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Abstract—The problem of doubling of fermion states is studied in the framework of the theory of discrete
gravitation. Examples of amorphous lattices (simplicial two-, three-, and four-dimensional complexes) free of
doubling of fermion states are given. Possible consequences of thisfact, such as the absence of quantum anom-
alies in divergence of axial currents, are considered. On the basis of the absence of axial anomalies and the
finiteness of the number of physical degrees of freedom in the model of discrete quantum gravity proposed
in[1] and of the continuum theory of gravitation constructed with the help of the dynamic quantization
method [2], the following conclusion has been drawn: discrete quantum gravity [1] in the continuum limit is
transformed into the theory of gravitation constructed in accordance with the algorithm of the dynamic quanti-
zation method [2]. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In the recent publication [1], a new version of quan-
tum gravity on a lattice was proposed. In addition to
variables describing the gravitational degrees of free-
dom, this theory also includes fermion degrees of free-
dom, the fermion action being local and yP-invariant. In
addition, in the naive continuum limit, the | attice action
is transformed into the Hilbert action plus the action of
a massless Dirac field, which is connected with the
gravitational field to the minimal extent. Since this
action will be used here, we describeit in detail.

Let & be a four-dimensional simplicial complex
permitting ageometrical realization. The definition and
required properties of simplicial complexes can be
foundin[1]. A detailed theory of simplicial complexes
is given, for example, in [3, 4]. Instead of the word
combination “simplicial complex,” we will henceforth
use just the term “complex” and will regard as syn-
onyms the following pairs of concepts: a0-simplex and
avertex, al-smplex and an edge, a 2-simplex and atri-
angle, and a 3-simplex and a tetrahedron. Of special
interest are finite complexes with the 4-disk topology.
Such complexes have a boundary a§t, where o8&t is a
three-dimensional complex with a topology of sphere
S®. Wedenote by 0y, =0, 1, 2, 3, 4, the number of
simplices of complex §. Indicesi, j, k, and | enumerate
the vertices of the complex: &, a;, and so on. Two ver-
ticeswill be referred to as neighboring if these vertices
are the boundary vertices of the same edge.

Lety? a,b,c=1,2, 3,4, befour-dimensional Dirac
matrices. The signature is assumed to be Euclidean.

Consequently, all Dirac matrices are Hermitian. The
Hermitian matrix

1.2 .3 4

Y =y,

5 a b c d abcd

ry’yyyy =4, (1)

divides the “right” component ¢ and the “left” compo-
nent x of aDirac spinor . At each vortex a, of complex
&, Dirac spinors y); and J; are defined, on which the

Dirac matrices act from left and right, respectively. It
should be recalled that, in the case of a Euclidean sig-

nature, fields ; and J; are assumed to be independent

variables, which are transformed into each other in the
case of Hermitian conjugation. We juxtapose each ori-
ented edge a,a; to an element of group Spin(4):

= ._.1: GLabad] ab:la
Q eXp W 0 o LY Y1 @

Holonomy element Q; of the gravitationa field exe-
cutesaparallel trandation of spinor ; from vertex a of
edge a;a to neighboring vertex a . We denote by V alin-
ear space with basis y. Let each oriented edge a;a be
put in correspondence with element &; = ef} vy,
such that

8 = _Qijéini_jl- (€©)

Index A enumerates4-simplices. Thenotation @, , Wa;,
€aij» and Qy; indicates that edge ag belongs to the
4-simplex with index A.
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By hypothesis, complex &t has a disk topology. For
such acomplex, the concept of orientation can beintro-
duced. We define the orientation of the complex by
defining the orientation of each 4-simplex. In this case,
if two 4-simplices have a common tetrahedron, the two
orientations of the tetrahedron, which are defined by
the orientations of these two 4-simplices, are opposite.
In our case, the complex obviously has only two orien-
tations.

Let ay, @y, an, Ay, and ay, be al five vertices of a
4-simplex with index A and €4, = 1 depending on
whether the order of vertices ayaxaxadaaam definesthe
positive or negative orientation of this 4-simplex. In
addition, €4m = 0 if at least two indices coincide. We
can now write the Euclidean action in the model in
question:

1

5x 242 z sAijkImtry5

A jklm

X
I:IQI:I
|

| QAmi QAij Q Aj méAmkéAmI

N

1~ . . . O
+ 2—4@Ami €amj €amkCami Bl (4)

oy | a a a
Qaij = EY (DAY QaijWa —Pa QY Wai)
= Giijva-

The volume of a4-complex is given by

abcd _a b C d
z Enijkm€  €ami€amj€amkCami-
i kl,m

2

Here, factor 1/4! isrequired since the volume of afour-
dimensional parallelepiped with generatrices €},

e‘,imj , €Ak, and edAmI is4! timeslarger than the volume
of a4-simplex with the same generatrices, while factor
/5! is due to the fact that al five vertices of each sim-
plex are taken into account independently.

The dynamic variables are quantities Q;; and &;,
which describe the gravitational degrees of freedom,
and fields ; and {;, which are material fermion fields
(other material fields are not considered here).

Action (4) is of interest in connection with fermion
doubling (or Wilson doubling) since its fermion part
possesses the following properties.
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1. Action (4) islocal.

2. In the naive continuum limit, action (4) is trans-
formed into the gravitational action in the Palatini form
plusthe action for Dirac fields that are connected to the
minimal extent with the gravitational field.

3. The fermion part of action (4) is phase-invariant
and also y® invariant; i.e., it is invariant relative to the
following transformations:

@Y — exp(io)y, I — P exp(-Ha),

(b) W — exp(iBy?), § — P exp(-iPy?),
where a and [ are real-valued continuous global
parameters.

It iswell known [5-8] that, on a hypercubic lattice,
Wilson doubling takes place for any fermion action
possessing properties 1-3. In addition, it is known [9]
that Wilson doubling also takes place on periodic lat-
tices on which the fermion action has the form

=Y A=Y, (5)
X,y

(x and y are the radius vectors of the lattice site) and
possesses the three above-mentioned properties. How-
ever, it remains unclear whether a fermion action with
properties 1-3 leads to Wilson doubling on any lattice.
Here, we give examples of lattices (ssmplicial com-
plexes) on which Wilson doubling does not take place
for action (4). The absence of Wilson doubling for a
y>-invariant action is equivalent to the possibility of
introducing a single Weyl field on a lattice. For exam-
ple, in order to introduce a “right” Weyl field, the fol-
lowing substitutions should be made in action (4):

P (U2)(1+Y)p, P — PU2)(1-Y").

According to Hartle and Hawking [10], the main
problem in quantum gravity is to calculate the funda-
mental functional integral/statistical sum—the domain
of the fields is a D-dimensional disk, and the wave
function of the generated Universe depends on the
fields defined on the disk boundary (sphere SP—1). In
our case, instead of the integral over continuum, we
have a finite-multiplicity integral (since complex & is
finite) over al fundamenta fields with weight expl.
Naturally, the fundamental statistical sum of the Uni-
verse must also include summation over the lattices
themselves. Conseguently, the numbers of simplices
and the method for their combination into a complex
(and, hence, the numbers of physical degrees of free-
dom and their constraints) are not fixed and should be
determined statistically proceeding from the principle
of statistical sum saturation. The dimension of the com-
plex itself must be fixed in asimilar way.

In order to solve the problem of Wilson doubling we
are interested in, we must assume that the Universe has
expanded to such an extent that we can disregard the
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fluctuations of the gravitational field and study the eigen-
modes of the discrete Dirac operator in relations (4). For
solving this problem, we must idealize the situation in
the indicated direction. Consequently, we will hence-
forth assume that

(e + €l +...+¢€) = 0. (6)
Here, the sum in the parentheses is taken over any
closed path formed by 1-simplices. Equations (6) indi-
cate that the curvature and twist are equal to zero. Thus,

the geometric realization of complex & is in the D-

dimensional Euclidean plane, ef} being the components

of the vector in a certain orthogonal basisin this plane,
and the beginning and end of this vector being located
at vertices g and a;, respectively. It should be noted
that, if relations (6) hold, we have

o] = -0, @

L et us demonstrate the problem of Wilson doubling
using the simple example of the Dirac theory in a 2D
Minkowski space. We denote by ¢ and x the upper and
lower components of complex Dirac field ¢ and sup-
pose that the fermion Hamiltonian in the continuum
case hasthe form

% = J'dx[q)T |——eAD¢+xTB—+eA } 6)

Here, A, isthe x component of the gaugefield (for sim-
plicity, we choose an Abdlian field). In the free case, the
equations for eigenmodes and their solutions have the
form

—|(_%((1)p = eq;(l)p, )
¢p:eipx1 —o < p <+, eﬁ= b,
iix = e*X,
0X p pPAP (gb)
Xp = €7, —o<p<+w, € =-p.

By definition, the spatial component of the vector cur-
rent has the form

O

J=5h = 00 X'X). (10)

Let us now consider the simplest generalization of
Hamiltonian (8) to alattice and confine the analysis to
upper component ¢. In our case, the lattice is one-
dimensional. For simplicity, we assume that the lattice
consistsof N vertices on acircle, which are enumerated
successively, their numbers being determined by mod-
ulusN. A complex quantity ¢,, is defined at each vertex
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Fig. 1.

of the lattice with number n and a phase factor
exp(iedy) is defined on each 1-simplex aa,.;. The
real-valued Hamiltonian, which is transformed into
Hamiltonian (8) in the continuum limit, can be written
in the form

N (11)
X dn(exp(-ieA) .1 —exp(ieA, 1)d, 1),

n=1
while an anal og of the spatial component of vector cur-
rent (10) has the form
OH
0A,

= S[01exp(-ieA)bn .1 + 0] exp(ieA),].

Ja=-

(12)

In the free case (A, = 0), we have the following
equation for the eigenmodes of Hamiltonian (12) and
its solution:

2 (@ns1—b0t) = €bn,

(13)
- 1 ok 0 _ g, 21K
n J_ &CPoN D ¢ T N’
- _N_N N_
k=— -7+ ..37-1 (14)

We assume for simplicity that number N isamultiple of
number 4. Integer k enumerates the modes; when we
enumerate all independent modes, this number runs
continuously through N values. Figure 1 shows the
curve describing the dependence of € on number k for
large values of N. We introduce a quasi-continuous
parameter p = 21k/N and consider the region |p| < 1.
The range of values of k corresponding to thisregion p
is contained between parentheses 1 and 2 in Fig. 1. In
this region, which will bereferred to astrivial, we have
approximately

lpl < L.

€ = P, (15)
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Thus, asN —» oo, the spectrum of field ¢ on the lattice
inthetrivial region coincideswith spectrum (8) and the
lattice contribution to current (12) coincides with the
contribution to current (10) from the upper component
of the Dirac field. The zero and soft modes from the
trivia region of the spectral parameter will be referred
to astrivial.

Let us now carry out the substitution

N, N

k=§+5[p, Ipl < 1. (16)

In this case, the range of spectral parameter k is con-
fined between parentheses3and 4 in Fig. 1. Thisregion
of the spectral parameter and the corresponding modes
will be referred to as nontrivial. Since the nontrivial
region (aswell asthetrivial one) isrelatively small, the
dependence of the spectrum on the spectral parameter
can be linearized:

€ =-p, Ipl<Ll (17)
In accordance with relations (14) and (16), for nontriv-
ial modes we have

¢E]p+)1 - _ E]p)eip — (_1)n+1¢oeip(n+1)’

(18)
lpl < 1.

It follows hence that the configurations of the “modes”

oW = (=1)"0”, xli = xie” Ipl <1, (19)
have a continuum limit. If we express the contribution
to vector current (12) from nontrivial modesin terms of
modes X, we obtain formula (10). Together with for-
mula (17) for the spectrum, this means that an aggre-
gate of nontrivial modes can be treated in the contin-
uum limit as the lower component of Dirac field x; in
this case, Hamiltonian (7) can be used for describing
the entire system.

It is also worth noting that a nontrivial mode in the
given case has two branches, each of which separately
has a continuum limit. For example, in the case of even
n, we mark by primes vertices a, and the values ¢,, of
nontrivial modes corresponding to them, while in the
case of odd n, we mark the corresponding quantities by

two primes. Aggregates of quantities {¢,} and { ¢, }
form two branches of the nontrivial mode. The above
formulas show that both branches have continuum lim-

its, and Eq. (13) for the zero mode does not mix these
two branches.

It should be noted, irrespective of the above exam-
ple, that nontrivial modes that do not split into their
branches, each of which has a continuum limit, can
hardly be treated as physical modes in the continuum
limit.
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It can be seen from the example considered above
that the phenomenon of Wilson doubling meansthat, if
only one left (right) Weyl field is introduced explicitly
on lattices, we inevitably have only Dirac fields in the
continuum limit.

We will show in thiswork that the “no go” theorem,
which was proved for an action of type (5) [9], is gen-
erally invalid for amorphous lattices. This statement is
substantiated by considering examples of amorphous
latticesin two, three, and four dimensionsfor action (4)
or its analogs for which Wilson doubling is absent. In
the final section, we will consider possible conse-
guences of thisresult for the problem of axial anomaly.
It is concluded that the version of discrete quantum
gravity proposed in [1] istransformed in the continuum
[imit into the quantum theory of gravitation constructed
with the help of the dynamic quantization method [2].

2. TWO-DIMENSIONAL LATTICES

We begin the analysis of Wilson doubling with the
simplest case, when &' is atwo-dimensional simplicial
complex. We assume that the geometrical realization of
complex § is atwo-dimensional surface with the disk
topology, 08 being a one-dimensional simplicia com-
plex with the topology of a circle. For definiteness, we
assume that two-dimensional Dirac matricesy?, a =1,
2, aeyt=cotandy?=0?, whereo®, a =1, 2, 3, arethe
Pauli matrices. By definition, y® = iyly2. At each vertex
a, of complex &, Dirac spinors ; and ; are defined,
which are two-dimensional column and row matrices,
respectively. We juxtapose each oriented edge a;a to an
element of group Spin(2) (which isAbelian in the two-

dimensional case), denoted by Q; = Q;;" . Intwo dimen-

sions, index A enumerates triangles of complex §.
Compound indices (Ai), (Aij), etc., indicate the fact that
vertex a,;, edge aya,, etc., belong to a triangle with
index A. The complexes considered here permit the
introduction of orientation. We define the orientation of
the complex by defining the orientation of each trian-
gle. If two triangles share an edge, the two orientations
of the edge defined by the orientations of these two tri-
angles are opposite. By definition, €, = =1 depending
on whether the order of vertices ayayan defines the
positive or negative orientation of the corresponding
triangle.

We can now write the fermion part of the action (cf.
formulas (4)):

1
ly = éz Z sAijksab@iijezik' (20)

Ak
Two-dimensional action (20) possesses all three of the

properties listed after formula (4) for four-dimensional
action (4). In accordance with the same considerations
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asthose given in the Introduction, equalities (6) and (7)
also hold in the two-dimensional case.

We can now write the equations for the eigenmodes
of a discrete Dirac operator. We fix two neighboring
vertices & and a and single out the contribution to

action (20), proportional to Of} . Figure 2 shows a part
of the complex, containing 1-simplex a;a;; indicesi, j,
k, | enumerate vertices, while index A enumerating tri-
angles assumes two values (1 and 2) in this case. We

have everywhere s = g€ ; i.e, vector s can be

obtained by rotating vector ef} clockwisethrough angle
TU2. The sought contribution to the action is given by

1
By, = 305, S =)+, (21)

Vectors S can bereferred toasan “umbrella’ of vertex

g, from the neighboring vertex a;. Umbrella Sﬁ isdeter-

mined unambiguously from two given neighboring
vertices g and a;; it can be seen from Fig. 2 and rela-

tions (6) that Sj =—S; . We separate from the complex
a subcomplex b; consisting wholly of 2-simplices con-
taining vertex a, and will refer to this complex as a
neighborhood of vertex a. We enumerate the vertices
on boundary 0b; in such away that vertex g , , follows
vertex a; during a continuous counterclockwise travers-
ing of boundary 0b; and assume that index j is defined
by (mod n), where n is the number of vertices on db;,.
The fact that index j enumerates the vertices on 0b; is
denoted by j(i). Using formula (21), we can easily sep-
arate from action (20) the contribution proportional to

spinor @ :

1
A|$i = ézeﬁsﬁ
i)
Using formulas (6), (20), and (22), we obtain the fol-

lowing equation for eigenmodes of the discrete Dirac
operator at internal vertices a;:

(22)

6AI[|:'i — | c — Dl 0
T E%SJ% = VoW
j@
Here, v; is the area of the neighborhood b;. In accor-
dancewith the second equality in (6), we have the iden-

tity
z éﬁj =0.
i

(23)

(24)

Indeed, each vector s]'-"(i), i()+1 iscontained in two and
only two umbrellas in the latter sum. It follows from
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identity (24) that Eq. (23) is of the difference nature;
i._e., the left-hand side of this equation is a function of
differences (W; ) — W) only.

The system of equations for eigenmodes has amore
elegant form in complex notation. Let us suppose that

X; representsthe Cartesian coordinates of vertex g and

z = x; +ix isitscomplex coordinate. We denote the
upper and lower components of Dirac spinor Y by ¢
and ¥, respectively. In this case, Eq. (23) assumes the
form

1 - = 1}
_éz(zj+1_zj—l)Xj = ev;b,, (239)
i
1 —_— . 1
éZ(Zj+l_Zj—l)¢j = €ViXi (23b)
i)
for the zero mode (e = 0), we have
Z(Zj+1_zj—l)¢j =0
i€ (25)

-~ sz(¢j+1_¢j—l) = 0.
i)
In the subsequent analysis, we will use the following
notation for difference variables: y; ; = U — ;.

We are interested in all zero modes of the discrete
Dirac operator with zero boundary conditions for dif-
ference variables ¢, . One of these solutions is obvi-
ous. ¢; = const. This solution will be referred to as a
trivial zero mode.

In order to clarify the situation with zero modes, we
consider a concrete example.

Suppose that db; has an even number of vertices. In
thiscase, vertex g, iscalled even. Then the set of indices
j(i) can be divided into two groups containing equal
numbers of elements. Indices of the first group will be
marked by one prime and those of the second group, by
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WAAA/V i
(a) (b)
Fig. 3. Fig. 4.

two primes; as we traverse continuously along ob;, ver-
tices with primed and double primed indices alternate.
In the case under consideration, Eg. (25) can be rewrit-
ten in the form

{Z Zj'(¢j'+1_¢j‘—l)i|

i

+{Zzy‘(¢ju+l—¢ju_l)} =

i"()

(26)

We now assumethat all internal vertices of the com-
plex have an even number of neighboring vertices. In
addition, we assume that the entire set of interna verti-
ces splitsinto afinite number of subsets (in our case, we
have three subsets{a;}, {a-}, and {a-}) so that system
of equations (25) for the zero mode contains only dif-

ferences (), — W), (W, — W), and (W, =4 ,). I

isimportant to note that the coordinates of the vertices
are in the common position. We will refer to fields yy;.,
;-, and ;- asthe branches of the zero mode and of soft
modes close to it. In this case, the phenomenon of Wil-
son doubling obviously takes place (the effect of the
boundary for a, —» oo can be neglected). Figure 3 pre-
cisely illustrates this example, in which the vertices
from three such subsets of vertices are marked by indi-
ces0, . A nontrivial zero mode can betaken, for exam-
ple, intheform

0° = c20, ¢* = [exp(x2mi/3)]c.

Here, $° and ¢* are the values of field ¢ at the vertices
marked in Fig. 3 by indices 0 and %, respectively. This
nontrivial modeis orthogonal to thetrivial mode (in the
natural measure ) . I;; on aregular lattice) and is

hence independent. In this example, we have three
branches of the nontrivial zero mode.t

LIn connection with the problem analyzed here, we can mention
review [11], in which the difference Laplace operator factorized
into first-order difference operatorsis considered on regular trian-
gular lattices. The latter operators level out the values of variables
at neighboring vertices and differ in this respect from the operator
in formulas (23) and (25).
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The following question arises. does a lattice, on
which nontrivial zero modes are absent, exist? In order
to answer this question, we must study some properties
of system of equations (25), which requires additional
constructions.

For the Wilson doubling to take place, the zero set of
values of variables |, ,_, onboundary 0§t must corre-
spond to different solutionsto system of equations (25).
In other words, for zero values of variables g, ,_, on
a8, nonzero solutions to system of equations (25) must
exist for certain variables ¢; ;. Further, we prove that all
internal difference variables Y ji) -2 vanish on the so-
called odd complexes for zero vaI ues of variables ,
on 08 in accordance with system of equations (25).

The fact that internal variables Y, ;-2 are equal to
zero does not aways mean that Wilson doubling is
absent. Indeed, for the lattice depicted in Fig. 3, we
have

Py, =W, =, Y, =0, = ..,

but

Wy % W % Wy

Let us now consider a complex with properties
opposite to those of the complex shown in Fig. 3in a
certain sense. Thisisacomplex for which the boundary
0b; of each neighborhood has an odd number of verti-
ces. Such complexes will be referred to as odd.

The inductive procedure of constructing odd com-
plexes can be described asfollows. At thefirst stage, we
can take any complex consisting of an odd number of
triangles with one common vertex, which is the only
internal vertex. Suppose that an odd complex with
(M - 1) internal vertices has already been constructed.
Wetake any vertex onitsboundary, denoteit by ay,, and
make it an internal vertex by supplementing the com-
plex with new elements.

Solid linesin Fig. 4 depict the old part of the com-
plex with (M — 1) internal vertices, while dashed lines
show the part of the new complex, whichisadded to the
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old one. In Fig. 4a (4b), boundary vertex ay first
belonged to the boundaries of an even (odd) number of
1-simplices. Consequently, in the additional construc-
tion, an odd (even) number of new vertices and the
required number of 1-simplices are added in the case
depicted in Fig. 4a (4b). If the external boundary angle
at vertex ay in Fig. 4b is acute, the additional construc-
tion of the complex may consist in adding a single
1-simplex with boundary vertices ay, -1 and )+ 2;
as aresult, the number of boundary verticesis reduced
by one.

Inthe subsequent analysis, wewill consider only the
complexes constructed by induction in accordance with
the above procedure. The property of oddness is not
necessary in this case.

We will refer to difference variable ¢, ; as aregular
internal variableif a, 0 0t and a; 0 a&t'. A set of reg-
ular internal variables{ ¢, i}m, 1 =1, ..., M (Where M
in the number of internal vertices) is an independent
regular set of internal variablesif al internal vertices g
are pairwise different. The adjective “regular” will be
henceforth omitted since doing so will not lead to mis-
understanding. For the remaining (L — 1) independent
variables, we take independent difference variables
{0 .} &, a O 08t Here, L is the number of ver-
ticeson Y.

Let us consider the system of M equations (25) for a

complex with M internal and L boundary vertices for
M +L —1lindependent variables{ ¢, } ,, and{ ¢, }:

M L-1
Xijbe it ) Yiab.k, =0,
i =1, .. M.

Here, coefficients X; jand Y; , can be expressed linearly
in terms of variables z.

Statement 1. An M x M matrix || X; || is nondegen-
erate if M is an even number.

Proof. Let us consider a complex with M = 2. For
example, this can be a subcomplex of the complex
depicted in Fig. 5 and consisting of triangles with num-
bersfrom 1to 8.

We take differences {¢401, ¢ o} as internal vari-
ables and d|ff_erence${¢& 3 o7 ¢_10, 8 G110 G5 7} @
boundary variables. Then the matrix in the system of
two equations (27) at vertices a; and a, (we are using
notation z ; = z — z) hasthe form

] _
% = O ng . detX,, = Z2,#0.

[

0
Z4 3
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Let usnow consider acomplex with M =4, whichis
a subcomplex of the complex shown in Fig. 5 and con-
sists of triangles with numbersfrom 1 to 13. We choose
the internal and boundary difference variables in the
form {d101, $7,2 $g 3 97,40 ad {bge Go 7 D108
$11.9 P10, 5 P11, 6}, respectively. In this case, the matrix
inthe system of four equations (27) at verticesa,, a,, as,
and a, has the form

E 0 %37z, O E
”Xi,j" - E Zg; 0 -z, O E’
E—Zzz z;, O —211,75
0o o0 0 zy, 0 O

detX; | = z 525, ;% 0.

We assume that the statement has been proved for an
even number M — 2 and establish its validity for com-
plexes with M internal vertices.

Let us consider the following case of completion of
the complex depicted in Fig. 5: vertices a; and ag are
successively made internal by adding the triangles with
numbers 14, 15, 16 and then 17 and 18 to the complex.
We can assumethat vertices a; and a; are identified with
vertices a,_, and ay, respectively. Let the numbers of
equations in the new system of M equations (27) corre-
spond to the numbers of internal vertices. We express

the old boundary variablesof forms ¢, _; and ¢, v,
which have become internal variablesin the completed
complex, in terms of new internal variables
dxm-1)mM-1, Pkvy,m and new boundary variables.
Thus, as we pass from the complex with M — 2 internal
vertices to the complex with M interna vertices, non-
zero coefficients Xy _o v_1 and Xy _, v appear only
inthe (M — 2)th equation in the new system of equa-
tions (27). It is important that remaining coefficients
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Xij»1,j=1,..., M =2, do not change in this case. On
the other hand, in the (M — 1)th and Mth equations (see
Fig. 5), we have
XM_lyi = O, XM!] = 0, j = 1, 2, ...,M_S.
Let us consider the linear combination of the last
two rows of matrix X; :

— 2 2
Yj = Cu—1Xu-1,j * CuXn,j» Cm-1+Cu>0.

Since vertices a,_; and a,, are adjacent, we have

YZ 4 + Ya >0 (which can be verified directly). Sup-
pose that the equality

M-2
Y, = ZCiXH, 1<jsM (28)
i=1

holds, where ¢; are certain numbers. In this case, we
have two aternatives.

1.Y,=01 <j<M-=2. Then, in view of inductive
hypothesis and conservation of matrix X ;, 1 <, ] <
M =2, in transition (M — 2) —= M, equality (28) for
1<j<M-2will be satisfied if ¢; = ..
However, equality (28) is not satisfied in this case for
j=M-=1, M.

2. Yy_,#0. It can beseenfrom Fig. 5thatc,,_; %0
in this case. The latter inequality implies in turn that
Cwv -4 % 0. Thismeansthat equality (28) iscontradictory.
Indeed, Y;=0forj=1, ..., M—4, whilethe correspond-
ing terms on the right-hand side of Eg. (28) can be
equal tozeroonly if ¢, =... =¢cy_,=0.

Thus, equality (28) cannot be satisfied, which means
that the Statement isvalid in the case depicted in Fig. 5.

The Statement 1 can be proved analogously in all
remaining cases. It is only important that vertices ay, _;
and a,, must be adjacent in the proof by induction. O

In the case of complexes with an odd number of
internal vertices, the statement is incorrect in the vari-
ables used here. However, an insignificant modification
of the variables makes it possible to formulate and
prove an analogous statement. Indeed, a complex with
an odd number of internal vertices can be obtained from
acomplex with an even number of vertices by the addi-
tional construction shown in Fig. 4. Suppose that a
complex with an even number of internal vertices has
M — 1 internal vertices a, ..., ay_4, While the com-
pleted complex has M internal vertices a, ..., ay. We
consider a set of M variables, consisting of M — 1 inter-
nal variables {¢, ;},1 =1, ..., M -1, and a boundary
variable ¢y, km)-1- WWe choose a set of the remaining
independent variables so that it consists of all boundary
variables of theinitial complex with M — 1 internal ver-
tices as well as the missing boundary variables of the
completed complex with M internal vertices. In these

. =Cy_»=0.
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variables, system of M equations (25) for the completed
complex hasthe form

M-1
z Xi,j¢kj,j+ = Oa I = 1,

i=1

M-1

Xm, i0x i+ X+ 10xmymy-1+ - = 0,
j=1

X!, %0,

Dots denote the contributions from all other difference
variables. In this system of equations, the determinant
of the minor for variables{¢, ;},1=1,..., M—1and

drowy, kwy -1 iSequal to (X; ., detX; ;) # 0 since, in accor-
dance with Statement 1, detX; ; # 0.

At this stage, it is expedient to formulate a more
exact criterion for the presence of Wilson doubling.
Suppose that we can choosein system of equations (27)
M independent internal variables and the required num-
ber of independent boundary variables in such a way
that the total number of independent variables is
smaller than anumber M + L — 1. For thisreason, van-
ishing of the boundary variables contained in system
of equations (27) does not mean vanishing (in accor-
dance with system (27)) of all difference variables ¢; ;
for internal vertices a; and g.1In this case, Wilson dou-
bling takes place. This criterion of Wilson doubling can
also be applied to apart of the complex. If, for example,
we take the part of the complex depicted in Fig. 3 and
bounded by two internal and eight boundary vertices
(the vertices of this part of the complex are enumerated
by indices from 1 to 10 in Fig. 3), then the system of
two equations (27),

Zyo,6071 = ~Zi0,8Po, 7+ Zo, 10106 — Zo, 795, 6

Z10,603 2 = Zg 4053253064+ Z3 2010 6

contains only seven independent difference variables
(two internal variables ¢ ; and ¢5 , and five boundary
variables §s 3, ¢g 7, $6 4, P106 aNd ¢g . The tota
number of independent difference variables on this sub-
complex is nine. In accordance with the above system
of equations, vanishing of the five boundary variables
indicated above leads to vanishing of internal variables
¢, 7 and ¢, 3, but not difference variable ¢, ,; accord-
ing to our criterion, this indicates the presence of Wil-
son doubling. For an indefinitely large subcomplex of
the complex shown in Fig. 3, theresult isidentical.

It can easily be seen that, in the case of an odd lat-
tice, system of equations (27) inevitably contains all
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M + L — 1 independent difference variables. This fol-
lows directly from the identity

Oiiyrrin= Y

0<k<(n-1)/2

¢j(i)+2k+2,j(i)+2k, (29)

where n is an (odd) number of vertices on boundary
0b;. Equality (29) shows that any difference variables
can be expressed in terms of the difference variables
contained in system of equations (25). Consequently,
vanishing of all boundary variables in system of equa-
tions (27) leads to vanishing of all variables ¢ ;.

Thisresult can be reformulated as follows. We con-
sider system of equations (25) for finite subcomplexes
of an odd complex with M internal vertices. Let vertex
g and at least one of vertices a,;, and a; - , be internal.
On the odd complex, there are M independent variables
of form ¢; i - 2. Which are contained in system of
equations (25) and viawhich all difference variables of
form ¢; ; can be expressed, the minor of these variables
differing from zero. Indeed, a transition from an inde-
pendent system of regular internal variablesto an inde-
pendent system of variables of form ¢y ;- 0N anodd
complex can be reduced to a linear nondegenerate
transformation of variables.? Consequently, for M —»
o, the minors for any independent sets of variables
{¢,(|) i()- 2, in terms of which all difference variables
of form ¢; ; can be expressed in a finite region of the
complex, dlffer from zero. Consequently, we can for-
mulate

Statement 2. On odd complexes, Wilson doubling
is absent.

3. MULTIDIMENSIONAL LATTICES

We will now prove that among complexes with a
dimension of d > 2, complexes exist that are analogous,
in a certain sense, to two-dimensional odd complexes.

We consider the case when & isathree-dimensional
complex embedded in a three-dimensional Euclidean
space. In this case, index A enumerates tetrahedra. We
assume that y matrices are four-dimensional. All other
notations are the same as in the previous sections. The
orientation of the complex is determined by (or deter-
mines) the orientation of each tetrahedron; if two tetra-
hedra have a common triangle, the two orientations of
the triangle determined by the orientations of these two
tetrahedra are opposite. Analogously to the two-dimen-
sional case, €, = =1 depending on whether the order
of vertices ayayaady defines the positive or negative
orientation of the corresponding tetrahedron.

2 Such a transformation of variables is impossible for the complex
depicted in Fig. 3.
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The fermion part of the action (cf. formulas (4) and
(20)) can be written as

1

_ abc~a b _cC
ly = 2x4x62 z EnijkE OniialjCaik-
Akl

We assume that order aasanaax defines the positive
orientation. Factor 1/4 in relation (30) takes into
account the fact that each tetrahedron isincluded in the
sum four times, while factor 1/6 in Eq. (30) is required
sincethe volume of the parallel epiped with generatrices
Euii» A}, a has avolume six times as large as the vol -
ume of the tetrahedron a,ayasa-

(30)

We denote by bi(s) athree-dimensional subcomplex

consisting of all three simplices of the complex, which
contain internal vertex a;. We enumerate vertices on

a0 by index j(i). Let

i 0ap
denote a two-dimensional subcomplex consisting of all
2-simplices of subcomplex 0 b(s) which contain vertex

8- We assume that boundary 0 bi7) istraversed inthe

positive direction if the circumvention appears counter-
clockwise to an “observer” located at vertex a;, and
looking at vertex a. We enumerate the vertices on

boundary an<(,) by index j'(i, j), the value of thisindex

increasing by unity upon atransition from one vertex to
an adjacent one in the case of positive motion along

b2 . We also assume that index j'(i, j) is defined in

(mod n), where n is the number of vertices on anj-f?).

We denote by S, . i), . )+ 1 @ Vector equal in mag-
nitude to the area of triangle a;;a;, @, jy+1 and
directed along the outward normal of thistriangle rela-
tive to subcomplex bi(3) :

a
Sy, G, i), G
1 abc b
=38 Gnia DEI0, .1+ 1

N+l

(31)

The umbrella of vertex a from vertex j(i) is the vector

Si= > SO (32)
=1
Umbrella (32) can aso be presented as the sum
Saj = (2!)_2 Z zsabcsA(i,j)ijklet;\(i,j)ikeCA(i,j)iIl (33)
A, j) k1

whereindex A(i, j) enumerates all tetrahedra containing
edge a;g;.
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Fig. 6.

It can easily be seen that the contributionto action (30),
proportional to P;yy; , is given by

= 1i_2qjiyawj§,lj- (34)

Alg,y,

Since the volume of the complex can be represented in
the form (cf. the four-dimensional case)

abc_a b _c
z Z 8Alljk8 eI el]elka

A i,k

-blp

1
3l

the equation for the eigenmodes of the Dirac operator
(an analog of Eq. (23)) hasthe form

53 S0,

10}

= eviy, (35)

where v; is the volume of aneighborhood of bi(3) .

We will also write the formula that will be used in
the subsequent analysis and that can be derived using
Eqg. (33):

Z§e~ = 3y, (36)
i
Indeed, using Eg. (33), we obtain
z Saeu = abC z 8A|]k| eAljeAlkeAll (36')

i@ ik

The latter sumis equal to 6v;e>,

It should be noted that, if the summation in Eq. (36)
were carried out not over all vertices {j(i)}, but over a
certain subset of vertices {j'(i)}, this sum would not be
proportional to v;&?. This can be seen from the expres-
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sion for the sum on the right-hand side of Eqg. (36"), in
which the summation over all j(i) were changed to the
summation over subset j'(i). However, sum

r zkylsAij.m e,bj.e«,cke:jI is not proportiona to quantity
€bed: it has a more complex structure and substantially
depends on the positions of vertices.

Obviously, each vector s?(i), i+ (3D
appearsin the three umbrellas of vertex a from vertices
&)» 3, A 1 S0 Sy ad § . Conse-
quently, thefollowing identity, analogousto identity (24),
holds:

> Siin=0 37)
i)
in this sum, each vector (31) appears three and only
three times.
As in the two-dimensional case, Wilson doubling
exists if set of vertices {a;} on ab§3’ can be split into
two intersecting subsets { a;;,} and {a;} such that

> S =0, > S @ =0.

M ")

(38)

It was shown above that a ssimilar splitting takes place
for a set of adjacent vertices of each even vertex in the
case of two-dimensional complexes. Figure 6 shows
part of a three-dimensional complex, consisting of

neighborhood bi(s) of vertex a. It can be seen from the

figure that the set of vertices on 6bi(3) splits into two
subsets (ay, ..., &,) and (a, + 1, @, +2), SO that

AZSETJ'EO’

If, however, n is an even number, the first identity
in (39) splitsinto two more identities:

n/2
Z§2j—1—
ji=1

Obviously, each vector (31) on 6bi(3) appears exactly

twice in the first sum in (39), once in the second sum
of (39) and once in each sum from (40).

If identity (37) splitsinto two (asin the case of (39)
or three (as in the case of even n in (40)) independent
identities, wewill say that the set of umbrellas of vertex
a, can be expanded into complete subsets. Complete
subsets of umbrellas can be either simple or double. By
definition of a complete smple (double) subset of

n+2

> S;=0.

j=n+1

(39)

2332]_0

j=1

(40)
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umbrellas, each vector s ; ., is contained in one
(two) and only one (two) umbrella (umbrellas) of this
subset. In accordance with this definition, the complete
subsetsumbrellas { S .1, S ad{S;,j=1, ...,

n} inthe example depicted in Fig. 6 are smple and dou-
ble, respectively. It should be noted that, if the set of
umbrellas of any vertex can be decomposed into two
complete subsets, one of these subsetsis simple and the
other double isin accordance with identity (37).

Let us formulate the criterion for decomposability
of the set of umbrellas of an arbitrary vertex a,. For this
purpose, it is convenient to visualize each vertex on

d0{® asasmall ball either red or whitein color.
Statement 3. The set of umbrellas of vertex a, is
decomposableif and only if al verticeson d bi(a) can be

painted red and white so that each 2-simplex on ani“)
has one red and two white vertices.

Proof. (1) We assume that the set of umbrellas of
vertex a, is decomposable and consider the complete
simple subset of umbrellas (S, j' = 1, ..., a}. We
paintverticeﬁaj.,j‘ =1, ..., a red and theremaining ver-
tices g on anfg) white. Then each 2-simplex on 6bf3)
has one red and two white vertices.

(2) If the coloring of the vertices on o0 men-

tioned in the statement exists, we take set of umbrellas
{S;.i'=1,...,a}, wherea,,j'=1, ..., a isthe set of

red vertices on an§3’ . Obvioudly, this set of umbrellas
isa complete simple subset of umbrellas. O
Remark. Since we have a natural one-to-one corre-

spondence between umbrellas S iy and neighbor-
hoods b% , aswell as between vectors (31) and 2-sim-

plicesfromo b, we can henceforth use, instead of the
concepts “umbrella’ and “vector (31),” the concepts
“neighborhood” and “2-simplex,” respectively.

It is expedient to introduce the following terminol-
ogy. If a subset of neighborhoods { b}-z) =1 ..., 8

exists on 'Y, a 2-simplex from ab¥ , which is not
contained in any neighborhood of this subset of neigh-
borhoods, will be referred to aswhite; a 2-simplex con-
tained in one of these neighborhoodswill be referred to
asyellow; the one contained in two neighborhoods will
be called green, and that contained in three neighbor-
hoods, blue. Thus, the coloring of 2-simplices is rela-
tive by nature and is determined unambiguously by the
given subset of neighborhoods.

L et us describe the inductive process of constructing
subset of neighborhoods { b}-z)} covering boundary
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abi(s) to the minimal extent. By definition, this means

that all 2-simplices from o0 are colored identically
(yellow, green, or blue) relative to this subset of neigh-
borhoods. The process of construction begins with

choosing neighborhood b}f) O abfs), where a;; U
6b§3’ is a certain vertex. If subset of neighborhoods
{ DE?) ,0'=1, ..., s} (wheresissmaller than or equal to

the number of verticeson d Di(s) ) has already been con-

structed, it may happen that al 2-simplices from 0 bi(3)

have the same color (yellow, green, or blue) relative to
this subset. Otherwise, the process of constructing the
subset of neighborhoods is continued, the following
two conditions being satisfied on each step: (a) newly
added neighborhood bgl O anF” borders on at least
one neighborhood from the already constructed subset
of neighborhoods and (b) the number of colors of al

2-simplices from abi(g) relative to subset of neighbor-

hoods { Df?) ,J'=1, ..., s} istheminimal possible num-
ber (for example, the number of colors can be equal to
two: white or yellow). The process of constructing the

subset of neighborhoods from 0 bi(s) described aboveis

terminated when all 2-simplicesfrom @ bi(s) acquirethe
same color (yellow, green, or blue); the subset of neigh-

borhoods {bﬁ?)} resulting from such a construction
will be referred to as aleast covering subset.
The following two lemmas obviously hold.

Lemmal. If all verticesonabi(s) can be painted red

and white in the way indicated in Statement 3, and the
above-described process of constructing the subset of
neighborhoods starts from the neighborhood of any red
vertex, it terminates when al 2-simplices from ar)fs)
become yellow.

Lemma 2. If the above-described process of con-
structing the subset of neighborhood under the condi-
tions of Lemma 1 begins from any white vertex from
6bi(3), it ends by coloring all 2-simplices from anf‘”
either yellow or green.

Indeed, an inductive analysis shows that boundary
abﬁf) of any neighborhood from subset of neighbor-

hoods { bﬁf) ,j'=1, ..., s} containsared vertex. Conse-

quently, the added neighborhood bfﬁl can only be a

neighborhood of awhite vertex. O
These two lemmas lead to one more lemma.

Lemma 3. If, irrespective of thefirst and subsequent
steps, the above-described procedure of constructing
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the subset of neighborhoods terminates only when all
2-simplicesfrom d Di(g) are colored blue, the verticeson
ab$3’ cannot be painted red or white in the way
described in Statement 3. OJ

In the example depicted in Fig. 6, vertices are
painted red and white: vertices a,, ..., a, are white,
while vertices a,,; and a,,, are red. If number n is
even, two more red and white colorings of vertices
exist: verticesay, as, ..., a,_4 arered, whiletheremain-
ing vertices are white, or vice versa.

Let & be a three-dimensional simplicial complex
realized in athree-dimensiona Euclidean space and let
the set of tetrahedra of complex &' fill acompact region
in a Euclidean space with the topology of a three-

dimensional sphere. Suppose that neighborhood bi(g) is
a boundary neighborhood; i.e., boundaries 0§t and
ab§3’ have at |east one common 2-simplex, which will
be denoted by a; ;a;,ia;,i - Suppose aso that the
above-mentioned red and white coloring of vertices
existson boundary db* . We assume that vertices aj (i)
and a; ;) arewhite, while vertex a; ;, isred. We com-

plete complex §t by supplementing it with one more
boundary vertex ag and three boundary edges

) Qi) d,0) iy, and a ) &g The new complex
contains, instead of tetrahedron a;a ;a;,)a;,q) » three
tetrahedra &, ;)a;, iy Ay -
33y, () &) - It can easily be verified that the newly
constructed complex has no red or white vertices on

aay, ()@, a), and

boundary d b ;(3) (objects on the completed complex are
primed).

Indeed, we start the above process of inductive con-
struction of the subset of neighborhoods { b}(z)} from

vertex a; ;. Obviously, after n steps (n is the number

of red vertices on db;”), 2-simplex aj,()a,()3q) ONn

0 b{(a) remains white, while all remaining 2-simplices

becomeyellow. The next, (n + 1)th, step must consistin
adding one of three neighborhoods bﬁf’ : b}f) ,or b
to the constructed subset of neighborhoods. Inany case,
all 2-smplices on av¥ will ultimately be yellow (as
2-simplex a; (a;,(iya)) Or green. For definiteness, we

assume that neighborhood b isadded. Asaresult, all

triangles from b}f’, except for triangle a; ;i) ai) »

become green. For this reason, the inductive procedure
must be continued until, after a certain step, triangle
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aj,(1)a;,()@) becomesgreen. However, thisispossible
only by adding neighborhood bﬁf’ or neighborhood

b(kz). In any case, blue triangles will appear in neigh-

borhood 9 b; ©

hood bﬁz), triangle a; a,a;, becomes blue. It follows

hence that the inductive process of constructing the

subset of neighborhoods { b}-(z)

. For example, if we adjoin neighbor-

} onav” terminates

when all 2-simplices on an;“) become blue in color.
Consequently, it follows from Lemma 3 that neighbor-

hood 0 bi'(a) does not contain red or white vertices.

L et us now describe the inductive procedure of con-
structing athree-dimensional complex with an arbitrary
number of vertices, whose inner vertices possess the
property that a set of umbrellas for each of these verti-
ces cannot be decomposed into complete subsets. This
process begins with a complex containing only one

internal vertex a,. If neighborhood ab(f) contains no
vertices with red or white colors, the process of con-
structing continues by adding one more internal vertex.

If red and white coloring existson d b (13) , heighborhood
b(f) is reconstructed in the way described above.

Suppose that a three-dimensional complex $ty,_;
with M — Linternal vertices and the required properties
has already been constructed in a three-dimensional
space. We complete this complex to a complex with M
internal vertices and the required properties, choose an
arbitrary vertex on its boundary, and denote it by ay;.

Let &, ..., a_ be aset of boundary vertices of the
complex which are nearest to vertex a,,, so that 1-sim-
plices a, a,, a,ay,, ---» &_ &, &3, belong to the
boundary of the complex and form a closed broken

line l. In a Euclidean space, we construct a two-dimen-
sional simplicial complex S, with boundary | such that

al itsinternal points do not belong to complex §,_,
and wedenoteby a,., ..., &, theset of internal vertices

of complex S,. We bring complex §,,_; to complex
&\ by adding to &, _ ; all simplices of complex S, as
well asall 1-smplicesayay, , ..., auay , al 2-simplices
bounded by the old and new 1-simplices, and all 3-sim-
plices bounded by the old and new 2-simplices. After
this, vertex a,, becomes an internal vertex of complex
§ty. In accordance with the above arguments, complex
Sy can be chosen so that the set of umbrellas of vertex
a,, cannot be decomposed into compl ete subsets.
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In four dimensions, the formulas

| =1
Y 5x6x24
(41)
X z z eAijklmsadeeiijeiike(/:-\iledAima
A i, j.ki,m
Sé} = (3!)_2 z Z SaCdfsA(i,j)ijklmeCA(i,j)ik
A, )k j,m (42)
d
xeA(i,j)iIe,fA(i,j)ima
i —
Zzsjwj = eviy;, (43)
10
Y Siel = 4vid™, (44)

i@

are, respectively, analogs of (30), (33), (35), and (36).
The notation in these formulas corresponds to the nota-
tion introduced for two and three dimensions. In partic-
ular, v; is the 4-volume of a neighborhood of internal
vertex a. If {j'(i)} is a certain subset of indices of set
{j(O}, the remark following formula (36" concerning

partial sum j.(i)Sf}eﬂ. remains valid. In four dimen-

sions, identity (37) also holds and the inductive proce-
dure of constructing such 4-complexes, in which iden-
tity (37) at each internal vertex cannot be split into two
independent identities (asin relations (38)), also exists.
We do not prove these statements here since this can
easily be done by atrivial generalization of the same
statements formulated in two and three dimensions.

4. ABSENCE OF WILSON DOUBLING

The presence of Wilson fermion doubling on a cer-
tain lattice is interpreted here as the situation when
Eqgs. (35) or (43) have qualitatively different solutions
for e — 0. In order to distinguish between these solu-
tions, we introduce the subscripts in parentheses: Y.,
Wi, - (theremaining indices of amode are indicated
when required). The following orthogonality condi-
tions are observed:

zvi':p(al)elil-p(az)ezi =0, o;#a,. (45)
i

It can easily be seen that, among infrared or low-
energy modes (e — 0), modes with a continuum limit
aways exist. We denote these modes by ), or just by
Y and will call these modestrivial. Indeed, suppose that
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the values of field ; at neighboring vertices almost
coincide. Then, for adjacent vertices a; and &, we have

Y = lpi+eia}aalpi+---v (46)

where dots indicate the contribution from higher order
derivatives of field ;. We assume that x are the Car-

tesian coordinates of vertex & and € = x; — X; . Sub-
stituting relation (46) into Eqg. (35) or (43) and using
formulas (36) or (44), we can rewrite Egs. (35) and (43)
in the continuum form:

iy20,W(X) + K®(X)0,0,W(X) + ... = eW(x).

It is extremely important that the term with the lowest
order derivative on the left-hand side of Eq. (47) isuni-
versal by nature and does not depend on the detailed
structure of a simplicial complex. This term coincides
with a continuum Dirac field on which the continuum
Dirac operator is acting. All remaining terms on the
left-hand side of Eq. (47) contain, first, higher order
derivatives and, second, nonuniversal coefficients that
depend explicitly on the lattice structure. In particular,
K®(x) in Eq. (47) denotes 4 x 4 matrix functions (or
2 x 2 functions in a two-dimensional space), which
change substantially upon a change in argument x by
Ax~ a, where a is the lattice scale. Since variables

{x3 are dynamic variables in the quantum theory of
gravitation formulated in the Introduction, over which
integration is performed, functions k®(x) should be
treated as random quantities. This means that, for
example, the density matrix for propagation of Dirac
particles must be averaged over field k¥(x). In thiscase,
correlator [R ®(x)k%(x') (behaves analogously to corre-
lator (A.2) (see Appendix).

It will be shown in Appendix for a nonrelativistic
particle that, if the Hamiltonian is the sum of the free
Hamiltonian and a perturbation proportional to ahigher
power of the momentum and containing a random fac-
tor, then the averaged density matrix in the long-wave
limit coincides with the density matrix for a free parti-
cle. The same conclusion isvalid in therelativistic case
also. This leads to the statement that, in the theory of
gravitation considered here, trivial smooth fermion
modes exist in the long-wave limit.

It is natural to assumethat nontrivial fermion modes
Wi in the long-wave limit split into smooth branches

W)X, Wiay(X), ... . Precisely such nontrivial fermion
modes were studied in connection with the problem of
Wilson doubling. Each branch can be obtained in the
continuum limit from the values of field Y, Y-, ... on
subsets of vertices {a;}, {a}, ..., respectively. Split-
ting of nontrivial modes into smooth branches in the
long-wave limit distinguishes these modes from trivial
fermion modes.

(47)
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Let us prove that nontrivial fermion modes do not
exist on“odd” lattices (by odd | attices, we mean the | at-
ticeson which identities (37) do not split into individual
identities of type (38)).

We consider a nontrivial mode Y, in the limit
€ —= 0. Let the set of vertices g;; split into subsets of
vertices g, &, ..., on which the values of branches

of mode Wy, Wi, ... are defined. In accordance

with the above assumption, the following expansions
hold for the branches of a nontrivial mode:

Wity = W) + €0, (x) + .,

(48)
E="" ...
It is natural to assume that
g, g,
e -wl 01, & 28, (49)
Since in the long-wave limit we have
o.pt —0, &="" .., (50)

quantities é(x;) can be regarded as constant in compact
regions of the complex, including a large number of
vertices. Let us consider one of such regionsand denote
it by 3. In accordance with the above arguments, we
can assume that

x|y = W (%) (51)

n
@ = CQr e

1
cy.s

where ¢y, Cy, ... are certain numerical constants. In

the long-wave limit, in the main approximation (in the
ratio of the lattice scale to the wavel ength), we can dis-
regard all terms except thefirst in expansion (48). Inthe
same approximation, we must neglect the right-hand
sides of Egs. (35) and (43). Thus, Egs. (35) and (43) are
reduced to the following system of equations:

ZASj'C;E"' Zé,cl+ a 0%, (52)
o) 0

Since only identities (37) are observed on the complex,
inthecasewhen ¢, # ¢y # ..., systemof equalities(52)

imposes constraints on independent variables ef’} , the
number of the constraints being equal to the number of
verticesin all regions L3 minus the number of different
constants Cy , Cy , ... . (It should be noted that the | atter

number is on the order of unity, while the number of
vertices in subcomplex B may be indefinitely large.)
Consequently, relation (49) is inadmissible. If, how-
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ever, we assume that ¢, = ¢y = ..., EQ. (43) in the
long-wave limit assumes the form

i a 1
7Y {z S 0pW(x)
0 (53)
+ Z Sﬁaj"eibj"ablp"(xi) + } = eVP(x).
()
. . b b
Since quantities j,(i)saj.eij., j,,(i)Sf‘j"e,j.., ... have a

complex structure that substantially depends on micro-
scopic details of the amorphous lattice (see the remark
following formula (36)), Eq. (53) differs qualitatively
from Eq. (47) for trivial modes in the long-wave limit:
in the case of nontrivial modes, the differential Dirac
operator has no continuum limit even in the main
approximation and is determined to a considerable
extent by microscopic details of the lattice. Obvioudly,
smooth branches of nontrivial modes cannot exist in
thiscase. For thisreason, the only remaining possibility
isd ' =0dy" =... . However, this means that only triv-
ial long-wave modes exist in the theory of gravitation
under investigation.

L et us now supposethat, in the theory of gravitation
with action (4), in evaluating the statistical sum

Z = Ze", (54)

summation must also be carried out over the types of
simplicial complexes. Inthiscase, the mean numbers of
“even” and “odd” vertices of complexes are commen-
surate. Obviously, the above arguments concerning the
absence of Wilson fermion doubling remain in force in
such atheory.

5. ANOMALY-FREE QUANTIZATION
OF GRAVITY

Let usintroduce in the theory a gauge field: we jux-
tapose each edge a;a; to areal-valued quantity

iy = -dd;;, (55)
appearing in the fermion part of the action in the fol-
lowing manner (cf. relation (4)):

i —iesd
@aAij = Z(mAiyaQAije °

Wa (56)
- mAjQAjiyae_iE&qA“qJAi )

As aresult, the action is found to be invariant to loca
gauge transformations

Q

Y — eiea'llJn UF e @,
QSﬂijg’&g«ij"‘aj—ai.

Here, { g} are arbitrary real numbers.

(57)
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We introduce the Weyl field

_ltyh _ SLFY]
g Bl

Fermion part (56) of action (4) obvioudly splitsinto the

sum of actions of the “right” and “left” Weyl fields,

(59)

so that action I, (of 1,_) can be obtained from fer-

mion part (56) of action (4) by inserting projector (1 +

v°)/2 (or (1 —VP)/2 immediately to the left of field (.
We define the fermion measure as

DQDy = |_| d@,dy;,

(58)

ly = Tyt 1y

(60)

where dyJ; isthe product of the differentials of all inde-
pendent components of spinor Y; and di; is the prod-
uct of the differentials of all components of conjugate
spinor ;. Obviously, we have

dy; = dy;. dyg;, df; = di;,dP;, (61)
where dy;,(d),_) isthe product of thedifferentialsof all
independent components of spinor Y. (W) (the same
holds for di;,(d{;_)). By virtue of relations (61),
functional measure (60) can be factorized:

DYDY = (DY.DY,)(DP_DY.),

Dm+DllJ+ qujﬂdlpiﬂ

(62)

DY DY_ = [ dP.dy,..
Measures (D{,Dy,) and (DP_Dy_), as well as
actions I, and I,,_, are separately invariant to gauge
transformations (57).

We introduce the following notation:

Zi{ Q, &Q} EIDEDiDLIJteXp(_I L|,li)'

Here, either upper or lower signs are taken. The total
statistical sum or chiral statistical sums as functions of
an arbitrary electromagnetic field can be written in the
form

(63)

Z{sl) = Ze_|QZ+{Q, A} Z1Q, s}
{<}

(64)

Z{sly = S e °2,{Q, o} , (65)
{9

where |, isapart of action (4) independent of fermion

fields.
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In accordance with the conclusion drawn in the pre-
vious section, chira theories (65) have a continuous
low-energy limit. Since Wilson doubling is absent, each
of these theories contains one right or left Weyl field in
the continuum limit.

Let us prove that functional Z.{ s} is gauge inva-
riant:

ZAsA+3,0) = Z{sl}. (66)

This equality can be proved easily and exactly on alat-
tice even prior to summation over gravitational degrees
of freedom for functional (63). Indeed, neither the actions
nor the measures in relation (63) change upon substitu-
tion of variables (57); consegquently, equalities (66) hold
both on alattice and in the continuum limit.

Let us now carry out in integrals (63) the substitu-
tion of only fermion variables of type (57) with aninfin-
itesimal parameter

CXi = 86”‘, € 4’0 (67)

The electromagnetic field does not change in this case.
We now take into account the fact that the substitution
in the integration variables does not change the inte-
grals or the measures in these integrals. This substitu-
tion of variables changes only the actions in the inte-
grals. Inthefirst order in g, these changesin the contin-
uum limit are given by

£06)0,380), 09 = SV (L £y (68)

Consequently, from the equality of integrals (63) before
and after such a substitution of variables, we obtain the
following conservation laws:

0,34 st} () = 18,340 = 0. (69)
Here, averaging is carried out only over fermion and
gravitational degrees of freedom.

On the other hand, variation of functionals (65) rel-
ative to gauge vector field & hasthe form

olnz, = eI dxdsd,(X) IE{ A} (%). (70)
If 8, = 0,00, we again arrive at equalities (66) in
accordance with relations (69) and (70).

Thus, in the discrete quantum gravity considered
here, Wilson doubling of fermions and, hence, anoma
lous divergence of chiral currents are absent. Anoma-
lous divergence of the axial current obviously does not
exist either.

6. CONTINUUM LIMIT

In [1], arguments were given in favor of the fact that
infrared divergence appearing in integration of tetrads
e;; with respect to field in the lattice gravitational sta-

tistical sum lead to degeneracy of discrete quantum
gravity to a continuous quantum theory of gravitation.
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The continuous quantum theory of gravitation obtained
in thisway must envisage, among other things, the pos-
sibility of anomaly-free inclusion of a chiral fermion
field. In this connection, the problem of explicit
description of such a continuum theory arises.

Inthissection, we give argumentsin favor of thefact
that the continuum theory of gravitation proposed by
the author in a number of previous articles [2, 12, 13]
and constructed on the basis of the dynamic quantiza-
tion method isthe continuum limit of the discrete quan-
tum gravity we are interested in.

Theideology of the dynamic quantization method is
described in detail in[2, 12]; an exactly solvable exam-
ple (two-dimensional quantum gravity) demonstrating
this method is given in [13]. For this reason, we will
only describe here some required basi c properties of the
general covariant theory quantized with the help of the
dynamic quantization method.

In the case of dynamic quantization, the theory is
constructed in a space with a pseudo-Euclidean signa-
ture of the metric, and the general covariant theory is
assumed to be regularized in the ultraviolet spectral
region so that the following axioms hold.

Axiom 1. All physical states of the theory can be
obtained from the ground state |0Cvith the hel p of oper-

ators AL with |N| < Ny

Ny, ..., NO= AL, ..., Al o0
. (71)
Anl00= 0, [Ay,Ay] = O,

States (71) form an orthogonal basis of space F' of the
physical statesin the theory.

Here, N is a point of a certain countable set with a
norm, so that condition |N| < N, singles out afinite sub-
set of thisset. As N, — o0, the number of elements of
this subset tends to infinity as a certain positive power
of number N,. Only nonzero commutators and anti-
commutators are written everywhere.

Axiom 2. Fundamental dynamic variables (fields)
d(x) transform state (71) into a superposition of states
of the same form, containing all states in which one of
the occupation numbers modul o differs by unity fromthe
occupation numbers of state (71), while the remaining
occupation numbers coincide with those of state (71).

For the Dirac field we are interested in, Axiom 2
indicates that the following expansion holds:

Pe) = 5 (@i’ +bu(9) + ...,

IN| < Ng

(72)
{ay,al} = {by,b\} =3\,

Here, instead of generalized creation and annihilation
operators { Ay, AL}, Fermi creation and annihilation

operators {ay, by, ay, bi,} are used. The set of modes
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{ qJﬁ)(x) : L|J(N_)(x)} forms a complete set in which any
spinor field Y(t, X) can be expanded at any instant t. We
denote by x the set of spatial coordinates. The set of

modes { P\;(X) } is a positive-frequency set, while the

set of modes {Lp(N_)(x)} is a negative-frequency set.
Such adivision of modestakes place at acertain instant
t = t,, positive- and negative-frequency modes corre-
sponding to the massless one-particle Dirac Hamilto-
nian at the same instant. At any instant, set of modes

(W09, WX} can be determined by solving the
massless Dirac equation. Dots in Eq. (72) indicate the

nonlinear contribution relative to operators { Ay, AL },
among which both Fermi and Bose operators exist.

Axiom 3. Equations of motion and constraints for
physical fields coincide, to within the transposition of
operators, with corresponding classical eguations and
constraints.

Axiom 3 indicates that operators {Ay, AL} com-

mute (at least, in aweak sense) with all first-order con-
straints or with the Hamiltonian of the theory. Indeed, it
is only in this case that the regularized equations of
motion and constraints do not change (modul o the con-
straints existing in the theory) in the course of regular-

ization (i.e., vanishing of pairs of operators (Ay, A,T\,)
with |[N| > Np) and regularized first-order constraints
preserve their order.

Suppose that gravitational fields (tetrad and connec-
tivity) contain classical partsthat are preserved after the

formal exclusion of al operators {Ay, AL}. This
assumption is necessary in respect to gravitational
fields. In the problem under investigation, it is conve-
nient to assume that the electromagnetic field is arbi-
trary, but not expandable in the creation and annihila-
tion operators. Quantum fluctuations of electromag-
netic field can then be taken into account by pairing
electromagnetic field in accordance with Wick's theo-
rem and by replacing pair correlators with the corre-
sponding propagator. However, such computations are
of no interest for our analysis.

It should be borne in mind that the expansion of
fields and eguations in nonlinearities relative to opera-

tors { A, ATN} isin fact an expansion in the coupling

constants of the theory. Consequently, the exact mass-
less Dirac equation

ie';yaDuqJ =0 (73)
can bereduced, using Eq. (72) in the lowest approxima-
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tion, to the equation

Oty D

[ S (awiw +blwon| =0
INI <N,

In Egs. (73) and (74), €,(x) isatetrad and D, isacova-
riant derivative including the electromagnetic field.
Subscript (0) indicates the fields and operators that can
be obtained by forma exclusion of all operators
{Ay, AL}

It follows from Eq. (74) that

"0, @y w®) = o, (75)
e, (@yyu®) = o, (76)

where
P00 =Y @V +bu(9).  (77)

IN] <Ny

It is extremely important that fermion field (77) is reg-
ularized. Itisfor thisreason that Eq. (74) leadsto equal-
ities (75) and (76). Indeed, the bilinear forms con-
structed from Dirac (or Weyl) fields do not require reg-
ularization; differential operatorscan be appliedto such
field directly, without a preliminary regularization.

Equalities (75) and (76) were obtained in the one-
loop approximation. It iswell known that the inclusion
of higher order loops makes zero contribution to an
anomalous divergence of vector, axial-vector, and
chiral currents. In our case, this means that the expan-

sioninto apower seriesin operators { Ay, AL } doesnot
change results (75) and (76).

Obviously, the conservation of the chiral fermion
current in the chiral theory can be obtained in asimilar
way.

It should be stated that the method of dynamic quan-
tization differs in principle from the Feynman quantiza-
tion. This can be seen even from the obtained result (75),
(76). It aso follows from the fact that, in the dynamic
guantization method, vacuum for t —» —oo generally
differsqualitatively from vacuum for t — +oo. Indeed,
the operator equations in the theory of gravitation with
the dynamic quantization method in the lowest approx-
imation coincide with the Einstein equations, while
quantum corrections are taken into account against the
background of classical solutions. However, even on
the classical level, the evolution equations in the theory
of gravitation lead from one singularity to another, and
these singularities may be quantitatively different. On
the contrary, in the Feynman quantization, it is assumed

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

1091

that the ground state evolves over an infinitely long
timeinto astate differing from theinitial stateonly ina
phase factor. This hypothesis leads to the rule of cir-
cumvention of the poles in the propagators used in the
Feynman diagram technique and, hence to the possibil-
ity of Wick rotation towards a Euclidean space. Conse-
guently, the continuum guantum field theory formu-
lated in a Euclidean space is automatically quantized in
the Feynman sense. In the dynamic quantization
method, Wick rotation to a Euclidean spaceisruled out.
This can be seen if only from evolution equation (74)
which makes sense only for a pseudo-Euclidean sig-
nature.

Thus, we arrive at the following conclusion.

The continuum theory of gravitation obtained with
the help of the dynamic quantization method is a con-
tinuum limit of the discrete quantum gravity formulated
in[1]. This statement can be substantiated as follows.

1. Both theories contain a finite number of physical
degrees of freedom.

2. In both theories, it is possible to introduce only
one chiral Weyl field, the corresponding chiral current
being conserved.
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APPENDIX

Let us consider, in a three-dimensiona space, the
one-particle Hamiltonian

2
% = £+ p’k(x)p?

= (A1)

with a random function K(x). Suppose that the density
matrix for system (A.1) must be averaged over function
K(X) in accordance with therule

k()0 = 0,

Dk(X)K(X')D = a_726(3)(X—X'), (AZ)
m

while the mean values of higher powers of k(x) are cal-
culated in accordance with the Wick theorem. We state
that the density matrix of system (A.1) in the limit
p? — 0 tends to the density matrix of a free particle
with Hamiltonian 7€, = p%2m; consequently, the local-
ization effect is absent in the present case.
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Indeed, let

Ko(k', K, 1) = expH -2‘%%(211)35<3>(k' —k)8(t) (A.3)

be the amplitude of transition for a free particle with
Hamiltonian #;) in the momentum space. The exact
amplitude of the transition satisfies the equation

0 o e - 3sB3) 1
mpp 19— TVEK(K' K, 1) = 8()(2m)8"” (k 1&_4)
= —p°kp®.
We expand K in operator V,
k', t|K|k, 0O

= K, t{ Ko + Ko(iV)Kg + ...} |k, OO

= Ko(K', k, t) + kk*Q{K', k, K, ;
for k'k? — 0, operator Q in Eg. (A.5) has a finite

limit. The density matrix can be expressed in terms of
the transition amplitude:

(A.5)

(K1, Ky; ki ki 1) = K(KY, ky, )KH(KS, ky, 1) (A6)

Density matrix (A.6) must be averaged in accordance
with rules (A.2). Taking into account relation (A.5), we
obtain

k2-K5
(K}, kb; Ky, Kos 0= exp 12_mz%
x (2m)°8® (k} -k )8k, — k) (A7)

+ (k) (KY)R(KS, Ky Ky, Kos 1),
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In this relation, operator R(k, k5; kq, k,; t) isregular

in the limit k' —~ 0, Ky —~ 0. This leads to the
statement formulated at the beginning of the Appendix.
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Abstract—It is shown that, to correctly extrapolate the triplet phases of pp scattering to a range of energies
below several megael ectronvolts, one should take into account, together with the Coulomb and nuclear inter-
actions, the interactions of the magnetic moment of a proton with the Coulomb field and the magnetic
moment of another proton. A simple method is proposed for such an extrapolation. © 2003 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

This paper is dedicated to the 70th birthday of pro-
fessor V.B. Belyeav and represents a continuation of
the studies of low-energy expansions for systems of
several quantum particles that were carried out by his
students [1-8].

The knowledge of the energy dependence of the
scattering characteristics (phases o, amplitudes f, cross
sections do, analyzing power A, etc.) in the limit of
low collision energies (E — 0) enables one to solve
two important problems: an applied problem of extrap-
olating these characteristics to low energies that are
inaccessible for direct experimental investigation, and
the inverse problem, which is aimed at the recovery of
an interaction by the experimental data available.
Therefore, one of the main problems in scattering the-
ory istoinvestigate the low-energy behavior of the scat-
tering characteristics and to derive explicit expressions
for their low-energy expansions.

Itiswell known[9, 10] that, in the low-energy limit,
the energy dependence of the scattering phases of two
elementary or composite nuclear particles is substan-
tially affected by the long-range power-law terms V9 ~
r9 d > 3 of thetotal effective interaction

vE(r) = Vi(r) + V(r),

wherer is the distance between the centers of mass of
particles and Vs is a rapidly decreasing (Vs = o(V9),
r — o) effective interaction induced by nuclear
forces. In the system (N, N) of two nucleons, the fol-
lowing interactions are among such terms of electro-
magnetic origin: the polarization interaction of protons
[11, 12],

Vi) = VP(r) = ar ™,

(N
0, = (1.07+0.11)10° fm°, d = 4,

theinteraction of the magnetic moments of nucleons[13],

)

and the interaction of the magnetic moment of a neu-
tron n or a proton p with the Coulomb field of another
proton [13],

Vi) = v™r) = br®s,, d =3,

Vi) = v™r) = bt (1), d=3. (3
Informulas (1)—(3), we used standard notation from the
theory of NN interactions [14]: a. is the electric polar-
izability of aproton; | and s= s, + s, are the total angu-
lar momentum and the spin of a two-nucleon system,
respectively, where s, and s, are spins of the nucleons;
S, is a known tensor operator; and b and b, are con-
stantsthat are different for the systems(n, n), (n, p), and
(P, P).

A comprehensive analysis of the role of the polar-
ization potential (1) in the pp scattering and in the reac-
tiondd — e+ v hasbeen carried out in surveys|[1, 2].
One of theresults of thisanalysisisasfollows: the con-
tribution of the polarization interaction (1) to the el astic
pp scattering and to the cross section of the reaction
dd — e+ v, is negligible because the Coulomb inter-
action V¢ between protons s repul sive and the constant
ay, of the polarization potential is small.

In the system (n, n), there are no interactions (1) or
(3); however, thetotal interaction V = V° + V™ contains
the long-range tensor term (2). The role of thistermin
the triplet nn scattering (s = 1) was first mentioned
in [3] and then investigated in [4, 5]. In these works, a
neutron—neutron anal og of the Ramsauer effect [15, 16]
was first theoretically predicted, and it was shown that
thisanal og results from the interference between the nn
scattering by the V® and V™ interactions and should
manifest itself asadeep minimum in thetotal cross sec-
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tion of the triplet scattering of neutrons at an energy of
E = 20 keV in the system of their centers of mass. As
was shown in [3], this phenomenon is of interest for the
experimental investigation of the cross sections of the
nn scattering and the reaction Ttd — ynn. The exper-
imental verification of another feature of the triplet nn
scattering, namely, a linear (in the scattering momen-
tum) decrease in the 3P, phases, which, according to the
phase analysis [5], is due to the interaction V™, is also
of interest.

The necessity of taking into account the total mag-
netic interaction V™ = Vs + /" for the correct theoret-
ical interpolation of the experimental data of the np and
pp scattering has been repeatedly pointed out. Although
various approaches to solving this problem and anayz-
ing its state of the art have been discussed in detail in sur-
veys[6] and [17], it is worth mentioning once again the
most interesting conclusions madein [6] and [18-20].

In[6], the present author first showed that, when the
interaction Vs is theoretically taken into account, the
function doA, ,, must decrease as O(EY?) for E — 0,
whereas, when Vs is not taken into account, this func-
tion decreases much faster, namely, as O(E®?). In [18],
involving the same interaction in the theoretical analy-
sis of np scattering, Hogan and Seyler explained the
spikelike behavior of the analyzing power A, ,(8) for
energies of E;, = 25-210 MeV and angles of 8 < 5°.

The analyzing power A, ,, has been the main subject
of numerous investigations (see [17]) into the role of
the interaction V™s in the elastic pp scattering. The
common feature of all known methods that take into
account this interaction is the application of the Born
approximation. For example, in [19], the amplitude f™
(additional to the Coulomb—uclear amplitude f%)
induced by the interaction V™s was calculated in the

Born approximation for aplanewave (f™= fg); more-
over, it was shown that this method of taking into
account theinteraction V™sfor energies £, > 150 MeV
hardly improves the agreement between the theoretical
and experimental values of the analyzing power A .
In [20], the Born approximation for a plane wave, dis-

torted by the Coulomb interaction (f™ = fg.), was
applied to calculating f™; it was shown that the absolute

values of the amplitudes fg and fg. are approxi-
mately equal, but their phases differ substantialy;
therefore, the function A, ,,(6) is characterized by a
spikelike behavior in the range of small angles 6.

In [17], it was pointed out that, for an energy of
E.., = 9.75MeV, taking into account the interaction Vs
improves the agreement between calculated values of
the function A, (6) and the experimental results
obtained in the range of small angles 6 < 30°; for an
energy of E,,, = 5.5 MeV, asimilar result was obtained
in a broader range of angles, 8 < 90°. Hence, one can
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assume that a further decrease in energy will increase
the contribution of the interaction V™s to the observed
characteristic A, pp(e) at large angles as well. Since the
expression for A, ,; in terms of the phases of pp scatter-
ing iswell known [17 21], thefirst stagein the study of
thiscontribution inthe low-energy limit consistsin ana-
lyzing the specific features of the low-energy behavior
of the phases of pp scattering that are associated with
the interactions V™s and V™ and their sum V™ The
study of thefeaturesin the behavior of these phasesthat
are induced by the mutual effect of the nuclear and
magnetic interactions V®and V™is of nolessinterest. In
spite of the fact that the role of the interaction V™in pp
scattering has been studied for along time, the question
of thetheoretical existence of the above-mentioned fea-
tures still remains open. The present work has been
stimulated by the author’s wish to answer this question.
The paper is organized asfollows. In Section 2, wefor-
mulate the model of the pp scattering that isused inthis
paper. In Section 3, we describe methods for the exact
and approximate calculation of the phases of the pp
scattering. The phases obtained by the numerical anal-
ysis are presented in Section 4 and summarized in the
Conclusions.

2. A MODEL
OF PROTON-PROTON SCATTERING

Supposethat asystem (p, p) is described by the non-
relativistic Schrédinger equation [9]. In the system of
the center of mass of protons, we rewrite this equation
as

(A +IE—VEW(r k) = 0, K = %"E,

where W isthe wavefunction of the protons; k and E are
their relative momentum and energy, respectively; r is
avector directed from one proton to another; and m, is
the proton mass.

We assume that the total interaction V& = V¢ + Vais
asuperposition in which the interaction V2 decreases as
r increases faster than the central Coulomb potential,

oy = M€ _ 1 g B
V(r)_ ﬁzr _Rrv R_me21 (4)

where e is the electron charge and R is the Bohr radius
of the pp system. Theoretically, three cases are possi-
blee a=s, m ms. Inthefirst case (a=5s), V2=Vsisa
short-range nuclear interaction; in the second case
(a=m), V& =VMisamagnetic interaction; and, in the
third, the most redlistic, case (a=ms), Ve =V™=Vm +
Vs is a superposition of the magnetic and nuclear inter-
actions.

No. 6 2003



EXTRAPOLATION OF TRIPLET PHASES OF PROTON-PROTON SCATTERING

Following [13], we assume that V™ is a superposi-
tion V™ = V™ + \/Ms whose components are defined by
the formulas

mt_ D m
V=22 b= = i,
©)
g, = 38 0)(& M) ~r(s,(5)
? 4r? '
and
mls _ bIs(I [S)
\Y = -—F——,
. - 1gm (6)
— 2 _ e
bls=_ﬁ_28u0alp_z][| - _Z%p_mﬁpre

Here, m, is the electron mass, |, is the magnetic
moment of aproton expressed in nuclear magnetons i,
re isthe classical radius of electron,

et e’

y [eE—.
ZmpC meC2

Mo =

In our calculations, we use the Reed interaction with
a soft core [22] as the nuclear interaction Vs and the
well-known constants [23]

m, = 938.2796 MeV, W, = 2.7927,

A%lm, = 41.4969 MeV Fm
m, = 0.5110034 MeV, r, = 2.817938 fm,

Ry = 13.605804 eV;
according to (4)—6), for these constants, we obtain

R = 28.8064...fm, b = —0.005371...fm,

b, = —0.001534...fm.

Itisclear from physical considerationsthat, at distances
that are an order of magnitude lessthan the nucleon size
(=1 fm), both magnetic interactions should be
described by other formulas that are nonsingular for
r — 0. Since such formulas are not presently avail-
able, wecan set VM =0 and Vs=0forr < 1.0 fm.
There is another reason why one should neglect both
these interactionsin the range of distancesr < rs, where
rs is the effective radius of nuclear interaction. Let us
consider this reason and show that the choice of the
Reed interaction with a soft core does not restrict the
generality of our analysis.

It is well known from quantum mechanics [9] and
the method of phase functions [10] that, at large colli-
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sion energies, the scattering scenario of two particles
mainly depends on the structure of their interaction at
small distances, while the main features of the scatter-
ing at low energies depend on the behavior of the inter-
action at large distances, i.e., on the behavior of the
interaction’s “tail.” All modern phase-equivalent NN
interactions have identical, rather rapidly decreasing,
Yukawa tals V¢ ~ exp(-my)/r, where m, =
134.9630 MeV isthe mass of artmeson. Thistail deter-
mines the behavior of the parameters of the Coulomb—
nuclear pp scattering at low energies; therefore, these
parameters weakly depend on the choice of nuclear
interaction. Another physical reason for such a weak
dependence is the complete screening of the nuclear
interaction at small distances by repulsive Coulomb
and centrifugal potentials 1/Rr and I(I + 1)/r?. There-
fore, when considering the triplet phases of the pp scat-
tering, one can restrict the analysis to the cal cul ation of
these phases for a certain one phase-equivalent nuclear
interaction without loss of generality. In the present
work, we use the Reed interaction with a soft core as
such an interaction. This interaction well describes the
available experimental data for energies E > 10 MeV
and therefore contains information both on the nuclear
interaction and on the magnetic interaction, which is
effectively taken into account for finite distances. From
the physical point of view, the upper boundary rs of this
internal domain is the effective radius[1] of the poten-
tial Vs for E > 10 MeV. One usualy estimates this
radius as r° = 4 fm [14]. To avoid a repeated inclusion
of the magnetic interaction in our calculations in the
domain r < rs, we assume henceforth that V™s = 0 and
VM=0forr<4fm.

3. METHOD

Like other redlistic nuclear interactions [14], the
Reed interaction contains, along with short-range cen-
tral terms that are independent of |, s;, and s,, short-
range spin—orbit and tensor interactions:

Vsls — Vsls(r)(l ES), Vst - VSt(r)Slz- (7)

The first of these interactions preserves the angular

momentum |, spin s, total momentum j =1 + s, and total

isospin T = 1 of the system (p, p), whilethe second term

preserves s and j but, in general, does not preserve
I =j,j £ 1. Therefore, in the general case, thetriplet pp

state |5 Owith certain total momentum j and spins=1

represents a superposition of the basis pp states |dj
withl =j + 1

Isi0= als, j—1,jOrbls, j+1,j0 a +b° = 1. (8)

In the case under consideration (s=1and T = 1), there
isno mixing inthestate 3P, with j = 0, 1 and in the states
with j =1 > 1. The states |dj Owith definite | are called
pure, while al the other states |§j Ciare called mixed. For
example, the state 3P,—F, is mixed and is represented
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by the superposition (8) of two basis states with | = 1
and| =3.

Magnetic interactions (5) and (6) contain the same
operators | - s and S, as nuclear interactions (7) but
decrease asr —» oo much more slowly. Therefore, tak-
ing into account magnetic interactions does not change
the classification of states of the system (p, p) but
should change the energy dependence of the scattering

parameters of the phases &)’/ and the mixing parame-
ters €] introduced by Stapp et al. [21]. By definition,

6|°’vja (K) is the difference between the phase 5|C,'ja ) of
the scattering by the superposition V¢ + V2 and the Cou-
lomb phase &/ (K). In the case a = s, the phase &/'; (k)

is usualy called a Coulomb-nuclear phase [9]. There-
fore, in the case a = m, it seems reasonable to call the

phase &;'"(K) Coulomb-magnetic when a = m and
Coulomb—magnetic—nuclear when a = ms. The physi-
cal meaning of the phase &' (K) is more correctly con-
veyed by the longer term: the scattering phase induced
by the interaction V@ in the Coulomb field Ve.

Among all known approaches to the qualitative and
numerical analysis of the energy dependence of the

functions &' (K) and &} * (k) and the contributions, to

these functions, of the parameter of the interaction V2,
which is taken into account either everywhere or only
in a chosen range of distances, the physicaly transpar-
ent method of phase functions [10] seems to be the
most convenient one. In this method, the phases

377 (k), | =j, and j + 1, and the mixing parameter
€/"*(K) induced by the interaction V2 in the Coulomb
field V¢, are defined by the expressions

317 (k) Erlifrzoéf’js(r; k) and & °(k) Er”fr}f?a(r; k)
as the limits of the corresponding phase functions
3’ (r; K) and €7 (r; k) that vanish for r = 0 and, for any
r = b, represent the phases and the mixing parameter
induced by the same—but truncated at the point r = b—

interaction V2(r). The phase functions satisfy the fol-
lowing, computationally rather simple equations [10]:

9,877 = K "sec(2e] ){ Vi (Pfcos'e}
PZ_QZ

4
—Vﬁnsin(Zs‘j:’a)[P|anoszsj°’a—PnQ,sinzs,-c’a]}, (9)

9,&0% = KV} (PP,cos’e

_ Qfsin"sj?‘ ) -Vi nsin2(2£j°’ D)

. 1.
+QIQnSn2€?’a)_ésn(2€?a) z Vﬁ,nPnQn}-

n=j+x1
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Here, |, n=j £ 1and | # nfor mixed states, and| = n=
j and ] * = 0 for pure states;

P, =F,cosd + Gsind;" ;
Q =Fsind — G cosd

F,(p, n) and G,(p, n) are the Coulomb functions[24] of
the dimensionless argument p =kr and the Sommerfeld

parameter ) = VkR; and Vf , arethe matrix elements of

the interaction V2 in the basis of vector spherical func-
tions. For example, we have

my,o\ _ Ll 15 j_1+(1+1)d ;.,0
Vii(r) = 2br %15“ 2j+1 1%

VI(r) = b el )

2j+1

(10)
[#£n
for interaction (5), and V, ,=0for | # nand

VIE(r) = br [ + 1) =1(1 + 1) —s(s+ 1)],
j=Lltss=1

(11)

for interaction (6).

The method proposed for analysis of the effect of
magnetic interactions on the energy dependence of the
phases &', a=m, msisextremely simple and consists
in comparing the graphs of the phases calculated for

different energies in the three theoretically possible
casesa=s, m, ms.

Before proceeding to the discussion of the numeri-
cal results, we will try to predict the main features of
the behavior of the phases &/';'. To this end, we con-
sider the first iteration of Egs. (9), which is imple-
mented by the substitution of &'} =0and €]* =0into
the right-hand sides of these equations. This yields the
following representation as a sum of the Born phases
S js and & ,-m for the expected approximations S jms of
the phases

c,ms,
1, j

sc,ms

8 (k) = drj (k) = 8 (K) + 81 (K),

~ca . ) (12
0, j (k) =K IdrV|,|(f)F| (P, n);
b

here,a=sora=mandb=0. To calculatetheintegrals
in these formulas, it is convenient to pass to the
dimensionless variables x = r/R and g = kR. It iswell
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known [25] that the Born Coulomb-nuclear phase
decreases very rapidly for any | and E —~ O:

815 (k) O(kR)? " *exp(-Ttn), (13)

while the Born Coulomb—magnetic phase decreases
much slower:

32l +1-2nx,(n)
210+ 1)(21 +1)

&1 (k) = V\(r)r (1+0(1)),

‘ (14
XM =5-Imy(t+1+in), w=r.
Indeed,
BT = SV o), a9
3R

if N < I, whichistruefor

E <2 TRy~ 1257 kev.
21°Mp
An approximation, more accurate than (14), can be
obtained from perturbation theory [8].

Due to drastically different falloff rates of the Born
phases (13)—(15), for sufficiently low energies, we have

3l < 138l (k) = &1 (k).
E<EY".

Therefore, at such energies, one can neglect the nuclear
interaction, but the magnetic interaction should be
taken into account. At sufficiently high energies, where
VM < E, theinverse relations

35 = 130kl B (k) = B (k).
£>E

must hold; therefore, one can neglect the magnetic
interaction but should take into consideration the

lower

nuclear interaction. In the intermediate region E, ;- <
E < E”, where the moduli of the phases E’ncf and

6.0,' jm are of about the same order of magnitude, thereis
interference between the particles scattered by the
nuclear and magnetic interactions; therefore, one
should take into account both these interactions to

describe this interference. If the phases &' and 57"

C, ms

have different signsin thisregion, then their sum &',

vanishes at a certain value of energy.
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Thus, if we assume that the approximations of the

¢, ms

exact phases 57 ™ by the phases &1'; " given by formu-
las (12) are acceptable, then we should expect the fol-
lowing two featuresin the behavior of the phases 8" :

1
c,ms

aslow decrease (8™ ~ &/'" ~k®) asE — O for any
| and j, and a sign change for a certain nonzero energy,

which, however, occurs only when the phases Sf ,-S and
8|° jm have different signs.

The next featureis dueto the fact that the matrix ele-
ments (10) and (11) of the magnetic interactions (5) and
(6) depend only on j; therefore, thisfeature should man-
ifest itself in any approximate and exact cal culations of

mis

the phases. The matrix elements V, ;7 with | # n
increase with j, while the elements V["}* and all the ele-
ments V[“f1 remain bounded. Therefore, one should
expect that, as| increases, the contribution of the inter-

action V™ to the phases &', ;, @ = ms will decrease as
1/j, while the contributions of these interactions to the

phases &/, a = m, ms remain of the same order of
magnitude.

The method of phase functions allows one to quali-
tatively substantiate the approximation
& (K) = 377 (K) + 811 (K),

lj

(16)

whichisphysicaly morerealistic than representation (12).
To thisend, we set a = ms. Integrating Egs. (9) over the
interval r < rs, where V™ = V5, we obtain the values of
Coulomb-nuclear phases &' (k) = 8"} (r%; k) astheval-
ues of the corresponding phase functions at point rs. We
use these values as the boundary values for analyzing
Egs. (9) inthedomain r = rs, where V™ = V™, The first
iteration of these equations yields a representation in
the form of the sum (16), while the subsequent itera-
tions giveriseto additional terms; each nth term (n= 2,
3, ...) decreases, as E — 0, faster than the preceding

one, namely, as (6f',’ J-m (K))". Therefore, at low energies,
representation (16) is an approximation that contains,
asaterm, the exact Coulomb—nuclear phase. It remains
to determine its asymptotic behavior asE —» 0.

We begin with auxiliary formulas. First, we single
out an entire function ©, with parameter g? from the
Coulomb function G;. To thisend, we rewrite the Lam-
bert formula (formula (3.25) in [26]) as

Gi(p,n) = Gi(p, n) +h°(q)Fy(p, N),

él(p! r]) = @cl:(l)(((,:];q)a

(17)
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where Ci(q) and h%(q) are expressed in terms of the
known functions[24] C,(n) and h(n):

C(g) = G(21 +2)q'C/(n)

= (20)' e Hr (1 + 1 +in)),

),
oq

Now, we modlfy the well-known Bessel—Clifford
expansions (seeformulas (14.4.1)—(14.4.4) in[24]) that
contain polynomials b,(n) with parameter k? and the
modified Bessel functions|,(2) and K,,(2) of the variable
z = 2x¥2, Collecting the terms with equal powers of k?
in these expansions, we obtain the required represen-
tation

(q)— h(n) =Rey(in) —Inn.

Fi(p.n) = aCi(a) Y o™ fin(x),
(18)

Gi(p.n) = C(@) Y a”"gin()-

Here,

2f10(X) J
21+ 1)gin(x)0

m+1D L2+ m+1(2) D
E( 1)Ky +m+1(Z)D

and the energy-independent coefficients a,,,, satisfy the
recurrent chains(m=2n, ..., 3nforeachn=1, 2, ...) of
equations

0
A

52
=2 " Z apmZ

m=2n

zmanm+ 2(2| + m)an—l,m—Z + a-n—l,m—S = 01

here, apy =1, and a,,=0if n>0and m< 2nor m> 3n.

Next, we pass to the tangents of the phase functions
in Egs. (9). Then, we replace the tangents by the
required series,

tandy’(r; k) = ~qC; (q)zqz“A. j.n(X: 0,

tenef *(r; k) = —C;_1(a)C;.1(a) $ 0”'B; n(x: 1Y),
(19)

Ao 0% = A (Q[L+hqCTA (0],

B, o(X; h°) = B,(x)[1 +h°qC;_4(a)C;.1(q)B,(x)] .

and, using formulas (17) and (18), represent the Cou-
lomb functions as seriesin which the argument x is sep-
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arated from the parameter g. Finaly, letting g — 0,
we obtain the energy-independent equations

A = R Vil f _Al,qu]z + Vf\,nszgﬁ

—2B,V; [ f,
0.B; = RV [(f,

-A919n},
=AL9)(F—A

(20)
n,jgn)
+B/0g:] -RB; 3 Vo (f,-A

n=j+1

n, jgn)gm

where, just asin the original equations (9), I, n=j + 1,
and | # nfor mixed statesand | =n =j, B; =0, for pure
states. By virtue of (19), the required solutions to
Egs. (20) vanish at x = 0 and, due to the exponential fall-
off of the nuclear interaction, are everywhere bounded.
Therefore, we can pass to the limit asr — o0 in (19)
and obtain the required asymptotics:

2 C s
6|°]S(k) = —arctan ?:CI (Q)?u cs’
1+h(@)aCi(a)Ar; (21)
AT = lim A (X).

X —» ©

Since the leading terms of these asymptotics differ from
the asymptotics of the corresponding Born phases (13)
only by numerical factors, approximation (16) leadsto

C, ms

the same features in the behavior of the phases &y’
as those obtained from the supposed Born approxima-
tion (12).

We suggest using formula (16) for extrapolating the

phases &;'[™ to low energies. This formula is suffi-

ciently simple: its second term Sﬁ’jm is expressed in
terms of known functionsviaequality (14), and the first

term &'; can be approximated by the asymptotics (21)

with coefficient the A7, which can easily be calcu-

lated as the limit, for x — oo, of the function A ;(x)
subject to Egs. (20). Now, to verify that the extrapola-
tion formula proposed is sufficiently exact, we discuss
the results of numerical analysis of the phases.

4. RESULTS OF CALCULATIONS

The results discussed in this section have been
obtained by the numerical integration of the differential
equations derived from Egs. (9) by changing the dimen-
sional variablesr and k to dimensionless ones, x = r/R
and g = kR. As the phases, we used appropriate values
of the phase functions that reproduce the phases accu-
rate up to five decimal placesfor asufficiently largedis-
tance of x = 10 in the case of a = sand for x = 10° in
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Fig. 1. Phaseratios &"/"°/8"[; (8) | = 1andj =0,1,2,and (b) | =3 andj = 2.
the cases of a = mand a = ms. As the coefficients A} Figure 1 represents the graphs of the ratios
of asymptotics (21), we took the solutions A7} (X) of .
Eqs. (20) a the point x = 10, which also guaranteed an 35 (K)  _ (=012 1=3 j=2
accuracy of five decimal places. 57 °(K) ' ’ B ’ '

The exact phases thus cal cul ated were compared with
the approximate phases determined by formulas (14),
(21), or (16) for thecasesa=m, a=s, or a=ms, respec-
tively. We have established that, for energies below
15 MeV, the relative accuracy of all these approxima-
tionsforj =0, 1, 2isno worse than 0.001.

We present the calculated values of the coefficients

A7’} asthe products

Al 5=-26.743d,, A7S=15.116d,,

ASS=-8.739d;, AS5=-39205d,

with the cofactors d; = (3!)?R=and d; = (7!)?R"".

Note that the replacement of the phases 6ﬁ’ f by the
corresponding Born integrals (12) is unacceptable,

becausethe value of theratio |5}/ 5"} | rangesfrom 0.2

to 1.5 when energy variesfrom 0 to 15 MeV. Therefore,
representation (12) is not an approximation, although it
describes al the qualitative features in the behavior of

the phases &)™

The graphs shown in Figs. 1 and 2 have been
obtained by the numerical integration of Egs. (9) and do
not differ from those obtained by the approximate for-
mulas (14), (16), or (21) to within graphical resolution.
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Figure 1la shows that, for | = 1, these ratios are appre-
ciably different from 1 in the domain of sufficiently
small energies (E < E;"}" = 1 MeV). Hence, to cor-
rectly describe the P, phases with j = 0, 1 and the 3P~
3F, phases with | = 1 in this domain, one should take
into account the magnetic interaction V™, whereas, in
the domain of high energies (E > E;"" ), one can

neglect V™ compared with the nuclear interaction V.
According to Fig. 1b, to correctly describe the phases

3;'3°, 1 =3, one should take into account the magnetic
interaction V™ in the range of energies from zero to a

valueof E= E35" =15MeV, whichisan order of mag-
nitude greater than that in the previouscase | = 1.

In Fig. 2, the solid curves represent the phases &',
a=s, m, ms, and the dashed curves represent the phases

d';, a=m, ms, caculated when interaction (5) is

switched on (b, = 0) but interaction (6) is switched off.
Figures 2a—2c show that
817 (k) =3: (k) > 375(k), j =012,
E<E® =20 keV.
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1 1
50 100
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3p,—*F, phases, 1074 rad
10

(d)

E, MeV

Fig. 2. Phases 6E’ja, a=s, m ms(solid curves) and &C,’ja, a=m, ms (dashed curves).

Hence, in the domain of sufficiently low energies (E <
20 keV), the contributions of the nuclear interaction Vs

tothephases &; ", j =0, 1, 2 are negligible. According

1,j
to Fig. 2d, the contribution of V® to the phase &

c, ms
3,2

remains negligible up to an energy of E = Eyy =
2 MeV.

Next, the phases 87 5 and &7 depicted in Fig. 2a
have different signs; as aresult of interference between
the particles scattered by a nuclear interaction and by

JOURNAL OF EXPERIMENTAL

the sum of two magnetic interactions (5) and (6), the

c, ms
1,0

phase 8; , changesitssign at E = 120 keV. According

to Fig. 2a, for E < 200 keV, the phases 810, a=m, ms,

appreciably differ from the corresponding phases &; 5 .
Hence, both magnetic interactions (5) and (6) produce
acomparable (in order of magnitude) effect on the for-
mation of the Coulomb—magnetic—nuclear 3P, phase

;' o°; therefore, none of these interactions can be
neglected compared with certain other ones. According

AND THEORETICAL PHYSICS Vol. 97 No.6 2003
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c,ms,

to Fig. 2b, asimilar result holdsfor the 3P, phase & ;" ;
however, as follows from Figs. 2c and 2d, one may
neglect the tensor magnetic interaction (5) when calcu-
|lating the 3P,—*F, phases &7 with | = 2 + 1. Finally,

C, ms

asisshownin Fig. 2d, the phase 83 ,
4 MeV.

hasazeroat E=

We complete this section with the following conclu-
sions. formula(16) allows oneto extrapol ate the phases

3" withj =0, 1, 2 to energies of E < 15 MeV witha

relative accuracy of 0.001; all the features of the energy
dependence of phases that were predicted analytically
in Section 3 have been confirmed numerically.

5. CONCLUSIONS

L et us summarize the main results of the analysis of
triplet phases of the pp scattering. The interactions
between the magnetic moment of a proton and the Cou-
lomb field and the magnetic moment of another proton
have a substantial effect on the behavior of the triplet
phases at energies below several megaelectronvolts.
Owing to these interactions, in the limit of zero colli-
sion energy, all triplet phases should be proportional to
the cube of the collision momentum and the 3P, phase
and the 3P,—°F, phase with | = 3 should change their
signsat energiesof E= 120 keV and E=4 MeV, respec-
tively. All the features of the energy dependence
pointed out above are described to a good accuracy by
the simple extrapolation formula (16), which is inde-
pendent of the choice of amodel of nuclear interaction
among all phase-equivalent interactions. The Cou-
lomb-magnetic and Coulomb—nuclear terms of this
formula can readily be determined by formulas (14)
and (21) to agood accuracy for E < 15 MeV. To calcu-
|ate, to a high accuracy, the coefficients A7} and B}'®
of higher order termsin the low-energy representations
of the Coulomb-nuclear phases and the mixing param-
eters, we suggest applying the energy-independent
equations (20). A full analysis of these equations seems
to be important for extending perturbation theory [8]
and the method of phase functions [10] to the case of
the superposition of the Coulomb interaction and the
short-range central, spin—orbit, and tensor interactions.

In conclusion, we note once again that, because a
direct experimental investigation of the triplet NN scat-
tering in the range of energies below several megael ec-
tronvolts is impossible at the present state of the art, a
theoretical study of the role of electromagnetic correc-
tions to the nuclear NN interaction in this energy
domain remains an interesting and topical problem.
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Abstract—Stimulated absorption of spontaneous emission of a gas-discharge plasma can cause a significant
increasein the population of the emitting states, compared to their population determined by inelastic collisions
and spontaneous decay from upper levels. By imposing a magnetic field, this self-saturation is reduced and its
contribution to thelevel population can beidentified. The magnetic-field-dependent changesin Doppler profiles
dueto radiative transitions caused by saturating spontaneous emission are analyzed in the case of absorption of
aweak monochromatic wave. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The role played by stimulated radiative transitions
in the kinetics of quantum states has been known since
thetime of Einstein. However, extensive studies of their
diverse conseguences began only after the invention of
lasers, because stimulated transitions manifest them-
selveswhen their probabilities (depending on the inten-
sity of the stimulating radiation) are comparable to
those of spontaneous transitions. The required intensi-
ties are easily attained using laser light. As aresult, the
populations of the states involved in an optical transi-
tion become comparable, the level lifetimes are
reduced, and other manifestations of stimulated radia-
tive transitions are observed (e.g., see [1]). In the
absence of saturating laser light, the rates of stimulated
radiative transitions induced by the spontaneous emis-
sion of alow-pressure gas-discharge plasma are gener-
aly negligible as compared to those of spontaneous
decay. For this reason, they are difficult to identify
among other processes taking place in the plasma (as
inelastic collisions with electrons or atoms and sponta-
neous decay from upper levels), and their contribution
has been neglected. The impact of stimulated transi-
tions on the characteristics of gas-discharge plasmas
was recognized only recently. In particular, it was
shown in [2—4] that stimulated transitions can play a
significant role in typical low-temperature gas-dis-
charge plasmas under certain conditions.

These observations apply primarily to metastable
states (which cannot decay spontaneously), and stimu-
lated absorption can be the mechanism responsible for
their decay [2]. As estimated in [2], the frequency v of
absorption-induced transitions per metastable atom per
1cm?is10° st under typical conditions of aneon glow-

discharge plasma. When the concentration of the
excited atoms whose emission induces stimulated tran-
sitionsis proportional to the electron concentration, the
rates of radiative de-excitation of metastables are
higher than the rates of electron-impact quenching by
an order of magnitude.

Moreover, stimulated transitions can manifest them-
selves in exchange of magnetic coherence between
degenerate levels of comparable width. Under these
conditions, even if the frequency of stimulated
exchange of magnetic coherence between levelsislow
as compared to the spontaneous relaxation rate A,
(Vo ~ 10°-107 st ~ 0.1A,,), the magnetic resonance
widths can change significantly (decrease or increase)
[3]. Stimulated transfer and exchange of magnetic
coherence are of interest because breakdown of the
coherence of Zeeman sublevels in a weak magnetic
field suggests that they can be observed directly in
experiment. Observations of stimulated transfer and
exchange of magnetic coherence (alignment) between
levels induced by spontaneous emission of a discharge
were reported in [4]. It should be noted that, even
though stimulated transitions have low probabilities,
the amplitudes of the magneto-optical alignment reso-
nances transferred from lower levels turn out to be
smaller than, but comparable to, the amplitudes of the
natural alignment resonances for the level under study.
The reason is that, unlike relaxation times (determined
by the frequency of stimulated transitions per atom),
the amplitudes depend on the total rate of transition of
aligned atoms to the upper level, which is proportional
to the frequency of stimulated excitation from the lower
state multiplied by the concentration of aligned atoms
on thelower level. Accordingly, ahigh concentration of
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aligned atoms on lower levels compensates for a low
transfer probability.

However, phenomena associated with alignment
(rank-two polarization moment) must also manifest
themselves in level population (rank-zero polarization
moment). Again, the low probability of “upward” tran-
sitions induced by spontaneous emission can be com-
pensated for by a high concentration of atoms on lower
levels. Whereas the change in the difference of level
populations induced by spontaneous emission of adis-
charge (normally used as a saturation criterion) remains
small, the relative increase in the population of a
weakly populated level can be large enough to be
detected spectroscopically. Under such conditions,
spontaneous emission becomes a factor that addition-
ally increases the population of a decaying state. How-
ever, in contrast to the case of magnetic coherence, no
mechanism has so far been found for identifying the
contribution of radiative transitions induced by sponta-
neous emission to the population.

The present study was conducted to single out the
contribution of transitions induced by spontaneous
emission to level populations (self-saturation of transi-
tions). It was motivated by the results reported in [5],
where the line profile associated with absorption of
monochromatic emission by the 3s,-2p, neon transi-
tion was found to be asymmetric as a function of longi-
tudinal magnetic field when the laser frequency was
detuned from the transition line center. According to
the analysis presented in [5], only magnetic-field-
dependent transfer of population from lower levels to
the level under study could be responsiblefor the asym-
metry. However, the transfer mechanism has remained
somewhat unclear.

The magnetic-field dependence of radiation-
induced population transfer that underlies the method
proposed here is qualitatively explained as follows.
Consider an excited two-level gas with atriply degen-
erate lower or upper level in amagnetic field that splits
the spontaneous emission line. Suppose that the split-
ting interval iswider than the linewidth. Three linearly
polarized spectral components will then be emitted in
the direction orthogonal to the magnetic field. Thewave
polarized parallel to the magnetic field (Tt component)
is not shifted by the magnetic field and does not con-
tribute to the effect in question. The remaining two
components have similar polarizations orthogonal to
the magnetic field (o components), but their respective
frequency shifts induced by the magnetic field have
opposite signs. When the Zeeman splitting interval is
sufficiently large, each of these spontaneous-emission
components induces radiative transitions (saturates the
transition) between the corresponding pair of sublevels.
However, as the magnetic field strength is reduced,
these spectral components overlap and each transition
is stimulated by the sum of “intrinsic” and “extrinsic”
emission intensities. This increases the probability of
stimulated transitions, the extent of self-saturation, and
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Fig. 1. Optical transition schemes.

the population of the upper level. The resulting addi-
tiona population is a function centered at the zero of
the magnetic field. It can be detected by various meth-
ods, including measurement of spontaneous emission
and probing by laser light. Thus, we now have an exper-
imental approach that can be used to identify self-satu-
ration among the processes contributing to level popu-
lation.

The present study was conducted to determine the
line shapes recorded by laser-based spectroscopy for
levels with different angular momenta and Landé fac-
torsin the presence of isotropic saturating spontaneous
radiation emitted by atoms in thermal motion in adis-
charge under different observation conditions.

2. SATURATION
IN LONGITUDINAL MAGNETIC FIELD

We analyze absorption of a monochromatic probe
wave by the three-level system schematizedin Fig. 1in
the presence of isotropic broadband radiation. Suppose
that the level populations are such that N, > N, > N,.
For example, the difference in population between the
lower energy levels can be as large as four orders of
magnitude [6]. Circularly polarized laser light is reso-
nant with the upper pair of levels. The corresponding
absorption spectrum is measured by magnetic scan-
ning. Following [5], we consider a magnetic field par-
alel to the wave vector k, of the probe wave propagat-
ing along the z axis. We assume that the saturating iso-
tropic broadband radiation is generated by spontaneous
emission from level m and can be represented as a
superposition of plane waves propagating in all direc-
tions.

2.1. A Cascade System
with a Nondegener ate Intermediate Level

When level m is nondegenerate, any change in the
magneto-optical spectra of absorption in transitions
from this level must be attributed to effects depending
on its population. Accordingly, both upper and lower
levels (I and n) must be triply degenerate with respect
to the magnetic quantum number (their magnetic
moments must be J, = J, = 1), while the Landé factor g,
of level n may differ from g,. To calculate the work

No. 6 2003



1104

done by the probe field under these conditions, we use
the expansion of expression (8.79) in[1, p. 137] in pow-
ersof the saturating radiation intensity (see also (13.4))
obtained by modeling in terms of relaxation constants:

— p® (1)
Pu = P“ +Pu ,
CNaW(V) |G,
0) — |
P, = —Zh(o“< 5 QO k“ 5)
rlm+( u+Ap_ plj/) v 1)

[N W(W)|G, |
Mon+ (Q + A, —k, T7)?

(1 _
P, = —Zﬁwp<

1

<5 2 Gu(Q, K)|?
- Tom T2 +(Q+AM -k )7, o

M =

Here, 'y, Iy @nd I, @re the relaxation constants in
the system of terms|, m, and n; W(v) isthe Maxwellian
velocity distribution; G, is the Rabi frequency of the
probe field; Q, = w, — W, and Q = w — Wy, are the
respective mismatches between the probe and saturat-
ing-radiation frequencies (w, and w) and the transition
line centers Wy, and Wy, A = HggH and A, = pggH
determine the Zeeman frequency shifts of the magnetic
sublevels of levels n and |, respectively; the index M
runs over the magnetic sublevels of level n; and
Gu(Q, k) is the Rabi frequency for spontaneous m—n
emission in the direction defined by the vector k, which
depends on the magnetic quantum number M of level n.
Summing over the magnetic sublevels of level n is
equivalent to summing over the polarizations of spon-
taneous emission represented in a spherical basis with
unit vectors e,4, &,, and e ; (the zaxisis paralle to the
magnetic field). The angle brackets in (1) denote aver-
aging over the variables written as subscripts outside
the angle brackets: the atom velocity v, the direction of
the wave vector k, and the mismatch Q of the saturating
radiation. The sum over the magnetic sublevels in (1)
can be treated as proportional to thefirst nonlinear cor-
rection to the population of level m.

In thelinear approximation, only the averaging over
the longitudinal atom velocity v, isrequired in (1). In
the first nonlinear approximation, averaging over all
velocity components must be performed. With a view
to integrating over Q, only the terms associated with
the changein level mpopulation induced by the saturat-
ing spontaneous radiation are retained in (1). Since the
contributions due to nonlinear interference will vanish,
there is no need to include them in the starting expres-
sions. We also neglect the terms that represent field-
induced splitting in (1), because they are small when
N, > N, (see[1, p. 210]).
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The saturating radiation intensity |Gy(Q, k)|° is
represented in (1) by three components: |G, 4(Q, k)|2,
IGo(Q, k)|?, and |G_4(Q,k)|*>. The distribution

IGu(Q, k)|2 is isotropic with respect to azimuthal ori-
entation ¢. Its dependence on the polar angle © isdeter-
mined by the projections of atomic dipole oscillations
on the plane perpendicular to the propagation direction
(defined by vector k). It is well known that electric
dipole oscillation represented in a spherical basis with
mutually perpendicular unit vectorse,;, e,, and e ; sat-
isfies the magnetic quantum-number selection rulesfor
dipole radiation. Dipole oscillation aong the quantiza-
tion axisz (magnetic field) givesriseto aradiation com-
ponent with zero frequency shift and polarization par-
ald to the magnetic field (Tt component). Oscillation
perpendicular to the z axis givesrise to Zeeman-shifted
right- and left-hand polarized o components of radia
tion. Projection of dipole oscillation on the plane per-
pendicular to the vector k is performed by using the
Wigner matrix DY(0B0) = d*(B) with 3 = © to rotate the
coordinate system about the y axis so that the laboratory
frame (z || H) is transformed into a coordinate system
with z||k [7]. The Euler angles a and y in D(ay) can
be set to zero. They only shift the phases of the circu-
larly polarized radiation components without changing
the radiation intensity, because they are incoherent in
the case of spontaneous emission. Next, the polariza-
tion vectors of the saturating radiation must again be
represented in the laboratory coordinate frame:

E, = d'(-0)P.d"(©)E,

E.s 100 )
E=|g| Pe=|o000-
E, 001

Here, E,;, E,, and E_; are the plane waves associated
with atomic dipole oscillation and Pg is the projection
matrix constructed by taking into account the trans-
verse nature of the el ectromagnetic wave. SinceE,;, E,
and E_; have random phases in the case of spontaneous
emission, the interference between E,;, E,, and E_; can
be neglected. Finaly, by virtue of the Maxwellian
velocity distribution for the emitting atoms,

IGW(Q, k)|? is expressed as

2 _ U Q+ AP+ cos’
|G41(Q, K)|” = lod %exp[‘m kVTD}D 2 O
09 #](cosOsin©)’
+exp| Ekwﬂ} 2
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- ADZ Dl cos’ @’ D
2 Q + A77(cos@sin®)?
2
+exp[ H%E}s'n“e 3)
[ -AP?](cosOsin©)’ 0

R+ ADZ} rL-cos’ e

2 _ 0
|G_y(Q,K)|” = Id EeXp[_DkVTD O 2 O

D&gz}(cosesine)2

" eXp[_Ekw] 2

- ADZFH cos’ D

+exp[ Okv. O > |:| .

Here, |, isproportional to theintegral intensity of spon-
taneous radiation (determined by the level population
N, and by the corresponding spontaneous emission
coefficient) and d is the reduced dipole moment for the

m-n transition. Since the distribution |G, (Q, k)|2 is

isotropic with respect to azimuthal orientation ¢, this
expression is independent of ¢; cos® =k - H/kH. The
expressions in (3) are not rigorous with regard to elec-
tromagnetic field normalization, but they are suffi-
ciently accurate for quasiclassical description of spatial
characteristics, polarization, and spectra of spontane-
ous emission of an ensemble of atomsin magneticfield.
It can readily be shown that the total radiation intensity,

IG,|? +|G_|* +|Gy|?, isindependent of © when A =0,
as should be expected in the case of isotropic spontane-
ous decay. Moreover, the components |G, |*, |G_?, and

|G¢|? do not give rise to any components of nonzero

rank in the polarization tensor integrated over the solid
angle (see[1, p. 157, Eq. (10.33)]).

The resonance conditions that follow from (3) are
independent of the magnetic field magnitude only for a
wave propagating along the z axis (in which case
© =0). A photon of this kind emitted in a transition
involving a change in the magnetic quantum number
(withM,,—M,, = +1 or -1) isabsorbed in asimilar tran-
sition. The photons emitted at a nonzero angle © rela-
tive to the z axis in transitions of a certain type (e.g.,
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with M, — M,, = +1) are absorbed in transitions of all
types. In anonzero magnetic field, the radiation compo-
nents absorbed in “extrinsic” transitions do not satisfy
the resonance conditions. This is obvious when the
propagation direction is perpendicular to the z axis. In
this case, both Zeeman-shifted o components have sim-
ilar linear polarizations perpendicular to the magnetic
field. These components interact separately with both
transitions for which M, — M, = £1, and only one-half
of the radiation satisfies the resonance conditions. The
photons polarized parallel to the magnetic field (Ttcom-
ponent) satisfy the resonance conditions either when
© =0 (no radiation) or when © = 172 (radiation of the
highest intensity). The highest intensity of nonresonant
radiation is attained for the Ttcomponent when © = 51°.

The expression for the linear part of the work done
by the probe field in (1) has been analyzed in the con-
text of various problems (e.g., see [1, p. 252]). It is of
interest here only as compared to the nonlinear part. By
performing the standard averaging over the longitudi-
nal atom velocity V, and over Q (for a large Doppler
broadening, i.e., KV, K,V > T, 'y, and for Q, that
are not very large as compared to k,V7), the nonlinear
part of the work done by the probe field can be repre-
sented by three components:

- B 0
H (k,V1)(kV7) 0 k.Vr 0

4
x < Eg + 3c025 ©_ cos’ @Hexp(-2%)

+cos’@sin G)Dexp[ % kvﬁz} 4
+exp[—%+k\A/E}§+ sin G)D [ % kZ\?EZ}

2A
+ex|0[ %ﬂ(wj}%e(bwv

where

Q,+A \%
= 3 H +_p 1
Z KV cosO VTsmG)cosq).

u

The first term in angle brackets represents interaction
between spontaneous emission and the corresponding
transition and is independent of magnetic field. The
second and third terms correspond to interactions with
the Zeeman-shifted “extrinsic” transitions.
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Performing the averaging over the Maxwellian dis-
tribution of the transverse velocity components V, (in
explicit form), one obtains integrals of the form

00

F(A B) = %Jexp[—(A+ Bx)® — x°] xdx
0

1 4 2 T
= —————[exp(-A") - 5
2n(1+B%[ P-A) N1+B® ©

2
0 A 0 n AB 1t
x ABexp = [ erf }D
01 +pY D/—1+BﬂD

where

Q, +A
B = sn@cos¢p, A = —& l1cos@tM,

KV kV;

The factor N can be O, 1, or 2. For the first (resonant)
term in the angle bracketsin (4), N = 0. For the second
and third terms (which represent nonresonant absorp-
tion of spontaneous radiation), N = 1 and 2, respec-
tively. The averaged over ¢ nonlinear part of the work
done by the field can be expressed in terms of integrals
of theform

2n

Fo(As) = J'F(A, s, cosp)dd, s = snO®. (6)
0

Theintegral in (6) cannot be expressed in terms of ele-
mentary functions. However, it can be calculated
exactly fors=0and s= 1.

exp(=A’/2)
—ﬁ :
Sincels| variesfrom 0to 1 in (6), good accuracy (within

0.1%) is achieved at intermediate values when (6) is
represented by the interpolation formula

Fo(A 0) = exp(—A%), F4(A 1) =

Fo(A 9 = exp(-A%)(1-1506s"+ 0.506s")
_A? @)
+ &PEAT2) 4 5516205516,
J2

The coefficients in (7) are found by the least-squares
method for |A] < 3. A final expression for the work done
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by the probefield is obtained by calculating the integral
over the polar angle © in (4):

P, = —2hw,|G, |2 T exp( x%)

X N + ”°d
]

[Fo(¥) + Fa(x, y) + Fy(x, Y)]D,

1

Fo(X) = I Fy(xcosO, sin©)

4
x|j3+3COS@

D 2

- cosz(%sinede,

s

Fiu(xy) = J’[F¢(xcosG) +y, SinO)

+ Fy(xcosO -y, isin@)]coszesin3@d@, (8)

1

F (% y) = J’[F¢(xcose+2y, sino)

. 4

+ Fy(xc0s0 — 2y, sin@) ] 32 E4nade,
_ O+, A,
k,Vy ' kV+g

Figure 2 shows the functions Fy(x), Fi(x, y), and
F,(x, y) describing the change in the population of level
m due to absorption of spontaneous emission. One can
easily find approximate expressionsfor these functions.

The quantity in bracesin Eqg. (8) isthe total level m
population. Since the integral radiation intensity I, is
proportional to N,,, we can factor N,, out of the braces.
Now, we see that the nonlinear correction to the Dop-
pler profileis proportional to the lower level population
N, multiplied by the probability of spontaneous decay
from the upper level. Since N, can be higher than N,,, by
several orders of magnitude, even spontaneous emis-
sion having alow integral intensity can cause asubstan-
tial changein thelevel m population as compared to the
initial N,,. In a nonzero magnetic field, the additional
population is partially reduced by self-saturation. This
effect manifests itself, in particular, by changing the
symmetry properties of the magneto-optical profile.

Figure 3a shows the derivatives of magneto-optical
spectra calculated in the case when half the population
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le is created by absorption of spontaneous emission,
k, =k, and g,/g, = 1. We see that the asymmetry of mag-
neto-optical profilesincreaseswith Q,,. The asymmetry
manifestsitself by the difference between the low- and
high-frequency “tails’ of the profiles when

Q,

0< <05.

A numerical analysis shows that the asymmetry is
mainly determined by the function F,(X, y), which is
narrower on the scale of Zeeman splitting. The contri-
bution due to F4(x, y) is less pronounced when Q, # O.
By “switching off” the nonresonant processes associ-
ated with F,(x, y) and F,(X, y), the asymmetry of the
profilesis eliminated and only the barely visible distor-
tion of the Doppler profile due to the function Fy(X) is
retained. The nonresonant processes are “ switched off”
wheng,/g < 1or |Q,/k,V+ > 1(theprobeisdetuned
too far from resonance). When g,/g, > 1, the symmetry
is even more pronounced. It is obvious that the asym-
metry can be observed only in the case of significant
population transfer by magnetic scanning of the
absorption line. Figure 3b demonstrates that the asym-
metry cannot be observed if the probe-absorption pro-
file is measured by frequency scanning.

When the polarization of the probe wave is changed
from right- to left-hand circular in (8), the sign before
A, must be reversed. Thisis equivaent to mirror reflec-
tion of the graphs shown in Fig. 3a with respect to the
vertical axis passing through the point A, = 0. Whenthe
probe wave is linearly polarized, the magneto-optical
absorption profile can be represented as the sum of con-
tributions due to theright- and left-hand polarized com-
ponents of the probefield. The resulting absorption pro-
fileis symmetric, asin the absence of population trans-
fer, but its shape is more complicated. When the probe
is detuned too far from resonance, the resulting line has
a bimodal profile. Since population transfer modifies
the absorption profile without violating its symmetry,
the resulting changes are difficult to notice visually and
can be found only by numerical analysis.

2.2. A Cascade System
with a Degenerate | ntermediate Level

Analogous calculations can readily be performed
for a system of levelswith J, = J,=0and J,,= 1. The
sum over magnetic sublevelsin (1) reducesto asingle
term associated with the magnetic sublevel of level m
that is common to both probe and saturating fields. The
corresponding magneto-optical absorption profile is

L This value of the additional population due to self-saturation is
used to ensure qualitative agreement of the calculated asymmetry
with that reported in [5].
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Fig. 2. Approximating functions: (a) Fg(X); (b) F1(X, Y);
(©) Fa(x, y).

similar to that described by (8), but the functions Fy(X),
F1i(x, y), and Fy(x, y) are different:

T

2
Fo0/(X) = IF¢(XCOS@. sinB) E%asin@dG,
0

b1

Fiow(X% y) = I[F¢(XCOSG +Y, SinO)]
0

2 .3
5 C0S Ozsm OdG),
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T

Faoi)(X, Y) = I[ Fy(xcosO + 2y, sinO)]
0

sin'®
4
The graphs of these functions are qualitatively similar

X

sin©do.

-0.4

_0'8 | | | | |
S 0 1 2 3
D,V

Fig. 3. Derivatives of absorption profiles for probe field:
(a) longitudinal magnetic field scanning with various Q,;
(b) frequency scanning with various A; (c) Tepolarized
]Eglage wave and transverse orientation of scanned magnetic
ield.
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to those presented in Fig. 2 (parenthesized subscripts
correspond to the J = 0 — 1 — O three-level sys
tem), except for the relative contribution of the nonres-
onant term Fyp(X, y) (as compared to that of
Fow10(X)), which is larger (by more than two times).
The resulting asymmetry corresponding to an equal
population transfer is more pronounced than in the case
ofaJ=1-— 0 — 1threelevel system. Moreover,
population transfer is also more pronounced in the J =
0 — 1 —» 0 system, because both statistical weight
and population of the term responsible for spontaneous
emission are three times higher. In the case of linear
polarization, population transfer does not cause any
line asymmetry.

When the angular moments of the levels are arbi-
trary and their g-factors are equal, irreducible spherical
tensor operators should be employed. The correspond-
ing expressions in (1) would have a similar structure,
whereas summing over magnetic sublevels should be
replaced by summing over polarizations represented in
terms of polarization moments, and a qualitatively sim-
ilar final result would be obtained. In the case of opti-
cally induced population transfer, asymmetric P,(A)
would be obtained by scanning the longitudinal mag-
netic field.

When both angular moments and g-factors of the
levels are arbitrary, the situation is more complicated.
When g, differsfrom g,, (while J;, J,= 1), an asymmet-
ric linear-absorption profile qualitatively similar to (8)
will be observed without any population transfer. The
linear-absorption profile is a sum over transitions with
Mn—M, =+1:

PP O S [BMI,—(M —~1)[110°
M

£, + UgH[gM — g, (M - 1)] 7
X exp[—D k“VT 0 i|

©
= 5 DM~ (M -1)[11)’

9, A+ MBLF

Here, [I..|...0is the Wigner 3j-symbol determining the
intensities of transitions for different magnetic quan-
tum numbers,

A = pggyH, 0= 90

Om

As afunction of magnetic field strength, the sum in (9)
consists of several components with different intensi-
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ties, which are centered at different values of
_ Q,

He(gM —gpM +gp)’
and have different widths k,V+(1 + dM). The overall
magneto-optical profile is asymmetric when Q,, # 0, as
in the case of upward population transfer by stimulated
transitions, and particular effects can be identified only
by analyzing an experimental profile numerically, asin
the case of linear polarization.

When g, = 9., # 0, thereisno asymmetry in the lin-
ear-absorption profile and population transfer from
level n, again, breaks the symmetry of the magneto-
optical profile. When the Landé factors of levels mand
n are different (J,,, J,, = 1), the asymmetry includes a
contribution due to axially propagating radiation,
because the work done by the probefield is given by an
expression analogous to (8), which holds for waves
propagating along the z axis. When © = 0, the work
done by the field contains terms of the form

2+ A Voo M3AT

exp[ Ok, Vy cosO + VTsmG)cosq) + AR }
which are analogous to the terms associated with non-
axial radiation in (4). The resulting level m population
depends on the magnetic field strength, and P, isasym-
metric when Q,, # 0. The contribution of the asymmet-
ric distortion in the case of an axially propagating wave
obviously increases with the difference between the
g-factors of the levelsinvolved in the transition. More-
over, the result depends on the angular momenta of the
levels. In particular, the asymmetry is less pronounced
when J, =1, J,,= 2, and J, = 1 as compared to the case
of J =1, J,=2,and J,= 2. Thisisexplained by the dif-
ference between the transition probabilities corre-
sponding to different M,,,. When an axially propagating
waveisabsorbedinan“extrinsic” transition (in the case
of emission with a certain M,, and off-resonance
absorption by transition with adifferent M,,)), the effect
of “extrinsic” radiation on the system of levels with
J =1 J,=2,and J, = 2 isstronger than that observed
inthecaseof J =1,J,=2,and J,= 1.

The magneto-optical profile for the J = 1/2 —»
12 — 1/2 three-level system must be weakly asym-
metric. In this case, the expression for P, does not con-
tain any function analogousto F,(X, y) (whichismainly
responsible for the asymmetry).

Ho

3. SATURATION
IN TRANSVERSE MAGNETIC FIELD

Theresults of calculations can easily be extended to
the case of transverse magnetic field with respect tok .
By virtue of the assumed isotropy of the saturating
spontaneous emission, the absolute direction of mag-
netic field is irrelevant with regard to the additional
population due to self-saturation. However, asthe mag-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

1109

netic field orientation isvaried relative to the wave vec-
tor of the probe field,? the additional population mani-
festsitself against the varying linear-absorption profiles
observed in the absence of population transfer. This
implies a greater diversity in choosing the polarization
of the probe field. When the electric field of the probe
wave is paralel to the magnetic field (in the case of Tt
polarization), the probe field interacts with atransition
whose frequency is independent of the magnetic field
strength. Absorption of the probe wave depends on
magnetic field only in the case of magnetic-field-
dependent population transfer to level m, and the result-
ing magneto-optical profile of probe-wave absorption
is completely determined by stimulated transfer pro-
cesses. Thefinal expression for thework P, done by the
probe field is equivalent to (9) with a zero g-factor of
level |. Thevariables x and y in the corresponding func-
tions Fy(X), F1(X, y), and F4(X, y) are

9, .
vy YT kv

Figure 3c shows magneto-optical profiles for the 1t
component of the probe field. Variation of Q, affects
only the amplitudes of magneto-optical profiles, but
does not lead to asymmetric distortion. The case when
the electric field of the probe wave is orthogonal to the
magnetic field (o-polarized) is analogousto that of lon-
gitudinal magnetic field and a linearly polarized probe
wave. The resulting profile P, of probe-wave absorp-
tion is symmetric irrespective of population transfer
from level n and bimoda when the mismatch is large.
When the probe wave is circularly polarized, a symmet-
ric overal profile will aso be observed. In the last two
cases, stimulated popul ation transfer cannot beidentified
gualitatively, and a detailed numerical analysis of the
profilesisrequired. Note al so that difference between the
g-factors of levels does not lead to profile asymmetry in
transverse magnetic field, but it affects the line width.

Measurement of the 11 polarization of the probe
wave in transverse magnetic field would seem to be the
most effective method for detecting stimulated popula-
tion transfer against zero background. However, special
care should be taken to ensure both the purity of polar-
ization and the absence of any contribution to the mag-
neto-optical profile due to the probe component polar-
ized perpendicular to the magnetic field. When the
probe wave propagates along the axis of an oblong cell,
the use of transverse magnetic field may be advanta-
geous at low pressures, when spontaneous emission is
anisotropic and stimulated transitions can be induced
by its longitudinal component.

X =

4. MULTILEVEL SYSTEMS

Now, we discuss some spectroscopic manifestations
of self-saturation of optical transitionsin real multilevel

2 Normal ly, itsdirectionis parallel to the axis of the discharge tube.
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systems. The case of probing of absorption in transi-
tions from resonant levels provides the closest analogy
to three-level systems of the kind considered in this
study. Inthe case of neon, thelevelsin question are 1s,
and 1s, in Paschen’s notation. (Note that profile asym-
metry due to this effect was originally observed in
neon [5], which has always been a benchmark medium
in nonlinear spectroscopy.) The mean free path of the
photons emitted in spontaneous decay of theselevelsis
short, and the spontaneous emission isisotropic evenin
capillary discharge tubes at actual neon pressures.
When processing magneto-optical spectra to obtain
guantitative data, one should bear in mind that these
photons are strongly reabsorbed and the distorted pro-
file due to the additional population created by stimu-
lated transitionsis non-Gaussian, whereas Doppler pro-
files with widths determined by the discharge tempera-
ture can be used to describe “normal” absorption. One
should also allow for the modification of linear absorp-
tion due to the influence of magnetic field on electron
temperature and concentration [8]. However, this effect
is characterized by a different dependence on the mag-
netic field strength, which can be taken into account
when the observed profiles are analyzed.® Probing of
absorption in transitions from the metastable level 1s;
can be suggested as a benchmark test to distinguish
between these two effects. Since this experiment does
not involve spontaneous decay, upward popul ation trans-
fer induced by spontaneous emission isimpossible.

In the case of absorption in transitions from higher
2p levels, the additional population due to nonlinear
effects will manifest itself in a more complicated man-
ner. One reason is that each of these levels (except for
2p,) decaysto two or three ones. For example, the level
2p, involved in the neon 3s,-2p, transition, with a vir-
tualy normal Zeeman splitting (g = 1.302, g, =
1.298 = g)), can decay to the lower states 1s,, 1s,, and
1s;. The populations of these states exceed that of level
2p, by severa orders of magnitude [6]. This implies
that expression (9) must involve several N, such that
N, > N,,, but the corresponding profiles have different
widths on the scale of Zeeman splitting because of dif-
ference in the Landé factors of 1s levels and the Dop-
pler widths of transitions. It is clear that the recorded
signa will also reflect the magnetic-field-dependent
additional population induced on resonant levels 1s,
and 1s, by stimulated transitions and transferred
upwards by inelastic collisions with electrons. This
effect complicates the profile shape, at the same time
increasing the magnetic-field-dependent additional
population on these levels.

When discussing the influence of magnetic field on
level populations in gas-discharge plasmas, one cannot
ignore the change in level populations due to latent

3 This dependence is characterized by a profile wider than the Dop-
pler one and by opposite signs corresponding to magnetic fields
parallel and perpendicular to the discharge axis.
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alignment of levels in a coordinate system tied to a
moving atom (the Kallass—-Chaikaeffect) [9]. Thisphe-
nomenon, as well as the one considered above, should
also be attributed to the o-polarized field components.
However, it manifests itself on the scale of Zeeman
splitting corresponding to level widths, because it
results from interference in coherent interactions
between the field components and Zeeman sublevels.
Latent alignment is characterized by opposite signs of
alignment for slow- and fast-moving atoms. The Dop-
pler line widths associated with the latently aligned lev-
els change accordingly. A weak magnetic field that
splits the levels and breaks the alignment restores the
natural line width, and the corresponding change in
reabsorption coefficients results in magnetic-field
dependence of level populations (including those of
degenerate levels). However, this effect can easily be
distinguished from the one discussed in this paper
because of their disparity on the scale of Zeeman split-
ting (in terms of level width compared to the Doppler
line width).

5. CONCLUSIONS

It should be reiterated that the influence of self-sat-
uration of transitions on the absorption line profile can
be detected only when thelineis split by magneticfield.
Profile asymmetry, as well as other manifestations of
stimulated population transfer in the work done by the
field, can be observed only on the scale of Zeeman
splitting. Frequency scanning does not create condi-
tions under which stimulated transitions can be
observed, and the spectral profile retains its shape.
When the spectrum is scanned on a frequency scale,
self-saturation manifests itself only by a change in the
absorption profile amplitude. Spectral frequency scan-
ning in anonzero magnetic field will obviously change
the absorption line profile. However, this change will be
similar to those normally caused by magnetic field,
whereas self-saturation will manifest itself only in the
changed profile amplitude. Therefore, no information
about self-saturation can be obtained by conducting an
experiment of thiskind only.

Since asymmetry of the magneto-optical profileisa
qualitative effect, even a small extent of population
transfer can be detected by special methods designed to
identify the asymmetric part of an absorption coeffi-
cient. When self-saturation of transitions is ignored,
both spectral line profiles and cross sections of excita-
tion by electron impact may be determined incorrectly
and the dependence of discharge characteristics on cur-
rent may be misinterpreted. One example of the essen-
tial role played by the effect in question can be found
in[5]. In [10], a new radiative process was predicted:
(spontaneous or stimulated) transfer of optical coher-
ence (dipole moment) from one atomic transition to
another. It manifests itself in asymmetry of Doppler
line profiles. One would naturally try to identify the
resulting change in aline profile (several tenths of per-
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cent in the case of spontaneous transfer) by a magnetic
scanning method. The experiments described in [5] were
conducted to validate this approach by applying it to a
trangition unaffected by transfer of optica coherence.
However, an asymmetry (about 5%) due to self-satura-
tion was revealed, which thwarted all hopesfor detecting
transfer of optical coherence by magnetic scanning.

Note that the influence of self-saturation on the
results of magnetic scanning is only part of the overall
effect. An analysis of the two-dimensional model out-
lined in the Introduction shows that the additional pop-
ulation detected by a magnetic scanning method isonly
one-fourth of the total increase in population due to
stimulated transitions. The overall effect does not
include the contribution of the Tt component, which is
responsible for one-half of lineintensity, while the effect
due to the o components manifests itself by the differ-
ence in the saturation caused by their total intensity and
half-intensity. In practice, the influence of magnetic field
on level populations may be further reduced by effects
associated with thermodynamic equilibrium.

It should be expected that self-saturation of optical
transitions would manifest itself in the absence of mag-
netic field. To observe the most clear-cut evidence of
self-saturation, one should look for adifference in pop-
ulation between resonant and metastable levels. How-
ever, in addition to excitation by electron impact and
de-excitation by spontaneous emission, imprisonment
of resonant radiation must also play an important role
in increasing resonant-level populations (e.g., see [6]).
This mechanism of optical pumping described in the
literature differs from the self-saturation of optical tran-
sitions discussed in this paper. It is associated with
increasein the effectivelevel lifetimesunder conditions
of radiation imprisonment. The effective lifetime of a
state with respect to a resonant transition depends on
transition probability, ground-state population, and cell
length. These parameters are also important for the
effect discussed here. In particular, cell length deter-
mines the characteristic radiation-imprisonment time,
i.e, itsintensity [2]. Of primary importance is the pop-
ulation in the excited state, but this parameter is never
mentioned in the available explanations of the increase
in level lifetime due to radiation imprisonment. As the
population in an emitting state increases with electron
concentration (discharge current), this state must be
additionally populated by increasing self-saturation.
However, radiation imprisonment can only decrease the
population through the reduction of the lifetimes of
excited states due to increase in frequency of inelastic
collisions with electron concentration.*

4 Note that radiation imprisonment can be increased to the same
extent by increasing either the concentration of absorbing atoms
or thereactor size. In the former case, the mean free path of spon-
taneously emitted photons decreases, and so does the characteris-
tic radiation-imprisonment time. This reduces the effect of self-
saturation when the population of the emitting state remains con-
stant. In the latter case, the converse effect may be observed.
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Thus, self-saturation must manifest itself in experi-
ments with variable discharge current. Indeed, some
evidence of this effect wasfound in data concerning the
cross sections of excitation of resonant neon states by
electronimpact (see[6, Table 3]), whereas no such effect
was observed in analogous data for metastabl e states, for
which sdf-saturation is impossible [6, Table 4]. The
dependence on discharge current revealed in [6] for res-
onant levels (increase in cross sections, except for the
measurements performed at a minimal current) was
attributed to incorrect probe measurements of electron
concentration and temperature, whileits absence in the
case of metastable states was interpreted as accidental.
However, we believe that the author should not have
questioned the measurement accuracy. The error (if
any) would be significant only at the minimal discharge
current. We are certain that self-saturation of resonant
transitions manifested itself in the experiments reported
in[6].
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Abstract—The effect of a considerable strengthening of muon depolarization in AL C resonance experiments
was predicted for the muonium + nuclear spin system in the presence of aradiofrequency field. A mathematical
approach was devel oped for obtaining analytic solutions that described the muon spin dynamicsin AL C exper-
iments, including a particular exact solution that contained much information about the system studied in fairly
low magnetic radiofrequency fields. An analysis of these solutions and numerical calculations allowed us to
comprehensively analyze muon depolarization patterns in a radiofrequency field. The results revea the
potential of muon depolarization strengthening for considerably increasing the sensitivity of experimental
studies of muonium interactions with neighboring nuclear spins and for obtaining new spectroscopic informa-

tion. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

When implanted into a substance, the positively
charged muon (u*) often captures an electron to produce
hydrogen-like paramagnetic muonium (u* — €). The
properties of muonium (Mu) attract much interest in
relation to the fundamental problems of gquantum elec-
trodynamics and weak interactions and to testing of the
standard model (e.g., see[1, 2]). Review [1] containsa
consistent analysis of electromagnetic and weak inter-
actions in muonium that determine the hyperfine split-
ting of Mu levelsin vacuum and the effective magnetic
moments of the € ectron and muon, which were mea-
sured most accurately by magnetic resonance tech-
niques (also see [3]). Studies of hyperfine interactions
and the spin dynamics of Mu are aso of importance for
experimentally determining the molecular structure and
physicochemical properties of various substances [4—-6].
The formation of Mu isto agreat extent determined by
Coulomb interactions between the electron and muon
and does not strongly influence the initial polarization
of the muon and €l ectron. Thanks to this circumstance,
we can study the spin dynamics of the muon using the
muon spin rotation (LSR) technique to obtain informa:
tion about the spectroscopic parameters of Mu. Of con-
siderable interest are hyperfine interactions of Mu with
neighboring nuclei, which provide important informa-
tion about atoms and chemical bonds [4-6]. The close
similarity of the physicochemical properties of the
muonium and hydrogen atoms allow muonium to be
used as amodel of impurity hydrogen atomsin various
compounds[7].

One of the frequently used methods for studying the
spin interactions between Mu and surrounding atoms

(Mu + Nu) isbased on using cross-rel axation processes
with polarization transfer from the muon to nuclear
spins via hyperfine interactions with electron spins[8].
Abragam was the first to note that such a transfer of
muon polarization was possible [9]; soon afterward,
this phenomenon was observed experimentally [10].
Muon polarization transfer to a nucleus occurs under
the conditions of quasi-crossing of energy levels of the
total quantum system [avoided level crossing (ALC)
resonance] including the muon, electron, and nuclear
spins. These conditions are attained by additionally
tuning the static magnetic field H,. Because of thefairly
short muon lifetime, the ALC resonance can only be
successfully observed when amuon is rapidly depolar-
ized; that is, when hyperfine interactions responsible
for polarization transfer are strong. Interpreting the
results of such experiments requires the nuclei that
interact with the muonium be accurately identified.
Currently, the unknown spectral parameters of nuclear
spins are determined from other experiments. In spite
of considerable progressin the uSR techniques of ALC
resonance measurements, they are likely incapable of
providing information comparabl e to the amount of that
obtained by spectroscopy with the use of stationary
and, especially, pulsed magnetic resonance techniques
(e.g., see[11, 12]). To obtain more spectroscopic infor-
mation about the muonium + nuclear spin system, we
here suggest using additional irradiation of substances
by aradiofrequency field in ALC experiments.

It isunclear a priori how aradiofrequency field can
affect the muon spin dynamics and ALC signal param-
eters, because the Mu + Nu quantum system acquires
fairly diverse properties under these conditions. The
Mu + Nu system is characterized by the presence of a
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large number of quantum levels, spin quantum coher-
ence at the instant when the Mu + Nu system forms,
and, lastly, the appearance of entangled quantum states,
which play a key role in polarization transfer by the
Abragam mechanism. Briefly announcing the results of
thiswork, note that the action of a radiofrequency field
on the Mn + Nu system causes severa transitions
between four quantum levels and, together with cross-
relaxation processes, strengthens the depolarization of
the muon subsystem. The influence of aradiofrequency
field on the spin dynamics at the AL C resonance point
cannot be described by simple magnetic resonance
models based on applying the two-level approach to
spectroscopic transitions in an external radiofrequency
field. In the problem under consideration, in which an
electromagnetic field strongly couplesall four Mu + Nu
system levels, we found an analytic solution that fairly
accurately describes the dynamics of the behavior of
this system and the shape of the ALC resonance line.
This analytic solution, in particular, exactly describes
the system at the center of the ALC resonance. The
numerical analysis that we performed showed that the
exact solution contained much information about the
magnitude of the effect. In particular, a radiofrequency
field can considerably increase the amplitude of the
ALC signal, which opens up possibilities of observing
ALC spectra in substances with weak hyperfine inter-
actions, which are exceedingly difficult or virtualy
impossible to study by the traditional techniques of
ALC experiments. This result can be of great practical
significance, for it offers a means of increasing the
amplitude of ALC signals and, accordingly, the sensi-
tivity of ALC measurements and of obtaining addi-
tional information about the spectroscopic parameters
of the muonium and nuclear spins interacting with it.

2. PHYSICAL MODEL

Our study of the influence of a radiofrequency field
on the ALC resonance signal is based on the simplest
guantum model of the interaction of muonium with one
nuclear spin (Mu + Nu(S= 1/2)). Nevertheless note that
the selected model can serve as a basis for describing
the process under consideration in more complex Mu +
Nu(1/2) systems, in particular, those with alarger num-
ber of particles and particles with larger spins[8]. The
Hamiltonian of the selected model will be written as

H = Ho+V(1), (D

where H, is the energy of the muonium + nuclear spin
system,

Hy, = ko D&pe [ — 7w, 0, + T,

- (2)
—ﬁwnSn + 7S Ane [T,

and V(t) isthe interaction energy of three spinswith the
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magnetic radiofrequency radiation field H,,

V(t) = —Ay;S H,cos(wt), o
¥:S =V.0.+ VaSi— Velx

Here, o, T, and S are the spin operators of the muon,

electron, and nucleus, respectively; Aue and Ane are
the tensors of the hyperfine interaction between the
muon spin and the electron and nuclear spins; w, =
YuHz, @, = YeH,, and w, = y,H, are the Zeeman frequen-
cies of the muon, electron, and nucleus, respectively, in
the external constant magnetic field H, oriented along
the z axis; H, is the amplitude of the radiofrequency
magnetic field; and y,,, y,, and y, are the gyromagnetic
ratios of the muon, nucleus, and electron. Below, we
consider the fairly frequently encountered situation of
axialy symmetrical hyperfine interactions, for which
A,=A" and A, = A, = A". We then have

o DAue & = ﬁDALLGT +Z Aue(c T+0T )D, (4)

~ D + — +|:|
£S DAne [k = ﬁDA;;szrz+%AEe(sT +STY. (5)
0 0

Isotropic hyperfine interactions will be described using
the notation

Ape - Aue - (*)01 A;Ia = AEe = Q.
We have wy, > Q in order of magnitude; for instance,
for silicon, wy, = 2m x 2006 MHz, and for iron,
Q(*°F spin 1/2) = 100 MHz [§].

Following [8], we will first describe the most impor-
tant properties of the Mu + Nu(1/2) system in the exter-
nal constant magnetic field H,. Tuning to the ALC res-
onance requires using high H, fields, when the Zeeman
electron energy in the magnetic field (w,) becomes
predominant in the series of energies (1). For thisrea-

son, far from level crossing, the cross-relaxation opera-
tors of hyperfine interactions from (4) and (5),

1

V(+ ) = éhA (0T +0 1),
+, - 1 4+ — — +
Vi = §ﬁAEe(s,r +ST1),

have aweak influence on the spin dynamics and can be
included as perturbations. Let us determine energy lev-
els using the spin state functions |m,, m,, m,L} where
m,, mg, and m, are the magnetic quantum numbers of
the muon, electron, and nucleus, as basis functions. At
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Fig. 1. Energy levels (see Table 2) in thevicinity of theALC
resonance for the example of PyBF-4, H;es = 1.396 T.

Wy > Q, wemust primarily takeinto account the hyper-
fine electron-muon spin interaction described by the

V(+ 7 term, which entangles states with opposite muon

MOISEEV, NIKIFOROV

and electron spin orientations (|1l 0} |11 0. For a
small wyw, < 1, the energies of eight possible states
(Eis, ..., E4) far from level crossing are largely deter-
mined by the terms of zeroth order in the interaction

V(. (seeTable 1). The four energy levelsEs,, ..., E,
with the opposite predominant electron spin orientation
|t Oare separated by a considerable energy interval
(around 7w, > fity,). For this quartet of levels, the alter-
nating field frequency does not coincide with the reso-
nance transition frequencies of Mu + Nu that cause
muon spin flip. For this reason, the spin dynamics for
this quartet of levelswill not be considered.

Close to the ALC resonance at the constant mag-
netic field value

1AL —Ane
2 Vu =Yn

res — '

the energies of the |¢,_Cand |d,.[devels coincide. Inthe
vicinity of H, = H,, the weak hyperfine electron—
nucleus interaction Vf,f;;’ begins to play an important
role; it entangles states with oppositely oriented elec-
tron and nucleus spins (|10 |11, and thereby
entangles the states |¢,_Cand |¢,,.[] The new system of
wave functions and the corresponding energy eigenval-

Table 1. Wave functions and their energies far from the ALC resonance

Wave function

Energy level in i units

|10 [ 11 e o0
b1 0= 11 el 0
|§o L= SINE| 1,1 g1 p+ COSE|L 16t nU
o 0= sing |14 gt nH+ COSE|L i1 el ]
b3+ L= [t e o0
g 0= |4yt el 0
|44 = cOSE[ 1 41 o1 n=SINE[L i1 T p0

|4 0= cosE| 1L el n-SINE|L 1l nU

1 1
=l Al e e,

1—:i|"1(AT —Ale) to_+ 5 ‘*)n
E. =~ 1 Al A” +
2+"_z|_( ) (’0+_'wn
1 T 1
E_~— (Aue + Ane) + 0+ 50
1 1
E3+:21(AT —-AlL) - W~ 5 o,

E3— 4(A:1Te+Ane) OF +2(*)n
E, ~——(A” +ATT) w+__wn
AH) w, +

1
s =7 (Aue Zmn

Note: cot2g = (o, + wg)/ AEe
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ues [8] are listed in Table 2, where the following nota-  Table2. Wave functions and their energies closeto the ALC

tion is used:
(- 1 ) 1 1
W = Z(ApL+ArT1:a)_§wp_§wni (6)
_ 1, . 1
W, = wu_wn_é(Aue_Ane)! (7)
W,
cot2a = —=, 8)
Wg
_2 _ AD
We = %Dbl—lqu)zJ:l_ AneSnE, (9)
Wox = A0 + 0. (10)

In the particular case of maximum entangling of the
electron and nuclear spin states, which takes place
when the magnetic field is tuned to the condition E;_ =
E,. (0w, =0, a = 114), the |[|,0and |, wave functions
take the simpler form

|Ws0= (1/2)"{¢,Cr 6.1, (12)

W 0= (1/2)"{ 1p,-C- 10,7,

the difference of the energy levels of the |y;0and |y,
states becomes

(12)

E; —E, = Aitg

(see Fig. 1), and the ALC resonance signal reaches a
maximum.

We assumethat the experiment is conducted at room
temperature, when, in paramagnetic systems, theinitial
polarization of the electronic and nuclear systems that
form a chemical compound with the muon is virtually
absent. Under these conditions, the spin density matrix
of the ensemble of quantum Mu + Nu(1/2) systems at
theinitia time of muonium formation becomes

PO) = IO (kD + By

O o]+ |4}

Muonium atoms that arise with the oppositeinitial ori-
entation of the electron spin |l .0 determine the

nonoscillating background (Pgle(t)) of muon polar-
ization, because at the given initial electron spin state,
the transfer of muon polarization, like the influence of
the radiofrequency field (see comments to Table 1), is
virtually suppressed,

1 t
PLLe(t) = 3exp—H (14)

T,
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resonance

Wave function Energy level in7 units

, o1
|40 |y, 0 Ej=w+ > We
1

W= sinatfd, [ 0080l | Es= S o+ 50

1

| W, cosa|d,_O-sinal|¢,, 0 E,= —% Wex + 5 We

Elz—m'+1(ne

¥4 16, 0 3

(T, = 2.19703(4) psis the muon lifetime [13]). Let us
rewrite (13) only leaving the density matrix related to
the initial electron spin state |1,[) which is responsible
for the appearance of the ALC signal,

p(0) = 71,1 I O 1 I J .

O {1 oM + oo}

In what follows, initial condition (15) is used to con-
sider the influence of a radiofrequency field on spin
polarization near the ALC resonance.

3. THE INFLUENCE
OF A RADIOFREQUENCY FIELD
ON MUON POLARIZATION:
ANALYTIC AND NUMERICAL SOLUTIONS

The wave functions given in Tables 1 and 2 can be
used to find the matrix elements of the generalized
magnetic moment (VsS)n = Wly:S|W,.0 which

determines the strength of transitions in an externa
alternating magnetic field of radiofrequency radiation,

(YsS)m = (VsS)am (16.1)

(V:Siz = —3sinay, +3cosay,q(8),  (162)
_1 1.

(YsS)1s = 5c0say, + Ssnay,(€),  (16.3)

(VsS4 = (Vz§)23 =0, (16.4)

(VS0)zs = 30050y, —38nay,e(E),  (165)

_ 1. 1
(YsS)as = 5Sinay, +500s0Y,(2),  (16.6)
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where
Yue(€) = Y, COSE -y SNE.

Equations (16) show that four transitions between
all four levels are alowed,

Wi B— Wol] |y e 5L

Wl WaL [P3b— [W,L

and, no matter what the constant magnetic field H,
value, the transitions

Wo0E— W3l

remain forbidden. The spin dynamics of muonium
under external periodic perturbations can often be
described by quantum transitions within some pair of
levels (e.g., see[14]). Asfollows from (16), the radio-
frequency field approximately equally couples all four
levels of Mu + Nu, and we cannot specify asingle pair
of quantum states. In this situation, ageneral exact ana-
lytic solution cannot be obtained. It istherefore of inter-
est to find solutions that allow the most important prop-
erties of the system under consideration to be
described. Below, we use the mathematical approach
developed in this work to obtain an analytic solution
that, according to numerical analysis data, contains the
most important information on the influence of a
radiofrequency field on the amplitude of the ALC sig-
nal. Note that this solution is exact at the center of the
ALC resonance. Numerical muon polarization calcula-
tions were performed for the PyBF-4 compound, which
is of interest for experiments.

W |W,0]

3.1. Partition of the Hamiltonian

Let us use (16) to rewrite the Hamiltonian in the
rotating wave approximation for the radiofrequency
field. TheH, and V(t) energies can then conveniently be

written in terms of the Pjj = |WIW | operators,

H
Vnm = an = _'é_l(yzsi)mnv (17)
. . Wey  ~ .
Ho = ﬁBDl(PM —Pu) + %(Pss - PZZ)E, (18)
V = h(ﬁ)12V12 + I’:\)13VJ_3 + I’:\)24V24 + I,:\)34\/34) (19)

x exp(iwt) +H.c.

Further, we use a unitary transformation of Ug(t) to
obtain the new representation

[P(t) 0= Uo(t)|e(t) L]
Uo(t) = exp(—iwt(Pas—Pu1)),
where the behavior of the |@(t)Owave function is deter-

(20)
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mined by the time-independent Hamiltonian

H + Ug(t)(Ho + V() Uq(t) —0(Pas—Pr1),  (22)
A = Fo+V,
Ho = h%;(f)M_ﬁn)+%(|533_|522)%
2 H
V = (Vip(Prz+ Par) + Vig(Pis + Pay) -

+Vyy(P2s + Paz) + Vg (Pas + Pa)).

Here, A = 0 —w. The Hamiltonian H can conveni ently
be rewritten in the basis of the quantum states

[x,O0= cosa W, sina ¥,
IXsU= W50

X 0= |W,L0)
[x,O0= sna|W,# cosa|¥,[0)

using the PX. = |X,IX .| operators. The Hamiltonian
then takes the form

HX = Hi(a,A) +Vi(a,d), (23)
Hi(a,A) = HE 1(a,A) + HE o(a, A),
o( : ) 0,1~( ) 0,2( ) 24)
[HE 1(a, A), HE 2(a, A)] = 0,
HE 1(a,A) = —cos2a EhAP’{l—%hwGPéz
1 (25)
—Zﬁ(vpe(ﬁ) —sin2a 0¥,)H, (P, + P5y),
HE 2(a,A) = cos2a EﬁAPL+%hwGP§3
1 (26)
—Zﬁ(vpe(i) +sin2a 0¥,) H, (P, + Pls),
VX(a,A) = —sin2a ChA(PX, + P,
(27)

1
—ZCOSZG Ay H)[ (P + Ph) + (Pl + PE)].

The dependence on two parameters a and A introduced

in the Hamiltonian H (a, A) characterizes the degree of
detuning from the exact AL C resonance; the resonance
becomesexact at o = 114 and A = W' — w = 0. Thefirst
condition corresponds to the usua tuning of the con-
stant magnetic field H, to the maximum of theALC sig-
nal. According to the second condition, the alternating
field frequency w should coincide with the two-photon
resonance frequency between the quantum states |W; [
and |W,0JAII four muonium levels |y, _ ,Oare then cou-

pled by the radiofrequency field. The interaction V*
exactly equals zero at a = 14 and A = 0, when the
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Hamiltonian H represents the sum of two commuting e _ 1 0
simpler terms, E: = 2[2wa +AcosZaD,
AV -1 —v.§
H)é - H0,1+ H0,2- a, = 4H1(yue('§) ynSIFIZG),
Such.apartition of .the Hamilton-ian allows anf?(nalytic E, = _%% Wy + D cosZO( Z pX
solution to be obtained and the influence of V" to be
included by perturbation theory methods in wide 1
ranges of o and A parameter variations. Of primary - + _1 _
interest is the solution in the zeroth order of perturba- Ao1 = 0a(Pro* Par) =58(Pe2 = Pa),
tion theory.

1
Aoz = 05(Py+ Py3) _26(P44_ Pas).

3.2. Zeroth-Order Perturbation Theory Taking the initia state (15) of the p(0) density matrix
. and the finite muon lifetime 1, into account in (28), we
In the zeroth order in V* the density matrix is can write the solution for the z component of muon

obtained in the form polarization observed in ALC experiments,
PY(t]a, &) = 200,(tja, A)S
Py ot A) = Ug(H)p(0)U5 (1), @) _ : (32)
= 28p{ Ug(t)a,Uo(t)py oft]a1, A} exp{—t/T,} .
where Here, theindex “0" denotes the zeroth order of pertur-
bation theory. Simple but cumbersome calculations
in(32) yield

U3(t) = exp{—(i/A)HE(} = UF1()UF (1), (29)

1
PL(t|o,A), = >

l(t) = eXpD_hH 111]

= Eﬂ-x — (P + Péz)%l - COS[ / Gi + 52/4IE (30)

X Dcos 20 + sn’2a cos[%x cos2a + 1(*)(3)1] }
o (33)

0 [cos(Wlt)cos(Wzt) sm(Wlt)sm(Wzt)WW}D
21
. AOl . |: 2 2 ll
+j———=——din| [« +6/4t}u
Jo2 + 84 ' 0 xexp{~t/T}
o where
x exp(iE1(Py, + P)t), _ ohs
)
o W, = H [V, sin2a v,1°
Ugo(t) = eXpD—lHé 210 1 ZDUZ
: 7o 1 _1
O O +4%lc0320( 00@)@ o o
O 2
- Eﬂx—(P§3+ Pl(L-cosl fol+Sa) W, = Ty, + sin2a 1y,
2y (34)
Fi—02 Sln[A/O(2+6/4t]D %300820( 0o
A/a2+6 14
< exp(iEx(Pl + P), T = B0 12, - (sr2a )
1 1 ?
0= Acosa—%ooex, a, = iHl(ype(E)—ynsinZ(x), + 1%300520(—50)@% .
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IS
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1.0
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) =)

e
Q

(b)

0.6

| | | |
1.38 1.40 1.42 1.44

Constant magnetic field H,, T

|
1.36

Fig. 2. Dependences of the ALC signal amplitude on the
constant magnetic field H, at radiofrequency field ampli-
tudes Hy = (a) 0.02 and (b) 0.06 T. The carrier field fre-

quency w is tuned in resonance to the two-quantum transi-
tionfrequency w' = (E4—Ey)/2h (19.4 MHz) at theALCres-

onance point: (2) muon polarization calculated by zeroth-
order equation (33), (1) numerical caculations, and
(0) muon polarization in the absence of a radiofrequency
field.

For simplicity, it is taken into account in (33) that
hyperfine interaction is much weaker than the Zeeman
electron energy,

SIN“E = (wy/w,)” < 1.

Let usqualitatively estimate the conditions of the appli-
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cability of zeroth-order perturbation theory and com-

pare the solution P} (t]a, A), with the numerical solu-
tions at various constant H, and radiofrequency H;

magnetic fields. The alternating field frequency will be
fixed at the ALC resonance point.

3.3. Analysis of the Applicability
of Zeroth-Order Perturbation Theory

Asthere exists an exact solution in the center of the
ALC signal (details are given below), it is of the great-
est importance to estimate the validity of the approxi-
mate solution on ALC resonance “wings.” A compari-

son of Ho and V¥ (o, A) shows that the influence of
Vi (a, A) can beignored if the condition

- (yu_yn)(Hz_ Hres)
We

>1

(35)

w)(
Wg

holds. If |H,—H,| isinsufficiently large to satisfy (35),
the approximate sol ution describesthe signal well if the
inequality

1
>3 (36)

‘(yp + Vn)(Hz_ Hres)
YnH1

issatisfied. Thisinequality isvaid if ye ~ Y, asis char-
acteristic of the AL C resonance region. The presence of
two conditions (35) and (36) considerably broadensthe
scope of the applicability of zeroth-order perturbation
theory, especially at the ALC resonance wings.

Theintegral value
PO = S [PUO
Tuo

is measured experimentally.

The approximate zeroth-order solution
[P} (a,A)Jdis compared in Fig. 2 with numerical cal-
culationsfor the example of the substance PyBF-4. The
figure shows that the approximate solution well
describes the shape and width of the ALC signal. Sig-
nificant differences only arise closeto the line center. If
H; is small, the shape of the ALC signal described by

the (P (a, A)Jd solution is broadened compared with

the exact solution. The [P} (a, A),J solution tends to
the exact solution as H; increases, but there remain dif-

ferences close to H, = H,«. The [P} (a, A)Jd solution
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can be refined using higher orders of perturbation
theory,

py(t) = Ug(HUL(t)p(0)UL(t) Ug(t)", (37)
U(t) = 1+ Idtlg—;-i(/x(tl)g
+ J'onlD 'vX(tl)HIdtZD 'vX(tz)H (39)

= Texp%—'— J’dt\7x(t)g,
ohd 0
where
Vi) = UX(t) VEUK()

and T is the Dyson chronological ordering operator.
Equation (37) requires cumbersome calculations,
which appear to be unnecessary in this work because
the P (t|a, A), approximate solution already contains

the most important information about the shape and
amplitude of the AL C signal and can be used to theoret-
icaly analyze the main spectral parameters of the sys-
tem under study. Of great interest is the exact solution,
which can be obtained at the ALC resonance point

(H,= Hed.

3.4. Exact Solution

At the ALC resonance point (0 =114, A=W —w=
0), the solution for muon polarization (33) takes the
form

= 2[b,(t|a = T4, A = 0)0

= —[Ll+ CoS %[%l “e(wg Q4,Q, )%

x cos{ (f)l + f)z)t} + %e(oog, Q.,Q,)

(39)

x cos{ (Q1— Q2)8 } CEXp{—t/T,} .
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Equation (39) contains the following values:

W, ,(a =1/4,A=0) = él,z = /\/Qiz"' (we/4)?,

Ql = Hjl(yue(z.)_ynL
H, (40)
QZ = Z(ype(z)'i'yn)l
1 2
Gy 321, 84p) = L——=—= 1322 ol .
€(We Q,Q,) =1 1QZ)(QQ +(wg/4)?)

Note that, in the absence of aradiofrequency field or at
high radlofrequency fields when Q;, > wg, the
(g, Q4, Q,) functionin (40) tendsto zero. Using (39),
we find the measured integral value

0 . o~
PO = i+ [1—:—Le(u)G, 0., Qz)}
i 2

1
x ~ ~
[1 +(Qu+ Qo+ we/2)’T2

)
e —
1+(Q1+ Q2-we/2)°T
1
0 + we/2)* T

(41)

+ 1e(coG, le, 522)[ —
2 1+(Q:1-0

1
1+(Q1+(-Q2)

+

Iz
— we/2)’ 120

The dependence of polarization (P4 on the radiofre-
guency field amplitude H, is shown in Fig. 3 for the

example of PyBF-4. It is noteworthy that [P, has a

deep intermediate minimum at H; = (1/2)Hl max (H1 =
0.027 T for PyBF-4), where H; 5 is found by the
equation

Ql(Hl, max) _QZ(Hl, max) = wG/Z-

The presence of the minimum substantially weakens
the condition imposed on the radiofrequency field
amplitude by the requirement of substantia muon
depolarization. Even magnetic radiofrequency fieldson
the order of 100 G substantially increase the ALC sig-
nal amplitude. It should be added that radiofrequency
fields with an amplitude of H; < 300 G increase the
amplitude of the observed signal almost twofold with-
out substantially changing the shape of the ALC signal.
The important conclusion can be drawn that the influ-
ence of comparatively low radiofrequency fields on the
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Radiofrequency field amplitude H,, T

Fig. 3. Dependence of muon polarization on the radiofre-
quency field amplitude H, for PyBF-4 at the constant mag-

netic field H, = H, and the alternating field frequency
W=w.

1.0

Muon polarization
o It
o =

e
N

0.6

| | | | |
2138 2140 2.142 2144 2146 2.148
Constant magnetic field H,, T

Fig. 4. Dependences of muon polarization on constant mag-
netic field H,. The influence of aradiofrequency field (H, =

0.01 T) on the amplitude of the signal in a substance with
weak electron—nucleus hyperfine interaction (wgT, < 1,
Wg = 0.03 MH2z).

behavior of the ALC signal can be analyzed in terms of
the exact fairly simple solution (39), (41), which
describes the behavior of the center of the curve shown
inFig. 2.
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Solution (28)—31) for the density matrix allows us
to easily find the equation for the polarization of nuclei
under the action of a radiofrequency field at the ALC
resonance point,

P(t) = %sin(wGIIZ)

D(l)G . =~ jd
= Qit Qot
x%sn( 1t) cos(Qat) (42)

.= ~ O
+ w—fsn(ta) cos(Qit) CEXp(-t/T,).
4Q, O

In the absence of a radiofrequency field (H; = 0O,
Q, ,=0), (42) yields

PA(t) = (1 cos(qt))exp(-1/T,).

At high radiofrequency fields (Q; = Q, = Q > wy), the
oscillations of nuclear polarization take the form

P(t) = ;)—5sin(th/Z)sin(ZQt)exp(—t/T“)
1 1 (43)
= 5(@cly,, H1) Sin(@ct/2) SNy, Hitgexp(-t/T,).

According to (43), an increase in the radiofrequency
field amplitude suppresses polarization transfer from
the muon to the spin of the nucleus. The conclusion can
be drawn that an increase in muon depolarization in a
radiofrequency field isattained asaresult of anincrease
in muon spin rotation rather than additional polariza-
tion of the nuclear subsystem.

4. DISCUSSION AND CONCLUSIONS

Currently, the development of high-resolution uSR
spectroscopy again becomes related to the use of
radiofrequency fields (see [6]); this in full measure
refers to studying muonium in radiofrequency fields
[15, 16]. The results obtained in this work lead us to
conclude that the use of radiofrequency radiation for
detecting ALC signals enables us to also extract infor-
mation about transition frequencies in the muonium +
nuclear spin systems and the parametersthat character-
ize hyperfineinteractionsin these systems. It is exceed-
ingly important that applying radiofrequency fields
substantially increases the degree of muon depolariza-
tion and, accordingly, the amplitude of the observed
ALC resonance signal. Equations (33), (39), and (41)
arethe most important results of thiswork. These equa-
tions can be used to study muon depolarization stimu-
lation in ALC experiments.
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Table 3. Parameters used in calculations of the ALC signal for the PyBF-4 substance
Wy, MHz Q, MHz Yo MHZIT |y, MHZIT Yo, MHZ/IT Hies: T ', MHz
PyBF-4 417.2 152 2m135.53 | 2m28024.21 2140.55 1.396 194

As concernsthe physical properties of the solutions,
of interest are the special features of the behavior of
muon polarization when the traditional ALC resonance
technique is used. Muon polarization behavior is then
described by the well-known equation

PY (1) = 7{3+ cos(wet)} exp(-U/T,)

[this equation also follows from (39) at H, = 0], which
shows that a maximum decrease in the mean degree of
muon polarization amounts to /4 of the initial polar-
ization (wgty, > 1). Asfollows from solution (39), (41)
(e.g., see Fig. 4), the action of a radiofrequency field
can decrease the initial muon polarization even by half
theinitial polarization value. Remarkably, thisopensup
possibilities of attaining considerable relative strength-
ening of muon depolarization a the ALC resonance
point at small wg values (wsT, < 1), when the usual
ALC signal isweak or inaccessible to observation,

F’5,1| —1,

WeT, <1

which happens if the electron—nucleus hyperfine inter-
action isweak. The results of the corresponding calcu-
lations are plotted in Fig. 4, which showsthat the action
of aradiofrequency field increases the signal more than
tenfold (in the absence of a radiofrequency field, the
minimum polarization is P(H,.) = 0.97, whereas at
H, = 100 G, the minimum polarization decreases to
P(H,e) = 0.57). We stress that performing such experi-
ments requires varying the static magnetic field H, and
the carrier field frequency w in fairly wide ranges to
scan the magnetic field near H, = H, and tune the
radiofrequency field to the nuclear frequencies of the
ALC resonance transition.

It can be concluded by analogy that, provided the
hyperfine interaction between electrons and nuclel is
fairly weak, the number of levels covered by aradiofre-
quency field will be 6 and 8 for nuclear spins 1 and 3/2,
respectively. This noticeably complicates obtaining the
corresponding analytic solutions. Based on the results
of thiswork, we, however, expect that the use of radiof-
requency fields should also strengthen muon depolar-
ization in such systems, although to alesser extent than
in systemswith nuclear spin /2. Itisat present difficult
to estimate the corresponding effects.

To summarize, the use of radiofrequency fields in
ALC experiments can increase the sensitivity of the
USR technique and the amount of information about
hyperfine muonium interactions obtained in such
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experiments. The mathematical approach developed in
thiswork can be applied to describe muon echo, which
inspires hopes for advances in PSR experiments
[17-21], because the use of the spin echo technique
allows the quantum dynamics of the system under
study to be controlled at long times. The muon echo in
ALC experiments will be formed in the four-level
guantum system (for nuclear spin 1/2), whose nonclas-
sical physical properties are determined by the entan-
gled states of the muon, electron, and nuclear spins. We
should therefore expect the properties of thisecho to be
substantialy different from those of the spin echo in
two-level systems. Also note that the analytic solution
obtained in this work for the behavior of the four-level
system in a quasi-stationary field is a rare case of an
exact solution in spectroscopy. Generalizing this solu-
tion to other quantum systems may be of independent
interest.
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Abstract—The spectra and kinetics of photoluminescence from multilayered structures of quasi-ordered sili-
con nanocrystals in a silica matrix were studied for undoped samples and samples doped with erbium. It was
shown that the optical excitation energy of silicon nanocrystals could be effectively transferred to Er3* ions,
which was followed by luminescence at awavelength of 1.5 um. The effectiveness of energy transfer increased
as the size of silicon nanocrystals decreased and the energy of exciting light quanta increased. The excitation
of erbium luminescence in the structures was explained based on dipole—dipole interaction (the Forster mech-
anism) between excitons in silicon nanocrystals and Er®* ions in silica surrounding them. © 2003 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Much attention has been given to erbium ion Er3*
luminescence in crystalline and amorphous silicon in
recent years (e.g., see collected papers [1, 2]). Thisis
explained by the demand for silicon devices that effec-
tively emit at a wavelength of 1.5 um (the 4,5, —~
4115, transitionsin the inner 4f shell of Er3*), which cor-
responds to maximum transmittance of fiber communi-
cation lines. Quite a number of unsolved problems,
however, prevent creating the desired optoelectronic
device. For instance, when crystalline silicon (c-Si) is
used asamatrix for Er3*, strong temperature quenching
of erbium luminescence is observed as a result of non-
radiative deexcitation of Er®* ions viathe back transfer
of the energy to the matrix [3]. As a consequence, the
guantum yield of luminescence from c-Si:Er samplesis
exceedingly low at room temperature. Temperature
guenching of luminescence at 1.5 pm is much weaker
for amorphous hydrogenated silicon (a-Si:H) doped
with erbium [4]. An analysis of time dependences
(kinetics) of photoluminescence from Er®* ions in
aSi:H showed that the energy of electron—hole pairs
wastransferred to theionsin fairly short (submicrosec-
ond) times, which provided a high effectiveness of their
excitation [5-7]. Nevertheless, because of the presence
of various nonradiative loss channels, the intensity of
erbium luminescence in a-Si:H(Er) is still insufficient
for using this materia in light-emitting devices.

An attractive approach to overcoming the difficul-
ties mentioned above is the use of layers of erbium-
doped silicon nanocrystals (nc-Si) embedded into a
dielectric matrix [8-11]. Note that, although the wave-
length of erbium luminescenceis nearly independent of
the nature of the matrix because of screening of the
“working” 4f shell of Er3* by the outer electron shells,
the effectiveness of the excitation of ions can be con-
trolled by changing the properties of the matrix, such as
its forbidden band width and/or the density of defect
electronic states and impurities [1, 3]. This is easily
achieved with nc-Si structures because the forbidden
band width of the nanocrystals depends on their size
[12, 13]. In addition, Si nanocrystals can simulta-
neously ensure high charge carrier localization in small
spatial regions close to the Eré* ions and fairly long
(hundreds of microseconds) electronic excitation life-
times [12, 13]. The energy released in the recombina-
tion of a photoexcited el ectron-hole pair can then effec-
tively be transferred to an Er®* ion. Indeed, intense and
stable photoluminescence of Er3* ions is observed for
erbium-doped nc-Si layers in a SiIO, matrix even at
room temperature [9, 10]. The effectiveness and life-
times of photoluminescence then strongly depend on
the technology used to prepare nc-Si/SiO, structures
and the size of the nanocrystals [9]. Layers of quasi-
ordered silicon nanocrystalsin multilayered nc-Si/SiO,
structures therefore show promise for applications
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because the size of and the distance between the nano-
crystalsin them can be effectively controlled [11].

This work presents the results of a comparative
study of the spectra and kinetics of photoluminescence
from multilayered nc-Si/SiO, structures both doped
with and free of erbium. We were able to quantitatively
estimate the effectiveness of the transfer of the elec-
tronic excitation energy from silicon nanocrystals of
various sizesto Er¥* ions in surrounding silica.

2. SAMPLES
AND EXPERIMENTAL DETAILS

The samples were prepared based on superlattices
of amorphous SiO/SiO, layers formed by successively
depositing SIO and SiO, on a c-Si substrate by reactive
sputtering [10, 11]. The thickness of SIO and SIO, lay-
ers was varied from 2 to 6 nm and from 2 to 4 nm,
respectively. The structures comprised 30-50 pairs of
layers, whose total thickness was 200-300 nm. The
samples were annealed at 1100°C in nitrogen for
60 min. As a result, layers of closely spaced quasi-
ordered Si nanocrystals separated by SiO, layers were
formed [11]. According to the electron microscopy (see
insetin Fig. 1) and X-ray diffraction data, the mean size
d of the nanocrystals was close to the thickness of the
initial SIO layers. The variance of nanocrystal sizes &d
was about 0.5 nm. Part of the structures were used for
the implantation of Er* ions with a 300 keV energy in
doses of 5 x 10* and 2 x 10'®> cm™. Similar doses of
ionswere also implanted into homogeneous amorphous
SO, layers 250 nm thick. These amorphous layers

Normalized intensity, arb. units
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were used as a reference in studying nanocrystalline
structures. After implantation, all samples were addi-
tionally annealed at 950°C from 5 min to 1 h to remove
radiation-induced defects. The mean concentration of
Er atomsin the samples Ng, was 10'° and 4 x 10*° cm
for the smaller and larger implantation doses, respec-
tively. These values were obtained taking into account
the mean projective range R, of Er ions in the SO,
matrix (R, = 120 nm for ions with an energy of
300 keV), aspread of the mean projective range AR, =
40 nm, and the experimental observation that there was
no substantial blurring of implanted particle profiles
after annealing [14]. The concentration of Si nanocrys-
tals in the nc-Si/SiO, structures was on the order of
10 cm= according to the transmission electron
microscopy data[11].

Photol uminescence was excited by apulsed N, laser
(quantum energy #w, = 3.7 eV, pulse width T ~ 10 ns,
pulse energy E < 1 pJ, pulse repetition frequency v ~
100 Hz), a pulsed copper vapor laser (fiw, = 2.4 €V,
hw;=21€eV, 1~20ns, E<10uJ, v ~12kHz), and a
continuous He-Ne laser (Aw, = 1.96 eV, radiation
power up to 10 mW). Laser radiation was focused on
the samplesinto aspot 1.5 mm in diameter.

The photoluminescence spectrawere recorded on an
automated spectrometer equipped with an InGaAs pho-
todiode. The spectra were corrected for the spectral
response of the system. The photoluminescence spectra
were measured with a resolution of about 2 nm in the
forward current mode without using phase-sensitive
accessories. The kinetics of photoluminescence in the
visiblerange was recorded using a photomultiplier with

| | |
1.0 1.2 1.4 1.6 1.8 2.0 22
Quantum energy, eV

Fig. 1. Photoluminescence spectra of samples with mean nanocrystal sizesd of (1) 6, (2) 5, (3) 4, (4) 3, and (5) 2 nm excited by
light with 72, = 3.7 eV at T = 300 K. Curve 6 approximates spectrum 5 by a Gauss function. Shown in the inset is an electron
microscopic image of the structure of nc-Si/SiO, with d = 3.5 nm.
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atime constant of about 30 ns. Intheinfrared range, an
InGaAs photodiode with atime constant of about 1 s
was used. Because of an insufficient sensitivity of the
photodiode, it was only used to record theinitia kinetics
region and the integral photoluminescence intensity was
then measured in the wavelength range 1.1-1.6 pm.
Long-term photoluminescence relaxation components
were studied with a more sensitive InGaAs photodiode
(time constant 0.5 ms). The spectral resolution in kinet-
iCS experiments was 2 nm.

Most experiments in which photoluminescence
spectra and kinetics were recorded were performed in
air at 300 K. Several photoluminescence spectra were
also measured in vacuum in the temperature range
6-450 K with the use of a DE-204N (Advanced
Research Systems) closed-cycle helium cryostat.

3. RESULTS AND DISCUSSION

3.1. Photoluminescence Spectra
at Room Temperature

The undoped nc-Si/SIO, structures excited by light
with a quantum energy of Aw, gave fairly intense pho-
toluminescence with an external quantum yield of 0.1
to 1% at T =300 K. The normalized photoluminescence
spectra of samples with different silicon nanocrystal
sizesd are shownin Fig. 1. According to thisfigure, the
photoluminescence band maximum shifts to higher
guantum energies as d decreases. This shift is usually
explained by an increase in the forbidden band width in
nanocrystals caused by the quantum size effect, and the
band itself is assigned to radiative recombination of
excitons in nc-Si [11-13]. The photoluminescence
band hasafairly large width, which increasesfrom 0.23
t0 0.34 eV at half-height as the mean size of nanocrys-
tals decreases from 6 to 2 nm. The broadening of the
photoluminescence spectrum at smaller dislikely to be
related to strengthening forbidden band width fluctua-
tionsin nanocrystals asthe dd/d parameter increases. In
our view, an additional reason for the excitonic photo-
luminescence band broadening in nc-Si can be the
interaction of excitons with phonons of silicon and sur-
rounding SiO,. Indeed, photoluminescence bands
0.12-0.15 eV wide are observed even for isolated sili-
con quantum dotsin a SiO, matrix [14].

The implantation of erbium ions caused substantial
(~100-fold) suppression of excitonic photolumines-
cence and the appearance of an intense band at 0.81 eV
(Fig. 2). This band is characteristic of the %5, —=
4115, intracenter transitions in Er®* ions implanted into
a solid matrix [1, 2]. The Er®* ions are formed by the
transfer of erbium electrons into a bound statein SiO,,
as is typical of al lanthanides in dielectric matrices.
Erbium donates its electrons to neighboring oxygen
atoms or defects with the formation of an ionic bond.

The quenching of excitonic luminescence and the
appearance of the erbium band were observed for al
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Fig. 2. Photoluminescence spectra of (1) undoped and
(2) erbium-doped samples (d = 3 nm) excited by light with
frw;, = 3.7 eV. Shown in theinset isthe dependence of trans-
fer factor n obtained by integrating the photoluminescence
spectra on the size of nanocrystals; T =300 K.

structures that we studied. At the same time, homoge-
neous aSiO,:Er3* layers gave extremely weak photol u-
minescence at about 0.8 eV. This was evidence that the
excitation of Er®* occurred as a result of energy
exchange with the matrix that absorbed a photon rather
than direct light quantum absorption.

The ratio between the photoluminescence intensi-
ties of erbium-doped and undoped structuresleads usto
conclude that the larger part of the energy absorbed by
the nanocrystals is transferred to the optically active
Er®* ions. The effectiveness of energy transfer can con-
veniently be quantitatively characterized by the ratio

(called “transfer factor” in what follows) n = TEr/TnC,
where

Ine(V)

TEr:I dv, Tnc:I .

Here, 1(v) and 1,,.(v) are the photoluminescence spec-
tra of the samples with and without erbium, respec-
tively. The integration is performed over the spectral
ranges of the erbium (0.75-0.85 €V) and excitonic
(1.12-2.0 eV) photoluminescence bands.

The transfer factors n for structures containing
nanocrystals of different sizeswith the mean concentra-
tion of ionsfixed at Ng, = 4 x 10'° cm are shownin the
inset to Fig. 2. According to thisfigure, n valuesliein
the range 0.3-0.4 for structures with d = 4-6 nm and
substantialy increase for samples containing smaller
nanocrystals. The n value for structures withd =2 nm
exceeds 2. The number of photoluminescence quanta
emitted by the nc-Si/SiO,:Er structure is therefore two
times larger than that emitted by the undoped sample at
the same optical excitation level. This is evidence that

! Ef\fv) dv. )
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Fig. 3. Dependences of transfer factor n on the energy of
excitation quanta for structures with d = (1) 2.5 and
(2)3.5nmat T=300K.
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Fig. 4. Photoluminescence spectra of erbium-doped sample
withd =3.5 nmintheregionsof (a) Er3* and (b) nanocrys-
tal luminescence at different temperatures.

theintroduction of Er3* ions creates an additional effec-
tive channel of radiative (at a wavelength of 1.5 um)
relaxation of optical excitation energy, which competes
with nonradiative relaxation in the structures under
consideration.
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Our experiments showed that the n parameter
increased as the energy of light quanta used to excite
photoluminescence grew larger (Fig. 3). This cannot be
explained by an increasein the absorption coefficient of
nc-Si, because such an increase would equaly influ-
ence doped and undoped samples and, therefore,
should not contribute to n variations. Theincreaseinn
observed when high-energy pumping gquanta are used
can be explained by a contribution of high-energy exci-
ton states to energy transfer to the Er®* ions. Note also
that the absolute n value is larger for structures with
smaller nanocrystals, and itsincrease with the energy of
pumping quanta is more substantial in such structures
(Fig. 3, dependence 1). Thisis also evidence that high-
energy exciton states are involved in the excitation of
Er3*ions.

3.2. Temperature Dependence
of Photoluminescence Sectra

The photoluminescence spectra of erbium-doped
structures recorded at various temperatures are shown
in Fig. 4. The intensity at the band maximum at a pho-
ton energy of 0.81 increases as temperature lowers
(Fig. 48). Simultaneously, the short-wave edge of the
spectrum becomes suppressed because of adecreasein
the population of the upper statesin thefine structure of
the Er®* ion energy levels. The total width of the line
therefore decreases. To within the accuracy of our mea-
surements, we did not observe changesin the positions
of the spectral band maxima.

The excitonic photoluminescence spectra of the
erbium-doped structures are shown in Fig. 4b. As men-
tioned, the intensity of this photoluminescence is
almost two orders of magnitude lower than that of the
corresponding band in the spectra of the undoped sam-
ples. Theintensity of excitonic luminescence exhibited
a nonmonotonic behavior as the temperature varied,
and its spectrum changed. The most substantia
changes were observed at helium temperatures, at
which anarrow line at a 1.26 eV energy and, simulta-
neously, regions of partial suppression of a broad pho-
toluminescence band in the energy range 1.26-1.33 eV
appeared. The 1.26 eV energy is known to correspond
tothe?l,,;, — %15, transitioninthe Er3* ion. The pres-
ence of thislineinindirectly excited erbium photolumi-
nescence spectra is evidence of excitation transfer to
il higher ion levels.

Such a feature as the suppression of low-tempera-
ture photoluminescence in the energy range 1.26—
1.33 eV can be attributed to energy transfer from exci-
tons in nc-Si to the second excited state of Er®* ions.
This transfer can be accompanied by the emission of
silicon phonons, whose maximum energy is known to
be Er o) = 64 meV. Theregions of the strongest suppres-
sion of excitonic photoluminescence (Fig. 4b, arrows)
are situated at precisely this distance from the 1.26 eV
energy. Processes with the emission of phonons corre-
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sponding to vibrational excitation of the O-Si—O bond
(about 140 meV) can additionally contribute to energy
transfer from the nanocrystals to Er3* ions. On the
whole, the fine structure of the regions of fluorescence
guenching is not clearly defined, which can be
explained by the superposition of processes with the
emission of phonons of various types and energies and
by phonon spectrum changes in small nanocrystals.
Notein addition that the contribution of phonon-related
features to the total level of exciton fluorescence
guenching is less than 0.1%. This is evidence of the
presence of a much stronger mechanism of energy
transfer from excitons to Er3* ions. A similar conclu-
sion of the presence of an effective phononlessinterac-
tion mechanism between excitons and Er®* can be
drawn based on the data reported in [9], where dips
multiple to phonon frequencies in the low-temperature
photoluminescence spectra of erbium-doped structures
with nc-Si were observed for the first time.

Consider the temperature dependences of the effec-
tiveness of photoluminescence in the samples. The g

and | integral values are shown in Fig. 5 asfunctions
of the inverse temperature. A decrease in the tempera-
ture from 300 to 60 K increasesthe yield of photolumi-
nescence two- to threefold for both undoped and
erbium-doped samples. Interestingly, both photolumi-
nescence bands behave similarly in this temperature
range. Itislikely that decreasing the temperature causes
the suppression of the nonradiative channel of the
recombination of electron—hole pairs on defects (such
as broken silicon bonds). This increases the concentra-
tion of excitons and, therefore, the yield of excitonic
luminescence from undoped samples, on the one hand,
and the rate of Er®* excitation in the interaction with
excitons in erbium-doped structures, on the other. Note
that the photoluminescence of the doped structures
depends more strongly on the temperature than that of
the undoped samples (Fig. 5, dependences 2 and 1,
respectively). Thisresult is easy to explain if it istaken
into account that not all radiation-induced defects could
be removed during postimplantation annealing.

The | g valueremains nearly constant in the temper-
ature range 10-60 K (Fig. 5, dependence 3) and even
grows when the temperature decreases further. This
shows that, first, the majority of the ions are well iso-
lated with respect to back energy transfer to the matrix.
Secondly, ions weakly bound with nc-Si or, conversely,
situated inside the Si nanocrystals can contribute to
erbium photoluminescence at helium temperatures.
The probability of back energy transfer from the ions
inside nanocrystals to the matrix decreases as the tem-
perature lowers, as has, for instance, been observed for
c-Si:Er[1, 2].

The Tnc value (Fig. 5, dependences 1 and 2)
decreases as the temperature decreases. This can be
explained by the transition of excitons to the triplet
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Fig. 5. Dependences of intensities integrated over the spec-
trum of photoluminescence of silicon nanocrystalswith d =
3.5 mmiin (1) nc-Si/SiO, and (2) nc-Si/SiO,:Er and (3) of
the erbium band in nc-Si/SiO,:Er on inverse temperature.

state, which is more favorable energetically and is char-
acterized by a much longer radiative recombination
time[13]. Asaconseguence, theyield of photolumines-
cence decreases at afixed rate of nonradiative recombi-

nation. The more noticeable decreasein Tnc for samples

with erbium at T < 60 K is easy to understand, the Er®*
ions being excitonic photoluminescence-quenching
centers. Only a small number of nanocrystals (about
1%) that interact comparatively weakly with ions con-
tribute to excitonic photoluminescence in erbium-con-
taining structures. The conclusion can therefore be
drawn that thisinteraction becomes stronger as temper-
ature decreases, clearly because of an increase in the
lifetimes of excitons, which become triplet at helium
temperatures.

3.3. The Kinetics of Photoluminescence

Several typical kinetics of the relaxation of the
intensity of excitonic luminescence in undoped and
erbium-doped nc-Si/SIO, structures after the action of
alaser pulse are shown in Fig. 6. These kinetics are not
monoexponential, but can be well approximated by the
so-called “stretched” exponential function

lp (1) = 1oexp[—~(t/10)"], )

where 1, is the mean time and (3 is a numerical para-
meter. Note that photoluminescence with a kinetics
described by (2) is usualy observed for disordered
solid systems characterized by a variance of recombi-
nation times, for instance, for aSi:H [5—7] and porous
silicon [13].

An analysis of the kinetics of photoluminescence
from undoped structures shows that the 1, parameter
increases from several to tens of microseconds as the
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Fig. 6. Photoluminescence kinetics of (1, 3) nc-Si/SIO, and (2, 4) nc-Si/SiO,:Er measured for quantum energies of (1, 2) 1.49 and

(3, 4) 1.97 eV. The experimental values are given by symbols, and the lines are the approximations by (2).

energy of photoluminescence quanta changes from 2 to
1.5 eV. As concerns the B parameter, its value of about
0.5 remains almost unchanged. For erbium-containing
structures, time T, decreases approximately 2-2.5 times,
whereas the 3 value is nearly constant. The constant 3
value is evidence of aweak influence of the electronic
states of Er®* and related defects on the variance of
recombination parameters.

The implantation of Er3* ions reduces the intensity
of excitonic photoluminescence by two orders of mag-
nitude, whereas the mean photoluminescence lifetimes
are reduced only by half. This observation lends sup-
port to the suggestion that the major part of Si nanoc-
rystals in doped samples barely contribute to lumines-
cence in the energy range 1.2-1.8 eV because of the
complete energy transfer from these nanocrystalsto the
ionsfollowed by luminescencein theregion of 0.81 eV.
At the same time, the less than 1% of nanocrystals that
remain are characterized by photoluminescence times
shortened by interaction with Er®* ions. These times
can aso be shortened by nonradiative recombination
processes on defects caused by the introduction of Er3*.
The absence of strong temperature quenching of photo-
luminescence from the samples under considerationis,
however, evidence of a low concentration of such
defects.

Thekinetics of the relaxation of photoluminescence
of Er®* ions measured for samples with nanocrystals of
different sizes are shown in Fig. 7. Erbium photolumi-
nescence is seen to be characterized by a nearly expo-

nential kinetics. Similar dependences were obtained for
all samples. The mean relaxation time 1, for photolumi-
nescence of erbium ions determined by using exponen-
tial functions to approximate the experimental curves
decreased from 3.4 to 2.2 ms asthe size of nanocrystals
increased from 2 to 6 nm. Such long relaxation times
are characteristic of the intrinsic radiative lifetime of
Er3* ions. For instance, in c-Si:Er, such lifetimes are

—_
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H
<
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Fig. 7. Photoluminescence kinetics of Erd* ions in nc-
Si/SiO,:Er samples with d = (1) 2 and (2) 6 nm (time reso-
lution 0.5 ms). Shown in the inset is the initial kinetics
region measured with a time resolution of 1 ps. Excitation
by light with iw; = 3.7 eV, T=300K.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

No. 6

2003



PHOTOLUMINESCENCE OF Er®* IONS

only observed at liquid helium temperatures, at which
deexcitation processes are suppressed [1, 2]. Some
shortening of thelifetime of erbium photoluminescence
observed in our experiments when the size of silicon
nanocrystals increases can be explained by a stronger
influence of local electric fields. Additional electric
fieldsin dielectrically nonuniform matrices such as nc-
Si/SIO, structures may arise from image charges
induced at the boundaries between medium regions
with different permittivities. The larger the size of non-
uniformities, the stronger the field that acts on erbium.
As aresult, the electronic f orbitals of Er3* experience
additional distortion, which increases the matrix dipole
moment of the transition between the first excited and
ground Er®* states. This should shorten photolumines-
cence lifetimes.

Theinitial region of the kinetics of erbium photolu-
minescence measured with a microsecond time resolu-
tionisshownintheinset to Fig. 7. The Er®* photolumi-
nescence rise times do not exceed 5 pis, which is notice-
ably shorter than the relaxation times of the nc-Si
photoluminescence band. This lends support to the
above suggestion of a high effectiveness of energy
transfer from nanocrystalsto Er3* ions.

3.4. The Mechanism
of Erbium Photoluminescence Excitation

The most probable reason for the excitation of Er3*
ions in the structures under consideration is electronic
excitation (exciton) energy transfer in nc-Si to theions
by the mechanism of resonance dipole-dipole interac-
tion (the Ferster mechanism) [16]. This results in the
excitation of high-lying Er®* energy states, whoselevels
can be substantially broadened because of fluctuations
of electric fieldsin the given solid matrix (Fig. 8). Inthe
structures under consideration, the nanocrystals are
closely spaced in the oxide matrix, their density being
no less than 10'° cm 3, and are therefore separated by
barriers asthin as 1-3 nm. For thisreason, such amech-
anism of energy transfer from nanocrystals to the ions
present in the matrix is quite probable. Thistransfer is
still more probable when an Er3* ion is situated directly
within a nanocrystal or on its surface.

The effectiveness of exciting erbium photolumines-
cence when energy is transferred from excitons sub-
stantialy increases in structures containing nanocrys-
talswith d = 2-3 nm (see Fig. 2). The excitonic photo-
luminescence spectrum of such structures (Fig. 1) is
situated in the regions of transitions from the fourth
(*Fgy), third (*lg,), and second (*l,,/,) excited states to
the ground Er®* level (4l,5,) (Fig. 8). Thisincreasesthe
overlap integral between the emission spectrum of sil-
icon nanocrystals (energy donors) and the absorption
spectrum of ions (energy acceptors) and thereby
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Fig. 8. Scheme of the electronic states of the Ers* ion, free
and implanted into a solid matrix.

increases the probability of energy transfer by the Fer-
ster mechanism [16].

4. CONCLUSIONS

We studied the luminescent properties of multilay-
ered nc-Si/SIO, structures. It was shown that the energy
absorbed by Si nanocrystals could be transferred with a
high effectiveness to Er3* ionsin the surrounding oxide
and further luminesced in the region of 1.5 um. The
effectiveness of energy transfer increased as the energy
of pumping quanta grew and the size of the nanocrys-
tals became smaller. These dependences were
explained by effective dipole-dipole resonance interac-
tion between excitons in silicon nanocrystals and
excited states of Er®* ions in SiO, surrounding the
nanocrystals. The intensity of erbium photolumines-
cence additionally increased at helium temperatures
because of the contribution of nonresonance processes
with the participation of phonons and, possibly, the
temperature-dependent contribution of erbium centers
inside Si nanocrystals. It was found that the coupling
between excitons and Er®* ions in structures with
nanocrystals 2 nm in diameter could be sufficiently
strong for increasing the total yield of radiative recom-
bination compared with undoped samples even at room
temperature. The high effectiveness of the excitation of
erbium photol uminescence attainable at room tempera-
turescan, inour view, be of interest for applications and
for developing optical amplifiers and light-emitting
devices operating in the region of 1.5 um.
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Abstract—Dynamics of a system of two-level atoms interacting simultaneously with classical and quantized
modes are analyzed. Both atom and cavity are assumed to interact with classical fields. The possibility of using
this system as a quantum computer that solvesthe knapsack problem isdiscussed. © 2003 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

The possibility of solving complex computational
problems by means of quantum computers and quan-
tum algorithms has been widely discussed over the past
20 years[1-3]. In most theoretical studies, these prob-
lemswere analyzed in terms of manipulations with sets
of qubits, whereas physical implementations of partic-
ular computational agorithms escaped analysis. This
paper dealswith acertain physical system whoseintrin-
sic properties make it a promising candidate for realiz-
ing Feynman’s idea of analog quantum computing [4].
Following Feynman'’s suggestion, one may consider a
physical system whose evolution, in a sense, solves
some mathematical problems. Appropriate measure-
ment of their characteristicsis equivalent to retrieval of
computed results. As an example, adoubly driven two-
photon Jaynes—Cummings system is considered, and its
relation to the (NP-complete) knapsack problem is
established [5].

Earlier studies were focused on two- or three-level
atoms interacting simultaneously with classical and
guantized radiation modes [6-11]. These systems are
usually described by appropriately modified Jaynes—
Cummings models [12]. The aforementioned studies
provided descriptions of the nonclassical properties of
the quantized radiation mode and the collective effects
due to interaction of N identical atoms with fields. In
particular, it was found that two-photon interaction of a
quantized field with atoms can result in exponential
superradiance. According to[10], thiseffect isdueto an
“exponential resource” associated with exponentia
growth of the state-space dimension with N. It is well
known that quantum computing is based on this partic-
ular resource.

The physical system analyzed in the present study is
more complicated than that considered in [10]. As
in [10], an atom (or N-atom system) isassumed to inter-
act simultaneously with a classical quasi-resonant field
and with a quantized field (in two-photon resonance).

Furthermore, the cavity containing the quantized field
interacts with another classical field. It is shown that
this physical system can be used to solve the knapsack
problem.

The paper is organized as follows. In the next sec-
tion, aphysical model of acavity—atom system interact-
ing with classical and quantized fieldsis considered and
an analytical description of its dynamics is obtained,
including the occupation of the quantized mode. These
results are used in Section 3 to analyze the case of an
N-atom system. In Section 4, it is shown how this sys-
tem can be employed as a quantum computer solving
the knapsack problem.

2. SINGLE ATOM
2.1. Physical Model

Consider a two-level atom that interacts simulta-
neously with a classical field (quasi-resonant with the
atomic transition) and a quantized cavity field (in two-
photon resonance). Suppose that the perfect cavity
interacts with another classical mode. In the model dis-
cussed in[10, 11], only the atom was assumed to inter-
act with an external classical field. In the rotating-wave
approximation, the Hamiltonian of a doubly driven
two-photon Jaynes—-Cummings system is written as

H = wa'a+diag{E, E} +Z [(a")’J_+a2J.]
+u[exp(iQt)I_+ exp(-iQt)J.] D
+iA[a exp(—iw,t) —aexp(iwt)].

Here,
3 =37 =p0008
0100

E, are the atomic state energies (k = 1, 2); { isthe cou-
pling constant for the two-photon atomic transition and
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the cavity field; p and Q are the normalized amplitude
and frequency of the classical field that interacts with
the atom, respectively; A and w, are the normalized
amplitude and frequency of the classical field that inter-
acts with the cavity, respectively; and a and a* are the
annihilation and creation operators for the quantized
mode. Without loss of generality, one can assume that
E, = —E, = K. The Hamiltonian written out above acts
on the space M = F [ C?, where the Fock space F cor-
responds to the cavity field and C? is the state space of
thetwo-level atom. It differsfrom the Hamiltonian used
in [9-11] by the term that represents the interaction of
the quantized mode with acoherent external pump [13].

To solve the Schrodinger equation

OW(t) _
= = HW(t)

for the wave function W(t) taking values in M, define
Jo =diag(1, —1) and substitute

W(t) = exp[-itw(a'a+ Jo)] D(t) 2
to eliminate the optical frequency. Theresult is
0P(t) _
= = Had(t) (3)

with

H = [(a")’3_+a%]

+B K—(o. uexp(2ivt)%
Ouexp(=2ivt) w-k 0O

+iA[a exp(idt) —aexp(-idt)],
wherev = w—-Q/2and d = w— .

The solution to the problem of interaction between
the atom and a classical field,

.0 — 0 k-w

vty O
0 ' pexp(2ivt) O=(t),
Opexp(-2ivt)

w-Kk O
=(0) =1,
where | istheidentity matrix, isfound in explicit form:

iRtJd]

=(t) = exp(ivtdo)UexpH- > Hu,
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2.2. Averaging Procedure
and the Averaged Hamiltonian

Following [9-11], assume that
Ry <Ry <Q, 4)

where Q is an optical frequency, Ry is the Rabi fre-
quency of theclassical field, and R, isthe effective Rabi
frequency of the quantized field. Under these assump-
tions, the quantum system can be decomposed into fast
and slow components whose dynamics correspond to
the interaction with the classical fields and the interac-
tion of the atom field-dressed states with the quantized
mode, respectively.

To decouple the fast and slow components of the
physical system considered here, substitute

(1) = =()¢(1) ©®)
into Eq. (3). The wave function ¢ (t) obeys the equation
120(1) = A, ©)

where
A1) = UEO]7 (@) I+ a3Z (1)
+iA[a exp(idt) —aexp(—idt)].
Hereinafter, the parameters A and  are assumed to be

similar in order of magnitude.

To calculate the dynamics up to the leading order in
the small parameter (A, Ry)/R, Eq. (6) should be aver-
aged. Suppose that the condition |A, |v|, |d] < R holds
throughout the analysis that follows. Alternative meth-
ods for decoupling the slow and fast components of
Jaynes—-Cummings systems interacting with classical
fields have been discussed in the context of different
physical problems[14-19].

The dynamics of the slow component are governed
by an averaged Hamiltonian:

.0 _
i550(0 = Hab(0),

Ha = CIZ(0)]7(2[(a") I+ a%,]}= ()
+iA[a exp(idt) —aexp(-idt)],

where .. [Imeans deletion of fast harmonics. Under
the present assumptions (see [9-11] for details),

Ha = [p((a") exp(2ivt) + a’exp(-2ivt))]

(7)
x UJ,U™ +iA[a"exp(idt) —aexp(—idt)],

u

> /u2+A2'

p:
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It isimportant that thefirst termin (7) isthe product
of the matrix UJ, Ut with a Fock operator, whereasthe
second term is a Fock operator. The vectors

e,= =0 MO o= 1EA—R],
JDR-A NCRETS
where D = p? + (R — A)?, are the mutually orthogonal
normalized eigenvectors of UJ,U. The corresponding
eigenvalues are 9, = (-1)**1 (k = 1, 2). By decomposi-
tioninthisbasisin C2, Hamiltonian (7) splitsinto apair
of one-dimensional Fock operatorsthat areidentical up

to sign. Therefore, the analysis can be restricted to the
initial value problem for the equation

20 = Yo () ®)
with

HY = pr(a") exp(2ivt) + a2exp(=2ivt)]
+iA[a exp(idt) —aexp(—idt)].

2.3. Solution of the Initial Value Problem

Consider Schrédinger equation (8) written in the
Bargmann—Fock representation. Representing the cor-
responding wave function as an analytic functionn(z, t)
(a" — z,a— 0/02), write the Schrédinger equation

N, = plexp(2ivt)Zn + exp(=2ivt)n,]

: . . )
+iA[zexp(idt)n —exp(-idt)n,].

The solution to an initial value problem for this
equation can be written in explicit form [10, 11]. To
avoid cumbersome calculations, consider the particular
case of avacuum initial state: n(0) = 1. In this case, the
solutionto Eq. (9) is

N(z t) = exp[A(t) + &)z +y(1)Z],
where

X(t)
)5 (D)’

a(t) = (v+ V2 —4p?)exp(itdv’—4p%)
—(v—- A/vz —4p2)exp(—itA/v2 —4p2),
X(t) = exp(ity/v? —4p°) — exp(=itsv? —4p°),

£() = 2200,

y(t) = —pexp(2ivt
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Epexp[l(v —5— Vi —4pA)]
V—0—4/V —4p

, (V=o' —4p%) expli(8—v— Vv’ —4p°){]

2(6—V—A/v2—4p2)

p(t) = iA

_pexpli(v =58+ Vv’ -4pA)]
v—3+ V' —4p°

(VA AV - 4p®) expli(8 - v + V2 —4p?)]
2(3— v+ V2 —4p%)

_m (2v+p)-0

(v-23)*—(v:-4p?)

U
t
O

The unwieldy expression for A(t) isomitted here. These
relations can be used to calculate any quantum-statisti-
cal characteristic of the quantized field. The occupation
dynamics of the quantized field required for further
analysisis given by

4p25in2('u/v2 — 4p2)
\)2—4p2

+ (L aly*)IE + 41y "Re(€y )

(1-4ly’

n(t) =

(10)

The following observations should be made here.
When A =0 (the classical field interacting with the cav-
ity vanishes), this is equivalent to the result obtained
in[9]. When |v| < 2|p|, the occupation of the quantized
mode grows exponentially. In an N-atom system, this
leads to exponential superradiance. Suppose that the
reverseinequality, [v|> 2|p|, istrue. (Recall thatv = w—
Q/2 and the classical-mode frequency Q is an easily
controllable parameter.) In the general case, the quan-
tized-mode occupation given by (10) is a complicated
function, but it is easy to see that it is a bounded oscil-
lating function of time. However, if

5 = viJVi-4p?,

then the dynamics described by n(t) is qualitatively dif-
ferent, since it is a quadratic function of time. For
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example, if =v + /v’ —4p®, then
2 2 .
£(t) = A(2p+A/v -4p —v)exp(lvt)t+€(t)1
a(t)
2Aexp(|vt)

e(t) = —i ()

X D—[Zpexp(—lev —4p?%)

E
+ (v + N —4pD) exp(2it v — 4p7)]

v +2p+vi-4p
A:V? - 4p°

where €(t) is a bounded oscillating function of time.
Accordingly, one can retain only the terms with the
fastest growing amplitude to abtain

2A(2p + VP —4pP—v)’
4(v2—4p2)2
x [V — 4p°cos(2t\/v? —4p?)
+4pvsin’ (tyv:—4p?)].

Recall that 6 = w— wy, where w isthe frequency of the
classca mode that interacts with the cavity. This
parameter is also easy to control in an experiment.
Relation (11) plays akey rolein the analysis presented
below.

d
U
U

n(t) =t

(11)

3. INTERACTION OF A MANY-ATOM SYSTEM
WITH CLASSICAL AND QUANTIZED FIELDS

Now, consider a system of N two-level atoms inter-
acting with classical fields and a quantized field in a
cavity, which, in turn, interacts with a classical mode.
Suppose that each atom interacts with arespective clas-
sical field whose parameters can be controlled. Let us
determine the occupation dynamics of the quantized
mode. The wave function of this physical system takes
values in the space My = F O (CH)N, where F is again
the Fock space of statesfor quantized mode and each of

the N copies of C?isan atomic state space. Define 3§,
™ UM, and =M(t) as operators acting on the mth

component of the wave function similar to J,, J,, U,
and =(t), respectively. The dynamics of this system is
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determined by a natural extension of Hamiltonian (1).
In the rotating-wave approximation, it iswritten as

Hy = wa'a
N
+ 3 {7+ 219" + a0
m=1
N

+ 3 [Ha(exp(iQ)I™ + exp(-iQt) 1))

+iA[a" exp(—iw.t) —aexp(iwt)].

Here, Y, and Q are the normalized amplitude and fre-
guency of the classical field that interacts with the mth
atom. Let us solve theinitial value problem for the cor-
responding Schrodinger equation.

Using an analog of (2),
D N
W(t) = exp|-itw@A a+ Z JE{“’H D(t),
O = O

to eliminate the optical frequency, one obtains

00() _

5t HND(1),

N
= 3 (k- +2[(@) 9" + 2?2
m=1

+ Upnexp(=2ivt) 3™ + p,exp(2ivt) I}
+iA[a exp(—idt) —aexp(idt)],
where & and v are the quantities defined above.
The matrix

N

= = =70

m=1

solves the equation

i (.,—t:N(t) = z {(k—) 3"

+ Ppmexp(=2ivt) I + umexp(zwt)J&m’}z N ()

and equals the identity matrix at the initial moment.
Substituting ®(t) = Z\(t)¢(t) leads to an eguation
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analogous to (6):

120(1) = ADO(),

An(t) = [Zn()] 7
x 3 @) + I ()

+iA[a" exp(—idt) —aexp(idt)].

Again, this equation is averaged to eliminate fast har-
monics under the assumption that |v|, ||, and |A] < R.
Theresultis

120(1) = Hy a0 (),

Hy o = A (1)ID

= [(a") exp(2ivt) + a2exp(=2ivt)]

N
. (12)
X Z me(m)\]E)m)(U(m)) 1

m=1

+iA[a" exp(—idt) —aexp(idt)],

where p,, is the analog of p for the mth atom. Two
remarks should be made here. First, each p,, is related
to the corresponding W, and can be controlled (within
certain limits) in experiment. Second, the averaged
Hamiltonian is again represented as the sum of a Fock
operator and the product of a Fock operator with a
matrix operator.

The eigenvectors can easily be found and repre-
sentedas|ek1, €,y - B, Okn,=1,2,m=1,2,...,N).

The decomposition of the wave function in this basis
has the form

00 = 3 No(Dle 68,

where the functions n4(t) take values in the Fock space
and o denotes a set of N numbersky, ks, ..., ky equal to
1 or 2. The above sum runs over al such sets. Recall
that the eigenvalues of each matrix component in (12)
ared, = 1 and 9, = —1. Accordingly, each n,(t) obeys
the equation

.0
Ié'{nc(t)

= s[(@) exp(2ivt) + alexp(-2ivt)no(t)

+iA[a" exp(—idt) —aexp(idt)],
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with

S = %pm (14

where the numbers k,,, in the sum constitute the set o.
The solutionsto theinitial value problemsfor Egs. (13)
and (8) areidentical (under thechangep — &).

Again, consider the quantized field evolving from
the vacuum initial state. The occupation of the quan-
tized mode is found by using previous results:

n(t) = 3 leof"no(t),
(0)
where ¢, is the projection of the initial state of the

many-atom system on the eigenvector corresponding to
aset o and the sum runs over all sets . When the value
of Y, isknown for each m, theinitial atomic states can

be prepared so as to ensure that |c,| = 27V2 for all sets.

Note that the corresponding sum consists of 2N sum-
mands.

4. KNAPSACK PROBLEM

Consider a symmetric formulation of the knapsack
problem that is equivalent to the standard one [5]. Take

N numbers by, b,, ..., by. Denote aset €4, €, ..., &y Of
numbers 1 by o. For every o, calculate the sum
N
T, = Z Embrn- (15)
m=1

Now, take a number B = T, corresponding to some
(unique) set og. In the knapsack problem, og is sought,
i.e, thevalue of every e,,(m=1, 2, ..., N) in this set.
When the problem is solved by direct search, one must
consider 2N-1 cases (by virtue of symmetry), and the
time complexity is proportional to 2N,

Now, consider relationship between the results
obtained above and the knapsack problem. Asastarting
point, note the formal similarity of the expressions for
S, and T, given by (14) and (15), respectively. To be
specific, suppose that the initial atomic states are pre-
pared so that |c,| = 27V2for all sets. Asshown above, the
classical field amplitudes |, can be used to vary the
values of p,, within certain limits. By means of an
appropriate scaling, the values of ., can be adjusted to
obtain p,, whose ratios are equal to the respective ratios
of the numbers b,,. By virtue of the scaling, the values
of §, areequal to T, if 9, areidentical to g, (k =1, 2).

Furthermore, choose avalue of v such that v2 > 45, for
each o and avalue of o such that

5= v+ V' -4S
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for og. Then, thesumin system in the spirit of Feynman's suggestion [4]. Fac-
" tors that may impede practical implementation of this
n(t) = 2° z ny(t) quantum computer have been left outside the scope of
) this study.

contains exactly two summands growing as quadratic
functions of time while the remaining ones are bounded
oscillating functions of time. One of these summands
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Abstract—We obtained a general analytical solution of the problem of hydrodynamic energy transfer to aflat
layer of material with an arbitrary initial thickness when ablation—the evaporation of material and the forma-
tion of a pressure gradient under the action of an external pulsed energy source—takes place at one of its sur-
faces. The solution was obtained in the form of a dependence of the fraction of the source energy transferred to
the nonevaporated part of the layer on the intensity and duration of the energy source as well as on the initial
layer thickness and density. The solution includes, as limiting cases, the previously obtained solutions for the
hydrodynamic transfer coefficient during the ablation acceleration of athin layer, through which the travel time
of ashock or acoustic wave is much shorter than the duration of the energy source, and for the ablation loading
efficiency when a shock wave propagates through a semiinfinite layer. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

An intense flux of radiation in a wide range of
parameters acts on a solid material via ablation. The
ablation process consists in the evaporation of material
and the formation of pressurein the outer part of thetar-
get and, as aresult, in the excitation of hydrodynamic
motion in the nonevaporated part of the target. By the
hydrodynamic energy transfer efficiency under such an
action, we mean the fraction of the radiation energy that
is transferred to the nonevaporated part of the target.
The energy transfer to amateria via ablation is of fun-
damental importance for a wide range of problems
related to the action of intense radiation fluxes, such as
laser and X-ray radiation, beams of heavy ions, etc., on
materials. These problems primarily include inertial
thermonuclear fusion and material processing.

Previoudly, solutions for the hydrodynamic energy
transfer efficiency during ablation have been obtained
for two limiting cases of the problem: a thin layer,
through which the travel time of the hydrodynamic
wave (a shock or acoustic wave) is much shorter than
the laser pulse duration, [1] and a semiinfinite layer [2].

In [1], the hydrodynamic energy transfer efficiency
(or, following the terminology of the authors of this
paper, the hydrodynamic transfer coefficient) was
determined by solving the problem of the acceleration
of athin layer under the pressure of the material evap-
orated at the layer boundary during its heating by an
external energy source. The relations between the
parameters of the materials from the evaporated and
nonevaporated parts of the layer and the evaporation
wave velocity were derived from the continuity condi-

tions at the hydrodynamic discontinuity used to simu-
late the evaporation surface. The velocity of the non-
evaporated part of the layer was determined by solving
the equation of motion for aflat layer of variable mass
under the pressure of the evaporated material. This
statement of the problemisvalid for timeslater than the
time at which the shock or acoustic wave emerges at the
back surface of the layer. Therefore, the solution
from [1] is valid only for a sufficiently thin layer or a
sufficiently long pulse of the energy source such that
the pulse duration exceeds the travel time of the shock
or acoustic wave through the layer. Asaresult, the solu-
tion isafunction of only the fraction of the evaporated
mass of the layer. This statement of the problem corre-
spondsto the physical conditionsfor the ablation accel-
eration of a material when inertial thermonuclear
fusion targets are compressed. Therefore, the solution
obtained in [1] accurately describes the entire data set
of the numerous experiments on the ablation accelera-
tion of thin foils under the action of a laser pulse,
including the data pertaining to the hydrodynamic
energy transfer efficiency as a whole and the separate
measurements of the evaporated mass and the final tar-
get velocity (see, e.g., [3]). In turn, the solution of a
similar problem for athin spherical layer [4, 5] agrees
well with the experimental data on the acceleration
toward the center of a spherical shell target under the
action of alaser pulse[4, 6].

The problem of energy transformation from a
pulsed energy sourceinto shock energy during ablation
on the surface of an infinitely thick flat layer of material
was solved in [2]. The fraction of the energy of the
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external source transformed into the energy of the
shock wave propagating deep into the layer or, accord-
ing to the term introduced in [2], the ablation loading
efficiency of the material is a function of the density
ratio of the evaporated and nonevaporated parts of the
target. The solution from [2] is consistent with the
results of the experiments on the action of alaser pulse
on the surfaces of thick samples of various materias (in
particular, metals) carried out in a wide range of radia-
tion intensities, from 108 to 10" W cm2. This solution
gives an accurate value, for example, for the material
destruction depth under the action of alaser pulse (see,
eg. [7]).

In this paper, based on an analysis of the dynamics
of shock and acoustic waves that propagate viaablation
in afinite-thickness layer of material, we obtain agen-
eral solution of the problem of the efficiency of hydro-
dynamic energy transfer from an external source to the
layer of material (below, we use the term “hydrody-
namic efficiency”) at arbitrary values of the layer thick-
ness and the duration of the energy source. It includes,
as limiting cases, the solution for the hydrodynamic
transfer coefficient during the ablation acceleration of a
thin layer and the solution for the ablation loading effi-
ciency when a hydrodynamic wave propagates through
asemiinfinite layer.

2. STATEMENT OF THE PROBLEM

The external energy pulse is assumed to have a con-
stant intensity. The hydrodynamic wave in the target
produced by the external energy pulse can be either a
shock or acoustic wave, depending on the intensity of
the energy pulse from the external source, because the
latter unambiguously determines the ablation pressure
and, hence, the hydrodynamic perturbation pressure
amplitude. We will consider the excess of the hydrody-
namic perturbation travel velocity above the speed of
sound in the unperturbed material of the layer to be the
shock formation criterion; otherwise, we will assume
that an acoustic wave is excited.

Next, we assume that the duration of the external
energy source can be arbitrarily related to the travel
time of the hydrodynamic wave through the layer. If the
duration of the energy source is shorter than the travel
time of the hydrodynamic wave through the layer, then
energy istransferred as the first shock or acoustic wave
propagates through the layer. In this case, energy is
transferred not to the entire layer but only to the part of
it that is bounded on the one side by the evaporation
wave front and on the other side by the hydrodynamic
wave front. If the duration of the energy source is
longer than the travel time of the first hydrodynamic
wave through the entire layer, energy is transferred by
a sequence of waves whose period at constant intensity
of the energy source decreases with decreasing thick-
ness of the layer via evaporation. At constant source
intensity, either al hydrodynamic waves or all but the
first wave can be acoustic.
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Naturally, the acceleration of afinite-thicknesslayer
because of the propagation of a shock or acoustic wave
through its entire thickness is described by the Newton
integral equation that operates with the concepts of
mass and velocity of the entire object. Indeed, in the
travel time of the hydrodynamic wave through the
entire thickness of the layer, ot = Ay/D;, (4, isthe layer
thickness, and D,, is the wave velocity), the velocity of
the entire layer increases by avaue equal to the veloc-
ity of the material behind the hydrodynamic wave front,
ou = V,,. Hence,

du _ VyDy

ot Ay

)

Next, we use the standard formulasfor the vel ocities
D,, and V,, of an acoustic wave,

Pc
PoCo

Dp=¢o Vy= 2

and a shock wave (for simplicity, astrong shock wave),
_y*riPg® g2 Pg”
Oz ep T GIep O

Here, P., Y, and p, are, respectively, the pressure behind
the wave fronts, the adiabatic index, and the density of
the unperturbed material, and

1/2
&= 329 @

is the speed of sound in it. Substituting expression (2)
or (3) into (1) yields for both cases

du_ P.
dt  Agpo’

©®)

The longer the duration of the energy source com-
pared to the travel time of the hydrodynamic wave
through the layer, the higher the accuracy of describ-
ing the acceleration of the layer by the Newton integral
equation.

Given the above circumstances, a model of the
energy transfer to an arbitrarily thick flat layer can be
constructed as follows. If the source duration exceeds
the travel time of the first hydrodynamic wave through
the layer, then at the initial stage of the process whose
duration is limited by the time at which the hydrody-
namic wave emerges at the back surface of the layer, t,,,
the energy transfer is described as the result of hydro-
dynamic wave propagation through the layer. Once the
hydrodynamic wave has emerged at the back surface of
thelayer, starting from atimet = t, when the entire non-
evaporated part of the layer is in motion, we may
assume that energy istransferred to the entire nonevap-
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orated mass of the layer viaits acceleration as a whole
under the pressure of the evaporated target material.
This process can be described by the Newton equation
for the velocity and mass of the entire nonevaporated
part of the layer. If the duration of the source is shorter
than the travel time of the first hydrodynamic wave
through the layer, then the energy transfer is described
only as the energy transfer from the hydrodynamic
wave. The following statements of the problem for two
types of hydrodynamic waves correspond to the above
model.

(1) The duration of the energy sourceis shorter than
the travel time of the hydrodynamic wave through the
layer.

(a) Shock wave. In this case, there are two hydrody-
namic discontinuities: the evaporation boundary and
the shock front. We assume that the spatial density,
pressure, and vel ocity distributions of the material inall
parts of the layer are uniform. The energy flux from an
external source with intensity | falls on the evaporation
boundary and transforms into the kinetic and thermal
energy fluxes of the nonevaporated, .., and evaporated,
|, parts of the layer. | = I + |,. The relations between
the parameters of the material on both sides of the evap-
oration boundary in the evaporated part of the target
and the nonevaporated part of the target behind the
shock front can be derived from the continuity condi-
tionsfor the mass, momentum, and energy fluxesat dis-
continuity:

PcDey = Pa(v +U+Dy),

PC = Pa+ pcDev(V + u)’ (6)

| = pcDe,[sa+Q + %(v + u)z} +P,(v +u).

Here, p, and P, are, respectively, the density and
pressure of the evaporated material (the material of the
nonevaporated part of the target behind the shock
front);

Pa

Eq T g
. (ya - 1) Pa

is the internal energy of the evaporated material; Q is
the binding energy of the material intheinitial state; v,
u, and D, are, respectively, the velocity of the evapo-
rated material, the velocity of the material in the non-
evaporated part of the layer behind the shock front, and
the evaporation wave velocity, which are related by the
Jouguet condition

P 1/2
V+U+De\/:CaE%aaE ) (7)

where c, is the adiabatic speed of sound. The relations
between the parameters of the unperturbed material and
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the material behind the shock front can be derived from
the continuity conditions for the mass, momentum, and
energy fluxes at the shock front. For astrong shock [8],

_Yetl _ 2 2
pC - yc_lpol PC - yc+ 1p0DW'
)
= 2 D
Ye+17

where p,y isthe density of the layer material in anormal
state, D,, is the shock front velocity, and v, is the adia-
batic index for the layer material.

Thus, as the shock wave propagates, the specific
kinetic and thermal energies transferred to the mass of
the nonevaporated material of the layer behind the
shock front,

Mc(t) = (prO_De\/pc)tf (9)
are
2
u 1 P,
& = E, & = v _15—. (10)

(b) Acoustic wave. The parameters of the evaporated
material and the nonevaporated material behind the
shock front are related by the continuity equations (6) at
the evaporation boundary with the Jouguet relation (7),
while the parameters of the nonevaporated material
behind the shock front and the unperturbed material are
related by the acoustic relations

P
<. 11
PoCo (11)

The formulas for the energies €, and €, and the mass of
the nonevaporated part of the layer to which energy is
transferred clearly differ from (9) and (10):

pc:pm u=

_ 1P
Vc—lpo’
Mc(t) = (CO_Dev)pOt'

(2) The duration of the energy sourceis longer than
the travel time of the hydrodynamic wave through the
layer.

Initially, until the wave emerges at the back surface
of the layer, the statement of the problem isidentical to
the previous case. Once the wave has emerged at the
back surface, when the entire mass of the layer isin
motion, the problem is described by the equation of
motion for alayer of variable mass that decreases via
evaporation

2
& = U_' &
2 (12)

du_p AV _
i P., i De,- (13)
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The pressure P, and the evaporation wave velocity Dy,
can be expressed in terms of the parameters of the
external energy source and theinitial parameters of the
layer by solving the continuity equations at the evapo-
ration boundary (6) using (7). Theinitial conditions are
the velocity of the material behind the hydrodynamic
wave front and the mass of the layer at the time the
wave emerges at the back surface of the layer:

Up = U=y, Mo = Moy (14)
The latter can be determined from relations (6)—(10) or
(6), (7), (11), (12) and by solving the problem at the
first stage, respectively, for the shock and acoustic
waves.

3. A GENERAL SOLUTION
FOR THE HYDRODYNAMIC EFFICIENCY

In this section, we present the solutions of the prob-
lem in the approximation of alow density of the evap-
orated target material compared to the density of the
layer in the unperturbed state, p, < p;, and in the
approximation of alow binding energy of the materia
compared to the internal energy density of the evapo-
rated material, Q < g,.

By simultaneously solving the continuity equations
at the evaporation boundary (6) with the Jouguet condi-
tion (7), we obtain the following universal (for both
types of initial hydrodynamic waves) expressions that
relate the evaporation wave vel ocity and the pressure of
the material behind the hydrodynamic wave front,
respectively, to the speed of sound and the pressure of
the material in the evaporated part of the target and,
eventualy, to the intensity of the energy source and the
densities of the evaporated material and the nonevapo-
rated material behind the hydrodynamic wave front:

D,, = f,—c P = (Ya* 1)P,, (15)
where
1 o 2(y,—1) 1 7*3
P, = —p,Ci Cu = [ —} 16
vap Yat1l P, (16)

L et us determine the conditions for the excitation of
a particular type of initial hydrodynamic wave. When
relation (15) between the pressure P, in the nonevapo-
rated part of the material and the ablation pressure P, is
substituted into (11), the shock excitation condition, u, >
Co, Can be written as

2
paca > ya

pocé V_a"‘ 1 a7
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Substituting expression (16) for the speed c, into (17),
we obtain the threshold intensity of the energy source
that corresponds to the excitation of a shock wave:

S10 Ya PVat 1pai”

i ineilivmisys Bl

(18)

The larger the ratio of the density of the evaporated
materia to the initial density of the layer material, the
lower the threshold intensity. The opposite signs in
expressions (17) and (18) correspond to the excitation
of an acoustic wave. Theratio

2
PaCa

2
PoCo

[3:

will be called the adiabaticity parameter of the ablation
or simply the adiabaticity parameter.

In the case of an initial shock wave, the evaporation
wave velocity, the shock velocity, and the velocity of
the material behind the shock front can be determined
from relations (8), (15), and (16):

_ Yc—1pa
o — —Cy,,
Yet 1p0 (19)
D = Yt 1U |:(yc + 1)(ya + 1):|]J2|j)d:|1/2
o2 2, Lhd!

In the case of an initial acoustic wave, its velocity,
i.e., the speed of sound in the unperturbed material, ¢,
is afixed parameter of the problem, while the evapora:
tion wave velocity and the velocity of the material
behind the acoustic wave front can be determined from
relations (11), (15), and (16):

P
Do, = pac U =

Yat1l
Co. 20
yaBo (20)

The problem contains threetime variables: the dura-
tion of the energy source, t,; the travel time of the
hydrodynamic wave through the layer, t, (t, = Ay/c, for
an acoustic wave and t, = Ay/D,, for a shock wave); and
the total layer evaporation time, t, (to, = Ay/Dg, fOr an
acoustic wave and

t. = Ye— 1_A_Q
¥ Y+ 1Dy
for a shock wave). The times t, and t,, can be deter-
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mined from relations (19),

ty = [—Zya TZEP_ED_M%
* 7 L(ya+t 1y +1)

C,
: s o
_ P Do
~ b <
for a shock wave, and from relations (20),
_ 4 _ P47 Do
tb - Col tev - %d] Ca (22)

for an acoustic wave.

The solution for the hydrodynamic efficiency in the
same general form for both types of initia waves
depends on two dimensionless parameters, the ratios of
the time parameters of the problem: 1, = t/t, and tq, =
t/to,. In various 1, ranges, the solution has the follow-
ing form.

(1) 0 < 1, < 1, the duration of the energy source is
shorter than the travel time of the hydrodynamic wave
through the layer. Using relations (9), (10), (15), (16),
and (19) for the shock problem or (12), (15), (16), and
(20) for the acoustic problem, we obtain

(23)

Hence, the total hydrodynamic efficiency,

— (€k+ 8T)Mc
It, '

and the hydrodynamic efficienciesin kinetic energy,

_ 8ko
nk - Itp
and thermal energy,
— STMC
N+ = It
(N =ng+nq), ae
Ya=1Tay Tan
n=2n=2nr=2 L0 L0 (24)

(2) 1, = 1, the duration of the source is longer than
the travel time of the hydrodynamic wave through the
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layer. The solution of Egs. (13) with the initial condi-
tions (14) yields

e = 1ot e 2 %L al-T /Td]
kT 20y, DDth 1-1, 07 -
IYa*t
¢ = (1-To)Polos &7 = ZByy ]H EIFTGE :

Next, using expression (25) and taking into account the
thermal energy that was transferred to the layer by the
wave (see (10) and (12)), we obtain for the hydrody-
namic efficiency

Ya—1farfl-
y2 Dt

i ]
|

Tey

T 1 T /Td]
[1+E*1+ D}'

26
1'[/de (%)

y b 1- Te
a

_ vi—lg_e@21—
Nt = vezl D.[bD

r]k_

Tey

Theratio of t,, and 1, istheratio of the velocities of the
evaporation and hydrodynamic waves: T,,/T, = Dg/Dp,.
For shock and acoustic waves, thisratiois, respectwely,

Te Do _ [L}”ZE&D’”

Ty DW (ya + 1)(yc + 1) q)(;' (27)
Tev _ — Buz@a]
T, Go Cpd! -

To within a factor that depends on the adiabatic con-
stant, the ratio /1, is a function of only the density
ratio of the evaporated part of the target and the unper-
turbed material, p,/p,, for ashock wave and of the den-
sity ratio p,/p, and the adiabaticity parameter 3 for an
acoustic wave.

The solution obtained shows the following main
peculiarities of the hydrodynamic efficiency for pulsed
ablation of an arbitrarily thick layer of material. If the
duration of the energy source is shorter than the travel
time of the initia hydrodynamic wave through the
entire thickness of the layer, then the hydrodynamic
efficiency does not depend on the source duration and
is the sum of the energy transfers in equal parts to the
thermal and hydrodynamic components. Energy is
transferred to the layer only from the initial hydrody-
namic wave and corresponds to the approximate solu-
tion obtained for a semiinfinite layer in [2]. The main
difference between the exact solution (24), (26) and the
solution from [2] isthat the former takesinto account the
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Tey

Fig. 1. Hydrodynamic efficiency versus 14, the ratio of the

laser pulse duration to the total layer evaporation time;
T /T, = 0.5 (1), 0.2 (2), 0.1 (3), and 0 (4).

decrease in transferred energy due to the mass evapora-
tion of the part of the layer through which the hydrody-
namic wave propagates (the last factor in formula (24)).
The hydrodynamic efficiency at 1, < 1 depends only on
the ratio of the travel time of the initial wave through
the layer and the total layer evaporation time, 1/Ty,. In
this case, the hydrodynamic efficiency has a maximum
a t,,/1, = 1/2. This value corresponds to the following
density ratios p,/p, for shock and acoustic waves,
respectively:

Pa _ 10a*D(Ve+1D) Pa_ 1 _1poCo
Po 4 2Y, " P 4B 4pcl

The presence of a maximum stems from the fact that,
on the one hand, the specific transferred energy
increases with parameter 1,,/1,, (or density ratio p./po),
and, on the other hand, the rate of decrease in the layer
mass to which energy is transferred viathe increase in
evaporation wave velocity increases. However, the den-
Sity ratios p,/p, to which the maximum of the hydrody-
namic efficiency correspond are close to unity. This
ratio at y, =y, = 5/3 is 8/15 for the shock problem and
within the range 0.25-1 for the acoustic problem. Abla-
tion at such high densitiesin the evaporated part of the
target can proceed only viathe action of a high-energy
source of radiation or particles. Under typical ablation
conditions, for example, under laser radiation with a
wavelength A < 1 um, when the ratio p./p, <€ 1, the
energy transfer efficiency increases with density ratio
asn O (pd/po)*%

If the duration of the energy source is longer than
the time it takes for the initial wave to emerge at the
back surface of the layer, 1, = 1 (athin layer), then the
hydrodynamic efficiency ceases to be independent of
the pulse duration. As long as the source duration is
short compared to the total layer evaporation time, the
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hydrodynamic efficiency increases with pulse duration.
At small ratios of the source duration to the total evap-
oration time, the increase in the velocity of the layer as
a whole as its mass decreases via evaporation mainly
contributes to the hydrodynamic efficiency. If the dura-
tion of the energy sourceiscomparabletothetotal layer
evaporation time, then the dependence on pulse duration
can reach a maximum and then decreases to zero at the
time of total evaporation of the layer material (Ty, = 1).
The presence of amaximum isthe well-known effect of
material evaporation from the layer that leads to com-
petition between two factors: the decrease in the mass
of the layer and the increase in its velocity due to the
same decreasein its mass. This effect isresponsible for
the maximum in the dependence of the hydrodynamic
transfer coefficient on the fraction of the evaporated
mass derived in (1) for a thin layer of material. The
solution for an infinitely thin layer [1] can be obtained
from the general solution (24), (26) by passing to the
limit T, — oo:

g = Yazlid=Tery o0 1 O
k yi U1, U -1

(28)

InFig. 1, hydrodynamic efficiency is plotted against
T, @ various ratios T,/T,. The parameter T, ranges
from 0 to 1. The upper boundary of this range corre-
spondsto the total evaporation of the entire layer mass.
The curvefor 1,,/1, = 0 correspondsto an infinitely thin
layer. Astheratio T,,/T, increases, i.e., astheratio of the
velocity of theinitial hydrodynamic wave to the evapo-
ration wave velocity decreases, for example, due to an
increase in the ratio of the density in the region of the
evaporated part of the target to the density of the unper-
turbed material (see (27)), the degree of influence of the
propagation of the initial hydrodynamic wave on the
hydrodynamic efficiency increases. The 14, range that
corresponds to the energy transfer to the layer only
from the initial wave and for which the hydrodynamic
efficiency does not depend on 1, i.€e., the duration of
the energy source, is0 < T, < T,/T,,. Therefore, therel-
ative extent of the t,, range that corresponds to the
energy transfer for a thick layer increases with ratio
T./T,. In addition, the relative contribution of the
energy transfer from the initial hydrodynamic wave to
the hydrodynamic efficiency increases with t,/1,,. For
the examples shown in the figure, the 1, range that cor-
responds to the energy transfer for athick layer isfrom
Ofor 14/1,=0to 0.5for 1,,/1, = 0.5. At 1,,/1,= 0.2, the
hydrodynamic efficiency of the energy transfer from
the initial wave is 0.2. This value accounts for 70% of
thetotal hydrodynamic efficiency for 14, = 0.5 and 50%
for 1, = 0.8, which corresponds to the maximum
hydrodynamic efficiency (=0.41). At t1,/t, = 0.5, the
hydrodynamic efficiency of the energy transfer from
theinitial wave is 0.32. This value accounts for 75% of
the total hydrodynamic efficiency for 1,, = 0.8.
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4. THE HYDRODYNAMIC EFFICIENCY
FOR LASER ABLATION OF A FLAT LAYER

When a source of monochromatic radiation with
wavelength A and intensity | in the range 10*° < IN? <
10 W cm?, which corresponds to ablation for the
inverse bremsstrahlung absorption mechanism in the
plasma of the evaporated material, acts on a material,
the characteristic density of the absorption regionisthe
critical plasma density

3 A ¢
.= 1.83x10° . 29
Pe Z\’cm® )
Here, Aisthe atomic weight of theions, Z isthe degree
of plasmaionization, and A is measured in um.

Neodymium glass, iodine, excimer, and CO, lasers
are the most intense pulsed lasers that can produce a
powerful action on materials. The wavelengths of Nd
and CO, lasers at the fundamental frequency and the
first two harmonics are, respectively, 0.33 < A <
1.06 um and 0.2 < A < 0.4 um. The wavelengths of
excimer andiodineare 1.315 and 10.6 um, respectively.
Thecritical density of completely ionized plasmawhen
acted upon by relatively short-wavelength Nd, iodine,
and excimer lasers lies within the range 2 x 1072 <
P <9 x 102 g cm 3, Thus, it is much lower than the
Nd-laser density. The critical density for the radiation
of long-wavelength CO, lasersiseven lower, p, = 3.2 X

10°gcems,

In this section, we discuss our solutions using the
action of a short-wavelength laser pulse on alayer of a
solid material of light elements as an example. We
chose this problem for the following reasons. The
hydrodynamic efficiency increases with increasing
density of the evaporated material, i.e., with decreasing
wavelength of the acting radiation. We chose a light
material for thelayer, because we can disregard theion-
ization state of the plasmain the evaporated part of the
target by assuming it to be completely ionized and the
radiative energy losses. Let us analyze the solutions for
the hydrodynamic efficiency under the action of a laser
pulse using the excitation of ashock wave asan example.

Using (29), we can write the adiabaticity parameter
under the action of alaser pulse as

2/3 1/3 2/3
- I

~gox10°a AT 1T

P Do+ 10 LD 3255 2
Here, | is measured in W cm™, pyisin g cm, ¢, is
incm s?, and A is in um. Using criterion (18) and
assuming that y, = 5/3 and A/Z = 2, we find the a shock

waveis excited at alaser pulse intensity above

| =3.4x 10N (pocd)** W em™, (30)
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According to (30), thethreshold intensity for the funda-
mental harmonic of aNd laser is4.7 x 10'°°W cm2 when
it acts on polystyrene (p, = 1 g cm3, longitudinal speed
of sound ¢, =2.35 x 10°cm s?), 3.9 x 10 W cm? when
it acts on aluminum (py = 2.7 g cm3, ¢, = 6.26 x
10°cms?), and 1.7 x 10 W cm when it acts on
beryllium (py = 1.85 g cm3, ¢, = 12.55 x 10° cm s).
Thethreshold intensity linearly decreases with decreas-
ing radiation wavelength, because the ablation pressure
(see (16)) increases with decreasing wavelength
(increasing critical density).

Let us write solution (24), (26) for the excitation of
ashock wavein theform of explicit dependenceson the
parameters of the laser ablation problem: radiation
wavelength A, pulse duration t,,, intensity I, and target
density p,. Substituting expressions (21) for 1, and 1,
into the solution using expression (16) for the speed of
sound in the evaporated material and expression (29)
for the critical density and assuming, as in the previous
calculations of this section, that y, = 5/3 and A/Z = 2
and, in addition, y, = 2, we obtain the following results.

The condition for a thick layer, i.e., the condition
that the layer is so thick that the shock wave does not
traversethe entire layer in the laser pulse actiontime, is

| 53¢
Ay =103—2

3 _1/2°

Po

(31)

The limiting layer thickness at which the layer is thick
and energy istransferred to thelayer from the shock wave
increases with decreasing laser wavelength and material
density as well as with increasing laser pulse intensity
and, naturally, duration. When the condition (31) is satis-
fied, the hydrodynamic efficiency depends neither on
laser pulse duration nor on intensity, being

_ 2 1 2 10
N =5x10 )\pm%—mm WS (32)
0 0

The hydrodynamic efficiency of the energy transfer to
a thick layer increases with decreasing laser wave-
length and density of the layer material.

The second range of parametersfor the problem cor-
responds, on the one hand, to the condition that the
pulse duration exceeds the travel time of the shock
wave through the entire thickness of the layer and, on
the other hand, to the condition that no evaporation of
the entire layer material takes place in the laser pulse
time:

I1/3t I:LI3t
£ <Ny<103——2E.
: Npi?

041

7 (33)

In this range of parameters, the hydrodynamic
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Fig. 2. Hydrodynamic efficiency versus polystyrene layer
thickness for laser wavelengths A = 0.25 pm (a) and
1.06 um (b). Curves 1, 2, and 3 correspond to laser pulse
durations of 0.5, 1, and 2 ns; the solid and dotted lines cor-
respond to our solution and the solution for athin layer [1],
respectively. The dotted lines 4 represent the hydrodynamic
efficiencies from the solution for a semiinfinite layer [2].

efficiency is
_24x10°A0  41x107't| ”E
A% O AA"p, O
O N X
x L + 1+257\p3{2|nm—% (34)
O [ App- O

-1 U312
><Ell_4.1><1o t,1 0 % Ex
O AANPp, O O

oA Po O

The quantities in expressions (30)—(34) are measured in
the following units: | in 10 W cm?, A in um, pying
cm3, N inpm, and t, in ns.

In Fig. 2, the hydrodynamic efficiency of the energy
transfer to a flat polystyrene layer (pp = 1 g cm™) is
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plotted against its thickness under laser radiation with
wavelengths A = 0.25 and 1.06 pum for laser pulse dura-
tionst, = 2, 1, and 0.5 ns. The radiation intensity was
chosento be | = 10**W cm. Thefigure also showsthe
solutions from [1] for a thin layer and from [2] for a
semiinfinite layer. The presented datafirst illustrate the
increase in the hydrodynamic efficiency of the ablation
process with decreasing laser wavelength. Thus, for
example, the hydrodynamic efficiency for thick layers
under radiation with A = 0.25 um (n = 0.16) is higher
by afactor of approximately 4 than that under radiation
with A = 1.06 um (n = 0.045). Let us discuss the pecu-
liarities of the energy transfer to aflat layer of material
by using the data presented in Fig. 2afor A = 0.25 pm.
For alaser pulse of duration t, = 2 ns, energy transfer to
the nonevaporated part of the layer takes place only for
alayer whose initial thickness exceeds A, = 23.6 um.
Thinner layers are completely evaporated by the end of
the pulse. The general solution is close to the solution
from [1] for layers with thickness in the range 23.6 <
Ay < 60 um. The maximum hydrodynamic efficiency,
Nmax = 0.39, corresponds to the initial layer thickness
Ay =32 pm and is reached when 76% of the layer mass
has evaporated. According to [1], Ny = 0.41 corre-
sponds to Ay = 320 um and is reach when 81% of the
layer mass has evaporated. Beginning with Ay = 60 um,
the solution from [1] for a thin layer shows a faster
decrease in hydrodynamic efficiency than the general
solution does. For a layer of thickness Ay = 149.5 pm
equal to the distance to which the shock wave travels
during the laser pulse, the general solution yieldsn =
0.16, avalue that significantly exceeds the result of the
solution from [1] for athin layer, n = 0.1. For thick lay-
ersof Ay > 149.5 um, the general solution yields a con-
stant value of n = 0.16 close the ablation loading effi-
ciency obtained in [2], while the solution for a thin
layer from [1] yields a physically incorrect result—a
decrease in hydrodynamic transfer efficiency and its
approach to zero when A, — oo. For alaser pulset, =
0.5 nsin duration, the maximum thickness of the com-
pletely evaporating layer is 5.9 um. In this case, the
general solution differs from the solution for a thin
layer [1] even beginning with layer thicknesses (20 um)
much smaller than those for t, = 2 ns. A thick layer to
which energy istransferred only by the shock wave cor-
responds to 4, = 37.4 um; the minimum thickness is
aso much smaller than that for t, = 2 ns.

As the laser wavelength increases, other things
being equal, the minimum thickness of the layer that is
not evaporated in the pulse time and the minimum
thickness of the layer that may be considered thick
decrease. Att, = 2 nsfor A = 1.06 um, these thicknesses
are, respectively, 3.4 and 92.8 um, while for A =
0.25 pum, they are 23.6 and 149.6 pm.
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5. CONCLUSIONS

The genera solution for the hydrodynamic energy
transfer efficiency under the ablation action of a pulsed
energy source on a flat layer of material alows us to
determine the energy transferred to the nonevaporated
part of the target and the distribution of this energy
between the kinetic and thermal components at arbi-
trary thicknesses of thelayer of material and duration of
the energy source. The most relevant area of applica-
tions of the solution is the investigation of the energy
action of radiation pulses on solid materials in
problems of acceleration and heating of inertial ther-
monuclear fusion targets and technological material
processing.
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Abstract—We investigate the dynamics of the electron accel eration when an intense plasma wave breaks near
resonance at the plasma frequency (focus) in an inhomogeneous magnetized plasma. The breaking threshold
has been determined. We compare our experimental dependences of the current and energy of fast electronson
the intensity of the incident wave at various times with theoretical estimates. We show that when the breaking
threshold issignificantly exceeded, up to 50% of the electrons at plasmaresonance are captured and accel erated

by the wave. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The development of new highly efficient plasma
methods for charged particle acceleration has attracted
the attention of researchers since the late 1950s [1-7].
One of the schemesfor the formation of a strong accel-
erating electric field involves the charge separation in
plasma by the ponderomotive force exerted on elec-
trons from an intense high-frequency electromagnetic
wave. In this case, both the resonant, due to the decay
instability of Raman scattering, and nonresonant, in the
wake, excitation of plasma waves takes place. The
growth of these wavesislimited at avery high level by
the breaking accompanied in modern experiments by
electron acceleration to energies of 100 MeV [8].

In this paper, we present the results of our model
experiment, in which we investigate in detail the elec-
tron acceleration that accompanies the breaking of an
intense plasmawave in an inhomogeneous plasma. The
generation of fast electrons is traced near the breaking
threshold and when the latter is exceeded by four orders
of magnitude in intensity. We compare the dependence
of the current of accelerated electrons and their limiting
energy on pumping power with predictions of the
plasma-wave-breaking model.

This paper is structured as follows. After the
description of our experiment and available diagnostic
tools, we give theoretical estimates for the breaking
threshold and discuss the expected dependences of the
current of accelerated electrons and their limiting
energy on pumping power. Subsequently, we present
and discuss our experimental results and compare them
with theoretical scalings. In the Conclusions, we dis-
cuss prospects for further experiments.

T Deceased.

2. DESCRIPTION OF THE EXPERIMENT

We carried out the experiments at the Granit linear
plasma facility [9]. Plasma was produced via electron
cyclotron breakdown in a quartz cylinder 1 (Fig. 1a)
with an inner diameter of 2r, = 1.8 cm and a length of
about 1 m filled with argon at a pressure of about 2 Pa
and placed in amagnetic field with a strength of ~3 kG.
A monotonically falling (along the magnetic field) dis-
tribution of plasma electron density n, was established
in the middle part of the cylinder. This distribution can
be fitted by

0
ne(r,z)DexpDIDEIL % (1

where | = 5 cm is the plasma inhomogeneity scale
length along the magnetic field and 3 = 4.

A microwave was applied to the plasma from one
sideviaa7.2 x 3.4 cm? waveguide 2 (Fig. 1a), with the
electric field of the wave being parallel to the externa
magnetic field. The typical plasma parameters at the
entrance were n, < 10> cm= and T, = 2 V. When the
density on the cylinder axis appreciably exceeded the
critical density for frequency f, = wy/21T, an oblique
Langmuir wave was excited in the plasma predomi-
nantly intheform of aradial Trievel piece-Gould mode.
The dispersion relation for this mode in an inhomoge-
neous plasmais

0
K = 5—-———8“ 2) 10,
0 @ [
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where k and k; are the parallel and perpendicular (rel-
ative to the magnetic field) wave vector components.

The transparency region for this wave is a dense
plasma with a density above its critical value, n, > n,

where n, = nmfé/ez. The near-axis plasma region
(Fig. 1a) is a plasma waveguide for it with weak axial
inhomogeneity; propagating through this waveguide
toward lower densities, the wave decelerates. At the
point at which the external magnetic field lines are per-
pendicular to the critical density surface, n, = n, (focal
point), the wave linearly transforms into a “warm’
plasma wave. In this case, its field reaches the largest
strengths given by the relation

E _ [?P' 1/2 kglz
T Bl (323"

, ) @
x exp{ij'(ko +iky)dz — ﬁgrz—iwot} +c.c.,

wherery isthe Debye radius and P, = kP, is the frac-
tion of the power P, applied to the plasmathat goesinto

the excitation of the fundamental radial Trievelpiece-
Gould mode (according to [9], k = 0.2). Theredl, k; =

ko(2), and imaginary, ky = kg (2), parts of the compo-
nent of the wave vector k along the external magnetic

field can be determined near the focal point from the
equation

3rs (k0+|k8) -—=-

2 —_—
a or +in" =0, (3

ika)b

wherea=1=5cm and b = r,3°% = 0.4 cm are the
experimentally determined parameters of the plasma
density distribution near the focal point. Thus, the lon-
gitudinal plasma permittivity is

pe(r 2)

O

n=1- (1+3erO)+|n",

Ve Whedf,
W kZow

W = W/ k0

Here, v, is the electron—atom collision frequency, and
fo(w) is the electron distribution in longitudinal veloci-
tiesw normalized so that

[

[ felwydw = 1.

The calculated factor that describes the damping of an
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Fig. 1. (a) Experimental setup: Py, P;, Ps, P—incident,
reflected, scattered, transmitted waves, n.—critical density;
1—quartz cylinder; 2—waveguide; 3—magnet coil ; 4—opti-
ca system; 5—Rogowski coil; 6—cavity; 7—analyzer.
(b) The distributions of electric field strength (1) and wave
vector (2); z= 0 isthe position of the focus.

oblique Langmuir waveis

z

inb, = ~[K'dz = —\;—eakoa—nawofegkum
0

The behavior of the electric field of an oblique
Langmuir wave and its wave vector near a hybrid reso-
nance calculated for the experimental parameters (T, =
1.8 eV, v, = 45 x 10" st, P, = 0.02 W) is shown in
Fig. 1b. The increase in electric field strength near the
focusis so large that, even at a power ~10 mW applied
to the plasma, nonlinear properties of the plasma man-
ifest themselves and the parametric decay instability of
stimulated backscattering is excited [10]. In the same
range of microwave pumping powers, its Landau damp-
ing leads to asignificant change of the electron vel ocity
distribution function at suprathermal energies W >
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10eV. Thus, it can be fitted by the bi-Maxwellian
function

meWZD
PANE

n(@) = nf G et

o ) (4)
0Me [ [ MeW T
O &P 2ThD}’

where & and T,, are, respectively, the fraction of the
accelerated el ectronsin thetotal density and their effec-
tive temperature.

One might expect the appearance of nonresonant
nonlinear processes at high powers, P > 10 mW. Thus,
because of the action of the Miller ponderomotive
force, which excites decay instability at a power of
10 mW, one might expect the expulsion of electrons
from the localization region of astrong microwavefield
when much higher powers are rapidly switched on.
This expulsion should cause an increase in the quasi-
static potential near the focus,

E2
¢ = 4Tmen,.’
C

and, eventually, an acceleration of ions. At the pumping
power P, =10 kW attainablein our experiment, accord-
ing to formula (2), this potential near the maximum of
the microwave field, at first glance, can reach mega-
volts, ¢ = 4 x 10° V. It should be noted, however, that
expression (2) for the electric field distribution at a
focus-type hybrid resonance was derived in the linear
approximation. In particular, in its derivation, we used
expressions from the linear theory for the Landau wave
damping constant that includes the quasi-linear rear-
rangement of the electron distribution function. The
damping of the plasma wave increases with its field,
becoming nonlinear, and reachesthe largest values dur-
ing the wave breaking, when it captures el ectrons mov-
ing with velocities lower than the thermal vel ocity. The
breaking condition is

2eE
mek

- W _
Vb—E—

Given (2), the expression for the wave phase velocity at
which the breaking occurs for sufficiently high pump-
ing powers takes the form

W _ e gep )i

= g (8P, (5)
It should be noted that, according to this estimate, the
breaking of the plasmawave must be observed near the

maximum of its electric field beginning from a pump-
ing power P, = 1 W. As the pumping power increases,
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the breaking of the wave occurs at asmaller wave decel -
eration. The maximum energy of the electrons acceler-
ated through the wave breaking can be estimated as

2
W, = 2m. 320 = 4(2¢*mk?P)™". (6)

At a pumping power of 10 kW, this energy reaches ¢ =
5 x 10° eV. The maximum plasma potentia produced
by the Miller force is related to this energy by ¢ =
W,,/8e. Because of the loss of accelerated electrons,
this potential can numerically increase while retaining
the same order of magnitude: ¢ = W,,/e. The number of
wave-accelerated electrons n,, can be estimated from
the energy balance conditions as

%:i = DEDZIS(SK—PO)]JS (7)
ne bk,, O whb

The rough estimate for the pulse of the current trans-
ferred by these electronsis

201 _
kwb kwb

| =en, (KPy)*>. (8)

Apart from the fast electron nonlinearities consid-
ered above, slower, in particular, ionization nonlineari-
ties can show up in an experiment. Using (2), we write
the expression for the electron vibrational energy at the
focus as

P, Kiexp(—2akyV /o)

W= TN 2 3
% e 3I'Dbk0+1

For k, ~ 40 cm™ (this is a typical value for the wave

number at the focus), the relation W._[eV] = 3.2P, [W]
can be obtained. For P, = 25 W, the el ectron vibrational
energy isW_ =16 eV, avaluethat is higher than theion-
ization energy for argon atoms, E; = 15.76 eV. In this
case, one might expect very fastionization in theregion
of astrong microwave field and, as aresult, a displace-
ment of the point of hybrid resonance from the input
region. This burning of the plasma waveguide channel
must eventually lead to displacement of the point of
hybrid resonance to the plasma boundary and suppres-
sion of associated honlinear processes.

In this paper, in which we begin to investigate the
propagation of an intense plasma wave through an
inhomogeneous magnetized plasma, we present the
results concerning the fast electron nonlinearities, in
particular, the electron acceleration. We used a set of
various diagnostics to study the processes in plasma
during the propagation of a pulsed plasmawave. Fig-
ure la schematically shows the arrangement of ele-
ments of the diagnostic equipment. Thus, the plasma
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density distribution was controlled by the cavity
method; the recording of the spatial plasma emission
distribution allowed the microwave power absorption
region to be determined; the electron distribution func-
tion both in an unperturbed plasma and during the
action of a pumping wave was controlled with a multi-
grid charged particle analyzer; the current of acceler-
ated electrons was recorded with the Rogowski coil;
and information about the wave processesin the plasma
was extracted directly from the waveguide duct by ana-
lyzing the scattered signal.

The experiments were carried out for the following
pumping parameters. frequency f, = 2840 MHz, pulse
power P, < 5 kW, pulse duration t ~ 0.2-1 s, pulse
front duration t; ~ 40 ns, and pul se repetition frequency
300 Hz.

3. EXPERIMENTAL RESULTS

The shape of the microwave pulse, about 0.4 usin
duration, from the waveguide duct in the absence of
plasmais shown in Fig. 2a. In the presence of plasma,
the shape of the microwave pulse in the discharge cylin-
der at a pumping power lower than 50 W changes only
dightly. However, at a power higher than 50 W, low-fre-
quency oscillations with a frequency of 20-30 MHz
appear at the end of the pulse. As the power increases,
the time at which these oscillations appear is shifted to
the beginning of the pulse. The multigrid anayzer
located behind the focus at a distance of about 25 cm
from the side of low densities records the electron cur-
rent (Fig. 2b). The current increasesin less than 0.1 s
and rapidly decreases when the microwave pulse ends.

Figure 2c shows an oscillogram for the signal from
the Rogowski coil. The positive peak in this oscillo-
gram corresponds to the initial increase in the electron
current recorded by the analyzer (Fig. 2b), while the
negative signal corresponds to the slower decrease in
the current during the pulse.

Figure 2d shows an oscillogram for the current sig-
nal of the photomultiplier. The visible plasmaemission
IS seen to increase in intensity near the focus almost
immediately after the application of amicrowave pulse.
It should be noted that the light intensity slowly
decreases during several microseconds after the com-
pletion of the microwave pulse.

The current pulse of the charged particle analyzer
depends on the power of the applied microwave pulse
and the retarding potential. In our experiment, the ana-
lyzer was placed at a distance of about 25 cm from the
focal point from the side of low densities (Fig. 1a). Fig-
ure 3a shows oscillograms for the current pulses of the
analyzer at aretarding potential U, =50V for various
powers of the applied microwave pulses. We see that
the shape of the current pul ses changesin acomplicated
way with microwave pulse power. As the power
increases, the current peak is shifted to the beginning of
the pulse.
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Fig. 2. Oscillograms for the pulses of the incident micro-
wave emission (@), the current of the multigrid analyzer at a
retarding potential of =50V (b), the signal of the Rogowski
coil (c), and the light intensity at the focus (d).

The current pulse al'so changes at various retarding
potentials for a fixed power, as shown in Fig. 3b for a
pulse of power P = 50 W. The presence of an electron
current at retarding potentials of ~1000V suggests that
electrons with energies much higher than the initial
plasma electron energy T, are produced by the interac-
tion of a microwave pulse with the plasma.

The current—voltage characteristics of the charge
particle analyzer on a semilogarithmic scale (Fig. 4)
have nearly linear segments at energies W > T, a
which the electron energy can be characterized by the
effective temperature T,. The effective temperature
depends on time and pulse power. Figure 4a shows the
current—voltage characteristics at various times from
the beginning of the pulse at power P = 50 W. We see
that the characteristic approaches a straight line (solid
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Fig. 3. Oscillograms for the current pulses of the charged particle analyzer (a) at the pumping powers P = 5 (1), 16 (2), 50 (3),
160 (4), 500 W (5), U, =-50V and (b) at the retarding potentials U, = 0 (1), —50 (2), —200 (3), —500 (4), —700 (5), and -1200 V (6),

P=50W.
I, arb. units I, arb. units
T T T T T T [ T T T
1k C
A @ [ ®
r a2 10 !‘—’”’ ®
- =3 E ”_,!——’ ..~
. e 4 & X XA C ¥ -
x X L~V . ,"’ -
0.1 x X _ - e e o
F S | e #
L 4 £~ +"*
[ 4 . 'E + 4 /,+;E+
r e " . X | ‘w] a5 -7 0
L e2 %06 i
i o3 x7
0.0IE A ; X E 0.1F f
L X 1 1 1 1 1 ] E 1 1 1
-1400 -1200-1000 —-800 —-600 —-400 -200 0 -1000 -800 —-600 -400 -200 0
U,V U,V

Fig. 4. Current—voltage characteristics of the charge particle analyzer (a) at the times during the pulse 0.05 (1), 0.1 (2), 0.15 (3), and
0.35 ps (4), and (b) at the pulse powers P = 50 (1), 25 (2), 16 (3), 5 (4), 2.5 (5), 1 (6), and 0.5 W (7).

line) by the end of the pulse (t > 0.2 ps). The effective
temperature T,, corresponding to this straight line is
385 eV. At the same time, in the first half of the pulse,
the characteristics deviate from the straight line,
because there is a deficit of electrons with energies
above 500-600 eV.

Figure 4b shows the changes of the current—voltage
characteristics with power. All these characteristics
were constructed for the same time from the beginning
of the pulse, about 0.2 ps. The dashed lines represent
the exponential dependences (4) for the corresponding
effective temperatures T,,. We can see that the genera-
tion of electrons with energies above 400 eV is limited
at powers of 5-25W.

The current of accelerated electrons at retarding
potentials U, = 0 and —400 V is plotted against micro-
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wave pulse power in Fig. 5a. The solid line represents
the dependence P°¢. A deviation from this dependence
is observed at high and low powers. The current at a
power P ~ 5 kW decreases, because the ionization pro-
cesses begin early and the plasma wave propagation
conditions change already in 200 ns. The decrease in
the current at P < 10 W for both retarding potentials
probably stems from the fact that the breaking thresh-
old is approached. This effect is more pronounced at
U, =—400V. This can be explained by the small gain of
energy during the breaking of alow-intensity wave that
leads to the cutoff of the current—voltage characteristics
(Fig. 4b) at energies above 500-600 eV. No high-
energy electron current is recorded at a power on the
order of several milliwatts.
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Fig. 5. (a) Current of the accelerated el ectrons versus microwave pulse power: measurements with the Rogowski coil (1), measure-
ments with the particle analyzer at U, = 0 (2) and —400 V (3), the dependence | O po6 (4). (b) Effective temperature of the accel-
erated electrons versus microwave pulse power: the symbols represent the experimental data; the solid and dotted lines represent
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T, 0 P94 and Ty, O P%5, respectively.
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Fig. 6. (a) Oscillograms for the signal from the Rogowski coil at various microwave pulse powers: P = 5000 (1), 1600 (2), 400 (3),
and 150 (4) W. (b) Oscillograms for the signal current from the Rogowski coil (1) and the particle analyzer (2) at P = 50 W,

3—calculated signal.

The temperature of the accelerated electrons T,, is
plotted against pumping wave power in Fig. 5b. Uptoa
power P ~ 1-2 W, the temperature of the accelerated
electrons T, increases as P26 (the dotted linein Fig. 5b).
Then, the rate of increase in temperature decreases. In
this case, the dependence of the effective temperature
on pumping power is closeto P4, which isrepresented
by the solid linein Fig. 5b.

Let us look at the behavior of the signal from the
Rogowski coil as a function of the microwave pulse
power (Fig. 6a). The Rogowski coil was placed
between the charged particle analyzer and the focus
(Fig. 19) at a distance of ~5 cm from the analyzer. The
solid linein Fig. 6a parallel to the horizontal axisindi-
cates a zero signa level. Two peaks above this zero
level can be seen in the presented oscillograms. The
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first peak has a half-width of 0.15 psat P ~ 50 W and
narrows to approximately 0.8 ps at 5 kW. As can be
seen, the front of the pulse from the Rogowski coil at a
power of several kilowatt is much sharper than the
fronts of the incident microwave pulse (40 ns) and the
current pulse from the charged particle analyzer
(100 ns). The second peak is smaller, but its position
depends on the applied power: it virtually merges with
thefirst peak at P =5 kW and is shifted to the end of the
pulseat P < 160 W. Thefirst peak of the signal from the
Rogowski coil is formed by the electrons accelerated
during the wave breaking in the initial plasma density
profile, while the second peak takes place after the sig-
nificant ionization deformation of the profile, which
resultsin the formation of a plasmawaveguide channel.
The ionization plasma dynamics under the action of a
microwave pulse requires a separate analysis.
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Fig. 7. Limiting energy of the accelerated electrons during
wave breaking versus pumping power: the dotsand the solid
line represent the experimental and cal culated data, respec-
tively.

Let us consider how the signal from the Rogowski
coil is formed in more detail. Figure 6b shows oscillo-
grams for the current pulses from the charged particle
analyzer (2) and the signal from the Rogowski coil (1).
These pulses differ significantly in shape. On time
scales shorter than 100 ns, the signal from the
Rogowski cail reproducesthe shape of the leading edge
of the current pulse from the fast particle analyzer. In
contrast, at longer times, it is most likely proportional
to the derivative of the current pulse from the analyzer.
This behavior is attributable to the insufficiently large
time constant of theloop, T = 40 ns, as confirmed by the
recalculation of the signal from the Rogowski cail
using the electrical formula

t

Vo t'—t .
Fout(t) = Ifin(t)eXpTdt,
0

where fi,(t) is the derivative of the function of the

input current that isencircled by the Rogowski cail, F;
isthe output signal from theloop, and T isthetime con-
stant of the loop. The results of our calculations with
this formula using the current pulse from the analyzer
as fi,(t) are presented in Fig. 6b (solid curve). As our
calculations indicate, for the Rogowski coil to satisfac-
torily reproduce the entire current pulse, its time con-
stant must be an order of magnitude larger. Neverthe-
less, the Rogowski coil used appearsto correctly reflect
the behavior of the current on time scales shorter than
100 ns. It is particularly useful at high powers (several
kilowatts), when the current rise times are so short that
the charged particle analyzer does not resolve them
because of its slow response.
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Figure 5a (asterisks) shows a plot of the maximum
amplitude of the first current peak from the loop against
microwave pulse power. In the segment where the
power changes from 50 W to 5 kW, this dependence
closely corresponds to the power dependence of the
current from the charged particle analyzer and to the
dependence P°6 that follows from the above estimates
based on the breaking model.

4. DISCUSSION

As follows from the presented experimental data,
accelerated electrons whose effective temperature T,
depends on pulse power are formed near the focus
under the action of a microwave pulse. Electrons are
accelerated via wave damping, which, as was noted
above, increases with the plasma wave field and
becomes nonlinear. The damping reaches the largest
values during the wave breaking, when the wave cap-
tures electrons that move with velocities lower than the
thermal velocity. Our estimates using formula (5) show
that the wave breaking must occur at a power of ~1 W.
If we look at the experimental dependence T,(P) in
Fig. 5b, we will then see that its slope changes sharply
precisely at a power of afew watts. This may suggest
that the pattern of electron acceleration changes or,
more specifically, the wave breaking begins. It follows
from our theoretical analysis (formula (8)) that the cur-
rent of the accelerated electrons as they are captured
depends on pulse power as P%6. This dependence is
confirmed by the experimentally measured dependence
of the current of accelerated electrons on microwave
pulse power shown in Fig. 5a.

The maximum energy of the electrons accelerated via
wave breaking can be estimated by using formula (6).
Thus, for P = 50 W, W, = 630 eV. This value corre-
sponds to aretarding potential of ~600 V, at which the
current-voltage characteristic of the analyzer begins to
decrease more sharply with increasing retarding poten-
tial (Fig. 4a). This suggests a deficit of electrons with
energies above 600 eV. The maximum energy W,, of
the accelerated electrons determined from the current—
voltage characteristics and cal culated using formula (6)
at various powersis shown in Fig. 7. Thereis satisfac-
tory agreement between the theoretical and experimen-
tal data not only in the power dependence but also in
absolute value.

The number of accelerated electrons escaping from
the region of the focus can account for an appreciable
fraction of the electron density at the focus (n. ~

10 cm for f, = 2840 MHz). It can be estimated by
using the current of the accelerated electrons recorded
by the charged particle analyzer (Fig. 4b). Thus, a a
pulse power P = 50 W, the current of the accelerated
electrons at a retarding potential of —50 eV is about
20 mA, whiletheir effective temperatureisT,, ~ 385 eV.

The electron current may be defined as | = n,, Selvl]
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where n,, isthe mean electron density over an area S=

0.07 cnm?? of the analyzer inlet, and LW /2T, /m, isthe

mean velocity of the electrons corresponding to their
effective temperature T,,. The mean density of the

accelerated electronsisthen i, = 1.5 x 10° cm3,

Actually, the diameter of the accelerated electron
beam issmaller than the diameter of theinlet to theana
lyzer. Accelerated electrons cause asignificant increase
intheintensity of optical plasmaradiation; the diameter
of itsdistribution probably corresponds to the diameter
of the electron beam. The cross-sectional area of the
accelerated electron beam estimated in thisway is S =
0.02 cm?. The maximum density of the accelerated
electrons that reached the analyzer can then be defined
asn, = N,9S =5 x 10° cm 3. Thus, we have n/n. ~
0.05. Our calculation using formula (7) for P, = 50 W
and b = 0.4 cm yields n/n, = 0.1. Given the losses of
electrons as they propagate from the focus region to the
analyzer (~25 cm), there is satisfactory agreement
between the estimates obtained. At high powers, P =
5000 W, as estimates similar to those for P = 50 W
show, the fraction of the accelerated el ectronsincreases
by an order of magnitude and their density is compara
ble to the electron density near resonance, ny/n, ~ 0.5.

The energy of the accelerated electrons is much
higher than the ionization energy of argon atoms, |, =
15.76 eV. The accelerated electrons lose their energy
during their collisions with argon atoms by ionizing
and exciting them, which causes the electron density to
increase. The newly formed electrons probably have
low energies, as suggested by the presence of segments
where the current decreases sharply near a zero retard-
ing potential in the current—voltage characteristics
(Fig. 4b). In turn, the increase in density at the focus
causes a change in the propagation and absorption con-
ditions for an oblique Langmuir wave near the focus
and a displacement of the focusto lower densities. This
is probably the reason why the generation of acceler-
ated electrons subsequently decreases.

5. CONCLUSIONS

In conclusion, note that in the model experiments
described in this paper, we investigated the electron
acceleration dynamics during the breaking of an
intense plasma wave near resonance at the plasma fre-
guency (focus) in an inhomogeneous magnetized
plasma. We experimentally determined the breaking
threshold and showed its correspondence to the theoret-
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icaly expected value. We showed that the derived
experimental dependences of the current and energy of
fast electrons on the intensity of the incident wave at
various times are in good agreement with theoretical
estimates. We showed that when the breaking threshold
is significantly exceeded, up to 50% of the electrons at
plasma resonance are captured and accelerated by the
wave. The inferred good agreement between the exper-
imental data and the ssimple theoretical model of one-
dimensional breaking of a potential wave strongly sug-
gests that we created a potential of severa thousand
voltsin aplasmaviathe charge separation by pondero-
motive forces and makes it possible to plan model
experiments aimed at observing accelerated ions of the
corresponding energies.
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Abstract—Deposition of carbon materials from methane-hydrogen gas mixtures in a DC gas discharge is
investigated. Parameters ensuring stabl e discharge conditions and synthesis of diamond and graphite-like films
are determined. Optical emission spectroscopy is used to analyze the composition of the activated gas phasein
the course of carbon film deposition. Synthesis of graphite-like carbon nanotubes and nanocrystallitesis shown
to correlate with the presence of C, dimersin the plasma. A noncatal ytic mechanism of synthesis of nanostruc-
tured graphite in a carbon-containing gas phase is proposed. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Various nanostructured carbon materials are the
subject of current interest because of their unique phys-
ical and chemical properties. In particular, carbon
nanotubes and other graphite-like nanostructured mate-
rials can exhibit field emission at anomalously low
electric field strengths [1-4]. In addition to graphite-
like structure, the properties that determine the field
emission efficiency include the morphology of nano-
structured carbon cathodes and certain characteristics
of their surfaces [3, 4]. These characteristics of nano-
structured carbon materials depend on the parameters
of their synthesis and processing. Almost all nanostruc-
tured carbon materials are deposited from carbon-con-
taining gases activated by various methods (e.g.,
see[2]). For example, the nanostructured-carbon film
cathodes examined in our previous studies [3, 4] were
obtained by carbon deposition from methane-hydrogen
mixtures activated by a DC gas discharge. This method
can also be used to produce polycrystalline diamond
and other carbon thin films[5, 6]. Deposition of carbon
film from a gas depends on a variety of parameters.
Rel ationship between these parameters and characteris-
tics of the produced materials is of great importance
both for practical applications and for understanding
the fundamental mechanisms of synthesis of various
carbon materials.

Inthis paper, we present the results of an experimen-
tal study of gas-phase deposition of carbon films from
methane-hydrogen mixtures activated by a DC dis-
charge. The study was conducted to determine the gas-
discharge parameters ensuring stable growth of films
with required properties and the deposition parameters
of key importance for synthesis of nanostructured car-
bon materials characterized by high field-emission effi-
ciencies.

1063-7761/03/9706-1154%$24.00 © 2003 MAIK “Nauka/Interperiodica’

2. EXPERIMENTAL

A schematic description of the experimental setup
used in our studies of carbon film deposition can be
foundin our previous papers(e.g., see[4-6]). Film dep-
osition was conducted in a reactor evacuated to a pres-
sure of 1073 Torr and filled with methane and hydrogen
mixed in various proportions. The reactor (made from
stainless steel) had water-cooled walls separated from
the deposition zone by a thermal shield to ensure local
thermodynamic equilibrium in the deposition zone.
Both the internal diameter and height of the reactor
were 400 mm. The current source used to initiate and
sustain the DC gas discharge provided sufficient power
to deposit films on substrates of diametersup to 50 mm.
The gas inlet system ensured a prescribed continuous-
flow rate of the mixture at aconstant pressureinsidethe
reactor. The gas discharge was initiated by applying
voltage to a 50-mm gap between two electrodes. The
substrate used in carbon film deposition was mounted
on the anode. Diamond films are generally deposited on
silicon substrates. Films consisting of nanotubes and
other nanostructured carbon materials can also be

Parameters of gas-phase deposition of films of various com-
position and structure

Type of sjgirrztglﬁﬁx' Methane con- | Gaspressure,
carbon film peérwvth, °C 9 centration, % Torr
Diamond 850-900 0.5-2 60-90
Nanocrystal- 900-1000 2-5 60-100
line diamond
Graphite-like | 1000-1100 5-10 60-100
Soot 1100-1250 above 15 50-100
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Fig. 1. Current—voltage characteristics of methane-hydro-
gen gas-discharge plasmas for a methane concentration of
8% at gas-mixture pressure 50 (1), 60 (2), 80 (3), 100 (4),
and 110 Torr (5).

deposited on nickel, tungsten, molybdenum, steel, and
other substrates [4]. In the present study, we used sili-
con substrates 50 mm in diameter. We examined the
dependence of deposition characteristics on electrical
parameters of the discharge and on the gas composition
and pressure. The experiments were conducted at a
constant substrate temperature of 950°C maintained by
simultaneously heating and water-cooling the substrate
holder.

The éectrical discharge parameters (voltage U and
total current ) were set by using an adjustable current
source. The gas-discharge plasma was monitored visu-
ally through quartz windowsin the reactor walls and by
recording its optical emission spectra (OES). To obtain
OES, we focused the radiation emitted by the plasma
through the quartz windows by a system of lenses onto
the entrance slit of a monochromator in such a manner
that different regions of the plasma column could be
analyzed by using a high-sensitivity silicon-photo-
diode—based light detector. The signal acquisition sys-
tem included a logarithmic amplifier for measuring
spectral line intensities in a wide dynamic range. Cur-
rent—voltage characteristics of the discharge and
plasma OES were measured at gas-mixture pressures
varying from 10 to 150 Torr for methane concentrations
between 0 and 25%.

3. RESULTS AND DISCUSSION

Figure 1 shows the discharge current—voltage char-
acteristics obtained for a methane concentration of 8%
at pressures varying from 50 to 110 Torr. One common
feature of al characteristics is their negative slope at
relatively low voltages. Visua observation of the gas-
discharge plasma revealed that the substrate (anode)
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Fig. 2. Current—voltage characteristics of methane-hydro-
gen gas-discharge plasmas at a gas-mixture pressure of
80 Torr for methane concentrations 0 (1), 2% (2), 4% (3),
8% (4), and 15% (5).

surface was not completely spanned by the luminous
region of glow discharge. With increasing voltage (and
current), the luminous region at the substrate grew
larger and the dlope of the discharge current—voltage
characteristic became positive after the substrate was
completely spanned by the luminous region. As a cer-
tain characteristic voltage depending on the gas pres-
sure was reached, the glow discharge spontaneously
changed into an arc (as reflected by the increasing
slopes of the discharge current—voltage characteristics
shown in Fig. 1). The range of discharge parameters
corresponding to normal (positive) slopes of the cur-
rent—voltage characteristics (indicated by arrows in
Fig. 1) can be interpreted as the domain of stable dis-
charge conditions. Carbon film deposition could be
controlled when conducted under these conditions.
Outside this domain, we observed either nonuniform
deposition of carbon on the substrate, due to the dis-
charge inhomogeneity at its surface, or uncontrollable
discharge behavior leading to overheating and even
substrate failure in the arc mode.

Figure 1 also demonstrates that the domain of stable
gas-discharge plasma corresponds to the widest range
of current at a pressure of about 80-100 Torr when the
methane concentration in the gas mixture is 8%. This
particular combination of discharge parameters charac-
terizesaprevioudy found optimal regime of deposition
of nanostructured carbon materials [3-6]. Similar
trends were observed at different methane concentra-
tions. Figure 2 shows the discharge current—voltage
characteristics obtained at a gas pressure of 80 Torr
inside the reactor for methane concentrations between
0 and 15%. Asin Fig. 1, arrows indicate the domain of
stable discharge where controlled deposition of carbon
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(a)

(b)

©

Fig. 3. Typical gas discharges in pure hydrogen (a) and
hydrogen—methane mixtures with methane concentrations
10% (b) and 25% (c) at a pressure of 60 Torr. The substrate
isasilicon plate of diameter 50 mm. The photographs were
taken at voltages 650 V (&), 750 V (b), and 850 V (c) and
currentsof 7A (a), 6 A (b), and 5A (c).
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Fig. 4. Typical optical emission spectra of gas-discharge
plasmas for pure hydrogen (a) and methane concentrations
of 10% (b) and 25% (c). Gas pressure is 80 Torr. Discharge
voltagesare 650V (a), 750V (b), and 850V (c) and currents
are7A (a), 6A (b),and 5A (c).
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films can be conducted. It should be noted that a stable
glow discharge could be sustained at methane concen-
trations of up to 25%. However, the substrate quickly
overheated under such conditions, and its temperature
could not be reduced by water-cooling the substrate
holder.

The composition of the gas phase from which car-
bon was deposited on the substrate was determined by
analyzing the OES of the gas-discharge plasma. The
geometry and color of the luminous region of the dis-
charge varied substantially with the electrical parame-
ters of the discharge and the composition and pressure
of the mixture. As an example, Figs. 3a-3c show pho-
tographic images of the discharge taken through a
guartz window in the reactor wall at a gas pressure of
60 Torr and methane concentration of 0, 10, and 25%,
respectively. Figure 4 shows the OES of the gas-dis-
charge plasma recorded for these methane concentra-
tions near the substrate surface (curves a and b corre-
sponding to 0 and 10%, respectively) and at the periph-
ery of the luminous region (curve ¢ corresponding
to 25%).

According to the discharge spectra measured for
pure hydrogen at a discharge voltage of 650 V and a
current of 7 A (curveain Fig. 4), plasma emission was
dominated by the recombination transition lines of
hydrogen atoms (486 nm for Hg and 656 nm for H,) and
molecules (550 to 650 nm for H,). With the addition of
methane, the color of the discharge region changed to
yellowish green, and the typical spectrum (b) contained
the recombination lines of CH radicals (386 and
422 nm) and C, dimers (515 and 560 nm). The corre-
sponding discharge region in Fig. 3b looks much
brighter as compared to the discharge in pure hydrogen,
whose emission liesin the blue spectral range (Fig. 34).
The spectrum represented by curve b in Fig. 4 was
obtained at avoltage of 750V and acurrent of 6 A. The
shapes and spectral positions of the lines are consistent
with previously reported observations of methane—
hydrogen plasmas (e.g., see[7, 8]).

The line intensities of hydrogen atoms and mole-
cules were amost constant in al plasma-column
regions examined in this study, whereas those of car-
bonaceous compounds (CH and C,) increased substan-
tidly from periphery toward the substrate surface.
These carbonaceous compounds were found in the
plasmas with methane concentrations varying from 0.5
to 25%. At methane concentrations above 15%, we
observed aregion of intense yellowish orangelight emis-
sion at the periphery of the plasma column. Figure 3c
shows a photographic image of the discharge taken at a
methane concentration of 25%, a voltage of 850V, and
acurrent of 5A. The arrow indicates the region where
the plasma emission spectrum represented by curvecin
Fig. 4 was observed. Theintensities of individual spec-
tral lines are relatively low, and the intensity of the
structureless background spectrum gradually increases
with wavelength. These features suggest that the yel-
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lowish orange light was emitted by a high-temperature
condensed phase—most likely, the soot that formed by
direct condensation of carbonin the gas phase. Conden-
sation of thiskind can occur at high methane concentra-
tions in the presence of excessive carbon in regions of
relatively cool plasma[9].

Asanillustration of the difference between the car-
bon materials deposited under different conditions,
Fig. 5 shows typical Raman scattering spectra (RSS)
obtained for a polycrystalline diamond film (curve 1), a
nanocrystalline diamond (curve 2), a graphite-like
nanostructured material (curve 3), and a sooty material
(curve 4). These spectra include lines characteristic of
diamond-like nanocrystallites smaller than 2 nm at
1140 and 1470 cm™* and the line at 1330 cm™ corre-
sponding to the “common” diamond with a sub-
stantiadly larger crystallite size [5]. The RSS lines at
1350 cm™ and around 1580 cm™ (from 1550 to
1620 cm™) correspond to various disordered graphites.
Note that, since the line at 1580 cm is also character-
istic of multilayered carbon nanotubes[10], the Raman
scattering technique cannot be used to identify nano-
structured carbon components of such films.

An analysis of the experimental results obtained by
using the Raman scattering technique, scanning and
electron tunnel spectroscopy, atomic force spectros-
copy, cathode luminescence microscopy, and other
methods showed that polycrystaline diamond films
were deposited at a gas-mixture pressure of about
80 Torr and methane concentrations between 0.1% and
2.0% (depending on the substrate temperature). When
the methane concentration was between 2% and 5%,
nanocrystalline diamond was produced. Formation of
graphite-like carbon nanotube material and nanocrys-
tallites was observed a methane concentrations
between 5% and 10%. When the methane concentra
tion exceeded 15%, soot-like disordered carbon was
produced. Moreover, as pointed out above, the use of
such excessive concentrations reduced the stability of
film deposition because of substrate overheating.

A comparative analysis of the films obtained at var-
ious methane concentrations and the optical emission
spectra of the plasmas unambiguously points to the
existence of a correlation between the presence of C,
dimersinthe activated gas phase and synthesis of nano-
structured carbon materials, such as nanocrystalline
diamond or graphite and carbon nanotubes. The key
role played by C, dimers in the synthesis of nanocrys-
talline diamonds was noted previoudly (e.g., see [11]).
It was shown that the most efficient process in terms of
energy is the clustering of C, dimersinto linear chains
of atoms with acetylene bonding (carbene structures).
After a certain critical cluster size is reached, such a
cluster can transform into aplanar graphite-like layer of
carbon atoms oriented perpendicular to the substrate.
These layers can make up plate-like graphite crystal-
lites several atoms thick. Alternatively, they canroll up
spontaneously (or under the influence of some factors
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Fig. 5. Raman scattering spectra (RSS) of carbon materials
produced by gas-phase deposition: (1) polycrystalline dia-
mond film, (2) nanocrystalline diamond film, (3) nano-
graphite film, (4) sooty material. The weak signa at about
1120 cmi Lt is due to the spurious effect of luminescent light
sources.

Fig. 6. Fragments of SEM images of nanographite films
obtained after deposition during 15 min.

depending on the deposition process) into structures
anal ogous to carbon nanotubes or into nuclei that sub-
sequently grow into nanotubes. This process can be
conducted without a catalyst, unlike other techniques
used to produce carbon nanotubes [2, 10].

This model of noncatalytic synthesis of nanostruc-
tured carbon materials is consistent with the results
obtained by means of scanning electron microscopy
(SEM). Figures 6 and 7 show, respectively, the images
of carbon structures taken after deposition for 15 and
60 min. One can clearly see that the characteristic size
of carbon structures increases with deposition time,
while their geometry changes substantially. The initial
structures are planar plate-like graphite nanocrystallites
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Fig. 7. Fragments of SEM images of nanographite films
obtained after deposition during 60 min. The underlying
parts of conically rolled-up fragments are seen through the
above-lying ones, which implies a very small thickness of
nanographite sheets.

oriented mainly perpendicular to the substrate surface
(Fig. 6). They can transform into conically rolled-up
structures (Fig. 7). According to the results obtained by
using an RSS technique, electron microscopy, adiffrac-
tion technique, and Auger electron spectroscopy [5],
both the films and the microscopic structures are well-
ordered graphites. The fact that the inner part of a
rolled-up sheet in Fig. 7 isclearly seen through its outer
layer suggests that its thickness is small, since the sec-
ondary electrons forming an SEM image can penetrate
agraphite layer only afew atoms thick.

4. CONCLUSIONS

In the present study, a correlation is established
between the parameters of gas discharge in methane—
hydrogen mixtures and the phase composition and
structural properties of the carbon films obtained by
deposition. The range of glow-discharge parameters
ensuring stable deposition is determined. Carbon thin
films characterized by various properties and fractions
of diamond and graphite-like components have been
produced by deposition at discharge current densities
between 0.2 and 0.5 A/cm?. By analyzing the OES of
the discharge plasma recorded during deposition, both
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CH and C, were detected in the gas phase near the sub-
strate surface. The presence of C, dimers in the gas
phase isfound to correlate with synthesis of nanostruc-
tured carbon materials (nanocrystalline diamond, car-
bon nanotubes, graphite nanocrystallites). A mecha
nism of synthesis of films consisting of graphite-like
forms of nanostructured carbon is suggested. An
instance of direct carbon condensation has been
observed in the gas phase at the periphery of the plasma
column at methane concentrations above 15%.
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Abstract—A model was constructed to describe the prolate shape of anisotropic regions, tactoids, coexisting
with the isotropic phase in lyotropic inorganic liquid crystals. The elastic energy of the tactoid, the surface
energy, and the interaction energy between the director field and the boundary of the tactoid were taken into
account. Large-sized tactoids were shown to be prolate because of the competition between the elastic energy
of the nematic phase of thetactoid and the surface energy. Small-si zed tactoi dswere prol ate because of the com-
petition of the surface energy with the anchoring energy between the director and the boundary of the tactoid.
The suggested model was applied to experimental datato determine the ratio of the elastic constants K4/K; and
the ratio between the anchoring energy W and the surface tension o depending on the “time of aging” of vana-
dium pentoxide solsin water. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, the macroscopic physics of thermotropic
liquid crystals has been constructed in outline [1-3].
The focus of studies is currently shifting to lyotropic
liquid crystals that form mesophases when certain sub-
stances are dissolved in certain solvents [4-7]. According
to the chemica classification, lyotropic liquid crystals
include the class of inorganic liquid crystals. They are
formed in dispersions of inorganic substances [7-10].
These systems have been known since the 1920s, but
their physics has not been studied at all.

In recent years, we have initiated systematic studies
of the elastic properties of inorganic mesophasesfor the
example of atypica liquid-crystalline agueous sol of
vanadium pentoxide [11-13]. Of specia interest is the
so-called tactoid phase formed at low (~1 wt %) con-
centrations of vanadium pentoxide. Thisis atwo-phase
system in which one of the phases is isotropic and the
other is an anisotropic mesophase. The mesophase is
interspersed in theisotropic phasein theform of prolate
spindle-shaped droplets; precisely these droplets are
called tactoids (Fig. 1). Until recently, studies of the
tactoid phase have largely been descriptive in character
[14-17]. One of the most important questions concern-
ing tactoid sols is that of their molecular structure and
the reasons for the formation of atwo-phase systemin
the form of a dispersion. This question still remains
open. There is, however, one more no less important
guestion: why do tactoids have prolate rather than
spherical shapes, asis usualy observed for droplets of
thermotropic liquid crystals [18].

In our preceding work [13], we suggested a theoret-
ical description of the prolate shape of tactoids and

obtained an equation for their free energy as the sum of
the elastic energy of the nematic phase and surface
energy. A study of the free energy at its extremum
allowed usto obtain a dependence of the geometric size
of tactoids on the material constants of the mesophase.
The experimental dataon the size of tactoidswere com-
pared with the theoretical dependences to evaluate the
ratio between the elastic constants and between the
elastic constants and the surface tension. The ratio
between the elastic constants K4/K; in the system under
consideration was found to reach 100 in certain
instances. This is much larger than the ratio character-
istic of thermotropic liquid crystals, which does not
exceed 3[1, 19].

In this work, we continue studies of this unusual
mesophase. In some instances, a comparison of tactoid
sizeswith theoretical dependenceswasfound to lead to
certain contradictions. To remove them, we had to take
into account the anchoring energy between the director
field and the tactoid—isotropic phase boundary in the
equation for the free energy of tactoids obtained earlier.
This approach alowed us to elucidate the reasons for
the prolate shapes of both large-sized tactoids, for
which the condition of strong director—boundary bind-
ing ismet, and small-sized tactoids, for which this con-
dition does not hold. A comparison of the theoretical
results with the sizes measured experimentally for tac-
toids of different volumes allowed us to determine the
ratio between the elastic constants K4/K; and between
the anchoring energy W and surface tension o depend-
ing on the “time of aging” of vanadium pentoxide sols
in water.
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Fig. 1. Texture of the tactoid phase in a vanadium pentoxide (V ,0s)—water sol at aV,0g concentration of 1.1 wt %. Cell thickness

is200 um.

In Section 2, we describe a model of the director
shape and field for the nematic phase of atactoid based
on experimental data. The problemisformulated taking
into account the elastic energy of the tactoid, the sur-
face energy, and the interaction energy between the
director field and the boundary of the tactoid. The prob-
lem is analyzed to consider situations that admit ana-
Iytic solutions and allow the physical reasons for the
prolate shape of tactoids to be elucidated. In conclu-
sion, the problem is solved numerically. In Section 3,
we describe a procedure for measuring the size of tac-
toids of different volumes in the vanadium—water lyo-
tropic inorganic liquid crystal and the results of such
measurements. The experimental results are compared
with the suggested model of the shape of tactoids. Asa
result, dependences of the physical properties of the
tactoid phase on the time of its aging were obtained.
The principal results are summarized in Section 4.

2. THE INFLUENCE OF ANCHORING ENERGY
AND ELASTICITY OF THE NEMATIC PHASE
OF TACTOIDS ON THEIR PROLATE SHAPE

2.1. Problem Satement

In the preceding paper [13], we used experimental
data to suggest a model of the director shape and field
for the nematic phase of atactoid. It was shown that the
boundary of the tactoid was the surface of revolution of
an arc of angle 2a of acircle of radius R about its span.
Because of strong binding, the director field at the tac-
toid boundary has atangential orientation. Provided the
anchoring energy isfinite, the director at the boundary
can deviate from the tangentia orientation. To take this
possibility into account, we here use the director field

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

given by the basis vector €, of the bispherical system
of coordinates.

A model of the director shape and field for the tac-
toid nematic phase is shown in Fig. 2. The variables of
the problem are R and a, which describe the shape of
the tactoid, and R, and a;, which describe the director
n field in it. The unit vector n coincides with the basis
vector €,; of the bispherical coordinate system [20].
The angle a can take on values from zero (for needle-
shaped tactoids) to 12 (for spherical tactoids). The
angle a, changes from zero (for a uniform director

Fig. 2. Model of the director shape and field for the nematic
phase of atactoid.
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field) toa (for adirector with atangential orientation at
the boundary). These variables are related by two con-
straint equations,

V = R3LIJ(0() = const, D
R(1-cosa) = R,(1-cosda,), 2

where W(a) = 2n(sina — acosa — (sina)/3). Equa-
tion (1) is the condition of a constant volume V of the
tactoid, and (2) follows from the geometry of the prob-
lem. Because of the presence of the constraint equa
tions, there remain two independent variables. We can
select a and a, as such variables. However, further cal-
culations are more convenient to perform using the
independent variablesa and y = (tan( a,/2)/ tan(a/2))?,
whereO<y< 1

The equilibrium shape of atactoid with a constant
volume is determined by the condition of minimum
total energy. Thetotal energy @ isthe sum of the elastic
energy @4 of the nematic phase, the surface energy @,
and the interaction energy @,y between the director field
and the surface. The elastic energy isrelated to the dis-
tortion of the director field [1] and can be written
directly from dimension considerations in the form

®y = K;ROP(a,y) + KROP(a,y),  (9)

where K; and K3 are the elagtic constants of splay and
bend deformations, respectively [1], and CD(e,l) (a, y) and

o (a, y) are the dimensionless functions of the vari-
ablesa and y related to these deformations. These func-
tions are calculated in Appendix |. The surface energy
is g = 0S where 0 is the surface tension and Sis the
area of the tactoid surface. The equation for ®g is
obtained by calculating S, which gives

ds = IR P(a), @)

where ®4a) = 4mr(sina — acosa). The interaction
energy between the director field and the surface @,y is
calculated as[21]

d,, = {w(e)ds, (5)

wherew(0) = (W/2)sin?0 isthe Rapini potential [21], W
is the anchoring energy, and 6 is the angle between the
director and the surface of the tactoid (see Fig. 2). An
expression for @, follows immediately from dimen-
sional analysis:

®y = WR'D(a,y), (6)
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where @, (a, y) is the dimensionless function of the
variablesa and y. Thisfunction is calculated in Appen-
dix 1l. Substituting R given by constraint equation (1)
into (3), (4), and (6) yields the equation for the total
energy of atactoid of a constant volume

1/3

~ K W
¢ = (V%(G,VHWS(GHEWW(G,V), (7

where ® = ®/oV?3 s the dimensionless energy;
W(a,y) = oY (a, y)/W¥3 (i = 1, 3) (here and through-
out, the summation over the repeating index i is
implied); Wqa) = ®a)/W?3; and Wy a, y) =
Wo(a, y)/W2s,

Equation (7) for thetotal energy containsthe dimen-
sionless parameter W/o, characteristic problem sizes
C, =K/o (i = 1, 3), and tactoid volume V. Given these
values, we can find the equilibrium a and y values that
correspond to minimum energy (7). Further, (1) and (2)
can be used to calculate the equilibrium R and R; val-
ues. That is, we obtain complete information about the
equilibrium director shape and field for a tactoid of a
constant volume. A change in V changes the equilib-
rium values of the problem variables. Among various
dependences that can be obtained, R(a) is the most
important one, for it can be compared with experimen-
tally measured sizes of tactoids of various volumes.
Because of the complexity of the W,(a, y) (i =1, 3) and
WYy (a, y) functions, the extremum of energy (7) and the
R(a) dependences are found numerically. The corre-
sponding results are given in subsection 2.3.

To understand the physical reasons for the prolate
shape of tactoids and guessin advance the results of the
numerical solution, the situations that admit analytic
solutions to the problem under consideration are con-
sidered in the next subsection.

2.2. Analysis of the Problem

The first situation corresponds to the strong binding
condition. If Wio > 1 and Wio > K;/aV¥3, then
WYy(a,y) = 0 and y = 1, because the largest director
deviations from the tangential orientation cause asharp
increase in the last term in equation (7) for the energy,
which then takes the simpler form

= LLpi(<>(,1)+tus(0(), )
oV

1/3

where W,(a, 1) are increasing functions of angle a,
which can be written analytically (see Appendix I). As
Wqa) is a decreasing function, the competition
between the elastic and surface terms in (8) results in

the appearance of a minimum of @ . Examination of
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Fig. 3. Dependence of o, on W/o.

energy (8) for an extremum yields the R(a) depen-
dence, which, asin [13], has the form

R = C,fy(a) +Csf5(a), 9

where C, = K/o (i = 1, 3) arethe characteristic sizes of
the problem and

. .2
asino —2a°cosa + sin”a cosol
. . 2 1
cosafa(a + sina cou ) —2sin"d]

fi(a) =

_ (az— sinza)[a(l + 2cosza) —3sinacosa]
fa(a) =

4sinacosafa (0 + s cos )—Zsinza]

are the increasing functions of angle a.

The conclusion can be drawn from the above that,
under strong binding conditions, tactoids are prolate
because of the competition between the elastic and sur-
face energies.

The strong binding condition becomes invalid as
V — 0; that is, we then have W/o < K;/aVY3. Arbi-
trary small perturbations of the uniform director field
then sharply increasethe elastic termsin (7). Therefore,
W.(a, y) = 0andy=0. The equation for the energy then
takes the simpler form

o = LIJS(O()+\{I—V‘PW(O(,0), (10)

where W, (a, 0)) is an increasing function of the angle
o, which can be written analytically (see Appendix I1).
The competition between the surface and anchoring
energiesin (10) resultsin the appearance of a minimum

of ®. Examination of energy (10) for an extremum
yields the dependence of the angle o, which charac-
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terizes small-volume (V — 0) tactoids, on the dimen-
sionless parameter W/o,

W_ _ Wea) _ _ 24aq
o) l-lJ;N(G, 0) S.nzacr_zacr
8(sina, —a,cosa,)

(11)

. 1.3 °
SiNCl g — 0 COS0l — SN0l

Function (11) isplotted in Fig. 3. If W/o =0, thena, =
T2 and the tactoids have the shape of a sphere. If
W/o >0, then o, < 172 and the tactoids are prolate
because of the competition between the surface and
anchoring energies. AsW/o — o, d, tendsto zero.

The conclusion can be drawn that the R(a) depen-
dence should tend to (o, 0) as V — 0. When V
increases, this dependence becomes similar to func-
tion (9), which correspondsto infinitely strong binding.

2.3. Numerical Solution

Examination of (7) for an extremum requires knowl-
edge of the universal dimensionless functions W,(a, vy)
(i =1, 3) and Wy(a, y). They were obtained by numer-
ica integrations (1.4), (1.5), and (11.6). The level lines
and the position of the minimum of energy (7) at
Ky/0 =10 pm, Ky/o = 100 um, Wio = 10, and V =
108 um? are shown in Fig. 4. Changes in the volume of
atactoid cause changes in the position of the minimum
along thedashed line. AsV —» 0, weobtaina —» o,
andy — 0. When V — o, we have a — 112 and
y— 1

To summarize, setting the K,/o, Ki/o, and Wio
parameters and varying volume V, we calculated the
equilibrium values of the variables a and y correspond-

ing to minimum energy @® . Further, constraint equa-
tions (1) were used to obtain the R(a) dependences
shown in Fig. 5. In this figure, curve 1 corresponds to
the infinitely strong binding condition, which leads
to (9). At finite W/o values in the region of large vol-
umes, all curves approach curve 1, because the strong
binding condition is then satisfied. In the region of
small volumes, deviations from curve 1 are observed.
Stretching of tactoidsislimited by the angle a,, which
decreases according to (11) as the W/g ratio increases.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

A comparison of the theoretical R(a) dependences
with experimentally measured sizes of tactoids of vari-
ous volumes allows us to obtain the K,/a, Ki/a, Wia,
and K4/K; values. For this purpose, we prepared vana-
dium pentoxide solsin water by the Biltz method [22].
The concentrations C of the sols were determined by
evaporation immediately after their preparation. Sols
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Fig. 4. Level lines and the energy (7) minimum position at C; = 10 um, C3 =100 pm, W/o =10, and V = 103 um3. The dashed line
shows how the minimum position changes with changes in the volume of the tactoid.

nos. 1 and 2 had C = 0.5 and 0.6 wt %, respectively, and
both had pH = 3. One day after the preparation, the sols
were optically isotropic. Sols obtained by the Biltz
method are nonequilibrium systems, and the tactoid
phase appearsin them as time passes. Our observations
showed that the time required for the tactoid phase to
appear depended on the concentration and pH of the
medium. Increasing C and pH decreased thistime. The
concentrations and pH used in this work allowed usto
study the appearance and development of the tactoid
phases for half ayear. Approximately two months after
the preparation of the sols, they began to stratify. A tur-
bid phase began to form in the lower parts of the vessels
with the sols. A distinct interface between the upper and
lower phases was observed. The amount of the lower
phase grew as time passed. Polarization-optical obser-
vations showed that the lower phase was opticaly
anisotropic, its texture corresponded to a nematic
phase, and magnetohydrodynamic domains formed in
it under the action of amagnetic field. The upper trans-
parent phase remained optically isotropic. The tactoid
phase was prepared by mixing the upper and lower
phases. The mixing ratio influenced the number of tac-
toids formed.

The R(a) dependences were measured for samples
loaded into plane-parallel capillaries about 200 pum
thick, which were sealed by picein. Thethickness of the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

capillaries was determined by Teflon lining and mea-
sured interferometrically prior to loading. Immediately
after loading, the texture of the substance in the capil-
laries was anisotropic. We observed substance stratifi-
cation into the isotropic and anisotropic regions in the
time (from an hour to aday) that depended on the time of
aging. Further, the anisotropic regions acquired the
shape of tactoids. This was accompanied by a particle-
size distribution.

R, pm
300 ,

250

200

150

100

50k 2

1
0 02 04 06 08 10 12 14
a, rad

Fig. 5. Functions R(a) at C; = 4 um, C3 =40 pm, and W/o
of (1) 0, (2) 50, (3) 10, (4) 2, and (5) 1.
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Fig. 6. Experimenta R(a) dependence obtained for sol
no. 2 (C = 0.6 wt %) 83 days after its preparation. Line 1 is
the theoretical dependence calculated for C; = 8 £ 2 um,
C3=230+5pm,and W/o =12 + 2, and line 2 isthe plot of
function (9) constructed for the same C, and C; values.

To see if the prolate shape of tactoids was equilib-
rium, flows were mechanically excited in capillaries
with the substance. This caused smearing of tactoid
boundaries and induced birefringence in the isotropic
phase. The texture became anisotropic as a whole. As
time passed, the same process as that directly after sub-
stance loading occurred. The anisotropic regions again
acquired the shape of tactoids.

For the system to attain equilibrium, all measure-
ments were taken in a day or later (depending on the
aging time) after loading of the substance into capillar-
ies. Measurements were taken with an Axiolab Pol
(Zeiss) polarization microscope. The images were

Cl’ Hm
16 T T T T T T T

of i
i [
AR '

0 40 80

1
120 160 200 240 28
t, days

Fig. 7. Experimental dependence of C; = K/0 on the time
of aging t of solsnos. 1 (open circles) and 2 (triangles).
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transmitted to amonitor with the use of avideo camera.
Tactoid sizeswere determined with aLinkamVTO 232
attachment. Only tactoids whose size was smaller than
the thickness of the cell were measured.

The measurement results were the Rand o parame-
ters for tactoids of various volumes. A typical experi-
mental R(a) dependence obtained for sol no. 2 isshown
in Fig. 6. The dependence was measured 83 days after
preparation. A comparison of the theoretical and exper-
imental R(a) dependences allowed us to calculate the
C,, C;, and W/o parameters by the method of least
squares. The approximating curveisshown in Fig. 6 by
solid line 1. Line 2 is function (9) plotted for the same
C, and C;valuesasline 1.

Measurements of R(ar) after various times of aging
gave the dependences of C;, C;, Wio, and Ky/K; =
C,4/C, onthistime shown in Figs. 7-10. It followsfrom
Fig. 7 that C, ~ 8 umwasindependent of thetime and the
sol number. Using the K; = 4 x 107 dyn value obtained
from the data on the Freedericksz transition in the nem-
atic phase of the system under consideration [12] and
C,= 8 um, we found that surface tensionisc =5 x
10* erg/cm? at the tactoid boundary. Such low surface
tension values are responsible for the prolate shape of
macroscopic tactoids. It follows from Fig. 8 that C,4
decreases for both sols as time passes.

The dependence of the ratio between elastic con-
stants K4/K; on the time of aging is shown in Fig. 9,
according to which thisratio has atendency to decrease
in both sols and changes in the range 30-10. The
K4/K; ~ 10ratios obtained in thiswork arein agreement
with similar data on another lyotropic nematic phase,
the tobacco mosaic virus (TMV)—water system. For
this phase, the K4/K; = 8.8 value was obtained by study-
ing magnetohydrodynamic domains [23]. Note that,
although the TMV—-water system does not belong to

C3, um
280+ L .

240} -
200} o |
160} (- gj: -

120+ M
%

80

40

1
0 40 80 120 160 200 240 28
t, days

Fig. 8. Experimental dependence of C; = K3/o on the time
of aging t of solsnos. 1 (open circles) and 2 (triangles).
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Fig. 9. Experimental dependence of the ratio between elas-
tic constants K3/K;, = C5/C; on the time of aging t of sols

no. 1 (open circles) and 2 (triangles).
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Fig. 10. Experimental dependence of the W/o ratio on the
time of aging t of solsno. 1 (open circles) and 2 (triangles).

inorganic lyotropic liquid crystals, it also contains a
tactoid phase [24]. In addition, the K4/K; ~ 10 ratio was
also measured in the nematic phase N, of a lyotropic
liquid crystal in the tetrapaladium organyl—-pentade-
cane system [25]. These measurements were based on
studying the Freedericksz transition. It appears that the
large K4/K; values are related to the large ratios
between length L and diameter D of structural ele-
ments. For instance, for TMV, we have L/D = 17 [23],
whereas for paraazoxyanisole, which isatypical repre-
sentative of thermotropic liquid crystals, L/D = 4 [1].

The dependence of the ratio W/o on the time of
aging is shown in Fig. 10, according to which this ratio
tends to increase with the time for both sols and
changes in the range 10-100. At times of aging longer
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than 150 days, all experimental R(a) dependences are
well described by function (9), which corresponds to
infinitely strong binding. In order to determine W/o, we
must then measure the size of tactoids of a very small
volume. Such measurementsinvolve difficulties because
of instrumental limitations. The o estimate obtained ear-
lier and the range of W/o ratio variations alow W to be
estimated at W ~ 5 x 10°-5 x 102 erg/cn?. These
anchoring energy W values closely agree with similar
data on thermotropic liquid crystals [21].

4. CONCLUSIONS

In this work, we suggested an explanation for the
prolate shape of tactoids observed in lyotropic inor-
ganic liquid crystals. Our approach is based on the
equation for the free energy of a tactoid that includes
the elastic energy of the nematic phase of the tactoid,
the surface energy related to surface tension, and the
interaction energy between the director field and the
tactoid boundary related to the anchoring energy. The
examination of the energy of the tactoid for an extre-
mum alows its equilibrium shape to be determined.
This shape depends on the characteristic problem
dimensions K,/o and K/a, the dimensionless parame-
ter W/o, and the volume V of the tactoid. It has been
shown that large-sized tactoids, for which the strong
binding condition is satisfied, are prolate because of the
competition between the elastic and surface energies.
Thestretching of small-sized tactoidsasV —» Qislim-
ited by the competition between the surface tension and
anchoring energy. The conclusion can be drawn that
small surface tension and large (compared with a) W
values are required to observe the tactoid phase experi-
mentally.

A comparison of the theoretical and experimental
R(a) dependences obtained for atypical lyotropic inor-
ganic liquid crystal in the vanadium pentoxide—water
system alowed us to determine the K;/a, K4/o, K4/K;,
and W/o vaues as functions of the time of system
aging. It was found that the K4/K; ratio varied from 30
to 10, which was in agreement with similar data
obtained for some lyotropic liquid crystals. The Wia
ratio varied from 10 to 100. The estimates W~ 5 x 103~
5 x 102 erg/lcm? and 0 ~ 5 x 10 erg/lcm? were
obtained. The W values closely agree with similar data
obtained for thermotropic liquid crystals. The o value
is, however, exceedingly small. For thisreason, nematic
droplets, or tactoids, become prolate. Usually, the situ-
ation is reverse with thermotropic liquid crystals, for
which o ~ 10 erg/cm? and W ~ 102 erg/cm? [21], and
we do not observe prolate droplets in such systems. It
appearsthat the inequality W > ¢ obtained in this work
isamanifestation of one of the special features of inor-
ganic liquid crystals.
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APPENDIX |

The equation for the nematic phase elastic energy
density Fy hastheform [1]

Fo = K?l(divn)2+ K72(n [totn)?
(1.1)

K
+—2—3(n x rotn)?,

where K, K5, and K3 are the elastic constants of splay,
twist, and bend deformation, respectively, and n is the
director. The unit vector n coincides with the basis vec-

tor e, of the bispherical coordinate system &;, Ny, ¢;.

In this system of coordinates, n = (0, 1, 0). The bispher-
ical coordinates arerelated to the Cartesian coordinates
X, Y, Z by the equations [20]

_ &,8n&,cosf,
coshn,; — cos¢,’

D
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a,sing,;sing,
coshn,; —cos¢,’
a;sinhn;
~ coshn, —cos&,’
where a; = R;sinq; is the transformation parameter

(Fig. 2). In bispherical coordinates, the elastic energy
density (1.1) takes the form

~ 2Klsinh2n1+ K,sin’g,
a 28

(1.2)

el

The elastic energy @ of the nematic phaseis obtained
by integrating (1.2) over the tactoid volume V. Theinte-
gration can conveniently be performed inthe &, n, ¢
coordinates with the parameter a = Rsina, which
describes the shape of thetactoid. The limits of integra-
tion then havethesimpleformm—a <& <1, —0<n <
0, 0 < ¢ < 1, and the Jacobian of the transformation
D(El! r]lv ¢1/E1 n’ ¢) |SWf|tten as

4y

where y = (tan(a,/2)/tan(a/2))2. The elastic energy Py
eventually takes the form

21 o0
Py = [ [an
o (1.3)

T
“J
m—a

A comparison of (1.3) with (3) yields

4K, sinh’nsing + K,sin®
1 nsing 3 EDd

(coshn — cos¢)® &

o(a,y) = 4mysina
(1.4)

© " snh’nsing
x [d Ddg,
_Im nnJ_’u(coshr] — cost)®

o (a,y) = mysina

® " i3 (1.5)
sin
SO [ oo
J n—u(COShr] —C0st)
If y=1, integrals (1.4) and (1.5) are calculated analyti-
cally to obtain

Ddg.

oP(a, 1) = 4n(sinoa—acosa),

(0, 1) = m(3sina —3acosa —a’sina).
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* (coshn — cost )2 — 2y(cosh?n + cos’E —2) + y*(coshn + cosé)?

APPENDIX 11

Theinteraction energy ®,, between thedirector field
and the surface is calculated by (5). The integration
in (5) is performed over the surface of the tactoid. The
@, energy can conveniently be calculated in bispheri-
cal coordinates. The dS surface element of the surface
of the tactoid can then be written in the form

ds = a’sina
(coshn + cosa)®

Here, it istaken into account that & = t—a at the bound-
ary of the tactoid. The integration limits are —o < n <
0, 0< ¢ < 21t The sin?0 valueis calculated by the for-
mula

dndé. (11.2)

sin’8 = 1-(e,, [&,)%, (11.2)

where e, and g, arethe normalized basis vectors of the

bispherical coordinates ¢;, n4, ¢, and &, n, ¢, respec-
tively. The Cartesian components of e, are

_ _sin&sinhn cosp
X coshn — cos¢ ’
_ sin&sinhn sin
Cny = coshn — cos€ ’ (11.3)
_ 1-—coshn cosg

Nz = coshn — cost
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The Cartesian components of e, arewritten similarly  allowsthe scalar product (e, - €,) to becalculated. The

with the replacements & —~ &,,n —=n,, andp —~ resultdependsoné,, ny, ¢, and &, n, ¢. Writing &;, ny,
. ¢, through &, n, ¢ and taking into account that & = TT—
¢,. The use of the Cartesian componentsof e, and e, q at the tactoid boundaries, we obtain

2(y—1)’sin‘asinh’n

sin’® = — > . (11.4)
2(y+1)"—4(y"—1)cosacoshn + (y—1)"(cos2a + cosh2n)

Taking these results into account, we can write ®,,in 8. A.S. Sonin, J. Mater. Chem. 8, 2557 (1998).

the form 9. P Davidson, C. Bourgaux, L. Schoutteten, et al.,
J. Phys. II 5, 1577 (1995).
2n 10. J-C. P. Gabridl and P. Davidson, Adv. Mater. 12, 9
O, = WR? sm 0(-r I sin’e _dn, (11.5) (2000).

(coshr] + coso() 11. A. V. Kaznacheev, A. Yu. Kovaevskii, . A. Ronova,

et al., Kolloidn. Zh. 62, 606 (2000).

12. E. V. Generalova, A. V. Kaznacheev, and A. S. Sonin,

o .
where Sin“0 is given by (11.4). A comparison of (11.5) Kristallografiya 46, 127 (2001) [Crystallogr. Rep. 46,

13. A.V. Kaznacheev M. M. Bogdanov, and S. A. Taraskin,
sin’e Zh. Eksp. Teor. Fiz. 122, 68 (2002) [JETP 95, 57
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If y =0, integral (I1.6) is calculated analytically to 15, A. Szegvari, Z. Phys. Chem. (Leipzig) 112, 295 (1924).
obtain 16. H. Zocher, Kolloid Z. 139, 81 (1954).
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®,(a,0) = T[Ejﬁ.n - 0 COS _}Sinso% (Plenum, New York, 1980), p. 153.

3 18. M.V.Kurik and O. D. Lavrentovich, Usp. Fiz. Nauk 154,
381 (1988) [Sov. Phys. Usp. 31, 196 (1988)].
19. W. H. de Jen, Physical Properties of Liquid Crystalline
REFERENCES Materials (Gordon and Breach, New York, 1980; Mir,
. I Moscow, 1982).
1. PdeG , The Ph f Liquid Crystals (Clarend ’ . .
prﬁes, S';'(?ﬁfd, 1874;),/\75? &Ogg\:\,’ 19r¥n_ s(Clarendon 20. G. Arfken, Mathematical Methods for Physicists, 2nd
2. L. M. Blinov, Electro-Optical and Magneto-Optical ig?(())Academm New York, 1970; Atomizdat, Moscow,
\F,)\;ﬁg‘zr R,%;N%O&L?L{gsg;yﬁa's (Nauka, Moscow, 1978, 51 | "\t "Blinov, E. I. Kats, and A. A. Sonin, Usp. Fiz. Nauk
3. S. A. Pikin, Structural Transformation in Liquid Crys- 152, .449 (1987) [Sov. Phys. Usp. 30, 604 (1987)].
tals (Nauka, Moscow, 1981). 22. W. Biltz, Ber. Dtsch. Chem. Ges. 37, 109 (1904).
4. A.A.Vedenov and E. B. Levchenko, Usp. Fiz. Nauk 141,  23- A.J. Hurd, S. Fraden, F. Lonberg, et al., J. Phys. (Paris)
3(1983) [Sov. Phys. Usp. 26, 747 (1983)]. 46, 905 (1985).
Usp. 30, 875 (1987)]. 25. A. V. Kaznacheev, K. Praefcke, A. S. Sonin, et al., Kol-
6. A.S. Vasilevskaya, E. V. Generalova, and A. S. Sonin, loidn. Zh. 64, 468 (2002).
Usp. Khim. 58, 1575 (1989).
7. A.S. Sonin, Kolloidn. Zh. 60, 149 (1998). Trandated by V. Spachev

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97 No. 6 2003



Journal of Experimental and Theoretical Physics, Vol. 97, No. 6, 2003, pp. 1168-1185.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 124, No. 6, 2003, pp. 1308-1328.

Original Russian Text Copyright © 2003 by Inogamov, Oparin.

FLUIDS

Bubble Motion in Inclined Pipes

N. A. Inogamov? and A. M. Oparin®
4_andau I nstitute for Theoretical Physics, Russian Academy of Sciences,
Chernogolovka, Moscow oblast, 142432 Russia

bInstitute for Computer-Aided Design, Russian Academy of Sciences,
Vtoraya Brestskaya ul. 19/18, Moscow, 123056 Russia

e-mail: a.oparin@icad.org.ru
Received June 11, 2002

Abstract—Highly nonlinear free-surface flows in vertical, inclined, and horizontal pipes are analyzed. The
problem of bubble motion in a vertical pipe is closely related to the Rayleigh—Taylor instability problem.
Inclined pipe flows are intensively studied as related to gas and oil transportation. A new theory of motion of
large bubblesin pipesis devel oped. Asdistinct from previous approaches, which relied on semiempirical meth-
ods or numerical fitting, analytical methods of potential theory and complex analysis are used. A careful com-
parison of 2D and 3D solutions is presented. It is shown that a higher dimensionality may not correspond to a
higher bubble velocity. For the first time, free-surface flows in inclined pipes are analyzed by means of direct
numerical simulation, which makes it possible to develop a new approach to the Rayleigh-Taylor instability
problem (bubbles with wedge- and cone-shaped noses). © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The problem of two-phase pipe flow frequently
arises in applications of physical fluid dynamics. One
common type of flow regimes is slug flow, in which
large bubbles moving through the pipe are separated by
“dlugs’ with low gas content [1]. Flows of thistype are
very complicated. No satisfactory mechanistic model
of slug flow has been proposed to this day. The drift
velocity of the lighter phase relative to the mean flow is
evaluated in terms of the velocity obtained by solving
the problem of the rise of a solitary elongated bubble
driven by buoyancy forcesin a stagnant fluid. Thisfirst
step toward understanding the physics of slug flow
regimes and related problems were discussed exten-
sively in the literature [1-15].

In this paper, we present both theoretical and numer-
ical analyses of the rise of elongated bubbles in a stag-
nant liquid. Our studies are restricted to high Reynolds
and Weber numbers (low-viscosity flow and pipe diam-
eter much greater than the capillary length scale). Bub-
ble rise has been the subject of intensive studies in the
theory of Rayleigh—Taylor instability (RTI) as applied
in astrophysics and high energy-density physics (see
reviewsin [16-18]). Bubbles of thiskind develop in the
course of nonlinear RT| development.

Comparing studies of two-phase pipe flows and
RTI, one can natice a regrettable lack of communica
tion between specialistsin hydraulicsand RTI, whereas
the phenomenain question are analogous (shear turbu-
lence, gravity waves and Richardson number, baro-
clinic vorticity generation, etc.).

In this study, an approximate analytical solution to
the problem of bubble motion in a 2D inclined pipeis

found by invoking functions of a complex variable and
a hodograph method. We obtain a simple analytical
dependence of the velocity U of bubble motionin apipe
of diameter D on the inclination angle a between the
pipe and the horizontal axis. Previous analyses relied
on empirical correlations derived from experiment [3,
6-9], or the model of dliptical bubble[2], or the empir-
ical formula[3]

U(a) = U,cosa + U, sina,

where U,, and U,, are the velocities of bubble motion in
horizontal and vertical pipes respectively. In the case of

a circular cylindrical pipe, U, = 0.54./gD [19] and
U, = 0.35./gD [16, 20-22].

In the case of an elliptical bubble, the free boundary
makes aright angle with thewall at the apex of the bub-
ble. However, our results show that the boundary and
the wall make awedge with adifferent anglein asmall
neighborhood of the apex. In the 2D case, the angle 6,
between the wall and the boundary of theliquidis 120°.
In a 3D inclined cylindrical pipe, the tangent plane to
the wall makes a right angle with the vertical center-
plane. Thus, the three-dimensiona flow pattern is
locally similar to the two-dimensional one in a small
neighborhood of the apex. However, the value of 6, is
dlightly greater than 120° in the 3D case. The vertical
centerplane is defined as the plane spanned by the pipe
axis and the gravity vector g. The projection of the bub-
ble surface onto the vertical centerplane is an ellipse
in [2]. Accordingly, the generators of the bubble surface
are perpendicular to the plane.
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We develop amodel inwhich the actual geometry of
the boundary (wedge, not ellipse) istaken into account.
The boundary geometry cal culated by using this model
is compared with that obtained by direct simulation of
the flow.

One interesting trend in the behavior of U(a) isits
increase with the deviation of the pipefrom the vertical,
which disagrees with an expected decrease. Since the
liquid bounded by thefree surfaceis“falling” insidethe
pipe, the “speed” of its “fall” would seem to decrease
with the component of g along the pipe. This strange
behavior of the velocity as a function of the angle was
noted by all specialists who studied the problem [2, 3,
6-9].

The model developed here provides a simple quan-
titative explanation of the increase in bubble velocity
with deviation of the pipe from the vertical. It is shown
that the velocity of the bubble rise aong the wall
depends on the projection of g onto the tangent plane to
the boundary at the apex, while the boundary makes an
angle 6, > 90° with the wall (as noted above).

First of all, thisimpliesthat the function 6, > 90° has
amaximum. The existence of a maximum was noted in
many experimental studies [2, 3, 6-9]. Second, the
angle a,,,,« corresponding to the velocity maximum can
be evaluated. Note aso that qualitative predictions of
the influence of the decrease in gravitationa potential
along a curved boundary on the bubble velocity can be
found in an earlier study [7].

We also present some new resultsthat are of interest
for the theory of RTI. A wedge-shaped bubble with 6, =
120° exists in the entire range of a. Consequently, the
corresponding solution remains valid as o — 90°
(vertical pipe). Thus, the 2D RTI problem has two
steady solutions corresponding to blunted and wedge-
shaped bubbles.

The velocity and shape of the blunted bubble (6, =
90°) are well known [16-18]:

Ug = (0.33-0.34)./gD.
Theradius of curvature at its apex is
R = (0.80+0.06)D,

where D isthewidth of the strip inwhich asymmetrical
half-bubble is considered. A good estimateis

U = Ug/A/gD = (3T e

[22] (seeds0[16-18, 23-25]). In this study, theoretical
estimates for the vel ocity and shape of awedge-shaped
bubble consistent with experiment are obtained for the
first time. The hodograph method predicts

UlZO = (27'[)_1/2 = 0.40 ;
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the force balance method,

UlZO = 042.

A direct numerical simulation (DNS) yields

UlZO = 0.42 +0.02.

The estimate Uiy = 0.51 obtained previously [26]
exceedsthe value obtained in our numerical experiment
by 23%. We estimate the difference between the point
solutions, U;,¢/Ug,, as 22%. The corresponding bubble
shapes are compared below.

Onekey probleminthetheory of RTI iswhich of the
two steady flow regimes devel ops under smoath initial
conditions (which steady state is the attractor of trajec-
tories). In[17, 18, 25], it was hypothesized that the tra-
jectories of the dynamical system modeled by a Cauchy
problem approach the steady 120° regime. This conjec-
ture was based on results obtained both anaytically
[25] and numerically by analyzing the behavior of the
dynamical system that approximates instability devel-
opment from a dlightly perturbed hydrostatic equilib-
rium [17, 18, 25, 27] by the method of asymptotic col-
locations (MAC). Analysis of the system makes it pos-
sible to simulate the instability development to degrees
of nonlinearity much higher than those attained by inte-
grating time-dependent integral equations by means of
a Fourier transform technique [28, 29] or by using
weakly nonlinear series expansions [30-32].

It is also important that the same system can be
used to describe flow evolution near the steady 90°
regime [23] by taking aninitial point lying sufficiently
closeto this regime. The steady 120° regime cannot be
reached by starting from near-hydrostatic conditions by
means of MAC, because the corresponding trajectory is
“blocked” by a singularity. The MAC approximation
“works’ near the steady 90° regime. The explanation
may not lie in the fact that the method fails for large
amplitudes (as do weakly nonlinear expansions or inte-
gra equations). This may imply that the approximated
system approaches the steady 120° regime (as sug-
gested by the aforementioned analytical solution).
However, the steady 120° regime cannot be reached by
using MAC, because approximation by means of MAC
“incorporates’ the structure of the stagnation point at
the bubble apex (the first term in the expansion of the
potential is quadratic).

The steady 90° regime is a very interesting one.
There exists aone-parameter (1d) family of fictitious or
formal steady-state solutions containing a point (Od)
solution [17, 18, 23]. Generally, the steady 90° regime
isinterpreted as the Od point. The 1d steady-state solu-
tions (except for the Od point) are fictitious in that they
cannot be approached in the course of time[17, 18, 23]
(even starting from an arbitrarily small neighborhood
of any 1d steady-state solution).
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Fig. 1. Emptying of aclosed pipe. (8) Theinitial configura-
tion (t = 0): heavy liquid is held in a gravity field (with
acceleration g) by pipe walls bc and ad and diaphragm ab.
(b) The intermediate stage: t ~ A/D/g (D isthe pipe width.
(c) Steady state: t > 4/D/g . Inthe plane flow, tangent AT to
boundary G at the apex A makes the angle 6. = 120° with
thewall.

The DNS results presented in this paper show that
the RTI development initiated by an infinitely differen-
tiable near-hydrostatic disturbance can evolve into a
steady 120° regime.

Consider the Rayleigh-Taylor instability in a 3D
geometry. As in the 2D case, we consider the rise of
Rayleigh-Taylor bubbles, i.e., a = 90° (we tentatively
set aside analysis of the 3D flow in an inclined pipe).
Thereexistsa 1d family of steady bubbleswith rounded
noses (B, = 90°) containing an exceptional 0d point.

In this study, a 3D analog of the wedge-shaped bub-
bleisfound for thefirst time and shown to have a cone-
shaped nose. We calculate the cone angle 1— 6, (6, =
114.799° = 115°) and the bubble-rise velocity. The dif-
ference between the axially symmetric steady stetes,
U;15/Uqgp, 1S 10% (less than in the 2D geometry): U5 =

0.54./gR (by the force balance method) and Uy, =

(0.48-0.50)./gR [1-8, 16, 20, 21], where R is the
radius of acircular cylindrical pipe.

However, one may consider the flow not only in a
circular pipe, but also in pipes with hexagonal, square,
or triangular cross sections. Each of these cross sec-
tions can be combined into a tessellated plane, i.e, a
plane lattice. The velocities and shapes of the blunted
bubbles (with 8, = 90°) that make up such lattices were
calculated in [23]. Steady bubbles with cone-shaped
noses can exist not only in circular pipes, but aso in
pipes of arbitrary cross section. To evaluate the rise
velocity for a lattice of cone-shaped bubbles, one may
neglect the dependence of the gap width U,;5/Ug, 0N the
lattice type in the first approximation, using the values
of Uy, obtained in [23].
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The paper is organized as follows. In Section 2, the
flow geometry is described. In Sections 3 and 4, we
present the hodograph method used in the cases of
blunted and wedge-shaped bubbles, respectively. Note
that a simple analytical expression for U(a) is obtained
in Section 4 for the velocity of a wedge-shaped bubble
in an inclined pipe flow. The momentum of a wedge-
shaped bubble is calculated in Sections 5 and 6 for 2D
and 3D geometries, respectively. In Sections 7 and 8,
weanalyzea3D flow inthe gravity field with afree sur-
face having a conical singularity. In Sections 9-11, we
compare the theory with numerical and physical exper-
iments.

2. WEDGE GEOMETRY

The geometry of the problem is depicted in Fig. 1.
The 2D pipe fecd contains adiaphragm ab (see Fig. 1a).
The region abcd is occupied by an incompressible
inviscid liquid. The vertical direction defined by the
gravity force is indicated by the arrow g. At t = O, the
diaphragm is removed. The interface G separates the
liquid from a gas of negligible density (see Figs. 1b
and 1c). The liquid moves downwards, and a “tongue’
or ajet develops. The flow must satisfy certain condi-
tions at infinity (as x — +). The far end of the pipe
abcd is plugged by awall cd, at which the liquid is at
rest. Theliquid cannot dip freely along thewallsec and
fd, because the gas pressure pushes it toward the plug.
This situation isreferred to as the emptying of a closed
pipe. Consider the evolution of theinterface G. Thelig-
uid penetrates the gas in the form of ajet B, while the
gas penetratestheliquid in the form of abubblewithits
apex at point A (see Figs. 1b and 1¢). A gas-liquid two-
phase flow develops as a result. The velocities of the
phases in the laboratory frame (where the walls are at
rest) are shown by arrows (see Fig. 1b). Vorticity
(ajump in the velocity component tangential to G) is
concentrated on the interface G. Outside G, both gas
and liquid flows are potential.

Asymptoticaly (ast — ), the flow near the apex
Atendsto asteady statein which the shape of theinter-
face G remains invariant in aframe tied to point A. We
restrict our analysis to the important case of “ideal”
walls, low-viscosity flow (high Reynolds number), and
awide pipe (high Weber number, i.e., low surface ten-
sion). In the 2D geometry, the steady free surface G
makes an obtuse angle 6, = 120° with the x axis (see
Fig. 1c). Theintersection angle 6. isindependent of the
pipe inclination angle a (see Fig. 1a). The angle
between the downward vertical direction and the tan-
gent line AT isa — 30° (see Fig. 1¢).

Therise of bubbleswith rounded noses and 6, = 90°
(see Figs. 2a and 2b) in vertica pipes (a = 90°) was
analyzed in numerous studies (seereviewsin [16-18]).
The development of RTI under monochromatic initial
conditionsin an unbounded liquid results in the forma-
tion of aperiodic array of bubbles. The symmetric flow
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pattern spanning a period A of the array isillustrated by
Fig. 2a; one-half of it, by Fig. 2b. Wedge-shaped bub-
bles with 6, = 120° (Fig. 1c) exist at any inclination
angle a. By continuity, thisentailsthe existence of such
asolution for the vertical pipe flow (Fig. 2c¢).

Thus, when a = 90°, there exist two solutions to the
time-independent boundary value problem: with 6, =
90° (Fig. 2b) and 6, = 120° (Fig. 2c). It is obvious that
the symmetrical half of the solution illustrated by
Fig. 2c generates a periodic array of wedge-shaped
bubbles in an unbounded liquid (solution to the RTI
problem with 6, = 120°). The interface G can make a
right angle with a straight pipe wall only in the vertical
case. This explains why only wedge-shaped bubbles
with 6, = 120° exist when 0 < a < 90°.

3. HODOGRAPH METHOD
FOR 6, = 90°

The ideas underlying our quantitative anaysis of
wedge-shaped bubbles are easily explained by consid-
ering the well-studied case of round-nosed bubbles.
Generally, this exampleis analyzed in physical coordi-
nates (see [16-18, 20-25]). In these variables, the
potential of the steady flow illustrated by Fig. 2bis

ane—nz |:|
+ 7],
n

f=o¢+ip = —UEZ
4= (3.1)

N

zan =1, z=Xx+iy.

n=1

The flow velocity is determined by the real part of the
potential,

v=(uv) =101,
and the boundary condition
V[, .. = (-U,0), U>0.

The potential is written in (3.1) in a frame tied to the
apex at z=0for D = 1t Theinterface G isaligned with
the streamline Y = O, since the amplitudes a,, are real
numbers.

Figure 3 shows the physica plane and the
hodograph plane

where u and v are the x and y velocity components,
respectively (see Fig. 3a). It should be noted that the
apex at z= 0 (see Fig. 2b) isthe stagnation point, where
v =0and { = 0. The region U0OGeoU occupied by the
ligquid in Fig. 3ais conformally mapped by {(2) into the
region 0Geo(—U)O0 in the { plane (see Fig. 3b). These
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(a) (b)

Fig. 2. Specia case of the vertical position (a = 90°). In
contrast to the case of a # 0, there exist two steady-state
solutions: (g, b) round-nosed bubble and (c) wedge-shaped
bubble. When a # 0, only the wedge-shaped bubble exists
(Fig. 1c).

o (b

Fig. 3. Hodograph ¢ for round-nosed bubbles.

regions are bounded by line segments and the gasig-
uid interface G. The points U, O, and « in the z plane
correspond to the points —U, 0, and o in the ¢ plane.
The tangent lines to curve G at the points O make right
angles with the x and u axes in the z and { planes,
respectively.

It iswell known that even the first term in expan-
sion (3.1) provides a good approximation of the
required steady-state solution (withN = 1) [17, 18]. The
velocity U obtained with N = 1 agrees with experimen-
tal resultswithin an experimental error of afew percent.
Originally, the approximation with N = 1 was used
in[21] for acylindrical pipe flow (see aso [16-18, 20,
22-25]). The Fourier expansion of expression (3.1) sat-
isfies both the lateral (periodic) boundary conditions
and the conditions at infinity (asx — +). The veloc-
ity U is determined by the conditions on G. These
include a kinematic condition dictating that G be a
streamline Y|g = const (with const = 0) and adynamical
(isobaric) condition of independence of pressure plg
on theinterface of coordinates (with p|g = 0). Expand-
ing (3.1) in powers of z about z = 0, one finds
(see[16-18, 20-25])

U = 490 (3.2)
/31
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Here, we derive (3.2) by the hodograph method with a
view to proceed from the case of 6, = 90° to the case of
0, = 120° (see next section). We write an approximation
of the complex potential f in the hodograph plane as

3
f= UIn(Z+U)—Z=%+Z—. (3.3)

U2

The first term in (3.3) is a source of intensity 2mJ
located at (—U, 0) (see Fig. 3b). It corresponds to the
flow denoted by U in Fig. 3aand theterm —-Uzin (3.1).
The term —Uz plays the predominant role at infinity in
the z plane, while the source in (3.3) dominates near the
point (U, 0) inthe { plane. Other terms become essen-
tial in the neighborhood of the stagnation point: the
term containing an exponential in (3.1) and the term —
in (3.3). The corresponding coefficients are such that
the stagnation point islocated at the origin. It isfor this
reason that the expansion in powers of  in (3.3) begins
with a quadratic term.

To determine U in approximation (3.3) up to thefirst
two terms of an expansion in ¢, we differentiate (3.3)
and substitute the result into the equation ¢ = df/dz to
obtain

z _ 1,28

d¢ U y?

Integrating this expression, we find
.z
2Q) = 5+ 5

Determining {(2) astheinverse of z({) under the condi-
tion ¢(0) = 0, we have

g__u +U_Z

¢= dz 2
Hence, we derive expressions for the streamfunction
Y(x, y) and the squared velocity v2(x, y) = {{* and use
the boundary conditions on G to obtain (3.2).

4. HODOGRAPH METHOD FOR 6, = 120°

The hodograph method can be used to obtain an
approximate analytical expression for the velocity of
wedge-shaped bubbles (Fig. 2c). The only difference
between the z and  planes corresponding to the case
illustrated by Fig. 2c and the cases illustrated by
Figs. 2b and 3 lies in the angle 6, between the tangent
lineto the curve G at the origin and the x or u axis (90°
and 120°, respectively). Accordingly, werely on Fig. 3
in our explanations, assuming that G makes the appro-
priate angle at the bubble apex. We write

f=UinH+ 807+ L

50~ 307 4.1)
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In (4.1), the term containing a logarithm is a source
located at (-U, 0). The remaining terms are adjusted to
meet the following requirements. First of all, the stag-
nation point must lie at ¢ = 0. Furthermore, the first
term in the expansion must be cubic (i.e., the quadratic
term must be compensated). This is dictated by the
requirement that the zero streamline Y(Re(, Im{) =
must emanate from the origin ({ = 0) at an angle of
—-120° to the Rel axis.

To caculatethe velocity U in (4.1), we take the first
nonvanishing term in the expansion of the logarithm.
Using the equation { = df/dz, we obtain

Consequently,
2
Z = Z_Z
2U
or
(= =200z,

where the use of the minus sign is dictated by an anal-
ysis of the mapping { — z(seeFig. 3). Integrating the
last equation, we find the complex potential in terms of
physical variables near the apex:

fo _2«/:;2U A2

Setting (X, y) = Imf = 0, we write an equation for the
zero streamline

—/3x

in the neighborhood of z= 0 (kinematic condition). The
velocity magnitude squared is

((* = 2052 + y2.

On the zero streamling, it is
(€C*)y <o
= 207 /%" +[y(X)], _J” = 4U°(~x).

Expressions (4.1) and (4.2) are valid in the general
case, remaining invariant for any inclination angle a
(Fig. 1). Let us now write out the dynamical condition.
Theanglea iscontained in the expression for U by vir-
tue of this condition. By Bernoulli’s theorem, we have

yle:O =

(4.2)

4%
2

V? = = g(ycosa —xsina). 4.3
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In Eq. (4.3), the point (X, y) lieson theinterface G. Sub-
stituting the function

Y(X) = o= =+/3x

for yin (4.3), combining (4.2) with (4.3), and perform-
ing some simple agebra, we obtain

U(a) = /%TS_G)«/Q_D.

Expression (4.4) is the desired approximate analytical
one characterizing wedge-shaped rising bubbles in
inclined pipes at arbitrary a. When a = 90°, we have

U/.JgD = 1/./2m
(cf. (3.2)). Itisclear that the vel ocity of awedge-shaped
bubble is higher than that of a round-nosed one by a
factor of ./3/2 = 1.225 (by 23%).

The function U(a) in (4.4) has a shallow maximum
at a = 30° (the pipe makes 60° with the vertical):

_ 2
G

The projection of the velocity of bubble motion along
the pipe onto the vertical lineis

(4.4)

) = s UG

J(90°) u(0°) = 1075

U,er(a) = U(a)sina Osina ./cos(Ttoxy6—a).

The highest velocity U, () is reached when the devi-
ation from the vertical position is 21.6°:

( Uvert)max
Uyen(90°)

Thus, our analytical study shows that the highest
U(a) and U, ,(a) are reached at nonvertical positions.
Note that the maximum of the function U(a) lies far
from the vertical position. The fact that the maximum
of U(a) is reached far from the vertical is well known
to experimentalists (see[2, 3, 6-9]). In[7], aqualitative
explanation of the nature of this maximum was sug-
gested. The anaysis presented above exposes the
underlying mechanism. Consider the displacement of a
liquid particle to a certain distance along the streamline
Yo emanating from the stagnation point in the neighbor-
hood of the stagnation point. The gravitational energy

= 1.16.

g = —gsinax+ gcosay

decreases the most rapidly when the streamline , (not
the pipe) is aligned with the vertical. The orientation of
the coordinate system (X, y) (along and across the pipe)
relative to the horizontal and vertical directions is

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

1173

shown in Fig. 1. In a small neighborhood of the apex,
= —./3x on the curve of y,. Hence,

g O cos(TV/6—0).

This explains why the maximum velocity is attained
when the pipeis not in the vertical position.

Thevaue a,,, = 30° is obtained in the first approx-
imation, when only the first term in retained in expan-
sion (4.1) of the potentia f. The corresponding maxi-
mum of the bubble velacity U is reached when the tan-
gent line AT to the free boundary at the apex is parallel
to the vector g. One may expect that the maximum of U
corresponding to higher order expansions is reached
when acertain secant of the free surface making asmall
angle with AT is paralel to g. Accordingly, the angle
O max Must be dlightly greater than 30°.

5. BUBBLE MOMENTUM: 2D GEOMETRY

An aternative to the hodograph method described
above relies on conservation laws. The mass, momen-
tum, and energy conservation laws can be used to deter-
mine the function U(a) approximately. An important
advantage over the hodograph method is the possibility
of extending the analysis to 3D flows. It can aso be
shown that exact values of U(0) and volume fraction of
the liquid can be obtained in the horizontal case (a = 0)
in both 2D and 3D geometries. The corresponding cal-
culations were presented in [19].

First, consider the 2D flow between the lines x = X,
and x = x, (see Fig. 1¢). The coordinate system (X, y) is
tied to the bubble apex (Figs. 1-3). The free surface
makes an angle of 120° with the wall. It can be shown
that energy conservation is equivalent to Bernoulli’s
theorem. Thekey roleis played by theinvariance of the
steady-flow momentum, which entails the equation

VRSP RN NS -s,
: 5.)
-8, [[1-N(9]dX = 0.

Hereinafter, we use the dimensionless notation

U=-L =N =
U - @1 N(X) - D ’ N] D’
b
n; =n(x), x5 =, N,=—x,
POD" (52
C, = cosa, S, = sna, = %
_ X _ _ X
XJ - ‘[SJ - _Lj' Xb - 5
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In (5.2), p, denotes the pressure at the uppermost point
of the cross section x, (wherex = x, andy = 0), the curve
y = n(x) isthe free boundary, and D is the pipe width.

The first term in Eg. (5.1) represents convective
momentum transfer across the cross sections at x, and
X. The point X, is located far from the bubble, and the
flow across the corresponding cross section is parallel.
The flow across the cross section at X can approxi-
mately be treated as paralel as well. The second term
in (5.1) is the positive momentum due to pressure
forces at the cross section x. The next two terms
express the momentum due to pressure forces at the
Cross section x,. The last two terms represent the
momentum due to the gravity force (bulk acceleration).
The former of these corresponds to the momentum of
the rectangle bounded by the cross sections at x = 0 and
X = X,. The term containing the integral corresponds to
the momentum due to the weight component parallel to
the pipe in the domain bounded by the cross sections at
X =x and x = 0 and the interface G (see Fig. 1c). The
interface G does not contribute to the pressure force,
since p|g = 0. The left-hand side of Eq. (5.1) is the
change in the total momentum per unit time. Since the
flow is steady, the changeis zero.

We write Bernoulli’s integral over the intervals
between the points (x = X, y = n;), (x=0,y=0), and
(X =X,, Y = 0) lying on the same streamline:

+MNy+ S X, = 0,

NE

(5.3)

2

U
———— = §L; +C,;N,.
2(1— Nj)z S i alYj

Equation (5.1) involves the unknown function n(x)
describing the geometry of G (in N; and the integral).
We approximate it as follows:

N(X) = tan6.X—X*/2r, 6,=120°.  (5.4)

The approximation reflects the interface geometry at
the apex of the bubble. It contains an additional (qua-
dratic) term of an expansion in powers of X. This
approximation makes the present model different from
the model with an ellipse developed in an enlightening
study [2]. In the case of an €llipse, 6, = 90°. When sur-
face tension is low, the angle 6, is close to 120° in the
2D geometry. Wedge-shaped bubbles have been
observed experimentally in a 3D inclined pipe flow [6].
The large gas bubbles that occur in slug flows in wide
pipes aso have wedge-shaped noses of this kind.

Substituting (5.4) into Egs. (5.1)—«5.3), we abtain a

set of three equations for the unknown r, U, and M,
Before we briefly describe its solution, let us make a
remark about the possibility of refining the proposed
approximation (i.e., the use of higher order expan-
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sions). The method of asymptotic collocations[17, 18]
is advantageous in that it provides atool for analyzing
terms of order higher than one in the expansion. The
method can be applied to blunted 2D and 3D bubblesin
both steady and unsteady flows. The solution for the
pipe flow is expanded in a Fourier series to take into
account the decay of velocity disturbances away from
the bubble (asx — +, see Fig. 2). However, an anal-
ogous expansion cannot be obtained in the case of a
wedge-shaped bubble because of a singularity at its
apex. The force balance method may help to circum-
vent this difficulty by using momentum conservation
instead of the decay condition at X —= +oo. In this
method, both n(x) and ¢(x, y) are represented by the
Taylor series expansions about the origin (the bubble’'s
apex). Equations for the Taylor coefficients are derived
from the kinematic and dynamical boundary conditions
(in thefirst approximation, we have only the coefficient
containing r in (5.4)).

We restrict the present analysis to first-order terms.
We do not need the power series expansion of the veloc-
ity potential about the origin. Consider system (5.1),

(5.3). We use (5.3) to eliminate the unknown My, and U .
As aresult, we have the equation

(1=N})(SyL; + CoN))

C (5.5
—?GNJ(Z—Nj)—Saj.zQ
where
L2 Lz L
N; = —tanech—z—;, J‘: Lj+tan6C§'+6—;.

We seethat (5.5) isacubic equation in r with an essen-
tiadl parameter o and an auxiliary parameter L;. The
cross section at x = —; = —L;D (see (5.2)) should be suf-
ficiently far from the apex (otherwise, the outgoing
flow would be poorly approximated by aparallel flow).
However, this cross section should berelatively closeto
the apex (otherwise, higher order terms of the expan-
sion in powers of X should be retained in (5.4)). Our
computations show that the result is weakly affected
when L variesfrom 0.5 to 0.8 (greater than half the pipe
diameter, but less than the diameter). The required root
r isreadily found numerically and is used to determine

the desired velocity U by solving the second equation
in (5.3). The results thus obtained (graphs of U(a)) are
presented below, because they should be described
together with numerical results.

In the case of ahorizontal pipe (a = 0), the vector g
isparallel tothey axis (perpendicular to the pipewalls).
The momentum due to the gravity force vanishesin the
bulk of the flow, and the integral in Eqg. (5.5) drops out.
Equation (5.5) becomes independent of n(x) (contain-
ing only thefinal level N;) and exact. In contrast to cases
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with a > 0 (see Fig. 1), the jet approaches a constant-
velocity flow regime far from the apex when a = 0. Its
width tends to a constant L;D. When a > 0, the vector g
has a nonzero component parallel to the pipe. There-
fore, the jet flow accelerates, while the jet width
decreases. In the ¢ plane (Fig. 3b), the outgoing jet is
represented by asink located at the point (-U/(1 - N,),
0) when a = 0. When a > 0, the sink lies at infinity.
Solving Eg. (5.5) inthe case of a = 0, wefind the exact
values ([19], see aso [33])

N =1 ) = 4R

=5 > (5.6)

The approximate value

U(0) = 31/4(2n)—1/2

predicted by (4.4) is 5% higher than the exact one given
by (5.6), whereas the approximate value obtained in

[34] (U =0.43) is less by 16%. The numerical result

obtained by direct smulation, U = 0.49 + 0.01, isin
very good agreement with (5.6). This provides solid
evidence of the reliability of numerical simulation.

6. BUBBLE MOMENTUM: 3D GEOMETRY

Now, we present the solution of the 3D problem. We
consider acircular cylindrical pipe asacase of primary
importance for applications. We use the Cartesian coor-
dinate system (X, Y, 2) in which the x and y axes are set
asshown in Fig. 1c, i.e, lying in the vertical midplane
spanned by the pipe axis and the vector g. The corre-
sponding z axis is horizontal. Let us write out Ber-
noulli’sintegrals for the same points asin the 2D case.
Now, these points lie on the streamline extending along
the crest of the pipe and through the uppermost point on
the free surface (the bubbl e apex). We set the cross sec-
tions x = -; and x, perpendicular to the pipe axis asin
Fig. 1c. Making use of the mass conservation law, we
write Bernoulli’sintegrals as

U%2 = -1, -S,X,, (6.1)

—2 2

U™ = 2I5(SL; + CoN;)). (6.2
We usethe notation defined in (5.2) (D isthe pipe diam-
eter). Notethat Eq. (6.1) isidentical to thefirst equation
in (5.3).

The 3D equations are qualitatively similar to those
corresponding to the 2D case, but are more cumber-
some. Thisis explained by the stereometry of the prob-
lem. In (6.2), T; is the volume fraction of the liquid in
the cross section —;. We assume that the free-surface
generators are parallel to the (horizontal) z axis. Then,
the free surface is defined by a function n depending
only on x: n =n(x). Thisisafairly good approximation
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as long as a is not too close to a right angle. In this
approximation, the liquid occupies the segment of the
circlewithy = n(xy,) inthe cross section X = x.; (x < 0).
The segment is defined by the chord

Y = N(Xew) = NeiD.

Inthe cross section x = —;, the rel ative area occupied by
theliquidis

C1-2N,
r=1-8+=—"Hsny, cosy; = 1-2N,.(63

Expression (6.3) is obviously valid for any cross
section x (without the subscript “j”). The chord of G
subtends an angle of 2y with vertex at the pipe axis,
wherey = 0 at cross sections x = 0 (the liquid occupies
the entire pipe cross section), y=Ttasx — —o if a >0
(the entire cross section is occupied by the gas), and
y —= Yy asx — —oo if a = 0. In any particular cross
section, the configuration is determined by one of three
related geometric parameters. N, y, or . The function
Y = N(X) definesthe free surface in dimensionless nota-
tion (5.2):

N; = N(X;) = N(-L;), L; =1,/D.
In (6.3), N is either less or greater than 1/2. Accord-
ingly, either O<y<T/20r W2<Yy<TL

Let us balance the forces. Equating the sum of the

pressure force and weight to the momentum increment,
we obtain

0 (6.4
-S [T00dX = 0,

n 3—4N. +4N?
¢ = Z(1-2N)+ Nj—Nf#
1-2N,

+ larcsin(1-2N;).

Theterms contained in Eq. (6.4) are analogous to those
in Eq. (5.1): convective momentum transfer (under
mass conservation), pressure impulse on the cross sec-
tions x; and x,, and the weight pressure exerted by the
two volumes bounded by the cross sectionsx = 0, X = X,
and x = x; and x = 0. The pressure on the free surface is
zero: plg = 0.

The pressure force in the cross section x;, is
2R
fo = 2R[(Py +PYGL)1-(1-y/R)dy
0

= R*(py + PgC,D/2),
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where R= D/2 isthe piperadius. An analogousforcein
the cross section x; is

2R
f, = 209C.R [ (y=n,)siny,dy = 209C.R’g),

n;

where Dsiny; is the length of the chord (belonging to
the boundary ) that separates the liquid and gasin the
cross section x and the expression for @ is given above.

Eliminating the unknown My, and U from balance
equation (6.4) by using (6.1) and (6.2), we abtain

C C
Mi(2=T)(SL;+CuNy) +?G(Pj—70

0 (6.5)
—Sa-rr(X)dX = 0.

Equation (6.5) is analogous to Eg. (5.5).

To solve Eg. (6.5), one must define the boundary y =
n(x). We define it by Eq. (5.4), where the angle 6, is a
parameter. In the 2D geometry, this angle is 120°.
In[2], aplanar ellipse (lying the xy plane) was used as
a boundary of the 3D flow (in which case 6, = 90°).
Equation (6.5) contains the following quantities:

M= T(N), N; = N(-L)),
N(X), T (X) = F[N(X)].

Here, N(X) is defined by (5.4). Note that Eq. (6.5) isto
be solved for the unknown r with parametersa, 6., and
L;. The integral in (6.5) has to be calculated numeri-
caly. This is one difference between Egs. (6.5) and
(5.5). The function U(a) obtained as a result of the
solution is discussed below.

When a = 0, Eg. (6.5) (derived from conservation
laws) is exact, the integral containing the function N(X)
vanishes and the result is independent of the boundary
geometry. Equation (6.5) for a = 0 was derived and
solved in [19]. The corresponding values are

N; = 0.43719,

U =054213, T;=0.57977. (6.6)

Theliquid reacheswell above the pipe midplane (cf. the
2D values in (5.6)). The velocity U is higher by 8%.
The experimental value U = 0.54[6] obtained in cylin-
drical pipes of diameter greater than the capillary scale

is very close to that in (6.6). This means that surface
tension was negligible in that experiment.

7. CONE-SHAPED BUBBLES

The formation of a wedge-shaped bubble with an
angle of 120° is a common phenomenon, attributed to
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two factors. First, the two-phase flow involves an inter-
face G separating the phases. As the phases move
toward one another, a stagnation point appears on the
boundary, where the surface vorticity vanishes. Second,
since the gravity field (i.e., the acceleration g) is uni-
form, the gravitational potential (per unit mass) g - r is
a linear function of the coordinates (recall Eq. (4.3)).
Accordingly, the velocity relative to the stagnation
point squared is also a linear function of the coordi-
nates.

In terms of a function of a complex variable, we
have

fog"
near the stagnation point. Hence,
0" 'dg/dz, dzOdg",
(o' o0,
Since the gravity forceis uniform, it holds that

(¢ Ol.

Therefore, n = 3. The imaginary part of the complex
potential is

. [1né
YO Sm[h__lﬂ’

where 0 isthe polar anglein a coordinate system tied to
the stagnation point. This leads to a three-ray stream-
line pattern and an angle of 120°.

Note that there exist other three-ray patterns:

I. Trihedral junctions of the “walls’ (liquid sheets
separating bubbles) arise in random lattices of densely
packed bubbles[23]. In [23], a simple explanation was
proposed for the nature of this typical singularity (col-
lision of the*“heads’ generated by two sourcesto which
athird sourceis added).

[1. The junction of three “cracks’ is a basic feature
of aflame front [35].

[11. An important example can be found in cosmol-
ogy (the large-scale structure of the Universe): the for-
mation of caustics, “pancakes,” and surfaces of concen-
trated matter when the initial velocity field is nonuni-
form [36, 37] (adhesion dynamics or gravitational
clustering). Coallision of surfaces leads to trihedra
structures with filaments of higher density extending
along the lines of their intersection (cf. [35, 23]).

To facilitate an analysis of a 3D geometry, let us
write out in terms of areal variable the complex expres-
sions given in Section 4 for a wedge-shaped bubble.
Instead of the complex potential f, we use the velocity
potentia ¢. It is governed by the Laplace equation

A = (rd:r)r+9%; -0
r
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where r and 6 are the polar coordinates of the stagna-
tion point, and the angle 6 is measured from the x axis
(see Fig. 3a). Near the origin, we have

¢ = r"o(®)

(in auniform gravity field). The angular function satis-
fies the equation

®ge + (3/2)°® = 0.
Hence,
® = acos(36/2) +bsin(36/2).

The angular velocity is

v® = i,

By virtue of the boundary condition on the x axis, it
holds that

v®(0) = 0,
which entailsb = 0. Therefore,

¢ [0 cos(36/2). (7.2)

Thisimpliesthat v® = 0 on theray 6, = 120°.

Consider a 3D flow in a vertical pipe. Let us show
that there exists a 3D analog of the wedge-shaped bub-
ble. In spherical coordinates, the harmonic equation is

("0 , (o)

Ad =
r? r’s

:O’

where S = sinB (no azimuthal dependence). Consider
the neighborhood of the stagnation point. Since the
gravity field isuniform, it holds that

vOJr, ¢ =r'ee), v =32

The equation for ® is

@9+v(v+l)¢ = 0.

This is the Legendre equation of degree v. Its solution
regular on the axis 8 = 0 is the Legendre polynomial
P,(cosB) of degree 3/2 (cf. (7.1)). The function Py, is
regular at 0 < 6 < 11[38]. The polar axis 8 = 0 points
toward the heavier fluid along the x axisin Fig. 3a. Let
us consider the axially symmetric solution near the
bubble apex.
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We represent P,,(C) with C = cosB as a Taylor
series expansion on the polar axis 8 = 0, where C = 1.

P32(C) = FD 3 5 1; -

02 2 [r
F(a b; 1; &) (7.2
_ 1480 ¢ a@t 1)b(b+1)52 ’
(11)° (21)°

where F is the hypergeometric function [38]. Expan-
sion (7.2) is convergent on thecircle|1—C| < 2. Onthe
ray 0 = mtinside the bubble (C = -1), expansion (7.2)
has alogarithmic singul arity:

P32(C) — ~(m)"In(1+C), (7.3)
which is dueto aline of sources (see below).
The polar velocity component is
v® = Jro, = — 22— dp3’2(c) ne. (7.4)

By virtue of the symmetry, it vanishes on the polar axis
8 = 0. Moreover, the component v® given by (7.4) van-
ishes on the 6, cone (whose generators make an angle
of 6. with the polar axis). The root C. = cos6, of the
equation

dP32(C) _
dC

is determined numerically:

0, = 114.799° = 114.8°. (7.5)
To find (7.5) up to the third or fourth decimal place, we
used about 20 terms of the power seriesin (7.2).

8. VELOCITY OF A BUBBLE
WITH A CONE-SHAPED NOSE

Figure 4 showsthe flow patterns with wedge-shaped
and conical singularities. They include the limit case of
a Stokes (gravity) wave (Fig. 4a) and awedge- or cone-
shaped bubble (Fig. 4b). The period of the gravity wave
is A, and its crests make up a chain of crests. There
exists a “soliton” solution (a single 120° crest on the
entire horizontal axisin the case of afinite depth). The
wedge- or cone-shaped bubble is confined in a pipe of
diameter A (see Fig. 4b), with the apex on the pipe axis.

In the wave solution, there is a cut in the complex
potential above the crest (see Fig. 4a). It is a vorticity
line (jump inthe tangential velocity component). There
is also a cut inside the wedge-shaped bubble (a line of
sources Oco, see Fig. 4b). Theliquid massflux generated
by this line expands the bubble and “neutralizes’ the
downward mass flux from infinity. The upper endpoint
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Fig. 4. Wedge and conical singularities on the free surface
of the heavier fluid: (a) 2D water wave and (b) 2D or 3D ris-
ing bubble.

(a) b)
X

Fig. 5. Cone-shaped bubblesin vertical pipes having differ-
ent cross sections.

of the cut lies on the free surface. A similar lineis con-
fined within the cone-shaped bubble (see Fig. 5).

The analytic continuation of the velocity potential
into the bubble has logarithmic singularity (7.3) on the
line of sources, which is due to the decrease in the lat-
eral area 2m(dr)ox of a cylinder surrounding an infini-
tesimal segment dx on the x axis (Fig. 5a). The cylin-
der'sradiusis or, and its height is &x. In Figs. 4 and 5,
we denote the vertical axis by x by analogy with the
inclined pipe flow (Figs. 1-3). Since the lateral area
decreases (see Figs. 4a and 4b), the velocity diverges,
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v® O 1/8r (the mass flux generated by the segment dx
of the line of sourcesisinvariant) or v® [J 1/56, where
00 = 0 — 1t (cf. (7.3)). In the 2D geometry, the lateral
portion of the perimeter of an infinitesimal rectangle
oy x OX is constant (see Fig. 4b), thereis no singularity,
and potential (7.1) isnot singular on 6 =Tt

Now, let us caculate the rise velocity for cone-
shaped bubbles (Fig. 5) by applying the force balance
method (see Sections 5 and 6). Restricting our analysis
to the case of a circular pipe (Fig. 5a), we consider a
flow characterized by global azimuthal symmetry.
Denoting the cylindrical coordinates z and r (cylindri-
ca radius) by x and y, respectively, we write the
momentum equation

W2
1-N?

0 (8.1)
+ J’[l—[N(X)]Z]dX = 0.

W2 — + My + Xy

It isanalogousto Egs. (5.1) and (6.4). Theliquid in the
jet j flows through an annular region (Fig. 5a). Equa-
tion (8.1) involves the cross-sectiona area of the annu-
lus. Asin Sections 5 and 6, we denote by b and j cross
sections located above and below the bubble apex (see
Fig. 5). Here, we use the dimensionless quantities
obtained by using the piperadius R = D/2 asareference

length (as W = U/./gR and L; — I|/R) instead of the
quantities defined in (5.2).
Following Sections 5 and 6 (eliminating the

unknown W and I, by invoking Bernoulli’s theorem),
we obtain

0

Lj(l—N?)—J'(l—Nz)dX = 0. (8.2)

We use (5.4) to approximate the bubble's boundary
N(X) and set 6. equal to the value given by (7.5). This
approximation makes the integral in (8.2) easy to cal-
culate. We obtain a fourth-order equation for the
unknown r defined by (5.4). We solve it numerically to

find both r and the bubble-rise velocity U = W/ ./gR.

Performing cal culations for acone-shaped bubblein
acircular pipeof radiusR (Fig. 5a), weobtainr = 0.32R
and

U =0.54./gR = 0.38./gD.

For a planar wedge-shaped bubble in a strip of width
A =2R(Fig. 4b), r = 0.43R and

(8.3)

U =042./gR = 0.297./g\. (8.4)
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Theresultsgiven by (8.3) and (8.4) can be compared
with the avail able values of the velocity of round-nosed
bubbles! [16-18]. For an axially symmetric bubbleina
circular pipe of radius R,

U =0.35./gD = 0.495./gR

(see[20-22]). In astrip of width A = 2R, around-nosed
bubble that is symmetric about its centerline rises with
the velocity

U=0.24./g\ = 0.34./gR.

Thus, a singular 3D bubble (with a cone-shaped
nose) moves faster than a singular 2D one (with a
wedge-shaped nose) by 29% (0.54/0.42 = 1.286),
whereas a regular 3D bubble (with a spherical nose)
moves faster than around-nosed 2D bubble (with acir-
cular nose) by 46% (0.35/0.24 = 1.46). Note that the
velocity of the singular 3D bubbleis higher than that of
the round-nosed 3D bubble only by 9% (0.54/0.495 =
1.09). For the 2D bubbles, the corresponding ratio is
much greater: 0.42/0.34 = 1.235.

Three-dimensional pipes may have various cross
sections (see Fig. 5). For example, even multiply con-
nected (annular) cases were considered in [6]. Pipes
that can be packed into space-filling arrays are of inter-
est for analysis of RTI. Such arrays are associated with
spatially periodic solutions [23]. Figure 5b shows a
pipe of rectangular cross section corresponding to a
rectangular bubble lattice.

Of special interest for analysisof RTI are square and
hexagonal honeycomb structures (see [23] for explana-
tion). The corresponding elementary cells (pipes) have
sguare and hexagonal cross sections, respectively. In
the rectangular case, the cone at the noseis not circular
(the flow near the apex is asymmetric). In the case of a
regular lattice, the flow is azimuthally symmetric in a
small neighborhood of the apex and a circular cone
with the angle given by (7.5) can be inscribed in the
nose. We choose sides of the square (k,) and hexagon
(kg) such that the growth exponents characterizing lin-

ear RTI development, ,/gk, ¢, are equal. The appropri-
ate sides and areas were compared in [23]. Under this
choice, therise velocity for steady round-nosed bubbles
is

Uzs = (1.00£0.02),/g/k,

for both sguare and hexagonal solutions [23]. The
velocity of ablunted 3D bubble moving along the cen-
terline of aA x A square pipeis substantialy higher (by
68%, 1/0.595 = 1.68) than that of a blunted 2D bubble
moving aong the centerline of a strip of width A
(Fig. 2a).

1 An inscribed (2D) circle or (3D) sphere tangent to the boundary
at the apex.
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The force balance method developed in Sections 5,
6, and 8 can be extended to the case of a pipe with
sguare or hexagonal cross section. The corresponding
cumbersome calculations are omitted here. The rise

velocity Uj'e” for cone-shaped bubbles in such pipes

can be estimated assuming that the ratio U;'5° /U3 is
approximately equal to that for acircular pipe.

9. COMPARISON
WITH NUMERICAL SIMULATION

Now, we compare our theoretical results with those
obtained by direct numerical simulation. We are
unaware of any previous numerical analysis of slug
flow and motion of elongated bubblesin inclined pipes.
On the one hand, numerical experiments have revealed
many useful facts concerning RTI. On the other hand,
the RTI problem (viewed as bubble motion in avertical
pipe) and the problem of bubble motion in an inclined
pipe have much in common. Therefore, application of
numerical methods is a promising approach.

The simulation was conducted by the method
described in [3941]. We ran a gas-dynamics code at a
very low Mach number Ma ~ 102. The computations
were performed on an N, x N, square grid in aAy x Ax
slender rectangle, where N, is the number of cells span-
ning the pipe width D (N, ~ 10%). To eliminate the
effects due to the boundary, we considered the case of
alarge aspect ratio, AX/Ay ~ 10. At the initial moment,
the “gas’ (fluid with density p,) occupied 70% of the
pipe length.

Front-capturing computations were performed [39—
41]. Thedensity ratiowas i = p,/p, = 1/20. At t =0, the
boundary ab of theliquid was straight: x=n(y,t=0) =
0 (Fig. 1a). The density difference was created by a
temperature difference. Theinitial density was a piece-
wise constant function with ajump across the boundary
ab (Fig. 1a). Since the pressure was high while the
Mach number was|ow, the temperature gradient caused
by density stratification was low (T/|LJ0T| > D). The
resulting flow isalmost identical to the incompressible,
piecewise continuous flow (with densities p, and p;) in
agravity field.

Theinitial velocity field was defined by the potential

d(x,y,t =0) = —uycosye ",
u=+a, v =20, U =02-05.
We set
D=m g-=1

The flow evolution was computed from theinitial state
shown in Fig. la to the steady state illustrated by
Fig. 1c. The intermediate stage of development from
theinitial to thefinal stateis particularly important. We
performed numerous computations for various values
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()

4

Fig. 6. Transition to a steady bubble in pipes with various
inclination angles: (a) a = 0; (b) 30°; (c) 90°. The arrow
pointsin the direction of the vector g. Vertical lineindicates
theinitia location of the interface. Computations were per-
formed for D = tand g = 1.

of N, (grid density), Ax/Ay (pipe aspect ratio), Ma
(compressibility), and a (inclination). Figure 6 shows
several examples illustrating the evolution toward
asymptotic regimes. The numerical experiments con-
firm the existence of awedge with an angle of 120° on
the free surface.

In the horizontal case, the steady jet has the width
hj = D-n; = D/2

(see (5.6)). The steady jet flow is approached slowly,
whereas the bubble quickly reaches a steady state. The
steady-statejet velocity isU; = /gD (see(5.6)) inaref-
erence frame tied to the apex. The leading edge j 4 Of
the jet remains unsteady. Driven by an additional
release of gravitational energy, it moveswith avelocity
Ueng higher than U;. On the interval between the bubble
apex and the leading edge j .4, the jet velocity increases
amost linearly? from U to Uy, aong the x axis, while

2|f a # 0, then the jet velocity increases as ./—x .
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the jet width decreases aimost linearly (as in a uni-
formly strained flow) from 1/2 to zero (see Fig. 6). The
unsteady behavior extends over the entire jet rather than
concentrates near the leading edge j.,4. This explains
the slow relaxation to a steady jet flow. The leading
edge must extend very far for the free-surface slope [n,|
to become small.

On the contrary, the bubble reaches a steady staterel-
atively quickly. The slow jet relaxation to a steady state
does not affect the relaxation of abubble, because the jet
propagates at a “supersonic” velocity (see also [19)]):

U, > ¢, where ¢; = ,/gh, = ./gD/2 is the speed of
sound in the shallow-water approximation and hy =D —
n; isthejet width. Outside the intermediate flow region,
a solution for the jet flow can be obtained by invoking
the shallow-water approximation. The intermediate
flow region adjoining the apex is a few diameters D
long. Since the free-surface slope |n,| is small outside
this region, we can apply the long-wavelength (shal-
low-water) approximation. A shallow-water flow is
equivalent to a one-dimensional (x, t) gas flow. In this
sense, thejet j isanalogous to the jet exhausting from a
jet engine. It can be represented as a centered rarefac-
tion wave with y = 2. The shallow-water equations can
be extended to describe the case of a # 0.

Figure 7a compares the computed free-surface
shape n with that predicted by an analytical steady-
state solution [19] for a = 0 obtained by using an
approximate conformal mapping. The figure shows that
the analytical and numerical results are in very good
agreement in the bubble domain, demonstrating the
high accuracy of the latter.

Figures 7b and 7c compare the numerical and ana-
Iytical free surfacesn obtained near the bubble apex for
arbitrary inclination angles a. The analytical results
were obtained by the method described in Section 5.
The figures demonstrate fair agreement between the
analytical and numerical results.

10. VELOCITY BEHAVIOR

The analysis presented above concerned the relax-
ation of a bubble to a steady state in an inclined pipe
(Figs. 1 and 6) and compared theoretical results with
simulations in terms of the free-surface shape n
(Fig. 7). Now, we consider the behavior of velocity in
space and time. Of primary interest are the asymptotic
values approached ast — 0. Figure 8 shows amap of
longitudinal velocity u(x, y, t) at t = 6 (with astep of 0.5)
in the laboratory frame tied to the walls. The zero-
velocity isopleth is labeled 0. The lightest and darkest
areas correspond to u = +7 and u = —7, respectively
(recall that D = tand g = 1).

Figures 6 and 8 demonstrate that the intensity of
vortex motion at the leading edge of the jet increases
with a. This may be attributed to a decrease in the
accel eration component g = gcosa pressing the liquid
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against thewall. The vortices resembl e halves of mush-
roomlike structures. The gas density p, is 20 times
lower than the liquid density p,,. Nevertheless, the gas
inertia (aerodynamic drag [17, 18]) leads to the forma
tion of mushrooms. Thisis explained by accel eration of
jets to a high velocity (Fig. 8). No mushroom is
observed when the pipeis set horizontally (Fig. 6a).

In asteeply inclined pipe (when a ~ 90°), the press-
ing acceleration gy is small. The leading-edge vortex
separates from the lower wall (y = D) underlying the jet
and adheresto the upper wall (y = 0) (cf. Figs. 6b and 6¢
with Fig. 8 for a = 30° and 90°). The adhering vortex
makes up a vortex dipole with its mirror image across
the upper wall. In accordance with the sense of circula-
tion (clockwise in Figs. 6 and 8), the dipole moves
counter to the direction of the jet that gives rise to the
vortex (cf. the collimation effect in Rayleigh-Taylor
turbulence [41]). The velacity of this motion is so high
that the dipole tends to approach the bubble apex (see
the selection of images in Fig. 6¢). Note that when the
angle lies between o = 0 and a = 90°, both the bubble
velocity U(a) and the jet length exceed those corre-
sponding to the vertical pipe position (see Fig. 8).

Figure 9a showsthe velocity profileu(x,y=0,t=6)
inthe direction of bubblerise. When a = 90°, the veloc-
ity near the vortex is very high. As noted above, thisis
explained by the formation of fast-moving vortex
dipoles at the wall.

Consider the bubble dynamics. While the vortex
remains far from the bubble apex, we can apply the
analysis developed in Sections 3-6. Figure 9b shows
portions of the velocity profiles at t = 6 (see Fig. 99)
near the bubble apex. The interface locations corre-
sponding to the average density p,, = (1/2)(p, + py,) and
the asymptotic velocity U(a) of wedge-shaped bubbles
are shown by vertical and horizontal bars, respectively.
These locations were determined as follows. A profile
p(X) (corresponding to specific y and t) was used to find
X, such that p(X,) = pa,, and avertical line segment (bar)
crossing the curve u(x) at x = x, was drawn. Similarly,
a horizonta line segment (bar) u = U(a) crossing the
curve u(x) at x = x, was drawn for a specific a.

The values of x, and x, are very close. This means
that the bubble boundary at X, (determined by the jump
in p) has the required velocity. Thus, first, the theory is
sufficiently accurate (U(a) is the theoretical value
here), and second, the bubble is amost steady at t = 6.

Figure 9b shows the theoretical curvesu(x) illustrat-
ing the longitudinal-velocity distribution near the
wedge-shaped nose for several a. The distribution,

u(x,y = 0,t = o) = —/2n0(a)./gx,

corresponds to the asymptotic steady state (at t = o)
in the reference frame tied to the bubble apex. Expres-
sion (10.1) can be obtained by the hodograph method

described in Section 4. The value of U(a) in (10.1) is

(10.1)
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(b)

Fig. 7. Comparison of steady bubble geometries calculated
numerically att =8 (Figs. 7aand 7b) andt =5 (Fig. 7c) and
analyticaly for various a: (a) 0; (b) 30°; (c) 90°.

given by (4.4). In Fig. 9b, asymptotic behavior isrepre-
sented by thin solid curves extending from points x;
rightwards. Expression (10.1) can be used to estimate
the velocity gradient near the bubble apex.

For comparison, Fig. 9b also shows the dashed

curve
=_/T/9
u(x) /\/; D~

corresponding to a = 90° (vertical motion) in the case
of ablunted 2D half-bubble (6. =90°) in astrip of width
D (seeFig. 2a), whose velocity is

(10.2)

Ug = (0.33-0.34)./gD.
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Fig. 8. Map of thelongitudina velocity u=0at t = 6. The curve of u=0islabeled by 0. Black areas correspond to |eftward motion

(with the jet), u < 0; white areas, to rightward motion (with the bubble), u > 0.
u u
7 T T T 2.00 T T T T T T T
6 () o =90° 4 L.75 .
sk | 1.50 .
1.25 .
4+ i
1.00 .
3 - -
0.75 .
2 - -
a - 300 0.50 T
1 - - -
=0 0.25
O | | | 0
=20 -10 0 10

X

Fig. 9. Velocity distribution in the laboratory frame (a) over the upper wall inside the bubble and beyond its apex and (b) near its
apex at t = 6. The velocity peaks for a = 90° are associated with vortex dipoles.

The dashed curve extends rightwards from the point
(X Ugo) lying on a vertical bar. As the wedge angle
increases (the bubble’'s nose widens), the rate of veloc-
ity decay away from the nose decreases (cf. (10.1)
and (10.2)).

Since the gasinside the bubble isin motion, the gas
velocity inside the bubble is not equal to the velacity of
the bubble asawhole. Accordingly, the velocity contin-
ues to increase to the left of the horizontal bars in
Fig. 9b (the gas movestoward the apex). If the gaswere
at rest relative to the bubble, then u(x) on the left of x,
would tend to a constant U(a) and the graph of u(x)
would contain a plateau level with the horizontal bar.

JOURNAL OF EXPERIMENTA

When a = 30° the bubble penetrates the most
deeply into the liquid (see Fig. 9): U(30°) > U(0) >
U(90°). This bubble is characterized by the highest
velocity u(x) in the neighborhood of the apex.

At considerable distances from the apex, the veloc-
ity decreases exponentialy, since the incompressible
flow isgoverned by elliptic equations (expressions (10.1)
and (10.2) are valid near the apex):

uU— a,exp(-mx/D).

In either case (a wedge-shaped or blunted bubble), the
behavior of the velocity is dominated by the Fourier
harmonic having the longest wavel ength (with ampli-
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tude a,), which decays slower than other harmonics. If
B, = 90°, then a; = Uy, [17, 18].

Now, let us consider the time-dependent behavior of
the velocity. Figure 10 shows how the asymptotic bub-
ble velocity is approached in the course of transition
from the initial state to the asymptotic regime. The
curves were obtained by numerical smulation for g=1
and D =1t At long times, the velocity tends to the limit
values U(a; t — o) of interest in this study. Thetime
required to approach the asymptotic regime depends on
the initial velocity u, and the inclination angle a. The
curves shown in Fig. 10 can be used to find the asymp-
totic velocities U(a) for particular a and the corre-
sponding rms deviations dU(a) due to the errors of
numerical velocity calculation.

Figure 11 shows the longitudinal bubble velocity
U(a) as a function of inclination. The solid curve is
function (4.4) calculated by the hodograph method in
Section 4. The dashed curve represents the results
obtained by using the invariance condition for momen-
tum (Section 5). The closed circles with error bars are
numerical results. The largest error corresponds to o =
90° (vertical pipe). Opencirclesl and Il onlinesa =0
and a = 90° were obtained by applying the models
developed in [34] and [26], respectively. Circle Il rep-
resents the velocity of the blunted half-bubblein astrip
of width D (Fig. 2b). Wedge-shaped bubbles adhere to
one side of the strip and therefore resemble the half-
bubble (compare Figs. 2b, 2¢, and 1c with Fig. 2a).

The dependences U(a) obtained by the two theoret-
ical methods and a numerical method are close to each
other. The discrepancy between them, including the
simulation error, does not exceed 4%. For the wedge-
shaped bubble in the case of a = 90°, theory and simu-
lation predict

U(90) = (0.41-0.42)./gD.

The value obtained in [26] (symbol I1) is higher than
thisvalue by 23%. The value obtained in [34] (symbol 1)
is lower than the exact value by 16% (see Section 5).

Thefunctions U(a) cal culated by the hodograph and
force balance methods or by simulation have maximaat
O max = 30° and a,,, = 40°, respectively.

11. COMPARISON WITH EXPERIMENT

Let us compare the theoretical results obtained for
a 3D flow (Section 6) with experimental data [6]. Fig-
ure 12 shows the free surface . Curve 1 was obtained
in experiment with a circular pipe [6], whereas curve 2
was calculated for 8, = 125° by the method described in
Section 6. Near the apex, the functions n are in good
agreement. This means that the corresponding bubble-
rise vel ocitiesmust also agree. The experimental results
obtained for low surface tension (Fig. 12) provide
strong evidence against the model with n having the
form of an ellipse (in which case 6, = 90°).
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Fig. 10. Velocity of the bubble apex versus time in the lab-
oratory frame.

U
0.7 : ,

III T

90°

0.3

| |
0 30° 60°

o

Fig. 11. Effect of inclination angle a on thelimit (or asymp-
totic) velocity of a 120° bubble: numerical simulation
(closed circles with error bars), Eq. (4.4) (solid curve), cal-
culation by the force balance method of Section 5 (dashed
curve), and various theoretical predictions (open circles).

Figure 13 showsthe final 3D results as compared to
some 2D results. Closed circles with error bars repre-
sent the experimental results obtained in [6]. The curve
labeled 2D DNSis taken from Fig. 11 to illustrate the
influence of flow geometry (2D as compared to 3D) on
velocity. The results calculated by the force balance
method (Section 6) for the wedge angles 6, = 125°,
115°, and 110° are shown by dashed curves starting
from the exact value given by (6.6) for a = 0. Open cir-

No. 6 2003



1184

n(x)

-D 0 x

Fig. 12. Wedge-shaped bubble in a circular pipe with a =
45°: experiment [6] (curve 1) and calculation in Section 6
(curve 2).

U
0.7 : :

0.3

| |
0 30° 60° 90°

a

Fig. 13. 3D flow in an inclined circular pipe (except for
curve 2D DNS): experiment [6] (closed circles with error
bars), calculation by the force balance method of Section 6
(dashed curve), and various theoretical predictions for a =
90° (open circles).

clesl and Il onthelinea = 90° correspond to the veloc-
ities of the axially symmetric cone-shaped and blunted
bubbles. The experimental value obtained in [6] for a =
90° (closed circle) is approximately equal to the veloc-
ity of the blunted bubble (open circleIl).

The calculations based on conservation laws (Sec-
tion 6) are sensitive to the nose geometry (cf. dashed
curvesin Fig. 13). Slender bubbles are characterized by
higher velocities, and even dlight variations of theangle
8, are important.

Now, we can gave an overview of the results
obtained. Two features are exhibited by the experimental
dependence (closed circlesin Fig. 13). Firg, there exists
amaximum when the pipeis not in the vertical position.
The theoretical model captures the maximum. Second, a
substantial decrease in velocity U(a) is observed as the
vertical position is approached (o —= 90°). The veloc-
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ity becomes comparable to the velocity of a symmetric
bubble moving along the axis. Thisisimpossible in the
2D geometry, because the velocity of a bubble moving

along thewall isalways higher (by afactor of ./2) than
that of asymmetric bubble moving aong the centerline
(by virtue of the obvious difference in transverse size).
It should be noted that the velocity begins to decrease
when the position is not vertical. Thus, we should find
the limit approached by U(a) as a — 90° and com-
pare it with the value of U for symmetric bubbles.
When the pipeisin vertical position, the nose of abub-
ble may separate from the wall and lie on the pipe axis.

The velocity of 3D bubbles in a circular pipe of
diameter D is even lower than that of 2D bubblesin a
strip of width D! This can be interpreted as a manifes-
tation of a decrease in the angle 6,. The bubble’s nose
widens as the vertical pipe position is approached.

Thus, the velacity of an asymmetric 3D bubble ris-
ing aong the upper wall (when a < 90°) isalmost equal
tothat of an axially symmetric bubble moving along the
axis. In computations based on the modd of elliptical
bubble [2], approximately equal velocities were
obtained for asymmetric and symmetric 3D bubbles.

Let us summarize the comparative anaysis of bub-
ble dynamics in 2D and 3D geometries. The naive
notion is as follows. Since gravitational energy seems
to bereleased at ahigher rate in the 3D geometry (addi-
tional “paths’ are available for motion), a 3D bubble
moves substantially faster than a 2D bubble of equal
size. This conjecture is based on a comparison of bub-
blesmoving inthe A x A square pipe and a2D pipe (the
ratio of respective velocitiesis 1/0.6 = 1.7). Theratio of
velocitiesin circular and 2D pipes of equal diameter is
0.35/0.24 = 1.5.

However, the analysis presented here shows that the
behavior of bubbles in an inclined pipe is much more
complicated. The ratio of near-maximum velocities in
3D and 2D pipes at intermediate inclination angles is
dlightly greater than unity (=1.1). For horizontal pipes,
the exact ratio is0.54/0.5 = 1.08. Moreover, it becomes
even markedly lower than unity when the pipeis close
to the vertical position.

12. CONCLUSIONS

The classical problem of free-surfaceflow in agrav-
ity field is analyzed. The analysis is essential both for
the theory of Rayleigh-Taylor instability and for tech-
nological applications of two-phase flows. An attempt
is made to bridge a certain gap between the RTI theory
and hydraulics. Thisisanecessary step toward combin-
ing the extensive databases amassed in these areas of
knowledge.

Thefollowing new results have been obtained in this
study.

1. Both the cone angle and velocity are found for
cone-shaped bubbles.
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2. The velocity of rising wedge-shaped bubbles is
calculated by two theoretical methods and numerical
simulation. The use of momentum invariance makes it
possible to overcome the lack of simple Fourier expan-
sions analogous to (3.1) for periodic flows with singu-
larities on their boundary of the type analyzed here.
This method is used to find the vel ocity of cone-shaped
bubbl es.

3. The angle dependence U(a) is calculated for the
entire range of inclinations.

4. A numerical experiment on two-phase pipe flow
offers a promising tool for analyzing technological
problems.
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Abstract—The development of multiple-scale random fluctuations in the problem of interface growth is ana
lyzed. The evolution of theinterfaceis described by the Kardar—Parisi—Zhang (KPZ) equation, and the gradient
vector field satisfies the multidimensional Burgers equation. It is shown that the nonlinear effects in the evolu-
tion of statistically inhomogeneous multiple-scale fluctuations lead to the generation of large-scale coherent
structures. Due to combined effects of nonlinearity and dissipation, localized disturbances tend to exhibit uni-
versal long-time behavior. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION
The nonlinear diffusion equation
o’
X

ov ov
ot "V ox @)
was originally proposed by Burgers as a model of
hydrodynamic turbulence[1, 2]. Indeed, It hasmuchin
common with the classical Navier—Stokes equation,
including the type of nonlinearity, invariants, and fre-
guency dependence of energy losses [3]. The distinc-
tions between the Burgers and Navier—Stokes equations
are as interesting as their similarity [4], even more so
with regard to the multidimensional Burgers equation.
It was shown that Eq. (1) describes a variety of wave
phenomena in acoustics, plasma physics, dynamics of
flame front propagation, etc. [5-8]. In particular,
Eq. (1) supplemented with random initial conditions
describes the evolution of intense acoustic noise.
Accordingly, such solutions to the Burgers equations
are referred to as acoustic turbulence.

The multidimensional Burgers equation with random
forcing is widely used as a model of Navier—Stokes
hydrodynamic turbulence without pressure [9-13]. The
three-dimensional Eqg. (1) combined with the continuity
equation is used to analyze the development of large-
scale structures in the Universe via nonlinear gravita-
tional instability at the stage when pressure forces are
negligible. This approach is known in astrophysics as
the adhesion model. The model describes the formation
of highly inhomogeneous structuresin the distribution of
matter initiated by arandom disturbance [14-17]. Other
phenomenadescribed by the multidimensional Burgers
equations or its modifications include the interface
growth due to random deposition of substance on asur-

face and flame front propagation [18]. In these prob-
lems, the potential Y (v = - ) represents the surface
profile, and its evolution is governed by an equation
equivalent to the Kardar—Parisi—Zhang (KPZ) equation
[8, 18-20]. The mean square gradient

E(N) = O (x, 1) 0= x 1),

which characterizes surface roughness, may either
decrease or increase with time.

The dynamical and statistical characteristics of both
one-dimensional and (more recently) multidimensional
Burgers equations have been analyzed in numerous
studies (e.g., see the bibliography in [7, 8]). Even
though the Burgers equation has an exact (Cole—Hopf)
solution [21, 22], investigation of statistical properties
of this equation is aformidable mathematical problem.
In particular, the first significant results for a Brownian
initial potential were published in [2] after over thirty
years had passed since the equation was introduced
in[1], and an exact statistical treatment of this special
case was presented only recently [23]. The power spec-
tral density of thissignal at zero frequency is preserved,
whereasits energy decreases ast=23, If theinitial power
spectrum does not contain large-scale components,
then turbulence decay follows adifferent scenario. Inthe
case of a Gaussian initia distribution, energy decreases
as t™ up to a logarithmic correction factor [24-27].
A comprehensive statistical description of decaying tur-
bulence can also be abtained in this case. In particular, it
can be shown that its statistical characteristics (spectra,
correlation functions, probability distributions) become
asymptoticaly self-similar [25, 27].

In this paper, we analyze the evol ution of modulated
waves, such as multiple-scale fluctuations. Distur-
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bances of this kind arise, for example, in problems of
flame front propagation [ 28], when the domain of initial
disturbance is localized in space and the length scale
characterizing its intrinsic structure is much less than
the domain size. By introducing certain approxima-
tions, the evolution of the flame front can be reduced to
the two-dimensional Burgers equation. The present
study shows that the nonlinear effects in the evolution
of statistically inhomogeneous fluctuations lead to the
generation of large-scale coherent structures. Due to
combined effects of nonlinearity and dissipation, local-
ized disturbances tend to exhibit universal long-time
behavior.

The paper is organized as follows. In Section 2, the
multidimensional Burgers equation is solved and the
asymptotic behavior of its solution is considered in the
long-time and low-viscosity limit, when nonlinear
effects are negligible. It is shown that nonlinear effects
lead to local self-similarity of the velocity and potential
fields in the limit of vanishing viscosity. We aso dis-
cuss the evolution of the basic types of disturbances
described by the one-dimensional Burgers equation. In
Section 3, we analyze the evolution of multiple-scale
localized disturbances governed by the multidimen-
sional Burgersequation in thelimit of vanishing viscos-
ity. Section 4 focuses on the long-time behavior of
localized disturbances in the case of afinite viscosity.

2. BASIC EQUATIONS AND APPROACHES

2.1. Local Salf-Smilarity and Long-Time Asymptatics
of the Multidimensional Burgers Equation

We consider the vector Burgers equation without
external forcing,

?9_\t/ +(v)v = vAv, 2

and seek potential solutions of the form

v(x,t) = - (x,1). (©)]

The velacity potential (X, t) satisfies the nonlinear
equation

o _

1 2
5t = oW ) +VAY. (4)
It isidentical to the KPZ equation [8, 18, 19], whichis
commonly written in terms of h = A1y, where the local
interface growth velocity A has the dimension of veloc-
ity and the surface height h(x, t) has the dimension of
length. In problems of interface growth, the coefficient
v represents surface tension and the corresponding term
on the right-hand side represents linear effects respon-
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sible for smoothing of the interface. The measure of
surface roughness is the mean-sguare gradient

E() = O ) D= Mx 0= Y EW, (5

Ei(t) = <%%EZ> = o (6)

The angle brackets denote ensemble averages or inte-
grals over the spatial coordinates (for localized distur-
bances). In the one-dimensional case, the energy E(t) of
turbulence in a dissipative medium is a monotone
decreasing function of time. In the limit of vanishing
viscosity (v — 0), the energy E(t) is conserved until
the wave profile becomes discontinuous and then
decreases through dissipation in infinitely thin shocks.

Before the shocks begin to devel op, the multidimen-
sional Burgers eguation with vanishing viscosity corre-
sponds to free motion of particles. In the Lagrangian
representation, the velocity V(t; y) of aparticleis con-
stant, depending only onitsinitial (Lagrangian) coordi-
natey. In the one-dimensional case, an increase in seg-
ment length, Ax = Ay + tAV, is balanced in the Eulerian
representation by a decrease in the length of an adjoin-
ing interval, Ax = Ay —tAV, so that the energy of distur-
bances is conserved. When shocks appear, the energy
begins to decrease with time. In the multidimensional
case, achangein volume element depends on theinitia
curvature of asurface disturbancein the Eulerian repre-
sentation, and there is no balance between the contract-
ing and expanding volumes observed. Accordingly, the
surface roughness measured by E(t) can either increase
or decrease with timewhend > 1[29, 30], since no con-
servation law appliesin this case. Nevertheless, we call
E(t) the turbulence energy and E;(t) the energy of theith
velocity component here.

Changing to the Cole-Hopf variables[21, 22],
P(x, 1) = 2vinU(x, 1),

v(x,t) = =2vOInU(x, t), )
we reduce (4) to the linear diffusion equation
ou _
5 vAU, (8)
U(x,0) = Uyx) = expwzo—f)x). 9

In this paper, we analyze the evolution of coherent
and stochastic signals at high Reynolds numbers, when
nonlinear interaction between spatial harmonics plays
animportant role, while dissipation is essentia only for
high-wavenumber components. Energy is dissipated in
space only in small neighborhoods of the shocks. Thus,
the solution to problem (2) obtained in the limit of van-
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ishing viscosity can be used at intermediate times. At a
later stage, when nonlinear interaction becomes unim-
portant, the evolution of thefield is controlled by linear
dissipation only and we have a linearized Cole-Hopf
solution.

Asv — 0, the use of a saddle point method in the

Cole-Hopf solution leads to the so-called “maximum
method” for the potentia field [7, 17, 21]:

Wix, ) = maxd(x, ., (10
o y.1) = wily) - 50 (11
vy = 2D = vy, @)

Here, Yy(y) istheinitia potential: vy(X) =) 4(x). The
function y(x, t) in (12) is the Lagrangian coordinate at
which d(x, vy, t) attains its absol ute maximum for some
particular values of Eulerian coordinate x and timet. It
can readily be shown that y is the initial coordinate of
the particle that reaches x at theinstant t [7].

After a sufficiently long time has elapsed, the sec-
ond term on the right-hand side of (11) varies much
more sowly than the initial potential Wy(y). Therefore,
the absolute maximum of d(x, y, t) isone of the maxi-
mums of Yy(y). In the neighborhood of its local maxi-
mum point y,, theinitial potential can be represented as

(X —Yi,k)2
20 }

Wo(X) = wo,k{l— (13

where the set of x; definesthe basis of principal axesfor
expanding a local quadratic form about the point y;.
Using solutions (11) and (12), we obtain

— _ (Xi_yi,k)z
Wx, t) = LIJo,{l ZZLf(l+wovkt/Lf)}' (14)
. - Wo,k(Xi — Vi, i)
O By o

It follows from (15) that nonlinear effects cause the
velocity field to become locally isotropic and locally
self-similar in the neighborhood of a maximum of
Wo(X). Its behavior is determined by the particles ini-
tially located at pointsy;(x, t) lying in asmall neighbor-
hood of the maximum,

i —VYi«
1+ P t/L7

Thus, the Lagrangian coordinate y(x, t) becomes adis-
continuous function of x at long times that is constant

Yi(x, t) = (16)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

GURBATOV, MOSHKOV

within the domain (cell) that corresponds to a maxi-
mum and has jumps on its boundaries [7, 17]. The
velocity field v(x, t) is discontinuous, and the deriva-
tives of the potential Y(x, t) are discontinuous, across
the cell boundaries. It is clear from (14) and (15) that
both the potential and the velocity fields have a univer-
sal self-similar structure within the cells:

PO D) = W) — & y“,

(17)

— Yk

v(x,t) = X "

(18)

The longitudinal component of the velocity vector
v(X, 1) is a sawtooth pulse train, as in the one-dimen-
sional case. The transverse velocity component is con-
stant within acell. According to (14) and (15), this uni-
versal behavior manifests itself at earlier times in the
directions of steeper initial gradients (smaller L;).

At later stages, the evolution of the velocity and
potential fields is determined by the characteristics of
local peaks of WYy(y,). When the initial profile is peri-
odic, the developing universal structure has a periodic
invariant form and the velocity amplitude decreases as
t~L. In the case of a random initial profile, the surface
continues to change, because cells (or one-dimensional
shocks) merge as the structure develops, and the inte-
gra length scale L(t) of Burgers turbulence tends to
increase accordingly.

Now, let us discuss the long-time limit solution to
the Burgers equation in the case when time increases
indefinitely whilev # 0 remains constant. Consider the
class of initial disturbances with a bounded potential,
[Py(X)2[K o, and assume that Yy(X) is alocalized dis-
turbance or a statistically homogeneous random field.
Any scalar profile U(x, t) of this kind contains a con-

stant component U,

U, t) = U+Uxt) = OL+uxt), (19

whereu(x, t) = U (x, t)/U isstherelative fluctuation of

thefield U(x, t). Thefields Oo(x) and uy(x) are assumed
to have zero-mean distributions. In the course of time,
thefield U(x, t) described by Eqg. (8) is smoothed by dif-
fusion and the amplitude of U (X, t) decreases. When
|0| < U (Ju] < 1), the Cole-Hopf solution (7) can be
linearized:

v(x,t) = =2vOu(x, t). (20)
Since both U (x, t) and u(x, t) satisfy linear diffusion
equations, the field v(x, t) is aso governed by alinear
equation. This means that the linear stage of evolution
isreached. Nonlinear effects contribute to this solution
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only through the nonlinear integral relation between the
initial velocity field vy(x) and the fields U (x, 0) and U

(see (3) and (9)). They are characterized by the initial
Reynolds number Re, ~ |Auy|/v, where Ay, isthe char-
acteristic amplitude of .

Relation (20) leadsto awell-known result concerning
the asymptotic behavior of a harmonic disturbance gov-
erned by the one-dimensional Burgers equation [5, 6].
When Re, > 1, aharmonic wave transformsinto a saw-
tooth wave. However, its harmonic form is restored in
the long-time limit via dissipation, with an amplitude
that is independent of the initial one. When the initial
Reynolds number is high, a statistically homogeneous
Gaussian field vy(X) aso transforms into a sawtooth
pulse train that has essentially non-Gaussian properties
at the stage of nonlinear development [7, 27]. Neverthe-
less, any random field v(x, t) with statistically homoge-
neous initial potential Yy(x) weakly converges to a
homogeneous zero-mean Gaussian field [29]. This
stageisknown as the Gaussian scenario in the theory of
Burgers turbulence. This scenario applies to the multi-
dimensional Burgers equation. In the absence of long-
range correlations, the distributions of initial velocity
potential and potential field are characterized by a uni-
versal covariance function whose amplitude depends
nonlinearly on its initial value and is proportional to

exp(Reg) [7, 29]. When the initial potentia has long-
range correlations,

W) P00 = X"V F(x/x), 0<a <3,

both the anisotropy of F(x/x) and the long-range corre-
lations persist at the linear stage [29].

2.2. Evolution of the Basic Types
of One-Dimensional Disturbances

Let the initial potential Yy(x) be the sum of one-
dimensional functions , ;(x):

Po(X) = zllJo,i(Xi)’ Voi(X) = Vii(X). (21)

In this case, it follows directly from (2) that the field
components v, ; do not interact and the evolution of
each v (X, t) = v (X, t) isgoverned by the one-dimen-
siona Burgers equation (1). Here, we briefly consider
the evolution of the basic types of disturbances described
by the one-dimensional Burgers equation [5-8].

First, consider the evolution of a localized distur-
bance. Suppose that the initial potential

0 w2 O
l.|J0(X) = m[ﬂ.——2+ --.l:l
0 212 0
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has a single maximum m = (y,) localized within an
interval of length on the order of L+ (L, = L«) around

the point x =y, and assumethat Yy(x) = 0if [x—V,] > L«.

Asv — 0, thisdisturbance eventualy transformsinto
the so-called N wave [5], with the gradient dv/ox = 1/t
and the shock-front location determined by the equa-
tion [x — yi| = (2mt)V2. Asthe interval occupied by the
disturbance increases, its amplitude decreases accord-
ing to the equation

Xq(t _
# Dmllzt 1/2

and its energy decreases as
3
X
— Om
t

3/2,-1/2

t

Therefore, the asymptotic nonlinear behavior of a
localized disturbance is determined only by the maxi-
mum m = Yy(y,) of theinitial potential and is indepen-
dent of its profile. At a finite Reynolds number Re, =
m/2v > 1, the shocks have finite widths and thelocation
of the discontinuity is

X(t) = [ZtBn—vlnA';VE}m,
eff

where L%, ~ L5/Re,. Using (20), one readily finds that
thefield v(x, t) has universal structure at the stage of its

linear evolution (at t > L2 exp(2Re,)ReyV):

2
— X 0 X0
v(ix,t) = B exp (22)
Attt U 4vid
with the constant
212
B= LO%@E exp(Rey).

Localized multiple-scale random fluctuations also
exhibit universal asymptotic behavior, with a large-
scale mean component evolving from a zero-mean ini-
tial through nonlinear effects [31].

Consider the evolution of the harmonic disturbance
Vo(X) = koWesin(kox) associated with the potential
Wo(X) = Pocos(kyx). Itsinitial energy is

D/ZD: ikg = Z—T[qué k., = 2_T[
2 ch) Ly

When the Reynolds number is infinite (v — 0), the
velocity field transforms into a periodic sawtooth pulse
train with the gradient ov/iox = Lt att > t,, wheret, =
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/K2, isthe characteristic time of nonlinear develop-
ment. It should be noted that both amplitude a = L/t

and energy E(t) = Lé/th2 areindependent of theinitial
amplitude at this stage. Therefore, if the components of
a two-dimensiona initia disturbance (21) have equa
amplitudes Yy(x), but widely different periodsL; (L; <
L,), then the initial energy of the component with the
larger length scale is much greater: E;(0)/E,(0) =

L3/L%. However, areverserelation istrue at long times

whent > t, , = U/K; Wy E;(t)/Ex(t) — Li/L5. When
the Reynolds number Re, = Y/2v ismoderately high, a

linear stage of the field evolution is observed at t >
tyRey, when

V(X 1) = 4vkysin(kyX)exp(—vkat).

The evolution of atwo-dimensional disturbance (21) at
this stage is also dominated by the component with the
larger period L.

A continuous random field also transforms into an
array of cells with equal gradients dv/dx = 1/t, which
are separated by randomly distributed shocks. As the
cells merge, the integral turbulence length scale L(t)
increases. Therefore, the energy of a random field,
E(t) O L2(t)/t?, decreases at a Slower rate as compared
to the energy of aperiodic wave. The scenario of turbu-
lence is determined by the behavior of the large-scale
component of the initial power spectrum

Eq(k) = 2i TJ V(X)) vo(x+20exp(ikz)dz, (23)

Eo(K) = a’k"by(K). (24)

Here, the function by(k) rapidly decreases at k > k; ~

I5". When n < 1, the initial potential is a Brownian or
fractal distribution, and ascaling method can be applied
[2,7,17,32]. Inthiscase, we deal with self-similar tur-
bulence characterized by the length scale

L) = (@™,

which isindependent of the length scale |, of theinitial
power spectrum [7]. Moreover, the behavior of individ-
ual realizations of the random field is determined by the
large-scale components of the initia disturbance,
weakly depending on small-scale fluctuations [33].

When n > 1, the law of energy decay strongly
depends on the statistical characteristics of the initia
field [8, 30]. For a Gaussian initial profile, the mean
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potential ] length scale L(t), and turbulence energy
E(),

_yarto
L(t) = (to,)?In " E=e
v Ebnlg)ﬂ

_prto
Et) = t 7o, In"?E=,
v Ebnlgj

(25)

are completely determined by the variances of the ini-
tial potential and velocity, oj, = pglando s = (V]
[24-27, 34]. Here, |, = 0/, isthe characteristic length
scale of theinitia fluctuation. Thus, the energies of the
two components of a two-dimensional initial distur-
bance (21) characterized by equal variances g, and dif-
ferent length scales |y ; (Io 1 < lo,2) at t = O differ sub-
stantially:

E.0) _ 13

=251,
SOt

However, they are amost equal a long times:
E,(Y)/E,(t) = 1 (up to asmall logarithmic correction). In
the case of afinite Reynolds number Re, = g,/2v, the

linear regime is reached at t > t,exp(Re;)/Re, as a

result of multiple shock collisions (t, = g/ 12 is the
characteristic time of nonlinear development). At the
linear stage, energy decreases as Ct—%2, where C ~

loexp(Rel)/Re,.

3.EVOLUTION OF LOCALIZED DISTURBANCES
IN THE LIMIT OF VANISHING VISCOSITY

3.1. Evolution of Smple Disturbances

Consider the evolution of a localized anisotropic
disturbance governed by the multidimensional Burgers
equation. To simplify analysis, we begin with the two-
dimensional case (d = 2) (extension to d > 2 is mostly
straightforward). First, we analyze the special case
when the initial potentia Yy(x) is a quadratic function
of coordinates (as in (13) with y; , = 0) within the
domain S, defined by the relation

and Py(X) = 0 outside S,. The evolution of the potential
W(x, t) and velocity v(X, t) within the expanding €ellipse
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() defined as

2 2
By 2 <, (26)
2L5(1)  2L5(1)

: LIJOtD]JZ _ t D]JZ
Li(t) = Li%*‘?m = Li%‘-“LmD
: :

is described by (14) and (15), whereasv =0 and { =0
outside the ellipse. Here, t, ; = LiZ/LDO is the character-

istic time of nonlinear development for the ith velocity
component. Each velocity component v;(x;, t) varies
independently; in particular,

(27)

WX,
Lo(1+ W, t/L3)

V(X 1) =

is independent of the coordinate x,. However, the
length of the expanding interval on the x; axis,

12

O xO
O 2L5t0

where v,(X,, t) is independent of x,, is determined by
both L,(t) and L,(t). In other words, the velocity com-
ponents are coupled by strong interaction. The energies
of the velocity components are

T Lo(t) TIYL (1)
L L

Consider the evolution of a highly anisotropic fluc-
tuation (L, < L,), using the energy ratio

Eq(t) = E(t) = (28)

Et) _ L3

“O =g " L3(t)

as ameasure of anisotropy. It followsfrom (28) that the
energy E,(t) of the small-scale component is a mono-
tonically decreasing function, whereas the energy E,(t)
of the large-scale one is a monotonically increasing
one. Accordingly, the anisotropy parameter k(t) mono-

tonically decreases from k(0) = L5/L2 > 1, approach-
inglatt>t,, Whent, ; <t<t,,, the nonlinear

self-interaction of the large-scale component is negligi-
ble, and the component energies are

- T[L|J§L2
=0~ ™

Ex(t) =

12
WD o
L,

0

Thus, the decrease in the energy of the small-scale
component follows the same law as in the one-dimen-
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Fig. 1. Evolution of the dimensionless energy € op =

E; ljJS /Tt of the components of a two-dimensional anisotro-

pic disturbance (L,/L1 = A/f)) as afunction of dimension-
lesstimet =t/ 1. Evolution of the energy of aone-dimen-
sional localized disturbance, e;p.

siona case. The energy of the large-scale component
increases with time, because the energy of the pre-
served velocity component v,(X,, t) = vy(X,, 0) istrans-
ferred in space by the component v,. Both the total
energy E(t) and the component energies remain invari-
ant over along time interval. The invariance of energy
(mean surface roughness) over long times is explained
by the effect of increase in volume, V(t) O tY2, which
compensates for the decrease in the steepest gradients,
vi(t) ~ t=Y2. Figure 1 shows the dimensionless energies

e(t) = Ei(t)lpg/n of the components of an anisotropic

fluctuation (L,/L, = ./10) as functions of the dimen-
sionlesstimet = t/t ;.

In the three-dimensional case, it can readily be
shown that the energy of the velocity component v,4(t) of
an initial potential Y,(x) described by expression (13)
within the corresponding ellipsoid varies as follows:

WoL,(B)Ls(t)

L)
where L;(t) is given by (27). When the fluctuation is
highly anisotropic, the component energies may either
increase or decrease at the initial stage (mint,; ; <t <
maxt,, ;), but the field becomes isotropic and its energy
increasesast2 at t > maxt, ;.

Suppose that the initial anisotropic localized distur-
bance can be represented as

Wo(X) = Wofi(Xy) Fo(Xr),

Ey(t) O (30)

(31)

No. 6 2003



1192

where each f; reaches a maximum at x = 0 (f;(0) =
f,(0) = 1) and is characterized by a respective length
scae L; (L; <€ L,). For such a disturbance, E;(0) >
E,(0).

At the stage when
b1 ooy t,; = L
f2(X2) nl, 2» nl,i LIJO’

the small-scale component v,(x, t) transforms into an
N-shaped pulse while the self-interaction of the large-
scale component v,(x, t) istill negligible. Accordingly,
at any point in the spatial interval

X < L) = (2o f (1) "2, (32)
both field components exhibit universal behavior:
0f,(x
Vi 0= v )=t A 2). (33

In other words, v,(X, t) isindependent of x, and the ini-
tial amplitude, and v,(x, t) istheinitia field on the axis
X1 = 0 (independent of x,): vu(X, t) = v,(0, Xy, 0). Com-
bining (32) with (33), we obtain the component ener-
gies

”wﬁ” 32
Ei() = f2 (X)X O E(Q)—5, (34)
I (Wet )”
E,(t) = zyzwglztuzj-szjz( 2)@f2(X2)D dx
(35
- EZ(O)(wot)

Again, we see that the small-scale component v,
decays, wheresas the large-scale one v, grows. When
t> t, ,, the disturbance becomes isotropic and the
velocity profile has universal structure (18) within the
domain of |x| < (2Wt)Y2.

3.2. Evolution of Multiple-Scale Disturbances

Representation (12) of the solution to the Burgers
equation implies that asymptotic solution (17), (18) of
the form

(x=Y,)?

Wx, 1) = qu(y*)—T, v(x,t) = XY«

t ' (36)
X =yl <L) = (2Ht)"

is valid for any localized initial profile with a single
maximum H = y(yx). At this stage, the energy of a

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

GURBATOV, MOSHKOV

d-dimensional field is expressed as
2(d +4)12 H (d+ 2)/2t(d -2)12

r@d2)d+2

E(t) = (37)

where I'(2) is the gamma function. According to (37),
the energy E(t) decreaseswithtimewhend=1, remains
constant in the two-dimensional case, and increases
with time when d = 3. Recall that

AW (x,1)°0= V(x, )0

is the mean square gradient characterizing the surface
roughness in the multidimensional case.

In the case of a multiple-scale localized initial dis-
turbance, the evolution toward an isotropic state may
involve several stages. Hereinafter, the evolution of a
multiple-scale localized disturbance is analyzed under
the assumption that the initial potential can be repre-
sented as

Et) =

2

Wo'(x) = MW, M) = 1= =

2, e
Here, Py(X) is a statistically homogeneous Gaussian
random field characterized by the correlation function

d
[po(x)Wolx + P)I = By(p) = oy[TR(P).  (39)

2 4
R() = 1-— + Py (40)
2! IO L
Furthermore, we assume that if By(|p|> I¢) = 0, where
l¢ ~ lo, |4, then the values of the Gaussian field Py(X) at
points separated by a distance |x; — X,| > |4 are statisti-
cally independent. The envelope M(x) attains its maxi-
mum at X = 0, and the characteristic lengths Ly, ; are

much greater than the intrinsic length scales | ;.

It can be shown (see [7]) that, when the initial field
Wo(X) is statistically homogeneous, both velocity field
v(x, t) and potential Y(x, t) are isotropic at t >
max(lo )%0,. The statistical characteristics of the
developing turbulence become self-similar, with an
integral length L(t) expressed as

L) = (owt)ﬂzd_m[ln (41)

t -1/4
1Z¢(2m )“"} ’

where

d

d _

lesr = |_||0,i
i=1
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is the effective length scale of the initia field. The
energy of each component and the turbulence energy
are

& = ﬁd-yz In—my- v
B = t2 [n|§ﬁ(2n)”d} ’

t
(42)

E(t) = ZEi(t).

The corresponding mean potential (mean surface
height) increases according to the logarithmic law

O' t :|]JZ
1Z(2m¥]

At the stage when the integral turbulence scale L(t)
ismuch lessthan themodulation scaleL, ;, statistically
inhomogeneous field (38) can be analyzed in a quasi-
static approximation. In this approximation, when

[(x, 0 = d”z[ln 43)

min(Lo)* _ . max(lg,)’

Oy Oy

theintegral scaleL(X, t) and energy E(x, t) of turbulence
are expressed by (41) and (42), respectively, whereas
the variance of the initial potential contained in these
expressions is a slowly varying function of the coordi-

nates. 0y, = 0y M(x). This means that the intrinsic
structure becomes locally isotropic. The rate of
increase in the integral scale is higher in regions of
higher field amplitude, L(x, t) = (o,M(x)t)¥2. The mod-
ulation is partly eliminated by nonlinearity, E(x, t) =

o, M(X)t, whereas E(x, 0) = o’ M%(x).

At this stage, the field has cellular structure and
exhibits universal behavior described by (18) inside
each cell. The boundaries of acell are determined asthe
intersections of the surface profiles dominated by adja-
cent local maximums of the function y(x), y, and y,,.
These boundaries are planes orthogonal to the vector
AYy m = Yk — Ym- Each boundary moves with a constant
velocity parallel to the corresponding vector Ayy .,
whose magnitude is proportional to the potentia differ-
ence Yy — Y(y,) between adjacent maximums,
toward the cell associated with the lower maximum.
When initial field (38) is statistically inhomogeneous,
the mean value of aloca maximum slowly decreases
away from the center of the disturbance. Accordingly,
both the cell-boundary velocity and the velocity field
v(x) involve mean components directed away from the
point x = 0, and the outer boundary of alocalized dis-
turbance has a bubblelike structure. The boundaries
between outer and inner cells are planes, whereas the
outer boundary consists of spherical segments, X —y,| <
(2Wo(y)t)Y2. Ultimately, the field consists of a surviv-
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ing single cell, which is associated with the absolute
maximum of the potential, and both potential and
velocity have universal structure described by (36).

Consider a velocity field consisting of alarge-scale
component v, and a small-scale one v
VX, t) = vi(X, 1) +vyx,t), v(xt) = Dux ) (44)
The angle brackets here denote statistical averages. The
Burgers equation for a potential field can be written as

%\—t/ = ——(Dv) +VAv.

(45)
Suppose that the evolution of the small-scale compo-
nent v can be described in the quasi-static approxima-
tion. Assuming that both nonlinear distortion and dissi-
pation of the large-scale component are negligible, we
average (45) to obtain

M _ 1z 0= ——DE(X f).  (46)

ot 2
Thus, we find that a large-scale coherent component
with a nonzero mean value develops in an inhomoge-
neous random field. Before the small-scale component
is distorted by nonlinear effects (at t < t; ¢ =

mi n(Iiilcw)), the coherent component is determined
by theinitial energy of the velocity field:

t 2
vi(x,1) = %sz(x).

At the stage of strongly nonlinear development, when
the intrinsic structure becomes localy isotropic,
Egs. (44) and (43) predict logarithmic growth of the
large-scale component:

vi(x,t) = =00 (x, t)O

~—D|M(x)|owd1’2EncyLIJtD : (47)

When the function M(x) is anisotropic, the mean veloc-
ity is also anisotropic at this stage. When the intrinsic
length scale L(x, t) becomes comparable to that of the
modulating function M(x), nonlinear distortion of the
coherent component v|(x, t) must also be taken into
account. Ultimately, isotropic velocity and potential
fields develop asaresult of collisions (merger) of cells.
In the long-time limit, the cell associated with the abso-
lute maximum of the potential absorbs other cells, and
the asymptotic solution isdescribed by Eq. (36). For the
resulting structure, the value of L(t) in (36) and the
energy given by (37) are determined only by the abso-

lute maximum H of theinitial potentia lIJgA(X) defined
by (38). Figures 2a—2c show the contour maps of
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Fig. 2. Contour mapsillustrating the nonlinear evolution of alocalized disturbance: t/t, = 10 (&), 30 (b), and 80 (c).

Y(x, t) corresponding to t/t, = 10, 30, and 80, respec-
tively, to illustrate the nonlinear evolution of a two-
dimensional localized disturbance. The maps demon-
strate the development of isotropic field structure and
the geometry of cell boundaries.

Let us now analyze the statistical characteristics of
the absolute maximum H of a multiple-scale distur-
bance, assuming that the length scale characterizing its
intrinsic structure is much less than the length scale of
the envelope. In the Appendix, it is shown that integral
probability distribution function Q(H, V) for the abso-
[ute maximum in avolume V can be expressed in terms
of the mean number N(H; V) of peaks of the potential
W, that exceed the level H (see (81)):

Q(H; V) = exp(=N(H; V)). (49)
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The density n of peaks of a statistically homogeneous
field is given by (78) (see Appendix). When Ly, ; > |;,
we can write a similar expression for the local density
N.(X) in a statistically inhomogeneous field lpg"(x) =
M(X)Wo(Xx) described by (38), with o, replaced by
M(x)o,. Then, the average total number N.(H) of

peaks of the potential Yy is

1
No(H) = —557
(2m 15
49
o H 0 pny* Og4 9)
XID\/I g expO———dx.
(x)oy 0 2M*(x)oyJ
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If H is sufficiently large, we can apply Laplace's
method to Egs. (38) and (49) to obtain

1 HE* ket exp[-]—H 20

(2 )UZQj H D|eff (50)

No(H) =

where

d d
d
Ig,eff = |_||0,i1 (Lgf) = |_|LM,i-
i=1 i=1

The ratio (L(Z'flleﬁ)d = Ny 1N (50) is the number of
independent local maximums of an initial disturbance

described by (38). In the case considered here
(Nimax = 1), we can define the dimensionless potential

(51)

Ho ow[zdeFe”D} (52)

gy

The dimensionless potential h has a double exponential
distribution:

Q@) = exp[-exp(-2)],
Qn(h) = exp{—exp[—(h—ho)hd} .

When N, > 1, integra distribution function (48) for
the absolute maximum islocalized in asmall neighbor-
hood of the point Ho = hygy,, AH/H = 1/hy < 1. Thus,
expressions (36) and (37) imply that the relative fluctu-
ations of the length scale,

(53)

AL(t)
¥0) 2h§
and energy,
AE() _d+2
Et)  2n3

of anisotropic velocity field are weak. By following the
calculations presented above in this section, it can be
shown that the probability distribution of y, for an iso-
tropic field described by (36) isaGaussian one with the

mean square value [; (1= Ly ;/h . At the stage when
L{(t) > Ly ;, field variations are determined only by rel-
atively small changesin the shock locations L(t). Com-
bining Egs. (36), (51), and (53), we obtain the mean
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Fig. 3. Dimensionless self-similar mean field VV|(x) for hy =
3 (1) and 10 (2).

velocity vi(X, t) (see (44)) and variance o> (x, t) =
v2(x, )

Vit ) = vx, 0= [1- SRk £
ol(x, ) = —Qh% -1l } (55)

These expressions show that both the mean field and
the variance are self-similar functions,

- X 0
vi(x, 1) = (2owt)”ZV.Et i
20,t)
02(x t) = 20,tD 0 X 0
vl - U] \% ’
Etz%t)uﬂ

completely defined by the parameter h, = Hy/o,, deter-
mined by (52). As the ratio of the characteristic length
of the disturbance to the length scale of its intrinsic
structure increases, the mean field transformsinto an N
wave and its dispersion concentrates near the shocks, as
illustrated by Figs. 3 and 4. Expression (54) shows that
the energy of the coherent component v|(x, t) is given
by (37) with H = hyo,, when N, > 1. The variance

of(x, t) does not vanish only in a small neighborhood

(AL(B/LJt) = 1/2h}) of the shock located at Ly(t) =
(20hot)¥2. The energy Et) of the stochastic compo-
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Fig. 4. Dimensionless self-similar variance D,(x) for hg =
3(1) and 10 (2).

nent is much lower than the energy E,(t) of the mean
component v,(x, t) of the field:

E{t) _d+2_d+ Z[ZI [I—effm} <1 (56)

E(t) h; d U1

Thus, nonlinear effectslead to generation of large-scale
isotropic coherent structure in the limit of vanishing
viscosity.

4. LONG-TIME ASYMPTOTIC BEHAVIOR
OF THE FIELD

When the Reynolds number is high, but finite, we
use the Cole-Hopf solution to analyze the behavior of
the field. Assuming that the correlation length of the
Green function of linear diffusion equation (8) is much
greater than the length scale of theinitial localized dis-
turbance, we solve problem (8), (9) to obtain

0 X0

Ux,t) =1+ exp vt

(4mvt)?? 7)

where

_ Wo(y) 404
B = J‘%‘xp—zv 1HdYy. (58)
When theinitial Reynolds number is high (Re, ~ H/2v,
where H isthe globa maximum of Yy(y)), the constant B
can be expressed as

H
B = Lgffexpﬁ. (59
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where L; isalength scal e associated with theintegrand
in (58). Then, (57) becomes

U t) = 1+ exp[———%— H+ vdlné—l——\%} (60)

In the low-viscosity limit (v — 0), Egs. (7) and (60)
can be combined to obtain solution (36). However,
when the Reynolds number is finite, expression (36) is
valid only within alimited timeinterval. When tislim-
ited and x is sufficiently small, solution (36) holds
within the d-sphere

X < L(t) = [ (62)

4Etvu]}

At finite Reynolds numbers, shock fronts have finite
widths: & ~ t¥2. However, it should be noted that the
ratio of the shock width to the shock coordinate,
O(t)/L(t), increases with time because of alogarithmic
correction to the shock coordinate in (36). Thisleadsto
a decrease in the Reynolds number and dissipation of
the nonlinear structure. In the long-time limit, when
B/(4mtw)92 < 1, the solution exhibits linear behavior,
and the velocity field isfound by using expressions (20)
and (57):

XD

v(x,t) = — exp% T (62)

— 11
(4mvt)??

In the long-time limit, the evolution of the surface
described by Y(x, t) is governed by a linear diffusion
equation, and the surface has a Gaussian profile with
the height B(41tvt)~%2 and the length scale (2vt)V2.

If the initial potential has a single maximum and
representation (13) holds, then Eq. (59) becomes

d
D4T[\[](d +1)/2 Wo

] rlLexpz.

B =
DqJO i=1

If theinitial random fluctuation is Gaussian and rep-
resentation (38) holds, then the mean value of B defined
by (58) is

Re;M? o
EBD=I%»<p°T(y)—1Eddy, Re0=2—\";. (63)

Thisresult implies that [BLIs independent of theintrin-
sic structure of Yy(x) and is positive definite, because a
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mean field is generated at the stage of nonlinear evolu-
tion. The variance 05 = [{B— (B0’ is expressed as

Cog (M*(y) + Mz(y'))g

2
0% = [[expl
2 = [Jees 8v? 0 (64
y [exp Buly — Yi\li/l(y) M(y) 1} dydy’

where By(2) is the correlation function of a homoge-
neousinitial potential Wu(x). Inthe case of ahighinitial
Reynolds number,

d 2
_ DED(du)/z | %
BO= el 1LM,,exp >
|1 =
M —d 2 (65)
D DLeffD ex @)
Rep P2
0
LM d
o0 g%fg exp(2R€E2). (66)

Thus, the field has universal structure (62) with a
random amplitude B at the stage of linear evolution.
The corresponding ratio of the energies of the random
and coherent field componentsis determined by therel-
ative variance of B:

EfH) _ op est 2
EO (B 0 [LZ'P exp(Rep).

(67)

At the stage of linear evolution, this variance is greater

by afactor of exp(Reg) as compared to that character-
istic of the nonlinear stage (see (56)). Nevertheless,

when (I/LM)" < exp(=Re?) , the scatter in Bisrela-
tively narrow and the distribution of B gradualy

approaches a Gaussian one as the ratio (l/ Lgf('f)d

increases. This behavior is analogous to the long-time
behavior of a homogeneous field [29].

5. CONCLUSIONS

An analysis of the evolution of multiple-scale ran-
dom disturbances in interface growth is presented. The
interface dynamicsis described by the KPZ equation for
apotential Y, and the gradient vector field (v =- ) sat-
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isfies the multidimensional Burgers equation. The
mean sguare gradient

EM) = QO (x,1) 0= x 0)0

characterizing the surface roughness can decrease or
increase with the time elapsed. The relative importance
of nonlinearity and diffusion (dissipation) is character-
ized by the Reynolds number Re;.

In the limit of vanishing viscosity, nonlinear effects
lead to local self-similarity of the velocity and potential
fields characterized by partition of a random distur-
bance into cells in which the fields exhibit universal
behavior. As a result of absorption of cells by other
cells, a single cell having the highest initial potential
survivesin the long-time limit. In thislimit, the surface
developing in a d-dimensional sphere is a paraboloid.
Its height H and radius L are determined by the maxi-
mum H of the initial potential of a localized distur-
bance. The velocity field is discontinuous across the
domain boundary, and the shock amplitude decreases
with time. In the case when the length scale character-
izing theintrinsic structure is substantially smaller than
the disturbance size, the parameters H and L of the
asymptotic structure are shown to vary slowly between
random realizations. This means that a multiple-scale
zero-mean random localized disturbance evolvesinto a
virtually deterministic coherent structure. It is shown
that both mean field and variance are characterized by
self-similar dynamics in the long-time limit.

When the Reynolds number is finite, nonlinear
development is eventually followed by linear dynam-
ics. At intermediate times, the shock width is & ~ t¥2,
However, it should be noted that the ratio &(t)/L(t)
increases with time because of alogarithmic correction
to the shock coordinate. This leads to decrease in the
effective Reynolds number and ensuing dissipation of
the nonlinear structure. In the long-time limit, the evo-
lution of the surface is governed by a linear diffusion
equation, and the surface has a Gaussian profile with a
height B(4mwt)~42 such that the mean [B[1sindependent
of the intrinsic structure of Yy(X) and is positive defi-
nite. Thisis explained by mean-field generation at the
stage of nonlinear development. The height fluctuation
at the linear stage is much greater as compared to the
nonlinear stage, because the time of transition from
nonlinear to linear devel opment depends exponentially
on the maximum height of theinitial disturbance.
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APPENDIX

Satistical Characteristics of Maximums
of Inhomogeneous Gaussian Fields

Since the long-time asymptotic behavior of afieldis
determined by the maximum of the random field Y,
whose amplitude exceeds the variance o, of the initial
potential, one can make use of some results borrowed
from the theory of extremal processes[7, 27, 35].

Statistics of Gaussian peaks have been thoroughly
analyzed in the isotropic, statistically homogeneous
case (see [36]). However, analysis of Burgers turbu-
lence requires knowledge of the statistical behavior of
the absolute maximums of a statistically inhomoge-
neousfield ®(x, y, t). First, let us consider the statistics
of peaks of a statistically homogeneous field §x). In
the case of arelatively smooth field, it is obvious that
the number of peaks exceeding acertain level isasymp-
toticaly equal to the number of maximums and extre-
mums higher than thislevel. Therefore, one should con-
sider the properties of extremums of the field Sx).
Assuming that the equation 0S(x) = 0 has a unique
root x,, one can write the following expression for the
integral of amultidimensional delta function:

[3(0500)dx = ﬁ (68)
where J is the Jacobian
3= Jay) = det(a,), a, = % (69)
i0X,

By using the properties of the delta function, the fol-
lowing expression can be obtained for the mean number
N(H) = INg,(H)Oof extremums that lie in a domain V
and exceed H:

N(H) = J’6(DS)|J(a”-)| E(S—H)dx), (70)

where E(S) is the unit function.

For a gtatistically homogeneous field, the density of
extremums, n(H) = N(H)/V = [Ny [V, is determined by
an integral probability distribution function depending
on § its gradient v; = 0S0x;, and the tensor g; =

050x,0x. For a statistically homogeneous Gaussian
field, it holds that
Wsy,a = W, (v;)Ws a”(S’ a;j)- (71)
It follows from (70) and (71) that
(72)

n(H) = WV(O)J’J’dSJ(a”)WS(S, a;;)day;.
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Using the conditional probability density function
Weon(@;/S) = We(S a;;)/WLS),

one obtains

n= WV(O)J'dSWs(S)
d (73)
xIJ(aij)Wcon(aij/S)da”.

Suppose that the correlation function of the field §(x)
can be represented as

d
Bg(p) = (BX)Sx+p)I=05[|R(P). (74
pr, P
R(pi) = 1- 75
) =1 (75)

Then, the Gaussian distributionin (72) isdetermined by
the following constant parameters:

S, S 5.0
ljl% - ' Di SEES |IJ
OS OI
2 2
(6) . . (6)
0= —, izj, m®O=-=1, (76)
15,115, 7
d/r2 d
012 .0
W, (0) = BO'_eﬁD |o,eff = H'OY"
o]

where |, « IS an effective length scale.

The asymptotic behavior of n(H) corresponding to
high H is approximately characterized by

s

I0 eff

D(a) %= Iy = |‘|Ea..Eg- (7

Combining Egs. (73)—77), one obtains a fina expres-
sion for the density of maximums:

h s
Nee(H) = WV(O)IdSWs(S)-za
o
— Sde 52/2 78
_cHO™ 0 H*0
———————exp3—.
(o (211)(d VRS 020
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This expression implies that the mean number of max-
imums of an anisotropic field S(x) depends on the effec-
tive length scale |4 defined as the geometric mean of
o, (see (76)). When H isrelatively high, the density of
extrema given by (78) is equivalent to the density of
upward crossings of H by the random field §x).

The probability density function for the absolute
maximum of Sinadomain V can be found by amethod
analogous to that used in the one-dimensional case [7].
For a constant volume V and high values of H, one can
assume that the possibility of repeated upward cross-
ings of H by Sx) is negligible and there is a single
extremum of this kind in the domain. Then, the follow-
ing expression can be obtained for the mean number
IN(H, V)[of upward crossings of H by the field S(x) or
the mean number MN,,(H, V)[bf extremahigher than H:

[N(H, V)O= [(Ng(H, V)O= P(1; H, V), (79

where P(M; H, V) isthe probability that the number of
upward crossings of H by SinVis M.

Assuming that V > Ii , Where If’, is the correlation
distance for §x), one can partition the domain V into
physically small subdomains dV, (1% = dV,). The prob-
ability that afunction x) does not exceed H in dV, can
be expressed as

de — l—P(l, H’dvk) = 1—D\](H,dvk)|:|, (80)

where IN(H, dV )< 1. Since Ii = dV,, the events tak-

ing place in different subdomains dV, are statistically
independent. Therefore, the integral probability distri-
bution for the absolute maximum of S(X) inV is

Q(H,V) = P(Sx) <H,xOV)

= [oPe = []A-N(H.dvD (@Y
k k

= exp(—=N(H, V)).

Thefunction Q(H, V) isequivalent to the joint probabil-
ity of the absence of upward crossings of H by §(x) in
V and the absence of extremums exceeding H for high
H. Expression (81) reflectsawell-known fact in the the-
ory of Poisson distribution of peaks [35]. When H is
high, N(H, V) = Vn(H) for a statistically homogeneous
field, where n is given by (78). When the field is inho-
mogeneous, the expression for N is much more compli-
cated even in the one-dimensional case. However, one
may assume that the inhomogeneity is due to a bias
P,(x) = §x) — a(x) or a modified variance ®,(x) =
S(X)M(x), where both a(x) and M(x) are sufficiently
smooth functions (over the scales characterizing §x)).
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Then, a quasi-static approximation can be invoked. In
particular, the mean number of upward crossings of H
by ®(x) inadomain V is expressed as

08 Ogy

N(H, V) = J'next (M (82)

where n isthe density of extremums of a uniform func-
tion §(x) given by (78).
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Abstract—The possibility of applying X-ray diffuse scattering for studying roughnessin multilayer X-ray mir-
rors, including the correlation of roughnesses of neighboring interfaces (roughness cross-correlation) is consid-
ered. It is shown that the reliability and informativeness of this method can be improved by rejecting the clas-
sical experimental schemes and using alternative schemes in which not only the intensity of diffuse scattering
itself, but also its dependence on certain experimental parameters (conditions), vary. Such parameters can be
the spatial coherence of incident radiation, the direction of the momentum transfer relative to the specular dif-
fraction plane, or the X-ray wavelength. In the framework of this approach, the results of comparative measure-
ments of diffuse scattering from a Ni/C multilayer X-ray mirror prepared by laser ablation are considered for
two close values of photon energy: below (8.325 keV) and above (8.350 keV) the K absorption edge for nickel.
It is shown that, in view of effective screening of deep layers in the hard photoabsorption mode, this method
provides more reliable (as compared to the standard diffuse scattering method) information on the evolution of
interfaces between the layers. It is found that the smoothing of roughness in the experimental sample occurs
over large spatial scales such asthe micrometer scale. Only large-scale defects with asize exceeding 10 um are
replicated well from layer to layer. Possible physical reasons for the observed effect are considered. It is shown
that effective smoothing on the micrometer and submicrometer spatial scalesis of fundamental importance for

preparing multilayer X-ray mirrors with high reflectances. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

X-ray diffuse scattering (XRDS) is widely used at
present as a method for studying the structure of the
surface and internal interfaces in multilayer X-ray mir-
rors. This nondestructive experimental technique,
which makes it possible, in particular, to carry out
in situ investigations, indeed provides structural infor-
mation averaged over the sample surfacein wide (from
atomic to macroscopic) limits of lateral spatial dimen-
sions of roughnesses. In addition, deep penetration of
X-ray photons to the bulk of a multilayer X-ray mirror
makes it possi ble to determine the degree of correlation
between the roughnesses of neighboring interfaces
from the angular distributions of the diffuse scattering
intensity.

Unfortunately, the advantages listed above have a
reverse side. As arule, the transverse coherence length
of an incident X-ray beam is much smaller than its
physical size, and the XRDS data turn out to be aver-
aged over an infinitely large ensemble of spatially
coherent beams. In the process of such a total averag-

ing, the information on individual parameters of the
structure of interfaces between the layersin the sample
is completely lost. As a result, the Gaussian functions
are found to be quite suitable for describing roughness
correlation in lateral directions and are widely used for
calculating the angular distribution of the XRDS inten-
sity [1-3],

C(r) = a”exp[(r/§)"], (1.1)
where o is the roughness dispersion, & is the character-
istic correlation length, and h (0 < h< 1) isaparameter
characterizing the fractal properties of interfaces
between the layers [3]. It is difficult to enumerate al
assumptions (which are often unrealistic) used in substan-
tiating the possibility of application of expression (1.1).
First, roughness properties are assumed to be isotropic
in the lateral directions. Although this assumption can
bejustified for averaging over the entire surface area of
the sample, it may be invalid on the spatial scale of
coherently illuminated areas. Second, roughness
defects are assumed to be pointlike; i.e., C(r) — O as

1063-7761/03/9706-1201$24.00 © 2003 MAIK “Nauka/Interperiodica’
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r — oo, This may also be incorrect in the presence of
extended scratches, roughness waves, terraced steps, or
mosaic blocks [4]. Third, it is assumed that the spatial
frequency spectrum of roughness has a uniform distri-
bution. In fact, this spectrum may have singularities
associated with concrete physicochemical or techno-
logical factors [5]. All these singularities are disre-
garded when expression (1.1) is used for describing
XRDS.

Parameter h from expression (1.1) weakly affects
the angular distribution of the XRDS intensity unlessit
assumes its limiting values. If quartz substrates are
used, the value of this parameter, h = 1/2, describes the
experimental dataquite satisfactorily [6]. Theonly inte-
grated parameter & that can be obtained only from the
XRDS datal characterizes the rough structure of inter-
faces between the layersin lateral directions. However,
this parameter is also difficult for interpretation. As a
matter of fact, statistical quantities o and & are deter-
mined not only by the actual properties of the inter-
faces, but also by the sizes of the area elements over
which averaging is carried out in determining the val-
ues of these quantities. These sizes are in turn deter-
mined by spatial coherence of incident X-rays. As spa
tial coherence of the incident wave increases (when
synchrotron sources are used), a situation may occur
when parameter ¢ reflects not the real properties of
roughness, but rather the experimental conditions of
measurements [7]. Thus, expression (1.1) describesthe
method of averaging over the ensemble of coherent
beams rather than the actual properties of roughness of
interlayer interfaces. In this case, only relative changes
in parameter &, as compared to a certain standard sam-
ple under the same experimental conditions, provide
more reliable information. Thus, the interest in XRDS
is due not to the high informativeness of this method,
but rather due to the lack of alternative methods of
investigation. Indeed, microscopy of the cross cut can-
not provide reliable data on the roughness of a multi-
layer X-ray mirror with periods smaller than 5 nm.
Atomic force microscopy may provide extensive and
important structural information only on the surface,
but not on internal interfaces.

Nevertheless, the difficulties mentioned above are
not fundamental. The XRDS method can be made more
informative by using more sophisticated setups for
measurements, in which not only the XRDS intensity
itself, but also its dependence on certain experimental
conditions, is measured. Such conditions include the
spatial coherence of incident radiation [7]; the direction
of the momentum transfer relative to the specular dif-
fraction plane, which is determined by the wave vectors
of incident and specularly reflected radiation [4]; and
the wavelength of X-rays. Another example isacombi-
nation of the XRDS method and the extended X-ray
absorption fine structure (EXAFS) method, which

1 The roughness dispersion can be estimated more easily from the
data on specular reflection.
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involves the measurement of the extended fine structure
of the XRDS intensity as a function of the photon
energy beyond the absorption edge of the atoms consti-
tuting a multilayer X-ray mirror and provides informa-
tion on the atomic structure (the atomic radial distribu-
tion function) at the interfaces [8].

The evolution of the profiles of interlayer interfaces
during the growth of a multilayer X-ray mirror is a
structural problem of considerable interest. Thisis due
to the fact that structural information of this kind gives
an idea of the mechanism of physicochemical phenom-
ena occurring during the growth of the mirror and,
hence, makes it possible to optimize the growth tech-
nology to improve the optical parameters of such amir-
ror. In addition, the possibility of smoothing the inter-
layer roughness during the growth of a multilayer
X-ray mirror is of considerable interest also. It is gen-
erally accepted that such smoothing occurs in the case
of magnetron sputtering [9] and laser ablation [10] as
well as during thermal sputtering with ionic polishing
[11-14] since it is these methods that make it possible
to prepare multilayer X-ray mirrors with acceptable
optical parameters. It should be noted that processes of
smoothing or, conversely, increasing roughness were
observed experimentally with the help of electron
microscopy of the transverse cut only for multilayer
thin films with a period larger than 10 nm. However,
thismethod isuselessasarule for mirrorswith aperiod
smaller than 5 nm.

In spite of the fact that potentialities of XRDS as a
method for studying the cross-correlation of rough-
nesses in amultilayer X-ray mirror through simulation
of angular intensity distributions are widely discussed
in the literature, real potentialities of this method are
quite limited (at least, when conventional experimental
setups are used). The difficulties arising in this method
are due to the fact that a coherent replication of rough
interfaces from layer to layer leads to resonant
enhancement of XRDS, generating the so-called quasi-
Bragg band [15-18] under the modified Wulf-Bragg
condition,

A = A(SinB,+ sinB,) = 2Asin,, (1.2)

where A isthe X-ray photon wavelength, A isthe period
of amultilayer X-ray mirror, 8, and 6, are the angles of
incidence and scattering relative to lateral planes,
respectively (Fig. 1), and 6z isthe Bragg angle. Condi-
tion (1.2) is precisely the condition for the emergence
of adiffraction maximum for scattering from a grating
whose reciproca vector coincides with the reciprocal
vector of the multilayer X-ray mirror [19]. Indeed, the
emergence of quasi-Bragg XRDSisassociated with the
fact that aroughness defect, being replicated from layer
to layer, forms a “grating” (Fig. 2). The intensity of
XRDS from roughnesses correlated from layer to layer
isproportional to N2, where N isthe number of bilayers
in the X-ray mirror; the intensity of XRDS from non-
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Fig. 1. XRDS experimental geometry. The zaxisisdirected
aong the normal to the lateral planes, the x axisis parallel
to the lateral planes and the plane of specular diffraction
determined by the wave vectors of the incident and specu-
larly reflected waves, and the y axis is perpendicular to the
specular diffraction plane; kg and k; are the wave vectors of

the incident wave and the diffusely scattered wave, respec-
tively; 6y and 8, are the angles between the wave vectors

and the lateral planes. The azimuth angle, i.e., the angle
between the projection of wave vector k; onto the lateral

plane and the x axis, will be denoted by ¢.

correlated roughnesses making an equivalent contribu-
tion to roughness dispersion o is proportional to N.

At first glance, such an enhancement of the intensity
due to the coherent replication of roughnesses makes it
possible to study directly the extent of their cross-cor-
relation. Indeed, if aroughness defect is replicated not
throughout the entire stack, but only through several
layers, the quasi-Bragg scattering width Ag, must
increase as compared to the width of specular Bragg
reflection (Fig. 3). By measuring the quasi-Bragg scat-
tering width Aq, as a function of lateral momentum
transfer g,, one can obtain information on the extent of
cross-correlation depending on the spatia size of a
roughness defect [18]. However, this approach is
inapplicable, asarule, in the case of amultilayer X-ray
mirror with a small total thickness (T < 1 um). Indeed,
the characteristic cross-correlation length &, can be

@ 102 FPON
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determined from the width of the quasi-Bragg band
only if &, < T. However, in the case of a multilayer
X-ray mirror, the opposite situation is observed as a
rule; i.e, &, = T, and the quasi-Bragg bandwidth is
approximately equal to the width of the Bragg peak
irrespective of the momentum transfer g, (at least, for
moderate values of this quantity) [20]. Consequently,
violations of complete cross-correlation of roughness
affect the XRDS intensity relatively weakly not only in
the case of amultilayer X-ray mirror, but also for other
multilayer thin films with a small total thickness (of
fractions of a micrometer).

Attempts to overcome these difficulties were made,
for example, in [21, 22], where XRDS was studied in
the vicinity of Kiessig modulations. Since the maximal
difference in the behavior of interfaces is observed
between the surface of an X-ray mirror and the inter-
face between the mirror and the substrate, such an
approach improves the sensitivity of the XRDS method
to violations of complete roughness cross-correlation.
Rendering this approach its due, we must note that both
the surface of a multilayer X-ray mirror and the inter-
face between thismirror and the substrate are unique by
nature and their behavior may differ considerably from
the behavior of internal interfaces. More reliable data
on the nature of cross-correlation of roughness can also
be obtained by studying an X-ray mirror with a small
number of layers, in which the enhancement of XRDS
due to coherent replication of the interfacesisinsignif-
icant [23]. Naturally, the class of objects accessible for
investigation becomes much smaller in this case.

In our previous study [24], we used another modifi-
cation of the XRDS method, which makesit possible to
considerably increase the potential for studying the
cross-correlation of roughness. The proposed method is
based on comparative measurement of the XRDS inten-
sity at two photon energies: slightly lower and slightly
higher than the photoabsorption edge for atoms consti-
tuting amultilayer X-ray mirror. In the former case, the
amplitudes of diffuse scattering from rough interfaces
are approximately identical over the mirror volume,
while in the latter case the lower interfaces are effec-

2
) 10z F\PON

Fig. 2. Coherent replication of roughnesses from layer to layer (@) increases the XRDS intensity in proportion to N2 in accordance
with condition (1.2), while the XRDS intensity from the same number of noncorrelated roughnesses (b) is proportional to N. Both
cases are characterized by identical contributions to roughness dispersion o.
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Fig. 3. In the diffraction space, the quasi-Bragg band is
arranged along the gy axis and passes through the Bragg
maximum. The g, axis in the figure corresponds to specular

6—20 measurements. The quasi-Bragg bandwidth along this
axis must increase with the modulus of g since the smaller

the lateral size of the roughness, the worse its replication
from layer to layer [18].

tively screened due to strong photoabsorption. The
measurements of the relative difference in the XRDS
intensities in the former and latter cases make it possi-
ble to considerably improve the sensitivity of experi-
ment to violations of complete cross-correlation of
roughnesses. Moreover, by carrying out such measure-
ments for various values of the lateral component of the
momentum transfer, it is possible to study the behavior
of cross-correlation depending on the spatia sizes of
roughnesses. We used this method to observe experi-
mentally the smoothing of roughnesses on the
micrometer spatial scale in a Ni/C multilayer X-ray
mirror prepared with the help of laser ablation. In this
article, the theory and experimental results obtained by
using this method are represented in greater detail.

2. THEORY

Under the conditions of hard photoabsorption, it is
necessary to take into account the attenuation of an
X-ray wave in the sample. In addition, small values of
incidence angles necessitate the inclusion of the refrac-
tion effect. All this can betaken into account by using the
distorted wave Bohr approximation (DWBA) [3, 25]
instead of the conventional Born approximation. How-
ever, we will disregard specular reflection since the
angles of incidence and scattering will be assumed to
differ from Bragg's angles. In this approximation, the
expression for the XRDS amplitude has the form

f(Q) = ro.[Ap(f)'l'o(Z)Tl(Z)e><|0(—iQ [t)dr, (2.1)

where integration is carried out over the volume of the
X-ray mirror; ryisthe classical electron radius; Ap(r) is
the correction to the electron density of the X-ray mir-
ror at point r due to the presence of roughnesses; Ty(2)
and T,(2) are the amplitudes of transmitted waves for
angles of incidence 6, and 6,, respectively; and Q =
Re(K, — K3,), Kg and K ; being the wave vectors of the
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incident and scattered waves, respectively. Strictly
speaking, wave vectors Q, K, and K, are functions of
coordinate z; however, in the approximation of slowly
varying amplitudes [26], we assume that these quanti-
ties are constant and can be cal cul ated proceeding from
the average refractive index n = 1 — o of the X-ray
mirror,

K><O,1 = kxO,lv KyO,l = ky0|1’
— 1 [an2 _ 0
KZO,l - k Sn 60'1—26""‘ kZO,l —@D,

where k, and k, are the corresponding wave vectorsin
vacuum. Taking into account the corrections for the
refraction effect, we find that condition (1.2) is trans-
formed into the condition

A = AB/sin'8,-25 + /sin’e, - 23
5 2.2)
_ 0
~A(eo+el)%1—@p.

It can easily be seen that the effect of screening of
interlayer interfaces in the vicinity of the substrate due
to photoabsorption is described in expression (2.1) by
the factor

1.1
TT:(2) = exp| 50+ 52,
1

where 4 = 2ImK is the linear photoabsorption coeffi-
cient and angles ©, and ©, correspond to angles 6, and
8, on account of the refraction effect. Indeed, the ampli-
tude of scattering from the roughness located at point B
in Fig. 1 decreases due to the factor exp[—u(rag +
rec)/2], where r gz and rgc are the distances from point
Ato point B and from point B to point C, respectively.

We assume that the electron density at the interfaces
varies smoothly rather than at ajump. Such an assump-
tion isjustified at least in the case of Ni/C multilayer
X-ray mirrors prepared using laser ablation [20,
27-29]. It should be noted that, in the approximation of
slowly varying amplitudes, the computational method
used here is valid irrespective of the form of variation
of the electron density at the interfaces, including sharp
interfaces. In the latter case, however, the amplitudes
can be calculated more accurately by using the Fresnel
coefficients.

Suppose that the interlayer roughnessis completely
conformal. Then the behavior of al interlayer inter-
faces can be described by the same function Az(x, y),
and the electron density Ap(r) can berepresented in the
form

Ap(x,y,2) = p(z+Az(x y)) -p(2),
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where p(2) is the average electron density along the
zaxis. It is natural to expand this expression in the
small parameter Az(x, y) using the condition of small-
ness of the roughness dispersion as compared to the
period of the mirror:

dp(2)

Ap(X, Y, 2) =Az(X,Y) e (2.3)

Proceeding from the general physical consider-
ations, we can describe the evolution of the profiles of
theinterfaces by using thereplication factor a(x, y), i.e.,
a function whose convolution makes it possible to
determine the profiles of the interfaces of the next
bilayer from those of the previous one [18, 30]. In the
most general case, this can be written in the form

Apn(r) = hn(r) +an(xy) = Ap,_4(r),

where Ap,(r) is the roughness electron density in the
nth bilayer, h,(r) isits own roughness, and a,(x, y) isthe
replication factor corresponding to this bilayer. How-
ever, wewill use several simplifying assumptionsinthe
subsequent analysis.

First, wewill neglect the quantity h,(r) leading to an
increase in the roughness during the growth of the mul-
tilayer X-ray mirror. This simplification may obviously
become unjustified for large values of transferred
momenta g, corresponding to small lateral dimensions
of the roughness. The criterion for inapplicability of
thisassumption istheincreasein the quasi-Bragg band-
width in the direction of g, as compared to the width of
specular reflection. It was mentioned above that this
effect is rather weak in the case of a multilayer X-ray
mirror.

Second, we will assume that the behavior of func-
tion Ap,(r) within a bilayer is completely conformal,
which allows us to use expression (2.3) in the integra-
tion. At first glance, this assumption appears unjusti-
fied. As a matter of fact, continuous smoothing is
replaced by stepwise smoothing, which obvioudy can-
not lead to alarge error. The application of formula (2.3)
automatically suggests that the “structural factor” for
roughnesses in a bilayer coincides with the structural
factor of the bilayer to within a phase factor. On the
other hand, there are indications that roughnesses on
the alternative interfaces A/B and B/A may differ [29,
31, 32]; i.e., replication factors ag(X, y) and aga(X, Y)
may be different. In fact, these differences can be sig-
nificant only for microscopic roughnesses, which lead
to the formation of a mixed layer. It should be empha-
sized, however, that quantity Ap(r) isacorrectionto the
electron density due to the violation of trandational
symmetry in lateral directions and not dueto the differ-
ence from the electron density of a certain ideal multi-
layer X-ray mirror with sharp interfaces. Thus, the fact
that the alternative interfaces may have mixed layers of
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different thickness does not rule out the application of
formula (2.3).2

The third assumption is that roughnesses are
smoothed uniformly over the entire thickness of the
mirror, i.e.,

a(x y)=a(xy). (2.4)
This assumption may be erroneous. A situation is possi-
ble where smoothing occurs just in afew layers near the
substrate. Nevertheless, the application of formula (2.4)
is justified in the sense that this effect changes the
XRDS intensity insignificantly (see above).

The above assumptionsmakeit possibleto represent
the additional electron density within a bilayer with
number nin the following form:

Apn(x, Y, 2)
= 305 095 209 D200 G2

In our subsequent computations, we represent the
integral in formula (2.1) as the sum of two integrals
over bhilayers, removing slowly varying factors Ty(2)
and T,(2) from the integrand,

(2.5)

f(Q) = rOZTO(Zn)Tl(Zn)IApn(r) 26)
n v, '

x exp(—iQ [)dr,

where integration is carried out over the corresponding
volumes V,, of bilayers. Using the properties of the Fou-
rier transform (namely, the fact that the Fourier trans-
form of the convolution of functions is equal to the
product of their Fourier transforms and that the Fourier
transform of the derivative of afunction is equal to its
own Fourier transform to within a constant factor), we
can smplify expression (2.6) by substituting expres-
sion (2.5) into it:

f (Q) = - rOQZF(QZ)ny(S)

2.7
XY To(z) Tu(z)a'(s), &7
where
N2
F(Q) = j p(2)exp(-iQ,z)dz,
-2

ny(s) = IIAZO(Xv y) exp(— [ Qxx —i ny) dXdy’

2t can be seen from the above discussion that the only possible
way of studying aternative layers by the XRDS method is to use
the effect of standing waves.
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s=(Qx Q) isthe projection of the momentum transfer
onto lateral planes and F(Q,) is the structural factor of
abilayer of an X-ray mirror; we also assume that reso-
nance condition (2.2) is satisfied and the corresponding
phase factors in the sum are omitted. If we set Ty(z,) =
T.(z) = a(s) = 1, it can easily be seen that scattering
amplitude f becomes proportional to N; i.e., the rough-
nesses repeated coherently from layer to layer are scat-
tered in phase.

Using expressions (2.7) and the identity

2 _ _ S
|ny(S)| - LxLyCO(S) - gi'ﬁe—oco(s)a

where L, and L, are the dimensions of the coherently
illuminated area element, Sis the cross section of the
incident coherent beam, and Cy(s) is the correlation
function of the “substrate” in the reciprocal space, we
can easily obtain the differential cross section of diffuse
scattering:

95 _ (10 = s r(QuPCy(s)
da sng, < 0

, (2.8)
X

S To(z)Ti(z)a(s)

In the standard experimental geometry, cross sec-
tion (2.8) is measured to a certain degree of integration
with respect to the azimuth scattering angle ¢ or, which
isthe same, with respect to momentum transfer g in the
direction perpendicular to the plane of specular diffrac-
tion. Integration of cross section (2.8) with respect to
momentum g, substantially complicates the computa-
tional problem when exact calculations are required.
Integration can be carried out analytically only for spe-
cia forms of functions Cy(s) and a(s). Quantitative
computations require knowledge of function Cy(s),
which is obviously difficult for experimental determi-
nation. Indeed, function Cy(s) is not a correlation func-
tion of the substrate roughness in the proper sense. It
was introduced as a limit of the correlation function of
roughness of a multilayer X-ray mirror for n — 0.
Thus, direct measurements of the correlation function
of the substrate (e.g., with the help of atomic force
microscopy) do not solve the problem.

Integration with respect to the azimuth angle
requires knowledge of the angular resolution in the azi-
muthal direction. Although momenta g, and ¢, appear
symmetrically in expression (2.8) for the cross section,
their positions are not quite equivalent from the geo-
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metrical point of view (with respect to scattering
angles):

qx = kcosh, cosd —kcosh, = k(8 — 67 —07),
g, = kcosB;sing =k¢.

The XRDS intensity ismainly concentrated in anarrow
region of small angles¢. Thus, if the angular resolution
of an experimental setup is not high (fractions of a
degree or even worse), the limits of integration with
respect to g, can be taken asinfinitely large:

h do
Iexp(qx) 0 J'Edqy

The actual properties of cross section (2.8) and rep-
lication factor a(s) make it possible to radically sim-
plify the expression for the cross section, avoiding inte-
gration with respect to the azimuth angle in the case
when only an approximate solution isrequired. Indeed,
in accordance with formula(2.8), the amplitude of scat-
tering from aroughness defect is determined by the size
of the defect not only along the x axis, but also by its
size in the perpendicular direction along the y axis.
Accordingly, smoothing of roughnesses occurs also in
two directions. The integration in question can be
reduced to evaluation of the average scattering ampli-
tude taking into account the effect of smoothing along
they axis. It should be noted above all that, obviously,
the larger the spatial size of roughness defects, the more
precisely these defects must be replicated from layer to
layer [18]; i.e., a(s) —= 1 for s — 0. On the other
hand, the contribution of large roughness defects dom-
inatesin the XRDS cross section [33].

In deriving expression (2.8), we presumed that the
size of coherently illuminated area elements is much
larger than the characteristic size of roughness defects
in a multilayer X-ray mirror. However, when synchro-
tron sources with a high degree of spatia coherence of
incident X-rays are used, roughnesses of alarge spatial
scale start participating in diffraction, and the above
assumption becomes invalid [7]. On account of spatial
coherence of incident radiation, expression (2.8) for the
cross section has a noticeably more complicated
form [34, 35]. In addition, a situation can be realized
when the far-field approximation (Fraunhoffer diffrac-
tion) becomes inapplicable. In this case, the corre-
sponding corrections should also be introduced into the
expression for the XRDS cross section [34, 35]. How-
ever, that such complications do not play any signifi-
cant role in the sense that the parameters of a coherent
wave packet vary insignificantly upon atransition from
one value of photon energy to the other if these energies
are close. Thus, the corrections to cross section (2.8)
dueto theinclusion of coherent properties of X-raysdo
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not play a decisive role if we measure not the absolute
XRDS intensity, but the ratio of the intensities for two
close photon energies.

The inclusion of spatial coherence is important
since the form of diffraction is basically different for
different directions of the momentum transfer relative
to the specular diffraction plane, i.e., for g, and q,.
Indeed, even if the transverse dimensions of coherence
in the specular diffraction plane and in the perpendicu-
lar direction are approximately equal 3 the value of L,

increases strongly (in proportion to 651) ascompared to

L, in view of the smallness of angle of incidence 8. It
follows hence that roughness defects with a size larger
than L, but smaller than L, cause nonspecular diffuse
scattering in the specular diffraction plane, while their
presence in the transverse direction is imperceptible.
We repeatedly observed such a concentration of XRDS
in the specular diffraction plane in experiments [4, 7],
including those with a Ni/C multilayer X-ray mirror.
For roughnesses of the size considered here, the effect
of smoothing along the y axis obviously does not
reduce the scattering amplitude; on the other hand, itis
these roughnesses that ensure the main contribution to
the XRDS cross section.

Thus, under certain conditions, the effect of smooth-
ing along they axis can be disregarded, and the problem
changes from two-dimensional to one-dimensional:

r(z)Qi 2
I@(p(qx) DSWOOH:(QZ)' CO(QX)
2
X

Z TO(Zn)Tl(Zn)an(Qx)

If we compare the XRDS intensities for two close pho-
ton energies, E, and E;, the quantity n(g,) being mea-
sured here and defined as

I (E4, ,)

@) = (& g’

where l(E,, g and I(E,, g,) are the intensities of quasi-
Bragg scattering for the corresponding photon energies,

3In actual practice, vertical geometry is used, as arule, in diffrac-
tion setups with synchronous sources (the specular diffraction
plane is arranged verticaly). This is for two reasons. First, syn-
chronous radiation is usually polarized in the horizontal direc-
tion. Second, and more important, the size of a synchronous
sourcein the vertical direction is always much smaller than in the
horizontal direction. For this reason, for equivalent angular reso-
lutions, the optical efficiency in the vertical geometry is higher.
Accordingly, the vertical component of spatial coherence turns
out to be much larger than the horizontal component.
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can be calculated using the expression
_ |0p(E,)
n(a,) = ‘—1
0p(Eo)
(2.9

zTO(EL Zn)Tl(El! Zn)an(Qx)

X

ZTO(EOv z,)T1(Eq 2,)a"(Qy)

where dp(E) is the electron density contrast at inter-
faces for photon energy E. In the expression derived
above, we disregard the change in the angles due to the
difference in refractive indices n(Eg) and n(E,).

In order to express the replication factor a(Q,) ana-
Iytically in terms of n(q,), additional simplification of
expression (2.9) is required; in the general case, such
simplification may not be valid. Nevertheless, numeri-
cal calculations of replication factor a(Q,) withthe help
of expression (2.9) do not require any anaytic form of
its dependence on qy.

3. EXPERIMENTAL CONDITIONS

The Ni/C multilayer X-ray mirror with 30 bilayers
(N = 30) studied here was prepared with the help of
laser ablation [27] on a quartz substrate polished thor-
oughly with nanodiamonds [36]. The roughness disper-
sion obtained from preliminary X-ray reflectometry
(A =0.154 nm) of the substrate was 0.5-0.6 nm. Optical
parameters of the mirror, which were obtained by sim-
ulating X-ray reflectometric data in the dynamic
approximation [37], were as follows: the period was
N =5.2 nm; theratio of the thickness of Ni layersto the
period was 3 = 0.4; the densities of nickel and carbon
layers were py; = 8.2 g/lcm?® and p = 2.3 g/cm?; and the
roughness dispersion was o = 0.4-0.5 nm. It should be
noted that the roughness dispersion of the mirror turned
out to be smaller than for the initial substrate, which
indirectly indicates the existence of smoothing pro-
cesses.*” Moreover, our previous studies [27—29]
showed that the above value of roughness dispersionin
amultilayer mirror reflects both the true roughness and
the presence of mixed layers. The true roughness was
estimated as 0.1-0.2 nm [20].

Diffraction experiments were made on athree-crys-
tal diffractometer using synchrotron radiation of a
VEPP-3 storagering [38]. A single channel-cut Si(111)

4our experience in preparing Ni/C multilayer mirrors with the
help of laser ablation revealed the following interesting fact.
Although the roughness dispersion of the initial substrates can
vary in relatively wide limits in accordance with X-ray reflecto-
metric data, the optical quality of the prepared mirror turns out to
be approximately the same. This visually indicates a strong
smoothing of roughnesses during the multilayer growth.
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Fig. 4. Experimental w profiles for photon energies Eg =
8.325keV (solid curve) and E; = 8.350 keV (dashed curve).
The vertical axis corresponds to the XRDS intensity nor-
malized to the intensity of the incident beam.

crystal was used as a monochromator, while a Ge(111)
single crystal was used as a secondary crystal-collima-
tor. The monochromator, the multilayer X-ray mirror,
and the crystal-collimator were arranged in the (+, +, +)
geometry. The experimentally measured angular resolu-
tion of the diffractometer was 15-18 angular secondsfor
an X-ray photon energy of 8 keV. Measurements were
made at two photon energies (E, = 8.325 keV and E; =
8.350 keV) using transverse scanning through the first
Bragg reflection; i.e., the XRDS intensity was mea-
sured as a function of angle w = (6, — 6,)/2 = q,/2k6g
under condition (2.2).

It should be noted that the use of the secondary crys-
tal-collimator in the measurements above the K absorp-
tion edge of nickel atoms enabled us to avoid distor-
tions of experimental data due to excitation of fluores-
cence. The experimentally measured value of the

N Al
/ /
——,
v~ —1. =~
E, =%2'51<6V E, =§;«ev

Fig. 5. Comparison of the amplitudes of diffuse scattering
from a Ni/C multilayer X-ray mirror for photon energies
lower and higher than the K absorption edge for nickel
atoms; in the second case, the contribution to the amplitude
of diffuse scattering from roughness defects of lower layers
is noticeably smaller due to the effective screening under
conditions of hard photoabsorption.
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fluorescence background was found to be at a level of
10-20 Hz, whilethe desired signal was not weaker than
1kHz.

4. DISCUSSION OF EXPERIMENTAL RESULTS

Figure 4 shows the experimentally obtained w pro-
files. It was found that these profiles have different
angular widths, which correspondsto different “ charac-
teristic lateral correlation lengths’: approximately
0.35 um for a photon energy of E, = 8.325 keV and
about 0.40 um for E; = 8.350 keV. It should be empha-
sized that the absolute values of the above quantities
reflect the statistical properties of an ensemble of spa-
tially coherent wave packetsrather than the actual prop-
erties of roughness. Nevertheless, considering that the
contribution to the XRDS comes from the roughness of
the interfaces in the entire volume of the multilayer
mirror in the former case and predominantly from the
interfaces of the upper layers in the latter (Fig. 5), the
difference in the obtained results unambiguously indi-
cates the smoothing of roughnesses in the sample.
Indeed, a decrease in the effective number of reflecting
layers dueto screening may increase the width of quasi-
Bragg scattering along g, (see Fig. 3), which is aweak
but experimentally observable effect. However, this
does not lead to any changesin the XRDS cross section
in the g, direction.

Figure 6 shows the same results(circles) in theform
of the dependence of quantity n from expression (2.9)
on w. It can be clearly seen that the experimental points
noticeably deviate from the theoretical curve (dashed
line) calculated under the assumption of complete
cross-correlation. The deviation sign corresponds to a
decrease in the roughness amplitudes during the growth
of the multilayer mirror, while the magnitude of devia-
tion is larger, the higher the value of the momentum
transfer g, = 2kBgw.

0.5

0
-0.4°

1
-0.2° 0

1
0.2° 0.4°

w

Fig. 6. Experimental data (circles) and the results of theo-
retical calculations in the DWBA for function n from
expression (2.9) for complete cross-correlation (dashed
line) and for smoothing of roughnesses (solid curve).
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The solid curve in Fig. 6 shows the results of theo-
retical cal culations made by the least-squares technique
with the replication factor in the form

a(s) = exp(-vts?), (4.1)
asin[18, 39, 40]. Here, t isthe film (bilayer) thickness
and v isacoefficient of the dimension of length, which
characterizes the rate of smoothing. The value of this
coefficient was found to be equa approximately to
05pum.>

It should be emphasized that the analytic form of the
replication factor isimmaterial for determining its value
when approximate expression (2.9) is used. On the other
hand, knowledge of the analytic form is required if cal-
culations are based on exact expression (2.8) for the
cross section. We calculated the replication factor by
using both methods. In the calculation based on exact
expression (2.8), we used the roughness correlation
function in form (1.1), which was calculated on the
basis of experimental data, but we took into account the
fact that the size of the coherently illuminated area ele-
ment along the y axis under our experimental condi-
tions is equal approximately to 0.5 um, i.e.,, much
smaller than its size along the x axis (about 300 pm).6
As aresult of such adifference in the sizes, XRDS is
predominantly concentrated in the specular diffraction
plane[4, 7] and, hence, the error due to the transition to
approximate expression (2.9) isadditionally reduced. A
comparison of the results of calculations revealed that
therejection of averaging of the smoothing effect along
the y axis leads to an insignificant error (smaller than
1%). However, this small value leads to an appreciable
error in determining the absolute value of the replica-
tion factor. At the same time, the error in question
weakly affects the dependence of the replication factor
on the momentum transfer q,. M oreover, an experimen-
tal error of 1-2% in the determination of the XRDS
intensity ratio isinevitable, which is equivalent to dou-
ble the error in determining the absolute value of the
replication factor. Thus, the error associated with the
application of approximate expression (2.9) in our case
issmaller than the experimental error and this approach
cannot lead to a considerable distortion of the results of
model calculations.

Figure 7 shows the dependence of the total decrease
in the amplitudes of roughnesses during the evolution
of interfaces (from the substrate to the surface) on their
lateral size. It can be clearly seen that micrometer-scale

51t should be noted that, in spite of the obvious good agreement
between the experimental data and such aform of the replication
factor, the value of parameter v obtained by us is at least three
orders of magnitude higher than the value predicted in [18, 39, 4Q].

6 Thesizea ong they axisisequal to the corresponding component
(in the plane of the electron beam orhit) of the transverse coherence
of incident X-rays. The size dong the x axis can be estimated by
using the formula L,/8y where L, is the spatial coherence compo-
nent perpendicular to the orbit. In our case, L, =5 um.
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Fig. 7. Total decrease in the amplitudes aN of roughnesses
during the evolution of interfaces from the substrate to the
surface as a function of their lateral size L ~ 217q,; circles

arethe calcul ated values of aV corresponding to experimen-
tal points; the solid curve is the best approximation in the
framework of model (4.1).

roughnesses are effectively smoothed during the multi-
layer growth. At the same time, roughnesses of about
10 umin size are replicated from layer to layer with an
appreciable accuracy. It should be noted that the
method used here makes it possible to determine the
replication factor, but does not provide absolute values
of roughness amplitudes in the bulk of a multilayer
X-ray mirror. This fact should not be astonishing since
we model not the absolute values of XRDS intensities,
but their ratio.

In this study, we assumed that smoothing occurs
evenly through the stack of layers of amultilayer X-ray
mirror. At the sametime, it isreasonabl e to suppose that
effective smoothing may take place even in afew first
layers of the mirror near the substrate. Obvioudly, this
effect will be relatively weakly pronounced in the
framework of the method used here. It should be noted
in this connection that simultaneous application of our
method and the method used in [21, 22], where XRDS
was studied in the vicinity of Kiessig beats, may pro-
vide a complete pattern of the behavior of roughnesses
during the growth of amultilayer X-ray mirror.

It should be emphasized that effective smoothing in
the micrometer range of roughness defect sizes is of
fundamental importance for preparing high-quality
multilayer mirrors [7]. In the absence of such smooth-
ing, mirrors with a high reflection coefficient could
hardly be manufactured. Indeed, we can easily estimate
that the path length of a photon experiencing Bragg
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reflection from a multilayer mirror in the lateral direc-
tion is on the order of 1 um. Thus, roughnesses with a
size exceeding 1 pm do not affect Bragg diffraction,’
while roughnesses with a size smaller than 1 um effec-
tively suppress the reflection of an X-ray wave.

In conclusion, we must consider possible physical
reasons for smoothing of roughnesses on alarge spatial
scale such as the micrometer scale. It was taken into
account in [18, 30, 39, 40] that an atom can be dis-
placed during deposition by a distance coinciding in
order of magnitude with the atomic size. In the frame-
work of this model, the replication factor was proposed
inaform similar to expression (4.1). It isobvious, how-
ever, that such a mechanism cannot be responsible for
smoothing over the micrometer scale. Schlatmann et al.
[41] analyzed the effect of viscous flow during polish-
ing by ions with a high kinetic energy (2001300 V),
asaresult of which smoothing can occur on alarge spa-
tial scale. Although the kinetic energy of atoms depos-
ited in the course of laser ablation is considerably lower
than the energy of ions during polishing, an analogous
process of viscous flow is still possible. Bushuev and
Kozak [31, 32] took into account possible diffusion
processes, i.e., the fact that adsorbed atoms can move
over very large distances on the surface, which leads to
uniform smoothing in al regions of the spatial fre-
guency spectrum. According to these authors, the repli-
cation factor does not tend to unity upon an increase in
the momentum transfer. Another explanation of
smoothing of roughnesses on the microscopic spatial
scale can be given on the basis of possible processes of
reevaporation during the deposition of atoms. “Splash-
ing” of atoms over the surface of a multilayer X-ray
mirror may lead, on the one hand, to healing of “val-
leys’ and, on the other hand, to effective leveling out of
“hills’” on the surface.

Summarizing the result obtained, we can state that
the method used here for studying the cross-correlation
of roughnessesin amultilayer X-ray mirror allowed us
to observe the smoothing of roughnesses on the
micrometer spatial scale. It is shown that smoothing is
of fundamental importance since the presence of
roughnesses of such asizeinevitably reducesthereflec-
tance in the case of Bragg diffraction.

ACKNOWLEDGMENTS

The authors are grateful to V.A. Bushuev for useful
discussions, to the staff of the Siberian Research Center
headed by G.N. Kulipanov, and to experimenters from
the VEPP-3 storage ring for their attention and support.

" The presence of such roughnesses causes phase shifts at the wave
packet front, leading to additional XRDS; however, the total coef-
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Abstract—Tunneling measurements of di/dV, d2l/dv?, and d3I/dVv® were performed along the C; axis (nor-
mally to layers) for Bi,Te; and Sh,Te; layered semiconductorsin the temperaturerange 4.2 < T< 295 K. Tem-
perature dependences of the forbidden band energy E, were obtained. The forbidden band energy in Bi,Te; was
0.20 eV at room temperature and increased to 0.24 eV at T = 4.2 K. The E, value for Sh,Te; was 0.25 eV at

295 K and 0.26 eV at 4.2 K. The distance between the top of the higher valence band of light holes and the top
of the valence band of heavy holes situated lower was found to be AE,, = 19 meV in Bi, Te;; this distance was

independent of temperature. The conduction bands of Bi,Te; and Sh,Te; each contain two extrema with dis-

tances between them of AE. = 25 and 30 meV, respectively. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Bi,Te; and Sh,Te; semiconductors are layered crys-
tals with rhombohedral structures, space group Rs,

(D3,). The crystal lattice is formed by periodically

ordered layers lying in the planes perpendicular to the
C; symmetry axis. Each layer comprises five atomic
planes (quintets) that form the sequence Te'-Bi—Te?—
Bi—Te!. Here, Te! and Te? are Te atoms in different
sites. The atoms in separate layers are identica and
form aplanar hexagonal lattice. The atoms of each sub-
sequent layer are situated above the centers of the trian-
gles formed by the atoms of the preceding layer (close
hexagonal packing); that is, the Te' and Bi atoms
occupy octahedral sites in the tetradymite structure.
The chemical bonds within the quintets are covalent-
ionic. Between the quintets, the distance is compara
tively long and bonds are van der Waals in nature and
weak. This determines the anisotropy of the electro-
physical properties of the single crystals[1].

The following types of defects are characteristic of
Bi,Te; (Sh,Tey) single crystals: Bi (Sb) and Te vacan-
cies, Bi (Sb) and Teatomsin interstices, antisite defects
Bit. and Sby, (aBi or Sb atom in aTe site) and Teg, and
Teg; (a Te atom in a Bi or Sb site), impurity antisite
defects, impurity atoms in interstices, etc. The antisite
defects are negatively charged. For thisreason, bismuth
and antimony tellurides grown under stoichiometric
conditions always have p-type conductivity and a sub-
stantial concentration of holes, up to 10'° cm= in bis-
muth telluride and 10%° cm2 in antimony telluride.

The forbidden band energy E, in Bi,Te; and Sb,Te,
(and aso in Bi,Se;, Bi,S;, Sh,Se;, and Sh,S;) was
determined in several works, mainly at room tempera-
ture, by measuring the temperature dependences of
resistance [2-4] and by optical methods [5-11]. The
results obtained in these works are summarized in the
table. We do not consider theoretical works, because
the accuracy of calculations in them is insufficient for
narrow-gap materials of the type of bismuth and anti-
mony tellurides. Apart from a large spread of the
reported E, values, data on the temperature depen-
dences of Ey and forbidden band widths at low temper-
atures are lacking. As follows from the table, bismuth
and antimony tellurides are narrow-gap semiconduc-
tors, whereas Sh,Se;, Bi,S;, and Sh,S; are high-
energy-gap materials. Note that the forbidden band
widths in Bi,Te; and Sb,Te; are difficult to determine
by optical methods because of a high concentration of
free carriers, which causes additional absorption and
shifts the absorption edge as a result of the Burstain—
Mosseffect. It followsthat the E4 value can only be cal-
culated from experimental optical data using some
model of the energy spectrum of current carriers, which
is the reason why different E, values were reported in
different works. Similarly, because of the high concen-
tration of current carriers, activation conductivity can
only be observed in anarrow temperature range, which
also contributes to errorsin forbidden band values.

In this work, the forbidden band width was for the
first time determined in the temperature range 4.2-295 K
by directly measuring the singularities of the first tun-
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Forbidden band of A\Z/ BX' semiconductors

Refs. Material By eV Temperature interval of measurements, K Method of measurements
[2] Bi,Te; 0.21 100< T< 750 p(T)
[3] 0.20 77<T<380 p(T)
[4] 0.16 160 < T <650 p(T)
[5] 0.15 300 IR transmission
0.16 77
[6] 0.13 300 IR transmission and reflectance
0.17 85
[7] 0.15-0.22 10 IR reflectance
[5] Sb,Te; 0.30 300 IR transmission
[6] 0.21 300 IR transmission and reflectance
[8] 0.21 300 IR absorption
[9] Bi,Se; 0.21 80<T<300 IR transmission and absorption
[10] 0.115 300 IR absorption
0.160 77
[5] Sb,Se; 12 300 IR transmission
13 77
[5] Bi,S; 13 300 IR transmission
[5] Sh,S; 17 300 IR transmission
[17] 174 27 Absorption edge

nel current derivative with respect to the voltage, di/dV,
whichisdirectly related to the density of states. We also
used the second, d2l/dV?2, and third, d3I/dV3, derivatives
to locate the singularities more reliably.

2. SAMPLES AND THE PROCEDURE
FOR MEASUREMENTS

In this work, we studied bismuth telluride Bi,Te,
and antimony telluride Sb,Te; single crystals grown by
the Bridgman method from the elements of a 99.999%
purity taken in stoichiometric amounts. Prior to mea-
surements, the single crystalswere cleaved normally to
the C; axis. A tunneling contact was created on the cleav-
age. It is essentia that measurements be taken using
freshly cleaved samples, because the surface of single
crystalsisfairly rapidly oxidized [12], and the resulting
oxide cannot be used to create tunneling contacts.

Tunnel junctions in metal—diel ectric—semiconduc-
tor systems are well known and have been considered
in detail by Wolf and Solimar in monographs [13, 14].
We employed two different methods with clamping
contacts used to produce metal—insul ator—semiconduc-
tor tunneling contacts. In the first method, a point tun-
neling contact was created using tantalum oxide Ta,O5
as an insulator. A thin polished tantalum wire was sub-
jected to controlled oxidation in an oxygen atmosphere.

The thickness of the oxide layer was adjusted experi-
mentally to obtain good tunneling characteristics. A
scheme of the measuring cell is shown in Fig. 1la. The
tunnel junction was stabilized by a thin bronze spring,
which pressed the tantalum wire to the base plane of the
single crystalline sample. Ohmic contacts with the sam-
ple were made of gold and soldered with indium. The
four-point contact method was used.

In the second method (Fig. 1b), the tunneling con-
tact was created from aluminum preliminarily sputtered
onto aquartz rod and oxidized in an oxygen atmosphere
at 300°C. Therod was pressed to the surface of the sam-
ple also using abronze spring. Theforce of pressing the
contact at an arbitrary temperature could be controlled
by a screw fastened on the cap of a Dewar flask. This
screw pressed the plate by means of arod (shown by an
arrow in Fig. 1b).

Both methods were fairly laborious but gave stable
reproducible results that coincided with each other. A
modulation technigue was used to record the first cur-
rent derivative with respect to the voltage di/dV and
also the second d?1/dV 2 and third d3I/dV 3 derivatives.
A holder with a sample (see Fig. 1) was placed into a
bronze chamber filled with gaseous helium to even out
temperature. The chamber on a special support was
moved above the surface of liquid nitrogen or helium or
immersed into the corresponding liquid to obtain tem-
peratures of 4.2 and 77 K. The temperature was mea-
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Fig. 1. Scheme of sample holders for tunnel measurements (a) with an oxidized tantalum wire: (1) gold wire, (2) thin phosphor
bronze plate, (3) quartz plate, (4) tantalum wire, (5) sample, and (6) indium contact and (b) with a quartz rod coated with oxidized
auminum: (1) indium contact, (2) gold wire, (3) silver paste, (4) quartz rod, (5) plate and spring of phosphor bronze, (6) aluminum
oxidized at 300°C, and (7) sample. The arrow shows the force with which the rod acts to press aluminato the surface of the sample.
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Fig. 2. (a) Voltage V dependences of current | and di/dV for Bi,Tes. The arrow shows the position of the singularity at a positive
bias. (b) Schematic features of the tunnel spectrum of bismuth telluride for (1) the first derivative di/dV, (2) the second derivative

d2/dv2, (3) the second derivative d2l/dVv?2 taking into account smearing of the dependences, and (4) the third derivative d31/dv3;
Er isthe position of the Fermi level in the sample, and the dashed lines schematically show two valence band extrema (on the left)

and two conduction band extrema (on the right).

sured by a calibrated germanium thermometer glued to By way of example, current—voltage characteristics
aquartz plate close to the sample. The accuracy of con-  of bismuth telluride obtained in the measurement cell
trolling temperature during recording one dependence (see Fig. 1a) at 4.2 K are shown in Fig. 2a. The special
was better than 1 K. features of the tunneling spectrum of the samples with
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Fig. 3. (a) Thefirst derivative of current with respect to voltage di/dV and (b) the second derivative d2l/dVv? for Bi,Te; at three tem-

peratures. Zero bias corresponds to the Fermi level; arrows show the singularity corresponding to the boundary of the lower con-
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Fig. 4. (a) Thefirst derivative of current with respect to voltage dI/dV (arrows show the singularity corresponding to the boundary
of the lower conduction band LCB) and (b) the second derivative d2/dv2 for Sb,Tey at three temperatures. Zero bias corresponds

to the Fermi level; arrows show the singularities that correspond to the top of the valence band and the boundaries of the lower

(LCB) and upper (UCB) conduction bands (from Ieft to right).
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Fig. 5. Voltage V dependences of the second derivative d@/dv? for Bi o Tes at various temperatures. Arrows show the singularities
corresponding to the boundaries of the lower (LCB) and upper (UCB) conduction bands.

two extrema in the valence band (the upper valence
band, UV B, and the lower valence band, LV B) and two
extrema in the conduction band (the upper conduction
band, UCB, and the lower conduction band, LCB) are
illustrated by Fig. 2b. Thefirst derivative di/dV is deter-
mined by the density of states, which has root singular-
ities at band boundaries. Since the grown samples were
p-type, their Fermi levels were situated in the valence
bands, as is shown in Fig. 2b, between the upper and
lower valence band extrema. A scheme of the band
structure of bismuth telluride (antimony telluride) is
given below in Fig. 6b.

3. MEASUREMENT RESULTS

The tunnel characteristics di/dV(V) and d?l/dV2(V)
in bismuth telluride are shown in Fig. 3. A positive bias
corresponds to a higher energy of electrons. As the
sample has p-type conductivity, the Fermi level (zero
bias) isin the valence band, asis shownin Fig. 2b. The
singularity of the density of states, which appears with
the onset of filling the lower conduction band, is shown
by arrows in Fig. 3. The top of the valence band is dif-
ficult to determine from the spectra given in Fig. 3

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

because of interfering thermal fluctuationsat 295K and
alarge zero-bias anomaly at 4.2 K.

Similar dependences were observed for antimony
telluride. The corresponding tunnel characteristics
di/dv(V) and d?/dV3(V) are plotted in Fig. 4. Figure 4a
demonstrates that only the singularity related to the
onset of filling the lower conduction band isdiscernible
in the di/dV(V) dependence for Sh,Te;. Note that this
singularity is observed at much larger bias voltages,
which corresponds to a much larger (in magnitude)
Fermi energy E¢ in this material resulting from amuch
higher concentration of holes. As concerns the second
derivative d?l/dV? (see Fig. 4b), the first singularity is
observed at abias of 0.14 eV (marked by arrows). This
singularity is independent of temperature and corre-
sponds to the top of the upper valence band. The next
singularity marked by arrows, which is observed as the
bias voltage increases, corresponds to the onset of fill-
ing the lower conduction band at a bias voltage of
0.39eV (T =295 and 77 K) and 0.4 eV (T = 4.2 K).
These resultsimply that E; = 0.25 eV at 295 and 77 K
and E;=0.26 eV at 4.2 K. Further, ad?l/dV2 singularity
marked by arrows and corresponding to the bottom of
the upper conduction band is observed in the spectrum.
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Fig. 6. (a) Voltage V dependences of the third derivative d31/dv? for Bi,Tes at three temperatures. Arrows show the singularities

that correspond to the edges of the lower (LVB) and upper (UVB) valence bands. (b) At the top: a scheme of the energy spectrum
of BiyTez (Sb,Tes); Er isthe Fermi energy, and AE. and AE,, are the distances between two conduction and valence band extrema,

respectively. At the bottom: the spectrum shown in Fig. 6a corresponds to the superposition of two peaks (the dashed line) and the

anomaly at zero bias (the dotted line).

It follows that, according to the measurement results, the
conduction band of Sh,Te; hastwo extrema separated by
an energy of AE. = 30 meV, which isindependent of tem-
perature. Up to now, experimental dataon the conduction
band of antimony telluride have been lacking, because
this material always has a high initial concentration of
holes, which cannot be compensated by doping.

The d?1/dV2(V) second derivative dependences for
Bi,Te; obtained at different temperatures are shown in
Fig. 5. Arrows show the edges of the lower and upper
conduction bands. By way of example, the third deriv-
atives d3l/dVv3(V) for Bi,Te; in the region of low bias
voltages are shown in Fig. 6afor several temperatures.
These dependences contain singularities related to the
edges of two valence bands. Schematically, the forma-
tion of these singularities is shown in Fig. 6b (bottom).
Note that the Fermi level in the sampleliesin the band of
light holes above the top of the lower valence band, asis
shown in Fig. 6b (top). It follows that one singularity is
observed in the region of positive and the other in the
region of negative bias voltages. The conclusion can be
drawn that the distance AE, between the two vaence
band extremais about 19 meV and hardly changes when
temperature varies. Thisva ue closely agreeswith that of
AE, = 20 meV measured in [15, 16] by other indirect
methods. We were unable to obtain reliable data on the
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distance between the upper and lower valence bands
from the tunneling spectra of antimony telluride.

The special features of the tunnel characteristics at
various temperatures (see Fig. 5) can be used to deter-
mine the temperature-dependent positions of the edges
of two conduction bands in Bi,Te; with respect to the
Fermi level. The corresponding temperature depen-
denceis shownin Fig. 7a. According to this figure, the
distance between the upper and lower conduction bands
isaround AE. = 25 meV and does not change astemper-
ature varies to within the accuracy of measurements.
Earlier, the AE. value was estimated at 24 meV from
indirect measurements [17].

The temperature dependence of the forbidden band
energy E, of bismuth telluride determined by analyzing
the tunneling spectra (see Figs. 5 and 6a) is given in
Fig. 7b. The figure shows that the forbidden band
energy increases as temperature decreases, from
0.20eV aaT=295K t00.24eV a T=4.2K. Itcanbe
seen from the table that an increase in the forbidden
band energy in bismuth telluride at lower temperatures
was observed in severa works, although the E, values
themselves were inaccurate and different in different
works. The nature of the nonmonotonic Ey(T) depen-
dence is not quite clear, because the crystal lattice
parameters of Bi,Te; change insignificantly and mono-
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Fig. 7. (a) Temperature dependence of the positions of the edges of the lower (LCB) and upper (UCB) conduction bands counted
from the Fermi level and (b) temperature dependence of the forbidden band in Bi,Te;.

tonically as temperature varies [18]. By way of exam-
ple, consider the temperature dependence of the forbid-
den band energy for A,Bg semiconductors, in which
this energy can both increase (HgTe, HgSe) and
decrease (ZnTe, ZnSe) as temperature lowers[19].

To summarize, our study of the tunneling spectra
allowed us to determine the complex band structure of
bismuth and antimony tellurides with two closely
spaced conduction band extrema. The forbidden band
energy of bismuth telluride increases as temperature
decreasesfrom 0.20 eV at room temperatureto 0.24 eV
a T=4.2K. Inantimony telluride Sb,Te;, the forbid-
den band energy is E; = 0.25 eV (295 K) and 0.26 eV
(4.2K); that is, it virtually does not depend on temper-
ature. We found that the distance between the top of the
upper valence band of light holes and the top of the
lower valence band of heavy holesisAE, =19 meV in
Bi,Te; and does not depend on temperature. The con-
duction bands of Bi,Te; and Sh,Te; have two extrema,
the upper conduction band and the lower conduction
band, the distances between which are AE; = 25 and
30 meV, respectively.
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Abstract—Thermionic current emitted into vacuum by a composite system consisting of ametal layer of finite
thicknessL and ametal half-spaceisinvestigated. An explicit expression for thermionic current is obtained that
takesinto account the quantum phenomena of above-barrier reflection and the strong degeneracy of the electron
gasin metal at sufficiently low temperatures. Actually, a generalization of the classical Richardson—Dashmen
result is obtained for the case of low temperatures. A special emphasisis placed on the effect of impurities con-
tained in the metal half-space and in the layer on the total thermionic current. It is shown that violation of the
strictly periodic field of anideal crystal due to impurities breaks the one-to-one relation between the momenta
and the total energy of conductivity electrons. It is shown that the expression for the generalized distribution
function depending on independent variables (energy and momentum) is naturally included in the equation for
the thermionic current. Numerical analysis shows that the variation in the distribution function of electrons due
to the impurity field leads to variation of the total thermionic current emitted from the system. In particular, an
oscillating dependence of the thermionic current on the layer thickness and on the impurity concentration in the
layer isreved ed. All the calculations are performed within the formalism of nonequilibrium Green’s functions.

© 2003 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

The study of the structure of normal metals (i.e.,
metalsin the normal state) isone of the most promising
directions in modern solid-state physics owing to
numerous industrial applications of the results
obtained. This problem arose as early as the beginning
of the 20th century, when various models were pro-
posed to describe the behavior of electronsin the peri-
odic field of acrysta. In particular, the problem of the
motion of an electron in a periodic potential was stud-
ied in detail. It was shown that, in many cases, the
motion of electrons in a metal can be interpreted as a
motion of free particles whose effective mass depends
on the structure of the lattice and the shape of the
energy spectrum of electrons in the metal. This model
has been called a model of free electrons.

One of the most important results of the model of
free electrons is the expression for the thermionic cur-
rent emitted by a metal half-space, which is known as
the Richardson—-Dushman formula [1]:

_ =M*T?
Jtherm - _D2T[2ﬁ3

W,
P, @)

where D is the averaged transmission coefficient, T is
the metal temperature, W, is the work function of the
metal, and M* is the electron effective mass. Here, one

should make two important remarks. First, according to
cyclotron-resonance  experiments, the difference
between the effective mass of an electron and its actual
mass may be very small. For such metals, one can
replace the effective mass M* in (1) by the actual elec-
tron mass M to a high degree of accuracy. Second, the
expression for thermionic current (1) is actually classi-
cal. It has been obtained under the assumption that the
distribution function of conductivity electrons in meta
isthe Fermi distribution; moreover, it was assumed that
al electrons with energy greater than the threshold
value may leave the metal, thus making a contribution
to the thermionic current. The quantum phenomena of
above-barrier reflection (i.e., thereflection of the part of
electrons that, according to the classical theory, should
be freely emitted from the metal) are taken into consid-

eration only in the additional normalizing factor D,
which is generally justified only for sufficiently high
temperatures. Hence, one can expect that the accuracy
of formula (1), which gives good agreement with
experimental data at high temperatures, will decrease
as temperature decreases.

Theaim of the present study isto cal culate athermi-
onic current with regard to various quantum phenom-
ena such as the above-barrier reflection, possible exist-
ence of bound states, and the strong degeneracy of the
electron gas in metal. Moreover, we pay special atten-
tion to the role of impurities that are inevitably con-
tained in metals. When introducing impurities into an
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Fig. 1.

ideal lattice, we introduce an external potential in
which electrons in metal move. This breaks the spatial
homogeneity and, hence, leads to indeterminacy in the
value of the electron momenta. In other words, the gen-
eralized energy and momentum distribution of elec-
trons is characterized by afinite width that depends on
the character of interaction between electrons and
impurity ions. Further analysisis carried out within the
framework of a generalized distribution function
F(E, p), where the electron momentum and the total
energy are independent variables [2]. Below, we
present an explicit expression for F(E, p) and show that,
in the absence of impurities (i.e., in the case of an ideal
crystal lattice), the generalized distribution function F
isexpressed as

F(E, p) = n(E)3LE - 5t 2

i.e., in this case, we have a one-to-one relationship
between the momentum and energy of electrons. We
demonstrate that a variation in the distribution function
due to the impurity field may substantially affect the
thermionic current. In particular, we reveal an oscillat-
ing behavior of the current as a function of impurity
concentration. Moreover, we carry out adetailed inves-
tigation of the situation when the surface of a metal
half-spaceis coated with alayer of adifferent metal that
also containsimpurities. We show that, in this case, the
thermionic current as a function of the layer thickness
and the concentration of impurity ionsin the layer also
exhibits oscillating behavior.

The paper is organized as follows. In Section 2, we
formulate the problem and obtain an expression for the
thermionic current in terms of kinetic Green’sfunction.
In Section 3, we solve the Dyson equation for retarded
and kinetic Green's functions and obtain explicit
expressions for the contribution of each metal to the
thermionic current. In Section 4, we discuss the results
of the numerical anaysis for the total thermionic
current.
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2. STATEMENT OF THE PROBLEM:
THERMIONIC CURRENT IN TERMS
OF KINETIC GREEN’S FUNCTIONS

We consider a composite system (see Fig. 1) con-
sisting of a plane-parallel layer of finite thickness L
(0 < z<L) of metal 1 and ahalf-space (z>L) of metal 2.

The metals are assumed to have different composi-
tions, i.e., different work functions W; and W, and free-
electron concentrations Ne; and Ne, (for the numerical
analysis, we took silver as metal 1 and sodium as
metal 2). Moreover, it is assumed that the composite
systemisin thermodynamic equilibrium at afinite tem-
perature T.

Aswe pointed out in the Introduction, the aim of the
present study is to calculate the thermionic current
emitted into a vacuum (occupying the domain z < 0) by
the system considered. By avacuum we mean adomain
with a negligible concentration of particles at atemper-
ature close to absol ute zero.

Wewill not restrict the analysisto anideal metal and
to the case when only quantum corrections to the clas-
sical Richardson-Dashmen result (1) are taken into
account. Since the field inside areal metal may signifi-
cantly differ from the field of an ideal lattice, it would
be of interest to find out how seriously such adifference
may affect the total thermionic current. Note that this
nonideality of areal metal can be associated both with
thermal vibrations of the lattice atoms about their equi-
librium positions and with various defects such as
vacancies, interstices, and dislocations.

Since our primary concern is the thermionic current
emitted from the system at low temperatures, we will
not take into account thermal vibrations of the lattice
and attribute the violation of ideality solely to the
defects in the metal structure. In the present paper, we
will not consider the effects of dislocations and vacan-
cies, we will restrict the analysis to the case when a
metal contains impurity ions that distort the field of
ideal crystal.

Thus, we assume that metal 1, just as metal 2, con-
tainsimpurities. We also assume that the concentration
of these impuritiesis known and that one can produce a
metal with a prescribed concentration of impurities. In
this paper, we will use amodel similar to the model of
free electrons; i.e., we assume that the electron gasin
the metal isfree and movesin acertain effective poten-
tial formed by the lattice ions and the impurity centers.
The potentials U and ® (Fig. 1) describe the potentials
of the electron—electron interaction and the interactions
of electrons with the metal and impurity atoms, respec-
tively. Below, we present these potentialsin the explicit
form as a function of the metal work function and the
concentration of electrons, lattice ions, and impurity
particles.

To derive an expression for the thermionic current
emitted from the system, we need a reliable mathemat-
ical formalism that would enable usto take into consid-
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eration al the phenomena of interest. Below, we will
show that it is convenient to take the apparatus of
kinetic Green's functions [3] as such a formalism. To
obtain an equation for the thermionic current, we first
write out awell-known result for the current density of
asystem of particles, borrowed from a course in quan-
tum mechanics:

IR, 1)

_ifh . * (R
= me{ Orp(R, R, 1) =Orp* (R, R, 1)} J

R'=R

©)

where # is the Planck constant (henceforth, we set it
equal to unity) and M isthe electron mass. The one-par-
ticle density matrix p(R', R, t), expressed in terms of
secondary quantized field operators, is given by

p(R,R,t) = IW'(R, HW(R', 1)1 (4)

Here, ¥ and ¢ arethe Heisenberg field operators act-
ing in the space of occupation numbers. These opera-
tors satisfy the Fermi statistics and, in our case,
describe the motion of electrons with regard to their
interaction with the fields of the lattice and of impurity
ions. It is well known that the wave functions in the
Heisenberg model are independent of time. Hence, one
can average (4) over the ground state of the system in
which the interaction with impurity is neglected (we
assume the adiabatic switching off of the interaction
with impurity particlesast —» —).

It is important that, for simplicity, we omitted the
spin indices in (4). Indeed, in the absence of external
magneticfields, thefunction p(R', R, t) isisotropic with
respect to the spin variables; i.e.,

pi(R, R, 1) = p(R, R, 1.

Hence, it isvery convenient to consider amodel of elec-
trons with the spin equal to zero. In thefinal results, we
will make corrections due to the electron spin by means
of appropriate numerical coefficients.

For a given density matrix p(R', R, t), Eq. (3) actu-
ally answers the question posed. Hence, our aim is to
obtain an explicit expression for p(R', R, t). The most
natural method for finding this matrix is the apparatus
of nonequilibrium Green's functions. Indeed, one can
easily establish a direct relation between the one-
particle density matrix p and the kinetic Green’s func-
tionG™:

P(R,R,t) = 4G (R, R g oo
where G™* is defined by

iG (Rt R't) = OV (Rt)P(RY)O (5)
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Hence, taking into account (3) and (5), we can rewrite
the expression for the z projection of the current-den-
sity vector in terms of nonequilibrium Green’s func-
tions as

them _ € ood(JO dkm
Jz - MRe_!.ZT[I(ZT[)Z

d_dis-+
B ez,

(6)

Here, G*(z Z, k, w) isthe Fourier image of G=* with
respect to the variables r; — r; (this vector liesin the
plane xy) and t —t'. In what follows, we will omit the
arguments k; and w to simplify the expressions. Thus,
the problem of calculating the thermionic current has
reduced to the determination of the kinetic Green's
function G=*. In the next section, we will show that
such atransition from the one-particle density matrix to
nonequilibrium Green's functions alows us to reduce
our problem (i.e., the determination of the explicit form
of G™) to asystem of integrodifferential equations.

3. EQUATIONS FOR RETARDED (ADVANCED)
GREEN’S FUNCTIONS

As we pointed out above, to determine an explicit
expression for the thermionic current, we haveto calcu-
late the kinetic function G=*. It is known from the the-
ory of Green'sfunctionsthat G- can be represented as
asum of diagrams corresponding to different orders of
perturbation theory. Note that this sum can be
expressed as the Dyson integrodifferential equation [4]
(we omit the arguments k5 and w),

G (z2)

= — J’ dz,dz,G (2, 2,)E (21, )G (Z, 2,).

—00

(7)

Here, = is a mass operator that represents a sum of
appropriate irreducible diagrams and describes the
interaction between the electron gasin ameta and the
field of impurity ions (as will be clear from the further
analysis, it is proportional to the impurity concentra-
tion), and GR isthe retarded Green function defined by

iGR(R't, Rt)
_ %DV(R‘t‘)qJ(Rt)—qJ(Rt)CIJ+(R't')EL t'>t,
[, t'<t.
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The retarded Green's function GR aso satisfies the
Dyson eguation (with appropriate mass operator %),
which can be expressed as a system of partial integro-
differential equations. Solving this system with given
initial and boundary conditions for GR and for explic-
itly given mass operator >~*, we can calculate the
required thermionic current. Thus, our immediate task
isto solve a system of equations for the retarded Green
function and the operator .

Let us make afew remarks concerning the determi-
nation of Z-*. First, we stress that the metal boundary
manifests itself only within a thin layer of about the
thermal de Broglie wavelength of a particle. Since most
collisions occur in the bulk of the metal, we can neglect
the boundary effects and assume that the metal is infi-
nite. In this case (as follows from the kinetic equation
for G™), the operator 2= determines the rate at which
a particle reaches a certain state due to the interaction
with an impurity. Since we consider a system in the
state of thermodynamic equilibrium, the principle of
detailed equilibrium yields

> (@ p) = %z*‘(m p)

"::G——::r-
G -G

(8

Here, 52 and G® are the Fourier images of the mass
operator and the Green function, respectively, and I' =
2ImzR. Below, we will show that I is a positive quan-
tity that describes indeterminacy in the values of the
el ectron momentum for a given total energy. In the first
order of perturbation theory, when the functions G
and G*~ correspond to the free motion of conductivity
electrons in metal in the absence of impurities, for-
mula (8) can be rewritten as

= (wp)

. . /T -1 (9)
= —n(w)l(w,p) = -ilf{e” +1} .

Here, n(w) are the Fermi occupation numbers of elec-
trons in metal. One can see from this formula that all
details of the interaction between an impurity and elec-
tronsare contained precisaly in T (w, p). We assume that
thisis a short-range interaction and set

>(z,2) = const (B(z—-2), (10)
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where const isindependent of zand Z (it isassumed that
the concentration of impurity centersis independent of
the z coordinate). In this case, formula (9) remains
valid, but Z=* and I' are now independent of the z com-
ponent of the momentum vector p. Comparison of (9)
and (10) shows that

const = —in(w)r.

It isimportant that, according to (9), the mass operator
>~*is proportional to the occupation numbers of elec-
trons states. Since these numbers are equal to zero in
vacuum, we set

> = 0.

Thus, from perturbation theory and the principle of
detailed equilibrium, we have derived an expression for
the mass operator >-*. According to Eq. (7), to obtain a
final expression for the kinetic Green function G
(and, further, for the thermionic current from the com-
posite system by (6)), we have to find an explicit
expression for the retarded function GR. First of all, we
have to find out which functions GR exactly we need.
For this purpose, we note that the particle flux density
j; in (6) should be independent of the coordinate z.
Therefore, without loss of generality, we can set z=-0
(whichistheleft limit from the side of vacuum). Taking
into account the assumption made about the locality of
interaction (10) and thefact that >=*(z, Z) =0=0invac-
uum (z < 0), the expression for G=* reducesto

L

G (z2) = —J’GR(Z, 2,)54 G (2, z,)dz,
° (11)

00

- J’GR(Z, 2,)5-G* (2, z,)dz,,
L

where 53" and o/, arethe mass operators describing

the interaction between electrons and the impurity in
the layer and in the metal half-space, respectively. It is
clear from (11) that, for z, Z< 0, only the components
GR(z<0,0<Z<L)and GR(z<0,Z > L) areof interest.

To obtain an expression for the thermionic current
by means of Egs. (6) and (7), we have to calculate two
retarded Green functions GR, namely, the components
GR(z<0,0<Z<L)andGR(z<0, Z >L). Tothisend,
we consider the Dyson equation for GR. In the general
case, this is an integrodifferential equation; however,
taking into account the assumption about the locality of
interaction (10), we can rewrite this equation as a sec-
ond-order partial differential equation. Hence, taking
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into account the nonhomogeneity of space, we arrive at
the following system (it is assumed that z < 0):

2 42 2,2
{Q+ h_ d ﬁkD+p++UO}GR(z,z') =0,

2Mgz2 2M 12)
z>L,
nd® Wk
[Q""z'MJz‘Z“z‘M“D“‘O“DO C(22) =0
0<Z<L,
2 d? ﬁzké R _
{w_mdz'z__ZTVI—Jr“‘ C(22) = 8(z=2). 1y
Z<0.

Here, |_, Ko, and W, are the chemical potentias of the
electron in vacuum, in the metal layer, and in the metal
half-space, respectively. It isimportant that the follow-
ing relation holds in the state of thermodynamic equi-
librium:

H- = Ho = M4,

which follows directly from the conservation law of the
number of particles (electrons) in the system. Potentials
Uy and @, in (12)—14) describethefields created by the
lattice in the metal and in the layer, respectively. In the
present model, we do not take into account the spatial
variation of U, and ®, and consider them as certain
effective, spatially averaged, potentials.

D .
%% exp(islz—2|) + C,exp(-is(z+2)), Z<O0,

G'(z<0,2) = HAexp(iBZ) + Aexp(-iB2)} exp(-isz), 0<Z<L,
z>L,

%bzexp(iaz'—isz),

where A;, A,, C;, and C, are constants that are deter-
mined from the continuity of the Green functions GR
and their derivatives on the boundaries between the
vacuum and the metal layer and the metal layer and the
metal half-space. Here, the following notations are
introduced:

2,2 .
T N/¥ _ﬁzll\(/lm+u++u+£ﬂ
%
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The quantities

Q= w+A+ilN/2, k=+,0,

on the left-hand sides of Egs. (12)—14) determine the
generalized (i.e., obtained in the presence of impurities)
frequencies. The subscript k = + corresponds to the
metal half-space, and k = O corresponds to the metal
layer. It isimportant that, in general, the frequencies Q,
are complex numbers. The real part of Q, contains the
term A, which depends on the impurity concentration
and describes a shift in the electron energy due to the
impurity field. Note that A, are related to =R by the fol-
lowing formula:

- 4 Z++

— R _
By = Rez® = =—

(15

Theimaginary part of Q, i.e., I, describesthe scatter-
ing of electrons by impurities in the metal and is also
related to 2R
Fe=2ms" = 57 -5, (16)
Below, we will show that I, determines the smearing of
the generalized distribution function. Note that, in [5],
a quantum-mechanical calculation of the shift A, and
the widths I", was carried out for the so-called Lorentz
gas, i.e.,, a nonideal gas in the field of externa static
ions. It was shown that I isdirectly related to the scat-
tering amplitude on an external ion (see also [6]).
A general solution to the system of equationsfor the

retarded Green functions GR (12)—(14) can be
expressed as

(17)

oM. #kE . .
> 4/ 272w TR
Below, we will show that the widths T in the above for-
mulas are positive. Hence, theimaginary parts of a and
[3 are also positive and describe the attenuation of elec-
tron waves in the medium (see (17)). To obtain a final
expression for GR, we have to determine the constants
that appear in (17). These constants can be determined
from the boundary conditions for GR. As the boundary
conditions, we can choose the continuity of the Green
functions GR themselves and their first-order deriva-
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tives (due to the continuity of the particle flux density)
on the interfaces z= 0 and Z = L. Taking into account

GR(z<0,Z>L) =

4iMBexp(—ial)

STAROSTIN, CHESNOKOV

these conditions for the functions GR(z< 0,0< Z <L)
and GR(z< 0, Z > L), weobtain

B 0)(B=9exp(iL) — (B + a)(B + 9 &xp(1ipL) (18)
x exp(iaz —isz),
S°(2<0,0<7 <L) = 2im A =BIEPB(L=2)) - (a~B)exp(-iB(L-2)) 9

(B+a)(B+s)exp(-iBL) - (a-B)(s—

B)exp(iBL)

x exp(-isz).

Now, we have expressions for the Green functions GR
and can obtain an explicit expression for the thermionic
current emitted into vacuum from the composite system
considered. Using (11), we can determine the kinetic

function G~ from (10), (18), and (19). Next, taking into
account (6), we can directly calculate the thermionic
current. For example, the current due to the right half-
space (the domain z> L) isgiven by

IBI°Res r,

+_ 8M dk
i3 = 2 [deon. () [ *
n) Jom “iB-ae

—s)exp(iL) — (B + o) (B + s) exp(—iL)|*IMa

(20)

The minus sign indicates the direction of current, namely, from metal to vacuum. Similarly, for the current due to

the metal layer (0 <z<1), we obtain

|B + ajexp(ImBL) +|B —alexp(=ImpL)

.0 4Moo dk
, = — [dwny(w) [—=TI Res x
J T[z.!. O( )J.(ZT[)z 0

|(B—a)(B—s)exp(iBL) — (B +a)(B +s)exp(-iBL)|"

(21)

9 sinh(ImBL).

ImpBL

The total thermionic current emitted into vacuum is
given by the sum of these currents:

(22)

We should make several remarks concerning formu-
las (20) and (21). First, these expressionsinclude quan-
tum phenomena associated with the transmission of
electronsthrough abarrier (for example, the above-bar-
rier reflection). The quantity Res on the right-hand side
of the expression for the current intensity is directly
related to the transmission coefficient through the bar-
rier. This quantity shows that not all the electrons can
leave the metal. Only those electrons whose energy is
greater than the work function of the metal (i.e., those
with Res> Q) can leave the metal. Second, formulas (20)
and (21) contain the Fermi occupation numbers of elec-
trons. This is associated with the fact that, in the tem-
perature range of interest (up to about 1000 K), the
electron gas is strongly degenerate. Third, one can see
that the expressions for the thermionic current explic-
itly contain the widths I, which depend on the pres-
ence of impurities in the metal. For sufficiently low
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impurity concentrations and, consequently, for small ',
(recall that ', are proportional to the impurity concen-
tration), one can show that the right-hand sides of (20)
and (21) contain the following function of the energy
and momentum of electrons:

f(w, Kz ko) = n(w)

r

2
ﬁkD +u—Ud +r?

23
e (23)

2M

Thisfunctionisproportional to the occupation numbers
of electron states and plays the role of the distribution
of electrons over states in the presence of the impurity
field. We will interpret f(w, k,, k) asageneraized dis-
tribution function, where energy w and momentum
(k,, k) are considered to be independent variables.

Note that, in general, the quantitiesA and I in (23)
may also depend on the energy w and momentum
(k,, k). It is clear from (23) that A represents a varia-
tion in the total energy of an electron due to the impu-
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rity field and I" describes the indeterminacy in the elec-
tron momentum for a given total energy.

This indeterminacy in the momentum for a given
energy of electron is associated with violation of the
homogeneity of space by impurity sites, which leads to
violation of the momentum conservation law. It is
important that, in the limitas” — 0 (i.e., in the case
of an ideal metal, which does not contain impurities),
we have

ok hokE
2M  2M

f(@, ky, ko) O n(00)5Ho+ A- p-Ug

(24)

In this case (as we pointed out in the Introduction),
there is a one-to-one correspondence between the
energy and momentum of an electron (see (2)). In the
limit of high temperatures (where the classical theory is
applicable), we can apply distribution function (24) to
again obtain the Richardson—-Dashmen result (1).

Thus, one can expect that the field of impurity cen-
ters can change the distribution function of electronsin
a metal. Hence, for sufficiently high impurity concen-
trations, we may have a substantial deviation from the
classical law (1). In the subsequent sections, we present
the results of the numerical analysis of Egs. (20)—22).

4. NUMERICAL ANALYSIS

Consider explicit formulas (20) and (21) for the
thermionic current emitted from the composite system
into vacuum. We have shown that, in the presence of an
impurity, the current depends on the generalized distri-
bution function f(E, p), where energy E and momentum
p are independent variables, in contrast to the classical
result of Fermi, where the energy is uniquely related to
the momentum. It is important that, according to (23),
the explicit form of the function f(E, p) depends on the
concrete form of interaction between electrons and
impurity ions through A(E, p) and I'(E, p). Here,
A(E, p) definesthe energy shift of an electron dueto the
interaction with an impurity, and ' (E, p) describes the
smearing of the distribution function, i.e., the indeter-
minacy in the momentum for a given energy.

Our primary concern is how the thermionic current
depends on temperature, the thickness of the metal
layer, and the impurity concentrations (in the metal
half-space and in the layer). To obtain a fina explicit
expression for the generalized distribution function
f(E, p) (23), we have to find the dispersion laws for
A(E, p) and T (E, p); i.e., wemust determine the explicit
dependence of these parameters on the total energy and
momentum. This problem has been studied in sufficient
detail in [5, 6, 8, 9]. In particular, it was shown that,
when the interaction between electrons and impurities
is described by the potential U(r) O &(r), the general-
ized distribution function (23) behaves as f O 1/p* for
large p (see [9]); in the case of the Coulomb potential
U(r) O r, it was shown in [8] that f OO 1/p8. In [5], the
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case of the Debye potential was investigated in detail.
In that paper, the equation for the mass operator 2R was
solved numerically (recall that, according to Egs. (15)
and (16), A and " are expressed in terms of %) in the
case of anonideal gasin thefield of external ions, and
the following convenient asymptotics (asp — o) was
proposed for the width I (E, p):

2,21’ N, JE.

WM B
here, M isthe electron mass, N, is the impurity concen-
tration in the metal, and E, = p%2M is the electron

kinetic energy. In the numerical calculations, we use
the following approximate expression for I (E, p):

2./2ne'N, JE
JM B +U?
Formula (26) is analogous to (25); the only difference

is that we have neglected the dependence on the
momentum component p, in (26), setting

r(Ep) = (25

r(Ep) = (26)

E,z = P/2M = U

(recall that, according to the classical theory, only elec-
trons with E,, > U) can leave the metal).

In [5], the shift A(E, p) was also calculated for a
plasma with a small concentration of impurities. This
analysis employs the properties of the imaginary and
real parts of the mass operator =R (see[6]) and is based
on perturbation theory. It was found that

2 2
Je Ny
JATn e

Here, n,, g and N, €, are the concentrations and
charges of the ionic lattices and the impurity sites,
respectively. Notethat, in thelimit of low impurity con-
centrations, A(E, p) isalinear function of n,. Moreover,
it follows from (27) that, in the first order of perturba-
tion theory, this shift is independent of energy and
momentum and depends only on the concentrations and
charges of ions. We will use approximation (27) in the
numerical analysis to give a qualitative illustration of
the oscillating behavior of the thermionic current emit-
ted from the composite system as a function of the
impurity concentration.

Using the concentration of conductivity electronsin
the metal and the work function, we can easily deter-
mine the effective potential in which electrons movein
the case of an ideal metad, i.e., a metal with negligible
concentration of impurity centers:

A(E, p) = (27)

Uy = ER+W. (28)
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Fig. 2. Thermionic current Jy,em as a function of the layer
thickness L for various impurity concentrations NS) inthe
layer; 10 cm 2 (solid curve) and 10%° cm™ (dashed
curve); T = 1500 K, and the impurity concentration N(pM)
in the metal half-spaceis (a) 1012 cm™ and (b) 108 cm 3.

Here, 52 is the Fermi energy of electrons in the

absence of the potential U, and W is the work function
of the metal. Note that we borrowed the values of the
work function W for our numerical calculations from
experimental tables on photoemission. We can also use
experimental data on the concentration of conductivity

electronsin metalsto determinethe values of E2 by the
well-known formula

_ R 2/3
E2 = —Z—M(BT[ZN) , (29)

where N is the electron concentration. It is important
that, strictly speaking, expression (29) is valid for an
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infinite metal and cannot be used for determining the
chemical potential of a metal layer of finite thickness
because this formula presumes that the spatial distribu-
tion of electronsisuniform. In the case of afinite thick-
ness, this distribution is essentially nonuniform, which
requires a more careful analysis. However, it can be
shown that, for a metal layer of finite thickness of L >
10 A, we can neglect the effects associated with the
finiteness of a sample and apply formula (29).

Using the correction A(E, p) (27) to the eectron
energy dueto impurities, we can generalizetheresult (28)
to the case of small impurity concentrations by adding
an appropriate term to the right-hand side; then, we
have

U = Ef+W+A(E p). (30)

It should also be noted that the potential inside an
isolated metal (a metal layer) may differ from the cor-
responding potential in the composite system. When
two metals are brought into contact, part of electrons
migrate from one metal to another. Then, on the one
hand (in one metal), we have an excess of electrons,
whereas, on the other hand (in the second metal), we
have a depletion of electrons near the surface. Such a
charge redistribution between two conductors givesrise
to a depletion region that prevents further migration of
electrons (the so-called double layer). The formula for
the double-layer potential iswell known (see, for exam-
ple, [7]) and can be expressed in terms of the difference
of the work functions of the metals:

AD = W, —W,. (31)

To take into consideration a correction due to the addi-
tional potential A®, we replace the potential ® of an
isolated metal layer in (17) by @ + A® in our numerical
calculations.

Thus, we numerically analyzed the following sys-
tem: as metal 1 (alayer of thickness L), we took silver,
and, as metal 2 (meta half-space), sodium. The work
functions and the concentrations of conductivity elec-
trons in these metals are as follows: W = 2.3 eV and
N, =2.5x 10 cm=for silver and W= 1.8 eV and N, =
0.85 x 10% cm=2 for sodium (the data are borrowed
from [10]). Figures 2—6 show the total thermionic cur-
rent (20)—(22) emitted from the composite system ver-
sus temperature, layer thickness L, and the impurity

concentrationsin the metal half-space ( NEJM) )andinthe
layer (N$?) for variations of other parameters.

First, we consider the dependence of the thermionic
current Jy,em 0N thethicknessL of the metal layer. It fol-
lows from (20)—(22) that this function should exhibit
oscillating behavior (with decaying amplitude, since
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Fig. 3. Thermionic current as a function of temperature for
various impurity concentrations N(pM) in the metal half-

space; 1018 cm (solid curve), 101° cmi =3 (dashed curve), and
10%° cm3 (dotted curve); thelayer thicknessL = 1078 cm, and

theimpurity concentration in the layer is N(ps) =100 cm=,

Imf > 0) due to the presence of exponentia functions
exp(xiBL) in the integrand. This assumption is con-
firmed by the graphs shown in Figs. 2a and 2b.

Figure 2a demonstratesthe behavior of Jym for suf-
ficiently large L. One can seethat, asthe layer thickness
L increases, the thermionic current asymptotically
tendsto avalue equal to the current emitted by a heated
metal half-space; the rate of this convergence essen-

tially depends on the impurity concentration N ps inthe

layer. Indeed, according to (20), the probability that an
electron from the domain z < L passes through the layer
and reachesthe vacuum is proportional to exp(-2ImpL).
Thus, increasing the layer thickness L or the impurity

concentration N& (recall that ImB O N > 0), we

thereby decrease the contribution of the half-space z >
L and simultaneously increase the contribution of the
domain0< z<L (see (21)). Figure 2b showsthat avari-
ation in the impurity concentration in the layer leads to
variationsin the period and amplitude of oscillations of
the thermionic current due to the presence of the expo-
nential factors exp(xiPL) in (20) and (21).

Figure 3 represents the thermionic current asafunc-
tion of temperature for various impurity concentrations

N%M) in the metal. One can see that, for sufficiently

high concentrations of N ~ 100 cm3, we can

observe adeviation from the classical result, which cor-
responds to extremely low concentrations and reduces
to the Richardson-Dashmen law (1) at high tempera-
tures. A similar curve can be drawn in the case of vari-
ations in the impurity concentration in the layer, and a
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Fig. 4. Thermionic current asafunction of theimpurity con-
centrations N EJS) in the layer for various values of the layer

thickness L; 107° cm (solid curve) and 10~ cm (dashed
curve); theimpurity concentration in the metal half-spaceis

N(pM) =10® cm3and T = 1500 K.

similar deviation from the classical result can be dis-
played for sufficiently high concentrations fo) .

Figure 4 represents the graph of Jy.m @ afunction
of N§’ for various values of L. One can see that this
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Fig. 5. Thermionic current asafunction of theimpurity con-
centrations NE)S) in the layer for various impurity concen-

trations N(pM) in the metal half-space: 1018 cm=3 (solid

curve), 101° cm3 (dotted curve), and 10%° cm™ (dashed
curve); thelayer thicknessisL = 10~ cm, theimpurity con-

centrationinthelayer is N(ps) =10%cm3, and T= 1500 K.
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Fig. 6. Thermionic current asafunction of theimpurity con-
centrationsin the metal half-space for variousimpurity con-

centrations in the layer: (a) N(ps) = 108 cm= (dashed
curve), 101 cm3 (solid curve), and 1021 cm= (dotted
curve); L =10~ cmand T = 1500 K (b) N(ps) =108 cm=3

(solid curve), 10%° cm™ (dashed curve), and 10?1 cm™
(dotted curve); L =10 cmand T= 1500 K;

function has an oscillating character. These oscillations
(like the oscillations that occur for the variation of the
layer thickness) are attributed to the exponentia factors
exp(xiPL) in the integrands of (20) and (21). One can
see that the period and amplitude of these oscillations
depend on L.

Figure 5 showsasimilar graph of Jyem asafunction

of the impurity concentration N(ps) inthelayer, but now

for variousimpurity concentrationsin the half-space of
metal. One can seethat an increase in theimpurity con-
centration in the metal half-space decreases the ampli-
tude and the period of oscillations of Jyem-

Figures 6a and 6b represent the graphs of Jyem 8S
functions of the impurity concentration N in the
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metal half-space for various impurity concentrationsin
the layer for low (Fig. 6a) and high (Fig. 6b) concentra-

tions NE,M). For low impurity concentrations in the
metal (Fig. 6a), the total thermionic current linearly

decreases asthe concentration N&" increases. As N’

increases, this curve becomes nonlinear (Fig. 6b). As
we have already mentioned, an increase in the impurity
concentration in the layer decreases the total thermi-
onic current.

5. CONCLUSIONS

Before passing to discussion of the results, we will
speak onthe case of asinglemetal half-space (without the
metal layer). In this case, the expression for the thermi-
onic current can readily be derived from Egs. (20)—(22) if
wesetB=sandny=T,=0:

jrem =y = A8 JoEn.(®
@
dk RepRea
oy (2m)° B+ al®

This equation has a clear physical interpretation. The
quantity n,(E) in the integrand represents the energy
distribution of electrons. The second integral in (32) is
none other than the probability that an electron with
energy E leavesthe metal.

Earlier, we have shown that, due to the presence of
impurity ions in the metal, the distribution function of
electrons may substantially differ from the classica
Fermi—Dirac distribution. The generalized distribution
function introduced in this paper depends on the impu-
rity concentration in the metal viathe parameters A and
I (see(23)). However, one can seefrom (32) that, inthe
case of a half-space, the final expression for the current
doesnot explicitly dependon A and I". Inthiscase, ther-
mionic current (32) depends on the impurity concentra-

tion N(pM) only via the reflection coefficient p of the
electron wave from the boundary of the metal (recal

that Ima is proportional to NE,M)). The numerical cal-

culations by formula (32) have shown that this depen-
denceisweak. Thus, in the case of a single half-space,
the results may be in good agreement with the Richard-
son—Dashmen result (1). This fact has been confirmed
by numerical analysis.

Thus, we have found that the thermionic current (32)
emitted by a heated metal half-space weakly depends
on the impurity concentration in the metal; this agrees
well with the classical result (1) despite the fact that the
distribution function of electrons may differ from the
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Fermi distribution. To resolve this seeming contradic-
tion, we rewrite (32) in a somewhat different form by
introducing a generalized distribution function. Then,
for moderately high impurity concentrations, we obtain

- therm 8|e|°° de
, = ———(den.(E)[—
j M { (B)f on’?
(33)
#°k?

0 2
— S F R e =),

" dk
x J’ Z—HZkZESr
0
where we introduced the auxiliary function

1 r
o0 = on o
Recall that U in (32) is a potential generalized to the
case of a doped metal (see (30)). The quantity 1 — p?
defines the fraction of electrons that leave the metal,
while p? defines the fraction of electrons that are
reflected from the boundary of the metal. Note that the
integral with respect to dk, is

p 1K
[k £~ SrEW(k)
0

[

dE,

0 [=— WE,
2 v4
) (E-E,) +T%/4

© o dE T
= W(E) [—————— = 2nW(E),
J(E-E,) +T%4

where we introduced the notation

h7Kk3

+ + ] W:l_ 21
5 M —U p

E=E-

E,, =

and took into account that I’ < E (thisisacriterion that
determines the applicability limits for perturbation the-
ory and, hence, for the theory described above), aswell
as the fact that the probability W = 1 — p? of transition
through the boundary, depends rather weakly on k,. As
aresult, we have found that, in the case of asingle half-
space, the final result does not contain a generalized
distribution function. Consequently, the thermionic
current depends on the impurity concentration only via
the variation of the reflection coefficient p.

Now, let us show that formula (32) for thermionic
current reduces to the Richardson—-Dashmen law (1) in
the classical limit. Neglecting the effects of above-bar-
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rier reflection, we can write a simplified expression for
the reflection coefficient as

Zkg
_02M
P Hiae

Z>
Con > o

< ®,,
(34

Then, formula (32) for the current intensity simplifies

1
|
D
2
©
O

intheclassica limit.

Thus, in this paper, we have attempted to carry out a
detailed quantum-mechanical analysis of the processes
in real metals and alloys at low temperatures. We have
considered two systems: the first isa composite system
consisting of a metal layer of finite thickness and a
metal half-space, and the second is a simpler system
consisting of ametal half-space without metal layer. In
both cases, our aim was to derive afinite expression for
the thermionic current emitted by the system into vac-
uum. We assumed that both the metal half-space and
the layer may contain impurities. Therefore, we placed
special emphasis on the effect of impurities on the dis-
tribution function of electrons in metal. We have dem-
onstrated that impurities may substantially change the
distribution function (recall that, in the model of free
electrons without impurities, thisis the Fermi distribu-
tion for an electron gas with effective mass). In this
case, the energy and momentum of electrons become
independent variables because of the violation of the
ideal lattice field in the metal and, hence, the homoge-
neity of the space, by the impurity field.

We have established that two new parameters, I and
A, appear in the theory of adoped metal. These param-
eters describe the interaction between the electron gas
and the impurity ions. The parameter I' determines the
reflection of electron waves by impurity sites and char-
acterizes the indeterminacy in the electron momentum
for a given total energy. The parameter A can be inter-
preted as a shift in the electron energy under the influ-
ence of the impurity field. Note that A and I are not
independent; they arerelated by aformulasimilar tothe
Kramers—Kronig equation (see[6]).

We have shown that, in the case of a single heated
metal half-space without alayer, the expression for the
current does not contain a generalized distribution
function of electrons and, hence, does not explicitly
contain the width I". The dependence on the impurity
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concentration results from the reflection coefficient
only and is extremely weak. As a consequence, the
result obtained is in good agreement with the classical
Richardson-Dashmen formula (1) in a wide range of
temperatures, in spite of the fact that the distribution
function of electrons in meta is different from the
Fermi distribution.

The situation changes drastically in the case of a
more complex system consisting of a plane-parallel
metal layer and a metal half-space. As we have shown,
the thermionic current depends explicitly on the gener-
alized distribution function that takes into account the
interaction between electrons and impurities through
the earlier introduced parameters ' and A. We have
found that thermionic current from such a system is
highly sensitive to the impurity concentration both in
the layer and in the metal half-space. Numerical analy-
sis has shown that this dependence has an oscillating
character. Moreover, we have found that the depen-
dence of thermionic current on the layer thickness also
exhibits oscillating behavior. Thus, the metal layer can
play therole of aresonator for the electron waves emit-
ted by the metal half-space, which either enhances or
reduces (depending on its thickness) the contribution of
the metal half-space (20) to the total current (22).

We should point out possible applications of the
results obtained. Owing to the onrush of the electronics
industry, there is increasing demand for compact and
reliable electron-beam sources of prescribed intensity
(new light sources, ultrathin high-resolution monitors,
etc.). The results obtained in this paper can be general-
ized to the case when a metal layer of finite thickness
represents a plasma produced by irradiating the surface
of a metal by a short-wavelength (picosecond) laser.
Then, one can directly affect the thickness of the metal
layer and the temperature of the surface, thus changing
the current emitted by this composite system. Therela-
tions obtained can answer the question of how the ther-
mionic current is changed under the variation of the
intensity of the laser beam. It also becomes possible to
measure the temperature of the plasma produced by
irradiating the metal by alaser beam. We can point out
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amethod for improving the theory proposed. For exam-
ple, one can consider a layer and a metal half-space at
different temperatures and analyze the effect of elec-
tron kinetics on the boundary between two metals on
the results presented here (which, strictly speaking, are
obtained in the equilibrium limit).
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Abstr act—The magnetic properties of manganites of the Nd; _,CaMnO; system with x < 0.15 have been stud-
ied. It is shown that, in the 0.06 < x < 0.1 interval, the results can be interpreted using a model according to
which the concentrational transition from aweakly ferromagnetic (WFM) state (x = 0) to aferromagnetic (FM)
state (x > 0.15) proceeds via a mixture of the exchange-coupled FM and WFM phases. In the vicinity of T =
9 K, sampleswith 0.06 < x < 0.1 exhibit a spontaneous magnetic phase transition involving reorientation of the
magnetization vectors of the WFM and the exchange-coupled FM phases. In the temperature interval between
5 and 20 K, a sample with the composition Nd, g,Cay0sMNO; o5 exhibits metamagnetic behavior. Magnetic
phase diagrams in the H—T and T—x coordinates are presented. The appearance of the spin-reorientation transi-
tions is explained in terms of the magnetic analog of the Jahn—Teller effect with allowance for the fact that,
according to the neutron diffraction data, the magnetic moments of neodymium ions in the FM phase are par-
allel to the magnetic moments of manganese ions. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The phenomenon of giant (colossal) magnetoresis-
tance discovered in manganese-containing perovskites
of theLa, _,A,MnO, system, where A isadivaent ele-
ment (Ca, Sr, Ba, Ph), has attracted much attention in
recent years [1-3]. This interest is explained to a con-
siderable extent by good prospects for the practical
applications of these materials [4, 5]. At the sametime,
manganites exhibiting alarge variety of properties have
become model objects for the investigation of strongly
correlated electron systems.

The interrelated magnetic and electrical properties
of the above materials were most exhaustively studied
for lanthanum-containing manganites, whereas the
manganites of rare-earth elements have been studied to
amuch lesser extent. However, it is known that theion
radius of A-cations in the ABO; perovskite lattice sig-
nificantly influences the magnetic and electron-trans-
port properties of manganites with such structures. For
example, stoichiometric LaMnO; is an orbital-ordered
antiferromagnet (weak ferromagnet) of the A-type with
aNéd temperature of Ty =140 K [6, 7]. Thetransition
to an orbital-disordered state in this composition takes
place at a temperature of about 700 K [8, 9]. As the
radius of the rare-earth ion in position A decreases, the
temperature of magnetic ordering decreases and that of
the orbital order—disorder transition increases. For
NdMnQO;, the Néel temperature is about 85 K [10],
while the temperature of breakage of the antiferro-

distortion order of the d. orbitals increases up to
1080 K [8].

As is known, substitution of divalent ions (Ca?*,
Sr2*, etc.) for La® in the La,_ ,A,MnO; structure is
accompanied by certain changes in the magnetic prop-
erties of these compounds. In particular, Lg; _,A,MnO;
with 0 < x < 0.5 exhibits a transition from a dielectric
antiferromagnetic (AFM) state (for x = 0) to ametallic
ferromagnetic (FM) state (0.2 < x < 0.5). The magnetic
state in the intermediate interval of compositions (0 <
x < 0.2) can be described either in terms of honcollinear
magnetism [11] or within the framework of a model of
the FM—-AFM phase separation [12—-14]. In comparison
to the case of lanthanum manganites, the mechanism of
evolution of the magnetic state of rare-earth manganites
in the course of doping can significantly vary. For
example, compounds of the La _,CaMnO; system
(where Ln = Th, Dy) do not exhibit a concentrational
trangition to the homogeneous FM state and show spin-
glass behavior in abroad range of compositions[15, 16].

In addition to the aforementioned size effect in the
A-sublattice, manganites are characterized by the
dependence of their magnetic properties on the mag-
netic state of a lanthanide component. In particular,
Lud* and Y3* ions (like La**) are diamagnetic (L = S=
0), which implies that the behavior of LUMnO; and
LaMnQO; is determined only by the manganese sublat-
ticee. On the contrary, the magnetic properties of
LnMnO; (with Ln=Pr-Yb) depend not only onthe d-d
interactions of manganese ions, but on the intersublat-
tice (f—d) and intrasublattice (f—f) interactions of rare-
earthionsaswell; at low temperatures, the contribution
of these interactions to the magnetic state can be com-

1063-7761/03/9706-1231$24.00 © 2003 MAIK “Nauka/Interperiodica’



1232

parable to an analogous contribution from the
B-sublattice.

Stoichiometric NdMnO; (like the manganites of
lanthanum, praseodymium, samarium, and europium)
is aweak ferromagnet [17]. The weak FM moment of
this compound is due to a small noncollinearity of the
magnetic moments of manganese that is related to the
Dzyal oshinski-Morija interaction [18]. Similar to lan-
thanum manganite, NdM nO; can be nonstoichiometric
with respect to oxygen, which (similarly to the case of
LaMnO;, 5) must lead to an increase in the FM compo-
nent. The results of neutron diffraction for NdAMnO; , 5
containing excess oxygen (the sample was obtained by
low-temperature synthesis in ar) were interpreted
within the framework of a model according to which
the magnetic moments of neodymium ions (1.2 pg at
T=2K) are ordered below 13 K, whereas the manga-
nese sublattice exhibits both the predominant AFM
component below T=80K (3.2 g a T= 2K) and an
FM component below 70 K (about 1.4 pg a T = 2 K)
[19]. At temperatures below 13 K, the magnetic
moments of Nd** ions are parallel to the magnetic
moments of manganese ions in the FM component.
Although the available data were insufficient to unam-
biguoudly decide whether atwo-phase state or a homo-
geneous noncollinear state is realized, the results were
interpreted based on asingle-phase noncol linear model.
However, the magnetic properties of nonstoichiometric
NdMnO;,, indicate that the magnetic moments of
neodymium ionsare aligned oppositely to the moment of
the manganese sublattice in the vicinity of the Néel
temperature [10]. The combined data of nuclear mag-
netic resonance and neutron diffraction obtained for
dlightly doped lanthanum manganites in a magnetic
field were indicative of the formation of a two-phase
state [6, 14].

Previous investigation of the properties of perov-
skites of the Nd(Mn,gMe, )O3 type (Me = Al, Fe, Cr,
Zn) showed that partial replacement of manganeseions
leads to a low-temperature magnetic phase transition,
the nature of which is unclear [20]. In order to reveal
the features of interaction between the magnetic sublat-
tices of neodymium and manganese and to elucidate the
mechanism of the concentrational transition from AFM
to FM state, we studied the magnetic properties of sam-
plesof the Nd, _,CaMnO; system with x < 0.15. It was
found that neodymium ions significantly modify the
properties of manganites, so that aconcentrational tran-
sition to an FM state proceeds via the formation of an
intermediate inhomogeneous state subject to spin-
reorientation magnetic phase transitions.

2. EXPERIMENTAL

Polycrystalline samples of Nd,_,CaMnO; with
0.06 < x < 0.15 were synthesized by standard ceramic
technology. The initial components were Nd,O; (pre-
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liminarily annealed for 1 h at 1000°C to remove
adsorbed water), Mn,O3, and CaCO;. A mixture of
these reagentswith astoichiometric ratio of cationswas
annealed for 2 h at 1000°C. The product was ground,
pressed into disks, and sintered in air for 5 h at 1500°C,
followed by cooling at arate of 100°C/h. The content of
oxygen in the synthesized samples was determined by
thermogravimetry. Calculated from the weight loss
upon the reduction to simple oxides, the error of deter-
mination did not exceed 0.4% of the total oxygen con-
tent. Superstoichiometric oxygen was removed by
annealing the samples in evacuated quartz ampules.
Some of the samples were reduced to an oxygen con-
tent below the stoichiometric level using metallic tanta-
lum as areducing agent.

The X-ray diffraction measurements were per-
formed on a DRON-3 diffractometer using CrK,, radia-
tion. It was established that the synthesized samples of
Nd; _,CaMnO; with x < 0.15 are single-phase and pos-
sess a perovskite structure with O'-orthorhombic

(c/ 42 < a < b) distortions, space group Pbnm. As the
content of calcium increases, the unit cell volume
decreases as a result of the growth in the content of
Mn** ions (in the octahedral oxygen environment, the
effective ion radii of Mn® and Mn* are 0.645 and
0.530 A, respectively [21]).

The magnetization measurements were performed
onacommercial vibrating-sample magnetometer of the
OI-3001 type in a temperature interval from 4.2 to
150 K. The measurements in the heating mode were
performed for samples cooled in a nonzero magnetic
field (field cooling, FC) and in the absence of field (zero
field cooling, ZFC). For some of the samples, the mag-
netization was studied as afunction of the applied mag-
netic field using a SQUID magnetometer.

3. RESULTS

Figure 1 shows the temperature dependence of mag-
netization for a series of Nd, _,CaMnO; samples with
0.06 < x < 0.15. The anomalous behavior of magnetiza-
tion indicative of the appearance of a magnetic order in
Ndy 04Cag 0sMNO; was observed at 73K (Fig. 1a). Inthe
region of T = 68 K, the ZFC sample magnetization
exhibits a peak below which the curves of the ZFC and
FC samples sharply differ. The FC sample magnetiza-
tion exhibits a sharp drop at Ty = 9 K, whereby the ori-
entation of the total magnetic moment becomes oppo-
site to the field direction. At thistemperature, the curve
of the ZFC sample exhibits a small peak. The tempera-
ture hysteresis observed in this region is indicative of
the first-order phase transition.

For a compound with the composition
Ndy 6,Cag 5sMNO;, the temperature of thetransitionto a
magnetically ordered state increases to 84 K (Fig. 1b).
Additional reduction of thissampleled to achangeinthe
magnetic properties: the compound Ndy, 6,Ca, ;sMNO; o5
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Fig. 1. The temperature dependences of magnetization for samples of the Nd; _,CaMnO3 system with 0.06 < x < 0.15. The inset
shows the magnetization of the FC samplein the region of phase transition.
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showed some decrease in the temperature of transition
to the paramagnetic state and a more pronounced |ow-
temperature phase transition (Fig. 1c). Similar to the
case of Ndy g4Ca 5sMNO3, both the stoichiometric (with
respect to oxygen) and the reduced samples with x =
0.08 exhibited a sharp drop in magnetization in the FC
state and a peak in the ZFC state at T4 = 9 K.

Subsequent increase in the content of Ca?* ions
leads to further increase in the Curie temperature, up to
104 K for Nd, ¢Cay;MnO; (Fig. 1d). The low-tempera-
ture magnetic phase transition takes place near the
same temperature of 9 K but, in contrast to the samples
with x=0.06 and 0.08, the magnetization of the sample
with x = 0.1 remains positive in the entire temperature
range.

However, further increase in the content of calcium
is not accompanied by a significant change in T,. The
temperature of the transition from para- to ferromag-
netism for the sampleswith x =0.12 and 0.15is 107 K
(Figs. 1e and 1f). In these samples, the anomalous
behavior of magnetization in the region of 9 K is no
longer observed. In contrast to the compositions with
0.06 < x< 0.08, the FC sampleswith x = 0.12 and 0.15
exhibit an increase in magnetization in the low-temper-
ature region.

Figure 2 presents the results of measurements of the
field dependence of magnetization for a sample with
the composition Nd,¢,CaysMNO, 45, in Which the
anomalous low-temperature magnetization behavior
was most pronounced. These measurements were per-
formed on the ZFC sample in a temperature interval
from 5 to 30 K, using an externa field with a strength
of up to 50 kOe. It should be noted that low-doped
neodymium manganites are strongly anisotropic mate-
rials. According to the neutron diffraction data, the
spontaneous magnetic moment of NdMnOs , , hasto be
2.6 Ug per formula unit (pfu), while measurementsin a
field of 30kOegaveonly 2 ug [19]. Therefore, itisvery
difficult to correctly evaluate the spontaneous magnetic
moment of such materials by measurements in the
fields below 50 kOe.

At atemperature of 25 K, the sample was character-
ized by acoerciveforce of 4.6 kOe. Thisvaueindicates
that Nd, g,Cay0sMNO, gg IS @ magnetically hard mate-
rial. The sample magnetization exhibited no saturation
inthefields of up to 50 kOe, which also confirmsahigh
magnetic anisotropy (Fig. 2a). No significant changes
in the character of the M(H) curve was observed for
anal ogous measurements performed above 25 K.

Asthe sampletemperature is decreased below 25K,
the field dependence of magnetization acquires qualita-
tively new features. At T= 20 K, there appears aclearly
pronounced hysteresisin the range of fields from 19 to
50 kOe (Fig. 2b). The presence of hysteresisisevidence
of the first-order magnetic phase transition. Further
decrease in the temperature leads to a shift of the hys-
teresis loop toward lower fields. At a temperature of
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20 K and below, the M(H) curves measured in the field
increase mode exhibit jumps in magnetization: the
lower the sample temperature, the more pronounced the
jumps.

In contrast to the case of the field dependences mea-
sured at 20 K and above, a decrease in the applied field
strength at T = 17 K leads to a significant drop in mag-
netization, this drop being much greater than the
growth observed with increasing field. The residua
magnetization is characterized by 0.05 pg (pfu)
(Fig. 2c). An unusual phenomenon is observed in the
temperatureinterval between 9 and 15 K: asthe applied
field decreases, the magnetization sharply drops and
acquires negative values in the positive field (Figs. 20—
2f). This effect is most pronounced at T = 12.5 K,
whereby the sample magnetization in a zero field is
-0.22 pg (pfu) (Fig. 2e). With a subsequent decrease of
the sampletemperature, at T = 8.5, the magnetization at
H =0iszero (Fig. 20).

In the field dependences measured below 8.5 K, the
sample magnetization remains positive when the mag-
netic field strength is decreased to zero. At T=5K, the
sample exhibits a residual magnetization of 1 pg (pfu)
and a coercive fidd of 4 kOe (Fig. 2h). However, an
increase in the level of magnetization observed in the
fields above 13 kOeis evidence of the phasetransition. It
should also be noted that the level of magnetizationin a
field of 50 kOe decreases with decreasing temperature.

4. DISCUSSION

Rare-earth magnets are classical objects for the
investigation of phase transitions. In manganites, the
main attention was devoted to the study of magnetic
phase transitions of the order—disorder type (character-
ized by the Curie and Néel temperatures), whereastran-
sitions of the order—order typeinvolving achangein the
magnetic structure have been studied to alower extent.
The magnetic phase transitions involving spin reorien-
tation (orientational transitions) may take place in the
course of variation of either the sample temperature
(spontaneous transitions) or the external magnetic field
(field-induced transitions). Such transitions are most
clearly manifested in rare-earth orthoferrites and garnet
ferrites [22-24]. To our knowledge, no systematic
investigations of the orientational magnetic phase tran-
sitions in manganites have been reported so far.

Our investigation of the temperature dependence of
magnetization in Nd, _,CaMnO; with 0.06 < x < 0.15
reveal ed anomal ous shapes of magnetization curvesfor
both ZFC and FC samples in the region of T =9 K
(Figs. 1a-1d). Such abehavior of the spontaneous mag-
netization cannot be related to a scenario involving sharp
ordering of the neodymium sublattice. Indeed, according
to the results of measurements of the temperature depen-
dence of magnetization for NdMnO;q, in various
regimes [10], the neodymium sublattice becomes
ordered in the vicinity of the Néel temperature.

No. 6 2003



MAGNETIC PHASE TRANSITIONS IN Nd; _,CaMnO; MANGANITES

M, pyg per formula unit

1235

M, pg per formula unit

2L

€9
-3 | | | | | | | | | |
-60 -40 -20 O 20 40 60-60 —-40 -20 O 20 40 60
H, kOe H, kOe

Fig. 2. The field dependences of magnetization in a Ndg goCay igMnO, gg Manganite sample at various temperatures.

Solid solutions of the Nd, _,CaMnO; system con-
tain magnetic sublattices of neodymium and manga-
nese, so that the magnetic state of our manganite sam-
ples is determined by the f—f, f—d, and d—d exchange
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interactionsinvolving the magnetically active Nd® and
Mn3* ions. Magnetic interactions in the rare-earth sub-
lattice are much lower than the d—d exchange between
manganese ions. In addition, the replacement of neody-
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mium ions by nonmagnetic cal cium ions must addition-
ally decrease the f—f exchange. In connection with this,
we may assume that ordering of the neodymium subl at-
ticeisrelated to the f—d exchange between neodymium
and manganese sublattices. In al probability, variation
of the content of Mn* ionsmay lead to achangein sign
of the f—d exchange. Thisisevidenced by the following
experimental facts.

(i) In an amost ferromagnetic sample of
Nd,gsCay1,MNO;, the magnetic moments of neody-
mium ions are aligned parallel to those of the manga
nese sublattice (the f—d exchange is positive) [25].

(ii) The temperature dependence of magnetization
in the vicinity of the Néel temperature in NdMnQO; o,
shows that the f—d exchange is negative [10].

(i) The neutron diffraction datafor NdMnOs , , can
beinterpreted based on amodel according to which the
f—d exchange below 13 K is positive, while above 13 K
the neodymium sublattice is disordered [19].

Note that the latter two statements are mutually
exclusive. The discrepancy can be eliminated if we
adopt atwo-phase model of slightly doped manganites.
In this model, the f-d exchange in the FM phase must
be positive and that in the weak ferromagnetic (WFM)
phase above 13 K, negative. Since the fraction of the
FM phase in the samples studied in [19] was not less
than 40%, the contributions from the two phases to the
magneti zation of the neodymium sublattice above 13 K
must almost compensate each other. Below 13 K, the
magnetic moments of neodymium ions in the WFM
phase exhibit reorientation and become aligned parallel
to the FM component, which leadsto the observation of
the magnetic moment of neodymium (1.2 yg) parale
to that of the FM component (the magnetic moment of
manganese is equal to 1.4 pg) [19].

The question naturally arises as to why do the mag-
netic moments of neodymium ions exhibit this reorien-
tation. In order to answer this question, we have to take
into account that the two phases occur in an exchange-
coupled state similar to that of thin magnetic layersin
multilayer film structures. Apparently, the molecular
field of the FM phaseis, in acertain sense, analogousto
an externa field oriented opposite to the interna
exchange field of the WFM phase. At a certain temper-
ature, these fields may compensate each other. We sug-
gest that the ground state of Nd®* ionsin the vicinity of
this temperature exhibits degeneracy (crossover). The-
oreticaly, this degenerate state cannot be stable and the
magnetic structure is subject to transformation [24].
The magnetic phase transition removes the degeneracy.
The crossover accounts for the spin reorientation man-
ifested as the first-order phase transition. The presence
of closely spaced energy levels and electron transitions
between these levels in Nd®* ions are confirmed by
spectroscopic data [26].

Notethefollowing peculiarity of the magnetic phase
transition in the vicinity of 9 K. The magnetic moment
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of the neodymium sublattice in the FM phase of man-
ganese must be about 0.6 g (pfu). This estimate takes
into account that the content of the FM phase is about
50% (we assuming that the samples with x = 0.06 are
doped with Mn* stronger than NdMnO;, , studied
in[19]) and that the magnetic moment of neodymium
is 1.2 pg in both the FM and WFM phases [19, 25].
However, a change in the magnetic moment related to
the phase transition is significantly greater than 1 pg
even for the FC sample in an applied field of 100 Oe
(Fig. 1c). Taking into account that the sample repre-
sents a strongly anisotropic polycrystaline material,
the change in the magnetization must be even more pro-
nounced.

In connection with this, we may assume that the
magnetic moments of manganese ions must be aso
involved into the process of spin reorientation. We sug-
gest that the phase transition in aWFM phase leads to
reorientation of the magnetic moment of a less aniso-
tropic FM phase in the direction opposite to that of the
applied field (100 Oe). This is related to a strong
exchange coupling between the two phases. The mag-
netic moments of neodymium in the WFM phase do not
change their orientation, while the magnetic moments
of manganese ions in the WFM phase change their
direction. Thus, the sample below 9 K occursin a state
with the magnetic moments of all four sublattices of the
two phases oriented opposite to an external field of
100 Oe. The proposed mechanism is confirmed by the
results of measurements in strong magnetic fields.

We believe that the jumps in the field dependence of
magnetization observed for a sample of
NdygCaysMNO, g5 in an external magnetic field
(Fig. 2) are analogousto the behavior observed on cool -
ing the sample in a field of 100 Oe. As is known, the
splitting of levelsfor arare-earth ion in amagnetically
ordered crystal is determined by the combined action of
the crystal field, exchange coupling, and external field
[23]. If the f—d exchange coupling leads to an increase
in the separation of sublevels, the externa field must
bring these levels closer to each other because the two
fields have opposite directions (while the f—d exchange
field renders the magnetic moments of the neodymium
and manganese sublattices in the WFM phase antipar-
dlel, the external field tendsto orient these momentsin
the samedirection). A sufficiently strong magnetic field
may lead to crossover and degeneracy of the sublevels.

At T = 20 K, the jump in magnetization related to
reorientation of the neodymium sublattice is rather
small. Thisis probably due to the fact that the external
magnetic field is insufficient for completing the transi-
tion and also due to the strong temperature dependence
of the magnetic moment of neodymium. Beginning
with 17 K, the jump observed with decreasing field sig-
nificantly exceedsthat in the field increase mode; in the
temperature interval from 9 to 15 K, magnetization in
the positive field becomes negative (Fig. 2e). This
behavior indicates that the field switching on and off is
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accompanied by different processes. We believe that
increasing field leads to reorientation of the magnetic
moments of neodymium in the WFM phase aong the
field. A decrease in the field strength to zero is accom-
panied by reorientation of the magnetic moments of
manganese ionsin the WFM and FM phases, while the
magnetic moments of neodymium in the WFM phase
remain oriented al ong thefield. For thisreason, the neg-
ative magnetic moment in the positive field is smaller
than that observed in the case of cooling in a field of
100 Oe (Fig. 1c).

The pattern somewhat changes when the field
dependences are measured at temperatures below T
(Fig. 2h). A negative residual magnetization no longer
takes place, but reorientation of the magnetic moments
of neodymium can be observed in afield applied in the
direction opposite to that of the magnetic moments.
Thus, a state with the antiparallel orientation of the
magnetic moments of neodymium and manganese ions
in the WFM phase can exist in a broad range of field
strengths.

Based on the above data, we have constructed a
magnetic phase diagram of Nd, ¢,Cay0sMNO, o5 in the
H-T coordinates (Fig. 3). This phase diagram shows
that, as the temperature increases, the range of field
strengthsin which the components with parallel or anti-
parallel orientations of magnetic moments in the
neodymium and manganese sublattices occur (depend-
ing ion the prehistory) in the WFM phase shifts toward
higher fields. This type of magnetic phase diagram cor-
responds to interpretation of the phase transitions in
terms of crossover. It should be noted that, since the
measurements were performed on a polycrystalline
sample, the range of fields featuring metamagnetic
phasetransitionsisrather wide. In single crystals, these
transitions will proceed in ajumplike manner in a nar-
row range of field strengths.

Using data on the temperature dependence of mag-
netization for manganites of the Nd; _,CaMnO; sys
tem with x < 0.15, we have a so constructed a hypothet-
ica magnetic phase diagram in the T—x coordinates
(Fig. 4). Datafor NdMnO; were taken from our previ-
ous study [10].

L et us consider the possible mechanisms of concen-
trational magnetic phase transition between AFM and
FM states in the Nd, _,CaMnO; system. As was men-
tioned above, there are several models describing the
magnetic state of manganitesin the range of intermedi-
ate compositions. A double exchange model developed
by Zener [27] for explaining the ferromagnetism of
compounds with high electric conductivity is based on
the concept of real transitions of d electrons between
Mn* and Mn3 ions. Within the framework of this
model, it is assumed that the AFM—FM transition pro-
ceeds via the formation of a noncollinear magnetic
structure [11].

An alternative mechanism of the formation of an
FM state in manganites was proposed by Wollan and
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Fig. 4. A magnetic phase diagram of the Nd; _,CaMnO3
system (x < 0.15): (AFM) antiferromagnetic phase;
(FM) ferromagnetic phase; (PM) paramagnetic phase; (Tgs)
the effective temperature at which the anomalous jump of
magnetization of the FC samples, related to the spin-reori-
entation phase transition, is most clearly pronounced.
Arrows indicate the magnetic moment orientation in the
neodymium and manganese sublattices of the WFM phase.

Koehler [6]. According to this model, an inhomoge-
neous (two-phase) state with collinear magnetic
moments in these phases is energetically more favor-
ablethan ahomogeneous (over the whole sample) mag-
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netic structure with noncollinear ordering of the mag-
netic moments. The separation of magnetic phases can
be related to the fact that the FM order of magnetic
moments favors the motion of charge carriers. In this
case, the minimum energy is achieved at the expense of
charge carrier concentration in certain parts of the crys-
tal. As aresult, the crystal separates into highly con-
ducting FM regions and dielectric AFM regions. Asthe
charge carrier density increases, the FM phase volume
grows accordingly. Beginning with a certain carrier
density corresponding to a percolation threshold, the
FM droplets come into contact with each other. This
corresponds to the diel ectric—metal transition, whereby
the crystal passesto aferromagnetic state [12].

Difficulties in judging between the above models
are related to the fact that, in experiment, a two-phase
magnetic state can be manifested in the same manner as
a noncollinear magnetic structure. For example, the
results of neutron diffraction measurements can be
interpreted both within the noncollinear ordering model
[28] and assuming a two-phase state representing a
mixture of FM and AFM regions [6]. Both models
explain the giant magnetoresistance and the FM order-
ing in conducting materials, but neither of the two can
explain the FM behavior of nonmetallic manganites
with a sufficiently high dopant content.

Taking into account the effect of orbital ordering,
Goodenough et al. [29, 30] suggested that the FM of
manganites is related, besides a double exchange, to a
specia character of the superexchange interactions in
Mn*-O-Mn* and Mn*-O-Mn* systems containing
Jahn—Teller ions. In this approach, the sign of the 180°
Mn3*—O-Mn* superexchange is determined by the
orbital state of Mn®* ions. Removal of the static Jahn—
Teller distortions gives rise to an isotropic FM interac-
tion resulting from a relation between the electron con-
figuration and atomic oscillations. According to this
model, a two-phase state is related to separation of a
crystal into regions featuring different orbital dynamics.

Since the FM state in solid solutions of the
Nd, _,CaMnO; system is not highly conducting [10],
advantages of the description of concentrational transi-
tions from AFM to FM state in this system within the
framework of the double exchange model or the sce-
nario of electron-induced phase separation are not
clearly manifested. More likely, the Nd,_,CaMnO;
manganite system features a mixed magnetic state
related to the mechanism of the orbital-induced phase
separation. According to the approach of Goodenough
et al. [29, 30], the orbital-ordered phase is antiferro-
magnetic, while the orbital-disordered phase is ferro-
magnetic. Both phases possess close chemical compo-
sitionsand equal carrier densities, while differing inthe
local crystal structure distortions and the orbital
dynamics.
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5. CONCLUSIONS

The results of our investigation of the magnetic
properties of manganites of the Nd,; _,CaMnO; system
lead to the following conclusions.

(i) The behavior of magnetization in weakly substi-
tuted manganites of the Nd, _,CaMnO; system can be
explained using a model according to which the sam-
ples consist of exchange-coupled FM and WFM
phases. In the FM phase, the magnetic moments of
neodymium ions are oriented parallel to the moments
of manganese ions. In the WFM phase at T > Ty, the
magnetic moments of neodymium ions are antiparallel
with the vector of weak ferromagnetism.

(if) The low-temperature phase transition at Ty =
9K inNd,_,CaMnO;with0.06 <x<0.10isrelated to
reorientation of the vector of weak ferromagnetism
along the magnetic moments of neodymium ionsin the
WFM phase. This is accompanied by reorientation of
the magnetic moment of the exchange-coupled FM
phase.

(iii) The jumps in magnetization observed in
increasing external magnetic field are related to reori-
entation of the magnetic moments of neodymium ions
in the WFM phase along the vector of weak ferromag-
netism and the magnetic moment of the FM phase. As
the applied field strength decreases, the sample features
reorientation of the vector of weak ferromagnetism and
the magnetic moments of the FM phase, while the mag-
netic moments of neodymium ions in the WFM phase
remain oriented along the field.

(iv) The spin-reorientation phase transitions are
explained within the framework of the magnetic analog
of the Jahn—Teller theorem.
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Abstract—The current—voltage (I-V) characteristics of low-voltage electron emission from nanocarbon (nC)
film cathodes consisting of carbon nanotubes and/or nanosized graphite crystallitesis analyzed. It is shown that
an adequate qualitative description of the I-V characteristics can be obtained within the classical Fowler—Nor-
dheim (FN) theory with regard to the normal statistical distribution of the parameters of emission sites situated
on the cathode surface. However, the application of this classical theory to obtain quantitative estimates |eads
to a considerable discrepancy between the results obtained and experimental data. A quantitative agreement
between experimental data and theoretical results can be achieved under the assumption that the effective areas
of emission sitesincrease at the expense of the lateral surfaces of nC structures. © 2003 MAIK “ Nauka/ I nter-

periodica” .

1. INTRODUCTION

Field emission attracts considerable interest from
the viewpoint of abstract science, because this phenom-
enon is based on quantum-mechanical effects occurring
on the surface and interfaces of solids, as well as from
the viewpoint of applied investigations involving elec-
tron beamsin various devices. In the latter case, of spe-
cial importance is the voltage used to generate field-
emission electrons and is determined by the electric
field required to induce electron tunneling through the
potential barrier on the cathode surface [1, 2]. In many
recent publications, it has been shown that various car-
bon nanotubes can emit electrons under anomalously
low (compared with conventional metal field-emission
cathodes) voltages (see, for example, the review [3]).
Similar properties are also exhibited by other nanosized
carbon structures; this fact suggests that there exists a
general mechanism of low-voltage field emission
attributed to nanometric sizes of emitters[4, 5]. Within
the classical Fowler—Nordheim (FN) theory, such a
low-voltage emission may be associated with two fac-
tors: adecrease in the work function of electronsin the
cathode material and the enhancement of the electric
field due to the geometric shape of the emitter, which, for
example, may have the form of athin tip or edge[1, 2].
However, for nanosized emitters, the quantitative char-
acteristics and the physical sense of both the work func-
tion and the geometric shape of the equipotential sur-
face, which isresponsiblefor the electric field strength,
may be different from those of macroscopic cathodes.
This fact requires that one should carry out an addi-
tional analysis on the applicability of the classical FN
theory to nanoemitters. Moreover, since the absolute
values of currents emitted by separate nanosized emit-
tersare relatively small, low-voltage emission is exper-

imentally observed, as arule, on cathodes containing a
large number of emission sites whose parameters are
characterized by a certain statistical distribution over a
certain range of values. In the present paper, the analy-
sis of these questions is based on the investigation of
the current-voltage (I-V) characteristics of nanocarbon
(nC) film field-emission cathodes and takes into
account the statistical distribution of the parameters of
emission sites.

2. FEATURES OF EXPERIMENT

Nanocarbon film field-emission cathodes for our
experiment have been obtained by chemical vapor dep-
osition (CVD) in hydrogen—methane gas mixture acti-
vated by adc discharge by the method described in our
earlier papers (see, for example, [4, 6]). Asasubstrate,
we used standard polished silicon wafers. The surface
morphology of the samples of field-emission cathodes
is determined by carbon nanotubes and platelike graph-
ite crystallites that constitute the film; these nanotubes
and crystalites are predominantly oriented along the
normal to the substrate [4]. For lengths ranging from
one to several micrometers, the diameter of the nano-
tubes and the thickness of the crystallites range from 10
to 20 nm. Figure 1 illustrates the typical surface mor-
phology of an nC cathode obtained by a scanning elec-
tron microscope (SEM). In this image, several carbon
nanotubes that can be distinguished for a given magni-
fication are indicated by arrows. The Raman spectros-
copy and the X-ray photoelectron spectroscopy dis-
played ahigh degree of crystallographic orderingin nC
film materials and the absence of any substantial
amount of noncarbon impurities, as was pointed out
earlier in [4].
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Fig. 1. Typical SEM image of the surface morphology of an nC film. The arrows indicate separate nanotubes.

The |-V characteristics of film nC cathodes were
measured in the configuration of a vacuum diode with
flat electrodes. The anode was a glass plate coated with
atransparent conducting layer of indium and tin oxides
(ITO). The conducting ITO film was coated by a layer
of phosphor that emitted light under the action of elec-
trons emitted from the cathode. In contrast to configu-
rations with spherical or tip-shaped anodes [3, 7], this
configuration alows one to determine easily and ade-
quately the macroscopic field and the density of emis-
sion sites. The image obtained on the anode plate cor-
responds to the distribution of emission sites on the
cathode, and the intensity of the macroscopic electric
field on the cathode is given by the simple relation

V
F 3
where V is the voltage between cathode and anode and
d isthe anode—cathode spacing. In this case, the density
of the field-emission current is given by the ratio of the
total current | of the cathode to itsarea S

As the threshold value of the electric field strength F,
wetook afield value corresponding to acurrent density
of J=10"°A/cm?. For typical nC cathodes, this thresh-
old field was lower than 1.5 V/um. The |-V character-
istics were measured in a vacuum of at least 107 Torr
at room temperature.

3. RESULTS AND DISCUSSION

Typical images of luminescence of phosphor on the
anode plate under applied voltages of 300, 400, and
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1000V and an anode—cathode spacing of 200 um are
presented in Fig. 2. These images show that emission
sitesare uniformly distributed over the cathode surface.
The number of emission sites increases as the applied
voltage increases. Under avoltage of higher than 800V,
individual emission sites cannot be resolved because
the phosphor grain size is finite and amounts to about
5 um; the density of emission sitesunder thisvoltageis
estimated to be 10° cm in order of magnitude.

Figure 3 presents atypical experimental diagram of
the current density J of avacuum-tube diodewith annC
field-emission cathode as a function of the intensity of
the macroscopic electric field F (dots). The I-V curve
presented in this figure in FN coordinates has two
essentially different regions. Under relatively high elec-
tric fields, the dependence is linear, similar to that pre-
dicted by the classical FN theory. However, in the
region of weak fields (low-voltage emission), which
can be called aregion of switching on of emission sites,
the curve is essentially nonlinear. It should be noted
that the |-V characteristics of the nC field-emission
cathodes considered here are independent of tempera-
ture[8], ascan occur in the case of emission from semi-
conductor materials. This fact suggests that the devia-
tion of the |-V characteristic in the low-voltage region
from the classical linear characteristic is associated
with agradual increase in the number of emission sites
as voltage increases. Since the material of the nC film
is sufficiently homogeneous and there are hardly any
significant variations in the work functions of different
emission sites, the variation in the number of these sites
can only be attributed to the difference in the geometric
characteristics of these sites.
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Fig. 2. (8) The image of aluminescent screen (anode) under excitation by electrons emitted from a 10 x 10-mm nC film cathode
under an applied voltage of (1) 300, (2) 400, and (3) 1000V for an anode-cathode spacing of 200 um. The dots along the cathode
perimeter are due to the emission from the sample boundaries. Under maximum voltage, the images of separate emission sites are
not distinguished because of thefinite grain size of the phosphor. (b) The results of numerical simulation of the distribution of field-
emission current density from the cathode surface with regard to the statistical distribution of geometric characteristics of individual
emission sitesfor the same values of the electric-field strength. The scale of currentsis shown in the rightmost image, where separate
emission sites are indistinguishable for a given magnification factor because of the high density of these sites.

According to the classical FN theory [1, 2], the den-
sity of the field-emission current can be expressed as

J= -—A———Ezexp[—B?i/—zO(y)} 1)
ot(y) E ’
where E is aloca electric field near the emitting sur-
face, ¢ is the work function of the emitter material,
O(y) isthe tabulated Nordheim function,

_ e B = 81./2m _ eJeF
-~ 8mh’ " 3he " 7T ¢
and
2ydo(y)

t(y) = O(y) - 3 dy

(e and m are the charge and mass of electron, and his

the Planck constant). Taking into account that, for E <

10*V/um, the Nordheim function can be expressed as
O(y) = 0.95-1.03y*

to within one percent, the expression for the current
density isrewritten as
A_2 3, 12
J = -E"exp(1.03Be
P p( o) @
x exp(-0.95Bp**E™).

Using the dimensions ¢ [eV], E [V/cm], and J [A/cm?]
for the coefficientsin formula (2), we obtain

A = 15414 x 10 °A eV V72,
B = 6.8309 x 10" ev 2
1.03Be’ = 10.1 ev*2.

Vem®,
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The local eectric-field strength E, in contrast to its
macroscopic value F, depends not only on the applied
voltage and the anode—cathode spacing, but also on the

-12

-13

~14

|
—_
)}

|
—_
(@)}

In(Z/F?) [A/(V/um)?]

-20

=21

_2L i

1
0.45 0.50 0.55 0.60 0.65 0.70 0.75
1/F, ym/V

Fig. 3. Typical 1-V curve of an nC cathode in the FN coor-
dinates. The dots represent experimental data. The solid
curve represents the theoretical 1-V curve calculated by for-
mula (3) with o = 0.1r.
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morphology of the cathode surface. In the most general
form, this relation can be expressed as

- BV
E = BF = =,

where (3 isthe loca field enhancement factor, which is
determined by the geometric characteristics of emitters.
In the simplest case of an isolated emitter in the form of
acylindrical tip of length L with a hemispherical apex
of radius r, the field enhancement factor can be
expressed as

B:

=Ir-

to agood approximation (see[1, 2]). Formula(2) shows
that, when all emission sites are identical, the |-V dia-
gram in the FN coordinates (i.e., in the coordinates
where the ordinate is In(I/F?) and the abscissais 1/F),
represents a straight line with a negative slope ratio.

Asin [9], we assume that the statistics of the geo-
metric parameters of individual emission sites follow
the normal distribution. For simplicity, we assume that
all emission sites have the same length L but differ in
the curvature radii r of their apexes. Then,

n(r) = S exp| =12 |
Jomd 20
where r, is the mathematical expectation and o is the

rms deviation of the radii of emission sites. The totd
number of emission sitesis

rmax

N = J’n(r)dr.

T'min

It is obvious from physical considerationsthat r ., > 0,
rmax << L, and 0 < ry. The last condition is due to the
requirement that the integral should be much less than
N outside admissible boundaries. Taking into account
that the area of each emission site is s = 212, we can
represent thetotal current from the whole surface of the
cathode as

max
r

| = Ist: J'J(r)2nr2n(r)dr.

I min

Substituting the expression for J from (2) into the latter
formula, we finally obtain

| = CNerxp[——+%%} (3)
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where

C= 2ATL® e p - 0958q>

) D[D’ L

In contrast to the classical FN formula (1), expres-
sion (3) provides a satisfactory approximation to the
experimental 1-V curves, including the low-voltage
region (see Fig. 3). The application of the least squares
method allows oneto obtain avalue of 6 =0.1r, for the
rms deviation of the radii of emission sites. Taking into
account that r, = 5-10 nm according to the electron-
microscopy data, we have 0 =5-10 A; i.e,, the differ-
ence in the sizes of NnC emittersis no greater than sev-
eral atomic layerswith agraphite-like crystal structure.

The nonlinear behavior of the I-V curve in the FN
coordinates is determined by the second term in square
brackets in (3), which may be comparable to the first
term for small values of the field F. The range of cur-
rents and fields corresponding to the nonlinear region
of the I-V curve is sufficiently small precisely due to
the smallness of g. This nonlinear region corresponds
to the gradual switching on of an increasing number of
emission sites with smaller enhancement factors as the
applied voltage increases. Under sufficiently strong
fields, the quadratic term in (3) becomes considerably
smaller than the linear term. This result corresponds to
the situation when the majority of emission sites have
already been switched on and make the dominant con-
tribution to the current, while the role of the remaining
siteswith minimal geometric field enhancement factors
isinsignificant, in spite of the fact that the number of
such sites may be sufficiently large.

The results of the computer simulation of the
switching on of different emission sites are illustrated
in Fig. 2b. In this simulation, we assumed that all the
emission sites represent thin cylindrical tips with hemi-
spherical apexes that have different field enhancement
factors. These tips were randomly distributed over a
given surface, and the statistical distribution of 3 was
specified with parameters similar to those given above.
Taking into account that the experimental data were
obtained for phosphors with essentially nonlinear
dependence of the luminance on the current density, we
can assume that the agreement between simulated and
experimental imagesin Fig. 2 is quite satisfactory.

The comparison of the experimental 1-V curve with
that given by formula (3) leadsto the following relation
between the work function and the field enhancement
factor, which appear in (3) as parameters:

Y =74x10°ev¥?

B

This relation is represented graphicaly in Fig. 4. It is
obvious that the leftmost and rightmost parts of this
graph represent physically meaningless values. Indeed,
for ¢ < 1 eV, one should expect intense field emission
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Fig. 4. Empirical relation between the work function ¢ and
the field amplification coefficient B, ¢3’2/B = 74 %
1073 ev32, obtained by approximating the experimental
|-V characteristic by the theoretical |-V characteristic cal-
culated by formula (3).
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Fig. 5. -V curve of an nC cathode in semilogarithmic coor-
dinates. The dots represent experimental data. The solid
curves represent the theoretical 1-V curve calculated by for-
mula (3) for various densities N of emission sites; (1) N =
105, (2) 108, and (3) 103 cm™2.

even at room temperature, whereas the value of 3 >
1000, corresponding to ¢ = 4-5 eV, does not agree with
the electron-microscopy data (see [3, 4, 6-8] and
Fig. 1). According to the data obtained, values of L
ranging from 1 to 5 um and r, ranging from 5 to 10 nm
are characteristic of nC emitters. As arule, the largest
nC structures have the largest characteristic sizes of
their apexes. Thus, according to our estimates, the geo-
metric factor (3 ranges from 50 to 500 [4, §].

Formula (3) containsthetotal number N of emission
sites as a parameter. Figure 5 presents several curves
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obtained by substituting the values of N = 10, 108, and
10" cm2 into formula (3) for a sample size of 1 cn?.
This figure shows that the best approximation is
obtained for N = 10' cm2, which is substantially dif-
ferent from the estimate made earlier by examining
images on the cathodoluminescent screen. The graphs
in Fig. 5 show that such ahigh density of emission sites
(N = 10" cm™) is attributed to the experimentally
observed anomalously high density of the field-emis-
sion current. However, for such density of emission
sites, the distance between them must be about 3 nm,
which is less than the characteristic size of the sites.
This contradiction can be resolved under the assump-
tion that the emitting area s of a separate emission site
is much greater than 2rr2. Such an assumption is pos-
sible when the electron emission occurs not only from
thetip of an nC emitter (for example, acarbon nanotube
or nanographite crystallite) but also fromits lateral sur-
face. For example, for a cylindrical nanoemitter, we
then have

s = 2mr®+ T (KL),

wherek rangesfrom 0 to 1 and indicates from what part
of the lateral surface electrons are emitted.

The fact that the emission of electrons from the lat-
eral surface of nanotubes or other graphite-like nano-
sized structures occurs at a considerably lower strength
of electric field than that predicted by the FN theory can
be attributed to lowering the potential barrier for elec-
trons tunneling into vacuum. The possibility of lower-
ing the barrier follows immediately from the formal
guantum-mechanical analysis of electron tunneling
through athin layer of adielectric (or alarge-gap semi-
conductor) on the surface of aconductor (see, for exam-
ple, [1, 5, 10]). The practical implementation of this
mechanism in NC emitters is facilitated by two unique
circumstances: the presence of atomically thin clusters
with the properties of a large-gap diamond-like mate-
rial on the surface of these emitters, and the presence of
a sharp interface between the dielectric (diamond-like)
and conducting (graphite-like) phases of acarbon nano-
material [4, 8, 11, 12]. Dueto the presence of these dia-
mond-like clusters, which, according to thismodel, are
emission sites, the surfaces of nC emitters are not equi-
potential. This fact was experimentally verified in
insitu observations of the electric-field distribution
near the surface of carbon nanotubes during electron
emission (see, for example, [13]). In this case, therela-
tive contribution of such clustersto the redistribution of
the surface potential of nC emitters is appreciable only
under a relatively low strength of the electric field,
which corresponds to a low-voltage field emission.
When the applied voltage increases, these in situ
images of the field distribution become similar to those
obtained in the classical case of ametal tip [14].
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4. CONCLUSIONS

In thiswork, we have demonstrated that an adequate
qualitative description of |-V curves of vacuum-tube
diodes with nC field-emission cathodes is possible
within the classical Fowler—Nordheim theory with
regard to the statistical distribution of geometric param-
eters of individual emission sites. The quantitative dis-
crepancy observed between the experimental data and
the results of the classical theory are attributed to the
specific features of NC emitters consisting of aconduct-
ing graphite-like material with diamond-like clusters
on its surface. Such a heterogeneous structure of nC
emitters leads to a nonuniform redistribution of the
potential on the emitter surface, which manifests itself,
for example, in the experimentally observed anoma-
lously low threshold voltage of field emission.
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Abstract—Optical excitations in hexagonal nanonetwork materials, for example, Boron-Nitride (BN) sheets
and nanotubes, are investigated theoretically. Exciton dipoles directed from the B site to the N site are consid-
ered along the BN bond. When the exciton hopping integral isrestricted to the nearest neighbors, two flat bands
of excitons appear. The symmetry of these exciton bandsis optically forbidden. Possiblerelationsto experiment

are discussed. © 2003 MAIK “ Nauka/Interperiodica” .

Hexagona nanonetwork materials composed of
atoms with ionic characters, for example, Boron-
Nitride (BN) sheets and nanotubes [1, 2], have been
intensely investigated. They are intrinsic insulators
with an energy gap of about 4 eV, asthe preceding band
calculations have indicated [3, 4]. The possible photo-
galvanic effects depending on the chiralities of BN
nanotubes have been proposed by the model calcula-
tion [5]. Although not many optical measurements on
the BN systems have been reported, it is quite interest-
ing to predict condensed matter properties of hexagonal
nanonetwork materials.

In this paper, we investigate optical excitation prop-
erties in BN systems. The bonding is positively polar-
ized at the B site and is negatively polarized at the N
site. Thereisapermanent el ectric dipole moment along
the BN bond directed from the B site to the N site:
When we assume the one-orbital model [5], as shown
in Fig. 1, the energy of the highest occupied atomic
orbital of N islarger than that of B and the energy of the
lowest unoccupied orbital of B issmaller than that of N.
Thereisaband gap

A=gg—gyU4 eV

(see [3, 4]). Low-energy optical excitations are the
excitations of electron-hole pairs between the higher
occupied states of N and the lower unoccupied states of
B atoms. The presence of the dipole moments givesrise
to strong excitonic properties, illustrated in Fig. 2.

In what follows, we discuss optical excitations in
hexagonal nanonetwork materials, BN sheets and nan-
otubes. We show that two flat bands of excitons, which
are optically forbidden, appear in the energy disper-
sions. Possible relations to experiments are discussed.

Theinteractions between the el ectric dipole moment
along the BN bond has the strongest interaction

TThis article was submitted by the author in English.

strengths when the exciton hopping integra is
restricted to the nearest neighbor dipoles. In Fig. 3a, the
B and N atoms are represented by full and open circles,

E

Fig. 1. One-orbital model for low-energy dispersions of the
BN network.

—o

/;ha.rge transfer
exciton
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s 2 4 2 4 4
L A 4 A A 4
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Fig. 2. Optical excitations along the BN alternations.
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respectively. We assume the one-orbital Hubbard
model with the hopping integral of electronst, the on-
site repulsion U, and the energy difference A between
the B and N sites. After second-order perturbations, we
obtain the nearest-neighbor interactions

t2

-A+U

J; =

for the conserved excited spin (type-1 interaction) and

2 2
t t
= -+
J2 A —-A+U

in the case where the spin of the excited electron flips
(type-2 interaction). The meaning of the interactions J;
and J, isillustrated in Figs. 4 and 5, respectively. When
the condition U > A applies, J; and J, become positive.
We discuss this case first, then comment on the case
where J; and J, are negative afterwards. The interac-
tionsare present along thethin linesin Fig. 3a. The sev-
eral arrows show the directions of dipole moments.
After the extraction of interactions J; and J,, there
remains the two-dimensional Kagomé lattice, shownin
Fig. 3b. As described in [6], the Kagomé lattice is
obtained as aline graph of the hexagonal lattice. There-
fore, the optical excitation Hamiltonian becomes

H = Z z Jq(Ji, o, of + H.c.)

0, j0o=a,B (1)
*+ > Jo(fi, o, B + i, B, of + H.c),
4. i0

where indices i and j denote the vertex points of the
Kagomeé lattice and the sum is taken over the nearest

2203, + 3),
4

1247

(a)

M

(b)

S

Fig. 3. (a) hexagonal nanonetwork of boron (solid circles)
and nitrogen sites (empty circles). Several arrows indicate
the directions of dipole moments, and the thin lines repre-
sent the conjugate Kagomé | attice network. (b) Kagomé lat-
tice extracted from Fig. 3a. The shaded areais the unit cell,
which has three lattice points indicated by numbers.

neighbor pairs (1, j Cand the excited spin 0. The unit cell
has three lattice points 1, 2, and 3, as shown in Fig. 3b.

The model has six eigenenergies that are expressed
in terms of wavenumbersk = (k,, k) as

0
OJ,+J,) El + A/1 + 4cos(k,b/2)[ cos(k,b/2) + cos(ﬁkybIZ)]%,
0 0

_ 0
= B+ ),
]

)

O

O
%JI_JZ)Dli
0 U

where the two-dimensional x and y axes are defined as

usua in Fig. 3, b= ﬁa is the unit cell length of the
Kagomé lattice in Fig. 3b, and a is the bond length in
Fig. 3a. The dispersion relations are shownin Fig. 6 for
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A/ 1+ 4cos(k,b/2)[ cos(k,b/2) + cos(ﬁkyb/Z)]E,
0

the representative dimensionless parameters J; = 1 and
J, = 2 that correspond to the casewhere U =2t and A =
t in the second-order perturbation relations with t = 1.
There appears a dispersionless band (triplet state) with
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Fig. 5. Type-2 interaction J, where an excited spin flips.
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Fig. 6. Energy dispersionsfor the dimensionless parameters
‘]l =1and -]2 =2.

the lowest energy —2(J; + J,) when J; and J, are posi-
tive. Thereis another dispersionless band (singlet state)
at the higher energy 2(-J; + J,). The other four bands
have dispersions that are similar to those of the two-
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dimensional network of electrons on graphite [7]. In
fact, with the electron hopping integral of graphite
denoted ast, the dispersion is

E = +t

©)
X A/1 + 4cos(k,b/2)[ cos(k,b/2) + cos(ﬁkybIZ)] :

We note that the x and y axes are interchanged com-
pared with the definitions used in [7].

Such an appearance of the flat band, for example, in
the Kagomé lattice, has been discussed in the literature
[6, 8] from the standpoint of possible ferromagnetism.
In the present case, the lowest optical excitation band
becomes flat in the honeycomb BN plane when the
interactions J; and J, are positive. When the BN plane
isrolled up into nanotubes, the flat band is also disper-
sionless. The interesting properties of excitons on the
Kagomé lattice have been investigated recently [9].

To discuss how the excitons appear in optical exper-
iments, we must consider symmetries of the wave func-
tions. The most interesting part is the wave function of
the lowest excitons with the energy —2(J, + J,) when J;
and J, are positive.

Solving the eigenvalue problem at the wavenumber
k=(0,0),

10 0 23, 23,23 23,0
00 0 23,23, 2J,23,0
423,23, 0 0 2J1232%LP
423,23, 0 0 23,2,
Eleszlesz 0 0 E
023,23,23,23, 0 0O

= EY, 4

we obtain the twofold degenerate solutions for the
energy E=-2(J; + J,),

Wr = %u“1,4q-choL Q
and
Wt = Eiéqul,L—Q;Q) (6)

It followsthat the spin of these statesistriplet. Similarly,
we obtain the solutions for the energy E = 2(—J; + J,),

Wr = %UW—L—LJqOAD, ©
and
1
Wh= =_(1,-1,1,-1,-2,2). 8
2J§( ) (8)

The spin alignment of these statesis singlet.
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Fig. 7. Symmetries of two wavefunctionsat E = —2(J; + J,)

for the spin up or down sector. The solid and empty circles
indicate positive and negative values at the lattice point,
respectively. If the value at the lattice point is zero, nothing
is shown there. The numbers 1, 2, and 3 in the unit cell cor-
respond to the first, third, and fifth (second, fourth, and
sixth) elements for the up (down) spin sector of the wave-
function W in Eq. (4), respectively.
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Fig. 8. Energy dispersionsfor the dimensionless parameters
‘]1 =—2and ‘]2 =-1.

The symmetry of solution (5) of the up or down spin
sector isshownin Fig. 7a, and that of solution (6) isdis-
played in Fig. 7b. We find that both wave functions are
symmetric under spatial inversion, and therefore they
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have the gerade symmetry. The transition to the flat
band exciton is optically forbidden. Such properties
might result in interesting optical measurementsin hexa-
gonal nanonetwork materials. Similarly, the symmetry
of states (7) and (8) is gerade with respect to the spatia
inversion.

Finally, the dispersions of excitonsin the case where
J; <0and J, < 0 are of interest. Representative disper-
sions are shown in Fig. 8 for the dimensionless param-
eters J; =2 and J, = —1. These correspond to U = 0.5t
and A =t with t = 1 in the formula of the second-order
perturbations J; and J,. The energy band structures are
almost interchanged between top and bottom compared
withthosein Fig. 6. Thereisaflat band at the top of the
excitonic bands. The lowest exciton has a finite disper-
sion, but this state is still an optically forbidden triplet.

The optically forbidden transition is known in Cg,
molecules [10]. The luminescence from the lowest
exciton has along lifetime due to the forbidden transi-
tion nature [11, 12]. We have analyzed possible phonon
couplings in the luminescence spectra [13]. A formal-
ism similar to the one in this paper could be applied to
systems with honeycomb or Kagomé network materi-
als, where neighboring interactions with dipoles are
effective.

In summary, optical excitations in BN sheets and
nanotubes have been investigated theoretically. We
have shown that two flat bands of excitons, which are
optically forbidden, appear in the energy dispersions.
Possible relations to experiments were discussed.

REFERENCES
. D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Solid
State Commun. 116, 1 (2000).

2. D. Golberg, Y. Bando, L. Bourgeois, et al., Appl. Phys.
Lett. 77, 1979 (2000).

3. A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B
49, 5081 (1994).

4. X.Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Euro-
phys. Lett. 28, 335 (1994).

5. P Krd, E. J. Mele, and D. Tomanek, Phys. Rev. Lett. 85,
1512 (2000).

6. A. Mielke, J. Phys. A 24, 3311 (1991).

7. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dressel-
haus, Phys. Rev. B 46, 1804 (1992).

8. A.Mielke, J. Phys. A 25, 4335 (1992).

9. H. Ishii, T. Nakamura, and J. Inoue, Surf. Sci. 514, 206
(2002); cond-mat/0110360.

10. K. Harigayaand S. Abe, Phys. Rev. B 49, 16746 (1994).

11. M. Matus, H. Kuzmany, and E. Sohmen, Phys. Rev. Lett.
68, 2822 (1992).

12. D. Dick, X. Wei, S. Jeglinski, et al., Phys. Rev. Lett. 73,
2760 (1994).

13. B. Friedman and K. Harigaya, Phys. Rev. B 47, 3975
(1993).

=

No. 6 2003



	1075_1.pdf
	1093_1.pdf
	1102_1.pdf
	1112_1.pdf
	1123_1.pdf
	1131_1.pdf
	1137_1.pdf
	1146_1.pdf
	1154_1.pdf
	1159_1.pdf
	1168_1.pdf
	1186_1.pdf
	1201_1.pdf
	1212_1.pdf
	1219_1.pdf
	1231_1.pdf
	1240_1.pdf
	1246_1.pdf

