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OBITUARY

 

In Memory of Vitaly Adol’fovich Schweigert
(August 30, 1955–April 3, 2001)
Vitaly Adol’fovich Schweiger, an eminent theoreti-
cal physicist and expert in the fields of gas discharge
physics, dusty plasmas, and solid-state physics, died of
brain cancer on April 3, 2001, being just 45 years old,
full of energy, and at the height of his scientific achieve-
ments.

Vitaly Schweigert was born August 30, 1955, in the
town of Krasnokutsk, Kazakhstan. After graduating
with honors from the Physics Department at Novosi-
birsk State University in 1977, he worked for more than
20 years in Novosibirsk at the Institute of Theoretical
and Applied Mechanics of the Russian Academy of Sci-
ences. In 1983, he defended his candidate’s dissertation
and, in 1997, his doctoral dissertation. Both disserta-
tions were devoted to numerical simulations of gas dis-
charges. Vitaly Schweigert was one of the first scien-
tists to demonstrate the potentialities of numerical sim-
ulations in gas discharge physics and one of the
pioneers in developing multidimensional kinetic codes
based on Boltzmann equation solvers and the Monte
Carlo and particle-in-cell techniques. Vitaly Schweigert
applied these codes to study the fundamental effects
1063-780X/01/2711- $21.00 ©1000
related to the nonlocality of the electron energy distri-
bution functions in gas discharges. His ability to effi-
ciently simulate very complicated physical systems
with disparate time and space scales was extraordinary.

The scientific productivity of Vitaly Schweigert
exploded in the past decade when he applied his simu-
lation capabilities to other areas, such as the physics of
fullerenes, the formation of atomic clusters and dusty
crystals, the structure of two-dimensional Wigner crys-
tals, quantum dots, phase transitions, vortex matter in
mesoscopic superconductors, and the design of semi-
conductor devices.

Vitaly Schweigert was a creative person who gener-
ated a lot of ideas. As a result of sharing his ideas and
numerical codes with other scientists, he co-authored
more than fifty articles during the last five years. In
total, he published 156 papers in the leading scientific
journals. His recent papers (1996–2000) on mesoscopic
superconductivity and dusty plasmas were widely rec-
ognized and often quoted, each of them receiving, on
average, 30–40 citations.

Vitaly Schweigert’s computational ability was in
high demand by many experimental and theoretical
groups in Russia, USA, Germany, Belgium, and the
Netherlands. Owing to those numerous collaborations,
Vitaly Schweigert had more than thirty co-authors
around the world. His remarkable research was sup-
ported by numerous funding agencies in Russia and
abroad.

The colleagues and friends of Vitaly Schweigert
knew him as a sincere and honest man who was devoted
to science. His warm and generous personality, his con-
siderable expertise, and his enthusiasm for life will be
sorely missed by his family, friends, and colleagues.

N. L. Aleksandrov, É. M. Bazelyan,
I. D. Kaganovich, F. M. Peeters, Yu. P. Raizer,

A. T. Rakhimov, A. N. Starostin,
M. N. Shneider, I. V. Schweigert,

L. D. Tsendin, and others
(in total, 37 signatures)
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Abstract—Using a highly nonparaxial magnetic confinement system with an internal levitated ring as an exam-
ple, it is shown that, in a plasma near the threshold for ideal MHD instability, the external heating and the orig-
inal local dissipative processes may give rise to and maintain self-consistent nonlinear MHD convection, which
leads to an essentially nonlocal, enhanced heat transport. A closed set of equations is derived that makes it pos-
sible to describe such convective processes in a weakly dissipative plasma with β ~ 1. Numerical simulations
carried out with a specially devised computer code demonstrate that the quasisteady regime of nonlinear con-
vection actually exists and that the marginally stable profile of the plasma pressure is maintained. A large
amount of data on the structure of the nascent convective flows is obtained and analyzed. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

One of the fundamental problems hindering the cre-
ation of an economically competitive and ecologically
attractive magnetic confinement fusion reactor is that of
achieving higher values of the parameter β = 8πp/B2

(which is the ratio of the plasma pressure to the mag-
netic field pressure) as compared with those available in
modern-day tokamaks. By increasing the β value, it is
possible to raise the density of the energy released in
fusion reactions at a fixed maximum magnetic-field
strength and, thus, to make the reactor more compact
and improve its economic benefits. Moreover, achiev-
ing the conditions under which a plasma with β ~ 1 can
be confined for a sufficiently long time opens promis-
ing new ways to create a low-radioactivity fusion reac-
tor based on the neutronless D–3He reaction. Unfortu-
nately, despite the advantages of tokamaks, progress
toward achieving high β values in these devices is ham-
pered by the conditions for tokamak plasmas to be equi-
librium and MHD stable. Thus, in present-day experi-
ments, the tokamaks operate at β < 0.1; moreover, even
the most optimistic theoretical estimates show that, in
tokamaks, the parameter β cannot be higher than 0.2–
0.3. On the other hand, the possibility of creating mag-
netic systems capable of confining plasmas with β ~ 1
does not contradict basic principles. A number of such
systems have already been proposed and investigated
experimentally. For example, in experiments with a lev-
itated magnetic octopole, β values amounted to about
44% [1]. In this context, it is expedient not only to
investigate possible ways of increasing β values in
tokamaks but also to carry out a more systematic anal-
ysis of the potential of alternative magnetic systems for
confinement of a plasma with β ~ 1.
1063-780X/01/2711- $21.00 © 0907
The first step in the analysis of alternative systems is
to examine the equilibrium and MHD stability of the
plasma. There is a fairly wide class of magnetic con-
finement systems capable of ensuring the equilibrium
of a plasma with β ~ 1. However, the condition for the
plasma to be MHD stable substantially reduces this
class. Regardless of the value of β, magnetic systems in
which MHD instabilities of a confined plasma are sup-
pressed most efficiently are those in which the mag-
netic field strength B has an absolute minimum, i.e., in
which the vacuum magnetic field in the plasma confine-
ment region increases toward the plasma periphery in
all directions. However, it is well known that the only
systems where the plasma can be confined entirely
inside the minimum-B region are open magnetic
devices. In systems in which the confinement region is
bounded by a closed magnetic surface, a softer aver-
aged minimum-B condition can only be provided. In
such systems, the main MHD instabilities are sup-
pressed if the parameter β is lower than a certain critical
value (which is, as a rule, substantially smaller than
unity); an increase in β above this critical value is pre-
vented by the onset of unstable ballooning modes.

At the same time, there is an alternative approach to
the problem of MHD stability in confinement systems
that possess neither an absolute nor average minimum B.
The essence of this alternative approach consists in the
following: convective MHD modes can be stable not
only in minimum-B systems, but also in systems with-
out absolute or average minimum B if the plasma pres-
sure decreases sufficiently gradually toward the periph-
ery of the confinement region. In the ideal isotropic
one-fluid MHD model, the plasma pressure profile at
the stability margin of convective modes satisfies the
2001 MAIK “Nauka/Interperiodica”



 

908

        

PASTUKHOV, CHUDIN

                                                    
condition S ≡ pUγ = const, where U = /B is the spe-

cific flux tube volume, γ is the adiabatic index, and S is
a single-valued function of the entropy density of a
magnetized plasma. It is important to note that, because
of the condition for the entropy density to be constant,
convective modes are marginally stable for any β value
consistent with plasma equilibrium. Of course, in such
systems, MHD modes that are not convective in origin
(e.g., kink modes in toroidal configurations) may be
unstable, so that the stability of these modes is to be
proved when analyzing any particular magnetic con-
finement system. For some systems, the restrictions
imposed on β values by these modes are not too strin-
gent, β ~ 1.

The existence of marginally stable pressure profiles
(MSPPs) was discussed as early as the late 1950s [2–4].
More recently, papers were published that dealt with
marginally stable equilibria of plasmas with β ~ 1 in
field-reversed configurations (FRC) [5] and with the so-
called divertor stabilization of plasmas in an axisym-
metric mirror system [6, 7]. Also, the concept of a
dipole reactor was developed [8] and a conceptually
similar idea of a mirror system with a levitated ring,
which forms an FRC, was originated [9, 10]. In these
papers, a study was made of MHD stable plasma states
in systems without minimum B. Marginally stable
plasma states have also been discussed in connection
with research on the Earth’s magnetosphere [11–13].

The above alternative method for stabilizing mag-
netically confined plasmas is of practical interest when
an MSPP admits a substantial (orders-of-magnitude)
decrease in the plasma pressure at the periphery. It is
only in this case that the MSPP can be made consistent
with the boundary conditions for the power absorption
in the peripheral regions of high-temperature plasmas
confined in magnetic devices. Since the characteristic
pressure gradient corresponding to an MSPP is com-
pletely determined by the relative gradient of U (i.e., by
the magnetic field line curvature), the alternative
method in question is efficient only for highly non-
paraxial systems and does not hold promise for many
traditional magnetic systems, which are designed for
confinement of paraxial plasmas (|—p/p| @ |—U/U|). The
effects of the nonparaxial nature of a confinement sys-
tem can be made more pronounced by forming a sepa-
ratrix surface at the plasma periphery. The separatrix
surface should contain lines and points at which the
magnetic field vanishes. It can be seen that, as the sep-
aratrix surface is approached, U  ∞, and the plasma
pressure corresponding to an MSPP vanishes. Note that
the above considerations are, on the whole, valid under
the assumptions used in other hydrodynamic models. In
particular, MSPPs that drop off near the external sepa-
ratrix to zero were obtained when analyzing the diver-
tor stabilization of a plasma in both the Chew–Gold-
berger–Low anisotropic collisionless hydrodynamic
model [7] and in the Kruskal–Oberman semi-kinetic
model [14, 15]. Moreover, the MSPPs obtained using

dl∫°
 these models decrease more rapidly toward the plasma
periphery than those obtained using the simplest isotro-
pic MHD model. In some papers, MSPPs were also
analyzed with allowance for the plasma pressure
anisotropy [11–13, 15] and the restrictions associated
with ballooning modes [13, 16–18].

Note that a detailed analysis of MSPPs, being very
important in itself, is, at the same time, only the first
necessary step in the study of the above alternative
method for plasma stabilization. The next fundamental
problem to be investigated is that of maintaining a sta-
ble plasma state under plasma heating and energy
absorption at the plasma periphery and in the presence
of the original local transport processes that distort the
MSPP. In turn, the distortion of the pressure profile vio-
lates the stability condition in certain plasma regions
and, thus, may cause a rapid large-scale ejection of a
plasma onto the wall. In the approach under discussion,
it is, as a rule, intuitively assumed that this undesirable
scenario is impossible and that the plasma dynamics is
dominated by the tendency to self-consistently restore
and maintain the MSPP. An analogous effect is known
from the investigations of thermal convection in various
natural objects. On the other hand, it is well known that
nascent self-consistent convection is a complicated
nonlinear phenomenon and is capable of substantially
enhancing transport processes. The above consider-
ations show that maintaining the MSPP self-consis-
tently is a fairly nontrivial task, which requires a thor-
ough theoretical analysis. Here, for a relatively simple
magnetic configuration (which, nonetheless, reflects
the most distinguishing features of nonparaxial mag-
netic confinement systems), we develop a model of
self-consistent MHD plasma convection maintained by
the energy input into the plasma and by the original
classical transport processes. Numerical simulations
based on this model made it possible to reveal the main
properties of this convection, to calculate the final
(anomalous) heat flux, and to demonstrate that the con-
vection is capable of maintaining the plasma near the
state of marginal stability.

The paper is organized as follows. In Section 2, we
discuss the plasma configuration under analysis in the
context of equilibrium, stability, and the relevant β
limit. In Section 3, we employ the one-fluid MHD
model with an isotropic plasma pressure in order to
derive a self-consistent set of equations for describing
plasma convection and plasma transport processes. In
Section 4, this set of equations is adapted to a computer
code. In Section 5, we discuss the results of numerical
calculations. In Section 6, we briefly summarize the
results obtained.

2. PLASMA EQUILIBRIUM AND STABILITY
IN A MODEL MAGNETIC CONFIGURATION

In this paper, we restrict ourselves to considering
MHD convection near the state of marginal stability of
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
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a plasma in a system with an internal levitated ring
(such as a dipole reactor, which was discussed in the
Introduction [8]) and in a conceptually similar mirror
system with a reversed magnetic field—the MIRAGE
(Mirror-Internal-Ring Axisymmetric GEometry) sys-
tem [9]. The theory of plasma confinement in such
magnetic systems is now being actively developed, and
experiments on the “dipole confinement” of a plasma
have already begun in the LDX device [19].

Figure 1 shows a schematic of the magnetic config-
uration of the MIRAGE device, which is a simple axi-
symmetric mirror cell with a vertical axis and a levi-
tated ring carrying a current opposite to the current in
the external (mirror) coils. The currents in the ring and
external coils are chosen in such a way as to form a
magnetic configuration of the compact torus type. Spe-
cifically, around the ring, there is a toroidal confine-
ment region in which the closed lines of the poloidal
magnetic field enclose the ring. The confinement region
is bounded from the outside by a separatrix, which
exhibits two magnetic null points. On the outside of the
separatrix, the magnetic field lines are open: they pass
through the magnetic mirrors, forming a natural diver-
tor whose absorbing plates are, in fact, infinite in area.
The equilibrium of a finite-β plasma in such a system
was investigated by Popovich and Shafranov [10]. The
problem reduces to that of solving the Grad–Shafranov
equation without the current function; the relevant
plasma pressure profile presented as a function of the
magnetic flux ψ is shown in Fig. 2, where ψc and ψs

correspond to the surface of the internal levitated ring
and to the separatrix, respectively. In the inner region
(ψc < ψ < ψm), the plasma is MHD stable, because
p'(ψ) > 0. In the outer region (ψm < ψ < ψs), the pressure
profile is marginally stable: S(ψ) ≡ pUγ = const. A
dipole confinement system differs from the system
illustrated in Fig. 1 only in that, when the distance
between the chamber wall and the levitated ring is suf-
ficiently large, the MSPP is capable of ensuring a suffi-
ciently low pressure at the plasma periphery even in the
absence of a separatrix. In Fig. 2, this case corresponds
to the limit ψs  ∞.

Because of the complexity of the Grad–Shafranov
equation, it is very difficult to investigate the develop-
ment of convective modes against the background of a
two-dimensional unsteady plasma equilibrium with β ~ 1.
For this reason, it is expedient, at least in the first step,
to analyze a simpler, one-dimensional, equilibrium
plasma configuration possessing the most basic proper-
ties of the above-described two-dimensional equilib-
rium configurations. For this purpose, instead of the
configuration illustrated in Fig. 1, we consider an infi-
nite cylindrical equilibrium plasma column with a
cylindrical conductor of radius rc at its axis. In other
words, we consider a Z-pinch configuration in which
the plasma is originally in equilibrium with the mag-
netic field created by both the current flowing in the
central conductor and the diamagnetic current flowing
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
along the column. In this model configuration, the
plasma pressure profile ψ remains the same as that
shown in Fig. 2 (for ψs  ∞), but the magnetic flux ψ
depends only on the radius. The separatrix itself and its
effect on the development of the convective modes are
modeled by appropriately choosing the boundary con-
ditions at the outermost magnetic surface of radius rs .

The equilibrium and stability conditions for plasmas
in such configurations were investigated in [4, 10].
Nevertheless, for our purposes, it is expedient to rewrite
these conditions in a different form. To do this, we pass
over from the equilibrium magnetic field B ≡ Bθ and
pressure p to two new quantities that are convenient for

describing the convection, specifically, J = /U =

B/ , which is the Jacobian of the transformation to
flux coordinates, and the entropy function of a magne-
tized plasma, S = p/Jγ, where γ is the adiabatic expo-

π
2 πr

1

2

3

2

ψc0 ψm ψs

p

Fig. 1. Schematic of a magnetic confinement system with an
internal levitated ring: (1) levitated ring, (2) external field
coils, and (3) separatrix.

Fig. 2. MSPP in a confinement system with an internal lev-
itated ring and a separatrix.
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nent. In terms of these quantities, the equilibrium equa-
tion can be written as

(1)

In cylindrical coordinates (r, θ, z), the standard varia-
tional stability criterion has the form

(2)

where x is an arbitrary plasma displacement from equi-
librium conditions, and the prime on the equilibrium
parameters indicates the radial derivative d/dr. In crite-
rion (2), the first two positive definite terms reflect the
perturbations of the longitudinal and transverse mag-
netic-field components, respectively, and the third term
accounts for adiabatic plasma compression. The last
two alternating-sign terms can cause an instability.

Since the z coordinate is an analogue of the toroidal
angle ϕ, we assume that all of the physical quantities
are periodic in z: f(z) = f(z + 2πR). Then, we can expand
the displacement x in a Fourier series in which all of the
harmonics ~exp{inz/R + imθ} are independent because
the equilibrium plasma state is uniform in z and θ. The
perturbations with m = 0 and m ≠ 0 correspond to insta-
bilities of different origins. The perturbations with m = 0
correspond to the convective flute instability, during
which the transverse magnetic field remains unper-
turbed and

(3)

In this case, the stability criterion (2) for the equilib-
rium state (1) can be rewritten as

(4)

The first term in this criterion can be reduced to zero by
appropriately choosing ξz, in which case the condition
for the equilibrium plasma state to be stable against
convective modes simplifies to S ' ≥ 0. Note that, near
the marginal stability (S ' = 0), the most dangerous con-
vective modes satisfy the condition ∇  · (x⊥ J) = 0. Con-
sequently, for any values of β, the longitudinal mag-
netic field also remains unperturbed. At marginal stabil-
ity, the equilibrium equation (1) is easy to integrate; the
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resulting equation reduces to the following algebraic
equation for J at constant S:

(5)

For m ≠ 0, the compression term in criterion (2) can
be reduced to zero by ensuring the equality ∇  · x = 0
through the proper choice of ξθ. The transverse mag-
netic field perturbation, described by the second term in
criterion (2), can be minimized by choosing the pertur-
bations for which ξz  0 and n  ∞, with the
product nξz being fixed. As a result, the θ-averaged cri-
terion (2) has the form

(6)

The positive definite term in criterion (6) can be
reduced to zero by appropriately choosing the quantity
nξz in the expression for ∇  · (x⊥ J). As a result, we arrive
at the following stability criterion for the m = 1 mode:

(7)

This criterion guarantees that the modes with m ≥ 2 are
also stable. Note that, for γ > 1, the stability of all
modes with m ≥ 2 is guaranteed by the stability condi-
tion S ' ≥ 0 for the convective mode [4]. We can readily
see that the stability condition for the m = 1 mode is
governed by the surface current density and that the
most dangerous perturbation is the displacement of the
flux tube as a whole, accompanied by a slight incom-
pressible deformation. According to Kadomtsev’s clas-
sification [4], this perturbation should be considered as
a sort of current kink mode that is short-wavelength in
the z direction. Since the m = 1 mode perturbs the mag-
netic field and the current is purely diamagnetic, the
corresponding instability occurs only in a finite-β
plasma. Taking into account the equilibrium equation (1),
we can write condition (7) in the form rJ ' ≤ –3J/2, from
which one can readily see that the MSPP for the
convective mode fails to satisfy condition (7) at β ≡
2SJ (γ – 2)/r2 > 2/3γ. On the other hand, as expected, the
plasma is stable against all of the modes in the inner
region where p' > 0. Consequently, if β ≤ 2/3γ at the
magnetic surface rm at which the pressure is maximum,
then the plasma stability is governed only by the m = 0
convective flute mode. At higher maximum plasma
pressures, condition (7) for the MSPP consistent with
Eq. (5) fails to hold at a certain magnetic surface of
radius r1 > rm . Therefore, in the region rm < r < r1, the
MSPP should be determined by condition (7). For this
MSPP, Eq. (1) implies that β is a linear function of
radius, β = 1 – (3γ – 2)r/3γr1. For a sufficiently large
ratio r1/rm, we have βmax = β(rm)  1. The above anal-
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ysis also shows that, because, in the systems under con-
sideration, there is an inner region where p'(ψ) > 0 and
an outer region with an MSPP, the plasma is a priori
stable against large-scale kink modes like “tilting” (m = 1,
n = 1) and “twisting” modes (m = 1, n = 2), which are
the most dangerous and destructive in field reversed
configurations (FRC) [20, 21].

The above restrictions on β values should be
regarded merely as sufficient conditions for plasma sta-
bility. In real plasmas, the maximum β values may be
significantly higher for the following two reasons. The
first reason is associated with the fact that, in the actual
toroidal geometry, the magnetic field is nonuniform
along magnetic field lines, so that the modes with dif-
ferent m are coupled to each other. In this case, the
unstable modes again can be divided into two classes.
The first class is represented by the quasipotential flute
mode, which is stable when S '(ψ) ≥ 0 and is a more gen-
eral case of the m = 0 mode. The second class includes
the modes that cause alternating radial displacements
of the flux tube and whose stability is governed by
the magnitude of the current density. Instead of crite-
rion (7), these modes satisfy the following approximate
stability criterion:

(8)

where κψ is the covariant component of the magnetic
field line curvature in flux coordinates (k = κψ—ψ). The
calculations carried out by Garnier et al. [17] showed
that, in this case, the maximum β value in a dipole con-
finement system can be substantially higher than unity.
To avoid misunderstandings in terminology, note that
the instabilities of the modes of the second class are
often referred to as ballooning instabilities [16, 17],
because, in the confinement systems under consider-
ation, there exists only the diamagnetic current, which
is proportional to p'(ψ).

The second reason for high maximum possible β
values is associated with the finite ion Larmor radius
effects, which stabilize perturbations with large n. For
a finite n and m ≠ 0, the stability criterion (2) with the
minimized magnetic field perturbation contains a term
proportional to ( )2. As a result, the stability condition
for the kink (ballooning) modes becomes nonlocal with
respect to the radial coordinate and imposes a less strin-
gent restriction on the β value in comparison with sta-
bility criterion (7) or (8).

3. ADIABATIC EQUATIONS FOR MHD 
CONVECTION NEAR THE THRESHOLD

FOR FLUTE INSTABILITY

Here, we analyze the self-consistent MHD convec-
tion, which occurs as a result of the distortions of the
MSPP that are caused by plasma heating and original
local transport processes. The fundamental difficulty of

2 p' ψ( ) 1
2π
------ R κψ

1/2
ld∫° 

 
2

– 1,≤

ξ r'
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this analysis is associated with a significant difference
between the time scales of the processes in ideal MHD
and the dissipative time scales, which are determined
by collisional thermal conductivity, viscosity, and dif-
fusion. For a plasma with parameters at the fusion level,
these time scales may differ by eight to nine orders of
magnitude. That is why it is desirable to simplify the
basic set of equations by eliminating, if possible, unim-
portant fast processes from consideration. Of course, it
is important to realize that the basic set of equations
reduced in such a manner remains weakly dissipative
and, accordingly, the invariants of the basic ideal MHD
equations should be conserved on long time scales. The
variational method that was developed in [22–24] for
the adiabatic separation of fast and slow motions in
continuous Lagrangian systems provides the possibility
of removing from consideration fast stable collective
degrees of freedom without violating the conservation
laws of the basic (unreduced) set of equations. The key
element of the method is the determination of the veloc-
ity field that does not perturb fast stable degrees of free-
dom and makes it possible to describe the relatively
slow dynamics of the system. This method will be used
in our analysis.

We start with the assumption that the stability con-
dition (7) for kink (ballooning) modes is satisfied over
the entire plasma volume (this indicates that the maxi-
mum β value does not exceed the critical level). As will
be seen below, the characteristic frequencies of the self-
consistent convection under discussion are much lower
than the minimum frequencies of the stable Alfvén
waves (ω ~ CA/rm). In this case, Alfvén waves are repre-
sented by perturbations with m ≠ 0, so that, in accor-
dance with the principle of the adiabatic separation of
motions [23, 24], we can exclude perturbations with
m ≠ 0 from consideration and restrict ourselves to ana-
lyzing only the two-dimensional plasma motions (m = 0)
that do not violate the axial symmetry of the original
plasma column. In [23], it was shown that, if the plasma
is in a nearly equilibrium state described by Eq. (5),
then the dynamic equations can be further simplified by
excluding from consideration fast magnetosonic (com-
pressional Alfvén) waves with frequencies ω ~ CA |—⊥ |.

In the case of two-dimensional plasma motion, the
magnetic field has the only nonzero component Bθ. We
describe this component in the same way that was used
in analyzing plasma equilibrium, specifically, by the

Jacobian J = B · —θ/ , introduced in Section 2. In
this case, the frozen-in equation for the magnetic field
becomes equivalent to the equation

(9)

It is convenient to write the adiabatic equations for
ideal MHD plasma convection in the form

(10)

2 π

∂t J ∇ vJ( )⋅+ 0.=

∂tS v —S⋅+ 0,=
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where S is the entropy function of a magnetized plasma
(see Section 2). We represent the plasma density as ρ =
λJ, in which case the continuity equation becomes

(11)

Note that, in ideal MHD, the Jacobian J is a Eulerian
invariant, while the entropy function S and the quantity
λ are Lagrangian invariants.

We assume that, in the convection process in ques-
tion, the plasma deviates only slightly from a stable
equilibrium state. Under this assumption, which will be
confirmed in further analysis, we can represent the

entropy function as S(t, r, z) = (t, r) + (t, r, z), where

the z-averaged quasi-equilibrium component  of S

satisfies the condition  > –e2 /rm;  ~ e2  is the
alternating (fluctuating) component of the entropy
function; and e ! 1 is a small parameter, whose value
will be determined below. In this case, we can exclude
magnetosonic waves from consideration and obtain the
following expression for the adiabatic velocity field of
the two-dimensional convection [23]:

(12)

where the quantity Φ(t, r, z) signifies the electric poten-
tial. It is easy to see that, in accordance with Eq. (9),
this velocity field does not perturb the magnetic field
and corresponds to the most dangerous perturbations in
criterion (4).

If weak dissipation is taken into account in the MHD
equations, then the equation for the magnetic field
should contain a resistive term, the adiabatic equation
should be replaced by the energy transport equation
with the heat conduction term, and the equations of
motion should include the viscosity tensor. This indi-
cates that weak dissipation is taken into account via the
three main dissipative processes, which are, respec-
tively, described by the following local coefficients: the
magnetic field diffusion coefficient D = c2/4πσ (where
σ is the plasma conductivity), the thermal diffusivity χ,
and the transverse kinematic viscosity η of a magne-
tized plasma. In essence, the first two coefficients
describe a slow restructuring of the equilibrium state
and a distortion of the MSPP. One can easily estimate
that, on a time scale of τ1 ~ e2a2/χ (where a ~ J/J ' is the
characteristic plasma size), heat conduction can distort
an MSPP with  = 0 by an amount δ  ~ e2 . The con-
vective processes with the characteristic rate (12) can
smooth this distortion and thereby restore the MSPP,
provided that ecsτ1 ≥ a. We thus arrive at the estimate

(13)

which, on the one hand, determines the order of magni-
tude of the thermal diffusivity χ in reduced, weakly dis-
sipative MHD equations and, on the other hand, pro-
vides the physical sense of the small parameter e. The

∂tλ v —λ⋅+ 0.=

S S̃

S

S ' S S̃ S

va
1
J
--- —θ —Φ×[ ] ecs,∼=

S ' S S

χ e
3
acs,≤
coefficients D and η should also be regarded as being
on the order of e3, because, for a magnetized plasma, all
three dissipation coefficients are inversely proportional
to the collision time, which thus determines the order of
smallness of the dissipation coefficients. In this case,
the Reynolds number for the convective flows of inter-
est to us should be on the order of Re ~ ecsa/η ~ e–2.

Actually, expression (12) for the adiabatic velocity
field contains only the main term, which should be
taken into account in the dynamic equations for slow
motion. Generally, the principle of the adiabatic sepa-
ration of motions implies that the expression for va

may contain an additive small correction term of the
form —Φv /J, which is on the order of e3cs. This small
correction can be neglected in the inertial terms in
reduced dynamic equations and the equations for
entropy and density fluctuations. However, it should be
retained in the transport equations for the magnetic
field and quasisteady plasma parameters. In the case at
hand, this small “diffusive” correction to the main
velocity depends only on r and can be represented as
u(r)/J. With the above remarks in mind, we take into
account the finite plasma conductivity to pass over from
Eq. (9) to the following diffusion equation for the mag-
netic field:

(14)

where  is the z-averaged diffusion coefficient. The
right-hand side of Eq. (14) is on the order of e3; conse-
quently, when describing the evolution of the Jacobian
J, we can assume that ∂t ~ e3cs/a.

We substitute ρ = λJ with λ = (r) + (r, z) into the
continuity equation with the density source term Qρ,
use Eq. (14) to eliminate the term ∂tJ in the resulting
equation, and perform averaging over z. As a result, we
arrive at the following transport equation for the plasma
density:

(15)

where the angular brackets denote averaging over z. If

 is not too small, then Eq. (15) is dominated by the
term in the angular brackets, which describes the con-
vective mixing of the passive scalar λ. As a result of this

mixing, the function  in the convective region should
evolve to a nearly constant profile with a low fluctua-

tion level,  ~ e2 . Consequently, the function 
should evolve in essentially the same manner as the
averaged entropy function , the only difference being
that, unlike the entropy distribution, the distribution

(r) has no impact on plasma stability.
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In dissipative hydrodynamics, in place of the adia-
batic equation (10), it is necessary to use the complete
transport equation for the thermal plasma energy [25],
which accounts for heat conduction, external heating,
Ohmic heating, and viscous heat release. We express
thermal energy in the form SJγ/(γ – 1), use Eq. (14) to
eliminate the term ∂tJ, and perform averaging over z.
As a result, we arrive at the following transport equa-
tion for the plasma entropy:

(16)

where the function  describes the total averaged
energy source (including Ohmic heating and viscous
heating) and the local heat flux has the form q =
−ρχ—(p/2ρ) [25].

In Eqs. (14)–(16), all the terms that are responsible
for the transport of the magnetic field, plasma density,
and plasma entropy are on the order of e3. Conse-
quently, the source terms should also be on the order
of e3. Eqs. (14)–(16) constitute a set of equations
describing the “slow” (∂t ~ e3cs/a) transport of the qua-
sisteady plasma parameters. This set differs from the
traditional set of equations with purely local transport
fluxes in that it contains convective terms, which can-
not, in principle, be described by the local transport
coefficients (as will be justified below). As is the case in
the traditional transport problem, Eqs. (14)–(16) should
be supplemented with Eq. (1), in which the equilibrium
quantities S and J should be replaced with (r, t) and
J(r, t). In this case, Eq. (1) reflects the quasisteady bal-
ance of the main radial forces and makes it possible to
determine J(r, t) through the known function (r, t),
and Eq. (14) serves to determine u(r, t).

Equation (16) can be somewhat simplified by taking
into account the fact that the viscous heat release is pro-

portional to  and is on the order of e5a2|—⊥ |2. The vis-
cous heat release may become important when the dis-
sipation of small-scale vortices with a |—⊥ | > e–1 is taken
into account, because the nonlinear processes can act to
transfer the energy of large-scale convective flows into
the energy of small-scale vortices. Since we expect that
the total energy of the convective plasma flows is about
e2 of the thermal plasma energy, viscous heat release
should play an insignificant role in the overall energy
balance and thus can be neglected in further analysis.
Note also that, along with the resistivity, an important
role in the magnetic field transport in the systems under
consideration is played by the thermal force [26, 27],
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which contributes additively to the right-hand side of
Eq. (14) and, accordingly, to Eqs. (15) and (16). How-
ever, the thermal force does not play a decisive role in
the development of convection. That is why, in what
follows, the thermal force is ignored for simplicity.

Now, we proceed to a derivation of the equations
describing “fast” (∂t ~ ecs/a) convective flows and “fast”
density and entropy fluctuations. The ideal dynamics of
two-dimensional convection is described by a single
adiabatic equation for the contravariant vorticity com-
ponent [23]:

(17)

According to [23], the reduced dissipative equation of
motion can be derived from the basic dissipative equa-
tion of motion with the viscosity tensor by making the
same transformation that is used to derive the reduced
ideal equation of motion. Specifically, we replace v
with va and apply the operation that transforms ρva into
w [see Eq. (17)]. The resulting expression for the vis-
cous term is fairly complicated [25], the lowest non-
trivial order being e4a2|—⊥ |2. In the ideal dynamic equa-
tion, all of the terms are on the order of e2, so that vis-
cous dissipation is important only for plasma motions
occurring on sufficiently short spatial scales. Conse-
quently, the viscous term can be simplified to

in which the leading-order terms and the terms on the
order of e4a |—⊥ | are retained. As a result, to within
terms of the higher orders in e, the equation of motion
has the form

(18)

The equation for the entropy fluctuations  is
obtained by subtracting Eq. (16) from the complete
transport equation for the plasma entropy, in which
case, among all dissipative terms, it is sufficient to keep
the terms that enter the expression for the thermal con-

ductivity and that are linear in  and  (the lowest non-
trivial order of these terms is e5a2|—⊥ |2). In the case of
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the classical ion thermal conductivity, we have χ ~

ρ/B2  and the equation for  takes the form

(19)

where  = p/ρ.

The left-hand sides of Eqs. (18) and (19) describe
the ideal plasma dynamics. On each of these left-hand
sides, all of the terms are of the same order of magni-
tude; specifically, the terms on the left-hand side of
Eq. (18) are on the order of e2, and the terms on the left-
hand side of Eq. (19) are on the order of e3 (with allow-
ance for the relationship  ~ e2 in the convective
region). The last terms on the left-hand sides of these
equations incorporate the feedback in the plasma and
describe the linear instability. The dissipative terms on
the right-hand sides are as small as e2a2|—⊥ |2 in compar-
ison with the left-hand sides. Consequently, the convec-
tive flows and entropy fluctuations are described prima-
rily in terms of the ideal Lagrangian dynamics and the
role of dissipation is limited to the suppression of
small-scale perturbations driven by nonlinear pro-
cesses. The classical transverse ion viscosity has the
form  = 3ρχ/20 [25].

The equation for  is derived in a way similar to the

derivation of the equation for —by subtracting
Eq. (15) from the complete transport equation for the
plasma density. However, we will not use this equation
in further analysis for the following reasons. On the one
hand, note that, in the above equations for fast motions,

 makes only negligible contributions to  in Eq. (17),
which relates w to Φ, and to the small dissipative term

in Eq. (19). Therefore,  does not play a decisive role
in describing the development of plasma convection
and thus it is merely a passive consequence of the con-
vective process. On the other hand, note that, for the
classical local transport [25], we can use the relation-

ship χ/D = (β/2) , which, together with
Eq. (16), shows that diffusion makes an appreciably
smaller contribution to the  profile than heat conduc-
tion. Consequently, in order to simplify further calcula-
tions, we set D = 0, in which case the plasma density
source term Qρ turns out to be unnecessary and can also
be set equal to zero. As a result, λ should satisfy

Eq. (11). As was noted above,  should be nearly con-
stant along the radius in the convective region; there-

fore, we can impose the initial condition λ|t = 0 = |t = 0 =
const. In this case, Eq. (11) implies that, for any veloc-
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ity field, λ will remain constant during the further evo-
lution of the convective process.

Hence, the assumption that D = Qρ = 0, along with
the initial condition λ = const, makes it possible to
exclude from consideration the transport equation (15)

for the plasma density and the equation for . The basic
set of equations reduced in such a way remains self-
consistent and makes it possible to investigate the main
parameters of the process in question. We thus suc-
ceeded in simplifying further calculations of the con-
vective enhancement of the transport processes, which
are now completely described by the subsets of the
“slow” equations (1), (14), and (16) and “fast” equa-

tions (17)–(19), in which S = (r, t), D = 0,  = const,

 = 0, and  = QE is the external energy source.

4. ADAPTATION OF THE SET OF REDUCED 
EQUATIONS TO THE COMPUTER CODE

The self-consistent plasma convection and the con-
vective enhancement of transport processes were mod-
eled by solving an evolutionary problem with the given
initial and boundary conditions (see Section 3). It was
assumed that the plasma occupies the region between
the surface of the central conductor of radius rc and the
outermost magnetic surface of radius rs, which plays
the role of a separatrix. All of the plasma parameters
were assumed to be periodic in z (the period being 2πR)
and were described in terms of the “toroidal” angle ϕ =
z/R. The Jacobian J at the inner plasma boundary is
determined by the current Ic in the central conductor,

J(rc) = Jc = Ic/ . The initial profile of the function

 was defined as follows: on the radial interval rc ≤ r ≤ rm,

the function  increases monotonically from the value

 = Sc ! Sm to the value  = Sm , and, on the radial inter-

val rm ≤ r < rs, this function is constant,  = Sm = const.
We introduce the dimensionless quasisteady functions
and parameters by specifying their initial values at the
magnetic surface rm:

x = r/rm, xc = rc/rm , xs = rs/rm , g = J/Jc ,

The parameter , which characterizes the maximum
initial β value in terms of the vacuum magnetic field, is
contained in equation (1) written in a dimensionless
form.

The dimensionless parameter e is defined by the
expressions
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where

In terms of the parameter e, we also introduce the fol-
lowing dimensionless variables and functions:

When magnetic field diffusion is neglected, the func-
tion u(x, τ) describes the conservation of the frozen-in
magnetic flux and the total number of particles in the
plasma region enclosed by the separatrix. Strictly
speaking, this indicates that we must solve the problem
with a movable outer boundary xs(τ), which is deter-

mined by Eq. (14) with  = 0. However, taking into
account the fact that the function u does not qualita-
tively affect the heat transport and the evolution of the
convective process, we can set u = 0 and solve the prob-
lem with a fixed boundary xs = const. In this case,
Eq. (14) is unimportant and can be neglected in numer-
ical calculations.

As a result, we are working only with two slow
equations describing the quasisteady plasma equilib-
rium and heat transport:

(20)

(21)

where A = R/rm is the aspect ratio. In numerical calcu-
lations, the source Q(x) was described by a parabolic
profile with a variable amplitude and width and cen-
tered at the magnetic surface x = 1. The boundary con-
ditions were as follows:
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ĉs
2 2T̂

mi

------
Sm

λ
----- xc

2
Jc( )

γ 1–
, ω̂ci

2 πerm xc
2
Jc( )

mic
-----------------------------------,= = =

τ̂ i

3 miT̂( )3/2

4 πλ xc
2
Jc( )Λe

4
----------------------------------------.=

τ e
ĉs
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The last of conditions (22) makes it possible to model
the enhanced energy loss near the separatrix by choos-
ing sufficiently large negative values of ν.

The functions describing the convective flows and
entropy fluctuations were expanded in Fourier series
with a finite number of harmonics:

(23)

(24)

(25)

The total number of Fourier harmonics was chosen in
accordance with the fact that the dissipative terms are
on the order of (ne/A)2 and that the linear growth rate is

maximum at approximately n ≈ A/ . Consequently,
reliable results can be obtained only with N ≥ Ae–1.
However, the calculations showed that the macroscopic
plasma parameters and the rough characteristics of con-
vective flows can be described correctly with a reduced
number of Fourier harmonics, such that it is smaller
than the above estimate by about 20–30%, in which
case the results obtained with an odd number N of har-
monics were found to be more reliable. A numerical
analysis of detailed flow characteristics (e.g., the flow
spectra) requires that the number N of harmonics be
increased by a factor of approximately 1.5.

The equations for the functions wn and sn are easy to
derive from Eqs. (18) and (19) by using the above
dimensionless variables. We will not write out these
equations, because they are very lengthy. We only
present the relevant boundary and initial conditions. To
do this, we should first of all point out the somewhat
peculiar nature of the zonal flows that are uniform in ϕ
and are described by the component φ0(x, τ). These
flows are linearly stable and are associated exclusively
with the coupling between the harmonics with n ≠ 0. On
the other hand, they can exist in a steady plasma state
[23, 24]. Since the reduced equations contain the deriv-
ative  rather than φ0, we need to impose only one
boundary condition on φ0; specifically, we can naturally

set (xc , τ) = 0, which indicates that, at the surface of
the central conductor, the zonal flow velocity vanishes.
Further, since both the conductor’s surface and the sep-
aratrix (because of the presence of magnetic null
points) should be equipotential surfaces, the boundary
conditions for the harmonics φn with n ≠ 1 have the form
φn(xc, τ) = φn(xs, τ) = 0, which also indicates the vanish-
ing of the normal component of the flow velocity on

φ x ϕ τ, ,( ) = φ0 x τ,( ) φsn nϕsin φcn nϕcos+( ),
n 1=

N

∑+

w x ϕ τ, ,( )

=  w0 x τ,( ) wsn nϕsin wcn nϕcos+( ),
n 1=

N

∑+

s̃ x ϕ τ, ,( ) ssn nϕsin scn nϕcos+( ).
n 1=

N

∑=

e

φ0'

φ0'



916 PASTUKHOV, CHUDIN
both boundaries. Similar boundary conditions can be
imposed on the harmonics of the entropy fluctuations:
sn(xc , τ) = sn(xs , τ) = 0.

The situation with the boundary conditions for the
vorticity is somewhat more complicated. The conven-
tional boundary conditions on the tangential compo-
nent of the vortex velocity lead to integral conditions on
w, so that the problem becomes much more difficult to
solve. However, at a real separatrix, we have U  ∞;
consequently, both the vorticity itself and its flux
through the separatrix should vanish. The vanishing of
the vorticity flux also correlates well with the results of
an analysis of the tangential velocity distribution in the
boundary layers [28]. That is why it seems reasonable
to use the condition that the local vorticity flux vanish
at both boundaries. In the case at hand, this condition
has the form

(26)

Integrating Eq. (18) over the entire confinement
region, we can easily convince ourselves that, under
condition (26), the zonal flow velocity should also van-
ish at the separatrix, because the total vorticity in the
plasma volume is conserved.

The initial conditions for w and  can be specified
in the form of fairly arbitrary small perturbations,
because they should not have any impact on the final
quasisteady state. It seems to be more convenient to
specify initial perturbations of the plasma entropy; in
the case at hand, these are a set of harmonics sn that are
localized radially in accordance with the boundary con-
ditions. It is worth noting that the specific character of
the nonlinear terms in Eqs. (18) and (19) imposes
restrictions on the minimum set of initial harmonics:
this set should ensure the generation of the remaining
harmonics and their subsequent nonlinear coupling to
each other. The minimum possible set consists of the
two harmonics, scn and ss(n + 1), where n is an arbitrary
odd number smaller than N. In calculations, the ampli-
tude  of the dimensionless perturbations was usually

set to be about 0.1, which corresponds to  ~ 10–3Sm .

5. RESULTS OF NUMERICAL CALCULATIONS

The reduced set of equations for {scn, ssn}, {wcn,
wsn}, {φcn, φsn}, s0, and g with the above boundary and
initial conditions was solved by the sweep method
using a semi-implicit predictor–corrector scheme on
the interval xc = 0.5 ≤ x ≤ xs = 2. As a rule, the spatial
step for the scheme was chosen so that the interval con-
tained 200 points. In order to satisfy the Courant condi-
tion, the time step was chosen in agreement with the
relationship ∆τ = 0.2∆x. All calculations were carried
out for the fixed parameter values e = 0.1 and δ = 0.1,

while the parameters , ν, A, and N; the parameters of

∂
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the source; and the parameters of the initial perturba-
tions were varied. The total computation time was cho-
sen to be longer than the energy lifetime of the plasma.

The results of simulations carried out with the

parameter values  = 0.5, ν = –4, A = 2, and N = 33 are
illustrated in Figs. 3–7. The initial perturbations were
modeled by the sc3 and ss4 harmonics. Figure 3 shows
the time evolution of the entropy fluctuations s(τ) and
the radial velocity v x(τ) of the plasma flow at the point
(x = 1.5, ϕ = π). A purely linear stage during which the
perturbations grow exponentially lasts about τ ≈ 2 and
is followed by the quasilinear stage, during which the
profile of s0, being distorted in the linear stage, begins
to be smoothed by the fairly well developed perturba-
tions, which do not grow monotonically anymore. The
quasilinear stage, during which the structure of the ini-
tial perturbations is readily seen, lasts up to τ ≈ 5. Then,
the perturbation harmonics with all possible numbers n
start growing rapidly, thereby giving rise to a highly
nonlinear rearrangement of the structures of the plasma
flows and entropy fluctuations. This stage is highly
irregular and, in the main, comes to an end approxi-
mately at the time τ ≈ 15. Later, the profile of s0 remains
essentially unchanged as time elapses and the convec-
tive flows acquire a certain characteristic large-scale
structure while remaining at a fairly high level of sto-
chasticity.

Figure 4 illustrates the two-dimensional structure of
convective flows and entropy fluctuations late in the
quasisteady stage (τ = 50). Figure 4a shows the con-
tours of the constant magnitude of the potential φ or,
equivalently, the streamlines of the flows. The light and
dark regions correspond to the positive and negative
values of the potential, respectively. The plasma circu-
lation is clockwise around the lightest regions and
counterclockwise around the darkest regions. The over-
all flow structure is dominated by several large-scale
vortices that rotate in opposite directions and are local-
ized almost completely in the region 1 < x < 2, where

 ≈ 0. The vortices evolve in a fairly complicated and
irregular manner, changing their intensity and shape
and drifting in the ϕ direction. Additional information
about the structure of the flows can be obtained if we
exclude the zonal flows, which, as a rule, have maxi-
mum positive or negative velocities near the magnetic
surfaces x ≈ 1.3 and x ≈ 1.7. In Fig. 4a, we can see that
v 0ϕ(1.3) < 0 and v 0ϕ(1.7) > 0; moreover, in this case, the
zonal flows reverse their direction twice during the time
interval 15 < τ < 50.

Figure 4b shows the contours of  = φ – φ0, which
indicates the flow structure with no zonal flows present.
All simulations carried out for small values of the
aspect ratio (1 < A < 3) demonstrated the onset of one
or two long-lived pairs of coupled vortices with the
strictly defined (plus and minus) polarity. In Fig. 4b,
such a pair is seen in the region 0.1 < ϕ < 2.2. In this

β̂

s0'

φ̃
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Fig. 3. Fluctuations of the entropy  and radial velocity vx.s̃
case, the pair of vortices was clearly observed at τ > 20.
The characteristic feature of these vortex pairs is the
presence of a fairly fast plasma jet localized in the ϕ
coordinate (in Fig. 4b, ϕ ≈ 1.25) and directed from the
separatrix to the plasma center. In Fig. 3, sharp negative
peaks in the time evolution of v x indicate that the obser-
vation point occurs inside the jet.

Figure 4c shows the contours of the constant magni-
tude of the entropy fluctuations . One can see that the
structure of the contours is smaller in scale and is less
regular in comparison with that of the streamlines of the
plasma flows. This result correlates well with the highly
irregular behavior of (t) in Fig. 3. A small-scale
sequence of minima and maxima of  in the region
1.8 < x < 2.0 in Fig. 4c stems from the model boundary
condition (22) for s0 and is very sensitive to the value
of ν.

Figures 5 and 6 display the time-averaged spectra of
the fluctuations of the potential and entropy computed
as functions of n at three radial positions. The spectra
were calculated in a standard way by taking the Fourier
transformation of the correlation function in the ϕ coor-

s̃

s̃
s̃
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dinate (Fc = 〈 f(ϕ)f(ϕ + ζ)〉) and then averaging the
resulting function over the time interval 20 < τ < 50.
From Fig. 5, we can see that the spectrum of the fluctu-
ations of the potential Iφ is dominated by harmonics
with the numbers 1, 2, and 3; for higher harmonics, the
spectrum decreases with the harmonic number approx-
imately as n–4 and even more sharply for n > 11. In
Fig. 6, the spectrum of the fluctuations of the entropy Is

at x = 1.2 and x = 1.5 decreases approximately as n–1.5

for harmonic numbers from n = 1 to n = 11. For higher
harmonics, the spectrum decreases more sharply
because of the dissipation of small-scale fluctuations.
As was mentioned above, an enhanced level of the
small-scale fluctuations of  at the magnetic surface
x = 1.8 in Fig. 6 is associated with the model boundary
condition for s0. Note that, although the spectra
decrease fairly sharply as n increases, reducing the total
number of harmonics used in simulations below the
critical number (in the case at hand, N < 20) results in a
significant distortion of the spectra. At an arbitrary
instant of time, the n-spectra of the fluctuations can dif-
fer substantially from the time-averaged spectra shown

s̃
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Fig. 4. (a, b) Structures of the plasma flows and (c) structure of the entropy fluctuations.
in Figs. 5 and 6. We can calculate the root-mean-square
(rms) deviation for the spectra, ∆I = 〈〈 (δI)2〉〉 1/2 (where
the square brackets denote averaging over the above
time interval), in order to show that, for both of the
spectra Is(n, τ) and Iφ(n, τ), the relative deviation ∆I/I is
large and changes from about 0.7 for small n to roughly
1.0 for the largest values of n in the spectra.

The solid curve in Fig. 7 shows the profile s0(x) at the
time τ = 50. Over the entire time interval 20 < τ < 50,
this profile remains essentially unchanged in shape and
deviates only slightly (by an amount smaller than 3%)
from the MSPP s0(x) = const in the plateau region. A
decrease in s0 near the outer boundary stems from the
model boundary condition (22) and is very sensitive to
the value of ν. In a real plasma bounded by a separatrix,
enhanced energy losses are associated with a sharp
increase in —U as the separatrix is approached, rather
than with the fact that the gradient of s0 is kept artifi-
cially large at the plasma boundary. In this case, s0 may
remain constant up to the separatrix. Hence, the calcu-
lations confirm the basic assumption that the MSPP is
maintained self-consistently.

Now, let us turn to a traditional approach in inter-
preting the experimental data on anomalous transport
and formally introduce the effective dimensionless
local thermal diffusivity χeff = – / (x), where the
dimensionless heat flux density and dimensionless tem-
perature, (x) and (x), can be easily calculated in the
model described here. For convenience, we also intro-
duce the “anomaly” factor, which is defined as the ratio
of the effective thermal diffusivity to the classical one:
Fa = χeff /χcl . In Fig. 7, the anomaly factor is shown by
the dashed curve. We can see that, in the region 0.5 <
x < 0.9, the anomaly factor is about Fa ≈ 1, which indi-
cates that the heat transport is classical. In the profile of
the anomaly factor, we can see an alternating-sign spike
near the magnetic surface x = 1.1; this spike is related

q gT '

q T
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to the fact that (x) and (x) vanish at different mag-
netic surfaces. In the convective region at larger radii,
the factor Fa first increases to its maximum value and
then, near the plasma boundary, decreases sharply up to
unity. A decrease in Fa in the edge region can be asso-
ciated with the notion of an “external transport barrier,”
which is often used to interpret the experimental data
(first of all, from tokamaks). Of course, in the case
under discussion, such behavior of the factor Fa stems
exclusively from the nonlocal nature of the convective
plasma transport, which cannot, in principle, be
described by any local transport coefficient. Neverthe-
less, the above example raises the question of whether
the traditional interpretation of transport processes is
also correct for tokamaks.

The simulations carried out with different values of
the parameter ν (which characterizes the energy losses
at the outer plasma boundary) showed that, qualita-
tively, the plasma convection, as well as the profiles of
s0 and Fa, possess all of the above-described character-
istic features. The only quantity that is sensitive to the
value of this parameter is the convective transport rate.
In order to illustrate the dependence of the convective
transport rate on the parameter ν, let us briefly analyze
the numerical results calculated for the same source
intensity but for ν values other than that in the above
example. We characterize the calculated results by the
parameters s0max and Fa max, as well as by the rms values
of the entropy fluctuations  and radial velocity ∆vx

q T '

∆s̃

10–4

10
10–5

n
1

10–3

10–2

10–1

100

1
2
3

Iφ

Fig. 5. Spectrum of fluctuations of the potential at x =
(1) 1.2, (2) 1.5, and (3) 1.8.
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at the point (x = 1.5, ϕ = π) (see Fig. 3). The above-
described calculations with ν = –4 yielded  = 4.2,
∆v x = 2.0, s0max = 0.81, and Fa max = 6.0. For ν = –2, we

∆s̃
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1

10–1

Is

10–2

100

1
2
3

0.2

1.00.5 1.5 2.0

0.4

0.6

0.8

s0

0

2

4

6

0

x

Fa

Fig. 6. Spectrum of the entropy fluctuations at x = (1) 1.2,
(2) 1.5, and (3) 1.8.

Fig. 7. Radial profiles of the entropy s0 (solid curve) and
anomaly factor Fa (dashed curve).
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have  = 2.9, ∆v x = 0.94, s0max = 1.02, and Fa max = 3.5,
and, accordingly, for ν = –6, we have  = 5.3, ∆v x =
2.8, s0max = 0.64, and Fa max = 8.2.

Hence, we can conclude that the convective heat
transport is governed primarily by the energy loss rate
at the plasma edge rather than by the plasma parameters
in the main confinement region. Moreover, for the same
relative temperature gradients in the central plasma
region, the heat fluxes may differ severalfold. Thus, we
can draw an analogy between this dependence of trans-
port processes in a plasma on the conditions at the
plasma edge and L–H transitions in tokamaks.

6. CONCLUSION

Summing up the results of the above theoretical and
numerical analysis, note that, using as an example a
simplified magnetic configuration aimed at modeling
plasma confinement in a highly nonparaxial system
with an internal levitated ring, it has been shown that
the plasma heating and local dissipative processes can
generate and maintain self-consistent nonlinear MHD
convection, which develops near the threshold for the
ideal MHD instability and gives rise to essentially non-
local heat transport. On the basis of the method of the
adiabatic separation of fast and slow motions, a closed
set of equations has been derived that provides a simul-
taneous and self-consistent description of relatively
fast, nonlinear convective flows and slower transport
processes in a weakly dissipative plasma with a large
Reynolds number (102 and larger) and β ~ 1. The distin-
guishing feature of the equations derived is that they
possess all the invariant properties of the basic ideal
MHD equations and, thus, can be used to describe the
plasma evolution on arbitrarily long time scales (longer
than the plasma lifetime).

A computer code has been devised and numerical
simulations have been carried out, demonstrating that
the ideal convective MHD instability self-consistently
approaches the regime of the nonlinear quasisteady
convection maintained by plasma heating and local
classical transport processes. The calculations show
that convection, in fact, acts to restore and maintain the
MSPP in a plasma. Also, convection gives rise to an
essentially nonlocal, enhanced heat transport whose
rate is determined by the energy loss rate at the plasma
periphery rather than by the plasma parameters in the
main confinement region, so that an analogy can be
drawn between this effect and L–H transitions in toka-
maks.

A large amount of numerical data on the structure of
the nascent convective flows has been amassed and ana-
lyzed. The velocity of the self-consistent plasma flows
is proportional to the cube root of the ratio of the time
scales of the processes in ideal MHD to the dissipative
time scales and, consequently, can be very low. Never-
theless, the derived equations and numerical simula-
tions show that the structure of convective flows is

∆s̃
∆s̃
always formed under the action of highly nonlinear
processes that give rise to dominant large-scale vortices
with highly irregular temporal and spatial characteris-
tics.

The results obtained are important not only for mag-
netic confinement systems with internal levitated con-
ductors (like those modeled in this paper) but also for
other systems designed to maintain plasma pressure
profiles that are marginally stable against ideal MHD
modes.
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Abstract—Agreement between different approaches to studying the propagation of electromagnetic oscilla-
tions near the critical surface is elucidated. The propagation of plane waves, electromagnetic rays, and wave
beams are analyzed. The results obtained are valid when the angles between the magnetic field and the plasma
density gradient are not too small. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that, in a plasma with no magnetic
field, electromagnetic oscillations can propagate only
at frequencies above the electron plasma frequency ωpe.
If the plasma is in a magnetic field, electromagnetic
oscillations can also occur in the range ω < ωpe. In
order for the electromagnetic waves launched from free
space to reach the dense plasma region (ωpe > ω), they
should pass through the critical surface at which
ωpe = ω. However, the waves are partially reflected
from an opaque region in the vicinity of the critical sur-
face. In addition, for small angles χ between —n0 and
B0, oscillations with different polarizations (with dif-
ferent orientations of their electric vectors) can be con-
verted into each other.

The problem of the passage of electromagnetic
oscillations through the critical surface was first
addressed in the study of the propagation of radio
waves in the Earth’s magnetosphere [1]. More recently,
this problem was investigated in developing the meth-
ods of microwave heating of dense plasmas in magnetic
confinement systems [2–5]. A dense plasma such that
ωpe > ωe ≈ ω (where ωe is the electron cyclotron fre-
quency) was successfully heated in experiments in the
W7-AS stellarator [6]. In existing spherical tokamaks
(e.g., the Globus-M device), as well as in planned facil-
ities (e.g., the Drakon-like EPSILON system), the mag-
netic field is comparatively weak, so that the plasma
density also satisfies the condition ωpe > ωe.

In [1–5], attention was focused on calculating the
transmission, reflection, and conversion coefficients for
electromagnetic oscillations in the plane wave approx-
imation. However, other aspects of the propagation of
electromagnetic waves in the vicinity of the critical sur-
face are equally important. Thus, it is of interest to
investigate some properties of the polarization of oscil-
lations and their ray trajectories as well as the peculiar
features of the propagation of spatially bounded wave
beams. These aspects of the problem were investigated
1063-780X/01/2711- $21.00 © 0922
in my earlier papers [7, 8] for the case of small angles χ.
In open systems, plasma configurations with χ ! 1 are
characteristic of the throats of magnetic mirrors,
through which the microwave power is conveniently
fed in. In closed systems, the angle χ is close to π/2.

The objective of this paper is to investigate the prop-
agation of electromagnetic oscillations near the critical
surface when the angle χ is on the order of unity. A
study is made of the ray trajectories of oscillations and
their polarization. Special attention is paid to the case
χ = π/2, which is of the most practical interest for the
problem of plasma heating in closed magnetic confine-
ment systems. It is shown that different approaches to
the study of the propagation of electromagnetic oscilla-
tions in the vicinity of the critical surface (the analysis
of the wave equation in the plane plasma slab approxi-
mation and the calculation of ray trajectories and the
trajectories of the wave beams) are consistent with each
other. Rules are derived for conjugating the trajectories
of the transmitted and reflected wave beams with the
incident beam trajectories.

In what follows, the transverse (with respect to the
main magnetic field) component of the electric field of
electromagnetic oscillations is represented as a super-
position of circularly polarized components. By apply-
ing this approach systematically, it is possible to sub-
stantially simplify the calculation of both the transmis-
sion coefficient for oscillations incident on the critical
surface (see below) and the related conversion coeffi-
cient (see [7]).

2. PROPAGATION OF OSCILLATIONS 
NEAR THE CRITICAL SURFACE 

AND THEIR POLARIZATION

We are interested in oscillations with high frequen-
cies and short wavelengths. Here, we analyze these
oscillations under the following standard simplifying
assumptions: the ion contribution to the dielectric
response function of the plasma is neglected and the
2001 MAIK “Nauka/Interperiodica”
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plasma inhomogeneity is described parametrically. If
necessary, the range of validity of the analysis will be
extended. Under these assumptions, the set of Max-
well’s equations reduces to the algebraic equations [9]

(1)

where E± = (Ex ± iEy)/ , N± = (Nx ± iNy)/ , ε± = 1 –

/ω(ω ± ωe), and ε|| = 1 – /ω2. Equations (1) are
written in a Cartesian coordinate system with the x-axis
directed along the plasma density gradient and the
z-axis directed along the main magnetic field. The per-
turbations are assumed to be plane waves with the elec-
tric field in the form E ∝  exp(–iωt + ikr). All of the
quantities having the dimensionality of length are nor-
malized to c/ω.

The general picture of the propagation of the oscil-
lations can be constructed by analyzing the dependence
of the transverse component of the refractive index on
the plasma density. This dependence is described by the
following dispersion relation, which is obtained by
equating the determinant of Eqs. (1) to zero:

(2)

where ε⊥  = (ε+ + ε–)/2.
The main objective of this paper is to investigate the

penetration of oscillations through an opaque region in
the vicinity of the critical surface. In order for the oscil-
lations to be reflected insignificantly, the quantity |N⊥ |
should be sufficiently small. For |ε||| ! 1, the smallest
of the roots of the quartic equation (2) is approximately
equal to

(3)

This expression implies that, at the critical surface,

the quantity  changes sign at the critical surface
where the quantity ε|| vanishes, so that there should be
an opaque region in the vicinity of the critical surface.

However, under either of the two conditions  = ε±c,

where ε±c =  = ωe/(ωe ± ω), the function

( ) has a second-order zero at the critical sur-
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face. If, in addition, Ny = 0, then, for oscillations with

 = ε+c, the two transparency regions on both sides of
the critical surface merge into one, so that the critical
surface is freely penetrated by such oscillations. Note

that, for  = ε–c, there is no transparency region in the
vicinity of the critical surface.

When passing through the critical surface, oscilla-
tions change their nature. Thus, ordinary waves that are
incident on the critical surface from the side of lower
plasma density are converted into extraordinary waves
and vice versa. Oscillations are commonly classified by
their polarization in the case of purely transverse prop-
agation (N|| = 0). In this case, the dispersion relation (2)

has two solutions:  = ε|| and  = ε+ε–/ε⊥ . For N|| = 0,
ordinary waves (which are described by the solution

 = ε||) have purely longitudinal polarization, so that
they propagate as if there were no magnetic field. It is
natural that the critical surface is one of the boundary
surfaces of the transparency region for these waves
(Fig. 1a). In the same case N|| = 0, extraordinary waves

(which are described by the solution  = ε+ε–/ε⊥ )
have purely transverse polarization. For oscillations
with ω > ωe, there may exist a point at which the con-
dition ε⊥  = 0 holds. At this point, the oscillations are
subject to the plasma resonance—they become purely
potential and their refractive index increases sharply
(Fig. 1a). For χ = π/2, extraordinary waves possess this
property regardless of the value of N||. At the critical

surface, ordinary waves with  = ε+c are converted
into extraordinary waves (see below). For this reason,
Preinhalter and Kopecky [2] proposed to use ordinary
waves to heat dense plasmas.

In a plasma in which —n0 ⊥  B0, the value of N||
remains constant along the paths of waves. Conse-
quently, the only waves that can be launched into the
plasma from free space (where N = 1) are those with

N||c =  < 1. We also assume that the condition ω > ωe

is satisfied. The polarization of these waves is described
by the expression [9]

(4)

For oscillations with  ≈ ε+c, which we are interested
in here, the condition |N⊥ | ! 1 is satisfied in the vicinity
of the critical surface. The right-polarized component
E– of the electric field of such oscillations is small, and
the expression for the left-polarized component is inde-
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terminate. In the vicinity of the critical surface, Eqs. (1)
simplify to

(5)

Equations (5) yield the dispersion relation

(6)
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Fig. 1. Dependence of the transverse component of the
refractive index on the plasma density for (a) N|| = 0,
(b) N|| < N||c , (c) N|| = N||c , and (d) N|| > N||c . The abscissa

is q = (ωpe /ω)2, and the characteristic points on the
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which, of course, can also be derived from relation (3).
The dispersion relation (6) implies that, for N|| > N||c, the
opaque region lies ahead of the critical surface (in the
region where ωpe < ω) and, for N|| < N||c , it lies behind
the critical surface. For Ny = 0, the polarization of oscil-
lations at the boundaries of the opaque region is rather
peculiar. The first equation of set (5) [see also expres-
sion (4)] shows that, at the boundary at which the con-

dition  = ε+ holds (provided that ε|| ≠ 0), the electric
field is left-polarized: E– = E|| = 0. At the critical sur-
face, which is another boundary of the opaque region,
the oscillations are converted into electron Langmuir
waves, whose electric field has only the longitudinal

component [see formulas (4)–(6)]. For N|| = , the
opaque region shrinks to a point, so that, in the vicinity
of the critical surface, we have

(7)

At the critical surface itself, this approximate equality
becomes exact. Recall that, since the electric-field com-
ponent E– is small, we have Ey ≈ –iEx .

For waves with a nonzero refractive index, Ny ≠ 0,
the opaque region is larger. The polarization of these
waves is mixed (E+ ≠ 0, E|| ≠ 0) everywhere (in particu-
lar, at the boundaries of the opaque region).

3. SOLUTION TO THE WAVE EQUATION 
AND THE TRANSMISSION COEFFICIENT 

FOR WAVES INCIDENT ON THE CRITICAL 
SURFACE

For  ≠ ε+c or Ny ≠ 0, the opaque region lies in the
vicinity of the critical surface (see above). The waves
pass through the opaque region via subbarrier tunnel-
ing. In the quasiclassical approximation, the wave-
power transmission coefficient has the form

(8)

where x1, 2 are the boundaries of the opaque region.

Assuming that the plasma density is a linear func-

tion of the x coordinate  = – , ε+ =  –

 and using the dispersion relation (6), we

obtain

(9)
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Based on the solution to the wave equation, Zharov [3]
showed that, for oscillations with an arbitrary wave-
length along the x-axis, this expression is valid even
beyond the applicability range of the quasiclassical
approximation.

The approximate wave equation describing the
propagation of oscillations in the vicinity of the critical
surface can be derived from the set of algebraic equa-
tions (5) by making the replacement Nx  –i∂/∂x. We
take into account the linear dependence of the plasma
density on the coordinate and introduce the notation

x = L1/2 x1 and F =  to obtain the

equations

(10)

where A = 25/4 , B = L1/2 , and

δN|| = N|| – N||c .
Following [3], we introduce the new unknown func-

tion Y, in terms of which the quantities F and E|| are

expressed as F = (Y ' + αY )exp( ) and E|| = (βY' +

νY)exp( ). The constants α = –B, β = –δ = ±i, and
ν = ±iB – A are determined from the condition for the
two equations (10) to be identical:

The replacements Y =  and x1 = se–iπ/4 – 

reduce this equation to the standard equation for a par-
abolic cylinder [10]

(11)

where γ = .

In order to determine which of the solutions to this
equation describes the wave incident on the critical sur-
face, we find the x-component of the group velocity
using the dispersion relation (6) (recall that the quanti-
ties having the dimensionality of length are nondimen-
sionalized by multiplying by the factor ω/c):

(12)
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This formula implies that, ahead of the opaque
region, the dispersion of the waves under analysis is
normal (the components of the group and phase veloc-
ities along the x-axis have the same sign) and, behind
the opaque region, it is anomalous. Consequently, the
solution to Eq. (11) that describes the waves behind the
critical surface has the form [10]

(13)

In the region x < 0 (  = –3π/4), the asymptotic
expression for Dγ(s) corresponds to the incident and
reflected waves:

(14)

A comparison of the first term in expression (14)
with expression (13) yields the transmission coeffi-
cient (9). In terms of A, B, and γ, it is equal to

(15)

To determine the reflection coefficient, we should
take into account the fact that the incident and reflected
waves are characterized by different asymptotics: for
the incident wave, we have F ≈ −(B + iA/2)y and E|| ≈
i(B + iA/2)y, whereas, for the reflected wave, we have
F ≈ 2ix1y and E|| ≈ –2x1y. Using the relationship

 =  [10], we find that, in accor-

dance with the law of energy conservation, the reflec-
tion coefficient is equal to

(16)

4. RAY TRAJECTORIES
NEAR THE CRITICAL SURFACE

Expression (6) for , which is valid near the criti-
cal surface, can be written as the following approximate
dispersion relation:

(17)

where, as before, we assume that  = ω2(1 + x/L).

In terms of the partial derivatives of the quantity D,
the group velocity has the form

(18)

Using expressions (17) and (18), we find the equa-
tions for a ray trajectory,
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where N⊥  =  +  – , .

The x-component of the refractive index is real in the
transparency region and is imaginary in the opaque
region.

For Ny = 0, the ray trajectory lies in the (x, z) plane:

(20)

where x0 = 2L  and different signs of the right-

hand side correspond to the reflected and incident rays.
The integration constant is chosen in such a way that
the reflected and incident rays coincide at the point
where they are reflected from the opaque region, i.e., at
x = 0 or x = –x0.
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Fig. 2. Ray trajectories of the waves incident on the critical
surface from the (a) lower and (b) higher density sides for
(1) N|| < N||c, (2) N|| = N||c, and (3) N|| > N||c.
For Ny = 0, one of the boundary surfaces of the
opaque region is the critical surface (see above), at
which the ray trajectories are intrinsically cusp-shaped
(Fig. 2). For ray trajectories in the vicinity of the critical
surface, Eq. (20) gives

(21)

Recall that, from the side of the negative values of x ≤ 0,
the waves can reach the critical surface if δN|| < 0 and,
from the side of the positive values of x ≥ 0, they can
reach the critical surface if δN|| > 0.

When approaching the critical surface, the oscilla-
tions are converted into electron Langmuir waves with
longitudinal polarization. In this case, according to
Eqs. (19) and (21), the group velocity vector is orthog-
onal to the magnetic field and, accordingly, to the phase
velocity vector. The latter is characteristic of the poten-
tial oscillations in a magnetic field. For oscillations
propagating at an angle to the magnetic field, this prop-
erty was established by Piliya and Fedorov [11], who
exploited the fact that, as N  ∞, such oscillations
become potential. For N  ∞, Eq. (20) can be approx-
imately represented as a homogeneous equation for the
components of the refractive index: D/N2 ≈ εikNiNk = 0,
which gives Vg, iNi ∝  2εikNiNk = 0. On the other hand,
the above analysis shows that, for potential oscillations
with a finite refractive index (N || B0), the vectors Vg and
N also remain orthogonal. Note that the ray trajectories
calculated in [11] near the boundary of the transparency
region are also shaped as semicubical parabolas. In
conventional hydrodynamics, semicubical parabolas
describe the characteristics of the gas flow in the so-
called hodograph plane when the flow velocity passes
over from below to above the speed of sound [12].

For Ny = 0, oscillations near the other boundary of
the opaque region (x ≈ –x0) are converted into left-
polarized waves (E|| ≈ 0). The ray trajectories of oscil-
lations are described by the equation

(22)

The ray trajectories of oscillations reflected from this
boundary form a conventional caustic surface.

For Ny ≠ 0, the ray trajectories near both of the
boundaries of the opaque region are described by equa-
tions analogous to Eq. (22).

The above features of oscillations in the vicinity of
the critical surface are also typical of another branch of
oscillations, specifically, those that are extraordinary
waves ahead of the critical surface and ordinary waves
behind the critical surface. The only difference is that
the transverse component of the electric field vector of
these oscillations rotates in a different direction. Note
that, for ω < ωe , N|| > 1, and Ny = 0, the transparency
region for these oscillations is bounded in space and is
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adjacent to the critical surface from the side of lower

plasma density if N|| < N||c =  and from the higher

density side if N|| > N||c = . The polarization of oscil-
lations trapped in the transparency region changes from
longitudinal at the critical surface to right-hand circular
at the other boundary of the transparency region [13].

The component of the group velocity along the
y-axis has opposite signs on both sides of the opaque
barrier [see Eq. (19)]. Consequently, fairly large y-com-
ponents of the displacements of the wave packets inci-
dent on and transmitted through the critical surface
should be expected to cancel each other to a great
extent.

For small values of the quantities Ny and δN||, the ray
trajectories approach straight lines with increasing dis-
tance from the critical surface:

(23)

The polarization of such oscillations is described by
formula (7).

For Ny , δN||  0, the ray trajectories are far from
being straight and the polarization of oscillations is
essentially different from that in formula (7) in a nar-
rower interval along the x direction. In the limit Ny ,
δN|| = 0, the opaque region disappears and oscillations
pass freely through the critical surface.

According to formula (18), we have Vg ⊥  ∝  N⊥ ; con-
sequently, the fact that waves with N⊥  = 0 at the critical
surface can pass through it might be viewed as paradox-
ical. However, the dispersion relation (17) implies that,
for Ny = 0, the derivative ∂D/∂ω at the critical surface
also vanishes. As a result, the transverse component of
the group velocity remains finite. The vanishing of the

derivative ∂D/∂ω indicates that, for  = ε+c, the dis-
persion curves ω(N) for ordinary and extraordinary
waves at the critical surface merge (Fig. 1c). In fact, in
the vicinity of the critical surface, the dispersion rela-
tion (6) gives

where the upper and lower signs (plus and minus) cor-
respond to ordinary and extraordinary waves, respec-
tively. From this relationship, we can see that the trans-
verse component of the group velocity is nonzero even
when N⊥  = 0 (see above).

5. WAVE BEAMS NEAR THE CRITICAL 
SURFACE

The ray approximation fails to hold near the reflec-
tion points for oscillations (near the boundaries of the
opaque region). The corresponding parts of the ray tra-
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jectories shown in Fig. 2 should be discarded, and the
ray trajectories of the incident waves should be
matched to those of the transmitted and reflected waves
in accordance with the solution to the wave equation. In
doing so, the ray trajectories should be regarded as the
limiting trajectories of the wave packets (wave beams)
as the ratio of the beam width to the characteristic scale
length of the plasma inhomogeneity tends toward zero.
This approach was applied in my recent paper [7],
which was aimed at investigating the ray trajectories of
the incident and reflected waves for small angles
between the plasma density gradient and the magnetic
field.

We consider a Gaussian wave beam that is incident
on the critical surface from the side of the negative val-
ues of x:

(24)

where F(N||) = exp(–(N|| – N||0)2l2), E(r, N||) =

exp(iΦ(r,N||)), and Φ(r, N||) = (x', N||) + yNy +

zN||. In the expression for E(r,N||), we omitted an unim-
portant, slowly varying factor in front of the exponen-
tial function.

Far from the critical surface (|x/x0 | @ 1), we have

(25)

and, accordingly,

(26)

where α = L1/2 . The sign of Nx in expression (25)

was chosen to satisfy the condition Vg, x > 0, and the
constant in expression (26) can be chosen to be

const(N||) = –  + ln(–4 |x0 |). With these

choices, we can see that, in the region x/x0 @ 1, the tra-
jectory of the wave beam with phase (26) (see below) is
described by the asymptotic equation (20). On the other
hand, these choices simplify the analysis of the trajec-
tories of the reflected beam.

The spatial dependence of the electric field of the
wave beam can be found by calculating the integral in
expression (24) by the stationary-phase method:

(27)
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Fig. 3. Trajectories of wide (l @ L1/2) wave packets in the vicinity of the critical surface for (a) N||0 < N||c , (b) N||0 = N||c , and
(c) N||0 < N||c . Shown are the trajectories of (1) the wave beams incident from the lower density side and (2) the transmitted and
(3) reflected wave beams. The dashed parts of the trajectories lie in the region where the quasiclassical approximation fails to hold.
where  = l2 – iA2ln |4x/x0 |, (r, N||) ≈  +

ln |4x/x0 |  + z, A1 =  = , and

A2 = . Expression (27) is valid far from the critical

surface, i.e., when the parameter |x/x0 | @ 1 is much

larger than unity. The expression for (r, N||) is valid
with logarithmic accuracy in terms of this parameter.

It is natural to associate the ray trajectories that were
analyzed in the previous section with the central trajec-
tory of the wave beams. The central trajectory is

defined by the condition (r) = 0. One can readily
see that, for |x/x0 | @ 1, the central trajectory of the wave
beam with the electric field (27) is described by the
asymptotic equation (20):

(28)

Simple analytic expressions for the parameters of
the transmitted wave beam can be obtained in the lim-
iting cases of wide (l @ L1/2) and narrow (l ! L1/2)
beams. Behind the critical surface, a wide beam is
described by expression (27) with the additional factor
exp(–π|γ(N||0)|), which takes into account subbarrier
tunneling. Being oriented in the proper manner
(|γ(N||0)| ! 1), a wide beam can be essentially com-
pletely transmitted through the critical surface.

The beam that is narrow in coordinate space is wide
in wavenumber space. The critical surface acts on such
a beam as a filter that transmits the waves with N|| ≈ N||c .
In this case, the factor exp(–π|γ(N||0)|), which deter-
mines the transmission coefficient for a wide wave
beam, should be replaced by exp(–(N||0 – N||c)2l2). In
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fact, taking the integral in expression (24) by the saddle
point method, we obtain

(29)

where  = (π/4 – iln|4x/x0|)A2 and (r, N||c) ≈

− A1x + z.

One can readily derive an expression that describes
the effective transmission coefficient for a wave beam
and is valid for arbitrary values of the ratio of l to L1/2

[7] [cf. (15)]:

where g = , and the quantity A2 =

 characterizes the width of the transmis-

sion band of the critical surface in wavenumber space.

The above analysis shows that the ray trajectories of
a wide incident beam (l @ L1/2) and those of the trans-
mitted beam are described by the same equation (28).

Figure 3 shows representative ray trajectories calcu-
lated for different values of A ∝  δN||. The trajectories
are terminated at a certain distance from the critical sur-
face, in the vicinity of which the quasiclassical approx-
imation fails to hold and, accordingly, the asymptotic
representations (13) and (14), which were taken into
account in calculating the spatial dependence of the
electric fields of the wave beams, are invalid.
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In the case of a narrow beam, the beam component
that has passed through the critical surface propagates
along a straight trajectory described by Eq. (22) or,
equivalently, by Eq. (28) with A = 0.

Now, we determine the ray trajectories of the
reflected beams. In order to match the ray trajectory of
the reflected beam with that of the incident beam, we
turn to the asymptotic expression (14), which refers to
both incident and reflected plane waves. As was shown
above, the trajectory of the incident wave beam is
described by Eq. (20), provided that, in the first term in
expression (14), the amplitude is chosen in the proper
manner. The same factor should also enter into the sec-
ond term, which describes the reflected wave. To sim-
plify the calculations, we assume that |γ| @ 1 and use the
asymptotic representation Γ(−γ) exp[−γln(−γ)].

From these considerations, we can see that the phase of
the reflected wave is again described by expression (26)
but with opposite signs of the first three terms:

Applying again the above calculation procedure, we
can see that the trajectory of the reflected wave beam is
described by the asymptotic equation (20), as is the
case with the trajectory of the incident wave beam:

Knowing the asymptotic trajectories of the beam,
we can reconstruct its entire ray trajectory. It turns out
that, for δN|| < 0, the incident ray passes over to the
reflected ray at the cusp (x = 0, z = 0) and, for δN|| > 0,
at the vertex of the parabolic trajectory (x = –x0, z = 0).
The matching of the trajectories is possible because, in
expression (14), the term that describes the reflected
wave contains the factor Γ–1(–γ), which determines the
shift of the ray trajectory as a whole from the incident
ray trajectory along the z-axis. With this term, the ray
trajectory of the transmitted waves is as close as possi-
ble to the common ray trajectory of the incident and
reflected waves (Fig. 3).

The Fourier spectrum of a narrow wave beam
(l ≤ L1/2) changes during the reflection, because the crit-
ical surface transmits the waves with N|| ≈ N||c. As a
result, the reflected part of the incident wave beam is no
longer Gaussian, so that its spatial structure cannot be
described by expressions (27) and (29) and its width
increases to about L1/2. In fact, the change in the Fourier
spectrum during the reflection may be explained as
being due to the formation of another reflected beam
with a narrower spectrum and, consequently, a larger
width in coordinate space. The phase of the new
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reflected beam is shifted from the phase of the main
reflected beam by π.

6. OSCILLATIONS IN A PLASMA
WITH A NONORTHOGONAL DENSITY 

GRADIENT AND MAGNETIC FIELD

The above analysis was based on the simplified set
of wave equations (5). These equations can also be used
to analyze the propagation of oscillations in a plasma in
which the density gradient is not orthogonal to the mag-
netic field.

We assume that the plasma density gradient lies in
the (x, z) plane and introduce the Cartesian coordinate
system (ξ, y, ζ) with the ξ-axis parallel to —n0 (Fig. 4).
As before, we restrict ourselves to considering the
waves with N|| ≈ N||c , which are the only waves that
freely cross the critical surface. The spatial dependence
of the field of these waves is described by the expres-
sion f(ξ, y, ζ)exp(iN||c(z(ξ, ζ)), where f is a gradually
varying function. In the quasiclassical approximation,
this function has the form f(r) = exp(i(δNξξ + Nyy +
δNζζ)), where χ is the angle between the plasma density
gradient and the magnetic field, δNξ = Nξ – N||ccosχ and
δNζ = Nζ – N||csinχ, in which case we have
Nx = δNξ sinχ – δNζ cosχ and N|| = N||c + δNξ cosχ +

δNζ sinχ. Setting δNξ = –i  and ε||(ξ) = − , ε+(ξ) =

 – , we reduce Eqs. (5) to the following set

of differential equations, which are a generalization of
Eqs. (10):

(30)
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Fig. 4. Coordinate systems used in the analysis.
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where A = (δNζ + iNycosχ), 

B = (Ny – iδNζ cosχ), 

D = 23/2  + , 

and ξ1 = 

Equations (30) correct for the corresponding mis-
printed equations in [5]. Note that writing the wave
equations in terms of the circularly polarized fields
made it possible to avoid laborious intermediate manip-
ulations.

Applying the procedure described in Section 3, we
reduce Eqs. (30) to a single second-order differential
equation:

where G = A  2HImB – iDReB and H = .

Then, introducing the new function

and the new independent variable

we arrive at the standard parabolic equation (11) with a
modified expression for γ [5]:

Of course, since the expression for γ is modified as
χ changes, expressions (15) and (16) for the transmis-
sion and reflection coefficients are also modified.

For Ny = 0, the opaque region is adjacent to the crit-
ical surface from the side of the positive values of ξ if
δNζ < 0 and from the side of the negative values if
δNζ > 0 (as in the case χ = π/2). For Ny ≠ 0, the critical
surface lies inside the opaque region.

2
5/4

L
1/2

χN ||csin
3/2

------------------------
ωe

ω
------ 

 
3/4

L
1/2

χsin
1/2

----------------
ωe

2ω
------- 

 
1/4

χ 1
cot

ωe

ω
------


1/2

ξ 2ω
ωe

------- 
  1 4⁄

L χsin( ) 1– 2⁄ .

Y '' i 2 Im B Hξ1±( )Y '– B
2

– Gξ1+( )Y+ 0,=

+− D
2
/4 1+

Y i Im Bξ1 2iHξ1
2

+−( )yexp=

ξ2 H
1/2ξ1 H

1/2–
Im B G/(2H)+( ),+=

γ i
H
---- G

4H
2

---------- G 4H Im B±( ) B
2

+ 
 =

=  i
ωe

2ω
------- 

 
1/2 L

2 1
ωe

ω
------+ 

  χcos
2 χsin

2
+ 

 
1/2

--------------------------------------------------------------------

×
2δNζ

2
1

ωe

ω
------+ 

 

2 1
ωe

ω
------+ 

  χcos
2 χsin

2
+

---------------------------------------------------------- Ny
2

+

 
 
 
 
 
 
 

.

The characteristic shape of the ray trajectories of the
waves under consideration remains the same, regard-
less of the value of the angle χ. In particular, at the crit-
ical surface, the ray trajectories have cusps, which are
oriented perpendicular to the magnetic field or, equiva-
lently, along the x-axis, as in the case χ = π/2. In fact,
using the dispersion relation (6) and the above expres-
sions relating Nx to δNξ and δNζ, we reduce the ray tra-
jectory equation (19) to

(31)

Close to the cusp, we have ζ ≈ –ξ  and ξ ≈ –xsinχ.
Consequently, from Eq. (31), we obtain

The characteristic properties of the wave polariza-
tion are also insensitive to χ, except that, for χ ≠ π/2 and
Ny = 0, the wave polarization at the boundary surface of
the opaque region other than the critical surface is not
purely circular (E|| ≠ 0).

7. CONCLUSION

We have thoroughly investigated ordinary waves
that are incident on the critical surface from the side of
lower plasma density. It is these waves that can serve to
heat dense plasmas [2]. The symmetry of the parabolic
equation with respect to the sign of the independent
variable tells us that the expressions derived for the
reflection and transmission coefficients are also valid
for ordinary waves that are incident on the critical sur-
face from the higher density side. Extraordinary waves
can penetrate through the critical surface at χ <

. The transmission and reflection

coefficients for extraordinary waves are given by the
above expression for γ. In this case, however, it is nec-
essary to change the sign at ωe and use the absolute
value under the square root.

The above analysis is inapplicable for fairly small
values of the angle χ ≤ L1/2, when coupling between the
waves with left-hand and right-hand circular polariza-
tions is important. This coupling is described by a more
complicated (fourth-order) wave equation (see [1, 7]).
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Abstract—A study is made of the one-dimensional linear problem of the absorption of the energy of an extraor-
dinary wave propagating along a nonuniform magnetic field by a plasma in the ECR region. The plasma elec-
trons are assumed to be nonrelativistic and are described by a collisionless kinetic equation. The distribution of
the absorbed power among the electrons and the distribution of the self-consistent field over the confinement
system are obtained. The conditions under which the ECRH power is distributed uniformly among the bulk
electrons are determined. The limits of applicability of the locally nonuniform magnetic field approximation
are established. The solutions derived are compared with the solution to an analogous problem with the colli-
sional absorption mechanism. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the interaction of electromagnetic
waves with plasmas under electron cyclotron resonance
(ECR) conditions has been actively studied over the past
several decades in connection with a broad range of
applications of ECR plasma heating. Research in this
field has concentrated on the following two issues:
(i) the propagation and absorption of electromagnetic
waves in a plasma and (ii) the formation of the electron
velocity distribution function (EDF) during ECR heat-
ing. The latter problem seems to be especially important
for optimizing the operating modes of ECR sources of
multicharged ions [1], because the electron velocity dis-
tribution in these sources has a direct effect on plasma
confinement in magnetic devices [2]. On the other hand,
the problem of determining the EDF in an ion ECR
source is fairly complicated, because the formation of
the EDF is governed by the combined action of various
factors, such as electron production by ionization pro-
cesses, electron escape from the device through the end
plugs, electron scattering in Coulomb collisions, the
interaction of electrons with a microwave field, and the
perturbation of the field of the heating wave by electron
currents induced in the plasma. The solution of such a
complicated problem requires a detailed preliminary
analysis of each of these processes, most of which were
already examined in previous studies. In particular, the
ECR interaction between the electrons and the field of
an unperturbed wave propagating in a collisionless
plasma along the device axis was investigated in [3, 4],
where it was shown that, for waves whose amplitudes
are not too small, the evolution of the EDF in velocity
space is described by a diffusive Fokker–Planck equa-
tion with the diffusion coefficient proportional to the
wave intensity. The results obtained in [3, 4] were then
applied in [5, 6] to calculate the EDF in a magnetic con-
finement system with allowance for ionization, the Cou-
1063-780X/01/2711- $21.00 © 0932
lomb scattering of electrons, and the escape of electrons
through the end plugs. However, in a plasma whose den-
sity in the ECR region is not too low, an extraordinary
electromagnetic wave propagating along the magnetic
field can be perturbed rather strongly. It was found that,
in such a plasma, the distribution of the absorbed power
among the electrons can be highly nonuniform, thereby
significantly affecting the quasilinear electron diffusion
coefficient in velocity space and inevitably influencing
the structure of the EDF. Hence, in a high-density
plasma, which is of primary interest from the standpoint
ion ECR sources, the electrodynamic aspects play an
important role in the problem under consideration and
require a separate analysis, which will be carried out in
this paper.

Note that research on the propagation of electro-
magnetic waves in plasmas is one of the best-developed
branches of plasma physics and is elucidated in most of
the textbooks and monographs on this topic. Questions
related to the propagation of an extraordinary electro-
magnetic wave through the ECR region have received
much attention (see, e.g., [3] and the literature cited
therein). However, in most of the published papers, a
study was made of the integral parameters of the ECR
region, specifically, the coefficients of reflection, trans-
mission, and absorption of the incident wave. To the
best of our knowledge, the questions associated with
the distribution of the absorbed power among the
plasma electrons were considered only in a paper by
Kuckes [7], which, unfortunately, contains some errors,
so that it is impossible to directly apply the results
obtained therein.1 Here, we present the results of an
analysis of the revised linear problem of the propaga-

1 In particular, the results of [7] conflict with the dependence of the
wave absorption coefficient on the parameters of the problem
treated by Timofeev [3].
2001 MAIK “Nauka/Interperiodica”
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tion of an extraordinary wave through the ECR region.
The wave is assumed to propagate from the side of the
stronger magnetic field in a warm collisionless plasma.
We focus on the questions regarding the distribution of
the absorbed power among electrons with different lon-
gitudinal velocities and the possibility of describing the
electrodynamic aspects of the problem in a simplified
(geometrical-optics) approximation. The latter ques-
tion can also be discussed for the simple case of a cold
plasma with a given electron collision frequency. Since
the answers to these questions have much in common,
we also present the results that were obtained from
analysis of the electrodynamics of a cold collision-
dominated plasma in the ECR region and that are based
on the familiar exact solution to the problem under con-
sideration.

2. SELF-CONSISTENT FIELD AND THE SPATIAL 
DISTRIBUTION OF THE RELEASED ENERGY

IN A COLD PLASMA

Plane extraordinary electromagnetic waves propa-
gating along a uniform magnetic field B0 in a cold
plasma can be described by the equation

(1)

Here, z is the coordinate along the magnetic field; E is
the complex amplitude of the electric field E = Re((x –
iy)E(z)exp(iωt)) in the wave; ω is the field frequency;
c is the speed of light in vacuum; and ε+ is the square of
the complex refractive index,

(2)

where  = 4πe2N/m is the square of the electron
plasma frequency, N is the plasma density, e and m are
the charge and mass of an electron, ωH is the electron
cyclotron frequency, and the electron–ion collision fre-
quency ν is assumed to be constant.

In certain approximations, Eq. (1) can be used to
analyze the propagation of an extraordinary wave along
a smoothly nonuniform magnetic field under the formal
assumption that the electron gyrofrequency is a func-
tion of the longitudinal coordinate, ωH(z). The main
features of the wave propagation through the ECR
region can be examined in terms of a simple model with
ωp = const and ωH = ω(1 – z/L), where L is the scale on
which the magnetic field varies in the resonance zone.
In accordance with Eq. (1), written in terms of the
dimensionless coordinate x = ωz/c, the solution to our
problem in this model is determined by two indepen-
dent parameters:

(3)
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where γ = L/ωc and d = νL/c. In particular, for a
wave incident from the side of the stronger magnetic
field (i.e., from x = –∞), the solution to Eq. (3) can be
represented as

(4)

where Wk, m(z) is a Whittaker function [8]. This solution
implies that the reflection coefficient is identically zero,
and the transmission and absorption coefficients are
independent of the collision frequency:

(5)

where T and Q are the wave-power transmission and
absorption coefficients, respectively. Nevertheless, the
spatial field structure and the spatial distribution of the
released energy are both very sensitive to the collision
frequency (the parameter d). This conclusion can be
clearly illustrated by using approximate models that
assume certain relationships between the parameters γ
and d.

It is convenient to construct such approximate mod-
els by analyzing the relative role of collisions in differ-
ent spatial regions. This approach makes it possible to
introduce the concept of the resonance zone, which can
be easily generalized to the case of a warm plasma. In
the resonance zone, which surrounds the ECR plane
(x = 0), the electron collisions (or thermal electron
motion) markedly perturb electric currents induced by
the wave field in the plasma. In contrast, outside the res-
onance zone, the perturbing effect of collisions (or ther-
mal motion) is relatively insignificant and manifests
itself mainly as a weak (over the wavelength) absorp-
tion of the wave power.2 For a cold collision-dominated
plasma, the resonance zone is characterized by the ine-
quality |ω – ωH | ≤ ν; i.e., the dimensionless width ∆xr

of the resonance zone is about d. In this case, the wave
field structure is very sensitive to the relative width of
the resonance zone.

2.1. Broad Resonance Zone, d @ (γ + 1)–1

For a broad resonance zone,3 the solution to Eq. (3)
can be described with sufficient accuracy in the Went-
zel–Kramers–Brillouin (WKB) approximation,

2 It can be shown that, despite terminological differences, this con-
cept of the resonance zone is actually equivalent to the notions
introduced by Ginzburg [9] when solving hydrodynamic colli-
sional problems and by Kuckes [7] when solving kinetic prob-
lems.

3 Here, the inequality d @ (γ + 1)–1 refers simultaneously to the
following two limiting cases:
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because the inequality |dε+/dx| !  holds over the
entire plasma volume:

where E0 is the amplitude of the electric field of the

incident wave and n = . We can see that the local
structure of an electromagnetic wave is independent of
the magnetic field nonuniformity. The width of the res-
onance zone is much larger than the local wavelength of
the extraordinary wave; i.e., |nd | @ 1. The spatial distri-
bution of the absorbed power depends on the parameter γ.
For πγ ! 1 (i.e., when the total absorption is weak), the
plasma perturbs the field of the incident wave only
slightly. Accordingly, we have |E | ≈ E0, so that the
energy is deposited mainly in the resonance zone
(where the peak of the function Imε+ is localized). For
πγ @ 1 (i.e., when the total absorption is strong), the
field amplitude in the resonance zone is small com-
pared to the amplitude of the incident wave, so that the
incident wave loses a major fraction of its energy before
reaching the resonance zone, i.e., in the region to which
the geometrical-optics approximation can be applied,
−∞ ≤ x ≤ –d, and in which the inequality Im(ε+) ≤
Re(ε+) holds.

2.2. Narrow Resonance Zone, d ! (γ + 1)–1

As in the case of a broad resonance zone, under con-
ditions such that the total absorption is weak (πγ ! 1),
the field of the incident electromagnetic wave is per-
turbed only slightly by the plasma (the approximate
equality |E | ≈ E0 holds over the entire plasma volume).
Consequently, the wave energy is mainly deposited in
the resonance zone. For πγ @ 1, the field structure and
the spatial distribution of the released energy differ rad-
ically from those in the case of a broad resonance zone.
In particular, in contrast to the conclusion drawn by
Ginzburg in his classical monograph [9], the WKB
approximation fails to hold in the region |x | ≤ 1/γ, which
is far wider than the resonance zone (d ! 1/γ). By virtue
of the condition Im(ε+) ! Re(ε+), the absorption of the
incident wave can be neglected in the region in which
the geometrical-optics approximation can be applied
and which coincides with the region where the WKB
approximation is valid. However, in this region, the
refractive index is elevated and, accordingly, the ampli-

tude |E | of the incident wave decreases to about E0/ .
The magnetic field nonuniformity strongly affects the
local structure of the wave in the region |x | ≤ 1/γ, whose
thickness, however, is relatively small, so that the field
amplitude |E | across this region does not change signif-
icantly. On the other hand, in this region, the function
Im(ε+) has a sharp resonance peak, which is localized
within the resonance zone. Consequently, the wave

ε+
3/2

E
E0

n
------- i n x'( ) x'd

∞–

x

∫–
 
 
 

,exp=

ε+

γ

energy is mainly deposited in the resonance zone,
whose thickness in the case at hand is small in compar-
ison with the local wavelength, |nd | ! 1. This indicates
that, in the resonance zone and even in a broader region
determined by the condition |x | ! min(1/γ, 1), the com-
plex field amplitude changes insignificantly: E ≈
const.4 In this region, the amplitude |E | can readily be
found from the condition that the Ohmic heating power
is equal to the energy flux in the incident wave:

Note that, in the case at hand (πγ @ 1), this condition

gives the amplitude |E(0)| ≈ E0/ , which coincides
with the solution to the exact equation (4) in the limit
d ! γ–1.

3. ABSORPTION IN A WARM 
COLLISIONLESS PLASMA

As in Section 2, we analyze the propagation of an
extraordinary wave through the ECR region using a
one-dimensional model. Again, we consider a wave
propagating along the magnetic field in a collisionless
plasma and assume that the electron gyrofrequency is a
linear function of the z coordinate and the plasma den-
sity is uniform (i.e., we neglect variations of the longi-
tudinal electron velocity). Under these assumptions, the
initial equations for the complex electric-field ampli-
tude E and perturbations of the EDF f1 have the form

(6)

(7)

where the complex amplitude j(z) of the electron cur-
rent density j(z, t) = Re((x – iy)j(z)exp(iωt)) excited by
the incident electromagnetic wave is equal to

(8)

The total EDF can be represented as

(9)

4 In the case under analysis (i.e., for πγ @ 1 and d(1 + γ) ! 1), the
exact solution shows that, in the resonance zone, in which the
incident wave is mainly absorbed, the wave electric field is nearly
constant (E . const) and also the amplitude variations in the
wave magnetic field are slight. A decrease in the wave energy flux
is associated with a change in the phase of the magnetic field by
about π/2.
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where v⊥  and v || are the velocity components perpen-
dicular and parallel to the magnetic field, v ⊥  = |v⊥ |, and
the unperturbed EDF f0 is assumed to be symmetric in
transverse velocities.

As in the case of a collision-dominated plasma, we
transform Eqs. (6) and (7) with the complex current-
density amplitude (8) to the dimensionless coordinate
x = zω/c and integrate the dimensionless equation (7)
multiplied by v ⊥  over transverse velocities. As a result,
we can see that, for a prescribed structure of the unper-
turbed EDF, the solution to the problem again depends

on two parameters: γ = L/ωc and δ = /c,
where vT is the longitudinal electron thermal velocity.
The resulting equations (6) and (7) with the dimension-
less expression (8) can be rewritten in the form

(10)

where U = v ||/v T , NF(U)/v T = (v ⊥ , Uv T )d2v⊥ ,

N is the plasma density, and J(U, x) = 4πevT (v ⊥ ,

UvT , x)d2v⊥ /2ω.
In accordance with Eqs. (10), the density of the cur-

rent induced in the plasma decreases to zero with
increasing distance from the resonance point; i.e.,

(x, U)dU  0 as |x |  ∞. Consequently, at infin-

ity, the wave field structure is always the same as in vac-
uum, so that we can impose the following boundary
condition on the complex electric-field amplitude E:

(11)

In this case, the boundary condition on J can be deter-
mined from the causality principle, i.e., from the
assumption that the electrons that move from infinity
toward the resonance zone and that are sufficiently far
from the resonance zone do not contribute to the current
density:

(12)

Using the method of phase integrals, we can see that,
for the wave incident from the side of the stronger mag-
netic field, the reflection, transmission, and absorption
coefficients are independent of the parameter δ (or,
equivalently, the electron thermal velocity). These
coefficients turn out to be exactly the same as those in
the corresponding problem [see coefficients (5)] of the
wave propagation through the ECR region in a cold col-
lision-dominated plasma [3]. Nevertheless, the spread
in electron velocities has a substantial impact on the
field structure and on the distribution of the absorbed
power both in space and among the electrons.
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3.1. Resonance Zone

As in the previous problem, it is very convenient to
analyze the electromagnetic field structure using an
approximate method based on the concept of the reso-
nance zone. However, for a warm collisionless plasma,
the width of the resonance zone (i.e., the zone where the
effects of spatial dispersion are significant) itself
depends on the field structure and can thus be deter-
mined only by solving the problem at hand. The width
of the resonance zone is generally governed by the fol-
lowing two factors: first, because of the Doppler effect,
the displacement of the zone where an electron inter-
acts resonantly with the field depends strongly on the
longitudinal electron velocity and, second, because of
the finite time taken by an electron to traverse the reso-
nant interaction zone, the width of this zone is finite for
each individual electron. Consequently, the resonance
zone is characterized by the inequalities

(13)

Here, k is the wavenumber of the wave field, provided
that the spatial field structure is quasi-monochromatic,

E ∝ exp(–i (z)dz). In a more general case, the quantity

k can be assigned the characteristic value . In

dimensionless variables, inequalities (13) correspond
to the width of the resonance zone,

(14)

Here, the quantity ∆x1 is determined by the Doppler
effect,

(15)

n is the effective refractive index of the plasma for the
wave; and the quantity ∆x2 is determined by the finite
transit time of an electron through the zone of the reso-
nant interaction with the wave field,

(16)

Note that the width of the broad resonance zone
(n∆xr @ 1) is governed by the Doppler effect (∆x1 @
∆x2), while the width of the narrow resonance zone
(n∆xr ! 1) is governed by the electron transit time
(∆x2 @ ∆x1). In the latter case, the width of the reso-
nance zone is independent of the electromagnetic field
structure.

Outside the resonance zone, the electron thermal
motion, by definition, perturbs the conduction current
only slightly, so that the refractive index can be
described by the approximate formula

(17)
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Following [7], we assume that expression (17) is valid
at the boundary of the resonance zone.5 This assump-
tion makes it possible to estimate the width of the reso-
nance zone in the general case. In particular, the reso-
nance zone is broad when

(18)

in which case its width is estimated as

In the limit opposite to inequality (18), the resonance
zone is narrow and its width is approximately equal to

3.2. Broad Resonance Zone

Using Eqs. (6) and (8), we can show that, when ine-
quality (18) corresponding to a broad resonance zone is
satisfied, the local structure of an electromagnetic wave
is independent of the magnetic field nonuniformity. In
other words, as in the case of a cold collision-domi-
nated plasma, the wave electric field can be described
in the WKB approximation over the entire plasma
volume:

(19)

Here, the refractive index nT is the root of the following
dispersion relation for an extraordinary wave propagat-
ing along a uniform magnetic field in a warm plasma
[9]:

(20)

The spatial distribution of the released energy is also
analogous to that in the case of a cold collision-domi-
nated plasma. For πγ ! 1, the electromagnetic wave
over the entire plasma volume is perturbed by the
plasma only slightly, |E | ≈ E0, and the wave energy is
deposited mainly in the resonance zone. In this case, the
released energy is distributed uniformly among the
bulk electrons, because the power absorbed by a
monoenergetic electron flow passing through the reso-
nance zone in a spatially monochromatic electromag-
netic field is independent of both the flow velocity and
the wavenumber [7]. For πγ @ 1, the wave field in the
resonance zone is weak and the incident wave loses a
major fraction of its energy before reaching the reso-
nance zone, i.e., in the region in which the geometrical-

5 Below, we will show that this assumption is confirmed by a more
rigorous analysis of Eqs. (10) with boundary conditions (11)
and (12).
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optics approximation can be applied, –∞ ≤ x ≤ –∆xr, and
in which the inequality Im(nT) ≤ Re(nT) holds. The wave
energy is mainly absorbed by fast superthermal elec-
trons whose velocities lie in the range –∞ < v  ≤ vTU0,
where U0 is the root of the equation

(21)

3.3. Narrow Resonance Zone

As in the hydrodynamic model considered above,
the cases of a narrow resonance zone and a broad reso-
nance zone differ insignificantly when the total absorp-
tion is weak (πγ ! 1). In both cases, the plasma currents
perturb the wave electric field only slightly. Accord-
ingly, a major fraction of the wave energy is deposited
in the resonance zone and the released energy is distrib-
uted uniformly among all plasma electrons. The two
cases differ radically only when the absorption is
strong, πγ @ 1. Under this condition, the electric field
distribution is described by the approximate expres-
sion (4) in the limit d  0. By analogy with the case
of a cold plasma, the WKB approximation fails to hold
already in the region |x | ≤ 1/γ, which is far from the res-
onance zone (|x | < ∆xr = δ ! 1/γ). In the region where
the WKB approximation is valid, the wave absorption
is rather weak. In the region where the WKB approxi-
mation fails to hold, the electric field amplitude |E | is
nearly constant.6 An analysis of Eqs. (10) makes it pos-
sible to show that, in the region |x | ≤ 1/γ, which sur-
rounds the resonance zone, the complex electric-field
amplitude is also nearly uniform, E . const. Conse-
quently, the incident wave is mainly absorbed in the
resonance zone and the released energy is distributed
uniformly among the bulk electrons. Equating the
power deposited in the uniform electric field region to
the energy flux in the incident wave,

we find that the electric field amplitude in the resonance

zone is approximately equal to |E(0)| ≈ E0/ . This
amplitude coincides, within a numerical factor, with the

estimate |E | ~ E0/  obtained for the field amplitude at
the boundary of applicability of the WKB approxima-
tion.

4. CONCLUSION
We have analyzed the propagation of an extraordi-

nary wave in a warm collisionless plasma with a non-

6 Note that, as in the hydrodynamic approach, the refractive index
is described by expression (17) in a significant part of this region
(δ ! |x| ≤ 1/γ).
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uniform longitudinal magnetic field. The results

obtained show that, in a high-density ( L @ ωc)
plasma with hot electrons such that (ωL/c)3vT @
c(ω/ωp)4, the wave power is mainly deposited in a small
fraction of superthermal electrons, because the zone
where they interact efficiently with the wave field is dis-
placed markedly (due to the Doppler effect) from the
ECR point toward the incident wave, i.e., toward the
regions where the incident-wave amplitude is larger.
The ECR heating of the bulk of the electrons, which is
required for efficient operation of an ECR source of
multicharged ions, can only be achieved in a colder
plasma in which the Doppler effect is insignificant. In
this case, the deposition of a major fraction of the wave
power occurs in a relatively narrow resonance zone and
thus cannot be described in the geometrical-optics
approximation. As the field frequency increases (at a
fixed value of the ratio ωp/ω), the temperature, at which
the bulk of the electrons stop absorbing the wave field
energy, decreases. As a result, we can expect that, with
increasing field frequency, the plasma density that is
optimum for an ECR source will increase far more
gradually than according to the law ω2.
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Abstract—“Closed” and “open” reduced models of two or three most abundant light impurity ions in an opti-
cally thin hydrogen plasma are considered. The models are shown to satisfactorily describe the average ion
charge and radiative losses within a wide range of parameters typical of laboratory and astrophysical plasmas,
including the case when the relaxation time of the impurity distribution over ionization states is comparable to
or longer than the characteristic times of the most important dynamic processes. The potentialities of the models
are demonstrated using the carbon impurity as an example. The models proposed make it possible to analyti-
cally study the dynamics of a radiating plasma, obtain qualitatively new results, and significantly reduce the
computation time when solving complicated self-consistent dynamical problems. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

This study (or, to be more exact, series of studies)
originated from discussions with Vitaliœ Arkad’evich
Abramov (now deceased) of the difficulties in describ-
ing impurities when optimizing the divertor of the dem-
onstration ITER tokamak reactor. It turned out that the
problem is of much greater importance than was first
thought. The behavior of impurities plays a significant
role in many problems of laboratory and astrophysical
plasmas. The energy balance in the divertor plasma;
microfaceted asymmetry of radiation from the edge
(MARFE); the effects of impurities on the drift waves,
wall turbulence, and L–H transitions in tokamaks; the
injection of diagnostic carbon pellets into the stellarator
plasma; the filamentation of interplanetary and inter-
stellar clouds; solar prominences; and the propagation
of shock waves and nonlinear thermal fronts in astro-
physics comprise an incomplete list of the problems in
which the description of impurities plays a decisive role
(see reviews [1–3] and original papers [4, 5]).

A complete description of an impurity is a rather
difficult problem that requires solving a cumbersome
set of equations accounting for the ionization and
recombination kinetics. Thus, hydrodynamic calcula-
tions of the plasma flow in the ITER divertor can take
many days of supercomputer operation. Therefore, it is
desirable to simplify the problem so that it would be
possible not only to reduce the computation time but
also to carry out qualitative analytical and combined
numerical–analytical studies. It is those studies that
would allow one to reveal qualitatively new phenom-
ena. In this way, a new type of waves with dispersion
properties similar to those of sound but much slower
[6]; the shift of the plasma equilibrium during nonther-
1063-780X/01/2711- $21.00 © 20938
modynamic temperature oscillations (such a shift
should be observed not only in a radiating plasma, but
also in any system with properties determined by the
balance between threshold and nonthreshold processes)
[7]; and rarefaction shock waves with a pressure behind
the front lower than that ahead of it (which are forbid-
den in classical gas dynamics) [8] were predicted to
exist in a radiating plasma.

The problem is substantially simplified assuming
the coronal equilibrium (see, e.g., review [9]). In this
case, the impurity parameters (including such an
important characteristic as radiative losses) were calcu-
lated by many authors for almost all the elements in the
periodic table (see [10, 11]). That is why most of the
studies of the radiating plasma stability were carried
out in the coronal equilibrium approximation.

At the same time, the distribution of impurities over
ionization states is known to be quite inertial (see, e.g.,
[12]). Therefore, under strong convection typical of the
tokamak periphery, impurities are very far from coronal
equilibrium and the radiative losses are very different
from those at equilibrium. A similar situation also
occurs in studying the instabilities in which radiative
losses play an important role. With allowance for the
dynamics of the impurity distributions, the stability
conditions and the instability growth rates turn out to be
quite different from those obtained using the simple
assumption that the impurity behavior adiabatically fol-
lows the change in the electron temperature [12, 13].

The aforesaid has stimulated the development of a
simplified impurity theory in recent years.

For heavy impurities (iron, chromium, vanadium,
etc.) characterized by the small difference in the prop-
erties of the neighboring ionization states, the distribu-
001 MAIK “Nauka/Interperiodica”
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tion over ionization states can be described by a Gaus-
sian function whose parameters are described by sim-
ple dynamic equations [14, 15].

However, for light impurities, which play a major
role in modern tokamaks, no approximations of this
kind are available. Unlike heavy impurities, light impu-
rities differ substantially in the ionization and recombi-
nation rates of ions in the neighboring ionization states.
Therefore, some authors (including the authors of the
present paper) proposed models describing the impu-
rity in terms of the two or three most abundant ions.

Such an approach was first proposed in [16] for cal-
culating the transition time between two neighboring
ionization states. The dynamic models for the two or
three most abundant ions were discussed and justified
in [17–20]. The employment of this simplified
approach (unfortunately, without proper justification
and estimating the limits of applicability) has already
provided a number of qualitatively new results in the
theory of the radiating plasma stability [12, 13].

In contrast to [17–20], where only “closed” models,
in which the sum of the relative densities of the most
abundant ions is exactly equal to unity, were discussed,
we consider here both closed and open models. The
plasma with a light impurity is described in a form con-
venient for computer simulations and analytic calcula-
tions. Different models for the processes with charac-
teristic times comparable to or shorter than the typical
relaxation time of the impurity distribution over ioniza-
tion states are compared. Calculations are carried out
based on modern atomic data [21].

This paper is organized as follows. In Section 2, the
two-ion closed model is discussed and the basic
dynamic equations are derived. In Section 3, the radia-
tive losses during high-frequency oscillations and sharp
jumps in the electron temperature are calculated. The
results obtained are compared with those predicted by
the exact seven-ion model. Section 4 presents the
results obtained with the open three-ion model for the
same quantities as in Section 3. In the Conclusion, the
potentialities of all the reduced models are discussed
and compared to each other. In the Appendix, a sum-
mary of the formulas for calculating the rates of all the
basic processes for carbon is presented together with
the tables of the parameters needed for practical appli-
cations. The formulas are given in a form ready for
direct employment: searching for literature data on
such quantities as oscillator strengths or quantum num-
bers is necessary.

2. CLOSED TWO-ION MODEL

As was mentioned above, the time during which the
impurity relaxes to the equilibrium distribution over
ionization states is often greater than the typical hydro-
dynamic times. Thus, for the temperature Te = 8 eV and
the carbon impurity, which are typical of the tokamak
divertor plasma, the doubly charged CIII ion is one of
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
the most abundant ions. At the electron density ne =
1013 cm–3, its ionization time is on the order of 10–2 s.
The velocity of the plasma flow in the divertor can be
on the order of the speed of sound, which is
~3 × 106 cm/s at the given temperature. Hence, over the
ionization time, a doubly charged ion can travel a dis-
tance on the order of several meters, which exceeds the
major radius of a modern tokamak. The typical ioniza-
tion time is also greater than the typical period of
plasma oscillations at the tokamak periphery.

For this reason, attention should be mainly focused
on the dynamics of the distribution of impurities over
ionization states. This dynamics is determined by the
structure of the time-dependent coronal equations. The
dependence on time significantly complicates the math-
ematical problem to be solved by the reduced models
proposed. As in [17], we will not simplify the problem
with respect to the spatial properties by, e.g., reducing
it to the one-dimensional problem or assuming the dif-
fusion approximation.

First, we consider the approximation of the two
most abundant ions. Let the ion charge numbers be z
and z + 1. A distinctive feature of closed models is the
requirement that the normalization condition

(1)

be satisfied. Here, yz = nz/  is the relative density

of the ions with charge number z, nk is the density of the

ions with charge number k, and  = nI is the total

density of the impurities. In open models, this condition
may fail to hold to a small extent. In view of condition (1),
the impurity distribution over ionization states is
described by a single equation in the Lagrange vari-
ables,

(2)

where ne is the electron density; Jz and Rz are the ioniza-
tion and recombination rates, respectively; dyz/dt =
∂yz/∂t + vz · —yz; and vz is velocity of the ion species. As
is shown in [18], the ion velocity is only slightly
affected by the ion charge. Therefore, the impurity can
be completely described by simply adding the hydrody-
namic equations for the total impurity density and the
overall ion velocity.

The charge number z of the most abundant ion can
be easily determined only for the coronal equilibrium
[17]. If the plasma is highly nonequilibrium, then this
charge should be determined by solving dynamic equa-
tions. For the closed two-ion model, the equation for
the average ion charge number,

(3)
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can be derived by substituting formula (3) into Eq. (2):

(4)

Here, νz = ne(Jz + Rz + 1) and z∗  = z + 1 –  is

the approximate value of the equilibrium charge num-
ber from the two-ion model. Physically, it is evident
that the results would be more precise if the equilibrium
average charge number calculated at the given temper-
ature by the exact (seven-ion) model is taken as z∗ . The
average charge number calculated by the exact model
depends exclusively on the electron temperature and is
not affected by the history of the process. Hence, it can
be calculated analytically, once and for all, for any ele-
ment from the periodic table. However, because of the
awkwardness of the formulas derived, it is reasonable
to use an approximated expression presented in the
Appendix for carbon.

For the reverse transition from 〈z〉 to yz by formula (3),
the value of z must be calculated as the integer part of
〈z〉 . In this case, the relative density is given by the
expressions

(5)

Obviously, when more than two ion species are
present in the plasma, these equations only qualita-
tively describe the behavior of the relative densities. As
will be shown in the next section, these equations are
quite sufficient for describing the averaged impurity
characteristics, such as the total radiative losses. If a
more precise description of the relative densities is
required, then the following iterative procedure can be
proposed. In the coronal model, the relative density yz

is governed by the “exact” equation of the form

(6)

which can be solved with respect to yz in terms of
quadratures:

(7)

At each iteration step, the relative density from the pre-
ceding step must be substituted into the integrand.

Being more cumbersome than the two-ion model, the
closed three-ion model provides no remarkable increase
in accuracy [20, 22] and will not be discussed here.
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3. NUMERICAL CALCULATIONS
AND THE VALIDITY OF THE MODEL

To test the validity of the reduced models, we per-
formed calculations of the radiative losses at a given
temporal behavior of the electron temperature within
the temperature ranges that are the least favorable for
the model’s validity. It was assumed that the impurity
density was fairly low and that the degree of its ioniza-
tion did not affect the electron density. The results
obtained were compared with those from the complete
seven-ion model. The electron-impact excitation and
ionization, spontaneous radiative decay, photorecombi-
nation, and dielectronic recombination were taken into
account. When calculating dielectronic recombination,
five transitions were taken into account, which is more
than in the previous studies (see, e.g., [11]). The exact
equilibrium value of 〈z〉  at the initial temperature was
taken as the initial condition.

First, we considered the oscillations of the electron
temperature in the range 5 ≤ Te ≤ 15 eV. The electron
density was taken to be 1013 cm–3. The time dependence
of Te was approximated by the formula Te = T0(1 +
a sin(2πνt)). We note that as many as four different ions
can be simultaneously present in the plasma in an
appreciable amount within the above temperature
range. Clearly, in this case, the two-ion model cannot
accurately describe the distribution of all the ions over
ionization states.

However, the radiative losses calculated as the sum
of the contributions from individual ions (Q =
nenI (T)) are described quite satisfactorily. In
this case, even qualitative agreement could hardly be
expected, because, in addition to the large number of
ion species present, the transition in this temperature
range occurs from the most abundant ion with z = 3 to
that with z = 4. The radiation intensity of the latter ion
is lower by at least one order of magnitude. Neverthe-
less, as is seen in Fig. 1, which shows the total carbon
radiation intensity L, even the simplest two-ion model
enables a qualitatively correct description of the radia-
tion behavior. The discrepancy between the two-ion
and seven-ion models is no higher than 50%. The two-
ion model quite accurately describes the decrease in the
time averaged level of radiative losses related to the
effect of the equilibrium shift [7]. Note that the seven-
ion model can also produce an error of the same order
of magnitude because of the insufficient accuracy of the
available data on the rates of elementary processes.

The computer time required for numerical calcula-
tions by the two-ion model is reduced by at least a fac-
tor of 4–5 as compared to the seven-ion model. Thus,
the use of the two-ion model provides a significant
reduction in the computer-time consumption when
solving complex self-consistent problems.

Now, let the temperature rapidly increase over a
characteristic time much shorter than the impurity
relaxation time. Such a situation is perhaps most inter-

yzLzz∑
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esting for practical applications, because the carbon
evaporated from the divertor plate or a diagnostic pellet
[23, 24] is usually carried to the high-temperature
region. We can expect that the reduced models ade-
quately describe the impurity behavior after an abrupt
increase in temperature. In fact, upon a temperature
jump, the two or three ion species that are most abun-
dant at the initial time begin to ionize rapidly. As is
known, the ionization rate is much higher for ions with
a smaller charge. Hence, the initial impurity distribu-
tion over ionization states narrows (rather than spreads
out) and shifts towards higher z. These considerations
are confirmed by the results of calculations shown in
Figs. 2 and 3. The time dependence of the temperature
was chosen in the form Te(t) = (Tfin –
 Tin)(2/π) /τ) + Tin, where Tin and Tfin are the
initial and final temperatures, respectively. The charac-
teristic rise time of the temperature τ = 10–6 s was cho-
sen to be much less than the characteristic impurity
relaxation time. The initial and final temperatures were
assumed to be equal to Tin = 3 eV and Tfin = 50 eV,
respectively. The initial distribution over ionization
states coincided with the equilibrium one at the initial
temperature. It is seen in Fig. 2, which presents the
results from the seven-ion model, that no more than two
or three ion species with consecutive charges are
present simultaneously in the plasma. Therefore, the
impurity can actually be described by the two or three
most abundant ions.

When calculating radiative losses, difficulties simi-
lar to those in the previous case emerge. The model ade-
quately describes ion radiation in the initial and inter-
mediate stages. Later, when the density of the z = 3 ions
decreases significantly (Fig. 3), the description turns
out to be unsatisfactory. Since the z = 4 ion radiation is
weak, it is the density of the z = 3 ions that governs the
radiative losses. This is often unimportant because radi-
ative losses themselves become low and, hence, the
energy balance is determined by other losses (e.g., heat
conduction). If, for some reason, radiative losses are
nevertheless important, then the appropriate accuracy
can be achieved by slightly correcting the model. Since
recombination is of no importance here and the temper-
ature changes only slightly on such long time scales, we
can conclude that the density of the z = 3 ions decays
exponentially to the equilibrium value upon the com-
plete (according to the two-ion model) disappearance
of the z = 2 ions. In this case, the function y3 can be rep-
resented in the form

(tarctan

y3

0 for z〈 〉 2≤
z〈 〉 2 for 2– z〈 〉 3≤ ≤

neJ3 t t0–( )–{ }exp R4/J3 for z〈 〉 3.≥+





=
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Here, t0 denotes the instant at which y3 approaches
unity in the two-ion model. The results obtained with
the corrected model are shown in Fig. 4.

A different situation arises with a jumplike drop in
the temperature, which, fortunately, is rare in actual
practice. Since the recombination rate varies much
more slowly with the temperature than with the ioniza-
tion rate, the distribution over ionization states spreads
out. Figure 5 presents the relative ion densities calcu-
lated from the seven-ion model. It can be seen in the fig-
ure that, if only the ions with the charge numbers z = 5
and 6 and a small admixture of the z = 4 ions are present
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Fig. 1. Time evolution of the specific (divided by both the
electron and impurity densities) power L = Q/nenI [erg cm3/s]
of carbon line radiation during temperature oscillations at a
frequency of 500 Hz within the range 5–15 eV. The solid
and dotted curves show the calculations by the two-ion and
seven-ion models, respectively.

Fig. 2. Time evolution of the relative densities of carbon
ions upon the temperature jump from 3 to 50 eV; calcula-
tions by the seven-ion model. The numerals by the curves
show the ion charge numbers.
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Fig. 3. Time evolution of the specific power of the carbon
impurity line radiation upon the temperature jump from 3 to
50 eV; calculations by the two-ion (solid curve) and seven-
ion (dotted curve) models.

Fig. 4. Same as in Fig. 3, but for the improved two-ion
model.

Fig. 5. Time evolution of the relative densities of carbon
ions upon the temperature jump from 100 to 2 eV; calcula-
tions by the seven-ion model. The numerals by the curves
show the ion charge numbers.
in the plasma at the initial time, then four or even five
ion species will subsequently be present.

The above difficulties are successfully overcome
within the open three-ion model. Although the model is
more complicated than the closed two-ion model, it is
still substantially simpler than the seven-ion model.

4. OPEN THREE-ION MODEL

An advantage of the open three-ion model over the
closed two-ion model is that it almost exactly (rather
than qualitatively) describes both the radiation intensity
and the relative densities of the impurity ions. The price
to be paid for the increase in accuracy is the complica-
tion of the model and, hence, an increase in the compu-
tation time, which nevertheless remains less than that
with the seven-ion model.

Within the exact seven-ion model, the three succes-
sive most abundant ions obey the following set of equa-
tions:

(8)

The relative densities of the yz ± 2 satellites entering
these equations are low and can be estimated as fol-
lows.

As the temperature increases, the ions with charge
number z – 2 burn out most rapidly. The characteristic
time during which they disappear is much less than the
time during which the densities of the most abundant
ions change. Therefore, the ions have time to come into
equilibrium with the z – 1 ions:

(9)

As the temperature increases, the relative density yz + 2

is found from the normalization condition.

For a decreasing temperature, such an approxima-
tion is incorrect. However, in this case, the density of
the z – 2 ions can be found from the normalization con-
dition. The z + 2 ions are in approximate equilibrium
with the z + 1 ions in the same manner as the z – 2 ions
were in equilibrium with the z – 1 ions as the tempera-
ture increased. This equilibrium is less exact because
the recombination rate depends less strongly on z than
the ionization rate.
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Finally, we obtain

(10)

(11)
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Fig. 6. Time evolution of the relative density of lithium-like
carbon ions upon the temperature jump from 50 to 3 eV; cal-
culations by the open three-ion (solid curve) and exact
seven-ion (dotted curve) models.
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Fig. 8. Time evolution of the specific power of the carbon
impurity radiation L during temperature oscillations at a fre-
quency of 500 Hz within the range 5–15 eV. The solid and
dotted curves show the calculations by the open three-ion
and exact seven-ion models, respectively.
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Expressions (10) and (11) in combination with Eqs. (8)
form a closed set of equations for the open three-ion
model. The charge number of the most abundant ion z
can be found as the integer closest to the quantity 〈z〉  =

. In fact, the set takes into account five rather

than three ion species. Therefore, if the temperature
range is not too wide, the value of z can be determined,
as in the case of the coronal equilibrium (see Introduc-
tion). Calculations show that, since five ion species are
actually taken into account, we can almost always
assume that z = 3 for carbon within the temperature
range 2 ≤ Te ≤ 50 eV.

The results of calculations by the open three-ion
model are presented in Figs. 6–10. The initial relative

kyk
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Fig. 7. Time evolution of the average charge number of car-
bon ions during temperature oscillations at a frequency of
500 Hz within the range 5–15 eV. The solid and dotted
curves show the calculations by the open three-ion and
exact seven-ion models, respectively.
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densities are equal to those at the coronal equilibrium at
the initial temperature. It can be seen in Figs. 6–10 that
the open three-ion model and the exact seven-ion model
provide almost identical results.
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t, s

L × 1019, erg cm3/s

Fig. 10. Same as in Fig. 8, but for the temperature jump
from 50 to 3 eV.

Table 1

z Kz × 108 ∆Eiz

0 47.57 11.26

1 10.98 24.384

2 11.18 47.89

3 4.153 64.49

4 1.366 392.09

5 0.5466 489.997

Table 2

z r1 r2 r3

1 12.67 0.815 0.091 

2 11.87 0.725 0.099

3 11.42 0.695 0.081

4 11.11 0.660 0.080

5 10.81 0.615 0.058

6 10.57 0.600 0.041

Table 3

z

1 2.555 2.756 12.08 9.087 3.360

2 52.41 23.88 4.997 3.188 5.183

3 30.21 44.87 14.90 6.826 3.731

4 382.2 81.39 30.65 14.85 8.400

5 378.9 70.13 25.40 12.10 6.767

Rz
0

Rz
1

Rz
2

Rz
3

Rz
4

In a similar way, it is possible to develop the open
two-ion model, in which the accuracy and computation
time are between those for the closed two-ion and open
three-ion models.

5. CONCLUSION

We have proposed various types of the reduced
models describing impurities in a hydrogen plasma.
The models are tested within the temperature range that
is the least favorable for their validity. The calculations
performed allow us to draw the following conclusions.

(i) The closed model is attractive because of its
exceptional simplicity, which makes it possible to use
this model in analytical calculations. The model
reduces the computation time by a factor of 4–5 as
compared to the complete seven-ion model. For elec-
tron temperature oscillations in the range 5–15 eV and
for a rapid (in a time on the order of 10–6 s) increase in
the temperature from 3 to 50 eV, the model provides a
qualitatively correct description of the behavior of the
relative densities of various ions. For the average
charge number and radiative losses, the model even
provides a good quantitative description.

When the temperature drops rapidly from 100 to
2 eV, the closed two-ion model turns out to be inappli-
cable. In this connection, an iterative procedure is pro-
posed that allows one to calculate all the impurity
parameters with reasonable accuracy. Within a nar-
rower temperature range, it qualitatively describes the
impurity behavior even without iterations.

(ii) The open model is more complicated than the
closed two-ion model and, thus, is difficult to apply to
analytical calculations. However, the model offers a
very high accuracy in all of the cases under consider-
ation. Although the computation time is somewhat
longer than for the closed two-ion model, it remains
substantially less than for the seven-ion model.

Of course, the models proposed are not universal.
The choice of one of them is dictated by the expected
temperature ranges and by the requirements for the
computation accuracy and computer-time consump-
tion.
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APPENDIX

Here, we present the rates of elementary processes
taken into account in the coronal model, as well as the
radiation intensities of the individual carbon ions in a
form convenient for practical applications. The approx-
imate formula for z∗ , which is useful for calculations by
the closed model, is also presented. The formulas were
derived by substituting the principal quantum numbers,
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
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the numbers of the equivalent electrons, the oscillator
strengths, etc., into the expressions from review [9].
Recall that the corresponding formulas in [9] were
obtained for a Maxwellian electron distribution. The
oscillator strengths and the transition energies were
taken from the most recent publication on the subject
[21]. Below, the temperature and energies are in eV and
the ionization and recombination rates are in cm3/s; z is
the charge of the ionized or recombining ion.

The ionization rates are expressed in terms of the
integral exponent Ei (or E1(x) in the notation of [25]):

The coefficients Kz and the ionization energies ∆Eiz are
listed in Table 1.

The recombination rate Rz is the sum of the conven-

tional photorecombination rate  and the dielec-

tronic recombination rate :

The latter process is only possible for ions that had one
or more electrons prior to recombination.

For photorecombination, the results of the available
numerical calculations within the electron temperature
range 1–100 eV are approximated with an accuracy of

no less than 2.5% by the formula  = ,

where x = [eV]. The coefficients r1, r2, and r3 are
listed in Table 2.

The rate of dielectronic recombination  is calcu-
lated by the formula

which accounts for five transitions. The constants 

and  are listed in Tables 3 and 4.

Overall radiation of the impurity is the sum of the
contributions from individual ions, Q = ne (Te).
Within the temperature range 3 ≤ Te ≤ 100 eV, the results
of numerical calculations of the Lz functions are fitted
by the formula [26]

with an accuracy of no less than 5%. The parameters L0,
a, and b are listed in Table 5.

In order to employ the closed model, it is necessary
to know the value of z∗ . As was mentioned above, this
value can be calculated analytically. However, it is
sometimes more convenient to employ an approximate
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formula rather than the cumbersome exact expression.
This is justified even more because of the limited accu-
racy of the available data on the rates of the main pro-
cesses.

At temperatures Te ≥ 2 eV, the expression

gives the z∗  value with an accuracy of no less than
≈10%.
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Abstract—Experiments on the generation of K-shell radiation in a double-shell neon liner with a microsecond
current generator (τ ≈ 1 µs, Imax = 380 kA) are described. The yield of neon K-shell radiation attains 50–80 J
per pulse. For the given current amplitude, such a radiation yield could be expected at a rise time as low as τ ≈
100 ns. Such a high radiation efficiency may be attributed to the sharpening of the front of the inner-shell current
pulse because of the detachment of the outer shell from the electrode. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Plasma liners imploding under the action of the
magnetic pressure of a high-current pulse are used as
sources of high-power pulsed vacuum ultraviolet and
soft X radiation. For a number of applications, radiation
in the spectral range ≥1 keV is of great interest [1]. This
spectral range is associated with radiative transitions of
electrons from the K shells of ions with atomic numbers
Z ≥ 10.

Let us consider how the conversion efficiency of the
liner kinetic energy into K-shell radiation depends on
the amplitude and rise time of the generator current.
The plasma electron temperature corresponding to the
maximum intensity of K-shell radiation can be esti-
mated from the expression Te ≈ 0.3Z2.9 eV [2]. Such
plasma temperatures in the final phase of the liner
implosion can be achieved if the kinetic energy per ion
is higher than the sum of the thermal energy per ion at
the electron temperature Te and energy Eion needed to

ionize an atom down to the K shell: (0.5)  >
(1.5)(Zi + 1)Te + Eion. Here, M is the ion mass, Vf is the
final implosion velocity, and Zi is the ion charge num-
ber. Assuming that Zi = Z – 1, the above condition can

be rewritten as 0.5  > 1.49Z3.51 eV/ion [2]. Using
the approximate expressions for the ion mass M ≈
1.58Z1.1mp (where mp is the proton mass) and the energy
of K-shell photons E ≈ 10.2Z 2 eV, we have for the final
velocity

Vf (cm/s) > Vmin = 1.34 × 106Z1.2 ≈ 0.33 × 106E0.6. (1)

It follows from here that, for the generation of
K-shell radiation in the range E > 1 keV, the final implo-
sion velocity should be higher than 2 × 107 cm/s. For
simplicity, we assume that the generator current pulse
has a pronounced maximum. For the generator energy

MV f
2

MV f
2

1063-780X/01/2711- $21.00 © 0947
to be efficiently converted into the liner kinetic energy,
the liner implosion should occur when the generator
current approaches its maximum; i.e., the condition
τimp ≈ τ must be satisfied, where τimp is the implosion
time (the time interval from the beginning of the gener-
ator current to the instant of maximum compression),
and τ is the rise time of the generator current. Then, we
have Vf ∝  r0/τimp ≈ r0/τ.

For an optically transparent plasma under condi-
tions when the radiative cooling time is longer than the
plasma inertial confinement time τconf , the radiation
yield per unit length of the liner can be estimated as Y ∝
K(Te ) τconf , where nf and rf are the final density
and radius of the liner, respectively, and K(Te ) is a func-
tion of the electron temperature. The kinetic energy per

unit length is equal to Ek = 0.5  ∝  ln(r0/rf ),
where m is the liner mass per unit length, and Imax is the
maximum generator current. Using the expressions
τconf ∝  rf /Vf and Vf ∝  r0/τ, we obtain for the efficiency

Y/Ek ∝  K(Te) (r0/rf )ln(r0/rf )/ . (2)

This expression is invalid when the K-shell radiation
yield Y is comparable to Ek. In this case, the efficiency
is nearly constant and is primarily determined by the
radiative losses in the lower photon energy range, and
the radiation yield is proportional to the square of the
current Imax (see, e.g., [3]).

The final velocity is given by condition (1). We
neglect the dependence of the yield on the electron tem-
perature Te, assuming the temperature to be a function
of the final velocity. The radial compression ratio (r0/rf)
is limited by the onset of instabilities in the course of
implosion. An analysis of the experimental results shows
that, for generators with τ ≈ 100 ns at r0 ≈ (1–2.5) cm,
the radial compression ratio is 10–20 for final implo-

n f
2
r f

2

mV f
2
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2
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2

V f
6τ
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sion velocities higher than 2 × 107 cm/s. To reach a final
velocity higher than 2 × 107 cm/s by using generators
with τ ≈ (0.5–2) µs, it is necessary that the initial radius
be r0 > 3 cm. In experiments [4–7], in which the initial
radius was 5–7 cm and τ ≈ 0.5–2 µs, the radial compres-
sion ratio also was 10–20. Hence, we can assume that
r0/rf depends weakly on τ [or on the initial liner radius
at the final velocity given by condition (1)] and can be
put in (2) r0/rf = const. Finally, at Imax = const, we have

Y/Ek ∝  1/τ. (3)

Hence, it is evident that faster generators are more
advantageous from the standpoint of the generation
efficiency of K-shell radiation.

At present, the fastest generators of megaampere
currents have a rise time of τ ≈ 50–100 ns. Since the
typical time during which energy is output from the pri-
mary capacitor storage is ≈1 µs, either water forming
lines or intermediate inductive energy storages with
plasma opening switches are used to sharpen the cur-
rent pulse front. Such sharpeners are very expensive
and complicated to operate. From the standpoint of
decreasing the cost of the K-shell radiation source, it is
important to develop simpler and less expensive power
sharpeners.

One of the possible approaches to creating such
sharpeners is to use a double shell liner and switch the
current from the outer to the inner shell. The outer shell
(outer cascade) is accelerated by the magnetic pressure
of the current pulse, whereas the inner shell (inner cas-
cade) remains almost at rest up to the instant of current
switching. The switching of the current to the inner
shell can be caused by the following processes. (i) A
rapid increase in the anomalous resistivity [8] of the
outer-shell plasma, which may be related to either the
low density of the shell as a whole [9, 10] or a local den-
sity decrease in perturbations arising due to instabilities
[11]. In this case, the outer liner acts as a plasma ero-
sion switch. (ii) The breaking of the outer shell and the
plasmodynamic process of switching the current to the
inner shell due to the development of either the Ray-
leigh–Taylor instability or a perturbation near the elec-
trode because of the initial divergence of the gas jet.
The possibility of the plasma liner being destroyed by
instabilities and the appearance of a low-density cur-
rent-carrying plasma inside the shell were demon-
strated in two-dimensional simulations (see, e.g., [12]).

When the liner is formed with pulsed gas puffing
through a supersonic nozzle without undertaking spe-
cial measures, the outer surface of the initial gas shell is
shaped as a truncated cone with the divergence angle
α ≈ 1/M, where M is the Mach number of the gas jet.
First, this can result in the implosion occurring at dif-
ferent times along the liner axis—the so-called “zipper-
ing” effect [13]. Second, due to the nonzero axial com-
ponent of the accelerating force, the liner implosion can
be accompanied by a progressive decrease in the den-
sity and the formation of a perturbation in the nozzle
region because of the detachment of the bulk liner mass
from the electrode (nozzle) [13–15]. In [15], this effect
was suppressed by using a nozzle with a profiled inner
body. From the standpoint of the possible breaking of
the outer shell and switching the current to the inner
shell, the above effect may play a positive role.

In this paper, we present the results of experiments
with double shell liners with the use of a microsecond
capacitor bank. The aim of the experiments was to
switch the current from the outer to the inner shell and,
as a result, to achieve a K-shell radiation yield compa-
rable with that obtained by using generators with τ ≈
100 ns.

It should be noted that direct measurements of the
current flowing through the inner shell are complicated
because, at the instant of switching, the outer and inner
shells are closely spaced. For this reason, the switching
efficiency can only be estimated indirectly, e.g., by
comparing the radiation power with the ohmic dissipa-
tion power in the electric circuit, from the optical pho-
tography of the implosion process [9], and from the
K-shell radiation yield.

2. EXPERIMENT

Experiments were carried out with a low-inductance
capacitor bank with a current rise time of 1.2 µs. The
amplitude of the liner current was 360–380 kA. Figure 1
shows a schematic of the load unit. A gas liner was
formed with the help of two annular supersonic nozzles
with a Mach number of 4–5 and was preionized by radi-
ation from a multigap discharger positioned behind the
anode grid. The working gas was neon. The cathode
was shaped as a truncated cone with an angle of 6°
between the generatrix and the plane perpendicular to
the liner axis. The liner length was 1.8 cm. The current
was measured by a Rogowski coil and magnetic probes
positioned near the anode grid at different radii.

The initial radii of the inner and outer shells were
r20 = 0.9 and r10 = 3.8 cm, respectively. It was reason-
able to choose an initial radius of the inner shell of
about 1 cm. On one hand, in this case, the integral
growth rate of the Rayleigh–Taylor instability for the
most rapidly growing perturbations does not exceed
Γ ≈ 10 even for rather thin shells (e.g., those made of a
foil) [16]. At Γ > 10, the destructive effect of instabili-
ties becomes more substantial; the shell can break, and
the low-density plasma can penetrate into the liner,
which hinders the formation of a compact pinch [17].
On the other hand, values of the initial radius much less
than 1 cm impose excessively rigid requirements on the
current rise time in the inner shell. For example, in
order for condition (1) to be fulfilled at r20 < 1 cm, the
current rise time should satisfy the inequality τ < (2–
3)r20/Vmin ≈ 100–150 ns.

It is desirable to choose an initial inner-shell radius
larger than 2–3 cm. In this case, the Rayleigh–Taylor
instability, as well as the perturbation near the nozzle
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
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caused by the divergence of the gas jet, can develop sig-
nificantly, thereby providing the conditions for current
switching to the inner shell.

The mass of the outer shell was chosen such that the
maximum liner compression occurred at 0.95–1 µs
from the beginning of the generator current. The
masses per unit length of the inner and outer shells were
estimated in individual shots by comparing the mea-
sured implosion time (when only the inner or outer
shell imploded) with that calculated by the zero-dimen-
sional model.

The dynamics of the liner implosion was observed
with an FER-7 streak camera with a slit oriented per-
pendicular to the liner axis (radial streak). With the slit
oriented parallel to the liner axis (axial streak), we
could observe the structure of the plasma shell at differ-
ent radii (Fig. 1). The K-shell radiation yield was mea-
sured by X-ray diodes with aluminum cathodes and
aluminum filters. Data on the filter transmission and the
cathode sensitivities were taken from [18, 19]. To
obtain a K-shell radiation image of the pinch, we used
a pinhole camera with an 8-µm aluminum filter. Note
that the line emission from the K shell of neon ions lies
in the range 0.92–1.2 keV. The spectrum above 1.2 keV
is continuous.

At the first stage of experiments, we searched for the
optimum inner-shell mass with respect to the K-shell
radiation yield. The inner-shell mass was varied by
varying the critical section of the inner nozzle. In these
shots, we determined the power and yield of K-shell
radiation, recorded the K-shell radiation image of the
pinch, and measured the implosion velocity. At the sec-
ond stage of experiments, the radial and axial streak
images of the liner implosion were recorded at the opti-
mum mass of the inner shell.

3. EXPERIMENTAL RESULTS AND DISCUSSION

As the inner-shell mass was varied, the maximum
K-shell radiation yield, according to estimates, was
attained at an inner-shell mass of 10–15 µg/cm and was
equal to 50–80 J per pulse. The final implosion velocity
was (1.5–2) × 107 cm/s. In the integral pinhole camera
image, we can see a pinch 0.1–0.15 cm in diameter
(Fig. 2). Figure 3 shows the waveforms of the current
and the signal from an X-ray diode with an 8-µm alu-
minum filter. As the inner-shell mass increased, the
final implosion velocity and the K-shell radiation yield
decreased. With the nozzle of the given design, we
could not obtain an inner-shell mass less than 10–
15 µg/cm.

In the absence of an inner shell, no pinch was
observed in integral pinhole camera images and the
K-shell radiation yield did not exceed 5 J. According to
estimates by the zero-dimensional model, the outer-
shell mass was 15–20 µg/cm and the final velocity at
the tenfold radial compression was ≈2 × 107 cm/s.
Hence, for a single shell liner, the plasma compression
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
ratio is significantly lower as compared to a double
shell liner, which results in a lower K-shell radiation
yield even though the final implosion velocity is high
enough.

1

23 4

1 cm

2 cm
C Ä

Fig. 1. Schematic of the load unit: (1) nozzle and (2) anode
grid. Orientation of the streak camera slit for (3) axial and
(4) radial streaks.

Fig. 2. Integral pinhole image of the implosion of a double
shell neon liner recorded behind a 8-µm aluminum filter on
UFSh-S film; C is the cathode, and A is the anode.
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Fig. 3. Waveforms of the current and the signal from an
X-ray diode with an 8-µm aluminum filter.
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Let us estimate the expected neon K-shell radiation
yield for a generator with τ = 100 ns and a maximum
current of 380 kA. Mosher and Krishnan [3] proposed
a relatively simple two-level model allowing one to
estimate the K-shell radiation yield from the plasma
liner at a given kinetic energy Ek, final radius rf, and
atomic number Z of the liner material. Comparing the
results of calculations with the experiment, they
pointed out that the model more adequately describes

0–500 t, ns

2 cm

Ä

C(f)

(e)

(d)

(c)

(b)

(‡)

Fig. 4. Streak images of liner implosion recorded with an
axially oriented slit sighting at the radii rslit = (a) 3.5,
(b) 2.5, (c) 1.7, (d) 1.3, (e) 0.9, and (f) 0.4 cm; C is the cath-
ode, and A is the anode.
the optimized liners, whose implosion provides the
maximum K-shell radiation yield with a given genera-
tor. According to [3], the optimum initial liner radius is
equal to r0 = 1.4 × 106 Z0.86τimp for the current pulse
shape of the Saturn generator. Since r0 depends weakly
on the current pulse shape, we will use this expression
setting τimp ≈ τ = 100 ns. For Z = 10, we obtain r0 = 1 cm.
For a radial compression ratio of 10, the final radius is
equal to rf = 0.1 cm. The liner kinetic energy is approx-
imated by the expression Ek [kJ/cm] ≈ (0.7–

0.9)ln(r0/rf )  [MA], which gives Ek = 230–300 J/cm
for Imax = 380 kA and the tenfold compression. Using
formulas (34) and (35) from [3], we obtain the expres-
sion for the K-shell radiation yield

where Eb = rfZ6.64/390 J/cm. From here, we obtain Y =
30–40 J/cm, which is close to the experimental values.

Figure 4 shows the dynamics of the implosion of a
double-shell liner with an inner-shell mass of 10–
15 µg/cm. The streak images were recorded in different
shots with an axially oriented slit sighting at the radii
rslit = 3.5, 2.5, 1.7, 1.3, 0.9, and 0.4 cm. At rslit = 3.5, 2.5,
1.7, and 1.3 cm, the inner shell does not fall into the
field of view of the streak camera and only the outer
shell is seen. The streak images were recorded at the
same initial parameters of the liner; the current ampli-
tudes and the instants of maximum compression were
also almost the same.

At rslit = 3.5 cm (Fig. 4a), the plasma glow is rela-
tively uniform along the liner. In the figure, we can see
perturbations with a characteristic scalelength of 0.3–
0.5 cm and a large-scale perturbation. The latter pertur-
bation manifests itself in the liner parts that are farther
from the cathode arrive at the radius rslit with a time
delay. This effect may be attributed to the initial diver-
gence of the gas jet. The magnetic probes installed at
the anode show that the initial radius of the outer shell
near the anode is equal to 4.5 cm. This corresponds to
the angular divergence of the initial gas jet α ≈ 17°,
which is somewhat higher than the calculated angular
divergence for a nozzle with a Mach number of 4–5.

The large divergence favors the plasma acceleration
in the axial direction. As the plasma moves away from
the cathode in the course of implosion, the mass per
unit length near the cathode should decrease. At rslit =
2.5 cm (Fig. 4b), the glow near the cathode is signifi-
cantly weaker than near the anode, which can be
explained by the fact that the density near the cathode
decreases due to the nonzero axial component of the
velocity. At a radius of 1.7 cm (Fig. 4c), the bright
plasma occupies only half of the interelectrode gap; i.e.,
the plasma progressively concentrates near the anode
during implosion. At a short distance from the cathode,
we observe a low-intensity plasma shell, which, at
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rslit = 1.3 cm (Fig. 4d), is seen throughout the entire
length of the interelectrode gap. At this radius, the
bright plasma bunch is located near the anode and lags
behind the shell by 50–80 ns.

Starting from the radius rslit = 0.9 cm, the inner shell
falls into the field of view of the streak camera. In the
streak image (Fig. 4e), we can see that the boundary of
the plasma glow is perturbed only slightly and the glow
is rather uniform throughout the entire gap, although
the outer shell is substantially destroyed by instabilities
at the radius close to the initial inner-shell radius. Per-
turbations are absent down to at least the radius 0.4 cm
(Fig. 4f).

According to streak images recorded with a radially
oriented slit, the final implosion velocity is (1.5–2) ×
107 cm/s.

Figure 5 shows the streak image of the liner implo-
sion recorded with a radially oriented slit whose center
is adjusted to the radius 1.7 cm. In this case, the slit
views the region lying between radii of 0.7 and 2.7 cm
at a distance of 1 cm from the cathode (Fig. 1). For
about 100–150 ns from the beginning of the glow, only
the outer-shell plasma is seen. Then, we can see a flash
at a radius nearly equal to the initial radius of the inner
shell, which, apparently, indicates that the inner shell
starts imploding. The glow of the outer shell continues
for 100 ns after the beginning of the inner-shell implo-
sion. Consequently, a fraction of the outer-shell plasma
remains at radii larger than the initial inner-shell radius
(in the radial region from 1.0 to 1.7 cm) and, apparently,
does not take part in the pinch formation.

The development of a large-scale perturbation near
the nozzle was observed in the computer simulations of
a 3-cm-long gas liner with an initial angular divergence
of α ≈ 13° and an outer-shell radius of r0 ≈ 2 cm at the
nozzle exit [14]. When the bulk of the shell mass is still
at a radius of ≈0.7 cm, the plasma near the cathode has
already arrived at the axis. The longitudinal size of the
cathode perturbation is about 0.7 cm.

Hence, the structure of the outer shell can be
strongly affected by the cathode perturbation, as is evi-
denced by streak images. The characteristic spatial
scale of the cathode perturbation at a radius equal to the
initial inner-shell radius can be roughly estimated (Fig. 6)
as ∆z ≈ (r10 – r20) , where r10 and r20 are the initial
radii of the outer and inner shells, respectively. For
r10 = 3.8, r20 = 1.0, and α = 17°, we obtain ∆z =
0.86 cm, which is comparable to the liner length. The
acceleration of the plasma shell in the cathode pertur-
bation region can occur more rapidly as compared to
the bulk of the liner because of the decrease in the mass
per unit length in this region. If the total generator cur-
rent flows through the light shell, then the latter acts as
a plasmodynamic current sharpener for the inner shell.
In this case, the bulk of the outer shell does not take part
in the pinch formation, because the implosion of the
inner shell begins before the bulk of the outer shell

αtan
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arrives at the initial inner-shell radius. The high com-
pression ratio and the high K-shell radiation yield
achieved in the experiments can be explained by the
current switching from the outer to the inner shell,
which ensures a more rapid rise of the current through
the inner shell as compared to the generator current rise
time τ ≈ 1 µs.

–500 0 t, ns

0.7

1.7

r, cm

Fig. 5. Streak image of the double shell liner implosion
recorded with a radially oriented slit. Time t = 0 corre-
sponds to the maximum compression of the inner shell. At
about this time, a glow arises in the radial region from 1 to
2 cm, which may be attributed to the reflection of light from
the return-current conductors and the vacuum chamber
wall. The vertical strips in the streak image are unrelated to
the plasma processes and are probably caused by electro-
magnetic interference.

r20

1

r10

r

2

3

z

α

α

∆z

Fig. 6. Schematic diagram of the development of a pertur-
bation near the cathode in the outer shell due to the initial
divergence of the gas jet: (1) nozzles, (2) anode grid, and
(3) initial outer gas shell; ∆z is the spatial scale of the per-
turbation at a radius equal to the inner-shell radius, and α is
the initial divergence angle of the outer shell.
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4. CONCLUSION
In a double shell liner with a 360-kA microsecond

generator, a neon K-shell radiation yield of 50–80 J per
pulse is achieved. This yield is close to that calculated
by the semiempirical model, which adequately
describes the available experimental data on the K-shell
radiation yield for generators with a current rise time of
100 ns. Streak camera images and the high K-shell radi-
ation yield indicate that the outer shell provides faster
current switching to the inner shell as compared to the
generator current rise time. This effect may be attrib-
uted to the development of a large-scale perturbation
near the cathode in the outer shell due to the angular
divergence of the initial gas shell.
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Abstract—A study is made of the propagation of an Alfvén pulse and the superposition of an Alfvén and a
magnetosonic pulse in the vicinity of the magnetic null line (the X point). It is shown that, on long time scales,
the poloidal components of the velocity and magnetic field relax to steady-state distributions similar to those in
the case of a magnetosonic pulse. In the essentially nonlinear problem under investigation, the steady-state dis-
tributions of the toroidal components of the velocity and magnetic field are found to be close to those in the
corresponding linear problem. It is established that two-dimensional effects play an important role in the evo-
lution of the forming current sheets. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of plasma flows near the singular-
ities of the magnetic field has a broad range of applica-
tions in laboratory and space plasmas [1, 2]. In labora-
tory plasmas, which are the most important from the
standpoint of applications, the flows are usually initi-
ated by a perturbation of the poloidal magnetic field, as
is the case, e.g., with tearing modes in tokamaks [3] and
the Current Sheet device [4, 5]. Accordingly, such
plasma flows have been investigated thoroughly.
Among many theoretical studies that involve numerical
modeling, we mention the paper by Brushlinskiœ et al.
[6], in which the problem is formulated in essentially
the same way as in the present work. The authors of [6]
carried out the most comprehensive and systematic
analysis of the formation of current sheets and their
behavior under the action of the perturbation of the
poloidal (i.e., perpendicular to the null line) magnetic
field in the vicinity of the X point. The perturbation of
the poloidal magnetic field was assumed to be magne-
tosonic in character. The boundary conditions corre-
sponded to an unbounded plasma; this approach is of
interest for studying the processes occurring in space
plasmas (such as the solar corona and the Earth’s mag-
netosphere). In astrophysical plasmas, the perturba-
tions of the toroidal (i.e., parallel to the null line) mag-
netic field also play an important role. These perturba-
tions are of the nature of Alfvén waves and are driven
by sheared plasma flows. Here, we investigate the prop-
agation of an Alfvén pulse and the superposition of an
Alfvén pulse and a magnetosonic pulse in the vicinity
of the X point.

The propagation of an Alfvén pulse in the vicinity of
the magnetic null line was studied analytically in [7–
10] for a perfectly conducting plasma in the quasistatic
approximation. It was shown that, in the vicinity of the
1063-780X/01/2711- $21.00 © 0953
null line, an Alfvén pulse gives rise to both poloidal and
toroidal current sheets with infinite current density and
zero thickness.

Hassam and Lambert [11] studied the propagation
of an Alfvén pulse in the vicinity of the X point in the
linear approximation under the assumption that the
plasma viscosity and plasma conductivity are both
finite. They showed that, in a steady state, the current
density is proportional to (νη)–1/4, where ν is the mag-
netic plasma viscosity and η is the conventional plasma
viscosity. In [11], the questions associated with nonlin-
ear effects were not discussed, although the magnetic
field at the null line vanishes and, therefore, the vicinity
of the line cannot be described in the linear approxima-
tion. Below, we will show that, for an infinitely long
time (t  ∞), the solution to the nonlinear problem
coincides exactly with the solution to the linear prob-
lem even for very small (but finite) values of η and ν
and for magnetic field perturbations comparable in
strength to the initial magnetic field. According to our
numerical results that serve as the basis for the present
study, the minimum values of the dimensionless coeffi-
cients η and ν may be as low as 5 × 10–5, and the ratio
of the amplitude of the perturbed magnetic field to that
of the initial field may be on the order of unity. The
relaxation of the system to such a steady state is a non-
trivial consequence of the highly nonlinear processes
under investigation.

Note that, in the series of papers [12–15], in which
the formulation of the problem of the propagation of
Alfvén waves was similar to our formulation of the
problem, the computations were carried out for time
scales as long as t < 40 Alfvén times. In those papers,
the question of the steady-state character of the calcu-
lated configurations, which were found to vary slowly
in time, remained open. As a result, the qualitative pat-
2001 MAIK “Nauka/Interperiodica”
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tern of plasma flows (in particular, the pattern that
served as the basis for the analytic estimates obtained in
[12]) was not clarified completely and the steady-state
current density was not evaluated quantitatively. In this
work, we bridge these gaps. Among other things, we
present the results of simulations carried out for time
scales as long as thousands (and, in some cases, even
tens of thousands) of Alfvén times, so that the calcu-
lated final configurations are definitely steady-state.

We start with a mathematical formulation of the
problem. Next, we describe the results of mathematical
modeling of a purely Alfvén perturbation for nonzero ν
and η. The case ν = 0 and/or η = 0 is discussed in a sep-
arate section. Then, we analyze the results of modeling
the propagation of the superposition of an Alfvén pulse
and a magnetosonic pulse in the vicinity of the X point.
Finally, we discuss the results obtained.

2. FORMULATION OF THE PROBLEM

The problem to be considered is formulated as fol-
lows. The plasma occupies a square-shaped region and
experiences a hyperbolic magnetic field. The waves
that come from a remote source are modeled by speci-
fying various magnetic field perturbations at the bound-
aries of the calculation region. Much larger dimensions
of the real plasma are modeled by the boundary condi-
tions that imply plasma flows into and out of the calcu-
lation region. The plasma motion is two-dimensional
(∂/∂z = 0) and is described by the following dimension-
less equations of one-fluid magnetohydrodynamics
[12–15]:

(1)
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 =
where A is the z-component of the vector potential of
the magnetic field.

In Eqs. (1), the quantities are normalized as follows:
the length is in units of the dimension l of the calcula-
tion region, the magnetic field is in units of the mag-
netic field H0 at the boundary of the calculation region,
the plasma density is in units of the initial density ρ0,
the plasma velocity is in units of the Alfvén velocity
VA = H0/(4πρ0)1/2, the time is in units of l/VA , the

plasma pressure is in units of /(4π), and the electric
field is in units of H0VA/c (where c is the speed of light).
For simplicity, the dimensionless plasma viscosity η,
plasma resistivity (magnetic viscosity) ν, and plasma
thermal conductivity χ are assumed to be constant.

The simulations were carried out in the square cal-
culation region (–1 < x < 1, –1 < y < 1).

The initial conditions corresponded to the steady
solution to Eqs. (1): A = A0 = (x2 – y2)/2 (an X-point mag-
netic configuration), Hz = 0, p = β, ρ = 1, V = 0, and
Vz = 0.

An Alfvén pulse was modeled by specifying the per-
turbation of the z-component of the magnetic field at
the boundaries y = ±1:

(2)

where H1 is the amplitude and ts is the rise time of the
pulse.

At the boundaries x = ±1, the derivative along the
magnetic field was assumed to be zero,

(3)

At the entire boundary of the calculation region, the
velocity component satisfied the condition

(4)

In Eqs. (3) and (4), the derivatives along the magnetic
field reflect the fact that the Alfvén wave propagates in
the direction of the magnetic field H. At the points (x = 0,
y = ±1) and (y = 0, x = ±1), at which (H · n) = 0 (where
n is the normal to the boundary), we use ∂Hz /∂n = 0
and ∂Vz /∂n = 0 in place of Eqs. (3) and (4). Note that,
by virtue of the symmetry properties of the problem, we
have Hz(x, y = 0) = 0 and Vz(x = 0, y) = 0.

A magnetosonic pulse was modeled by specifying
the poloidal velocity at the boundary of the calculation
region in such a way that the poloidal velocity corre-
sponded to the velocity field in a linearly converging
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cylindrical magnetosonic wave with amplitude E1
[6, 16]:

(5)

Here, ξ = t + lnr, r = (x2 + y2)1/2, and ξ0 = ln .
At the boundary through which the plasma flows

into the computation region, the vector potential A also
corresponded to that of a linear cylindrical wave:

(6)

where g(ξ) = 0 for ξ < ξ0 and g(ξ) = (ξ – ξ0)2/ξ for
ξ > ξ0. We can readily see that, as t  ∞, the z-com-
ponent of the electric field at the boundary, E = –∂A/∂t,
approaches E1.

At the boundary through which the plasma flows out
of the calculation region, the vector potential was
obtained from the equation

(7)

where the derivative of A in a direction normal to the
boundary was found from the finite difference on the
inside of the calculation region.

The formulation of the problem implies that, near
the boundary, the perturbations of the magnetic field,
which are determined by the parameters H1 and E1,
should be small compared to the initial magnetic field.
In simulations, the typical values of E1 were no larger
than 0.1. However, as was noted in the Introduction, the
values of H1 amounted to unity.

As the boundary conditions for p and ρ, we imposed
the following conditions on the plasma flows: qρ = –ρV
and qp = −pV + χ—T, assuming that (qρ · n) =
−(V · n)ρ∗  and (qp · n) = –(V · n)p∗ . For the plasma

inflow, the quantities p∗  and ρ∗  were set at the initial val-

ues of the pressure and density, β and 1, respectively. For
the plasma outflow, the quantities p∗  and ρ∗  were set at

their values in the calculation cell near the boundary.
Since the coordinate axes are the symmetry axes, it

is sufficient to solve the problem as formulated in only
one quadrant of the entire calculation region. The
numerical solution is based on the explicit first-order
finite-difference scheme described in [17], which has
been successfully implemented in practice.

The boundary conditions used in [6] differ from
conditions (2)–(7) in the following two aspects: first,
Brushlinskiœ et al. imposed condition (6) on the vector
potential A over the entire boundary and, second,
instead of conditions (3)–(5), they used the conditions

V x Vy 0 for ξ ξ 0,<= =
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2
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Additionally, for the plasma inflow into the calculation
region, they set p and ρ at their initial values, and, for
the plasma outflow, they set ∂p/∂n = ∂ρ/∂n = 0.

We also carried out computations with other ver-
sions of the boundary conditions, with the common fea-
tures being that the perturbations of Hz and A were
specified by conditions (2) and (6) and that the plasma
flows into and out of the calculation region were
assumed to be present. For various reasons, the most
illustrative results were obtained in simulations with
conditions (2)–(7) (below, we will present precisely
these results). Other versions of the boundary condi-
tions had a number of drawbacks. Thus, for a purely
Alfvén perturbation, the boundary conditions used in
[6] lead to the following situation. On long time scales,
the plasma temperature and density become much
higher than their initial values and the velocity V
approaches zero. The boundary conditions used in [6]
imply that, as the velocity V changes its sign at the
boundary (while at the same time remaining close to
zero), the plasma pressure experiences either a jump-
like increase from a small initial value to a certain very
large value or an analogous jumplike decrease. Of
course, such jumps in pressure are physically mea-
ningless.

We emphasize that calculations with all versions of
the boundary conditions yielded the same qualitative
pattern of the plasma flow, while the revealed quantita-
tive differences were found to play an insignificant role.
This circumstance is very important, because the
boundary conditions in our simulations correspond
only approximately to the physics of the processes
under consideration. We can thus conclude that, quali-
tatively, slight differences between the boundary condi-
tions should not change the overall pattern of plasma
motion.

3. PROPAGATION OF A PURELY ALFVÉN 
PERTURBATION WITH E1 = 0 (η ≠ 0, ν ≠ 0)

Our simulations for nonzero η and ν revealed that,
in the presence of a purely Alfvén pulse (E1 = 0), the
plasma flow evolves through the following three suc-
cessive stages.

(i) An Alfvén wave perturbation of the field compo-
nent Hz propagates along the magnetic field H from the
boundaries y = ±1 toward the null line (the origin of the
coordinates). At distances from the origin of the coor-
dinates at which the background poloidal field becomes
comparable in strength to the field Hz of the wave per-
turbation, i.e., at r ~ H1, the plasma flow becomes

highly nonlinear. The magnetic pressure /2 pushes
the plasma toward the x-axis, thereby perturbing the
poloidal magnetic field. As a result, a current sheet
stretched out in the x direction and formed by the
z-component of the current jz = –∆A appears at the mag-
netic null line. At the same time, a sheet of the poloidal

Hz
2
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Fig. 1. Fields of the poloidal velocity and poloidal current density and the distribution of the toroidal current density on short time
scales (t ~ 4) for a purely Alfvén perturbation. Shown is one quadrant of the computation region.
current j⊥  = (–∂Hz/∂y, ∂Hz/∂x) is formed. The current
components jz and j⊥  can be much greater in magnitude
than the component j⊥  in the quasisteady stage; more-
over, a situation is possible in which jz @ |j⊥ |. In these
two current sheets, the plasma density and plasma pres-
sure increase. For this stage, the fields of the poloidal
velocity and poloidal current density and the distribu-
tion of jz are shown in Fig. 1.

(ii) The current sheets that form in the initial stage
are not steady: they exist on time scales of about several
Alfvén times. Because of the Ohmic heating, the
plasma density in the sheet increases, giving rise to a
gas-kinetic pressure wave that propagates along the
magnetic field from the sheet toward the boundaries x =
±1. The propagation of this wave toward the boundaries
y = ±1 is hindered by the field Hz  in the region |y | > |x |.
As a result, on time scales of about ten Alfvén times, the
system relaxes toward a configuration in which

(8)

We stress that the total duration of the first and sec-
ond stages depends weakly on the values of transport
coefficients and amounts to 10–20 Alfvén times.

(iii) The characteristic feature of the third stage is
that, as t  ∞, the approximate equality (8) is

p Hz
2
/2 C t( ).≈+
increasingly well satisfied. Since, in this stage, the
excess pressure of the field Hz is counterbalanced by the
gas-kinetic plasma pressure, rather than by the pressure
of the perturbed poloidal field, the poloidal magnetic
field relaxes toward its initial distribution. Accordingly,
the current jz and velocity V both approach zero. Con-
sequently, on infinitely long time scales (t  ∞), the
distributions of Hz and Vz satisfy the time-independent
equations

(9)

in which the distribution of the magnetic field H coin-
cides with its initial (at t = 0) distribution. Hence,
Eqs. (9) coincide with the linearized time-independent
equations for Hz and Vz .

We can easily see that the solution to Eqs. (9)
depends on the single parameter νη, in which case the
distribution of Hz can be approximately represented as

Hz = H1 for y > |x |,
Hz = –H1 for y < – |x |, (10)

Hz = 0 for |x | > |y |.
In the vicinity of the separatrices |x | = |y |, the distri-

bution of Hz is smoothed by the effect of the magnetic

H —⋅( )Vz ν∆Hz+ 0,=

H —⋅( )Hz η∆Vz+ 0,=
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Fig. 2. Distribution of Hz and the field of the poloidal current density on infinitely long time scales (t  ∞) for a purely Alfvén
perturbation. Shown is one quadrant of the computation region.
(η) and plasma (ν) viscosities. Assuming that the gradi-
ents along the field H are on the order of unity and the
gradients across the field H (in the vicinity of the sepa-
ratrices |x | = |y |) are large, we can readily estimate the
poloidal current density as

(11)

Our simulations show that, for small values of νη < 10–3,
this dependence is valid with a high accuracy. If the
poloidal current density j⊥  in dependence (11) is under-
stood as the maximum current density, which is reached
at the origin of the coordinates, then we have const ≈
100.

The distributions of Hz and j⊥  on infinitely long time
scales are shown in Fig. 2. The sheet of j⊥  is seen to be
stretched out along the separatrices |y | = |x |.

In the linear case, dependence (11) is obvious. A
nontrivial point is that, for t  ∞, the magnetic field
distribution described by the nonlinear equations (1)
exactly corresponds to the distribution obtained in the
linear problem. The distributions coincide not only over
the entire calculation region (including the vicinity of
the X point, where H = 0) but also when the amplitude
of the Alfvén pulse is about unity (H1 ~ 1). We empha-
size that the steady-state distribution of the magnetic
field is independent of the other parameters of the
problem.

The time scale on which the system relaxes to a
steady state may be as long as hundreds and even thou-
sands of Alfvén times; the lower the transport coeffi-
cients, the longer this time.

Now, we analyze how the plasma density evolves
with time. Although the evolution is governed by the
boundary conditions and the parameters of the prob-
lem, all of the cases under consideration have one fea-
ture in common. At the end of the second stage and at
the beginning of the third stage, the plasma density in
the vicinity of the separatrices |x | = |y | becomes lower

j⊥ const H1/ νη( )1/4
.⋅≈
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(sometimes, by more than an order of magnitude) than
the initial density. As a rule, the plasma density is low-
est at the origin of the coordinates. The width of the
regions of low plasma density in the vicinity of the sep-
aratrices is not associated with the width of the current
sheet and is comparable to the dimension of the calcu-
lation region. This distribution of the plasma density
may remain unchanged for an infinitely long time
(t  ∞). The boundary conditions (2)–(7) imply that,
as t  ∞, the gradients of ρ decrease slowly, which
can be explained as follows. We substitute p extracted
from the approximate equality (8) into Eq. (1) for the
plasma pressure and take into account the fact that, as
t  ∞, the functions V, ∂Hz/∂t, and jz all approach
zero. As a result, we arrive at the equation

(12)

Integration of this equation over the entire calculation
region yields

where the angular brackets 〈 〉  denote averaging over
the calculation region. Consequently, as time elapses,
the quantity C increases linearly without bound, so that
Eq. (12) can be reduced to the approximate form

Since the gradients of Hz and Vz are largest in
regions of width (ην)1/4 about the separatrices, we have
q/〈q〉  ~ (ην)–1/4 and, accordingly, obtain

dC
dt
------- γ 1–( )— χ—

C Hz
2
/2–

ρ
--------------------- 

 ⋅ q,+=

q γ 1–( ) ν —Hz( )2 η —Vz( )2
+( ).=

dC/dt q〈 〉 ,=

∆1
ρ
--- q〈 〉 q–

γ 1–( )χ q〈 〉 t
-------------------------------.=

∆1
ρ
--- 1

χt ην( )1/4
----------------------.∼
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Hence, the gradients of ρ should decrease with time.
The asymptotic behavior (χt)–1(ην)–1/4 is confirmed by
the computations. Calculational results show that, as
t  ∞, the velocity V decreases according to the
power law, but the power index characterizing the
behavior of V is smaller than minus unity.

Let us consider the steady-state (t  ∞) distribu-
tion of the electric charge. Taking into account the
properties of the distributions of the velocity and mag-
netic field on long time scales, we can write the diver-
gence of the electric field E = –V × H + νj as — · E =
−(—A · —Vz). Since the gradients of Vz are largest in the
vicinity of the separatrix planes |x | = |y | and are directed
across the magnetic field, the divergence of the electric
field is also maximum (— · E = max) at the separatrix
planes, which, thus, are the planes where the electric
charge concentrates.

4. PROPAGATION OF A PURELY ALFVÉN 
PERTURBATION WITH E1 = 0

(η = 0 AND/OR ν = 0)

For ν = 0, the problem under investigation has a sin-
gular solution, regardless of the value of η: the current
density in the sheets that form in the first stage (Fig. 1)
becomes infinitely high on a finite time scale, on which
the sheets themselves become infinitely thin. These
results agree with the conclusions obtained analytically
in [7–10]. The case at hand was analyzed in more detail
in [18]. Note that, even for a low magnetic viscosity, the
solution becomes nonsingular and the plasma flow
evolves in precisely the same way as described in the
preceding section.

For η = 0 and ν ≠ 0, the pattern of the plasma flow
is analogous to that in the case η ≠ 0. The only excep-
tion is that, for η = 0, the poloidal current density j⊥
does not reach a steady level in the third stage but
instead continues to increase. The reason for this
increase is clear from Eqs. (9), which imply that, for
η = 0, the field component Hz should be constant along
the lines of the magnetic field H. In principle, be true
this may of the magnetic field lines that do not intersect
the x-axis. However, the lines that cross this axis pass
through the regions in which the component Hz has dif-
ferent signs. Consequently, along these lines, the com-
ponent Hz cannot be constant.

The numerical solution of Eqs. (1) with the bound-
ary conditions (2)–(7) and with η = 0 shows that, as
t  ∞, the distribution of Hz approaches the discon-
tinuous distribution (10). Accordingly, as time elapses,
the current increases without bound. The current sheet
along the separatrix planes |x | = |y | corresponds to a tan-
gential discontinuity. According to [19], tangential dis-
continuities are stable against small perturbations, in
which case, however, the width of the discontinuities
increases with time in proportion to (νt)1/2. In contrast,
in our problem, the width of the discontinuity decreases
as time progresses. This contradiction stems from the
fact that the relevant problem treated in [19] is one-
dimensional, while the problem under analysis is one-
dimensional only in a small vicinity of the separatrices
|x | = |y | and is two-dimensional over the entire compu-
tation region. In our problem, an important role is
played by the regions y > 0 and y < 0, which are related
to each other by the magnetic field H and in which the
magnetic field component Hz has different signs.
Hence, the evolution of the tangential discontinuity is
governed not only by the local plasma parameters but
also by the global parameters of the entire plasma con-
figuration.

The above analysis implies that, in the hydrody-
namic approximation, there is no mechanism capable
of stopping the increase in j⊥  in the case η = 0. How-
ever, the poloidal current density j⊥  increases suffi-
ciently slowly. Depending on the value of ν, the poloi-
dal current density increases by a factor of two over
thousands of Alfvén times. In real plasmas, the driving
force for this plasma flow may disappear on such long
time scales; i.e., the field component Hz at the boundary
may change. Importantly, even a low viscosity should
cause the current to relax toward a quasisteady distribu-
tion with a finite current density.

Note that, for certain boundary conditions and for
η = 0 and χ = 0, the plasma density at the origin of the
coordinates rapidly decreases to zero at the beginning
of the third stage (t < 30), in which case the poloidal
current density j⊥  constantly increases. Accordingly,
the computation procedure was stopped at these times.
For χ ≠ 0, the pattern of the plasma flow was described
above.

5. PROPAGATION OF THE COMBINED 
ALFVÉN–MAGNETOSONIC PERTURBATION 

WITH E1 ≠ 0

The case of simultaneous propagation of an Alfvén
and a magnetosonic perturbation implies that, at the
very beginning of the process, the wave perturbation of
A and Hz starts propagating from the periphery toward
the center [13–15]. As the wave perturbation
approaches the magnetic null line, it becomes highly
nonlinear. At later times, for ν = 0, the wave perturba-
tion gives rise to singular current sheets. For ν ≠ 0, the
wave perturbation is reflected from the center and the
system evolves to a steady-state configuration. Let us
consider the properties of this configuration.

The distributions of the poloidal velocity and poloi-
dal magnetic field coincide qualitatively (and even
quantitatively for a small amplitude H1) with their
steady-state distributions in the case of a purely magne-
tosonic perturbation (H1 = 0). Our simulations show
that the steady-state current density jz at the origin of
the coordinates is equal to E1/ν for any value of H1. On
infinitely long time scales (t  ∞), the distributions of
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Fig. 3. Distributions of Hz and jz and the fields of the poloidal velocity and poloidal current at E1 < ν and at small η values on infi-
nitely long time scales (t  ∞) for a combined Alfvén–magnetosonic perturbation. Shown is one quadrant of the computation
region.
Hz and Vz are described by the equations

(13)

In order to obtain qualitative distributions of Hz and Vz

for H1 ~ 1, it is sufficient to consider Eqs. (13), in which
V and H correspond to the steady solution to Eqs. (1)
for a purely magnetoacoustic perturbation. For H1 ! 1,
this approximate approach yields correct quantitative
results. It should be noted that, in the case of a purely
Alfvén perturbation (E1 = 0), the results obtained for
H1 ~ 1 are also qualitatively correct.

Let us analyze the steady-state distributions of the
parameters of the problem in more detail. For E1/ν > 1,
the quantities H, V, and jz obey conventional distribu-
tions [6, 13–16]. At the x-axis, there is a jz sheet with
four characteristic satellites. For E1/ν < 1, the length of
the sheet becomes comparable to its width and the sheet
itself degenerates into a configuration in which the sat-
ellites are stretched out just from the origin of the coor-

— VHz( )⋅ H —⋅( )Vz ν∆Hz,+=

V —⋅( )Vz H —⋅( )Hz η∆Vz.+=
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dinates along the separatrices, which lie near the planes
|x | = |y | (Fig. 3).

The distributions of H and V have the following two
characteristic features, which make it possible to better
understand how the distributions of Hz and j⊥  depend on
the parameters E1, η, and ν.

(i) For a purely magnetosonic perturbation, the mag-
netic field lines that pass through the points (x = 1, y =
±1) are described by the expressions y = ±Yc(x) and
cross the y-axis at the points y = ±Yc(0) ≠ 0, rather than
at the origin of the coordinates. Consequently, if the
velocity V in Eqs. (13) is equal to zero, then the field
component Hz obeys the distribution

Hz = H1 for y > Yc(x),

Hz = –H1 for y < –Yc(x), (14)

Hz = 0 for |y | < Yc(x).

In this case, in the vicinity of the line |y | = Yc(x), the dis-
tribution of Hz is smoothed by the effect of η and ν. For
E1 < ν, the quantity Yc(0) increases with E1; conse-
quently, in the vicinity of the origin of the coordinates,
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Fig. 4. Distributions of Hz and jz and the fields of the poloidal velocity and poloidal current at E1 > ν and at large η values on infi-
nitely long time scales (t  ∞) for a combined Alfvén–magnetosonic perturbation. Shown is one quadrant of the computation
region.
the component Hz decreases with increasing E1 and,
accordingly, the central poloidal current density jc

decreases. For E1 > ν, the quantity Yc(0) changes only
slightly; accordingly, the current density jc also remains
essentially unchanged.

(ii) The velocity field V is such that all of the current
lines originate from the boundaries |y | = 1 and terminate
at the boundaries |x | = 1. Specifically, the current lines
pass from the boundaries y = ±1 toward the x-axis and,
then, turn toward the boundaries |x | = 1. The turn is
sharpest inside the current sheet (see [6] and Fig. 3).
Consequently, the field V tends to displace the region
where the field component Hz is nonzero toward the
x-axis and, accordingly, to increase the central current
density jc . The larger the parameter E1, the more pro-
nounced is this tendency. Note that, for E1 ≠ 0, such a
velocity field ensures that a continuous solution to
Eqs. (13) also exists at η = 0.

Properties (i) and (ii) govern the evolution of the
field component Hz . Let us consider how the distribu-
tion of Hz and, accordingly, the profile of jx along the
y-axis depend on the values of the parameters of the
problem.

For E1 = 0 (Fig. 2), the quantity Hz (x = 0, y) is close
to H1 over almost the entire y-axis. The component Hz

falls to zero over distances of about (νη)1/4 from the ori-
gin of the coordinates. Accordingly, the current density
component jx (x = 0, y) has a maximum at the origin. In
the region |x | ≥ (νη)1/4, the poloidal current density is
low.

For 0 < E1 < ν and for low viscosity (the results
shown in Fig. 3 were obtained for ν = 0.00167, E1 =
0.001, η = 0, H1 = 0.05, χ = 0.001, and β = 0.05), the
quantity Hz (x = 0, y) is close to H1 in the region where
the values of the y-coordinate are larger than a certain
value y∗  lying between 0 and Yc(0). In the vicinity of

y∗ , the field component Hz decreases abruptly and,

accordingly, the current density component jx has a
local maximum, which we denote by jmax . In the region
of smaller values of |y |, the quantity jx (x = 0, y)
decreases to a minimum value jmin . In the vicinity of the
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
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origin of the coordinates, where the field component Hz

changes sign, the component jx has another maximum.
Thus, for the parameter values of Fig. 3, we have jc ≈
jmax ≈ 0.28, jmin = 0.028, y∗  = 0.24, and Yc(0) = 0.34.

Note that, first, in some cases, the value jmax can be sig-
nificantly larger than jc and, second, for E1 < ν, the
value jc decreases as E1 increases.

For E1 > ν (the results shown in Fig. 4 were obtained
for ν = 0.005, η = 0.0005, E1 = 0.05, H1 = 0.5, χ =
0.001, and β = 0.05), the effect of the velocity field
and/or the smoothing effect of the viscosity (at suffi-
ciently high values of η) causes the quantity Hz (x = 0, y)
to vary relatively uniformly over the region y < y∗ .

Accordingly, over the region y < y∗ , the quantity jx (x =

0, y) changes comparatively slightly and thus is pla-
teau-shaped (the values jmax and jmin are close to one
another). However, the maximum in jx at y = 0 is, as
before, pronounced. Thus, for the parameter values of
Fig. 4, we have jmin = 0.72, jmax = 0.91, y∗  = 0.28,

Yc(0) = 0.5, and jc = 3.35. For E1 > ν, the quantity jc

does not change significantly and can increase with E1
only slightly.

Notably, for E1 ≠ 0, the ratio jc/H1, as a rule, some-
what decreases as H1 increases. Thus, for the above
parameter values and for E1 = 0.03 and H1 = 0.1, we
have jc/H1 = 7.81. For H1 = 0.5, this ratio is equal to 6.6.

As E1  0, the quantity jc approaches its final
value corresponding to the case of a purely Alfvén per-
turbation. In particular, for η = 0, we have jc  ∞ as
E1  0.

Note that the time scale on which the system relaxes
to a steady-state configuration varies from several tens
of Alfvén times (for E1 > ν) to several tens of thousands
of Alfvén times (for E1 < 10–3ν). However, such long
computation times are needed to obtain quantitative
results. The qualitative pattern of the plasma flow (spe-
cifically, the shape of the current sheets and the charac-
teristic velocity distribution) becomes quite clear as
early as t > 100.

The results discussed above refer to the case E1 > 0.
For E1 < 0, the distribution of Hz is governed by the fol-
lowing factors: (i) The relative positions of the mag-
netic field lines that pass through the points (x = ±1, y =
±1) (in the case at hand, the field lines cross the x-axis
and end up at the boundaries y = 1 and y = –1, at which
the field component Hz has different signs). (ii) The rel-
ative positions of the separatrices, which originate from
the boundaries y ± 1, cross the y-axis, and terminate at
the same boundaries without intersecting the x-axis.
(iii) The velocity field, which corresponds to the plasma
inflow through the boundaries x = ±1 and the plasma
outflow through the boundaries y ± 1. However, in this
situation, the distributions of the velocity V and poloi-
dal magnetic field H are close to those in the case of
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
purely magnetosonic perturbation only on time scales
of several tens of Alfvén times or shorter and, on longer
time scales, they are radically different.

The case E1 < 0 requires further investigation and is
not treated here.

6. CONCLUSION

We have investigated the formation of steady-state
current sheets in the vicinity of the X point by an Alfvén
perturbation of the magnetic field or a combination of
an Alfvén perturbation and a magnetosonic perturba-
tion. We have also analyzed the properties of the
steady-state current sheets.

In the case of a purely Alfvén perturbation, the most
interesting result is that the final steady-state distribu-
tions of the poloidal magnetic field and poloidal plasma
velocity coincide exactly with their initial distributions.
Accordingly, even in a priori nonlinear regimes, the
toroidal magnetic field and toroidal plasma velocity
relax toward the same distributions as those obtained in
the linear approximation. The properties of the steady-
state configuration of the magnetic field are governed
only by the value of the parameter νη. In particular, we
have shown that the poloidal current density obeys the
dependence H1/(νη)1/4. Such parameters as the plasma
thermal conductivity and initial plasma pressure affect
the plasma density distribution on long time scales
(t  ∞), but they have no impact on the distributions
of the plasma velocity and magnetic field.

According to the analysis carried out in [7–10], it
might be expected that, in a perfectly conducting
plasma (ν = 0), the magnetic field should have singular-
ities. However, we have demonstrated for the first time
that, in a plasma with a zero viscosity and finite conduc-
tivity, a tangential discontinuity may form whose thick-
ness approaches zero as t  ∞. This result provides
evidence that the evolution of tangential discontinuities
is governed not only by the local but also by the global
properties of the magnetic plasma configuration,
because, in a plasma with a finite conductivity, the
width of the one-dimensional tangential discontinuity
increases as time elapses [19].

In the case of the combination of an Alfvén pertur-
bation and a magnetosonic perturbation, the steady-
state distributions of the poloidal magnetic field (equiv-
alently, the toroidal current) and poloidal plasma veloc-
ity in the vicinity of the X point agree qualitatively with
those in the case of a purely magnetosonic perturbation.
In particular, the combined perturbation gives rise to a
toroidal current sheet. The Alfvén component of the
perturbation leads to the formation of a poloidal current
sheet. In contrast to the case of a purely Alfvén pertur-
bation, the density of the poloidal current driven by the
magnetosonic component of the combined perturbation
in a plasma with a zero viscosity but finite conductivity
remains bounded as t  ∞. In a perfectly conducting
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plasma, singular current sheets form even in the early
stages of the evolution of the plasma flow.

ACKNOWLEDGMENTS

We are grateful to S.V. Bulanov for his interest in
this work and fruitful discussions.

REFERENCES
1. B. B. Kadomtsev, Usp. Fiz. Nauk 151, 3 (1987).
2. A. B. Severnyœ, Izv. Krym. Astrofiz. Obs. 20, 22 (1958).
3. B. B. Kadomtsev, Fiz. Plazmy 1, 710 (1975) [Sov. J.

Plasma Phys, 1, 389 (1975)].
4. S. Yu. Bogdanov, N. P. Kiriœ, and A. G. Frank, in Mag-

netic Reconnection in Two- and Three-Dimensional
Configurations (Nauka, Moscow, 1996); Tr. Inst.
Obshch. Fiz. Akad. Nauk 51, 5 (1996).

5. S. Yu. Bogdanov, V. B. Burilina, N. P. Kiriœ, et al., in
Magnetic Reconnection in Two- and Three-Dimensional
Configurations (Nauka, Moscow, 1996); Tr. Inst.
Obshch. Fiz. Akad. Nauk 51, 76 (1996).

6. K. V. Brushlinskiœ, A. M. Zaborov, and S. I. Syrovatskiœ,
Fiz. Plazmy 6, 297 (1980) [Sov. J. Plasma Phys. 6, 165
(1980)].

7. W. Zwingmann and K. Schindler, Sol. Phys. 99, 133
(1985).

8. G. Vekstein, E. R. Priest, and T. Amari, Astron. Astro-
phys. 243, 492 (1991).

9. G. Vekstein, Astron. Astrophys. 182, 324 (1987).
10. G. Vekstein and E. R. Priest, Astrophys. J. 384, 333
(1992).

11. A. B. Hassam and R. P. Lambert, Preprint no. UMIPR
94-011 (Department of Physics and Institute for Plasma
Research, University of Maryland, 1995).

12. S. V. Bulanov, I. Ya. Butov, Yu. S. Gvaladze, et al., Fiz.
Plazmy 12, 309 (1986) [Sov. J. Plasma Phys. 12, 180
(1986)].

13. S. V. Bulanov, G. I. Dudnikova, V. P. Zhukov, et al., in
Magnetic Reconnection in Two- and Three-Dimensional
Configurations (Nauka, Moscow, 1996); Tr. Inst.
Obshch. Fiz. Akad. Nauk 51, 101 (1996).

14. S. V. Bulanov, G. I. Dudnikova, V. P. Zhukov, et al.,
Kratk. Soobshch. Fiz., Nos. 5–6, 28 (1994).

15. S. V. Bulanov, G. I. Dudnikova, V. P. Zhukov, et al., Fiz.
Plazmy 22, 867 (1996) [Plasma Phys. Rep. 22, 783
(1996)].

16. A. I. Podgornyœ and S. I. Syrovatskiœ, in Burst Processes
in Plasma (Nauka, Moscow, 1979); Tr. Fiz. Inst. Akad.
Nauk SSSR 110 (1979).

17. Yu. A. Berezin and G. I. Dudnikova, Numerical Models
of Plasma and Processes of Reconnection (Nauka, Mos-
cow, 1985).

18. G. I. Dudnikova and V. P. Zhukov, Vychisl. Tekhnol. 4
(11), 108 (1995).

19. L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media (Nauka, Moscow, 1982; Pergamon,
New York, 1984).

Translated by O. E. Khadin
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001



  

Plasma Physics Reports, Vol. 27, No. 11, 2001, pp. 963–966. Translated from Fizika Plazmy, Vol. 27, No. 11, 2001, pp. 1019–1022.
Original Russian Text Copyright © 2001 by Sorokin.

                                                                                                         

PLASMA
DYNAMICS

                          
K-shell Radiation from Double-Shell Argon Plasma Liners
S. A. Sorokin

Institute of High-Current Electronics, Siberian Division, Russian Academy of Sciences,
Akademicheskiœ pr. 4, Tomsk, 634055 Russia

Received April 19, 2001

Abstract—Experiments on the generation of argon K-shell radiation during the implosion of double-shell
plasma liners are described. The optimum liner length with respect to the maximum K-shell radiation yield is
determined. At a liner current of ~1.4 MA, the conversion efficiency of the generator electric energy into the
K-shell radiation energy attains 8–9%. The spectrum of the argon K-shell radiation is measured by a set of pho-
toemission X-ray diodes with different filters (including an argon gas filter). Based on the measurements of the
emission power in different spectral intervals and calculations by the collision-radiative model, the ion density
and electron temperature of the pinch plasma are estimated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The electric energy of a high-current generator can
be efficiently transferred to a plasma liner and then con-
verted into soft X radiation [1]. The conversion effi-
ciency decreases with decreasing radiation wavelength
because of both the increase in the energy spent on
heating electrons to a higher temperature and the higher
degree of gas ionization. Furthermore, the necessity of
increasing the energy imparted to each imploding atom
dictates the necessity of decreasing the liner mass per
unit length and, consequently, the density and emissiv-
ity of the plasma. This circumstance can decrease the
efficiency if the characteristic time of plasma radiative
cooling τr is longer than the time τi ~ rf /v f , during
which the pinch is in the compressed state. As a result,
for a generator with a given energetic resource (maxi-
mum current), the requirement that the conversion effi-
ciency of the generator electric energy into radiation be
high limits the attainable minimum radiation wave-
length. At the same time, at a given mass per unit
length, the radiation power of an optically transparent
plasma depends on the compression ratio as P ∝

 ∝  m2/  ∝  / . Here, ni is the ion density, rf is
the final pinch radius, m is the liner mass per unit
length, and Im is the amplitude of the current through
the liner. Consequently, the ratio of the radiative cool-
ing time (τr ∝  P–1) to the inertial confinement time
(τi ∝  rf) is proportional to rf and can be maintained at a
level of τr /τi < 1 by decreasing rf. In other words, the
generator current Im providing a given radiation power
can be reduced by increasing the radial compression

ratio Im ∝   [2].

To estimate the generator current Im above which the
energy can be efficiently (>25%) converted into K-shell
radiation, we can use one of the phenomenological
models [3, 4]. For estimates, the simplest and most con-
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2
r f

2
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r f
0.5
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venient model is the two-level model (TLM) [4]. In this
model, the efficiency is defined as the ratio of the total
K-shell radiation yield per pulse to the energy trans-
ferred from the generator to the liner. Figure 1 shows
the efficiency predicted by this model for two values of
the final argon pinch radius, 0.1 and 0.02 cm. It can be
seen that the efficiency ε ~ 25% is attained at Im ~ 5 MA
for rf = 0.1 cm and at Im ~ 2 MA for rf = 0.02 cm.

In [2], it was demonstrated that, at a liner current of
~0.9 MA, the more stable and, consequently, more
compact implosion of a double-shell liner (rf ~ 0.02 cm)
makes it possible to increase the conversion efficiency
of the generator energy into the energy of argon K-shell
radiation. It is of interest to carry out experiments with
a double-shell liner at a current close to 2 MA, at which,
according to the TLM, the ~25% efficiency can be

0.1
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ε

Fig. 1. Generation efficiency of argon K-shell radiation for
pinch radii of 0.1 cm (solid line) and 0.02 cm (dashed line).
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attained with a single-shell liner. Experiments
described in this paper were carried out in the MIG gen-
erator at a liner current of ~1.4 MA and were, in part, a
continuation of the experiments performed in [2]. The
initial parameters of the liner were close (according to
[2]) to the optimum parameters with respect to the max-
imum K-shell radiation yield. The measured depen-
dence of the radiation yield on the liner length is also
discussed.

2. EXPERIMENTAL SETUP AND DIAGNOSTIC 
TECHNIQUES

The MIG generator is the upgraded SNOP-3 facility
[5, 6], in which the stored energy of the capacitor bank
of the pulse transformer is increased from 140 to 300 kJ
by increasing the number of capacitors from 48 to 108.

3 cm

1 cm

Spectral response, A/MW
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0.8

0.6
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0
2 3 4 5 6 7

Energy, keV

Fig. 2. Design of nozzles for producing a double-shell liner.

Fig. 3. Spectral response of XRDs with different filters:
11-µm teflon filter + 1.7 mg/cm2 argon filter (solid curve),
22-µm teflon filter (dashed line), and 75-µm teflon filter
(dotted line).
The generator transmission line with a wave impedance
of 0.65 Ω provides the maximum current up to 2 MA
with a rise time of ~80 ns through a diode with an
inductance of 25 nH. A nozzle design for producing a
double-shell liner is shown in Fig. 2. The outer nozzle
radii are 1.5 and 0.5 cm. The widths of the annular exits
are 2 mm. The shape of the nozzles was selected so as
to ensure the spatial separation of shell jets over at least
a distance from the nozzle z = 1.5 cm. The area ratio
between the outer and inner annular gaps in the nozzle
throats is equal to 3/2. The liner length was specified by
the position of the anode grid and was varied from 1.5
to 4.5 cm. The diode current was measured with
Rogowski coils situated on the anode disk at radii of 35
and 5 cm. The pinch image in argon K- and L-shell radi-
ation was recorded with pinhole cameras. The power
and the spectrum of K-shell radiation was measured
with three X-ray diodes (XRD) with an aluminum cath-
ode and different filters: (i) 11-µm teflon filter + 1.0- to
1.8-mg/cm2 argon filter; (ii) 22-µm teflon filter; and
(iii) 75-µm teflon filter (Fig. 3). To calculate the XRD
spectral response, we used the available data on the
quantum efficiency of aluminum cathodes [7] and the
filter transmission [8]. The argon filter was formed by
means of pulsed gas puffing into the diagnostic line-of-
sight region [9]. The argon K edge (3.2 keV) is located
between the Heα and Hα lines of the helium- and hydro-
gen-like argon, respectively, which makes it possible to
separate out the Heα line emission with the help of the
argon filter. As is seen in Fig. 3, the difference between
the signals from the detectors with the argon filter and
the 75-µm teflon filter determines the intensity of the
Heα line. The recombination radiation power
(>4.1 keV) was measured by a detector with a 75-µm
teflon filter and then was corrected by subtracting the
contribution from the measured çÂα radiation. The
detector with a 22-µm teflon filter measured the total
power in K-shell radiation. Absolute spectral measure-
ments of K-shell radiation performed with the XRD
allowed us to simplify the procedure of determining the
ion density ni and the electron temperature Te of the
pinch plasma. The procedure is based on the compari-
son of the measured values of the pinch diameter, the
power (energy) of K-shell radiation, and the ratio
between the intensities of çÂα and çα lines with the
calculations by the collisional–radiative equilibrium
(CRE) model [10]. In this case, it is not necessary to use
a spectrograph to measure the relative line intensities.
The time-resolved measurements are significantly sim-
plified, because the time dependence of the line inten-
sity ratio is directly deduced from the XRD signals. In
this case, the intensity ratio between the çÂα and çα
lines can be replaced with the intensity ratio between
other spectral intervals that are more convenient for
measurements and have a pronounced dependence on
the electron temperature. In this paper, we estimated the
plasma parameters from the ratio of the radiation yield
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
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in the çÂα line to the total radiation yield in other K
lines.

3. EXPERIMENTAL RESULTS

Figure 4 shows the waveforms of the current mea-
sured with the Rogowski coil placed at a radius of 5 cm
and the total power of K-shell radiation from a 2.8-cm-
long liner. The full width at half maximum of the radi-
ation pulse is ~5 ns, and the peak power is about 1011 W.
As follows from an analysis of a series of shots, the
radiation pulse duration depends on the liner length,
which may be attributed to the fact that pinching occurs
at different times for different points along the z-axis.
This circumstance, in particular, makes it difficult to
measure the radiation power per unit length of the liner
(this quantity is used to determine the parameters of the
pinch plasma). The measurements showed that the radi-
ation pulse duration from the liner segment ∆z = 1 mm
is no longer than 2 ns [11]. In some shots of this series,
individual peaks with a duration of ~1.2 ns were
observed in the radiation signals. It is reasonable to
assume that these peaks arise from pinching of individ-
ual short segments of the liner. The measured durations
of the radiation pulses from the entire liner of length l
are well approximated by the expression τ[ns] = τ0 +
1.5 l[cm], where τ0 = 1.2 ns. Note that τ0 is close to the
estimate for the inertial confinement time of the pinch,
2rf /v f ~ 0.8 ns. This means that, when estimating the
plasma parameters, it is reasonable to use the ratio Er/τ0
(where Er is the total K-shell radiation yield per pulse)
for the comparison with the power of K-shell radiation
calculated by the CRE model. The scatter in the values
of the radiation yield for liners of lengths 2.5–3 cm was
in the range 600–850 J. The radiation yield decreased
as l was decreased to 1.8 cm or increased to 4 cm. An
analysis of the pinhole photographs shows that a com-
pact pinch of radius rf ≤ 0.2 mm is only formed in the
anode region of the liner over a length of 15–20 mm. At
z > 20 mm, the pinch radius measured in L-shell radia-
tion was ~0.3–0.4 mm and the intensity of K-shell radi-
ation was relatively low. The 15-mm distance from the
nozzle corresponds to the estimate (at the Mach number
M = 4) for the distance over which the jets of the shells
are spatially separated. This means that the compact
pinch intensively emitting K-shell radiation is formed
only in the region where the double-shell structure of
the liner is well pronounced. In a shot with a total radi-
ation yield of 850 J (shot no. 27), the çÂα radiation
yield was 430 J and the recombination radiation yield
was 160 J. Consequently, the radiation yield in all the
other lines (except for the çÂα line) was 240 J. Accord-
ing to calculations by the CRE model, such radiation
yields within the given spectral intervals from the pinch
of radius 0.2 mm can be obtained at the density ni ~ 1020

cm–3 and the temperature Te ~ 1.3 keV. The efficiency,
with which the energy transferred to the liner in shot no.
27 was converted into K-shell radiation, was ~8.4%.
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
The conversion efficiency observed in our experiments
and the results obtained in other devices in experiments
with single-shell liners can be compared using the
TLM, which predicts a universal dependence of the
conversion efficiency on the energy transferred to the
liner [4]. As was pointed out in [4], the radiation yield
predicted by the TLM agrees satisfactorily with the
experiments in the Saturn and Hawk devices assuming
the radial compression ratio to be r0/rf ~ 7–8. The calcu-
lated K-shell radiation yield for the MIG device at a
radial compression ratio of 8 is 90 J/cm at an efficiency
of ~2.8%. For a compression ratio of 10, the calculated
yield is 130 J/cm at an efficiency of ~3.6%. This means
that, using a double-shell liner, it is possible to increase
the conversion efficiency by a factor of ~3.

4. DISCUSSION AND CONCLUSIONS

It follows from zero-dimensional simulations (see
also [13]) that, for the load of the MIG generator, the
optimum liner length with respect to the energy deposi-
tion is 6–8 cm. At τr ! τi, when the conversion effi-
ciency ε is constant, the optimum length l with respect
to the energy deposition coincides with the optimum
length with respect to the radiation yield. At τr ≥ τi, the

efficiency ε depends on the current Im (ε ∞  at τr @ τi)
and the optimum liner length with respect to the radia-
tion yield is shorter than the optimum liner length with
respect to the energy deposition, because the current
decreases with increasing l and, consequently, diode
inductance. We calculated the K-shell radiation yield as
a function of the liner length. The deposited energy was
calculated by the zero-dimensional model, whereas for
the radiation yield Er, we used a TLM analytic depen-
dence on the energy deposited in the liner. Figure 5
shows the dependences Er(l) for pinch radii of 1 and

Im
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Fig. 4. Current through the load I (solid line) and the argon
K-shell radiation power P (dashed line) for a 2.5-cm-long
liner.
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0.5 mm. It can be seen in the figure that, first, the opti-
mum length depends weakly on the pinch radius and,
second, it makes no sense to increase l above 2.5–3 cm.
This circumstance, along with the experimental fact
that compact pinches cannot be formed for z > 2 cm,
explains why the radiation yield decreases as the liner
length increases to 4 cm. A decrease in the yield for
l < 2 cm is obviously explained by the shape of the
dependence Er(l).

In summary, it has been demonstrated that, at a liner
current of ~1.4 MA, the double-shell liner structure
promotes the formation of a compact pinch; as a result,
the conversion efficiency of the electric energy into the
energy of argon K-shell radiation increases. The opti-
mum liner length with respect to the maximum K-shell
radiation yield has been determined. The spectrum of
argon K-shell radiation has been measured with a set of
XRDs with different filters (including an argon gas fil-
ter). Using the measurements of the X-ray emission

Er, kJ
2.0

1.6

1.2

0.8

0.4

0
1 2 3 4 5 6

l, cm

Fig. 5. Dependence of the argon K-shell radiation yield Er
on the liner length l for pinch radii of 0.05 cm (solid line)
and 0.1 cm (dashed line).
power (yield) in certain spectral intervals and calcula-
tions by the CRE model, the ion density and electron
temperature of the pinch plasma have been estimated.
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Abstract—The diffraction broadening of laser radiation restricts its efficient utilization in many applications.
In this work, a method for laser radiation guiding in a density channel formed in a plasma by a relativistic elec-
tron beam is considered. The conditions and parameters of the relativistic beam ensuring the guiding are exam-
ined. © 2001 MAIK “Nauka/Interperiodica”.
1 Progress in the technology of high-intensity lasers
opens new opportunities for the use of lasers in various
branches of science and industry. In the last few years,
the development of the chirped-pulse amplification
technique [1] has permitted the production of subpico-
second laser pulses of multiterrawatt power with a peak
intensity up to 1019 W/cm2 and higher [2]. With such
intensities, we are dealing with a new interaction range
of laser radiation with matter, where the nonlinear
effects are of crucial importance. At present, the inter-
actions of high-power laser radiation with plasma have
been actively investigated in connection with different
applications: the excitation of strong plasma wake
waves for the acceleration of charged particles with
acceleration rates up to tens of GeV/m [3], the genera-
tion (due to nonlinear interaction with plasma) of radi-
ation at harmonics of the laser carrier frequency [4],
“photon acceleration” [5], X-ray sources [6], and oth-
ers. We also note such application ranges of high-power
laser radiation as Compton scattering, laser cooling of
charged particle beams, and inertial confinement
fusion.

The diffraction broadening of laser radiation is one
of the main phenomena (frequently, the principal phe-
nomenon) inhibiting the effective use of laser energy in
many applications. In vacuum, the laser spot size rs

grows with the longitudinal coordinate according to the

formula rs = r0(1 + z2/ )1/2, where ZR = /λ is the
Rayleigh length, r0 is the minimum spot size at the
focus (z = 0), and λ is the laser wavelength. For this
reason, the intensity of radiation quickly decreases as
the laser beam propagates. For high-intensity laser
pulses, the value of ZR is usually on the order of several
millimeters. For instance, in the laser wakefield accel-
erator (LWFA) scheme, the energy gain of the electrons
that are accelerated by the longitudinal field of the wake
wave excited by a short laser pulse in a plasma is lim-

1 This article was submitted by the author in English.
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ited by the value eπZREz [3], where Ez is the amplitude
of the accelerating electric field of the plasma wave and
e is the electron charge. Thus, without optical guiding,
the diffraction limits the laser–matter interaction dis-
tance to one or two Rayleigh lengths.

If the refractive index of a medium (in particular,
plasma) is maximum at the axis of the laser beam and
decreases in the radial direction, one can eliminate or
slow down the process of diffraction broadening of
laser radiation (see review [7] and the literature cited
therein). For the laser power P > Pc =
2c(e/re)2[ω/ωpe(r = 0)]2 ≈ 17[ω/ωpe(r = 0)]2 GW, where
re = e2/mec2 is the classical electron radius, ω is the laser
frequency, and ωpe is the plasma frequency, relativistic
self-focusing takes place. However, for short pulses
with the length l & πc/ωpe, relativistic self-focusing is
inefficient for preventing diffraction broadening [7]. In
experiments, the plasma channel is usually created in a
gas or plasma by a laser pulse, which, in turn, is also
subject to diffraction. For example, the parabolic

plasma density profile np = n0 + ∆nr2/  may provide the

guiding of a low-intensity (  = (eE0/mecω)2 ! 1, where
E0 is the amplitude of laser radiation) Gaussian laser

beam if ∆n ≥ ∆nc = 1/πre  = 1.13 × 1020/((r0[µm])2 cm–3)
[7]. The guiding of high-intensity laser radiation in a
preformed plasma density channel at distances from
several millimeters to 1–3 cm was demonstrated by dif-
ferent research groups. In this paper, we considered the
creation of a plasma channel by a long relativistic elec-
tron beam (REB). The REB can traverse (without any
significant change in the parameters), in the plasma, a
distance much longer than the Rayleigh length for high-
intensity laser pulses. The main advantage of the guid-
ing method consists in the fact that the REB can form a
plasma channel with a length greatly exceeding that
obtained in experiments. Thus, the method in question
could provide longer-term interaction of high-intensity
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2
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laser radiation with plasma, as well as with relativistic
electrons.

Let us consider the propagation of a cylindrical elec-
tron beam with velocity v0 = ezv 0 in a cold homoge-
neous plasma. From Poisson’s equation, the equation of
motion, and the continuity equation for the plasma
electrons (the plasma ions are assumed to be immobile
due to their large mass), we have

(1)

where δne = ne – n0, ne is the density of the plasma elec-
trons, n0 is their equilibrium density, nb is the density of
beam electrons, and ωpe = (4πn0e2/me)1/2 is the plasma
frequency. For a long beam with the density nb = nb(r)
and a length greatly exceeding the plasma wavelength
λp = 2πv0/ωpe, one can omit the first term in Eq. (1).
Then, we have (see, e.g., [8])

(2)

The plasma electrons are blown out of the beam, and
density profile (2) is established. Although Eq. (1) was
obtained for the linear case in which nb ! n0, expres-
sion (2) also holds true for nb & n0 [8]. Hence, for a
function nb(r) with a maximum at the axis, we have a
plasma electron density channel. At the same time, the
total electron density is constant (ne + nb = n0 = const)
and is equal to the density of the ions. Therefore, the
force acting on the plasma ions is zero. In this paper, we
will show that, in this case, the guiding of laser radia-
tion is possible in spite of the fact that the total electron
density is constant during the propagation of a long
electron beam through the plasma. The problem of the
formation of a plasma channel and the stability of the
electron beam will be discussed below.

In order to consider the problem of laser radiation
guiding in a plasma density channel with density profile
(2), we first examine the dispersion properties of elec-
tromagnetic (EM) waves in the channel. For the electric
field of the EM wave, from Maxwell’s equations we
have

(3)

where j = –e(neve + nbvb) is the current density and ve

and vb are the velocities of the plasma and beam elec-
trons, respectively. For a linearly polarized wave, we
have E = exEx = exE0exp[i(ωt – kz)] and B = ey(ck/ω)Ex,
where B is the magnetic induction. Then, from Eq. (3),
we obtain

(4)

When deriving expression (4), we assumed that the
plasma channel response to the propagation of laser

∂2δne

∂t
2

------------- ωpe
2 δne nb+( )+ 0,=

ne r( ) n0 nb r( ).–=

— — E×× — —E( ) ∆E–=

=  c
–2 ∂2E/∂t

2
4π∂j/∂t+( ),–

k
2
c

2 ω2
–( )Ex

=  4πe ne r( )∂v ex/∂t nb r( )∂v bx/∂t+[ ] .
radiation is linear; hence, the change in ne and nb under
the action of the EM wave is negligible (i.e., the nonlin-
ear terms vex∂ne/∂t and vbx∂nb/∂t are ignored). This

takes place when  = (eE0/mecω)2 ! 1 [3]. To be
exact, in our case, Eq. (4) is valid if the change in the
plasma electron density under the action of the EM

wave (which is proportional to ) is much less than
the change in the density under the action of the elec-

tron beam; i.e.,  ! nb/n0. The derivatives of the
velocities v ex and v bx on the right-hand side of Eq. (4)
can be obtained from the equations of motion

(5.1)

(5.2)

where γb = (1 – /c2)–1/2 is the relativistic factor. For an

REB (i.e., for γ0 = (1 – /c2)–1/2 @ 1), we can set vbx !

vbz ≈ v0 ≈ c. Taking into account that /c2 =
(eEx/mecω)2 = a2 ! 1, we obtain from Eq. (5.2) that
∂v bx/∂t = −(e/meγ0)Ex . Substituting this expression and
Eq. (5.1) into Eq. (4) and taking into account expres-
sion (2), we obtain the dispersion relation

(6)

where α = nb(r)/n0. In the absence of a beam (α = 0), we
obtain from expression (6) an ordinary dispersion rela-
tion for transverse waves in a cold homogeneous
plasma. Expression (6) is also valid for a circularly
polarized wave, because it can be represented as a
superposition of two linearly polarized waves. The EM
wave does not “feel” the REB because the relativistic
mass of the beam electrons is much larger than that of
the plasma electrons (analogously, the plasma ions
make a negligible contribution to the dispersion rela-
tion due to their large mass). For this reason, instead of
an REB, one can use a beam of relativistic or nonrela-
tivistic negatively charged ions. It is noteworthy that,
instead of a continuous beam, one can use a long train
of bunches separated by a distance less than the plasma
wavelength. The EM wave can propagate both along
and opposite to the REB. The latter is important for
such applications as Compton scattering or a plasma-
based free electron laser (FEL) [9].

For the refractive index N = ck/ω of the EM wave
(laser radiation), we have from Eq. (6)

(7)
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The guiding of laser radiation is possible when dN/dr =

( /2Nω2)dα/dr < 0. Let the REB have a parabolic

density profile (α = α0(1 – r2/ ) at r < rb) and the laser
radiation have a Gaussian profile (a =

(a0r0/rs)exp(−r2/ )). Then, we have ne(r) = ne(0) +

nb(0)r2/ , where ne(0) = n0 – nb(0). In this case, the
plasma electron density channel produced by the REB
provides the matched laser pulse guiding if ∆nch >

1/πre  (see [7], Section VI). In our case, ∆nch = nb(0)
and rch = rb . Then, we have the following guiding con-
dition:

nb(0) > 1.13 × 1020/((rb µm)2 cm–3). (8)

The use of a CO2 laser pulse (λ = 10 µm) as a driver in
the resonant LWFA has certain advantages [10]. For a
CO2 laser, the longitudinal and transverse pulse sizes
are about several hundreds of a micrometer; the peak
intensity is Imax ~ 1016 W/cm2; the power is P ~ 50 TW;
and the plasma density is relatively low, n0 ≈ 3 ×
1015 cm–3 [10]. The latter implies nb(0) ~ 1014–1015 cm–3

for laser guiding. For example, for rb = rs = 2r0 =
600 µm, from condition (8) we have nb(0) > 3.14 ×
1014 cm–3. The Rayleigh length for the laser wavelength
λ = 10 µm is ZR ≈ 2.8 cm.

The linear approximation (δne ! n0) considered

above is valid for  ! α0 ! 1. As this condition fails
to hold, the mathematical description of the problem
becomes rather complicated, but the guiding again is

possible. Moreover, for  * α0, the guiding condition
(8) can weaken, first, because the plasma electrons are
blown out of the channel by the ponderomotive force
(as a result, the guiding effect is amplified) and, second,
due to relativistic self-focusing [7].

The large plasma density gradient in the channel
may be formed by a dense REB with nb * n0. In this
case, a region is formed near the beam axis from which
all the plasma electrons are expelled. For a thin beam
(with the radius rb ! λp), such a region is formed when
nb > n0; for a broad beam (rb @ λp), it is formed when
nb > n0/2. The diameter of the region increases with
increasing beam density [11]. The possibility of plasma
channel creation by the leading portion of a narrow
dense electron beam (nb ~ 1017 cm–3, rb = 17 µm) was
discussed in [12]; however, the problem of laser guid-
ing was not considered.

Now, we consider the problems of the plasma chan-
nel formation and the plasma stability. To avoid the
excitation of the plasma wave by the leading edge of the
electron beam, the REB density at the entrance to
plasma should grow slowly; the rise time of the beam

density being tb @ . However, for applications
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related to charged particle acceleration, the excitation
of the plasma wave by the electron beam may be desir-
able. During the propagation of the REB through the
plasma, it is subject to various instabilities. The condi-
tion under which the instabilities can be neglected can
be written as δ∆t & 3, where δ is the instability growth
rate and ∆t is the time during which the electron beam
propagates through the plasma. For an REB, we have
∆t ≈ l /c, where l is the length of the plasma column.
The fastest instability is the beam–plasma instability,
which results in the excitation of a plasma wave with
wave number k ≈ ωpe/v 0. Eventually, the onset of the
beam–plasma instability leads to the breaking of the
beam into bunches separated by a distance equal to the
period of the plasma wave. The growth rate of the
beam–plasma instability for waves propagating along
the electron beam axis is (see, e.g., [13])

(9)

It follows from formula (9) that the growth rate of the
beam–plasma instability decreases with increasing
energy of the beam electrons; i.e., for sufficiently large
γ0, the instability can be neglected. According to for-
mula (9), the instability does not develop when

γ0 * γ∗  ~ 4.3 × 10–7  cm–3 (nb/n0)1/3l cm. (10)

For n0 = 3 × 1015 cm–3, nb(0)/n0 = 0.1, and l = 30 cm, we
have γ∗  ~ 300. The onset of the beam–plasma instabil-

ity may be desirable for a number of applications. For a

long laser pulse (with a duration of τL @ ), the
beam–plasma instability can provide the effective mod-
ulation of the laser pulse, which will result in the gen-
eration of a strong plasma wave, as in the self-modu-
lated LWFA [3] but with the laser power below the crit-
ical power Pc.

Let us consider the problem of guiding from the
energetic standpoint. The maximum energy densities of
the REB and laser beam are WREB = mec2γ0nb(0) and

WLas = /8π = (mecω/e)2 /8π, respectively. For their
ratio, we have

(11)

For n0 = 3 × 1015 cm–3 (λp = 600 µm), nb /n0 = 0.1, γ0 =

300, λ = 10 µm, and  = 0.468 (which corresponds to
the peak intensity of a circularly polarized laser beam
Imax ≈ 1.3 × 1016 W/cm2 [10]), it follows from expres-
sion (11) that κ ≈ 3.6 × 10–2. For n0 = 1014 cm–3, nb/n0 =

0.1, γ0 = 300, λ = 1 µm, and  = 0.05 (which cor-
responds to the laser beam intensity Imax ≈ 1.4 ×
1017 W/cm2), we have κ ≈ 1.08 × 10–4. Thus, the REB
allows one to guide laser radiation with an energy den-
sity much higher than that of the REB. For the parame-

δ 3
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2
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λ p
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  2

.=

a0
2
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ters of the problem of practical interest, the total REB

energy εREB ~ π lREBWREB is less than the total energy

of laser beam εLas ~ π lLasWLas; here, lREB and lLas are
the lengths of the REB and laser beam, respectively.

Thus, we have shown that an REB can form a
plasma channel in which laser radiation guiding is pos-
sible. The considered guiding method is based on the
capacity of an REB to traverse (without a significant
change in the parameters), in the plasma, a distance
much longer than the diffraction length of high-inten-
sity laser radiation. The plasma electrons are blown out
of the region occupied by the REB; as a result, a plasma
channel is formed. It has been shown that, due to the
large relativistic factor of the REB, its contribution to
the dispersion properties of the channel is negligible.
The method under consideration permits a significant
increase in the time during which the laser pulse inter-
acts with the plasma and REB and, hence, in the effi-
ciency of utilizing the radiation energy. This method is
interesting for such applications as LWFA, X-ray gen-
eration, and plasma-based FEL.
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Abstract—The small-angle scattering of an extraordinary wave by plasma density fluctuations near the upper
hybrid resonance is analyzed. It is shown that the efficiency of the small-angle scattering increases markedly as
the upper hybrid resonance is approached. The power lost by the probing wave is calculated as a function of
distance from the upper hybrid resonance, the parameters of the wavenumber spectrum of density fluctuations,
and plasma parameters. The estimates obtained indicate that small-angle scattering, first, may have a strong
impact on the experimental results obtained from the enhanced-scattering diagnostic and, second, may be
the main cause of the broadening of the frequency spectrum of a signal recorded by this diagnostic technique.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to current opinions, ion-temperature-gra-
dient (ITG) driven ion drift waves play a leading role in
the anomalous ion energy transport in tokamaks. The
same is true of the role played by the electron-temper-
ature-gradient (ETG) driven electron drift waves in the
anomalous electron energy transport. This circum-
stance has stimulated interest in investigating the
behavior of the spectra of small-scale low-frequency
plasma turbulence during Ohmic and auxiliary heated
discharges, as well as during transitions to improved
energy and particle confinement modes.

A diagnostic technique based on the effect of
enhanced scattering of microwaves [1] is an efficient
tool for studying small-scale plasma density fluctua-
tions. This effect, which is observed when an extraordi-
nary electromagnetic wave is scattered by plasma den-
sity fluctuations near the upper hybrid resonance
(UHR), is associated with an increase in the potential
component of the wave electric field as the UHR is
approached.

The enhanced-scattering diagnostic implies that an
extraordinary wave is launched into the plasma from
the side of the stronger magnetic field along the plasma
density gradient. The signals recorded are waves that
are scattered backward and have the same polarization
as the launched waves.

The effect of the increase in the wave vector of the
probing wave in the vicinity of the UHR makes it pos-
sible to investigate small-scale plasma density fluctua-
tions. The decrease in the group velocity in this region,
accompanied by an increase in the field amplitudes of
the probing and scattered waves, leads to the amplifica-
1063-780X/01/2711- $21.00 © 0971
tion of the scattered signal. That the probing wave is
scattered mainly in the UHR region provides high spa-
tial resolution for measurements. The frequency spec-
trum of the recorded signals contains information about
the frequency spectrum of fluctuations, and the wave-
number spectra of fluctuations can be obtained from the
time-of-flight and correlation modifications of the
enhanced-scattering diagnostic technique [2, 3].

Note that the frequency shift of the backscattered
signal corresponds to the frequency of fluctuations that
scatter the probing wave in the backward direction only
if the probing wave is not acted upon by large-scale
plasma turbulence (which dominates the fluctuation
spectrum and results in the small-angle scattering)
before being scattered. When the probing wave experi-
ences numerous small-angle scatterings, the backscat-
tered signal contains information about the frequency
spectra of both small-scale fluctuations and large-scale
turbulence. Consequently, in order to correctly interpret
the experimental results, it is necessary to know how
important is the role played by the small-angle scatter-
ing during the propagation of the probing wave with a
given directional pattern in the presence of plasma den-
sity fluctuations. In this paper, the effect of the small-
angle scattering on the propagation of an extraordinary
wave in the vicinity of the UHR is investigated using
the first Born approximation, i.e., to the first order in the
fluctuation amplitude. We calculate the Poynting vector
of an extraordinary wave scattered by an ensemble of
plasma density fluctuations and estimate the fluctuation
level above which the probing wave is strongly scat-
tered in the near-forward directions.
2001 MAIK “Nauka/Interperiodica”
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2. EMISSION OF WAVES 
IN AN INHOMOGENEOUS PLASMA

We consider a cold collisionless plasma in a mag-
netic field. We direct the z-axis along the magnetic field
and assume that the field and the plasma are both inho-
mogeneous in the x direction. The electric field E of the
wave emitted by an external current harmonic with den-
sity j is described by the equation

(1)

where ε, η, and g are the elements of the plasma dielec-
tric tensor. We assume that, in the UHR region, the
plasma density profile is linear, ε = (x – xUH)/l, where l
is the scale on which the plasma density varies.

When solving the problem of small-angle scatter-
ing, we assume that the external nonlinear current den-
sity is related to the plasma density fluctuations by

(2)

where vE = Ei/(en0) and  = iω(  – )/(4π) is the
conductivity tensor of the plasma.

The emission of waves in an inhomogeneous plasma
was previously studied in [4, 5] by using the Wentzel–
Kramers–Brillouin (WKB) approximation, which we
will use below. However, in those papers, the Green’s
function was calculated for a locally homogeneous
plasma, whose inhomogeneity was taken into account
only in matching the solution obtained with the WKB
solution far from the localized current source. Note
that, on the one hand, the applicability of this approach
[4] to microwave scattering in an inhomogeneous
plasma is questionable and, on the other hand, this
approach is a priori inapplicable to the region where
refraction is strong and, therefore, the amplitude of the
emitted wave is governed exclusively by the detuning
of the Bragg resonance. Unfortunately, the method
based on the reciprocity theorem [1], being very effi-
cient for calculating the backward scattering of signals
in the UHR region, is, at the same time, very difficult to
generalize to the case of small-angle scattering. That is
why we will consider the problem of wave scattering in
an inhomogeneous plasma in more detail.

The field of the emitted wave can be obtained from
Eqs. (1) by varying the arbitrary constants. To do this,
we solve the corresponding homogeneous equation

ikyEy' ikzEz'–
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(with jx = jy = jz = 0) in the geometrical-optics approxi-
mation. We represent the sought-for electric field of the
wave as

Taking into account the paraxial character of the prob-
ing wave propagating along the plasma density gradi-
ent,

we obtain the following expressions for the refractive
index of the extraordinary wave and for the polarization
of the wave electric field:

(3)

(4)

where the upper and lower signs refer to the waves
propagating toward (Nx > 0) and away from (Nx < 0) the
UHR, respectively.

Since the probing wave is scattered primarily in the
vicinity of the UHR, we neglect, for simplicity, the sec-
ond terms in the numerators of expressions (4) for Ex

and Ey (these terms are important only at the plasma
boundary). As a result, we obtain

(5)

The amplitude  can be found from the condition
that the projection of the Poynting vector onto the
x-axis be conserved:

(6)

where E0 is the amplitude of the wave field in vacuum.
As a result, relationships (5) and (6) give the following
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expressions for the field amplitudes , , and

:

(7)

Taking into account the corrections associated with
the propagation of waves at small angles with respect to
the plasma density gradient, we can write the refractive
index for an ordinary wave in the form

(8)

In the WKB approximation, the corresponding expres-
sions for the polarization of the wave electric field are

(9)

The amplitude  in plasma and vacuum can be
related through the condition for the Poynting vector to
be conserved:

(10)

Having derived solutions to the set of homogeneous
equations, we can find the field of the wave emitted by
the current harmonic with density j. To do this, we sub-
stitute the component Ex found from the first equation
into the second and third equations. We thus arrive at
the following set of two second-order inhomogeneous
differential equations with variable coefficients:
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where we introduced the notation ε1 = ε – . The
right-hand sides of these equations can be written in
vector form:

We represent the solution to this set of equations as

Here, subscripts 1 and 2 refer, respectively, to an
extraordinary wave propagating toward the UHR and a
wave propagating in the opposite direction; subscripts
3 and 4 stand for the corresponding ordinary modes;
and E and Ei are two-dimensional vectors, the latter, Ei,
being determined by relationships (7), (9), and (10).
Varying the arbitrary constants yields the following set
of four linear algebraic equations for the derivatives of
the coefficients Ci:

We omit the constant amplitude E0 and take into
account the relationship ε ! 1, which is valid in the
vicinity of the UHR. Then, we represent this set of
equations in the form
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We solve Eqs. (11) by the substitution method and, tak-
ing into account the paraxial character of the probing
wave, neglect the terms in the elements of the matrix

A22 A11 that are small in comparison with the corre-
sponding elements of the matrix A21. As a result, we
obtain
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where we can set

The two-dimensional vector X2, which contains the
unknown coefficients C3 and C4, can be found from
expression (12) with the help of the relationship

(13)

Expressions (12) and (13) constitute the desired solu-
tion to the problem of the field of the wave emitted by
the external current in the vicinity of the UHR.

3. CALCULATION OF THE SIGNAL SCATTERED 
IN THE NEAR-FORWARD DIRECTION

In the case of scattering by a fluctuation harmonic
with the wave vector q and frequency Ω ,

,
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the main component of the nonlinear current with den-
sity (2) has the form
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where

In what follows, we can neglect the dependence on time
by virtue of the relationship ωi + Ω = ω.

Since the main contribution to the amplitude of the
scattered wave comes from the point at which the
Bragg condition is satisfied, ki + q = k (where ki is the
wave vector of the probing wave), the derivative of the
nonlinear current density,
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can be represented as

Taking into account the paraxial character of the prob-
ing wave, we can use expressions (12) and (13),
together with the relationship ε ! 1, to obtain

(15)

where the wavenumber kx of the scattered wave is deter-
mined by formula (3). The equations for the amplitudes
of extraordinary waves propagating toward and away
from the UHR have the form

where k0x is determined by formula (8).

In the case of the scattering of a probing extraordi-
nary wave by large-scale fluctuations (qx ! kxi) in the
UHR region, the amplitudes of the backscattered waves
and the ordinary mode are exponentially small, because
the wavenumber kxi increases sharply as the UHR is
approached, so that the Bragg condition for the corre-
sponding processes is impossible to satisfy. Because of
this, we restrict ourselves to calculating the amplitude
C1, which describes the small-angle scattering process.

We substitute expression (14) for the nonlinear cur-
rent density into relationships (15) in order to reduce
the equation for the amplitude of the forward-scattered
wave to a form suitable for further analysis:

(16)

where the phase is described by the expression
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lowing Bragg condition, which determines the scatter-
ing point in an inhomogeneous plasma:
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With expression (3) for the refractive index of an
extraordinary wave, this condition becomes

(18)

where

In the vicinity of the UHR, the expression for A(x) sim-
plifies to A . –1/ε, so that Eq. (18) becomes

Using the stationary-phase method, we obtain from
Eq. (16) the desired amplitude C1:

(19)

where the second derivative of the phase under the
square root in the denominator,

determines the length of the wave interaction region
(the coherent-scattering length)

(20)

In the resonance case in which the Bragg condition is
satisfied over the entire plasma volume, the wave inter-
action region becomes infinitely long:

(21)

Note that, strictly speaking, this case cannot be described
by the stationary-phase method. Moreover, the necessary
condition for the validity of expression (19), which was
obtained using this method, is the inequality
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dition fails to hold will be analyzed below.
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the scattered wave onto the direction in which the
plasma is inhomogeneous can be represented as

(22)

It should be noted that, as the point xs approaches the
UHR, the energy flux density of the scattered wave

increases very sharply: Sx ~  ~ |x – xUH|–5/2. This
dependence allows us to conclude that, in the vicinity
of the UHR, both backward and small-angle scattering
processes are enhanced.

Expression (22) describes the scattering by one fluc-
tuation harmonic. However, in a real plasma, there is an
ensemble of fluctuations, each of which scatters the
probing wave. Let us generalize expression (22) to this
case by calculating the total Poynting vector of a prob-
ing wave with the wave vector ki, which is assumed to
be scattered by an ensemble of fluctuations. We con-
sider fluctuations with the spectral density

which is a good approximation for the large-scale com-
ponent of the fluctuation spectra observed in experi-
ments on CO2 laser scattering in a tokamak [6]. Here,
q0 is the characteristic transverse (with respect to the
magnetic field) wavenumber of the fluctuations and
〈δn2〉  is the average of the squared fluctuation ampli-
tude.

The total Poynting vector of the probing wave that is
scattered before reaching the point x can be represented
in integral form:

(23)
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Region of integration over qx and qy: curves 1 and 2 corre-
spond to the Bragg conditions at the plasma boundary and
at the current point, respectively.
where kx(xs) is determined by the Bragg condition,

(24)

and the contribution of all the scattering points xs < x is
incorporated. The region of integration Θ is shown in
the figure. At each point xs, a probing wave propagating
toward the UHR is scattered by fluctuations that satisfy
the Bragg condition (24). In the space of wavenumbers
of such fluctuations, the integration region Θ is
bounded by curves corresponding to the Bragg condi-
tion at the plasma boundary and at the current point x.

In order to carry out integration over this region, we
transform from the variables qx and qy to the variables
kx(xs) and qy . Integration over qy actually corresponds
to integration along a curve determined by the Bragg
condition at the scattering point xs , while integration
over kx(xs) corresponds to integration over all of the
scattering points between the plasma boundary (kx =
ω/c) and the current point (kx(x)). The Jacobian of the
transformation is

In this case, the singularity in the denominator of the
integrand in expression (23) (which corresponds to an
increase in the length of the region of interaction
between the modes) is removed; this indicates that
fluctuations satisfying condition (21) do not dominate
the scattering spectrum. In the new variables, expres-
sion (23) takes the form

(25)

Taking into account that the probing wave is paraxial
(kyi ! ωi/c ! kx) and fluctuations are large-scale (q0 ! kx),

we can neglect the term (2kyi + qy)2/( ) in compar-

ison with  +  and estimate the integral in expres-
sion (25) as

Since the terms with kyi only introduce small correc-
tions, different components of the directional pattern of
the antenna make equal contributions to the scattered
radiation.

Substituting the above approximate expression for
the integral into formula (25), we can readily take the
resulting integral over kx and thus obtain the following
expression for the Poynting vector of the scattered
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wave, divided by the absolute value of the Poynting
vector of the probing wave:

(26)

The necessary condition for the validity of expression (26)
is the inequality S(x)/S(i) < 1, which determines the
boundaries of the region where the Born approximation
is applicable and describes the region of transition to
multiple small-angle scattering.

On the other hand, the applicability region of
expression (26) is restricted by the stationary-phase
method, which was used to derive this expression.
Thus, the requirement that the coherent-scattering
length δx defined by relationship (20) be shorter than
the distance from the scattering point to the UHR point
yields the criterion

(27)

At large values of the refractive index Nx, the contribu-
tion of the end part of the interval of integration over x
to the integral becomes significant. At even larger val-
ues of the refractive index, the phase f(x) is essentially
unchanged. In this case, Eq. (16) for the amplitude C1
is easy to integrate:

We can see that the Poynting vector of the wave that is
scattered by one fluctuation harmonic is independent of
the wave vector. This circumstance allows us to obtain
the following expression for the projection of the
Poynting vector of the wave that is scattered by the full
ensemble of fluctuations:

(28)

The criterion for the validity of this expression has the
form

(29)

In order to match expressions (26) and (28), we con-
sider Eq. (16) in the intermediate region where criterion
(27) and inequality (29) both fail to hold. It turns out
that, in this region, a significant contribution to the inte-
gral comes from the end part of the interval of integra-
tion. We can show that, for the values of qx and qy that
typically make the main contribution to the integral
over the spectrum, the second term in expression (17)
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for the phase can also be neglected, in which case the
coefficient C1 becomes

(30)

where ε(x) = (x – xUH)/l.
The expression for the energy flux density of the

scattered waves can be obtained by integrating expres-
sion (30) over the fluctuation spectrum:

(31)

This expression for the power lost by the probing wave
during small-angle scattering is valid over the entire
applicability region of the WKB approximation. When
criterion (29) is satisfied, expression (31) coincides
with expression (28) to within a constant coefficient on
the order of unity. If the inequality opposite to (29) is
satisfied, expression (31) passes over to expression
(26).

Under conditions typical of the tokamak experi-
ments of interest to us (l = 10 cm, ωi/2π = 60 GHz), the
criterion for the applicability of the WKB approxima-
tion, which was used to derive the above formulas, is
not too stringent:

.

The conditions under which the cold plasma approxi-
mation, used to derive the basic equations, fails to hold
are far more restrictive. Thus, the cold plasma approxi-
mation is violated for

,

in which case the conversion of an electromagnetic
wave into a Bernstein mode becomes important [7].

Expression (31) implies that, because of the above-
described effect of enhanced scattering, the small-angle
scattering is sharply enhanced as the UHR is
approached and the rate at which the probing wave
loses its energy due to the small-angle scattering is
highest precisely in the vicinity of the UHR. Let us esti-
mate the corresponding refractive index of the probing
wave for the parameters of experiments on backscatter-
ing in the UHR region in the FT-1 tokamak [8]. We set
ωi/c ~ 6 cm–1, q0 ~ 2 cm–1, l ~ 2.5 cm, and δn/nUH = 10–2.
Then, in accordance with formula (28), the condition
S(x) = S(i) gives Nx(x) = 6.7, so that we have kx = 40 cm–1.
This value is smaller than the wavenumber correspond-
ing to the maximum backscattering efficiency, kx =
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qx/2 = 50 cm–1. On the other hand, at the plasma periph-
ery, the value of the ratio δn/nUH may be larger than that
used in our estimates by a factor of ten or more. This
circumstance allows us to conclude that multiple small-
angle scattering by large-scale plasma density fluctua-
tions may play an important role in the formation of
backscattering spectra in the UHR region. This nonlin-
ear (in the fluctuation amplitude) regime will be treated
in a separate paper.

4. CONCLUSION

Our calculations have shown that both the small-
angle scattering and the backscattering of an extraordi-
nary wave are enhanced as the wave approaches the
UHR. Even when the scattering is relatively weak,
large-scale plasma density fluctuations can completely
scatter the probing wave. As a result, the spectrum of
the probing wave can become broader at the expense of
multiple scattering. Of course, this effect should be
taken into account in interpreting the spectrum of back-
scattered radiation from the UHR region. Note that,
since the small-angle scattering process is highly local-
ized in the UHR region, the backscattering spectra may
provide information about the level and spectra of
large-scale plasma density fluctuations in the UHR
region.
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Abstract—The current dynamics in a non-self-sustained glow discharge in atmospheric-pressure nitrogen
(with a small admixture of oxygen) at cryogenic and room temperatures is studied experimentally and theoret-

ically. For the first time, the theoretical model incorporates the processes of the decomposition of  · N2 and

NO+ · N2 complex ions in collisions with vibrationally excited nitrogen molecules and the associative ionization
reactions with the participation of excited nitrogen and oxygen atoms. The computation results agree quite sat-
isfactorily with the experimental data on the current dynamics and the duration of the stable phase of a non-
self-sustained discharge for various applied voltages. Even a small (0.01%) oxygen admixture is found to
greatly affect the dynamics of the ion composition and the characteristic duration of the stable phase of a non-
self-sustained discharge in atmospheric-pressure nitrogen. © 2001 MAIK “Nauka/Interperiodica”.

O2
+

1. INTRODUCTION

High-pressure non-self-sustained glow discharges
(NGDs) in molecular gases are widely used in laser
technologies, plasmochemical reactors, and other
applications [1–3]. One of the main characteristics of
the NGD is the duration of the stable phase, which is
restricted by the onset of NGD instabilities. The restric-
tion is associated with either the appearance of one or
several high-conductivity channels emerging from the
cathode or the onset of one of the bulk instabilities
[3, 4]. In nitrogen and air, high-conductivity channels
emerge at relatively high electric fields, E/N ≥ 25–30 Td
(1 Td = 10–17 V cm2), whereas at E/N < 25–30 Td, the
discharge contraction is usually of volume nature [5].
In the latter case, the instability is related to the volume
processes that sharply increase the plasma conductivity
throughout the entire discharge gap.

The processes determining the duration of the stable
phase of a non-self-sustained discharge substantially
depend on the gas mixture composition. Discharges in
nitrogen and nitrogen-containing mixtures have been
studied most thoroughly [5–10]. In nitrogen, within a
wide range of the reduced field (E/N = 5–75 Td), the
main fraction of the discharge energy is spent on the
excitation of the vibrational degrees of freedom of N2

molecules. Hence, a complete modeling of the nitrogen
vibrational kinetics is required to adequately describe
the discharge characteristics. Since the rates of VT
relaxation and VV exchange depend strongly on the gas
temperature [1], the study of the non-self-sustained dis-
charge parameters at various initial temperatures is
very important.
1063-780X/01/2711- $21.00 © 20979
Baiadze et al. [6, 7] numerically investigated high-
pressure NGDs in nitrogen using a uniform model ade-
quately describing vibrational kinetics. The calculated
durations of the stable phase of the discharge turned out
to be 1.5–2 times longer than the corresponding exper-
imental values, which indicates that additional reac-
tions of associative ionization must be taken into
account in order to describe sharp current growth in the
final stage of the discharge. The instabilities of a non-
self-sustained microwave discharge in nitrogen with a
small (up to 0.1%) oxygen admixture were investigated
numerically in [8]. The main reactions were the reac-
tions of associative ionization with the participation of
é(1S) excited oxygen atoms created in the quenching of
the nitrogen electronic states by O(3P) atoms. Allowing
for those reactions enabled an adequate description of
the experimental data [9] on the dependences of the
duration of the discharge stable phase on E/N, the oxy-
gen concentration, and other parameters. Thus, even a
small admixture of oxygen can significantly affect the
characteristics of high-pressure non-self-sustained dis-
charges in nitrogen.

Deryugin et al. [10] studied the emission dynamics
of the 1+ nitrogen system N2 (N2(B3Πg, v ) 

N2( , v ') transitions) in an NGD in nitrogen. In the
initial stage of the discharge, the emission intensity was
shown to be relatively low. However, in the final stage,
when the discharge current sharply increased, the emis-
sion intensity of the 1+ nitrogen system also sharply
increased (somewhat leaving behind the current
growth).
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If the duration of a non-self-sustained discharge is

long enough so that the density of the N2( , v  ≥ 5)
vibrationally excited molecules is fairly high, then the
emitting N2(B3Πg) state is populated mainly via the
reaction [10, 11]

(1)

Since the density of the N2( , v  = 5–7) molecules
changes insignificantly during the emission intensity

growth, then, according to (1), the density of N2( )
molecules over this time interval can be regarded as
being almost proportional to the emission intensity of
the 1+ nitrogen system. Hence, the fairly rapid increase
in the current in the final stage of the discharge should
be preceded by an equally rapid increase in the density

of N2( ) molecules. This circumstance should be
taken into account when analyzing the processes deter-
mining the ionization balance and the duration of the
stable phase of a non-self-sustained discharge.

In spite of a great number of theoretical studies con-
cerning non-self-sustained discharges in nitrogen, the
reasons for the experimentally observed significant
increase in the current in the stable phase of the dis-
charge are still unknown. Moreover, the calculated
durations of this phase are substantially longer than the
experimental ones. The aim of our study is to investi-
gate (both experimentally and theoretically) the current
dynamics, the emission intensity of the 1+ nitrogen sys-
tem, and the mechanisms for the instability of an NGD
in nitrogen with a small oxygen admixture at both cryo-
genic and room temperatures.

2. EXPERIMENTAL SETUP

The experiments were carried out using a facility
[12] consisting of a discharge chamber and an electron
gun with a beam current density of jb ≤ 300 µA/cm2 and
an electron energy of 120 keV. The discharge was
ignited between a grid cathode and sectioned copper
anode (the electrode surface area is 1 cm2, and the inter-
electrode distance is 1 cm). A rectangular voltage pulse
with an amplitude of up to 5 kV and a duration of 25–
1000 µs was applied to the discharge gap. In order to
take into account the nonuniformity of the energy dep-
osition, we used a sectioned anode consisting of a cen-
tral and two side sections. Below, the current flowing
through the central section is referred to as the dis-
charge current. High-purity nitrogen (with an impurity
content of about 0.01%) was used in the experiments.

To study discharges at cryogenic temperatures, the
experimental facility was supplemented with a liquid
nitrogen jacket, which enclosed the discharge chamber
from all sides except the output flange of the electron
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gun; a gas pipeline ~2 m long (also surrounded by a liq-
uid nitrogen jacket); and a thermostat, in which a spe-
cially designed copper tube coil was placed. After pass-
ing through the coil and pipeline, the working gas
acquired a temperature of 90–100 K and then entered
the discharge chamber. The initial cryogenic tempera-
ture and its uniformity throughout the discharge vol-
ume were monitored with two calibrated chromel–
copel thermocouples; one of them was set in the middle
of the discharge gap and the other at the electron gun
output flange, which was not cooled with liquid nitro-
gen. At the initial temperature in the middle of the dis-
charge gap T ~ 100 K, the temperature in the gap varied
by no more than 4 K. To measure the gas temperature
in the discharge, we used a Mach–Zehnder interferom-
eter [13].

The homogeneity of the discharge was monitored by
an image converter tube, which operated in the multi-
frame mode. An analysis of the experimental data
showed that the electrode conditions and design sub-
stantially affected the duration of the stable phase of the
discharge. In some experiments, plasma pinches were
observed in the discharge gap, which resulted in a sig-
nificant decrease in the duration of the stable phase.
The pretreatment of the electrodes with a glow dis-
charge or UV radiation from an auxiliary source, as
well as the optimization of the electrode design,
enabled a nearly homogeneous discharge to be
obtained. Figure 1 presents typical images of the dis-
charge with pretreated electrodes. It is seen that, in
most of the interelectrode gap, the discharge is homo-
geneous and pinching occurs only in its final stage
(Fig. 1c). Below, we only consider the results of the
experiments with pretreated electrodes, which allows
us to describe the discharge within the spatially uni-
form model.

We also performed spectral measurements of the
discharge using a photomultiplier with the maximum
sensitivity at a wavelength of ~800 nm [10]. The spec-
tral measurements in the wavelength range 600–
1000 nm revealed that, in the final stage of the dis-
charge and in the afterglow, the 1+ nitrogen system

[N2(B3Πg, v )  N2( , v ' )] emission dominates
in the spectrum, the main transitions being those between
the low-lying vibrational levels N2(B3Πg, v  = 1, 2) and

N2( , v ' = 0, 1). To calibrate the measured emission
intensity, we used the calculated density of N2(C3Πu)
molecules produced by the electron beam and the mea-
sured ratio of the emission intensities of the 1+ and 2+

nitrogen systems.

3. DESCRIPTION OF THE MODEL

The numerical model for simulating the NGD incor-
porates three groups of equations:
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Fig. 1. (a) Oscillograms and (b, c) images of an NGD in atmospheric-pressure nitrogen obtained with an image converter tube and
(d) the sequence order of the frames in panels (b) and (c). The upper and lower traces in oscillograms (a) show the discharge current
(0.2 A/div) and the discharge voltage (1 kV/div), respectively; the time scale is 100 µs/div. Steps on the upper trace correspond to
the instants of the opening of the image converter shutter. In the discharge images, the time interval between the frames is 26 µs and
the frame exposure is 16 µs. Images (b) correspond to oscillograms (a) and images (c) are obtained at a slightly higher voltage. The
upper electrode is the anode in images (b) and the cathode in images (c).
(i) the Boltzmann equation for the spherically sym-
metric part of the electron energy distribution function
(EEDF),

(ii) a set of balance equations for the main charged
and neutral particle species, and

(iii) the enthalpy conservation equation for deter-
mining the gas temperature.

The model takes into account the influence of super-
elastic collisions on the EEDF. The cross sections for
the scattering of electrons by N2 molecules were taken
from [14]. The model incorporates about 400 reactions

involving the following neutral particles: N2( , v  =

0–45), N2( ), N2(B3Πg), N2(C3Πu), N2( ),
N(4S), N(2D), N(2P), O2, O(3P), O(1D), and O(1S). The
basic reactions were taken from [11, 15].
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The electric field in the discharge was determined
by the formula E = (U – Uc)/d, where U is the applied
voltage, Uc is the cathode potential drop, and d is the
interelectrode distance. The dependences of Uc on the
gas pressure and the beam current density were taken
from [16].

The electron density was determined from the equa-
tion

(2)

where νion is the rate of electron-impact ionization of
molecules, Qbeam is the rate of electron–ion pair produc-
tion by the electron beam, Qas accounts for associative
ionization reactions, and Qrec is the rate of electron–ion
recombination. Similar balance equations were used
for all of the charged particles.

dNe/dt Neν ion Qbeam Qas Qrec;–+ +=
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Main ion–molecular reactions incorporated in the model

No. Reaction Rate constant

R1  + N2 + N2   + N2 8 × 10–29 cm6/s

R2  + O2   + N2 + N2 4 × 10–10 cm3/s

R3  + N2 + N2   · N2 + N2 9 × 10–31 cm6/s

R4  · N2 + N2(v)   + N2 + N2 k4(v) (see text)

R5  + NO  NO+ + N2 + N2 4 × 10–10 cm3/s

R6  + NO  NO+ + O2 4 × 10–10 cm3/s

R7  · N2 + NO  NO+ + O2 + N2 4 × 10–10 cm3/s

R8 NO+ + N2 + N2  NO+ · N2 + N2 9 × 10–31 cm6/s

R9 NO+ · N2 + N2(v)  NO+ + N2 + N2 k9(v) (see text)

R10  + e  N2(C) + N2 2 × 10–6 (300/Te)
0.5 cm3/s

R11  · N2 + e  O2 + N2 1.4 × 10–6 (300/Te)
0.5 cm3/s

R12 NO+ · N2 + e  O2 + N2 1.4 × 10–6 (300/Te)
0.5 cm3/s

R13  + e  O(3P) + O(3P, 1D) 2 × 10–7 (300/Te)
0.7 cm3/s

R14 NO+ + e  N(4S, 2D) + O(3P) 4 × 10–7 (300/Te)
0.9 cm3/s

N2
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+

N4
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+

O2
+ O2

+

O2
+ O2

+

N4
+

O2
+

O2
+

N4
+

O2
+

O2
+

To describe the action of the electron beam on the
gas, we used the results from [14, 17]. The rates of ion-
ization, dissociation, and excitation of various elec-
tronic states of nitrogen molecules by the beam elec-
trons can be written in the form [17]

(3)

where dE/dx is the electron energy loss per unit path
length (this quantity depends on the electron energy), jb

is the beam current density, N is the density of mole-
cules in the mixture, and εk are the energy costs of the
corresponding process.

Since the density of oxygen molecules in the exper-

iments under consideration was fairly high ([ ] ≤

2.5 × 1015 cm–3), the reactions involving the , ,

NO+, NO+ · N2, , and  · N2 ions (see table) were
incorporated into the model. The basic ion–molecular
reactions were taken from [11, 15].

The rates of the ion–molecular reactions involving

N2( , v ) vibrationally excited nitrogen molecules
(see table, reactions R4 and R9) were expressed in the
form [2]

(4)

Qk
dE
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-------
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e
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----,=

O2
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+

O2
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X
1Σg

+

kv T( ) k0
Ea αEv–

T
----------------------– 

  ,exp=
where Ea is the activation energy for the corresponding
reaction, α is the utilization coefficient of the vibra-
tional energy in the reactions, Ev is the vibrational

energy of the N2( , v ) state, and T is the transla-
tional temperature.

The decomposition rate of the  ions in the reac-
tion

 + N2   + N2 + N2 (5)

was studied in [18] as a function of the vibrational and
translational temperatures of nitrogen molecules. We
used the corresponding dependences to estimate the
coefficient α using formula (4). Under the conditions of
[18], we have α = 0.2–0.35. According to this estimate,

for the similar decomposition reactions of  · N2 (R4)
and NO+ · N2 (R9) ions, the coefficient α was assumed
to be α = 0.3 ± 0.05. Such an analogy seems to be jus-
tified because, according to [19, 20], the rates of vibra-

tional energy transfer between the N2( , v ) mole-

cules and the , , and NO+ ions are comparable in
magnitude.

As many as 45 vibrational levels of the N2( ,
v  = 0–45) nitrogen molecule (up to the dissociation
limit) were taken into account. For the rate constants of
VT relaxation and VV exchange, we used expressions
derived based on the Schwartz–Slavsky–Hertzfeld the-
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ory. The rate constants of the reverse processes were
determined from the detailed balance principle. The
dimensionless inverse radius of VV exchange δvv  =

6.8/  (here, T is in K) and the VV transfer rate con-
stant Q10 = 2.5 × 10–14(T/300)3/2 cm3/s were taken from
[21, 22].

When calculating the rate of N2( ) molecule
production due to electron-impact excitation,

e + N2( , v )  e + N2( , v ' ), (6)

we took into account the dependence of the cross sec-
tion for reaction (6) on the level number v  in the form
[23]

σvv ' (ε) = qvv 'Ψ(ε/Uvv ' ). (7)

Here, ε is the electron energy; qvv ' and Uvv ' are the
Franck–Condon factor and the excitation energy for the
corresponding transition, respectively; and Ψ is a func-
tion describing the energy dependence of the cross sec-
tion. The latter function was chosen to best fit the
experimental data from [24]. The experimental data
(circles), the Ψ(ε) function, and the calculated cross
sections

for the vibrational levels with v  = 0, 10, and 20 are pre-
sented in Fig. 2. It can be seen that, as v  increases, the
threshold for reaction (6) substantially decreases; for
v  ≥ 15, we have Uv ≤ 2.5–3 eV.

In the case at hand, the populations of the N(4S)
ground state and the N(2P) excited state of nitrogen
atoms are governed by the electron beam and the reac-
tion [11]

N2( ) + N(4S)  N2(v ) + N(2P),

k = 5 × 10–11 cm3/s.

In the presence of oxygen in the mixture, é2 mole-
cules are intensively dissociated in the quenching reac-
tions of electronically excited nitrogen molecules

N2( ) + O2  N2(v ) + 2O(3P),

N2(B3Πg) + O2  N2(v ) + 2O(3P).

Among the processes of charged particle produc-
tion, our model incorporates the associative ionization
reactions with the participation of excited atoms,

(8)

which were taken into account in [25] when modeling
plasmochemical processes in air. These reactions have

T
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σv ε( ) σvv ' ε( )
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no activation barriers, and their rate can be estimated as
[26]

(9)

where  is the van der Waals coefficient in the
expression for the attraction force potential of the col-
liding atoms, µ is the reduced mass of the atoms, and
Γ(x) is the gamma function.

It should be noted that the creation of charged parti-
cles in the reaction between the N(2P) and O(3P) atoms
was observed in experiments [27]; the rate constant of
the decay of the N(2P) atoms in the reaction with O(3P)
was found to be (1.7 ± 0.4) × 10–11 cm3/s. This value
agrees with estimate (9).

Under our experimental conditions, the time of gas
heating is much longer than the characteristic time of
gasdynamic processes. For this reason, we used the iso-
baric approximation when calculating the gas tempera-
ture.

4. COMPUTATION RESULTS

In our experiments, the gas pressure and the initial
temperature were varied in such a way that the initial
density of nitrogen molecules remained equal to

[ ] = 2.5 × 1019 cm–3. This was taken as the initial
value in all of the computations.

Figure 3 presents the experimental data and the com-
putation results on the current dynamics in an NGD at
U = 3 kV for T0 = 300 K and jb = 225 µA/cm2 (curve 1)
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the energy dependence of the cross section used in compu-
tations.
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and for T0 = 100 K and jb = 140 µA/cm2 (curve 2), the
reduce field (E/N)0 being .10 Td. The increase in the
current density in the initial stage of the discharge is
related to the decrease in the effective coefficient of dis-
sociative electron–ion recombination βeff due to the
change in the ion composition:

The computed time evolution of the coefficient βeff
is shown in Fig. 4. It can be seen that, at T0 = 100 K, the
effective recombination coefficient is substantially

βeff

βionN ion
+∑

N ion
+∑

--------------------------.=

0
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0.4
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3.5
βeff, 107 cm3/s

1

2

N2 + 0.01% O2

Fig. 3. Waveforms of the current in a non-self-sustained dis-
charge in the N2 + 0.01% O2 mixture at U = 3 kV for

(1) T0 = 300 K and jb = 225 µA/cm2 and (2) T0 = 100 K and

jb = 140 µA/cm2. The symbols show the experimental data,
and the curves show the computation results.

Fig. 4. Time evolution of the effective rate constant of elec-
tron–ion recombination at U = 3 kV for (1) T0 = 300 K and

jb = 225 µA/cm2 and (2) T0 = 100 K and jb = 140 µA/cm2.
larger than at room temperature at each phase of the dis-
charge. The decrease in βeff with time is mainly related
to the increase in the degree of vibrational excitation of
N2 because the gas temperature increases insignifi-
cantly over 200–300 µs (see the experimental data and
computation results in Fig. 9). As was mentioned
above, this decrease is a consequence of the change in
the ion composition. The computed time evolution of
the density of the main positive ions is shown in Figs. 5
and 6. As the degree of vibrational excitation of N2

increases, the rates of decomposition of the  · N2 and
Né+ · N2 ions in reactions R4 and R9 also increase; the

produced  and Né+ ions recombine much more
slowly (see table). The dominating role of Né+ ions in
the final stage of the discharge is explained by the fact
that, in this stage, most of the charged particles are pro-
duced in the reactions of associative ionization (8).

Figure 7 presents the experimental and simulated
dependences of the NGD current density on (E/N)0
100 µs after the discharge ignition; the beam current
density is jb = 130 µA/cm2. It can be seen that the com-
putation results are in good agreement with the experi-
mental data. At T0 = 100 K, the increase in the discharge
current with (E/N)0 is related mainly to the increase in
the electron drift velocity. At T0 = 300 K, the decrease
in the effective rate of dissociative electron–ion recom-
bination due to the change in the ion composition also
comes into play. As a result, the slope of the curve in
Fig. 7 is higher at T0 = 300 K.

It should be noted that, the applied voltage U being
kept constant, the reduced electric field E/N in the dis-
charge positive column changes substantially with
time. Over the first 50–70 µs, the cathode potential drop
Uc decreases (due to the heating and expansion of the

O2
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O2
+

1012

100

Density, cm–3

200 300 400 500 600
Time, µs

1011

Ne

O2
+

NO+

N4
+

O2
+N2

Fig. 5. Time evolution of the charged particle densities in
the N2 + 0.01% O2 mixture for U = 3 kV, T0 = 300 ä, and

jb = 225 µA/cm2.
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gas in the cathode sheath [16]); as a result, the electric
field in the discharge increases. The further slower
increase in E/N is related to both the decrease in the gas
density in the positive column due to the increase in the
temperature and the decrease in the cathode potential
drop Uc due to the growth of the discharge current (Uc ~

1/ ) [16]. Recall that the (E/N)0 values in Fig. 7 cor-
respond to the time t = 100 µs after the discharge igni-
tion.

Figure 8 shows the time evolution of the densities of
some components (very important for the processes of
associative ionization discussed below) of the N2 +
0.01% O2 mixture excited by an NGD for jb =
225 µA/cm2, U = 3 kV, and T0 = 300 K. We note the
intense dissociation of nitrogen and oxygen molecules
in the discharge. The former are decomposed by the
electron beam, whereas the latter are decomposed via
the quenching of electronically excited nitrogen mole-
cules [15, 25]. In the final stage (t ≥ 500 µs), reactions
[11]

make a significant contribution to nitrogen atom pro-
duction.

In the initial stage of the discharge, the electroni-

cally excited N2( ) molecules are produced by the
electron beam. The decrease in the population of the

N2( ) state at t = 200–450 µs is related to the
quenching by nitrogen and oxygen atoms, whose over-
all density is higher than 1014 cm–3. As the population of

j
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Fig. 6. Same as in Fig. 5, but for T0 = 100 K and jb =

140 µA/cm2.
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the high-lying vibrational levels N2( , v  ≥ 10–15)
of the ground state increases, processes (6),

,

begin to play a more important role.

The major contribution to the production of the

N2( ) molecules comes from the vibrational levels

N2( , v  ≥ 15), for which the threshold for reaction (6)
decreases to ε0 ≤ 2.5 eV. Under the conditions corre-
sponding to Fig. 8, the contribution from reaction (6)
and the production by the electron beam becomes com-

parable at [N2( , v  ≥ 15)] ≥ (1–2) × 1016 cm–3.
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130 µA/cm2. The symbols show the experimental data, and
the curves show the computation results.

Fig. 8. Time evolution of the particle densities in the N2 +
0.01% O2 mixture for U = 3 kV, T0 = 300 K, and jb =

225 µA/cm2.
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Figure 9 presents the experimental data and the
computation results on the dynamics of gas heating for
different initial temperatures T0 = 300 K (jb =
225 µA/cm2, curve 1) and T0 = 100 ä (jb = 140 µA/cm2,
curve 2). We note that, at t > 250 µs, the calculated gas
temperature is higher than the experimental one. This is
related to the nonuniform energy deposition because of
the nonuniform ionization of nitrogen by the electron
beam. As a result, the gas in the axial region is heated
more efficiently than at the periphery and the measured
radius-averaged temperature is lower than in the central
NGD region, for which computations were carried out.
However, even in the axial region, the gas heating rate
is relatively low and the sharp increase in the discharge
current at t ≥ 600 µs (Fig. 3) cannot be attributed to the
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Fig. 9. Dynamics of gas heating in the discharge at U = 3 kV
for (1) T0 = 300 K and jb = 225 µA/cm2 and (2) T0 = 100 K

and jb = 140 µA/cm2. The symbols show the experimental
data, and the curves show the computation results.

Fig.10. Duration of the stable phase of a non-self-sustained
discharge vs. (E/N)0 for jb = 130 µA/cm2. The symbols
show the experimental data for T0 = (1) 300 and (2) 100 K,
and the curve shows the computation results for T0 = 300 K.
onset of the thermal instability. The same is true for all
other discharge modes under study.

To account for the experimentally observed sharp
increase in the current in the final stage of the dis-
charge, the model incorporates the reactions of associa-
tive ionization (8) involving excited atoms. In the final
stage of the discharge, charged particles are produced
via the following reactions [25]:

N2( ) + N(4S)  N2(v ) + N(2P),

N2( ) + O(3P)  N2(v ) + O(1S),

O(1S) + N(4S)  O(3P) + N(2P),

N(2P) + O(3P)  NO+ + e.

Taking into account reactions (8) allowed us to ade-
quately describe the experimental data on the dynamics
of the NGD current at different applied voltages and
electron beam currents. Figure 10 shows the experi-
mental and calculated dependences of the duration of
the stable phase of a non-self-sustained discharge on
(E/N)0 for jb = 130 µA/cm2. The value of τst was derived
from the time dependence of the rate at which the dis-
charge current density changed. For all of the discharge
modes under study, the time evolution of dj /dt drawn on
the logarithmic scale showed a pronounced bend. The
instant of the bend was taken as τst. It can be seen in
Fig. 10 that the calculated values of τst agree well with
the experiment for all applied voltages under study.
Therefore, we can conclude that reactions (8) with the
participation of excited atoms must be included in the
discharge ionization balance equations and that even a
small (0.01%) oxygen admixture substantially affects
both the dynamics of the ion composition and the char-
acteristic duration of the stable phase of an NGD in
atmospheric-pressure nitrogen. We note that models
incorporating the associative ionization reactions
involving only electronically excited molecules [28],

N2( ) + N2( )  e + , 5 × 10–11 cm3/s,

N2( ) + N2( )  e + , 2 × 10–10 cm3/s

without taking into account reactions (8) do not provide
an adequate description of the experimental data on the
NGD current dynamics and strongly overestimate the
τst values.

In studies of the quasi-steady glow discharge in
nitrogen [28], it was found that the time evolution of the

density of the N2( , v  = 15–25) vibrationally
excited molecules correlated with the time variations in
the secondary ionization rate. Based on this observa-

tion, the N2( , v  ≥ 15) molecules were assumed to
participate in the processes of associative ionization.
The possible ionization processes with the participation
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of N2( , v  ≥ 25) vibrationally excited molecules
were also analyzed in [29].

Within our model, the N2( , v  ≥ 15) vibra-
tionally excited molecules are not directly involved in
the reactions of associative ionization, but they signifi-

cantly accelerate the production of N2( ) mole-
cules in reaction (6), which, in turn, increases the den-
sities of excited nitrogen and oxygen atoms participat-
ing in the associative ionization reactions (8).

Figure 11 shows the measured time evolution of the
discharge current and the emission intensity of the
1+ system of nitrogen for U = 2.5 kV, jb = 250 µA/cm2,
and T0 = 300 K. The current pulse duration is ~580 µs.
Both the current and the emission intensity are seen to
increase sharply in the final stage of the discharge. As
was mentioned in the Introduction, the increase in the
emission intensity indicates a substantial increase in the

density of the N2( ) molecules in the final stage of
the discharge.

The absolute value of the emission intensity of the
1+ nitrogen system was estimated using the expression

where  and  are the emission intensities of the 1+

and 2+ nitrogen systems and τC is the radiative lifetime
of the N2(C3Πu) state. In [30], it was shown that, under
the given conditions, the N2(C3Πu) molecules are pro-
duced mainly by the electron beam. Hence, taking into
account formula (3), the density of the N2(C3Πu) mole-
cules can be expressed as

where εC is the energy cost of the N2(C3Πu) production
with allowance for reaction R10 (see table) and kC =
1.5 × 10–11 cm3/s is the rate constant for the reaction

N2(C3Πu, v  = 0, 1) + N2( , v ' )  products,

which, at P = 760 torr, is the main channel for quench-
ing the N2(C3Πu) state.

In computations, the emission intensity of the 1+

nitrogen system was determined as

where τB is the radiative lifetime of the N2(B3Πg) state.
In the final stage of the discharge, the emitting

N2(B3Πg) state is populated mainly via reaction (1).
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To take into account the production of N2(B3Πg)
molecules in the afterglow phase, we included the reac-
tion

N2( , v  ≥ 31) + N2( )

 N2(B3Πg, v ') + N2( ), (10)

k = 5 × 10–17 cm3/s,

which was suggested in [10].
The computation results on the dynamics of the dis-

charge current and the emission intensity of the
1+ nitrogen system are presented in Fig. 11. In compu-
tations, the emission intensity begins to appreciably
increase at t = 350–400 µs, whereas in the experiment,
it starts to increase immediately after the discharge
ignition, which is related to the appearance of cathode
spots [10]. The measurements with slit diaphragms that
cut off the emission from the electrode regions showed
that the emission from the discharge positive column
becomes significant starting approximately from the
middle of the current pulse, which agrees with the com-
putation results.

Taking reaction (10) into account allowed us to
match the calculated emission intensity of the 1+ nitro-
gen system in the discharge afterglow with the experi-
mental data (Fig. 11). However, computations also
showed an increase in the emission intensity of the

2+ nitrogen system (due to the reaction 2N2( ) 

N2(C3Πu) + N2( )), which was not observed in the
experiments. Thus, the reasons for the nonmonotonic
behavior of the emission intensity of the 1+ nitrogen
system in the NGD afterglow still remain unclear.
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Fig. 11. Dynamics of the current density (dashed line) and
emission intensity of the 1+ nitrogen system (solid line) in
an NGD for jb = 250 µA/cm2, U = 2.5 kV, and T0 = 300 K.
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5. CONCLUSION

The current dynamics in NGDs in atmospheric-
pressure nitrogen at cryogenic and room temperatures
and the emission intensity of the 1+ nitrogen system in
the main phase of the discharge and in the discharge
afterglow have been studied both experimentally and
theoretically. The effect of gas heating on the discharge
parameters has also been investigated.

In order to describe the kinetic processes in nitrogen
(with a small admixture of oxygen) excited by an NGD,
we have developed a numerical code incorporating the
balance equations for the densities of the main neutral
and charged particles. For the first time, the model

incorporates the decomposition reactions of  · N2

and NO+ · N2 complex ions in collisions with vibra-
tionally excited nitrogen molecules and the associative
ionization reactions with the participation of excited
nitrogen and oxygen atoms. The increase in the gas
temperature and the degree of vibrational excitation
leads to a change of the ion composition, a decrease in
the electron–ion recombination coefficient, and an
increase in the discharge current.

In the model developed, the mechanism for the
increase in the current in the final phase of the discharge
can be described as follows. The increase in density of

the N2( , v  ≥ 15) vibrationally excited molecules

significantly speeds up the production of N2( )
molecules by electron-impact excitation, which, in
turn, increases the densities of the excited nitrogen and
oxygen atoms participating in associative ionization.

The computation results adequately describe the
experimental data on the current dynamics and the
duration of the stable phase of a non-self-sustained dis-
charge for various applied voltages and electron beam
currents. Based on the results obtained, we can con-
clude that reactions (8), involving excited atoms, must
be included in the discharge ionization balance equa-
tions and that even a small (0.01%) oxygen admixture
substantially affects both the dynamics of the ion com-
position and the characteristic duration of the stable
phase of an NGD in atmospheric-pressure nitrogen.

In [31], under similar experimental conditions, the
influence of the condensed disperse phase (grains
24 µm in diameter) on the NGD parameters in atmo-
spheric-pressure nitrogen was studied. Grains with the
number density Nd ≥ 104 cm–3 were shown to substan-
tially affect the current dynamics, the duration of the
stable phase, and other discharge characteristics. The
proposed model of kinetic processes in the plasma of an
NGD in nitrogen will enable a more complete and
detailed analysis of the grain influence on the discharge
parameters.
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Abstract—A study is made of electromagnetic oscillations of a plasma in open field line geometry (open mag-
netic devices). The oscillations that propagate from the critical surface and are originally of the nature of the
electron Langmuir waves are shown to continuously change their nature and to escape from the plasma into
vacuum in the form of electromagnetic waves. This phenomenon may give rise to wave energy losses from
a thermodynamically nonequilibrium (unstable) plasma, e.g., a plasma penetrated by charged particle beams.
© 2001 MAIK “Nauka/Interperiodica”.
1. In [1], it was shown that, in an inhomogeneous
plasma whose density varies across the magnetic field,
there exist eigenmodes localized near the critical sur-
face (by the critical surface we mean the surface
defined by the condition ωpe = ω, where ωpe is the elec-
tron Langmuir frequency and ω is the frequency of
electromagnetic oscillations). The longitudinal refrac-
tive index for such eigenmodes is close to N||c =

 (where ωe is the electron cyclotron fre-

quency), and the transparency region for the eigen-
modes is adjacent to the critical surface from the side of
higher plasma density if N|| > N||c and from the lower
density side if N|| < N||c.

The characteristic feature of the oscillations under
consideration is that their polarization is different in
different zones of the transparency region. At the criti-
cal surface, the electric field of the oscillations is paral-
lel to the main magnetic field and the oscillations them-
selves are electron Langmuir waves propagating along
the magnetic field (N || B0). At the other boundary sur-
face of the transparency region, the electric field is per-
pendicular to the main magnetic field and rotates in the
same direction as the electrons; in other words, the
oscillations are so-called whistlers, whose wave vector
is also aligned with the main magnetic field.

Plasma configurations typical of closed devices in
which —n0 ⊥ B0 were considered in my earlier paper
[1], where the calculations were carried out for toka-
mak plasmas. However, the study of plasmas in open
magnetic configurations has also been the subject of
extensive laboratory investigation. Plasma configura-
tions of open geometry are characteristic of, e.g., gas-
discharge plasmas in a magnetic field and plasmas in
open magnetic confinement systems. The goal of the
present paper is to analyze oscillations that propagate

ωe

ωe ω–
----------------
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along the critical surface in a plasma in open field line
geometry. To be specific, the case of a plasma confined
in an open device is considered. In open configurations,
the plasma density gradient is orthogonal to the mag-
netic field only in the median plane. However, if the
configuration is highly stretched out along the magnetic
field, then the angle χ between —n0 and B0 is close to
π/2 over most of the plasma volume, so that the spatial
structure of the oscillations and the shape of their ray
trajectories will be approximately the same as those for
the mutually orthogonal vectors —n0 and B0. On the
other hand, in magnetic mirrors of any open device, the
angle χ is small, indicating that the situation in mirror
regions should differ significantly from that in the case
χ = π/2.

2. We are interested in the ray trajectories of electro-
magnetic oscillations with N|| ≈ N||c in a plasma of open
magnetic devices. The magnetic field is defined in
terms of the potential

where Φ0(z) = (R + 1)z – (R – 1) sin .

Here and below, all of the quantities having the dimen-
sionality of length are normalized to c/ω. We use a
cylindrical coordinate system in which the z-axis is the
symmetry axis of the device.

We assume that the plasma is ellipsoidal in shape
and is stretched out along the device axis:
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In the approximation of a cold plasma and immobile
ions, the oscillations are characterized by the dispersion
relation

where ε± = 1 – , ε⊥  = (ε+ + ε–)/2, and ε|| = 1 –

.

The ray trajectories of the oscillations can be
described by the equations of the geometrical-optics
approximation:

(1)

Since we are interested only in the shape of the ray tra-
jectories, we simplify the calculations by changing
from the ordinary time variable to the dimensionless
parameter τ, which is defined as dτ =

dt . As a result, Eqs. (1) reduce to

(2)

The ray trajectories discussed below were calcu-
lated for the mirror ratio R = 2, the remaining parameter
values characterizing the problem being LB = 200,
ωpe(0)/ω = 2, ωe(0)/ω = 2, Lnr = 10, and Lnz = 100.

Representative ray trajectories behind the critical
surface are shown in Figs. 1 and 2. Both of the trajecto-
ries originate from the same point (r = 10, z = 0.1) and
are characterized by the same value N⊥ (0) = 0.2. How-
ever, in Fig. 2, the angle that the wave vector makes
with the (z, r) plane is equal to 0.75 (Nϕ ≠ 0). In [1], it
was shown that, for Nϕ ≠ 0, the ray trajectory does not
come into contact with the critical surface. For Nϕ ≠ 0,
the “centrifugal force” in the region of low plasma den-
sity outside the device acts to turn the ray away from the
device axis. Along both trajectories, the value of N||
changes insignificantly: from about 1.25 inside the
plasma to about 1 outside the plasma. Since, in the
plasma, the projection of the wave phase velocity onto
the magnetic field direction is smaller than the speed of
light, the waves under investigation can undergo a
Cherenkov interaction with charged particle beams
moving along the magnetic field.
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The fact that, at the critical surface, the ray trajecto-
ries have cusps, which are oriented perpendicular to the
magnetic field, indicates the potential nature of the
oscillations. Actually, at the critical surface, we have
N⊥  = 0; in addition, according to [1, 2], the phase and
group velocities of the potential oscillations in a mag-
netic field are mutually orthogonal.

In a cold plasma, the polarization of oscillations is
described by the relationship (see [3])

(3)

Here, E± = (Ex ± iEy )/  and N± = (Nx ± iNy )/ ,
where the subscripts x and y refer to the vector compo-
nents in a local right-handed coordinate system with the
z-axis directed along the main magnetic field.

Figures 3 and 4 illustrate how the polarization of
oscillations changes along the ray trajectory. According
to [1], the oscillations continuously change their nature
with increasing distance from the critical surface: the
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Fig. 1. Ray trajectory behind the critical surface for Nϕ = 0:
(1) the ray trajectory and (2) the intersection of the critical
surface with the (z, r) plane.

Fig. 2. Same as in Fig. 1, but for Nϕ ≠ 0: (1) the projection
of the ray trajectory onto the (z, r) plane and (2) the critical
surface.
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potential electron Langmuir waves are eventually con-
verted into right-polarized electron whistlers. Along
both of the ray trajectories, the left-polarized compo-
nent of the electric field of the waves is insignificant.
Note that, in Fig. 3, the dependence E–(z) is discontinu-
ous. The discontinuities are peculiar to ray trajectories
lying in the (r, z) plane (Nϕ = 0, ImE– = 0) and occur at
the “reflection” points, at which the transverse (with
respect to the main magnetic field) component Nx of the
refractive index changes sign and the group and phase
velocity vectors are aligned with the magnetic field. At
the reflection points, the oscillations are of the nature of
whistlers, whose electric field is right-polarized [see
relationship (3)]. It is well known that whistlers tend to
propagate along the magnetic field. As the ray trajec-
tory deviates from the median plane of the device, this
tendency becomes dominant; as a result, the trajectory
eventually escapes from the plasma.

Figures 5 and 6 show the representative ray trajecto-
ries of oscillations on the inside of the critical surface.
The initial conditions for these trajectories are r(0) = 7,
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Fig. 3. Polarization of oscillations for the ray trajectory
shown in Fig. 1: the z-dependences of (1) E|| and (2) E–. In
order not to complicate the figure, the small component E+
is not plotted.

Fig. 5. Ray trajectory on the inside of the critical surface for
Nϕ = 0: (1) the ray trajectory and (2) the critical surface.
z(0) = 0.1, and N⊥ (0) = 0.2. Along the first trajectory, we
have Nϕ = 0, while, at the initial point of the second tra-
jectory, the angle between the wave vector and the (z, r)
plane is equal to 0.75. These figures clearly demon-
strate that the rays are focused toward the vertex of the
ellipsoidal critical surface: ωpe(r) = ω (see [2]). For
Nϕ ≠ 0, the centrifugal force in the vicinity of the focal
point acts to displace the ray toward the critical surface.
The unbounded increase in the refractive index during
the focusing of the rays should result in the absorption
of oscillations. We note that Langmuir oscillations with
N|| < 1 can escape from the plasma at a large angle to the
magnetic field as electromagnetic oscillations of the
other type (ordinary waves). Unlike whistlers trajecto-
ries, their trajectories are not tied to the critical surface.

3. Plasma confined in an open confinement system
is a useful object for studying the beam–plasma inter-
action. Theoretically, the injection of an electron beam
through the throats of the magnetic mirrors should give
rise to electron Langmuir waves. Although electron
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Fig. 4. Same as in Fig. 3, but for the ray trajectory shown in
Fig. 2: the z-dependences of (1) E||, (2) |E– |, and (3) |E+ |.

Fig. 6. Same as in Fig. 5, but for Nϕ ≠ 0: (1) the projection
of the ray trajectory onto the (z, r) plane and (2) the critical
surface.
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Langmuir waves, like all other potential oscillations,
cannot escape from the plasma into vacuum, in many
experiments (see, e.g., [4]), electromagnetic fields with
frequencies of the characteristic plasma frequency were
recorded outside the device. This was the case, in par-
ticular, in experiments with beam–plasma discharges in
magnetic fields [5, 6]. This phenomenon was explained
in terms of nonlinear effects, such as the scattering of
electron Langmuir waves by plasma particles and
decay interactions (see, e.g., [4, 7]), and the linear con-
version of waves in the vicinity of the critical surface in
an inhomogeneous plasma [8, 9]. The theory of linear
conversion was developed in connection with the prob-
lem of radio emissions from celestial objects. As a
result of linear conversion, potential oscillations escape
from the plasma resonance region, in which case the
wave energy is transferred through the opaque region
from one oscillation branch to another. The phenome-
non under discussion differs from the process of linear
conversion in that the oscillations continuously change
their nature: with increasing distance from the critical
surface, potential electron Langmuir waves are con-
verted into electromagnetic waves.

Hence, in a spatially bounded plasma, there exists a
natural mechanism by which the energy of electron
Langmuir waves escapes into vacuum. It cannot be
excluded that this mechanism is also operative in space
plasmas.

The general pattern of ray trajectories in open mag-
netic devices should also persist in other types of
plasma configurations with open magnetic field lines.
This conclusion is supported by the results of the above
calculations for an ellipsoidal plasma in a uniform mag-
netic field.

In conclusion, note that, in the case of electron beam
injection into a plasma, the phenomenon in question
should increase in importance with decreasing beam
intensity and increasing beam velocity. On the one
hand, the lower the beam intensity, the lesser is the
importance of the nonlinear processes. On the other
PLASMA PHYSICS REPORTS      Vol. 27      No. 11      2001
hand, the higher the beam velocity, the lower is the
refractive index. In the opposite case of a slow (nonrel-
ativistic) beam, the refractive index for the excited
oscillations is much larger than unity. Such oscillations
can escape from the plasma due to the linear conversion
mechanism (see [8, 9]).
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Abstract—The effect of the radial electric field Er on the results of measurements of the poloidal rotation of a
tokamak plasma by charge exchange recombination spectroscopy is considered. It is shown that the emission
line shift arising from the finite lifetime of the excited state of the ions is proportional to Er. For helium ions,
the maximum shift corresponds to the poloidal rotation velocity, which is about one-third of the drift velocity
in the crossed radial electric (Er) and toroidal magnetic (Bt) fields. © 2001 MAIK “Nauka/Interperiodica”.
The onset of improved confinement modes in toka-
maks (such as H-modes and modes with internal trans-
port barriers) is attributed to the change in the radial
electric field in a plasma. The main experimental results
on the radial electric field Er in tokamaks were obtained
from laboratory investigations of the poloidal and tor-
oidal rotation velocities of light impurity ions (He+2,
C+6, etc.) by spectroscopic measurements of charge
exchange ions [1]. This spectroscopic method, which
will be referred to as CXRS (charge exchange recombi-
nation spectroscopy), is based on measurements of the
Doppler shift of the spectral lines emitted in charge
exchange reactions such as

C+6 + H0  C+5* + H+1  C+5 + H+1 + hν. (1)

Hydrogen atoms participating in charge exchange reac-
tions are usually injected into the plasma in the form of
heating or diagnostic beams. The rotation velocity of
the tokamak plasma can be calculated from the mea-
sured Doppler shift of a particular spectral line (for C+5

ions, it is usually the 529.07-nm line and, for He+1 ions,
it is the 4685.2-nm line).

Tokamak experiments with strong radial fields Er

and large gradients of Er (see, e.g., [2, 3]) showed that
the poloidal plasma rotation velocity measured by the
CXRS method is significantly higher than that pre-
dicted by the neoclassical theory. According to neoclas-
sical theory, the poloidal plasma rotation velocity in a
tokamak with circular magnetic surfaces is closely
related to both the ion temperature gradient and the col-
lisionality parameter but it does not depend explicitly
on Er (see, e.g., formula (33) in [4]). In some cases,
agreement between theory and experiment can be
improved by taking into account such factors as the
friction of ions on neutral atoms in charge exchange
processes, anomalous viscosity, the actual plasma
1063-780X/01/2711- $21.00 © 20994
geometry, and the effect of the possible large gradients
of Er on ion trajectories.

Recently, it has been suggested that one of the pos-
sible ways of explaining the discrepancy between the-
ory and experiment is to take into account the finite life-
time τ of the excited state of an ion in experiments
aimed at spectroscopic measurements of the parameters
of charge exchange ions [3, 5]. In this way, however, the
measured Doppler shift of the chosen spectral line
depends on τ in a complicated manner and is highly
sensitive to the actual experimental arrangement. It was
shown that, under certain conditions, the real plasma
rotation and the measured Doppler shift have opposite
signs.

The way in which the effect of the finite lifetime of
the excited state of an ion on the measured poloidal
plasma rotation is explained in the present paper differs
from that given in [3, 5]. From reaction (1), we can see
that the CXRS method actually yields the parameters of
the excited C+5* (rather than the original C+6) ions. Con-
sequently, in the presence of the radial electric field Er ,
the velocities of C+6 and C+5* ions, being essentially the
same at the instant of the charge exchange event,
become different at the instant of the emission event
(after the time interval τ). As a result, the actually mea-
sured distribution function of the C+5 ions differs from
the original distribution function of the C+6 ions [6].

This difference can be estimated from the following
analysis. We consider the charge exchange of XZ ions
(where Z is the ion charge number) with the hydrogen
atoms of an injected neutral beam. Let the spectral line
(at frequency ν) of an ion whose excited state exists for
a finite lifetime τ be measured by the CXRS method.
We assume that the drift velocity in crossed toroidal
magnetic and radial electric fields is small in compari-
son with the velocities of the ions in question. For each
of the XZ and XZ – 1 ions whose initial velocity compo-
001 MAIK “Nauka/Interperiodica”
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nents are Vr0 and Vp0 (where r and p stand for the radial
and poloidal directions, respectively; the third coordi-
nate axis is oriented so that it is parallel to the toroidal
magnetic field Bt , and the coordinate system is right-
handed), we can exactly calculate their velocities at any
subsequent instant. We also assume that the XZ ions
obey a Maxwellian distribution function f1 shifted by
the magnitude of the drift velocity, in which case, just
after the charge exchange event, the distribution func-
tions of the XZ and XZ – 1 ions essentially coincide.
Under all of the above assumptions, we take into
account the probability A = 1/τ of the decay of the
excited state in order to show that

(2)

where M is the mass of an ion, Ti is the ion temperature,
c is the speed of light,

and Ω is the Larmor frequency of a singly charged X1

ion.
We propose to interpret the difference between f1

and f2 in the CXRS measurements as a direct measure
of the poloidal rotation velocity, which is proportional
to Er. Note that the radial motion of XZ – 1 ions differs
from that of XZ ions. It is this difference that causes the
observed spectral line to shift by an amount propor-
tional to Er. The shift is maximum when the reciprocal
of the lifetime, 1/τ, is equal to the Larmor frequency of
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Dependence of the coefficients k1 and k2 in formula (2) on
the Larmor frequency Ω of helium ions. For the chosen
spectral line, the transition probability is A = 1.44 × 108 s–1.
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the ions under investigation. The transition probability
for light impurity ions is on the order of 108 s–1, which
corresponds to the Larmor frequency of these ions in a
toroidal magnetic field of about 2–4 T. The figure
shows the dependence of the coefficients k1 and k2 on Ω
(which is assumed to be a variable quantity) for helium
ions. One can see that the absolute value of the coeffi-
cient k1 is maximum (k1 = –0.33) at the Larmor fre-
quency Ω . 108 s–1 (for the N = 4  3 spectral line of
He+1 ions, the transition probability is A = 1.44 × 108 s–1).
For carbon ions, the maximum absolute values of k1 and
k2 are smaller than those for helium ions by a factor of
about three.

CONCLUSION

In the presence of the radial electric field Er, the
finite lifetime of the excited state of the ions in question
leads to additional poloidal and radial shifts of the ion
distribution function in comparison with the shifts of
the distribution function of the same ions before the
charge exchange. The poloidal velocities correspond-
ing to these additional shifts are proportional to Er . The
largest shifts can be observed when the CXRS method
is used to measure the parameters of helium ions,
whose poloidal rotation velocity in a toroidal magnetic
field of about 3–4 T may amount to approximately
~0.3ÒEr/Bt. Unfortunately, cascade transitions alter the
effective transition probability in real plasmas. Conse-
quently, the effect under investigation, first of all, wors-
ens the accuracy in the measurement of the poloidal
rotation velocity of a tokamak plasma by the CXRS
method.

Nevertheless, the magnitudes of the poloidal rota-
tion velocity Vp measured in experiments with strong
radial electric fields Er can be partially explained in
terms of this effect. This conclusion refers primarily to
the comparative measurements of the poloidal velocity
Vp of He+2 and C+6 ions in the DIII-D tokamak [2]. In
those experiments, it was found that the poloidal veloc-
ity of C+6 ions is close to the neoclassical velocity in the
observed region near the plasma boundary, whereas the
poloidal velocity of He+2 ions is higher than the pre-
dicted neoclassical velocity by a factor of 3 to 10. The
effect under consideration barely manifests itself in the
measured poloidal velocity of C+6 ions; however, when
it is taken into account, the measured velocity of He+2

ions turns out to be lower by a factor of 1.2–1.3.

Note that a similar effect may also manifest itself in
investigations of the ion spectral lines in recombination
reactions in the radial electric field, in which case the
ions can be excited and exist for a finite time before
they emit light.
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Abstract—The ion contribution to the dielectric function of a plasma in an external electric field is determined
by applying a kinetic approach to the ions in a parent gas in which the main mechanism for ion scattering is
resonant charge exchange. The ion scattering frequency is assumed to be constant. © 2001 MAIK
“Nauka/Interperiodica”.
† Dielectric permittivity is a fundamental characteris-
tic of plasmas; in particular, it governs the screening of
the electric charge in plasmas. In an equilibrium plasma
in which the electrons and ions obey Maxwellian veloc-
ity distributions, the potential of a test particle is
described by the well-known Debye–Hückel law. The
electric field–driven electron and ion flows cause the
potential of a test particle in the plasma to become
asymmetric. The asymmetry is most pronounced in
experiments with plasmas containing crystals of
charged dust grains [1]. In RF discharges, micron-size
charged particles usually occur in the electrode sheaths,
where the gravity force is counterbalanced by the elec-
tric force. In the electrode sheath, the hydrodynamic
velocity V of the ions is, as a rule, higher than their ther-
mal velocity v t. As a result, the distribution of screening
ions around a grain is highly asymmetric and most of
them (which form a so-called ion cloud [2]) occur
downstream from the grain. It is the asymmetry of the
grain potential that governs both the structural type of
dust crystals [2–5] and the mechanism for their melting
[2, 6, 7].

To the best of my knowledge, the dielectric permit-
tivity of a plasma with charged particle flows was inves-
tigated only in the limiting cases of a collisionless
plasma (kλ @ 1, see, e.g., [3]) and a strongly collisional
plasma (kλ ! 1) in a weak field such that V ! v t , when
the plasma can be described in the drift–diffusion
approximation [8]. Here, k is the wavenumber and λ is
the mean free path of the charged particles. The objec-
tive of the present paper is to calculate the contribution
of the ion component to the plasma dielectric function
for an arbitrary value of kλ.

We consider the linear response of the ion distribu-
tion function (IDF) fi(t, v, r) to a perturbation of the
potential φ of the electric field in the presence of an
external electric field E in a noble gas in which the main
mechanism for ion scattering is resonant charge
exchange. The cross section for this process is almost
independent of the ion velocity [8]. Nevertheless, in

† Deceased.
1063-780X/01/2711- $21.00 © 0997
order to simplify the analytic treatment, we describe
resonant charge exchange by the so-called Maxwell
model, in which the scattering frequency ν of the ions
is assumed to be constant (this model was used, e.g., in
[9]). Then, the IDF is described by the kinetic equation

(1)

where fg = (M/2πT)3/2exp(–Mv 2/2T) is the Maxwellian
velocity distribution function of the gas atoms, T is the
gas temperature, M is the mass of a gas atom, and

 (2)

is the spatial ion density distribution. We represent the
electric potential, ion density distribution, and IDF as
φ = φ0 + φ', ni = n0 + n, and fi = f0 + f, respectively. Then,
we linearize Eq. (1) and normalization condition (2)
with respect to the small perturbations φ',  n, and f. Tak-
ing the Fourier transformation of Eq. (1) in the coordi-
nates and time, φ',  n,  f ~ exp(ikr + iωt), we arrive at
the following equation for the perturbed IDF:

(3)

where the z-axis is oriented along the external field
(φ0 = –zE) and the unperturbed IDF satisfies the equa-
tion

(4)

The solution to Eqs. (3) and (4) can be written as

(5)
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(6)

where k = (k⊥ , kz) and V = eE/νM is the ion drift veloc-
ity. The perturbed ion density can be found by substitut-
ing expression (5) into normalization condition (2).

f 0 n0

f g

V
-----

v z v z'–
V

-----------------– 
  v z' ,dexp

∞–

v z

∫=
After a fairly lengthy integration over the ion velocities,
we can write the perturbed ion density as

(7)

where

n
en0k

2

Mν2
-------------φ'

G
----,–=
(8)G

1 x– ixω/ν– x
2

D⊥ k
2

iVkz+( )/2ν–[ ] xdexp

0

∞

∫–

x 1 iVxkz/ν+( ) 1–
x– ixω/ν– x

2
D⊥ k

2
iVkz+( )/2ν–[ ] xdexp

0

∞

∫
---------------------------------------------------------------------------------------------------------------------------------------------------,=
with D⊥  = T/νM being the transverse ion diffusion coef-
ficient. In this case, the ion contribution to the longitu-
dinal dielectric function of the plasma is determined
from the formula

where ωi =  is the ion plasma frequency.

Since the thermal velocity of the electrons is usually
much higher than their hydrodynamic velocity, the
electron contribution to the plasma dielectric function
can be calculated from the familiar expressions [10]
that were obtained for a Maxwellian electron distribu-
tion function. In this case, the potential of a negatively
charged test particle (with charge –eZ) in a plasma has
the form

(9)

where κe =  is the reciprocal of the electron
Debye length, κ = ωi/ν, and Te is the electron tempera-
ture. In some cases, the screening effect of the plasma
electrons can be neglected, so that the ion density dis-
tribution within the ion cloud can be written as

(10)

Recall that we will not examine expressions (9) and
(10) in detail. Our aim here is merely to analyze the
function G, which determines the linear response of the
ion density to the electric field perturbation in a steady

el 1–
ωi

2

ν2
------G

1–
,=

4πe
2
n0/M

φ 4πeZ

k
2 κ e

2 κ 2
k

2
G

1–
+ +

-------------------------------------------,–=

4πe
2
n0/Te

n Z
κ 2

G κ 2
+

----------------.=
state (ω = 0). In the long-wavelength limit (D⊥ k2,
V |kz | ! ν), we have

(11)

Note that, since the electric field nonuniformity leads to
the renormalization of the kinetic coefficients, the first
two terms in expression (11) can only be correctly
obtained in the drift–diffusion approximation. The
hydrodynamic approximation for cold ions [4] yields

G= iVkz /ν – V 2 /ν2 and, therefore, fails to produce a
correct coefficient in front of the last term in expres-
sion (11). The reason for this is that the unperturbed
IDF under consideration differs from the ion distribu-
tion function in the hydrodynamic model, in which the
ions are assumed to form a monoenergetic beam. Note
also that, in the collisionless limit (V |kz| @ ν), the

hydrodynamic approximation gives G = –V 2 /ν2. This
expression, which describes undamped oscillations of
the ion density downstream from the test particle, was
used in [3] in order to analyze the distribution of the
potential of a charged particle in the presence of an ion
flow. The deviation of the unperturbed IDF from a
monoenergetic distribution function leads to another
asymptotic expression in the collisionless (or, in other
words, short-wavelength) limit:

(12)

where Ei is the integral exponent, Φ is the probability

integral, and γ = ν(D⊥ k2 + iVkz)/V 2 . For cold (T = 0)

ions, expression (12) reduces to G = –(1 – i)(Vkz/ν)3/2/ .
Consequently, because of the spread in ion velocities,
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the oscillations of the ion density downstream from the
test particle are always damped.
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