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Abstract—Data on the positions of gamma-ray bursts (GRBs) in galaxies are used to construct the radial dis-
tributions of their surface density. The gradient in GRB surface density is shown to decrease sharply at a galac-
tocentric distance equal to the effective galactic radius. In central galactic regions, the GRB density distribution
agrees with the galactic surface-brightness distribution; in outer regions, the GRB density decreases more
slowly than does the surface brightness. Based on improved statistics, we analyze the radial distribution of type
Ib/c supernovae. We show that it differs insignificantly from the distributions of other types of supernova and
exhibits a much closer similarity to the distribution of star-forming regions than do GRBs. Although the statis-
tics for GRBs is poor, the deviation of their distribution from the distribution of active star-forming regions in
nearby galaxies seems to have been firmly established. A correlation of GRBs with the distribution of dark mat-
ter in outer galactic regions is not ruled out. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Studies of the spatial distribution of supernovae
(SNe) in parent galaxies have provided important infor-
mation about the probable nature of the objects whose
evolution leads to various types of SN explosion (see,
e.g., Bartunov et al. 1992, 1994; Bartunov and Tsvet-
kov 1997; van den Bergh 1997).

The currently available observational data on the
distribution of gamma-ray bursts (GRBs) are similar to
the data for SNe. Of course, it should be remembered
that the localization errors for GRBs in parent galaxies
are larger than those for SNe; besides the statistics of
localized GRBs is much poorer. Nevertheless, the pro-
cedure used by Bartunov et al. (1992, 1994) yielded
important results for SNe, whose statistics was not rich
either. It is therefore of interest to apply the procedure
used to study SNe to an analysis of the GRB distribu-
tion.

The discovery of GRB afterglows and their redshift
measurements severely constrain theoretical models
for GRBs [see the reviews by Piran (1999) and Postnov
(1999)]. Investigating the distribution of GRBs in par-
ent galaxies is of great importance in understanding
their nature. Models in which GRBs are produced dur-
ing the collapse of massive stars must lead to a correla-
tion of GRBs with star-forming regions. In the model of
merging binary relativistic stars, GRBs can occur far
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from formation regions of massive stars. Finally, mod-
els that use exotic variants of dark matter have been
proposed [see the review by Blinnikov (2000)]. Estab-
lishing a correlation of the distribution of GRBs with a
particular type of stellar population or with dark matter
can shed light on their origin.

ANALYZING THE GRB DISTRIBUTION

The latest observational data on GRB positions in
parent galaxies are collected in Bloom et al. (2000).
The angular distances R from the galactic centers were
determined for twenty GRBs. The effective galactic
radius Reff, the radius within which half the luminosity
is emitted, was used to normalize the distances; the rel-
ative galactocentric distance rrel = R/Reff was deter-
mined for each GRB. The effective radii were deter-
mined directly from observational data or estimated
from an empirical relation between the magnitude and
effective radius. The redshifts were known for fifteen
GRBs, and their galactocentric distances were also
determined in kiloparsecs. Bloom et al. (2000) con-
structed cumulative distributions for the relative and
absolute distances of GRBs from the centers of their
parent galaxies as well as the probability distribution of
GRBs in relative distance with measurement errors. It
was concluded that the observed distributions agreed
well with the distribution of the populations belonging
to the disks of galaxies with an exponential decline in
density from the center to the edge and did not agree
with the distribution of merging binary relativistic
objects. The latter include binary neutron stars and
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pairs of neutron stars with black holes, which can move
far from the formation regions of massive stars.

In our view, representing the radial distribution of
objects as a dependence of their surface density on
galactocentric distance is preferred for comparing the
distributions of various galactic populations.

As in Bartunov et al. (1992), we determined

smoothed GRB surface densities σi = Ni/π(  – ).
Here, ri is the radius of the ith bin in units of effective
galactic radius (rrel) or in kpc; Ni is the smoothed num-
ber of objects in the ith bin calculated from the true
numbers ni as Ni = 0.5ni + 0.25(ni – 1 + ni + 1).

In Fig. 1, the logarithm of GRB surface density is
plotted against the galactocentric distance. Data for
eighteen GRBs were used; we excluded two GRBs with
relative distances of 9.7 and 11.0 for which, according
to Bloom et al. (2000), the parent galaxies were proba-
bly not detected, while the above values refer to the
nearest field galaxies. The bin was taken to be 0.4; only

statistical errors proportional to  are shown. The

gradient in GRB surface density /drrel is seen to
change abruptly at rrel = 1.0; the steep decline in density
gives way to a smoother decline. The dependence of

 on rrel can be fitted by two straight lines with gra-
dients of –1.4 ± 0.1 and –0.28 ± 0.02, respectively.
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Fig. 1. GRB surface density versus galactocentric distance,
in units of effective radius. The GRB surface density
referred to the middle of the corresponding bin is denoted by
dots, the solid line represents the radial dependence of sur-
face brightness for elliptical galaxies, the dash-dotted line
represents the same dependence for spiral galaxies, the
dashed line represents the distribution of OB associations in
M 33 and of H II regions in NGC 3184, and the dotted line
represents the distribution of SNe Ib/c.
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Bartunov et al. (1992) and Bartunov and Tsvetkov
(1997) determined the gradients in the logarithms of
surface densities for various types of SN and for vari-
ous types of galactic populations. Galactic diameters D25
from the RC3 Catalog (de Vaucouleurs et al. 1991)
were used for normalization. To compare these data
with the results for GRBs, we calculated the mean ratio
D25/2Reff = 2.7 for all RC3 galaxies for which these
parameters were available and reduced all the previ-
ously derived density gradients to the new normaliza-
tion to Reff .

The gradients in surface density in central galactic
regions (rrel < 1.0) are: –0.44 for SNe Ia, –0.18 for
SNe II, –1.4 for the surface brightness of elliptical gal-
axies, and –1.0 for the surface brightness of spiral gal-
axies. In outer galactic regions, these gradients are –0.52,
–0.52, –0.56, and –0.81, respectively.

The GRB density gradient in central galactic
regions is considerably larger in magnitude than that
for the SN samples analyzed and agrees well with the
surface-brightness gradients in elliptical galaxies.
However, in outer galactic regions, the gradient in GRB
surface density is smaller than that for SNe and for the
surface brightness of all types of galaxies, although the
number of GRBs in this region is too small to draw firm
conclusions.

For comparison, Fig. 1 shows the surface-brightness
distributions in elliptical and spiral galaxies, as well as
the distributions of OB associations in M 33 and of H II
regions in NGC 3184, as constructed from the data of
Burstein (1979), Humphreys and Sandage (1980),
Boroson (1981), and Hodge and Kennicutt (1983).
These distributions were displaced along the vertical
axis to match best the data for GRBs. The GRB distri-
bution in central galactic regions is seen to agree well
with the surface-brightness distribution in elliptical and
spiral galaxies. The distribution of star-forming regions
differs sharply from the GRB distribution.

In Fig. 2, the logarithm of GRB surface density is
plotted against galactocentric distance (in kpc). Data
for fourteen GRBs were used, and the bin was 1.2 kpc.
The dependence for r < 5 kpc is well fitted by a straight
line; the gradient in  is –0.40 ± 0.03, which corre-
sponds to r0 = 1.1 kpc in the expression σ ~ exp(–r/r0).
As for the distribution in relative radius, the GRB den-
sity gradient is considerably larger in magnitude than
that for all the SN samples analyzed. The radial depen-
dence of GRB surface density agrees excellently with
the surface-brightness distribution in elliptical galaxies
and differs from the distribution of star-forming
regions.

The GRB distributions we considered differ from
the radial distributions of all types of SN (Bartunov
et al. 1992; Bartunov and Tsvetkov 1997; van den
Bergh 1997). The SN distributions in galactic disks are
represented satisfactorily by an exponential decline in
density with a constant coefficient and agree well with
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the surface-brightness distribution in the disks of spiral
galaxies.

Analyzing the distribution of SNe Ib/c is of particu-
lar interest: first, Bartunov et al. (1992) found their
unusually strong concentration to the galactic centers;
and, second, some GRBs may be associated with
SN Ib/c explosions.

For our analysis, we used data on fifty SNe Ib/c
from the Catalog of Supernovae, Sternberg Astronom-
ical Institute (Tsvetkov et al. 2000). The derived radial
distributions are shown in Figs. 1 and 2. We see that the
dependences of the logarithm of SN Ib/c surface den-
sity on relative radius and radial distance (in kpc) are
satisfactorily represented by straight lines. The gradi-
ents in  relative to rrel and the radius (in kpc) are
–0.78 ± 0.04 and –0.18 ± 0.01, respectively; r0 = 2.4 kpc.
The SN Ib/c distributions satisfactorily agree with the
distributions of OB associations and H II regions and
differ markedly from the GRB distributions. The SN Ib/c
density gradient essentially matches the surface-bright-
ness gradient of spiral galaxies in their outer parts and
is close to the corresponding data for other types of SN.

A comparison of the samples analyzed by using
Kolmogorov–Smirnov’s test (Press et al. 1986) con-
firms the qualitative conclusions reached above. The
GRB distribution in relative radial distance was com-
pared with the distributions shown in Fig. 1. We
obtained the following probabilities that a given pair of
distributions belongs to the same sample: 68% for the
pair “GRB–surface brightness of spirals,” 40% for the
pair “GRB–surface brightness of ellipticals,” 4% for
the pair “GRB–OB associations and H II regions,” and
9% for the pair “GRB–SN Ib/c.”

DISCUSSION

Some conclusions can already be drawn from the
derived distributions of GRBs in parent galaxies. They
are tentative so far, but with the accumulation of obser-
vational data and with the improvement of statistics, the
procedure considered here will bring us closer to
revealing the nature of GRBs.

If GRBs are produced during the collapse of mas-
sive stars (Woosley 1993; Popham et al. 1999; Gersh-
teœn 2000; Cherepashchuk and Postnov 2000), then a
strong correlation of GRBs with star-forming regions
or with Wolf–Rayet stars must be observed.

In the model of merging binary neutron stars (Blin-
nikov et al. 1984) and pairs of neutron stars with black
holes (Lattimer and Schramm 1974, 1976; Eichler et al.
1989), GRBs can occur far from the formation regions
of massive stars, although this is not necessary, and the
issue requires a special study.

Finally, because of the numerous difficulties in
explaining GRBs in terms of standard physical theo-
ries, their models that invoke exotic particles, various
variants of dark matter, etc. have been proposed (Loeb
1993; Bertolami 1999; Demir and Mosquera Cuesta
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1999; Iwazaki 1999; Blinnikov 1999, 2000). The nature
of dark matter is yet to be elucidated. Let us briefly con-
sider the latest results in this field. Until recently, hypo-
thetic weakly interacting particles (for example, super-
light axions or, on the contrary, Weakly Interacting
Massive Particles, WIMPs, such as neutralinos) were
considered to be the most suitable candidates for
explaining the entire set of data on dark matter. At
present, these particles are nonrelativistic [i.e., they are
candidates for Cold Dark Matter (CDM) particles],
which is required to account for the formation of galax-
ies and their clusters. However, the theory that uses
such particles ran into several problems. First, the rota-
tion curves of galaxies, which are also determined by
dark matter, show that it must have a constant density
in central galactic regions, while calculations in CDM
models for weakly interacting particles yield a structure
with a sharp central peak and a 1/r2 decline. Second,
such calculations yield too many clouds of dark matter
in massive galactic halos, a factor of 10 to 50 more than
admissible.

Spergel and Steinhardt (2000) pointed out that these
two problems could be solved if the particles of dark
matter were assumed to interact strongly and elasti-
cally: the central peaks are smoothed out, while the
clouds are dispersed.

Meneghetti et al. (2000) constrained the strength of
CDM self-action. They pointed out that at a too large
cross section for particle interaction, dark-matter struc-
tures in clusters of galaxies are smoothed out so
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Fig. 2. GRB surface density versus galactocentric distance,
in kpc. The GRB surface density is denoted by dots, the
solid line represents the radial dependence of surface bright-
ness for elliptical galaxies, the dashed line represents the
distribution of OB associations in M 33 and of H II regions
in NGC 3184, and the dotted line represents the distribution
of SNe Ib/c.
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strongly that observed phenomena, such as arcs in the
images of very distant quasars and galaxies, cannot be
explained; these arcs are produced by unseen cluster
matter through the effect of a gravitational lens, when
the light from distant objects passes through the cluster.
A comparison with observations suggests that the cross
section for CDM particle interaction per unit mass can-
not exceed 0.1 cm2 g–1. Interestingly, an upper limit on
the interaction of dark-matter particles can also be
obtained from different considerations. Burkert (2000)
gave an overview of the results showing that at a too
large interaction cross section, a homogeneous isother-
mal core of dark matter rapidly collapses. It is impor-
tant that the cross section cannot be much smaller
either, because otherwise, the desired smoothing will
not be achieved.

Such a large interaction cross section can give rise
to star-like objects composed of dark matter, which
may collapse and produce GRBs in various ways (Blin-
nikov 2000). It should be remembered that dark matter
may consist of dissimilar particles and that a hierarchy
of stellar populations similar to ordinary matter can
form in it (Blinnikov and Khlopov 1983; Berezhiani
et al. 1996).

Invisible matter in the central regions of many spiral
galaxies can be distributed in the same way as neutral
hydrogen, while its density in outer regions falls off
considerably more slowly (Hoekstra et al. 2000). Our
analysis of observations indicates that the radial distri-
bution of GRBs in the inner parts of galaxies is similar
to the distribution of the population of the galactic
spherical component, while in the outer parts, their
density decreases more slowly than does the surface
brightness of the disks of spiral galaxies, i.e., qualita-
tively similar to dark matter.

Our results show that the radial distribution of
GRBs differs from that of active star-forming regions in
nearby galaxies. However, many observers of GRB
afterglows insist that they see them mostly in galaxies
that are entirely engulfed by a starburst (Sokolov et al.
2000). These galaxies are morphologically irregular,
and it would be inappropriate to compare them with
nearby normal spiral galaxies. Nevertheless, in this
case, we cannot say that a GRB was necessarily pro-
duced by an ordinary massive star either. There must be
a factor that stimulates starbursts in such galaxies.
Occasionally, but very rarely, such galaxies have com-
panions; the tides produced by them are responsible for
starbursts. However, they are generally single (Taylor
et al. 1995; Telles and Maddox 2000). As was noted by
Trentham et al. (2000) (and previously by Blinnikov
1999, 2000), such galaxies probably interact gravita-
tionally with companions that are entirely composed of
dark matter. If GRBs are produced by dark matter, then
we must see their correlation with starbursts, but, of
course, this is not evidence for the genetic relationship
between GRBs and ordinary massive stars.
It should also be remembered that there are bright
afterglows (for example, the source GRB 0003101C)
that have no galaxies brighter than 29m detected near
them. There are also other indications that absolutely
dark galaxies exist (Trentham et al. 2000).

Let us summarize our conclusions. The distribution
of GRBs is similar to the distribution of matter in the
bulges of spiral and elliptical galaxies; in outer galactic
regions, it is flatter, i.e., differs significantly both from
the distribution of active star-forming regions in nearby
galaxies and from the distribution of SNe Ib/c. The cur-
rently available data do not rule out a correlation of
GRBs with dark matter either (despite the strong selec-
tion effect, afterglows must be seen more commonly
where there is much ordinary matter).
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Abstract—We analyze the sky distribution of various types of cosmic gamma-ray bursts (GRBs): short, long,
and intermediate; they are determined by burst duration T90 (T90 is the time during which 90% of the burst
energy is accumulated). We have found an anisotropy in the distribution of intermediate (2 s < T90 < 8 s) and
short (T90 < 8 s) GRBs in the form of spots with an enhanced GRB concentration near the Galactic coordinates
l = 115° and b = 30°. Given the BATSE nonuniform exposure function, the statistical significance of the anisot-
ropy is 99.89% for intermediate GRBs and 99.99% for short GRBs. Thus, we suggest that this anisotropy has
a natural origin and is not caused by BATSE instrumental effects. © 2001 MAIK “Nauka/Interperiodica”.

Key words: cosmic gamma-ray bursts
INTRODUCTION

Here, we analyze the sky distribution of gamma-ray
bursts (GRBs) by using the BATSE (Burst and Tran-
sient Source Experiment) electronic catalog of GRBs
for the end of 2000 (Meegan et al. 2000). The catalog
contains data on 2702 GRBs, 2037 of which have infor-
mation about duration T90 (the time during which 90%
of the burst energy is accumulated; see Paciesas et al.
1999, Koshut et al. 1996).

Two types of GRB were first identified by T90:
type  1, long bursts with T90 > 2 s, generally with a
higher energy and a soft spectrum; and type 2, short
bursts with T90 < 2 s with a low energy and a harder
spectrum (Kouveliotou et al. 1993; Belli 1995; Dezalay
et al. 1996). Subsequently, three types of GRB were
identified: type 1 (long, bright, soft), type 2 (short, weak,
hard), and type 3: intermediate bursts (2 s < T90 < 8 s)
with a moderate energy and a soft spectrum (Mukherjee
et al. 1998; Horvath 1998; Belousova et al. 1999).
Figure 1 shows the distribution of BATSE GRBs in
duration T90. The intermediate peak with which the
third type of GRB is associated is indistinct. Figure 2
shows the hardness ratio-duration T90 diagram for
BATSE GRBs. The hardness is defined as the ratio of
the fluxes in the spectral channels of BATSE discrimi-
nators 3 (100–300 keV) and 2 (50–100 keV). In this
diagram, the GRBs can be divided into two popula-

* E-mail address for contacts: vor@astro.spbu.ru
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tions: generally harder short GRBs and generally softer
long GRBs. The most recent studies indicate that the
longer GRBs can be broken down with a higher confi-
dence into three types rather than two types; however,
the very existence of the intermediate class can be
methodical in origin (Roiger et al. 2000; Hakkila et al.
2000a–2000d).

We analyze the sky distribution of various popula-
tions of GRBs (short, long, and intermediate); addition-
ally, we consider several subtypes of short bursts to
obtain a more reliable estimate for the statistical signif-
icance of the detected anisotropy.

To study the sky distribution of GRBs, we map the
populations of GRBs under consideration in galactic
coordinates (l, b) in the Mercator projection of the
celestial sphere and find approximate positions of sta-
tistically significant spots with an enhanced GRB con-
centration. A description of the mapping procedure and
the results are given in Section 1.

Since the BATSE exposure is nonuniform (i.e., it
depends on the position on the celestial sphere), an arti-
ficial anisotropy in the sky distribution of GRBs is
expected (Paciesas et al. 1999; Briggs et al. 1996; Teg-
mark et al. 1996a, 1996b). To quantitatively estimate
the anisotropy attributable to the nonuniform exposure,
we simulate the sky distribution of GRBs by the Monte
Carlo method with allowance for the exposure func-
tion. In Section 2, we describe the simulation procedure
and present the results. A discussion and conclusions
are given in Section 3.
001 MAIK “Nauka/Interperiodica”
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1. MAPPING THE GRB POPULATIONS

The relative surface density of GRBs ni = Ni/N4π is
used to map the sky distribution of GRB populations.
The celestial sphere is quasi-uniformly covered by a
grid of 150 nodes. A circular cell of radius R centered
at a given node corresponds to each node. We deter-
mine the number Ni of bursts in the ith cell, the mean
N4π of Ni for all cells, and the rms deviation σ of Ni
from N4π. Using a set of ni , we construct a family of
lines of equal relative GRB density and find regions of
enhanced GRB concentration in the form of spots of
a light shade (a lighter shade corresponds to a higher
relative density). This mapping procedure is applied to
all the types of GRB under study for several R. The
parameter R was varied to check more thoroughly the
nonuniformities found in the sky distribution of various
types of bursts. Indeed, if a statistically significant
anisotropy is recorded at some R, then it must also be
preserved with varying R. Since the characteristic size
of the most significant spots was Rsp ~ 40°, we used R =
35°, 40°, and 45° to determine the statistical signifi-
cance of the anisotropy. Maps of the distributions of
some GRB populations for R = 40° are shown in Figs. 3
and 4.

Having found spots of enhanced GRB concentration
on the map, we fitted them by a circle of radius Rsp = R
roughly centered at the spot under consideration and
determined the number of GRBs Nsp in it. Knowing N4π
and σ, we estimated the significance level of this spot as

. (1)

Note that the value of Ssp determined in this way was
obtained without allowance for the anisotropy of the
exposure function in the sky (the nonuniform exposure
is taken into account in Section 2).

Statistical data for the sky distributions of the types
of GRB under study and characteristics of the most sig-
nificant spots are given in Table 1, where Npop is the
number of GRBs in a given population, and lsp and bsp
are the Galactic coordinates of the spot center.

As we see from Table 1, the most significant anisot-
ropy is observed for type 2b (T90 < 5 s), type 2c (T90 <
8 s), and type 3 (2 s < T90 < 8 s) at all values of R.

2. ALLOWANCE FOR THE EFFECTS 
OF BATSE NONUNIFORM EXPOSURE 

ON THE SKY DISTRIBUTION OF GRBs

When studying the sky distribution of GRBs, it
should be borne in mind that some anisotropy of GRBs
must result from the BATSE nonuniform exposure
(Paciesas et al. 1999; Briggs et al. 1996; Tegmark et al.
1996a, 1996b). In equatorial coordinates, the exposure
depends on declination δ alone (Paciesas et al. 1999;
Hakkila et al. 1997). The exposure function Fe(δ) can
be represented as the probability of detecting a GRB at
some point (α, δ) in the sky. Since this function reaches
a maximum near the celestial poles, an increase in GRB

Ssp Nsp N4π–( )/σ=
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density is expected near these poles. Figure 5 shows a
topographic map of the normalized exposure function fe
in the (l, b) plane. We normalized the function Fe to its
largest maximum, which is reached near the north
celestial pole. The most significant anisotropy of short
(subtypes 2b and 2c) and intermediate GRBs is
observed in the region of the north celestial pole, where
the detection probability is highest. Therefore, it is nec-
essary to check if the anisotropy we found results from
the nonuniform detection of GRBs by BATSE.

To estimate the significance of the anisotropy with
allowance for the nonuniform exposure, we use the
Monte Carlo method with carrier function fe(δ). Thus,
we simulate an anisotropic sky distribution of the GRB
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Fig. 1. The distribution of GRBs in duration T90. logT90
(T90 is in seconds) is plotted along the horizontal axis, and
the number of GRBs per 0.1 bin is plotted along the verti-
cal axis.
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Fig. 2. Hardness ratio (HR) versus duration T90 for 1951 GRBs
on a logarithmic scale.
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Fig. 3. A topographic map of the distribution of 746 short GRBs with T90 < 8 s in Galactic coordinates (l, b).

Fig. 4. A topographic map of the distribution of 1291 long GRBs with T90 > 8 s in Galactic coordinates (l, b).
populations under study, which is expected to result
from the nonuniform exposure. The simulations are
carried out as follows:

(1) the equatorial coordinates (α, δ) of a model GRB
are randomly generated;

(2) with probability f = fe (δ), this model GRB is
“thrown” on the celestial sphere to the point with coor-
dinates (α, δ);

(3) in this way, Npop objects are thrown on the celes-
tial sphere, where Npop is the number of GRBs in a given
population.

Having obtained the sky distribution of model
GRBs, we transformed their equatorial coordinates to
the galactic coordinates and determined Nm, N4π, and σ,
where Nm is the maximum number of objects falling
within one of the grid cells. The nodes and cell size are
the same as those used to map the populations of
observable GRBs. Based on these data, determine the
significance of the simulated spot as

. (2)Sm Nm N4π–( )/σ=
If Sm ≥ Ssp, where Ssp is the spot significance for
the  population of observable bursts with the same
number Npop of bursts in it, then this event is recorded.

We perform this simulation p times and determine
the number q of cases in which the condition Sm ≥ Ssp is
satisfied. The quantity

(3)

is then the probability of a random realization of a spot
with enhanced GRB concentration with allowance for
the nonuniform exposure. 

Table 2 gives the results of our simulations for all
the burst populations for p = 20 000 tests. Subtypes 2b,
2c, and type 3 exhibit a significant deviation from isot-
ropy at R = 40°; by varying R, we find that the deviation
from isotropy remains at a high level. Bursts with
T90 > 8 s also exhibit a large deviation from isotropy at
R = 40°, but the significance of the anisotropy consid-
erably decreases with varying R. Thus, the anisotropy is
confirmed for types 2b, 2c, and 3 and is not confirmed
for type 1. Bursts with T90 < 2 s exhibit no statistically
significant deviations from anisotropy.

P q/ p=
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Table 1. Statistical data for the sky distributions of the GRB populations under study and characteristics of spots with enhanced concentration

Population Npop R N4π σ Nsp Ssp (lsp; bsp)

Short 497 35° 45.0 7.0 68 3.3 (322°; –39°)

Subtype 2a 40° 58.4 8.1 82 2.9 (114°; 29°)

T90 < 2 s 45° 73.0 8.7 98 2.9 (298°; –43°)

Short 653 35° 58.9 8.5 93 4.0 (119°; 21°)

Subtype 2b 40° 76.6 9.8 116 4.0 (114°; 29°)

T90 < 5 s 45° 95.7 10.4 134 3.7 (118°; 30°)

Short 746 35° 67.3 9.1 104 4.0 (120°; 17°)

Subtype 2Ò 40° 87.3 10.7 131 4.1 (114°; 29°)

T90 < 8 s 45° 109.0 11.8 151 3.6 (112°; 27°)

Intermediate 249 35° 22.4 5.4 44 4.0 (109°; 27°)

Type 3 40° 28.9 6.2 53 3.9 (106°; 31°)

2 s < T90 < 8 s 45° 36.0 7.4 62 3.5 (97°; 24°)

Long 1291 35° 117.8 10.1 151 3.3 (142°; –1°)

Type 1 40° 152.3 11.7 194 3.6 (147°; 7°)

T90 > 8 s 45° 190.4 12.0 227 3.1 (147°; 1°)
3. DISCUSSION AND CONCLUSIONS

The anisotropy of short GRBs with T90 < 2 s was
reported by Balazs et al. (1998a, 1998b). Subsequently,
it was reported that intermediate GRBs with 2 s < T90 <
10 s (Meszaros et al. 1999, 2000a, 2000b) exhibited
deviations from isotropy. Analyzing the sky distribu-
tion of various GRB populations, we have reached the
following conclusions:

(1) If there are three types of GRB, then intermedi-
ate bursts with 2 s < T90 < 8 s exhibit the largest devi-
ation from isotropy at a statistical significance of
99.89%, while short bursts with T90 < 2 s and long
bursts with T90 > 8 s exhibit no significant deviations
from isotropy.
ASTRONOMY LETTERS      Vol. 27      No. 7      2001
(2) If there are only two types of GRB, then short
GRBs with T90 < 8 s exhibit the largest deviation from
isotropy at a statistical significance of 99.99%.

In addition, our technique allows the localization of
anisotropy in the sky approximately at coordinates lsp =
115° and bsp = 30°; this enables us to search for other
effects in this direction. We suggest that the huge accu-
mulation of matter (Superattractor) in the direction lsa =
110°, bsa = 5° with z = 1–3, which lenses the emission
from quasars (Litvin et al. 1999a, 1999b), can be
responsible for this anisotropy. Lauer and Postman
(1994), Slechta and Meszaros (1997), Meszaros and
Vanysek (1997), Coles (1998), and Sylos-Labini et al.
(1998) discuss the possibility of deviations of the mat-
ter distribution in the Universe from uniformity and
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isotropy on scales larger than 300 Mpc, which is in
agreement with our results.

Note that the spot with a maximum density of short
GRBs roughly coincides not only with the direction of
the huge accumulation of matter, but also with the
direction of the maximum of the exposure function in
the region of the north celestial pole (Fig. 5). However,
our Monte Carlo simulations confirm the hypothesis
that the anisotropy in the sky distribution of short GRBs
has a natural origin. We assume that the exposure func-
tion does not depend on GRB duration
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Formation of the Spiral Structure in SB Galaxies
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Abstract—We investigate regions near the ends of the principal spiral arms in SB galaxies, where the non-axi-
ally symmetric part of the gravitational potential rapidly transforms to its asymptotic quadrupole form. The
galactic disk responds to this transformation of the potential by forming nearly circular spirals with an angular
extent of the order of π/2 (quarter-turn spirals). We consider the resonance mechanism for the formation of prin-
cipal spirals. Expressions are derived for the resonance responses of disks with circular and nearly circular stel-
lar orbits. © 2001 MAIK “Nauka/Interperiodica”.

Key words: galaxies, intergalactic gas
1. INTRODUCTION

The ordered system of large-scale spiral arms in gal-
axies (the so-called grand design) is generally believed
to be a single structure with smoothly changing param-
eters along the spirals; abrupt changes in this structure
are admitted only at resonances. In particular, at coro-
tation, where the angular velocities of the spiral wave
and the galactic disk are equal, the wave can be rein-
forced, which is accompanied by its substantial restruc-
turing (Toomre 1981). The ends of spiral arms and the
locations of ring structures are usually associated with
the Lindblad resonances, at which the spiral wave
resonates with free epicyclic stellar oscillations.

Here, we give examples of galaxies in which the
regions of abrupt change in spiral structure do not owe
their origin to resonances. These regions are clearly
associated with the ends of the principal spiral arms,
where the gravitational potential of two-arm spirals
rapidly transforms to its asymptotic quadrupole form.
Below, we show that nearly circular spirals with an azi-
muthal length of the order of π/2 emerge under the
effect of such a dramatic and rapid change in disk
potential. These quarter-turn spirals are analyzed in
Section 2. Their presence is demonstrated both in the
brightness distribution in the SB galaxy NGC 1365 and
in simple calculations in which the linear theory of per-
turbations is used to determine the response of the
galactic disk. We chose the specific galaxy (NGC 1365)
as a typical example; quarter-turn spirals are also
clearly seen in many other SB galaxies (NGC 157,
1300, etc.) and in many normal SA galaxies (for exam-
ple, in NGC 3631).

We believe the quarter-turn spirals to be part of a
normal mode of an SB galaxy, which also includes a

* E-mail address for contacts: evgenii@orc.ru
1063-7737/01/2707- $21.00 © 20421
bar and principal spiral arms. The quarter-turn spirals
provide a means of lengthening the principal spiral
arms. As for the latter, they can have resonance and
nonresonance natures. The latter include, for example,
the principal spiral arms of the galaxy NGC 1365 con-
sidered in Section 2. These arms are open wide, which
primarily distinguishes them from tightly wound,
nearly circular resonance spirals. In Section 3, where
the principal spiral arms of SB galaxies are investi-
gated, we restrict ourselves to describing resonance spi-
rals. They are easiest to describe. At the same time, the
resonance responses are highly varied in form, and
many of them are very similar to the structures
observed in SB galaxies. Here, we consider those cases
where the principal spiral arms are mainly the disk
response to the bar potential; the self-gravitation of the
spiral arms themselves can be easily taken into account
by using a rapidly converging iterative procedure.

Note that to prove the existence of quarter-turn spi-
rals in SB galaxies, it essentially does not matter how
the bar was formed and to which type it belongs, fast or
slow [for the classification of bars, see Pasha and Poly-
achenko (1994)]. However, this turns out to be of
importance in studying the resonance responses.

We consider the responses of disks with circular
particle orbits in Subsection 3.1 and the responses of
disks with finite (though small) stellar velocity disper-
sions in Subsection 3.2. Most of the calculations are
described in the Appendix.

In conclusion (Section 4), we summarize our main
results and note some issues that require a further study.

2. QUARTER-TURN SPIRALS

Figure 1a shows a deprojected image of NGC 1365
(one of the best studied SB galaxies); superimposed on
the image is the Fourier harmonic of the brightness dis-
001 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) A deprojected image of NGC 1365 with the m = 2 Fourier harmonic of the (B) brightness distribution superimposed on
it. The image was retrieved from the NED archive. I, Principal spirals; II, quarter-turn spirals. (b) The amplitude  A(r) and phase F(r)
of the Fourier harmonic shown in (a). The heavy lines represent the smoothed functions used to calculate the response of a galactic
disk (see Fig. 2).
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tribution that corresponds to the dominating two-arm
symmetry. The surface density σ2, which is propor-
tional to brightness, can be written in polar coordinates
r and ϕ as

where σ(r) = A(r)exp[–iF(r)] is the complex amplitude,
A(r) > 0 is the real amplitude, and F(r) is the wave

σ2 r ϕ,( ) = Re σ r( ) 2iϕ( )exp[ ]  = A r( ) 2ϕ F r( )–[ ] ,cos
phase. The functions A(r) and F(r) are shown in Fig. 1b
[the curves in Fig. 1a are ϕ(r) = F(r)/2 and ϕ(r) =
F(r)/2 + π]. We see that the spiral arms consist of two
distinct parts: (1) the widely open principal arms
branching off from the bar; and (2) the nearly circular
quarter-turn spirals adjacent to these arms, each of
which ends with radially aligned oscillations made up
of short alternating leading and trailing spirals. These
ASTRONOMY LETTERS      Vol. 27      No. 7      2001
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two parts differ greatly both in amplitude and in spiral
pitch angle. The same characteristic quarter-turn spirals
are available both in other SB galaxies (for example,
in NGC 157) and in normal spiral galaxies: for exam-
ple, these spirals are present in NGC 3631 not only in
its outer part (as in NGC 1365), but also in its central
region.

In reality, this phenomenon is quite common: the
quarter-turn spirals are the response of the galactic disk
to the gravitational potential of the principal spiral,
which has a characteristic behavior near the end of this
spiral (see Fig. 2). This behavior can be described as a
transition from the spiral mode to a multipole mode. In
the spiral mode, the minima of potential roughly follow
the maxima of surface density, i.e., the observed spiral
arms. Thus, for example, if the spiral arms are long,

tightly wound spirals, so that the phase F(r) = (r')dr'

(k is the wave number) changes much faster than the
amplitude A(r), then the potential is known (Toomre
1964) to be

where G is the gravitational constant. Thus, for tightly
wound spirals, the maxima of surface density closely
coincide with the minima of potential.

Sufficiently far from the spirals, Φ2(r, ϕ) =

cos(2ϕ – ) must clearly approach the quadrupole
potential  (Landau  and  Lifshitz  1988):  Φ2(r, ϕ) 
r–3cos2(ϕ – ϕ0) (ϕ0 = const). Consequently, Φ2 must
definitely be nonspiral in form at the asymptotics. In
reality, however, Φ2 assumes a nonspiral (multipole)
form well before the quadrupole asymptotics is reached:
this takes place in a narrow range of radii immediately
behind the principal spiral. In this case, we can write
Φ2(r, ϕ) ~ r–ncos2(ϕ – ϕ0) (n = –dln /dlnr, n  3 at
sufficiently large radii).

To describe the behavior of the galactic-disk
response to such a potential, we take a disk model with
circular orbits. We will see that even this simple model
yields results that are in qualitatively good agreement
with the observations. Clearly, this approximation is
completely justified in those cases where the velocity
perturbations produced by a nonaxially symmetric
potential are larger than the thermal velocities in the
subsystem of stars under consideration.

We restrict ourselves to a linear analysis by assum-
ing that all the perturbed quantities are proportional to
exp(–iωt), where t is the time and ω = 2Ωb + iγ is the
complex frequency composed of the bar angular veloc-
ity Ωb and the growth rate γ. Linearizing the Euler
hydrodynamic equations with a zero pressure, we can
express the perturbed velocities v r and vϕ in terms of
the gravitational potential Φ. Substituting these expres-
sions for v r and vϕ in the linearized continuity equa-

k∫

Φ2 r ϕ,( ) 2πG/ k r( )[ ]σ 2 r ϕ,( ),–=

Φ F

Φ
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tion, we derive the relation between the perturbations of
surface density σ(r) and potential Φ(r)

(1)

Here, ε(r) = σ0(r)/(  – κ2) is a gravitational analog
of  the permittivity, σ0(r) is the unperturbed density,
κ(r) is the epicyclic frequency, κ2 = 4Ω2 + rdΩ2/dr,
Ω(r) is the local angular velocity of the galactic disk,
and ω∗ (r) = ω – 2Ω(r). In the above remarkably com-
pact form, this formula was first given by Bisnovatyœ-
Kogan and Mikhaœlovskiœ (1973). The real quantity
Re[σ(r)exp(2iϕ)] is the density response to potential Φ.

Because of the rapid radial change in potential both
on the principal spiral and during the transition from
the spiral to multipole mode, we usually have σ(r) ≅
–εd2Φ/dr2 instead of Eq. (1). In general (and this is true
for the galaxy NGC 1365 considered here), the spiral

ends lie in the region where  < κ2, i.e., between
Lindblad resonances (Lin et al. 1969). Therefore, ε < 0,
and we conclude that the surface density σ(r) must
change in the same way as the second derivative of

σ r( ) 1
r
--- d

dr
----- rεdΦ

dr
------- 

 –
4

r
2
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rω*
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Fig. 2. Positions of the maxima of the density response at
each radius (triangles, II) to the gravitational potential of
principal spirals (heavy solid lines, I for the galactic disk
of  NGC 1365). The curves for the positions of response
maxima and the quarter-turn spirals in Fig. 1a are seen to be
very similar. The dotted lines are used for the curves of the posi-
tions of minima of two-arm potential Φ2(r, ϕ). The dashed
lines indicate the positions of maxima of Re[Φ″exp(2iϕ)].
Qualitatively, the form of quarter-turn spirals does not
depend on specific parameters of the disk and the spiral
wave. In particular, it is insensitive to the radiation band
used (although in other bands, the amplitude of the two-arm
harmonic can decrease in the central region more slowly or
can even slightly increase).
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potential, σ(r) ∝ Φ ''. This is precisely observed in our
example, as we see from Fig. 2, which shows the posi-
tions of the maxima of the response (at each radius) to
the potential of the principal spirals in the galaxy under
study calculated by using formula (1); the effect of the
bar in the region of quarter-turn spirals of interest
proves to be negligible. Note that for the spiral behavior
of the potential, Φ″ ~ –k2Φ, while for the multipole
mode, Φ″ ~ +n(n + 1)Φ. We thus see that, if we write
σ(r) = B(r)Φ(r), then the phase of the complex func-
tion B(r) changes from –π at the spiral beginning of the
response under consideration to zero at its multipole
end. This precisely corresponds to an azimuthal length
of the two-arm response equal to π/2 (because the
change in phase ∆F and the turn angle of the two-arm
spiral ∆ϕ are related by ∆F = 2∆ϕ; in our case, ∆F = π). 

3. THE RESONANCE FORMATION
OF PRINCIPAL SPIRAL ARMS IN SB GALAXIES

In this section, we discuss the following scenario for
the formation of spiral structure in SB galaxies. First, a
fast or slow bar is formed at the galactic center. This
may result, for example, from the growth of a particular
instability. The bar induces primary (resonance) arms,
which branch off from the bar ends. In the simplest case
considered below, the primary spirals emerge at corota-
tion (CR) for a fast bar and at inner Lindblad resonance
(ILR) for a slow bar. Finally, if the primary spirals are
sufficiently strong, they trigger the formation of sec-
ondary spirals. Nearly circular quarter-turn spirals that
are extensions of the primary spirals (in principle, this
spiral lengthening can be repeated). However, we
restrict our analysis here to the simplest case where the
potential of self-gravitating principal spirals is consid-
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Fig. 3. Principal characteristic frequencies of stellar orbits:
Ω(r) is the angular velocity; Ω – κ/2 = Ωpr is the precession
velocity of nearly circular orbits; rc is the corotation; r2i and
r2e are the inner Lindblad resonances; rOLR is the outer

Lindblad resonance;  <  is the angular velocity

of a slow bar; and  .  is the bar velocity in a sit-

uation with two close inner Lindblad resonances.

Ωb
1( ) Ωpr

max

Ωb
2( ) Ωpr

max
erably smaller than the bar potential. In that case, quar-
ter-turn spirals are clearly not formed, while the princi-
pal spirals are mainly the disk response to the bar
potential; allowing for the self-gravitation of principal
spirals does not qualitatively change the results.

3.1. The Responses of Cold Disks 

To describe the response of a cold galactic disk that
produces resonance spirals, we can use relation (1)
between surface density and potential as a first approx-
imation. In this case, the potential is generally Φ =
Φb + Φs, where Φb(r, ϕ) . r–ncos2ϕ is the bar potential
(n > 0, the bar is assumed to be oriented vertically) and
Φs is the potential of the spirals themselves.

The case where |Φs | < |Φb | is simplest. When calcu-
lating the response using Eq. (1), we can then assume
that Φ . Φb as a first approximation. The surface den-
sity σ(1) derived in this way can then be substituted in
the integral for the potential of a simple layer, whose

calculation gives the potential  of the self-gravitat-
ing spirals in the first approximation. Subsequently, the
surface density σ(2) is calculated in the second approx-

imation using Eq. (1) with Φ = Φb +  and so on.
Thus, a natural iterative process arises; below, we
restrict our analysis to those cases where these itera-
tions converge. At the end of this section, we deduce the
corresponding approximate conditions and give a typi-
cal example of the rapidly converging iterative proce-
dure. First, we will consider the disk responses to the
potential of a single bar by completely ignoring the
self-gravitation of spirals.

The possible resonance responses of the disk are
highly varied. Some of them were previously given by
Pasha and Polyachenko (1993, 1994) and Polyachenko
(1994). Below, we therefore restrict ourselves to sev-
eral remarks pertaining to spiral responses.

(1) Near corotation [ω∗  . 0, i.e., Ωb = Ω(rc), Ωb =
ω/2], we derive from Eq. (1)1 

(2)

(3)

where  = dΩ/dr . These formulas describe a two-

arm trailing (because  < 0; see Fig. 3) spiral. Typical
responses are schematically shown in Fig. 4a. In this
figure (and in Figs. 4b–8b, 10), the density of points is

1 Note that Eq. (12) from Polyachenko (1994) holds only for
|ϕc(r)| ! 1 [in contrast to Eq. (3) in this paper, which is valid for
any ϕc(r)].
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Fig. 4. Resonance response of the disk at corotation (rc = 1) for γ = 0.05: (a) a cold disk, ρ = 0; (b) a disk with finite stellar velocity
dispersion, ρ = 0.1.
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proportional to the perturbed surface density σ in the
regions where σ > 0. The maximum length of each arm
is obviously π/2; the arms are longest at low γ. Figure 4a

corresponds to the case where | /σ0 | @ |Ω′/Ω| (which
apparently always holds). For the inverse inequality, we
would have an unobservable arrangement of spirals rel-
ative to the bar, which is obtained from that shown in
the figure by counterclockwise rotation through π/2.

Intermediate cases, | /σ0 | > |Ω′/Ω|, describe the real-
istic pattern of spirals, which slightly go behind the bar
and branch off from it by an angle smaller than π/2.

Note that the resonance responses at corotation are
similar. The diversity of resonance responses men-
tioned above refers to inner Lindblad resonances; the
next remark is devoted to them.

(2) For realistic rotation curves (Fig. 3), there is
always only one corotation and one outer Lindblad res-
onance (OLR), at which ω∗ (rOLR) = κ(rOLR); i.e., Ωb =
Ω(rOLR) + κ(rOLR)/2. The inner Lindblad resonances
(ILR), where ω∗ (rILR) = –κ(rILR), correspond in Fig. 3 to
the intersections of the Ω = Ωb straight line with the
curve of precession angular velocities for nearly circu-
lar orbits, Ωpr = Ω(r) – κ(r)/2. As we see from the figure,

there are several possibilities: (i) if Ωb > , then
there are no inner Lindblad resonances at all; (ii) if

Ωb < , then two resonances emerge: internal ILR(r2i)
and external ILR(r2e); (iii) if Ωb is only slightly larger

than , then the Ω = Ωb straight line passes near
r = rm closely above the maximum of the Ω = Ωpr(r)
curve (although it does not intersect the latter); in this
case, the disk can strongly respond to the bar potential
(almost resonance).

Near one of the ILRs (r . r2i or r . r2e), Eq. (1) gives

(4)

(5)

where  = dΩpr/dr  and ncr = 4Ω/κ  (for a flat

rotation curve, ncr =  . 2.82). It follows from these
formulas that at r . r2e and the resonance responses
have the form of trailing two-arm spirals, which are
schematically shown in Figs. 5a and 6a [for positive
and negative (ncr – n), respectively]. The maximum
length of each spiral arm is π. It is reached at low γ, when
the spirals themselves are nearly circular, while the pair
of spirals forms a ring-like configuration. At r . r2i, the
resonance responses (Figs. 7a and 8a) are similar to
those just considered but with two important distinc-
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2 2
tions. The main distinction is that the spiral arms are
now leading (because the derivative Ω'pr > 0 at r = r2i;
see Fig. 3). Thus, if the bar is inside the internal ILR,
the resonance spiral structure begins with the leading
spiral. The second distinction (the reason is the same) is
that for r . r2i, the spirals branch off from bar ends at
n > ncr (while at n < ncr, they fall on the bar ends).

Yet another important conclusion can be drawn
from our analysis: the resonance spirals induced by fast
bars must probably be approximately a factor of
2 shorter than the same spirals produced by slow bars.
It should be emphasized, however, that here we deal

with slow bars with widely separated resonances (

in Fig. 3). For close resonances (  in Fig. 3) or for
the almost resonance, the response can have a com-
pletely different form (Pasha and Polyachenko 1993,
1994; Polyachenko 1994).

Figures 9 and 10 illustrate the iterative procedure
described above by using the corotation resonance as
an example. It refers to a disk model with an unper-
turbed surface density, which falls off as exp(–r/rd),
rd = 1, at r > rc = 6 and as exp(–r/rd1), rd1 = rd/3, at r < 5
(the latter exponent describes the decrease in the num-
ber of stars in circular orbits inside the bar); the two
exponents are joined by a spline. The rotation is
assumed to be rigid, Ω = Ω0 = 0.1, at r = 2; the rotation
curve becomes flat at r = 8, while at intermediate
points, it is complemented by a spline. The mass distri-
bution both in the disk and in the corresponding passive
halo provides this rotation law. Figures 9a–9c show the
potentials, while Figs. 10a–10c show the spiral
responses at three successive iterations. In our example,
the iterations are seen to rapidly converge.

Let us now deduce approximate conditions for the
convergence of iterations by estimating the spiral
potential that corresponds to the response (1) near each
of the possible resonances. We will do this separately
for CR and ILR.

(1) According to Eq. (2), the amplitude of the reso-
nance response at corotation is

(6)

where we assume that κ2 . 2Ω2 (flat rotation curve) and

| /σ0 | @ |Ω′/Ω| and introduce the designations rd for

the scale of change in disk surface density (| /σ0 | =
1/rd) and Φb = r–n for the radial part of the dependence
of bar potential. The amplitude of the potential that cor-
responds to the density perturbation under consider-
ation can be estimated from the formula for the WKB
approximation

(7)

Ωb
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2Φbσ0

γΩcrcrd
-------------------,
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Φs
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Fig. 5. Resonance response of the disk at external ILR (rc = r2e = 1) for γ = 0.05 and n < ncr = 2.82 (n = 2): (a) a cold disk, ρ = 0;
(b) a disk with finite stellar velocity dispersion, ρ = 0.1.
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Fig. 6. Same as Fig. 5 for n > ncr = 2.82 (n = 3).
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Fig. 7. Same as Fig. 6 at internal ILR (rc = r2i = 1): (a) a cold disk, ρ = 0; (b) a disk with finite stellar velocity dispersion, ρ = 0.1.
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Fig. 8. Same as Fig. 5 at internal ILR (rc = r2i = 1), γ = 0.05 and n < ncr = 2.82 (n = 2): (a) a cold disk, ρ = 0; (b) a disk with finite
stellar velocity dispersion, ρ = 0.1.
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Fig. 9. Curves for the positions of minima of the gravita-
tional potential near corotation (rc = 6): (a) first iteration;
(b) second iteration; and (c) third iteration. The circles mark
the positions of minima of the total potential from the pre-
ceding iteration (for the first iteration, it degenerates into the
vertical straight line corresponding to the positions of min-
ima of the potential for a vertical bar); the triangles mark
the positions of minima of the potential for a spiral
response; the crosses mark the positions of minima of the
total potential after a given iteration. The curves in (b) and
(c) essentially coincide, suggesting the convergence of
iterations.
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the positions of maxima of the density responses at each
radius. The patterns of responses essentially cease to differ
starting from the second iteration; i.e., in this case, the iter-
ations rapidly converge.
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where k = k(r) = 2 (r) is the wave number. Note that
direct computations of the potential corresponding to
the resonance response σ show that formula (7) under-
estimates the true potential (by a factor of about 2), but the
form of the function Φ(r) itself is reproduced correctly.
Therefore, the inaccuracy that emerges here can be cor-
rected by introducing a constant correction factor in the
final expression for the sought-for criterion.

According to Eq. (3),

(8)

because it follows from the same formula that

(9)

Hence,

(10)

so the condition |Φs | < |Φb | means in this case that

(11)

where kc is the constant correction factor mentioned
above. Remarkably, the deduced condition (11) has a
universal form; for example, it does not depend on the
growth rate of perturbation γ. On the other hand, the
independence from the bar strength is natural here,
because a stronger (weaker) bar induces stronger
(weaker) spirals.

Note that for the case corresponding to Figs. 9
and 10, the value of 2πGσ0/ rd, which enters into the
deduced criterion for the convergence of iterations, is
0.17 ! 1.

(3) Near ILR, similar computations yield a com-
pletely different condition:

(12)

where kI is the correction factor.
In conclusion, note that the inequalities that are the

inverse of (11) and (12) appear to simultaneously be the
necessary conditions for the formation of quarter-turn
spirals when the principal spiral arms have a resonance
nature. Indeed, as was shown in Section 2 (for nonres-
onance principal spirals, though), quarter-turn spirals
must emerge when the gravitational potential of the pri-
mary spiral at its location is larger than the bar poten-
tial. The total potential (which is the sum of the bar and
spiral potentials) then also assumes a spiral form. The
potential again becomes multipole closer to the outer
end of the spiral, and one might expect quarter-turn spi-
rals to emerge in the transition region. Unfortunately,
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this cannot be demonstrated in terms of the iterative
procedure described above precisely because such iter-
ations diverge in this case. The physical cause of this
divergency is clear: in this case, the spiral potential
rather than the bar potential (as assumed) is the correct
first approximation; additional remarks on this matter
can be found in the last section of this paper.

3.2. The Responses of Disks 
with Finite Stellar Velocity Dispersions 

In general, the effect of finite stellar velocity disper-
sion (even if it is assumed to be low compared to the
circular velocity) on the response of a galactic disk is
difficult to take into account. Up until now, this prob-
lem has been solved [in the analytic theory of Lin and
Shu (1966)] only for tightly wound spirals. In this the-
ory, the potential Φ1, along with all the other perturba-
tions of an equilibrium axially symmetric background
(surface density σ1, distribution function f1, etc.), are
assumed to be proportional to eikr, where k is the wave
number with kr @ 1 and dlnk/dlnr ! 1. Thus, strictly
speaking, the theory correctly describes the responses
of galactic disks under the effect of only multi-turn,
tightly wound spirals.

The expression derived by Lin and Shu (1966) for
the local (at point r) response of surface density is gen-
erally represented as

(13)

where ν = ω∗ (r)/κ(r) is the dimensionless frequency of
the spiral perturbation, and ^ν is the reduction factor,

(14)

x = k2 /κ2 = k2ρ2 (cr is the radial stellar velocity dis-
persion, and ρ = cr /κ is the mean epicycle size). ̂ ν(x) is
a monotonically decreasing function of x; ^ν(0) = 1 in
the limit of a cold disk (cr = 0). This justifies the name
of ^ν(x): its value decreases with increasing stellar
velocity dispersion, so, according to Eq. (13), it describes
the decrease in the response of surface density with
increasing dispersion compared to a cold disk.

Note that the spatial form of the perturbation in the
theory under consideration is fixed from the very outset
[∝ cos(kr + mϕ)]. In particular, the thickness of the spi-
ral response is specified: δr = π/k = λ/2 (λ is the radial
wavelength); as the dispersion increases, only the per-
turbation amplitude decreases.

Recall that the following standard Lin–Shu disper-
sion equation is derived from the relation between per-
turbations of the potential and the surface density that
follows from the Poisson equation Φ1 = –2πGσ1/ |k |
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(which is also local in the approximation under consid-
eration):

(15)

this is one of the basic relations of the modern theory of
galactic spiral structure.

The Lin-Shu theory is definitely not applicable to
our problem of the disk response to the bar potential:
the bar potential can be described as the limiting case
that is opposite to tightly wound spirals, which were
considered by Lin and Shu. A general solution of the
kinetic equation in our problem seems difficult (if at all
possible) to find. However, we can easily determine

how the resonance denominators 1/ω∗ , 1/(  – κ2),

and 1/(  – κ2)2 in the response of a cold disk (sepa-
rately for each of the main resonances) are modified
under the effect of finite (although low) velocity disper-
sion.

Here, we give only the final expression for the
responses of surface density (for detailed calculations,
see the Appendix).

(1) Near corotation (CR),

(16)

(17)

where, for definiteness, the equilibrium distribution
function was assumed to have the Schwarzschild form
in the epicyclic approximation:

(18)

 = σ0(r),  = vϕ – rΩ(r) is the residual

azimuthal velocity, cr = c0 = const is the radial velocity
dispersion [the possible dependence c0(r) is of no
importance to us], cϕ = crκ(r)/(2Ω(r)) is the dispersion
of residual azimuthal velocities, y = 2Ω /(κc0), r0 =
r + ρy, ρ = c0 /κ,

(19)

δ = γ/(m|Ω′(rc)|), γ is the imaginary part of the fre-
quency: ω = mΩp + iγ, and Ωp is the wave angular veloc-
ity. All the functions that appear in (17) as the coeffi-
cients before the integrals are assumed to be calculated
at the resonance position r = rc.

ω mΩ–( )2 κ 2
2πGσ0 k ^ν x( ),–=

ω*
2

ω*
2

σ1 AΦ1,=

A
2mΩ
rκ 2

------------
σ0′
σ0
------ Ω′

Ω
------+ 

  σ0

2π
---------- y

e
y

2
/2–

ω* r0( )
-----------------d

∞–

∞

∫–=

+
mΩ
rκ 2
---------κ′

κ
-----

σ0

2π
---------- y

e
y

2
/2–

3 y
2

+( )
ω* r0( )

-------------------------------,d

∞–

∞

∫

f 0
2Ω r( )
κ r( )

---------------
σ0 r( )

2πc0
2

-------------
v r

2

2cr
2

--------–
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Figure 4b shows the responses of a simple model of

an exponential disk, σ0(r) = σ0(0)  [for σ0(0) = 1
and rd = 1/2), inside an isothermal halo with a flat
rotation curve, Ω = V0 /r (V0 = 1), to the potential
Φ1 = r–ncos2ϕ (m = 2) of a bar rotating with angular
velocity Ωp such that rc = 1.

A comparison of Figs. 4a and 4b shows that the
main effect of the stellar velocity dispersion is an
increase in the thickness of the spiral response and in
the degree of its openness (the latter takes place at ρ > δ);
in this way, the case under consideration differs funda-
mentally from previously studied responses to a tightly
wound spiral.

(2) Near one of the possible Lindblad resonances
(ILR or OLR),
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(29)

For the inner Lindblad resonances (ILR), ω∗ (rc) =
–κ(rc) must be assumed in these formulas, i.e., Ωpr(rc) =
Ωp, Ωpr(r) ≡ Ω(r) – κ(r)/m is the orbital precession
velocity; the outer Lindblad resonance (OLR) corre-

sponds to ω∗ (rc) = κ(rc), i.e., (rc) = Ωp, (r) ≡
Ω(r) + κ(r)/m. The responses of the simple model
described above (an exponential disk with a flat rota-
tion curve) near the inner Lindblad resonances are
shown in Figs. 5b and 6b for r . r2e and in Figs. 7b and
8b for r . r2i . As in the case of a corotation resonance,
the main effect of the velocity dispersion here is also an
increase in the thickness of the spiral responses and in
the degree of their openness (when ρ > δ). The disk
response at the outer Lindblad resonance is similar to
the response at the external ILR for n < ncr (Fig. 5)

4. DISCUSSION

Above, we considered new aspects of the formation
of spiral structure in SB galaxies.

(1) Previously, spiral perturbations have been stud-
ied mainly in a self-consistent case: first, the spiral
response σ to a spiral potential Φ was determined from
the solution of the kinetic equation for stars or the
hydrodynamic equations for gas, and, then, the poten-
tial itself was assumed to be produced by a density per-
turbation σ (i.e., the condition of self-consistency was
introduced). This statement of the problem arises, for
example, in the theory of galactic spiral density waves;
in particular, the Lin–Shu dispersion equation (15) for
tightly wound spirals is derived in this way. Naturally,
the potential and density perturbations are sought in
this case in the same region.

We analyzed (Section 2) disk responses outside the
region where the principal spiral arms are located; the
region immediately adjacent to the principal spirals
turned out to be of greatest interest. In this narrow ring,
the spiral behavior of the potential changes to its multi-
pole behavior, which gives rise to quarter-turn spirals as
a characteristic response of the disk to this behavior of
the potential. The phenomenon of quarter-turn spirals
provides a natural means for the successive (generally
multiple) lengthening of spirals in galaxies.

(2) We also analyzed (Section 3) the resonance gen-
eration of principal spiral arms by a bar and suggested
an iterative procedure for consistent allowance for the
self-gravitation of spirals. In principle, resonance
responses can completely cover the entire variety of the
spiral and ring shapes observed in SB galaxies. There-
fore, the scenario for the formation of structure in SB
galaxies, including bar formation, the resonance gener-
ation of principal spirals in the galactic disk, and the
nonresonance formation of quarter-turn spirals, seems

β µ
3Ω
-------, µ 1

2
--- κ 2( )′ 3κ 2

r
--------– .–= =

Ωpr
+( ) Ωpr

+( )
promising. In this case, a spiral with a length of
about π/2 for a fast bar and about π for a slow bar must
be formed (as a resonance response of the disk to the
bar potential) during the bar formation. If the primary
spiral is strong enough to be able to change the multi-
pole behavior of the bar potential to the spiral behavior
(which, in turn, again gives way to the multipole behav-
ior closer to the outer spiral end), then the first quarter-
turn spirals that lengthen the primary spiral by π/2 will
emerge. In the example of NGC 1365 we considered,
this is the end of the process, because the self-gravita-
tion of the quarter-turn spirals themselves turns out to
be insignificant. In general, however, this process can
be continued.

A survey of photographs for SB(s) galaxies from
available atlases (for example, in the well-known Hub-
ble Atlas) shows that, in general, the spiral arms
branching off from the bar are clearly traceable over the
length of a half-turn about the center. Similarly, the
inner rings in SB(r) galaxies usually consist of a pair of
semicircumferences (or segments of tightly wound spi-
rals) slightly displaced from one another. Pasha and
Polyachenko (1993), who paid attention to these facts,
associated them with resonance responses near (exter-
nal) ILR: these responses appear exactly as was
described.

However, the phenomenon of quarter-turn spirals
allows the observed pattern of half-turn spiral to also be
obtained in principle for fast bars with a resonance
response at corotation; recall that the latter has a maxi-
mum length of π/2. Indeed, the first (nearest the bar)
half of the observed spiral can have a resonance nature,
while the second half is a quarter-turn spiral. This
seems to take place, for example, in NGC 1300 (one of
the most beautiful SB galaxies). Note that, in this case,
observations in various wavelength ranges give dis-
tinctly different spiral patterns. Only short primary spi-
rals are clearly seen in the K and I bands, while in the R
and B bands, the spiral is clearly traceable over the
length of a half-turn. Moreover, currently available
photographs (see, e.g., Elmegreen et al. 1992) show
that there is a weak extension of the half-turn spiral by
another π/2 in the B band. In this case, we may have an
example of two successive quarter-turn spirals that
extend the principal spiral (with a length smaller than π/2)
branching off directly from the bar.

Although the scenario for the formation of spiral
structure in SB galaxies described in Section 3 in full,
including the resonance generation of principal spiral
arms and their nonresonance extension in the form of
quarter-turn spirals, seems natural, it cannot be justified
in terms of the iteration scheme used. Indeed, this
scheme is based on the assumption that the bar poten-
tial dominates, whereas the formation of quarter-turn
spirals, on the contrary, requires that the potential of
principal spirals dominate over the bar potential. In that
case, an adequate initial approximation is obviously the
spiral potential Φs rather than the bar potential Φb ,
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which necessitates determining the self-consistent pair’s
potential density (Φs–σs) of the spiral. Since, as can be
shown, the nonstationary (γ ≠ 0) resonance spiral
response σr and the original spiral σs that generates this
response are necessarily displaced from one another in
azimuth by a finite angle (π/4 for corotation), it will
require to find new equilibrium (γ = 0) solutions that
include the resonance spiral. This is possible for the
corotation resonance rc if a minimum at r = rc appears
in the density distribution σ0(r) (Kadomtsev 1981;
Polyachenko 1991). The case of Lindblad resonances
seems more complex so far. It is clear, however, that
these problems require a further detailed study.

(3) It should be emphasized that the main general
assumption that we made and that is justified by our
results is that the entire complex structure of an SB gal-
axy, which includes the bar and (both principal and
quarter-turn) spiral arms, is the structure of some gen-
erally nonlinear normal mode, whose main characteris-
tic is the same (for all mode components) angular
velocity Ωp. In other words, we work in general terms
of the modal theory. This approach seems most natural
for SB galaxies. In particular, it is difficult to suspect
the existence of running spiral waves in these galaxies
and, accordingly, to find a place for the mechanism of
swing amplification (Toomre 1981). The corotation
region most likely can act as a generator, because there
are anticyclonic (or, occasionally, cyclonic) vortices in
this region [see, e.g., Fridman et al. (1999) for the latter].

(4) In conclusion, let us consider in more detail the
key structure of SB galaxies, the bars themselves.

Fast bars end near corotation; they are easily
obtained in numerical simulations with self-gravitating
disks, provided that the latter are sufficiently “cold,”
i.e., the stellar orbits are nearly circular (see, e.g., Hohl
1971; Ostriker and Peebles 1973).

Slow bars (Lynden-Bell 1979; Polyachenko 1989),
which must end near one of the inner Lindblad reso-
nances, can be produced by the mutual attraction and
capture of slowly precessing stellar orbits. Two extreme
cases of this bar formation are possible. In the first case,
the bar grows from a very low (fluctuation, thermal) ini-
tial level because of instability similar to the instability
of eccentric orbits (see, e.g., Polyachenko and Fridman
1976). However, the initial bar potential can be also
induced, for example, by an external tidal effect. At a
sufficiently large amplitude of the initial bar potential,
we generally cannot reason in terms of the growth of
linear instability. To describe the processes taking place
in this case, the methods that are used, for example, in
plasma physics to investigate nonlinear Landau damp-
ing (Artsimovich and Sagdeev 1979) are more suitable.
On the other hand, it may be noted that using the idea
of interaction between precessing stellar orbits (rather
than the stars themselves) to describe the formation of
a slow bar is appropriate only when a low-mass unsta-
ble group of stars with sufficiently (radially) elongated
orbits are within a passive “halo”, for example, of stars
ASTRONOMY LETTERS      Vol. 27      No. 7      2001
with an isotropic velocity distribution. Only in this case
do the orbits themselves become elementary objects of
the theory, because we can then perform averaging over
the rapid orbital motions of stars and consider only
slow orbital turns (Polyachenko 1992). However, the
Jeans nature of the instability of radial orbits is beyond
question; some complications can arise only with its
accurate interpretation when the system cannot be sepa-
rated into active and passive components in such a way
that the bulk of the total mass is concentrated in the latter.

APPENDIX

DERIVING EXPRESSIONS 
FOR THE RESONANCE RESPONSES OF DISKS 
WITH LOW STELLAR VELOCITY DISPERSION

The linearized kinetic equation can be written as
(see, e.g., Polyachenko and Fridman 1976)

(A1)

where d/dt is the time derivative with respect to the
unperturbed stellar orbit in phase space. We assume
that the equilibrium distribution function is

(A2)

where E and L are, respectively, the energy and angular

momentum of the star (per unit mass): E = (  +

) + Φ0(r), L = rvϕ, r0 and % are the epicyclic inte-
grals, which can be determined as function of E and L
from the equations (Shu 1970)

(A3)

(A4)

The residual azimuthal velocity is

(A5)

We assume the deviations from circular motions to
be small, i.e., |% | ! |Ec |, |r – r0 | ! r0. 

Let us transform the right side of (A1). Since

(A6)

we have
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(A8)

Finding v r∂Φ1/∂r + vϕ∂Φ1/r∂ϕ from this expression
and considering the eigenmodes ∝ exp(–iωt + imϕ), we
obtain instead of (A7)

(A9)

Let us now change to new variables: (E, L) 
(%, r0). Since the derivatives are transformed according to

(A10)

we finally derive the right side of the linearized kinetic
equation:

(A11)

The solution f1(r, v r, vϕ)exp(–iωt + imϕ) of Eq. (A1)
with the right side (A11) can be written as the “integral
over orbits” (see e.g., Polyachenko and Fridman 1976):

(A12)

where r′ = r′(t) and ϕ′  = ϕ′ (t) is the unperturbed stellar
orbit with the coordinates (r, ϕ) and velocity (v r, vϕ) at
time t = 0.

For definiteness, we take an equilibrium distribution
function in the form of a generalized Schwarzschild
distribution (Shu 1970):

(A13)

The functions P(r0) and c0(r0) can be expressed, if
desired, in terms of surface density and stellar velocity
dispersion. However, we will not need these general
expressions; the required simpler formulas are given
below. We also assume, for simplicity, that c0 = const.

For this distribution function, the perturbation of
surface density σ1(r)exp(–iωt + imϕ) is
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Hence, it is clear that the orbits for r′ and (ϕ′  – ϕ) cal-
culated in the post-epicyclic approximation are
required for the proper transition to the limiting case of
a cold disk (c0  0). Below, we also make this transi-
tion, but without expanding the resonance denomina-
tors. The equations of motion for a star in an axially
symmetric potential Φ0(r) are

where L =  = const is the conserved angular
momentum of the star. As was pointed out above, we
need the solutions of these equations for nearly circular
orbits in the postepicyclic approximation. The sought-
for equations of the orbit are

(A15)
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Note that the postepicyclic approximation for the
radius r′ = r + δr was previously used by Shu (1970) in
his theory of tightly wound spiral density waves, which
generalizes the theory of Lin and Shu (1966); however,
there are errors in the formulas for δr and the relation
between r0 and r given by Shu (1970).

Let us expand the function Φ1(r′) that enters into the
integral over orbits in a Taylor power series of δr = r′ – r
to within terms ~(δr)2

(A19)

Let us also expand the exponent in terms of powers
of δϕ = ϕ′  – ϕ – (Ω0 + δΩ)t:

(A20)

It is convenient to represent the resulting expression
for the perturbation of surface density as
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(A24)

The integrals over t in (A22)–(A24) are calculated
according to the formulas

When integrating over velocities, one should first bear
in mind that the equilibrium distribution function of a disk
with nearly circular orbits must satisfy the conditions

(A25)

(A26)

It is also important to take into account the fact that
the azimuthal flux is

(A27)

The properties (A25)–(A27) and the specific
expression for flux Πϕ can be derived most easily by
representing the distribution function of a stellar sys-
tem with nearly circular orbits as a formal series of
δ-functions of v r , , and their derivatives (Polya-
chenko and Fridman 1976):
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(A28)

Substituting the expansion (A28) in the equilibrium
kinetic equation

(A29)

and setting the coefficients of various combinations of
the derivatives of δ functions equal to zero, we derive
the equalities b1 = c2 = 0 equivalent to (A25), c3 =
c1κ2/4Ω2, which corresponds to the well-known Lind-
blad relation (A26) between radial (cr) and azimuthal (cϕ)
stellar velocity dispersions, as well as the following
general expression for the azimuthal stellar flux:

(A30)

Accordingly, instead of Eq. (A28), we have a gen-
eral expression for the equilibrium distribution function
of stars with nearly circular orbits in the form2:

(A31)

In general, we can arbitrarily specify the system’s
surface density σ0(r) and radial velocity dispersion cr(r)
(which must be low). The function Ω(r) can be calcu-
lated from the equilibrium condition for a star in a cir-
cular orbit: Ω2r = dΦ0/dr, where the potential Φ0(r) is
determined by the distribution of all masses in the gal-
axy one of the components of which we consider.

The Schwarzschild-type “spread” distribution func-
tion corresponding to (A31) can be written as

2 In Eq. (A31), we corrected the error in the similar formula (4)
from the monograph of Polyachenko and Fridman (1976); the
above formula (4) is valid only for a homogeneous (in density)
disk when  = 0.
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where we took into account the fact that the azimuthal
flux at cr = c0 ≠ c0(r) is

(A33)

If we make the symmetrizing change

(A34)

we obtain

(A35)

(A36)

Simple calculations reduce expressions (A22)–(A24)
for Σ1, Σ2, and Σ3 to

(A37)
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(A42)
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(A43)

(A44)

In order to pass to the limit of a cold disk, we must
expand the resonance denominators in (A37)–(A44):

take into account the fact that α + β = κ2(1 –
rΩ′/2Ω)/2Ωr, and calculate the emerging integrals over y.
It is easy to verify that the resulting expression for σ1(r)
matches Eq. (1); recall that the latter is derived directly
from the hydrodynamic equations with a zero pressure.
For a convenient comparison, it is useful to transform
Eq. (1) to the form

(A45)

Note that, surprisingly, nobody has previously made
this passage to the limit. However, we are interested in
the effect of a low velocity dispersion that modifies the
resonance denominators. Being interested in the disk
regions near a particular resonance, we must separate
the dominating terms from (A37)–(A44).

The expression for the response of surface density is
particularly simple in the region of corotation resonance:

(A46)
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Near Lindblad resonances, the expression is much
more cumbersome:

(A47)

where we designated: B = Σ1, C = Σ2, D = Σ3 – A.
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An Iterative Method for Simultaneously
Computing the Synthesis of Light and Heavy Elements
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Abstract—We propose an iterative algorithm for computing the synthesis of heavy elements through the rapid
capture of neutrons (r-process) and, at sufficiently high temperatures, protons by simultaneously using two dis-
tinct computer codes. One of the codes describes the kinetics of nuclear reactions between light and intermedi-
ate chemical elements, which are the source of free neutrons and protons used by the second code to synthesize
heavy elements from seed nuclides (isotopes near the iron peak of the cosmic abundance curve). The two codes
interact through the neutron and proton reaction channels. We demonstrate the efficiency of our method with
an example of the nucleosynthesis in a supernova’s helium shell triggered by the evaporation of neutrons and
protons from α particles exposed to the neutrino flux from a collapsing stellar core. In this case, three or four
iterations are enough to obtain an almost exact self-consistent solution. © 2001 MAIK “Nauka/Interperiodica”.

Key words: nuclear astrophysics, supernovae and supernova remnants
INTRODUCTION

The synthesis of heavy elements in stars through the
rapid capture of neutrons and protons largely depends
on the attainable neutron and proton fluxes. Free neu-
trons are generally produced in reactions between light
and intermediate nuclei, for example, in the 13C(α, n)16O
and 22Ne(α, n)25Mg reactions. If the temperature is suf-
ficiently high (*1.5 × 109 K), then free protons also
emerge in considerable quantities for the nucleosynthe-
sis via (γ, p) and other reactions. Free neutrons and pro-
tons can also be produced during the interaction of neu-
trinos with a supernova’s envelope matter. In this case,
the fraction of the neutrons and protons involved in the
synthesis of heavy elements depends on numerous neu-
trino-induced reactions between light and intermediate
elements, from He to Mg (Nadyozhin et al. 1998).

Thus, we essentially have to deal with two distinct
systems of nuclear-kinetic equations. One describes the
reactions between light and intermediate elements (L-
code), and the other describes the production of heavy
elements from primary seed nuclei (H-code). The two
codes are related to each other through the neutron and
proton reaction channels. The proposed iterative
method allows the neutron and proton exchange
between the two codes to be computed in a mutually
consistent way. It also allows us to compute the produc-
tion of heavy elements (H-code) triggered by the neu-
tron source whose physical model was realized in the
L-code. Below, we illustrate the efficiency of our

* E-mail address for contacts: panov@vitep5.itep.ru
1063-7737/01/2707- $21.00 © 20440
method with computations of nucleosynthesis in the
helium shell of a collapsing supernova when free neu-
trons and protons are produced by inelastic scattering
of neutrinos by helium nuclei (an excited 4He* nucleus
decays predominantly with the emission of a neutron or
a proton).

Our method can also be used to compute the nucleo-
synthesis in thermonuclear flashes as hydrogen and
helium are accreted onto the surfaces of degenerate
stars (white dwarfs and neutron stars). In general, the
idea of iterations between different nuclear-kinetic
codes is not new, particularly in nucleosynthesis calcu-
lations of elements beyond the iron peak of the cosmic
abundance curve. Since intermediate nuclei and iron-
peak elements, on the one hand, and elements heavier
than iron, on the other hand, are produced under com-
pletely different conditions determined by different
scenarios, their calculation requires different mathe-
matical approaches and models. Elements heavier than
iron are synthesized under conditions when the main
element-producing processes are interactions with neu-
trons and β decay. However, seed nuclei for the r-pro-
cess and free neutrons are produced in reactions
between light and intermediate nuclides at high temper-
atures. Of course, the entire evolution of chemical ele-
ments during explosive nucleosynthesis, which trans-
forms into the r-process, can be analyzed in principle in
terms of a single nuclear-kinetic model. However, as
was shown by Panov et al. (2001), it takes much com-
puter time to compute the explosive nucleosynthesis
accompanied by heavy-element synthesis in a super-
nova’s envelope or during the merging of neutron stars.
Therefore, these two processes—the production of free
001 MAIK “Nauka/Interperiodica”
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neutrons and iron-peak elements (as well as several
nuclides with masses A < 100 beyond the iron peak) in
nuclear reactions between light and intermediate ele-
ments and the synthesis of heavy elements in the r-pro-
cess—are modeled on the basis of mathematical
schemes that differ from each other and that are adapted
to specific physical scenarios. In this case, the final ele-
mental abundances derived in one scenario are used as
seed abundances in another scenario. In particular,
Rauscher et al. (1994) considered a two-code method
for computing the synthesis of heavy elements where
data between their L- and H-codes were exchanged at
each computational step in time by applying correc-
tions to the number density of free neutrons common to
the two codes; however, these authors did not aim at
obtaining a strictly consistent solution.

Our method makes it possible to completely recon-
cile calculations based on the two nuclear-kinetic codes
in the case where the physical scenario allows the
nucleosynthesis calculation to be naturally separated
into two ranges of nuclei that interact only through the
neutron and proton channels. Using different codes has
several advantages over synthesis calculations of light,
intermediate, and heavy elements in terms of a single
code. The most important advantage seems to be the
following: we can analyze in detail the nucleosynthesis
kinetics separately for light and heavy elements and can
combine the available codes into a single computer
code that provides a coordinated interaction between
specialists in the synthesis of light elements and those
who are interested in the synthesis of heavy elements.

ITERATIVE SCHEME

We begin iterations by computing the fractions of
free neutrons and protons as functions of time, Yn(t)
and Yp(t), using the L-code. Then, we numerically solve
the system of ordinary differential equations (H-code)
that describes the synthesis of heavy elements by
assuming that the neutron and proton fractions are
determined by the derived functions Yn(t) and Yp(t)
rather than by the corresponding kinetic equations for
neutrons and protons. During the H-code calculation,
we compute the rates of change in neutron and proton

fractions,  and , that would take place if

we took into account the interaction of neutrons and
protons with heavy elements alone.

Next, we perform calculations with the L-code, in
which the kinetics of neutrons and protons is described
by modified equations,

(1)

where Sn and Sp are the sums over all neutron- and pro-
ton-emission and absorption reactions in the system of

dYn

dt
--------- 

 
H

dYp

dt
--------- 

 
H

dYn

dt
--------- Sn YnFn,

dYp

dt
---------– Sp YpFp,–= =
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kinetic equations described by the L-code; Fn and Fp
are given by

(2)

where Yn, p(t) and  are taken from the previ-

ous L- and H-code calculations, respectively.
The H-code [developed for r-process calculations

and described in detail by Blinnikov and Panov (1996)
and Nadyozhin et al. (1998)] uses the method of Gear
(1971) to solve stiff systems of differential equations.
This method with improved matrix-inversion algo-
rithms (Blinnikov and Bartunov 1993) allows the sys-
tem of nucleosynthesis equations that determines
changes in the fractions of all the isotopes under con-
sideration to be effectively solved. The number of equa-
tions in these calculations of heavy-nuclei production is
equal to the number of isotopes under consideration.
We determined the boundary conditions for the range
of nuclei of the H-code in which the nucleosynthesis
was modeled as follows: all isotopes of the chemical
elements from calcium (Zmin = 20) to lead (Zmax = 82)
were included in the analysis. Thus, the nucleosynthe-
sis range was wide enough even for an extremely low
metallicity (Z = 0.0001Z(), when the nucleosynthesis
wave reached the heaviest nuclei (A ≈ 196, Z ≤ 78) dur-
ing the synthesis.

The procedure for reconciling the L- and H-code
calculations (iterations) described above is repeated
until the fractions of neutrons and protons (along with
all the remaining nuclides) converge with the required
accuracy in the entire time interval of interest. An
important remark should be made here. If the func-
tions Fn, p(t) become positive in some time intervals (for
example, due to the emission of delayed neutrons at the

cooling stage after shock passage), then 

should be used instead of –Yn, pFn, p to avoid numerical
instability in Eqs. (1) in these time intervals.

The initial approximation for Fn, p(t) in the very first
calculation with the L-code is discussed in the next sec-
tion.

APPLICATION OF THE METHOD

Figures 1–4 show examples of calculations based on
the two-code technique for neutrino-induced nucleo-
synthesis in a helium shell. Free neutrons and protons
are produced through the decay of helium nuclei when
mostly µ and τ neutrinos and antineutrinos are scattered
inelastically. The initial temperature and density in the
helium shell were chosen to be the following: T = 0.8 ×
109 ä and ρ = 104 g cm–3. The distance of the helium
shell from the stellar center was assumed to be R = 1 ×
109 cm, which is a factor of 4 smaller than that in stan-

Fn
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, Fp–
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dard evolutionary models (Woosley and Weaver 1995).
This underestimated value of R was specially chosen in
order that the temperature at the shock front exceed
1.5 × 109 K and that it become possible to test our
method not only on the neutron channel, but also on the
proton channel. However, the possibility that helium is
considerably closer to the neutrino-emitting collapsing
core than it is in simple spherically symmetric models
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Fig. 1. The fraction of free neutrons versus time (t = 0 cor-
responds to the onset of neutrino emission) for solar metal-
licity (Z = Z(). The curves with numbers correspond to dif-
ferent iterations.
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Fig. 2. Same as Fig. 1 for the fraction of protons.
should not be overlooked. For example, helium-
enriched jets could penetrate deep into the star immedi-
ately before the supernova explosion (see, e.g., Bazan
and Arnett 1994). In the accepted presupernova model,
the shock wave reaches the helium shell t = 0.26 s after
the onset of collapse and heats it up to a temperature
T ≈ 2.2 × 109 K. We calculated these parameters and the
matter cooling law after shock passage by using ana-
lytic formulas that approximated detailed hydrody-
namic calculations (Nadyozhin et al. 2000). The super-
nova explosion energy was taken to be 2 × 1051 erg.

In Figs. 1–4, the fractions of neutrons and protons Yn
and Yp (the volume neutron and proton densities are
nn, p = NAρYn, p, where NA is the Avogadro number) are
plotted against time for solar metallicity (Z = Z(, Figs. 1
and 2) and for a considerably lower metallicity (Z =
0.001Z(, Figs. 3 and 4), which is typical of very old
stars (Sneden et al. 2000). The intermediate iterations
are indicated by thin lines with iteration numbers. The
final solution that converged with an accuracy better
than 1% in the entire time interval 0–100 s under con-
sideration is represented by heavy lines. This accuracy
is achieved at iterations 7 (Figs. 1 and 2) and 9 (Figs. 3
and 4). The line with dots corresponds to Yn(t), which
was computed by using the L-code for zero metallicity
(Z = 0). In the case of zero metallicity (curves with dots),
Yn reaches a maximum of ≈10–5 at  = –0.36.

The very first calculation of Yn, p(t) based on the L-code
(zero approximation) is indicated in Figs. 1–4 by
dashed lines with number 0. In this case, the functions F
in Eqs. (1) are given by

(3)

tlog
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Fig. 3. Same as Fig. 1 for metallicity Z = 0.001Z(.
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where  is the initial fraction of seed 56Fe nuclei,
which was constant during the entire period under con-

sideration (0 ≤ t ≤ 100 s). In all calculations,  was
chosen to correspond to the cosmic elemental abun-

dance:  = 1.27 × 10–3Z (Anders and Grevesse
1989). In addition, the zero approximation for Fn, p is
that the cross-sections for radiative neutron (σn, γ) and
proton (σp, γ) captures by heavy elements are always the
same as those for seed 56Fe nuclei.

In the case of solar metallicity, the last five iterations
[(3–7) for neutrons (Fig. 1) and four iterations (4–7) for
protons (Fig. 2)] differ by no more than a few percent,
and they are almost indistinguishable from the corre-
sponding final solutions in the figures. This is also true
for the last four iterations (6–9) in Figs. 3 and 4.

At low metallicity (Z & 0.01Z(), the iterations also
rapidly converge if the functions Yn, p(t) computed with
the L-code at Z = 0, i.e., when Fn, p = 0 in Eqs. (1), are
used as the zero approximation.

In this example, the L-code controls the kinetics of
~120 reactions between 30 light and intermediate
nuclides (n, p, D, T, 3, 4He, …, 24Mg), whereas the H-
code includes almost 3000 equations. These equations
describe the conversion of seed 56Fe nuclei into heavier
elements through multiple neutron and proton captures
and β decay [for more details, see Nadyozhin et al.
(1998) and references therein].

CONCLUSION

Our main conclusions can be formulated as follows:
(1) A mere three or four iterations are required to

achieve an accuracy of no less than a few percent.
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(2) For metallicity Z * 0.01Z(, even the first approx-
imation defined by Eqs. (3) ensures a satisfactory accu-
racy for Yn(t) (compare the dashed and heavy lines in
Fig. 1). At not-too-low metallicities, the neutrino-
induced nucleosynthesis of light and intermediate ele-
ments in a helium shell can therefore be studied by
using the simple procedure defined by Eqs. (3) to esti-
mate the absorption of neutrons by iron-peak elements.
Thus, there is no need to resort to time-consuming cal-
culations of heavy-element kinetics with the sole aim to
estimate their effect on the fraction of free neutrons, on
which the yields of several astrophysically important
light isotopes (7Li, 11B, 15N, etc.) strongly depend.

(3) A considerable number of iron nuclei are con-
verted into heavier nuclei only at very low metallicities
(Z & 0.01Z(); the number of captured neutrons in the
calculation per iron nucleus, n/Fe, is 0.3, 34, 162, and
185 for Z = Z(, 10–2Z(, 10–3Z(, and 10–4Z(, respec-
tively. At Z * 0.01, n/Fe is not large enough for the full-
scale r-process to proceed; in addition to iron-peak ele-
ments, a number of heavy nuclei with A < 130 are pro-
duced, while the peak with A ~ 130 begins to form only
at smaller Z. This result can be of interest in connection
with the prediction of a weak r-process component
(Wasserburg et al. 1996) and with its recent confirma-
tion in chemical-composition observations of low-
metallicity stars (Sneden et al. 2000; Truran and Cowan
2000).

This paper was presented at the International Con-
ference “Nuclei in Cosmos” and published in Nady-
ozhin and Panov (2001).
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Abstract—We analyze the complex pattern of anticorrelation between the degree of polarization p in the green
λ530.3-nm line and its intensity Iλ, which was revealed by coronal observations during the total solar eclipse
of July 11, 1991. For coronal points located at approximately the same distance from the disk center, the anti-
correlation diagram breaks up into two branches with a zone of avoidance between them. High-latitude stream-
ers form the upper branch, while the lower branch belongs to active equatorial regions. The arrangement of
large-scale coronal structures in the p–  diagram is considered for a distance of 1.2R(. The change in anti-
correlation diagram with distance is analyzed in detail for the giant high-latitude coronal streamers observed on
July 11, 1991. Our results contain important information about the scattering of photospheric radiation at line
frequencies in the presence of a coronal magnetic field. © 2001 MAIK “Nauka/Interperiodica”.

Key words: Sun

Iλlog
INTRODUCTION

In recent years, a wealth of information about the
solar corona has come from the modern Yohkoh,
SoHO, and TRACE spacecraft. Long series of coronal
observations were obtained in white light (coronal
shape, streamers, and coronal mass ejections) and in
permitted X-ray and ultraviolet lines, both on the disk
and above the limb (coronal holes, various kinds of
brightening on the disk, and loops of the inner corona).
Extra-atmospheric observations in visible forbidden
coronal lines are not yet successful. Nevertheless, since
forbidden lines carry different information about phys-
ical conditions in the corona and about the origin of its
radiation, including polarized radiation, a continuation
of the corresponding observations is an important prob-
lem of current interest. A study of coronal magnetic
fields by analyzing polarized radiation in forbidden
coronal lines is particularly promising.

Polarization observations of the solar corona in
emission lines are a complex experimental problem. Up
until now, only a very limited amount of reliable obser-
vational data has been available. Therefore, after high-
quality polarization filtergrams of the corona were
obtained by one of us (J.S.) in the green λ530.3-nm line
during the total solar eclipse of July 11, 1991, consid-
erable progress has been in studying the properties of
this forbidden line, and several regularities have been

* E-mail address for contacts: badalyan@izmiran.troitsk.ru
1063-7737/01/2707- $21.00 © 20445
found in the distribution of polarization characteristics
in various large-scale coronal structures.

This work is an elaboration of our studies based on
polarization observations in the green coronal line on
July 11, 1991 (Badalyan and Sykora' 1997; Badalyan
et al. 1997a, 1999a). Here, we continue to consider the
anticorrelation between polarization p in the line and its
intensity Iλ . We analyze peculiarities of the arrange-
ment of large-scale coronal structures of various types
in the p–  anticorrelation diagram. The change in
polarization and intensity with height in the two most
characteristic coronal structures, huge NE and SW
streamers, on July 11, 1991, is considered separately.
We also discuss the statistical scatter of data on the
green-line polarization.

OBSERVATIONAL DATA AND A BRIEF 
DESCRIPTION OF PREVIOUS RESULTS

A characteristic feature of the white-light corona on
July 11, 1991, (see Fig. 1 in Badalyan et al. 1999a) was
its deviation from a spherically symmetric shape,
which is commonly observed during the maxima of
solar cycles. On the eclipse day, a system of huge
streamers was located at high latitudes, which was
attributable to a large inclination of the solar magnetic
equator (see, e.g., Sykora' et al. 1999). Another peculiar
feature of the corona was that the coronal condensa-
tions in equatorial regions were not very bright. The
condensations mostly did not overlap with streamers,
which allowed these coronal structures to be studied

Iλlog
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separately. A short, but bright streamer above a region
of X-ray brightening lay in the east near the equator. A
small coronal hole was observed slightly westward of
the north pole. There was a region of reduced bright-
ness at a position angle of about 150°, which proved to
be similar in radiation characteristics to coronal holes.

High-quality green-line images of the corona were
obtained with a narrow-band filter (∆λ = 0.17 nm) at
four polaroid positions. Using the same instrument (but
without a narrow-band filter), three series of polariza-
tion images were also obtained for the corona in white
light with various exposures. These images allowed us
to analyze the polarization distribution in white-light
coronal structures (Badalyan et al. 1997b) and to sub-
tract the contribution of white light that passed through
the narrow-band filter when obtaining green-line filter-
grams. The details of data reduction and a justification
of the method of subtracting the contribution of white
light can be found in Badalyan and Sykora' (1997) and
Badalyan et al. (1997a).

As a result, we constructed polarization maps for the
entire inner corona of July 11, 1991. These maps
allowed us to analyze the green-line polarization distri-
bution in various coronal regions. Of particular interest
was the anticorrelation between the degree of polariza-
tion in the line and its intensity. The following factors
are mainly responsible for this effect. The green coro-
nal line is excited by electron collisions and by the
absorption of photospheric photons. The linear polar-
ization is produced by the anisotropic scattering of
photospheric radiation. In dense coronal layers, where
the role of electron collisions considerably increases,
the relative contribution of the polarized component is
reduced, which causes the polarization p to decrease
with increasing total line intensity.

The total anticorrelation between line intensity Iλ
and polarization p includes both the dependence of p on
distance from the disk center and its change along the
limb (the dependence of polarization on activity and
structural peculiarities of the corona in a given direc-
tion). To exclude the distance dependence of polariza-
tion, we analyzed the anticorrelations for points inside
a narrow ring, i.e., for points at approximately the same
distance from the disk center (Badalyan et al. 1999a).
As might be expected, the anticorrelation in the ring
actually proved to be distinct.

The fact that the anticorrelation effect turned out to
be much more informative was unexpected. We found
the anticorrelation for points inside the ring to break up
into two branches. A remarkable feature of the anticor-
relation diagram was the zone of avoidance: an empty
zone between the two branches. When analyzing the
correlation between green-line polarization and the
intensity for the points inside a narrow ring at a fixed
distance from the disk center, we noticed that the points
fell on the p–  diagram not randomly, but fol-
lowed some pattern associated with the change in posi-
tion angle. This led us to assume that the position of a

Iλlog
point in the diagram depends on which large-scale
coronal structure this point belongs to. Subsequent
studies confirmed this assumption.

It emerged that the upper and lower branches
belonged mainly to huge high-latitude streamers and
equatorial regions, respectively. Each of the branches
may be considered as a set of separate clouds of points
(clusters), which describe large-scale structures of the
same type within each of the branches. At low intensi-
ties and high polarizations, the points that correspond
to the regions near coronal holes lie in the diagram
(there are no central regions of coronal holes because of
the adopted method of subtracting the contribution of
white light). Bright coronal knots lie at low p and high Iλ.

The cluster pattern of arrangement of the points in
all the other diagrams was subsequently confirmed
when analyzing the polarization angles and the correla-
tion of line polarization characteristics with the coronal
magnetic fields calculated from photospheric observa-
tions (Badalyan et al. 1999b). This suggests that each
of the large-scale structures is characterized by its set of
physical parameters (including the magnetic field),
which describe the coronal plasma in the coronal region
under consideration.

LARGE-SCALE STRUCTURES 
IN THE ANTICORRELATION DIAGRAM

This study was carried out with small, averaged
arrays with a pixel size of ≈15″ to reduce the statistical
scatter of points. Our main analysis was performed for
points at a mean distance of 1.2R( within a 0.03R(-
wide ring. We used our system of position angles cor-
responding to the position of the north pole in Fig. 1
from Badalyan et al. (1999a).

In Fig. 1, green-line polarization p and intensity 
(in relative units) are plotted against position angle for
points at a mean distance of 1.2R( from the disk center.
The two quantities exhibit a smooth large-scale change
along the limb. A comparison of Fig. 1 with a schematic
image of the corona allows us to trace the changes in p
and Iλ from one large-scale structure to another. The
total anticorrelation between p and Iλ clearly shows up
in Fig. 1.

Eleven large-scale structures (listed in the table)
were analyzed in more detail. We singled out four
bright equatorial regions above the coronal condensa-
tions [the X-ray image obtained by Golub (Golub and
Pasachoff 1997) during an eclipse shows characteristic
brightenings in these regions], three moderately active
equatorial regions (weak X-ray brightenings), two
high-latitude streamers, and two regions near the coro-
nal holes. Since no data are available for the central
regions of the coronal holes because of the adopted
method of subtracting the contribution of white light, the
name coronal hole in the table is conditional. The sec-
ond column lists the position angles within which a

Iλlog
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given structure is located, and the third column gives
the symbol that corresponds to the structure in Fig. 2.

Figure 2 shows the arrangement of the selected
structures in the anticorrelation diagram. The points on
the upper branch belong to giant high-latitude streamers.
The compact cloud of points (open down triangles) corre-
sponds to the isolated NE streamer at 1.1 <  < 1.3
and 12% < p < 20%. The system of southern streamers
(filled down triangles) covers the entire upper branch,
which is attributable to the more complex structure of
SW streamers. The uppermost cloud of points belongs
to the southern streamer proper located near the plane
of the sky at 164° ≤ P ≤ 208°. At higher Iλ, the points
that correspond to the region where the two streamers
are superimposed lie further; at P ≥ 217°, a transition to
the second streamer, which is probably located outside
the plane of the sky, occurs. In this second streamer, a
brightening was observed in the soft X-ray image
(Golub and Pasachoff 1997) at P ~ 225°; in the anticor-
relation diagram, the upper branch joins the lower
branch here.

All four coronal condensations lie at high Iλ and low
p, i.e., in the lower right corner of the diagram. Interest-
ingly, the bright condensation at the western limb (the
first row in the table, crosses), above which a bright
short equatorial streamer was observed, may be consid-
ered as an extension of the upper branch. This conden-
sation and the part of the SW streamer at P ≥ 217° may

Iλlog
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be considered as transition structures between the high-
latitude streamers and the lower-branch structures. Note
that such a feature of these two coronal regions is also
traceable in all the other diagrams (Badalyan et al. 1999b).

The three moderately active equatorial regions lie
on the lower branch in Fig. 2. Each of them forms a
compact cloud of points (sequentially from right to left,
open up triangles, filled squares, and open squares),
with these clusters overlapping only slightly. As the

A list of the coronal structures considered

Structure Position angle, deg Symbol in Fig. 2

Coronal condensation 67–80 Open circle

Coronal condensation 108–115 Asterisk (*)

Coronal condensation 241–258 Cross (×)

Coronal condensation 272–287 Filled circle

Equatorial region 84–107 Open up triangle 

Equatorial region 119–129 Open square

Equatorial region 259–268 Filled square

NE streamer 20–56 Open down triangle 

SW streamers 164–226 Filled down triangle 

S coronal hole 133–138, 152–158 Filled up triangle 

N coronal hole 0–10, 357–360 Plus in an open circle
0.4
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Fig. 1. Green-line polarization (lower curve, right scale) and intensity (upper curve, left scale) versus the position angle for a set of
points in a 0.03R(-wide ring at a distance of 1.2R(.
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Fig. 2. Anticorrelation diagram for various large-scale structures (for a list of structures and a description of the corresponding sym-
bols, see the table).
intensity decreases further, the vicinities of the coronal
holes show up. The filled up triangles correspond to a
small southeastern coronal hole; the points on the lower
branch belong to its lower latitude part, while the points
on the extension of the upper branch belong to the
higher latitude region adjacent to the system of south-
ern streamers. Finally, the points in the northeastern
vicinity of the N hole lie in the lower left corner of the
diagram. In this region, the coronal brightness in the
green line is very low, and these points should be
viewed with caution.

CHANGES OF THE p–Iλ DIAGRAM 
IN HIGH-LATITUDE STREAMERS 

WITH DISTANCE FROM THE DISK CENTER

We constructed similar diagrams for various dis-
tances from the disk center, which enabled us to trace
the changes in anticorrelation with height for individual
structures. Here, we consider the diagrams for the NE
and SW streamers at distances of 1.15, 1.20, 1.25, and
1.30R(. Figures 3a and 3b show the polarizations and
intensities for the entire NE streamer and for the subpo-
lar part of the SW streamer, where no superposition of
streamers was observed (the upper cloud of points in
Fig. 2). The general pattern of the diagrams in Fig. 3
corresponds to the well-known variation in polarization
with distance from the limb [see Picat et al. (1979) and
references therein]. The symbols in Fig. 3 are unrelated
to the structures shown in Fig. 2; they are used here
only for a convenient identification of the points that
refer to different distances. All circles, up triangles,
squares, and down triangles (irrespective of whether
they are open or filled) refer to distances of 1.15, 1.20,
1.25, and 1.30R(, respectively. The open and filled
symbols in Fig. 3b are also used only for convenience.

A comparison of Figs. 3a and 3b reveals both the
common properties of the two giant streamers under
considerations and their differences. Thus, we can see
that the clouds of points that refer to different distances
of the corresponding narrow rings from the disk center
move in the diagram with changing R( in approxi-
mately the same way; in other words, the slopes of the
curves in both panels of Fig. 3 are approximately the
same. It may also be noted that the values of p and

 for the two streamers are similar at a given dis-
tance. At the same time, we may note that the northern
streamer is generally slightly brighter than the southern
streamer, and, according to the anticorrelation law, the
polarizations in the former are slightly lower than in the
latter.

Formally, as the distance from the limb increases,
the monotonic increase in the scatter of points along the
p axis for the NE streamer is appreciably larger than
that for the SW streamer. However, a more detailed
analysis indicates that the spread of the cloud of points
belonging to the NE streamer with increasing distance
is attributable to a larger change in the degree of polar-
ization in the streamer within the corresponding range
of position angles (i.e., when moving along the limb).
This is illustrated by Fig. 3a, where the open and filled

Iλlog
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symbols correspond to the higher (20° ≤ P ≤ 38°) and
lower (38° ≤ P ≤ 56°) latitude parts of the streamer,
respectively. We can see that the values of p in these
two parts of the NE streamer are actually different and
vary differently with height. The scatter of points in the
high-latitude part of the streamer changes only slightly
with height, in contrast to its low-latitude part.

Figure 4 shows variations in the degree of polariza-
tion in the NE streamer with position angle for the four
distances chosen. We see how the pattern of polariza-
tion distribution in the streamer changes with distance
from the disk center: the total p range in the same range
of position angles increases. The position angle at
which p reaches a maximum gradually decreases. The
statistical scatter of points at all distances is approxi-
mately the same, and the rms deviation is ~1.5%. In a
similar figure for the SW streamer, we can see charac-
teristic turning points in the polarization plot at position
angles of about 200° and 220°, which divide the entire
curve into three segments that correspond to three dif-
ferent parts of the system of SW streamers described
above.

10
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Fig. 3. Green-line polarizations and intensities for various
distances (a) in the northern streamer and (b) in the subpolar
part of the southern streamer. The open and filled symbols
in the upper panel refer to the higher and lower latitude (rel-
ative to the axis) parts of the NE streamer, respectively.
ASTRONOMY LETTERS      Vol. 27      No. 7      2001
CONCLUSION

Our analysis has revealed a complex pattern of the
anticorrelation diagram. We found a distinct depen-
dence of the pattern of polarization distribution on the
type of large-scale coronal structure. The smooth
change in p and Iλ along the limb with a small statistical
scatter of points suggests good internal agreement of
the data. We traced the locations of eleven large-scale
coronal structures in the anticorrelation diagram; they
belong to four main types: bright coronal condensations,
moderately active equatorial regions, giant high-latitude
streamers, and the vicinities of the coronal holes.

The discovery of two branches in the anticorrelation
diagram is the development of previously known con-
clusions about the behavior of polarization in the green
line. It follows from Fig. 7 in Picat et al. (1979), where
virtually all the data available by that time are shown,
that the polarizations in streamers are generally higher
than in active equatorial regions. The above figure also
clearly shows a hint at a difference between the gradi-
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Fig. 4. Variations of the green-line polarization in the NE
streamer with position angle for various distances from the
disk center. The right scale is for distances of 1.15 and
1.25R(, and the left scale is for 1.20 and 1.30R(.



450 BADALYAN, 'SYKORA
ents of increase in p with height for these two main
types of large-scale coronal structure.

We analyzed in detail the distributions of green-line
polarization and intensity in the high-latitude helmet
streamers observed on July 11, 1991. These streamers
formed the characteristic shape of the corona under
consideration. As our measurements show, the line
polarizations in the lower coronal layers are high, sug-
gesting a significant role of the scattering in forming
the λ530.3-nm line emission.

Our derived characteristics of the green-line polar-
ization and their comparison with the magnetic-field
strength and its components allowed us to make
progress in studying helmet streamers. In the July 11,
1991 corona, helmet streamers were observed at high
latitudes separately from active regions. It was there-
fore fortunate that various streamer structures (a
streamer with low activity at the base, a large system of
streamers, and a NE streamer in the plane of the sky)
are represented on the upper branch of the anticorrela-
tion diagram. These data can be used for detailed model
calculations.

Polarization observations in the forbidden λ530.3-nm
line allow the problem of measuring the magnetic field
strength directly in the solar corona to be addressed.
The magnetic field plays a double role in producing the
green-line polarization. On the one hand, it largely gov-
erns the formation of coronal structures and their den-
sity and temperature distributions, particularly in coro-
nal condensations. On the other hand, our results, in
particular the discovery of the zone of avoidance in the
anticorrelation diagram (a jump-like transition from
one branch to the other at the same intensity) and the
relationship of polarization direction to the type of
coronal structure (Badalyan et al. 1999b), suggest that
the magnetic field directly affects the formation of
polarized radiation in the λ530.3-nm line.
Unfortunately, this is currently the only series of
data that allows such a detailed analysis of polarization
characteristics to be performed in various large-scale
coronal structures. It is imperative to receive a further
observational confirmation of the detected effects and
to perform new theoretical analyses of the issues
related to the formation of polarized radiation in forbid-
den lines of the solar corona with allowance for real
magnetic-field configurations.
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Abstract—A numerical technique of time–longitude analysis has been developed by studying the fine structure
of temporal variations in total solar irradiance (TSI). This analysis produces maps of large-scale thermal inho-
mogeneities on the Sun and reveals corresponding patterns of radiative excess and deficit relative to the unper-
turbed solar photosphere. These patterns are organized in two- and four-sector structures and exhibit the effects
of both activity complexes and the active longitudes. Large-scale patterns with radiative excess show a facular
macrostructure caused by the relaxation of large-scale thermo-magnetic perturbations and/or energy output due
to very large-scale solar convection. These thermal patterns are related to long-lived magnetic fields that are
characterized by rigid rotation. The patterns with radiative excess tend to concentrate around the active longi-
tudes and are centered at 103° and 277° in the Carrington system when averaged over the time-longitude dis-
tribution of thermal inhomogeneities during activity cycles 21–23. © 2001 MAIK “Nauka/Interperiodica”.

Key words: Sun, irradiance variations, large-scale magnetic fields
INTRODUCTION

A continuous monitoring of basic solar parameters
in recent years and earlier long-term observations have
shown that the Sun is a magnetic variable star in the full
sense of the word: its luminosity, diameter, rotation
parameters, and magnetic fields vary with an 11-year
cycle of activity (Willson and Hudson 1991; Laclare
et al. 1996; Howard and LaBonte 1980). Since these
global variations exhibit a complex interrelation,
thermo-magnetic phenomena span over the bulk of the
Sun (Pipin and Kichatinov 2000).

The solar magnetic fields have a multi-scale and
hierarchical structure. Sunspots form structures that are
seen as sunspot groups and activity complexes. Large
sunspot groups concentrate within narrow intervals of
heliographic longitudes, which are known as active
longitudes. Long-lived longitudinal structures exist for
many years, passing from one cycle of activity to
another (Vitinskiœ et al. 1986; Bumba and Hejna 1991).
These large-scale magnetic structures are characterized
by rigid rotation with an angular velocity different from
the Carrington velocity. The longitudinal organization
of activity mapped by using various indices occasion-
ally differs in details; nevertheless, general regularities
can be found in the distribution of activity for its vari-
ous manifestations (Vitinskiœ et al. 1986; Bumba and

* E-mail address for contacts: avm@iszf.irk.ru
1063-7737/01/2707- $21.00 © 20451
Hejna 1991). The active longitudes are often located at
opposite heliographic longitudes, thus generating a
13.5-day periodicity of activity indices (Dodson and
Hedeman 1968). Some active longitudes disappear for
several years, and, subsequently, they are restored near
their previous positions (Vitinskiœ 1997). This behavior
of active longitudes can be explained as a manifestation
of the fossil solar magnetic field (Kitchatinov et al.
2000). Occasionally, abrupt changes occur in the spatial
distribution of activity: the zone of maximum activity
passes from one interval of active longitudes to another, or
comparatively short-lived active structures emerge.

Since major solar flares also concentrate within the
intervals of active longitudes, Bai (1988) called such
regions on the Sun zones of superactivity or hot spots.
He found that the 154-day periodicity played an impor-
tant role in their evolution. A continuous wavelet anal-
ysis of variations in total solar irradiance (TSI) has
revealed cascades of spectral energy toward larger
scales, which take place during the primary and sec-
ondary maxima of cycle 22 in a time scale of 155 days
(Willson and Mordvinov 1999). Here, we propose a
numerical technique for time-longitude analysis of TSI
variations; we have found large-scale thermal perturba-
tions associated with long-lived magnetic structures.

SPACIOTEMPORAL ANALYSIS OF TSI

High-accuracy TSI measurements have been carried
out during long-term space experiments since 1978,
001 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) A series of TSI measurements and (b) its filtered component. The (c) nonsmoothed and (d) smoothed time-longitude dis-
tributions of brightness inhomogeneities. (e) The diagram of normalized brightness inhomogeneities. The maximum and minimum
values of the gray scale for figures (c) and (d) should be multiplied by 0.75 and 0.25 W/m2, respectively. The periods of rigidly rotat-
ing structures are given in days.
starting from the Nimbus-7 satellite. Subsequently, the
measurements were continued, and they are currently
being carried out with the radiometers mounted on four
satellites. Various radiometer calibration techniques
were used to construct different versions of the com-
posite TSI time series (Fröhlich and Lean 1998; Will-
son 2000). Despite some differences in the fine struc-
ture of these versions, their behaviors are in good
agreement with each other on a longer time scale (Will-
son and Mordvinov 1999). Here, we perform a spa-
tiotemporal analysis of the nineteenth version of the
composite TSI time series (Fröhlich and Lean 1998)
accessible via the Internet (http://www.pmodwrc.ch).
A  plot of the composite time series of TSI measure-
ments is shown in Fig. 1a.

The TSI signal from the entire Sun is formed by the
convolution of the distribution of brightness inhomoge-
neities over the solar disk with the weighting function
of limb darkening. Despite the fact that TSI is a global
index, information about the spatial distribution of
brightness inhomogeneities can be extracted from tem-
poral TSI variations due to solar rotation. Here, based
on wavelet filtering, we develop a numerical technique,
which has allowed us to study the spatial distribution of
brightness inhomogeneities and its changes by using
temporal variations in TSI fine structure. By numerically
performing deconvolution, an inverse operation for the
convolution of measurements, we can map long-lived
brightness inhomogeneities in heliographic longitude.

The main idea behind wavelet deconvolution is to
filter out the signal component associated with the TSI
rotational modulation and to map this component as a
two-dimensional time–longitude diagram. A similar
diagram for the mean solar magnetic field exhibits mul-
timode solar rotation and its variations with an 11-year
cycle (Mordvinov and Plyusnina 2000). Orthogonal
wavelet transformation is an efficient tool for filtering
complex nonstationary processes. Here, we used the
technique of decomposition into Daubechies orthogo-
nal wavelets, which have good localization both in time
ASTRONOMY LETTERS      Vol. 27      No. 7      2001



        

EFFECTS OF ACTIVITY COMPLEXES AND ACTIVE LONGITUDES ON VARIATIONS 453

                                                             
and in time scales. A discrete wavelet transformation
can be written for TSI as a function of time as

(1)

where ψjk(t) are the wavelet functions that form an
orthonormal basis, and the wavelet decomposition
coefficients are given by cjk = 〈 fψjk〉 (Astaf’eva 1996).
The main effects of rotational modulation concentrate
in the range of time scales 13–30 days. Therefore,
wavelet filtering should be performed by retaining only
the coefficients that correspond to discrete time scales
of 8, 16, and 32 days when making inverse discrete
wavelet transformation. The filtered component that
contains the main rotational effects is then

(2)

where 2 j correspond to the time scales (in days) on
which the rotational modulation shows up. The filtered
TSI component is shown in Fig. 1b. The nature and sta-
tistical properties of the negative and positive TSI fluc-
tuations are markedly different (Mordvinov 1996). The
maximum amplitude of the positive TSI fluctuations
reaches 1 W/m2, whereas the negative fluctuations
reach 2 W/m2.

Next, the filtered component was divided into sub-
sets corresponding in time to Carrington rotations by
using interpolation and mapped rotation by rotation in
the form of a two-dimensional diagram. The time of
observations within a Carrington rotation corresponds
to a heliographic longitude. The time–longitude dia-
gram constructed by using TSI deconvolution is shown
on a gray scale in Fig. 1c. This diagram displays spatial
brightness inhomogeneities as deviations of the filtered
component from a mean TSI level, which slowly varies
with time. Positive deviations are shown in light tones
relative to the 50% gray background, and negative devi-
ations are shown in dark tones. In the time-longitude
brightness distribution, we can see a more or less regu-
lar pattern, which is formed by long-lived structures
with reduced and excess radiation with respect to the
mean TSI level varying with an 11-year cycle. These
structures are associated with long-lived magnetic
structures, activity complexes, and the macrostructure
of facular fields. To study the large-scale organization
of such thermal structures and to reveal the effect of
activity complexes (Obridko 1985), we smoothed the
time-longitude diagram with a window of three rota-
tions by 40° in size. Figure 1d shows the smoothed dis-
tribution of TSI deviations relative to the slowly vary-
ing TSI component. In this diagram, regions whose
activity complexes have lifetimes of 0.5–1 year show
stand out as dark spots. Between these regions, we can
see areas with excess radiation; they are shown in light
tones and are apparently associated with the macro-
structure of facular fields. These hot areas are clearly

S t( ) c jkψ jk t( ),
j k, ∞–=

∞

∑=

δS c jkψ jk,
k ∞–=
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∑
j 3=
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seen at the epochs of minimum activity, when there are
no sunspots.

In cycles 21 and 22, alternating two- and four-sector
structures are seen in the longitude distribution of ther-
mal inhomogeneities. The four-sector structures gener-
ate a 13.5-day periodicity in TSI variations. For exam-
ple, in the first half of 1984, when two deep dips in TSI
were observed, there was a distinct four-sector struc-
ture in the time-longitude distribution of thermal inho-
mogeneities; precisely at this time, an appreciable
13-day variation appeared in the TSI wavelet spectrum
(Willson and Mordvinov 1999). A continuous wavelet
analysis of TSI variations has also shown that during
the primary and secondary maxima of solar activity, a
transition of spectral energy to longer time scales
occurs (Willson and Mordvinov 1999). Interestingly,
these cascades take place when the four-sector struc-
ture is observed in the distribution of brightness inho-
mogeneities, and they may be associated with cells
with a size of 90° in longitude.

To study the behavior of thermal inhomogeneities in
heliographic longitude on a long time scale, we aver-
aged the distribution of brightness inhomogeneities (see
Fig. 1c) over the entire interval of observations. Figure 2
shows the result of this averaging, which demonstrates
the existence of two sectors with excessive radiation in
the distribution of brightness in heliographic longitude.
The TSI variations due to spatial brightness inhomoge-
neities do not exceed ±0.06 W/m2. Remarkably, the
maxima in the brightness distribution occur at longi-
tudes of 103° and 277°, which are located within or in
the immediate vicinity of active longitudes. During
cycles 21 and 22, the most stable active longitudes
existed in the intervals 80°–120° and 280°–320° (Vitin-
skiœ 1997). Accordingly, in the time-longitude distribu-
tion of TSI variations, long-lived structures with exces-
sive and reduced radiation are often located within or
near these intervals, but, in general, the contribution of
the regions with excessive radiation overcomponents
for the deficit of radiation produced by sunspots.
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Fig. 2. The distribution of brightness inhomogeneities aver-
aged for 1978–2000.
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THE ROTATION 
OF MAGNETO-THERMAL STRUCTURES

The structures that are horizontally arranged in the
time-longitude diagrams are characterized by the Car-
rington rotation velocity. The regions of excessive and
reduced radiation sometimes form inclined structures
in the time-longitude diagrams, pointing to the pres-
ence of various modes of rigid rotation with periods
different from the Carrington period. At the epochs of
minimum activity, the regions with excess radiation
exhibit a systematic inclination, suggesting that their
rotation is slower than the Carrington rotation. By con-
trast, the oppositely inclined diagonal structures
observed at the beginning of cycle 22 suggest that the
regions of reduced radiation rotate more slowly.

When the inclination of the structures and their rota-
tion velocities are estimated, it does not matter which
events (in amplitude) recurred; therefore, to represent
the time–longitude distribution of brightness inhomo-
geneities at different activity levels in a comparable
form, we normalized the filtered TSI component to its
maximum value within each rotation. Figure 1e shows
the time–longitude diagram for the normalized TSI
component. This distribution clearly reveals the rota-
tional effects, irrespective of the phase of activity cycle
(Mordvinov and Plyusnina 2000). At the epoch of
growing activity in 1988–1989, the regions with
reduced radiation form inclined structures associated
with activity complexes, whose rotation periods are 27.8
and 26.4 days. At the epoch of minimum activity in
1985–1987 and 1995–1996, the regions with excess
radiation dominate and exhibit a faster rotation with
periods of 26.1, 26.6, and 26.8 days.

CONCLUSION

Our time–longitude analysis of variations in total
solar irradiance has revealed large-scale structures on
the Sun with reduced and excess radiation relative to
the mean level, which varies with an 11-year cycle.
During cycles 21–23, giant thermal spots, which were
separated in heliographic longitude and associated with
long-lived magnetic structures, existed on the Sun.
These structures were associated with active longi-
tudes, activity complexes, and the macrostructure of
facular fields. The large-scale magneto-thermal pertur-
bations are characterized by a two- and four-sector
structure in heliographic longitude. Although the distri-
bution of brightness inhomogeneities is complex and
nonstationary in pattern, averaging this distribution
over the entire interval of observations clearly reveals a
concentration of the regions with excessive radiation
within active longitude intervals; the maxima of this
distribution occur at longitudes of 103° and 277°. The
thermal perturbations associated with activity com-
plexes exhibit rigid rotation with an angular velocity
different from the Carrington velocity. The regions of
excessive radiation trace the macrostructure of facular
fields and may be attributable to the relaxation of large-
scale thermo-magnetic perturbations and/or to the heat
flux through giant subphotospheric convection.
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Abstract—Based on data for twelve recently discovered outer satellites of Saturn, we investigate their orbital
evolution on long time scales. For our analysis, we use the previously obtained general solution of Hill’s double-
averaged problem, which was refined for libration orbits, and numerical integration of the averaged system of
equations in elements with allowance for Saturn’s orbital evolution. The following basic quantitative parame-
ters of evolving orbits are determined: extreme eccentricities and inclinations, as well as circulation periods of
the pericenter arguments and of the longitudes of the ascending nodes. For four new satellite orbits, we have
revealed the libration pattern of variations in pericenter arguments and determined the ranges and periods of
their variations. Based on characteristic features of the orbits of Saturn’s new satellites, we propose their natural
classification. © 2001 MAIK “Nauka/Interperiodica”.

Key words: Saturn’s satellites, orbital evolution
1. INTRODUCTION. INPUT DATA

Reports on the discovery of Saturn’s four new satel-
lites appeared in late October 2000. Their authors are
B. Gladman, J. Kavelaars, J.-M. Petit, H. Scholl,
M. Holman, B.G. Marsden, P. Nicholson, and J. A. Burns
(Marsden 2000a, 2000b). The same team of scientists
headed by B. Gladman reported the discovery of
another two satellites in mid-November 2000 (Marsden
2000c) and four more satellites in early December
(Marsden 2000d, 2000e). Finally, data on the orbits of
the last pair of Saturn’s new satellites appeared in late
December of the same year (Marsden 2000f, 2000g).
Thus, the total number of satellites discovered in the
last three months of 2000 was twelve; they were tenta-
tively designated as S/2000 S1, S2, …, S12.

The orbital parameters of all twelve satellites were
refined immediately after their discovery (Marsden
2000f–2000i). Table 1 gives the orbital elements of Sat-
urn’s new satellites required to compute the orbital evo-
lution; they were taken from the Internet source at
http://cfa-www.harvard.edu/iau/mpc.html with MPEC
(Minor Planet Electronic Circular) numbers 2000-Y13,
14, 15, and 33. The semimajor axis a is given in astro-
nomical units (AU), and the angular Keplerian ele-
ments in the standard notation i, ω, and Ω (in degrees)
refer to the ecliptic and equinox 2000.0. For all twelve
satellites, the initial epoch is the same, 2001 Apr. 1.0
TT = JDT 2 452 000.5. For brevity, the satellites are
designated as S1, S2, …, S12.

* E-mail address for contacts: vashkov@spp.keldysh.ru
1063-7737/01/2707- $21.00 © 20455
Thus, Saturn turned out to possess a large family of
outer satellites. This family can naturally be divided
into two groups:

I—Satellites with direct motion (i < 90°):
     S2, S3, S4, S5, S6, S10, S11;
II—Satellites with retrograde motion (i > 90°):
      S1, S7, S8, S9, S12, Phoebe.
As we show below in Section 3, group I can be

divided by the pattern of orbital evolution into two sub-
groups:

IC—Satellites moving in orbits with circulation
variations in pericenter argument ω: S4, S10, S11;

IL—Satellites moving in orbits with libration varia-
tions in ω: S2, S3, S5, S6.

Below, we give numerical values of Saturn’s basic
parameters (Jacobson 1998):

µ = 37 940 629.764 km3 s–2—Saturn’s gravitational
constant;

a0 = 60 330 km—Saturn’s mean equatorial radius;
c20 = –0.016298—coefficient of the second zonal

harmonic of its attraction potential.
In addition, we take the following parameters:
µ' = 132 712 442 007 km3 s–2—solar gravitational

constant;
a ' = 1 427 014 000 km—semimajor axis of Saturn’s

orbit;
and the parameters that specify Saturn’s orbital ori-

entation relative to the ecliptic plane:

inclination i ' = 2 4871 and.°
001 MAIK “Nauka/Interperiodica”
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Table 1.  Orbital elements for Saturn’s new satellites S/2000 S1–S12

Satellite a e i, deg ω, deg Ω, deg

S1 0.1526229 0.3665803 172.79616 39.90853 206.33370
S2 0.1006928 0.4585252 46.17993 239.33838 352.04333
S3 0.1102672 0.2934525 48.65572 60.80548 63.73841
S4 0.1192466 0.6345960 34.96993 284.71111 94.51408
S5 0.0754791 0.1578260 48.45127 91.35673 352.00016
S6 0.0759049 0.3672667 49.32856 70.52638 151.27029
S7 0.1320295 0.5439151 174.95400 89.16654 246.53051
S8 0.1045683 0.2140774 148.56133 208.62059 285.02467
S9 0.1240056 0.2539976 169.59340 298.20537 79.78166
S10 0.1225551 0.6143584 33.28509 287.75284 141.94939
S11 0.1185613 0.3870307 34.88605 73.00111 107.27236
S12 0.1191037 0.0866045 174.76580 8.12139 252.71210
longitude of the ascending node Ω9 = 113°.35 for
initial epoch t0.

Recall that only one outer (or distant) satellite of
Saturn, Phoebe, which was discovered by W.H. Picker-
ing slightly more than a hundred years ago, was known
before October 2000. For comparison, we point out that
the semimajor axis of its orbit is ≈0.0865 AU, the
eccentricity is 0.163, and the inclination to the ecliptic
plane is 175°. Based on long-term ground-based obser-
vations and on Voyager-2 data, Jacobson (1998)
deduced a system of mean elements that represented
Phoebe’s orbit. Previous studies of the motion of
Phoebe and Saturn’s other satellites were comprehen-
sively reviewed by Nasonova (1991).

2. STATEMENT OF THE EVOLUTIONAL 
PROBLEM AND METHODS OF ITS SOLUTION

Let us consider the motion of Saturn’s distant satel-
lites, S1–S12. Based on the estimates made when
Phoebe’s motion was investigated, we assume that for
the newly discovered satellites, the principal perturbing
factor that far exceeds all the remaining factors is solar
attraction. Exceptions are the most distant satellites S1
and S7, for which the perturbing effect of Jupiter can be
appreciable and can account for a few percent of the
solar perturbation. The perturbing effect of other plan-
ets, Saturn’s inner satellites, and its oblateness on satel-
lites S1–S12 is several orders of magnitude weaker
than the effect of solar attraction.

Thus, we arrive at the model that is most suitable for
analyzing the orbital evolution of distant planetary sat-
ellites under the effect of secular perturbations from the
Sun. This is Hill’s problem, in which the perturbing
function is averaged over all fast variables, the mean
anomalies of the satellite and the perturbing body. In
this way, all the short-period inequalities related to the
orbital motions of satellites and the perturbing body are
excluded from the analysis. In the averaged statement,
this problem has the three first integrals
(1)

in which the satellite orbital inclination  and peri-
center argument  refer to the orbital plane of the per-
turbing body. Integrals (1), which were derived by
Lidov (1961), allow a comprehensive qualitative analy-
sis of this integrable problem to be performed. Its gen-
eral solution yields dependences of the satellite orbital
elements on time and on four arbitrary constants, which
are initial values of the elements at t = t0 (Vashkov’yak
1999). However, this solution should be supplemented
with two formulas that must be used for c2 < 0 (in the
case of libration variations in ). More specifically, for
c2 < 0, in addition to the variations described in subsec-
tion 3.4.2 of our previous paper (Vashkov’yak 1999),
the following formulas should be used to calculate inte-
grals I and J:

(2)

where P and Π are, respectively, the complete and
incomplete elliptic integrals of the third kind with mod-
ulus k and parameter l > k, sinϕ = snx.

For the general solution of Hill’s double-averaged
problem to be properly used, we must first transform
the system of ecliptic elements i, ω, and Ω to the system

of elements , , and ; the latter are related to the
orbital plane of the perturbing body (Sun) and to the
direction of the line of its intersection with the ecliptic
plane. This transformation is performed in a standard
way for specified angles i9 and Ω9, which determine the
orientation of Saturn’s orbital plane with respect to the
ecliptic plane. Subsequently, the elements of the per-
turbed satellite orbit are calculated for an arbitrary
instant of time in an interval of the order of a thousand
years by using the analytic formulas of Hill’s double-
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averaged problem. The inverse transformation from ,

, and  to the ecliptic elements i, ω, and Ω is per-
formed for the same initial values of i9 and Ω9. Since
Saturn’s orbital elements vary slowly (the characteristic
period is about 50 000 years), we may roughly assume
that i9 = const and Ω9 = const when analyzing the evo-
lution of satellite orbits on time scales no longer than a
thousand years.

To check the results, we numerically integrated the
fuller averaged system of secular equations by taking
into account the ellipticity of Saturn’s orbit, its nonco-
planarity with the ecliptic plane, and its evolution
because of the secular perturbations described by the
Lagrange–Brower–Wurkom theory (Sharaf and Budni-
kova 1967). In contrast to the analytic solution, the next
term [after Hill’s term ~(a/a9)2] in the expansion of the
perturbing function in terms of Legendre polynomial
~(a/a9)3 is also taken into account in numerical integra-
tion. Since the secular part of this term also contains
e9cos(ω9 + Ω9) and e9sin(ω9 + Ω9) as the factors, it
simultaneously includes Saturn’s orbital ellipticity. As
we show in subsection 3.3, this additional term of the
perturbing function significantly affects the change in
orbital eccentricities of the group II satellites even on
time scales of ~1000 years. Numerical integration on a
considerably longer time scale of 50 000 years for the
orbits of the group IL satellites makes it possible to esti-
mate the effect of spatial evolution of Saturn’s orbit and
its ellipticity (compared to Hill’s averaged problem) on
the amplitudes of variations in elements.
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Fig. 1. Orbital evolution of S/2000 S4.
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3. THE EVOLUTION OF SATELLITE ORBITS

3.1. Group IC 

This group includes satellites S4, S10, and S11.
Their orbital evolution is characterized by a monotonic
increase in pericenter argument, by a monotonic
decrease in longitude of the ascending node, and by
long-period variations in eccentricity and inclination.

Figures 1–3 show the time dependences of orbital
elements for satellites S4, S10, and S11 that were
derived by analytically solving Hill’s double-averaged
problem (the ecliptic angular variables i, ω, and Ω are
given in degrees). For the satellites of this group, the
results of numerical integration of the fuller evolutional
system in a 500-year interval match the analytic results
with a graphical accuracy; therefore, they are not high-
lighted in the figures.

Table 2 gives basic parameters of evolving orbits:
constants c1 and c2 of the integrals, extreme eccentrici-
ties and inclinations, circulation periods of the peri-
center arguments, , and of the longitudes of the

ascending nodes, . In contrast to Figs. 1–3, all the
angular variables used to calculate these parameters
refer to Saturn’s orbital plane. The periods of variations

in e and  are half the circulation period of .

3.2. Group IL 

This (apparently) most interesting group includes
satellites S2, S3, S5, and S6. Their orbital evolution is
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Fig. 2. Orbital evolution of S/2000 S10.
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Table 2.  Parameters of evolving orbits for the group IC satellites

Satellite c1 c2 emin emax , deg , deg , years , years

S4 0.424 0.053 0.365 0.646 31.5 45.7 283 329
S10 0.456 0.057 0.379 0.624 30.2 43.1 263 317
S11 0.606 0.020 0.226 0.404 31.7 37.0 351 434

ĩmin ĩmax T ω̃ T Ω̃

Table 3.  Parameters of evolving orbits for the group IL satellites

Satellite c1 –c2 emin emax , deg , deg , years , years , deg

S2 0.360 0.0054 0.153 0.621 40.0 52.6 330 528 29.8
S3 0.424 0.0025 0.120 0.532 39.7 49.0 353 510 26.7
S5 0.407 0.0045 0.156 0.553 40.1 49.8 550 849 25.8
S6 0.397 0.0092 0.225 0.551 41.0 49.7 468 775 21.6

ĩmin ĩmax T ω̃ T Ω̃ ∆ω̃
characterized by libration variations in pericenter argu-
ment, by a monotonic decrease in longitude of the
ascending node, and by long-period variations in
eccentricity and inclination.

In Fig. 4–7, which are similar to Figs. 1–3, the
numerical results match the analytic results with a
graphical accuracy in a 1000-year interval.

Basic parameters of evolving orbits for the satellites
of this group are given in Table 3; it is similar to Table 2,
but it is supplemented with the amplitudes of variations
in pericenter arguments . The periods of variations in

e and  are equal to the libration period of .
Note that all orbits of the satellites from this group

are characterized by a nearly zero constant c2. In the
integrable problem, this means that the phase trajecto-

ω̃
ĩ ω̃
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Fig. 3. Orbital evolution of S/2000 S11.
ries are located in the libration regions that are “not
very deep,” i.e., near the separatrixes, the lines that sep-
arate these regions from the circulation regions of . It
is of interest to establish whether the qualitative behav-
ior of the solution will change if we take into account
the spatial evolution of Saturn’s orbit and additional
terms of the perturbing function ~(a/a9)3e9 on a long
time scale. To this end, we numerically integrated the
averaged system on a time scale of 50 000 years, an
approximate period of variations in Saturn’s orbital ele-
ments.

In Figs. 8 and 9, the solid lines indicate the projec-
tions of phase trajectories of the integrable problem
onto the pericenter argument—eccentricity and peri-
center argument—inclination planes, respectively, and

ω̃
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Fig. 4. Orbital evolution of S/2000 S2.
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the dashed lines represent the separatrixes. On these

curves, the inclination  and the pericenter argument 
refer to Saturn’s orbital plane. The small crosses mark

the values of  and  obtained by numerical integra-
tion. The crosses are plotted at time steps of 50 years,

with  and  being associated with the ecliptic plane.
All angular variables are given in degrees. We see from
Figs. 8 and 9 that the libration pattern of variations in
pericenter arguments is also preserved in the ecliptic
coordinate system with allowance for the above addi-
tional perturbing factors. It would therefore be natural
to call the orbits of this group, by standard terminology,
ω-librators. It should be noted that libration orbits are
encountered rarely even among the many thousands of
asteroid orbits. Therefore, the fact that four of the thir-
teen orbits of Saturn’s outer satellites (including Phoebe)
proved to be libration orbits is surprising enough.

Of course, the libration pattern of satellite orbits
from this group is entirely determined by initial values

of the elements from Table 1 and , and . Therefore,
their further refinement can transfer any group IL satel-
lite into group IC with c2 > 0. However, this is possible
when i and ω were refined significantly, by ~10–2–10–3,
because c2 for the group IL satellites varies over the
range –0.0092 to –0.0025 (see Table 3).

Note: The change from ω libration to circulation at
a nearly zero c2 can also be caused in principle by sec-
ular resonances (commensurability of the periods of
variations in slowly evolving orbits of the perturbed
and perturbing bodies). Such cases are known among
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Fig. 5. Orbital evolution of S/2000 S3.
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asteroid orbits. The chaotic orbit of asteroid (2335)
James, which changes from one mode of variations in
ω to the other and back on time scales of several hun-
dred thousand years (Vashkov’yak 1986; Froeschle
et al. 1991) can serve as an example. However, in the
satellite problem under consideration, there are appar-
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Fig. 6. Orbital evolution of S/2000 S5.

Fig. 7. Orbital evolution of S/2000 S6.
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ently no such resonant perturbations with periods of the
order of the libration periods of ω for the orbits of S2,
S3, S5, and S6.

3.3. Group II 

This group includes satellites S1, S7, S8, S9, S12,
and Phoebe. Their orbital evolution is characterized by
a monotonic increase in pericenter arguments and in
longitudes of the ascending nodes. The periods of vari-
ations in eccentricities are approximately half the circu-
lation periods of the pericenter arguments, except for
the nearly circular orbit of satellite S12. The principal
harmonic of the variations in eccentricity of this orbit is
the harmonic with the circulation period of the ascend-
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Fig. 9. Projections of libration phase trajectories onto the
pericenter argument–inclination plane.

ing node. It also dominates for the variations in inclina-
tions of all orbits from this group of satellites.

Figures 10–15 show time dependences of the orbital
elements on a time scale of 500 years (1000 years for
Phoebe). The solid lines correspond to our numerical
solution of the full evolutional system, and the filled
circles denote the elements derived by analytically
solving Hill’s double-averaged problem. For satellite S8,
these dependences coincide with a graphical accuracy
(Fig. 12). For the remaining satellites of this group, this
coincidence takes place in all elements except the
eccentricity. This is because the effect of the perturbing
factors that distort the solution of Hill’s double-aver-
aged problem is stronger for evolving orbits with small
differences emax – emin (Figs. 10, 11, 13, and 15). The
Table 4.  Parameters of evolving orbits for the group II satellites

Satellite c1 c2 emin emax , deg , deg , years , years

S1 0.851 0.0535 0.365 0.373 172.3 173.5 152 260
S7 0.701 0.1173 0.541 0.546 174.9 176.4 170 261
S8 0.730 0.0160 0.200 0.286 150.7 153.1 380 560
S9 0.891 0.0237 0.243 0.260 166.8 167.8 226 405
S12 0.988 0.0030 0.085 0.087 176.2 176.3 238 470
Phoebe 0.966 0.0110 0.165 0.167 175.2 175.4 379 730

ĩmin ĩmax T ω̃ T Ω̃
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Fig. 12. Orbital evolution of S/2000 S8.

discrepancy between the results is at a maximum for
the nearly circular orbit of satellite S12 (Fig. 14).

The basic parameters of evolving orbits for the sat-
ellites of this group, which is naturally called the
ASTRONOMY LETTERS      Vol. 27      No. 7      2001
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Phoebe group, are given in Table 4. However, the
extreme eccentricities (in contrast to Tables 2 and 3)
correspond to the results of the numerical integration of
the fuller system of secular equations.
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As was already noted in the introduction, the orbits
of satellites S1 and S7 are subject to appreciable pertur-
bations from Jupiter, which we ignore in the model
used. Therefore, the numerical data for these satellites
(see Table 4) give only approximate parameters of their
orbital evolution.

4. CONCLUSION

We have described the principal qualitative features
of the orbital evolution of Saturn’s recently discovered
outer satellites. The approximate quantitative evolutional
parameters were derived in terms of the theory of secu-
lar perturbations by analytically solving and numeri-
cally integrating the system of equations averaged over
fast variables of the problem: the mean anomalies of the
satellite and the perturbing body (Sun). The largest of
the disregarded secular perturbations are those from
Jupiter, which reach several percent of the solar pertur-
bations for the two most distant satellites considered.
Next in magnitude are the secular perturbations from
Saturn’s largest satellite, Titan. They are similar in
structure to the perturbations of planetary oblateness
and can be taken into account in the main approxima-
tion by a formal (fourfold) increase in the coefficient of
the second zonal harmonic of Saturn’s gravitational
field. The subsequent application of standard formulas
for the secular perturbations from oblateness with a
changed coefficient c20 will result only in small (~0.001
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Fig. 14. Orbital evolution of S/2000 S12.
relative to the solar perturbations) corrections to the
evolution of the pericenter arguments and longitudes of
the ascending nodes referred to Saturn’s equator.

Based on our analysis, we have proposed a simple
and natural classification of the orbits of Saturn’s outer
satellites by the direction of their motion and by the pat-
tern of their orbital evolution. Although the discovered
ω-librators are located near the separatrixes of the inte-
grable problem, they apparently retain their qualitative
properties even when the disregarded perturbations are
added to the model. However, these orbits can pass into
the group of circulation orbits when their elements will
be refined in the future.
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Abstract—We consider the structural peculiarities of Uranus’s satellite system associated with its separation
into two groups: inner equatorial satellites moving in nearly circular orbits and distant irregular satellites with retro-
grade motion in highly elliptical orbits. The intermediate region is free from satellites in a wide range of semimajor
axes. By analyzing the evolution of satellite orbits under the combined effect of solar attraction and Uranus’s oblate-
ness, we offer a celestial-mechanical explanation for the absence of equatorial satellites in this region. M.L. Lidov’s
studies during 1961–1963 have served as a basis for our analysis. © 2001 MAIK “Nauka/Interperiodica”.

Key words: Uranus’s satellites, orbital evolution
1. INTRODUCTION

In recent years, the discovery of Uranus’s five dis-
tant satellites—Caliban, Sycorax, Prospero, Setebos,
and Stephano—has considerably extended our knowl-
edge of its satellite system. With their discovery, Ura-
nus joined the ranks of the remaining giant planets,
which have a subsystem of close (or inner) satellites
with nearly circular equatorial orbits and distant (or
outer) satellites with highly elliptical orbits signifi-
cantly inclined to the ecliptic plane and to the equato-
rial planes of the planets. Uranus’s rings and the orbits
of its inner satellites are located at distances from about
40 000 to 600 000 km from the center of this planet with
a radius of 26 200 km. The orbits of distant satellites
have semimajor axes from about 7 to 18 million km.
Thus, the range of semimajor axes 0.6 million km < a <
7 million km is free from satellite orbits. At the same
time, when using currently available observational
facilities and when conducting thorough systematic
searches, which led to the discovery of Uranus’s five
distant satellites, the probability that satellites of appre-
ciable sizes remain undiscovered in this range seems
fairly low.

The possible mechanism of the avoidance of this
intermediate region by satellites is therefore of consid-
erable interest. Here, we elucidate this question by
using the theory of secular perturbations of satellite
orbits.

The numerous studies devoted to the dynamics of
Uranus’s rings and to the motion of its inner satellites
were comprehensively reviewed, in particular, by
Semenova (1991).

* E-mail address for contacts: vashkov@spp.keldysh.ru
1063-7737/01/2707- $21.00 © 20464
The orbits of inner satellites (a < 600 000 km) evolve
mainly under the effect of Uranus’s oblateness and their
mutual attraction. The resonant motion of Uranus’s
largest satellites also plays a major role in the evolution.
By contrast, the orbital evolution of distant satellites
with a > 7 million km is mainly governed by the influ-
ence of solar attraction (Vashkov’yak 1999, 2001). In
the intermediate region, the effects of Uranus’s oblate-
ness and solar attraction may be comparable in magni-
tude, and the orbital evolution is determined by their
combined secular perturbations.

The basic parameter that characterizes the ratio of
perturbing accelerations from Uranus’s oblateness and
solar attraction is

(1)

where

(2)

(3)

c20 is the coefficient of the second zonal harmonic of
Uranus’s gravitational field; a0 is its mean equatorial
radius; µU and µS are the products of the gravitational
constant by Uranus’s and solar masses, respectively;
and aU is the semimajor axis of Uranus’s heliocentric
orbit. It follows from Fig. 1, in which  is plotted
against a, that γ changes in the intermediate range
0.6 million km < a < 7 million km from about 10–4

to 30.
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To investigate the evolution of satellite orbits in this
range, it would be natural to use Hill’s standard aver-
aged problem with allowance for oblateness of the cen-
tral planet (Lidov 1963a, 1963b). Under the assumption
of a ! aU, the averaging is performed over all fast vari-
ables—the mean longitudes of the satellite and the per-
turbing body. Apart from γ, the inclination I of the
equator of an oblate planet to the orbital plane of the
perturbing body is another important parameter in this
problem. In general, when I is arbitrary, the problem is
not integrable. Various special cases were qualitatively
analyzed by Lidov and Yarskaya (1974). This problem
was also used to investigate the orbital evolution of arti-
ficial satellites of the Moon (Kozai 1963) and the Earth
(Kudielka 1994). Stationary and periodic solutions of
the evolutional problem and their stability have been
analyzed recently (Vashkov’yak 1998; Vashkov’yak
and Teslenko 2001).

In the next section, we consider one of the integrable
cases of the problem as applied to Uranus’s satellite
system with its peculiar features. Since the inclination
of Uranus’s equator to the plane of its heliocentric orbit
(or to the plane of the Uranus-centric orbit of the Sun)
is ≈97 8, we can idealize the problem by setting I = 90°
for a qualitative analysis. In addition, for an equatorial
satellite, we may assume with the same degree of
roughness that its orbital inclination to Uranus’s equa-
torial plane is zero and that, accordingly, its inclination
to Uranus’s orbital plane is 90°. Under these assump-
tions, Lidov (1963a, 1963b) explained the existence of
Uranus’s inner satellites in nearly circular orbits, which
in the absence of planetary oblateness (c20 = γ = 0) must
have turned into highly elongated ellipses with increas-
ing eccentricities during their evolution (Lidov 1961).
At a constant semimajor axis (a = const is the integral
of the averaged problem), the pericenter distance q =
a(1 – e) would inevitably become equal to Uranus’s
radius, and, having fallen to its surface, the satellite
would cease to exist. Since a < 600 000 km for the
actually oblate Uranus and γ > 30 (Fig. 1), the orbital
eccentricity of Oberon, the inner satellite that is most
perturbed by the Sun, undergoes only modest long-
period variations (Lidov 1963a, 1963b). To put it sim-
ply, Uranus’s oblateness saves the inner satellites from
falling to its surface by retaining them in nearly circular
orbits.

In the next section, we consider in more detail the
problem of the evolution of Uranus’s satellite orbits
that lie in its equatorial plane by assuming that I = 90°.

2. MODEL PROBLEM (I = 90°)

2.1. The Results of a General Study 

Let us consider the problem of orbital evolution for
a satellite of an oblate planet whose rotation axis lies in
its orbital plane, and, consequently, its equator is
inclined to this plane at angle I = 90°. The evolutional

.°
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system that describes long-period variations in ele-
ments of the satellite orbit then takes the form

(4)

Here, e, i, ω, and Ω are the standard designations for the
elements of a Keplerian orbit (eccentricity, inclination,
argument of the pericenter latitude, and longitude of the
ascending node); the angular elements refer to the
orbital plane of the perturbing body and its line of inter-
section with the planet’s equatorial plane. The normal-
ized independent variable τ is related to time t by

(5)

where n(a) is the mean motion of the satellite, which is
a known function of the semimajor axis of its orbit, and
β(a) is given by Eq. (3).

Eqs. (4) can be taken from Lidov (1963a, 1963b) for
I = 90°. The following averaged perturbing function
serves as the only first integral of these equations:

de
dτ
------ 10e 1 e

2
– i 2ω,sinsin

2
=

di
dτ
----- 10

e
2

1 e
2

–
----------------- i i 2ωsincossin–=

+
8γ

1 e
2

–( )
2

-------------------- i Ω Ω,cossinsin

dω
dτ
------- = 

2γ
1 e

2
–( )

2
-------------------- 1 5 icos

2
– 3 5 icos

2
–( ) 2Ωcos+[ ]

+
2

1 e
2

–
----------------- 5 icos

2
1– e

2
5 isin

2
e

2
–( ) 2ωcos+ +[ ] ,

dΩ
dτ
-------

4γ
1 e

2
–( )

2
-------------------- 1 2Ωcos+( )=

+
2

1 e
2

–
----------------- 5e

2
2ωcos 3e

2
– 2–( ) i.cos

τ β a( )n a( ) t t0–( ),=

–4

10 2 3 4 5 6 7 8
CalibanOberon ‡, mln km

–2

0

2

4

6

lo
g

γ

Fig. 1. Logarithmic dependence of γ on semimajor axis of
Uranus’s satellite orbit.
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(6)

Being not integrable, Eqs. (4) have the stationary
solution

(7)

In this case,  =  =  = 0, and the satellite’s

orbital plane lies in the planet’s equatorial plane. The
stationary eccentricity e* can be determined from the

condition  = 0 by using the formula

(8)

At ω* = 0, 180° and γ > 0, no stationary solution
exists. At ω* = ±90° and 0 < γ < 3/2, we have

(9)

Linearizing system (4) in the vicinity of this station-
ary solution causes the equations to split into two inde-
pendent pairs.

Since the system that describes the change x1 = e – e*
and x3 = ω – ω* has the characteristic equation

(10)

the motion in the (ω, e) plane is stable in the linear
approximation for e* > 0.

For the system that describes the change x2 = i – i*
and x4 = Ω – Ω*, we have

(11)

Therefore, for 0 < e* < eb =  ≈ 0.5345, the motion
in the (Ω, i) plane is stable in the linear approximation,
while for

(12)

it is unstable just as the solution in general. The cases

with e* = 0 and e* =  are critical.
Note. Conditions (12) supplement our analysis of

the stability of stationary solutions for Hill’s averaged
problem with allowance for planetary oblateness with
the i0 = 90° vertical straight lines that pass through the

bifurcation points e0 =  and γ =  (Vash-

kov’yak 1998; Figs. 3a and 3b).

W e i ω Ω, , ,( ) = 2 e
2

isin
2

–( ) e
2

5 2ωcos 3–( ) isin
2

+

+
2γ

1 e
2

–( )
3/2

----------------------- 1/3 2icos– 2 i Ωsin
2

sin
2

–[ ] const.=

i* 90°, Ω*sin 0, 2ω*sin 0= = =

Lidov and Yarskaya 1974( ).

de
dτ
------ di

dτ
----- dΩ

dτ
-------

dω
dτ
-------

e* 1
2γ

5 ωsin
2

2–
-------------------------- 

  2/5
– .=

e* 1
2γ
3

------ 
 

2/5

– .=

λ 2
1200e*2+ 0,=

λ 2
48 2 7e*2–( )+ 0.=

2/7

e* 2/7 or γ γb< 3
2
--- 5

7
--- 

 
5/2

0.6468≈= 
 >

2/7

2/7
3
2
--- 5

7
--- 

 
5/2
Next, we consider a particular (but not only station-
ary) solution of Eqs. (4)

At i = i* = 90° and Ω = Ω* = 0, 180°, Eqs. (4),
which describe the change in e and ω, and the first inte-
gral (6) take a simpler form:

(13)

This integrable case was qualitatively analyzed by
Lidov (1963a, 1963b) and Lidov and Yarskaya (1974;
case V). For coherence, we present here the results of
the above authors and derive some quantitative evolu-
tional characteristics.

For 3/2 < γ < ∞, the satellite’s orbital evolution
reduces to a monotonic increase in ω when the eccen-
tricity varies in the range emin = e(ω = 0, 180°) ≤ e ≤ e(ω =
±90°) = emax. In this case of circulation variations in ω,
the extreme Â can be determined from the equation

(14)

where ρ = 2/5 for emin and ρ = –3/5 for emax.
For 0 ≤ γ ≤ 3/2, singularities emerge in the (ω, e)

phase plane. The center-type points have ω* = ±90°,
and e* is given by Eq. (9). The saddle-type points have

(15)

The singular trajectory (separatrix), which corre-
sponds to the constant of the integral

(16)

separates the ω circulation ranges

(17)

from the ω libration range

(18)

C* corresponds to the stationary point (ω*, e*) and
is given by

(19)

At C = Cs, the limiting motion takes place, for which
emin = 0 and emax = e(ω = ±90°) = es is given by the equa-
tion

(20)
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Whereas the extreme values of e in the circulation
range (17) are given by Eq. (14) for the two values of ρ
in the libration range (18), these are two different roots
of the same equation for ρ = –3/5. For any C* ≤ C < ∞,
the phase trajectories in the (ω, e) plane are symmetric
about the ω = 0, 180° and ω = ±90° straight lines.

The first integral yields a dependence of ω on e; sub-
stituting this dependence in the first equation (13)
reduces the solution of the entire system to calculating
the quadrature

(21)

where

(22)

and e0 and ω0 are the initial elements at τ = 0.

Since the integrand is complex, there is apparently
no possibility for analytically representing τ(e) let alone
the possibility for finding the inverse dependence e(τ)
(even in the usually simpler case of limiting motion).
Nevertheless, the periods of circulation,

(23)

and libration

(24)

can be calculated numerically, for example, by the
Gauss method.

Note. A slight simplification is achieved by intro-
ducing the variable

(25)

which is a canonical conjugate of ω. This allows us to
reduce the radicand in Eq. (21) to rational form and the
quadrature itself to the form

(26)

where R(G) is a polynomial of the 10th degree for G,
which is given by

(27)
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2.2. Application to Uranus’s Satellite System 

Figure 2 illustrates the results described in the pre-
vious section. It shows a family of trajectories in the (ω, e)
phase plane for γ = 0.1, which corresponds to the semima-
jor axis of the satellite orbit a = 1.88423 million km in
the model system (Sun–Uranus-satellite). Since the tra-
jectories are symmetric, only the range 0° ≤ ω ≤ 90° is
shown. The libration and circulation periods of ω (in
years) with allowance for the normalizing relation (5)
are given alongside the trajectories. For C = C* and
C  ∞, these periods approach the periods of small
variations, while for C  Cs, Tl  Tc  ∞. The
arrows indicate the direction in which the phase point
moves along the trajectories. Note that the family of
phase trajectories shown in the figure corresponds to
e* > eb ≈ 0.5345, γ < γb ≈ 0.6468, and a > ab = a(γb) ≈
1.297 million km. According to conditions (12), it repre-
sents an unstable structure. In the linear approximation,
however, small deviations of i and Ω from their equilib-
rium values i* and Ω* on time scales of the order of the
periods of small variations in e and ω do not affect this
family, because the equations in variations split into
two independent systems.

Note that during the evolution, the shape of an equa-
torial satellite orbit significantly changes, while the dis-
tance of its pericenter q = a(1 – e) inevitably becomes
smaller than

(28)

in the case of ω libration and smaller than

(29)

in the case of ω circulation.

The functions q*(a) and qs(a) are nonlinear, because
e* and es depend on γ and, consequently, on a via rela-
tions (1)–(3), (9), and (20). The corresponding solid
curves shown in Fig. 3 start at point a = q ≈ 1.1 million km
(γ = 3/2) and approach the x axis as a  ∞ (γ  0).
Since there are no singularities in the (ω, e) plane for

q* a 1 e* a( )–[ ] ,=

qs a 1 es a( )–[ ]=

0.1
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Fig. 2. Family of phase trajectories in the (ω, e) plane for
γ = 0.1 (a = 1.88423 mln km).
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γ > 3/2, equatorial satellite orbits with a < 1.1 million km
could theoretically exist beyond the orbit of Oberon.

The horizontal dashed lines correspond to Uranus’s
radius and to the orbital radii of its five largest inner sat-
ellites.

The table gives approximate semimajor axes a of
the equatorial satellite orbits that satisfy the conditions

(30)

where j = 0 corresponds to Uranus’s radius, and j from
1 to 5 corresponds to the orbital radii of its five satellites
from Miranda to Oberon.

The satellites fall to Uranus’s surface at qs < a0 and
q* < a0 for orbits with circulation and libration varia-
tions in ω, respectively. Therefore, if Uranus’s inner
satellites are ignored, then circulation and libration
orbits could exist up to a ≈ 3.3 and 15 million km (Fig. 3),
respectively. However, these boundary values of the
semimajor axis significantly decrease when the actu-
ally existing inner satellites are taken into account.

An analysis of the averaged evolutional problem
makes the following simplification natural: modeling
the orbits of Uranus’s massive inner satellites by a
coplanar system of Gaussian mass rings. This assump-
tion, introducing effective radii aj  instead of planetary
radius a0, increases it to  ≈ 0.583 million km.

qs a( ) a j and q* a( ) a j,= =

a j
j

max

0 1 2 3 4 5 6 7
‡, mln km‡b

0.2

0.4

0.6

0.8

1.0

1.2
q,

 m
ln

 k
m

q*

qs ‡0

Oberon

Titania

Umbriel
Ariel
Miranda

Fig. 3. Pericenter distance versus semimajor axis. The
dashed lines indicate Uranus’s radius and the orbital radii of
its largest inner satellites.

Semimajor axes a (in million km) satisfying the conditions qs(a) =
aj and q*(a) = aj

j qs(a) = aj q*(a) = aj

0 3.3 >15 

1 1.9 4.8

2 1.7 3.3

3 1.5 2.5

4 1.3 1.6

5 1.2 1.3
An analysis of Fig. 3 and the second column of the
table then leads us to conclude that only satellite orbits
with semimajor axes no larger than about 1.2 million km
can exist in Uranus’s equatorial plane in the case of cir-
culation variations in ω. At a > 1.2 million km, the
orbital evolution results in such a decrease in pericenter
distance q that the orbit inevitably intersects with one
of the Gaussian mass rings that model the orbits of Ura-
nus’s inner satellites. Physically, this means either the
fall of an outer satellite to an inner satellite or their
close encounter (highly probable when orbits intersect)
and an abrupt random change in the size and shape of
the outer satellite’s orbit (in the restricted problem, its
mass is assumed to be negligible).

A similar comparison of Fig. 3 and the third column
of the table shows that only satellite orbits with a <
1.3 million km can exist in Uranus’s equatorial plane in
the case of libration variations in ω.

Interestingly, this value of a essentially matches the
boundary value ab (the solid vertical straight line in Fig. 3).
It is given by condition (12), which corresponds to the
loss (at a > ab) of stability of the stationary solution (7)
and (9). This means that at a > ab, the regular structure
of phase trajectories in the (ω, e) plane will change with
time; the largest changes will take place near the sepa-
ratrix, where the libration and circulation periods of ω
tend to infinity. The chaotic state that arises in this case
will introduce a random component into the variations
in satellite orbital eccentricity and pericenter distance.

3. CONCLUSION

The results of our analysis of the model problem
(I = 90°) with an increased effective radius of Uranus
can explain the absence of equatorial orbits with semi-
major axes larger than ≈1.3 million km in the satellite
system of this planet. The pattern of orbital evolution
shows that in the course of time, the outer satellites (if
they existed in the above range) must either have fallen
to the inner satellites, thereby significantly increasing
their masses (an appreciable massiveness of the most
distant inner satellites can serve as circumstantial evi-
dence for this scenario), or greatly change their orbits
through close encounters with inner satellites.

Of course, the model problem we considered can
serve only as a qualitative guide. To obtain reliable
quantitative estimates requires taking into account such
factors as a deviation of Uranus’s equatorial inclination
to its orbital plane from 90° and changes in ecliptic ele-
ments of Uranus’s orbit with time because of secular
planetary perturbations.
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Abstract—The relations between parameters of triple approaches and the lengths of subsequent ejections are
analyzed for the general three-body problem with components of equal masses and zero initial velocities. A sta-
tistically significant correlation is shown to exist between the closeness of approaches and the lengths of sub-
sequent ejections: closer approaches generally result in longer ejections. We have found several systems that
evolve to a temporary quasi-stable chain-like configuration. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The general three-body problem is one of the prob-
lems of current interest in analytical mechanics, celes-
tial mechanics, and stellar dynamics. Despite the large
number of works on this problem, an analytic solution
that could be effectively used in practice has not yet
been obtained.

Numerical simulations (see, e.g., Anosova and
Orlov 1985; Valtonen and Mikkola 1991) are a more
promising approach to analyzing the three-body prob-
lem. Based on their numerical simulations, Szebehely
(1971) and Agekyan and Martynova (1973) proposed a
classification of the states in the general three-body
problem with negative total energy. According to this
classification, an unstable triple system can be in one of
the following three states in the course of its dynamical
evolution:

(0) Triple approach;
(1) Simple interaction;
(2) Ejection without escape.
During the motion, a changeover of states 0–2 occurs,

and the final evolutionary state of the system is
(3) Escape.
Agekyan and Martynova (1973) suggested the crite-

ria of states 0–2 for plane nonrotating triple systems.
Martynova and Orlov (2000) generalized these criteria
to rotating and three-dimensional systems by. Several
escape criteria were described in the literature [see
Orlov (1986) for a review]. Here, we use the criterion
of Standish (1971).

* E-mail address for contacts: vor@astro.spbu.ru
1063-7737/01/2707- $21.00 © 20470
We consider successive transitions between the
states and analyze the correlation between several
parameters of triple approaches and the length of the
subsequent ejection.

FORMULATION OF THE PROBLEM

We consider the dynamical evolution of triple sys-
tems with components of equal masses. The initial
velocities of all three bodies are zero. The initial con-
figurations of triple systems are chosen uniformly ran-
domly within the domain of all possible configurations
of triple systems (Agekyan and Anosova 1967). The
initial positions of component M3 (Fig. 1) change at
steps of ∆ξ = ∆η = 0.02.

For each set of initial conditions (ξ, η), we trace the
evolution of a triple system until one of the three times:

(1) The escape criterion for one of the bodies is sat-
isfied;

(2) One of the bodies is ejected to a distance larger
than 100d from the center of mass of the triple system,
where d is the mean size of the triple system,

(1)

(3) The evolution time exceeds 1000τ, where τ is the
mean time it takes for a component to cross the system,

(2)

d
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Here, G is the gravitational constant, E is the total
energy of the triple system, and mi are the masses of the
bodies.

In our calculations, we recorded the minimum and
maximum distances R of the most distant body from the
center of mass of the triple system. At the times of min-
imum R, we calculated the following parameters:

(1) The perimeter p of the configuration triangle;
(2) The static moment

(3)

where ri is the distance from the ith body to the center
of mass of the triple system;

(3) The moment of inertia

(4)

(4) The geometric parameters

(5)

where rij are the mutual separations between the bodies,
which are numbered as follows:

(6)

(5) The cosine of angle φ between the direction of
velocity V3 and distance r12:

(7)

(6) The relative energy of body 3

(8)

where U is the potential energy of the triple system;
(7) The potential energy U of the triple system.

RESULTS
To analyze the relations between parameters 1–7 of

a triple approach and length R of the subsequent ejec-
tion, we calculate the correlation coefficients r between
these parameters and R. The values of r and their errors σr
are given in the table. Figures 2a–2h show plots of ejec-
tion length R against parameters 1–7 of the prior
approach.

Column 1 gives the notation of the triple-approach
parameters under consideration. Columns 2–7 list the
correlation coefficients and their errors for all the
approach–ejection pairs, for the approach–ejection pairs
with the so-called W-approaches excluded (see Anos-
ova and Zavalov 1981), for the ejections with R > Rejc =

G /|E | = 2d/  (Agekyan and Martynova 1973), for

I1 miri,
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simple interactions with d/  = G /(2 |E |) = Rapp <

R < Rejc = 2d/  (Agekyan and Martynova 1973), for

the approach–ejection pairs with R < Rapp = d/ ,
and for the approach–ejection pairs without excluding
W-approaches, respectively. We excluded W-approaches
as follows: if the time interval ∆t between two succes-
sive minima of R did not exceed ∆tcr = 0.5τ, then the two
approaches were treated as a single approach with the
parameters corresponding to the deepest minimum of R.
The first row of the table gives the corresponding num-
ber N of approach–ejection pairs. The last rows gives
the correlation coefficients between ejection length R
and ejection time tejc . The relation between R and tejc is
shown in Fig. 2i.

An examination of the table and Fig. 2 leads us to
the following conclusions. There is a statistically sig-
nificant correlation between the closeness of the approach
(parameters p, I1, I2, ε, and U) and the length of the sub-
sequent ejection: in general, the closer the approach,
the farther the ejection. There is no statistically signifi-
cant correlation with the other approach parameters
considered. The dependence R(cosϕ) (Fig. 2f) shows an
increase in the concentration of points toward the
cosϕ = ±1 straight lines, suggesting the dominance of
central-body passages that are nearly orthogonal rela-
tive to the line connecting the other two bodies. As
expected, there is a strong positive correlation between
R and tejc.

For approach–simple interaction pairs, apart from
the preservation of statistically significant correlation
between R and the closeness of approach, there is a cor-
relation between R and approach parameters α, β,
cosϕ. In particular, the ejection length R increases with
increasing difference between the distances from the
central body to the two other bodies. In addition, the
length R decreases as the triangle becomes equilateral
at the approach time.

The situation changes radically for approach–
approach pairs (see the last two columns of the table
and Figures 2a–2c). The length R of the subsequent
ejection decreases with increasing closeness of
approach (parameters p, I1, I2, and U). There is a dis-
tinct linear correlation between p and R as well as

3 3

3

3

M1(–0.5; 0) ξ

η

η

ξ M2(0.5; 0)

M3(ξ, η)

3
2

-------

Fig. 1. Domain D of all possible configurations of triple sys-
tems.

0



472 ORLOV et al.
3

2

1

0

(a)

1 2 3

R

p
0 0.5 1.0 1.5

(b)

I1

3

2

1

0

(c)

0.2 0.8

R

I2

0.4 0.6 0 0.1

(d)

α
0.2 0.3 0.4 0.5

3

2

1

0

(e)

0.2 1.0

R

β
0.4 0.6 –1.0 –0.5

(f)

cosφ
0 0.5 1.00.8 –1.0

Fig. 2. Ejection length R versus (a) perimeter p, (b) static moment I1, (c) moment of inertia I2, (d) parameter α = ,

(e) parameter β = , (f) cosφ = , (g) parameter ε, (h) potential energy U, and (i) ejection time tejc.

r13 r12–

r12
-----------------------

min rij

max rij
----------------

V3 r12⋅
V3 r12⋅
------------------------
between I1 and R (see Fig. 2a and 2b) with correlation
coefficients >0.9. This correlation can also be seen in
the I2–R, U–R plots, but it is nonlinear. This correlation
corresponds to W-approaches.
Note that for approach–approach pairs with W-
approaches excluded, there is no correlation between R
and relative energy ε of the central body. At the same
time, this correlation is strong for W-approaches. We
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can thus conclude that parameter ε can be used as an
indicator of W-approaches.

Note also the horizontal chain of points in Fig. 2i.
They correspond to the dynamical evolution of a triple
ASTRONOMY LETTERS      Vol. 27      No. 7      2001
system becoming quasi-stable, when one of the bodies
oscillates between the other two bodies (chain-like con-
figuration). We plan to study such systems in more
detail in the future.
Correlation coefficients

Parameter All Without W-approaches Ejections Interactions Approaches Approaches with W

N 18826 10 771 4063 6400 308 6411
p –0.116 –0.204 –0.207 –0.272 0.431 0.956

±0.007 ±0.009 ±0.015 ±0.012 ±0.046 ±0.001
I1 –0.116 –0.204 –0.207 –0.287 0.347 0.936

0.007 0.009 0.015 0.012 0.050 0.002
I2 –0.073 –0.161 –0.178 –0.188 0.472 0.923

0.007 0.009 0.015 0.012 0.044 0.002
α 0.007 0.026 –0.013 0.128 0.051 –0.098

0.007 0.010 0.016 0.012 0.057 0.012
β –0.081 0.004 0.052 –0.115 –0.256 0.026

0.007 0.010 0.016 0.012 0.053 0.013
cosφ –0.081 0.008 0.014 –0.122 –0.129 –0.102

0.007 0.010 0.016 0.012 0.056 0.012
ε –0.107 –0.178 –0.148 –0.189 0.045 0.769

0.007 0.009 0.015 0.012 0.057 0.005
U –0.103 –0.246 –0.198 –0.306 0.333 0.643

0.007 0.009 0.015 0.011 0.051 0.007
tejc 0.205 0.263 0.437 –0.166 0.156 0.031

0.007 0.009 0.013 0.012 0.056 0.013
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CONCLUSION
The results obtained have led us to the following

conclusions:
—There is a significant correlation between the

closeness of approach and the length of the subsequent
ejection: in general, closer approaches result in longer
ejections;

—An inverse correlation was found for W-approaches
with a strong linear correlation between the approach
perimeter and the length of the subsequent ejection;

—Several systems were found to evolve to a tempo-
rary quasi-stable chain-like configuration.
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Abstract—The centers of the gaps observed in the asteroid belt are displaced toward Jupiter from their posi-
tions that correspond to the exact commensurability between the mean motions of an asteroid and Jupiter. Using
the current theory of stability and nonlinear oscillations of Hamiltonian systems, we point out the dynamical
causes of this asymmetry. Our analysis is performed in terms of the plane circular restricted three-body prob-
lem. The orbits that correspond to Poincaré periodic solutions of the first kind are taken as unperturbed asteroid
orbits. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

More than 130 years ago, Kirkwood (1867) discov-
ered a remarkable property of the distribution of aster-
oids in mean motion within their main belt located
between the orbits of Mars and Jupiter. This distribu-
tion turned out to be distinctly nonuniform: there are
distribution intervals in which few or no asteroids are
observed. These intervals are now called voids or Kirk-
wood gaps. The discovery of gaps aroused great inter-
est among astronomers and gave rise to many studies
devoted to the motion of asteroids. In their monographs
and reviews, Putilin (1953), Hagihara (1961), Samoœlova-
Yakhontova (1973), and Demin and Zhuravlev (1979)
analyzed the results of several hundred publications on
the origin, statistics, and evolution of asteroid orbits.

Kirkwood believed that gaps resulted from the per-
turbing effect of Jupiter on asteroid orbits and attrib-
uted the nonuniformity in the distribution of asteroids
to commensurability between an asteroid’s mean
motion n and Jupiter’s mean motion n'. Indeed, obser-
vations show that n : n' is close to a rational number l : s.
The number l – s is called the order of commensurabil-
ity or the order of resonance.

In the early twentieth century, Brown (1911) noticed
an asymmetry in the arrangement of gaps: the centers
of the observed gaps are displaced toward Jupiter from
exact commensurability. This asymmetry had been
repeatedly confirmed until recent decades by a statisti-
cal analysis of observations based on the restricted
three-body problem and by numerical simulations
(Batrakov 1958; Message 1966; Lecar and Franklin
1973; Gerasimov 1975, 1976; Wiesel 1976).

* E-mail address for contacts: markeev@ipmnet.ru
1063-7737/01/2707- $21.00 © 20475
Here, our goal is to establish the dynamical causes
of the asymmetry in the arrangement of Kirkwood gaps
by using rigorous methods of the theory of stability and
nonlinear oscillations of Hamiltonian systems. The
orbits that correspond to Poincaré periodic solutions of
the first kind for the plane circular restricted three-body
problem are taken as unperturbed asteroid orbits.

CONSTRUCTING PERIODIC SOLUTIONS

Let two mass points, S (Sun) and J (Jupiter), move
in circular orbits about their common center of mass O
with angular velocity n'. Point P of negligible mass
moves in the orbital plane of points S and J and is
attracted by them according to the Newton law. We will
analyze its motion in a synodic coordinate system. The
polar coordinates r and ϕ, where r is the distance OP of
point P from the center of mass of points S and J and

ϕ is the angle between vector  and vector  rotat-
ing with angular velocity n', are taken as the general-
ized coordinates that specify the position of point P.
The corresponding generalized momenta are denoted
by pr  and pϕ. We choose the units of measurement in
such a way that the sum of the masses of points S and J
and the separation between them are equal to unity,
denote the mass of point J by µ (0 < µ ! 1), and take
the dimensionless quantity ν = n't as an independent
variable. The Hamiltonian is

(1)

OP SJ

H
1
2
--- pr

2 pϕ
2

r
2

------+
 
 
 

pϕ– 1 µ–
r1

------------–
µ
r2
----,–=

r1 r
2

2µr ϕcos µ2
+ + ,=

r2 r
2

2 1 µ–( )r ϕcos– 1 µ–( )2
+ .=
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At µ = 0, the equations of motion allow a particular
solution that corresponds to circular motions of point P
about point S:

(2)

Here, R is constant. We assume that 0 < R < 1. At solu-
tion (2), we have

For low, but nonzero µ, we take solution (2) as the
generating solution. Many studies are devoted to con-
structing periodic solutions of the restricted three-body
problem, which transform to a generating circular solu-
tion at µ = 0, and to their use for analyzing the dynam-
ics of asteroids (Szebehely 1967; Bruno 1990). We con-
struct these solutions (Poincaré solutions of the first
kind) as follows. Writing the constant of the energy
integral H = h = const as a series h = h0 + µh1 + µ2h2 + …
and solving the equality H = h for pϕ yields

(3)

(4)

At the isoenergetic level H = h, the motion is
described by Whittaker’s equations in Hamiltonian
form (Markeev 1999):

(5)

Let us find the analytic (in µ), 2π-periodic (in ϕ)
solution r*(ϕ) and (ϕ) of system (5) by the Poincaré
method (Malkin 1956). We seek the solution in the
form of a series

(6)

The functions f and g satisfy the system of equations

(7)

where

(8)
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and V0 is the function V(r, ϕ) from (4) calculated at r = R.
It can be represented as a Fourier series of the form
(Aksenov 1986)

where  = (R) are the Laplace coefficients.

If ω is not an integer (i.e., there is no resonance of
the first order), then the periodic solution of Eqs. (7)
can be written as the following Fourier series:

(9)

The dependence of momentum pϕ on ϕ is found
from (3), (4), and (6) to be

(10)

Functions (6) and (10) are 2π-periodic in ϕ. In turn,
the dependence of ϕ on dimensionless time ν can be
derived from the equation

Substituting r and pϕ from (6) and (10) in this equa-
tion yields

(11)

where

(12)

The period in ν is equal to the time interval T in
which ϕ increases by 2π. We find from (9), (11), and
(12) that T = 2π/Ω1, where Ω1 = Ω + µ  + O(µ2) and
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The constant of the energy integral is an important
parameter on which the constructed periodic solution
depends. In particular, h1, h2, … can be chosen in such
a way that its period is equal to the period of the gener-
ating circular motion.

THE HAMILTONIAN OF PERTURBED MOTION

Let us introduce perturbations q, p, and I in the
vicinity of the periodic solution by using the canonical
transformation

In the expansion of Hamiltonian (1) in a power
series of q, p, and I, the coefficient of the first power of
I coincides with the right-hand side of Eq. (11). Let us
introduce new canonically conjugate variables ϕ1 and I1
instead of ϕ and I by using the generating function

The coefficient of I1 in the expansion of the Hamil-
tonian for perturbed motion in a series will then coin-
cide with the frequency Ω1 of unperturbed periodic
motion. If we also make the substitution q = (Ω + 1)–1/2q2
and p = (Ω + 1)1/2p2 and change to a new independent
variable τ = Ω1ν, then the Hamiltonian of perturbed
motion will be written as the following series (we use
the old designation ϕ for the new angular variable ϕ1):

(13)

where Hm is the form of power m with respect to |I1|1/2,
q2, and p2, with
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CHARACTERISTIC EXPONENTS AND THE 
DISPLACEMENT OF KIRKWOOD GAP CENTERS

The Hamiltonian H2 from expansion (13) corre-
sponds to a linearized system of equations of perturbed
motion. Two characteristic indices of this system are
zero, while the other two, ±i2πλ, at a sufficiently low µ
and in the absence of resonance of the second order
(parametric resonance) are purely imaginary. The
quantity λ can be treated (when τ = Ω1n't plays the role
of time) as one of the frequencies of the small oscilla-
tions in the vicinity of the periodic solution under study.

If µ is small enough, then λ is an analytic function
of µ and can be represented as the series

(14)

where λ0 = ω and λ1 is given by

(15)

Let the n : n' = k : (k – m) commensurability be exact
at R = R0. The resonance of order m, i.e., mω0 = k,
where ω0 = ω(R0), is then realized.

If, however, µ ≠ 0, then R = Rµ, which differs from
R0 and corresponds to the resonance of order m. This
value must satisfy the resonance relation

(16)

where λ is given by Eq. (14). We derive the following
expression for δ = Rµ – R0 from relations (8) and (16):

(17)

For a known µ and specified n : n' commensurabil-
ity, Eq. (17) describes the displacement of Kirkwood
gap centers. To be specific, let us consider periodic
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motions with a period equal to the period of the gener-
ating circular motion. We then have

and derive the following expression for δ from (15) and

(17) using the equality  = 4K(R)/π, where K(R) is
the complete elliptic integral of the first kind:

At sufficiently low µ, δ is positive; i.e., the gap cen-
ters are displaced from R0 to larger R (toward Jupiter)
at low µ.

THE STABILITY OF PERIODIC MOTIONS 
AT THE BOUNDARIES OF THE REGIONS

OF PARAMETRIC RESONANCE

Let us assume that 2ω is close to an odd number
2N + 1; i.e., the ratio n : n' is close to a rational number
(2N + 1) : (2N – 1) (N = 1, 2, 3, …). An analysis of the
stability of periodic solutions for the restricted three-
body problem for such commensurability was begun
long ago (Heinrich 1912; Zeipel 1915); the correspond-
ing review is given in the monograph of Bruno (1990).

Let the equality 2ω0 = 2ω(R0) = 2N + 1 holds at R = R0.
For R close to R0, we assume that R = R0 + ∆, |∆| ! 1.
We then have

(18)

where, according to (18) and (8),

(19)

Using the algorithm from Markeev (2000), we can
make a real, canonical, analytic (with respect to µ, ξ2,
η2, η1), and 2π-periodic (in ξ1) change of variables, q2,
p2, ϕ1, I1  ξ2, η2, ξ1, η1, which reduces the Hamilto-
nian of perturbed motion to

where Γm is the form of m with respect to |η1|1/2, ξ2, η2
with 2π-periodic (in ξ1) coefficients;
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Here, k = 2N + 1, λ = N + 1/2 – µ(α – λ1) + O(µ2), and
σ = µχ + O(µ2), where λ1 and α are given by formu-
las (15) and (19), while

The coefficients cij in the function Γ4 are given by
the equalities

(20)

At low µ, the regions of parametric resonance (the
regions of orbital instability of the periodic solution
under study) are specified (Markeev 2000) by the ine-
quality |α – λ1| < |χ|. In the R, µ plane, they are wedge-
shaped regions that emerge from points R = R0 of the
µ = 0 axis. The boundaries γ+ and γ– of these regions are
specified, respectively, by the equations

(21)

where a = (|χ| – λ1)/  and b = –(|χ| + λ1)/ .

At the boundary of the region of parametric reso-
nance for sufficiently low µ, there is orbital stability if
the signs of a02 = c20(N + 1/2)2 – c11(N + 1/2) + c02 and
α – λ1 are opposite and orbital instability if their signs
are the same (Markeev 2000).

However, it follows from (20) that

,

while from (19) and (21), we can find that the inequal-
ities α < λ1 and α > λ1 hold at γ+ and γ–, respectively.
Therefore, at sufficiently low µ, the Poincaré periodic
solution under study is orbitally stable at boundary γ–
and unstable at boundary γ+. This is yet another dynam-
ical cause of the asymmetry in the arrangement of gap
centers [which correspond to n : n' = (2N + 1) : (2N – 1)
commensurability] in the asteroid belt, because the
points of boundaries γ+ lie closer to Jupiter than do the
points of boundaries γ– for a given µ.
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CONCLUSION

We have established the dynamical causes of the
asymmetry in the arrangement of Kirkwood gap cen-
ters in the asteroid belt. The orbits corresponding to
Poincaré periodic solutions of the first kind were taken
as unperturbed asteroid orbits. The first cause is that
even to a first approximation in µ, one of the frequen-
cies of small oscillations in the vicinity of an asteroid’s
periodic motion differs from the oscillation frequency
in the vicinity of the corresponding generating circular
motion. For n : n' = (2N + 1) : (2N – 1) commensurabil-
ity, we additionally pointed out the second cause of the
asymmetry: the Poincaré solutions are orbitally unsta-
ble at one of the two boundaries of the regions of para-
metric resonance or, more specifically, at the boundary
that lies closer to Jupiter.
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Erratum: “A Two-Dimensional Hydrostatically 
Equilibrium Atmosphere of a Neutron Star 
with Given Differential Rotation” 
[Pis’ma Astron. Zh. 26, 917 (2000); 
Astronomy Letters 26, 788 (2000)]

V. S. Imshennik and K. V. Manukovskiœ
In the paper by V.S. Imshennik and K.V. Manukovskiœ [Astron. Lett. 26, 788 (2000)], a misprint was

made on page 794: Fig. 2 was given instead of Fig. 4 for the second time. Here, we present the correct Fig. 4. 
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