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Inhibition of the radioactive decay of the isomer 119mSn
with the use of Mo¨ ssbauer backscattering

S. K. Godovikov
Scientific-Research Institute of Nuclear Physics, M. V. Lomonosov Moscow State
University, 119899 Moscow, Russia

~Submitted 8 September 1998!
Pis’ma Zh. Éksp. Teor. Fiz.68, No. 8, 599–603~25 October 1998!

In research on the production of beams of coherentg rays (g-ray
lasers!, conditions under which a substantial changeDl/l52(0.114
60.027) in the radioactive decay constantl ~the isomeric level 89.53
keV 119mSn, T1/25293 days! can occur have been found experimentally
for the first time. This is made possible by coherent Mo¨ssbauer~23.87
keV! backscattering from a resonant screen located nearby. An inter-
pretation of the effect observed is proposed on the basis of the idea of
dynamic synchronization of oscillations between a nuclear level and a
standing wave of Mo¨ssbauer radiation. Possibilities for further increas-
ing Dl/l up to 0.5 are found. ©1998 American Institute of Physics.
@S0021-3640~98!00120-0#

PACS numbers: 23.90.1w, 23.20.Lv, 42.55.Vc, 33.45.1x, 29.30.Kv

Numerous attempts to produce beams of coherentg rays (g-ray lasers! have been
made since the beginning of the 1960s, so far without success.1 One of the most inter-
esting variants of ag-ray laser is considered to be a two-level scheme based on l
lived isomers such as119mSn (T1/25293 days!. In this case the excited isomeric sta
arises under prolonged neutron irradiation of the isotope118Sn in a reactor. In this way it
is possible to obtain sources with very appreciable specific activity, controlling the d
of which is the subject ofg-ray laser physics. However, since the discovery of the la
of radioactive decay it has been known that the decay constantl is an absolute constan
which for a given isotope does not depend on any external actions. Attempts to infl
the decay rate by altering the chemical environment around an atom of the isotop
pressure, temperature, and so on, gave at mostDl/l;1024– 1023. Individual record
(;1022) cases (235mU, E576 eV, T1/2526 min ~Ref. 2! or 90mNb, E52.38 keV, T1/2

519 s~Ref. 3!! have been observed only for low-energy decays due to electron co
sion, which strongly depend on the electronic structure of an atom of the isotope a
the surrounding matrix. At present there is no general theoretical approach to the pr
of a large change inl, just as there are no experimental solutions of the problem. In
connection, an attempt is made in the present work to influence the decay constant
89.53 keV level of119mSn by using radiation from the intermediate 23.87 keV Mo¨ssbauer
level.

Two 119mSn Mössbauer sources in the form of the chemical compound CaSnO3 were
6290021-3640/98/68(8)/5/$15.00 © 1998 American Institute of Physics
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used to perform the experiment. One source was subjected to a definite type of a
while the other was used as a reference standard. The activities of the sources at t
of the experimental series were 5 and 2 Ci, respectively. For the purposes of the p
work, a ‘‘black’’ scatterer/screen, which has a Mo¨ssbauer effect probabilityf 851 and
contains a large quantity of the stable isotope, was produced by sintering a mixture
powders CaO and119SnO2 in a definite proportion. The idea of the experiment is to pla
the ‘‘black’’ screen and source very close to one another (;2 mm) so that theg wave
emitted from the source and the wave from the resonant scatterer/screen could effe
interact with one another. The large solid angle (;2p) of scattering into the source, th
high probability of scattering, and coherence effects could provide the required effe
ness for influencing119mSn nuclei which are in a ‘‘predecay’’ state. The decay schem
119mSn is shown in Fig. 1.4 The isomeric level 89.53 keV is extremely strongly conver
(a;5000) and lies far from the Mo¨ssbauer level 23.87 keV. It can be assumed that
nucleus, being a collective formation of nucleons where all energy levels are interco
and interdependent, will respond in one way or another to the proposed type of ac

The screen–source arrangement was left unchanged for six months. It was dis
only once per month for;1.5 h to perform measurements of the absolute intensity of
23.8 keV line radiation. In so doing, the screen was removed and the source was s
in a strictly determined location in a spectrometric system. Measurements of the ab
intensity of a reference screen, which was not subjected to any influences, were m
the same day. The scintillation method of radiation detection and the multiscalar o
ing mode of the analyzer were used. For the first six months the experimental sourc~No.
1! was connected with the screen, after which the screen was removed and c
measurements were performed on source No. 1 and the reference source No. 2 us
same scheme. The intensity of the reference source varies in time asN25N02exp(2lt),
while the intensity of the experimental source, where the decay constant is presum
change (Dl), varies asN15N01exp@2(l1Dl)t#. Hence

FIG. 1. Decay scheme of119mSn.
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y5 log~N1 /N2!5 logN012~l1Dl!t2 logN021lt5~ logN012 logN02!2Dlt. ~1!

In the caseDl50 one will havey5 const, while forDlÞ0 the plot ofy is a straight
line with slope2Dl. The result of the measurements is a plot ofy versust.

The results of the analysis are presented in Fig. 2~series with a screen! and Fig. 3
~control series!. It is clear that in Fig. 2 the straight lines logN1 and logN2 as a function
of t are not parallel, while the plot ofy versus t is considerably different from
y5const. At the same time, the straight lines logN1 and logN2 in Fig. 3 are completely
parallel, and their difference corresponds toy5const.

The numerical results of the analysis are

FIG. 2. Plots of logN1, logN2, andy versus time for an experiment with the screen in place,N is the counting
rate per channel,T5293 K; the dashed line is parallel to logN2.

FIG. 3. Plots of logN1, logN2, andy versus time for the control experiment.
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Dl52~2766!31025 day21 for the experiment with a screen,

Dl52~365!31025 day21 for the control experiment.

The decay constant of the reference source, determined from the experimenta
over a period of 12 months, isl5(23663)31025 day21, i.e., T1/25293.663.7 days,
which corresponds to data in Fig. 1.

In summary, for the experimental sourceDl/l52(0.11460.027) and T1/2

5331.6614.3 days, i.e., the half-life increased by;40 days. At the same time, it i
obvious thatDl/l50 for the control series of experiments, which attests to a h
reliability and stability of the apparatus employed.

Source No. 1 was also used to perform a Mo¨ssbauer experiment with the screen
place for the purpose of studying the influence of backscattering on the width of the
keV emission line. The linewidth remained unchanged to within 1.5%.

The value obtained forDl/l was found to be extremely large and negative, i
substantial inhibition of the decay of the isomeric level is observed. Let us examin
process of the interaction of the resonant source with the resonant screen. The sc
located 2 mm from the source, the lifetime of the 23.87 keV level is 1.8531028 s, and
the g radiation reaches the screen in;0.6310211 s, i.e., a119Sn nucleus in the scree
that absorbs ag photon starts to re-emit with a delay of;1/3000 of the temporal length
of the wave train. As is well known, Mo¨ssbauer scattering possesses a clear-cut co
ence property, i.e., the incident and scattered waves can interfere with one another5 As a
result, a single forward wave and the corresponding backward wave~i.e., the wave
scattered by 180°! form in the source a standing electromagnetic wave with lifeti
;1028 s. It can be estimated that a 5 Ci source is subjected to the action of;1.5
31026 standing waves in 1 s~taking account of the 2p solid angle and the conversio
coefficient of the 23.87 keV levela55.5).

The119mSn nucleus in a predecay state with excitation energy 89.53 keV and th
of the standing wave oscillating at a nucleus form a system of nonlinearly cou
oscillators whose energies are almost multiples of one another to within the accura
the measurements (89.53/23.87;4). Under such conditions dynamic synchronization
the frequencies and phases of the oscillations of these oscillators is entirely possible
means that the isomeric level of the nucleus, the nucleus itself, and the standing
form a new nuclear system whose parameters differ somewhat from those of the
119mSn nucleus. Specifically, ordering of the oscillations can increase the stability o
nuclear level, i.e., increase the lifetime of the level, as is observed. A mechanical a
of this phenomenon is provided by the synchronization of the oscillations of a pend
clock suspended on a moving beam~the Huygens effect!,6 while a nuclear analog is
provided by the recent discovery that the energies of several lower excited levels
series of nuclei~from Ag to Ba including119Sn) are even multiples of the energy of th
first, lowest level in a given nucleus~the nuclear Huygens effect!.7,8 There is also an
optical analog of this phenomenon — mode locking in distributed systems, where w
with nearly commensurate~multiple! frequencies are phase-matched, for example, m
locking in lasers.6 The initial commensurateness of the frequencies of our system an
enormous~with respect to the intranuclear time scale;10223 s) lifetime of the standing



o the

in the

n

basis

f 10,

ses

f the

be
stable
nclu-
as

and

e
at the
likely
at the
ts such

.

5.

633JETP Lett., Vol. 68, No. 8, 25 Oct. 1998 S. K. Godovikov
wave (;1028 s) are favorable for adequate development of processes leading t
synchronization of oscillations of the ‘‘nuclear level–standing wave’’ type.

The total time during which the standing waves act on an undecayed nucleus
source~synchronization time! is ;0.03 s per second, i.e.,;3%. If this value is taken as
being close to the experimental valueDl/l;11%, then the decay probability of a give
nucleus can be considered to decrease sharply (Dl/l→21) during its interaction with
the standing wave.

A number of predictions concerning the inhibition of decay can be made on the
of the proposed interpretation. They include the following:

1! If the activity of the experimental source is increased by several factors o
then the synchronization time can increase by up to;100%. This will lead initially to a
sharp decrease in theg-ray flux, i.e., the activity of the source seemingly decrea
sharply. As a result, the synchronization time will decrease and theg-ray flux will
increase back to the initial value. This process will repeat, i.e., periodic oscillations o
intensity will arise, and a ‘‘pulsating’’ radioactive source will be formed.

2! The half-life for 119mSn Mössbauer sources with high specific activity should
longer. This is because as a high-activity source decays, a large amount of the
isotope119Sn accumulates in it and starts to function as an effective screen. This co
sion was checked experimentally. An initially;50 mCi source made 10 years ago w
used for this. At the time of the experiment it contained one radioactive119mSn atom per
;4000 stable119Sn atoms. The measurements showed a sharp inhibition of decay
gaveDl/l;0.5.

The absence of changes in the linewidth of the Mo¨ssbauer spectrum under th
conditions of the experiment with the screen in place can be explained by the fact th
23.87 keV radiation arises after the 89.53 keV level decays, the decay being most
in the absence of a standing wave at the nucleus. At the same time, the fact th
linewidth does not change in the present experiment attests to the absence of effec
as radiation trapping and ‘‘nuclear exciton’’ formation.

I thank L. A. Rivlin and A. V. Davydov for a discussion of the results.
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We calculate the diffraction slopeBD for diffractive deep inelastic scat-
tering. We find a counterintuitive rise ofBD in going from exclusive
diffractive excitation of vector mesons to excitation of continuum states
with M2;Q2. For the small-mass continuum we predict a rapid varia-
tion of BD with M2 on a scale ofmV

2 and a sharp drop ofBD for a
small-mass continuum above the vector meson excitation. ©1998
American Institute of Physics.@S0021-3640~98!00220-5#

PACS numbers: 13.60.Hb

The diffraction slope is one of the principal observables which measure the im
parameter structure of diffractive scattering. The commissioning of the leading p
spectrometer~LPS! of the ZEUS detector at HERA1 gave a long-awaited access to th
transverse momentum transferD and the diffraction slopeBD52] log$dsD /dD2)%/]D2 in
diffractive deep inelastic scattering~DIS! ep→e8p8X. The special interest in the diffrac
tion slope for diffractive DIS stems from the fact that besides the massM of the excited
stateX there emerges a new large scale: the virtual photon’s massAQ2. The principal
issue is whatBD depends on:M2,Q2, the massmV of the ground-state vector meson
the corresponding flavor channel, and/or the diffractive scaling variableb5Q2/(Q2

1M2) ~hereafterQ2,x andxIP5x/b are the standard diffractive DIS variables!.

This is a highly nontrivial issue because at fixedb diffraction proceeds into the
high-mass continuum statesX with M25Q2(12b)/b@mV

2 . Our experience with dif-
fraction of hadrons and/or real photons can be summarized as follows. For any two
diffractive scatteringac→bd, an essentially model-independent decomposition ho
BD5DBab1DBcd1DBint , whereDBi j comes from the size of thei j transition vertex
and the relatively smallDBint comes from the interaction range proper.2,3 The values of
DBi j depend strongly on the excitation energy in thei→ j transition,DM25mj

22mi
2 . In
6340021-3640/98/68(8)/7/$15.00 © 1998 American Institute of Physics



ry of
-

the

ted
state
een
las-

me-

e
t to

, in

-
ac-

nd by

US

635JETP Lett., Vol. 68, No. 8, 25 Oct. 1998 Nikolaev et al.
elastic scattering,i 5 j , one findsDBii '1/3Ri
2;4 –6 GeV22, where Ri

2 is the mean
squared hadronic radius, and typicallyBel;10 GeV22. The similar estimateDBi j

'1/3Ri
2 ,1/3Rj

2 holds for diffraction into low-mass continuum states,DM2&mN
2 , and

diffraction into low-mass continuum and elastic scattering fall into the broad catego
exclusivediffraction for which BD;Bel . However, for excitation of high-mass con
tinuum,DM2*mN

2 , often referred to as the triple-pomeron (3IP) and/or genuineinclu-
sive region of diffraction, the size of the diffracting particle no longer contributes to
diffraction slope andBD5B3IP5DBpp1DBint;1/2Bel'6 GeV22. The above slope
B3IP is nearly universal for all the diffracting beams and excited statesX ~Ref. 3!.
Furthermore, in the double high-mass diffractionhp→XY, whenMX,Y@mN , one is left
with very small BD;DBint;1.5–2 GeV22 ~see Refs. 2 and 4 and references ci
therein!. In real photoproduction the excitation scale is definitely set by the ground-
vector meson massmV . Perhaps the most dramatic example of this distinction betw
exclusive and inclusive diffraction is a drastic change of the diffraction slope from e
tic, pA→pA, to quasielastic,pA→p8A* , scattering of protons on heavy nuclei.5

Another well understood diffractive process is the elastic production of vector
sonsg* p→p8V. In this case the transverse size in theg*→V transition vertex, the
so-called scanning radius

r S56/AQ21mV
2, ~1!

decreases withQ2 ~andmV
2). This is the basis for the prediction6 thatDBg* V}r S

2 and that
the diffraction slopeBV decreases toBV'B3IP at very largeQ2, which is in good
agreement with the experiment.7

In this paper we report predictions for theQ2,M2 and flavor dependence of th
diffraction slope for inclusive diffractive DIS. We demonstrate that in striking contras
BV for exclusive diffraction into vector mesons which exhibits strong dependence onQ2,
the diffraction slopeBD for inclusive diffractive DIS is a scaling function ofb. The most
paradoxical prediction is that in contrast to real photon and hadronic diffraction
diffractive DIS BD rises with the excited massM reachingBD;Bel at M2;Q2. Argu-
ably, such an unusual behavior ofBD derives from the scaling scanning radiusr S for
diffraction excitation of continuumqq̄ states,8

r S
2;

9

mf
2 ~12b!, ~2!

which rises towards smallb, so thatDBg* X}r S
2 does not depend onQ2 and rises sub-

stantially fromb'1 to b;1/2. Such a large,Q2-independentDBg* X has been conjec
tured earlier,9 and in the present communication we quantify this property of the diffr
tion slope by a direct calculation. Furthermore, we predict a substantial drop ofBD below
B3IP for excitation of the small-mass continuum.

Finally, for very large excited masses,M2@Q2, i.e., b!1, even for theqq̄ excita-
tion one recovers the inclusive regime of smallDBg* X and BD decreases back toBD

;B3IP . This triple-pomeron limit ofb!1 is dominated by excitation of theqq̄g and
higher Fock states of the photon, though, which is the genuinely inclusive process, a
the same token as for hadronic diffraction one can argue9 thatBD must not depend onQ2

and thatBD'B3IP . This expectation has been confirmed by the first data from the ZE
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LPS:BD57.261.1(stat.)20.9
107(syst.) GeV22 for diffractive DIS (5,Q2,20 GeV22; Ref.

1! andBD56.860.9(stat.)21.1
11.2(syst.) GeV22 in real photoproduction (Q250).10

We focus on diffractive excitation of theqq̄ Fock states of the photon, which i
known to dominate atb*0.1 ~Ref. 11!. The sample Feynman diagram for this process
shown in Fig. 1, in which we show also all the relevant momenta. We base our an
on the formalism of Ref. 12, which we generalize to the non-forward caseDÞ0.a!

If z and (12z) are fractions of the~light-cone! momentum of the photon carried b
the quark and antiquark, respectively andk is the relative transverse momentum in theqq̄
pair, thenM25(mf

21k2)/z(12z). The quark and antiquark are produced with the tra
verse momentak1zD and 2k1(12z)D with respect to theg* p collision axis. We
focus on the transverse diffractive structure function. To the leading log1/xIP , for exci-
tation of quarks of massmf and electric chargeef ,

FT
D~4!~D2,xIP ,b,Q2!5

8pef
2

3s tot~pp!
E d2k

2p

~k21mf
2!b

~12b!2J

3aS
2~Q̄2!$@122z~12z!#F1

21mf
2F2

2%, ~3!

where J5A124(k21mf
2)/M2, aS

2(Q̄2) is the strong coupling, evaluated at the QC
hardness scaleQ̄2 to be specified below, andf (xIP ,k,D) is the gluon density matrix.6,15

In the calculation of diffractive helicity amplitudesF1 ,F2 it is convenient to introduce

c~z,k!5
1

k21mq
21z~12z!Q2

, C~z,k!5kc~z,k!, ~4!

in terms of which

F i5E d2k

2pk4
f ~xIP ,k,D'!f i , ~5!

where

f15C~z,r1k!1C~z,r2k!2CS z,r1
1

2
DD2CS z,r2

1

2
DD , ~6!

f25c~z,r1k!1c~z,r2k!2cS z,r1
1

2
DD2cS z,r2

1

2
DD , ~7!

FIG. 1. One of the four Feynman diagrams for diffraction excitation of theqq̄ final state via QCD two-gluon
pomeron exchange.
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r5k2
1

2
~122z!D. ~8!

For smallD within the diffraction cone

F~x,k,D!5
]G~x,k2!

] logk2
expS 2

1

2
B3IPD2D , ~9!

where]G/] logk2 is the conventional unintegrated gluon structure function.6 The depen-
dence ofF(x,k,D) on Dk corresponds to the subleading BFKL singularities15 and can be
neglected at smallxIP . The diffraction slopeB3IP in ~9! is a nonperturbative quantity, i
comes for the most part form the hadronic size of the proton, modulo to a slow R
growth one can takeB3IP; 6 GeV22 ~Ref. 6!.

In the present analysis we are mostly concerned with theb,Q2 and flavor depen-
dence ofDBg* X which comes from theD dependence off1 andf2, and for our purposes
it is sufficient to evaluateF1

2 ,F2
2 to an accuracyD2. The calculation of amplitudes

F1 ,F2 has been discussed to great detail in Refs. 8,12, and 16 and need not be re
here. We simply cite the results starting with excitation of heavy quark–antiquark
when the fully perturbative quantum chromodynamics~pQCD! analytic calculation is
possible:

FT
D~4!~ t,xIP ,b,Q2!5

2pef
2

9s tot~pp!

b~12b!2

mf
2 F ~314b18b2!1

D2

mf
2

1

10
~5216b27b2

278b31126b4!G @as~Q̄2!G~xIP ,Q̄2!#2exp~2BIPD2!, ~10!

where the pQCD hardness scale equals

Q̄2'mf
2S 11

Q2

M2D 5
mf

2

12b
. ~11!

The result~10! holds for the large-mass continuum,M2@4mf
2 . As has been shown in

Ref. 8, the typical transverse size in theg*→qq̄ transition vertex is 1/Q̄ ~see Eq.~2!!.
For excitation of heavy flavors and/or for light flavors at 12b!1 the hardness scaleQ̄2

is large, and one is in the legitimate pQCD domain.

Consequently, the contribution to the diffraction slope from theg* X excitation
vertex equals

DBg* X5
1

mf
2

16b17b2178b32126b425

10~314b18b2!
, ~12!

which is a rigorous pQCD result for heavy flavors. Evidently, it is a scaling function
b which does not depend onQ2, a fact which nicely correlates with the scanning rad
being a function ofb only. It rises in going fromb;1 to b;1/2 and decreases in th
inclusive limit of b→0. It diminishes the diffraction slope atb;1, which can be attrib-
uted to thes-channel helicity-nonconserving spin-flip transitions.



por-
e

of

e
ason-

e
he
ria-

ture

o the
ale is

he
l

638 JETP Lett., Vol. 68, No. 8, 25 Oct. 1998 Nikolaev et al.
One can readily evaluateDBg* X for the two terms}F1
2 andmf

2F2
2 ; we only men-

tion here that for both terms theb dependence ofDBg* X is very similar to that given by
Eq. ~12!. Even for heavy flavors, the contribution toFT

D(4) from mf
2F2

2 is a numerically
small correction to the dominant contribution from the term}F1

2. This correction is even
smaller for lighter flavors. As has been discussed in Ref. 16, the scalemG of variation of
the unintegrated gluon density in the soft-to-hard transition region becomes more im
tant than the massmf of light quarks. For this reason, for light flavor excitation th
contribution frommf

2F2
2 will be suppressed}mf

2/mG
2 . Furthermore, the scale forDBg* X

will be set by 1/mG
2 rather than by 1/mf

2 . One of the consequences is that the change
DBg* X from strange to up/down quarks is much weaker than}1/mf

2 ~see Fig. 2, where
we show our numerical results!.

Although for light flavor the magnitude ofDBg* X is no longer pQCD calculable, th
behavior of the unintegrated gluon density in the soft-to-hard transition region is re
ably well tested from earlier calculations16 of the diffractive structure functionFT

D(4) ,
which agree with experiment, and also from the small-Q2 behavior of the proton structur
function.17 The emergence of this second scale has only a marginal impact on tb
dependence ofBD , which is what we are concerned with here. We checked that va
tions of BD calculated using different soft-to-hard interpolations of the gluon struc
function as described in Ref. 16 do not exceed;1 GeV22, with retention of the form of
the b dependence ofBD .

In contrast to the scalingb dependence ofBD for finite b, for diffractive DIS into
near-threshold small masses,M2;mV

2;4mf
2 , i.e., for 12b}M2/Q2!1, we predict a

strongM2 dependence of the diffraction slope. The near-threshold region belongs t
pQCD domain even for light flavor excitation, because here the QCD hardness sc
large, Q̄2'1/4(Q21mV

2) ~for finite Q2 and/or heavy flavor one must bear in mind t
kinematical thresholdb<b th5Q2/(Q214mf

2),1). The plane wave description of fina
states holds for quark–antiquark relative velocitiesv*aS(Q̄2). In this case the small-v2

expansion of diffractive structure function is

FT
D~4!~ t,xIP ,v,Q2!5

128pef
2

3s tot~pp!

mf
2

Q4 vF11
D2

6mf
2 v2G @as~Q̄2!G~xIP ,Q̄2!#2

3exp~2BIPD2!. ~13!

FIG. 2. Our predictions for theb and flavor dependence of the diffraction slopeBD in diffractive DIS of
transverse photons atQ25100 GeV2.
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The principal effect is that the diffraction slopedecreaseswith the increase ofv2 and/or
M2:

DBg* X52v2/6mf
2. ~14!

Here for heavy flavorsv25124mf
2/M2, while for light flavors it only makes sense t

speak of the continuum above the ground-state 1S vector mesons (r0,v,f0), and v2

must be understood asv2;12mV
2/M2. Consequently, for the small-mass continuum

predict very rapid variations of the diffraction slopeBD ~see Fig. 2!, and here the relevan
mass scale ismV

2 . The principal point is thatBD drops substantially; we leave open th
scenario in whichBD becomes negative-valued, i.e., there will be a forward dip, i
certain range of masses.

In the spirit of duality for diffractive DIS,18 diffraction excitation of the small-mas
continuum above the 1S ground state vector meson is dual to production of radial e
tations of vector mesons. Then our finding of the near-threshold decrease of the d
tion slope with risingM2 correlates nicely with the prediction, which follows from th
node effect,6 that the diffraction slope is substantially smaller for theV8(2S) states than
for the ground state vector mesonsV(1S). The near-threshold drop ofBD is smaller for
heavy flavors, in a nice conformity with the weaker node effect in diffractive produc
of heavy quarkonia.

A similar analysis can be repeated for the longitudinal diffractive structure func
Although it is of higher twist, it dominates diffractive DIS atb*0.9 ~Refs. 18 and 16!.
As far as the diffraction slope is concerned, the QCD hardness scale for diffra
excitation of longitudinal photons is large,Q̄2' (1/4)b Q2, and the corresponding scan
ning radius is small, and we expectBD'B3IP .

We conclude with a somewhat academic observation on a sum rule for theM2

integrated cross section of diffractive excitation of heavyqq̄ pairs by transverse photons
Namely, if one neglects theb dependence of the QCD hardness scaleQ̄2 in ~10!, then
one readily finds that for theM2-integrated diffractive cross sectionDBg* X50 andBD

5B3IP . Indeed, a closer inspection of the calculation of theM2 integrated cross sectio
shows that to accuracyD2 the dependence onD can be eliminated by the change
integration variabled2k→d2r . One can trace the origin of this sum rule to the QC
gauge-invariance properties of~5!; it serves as a useful cross check of correspond
polynomial coefficients. This sum rule is of little practical value, though, because fo
dominant excitation of light flavors the scaleQ̄2 is small in the soft-to-hard transition
region of strong variation of the gluon structure functionG(xIP ,Q̄2), and the above-
outlined derivation is not applicable.

To summarize, we have presented predictions from the standard two-gluon pom
exchange mechanism for the forward cone in diffractive DIS. For the high-mass
tinuum excitation we predict that the diffraction slopeBD is a scaling function ofb which
has a counterintuitive rise in going from small masses toM2;Q2, an effect which has no
analog in the diffraction of real photons and/or hadrons. For the small-mass conti
we predict a rapid variation ofBD with M2 on a scale ofmV

2 and a sharp drop ofBD for
a small-mass continuum above the vector meson excitation. These predictions c
tested at HERA.
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a!The first calculation of the diffraction slope for theM 2 integrated cross section is found in Ref. 13; th
preliminary results from the present study have been reported elsewhere.14
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Spontaneous emission from an atomic oscillator located
near an ideally conducting conical surface

V. V. Klimova)

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117294 Moscow, Ru

~Submitted 17 September 1998!
Pis’ma Zh. Éksp. Teor. Fiz.68, No. 8, 610–613~25 October 1998!

The linewidth for an atom located near an ideally conducting tip or
inside a conical cavity in an ideal conductor is analyzed. It is shown
that the effect of the tip decreases as its opening angle decreases. At the
same time, the linewidth for an atom in a conical cavity can strongly
increase or strongly decrease, depending on the position of the atom
and the opening angle of the cavity. The results obtained could be
helpful in designing spectrally-selective near-field nanoscopes.
© 1998 American Institute of Physics.@S0021-3640~98!00320-X#

PACS numbers: 32.70.Jz, 61.16.Ch

A variety of works on the effect of material bodies on the spontaneous emis
from an atom have now been published.1,2 The effect of dielectric microspheres an
cavities on the radiative lifetime of an atom is being discussed especially actively~see,
for example, Refs. 3 and 4!. At the same time, at present the main element of scann
microscopes is a nanotip, and there arises the question of the effect of this tip o
lifetime of an atom located near it. Numerical calculations of the effect of a conica
with a complicated shape on the spontaneous emission were performed in Ref. 5.
ever, as far as I know, the problem of the linewidth for an atom in the presence
conical tip or a conical cavity has not been widely discussed from the theoretical s
point. The objective of the present letter is to examine this question. Although a sy
atic calculation of the linewidth requires a quantum-electrodynamic approach, we
examine as a first approximation the radiation from a classical electric dipole w
electric momentd0 and frequency are determined in the standard manner from qua
mechanics. It is well known that such an approach gives the correct results.1,2

As a first step, let us consider a radially oriented dipole lying on the axis of a c
The geometry of the problem is shown in Fig. 1. In this case the electric field is kn
in all space:6
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r 0
(
n51

`

Pnn
~cosu!

j nn
~kr0!hnn

~1!~kr !

Nn
. ~1!
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Hered0 is the amplitude of the oscillations of the dipole moment;Pn , j n , andhn
(1) are

Legendre, spherical Bessel, and Hankel functions;7 nn is the set of solutions of the
equationPnn

(cosu0)50 that ensure satisfaction of the boundary condition;k5v/c is the
wave number in free space; and, the normNn is given by

Nn5E
0

u0
sinudu~Pnn

~cosu!!252
nn

2nn11
Pnn21~cosu0!

]Pnn
~cosu0!

]nn
. ~2!

Figure 2 shows the behavior of several roots as a function of the opening ang
the cone. For not too small angles at the vertex (p/6,u,5p/6) the roots and norms ca
be estimated as

FIG. 1. Geometry of the problem of spontaneous emission from an atomic oscillator near a conical su

FIG. 2. Some roots of the equationPnn
(cosu)50 (n51, 2, 3) as a function of the opening angle of the conic

surface.
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nn5
p

u S n2
1

4D2
1

2
1

cotu

8pn
1OS 1

n2D , n51,2,3.., ~3!

Nn5
1

2nn11
~3/211/p!S G~nn11!

G~nn13/2! D
2

.

To calculate the linewidth we shall calculate the emitted energy flux in the wave zon
this zone the field is transverse and it is sufficient to calculate only theu component of
the electric field, which assumes the form

Eu52
2d0k

r 0r (
n51

` ]Pnn
~cosu!

]u

j nn
~kr0!

Nn
exp$ i ~kr2~nn11!p/2!%. ~4!

Substituting this expression into the Poynting vector and using the orthogonality re

E
0

u0 ]Pnn
~cosu!

]u

]Pnn8
~cosu!

]u
sinudu5dnn8nn~nn11!Nn , ~5!

we obtain an expression for the total energy emitted per unit time:

dE

dt
5

ck2d0
2

r 0
2 (

n

nn~nn11!

Nn
j nn

2 ~kr0!. ~6!

Now, dividing this expression by the power of the radiation of the same dipole in
space,

S dE

dt D
0

5
cd0

2

3
k4, ~7!

we obtain the final expression for the relative linewidth

g

g0
5

3

~kr0!2 (
n

nn~nn11!

Nn
j nn

2 ~kr0!. ~8!

In the caseu05p/2 the conical surface becomes flat, and the expression for the linew
acquires the simpler form

g

g0
5

3

~kr0!2 (
n51

`

~2n21!2n~4n21! j 2n21
2 ~kr0!. ~9!

Using the addition formula for Bessel functions7

sinlR

lR
5 (

n50
~2n11! j n~lr ! j n~lr!Pn~cosu!, ~10!

R5Ar 21r222rr cosu

we can sum the series in Eq.~9!, obtaining the expression

g

g0
512

3cos~2kr0!

~2kr0!2
1

3sin~2kr0!

~2kr0!3
, ~11!
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which, of course, is identical to the expression for the linewidth in the presence
conducting plane.1

For small distances from the vertex of the cone,kr0!1, the first term plays the main
role in expression~8!, and

g

g0
'

3p

16

n1~n111!

N1G2~n113/2!
S kr0

2 D 2n122

, ~12!

which, with the use of the approximate formula for the norm~3!, becomes

g

g0
'

3p2

8~3p12!

n1~n111!~2n111!

G2~n111!
S kr0

2 D 2~n121!

, ~13!

n15
3p

4u0
2

1

2
1

cotu0

8p
.

In the case such that the distance of the atom from the tip is not small, Eq.~8! must
be calculated numerically. The computational results are shown in Fig. 3. Analysis o
figure shows that a conical tip (u0.p/2) strongly influences the linewidth~broadening!
only when the atom approaches the vertex. As the opening angle decreases (u0⇒p), the
effect of the tip is seen only closer and closer to the vertex. This means that, actua
infinitely sharp tip does not influence the spontaneous emission from an atom loca
an arbitrarily close~but finite! distance from the tip.

A more interesting picture obtains when the atom lies inside a conical tip~inside a
nanotip (u0,p/2)). In this case interference effects arise, and the linewidth dep
strongly on the parameters of the problem. At some points it is considerably enla
while at other points it is considerably diminished. As the vertex is approached
linewidth approaches zero, since radiation cannot escape from such a region at a

FIG. 3. Relative linewidth of a radially oriented dipole versus the position of the dipole on the axis and v
the opening angle of the conical surface.
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The results obtained are easily extended to the case of an arbitrary orientation
dipole. A more difficult problem is to calculating the frequency shift of an atomic os
lator in the presence of a conical surface and in taking nonideality of the refle
surface into account. This problem will be examined in a separate publication.

I thank the Russian Fund for Fundamental Research for providing the fina
support for this work.
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On resonance processes in near-threshold excitation
of the resonance lines of a Zn 1 ion in electron–ion
collisions

A. I. Imre, A. N. Gomona ,a) V. S. Vukstich, and A. N. Nemet
Institute of Electronic Physics, Ukrainian National Academy of Sciences, 294016
Uzhgorod, Ukraine

~Submitted 22 September 1998!
Pis’ma Zh. Éksp. Teor. Fiz.68, No. 8, 614–617~25 October 1998!

The excitation of the components of the 4p 2P1/2,3/2
0 resonance doublet

of the Zn1 ion by monoenergetic electrons in the interval 4–10 eV is
investigated by a spectroscopic method in crossed beams. Resonances
are found in the energy dependences below and above the excitation
thresholds of resonance lines. The subthreshold resonances are satellite
of the lines investigated and are excited in the process of dielectronic
recombination. The main competing process here is the electronic de-
cay of autoionizing states, which is manifested in a resonance excita-
tion of the ions starting at the thresholds for the excitation of the levels.
Autoionizing states lying between the levels of the doublet splitting of
the 4p 2P1/2,3/2

0 state decay to the 4p 2P1/2
0 level in a Koster–Kronig

process. Above the excitation energy of the 4p 2P3/2
0 level the the domi-

nant contribution to resonance excitation is from autoionizing states
with configurations 3d9(2D5/2,3/2)4s2np,(n21) f . © 1998 American
Institute of Physics.@S0021-3640~98!00420-4#

PACS numbers: 34.80.Kw, 32.80.Dz

It is known that in the process of electron scattering by positively charged ion
attractive Coulomb field uncompensated by electrons produces characteristic featu
the effective cross sections of processes occurring near the thresholds of new en
cally closed channels. This is due to the formation and decay of autoionizing s
~AISs! of the system ‘‘electron1 ion,’’ i.e., to so-called resonance scattering. The f
mation of AISs is based on resonance capture of an incident electron with simulta
excitation of the electron and the ion. They decay both by autoionization, with
emission of an electron, and radiatively, with emission of a photon. This specific fe
of electron–ion interactions makes possible the formation of an excited system belo
excitation thresholds of ionic levels. This is observed in the form of resonances i
elastic electron scattering cross sections of the ions or via dielectronic recombin
~DR!. At the thresholds, however, the more favorable electronic decay of AISs to ex
levels of the ion becomes possible. This is observed as resonance excitation. As is
in Ref. 1, it follows from detailed balance that in the absence of any external pert
6460021-3640/98/68(8)/5/$15.00 © 1998 American Institute of Physics
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tions the DR cross section (QDR) averaged over the resonances equals the excita
cross section of the corresponding core transition at the threshold (Qexc), i.e.,

limQDR~n!5 limQexc~k2,i j !,
n→` k2→0 ~1!

wherei and j are the initial and final excited states of the ion. In the case of even w
perturbations due to an external electric field expression~1! breaks down, i.e.,QDR can
become much smaller thanQexc.

On this basis it is of particular interest to make a direct experimental observati
resonances and to determine their role in near-threshold excitation of ions by ele
impact. In the present letter we report the results of a spectroscopic investigati
resonances in the electron-impact excitation of the near-threshold parts of the indi
components of the resonance doublet 4p 2P1/2,3/2

0 of the Zn1 ion, and we propose a
physical basis for the nature of the formation of these resonances.

In the experimental apparatus described in detail in Ref. 2, the electron an
beams are crossed at a right angle under 531028 torr vacuum conditions. The ion sourc
operated in a low-voltage discharge regime. The discharge voltage (Ur<15 V) was
chosen to be absolutely less than the excitation energy of the lower of the long
3d94s2 2D5/2,3/2 states of the Zn1 ion. The energy of the ions was 600 eV and the i
current was (6 – 8)31027 A. A three-anode electron gun produced a ribbon elect
beam in the energy range 4–10 eV, with a current of 531025 Å and an energy width a
half maximum of the electron energy distribution curve equal toDE1/250.4 eV. Spectral
separation of the radiation was performed with a 70-degree vacuum monochrom
assembled in the Seya–Namioka scheme with a toroidal grating~radii 500 and 333 mm,
1200 lines/mm, Al coating!. The inverse linear dispersion of the monochromator w
dl/dl;1.7 nm/mm, and the spectral sensitivity in the wavelength range of the reson
lines of the Zn1 ion (l5202.6 andl5206.2 nm) was (528)31025 counts/photon. A
cooled FÉU-142 ‘‘solar-blind’’ photomultiplier was used as the radiation detector. T
dark background of the photomultiplier was 1–2 counts/s.

The method of modulation of two beams by square voltage pulses phase-shift
1/4 of the modulation period was used to extract the signal due to the process unde
from the total background~the background of the radiation detector and the backgro
due to the collisions of electrons and ions with residual gas atoms!. A signal of magnitude
1–5 counts/s was extracted from the background with signal/background ratio from
to 1/2. The process of performing the measurements and analyzing the results wa
mated using CAMAC modules and an IBM PC.

The results of a detailed investigation of the near-threshold sections~4–10 eV! of
the energy dependences of the excitation of the resonance lines of the Zn1 ion are
presented in Figs. 1 and 2. The figures also show the energy positions and configu
of the AISs of the Zn atom from Ref. 3. The vertical bars on the experimental po
show the rms errors in the relative measurements. The error in the absolute values
effective cross sections does not exceed 15%. The electron energy scale was ca
with an accuracy of60.05 eV from the threshold part of the excitation function of t
resonance line of the Zn atom (l5213.9 nm), for which the spectroscopic excitatio
threshold is known.
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FIG. 1. Energy dependence of the effective electron-impact excitation cross sections of the dielectroni
lites (3d104p(2P1/2

0 )ns,(n21)d→3d104sns,(n21)d1,3L j ) and of the resonance linel5206.2 nm (4p 2P1/2
0

→4s 2S1/2) of the Zn1 ion.

FIG. 2. Energy dependence of the effective electron-impact excitation cross sections of the dielectroni
lites (3d104p(2P3/2

0 )ns,(n21)d→3d104sns,(n21)d1,3L j ) and of the resonance linel5202.6 nm (4p 2P3/2
0

→4s 2S1/2) of the Zn1 ion.
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Distinct structure was observed in the energy dependences investigated, both
and above the excitation threshold of the resonance levels of the Zn1 ion. This struc-
ture is due to resonance capture of incident electrons by Zn1 ions, accompanied
by excitation of the system to AISs of the Zn atom with configuratio
3d104p(2P1/2,3/2

0 )ns, (n21)d and 3d9(2D5/2,3/2)4s2np,(n21) f ~wheren>5), followed
by their decay in the electronic and radiation channels. Radiative stabilization o
AISs 3d104p(2P1/2,3/2

0 )ns,(n21)d to the excited 3d104sns,(n21)d1,3L j levels of the
Zn atom is observed as dielectronic satellites of the resonance lines. Our approx
calculations showed that the dielectronic satellites of the resonance linel5206.2 nm
(42P1/2

0 →42S1/2) are spectral lines emitted in the decay of AISs whose convergence
is the 4p 2P1/2

0 level, while in the case of the resonance linel5202.6 nm (42P3/2
0

→42S1/2) the lines are associated with the decay of AISs that converge to the 4p 2P3/2
0

level. For clear separation of the components of the resonance doublet of the Zn1 ion and
for maximum transmission of the radiation of the satellite lines, the investigations
performed in the wavelength rangesl5206.262 nm andl5202.662 nm.

Analysis of the results shows that the individual resonance maxima in the curv
4.8 eV in Fig. 1 and at 5.0 eV in Fig. 2 are most likely due to the decay of the 3d104p6s
AISs to the 3d104s6s1,3S levels of the Zn atom. Forn>7 the AISs with configurations
3d104p(2P1/2,3/2

0 )ns,(n21)d are closely spaced in a narrow energy interval, so that
dielectronic satellites cannot be resolved spectroscopically and give a sum contribu
the DR process~see resonance maxima at energies 5.6 eV in Fig. 1 and 5.7 eV in Fi!.
At energies close to the excitation thresholds of the resonance levels~6.01 eV and 6.12
eV!, because of the energy width of the electrons, the DR process cannot be disting
from the excitation of resonance lines in the experimental energy dependences.

For AISs with configurations 3d104p(2P3/2
0 )ns,(n21)d, located between the dou

blet levels of the 4p 2P1/2,3/2
0 resonance state of the Zn1 ion, the dominant decay channe

is electronic decay to the 42P1/2
0 level by the Koster–Kronig process

Zn** @3d104p~2P3/2
0 !ns,~n21!d#→Zn1* @3d104p~2P1/2

0 !#1ẽ, ~2!

which results in additional resonance excitation of thel5206.2 nm line at threshold
Since the doublet splitting (DE50.11 eV) is much smaller than the energy width of t
electrons (DE1/250.4 eV), this resonance contribution is seen only as a kink in
excitation function~see Fig. 1!.

In the energy interval from the excitation thresholds of the resonance lines up t
excitation energy of the first level from which cascade transitions to the resonance
are possible~7.78 eV for l5202.6 nm and 8.12 eV forl5206.2 nm), the observed
resonance features can be explained by the electronic decay of AISs with configur
3d9(2D5/2,3/2)4s2np,(n21) f . As one can see from Figs. 1 and 2, the sharpest peak
the ones that coincide in energy with individual AISs. In the energy interval where
AISs are more closely spaced, their contribution is manifested in the curves in the
of wider peaks, which result from averaging over many resonances.

It should be noted that the contribution to the effective excitation cross sectio
the resonance lines from resonance excitation via AISs with configura
3d9(2D5/2,3/2)4s2np,(n21) f is greater than the contribution from that via AISs wi
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configurations 3d105s(2S1/2)np and 3d104d(2D)nl, i.e., the excitation of the subvalen
3d10 shell plays a large, and sometimes governing, role in the excitation of the Zn1 ion.

In summary, our results attest to a complicated mechanism of near-thre
electron-impact excitation of the resonance lines of the Zn1 ion. The mechanism involves
the efficient occurrence of resonance processes — dielectronic recombination and
nance excitation. Dielectronic recombination is the main mechanism of excitation o
satellite lines that fall within a narrow wavelength range near the resonance line
intensity of the dielectronic satellites is determined by the probabilities of both elec
capture and radiative decay of the corresponding AISs. The main competing deca
is the electronic decay of AISs to the ground or excited states of the ion. The lat
manifested in the resonance excitation of the ions. Relativistic and correlation e
strongly influence the ratio of the radiative and electronic decay probabilities of A
and these effects become increasingly important for heavy atomic systems.

The physical basis that we have proposed for the nature of the observed reso
processes is of a qualitative character. Detailed theoretical investigations must a
performed in order to gain a deeper understanding of the mechanisms of these pro
and to determine their quantitative contribution to different electron–ion scattering
cesses.

This work was supported in part by the International Union INTAS~Grant
No. 96-0447!.
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Giant nonlinear optical activity in an aggregated silver
nanocomposite

V. P. Drachev and S. V. Perminov
Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Scie
630090 Novosibirsk, Russia

S. G. Rautian and V. P. Safonov
Institute of Automation and Electrometry, Siberian Branch of the Russian Academy o
Sciences, 630090 Novosibirsk, Russia

~Submitted 26 August 1998!
Pis’ma Zh. Éksp. Teor. Fiz.68, No. 8, 618–622~25 October 1998!

Nonlinear optical activity due to spatial dispersion is observed in a
colloidal solution of silver. It is shown experimentally that the effect is
substantially enhanced~by a factor of;102) when the silver particles
aggregate into fractal clusters. The self-rotation angle of the plane of
polarization is 2 mrad at an intensity of 2 MW/cm2 for l50.532mm
and a pulse duration of 11 ns. A method of separating the contributions
of the local and nonlocal effects to the rotation of the plane of polar-
ization is proposed and implemented. ©1998 American Institute of
Physics.@S0021-3640~98!00520-9#

PACS numbers: 78.20.Ek, 42.65.An, 61.43.Hv

Nonlinear optical effects due to a substantial enhancement of the local electric
of a light wave in metallic nanocomposites have been under intensive investigation
last few years~see reviews1,2!. An example of such effects is the giant enhancement~by
a factor of 106) of the conversion coefficient for four-photon scattering in the presenc
aggregation of silver nanoparticles into fractal clusters.3 The enhancement of the loca
field is due to the formation of collective modes of dipole excitation as a result of
interaction of dipoles induced by the light field in highly polarizable nanoparticles fo
ing a disordered structure. The collective dipole modes can be realized on a small fr
of the elements of the structure. The size of the region of localization of the excit
depends on the morphology of the structure and the wavelength of the exciting lig
the case of fractal colloidal aggregates of silver, the size of the localization region~reso-
nance domain! varies with wavelength and ranges from;100 nm in the blue region o
the spectrum down to;20 nm in the near-IR region for;10 nm particles.4 Thus the
ratio of the size of a particle~or group of particles forming a domain that effective
interacts with the light! to the wavelength is much greater than for ordinary molecu
media. This circumstance is favorable for observing effects due to spatial dispers
nonlinear optical processes in metallic nanocomposites. For nonlocal effects an imp
role is played not only by the enhancement of the local field but also by the increa
its gradient.
6510021-3640/98/68(8)/6/$15.00 © 1998 American Institute of Physics
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Nonlinear polarization phenomena in isotropic media have been studied in
5–7. Nonlinear rotation of the plane of polarization as a result of local and non
third-order interactions has been observed in cubic crystals.6

In the present work we observed experimentally the nonlinear gyrotropy of fra
Ag clusters, which arises as a result of the nonlocal nature of the interaction, an
hancement of the gyrotropy upon aggregation of the silver nanoparticles in a col
solution. It is shown that for the second harmonic of YAG:Nd laser radiation with p
duration t511 ns the nonlinear rotation constant is large: 1.331022 rad•cm/MW. A
method was developed to separate the local and nonlocal nonlinear effects.

The nonlinear effects of spatial dispersion can be taken into account in the ex

sion for the polarization of the medium by means of a term with the tensorĜ (3):

Pi
~3!5x i jkl

~3! EjEkEl1G i jklm
~3! EjEk¹mEl . ~1!

In an isotropic mediumĜ (3) has one nonzero componentg1 . The local nonlinear re-
sponse of an isotropic medium is described by two constants,x1 and x2 , which are
related with the cubic susceptibility tensorx̂ (3) as

x11x25x i i i i
~3! , x i j i j

~3! 5x i j j i
~3! 5x1/2, x25x i i j j

~3! , i , j 51,2; iÞ j . ~2!

According to Ref. 8, the rotation anglea(z) of the polarization ellipse~thez axis is
directed along the wave vector! is described by the equation

da/dz5r081r18~ uA1u21uA2u2!1s28~ uA1u22uA2u2!, ~3!

where A1 and A2 are the amplitudes of the circular components of the wave,A6

5(Ax6 iAy)/A2, r05r081 ir09 is the linear gyration constant,r152pg1v2/c25r18
1 ir19 , s1,252pv2x1,2/kc25s1,28 1 is1,29 , andk5(v/c)(Re«0)1/2. The first term corre-
sponds to linear gyrotropy. We note immediately that this effect was not observed i
experiments, i.e., its contribution does not exceed 0.6 mrad/cm.

In a nongyrotropic medium (r0850) the nonlinear rotation of the plane of polariz
tion of a linearly polarized wave (uA1u25uA2u2) is due solely to the nonlocal nature o
the nonlinear response. In Eq.~3! the term containing the coefficientr18 corresponds to
this effect. In the case of elliptical polarization there is an additional rotation of the p
of polarization~the term containings28).

9 Since under the conditions of the experime
the polarization of the radiation is always ‘‘weakly elliptical,’’ both terms must be ta
into account. Our goal was to investigate the nonlocal rotation of the plane of pola
tion, and in this formulation the term withs28 serves as an instrumentational maski
factor. For this reason, it was desirable to be able to separate the contributions c
from the indicated effects. In our experiments the following method was proposed
implemented. We note thatuA1u22uA2u252uAxuuAyusin(fx2fy), whereuAx,yu andfx,y

are the amplitudes and phases of the linearly polarized components of the fiel
varying the phase differencefx2fy it is possible to alter the contribution of the thir
term, while the contribution of the nonlocal response will remain constant.

The scheme of the polarization measurements is displayed in Fig. 1. Pulses
second harmonic of the YAG:Nd laser were used. The pulse shape and the tran
distribution in the beam are also displayed in the same figure. The radiation p
successively through the polarizer1 ~a Glan prism!, a phase element3, a cell 4 of
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thicknessl 53 mm containing the experimental colloidal sample, and an analyzer5 ~a
calcite wedge!, and it was detected by two silicon photodiodes6 and7. To measure the
intensity a portion of the radiation was directed by the plate2 onto the photodiode8. The
radiation transmitted through the polarizer had a slight ellipticity with semiaxis r
uAyu2/uAxu2'531025 ~thex axis is directed along the axis of the polarizer and they axis
is directed perpendicular to it and to the wave vector!. The phase element consisted
two identical wedges made of crystalline quartz cut so that its optic axis was dire
along they axis. Here the phase element acts as a phase plate of variable thicknes
components of the complex amplitude of the radiation transmitted through the p
element acquire an additional phase shift

Ax~0!5uAx~0!ueifx~0!, Ay~0!5uAy~0!ueify~0!, Df05fx~0!2fy~0!. ~4!

The effect of the phase element is thus to change the azimuth and the ratio o
semiaxes of the polarization ellipse of the radiation at the entrance to the medium
azimutha(0) of the ellipse relative to the polarizer, with allowance for the smallnes
the ratiouAyu/uAxu!1, is given by the expression

a~0!5
uAy~0!u
uAx~0!u

cos~Df0!. ~5!

The radiation transmitted through the experimental medium enters the ana
whose axis makes an angle of 45° with the polarizer. The orthogonally polarized
ponents separated by the analyzer enter the photodiodes6 and 7. We recorded the dif-
ference of the signals from the photodiodes,

DI 5I 22I 1'uAxu22a, ~6!

wherea is the azimuth of the polarization ellipse at the exit from the medium. Here
have made use of the fact thata!1 and also of the smallness of the ellipticity.

The functionsDI (Df0) were measured in the experiment for different radiat
intensities at the entrance to the medium. LetDf(z)5Df01DfNL(z) and, since
DfNL(z)!1, we obtain from Eqs.~3!–~6!

DI ~Df0!5a1b cos~Df01c!; ~7!

a52r18uAx~ l !u2E
0

l

uAxu2 dz, b52uAx~ l !u2
uAy~0!u
uAx~0!u

, c522s28
uAx~0!u
uAy~0!u E0

l

uAxuuAyu dz.

FIG. 1. Experimental arrangement.
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Thus one can see that the locals2 and nonlocalr1 nonlinearities are manifeste
differently in DI (Df0) as the intensity at the entrance varies: The term withs28 can lead
to a phase shift, while the term withr18 gives rise to a displacement of the curv
DI (Df0) as a whole along the ordinate.

Figure 2 shows plots of the functionDI (Df0), measured for two values of th
radiation intensity. The values presented correspond to the peak~in time! intensity on the
beam axis. As one can see, the functions are sinusoidal, to a high degree of accura
an increase of the intensity also results in a vertical displacement of the entire curv
whole and to a change in amplitude and a phase shift. The measured vertical dis
ment in the present case corresponds to an angle of nonlinear rotation of the pla
polarization ag'260.2 mrad, whencer185ag /I eff l'1.331022 rad•cm/MW. Here
I eff5(*0

l I (z)dz)/ l is the effective value of the intensity in the cell, averaged over
pulse and cross section of the beam, taking into account the total~linear and nonlinear!
absorption, which in our case are'2.3 cm21 and '20.5 cm21, respectively. The ro-
tation direction can be determined from the sign of the vertical displacement. A plus
corresponds to counterclockwise rotation, looking into the beam.

The experiments were performed with an ethanol colloidal solution of silver s
lized with PVP ~polyvinylpyrrolidone!. The colloid was prepared by the method d
scribed in Ref. 10. The solutions contain isolated silver microparticles~monomers! about
10 nm in diameter. Aggregation was initiated by adding a small quantity of the a
NaOH (531025 parts by weight! to the solution. The degree of aggregation was mo
tored according to the characteristic broadening of the absorption spectrum of an
gated colloid as compared with a nonaggregated colloid. Electron microscopy d11

shows that samples with a long-wavelength wing in the spectrum consist of aggre
with N>1000 monomers, while those without a wing do not contain large aggreg
Aggregates have a characteristic power-law relation between the numberN of monomers
and the radiusR of the region which they occupy:N}RD, whereD is the fractal dimen-
sion. In our caseD'1.7. In the experiment we investigated the dependence of
nonlinear rotation angle on the intensity at the entrance for two colloids — strongly
weakly aggregated. The results are displayed in Fig. 3. The figure also shows~left inset!
the nonlinear absorption spectra of the experimental samples. One can see that th
linear optical activity depends strongly on the degree of aggregation. Thus if the

FIG. 2. Phase dependencesDI (Df0) for different intensitiesI 0 at the entrance to the medium:h — I 0

50.3 MW/cm2; 1 — I 052 MW/cm2.
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surement data are scaled to the same silver density, thenag /I eff }ReG (3) is approxi-
mately 80 times larger for a strongly aggregated colloid. It is noteworthy that
nonlinear constant decreases at intensitiesI 0.2 – 3 MW/cm2 approximately correspond
ing to the threshold for photomodification of aggregates.12 A similar manifestation of
photomodification was observed in a previous work for the nonlinear refraction Rex (3)

measured by dispersion interferometry.13

The tensor componentG (3) can be found from the relation

ag5
16p4l

n0cl2
31013ReG~3!I eff @MW/cm2#, ~8!

where all quantities except the intensity are expressed in cgs esu andn0 is the refractive
index of the colloid. Taking into account the difference in the silver concentrations in
colloids and averaging over time and the beam cross section, which gives a fac
2A2, we obtain ReGs

(3)'0.9310216 cgs esu for a strongly aggregated colloid a
ReGw

(3)'1.1310218 cgs esu for a weakly aggregated colloid. In both cases the med
is levorotatory. Let us compare the measured value ofGs

(3)/Gw
(3) with an estimate based

on the idea of aggregation-induced enhancement of the local field:

Gs
~3!5Gw

~3!F2Nr /Nm , ~9!

whereNr /Nm'0.3 is the fraction of resonant monomers in a cluster, the enhance
factor of the local field isF5(«8)2/3n0

2«9, and «5«81 i«9 is the complex dielectric
constant of silver. Forl50.532mm, monomers of size'10 nm, «8'210, and«9
'1 we obtainF'18, whenceGs

(3)'100Gw
(3) , which agrees well with the measure

value.

In summary, we have observed nonlinear gyrotropy in a colloidal solution of si
The method proposed above made it possible to reliably distinguish the nonlinear
ropy. The nonlinear gyrotropy constant increases substantially with an increase
degree of aggregation of the silver. Photoburnout of resonance domains in fractal

FIG. 3. Angle of nonlinear rotation of the plane of polarization versus the intensity at the entrance
medium for strongly and weakly aggregated~right-hand inset! colloids. The silver particle density in the weakl
aggregated colloid is approximately 2.4 times higher than in the strongly aggregated colloid. Left inse
sorption spectra at low radiation intensity.h — strongly aggregated colloid;1 — weakly aggregated colloid.
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gates leads to a decrease in the rotation constant forI (0).2 MW/cm2. The cause of the
nonlinear gyrotropy in silver nanocomposites consisting of spherically symmetric m
mers and the sign of the nonlinear gyrotropy require further study.

This work was supported in part by the Russian Fund for Fundamental Res
under Grants Nos. 96-02-19331 and 96-15-96642.
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Low-temperature specific heat of crystalline and
amorphous Eu 2„MoO4…3

A. V. Pal’nichenko, E. G. Ponyatovski , B. S. Red’kin, and V. V. Sinitsyna)

Institute of Solid-State Physics, Russian Academy of Sciences, 142432
Chernogolovka, Moscow Region, Russia

~Submitted 11 September 1998!
Pis’ma Zh. Éksp. Teor. Fiz.68, No. 8, 623–627~25 October 1998!

The specific heatCtotal of crystalline and amorphous Eu2(MoO4)3 is
measured in the temperature interval 4.5–30 K. The amorphous state is
obtained by applying pressure;7 GPa at room temperature. It is found
that the specific heat of the crystal atT<7.5 K is described by a cubic
function of temperature, while the specific heat of the amorphous
sample has a strongly non-Debye character in the entire experimental
temperature interval. The curve ofCtotal for amorphous europium mo-
lybdate is analyzed in a model of soft atomic potentials, and it is shown
that it agrees well with universal low-temperature anomalies of the
specific heat of classical glasses obtained by quenching from the liquid.
© 1998 American Institute of Physics.@S0021-3640~98!00620-3#

PACS numbers: 65.40.1g

The low-temperature behavior of glasses is a universal feature of the manifes
of disorder in condensed media.1–4 Thus, at temperaturesT<30– 50 K the temperature
dependence of the specific heat and a number of other properties of various die
glasses~e.g., the thermal conductivity, sound velocity, etc.! differ considerably from
those of crystalline solids, and in this sense they are anomalous. This difference i
quantitative~the specific heat of glasses at these temperatures is several times highe
that of the crystal analogs! and qualitative. The functional dependence of the specific h
for glasses is completely different from a dielectric crystal, which at low temperatur
described by the Debye law. Moreover, the character of the temperature depende
the specific heat is insensitive to the chemical composition, the presence of impu
and the past history of the glass. It can therefore be said that their low-tempe
properties exhibit universality.

The anomalous low-temperature properties of disordered materials were disco
and have been investigated experimentally primarily in classical glasses obtain
quenching from the melt. In this method of preparation the material inherits the
elements of the disorder of the atomic structure of the liquid, manifested in univ
low-temperature anomalies.

Besides the method of quenching from the liquid phase, a large number of me
of so-called solid-phase amorphization have recently been proposed. A common f
of all these methods is that the disordered state of the material is obtained at low
6570021-3640/98/68(8)/5/$15.00 © 1998 American Institute of Physics
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peratures~room temperature and below! and, more importantly, from an initial crystallin
state, bypassing the liquid phase. One method of solid-phase amorphization is pr
treatment. Bulk amorphous states of a number of semiconductors and insulator
cannot be quenched from the liquid phase have been obtained by this method.

However, despite the quite large number of works on solid-phase amorphiz
under high pressure, the study of the physical properties of the amorphous states o
has concentrated mainly on the investigation of their transport characteristics.5,6 There are
no published data on the low-temperature thermophysical properties of such amor
phases, making it impossible to compare with the similar properties of canonical gla
An obvious question arises in this connection: To what degree are the physical prop
of samples obtained by solid-phase amorphization under pressure identical to th
classical glasses obtained by quenching from the liquid phase?

To clarify this question we measured the low-temperature specific heat of cryst
and amorphous~obtained under pressure! Eu2~MoO4)3 .

Europium molybdate was chosen as the object of investigation on the basis
following considerations. In Refs. 7–9 it was shown that many molybdates of rare-
metals, Gd2(MoO4)3 , Tb2(MoO4)3 , Sm2(MoO4)3 , and TbGd~MoO4)3 , become amor-
phous under pressure. However, in all these compounds the rare-earth cation poss
substantial magnetic moment. For this reason, a considerable magnetic contribution
specific heat can be expected at low temperatures, which complicates the analysis
experimental data. The trivalent Eu ion has zero magnetic moment, and the com
Eu2~MoO4)3 is isostructural for crystals of this series. It was natural to expect
europium molybdate would become amorphous for the same temperature–pressu
rameters as other members of this family.

Solid-phase amorphization of Eu2~MoO4)3 was performed by the pressure meth
described in Ref. 9. A polycrystalline sample of Eu2(MoO4)3 was subjected to hydro
static pressure to 7 GPa at room temperature. After holding the sample for 2 h under
these conditions and then removing the pressure, a x-ray investigation of the samp
performed. The diffraction patterns obtained were typical for the amorphous state
specific-heat measurements were performed in a relaxation-type calorimeter in the
perature interval 4.5–30 K. A description of our calorimetric method of measureme
given in Ref. 10.

Figure 1 displays the temperature dependencesCtotal/T
3. The experimentally mea

sured specific heatCtotal of crystalline and amorphous samples of Eu2(MoO4)3 is shown
in the inset in Fig. 1. The measured specific heat of the crystal~the curve ‘‘cr’’! at
temperaturesT<7.5 K is described by a Debye-type cubic functionCtotal5C0•T3, where
C0'1.0631026 J/g•K4, and therefore the Debye temperature isQD'126 K.

The temperature dependence ofCtotal/T
3 for the amorphous material~the curve

‘‘am’’ ! differs considerably from the temperature dependence for the crystalline sa
A peak is present at temperatureT'10 K. The presence of such a peak is typical
various dielectric glasses.

As indicated above, all dielectric glasses exhibit universal anomalies at low
peratures. Two temperature intervals of the anomalies are ordinarily distingui
T<1 K and 1 – 3,T,30– 50 K. A general approach for describing the properties
glasses was given in Refs. 4 and 11–13, where double- and single-well potentials a
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as a result of a ‘‘defect’’~local softening! of the elastic moduli was examined. The so
atomic potentials model proposed in these works made it possible to describe
properties of glasses over a wide temperature range.

In the present work the specific-heat measurements were performed in the tem
ture interval corresponding to the higher-temperature range of anomalies in glasse
this temperature interval the soft atomic potentials model indicates the existence of
excitations besides phonons, viz., quasilocal harmonic oscillators. At temperatures
order of several degrees Kelvin the density of states of these excitations is proportio
the fourth power of the energy, and the additional specific heat associated with
Cex}T5. The density of states of harmonic oscillators, which increases rapidly
energy, leads to the fact that at some energyEd the harmonic oscillators become del
calized, their density of states becomes a linear function of the energy, and the sp
heatCex}T2. Therefore a peak appears in the functionCex/T35(Ctotal2CD)/T3 ~where
CD is the phonon part of the specific heat! at Tmax'Ed/5.

Ordinarily, the experimental data on the elastic properties of the amorphous sta
used to analyze the excess specific heatCex ~Refs. 12 and 14!. These data are used t
calculate the value ofC0 , and the differenceCex5Ctotal2C0•T3 is taken as the value o
the excess specific heat. The Debye temperature for Eu2(MoO4)3 is low (QD

'130 K), and in this case such a calculation ofCex becomes incorrect at temperatur
T.QD/10'13 K. Moreover, at the present time there are no experimental data
would make it possible to calculate the Debye-law constantC0 . For this reason the
experimental data were analyzed as follows. In the temperature range 4.5–7.5
specific heat of the crystal is proportional to the cubed temperature. Disordering res
softening of the elastic moduli and hence a decrease of the Debye temperature, so
phonon part of the specific heat of the amorphous phase should also vary asT3 at
temperatures not exceeding 7.5 K. Besides phonons, at these temperatures ha
excitations are also present in the amorphous phase. Their contribution to the s
heat is}T5. Therefore the specific heatCtotal/T

3 of the amorphous phase in the tem
perature interval 4.5–7.5 K can be described by the expression

FIG. 1. Ctotal /T
3 versus temperature for crystalline~cr! and amorphous~am! samples of Eu2~MoO4)3 . The

dashed line shows the value of the constantC0 in the Debye law for a crystalline sample. Inset: Experimen
curvesCtotal(T).
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Ctotal5C0•T31C5•T5. ~1!

Analysis of the experimental data using expression~1! gave the following values for
the constants:C0'1.9431026 J/g•K4 andC5'4.7131029 J/g•K6. Therefore the value
of C0 for amorphous europium molybdate is higher than the analogous value fo
crystalline modification. It should be noted that the contribution of harmonic excitat
to the specific heat is quite considerable, and atT57.5 K it constitutes;14% of the
phonon contribution. The ratio of the average sound velocities in crystalline and a
phous europium molybdate can be estimated asVs

cr/Vs
am'1.27 from the analytical ex-

pression forC0 and the experimental data5 on the relative change in densityDr/r
'0.14 on amorphization of Gd2(MoO4)3 . This is a typical value for this ratio in canon
cal glasses.

We assumed that at temperatures above 7.5 K the phonon part of the specific
the amorphous phase exhibits the same functional dependence as in the crystal b
tiplied by the ratioC0

am/C0
cr . Accordingly, the excess specific heat of the amorphous s

for the entire interval of the measurements was determined asCex5Ctotal
am

2Ctotal
cr (C0

am/C0
cr). A log–log plot of the temperature dependence of the quantityCex/T3

is shown in Fig. 2. ForCex extracted in this manner the peak is shifted to higher te
peratures (Tmax'24 K) compared with its position in the dependenceCtotal

am /T3 ~Fig. 1,
curve ‘‘am’’!. As one can see from Fig. 2, the interval whereCex}T5 lies at temperatures
T<9.5 K, after which, up to the peak, the specific heat varies much more slowly
temperature. To the right of the peak the exponent in the temperature dependence
specific heat becomes less than 3, in agreement with the soft atomic potentials m

In summary, the characteristic features of the low-temperature specific heat of
phous Eu2(MoO4)3 are described well in the soft atomic potentials model developed
canonical glasses, and in this respect the product of solid-phase amorphization is
to dielectric glasses obtained by quenching from the liquid.

FIG. 2. Log–log plot of the temperature dependence of the excess specific heatCex /T3 of the amorphous state
The dashed line shows the extrapolationCex}T5.
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Self-excitation of 2D plasmons in resonant tunneling
diodes

M. N. Fe ginova) and V. A. Volkovb)

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 10390
Moscow, Russia

~Submitted 11 September 1998!
Pis’ma Zh. Éksp. Teor. Fiz.68, No. 8, 628–633~25 October 1998!

Resonant tunneling is accompanied by the accumulation of 2D elec-
trons in the quantum well between the barriers of resonant tunneling
diodes. In high-quality structures this gives aZ-shaped current–voltage
characteristic, and it is shown that self-excitation of 2D plasmons oc-
curs in this quantum well for any external circuit at completely realistic
parameters of the structures. ©1998 American Institute of Physics.
@S0021-3640~98!00720-8#

PACS numbers: 85.30.Mn, 73.20.Dx, 73.20.Mf

Resonant tunneling diodes~RTDs! based on double-barrier semiconductor hete
structures ordinarily possess aN-shaped current–voltage~I–V! characteristic.1 However,
it was discovered ten years ago that the accumulation of 2D electrons in the quantum
of a RTD can change the I–V characteristic fromN-type toZ-type.2–6 In standard mea-
surements~for example, in a fixed-voltage regime! this should be observed as curre
bistability. Recently an experimental method was proposed7,8 by which negative load
resistances are realized, making it possible to measureZ-type I–V characteristics. The
interpretation of the results obtained in Refs. 7 and 8 depends on the solution o
problem of the stability of uniform~along the quantum well — QW! current and charge
distributions in the RTD against nonuniform disturbances on theZ-shaped part of the I–V
characteristic. The present letter is devoted to this problem. The problem is formula
terms of 2D plasmons — low-frequency charge oscillations in the QW. In our view
language is best suited for the problem under study.

We note that the problem of the nonuniform nonlinear distribution of the tunne
current in a RTD was studied in Ref. 9. The results showed a complicated depende
the parameters of the system. Unfortunately, the situation considered in Ref. 9~very thin
barriers and no external circuit! is inapplicable for describing the experiment of Refs
and 8.

In the present letter the properties of 2D plasmons in the QW in a RTD are stu
analytically. The screening of these plasmons by a high-conductivity emitter and c
tor is taken into account~it is well known10 that in an ideal 2D gas the screening by
metal plane results in a linear plasmon spectrumv(q)). The problem of the linear
stability of such plasmons is solved. The results are valid for arbitrary tunneling ba
6620021-3640/98/68(8)/7/$15.00 © 1998 American Institute of Physics
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in the presence of an arbitrary external circuit. The parameters determining the inst
are extracted from a comparison with experiment.

BASIC EQUATIONS

We shall consider a RTD~Fig. 1! in the sequential-tunneling model.11 We assume
that in the QW the electron lifetimeste and tc due to tunneling into the emitter an
collector, respectively, are long compared with the momentum relaxation timet. This is
virtually always the case~see estimates below!. The system of equations describing th
temporal and spatial (x,y) distribution of the currents in the QW consist of the cons
tutive relation~1!, the continuity equation~2!, and the Poisson equation in the loca
capacitance approximation~3!:

]J

]t
1nJ5

sn

e
¹Ef w , ~1!

2e
]

]t
N2D1¹•J5Jew2Jwc , ~2!

V2V05
e2

C
N2D2~Ef e

0 2Ef c
0 !

d

L1d
, ~3!

Jew52@Ef e2Ef w2~Ef e2Uw!u~Uw2Ef e!#r2D

e

te
ũ~V!, ~4!

Jwc52N2D

e

tc
, ~5!

whereJ(x,y) is the 2D current density in the QW;Jew andJwc are thez components of
the emitter–well and well–collector current densities, respectively;N2D5@Ef w

2Uw#r2D is the local 2D-electron density in the QW;r2D is the 2D density of states in
the QW;Ef i andUi are the local Fermi level and the band-bottom energy in the em
near the barrier (i 5e), in the well (i 5w), and in the collector (i 5c); and, V5Uw

FIG. 1. Energy diagram of a RTD in the resonant tunneling regime. The 2D electron gas in the QW is f
by the balance of the resonant emitter–well current (Jew), the nonresonant well–collector current (Jwc), and
the spreading of 2D electrons along the well; see Eq.~2!.
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2Ue. For simplicity it is assumed that at zero external bias the bottom of the 2D sub
in the QW lies above the Fermi level in the emitter, in which caseV5V0 ; te andtc are
assumed to be independent ofV, an assumption which is justified when a bending of t
conduction-band bottom comparable in depth toEf w is present near the emitter–barri
boundary. The effective emitter–well distanced is greater than the thickness of th
emitter barrier by the Thomas–Fermi screening length and the half-width of the QL
is the analogous well–collector distance, including additionally the length of the d
tion region;C5e(L1d)/4pLd is the capacitance per unit area of the QW,n51/t, s

5N2De2/m* n is the static 2D conductivity of the QW. The form factorũ(V) describes
the broadening of the resonance levels due to emitter–well transitions~Fig. 2!. We note
that, neglecting the level broadening, for transitions from a 3D emitterũ(V) is a step
function u(V). The local-capacitance approximation is valid when the scale of the
uniformities in the plane of the QW is large compared withd andL. We shall represen
the solution of the system~1!–~5! in the form of a uniform static solution~superscript 0!
plus small fluctuations: V5V01dV(x,y), N2D5N2D

0 1dN2D(x,y),
Ef i5Ef i

0 1dEf i(x,y), and so on.

UNIFORM NONLINEAR STATIC SOLUTION

Neglecting all derivatives in Eqs.~1!–~5! we obtain

V02V02
e2N2D

0

C
52~Ef e

0 2Ef c
0 !

d

L1d
, ~6!

N2D
0 5r2D

@Ef e
0 2Ue

02V0#ũ~V0!/te

1/tc1 ũ~V0!/te

u~Ef e
0 2Ue2V0!, ~7!

Jwc
0 5Jew

0 52
eN2D

0

tc
. ~8!

The third term on the left-hand side of Eq.~6! describes the Coulomb interaction of th
electrons in the well with the emitter and collector. As a result of this term, the solu
~6! and~7! for the functionV0(Ef e

0 2Ef c
0 ) is multivalued on theZ-shaped part of the I–V

characteristic, i.e., theV0 derivative of the left-hand side of Eq.~6! is negative~if Cou-
lomb effects were neglected, this derivative would be positive! on the central leg of the
I–V characteristic:

FIG. 2. Form factor of the broadening of the emitter–well resonant tunneling transitions as a functionV.
Solid line — for transitions from a 3D emitter, dotted line — additional contribution of transitions from a
emitter ~i.e., from the enrichment layer in Fig. 1!.
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11
e2r2D

Cte

1

1/tc1 ũ~V0!/te
F ũ~V0!2

@Ef e
0 2Ue

02V0#ũ8~V0!

11 ũ~V0!tc /te
G,0. ~9!

2D-PLASMON SPECTRUM

Linearizing the system of equations~1!–~5! around the uniform stationary solutio
~6!–~8! yields an equation describing screened 2D plasmons in the RTD:

F S n1
]

]t D S nT1
]

]t D2
s0n

C S 11
C

e2r2D
D ¹2GdN2D~x,y!50, ~10!

where

nT5
1

tc
1

ũ~V0!

te
1

e2r2D

C F ũ~V0!

te
2

@Ef e
0 2Ue

02V0#

11 ũ~V0!tc /te

ũ8~V0!

te
G ~11!

is, physically, the tunneling-relaxation rate of the charge in the QW. The first and se
terms in Eq.~11! describe relaxation due to electron tunneling into the collector
emitter, respectively. AsEf w varies, the energy of the bottom of the 2D subband in
QW also shifts as a result of the Coulomb interaction of the electrons in the well with
emitter and collector. In the presence of such a shift the currentJew acquires an additiona
contribution due to the change in the number of free states in the QW which are a
sible for tunneling~this mechanism is described by the third term!. This current varies as
a result of the form factorũ(V), and effect which is described by the fourth term in E
~11!. The factor in front of the brackets in Eq.~11! equalsdUw /dEf w . The factor in front
of ũ8(V0)/te is the difference of the Fermi levels of the emitter and the well, andũ8 is
the derivative of the form factor.

Equation~10! implies the dispersion relation

~v1ın!~v1ınT!5
s0n

C S 11
C

e2r2D
D q2 ~12!

for the 2D-plasmon spectrum . The solution of Eq.~12! increases in time~unstably! in the
region of 2D wave numbersq in which Imv(q).0. One can see from Fig. 3 that 2
plasmons are unstable only ifnT,0. A comparison of Eqs.~11! and ~9! shows that one
always hasnT,0 on the central leg of theZ-shaped I–V characteristic. For2nT.n the
2D plasmons are unstable for anyq. Traveling solutions for which RevÞ0 are also
unstable. For2n,nT,0 the plasmons are unstable only ifq,q0 , where

q05A2
nTC

s0 S 11
C

e2r2D
D 21

. ~13!

Let us now examine how the stability of 2D plasmons is affected by the fi
dimensions of the RTD in the (x,y) plane. We shall find the solution of Eq.~10! with the
boundary condition that the normal component~i.e., normal to the lateral surface! of the
current in the 2D layer of the structure vanishes~in nonuniform structures other bounda
conditions are also possible; see Ref. 9!. For a structure in the form of a strip
(uxu<W) of width 2W we obtain the condition of quantization of the wave number
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qx5
p

2W
N, ~14!

i.e., an integer number (N51,2,3,. . . ) of plasmon half wavelengths should fit within th
width of the structure~only solutions which are uniform in they direction are consid-
ered!. The uniform solution~with N50) must be studied separately; its stability
determined by the external circuit~an external circuit with a negative load resistan
enables making this solution stable on theZ-shaped part of the I–V characteristic7!.
Therefore for2n,nT,0 the instability of 2D plasmons can be suppressed by decr
ing W: for

q0,
p

2W
~15!

2D plasmons withNÞ0 will be stable. However, for2nT.n the 2D plasmons are
unstable for anyq, and traveling modes for which RevÞ0 are excited.

ESTIMATES

We shall present estimates of the characteristic parametersnT andq0 for the RTDs
in Ref. 12~a! and Refs. 7 and 8~b!.

a! The thin-barrier RTD from Ref. 12 for high-frequency applications has thin A
~1.5 nm! barriers, a GaAs well~4.5 nm!, andd'10 nm. On the descending part of th
I–V characteristicL'70 nm andV0'0. A self-consistent calculation of the energ
diagram12 gives Ef e

0 2Ue
0'100 meV. With the use of Eqs.~7! and ~8!, the value 1/te

'1/tc'1.631011 s21 can be extracted from the maximum current density
3104 A/cm2 measured at room temperature. To estimatenT we shall assume that th
broadening of the tunneling transitionsũ(V0)/ ũ8(V0)'7 meV, with ũ(V0)'0.3. Then
nT'260/tc'21013 s21. An estimate ofn follows from the values of the 2D mobility
in a QW: In high-quality structures at room temperaturem'33103 cm2/V•s, which
corresponds ton'1013 s21. ThennT'2n. For high values of the mobility or smalle
broadening of the resonant tunneling transitions, 2D plasmons will self-excite in RTD
any dimensions.

FIG. 3. Complex frequency of screened 2D plasmons in a RTD versus the wave numberq in the QW plane. In
the DBHS1 structure2n,nT,0, while in the DBHS2 structure2nT.n. Plasmons are unstable in the regio
Im v.0.
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b! In Refs. 7 and 8 aZ-shaped I–V characteristic in a structure with thi
Ga0.6Al0.4As barriers~8.3 nm and 11.1 nm! was measured at low temperatures. Its p
rameters are presented in Ref. 13:tc5631027 s, te!tc ,N2D,max

0 5231011 cm22,
d'10 nm, L@d. For estimation we takeũ(V0)'0.3 and assume a level broadenin
ũ(V0)/ ũ8(V0)'1 meV. ThennT'2200/tc'2108 s21. Since for reasonable values o
the 2D mobility the conditionunTu!n is satisfied, only modes withq,q0 , whereq0

'731022mm21 with m533103 cm2/V•s, are unstable. It follows from Eq.~15! that
2D plasmons are unstable for RTDs in the form of a strip of width 2W.50mm. This is
also true for the large-diameter~200 mm! RTDs used in Refs. 7 and 8.

CONCLUSIONS

We have found the spectrum of screened 2D plasmons in the quantum wel
RTD in the resonance-tunneling regime and have investigated the properties of the
mons. In high-quality structures the ‘‘bare’’ static I–V characteristic has aZ-shaped part,
whose central leg is always unstable against the excitation of 2D plasmons with arb
or quite small wave numbers. One of three cases is realized in RTDs with a strip m
width 2W:

1. Low-quality structures~large broadening of resonance transitions!. In these struc-
turesnT.0, the I–V characteristic isN-shaped, and 2D plasmons are stable in the pre
model. Nonetheless, fluctuations of the QW thickness can in principle lead to 2D pl
instability even if the average I–V characteristic isN-shaped.

2. High-quality structures~small broadening of resonance transitions! with thick
tunneling barriers. For these structuresnT,0 and the I–V characteristic has aZ-shaped
part. On account of the low barrier transmittance2nT,n. As a result, 2D-plasma insta
bility develops only large RTDs (2W.p/q0). For small 2W this instability is sup-
pressed by electron scattering.

3. High-quality structures (nT,0) with thin barriers. In this case2nT.n, and the
central leg of the I–V characteristic is unstable for RTDs of any size.

Self-excitation of 2D plasmons should be reflected in the measured I–V chara
istics. Preliminary results14 indicate that the experimental data of Refs. 7 and 8 can
explained on the basis of this mechanism.

This work was supported in part by the Russian Fund for Fundamental Res
~Project No. 96-02-18811!, the program ‘‘Physics of Solid-State Nanostructures’’ of t
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Magnetoexcitons in type-II quantum dots

A. B. Kalame tseva) and V. M. Kovalev
Institute of Semiconductor Physics, Russian Academy of Sciences, 630090 Novosibir
Russia

A. O. Govorov
Institute of Semiconductor Physics, Russian Academy of Sciences, 630090 Novosibir
Russia; Center for Nanoscience and Sektion Physik, Ludwig-Maximilians-
Universität, D-80539 München, Germany

~Submitted 21 September 1998!
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The ground state of a spatially indirect exciton in type-II quantum dots
with a short-range potential acquires nonzero angular momentum in the
presence of a magnetic field oriented perpendicular to the plane of the
system. The critical magnetic field of the transition to a ground state
with nonzero angular momentum depends on the radius of the quantum
dot. Such a transition can be observed as quenching of luminescence by
a magnetic field in quantum dots of the GaSb/GaAs system, for ex-
ample. © 1998 American Institute of Physics.
@S0021-3640~98!00820-2#

PACS numbers: 71.35.Ji, 73.20.Dx

Type-II quantum dots are formed in the GaSb/GaAs system.1 In such quantum dots
a three-dimensional quantum well exists only for holes, while a potential barrier exis
electrons. Spatially indirect excitons localized near quantum dots exist in this sys1

The indirect excitons were observed in the luminescence spectra.1

The ground state of an exciton in two-dimensional quantum wells2 and in type-I
quantum dots with cylindrical symmetry3 possesses zero angular momentum for a
value of the magnetic field. Exciton localization in microstructures with a complic
geometry can lead to interesting effects.4,5 For example, the energy of an exciton in
quantum ring oscillates as the magnetic field increases.5

In the present letter we investigate excitons localized near a type-II quantum do
show that the angular momentum of such an exciton in the ground state varies
function of the magnetic field. This effect can be observed as quenching of luminesc
We note that in most cases a magnetic field increases the probability of an inte
transition~see, for example, Refs. 2 and 3!, and it intensifies the luminescence on acco
of compression of the wave function. The change in the ground state can be demon
in the model shown in Fig. 1. The system consists of a two-dimensional AlGaAs/G
AlGaAs quantum well containing a built-in quantum dot in the form of a GaSb cylin
of radiusr 0 and heightL. The band diagram is shown in Fig. 1b. Similar systems h
been investigated experimentally in Ref. 1.
6690021-3640/98/68(8)/4/$15.00 © 1998 American Institute of Physics



. The

e
t on

ig. 2.

-
varies
s a

670 JETP Lett., Vol. 68, No. 8, 25 Oct. 1998 Kalame tsev et al.
The motion of particles in such a system is assumed to be two-dimensional
penetration of particles into the AlGaAs barriers will be neglected. The electron~hole!
wave functions can be written in the form

Ce~h!~r,f,z!5eil e~h!fRe~h!~r!c~z!, ~1!

where (r,f)5r are the coordinates in the plane of the system,l e(h) are the angular
momenta,Re(h)(r) are the radial wave functions, andc(z) is the size-quantization wav
function in a square quantum well. An electron is localized near the quantum do
account of attraction to the hole and moves in the potential shown in the inset in F

The probability of deexcitation of an exciton is determined by the integral

I 5E Ce~R!Ch~R! dR5E ei ~ l e1 l h!f dfF E Re~r!Rh~r!r dr G E c2~z! dz, ~2!

whereR5(r ,z).

The overlap integralI r5*Re(r)Rh(r)rdr of the radial wave functions is compara
tively small because of the high potential barriers between GaAs and GaSb and
smoothly as the magnetic fieldB i z increases. The factor that can change abruptly a

FIG. 1. Structure and band diagram for a GaSb–GaAs type quantum dot.

FIG. 2. Electron energyE0,l e
versus the magnetic field for a quantum dot withr 05100 Å andL570 Å;

Me50.067m0 . Inset:Ue versusr.
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function of B is the integralI f5*ei ( l e1 l h)fdf52pd l e1 l h
, where l e(h) is the angular

momentum of the ground state. If the total angular momentum of an exciton in
ground state isl e1 l hÞ0, then it does not contribute to luminescence. In the presenc
rapid energy relaxation of excitons into the ground state at low temperature, the ap
ance of a situation withl e1 l hÞ0 signifies quenching of luminescence.

To demonstrate this effect we shall assume, to simplify the calculations, that
ticles do not penetrate through the GaSb–GaAs heterointerface, i.e.,Re(h)(r 0)50. Since
the penetration is small, this will not change the spectrum of the exciton much.b! Our
estimates show that for dots of radiusr 0;100 Å the hole quantization can be assumed
be quite strong and the effect of the Coulomb interaction with an electron on the
spectrum can be neglected. The wave function of the ground state of a hole with
bottom and impenetrable walls can be easily found, and for itl h50 for any B. The
potential for an electron in the regionr.r 0 is determined by the attraction to a hole:

Ue~re!52
e2

e E c2~ze!c
2~zh! dze dzh

A~re2rh!21~ze2zh!2
Rh

2~rh! drh , ~3!

~see inset in Fig. 2!. The quantization equation forRe(r) has the standard form

2
\2

2Me
FRe91

Re8

r
2

l e
2

r2
ReG1S \vc

2
l e1

Mevc
2

8
r21Ue~r! DRe5ERe , ~4!

wherevc is the electron cyclotron frequency andMe is the electron effective mass. Th
spectrum has two quantum numbersn and l e . In the ground staten50 always. Figure 2
shows the numerical results forE0,l e

. One can see that the angular momentum of
ground state varies with the magnetic field. The magnetic fieldB0,21 at which the

FIG. 3. Ground-state energy of an interband indirect exciton as a function of the magnetic field for a qu
dot with r 05100 Å andL570 Å; hole massMh50.3m0 . The arrows show the change in angular momentu
Inset: Magnetic fieldB0,21 versusr 0 .
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changeoverl e50→ l e521 of the ground-state angular momentum occurs depends or 0

~see inset in Fig. 3!. The ground-state energy of an exciton is displayed in Fig. 3 and
a kink on account of the change in the angular momentum. The energy of the excito
calculated for a quantum dot with a sharp GaSb–GaAs heterointerface. In the e
ments of Ref. 1 the energies of indirect excitons lie much higher (;1 eV) on account of
diffusion of Sb into GaAs. The angular momentum of the ground state changes froml e to
l e21 whenr 0

2/ l c
2; l e , wherel c is the magnetic length. This follows from an analysis

the character of the wave function in a magnetic field. The changeover of the ground
is analogous to the appearance of a nondecaying current in the ground state in
carrying electrons6 and charged excitons.7 The present letter is concerned with the case
a quasiparticle which is neutral as a whole but is polarized by the potential o
quantum dot. This polarization leads to the nondecaying current in the ground stat
note that the possibility of a situation where excitons would be optically inactive in
ground state was discussed in Ref. 8. In Ref. 8 excitons in crossed magnetic and e
fields were studied. It is easy to calculate the spectrum of an exciton for a finite b
between GaAs and GaSb. In this case the character of the spectrum remains the sa~see
Fig. 2!.

We thank A. V. Chaplik for helpful discussions. This work was supported by a g
from FOROPTO~Bavaria!.

a!e-mail: kalam@isp.nsc.ru
b!Obviously, the penetration of the particles must be taken into account in the calculation of the intensity

interband transition.
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Mesoscopic superconductivity in superspace

A. F. Andreev
P. L. Kapitsa Institute of Physics Problems, Russian Academy of Sciences, 117334
Moscow, Russia

~Submitted 24 September 1998!
Pis’ma Zh. Éksp. Teor. Fiz.68, No. 8, 638–642~25 October 1998!

In the theory of mesoscopic superconductivity it is necessary to supple-
ment the coordinatesx,y,z with some additional physical characteris-
tics ~coordinates! of free space. An adequate description of mesoscopic
superconductivity is obtained by introducing a nonrelativistic version
of Grassmann spinor coordinates, which are studied in supersymmetric
field theories and convert ordinary space into superspace. An experi-
mental check of the proposed description of the superconducting and
magnetic properties of metallic nanoparticles would provide a direct
confirmation of the concept of superspace. ©1998 American Institute
of Physics.@S0021-3640~98!00920-7#

PACS numbers: 74.20.2z, 73.20.Dx, 74.25.Ha, 11.30.Pb

The unique nature of superconductivity in mesoscopic quantum dots~MQDs!, i.e.,
in systems with a large number of electrons under conditions such that the tempe
the superconducting transition temperature, and other characteristic energy para
are much smaller than the energy difference between the first excited and ground st
a system with a fixed number of particles, has been demonstrated in Refs. 1 and 2.
these conditions the degrees of freedom associated with the motion of particles in
can be assumed to be completely frozen. Actually, the question concerns metallic
particles of the type obtained by Ralphet al.3 As noted previously,1,2 the realizability of
superconducting states in MQDs implies a change in the physical notions abou
properties of space–time, since superconducting states, generally speaking, change
cally under spatial rotations by 2p. If the standard coordinatesx,y,z are exhaustive
characteristics of space, then rotation by the angle 2p is simply an identity transforma
tion under which nothing can change physically. The realizability of mesoscopic s
conductivity therefore requires the introduction of additional physical characteristics~co-
ordinates! of space. An alternative viewpoint, based on the introduction of supersele
rules,4 as shown in Refs. 1 and 2, is unsatisfactory. The additional coordinates
change under rotations by the angle 2p in order to make such rotations physical
distinguishable from the identity transformation. Therefore they must correspond
spinor representation of the rotation group.

We show below that a completely adequate description of mesoscopic superco
tivity obtains if a nonrelativistic version of Grassmann~anticommuting! spinor coordi-
nates, which are introduced in supersymmetric field theories and transform ord
space into superspace, is introduced as additional coordinates. In MQDs conditio
6730021-3640/98/68(8)/6/$15.00 © 1998 American Institute of Physics



motion
of the
netic
ce by
g the

mi-
racter-
of
l

tor

k

o
three
e

e
ey
alues
on’’
otations
ary to

ntum-

ian
a-

674 JETP Lett., Vol. 68, No. 8, 25 Oct. 1998 A. F. Andreev
such that all degrees of freedom of the system, except those that correspond to
along the additional coordinates, can be treated as frozen. An experimental check
quantitative description formulated in this letter for the superconducting and mag
properties of MQDs would therefore give a confirmation of the concept of superspa
means of an essentially direct experimental study of the dynamics of MQDs alon
additional coordinates.

1. The specific nature of the thermodynamic behavior of MQDs lies in the fact1,2 that
a change in the average number^N& of electrons accompanying a change of their che
cal potential occurs as a result of first-order phase transitions between phases cha
ized by different integral values ofN. The states belonging to regions of coexistence
different phases and characterized by nonintegral^N& are superconducting. A genera
property of systems of Fermi particles is the parity effect~PE! — the difference of the
quasicontinuous~for large N) functionsEe(N) and Eo(N).Ee(N) giving the ground-
state energy for even and oddN, respectively. Let us write the particle-number opera
N in the formN5Ne1n, whereNe runs through all even numbers, while 0<n<2. There
exist three phases for eachNe : I, II, and III with n50,1, and 2, respectively. For a wea
PE there are two critical values of the chemical potentialmc1(Ne) and mc2(Ne) which
correspond to the phase transitions I→II and II→III and coexistence of the phases~I, II !
and ~II, III !. As the PE increases, the quantitiesmc1 and mc2 approach one another, s
that for a certain definite magnitude of the PE there exists a triple point where all
phases exist simultaneously andmc15mc2 . For an even larger PE there is only on
critical valuemc(Ne) for the transition I→III and coexistence of the phases~I, III !. A
situation where both cases~two transitions atmc1 and mc2 or one transition atmc for
fixed Ne) occur in the same system for different values ofNe is possible~it has actually
been realized experimentally5!. In such a system there exists a triple point withNe

determined by the equationmc1(Ne)5mc2(Ne).

2. The states of phase II withn51, i.e., with an odd number of electrons in th
absence of an external magnetic field~see Ref. 2!, are magnetic. In the simplest case th
correspond to a total spin 1/2 of the system, though in principle larger half-integer v
3/2, . . . arealso possible. The superconducting states, in which this ‘‘one-fermi
phase is present as one of the coexisting phases, change physically under spatial r
by 2p. In accordance with what we have said above, to describe them it is necess
introduce, together with coordinatesx,y,z, additional Grassmann coordinatesua ,
ūa[ua

1 , where

$ua ,ub%5$ūa,ub%5$ūa,ūb%50,

$ . . . , . . .% is an anticommutator, anda51,2 is a spinor index.

The dynamics of the system in the additional coordinates is described by qua
mechanical operatorsaa ,āa5aa

1 satisfying the canonical relations

$aa ,ab%5$āa,āb%50, $āa,ab%5db
a . ~1!

Transformations of theSU(2) group of spin rotations are generated by Hermit
spin operatorss5(1/2)aa

1sabab , wheresab are Pauli matrices. The gauge transform
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tions aa→aaeif, where f is a constant, are generated by the Hermitian oper
n5āaaa5aa

1aa , which is invariant underSU(2) and must be identified as the operat
n[N2Ne introduced above.

It is important to underscore that the universal description by means of the ope
aa is possible only when the ‘‘purely Bose’’ degrees of freedom of the system
completely frozen. For example, if the total spin of a one-fermion (n51) state is 3/2,
then since the spin 3/2 is a combination of spin 1/2 and the Bose spin 1, such a s
‘‘incompletely frozen’’ with respect to the Bose degrees of freedom.

Despite the relation~1!, the operatorsaa andaa
1 are not, generally speaking, ann

hilation and creation operators for any real particles. They represent universal cha
istics of any system with an average number of fermions that is not an even integer
conditions such that the Bose degrees of freedom are completely frozen. In exac
same manner, the conventional canonically conjugate coordinate and momentum
tors describe the dynamics of a system with respect to a collective Bose variable
conditions such that all other degrees of freedom are frozen. The operatorsaa andaa

1 are
therefore a generalization of the Pauli operatorssab to the case where, together withx,y,
andz, there exist additional coordinatesua .

3. The Hamiltonian of a nonrelativistic isolated system should be invariant unde
spin rotations inSU(2) and gauge transformations. The most general such Hamilto
is

H05j12
1

2
~3j11j2!n̂1

1

2
~j11j2!n̂2, ~2!

where j1 and j2 are constants. The origin of the energy coordinate is chosen so
E050 for n51, where the energy is represented by the quantityE2mN, which in
equilibrium possesses a minimum for fixedm.

In the occupation-number representationun1 ,n2&, where n15a1
1a1 and n2

5a2
1a2 , there are four statesu0,0&,u1,0&,u0,1&, and u1,1& with the energiesj1 , 0,0, and

j2 , respectively.

In the general case the system possesses degrees of freedom which are not fr
quite low temperatures, ifj1.0 andj2.0, i.e., when the ground state corresponds
phase II withn51. The most general Hamiltonian that depends on the operatorsaa and
aa

1 and possesses transitions only between the degenerate statesu1,0& and u0,1& in an
isolated system has the form

HB52mBB•aa
1sabab . ~3!

HeremB is the effective magnetic moment, which for a system of nonrelativistic elect
equals the Bohr magneton, andB is the magnetic field acting on the system. This fie
might be an external field or an effective internal field in the system MQD1 contacts
~see Ref. 2!, which give rise to a magnetism of phase II in the absence of an exte
field. Therefore in the general case considered one can speak only of purely spin d
of freedom.

4. Near a triple point of phase coexistence one hasj1→0 andj2→0, and all four
states are close in energy. The most general Hamiltonian has the form
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H5H01HB1HD1Hw1Hc , ~4!

where

HD5~1/2!Daaa1H.c., Hw5wanaa1H.c., Hc5ca2a11H.c.

Here, once again, the quantitiesDa,wa, andc might be effective internal fields in the
system MQD1 contacts~see Refs. 1 and 2 and below!, which give rise to superconduc
tivity in a pair ‘‘condensate’’ (c) or with a single-electron ‘‘condensate’’ (D and w).
These quantities might also be proximity fields produced by superconductors o
appropriate type which possess higher values of the critical parameters and whi
connected with the MQD under study by a tunneling contact. The fieldwa can be
neglected, since it possesses the same symmetry asDa but is due to low-probability
multiple-particle tunneling processes. For the same reason, the fieldDa, if it is nonzero,
should be more important thanc.

The Hamiltonian~4! is a generalization of the Pauli Hamiltonian~3! to a small
neighborhood of the triple point, where the coordinatesua are almost completely free.

SinceDa transforms under spin rotations as a spinor of rank 1, it is always pos
to obtainD250 by appropriately orienting thez axis. ThenD1[D can be made to be
positive by an appropriate rotation around thez axis. Settingwa5c50 and switching to
a matrix representation, in which the statesun1n2& are written in the form of vertical
columns

u0,0&5~1000!T, u1,0&5~0100!T, u0,1&5~0010!T, u1,1&5~0001!T,

whereT indicates transposition, we write the Hamiltonian in the matrix form

H5S j1 D/2 0 0

D/2 2Gz 2G t* 0

0 2G t Gz D/2

0 0 D/2 j2

D , ~5!

whereG5mBB andG t5Gx1 iGy .

Simple formulas for the energy levels of the Hamiltonian~5! can be obtained in the
limiting caseuju@h,G, wherej andh are determined by the formulasj1,25j6h/2. I
obtain

E1,252
yD

2u
7S G2u42Gzhu2y21

h2

4
y4D 1/2

,

E3,45
uD

2y
7S G2y42Gzhu2y21

h2

4
u4D 1/2

, ~6!

whereE1,E2,E3,E4 ,u.0,v.0,

u25
1

2S 11
j

AD21j2D , y25
1

2S 12
j

AD21j2D .

The spontaneous magnetic moment of the ground state,Mz52mB]E1 /]Gz , in the
limit G→0 is given by the expression:
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Mz52mB

h

uhu
u2.

Therefore the ground state is simultaneously superconducting and ferromagnetic.

Now let D be an internal effective field. The point is that in the region of a MQD
incoherent scattering of individual electronic quasiparticles of the contacts by the M
which leads to diffusional destruction of the superconducting phase, is negligibly s
compared with the coherent proximity effect. The appearance of an effective fieD
increases the energy of the contacts~cf. Refs. 1 and 2!, so that the ground-state energy
the system MQD1 contacts is

E1~D!1
1

4j0
D2, ~7!

wherej0 is a positive constant andE1(D) is the ground-state energy~6!. Minimizing
expression~7! with respect toD and neglecting all small terms givesD5Aj0

22j2. The
points j56j0 correspond to phase transitions into a state which is simultaneousl
perconducting and magnetic.

5. The limiting casej2@j1 ,G,D corresponds to a small neighborhood of the critic
pointm5mc1 of the phase transition I→II and coexistence of the two phases I and II. T
stateu1,1&, corresponding to phase III, is separated from the three other states by a
energy barrier. The effective Hamiltonian, which possesses transition matrix elem
only between the three nearly degenerate states, can be obtained from Eq.~5! by crossing
out the last row and column.

For smallG the energies of the three states are (E1,E2,E3 ,j[j1)

E15j2
Du

2y
2u2Gz , E25Gz , E35j1

Dy

2u
2y2Gz . ~8!

The spontaneous magnetic moment of the ground state in the limitG→0 is Mz

5mBu2.

If D is, as above, the internal magnetic field of the system MQD1 contacts, its
equilibrium value should be determined by minimizing expression~7! with E1(D) from
Eq. ~8!. For jc56j01Gz there exist phase transitions into a state which is simu
neously superconducting and magnetic.

In closing, it should be empahsized that an experimental check of Eqs.~6! and ~8!
for the energy spectrum of a MQD along with the formulas for the locations of the p
transition points would at the same time be an experimental check of the conce
superspace.

This work was a result of my visit to the Low-Temperature Laboratory at
Technical University of Helsinki. I thank M. Krusius and M. Paalanen for organizing
visit and for helpful discussions.
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Fractal structure of the phase equilibrium curve of a
system of two oscillating magnetic moments

F. V. Lisovski a)

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 14112
Fryazino, Moscow Region, Russia

O. P. Polyakov
M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

~Submitted 11 September 1998!
Pis’ma Zh. Éksp. Teor. Fiz.68, No. 8, 643–647~25 October 1998!

The fractal structure of the phase equilibrium curve of a system of two
interacting magnetic moments in the presence of a uniform low-
frequency bias magnetic field is found by numerical methods. It is
established that as frequency increases, the phase equilibrium curve
becomes smooth. For that case an exact solution of the dynamical equa-
tions is found which gives a good description of the numerical results.
© 1998 American Institute of Physics.@S0021-3640~98!01020-2#

PACS numbers: 05.45.1b, 75.60.Ej

It is now known reliably that dynamic self-organization of the distribution of
magnetization vector is possible in thin films of uniaxial magnets under the influen
a pulsating bipolar or monopolar bias magnetic field~see the original publications1–4 and
the reviews5–8 and the bibliographies presented therein!. The processes occurring here a
either nonequilibrium phase transitions~PTs! of the type ‘‘simple chaos’’→ ‘‘chiral
chaos’’ with formation of spiral domains1–3,5,6 or PTs of the type ‘‘simple chaos’’→
‘‘order,’’ in which the initial serpentine domain structure transforms into ordered bip
odic arrays with different motif-forming elements and different Bravais cells.4,7,8 The
theoretical analysis of phenomena of this kind encounters substantial difficulties in
nection with the fact that the Landau–Lifshitz equation describing the evolution o
distribution M (r ) of the magnetization vector in the general case does not hav
analytical solution, even in the ‘‘deterministic’’ approach. For this reason, to determ
the fundamental reasons for the appearance of self-organization in magnets it is nec
to simplify the corresponding theoretical models as much as possible.

We considered a system consisting of two point magnetic dipoles with momenp1

andp2(up1u5up2u) located at the pointsr1 andr2, respectively, wherer12r25aez . It is
known ~see, for example, Ref. 9! that in the absence of external perturbations the gro
state of such a system, which is twofold degenerate, corresponds to parallel orienta
the dipole moments, i.e., two configurations are possible:p1,251p1,2ez ~state I! or p1,2

52p1,2ez ~state II!. The choice of one of the two possible configurations involves sp
taneous symmetry breaking; in a real situation it is determined by the direction
6790021-3640/98/68(8)/6/$15.00 © 1998 American Institute of Physics
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magnitude of the random or intentionally produced deviations of the dipole-mom
vectors from the equilibrium state initially.

The temporal evolution of the dipole moment vectorsp1,2, with allowance for the
Gilbert dissipative term, is described by the equation10

dp1,2

dt
52gFp1,2

dw

dp1,2
G1

a

p1,2
Fp1,2

]p1,2

]t G , ~1!

where w is the total energy of the system,a is the damping parameter, andg is the
gyromagnetic ratio. For the model chosen, only the Zeeman and magnetostatic en
contribute tow, i.e.,

w52~p1•H1!2~p2•H2!, ~2!

whereH15H1H(21), H25H1H(12), H is the intensity of the external magnetic fiel
andHd

(21)(Hd
(12)) is the intensity of the dipole field produced by the second~first! mag-

netic moment at the first~second! magnetic moment.

For a harmonic external fieldH5ezH0 sin(vt) Eq. ~1! reduces to the following
system of equations for the spherical coordinatesu1,2 andf1,2 of the vectorsp1,2:

]u1,2

]t
5ap2,1

@sin ~f1,22f2,1!#2aaH sin u1,2 sin t1aap2,1
@2a sin u1,2 cosu2,1

2cos~f1,22f2,1! cosu1,2 sinu2,1#, ~3!

]f1,2

]t
5

1

sin u1,2
$aap2,1

@sin~f1,22f2,1!#sin u2,11aH sin u1,2 sint2ap2,1

3@22 sin u1,2 cosu2,12cos~f1,22f2,1!cosu1,2 sin u2,1#%, ~4!

wheret5vt, ap1,2
, andaH are dimensionless parameters defined by the expression

ap1,2
5

gp1,2

~11a2!va3
, aH5

gH0

~11a2!v
.

Analysis of Eqs.~3! and ~4! leads to the following conclusions.

1. For any fixed values of the parametersap1,2
andaH the system evolves ast→`

~depending on the initial conditionsu1,2
(0)5u1,2(t50) andf1,2

(0)5f1,2(t50)) to one of two
possible equilibrium states withp1,251p1,2ez or p1,252p1,2ez , i.e., there exist two
attractors of the ‘‘focus’’ type.

2. If the Zeeman energy is much greater than the magnetostatic interaction ene
the dipoles (aH@ap1,2

), then Eq.~3! reduces to the form

]u1,2/]t52aaH sin u1,2sin t

and has the analytical solution

lnS tan
u1,2

2 / tan
u1,2

~0!

2 D 5aaH~cost21!. ~5!
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It follows from simple symmetry considerations that for the static case in the
sence of an external magnetic field at the point of phase equilibrium between states
II the anglesu1 andu2 satisfy the relation

u11u25p,

and the magnetic moments of the dipoles are oriented parallel toez if u11u2,p and
antiparallel toez if u11u2.p.

If it is assumed that the same situation also occurs in the dynamic case, whe
anglesu1,2 are functions of time, i.e., the adiabatic approximation is used, then it foll
from Eqs.~5! that

tan
u1cr

~0!

2
5tan

p2u2
~0!

2
expS 2

2a

V D , ~6!

whereV51/aH is the dimensionless frequency of the external magnetic field andu1cr
(0) is

the critical value of the angleu1
(0) corresponding to the point of phase equilibrium for t

chosen value ofu2
(0) ~as t→` for u1

(0),u1cr
(0) the system passes into state I and foru1

(0)

.u1cr
(0) it passes into state II!.

The phase equilibrium curve for the nonequilibrium PT under study in the (V,u1)
plane and fora50.3 andu2

(0)5p/4 is presented in Fig. 1. AsV→`, u1cr
(0) approaches

3p/4 asymptotically~in complete agreement with the results obtained on the basis o
analogy with the static case!. As the normalized frequency decreases, the critical valu
u1

(0) decreases monotonically~formally — to zero atV50!, but it should be kept in mind
that at low normalized frequencies~i.e., for large amplitudes of the ac magnetic field! the
adiabatic approximation is inapplicable and the system of dynamical equations~3! and
~4! must be solved exactly.

FIG. 1. Phase equilibrium curves for the nonequilibrium PT in the (V,u1) plane anda50.3; u2
(0)5p/4. Solid

line — adiabatic approximation, dots — exact numerical solution of Eqs.~3! and ~4! for f1
(0)5f2

(0)5p/4.
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3. An exact numerical solution of Eqs.~3! and ~4!, for example, for the casea
50.3, u2

(0)5p/4, andf1
(0)5f2

(0) , gives the phase equilibrium curveu1cr
(0)5 f (V) con-

structed in Fig. 1~dots!; a portion of this curve is shown on a larger scale in Fig. 2.
high frequencies the exact solution gives results that are in good agreement wi
predictions of the analytical theory based on the adiabatic approximation. At low
quencies the phase-equilibrium curve for the exact solution has a complex, irregula
structure and possesses a region of scaling and self-similarity that is characteris
fractal objects.

4. We used the Hausdorff–Besicovitch method to determine the fractal dimensi
the phase equilibrium curve.11 The procedure used is illustrated in Fig. 3, which sho

FIG. 2. A portion of the phase equilibrium curve~exact solution! shown in Fig. 1.

FIG. 3. Fractal dimensionD versus the edge length« of a hypercube for the phase equilibrium curve shown
Figs. 1 and 2~exact solution!.
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the fractal dimensionD as a function of the edge length« of a hypercube. It is obvious
that the phase equilibrium curve at low frequencies does indeed exhibit scaling, a
fractal dimension isD51.42.

5. The behavior described above for the dynamical system under study is
observed with other initial conditions. As an example, Fig. 4 shows phase equilib
curves for a50.3,u2

(0)5p/3, f1
(0)5f2

(0)5p/4 ~1 — exact solution,3 — adiabatic
approximation! for a wide range of values of the normalized frequencyV. For conve-
nience in making comparisons, the figure also displays similar curves~2 — exact solu-
tion, 4 — adiabatic approximation! for u2

(0)5p/4, to which Figs. 1 and 2 refer.

The investigations performed show that our simple model of a magnetic system
lumped parameters exhibits many features that are characteristic for complex ope
equilibrium distributed systems. Specifically, the experimentally observed6,7 character of
the nonequilibrium phase transitions from one synergetic structure to another exh
qualitative analogy with the behavior of the model studied~appearance of ordering an
fractal-like structures at low external-field frequency, the vanishing of these structur
the frequency increases, high sensitivity to changes in any parameter of the sys
external field, and so on!. All this attests to the general nature of the dynamic s
organization in different open nonequilibrium systems.

In conclusion, we note that the physicists have long recognized that the formalis
fractal geometry must be used in order to give an adequate description of pheno
accompanying equilibrium and nonequilibrium PTs. A classic example is the hypot
of the fractal nature of the critical state. This hypothesis is the basis of
renormalization-group method. Dikshte�n et al.12 recently called attention to the appea
ance of static fractal-like domain walls in thin uniaxial magnetic films as film thickn
increases above a certain critical value. In our example, however, we encounter a
mentally new phenomenon — the possibility of fractalization of phase equilibr
curves.

FIG. 4. Phase equilibrium curves in the (V,u1) plane that correspond to the exact numerical solution of E
~3! and~4! and the adiabatic approximation fora50.3,f1

(0)5f2
(0)5p/4; 1,3 — u2

(0)5p/3, 2,4 — u2
(0)5p/4.
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