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Abstract—In a recent study of dark matter N-body simulations, a scaling relation between the SZ decrement

and the Thomson depth of a cluster of galaxies of the form ∆Tr ∝   has been found (Diaferio et al. 2000). In
this paper, it will be shown that such a scaling relation arises if the intracluster gas is distributed similar to the
dark matter density described by the NFW-profile and the finite spatial resolution of the numerical simulation

is taken into account. It is furthermore investigated whether the ∆Tr ∝   relation holds for analytical models of
an isothermal gas sphere in the gravitational potential of a dark matter halo distributed according to the NFW-pro-
file, the available experimental data of SZE observations, and recent results from cosmological gas-dynamical
simulations of clusters of galaxies. Combining such a relation with temperature estimates from X-ray observations
would provide information about a dependence of Te on τT. The Thomson depth might therefore emerge as another
important scaling parameter in studies of clusters of galaxies. © 2001 MAIK “Nauka/Interperiodica”.
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1. SCALING RELATIONS
FOR CLUSTERS OF GALAXIES

Through an interplay of X-ray observations and the-
oretical modeling, several scaling relations, which sug-
gest the self-similarity of relaxed clusters of galaxies,
have been discovered. Especially interesting is the tight
relation between the virial mass of a cluster and the tem-

perature of the intracluster medium (ICM), Mvir ∝  
(see, e.g., Evrard et al. 1996; Horner et al. 1999).

With the recent progress in observing the SZ decre-
ment in about a dozen clusters of galaxies (Birkinshaw
1999; Carlstrom 1999), we obtain another observable
parameter to constrain the physics of these objects.
The  strength of the SZ effect (SZE) is a measure for
a  different physical parameter than the X-ray surface
brightness or the inferred X-ray luminosity. It prima-
rily depends upon the Thomson depth and not on the
virial mass, although they are certainly connected in
some way.

By analogy with well-known scaling relations, it
would be reasonable to expect a power law dependence
between the SZ decrement and the Thomson depth of a
cluster of the form ∆Tr ∝ . Combining this relation
with temperature estimates of the ICM through X-ray
observations provides direct information about the
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Thomson depth and about the dependence of Te on τT.
Therefore, the Thomson depth of a cluster might
become an important scaling parameter for tests of the
models of clusters of galaxies.

2. THE SZ DECREMENT

The scattering of Cosmic Microwave Background
(CMB) photons by the thermal electrons of the ICM
leads to a unique distortion of the CMB spectrum [Su-
nyaev and Zel’dovich 1972, 1980; see Rephaeli (1995)
for a recent review].

In the Rayleigh–Jeans (RJ) limit, the thermal effect
causes a temperature diminution given by

(1)

In an attempt to study the imprint of large-scale
motions in superclusters on the CMB, Diaferio et al.
(2000) have analyzed high-resolution N-body simula-
tions of a representative volume of a Cold Dark Matter
universe. Since the SZE depends upon the properties of
the ICM, they made the following assumptions about
the relation of dark matter to gas:

(i) The electron number density is simply proportional
to the dark matter mass density ne = (ρdm/mp)Ωb/Ω0,
where mp is the proton mass, Ωb is the baryonic density,
and Ω0 is the gravitating matter density in units of the
critical density.
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(ii) At any point within the cluster, the plasma is

thermalized, i.e., kTe = mp/2, where  is the pro-
jected velocity dispersion of the dark matter particles.

Note that, since β = (µmpσ||2/kTe), the second
assumption implies β = 1.2 for an abundance with µ = 0.6,
as inferred for clusters of galaxies, if the projected
velocity dispersions of dark matter particles and galax-
ies are equivalent. DSN computed the Thomson depth
along a given line of sight through the simulated vol-
ume as

(2)

where L is the linear dimension of the computational
box. With their assumptions, the thermal SZE in the
Rayleigh–Jeans limit can be expressed as

(3)

These two quantities were computed for a large
number of clusters and it was found that the strength of
the SZE scales quadratically with the Thomson depth:

(4)

3. SCALING RELATION FOR GAS DISTRIBUTED 
SIMILARLY TO DARK MATTER

In order to compute the Thomson depth as it was
done by DSN it is assumed that the dark matter density
profile of a cluster of galaxies is of the form proposed
by Navarro et al. (1995) (NFW)

(5)

Here, ρs is the product of the nondimensional overdensity
δc and the critical density ρcrit = 1.88 × 10–29h2 g cm–3 (h =
H0/100 km s–1 Mpc–1, and x = r /rs is the radius mea-
sured in units of the scaling radius. The NFW profile is
self-similar, meaning that for dark matter halos of dif-
ferent virial mass the shape remains the same and just
scales with the overdensity and the scaling radius.
These two quantities are not independent. For a given
set of cosmological parameters they can be computed
as a function, e.g., of the virial mass of a cluster (Navarro
et al. 1997). Therefore, Eq. (5) represents a one-param-
eter family of profiles. To compute the Thomson depth for
the NFW profile one has to solve the following integral:

(6)

where the projected radius z and the coordinate along
the line of sight l, both measured in units of the scaling
radius, were introduced. They are related to the radial
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distance x by x2 = z2 + l2. The Thomson depth as com-
puted in Eq. (6) is just proportional to the surface mass
density τT = σT(Ωb/Ω0)(Σdm/mp). Since this is an impor-
tant quantity for studying the effects of gravitational
lensing due to a cluster of galaxies, it has been com-
puted in this context for the NFW profile by Bartel-
mann (1996)

(7)

with

Since f(z) involves only nondimensional quantities,
Eq. (7) implies that for a given cluster with a certain
virial mass and therefore given overdensity and scaling
radius, the Thomson depth scales as ρsrs: τT ∝ ρ srs.The
temperature profile of the ICM used by DSN can be
written as

(8)

The NFW density profile implies a mass profile
given by

(9)

Therefore, Eq. (3) reads as

(10)

with the constant

This integral (Eq. (10)) cannot be solved analytically
for z > 0, and does not depend upon the virial mass of a
cluster. This implies that the SZ decrement should obey

the scaling ∆Tr ∝  . With these scalings we find that

the ratio ∆Tr/  should not be constant but rather scale
with mass as rs.

So far the effects of the finite spatial resolution,
which is inherent to numerical simulations, upon the
relation found by DSN have been neglected. For exam-
ple the spatial resolution of the OCDM model they
found their relation for is δr = 30h–1 kpc. This is mod-
eled analytically by folding the computed Thomson
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depth and SZ decrement with Gaussian windows of rel-
ative beamsize a = δr/rs. This method gives results con-
sistent with a central integration (z = 0) with a lower
integration limit lmin ~ a. The beam-averaged Thomson
depth and microwave decrement therefore read as

(11)

and

(12)

The important thing to note is that since δr is con-
stant, the relative beamsize a decreases with increasing
scaling radius. For a more massive cluster, the relative
beamsize is therefore smaller and only the more central
parts of the cluster are probed in the averaging. This is
essentially the origin of the relation found by DSN.

Working this out quantitatively yields an expression
for the normalization found by DSN and its depen-
dence on the parameters of the model

where we use Tr = 2.725 K, the CMB temperature
(Mather et al. 1999), Ωb = 0.0125h–2 (Smith et al.
1993), and Ω0 = 0.3. The dependence on a is collected
in the function g(a). As mentioned previously, since a
depends upon the scaling radius and therewith upon the
virial mass of a cluster, we can compute the ratio

∆ /  as a function of virial mass instead of a. The vari-
ation of g(a) over the mass range 1 × 1013 to 3 × 1015 M(

is less than 10%. This explains why DSN found the
relation between the SZ decrement and the Thomson
depth in their studies.

4. ISOTHERMAL GAS 
IN A NFW DARK MATTER POTENTIAL

It is an observational fact that the central parts of
relaxed, non cooling flow clusters are close to isother-
mal. Their surface brightness profile is well fitted by the
so-called β profile (Cavaliere and Fusco-Femiano 1978),
which implies an electron density profile

(13)

The relationship of the parameters of the β profile

( , rc, and β) to the parameters characterizing the
NFW profile (ρs and rs) is not easy to interpret. Inte-
grating the force balance in hydrostatic equilibrium for
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the gravitational potential given by the mass distribu-
tion (Eq. (9)) of a NFW-profile

(14)

with ρg the gas pressure, under the assumption of iso-
thermality leads to the following gas density distribu-
tion (Makino et al. 1998):

(15)

where b is given by

(16)

It is assumed that the gas is at a temperature given
by the virial theorem. To fix the constant of integration
the following normalization of the gas density is used.
The ratio of the gas mass to the dark matter mass inside
the virial radius is given by the universal baryon frac-
tion

(17)

Using this relation for the normalization leads to

(18)

with c = rvir /rs is the concentration parameter. The
Thomson depth and SZ decrement resulting from this
density profile must be computed numerically. Note
that the gas density profile (Eq. (13)) is very sensitive
to the parameter b, which depends upon the gas temper-
ature. Although the derived gas density distribution can
be well fitted to a β-profile, the core radii one obtains
are up to one order of magnitude smaller than the
observed ones, suggesting that additional physical pro-
cesses have to be included (Makino et al. 1998).

5. CLUSTERS 
WITH OBSERVED SZ DECREMENTS

Recent progress in observational techniques has
allowed a significant detection of the SZ decrement in
about a dozen clusters of galaxies. More clusters have
been observed, but not all data have been published yet.
The published data has been compiled by Cooray
(1999), who scaled the observations made with differ-
ent instruments and, therefore, at different frequencies
to the RJ part of the spectrum and applied relativistic
corrections where appropriate. The cluster tempera-
tures, as derived from broad-band single-phase plasma,
fits to ASCA data by White (2000) were used. To this
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sample, two high redshift clusters (z ≈ 0.5) were added,
for which recent observations of the SZE have been
reported: MS 0451.6–0305 (Reese et al. 2000) and
RX J0658–5557 (Andreani et al. 1999). The Thomson
depth for these clusters were computed with Eq. (1)
under the assumption of isothermality (see the table).

6. SZ DECREMENT AND THOMSON DEPTH 
FOR SIMULATED CLUSTERS

In recent years, numerical simulations of clusters of
galaxies that treat the dark matter and the gas compo-

10

0.1

1.0

τ, 10–3

–
∆T

, m
K

Thomson depths, electron temperatures, and SZ decrements for ob-
served clusters

Clusters τT, 10–3 Te, keV ∆Tr, mK

A0478 13.13 ± 2.66 06.58 ± 0.26 –0.92 ± 0.15
A0665 11.06 ± 1.64 07.73 ± 0.38 –0.91 ± 0.09
A0773 09.69 ± 1.85 08.63 ± 0.68 –0.89 ± 0.10
A1413 12.32 ± 1.83 07.32 ± 0.25 –0.96 ± 0.11
A1656 05.96 ± 1.20 08.67 ± 0.17 –0.55 ± 0.10
A1689 19.44 ± 3.64 09.23 ± 0.28 –1.91 ± 0.30
A1835 15.41 ± 2.67 08.17 ± 0.50 –1.34 ± 0.15
A2142 09.37 ± 1.79 09.02 ± 0.32 –0.90 ± 0.14
A2163 13.64 ± 2.64 13.29 ± 0.64 –1.93 ± 0.28
A2204 12.51 ± 4.08 07.21 ± 0.25 –0.96 ± 0.28
A2218 12.36 ± 1.99 06.84 ± 0.34 –0.90 ± 0.10
A2256 05.94 ± 1.31 06.96 ± 0.11 –0.44 ± 0.09
Zw3146 13.72 ± 2.84 05.89 ± 0.26 –0.86 ± 0.14
CL0016 + 16 13.95 ± 3.56 08.15 ± 0.80 –1.21 ± 0.19
MS 0451.6–0305 12.91 ± 0.98 10.40 ± 0.90 –1.43 ± 0.10
RX J0658–5557 07.84 ± 4.22 17.00 ± 5.00 –1.42 ± 0.43

SZ decrement versus Thomson depth. These two quantities
were computed for a sequence of virial masses in the range
1 × 1014 to 3 × 1015 M( for samples of dark matter (triangles)
and gas (squares). The positions of modeled and observed clus-
ters are marked by diamonds and crosses, respectively. The sol-

id line indicates the relation of DSN: ∆T = –  × 2 × 106 µK.
The dashed line indicates the same relation for β = 0.6.

τT
2

nent consistently have been performed by several
groups. It was possible to obtain the data necessary for
the purposes of this paper from two sources: the Santa
Barbara Cluster Project (Frenk et al. 1999) and the
Simulated Cluster Archive (Norman et al. 2000). The
Santa Barbara Cluster Project compiled and compared
simulations of a cluster with a virial mass of 1.1 × 1015 M(

by several groups with different codes and found gen-
eral consistency of the results. The cosmological
parameters used in their simulations were h = 0.5, Ω = 1,
Ωb = 0.1 and σ8 = 0.9. We used their research of the gas
density and temperature profile to compute the Thom-
son depth and the SZ decrement.

The Simulated Cluster Archive is a project to make
data for several simulated clusters of galaxies publicly
available on the Internet. The following cosmological
parameters for a ΛCDM model were used in those sim-
ulations: h = 0.7, Ω0 = 0.3, Ωb = 0.026, and σ8 = 0.928.
The Thomson depth and the SZ decrement were com-
puted for 16 clusters having virial masses in the range
of 5 × 1014–2 × 1015 M(.

7. RESULTS

In this section, the results from the previous sections
are presented and discussed. The SZ decrement of each
cluster from the four samples is plotted against its
Thomson depth in the figure. The solid line is the rela-

tion found by DSN: ∆Tr ≈ –  × 2 × 106 µK. The trian-
gles, which trace this relation are seven models of a
cluster with a virial mass in the range from 1 × 1014 to
3 × 1015 M(. Given the virial mass of the dark matter
halo, the scaling radius and the overdensity were com-
puted according to the algorithm provided in Navarro
et al. (1997). With these parameters, the Thomson
depth and the microwave decrement were derived as
described in Section 3.

The same method was used for the second sample
covering the same virial mass range. The Thomson
depth was computed with the gas density distribution
given by Eq. (15). Because this model assumes isother-
mality, the SZ decrement is simply proportional to the
Thomson depth. The temperature and its scaling with
virial mass were chosen in such a way, that the param-
eter b remained constant over the given mass range,
corresponding to a fixed β = 2/3. The positions of these
clusters in the ∆Tr – τT plane are marked by squares. It
is obvious that, for this sample, the slope of the relation

is much steeper. It is close to ∆Tr ∝ , which would

imply the dependence Te ∝ . The significance of this
steep dependence is nevertheless doubtful because, as
mentioned in one of the previous sections, there are
some inconsistencies related with this gas density dis-
tribution. The actual slope of the relation is very sensi-
tive to the scaling of the parameter b with virial mass.
Changing the absolute value for b or, equivalently, β

τT
2

τT
4

τT
3

ASTRONOMY LETTERS      Vol. 27      No. 3      2001



A SCALING RELATION BETWEEN THE SZ DECREMENT 139
does not change the slope of the relation but mainly
shifts the data points to higher Thomson depths.

The positions of the observed clusters are plotted
together with their error bars. This sample is obviously
strongly biased: the hottest, most massive clusters were
chosen to be observed in order to make the detection of
the SZE more probable. Future observations with
higher sensitivity will detect lower mass clusters and
therefore show how the relation extends down to
smaller Thomson depths.

Finally, the derived Thomson depth and SZ decre-
ment for the simulated clusters are plotted with dia-
monds. It is obvious that the slope for the observed and
simulated clusters is more shallow than a dependence

∆Tr ∝ . A best fit to the combined data set gives a
slope of about 3/2. A different slope is not surprising
since gas and dark matter are distributed differently in
clusters of galaxies. The simulated and observed clus-
ters lie all above the relation found by DSN. If one
assumes a value of 0.6 for β instead of 1.2, the normal-
ization of the relation being proportional to β–1 simply
doubles (dashed line in the figure). There is still a dis-
crepancy of about a factor of 2, which might indicate
the influence of some neglected physical processes,
e.g., nongravitational heating.

8. SUMMARY AND DISCUSSION

In this paper, we offered an explanation of the rela-
tion between the Thomson depth and the CMB decre-
ment caused by the SZE found in studies of dark matter
N-body simulations of clusters of galaxies. This rela-
tion was derived by assuming that the density profiles
of dark matter halos in N-body simulations can be
described by the NFW-profile and by modeling the
finite spatial resolution of numerical simulations.

An attempt has furthermore been made to investi-
gate if there are hints for the existence and slope of such
a relation from other samples of clusters of galaxies.
Constructing clusters with a more realistic description
of the gas density distribution resulted in a steeper
slope of the relation. Based on the data for the observed
and simulated clusters, we cannot confirm a relation
although a certain trend is discernible, having a much
shallower slope. Future observations and numerical
simulations should allow to test, whether such a rela-
tion still holds at and how it extends down to smaller
Thomson depths. Although this relation awaits a firm
establishment, it is important to mention possible appli-
cations. As mentioned earlier a relation between the SZ
decrement and the Thomson depth would imply, if clus-
ters are close to isothermal, a relation between Te and
τT or, equivalently, between ∆Tr and Te . A relation like
this would enable one to estimate the temperature of the
cluster from the observed SZ decrement. Combining
this relation with the mass temperature relation, one

τT
2
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could derive a Mvir – τT or, equivalently, Mvir – ∆Tr rela-
tion for clusters of galaxies, which is rather important
since the virial mass is an important but difficult quantity
to determine. This might become especially important for
high redshift clusters, which are too faint in X-rays.
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The Ursa Major Supercluster of Galaxies: 
I. The Luminosity Function

A. I. Kopylov* and F. G. Kopylova
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Abstract—Catalogs of bright galaxies in the central regions of 11 clusters in the Ursa Major supercluster are
presented. Absolute and relative coordinates and total B and R magnitudes are given for each galaxy. Plates
taken with the 2-m Tautenburg Observatory telescope and CCD images obtained with the 6-m and 1-m SAO
telescopes are used. The luminosity functions (LFs) for galaxies in the cluster nuclei (3 Mpc × 3 Mpc) and the
composite LF for the supercluster are constructed. The composite LF is well fitted by a Schechter function with

 = –20 91, α = –1.02 and with  = –22 39, α = –1.06. A comparison with the LFs of field galaxies and
of various samples of clusters and superclusters shows that the Ursa Major supercluster have LF parameters
characteristic of the field and, thus, differ from those of the Corona Borealis supercluster, which is apparently
at a later stage of dynamical evolution. © 2001 MAIK “Nauka/Interperiodica”.

Key words: galaxies, groups and clusters of galaxies
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INTRODUCTION

Superclusters of galaxies are systems or elements of
the large-scale structure of maximum size and mass
with a dynamical evolution time comparable to the age
of the Universe. Photometric, morphological, and
dynamical studies of these systems can be used to ana-
lyze the effects of factors acting on the largest spatial
and time scales of the formation and evolution of gal-
axies. Depending on how a system is formed, from
large to small scales or vice versa, the formation and
evolution of galaxies in superclusters can be more or
less coherent in nature. In particular, information about
these processes is contained in such an important (inte-
grated) characteristic of the galaxy system as the lumi-
nosity function of its constituent galaxies. The depen-
dence of the luminosity function on the morphological
type, position within the system, and ambient density
of the galaxies under study is also of interest in a more
detailed analysis.

Ursa Major is one of the nearest (z . 0.06) compact
superclusters. We found its nucleus to consist of six
Abell (1958) clusters (A1270, A1291, A1318, A1377,
A1383, and A1436) and five more clusters of lower but
comparable populations; four of them (Anon1, Anon2,
Anon3, and Anon4) were revealed by Bayer (1980) and
one (Sh166) by Shectman (1985). We established that
these five clusters belong to the supercluster by measur-
ing the radial velocities for several brightest galaxies in
each of them. Apart from the above six Abell clusters,

* E-mail address for contacts: akop@sao.ru
1063-7737/01/2703- $21.00 © 20140
A1452 and A1507, the two most isolated peripheral
members of the system, were assigned to the Ursa
Major supercluster in the catalog of superclusters (Ein-
asto et al. 1997).

At present, only photographic measurements of gal-
axies in A1377 (Bucknell et al. 1979; Flin et al. 1995),
as well as CCD measurements for several galaxies in
A1291 (Merrifield and Kent 1989) and for one or two
galaxies in other clusters, have been published. Here,
our main goals are to compile and analyze photometric
catalogs of clusters, to construct their luminosity func-
tions, and select a sample of early-type (E, S0) galaxies
to be subsequently used to determine the relative dis-
tances of clusters (Kopylova and Kopylov 2001).

OBSERVATIONS AND DATA REDUCTION

We determined the redshifts of galaxies and clusters
from the spectra taken in 1991–1993 with a 1024-chan-
nel photon counter—the scanner (IPSC) mounted at the
Nasmyth-1 focus of the 6-m telescope on the SP-124
spectrograph (Drabek et al. 1986; Afanas’ev et al.
1986). We performed our observations by using the
B1 grating (600 lines mm–1) in the spectral range 3600 to
5500 Å with a dispersion of 1.9 Å per channel. We also
used the radial-velocity data for the A1318 and Anon4
clusters from Zabludoff et al. (1993) and for A1291
from Merrifield and Kent (1991). Table 1 contains the
following data: (1) ACO cluster numbers (Abell et al.
1989); (2) equatorial coordinates [the first row gives
coordinates of the cluster center for epoch B1950.0
from the ACO catalog (A1270, A1291, A1318, A1377,
A1383, and A1436), from Bayer (1980) (Anon1,
001 MAIK “Nauka/Interperiodica”
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Table 1.  Data on clusters and coordinates of the centers of the regions studied

Cluster α β NA 〈V0〉 σv Nv

A1377 11h44m18s +56°01′00″ 59 15210 570 18
11h44m54s +56°01′28″

Sh166 12h00m54s +55°11′00″ 39 15360 230 4
12h00m41s +55°02′30″

A1291 11h29m18s +56°18′00″ 61 15720 700 21
11h29m19s +56°18′06″

A1318 11h33m42s +55°14′00″ 56 17140 270 13
11h33m29s +55°15′32″

A1383 11h45m30s +54°54′00″ 54 18080 530 12
11h45m39s +54°54′01″

Anon4 11h35m12s +56°01′00″ 38 18400 520 7
11h36m32s +55°52′14″

A1436 11h57m54s +56°32′00″ 69 19250 380 11
11h57m43s +56°30′32″

Anon3 11h26m18s +55°44′00″ 40 20480 350 3
11h27m41s +55°41′38″

A1270 11h26m42s +54°20′00″ 40 20660 420 10
11h26m57s +54°25′57″

Anon1 11h13m12s +54°46′00″ 52 20970 570 8
11h12m48s +54°44′55″

Anon2 11h16m48s +54°43′00″ 30 21100 240 7
11h16m44s +54°43′34″
Anon2, Anon3, and Anon4), and from Sheckman
(1985) (Sh166), and the second row gives coordinates
of the center of the region we studied]; (3) the measure
of cluster richness, which is equal to the number of
bright galaxies in the cluster according to ACO and (for
additional clusters) estimates of this parameter calculated
from the number of galaxies brighter than MB = –19m in
the central (3 Mpc × 3 Mpc) cluster region with calibra-
tion based on six Abell clusters of the supercluster;
(4) cluster mean radial velocities reduced to the Local
Group centroid; (5) radial-velocity dispersions; and
(6) the number of measured radial velocities.

Photographic observations were performed with the
Schmidt telescope at the Tautenburg Observatory (Ger-
many) on February 7–8 and March 6–7, 1989, in the B
(ZU21 + GG13) and R (Kodak 103aE + RG1) bands
(emulsion and filter are given in parentheses). Plates
were taken with 30- and 90-min exposures in the B and
R bands, respectively, for 2 –3 5 seeing. To cover the
entire supercluster by 3 25 × 3 25 plates with a
51 4 mm–1 scale, we had to photograph three areas cen-
tered at 11h22m, 55°31′, 11h36 5, 55°30′, and 11h52m,
55°25′ (B1950). We took two plates in B and one plate
in R for each of the three areas. In this case, adjacent
areas are overlapped approximately by a third, which
allowed us to obtain twice as many independent mea-
surements for five clusters in the overlapping areas
(A1270, A1291, A1377, A1383, and Anon3) as those
for the remaining six clusters. We determined the object
coordinates with an accuracy of 1.5–2″ by using the
Ascorecord coordinate-measuring instrument.

Plates were scanned with the AMD-2 automatic
microdensitometer at the Special Astrophysical Obser-

″ .″
.° .°

.″
.m
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vatory with a 20-µm step and a 25 µm × 25 µm slit.
Photographic densities were converted to relative inten-
sities by using a wedge imprinted on each plate. For all
clusters, we analyzed their central regions, about 30′ ×
30′ in size, which corresponds to ≈3 Mpc × 3 Mpc
(below, we use H0 = 50 km s–1 Mpc–1 and q0 = 0.5). We
chose the region center near the brightest galaxy in
such a way that the density of galaxies brighter than
B = 17 5–18m reached a maximum within the region.
For the photometric measurements, we visually
selected all extended objects brighter than 19 5–20m

in B, which is ~100 galaxies in each cluster, on the
average.

We performed aperture photometry for selected gal-
axies. The background, where possible, was measured
in a narrow band adjacent to the central aperture. If
neighboring objects were a hindrance, we chose a clean
background area near the measured galaxy. The aper-
ture size exceeded the apparent galaxy size on plates by
a factor of 1.5 to 2. A square or rectangular aperture was
chosen depending on the degree of galaxy elongation
and its orientation. We photometered close objects first
with a large aperture, to obtain the total magnitude, and
then each of them separately with the largest possible
aperture (but without overlapping), in order to roughly
estimate the contribution of each object to the total
magnitude. To increase the accuracy and to keep track
of the microdensitometer operation, we selected a series
of check galaxies in A1291 and A1377 with published
photometry. These galaxies were scanned at the begin-
ning and at the end of each measuring session and sub-
sequently used to reduce all measurements to the same
photometric scale. The internal accuracy of determin-
ing the aperture magnitude was found by measuring the

.m

.m
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same galaxies on different plates to be 0 07 and 0 04
in B- and R, respectively.

We calibrated the photographic magnitude scale in
two steps by using two independent series of CCD
observations for more than 100 galaxies together with
photometric standards. The standard technique (Kopy-
lova and Kopylov 1998) was used to reduce the CCD
data. At the first step, we determined the zero point of
our photographic system. B, V, and R CCD images (in
Johnson-Cousins’s system; below, all data are given in
this system, unless stated otherwise) for six clusters
(Anon1, Anon2, Anon3, A1377, A1383, and A1436)
were obtained in 1992 with the 6-m telescope with a
focal reducer for 1 5 seeing. The galaxies observed
with CCD were measured in the same way (identical
apertures for object and background) as those on plates.
At the second step, we transformed the aperture magni-
tudes for all clusters to the total CCD R galaxy magni-
tudes measured with the 6- and 1-m telescopes from
1993 until 1999. Only for one cluster (A1270) does the

correction m(CCD)–m(AMD) = –0 013 ± 0 040 (the

rms deviation is 0 107) differ significantly from the

mean correction of –0 130 ± 0 012 (the rms deviation

of corrections for ten galaxies is 0 038) for the remain-
ing clusters. Finally, given the distance-modulus differ-
ences between closer and more distant clusters, the uni-
form limit on absolute magnitude for our cluster sam-

ple is B = –19 5 and R = –21 0.

.
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Fig. 1. Comparison of our photographic aperture magni-
tudes B(KK) and the photographic isophotal magnitudes
B(BGP) from Bucknell et al. (1979) for A1377. The rms

scatter is 0 22..
m

Table 21 gives the following parameters for 1192
measured galaxies in 11 clusters: (1) galaxy numbers;
(2) and (3) equatorial coordinates (B1950.0); (4) and
(5) X and Y coordinates (in arcsecs) relative to the clus-
ter center chosen; (6) and (7) total B and R magnitudes,
respectively; and (8) B–R color indices. In column (9),
numbers 1, 2, and 3 mark cluster members with avail-
able radial velocities, foreground and background gal-
axies with measured radial velocities, and presumed
(with a high probability) field galaxies, respectively; in
column (10), galaxies with R CCD measurements (the
B magnitudes were corrected in accordance with the B–
R color index, which was left unchanged) are marked
by letter “c”.

Figures 1 and 2 compare our measurements with
published photographic measurements. In Fig. 1, our B
data for A1377 are compared with the data from Buck-
nell et al. (1979). Our aperture magnitudes agree with
the isophotal magnitudes (25m arcsec–2) from the above

paper with an rms scatter of 0 22. In Fig. 2, our total
R magnitudes for A1377 are compared with the photo-
graphic data from Flin et al. (1995), which were trans-
formed to our magnitude scale, R = F + 0.24. In this

case, the agreement is better (0 11). The three greatly
deviating points in Fig. 2 correspond to interacting galax-
ies. The two brightest cluster galaxies (nos. 97 and 157)
are not shown in Fig. 2 because their extended enve-
lopes lie partially outside our CCD images, and we

1 Table 2 is published in electronic form only and is accessible via ftp
cdsarc.u-strasbg.fr/pub/cats/J (130.79.128.5) or http://cdswed.
u-strasbg. fr/pub/cats/J.
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Fig. 2. Comparison of our total magnitudes R(KK) (squares
and circles are for CCD and photographic data, respec-
tively) and the total photographic magnitudes R(FTCH)

from Flin et al. (1995) for A1377. The rms scatter is 0 11..
m
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Fig. 3. Photometric data for 11 clusters. (a) The spatial distribution of cluster galaxies (cluster number is indicated above the figure,
north is at the top, and east is to the left). The galaxies that fall within the band in the upper right corner, blue galaxies, red galaxies
above the band, and field galaxies are indicated by circles, pluses, crosses, and filled squares, respectively; larger symbols corre-

spond to brighter galaxies. (b) The color–magnitude (B–R) – MB diagram for the cluster; the middle line of the 0 4-wide band cor-

responds to the equation B–R = –0.05NB + 0 74. (c) The B luminosity function; the errors are defined as , where n is the number
of objects in the interval.
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900
determined the total magnitudes for these galaxies by
fitting de Vaucouleurs’s profiles (r1/4) (de Vaucouleurs
1948) to the observed surface brightness profiles. The
same technique was used to determine the parameters
of several more brightest galaxies: no. 74 in A1291;
nos. 80 and 19 in A1318; and no. 61 in Anon1.

Figure 3 shows a set of three figures for each cluster
(the number is given at the top). The spatial distribution
of galaxies in the central cluster regions is shown on the
left. The early-type galaxies that fall within the band
(upper right in the figures), blue galaxies, very red (pre-
sumably background) objects, and field galaxies are
indicated by circles, pluses, crosses, and filled squares,
respectively. Larger symbols correspond to brighter
galaxies with a separation into three magnitude inter-

vals (< –21 5, > –20 0, and intermediate). The color–
magnitude (B–R)–MB diagrams for clusters are shown

.
m

.
m
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in the upper right corner. A sequence of early-type gal-
axies is clearly distinguished in these diagrams. The

upper and lower lines in these figures lie 0 2 above and
below the middle line of the band given by the equation
B – R = –0.05MB + 0 74, which was derived by linear
regression (this dependence for bright field ellipticals
was first found by Baum (1959)). Such a detection of
early-type galaxies was analyzed for several clusters
(see, e.g., Visvanathan and Sandage 1977; Andreon
et al. 1997; Molinari and Smareglia 1998; Gladders et al.
1998, Garilli et al. 1999). Garilli et al. showed that
using two colors increased the accuracy of identifying
cluster members.

LUMINOSITY FUNCTION

The differential luminosity function (LF) Φ(M)dM
gives the number of galaxies with total magnitudes in

.
m

.
m
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the interval [M, M + dM]. It is usually fitted by the func-
tion introduced by Schechter (1976):

Φ M( ) 0.4 10ln( )Φ* 10
0.4 M* M–( )( )

1 α+
=

× 10
0.4 M* M–( )

–( ),exp
where α is the slope of the dependence for faint magni-
tudes, M* is the characteristic magnitude known as the
“break” of the luminosity function, and Φ* is the nor-
malization constant.

In order to construct the LF, we transformed the
observed magnitudes of galaxies (Table 2) to absolute
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
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magnitudes in accordance with the cluster radial veloc-
ities (Table 1). We then applied a K correction for early-
type galaxies and a correction for evolution (Poggianti
1997) to these magnitudes. Galaxies were counted in

0 5 intervals. To take into account field galaxies in our
counts, we used the B data from Maddox et al. (1990)

.
m
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and subtracted the background in each interval. For the
R band, we used the Las-Campanas Redshift Survey
(LCRS) counts (Lin et al. 1996). Subsequently, we esti-
mated parameters of the Schechter function (M* and α)
for the LF of each cluster by nonlinear least-squares fit-
ting. The constant Φ* was set equal to the total number
of cluster galaxies (with field galaxies subtracted)
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Fig. 3. (Contd.)
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within the magnitude range in which the LF was fitted.
When determining the parameters, we excluded the
brightest galaxy in A1291, A1318, and Anon1, and the
two brightest galaxies in A1377 and in Anon4. Figure 3
(lower right corner) shows the LF of each cluster. The
LF parameters are summarized in Table 3: columns 2
and 3 give α and  with their rms errors, respec-
tively, and column 4 gives Φ*.

The composite LF, especially its bright end, has
been constructed more than once. To construct it, we
added up the galaxy counts in all clusters (after sub-
tracting field galaxies) in the corresponding intervals.

MB*
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Table 3.  Parameters of the Schechter function

Cluster α Φ* Cluster α Φ*

A1377 –1.15 ± 0.30 –20.73 ± 0.20 56.2 Anon4 –1.05 ± 0.20 –20.83 ± 0.15 40.2

Sh166 –1.30 ± 0.27 –20.67 ± 0.16 37.9 A1436 –0.98 ± 0.10 –20.90 ± 0.08 87.6

A1291 –1.52 ± 0.14 –20.67 ± 0.08 56.7 Anon3 –1.11 ± 0.09 –20.87 ± 0.07 56.7

A1318 –0.89 ± 0.18 –20.91 ± 0.15 53.9 A1270 –0.80 ± 0.21 –20.97 ± 0.19 51.0

A1383 –0.76 ± 0.34 –20.85 ± 0.26 61.0 Anon1 –1.06 ± 0.09 –20.89 ± 0.08 81.7

MB
* MB

*

Table 4.  Luminosity-function parameters for various samples

Sample N α M* Limit

Stromlo–APM (Loveday et al. 1992)     Field –0.97 ± 0.15 –20.86 ± 0.13  ~ –17.5

Colless (1989) 14 –1.21 –21.40  < –19.5

Lumsden et al. (1997) 22 –1.22 ± 0.04 –21.42 ± 0.02  < –19.5

Valotto et al. (1997) 55 –1.40 ± 0.1 –21 36 ± 0.1  < –18.5

Norris (Small et al. 1997)     CrB1 –1.10 ± 0.15 –21.40 ± 0.34  < –18.6

  A20691 –1.06 ± 0.18 –20.82 ± 0.26  < –19

Kopylov and Kopylova (this paper)     UMa1 –1.02 ± 0.06 –20.91 ± 0.05 MB < –19.5

LCRS (Lin et al. 1996)     Field –0.70 ± 0.05 –22.13 ± 0.02 Mr < –16.5

Norris (Small et al. 1997)     Field –1.04 ± 0.17 –22.29 ± 0.30 Mr < –17.0

Hunsberger and Charlton (1998) 392 –0.52 –22.35 MR ~ –18.25

Yamagata and Maehara (1986) 63 –1.07 ± 0.04 –22.11 ± 0.10 MV < –17.1

Oegerle and Hoessel (1989) 8 –1.25 –22.27 MR < –19

Lugger (1989) 9 –1.21 ± 0.09 –22.81 ± 0.13 MR < –20

Gaidos (1997) 20 –1.09 ± 0.08 –22.63 ± 0.11 MR < –18.9

Lopez-Cruz et al. (1997) 45 –1.04 ± 0.05 –22.53 ± 0.09 MR < –20

Garilli et al. (1999) 654 –0.95 ± 0.06 –22.53 ± 0.12 Mr ~ –18.5

Kopylov and Kopylova (this paper)     UMa1 –1.06 ± 0.07 –22.39 ± 0.06 MR < –21.0

1 Supercluster of galaxies.
2 Compact groups.
3 Poor clusters.
4 Isophotal magnitudes.

Mb j

Mb j

Mb j

Mb j

MBAB

MBAB
Parameters of the Schechter function of the composite
LF were determined in the same way as they were for
individual clusters (see Table 4). Table 4 also summa-
rizes some of the results obtained by various authors for
field galaxies, groups, clusters, and superclusters (col-
umn 1 gives a reference to the sample). The second col-
umn gives the number of clusters used or the superclus-
ter name. For a convenient comparison of the results of
different authors, we reduced M*, where necessary, to
H0 = 50 km s–1 Mpc–1 and transformed them as follows:
B = bj + 0.14; B = BAB + 0.14, R = V – 0.54, and R = r – 0.34.
The limiting magnitude in the last column is given in
the original photometric band.
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
Figure 4 shows the composite LF in B and, for compar-
ison, the LF of the Corona Borealis supercluster from
Small et al. (1997) normalized to our LF at –20 0.

DISCUSSION

An analysis of the data in Table 4 shows that the
parameters of our LF in B are close to those of the LFs
for field galaxies (Stromlo–APM) and, at the same, to
those of the LFs for the A2069 supercluster and for
poor clusters. In the R band, M* is 0 26 brighter and α is
0.36 larger than those for LF field galaxies (LCRS), but
close to the LF field values obtained in the Norris survey.
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As we see from Fig. 4, the Ursa Major supercluster,
in contrast to the Corona Borealis supercluster (with

M* brighter than that for Ursa Major by ≈0 5), exhib-
its no excess of bright clusters. The Corona Borealis
supercluster is unique. As our direct measurements of
photometric distances show, the nucleus of this system
is most likely to be at the stage of gravitational contrac-
tion (Kopylova and Kopylov 1998).

The formation of galaxies in the Corona Borealis
supercluster appears to have begun at an earlier epoch
than that in field galaxies, which is reflected in the LF.
The formation of clusters in the Ursa Major superclus-
ter, which is at a relatively earlier stage of isolation
from the global expansion of the Universe, takes place
at the current epoch. Galaxy mergers, which affect the
bright end of the LF, are apparently also far from being
complete.

Apart from analyzing the LF per se, our goal was to
select early-type galaxies in all clusters of the super-
cluster in the same way. Based on the color-magnitude
diagram and choosing galaxies in the band (–0.05MB +

0 54 ≤ B–R ≤ –0.05MB + 0 94) and their redshifts, we
drew a sample of E and S0 cluster galaxies. We used
these galaxies to determine the photometric distances
to clusters and the spatial structure of the supercluster
along the line of sight (Kopylova and Kopylov 2001;
see Kopylova and Kopylov (1996) for preliminary
results).
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Abstract—The monitoring of the gravitational lens Q2237 + 0305 carried out by the OGLE group during 1997–
2000 is analyzed. The significant light amplifications in the C and A quasar components with maxima in mid-
and late 1999, respectively, are interpreted as the crossing of microlens caustics by the source. A constraint on
the emitting-region size R ≤ 1015 cm has been obtained from the light-curve shape by assuming a power-law quasar
brightness distribution (r2 + R2)–p. To estimate the exponent p ~ 1.2 requires refining the standard model for
the  quasar continuum formation in an optically thick accretion disk with p = 1.5. © 2001 MAIK “Nauka/Inter-
periodica”.
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1. INTRODUCTION

Quasar variability under the effect of microlenses
depends both on parameters of the mass distribution for
compact bodies and on the appearance of the emitting
region. For instance, the larger the quasar, the smaller
the amplitudes of light variations in its images. Thus, it
becomes possible to formulate the inverse problem of
determining the sizes and structure of quasars
from their observed light curves. The main difficulty in
solving this problem is that the distribution of the
amplification produced by microlenses is not known in
advance and exhibits a fairly complex pattern with
many randomly located caustic lines [see, e.g.,
Zakharov (1997) and Zakharov and Sazhin (1998)]. In
general, the specific form of this distribution is not
known in advance and can be analyzed only statisti-
cally. Exceptions are only those portions of the light
curve that correspond to caustic crossing by the quasar.
The amplification of a point source during caustic
crossing obeys a simple law: it remains approximately
constant as the caustic is approached, then abruptly
increases to infinity at the caustic itself, and subse-
quently falls off as x–1/2 with increasing distance x from
the caustic (Chang and Refsdal 1984; Blandford and
Narayan 1986).

Microlenses show up most clearly in the multiple
quasar images produced by the gravitational effect of
galaxy macrolenses. First, the microlensing probability
is rather high in such situations. Second, intrinsic qua-
sar variability can, in principle, be separated from
microlensing variability. Of all the gravitationally
lensed quasars, Q2237 + 0305 (zs = 1.675) is undoubt-
edly the most promising object for microlensing analy-

* E-mail address for contacts: vshal@ira.kharkov.ua
1063-7737/01/2703- $21.00 © 20150
sis. Because of the unique proximity of a lensing galaxy
(zl = 0.039), microlensing variability in this object must
take place faster than in other objects by an order of
magnitude and with a large amplitude.

The quasar Q2237 + 0305 has been monitored vir-
tually since its discovery, and it actually proved to be
the first object in which microlensing variability was
detected (Irwin et al. 1989; Corrigan et al. 1991). The
observations by Østensen et al. (1996) showed that vir-
tually all four quasar images were more or less variable.

The regularity and quality of the Q2237 + 0305 mon-
itoring have improved markedly when the OGLE group
joined it in the last four years (Wozniak et al. 2000) (see
Fig. 1). Measurements are made in the V band approx-
imately once a week during the observing season from
May through December. The latest observations
(http://www.astro.princeton.edu/~ogle/ogle2/huchra.html)
show that image C passed its intensity peak in mid-
1999, while image A peaked in late 1999. Interpreting
the light-curve maxima as resulting from caustic cross-
ing allows the size and structure of the quasar emitting
region in the object under study to be determined.

2. AMPLIFICATION OF AN EXTENDED SOURCE 
IN THE CAUSTIC REGION

When a source crosses a caustic line, an additional
pair of images appears (or disappears). The total inten-
sity of this pair depends on the distance to the caustic
as x–1/2. Therefore, the intensity of a point source in the
caustic region can be represented as (Schneider and
Weiss 1987)

(1)

Here, I0 is the intensity of all the remaining microim-
ages except the additional pair; θ(x) is the Heaviside

I p x( ) I0 θ x( )a0x 1/2– .+=
001 MAIK “Nauka/Interperiodica”
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Fig. 1. V light variations of the four images of the quasar Q2237 + 0305 during 1997–2000 as observed by the OGLE group.
unit function; and a0 is the caustic strength. The ampli-
fication of an extended source with a brightness distri-
bution P(r) can be calculated by ordinary summation
over the set of infinitely small sources with individual
implification factors:

(2)

To describe the brightness distribution in the source,
we use a power-law model

(3)

which is determined by the source radius R and by the
rate of brightness decline p.

Let the source center be at a distance D from the
caustic line. In the normalized coordinates ξ = x/R and
η = y/R and using normalized distance d = D/R, we
obtain

(4)

where the function J(d) is

(5)
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or, taking into account the symmetry in η and the total
intensity

(6)

we obtain:

(7)

Taking the internal integral over η yields

(8)

where Β is the beta function. The subsequent integra-
tion over ξ yields

(9)

Here, Γ and 2F1(a; b; c; z) are the gamma function and
the Gauss hypergeometric function, respectively.
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Figure 2 shows the function J(d) for several values of p.
We clearly see from the figure that the sharpness of the
jump in amplitude increases with increasing source
brightness concentration toward the center during caus-
tic crossing, tending to an infinite point-source limit for
very large p.

For some particular p values, for example, for p = 3/2,
2, and 3, the hypergeometric function can be expressed
as a combination of elementary and other special func-
tions. Thus, we have for p = 3/2

(10)

3. VARIABILITY ANALYSIS

We see from Fig. 1 that the intensities of all four
quasar images have varied during the last four years.
The largest variations were observed in image C, which
passed its maximum in mid-1999, and in image A,
which reached its maximum in late 1999. The approach
to interpreting the variability of these two images is the
same. Let us assume that, in both cases, the source
crosses the caustic; the brightness distribution must fol-
low the law (4). The general form of the curve depends
on five parameters:

(1) Contribution I0 from the remaining microim-
ages, which is assumed to be approximately constant;

(2) Caustic strength a0;
(3) The time it takes for the source to cross its radius

∆t of the source, which is proportional to the source
size R;

(4) The time t0 of caustic crossing by the source center;
(5) Exponent p in the brightness distribution (3).
Estimating the five parameters reduces to minimiz-

ing the sum of the squared differences between model
and observed light curves

J d( ) p 3/2= 2 1 d2+( ) 1 d
2
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Fig. 2. Function J(d) for several exponents p: for p = (1) 1.5,
(2) 2.0, and (3) 3.0.
(11)

The summation is performed over all N points of
observations with weights that are inversely propor-
tional to the squares of the observational errors σi .

The best set of parameters is sought by the Mar-
quardt method [see, e.g., Chapter 15.5 in the book by
Press et al. (1992)].

3.1. Image A 

The model parameters estimated from the light
curve of image A with 218 data points during the entire
observing period are given in the table. The combina-
tion a0/∆t is more convenient to calculate than the caus-
tic strength a0. The listed formal accuracies of the
parameter estimates should be considered only as their
lower limits.

Figure 3 shows the model light curve together with
measured values. The 1997 observations are poorly fit-
ted by a single curve, implying that approaching the
caustic did not show up in the first year. Such a behavior
is characteristic of numerical microlensing models for
Q2237 + 0305, in which one amplification event is
often superimposed on another to form complex light
curves. Excluding the 1997 data from our analysis,
while significantly improving the total χ2 residual,
affects the parameter estimates only slightly.

When the caustic is crossed in image A, an addi-
tional pair of images emerges. A characteristic feature
of this direction of motion is a steep rise in light ampli-
fication followed by a gentler decline. The dashed line
in Fig. 3 represents the expected behavior of image A in
the immediate future. We assume that the brightness
will continue to decline and (if no additional causes of
amplification arise) will reach the original 1997 level in
two to three years.

3.2. Image C 

Attempts to fit the light curve of image C over the
entire observed period have failed. At the same time,
excluding 80 data points for 1997 from our analysis
results in quite reasonable estimates, which are given in
the table and shown in Fig. 4. Interestingly, the best
solution corresponds to caustic crossing in the negative
direction, with the pair of images disappearing. The
local minimum of χ2 corresponding to the motion in the
positive direction is several times greater than the abso-
lute minimum reached during the motion in the nega-
tive direction.

The inability to fit the entire observed period by a
single curve becomes more understandable in light of
the recent results by Wyithe et al. (2000). These authors
argue that the intensity variations in image C have been
composite in pattern during the last four years, and, it is

χ2 1

σi
2

----- Imodel I0 a0 ∆t t0 p, , , ,( ) Iobs–[ ]2.
i 1=

N

∑=
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Fig. 3. Variability of image A during 1997–2000. Observational data, model, and forecast (dashed line).
quite possible that another caustic crossing was over-
looked during the observing seasons in 1997 and 1998.

The dotted and dashed lines indicate the best extrap-
olation computed in the model with a single caustic
crossing in 1997 and our forecast until the end of 2000,
respectively. No appreciable intensity variations in
image C are expected in the immediate future.

4. THE SIZE AND STRUCTURE 
OF THE QUASAR-EMITTING REGION

For the quasar radius estimates ∆t in time units to be
transformed to linear sizes R, we must know the appar-
ent quasar velocity; only the velocity component v⊥  is
perpendicular to the caustic line is important. Of
course, the exact velocity is unknown. Nevertheless, a
statistical analysis of the time derivatives of brightness
variations by Wyithe et al. (1999) yielded an upper
limit of v < 500 km s–1. The perpendicular velocity
component can only be lower than this value. The most
probable value of v⊥  was found to be 300 km s–1.Given
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
the angular distances from the observer to the quasar
(Dos) and to the lens (Dol) in the model of a flat Universe
with H0 = 60 km s–1 Mpc–1, the most probable source
radius is estimated to be

(12)

Using the crossing time ∆tA = 90 days for image A
gives the most probable quasar radius R = 1.8 × 1015 cm,
while substituting the crossing time for image C, ∆tC =
30 days, reduces this estimate to R = 6 × 1014 cm. At the
same time, the velocity constraint v < 500 km s–1

together with the crossing time ∆tC give an upper limit
on the source radius, R ≤ 1015 cm.

Another parameter that characterizes the mass dis-
tribution is the exponent p. It follows from the table that
its computed value lies between 1.1 and 1.25. It is inter-
esting to note that different models for the quasar struc-
ture can lead to different dependences of the emissivity
on distance from the center. For instance, a power-law

R = v ⊥ ∆t
Dos

Dol
-------- 2.0 1013 v ⊥

300 km s 1–
-------------------------- 

  ∆t
1 day
------------- 

   cm.×∼
Best-fit model parameters

Image I0 a0/∆t ∆t t0 p

A 1997–2000 0.44 ± 0.01 0.73 ± 0.07 91 ± 4 1462 ± 1 1.24 ± 0.03

C 1998–2000 0.22 ± 0.01 0.95 ± 0.15  –29 ± 2 1390 ± 1 1.10 ± 0.02
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Fig. 4. Light curve of image C during 1997–2000. Observations, model (dotted line), and forecast (dashed line).
dependence with p ≤ 0.5 follows from the model of an
optically thin accretion disk (Manmoto et al. 1997). At
the same time, the standard model of an optically-thick
accretion disk yields an r–3 dependence (Shakura and
Sunyaev 1973), which changes to (r2 + R2)–3/2 for a
finite radius. Our estimate p ~ 1.2 favors the standard
model, but more complex accretion-disk models should
be analyzed to achieve better agreement.

5. DISCUSSION

Let us consider the legitimacy of some of the
assumptions made here. The main assumption is asso-
ciated with the hypothesis of caustic crossing. Numeri-
cal calculations show that there are two effects capable
of causing a significant increase in amplification. Apart
from fold-caustic crossing, the source can also pass
near the caustic beak. However, events of the second
type for the images of Q2237 + 0305 are several times
less probable than those of the first type (Wambsganss
et al. 1992; Lewis and Irwin 1996) and, in general, are
more symmetric. These two properties can serve as a
statistical justification for using the hypothesis of caus-
tic crossing.

A power-law model with a finite core radius is used
to calculate the quasar size and structure. Three models
of a caustic-crossing source are encountered in the lit-
erature: a homogeneous disk, a Gaussian source
(Schneider and Weiss 1987), and a (1 – r2/R2)1/2 distri-
bution (Schneider and Wagoner 1987). All of them are
completely determined by their radii. The (1 + r2/R2)–p

model differs radically in that it is a two-parameter
model. Estimating the rate of brightness decline p
allows us to choose between different models for the
quasar structure.

Allowance for the spatial orientation of the emitting
region appreciably complicates the analysis. Two addi-
tional parameters associated with the orientation-angle
components of the initial circular source appear. The
first and second parameters determine, respectively, the
apparent-ellipse eccentricity and the angle of motion
with respect to the perpendicular to the caustic (in this
case, allowance for the direction of motion does not
reduce to a simple substitution of the transverse veloc-
ity). Besides, accretion-disk rotation can cause an addi-
tional asymmetry of the emitting region in the spectral
range considered due to the Doppler effect.

In view of many influencing factors, the possibility
of reconstructing, at least in principle, the one-dimen-
sional quasar profile (along the x-axis) as the solution
of an integral equation (Grieger et al. 1991; Mineshige
and Yonehara 1999; Agol and Krolik 1999) seems of
great interest. However, this is a separate, independent
problem, which is yet to be applied to an actual moni-
toring.

The simple amplification behavior ~x–1/2 for a point
source located in the caustic region is possible only
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
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when several conditions are satisfied. The radius of
caustic curvature must be considerably larger than the
source size [see Fluke and Webster (1999) for curvature
allowance]. The caustic must be isolated lest the source
cover several caustics simultaneously. In addition, it is
implied that there is no large-scale time gradient in
amplification variations. Thus, for example, introduc-
ing a constant slope as an additional free parameter
allows a model curve of image C to be easily fitted to
the entire observing period 1997–2000. However, since
there were no such large gradients throughout the entire
15-year-long monitoring history of Q2237 + 0305 and
since their physical origin is not completely under-
stood, we have to abandon the additional parameter.

Finally, the problem can be further complicated by
intrinsic quasar variability. In general, the latter is
rather difficult to separate from microlensing variabil-
ity. However, given that the delays between the images
in our cases do not exceed several days, intrinsic quasar
variability must be repeated in all quasar images (with
individual amplification factors) virtually simulta-
neously. The fact that the brightness variations in all
four components are not synchronous provides circum-
stantial evidence that intrinsic quasar variability is neg-
ligible in this source.

Despite the possible complicating factors listed
above, we have every reason to believe that the simple
model used here is capable of faithfully reproducing the
observational data, and that its implications deserve a
careful analysis.

After this paper was mainly complete, Wyithe et al.
(2000) independently published a preprint where they
also interpreted the OGLE-group observations of
Q2237 + 0305. These authors analyzed the light curves
by using statistical methods based on conditional prob-
ability distributions.

Wyithe et al. (2000) focused mainly on computing
the probability of occurrence of brightness bursts with
observed parameters and on estimating the possibility
of subsequent bursts. The conclusion that there is an
additional overlooked brightness burst in image C asso-
ciated with caustic crossing between the observing sea-
sons of 1997 and 1998 seems to be of considerable
interest. Such an event can account for the difficulties
of modeling the light curve for image C in terms of the
model with a single caustic crossing. Wiythe et al.
(2000) also expect another caustic crossing in image C
500 days after the 1999 summer maximum (with a
large uncertainty of ~100–2000 days, though).

The amplification in image A in late 1999 is inter-
preted as a caustic crossing in the negative direction,
just as we did here. However, the peak of image C in
mid-1999 is assumed to be caused by the passage of the
source near the caustic beak. The choice between the
two interpretations of the image C variability could be
made by analyzing color variations of the source,
which are much larger during caustic crossing than dur-
ing beak passage. A color analysis could be performed
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
by invoking additional data of the simultaneous moni-
torings at the Apache Point and Maidanak Observato-
ries (Bliokh et al. 1999) through various filters during
the same observing period.
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Light Variations in the Candidate for Protoplanetary Objects 
HD 179821 = V1427 Aql in 1899–1999
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Abstract—We present photoelectric and photographic observations of the supergiant HD 179821 with a large
infrared excess, a candidate for protoplanetary objects. Over, ten years of our UBV observations, the star exhib-

ited semiregular light variations with amplitudes ∆V = 0 10, ∆B = 0 15, and ∆U = 0 25, as well as systematic
color and light variations. From 1990 until 1996, the yearly mean U–B and B–V color indices decreased by 0.25
and 0.15, respectively. After 1996, the motion of the star in the two-color (B–V)–(U–B) diagram upward and to
the left slowed down. The color excess that we derived from our observations, by assuming that the star’s spec-
tral type was F3 I in the 1990s, is E(B–V) = 1.0. The photographic observations of HD 179821 from 1899
until 1989 show that its brightness mpg generally increased while significantly fluctuating. An analysis of
the  observational data suggests that HD 179821 is most likely a post-AGB star of intermediate or low mass.
© 2001 MAIK “Nauka/Interperiodica”.

Key words: observations of protoplanetary objects
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INTRODUCTION

HD 179821 (IRAS 19114+0002 = BD –0°3679 =
AFGL 2343 = SAO 124414 = V1427 Aql = HIP 94496),
a bright (V ~ 8m) star of spectral type G5 (HD catalog)
with Galactic coordinates l = 35 6 and b = –5 0, exhib-
its a large far-infrared excess. Based on its far-infrared
fluxes, Pottasch and Parthasarathy (1988) and Hrivnak
et al. (1989) classified the star as a candidate for pro-
toplanetary objects. They attributed the infrared excess
to a large-scale mass loss at the AGB evolutionary
phase, which gave rise to an expanding dust envelope.
The temperature of the dust envelope was estimated
from IRAS data to be Td = 128 K (Odenwald 1986).

HD 179821 exhibits several other properties charac-
teristic of post-AGB objects. Thus, a complex Hα pro-
file (Tamura and Takeuti 1991; Zacs et al. 1996; Reddy
and Hrivnak 1999), suggesting mass outflow, is
observed in many protoplanetary nebulae (for example,
IRAS 18095+2704, SAO 163075, and HD 161796).
The bipolar or axisymmetric structure of the HD 179821
envelope is one of the criteria for classifying the star as
a protoplanetary object (Bujarrabal et al. 1992). The
chemical composition of the stellar atmosphere—its
enrichment with oxygen, nitrogen, and s-process ele-
ments (Zacs et al. 1996; Reddy and Hrivnak 1999), also
argues for the assumed post-AGB status of HD 179821.

.° .°
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However, the expansion velocity of the CO envelope
found by Zuckerman and Dyck (1986), Vexp = 34 km s–1,
is appreciably higher than 10–15 km s–1, which is typi-
cal of low- and intermediate-mass post-AGB stars.
Besides, the unusually-intense absorption lines of the
O I λ7774 Å triplet and the distance derived from the
interstellar components of the Na I D1 and D2 lines
(Reddy and Hrivnak 1999) strongly suggest that the

star may be a high-luminosity (MV ≈ –8 9 ± 1 0)
object and, thus, a massive supergiant. Kastner and
Weintraub (1995) compared HD 179821 with the mas-
sive hypergiant IRC+10420, one of the brightest far-
infrared sources. There is currently no consensus on the
evolutionary status of HD 179821.

UBV OBSERVATIONS 
OF HD 179821 = V1427 Aql

We included HD 179821 in our program of search-
ing for and studying the optical variability of stars with
infrared excesses, which are considered as candidates
for protoplanetary objects, in 1990. Our two-year-long
observations revealed its photometric variability
(Arkhipova et al. 1993). In the variable star catalog, the
object was designated V1427 Aql (Kazarovets and
Samus 1997) and was classed with SRd variables. Our
subsequent observations confirm the conclusion that
the object is variable.

Our observations were carried out in a system close
to Johnson’s standard system at the Crimean Station of
the Sternberg Astronomical Institute (SAI) using the

.
m

.
m
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Fig. 1. UBV light curves of HD 179821 in 1990–1999.
60-cm reflector with a UBV photometer. As before
(Arkhipova et al. 1993), the comparison star was SAO
124412. Table 11 gives our ten-year-long observations,
including those published previously (Arkhipova et al.
1993), but reduced to Johnson’s system with different
reduction equations. The accuracy of our measure-

ments was ±0 005.

1 Table 1 is published in electronic form only and is accessible via
ftp cdsarc.u-strasbg.fr/pub/cats/J (130.79.128.5) or http://cdsweb.
u-strasbg.fr/pub/cats/J.
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Figure 1 shows, UBV light curves of HD 179821 for
1990–1999. As we see from the figure, the star under-
went semiregular light variations. Their amplitudes

were ∆V = 0 10, ∆B = 0 15 and ∆U = 0 25. During
the light variations, a clear correlation shows up in the
color-magnitude diagram (Fig. 2): the star becomes
bluer as it brightens, which is characteristic of pulsa-
tions. The mean brightness also clearly exhibits a sys-
tematic trend. Having subtracted the seasonal mean
from the original series, we searched for periodicities in
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the B light variations in the interval JD 2449484–
2451470 by the Fourier-transform method using the
code developed by Yu.K. Kolpakov at SAI.

Three extrema corresponding to periods P1 = 205d ±
2d, P2 = 132 5 ± 1 5, and P3 = 433d ± 2d are distin-
guished in the power spectrum. Since P2 and P3 are
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Fig. 2. Behavior of HD 179821 in the color-magnitude (U– B)
V diagram. The 1994, 1996, and 1997 observations are rep-
resented by crosses, filled circles, and open circles, respec-
tively.

Fig. 3. Yearly mean (B–V) and (U–B) color indices and
V magnitudes of HD 179821 in 1990–1999.
one-year aliases of P1, we chose P1 as the principal
period, though its significance is low and its value
exceeds the mean duration of the observing seasons for
V1427 Aql (∆T = 157 ± 28 days). After subtracting the
mean curve with P1, we found yet another period, P4 =
142 ± 2 days. Their frequency ratio is ν1/ν4 ≈ 0.7, which
corresponds to the ratio of the first overtone to the fun-
damental tone. Thus, we assume that pulsations, prob-
ably in two modes, are mainly responsible for the vari-
ability of V1427 Aql in the ten-year interval. The star is
apparently outside the instability strip; therefore, it
would be unreasonable to expect strict periodicity in its
light variations.

Since the pulsation periods are comparable to the
duration of the observing seasons for V1427 Aql, aver-
aging the observations within each season makes it pos-
sible to trace the star’s behavior outside pulsations.
Figure 3 shows yearly mean color and V light curves
for HD 179821. A two-color diagram of the averaged
observations is presented in Fig. 4. From 1990 until
1996, the U–B and B–V color indices monotonically
decreased: the star became bluer and moved, in the
two-color diagram upward, and to the left. After 1996,
this motion in the (B–V)–(U–B) diagram slowed down,
while the 1998–1999 observations already show a ten-
dency for the star to redden. In the two-color diagram,
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G8
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Fig. 4. Two-color diagram for the yearly mean observations
of HD 179821. Filled circles are the observed color indices
of HD 179821; solid line represents the normal colors of
supergiants, as inferred by Straizys (1977); dashed line rep-
resents the interstellar reddening line for the law of Whit-
ford (1958); and open circles are the color indices of
HD 179821 corrected for a reddening with E(B–V) = 1.0.
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Fig. 5. Continuum-normalized spectra of HD 179821, BS 7747, and γCyg taken on September 20, 1999. The Paschen P11, P12, and
P14 lines and the O I λ7774 Å triplet are marked.
the reddening line for HD 179821 crosses the normal
color line for supergiants at two points, and we must
know the star’s spectral type to determine its color
excess.

The spectral classification of HD 179821 from the
HD epoch until the 1980s [G5: HD catalog; G Ia: Bidel-
man (1981); G4 0-Ia: Keenan (1983); ~G5Ia: Hrivnak
et al. (1989)], which is based on low-resolution spectra,
led to a G supergiant. However, having analyzed the
high-resolution spectrum taken in 1992, Zacs et al.
(1996) found Teff = 6800 K. Studying the star’s echelle
spectrum in 1997, Reddy and Hrivnak (1999) found
Teff = 6750 K. These effective temperatures correspond
to an F star rather than a G star. Reddy and Hrivnak
(1999) believe that the systematic discrepancy between
the spectral classification based on low-resolution spec-
tra and Teff determined by analyzing spectral lines in
high-resolution spectra can be explained, in part, by the
hydrogen emission, which is clearly seen above the
continuum in Hα. As a result, the Balmer hydrogen
lines are weakened, and the ratios based on them, such
as Fe, CH λ4325/Hγ and Fe λ4143/Hδ, imply a cooler
star.

We used our observations to determine the spectral
type of HD 179821. On September 20, 1999, we
obtained spectra for HD 179821 and the comparison
stars BS 7747 (G3 Ib) and γCyg (F8 Ib) in the wave-
length range 4000–9500 Å using a fast spectrograph of
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
the 125-cm telescope equipped with a CCD camera
(resolution 5.2 Å per pixel) at the Crimean Station of
SAI. Since the detector sensitivity was low in the blue
spectral range, we could not use the line ratios that are
commonly applied for spectral classification. Figure 5
shows the 7500–9500 Å spectra of HD 179821 and the
comparison stars. Noteworthy are the intense Paschen
hydrogen lines in the spectrum of HD 179821; they are
comparable in intensity to the hydrogen lines in the
spectrum of γCyg (F8 Ib) and are considerably stronger
than the lines in the spectrum of BS 7747 (G3 Ib).
These results and the star’s temperature determined by
Zacs et al. (1996) and Reddy and Hrivnak (1999) lead us
to conclude that HD 179821 was an F star in the 1990s.

The temperature of 6750–6800 K deduced from
high-resolution spectroscopic data (Zacs et al. 1996;
Reddy and Hrivnak 1999) corresponds, on the scale of
Flower (1996), to the normal color index (B–V)0 = 0.30
of a supergiant and, according to Straizys (1977), to the
spectral type F3 I. The color excess is then E(B–V) = 1.0.
Estimation of the interstellar reddening from neighbor-
ing stars within 1 5 of HD 179821 yields an upper limit
E1(B–V) = 0.4. Only the star SAO 124421 with E(B–V) ≈
0.8 constitutes an exception. The additional reddening
of Ed(B–V) ≈ 0.6 is most likely produced by the circum-
stellar dust envelope around HD 179821.

The star’s color variations from 1990 until 1999
cannot be explained by monotonic changes in tempera-

.°
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ture, but we can assume both the influence of a variable
stellar wind and variations of the circumstellar redden-
ing in the dust envelope around the star due to its
expansion and inhomogeneity.

THE PHOTOMETRIC HISTORY OF HD 179821

Given the star’s current unusual light variations, it
would be of interest to trace the photometric history of
HD 179821 in the past. To this end, we used materials
of the SAI Sky Service, plates of the Sonneberg Obser-
vatory photograph collection, and available sky atlases.
Our measurements averaged over each year ( ). The
number of plates (N) and rms deviations (σN) are given
in Table 2. On the Palomar Observatory Sky Survey O
print for August 23–24, 1951, we estimated mpg of the

mpg

1910 1930 1950 1970 1990
Year

1890
10.0
9.8

9.6

9.4

9.2
B

, m
pg

Fig. 6. The photographic light curve of HD 179821 [open
circles are our measurements on plates from the SAI collec-
tion; crosses are our measurements on plates from the Son-
neberg collection; and asterisks are mpg estimated on the Palo-
mar O print and the print from the atlas of Vehrenberg (1970)].
Also plotted are the yearly mean photoelectric B magnitudes
(filled circles) and the B magnitude estimate from Hrivnak
et al. (1987) (triangle).

Table 2.  Photographic observations of HD 179821

Year N σN

1899 9.55 2 0.00

1900 9.60 2 0.00

1927 9.95 2 0.02

1929 9.78 11 0.11

1934 9.79 2 0.03

1936 9.65 3 0.10

1960 9.94 6 0.06

1961 9.62 11 0.10

1963 9.65 15 0.09

1965 9.42 18 0.11

1979 9.58 7 0.08

1980 9.60 19 0.08

1981 9.37 11 0.10

1982 9.52 13 0.07

1983 9.46 9 0.06

1984 9.32 4 0.03

1989 9.39 10 0.10

mpg
star to be 9 6. On the print from the atlas of Vehrenberg
(1970), the star is slightly brighter. We estimated its

photographic magnitude to have been 9 5 on July 28–29,
1968.

Figure 6 shows the star’s light curve constructed
from its measurements on plates and in the above
atlases. We also plotted our photoelectric B magnitudes
of HD 179821 averaged over each observing season
from 1990 until 1999 and the B magnitude estimated by
Hrivnak et al. (1989) on September 4, 1987. We do not
reduce all measurements to the same system, because

the errors of photographic observations (~0 1) are sev-
eral times larger than the difference between the photo-
metric systems. The photographic observations of HD
179821 from 1899 until 1989 show that its brightness
mpg generally increased while significantly fluctuating.
Noteworthy is the low brightness of the star in 1927 and
1960, when mpg ~ 10m.

We now turn to the visual brightness. At the HD
epoch, the star had mptm = 8 38 and the spectral type G5.
Applying the bolometric correction BC = –0.32
(Flower 1996), we then obtain the apparent bolometric
magnitude mbol = 8 06. Currently, the mean brightness

is V ≈ 8 0, and assuming the spectral type F3 I, for
which BC = 0.02, we find mbol = 8 02. Within uncer-
tainties in the bolometric corrections and given that the
star undergoes semiregular light variations with an

amplitude of ~0 1 in V, it could be assumed that the V
brightness trend from the HD epoch until the 1990s is
attributable to the star’s evolution at a constant bolom-
etric luminosity.

However, the 100-year-long photographic observa-
tions are in conflict with this evolutionary track.
Assuming the color excess E(B–V) = 1.0 and the spec-
tral type G5, the star would have B = mptm + (B–V)0 +

E(B–V) = 8.38 + 1.08 + 1.00 = 10 46 at the beginning
of this century, whereas the photographic observations
of HD 179821 do not give magnitudes fainter than 10m.
This large difference cannot be explained by the mea-
surement errors and the star’s photometric variability
alone.

EXTINCTION IN THE CIRCUMSTELLAR 
DUST ENVELOPE OF HD 179821

We made an attempt to study the extinction law in
the circumstellar dust envelope of HD 179821 by using
the red and near-infrared photometric data obtained by
other authors (Hrivnak et al. 1989; Yudin et al. 2000).
Firstly, all color indices of the star expressed as V–λ,
where λ refers to the RIJHKL bands, or as λ–V, if the B
and U bands are used, were corrected for the interstellar
reddening, for which we found above E1(B–V) = 0.4,
with the standard reddening curve from Whitford (1958).
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Subsequently, assuming that the star’s spectral type in
the 1990s was F3 I and using multicolor photometry for
F3 I, we plotted the circumstellar color excesses Ed(V –
λ) = (V – λ) – E1(V – λ) – (V – λ)0 against λ–1 and then
compared the plots with a normal reddening law nor-
malized to the circumstellar color excess Ed(B–V) of
HD 179821. While the dependence of E on λ at optical
wavelengths is essentially the same, the near-infrared
circumstellar extinction is higher than that given by the
law of Whitford (1958). This may imply that the dust
envelope contains larger particles than those in the ordi-
nary interstellar medium and particles with a different
chemical composition.

DISCUSSION

Our photometric observations of HD 179821 in
1990–1999 revealed two types of its variability. First, it
exhibits semiregular light variations attributable to pul-
sations. A periodicity analysis revealed two frequencies
of moderately high significance, but their ratio of 0.7
allow them to be considered as real. Bimodal pulsations
appear to be characteristic of yellow supergiants, can-
didates for protoplanetary objects (Arkhipova et al.
2000); therefore, the detection of a possible double
periodicity in HD 179821 argues that the star should
belong to this type of objects.

Second, during our observations, HD 179821
showed a trend in brightness and colors. The part of this
trend observed in 1990–1996, when the star’s color
indices systematically decreased, is probably attribut-
able to a rise in its temperature, which was caused, for
example, by a change in stellar-wind activity. The pos-
sibility of a temporal decrease in reddening in the cir-
cumstellar dust envelope cannot be ruled out either,
although we have to assume an abnormal reddening
law. The color variations may also be cyclic. Whether
the star is binary is still an open question. In any case,
the light and color variations in HD 179821 over the
past ten years are apparently not directly related to the
star’s evolution.

By contrast, the detected variations in the star’s
visual brightness over approximately 100 years are in
agreement with the idea that the star is a rapidly evolv-
ing post-AGB supergiant. The difference between its
spectral types at the HD epoch and at present, if real,
lends strong support to the hypothesis of an evolving
post-AGB star. Here, we showed that the apparent bolo-
metric magnitude, derived from visual observations, was
essentially constant, at least since the HD epoch. How-
ever, the 100-year-long photographic observations are
in conflict with the evolutionary track. The conflict can
be removed by assuming that the HD spectral type is in
error for the reasons given by Reddy and Hrivnak
(1999). The question of the star’s evolution should then
be considered closed.

The photometric data allowed us to estimate the
star’s color excess. It was found to be fairly large,
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
E(B – V) = 1.0, compared to the maximum interstellar
color excess (0.4) estimated in the direction of the Gal-
axy under consideration. Thus, we conclude that
the  role of circumstellar extinction HD 179821 is sig-
nificant. Reddy and Hrivnak (1999) have already
reported on the large absorption (AV ≈ 4m) inferred from
spectroscopic and photometric observations. The com-
plex, multicomponent structure of the D1, D2 Na I
absorption lines in the spectrum of HD 179821 (see
Reddy and Hrivnak 1999) should also be mentioned in
this connection. The authors interpreted the compo-
nents at radial velocities of –10, +11, and +48 km s–1

as  interstellar and the remaining components, at +68
and +103 km s–1, as belonging to the star and its enve-
lope. In our view, the large half-width of the component
at Vr = +48 km s–1, similar to that of the stellar compo-
nents, most likely suggests that it belongs to the
HD 179821 system. A significant fraction of the total
Na I absorption then belongs to the star and to its enve-
lope, which confirms a large intrinsic absorption.
Intense Na I absorption lines are observed in the cir-
cumstellar envelopes of many post-AGB stars, for
example, in V4334 Sgr (Arkhipova et al. 1999), FG Sge
(Kipper et al. 1995), as well as in the hotter stars V886 Her
(Arkhipova et al. 2001) and V1853 Cyg (Smith and
Lambert 1994).

The above arguments support the hypothesis that
HD 179821 is most likely an intermediate- or low-mass
post-AGB supergiant rather than a massive star, as
assumed by some authors (Kastner and Weintraub
1995; Hawkins et al. 1995; Jura and Werner 1999).
Their conclusions are based on the star’s high luminos-
ity estimated from the intense O I λ7774 Å triplet lines
and from the distance inferred from the radial velocities
of the components of interstellar Na I lines and DIBs.
An abundance analysis for HD 179821 (Zacs et al.
1996; Reddy and Hrivnak 1999) shows that the star’s
relative atmospheric oxygen abundance is 0.5 dex
higher than that of normal F supergiants, which are
used to calibrate the relation between O I line intensi-
ties and luminosity. The abundances of CNO and s-pro-
cess elements in HD 179821 are similar to those in a
typical representative of post-AGB stars. As for the dis-
tance determined from the interstellar lines, the inter-
pretation of Na I components (and probably DIBs as
well) seems to be open to debate. Besides, the method
itself cannot be reliable enough to determine the
object’s luminosity.
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Abstract—We construct a model for the magnetic-field evolution of an isolated neutron star by assuming that
its core is a type II superconductor and that the field penetrates the core in the form of magnetic lines (fluxoids).
We consider the fluxoid expulsion from the core and the field dissipation in a conducting crust. The magnetic-
field evolution is calculated self-consistently by taking into account the inverse effect of crustal magnetic line
bending on the fluxoid velocity in the core. We consider the evolution of two magnetic configurations, in which
the bulk of the magnetic flux passes through the neutron-star core and crust. The buoyancy of fluxoids and the
force from the neutron vortexes are mainly responsible for their expulsion from the core in the former and latter
cases, respectively. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The magnetic-field evolution of neutron stars (NSs)
has been the subject of much debate since the discovery
of radio pulsars. It is primarily determined by the con-
figuration of currents inside NSs and by the conductive
properties of the layers, in which these currents are
located. The magnetic-flux conservation during gravi-
tational collapse and/or the effect of magnetic dynamo
in a convective proto-neutron star (Thompson and Dun-
can 1993) result in a uniform distribution of the mag-
netic flux over the NS and in the passage of its bulk
through the core. On the other hand, a magnetic field
can be generated in the outer-crustal layers of a young
NS after its birth under the effect of, for example, ther-
momagnetic instability (Urpin et al. 1986). In this case,
the bulk of the magnetic flux is confined to the NS crust
(see Fig. 1). Unfortunately, there is currently no consensus
on the generation mechanism of NS magnetic fields. 

Neutrons and protons in the NS core are believed to
become superfluid at early cooling stages (Alpar 1991);
the superfluid core of the NS is involved in its rotation,
forming a lattice of neutron vortexes (see, e.g., Shapiro
and Teukolsky 1983). The neutron vortexes are parallel
to the spin axis. As was shown by Baym et al. (1969),
protons form a type II superconductor, in which the
magnetic field exists in the form of vortex lines, or flux-
oids (Lifshitz and Pitaevskiœ 1978). Each fluxoid carries
a quantum of magnetic flux Φ0 = hc/2e ≈ 2 × 107 G cm2.
A fluxoid consists of a nonsuperconducting nucleus,

* E-mail address for contacts: dyk@astro.ioffe.ru; D.Konenkov@aip.de
1063-7737/01/2703- $21.00 © 20163
with a characteristic diameter of the order of the proton
coherence length ξp, surrounded by the shielding cur-
rent of superconducting protons with sizes of the order
of the London length of magnetic-field penetration into
a superconductor, λp ~ 10–12 cm. In a type II supercon-

ductor, ξp/λp ≤ 1/ . The magnetic field is Bp =

Φ0/(4π )ln(λp/ξp) ≈ 1.9 × 1016xpρ15ln(λp/ξp) G inside
the fluxoid and falls off exponentially outside the flux-
oid, with a characteristic length λp (Ding et al. 1993).
Here, xp is the proton-to-neutron density ratio in the
core, and ρ15 is the density in units of 1015 g cm–3. By
the mean core magnetic field, we mean Bc = Φ0np,
where np = 5 × 1018(Bc/1012 G) cm–2, is the number of
fluxoids per unit area.

The magnetic-field evolution in the core is directly
related to the motion of the fluxoids. The buoyancy
force (Muslimov and Tsygan 1985a, 1985b), the force
from neutron vortexes (Ding et al. 1993), and the drag
force (Harvey et al. 1985) act on the fluxoids. The
radial fluxoid velocity (and the magnetic-field evolu-
tion) in the core of an isolated NS under the action of
these forces was first calculated by Ding et al. (1993).
Jahan-Miri (1999) used the same model to calculate the
magnetic evolution of NSs in binary systems. These
authors determined the fluxoid velocity and the mag-
netic-field evolution in the core from the balance con-
dition for the forces exerted on fluxoids. The surface
field relaxed to the core field in the dissipation time of
the crustal currents, which is a parameter of the prob-
lem. However, as the fluxoid roots move, the crustal
magnetic lines bend, the magnetic energy outside the
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λp
2
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core changes, and currents are generated in the crust.
Consequently, additional work needs to be done to
move the fluxoid root (Fig. 2). This factor was disre-
garded by Ding et al. (1993) and Jahan-Miri (1999).
Here, we calculate the expulsion of magnetic flux from
the NS core, in a self-consistent way, by taking into
account this effect. We consider the evolution of the
two possible magnetic configurations shown in Fig. 1.

m m

CrustCrust Core Core

Fig. 1. Two possible configurations of the NS poloidal mag-
netic field. On the left, the bulk of the magnetic flux passes
through the NS core; if the core is a type II superconductor,
then the magnetic field penetrates it in the form of fluxoids.
On the right, the bulk of the magnetic flux passes through
the NS crust.

B

1 2

Core Crust

Fig. 2. Motion of fluxoids from position 1 to position 2. The
fluxoid roots are marked by ⊗ .
STATEMENT OF THE PROBLEM

Alpar et al. (1984) showed that a magnetic field
comparable in magnitude to the magnetic field inside a
fluxoid is generated inside neutron vortexes. As a
result, fluxoids and neutron vortexes interact with each
other as they draw closer together, with the interaction
energy being Ep ~ 10 MeV per intersection. The radial
velocity of neutron vortexes is determined by the spin-
down rate of an isolated NS; in turn, spindown is attrib-
utable to the losses of rotational kinetic energy of an
isolated NS through the magnetodipole radiation and
the ejection of relativistic particles:

(1)

where

Here, r is the radial coordinate, Ωs is the angular veloc-
ity of the superfluid NS core, R is the NR radius, I is the
moment of inertia, Be is the NS surface magnetic field
on the magnetic equator, and c is the speed of light. In
general, the coefficient K ≤ 1 depends on the inclination
of the spin axis to the magnetic axis, on the spin period,
and on the magnetic field. For simplicity, we assume
that K = 1. We emphasize that Ωs is not equal to the
observed angular velocity Ωc of the crust. There are
three modes of relative motion of fluxoids and neutron
vortexes: fluxoids can move either faster than neutron
vortexes (forward creeping), or the velocities of both
types of vortex lines can be the same (comoving), or
neutron vortexes can move faster than fluxoids (reverse
creeping). The force exerted per unit fluxoid length by
neutron vortexes is given by (Ding et al. 1993)

(2)

where nv is the number of neutron vortexes per unit
area, FM = ρκrω is the Magnus force per unit vortex
length, ρ is the core matter density, κ = h/2mn is the
velocity circulation quantum, and ω = Ωs – Ωc is the
difference between the angular velocities of a super-
fluid core and a conducting solid crust. Depending on
the sign of ω, the force from neutron vortexes can be
positive (directed to the crust, i.e., expels a fluxoid out-
ward) or negative (directed into the NS, i.e., prevents
fluxoid expulsion).

The maximum magnitude of the force exerted by a
neutron vortex on a fluxoid per intersection can be esti-
mated by using the formula fp ≈ Ep/λp. The Magnus
force acting on neutron vortexes is balanced by the
force from fluxoids. It thus follows that |ω| ≤ ωcr (Ding
et al. 1993; Jahan-Miri 1999). In the forward creeping,
comoving, and reverse creeping modes, ω = ωcr , |ω| <
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ωcr , and ω = –ωcr , respectively. Ding et al. (1993)
derived the following expression for ωcr:

Here, αg is a geometric factor of the order of unity, r6 is
the distance from the neutron vortex to the spin axis (in
units of 106 cm),  is the effective proton mass, δ  =

mp – , and χ is the angle between the spin axis and
the magnetic dipole axis. In our calculations, we

assume that xp = 0.025,  = 0.8mp, λp/ξp = 1/ , and
sin(2χ) = 1.

Apart from the force of neutron vortexes, the buoy-
ancy force acts per unit fluxoid length (Muslimov and
Tsygan 1985a, 1985b):

(3)

where Rc is the core radius. This force is always posi-
tive, i.e., it tends to expel a fluxoid from the core.

Finally, the drag force attributable to electron scat-
tering by the fluxoid magnetic field acts per unit length
of a fluxoid moving at velocity vp. This force is propor-
tional to the fluxoid velocity and is given by (Harvey
et al. 1985)

(4)

where ne is the electron density in the core (we assume
it to be equal to the proton density), and EF is the elec-
tron Fermi energy. This equation for the drag force
remains valid when the collective effects during fluxoid
motion are ignored, which is justifiable for Bc ! Bp.

According to Ding et al. (1993), the equation for the
fluxoid velocity can be written as

(5)

These authors also attempted to take into account
the force that arises as fluxoids bend. Allowance for
these forces gave rise to a coefficient of the order of
unity near fb in Eq. (5). On the other hand, Eq. (33) from
Ding et al. (1993), which relates the field evolution in
the core to the fluxoid velocity, explicitly implies that
the core field is uniform (i.e., the fluxoids are straight,
and their density is constant throughout the entire core).
We assume, for simplicity, that the fluxoids remain
straight as they move. Whether this simplification is
acceptable is discussed below. The magnetic field con-
centrated in the core of the fluxoids also passes through
the nonconducting crust. The crustal-magnetic lines,
bend as the fluxoid roots move (Fig. 2); consequently,
the forces exerted on a fluxoid do work as the fluxoid
root moves, which was not included in Eq. (5). A more
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consistent allowance for this effect requires that Eq. (5)
be replaced by

(6)

The left part of this equation represents the total
power of the forces exerted on fluxoids, the integration
is performed along the fluxoid length, and the summa-
tion is carried out over all fluxoids. In the right part, the
first integral is taken over the crust volume, while the
second integral is taken over the crust volume and the
entire space outside the NS. Assuming, for simplicity,
that the mean core magnetic field is uniform and substi-
tuting for all quantities their values at the crust-core
boundary, we can write the left part as ( fn + fb +

fv)vp(Rc)Np〈lp〉 , where Np  = 4π Bc/Φ0 is the total
number of fluxoids, and 〈lp〉  = 4Rc/3 is the mean fluxoid
length. Thus, instead of the forces per unit length, we
introduce the total forces exerted on the fluxoids in the
core:

(7)

We can also introduce a quantity that has the mean-
ing of the force acting on the fluxoid roots as they
move:

(8)

If the fluxoids move outward (the velocity is posi-
tive) and if the magnetic energy in the crust increases,
then this force is negative; i.e., it prevents the motion of
the fluxoid roots toward the magnetic equator. Equa-
tion (6) can now be rewritten as

(9)

The magnetic-field evolution in a solid conducting
crust is described by the induction equation without a
convective term:

(10)

where σ is the crust conductivity. We study the mag-
netic evolution of NSs with classical magnetic fields
(1012–1013 G). In this case, the crustal electrons are
nonmagnetized, and the conductivity is a scalar.

We consider the evolution of a poloidal magnetic
field with only a dipole component outside the NS. In
spherical r, θ, φ coordinates, in which the vertical axis
coincides with the magnetic dipole axis, it is convenient
to introduce a vector potential A = (0, 0, Aφ), where Aφ =
S(r, t)sinθ/r2 = Be0R2s(r, t)sinθ/r, Be0 is the NS field on
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the magnetic equator at the initial time. Equation (10)
can be rewritten as

(11)

The magnetic-field components are written as a
function of s as

(12)

There is no magnetic-field dissipation in a supercon-
ducting core, and its evolution is described by the equa-
tion

(13)

which can be rewritten for s(r, t) as

(14)

The integrals in the right part of Eq. (6) can be
rewritten as

(15)

(16)

(17)

The conductivity in a solid crust is mainly deter-
mined by the scattering of electrons by impurities and
phonons. The scattering by phonons gives a major con-
tribution to the conductivity at low densities and high
temperatures, while the scattering by impurities domi-
nates at high densities and low temperatures. We use
expressions for the conductivity from Itoh et al. (1993)
and Yakovlev and Urpin (1980). The frequency of elec-
tron scattering by phonons depends on the crustal tem-
perature; we take the time dependence of the tempera-
ture from standard NS cooling calculations (Van Riper
1991). The frequency of scattering by impurities does
not depend on temperature, but depends on impurity
density. The latter is characterized by the impurity
parameter Q, which has the meaning of rms deviation
of the nuclear charge from the mean. Unfortunately,
theory currently gives no definite impurity density in
the NS crust. We therefore calculate the magnetic-field
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evolution for various values of this parameter in the
range 0.01–1 and assume that Q does not depend on
depth and time.

For a uniform core magnetic field (r < Rc), we can
write

(18)

(19)

(20)

where Bc0 is the initial core field and α(t) can be deter-
mined from Eqs. (6) and (10). The following boundary
condition must be satisfied at the NS surface (r = R):

(21)

The function s/r2 must remain finite at the NS center
(r  0), which is automatically satisfied by Eq. (20).
Equations (7)–(9) simultaneously give the fluxoid
velocity and the inner boundary condition (at r = Rc) for
Eq. (11).

We calculate the magnetic-field evolution of a NS as
follows. Having chosen the initial core magnetic field,
the initial s(r, t = 0) profile in the crust, and the initial
NS spin period P0, we specify the initial condition. In
addition, it is necessary to specify the density profile in
the crust, the impurity parameter Q, the crust thickness,
and the NR radius. For our calculations, we use the
model of a 1.4M( neutron star constructed for the hard
equation of state by Pandharipande and Smith (1975),
the NS radius R = 16.4 km, the crust thickness δR =
4200 m, and the moment of inertia I = 2.12 × 1045 g cm2.

We assume that vp = vn, where vn is given by Eq. (1).
Having specified a sufficiently small time step ∆t, we
calculate s(Rc, ∆t) from Eq. (20), i.e., obtain the inner
boundary condition for Eq. (11), and calculate the evo-
lution of the crustal magnetic field in time ∆t using an
implicit scheme. Thus, we obtain s(r, ∆t) in the crust.
Next, we calculate the integrals (15)–(17) and Fcrust and
then Fb and Fv (vp = vn). Finally, we derive Fn from
Eq. (9) and determine ω using Eqs. (7) and (2). If –ωcr <
ω < ωcr , then the fluxoids and neutron vortexes actually
move at the same velocity (comoving). If, alternatively,
ω > ωcr or ω < –ωcr, then our assumption that the veloc-
ities of fluxoids and neutron vortexes are equal is
wrong: in the former and latter cases, fluxoids move
more slowly (forward creeping) and faster than neutron
vortexes (reverse creeping), respectively. If fluxoids
move more slowly than neutron vortexes, then we
assume that ω ≡ ωcr. Next, we calculate Fn = Fn(ωcr)
from Eqs. (2) and (7) and then find the true value of vp
as the root of Eq. (9) in the interval [0, vn] by the bisec-
tion method. Otherwise (vn < vp), we assume that
ω ≡ –ωcr , calculate Fn = Fn(–ωcr), and again find the
true value of vp in the interval [vn, ∞] from Eq. (9).
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ponent at the core-crust boundary; the vortex and fluxoid velocities; the force exerted on fluxoids; and the NS spin period.
Because of the losses of rotational kinetic energy
through the magnetodipole radiation and the ejection of
a relativistic particle, the evolution of the NS spin
period P can be calculated by using the formula

We repeat these calculations at each time step.

RESULTS

If the magnetic field of a star was enhanced during
collapse, then the bulk of the magnetic flux will pass
through its core (Fig. 1, left part). However, a magnetic
field can be generated in the surface layers of the
already-formed young hot NSs (Urpin et al. 1986). In
this case, the bulk of the NS total magnetic flux can
pass through the crust (Fig. 1, right part), and the mag-
netic field in the NS crust will be much stronger than in
its core. The Vela pulsar may have such a magnetic con-
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figuration (Chau et al. 1992). Here, we study the evolu-
tion of both configurations of the NS magnetic field.

In the former case, we chose s(r, 0) = 1 as the initial
condition in the crust. In this case, the crustal field is
initially radial, and the core field is equal to the field at
the magnetic equator. Figure 3 shows the evolution of
the magnetic fields, the velocities of the fluxoids and
neutron vortexes, the forces exerted on the fluxoids, the
NS spin period for Be0 = Bc0 = 1012 G, P0 = 0.01 s, and
various values of Q. Irrespective of the specific value
of Q, the fluxoid velocity is initially lower than the
velocity of neutron vortexes (forward creeping). The
duration of this stage depends on Q: the smaller the Q,
the shorter this stage. Thus, for example, fluxoids
move more slowly than neutron vortexes at Q = 0.01
during ~109 years, while the velocities of both types of
vortex lines become equal at Q = 1 in ~107 years. At
t ≤ 104 years, the fluxoid velocity is virtually indepen-
dent of Q and is determined by the balance of Fn and Fv
[in Eq. (9), (Fn, Fv) @ (Fb, Fcrust)]. In this case, Fn > 0
(expels fluxoids from the core) and Fv < 0. At t > 104 years,
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neutron vortexes affect the fluxoid dynamics only
slightly, and the buoyancy force Fb becomes the main
force responsible for the expulsion of fluxoids from the
core. A θ magnetic-field component is generated in the
crust near the boundary with the core, which exceeds
the surface field by a factor of ~10. Fcrust becomes the
main force that prevents the outward motion of flux-
oids; (Fb, Fcrust) @ (Fn, Fv), and the fluxoid velocity
depends on crust conductivity: the higher the crust con-
ductivity (the smaller the Q), the lower the fluxoid
velocity and the longer the time of magnetic-flux expul-
sion from the core. Thus, for example, the core field
at Q = 0.01 begins to decrease only after ~109 years of
evolution, while the NS surface field is essentially con-
stant over the lifetime of the Universe. At Q = 1,
the  time of magnetic-field expulsion from the core is
~107 years. In this time, the fluxoid velocity becomes
equal to the velocity of neutron vortexes and subse-
quently exceeds it. At this instant of time, Fn changes
sign and begins to hinder the expulsion of fluxoids from
the core. The fluxoid expulsion from the core ceases
when the buoyancy force Fb is balanced by the force Fn
from neutron vortexes. In this case, the fluxoid and vor-
tex velocities again become equal (comoving). For
the model of a NS constructed with the hard Pandhari-
pande–Smith equation of state (PS model) with the ini-
tial magnetic field Be0 = 1012 G, this occurs only for Q = 1.
At lower values of Q, this stage is not reached on the
Hubble time scale. The time of field expulsion from the
core for Q = 1 is about 107 years, but the buoyancy
force is balanced by the force from neutron vortexes as
the core field decreases to 1.5 × 108 G. In this case, the
fluxoid and vortex velocities fall to 3 × 10–18 cm s–1,
and the magnetic-flux expulsion from the core virtu-
ally ceases. Note that the NS surface magnetic field
follows the core field with a delay, because the time of
field diffusion through the crust in the NS model
under consideration is ~108/Q years (Urpin and
Konenkov 1997).

In applications (for example, when modeling the
evolution of a population of neutron stars in the Gal-
axy), the following analytic formula describing the evo-
lution of the NS surface magnetic field can be of use:

(22)

where the characteristic decay time te of the surface
field and the residual magnetic field Bres depend on Be0,
Q, and NS model. We calculated the magnetic and spin

Be Be0 t/te–( )exp Bres,+=

Dependence of log(te) on Be0 and Q

 Be0, G
Q

1012 1013

1 8.15 8.6

0.1 9.15   9.6

0.01 10.15 10.6
evolution of a NS for Be0 = Bc0 = 1013 G as well; the val-
ues of te for various Be0 and Q are given in the table. The
residual magnetic field (~108 G for Be0 = 1012 G and
~107 G for Be0 = 1013 G) is reached only for Q = 1. In
the remaining cases, we may set Bres = 0 in Eq. (22).

We see from the table that the time of reduction in a
NS surface magnetic field depends not only on conduc-
tivity, but also on the magnetic-field strength itself. This
is because the buoyancy force is Fb ∝  Bc and because

the force preventing the expulsion is Fcrust ∝ . There-
fore, as the magnetic field increases, the fluxoid veloc-
ity decreases, and the time of magnetic-flux expulsion
from the core increases.

In Eq. (6), we disregard the force attributable to
fluxoid curvature. If the radius of fluxoid curvature is
comparable to the core radius, then this force will give
rise to a coefficient of the order of unity near fb in
Eq. (6), and the time of flux expulsion from the core
will also change by a coefficient of the order of unity;
our results will not change qualitatively.

The magnetic field of a NS may be generated in its
surface layer after its birth (Urpin et al. 1986). To mod-
el the evolution of such a magnetic configuration, we
chose the following initial condition in the crust:

(23)

The s(r, 0) profile corresponds to the following
magnetic configuration: the core field is Bc0 < Be0, the
crustal field is radial at Rc < r < r0, and the currents that
produce the observed NS surface magnetic field Be0
flow in the r0 < r < R layer. Thus, the initial condition
we chose models the magnetic configuration shown in
the right part of Fig. 1. The parameters are the initial
surface magnetic field Be0, the initial core magnetic
field Bc0, the thickness z0 = R – r0 of the surface layer
where currents initially flow, and the impurity density
described by parameter Q. Figure 4 shows the evolution
of s. Specific values of the parameters are given in the
caption to the figure. On the one hand, the field initially
localized in the crustal surface layer (left part in Fig. 1)
dissipates. In this case, it diffuses deep into the crust,
just as in the case of evolution of the field localized only
in the NS crust (Urpin and Muslimov 1992; Urpin and
Konenkov 1997). On the other hand, the magnetic flux
is expelled from the superconducting core into the
crust; a θ magnetic-field component is generated near
the crust-core boundary (or ∂s/∂r), while the field in the
core s(Rc, t) decreases. Thus, for example, at the speci-
fied model parameters, the surface and core fields
decrease by a factor of ~5 in 107 years (curve 2) and dif-
fuse to a depth of ~2000 m. The magnetic-flux expul-
sion from the core virtually ceases by 108 years, and s
relaxes (curves 3, 4) to the state (curve 5) specified by
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the boundary conditions s(Rc, t) = const and Eq. (21)
and by Eq. (11) for ∂s/∂t = 0.

Figure 5 shows the evolution of the NS surface and
core magnetic fields, the NS spin period, and the vortex
and fluxoid velocities for Be0 = 1012 G, Bc0 = 109 G and
for various impurity parameters Q and z0 = 1146 m (the
matter density at this depth is 1013 g cm–3). Irrespective
of Q, the fluxoid velocity is lower than the velocity of neu-
tron vortexes for t < 104 years, while for t > 104 years, both
types of vortex lines move at the same Q-dependent
velocities. Thus, the effect of neutron vortexes on the
fluxoid dynamics in this magnetic configuration is
much stronger than that in the previous configuration.
This directly follows from Eq. (2): the smaller the Bc
(fluxoid density), the larger the fn (the force exerted per
unit fluxoid length by vortexes). The evolution of the
NS surface magnetic field is determined by dissipation
of the currents initially localized in a surface layer of
thickness z0 and coincides with the evolution of the
magnetic field localized only in the NS crust (Urpin and
Konenkov 1997) until all crustal currents dissipate.
This occurs in ~7 × 108 years for Q = 1 (with Bc ≈ 108 G)
and in ~7 × 109 years for Q = 0.1 (with Bc ≈ 3 × 107 G).
Subsequently, the characteristic evolution time of the
NS surface magnetic field coincides with the time of
magnetic-flux expulsion from the NS core, which
exceeds the age of the Universe.
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Fig. 4. Initial s(z, 0) profile (1), where z = R – r is the
depth, and its evolution after (2) 107, (3) 108, (4) 109, and
(5) 1010 years for the magnetic configuration in the right
part of Fig. 1. The parameters are Be0 = 1012 G, Bc0 = 109 G,
Q = 1, and z0 = 1146 m. Here, Be0 is the initial surface mag-
netic field, Bc0 is the initial core magnetic field, and z0 is the
thickness of the layer where currents flow at t = 0.
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DISCUSSION

We have investigated the expulsion of magnetic flux
from a superconducting NS core and its dissipation in a
conducting crust. In contrast to previous studies (Ding
et al. 1993; Jahan-Miri 1999), we performed self-con-
sistent calculations by taking into account the inverse
effect of a crustal magnetic line bending on the fluxoid
velocity in the core. We showed that, if the bulk of the
magnetic flux passes through the NS core, then the
buoyancy of fluxoids (Muslimov and Tsygan 1985a,
1985b), rather than their interaction with outwardly
moving neutron vortexes, is mainly responsible for the
flux expulsion into the crust. The flux expulsion time
can be determined from the balance of the buoyancy
force and the drag force exerted on the fluxoid roots by
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Fig. 5. Evolution of the NS surface and core magnetic fields,
the vertex and fluxoid velocities, and the NS spin period for
Be0 = 1012 G, Bc0 = 109 G, and z0 = 1146 m. Q = (1) 1, (2) 0.1,
and (3) 0.01.
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the NS crust. The higher the crust conductivity is and
the stronger the NS magnetic field is, the longer the
time of magnetic-flux expulsion from the core is. Konar
and Bhattacharya (1999) calculated the expulsion of
magnetic flux from the core by using the hypothesis of
the so-called spindown-induced magnetic-field decay;
in this hypothesis, neutron vortexes are assumed to be
rigidly bound to fluxoids, and both types of vortex lines
move at the same velocities throughout the entire NS
evolution. We showed that if the bulk of the magnetic
flux passes through the NS core, then this hypothesis is
untenable.

It follows from the synthesis of populations of sin-
gle radio pulsars (Bhattacharya et al. 1992; Hartmann
et al. 1996) that the pulsar magnetic fields do not decay
in their lifetimes. Our calculations are consistent with
this conclusion: for all the values of Be0 and Q consid-
ered, the surface field decay time exceeds the lifetime
of radio pulsars (107–108 years). For the model param-
eters to be determined more accurately, the results of
calculations must be compared with the fields of NSs
that passed the accretion stage in close binary systems.
To perform such calculations requires that the effects
associated with the crust heating by hot accreting mate-
rial and with the emerging flow of accreting matter
through the crust be included in the model. Both these
factors can reduce the dissipation time of the crustal
currents and the force Fcrust.

The effect of neutron vortexes on the fluxoid
dynamics is much stronger for the other possible mag-
netic configuration, when the bulk of the magnetic flux
after the birth of a NS passes through its crust. In this
case, however, the evolution of the observed NS surface
magnetic field during the entire lifetime of the radio
pulsar is entirely determined by crustal current dissipa-
tion. It coincides with the evolution of the field main-
tained by the currents that flow only in the NS crust.
The evolution of such magnetic configurations was
studied, for example, by Urpin and Muslimov (1992)
and Urpin and Konenkov (1997).
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Abstract—We investigate the influence of turbulence anisotropy and rotation on the diffusion of a low-concen-
tration passive scalar in a turbulent medium. Using the renormalization the diffusion tensor over the spectrum
of turbulent fluctuations, we show that enhanced horizontal mixing reduces the vertical diffusion transport of a
passive scalar. Allowance for rotation results in two effects, which have not been noted previously: (1) under
the influence of Coriolis forces, horizontal turbulence also produces a vertical diffusion flux, with the horizontal
and vertical diffusions being of the same order of magnitude for rapidly rotating stars and (2) in the case of rapid
rotation, all diffusion fluxes of a passive scalar decrease in inverse proportion to the square root of the Coriolis
number. © 2001 MAIK “Nauka/Interperiodica”.

Key words: turbulence
INTRODUCTION

The low Li abundance in the atmospheres of cool
main-sequence stars is known to be closely related to
the diffusion mixing of chemical elements beneath the
convection zone. According to current views, a sub-
stantial (on evolution time scales) Li burning can take
place at temperatures >2.5 × 106 K or starting at depths
>50 000 km from the bottom of the convection zone in
a solar-type star. Lithium can be transported from the
bottom of the convection zone to the burning region by
weak turbulence. The mechanisms capable of generat-
ing turbulence beneath the convection zone are gener-
ally attributable to various instabilities of large-scale
shear flows. These were considered in detail by Zahn
(1983), Schatzman and Baglin (1991), Michaud and
Zahn (1998). The most important property of turbu-
lence beneath the convection zone is its anisotropy,
which is so large that the turbulent flux fluctuations take
place mainly in the horizontal direction (in other words,
in the plane of the sphere). The vertical fluctuations are
suppressed due to the high thermal stability of the radi-
ative zone. Here, we do not consider internal gravity
waves, which can also contribute to the Li transport.

In their numerical simulations, Vincent et al. (1996)
showed that strong horizontal turbulence reduces the
vertical diffusion efficiency of a passive scalar, mainly
because horizontal mixing smoothes out the scalar con-
centration of nonuniformities transported by vertical
motions. As a result, the characteristic vertical decay

* E-mail address for contacts: pip@iszf.irk.ru
1063-7737/01/2703- $21.00 © 20171
scale of concentration fluctuations decreases, causing
the vertical diffusion efficiency to decrease.

Despite the simplicity of qualitative considerations
in favor of this effect, quantitative estimates of the ver-
tical diffusion in the presence of strong horizontal tur-
bulence have been obtained so far only in numerical
simulations. This study aims to support the numerical
simulations by analytic calculations of the turbulent
diffusion coefficient for a passive scalar. The effects are
calculated by using the version of the renormalization
method over the turbulent fluctuation spectrum pro-
posed by Bykov and Toptygin (1990). The calculations
performed by Rüdiger and Pipin (2000) in a quasi-lin-
ear approximation indicate that vertical turbulent diffu-
sion can decrease with increasing horizontal mixing
only in a special case where the vertical and horizontal
turbulences have the same source (e.g., random forces
of the same nature). This is apparently not the case for
turbulence beneath the convection zone.

Another interesting phenomenon, which we took
into account in our calculations, is the influence of stel-
lar rotation on turbulent diffusion. The result obtained
by Rüdiger and Pipin (2000) indicate that, even in the
absence of vertical velocity-field fluctuations in the ini-
tial turbulence, the modification of turbulent fluxes
under the effect of Coriolis forces triggers the radial
transport of a passive scalar. Thus, the effects of hori-
zontal turbulence and Coriolis forces can compete with
each other.

In the next section, we derive the turbulent diffusion
tensor by renormalization with allowance for the effect
of rotation on turbulence. The paper ends with a discus-
sion of possible applications of our results.
001 MAIK “Nauka/Interperiodica”



 

172

        

PIPIN

                                            
THE TURBULENT DIFFUSION TENSOR 
OF A PASSIVE SCALAR 

IN A ROTATING MEDIUM

According to Landau and Lifshitz (1986), the diffu-
sion of a low-concentration passive scalar is given by

(1)

where D is the microscopic diffusion coefficient. Sup-
pose that the velocity field satisfies the quasi-elasticity
condition

Assume that the mean and random concentration
and velocity components

(2)

can be separated in a turbulent medium. The calcula-
tions are performed in a rotating coordinate system
with  = 0. Suppose that the microscopic diffusion is
weak compared to the turbulent diffusion. Substituting
Eq. (2) in Eq. (1) and averaging yield

(3)

where Dij is an unknown turbulent diffusion tensor. In a
rotating medium with horizontal turbulence anisotropy,
the diffusion can be represented as

(4)

Here, g is a unit vector in the vertical (radial) direction;
D|| and D⊥  are the vertical and horizontal diffusion ten-
sor components; and DΩ and  are the diffusion ten-
sor components induced by the effect of rotation on tur-
bulence.

Apart from Eq. (3), we consider a different equation
for the concentration, in which averaging is performed
over all harmonics, except for a narrow range of wave
vectors ∆k:

(5)

where

is the nonaveraged part of the velocity; the integration
over dk is performed within a spherical layer of thick-

ness ∆k;  are the concentration fluctuations that were

not averaged over the random velocity; and  is the

∂ρC
∂t

---------- div ρ uC ρD—C )+(+ 0,=

div ρu( ) 0.=

C C ' C, u+ u' u+= =

u

∂ρC
∂t

---------- ∂iρDij∂ jC– 0,=

Dij D||gig j D⊥ δij gigj–( )+=

+ DΩ
ΩiΩ j

Ω2
------------ DΩg

Wg

Ω2
-------- Ωigj Ω jgi+( ).+

DΩg

∂ρC̃
∂t

---------- ∂iρDij' ∂ jC̃– ∂iρC̃∂ jδui'+ 0,=

δu' r t,( ) ω k u'ˆ k ω,( ) i kr ωt–( )expdd

∆k

∫d

∞–

+∞

∫=

C̃

Dij'
diffusion tensor attributable to the turbulent velocity
field minus δu'. Averaging Eq. (5) over an ensemble of δu'
must lead to Eq. (3) with a complete diffusion tensor Dij.

Equation (5) can be averaged based on the theory of
disturbances using the smallness of δu'. Since ∆k ! k is
chosen arbitrarily, this approach does not limit the
accuracy of the results obtained. When the averaging is
performed, the Fourier harmonics of the velocity field
from the ∆k range are assumed to not correlate with the
harmonics outside this range. This corresponds to the
model representations of Kolmogorov-type turbulence.
The method of renormalizing the diffusion tensor we
used was described in detail by Bykov and Toptygin
(1990).

Assuming that  =  + δC and 〈δC〉 = 0, where the
angular brackets denote averaging over an ensemble
of δu', and averaging Eq. (5), we obtain

(6)

The correction δC in this equation must be calcu-
lated from

(7)

The velocity field δu' in the rotating coordinate sys-
tem satisfies the equation

(8)

where δp' and δ  are the pressure fluctuations and the
random forces corresponding to harmonics from the ∆k
range. We use the diffusion approximation to simplify
our calculations by assuming that ||∂iDij∂jδC|| @ ||∂iδC||.
The time derivatives of the turbulent fluxes can then be
disregarded. Taking a Fourier transform of Eqs. (7) and
(8) and calculating the turbulent flux of concentration
fluctuations yield the turbulent diffusion tensor Dij =

 + ∆Dij , in which

(9)

where  is a unit wave vector. According to the condi-

tion, the value of  differs only slightly from the true

value of Dij, and we can replace  with Dnm in Eq. (9)
with the same accuracy with which Eqs. (7) and (8)
were written. Integrating Eq. (9) over all wave vectors
yields a transcendental equation for the turbulent diffu-
sion tensor

C̃ C

∂ρC
∂t

---------- ∂iρDij' ∂ jC– ∂iρ δCδui'〈 〉+ 0.=

∂ρδC
∂t

-------------- ∂iρDij' ∂ jδC– ∂i ρCδui'( )+ 0.=

∂δui'

∂t
----------- 2 W δu'×( )i

1
ρ
---∂ jδp' νT∆δui'–

δ f i'

ρ
--------–+ + 0,=

f i'

Dij'

∆Dij k
ûi' k( )û j' k–( )〈 〉

k̂nk̂mDnm'
-----------------------------------,d

∆k

∫=

k̂

Dij'

Dnm'
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(10)

In order to calculate the correlation tensor of the
velocity field in Eq. (10), we introduce a correlation
spectral tensor of the initial turbulence. By the initial
turbulence, we mean turbulence that exists in the
absence of rotation but is in the presence of real turbu-
lence sources. According to current views, turbulence
in the radiative zone can be generated by the various
types of instability associated with a large-scale shift in
angular velocity and with meridional circulation. Since
the radiative zone is characterized by a high stability to
thermal disturbances, there the turbulence is highly
anisotropic. We assume the initial turbulence to be sta-
tistically uniform, stationary, and anisotropic along the
unit radial vector g,

Dij k
ûi' k( )û j' k–( )〈 〉

k̂nk̂mDnm

-----------------------------------.d∫=
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(11)

The E(k) and E2(k) spectra can be related to the ver-
tical and horizontal turbulence intensities by

Solving Eq. (8) and substituting the solution in Eq. (10)
yield the following relation for the diffusion tensor:

Qij
0( ) k k',( ) ûi
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8πk
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  2

-----------------------------------------------------------------------------------------------------------------------------------------,d∫=
where Dmn has the structure of Eq. (4). In general, Eq. (12)
cannot be solved. Let us consider two important cases.

First, we neglect the effect of rotation. Then, DΩ =
 = 0, and

(13)

where we introduced S2 = D⊥ /D||; the functions f1 and f2
are written in the Appendix. In order to analyze Eq. (13),
it is convenient to pass to the mixing-length approxima-
tion:

Let us introduce the anisotropy parameters A2 =

〈 〉/〈 〉  and A'2 = / . By substituting and
integrating these expressions in Eq. (13), we obtain:

(14)
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2
.=
From this pair of relations, we can derive a transcen-
dental equation that relates S to the anisotropy parame-
ters. An approximate numerical solution of this equa-
tion yields S ≈ A2A'2 at A, A' > 1. In this case, we obtain
for the vertical diffusion

(15)

At A, A' @ 1,

(16)

As we see from Eq. (16), the decrease in vertical dif-
fusion can be caused by both an increase in intensity
and by an increase in the correlation scales of horizon-
tal mixing, because the two effects lead to the smooth-
ing of the scalar nonuniformities transported by vertical
motions. If the horizontal and vertical correlation scales of
turbulence are approximately equal (A' ≈ 1), formula (15)
is in satisfactory agreement with the numerical simula-
tions by Vincent et al. (1996). This is demonstrated by

the figure, in which D||/ l|| ratio is plotted
against the anisotropy parameter A. The dots in the fig-
ure represent the numerical calculations by Vincent
et al. (1996), and the line indicates the analytic curve
corresponding to Eq. (15). The close match between the
shapes of the numerical and analytic curves can be
explained by the fact that both numerical and analytic
calculations yield the law D|| ~ A–1 at large A. The dif-

D|| f 1 A
2
A'

2( ) u||
0( )2〈 〉 l||.=

D||
π

AA'
--------- u||

0( )2〈 〉 l||, D⊥ u⊥
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ference in numerical values can apparently be attributed to
the different shapes of the turbulence spectra used.

Our method of calculation also indicates that the
horizontal concentration of fluctuation nonuniformities
are smoothed out as the anisotropy turbulence increases.
The degree of horizontal scalar fluctuation nonunifor-
mity can be estimated by determining the characteristic
horizontal fluctuation scale LH

,

where ∇ i – gi(g · —)δC is the derivative of the passive-
scalar fluctuation in a direction perpendicular to g. We
assume the mean scalar concentration to be nonuniform
only in the direction of g. In the mixing-length approxima-
tion (omitting details of our calculations), we then obtain

where the functions f3 and f4 are written in the Appen-
dix. From these equations, we derive

(17)

At A @ 1, LH ~ ; i.e., the scalar fluctuation

nonuniformities are smoothed out with increasing
intensity of horizontal mixing. According to the inter-

LH
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from Vincent et al. (1996); the solid line represents the
dependence calculated from Eq. (15).
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pretation of Vincent et al. (1996), the horizontal
smoothing of scalar concentration fluctuation nonuni-
formities ultimately results in a decrease of the vertical
diffusion coefficient.

Let us now consider the effect of rotation. Rotation
modifies turbulence, which leads to additional diffu-
sion fluxes of a passive scalar in the medium. As was
shown by Chechkin et al. (1997), similar effects arise
in the presence of a mean turbulence helicity. Rotation
is known to induce the helicity of a turbulent velocity
field. Note that the corresponding terms (of the type

εian ) are present in the diffusion tensor

Eq. (12). At the same time, Krause and Rädler (1980)
pointed out that rotation alone is not enough for the
mean helicity to be nonzero. The presence of, for exam-
ple, a density gradient is required. In our case, the mean
helicity is zero.

Equation (12) can be simplified for Ω* = 2Ωτcor @ 1
(Ω* is the Coriolis number). In this case, we derived the
following relations for the diffusion tensor compo-
nents:

(18)

where

,

and cosθ = g · W/ |Ω|. In the mixing-length approxima-
tion, the diffusion tensor components can be expressed
explicitly as

(19)

where Drr and Dθθ are the radial and latitudinal diffu-
sion tensor components, respectively. Having divided
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the first equation by the second one, we obtained
Drr/Dθθ = f '(θ) for a rapidly rotating medium (here,
f '(θ) is a function of colatitude). Thus, we conclude
that, in a rapidly rotating medium, the Coriolis forces can
compete with the suppression of horizontal diffusion by
enhanced horizontal mixing. In this case, the effective
diffusion coefficients are of the same order of magnitude.
It also follows from Eq. (19) that, at Ω* @ 1, all diffusion
coefficients decrease as Ω*–1/2, because the turbulence
intensity is suppressed in inverse proportion to Ω*.

To quantitatively estimate the diffusion coefficients

in the solar-tachocline region, we take l⊥  ≈
105 cm2 s–1, according to Michaud and Zahn (1998);

since /l⊥  ≈ ∆Ω ≈ 10–6 s–1 is of the order of the
rotation nonuniformity, the Coriolis number is Ω* ≈ 6.
It then follows from Eq. (19) that Drr ≈ 104 cm2 s–1, with
the effective latitudinal diffusion being of the same
order of magnitude. For the depth dependence of the
diffusion coefficients to be estimated, specific models
for the internal structure of the solar radiative zone
must be invoked, as was done, for example, by Brun
et al. (1998). Our estimate, which is valid for turbulence
parameters near the base of the convection zone, is in
agreement with that from the above paper. Note once
again that the inferred vertical diffusion of a passive
scalar results from allowance for the effect of rotation
on turbulence; as a result, horizontal turbulence, along
with vertical one, also contributes to Drr . If we ignored
this effect, the estimate would be smaller by two orders
of magnitude [assuming that A, A' ≈ 100, according to
Michaud and Zahn (1998)].

CONCLUSION

Our main results can be summarized as follows. For
the first time, it has been analytically shown that
enhanced horizontal mixing actually reduces the verti-
cal diffusion transport of a passive scalar. Allowance
for rotation leads to two effects, which have not been
noted previously: (1) under the effect of Coriolis forces,
horizontal turbulence induces a vertical diffusion flux,
with the horizontal and vertical diffusions being of the
same order of magnitude at Ω* @ 1, because both are
mainly attributable to the same source; and (2) all dif-

fusion fluxes decrease in inverse proportion to .
Hence, we immediately conclude that rapidly rotating
cool solar-type stars are richer in Li, which is actually
observed. Our results can also be applied to rapidly
rotating hot B stars, whose atmospheres are rich in the
products of the CNO-cycle proceeding in the interior.
Stars of this type have outer radiative zones. In this
case, the effect of rotation on the horizontal turbulence
in the radiative zone could transport the CNO-cycle
products from the zone of nuclear reactions to the sur-
face (however, other effects cannot be ruled out either).
I am grateful to S. Andrievskiœ for this remark.

u⊥
0( )2〈 〉

u⊥
0( )2〈 〉

Ω*
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Propeller Effect 
during Magnetocentrifugal Plasma Acceleration
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Abstract—We study the effect of magnetic-field axial asymmetry on the magnetocentrifugal acceleration of plasma
when it flows in a source’s rotating magnetosphere (propeller effect). For an axisymmetric steady plasma flow, the first
corrections to the energy that arise when the source rotates slowly are proportional to Ω4, suggesting a highly inefficient
plasma acceleration. Magnetic-field axial asymmetry is shown to substantially modify the acceleration. The first cor-
rections arise even in the first order in Ω. The plasma acceleration turns out to be considerably more efficient in a non-
axisymmetric magnetic field. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Plasma flow in the magnetic field of a rotating
source takes place in many astrophysical objects, from
ordinary stars to galactic nuclei. The plasma in such
flows is accelerated by the so-called magnetocentrifu-
gal mechanism. This acceleration has a simple mechan-
ical analogy. Since the magnetic field is frozen into the
plasma, its motion can be considered as the motion of a
bead on a wire (Blandford and Payne 1982), with a
magnetic field line acting as the wire. When the wire
rotates, the bead is accelerated by the centrifugal effect.
Numerous studies of this acceleration mechanism in a
model with an axisymmetric magnetic field, both ana-
lytic and numerical, show that its efficiency is fairly
high only for nonrelativistic velocities of the outflow-
ing plasma (Bogovalov and Tsinganos 1999). By con-
trast, the acceleration in the relativistic limit is abso-
lutely negligible and is apparently of no astrophysical
interest (Bogovalov 1997, 2000; Beskin et al. 1998).
This disappointing conclusion was reached in various
models and approximations for various (axisymmetric)
magnetic-field configurations.

At the same time, the magnetic fields of actual astro-
physical objects are not axisymmetric. Therefore, it is
of interest to answer the question of how the accelera-
tion of outflowing plasma in a magnetic field will
change in the case of axial asymmetry. We attempted to
answer this question in Bogovalov (1999), where we
considered the plasma flow from an oblique rotator
with a split-monopole-type field. In this model, the
magnetic-field component normal to the stellar surface
is uniform over the surface and changes sign only at the

* E-mail address for contacts: bogoval@axpk40.mephi.ru
1063-7737/01/2703- $21.00 © 20176
magnetic equator. This type of magnetic-field nonuni-
formity was found to have no effect on the plasma
dynamics, and the relativistic plasma acceleration in
the field of such an object remains as inefficient as that
in an axisymmetric field. Here, we consider the ques-
tion of how azimuthal nonuniformity of the magnetic-
field magnitude will affect the magnetocentrifugal
plasma acceleration.

BASIC EQUATIONS

The system of equations for the dynamics of a cold
relativistic plasma in the approximation of ideal mag-
netohydrodynamics is (Akhiezer et al. 1975)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

These equations do not include the gravitational
field of the central source and the thermal plasma pres-
sure, because their effects have already been well stud-
ied and are not the subject of this paper.

mn
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For steady-state rotation and steady plasma flow,
when all parameters vary periodically, the change in
arbitrary vector A is described by the relation (Beskin
et al. 1983)

It thus follows that the equality

holds for the magnetic field.
Hence, using the induction Eq. (2), we find that

(8)

where b = [Wr], if the frozen-in condition is satisfied

throughout the entire magnetosphere and in the central
source (Beskin et al. 1983).

THE MODEL OF A ROTATOR 
WITH A QUASI-MONOPOLE NONUNIFORM 

MAGNETIC FIELD

The model of an axisymmetric rotator with a mono-
pole-type magnetic field has been widely used to study
the collimation and acceleration of plasma in the rotat-
ing field of a central source (Michel 1969; Sakurai
1985; Bogovalov 1992; Beskin et al. 1998; Bogovalov
and Tsinganos 1999; Tsinganos and Bogovalov 2000).
This model is convenient because it contains no regions
with closed field lines, which considerably simplifies
an analysis of the plasma flow. The solution for the
problem of plasma flow in an initially dipole magnetic
field confirms that the presence of closed field lines adds
nothing new to the magnetocentrifugal plasma acceler-
ation in the case of axisymmetric dipole rotation (Con-
topoulos et al. 1999).

Here, our main goal is to answer the question of how
azimuthal magnetic-field nonuniformity affects the
plasma acceleration. The flow of magnetized plasma is
described by the system of nonlinear Eqs. (1)–(7). An
attempt to solve the problem on the magnetospheric
structure of an oblique rotator with a dipole magnetic
field was made by Beskin et al. (1983) in the approxi-
mation of massless plasma. However, this approxima-
tion does not allow the plasma acceleration to be stud-
ied, which can be done in the MHD approximation.
Generally, in the most interesting cases, the problem of
plasma dynamics can be solved in the MHD approxi-
mation only numerically. Occasionally, however, the
problem can be solved self-consistently and analyti-
cally if we are interested in small corrections to the
known solution. In particular, small corrections can
arise when the known flow from a nonrotating central
source is perturbed as the source slowly rotates. This
approach was first used to numerically solve the prob-
lem of the solar-wind flow (Nurney and Suess 1975).

∂A
∂t
------- WA[ ] Wr[ ] ∇( )A.–=

∂H
∂t
------- curl Wr[ ]H[ ]=

E bH[ ] ,–=

1
c
---
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Subsequently (Bogovalov 1992), we used this approach
to solve the problem of cold relativistic plasma outflow
from a slowly rotating star. In recent years, this method
has also been successfully used by Beskin [see Beskin
and Okamoto (2000) and references therein]. The idea
of this study is also based on the perturbation method.
It involves the following. If azimuthal magnetic-field
nonuniformity actually somehow affects the magneto-
centrifugal plasma acceleration, then this effect can
show up even when the central source rotates slowly.
Therefore, to answer the question posed here, whether
azimuthal magnetic-field nonuniformity changes the
plasma acceleration, it may be suffice to consider the
acceleration for a slowly rotating source.

PLASMA ACCELERATION 
FOR A SLOWLY ROTATING SOURCE

Axisymmetric Magnetic Field 

Let us first consider some basic properties of the
plasma flow in an axisymmetric magnetic field for a
slowly rotating central source. The steady-state solu-
tion of this problem can be expanded in terms of pow-
ers of the central source’s angular velocity Ω . Since the
problem is azimuthally symmetric, the expansions of
the poloidal magnetic field, plasma density, poloidal
velocity, and plasma Lorentz factor must contain only
even powers of Ω. By contrast, only odd powers of Ω
must remain in the expansions of the toroidal magnetic
field and the toroidal velocity, because these quantities
change their sign as the sense of stellar rotation reverses.
Therefore, the steady-state axisymmetric solution can
generally be expanded in terms of powers of Ω as fol-
lows:

Here, the subscripts “0” and “p” denote the variables
for a nonrotating central source and the poloidal vector
component, respectively. In the special case of plasma
flow in a quasi-monopole magnetic field, the first cor-
rections to the azimuthal magnetic field and the azi-
muthal velocity are (Bogovalov 1992)

(9)
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c
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where

(10)

is the field of the magnetic quasi-monopole. An asterisk
denotes the values on the stellar surface. It follows from
Eq. (9) that the first corrections to the energy begin with
the terms proportional to Ω4. Indeed, the equation for
the plasma Lorentz factor is (Landau and Lifshitz 1973)

(11)

According to this equation, the second-order correc-
tions in Ω to the plasma Lorentz factor are

However, it follows from Eqs. (9) and (10) that the
right part of this relation is equal to zero, implying that
γ2 = 0. Thus, the first correction to the Lorentz factor
begins with the terms proportional to Ω4; this reflects
the fact that, in the axisymmetric case, the magnetocen-
trifugal acceleration is highly inefficient.

Acceleration 
in an Azimuthally Nonsymmetric Magnetic Field 

The energy of the plasma flowing in a rotating, azi-
muthally nonsymmetric magnetic field is no longer
invariant with respect to a change in the sense of rota-
tion. In this case, energy can (but, generally, does not)
depend on the sign of Ω. Therefore, the expansion of
the solution takes a more general form:

In the axisymmetric case, γ1 = γ2 = γ3 = 0. If γ1 ≠ 0
in an azimuthally nonsymmetric flow, then this implies
that the plasma acceleration in a nonaxisymmetric
magnetic field is considerably more efficient than it is
in an axisymmetric one. To make sure that γ1 is actually
nonzero, it will suffice to show that γ1 ≠ 0 when the
magnetic field deviates only slightly from azimuthal
symmetry. This problem can be solved analytically.

Plasma Flow in a Slightly Nonaxisymmetric 
Magnetic Field for Ω = 0

Before solving the problem of a rotating nonuni-
form magnetosphere, it is useful first to consider a
plasma flow in the nonuniform field of a nonrotating
star. It follows from Eq. (11) that the energy of the cold
plasma is constant in such a flow, because E = 0 every-
where. For a slightly azimuthally nonsymmetric mag-
netic field, the solution can be expanded in terms of
some small parameter ε, which characterizes the devia-
tion of the magnetic field from the initial quasi-mono-
pole field. The expansion is
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because the energy is constant for Ω = 0. It is conve-
nient to consider the perturbation of a plasma flow in a
quasi-monopole magnetic field, which arises in a
slightly azimuthally nonsymmetric distribution of the
normal field component on the stellar surface. For sim-
plicity, we assume the perturbed field to have its own
symmetry axis m. In this case, it is convenient to solve
the problem in a coordinate system, in which the mag-
netic field is azimuthally symmetric, and then to pass to
the laboratory coordinate system, in which the symme-
try axis is inclined to the Z axis at some angle α. The
equation for the first correction to the plasma velocity
follows from equations of motion (1). In a spherical
coordinate system, in which the Z ' axis is the symmetry
axis of the magnetic field, this equation is

where χ is the polar angle. It is convenient to introduce
such the function ψ, and that the components of the
poloidal magnetic field are expressed in terms of this
function as

(12)

In this case, the magnetic field automatically satis-
fies the condition of flux conservation divH = 0.

The expansion of ψ in terms of powers of ε is

Since, in view of the frozen-in condition, v = vH/H,
we derive the following equation for the first correction
f from Eq. (12) (Bogovalov 1992):

where η = cosχ and Ra =  is the

Alfvén radius of the unperturbed flow. The perturbation
f can be expanded,
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in terms of eigenfunctions Qm of the differential equa-
tion (1 – η2)∂2Qm/∂2η = –m(m + 1)Qm . These functions
are Qm(η) = (1 – η2)∂Pm(η)/∂η, where Pm are Legendre
polynomials of the mth order.

For  fm, we derive the equation

(13)

where x = r/Ra . The general solution of this equation is
a linear superposition, fm = amZm(x) + bmYm(x), of two
independent solutions: one (Zm) is regular at point x = 1,
and the other (Ym) is singular at this point. The condi-
tion of flow regularity at point x = 1 implies that bm = 0.
The regular solution of Eq. (13) is Zm(x) = Pm(1/x)
(Bogovalov 1992). Therefore, the first correction to the
spherically-symmetric solution is

(14)

The numerical coefficients am are determined by the
boundary conditions on the stellar surface.

To study the effect of magnetic-field nonuniformity
on plasma acceleration, it would be reasonable to take
only one term from the expansion (14), which corre-
sponds to the simplest form of nonuniformity in the
magnetic-field distribution on the stellar surface. It is of
particular interest to consider nonuniformity, for which
the magnetic-field strength increases at the magnetic
poles and decreases at the magnetic equator, as is the
case for a magnetic dipole. The term with m = 2 corre-
sponds to this distribution. In this case, the correction to
the solution is

Accordingly, the corrections to the magnetic field are

We thus see that the perturbation of the radial mag-
netic field is positive at the magnetic poles (for ε > 0)
and negative at the magnetic equator. This solution
reveals an interesting feature of supersonic plasma
flows. The perturbation of the radial magnetic field
decreases with distance as r–2. The distance depen-
dence of the initial magnetic field is the same. This
means that the perturbed flow in the limit r  ∞
ceases to be spherically symmetric, although it remains
radial. The reason is that the plasma is cold and the
magnetic forces fall off with distance so rapidly, that
the pressure disbalance across the magnetic field lines
cannot change the trajectory of each individual plasma
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particle, and in such a way that the flow becomes spher-
ically isotropic. At large distances, the plasma motion
is purely ballistic.

After finding the solution in the coordinate system,
in which the symmetry axis of the magnetic field is
along the Z ' axis coincident with m, we may pass to the
laboratory coordinate system, where the magnetic-field
symmetry axis is inclined to the Z axis at some angle α.
Standard formulas for the transformation of an arbi-
trary vector A from one spherical coordinate system to
another yield the relations

The equation that relates the coordinates in these
two systems is

where θ and ϕ are, respectively, polar and azimuth
angles in the laboratory (unprimed) coordinate system.
In the primed coordinate system, the Z ' axis is along the
symmetry axis of the magnetic field.

For clarity, we are concerned below with the limit-
ing case of a flow in the equatorial plane (θ = π/2) of an
orthogonal rotator (α = π/2). The relation between the
vector components is particularly simple:

(15)

provided that  = 0.

Plasma Acceleration 
in a Slightly Nonaxisymmetric Magnetic Field

For slow rotation and slight axial asymmetry, a
steady flow can be expanded in terms of two small
parameters Ω and ε as follows:
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It follows from Eq. (11) that δγ satisfies the equation

(16)

where

and Eθ is given by expression (8). Let us calculate δγ in
the special case of an orthogonal rotator (α = π/2) and
a flow in the equatorial plane (θ = π/2). Transforming
the solution Eq. (15) to the laboratory coordinate sys-
tem yields

(17)

Integrating Eq. (16) using Eq. (17) yields

This result shows that, when the magnetic field is
axially nonsymmetric, the magnetocentrifugal plasma
acceleration is significantly modified for a slowly rotat-
ing source. In an axisymmetric magnetic field, the first
corrections to the plasma energy begin with the terms
proportional to Ω4, whereas even slight axial asymme-
try of the magnetic field makes this dependence consid-
erably stronger. The first corrections become propor-
tional to Ω .

DISCUSSION

Here, we have suggested that axial asymmetry of
the magnetic field can significantly modify the magne-
tocentrifugal plasma acceleration. We managed to
prove the validity of this suggestion, at least for a slowly
rotating source. The acceleration in a nonaxisymmetric
magnetic field actually differs markedly from the accel-
eration in an axisymmetric magnetic field. It becomes
more efficient. In essence, this implies that the propel-
ler effect, which was proposed by Illarionov and Su-
nyaev (1975) as a possible ejection mechanism of the
plasma accreting onto a neutron star, is important for
the acceleration. We see that the propeller effect deter-
mines not only the ejection, but also the acceleration of
plasma. In our model, the plasma is accelerated due to
the magnetic-field nonuniformity alone, i.e., due to the
propeller effect.

So far, we have been able to study the role of this
effect only for a slowly rotating central source. How the
plasma will be accelerated in a rapidly rotating object
and for a highly nonuniform magnetic field is still an
open question. This question can apparently be
answered only by three-dimensional numerical simula-
tions of plasma flow in nonaxisymmetric magnetic
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fields. However, it is clear that if the detected effect will
also takes place for rapid rotation, it will primarily be
of importance in solving the problem of relativistic
wind acceleration in pulsar magnetospheres.

ACKNOWLEDGMENTS

This work was supported in part by the program of
the Ministry of Education of the Russian Federation
“Universities of Russia: Fundamental Studies” (project
no. 990479).

REFERENCES

1. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko,
and K. N. Stepanov, Plasma Electrodynamics (Perga-
mon, Oxford, 1975), Vol. 1.

2. V. S. Beskin and I. Okamoto, Mon. Not. R. Astron. Soc.
313, 445 (2000).

3. V. S. Beskin, A. V. Gurevich, and Ya. N. Istomin, Zh.
Éksp. Teor. Fiz. 85, 401 (1983) [Sov. Phys. JETP 58, 235
(1983)].

4. V. S. Beskin, I. V. Kuznetsova, and R. R. Rafikov, Mon.
Not. R. Astron. Soc. 299, 341 (1998).

5. R. D. Blandford and D. G. Payne, Mon. Not. R. Astron.
Soc. 199, 883 (1982).

6. S. V. Bogovalov, Astron. Astrophys. 327, 662 (1997).

7. S. V. Bogovalov, Astron. Astrophys. 349, 1017 (1999).

8. S. V. Bogovalov, Astron. Astrophys. (2000).

9. S. V. Bogovalov, Pis’ma Astron. Zh. 18, 832 (1992) [Sov.
Astron. Lett. 18, 337 (1992)].

10. S. V. Bogovalov and K. Tsinganos, Mon. Not. R. Astron.
Soc. 305, 211 (1999).

11. I. Contopoulos, D. Kazanas, and C. Fendt, Astrophys. J.
511, 351 (1999).

12. A. F. Illarionov and R. A. Sunyaev, Astron. Astrophys.
39, 185 (1975).

13. L. D. Landau and E. M. Lifshitz, The Classical Theory
of Fields (Nauka, Moscow, 1973; Pergamon, Oxford,
1975).

14. F. C. Michel, Astrophys. J. 158, 727 (1969).

15. S. F. Nurney and J. Suess, Astrophys. J. 196, 837 (1975).

16. T. Sakurai, Astron. Astrophys. 152, 121 (1985).

17. K. Tsinganos and S. V. Bogovalov, Astron. Astrophys.
356, 989 (2000).

Translated by G. Rudnitskii
ASTRONOMY LETTERS      Vol. 27      No. 3      2001



  

Astronomy Letters, Vol. 27, No. 3, 2001, pp. 181–185. Translated from Pis’ma v Astronomicheski

 

œ

 

 Zhurnal, Vol. 27, No. 3, 2001, pp. 215–219.
Original Russian Text Copyright © 2001 by Maksimov, Prosovetski

 

œ

 

, Krissinel.

                                           
Observations of Bright Coronal Points 
at Wavelengths of 5.2 and 1.76 cm
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Abstract—Based on two-dimensional solar images obtained with the Siberian Solar Radio Telescope and
the Nobeyama Radio Heliograph and using YOHKOH soft X-ray images, we investigate bright coronal
points. The principal microwave emission mechanism of these points is shown to be the thermal bremsstrahl-
ung of an optically thin plasma. The fact that, in several cases, bright coronal points do not coincide at two
wavelengths can be explained by imaging peculiarities of the Nobeyama Radio Heliograph rather than by
physical factors. © 2001 MAIK “Nauka/Interperiodica”.

Key words: Sun
INTRODUCTION

Since the first detection of bright X-ray points by
Van Speybroek et al. (1970), numerous studies have
been carried out to identify them and to determine their
characteristics in various wavelength ranges: XUV
(Golub et al. 1975, 1976), EUV (Habbal and Withbroe
1981), He I λ10 830 Å (Harvey 1985), microwave
emission at 6 cm (Fu et al. 1987; Kundu et al. 1988), 20
cm (Habbal et al. 1986; Kundu et al. 1988; Nitta et al.
1992), and 1.76 cm (Kundu et al. 1994). These studies
revealed small-scale features in the emission at various
wavelengths with similar sizes, lifetimes, distributions
over the disk, and relationships to photospheric mag-
netic fields. Thus, bright points are vertically extended
structures, which is reflected in the current use of a
broader term for them—bright coronal points. At the
same time, an analysis of simultaneous observations at
various wavelengths does not give a close correspon-
dence between bright points. Apart from close coinci-
dences, there are points that are visible at one wave-
length but are lacking at another wavelength. It is
unclear whether noncoincidences reflect the actual
peculiarities of the vertical structure of bright coronal
points or they are attributable to the fact that observa-
tions are not simultaneous and that these features
located above ephemeral active regions, faculae, in
areas of the quiet Sun or in coronal holes differ in prop-
erties. Elucidating these circumstances is of great
importance in understanding the physical nature of
bright coronal points. A major method of solving this

* E-mail address for contacts: maksimov@iszf.irk.ru
1063-7737/01/2703- $21.00 © 20181
problem is to perform a comparative analysis of their
properties over the widest possible wavelength range.

Here, we discuss the results of our comparative
analysis of the microwave emission from bright coronal
points by using data from the Siberian Solar Radio
Telescope (SSRT) and the Nobeyama Radio Helio-
graph (NoRH).

OBSERVATIONS

The SSRT (5.2-cm wavelength) is a cross-shaped
interferometer of 256 2.5-m antennas spaced at 4.9 m
in the east west and north south directions. Basic SSRT
parameters and imaging methods are given by Smolkov
et al. (1986) and Krissinel et al. (2000). In the radio
maps used here, the spatial resolution was ~21″. The
NoRH (1.76-cm wavelength) is a T-shaped interferom-
eter of 84 80-cm antennas with a spatial resolution of 10″
(Nishio et al. 1994).

For our analysis, we chose SSRT and NoRH solar
radio images on June 1–6, 8–9, 14–17, and 20–26, on
July 5, 7, 8, 17, 18, and 20, and on October 13–15, 18,
and 20, 1996. We used SSRT observations between
02:00 and 04:00 UT. In this interval, one radio image of
the entire Sun was obtained over a period from 24 min to
1 h. The time it took to obtain a NoRH radio image was 1
s, and we chose one map from 02:00 until 03:00 UT for
our analysis.

The observing periods we chose were characterized
by low solar activity. As a result, the SSRT maps exhib-
ited virtually no traces of side lobes, which allowed the
image reconstruction procedure to be avoided. It should
be noted that, in this case, the SSRT spatial resolution
is comparable to the VLA spatial resolution at 20 cm
after image cleaning.
001 MAIK “Nauka/Interperiodica”



 

182

        

MAKSIMOV 

 

et al

 

.

                                       
(a) (b)

(c)

Fig. 1. Microwave [(a) SSRT 02:09 UT and (c) NoRH 02:08 UT] and soft X-ray [(b) YOHKOH 13:35 UT] images of the Sun on
June 3, 1996. The bright coronal points existing in all three images (circles), in two images [YOHKOH and SSRT (squares), YOHKOH
and NoRH (triangles)], and only in one image (pentagon) are highlighted.
Solar images in the soft X-ray band from YOHKOH,
and in the Fe XII λ195 Å line from SOHO EIT taken
from the SOHO archive, were used to identify coronal
points.

ANALYSIS

Following Golub et al. (1989), we selected bright
coronal points by visually examining images using the
sizes and intensities of isolated structures as the crite-
ria. Based on the structure sizes and intensities, we

Table 1.  Coincidences of bright X-ray and microwave points
(number of events)

SXT SSRT NoRH

SXT 57 52 13

SSRT 52 68 22

NoRH 13 22 46
arbitrarily chose an upper limit of 2 arcmin and estab-
lished limits on the excess of the quiet-Sun level (from
a factor of 1.3 to a factor of 4), respectively. Given the
finite lifetimes of coronal points, structures with life-
times of no less than a day were selected.

As an example, the Fig. 1 shows the microwave (a, c)
and soft X-ray (b) solar images on June 3, 1996, in
which bright coronal points are highlighted. We see
from the figure that there are points visible in all three
images, in two images, and only in one image. A total
of 68, 46, and 57 bright coronal points were identified
in the SSRT, NoRH, and SXT YOHKOH images,
respectively. Their mutual coincidences and noncoinci-
dences at three wavelengths are listed in Tables 1 and 2.

Bright coronal points in the SSRT images exhibit no
fine structures, and their sizes range from 25″ to 93″
with a mean of 60″. In the NoRH images, the sizes of
bright coronal points range from 10″ to 59″, with a mean
of 36″. Bright X-ray points in the YOHKOH images
have sizes in the range 10″ to 45″. In two cases, bright
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
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coronal points were observed above the limb, which
allowed their heights to be determined. The centers of
bright coronal points lay at heights of 2800 and 5600 km,
as inferred from the NoRH data, and at 9700 and
18 100 km, as inferred from the SSRT data.

Thus, our analysis also revealed noncoincidences of
bright coronal points at different wavelengths, as noted
in the Introduction. Harvey (1985) and Kundu et al.
(1988) gave the following reasons for these noncoinci-
dences: nonsimultaneous imaging at various wave-
lengths, finite lifetimes of bright coronal points, and
rapid variations in their intensities and positions (Har-
vey 1985; Kundu et al. 1988). On the other hand, we
paid special attention to the possible absence of micro-
wave points above weak X-ray points, because of the
lower sensitivity of radio images (Nitta et al. 1992). In
the events studied, the SSRT data revealed no correla-
tion between the intensity of a bright coronal point and
the existence of its microwave counterpart: we noted
cases where there were no radio points above very
bright X-ray points and where there were radio points
above very weak X-ray points.

At the same time, as we see from Table 2, bright
points at 1.76 cm poorly correspond to their counter-
parts both at 5.2 cm and in the soft X-ray band. There-
fore, the distribution of brightness temperatures for
coronal points should be considered in more detail by
using SSRT and NoRH data. If thermal bremsstrahlung
of an optically thin plasma is assumed to be responsible
for the microwave emission, then the brightness tem-
perature is given by (Kundu et al. 1988)

where Ne is the electron density, f is the frequency of
observations, and L is the path length along the line of
sight. In this case, the ratio of brightness temperatures
at two wavelengths is equal to the ratio of the squares
of these wavelengths: Tb(1.76)/Tb(5.2) = 0.112. Table 3
lists measured brightness temperatures Tb and ratios of
the “true” brightness temperatures  for the coronal
points observed with the SSRT and NoRH. The “true”
brightness temperature was assumed to be equal to the
difference between the measured temperature of a
bright coronal point and the brightness temperature of
the quiet Sun (16 000 and 10 000 K for wavelengths of
5.2 and 1.76 cm, respectively). For the two points
(marked by an asterisk in Table 3) observed at the limb,
the “true” brightness temperature was taken to be the
measured brightness temperature. The mean ratio of
brightness temperatures for the entire set of coronal
points, 0.108, is fairly close to its calculated value,
0.112. In this case, the mean ratio of brightness temper-
atures was 0.115 ± 0.004 for 50% of the points; the
ratios of brightness temperatures for the other half of
the points differed markedly from 0.112. For seven
coronal points from the last group, the measured bright-

Tb

0.2Ne
2
L

T
1/2

f
2

------------------,=

Tb'
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ness temperatures at 1.76 cm were less than 12 000 K.
Since the NoRH images were obtained by using the
CLEAN threshold (3000 K), the brightness-tempera-
ture determination in the range 10 000–13 000 K can be
assumed to be inaccurate. In order to test this assump-
tion, for 30 bright points visible with the SSRT, but
without any counterparts in the NoRH observations, we
calculated the brightness temperatures that these points
would have at 1.76 cm under the assumption of thermal
bremsstrahlung from an optically thin plasma. Accord-
ing to the SSRT data, the brightness temperatures of
these points were distributed over the range 28 577–
56 900 K with a mean of 40 566 ± 1470 K. The calcu-
lated mean brightness temperature of these points at
1.76 cm was 12 751 ± 165 K; i.e., the mean temperature

Table 2.  Noncoincidences of bright X-ray and microwave points
(number of events)

SXT SSRT NoRH

SXT 5 44

SSRT 16 46

NoRH 33 24

Table 3.  Brightness temperatures of bright coronal points at 1.76
and 5.2 cm

No. Tb(5.2), K Tb(1.76), K (1.76)/ (5.2)

1 60444 15156 0.116

2 61782 16000 0.131

3 42408 12315 0.088

4 71624 17000 0.126

5 40026 11200 0.050

6 32653 11000 0.060

7 118571 22000 0.117

8 79431 18000 0.126

9 70885 20000 0.182

10 25065 11737 0.192

11 78730 18000 0.128

12 103000 24000 0.161

13* 69271 17600 0.254

14 71769 11594 0.029

15 74000 11800 0.031

16* 106000 12600 0.119

17 56000 13700 0.093

18 52515 11899 0.052

19 50622 11500 0.043

20 44146 12800 0.099

21 65503 12900 0.059

22 34324 12176 0.119

Tb
' Tb

'
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Table 4.  Comparative characteristics of bright coronal points at various radio wavelengths

Observations , K Size, arcsec B, G /Fc, K2/erg cm4 s Height, km

NoRH 1.76 cm 0.57 × 104 10″–59″ (0.84–8.5) × 1024 (2.8–5.6) × 103

SSRT 5.2 cm 2.45 × 104 25″–93″ (0.41–4.23) × 1024 (1–1.8) × 104

VLA 6 cm (0.5–4) × 104 5″–16″ 40–400 (0.5–1.1) × 1024 (1.5–2) × 104

VLA 20 cm (0.5–5) × 105 3″–40″ 50–200 2 × 1024

Tb
' P0

2

difference between coronal points and the quiet Sun at
this wavelength was 2751 K, which is below the
CLEAN threshold. Thus, we conclude that the absence
of counterparts at 1.76 cm for bright coronal points at
5.2 cm may result from a reduction in sensitivity due to
the use of the CLEAN procedure when constructing a
radio map.

It is of interest to compare our results at 1.76 and
5.2 cm with those obtained from VLA observations of
bright coronal points at 6 and 20 cm (Habbal et al.
1986; Kundu et al. 1988). In order to compare nonsi-
multaneous observations at these wavelengths, Habbal
et al. (1986) proposed to use a relationship between the
polarization of microwave emission, the magnetic-field
strength and direction in the source, the gas pressure,
and the heat flux. Assuming free-free emission, they
derived an expression that allows the magnetic-field
strength in the source to be estimated from measured
brightness temperatures of the ordinary and extraordi-
nary emission modes. In our cases, we failed to clearly
distinguish the polarized emission component in bright
coronal points. This is apparently because the SSRT
spatial resolution is not high enough, which may result
in a decrease in the brightness temperature of polariza-
tion sources with sizes considerably smaller than the
beam size and in the addition of the responses from
structural elements of a bright coronal point with oppo-
site signs of polarization. Both these factors can signif-
icantly reduce the possibility of recording the polarized
emission from a bright coronal point. However, the
expressions derived by Habbal et al. (1986) allow us to
determine the wavelength-independent ratio of the

square of gas pressure  to the heat flux Fc:

where Tmax is the coronal temperature. Taking Tmax =
106 K for a point in the corona and Tmax = 107 K for a
point in an arch and substituting the observed mean true
brightness temperature  = 2.45 × 104 K for the SSRT
(the mean for all observed points) and 0.57 × 104 K for
the NoRH (the mean for the points whose brightness
temperatures were above the CLEAN threshold), we

obtained /Fc = (0.41–4.23) × 1024 ä2 erg–1 cm–4 s–1

P0
2

P0
2

Fc
------

Tb'

Tmax Tb'–
---------------------- 2πf( )2

7.7 10
6–×

-----------------------× ,=

Tb'

P0
2

and (0.84–8.5) × 1024 ä2 erg–1 cm–4 s–1, respectively. As
we see from Table 4, the inferred values agree in order
of magnitude with those determined for 6 and 20 cm
(Habbal et al. 1986; Fu et al. 1987; Kundu et al. 1988)
from VLA observations.

CONCLUSION

Our analysis of bright coronal points and compari-
son with previous results have shown the following:

(1) The most likely emission mechanism of bright
coronal points over a wide wavelength range, from 1.76
to 20 cm, is the thermal bremsstrahlung of an optically
thin plasma.

(2) The absence of counterparts at 1.76 cm for bright
coronal points at 5.2 cm is attributable to a reduction in
sensitivity due to the use of the CLEAN procedure to
construct a NoRH radio map.
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Parametric Generation of Acoustic-Gravity Waves
in the Solar Atmosphere
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Abstract—Based on a plane isothermal solar-atmosphere model, we investigate the parametric generation of
acoustic-gravity waves (AGWs) in the approximation of a fixed field for vertically propagating disturbances.
Both nonpropagating and propagating AGWs are shown to be generated at the difference frequency via the non-
linear interaction of primary waves in the frequency range “forbidden” for the propagation of AGWs during
their linear generation. An acoustic wind has been found to be formed in the solar atmosphere at zero difference
frequency; its velocity increases with height in inverse proportion to the decreasing ambient density. We study
the nonlinear generation of AGWs at the second harmonic during the interaction of disturbances from the for-
bidden frequency range. © 2001 MAIK “Nauka/Interperiodica”.

Key words: Sun
INTRODUCTION

Until now, much attention has been given to the
study of the generation and propagation of acoustic-
gravity waves (AGWs) in the solar atmosphere (Dubov
1978; Vorontsov and Zharkov 1988; Coroniti et al.
1995; Sutmann and Ulmschneider 1995a; Musielak
et al. 1998). One of the reasons for this interest is the
development of generation and formation mechanisms
for global radial oscillations in the solar atmosphere
(Dubov 1978; Vorontsov and Zharkov 1988; Severnyœ
1988; Garmash et al. 1989; Musielak et al. 1998). To
this end, a plane atmosphere model (Coroniti et al.
1995; Sutmann and Ulmschneider 1995a; Musielak
et al. 1998) is used most commonly. This model allows
the pattern of vertical propagation, at heights much
smaller than the solar radius, to be properly described.

As it is well known (Lamb 1947; Eckart 1963), the
fact that AGW propagation in the linear approximation
is possible only at frequencies above the characteristic
Lamb frequency can be explained in terms of a plane
isothermal atmosphere model, whereas waves below
this frequency are nonpropagating (inhomogeneous).
The unquestionable importance of the Lamb frequency
in analyzing wave processes in the solar atmosphere
stimulated the studies of its height dependence (Fleck
and Schmitz 1998). These studies aim to establish the
factors whose effect lead to an appreciable decrease in
Lamb frequency and, thus, to the possible existence of
propagating AGWs in a considerably wider range of

* E-mail address for contacts: petukhov@hydro.appl.sci–nnov.ru
1063-7737/01/2703- $21.00 © 20186
low frequencies (Dubov 1978; Fleck and Schmitz
1998).

Naturally, when describing vertical AGW propaga-
tion in the atmosphere, we cannot restrict ourselves to
the use of the linear theory alone (Coroniti et al. 1995;
Sutmann and Ulmschneider 1995a; Musielak et al.
1998; Fleck and Schmitz 1998), because the oscillation
velocity (and, consequently, the Mach number)
increases in inverse proportion to the square root of the
decreasing ambient density (Lamb 1947; Eckart 1963)
as the AGWs propagate into the upper atmosphere. This
forces us to take into account nonlinear effects, which
give rise to shock waves (Romanova 1970, 1971;
Finaudi 1970; Kosovichev and Popov 1979; Uralov
1982; Klimishin 1984; Rammacher and Ulmschneider
1992; Fleck and Schmitz 1993; Bodo et al. 1994; Sut-
mann and Ulmschneider 1995b, Cheng 1996).

It should be noted that, when the influence of non-
linear effects on AGW propagation in a plane atmo-
sphere was studied, the main attention was given to
analytic (Romanova 1970, 1971; Finaudi 1970; Uralov
1982; Klimishin 1984) and numerical (Kosovichev and
Popov 1979; Klimishin 1984) descriptions of the shock
formation and evolution. At the same time, the nonlin-
ear generation of propagating AGWs in the “forbidden”
(for them) frequency range below the Lamb frequency
detected by several authors (Fleck and Schmitz 1993;
Bodo et al. 1994; Sutmann and Ulmschneider 1995b)
during numerical simulations using the basic system of
hydrodynamic equations remained without due atten-
tion. This is, in particular, because, except for the meth-
ods of direct numerical simulations developed by a
number of authors (Kosovichev and Popov 1979; Kli-
mishin 1984; Colella and Woodward 1984), the corre-
001 MAIK “Nauka/Interperiodica”
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sponding problems could not be solved in terms of the
analytic methods suggested by Romanova (1970,
1971), Finaudi (1970), and Uralova (1982); the latter
properly describe the propagation of only relatively
short AGWs with frequencies above the Lamb fre-
quency characteristic of an isothermal atmosphere.

That is why our goal is an approximate analytic
description of the parametric generation of AGWs at
frequencies below the Lamb frequency for vertical
AGW propagation in an isothermal atmosphere at fre-
quencies above the Lamb frequency.

FORMULATION OF THE PROBLEM 
DERIVATION OF AN APPROXIMATE 

NONLINEAR EQUATION

Consider the vertical propagation of plane AGWs in
a plane isothermal atmosphere z ≥ 0 with the following
height (z) dependences of equilibrium pressure p0(z)
and density ρ0(z):

(1)

and with constant adiabatic speed of sound c0, adiabatic
index γ, Lamb frequency ωL, and scale height H (Lamb
1947; Eckart 1963):

(2)

We assume that the z axis is directed vertically upward,
opposite to the force of gravity, and that the free-fall
acceleration g is constant; ρ00 = ρ0(z = 0) is the gas den-
sity at the lower atmospheric boundary.

We also assume that, at z = 0, the atmosphere bor-
ders an absolutely rigid surface, which undergoes
steady-state (in time t) oscillations at frequencies ω1
and ω2 with the respective amplitudes A1 and A2 of ver-
tical oscillation velocity v :

(3)

Let us choose frequencies ω1 and ω2 in such a way
that the difference frequency Ω = ω2 – ω1 falls within
the frequency range “forbidden” for linear AGW prop-
agation:

(4)

We consider mainly the basic patterns of nonlinear
AGW generation at difference frequency Ω for the con-
ditions (1)–(4), under which the primary waves at fre-
quencies ω1 and ω2 are propagating.

To obtain an approximate analytic solution of the
problem, we use the well known system of gas-dynam-
ical equations (Lamb 1947; Eckart 1963):

p0 z( )
ρ00c0

2

γ
------------ z/H–( ),exp=

ρ0 z( ) ρ00 z/H–( )exp=

c0
2 γp0/ρ0, ωL γg/2c0, H c0/2ωL.= = =

v z 0= A1 ω1tcos A2 ω2t ∞– t +∞< <( ).cos+=

0 Ω ωL, ω1 ωL.>< <
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
which describe the plane motions of a compressible gas
in a gravitational field. Here, p = p0 + p' is the total pres-
sure; ρ = ρ0 + ρ' is the total density; p' and ρ' are the
pressure and density perturbations, respectively, and
v is the vertical oscillation velocity.

From the Euler (5) and continuity (6) equations for
the isentropic gas motion Eq. (7), we then derive the
following nonlinear equation, to within terms of the
second order of smallness in Mach number M = v/c0:

(8)

The pressure and density perturbations on the right-
hand side of this equation are linearly related to the
oscillation velocity:

(9)

(10)

LINEAR PROPAGATION 
OF ACOUSTIC-GRAVITY WAVES

As in the well-known book by Rudenko and
Soluyan (1975), we seek a solution to Eq. (8) by the
method of successive approximations, to within the
corresponding quantities of the second order of small-
ness:

(11)

where v(1), p(1), and ρ(1) and v(2), p(2), and ρ(2) are quan-
tities of the first and second order of smallness, respec-
tively.

In the linear approximation, we derive the following
equation for oscillation velocity from Eqs. (8) and (11)
(Lamb 1947; Eckart 1963):

(12)

Its solutions for upward propagating and nonpropagat-
ing waves with frequency ω and initial amplitude A
(at z = 0) are

ρ ∂v /∂t v∂v /∂z+( ) ∂p
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(13)

Note that by the solution of Eq. (12), we mean the real

part  = Re{v(1)} of Eq. (13). Therefore, in view of
the boundary condition (3) and using formulas (9),
(10), and (13), we obtain the following solutions for the
corresponding quantities in the linear approximation:

(14)

(15)

(16)

where  = Re{p(1)} and  = Re{ρ(1)}.

As is well known (Lamb 1947; Eckart 1963), it fol-
lows from (14)–(16) that, in propagating linear AGWs,
(i) the oscillation velocity amplitude increases with
height in inverse proportion to the square root of the
decreasing ambient density, while the amplitudes of
pressure and density perturbations decrease in direct
proportion to this quantity and (ii) the phase relations

between , , and  are different and depend
on ωL/ωj (j = 1, 2).

NONLINEAR GENERATION 
OF ACOUSTIC-GRAVITY WAVES 

AT THE DIFFERENCE FREQUENCY

From Eqs. (8) and (11), we derive the following
equation for the quantity v(2) of the second order of
smallness:
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Next, we substitute the linear solutions  Eq. (14),

 Eq. (15), and  Eq. (16) in the right-hand part
of Eq. (17) and separate the term responsible for the
generation of the difference frequency in the “driving
force.” For v(2), we then also derive a linear, but inho-
mogeneous equation:

(18)

where, for convenience, we introduced the following
quantities:
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(22)

To solve Eq. (18), it is necessary to use the natural
boundary condition

(23)

which corresponds to the absence of difference-fre-
quency waves at the z = 0 boundary surface, and to
chooses only those solutions that at Ω > ωL would def-
initely correspond to running waves in the z-axis direc-
tion. Representing the solution to Eq. (18) as a sum of
solutions for the corresponding homogeneous and inh-
omogeneous equations, we obtain, in view of Eq. (23),

(24)

(25)

(26)

The first term in the right-hand part of Eq. (25),
which is the solution of the inhomogeneous Eq. (18),
corresponds to AGWs propagating in the z-axis direc-
tion at frequency Ω < ωL, whose oscillation velocity
amplitude increases with height in inverse proportion to
the decreasing ambient density. At the same time, the
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corresponding quantity for linear AGWs at frequencies
ω1 and ω2 Eq. (14) increases with height in inverse pro-
portion to the square root of the decreasing ambient
density. The second term in the right-hand part of Eq.
(25), which is the solution of the corresponding homo-
geneous Eq. (18), corresponds to nonpropagating
(inhomogeneous) AGWs at the same frequency Ω < ωL,
whose oscillation velocity amplitude increases with
height considerably more slowly than that for propagat-
ing waves.

Thus, the solution (25) for v (2) describes the gener-
ation of two fundamentally different AGW groups at
difference frequency Ω < ωL. Since A12 Eq. (19)
includes eight terms, the first and second groups consist
of eight propagating and eight inhomogeneous AGWs.
The wave amplitudes and phases are different in each
group, while the phase velocities are the same. The lat-
ter implies that for parametric generation in an isother-
mal atmosphere, a fairly complex fringe pattern of the
AGW field is produced at a difference frequency Ω < ωL.

The numerically calculated Ω and ω1 dependences
(see Figs. 1, 2) of the normalized quantity Φ =
|Re{B12c0/A1A2}|, which characterizes the oscillation
velocity amplitude at the difference frequency for each
of the two AGW groups at t = 0 and z = 0, lead us to the
following conclusions:

First, as might be expected (Rudenko and Soluyan
1975), Φ reduces with decreasing difference frequency Ω .
However, in contrast to a homogeneous medium [i.e.,
for g = 0 (Rudenko and Soluyan 1975)], the relative rate
of this reduction decreases appreciably with increasing
initial generation frequency ω1 (see Fig. 1) in such a
way that even at ω1 ≈ 4ωL, Φ takes virtually the same
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maximum values over the entire frequency range 0 ≤
Ω ≤ ωL of interest (see Fig. 2).

Second, the fact that, in contrast to a homogeneous
medium (Rudenko and Soluyan 1975), Φ is nonzero at
Ω = 0 (see Fig. 1) and v(2) ≠ 0 for Ω = 0 and z > 0 [see
Eq. (25)], implies that an acoustic wind emerges in the
solar atmosphere whose direction coincides with that of
the AGW propagation. The velocity of this acoustic
flow increases with height in inverse proportion to the
decreasing ambient density.

NONLINEAR GENERATION 
OF ACOUSTIC-GRAVITY WAVES 

AT THE SECOND HARMONIC

It is also of interest to study the nonlinear generation
of propagating AGWs by disturbances from “forbid-
den” frequency range (Fleck and Schmitz 1993; Bodo
et al. 1994), This situation is realized if the sum of fre-
quencies exceeds the Lamb frequency: ω1 + ω2 > ωL,
with ω1 < ωL and ω2 < ωL. However, in order to simplify
analytic calculations, we consider here the nonlinear
generation of the second harmonic 2ω by assuming that
the following relations hold in the boundary condition (3):
ω1 = ω2 = ω < ωL and A1 = A2 = A/2.

We then find from Eqs. (9), (10), and (13) that

(27)

(28)

(29)

where

(30)

Using Eqs. (27)–(29), we transform Eq. (17), by
analogy with Eq. (18), to the form
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(32)

The solution of Eq. (31) that satisfies the boundary
condition (23) is a sum of the corresponding solutions
to the homogeneous and inhomogeneous equations:

(33)

where

(34)

(35)

As we see from Eqs. (33)–(35), disturbances from
the “forbidden” frequency range can generate propa-
gating AGWs at the second harmonic for ω > ωL/2,
whose oscillation velocity amplitude will increase with
height in inverse proportion to the decreasing ambient
frequency, i.e., in the same way as for linear AGWs at
the corresponding frequencies ω > ωL. The oscillation
velocity amplitude for nonpropagating waves at the sec-

ond harmonic in the frequency range ωL < 2ω ≤ 2ωL
increases with height faster than that for propagating
AGWs.

Thus, only at certain frequencies /2 ωL < ω ≤ ωL
of boundary-surface (z = 0) oscillations will nonpropa-
gating waves contribute to the AGW field at the second
harmonic and at considerable heights z > H.

Definitive conclusions can be drawn from the plot of
normalized quantity Ψ = c0 |B11|/A2 against initial gen-
eration frequency ω shown in Fig. 3. In the frequency

range  ≤ ω ≤ ωL, Ψ unambiguously characterizes the

frequency ω dependence of the oscillation velocity
amplitude for propagating AGWs at the second har-
monic, which falls off with increasing ω. At the same
time, the abrupt increase in Ψ at ω  0 (see Fig. 3),
whose asymptotic behavior is described by the relation

Ψ ≈  following from Eq. (34), does not imply a sim-

ilar monotonic increase in the amplitude of nonpropa-
gating acoustic-gravity oscillations.
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Indeed, from Eq. (33) with ω  0, we derive the
following approximate expression

(36)

from which it follows that the amplitude of acoustic-
gravity oscillations tends to zero as ω  0.

CONCLUSION

Let us formulate our main results and the conclu-
sions that follow from them.

We have investigated the parametric generation of
AGWs by using a simple model of a plane isothermal
solar atmosphere in the approximation of a fixed field
for vertically propagating AGWs with frequencies
above the Lamb frequency.

We showed that, in the frequency range of interest,
which lies below the Lamb frequency and is therefore
“forbidden” for the propagation of AGWs during their
linear generation, both nonpropagating (inhomoge-
neous) and propagating AGWs are generated at the dif-
ference frequency through the nonlinear interaction of
primary waves.

We established that, at the difference frequency, the
oscillation velocity amplitude for propagating AGWs
increases with height in inverse proportion to the
decreasing ambient density, i.e., appreciably faster than
for primary waves, for which the corresponding quan-
tity is known to increase in inverse proportion to the
square root of the ambient density.

We found that, at zero difference frequency, an
acoustic wave is produced in an isothermal atmosphere,
whose direction coincides with the direction of AGW
propagation, with its velocity increasing with height in
inverse proportion to the decreasing ambient density.
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Fig. 3. Normalized quantity Ψ = c0 |B11|/A2 versus dimen-
sionless generation frequency x = ω/ωL for γ = 1.4.
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We also analyzed the nonlinear generation of AGWs
at the second harmonic during the interaction of distur-
bances from the “forbidden” frequency range. At cer-
tain generation frequencies, nonpropagating acoustic-
gravity oscillations were found to mainly contribute to
the AGW field at the second harmonic outside the for-
bidden frequency range at considerable heights.

Thus, our results clearly suggest that nonlinear
effects during the nonlinear propagation of impulse
AGWs in the solar atmosphere give rise to propagating
AGW impulses in the frequency range forbidden for
linear AGW propagation and to an acoustic wind. The
latter assertion is consistent with calculations of nonlin-
ear AGW propagation in the solar atmosphere for their
impulse and tone–impulse generation modes (Ramma-
cher and Ulmschneider 1992; Fleck and Schmitz 1993;
Bodo et al. 1994; Sutmann and Ulmschneider 1995b).
However, the conclusion of Fleck and Schmitz (1993)
that the energy transfer by AGWs in the forbidden (for
them) frequency range is attributable only to the evolu-
tion of the shocks produced in the corresponding per-
turbations does not follow from this assertion. Indeed,
as we showed above [see Eq. (25)], the formation of
running AGWs in the forbidden frequency range begins
from the very outset of the primary-wave propagation
at the corresponding frequencies and is attributable to a
manifestation of the parametric wave generation at the
difference frequency. This process becomes pro-
nounced at considerable heights, which significantly
exceed the scale height of an isothermal atmosphere,
where shocks are, naturally, produced (Kosovichev and
Popov 1979; Rammacher and Ulmschneider 1992;
Fleck and Schmitz 1993; Bodo et al. 1994; Sutmann
and Ulmschneider 1995b; Cheng 1996). Clearly, the
evolution of shock waves in the corresponding distur-
bances will only emphasize the low-frequency genera-
tion, because, during the propagation of shock-wave
disturbances, the energy is known (Petukhov and Frid-
man 1980) to be redistributed in their spectra into the
relatively low-frequency range due to an increase in the
characteristic wave duration.
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Abstract—We carried out observations of mutual events in Saturn’s system of satellites as part of the
PHESAT95 International Program. Three light curves of these events were obtained. We developed a technique
of allowance for the influence of the law of light reflection from the surfaces of Saturn’s satellites, photometric
nonuniformity of their surfaces, the phase effect, and the illumination distribution in the satellite penumbra
(given the brightness distribution over the solar disk) on the light curve of an occultation or eclipse of one sat-
ellite by another. This technique is used to interpret our observations of these events and to determine the min-
imum separations between satellites or between a satellite and the shadow center of another satellite and the
corresponding timings. © 2001 MAIK “Nauka/Interperiodica”.

Key words: Solar system—satellites, planets, occullations, eclipses
INTRODUCTION

Over the period of Saturn’s revolution around the
Sun, the Earth crosses the planet’s equatorial plane
twice. Since Saturn’s regular satellites revolve in planes
close to its equator, mutual events can be observed:
occultations of one satellite by another (O) and eclipses
of one satellite by another (E). During observations of
these events, the fluxes from the satellites are measured
and the time is recorded. The reduction of photometric
observations of mutual events involves determining the
minimum separation between the satellite centers for
occultations or the separations between the center of
the eclipsed satellite and the shadow center of the
eclipsing satellite, as well as the corresponding time of
minimum of the brightness decline. The positional
accuracy of determining the relative positions of satel-
lites can reach 0 01 (Devyatkin and Bobylev 1995).
Observations of mutual events are valuable for devel-
oping the theory of satellite motion and for studying the
dynamical effects in Saturn’s system of satellites.

OBSERVATIONS OF MUTUAL EVENTS

We performed our photometric observations of
eclipses of satellites in Saturn’s system in August 1995
with the 1-m telescope at the Tien Shan Observatory of
the Fesenkov Astrophysical Institute (Ministry of Sci-
ence, Academy of Sciences of Kazakhstan), located
near the Great Almaty Lake (altitude 2800 m), using the
FP3U photometer-polarimeter of the Pulkovo Astro-

.″

* E-mail address for contacts: adev@gao.spb.ru
1063-7737/01/2703- $21.00 © 20193
nomical Observatory (Bergner et al. 1988) equipped
with a photomultiplier with a GaAs photocathode and a
detector thermoelectrically cooled to –20°ë. The
observations were carried out with a 26″ aperture, with
the background at an angular distance of 84″ sub-
tracted. The brightness of satellites was measured with
15-s exposure times. After each four or five measure-
ments, we visually checked the positions of the objects
within the photometer aperture. The measurements
were recorded in digital form with an IBM PC AT-286
computer in real time. The accuracy of individual mea-
surements was about 1%.

REDUCTION OF PHOTOMETRIC 
OBSERVATIONS OF MUTUAL EVENTS

We first reduced our observations by taking into
account the following peculiarities of our data: Since
all light curves of the events exhibited a temporal trend,
we removed the linear trend at all data points, except
those at which an event occurred, by least squares and
then used the same points to determine the mean flux
from the satellites before and after the event. Subse-
quently, we subtracted the mean flux from all fluxes.
Figures 1–3 show the observed total flux from the sat-
ellites before, during, and after the events. The flux
variations seen in the figures are attributable both to
mutual events and to variations in atmospheric trans-
parency. The latter strongly affected the records of the
first and third events (Figs. 1, 3). The accuracy of these
observations was low, and the signal was at or below
the fluctuation level. Nevertheless, we also interpreted
these results, although their significance turned out to
001 MAIK “Nauka/Interperiodica”
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be very low. The most accurate and reliable results were
obtained for event 4O6 (Dione occults Titan).

THE TECHNIQUE OF ALLOWANCE 
FOR THE PHOTOMETRIC PECULIARITIES 

OF EVENTS

The satellites for which the data are given in Table 1
belong to the regular group. All of these satellites, except
Hyperion, exhibit axial rotation synchronized with
their revolution period. Thus, the same side of the sat-
ellites always faces Saturn. The photometric data show
that some of Saturn’s satellites exhibit brightness vari-
ations with satellite orbital position (i.e., with orbital
phase angle), which is attributable to photometric non-
uniformity of the reflecting surface and to synchronous

F
/F

0

1.1

1.0

0.9

0.8

0.7
19.5 19.6 19.7 19.8

UTC, h

Fig. 1. The light curve of event 2E3 (August 10, 1995;
Enceladus eclipses Tethys). The observations are indicated
by dots, and the solid line represents the theoretical curve of
variations in the total flux from the two satellites.

Table 1.  Saturn’s system of regular satellites (Arlot and Thuillot
1993) (P is the revolution period, R is the radius, i is the orbital in-
clination, and V is the visual magnitude at average opposition)

Satellite P, day R, km i V

Mimas 0.942 196     1.563     12 . 9

Enceladus 1.370 250 0.026 11.7

Tethys 1.888 530 1.098 10.2

Dione 2.737 560 0.014 10.4

Rhea 4.518 765 0.347 9.7

Titan 15.945 2575 0.296 8.3

Hyperion 21.277 150 0.644 14.2

Iapetus 79.331 730 14.72 11.1

° m
rotation. When the light curves of such events are inter-
preted, these factors, as well as the law of light reflec-
tion from the satellite surface, the phase effect and the
illumination distribution in the penumbra must be taken
into account. The influence of photometric nonunifor-
mity on positional observations of Jupiter’s and Sat-
urn’s satellites was considered by Devyatkin and Boby-
lev (1988, 1991), Devyatkin (1991), and Devyatkin
et al. (1998). The effects were shown to be significant.
Our technique is based on the development of the ideas
in the above papers. In our case, we numerically con-
structed images for each eclipsed or occulted satellite.
The following factors were taken into account in the
satellite model image:

(1) The law of light reflection from the satellite sur-
face;

(2) Photometric nonuniformity of the reflecting sur-
face;

(3) The phase effect;
(4) The illumination distribution in the penumbra;
(5) The brightness distribution over the solar disk.
The first three factors were taken into account as

prescribed in the above papers. The brightness distribu-
tion over the disks of Saturn’s satellites was computed
by using ground-based observations and data from the
Voyager spacecraft. The intensity (brightness) distribu-
tion over the satellite disk I, relative to the satellite total
flux F, was calculated using the formula (Buratti and
Veverka 1984; Bonnie and Buratti 1984)

where f(α) = A + Bα + Cα2 is the phase function of the
surface; α is the phase angle; and µ0 and µ are the
cosines of the angles of incidence and reflection,
respectively. The parameters used to construct the
model, with allowance for photometric nonuniformity
of the reflecting surface, are listed in Table 2.

The phase effect, the illumination distribution in the
satellite penumbra, and the brightness distribution over
the solar disk were taken into account as prescribed by

I
F
--- A

µ0

µ µ0+
--------------- f α( ) 1 A–( )µ0,+=

Table 2.  Photometric data for Saturn’s satellites (Buratti and
Veverka 1984) (k is the ratio of the surface albedo of one hemi-
sphere to the surface albedo of the other hemisphere, and θ is the or-
bital phase angle at which the hemisphere with a larger albedo faces
the observer)

Satellite A B C f(0) k θ, deg

Mimas 0.7 –0.86 0.19 1.1 1.0 –
Enceladus 0.4 –0.51 –0.17 2.4 1.2    270
Tethys 0.7 –0.95 0.20 1.45 1.1 90
Dione 1.0 –1.24 0.50 1.0 1.8 90
Rhea 0.95 1.33 0.54 1.1 1.2 90
Titan – – – – 1.0 –
Hyperion – – – – 1.0 –
Iapetus – – – – 6.9 90
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Devyatkin et al. (1998). Having computed the bright-
ness distribution over the disk of the occulted or
eclipsed satellite, with allowance for all photometric
factors, and the illumination distribution in the “umbra +
penumbra” region (for eclipses), we simulated the
occultation or eclipse (the passage of the disk of one
satellite across the disk of another satellite or the pas-
sage of the shadow across the satellite disk) and deter-
mined the ratio of the flux from the occulted or eclipsed
satellite to the total flux from the satellite. These com-
putations were performed in the same way as those for
Jupiter’s Galilean satellites (Devyatkin et al. 1998).
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Fig. 2. The light curve of event 4O6 (August 13, 1995;
Dione occults Titan). The notation is the same as in
Fig. 1.
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Fig. 4. The effect of photometric nonuniformity of Dione’s
reflecting surface on the occultation light curve without
(dashed line) and with (solid line) allowance for photomet-
ric nonuniformity.
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Figures 4 and 5 present the model curves for the
central occultations of Dione and Iapetus by model sat-
ellites with the same radius as that of the occulted sat-
ellite. In our model, which takes into account photomet-
ric nonuniformity of the reflecting surface, we assumed
the albedo of one hemisphere of the satellite to be a fac-
tor of k larger than that of the other hemisphere (see
Table 2). Figures 4 and 5 show an occultation when
both the brighter and darker hemispheres of the satellite
(with equal areas) are observed. Clearly, when inter-
preting the observations, an error up to 0.2 and 0.4 in
the separation between the satellite centers of the radius
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Fig. 3. The light curve of event 2E3 (August 25, 1995; Encela-
dus eclipses Tethys). The notation is the same as in Fig. 1.
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Fig. 5. Same as Fig. 4 for Iapetus.
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for occultations of Dione and Iapetus, respectively, is
possible.

INTERPRETING THE PHOTOMETRIC 
OBSERVATIONS

Using the technique developed by Devyatkin et al.
(1998), we computed model occultation and eclipse
light curves for various minimum separations between
the components of the events [satellite minus satellite,
satellite minus (umbra + penumbra)] (see Fig. 6,
where  R1 is the occulting satellite or the satellite
shadow and R2 is the occulted or eclipsed satellite).
From these light curves, we deduced the flux ratio

Ei( )/E0, where Xi is the separation between the sat-
ellite centers (or the separation between the satellite
and shadow centers), E0 is the total flux from the satel-

Y j
min

R1

0Xi

 Ymin

X

Y

R2

Fig. 6. Geometric elements of the model event in Saturn’s
system of satellites.
lites before or after the event, and Ei is the total flux
from the satellites during the event at the separation Xi

between the components of the event. Subsequently, we
fitted the model curves to the observed curve and deter-
mined the sums of the squares of the deviations of the
observed values from the model values; as a result, we
chose the model curve with a minimum of the sum. The
position of the minimum of the model curve (relative to
the observed curve) was used to determine the time of
the observed brightness minimum for the occulted or
eclipsed satellite. The minimum separation corre-
sponding to the minimum of the light curve was a
parameter for computing the model curve.

Figures 1–3 show the observed light curves for Sa-
turn’s satellites and the computed model curves for
these events. The model curves were chosen by using
the criterion of a minimum of the squares of the resid-
uals. In all cases, the satellites were observed as a
whole, and we did not determine their individual
brightnesses. To determine the brightness decline in the
occulted satellites relative to the brightness of the unoc-
culted satellite, we used the ephemeris values of the sat-
ellite magnitudes.

Table 3 gives the results of our observations, their
comparison with the ephemeris values, and other rele-
vant data. As we see from the Table 3, the results for
event 2E3 (Enceladus eclipses Tethys) have a low accu-
racy and are most likely a demonstration of the difficul-
ties of such observations with photometers. It is prefer-
able to observe such events with panoramic detectors,
for example, with CCD arrays. In that case, both the
background and the satellite brightness can be
recorded, and transparency variations can be checked
using other objects within the frame.
Table 3.  Comparison of the ephemeris (Arlot and Thuillot 1993; Emel’yanov 1996) with our observations (tmin is the time of minimum
brightness, ∆m is the maximum total decline in brightness of the two satellites, and ∆R is the minimum separation between the satellite cen-
ters for occultations or between the satellite and shadow centers for eclipses)

Date of event Type of event Source of data tmin, UTC ∆m ∆R, km

Aug. 10, 1995 2E3 Arlot and Thuillot (1993) 19h39m13s 0.050m

Enceladus eclipses 
Tethys

Emel’yanov (1996) 19  39  22 0.112

Observations 19  38  48 0.178 366

         ±16 ±0.037 ±53

Aug. 13, 1995 4O6 Arlot and Thuillot (1993) 22h17m 38s 0.042m

Dione occults Titan Emel’yanov (1996) 22  18  20 0.046

Observations 22  18  12 0.031 2060

±2 ±0.002 ±21

Aug. 25, 1995 2E3 Arlot and Thuillot (1993) 22h09m 36s 0.029m

Enceladus eclipses 
Tethys

Emel’yanov (1996) 22  09  46 0.030

Observations 22  07  37 0.070 562

          ±73 ±0.052 ±74
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CONCLUSION

We have carried out photometric observations of
mutual events in Saturn’s system of regular satellites
with the 1-m telescope at the Tien Shan Observatory of
the Fesenkov Astrophysical Institute (Ministry of Sci-
ence, Academy of Sciences of Kazakhstan). Two
eclipse light curves and one occultation curve were
obtained. We interpreted the observations by using a
specially developed technique of allowance for the
influence of the law of light reflection from the surfaces
of Saturn’s satellites, photometric nonuniformity of
their surfaces, and the phase effect on the light curves
of occultations or eclipses of one satellite by another.
We determined the minimum separations between the
satellites or between one satellite and the shadow center
of another satellite, and the timings of the events. The
interpretation of the occultation of Titan by Dione on
August 13, 1995, proved to be most reliable.
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Stability of Periodic Solutions for Hill’s Averaged Problem 
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Abstract—We analyze the stability of periodic solutions for Hill’s double-averaged problem by taking into
account a central planet’s oblateness. They are generated by steady-state solutions that are stable in the linear
approximation. By numerically calculating the monodromy matrix of variational equations, we plot its trace
against the integral of the problem—an averaged perturbing function, for two model systems, [(Sun + Moon)–
Earth–satellite] and (Sun–Uranus–satellite). We roughly estimate the ranges of values for the parameters of sat-
ellite orbits corresponding to periodic solutions of the evolutionary system that are stable in the linear approx-
imation. © 2001 MAIK “Nauka/Interperiodica”.

Key words: Hill’s averaged problem, stability, satellite orbits
1. INTRODUCTION: 
STATEMENT OF THE PROBLEM

Here, we investigate the stability of periodic solu-
tions for Hill’s averaged problem with allowance for
the oblateness of a central planet. The families of these
periodic solutions are generated by steady-state solu-
tions, which are stable in the linear approximation.

The evolutionary system of differential equations
for elements was derived by independently averaging
the perturbing function of the problem over the mean
longitudes of perturbing bodies and a satellite of an
oblate planet. For completeness, we provide it here in
the standard notation of Keplerian elements for a satel-
lite orbit: semimajor axis a, eccentricity e, inclination i,
argument of the pericenter latitude ω, and longitude of
the ascending node Ω . The angular variables are asso-
ciated with the orbital plane of a coplanar system of N
distant perturbing points (inclined at angle ε to the
planet’s equatorial plane) and with the line of intersec-
tion of these planes.

The evolutionary system
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has the first integral—an averaged perturbing function,
which does not explicitly depend on τ:
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In Eqs. (1), γ is a constant parameter, and τ is a nor-
malized independent variable that monotonically varies
with physical time t. They are given by

where µ and a are, respectively, the product of the grav-
itational constant by the central planet’s mass and the
semimajor axis of the satellite orbit, which is constant
in the averaged problem under consideration; the same
parameters with subscript j refer to the jth perturbing
point; a0 is the planet’s mean equatorial radius, and
c20 is the coefficient of the second zonal harmonic of its
gravitational field.

System (1) has steady-state solutions (Lidov and
Yarskaya 1974; Kudielka 1994), for which

Previously (Vashkov’yak 1999b; Vashkov’yak and
Teslenko 2000), we constructed the families of sym-
metric and asymmetric periodic solutions generated by
the above equilibrium states for the specific parameters
ε, γ, and N. Here, our goal is to analyze the stability of
the periodic solutions we found.

The T-periodic solution of the evolutionary system (1),

specified by functions (τ), (τ), (τ), and (τ) such
that

(2)

is assumed to be known. Linearizing system (1), with
respect to the small deviations from the periodic solu-
tion (2)

yields a system of linear differential equations with T-peri-
odic coefficients relative to τ:

(3)

where z = col(z1, z2, z3, z4), A(τ + T) = A(τ) = ||ajk( (τ),

(τ), (τ), (τ))||, j, k = 1, 2, 3, 4.

Below, we give formulas for the elements of matrix A,
in which a tilde was omitted to save space:
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ĩ ω̃ Ω̃

a11 10 1 2e
2

–( ) 1 e
2

–( )
1/2–

i 2ω,sinsin
2

=

a12 10e 1 e
2

–( )
1/2

2i 2ω,sinsin=

a13 20e 1 e
2

–( )
1/2

i 2ω, a14cossin
2

0,= =
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
(4)

a21 5e 2 e
2

–( ) 1 e
2

–( )
3/2–

2i 2ωsinsin–=

– 32γe ε 1 e
2

–( )
3–

Ω ε icoscos(sinsin

– ε i Ω),cossinsin

a22 10e
2

1 e
2

–( )
1/2–

2i 2ωsincos–=

+ 8γ ε 1 e
2

–( )
2–

Ω ε isincos ε i Ωcoscossin+( ).sinsin

a23 10e
2

1 e
2

–( )
1/2–

2i 2ω,cossin–=

a24 8γ ε 1 e
2

–( )
2–

ε i Ωcoscoscos(sin–=

– ε i 2Ω),cossinsin

a31 16γe 1 e
2

–( )
3–

5 icos
2

1 ---–




=

+ 2ε 5 icos
2

4–( ) i Ω/ isincoscossin

+
1
2
--- ε 3 1 5 icos

2
–( ) 3 5 icos

2
–( ) 2Ωcos+[ ]sin

2





+ 2e 1 e
2

–( )
3/2–

1 e
2

– 5 icos
2

+[

– 5 1 e
2

– icos
2

+( ) 2ω] ,cos

a32 = 20γ 1 e
2

–( )
2–

2i
1
2
--- ε 3 2Ωcos+( )sin

2
1–sin

– 20 1 e
2

–( )
1/2–

2i ωsin
2

sin 4γ 1 e
2

–( )
2–

+

× 2εcosΩ 4 15 icos
2

– 10 icos
4

+( )/ i,sin
2

sin

a33 20 1 e
2

–( )
1/2–

e
2

isin
2

–( ) 2ω,sin=

a34 8γ 1 e
2

–( )
2–

Ωsin–=

× 1
2
--- 2ε 5 icos

2
4–( ) i/ isincossin

---+ ε 3 5 icos
2

–( ) Ωcossin
2

,

a41 16γe 1 e
2

–( )
3–

2 icos[–=

+ 2ε 2i Ω/ isincoscossin ε i 3 2Ωcos+( ) ]cossin
2

–

+ 2e 1 e
2

–( )
3/2–

i 5 2ωcos 3–( ) 2 e
2

–( ) 2–[ ] ,cos

a42 4γ 1 e
2

–( )
2–

i 2 ε 3 2Ωcos+( )sin
2

–[ ]sin{=

+ 2ε cosi 3 2 icos
2

–( ) Ω/ isin
2 }cossin

+ 2 1 e
2

–( )
1/2–

i 2 3e
2

5e
2

2ωcos–+( ),sin

a43 20e
2

1 e
2

–( )
1/2–

i 2ω,sincos–=



200 VASHKOV’YAK, TESLENKO
The stability of the zero solution for the system of
Eqs. (3) written in matrix form,

(5)

is known from the Lyapunov-Floquet theory to be
determined by eigenvalues ρ of the fundamental matrix
at time τ = T, which satisfies system (5) at Z(0) = E
(E is a unit matrix of the fourth order), i.e., the mono-
dromy matrix

(6)

The characteristic equation for ρ is

(7)

Note that the evolutionary system (1) and the varia-
tional Eqs. (3) and (5) can be reduced to canonical form
by passing from Keplerian elements to, for example,
Delone-type elements

The function W in the new variables is the Hamiltonian,
which does not explicitly depend on time either. It can
be shown that in the new (canonical) variables

the variational equations

can be derived by using the nondegenerate linear T-peri-
odic transformation

where detB = sin  ≠ 0, b11 =  = – (1 – )–1/2,

b12 = b13 = b14 = 0, b21 =  = b11 cos , b22 =  =

–(1 – )1/2sin , b23 = b24 = 0, b31 = b32 = b34 = 0, b33 = 1,
b41 = b42 = b43 = 0, and b44 = 1.

Matrix C is given by

[it is well known that matrix B(τ) can be theoretically
chosen in such a way that matrix C is constant; this is
the Lyapunov theorem on reducibility].

It is important to note that the characteristic Eq. (7)
is invariant for the above transformation [see, e.g., the
monograph by Malkin (1966)]. It has the well-known
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peculiar properties typical of the characteristic equa-
tion for a Hamiltonian system. According to these prop-
erties, in the fourth-degree equation

(8)

it has the reciprocal (complex conjugate) roots ρ1 = 1/ρ2
and ρ3 = 1/ρ4, with ρ1 = ρ2 = 1, because system (1) is
self-similar and because the first integral exists [see,
e.g., the monograph by Wintner 1967). The trace of
matrix M (the sum of its diagonal elements) is denoted
by TrM.

Using the above properties, as well as the relations
for multipliers ρj = exp(αjT) and characteristic indices

(9)

yields the stability condition for the zero solution of the
system of variational Eqs. (5)

The relations given below are used to check the
validity of calculations:

where a2 is the sum of the principal second-order
minors of matrix M.

Thus, investigating the stability of periodic solu-
tions for the problem under consideration reduces to
numerical integration of the evolutionary system (1)
together with the system of variational Eqs. (5). The
initial data for the integration of system (1) can be
obtained by independently solving the corresponding
boundary-value problems, which ensure that the peri-
odicity conditions for the solution are satisfied; the unit
matrix E is initial for the integration of system (5).

2. ASYMMETRIC PERIODIC SOLUTIONS

We analyze the stability of asymmetric periodic
solutions for two-model systems, SU [Sun–Uranus–
satellite] and SE [(Sun + Moon)–Earth–satellite], with
various parameters N, ε, and γ of the problem and vari-
ous semimajor axes of satellite orbits. These periodic
solutions are generated by steady-state solutions that
are stable in the linear approximation

The dependence of extreme values for the eccentric-
ity of a satellite orbit on integral W serves as a conve-
nient and descriptive characteristic of the family of
periodic solutions in our problem, while the depen-
dence of TrM on W characterizes the stability of these
solutions. The boundaries of the linear-stability region
in four-dimensional phase space of the problem can be
approximately determined from the shape of the pro-

ρ4
a3ρ

3
a2ρ

2
a1ρ a0+ + + + 0,=

a0 det M 1, a1 a3 Tr M,–= = = =

α j
1
T
--- ρ jln

1
T
--- ρ jln 1– ρ jarg 2kπ+( )+{ } ,= =

j 1 2 3 4; k , , , is an integer=( )

ρ j 1 j 1 2 3 4, , ,=( ) or 0 Tr M 4.< <=

det M 1, a2 2 Tr M 1–( ),= =

W W*; icos Ωcos 0; ω 0 π,= = = =( ).
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jections onto the (ω, e) and (Ω, i) planes of a periodic
solution with a maximum oscillation amplitude, for
which the linear stability is still retained.

We chose the values of γ for SU and SE given below
from the condition that the two natural periods of small
oscillations of a linearized system with constant coeffi-
cients were equal, so all four multipliers ρj are equal to
unity at the equilibrium point.

2.1. SU System 

In Fig. 1, the characteristics of the families found
previously (Vashkov’yak and Teslenko 2000) are indi-
cated in the (W, e) plane by dashed lines. The solutions
of these families are unstable even near the equilibrium
positions (W*, e*), which corresponds to the “hard”
loss of stability. The terminology used here is similar to
that used by Treshchev (1992). The pair of multipliers
ρ3 = ρ4 = 1 splits into two real values, one of which is
smaller than unity and the other is larger than unity.
This results in instability, because one of the character-
istic indices α4 = lnρ4/T becomes positive. The multi-
pliers ρ3 and ρ4 in the complex plane and their motion
as W varies are indicated in Figs. 3, 4, and 7 by open cir-
cles (recall that, in this case, ρ1 = ρ2 = 1 are indicated by
filled circles).

The solid lines in Fig. 1 smoothly extending the
curved dashed lines correspond to new periodic solu-
tions, which proved to be stable in the linear approxi-
mation for W* ≤ W < W1. This is reflected in Fig. 2,
where TrM is plotted against W. The value W = W1 cor-
responds to the bifurcation of solutions. The loss of sta-
bility for W = W1 is “soft.” The pair of multipliers ρ3 =
ρ4 = 1 for W > W*, which initially splits in two while
moving along a unit circumference, reach the points
with arguments  ≈ ±33° (W = W3). Then, they
return to the original value, and then split into two real
values, ρ3 < 1 and ρ4 > 1 (Fig. 4). For W > W1, the peri-
odic solutions are unstable, while the entire family ends
with circular orbits confined to the Laplace plane (W = W2,
Fig. 1). The instability of such orbits follows from our
previous results (Vashkov’yak 1974).

For W ≈ W1 (but W < W1), the periodic solution that
is stable in the linear approximation is close to the
boundary solution. Its projections onto the (ω, e) and
(Ω, i) planes are roughly elliptical in shape. Note that, in
the time equal to the evolution period T ≈ 58500 years, the
phase point makes one turn in the (Ω, i) plane and two
turns in the (ω, e) plane.

Note. Solutions of this type are not revealed by
equations linearized in the vicinity of the equilibrium
position. They are also peculiar in that the trajectories
in the (ω, e) plane do not enclose the stationary point
for W > W*. The existence of such solutions follows

N 1, ε 97 . 9, γ 1.6557356,°= = =

a 1 074 819 km.=

ρ3 4,arg
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from an analysis of the corresponding nonlinear prob-
lem (Vashkov’yak 1999a). Note the inaccuracy in for-
mula (40) from the above paper. The formula must be
of the form ω12 = –ω34 = ν, because ω34 < 0. Therefore,
the expression for Z3 and Z4 in formula (42) must be

It follows from an analysis of the solution with
W = W1 that, for a given model system and for the
assumed semimajor axis, the region of linear stability

Z3 r34 ντ ϕ34+( ), Z4cos r34 ντ ϕ34+( ).sin–= =

0.4

e

0.3

0.2

0.1

0
–5.0 – 4.5 – 4.0 –3.5 –3.0 –2.5

W

–2.0
W2W1W*
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Fig. 1. Characteristics of the families of asymmetric peri-
odic orbits in the W, e plane (SU system).

6.5
T

r 
M

6.0

5.5

5.0

4.5

4.0

3.5

3.0
– 4.4 – 4.2 – 4.0 –3.8 –3.6 –3.4

W
W1W3W*

Fig. 2. Trace of the monodromy matrix versus integral of the
problem (SU system, asymmetric solutions).
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of asymmetric periodic solutions can be described by
approximate relations

In order to qualitatively check our calculations, we
calculated the evolution of nearly periodic orbits for
W = W1 – 0.02 and W = W1 + 0.02. The initial data for
periodic solutions were varied by 10–3. Our calcula-

0.28 e 0.35, 55° i 125°, 5 . 5– ω 5 . 5,° °< < < < < <
74° Ω 106°, 4.18 W* W W1 3.65.–≈<≤≈–< <

ρ3 = ρ4 = 1

(a) (b)

33°

(a) (b) (c)
ρ3

ρ4
ρ3 < 1 ρ4 > 1

ρ3

ρ4

ρ3 < 1 ρ4 > 1

Fig. 3. Motion of the multipliers relative to a unit circumfer-
ence for the “hard” loss of stability (SU system): (a) W = W*,
TrM = 4; (b) W > W*, TrM > 4.

Fig. 4. Motion of the multiplicators relative to a unit circum-
ference for the “soft” loss of stability (SU system): (a) W ≥ W*,
TrM ≤ 4; (b) W = W3 < W1, TrM = 3.68; and (c) W > W1,
TrM > 4.
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0
– 4.65 – 4.55 – 4.45 – 4.35

W
W1W* W2

Fig. 5. Characteristics of the families of asymmetric peri-
odic orbits in the W, e plane (SE system).
tions show that the solution for W1 – 0.02 in the interval
200T essentially matches the unvaried (periodic) solu-
tion, while for W1 + 0.02, the difference reaches 90° in
ω even at τ ≈ 30T.

2.2. SE System 

Our calculations allow the sizes of the linear-stabil-
ity region to be estimated by using the following
approximate relations:

Figures 5–7 are similar to Figs. 1–3, respectively. The
loss of stability for W = W1 is “soft.” For W* < W < W1,
the pair of values ρ3 = ρ4 = 1 splits in two while remain-
ing on a unit circumference (Fig. 7). It merges into the
pair ρ3 = ρ4 = –1 for W = W1 and splits into two real val-
ues, –1 < ρ3 < 0 and ρ4 < –1, for W > W1. This results in
instability, because |ρ4| > 1.

Just as for the SU system, the family of periodic
solutions ends at the point (e = 0, W = W2) that corre-
sponds to unstable circular orbits confined to the
Laplace plane. Check calculations in the interval τ @ T
were performed both for W = W1 – 0.002 (the solution
is stable in the linear approximation) and for W = W1 +
0.002 [the solution is unstable, while |ω(τ)| reaches 90°
even at τ ≈ 20T].

Solutions of this type are peculiar in that the phase
point makes one turn in the time equal to the evolution

N 2, ε = 23 . 44, γ 1.9380817,°= =

a 37 267 km.=

0.058 e 0.168, 82 . 5 i 97 . 5, 5°– ω 5°,°°< < < < < <
70° Ω 110°, 4.58– W* W W1 4.55.–≈<≤≈< <
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T
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– 4.60 – 4.59 – 4.58 – 4.57 – 4.56 – 4.55 – 4.54
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W1W*

Fig. 6. Trace of the monodromy matrix versus integral of the
problem (SE system, asymmetric solutions).
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period (T ≈ 243 years) both in the (ω, e) plane and in the
(Ω, i) plane. They were previously obtained (Vash-
kov’yak and Teslenko 2000) for γ that differed only
slightly from that adopted in this section.

3. SYMMETRIC PERIODIC SOLUTIONS

Symmetric periodic solutions are generated by
steady-state solutions that are stable in the linear
approximation,

(W = W*; Ω = 0; ω = ±π/2).

The calculation of monodromy matrix M can be simpli-
fied by using the well-known property of the evolution-
ary system (1), according to which the transformation

leaves it invariant. Using this symmetry reduces the cal-
culation of M to finding matrix Z(T/2), with

The symmetric periodic solutions of the problem
under consideration (as well as their generating steady-
state solutions) are peculiar in that they exist only at a
sufficiently large inclination ε. Below, we therefore
consider only the SU model system, but with different
(compared to subsection 2.1) parameters γ and a:

N = 1, ε = 97 9, γ = 0.998989, a = 1189108 km.

This value of γ was chosen from the 3 : 2 commensura-
bility condition for the two natural periods of small
oscillations of a linearized system. Previously (Vash-
kov’yak 1999b), we constructed three families of peri-
odic solutions I, II, and III with periods  ≈ 50000 yrs,

 = 2 /3 ≈ 33 300 yrs, and  = 2  = 3  ≈
100 000 yrs, respectively, for the above parameters. In
this section, we give the derived dependences of TrM
on W, which allow a judgment to be made on the stabil-
ity of solutions from each of these three families.

The initial points A of these dependences in Figs. 8–
10 are determined by W = W*, TrM = 0, 1, 4, and ρ1 =
ρ2 = 1, while the multipliers ρ3 and ρ4 (corresponding
to periods , , and ) are given by the following
formulas, in which i is the imaginary unit:

τ τ , e– e, i i, ω ω, Ω– Ω–= = = = =

M DZ 1–
T /2( )DZ T /2( ),=

where D diag 1 1 1– 1–, , ,( ).=

.°

T1*

T2* T1* T3* T1* T2*

T1* T2* T3*

ρ3 4, 2πiT1*/T2*±( )exp πi±( )exp 1,–= = =

ρ3 4, 2πiT2*/T1*±( )exp 2πi/3±( )exp= =

=  1
2
---– 3

i
2
---,±

ρ3 4, 2πiT3*/T1*±( )exp 2πiT3*/T2*±( )exp= =

=  2πi±( )exp 1.=
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The arrows in Figs. 8–10 indicate the direction of
motion along the family characteristics from equilib-
rium position A; their dashed and solid segments corre-
spond to unstable and stable (in the linear approxima-
tion) solutions, respectively. In order not to overload
this paper with additional figures, we do not show the
pattern of motion of the multipliers relative to a unit cir-
cumference in the complex plane for these families, as
in the case of asymmetric solutions, but give only its
verbal description.

3.1. Family I 

The stability characteristic of this family (Fig. 8) has
a flat initial segment 1, in which 0 ≤ TrM ≤ 0.145. The
loss of stability is “soft.” For W1 ≤ W ≤ W*, the multi-
pliers ρ3 and ρ4, while splitting, move in opposite direc-
tions along a unit circumference from the point ρ3 =
ρ4 = –1; their arguments reach θ3 = 158° and θ4 = 202°,
which corresponds to the maximum value of TrM =

ρ3

ρ4

(a)

ρ3 = ρ4 = –1 ρ4 < –1 –1 < ρ3 < 0

(c)(b)
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Fig. 7. Motion of the multipliers relative to a unit circumfer-
ence for the “soft” loss of stability (SE system): (a) W* <
W < W1, 0 < TrM < 4; (b) W = W1, TrM = 0; and (c) W > W1,
TrM < 0.

Fig. 8. Trace of the monodromy matrix versus integral of the
problem (SU system, symmetric solutions, family I).
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0.145. Subsequently, they both return to the original
point. The values of θ3 and θ4 can be determined from

which holds only for ρ1 = ρ2 = 1 (of course, this formula
is also valid for the previously considered asymmetric
periodic solutions that are stable in the linear approxi-
mation).

For W2 < W < W1 (segment 2), the solutions are
unstable (TrM < 0), while the multipliers ρ3 and ρ4 split
into two real values, –1 < ρ3 < 0 and ρ4 < –1, which sub-
sequently return to the point ρ3 = ρ4 = –1 at W = W2.

For W3 < W < W2 (segment 3), these multipliers run
along a unit circumference to the point ρ3 = ρ4 = 1 and
merge with the stationary multipliers ρ1 and ρ2 at W = W3.
The solutions are stable in the linear approximation.

The next segment 4 (W3 < W < W4, TrM > 4) corre-
sponds to unstable solutions, when the multipliers ρ3
and ρ4 diverge along the real axis and then return to the
point ρ3 = ρ4 = 1 at W = W4.

For W4 < W < W5 (segment 5), the solutions are sta-
ble in the linear approximation, while the multipliers ρ3
and ρ4 traverse the path back along a unit circumference
and merge at the point ρ3 = ρ4 = –1 for W = W5.

Subsequently, they again diverge along the real axis.
For W5 < W < W6 (segment 6), the solutions are unsta-

2 θ3 4,cos Tr M 2,–=
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M
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· W4W5

6 2

35

4
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1

W1

Fig. 9. Trace of the monodromy matrix versus integral of the
problem (SU system, symmetric solutions, family II).
ble, while the family itself ends with a circular orbit
confined to the Lapace plane (W = W6).

The ranges of extreme values for the elements of
stable (in the linear approximation) orbits are given in
Table 1. We see from this table that these ranges are
broadest in segment 1, smaller in segment 3, and very
narrow in segment 5.

3.2. Family II 

The stability characteristic of this family (Fig. 9) has
a solid initial segment 1, in which 1 ≤ TrM ≤ 4. The loss
of stability is “soft.” For W* ≤ W ≤ W1, the multipliers
ρ3 and ρ4 move along a unit circumference from the
points with arguments θ3, 4 = ±120° to the point ρ3 =
ρ4 = 1 (TrM = 4, W = W1). Subsequently, they split into
two real values (0 < ρ3 < 1, ρ4 > 1). We see from Fig. 9
that, as they move along the characteristic, instability
and linear-stability segments are encountered. For W2 <
W < W1 and TrM > 4, the solutions are unstable (seg-
ment 2).

After reaching the point ρ3 = ρ4 = 1 (W = W2,
TrM = 4), these multipliers, while splitting, move along
a unit circumference to the point ρ3 = ρ4 = –1 (W = W3,
TrM = 0), and the solutions in the corresponding seg-
ment 3 are stable in the linear approximation.

5

4

3

T
r 

M

2

1

0
–0.4 –0.2 0 0.2 0.4 0.6 0.8
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W*W1W2

A

Fig. 10. Trace of the monodromy matrix versus integral of
the problem (SU system, symmetric solutions, family III).
Table 1.  Extreme values of the elements for family I orbits

Segment no. emin emax imin, deg imax, deg ωmin, deg ωmax, deg Ωmin, deg Ωmax, deg

1 0.343–0.383 0.343–0.455 41–71 71–100 85–90 90–95 –2040 0–20
3 0.325–0.385 0.535–0.600 30–34 106–110 74–79 100–106 –284–25 25–28
5 0.055–0.600 0.515–0.530 47–49 92–94 ≈65 ≈115 –154–13 13–15
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Table 2.  Extreme values of the elements for family II orbits

Segment no. emin emax imin, deg imax, deg ωmin, deg ωmax, deg Ωmin, deg Ωmax, deg 

1 0.130–0.343 0.343–0.460 ≈71 71–74 73–90 90–107 –2.440 0–2.4
3 0.19–0.22 0.72–0.73 20–22 124–126 ≈60 ≈120 –304–36 36–38
5 0.28–0.29 0.75–0.76 ≈18 ≈126 ≈56 ≈124 ≈–40 ≈40

Table 3.  Extreme values of the elements for family III orbits

emin emax imin, deg imax, deg ωmin, deg ωmax, deg Ωmin, deg Ωmax, deg 

0.343–0.370 0.343–0.545 34–71 71–106 78–90 90–102 –25–0 0–25
Subsequently, the multipliers ρ3 and ρ4, having met,
split into two real values (–1 < ρ3 < 0, ρ4 < –1), diverge
along the real axis, and then again merge at the point
ρ3 = ρ4 = –1 (W = W4, TrM = 0). Segment 4 corre-
sponds to unstable solutions.

In segment 5, the multipliers ρ3 and ρ4 traverse a
unit circumference in the opposite direction (from the
point ρ3 = ρ4 = –1 to the point ρ3 = ρ4 = 1) in a narrow
range W5 ≤ W ≤ W4, and the solutions are stable in the
linear approximation.

Finally, for W > W5 and TrM > 4, all the solutions
of family II are unstable, and the multipliers split into
two real values (0 < ρ3 < 1, ρ4 > 1). This family ends
with highly elongated elliptic orbits, when emin  1,
emax  1, and the evolution period T  0.

The ranges of elements for the orbits that are stable
in the linear approximation are given in Table 2.

3.3. Family III 

The stability characteristic of this family consists of
one solid segment, W2 ≤ W ≤ W* (Fig. 10). The multi-
pliers ρ3 and ρ4, while splitting, first move along a unit
circumference from the point ρ3 = ρ4 = 1. For TrM ≈
0.5 and W = W1, they reach the points with arguments
θ3, 4 ≈ ±138° and then return to the original point for W =
W2 and TrM = 4. Family III of periodic solutions is
peculiar in that it “ends” with a solution of family I for
W = W2 (see the point W = W2, TrM = 0 in Fig. 8). The
ranges of elements for the orbits corresponding to this
family are given in Table 3.

4. CONCLUSION

This article completes our series of papers on the
steady-state and periodic solutions for Hill’s averaged
problem with allowance for planetary oblateness. The
orbits, whose elements are either invariable or vary with
the same period under the combined effect of secular
perturbations from planetary oblateness and from a dis-
tant attracting point, correspond to these solutions. Such
steady-state and periodically evolving satellite orbits in
circumplanetary regions, where the effects of the above
two factors are approximately the same, can be unsta-
ble and stable (at least in the linear approximation). Our
estimates of the linear-stability regions for periodic
ASTRONOMY LETTERS      Vol. 27      No. 3      2001
solutions, both symmetric (Tables 1–3) and asymmetric
(Subsections 2.1, 2.2), show that the ranges of extreme
values for the elements of periodically evolving orbits
that are stable in the linear approximation are relatively
narrow. The orbits of the natural satellites around the
giant planets discovered to date “avoid” the peculiar
regions of approximately equal influence, and their
evolution is mainly determined either by planetary
oblateness (for close satellites) or by solar attraction
(for distant satellites). This circumstance, in particular,
for Uranus’s system of satellites, can apparently be
associated with a small “margin of linear stability” of
the steady-state and periodically evolving orbits con-
structed in terms of Hill’s averaged problem with
allowance for planetary oblateness. It is therefore of
interest to consider model problems that take into
account additional perturbing factors, which can quali-
tatively change the pattern of evolution. Such factors
can primarily include the inclination of the ecliptic, the
orbital ellipticity of a perturbing point, and the parallac-
tic terms of the force function of its attraction.
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