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Abstract—We have derived the radiative-transfer equation for a point source with a specified intensity
and spectrum, originating in the early Universe between the epochs of annihilation and recombination,
at redshifts zs = 108−104. The direct radiation of the source is separated from the diffuse radiation it
produces. Optical distances from the source for Thomson scattering and bremsstrahlung absorption at the
maximum of the thermal background radiation are calculated as a function of the redshift z. The distances
grow sharply with decreasing z, approaching asymptotic values, the absorption distance increasing more
slowly and reaching their limiting values at lower z. For the adopted z values, the optical parameters of the
Universe can be described in a flat model with dusty material and radiation, and radiative transfer can be
treated in a grey approximation. c© 2005 Pleiades Publishing, Inc.
1. FORMULATION OF THE PROBLEM

Let the early Universe be described by the stan-
dard model, i.e. by the Friedmann equations (see,
for example, [1]). Let us suppose that a source of
radiation is switched on at some time between the
epochs of annihilation and recombination, that this
source has a specified geometry, spectrum, and total
luminosity, and that it radiates during some time
interval. The intensity and spectrum of the source
may be time-dependent. Such sources could occur in
a number of processes, for example, during the ampli-
fication or damping of fluctuations in the matter dis-
tribution, in the formation of primary black holes, etc.

The action of the source causes the thermodynam-
ical equilibrium in its vicinity to be violated, since the
source radiation is either nonequilibrium (for exam-
ple, it has a power-law spectrum) or corresponds to
a higher temperature. The radiation can experience
bremsstrahlung absorption and Thomson scattering.
In [2], it was suggested that such sources could af-
fect the background radiation and hence be observed
via perturbations of this background, contrary to the
prevalent opinion that the energy of such sources is
totally dissipated. Both possibilities require careful
verification using the methods of radiative-transfer
theory.

We assume that the source is pointlike. The point-
source problem is also of independent interest: it is
fundamental, since all other types of sources can be
reduced to a set of point sources.
1063-7729/05/4903-0167$26.00
If the source radiation is intense, it affects the
surrounding matter in several ways. First, the radi-
ation creates an additional pressure, which affects the
local expansion of space. Second, this same pressure
gives rise to inhomogeneity of the expansion. Third,
a shock and, in the case of a periodic source, matter
oscillations may be formed. Fourth, the source can
distort the metric of the surrounding space. In all
these cases, the geometry of the source is the key
factor.

Here, we will assume that the source radiation is
moderately intense and does not affect the expan-
sion of the surrounding space. To start with, we will
present the model for the Universe at the considered
epoch.

2. TWO-COMPONENT MODEL
OF THE UNIVERSE: DUSTLIKE

MATTER AND RADIATION

2.1. Basic Relations

We consider a model with a homogeneous and
isotropic expanding Universe that contains equilib-
rium plasma and Planck radiation in the stage when
the plasma is radiation-dominated; more exactly, be-
tween the epochs of annihilation (z < 108) and re-
combination (z > 103). In this stage of the evolution
of the Universe, the cosmological term does not play
a marked role.

At the temperatures corresponding to these
redshifts, the matter can be assumed to be non-
relativistic, and the conditions of thermodynamical
c© 2005 Pleiades Publishing, Inc.
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balance with a common temperature for the matter
and radiation are fulfilled [1]. The pressure of the
matter may be neglected, i.e., the matter can be
considered to be dustlike, in spite of its nearly total
ionization.

Under these conditions, in the usual notation,
the evolution of the expansion is described by the
equation

Ṙ2 =
8πG
3

ρuR
2 − kc2, (1)

where a dot denotes a derivative with respect to the
time t, the total mass density of the matter is equal
to the sum of the matter and radiation densities,
ρu = ρd + ρr, and the parameter k assumes the values

k =


1 for a closed model,

0 for a flat model,
−1 for an open model.

Thematter density decreases in inverse proportion
to the volume, while the expression for the radiation
density contains another power of the radius of cur-
vature in the denominator, resulting from the cosmo-
logical redshift:

ρd = ρ0
d
R3

0

R3
=

ρ0
d

a3
, ρr = ρ0

r
R4

0

R4
=

ρ0
r

a4
.

Here and below, zero superscripts will denote cosmo-
logical values at the current epoch.

We will use the dimensionless time coordinate η
and dimensionless radius of curvature (scale
factor) a(η):

R(t)dη = cdt, a(η) =
R(t)
R0

. (2)

With these variables, Eq. (1) can be transformed into(
da

dη

)2

=
8πG
3c2

(ρ0
da+ ρ0

r )R
2
0 − ka2. (3)

This model was first considered by Chernin [3].
Let us also introduce the Hubble function and the

critical density expressed in terms of this function:

H =
Ṙ

R
=

ȧ

a
=

c

a

1
R

da

dη
=

c

R0

a′(η)
a2(η)

, ρc =
3H2

8πG
.

Along with the density itself, we will use the critical
parameters

Ωd =
ρd
ρc

, Ωr =
ρr
ρc

, Ωu = Ωd +Ωr, (4)

which can be used to rewrite (1) in another form:

R2H2(1− Ωu) = −kc2. (5)
2.2. Auxiliary Functions

Let us define several mutually related functions,
in terms of which the solutions and relations of the
model will be written. The two main functions are
snk(η) and sck(η), which are defined by the equalities

snk(η) =


sin η when k = 1,
η when k = 0,
sh η when k = −1,

(6)

sck(η) =


1− cos η when k = 1,
η2/2 when k = 0,
ch η − 1 when k = −1,

sc′k(η) = snk(η).

Two functions are related to function (6). One of
these,

csk(η) = sn′(η) =


cos η when k = 1,
1 when k = 0,
ch η when k = −1

(7)

is its derivative, while the other,

ark(y) =


arcsin y, k = 1,
y, k = 0,
arsh y = ln(y +

√
1 + y2), k = −1,

dark(y)
dy

=
1√

1− ky2

is the inverse of snk(χ), i.e., ark(snk(η)) = η,
snk(ark(y)) = y.

Another function,

cnk(η) =


η − sin η when k = 1,
η3/6 when k = 0,
sh η − η when k = −1,

is the integral of sck(η), i.e., cn′k(η) = sck(η).
It can easily be verified that the following relations

between the introduced functions are satisfied:
cs2k + ksn2

k = 1, (8)

sn2
k + ksc2

k = 2sck, csk + ksck = 1.

Let us consider the ratio

y(η) =
snk(η)
sck(η)

=


cot

η

2
when k = 1,

2
η

when k = 0,

cot
η

2
when k = −1.

(9)
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Its derivative with respect to η assumes a simple form
if we use the relation between the derivatives and the
functions and equalities (8):

y′(η) =
sck − ksc2

k − 2sck + ksc2
k

sc2
k

= − 1
sck

. (10)

Using the second of the equalities, this ratio can, in
turn, be expressed in terms of y:

dy

dη
= −y2 + k

2
. (11)

To obtain the correct solution, we must apply the
appropriate initial condition: y = ∞ when η = 0. The
arguments of the functions in relations (8), (10),
and (11) have been omitted for brevity.

2.3. Solution of the Equation of Motion

It was shown in [3] that the solution of (3) in
implicit form is

a(η) = arsnk(η) + adsck(η), (12)

t =
R0

c
[arsck(η) + adcnk(η)].

Indeed, we can easily verify using relations (8) that
the function a(η) satisfies (3) if we assume

ar =

√
8πG
3

ρ0
r
R0

c
, ad =

4πG
3c2

ρ0
dR

2
0.

The obtained coefficients are expressed in terms of the
critical parameters. Let us first derive an expression
for the current radius of curvature [1]. To this end, we
apply formula (5) to the current epoch:

H2
0R

2
0 = − kc2

1− Ω0
u
,

H0R0

c
=

1√
|1− Ω0

u|
.

We now have, in accordance with the definitions (4),

ad =
4πG
3c2

ρ0
cΩ

0
dR

2
0 =

4πG
3c2

3H2
0

8πG
Ω0
dR

2
0

= −k

2
Ω0
d

1− Ω0
u
=

Ω0
d

2|1 − Ω0
u|
,

a2
r =

8πG
3c2

ρ0
cΩ

0
rR

2
0 =

8πG
3c2

3H2
0

8πG
Ω0
dR

2
0

= − kΩ0
r

1− Ω0
u
=

Ω0
r

|1− Ω0
u|
.

The inverse formulas have the form:

Ω0
d =

2ad
2ad + a2

r − k
, Ω0

r =
a2
r

2ad + a2
r − k

,

Ω0
u =

2ad + a2
r

2ad + a2
r − k

.
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In the following subsections (to Subsection 9),
we will assume that k �= 0, although some functions
are calculated using formulas that include the special
case of a flat space.

2.4. Relation to the Redshift

Let us derive expressions for the quantities as-
sociated with the solution (12) in terms of the red-

shift z. By definition a(η) =
R(η)
R0

=
1

1 + z
. Succes-

sively substituting in (12) the expression for snk or
sck in terms of the other, and also using the last
relation in (8), we obtain

snk(η) =
Q−B(1− kA)

1 + kB2
,

sck(η) =
B2 +A−BQ

1 + kB2
,

csk(η) =
1− kA+ kBQ

1 + kB2
.

Here, we have introduced the notation

A =
1
ad

1
1 + z

=
2|1− Ω0

u|
Ω0
d

1
1 + z

, (13)

B =
ar
ad

=
2
√

Ω0
r |1− Ω0

u|
Ω0
d

,

Q =
√

B2 + 2A− kA2.

The derivative a′(η) and the Hubble function can be
expressed in terms of the redshift in this same way:

a′(η) = arcsk(η) + adsck(η),
H

H0
=

c

H0R0

a′(η)
a2(η)

=
a′(η)
a2(η)

√
|1− Ω0

u|.

The ratio (9) and the product of this ratio with B
can also be expressed in terms of z:

y(η) =
kAB −B +Q

B2 +A−BQ
,

X = By =
kAB −B +Q

B +A/B −Q
.

The critical parameters at the current epoch (B is
constant) can likewise be expressed in terms of the
quantities in (14):

Ω0
d =

2A0

Q2
0

, Ω0
r =

B2

Q2
0

,

Ω0
u =

2A0 +B2

Q2
0

, 1− Ω0
u = −k

A2
0

Q2
0

.

It is easy to verify that the identities a(η0) = 1 and
a′(η0) = H0R0/c = 1/

√
|1− Ω0

u| are satisfied.
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2.5. Specific Models

According to the above model, the curvature of
space can be arbitrary (constant). However, recent
observations lead to the conclusion that space was
flat over the entire history of the Universe. In this
context, we will consider two specific models. One is
open, close to flat, and does not take into account the
vacuum component (we will call this the nonvacuum
model), while the other has three components and
is strictly flat, but with the vacuum neglected at
z > 103.

We will adopt for the Hubble constant H0 =
65 kms−1Mpc−1, the corresponding critical density
ρ0
c = 7.940 × 10−30 g/cm3, and the critical parame-
ters for the baryon component Ω0

b = 0.025 and dust-
like component Ω0

d = 0.25. The baryon density is
then ρ0

b = 4.684 × 10−31 g/cm3, the density of dust-
like matter is ρ0

d = 4.684 × 10−30 g/cm3, the mass
density of the radiation corresponding to the temper-
ature T0 = 2.7277 K is ρ0

r = 4.63× 10−34 g/cm3, and
Ω0
r = 5.83 × 10−5.
2.5.1. Nonvacuummodel.For the adopted model

parameters, 1−Ω0
u = 1−Ω0

d −Ω0
r = 0.7499; i.e., this

model is open (k = −1), which is natural, since there
is no vacuum component. The other parameters are
ar = 8.869 × 10−3 and ad = 0.1667.
2.5.2. Strictly flatmodel.For k = 0, we also have

1− Ωu = 0, so that many of the introduced values
become equal to zero or infinity. In this case, the limit
transition is complicated, and it is easier to consider
this case individually.

We will assume that the most plausible model of
the Universe for redshifts less than 10–100, in par-
ticular for the current epoch, is a flat model with three
noninteracting components: dustlike matter, radia-
tion, and the vacuum. Based on this model, we will
also construct a two-component flat model for the
considered epoch of radiation-dominated plasma in
which the two components have the same densities,
but there is no vacuum component. All values corre-
sponding to this model will be denoted by a tilda.

The contribution of the vacuum can be neglected
for the redshifts considered (103 ≤ z ≤ 108), so that
the Hubble functions in the two-component and
three-component flat models differ only slightly:

H =

√
8πG
3

√
ρ0
d(1 + z)3 + ρ0

r (1 + z)4 + ρΛ,

H̃ =

√
8πG
3

√
ρ0
d(1 + z)3 + ρ0

r (1 + z)4.

We will use the same critical parameters Ω0
d and Ω0

r
as above; the critical parameter for the vacuum is
then Ω0
Λ = 1− Ω0

d − Ω0
r . In the adopted model, these

values are:

H̃0 = H0

√
ρ0
d + ρ0

r

ρ0
d + ρ0

r + ρ0
Λ

= H0

√
1−Ω0

Λ, (14a)

ρ̃0
c = ρ0

c(1− Ω0
Λ), (14b)

Ω̃0
d

Ω0
d

1− Ω0
Λ

, Ω̃0
r =

Ω0
r

1− Ω0
Λ

. (14c)

For brevity, let us set Ω̃d = Ω, in which case Ω̃r =
1− Ω, so that Ω̃0

d = Ω0 and Ω̃0
r = 1− Ω0.

The radius of curvature R and its current valueR0
are meaningless in a flat Universe (they are infinite,
and can be selected arbitrarily in the formulas), and
should not arise in expressions for physical values.
Indeed, the solution (12) can be written in the form

a(η) = arη + ad
η2

2
=

√
1− Ω0

H̃0R0

c
η

+Ω0
H̃2

0R
2
0

4c2
η2 = 2

√
1− Ω0ζ +Ω0ζ

2,

where we have introduced a new time variable that
is linearly related to the previous time variable and is
expressed in terms of a(η) and the redshift:

ζ =
H̃0R0

2c
η =

a√
1− Ω0(1− a) +

√
1− Ω0

=
1

√
1 + z

(√
1 + (1− Ω0)z +

√
(1− Ω0)(1 + z)

) .

3. RADIATIVE-TRANSFER EQUATION
IN THE EARLY UNIVERSE

3.1. General Form of the Radiative-Transfer
Equation for a Point Source

Let us assume the source to be pointlike and
isotropic. In this case, the problem is spherically sym-
metrical, so that, generally speaking, the approach
of the Tolman–Bondi model should be used. How-
ever, to first approximation, we can assume that the
source radiation does not affect the metric of space
and its expansion, and the evolution of the source
radiation can be considered against the background
of the standard cosmological two-component model
described in Section 2.

We will describe the radiation with the mean oc-
cupation number of photon states n, rather then the
intensity. The advantage of this quantity is that it is
dimensionless and relativistically invariant (scalar).
Due to the symmetry of our problem, the mean oc-
cupation number of photon states will depend on the
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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time t or time variable η, the distance of the point con-
sidered from the coordinate origin (described by the
parameter χ), the angle θ between the radial direction
and the ray along which the radiation propagates, and
the dimensionless frequency x: n = n(η, χ, θ, x).

The radiative-transfer equation has the form

dn

dt
=

∂n

∂t
+

∂n

∂x

dx

dt
+

∂n

∂χ

dχ

dt
+

∂n

∂θ

dθ

dt
= cIc, (15)

where Ic is the collision integral, i.e., the difference
between the numbers of photons with specified pa-
rameters entering and leaving the state.

Wewill use the parameter η instead of the time; the
derivatives will be calculated with respect to η using
relation (2), so that

∂

∂t
=

c

R(η)
∂

∂η
.

The derivative of the frequency with respect to the
time is the easiest to find. Due to the redshift,

ν = ν0
R0

R
, x =

ν

ν�
=

ν0

ν�

R0

R
= x0

R0

R
,

dx

dt
= −x0R0

Ṙ

R2
= −xH,

where H =
Ṙ

R
is the Hubble function and ν� is some

specified frequency.
To determine the other derivatives, we must ana-

lyze the variations of the corresponding values along
the ray.

3.2. Left-hand Side of the Transfer Equation

Let us consider the ray along which the radiation
propagates, having, in general, already been scat-
tered. An arbitrary ray can be described using several
parameters, one of which can be chosen to be the
coordinates of the point on the ray closest to a point
source at the coordinate origin. We will call this the
initial point. Due to the symmetry of the problem, it is
sufficient to specify this distance using the coordinate
χ0. Let a photon pass through the initial point at time
t0 = t(η0). Its position on the ray will be described
by the parameter χ∗ associated with this time and
measured from time t0. Let us determine the deriva-
tives with respect to χ∗ of the variables describing the
position of the photon on the ray.

To this end, let us consider the curvilinear triangle
presented in Fig. 1, with its sides extending from
the source S to the initial point, from the source to
the photon at time η, and from the initial point to
the photon. Since all the lengths are proportional to
the radius of curvature, we will consider dimension-
less distances described by the coordinates χ0, χ,
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 1. The curvilinear triangle.

and χ∗, respectively; the corresponding dimension-
less lengths are a0 = snk(χ0), snk(χ), and snk(χ∗).
In the same order, the angles opposing these sides are
those between the ray and radial direction, θ, between
the radial direction toward the initial point and the
ray (a right angle), and between the radial direction
toward the initial point and the direction toward the
photon’s position, θ∗.

We can write the geometrical integrals of the
transfer equation for the constructed right-angle
curvilinear triangle:

a0 = snk(χ0) = snk(χ) sin θ, (16a)

snk(χ0)
csk(χ0)

= snk(χ∗) tan θ, (16b)

r0 = csk(χ0) =
snk(χ)
snk(χ∗)

cos θ =
cos θ
sin θ∗

, (16c)

csk(χ) = r0csk(χ∗),
snk(χ)
csk(χ)

cos θ =
snk(χ∗)
csk(χ∗)

,

cos θ∗ = csk(χ∗) sin θ.

The functions snk and csk are specified by equali-
ties (6) and (7). Relation (16c) follows from the two
preceding expressions (16a) and (16b). These rela-
tions are trivial in the case of a flat space. For a space
with positive curvature, the triangle can be placed
on a unit sphere in three-dimensional space, with
the subsequent use of spherical geometry. To make
the translation to the case of negative curvature, the
trigonometric functions expressing the sides of the
triangle must be changed to hyperbolic functions.

The following derivatives can easily be obtained
from these relations:

dχ

dχ∗
= cos θ, (17a)

dθ

dχ∗
= − sin θ

csk(χ)
snk(χ)

, (17b)

dθ∗
dχ∗

=
sin θ

snk(χ)
. (17c)
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The equation of motion of a photon along a ray
is χ∗ = η − η0, so that the derivatives (17a), (17b),
and (17c) are simultaneously the derivatives with re-
spect to the time coordinate η.

Thus, the transfer equation (15) takes the form

c

R(η)

[
∂n

∂η
+ cos θ

∂n

∂χ
− sin θ

csk(χ)
snk(χ)

∂n

∂θ

]
(18)

− xH
∂n

∂x
= cIc.

For a flat space, when k = 0, sn0(χ) = χ, and
cs0(χ) = 1, the equation takes the usual form.

3.3. Right-hand Side of the Transfer Equation

In the problem we are considering, bremsstrah-
lung absorption and emission, as well as Thomson
scattering, are important processes in the interaction
between the matter and point-source radiation.

Bremsstrahlung absorption by thermal nonrela-
tivistic electrons with a Maxwellian velocity distri-
bution and the temperature T is described by the
formula [4]

α∗
cc = nen

+kcc(ν, T ), αcc = (1− e−hν/kBT )α∗
cc,

where the cross section is

kcc(ν, T ) =
k0
cc

T 1/2ν3
,

k0
cc = 8π

e6

c�

kB
(6πmkB)3/2

= 3.69 × 108 cm5 K1/2 s−3.

The absorption coefficient has been corrected for
stimulated emission. The Gaunt factor is taken to be
unity. The bremsstrahlung coefficient in the occupa-
tion numbers is related to the absorption coefficient
by the Kirchhoff–Planck relation:

εcc = αcce
−hν/kBT . (19)

The absorption coefficient associated with Thom-
son scattering is αT = neσT , where the cross sec-

tion is σT =
8π
3

(
e2

mc2

)2

= 6.66 × 10−25 cm2. The

indicatrix for Thomson scattering is the Rayleigh in-
dex. Since the radiation field does not depend on
the azimuth, the equation will contain the azimuth-
averaged indicatrix

p(θ, θ′) = 1 +
1
2
P2(cos θ)P2(cos θ′),

where P2(µ) is the second Legendre polynomial.
Thus, the right-hand side of the transfer equation
has the form

Ic = −[αcc(ν, T ) + αT ]n(η, χ, θ, x) (20)

+ εcc(ν, T ) + αT I + ε∗(η, χ, θ, x),

I =
1
2

π∫
0

sin θ′p(θ, θ′)dθ′n(η, χ, θ′, x),

where ε∗ describes the primary radiation from the
point source.

The integral in (20) can be divided into two terms
containing two angular moments n(η, χ, θ, x):

n0(η, χ, x) =
1
2

π∫
0

sin θ′dθ′n(η, χ, θ′, x),

n2(η, χ, x) =
5
2

π∫
0

sin θ′P2(cos θ′)dθ′n(η, χ, θ′, x).

Let us now specify the source function ε∗ and
separate the direct from the diffuse radiation.

3.4. Direct Radiation

The entire space is filled by homogeneous and
isotropic equilibrium cosmological radiation with the
mean occupation number

ne(η, x) =
1

ehν�x/kBT − 1
=

1
ehν�x0/kBT0 − 1

. (21)

It is straightforward to verify that this function satis-
fies (18) with the right-hand side (20) without the last
term. In fact, both the left-hand and right-hand sides
vanish, the left-hand side because the mean occupa-
tion number for the background radiation does not
depend on anything, and the right-hand side due to
the Kirchhoff–Planck relation (19). This is the equi-
librium background radiation. In spite of the fact that
it interacts with matter, overall, the matter and radia-
tion do not affect one another during this interaction;
only a common temperature is established. After the
epoch of recombination, the electron density becomes
extremely small (it can be assumed to be zero), and
the right-hand side of the transfer equation no longer
contains terms describing the interaction between ra-
diation andmatter (the radiation is separated from the
matter), while the left-hand side corresponds to the
free propagation of the radiation. The quantity (21)
remains constant and satisfies the transfer equation.

Let us now consider the direct radiation of the
source. We will first find an expression for ε∗. The
relation between the total energy L emitted by the
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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source (for all time, in all space, in all directions and
frequencies) and ε∗ is

L =
2hν4

�

c2

∞∫
0

dt

∫
d3r

∞∫
0

x3dxε∗(η, χ, θ, x).

The factor before the integrals is introduced to
translate the occupation number into intensity. Ex-
pressing time in terms of η and writing the inte-
gral over space in terms of integrals over the three
variables, taking into account the volume element
d3r = R3(η)sn2

k(χ) sin θdχdθdϕ, we obtain

L = 2π
2hν4

�

c3

∞∫
0

R4(η)dη

∞∫
0

sn2
k(χ)dχ (22)

×
π∫

0

sin θdθ

∞∫
0

x3dxε∗(η, χ, θ, x).

It follows from the expression for the right-hand side
of the transfer equation (20) that the units of ε∗ are
inverse length.

If the power of the source radiation at the time ts
with the time coordinate ηs at frequency xs is Lδ(t −
ts), we can write

ε∗(η, χ, θ, x) = L
c3

2hν4
�

δ(η − ηs)
R4(ηs)

δ(χ)
sn2

k(χ)

× δ(cos θ − 1)
2π

δ(x − xs)
x3
s

,

and relation (22) is satisfied.

Further, let us determine the mean occupation
number for the direct radiation from the source. It
is specified by the transfer equation (18) with the
right-hand side (20) without any terms describing
scattering:[

∂

∂η
+ cos θ

∂

∂χ
− sin θ

csk(χ)
snk(χ)

∂

∂θ

− x
a′(η)
a(η)

∂

∂x

]
n∗(η, χ, θ, x)

= −[n+kcc(ν, T ) + σT ]neR(η)n∗(η, χ, θ, x)
+ ε∗(η, χ, θ, x)R(η).

Direct substitution verifies that the solution of this
equation is given by the function

n∗(η, χ, θ, x) = L
c3

2hν4
�

δ(χ− η + ηs)
R3(ηs)

Θ(χ)
sn2

k(χ)

× δ(xa(η)/a(ηs)− xs)
x3
s

δ(cos θ − 1)
2π

e−τ ,
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where the optical distance from the source to the
point is (see below)

τ = τ(η, η − ηs, xsa(ηs)/a(η)) = τT (η)− τT (ηs)

+
(
1− e−hν�xs/kBTs

)
R0

k0
cc[E(η) − E(ηs)]

ν3
�x

3
sT

1/2
s a7/2(ηs)

.

3.5. Discriminating between Direct and Diffuse
Radiation

Let us represent the total occupation number for
the photon states created by the source as the sum of
two terms:

n(η, χ, θ, x) = n∗(η, χ, θ, x) + nd(η, χ, θ, x),

where nd describes the diffuse part of the radiation.
This function satisfies the same transfer equation (18)
as the initial function, but with the “source” term ε∗
replaced by εs(η, χ, θ, x)—the part of the emission
coefficient due to scattering of the direct radiation
from the point source. This quantity is specified by the
formula

εs(η, χ, θ, x) = αT

[
1 +

1
2
P2(cos θ)

]
n∗

0(η, χ, x),

where the zeroth moment of the direct intensity is

n∗
0(η, χ, x) =

L

4π
c3

2hν4
�

δ(χ − η + ηs)
R3(ηs)

Θ(χ)
sn2

k(χ)

× δ(xa(η)/a(ηs)− xs)
x3
s

e−τ .

The second moment of the direct radiation exceeds
the zeroth moment by a factor of five, since P2(1) = 1.

For a noninstantaneous and nonmonochromatic
source, the emitted energy may depend on ηs and
xs, and all the equations and their solutions must
be integrated over these parameters. This does not
present a problem, due to the presence of δ functions
in these expressions.

3.6. A Planar Source

For comparison, a layered planar source can be
considered. This is only possible if the geometry of
the space itself is flat, k = 0. As always in a planar
geometry, the equation of radiative transfer does not
contain an angular derivative, since the angle θ be-
tween the direction of propagation of the radiation
and the normal to the source plane along the ray
remains constant. Thus, the transfer equations for
a planar geometry can be obtained from the corre-
sponding equations for spherical geometry, simply by
omitting the term with the derivative with respect to
the angle θ. In the expression for the source term and
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the intensity of the direct radiation, the combination
δ(χ)/sn2

k(η)must be replaced by δ(χ− χs).

Thus, the transfer equation acquires the form

c

R(η)

[
∂n

∂η
+ cos ϑ

∂n

∂χ

]
− xH

∂n

∂x
= cIc,

where the collision integral Ic is specified by the same
formula (20). In this case, the source term is

ε∗(η, χ, µ, x) = Ls
c3

2hν4
�

δ(η − ηs)
R2(ηs)

δ(χ− χs)

× δ(cos ϑ− cos ϑs)
2π

δ(x− xs)
x3
s

.

The source is assumed to be located at the level with
χs. Here, we calculate its luminosity per area of the
planar boundary; for this reason, the denominator
contains a second power of the radius of curvature.
We assume that the source radiation does not depend
on azimuth and propagates at an angle ϑs relative to
a normal to the layers.

4. OPTICAL DISTANCES

4.1. Optical Distance from the Source

Under the adopted conditions, the densities of
electrons ne and protons n+ depend only on time
(and, of course, the cosmological model). In the case
of total ionization, n+ = ne = n0

e/a
3(η); in the case

of partial ionization, the ionization equation must be
solved. We will assume that the matter consists of
completely ionized hydrogen.

Expressions for the coefficient of bremsstrahlung
absorption by thermal nonrelativistic electrons and
the absorption coefficient for Thomson scattering
were given in Section 2.

Since the scattering coefficient does not depend
on frequency, the corresponding optical distance can
be determined very easily. If a photon was emitted
from the source at time ηs, its equation of motion is
χ = η − ηs. In the course of its motion, the optical
distance between the photon and the source will in-
crease according to the relation

τT (η, ηs) =

χ∫
0

αT (ηs + χ′)R(ηs + χ′)dχ′

=

η∫
ηs

αT (η′)R(η′)dη′ = τT (η)− τT (ηs),
where the universal Thomson opacity is

τT (η) =

η∫
ηi

αT (η)R(η)dη (23)

= σT

η∫
ηi

ne(η)R(η)dη.

Since only differences in the optical distances are of
interest, the lower integration limit in this formula can
be chosen arbitrarily.

The situationwith the bremsstrahlungmechanism
is more complicated, since in this case, the absorption
cross section depends on both the frequency and tem-
perature. The time dependence of the frequency is de-
scribed as follows. Let the frequency of a photon emit-
ted from the source at time ts = t(ηs) be νs. Then, its
frequency at time t = t(η), will be ν = νsa(ηs)/a(η).
The temperature also depends on the time, according
to the usual formula, T = T0/a(η) = Tsa(ηs)/a(η),
where Ts = T0/a(ηs) is the temperature when the
photon is emitted. The ratio ν/T = νs/Ts is time-
independent.

Since the particle densities, frequency, and tem-
perature depend on time in a known way, the absorp-
tion coefficient is a known function of η or z:

τcc(η, ηs, x) =
(
1− e−hν∗xs/kBTs

) χ∫
0

ne(ηs + χ′)

× n+(ηs + χ′)
k0
cc

ν�x3
sa

7/2(ηs)T
1/2
s

a7/2(ηs + χ′)

×R(ηs + χ′)dχ′ =
(
1− e−hν�x/kBT

)
R0

× kcc(ν�xsa(ηs), Tsa(ηs))[E(η) − E(ηs)],

where

E(η) =

η∫
ηi

ne(η)n+(η)a9/2(η)dη (24)

is a quantity similar to the emission measure. The
total optical distance from the source is

τ(η, ηs, x) = τT (η, ηs) + τcc(η, ηs, x).

4.2. Calculation of the Scattering Optical Distance

Let us choose for the initial times in (23) and (24)
the times ti = t(ηi) for which the ratio
y = snk(η)/sck(η) assumes the values from the table.

The table also presents the products X =
ar
ad

y = By

for the same times. Here, we have chosen simple
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values for this ratio; in fact, the values of ηi are
maximum for k = 0 and k = −1, η < ηi, so that the
optical distance (23) will be negative. This does not
cause any problems, since only the differences of
these quantities, which are positive, will be needed.
When k = 1, the value of ηi is finite, since the range
of variations of this variable is finite in a closed model.

We will rewrite the integral (23), substituting
the time dependence of the electron density, ne =
n0
e/a

3(η) = (ρ0
b/mH)/a3(η), where ρ0

b is the current
baryon density:

τT (η) = σT

η∫
ηi

neR(η)dη = σT
ρ0
b

mH
R0

η∫
ηi

dη

a2(η)
.

Introducing the new variable of integration X =
ar
ad

y = By, where y is specified by (9), and using the

characteristics of this ratio enables us to reduce the
integral to the form

η∫
ηi

dη

a2(η)
= −1

2

y∫
yi

y2 + k

(ary + ad)2
dy

= −1
2
ad
a3
r
fT (X,B, k),

fT (X,B, k) =

X∫
Xi

X2
1 + kB2

(X1 + 1)2
dX1.

Calculating the integral within the limits indicated in
the table yields for k = 0 and 1:

fT (X,B, k) = X
X + 2 + kB2

X + 1
− 2 ln(X + 1).

(25)

When k = −1, the constant B(B − 2) + 2 ln(1 +B)
is added, so that, in an open model, this function can
also be written in a form that explicitly vanishes for
the limiting value of the argument,X = B:

fT (X,B,−1) = (X −B)
X −B + 2

X + 1

− 2 ln
X + 1
B + 1

.

For arguments close to the limiting value, X → 0,
the function (25) is equivalent to fT (X,B, k) ∼
kB2X(1−X) + (1/3 + kB2)X3, while for an open
model, we obtain as X → B then fT (X,B,−1) ∼
(X −B)2

(B + 1)2

[
B +

1/3 −B

B + 1
(X −B)

]
.
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ηi, yi, andXi

Model y ηi yi Xi

k = 1 cot(η/2) π 0 0

k = 0 2/η ∞ 0 0

k = −1 cot(η/2) ∞ 1 ar/ad

Thus, the optical distance based on Thomson
scattering is given by the formula

τT (η, ηs) =
σT

4
ρ0
b

mH

ρ0
d

ρ0
r

(
8πG
3c2

ρ0
r

)−1/2

(26)

× [fT (Xs, B, k)− fT (X,B, k)],

whereB =
ar
ad
,X = By = B

snk(η)
sck(η)

, andX < Xs for

η > ηs. The factor before the bracket can also be

written as
σT

4
ρ0
b

mH

Ω0
d

(Ω0
r )3/2

c

H0
.

4.3. Calculation of the Absorption Optical Distance

Let us calculate the function (24). After making
the same substitutions as for the Thomson-scattering
distance calculation, we obtain

E(η) =
(

ρ0
b

mH

)2 η∫
ηi

dη

a3/2(η)

= −
(

ρ0
b

mH

)2 1√
2

y∫
yi

√
y2 + k

(ary + ad)3/2
dy

= −
(

ρ0
b

mH

)2 1√
2

a
1/2
d

a2
r

fc(X,B, k),

where

fc(X,B, k) =

X∫
Xi

√
X2

1 + kB2

(X1 + 1)3/2
dX1.

Only for B = 0 (i.e. for k = 0) can the integral be
expressed in terms of elementary functions:

fc(X) = fc(X, 0, 0) = 2
√
X + 1 (27)

+
2√

X + 1
− 4 = 2

(
√
X + 1− 1)2√

X + 1

=
2√

X + 1
X2

(
√
X + 1 + 1)2

.

If B �= 0, the integral can be expressed in terms
of elliptical integrals, but it is easier to calculate it
numerically.
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4.4. Calculations of Optical Distances
for the NonvacuumModel

For the values in (26), we will obtain B = 5.321 ×
10−2.

Let us consider optical distances in the selected
model. We will first calculate the dimensionless func-
tions fT and fc for redshifts z from 108 to 102. As-
suming that the photon was emitted from the source
at time ηs, the Thomson-scattering distance at time
η is specified by (26). The factor before the bracket in
this formula is equal to 156.2.

The optical distance based on absorption can be
determined in a similar way. After substituting ex-
pressions for its terms, the product R0E(η) is shown
to be

R0E(η) = −1
2

(
ρ0
b

mH

)2
√

ρ0
d

ρ0
r

(
8πG
3c2

)−1/2

× fc(X,B,−1) = −1
2

(
ρ0
b

mH

)2
√

Ω0
d

Ω0
r

c

H0

× fc(X,B,−1).

Let us estimate the optical distance for the frequency
at which the Planck function reaches its maximum
at a certain cosmological time, νm = cWkBT/h, cW =
2.821438. For this distance,

τcc = (1− e−cW)
(

ρ0
b

mH

)2
k0
cc

T
7/2
0

(
h

cWkB

)3

(28)

×

√
Ω0
d

Ω0
r

c

2H0
[fc(Xs, B,−1)− fc(X,B,−1)].

4.5. Calculation of Optical Distance for a Flat Model

The optical distances needed for our model have
already been determined. Let us rewrite them using
new notation. The scattering optical distance is

τT = σT
ρ0
b

mH
R0

2c

H̃0R0

Ω0

8(1 − Ω0)3/2
(29)

×
[
fT

(√
1− Ω0

Ω0

2
ζs

)
− fT

(√
1− Ω0

Ω0

2
ζ

)]
=

σT

4
ρ0
b

mH

c

H̃0

Ω0

(1− Ω0)3/2
[fT (Xs)− fT (X)].

We have obtained the same formula, (26); the
function fT coincides with that determined from (25),
but, since B = 0 and k = 0, it does not contain any
parameters:

fT (X) = X
X + 2
X + 1

− 2 ln(X + 1).
Taking into account the relations between the Hub-
ble constant and critical parameters (14a), (14b),
and (14c), we will see that the coefficients before the
brackets in (29) and (26) also exactly coincide.

The absorption distance is calculated in exactly
the same way. This product is equal to

R0E(η) = −1
2

(
ρ0
b

mH

)2 √
Ω0

1− Ω0

c

H̃0

fc(X),

where the function fc(X) is specified by the previous
formula (27). The resulting formula for the absorption
distance is

τcc = (1− e−cW)
(

ρ0
b

mH

)2
k0
cc

T
7/2
0

(
h

cWkB

)3

(30)

×
√
Ω0

1− Ω0

c

2H̃0

[fc(Xs)− fc(X)].

Here, the coefficients in (28) and (30) also coincide.

4.6. Comparing the Two Models

The optical distances in the twomodels considered
differ only in the functions f ; in the flat model,B = 0,
while this parameter is B ≈ 0.05 in the open model,
so that the difference is insignificant. Indeed, this
difference

fT (X) − fT (X,B,−1) = B2 X

X + 1
−B(B − 2)− 2 ln(B + 1)

is small for both small and large X. The term that
is independent of X disappears when the difference
of the functions is taken. The difference between the
functions fc is more difficult to estimate, since these
functions have different domains:

fc(X) − fc(X,B,−1) =

B∫
0

X1

(X1 + 1)3/2
dX1

+

X∫
B

X1 −
√

X2
1 −B2

(X1 + 1)3/2
dX1

=
2√

1 +B

B2

(1 +
√
1 +B)2

+B2

X∫
B

1
(X1 + 1)3/2

dX1

X1 +
√

X2
1 −B2

.

The order of the difference is B2. For small X ∼ B,
this can be seen directly, while, in the case of largerX,
the contribution of large values ofX1 to the integral is
small.
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We can describe the behavior of our functions for
small and largeX. WhenX → 0,

fT (X) = X3
∞∑

n=0

(−1)n
n+ 1
n+ 3

Xn,

fc(X) = X2
∞∑

n=0

(−1)n
(2n+ 1)!

2nn!(n+ 2)
.

For largeX,

fT (X) = X − 2 lnX + 1− 1
X

∞∑
n=0

(−1)n

Xn

n+ 3
n+ 1

,

fc(X) = 2X1/2
∞∑

n=0

(−1)n−1 (2n − 3)!
(2n)!

2n+ 1
Xn

− 4.

Here, as usual, we assume that (−3)! = −1,
(−1)! = 1.

For the large redshifts of interest for us or, more
exactly, for (1− Ω0)z  1, the parameters ζ , y, and
X behave as follows:

ζ ∼ 1
2
√
1− Ω0

1
z
, y =

1
ζ
∼ 2

√
1− Ω0z,

X = 2
√
1− Ω0

Ω0
y ∼ 4

1− Ω0

Ω0
z.

Accordingly, the functions f are easy to determine for
such z values. The scattering optical distances calcu-
lated for the open and flat models are only different for
the largest z, and even then only slightly: for z = 108,
in the fourth significant figure. The absorption dis-
tances display larger but also insignificant differences,
in the third significant figure for all z.

Figure 2 presents the results of these calculations.
The starting value for the curves is z = zs; log zs =
ns = 4(1)8. To present the curves on comparable
scales, the τT values on the curve with log zs = ns
have been multiplied by 101−ns , while the τcc curves
have been multiplied by 10(17−ns)/2. The difference
between these factors reflects the fact that the ab-
sorption coefficient is proportional to T−1/2.

We can see from the figures that the optical dis-
tances initially increase rapidly with decreasing red-
shift; this growth is slower for the absorption dis-
tances at the frequency of the maximum of the Planck
function. If the source’s redshift is z = zs, then, for
zs/3 ≤ z ≤ zs, these distances are

τT ∼ σT
ρ0
b

mH

c

H̃0

zs − z√
1− Ω0

,
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Fig. 2. Scattering and absorption optical distances as
a function of the photon redshift in the course of the
photon’s motion away from the source. The τT values are
multiplied by 10/zs, and the τcc values by 10−8.5z

−1/2
s .

τcc ∼ (1− e−cW)
(

ρ0
b

mH

)2
k0
cc

T
7/2
0

×
(

h

cWkB

)3 c

H̃0

√
zs√

1− Ω0

(
1− z

zs

)
.

For the adoptedmodel parameters, τT ≈ 0.13(zs −
z) and τcc ≈ 1.8× 10−9z

−1/2
s (zs − z). The optical

distances increase more slowly with decreasing z,
gradually reaching their asymptotic values τT ∼
0.14zs and τcc ∼ 2.5× 10−9z

1/2
s . The distances τcc

reach their limiting values at smaller z, and these
values are substantially smaller (by a factor of 5.6 ×
106z

1/2
s ) than those for the scattering distances.

Since the coefficient kcc is inversely proportional to
the third power of the frequency, this difference will be
smaller at lower frequencies.

4.7. The Grey Approximation

Since the scattering coefficient substantially ex-
ceeds the absorption coefficient, the latter can be ne-
glected relative to the source radiation. Equation (18)
with the right-hand side (20) can then be integrated
over frequency, as is done in calculations of model
atmospheres [4].

Let us denote the frequency moments for the mean
occupation number (s ≥ 0 is not necessarily integer,
so that this is essentially the Mellin transform):

n(s)(η, χ, µ) =

∞∫
0

xsn(η, χ, µ, x)dx.

Integration over the frequency with the weights xs
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yields

∂n(s)

∂η
+ µ

∂n(s)

∂χ
+ (1− µ2)

csk(χ)
snk(χ)

∂n(s)

∂µ

+ (s+ 1)
a′(η)
a(η)

n(s) = R(η)I(s)
c ,

where I(s)
c is the result of integrating the right-hand

side. The integral of the term with the frequency
derivative was calculated via integration by parts.

The frequency moments of the collision
integral are

I(s)
c = −αT

[
n(s)(η, χ, µ) − n

(s)
0 (η, χ)

− 1
10

P2(µ)n
(s)
2 (η, χ)

]
+ ε

(s)
∗ (η, χ, µ),

where the moments of the source power are

ε
(s)
∗ (η, χ, µ) =

∞∫
0

ε∗(η, χ, µ, x)xsdx.

After separating out the direct radiation, the func-
tion ε∗ should be substituted by εs.

5. CONCLUSION

We have derived an equation describing the evo-
lution of the radiation of a source whose intensity
exceeds that of the surrounding equilibrium back-
ground radiation at the epoch of radiation-dominated
plasma, between the epochs of annihilation and re-
combination. A cosmological model for this period
was adopted. We have separated the diffuse and direct
radiation, and calculated the opacities of the mat-
ter due to Thomson scattering and bremsstrahlung
absorption. The latter mechanism can be neglected
relative to the source radiation, and this fact was used
to obtain an equation for the frequency moments.

This is the first paper in the series of studies that
will be concerned with elucidating how sources of
radiation affect the evolution of the Universe and how
their presence is reflected in the thermal background
radiation, taking into account the fact that the accu-
racy of observations is growing steadily. We hope to
solve this problem in our forthcoming studies.
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Abstract—We have calculated the degree and position angle of the polarization of radiation scattered in a
magnetized, optically thin or optically thick envelope around a central source, taking into account Faraday
rotation of the plane of polarization during the propagation of the scattered radiation and the finite size of
the radiation source. The wavelength dependence of the degree of polarization can be used to estimate the
magnetic field of the source (a star, the region around a neutron star, or a black hole), and we have used our
calculations to estimate the magnetic fields in a number of individual objects: several hot O andWolf–Rayet
stars, compact objects in X-ray close binaries with black holes (SS 433, Cyg X-1), and supernovae. The
spectrum of the linear polarization can be used to determine the magnetic field in the vicinity of a central
supermassive black hole, where the polarized optical radiation is generated. In a real physical model, this
value can be extrapolated to the region of the last stable orbit. In the future, the proposed technique will
make it possible to directly estimate the magnetic field in the region of the last stable orbit of a supermassive
black hole using X-ray polarimetry. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In the presence of a magnetic field, the plane of
polarization of radiation propagating through the hot
electron atmospheres and envelopes of stars or the
accretion envelopes around quasars and active galac-
tic nuclei is subject to Faraday rotation. The angle of
rotation ψ is related to the parameters of the medium
and the path of the radiation l by the expression [1]:

ψ =
1
2
δτT cos Θ, (1)

where τT = NelσT is the Thomson optical depth
along the path, σT = (8π/3)r2e ∼= 6.65× 10−25 cm2 is
the Thomson-scattering cross section, re =
e2/mec

2 ∼= 2.82 × 10−13 cm is the classical electron
radius, Ne is the electron density, and Θ is the
angle between the direction of propagation n and the
magnetic fieldB. The plane of polarization undergoes
right-handed or left-handed rotation if Θ < 90◦
or Θ > 90◦, respectively, for an observer looking
along the direction of propagation. The parameter δ
is numerically equal to the rotation angle of the plane
of polarization for a path τT = 2 along the magnetic
field, and is given by the formula

δ =
3
4π

λ

re

ωB

ω
∼= 0.8(λ [µm])2B [G]. (2)
1063-7729/05/4903-0179$26.00
Here, λ = 2πc/ω is the wavelength of the radiation,
ω = 2πν is its angular frequency, and ωB = |e|B/mec
is the cyclotron frequency of the electrons in the mag-
netic field, ωB/ω ∼= 0.93 × 10−8λ [µm]B [G].

Away from a neutron star or quasar, its mag-
netic field can be taken to be roughly dipolar, since
the multipolar field components fall off with distance
faster than the main dipolar component. Optically
thick envelopes are probably fairly rare, due to the
smallness of the Thomson-scattering cross section. It
is possible that optically thick envelopes are formed by
the matter ejected in the initial stages of supernovae,
when the density of the ejected particles has not yet
decreased substantially. Another example may be ex-
tended accretion structures surrounding quasars or
active galactic nuclei.

The magnetospheres around black holes, includ-
ing supermassive black holes, play a key role in the
formation of various outflowing structures (winds,
coronas, jets, etc.). The existence of such magneto-
spheres was recently confirmed by spectroscopic [2]
and polarimetric [3] observations of X-ray binaries
containing black holes.

On the other hand, themodel of Blanford and Zna-
jek [4], in which energy is extracted from a rotating
black hole via the magnetic field, has stood the test
of time. This idea evolved further in [5–7], with the
c© 2005 Pleiades Publishing, Inc.
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development of a model in which a toroidal current at
the inner boundary of the disk can generate a dipolar
magnetic field that connects the horizon of the black
hole with the region of its accretion disk beyond its
inner boundary.

The outflow of plasma from the magnetosphere
and the inner part of the accretion disk forms an
envelope, in which scattering-driven polarization can
originate. One example of such an envelope is the
broad line regions of active galactic nuclei—regions
in which broad emission lines are generated.

In the absence of a magnetic field, the integrated
polarization of the radiation scattered in an envelope
is zero due to the axial symmetry relative to the
line of sight. A magnetic field breaks this symmetry,
since the (singly- or multiply-) scattered outgoing
radiation undergoes nonradially symmetrical Faraday
rotation as it propagates through the envelope. Axial
symmetry remains only in the case of a dipolar field
with its magnetic dipoleM parallel to the line of sight
n: the integrated polarization of the radiation is then
zero, as in the absence of the magnetic field.

2. AN OPTICALLY THIN ENVELOPE
The integrated polarization of radiation scattered

in an optically thin envelope is relatively easy to cal-
culate. In this case, only two factors need to be taken
into account: single scattering of light from the cen-
tral source on electrons in the envelope, and subse-
quent Faraday rotation of the plane of polarization
as the scattered radiation passes through the enve-
lope. Such calculations were carried out for various
envelopes in [8–10]; however, it was assumed that a
star is a point source of unpolarized radiation, lead-
ing to overestimation of the integrated polarization
(see details below). The largest violation of the axial
symmetry in the Faraday rotation occurs along the
direction of the magnetic dipole M, perpendicular to
the line of sight n (ϑm = 90◦). In this case, the inte-
grated polarization reaches its maximum. The plane
of polarization coincides with the plane containing the
line of sight n and the magnetic-dipole axis M.

According to [1, 8, 9], the Stokes parameters of
the radiation received at the telescope are given by the
expressions

FQ(n) = − L

4πR2

3
16π

σT (3)

×
∫
dV

Ne(r)
r2

√
1 − R2

s

r2
sin2 ϑ cos 2(ϕ+ ψ),

FU (n) = − L

4πR2

3
16π

σT (4)

×
∫
dV

Ne(r)
r2

√
1 − R2

s

r2
sin2 ϑ sin 2(ϕ+ ψ),
where L and Rs are the luminosity and radius of the
star, R is the distance between the star and observer,
and ψ(r,n) is the angle through which the plane
of polarization of radiation scattered in the volume
element dV (r) in the line of sight n rotates due to
Faraday rotation (1). The radius vector of a volume
element dV is specified by the usual spherical coor-
dinates r, ϑ, ϕ. The integration is carried out over
the entire visible part of the envelope. It is assumed
in (3) and (4) that the X axis lies in the (nM) plane.
The polarization of the scattered radiation is small
near the surface of the star, since the radiation falls
onto the volume element dV almost isotropically. This
effect is described analytically in [1, Ch. 4] for the
frequently considered case when the intensity I(µ)
of the radiation emerging from the stellar surface is
approximated by the simple expression I(µ) = A+
Cµ. Recall that µ is the cosine of the angle between
the normal to the stellar surface and the direction
of propagation of the emergent radiation. Here, we
consider only the case of an isotropic intensity (C =
0), when the depolarization of the radiation scattered
near the surface reaches its maximum. This leads to
the appearance of an additional factor of

√
1 −R2

s/r
2

in (3) and (4) compared to the analogous formulas
in [8–10], where the star was assumed to be a point
source. The impact of the non-pointlike nature of the
source on the polarization of radiation scattered in a
magnetized envelope was first calculated in [11].

We will restrict our consideration to two electron-
density distributions in the envelope, Ne(r): Ne(r) =
N0 = const and Ne(r) = N0(R2

s/r
2). The explicit

analytical formulas for the Faraday-rotation angle ψ
are as follows [8].

For an envelope with a constant density,

ψ =
δsτenv

2(η − 1)ρ2
(5)

×
{

cos ϑm

[
cos ϑ− ρ2

η2

√
1 − ρ2

η2
sin2 ϑ

]

+ sinϑm cosϕ sin ϑ
(

1 − ρ3

η3

)}
,

where η = R0/Rs is the ratio of the radii of the en-
velope and star, ρ = r/Rs the dimensionless distance
from the center of the star to the volume element,
δs = 0.8λ2M/R3

s the parameter (2) at the magnetic
equator of the star,M is the magnetic moment of the
star, τenv = N0σT (R0 −Rs) is the Thomson optical
depth of the envelope, ϑm is the inclination of the
magnetic dipole M to the direction toward the ob-
server n.
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For an envelope in which the electron density de-
pends on the radius asNe ∼ r−2,

ψ =
δsτenv

2ρ4 sin4 ϑ

{
cos ϑm

[
− (1 − cos ϑ) (6)

+
4
3
(1 − cos3 ϑ) − 3

5
(1 − cos5 ϑ)

]
+

3
5

sinϑm cosϕ sin5 ϑ

}
,

where τenv = N0σTRs is the optical depth of the en-
velope.

Note that, terms of order ∼τ2
env and higher or-

ders in smallness are omitted in the above formulas,
since we are restricting our consideration to singly-
scattered radiation. In this approximation, it is suffi-
cient to takeL/4πR2 for the fluxFI when determining

the degree of polarization pl =
√
F 2

Q + F 2
U/FI .

It follows from (3) and (4) that the parameters FQ

and FU are

FQ,U = FIτenvfQ,U(δsτenv, ϑm, η). (7)

For an envelope with Ne ∼ r−2, (7) does not
contain η.

For weak magnetic fields or short wavelengths,
when ψ � 1, the function fQ,U is expressed in the
asymptotic form

fQ � KQ(δsτenv)2 sin2 ϑm, (8)

fU � KU (δsτenv)3 cos ϑm sin2 ϑm.

Since ψ ∝ δsτenv, |fU | � |fQ|; i.e., the electric vector
of the radiation fluctuates near the nM plane, while
the degree of polarization is pl ≈ τenv|fQ|. Formu-
las (8) are satisfied well up to values δsτenv ≈ 1.

Figure 1 presents pl/τenv = (f2
Q + f2

U)1/2 (in per-
cent) and the position angle χ (in degrees) as func-
tions of

√
δsτenv. The X axis lies in the (nM) plane.

The upper plots correspond to Ne(r) = N0(Rs/r)2,
and the lower plots to an envelope with a constant
electron density (with η = 5) for a non-pointlike star.
To derive the degree of polarization, the right plots
must be multiplied by τenv < 1.

In the case of an optically thin envelope, pmax (for
ϑm = 90◦) can reach substantial values, ∼6τenv (%)
for a non-pointlike and ∼10τenv (%) for a pointlike
star. In each envelope, there exists an effective layer
with ψ � 1, which makes the dominant contribution
to the integrated polarization.

In the case of strong magnetic fields, the polar-
ization is determined by a thin layer at the outer
boundary of the envelope, where the Faraday rotation
is comparatively small, ψ ≤ 1. This occurs when the
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 1.Degree and position angle of the polarization of the
integrated radiation in an optically thin spherical envelope
in a magnetic-dipolar field. The upper plots correspond
to an electron density ∝r−2, and the lower plots to a
constant electron density with η = 5. The inclination of
the magnetic-dipole axis M to the line of sight n, ϑm, is
indicated in degrees. See text for details.

optical depth of this layer is τ ∝ 1/δ0 ∝ λ−2, where
δ0 = 0.8λ2M/R3

0 is the parameter (2) at the surface
of the envelope. This estimate suggests that, with
the exception of this thin surface layer, the bulk of
the envelope does not contribute to the integrated
polarization; i.e., δsτenv/η

3 � 1. The intensity of the
radiation scattered in this layer is proportional to the
optical depth τ . Therefore, the integrated polarization
specified by this intensity is inversely proportional to
δ0, pl � C(ϑm)η3/λ2. Analytical calculations for the
case ϑm = 90◦ yield

pl ≈
πη3

16δs

√
1 − 1

η2
∝ 1
λ2
,

δsτenv

η3
� 1. (9)

The asymptotic dependence pl ∝ λ−2 is satisfied rel-
atively well starting from δsτenv/η

3 ≈ 50−100. For-
mula (9) was obtained without eliminating the con-
tribution of the part of the envelope obscured from the
observer by the star itself; thus, (9) overestimates the
polarization.

As was shown in [1], a star can essentially be
treated as a point source of unpolarized radiation
starting from a distance of one to two stellar radii
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from the stellar surface. Therefore, the asymptotic
polarization for δsτenv � 1 is the same for pointlike
and non-pointlike stars (provided the thickness of the
envelope exceeds two to three stellar radii).

For an envelope with an electron density Ne ∼
r−2, the maximum degree of polarization for ϑm =
90◦ corresponds to

√
δsτenv � 4.65, and is equal

to 2.886%τenv for a non-pointlike star. For the
same value of

√
δsτenv, the pointlike model yields

3.878τenv (%); i.e., the degree of polarization is
roughly 30% higher. In this model, the maximum is
reached for

√
δsτenv = 3.05, and is equal to

4.722τenv (%).
When

√
δsτenv � 1 and Ne ∼ r−2, the polariza-

tion is also determined by the outer layer of the en-
velope (r ≥ r∗), where ψ = 0.5δ(r∗)τ(r∗) ≤ 1. The
optical depth of an envelope with r ≥ r∗ is τ(r∗) =
τenvRs/r∗, where δ(r∗) is the value of the parame-
ter (2) at this boundary. Taking into account the fact
that δ(r∗) ∝ 1/r3∗ , we obtain r∗ ∝

√
λ, which means

that pl ∝ 1/
√
λ. As in the previous case, the polar-

ization for large values of
√
δsτenv can be calculated

using the polarization for
√
δsτenv = 10 and the above

wavelength dependence. For ϑm = 90◦, the asymp-
totic formula is

fQ ≈ 0.086
(δsτenv)1/4

∝ 1√
λ
, δsτenv � 1. (10)

Using the above qualitative derivation of the wave-
length dependence for pl, we can obtain the asymp-
totic dependence pl ∝ λ−2(ν−1)/(ν+2) forNe ∝ r−ν .

Since the polarization is determined by the con-
tribution of regions of the envelope that are distant
from the star when δsτenv � 1, the spectrum and az-
imuthal angle of the polarization provide information
about the density Ne(r) precisely in this part of the
envelope. Thus, polarization observations can be used
to derive the electron distribution in the envelope (or
verify models for this distribution).

3. AN OPTICALLY THICK ENVELOPE

To calculate the integrated polarization due to an
optically thick envelope, we must know the intensity
I and Stokes parameters Q and U of the radiation
emerging from an element of the envelope’s surface.
We will assume that the sources of the radiation are
distant from the outer surface of the envelope, so that
I, Q, and U are given by the solution of the classical
Milne problem for a semi-infinite plane-parallel at-
mosphere, taking into account Faraday rotation of the
plane of polarization. This problem has been solved
numerically only for the case of a magnetic field di-
rected along the normal to the atmosphere [12, 13].
The problem is more complex in the case of an arbi-
trary direction of the magnetic field, and has not yet
been solved. For a dipolar, i.e., inhomogeneous, mag-
netic field, we must know the solution of the Milne
problem for an arbitrary magnetic-field direction.

In [14], simple asymptotic formulas (δ ≥ 1) for the
Stokes parameters I,Q, and U of radiation emergent
from a semi-infinite atmosphere were obtained for a
number of problems, including the Milne problem. It
is important that these analytical formulas are valid
for an arbitrary magnetic-field direction.

The formulas of [14] yield for the Stokes parame-
ters of the integrated radiation from an optically thick
spherical envelope:

FI =
a2

R2
F, (11)

FQ = − a
2

R2

F

πJ1

1 − g
1 + g

1∫
0

dµ (12)

×
π∫

0

dϕµ(1 − µ2)
(1 − kµ) cos(2ϕ)

(1 − kµ)2 + [(1 − q)δ cos Θ]2
,

FU = − a
2

R2

F

πJ1

1 − g
1 + g

1∫
0

dµ (13)

×
π∫

0

dϕµ(1 − µ2)
(1 − q)δ cos Θ cos(2ϕ)

(1 − kµ)2 + [(1 − q)δ cos Θ]2
.

Here, F is the flux of radiation emergent from a unit
area of the envelope surface, a is the outer radius of
the envelope, R is the distance to the observer, and
the constants J1 and g depend on the degree of true

absorption q =
δa

δa + δT
and were calculated in [14].

For a dipolar magnetic field, δ cos Θ is

δ cos Θ = δ0

[
(3µ2 − 1) cos ϑm (14)

+ 3µ
√

1 − µ2 sinϑm cosϕ
]
,

where δ0 = 0.8λ2M/a3 is the parameter (2) at the
magnetic equator of the outer surface of a spherical
envelope.

Further, we will also consider two cases of a dis-
torted dipolar field: a diamagnetic (ideally conducting)
envelope, when the normal component of the field
does not penetrate into the medium, and an enve-
lope with a strong radial outflow of plasma. In the
latter case, the outflow acquires a radial shape due
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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to the presence of a frozen-in magnetic field, sim-
ilar to Parker’s spherically symmetrical stellar wind
from a nonrotating central source. The envelope can
be considered diamagnetic when the ohmic diffusion
time (τohm ≈ a2/6Dm, where Dm = c2/4πσ is the
ohmic diffusion coefficient) is substantially shorter
than other dynamical time scales—the turbulent mix-
ing time, cyclotron period, etc. [15].

The radial component of the dipolar field is ex-
cluded from a diamagnetic envelope. This yields the
relations

δ cos Θ = δ0

[
− cos ϑm(1 − µ2) (15)

+ µ
√

1 − µ2 sinϑm cosϕ
]
.

On the contrary, in the case of a strong radial outflow,
only the radial component of the dipolarmagnetic field
should remain. Thus,

δ cos Θ = 2δ0(µ2 cos ϑm + µ
√

1 − µ2 sinϑm cosϕ).
(16)

The cases (14), (15), and (16) are denoted a, b,
and c, respectively, in Fig. 2.

For a small depolarization parameter (δ0 � 1) and
the most interesting case of a medium without ab-
sorption (q = 0), expressions (12) and (13) can easily
be calculated analytically.

pl � Cδ20 sin2 ϑm, (17)

χ � Dδ0 cosϑm, (18)

where the coefficients C and D are C = 0.765,
D = 17.19 for a complete dipole (14); C = 0.0797,
D = −51.56 for a diamagnetic envelope (15); and
C = 0.319, D = 68.75 for an envelope with a ra-
dial outflow (16). Note that the X axis lies in the
plane containing the line of sight and the magnetic
dipole; therefore, for an observer, positive χ values
correspond to a counterclockwise deviation from this
plane. If the magnetic dipole points away from the
observer (ϑm > 90◦), the sign of χ is the opposite.

It follows from these formulas that the degree of
polarization is ∝λ4, while the rotation angle is ∝λ2

(as in the case of classical Faraday rotation). A com-
parison with numerical calculations shows that (17)
and (18) remain valid right up to δ0 � 0.25.

4. DISCUSSION: CALCULATION RESULTS

Figure 2 presents the polarization degree pl and
position angle χ calculated using formulas (11)–(13)
as functions of the dimensionless parameter

√
δ0 ∼=

0.89λ[µm]
√
B0[G], where B0 = M/a3 is the mag-

netic field at the surface of an optically thick spherical
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 2. Degree and position angle of the polarization of
integrated radiation from a magnetized, optically thick,
spherical envelope for the degree of absorption q = 0. The
inclination ϑm of the magnetic-dipole axis M to the line
of sightn is indicated for each curve (in degrees). See text
for details.

envelope. The parameter
√
δ0 was varied from zero to

ten. In the case of larger values of
√
δ0, the degree of

polarization can be extrapolated relatively accurately
using the formula pl = 100pl(

√
δ0 = 10)/δ0, and the

values of the position angles χ for
√
δ0 = 10 (Fig. 2)

can be used.
The maximum polarization corresponds to the

case when the magnetic-dipole axis is perpendicular
to the line of sight; then, χ = 0, and the total electric
vector of the radiation oscillates in the (nM) plane.
The asymptotic formula is satisfied when δ0 > 100
and q = 0:

pl
∼=

6%
nδ0

(19)

where n = 3 corresponds to a total dipole (14), n = 1
for a diamagnetic envelope (15), and n = 2 for an
envelope with a radial outflow (16). The cases n =
3, 1, 2 are denoted a, b, and c, respectively, in Fig. 2.

When ϑm = 90◦, expressions (14), (15), and (16)
for δ cos Θ differ only in the coefficients of δ0 (n = 3 for
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a total dipole, n = 1 for a diamagnetic envelope, and
n = 2 for an envelope with radial outflow). Therefore,
the maximum polarization is the same in all these
cases, but pmax will correspond to different

√
δ0

values due to the differences in the above coefficients.
The maximum polarizations for cases (14), (15),
and (16) are reached for

√
δ0 = 1.385, 2.4, and 1.895,

respectively. Naturally, plmax depends on the degree
of absorption q. Our calculations indicate that plmax

increases monotonically from 0.307% for q = 0 to
1.01% for q = 0.5.

It follows from Fig. 2 that the position of the max-
imum polarization depends weakly on the inclination
of the dipole axis to the line of sight. Therefore, we can
find an approximate formula for the wavelength λmax

at which the maximum polarization is reached that is
common for all ϑm. When q = 0, the above

√
δ0 value

yields

λmax ≈ 2.68√
nB0

µm, (20)

where n are the above integer numbers corresponding
to the various models. Formula (20) can be used to
estimate the magnetic field at the outer surface of
the spherical envelope, provided the maximum of the
polarization spectrum has been determined. A for-
mula analogous to (20) can be derived for q �= 0.
To this end, we must determine (

√
δ0)max from the

plot for case b, divide it by
√

0.8 = 0.894, and substi-
tute this into (20) in place of 2.68. For q = 0.5, this
yields 2.07 instead of 2.68; i.e., taking absorption into
account does not drastically affect the estimate for the
magnetic field B0. Roughly speaking, λmax [µm] ≈
(B0 [G])−1/2.

Is it possible to deduce from polarizationmeasure-
ments whether the envelope is optically thin or thick?
First and foremost, as a rule, the degree of polariza-
tion of radiation scattered in an optically thin envelope
is appreciably higher than for radiation scattered in
an optically thick envelope. However, dilution with
unpolarized radiation may reduce this difference. For
example, when analyzing the polarization of radiation
from active galactic nuclei, dilution of the polarized
radiation by unpolarized radiation from stars in the
galaxy must be taken into account. Therefore, from
this point of view, the spectrum of the polarized radi-
ation, i.e., the wavelength dependence of the degree
of polarization, is more informative. Since the optical
depth of the envelope can, in principle, depend on
the wavelength, a 90◦ jump in the position angle
at a certain wavelength could provide a criterion for
identifying the transition between the optically thick
and optically thin regimes (see the book [1] in this
regard). The polarization of optically thin envelopes
is calculated in [8, 9, 11] only for the case of a non-
distorted dipolar field (case a in Fig. 2). Therefore, we
will restrict our consideration to a comparison of the
results obtained in these studies and the upper plots
in Fig. 2.

The plots of the degree of polarization in an opti-
cally thin envelope resemble the corresponding plots
for an optically thick envelope: the polarization first
increases ∝λ4, reaches its maximum, and then de-
creases, with the wavelength dependence during the
decrease determined by the distribution of free elec-
trons in the envelope. For an envelope with a constant
electron density, at longer wavelengths, pl ∝ λ−2.
This coincides with the corresponding asymptotic
wavelength dependence in optically thick envelopes.
However, the density of free electrons in the enve-
lope is likely to fall off with distance from the central
source. If this fall-off is ∝r−2, then the decrease of
the polarization for the optically thin case is ∝λ−1/2,
whereas the polarization at longer wavelengths is
always ∝λ−2 for an optically thick envelope.

Thus, the polarization spectrum at longer wave-
lengths can be used to deduce whether the envelope
is optically thin or thick.

To estimate the magnetic field B0 in either type of
envelope, the polarization spectrum near the maxi-
mum, i.e., near λmax, must be known. Relation (20)
should then be used for an optically thick envelope.
An analogous expression for an optically thin enve-
lope can be derived from the results of [8, 9]. For
the most probable case, Ne ∝ r−2, the polarization
spectrum of an optically thin envelope displays its
maximum at the λmax values

λmax ≈ 4.65√
Bsτenv

� 4.65√
B0τenv

R
3/2
s

a3/2
. (21)

Here, Bs = M/R3
s is the magnetic field at the surface

of the central source. The field B0 for the estimates
is obtained from Bs using the law for the fall-off
of a dipolar field: B0 = BsR

3
s/a

3. Since Rs < a and
τenv ≤ 1, the estimate (21) results in larger λmax

values than (20). For large magnetic fields B0, λmax

could fall in the X-ray. If B0 is known from other
considerations, the asymptotic formulas can be used
to obtain estimates without knowing λmax.

The spectra of the position angles χ are differ-
ent for optically thin and thick envelopes. Gener-
ally speaking, this provides an additional opportu-
nity to distinguish between these cases. However, if
the measured polarization corresponds to long wave-
lengths, δ0 � 1, then χ is essentially constant and
has the same sign in both cases, so that no conclu-
sions can be drawn. The χ spectrum is, however, use-
ful for distinguishing between the optically thick and
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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thin cases if it is known for wavelengths close toλmax,
where the spectra behave substantially differently.

5. SOME ASTROPHYSICAL APPLICATIONS

5.1. Polarization of the Radiation of Hot Stars
and Wolf–Rayet Stars: Magnetic Field Estimates

Hot stars display exceptionally intense outflows
of matter in the form of a dense stellar wind (with
outflow rates Ṁ ≥ 10−5M�/yr) [16–18]. The optical
depth of the wind to electron scattering τ can be either
smaller (ζ Puppis, Deneb) or larger (P Cyg, WR 40)
than unity (see [17]). There has long been interest
in determining the magnetic fields at the surfaces of
these stars. Underhill and Fahey [19] demonstrated
that dipolar magnetic fields can exist at the stellar
surfaces.

Numerous attempts to measure the magnetic
fields of bright stars using traditional techniques
based on circular-polarization measurements have
proven unsuccessful (see [16, 20]). In particular,
the upper limit B|| ≤ 200 G was obtained for the
longitudinal (line-of-sight) component of the mag-
netic field for the O4I(n)f star ζ Puppis [20]. No
appreciable variability of the Stokes parameter V was
found. Great hopes are pinned on the future Spectro-
Polarimetric INterferometer (SPIN) [17].

We can use our calculations (Figs. 1 and 2) to
estimate the expected degree of polarization in the V
band for a number of hot stars from the SPIN target
list [17]. For an equatorial magnetic field Bl ≈ 102 G,
δ0 ≈ 0.8λ2

V Bl ≈ 24.2; if Bl ≈ 10 G, then δ0 ≈ 2.42.
The table presents the calculated expected degrees
of linear polarization (for an inclination of i = 90◦).
We assumed the radial dependence of the stellar-wind
density to beNe ∼ r−2.

5.2. Polarization of Cyg X-1/HDE 226868

In 1975, Nolt et al. [21] detected intrinsic optical
linear polarization in the close binary
Cyg X-1/HDE 226868, whose compact compo-
nent is a black hole with a mass of ∼10M� [22].
The polarization was variable with an amplitude of
∼0.2%, and its temporal behavior is rather complex.
Along with the periodic dependence with P = 5.6d,
related to the binarity of the system, the polarization
also varies with the characteristic times 39d and
78d [21]. Possible sources of the polarized radiation
of Cyg X-1/HDE 226868 were discussed in [23–25].

If we suppose that the polarization originates
during the accretion of matter around the black hole,
the intrinsic optical polarization should exceed that
observed by Nolt et al. [21] by more than an order
ASTRONOMY REPORTS Vol. 49 No. 3 2005
Degree of polarization for hot stars for various dipolar
magnetic fields (Bl is the field at the equator)

Name of the star τT
Pl, %

Bl = 100 G Bl = 10 G

ζ Puppis 0.2 0.4 0.02

ε Ori 0.17 0.17 0.01

Deneb 0.03 0.01 �0.01

P Cyg 1 0.1 0.3

WR 40 3.4 0.1 0.3

of magnitude. The degree of polarization decreases
due to the strong dilution of the radiation from the
accretion structures by radiation from the supergiant
HDE 226868, whose luminosity is estimated to be
L0 ≈ (1−3) × 1039 erg/s, while the X-ray luminos-
ity of Cyg X-1 is LX ≤ 8 × 1037 erg/s [22]. If we
assume that the optical radiation of the accretion
disk originates as a result of the reprocessing of
X-ray radiation from the accreting black hole, this
will specify the expected intrinsic linear polarization of
the accretion-disk radiation, Pl ≤ 10%. An optically
thick accretion disk is unable to provide this degree
of polarization for the most probable inclination,
i = 30◦. Therefore, if the polarization originates in the
matter being accreted, it can only be due to scattering
in an extended optically thin corona or wind material
ejected from the accretion disk. At the same time,
we cannot rule out the possibility that a small (at
the level of several tenths of a percent) amount of
intrinsic polarization in HDE 226868 originates due
to a magnetized stellar wind.

We will consider both possibilities and their phys-
ical consequences.

In the case of an optically thin magnetized corona
around the accretion disk, substantial polarization
(Pl ∼ 10%) can be obtained only from a point source
or a very extended corona. In this case, the calcu-
lations of Dolginov et al. [1] may be used, which
indicate that a degree of polarizationPl ∼ 10% can be
reached if δ0τenv ≈ 10, but only if the magnetic field is
perpendicular to the line of sight. For an inclination
of i = 30◦ this means that the magnetic field lies
roughly in the plane of the disk. If the optical depth of
the hot corona is τenv ≈ 0.1, the condition δ0 ≈ 102

implies that the magnetic field in the region where
the optical radiation is generated is B ≈ 500 G. In
several accretion-disk models, the inner radius of the
hot corona is ∼102Rg, where Rg = 2GM/c2 is the
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Fig. 3. Wavelength dependence of the degree of intrinsic
polarization of the X-ray binary SS 433 compared with
calculations for τT = 1.0, BP = 1 G, BT = 600 G.

gravitational radius. The dipolar magnetic field near
the last stable orbit is then B(3Rg) ∼ 107 G.

Let us now consider the situation when linear
polarization is generated in an extended stellar wind
from the optical component, HDE 226868. The pres-
ence of this wind was confirmed by the detection of an
orbital modulation of the radio radiation of Cyg X-1
due to variable absorption of the radio emission of the
relativistic jet ejected from near the black hole by the
stellar wind during the orbital rotation of the black
hole around its optical companion [26].

Assuming that the density of the stellar wind de-
creases with distance from the star as n = n0(Rs/r)2

and adopting Ṁ ≈ 2 × 10−6M�/yr, Rs = 10R�,
and the wind velocity V∞ ≈ 1850 km/s [26], we
can estimate the optical depth of the stellar wind
to electron scattering: τT ≈ 0.1. In this case, the
maximum degree of polarization, Pl ≈ 0.2%, cor-
responds to the case when the angle between the
magnetic-dipole axis and the line of sight is ∼65◦,
with (δsτenv)1/2 ≈ 3 (Fig. 1). We then obtain Bs ≈
350 G. Such a magnetic field seems somewhat, but
not extremely, high for an OV supergiant. Note that,
in this case, the magnetic-dipole axis lies in the
orbital plane, and the variability of the polarization
can be understood in a natural way.

5.3. Intrinsic Polarization in SS 433

The unique Galactic X-ray binary SS 433 is a
microquasar with two strongly collimated (ϑ ≈ 1◦)
relativistic (V = 0.26c) jets. The system is char-
acterized by three periodic motions: orbital motion
with the period Po = 13.082d, precessional motion
with Pp = 162.5d, and nutational motion with Pn =
6.28d [22, 27]. Recent spectral observations [28] have
confirmed the presence of absorption lines of an A7Ib
supergiant. The ratio of the masses of the relativistic
component and optical star is estimated to be q =
MX/MV = 0.57± 0.11, while the component masses
are MV = (19 ± 7)M� and MX = (11 ± 5)M� [27].
A kinematic analysis of the relativistic jets was used
to determine the inclination of the orbital plane to the
line of sight, i = 78.82◦ ± 0.11◦. The precession angle
of the disk is θ = 19.80◦ ± 0.18◦.

The variable (and, hence, intrinsic) linear polar-
ization of SS 433 was first detected by McLean and
Tapia [29], and later studied in theBV RI bands at the
Crimean Astrophysical Observatory [30]. Polarimet-
ric UV observations of SS 433 were carried out using
the high-speed HSP photometer–polarimeter of the
Hubble Space Telescope in 1993 [31]. The degree
of polarization in the UV reaches Pl = (13.4 ± 4)%
and is variable. Such a high degree of polarization
cannot originate in the accretion disk, and probably
results from scattering on electrons in the plasma
ejected from the disk (for example, in a dynamical hot
corona or wind). Such plasma may also be present in
an optically thin advection–accretion flow around the
black hole [32].

We have calculated the expected degree of polar-
ization for radiation from a compact magnetosphere
around the black hole that has been scattered in a
spherically symmetric flow of ejected matter (wind)
with a Parker-type magnetic field,

Br = Bp(RA/r)2 cos θ, (22)

Bϕ = BT
RA

r
sin θ, Bθ = 0,

where Bp is the magnetic field at the pole of the
magnetosphere, BT is the toroidal component of the
field, and RA is the radius of the magnetosphere.

Figure 3 presents the results of calculations of
the polarization of radiation scattered in an extended
dynamical corona surrounding the black-hole mag-
netosphere. The calculations were based on the tech-
nique of [1, 8–10] (for a compact magnetosphere).
Figure 3 also presents the polarimetric observations
of Dolan et al. [31]. The optical depth of the corona
to electron scattering is taken to be close to unity,
τT ≤ 1.

The polarimetric UV observations of SS 433 are
in good agreement with the theoretical curve if the
radial and toroidal components of the magnetic field
at the surface of the magnetosphere areBp = 1G and
BT = 600 G. The differences between the theoretical
and observed optical polarizations can, in principle,
be understood as a result of dilution of the polarized
component by intrinsically unpolarized radiation from
ASTRONOMY REPORTS Vol. 49 No. 3 2005



MAGNETIZED ENVELOPES AND EXTENDED ACCRETION STRUCTURES 187
the accretion disk. Although the degree of Thomson
polarization of radiation from a disk is fairly high for
an inclination of i ≈ 80◦ (P T

l ≈ 5% [13]), the pres-
ence of a strong (BT ≈ 600 G) toroidal magnetic field
completely depolarizes the radiation scattered in the
disk via Faraday depolarization, since the depolar-
ization parameter is δ0 ≥ 500(λ/1µm)2 in this case
[see (21)].

In principle, the derived components of the mag-
netic field near the magnetosphere can be used to
obtain additional information about the parameters of
the accretion onto the black hole.

According to the modern theory of rotating black
holes as energy machines, the magnetosphere is the
region from which the relativistic jets are ejected and
where the hot corona is simultaneously formed [4,
33]. Following [33], the size of this region is RA ≈
5 × 103Rg for a purely thermal corona and RA ≈ 3 ×
102Rg for a so-called hybrid corona. As a result, the
magnetic field in the immediate vicinity of the black
hole near the last stable orbit can be estimated to
be 3Rg , where Rg is the gravitational radius. If we
assume that the law (21) for a Parker field remains
valid to 3Rg , we can obtain an estimate for the max-
imum magnetic field of the black hole in SS 433:
Bmax ≈ 104−106 G, depending on the type of the dy-
namic corona. These values are consistent with those
obtained in the model of Blandford and Znajek [4].

Note also that, if we assume the radius of themag-
netosphere of SS 433 to beRA ≈ 1010 cm, according
to [33], the magnetic moment of the compact object
in SS 433 will be µ ≈ 1030 G cm3, which is close
to that estimated for the microquasar GRS1915+05
by Robertson and Leuter [2] based on very different
considerations.

Finally, if, in accordance with [32], the magnetic-
field lines strictly follow the motion of matter in the
accretion disk, we can determine the disk viscosity
coefficient introduced by Shakura and Sunyaev [34].
According to [32],

Br

Bϕ
=
Ur

Uϕ
≈ α, (23)

where Ur and Uϕ are the radial and Keplerian veloci-
ties of the matter being accreted in the disk.

We can also use our estimates of the components
of the magnetic field near the black hole in SS 433
to estimate the parameter α ≈ 2 × 10−3, which turns
out to be close to the theoretical value obtained by
King et al. [35].
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5.4. Polarization of Supernovae

Numerous recent observations provide evidence
that the radiation from supernovae displays apprecia-
ble polarization (see the review [36]). Spectropolari-
metrical observations of young supernovae obtained
with the Keck Telescope have demonstrated that
essentially all types of supernovae possess intrinsic
polarization [37]. For example, intrinsic polarization
was detected in the supernovae 1997dt (Ia), 1998T
and 1997dq (both Ib), 1997ef (Ib/c-peculiar), 1997eq
(IIn), and 1997ds (II-p) [37]. Type II and Ib/c super-
novae have typical polarizations Pl ≈ 1%, while some
display even higher polarizations [38]. The smaller
the size of the hydrogen envelope and the deeper the
layers that can be seen in the matter ejected in the
explosion, the higher the observed polarization [38].
Such a dependence was also considered by Höflich
et al. [39]. The degrees of polarization of type II are
higher than those of type Ic supernovae.

It is natural to explain the presence of polarized
radiation associated with supernovae using the tra-
ditional mechanism of scattering of the radiation from
the supernova in the symmetrical envelope formed by
the ejected matter. This idea has been considered in
numerous studies (see, for example, [36]).

Although we agree that this mechanism probably
plays a significant role in supernovae, we also wish
to point out another physical mechanism that can
result in appreciable polarization of the radiation of
supernovae without requiring symmetry in the distri-
bution of the ejected matter. We are referring to the
integrated effect of the Faraday rotation of the plane
of polarization of radiation scattered in the spherically
symmetrical envelope formed by the ejected material
(shock) in the presence of a magnetic field, which
eventually leads to the generation of intrinsic polar-
ization. The magnetic field in the region of propaga-
tion of the shock can be estimated in the framework
of this model.

Let us consider several examples. The type-II su-
pernova 1999em (with a plateau) was observed 7, 40,
49, 159, and 163 days after the outburst and displayed
substantial intrinsic polarization [40]. The measured
degree of polarization was Pl ∼ (0.2−0.5)%, which
is consistent with our calculations in Fig. 2; the
polarization maximum corresponds to the Faraday-
depolarization parameter δ0 ∼ 4, which corresponds
to a magnetic field of B ≈ 16.5 G for V -band radia-
tion (λeff = 0.55µm).

Another example is a spectroscopically normal
type-Ia supernova whose intrinsic polarization was
Pl ≈ 0.7% [41]. This value is more consistent with the
calculations in Fig. 1 for scattering in a magnetized,
optically thin envelope. In this case, the depolariza-
tion parameter is (δsτ)1/2, where τ is the optical
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depth of the envelope. The polarization Pl ∼ 1% cor-
responds to δsτ ∼ 1, and the implied magnetic field
is Bs ∼ 4/τ G. If τ ≈ 0.1, the magnetic field in the
shock region could reach∼40 G, or even ∼100 G.

No fundamental difficulty arises when the as-
phericity of the envelope is taken into account. Some
cases of the generation of polarized radiation in
a magnetized aspherical envelope are considered
in [1, 9].

6. MAIN CONCLUSIONS

We have presented the results of our calculations
of the integrated polarization of radiation emitted by
an optically thick spherical envelope in the dipolar
magnetic field of a central source (neutron star; ex-
panding supernova envelope in the initial stage of
expansion, when the matter is optically thick; en-
velopes around quasars and active galactic nuclei).
We have also considered distorted magnetic fields
in a diamagnetic envelope and envelope with strong
radial outflow. We compared our calculation results
with the analogous parameters obtained for an op-
tically thin spherical envelope in a dipolar magnetic
field. We have proposed a way to use polarization
measurements to determine whether an envelope is
optically thin or thick. Ours are the first calculations
of the integrated linear polarizations of magnetized,
optically thick spherical envelopes, and provide a clear
understanding of the polarization degrees and posi-
tion angles that may be expected in such objects.

Our theoretical results may be applied to analyses
of polarimetric observations of hot stars, Wolf–Rayet
stars, X-ray binaries, such asCygX-1/HDE226868,
SS 433, supernovae, etc. There may also be some ap-
plications to the analysis of polarimetric observations
of quasars and active galactic nuclei (see [42]). We
intend to embark on such a study in the future.
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39. P. Höflich, J. C. Wheller, and L. Wang, Astrophys. J.
521, 179 (1999).
ASTRONOMY REPORTS Vol. 49 No. 3 2005
40. D. C. Leonard, A. V. Fillipenko, andM. S. Brotherton,
Astrophys. J. 553, 861 (2001).

41. D. Kasen, P. Nugent, L. Wang, et al., astro-
ph/0301312.

42. Yu. N. Gnedin and N. A. Silant’ev, Pis’maAstron. Zh.
28, 499 (2002) [Astron. Lett. 28, 438 (2002)].

Translated by K. Maslennikov



Astronomy Reports, Vol. 49, No. 3, 2005, pp. 190–200. Translated from Astronomicheskĭı Zhurnal, Vol. 82, No. 3, 2005, pp. 219–230.
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Abstract—Stellar trajectories in models of open star clusters that are nonstationary in the regular field
of the cluster are analyzed. The maximum characteristic Lyapunov exponents λ of the trajectories of the
stellar motions in the open cluster are estimated. The mean λ in the open-cluster models considered
are λ � 1 (Myr)−1. Cluster cores and halos are regions of highly stochastic and more ordered stellar
motions, respectively. The mean Lyapunov exponent, λ, increases with the cluster density, as does the
size of the highly stochastic region in the cluster core. The stellar trajectories in phase space are “glued”
to a domain with a given λ. A Fourier analysis of the stellar trajectories in the open-cluster models is
performed. The distributions of the periods of the stellar trajectories with the highest power-spectrum levels
are constructed. The distributions of the periods corresponding to the most significant oscillations of the
stellar trajectories exhibit peaks with periods commensurable with (or close to) those of the most significant
oscillations of the regular field of the system. Specific features of the distributions of the periods of the most
significant oscillations of the stellar trajectories and the origins of the formation of these features in the
open-cluster models are discussed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Danilov [1, 2] analyzed models of open star clus-
ters that are nonstationary in the regular force field
of the cluster, close to gravitational instability, and
moving in circular orbits in the gravitational field of
theGalaxy. In such systems, small-scale density fluc-
tuations due to stellar encounters can easily be ampli-
fied and become large-scale fluctuations. During vio-
lent relaxation, t < τvr, open-cluster models develop
steady-state radial oscillations with virtually constant
amplitude and period (here t is the time and τvr is
the time scale for violent relaxation). To analyze stel-
lar streams in open-cluster models, Danilov [1] and
Danilov and Dorogavtseva [3] performed statistical
analyses of small intervals of stellar trajectories, en-
abling them to estimate the relaxation times for stellar
motions in spaces corresponding to a number of pa-
rameters of the stellar motions, identify the transfer of
energy from large-scale to small-scale stellar motions
during periodic variations of the regular field in the
model open clusters, etc.

The properties of stellar trajectories in open-
cluster models [1, 3] remain poorly understood.
Danilov [1] suggested that the number and influence
of stochastic stellar trajectories should increase in
denser model open clusters (i.e., those with a lower
degree of instability in the regular field), probably de-
creasing the role of barriers in the phase space of such
systems and ultimately removing them completely.
1063-7729/05/4903-0190$26.00
Our estimates show that the degree of stochasticity
of stellar trajectories in cluster models [3] does, in
fact, increase in denser models with lower degrees
of nonstationarity.

A number of methods have been used to analyze
stellar trajectories in models of stellar systems. These
include estimation of the characteristic Lyapunov ex-
ponents [4–12], Fourier analysis of stellar trajecto-
ries [7, 8], the use of trajectory-complexity indices
based on analyses of the power spectra of trajectories
(two different definitions of the complexity of a trajec-
tory can be found in [4, 11]), Fourier analysis of the
divergences of close trajectories, correlation analysis
of time series for the stellar coordinates in phase
space [13], a geometric method that involves estima-
tion of the Ricci curvature [14], analysis of angular
dynamical spectra [15, 16], the use of the ROTOR
and spectral distance D between the spectra of two
different initial vectors for the deviations of perturbed
trajectories from a base trajectory [16], and the use of
the surface of a Poincaré section [9], mapping equa-
tions [15–18], frequency maps [17, 18], and the fast
Lyapunov indicator (FLI) and FLI maps [17]. Two (or
more) methods are usually applied simultaneously to
analyze the properties of stellar trajectories. In most
cases, the above methods have been applied to non-
self-consistent, steady-state, collisionless models of
stellar systems and clusters.When analyzing systems
consisting of N gravitating bodies (see, e.g., [14]),
c© 2005 Pleiades Publishing, Inc.
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Table 1. Parameters of the open-cluster models

Model number R1/R2 N1/N2 N1 R2/Rt 〈R〉/Rt 〈δα/α〉 τvr λ

1 0.24 0.25 100 0.9 0.57 0.53± 0.09 50 0.79 ± 0.03

2 0.24 0.25 100 0.8 0.51 0.28± 0.03 42 0.97 ± 0.04

3 0.34 0.67 200 0.8 0.44 0.15± 0.02 42 1.21 ± 0.04

4 0.24 0.25 100 0.7 0.45 0.14± 0.02 34 1.25 ± 0.05

5 0.45 1.50 300 0.8 0.40 0.07± 0.03 42 1.22 ± 0.07

6 0.63 4.00 400 0.8 0.42 0.06± 0.03 42 1.04 ± 0.03
isolated clusters that are (most often) close to virial
equilibrium have been considered.

The properties of stellar trajectories in dynamical
models of star clusters have been investigated in [7,
9] and [8, 10], in which stationary, collisionless mod-
els of star clusters moving in circular orbits about
the Galactic center are analyzed. Both Carpintero
et al. [7] andMuzzio et al. [8] pointed out the increase
in the fraction of chaotic stellar trajectories in the
outer regions of globular-cluster models (see Fig. 6
in [7] and Fig. 1 in [8]; both analyses disregard stellar
encounters when estimating the fraction of chaotic
trajectories). According to [7], the fraction of chaotic
trajectories increases to 50−90% at the cluster pe-
riphery. Muzzio et al. [8] suggested that the chaotic
behavior at the periphery of a cluster is the result of
the combined effect of three forces acting on the stars:
the gravitational force of the cluster, the centrifugal–
centripetal (differential) force, and the Coriolis force.

Here, we include the effect of stellar encounters in
our open-cluster models, leading to a higher degree of
stochasticity and more complex Fourier spectra of the
stellar trajectories in the cluster core compared to the
estimates of [7, 9] and [8, 10].

Fourier analyses of stellar trajectories are of con-
siderable importance for determining the role of syn-
chronization of the stellar motions in the formation
of the frequency spectrum for oscillatory motions in
model open clusters. It is also of interest to analyze
the distributions of stellar trajectories in cluster mod-
els over the periods with the highest spectral density
for a given trajectory (found by analyzing the time
dependences of the stellar phase-space coordinates).
Such analyses make it possible to identify significant
periodicities in the stellar motions and compare the
distributions for open-cluster models with different
degrees of nonstationarity, enabling studies of how
the synchronization of radial motions of stars in clus-
ters affects the motions of stars with frequencies that
are incommensurable with the frequency of the radial
oscillations.
ASTRONOMY REPORTS Vol. 49 No. 3 2005
According to Rabinovich and Trubetskov [19,
p. 348], synchronization of oscillations in self-
oscillating systems with many degrees of freedom
shifts the oscillation frequency and gives rise to a
set of frequencies commensurable with the frequency
of the synchronous oscillations. If this mechanism
contributes to the evolution of model open clusters,
its effect should be to enhance the statistically most
significant frequencies (and periods) of the stellar mo-
tions and lead to the appearance of resonance peaks
in the period distributions of the stellar trajectories
(i.e., resonances with the radial oscillations of the
model cluster). Analysis of the coherence between the
phases of the periodic components of the stellar tra-
jectories and the periodic components of oscillations
of the regular fields of model clusters is of considerable
interest for studies of the synchronization of stellar
motions in nonstationary open-cluster models.

Our aim in this paper is to analyze the properties
of stellar trajectories in open-cluster models that are
nonstationary in the regular force field of the cluster.

2. DESCRIPTION OF OPEN-CLUSTER
MODELS

Following [1–3], we consider a cluster of N =
500 stars moving about the Galactic center in the
plane of the Galaxy in a circular orbit with a radius
of 8200 pc. At the initial time t = 0, we model the star
cluster as a system of two concentric (i.e., with coin-
cident centers of mass) gravitating spheres that sim-
ulate a halo and core. We analyzed six open-cluster
models, whose parameters are listed in Table 1.

Column 1 in Table 1 gives a number labeling each
open-cluster model. In all the open-cluster mod-
els considered, the initial ratios R1/R2 and N1/N2

(columns 2 and 3) obey the relation R1/R2 � 0.39 ×
(N1/N2)0.35, which is based on observational da-
ta [20], where R1 and R2 are the radii of the cluster
core and halo and N1 and N2 are the number of stars
in the cluster core and halo, respectively (the initialN1

is given in column 4). We set the masses of all stars
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equal to 1M�. As in [1–3], we consider the motions of
the cluster stars in a rotating reference frame (ξ, η, ζ)
fixed to the cluster center of mass, with the ξ, η, and ζ
axes pointing from the cluster center of mass toward
the Galactic center, along the direction of the cluster
motion in theGalactic plane, and perpendicular to the
Galactic plane, respectively. We adopted the model
for the Galactic potential of [21]. We used a random
number generator to specify the initial positions and
velocities of the stars in the model open clusters so
that, at t = 0, the cluster does not rotate relative to
external galaxies and each subsystem (halo and core)
has an approximately uniform initial number density
of stars in the (ξ, η, ζ) coordinate space. The speeds
of stars in cluster subsystem i can be calculated using
the formulas

Vi =
√

CiU(r), i = 1, 2, (1)

where r = |r| and V = |v| are the absolute values of
the radius vector r = (ξ, η, ζ) and the velocity vec-
tor v for the motion of the star about the cluster
center of mass, U(r) is the gravitational potential of
the cluster, and the subscripts i = 1, 2 correspond
to the cluster core and halo, respectively. We chose
the constants Ci so that both the cluster and its
subsystems obey the conditions of virial equilibrium
at t = 0, without including the effect of the gravi-
tational field of the Galaxy [22]. We used a random
number generator to specify r and the directions of
the vectors r and v in the open-cluster models, as
is described by Danilov [23] for his cluster model 2.
In our computations, we used the units pc, Myr, and
M�, and smoothed the force functions on the right-
hand sides of the equations of motions of the stars
(the smoothing technique and smoothing parameter
is described in [24]).

Columns 5 and 6 in Table 1 give the initial values
of R2/Rt and 〈R〉/Rt, where Rt is the cluster tidal-
stability radius in the Galactic field computed in ac-
cordance with [25] and 〈R〉 is the average distance of
a star from the cluster center.

The degree of nonstationarity of the model open
clusters in the regular field is determined by the
amplitude of oscillations of the virial coefficient, δα,
where α = 2Ec/W , Ec = T + W , and T and W
are the kinetic and potential energy of the cluster,
respectively, without allowance for the gravitational
field of the Galaxy (as in [1–3]). The various initial
values of R1/R2, N1/N2, and R2/Rt in cluster mod-
els 1–6 result in various degrees of nonstationarity.
Column 7 of Table 1 gives the mean ratios of the
amplitudes δα of oscillations of the virial coefficient
α to the mean value α = αv, averaged over the period
Pr for oscillations of the regular field. Models 1–6
are listed in Table 1 in order of decreasing degree of
nonstationarity. Column 8 gives the initial value of τvr
and column 9—the mean values λ of the estimated
maximum Lyapunov exponents λ.

3. MAIN FORMULAS AND NOTATION

Chandrasekhar’s [26] equations of stellar mo-
tion (5.517)–(5.519) can be written in the form

ξ̇i = ui, η̇i = vi, ζ̇i = wi; (2)

u̇i = 2ωvi − α1ξi + G

N∑
j=1,j �=i

(ξj − ξi)/r3
ij ,

v̇i = −2ωui + G

N∑
j=1,j �=i

(ηj − ηi)/r3
ij ,

ẇi = −α3ζi + G
N∑

j=1,j �=i

(ζj − ζi)/r3
ij ,

i = 1, . . . , N.

Here, N is the number of stars and ξi, ηi, ζi and ui,
vi, wi are the components of the radius vector ri and
the velocity vector vi of star i (as is noted above,
we set the masses of the stars in (2) equal to 1M�).
When linearized in the vicinity of the trajectory of star
i, Eqs. (2) lead to variational equations for small (in
magnitude) perturbations δξi, δηi, δζi, δui, δvi, δwi:

δξ̇i = δui, δη̇i = δvi, δζ̇i = δwi, (3)

δu̇i = 2ωδvi − α1δξi

+ G
N∑

j=1,j �=i

[δξj − δξi − (ξj − ξi)aij ]/r3
ij ,

δv̇i = −2ωδui

+ G
N∑

j=1,j �=i

[δηj − δηi − (ηj − ηi)aij ]/r3
ij ,

δẇi = −α3δζi

+ G
N∑

j=1,j �=i

[δζj − δζi − (ζj − ζi)aij ]/r3
ij ,

aij = 3((rj − ri)δ(rj − ri))/r2
ij ,

r2
ij = (ξj − ξi)2 + (ηj − ηi)2 + (ζj − ζi)2 + e2,

i = 1, . . . , N,

where e = const is a small, constant term added to
the square of the distance between the stars (the
smoothing parameter; see [24]); αi = const, i = 1, 3,
α1 < 0, α3 > 0; and ω = const is the angular velocity
of the open cluster about the Galactic center. We de-
termined αi and ω using the Galactic potential of [21].
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 1. Distributions of λτvr for the stellar trajectories in
four model open clusters.

We numerically integrated the system of equa-
tions (2)–(3) in order to compute the stellar trajec-
tories in the open-cluster models and estimate the
maximum Lyapunov exponents λ. We estimated λ
using the technique described in [27, formula (5.3.10),
p. 313]. We chose small values corresponding to δri ≤
0.01ri as the initial values of δξi, δηi, and δζi; the
initial δui, δvi, and δwi corresponded to δξi, δηi, and
δζi, and were obtained using (1).

4. RESULTS OF THE COMPUTATIONS

We analyzed the stellar trajectories in the six
model open clusters whose parameters are listed
in Table 1. We estimated the maximum Lyapunov
exponents λ of the stellar trajectories and constructed
distributions of the stellar trajectories over λτvr ,
n(λτvr) (Fig. 1). The resulting λ for the stellar
trajectories can be related to both the initial and final
phase-space coordinates of the stars. We accordingly
also constructed (r(t), λτvr) diagrams and families of
λτvr = const contours in (r, v) space for two times,
t/τvr = 0, 2.6.

Figure 1 shows the distributions n(λτvr) for clus-
ter models 1, 3, 5, and 6. The distributions for mod-
els 2 and 4 (with N1 = 100 stars in the core) are
similar to that for model 1, and so we do not show
them here. Most of the stellar trajectories in models 1,
2, and 4 have small positiveλτvr (0 < λτvr ≤ 40−50).
In this case, 0 < λ < 1 Myr−1. These λ values cor-
respond to trajectories of stars located far from the
cluster center. In model 1, these trajectories have
Lyapunov time scales tλ = λ−1 ∼ 1.2−12.5Myr. The
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 2. (r(0), λτvr) diagrams for the stellar trajectories in
two model open clusters.

trajectories of stars in the cluster core have higher
λ values, 1 Myr−1 < λ < (4−5) Myr−1 and, accord-
ingly, tλ ∼ 0.2−1.0 Myr.

We used the λτvr distributions of the stellar tra-
jectories to compute the mean maximum Lyapunov
exponents λ (and their errors) for the open-cluster
models. λ increases from 0.8 to 1.25 Myr−1 with
increasing density and decreasing degree of nonsta-
tionarity (Table 1). Thus, the degree of stochastic-
ity of the stellar motions in the model open clusters
decreases when the amplitudes of the oscillations of
the regular field are large (in highly nonstationary
systems).

Figure 2 shows (r(0), λτvr) diagrams for cluster
models 1 and 6. The dependences of r(0) on λτvr

for cluster models 2, 3, and 4 are similar to that
for model 1. The distributions of data points on the
(r(0), λτvr) diagrams for models 5 and 6 are also
similar to each other. Accordingly, we do not show the
(r(0), λτvr) diagrams for cluster models 2–5.

The domains of model 1 occupied by core and
halo stars in Fig. 2 are clearly separated by the line
λτvr = 50. The core size increases with the number
of stars in the core, N1 (from 2.5 pc in model 1
to 5.5 pc in model 6), whereas the boundary λτvr

separating the trajectories of the core and halo stars in
the (r(0), λτvr) diagram changes only slightly: λτvr ≈
40−50. In models 1–5, the dispersion of λ (and λτvr)
is much higher for trajectories of core stars than for
trajectories of halo stars (Figs. 1 and 2). In phase-
space domains corresponding to the cluster core, re-
gions with high- and low-stochasticity trajectories
can be fairly close to each other (Figs. 2 and 3).

Figure 3 shows families of λτvr = const contours
in (r, v) space at two times t for cluster model 1. The
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Fig. 3. λ = const contours in (r, v) space at two times t for cluster model 1.
numbers near the contours in Fig. 3 indicate the cor-
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correspond to higher values of λτvr.

The families of contours λτvr = const for the
other cluster models are similar, and we do not show
the corresponding plots here. At the initial time,
the domain of substantial stochasticity (λ > λ) is
located in the cluster cores (at small distances r)
and in the domain of small and intermediate v. As
the model open clusters evolve, the domains of sub-
stantial stochasticity propagate toward even smaller
values of r and v (Fig. 3). By t/τvr ≈ 2.7−3, narrow
regions of low stochasticity penetrate into extended
domains of high stochasticity in the cores of themodel
open clusters in (r, v) space, and small regions of
high stochasticity can occasionally be found at the
cluster periphery in regions of more ordered motion.
In cluster models 1–6, the domains of ordered and
stochastic motion are close to each other in (r, v)
space.

Thus, the trajectories of stars with high λ are lo-
cated in the cores of the model open clusters, whereas
trajectories with low λ are located (primarily) at the
cluster peripheries (Figs. 2 and 3). Therefore, the
cores and halos of nonstationary clusters form do-
mains of high stochasticity and of more regular mo-
tions, respectively. The domains of high stochasticity
are larger in denser model open clusters.

The Lyapunov time scales tλ = λ−1 that we de-
rived for “outer” stellar trajectories at the cluster pe-
riphery are a factor of ∼42–83 smaller than the tλ
estimates obtained by Carpintero et al. [7] for outer
stellar trajectories in non-isolated, collisionlessmodel
globular clusters. Thus, allowance for stellar encoun-
ters plays an important role in the tλ estimates, sub-
stationally decreasing the tλ estimates for the model
globular clusters.

When computed using the technique of [27,
p. 313], λ for each trajectory rapidly increases with
time, reaching its maximum at small t and further
varying only insignificantly (Fig. 4). It follows that
the phase-space trajectories of stars are “glued” to
the domain of a given λ.

For each trajectory, we determined the ampli-
tudes A, periods P , and phases Φ of the first three
(highest-amplitude) sinusoidal components of the
time variations of the phase-space coordinates of the
stars. We used the technique described in [28, 29] to
extract the sinusoidal components of the variations
of the stellar phase-space coordinates. We estimated
q = E3/Et, where E3 and Et are the energies of the
first three sinusoidal components and of the entire
spectrum of r = r(t) for each trajectory. Here and
below, we will consider the time dependences of r, ṙ,
θ, ξ, η, and ζ after subtraction of their overall trends,
which were determined via third-order, polynomial,
and least-squares fits in time intervals∆t = 3τvr . We
estimated the energies Et and E3 using the temporal
representation of the trajectory and its first three
sinusoidal components together with formulas (3.20)
and (3.30) from [30]. Our estimates indicate that the
first three sinusoidal components account for most
(up to 95%) of the energy of the spectra. For 75−92%
of all the stellar trajectories in cluster models 1–
6, the first three sinusoidal components account for
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Table 2. Pi, Ai, and Φ(α)
i for the sinusoidal components of α(t) of the cluster models

Model number P1/τvr A1 Φ(α)
1 P2/τvr A2 Φ(α)

2 P3/τvr A3 Φ(α)
3

1 0.62 0.1627 120.7◦ 0.52 0.0251 49.6◦ 1.12 0.0191 188.3◦

2 0.68 0.1338 93.4 0.90 0.0253 215.8 0.59 0.0188 65.9

3 0.64 0.0744 73.9 0.84 0.0183 165.5 1.21 0.0122 271.2

4 0.78 0.0964 103.0 1.05 0.0117 194.2 0.64 0.0103 31.4

5 0.67 0.0336 93.4 1.15 0.0196 204.7 0.37 0.0069 272.1

6 0.58 0.0444 102.9 1.10 0.0441 131.3 0.45 0.0099 275.3
more than 50% of the energy in the spectra of r(t)
for the trajectories. Thus, these first three sinusoidal
components represent the motions of stars in our
open-cluster models well, and also describe fairly well
the more ordered motions of stars in the halo. This
agrees with the results of Kandrup et al. [4], who
showed that the complexity of the spectrum of the
stellar trajectories (the number of harmonics in the
Fourier spectrum with total energies equal to 95% of
the total energy in the entire spectrum) in collisionless
systems decreases linearly with decreasing maximum
Lyapunov exponent [4, Figs. 5, 8].

The values of q for α(t) for cluster models 1–6
lie in the interval q ∈ [0.66, 0.93]. Table 2 gives the
parameters of the first three sinusoidal components of
α(t) in the open-cluster models.

We constructed diagrams of q vs. λτvr for cluster
models 1–6. The estimates of q and λτvr indicate that
in models 2, 3, and 5 withR2/Rt = 0.8, the fraction of
trajectories with q > 0.5 decreases from 0.81 to 0.76
as the number of stars in the core, N1, increases
from 100 to 300. The values of q for α(t) for cluster
models 2, 3, and 5 also decrease, from 0.93 to 0.66.
This must be due to the increase in the size of the
high-stochasticity domain with increasing N1 ob-
served for models 2, 3, and 5.

The fraction of trajectories with q > 0.5 reaches
0.92 in model 6 withN1 = 400. The value of q for α(t)
reaches 0.91 in model 6. Judging from the q estimates
for the stellar trajectories in cluster model 6, this is
the model with the most regular stellar motion. Note
that, during periods when the cluster is concentrated
toward the ζ = 0 plane, this model develops a toroidal
structure, with an increased stellar number density
inside the torus (in ξ, η, ζ space), whose equatorial
plane is close to ζ = 0.

For a number of times, we constructed distribu-
tions of the stellar number density ν(ρ, t) projected
onto the ζ = 0 plane in the distance ρ from the ζ axis,
as well as the radial distributions of the stellar number
density ν(r, t) as a function of r. The ν(ρ, t) diagrams
ASTRONOMY REPORTS Vol. 49 No. 3 2005
show density waves propagating across the cluster
core away from the ζ axis at velocities comparable to
the mean velocity of the peculiar motions of the stars.
The amplitude of the oscillations of the density ν(ρ, t)
in the core of model 6 is approximately twice that in
the cores of models 1–5. For this reason, at some
times, the stellar density ν(ρ, t) in the ∆ρ intervals
closest to the ζ axis in cluster model 6 can be lower
than in ∆ρ intervals at greater distances from this
axis. Cluster models 1–6 show similar density waves
in the distributions ν(r, t).

The fraction of trajectories with q > 0.5 increases
from 0.75 to 0.85 in models 1, 2, and 4, which have
an initial number of stars in the core N1 = 100 and
R2/Rt decreasing from 0.9 to 0.7. The values of q for
α(t) for models 1, 2, and 4 also increase from 0.89
to 0.97. We believe this is due to the increase in the
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number of halo-star trajectories associated with the
open cluster.

We constructed the total distribution of the tra-
jectories over the periods P of the first three sinu-
soidal components obtained by analyzing r(t), ṙ(t),
and θ(t), where ṙ = dr/dt and θ is the angle between
the radius vector r of the star at time t and the posi-
tive ζ axis direction. These distributions can be used
to estimate the frequencies and phases of the most
significant oscillations in the stellar motion. When
constructing these distributions, we divided the tra-
jectories into two groups according to their λ values:
λ < λ and λ > λ. Table 1 lists the λ values. Figures 5
and 6 show the results of these computations for ṙ(t)
and θ(t). Plots of the period distributions of r(t) differ
little from those of ṙ(t), and we show only the latter
distributions here.

The total period distributions of the first three
sinusoidal components in the dependences r(t), ṙ(t),
and θ(t) exhibit nonrandom and well-defined peaks
at points corresponding to (or close to) periods
commensurable with the period Pr of the oscillations
of the regular field. We determined Pr using the
frequency of the first (highest-amplitude) sinusoidal
component identified in α(t) using the technique
presented in [28, 29]. Table 2 lists the computed
parameters of the sinusoidal components of the time
variations of the virial coefficients (and regular fields)
of the model open clusters.

Trajectories with small P have large λ and are pri-
marily located in the cluster core, whereas trajectories
with P ≥ Pr have small λ and are primarily located
at the cluster periphery. Unlike models 1–5, model 6
exhibits no segregation of trajectories with different
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λ according to the periods P , and two groups of
trajectories with approximately the same proportion
of regular and chaotic trajectories form in each ∆P
interval.

In cluster model 1 (with the highest degree of
nonstationarity), a significant fraction of the stellar
trajectories forming the resonance peaks at t � 3τvr

are located far from the cluster center (r > Rt). These
trajectories correspond to small λ (Figs. 5 and 6).
Oscillations of the regular field probably play an im-
portant role in the dissipation of these stars from the
cluster.

In the open-cluster models considered, the height
(and population) of the resonance peaks in the period
distributions for more regular trajectories with λ < λ
remains unchanged when P < Pr and decreases with
increasing N1 when P > Pr. The number of stars lo-
cated deep within the tidal surface of the cluster in the
gravitational field of the Galaxy (r � Rt) increases
with N1. The escape energy of these stars increases,
so that it takes longer for the system to transfer the
energy of oscillations of the regular field to stars, and
requires more oscillations of the regular field with
period Pr to enable these stars to escape from their
clusters and to produce the same population of reso-
nance peaks as for smallN1.

The distributions of θ(t) over the main oscilla-
tion periods P in the open-cluster models form two
groups, which are most clearly visible in models 2,
4, and 6; the distribution for model 6 is shown in
Fig. 6. In models 2 and 4, these are the groups with
periods P < Pr and P > Pr, which mostly corre-
spond to cluster stars and stars that have escaped
from the cluster to large distances r > Rt in the
Galactic plane, respectively. Large values ofP for θ(t)
correspond to large r values, and to stellar motions
directed primarily along the (ξ, η) plane, in parallel
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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to the Galactic plane. Ordered (λ < λ) and chaotic
(λ > λ) trajectories in the group with P < Pr are well
mixed in the period distribution. Chaotic trajectories
are rarely found in models 2 and 4 in the group with
P > Pr.

The core of cluster model 6 contains two groups of
stellar trajectories in the P distributions, obtained by
analyzing the θ(t) dependences (Fig. 6). When t <
3τvr , the distances r of these stars from the cluster
center are smaller than 6 pc. The trajectories of the
first group have P < 0.62τvr , while the trajectories
of the second group have P in the interval P/τvr ∈
[0.62, 1.1]. In the core of model 6, the first and second
group contain both chaotic and more regular trajec-
tories, with the fraction of more regular trajectories
(with small λ) in the second group exceeding 0.5
and also exceeding the fraction for the group with
P < 0.62τvr . The model halos are largely dominated
by regular motion. According to [1, 3], open-cluster
model 6 displays a doubling of the period of large-
scale oscillations of the star cluster: Pr/τvr � 0.6 and
Pξ,η/τvr � 1.2); the period Pξ,η corresponds to the
oscillations in the outer parts of the cluster in the
(ξ, η) plane (i.e., the Galactic plane). Model 6 peri-
odically develops a toroidal structure in (ξ, η, ζ) space
(see above).

We constructed the total distributions NΦ of the
stellar trajectories over the phases Φ of the first three
sinusoidal components of r(t) for cluster models 1–
6, using phase intervals ∆Φ = 2◦−18◦. The dashed
curve in Fig. 7a shows the distribution NΦ obtained
for model 1 for ∆Φ = 18◦. The solid curve in Fig. 7a
shows a sixth-order polynomial approximation NΦ,
which gives the best rms fit to the NΦ = NΦ(Φ) val-
ues for r(t).

Note that identifying the sinusoidal components
in r(t) using the technique of [28, 29] yields the ini-
tial phases Φ(0). As the cluster evolves, the phases
Φ(t) of oscillations of r(t) increase linearly with time:
Φ(t) = Φ(0) + (2π/P )t. The distribution NΦ of Φ(0)
for r(t) in Fig. 7a is dominated by initial phases close
to the initial phase of the oscillations of the regular

field of the cluster (i.e., the phase Φ(α)
1 (0) of the first

sinusoidal component of α(t) (Table 2)). This coher-
ence between the initial phases of the radial stellar
motions and the cluster oscillations is most clearly
visible for models 1 and 2, which have a higher degree
of nonstationarity.

The vertical line Φ1 = 120.7◦ in Fig. 7a indicates
the phase Φ(α)

1 (0), which nearly coincides with the
phase of themaximum of the polynomial fitNΦ. Thus,
only a small excess of the maximum NΦ over its
minimum value (by approximately eight to nine tra-
jectories in the phase interval ∆Φ = 18◦) reflects the
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 7. (a) Total distribution NΦ for the trajectories for
cluster model 1 over the initial phases Φ of the first three
sinusoidal components of r(t). (b) Distribution NΦ1 of
the trajectories of halo stars in cluster model 1 over the
initial phasesΦ1 of the first sinusoidal component of r(t).

tendency of the system toward in-phase radial mo-
tions of stars. The number of trajectories with phases

Φ(0) differing by less than 90◦ from Φ(α)
1 (0) exceeds

the number of other trajectories by only about 10%.
This is, to a large extent, due to the way we specified
the initial velocities in our models (all initial directions
of v are equally probable). In this case, the phases of
radial motion of the stars have an approximately uni-
form distribution. The stochasticity of the stellar tra-
jectories (all λ > 0) and the random nature of stellar
encounters contribute significantly to the uniformity
of the distribution of the current phases of r(t).

The coherence of the initial phases of the radial
motions increases appreciably for halo stars.We iden-
tified the trajectories of halo stars as those having
λ < λ, q > 0.5, and maximum distances rmax not ex-
ceeding 20 pc during the evolution of the cluster. The
dashed curve in Fig. 7b shows the distribution of the
halo-star trajectories,NΦ1 , over the phases of the first
sinusoidal component in cluster model 1. The solid
curve shows the sixth-degree polynomial NΦ1 giving
the best rms fit of theNΦ1 = NΦ1(Φ1) values for r(t).
We used the standard phase interval ∆Φ1 = 18◦. The
excess of the maximum of the polynomial fitNΦ1 over
its minimum value in model 1 is approximately 12 tra-
jectories in the phase interval ∆Φ1 = 18◦. In terms
of percentages, this is appreciably higher than for all
the stellar trajectories of the cluster model, since the
trajectories of only 203 stars in model 1 satisfy the
conditions λ < λ, q > 0.5, and rmax < 20 pc. In this
case, the number of halo-star trajectories with phases

Φ1(0) differing by less than 90◦ from Φ(α)
1 (0) is about
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38% higher than the number of remaining halo-star
trajectories.

For a good fraction of the trajectories, the am-
plitudes of the stellar radial motions can increase at
some times (and during some time intervals) due to
the closeness of the phases of the first two sinusoidal
components of r(t) for these trajectories. The number
of dependences r(t) for which the current phasesΦ(t)
of the first two (among the first three) sinusoidal com-
ponents differ by no more than∆Φ = 18◦ is, on aver-
age, 30% of the total number of trajectories in cluster
model 1, with this fraction reaching 50% at some
times. The fraction of trajectories with close current
phases of two (among the first three) sinusoidal
components increases with increasing interval ∆Φ.

We constructed the distributions of the halo-star
trajectories in cluster model 1 over the periods P
of the first sinusoidal component of ξ(t), η(t), and
ζ(t), as well as the analogous period distributions
for the first three main sinusoidal components. When
constructing these dependences, we used, in addition
to the criteria for the selection of halo-star trajectories
described above, the additional constraint Etr <
0.3(Et + Etr), whereEtr is the energy corresponding
to the trend of r(t). This constraint enables us to
exclude the trajectories of halo stars that departed
to distances far beyond the tidal radius of the cluster
during the time 3τvr and then returned. The num-
bers in Fig. 8 indicate the periods P corresponding
to the highest peaks in the distributions and the
lowercase letters the theoretical estimates of these
periods obtained in [31] (here and below, P is in
fractions of τvr). The period of the variations of
the regular cluster field is Pr = 2π/ωr = 0.620 ±
0.010 (ωr is the frequency of oscillations of the
regular field). We find for η(t): Pa(5ν1) = 0.564 ±

0.018, P1

(
9
10

ωr

)
= 0.568 ± 0.009, Pb(2ν1 +

ν2) = 0.638 ± 0.011, P2

(
3
4
ωr

)
= 0.827 ± 0.013,

P3

(
5
7
ωr

)
= 0.868 ± 0.014, Pb(β3 − 2ν2) = 1.228 ±

0.053, P4(2ωr) = 1.240 ± 0.020, P5

(
13
6
ωr

)
=

1.343 ± 0.022, Pc(2β3 − 3ν1) = 1.356 ± 0.102,

Pd(−3ν1 + 2ν2) = 1.536 ± 0.104, and P6

(
5
2
ωr

)
=

1.550 ± 0.025, where ν1, ν2, and β3 are the eigen-
frequencies of the motion of a halo star in the total
field of the Galactic potentials produced by a uniform
ellipsoidal cluster approximating the potential of the
halo in cluster model 1 averaged over the period Pr .
The horizontal period error bars in Fig. 8 correspond
to the errors in the approximation of the potential of
the uniform gravitating ellipsoid [31] averaged over
the period Pr (if Latin letters are used) or the error in
Pr derived in this paper (if numbers are used).

We find for ζ(t): P1(ωr) = 0.620 ± 0.010,
ASTRONOMY REPORTS Vol. 49 No. 3 2005



NUMERICAL DYNAMICAL MODELS OF OPEN CLUSTERS 199
Pa(−β3 + 2ν2 + 2ν1) = 0.656 ± 0.018, P2

(
7
8
ωr

)
=

0.709 ± 0.011, P3

(
3
4
ωr

)
= 0.827 ± 0.013,

P4

(
5
7
ωr

)
= 0.868 ± 0.014, Pb(3ν1 − ν2 + β3) =

0.904 ± 0.035, P5

(
5
8
ωr

)
= 0.992 ± 0.016, Pc(3β3 −

2ν2) = 1.014 ± 0.073, P6

(
3
5
ωr

)
= 1.033 ± 0.017,

Pd(−ν2 + 2β3) = 1.060 ± 0.051, Pe(β3) = 1.111 ±

0.027, P7

(
5
9
ωr

)
= 1.116 ± 0.018, and Pf (ν2) =

1.166 ± 0.019.
Six to fifteen halo-star trajectories in cluster

model 1 are grouped at or near these periods. The
periods that we give here are commensurable or
nearly commensurable with Pr .

Note that the stellar phase-space coordinates at
t = 0 are random quantities obtained using continu-
ous phase-space distributions for the core and halo
stars. Stellar encounters in the cluster are also ran-
dom in nature. It is therefore reasonable to expect that
the frequencies and amplitudes of the stellar motions
in the system should also be random and continuously
distributed quantities. However, the distributions of
the periods P of the trajectories exhibit resonance
peaks. The most likely origin of the formation of such
groups of trajectories is a “frequency shift” during
the synchronization of the oscillations, as has been
described for self-oscillating systems with many de-
grees of freedom [19, p. 348]. Such synchronization
leads to the development of a set of frequencies that
are commensurable with ωr, at some of which syn-
chronous motion (with the same frequency) of small
groups of stars along their trajectories arises spon-
taneously. In this case, a set of intervals of radial
distances for preferred motions of halo stars is likely
to form in the system.

5. CONCLUSIONS

(1)We have analyzed here the trajectories of stellar
motions in six model open clusters moving in circular
orbits in the Galactic plane and nonstationary in the
regular-force field. We estimated the maximum char-
acteristic Lyapunov exponents λ for stellar trajecto-
ries in these open-cluster models. The mean Lya-
punov exponents λ increase with increasing density
and decreasing degree of nonstationarity of the model
clusters, from 0.8 to 1.25 Myr−1. Thus, the degree
of stochasticity of the stellar motions in the model
open clusters decreases when the amplitudes of the
ASTRONOMY REPORTS Vol. 49 No. 3 2005
oscillations of the regular field are large (in strongly
nonstationary systems).

(2) Stellar trajectories with high λ values are lo-
cated in the cores of the model open clusters, where-
as trajectories with low λ are located (primarily) at
the cluster peripheries. Thus, in nonstationary open
clusters, the cores and halos form domains of high
stochasticity and ordered stellar motion, respectively.
The size of the domain of stochasticity in the core
increases in denser model clusters. During the evolu-
tion of the model open clusters, the regions of signif-
icant stochasticity propagate toward smaller r and v.
Domains of regular and stochastic motions can be
adjacent to each other in (r, v) space.

(3) The estimated λ for each stellar trajectory
increases rapidly with time, reaching its maximum
value at small t and further varying only insignifi-
cantly. Thus, stellar trajectories in phase space are
“glued” to the domain with the given λ.

(4) We analyzed the amplitudes, phases, and pe-
riods of the three sinusoidal components with the
highest amplitudes for the stellar trajectories for the
six open-cluster models. We suggest using the pa-
rameter q (the ratio of the energy contained in these
three sinusoidal components to the total energy in
the Fourier spectrum of the trajectory) to analyze
the properties of trajectories. The combined use of λ
and q enables a more accurate separation of ordered
and stochastic trajectories. Overall, the value of q for
the dependence α(t) characterizes the complexity of
the spectra of all the trajectories in the open-cluster
model.

(5) In cluster models 1–5, trajectories with short
periods P have high λ and are located primarily in the
cluster core; trajectories with low λ have long P and
are located primarily at the cluster periphery. Cluster
model 6 shows no segregation of trajectories with
different λ values in P , probably due to the formation
of a toroidal structure in the distribution of stars in
(ξ, η, ζ) space in this model.

(6) The distributions of the periods of the most
significant oscillations of the stellar trajectories in the
cluster models show nonrandom, well-defined peaks
at periods P that are commensurable (or close to
commensurable) with the period Pr of oscillations of
the regular field of the cluster. The periods P corre-
sponding to these peaks derived from the trajectories
agree with the theoretical estimates of Danilov [31].

(7) A significant fraction of stars forming reso-
nance peaks in cluster model 1, which has the highest
degree of nonstationarity, are located at greater radial
distances (r > Rt) by the end of the computations
(at t = 3τvr). Oscillations of the regular field of the
cluster may play an important role in the dissipation
of these stars from the cluster. Cluster models with
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higher degrees of nonstationarity also exhibit higher
coherence between the initial phases of the radial mo-
tions of stars along their trajectories and oscillations
of the cluster.
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Abstract—The stability of multiple systems with known orbital elements and with subsystems occupying
adjacent hierarchy levels is analyzed using six stability criteria and numerical simulations of their dynamical
evolution. All the stability criteria considered are in qualitative agreement with the numerical computations.
Of the 16 systems studied, 11 are confirmed to be stable and five (HD 40887, HD 136176, HD 150680,
HD 217675, and HD 222326) may be unstable on time scales of∼106 yr or less. The small dynamical ages
of the unstable systemsmay indicate that they have captured components during encounters between close
binaries and field or moving cluster stars. The instability could also result from the perturbation of a stable
system when it approaches a massive object (star, black hole, or molecular cloud). It is possible that some
of the unstable systems are remnants of small clusters or stellar groups. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Multiple stars with Nc ≥ 3 components make
up a substantial fraction (about 10%) of the stellar
population of the Galaxy [1, 2]. These stars are tra-
ditionally subdivided into two groups: (1) hierarchical
systems, in which no three or more components all
have comparable separations, and (2) trapezium-type
systems, which contain components with compara-
ble separations. Hierarchical systems whose outer-
subsystem orbits are not too elongated are usually
stable, although the motions of stars in such systems
are subject to periodic and secular perturbations (e.g.,
the Kozai [3] and other related effects [4, 5]). On
the whole, the system maintains its hierarchy during
its dynamical evolution. Trapezium-type systems, on
the contrary, are dynamically unstable and become
disrupted on time scales equal to ∼101−103 of the
mean crossing time [6, 7]. The hierarchical nature of
a multiple system’s structure does not guarantee by
itself the stability of the system. The reason is that
individual components in unstable systems can be
ejected to large distances [6]. During ejection, the
multiple system has a hierarchical structure, but it
will later be disrupted.

All known multiple systems with measured orbital
motions are hierarchical systems. However, several
systems with only weak hierarchy can be found, in
which the size of the inner subsystem is not negligible
compared to the distance between this subsystem and
the outer body. The analysis of the stability of such
systems is of considerable interest.
1063-7729/05/4903-0201$26.00
There are at least two approaches to investigat-
ing this problem. In the first, the motion of the sys-
tem is analyzed using analytical or empirical stability
criteria. The second approach involves carrying out
numerical simulations of the dynamical evolution of
a system by numerically integrating the equations of
motion. In the latter case, we must know the masses,
coordinates, and velocities (or orbital elements) of all
bodies of the system at some time, whereas, in the
former case, it is sufficient to know the parameters
used by the stability criteria employed and their criti-
cal values.

Various authors have analyzed the stability of
observed multiple systems [8–11]. Szebehely and
Zare [8] and Fekel [9] found most of the systems they
studied to be stable, and some to be possibly unstable
within certain intervals of themutual inclination of the
orbital planes, which are not known with the required
accuracy. Donnison and Mikulskis [10] showed that
the motions of all the systems they studied are stable
according to the criterion employed. However, this
paper contains a number of typographical errors and
errors in the adopted orbital elements and masses,
many of which have been later redetermined. More-
over, the authors of these three papers do not analyze
the effect of the errors in the initial data on the result,
whereas this can play an important role, especially
near the stability limit.

Orlov and Petrova [11] estimate four stability pa-
rameters together with their critical values and the
errors in these quantities. The results suggest that
c© 2005 Pleiades Publishing, Inc.
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some of the observed systems may be unstable. A firm
interpretation of these results requires further anal-
ysis, in particular, numerical simulations of the dy-
namical evolution of multiple systems that are near
the stability limit. In addition, new observational data
for some multiple stars have been obtained recently,
making new dynamical studies of these systems of
interest.

We conclude our summary of current and past
studies concerning the instability of observed multiple
systems by noting the study of Loinard et al. [12],
who were the first to observationally confirm the ejec-
tion of one of the components in the T Tauri multiple
system.

2. CRITERIA FOR STABILITY AND ESCAPE

A number of analytical and empirical criteria for
the stability of triple systems are available. Descrip-
tions of the criteria of Golubev [13, 14], Harring-
ton [15, 16], Eggleton and Kiseleva [17], andMardling
and Aarseth [18] are presented in the original papers,
as well as by Orlov and Petrova [11], and we do not
repeat them here.

Another criterion proposed by Valtonen and Kart-
tunen [19] is based on the theory of perturbations in
the three-body problem. It has the form

Q =
aout(1 − eout)

ain
> Qcritical, (1)

where

Qcritical = 3.6
(

1 +
m3

m1 +m2

)
(2)

× (1 − eout)
−1/11 (

1 + e2in/2
)

×
[
0.07 + (1 + cos i)1.15

]1/6
.

Here, aout and ain are the semimajor axes of the
orbits of the outer and inner pairs, eout and ein are
the eccentricities of these orbits, m1 and m2 are the
masses of the two components in the inner pair, m3

is the mass of the distant body, and i is the angle
between the orbital angular momenta of the inner and
outer binaries.

We also used the empirical criterion of
Tokovinin [20]:

T =
Pout(1 − eout)3

Pin
> T critical, (3)

T critical = 5. (4)

Here, Pout and Pin are the orbital periods of the outer
and inner pairs.
In addition to quantities characterizing the stabil-
ity of the system proper, following Orlov and Petro-
va [11], we introduce the following parameter charac-
terizing the margin of stability possessed by a system:

δi =
αi − αcritical

i

αcritical
i

, (5)

where αcritical
i is the value of the parameter corre-

sponding to the stability limit and αi is the observed
value. Both quantities are calculated for a system
based on observational data—the component masses
and orbital elements of the inner and outer binaries.

We used the criterion of Griffith and North [21]
to identify the state of disruption in our numerical
simulations of the evolution of triple systems.

3. FORMULATION OF THE PROBLEM

Our aim was to analyze the stability of triple and
higher-multiplicity systems with known orbital pa-
rameters and with subsystems having adjacent hi-
erarchy levels using both the stability criteria listed
above and numerical simulations of the component
motions. We numerically integrated the equations of
motion using the TRIPLE code developed by Sverre
Aarseth (Institute of Astronomy, University of Cam-
bridge, United Kingdom), which applies the tech-
nique for regularizing close encounters developed by
Aarseth and Zare [22]. We modified the code slightly
to adapt it to our particular needs.

Our stability analysis can be divided into several
main stages.

(1) Selecting systems with known orbital parame-
ters for the inner and outer binaries and known stellar
masses.

(2) Partitioning the sample into groups according
to multiplicity and the degree of closeness of the inner
binary.

(3) Computing the parameters and margin of sta-
bility based on the listed criteria, and identifying pos-
sible unstable systems.

(4) Computing the dynamical evolution of the can-
didate unstable systems via numerical integration of
their equations of motion.

(5) Analyzing each system to determine whether
or not it is dynamically stable.

Since all the known parameters of stellar systems
are subject to errors, more trustworthy conclusions
can be reached if the component motions in multiple
systems are analyzed allowing for the errors in the
observational data. We plan to carry out such an
analysis in a future study; the current paper should
be regarded as the first part of a more general study.
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Table 1. Parameters of multiple systems with known orbital elements of subsystems occupying adjacent hierarchy levels
and their errors. The systems are listed in order of right ascension

System
(HD, IDS) P , yr T0, yr e a, arcsec Ω, deg ω, deg i, deg M1,M� M2,M� References

Level of
hierarchy σP σT0 σe σa σΩ σω σi σM1 σM2

5408

00508+5949 [23, 24]

1 83.1 1952.31 0.241 0.245 175.0 333.19 54.9 8.25 5.0

±0.2 ±0.09 ±0.002 ±0.002 ±0.3 ±0.33 ±1.1 ±0.80 ±0.5

11 4.84 1984.1 0.23 0.034 185 290 55 5.65 2.6

0.03 0.1 0.03 0.002 10 9 5 0.60 0.2

9770

01304–3026 [25]

1 112 1960 0.21 1.420 142 65 29 2.22 0.38 [26]

11 11 0.10 0.015 10 10 10 0.21 0.10

11 4.6 1991.9 0.33 0.17 158 307 22 1.44 0.78 [27]

0.4 0.4 0.10 0.01 10 10 10 0.15 0.10

9770

01304–3026 [25]

1 112 1960 0.21 1.419 142 65 29 2.22 0.38 [26]

11 11 0.10 0.015 10 10 10 0.21 0.10

11 4.6 1932.6 0.30 0.178 57 51 22 1.44 0.78 [28]

0.4 0.4 0.10 0.010 10 10 10 0.15 0.10

12376

01562+3614 [25]

1 330 1907 0.33 1.13 159 174 140 2.10 0.49 [29]

33 33 0.10 0.11 10 10 10 0.21 0.10

11 12.94 1989.06 0.404 0.150 191.4 295.1 67.0 1.32 0.78 [30]

0.04 0.03 0.007 0.001 0.5 0.7 0.5 0.15 0.15

29316

04320+5316 [24, 31]

1 430 2033 0.32 1.36 112 327 133.0 3.0 1.17

5 2 0.02 0.02 3 4 1.5 0.2 0.12

11 27 1988.9 0.86 0.17 21 52 141 1.86 1.14

2 0.6 0.06 0.10 10 10 10 0.19 0.11

29316

04320+5316 [31]

1 430 2033 0.32 1.36 112 327 133.0 3.8 3.20

5 2 0.02 0.02 3 4 1.5 0.3 0.32

11 27 1988.9 0.86 0.17 21 52 141 2.40 1.40

2 0.6 0.06 0.10 10 10 10 0.24 0.14
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Table 1. (Contd.)

System
(HD, IDS) P , yr T0, yr e a, arcsec Ω, deg ω, deg i, deg M1,M� M2,M� References

Level of
hierarchy σP σT0 σe σa σΩ σω σi σM1 σM2

40887
05566–3103 [24]

1 391 1716 0.27 3.95 143 245 110 1.28 0.69 [32]
40 40 0.1 0.40 10 10 10 0.14 0.10

11 68 1998.0 0.45 0.90 125 279 103 0.69 0.59 [27]
4 0.4 0.05 0.04 5 5 5 0.10 0.10

56986
07142+2210 [24]

1 1200 1440 0.11 6.98 18 57 63 1.55 0.73 [33]
120 120 0.10 0.70 10 10 10 0.80 0.10

11 6.1 1901.2 0.35 0.00143 70 215 92 0.95 0.6 [34]
0.6 0.6 0.10 0.00010 10 10 10 0.60 0.5

98230/1
11128+3205 [24, 31]

1 59.84 1995.0 0.412 2.533 101.2 127.0 122 1.14 0.94 [35]
0.04 0.1 0.016 0.006 0.4 0.7 7 0.14 0.10

11 1.834 1992.290 0.61 0.054 318 324 91 1.1 0.04
0.001 0.007 0.08 0.003 10 10 4 0.1 0.10

108500
12226–6113 [25]

1 2520 1953 0.63 5.43 39 173 144 1.56 0.98 [36]
250 252 0.10 0.50 10 10 10 0.14 0.10

11 27.1 1988.4 0.17 0.29 164 57 139 0.78 0.78 [37]
2.7 2.7 0.10 0.03 10 10 10 0.10 0.10

136176
15140+2712 [24]

1 200 1941.4 0.65 1.22 62 52 58 1.8 1.1 [27]
14 0.2 0.03 0.12 5 3 5 0.2 0.1

11 50 1895 0.7 0.06 135 244 90 1.10 0.70 [38]
5 5 0.1 0.01 10 10 10 0.11 0.10

150680
16375+3147 [39]

1 34.5 1967.8 0.46 1.36 49 111 133 1.24 0.73
3.5 3.5 0.1 0.1 10 10 10 0.15 0.10

11 10.5 1953.5 0.07 0.08 23 0 90 1.05 0.19
1.0 1.0 0.10 0.01 10 10 10 0.11 0.10

ADS 14296
20435+3607 [24]

1 391 1795 0.45 0.78 139 298 134 12.8 5.12 [40]
39 39 0.1 0.08 10 10 10 1.0 0.51

11 11.63 1982.2 0.52 0.048 150 272 135 6.40 6.40 [41]
1.2 1.2 0.10 0.005 10 10 10 0.64 0.64
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Table 1. (Contd.)

System
(HD, IDS) P , yr T0, yr e a, arcsec Ω, deg ω, deg i, deg M1,M� M2,M� References

Level of
hierarchy σP σT0 σe σa σΩ σω σi σM1 σM2

209790

22009+6408 [25]

1 3800 1750 0.24 11.5 85 114 109 4.08 1.21 [42]

380 380 0.10 1.2 10 10 10 0.29 0.12

11 2.241 1970.992 0.50 0.072 85 273.0 68.0 2.54 1.54 [43]

0.003 0.009 0.02 0.017 2 1.1 1.4 0.25 0.15

209790

22009+6408 [43]

1 3800 1750 0.24 11.5 85 114 109 1.36 0.40 [42]

380 380 0.10 1.2 10 10 10 0.10 0.15

11 2.241 1970.992 0.50 0.072 85 273.0 68.0 1.000 0.36

0.003 0.009 0.02 0.017 2 1.1 1.4 0.051 0.13

213051/2

22237–0032 [24]

1 760 1968 0.50 4.51 305 63 136 1.90 1.46 [44]

76 76 0.10 0.45 10 10 10 0.25 0.15

11 25.7 1981.2 0.59 0.076 203 23 34 1.5 0.40

2.6 2.6 0.10 0.008 10 10 10 0.2 0.20

217675/6 [24]

22573+4147 [45]

1 68.6 1949.5 0.48 0.28 191 46.1 103.6 8.9 6.60

1.7 1.3 0.03 0.12 1 5.3 1.5 0.8 0.66

11 8.9 1976.4 0.13 0.196 15 107 17 5.85 3.01

0.9 0.9 0.10 0.020 10 10 10 0.59 0.30

218658

23047+7451

1 160 1934.0 0.58 0.84 64 115 28.4 6.9 1.93 [27]

8 0.1 0.03 0.03 17 17 1.6 0.8 0.23 [46]

11 1.52 1964.37 0.3 0.0010 108 8 99.0 3.63 3.27 [47]

0.15 0.01 0.1 0.0005 4 10 2.5 0.53 0.48

222326

23344+4510 [48]

1 151 1870 0.58 0.22 128 96 130 4.46 2.76

15 15 0.10 0.02 10 10 10 0.34 0.28

11 15.0 1995.8 0.60 0.049 130 273 127 2.76 1.70

1.5 1.5 0.10 0.005 10 10 10 0.28 0.17
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4. FORMATION OF THE SAMPLE
AND ITS SUBGROUPS

We selected 22 systems with Nc ≥ 3 and known
orbital parameters for the outer and inner binaries and
known component masses. We excluded six of these
systems, described below, from further analysis.

Table 1 gives the orbital parameters, masses,
and their errors for the remaining 16 systems to-
gether with references to the original papers. The
main sources of our initial data were the Multiple
Star Catalog of Tokovinin [24] and its updated
version [25].

For systems with several orbit determinations with
very discrepant orbital parameters published within a
short time interval, we analyzed every orbit. Likewise,
when several independent estimations have yielded
very different masses, we carried out our analysis
using all available mass estimates.

Table 1 presents the data for all the combinations
of parameters considered and the errors in the quanti-
ties determined. When no errors were reported in the
original papers, we estimated them as follows.

(a) If two orbits were published within a relatively
short time, with the difference between the orbital
elements being comparable to the typical errors in
the elements of binary orbits, we set the errors equal
to the absolute values of the differences between the
corresponding elements.

(b) Otherwise, we set the errors equal to 10% of
the periods, semimajor axes, and masses of the stars.
We also set the error of the inferred zero epoch equal
to the error in the period, the error in the eccentricity
to 0.1, and the errors in the angular elements to 10◦.

If a component mass was less than 1M� and no
error was reported in the original paper, we set the
error in this mass equal to 0.1M�, which corresponds
to the typical accuracy of astrophysical data for low-
mass stars.

In weakly hierarchical systems, the component
motions deviate significantly from Keplerian motions,
resulting in even higher errors in the inferred instan-
taneous values of the orbital parameters. However,
our numerical simulations showed that these varia-
tions remain within the adopted errors for the sample
systems and, to first approximation, are negligible for
the orbital arcs described by the components during
the time they have been observed.

Let us discuss the system HD 29316 in more
detail. We have two independent and highly dis-
crepant mass estimates for this multiple star, pub-
lished by Heintz [31] and Tokovinin [24]. The com-
ponent masses suggested by Heintz [31] are incon-
sistent with the observed spectral types, A8V+F9V
(SIMBAD database [24]), and the combination of
component masses presented by Tokovinin [24] is
more plausible. Table 1 lists both versions, but
we performed our subsequent computations for the
second version only, and do not consider the mass
estimates of Heintz [31] further.

Our sample consists of four groups.
(1) All systems with Nc = 3 for which both or-

bits have been determined. We applied all the above
stability criteria to these systems. If the margin of
stability is sufficiently high (δi ≥ 1 for all criteria), the
system is likely to be stable. Otherwise, we analyzed
the dynamical evolution of the system.

(2) All systems with Nc > 3 for which the orbital
elements of all the subsystems have been determined.
We analyzed these systems using the stability criteria
for triple systems when the closest pairs are strongly
isolated from other components of the system, and
each can be regarded as a single body with a mass
equal to the total mass of the components of the pair.
If the margin of stability is low (δi ≤ 1), we analyzed
the dynamic evolution of the system, as in the previ-
ous case. This approximation is not appropriate if the
close pairs are not sufficiently isolated from the other
stars of the system, and, in this case, the dynamical
evolution of the system with Nc > 3 bodies must be
analyzed. We plan to do this in a separate study.

(3) All systems with Nc > 3 for which orbital el-
ements have been determined only for two adjacent
hierarchy levels. We subdivide these systems into two
subgroups:

(a) Systems for which the components external to
the subsystem considered affect the dynamics only
slightly, and the inner close binaries can be repre-
sented by point masses. We analyzed these systems
as triple stars.

(b) Systems that maintain weak hierarchy over
several sublevels; so far, we can give no definitive
conclusions about their dynamics, since the analysis
of the dynamics for systems of this subgroup requires
additional observational data.

(4) Systems with close binaries with periods
(Pin ≤ 10d) whose evolution is strongly affected by
the tidal interaction between the components (this
especially applies to systems with late-type compo-
nents). Such systems must be analyzed using special
algorithms to simulate their evolution taking into ac-
count the tidal interaction and, in a number of cases,
mass transfer, between the components. However,
for none of the selected multiple stars with Pin ≤ 10d
is the set of orbital parameters for the inner binaries
complete, hindering a full analysis of their dynamics.
Moreover, the sizes of the inner subsystems are
usually much smaller than the pericenter distances
of the outer subsystems, and such systems should
have high margins of stability. Some exceptions
(such as the λ Tau and CH Cyg systems) require
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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special studies. Eggleton and Kiseleva [49] have
achieved some progress in analyzing the dynamics of
such subsystems, taking into account astrophysical
effects. In our analysis, we treat the inner subsystems
as point masses; this approach is justified by the high
ratios of the sizes of the outer and inner systems
(∼102 or more for all objects of this group).

Table 2 lists the objects of groups 1, 3, and 4. We
discuss both systems of group 2 (HD 68255/6/7 and
HD 76644) below.

Let us now discuss the systems excluded from
further analysis and thereby from Table 1.

(1) IDS 02208+6657 = HD 15089 =
ADS 1860 = HIP 11569 = ι Cas.

This is a visual triple system whose primary has
been resolved using speckle interferometry [50] and
found to be a binary with period ≈50 yr and semima-
jor axis ≈0.1′′ [31]; i.e., the system consists of four
components. The angular separations AB and AC
differ by less than a factor of three, and are equal to
2.9′′ and 6.7′′, respectively. An orbital solution has
been obtained for the AB pair [31], but the orbit
AB–C remains undetermined, making it impossible
to analyze the dynamics of this system at the current
time.

(2) IDS 08415+0647 = ADS 6993 = εHya.
This system consists of five components with

angular separations of 0.0025′′ (SB1 subsystem Cc),
0.25′′ (AB), 4.66′′ (AB–C), and 19′′ (ABC–D). The
periods of the innermost SB1 subsystem and of the
outermost system are Pin = 10d and Pout = 8300 yr.
Not all orbital parameters have been determined for
the system [24, 25, 31]. The AB–C subsystem has
a period of 990 yr and is weakly hierarchical with
respect to the ABC–D subsystem, with an angular-
separation ratio of∼4.5. In this case, the dynamics of
the inner subsystem must be modeled including the
perturbations due to component D, for which not all
orbital elements have been determined; so far, only
the period has been estimated.

(3) IDS 14516−2058 = GJ 570.
This system has four components with angular

separations of 0.143′′, 32.3′′, and 258′′ and periods
of 0.84, 2130, and 45400 yr, respectively [25]. The
orbit of the outer subsystem has not been determined,
making it impossible to correctly model the dynamics
of the inner subsystem without including the per-
turbations due to the distant component, given the
period ratio of ∼20.

(4) IDS 15596−1932 = β Sco.
The system consists of five components, with the

most distant having an angular separation of 13.6′′
from the primary. The orbits of the subsystems have
semimajor axes of 0.0014′′, 0.14′′, and 3.9′′. The ratio
ASTRONOMY REPORTS Vol. 49 No. 3 2005
Table 2.Division of the objects into groups

System
(HD, IDS)

Multiplicity7

Subgroup

54081 4
00508+5949 4

97702 4
01304–3026 4

123763 4
01562+3614 4

293164 4:
04320+5316 3

40887 3
05566–3103 1

56986 3
07142+2210 1

98230/15 4:
11128+3205 4

108500 3
12226–6113 1

136176 3
15140+2712 1

150680 3
16375+3147 1
ADS 14296 3
20435+3607 1

209790 3
22009+6408 1
213051/2 3

22237–0032 1
217675/66 4
22573+4147 3

218658 3
23047+7451 1

222326 3
23344+4510 1

1 Primary in the inner subsystem is a spectroscopic binary (SB2)
with a period of P = 4.24d.
2 Primary in the inner subsystem is an eclipsing spectroscopic
binary with a period of P = 0.47d.
3 Primary in the inner subsystem is a spectroscopic binary with a
period of P = 3.1d.
4 There is an mv = 13m companion at an angular separation of
≈23′′ from the triple star.
5 Inner subsystem is made up of a pair with P = 1.8 yr and an
SB1 spectroscopic binary with a period of P = 3.98d. There is a
mv = 15m likely physical companion at a separation of ρ ≈ 54′′.
The system may contain another close companion.
6 Outer subsystem ismade up of a pair with a period ofP = 8.9 yr
and a spectroscopic binary with a period of P = 3d.
7 Uncertainty in the multiplicity is indicated by a colon after the
indicated number of components in the system.
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Table 3. Stability parameters of the systems. The values of the corresponding parameters, critical values, and margins of
stability δ are given for each criterion. The presented parameters are s, sc, δs (Golubev criterion); F , Fc, δF (Harrington
criterion); X , Xc, δX (Eggleton–Kiseleva criterion); Z, Zc, δZ (Mardling–Aarseth criterion); Q, Qc, δQ (Valtonen–
Karttunen criterion); T , Tc, δT (Tokovinin criterion)

System s F X Z Q T

sc Fc Xc Zc Qc Tc

δs δF δX δZ δQ δT

HD 5408 7.61 5.91 17.16 4.80 5.91 7.50

ADS 784 5.56 5.57 9.21 2.69 4.52 5.00

0.37 0.06 0.86 0.79 0.31 0.50

HD 9770 6.09 7.02 24.50 5.27 7.02 12.08

GJ 60 3.86 5.23 7.88 2.12 4.50 5.00

(version 1) 0.58 0.34 2.11 1.49 0.56 1.42

HD 9770 5.70 7.02 24.50 5.40 7.02 12.08

GJ 60 3.86 5.23 7.61 2.09 4.39 5.00

(version 2) 0.48 0.34 2.22 1.58 0.60 1.42

HD 12376 5.10 6.23 25.51 4.43 6.23 7.67

ADS 1613 4.73 5.29 11.69 1.89 4.30 5.00

0.08 0.18 1.18 1.35 0.45 0.53

HD 29316∗ 5.69 5.32 16.14 2.86 5.32 5.08

ADS 3358 5.42 5.72 21.35 1.63 5.86 5.00

0.05 −0.07 −0.24 0.75 −0.09 0.02

HD 40887∗ 5.75 2.71 5.76 1.87 2.71 2.24

GJ 225.2 6.26 5.53 12.60 2.16 4.83 5.00

−0.08 −0.51 −0.54 −0.13 −0.44 −0.55

HD 56986 27.85 34.12 195.68 25.27 34.12 137.95

ADS 5983 5.99 5.48 8.11 2.01 4.36 5.00

3.65 5.23 23.13 11.57 6.83 26.59

HD 98230/1 2.28 7.34 32.63 4.56 7.34 6.63

ADS 8119 2.27 4.90 21.09 1.74 3.95 5.00

0.00 0.50 0.55 1.62 0.86 0.33

HD 108500∗ 11.52 8.88 92.14 7.59 8.88 4.67

6.16 5.59 25.96 3.04 4.47 5.00

0.87 0.59 2.55 1.50 0.99 −0.07

HD 136176∗ 2.37 1.03 3.99 0.61 1.03 0.17

ADS 9578 6.00 5.58 48.34 1.92 5.40 5.00

−0.60 −0.81 −0.92 −0.68 −0.81 −0.97

HD 150680∗ 2.46 1.39 3.28 1.30 1.39 0.52

ADS 10157 3.67 5.56 12.20 3.22 4.40 5.00

−0.33 −0.75 −0.73 −0.60 −0.68 −0.90
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Table 3. (Contd.)

System s F X Z Q T

sc Fc Xc Zc Qc Tc

δs δF δX δZ δQ δT

HD 198183 9.91 6.41 33.61 4.22 6.41 5.59

ADS 14296 6.09 5.43 20.23 2.15 5.09 5.00

0.63 0.18 0.66 0.96 0.26 0.11

HD 209790 85.79 117.85 1695.85 78.57 117.85 744.44

ADS 15600 5.27 5.34 11.15 1.84 4.75 5.00

(version 1) 15.27 21.05 151.14 41.77 23.78 147.89

HD 209790 69.64 117.79 1695.85 78.52 117.78 744.44

ADS 15600 4.15 5.34 10.71 1.84 4.75 5.00

(version 2) 15.79 21.04 157.29 41.78 23.78 147.89

HD 213051/2∗ 4.26 5.78 29.56 3.64 5.78 3.70

ADS 15971 4.36 4.88 26.19 1.80 3.95 5.00

−0.02 0.19 0.13 1.02 0.46 −0.26

HD 217675/6∗ 2.75 2.44 7.69 2.16 2.44 1.08

o And 5.50 4.87 14.82 2.75 3.61 5.00

−0.50 −0.50 −0.48 −0.22 −0.32 −0.78

HD 218658 10.44 10.14 104.93 7.80 10.14 7.77

ADS 16538 5.52 5.33 22.72 2.33 4.34 5.00

0.89 0.90 3.62 2.35 1.34 0.55

HD 222326∗ 4.74 2.30 10.05 1.44 2.30 0.74

ADS 16904 5.95 5.58 33.60 2.28 5.49 5.00

−0.20 −0.59 −0.70 −0.37 −0.58 −0.85
Note: Asterisks indicate systems we found to be unstable according to some (or all) of the criteria employed (see text).
of the apparent sizes of the outer orbit and the orbit of
the subsystem of the next hierarchy level is∼3.5. The
binary at the next hierarchy level has an orbital semi-
major axis of 3.9′′, period of 610 yr, and eccentricity
of 0.91. Thus, the orbits of the two outer components
may have comparable semimajor axes and periods,
making a dynamical analysis of this system of inter-
est. However, such an analysis is currently impossible
because the orbital elements for the outer body are not
known [25].

(5) IDS 08065+1757 = HD 68255/6/7 =
ADS 6650 = HIP 40167.

This is a quadruple system whose two inner or-
bits and outer orbit are all known. It consists of
two relatively close systems with periods of 59.6 yr
and 17.3 yr (with orbital semimajor axes 0.862′′ and
ASTRONOMY REPORTS Vol. 49 No. 3 2005
0.182′′, respectively). The period of rotation of the
pairs about their common center of mass is 1120 yr,
and the semimajor axis of the relative orbit is 7.7′′ [25,
31]. The ratios of the outer and inner periods are thus
equal to 19 and 64, implying that the dynamics of the
system should be modeled taking into account the
interactions of all four components, as we plan to do
in the future.

(6) IDS 08524+4826 = HD 76644 =
ADS 7114 = HIP 44127= ιUMa.

This is also a quadruple system for which the
two inner orbits and the outer orbit are all known,
and which consists of two close subsystems that ro-
tate with a period of 818 yr (a = 9.092′′) about their
common center of mass. The periods of the inner
subsystems are 39.7 and 11.0 yr (the corresponding
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Table 4. Stability parameters of the systems (same as Table 3 but with the longitude of the ascending node changed by
180◦ for one of the subsystems)

System s F X Z Q T

sc Fc Xc Zc Qc Tc

δs δF δX δZ δQ δT

HD 5408∗ 5.17 5.91 17.16 4.80 5.91 7.50

ADS 784 5.56 4.80 9.21 2.23 3.71 5.00

−0.07 0.23 0.86 1.16 0.59 0.50

HD 9770 5.15 7.02 24.50 5.27 7.02 12.08

GJ 60 3.86 5.23 7.88 1.97 4.35 5.00

(version 1) 0.34 0.34 2.11 1.67 0.61 1.42

HD 9770 5.61 7.02 24.50 5.40 7.02 12.08

GJ 60 3.86 5.23 7.61 2.08 4.38 5.00

(version 2) 0.46 0.34 2.22 1.60 0.60 1.42

HD 12376∗ 2.26 6.23 25.51 4.43 6.23 7.67

ADS 1613 4.73 4.60 11.69 1.65 3.21 5.00

−0.52 0.35 1.18 1.68 0.94 0.53

HD 29316∗ 5.71 5.32 16.14 2.86 5.32 5.08

ADS 3358 5.42 5.72 21.35 1.64 5.88 5.00

0.05 −0.07 −0.24 0.75 −0.09 0.02

HD 40887∗ 2.30 2.71 5.76 1.87 2.71 2.24

GJ 225.2 6.26 4.77 12.60 1.70 3.32 5.00

−0.63 −0.43 −0.54 0.10 −0.18 −0.55

HD 56986 22.72 34.12 195.68 25.27 34.12 137.95

ADS 5983 5.99 4.74 8.11 1.76 3.50 5.00

2.79 6.21 23.13 13.32 8.76 26.59

HD 98230/1 2.36 7.34 32.63 4.56 7.34 6.63

ADS 8119 2.27 5.71 21.09 2.06 5.24 5.00

0.04 0.29 0.55 1.27 0.40 0.33

HD 108500∗ 12.72 8.88 92.14 7.59 8.88 4.67

6.16 5.59 25.96 3.23 4.70 5.00

1.06 0.59 2.55 1.35 0.89 −0.07

HD 136176∗ 1.85 1.03 3.99 0.61 1.03 0.17

ADS 9578 6.00 4.80 48.34 1.81 4.93 5.00

−0.69 −0.79 −0.92 −0.67 −0.79 −0.97

HD 150680∗ 1.49 1.39 3.28 1.30 1.39 0.52

ADS 10157 3.67 4.79 12.20 2.74 3.35 5.00

−0.59 −0.71 −0.73 −0.53 −0.58 −0.90
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Table 4. (Contd.)

System s F X Z Q T

sc Fc Xc Zc Qc Tc

δs δF δX δZ δQ δT

HD 198183 7.09 6.41 33.61 4.22 6.41 5.59

ADS 14296 6.09 4.70 20.23 1.85 4.48 5.00

0.16 0.36 0.66 1.28 0.43 0.12

HD 209790 68.14 117.85 1695.85 78.57 117.85 744.44

ADS 15600 5.27 4.64 11.15 1.39 2.73 5.00

(version 1) 11.92 24.41 151.14 55.52 42.21 147.89

HD 209790 57.49 117.78 1695.85 78.52 117.78 744.44

ADS 15600 4.15 4.64 10.71 1.39 2.73 5.00

(version 2) 12.86 24.40 157.29 55.53 42.19 147.89

HD 213051/2∗ 4.38 5.78 29.56 3.64 5.78 3.70

ADS 15971 4.36 4.88 26.19 1.85 4.21 5.00

0.00 0.19 0.13 0.97 0.37 −0.26

HD 217675/6∗ 3.53 2.44 7.69 2.16 2.44 1.08

o And 5.50 5.66 14.83 2.94 4.12 5.00

−0.36 −0.57 −0.48 −0.27 −0.41 −0.78

HD 218658 7.50 10.14 104.93 7.80 10.14 7.77

ADS 16538 5.52 4.63 22.72 2.15 3.76 5.00

0.36 1.19 3.62 2.63 1.70 0.55

HD 222326∗ 3.11 2.30 10.05 1.44 2.30 0.74

ADS 16904 5.95 4.81 33.60 1.90 4.63 5.00

−0.48 −0.52 −0.70 −0.24 −0.50 −0.85
Note: Asterisks indicate systems we found to be unstable according to some (or all) of the criteria employed (see text).
orbital semimajor axes are 0.680′′ and 0.474′′, respec-
tively) [25]. As in the previous case, we plan to analyze
the dynamics of this system in the framework of the
four-body problem in the future.

5. ANALYSIS OF THE STABILITY
OF MULTIPLE SYSTEMS BASED

ON THE STABILITY CRITERIA AND
DYNAMICAL-EVOLUTION COMPUTATIONS

We used the listed stability criteria to analyze the
stability of each of the 16 systems and estimated the
margin of stability δi for each of the six criteria. The
results are presented in Table 3.

The longitude of the ascending node is the param-
eter that is most problematic to determine. Therefore,
ASTRONOMY REPORTS Vol. 49 No. 3 2005
although this parameter has, in principle, been deter-
mined unambiguously in the original papers, we also
present here the results of our empirical computations
for Ω + 180◦ (Table 4). As is evident from a compar-
ison of the data in Tables 3 and 4, changing Ω does
not appreciably affect the inferred stability. We also
computed the empirical stability for the Ωin and Ωout

values yielding the most stable configurations. Even
in this case, the stability parameters of the systems
did not change qualitatively. Thus, a 180◦ ambiguity
in Ω, and even significant deviations from the pub-
lished values, have no qualitative effect on the stability
of these systems.

We have several systems with unstable motions
according to some (and, in some cases, all) of the cri-
teria employed, marked by asterisks in Tables 3 and 4.
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Fig. 1. Time variations of orbital eccentricities in the hier-
archical system HD 209790 (Pout = 3800 yr and Pin =
2.24 yr). The thin and bold curves correspond to the outer
and inner orbits, respectively.

For these systems, and also for the systems with a
minimum margin of stability δi ≤ 1, we performed
further analyses of their stability by numerically
simulating their dynamical evolution. For comparison
purposes, we performed similar computations for the
system HD 209790, which has a substantial margin
of stability (δi > 10).

The TRIPLE code that we used enables integra-
tion of the equations of motion with a fractional error
in the total energy of no more than 10−10 over∼106 yr
of the system’s evolution.We also monitored the inte-
gration errors by computing the evolution forward and
back to return to the initial time and comparing the
resulting coordinates and velocities with their initial
values. The fractional deviations of the coordinates
and velocities from their initial values did not exceed
5% over 2 × 106 yr of evolution, demonstrating that
the integration errors were small.

We chose the total integration time based on the
following considerations. Systems that are unstable
according to the results of Anosova and Orlov [6],
Hut [51], Eggleton and Kiseleva [17], and Rubinov
et al. [7] will be disrupted on time scales of∼102−103

rotations of the outer binary. The evolution time
scale is ∼106 yr for all the sample systems except
HD 108500 and the comparison system HD 209790,
for which it exceeds 1000Pout. Our computations for
HD 108500 covered 2.5 × 106 yr, which is≈103Pout.

We followed the evolution of HD 209790 for
1000Pout. Note that, as is evident from Figs. 1
and 2, the orbital elements of this system are ei-
ther constant (semimajor axis and eccentricity of
outer binary), or undergo Kozai oscillations (mutual
inclination i and eccentricity of the inner orbit),

so that
√

1 − e2in cos i = const [52]. It follows that
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Fig. 2. Time variations of the mutual orbital inclination in
the hierarchical system HD 209790.

this system does not show a tendency to disrupt
over long time scales—a result that is natural for a
system with considerable hierarchy. The simulations
of the dynamics of all the systems with considerable
margins of stability yield similar results.

The variations of the orbital parameters of unstable
systems are not periodic (as is clear from the exam-
ple of HD 136176; see Figs. 3–5). Table 5 lists the
disruption times for five systems that are unstable
according to all six criteria employed. We determined
the disruption times for these systems by numerically
computing their evolution. We also computed the
evolution from the present time to 106 yr in the past
for the systems shown to be unstable by our simu-
lations. All these systems were unstable in the case
of this reverse evolution as well. The disruption times,
velocities of ejected bodies, total system lifetimes, and
the periods of the initial binaries (prior to capture) are
also listed in Table 5.

These data lead us to conclude that unstable sys-
tems are likely to be dynamically young objects. They
could have formed during encounters between single
stars and multiple systems with small relative veloc-
ities (∼1–10 km/s). We found the highest ejection
velocity to be that for HD 217675/6, which is closer
than the other unstable systems listed in Table 5.

6. DISCUSSION OF RESULTS

We have analyzed the dynamical evolution of 16
multiple systems using various stability criteria and
numerical simulations of the component motions.

The results lead to the following conclusions.
(1) The stability criteria agree with the results of

the numerical simulations. The criterion proposed by
Mardling and Aarseth [18] was the most accurate: it
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 3. Time variations of the instantaneous semimajor
orbital axes in the unstable system HD 136176 (Pout =
200 yr and Pin = 50 yr). The thin and bold lines corre-
spond to the outer and inner orbit, respectively.

indicated instability for all the unstable systems and
“failed” for none of the stable systems. Although the
other criteria overall agreed with the results of the nu-
merical simulations, they yielded discrepant conclu-
sions about the stability of some systems. However,
firmer conclusions about which of the stability criteria
are most adequate is not possible without including
the effect of the errors in the initial parameters.

(2) 11 systems (HD 5408, HD 9770, HD 12376,
HD 29316, HD 56986, HD 98230, HD 108500,
HD 198183, HD 209790, HD 213051/2,
HD 218658) appear to be stable. Five systems
(HD 40887, HD 136176, HD 150680, HD 217675,
HD 222326) appear to be unstable.

Thus, most of the sample systems were identified
as being stable, but a few may be unstable.

6.1. Reliability of the Orbital Parameters

It is important to have reliable data in order to
obtain trustworthy results.

Of course, the stability of the observed multiple
systems is a classical and expected result, in contrast
to the conclusion that some of them are unstable.
Therefore firmer conclusions can be drawn only after
an analysis that takes into account the errors in the
observational data. However, we wish to discuss in
more detail the reliability of the orbital parameters for
the systems that were identified as potentially being
unstable. In particular, we wish to determine whether
this result could be due to errors in the parameters
of these systems. To address this question, we briefly
describe each of the five potentially unstable systems.
HD 40887. This is a triple system for which

Baize [32] published a solution for the outer or-
bit with a period and semimajor axis of 390 yr
ASTRONOMY REPORTS Vol. 49 No. 3 2005
 

2000

 

t

 

, yr
4000 6000 8000 10000 120000

0.2

 

e

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1

Fig. 4. Time variations of the orbital eccentricities in the
unstable system HD 136176. The thin and bold lines
correspond to the outer and inner orbit, respectively.

 

2000

 

t

 

, yr
4000 6000 8000 10000 120000

 

R

 

, A
U

100

200

300

400

500

600

700

Fig. 5. Time variations of the distance between the center
of mass of the inner binary and outer body, and the dis-
ruption of the unstable system HD 136176.

and 3.95′′, respectively, in 1980. The arc described
by the system covers 123◦, and the orbit is based
on 66 data points spanning the interval from 1835
through 1977. The number of points and the length
of the observed arc rule out the possibility that the
orbit could be completely wrong. The inner orbit
of this system is based on 50 points spanning the
interval from 1911 through 1996 and covering the
entire period of the close pair. In his Multiple Star
Catalog, Tokovinin [24] gives a period of 72 yr and a
semimajor axis of 0.940′′ for this star. Soderhjelm [27]
published a refined orbit for this subsystem with
similar parameters: P = 68 yr, a = 0.900′′. The com-
ponents have spectral types K(3−5)V. We adopted
the component masses from [24] (0.69M�, 0.69M�,
and 0.59M�). The original papers do not present the
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Table 5. Parameters of the dynamical evolution of unstable systems: the time before disruption for forward evolution t+dis,
time before disruption for reverse evolution t−dis, total lifetime of the system tlife (= t+dis + t−dis), current orbital period of
the outer subsystem Pout, orbital period of the binary after disruption Pbin (for reverse evolution), velocity of the ejected
body Vesc (for reverse evolution) in the reference frame of the remaining binary

HD 40887 HD 150680 HD 136176 HD 217675/6 HD 222326

t+dis, yr 378970 2750 17060 11130 5980

t−dis, yr 153830 2920 31960 7130 6780

tlife, yr 532980 5680 49020 18260 12760

tlife/Pout 1360 165 245 266 84

tlife/Pbin 18100 433 1420 2010 856

Pbin, yr 29.4 13.1 34.6 9.1 14.9

Vesc, km/s 2.3 7.8 2.8 12.5 3.8
errors in the orbital parameters, but the agreement
between the orbits published by the different authors
argues that these parameters have been determined
correctly.
HD 136176. This is a triple system with a wide

pair that has been observed since 1830. Heintz [53]
derived the first orbit for this system in 1965 (P =
203 yr, a = 1.216′′), which was subsequently
(in 1983) refined by Walbaum and Duvent [54] (P =
186 yr, a = 1.095′′). Soderhjelm [27] published the
most recent version of the orbit for this subsystem
(P = 200 yr, a = 1.22′′). All three orbits have very
similar parameters. The orbital arc observed by
1999 covers nearly the entire period, so that the
derived orbital parameters should be quite reliable.
Heintz [53] was the only author to report errors for
the orbital parameters, and these errors indicate that
the observations are fit well by the orbit (the reported
errors in the period, semimajor axis, and eccentricity
were ±9 yr, ±0.12′′, and ±0.03, respectively).

Muller [38] published a solution for the inner orbit
(P = 50 yr, a = 0.055′′), which, despite the rather
short period, may have considerable errors, since it
is perpendicular to the plane of the sky. At the same
time, the ratio Pout/Pin = 4 is very small, suggesting
that the inner orbit will be unstable for a wide range of
parameters, even if they have large errors.

The component masses listed in [24] and [55] are
mutually consistent. All the components of the sys-
tem have comparable masses and spectral types close
to G0V.
HD 150680. This is a triple system consisting of a

wide pair (G0IV+G7V) with a period of 34.5 yr and
a semimajor axis of 1.355′′. Baize [39] published both
orbits but does not report the corresponding errors.

Some researchers doubt the existence of the third
component, since all the elements of the inner orbit
were determined by analyzing perturbations of the
outer subsystem and the third component has been
observed visually only once in the infrared [56]. The
third component must have a mass of no more than
0.19M�.

It is not unlikely that the solution is erroneous:
given the parameters of the outer orbit, the period
and semimajor axis of the inner subsystem cannot be
simultaneously equal to 10.5 yr and 0.08′′, whatever
the component masses, provided that the motion is
Keplerian. However, this latter assumption may be
incorrect in the case of weak hierarchy, and the in-
stantaneous parameter values (based on 71 observa-
tions spanning the period from 1935 through 1969)
may be close to those determined by Baize [39]. It
is also possible that there is a typographical error in
Baize’s paper [39].

HD 217675/6. This system has four components.
The outer pair has a period and semimajor axis of
68.6 yr and 0.277′′ (according to the orbit published
by Hartkopf [45], which is based on more than 60 po-
sitions obtained since 1949), while the closer subsys-
tem has a period of 8.933 yr and is a spectroscopic
and speckle-interferometric binary. The secondary, in
turn, is a β Lyr eclipsing spectroscopic binary with a
period of 33 days [24]. Although the astrometric orbit
with a period of 8.9 yr is based on only six points,
we consider its parameters to be fairly reliable, since
some of them were determined independently from
spectroscopic observations.

The period of the closest subsystem is two orders
of magnitude shorter than the period of the subsystem
with the next hierarchy level. Therefore, the binary
nature of the primary does not affect the dynamics
of the system to first approximation. Hartkopf [45]
reports small errors for the parameters of the outer
pair, which indicate a good agreement between the
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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reconstructed orbit and the observations, but gives no
errors for the inner subsystem.
HD 222326. This is a triple system. Heintz [57]

was the first to derive the orbit of the outer pair (which
was found to be a binary in 1903) and determine its
period, 292 yr. Zulevic [58] refined the orbit and found
the period to be 238 yr. Balega et al. [48] derived
a more accurate orbit using speckle-interferometric
data obtained with the 6-meter telescope of the
Special Astrophysical Observatory of the Russian
Academy of Sciences. They published the first or-
bit for the inner subsystem (CHARA 149), whose
binarity had been established in 1986. According to
their results [48], the parameters of the outer and
inner subsystems are Pout = 151.4 yr, aout = 0.221′′
and Pin = 15.03 yr, ain = 0.049′′. The outer orbit
was reconstructed from a 110◦ arc that does not
include the epoch of periastron, and which Balega
et al. [48] consider to be a preliminary solution.
However, the arc spanned is sufficiently long for the
orbital parameters to be determined without gross
errors. The inner orbit, which is based only on five
speckle-interferometric observations, is less reliable
in this sense. Balega et al. [48] estimate the spectral
types of the components to be A2V+A2V+F0 and
give no errors for the orbital parameters.

Thus, out of the five systems found to be unsta-
ble by our preliminary analysis, two have reliably-
determined orbits with errors that are too small to
be responsible for their inferred instability. The orbital
solutions for three systems (HD 136176, HD 150680,
and HD 222326) require refinement, but even with
substantial changes in their parameters, these sys-
tems would be near the edge of the domain of stability.

We conclude that the results obtained for these
five systems can hardly be due to inaccuracy in their
orbital parameters. On the other hand, in order for the
analysis of the stability of these systems to yield more
conclusive results, this analysis must incorporate the
observational errors. We plan to perform such an
analysis in the future.

6.2. Interpretation of Results

We have carried out numerical simulations of mul-
tiple systems over time intervals that are several or-
ders of magnitude shorter than the assumed compo-
nent ages. Therefore, the likely dynamical instability
and small dynamical ages implied by these simula-
tions cannot be a consequence of physically small
ages for the stars in the systems.

The instability of these systems could have re-
sulted from the temporary capture of a field or clus-
ter star in an encounter with a close binary, or via
encounters between two multiple systems. Compu-
tations of the probability of the formation of binary
ASTRONOMY REPORTS Vol. 49 No. 3 2005
and multiple stars in the Galaxy via capture (see,
e.g., [59]) usually disregard the fact that stars in bi-
nary and multiple systems outnumber single stars.
On the other hand, the formation of a temporary triple
system (or even a system with more components)
does not require an encounter of three single stars,
which is a very rare event. It is sufficient to estimate
the probability of an encounter between a field star
and a binary, or between two binaries, which have
much higher probabilities.

According to Hut [51], the median lifetime of
such systems (hierarchical resonance scattering) is
∼500Pbin, where Pbin is the period of the binary that
participated in the encounter with a field star. At the
same time, the distribution of disruption times is very
asymmetric, and an appreciable fraction of systems
will be disrupted over longer times. For example, one-
third and 10% of the systems have lifetimes longer
than 3000Pbin and 12 000Pbin, respectively.

It is clear from Table 5 that the systems considered
have lifetimes of ∼(102–104)Pbin, consistent with
Hut’s [51] estimates, supporting the idea that some
of these systems formed via capture. Our estimates
of the relative approach velocities are consistent with
the residual velocities of stars in moving clusters, to
which some of the systems belong, and do not rule
out encounters with field stars.

Instability can also be explained by a recent en-
counter (without capture) between a stable system
and amassive object—field star, black hole, or molec-
ular cloud—that perturbed the component motions
and moved the system beyond the stability domain
into the domain of unstable motion.

It is not unlikely that some of the observed unsta-
ble systems are products of disrupted stellar groups
or clusters with initial populations of ∼ 101−103 ob-
jects, which are now in their final stage of evolu-
tion. This hypothesis seems to be more plausible for
massive (and, consequently, young) systems, such as
HD 217675/6 (with a B2III primary) and HD 222326
(with A2V+A2V+F0 components).

The existence of unstablemultiple stars could have
various origins. It is possible that a choice between
possible mechanisms can be made based on a detailed
analysis of the physical and dynamical properties of
the systems as a whole and their constituent compo-
nents, and by computing the probabilities of the re-
alization of each scenario. Firmer conclusions about
the stability or instability of the systems considered
will become possible after an analysis of the errors of
the observational data and their effect on the results
of the dynamical-evolution simulations. We plan to
carry out such an analysis in the near future.
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Abstract—We obtained speckle interferometric and spectroscopic observations of the system 41 Dra
during its periastron passage in 2001. The components’ lines are resolved in the spectral interval
3700–9200 Å. The observed wavelength dependence of the brightness difference between the compo-
nents is used to estimate the B − V indices separately for each of the components: B − V = 0.511
for component a and B − V = 0.502 for component b. We derived improved effective temperatures
of the components from their B − V values and hydrogen-line profiles. The observations can be de-
scribed with the parameters for the components T a

eff = 6370 K, log ga = 4.05 and T b
eff = 6410 K,

log gb = 4.20. The iron, carbon, nitrogen, and oxygen abundances in the atmospheres of the compo-
nents are logN (Fe)a = 7.55, logN (Fe)b = 7.60, logN (C)a = 8.52, logN (C)b = 8.58, logN (N)a = 8.05,
logN (N)b = 7.99, logN (O)a = 8.73, logN (O)b = 8.76. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The quadruple system ADS 11061 contains two
spectroscopic binaries, 40 Dra and 41 Dra, orbiting
their common center of mass with a period of several
tens of thousands of years and an apparent orbital
semiaxis that varies from 103 to 104 AU [1]. The
periods of the inner orbits of the 40 Dra and 41 Dra
pairs are 10.5 and 1246.7 days [2]. The system is
hierarchical and probably dynamically stable. All its
components have spectral types of F5–F7. The iron
abundance estimate of [3] indicates that ADS 11061
belongs to the young disk population, and that its
age does not exceed 2.5 billion years. In late evolu-
tionary stages, such stars become giants with lumi-
nosities only slightly different from those of the main-
sequence stars.

The system is of special interest due to the very
high orbital eccentricity of the 41 Dra pair: e =
0.9754 ± 0.0001 [2]. Their motion has been stud-
ied using both spectroscopic and interferometric
methods, and the combined orbit’s parameters are
accurately known. For example, despite the system’s
long period, the epoch of periastron passage is known
to within about 10 minutes. At periastron, the com-
ponents of the pair approach each other to a distance
of about 10 stellar radii. The high eccentricity raises
the question of how such a pair could be formed
and why its orbit has not been circularized by the
action of tidal forces over the system’s lifetime, as
1063-7729/05/4903-0217$26.00
has happened for 40 Dra. One possible scenario of
the origin and dynamic evolution of ADS 11061
was suggested in [2], but the situation is far from
completely clear. In the recent periastron passage
of 41 Dra in May–June 2001, it was possible to
obtain integrated spectra in which the components’
spectra were fully resolved during a comparatively
short time interval (±15 days from periastron). This
made it possible to obtain reliable information on the
atmospheric chemical compositions of each of the
stars.

Analyses of the orbit of the 41 Dra pair yielded the
components’ masses, M a = (1.39 ± 0.15)M� and
Mb = (1.30 ± 0.14)M�, and the system’s dynamic
parallax [2]. An accurate parallax is crucial for deter-
mining the star’s luminosity and, provided the tem-
peratures are known, the components’ radii. Essen-
tially all estimates of π are close to π = 0.023′′ [1–6],
whereas the parallax of 41 Dra in the HIPPARCOS
catalog is 0.01884′′ [7], much lower than this value.
The HIPPARCOS value is probably wrong, since the
measurements did not take into account the system’s
binarity. Thus, the probable distance to the system is
44.6 ± 1.0 pc.

Below, we present the results of our estimates
of the components’ temperatures and of the iron,
carbon, nitrogen, and oxygen abundances in their
atmospheres based on spectra taken with the echelle
spectrographs of the 6 m and Zeiss-1000 telescopes
c© 2005 Pleiades Publishing, Inc.
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Table 1. Brightness differences between the components
of 41 Dra

λ, Å/∆λ, Å ∆m± uncertainty Date

5000 0.40m ± 0.04m 2001.2713
5450/300 0.48 ± 0.03 1998.7769

6000 0.46 ± 0.05 2001.2713
6050/240 0.20 ± 0.10 1993.3492
6050/240 0.30 ± 0.10 1993.7646
6050/240 0.30 ± 0.10 1993.8437
6560/300 0.38 ± 0.05 1994.7129

7000 0.44 ± 0.10 2001.2713
8500/300 0.41 ± 0.14 2001.2713

12390/1380 0.47 ± 0.20 2000.7800
12390/1380 0.55 ± 0.20 2001.1920
16480/3170 0.46 ± 0.20 2000.7800
21910/4110 0.47 ± 0.10 1996.2667

of the Special Astrophysical Observatory (Russian
Academy of Sciences) and the Zeiss-2000 tele-
scope of the International Center for Astronomical,
Medical, and Ecological Research (Mt. Terskol) [8–
11]. The spectrographs have resolutions from 15 000
to 100 000 and cover the spectral range from 3700 Å
to 9200 Å. We also analyze the brightness differences
of the components of 41 Dra estimated over a wide
wavelength range via speckle interferometry and
compare these to the spectroscopic data.

2. EFFECTIVE TEMPERATURES
OF THE COMPONENTS OF 41 DRA

Earlier [12], we determined the effective tempera-
tures of the system’s components from the continuum
spectral energy distribution of the system [13] and
the equivalent widths and profiles of the observed
hydrogen lines. However, we noted certain discrep-
ancies in the data. Thus, these earlier results need
to be verified and refined. For this purpose, we use
color indices in the UBV system, estimates of the
brightness differences of the components obtained
from speckle interferometry, and ratios of line depths
in the components’ spectra measured when the lines
for the two components can be resolved.

Though the B − V values for 41 Dra in various
catalogs [14, 15] differ slightly, it is reasonable to
adopt the combined color index for the system B −
V = 0.507 ± 0.001.

We noted in [12] that the speckle-interferometric
brightness difference between the components was,
on average, ∆m = 0.426 ± 0.028. However, it is very
important to find the wavelength dependence of this
difference in order to determine the individual color
indices and temperatures of the components. For this
purpose, we collected all the speckle-interferometric
estimates of ∆m obtained with the 6-m telescope,
shown in Table 1. These lead to the following wave-
length dependence for ∆m:

∆m = 0.330 + 0.863 × 10−5 [Å−1]× λ [Å].
This means that, at the center of the B band
(λ4400 Å), ∆mB = 0.368, and at the center of the
V band (λ5500 Å), ∆mV = 0.377.

We measured the ratios of the central depths of
unblended lines of the system’s components using
spectra covering the wavelength range from 3700 to
9200 Å obtained at phases close to periastron. The
central depths of absorption lines in the combined
spectrum of the system are related to the components’
luminosities as

Ra,obs

Rb,obs
=
Ea

λ

Eb
λ

Ra

Rb
,

where Ra, Rb and Ra,obs, Rb,obs are the actual and
observed central line depths, respectively. If the phys-
ical characteristics and chemical compositions of the
components are similar, then

Ra ≈ Rb and Eb/Ea = Rb,obs/Ra,obs.

Our measurements of some 300 lines show that
these ratios are wavelength-dependent:

Eb
λ/E

a
λ = 0.73 − 0.54 × 10−5 [Å−1]× λ [Å].

Transforming the luminosity ratios into magnitude
differences, we obtain

∆mB,obs = 0.378 ± 0.008

and ∆mV,obs = 0.387 ± 0.008,

in fairly close agreement with the speckle-interfero-
metric ∆m estimates.

The assumption that the B and V magnitudes for
the system’s components are related as

Bb = Ba + ∆mB,obs and V b = V a + ∆mV,obs

is a good approximation. In this case, the system’s
observed B − V color index will be

B − V = (Ba − V a) − 2.5 log
1 + 10−0.4∆mB,obs

1 + 10−0.4∆mV,obs
,

and Bb − V b = Ba − V a + (∆mB,obs − ∆mV,obs).
Substituting the observed values into these rela-

tions, we can derive the color indices for each of the
components in the 41 Dra system:

component a: B − V = Ba − V a = 0.511,
component b: B − V = Bb − V b = 0.502.
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Using models with normal chemical composition
and an atmospheric turbulent velocity of 2 km/s of
Kurucz [16], we obtain for the components’ effective
temperatures

component a: T a
eff = 6370 ± 20 K,

component b: T b
eff = 6410 ± 20 K.

These temperatures are slightly lower than those
we derived in [12], and close to the estimates of Teff

and B − V obtained from evolutionary tracks [2].
Using the masses and luminosities derived from

the orbital motion, the parallax presented in [2], and
our Teff estimates, we find the components’ surface
gravities to be

component a: log ga = 4.05 ± 0.10,
component b: log gb = 4.20 ± 0.10.

3. RADIAL VELOCITIES
OF THE COMPONENTS OF 46 DRA

To model the system’s spectra and compare the
synthesized spectra with observations at various or-
bital phases, we must obtain measurements of the
components’ radial velocities. We used stellar lines
near Hα, using Earth-atmospheric lines as a com-
parison spectrum. A list of the measured lines is
presented in Table 2.

We calculated the radial velocities and reduced
them to the Sun using the Dech20 code of Galazutdi-
nov [17]. Themeasured radial velocities of the compo-
nents relative to the Earth, V a

r and V b
r , are presented

in Table 3, together with the correction to the Sun
Va. The phases were calculated with the elements
T = JD 2449571.037 and P = 1246.680d.

The derived radial velocities are in good agreement
with those of [2], confirming the correctness of the
orbital elements of 41 Dra presented in that paper.

4. HYDROGEN LINE PROFILES

Synthetic spectra of 41 Dra near Hα were calcu-
lated by summing theoretical profiles derived using
the SintVa code developed by Tsimbal [18]. We
calculated the theoretical profiles using models with
Teff = 6370 K and log g = 4.05 for component a and
Teff = 6410K and log g = 4.20 for component b. The
models were derived by interpolating the model grid
of Kurucz [16]. The combined synthetic Hα spectrum
was calculated for four phases before and after the
periastron passage in 2001.We used the components’
radial velocities from Table 3 to take into account
wavelength shifts in the observed spectrum. The
rotational speeds of the components (v sin i) needed
to calculate the synthetic spectrum were determined
from absorption lines of metals. The rotational speeds
ASTRONOMY REPORTS Vol. 49 No. 3 2005
Table 2. Lines used to measure the components’ radial
velocities

Stellar lines Atmospheric lines

6526.653 SiI 6575.037 FeI 6532.359 H2O

6546.239 FeI 6583.710 SiI 6536.720 H2O

6554.223 TiI 6586.308 NiI 6542.313 H2O

6555.463 SiI 6587.610 C I 6547.705 H2O

6559.588 TiII 6592.926 FeI 6548.622 H2O

6562.808 Hα 6593.884 FeI 6552.629 H2O

6569.216 FeI 6597.571 FeI 6557.171 H2O

6571.174 FeI 6604.600 ScII 6572.086 H2O

6572.779 CaI 6608.044 FeI 6574.852 H2O

6574.228 FeI 6609.118 FeI 6599.324 H2O

of both components are close to 8.5 km/s. The
turbulent velocities in the components’ atmospheres
were determined in [3] to be V a

t = 2.15 km/s and
V b

t = 1.70 km/s. When summing the spectra, we
assumed a brightness ratio for the components of
Eb/Ea = 0.68.

The figure shows a comparison of the calculated
and observed profiles, together with theoretical pro-
files we calculated for a binary whose components
both have Teff = 6500 K and log g = 4.00, with the
same brightness ratios, turbulent velocities, and ra-
dial velocities as for the first version. At all phases, the
observed Hα profiles are confined within the range of
the theoretical results. However, the agreement with
the model having Teff = 6370 K and log g = 4.05 for
component a and Teff = 6410 K and log g = 4.20 for
component b is appreciably better. This confirms the
correctness of our choice of atmospheric parameters
for the components of the 41 Dra system.

5. ATMOSPHERIC IRON ABUNDANCES
OF THE COMPONENTS OF 41 DRA

We determined the iron abundances from the
equivalent widths of 50 FeI lines and 38 FeII lines
using spectra taken near periastron, when the lines
of components a and b were clearly resolved. The
equivalent widths of these lines, along with the
atomic parameters and logN (Fe) values for each line
and at various phases, are presented in [3], where
we also describe the technique used to determine
logN (Fe). The calculations were performed with the
KONTUR code [19]. Using models with Teff = 6575
and log g = 4.08 for component a and Teff = 6600
and log g = 4.26 for component b yielded
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Table 3. Radial velocities of the components of 41 Dra

Spectrum Date JD Phase V a
r , km/s V b

r , km/s Va, km/s

z3818 14.11.2000 2451862.6090 0.8381 11.86 ± 1.52 1.85 ± 1.12 4.27

z3819 14.11.2000 2451862.6924 0.8382 11.13 ± 1.32 1.92 ± 1.32 4.28

t05311 20.01.2001 2451929.6299 0.8916 13.89 ± 1.67 −2.15 ± 1.22 −3.45

t05312 20.01.2001 2451929.6715 0.8917 13.54 ± 1.77 −2.07 ± 1.35 −3.46

t05413 21.01.2001 2451930.5882 0.8924 14.12 ± 1.85 −2.43 ± 1.56 −3.55

o05a 09.06.2001 2452070.4215 0.0046 −27.12± 1.09 44.85 ± 1.38 −1.33

t11406 26.11.2027 2452605.4215 0.4337 5.92 ± 1.37 5.48 ± 1.37 2.94
logN (Fe) = 7.66 (component a) and logN (Fe) =
7.72 (component b), which are slightly higher than
the solar iron abundance (logN (Fe)� = 7.50). This
paper’s refined effective temperatures and surface
gravities for the components (T a

eff = 6370 K and

log ga= 4.05, T b
eff = 6410 K and log gb = 4.20) lead

to abundances much closer to the solar value.
The lines of neutral iron, FeI, gave the atmospheric

abundances for the components
component a: logN (Fe) = 7.582 ± 0.044,
component b: logN (Fe) = 7.593 ± 0.032.
The abundances derived from lines of ionized iron,

FeII, are
component a: logN (Fe) = 7.530 ± 0.039,
component b: logN (Fe) = 7.613 ± 0.045.
The rms errors of the average values describe the

internal uncertainties of the results, which coincide
within the errors. Thus, the system’s iron overabun-
dance relative to the Sun, if present, does not exceed
+0.1dex.

Note that any further decrease in the effective
temperatures for the model atmospheres would lead
to poorer coincidence of the logN (Fe) values derived
from ions with different ionization stages. For a model
temperature of 6100 K, the difference in the iron
abundances derived for component a from the FeI and
FeII lines is 0.13dex, and that for component b is
0.27dex, which are much larger than the uncertain-
ties. Thus, we consider our atmospheric parameters
to be confirmed by the ionization relations.

6. ATMOSPHERIC CARBON, NITROGEN,
AND OXYGEN ABUNDANCES

OF THE COMPONENTS OF 46 DRA

The abundances of carbon, nitrogen, and oxygen
are largely determined by the evolutionary status of
the star, and are an important source of information
about the star’s origin and history. The amount of
carbon and nitrogen in stars more massive than the
Sun determines the rate of hydrogen-burning nuclear
reactions in the CN cycle, and thus the rate of the
star’s evolution. In addition, carbon, nitrogen, and
oxygen, the most abundant elements in normal stars
heavier than hydrogen and helium, determine the in-
ternal structure of the atmosphere and of the star as a
whole. At the same time, the comparative poorness of
these elements’ line spectra introduces considerable
difficulties in determining their abundances. For this
reason, the vast majority of papers analyzing C, N,
and O abundances in stellar atmospheres are based
on measurements of one or two lines of each element
in the stellar spectra. This makes it important to mea-
sure each carbon, nitrogen, and oxygen line present
in the spectrum in order to more accurately derive
the abundances. Correctly taking into account the
physical conditions under which the analyzed spectral
lines are formed is also important.

Our echelle spectra (3700–9200 Å ) were acquired
near the periastron passage, when the components’
spectral lines were resolved, enabling us to identify
and measure relatively many CI, NI, and OI lines in
the spectrum of each of the system’s components.

Table 4 presents the parameters of the CI lines
measured in the spectrum of the 41 Dra system, to-
gether with the equivalent widths, Wλ (in mÅ), and
carbon abundances, logN (C), for each of the com-
ponents. We determined Wλ for each of the compo-
nents from theW a,obs

λ andW b,obs
λ values measured for

the resolved lines assuming the brightness ratio l =
Eb/Ea = 0.68. The actual equivalent widths in the
spectra of the components are given by the relations
W a

λ = 1.68W a,obs
λ andW b

λ = 2.50W b,obs
λ .

The model atmospheres and the techniques used
to derive the abundances were the same as those used
in our analysis of the iron lines. The log gf valueswere
mainly taken from the VALD list [20].
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Table 4. Line parameters, CI equivalent widths, and carbon abundances in the atmospheres of components a and b of
41 DRA

λ, Å εi, eV log gf W a
λ, mÅ logN (C)a W b

λ , mÅ logN (C)b

4762.31 7.48 −2.46 15.4 8.51 15.6 8.51

4762.53 7.48 −2.34 16.6 8.37 17.1 8.38

4792.66 7.95 −2.79 8 8.71 8 8.70

4815.22 7.95 −2.13 7.4 8.00 8 8.03

4815.48 7.95 −2.42 8.2 8.52 8.2 8.51

4817.37 7.48 −3.04 8.4 8.65 11 8.74

4926.43 8.54 −1.97 6.8 8.55 7.5 8.55

4932.05 7.68 −1.88 59.4 8.89 55.5 8.64

5039.05 7.95 −1.79 19.7 8.23 23 8.37

5039.10 7.95 −2.29 10 8.51 11 8.52

5040.12 7.95 −2.3 7 8.23 10.5 8.52

5052.17 7.68 −1.65 59 8.69 63.5 8.76

5380.34 7.68 −1.84 49.2 8.72 40 8.59

5515.55 8.85 −2.34 2.9 8.76 2.9 8.76

5793.12 7.95 −2.06 18.4 8.56 24 8.66

5800.60 7.95 −2.34 8.7 8.50 12 8.59

6586.27 9.00 −1.89 3.8 8.53 3.2 8.52

6587.61 8.54 −1.6 17.4 8.55 18.4 8.57

6588.64 9.17 −2.2 1.9 8.71 1.8 8.68

6591.46 8.85 −2.41 3 8.69 3.5 8.72

6595.24 8.85 −2.41 2.8 8.67 2.5 8.64

6602.41 8.85 −2.38 5 8.83 3.2 8.68

6605.78 8.85 −2.31 1.1 8.51 1.2 8.38

6611.35 8.85 −1.84 2.5 7.97 3.2 8.12

7116.99 8.65 −0.91 40 8.48 42 8.52

7119.66 8.64 −1.15 31.9 8.55 35 8.60

7132.11 8.65 −2.2 3.4 8.53 7 8.67

9061.43 7.48 −0.35 214 8.69 224 8.82

9062.49 7.48 −0.46 185.4 8.58 195.4 8.72

9078.29 7.48 −0.58 160.4 8.48 187.4 8.76

9088.52 7.48 −0.43 167.5 8.40 177.5 8.56

9094.83 7.49 0.15 218 8.26 228 8.44

9111.80 7.49 −0.3 184.9 8.45 225 8.78
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Comparison of observed (dots) and synthetic (solid curves) spectra of 41 Dra. The upper theoretical spectrum was calculated
for T a

eff = 6370 K, log ga = 4.05 and T b
eff = 6410 K, log gb = 4.20. The lower theoretical spectrum was calculated for

Teff = 6500 K and log g = 4.00. The spectra correspond to phases (1) 0.83, (2) 0.89, (3) 0.00, (4) 0.43.
Our equivalent-width calculations included four
broadening mechanisms for the absorption coeffi-
cient: radiation damping, Doppler broadening, broad-
ening due to the quadratic Stark effect, and van der
Waals broadening. These effects enter the absorption
coefficient as:

a = (∆λR + ∆λst + ∆λw)/∆λD,

v = (∆λ+ d)/∆λD,
where∆λR is the line width due to radiation damping,
∆λst is the Stark width, ∆λw is the van der Waals
width, and d is the Stark displacement.

∆λw can be calculated using the approximate for-
mula of Unsold:

∆λw = λ2/(4πc)C0.4
6

× 34N (HeI)(8kT/πmH )0.3.
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Table 5. Line parameters, NI equivalent widths, and nitrogen abundances in the atmospheres of components a and b

λ, Å εi, eV log gf W a
λ, mÅ logN (N)a W b

λ , mÅ logN (N)b

4253.39 10.34 −1.37 7.5 8.66 2 7.99
7442.30 10.33 −0.38 9.4 7.98 10 8.00
8184.86 10.33 −0.29 7.6 7.87 5.8 7.60
8188.01 10.32 −0.29 16.8 8.15 23 8.35
8216.33 10.34 0.13 21.2 7.92 16 7.66
8680.28 10.34 0.35 30.9 7.93 38.2 8.06
8683.40 10.33 0.09 26.5 8.04 28.5 8.07
8686.15 10.33 −0.3 19.6 8.17 23.8 8.29
8703.25 10.33 −0.32 8.4 7.85 8.5 7.80
8711.71 10.33 −0.23 16.1 8.02 12.5 7.92
8718.83 10.34 −0.34 11.2 7.97 18.5 8.17

Table 6. Line parameters, OI equivalent widths, and oxygen abundances in the atmospheres of components a and b

λ, Å εi, eV log gf W a
λ, mÅ logN (O)a W b

λ , mÅ logN (O)b

6155.96 10.74 −1.36 1.9 8.83 2.4 8.86

6155.97 10.74 −1.01 3.6 8.78 4.8 8.83

6155.98 10.74 −1.12 3 8.80 3.8 8.84

6156.74 10.74 −1.49 1.5 8.84 1.7 8.84

6156.76 10.74 −0.9 4.6 8.78 5.2 8.80

6156.78 10.74 −0.69 6.3 8.75 7.1 8.76

6158.14 10.74 −1.84 1 8.91 – –

6158.18 10.74 −1.00 4.9 8.85 – –

6158.19 10.74 −0.41 11.6 8.77 – –

7771.94 9.15 0.37 143.6 9.02 131.6 8.97

7774.16 9.15 0.22 123.3 8.93 117.6 8.94

7775.39 9.15 0.00 99.1 8.85 90.5 8.81

8446.25 9.52 −0.46 35.1 8.46 42.7 8.69

8446.36 9.52 0.24 51.7 8.09 63 8.31

8446.76 9.52 0.01 48 8.24 58.5 8.46
Here, line broadening due to collisions with neutral
hydrogen and helium atoms is taken into account,
and the constant C6 can either be fixed (we took it
from the VALD list) or calculated as

C6 = 6.5 × 10−9((Z + 1)2 + 13.595)/χup)4/5,

where Z is the ion’s charge and χup is the ionization
potential for the upper level.

We used two techniques to take into account
the quadratic Stark effect. For lines for which ac-
curate calculations are available, we can specify
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the temperature-dependent electron-collision half-
width, w, the ion-collision half-width, α, and the
displacement, d [21]. The Stark line width and dis-
placement can then be calculated for any point in the
atmosphere using the equations

∆λst = 2wNe × 10−16(1 + αN1/4
e A),

d = wNe × 10−16(d/w + αN1/4
e B),

where A = 1.75(1 − 0.75r), B = 2(1 − 0.75r) for
neutral atoms; A = 1.75(1 − 1.2r), B = 2(1 − 1.2r)
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for ions; and r = 1.85π1/6N
1/6
e (e2/kT )1/2 is the

Debye shielding radius.
If no data for w, α, and d are available, we use

the following approximation to estimate the Stark
broadening:

∆λst = λ2/(4πc)C4Ne,

where the constant C4 is taken from the VALD list or
calculated as

C4 = 10−8 × ((Z + 1)2 + 13.595)/χup)5/2.

The mean carbon abundances derived for the at-
mospheres of components a and b via a comparison
of the observed and calculated equivalent widths are

component a: logN (C) = 8.524 ± 0.036,
component b: logN (C) = 8.576 ± 0.031.
There are many fewer nitrogen lines than carbon

lines in the spectra of 41 Dra, and nearly all mea-
surable lines that are not blended with lines of other
elements have λ > 8000 Å. We could find only two NI
lines in the shorter-wavelength part of the spectrum:
λ4253.39 Å and λ7442.30 Å, which have equivalent
widths lower than 10 mÅ. Table 5 collects for the
NI lines the same data as those shown in Table 4
for the carbon lines. The mean atmospheric nitrogen
abundances of components a and b are

component a: logN (N) = 8.051 ± 0.068,
component b: logN (N) = 7.991 ± 0.034.
We determined the atmospheric abundances of

oxygen for the components of 41 Dra from lines of
five triplets in the red, beginning with λ > 6100 Å.
The parameters of the measured lines and logN (O)
values for both components are presented in Table 6.
The lines are fairly strong and essentially unblended,
ensuring the reliability of our oxygen abundance de-
terminations. The atmospheric abundances for each
of the components are

component a: logN (O) = 8.727 ± 0.067,
component b: logN (O) = 8.761 ± 0.055.

7. CONCLUSION

Our spectroscopic and speckle-interferometric
observations of the binary system 41 Dra in the
hierarchical multiple system ADS 11061 obtained
close to its periastron passage have enabled us to
study the atmospheres of each of the components
of 41 Dra separately. Within the uncertainties, all
our observational data indicate that the effective
temperatures of the system’s components are 6370 K
and 6410 K, respectively, for components a and b.

The virtually exact coincidence of the elemental
abundances studied for the atmospheres of the two
components of 41 Dra with those in the solar at-
mosphere and meteorites [22] is remarkable; the dif-
ferences of several hundredths of a dex are probably
due to equivalent-width errors and are not significant.
This may mean that the chemical composition of the
interstellar medium within a 50 pc radius of the Sun
did not experience any considerable changes during
the time from the formation of the solar system some
five billion years ago until the formation of the 41 Dra
system 2.5 billion years ago [2]. At the same time, the
absence of any significant deviations of the C :N :O
ratios in the atmospheres of the 41 Dra components
from the solar values testify to a complete absence of
mixing between the core and the atmosphere, despite
the shock gravitational stresses periodically experi-
enced by the stars during their periastron passages,
when they approach each other to distances of only a
few stellar radii.
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Infrared Photometry of the Carbon Star RW LMi and an Axisymmetric
Model for Its Dust Envelope
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Abstract—We have developed an axisymmetric model for the dust envelope of the carbon star RW LMi
with a density distribution typical for the superwind stage using JHKLM photometric data obtained
in 1997–2003, supplemented by flux data at optical, mid-IR, and far-IR wavelengths. In contrast to
earlier spherically-symmetric models, the model is able to reproduce the observed fluxes in all observed
wavelength ranges, and provides a good agreement with the observational data. The estimated mass-loss
rate is Ṁ = 1.2 × 10−5 M�/yr. The computed brightness distribution of the envelope in the near-IR is in
satisfactory agreement with high-resolution observations, while the optical size is considerably larger than
is observed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The carbon star RWLMi (=CIT6=IRC+30219=
AFGL 1403) is one of the brightest known objects
in the mid-infrared. This provides evidence for the
existence of a thick dust envelope that reprocesses
the short-wavelength radiation of the central star.
There have been several attempts by various authors,
including ourselves, to compute models of this dust
envelope assuming spherical symmetry [1–3]. In the
latest [3], we considered a model of the envelope con-
sisting of a mixture of spherical grains of amorphous
carbon and silicon carbide (SiC). None of the sets of
model parameters were able to fit the observed fluxes
at all wavelengths, and a satisfactory agreement with
the observations was obtained only for the mid- and
far-IR. One possible explanation may be that the
envelope has a nonspherical shape, e.g., due to the
presence of a gap that is transparent to the short-
wavelength radiation of the central star.
Some authors [6, 7] have suggested that RW LMi

is in the early protoplanetary nebula stage, when the
spherically-symmetric stellar wind typical of stars on
the asymptotic giant branch (AGB) has already been
transformed into a “superwind,” and the envelope is
ejected predominantly in the equatorial plane of the
star, resulting in the formation of a gas–dust torus.
The observed spectral energy distribution (SED) for
such an object has a strong dependence on the incli-
nation of the plane of the torus to the line of sight.
At low inclinations, the central star is blocked by
the dust, and the detected optical flux is determined
by the radiation scattered in the envelope, which is
emitted predominantly in the polar directions. This
1063-7729/05/4903-0226$26.00
results in the bipolar structure that is typical for many
protoplanetary nebulas. The infrared flux is formed
by hot dust, which is concentrated mainly close to
the equatorial plane of the torus. It is obvious that
one-dimensional, spherically-symmetric models for
the envelope are not adequate for such objects.
Our aim was to model the two-dimensional ax-

isymmetric envelope of RW LMi using JHKLM
photometric data obtained by us in 1997–2003, sup-
plemented with the optical and IR flux measurements
of other authors. We have compared our model SED
with both the observed SED and with other high-
resolution observations.

2. OBSERVATIONAL DATA

We obtained infrared photometric data for the car-
bon star RW LMi using the 1.25-m telescope of the
Crimean Laboratory of the Sternberg Astronomical
Institute as a part of a program of studies of cir-
cumstellar dust envelopes. The observing method and
results for 1986–1998 were published and analyzed
in [3–5]. The rms errors for the JHKLM photometric
data for RW LMi obtained since 1994 do not exceed
0.03m.
Figure 1 shows the observed variations of the

IR fluxes of RW LMi at 1.25 µm (J) and 5 µm (M )
for 1986–2003. The data plotted to the left of the
dotted vertical line were used by us in [3] to calculate
a spherically-symmetric model for the dust envelope
of RW LMi. Figure 1 shows that, since the middle
of 1998, periodic variations of the J flux have occurred
against the background of a rising mean flux level,
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Observed flux variations for RW LMi at 1.25 µm (J) and 5 µm (M) in 1986–2003. The data to the left of the dotted
vertical line were used in our paper [3].
which increases by nearly a factor of three in 1998–
2003. An analysis of the photometric peculiarities of
RW LMi observed in 1986–2003 will be presented
separately. In the present study, we used the mean
JHKLM fluxes for 1997–2003, F (λ), presented in the
table. The table also lists the standard deviations σ
and number of averaged valuesN , as well as themean
fluxes for 1986–1998, for comparison. We can see
that the average JHK fluxes were higher in 1998–
2003 than in 1986–1998, while no such increase in
the 3.5 and 5-µm fluxes was observed (in fact, the
fluxes in these wavebands even decreased slightly).
We suggest that these flux variations were due to a
decrease in the optical depth of the circumstellar dust
envelope. The table also shows that themaximum flux
increase in 1998–2003 was observed at 1.65 µm.
For comparison with the model, we used the op-

tical and I photometric data from [8] along with our
observations. The values of F (λ) (in erg/s cm2 cm)
were derived from the average observed magnitudes
using the out-of-atmosphere fluxes from [9]. In ad-
dition, we considered the longer-wavelength fluxes
from the Catalog of Infrared Observations; the av-
erage values for the color-corrected IRAS fluxes were
ASTRONOMY REPORTS Vol. 49 No. 3 2005
taken from [1, 10]. In Fig. 2, the logarithms of the
observed fluxes are shown by open circles.

Along with spectrophotometric information, high-
angular-resolution observations can be useful for
comparisons with the model calculations. Optical
images obtained with the Hubble Space Telescope
and near-IR interferometric images obtained with
the Keck-I telescope [11] using an aperture mask
are available for RW LMi. In the blue (F439W) and
yellow (F555W) filters, where scattering is especially
strong, the influence of inhomogeneities in the dust
distribution will blur the image. A bipolar structure
consisting of two components separated by 0.2′′ in
positional angle 190◦ is clearly visible in the red filter
(F675W, λ0 = 0.674 µm,∆λ = 0.089 µm), providing
evidence that the inclination of the axis of the dust
torus to the line of sight is close to 90◦. The left part
of Fig. 3 shows the brightness distributions for this
image plotted using contour levels at 50, 25, 12.5,
6.2, 3.1, 1.6, and 0.8% of the maximum brightness.
The emission of the central star and parts of the
dust torus that are closest to it dominate in the IR
(λ0 = 3.083 µm,∆λ = 0.101 µm). The IR brightness



228 BOGDANOV, TARANOVA
Mean fluxes for RW LMi at various wavelengths derived from JHKLM photometry in 1986–1998 and 1997–2003

1986–1998 1997–2003

λ, µm F (λ), 10−4 erg/s cm2 cm σ, 10−4 erg/s cm2 cm N F (λ), 10−4 erg/s cm2 cm σ, 10−4 erg/s cm2 cm N

1.25 1.20 0.12 40 1.63 0.12 59

1.65 3.25 0.32 41 4.96 0.36 59

2.2 7.99 0.71 43 10.0 0.72 61

3.5 21.2 1.50 42 20.0 1.33 60

5 14.3 0.92 42 10.0 0.71 60
distribution is plotted in the left part of Fig. 4 using
the same contour levels as for the optical image.

3. CALCULATION
OF THE DUST-ENVELOPE MODEL

FOR RW LMi

We calculated an axisymmetric model for the en-
velope of RW LMi that describes the density dis-
tribution of the dust torus ρ(r, θ) using the three-
parameter model for the dust envelope of a post-AGB
star of [12]:

ρ(r, θ) =
(
r

r1

)−B

[1 +A(1 − cos θ)F ], (1)

where r is the distance from the center of the star,
θ is the angular distance from the direction toward
the north pole, r1 is the radius of the inner edge
of the torus, and A, B, and F are free parameters.
The radiative-transfer equation was solved using
the 2-Dust code [13], which derives the radiation
field and grain temperature in the envelope using
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Fig. 2. Logarithms of the observed fluxes of RW LMi
(open circles) as a function of the logarithms of their
wavelengths. The solid curve shows the SED for the
calculated model with a dust envelope.
the method of long characteristics, in which rays
coming from all spatial directions are considered at
each grid point. Such algorithms are often called “2.5
dimensional.” After obtaining the main solution, the
brightness distribution for selected wavelengths and
the corresponding SED for various inclinations of the
torus axis to the line of sight i can be calculated.
We used the standard two-dimensional grid for the
2-Dust code, which has 45 radial points, most of
which are concentrated toward the inner edge of the
torus, and 8 polar grid points [13]. The radius of the
outer edge of the torus was set to r2 = 60r1. The
wavelength grid had 33 values from 0.3 to 500 µm.
Along with the inner radius r1, the three param-

eters of the density distribution (1), and the optical
depth of the envelope in the equatorial plane τ , the
axisymmetric model for a given wavelength depends
on the same parameters as the spherical model. These
parameters determine the properties of the central
star (luminosity L, effective temperature Teff , and
distance d) and of the dust (chemical composition,
relative concentration, size distribution of the grains,
optical constants). The total number of parameters
is fairly large. In addition, the computational time
for a model with one set of parameters using the
2-Dust code is about a factor of a hundred longer
than the analogous computation for a spherical dust
envelope model with the DUSTY code (version 2.0)
using a similar grid and the algorithm described in
[14, 15]. Therefore, it becomes especially important
for the axisymmetric model to reduce the number of
free parameters, if possible.
The absolute bolometric magnitude of RW LMi

was determined from the period–luminosity relation
for carbon stars [16] using the period 605d [8]. This
magnitude is −5.18m, which implies a luminosity for
the star of L = 9400 L�, if the absolute magnitude
of the Sun is 4.75m [17]. We used the distance d =
360 pc found by us earlier [3], since it is consistent
with independent estimates [18]. We assumed that
a mixture of spherical grains of amorphous carbon
and silicon carbide is present in the envelope, with
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 4. Brightness distributions obtained from near-IR observations of RW LMi (left) and calculated using the stellar model
with the dust envelope (right).
their relative abundances being 0.97 and 0.03, re-
spectively. Such relative abundances are suggested
by the appearance of the spectral feature at λ =
11.3 µm [3]. We adopted the law of Mathis, Rumpl,
and Nordsieck [19] for the size distribution of the
grains: n(a) ∝ a−q for grains with radii amin ≤ a ≤
amax and with q = 3.5, amin = 0.005 µm, and amax =
0.25 µm. The optical constants for α-SiC were taken
from [20] and those for amorphous carbon from [21].
We assumed a Planck SED corresponding to the
effective temperature of the star, Teff = 2700 K, for
the central source [3]. We also fixed two parameters
of the density distribution (1): B = 2, corresponding
to the condition of continuity for the spherically
symmetric envelope, and F = 1.
Our fitting of the axisymmetric dust-envelope

model for RW LMi resulted in the following pa-
rameters for the envelope. The optical depth in the
equatorial plane at 11.3 µm is τ = 0.60, the radius of
ASTRONOMY REPORTS Vol. 49 No. 3 2005
the inner edge of the envelope is r1 = 2.1 × 1014 cm,
the average dust temperature at this edge is 1300 K,
and A = 19. Thus, the mass of the dust ejected in
the equatorial plane of the torus is a factor of twenty
higher than the mass ejected in the polar direction.
The total mass of dust in the stellar envelope is
1.8× 10−6 M�. The inclination of the torus axis to the
line of sight is 88◦. The SED for themodel is shown by
the solid curve in Fig. 2. Despite the presence of some
discrepancies, the model is able to reproduce the
observed fluxes in the entire analyzed spectral range,
and the overall agreement with the observations is
good.
For comparison with high-angular-resolution ob-

servations, we calculated the brightness distributions
at 0.674 and 3.083 µm. We assumed that the point-
spread function was determined by the diffraction for
the round aperture (the Airy disk). The exact attain-
able resolution for interferometry with an aperture
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mask is unknown. In the analysis of such obser-
vations in [11], the maximum-entropy method was
applied, which makes it possible to increase the res-
olution over the diffraction limit. However, no more
than a twofold increase in resolution is possible with
the usual signal-to-noise ratios, and we adopted this
factor for our analysis. We applied an algorithm based
on a fast Hurtley transform [22] to convolve the model
images with the point-spread function. The initial
angular sizes of the model images were increased
enough to eliminate limb effects. Contours of con-
stant brightness in the calculated models for the dust
envelope of RW LMi oriented in accordance with
the position angle of the observed bipolar structure
are shown on an appropriate scale in the right-hand
panels of Figs. 3 and 4. In both figures, the coordinate
origin coincides with the stellar center.

The shape of the IR brightness contours is in
satisfactory agreement with the IR observations, but
the angular size of the model bipolar structure in the
optical is considerably larger than is observed. The
model flux from the envelope at λ = 0.674 µm is also
higher than the observed flux (Fig. 2). As is noted
above, we expect more influence of fluctuations of the
dust density in the optical, but such fluctuations are
unlikely to lead to such a large difference between the
images. The differences in the size and shape of the
brightness contours are most likely due to some inad-
equacies of the model used to describe the dust torus.
The fraction of the total energy emitted by RW LMi
in the optical is not large, making it difficult to obtain
a good agreement between the model and observed
fluxes and images over a wide spectral range.

The 2-Dust code can be used to estimate the dust
mass-loss rate for a given model, Ṁd, assuming a
constant expansion velocity for the envelope [13]. In
reality, the expansion should accelerate, with the dust
velocity being higher than the gas velocity. A self-
consistent procedure to determine the mass-loss rate
and expansion velocity of an envelope was developed
in [23]. We used this procedure in [3] to estimate
the parameters of the spherically-symmetric wind of
RW LMi that is formed by the action of radiation
pressure on the dust and the resulting transfer of
momentum to the gaseous medium. In the case con-
sidered here, we can obtain only a relatively crude es-
timate of Ṁd, adopting for the expansion velocity the
average value V = 17.4 km/s, derived from radio ob-
servations of the CO emission [24]. The resulting dust
mass-loss rate is Ṁd = 2.4 × 10−8 M�/yr, which is
very close to the estimate Ṁd = 2.1 × 10−8 M�/yr
obtained for our spherically-symmetric model of the
envelope in [3]. Taking the gas-to-dust mass ratio in
the envelope of RW LMi to be 500 [3], which is close
to the average ratio for carbon stars [23], we estimate
the total mass-loss rate to be 1.2 × 10−5 M�/yr.

4. CONCLUSION

IR photometric observations of RW LMi obtained
over the last six years show continuing variability of
the brightness of this carbon Mira-type star, with
the amplitude and period remaining nearly constant.
At the same time, there has been an increase in the
JHK fluxes, especially at 1.65 µm, accompanied by
a decrease of the L and M fluxes. This behavior is
probably due to variations of the density in the cir-
cumstellar dust envelope.
We have interpreted the observed SED of RWLMi

using an axisymmetric dust-envelope model with a
density distribution typical for the superwind stage.
This model can describe the observed fluxes from the
optical to the far-IR fairly well. The calculated IR
brightness distributions are in satisfactory agreement
with high-angular-resolution observations in the IR,
but the size of the model optical image is appreciably
larger than is observed in the optical.
The estimated mass-loss rate obtained assuming

a constant envelope expansion velocity is Ṁ = 1.2 ×
10−5 M�/yr, which is close to the rate found previous
for a spherically-symmetric model of the dust enve-
lope.
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Abstract—We present the results of our IR photometric observations of the classical symbiotic star
BF Cyg acquired in 1978–2003. The variability range in the J and K bands was ∼0.2m. A periodic
component in the cool star’s brightness variations is clearly visible, its period being half the orbital one
and its J amplitude being ∼0.15m. This component is associated with the ellipsoidal shape of the red
giant, which model calculations show fills its Roche lobe. This is required in order to reproduce ellipsoidal
brightness variability with such a large amplitude: the calculated amplitude for a red giant filling 90% of its
Roche lobe is half the observed value. At the same time, it was not possible to confidently chose the optimum
component-mass ratio, q = Mgiant/Mhot, and orbital inclination, i, from possible values in the ranges
q = 2–4, i = 70◦–90◦. Including the contribution from the hot radiation sources (the hot component and
ionized envelope), which vary with a period equal to the orbital period, has a considerable influence on the
estimated parameters associated with the red giant’s ellipsoidal brightness variations, and this contribution
cannot be neglected. The deviations of the observed from the calculated light curve are irregular, with the
rms deviation being σ(O–C) ≈ 0.04m. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Based on its outburst activity, BF Cyg was as-
signed to the group of classical symbiotic stars,
whose prototype is Z And. During outbursts, its
brightness grows over several months and then
decreases over several years. Strong outbursts repeat
once every few decades. The strongest outbursts have
amplitudes reaching 3m in the U band. During the
strongest outbursts, some classical symbiotics, in-
cluding BF Cyg, experience radical spectral changes:
the high-excitation emission becomes much weaker
or disappears completely, while the hot compo-
nent begins to resemble a B–F supergiant [1, 2].
The most recent outburst of BF Cyg (1989–1992)
was analyzed in detail in [3]. In particular, it was
demonstrated that the hot component’s luminosity
increased only modestly (by a factor of∼2) during the
outburst, while its temperature decreased from 60 000
to 7000 K.

Based on the intensity of its TiO absorption bands,
the cool component of BF Cyg can be classified
as an M4.5–M5.5 red giant [4, 5]. Its luminosity
class (II or III) has not been firmly established. The
strongest evidence for the star having luminosity
class III is probably its low value of Vrot sin i, which
corresponds to a radius for the red giant Rg = 70 ±
32R� [6]. In this case, the cool component will fill

†Deceased.
1063-7729/05/4903-0232$26.00
less than half its Roche lobe. However, their analysis
of the time characteristics of an eclipse of the hot
component observed in 1999 during a large outburst
led Skopal et al. [7] to conclude that the red giant
filled its Roche lobe (Rg/A = 0.54 ± 0.02), and hence
was a bright giant of luminosity class II.
These two options are significantly different from

the point of view of the character of the mass transfer
between the symbiotic star’s cool and hot compo-
nents. In the former case, this will involve the cap-
ture of some of the red giant’s stellar wind by the
hot component, and in the latter, it will involve disk
accretion. Model mechanisms for the hot compo-
nent’s outbursts will likewise be different (cf. [8] and
references therein). Thus, determining the degree of
Roche-lobe filling by the cool component is a funda-
mental problem in studies of classical symbiotic stars.
It is possible to obtain a radial-velocity curve only

for the cool component of a symbiotic star, from
radial-velocity measurements for absorption lines
formed in its atmosphere, while the hot component
does not produce any lines in the spectrum. All
emission lines originate in the circumstellar envelope.
Thus, observations can be used to estimate the mass
function only for the cool component. To derive the
masses of both components, we need some other
methods to determine the component-mass ratio and
orbital inclination.
The radial-velocity curve for the cool component

of BF Cyg is given in [6]. High-resolution spectra
c© 2005 Pleiades Publishing, Inc.
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were obtained near λ ≈ 1.62 µm. The derived orbital
parameters are Porb = 757.2 ± 2.6 days, e = 0, and
f(m) = 0.0239 ± 0.0026. BF Cyg is an eclipsing bi-
nary. The period of the star’s visual brightness vari-
ations has been estimated to be 757.3 days [9] or
756.8 days [10].

The presence of a periodic component in the red
giant’s brightness variations with a period equal to
half the orbital period would provide convincing ev-
idence that the cool component fills its Roche lobe.
These variations result from the ellipsoidal (pearlike)
shape of the red giant, which is deformed by tidal
distortions due to the hot companion. The amplitude
of the ellipsoidal brightness variations measures the
degree of Roche-lobe filling. Clearly, this effect should
be investigated in the infrared, where the red giant
of a classical symbiotic star dominates during the
quiescent state.

IR monitoring of the recurrent symbiotic nova
T CrB revealed the presence of ellipsoidal brightness
variations with a J amplitude of∼0.2m [11]. Modeling
taking into account the cool component’s ellipsoidal-
ity effect yielded estimates of the component-mass
ratio and the orbital inclination to the line of sight [12].
Ellipsoidal I brightness variations were detected for
the classical symbiotic star CI Cyg [13].

We present here the results of our many-year
monitoring of BF Cyg in the IR, where only a few
brightness estimates were available until recently.
Our main goal was to determine if the cool com-
ponent’s brightness variations included a periodic
component with P = Porb/2, due to the deformation
of the red giant by tidal perturbations from its hot
companion, and to determine the amplitude of this
component if present. The presence of such a com-
ponent with a fairly large amplitude would provide
weighty evidence that the red giant’s Roche lobe
is filled, whereas the absence of such a component
would support the view that the Roche lobe is not fully
filled. We are also conducting systematic photometric
and spectrophotometric observations of BF Cyg in
the optical, and plan to present a detailed analysis of
these data in a subsequent paper. We will use these
data in the present paper only to a limited extent, as is
required for our analysis for the red giant.

2. PHOTOMETRIC BEHAVIOR OF BF Cyg

We obtained JHKLM photometric observations
of the symbiotic star BF Cyg using the 1.25-m
telescope of the Sternberg Astronomical Institute’s
Crimean station. The standard star used was
BS 7417, which has brightnesses of J = 1.01m,H =
0.16m,K = 0.16m, and L = −0.01m. The uncertain-
ties of the resulting brightness estimates were no
larger than 0.03m in J , H , and K and no larger than
ASTRONOMY REPORTS Vol. 49 No. 3 2005
0.06m in L. Table 1 presents our JHKL photometric
data accumulated since 1978 (the results of ourUBV
photometry obtained since 1993 will be presented in
a separate paper). Figure 1 shows the U and J light
curves.
A strong outburst of the hot component of BF Cyg

occurred during our observations, beginning in 1989.
The outburst was also quite substantial in the infrared
(Fig. 1), with the J brightness of BF Cyg increasing
by ∼30% over the star’s mean brightness in quies-
cence. The brightening was the result of an increase
in the hot component’s luminosity by a factor of ∼2
during the outburst, together with a strong decrease
in its temperature, so that its photometric and spec-
troscopic properties resembled those of a hot super-
giant [3]. Our spectrophotometric data suggest that
the hot component was in the same state in 1987, as
is indicated by the increased J brightness of BF Cyg
at that time.
In 1993, the hot component of BF Cyg returned

to its quiescent state and we decided to monitor the
star in the IRwith the best possible time coverage and
minimum uncertainties, in order to study the char-
acter of the red giant’s brightness variations. Since
then, the uncertainties of our J and K brightness
estimates have been no larger than 0.02m, usually
being ∼0.01m. We will now use this particular part of
the light curve, beginning with JD 2449114 (May 6,
1993), to investigate the red giant’s variability. These
observations were favored by exemplary quiet behav-
ior of the hot component right up until our most
recent observations (see the U light curve in Fig. 1).

The vertical bars in Fig. 1 mark the epochs of U
brightness minima (eclipses of the hot component
and of part of the circumstellar envelope by the red
giant) calculated using the formula

MinU = 2449 135 + 758.0dE. (1)

This ephemeris was derived from the U light curve of
BF Cyg since 1993 via a periodogram analysis.

The amplitude of the J brightness variations was
∼0.2m, appreciably larger than the observational un-
certainties. Thus, the cool component of BF Cyg is
a variable star—an expected finding, given the red
giant’s late (∼M5) spectral type. A linear approxima-
tion of the J light curve (the straight line segment in
Fig. 1) shows that the red giant’s mean J brightness
increased by∼0.04m during our observations. A sim-
ilar increase was shown by the K brightness, so that
the mean J −K color index remained unchanged at
〈J −K〉 ≈ 1.35m.

For E(B − V ) = 0.4 [10], the red giant’s color
index 〈J −K〉0 indicates it should be assigned a
spectral type of ∼M4, based on a comparison with
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Table 1. JHKLM photometry of BF Cyg

JD 2440000+ J H K L JD 2440000+ J H K L

3795 6.38 5.44 8115 7.32 6.05

3835 7.73 6.41 8437 7.41 6.14

3836 7.73 6.40 8528 7.25 6.18

4033 7.69 6.48 8568 7.30 6.34 6.02

4043 7.72 8790 7.43 6.31

4151 7.60 6.84 8796 7.45 6.28

4367 7.64 8790 7.43 6.31

4414 7.71 6.73 6.40 8796 7.45 6.28

4507 7.57 6.58 8790 7.43 6.31

4807 7.58 6.63 6.23 8796 7.45 6.28

5124 7.46 8823 7.50 6.55 6.18 5.90

5128 7.67 6.41 6.11 8850 7.55 6.20

5133 5.32 8852 7.55 6.20

5134 5.48 8878 7.43 6.09 5.69

5245 6.38 8879 7.38 6.13 5.73

5518 7.45 6.52 6.16 9114 7.62 6.31 5.95

5837 7.60 9144 7.69 6.34 6.01

5874 7.72 6.42 5.89 9235 7.58 6.25 5.90

5875 6.19 5.83 9294 7.59 6.24

5876 7.72 5.83 9502 7.68 6.74 6.33 6.03

5879 5.74 9525 7.65 6.36 5.93

5931 7.61 6.57 6.17 5.81 9529 7.68 6.66 6.30 5.97

5943 9534 7.62 6.66 6.32 5.94

5951 7.55 6.54 6.21 5.92 9855 7.71 6.74 6.45 6.06

5961 9883 7.72 6.35 5.96

6224 7.61 6.58 6.24 6.02 9938 7.65 6.29

6337 7.58 6.56 6.19 5.89 9943 7.63 6.29

6579 9974 7.59 6.31

6580 9997 7.54 6.26

6581 7.56 10002 7.56 6.25

6616 7.56 6.56 6.25 5.79 10064 7.55 6.21

6690 7.58 5.89 10199 7.66 6.65 6.25 6.05

7044 7.39 6.48 6.13 5.80 10204 7.65 6.66 6.27 5.98

7046 7.37 10211 7.70 6.65 6.26

7418 7.64 6.38 10233 7.70 6.65 6.30 5.95

7436 7.62 6.37 10242 7.65 6.28

7702 7.29 6.40 6.14 5.82 10261 7.64 6.32

7808 7.31 6.10 10294 7.65 6.32

8024 7.35 6.15 10623 7.64 6.28

8027 7.32 6.14 10699 7.60 6.62 6.28 5.99

8053 7.34 6.12 10754 7.58 6.20

8064 7.32 6.12 10765 7.54 6.56 6.19 5.91
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Table 1. (Contd.)

JD 2440000+ J H K L JD 2440000+ J H K L

10868 7.51 6.55 6.19 5.85 12031 7.57 6.23

10978 7.59 6.22 12037 7.56 6.22

11009 7.68 6.34 12125 7.63 6.28

11037 7.71 6.32 12126 7.66 6.30

11095 7.63 6.24 12127 7.66 6.28

11300 7.51 6.17 12131 7.67 6.30

11336 7.52 6.18 12132 7.64 6.31

11351 7.56 6.21 12153 7.69 6.33

11355 7.54 6.20 12157 7.68 6.34

11358 7.55 6.18 12158 7.67 6.33

11359 7.55 6.20 12187 7.64 6.34

11360 7.55 6.18 12190 7.67 6.34

11361 7.54 6.19 12192 7.70 6.31

11365 7.54 6.20 12211 7.69 6.33

11383 7.54 6.20 12220 7.66 6.32

11384 7.55 6.19 12348 7.58 6.24

11385 7.54 6.22 12367 7.57 6.24

11387 7.55 6.22 12391 7.59 6.24

11390 7.52 6.17 12420 7.59 6.24

11393 7.54 6.18 12455 7.58 6.25

11420 7.54 6.18 12.483 7.64 6.28

11421 7.55 6.21 12510 7.70 6.28

11423 7.53 6.20 12537 7.62 6.28

11453 7.55 6.23 12540 7.63 6.28

11686 7.59 6.60 6.22 5.97 12740 7.51 6.18

11687 7.60 6.24 12751 7.53 6.20

11707 7.60 6.25 12774 7.53 6.19

11738 7.68 6.32 12778 7.52 6.19

11740 7.71 6.31 12800 7.50 6.21

11741 7.67 6.30 12806 7.54 6.20

11768 7.71 6.35 12809 7.54 6.22

11770 7.72 6.36 12836 7.58 6.24

11777 7.70 6.33 12840 7.57 6.25

11779 7.71 6.33 12843 7.57 6.24

11780 7.72 6.33 12866 7.61 6.28

11782 7.73 6.34 12867 7.61 6.28

11802 7.72 6.34 12869 7.60 6.28

11834 7.68 6.31 12871 7.60 6.28

11865 7.58 6.23 12889 6.31

11867 7.57 6.21 12890 7.66 6.31

12007 7.58 6.23 12925 7.69 6.33

12012 7.56 6.23
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Fig. 1. U and J light curves of the symbiotic star BF Cyg. The solid line is a linear fit to the J light curve. The vertical bars
mark the epochs of primary brightness minima calculated using (1).
the color indices of red giants in the solar neigh-
borhood [14]. The mean color index 〈J −K〉0 cor-
responds to the same spectral type. A comparison
of 〈J −K〉0 with the color indices of red giants in
the bulge [15] indicates a spectral type for the red
giant in BF Cyg of ∼M6. Recall that the spectral
type derived from the intensities of the TiO bands is
∼M5 [4, 5]. The differences in the IR color indices
of red giants having similar spectral types (based on
their TiO bands) but belonging to different Galactic
populations can be explained as an effect of metallicity
differences [15]; the metallicity is higher for red giants
in the bulge. If present, enhanced metal abundances
for red giants in symbiotic stars probably reflect these
binaries’ evolutionary history, and are not related to
their population types.

Figure 2 presents (J ,K) and (J , J −K) diagrams
plotted using the same horizontal scale. The solid
lines are linear fits to these relations. These diagrams
were plotted using only IR brightness estimates ob-
tained since 1993. We can see from Fig. 2 that the
mean J −K color index increases with decreasing J
brightness. The increase in the color index is∼0.05m,
corresponding to changes in the red giant’s spec-
tral type within one subtype. However, the scatter
of the data points around the approximating line is
not smaller than this mean increase. In addition, this
scatter is not smaller than the corresponding scat-
ter in the (J , K) diagram, although the brightness
variations in these spectral bands are significantly
correlated. The correlation coefficient for the linear
relation between the red giant’s J andK brightness is
∼0.87. At the same time, the correlation coefficient for
the linear fit relating the J brightness and J −K color
index is∼0.45, while that for the relation between the
K brightness and J −K color index is close to zero,
with the (K, J −K) diagram displaying a cloud of
data points.

3. PERIODIC BRIGHTNESS VARIATIONS
OF THE RED GIANT

Consider the J and K light curves of BF Cyg
beginning in 1993 (JD = 2 449 114). By that time,
the hot component had returned to its quiescent state,
and the red giant’s light dominated in the IR. We can
see from Fig. 1 that the J light curve exhibits min-
ima coinciding with the U-brightness minima. One
exception is the minimum of 1999 (JD= 24 411 384),
when maxima were displayed by the J and K light
curves, as opposed to the minimum observed in U .
It is possible that the expected brightness mini-

mum of the cool component failed to occur due to the
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considerable irregularity of the red giant’s variability,
as is characteristic of stars with such late spectral
types. Several cases of aperiodic IR brightness vari-
ations are known for symbiotic stars, towards both
higher and lower brightnesses compared to the ex-
pected values (cf. [16] and references therein). For
this reason, we did not use the data corresponding
to the “missing” minimum of 1999 in our subsequent
periodicity analysis, although, if included, these data
would only change the depth of the minimum in the
folded light curve slightly, without affecting the basic
conclusion that there is a periodic component in the
brightness variations of the BF Cyg red giant.

We searched for periodic components in the
brightness variations using code written by
Yu.K. Kolpakov (http://infra.sai.msu.ru/prog/
kolpakov). Possible periodicities were detected by
approximating the data time series with a combined
function (which we will call an approximation curve),
which includes a polynomial part (a third-order poly-
nomial) that reproduces the cubic trend of the signal’s
permanent component and a Fourier series up to the
third harmonic. The coefficients of the approximating
polynomial are determined from a least-squares fit.

The periodogram analysis revealed the presence of
JK brightness variations with periods of P1 = 767 ±
15 days (≈Porb) and P2 = 381 ± 5 days (≈1/2Porb).
The deviations ofP1 fromPorb = 757.2± 2.6 days and
from P (U) ≈ 758.0 ± 0.4 days are within the errors
in the period P1. The comparatively large uncertainty
of our P1 estimate is due to the irregularity of the
red giant’s brightness variability. In particular, we
believe this to be the origin of the missing expected IR
brightness minimum of 1999. Note that, if we include
the 1999 data points in the periodogram analysis,
the estimates of the periods P1 and P2 will change
by less than 1%, and these changes are within the
uncertainties in the periods.

Figure 3 shows theU and J light curves of BFCyg
folded with the 758-day period, together with the cor-
responding approximation curves. When folded with
the 762-day period (2P2), the shape of the J curve
and the parameters of the approximation curve remain
virtually unchanged. The zero epoch of the shallower
J brightness minimum (phase ϕ = 0 in Fig. 3) coin-
cided with the zero epoch of the U brightness mini-
mum (JD 2449135). We will call this minimum of the
J light curve the primary minimum. At this time, the
red giant is near its lower conjunction, so that it cov-
ers the hot component and part of the circumstellar
envelope. According to the red giant’s radial-velocity
curve, the times of lower conjunction are given by the
formula

Tconj = JD 2449124 + 757.2∗E days [6]. (2)
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Since we are considering a time interval when the
red giant’s light dominated in the IR, the primary
minimum, whose depth is ∼0.13m, cannot be due to
an eclipse of part of the hot radiation source (the hot
component + the circumstellar envelope).

The secondary minimum of the J brightness
(the red giant is behind the hot component, upper
conjunction) is observed at phase ϕ ≈ 0.48, and is
∆min ≈ 0.02m deeper than the primary minimum.
For the ratio of the radii of the hot and the cool
components, Rhot/Rgiant ≈ 0.0035 [10], the sec-
ondary minimum, with a depth of ∼0.15m, cannot
be due to an eclipse of part of the red giant by the
hot subdwarf. Thus, the IR brightness variations of
the cool component of BF Cyg contain a periodic
component whose period is half the orbital period,
which is not associated with partial eclipses of the
hot radiation sources or of the red giant.

This brightness variability of the cool component
is likely due to the ellipsoidal shape of the red gi-
ant (or, in the case of cataclysmic variables, of the
main-sequence star) that it acquires when it fills its
Roche lobe (we, accordingly, will call this ellipsoidal
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Fig. 3. U and J light curves of BF Cyg folded using (1). The solid curve in the middle panel is an approximation fit to the folded
curve. The observational data in the upper panel were corrected for the light from the hot source. The solid and dashed curves
in the upper panel are light curves calculated in models with q = 3, i = 80◦, µ = 1 and q = 3, i = 80◦, µ = 0.9, respectively.
See text for more detail.
brightness variability). Note that various depths of the
minima are characteristic of the ellipsoidal brightness
variability of red giants [12]. There are no alternative
explanations for this kind of brightness variability
occurring in a cool component in a binary system,
and we will, accordingly, analyze this variability in an
ellipsoidal-variability model.

The J brightness maxima are observed at phases
ϕ ≈ 0.25 and 0.73, with the second maximum being
∼0.02m brighter. These brightness should be equal in
a pure ellipsoidal-variability model for the red giant.
When comparing the model light curve for the red gi-
ant and the approximation curve or observed curve in
our subsequent analysis, we will use the mean bright-
ness of the cool component in its two brightness
maxima. According to the approximation curve, the
mean brightness at the maxima is A ≈ 0.15m higher
than the mean brightness at the secondary minimum.
The K variability amplitude is A ≈ 0.13m. An ellip-
soidal IR brightness-variability amplitude that high
indicates that the red giant should be close to filling
its Roche lobe.
The difference between the giant’s mean bright-

ness at phases ϕ = 0.2–0.3 andϕ = 0.7–0.8 (bright-
ness maximum) and its mean brightness at ϕ =
0.45–0.55 (secondary minimum) is A′ ≈ 0.13m. The
same difference results from a similar averaging
using the approximation curve calculated for the set
of phases corresponding to the dates of the actual
observations. The rms deviation of the individual
differences between the approximation curve and the
observed curve is σ(O–C) ≈ 0.04m. Our analysis
of O−C shows the deviations to be irregular (ran-
dom), though it is possible that this conclusion will
change when the number of brightness estimates has
increased considerably.

4. MODEL COMPUTATIONS
We calculated the light curve for a red giant dis-

torted by tidal perturbations from the hot component
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using a classical ellipsoidal model [17], which is based
on the following assumptions. The two components
are described by the gravitational potential of two
point masses. The red giant’s axial rotation is syn-
chronized with the orbital motion. (See [18] and ref-
erences therein on the validity of this last condition
for BF Cyg-type symbiotic binaries.) The orbit is
circular, as follows from the analysis of [6].

We assumed that the red giant’s effective temper-
ature was Teff = 3000 K (corresponding to a spec-
tral type of M5 [14]) and that each element of its
surface emitted as a blackbody source whose tem-
perature was determined by a gravitational darkening
law. As was demonstrated in [12], the J band is the
best suited of the JHK bands if we wish to use a
blackbody source to describe the real spectral energy
distribution of the red giant. The exponent in the
gravitational darkening law was taken to be β = 0.08
(the Lucy law for stars with convective envelopes).
The limb-darkening coefficients were taken from [19].

The model input parameters included µ, describ-
ing the degree of Roche-lobe filling (in our case, µ is
the ratio of the polar radii of the star and Roche lobe; if
the Roche lobe is filled, µ = 1), the component-mass
ratio, q = Mgiant/Mhot, and the orbital inclination, i.
The parameter q was varied in the range q = 2–6
(cf. [6] and references therein).

The U variability amplitude, ∼1.4m (Fig. 1), in-
dicates that the red giant eclipses not only part of
the hot component’s circumstellar envelope, but the
hot component itself (in the case of a spherically
symmetric circumstellar envelope). Otherwise, the
red giant would have covered less than half of the
gaseous envelope, and the U brightness-variability
amplitude would have been no larger than 0.7m. For
this reason, we varied i in the range i = 90◦–70◦.
The best-fit model was obtained when the sum of the
squared deviations between the model and observed
light curves was minimum.

Table 2 presents the magnitude differences be-
tween the secondary and primary minima (∆min) to-
gether with the J variability amplitude (A) for the
model in which the red giant fills its Roche lobe
(µ = 1). These parameters were estimated from the
extrema of the model curve. Recall that the observed
values of these parameters, corresponding to the ex-
trema of the approximation curve, are ∆min ≈ 0.02m

and A ≈ 0.15m. We can see from Table 2 that the
model calculations do not admit this combination of
∆min and A. The calculated ∆min is ∼ 0.02m higher
than the observed value for models with the required
value for A. If we select a model that correctly re-
produces ∆min (with decreased q and β), A will no
longer retain its require value, since ∆min and A vary
simultaneously.
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Table 2. Dependence of the model light-curve parame-
ters ∆min/A (magnitude difference between the primary
and secondary minima/the amplitude of the secondary
minimum) on the input model parameters q and i (q =
Mgiant/Mhot, i is the orbital inclination) when the cool
component fills its Roche lobe

q

i 4 3.3 2.5

∆min/A

90◦ 0.045/0.141 0.047/0.151 0.051/0.167

80◦ 0.042/0.136 0.044/0.146 0.048/0.162

70◦ 0.035/0.125 0.037/0.134 0.040/0.148

We can see in Table 2 that ∆min and A depend
fairly weakly on the input parameters i and q (at the
level of 0.01m). In addition, some combinations of i
and q lead to virtually the same values of∆min and A
(see, for example, the models along the main diagonal
of Table 2). The minimum sum of squared devia-
tions between the model and observed light curves
is formally achieved for (i, q) = (80, 3.3). This folded
model curve is shown in Fig. 3.

At the same time, the relation between the am-
plitude A and the parameter µ is strong enough to
enable us to draw firm conclusions about the degree
of Roche-lobe filling by the red giant. In fact, the
calculated amplitude for (i, q) = (90, 3.3) and µ = 0.9
is A ≈ 0.07m, which is half the observed amplitude
(Fig. 3). Thus, we conclude that the cool component
of BF Cyg essentially fills its Roche lobe—provided,
of course, that the brightness variations with a pe-
riod of half the orbital period do, indeed, represent
ellipsoidal variability. No other explanation has been
proposed to explain these variations.

Due to the eclipse, the brightness of the hot source
(the hot component + the ionized envelope) varies
considerably in the course of the orbital motion of
the binary BF Cyg (Figs. 1 and 3). It is lowest at
the primary minimum and highest at the secondary
minimum of the red giant’s IR brightness. Accord-
ingly, the contribution of the hot source to the total
IR brightness of BF Cyg (due to the hot source+ the
red giant) will be lowest at the primary minimum and
highest at the secondary minimum. Thus, taking the
hot source into account will increase the brightness
difference between these minima.

If we assume that the hot component’s quiescent
temperature is ∼6× 104 K, the electron temperature
of the gaseous envelope is Te ∼ 104 K, and the color
excess is E(B − V ) ≈ 0.4 [10], then, with the mean
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brightness of the hot source (〈U〉 ≈ 12.3m), its con-
tribution to the J radiation will be ∼3%. For the U
brightness variability amplitude of 1.4m (Fig. 2), the
contribution of the hot source to the J radiation at the
primary and secondary minima of the J brightness
will be ∼1.3% and ∼4.7%, respectively. Assuming
harmonic brightness variations of the hot source with
the 758-day period, we subtracted its contribution
to the J radiation, thereby deriving the “corrected”
brightness of the red giant.

Note that the contribution of the hot component
to the J radiation of the hot source is less than 10%;
i.e., the main contribution of the hot source in the
IR is made by the ionized envelope. In addition, the
contribution of the hot source to the K band will
differ from its contribution to the J band by less
than 0.5%. Hence, taking this radiation into account
will not change the J −K color index, leaving the
spectral classification of the red giant unaltered (see
Section 2).

The red giant’s corrected light curve folded with
the 758-day period is plotted in Fig. 3 along with
the folded model curve calculated for µ = 1, q = 3.3,
and i = 80◦ (Table 2). We normalized the calculated
curve to the observed curve using the condition that
〈O–C〉 = 0. The rms deviation of theO−C estimates
is σ(O–C) ≈ 0.04m.

The difference between the giant’s mean bright-
ness at phases ϕ = 0.2–0.3 andϕ = 0.7–0.8 (bright-
ness maximum) and its mean brightness at ϕ =
0.45–0.55 (secondary minimum) is nowA′ ≈ 0.134m

(A′ ≈ 0.122m when the hot source is not taken
into account). The difference between the giant’s
mean brightness at phases ϕ = −0.05–0.05 (primary
minimum) and its mean brightness at phases ϕ =
0.45–0.55 (secondary minimum) is ∆′

min ≈ 0.045m

(∆′
min ≈ 0.015m when the hot source is not taken

into account). Similar averaging using the model
curve (µ = 1, q = 3.3, i = 80◦) calculated for the
set of phases corresponding to the dates of the
actual observations (Fig. 4) leads toA′ ≈ 0.137m and
∆′

min ≈ 0.042m.

The model reproduces the features of the periodic
component of the red giant’s light curve rather well
when the contribution of the hot source (small as it is)
is taken into account. Nevertheless, we would like to
stress again that it is not possible to unambiguously
choose a best model from the list in Table 2. This is
hindered by the considerable irregularity of the vari-
ability of the red giant’s IR brightness, which distorts
the periodic ellipsoidal component and introduces ap-
preciable errors in parameters such as A and ∆min.
Additional ambiguity in selecting the best model is
due to the relatively weak dependence of the model
light-curve parameters, A/∆min, on the input model
parameters, such as q and i (Table 2).
However, we can be confident that ellipsoidal

brightness variability is present, and has a large
amplitude and minima with different depths. This
large amplitude and the fairly strong dependence
of the model light-curve amplitude on the degree
of Roche-lobe filling by the cool component (µ)
enable us to conclude that the cool component of
BF Cyg essentially fills its Roche lobe, and is thus
a luminosity-class-II red giant.

5. CONCLUSION

Our long-term monitoring observations of the
classical symbiotic star BF Cyg in the IR demon-
strate that the red giant’s brightness variations con-
tain a periodic component, with a period of half the
orbital period and a J amplitude of∼0.15m.
These brightness variations are due to the ellip-

soidal shape of the cool component of BF Cyg, which,
according to our model calculations, should fill its
Roche lobe. In this case, the accretion of matter from
the red giant onto the hot component occurs via an
accretion disk, which provides an accretion rate suffi-
cient, from an energetic point of view, to produce the
observed novalike outbursts of BF Cyg.
The effect we have detected is consistent with our

current understanding of BF Cyg. Earlier observa-
tions showed that the system’s cool component filled
its Roche lobe during an eclipse of the hot compo-
nent in 1999 [7]. The question of whether BF Cyg
is a normal red giant or a bright giant of luminosity
class II could be answered directly if the distance to
the system were known. However, it is not possible
to determine the distance to the star using direct
methods. Since the distance to BFCyg exceeds 2 kpc
and it is located fairly high above the Galactic plane
(b ≈ 7◦), it is likewise not possible to estimate its
distance from the observed interstellar reddening (for
BF Cyg, this yields only a lower limit for the distance
of ∼500 pc [10], which is too nearby for a star of
luminosity class III, and even more so for luminosity
class II). The spectral classification [20] also does not
provide an exact answer to this question.
Ellipsoidal brightness variations have now been

revealed for such classical symbiotic stars as
CI Cyg [13] and YY Her [21]. However, they are
definitely absent for noneruptive symbiotic stars, such
as V443 Her [22] and RW Hya [23], although these
stars are a kind of twin of the classical symbiotic stars
in quiescence. Their orbital periods are also similar.
It is not unambiguously known why only some

of these apparently similar symbiotic stars display
outbursts and others do not. In our opinion, the most
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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probable origin is differences in the degree of Roche-
lobe filling by the cool components. When the lobe is
sufficiently filled, the relatively low-efficiency accre-
tion of the red giant’s stellar wind, which is largely
compensated by the stellar wind from the hot compo-
nent, is replaced by the more efficient disk accretion
[8]. However, the accumulated direct evidence that
the cool components of classical symbiotic stars fill
their Roche lobes is still not conclusive.Many years of
systematic observations in the IR are needed in order
to determine with confidence whether a red giant’s
brightness displays ellipsoidal variations.
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Abstract—Observations of the anomalous X-ray pulsar (AXP) 1E 2259+586 and the AXP candidate
1RXS J1308.6+212708 at 111, 87, and 61 MHz are reported. The observations were carried out on two
high-sensitivity radio telescopes of the Pushchino Radio Astronomy Observatory. Mean pulse profiles are
presented, and the dispersion measures, distances, spectral indices, and integrated radio luminosities of
both objects are estimated. Comparison with X-ray data shows large differences in the mean pulse widths
and luminosities. The detection of radio emission from these two AXPs, together with other data, suggests
the need to revise the radio-emission mechanisms in the magnetar model or the magnetar model itself.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Recent space-based gamma-ray and X-ray ob-
servations have led to the discovery of two spe-
cial groups of pulsars: anomalous X-ray pulsars
(AXPs) [1] and soft gamma-ray repeaters (SGRs) [2].
It is now generally accepted that these neutron stars
have different parameters than are typical of the larger
group of “normal” radio pulsars and ordinary X-ray
pulsars. Five AXPs and four AXP candidates have
been identified, while the list of SGRs includes four
objects and one candidate. A list of 13 pulsars in
these two groups is presented in [3], together with the
main differences of these objects from other known
pulsars; another AXP candidate was detected quite
recently [4]. Recall that these objects differ from
normal radio pulsars in their long periods, which lie in
the narrow range of 5–12 s, and large period deriva-
tives, 10−11–10−13 s/s. Despite their long rotational
periods, they are thought to be young objects with
characteristic ages of up to several hundred thousand
years. All these objects are located close to the plane
of the Galaxy, and nearly half are inside supernova
remnants. AXPs and SGRs also differ from ordinary
X-ray pulsars in the continuous decreasing of their
periods and their more stable X-ray fluxes and lower
X-ray luminosities, 1034–1036 erg/s. Furthermore,
AXPs and SGRs have softer spectra, which can
frequently be described by a combination of a black-
body spectrum and a power-law segment with a
steep spectral index (2.5–4.0). The most important
difference between these objects and other X-ray
1063-7729/05/4903-0242$26.00
pulsars is the absence of a detectable companion; i.e.,
they are single neutron stars. All these features are
presented in the reviews and papers [1–8].

One of the most intriguing problems connected
with these objects is the source of their energies,
which sometimes imply luminosities that are two to
three orders of magnitude higher than can be provided
by the rotational kinetic-energy losses associated
with rotational braking in “normal” pulsars. All the
models proposed until recently to explain this new
energy source encounter serious difficulties. These
include the historically first model, which involves
accretion of the surrounding plasma onto a neutron
star (see, e.g., review [9]), the very interesting model
of [10], with the gravitational collapse of a neutron
star into a quark star, and the currently most pop-
ular magnetar model [5], which proposes that these
objects are single neutron stars with superstrong
magnetic fields, ∼1014–1015 G. These difficulties are
considered in detail by Malov et al. [3]. One of the key
arguments in favor of the magnetar model was the
absence of radio emission from AXPs and SGRs: this
could be naturally explained as a consequence of the
impossibility of forming the electron–positron cas-
cades that are responsible for radio emission in many
models in the presence of such high fields [11, 12].

This was the situation until recently, when
pulsed radio emission was detected from the
SGR 1900+14 [13] and the AXP 1E 2259+586 [14]
in 1999–2001. This led to searches for new mech-
anisms for the generation of radio emission in the
c© 2005 Pleiades Publishing, Inc.
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framework of the magnetar model [15], as well as
completely new models, such as the action of drift
waves at the periphery of the magnetosphere. This
latter model can explain many features of AXPs and
SGRs if these objects are neutron stars with periods
of about 0.1 s, period derivatives of about 10−13 s/s,
and “normal” surface magnetic fields of ∼1012 G [3].

The importance of searches for and studies of the
radio emission of AXPs and SGRs is obvious. In this
paper, we present new data on the radio emission
of the first AXP, 1E 2259+586, and present param-
eters of the radio emission of the AXP candidate
J1308.6+212708 for the first time.

The X-ray object 1E 2259+586 (G109.1−1.0)
was detected in the direction toward the super-
nova remnant CTB 109 in 1980 by Gregory and
Fahlman [16], who also detected pulsed emission
(1E 2259+586), first with the period P = 3.489 s and
then with P = 6.9786 s and Ṗ = 7 × 10−14 s/s [17].
Subsequently, some groups measured and updated
the coordinates, period, and period derivative (see,
e.g., [17, 18]). The first paper concerning residual
deviations of the pulse times of arrival reported the
presence of an orbital period of 2300 s [17], which was
not confirmed by later studies.

The second object, 1RXS J1308+21, was dis-
covered in 2001 [19]. It has a period of P = 5.16 s
and an uncertain period derivative, Ṗ = (0.7–2.0) ×
10−11 s/s. The rotational period for this pulsar was
recently redetermined; as in the earlier case of the
AXP 1E 2259+586, the period was doubled, i.e., P =
10.32 s [20]. Since the properties of this object are
similar to those of AXPs, it is considered a candidate
member of this group.

2. OBSERVATIONS

The observations of the AXP 1E 2259+586 be-
gan on March 7, 1999, and 19 measurements were
obtained in the following two years. Regular 3-day to
15-day observations every one–two months began in
February 2001. The second object, 1RXS J1308+21,
has been observed in the same mode since Decem-
ber 21, 2001. We consider here data obtained for both
pulsars up until April 2003. Most of the observations
were obtained on the high-sensitivity Large Phased
Array (LPA) of the Lebedev Physical Institute of
the Russian Academy of Sciences at a frequency of
111 MHz. We also occasionally carried out simulta-
neous observations at 87 or 61 MHz on the East–
West arm of the DKR-1000. Both radio telescopes
are meridian-transit instruments; the durations of
the observations on the LPA were 6.2 and 3.3 min
for 1E 2259+586 and 1RXS J1308+21, respectively,
and a factor of three longer for each pulsar on the
DKR-1000.
ASTRONOMY REPORTS Vol. 49 No. 3 2005
A filter-bank spectrum analyzer with a bandwidth
of 20 kHz and 64 channels at 111 MHz and 32 chan-
nels at 87 and 61 MHz was used. As a rule, the
data-sampling interval was 25.6 or 51.0976 ms and
the receiver time constant was 30 or 100 ms. These
parameters were used in a mode designed for inte-
grating a signal with a known period. In addition,
we used a method to independently search for the
pulsed radio emission [21], using 63 20-kHz chan-
nels and a sampling interval of 21.94 ms. To increase
the certainty with which pulses were recorded in the
integration mode, we carried out numerous observa-
tions of 1RXS J1308+21 and some observations of
1E 2259+586, including all the measurements at 87
and 61 MHz, applying double the period (i.e., P =
10.314 for 1RXS J1308+21, or 2P = 20.628 s) using
a technique that has been tested with observations
of faint and millisecond pulsars [22], as well as the
Geminga pulsar [23]. Some observations were cali-
brated using reference radio sources with known flux
densities. The observational technique and process-
ing of the data are described in detail in [22].

3. RESULTS

We detected weak periodic pulsed radio emission
from the AXP 1E 2259+586 at the end of 2000,
with the shape of the radio pulses differing strongly
from that for the X-ray pulses. The mean flux density
was 70 mJy. We estimate the dispersion measure to
be 80 ± 5 pc/cm3, which yields the first estimate of
the distance to the pulsar (3.6 kpc). These results
have been reported at several conferences, together
with values for the period and period derivative (see,
e.g., [14, 24]).

The observations of the AXP candidate
1RXS J1308+21 began in 2002, right after the
publication of the study of Hambaryan et al. [19],
who reported an accurate position, the period, and
an estimate of the period derivative. After only one
month of observations, we detected periodic pulsed
radio emission from this object at 111 MHz. As in
the case of the AXP 1E 2259+586, the radio pulse
was considerably narrower than the X-ray pulse.
Preliminary results on the period, period derivative,
shape of the mean profile, flux, dispersion measure,
and distance to the pulsar have been presented early
in 2002 at a number of conferences [25, 26].

We report here new data, including our data for
April 2003. In total, we had 321 days at 111 MHz,
33 days at 87 MHz, and 5 days at 61 MHz for
the AXP 1E 2259+586 over the entire observational
interval. About one-third of the observations were
corrupted by strong interference, and the pulsar sig-
nal did not exceed 4σ on more than one-third of the
days, however, 89 days at 111 MHz and 7 days at
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Fig. 1. Examples of Fourier-amplitude spectra of
the AXP candidate 1RXS J1308+21 at 111.2 MHz:
(a) spectrum for May 1, 2003, (b) total spectrum for five
days of observations. The arrows mark the phases of the
first five Fourier harmonics (for a period of 10.31 s).
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Fig. 2. Examples of integrated profiles of the AXP
1E 2259+586 at 111.2 MHz (in arbitrary units) ob-
tained by summing (a) 53 periods on March 29, 2002,
(b) 14 periods on September 6, 2002, and (c) 53 periods
on January 11, 2003. The arrowsmark the phases of pulse
arrival.

87 MHz remained for further analysis. Unfortunately,
the pulsar signal was not detected at 61 MHz, prob-
ably due to interference. We obtained 130, 20, and
8 records at 111, 87, and 61 MHz, respectively, for
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Fig. 3. (a) Integrated profile of the AXP 1E 2259+586
at 111.2 MHz (in arbitrary units) obtained by summing
12 days of observations and 312 doubled pulsar rotation
periods, PH = 2P ; (b) convolution with the rotational
period, i.e., the sum of 624 periods. The arrows mark the
phases of pulse arrival.

1RXS J1308+21, with 76, 10, and 5 days being useful
for analysis.

(a) Search Method

The first version of this method was tested in a
search for pulsars in a sample of faint scintillating
sources [21]. The method was updated at the end
of 2001 as follows. We implemented normalization
in all channels, so that the signal dispersion in each
channel was unity (i.e., the gains were made the same
in all channels), and took into account the probable
signal dispersion measure via a cyclic shift in the
corresponding channels. In the searches, we consid-
ered dispersion measures not exceeding 100 pc/cm3,
adding the signals in all channels for each dispersion
measure. We plotted the power spectra for all possible
dispersion measures, then summed harmonics and
searched for those for which the signal-to-noise ratio
exceeded a given level. Tests of this method using
observations of known pulsars demonstrate that pul-
sars with fluxes≥70 mJy can be confidently detected.
Using the improved method, we observed both the
target objects as part of a search for periodic pulsed
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 4. Example of an integrated profile of the AXP
1E 2259+586 at 87.5 MHz (in arbitrary units), obtained
on October 5, 2002 by integrating over 80 periods. The
arrow shows the phase of the pulse arrival.

radio signals from more than 30 candidate objects at
the centers of supernova remnants and toward AXPs,
SGRs, steep-spectrum sources, etc. The search sen-
sitivity was estimated using observations of strong
and faint known pulsars.

We were able to obtain some good spectra for both
AXPs, two of which were presented in [26]. We show
here two more examples of Fourier-amplitude spectra
for 1RXS J1308+21 (Fig. 1). While we see primarily
the broad, strong first harmonic in 1E 2259+586 [26],
several harmonics are observed in 1RXS J1308+21.
In particular, after adding five spectra (Fig. 1b), the
amplitude of the first harmonic in the total spectrum
increases compared to the amplitude in Fig. 1a, and
possible weak second and third harmonics begin to
appear (Fig. 1b).

(b) Mean Profile

1E 2259+++586. Since the integrations for indi-
vidual days were carried out over only 53 pulses,
the signal-to-noise ratio of the mean pulse rarely
reached five (examples for three days of observations
are presented in Fig. 2). Accordingly, we improved
the signal-to-noise ratio by summing the data for a
number of different days. Since we did not have pre-
cise timing for this pulsar, we summed days when the
observations were carried out using the double period,
and the pulses were aligned using visible pulses. In
this case, we should observe two pulses separated by
precisely one pulsar period in the summed profile, as is
shown in Fig. 3a. Adding these two pulses using the
pulsar period (Fig. 3b) yielded a very narrow profile
with a mean duration of 120 ± 20 ms, or 1.7% of
the period. This is one of the narrowest pulses ob-
served for radio pulsars. Furthermore, in contrast to
the X-ray profile, we observe no interpulse with an
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 5. (a) Integrated profile of the AXP candidate
1RXS J1308+21 at 111.2 MHz (in arbitrary units), ob-
tained by summing four days of observations and 25 dou-
ble pulsar rotational periods PH = 20.64 s. (b) Convolu-
tion with the rotational period P = 10.32 s, i.e., the sum
of 50 periods. The arrows show the pulse-arrival phases.

amplitude≥20% of the main pulse in the radio profile.
We were also able to detect pulsed periodic emission
from this pulsar at 87.5 MHz (Fig. 4). The low signal-
to-noise ratio (∼5) is due to the small number of
accumulated periods (80).

1RXS J1308+++21. We also observe a narrow pulse
at 111 MHz in this pulsar, which has a duration of
140 ± 20 ms, or 1.35% of the period (P = 10.32 s).
Figure 5 shows the mean pulse obtained by integrat-
ing 25 periods for four days using the same technique
as for 1E 2259+586. We also detected the pulsar at
88 MHz (Fig. 6a) and 61.8 MHz (Fig. 6b). While the
88 MHz pulse is visible after integrating only 14 peri-
ods, we had to sum data for three days of observations
and 100 periods at the lower frequency. In addition to
a narrow pulse, this pulsar displays an interpulse at a
longitude of ∼180◦, which is clearly visible in Figs. 5
and 6. This is probably why the second harmonic is
clearly visible in the power spectrum in both the X-ray
and radio [19, 26].

(c) Dispersion Measure

Determining dispersion measures is extremely im-
portant, since it makes it possible to obtain indepen-
dent estimates of the distances to the pulsars.

1E 2259+++586. We estimated the dispersion mea-
sure using the best data in the 111.24–110.60-MHz
frequency band, which was covered by 64 receiver
channels: DM = 79± 4 pc/cm3. The signal-to-noise
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Fig. 6. Integrated profile of the AXP candidate
1RXS J1308+21 (in arbitrary units) at (a) 87.7 MHz,
summed over two days and 14 periods and (b) 61.8 MHz,
summed over three days and 100 periods.

ratio as a function of the dispersion measure for five
days of observations is shown in Fig. 7a, and the
dependence of the DM on the pulse duration at half-
maximum is presented in Fig. 7b. We can see from
Fig. 7 that the pulse has the highest signal-to-noise
ratio for DM = 70–90 pc/cm3.

Similar relationships are observed at 87 MHz.
Unfortunately, we have not been able to obtain re-
liable simultaneous recordings of the pulses at 111
and 87 MHz to improve our estimate of the dispersion
measure.

1RXS J1308+++21.We performed a similar analysis
to find the dispersion measure of this pulsar at all three
frequencies: 111, 87, and 61 MHz. The most probable
value of the dispersion measure is 5.7 ± 0.5 pc/cm3;
Figs. 7c, 7d show that this DM yields the pulse with
the highest signal-to-noise ratio and the shortest
duration, though the maximum and minimum are not
as sharp as for 1E 2259+586.

(d) Flux Density

We measured the fluxes of both pulsars at
111 MHz via calibration and referencing to radio
sources with known fluxes. The flux of 1E 2259+586
was measured on 30 days over 3.5 years, and that of
1RXS J1308+21 on 10 days over 1.5 years. Including
observations in which the signal did not exceed 4σ,
the mean flux densities are 35 ± 25 and 50 ± 20 mJy
for 1E 2259+586 and 1RXS J1308+21, respectively
(the 1σ rms dispersion of the flux density is given
together with the mean). At the lower frequencies, we
could estimate only upper limits for the flux densities
of both pulsars: S < 150 mJy and S < 200 mJy at
87 MHz for 1E 2259+586 and 1RXS J1308+21,
respectively.

We have already reported values for the pe-
riod and period derivative of 1E 2259+586 and
1RXS J1308+21 derived for intervals of 1505 and
443 days, respectively, in [26]. We are currently
accumulating data to refine these two parameters. We
hope in the near future to determine the period and
period derivative over a longer time interval and carry
out a detailed analysis of the behavior of these two
quantities in order to verify the presence of a period
glitch, as was recently reported by Kaspi [27].

4. DISCUSSION

The table lists the main parameters of the radio
emission from the two AXPs. Comparison with the
X-ray data shows that the radio measurements both
extend our knowledge about these objects and carry
fundamentally new information. We have obtained
more precise measurements of the period and period
derivative for 1RXS J1308+21, detected strongly dif-
fering durations of the mean pulses, and derived in-
dependent estimates of the distances to both sources
based on their dispersion measures. The existence of
the radio emission itself represents a fundamentally
new fact, which raises doubts about either the mag-
netar model or our understanding of radio emission in
superstrong magnetic fields.

(a) Period and Period Derivative

The period and period derivative we have measured
for the AXP 1E 2259+586 during MJD 51244–
52749 [26] essentially coincide with the somewhat
more precise X-ray values obtained during
MJD 50356–52016: P = 6.978948446(4) s and Ṗ =
4.8430(8) × 10−13 s/s [18]. These measurements of
the period and period derivative have been reduced
to the same Julian date, MJD 51995.5827. Our
estimates for 1RXS J1308+21 for MJD 52300–
52743 are much more accurate (P = 10.31431994 s
and Ṗ = 129.96) than the data of Hambaryan et al.
[19] obtained for MJD 50824–51719 and reduced to
epoch MJD 51719.5.
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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(b) Distance and Luminosity

Distance estimates for the pulsar 1E 2259+586
(or rather for the supernova remnant CTB 109; the
pulsar is almost at its center) in the literature are
between 3.5 and 4.5 kpc (see, e.g., [16, 28]). Ourmea-
surements of the dispersion measure, 79 ± 4 pc/cm3,
yield a distance of 3.6± 0.7 kpc for the model electron
density distribution in the Galaxy of [29]. It is inter-
esting that the same distance to the remnant, 3.6 ±
0.4 kpc, was estimated in the first report of the de-
tection of an X-ray source [16] toward the supernova
remnant CTB 109, based on the surface brightness–
angular size dependence at 408 MHz. Estimates of
the distance to 1RXS J1308+21, or, more precisely,
the star RBS 1223, obtained using several methods,
lie in the broader interval from 0.1 to 1.5 kpc [19,
30]. Our dispersion measure (table) and the model for
the Galaxy of [29] yield an estimated distance to the
pulsar of 0.25+0.2

−0.1 kpc. This suggests that the pulsar
is close to RBS 1223, as was also proposed by Reach
et al. [30], who reported a distance estimate for the
pulsar of 0.1–0.2 kpc.

The X-ray luminosity of 1E 2259+586 for a dis-
tance of 3.6 kpc (logLx(erg/s) = 34.9 [3]) remains
three orders of magnitude higher than the rate at
which this star is losing rotational kinetic energy. The
X-ray luminosity of 1RXS J1308+21 for a distance
of 0.25 kpc is Lx = 0.26 × 1032 erg/s, rather than the
value Lx = 4.1 × 1032 erg/s calculated for a distance
of 1 kpc [19]. The rate of loss of rotational energy
for this neutron star (P = 10.32 s and Ṗ = 130 ×
10−13 s/s) is Ė = 4.6 × 1032 erg/s, which is close to
the X-ray luminosity. Here, Ė is defined as

Ė =
4π2IṖ

P 3
, (1)

where I is the moment of inertia of the neutron star,
which we have taken to be 1045 g cm2.

To estimate the total radio luminosity, we must
know the spectrum of the pulsar, or at least the spec-
tral index. We can then use the formula [31]

LR =
π3l3

P

∞∫
0

s(ν)w(ν)dν, (2)

where l is the distance to the pulsar, s(ν) is the
flux density in a single pulse at frequency ν, and
W0.5(ν) is the pulse duration, which is taken to
be constant. Using our flux-density measurement
at 111 MHz, S111 = 35 mJy, and the upper limits
at 600 MHz (S600 < 2.3 mJy [32]) and 1500 MHz
(S1500 < 0.05 mJy [33]), we estimate the spectral
index of 1E 2259+586 to be α > 2.5.
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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There is only an upper limit for the flux den-
sity from the discrete source in 1RXS J1308+21
at 1.4 GHz S1400 < 0.94 mJy [34]; this yields the
spectral index α > 1.7 at 0.111–1.4 GHz. Given
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Measured and calculated parameters of the two pulsars

Parameter 1E 2259+586 1RXS J1308+21

DM, pc/cm3 79 ± 4 5.7 ± 0.5

S111, mJy 35 ± 25 50 ± 20

w50 (111 MHz), ms 120± 20 140 ± 20

D, kpc 3.6 ± 0.2 0.25 ± 0.02

LR, erg/s ∼3 × 1028 ∼3 × 1026

Lx, erg/s 7.9 × 1034 3 × 1031

Ė, erg/s 5.6 × 1031 4.6 × 1032

B, G 1.2 × 1014 7.4 × 1014

T , s 2.2 × 105 1.2 × 104

that the spectra of both pulsars are probably steep,
we estimated the total radio luminosities of the two
pulsars by adopting the value α = 2.5; this yielded
LR = 3 × 1028 erg/s for 1E 2259+586 and LR =
3 × 1026 erg/s for 1RXS J1308+21. Thus, these
pulsars do not have extremely high luminosities in the
radio. While 1E 2259+586 has a typical radio lumi-
nosity, 1RXS J1308+21 has one of the lowest radio
luminosities, according to the luminosity distribution
in [31].

Comparison of the radio and X-ray data suggests
large differences in two observed parameters. First,
the radio and X-ray pulse durations differ by a factor
of 16–18, being 1.7 and 27% and 1.4 and 25% of
the period durations at the pulse half-maxima for
1E 2259+586 and 1RXS J1308+21, respectively.
Second, while an interpulse is observed in both the
radio and X-ray for 1RXS J1308+21, 1E 2259+586
displays an interpulse only in the X-ray. In addition,
the huge difference in the radio and X-ray luminosi-
ties is (five and six orders of magnitude) very impor-
tant.

The table also lists the magnetic fields (B)
and characteristic ages (T ), calculated for a
magnetodipole-radiation model:

B =

√
3c3IP Ṗ
2π2R6

= 6.4 × 1019
√
PṖ , (3)

where R is the radius of the neutron star, which we
took to be 106 cm,

T =
P

(n− 1)Ṗ

[
1 − P0

P

]
, (4)

where P0 is the initial period of the pulsar rota-
tion and n is the braking index. For P0 � P and
n = 3, we obtain T = P/2Ṗ . Note that the AXP
candidate 1RXS J1308+21 has one of the largest
magnetic fields and one of smallest characteristic
ages among all pulsars, if the most commonly used
magnetodipole-radiation model is applied.

5. CONCLUSIONS

(1) We have detected periodic pulsed emission
from the AXP 1E 2259+586 and AXP candidate
1RXS J1308+211 in observations carried out on two
radio telescopes of the Pushchino Radio Astronomy
Observatory—the Large Phased Array (111 MHz)
and the DKR-1000 (87 and 61 MHz). The pulsars’
parameters are listed in the table.

(2) We have obtained independent estimates of the
distances to both pulsars, which are within the inter-
vals of distances determined using other methods.

(3) The main difference between the radio from
the X-ray pulsed emission is that the integrated ra-
dio pulses of both objects are narrower. In addi-
tion, there is no appreciable radio interpulse for AXP
1E 2259+586.

(4) The presence of weak radio emission in two
AXPs and one SGR [13], together with the recent
detection of a radio pulsar (J1847−0130) with a long
period (P = 6.7 s) and period derivative (Ṗ = 1.3 ×
10−12 s/s) [35], similar to those of AXPs, suggests
the need to reexamine radio emission mechanisms
in the magnetar model, or to devise other AXP and
SGR models that do not involve superstrong mag-
netic fields.

ACKNOWLEDGMENTS

The authors are grateful to S.B. Popov for the
suggestion to observe the AXP 1E 2259+586; to
A.S. Aleksandrov, V.V. Ivanova, K.A. Lapaev and
other employees of the Pushchino Radio Astron-
omy Observatory for help with the observations; to
I.F. Malov and A.P. Glushak for useful discussions;
and to L.B. Potapova for help with preparing the
manuscript. This work was partially supported by
the Russian Foundation for Basic Research (project
nos. 03-02-16509 and 03-02-16522), the National
Science Foundation (project no. 00-098685), INTAS
(grant no. 00-00-849), the Program of the Presidium
of the Russian Academy of Sciences “Nonstationary
Processes in Astronomy,” and the Federal Science
and Technology Program in Astronomy.

REFERENCES
1. S. Mereghetti, TheNeutron Star–Black Hole Con-

nection, Ed. byC. Kouveliotou, J. Ventura, and E. van
den Heuvel (Kluwer, Dordrecht, 2001), NATO Sci-
ence Series C: Mathematical and Physical Sciences,
Vol. 567, p. 351; astro-ph/9911252.
ASTRONOMY REPORTS Vol. 49 No. 3 2005



RADIO EMISSION FROM TWO ANOMALOUS X-RAY PULSARS 249
2. K. Hurley, AIP Conf. Proc. 526, 763 (2000).
3. I. F. Malov, G. Z. Machabeli, and V. M. Malofeev,

Astron. Zh. 80, 258 (2003) [Astron. Rep. 47, 232
(2003)].

4. A. I. Ibrahim, C. B. Markward, J. H. Swank, et al.,
Astrophys. J. 609, L21 (2004).

5. R. C. Duncan and C. Thompson, Astrophys. J. 392,
L9 (1992).

6. S. Mereghetti, in Frontier Objects in Astrophysics
and Particle Physics, Ed. by F. Giovannelli and
G. Mannocchi (Italian Physical Society, 2001),
p. 531.

7. G. L. Israel, S. Covino, L. Stella, et al., Astrophys. J.
518, L107 (1999).

8. Ya. N. Istomin and B. V. Komberg, Astron. Zh. 77,
852 (2000) [Astron. Rep. 44, 754 (2000)].

9. D. Marsden, R. E. Lingenfelter, R. E. Rothschild, and
J. C. Higdon, Astrophys. J. 550, 397 (2001).

10. A. Dar and A. De Rujula, Results and Perspectives
in Particle Physics, Ed. by M. Greco (2000), Vol.
XVII, p. 13; astro-ph/0002014.

11. M. G. Baring and A. K. Harding, Astrophys. J. 547,
929 (2001).

12. M. G. Baring and A. K. Harding, Astrophys. J. 507,
L55 (1998).

13. Yu. P. Shitov, V. D. Pugachev, and S. M. Kutuzov,
Astron. Soc. Pac. Conf. Ser. 202, 685 (2000).

14. V. M. Malofeev and O. I. Malov, astro-ph/0106435.
15. B. Zhang, Astrophys. J. 562, L59 (2001).
16. P. C. Gregory and G. G. Fahlman, Nature 287, 805

(1980).
17. G. G. Fahlman and P. C. Gregory, Nature 293, 202

(1981).
18. F. P. Gavriil and V. M. Kaspi, Astrophys. J. 567, 1067

(2002).
19. V. Hambaryan, G. Hasinger, A. D. Schwope, and

N. S. Schulz, Astron. Astrophys. 381, 98 (2002).
20. F. Haberl, A. D. Schwope, V. Hambaryan, et al.,

Astron. Astrophys. 409, L19 (2003).
ASTRONOMY REPORTS Vol. 49 No. 3 2005
21. S. A. Tyul’bashev and O. I.Malov, Astron. Zh. 77, 737
(2000) [Astron. Rep. 44, 654 (2000)].

22. V. M. Malofeev, O. I. Malov, and N. V. Shchegoleva,
Astron. Zh. 77, 499 (2000).

23. V. M. Malofeev and O. I. Malov, Nature 389, 697
(1997).

24. V. M. Malofeev and O. I. Malov, Conf. on Physics of
Neutron Stars, St. Petersburg, 2001, p. 31.

25. V. M. Malofeev and O. I. Malov, Proc. of Conf. on
Chemical and Dynamic Evolution of Stars and
Galaxies, Odessa, Ukraine, 2002, p. 8.

26. V. M. Malofeev, O. I. Malov, and D. A. Teplykh, IAU
Symp. No. 218: Young Neutron Stars and Their
Environments, Ed. by F. Camilo and B. M. Gaensler
(Astron. Soc. Pacif., San Francisco, 2004), p. 261.

27. V. M. Kaspi, IAU Symp. No. 218: Young Neutron
Stars and Their Environments, Ed. by F. Camilo and
B. M. Gaensler (Astron. Soc. Pacif., San Francisco,
2004), p. 231.

28. V. A. Hughes, R. M. Harten, C. H. Costain, et al.,
Astrophys. J. 283, 147 (1984).

29. J. H. Taylor and J. M. Cordes, Astrophys. J. 411, 674
(1993).

30. W. T. Reach, C. Helles, and B. Koo, Astrophys. J. 412,
127 (1993).

31. O. I. Malov, V. M. Malofeev, and D. S. Sen’e, Astron.
Zh. 71, 762 (1994) [Astron. Rep. 38, 677 (1994)].

32. D. R. Lorimer, A. G. Lyne, and F. Camilo, Astron.
Astrophys. 331, 1002 (1998).

33. M. J. Coe, Z. R. Jones, and H. Lehto, Mon. Not. R.
Astron. Soc. 270, 179 (1994).

34. R. L. White, R. H. Becker, D. J. Helfand, and
M. D. Gregg, Astrophys. J. 475, 479 (1997).

35. M. A. McLaughlin, I. H. Stairs, V. M. Kaspi, et al.,
Astrophys. J. 591, L135 (2003).

Translated by G. Rudnitskii



Astronomy Reports, Vol. 49, No. 3, 2005, pp. 250–257. Translated from Astronomicheskĭı Zhurnal, Vol. 82, No. 3, 2005, pp. 281–288.
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Abstract—Comparing the asymmetry coefficients γ and scintillation indicesm for observed time variations
of the intensity of the radiation of extragalactic sources and the predictions of theoretical models is a good
test of the nature of the observed variations. Such comparisons can be used to determine whether flux
density variations are due to scintillation in the interstellar medium or are intrinsic to the source. In the
former case, they can be used to estimate the fraction of the total flux contributed by the compact component
(core) whose flux density variations are caused by inhomogeneities in the interstellar plasma. Results for
the radio sources PKS 0405–385, B0917+624, PKS 1257–336, and J1819+3845 demonstrate that the
scintillating component in these objects makes up from 50 to 100% of the total flux, and that the intrinsic
angular sizes of the sources at 5 GHz are 10–40 microarcseconds. The characteristics of the medium giving
rise to the scintillations are presented. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Two alternative hypotheses aimed at explaining
the phenomenon of rapid variability of the fluxes of
extragalactic sources at centimeter wavelengths on
characteristic time scales of less than a day are dis-
cussed in the literature: (1) intrinsic variability asso-
ciated with the source and (2) variability due to in-
terstellar scintillation (see, for example, [1–4]). Since
the velocity of the Earth relative to the interstellar
medium displays seasonal variations with an ampli-
tude of several tens of kilometers, we should expect
variations in the variability time scale over the course
of a year in the case of scintillations. Indeed, such
seasonal variations have been observed for several
sources, with the variation time scale increasing ap-
preciably in the period from August to October [2,
5], in agreement with the decrease in the velocity of
the Earth relative to the interstellar medium in this
period. This demonstrates the interstellar origin of the
variability of these sources.

However, for the majority of radio sources, there
is no conclusive proof that fluctuations in their fluxes
are due to interstellar scintillation. In addition, in
the case of rapid intrinsic variability, the angular size
of the source must be small enough that it should
inevitably scintillate on inhomogeneities in the in-
terstellar plasma at centimeter wavelengths. For ex-
ample, if a source located at a distance of 1028 cm
displays variability with a characteristic time scale
of the order of t = 1 day, its linear size should be
no larger than about l = 3 × 1015 cm, so that its
1063-7729/05/4903-0250$26.00
angular size should be no larger than about ϕ =
0.1 microarcsecond (0.1 µas). This is appreciably
smaller than the angular size of the first Fresnel zone
for the interstellar medium. Consequently, the source
will be pointlike from the point of view of interstellar
scintillations, and should accordingly scintillate at
centimeter wavelengths, as pulsars do. Therefore, it
is more correct to consider the following alternatives:
(1) intrinsic variability of the source combined with
interstellar scintillation and (2) variability due only
to interstellar scintillation. For sources in which the
first scenario is realized, the problem of distinguishing
intrinsic variations from variations due to interstellar
scintillation is extremely important. We propose here
a qualitative test to verify the nature of observed flux
variations by measuring the asymmetry coefficient of
the flux fluctuation distribution function.

2. THE ASYMMETRY COEFFICIENT

When analyzing scintillations of extragalactic ra-
dio sources on inhomogeneities of the interstellar
plasma, the most important measured quantity is the
scintillation index:

m2 =
〈(I − 〈I〉)2〉

〈I〉2 , (1)

where I is the measured flux and 〈I〉 is its mean
value. However, extragalactic sources have complex
structures, consisting of a compact scintillating com-
ponent and a nonscintillating extended component.
Only the compact component with angular size on
c© 2005 Pleiades Publishing, Inc.
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Fig. 1.Original recording of the intensity of the source 3C 48 as a function of time at 110 MHz (lower), and the same recording
after eliminating the slow component (the initial data were averaged over 10 points) (upper).
the order of or smaller than the first Fresnel zone
(the “core”) will scintillate on inhomogeneities of the
interstellar plasma. Consequently, without knowing
the flux of the scintillating component I0, it is not
possible to determine the corresponding scintillation
index:

m2
0 =

〈(I − 〈I〉)2〉
〈I0〉2

. (2)

Only the quantity m0 presents physical interest.
In [6–9], it was proposed to overcome these diffi-
culties associated with observations of scintillating
radio sources using measurements of the asymmetry
coefficient of the flux fluctuation distribution:

γ =
〈(I − 〈I〉)3〉

[〈(I − 〈I〉)2〉]3/2
=

M3

M
3/2
2

. (3)

Here, M3 and M2 are the third and second central
moments of the flux fluctuation distribution. Theo-
retical relations between γ and m0 are known for a
number of cases. For example, in the case of weak
scintillations of a point source in the Fraunhofer
zone relative to the outer scale of the turbulence
(i.e., the characteristic size of the large-scale inho-
mogeneities), the flux fluctuation distribution follows
a Rice–Nakagama law [10, 11], and the asymmetry
coefficient is given by the relation

γ =
3
2
m0. (4)

In the case of weak scintillations of a point source
in the Fresnel zone relative to the inner turbulence
ASTRONOMY REPORTS Vol. 49 No. 3 2005
scale (i.e., the characteristic size of small inhomo-
geneities), this distribution follows a logarithmic nor-
mal law [12], and

γ = 3m0. (5)

In the case of a power-law spectrum, a linear depen-
dence between γ and m0 should be preserved:

γ = Am0, (6)

where the coefficient A depends on the form of the
turbulence spectrum.

This suggestion is supported by the results of Hill
et al. [13, 14], who carried out numerical compu-
tations of flux fluctuation distribution functions and
determined the second and third moments of the flux
fluctuations for the case of inhomogeneities in the
refraction index with a Kolmogorov spectrum and
various inner turbulence scales. These computations
yield for a purely power-law spectrum A = 2.78, and
for a Kolmogorov spectrum with inner turbulence
scale l equal to the scale of the first Fresnel zone
rFr (l/rFr = 1) A = 2.86. Thus, the coefficient A in-
creases and approaches the value three as the inner
scale for the turbulence spectrum increases. We can
see that, in the case of a Kolmogorov spectrum, A is
close to three, and we can use relation (5) to describe
the relation between γ and m0. The computations
indicate that (5) is valid up to values ofm0 approach-
ing unity from the weak (unsaturated) scintillation
regime.

We experimentally verified relation (6) using ob-
servations of refractive interstellar scintillations of
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Fig. 2. Recording of interplanetary scintillations of 3C 147 at 110 MHz over three days of observations.
pulsars at 610 MHz [15], observations of weak
scintillations of the pulsar 1642–03 at 5 GHz [16],
and observations of interplanetary scintillations of
the radio sources 3C 48, 3C 119, and 3C 147 carried
out at 110 MHz using the Large Phased Array of
the Pushchino Radio Astronomy Observatory. In the
first set of observations, the intrinsic variations of the
pulsar intensities, with time scales of several seconds,
and variations due to diffractive scintillations, with
time scales of several minutes, were removed by
averaging the intensity over time intervals of about
one hour.

Examples of our recordings of the flux variations
observed for 3C 48 and 3C 147 due to interplanetary
scintillations are shown in Figs. 1 and 2. We used
a receiver with a bandwidth of 600 kHz and a time
constant of 0.5 s for these observations. The data were
recorded on disk for subsequent reduction at a rate of
10 Hz. Figure 1 shows an original recording for 3C 48
together with its noise level (lower), as well as the
same recording after filtering out the slow component
due to the antenna beam (upper). Rapid fluctuations
of the flux are associated with the passage of the ra-
diation through the turbulent interplanetary plasma.
Figure 2 shows the flux variations for 3C 147 observed
over three days.

Examples of recordings of flux variations of pul-
sars due to refractive scintillations at 610 MHz are
presented in [15]. The results of using these obser-
vations to determine the asymmetry coefficient and
scintillation index are shown in Fig. 3. Refractive
interstellar scintillations of a pulsar can be considered
to be weak scintillations of a source whose angular
size is comparable to the scattering angle Θ0, which
is determined by scattering of the radiation on small-
scale (diffractive) inhomogeneities. The effective size
of the inhomogeneities responsible for the refractive
scintillations is the radius of the scattering disk, Lθ0,
where L is the effective distance to the turbulent
layer. This size is much larger than the first Fresnel
zone rFr, so that, in this case, the asymmetry co-
efficient is described by relation (5). The scatter of
the points corresponds to the real statistical errors
of the measurements. The turbulence spectrum for
the interplanetary plasma is a power law over a wide
range of scales, and the spectral index for the three-
dimensional spatial spectrum is close to that for a
Kolmogorov spectrum, n = 11/3 [17].

In contrast to pulsars, which are point sources, the
extragalactic objects we used in our analysis consist
of a compact component (core) that scintillates on
inhomogeneities in the interplanetary plasma and a
large-scale halo that does not scintillate. Of course,
extragalactic sources can have more complex, multi-
component structures, but for our purposes it is only
important that we divide the source into scintillating
and nonscintillating components. To make the trans-
lation from m to m0, we used ratios of the fluxes of
compact and extended components presented in [18]:
m/m0 = 0.7 for 3C 48 and m/m0 = 0.5 for 3C 119.
We adopted the ratio m/m0 = 1 for 3C 147. Figure 3
presents the values of m0 that were used.

Figure 3 shows that the collected data obtained for
various media and sources with various sizes are in
good agreement with relation (5). The scatter of the
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 3. Dependence of the asymmetry coefficient γ on the
scintillation index m. The circles show the data derived
from refractive scintillations of pulsars, the hollow trian-
gle show data derived from variations of PSR 1642–03
at 5 GHz (weak scintillation). The stars, filled triangles
and squares show the data derived from interplanetary
scintillations of 3C 48, 3C 119, and 3C 147, respectively.
The line corresponds to the theoretical relation γ = 3m0.

points about the theoretical curve is only 30%, and
is primarily determined by the statistical errors in γ.
Thus, γ is a measurable quantity that can be used
to test the hypothesis that interstellar scintillations
are the origin of rapid variations of extragalactic radio
sources.

3. ASYMMETRY COEFFICIENTS
OF A NUMBER OF RAPIDLY VARIABLE

EXTRAGALACTIC RADIO SOURCES

We used the observed flux variations of the well-
known compact radio sources PKS 0405–385,
B0917+624, PKS 1257–326, and J1819+3845 to
determine the scintillation indices m and asymmetry
coefficients γ for these observations. The resulting
values of γ are listed in the table, which also gives the
scintillation indices m and characteristic scintillation
times t0, with references. The uncertainties in m are
10−20%. The characteristic scintillation time was
defined as the radius of the autocorrelation function
at the half-maximum level.

The dependence of the asymmetry coefficient γ on
the scintillation indexm is shown in Fig. 4, where the
data for B0917+624 are shown by the hollow circles,
for PKS 1257–326 by the stars, for PKS 0404–385
by the filled circles, and for J1819+3845 by the filled
squares. The uncertainties in γ associated with the
averaging are roughly δγ ∼= 0.2. We can see that the
collected points show a well-defined linear relation
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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Fig. 4. Dependence of the asymmetry coeffient γ on the
scintillation index m for variations of the extragalac-
tic sources. Shown are the data for PKS 0405–385
(filled circles), B0917+624 (hollow circles), J1819+3845
(squares), and PKS 1257–326 (stars). The line corre-
sponds to the theoretical relation γ = 3m0 [Eq. (5)].

between γ and m, which corresponds to the theore-
tical relation (5) with m = m0; i.e., the case when the
flux of the scintillating component comprises a large
fraction of the total flux of the source.

Before turning to a discussion of the data for each
source, we will first present a number of expressions
relating the parameters of the scintillations and those
of the medium and source. Data for interstellar scin-
tillations of pulsars and extragalactic sources shows
that the scintillations are weak at centimeter wave-
lengths and, in the case of sources with small angular
sizes, the main contribution to the scintillations is
made by inhomogeneities with sizes comparable to
the first Fresnel zone, and the spatial scale for the
scintillations is comparable to the Fresnel scale:

b ∼= rFr =
(
k

L

)−1/2

, (7)

where L is the effective distance from the observer to
the turbulent layer that is responsible for the scin-
tillations, k = 2π/λ, and λ is the wavelength of the
observations. If the medium is statistically uniformly
distributed between the source and observer, L cor-
responds to the distance between the source and ob-
server, R. If the turbulent medium is concentrated in
a fairly narrow layer with thickness ∆L� R, then L
is the smaller of the distance from the observer to the
layer or the distance from the layer to the source. Ac-
cordingly, the characteristic scintillation time will be

t =
b

V
=
rFr

V
=

(
L

k

)1/2
/

V, (8)
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Flux variations for well-known compact radio sources

Source Observing frequency, GHz m t0, h γ Ref.

PKS 0405–385 8.64 0.08 0.41 +0.12 [19]

4.8 0.11 0.55 +0.62

2.38 0.093 1.6

1.38 0.063 2.6

B0917+624 15.0 0.01 3 −0.06 [3, 20]

8.3 0.02 2.4 +0.22

5.0 0.035 7.2 −0.10

2.7 0.06 20 +0.04

PKS 1257–326 8.6 0.05 0.27 +0.18 [5]

4.8 0.04 0.33 +0.31

J1819+3845 8.5 0.22 0.5 +0.38 [22]

4.8 0.29 0.53 +0.78 [2, 21, 22]

2.2 0.24 [22]

1.3 0.13 3.5 [22]
where V is the velocity of the Earth relative to the
interstellar medium.

The scintillation index for a point source should be

m0,0 =
(
fcr

f

)β

, β =
n+ 2

4
. (9)

Here, n is the spectral index of the turbulence spec-
trum (for a Kolmogorov spectrum, n = 11/3 and β =
1.4) and fcr ≈ 3 GHz is the critical frequency for the
transition from the weak to the strong scintillation
regime [23].

Relations (8) and (9) determine the parameters of
scintillations of a source with small angular size. If the
angular size of the source ϕ0 is larger than the Fresnel
angle,

ϕ0 > 2ϕFr =
2
krFr

=
(

2
kL

)1/2

, (10)

the scintillation index in the weak scintillation regime
is given by the relation

m0
∼= m0,0

(
2ϕFr

ϕ0

)α

, α =
6 − n

2
=

7
6
, (11)

where m0,0 is given by (9) and the characteristic
scintillation time is given by

t0 ∼=
Lϕ0

2V
. (12)

When estimating the influence of the angular size
of the source on the scintillation parameters, we
should bear in mind that the characteristic spatial
and time scales for the scintillations are determined
by the correlation radius, and correspond to the
characteristic radius of inhomogeneities in the spatial
distribution of the intensity fluctuations, while the
angular size of the source is determined by the source
brightness distribution. This is the reason for the
additional factor of two in relations (10)–(12).

Our estimates of ϕFr depend appreciably on the
effective distance L to the turbulent layer. Obser-
vations show that, at sufficiently high Galactic lati-
tudes, scintillations of radio sources are determined
by two components of the interstellar medium. The
first (component A) is localized between the spiral
arms, and is fairly uniformly distributed in a thin layer
with a thickness of about 1 kpc [24]. The second
(component C) forms a layer of turbulent plasma with
an enhanced level of electron-density fluctuations lo-
cated at a distance of about 10 pc from the Sun [1,
2, 4]. The relative contributions of these components
can vary with direction and angular size of the source.
If the main contribution to the scintillations is made
by the first component, then ϕFr,1

∼= 3.5 µas at 5 GHz
if L = 1 kpc. If the main contribution is made by the
second component, then ϕFr,2

∼= 35 µas at 5 GHz if
L = 10 pc. For example, observations of scintillations
of pulsars, whose angular sizes are much smaller
than ϕFr,1, show that the main effect is due to inho-
mogeneities of the first component of the interstellar
medium. If the angular size of the source is much
ASTRONOMY REPORTS Vol. 49 No. 3 2005
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larger than ϕFr,1, the main effect will be due to in-
homogeneities of the C component of the interstellar
medium. We discuss the data for each source in detail
below.

PKS 0405–385. The observed flux variations can
be understood as scintillations on inhomogeneities of
the local interstellar medium; i.e., component C. The
values m ∼= 0.11 and γ ∼= 0.62 at 4.8 GHz suggest
that the scintillating core contains roughly 50% of the
total flux. The scintillation index for the scintillating
component is m0

∼= γ/3 ∼= 0.2, so that the scintilla-
tions are weak. The characteristic scintillation time
t0 ∼= 30 min at 4.8 GHz [19] corresponds to the size
of the first Fresnel zone [Eq. (8)] for a distance L ∼=
10 pc and a velocity of the observer of V = 30 km/s.
The scintillation index decreases at 2.4 and 1.4 GHz,
and the characteristic scintillation time grows rapidly
with decreasing radio frequency. This dependence can
be understood as being due to the increase in the
apparent angular size of the source, which is roughly
proportional to the square of the wavelength. In turn,
the apparent angular size of the source could be the
result of scattering on inhomogeneities of the in-
terstellar plasma in a layer that is further from the
observer. Studies of scattering of pulsars have shown
that turbulent interstellar plasma with a characteris-
tic thickness of about 1 kpc is observed in all direc-
tions from the Sun [24]. The characteristic scattering
angle in the direction of PKS 0405–385 should be
θ0 ∼= 90 µas at 2.38 GHz.

B0917+++624. A comparison of the values of m
and γ at four frequencies indicates that the scin-
tillating component comprises close to 100% of the
total flux. The small value of the scintillation index
is due, not to the flux of the scintillating component
comprising a small fraction of the total, but to the
large angular size of the source. With increasing
wavelength λ, we observe an approximately linear
growth in the scintillation index, m ∝ λ, and in the
scintillation time, t0 ∝ λ. These dependences can be
understood only if the angular size of the source
appreciably influences the scintillation parameters,
with the apparent angular size of the source being
roughly proportional to the wavelength: ϕ0 ∝ λ. This
dependence excludes the interstellar medium as the
origin of the apparent angular size of the source, so
that this must be the intrinsic angular size. Estimates
of this size depend on the distance to the effective
center of the turbulent layer. We used observations
of scintillations of the pulsar B0809+74, which is
located close to B0917+624 in the sky, to estimate
the parameters of the turbulent medium. This pulsar
is located 433 pc from the Sun and has a veloc-
ity V = 102 km/s [25]. The scintillation parameters
presented in [26] correspond to scintillation in a tur-
bulent medium that is uniformly distributed between
ASTRONOMY REPORTS Vol. 49 No. 3 2005
the source and observer. Using the scintillation pa-
rameters for B0809+74 obtained at 933 MHz, m =
0.8 and t0 = 2 h, together with Eqs. (11) and (12),
and using the fact that the turbulence spectrum is
Kolmogorov, we obtain m = 0.08 and t0 = 50 min
at 4.8 GHz. Taking into account the fact that the
pulsar scintillations correspond to the case of a spher-
ical wave, while the scintillations of the extragalactic
source correspond to the case of a plane wave, and
also the fact that the velocity of the observer is roughly
a factor of three lower than the velocity of the pulsar,
we find for a pointlike extragalactic source m = 0.11
and t0 = 2.5 h. The inferred scintillation parameters
of B0917+624 at 5 GHz correspond to those for an
extragalactic radio source with an angular size of ϕ ∼=
10 µas (roughly a factor of three larger than the size
of the first Fresnel zone).

PKS 1257–326. The characteristic time scale for
the flux fluctuations shows seasonal variations, pro-
viding a direct demonstration that they have an in-
terstellar origin [19]. The observed fluctuations can
be understood as scintillations in the local interstel-
lar medium. The values m ∼= 0.04 and γ ∼= 0.31 at
4.8 GHz suggest that the scintillating core contains
about 40% of the total flux. The scintillation index
for the scintillating component is m0

∼= γ/3 ∼= 0.10,
so that the scintillations are weak. The characteristic
scintillation time t0 ∼= 20 min [5], corresponds to the
size of the first Fresnel zone for a distance of L ∼=
5 pc and a velocity of the observer V = 30 km/s.
The values m ∼= 0.05 and γ ∼= 0.18 indicate that the
scintillating component comprises 100% of the total
flux at 8.6 GHz, with the scintillation index being half
that for the scintillating component at 4.8 GHz. This
corresponds to (11) within the errors in the measured
parameters [according to (11), the decrease in the
scintillation index should be a factor of 2.3].

J1819+++3845. The characteristic time scale for
the fluctuations shows seasonal variations, providing
a direct demonstration that they have an interstel-
lar origin [2]. The fluctuations can be understood as
scintillations on inhomogeneities of the local inter-
stellar medium (component C). The values m ∼= 0.29
and γ ∼= 0.78 at 4.8 GHz suggest that the scintil-
lating core contains roughly 90% of the total flux.
The scintillation index for the compact component is
m0

∼= γ/3 ∼= 0.26, so that the scintillations are weak.
The characteristic scintillation time, t0 ∼= 30 min [2],
corresponds to the size of the first Fresnel zone for
a distance of L ∼= 10 pc and a velocity of the ob-
server V = 30 km/s. The values m ∼= 0.22 and γ ∼=
0.38 at 8.5 GHz can be understood as scintillations
if the scintillating component contains about 60%
of the total flux. The scintillation index begins to
fall off at 2.2 and 1.3 GHz, and the characteristic



256 SHISHOV et al.
scintillation time rapidly grows with decreasing fre-
quency. As for PKS 0405–385, this dependence can
be understood as a consequence of an increase in
the angular size roughly in proportion to the square
of the wavelength. The angular size is probably due
to scattering on inhomogeneities in the interstellar
plasma in a layer with a thickness of about 1 kpc. The
characteristic scattering angle in this medium in the
direction of J1819+3845 should be θ0 ∼= 100 µas at
2.2 GHz.

4. DISCUSSION

Thus, our test of the origin of flux variations of
several rapidly variable extragalactic sources based
on comparisons between the asymmetry coefficient
γ and the values predicted by scintillation theory
demonstrates that scintillation is the main mecha-
nism giving rise to the flux variations at frequencies
of 8.6 GHz and lower. Comparisons of the measured
scintillation indices and asymmetry coefficients indi-
cate that the scintillating components comprise from
50 to 100% of the total flux of the sources, so that the
measured scintillation indices are close to those for a
one-component compact source.

The scintillation parameters of the sources corre-
spond to two types of media: medium I has a charac-
teristic thickness of about 1 kpc, while medium II has
a characteristic thickness of about 10 pc. The quasar
B0917+624 scintillates in medium I, and indeed, this
medium is responsible for most of the scintillation and
scattering of the radio emission of pulsars [23]. The
angular size of the source grows linearly with growth
in the wavelength.

The scintillations of the remaining three sources
occur in medium II, which is closer to the observer
and has a characteristic thickness of 10 pc. The
parameters of this medium have been estimated
in [1, 2, 4, 5]. At 5 GHz and higher, the sources have
angular sizes comparable to or smaller than the first
Fresnel zone, ϕ0 ≤ 40 µas. The scintillation index
at nearby low frequencies decreases with increasing
wavelength, while the characteristic scintillation time
grows roughly in proportion to the square of the
wavelength. This can be understood if radiation that
has been scattered in medium I is then incident on
medium II; the characteristic scattering angle should
be comparable to the angular size of the first Fresnel
zone (medium II) at 5 GHz. In this case, scintillation
in medium I should be suppressed by the angular size
of the source, which is a factor of five to ten larger than
the angular size of the first Fresnel zone for medium I.
Overall, a crude estimate of the intrinsic angular sizes
of the sources at 5 GHz is 10 ≤ ϕ ≤ 40 µas. More
accurate estimates of these angular sizes require
analysis of the temporal structure of the intensity
fluctuations near time shifts of 3–10 h.
We have shown that analyzing the variations of
the fluxes of rapidly variable extragalactic sources in-
corporating calculations of the asymmetry coefficient
provides an effective method for testing the nature
of this variability and estimating the angular sizes of
the sources. The variability in the four sources we
have studied here can be explained as scintillations
occurring in two media: a more extended medium
with a thickness of about 1 kpc and the local in-
terstellar medium near the Sun with a thickness of
∼10 pc. The scintillations occurring in the extended
medium are relatively slow (with characteristic time
scales of roughly several hours), and can be used to
estimate the angular sizes of the sources with res-
olutions of about 3 µas. The scintillations occurring
in the local interstellar medium are more rapid (with
characteristic time scales of fractions of an hour), and
can be used to estimate the angular sizes of sources
with the poorer resolution of about 30 µas. In light
of the results obtained, the observed variability of the
sources studied can be explained without invoking
their intrinsic variability.
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