of τ
values corresponding to different thermal treatment
durations changes and the spread of τ values increases
(Fig. 7, operation no. 2). Annealing at 900°C for 1 h
after the removal of the layer of gold and subsequent
quenching, when the resistance of all samples increases
(Fig. 6, operation no. 3), causes pronounced accumula-
tion of τ values in the range 3–6 µs (Fig. 7, operation
no. 3). If thermal treatment is performed at 1000°C, we
observe a well-defined dependence of τ on treatment
duration, namely, the longer the duration of thermal
treatment, the smaller the τ value (Fig. 7b, operation
no. 3). Subsequent annealing at 900°C for 1 h followed
by slow cooling, when part of the gold atoms resume
the electrically inactive state, again distributes τ values
over thermal treatment durations in approximately the
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same order as was observed after operation no. 2; that
is, after the diffusion of gold followed by slow cooling.
The convergence of τ times to one value (operation
no. 3) is evidence of more uniform recombination
parameters formed after quenching compared with the
state after slow cooling (operation nos. 2, 4). Physi-
cally, this is plausible. Indeed, during slow cooling,
gold atoms have enough time to “track” the difference
in internal fields formed in different thermal treatment
cycles. After quenching, there remain a large number of
gold atoms under identical conditions (compare the
specific resistance data at T = 900°C, t = 1 h after
quenching samples annealed without gold on the sur-
face). Importantly, the photoconductivity relaxation
time and, accordingly, the lifetime of carriers after the
introduction of gold atoms can be longer than those
observed after preliminary thermal treatment alone
(compare operation nos. 1, 3 in Figs. 7a–7c). The intro-
duction of additional recombination levels such as gold
atoms in the acceptor state should seemingly intensify
recombination processes (decrease τ) that occur in par-
allel with those in which formations produced after
thermal treatment participate. However, a different
behavior of τ may be evidence of the exclusion of part
of defect levels from recombination because of the for-
mation of electrically active gold atom states on their
base. Such suggestions were made, for instance,
in [15]. Naturally, we should then assume that the states
excluded from recombination had recombination coef-
ficients larger than those of gold. What is more, times τ
after prolonged thermal treatments followed by the dif-
fusion of gold (t = 25, 35, and 50 h) remain unchanged
both after annealing with quenching (operation no. 3)
and after subsequent annealing with slow cooling
(operation no. 4); that is, we observe stable relaxation
times at 900°C for 1 h; similarly, we observe stable spe-
cific resistances of the samples subjected to preliminary
thermal treatment at T = 1000°C (t = 50 h) and 1100°C
(t = 35 and 50 h).

Note that a decrease in τ after thermal treatments
prevents us from identifying the time caused by elec-
tron recombination on acceptor gold in the pure form.
Accordingly, we cannot observe comparatively longer
times τ that are possible when gold exactly compensates
the phosphor, that is, under the conditions when the con-
centration of electrons in the conduction band remains
equal to the number of free gold atom levels [16].

If we assume that the cross section of electron cap-
ture by the neutral acceptor gold state is σn = 8.5 ×
10−17 cm2 [17], the recombination coefficient at T =
300 K is γn = 1.5 × 10–9 cm3/s, and the concentration of
capture centers is 1.4 × 1014 cm3 (which is comparable
with the concentration of shallow donors), then the life-
time with respect to capture into the neutral acceptor
state is 4.8 µs. This is close to the τ values observed
after quenching (Fig. 7, operation no. 3). Hole capture
into the acceptor level of gold occurs at a higher rate
because of the action of the attractive potential. The
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
capture cross section is then σp ≈ 9 × 10–15 cm2; accord-
ingly, γp = 1.7 × 10–7 cm3/s, and the lifetime of holes at
the same concentration of attracting centers is approxi-
mately 4 × 10–8 s, which is much smaller than the mea-
sured photoconductivity relaxation times. Because of
the experimental limitations of the method for measur-
ing times τ that we use, we can only determine the
larger component of photoconductivity relaxation
times that corresponds to the lifetime of electrons.

5. CONCLUSIONS

Our experiments were aimed at revealing the influ-
ence of high-temperature thermal treatments on the
internal state of semiconducting silicon caused by
changes in the structure and concentration of defects
(presumably, oxygen precipitates). Changes in this
internal state were studied by measuring changes in the
specific resistance and photoconductivity relaxation
time determined by a noncontact method without addi-
tional temperature actions on the system of defects in
silicon. As a result, we obtained experimental data on
the character of changes in the specific resistance and
photoconductivity relaxation time depending on cyclic
thermal treatments at 850, 900, 1000, and 1100°C for 5
to 50 h; five-hour heating cycles were followed by slow
cooling. We also used the diffusion of gold as a probing
method. Gold atoms in the electrically active state are
capable of binding free electrons. This can cause a
noticeable increase in the specific resistance at room
temperature and intensification of recombination pro-
cesses with changes in the photoconductivity relaxation
time compared with the initial material. The preserva-
tion of gold atoms in the electrically active state
depends on the degree of uniformity of internal crystal
fields, which can be studied by slowly cooling and/or
quenching samples after gold diffusion.

We found that, after gold diffusion followed by slow
cooling, the samples subjected to preliminary thermal
treatment contained electrically active gold in a higher
concentration than the initial samples, and the longer
the time (the higher the temperature) of thermal treat-
ment, the larger this concentration (specific resistance).
This allows us to suggest that the force microfields that
influence gold atom displacements become more uni-
form after thermal treatments. Understanding changes
in the internal state of crystals allowed us to prepare
samples with a 2 × 104 Ω cm resistance from KEF-20
electronic silicon, whose relaxation time was 5 µs.
These characteristics did not change after annealing at
900°C for 1 h followed by either slow cooling or
quenching; that is, thermal stability of these parameters
was attained under these conditions.

Internal electronic state transformations after pre-
liminary thermal treatment manifest themselves in the
convergence of photoconductivity relaxation times into
the range 3–5 µs after quenching the samples annealed
SICS      Vol. 97      No. 5      2003
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at 900°C for 1 h preceded by preliminary thermal diffu-
sion of gold.

Changes in the internal fields of the samples sub-
jected to preliminary thermal treatment were also
observed for lateral gold diffusion both into the initial
material and into the materials subjected to thermal
treatments. A noticeable increase in the specific resis-
tance at a distance of 0.5 cm from the edge of the gold
layer was observed only for the material subjected to
thermal treatment during 50 h and was not observed for
the initial sample.

As far as we know, such systematic experiments
have been conducted for the first time. They show that
both preliminary thermal treatment and changes in the
internal force fields of defects in crystals influence
manifestations of the acceptor state of gold atoms in
silicon.
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Abstract—We have performed a complex investigation of the structure and the magnetic and electrical prop-
erties of a warwickite single crystal with the composition Fe1.91V0.09BO4. The results of Mössbauer measure-
ments at T = 300 K indicate that there exist “localized” (Fe2+, Fe3+) and “delocalized” (Fe2.5+) states distributed
over two crystallographically nonequivalent positions. The results of magnetic measurements show that war-
wickite is a P-type ferrimagnet below T = 130 K. The material exhibits hopping conductivity involving strongly
interacting electrons. The experimental data are analyzed in comparison to the properties of the initial (unsub-
stituted) Fe2BO4 warwickite. The entire body of data on the electric conductivity and magnetization are inter-
preted on a qualitative basis. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Most transition metal oxyborates with the general
chemical formula M2+M3+BO4 crystallize in an orthor-
hombic structure of warwickite (Mg1.5Ti0.5BO4) repre-
senting a system of linear, weakly interacting ribbons
comprising two internal and one external chains in
which octahedrally coordinated divalent and trivalent
transition metal atoms are randomly distributed over
nonequivalent crystallographic positions of two types.
In recent years, these compounds have drawn the atten-
tion of researchers due to an unusual combination of
properties inherent in significantly disordered, strongly
correlated electron systems [1–6].

From the theoretical standpoint, by studying the
Heisenberg one-dimensional chains with integer or
half-integer spins, it is possible to assess the influence
of disorder on the spectrum of excitations, calculate the
thermodynamic parameters, and describe the properties
of the ground state. Experimentally, it is possible to
observe a number of interesting phenomena such as
temperature-induced magnetic transitions, unusual
magnetization and heat capacitance curves, and the
Mott transition from the delocalized to localized state
in the conductivity. In addition, the possibility of syn-
thesizing warwickites with most transition elements
opens wide possibilities for a systematic investigation
into their physical properties.

To the present, some monometallic (Fe2BO4 [4],
Mn2BO4) [6]) and a series of bimetallic oxoborates of
the (M,M')BO4 type have been synthesized, where either
both M and M' are transition elements (FeCoBO4 [7],
1063-7761/03/9705- $24.00 © 20989
FeMnBO4 [8], ScMnBO4 [2]) or M can be a nonmag-
netic alkali earth metal such as Mg or Ca [1].

From the standpoint of magnetic order, bimetallic
oxoborates with a nonmagnetic metal M represent
Heisenberg one-dimensional antiferromagnetic chains
with integer or half-integer spins. These compounds
have been theoretically and experimentally studied to a
certain extent by Continentino et al. [9–11]. Systems
with half-integer spin were represented by MgTiBO4,
and those with integer spins, by MgVBO4. The choice
of vanadium as a transition metal is related to large
dimensions of its 3d orbitals, which accounts for the
Heisenberg nature of exchange interactions. The results
of investigations showed that behavior of the magnetic
susceptibility in a broad temperature interval and the
magnetization curves of these systems obey a power
law characteristic of strongly disordered spin chains,
both with S = 1/2 and with S = 1. It was demonstrated
that MgVBO4 exhibits a phase transition to the spin
glass state at T = 6 K.

In this paper, we present Fe1.91V0.09BO4 warwickite,
a new compound with two magnetic 3d metal ions. The
magnetic and electrical properties of this compound
will be described in comparison to a rather thoroughly
studied Fe2BO4 warwickite (see, e.g., [4, 12–14]). The
most interesting features of this initial (unsubstituted)
compound are the phase transitions of three types: a
structural transition from monoclinic to orthorhombic
structure at T = 317 K is accompanied by an electron
transition from the semiconductor–semiconductor state
(related to delocalization of the charge carriers) and is
003 MAIK “Nauka/Interperiodica”
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followed by the magnetic phase transition from the para-
magnetic to P-type ferrimagnetic state at T = 155 K.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL METHODS

FeVBO4 single crystals were grown using a solution
melt technology in the Fe2O3–V2O3–B2O3–(70PbO +
30PbF2, wt %) system with intermediate cooling of the
solution-melt from 900 to 780°C. Attfield et al. [4] met
serious difficulties in their attempts to grow Fe2BO4
single crystals from a solution-melt, for which reason
they used solid-phase synthesis and obtained only poly-
crystalline samples incorporating some other phases
(removed by magnetic methods). We have succeeded in
obtaining FeVBO4 crystals possessing a regular shape
and smooth surface. The samples had the form of nee-
dles (whiskers) with a length of up to 1 cm and a thick-
ness of 0.10–0.15 mm.

Elemental composition of the grown samples was
determined by energy-dispersive X-ray spectroscopy
(EDAX ZAF quantification procedure), which showed
that the relative content of iron and vanadium is 95.42
and 4.58 at. %, so that a formula unit of the substituted
warwickite is Fe1.91V0.09BO4.

X-ray diffraction was studied on a setup of the
D8 ADVANCE type using CuKα radiation (λ =
1.5406 Å). Room-temperature scans over 2θ = 13.4°–

Table 1.  Crystal lattice parameters of substituted and unsub-
stituted warwickites

a, Å b, Å c, Å β V, Å3

Fe1.91V0.09BO4 3.1727 9.3831 9.2317 89.993 274.84

Fe2BO4 3.1688 9.3835 9.2503 90.22 275.02

–8 –6 –4 –2 0 2 4 6 8

Fe2+

v , mm/s

Fe2.5+

Fe3+

Fig. 1. The room-temperature Mössbauer spectrum of
Fe1.91V0.09BO4 warwickite.
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89.7° showed evidence for an orthorhombic structure
(Pnam). The lattice parameters of our samples are pre-
sented in Table 1 in comparison to the data for Fe2BO4
reported in [15]. The unit cell volume of Fe1.91V0.09BO4

is 274.82 Å3, which virtually coincides with the value
for Fe2BO4 (275.02 Å3). However, in contrast to the
room-temperature orthorhombic structure of
Fe1.91V0.09BO4, Fe2BO4 exhibits pronounced mono-
clinic distortions.

The temperature and field dependences of magneti-
zation were measured on a vibrating-sample magne-
tometer with a superconducting coil. The zero-field
magnetization measurements were performed using a
SQUID magnetometer.

The Mössbauer spectra were obtained using a
57Co(Cr) source. The measurements were performed on
single crystal powders of Fe1.91V0.09BO4 with a linear
density of 5–10 mg/cm and a natural room-temperature
iron content.

The dc resistivity measurements in a range of tem-
peratures T = 90–430 K were performed in a two-con-
tact scheme. High resistances were measured using a
teraohmmeter E6-13A capable of measuring resis-
tances up to 1013 Ohm. The contacts were made of an
indium-based paste and their ohmic behavior was
checked by measuring current–voltage characteristics.
The temperature was measured by a copper–constantan
thermocouple placed immediately at a sample. The
samples were heated and cooled at a rate of 1 K/min, so
as to avoid parasitic temperature gradients.

3. MÖSSBAUER MEASUREMENTS
The room-temperature Mössbauer spectrum of a

Fe1.91V0.09BO4 single crystal (Fig. 1) represents a super-
position of several quadrupole doublets. The resolution
of spectral lines is lower than that in the spectrum of
unsubstituted warwickite [4, 14], which can be related
both to a decrease in the electron delocalization temper-
ature for Fe2+–Fe3+ and to the vanadium additive.

Figure 2 shows the probability distribution func-
tions of the quadrupole splitting, P(EQ), for three
valence states of iron (Fe3+, Fe2.5+, Fe2+) in the spectrum
of substituted warwickite. These functions possess a
qualitative character, since the fitting parameters (iso-
mer shifts) were the same for all distributions. As can
be seen, Fe3+ and Fe2+ cations occupy nonequivalent
(with respect to local environment) crystallographic
positions I and II, respectively, while Fe2.5+ cations pos-
sess local environments of three types differing by the
values of quadrupole splitting. Thus, the observed spec-
trum of Fe1.91V0.09BO4 should be approximated by
seven quadrupole doublets. An analogous model was
used [14] for interpreting the spectrum of unsubstituted
Fe2BO4 warwickite.

The hyperfine structure parameters determined
upon fitting a model curve to the experimental spec-
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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trum by the least square technique assuming the
Lorentzian line shape are presented in Table 2. The iso-
mer shifts of Fe2+(I, II) and Fe3+(I, II) are typical of the
localized states of these cations occurring in a high-spin
state with octahedral oxygen coordination. The isomer
shifts of Fe2.5+(I, IIa, IIb) are characteristic of a mixed
valence of Fe2+ and Fe3+ cations, which appears as a
result of the fast electron exchange between these ions.
The ratio of the isomer shifts indicates that the electron
density on an iron nucleus is higher in position II than in
position I. At the same time, the values of quadrupole
splitting show that the coordination octahedron in posi-
tion II is more distorted than that in position I. A rela-
tively high symmetry in position I allows us to assign
the Fe2.5+(I) singlet to this position, and the Fe2.5+(IIa)
and Fe2.5+(IIb) doublets, to nonequivalent states in posi-
tion II.

The distribution of Fe2+, Fe2.5+, and Fe3+ ions over
crystallographic positions I and II, as determined from
the Mössbauer measurements, allows us to write the for-
mula of vanadium-substituted warwickite as follows:

The deficit of cations in position I (~0.005) accord-
ing to this formula is small compared to the content of
vanadium in the crystal and may be related to experi-
mental uncertainty. Thus, the experimental data show
that vanadium occupies only positions II in the given
warwickite structure. Taking into account the condition
of electroneutrality, the formal valence of vanadium in
this compound is 2+.

A comparison of the cation distribution established
in the crystal studied to that in the unsubstituted war-
wickite [13, 14],

,

suggests that vanadium replaces Fe2+ ions in positions II,
after which the total amount of iron ions subjected to
fast electron exchange in the crystal increases from
0.52 (in Fe2BO4) to 0.66 (in Fe1.91V0.09BO4) per formula
unit. Therefore, the introduction of vanadium into the
warwickite crystal changes the ratio of delocalized
atoms in positions I and II. In particular, the presence of
vanadium in sublattice II increases the number of delo-
calized atoms in this sublattice from 0.26 (in Fe2BO4)
to 0.359 (in Fe1.91V0.09BO4) per formula unit. This
increase is significantly greater than that in sublattice I
(from 0.26 to 0.299 per formula unit).

Apparently, vanadium entering into a sublattice may
induce some ordering of the cations with different
valences in this sublattice (similar to the ordering effect
observed in manganese-containing warwickite [6]), for
example, of the type V–Fe2+–Fe3+–V–Fe2+–Fe3+. Prob-
ably, the two nonequivalent states, Fe2.5+(IIa) and
Fe2.5+(IIb), appear as a result of this process.

Fe0.383
3+ Fe0.313

2+ Fe0.299
2.5+( )I Fe0.278

3+ Fe0.279
2+ Fe0.359

2.5+ V0.09
2+( )IIBO4.

Fe0.36
3+ Fe0.38

2+ Fe0.26
2.5+( )I Fe0.36

3+ Fe0.38
2+ Fe0.26

2.5+( )IIBO4
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
4. MAGNETIZATION MEASUREMENTS

Figure 3 shows the temperature dependence of mag-
netization, M(T), in Fe1.91V0.09BO4 warwickite mea-
sured with a SQUID magnetometer in zero magnetic
field. Figure 4 presents an M(T) curve measured with a
vibrating-sample magnetometer for an external mag-
netic field of H = 1 kOe applied parallel to the a axis of
a needle crystal. A broad maximum observed in the
region of T = 60 K is characteristic of a P-type ferrimag-
netic order, while a transition to the paramagnetic state
takes place at T = 130 K. The M(T) curve in Fig. 3 dis-
plays a feature (step) at T = 120 K, which was previously
reported [12–14] for Fe2BO4. Continentino et al. [12]
assigned this feature to the Verwey transition in an
impurity phase of magnetite (Fe3O4), while Douvalis
et al. [13, 14] pointed to the existence of a series of
transitions in the 45–130 K range and attributed these
features to different temperature dependences of mag-
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Fig. 2. The probability distribution functions of quadrupole
splitting in Fe1.91V0.09BO4 warwickite.
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netization for the two sublattices in unsubstituted
Fe2BO4. In our experiments, neither magnetic measure-
ments nor X-ray diffraction on high-quality single crys-
tals showed evidence of the presence of magnetite
impurity. Apparently, the feature at T = 120 K is inher-
ent in Fe1.91V0.09BO4 warwickite and probably in
Fe2BO4 as well.

The M(T) curve in Fig. 4 exhibits, generally, the
same character as that reported fir Fe2BO4 [12]. How-
ever, the presence of vanadium ions in the structure
even in small amounts decreases the magnetic transi-
tion temperature. A long-range magnetic order in
Fe1.91V0.09BO4 is established at T = 130 K, whereas the
same transition in Fe2BO4 takes place at 155 K. The
same trend was observed previously in a series of solid
solutions of the Fe1 – xVxBO3 system [16].

Figure 5 presents the magnetization curves of a
Fe1.91V0.09BO4 single crystal at 4.2 and 100 K, showing
the presence of an uncompensated magnetic moment of

0 20 40 60 80 100 120 140

T, K

1.2

1.0

0.8

0.6

0.4

0.2

M, G cm3/g

Fig. 3. The temperature dependence of magnetization for
Fe1.91V0.09BO4 in a zero field.

Table 2.  Hyperfine structure parameters determined from
the Mössbauer spectrum of Fe1.91V0.09BO4 warwickite

δ(αFe),
mm/s

∆EQ,
mm/s

Γ, mm/s A, %

Fe3+(I) 0.378 0.192 0.350 20

Fe3+(II) 0.287 0.743 0.286 14.5

Fe2+(I) 1.196 1.236 0.576 16.4

Fe2+(II) 1.192 2.147 0.344 14.6

Fe2.5+(I) 0.76 – 0.504 15.6

Fe2.5+(IIa) 0.75 1.006 0.583 13.3

Fe2.5+(IIb) 0.702 1.736 0.304 5.5
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0.1 µB per formula unit. This value is greater than that
reported for Fe2BO4 (0.06 µB) [4]. At H > 1 T, the M(H)
plots represent linear dependences without any fea-
tures, which corresponds to rotation of the magnetiza-
tion vectors of sublattices toward the external magnetic
field direction. As can be seen from Fig. 5, there is a
nonzero magnetization in the region of small fields,
which is probably related to the presence of a magnetic
crystallographic anisotropy.

5. ELECTRIC RESISTANCE

On the whole, the temperature dependence of the
electric resistance observed for Fe1.91V0.09BO4 single
crystals (Fig. 6) is typical of 3d metal borates such as
Fe2BO4, VBO3, and Fe1 – xVxBO3 [16], exhibiting a
sharp increase in the resistivity and “dielectrization” of
the sample at low temperatures. Features of the electron
systems behavior in these materials can be revealed
only in logarithmic plots of resistivity versus reciprocal
temperature.

Various laws describing the behavior of ρ(T) in most
cases can be considered as particular cases of the gen-
eral relation

For n = 1, this formula describes conductivity of a sim-
ple activation type with the activation energy ∆1. The
hopping conductivity of noninteracting electrons in dis-
ordered insulators and semiconductors at low tempera-
tures obeys the Mott law (n = 4). This type of conduc-
tivity was observed in solid solutions Fe1 – xVxBO3 and
in VBO3 single crystals below room temperature. The
value of n = 2 is indicative of a Coulomb interaction
between localized electrons in a three-dimensional

ρ T( ) A0 ∆n/T( )1/n, nexp 1 2 3 4., , ,= =

0 30 60 90 120 150

T, K

4

3

2

1

M, G cm3/g

Fig. 4. The temperature dependence of magnetization for
Fe1.91V0.09BO4 in a field of H = 1 kOe.
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(3D) system. Efros and Shklovskii [17] showed that
this interaction is manifested by the density of one-
electron states tending to zero near the Fermi level. In
this case, the resistance varies with the temperature as
lnR ∝  (∆2/T)1/2, where 

e is the electron charge, ε is the dielectric constant, and
ζ is a linear size of localization.

According to [13], the conductivity of unsubstituted
Fe2BO4 warwickite obeys a simple activation law with
an activation energy of ∆n ≈ 0.33 eV. Our investigation
of the electric resistance of a Fe1.91V0.09BO4 single crys-
tal revealed deviation from the linear temperature
dependence, lnρ(T ) ∝  T–1. This behavior of the resis-
tivity can be explained by the existence of various com-
petitive mechanisms of electric conductivity. Least
squares processing of the experimental data leads to the
following empirical relation:

where the coefficients A1 and A2 weakly depend on the
temperature. The first term corresponds to a conductiv-
ity component with the simple activation character,
while the second term describes the hopping of strongly
correlated electrons (Fig. 7). The former activation
energy is ∆1 = 0.15 ± 0.01 eV. The Coulomb interaction
energy amounts to ∆2 = 4.92 ± 0.01 eV, which is char-
acteristic of oxides.

Theoretical investigation of the electron structure of
a natural warwickite of the MgTiBO4 type [18, 19]
showed that a correct description of the electron proper-
ties of this system requires taking into account electron

∆2 e2/εζ ,∼

R T( ) A1 ∆1/T( )exp A2 ∆2/T( )exp 1/2,+=

0 1 3 4 5 7
H, T

4.5

4.0

3.5

M, G cm3/g

3.0

2

1

2 6

Fig. 5. The magnetization curves for Fe1.91V0.09BO4 at T =
4.2 (1) and 100 K (2).
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correlations at the 3d metal sites. According to the results
of these calculations, the Fermi level EF is situated inside
a d band of the transition metal, so that doping of such
compounds can shift the EF value toward the bandgap.

Having studied the electrical properties of unsubsti-
tuted compound Fe2BO4, Attfield et al. [20] suggested
that the charge ordering in this crystal is also related to
the Coulomb repulsion. A broad, weakly pronounced
semiconductor–semiconductor transition (without sig-
nificant change in the activation energy) observed at
T = 317 K in Fe2BO4 [4] is not manifested in substituted
compound Fe1.91V0.09BO4 warwickite. However, it
should be noted that the measurements reported in [4]
were performed on polycrystalline samples and, hence,
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Fig. 6. The plot of logρ versus T for Fe1.91V0.09BO4.
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Fig. 7. The plot of lnR versus T –1/2 for Fe1.91V0.09BO4.
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the possible influence of grain boundaries should be
borne in mind.

6. DISCUSSION OF RESULTS

Apparently, the magnetic and electrical properties
of the new compound Fe1.91V0.09BO4 differ from those
of Fe2BO4, although one cannot speak of radical
changes. The available experimental data reveal impor-
tant features in common for Fe2BO4 and the new
Fe1.91V0.09BO4 warwickite:

(i) the orthorhombic structure at high temperatures;
(ii) the existence of two nonequivalent crystallographic
positions; (iii) the P-type ferrimagnetic ordering.

According to the neutron diffraction data for unsub-
stituted Fe2BO4, the structure of this warwickite repre-
sents a system of linear, weakly interacting ribbons,
each comprising two internal and one external chains
(Fig. 8). The (M,M')O6 octahedra (edge-sharing) form
infinite chains parallel to the short crystallographic
a axis. The ribbons are linked by common vertices and
trigonal BO3 groups. Cations belonging to octahedra of
the same ribbon interact via two oxygen atoms occupy-
ing vertices of the common edge. In this case, the
M−O–M' angle approximately equals 90°, so that an
indirect 90° exchange takes place inside each ribbon.
The interaction between cations belonging to the adja-
cent ribbons is mediated by a single oxygen atom occu-
pying the vertex shared by octahedra.

It can be suggested that, when a part of the iron ions
are replaced by vanadium in the Fe1.91V0.09BO4 crystal,
the existing 3D magnetic structure is retained and also
represents a system of substructures having the form of
ribbons. The introduction of vanadium leads to an
increase in the saturation magnetic moment, which can
be related to a decrease in the absolute magnetization of
sublattice II.

The results of our investigation showed that the
introduction of vanadium leads to modification of the
electrical properties of the system. To reveal the origin
of these changes, let us compare the electron structures

c

b
I
II

Fig. 8. A schematic diagram of the structure of
Fe1.91V0.09BO4 warwickite in a (100) plane: I and II are
crystallographically nonequivalent cation positions.
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of Fe2BO4 and Fe1.91V0.09BO4. These compounds are
characterized by strong electron correlations in the nar-
row d bands, forming both local magnetic moments and
the dielectric ground state. The presence of strong elec-
tron correlations hinders reliable calculations of the
energy band structure by traditional one-electron meth-
ods of the band theory in the local electron density
functional approximation.

For the related borate FeBO3, the band structure was
calculated using the local spin density functional [21]
and in a generalized gradient approximation taking into
account nonlocal corrections to the local density func-
tional [22]. Unfortunately, the latter paper, devoted to
pressure-induced changes in the lattice parameters and
the magnetic state, presented neither the band structure
proper nor the density N(E) of one-electron states. For
this reason, our considerations are based primarily on
the results reported in [21] for the partial contributions
to the density of one-electron states from various orbit-
als (B2s, B2p, O2s, O2p, and Fe3d). According to
these calculations, the bottom of the empty conduction
band (C) and the top of the valence band (V) are formed
by the s-, p-hybrid states of B and O. A narrow d band
of Fe is situated near the valence band top. 

In the one-electron calculation, the Fermi level falls
inside the d band and the crystal acquires metal proper-
ties. Allowance of the strong electron correlations leads
to modification of the calculated local spin density func-
tional [21], whereby the main effect consists in splitting
of the d band into the filled lower Hubbard band (LHB)
and the empty upper Hubbard band (UHB) separated by
a large gap on the order of U, the intraatomic Coulomb
matrix element. The typical value of U in 3d metals is
about 5 eV.

The proposed model of the electron band structure
of the unsubstituted Fe2BO4 crystal is depicted in
Fig. 9a. Here, a dashed line above the LHB shows an
acceptor impurity level accounting for the activation
conductivity with the activation energy Ea . The charge
carriers are represented by the conduction electrons
from LHB.

Substituting vanadium for a part of iron leads to an
increase in the degree of disorder in the crystal, which
results in the appearance of a pseudogap with a mobil-
ity threshold εc1 at the conduction band bottom and εc2
at the valence band top. The Fermi level occurs in the
region of localized states (Fig. 9b). As a result of the
Coulomb interactions, the density of states at the Fermi
level N(εF) is zero [17]. In the case of one-electron
states, the conductivity would obey the usual Mott law,
lnσ(T) ∝  (∆4/T)1/4, characterizing thermally activated
jumps of variable length. Since charge carriers at the
valence band top are strongly correlated electrons, it is
by no means surprising that the conductivity of
Fe1.91V0.09BO4 is closer to the Efros–Shklovskii law,
lnσ(T) ∝  (∆2/T)1/2, where ∆2 ~ e2/εζ [17] and ζ is the
electron localization length. In our case, the localiza-
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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Fig. 9. A schematic energy diagram of the density of states for (a) Fe2BO4 and (b) Fe1.91V0.09BO4 (see the text for explanations).
tion of 3d electrons is caused by the intraatomic strong
electron correlations and it would be natural to assume
that ζ ~ aB , where aB is the Bohr radius, so that ∆2 ~ U.

The experimental results showed evidence for the
existence of two competing mechanisms of conduc-
tivity, hopping and activation (with the activation
energy ∆1). This fact indicates that both localized elec-
trons and band carriers are present in the system.

In conclusion, it should be noted that the
Fe1.91V0.09BO4 single crystals, in contrast to unsubsti-
tuted Fe2BO4, exhibit no structural transition. Adding
vanadium significantly decreases the temperature of
magnetic ordering, changes the type of conductivity,
and alters the distribution of Fe2+, Fe2.5+, and Fe3+ cat-
ions over crystallographically nonequivalent positions.
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Abstract—The magnetic absorption cross section of a cylindrical metal particle of finite length is calculated.
A general case is considered when the ratio of the transversal dimension of a particle to its length may take
arbitrary values. Diffuse reflection of electrons from the internal surface of a particle is chosen as the boundary
condition for the problem. Limiting cases are considered, and the results are discussed. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

When interacting with electromagnetic radiation,
small metal particles exhibit properties different from
those of bulky metal samples [1]. This phenomenon is
attributed to the fact that the linear dimension R of a
particle is comparable to or less than the mean free path
Λ of electrons, R < Λ. Hence, the reflection of electrons
from the boundary of a particle has a significant effect
on their response to an external electromagnetic field.
Therefore, when the condition R < Λ is fulfilled, one of
the basic optical characteristics—the absorption cross
section—exhibits a nontrivial behavior as a function of
the ratio R/Λ. At room temperature, the value of Λ for
pure metals with good conductivity (aluminum, copper,
silver, etc.) ranges from 10 to 100 nm. The size of
experimentally investigated particles amounts to sev-
eral nm; therefore, condition R < Λ is fulfilled suffi-
ciently often.

Equations of macroscopic electrodynamics are valid
only for large particles, R @ Λ. Therefore, the Mie the-
ory, which describes the interaction between electro-
magnetic waves and metal bodies within macroscopic
electrodynamics, is inapplicable to investigating the
properties of small metal particles.

One can apply the standard kinetic theory of con-
ductivity electrons in metal [2] as an apparatus capable
of describing the response of electrons to an external
electromagnetic field. In this case, no restrictions are
imposed on the relation between the mean free path of
electrons and the sample size.

In [3, 4], the authors constructed a theory for the
interaction between electromagnetic radiation and a
spherical particle. In the limiting case R ! Λ at low fre-
quencies (in the far infrared region), this result coin-
cides with that obtained in [5, 6]. In these studies, an
approach based on the Boltzmann equation for conduc-
tivity electrons in metal is applied. An alternative
approach to the problem is proposed and developed
1063-7761/03/9705- $24.00 © 20996
in [7, 8] and other works. Recently, there has been
increasing interest in the problem of interaction
between electromagnetic waves and nonspherical parti-
cles [9]. We also mention the works in which the
authors attempted to take into consideration quantum-
mechanical phenomena in this problem, which is espe-
cially important at low temperatures [10–12].

A number of studies [13, 14] were devoted to the
description of the interaction between electromagnetic
radiation and a cylindrical particle. However, in these
works, only strongly oblong particles (the length of a
particle is many times greater than its radius) were con-
sidered. The question of the absorption of a cylinder of
arbitrary length was not raised.

The aim of the present paper is to generalize the
analysis to the case when the ratio of the radius of a
cylindrical particle to its length is arbitrary. We apply a
kinetic method to derive a distribution function that
describes a linear response of conductivity electrons to
the ac magnetic field of a plane electromagnetic field.
Using the distribution function obtained, we calculate
the absorption cross section of the magnetic field
energy of the wave.

2. STATEMENT OF THE PROBLEM

Consider a cylindrical particle of a nonmagnetic
metal of radius R and length L in the field of a plane
electromagnetic wave of frequency ω bounded from
above by the near infrared range (ω < 2 × 1015 s–1).
Assume that the direction of the magnetic field in the
electromagnetic wave coincides with the cylinder axis.
The nonhomogeneity of the external field and the skin
effect are neglected (we assume that R < δ, where δ is
the skin depth). In the frequency range considered, the
contribution of the current of dipole electric polariza-
tion to the absorption cross section is small compared
with the contribution of eddy currents induced by the
003 MAIK “Nauka/Interperiodica”
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external magnetic field of the wave [3]. Therefore, we
do not take into account the effect of the external elec-
tric field of the wave.

We also make the following common physical
assumptions: the conductivity electrons are considered
as a degenerate Fermi gas, and the response of electrons
to the external ac magnetic field is taken into account by
the Boltzmann equation within the relaxation-time
approximation. In the boundary conditions, we assume
diffuse reflection of electrons from the internal surface
of the cylinder (i.e., an electron may be reflected with
equal probability at an arbitrary angle ranging from 0°
to 90°).

Based on the assumptions made, we can describe
the absorption of electromagnetic-wave energy as fol-
lows: a uniform time-periodic magnetic field H =
H0exp(–iωt) of the wave induces an eddy electric field
in the particle. This field is determined from the Max-
well equation

(1)

and can be represented as

(2)

where r is a radius vector (the origin of the coordinates
is chosen on the axis of the particle). The eddy electric
field acts on conductivity electrons in the particle and
leads to a deviation f1 of their distribution function f
from the equilibrium Fermi distribution f0:

(3)

where v is the electron velocity.
This gives rise to the eddy electric current

(4)

(where h is the Planck constant) and to energy dissipa-
tion in the bulk of the particle. The energy  dissipated
per unit time is given by [15]

(5)

here, the bar denotes time averaging and the asterisk
denotes complex conjugation.

In formula (4), we used a standard normalization for
the distribution function f under which the density of
electron states is equal to 2/h3. Below, we will use a
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stepwise approximation for the equilibrium function
f0(ε) [16]:

(6)

where εF = m /2 is the Fermi energy.

The problem is reduced to finding a deviation f1,
caused by the eddy field (2), of the electron distribution
function from the equilibrium distribution f0. In a linear
approximation with respect to the external field, f1 sat-
isfies the kinetic equation [2, 16]

(7)

where the collision integral is taken in the approxima-
tion of the relaxation time τ:

(8)

To determine function f1 unambiguously, we have to
impose a boundary condition on the cylindrical surface
of the particle. As such a condition, we take the condition
if diffuse reflection of electrons from the surface [2]

(9)

where r⊥  and v⊥  are the projections of the electron
radius vector r and velocity v onto a plane perpendicu-
lar to the cylinder axis. Solving Eq. (7) by the method
of characteristics [14], we obtain

(10)

where

(11)

Here, ν and A are constant along the trajectory
(characteristic). The parameter t is the time of flight of
an electron along the trajectory from the boundary to
point r at velocity v and is determined differently
depending on the place in the particle surface where the
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electron is reflected. If an electron is reflected from the
lateral surface, then

(12)

This is clear from the following geometrical consid-
erations. Using the obvious vector equality r = r0 + vt,
where r0 is the radius vector of an electron at the
moment of reflection from the particle boundary, and
projecting it onto a plane perpendicular to the cylinder
axis, we obtain r⊥  = r0⊥  + v⊥ t, where the vectors r⊥ , r0⊥ ,
and v⊥  are components of the original vectors in the
projection plane. Squaring both sides of the last equal-
ity and solving the equation obtained for t, we arrive at
formula (12).

Formulas (10)–(12) completely determine the solu-
tion f1 to Eq. (7) with boundary condition (9). This fact
enables us to calculate current (4) and dissipated
power (5).

3. REFLECTION CONDITIONS OF ELECTRONS 
FROM THE LATERAL SURFACE 

AND END FACES

One of the most important moments in the solution
of the problem posed is taking into consideration the
reflection of electrons not only from the lateral surface,
as is done in [13, 14], but also from the end faces of the
cylinder. Let us derive these conditions.

Introduce a vector b by rewriting the equality r⊥  =
r0⊥  + v⊥ t as r0⊥  = r⊥  – b. Squaring both sides of the latter
equality, we obtain a quadratic equation b2 –

2r⊥ bcosϕ – (R2 – ) = 0. Solving this equation for b,

we obtain b = r⊥ cosϕ + . Here, we
took into account that |r0⊥ | = R and r⊥  · b = r⊥ bcosϕ,
where the angle ϕ is a cylindrical coordinate in the
space of coordinates (see below).

An electron situated at a distance of z from one of
the end faces is reflected from this face if its flight time
tz = z/v z along the cylinder axis is less than the flight
time t⊥  = b/v ⊥  perpendicular to the cylinder axis, i.e.,

(13)

Formula (13) represents one of the reflection conditions
of electrons from the end face. Another condition is
given by the inequality

(14)

Physically, this means that electrons situated at a dis-
tance of z from the chosen end but fly in the opposite

t
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direction strike the opposite end face. The “–” sign
stresses the fact that the projection v z of the electron
velocity is negative in this case.

To obtain conditions for the reflection of electrons
from the lateral surface, it suffices to change the signs
of relations in inequalities (13) and (14).

4. ABSORPTION CROSS SECTION
To determine the absorption cross section of the

energy of external magnetic field, we divide the mean
dissipated power  (see formula (5)) by the mean

power flux c /8π in the wave:

(15)

When calculating the integral in (15), it is conve-
nient to pass to cylindrical coordinates both in the space
of coordinates (r⊥ , α, z; the polar axis is axis z; vector
H0 is parallel to axis z) and in the velocity space
((v ⊥ , ϕ, v z). The cylinder axis coincides with axis z. In
cylindrical coordinates, field (2) has only the ϕ compo-
nent:

(16)

Accordingly, current (4) also has only the ϕ compo-
nent (the current lines represent closed circles with cen-
ters on the axis Z in planes perpendicular to this axis).

Then, the absorption cross section is given by

(17)

Depending on the reflection place of an electron
(end face or lateral surface), the parameter t has a dif-
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ferent form and the limits of integration with respect to
z and v ⊥  are also different. Therefore, it is convenient to
decompose the cumbersome expression (17) into two
parts, σ1 and σ2; the first part represents the contribu-
tion of reflection from the lateral surface to the absorp-
tion, whereas the second part represents the contribu-
tion of reflection from the end faces of the cylinder.

To simplify the integration and the analysis of the
results, we introduce the following notations:

(18)

(19)

It is obvious that

(20)

Below, we give a detailed account of the calculation
of each part of (17).

4.1. Contribution of the Lateral Surface 

Let σ1 be the contribution of the reflection of elec-
trons from the lateral surface to the absorption cross
section.

Using the properties of the Dirac δ function, we
have

Due to the symmetry of the problem, we replace the
integration over the entire range of velocities v z by the
integration over the positive interval and double the
result obtained.

Let us rewrite the reflection condition from the lat-

eral surface (v z > 0) as v z < (z/b)v ⊥  or  < z/b
(according to the definition of the Dirac δ function,

δ(v z – ) = 0 when v z ≠ ). Thus,

(21)
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Let us introduce the dimensionless velocity

ρ = v ⊥ /vF. (22)

From (21), we obtain b /ρ < z; i.e., the reflec-
tion condition of electrons from the lateral surface is
given by

(23)

For the integration limits to satisfy the requirements
of the problem posed, we write out an additional ine-
quality for the lower limit lN of integration with respect
to the coordinate z:

(24)

Hence, one should impose an additional condition
when integrating with respect to ρ as well:

(25)

where

(26)

Taking into account notations (18), (19), and (22),
we obtain

(27)

where n = 2(m/h)34π /3 is the concentration of con-
ductivity electrons in metals. Here, we immediately
integrated with respect to the angle α, using the fact that
the integrand is independent of this angle, and with
respect to the variable v z , taking into account the inte-
gration rule for expressions containing the Dirac δ
function.

Note that, strictly speaking, formula (27) must con-
tain two terms; however, due to (24), the second term of
the sum vanishes (since the integral with respect to z is
taken over a symmetric interval).
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Integrating with respect to the coordinate z, we have
σ1 = σ0F1(x, y, Γ), where

(28)

4.2. Contribution of End Faces 

Denote the contribution of reflections from end
faces to the absorption cross section by σ2.

The condition of reflection of electrons from one of
the end faces (v z > 0) is given by

(29)

For the integration limits to satisfy the requirements
of the problem posed, we write out an additional ine-
quality for the upper limit lV of integration with respect
to z:

(30)

Hence, we arrive again at the additional condition
for integrating with respect to the variable ρ:

(31)

Taking into account notations (18), (19), and (22),
we obtain
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(32)

Here, we have again integrated immediately with
respect to the angle α, using the fact that the integrand
is independent of this angle, and with respect to the
variable v z , taking into account the integration rule for
expressions containing the Dirac δ function (recall that
the flight time of an electron to one of the end faces is
expressed as t = z/v z).

Now, integrating with respect to the coordinate z, we
have σ2 = σ0F2(x, y, Γ), where

(33)

The dimensionless absorption cross section is given
by

(34)

The results of numerical calculations are repre-
sented in Figs. 1–5.
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5. ABSORPTION
IN THE LOW-FREQUENCY REGIME

Now we dwell on the case when the frequency ω of
the external field and the collision rate of electrons 1/τ
in the bulk of metal are low compared with the collision
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Γ = 0
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Fig. 1. Dimensionless absorption cross section F versus the
dimensionless frequency y for a fixed dimensionless inverse
mean free path x = 1 and various values of the radius-to-
length ratio Γ of a particle.
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Fig. 3. Dimensionless absorption cross section F versus the
dimensionless inverse mean free path x for a fixed dimen-
sionless frequency y = 2 and various values of the radius-to-
length ratio of a particle.
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rate of electrons with the surface of a particle. In other
words, we consider the situation when |z | ! 1.

In this approximation, the exponential functions
entering the expressions F1(x, y, Γ) and F2(x, y, Γ) can
be expanded by the well-known Taylor formula. After
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Fig. 2. Dimensionless absorption cross section F versus the
dimensionless frequency y for a fixed radius-to-length ratio
Γ = 3 of a particle and various values of the inverse mean
free path x.
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Fig. 4. Dimensionless absorption cross section F versus the
dimensionless inverse mean free path x for a fixed radius-to-
length ratio Γ = 1 of a particle and various values of dimen-
sionless frequency.
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substituting the expansions of the exponential functions
into the integrals and performing algebraic transforma-
tions, we can see that expression F2(x, y, Γ) has a single
term, while the integrals entering expression F1(x, y, Γ)
are substantially simplified. Then,

(35)

(36)

After integrating with respect to ρ, expressions (35) and
(36) are reduced to

(37)
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Fig. 5. Dimensionless absorption cross section F versus the
radius-to-length ratio Γ of a particle for a fixed dimension-
less frequency y = 1 and various values of the dimensionless
inverse mean free path x.
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The absorption cross section σ is expressed as

(39)

This formula shows that a specific feature of the
absorption cross section in the low-frequency limit is its
quadratic dependence on the dimensionless frequency y
of the external field (see [13]). A new result, compared
with the earlier ones, is that the expression obtained
takes into account the dependence of the absorption
cross section on the ratio of the cylinder radius to its
length (the absorption cross section depends on Γ).

Now, we consider possible limiting cases.

(a) In the case of an infinite cylinder (Γ  0),

(40)

Since real particles have a finite radius R, we can deter-
mine a correction to the absorption. Indeed, when
Γ ! 1, κ ≈ ηΓ , and arcsinκ ≈ ηΓ  (the contribution of
the second integral entering in (39) is negligible due to
the smallness of κ), we have

(41)

(b) Let us determine the correction to the absorption
in the case of a disc, when Γ @ 1. Here,
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Hence, after integrating, we obtain

(42)

The dominant term in this expression is the one con-
taining lnΓ (Γ @ 1); therefore,

(43)

The logarithmic singularity in the formula for the
absorption cross section (43) is directly related to the
well-know logarithmic singularity of the conductivity
of a thin metal layer [2].

6. ABSORPTION
IN THE HIGH-FREQUENCY REGIME

When |z | @ 1 and |z |/Γ @ 1, there exists an asymp-
totics expression for (34). Neglecting the terms con-
taining exponential functions because they rapidly
decay and carrying out algebraic transformations, we
arrive at the following expression for the dimensionless
absorption cross section F(z):

(44)

This expression is easily integrated to give

(45)

As a result, we obtain the following expression for the
absorption cross section:

(46)

The first term in this expression corresponds to the clas-
sical result (the Drude formula) [16], which is valid for
any Γ provided that the condition |z |/Γ @ 1 holds.
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Consider the case y @ x. In this case, analysis of for-
mula (46) implies that, if x @ Γ, then the dominant term
in the absorption is the first term. Otherwise, when Γ @
x, the second term is dominant. A similar situation
arises when x @ y.

In [9], the authors obtained, after a number of sim-
plifications, an expression that describes the absorption
cross section of a highly prolate ellipsoid of revolution
(actually an infinite cylinder) in the high-frequency
limit (for x ! 1):

(47)

where V is the volume of the ellipsoid. The authors
of [9] did not take into account electron collisions in the
bulk of a particle, restricting the analysis to surface col-
lisions.

Let us determine the ratio of specific (per unit vol-
ume) absorption cross sections (46) and (47) in the
high-frequency limit (the second term in (46) can be
neglected). We have

(48)

Thus, an exact kinetic calculation yields a correction
equal to 13% to the results of [9].

7. NUMERICAL ANALYSIS
OF THE RESULTS

Formula (34) allows one to calculate the dimension-
less absorption cross section F(x, y, Γ) of a cylindrical
particle and the absorption cross section of electromag-
netic radiation,

(49)

By varying Γ, we can obtain the absorption cross sec-
tion for cylinders of various degrees of oblongness.

When Γ  0 (κ  0), from (34) we obtain

(50)

This expression coincides with the result obtained
in [14] for an infinite cylinder.

The dimensionless absorption cross section F is a
complicated function of a combination of three dimen-
sionless quantities x, y, and Γ.

Figure 1 and 2 represent the dimensionless absorp-
tion cross section F versus the dimensionless frequency
y of the external field for a given radius and a constant
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radius-to-length ratio of a particle. Taking into account
the fact that the particle length is finite leads to results
different from those obtained in [14]. The amplitude
and the period of the frequency dependence of the
dimensionless absorption cross section F considerably
increase. This is associated with the fact that, in the
present paper, in addition to the reflection of electrons
from the lateral surface of a particle, we have consid-
ered the reflection of particles from the end faces. This
makes an additional contribution to the absorption of
the energy of external electromagnetic field by a parti-
cle. As the particle radius increases, the oscillations of
the absorption cross section are smoothed out. An
increase in the radius of a particle (Fig. 1), as well as an
increase in the ratio of the radius to the length of a par-
ticle (Fig. 2), leads to an increase in the absorption
cross section.

Figures 3 and 4 show the dimensionless absorption
cross section F versus the dimensionless inverse mean
free path x of electrons. For a given frequency, the
absorption is the greater, the greater the oblongness of
a particle (Fig. 3). In turn, an increase in the frequency
leads to an increase in the absorption cross section. As
the particle radius increases further, the absorption
decreases throughout the frequency range and reaches
its asymptotic value. In this case, all three curves merge
into a single curve. If the radius-to-length ratio of a par-
ticle is constant (Fig. 4), then the absorption decreases
as the frequency of the external field decreases. As Γ
increases, the absorption is somewhat less at the same
frequencies.

In the present paper, the dimensionless absorption
cross section F depends, in addition to x and y, on the
radius-to-length ratio Γ of a particle (Fig. 5). As the par-
ticle radius increases (for constant y), the absorption
cross section decreases because the dominant contribu-
tion to the absorption is made by the interaction of elec-
trons with the end faces of a cylinder, while the contri-
bution of the lateral surface is small. At higher frequen-
cies y (the particle radius remaining constant), the
absorption cross section is greater because the electric-
field intensity increases with frequency.
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