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Abstract—A strict solution of the problem of temporal evolution of the shape of a periodic wave on the surface
of a viscous infinitely deep liquid is obtained for the first time in an approximation quadratic in the wave ampli-
tude. © 2002 MAIK “Nauka/Interperiodica”.
Introduction. Despite a long history of investiga-
tions of finite-amplitude waves, all strict results were
obtained within the framework of the ideal liquid
approximation (see, e.g., [1–7] and references therein).
The most correct attempts at accounting for the influ-
ence of viscosity upon a nonlinear evolution of the
shape of the free liquid surface were made using the
approximation of small viscosity within the framework
of the boundary layer theory [8–10] applicable only in
the case of large Reynolds numbers. However, a quite
correct analytical formulation of the problem of deter-
mining the shape of a wave propagating on the surface
of a viscous, infinitely deep liquid is possible in an
approximation quadratic in the wave amplitude [11].

The study of the wave motions of finite amplitude in
a viscous liquid is important from the standpoint of
both the basic theory and numerous technical applica-
tions. For example, an analysis performed within the
framework of an approximation quadratic in the wave
amplitude [12–14] predicted the possibility of instabil-
ity of a liquid surface with respect to elastic stresses,
inactive surfactants contained in the liquid, and redistri-
bution of the electric charge at a finite velocity over the
surface. Detailed theoretical analysis of these effects is
also possible only within high-order approximations in
the wave amplitude. Our study has been performed in
this context.

Formulation of the general problem. Consider an
incompressible liquid with the density ρ, kinematic vis-
cosity ν, and surface tension γ occupying the half-space
z ≤ 0 in the Cartesian coordinate system OXYZ and
occurring under the action of a gravitational field g
(g || –nz) and a constant external pressure P0. Our aim
is to describe the profile of a wave freely propagating
over the liquid surface along the OX axis in an approx-
imation quadratic in the wave amplitude.

Let u = u(x, z, t) and v  = v(x, z, t) be the horizontal
and vertical components of the velocity field of the liq-
uid; nx and nz will denote the unit vectors in the hori-
zontal and vertical directions, respectively. The
1063-7850/02/2810- $22.00 © 20795
required analytical expression for the wave profile ξ =
ξ(x, t) and the velocity field U(r, t) = unx + vnz must be
a solution to the following boundary- and initial-value
problem:

z  –∞: U  0;

t = 0: x = F(x);

where t is the time; t and n are the unit vectors of tan-
gent and normal to the surface.

Second-order problem formulation. The proce-
dure of separating the above problem into problems of
the first and second order of smallness was described in
detail elsewhere [11]. The solution to the first-order
problem is well known and will not be considered here.
The main result of the first-order analysis is the disper-
sion equation

where S is the complex frequency. The nonlinear anal-
ysis will employ only one solution of the dispersion
equation, namely, that occurring on the upper sheet of
the Riemann surface and denoted below by S.

∂U
∂t
------- rot U( ) U×+ grad

1
ρ
--- p

U2

2
------ gz+ + 

 – v ∆U;+=

divU 0;=

z ξ :
t∂

∂ξ
u

x∂
∂ξ

+ v ;= =

p 2ρνn n —⋅( )U( )⋅– P0– γdiv n( );=

t n —⋅( )U( )⋅ n t —⋅( )U( )⋅+ 0;=

z ξ : U≤ U0 U0 x z,( ) u0 x z,( )nx v 0 x z,( )nz,+= = =

ν2 q2 k2+( )2 ω0
2+ 4qν2k3;=

ω0
2 k g k2γ/ρ+( ); q k2 S/ν+ ,= =
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Representing the vector field of velocities in the sec-
ond-order approximation U2(r, t) via two scalar fields,
ϕ2 ≡ ϕ2(r, t) and ψ2 ≡ ψ2(r, t),

we can mathematically formulate the second problem

U2 r t,( ) N̂1ϕ2 N̂2ψ2;+=

N̂1 nx
∂
∂x
------ nz

∂
∂z
-----; N̂2 nz

∂
∂z
-----– nz

∂
∂x
------,+≡+≡
TE
as follows [11]:

∂ψ2

∂t
--------- ν∆ψ2–

=  a2 η0 2L( )exp η1 h( )cos η2 h( )sin+( ) 2L( )exp+(

+ Π1 2θ h+( )cos Π2 2θ h+( )sin+( ) L 1+( )exp )
× 2T( ); ∆ϕ2exp 0;=
z = 0: (1)

 (2)

 (3)

∂ξ2

∂t
--------

∂ϕ2

∂z
---------–

∂ψ2

∂x
---------   =   a 

2
 H 1 2 θ( ) cos H 2 θ( ) sin– ( ) 2 T ( ) ;exp–

ρgξ2–
∂ϕ2

∂t
---------– 2ρν

∂2ϕ2

∂z2
-----------

∂2ψ2

∂x∂z
-----------+

 
 
 

– γ
∂2ξ2

∂x2
----------+ a2 Z1 Z1 2θ( )cos Z2 2θ( )sin–+( ) 2T( );exp=

2
∂2ϕ2

∂x∂z
-----------

∂2ψ2

∂x2
-----------

∂2ψ2

∂z2
-----------–+ a2 2H2 κ1– G1 2θ( )cos G2 2θ( )sin–+( ) 2T( );exp=
(4)z ∞:
∂ϕ2

∂x
---------–

∂ψ2

∂z
--------- 0;

∂ϕ2

∂z
---------

∂ψ2

∂x
--------- 0.+–

SR Re S( ); SI Im S( );= =

qR Re k2 S/ν+[ ] ; qI Im k2 S/ν+[ ] ;= =

D0 SR 2νk2; C1+ qR
2 qI

2;–= =

C2 2qRqI; C3 C1 k2;–= =

l kz; L qRz; h qIz;= = =

θ SIt kx; T– SRt;= =

η0 νk( )2C22qI;–=

η1
νk

k qR+( )2 qI
2+

--------------------------------- SIB1 D0B2–( );=

η2
νk

k qR+( )2 qI
2+

--------------------------------- D0B1 SIB2+( );=

Π1
νk

3k qR+( )2 qI
2+

------------------------------------ D0M2 SIM1+( );=

Π2
νk

3k qR+( )2 qI
2+

------------------------------------ D0M1 SIM2–( );=

B1 k qR+( )C3 qIC2; B2 k qR+( )C2 qIC3;–=+=

M1 3k qR+( )C3 qIC2;+=

M2 3k qR+( )C2 qIC3;–=
C

Here, relation (1) is the kinematic condition on the free
liquid surface; (2) is the condition for the pressure on
the free surface; (3) is the condition of zero tangential
stresses on the free surface; and (4) is the condition of
the absence of motions at the infinite depth. The SR

value entering into the definition of T is negative; this
quantity characterizes the wave damping in the linear
approximation.

Solution of the problem. A partial solution to the
total problem of determining the profile of a wave prop-
agating on the surface of the infinitely deep liquid, valid
to within second-order terms in deviation from the
equilibrium plane, is as follows:

(5)

H1 k D0 2νkqR–( ); H2 k SI 2νkqI–( );= =

Z1 νk2ρ D0 2ν qI
2 qR

2–( )+( ) ρ
2
--- SI

2 SR
2 D0–( );–=

G1 k 2H2 κ1+( );–=

Z2 νk2ρ SI 4νqIqR–( ) ρSI SR νk2+( );+=

G2 k 2H1 κ2+( );=

κ1 kSI qI k2 qI
2– 3qR

2+( )ν;–=

κ2 kSR ν k2 2k qR–( ) qR 3qI
2 qR

2–( )+( ).+=

ξ a θ( ) T( )expcos=

+ a2 Λ1 2θ( )cos Λ2 2θ( )sin–( ) 2T( );exp

J1 Re 2 k2 qI
2+( )[ ] ; J2 Im 2 k2 qI

2+( )[ ] ;= =

α1 qI
2 qR

2 ; α2+ qI
2 qR

2 ;–= =

D1 k qR; D2– 3k qR; D3+ k qR;+= = =
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D4 4qI k3 3k2qR– k qI
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b3 qI 7k2 qI
2– 2kqR qR

2–+( );–=

b4 2k2 9k3 5kqI
2 15k2qR qI

2qR 7kqR
2 qR

3+ + + + +( );=

b5 2qI k2 qI
2 6kqR qR

2+ + +( );–=
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2+( ) 1–
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2qR 3kqR
2 qR

3 ;+ + + +=
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2 SI

2+( ) 4ν qI
2 D1D2+( )SR+(=

– 8νqID3SI ν2 qI
2 D1

2+( ) qI
2 D2

2+( )+ ) 1–
;

δ1 2kρΩ1=

× D1D2 qI
2–( )SR 4kqISI 2νk2 D1D2 qI

2–( )+ +( );

δ2 2kρΩ1 4kqISR– D1D2 qI
2–( )SI 8νk3qI–+( );=

d1 Ω2 D4 SR
2 SI

2+( ) νD5SR+(–=

– ν qI
2 D3

2+( )2
D1D2 qI

2–( )SI

+ 8ν2k3qI D1
2 qI

2+( ) D2D3 qI
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d2 Ω2 D6 SR
2 SI

2+( ) νD7SR 4νkqI qI
2 D3

2+( )2
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+ 2ν2k2 qI
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χ1 2Ω2 b1 SR
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2+( ) νb2SR+(–=

+ ν qI
2 D3

2+( )b3SI ν2 qI
2 D1

2+( )b4+ );

χ2 2Ω2 b5 SR
2 SI

2+( ) νb6SR+(–=

+ ν qI
2 D3

2+( )b7SI 2ν2k2qI D1
2 qI

2+( ) D1D2 qI
2–( )+ );

K1 2ρ χ1 H1+( ); K2 2ρ χ2 H2+( );= =

K3 4kρ d1qI d2D3 G2– 2kH1+ +( );=
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K4 4kρ d2qI d1D3– G1 2kH2+ +( );–=

K5 2k Z1– δ1 2νρ qIχ2 kχ1 qRχ1– 2kH1+ +( )+ +( );=

K6 = 2k Z2– δ2 2νρ qRχ2 qIχ1 kχ2– 2kH1–+( )–+( );

K7 8νk2ρ d1qI d2D3 G2– 2k χ1 2H1+( )+ +( );–=

K8 8νk2ρ d2qI d1D3– G1 2k χ2 2H2+( )+ +( );=

K9 8k3 Z1 δ1–(=

+ 2νρ d1qI G2– qIχ2– D3 d2 χ1+( ) 2kH1+ +[ ] ) ;

β1 4ρ; β2 16νk2ρ;= =

K10 8k3 Z2 δ2–(=

+ 2νρ d2qI G1 kχ2 D3 d1 χ2–( )– 2kH2+ + +{ } ) ;

β3 2k ρg 4k2γ+( );=

Ŝ SR
2 SRSI SI

2 SR SI 1 ;=

Ĵ JR
2 JRJI JI

2 JR JI 1
T
;=

ζ̂1

β1 0 β1– 0 0 4k2β1

0 4β1– 0 0 0 0

β1– 0 β1 0 0 4k2β1–

β2 0 β2– 4kβ2– 0 4k2β2

0 2β2– 0 0 4kβ2 0

β3 0 β3– 0 0 4k2β3–

;=

ζ̂3

0 0 0 K1 K2– K5

0 0 0 2K2– 2K1– 2K6–

0 0 0 K1– K2 K5–

0 0 0 0 0 K7

0 0 0 0 0 K8

0 0 0 K3 K4 K9

T

;=

ζ̂2

0 2β1 0 0 0 0

2β1 0 2β1– 0 0 8k2β1

0 2β1– 0 0 0 0

0 2β2 0 0 4kβ2– 0

β2 0 β2– 4kβ2– 0 4k2β2

0 2β3 0 0 0 0

;=
002
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The set of quantities in square brackets is considered as
a matrix; symbol T indicates the operation of matrix
transposition. In the formulas for Λ1 and Λ2, expres-
sions in parentheses are the matrix products.

It is interesting to compare the solution obtained to
the results of Nayfeh [4], who studied an analogous
problem for the ideal liquid. According to [4], direct
expansion of the solution in an approximation quadratic
in the wave amplitude yields the following expressions:

(6)

For γ = 0, the solution represents a Stokes wave
[1, 2]. For ν  0, it can be readily shown that expres-
sion (5) for the wave profile in a viscous liquid converts
into formula (6) for the ideal liquid.

ζ̂3

0 0 0 K2 K1 K6

0 0 0 2K1 2K2– 2K5

0 0 0 K2– K– 1 K6–

0 0 0 0 0 K– 8

0 0 0 0 0 K7

0 0 0 K4– K3 K10

T

;=

Λ1
Ŝζ̂1 Ĵ( ) Ŝζ̂3 Ĵ( ) Ŝζ̂2 Ĵ( ) Ŝζ̂4 Ĵ( )+

Ŝζ̂1 Ĵ( )
2

Ŝζ̂2 Ĵ( )
2

+
-------------------------------------------------------------------------;=

Λ2
Ŝζ̂1 Ĵ( ) Ŝζ̂4 Ĵ( ) Ŝζ̂2 Ĵ( ) Ŝζ̂3 Ĵ( )–

Ŝζ̂1 Ĵ( )
2

Ŝζ̂2 Ĵ( )
2

+
-------------------------------------------------------------------------.=

ξ a θ0( )cos a2Λ0 2θ0( );cos+=

Λ0
ρgk γk3+( )

2 ρg 2γk2–( )
--------------------------------; θ0 kx ω0t.–= =

1

2

3

3

1

W

0.005

0

–0.005

–0.010
0.40 0.45 0.50 0.55 γ

Plots of the amplitudes of dimensionless quadratic correc-
tions W(γ) to the wave profile in Eqs. (5) and (6) versus the
dimensionless surface tension (for a = 0.01): (1) for the
ideal liquid, W(γ) = a2Λ0(γ); (2, 3) for a viscous liquid with

ν = 10–3, W(γ) = a2Λ1(γ, ν) and a2Λ2(γ, ν), respectively.
TEC
A comparative analysis of the solutions (5) and (6)
obtained for the viscous and ideal liquids, respectively,
showed that most significant difference takes place for
the dimensionless parameters corresponding to a reso-
nance interaction of modes. For γk2 = 0.5ρg, Eq. (6) for
the ideal (nonviscous) liquid indicates that the correc-
tion quadratic in the first-order wave amplitude
becomes infinitely large, which corresponds to the prin-
cipal mode producing a resonance amplification of the
wave with a twice smaller wavelength.

The figure, plotted in dimensionless variables (k =
g = ρ = 1), shows the amplitudes of the second terms of
solutions (5) and (6) as functions of the dimensionless
surface tension γ for the dimensionless parameters ν =
10–3 and a = 0.01. This selection of the dimensionless
variables allows the results obtained within the frame-
work of the viscous and nonviscous liquid models to be
compared for a wave on the water surface with a wave-
length of 2.4 cm and an amplitude of 0.3 mm. As can be
seen from this figure, the two solutions coincide in the
region of γ far from the resonance. Near the resonance
value of γ = 0.5, the solution, taking into account the
viscosity, has a nonzero coefficient Λ2 at sin(2θ). For
this reason, the phase of the wave determined in the sec-
ond-order approximation is shifted relative to that of
the principal wave. The amplitude of the square correc-

tion  remains smaller as compared to the
amplitude of the principal wave (a = 0.01) even at a
resonance value of γ = 0.5. This implies that the solu-
tion (5) is valid at all γ values, whereas the solution (6)
based on the nonviscous approximation predicts a reso-
nant growth in the amplitude.

Conclusion. An asymptotic solution of the problem
of wave propagation on the surface of an infinitely deep
liquid of arbitrary viscosity, valid in an approximation
quadratic in the wave amplitude, generalizes the con-
cept of the “Stokes wave” (determined for the ideal liq-
uid) to the case of viscous liquids. A comparison of the
solution obtained to that known for the ideal liquid
shows that even a small viscosity plays a significant
role in the wave profile formation under the conditions
of resonance intermode interaction.
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Gradients of the hydrodynamic quantities (tempera-
ture, mass flow rate, concentration) in a rarefied gas
lead to a phenomenon of the gas slip along a stream-
lined surface. The gas slip effect on a plane solid sur-
face have been studied in sufficient detail using both
exact and approximate methods. A less studied aspect
of this problem is taking into account the second-order
derivatives of the hydrodynamic quantities in the
boundary conditions. This is necessary, in particular,
for constructing a theory of the thermophoresis of high-
thermal-conductivity particles in which case the sec-
ond-order effects play a determining role. An allowance
for these effects led to theoretical predictions of a neg-
ative (proceeding in the direction of temperature gradi-
ent) thermophoresis of aerosol particles at small Knud-
sen numbers (0.01 < Kn < 0.3) [1–4]. Taking into
account that the published results were obtained by
numerical [1, 2] or approximate [3, 4] methods, study-
ing the problem by exact analytical methods would be
of importance from the standpoint of both the basic the-
ory and applications.

Consider a simple monoatomic gas filling the half-
space x > 0 bounded by a plane solid surface x = 0. In
the gas, let a temperature gradient in the normal direc-
tion be created. We assume that the temperature gradi-
ent is slowly varying along the surface in the direction
of the y axis. Thus, the ∂T/∂x and ∂2T/∂x∂y values are
nonzero, the first of these quantities leading to a tem-
perature jump at the solid boundary and the second, to
the so-called second-order thermal slip.

The rate of the gas slip relative to the streamlined
surface is given by the expression

where S and Tω are the surface area and temperature of
the gas particles, respectively; λ is the mean free path
length of the gas particles; ν is the kinematic viscosity;
KT is the thermal slip coefficient of a rarefied gas at the
plane solid surface; and βR is the second-order thermal

U
S

KTβRλνk, k
1

Tω
------ ∂2T

∂x∂y
------------

S

,= =
1063-7850/02/2810- $22.00 © 20800
slip coefficient. Once the KT value is known, the prob-
lem reduces to determining the βR value.

Let us assume that

In this case, the problems admits linearization
whereby the distribution of gas molecules with respect
to coordinates and velocities can be represented as

where f (0) is the local equilibrium distribution function
in the Chapman–Enskog approximation and ϕ(x, Cx) is
a solution to the equation (µ = Cx)

(1)

λ
Tω
------

x∂
∂T  ! 1,

λ2

Tω
------ ∂2T

∂x∂y
------------  ! 1.

f f 0( ) 1 Cyϕ x Cx,( )+( ),=

µ
x∂

∂ϕ ϕ x µ,( )+
1

π
------- τ2–( )ϕ x τ,( )exp τd

∞–

∞

∫=

– k Z1 x µ,( ) γ µ2 1/2+( )Z2 x µ,( )+[ ] ,

Z x µ,( ) x/η–( )F η µ,( )A η( )exp η ,d

0

∞

∫=

F η µ,( ) ηP
1

η µ–
-------------I η2( )Ω η( )δ η µ–( ),exp+=

Ω η( ) π∆ 1– η( ) η t η( )I ,+=

∆ 1– η( ) 1
2
--- η2 5/2–( )– γ η2 3/2–( )–

γ 1– 3
,=

t η( ) µ2–( ) µdexp
µ η–

------------------------------

∞–

∞

∫ 2 π η2–( ) t2( )exp t,d

0

η

∫exp–= =
002 MAIK “Nauka/Interperiodica”



AN ANALYTICAL SOLUTION OF THE PROBLEM OF SECOND-ORDER THERMAL SLIP 801
with the boundary conditions

(2)

In Eq. (1), Z(x, µ) is the distribution function from a
problem of the temperature jump at a plane solid sur-
face [5], A(η) are the coefficients of expansion in eigen-
vectors of the continuum for the solution to a problem
of the temperature jump at a plane solid surface, sym-
bol t denotes transposition, γ2 = 2/3, Px–1 is the distri-
bution with respect to the mean value of the integral of
x−1, and δ(x) is the Dirac delta function.

Introducing the column vector Y(x, µ) = [ϕ(x, µ), 0]t,
we can rewrite Eqs. (1) and (2) in the vector form:

(3)

(4)

A general solution to Eq. (3) will be found in the
form of a sum of a general solution to the correspond-
ing homogeneous equation and a partial solution to the
inhomogeneous equation. The former is as follows [6]:

where B0, B1, and B(η) are unknown column vectors,
the components of which have to be determined.

A partial solution to the inhomogeneous equation (3)
can be found in the following form:

(5)

A η( ) A1 η( ) A2 η( ),[ ] t,=

Z x µ,( ) Z1 x µ,( ) Z2 x µ,( ),[ ] t=

ϕ 0 µ,( ) 0 µ 0>( ), ϕ ∞ µ,( ) 2U
S
.= =

µ
x∂

∂Y
Y x µ,( )+

=  
1

π
------- τ2–( )Y x τ,( )exp τd

∞–

∞

∫ kK µ( )Z x µ,( ),–

Y 0 µ,( ) 0

0
µ 0>( ), Y ∞ µ,( ) 2U

S

0
,= =

K µ( ) 1 γ µ2 1/2+( )
0 0

.=

Y0 x µ,( ) B0 B1 x µ–( )+=

+ x/η–( )Φ η µ,( )B η( )exp η ,d

0

∞

∫

Φ η µ,( ) 1

π
-------ηP

1
η µ–
------------- η2( )λ η( )δ η µ–( ),exp+=

λ z( ) 1
1

π
-------z

η2–( )exp
n z–

----------------------- η ,d

∞–

∞

∫+=

Y1 x µ,( ) x/η–( )G η µ,( )exp η ,d

0

∞

∫=
TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      20
(6)

Substituting expression (5) into Eq. (3), we obtain
the characteristic equation

the solution to which in the space of generalized func-
tions is

(7)

The explicit form of g(η) is obtained upon substitut-
ing (7) into (6):

Using the relations derived in [7], we obtain g(η) ≡
[0, 0]. Then,

The solution constructed for B0 = [2U0, 0]t and B1 =
[0, 0]t satisfies the boundary condition (4) at infinity.
With an allowance for the boundary condition (4) on
the wall, we arrive at a vector singular integral equation
with a Cauchy-type kernel:

(8)

Using the relations derived in [7], we obtain
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where it was taken into account that [5]

Substituting the obtained integral into Eq. (8) and
passing to the scalar representation, we arrive at the
equation (B(η) = [n(η), 0]t)

(9)

Introducing a supplementary function

(10)

and using the boundary values of N±(µ) and λ±(µ) on
the upper and lower edges of the cut, we reduce Eq. (9)
to the problem of determining an analytical function
from the preset jump:

(11)

where [6]

and θ(τ) = argλ+(τ) is a regular branch of the argument
of the function λ+(τ) set by the condition θ(0) = 0.

Taking into account the behavior of all functions
entering into relation (11), the solution to this problem
can be written as

(12)

The function N(z) determined by expression (10) van-
ishes at infinity. Let us require that the solution (12)

F η µ,( )A η( ) ηd

0

∞

∫ µ εT–( ) 1–

1/γ
εn

1

0
.+=

f µ( )
1

π
------- ηn η( ) ηd

η µ–
---------------------

0

∞

∫ µ2( )λ µ( )n µ( ) µ 0>( ),exp+=

f µ( ) 2U
S

– 2µ εT–( ) µ2 1/2–( )– εn–[ ] k.=

N z( ) 1
2πi
-------- ηn η( )

η z–
--------------- ηd

0

∞

∫=

2 f µ( )µ µ2–( )exp
X µ–( )

------------------------------------------ N+ µ( )X+ µ( ) N– µ( )X– µ( )–=

µ 0>( ),

X z( ) 1
z
--- 1

π
--- ζ τ( )

τ z–
---------- τ ,d

0

∞

∫exp=

ζ τ( ) π/2–
λ τ( )

πτ τ2–( )exp
---------------------------------,arctan–=

N z( ) 1
X z( )
----------- 1

πi
----- f µ( )µ µ2–( )exp

X µ–( )
--------------------------------------- µd

µ z–
-----------.

0

∞

∫=
TE
would possess the same property. Expanding (12) into
series in the vicinity of an infinitely remote point, we
obtain

Substituting the corresponding Loyalka integrals
Q1 = –1.01619, Q2 = –1.2663, and Q3 = –1.8207 [8] and
the values of εT = 1.3013 and εn = –0.5633 [5], we even-
tually arrive at

Passing to the dimensional variables, we obtain βR =
2.3524. Taking into account that the rate of electro-
phoresis of high-thermal-conductivity particles in the
region of small Knudsen numbers is given by the for-
mula [4]

where KT = 1.14995, CT = 2.204939, and βB =
5.798445, we finally determine τ = 2.85442. Here, CT is
the coefficient of the temperature jump at the plane
solid surface and βB is the Barnett slip coefficient. Note
that the second-order thermal slip coefficient βR deter-
mined in this study theoretically confirms the possibil-
ity of negative (proceeding in the direction of the tem-
perature gradient) thermophoresis (for comparison, τ =
3.258 [2]).
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Abstract—The laws of variation of the phase diagrams describing martensite transformations in ternary alloys
based on the TiNi system are established by analysis of the crystallochemical parameters. © 2002 MAIK
“Nauka/Interperiodica”.
One of the main problems encountered in the prac-
tical use of titanium–nickel (TiNi) based alloys is the
need in correctly predicting variations of their proper-
ties. In particular, it is very important to know the initial
temperature intervals of manifestation of the shape
memory and superelasticity effects [1]. One possible
way of solving this problem is via establishing the laws
of the influence of doping on the sequence and posi-
tions of the temperature intervals of martensite trans-
formations (MTs) in TiNi based alloys.

Below we present the results of investigation of the
MTs and measurement of the crystallochemical param-
eters of ternary alloys based on the TiNi system. Based
on these data, we will consider the general laws govern-
ing the influence of a third (doping) element on the
phase diagrams of a binary TiNi alloy.

An analysis of the positions of doping elements in
the Periodic Table and the features of MTs in the doped
TiNi alloys reveals the following regularities [1, 2].

For a doping element Me situated on the Periodic
Table to the left from nickel, where e/a = s + d < 10 and
RMe ~ RNi or RMe > RNi (e/a being the number of
valence-shell electrons per atom and RNi and RMe, the
atomic radii of nickel and dopant, respectively), the
phase diagram contains a narrow region of dopant con-
centration (from 0 to ~10 at. %) featuring martensite
transformations B2  R  B19' (Fig. 1). As the
dopant concentration increases, the region of MTs
shifts toward lower temperatures.

When the dopant is situated to the right from nickel
or occurs in the same column (see the cross-hatched
fragment of the Periodic Table in Fig. 1, where e/a = s +
d = 10 or s + d > 10 and RMe > RNi or RMe ~ RNi), the
MTs may take place in various sequences (B2 
R  B19', B2  B19', B2  B19, B2  B19'')
in a broad range of dopant concentrations, up to the
complete substitution of nickel.
1063-7850/02/2810- $22.00 © 20803
In both cases, the regions of existence of the R(ω)
phase depend on the electronic and dimensional factors
of the TiNi–TiMe ternary alloy under consideration.
Figure 2 shows the regions of existence of the R(ω)
phase in TiNi–TiMe alloys characterized by various
dimensional factors δR = CTiRTi/(CNiRNi + CMeRMe),
where CTi, CNi, and CMe are the concentrations of com-
ponents (titanium, nickel, and dopant, respectively) in
the alloy. As can be seen, the initial binary alloy (TiNi)
possesses the most extended region of existence of the
R(ω) phase on the δR scale. The R(ω) phase region is
less extended in the alloys doped with Rh, Co, Pd, Pt,
and Au, and it is very narrow in the TiNi(Fe) system.
Since the atomic radius of iron is close to that of nickel,
the existence of the R(ω) phase in TiNi–TiFe alloys is
probably determined by the electronic factor. In ternary
alloys of the TiNi–TiPd, TiNi–TiPt, and TiNi–TiAu
systems (where nickel atoms are replaced by atoms of
the third element possessing a greater atomic radius),
the R(ω) phase exists within a limited region of concen-
trations and temperatures [1]. In alloys of the TiNi–
TiRh system, Rh atoms replacing Ni also possess
greater dimensions, as reflected by the width of the
interval of existence of the R(ω) phase on the δR scale
(Fig. 2).

An analysis of the phase diagrams of the TiNi–TiFe,
TiNi–TiCo, and TiNi–TiRh ternary systems (Fig. 1)
shows the presence of B2  R(ω)  B19' transi-
tions in the entire concentration range of martensite
transformations. Despite close atomic radii of nickel
and copper, the TiNi–TiCu system exhibits no R(ω)
phase formation (Fig. 1). However, the R(ω) phase was
observed when the doping was produced according to
the Ti50 – xNi50 – xCu2x scheme [2]. Thus, an analysis of
the effect of the dimensional factor of the region of
existence of the R(ω) phase in TiNi(Me) ternary alloys
does not reveal simple relationships.

Figure 3 shows the regions of existence of the R(ω)
phase depending on the electron density e/a (the num-
002 MAIK “Nauka/Interperiodica”
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Fig. 1. A fragment of the Periodic Table and phase diagrams of martensite transformations in TiNi–TiMe systems.
ber of s + d electrons per atom) in TiNi–TiMe alloys. As
is seen, the R(ω) phase exists in a broader interval range
of the e/a values in the binary TiNi system than in most

Fig. 2. Dependence of the region of existence of the R(ω)
phase in TiNi and TiNi–TiMe alloys on the dimensional fac-
tor δR.
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Fig. 3. Dependence of the region of existence of the R(ω)
phase in TiNi and TiNi–TiMe alloys on the electron density
factor e/a.
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the electron density factor of the R(ω) phase in ternary
alloys of the TiNi–TiFe, TiNi–TiCo, and TiNi–TiRh
systems is e/a < 7.

An analysis of the role of dimensional (δR) and elec-
tronic (e/a) factors on the region of existence of the
R(ω) phase led us to the following conclusions. In
TiNi–TiPd and TiNi–TiPt alloys, the main effect on the
R(ω) phase formation is produced by the dimensional
factor; in TiNi–TiFe and TiNi–TiCo systems, the major
contribution is due to the electronic factor; while in
TiNi–TiRh and TiNi–TiAu alloys, the electronic and
dimensional factors are jointly operative.

Based on the above data, it is possible to reveal the
main features of influence of the third (doping) element
upon the B2  R(ω) phase transition in TiNi based
alloys. In the case when atoms of greater radius substi-
tuted for nickel create an electron density e/a in the
interval from 7.0 to 7.07, the phase diagram of the ter-
nary alloy features narrow concentration and tempera-
ture intervals of the R(ω) phase. This situation is
observed in TiNi–TiPd, TiNi– TiPt, and TiNi–TiAu
alloys. In TiNi–TiMe alloys (Me = Fe, Co, Rh), where
the atomic radius of the dopant is equal to that of nickel
or RNi < RMe < RTi and the electron density falls within

The influence of electron and dimensional factors on marten-
site transformations in TiNi–TiMe ternary alloys

Wide concentration–
temperature

region of R phase

Narrow concentration–
temperature

region of R phase
No R phase

e/a = s + d ~ 6.9–7.0 e/a = s + d ~ 7.0–7.07 s + d > 7.0

RNi ~ RMe or
RNi < RMe < RTi

RNi < RMe < RTi RNi ~ RMe
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e/a = 6.9–7.0, the region of existence of the R(ω) phase
is more extended in both concentration and temperature
scales. In TiNi–TiCu alloys, the B2  R(ω) phase
transition is suppressed. Although the atomic radii of
copper and nickel are close, the electron configuration
of the ternary alloys are such that e/a exceeds 7.0. The
results of this analysis are summarized in the table.

Conclusion. We have analyzed the data concerning
the role of crystallochemical factors on the stability of
B2, R, and B19' phases in TiNi-based alloys doped with
iron, cobalt, copper, palladium, platinum, gold, and
rhodium. Relationships are established between the
dimensional and electronic factors, on the one hand,
and the sequence of martensite transformations, on the
other hand. The shape of phase diagrams in the region
of martensite transformations depends on the position
of dopants in the Periodic Table relative to Group VIII
(i.e., whether the element occurs to the right or to the
left from nickel). The role of electron density and
dimensional factor was revealed by calculations of the
superstructural compression. A unique correspondence
is established between the dimensional and electron
factors, on the one hand, and the concentration and tem-
perature intervals of existence of the R(ω) phase, on the
other hand.
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Abstract—An original relativistic backward tube (BWT) for a 38 GHz range is developed and tested. The
BWT is capable of generating stable pulses of ~250 ps duration and a peak power of ~250 MW in trains with
a length of up to 1 s at a repetition rate of 1–3.5 kHz. The BWT design implements an inhomogeneous slow-
wave structure of increased cross section with a band reflector. A pulsed electron beam (~270 keV, ~ 2 kA,
0.9 ns) was injected by a high-current accelerator based on a high-voltage generator with an inductive energy
store, a semiconductor current interrupter, and a pulse-shaping hydrogen-filled discharge gap. A focusing mag-
netic field of 2 T was generated by a cooled pulsed solenoid power-supplied from a special stabilized current
source. © 2002 MAIK “Nauka/Interperiodica”.
The results of our previous experiment [1] and ear-
lier investigations (see, e.g., [2, 3]) showed that relativ-
istic backward tubes (BWTs) operating in a signifi-
cantly nonstationary (superradiance) regime can gener-
ate short microwave pulses with a duration on the order
of ten periods of the high-frequency field and a power
close to that of the injected electron beam. A certain
progress in realizing this possibility was provided by
the use of a slow-wave structure (SWS) with increased
cross section size (R ~ 0.7 λ), profiled coupling imped-
ance, and resonance reflector instead of a below-cutoff
waveguide section [4]. In the first experiments [1], per-
formed with a high-current electron accelerator of the
RADAN type capable of producing a pulsed electron
beam with a pulse duration of ~1 ns and a power of
~600 MW, we obtained microwave pulses with a dura-
tion of ~250 ps and a peak power of up to 280 MW for
a magnetic induction of B ~ 2 T, and up to 400 MW for
B > 5 T. Because of a high energy consumption of the
pulsed solenoid (at a pulse duration of a few millisec-
onds), the system was operated in a regime of rare
pulses repeated at a pause reaching several tens of sec-
onds. However, reduction of the working magnetic field
down to a level of 2 T allowed technical realization of a
pulsed-periodic regime of the microwave generator
equipped with a cooled dc solenoid. On the other hand,
there was gained a certain progress in the generation of
high-voltage accelerating pulses, based on a hybrid
modulator ensuring a pulse repetition rate of up to
3.5 kHz in a train regime [5]. 
1063-7850/02/2810- $22.00 © 20806
Below we report the results of investigation of a sub-
nanosecond relativistic BWT for a 38 GHz range, oper-
ating in the train regime at a high-frequency repetition
rate. The experimental setup comprised the following
main parts: (i) hybrid high-voltage modulator; (ii) vac-
uum diode of the electron accelerator; (iii) BWT elec-
trodynamic system and emitting antenna; (iv) vacuum
system; (v) dc solenoid with an induction of 2 T and a
power supply pulse duration of 1 s; (vi) stabilized cur-
rent generator for the solenoid power supply; (vii) liq-
uid cooling system of the solenoid; (viii) diagnostic and
monitoring electronic equipment; and (ix) control and
synchronization system. 

The hybrid high-voltage modulator comprised a
nanosecond driver (SM-3NS) [6] and a subnanosecond
hydrogen-filled (100 atm) shaping discharge gap. The
SM-3NS driver included several steps of energy com-
pression switched by solid-state commutators. The
driver output was loaded on the inductive energy store
with a high-current high-voltage semiconductor current
interrupter. Judging by the oscillogram of a voltage
pulse on a 45-Ω output of the hybrid modulator (Fig. 1),
the full amplitude scatter of the accelerating pulses did
not exceed 3–5% at a repetition frequency of up to
3.5 kHz. The high-voltage pulses (Fig. 1) were trans-
mitted to the accelerator cathode via a stepped-profile
coaxial line at a total transformation coefficient of 1.6,
so that a voltage amplitude on the cathode reached
~260–270 kV. The tubular graphite cathode with a
diameter of 8.6 mm and an edge thickness of 0.1 mm
002 MAIK “Nauka/Interperiodica”
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Fig. 1. A typical voltage pulse (amplitude, ~165 kV; top plateau duration, ~0.9 ns) from a capacitive divider, measured by a digital
storage oscillograph on a 45-Ω output of the hybrid modulator at a repetition rate of 1 kHz. 
was mounted inside the anode cylinder with a diameter
of 19 mm. A solenoid coil with a resistance of 0.7 Ω had
the form of sections wound by a 1 × 5 mm copper rib-
bon. Each turn of the coil was cooled by transformer oil
pumped via radial channels between the sections. A
magnetic field induction of 2 T corresponded to a cur-
rent of 265 A. A bank of molecular capacitors with a
total capacity of 4.6 F was switched to solenoid in an
incomplete discharge regime by a feedback transistor
switch with pulse-width modulation, ensuring a 2%
current stabilization for a time period of 1 s. The power
dissipated in the solenoid coil was removed by the oil
pumped during the pause between pulses (~100 s)
required for charging the bank. 

The SWS, made of copper by methods of galvano-
plastics, accommodated 18 corrugation periods with an
average diameter of 11.2 mm (the same as in [1]). The
generator operated in a E01 working mode. The horn
antenna had a vacuum output window with a diameter
of 50 mm. The BWT vacuum chamber was evacuated
to 10–3–10–4 Torr with a turbomolecular pump. The
pumping was effected simultaneously from the acceler-
ator vacuum diode side and via a slit at the vacuum out-
put window. 

The results of a full-scale numerical modeling of the
system operation using the particle-in-cell method
(KARAT code [7]) showed that a subnanosecond pulse
energy may reach up to 100 mJ (Fig. 2). Operation in
the pulse train regime facilitated calorimetric measure-
ments. A specially designed calorimeter with an etha-
nol microwave absorber and a capillary detector was
calibrated so as to measure the total energy of the train
containing 500–1000 pulses with a total duration of
≤1 s. The calibration was performed over a 10–100 J
TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      20
range in two regimes. The first procedure employed the
discharge of a capacitor with a time constant of 20 ms
via a thin nichrome wire situated inside the absorber
cavity. In the second case, the signal was detected from
a dc current source relay-switched for 0.5–1.5 s. Cali-
brations in the two regimes showed coincidence of the
results to within 3% and demonstrated linearity of the
capillary detector response as a function of the depos-
ited energy. 

An output signal from the hot-carrier germanium
microwave detector was fed to a Tektronix TDS-820
digital storage oscillograph with a frequency band-
width of 6 GHz. Each oscillogram was obtained by
accumulating not less than 512 pulses (counted at a dis-
cretization step of 10 ps). It is important to note that the
system involved no additional delay cable line signifi-
cantly distorting the shape of subnanosecond signals.
The length of a calibrated cable between detector and
oscillograph was 1.5 m. The detector was calibrated in
a 0.1–50 kW range with the aid of a magnetron gener-
ator and a thermistor bridge (M3-22A). Because of a
high pulse repetition rate, the pulsed bias voltage was
set at a minimum amplitude and duration in order to
minimize the crystal heating and the temperature drift
of the sensitivity within a single measurement cycle. An
insignificant drift still took place: the sensitivity at the
pulse train end dropped approximately by 2% for F ≤
1 kHz and by 7% for F = 3.5 kHz. In order to take into
account nonlinearity of the detector voltage–power
characteristic, the experimental oscillograms were
computer processed to calculate the effective duration
of the microwave pulses. 

In the course of the measurements, the radiation was
polarized according to the TM01 mode. The detector
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Fig. 3. A typical signal from the microwave detector accumulated by a digital storage oscillograph for 512 pulses (pulse front dura-
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Fig. 2. Numerically modeled nonaveraged output power of a relativistic 38-GHz BWT with a transport magnetic field of 2 T, gen-
erating subnanosecond pulses with a front duration of 200 ps, FWHM ~ 250 ps, and an energy of 104 mJ/pulse. 
was placed at a point with the coordinates L = 4 m, R =
0.9 m (L is the cross-section distance from the vacuum
output window and R is the radius). According to the
results of preliminary measurements, the effective
cross section of the horn antenna was independent to
within 2% of the microwave frequency in a 15% band.
The detector signal distortions related to the reflection
from a load were eliminated using a time decoupling
provided by a long waveguide between the germanium
crystal and the absorbing load. 

Figure 3 shows a typical oscillogram of the output
signal from the microwave detector accumulated by the
oscillograph during 512 sequential counts at a repeti-
TE
tion frequency of 1 kHz. The results of processing
showed that the actual leading front duration and the
microwave pulse width at half maximum (FWHM) are
190 and 250 ps, respectively. The calorimetric measure-
ments performed under the same conditions gave 65 mJ
for the energy per pulse, which corresponds to a total
microwave energy of 260 MW. The average microwave
pulse power in the train was about 200 W at a repetition
rate of 3.5 kHz. The output peak power was close to the
value obtained in a single pulse regime [1]. 

It should be noted that there is some tendency to
understate the measured peak power. Indeed, there are
obvious limitations in the frequency characteristic of
CHNICAL PHYSICS LETTERS      Vol. 28      No. 10      2002
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the “detector–transmitting tract–oscillograph” system.
The results of numerical calculations of the microwave
generator showed that the length of the peak part of the
pulse with a power exceeding 250 MW must be equal
to only a few periods of the high-frequency oscillations,
i.e., to about 50–70 ps (Fig. 2). However, a transient
time characteristic of the TDS-820 oscillograph is
67 ps. A similar role was played by a spurious capaci-
tance of the detector crystal relative to the waveguide
case, since the reflection measurements showed evi-
dence of a test signal front being extended from 100 to
150 ps. On the other hand, the accuracy of calibration
of the beam current and acceleration voltage meters
was about 10%, so that the electron beam parameters
could also somewhat differ from expected. Neverthe-
less, there is quite a good coincidence between the
experimental data and the results of numerical calcula-
tions. 

In one series of pulses, we intentionally increased
the accelerating voltage by 4–5% (to a limiting possible
value provided by the modulator). As a result, the out-
put radiation energy increased up to 80 m/J per pulse,
so that the maximum peak power of the generated
microwave pulses exceeded 300 MW. 

Our experimental results showed evidence of a
decrease in the power and duration of microwave
pulses, as well in the stability of these characteristics,
after generation of 104 pulses and above. In the follow-
ing, we plan to verify a hypothesis concerning an
increase in the delay time for the beam generated by a
cathode operating in an explosive (blowup) regime.
Such a behavior was previously observed in a nanosec-
ond range of the voltage pulse durations, where the
effect was also related to deterioration and subsequent
stabilization of the cathode emissivity [8]. Should it be
the only significant defect influencing the working life
of the proposed microwave generator, the problem
could be solved, for example, by increasing duration of
the accelerating voltage pulse. 
TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      20
Thus, the entire series of experiments (beginning
with a single pulse regime [1]) confirmed expectations
(based on the model calculations) that the coefficient of
conversion in a superradiance peak of a relativistic
BWT can be increased by using an inhomogeneous
slow-wave structure with increased bandwidth and,
accordingly, reduced effect of the wave packet smear-
ing. The possibility of generating high-power subnano-
second microwave pulses at a high repetition rate has
been demonstrated. 
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Abstract—It is shown that thin-film photoelectric devices can be constructed on the basis of wide-gap AIIBVI

semiconductor compounds grown on a narrow-gap quasi-single-crystal substrate. The potential barrier ∆Ev
existing at the interface of a multilayer heterostructure blocks the contribution of the narrow-gap component to
the total photocurrent. Based on these heterostructures, selective and wideband UV sensors requiring no addi-
tional filters are developed for the first time. © 2002 MAIK “Nauka/Interperiodica”.
A currently important problem of UV technology is
developing sensors for the 320–400 nm (UV-A),
280−320 nm (UV-B), and 200–280 nm (UV-C) wave-
length intervals [1–3]. Such sensors are required for
numerous applications in medicine, biology, environ-
mental control (ecology, ozone monitoring, fire-extin-
guishing systems, etc.), and other fields. Among the
existing methods of manufacturing selective radiation
sensors, the most common approach is based on the use
of colored glass or interference filters.

Previously [4], we demonstrated that some hetero-
structural concepts realized in lattice-matched AIIIBV

single crystal systems [5] can be applied to polycrystal-
line heterostructures of AIIBVI semiconductor com-
pounds, among which there are no materials with close
crystal lattice parameters.

In this study, some special features of the AIIBVI het-
erostructures are used for creating photoelectric
devices of new types, some of which were not available
until now. In particular, we propose the design of UV-
(A + B + C) wideband and UV-A and UV-B selective
sensors capable of operating without additional optical
filters.

The samples for this study were prepared by meth-
ods described elsewhere [4, 6, 7]. Wide-gap photo-
sensitive components in the heterostructures studied
were represented by homogeneous n-ZnS0.7Se0.3 or
n-Zn0.8Cd0.2S solid solutions with a gap width of Eg =
3.3 eV, which corresponds to the long-wavelength
boundary of the UV-A interval. The thicknesses d of
these nearly stoichiometric high-resistivity films were
comparable with the effective absorption length of the
exciting radiation (d ~ 1/k ~ 1 µm, where k is the
absorption coefficient). In order to provide for the lat-
tice matching and ensure the epitaxial growth condi-
tions, thin (several tens of nanometers thick) intermedi-
ate layers of multicomponent solid solutions were
1063-7850/02/2810- $22.00 © 20810
grown between an orienting low-resistivity narrow-gap
substrate (CdSe, Eg = 1.7 eV) and the photosensitive
component of the heterostructure. The presence of
these intermediate layers was confirmed by depth–
composition profiles of the samples determined with
the aid of the Auger electron spectroscopy [6]. For
example, the n-ZnS/n-CdSe heterostructure contained a
variband interlayer of the ZnxCd1 – xSySe1 – y type with x
and y values decreasing with increasing distance from
the surface. On approaching the surface of the orienting
substrate, the intermediate layer composition corre-
sponded to x = y = 0.

Since the exciting radiation is incident onto a wide-
gap AIIBVI semiconductor surface, heterostructures of
this type must, in the general case, exhibit the effect of
a wide-gap window. However, an additional potential
barrier ∆Ev , existing at the interface of a multilayer het-
erostructure due to a difference of the electron affinities
and gap widths of the contacting materials, can sup-
press the contribution of the narrow-gap component to
the total photocurrent.

An energy band diagram of the resulting p-Cu1.8S/i-
ZnS0.7Se0.3/n-CdSe multilayer heterostructure (see the
inset in Fig. 1) reveals a high-resistivity i-layer bounded
by a low-resistivity substrate possessing a narrower gap
value. The main fraction of charge carriers is generated
by the incident light beam immediately at the potential
barrier, where a strong electric field is operative. The
contribution of the narrow-gap component to the total
photocurrent is blocked by the barrier which amounts
to ∆Ev ~ 0.7 eV.

Figure 1 shows typical spectral characteristics of
photosensitivity of the UV-(A + B + C) wideband
(curve 1) and UV-A selective (curve 2) sensors based
on a p-Cu1.8S/i-ZnS0.7Se0.3/n-CdSe heterostructure and
the UV-B selective (curve 3) sensors based on a
p-Cu1.8S/i-ZnS/n-CdSe heterostructure. As can be seen,
002 MAIK “Nauka/Interperiodica”
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the additional potential barrier height is sufficient to
provide for a significant (about two orders of magni-
tude) decrease in photosensitivity beyond the funda-
mental absorption edge of the wide-gap component. It
should be emphasized that the proposed sensors are
manufactured without using interference or colored
glass filters.

A very interesting phenomenon was observed for a
more complicated heterostructure of the p-Cu1.8S/n-
ZnS/p-ZnTe/n-CdS type, in which application of an
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Fig. 1. Absolute spectral sensitivity of the heterostructures:
(1) UV-(A + B + C); (2) UV-A; (3) UV-B. The measure-
ments were performed at T = 300 K on samples with an
effective working surface area of 4.5 mm2. The inset shows
an energy band diagram of a p-Cu1.8S/i-ZnS0.7Se0.3/n-
CdSe heterostructure (intermediate lattice-matching inter-
layers not depicted).
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Fig. 2. The spectral sensitivity of a p-Cu1.8S/n-ZnS/p-
ZnTe/n-CdS heterostructure: (1) unbiased; (2) with an
applied voltage of Ub = 5 V (minus on p-Cu1.8S).
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external bias voltage led to an increase in the photocur-
rent and to a modification of the spectral sensitivity
spectrum. In a photorectifier cell regime, the interval of
photosensitivity of this heterostructure was the same as
that of a UV sensor “blind” in the visible range (Fig. 2,
curve 1). The spectral characteristic exhibited a dra-
matic change upon application of the external bias volt-
age Ub (Fig. 2, curve 2): the maximum of sensitivity
was significantly shifted toward longer wavelengths.
The data presented in Fig. 2 were measured at an inci-
dent monochromatic radiation power of ~10–7 W/cm2

and Ub = 5 V (with minus on the p-Cu1.8S side). This
result is evidence of a significant contribution of the
narrow-gap (ZnTe) component to the total photocur-
rent. It should be also noted that the multilayer aniso-
type heterostructure exhibits the effect of photocurrent
amplification (cf. curves 1 and 2 in Fig. 2). The
observed features can be explained assuming that the
heterostructure studied represents a bipolar phototrans-
istor. Elucidating the nature of these phenomena
requires additional investigations.

Thus, application of the epitaxial growth technol-
ogy and use of the potential barriers formed at the
interfaces between semiconductors with different gap
widths opens new possibilities for the creation of pho-
toelectric devices in heterostructures involving lattice-
unmatched AIIBVI semiconductor compounds. Based
on such systems, UV-A and UV-B selective and
UV-(A + B + C) wideband sensors requiring no addi-
tional filters have been developed for the first time. A
multilayer anisotype AIIBVI heterostructure exhibits a
field-induced modification of the photosensitivity spec-
trum and the effect of photocurrent amplification.
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Abstract—It is suggested to increase the magnetic sensitivity of planar-diffusion triacs by exposure to X-ray
radiation. Additional increase in the magnetic sensitivity can be achieved by mechanically introducing surface
defects into the device structure. Processes and mechanisms responsible for increased sensitivity under condi-
tions of various galvanomagnetic effects are considered. © 2002 MAIK “Nauka/Interperiodica”.
Galvanomagnetic devices constitute the elemental
basis for magnetoelectronics—one of the promising
directions of modern electronics. These are devices the
operation of which is based on the joint action of elec-
tric and magnetic fields upon a semiconductor. The
most widely used representatives of this class are the
Hall emf probes, magnetoresistors, magnetodiodes,
single-junction and bipolar magnetotransistors, magne-
tothyristors, and devices employing galvanomagne-
torecombination effect [1] developed and implemented
into practice in the past decades. Of special interest are
investigations aimed at the creation of magnetotriacs,
representing devices with symmetric S-shaped current–
voltage characteristics. These devices can be used as
bidirectional elements in many dc and ac instruments,
such as contactless switches, electronic compasses,
magnetic readout heads, collectorless motors, etc. [1]. 

Magnetotriacs can be created on the basis of well-
known planar-diffusion triacs (PDTs) [2]. The mag-
netic sensitivity of PDTs can be increased by irradia-
tion [3, 4], which produces the necessary surface
defects increasing the surface recombination rate s—
one of the main parameters determining the magnetic
sensitivity. 

Previously, we studied modification of PDT-based
optocouplers by exposure to α- and β-radiation [4] and
to 30-keV electrons [3], which significantly improved
the magnetic sensitivity of these devices. Below we
present the results of the next step of investigations in
this direction, obtained using another factor of defect
production in the surface layers of PDT structures.
Here, the task of increasing the magnetic sensitivity of
PDTs triacs was solved by exposure to X-ray radiation
capable of producing structural defects enhancing some
galvanomagnetic effects. 

The objects for investigation were two galvanically
controlled PDT structures (with a control current fed to
the p-base) manufactured at Ul’yanovsk Radio Tube
Plant. The surface of one triac structure (sample 1) was
1063-7850/02/2810- $22.00 © 0812
coated with a layer of OP-432 compound with a thick-
ness of about 50 µm, which reliably insulated flexible
wire conductors from contacts of the PDT structure
(this is one of the basic technological operations
involved in the large-scale production of such devices).
The second triac structure (sample 2) represented a gal-
vanically controlled PDT without a protective com-
pound coating. In order to increase the magnetic sensi-
tivity of sample 2 and mechanically introduce addi-
tional surface defects, a 200-µm-wide, 50-µm-deep
groove was cut with a diamond tool along the axis of
symmetry (thyristor interface) of the PDT structure. It
should be noted that the magnetic sensitivity of com-
mercial multilayer semiconductor structures, such as
thyristors and triacs, is usually manifested rather
weakly, since the current transfer coefficients of the
component transistor weakly depend on the magnetic
induction and the on the surface recombination rate [5]. 

Prior to irradiation, the sample structures were stud-
ied for the magnetic sensitivity, in particular, in the con-
trol current transfer mode. Exposed to a magnetic field
with induction B, sample 1 exhibited a very weak
magnetic response even at a maximum gate current.
Sample 2 (with a mechanically cut channel) showed a
relatively high sensitivity with respect to application of
the external magnetic field, which was comparable to
analogous parameters of commercial galvanomagnetic
devices. For example, in the interval of magnetic induc-
tions –1 T < B < 1 T, the maximum sensitivity was
12 V/T at a gate current of Ig = 2.36 mA. 

Owing to the surface defects introduced into the
structure of sample 2, intensity of the carrier produc-
tion–recombination processes on the surface becomes
much higher as compared to that in the volume of the
PDT structure. Exposed to an external magnetic field
B+ (the positive direction is selected conditionally),
when the Lorentz force drives the charge carriers to
deviate toward the surface, the carriers exhibit intense
recombination. This results in an increase in the n-base
2002 MAIK “Nauka/Interperiodica”
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resistance and a decrease in the transfer coefficient of a
“longitudinal” pnp-transistor, leading to growth of the
switching voltage Us0 depending on the magnetic field
determined by the magnetoconcentration effect. When
the magnetic field direction changes to opposite (B–),
the charge carriers deviate from the upper surface
(where the recombination rate is high) toward the bulk
(where the recombination rate is low). This leads to an
increase in the concentration of carriers contributing to
the gate current of the pnp-transistor and, hence, in the
corresponding transfer coefficient. As a result, the
switching voltage drops. 

In the course of the experiment, samples 1 and 2
were exposed at room temperature to the radiation of an
X-ray tube operating at an accelerating voltage of
100 kV. The radiation intensity (dose rate) was 9.6 ×
1011 s–1 cm–2. After the exposure, the main static param-
eters of the current–voltage characteristic of sample 1
changed rather insignificantly. Figure 1 shows experi-
mental plots of the switching voltage Us0 versus mag-
netic induction B measured before and after irradiation
to a total dose of 1016 cm–2. A comparison of the curves
shows a significant increase in the magnetic sensitivity
of PDT upon exposure. A change in the magnetic sen-
sitivity is more pronounced for the positive (B+) than
for the negative (B–) direction of the magnetic field,
which is evidence for a polar character of the magnetic
sensitivity. 
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Fig. 1. Plots of the switching voltage versus magnetic field
for sample 1 measured at a gate current of Ig = 2 mA
(1) before (D = 0) and (2–4) after X-ray irradiation to various
doses D = 3 × 1015 (2), 7 × 1015 (3), and 1 × 1016 cm–2 (4). 
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The irradiation of sample 2 under the same condi-
tions was performed in several steps to a total dose of
2 × 1016 cm–2. The exposure did not lead to significant
variation in the main static parameters of the current–
voltage characteristic of this sample. Nor did it mark-
edly changed the magnetic sensitivity. Probably, the
irradiation of sample 2 did not significantly modify the
relation between the carrier production–recombination
processes on the surface and in the bulk, so that the
magnetoconcentration effect was not operative (Fig. 2).
During the irradiation of an unprotected PDT structure,
the radiation defects are generated over the entire thick-
ness of p-regions of the PDT structure [6]. The fraction
of radiation-induced surface defects is relatively small
as compared to the fraction of mechanically produced
defects and, hence, the transfer coefficient of the pnp-
transistor changes rather insignificantly. Accordingly,
the magnetic sensitivity of the device remains essen-
tially unchanged. 

Conclusions. Based on the results of investigations
we may conclude the following. 

(i) Modification of the PDT structure by exposure to
the X-ray radiation allows the magnetic sensitivity of
triacs with respect to the external magnetic field; the
results confirm the general laws of this approach
employing various types of radiation sources.

(ii) The magnetic sensitivity of PDTs can be
increased both by the method of radiation modification
and by mechanical methods.
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Fig. 2. Plots of the switching voltage versus magnetic field
for sample 2 measured at a gate current of Ig = 2.28 mA
(1) before (D = 0) and (2–5) after X-ray irradiation to vari-
ous doses D = 7 × 1015 (2), 9 × 1015 (3), 1 × 1016 (4), and
2 × 1016 cm–2 (5). 
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(iii) The enhanced magnetic sensitivity of radiation-
modified PDT structures is related to a change in the
magnetic field dependence of the transfer coefficient of
the pnp-transistor under the conditions of operation of
the magnetoconcentration effect.

(iv) Application of the control action allows the
magnetic sensitivity of radiation-modified PDTs to be
varied in a preset range.

(v) PDTs possess high radiation stability. 
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Abstract—The temperature dependence of the conductivity of lanthanum metaniobate was studied on samples
heated in air from 100 to 1100°C. The electronic and hole conductivity components were separated by the
method of a blocking electrode. The temperature dependence of the electronic conductivity of LaNb3O9 was
calculated using the standard thermochemical data for Nb2O5. It is concluded that the thermodynamic approach
based on the thermochemical data for oxides is applicable to calculations of the temperature dependence of con-
ductivity in complex oxygen-containing compounds. © 2002 MAIK “Nauka/Interperiodica”.
As is known, lanthanum metaniobate LaNb3O9 pos-
sesses a cation-deficient perovskite structure of the
oxygen-octahedral type. In this structure, NbO6 octahe-
dra (representing the main structural motif) share verti-
ces to form a three-dimensional carcass with bulky La3+

cations occupying one-third of the cubooctahedral cav-
ities [1], as reflected by the conventional formula
La1/3h2/3NbO3. It was established [2] that annealed
(i.e., stoichiometric) lanthanum metaniobate is an ionic
conductor at low temperatures (below 800 K), in which
the current is transferred by La3+ cations migrating via
the structural vacancies, and an electronic-type conduc-
tor at higher temperatures. However, it is known that
niobium-containing oxides synthesized at high temper-
atures are always partly reduced, the degree of reduc-
tion being dependent on the temperature, gaseous
medium, and duration of the thermal treatment. 

In this content, we have studied the mechanism of
conductivity in both reduced samples of LaNb3O9 – x

(obtained by quenching from the temperature of syn-
thesis) and the stoichiometric lanthanum metaniobate
LaNb3O9 (prepared by annealing for 100 h at 350°C). 

Samples of lanthanum metaniobate for conductivity
measurements were prepared, in the form of disks with
a diameter of 10–12 mm and thickness of 1−2 mm, pro-
ceeding from La2O3 and Nb2O5 oxides of special purity
grade. The synthesis was conducted according to the
ceramic technology, involving sintering in air at
900°C for 15 h and 1250°C for 10 h, with intermediate
grinding, followed by quenching in air from the final
temperature. The completion of synthesis was moni-
tored by X-ray diffraction on a DRON-3.0 diffracto-
meter using CuKα radiation. The open porosity of the
samples was about 1%. The electrodes were formed
on the sample surface by fusing a silver paste compo-
sition at 780°C. 
1063-7850/02/2810- $22.00 © 0815
The conductivity measurements were performed by
a two-point probe techniques in air in the temperature
range from 100 to 1100°C, in the course of a step-by-
step heating (or cooling) of the samples at a 40–50°C
step. Each heating step was followed by keeping the
sample until establishing equilibrium values of both dc
and ac (103 Hz) conductivity, as measured with the aid
of a U-63 teraohmmeter, a VK-72E digital ohmmeter,
and an E-82 ac bridge. The dc conductivity was mea-
sured using small (0.5 V) applied electric fields after a
prolonged (up to 30 min) period of current decay. The
nonporous silver electrodes favored blocking of the
mobile oxygen ions, which allowed us to use a polar-
ization technique for separating the ionic and electronic
conductivity components as described in [3]. Accord-
ing to this method, the results of ac measurements
determine the total conductivity, while the dc measure-
ments give the electronic conductivity component: σΣ =
σ1 = σ2 + σ3, σ4 = σ2 (where σ = σ1 is the ac conductiv-
ity, σ2 and σ3 are the electronic and ionic components,
respectively, and σ4 is the dc conductivity). 

The curves of  versus 1/T obtained by ac mea-
surements on the sample annealed at 350°C signifi-
cantly differ from analogous curves for the unannealed
samples (cf. curves 1 and 2 in the figure), the difference
being especially pronounced in the low-temperature
region. The temperature dependence of the ac conduc-
tivity of the annealed samples (curve 1) is characterized
by two linear portions with a smooth transition at
400−600°C. This behavior coincides with the data
reported in [2], according to which the low-temperature
portion with an activation energy of E* = 0.2 eV corre-
sponds to the ionic conductivity mediated by La3+ cat-
ions. Measured above 600°C, the curves of dc and ac
conductivity coincide with each other (curves 3 and 4 in
the figure), which is evidence of the purely electronic
character of the conductivity (with an activation energy
of 1.6 eV) in this temperature region. 

σlog
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Let us consider curve 2 representing the temperature
dependence of the ac (total) conductivity for the nons-
toichiometric (unannealed) lanthanum metaniobate. A
significant increase in the conductivity observed on
heating the sample is related to the presence of addi-
tional current carriers represented by electrons and
oxygen vacancies in the reduced compound. The acti-
vation energy (0.65 eV) in the low-temperature region
(130–400°C) probably corresponds to the anionic con-
ductivity mediated by O2– ions traveling via oxygen
vacancies. In this temperature interval, the anionic con-
ductivity obviously dominates over the cationic compo-
nent. For example, the contribution of the cationic com-
ponent at 300°C accounts for only about 1% of the total
ionic conductivity. 

Note that curve 2 exhibits a local maximum at
~470°C, which is probably related to a phase transforma-
tion of the crystallographic shear type in LaNb3O9 – x.
Such phase transformations, taking place in Nb2O5 – x ,
TiO2 – x , and WO3 – x [4], lead to vanishing of the anion
vacancies and, hence, of the anionic conductivity com-
ponent. Indeed, the total conductivity exhibits exponen-
tial growth (E* = 1.4 eV) above 500°C and coincides
with the dc conductivity, which indicates that the sam-
ple becomes a purely electronic conductor. The region
of the proposed phase transformation is also character-
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Temperature dependence of the (1, 2) ac and (3, 4) dc con-
ductivity of lanthanum metaniobate: (1, 4) stoichiometric
LaNb3O9 (upon annealing for 100 h at 350°C); (2, 3) unan-
nealed LaNb3O9 – x . 
TE
ized by a change in the slope of curve 4 describing the
electronic conductivity, whereby the corresponding
activation energy decreases to 1.0 eV. It should be also
noted that the temperature dependences measured on
heating and on cooling coincide to within the experi-
mental error. 

Thus, niobium-containing oxides reduced by heat-
ing in air exhibit a partial reversible loss of oxygen and
become nonstoichiometric. According to the theory of
defects in crystals [5], the removal of one oxygen atom
leads to the localization of two electrons at the oxygen
vacancy with an effective zero charge: O0  V0 +
(1/2)O2, where O0 is oxygen at a lattice site with zero
effective charge and V0 is the oxygen vacancy with zero
effective charge. 

Because Nb5+ is susceptible to reduction (attach-
ment of electrons), the two electrons localized at the
oxygen vacancy are drawn toward the two neighboring
Nb5+ cations (entering into the oxygen octahedra) to
reduce their charges to +4. As a result, two oxygen octa-
hedra centered at Nb5+ cations are replaced by distorted
octahedra containing Nb4+ cations and one oxygen

vacancy with an effective charge +2: V0   + 2 ,

where  denotes the double ionized oxygen vacancy.
Thus, the overall process can be described by the fol-
lowing scheme: 

2Nb5+ + V0   + 2Nb4+, (1)

which corresponds to the reduction of Nb5+ via the
reaction 

LaNb3O9   + (x/2)O2↑ , (2)

where x is the degree of nonstoichiometry. Since an
Nb4+ ion possesses an excess weakly bound electron, it
is probably this ion that participates in the conductivity. 

From the standpoint of the band theory, the above
process corresponds to the transfer of two electrons
from the valence 2p band of oxygen to the empty 4d
band of niobium cations; therefore, the bandgap (∆E)
must be equal to the enthalpy of formation (∆H) of Nb4+

cation. 

Since these considerations are valid for all Nb-con-
taining oxide compounds, the process of charge trans-
port in LaNb3O9 can be described using the thermo-
chemical data for Nb2O5 [4]: 

 (for reduction reaction).

V0

..
e

V0

..

V0

..

LaNb3 2x–
5+ Nb2x

4+O9 x–

∆H298
0 Nb2O5( ) 1900 kJ/mol,=

∆H298
0 2NbO2( ) 1600 kJ/mol,=

∆S298
0 60 kJ/mol=
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Then, according to [6], the enthalpy of reaction (1) is 

Thus, the bandgap value (3.10 eV) calculated pro-
ceeding from the thermodynamic quantities is in good
agreement with the experimental data on the conductiv-
ity of LaNb3O9 annealed at a low temperature, accord-
ing to which the bandgap is 3.20 eV (∆E = 2E*, where
E* = 1.60 eV is the activation energy). 

The density of free electrons can be evaluated using
the law of mass action: 

(3)

where N is the concentration of niobium atoms and P is
the partial pressure of oxygen. By approximate esti-
mates, N = 1.6 × 1022 cm–3, P ≅  1 atm, and
exp(∆S0/2R) ≈ 19, from which we obtain n ~ 30 ×
1022exp(–∆H0/2RT). Therefore, 

(4)

where e is the electron charge and µ is the electron
mobility. Based on an analysis of the published data for
polycrystalline dielectrics and assuming the hopping
mechanism of charge transfer, we estimated the latter
quantity at ~0.01 cm2/(V s). 

Thus, the theoretical preexponential factor amounts
to 3 × 102 Ω–1 cm–1. Extrapolation of the experimental
curves to T  ∞ yields a close value of 102 Ω–1 cm–1,
from which it follows that 

(5)

This coincidence of the experimental relationship (5)
and theoretical estimate (4) gives us grounds to ascer-
tain that the thermodynamic approach can be employed
to calculate the temperature dependence of conductiv-
ity in well-annealed samples (containing negligible
small number of vacancies) of some complex oxygen-
containing niobates, proceeding from the thermochem-
ical data for oxides. It should be noted that, according

∆H298
0 ∆H298

0 Nb2O5( ) ∆H298
0 2NbO2( )–=

=  300 kJ/mol 3.10 eV.=

n NP0
1/4– K1/2=

=  NP0
1/2– ∆S0/2R( ) ∆H0/2RT–( ),expexp

σ = nµe = 30 1022 0.01 10 19– ∆H0/2RT–( )exp×××

=  3 102 1.55/2RT–( ),exp×

σ 102 1.60/2RT( )exp .=
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to data from [7], the activation energy for Nb2O5 is
1.39 eV. The activation energy for the electronic con-
ductivity of a reduced sample is somewhat lower than
that of the stoichiometric oxide and amounts to 1.4 eV,
which coinciding with the value for Nb2O5. Since a
decrease in the activation energy is related to an
increase in the degree of reduction, it is evident that this
degree is higher in Nb2O5 than in stoichiometric
LaNb3O9. However, taking into account that the
authors of [7] did not perform prolonged annealing of
their samples, direct comparison with their data would
be inexpedient. 

Since the parameters of conductivity—experimental
for LaNb3O9 and theoretical for Nb2O5—coincide, we
may probably conclude that lanthanum cations are not
significantly influencing the electronic conductivity of
lanthanum metaniobate at high temperatures (above
500°C) and, hence, the hopping mechanism of charge
transfer via Nb4+  Nb5+ is inherent in this compound
as well. In addition, it is known that La3+ is not suscep-
tible to reduction and cannot serve as the donor of elec-
trons. The La3+ ions play a significant role only in the
low-temperature region (below 500°C), by accounting
for the cationic current in annealed samples. 
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Abstract—Experiments on InAs crystals demonstrate that exposure to pulsed magnetic fields can increase the
phase homogeneity and structural perfection of the binary phases of AIIIBV semiconductor compounds. © 2002
MAIK “Nauka/Interperiodica”.
The unique ability of relatively weak (<1 T) pulsed
magnetic fields (PMFs) to modify the real structure and
physical properties of diamagnetic crystals was origi-
nally reported in [1]. The PMF-induced changes in the
microstructure were first observed in alkali halide crys-
tals [1] and, later, in AIIIBV semiconductor compounds [2]
and in Czochralski-grown silicon (Cs–Si) single crys-
tals [3]. In all cases, the exposure to PMFs lead to
decomposition of the defect complexes with the forma-
tion of new, mobile defects involved in a long-term
multistage transformation of the real crystal structure.
Interpretation of the observed effects is based on the
notion of a magnetic field influencing the kinetics of
spin-dependent reactions involving radical pairs [4]. It
is believed that weak magnetic fields can remove prohi-
bition from the electron transitions with a spin change.
This leads to weakening of the bonds in defect com-
plexes, while the real crystal structure is modified at the
expense of thermal and elastic energy of the crystal lat-
tice [3, 5, 6]. 

Despite clear macroscopic manifestations of the
PMF-induced effects, possessing a quantum nature, the
problem of using these effects for a positive controlled
modification of semiconductor crystals is still open. In
this context, the purpose of this study was to determine
the possibility of using PMF treatments to increase the
quality of the crystals of binary semiconductor com-
pounds of the AIIIBV type. 

We selected InAs single crystals as the model
object. The sample crystals were grown by a double-
temperature technique, followed by directional crystal-
lization of the melt by the Bridgman method. The initial
components were In and As of special purity grade
(OSCh-11-5 and OSCh-9-5, respectively), the latter
being additionally purified from oxides by double sub-
limation in vacuum. For the synthesis, a ceramic boat
with In was placed in one end of a thick-walled quartz
ampule and As (volatile component) was placed in the
other end. The ampule was sealed, evacuated to a resid-
ual pressure of 5 × 10–4 GPa, placed into a furnace, and
1063-7850/02/2810- $22.00 © 20818
positioned so as to ensure that the boat with In occurred
at a temperature 5–10 K higher than the temperature of
liquidus of the target alloy. The required pressure in the
system was set by controlling the temperature of the
“cold” end with the volatile component in accordance
with the temperature dependence of the saturated vapor
pressure above solid arsenic. The target alloy ingots
possessed a coarse-block structure. The experiments
were performed with 5 × 4 × 4 mm samples cut from the
central part of the ingots. The sample surface to be stud-
ied was prepared by mechanical polishing. 

The action of PMFs upon InAs crystals was studied
by electron-probe microanalysis (EPMA) and X-ray
diffraction. The EPMA data were used to determine the
distribution of chemical elements on the sample sur-
face. The measurements were performed in a CamScan
S4 scanning electron microscope equipped with an
energy-dispersive X-ray analysis system of the Link
AN10/55S type. The planar distribution of elements
was determined in the surface layer with a thickness of
about 1 µm, by measuring the intensity of a character-
istic X-ray radiation excited by an electron beam scan-
ning over the sample surface. The X-ray diffraction
measurements were performed in a powder diffraction
mode on a DRON 4-07 diffractometer using crystal-
monochromated CoKα radiation (λ = 0.154059 nm).
The diffraction patterns were recorded in the course of
automated angular scanning with a step of 0.1°, an
exposure time of 1 s at each point, and the sample
rotated in its own plane. 

The PMF treatment consisted in exposure to a series
of 1500 symmetric pulses of a triangular shape with an
amplitude of B = 0.3 T, a duration of t = 4 × 10–5 s, and
a repetition rate of f = 50 Hz. The field pulses were gen-
erated by discharge of a capacitor bank through a low-
inductance solenoid coil. The samples were not spe-
cially oriented inside the coil during the PMF treat-
ment. After the PMF treatment, the InAs samples were
stored at room temperature, together with control sam-
ples not exposed to magnetic field. 
002 MAIK “Nauka/Interperiodica”



        

THE EFFECT OF PULSED MAGNETIC FIELDS ON THE REAL STRUCTURE 819

                                               
By the EPMA data, a short-time (for several sec-
onds) PMF treatment of InAs crystals initiates a long-
term (lasting over thousands of hours at T = 300 K)
two-stage phase transformation. The results of the PMF
action upon the surface composition of samples studied
are illustrated in Fig. 1. In the first stage, the InAs crys-
tal components segregate to form separate phases
(Fig. 1b); in the second stage, the samples exhibit the
reverse process, whereby the segregated phases are dis-
solved with recovery of InAs as the chemical com-
pound (Fig. 1c). A comparison of the initial and final
states of the crystal shows evidence that the phase com-
position upon the PMF treatment becomes more homo-
geneous, at least in a ~1-µm-thick surface layer. Char-
acteristics of the control sample, cut from the same
ingot but not exposed to PMFs, remained unchanged. 

According to the X-ray diffraction data (Fig. 2), the
PMF treatment leads to an irreversible increase in the
degree of texturing of the sample crystals. Before the
treatment, the X-ray diffractogram displayed four
clearly pronounced lines corresponding to the (111),
(220), and (311) planes of InAs. Upon exposure to
PMFs, the intensity of the (220) reflection increased
several times relative to the (111), (311), and back-
ground intensities. This is evidence of an increase in the
degree of sample texturing in the 〈110〉  direction and of
a more perfect structure of the crystal. 

The main factor of sensitivity of the InAs crystals
with respect to PMFs is the presence of complexes of
the intrinsic point defects capable of decomposing
under the action of a weak magnetic field. Dominating
in the AIIIBV compounds are the nonstoichiometry
defects related to vacancies of the group V element and
the antistructural defects, the interaction of which leads
to the formation of vacancy–defect complexes [7]. 

With an allowance for the model notions developed
previously, the most probable starting mechanism
involved in the PMF action upon the AIIIBV semicon-
ductor compounds consists in weakening of the
stressed chemical bonds of the initial vacancy–defect
complexes. This is caused by the PMF-induced inter-
combination transitions of the electrons involved in
these bonds. The hypothesis of the PMF- induced decay
of the complexes of intrinsic defects in AIIIBV crystals,
accompanied by the formation of mobile point defects
(vacancies and intrinsic atoms), explains the local seg-
regation of binary phases on the surface (which serves
as a natural sink for the defects). Formed as a result of
decomposition of the initial defect complexes, the
phases of individual elements are metastable and tend
to decay with the formation of the binary compound,
which results in homogenization of the crystal and a
decrease in the density of defects. The duration of these
processes is determined by the rate of diffusion of the
point defects (intrinsic atoms of the crystal) at a given
temperature (T = 300 K in our experiments). 

The main conclusion from this study is that the
short-time PMF treatment of InAs crystals initiates a
TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      20
(a) (b)

(c)

Fig. 1. EPMA patterns showing the planar distribution of
elements in the surface layer (~1 µm thick) of an InAs crys-
tal (a) before PMF treatment and (b) 5 days and (c) 50 days
after PMF treatment (magnification, ×500). The insets show
the surface of a control sample not treated in PMFs, other-
wise identical to the treated sample. 
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Fig. 2. X-ray diffractograms (relative line intensity I/I0
versus diffraction angle 2θ) of an InAs crystal measured
(a) before PMF treatment and (b) 10 days after PMF
treatment. 
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long-term variation of their phase, structure, and ther-
modynamic state, leading to an increase in the compo-
sition homogeneity and in the structural perfection of
the crystals. Thus, the PMF treatment can be effectively
used to improve the quality of crystals of binary semi-
conductor phases of the AIIIBV type. 
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Abstract—Operation of a stationary plasma accelerator of the ATON type employing various working gases is
considered. Using a proposed similarity criterion, an optimum operation regime of the accelerator for kryp-
ton is selected. Comparative integral parameters of an accelerator operating on krypton and xenon are pre-
sented. © 2002 MAIK “Nauka/Interperiodica”.
As is known, the physical processes in a stationary
plasma thruster (SPT) are characterized by three basic
dimensionless parameters of the operation regime:

(i) coefficient of the applied voltage loss,

where ∆U is the energy spent for ionization and various
losses (∆U is comparable with the average potential in
the ionization zone) and Ud is the discharge voltage;

(ii) coefficient of the propellant (working gas)
usage,

where Ji is the ion current in the output channel (related
to the effective degree of ionization),  = (e/M)  is
the mass current, e is the electron charge, M is the
atomic mass of the working gas, and  is the propel-
lant consumption rate; and

(iii) exchange parameter characterizing the effi-
ciency of current flowing in the channel,

ξ = Jd/ ,

where Jd is the discharge current.
Once the dimensionless quantities χ, µ, and ξ are

known, the integral parameters of an accelerator
employing a given working gas can be calculated, in
particular, the propulsion

the consumed power

,

and others. Previously [1, 2], these generalized charac-
teristics were expressed in terms of the similarity crite-

1 χ– 1
∆U
Ud
--------,–≡

µ
ṁt

ṁ
----- J i/Jṁ,= =

Jṁ ṁ

ṁ

Jṁ

F
2e
M
------µṁ Ud 1 χ–( ),=

W JdUd ξ JṁUd= =
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rion α depending on the channel width and specific
consumption rate of the propellant. It was demonstrated
that accelerators consuming the same working gas
(xenon) at various rates operate in identical (from the
standpoint of parameters χ, µ, and ξ) regimes, provided
that

(1)

where S and b are the channel output cross section area
and width, respectively.

In recent years, considerable attention has been
devoted to the use of various working gases (Kr, N2,
etc.). This is related to the relatively high cost of xenon
and the need in long-term thruster operation during
flights to planets and asteroids. The relationship
between the α-minimum necessary consumption of the
working gas, ensuring optimum thruster operation, and
the type of propellant is described by the formula [1, 2]

(2)

where Λ∗  = Λδ, Λ = λion/L is the ionization length, L is

the channel length, δ = , ε is the ion rate (close to
∆U), T0 is the temperature of the working gas atoms at
the SPT channel input, and β = 〈σv 〉 ion . Formula (2) is
inconvenient in practical applications. This expression
can be transformed so as to impart to it a clear physical
meaning and render it convenient for use. Indeed,
replacing α in formula (2) by the critical value from
condition (1), we obtain a relation

(3)

according to which SPTs of the same geometry will
operate in identical (from the standpoint of parameters

α mb˙

S
------- 2 10 2–  mg/(s mm),×∼≥

α 1

Λ*
-----------

εT0

β2
-------- 

  1/2

,=

ε/eUd

mb˙

S
------- 

 
2 eUd

β2
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Fig. 1. Experimental current–voltage characteristics of a
model SPT operating on (1) Xe and (2–4) Kr at  =
2.3 (1, 4), 1.5 (2), and 2 mg/s (3).
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χ, µ, and ξ) regimes for the same consumption rate of
the propellants. Obviously, this conclusion is valid to
within the factor β. Since this factor weakly depends on
the properties of working gases (even with an allow-
ance for uncertainty in our knowledge of the electron
energy distribution function and the dynamics of its
variation in the thruster channel, the error in determin-
ing σ, etc.), the above conclusion concerning a constant
propellant consumption rate in SPTs of the same size
employing various working gases is valid to within a
factor between one and two.

This conclusion was verified for a magnetoplasma-
dynamic thruster of the ATON type [3]. The experi-
ments were performed on an A-3 thruster model with an
inner diameter of the external insulator equal to 60 mm,
a channel length of L = 24 mm, and an output gap width
of b = 12 mm. The engine operated in a range of depos-
ited powers W = 0.5–1.5 kW, with Xe and Kr as the
working gases. The experimental results are briefly pre-
sented and analyzed below.

Current–voltage characteristics. Figure 1 shows
the static Jd versus Ud curves of the model thruster oper-
ating on Xe and Kr in an optimum regime with respect
to the magnetic field. As can be seen from these data,
the discharge current is almost independent of the
applied voltage in the range 250 V ≤ Ud ≤ 400 V, which
is evidence of a high degree of ionization of the work-
ing gas. The lower the consumption rate of Kr flowing
through the anode, the greater the slope of the Jd–Ud
curves and the lower the accelerator operation effi-
ciency. For Xe, the discharge current exceeds the mass
current; this is explained by the presence of a
“through” electron current and of doubly charged ions
(10–12%) [4]. In the thruster operating on Kr, the
experimentally determined fraction of doubly charged
ions is small. Taking into account that the ionization
cross section of Kr is a smaller than that of Xe, a
decrease in the /Jd ratio observed in the former case
seems quite reasonable.

Propulsion characteristics. Figure 2 shows the
plots of propulsion F versus discharge voltage Ud for
the two working gases (Xe and Kr) studied. As can be
seen, the behavior of F in both cases is the same.
Approximating the plots by expression (1), we can
readily determine the ∆U values, which yields ~40 V
for Xe and to ~60 V for Kr. Note that the ∆U values for
both gases are about four times the corresponding ion-
ization potentials.

Exchange parameter. Figure 3 presents the value
of ξ = Jd/  as a function of the propellant consump-

tion rate for Kr and Xe. As can be seen, the ξ versus 
curves for the two gases coincide to within the experi-
mental accuracy.

Coefficient of propellant usage. Figure 4 shows
the plot of µ = Ji /  characterizing the ionization effi-

Jṁ

Jṁ

ṁ

Jṁ
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ciency versus the propellant consumption rate . As is
seen, the µ values exhibit saturation with increasing
consumption of the working gas and coincide, to within
the experimental accuracy, for the two gases studied.
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Fig. 4. Experimental plots of the propellant usage coeffi-
cient µ versus consumption rate  for a model SPT operat-
ing on Xe and Kr.
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Conclusions. The results of our experiments
showed the following:

(i) The critical relations of SPT operation parame-
ters, previously determined for Xe, are valid for the
engine operating on Kr as well.

(ii) SPTs employing various propellants operate in
identical (from the standpoint of parameters ξ, µ, and
∆U) regimes for the same similarity criterion α ≡ b/S
~ 2 × 10–2 mg/(s mm).
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Modeling an Ensemble of Systems
Coupled by the Lennard-Jones Interaction 

O. I. Gorskiœ and Yu. P. Kuchugurnyœ 
Institute of Transport Systems and Technologies, National Academy of Sciences of Ukraine, 
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Abstract—A system of oscillators forming a 2D lattice featuring the Lennard-Jones interaction, represented as
a mathematically averaged ensemble of almost identical systems, is numerically modeled. The results show that
an unstable configuration of oscillators can be retained over a greater time interval as compared to that for a
single square lattice. A total energy of the system constructed as a mathematically averaged ensemble of almost
identical systems is conserved up to the moment of losing stability and is not conserved after that, whereas the
total energy of each system in the ensemble is conserved. © 2002 MAIK “Nauka/Interperiodica”.
As is known, many-body systems coupled by the
Lennard-Jones interaction can feature complicated
two-dimensional (2D) correlated motions [1], which
can be revealed using a special procedure with specific
initial conditions. However, such initial conditions are
usually ignored because it is impossible to realize the
situation in practice. The structural unit in such a clus-
ter represents a triangular equilibrium cell. It is also
known that a complicated correlated motion in a con-
servative system can be obtained by numerically mod-
eling a system of interacting oscillators, provided that
the initial configuration is a 2D square lattice (rather
than an equilibrium triangular lattice) and the interac-
tion is described by the Lennard-Jones potential. A spe-
cial feature of such a system is that the complicated
symmetric and correlated motion can be observed only
for a short time of the numerical modeling process (this
period will be referred to as tsym). This is explained by
the fact that the rounding errors break the initial sym-
metry of the system (which would be retained in a con-
servative system). 

Figure 1 shows a typical curve of a time-averaged
kinetic energy per oscillator. A symmetric system of
oscillators forming a square lattice is unstable: calcula-
tion allows the initial symmetry to be retained during a
period of time not exceeding tsym . It should be empha-
sized that the symmetry of the system begins to break
up even earlier, but a graphically “rough” image of the
system of oscillators retains the square pattern up to the
time instant tsym . The time of transition to the equilib-
rium triangular lattice configuration (tsym) only very
slightly depends on the integration step, potential con-
stants, square lattice period, and other parameters. For
example, in a system of N = 16 oscillators with a period
of a = 1.49, we obtain tsym . 3800. Without increasing
the accuracy of calculations (or the number of signifi-
cant digits in the values of variables), the system cannot
1063-7850/02/2810- $22.00 © 20824
be calculated for times greater than tsym at an integration
step of 0.065 (6.5 × 10–16 s). This value is almost a mul-
tiple of tsym (at an appropriate change in the integration
step). 

In Fig. 1, curves 1 and 2 correspond to the integra-
tion steps of 0.065 and 0.0325, respectively. These
curves were constructed as follows. Decreasing the
integration step (for example, by half as compared to
the conventional basis value), we increase the calcula-
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0.02

0.01

0.04

10 2 3 5 64
t × 10–3

–
Ökin

Fig. 1. Variation of the time-averaged kinetic energy per
oscillator for a single system calculated at a time step of
(1) 0.065 and (2) 0.0325. 
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tion time by a factor of 2 and take the data at a twice
longer interval as compared to the conventional basis
interval. Further reduction in the step does not lead to
an increase in tsym; moreover, this time can sometimes
even decrease. Based on these facts, we can formulate
one of the possible definitions of an unstable system as
a system whose calculation would require unlimited
complication of the algorithmic procedure. From this,
we may conclude that a square lattice of oscillators cou-
pled by the Lennard-Jones interaction can be observed
as a dynamic system only for a very short time. How-
ever, there are still some doubts as to the complete
validity of this conclusion. 

First, if the rounding errors break the symmetry, this
factor may be not identically manifested in all square
lattices with a period close to the calculated one. This
implies that, when the calculation is performed for an
ensemble of lattices, followed by an appropriate aver-
aging procedure, the rounding errors may compensate
one another (at least over a calculation time interval
greater than tsym).1 

Second, upon elapse of tsym , all square lattices must
break and transform into a triangular equilibrium con-
figuration. But what happens to a lattice (with a period
denoted by aass) calculated over an ensemble and then
averaged? Will aass convert into the period of a triangu-
lar lattice (like the periods of all lattices in the ensem-
ble)? The answers to these questions are not obvious. In
order to elucidate the situation, we performed numeri-
cal calculations for an ensemble of square lattices cou-
pled by the Lennard-Jones interaction. 

The problem can be formulated as follows. The
modeling was performed for N = 16 oscillators and the
number of calculated lattices S in an ensemble was vari-
able. The equations of motion were integrated at a
dimensionless step of ∆t = 0.05–0.13, which corre-
sponds to the real time 

(1)

where e and σ are the interaction constants. The dimen-
sionless average kinetic energy per oscillator was deter-
mined as 

(2)

1 This conclusion does not contradict one of the possible defini-
tions of an unstable dynamic system as the system in which what-
ever small external perturbations can drive it arbitrarily far from
the phase trajectory. Our calculation (see below) is performed for
an ensemble of systems (rather than for a single system) and fol-
lows the trajectory of a conditional system (obtained by certain
averaging over an ensemble of systems with different but close
initial conditions), rather than the trajectory of a single system
with the given initial conditions.
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The computer simulation was performed without
neglect of the interaction of non-nearest neighbors,
using the specific initial conditions 

(3)

(4)

and zero initial conditions 

(5)

The interaction potential was defined as 

(6)

and the Hamiltonian of the interaction 

(7)

The calculation of oscillations for the lattice of
oscillators under consideration was performed, with an
allowance for all individual motions in the ensemble of
oscillators, by the formulas 

(8)

(9)

(10)

(11)

where rj are the weighting characteristics of lattices in
the ensemble. It was assumed that rj = 1/S (j = 1, 2, …,
S). This formulation can be readily generalized to
include the case of unequal rj values (see below). 

For the above formulation, the dynamics of a sym-
metric square cluster calculated with an allowance for
the ensemble can be the same as the dynamics of a sin-
gle cluster, at least over a time interval in which the
symmetry is retained. Moreover, this coincidence of the
dynamics is a criterion for verification of the correct-
ness of the program operation. Symmetric square lat-
tices constituting the ensemble were determined as hav-
ing an almost identical form with a small variation of
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Fig. 2. Variation of the time-averaged kinetic energy per
oscillator for (1) a single system and (2) a system con-
structed on an ensemble of almost identical systems with
different numbers of lattices S = 10 (a), 16 (b), 20 (c), and
27 (d). 
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Fig. 3. Variation of the total energy E/N (N = 16) for (1) a
single system and (2) a system constructed on an ensemble
with S = 27. 

(a) (b)

(c) (d)
TE
the period as ai = a + 10–ne, where e is a random vari-
able in the interval [0, 1] and n varies from 4 to 16. This
is explained by the expected symmetry violation in the
lower orders of variables. If the lattice periods are
slightly different, the weak difference in periods of the
individual systems can lead to a small difference in
symmetric variables of the system constructed from the
ensemble. Of course, this assumption may be either
correct or incorrect. 

By considering an ensemble, we increase the num-
ber of variable independent parameters, such as S
(number of lattices in the ensemble), ai (lattice periods),
and rj (their contribution weights). 

The symmetry breakage can be monitored visually,
by considering a graphical image of the system of oscil-
lators under consideration. Although the symmetry is
traced to within a graphical pixel size, this accuracy is
quite sufficient for the purpose of this study. 

Figure 2 shows the breakage of symmetry in a sys-
tem constructed on the ensembles with various num-
bers of lattices. It should be noted that this system
exhibits a moderately pronounced tendency to smooth-
ing oscillations and there is no sharp transition to the
point of symmetry breakage. These features are mani-
fested together with a tendency to retain the square lat-
tice constructed as a mathematical average over the
ensemble. It is important to note that, up to the transi-
tion point, oscillations in the standard system are indis-
tinguishable (to within a coarse-grained plot) from
oscillations in the system constructed on the ensemble.
As can be seen from Fig. 2, a rather weak tendency to
retain the quasi-periodic oscillations (characteristic of a
square symmetric lattice of oscillators), as well as to
retain the lattice proper, can be used by increasing the
number of lattices in the ensemble. This obvious way,
even if leading to the expected result, may require an
enormously increased computational time. It is impor-
tant to note that the calculation algorithm would remain
the same. Even if we limit the result to increasing the
lifetime of the square lattice approximately by quarter
(to the knowledge of the authors, this is the only
method available at present), this circumstance is very
significant because unpredictable, unstable, and algo-
rithmically complicated systems can be related to
parameters not existing in the traditional formulation of
the problem involving the Lennard-Jones potential. 

It should be also noted that the total energy of the
system (conserved within the time tsym) exhibits a jump
for S > 1, whereby the ensemble at t > tsym does not
behave as a conservative system (while the total energy
in each particular system is conserved and all these sys-
tems behave as conservative). It looks as if the loss of
conservatism upon elapse of the period tsym allows the
time of retaining the unstable square lattice to be
increased by at least one-quarter. 

Behavior of the total energy E/N is presented in
Fig. 3, where curves 1 and 2 correspond to the total
CHNICAL PHYSICS LETTERS      Vol. 28      No. 10      2002
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Fig. 4. Variation of the time-averaged kinetic energy E/N
(N = 16) for (1) a single system and (2) a system constructed
on an ensemble with S = 21 and various rj (r1 = 0.5, rj =
0.025, j = 2, …, 21). 
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energy for the systems with S = 1 and 10, respectively.
As can be seen, the total energy of one system is con-
served, while that of a system constructed on the
ensemble is not conserved. An explanation is found in
the superposition of velocities and coordinates of the
bodies. Since each system contributes differently to the
ensemble upon transition, the total energy should not be
conserved. These differences were not manifested
before the transition, because the symmetric motion of
oscillators with close coordinates leads to almost equal
contributions to the total energy E/N. 

Figure 4 illustrates the transition for a system with
S = 21 in the case of r1 = 0.5, rj = 0.025 (j = 2, 3, …,
21). As can be seen, the symmetry breaks and the con-
tributions of systems entering into the ensemble with a
small weight rj (j > 1) do not lead to the desired result.
This problem requires additional investigation. 
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Abstract—The action of a light beam upon a gas bubble in a light-absorbing solution of a tensoactive substance
is studied. The light-assisted manipulations, including the partition of large bubbles and the translation of small
ones according to the solutocapillary mechanism, are demonstrated for the first time. © 2002 MAIK
“Nauka/Interperiodica”.
As is known, a gas bubble occurring in a liquid fea-
turing a temperature gradient ∇ T tends to move toward
a heated region, even against the buoyancy forces [1].
Called thermocapillary [2], this kind of motion is
caused by a difference in the surface tension σ between
the opposite poles of the bubble, situated on the axis
parallel to the gradient ∇ T developed in the liquid. In
recent years, the motion of gas bubbles in microscopic
channels or cells under the action of a longitudinal gra-
dient ∇ T (created by conductive heat supply) has been
extensively studied from the standpoint of applications
in microfluid devices and microelectromechanical sys-
tems [3–5]. 

The possibility of manipulating gas bubbles with the
aid of a light beam was originally demonstrated in [6].
While the light-induced motion of gas bubbles was not
the main problem studied in [6], this paper concentrates
on detailed investigation of the mechanisms of this
effect and develops the methods proposed previously. 

The experimental setup represents a modified opti-
cal microscope of the MUV-1 type, equipped with a
point light source (HBO-100 mercury lamp) and a
focusing system. The light beam crossover diameter in
the focal plane was d = 0.60 ± 0.05 mm and the total
beam power was P = 200 mW. The liquid medium with
gas bubbles was studied in an assembled optical cell of
the Hele–Shaw type mounted on the microscope table. 

In order to obtain quantitative data on the gas bub-
ble size, velocity of motion, and the time of partition
(for elongated kidney-shaped bubbles) in the digital
form, the microscope was equipped with a video cam-
era (25 pictures/s, 560 lines/mm) linked to a computer
via a TV tuner (Capture 98 w/VCR). 

The Hele–Shaw cell comprised two quartz plates
with a 10-µm-thick Teflon spacer, in which a 2 × 4 cm
rectangular channel was cut. With the aid of a pipette,
the channel was filled with a liquid medium represent-
ing the solution of a light-absorbing, nonvolatile or
low-volatile, tensoactive substance (TAS) in a volatile
1063-7850/02/2810- $22.00 © 20828
solvent, for example, a saturated (at 20°C) solution of
CuBr2 or I2 in a 96% ethyl alcohol or acetone. The opti-
cal absorption of a 10-µm-thick layer of such solutions
is close to 90%. The filled cell was placed between two
ring-shaped disks and fastened with screws. As a rule,
the solution was distributed in such a way that several
gas bubbles of various diameters were retained in the
channel. The relative bubble size was characterized by
the ratio of its diameter to the light spot diameter,
D/d = D*: the bubbles were considered as small for
D* ≤ 1 and large, for D* > 1. 

First, the cell was positioned so that one of the bub-
bles would fall within the light spot. Subsequently,
when the cell was moved in an arbitrary lateral direc-
tion,1 the bubble followed the beam spot so that the
front part of its boundary (interface) occurred within
the light spot. Exposed to the light beam, the bubble
interface features two competitive processes: (i) a
decrease in the surface tension due to the light-induced
heating and (ii) an increase in the surface tension as a
result of solvent evaporation. When the light beam
velocity exceeds a certain critical value v*, for which
the evaporation at the interface becomes insignificant, a
mechanism of the bubble motion is determined only by
the thermocapillary forces. In this case, the interfacial
flows entrain the adjacent liquid layers and the negative
pressure arising at a stagnation point leads to the devel-
opment of reverse flows. As a result, two convective
vortices appear at the front of the bubble (Fig. 1a). The
critical velocity v* was 0.5–1 mm/s for a CuBr2
solution in ethanol and about 1 cm/s for a I2 solution in
acetone. 

Due to the viscous friction, a moving bubble with
D* ≥ 1 deforms to acquire an oval shape (Fig. 1a). In
experiments with the CuBr2 solution in ethanol, such
bubbles moving after the light beam at a velocity above

1 In what follows, we will speak of the light beam axis being dis-
placed relative to the cell.
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0.7 mm/s were deformed so strongly that the longitudi-
nal to transverse diameter ratio reached up to 5. At the
same time, small bubbles remained undeformed. 

For v  < v*, small bubbles move in front of the light
spot. This unusual behavior is explained by the soluto-
capillary mechanism operative in the exposed zone.
This mechanism is related to a growth in the TAS con-
centration C caused by the solvent evaporation under
the condition ∇ C > | |∇ T, where  and  are
the concentration and temperature coefficients of the
surface tension σ, respectively. As a result, two corre-
lated capillary vortices are formed near the interface
(Fig. 1b), the velocity fields of which are generated by
the opposite tangent interfacial stresses directed toward
maximum beam intensity. Evidence of the solutocapil-

σC' σT' σC' σT'

(a) (b) (c)

1 2 3

2

1 + 2

0.1 mm

Fig. 1. Thermocapillary (TC) and solutocapillary (SC)
mechanisms of gas bubble motion under the action of a light
beam (arrows indicate the direction of motion): (a) only TC
forces (1) are acting upon the bubble in an I2 solution in ace-
tone; (b) only SC forces (2) are acting upon the bubble in a
CuBr2 solution in ethanol; (c) both SC and TC forces are
acting upon the bubble in an I2 solution in ethanol (3 is the
vapor flux). 

0.5 mm

Fig. 2. Sequential photographs illustrating partition of a
kidney-shaped gas bubble by the moving light beam in a
CuBr2 solution in acetone (time interval between the shots,
0.5 s). 
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lary mechanism operation is a clear trace of the
increased TAS concentration observed behind the bub-
ble (Fig. 1b). For D* = 0.4, the bubble velocity in the I2
solution in ethanol reached 0.3 mm/s. 

In the case of large bubbles possessing smaller cur-

vature of the surface, the impact pressure Pi = ρ /2 of
the surface solutocapillary flow may exceed the capil-
lary pressure Pc = σ/r in the bubble (ρ is the liquid den-
sity, v s is the surface flow velocity at the bubble bound-
ary, and r is the surface curvature). As a result, the inter-
face in the exposed zone bends inward the bubble to
form a “cape” and the bubble becomes kidney-shaped
(Fig. 1c). The flow at the opposite side of the bubble is
caused by condensation of the solvent on a colder part
of the interface, which reduces the surface tension in
that part both due to dilution of the TAS solution and
due to increasing temperature. 

As the cape curvature grows, the rate of the solvent
evaporation from this surface increases, while convec-
tive mixing with the mother solution is hindered by
increasing length of the cape. This leads to avalanche
growth in the TAS concentration and, hence, in the σ
value at the front end of the bubble. Therefore, the
growth of the impact pressure of the solutocapillary
flow, caused by the TAS concentration gradient, moves
the cape forward until it meets the opposite wall, after
which the bubble is separated into two parts (Fig. 2). 

The above types of the light-assisted manipulation
of the gas bubbles can find applications in the develop-
ment of valveless micropumps [4], microvalves, and
thermocapillary optical switches [7]. 
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Abstract—Under the action of an electric field, a polar dielectric may occur in several stable temperature states.
Transitions between these states can be induced either by temperature perturbations or by changes in the load
parameter depending on the frequency and strength of the electric field. A method is proposed for solving the
nonlinear electrothermal problem of the temperature transition dynamics. The results of calculations of the tem-
perature dynamics at the center of a dielectric are in good agreement with the data of numerical experiments.
© 2002 MAIK “Nauka/Interperiodica”.
Previously [1], a model explaining the experimen-
tally observed instability of the thermal state of capaci-
tors based on polar polymer dielectrics was proposed
which satisfactorily described this phenomenon in the
temperature region of maximum relaxation losses. The
exact stationary analytical solutions obtained for the
temperature at the capacitor center ϑm  as a function of
the dimensionless load β and the dielectric wall temper-
ature V0 form a surface of the stationary temperature
states with singularities of the “fold” type [1]. However,
it is difficult to estimate the dynamics of possible tran-
sitions between these states within the framework of the
stationary approach. Knowledge of the time variation
of temperature at the most heated (usually central)
point of a capacitor is very important in the case of
devices employed under conditions of large electrother-
mal loads.

In order to elucidate this question, let us consider in
accordance with the model developed previously [1] a
cross section of the surface of stationary states
ϑm(β, V0) corresponding to V0 = –5 (Fig. 1). For better
illustration, the cross section is constructed in the coor-
dinates of ln(ϑm – V0 + 1) versus β. The dimensionless
parameters are expressed as

(1)

(2)

where ω and E are the frequency and strength of the
applied electric field; h is the capacitor half-thickness;

 is the maximum vale of the loss tangent at T = Tg;
βd is the parameter of distribution of the relaxation

β
ωε0εmax'' Eh( )2

λ
---------------------------------

βdW

kTg
2

-----------,=

V0

T0 Tg–

kTg
2

-----------------βdW ,=

εmax''
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times; W is the activation energy; k is the Boltzmann
constant, ε0 = 8.85 × 10–12 F/m; λ is the thermal conduc-
tivity coefficient of the dielectric; and T0 is the capacitor
surface (wall) temperature.

The uncertainty of the ϑm(β) value is determined by
the wall temperature V0. For V0 ≥ 0, the ambiguity dis-
appears [1]. An analysis of the linearized solutions of the
thermal conductivity equation shows that branch 1–2 of
the ϑm(β) curve is unstable, while branches 2–3 and
0−1 are stable. These conclusions agree with the exper-
imentally observed behavior.

If the capacitor occurs at a dimensionless tempera-
ture of the ambient medium (and wall) V0 = –5 prior to
switching on load β, application of nominal load βn will

increase the temperature to . Application of load

 > β1 will induce a transition to the upper stable tem-

ϑ n
0( )

β1*

2.5

1

2

ϑ1*

ϑ (1)
n

ln(ϑm – V0 + 1)

0

3

β2* β2 βn β1β1* 80

ϑ (0)
n

ϑ2*

Fig. 1. A stationary temperature state ϑm = f(β) at the center
of a dielectric. The arrows indicate dynamic transitions
induced by changes in the load parameter β.
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perature state . The transition to the upper branch

from point (βn, ) can be also induced by a temper-
ature perturbation at the capacitor center (lasting for a
sufficiently long time). The perturbation amplitude

must be ∆ϑ  >  – . The reverse transitions

   and ( , )  ( , ) take place

at ∆ϑ  < –(  – ) or  < β2.

Characteristic times of the above transitions can be
estimated from the following considerations. The initial
model reduces to a boundary problem of the first kind
with a heat source described by the function q(u):

(3)

where q(u) = e–|u|(2 – e–|u|), τ = (λ/ρCp)t is the dimen-
sionless time, and ρ and Cp are the dielectric density
and heat capacity, respectively.

Let u0 and λ0 be the first eigenfunction and eigen-
value of the stationary Sturm–Liouville problem corre-
sponding to Eqs. (3). Introducing the integral transfor-
mation of averaging over space Ω (i.e., over dielectric
thickness) [2],

(4)

(where x ∈  Rn and u ∈  ), we reduce the problem (3)
to a differential equation of the first order with respect

to a certain average temperature ,

(5)

with the corresponding boundary and initial conditions:

(6)

It can be shown that relation  = q( ) is
exactly satisfied for a linear heat source q(u). The more
significant the nonlinearity of the source, the greater the
error of a solution to Eq. (5) obtained with an allowance

for the condition  = q( ). To minimize the error,
we may consider a stationary problem for amplitude Um

ϑ 1*

ϑ n
0( )

ϑ n
1( ) ϑ n
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ϑ n
1( ) ϑ n
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TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      20
of the temperature profile. In this case, the load param-
eter β = β(Um) is

(7)

Based on the above considerations, we determine

 = λ0(Um – V0)/β(Um). Then, the dynamics of
Um(t) can be evaluated using the following integral rela-
tionship:

(8)

Thus, the nonlinear nonstationary problem with
respect to u(x, τ) is reduced to problem (8) for Um(τ).

Now we will consider some results of solving
Eq. (8) for estimating the characteristic times of transi-
tions illustrated in Fig. 1. For the transitions along
branch 0–1, we obtain an estimate for τ by expanding
into series in ϑm and restricting the analysis to terms of
the second order:

(9)

As can be seen, the characteristic transition time is a
nonlinear function of two supercritical parameters,

 – V0 and ϑ1 – . Assuming that the transition
terminates at a temperature ϑ* such that

(10)

(where ϑ st is the established stationary temperature),
we obtain for the limiting transition 0  1, β = β1,

ϑ1 = . Eliminating the uncertainty in (9), we arrive at
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The parameters of other transitions are estimated in
an analogous manner using the same approach.

Figure 2 shows the plots of solutions ϑm(τ) for the
transitions described according to the proposed averag-

2.5
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1.5

1.0

0.5

0

ln(ϑm(τ) – V0 + 1)

βn = 60

τ
10

ϑ n
(0)  = –4.2

20 30 40

ϑ*1  = 2.2 β*1  = 70

ϑ*2  = –4.9 β*2  = 12

Fig. 2. Dynamics of the temperature transitions in a dielec-
tric. Figures indicate the ϑ  and β values of the correspond-
ing stationary states. Solid and dashed curves refer to the
proposed theory and the results of numerical experiments,
respectively.
TE
ing method for u(x, τ) in Eqs. (4)–(8). These data are
compared to the results of numerical solution of the
nonlinear thermal conductivity equation (3) performed
on a computer using an implicit difference scheme [3].
The curves depicted in Fig. 2 show a good agreement
between a solution obtained using the proposed method
of averaging the nonlinear problem for the maximum
temperature (at the center of the capacitor) and the data
of numerical experiments.

In concluding, it should be noted that the method
proposed for estimating the temperature dynamics is
applicable to the capacitors of rectangular and cylindri-
cal shapes.

REFERENCES
1. O. A. Emel’yanov, Pis’ma Zh. Tekh. Fiz. 27 (16), 32

(2001) [Tech. Phys. Lett. 27, 679 (2001)].
2. A. I. Vol’pert and S. I. Khudyaev, Analysis in the Classes

of Discontinuous Functions and Equations of Mathe-
matical Physics (Nauka, Moscow, 1975).

3. A. A. Samarskiœ, V. A. Galaktionov, V. A. Kurdyumov,
and A. P. Mikhaœlov, Sharpening Regimes in Problems
for Quasilinear Parabolic Equations (Nauka, Moscow,
1987).

Translated by P. Pozdeev
CHNICAL PHYSICS LETTERS      Vol. 28      No. 10      2002



  

Technical Physics Letters, Vol. 28, No. 10, 2002, pp. 833–835. Translated from Pis’ma v Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 28, No. 19, 2002, pp. 82–88.
Original Russian Text Copyright © 2002 by Plotnikov, Kokhanenko.

                
An Anomalous Acoustic Effect
during Martensite Transformations in NiTi-Based Alloys 

V. A. Plotnikov and D. V. Kokhanenko 
Altai State University, Barnaul, Russia 

e-mail: plotnikov@phys.dcn-asu.ru 
Received March 29, 2002; in final form, May 20, 2002 

Abstract—Martensite transformations proceeding in mechanically loaded TiNi-based alloys account for an
“anomalous” character of the acoustic emission from the material, whereby cyclic transformations during the
growth of mechanical stress in the course of the direct transition is accompanied by an increase, rather than by
a decrease, in the acoustic emission energy. This behavior of the acoustic emission is evidence of a significant
influence of the external stresses on the martensite transformations and the related energy dissipation process.
© 2002 MAIK “Nauka/Interperiodica”.
Introduction. As is known, NiTi-based alloys sub-
jected to thermal cycling in a temperature interval con-
taining the temperatures of thermoelastic martensite
transformations (MTs) B2  B19, B2  B19', and
B2  R  B19' exhibit a characteristic acoustic
emission. A typical feature of this emission is the sig-
nificant asymmetry of the acoustic energy produced
during the direct and reverse MTs [1]. There are two
types of asymmetry: the first, whereby the energy of
emission during the direct MT (B2  B19') is signif-
icantly greater than that during the reverse process, and
the second, for which the emission energy during the
reverse MT (B19'  B2) is greater than that during
the direct process. 

In the course of multiply repeated cyclic MTs, the
character of the asymmetry changes from the first to
second type (inversion). The inversion is also observed
upon increasing the nickel content in the binary alloy.
This behavior of the acoustic emission is related to
structural features of the B2 phase, which significantly
influence the mechanical properties of alloys and the
kinetics and order of MTs [1]. Assuming that external
mechanical stresses, as well as temperature, is a param-
eter of state of the system, we have experimentally
studied the effect of static loading on the MTs and
acoustic emission in NiTi-based alloys. 

Experimental. The experiments consisted in induc-
ing cyclic MTs in the samples loaded according to three
variants, with simultaneous detection of the acoustic
emission. In the first variant, MT cycles were multiply
repeated at a zero applied load; in the second variant,
the cycles were conducted under symmetric loading (in
both direct and reverse MTs) with increasing applied
stress; and in the third variant, the loading with
increased applied stress was asymmetric (in the direct
MT). In all experiments, the samples (plates with a
length of 40 mm, a width of 4 mm, and a thickness of
1063-7850/02/2810- $22.00 © 20833
about 1 mm) were strained by bending in a cantilever
geometry. 

Results. Figure 1 shows fragments of the acoustic
emission curves (rms response voltage versus time)
together with the patterns of the sample temperature
variation with the time. The shapes of the acoustic
curves are indicative of a significantly asymmetric
acoustic energy dissipation during the MT cycle: the
energy of emission produced during the direct transi-
tion exceeds that observed for the reverse transition.
The experiments with symmetric loading show an
increase (to a certain saturation level) in the emission
energy for the reverse MT; however, this energy is still
lower than that for the direct MT. 

Figure 2 shows variation of the emission energy
with the cycle number. As can be seen from these data,
repeating MT cycles lead to a decrease in the acoustic
emission energy (to a certain saturation level) in the
direct transition, while leaving the emission energy
unchanged during the reverse transition. The MT
cycling under symmetric static load does not change
the character of acoustic emission (Fig. 2b): the energy
decreases with increasing MT cycle number in the
same manner as it does in the case of cycling under zero
load. 

Loading in the asymmetric mode (Fig. 2c) leads to
an “anomalous” monotonic growth of the emission
energy up to a certain level significantly (by several
orders of magnitude) exceeding the saturation level
observed in the cycles with zero or symmetric loading.
In the reverse transitions, the energy remains
unchanged. 

Discussion of results. If the acoustic emission dur-
ing the direct MT is caused by the plastic relaxation of
microscopic stresses, it can be suggested that a
decrease in the energy emitted in the initial cycles of
direct MTs is related to degradation of the plastic defor-
002 MAIK “Nauka/Interperiodica”
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mation. The plastic strain relaxation (or local plastic
deformation) consists in generating pure dislocations at
the interface. These dislocations are inherited during
the MT cycle, which results in their accumulation lead-
ing to the alloy hardening [2]. However, the susceptibil-
ity of an alloy to the plastic relaxation of microstresses
depends on a relationship between the martensite shear
stress and the yield stress. The higher the martensite
shear stress and the lower the yield stress (i.e., the
smaller the difference between these stresses), the
higher the probability that the microstresses localized
at the martensite boundaries would attain the yield
stress level and the plastic relaxation would take place. 

According to [3], the martensite shear stress in
TiNi(Mo) alloys amounts to 5–20 MPa, while the yield
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Fig. 1. Kinetics of the acoustic effect in the course of cyclic
martensite transformations (B2  B19' and B19' 
B2) in a TiNi(Mo) alloy under (a) zero applied stress,
(b) symmetric loading, and (c) asymmetric loading
(B2  B19' under load and B19'  B2 upon unload-
ing): (1) temperature variation; (2) acoustic response during
the direct transition; (3) acoustic response during the
reverse transition. 
TEC
stress is close to 1000 MPa. Therefore, the difference
between these stresses is large and the probability that
microstresses would reach the yield stress level is small
(close to zero). 

When the saturation level is attained, the residual
acoustic emission during the direct MT (and the more
so, during the reverse MT) can no longer be related to
the plastic relaxation of microstresses. Evidently, the
“anomalous” growth of the acoustic emission energy
observed in the MT cycles under application of the
external load possesses a dynamic nature and is indica-
tive of a change in the MT kinetics. 

Indeed, some researchers pointed out that accumu-
lation of the martensite deformation and its relaxation
upon unloading are spontaneous processes [4, 5]. This
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Fig. 2. Variation of the acoustic response of a TiNi-based
alloy in the course of repeated B2  B19' martensite
transformations showing (a) a significant decrease in the
energy of emission with increasing number n of MT cycles
under zero load, (b) a drop in the emission energy with grad-
ually increasing external stress σ under symmetric loading
conditions, and (c) “anomalous” growth in the emission
energy for the asymmetric loading: (1) acoustic response
during the direct transition; (2) acoustic response during the
reverse transition. 
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is evidence of the martensite transformation kinetics
changing under external stress conditions, acquiring a
macroscopic explosion character [6]. Another example
is offered by single crystal samples of a Cu–14.2%
Al−4.3% Ni alloy [7], where the process of nucleation
of the martensite crystals in the course of deformation
resembled propagation of the Lüders band; it was even
more so for the initial phase nucleation upon unloading. 

Conclusion. The above experimental data and their
analysis indicate that a dynamic mechanism of the
anomalous acoustic effect observed during cyclic MTs
under applied static load is related to a significant
extent to the correlated formation of martensite crystals
over a macroscopic volume. This inference coincides
with our previous conclusions drawn from the study [8]
of an anomalous acoustic emission during violation of
the complete cycle of MTs. The greater the correlation
(in a broad sense, coherency) of the events of spontane-
ous displacement in the system of martensite grains, the
higher the energy of acoustic emission accompanying
the dynamic relaxation process. When the martensite
shear stress is close to the yield stress, the stresses gen-
erated at the interphase boundary can, together with the
applied load, lead to a local plastic strain relaxation of
the elastic energy in the course of the direct MT. In this
case, the “anomalous” acoustic effect is caused by the
action of two factors: the local plastic strain relaxation
and the dynamic energy relaxation. 
TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      200
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Abstract—The influence of the intensity profile of a wave, focused upon backscattering from a bent crystal, on
the spectral resolution of a focusing Bragg spectrometer dynamically reflecting short-wavelength X-ray radia-
tion (λ ~ 1 Å) is considered in comparison to a nonfocusing flat-crystal spectrometer. Conditions necessary
for resolving spectral lines in the spectrometers of both types are formulated. © 2002 MAIK “Nauka/Inter-
periodica”.
In recent years, bent crystals have been widely used
in X-ray spectrometers [1–10]. This paper is devoted to
theoretical analysis of the influence of the diffracted
wave intensity profile on the spectral resolution of a
focusing bent-crystal spectrometer.

Let us consider diffraction of a wave on a bent crys-
tal, with the bending radius Rx in the plane of scattering
satisfying the “weak” bending condition (in terms
of [11]):

Then, the plane wave amplitude reflection coefficient
can be approximately described by an expression for
the corresponding coefficient of a flat (unbent) crystal.
According to [11, 12], the diffracted wave amplitude at
a point ξp in vacuum is

(1)

where Gh(k + q0) is the Fourier component of the Green

function for the diffracted wave; α0 = /L0 – γ0/Rx and

αh = /Lh – γh/Rx , γ0, h are the direction cosines of the
incident and diffracted waves; L0 and Lh are the dis-
tances from the point source of the spherical wave to
the crystal and from the crystal to the source image; and
κ = 2π/λ, λ being the incident radiation wavelength
(explicit expression for q0 can be found in [11]). Equa-
tion (1) was obtained for a parabolic expansion of the
incident spherical wave phase

where a = sin(ϕ0 – ϕh)/(2γ0|γh|); ϕ0 is the angle between
the incident wave and the normal to the crystal surface;

Rx @ κΛ 2 1 γ0
2–( )/γ0 1 γh

2–( )/γh– / 4π2( ).

Eh ξ p( ) kGh k q0+( )d

∞–

+∞

∫∼

× ik2 1/α0 1/αh+( )/2κ– ikγhξ p/αhLh+[ ] ,exp

γ0
2

γh
2

Gh k q0+( ) 2i/ k q0 k q0+( )2 π2/a2Λ2–{ } 1/2
+ +( ),=
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ϕh is the angle between the diffracted wave and the nor-
mal; Λ = λ(γ0|γh|)1/2/C|χhχ–h|1/2 is the extinction length;
χh and χ–h are the Fourier components of the X-ray
polarizability; and C is the polarization factor.

As can be readily seen, for αh = –α0 the integral in
expression (1) can be analytically exactly calculated
because the wave intensity reduces to the Bessel func-
tion of the first kind J1(tξ),

(2)

where tξ = 2ξpγhσh/αhLh , σh = κχh/4cosθB, and Θ(tξ) is
the Heaviside function.

Gabrielyan et al. [11, 13] showed that the wave from
a source situated on the Rowland circle (L0 = Rxγ0) is
focused according to the Johann scheme. In this case,
the wave intensity near the point source image is dis-
tributed by the law

(3)

where xeff is the effective diffraction length [11, 13].

According to [11, 13], a theoretical limit for the
spectral resolution of a Johann spectrometer is dλ/λ ~
10–8. Evidently, the spectral resolution is determined by
the linear dispersion Dξ = dξp/dλ and by the wave inten-
sity profile.

The estimate of the spectral resolution obtained
in [11, 13] corresponds to the spatial resolution equal to
the diffraction broadening ∆ξp of the point source
image. The value of ∆ξp is obtained from relation (3) by
putting tξ = π, so that the main intensity maximum for
the spectral line λ + dλ would correspond to the first
intensity zero for the line λ. The total intensity from the
two spectral lines exhibits a 19% dip at tξ = π/2. By
analogy with the well-known Rayleigh criterion in
optics, we may consider the condition tξ = π as a crite-

Ih ξ p( ) J1 tξ( )/tξ
2Θ tξ( ),∼

Ih Johann, ξ p( ) tξ( )/tξsin 2, tξ∼ κ xeffξ p/2Rx,=
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rion for the resolution of spectral lines in the Johann
spectrometer.

In the case when the source is not situated on the
Rowland circle, let us also adopt that the lines λ and
λ + dλ are considered as resolved if the main intensity
maximum for the spectral line λ + dλ coincides with the
first zero (t0 ≅  3.85) of the Bessel function J1(tξ)
(Fig. 1). An analysis shows that the intensity dip
between the two lines amounts to 28%, so that the lines
are actually resolved. Note that, for L0 ≠ Rxγ0, the con-
dition tξ = π is no longer sufficient for reliably resolving
the lines: the total intensity at tξ = π/2 is virtually equal
to the maximum intensity of both lines. It should be
also noted that the expansion into the spectrum takes
place due to the effect of focusing in the observation
plane at a distance Lh from the crystal.

Now let us consider a defocusing spectrometer
based on a flat crystal. In this case, αh ≠ α0 and expres-
sion (1) will be analyzed by the stationary phase method.
Consider a stationary point kstat = –κξp/{γh(1/α0 + 1/αh)}.
The spatial distribution of intensity is determined by
the square modulus of the corresponding Green func-
tion, |Gh(kstat + q0)|2. By reducing the argument of this
function to a usual angular variable y, we can represent
the function in a form convenient for practical calcula-
tions, |y – (y2 – 1)1/2|2. For a symmetric geometry of the
diffraction of a σ-polarized wave, we employ y =
(∆θsinθB + χ0)/(χhχ–h)1/2, where ∆θ = θ – θB is the devi-
ation from the exact Bragg angle θB. In the absence of
focusing, only one partial ray reflected from the flat
crystal reaches each point ξp and the coordinate ξp is
uniquely determined by ∆θ. In contrast to the case of a
bent-crystal (focusing) spectrometer, the spectrum in a
flat-crystal spectrometer is usually observed near the
crystal. It is evident that the presence of the region of
total reflection (represented by a “flat” portion of the
profile in Fig. 2) deteriorates the spectral characteristics
of a flat-crystal spectrometer as compared to those of a
focusing instrument.

Let the distance between the right-hand edge of the
reflection curve for the line λ (y = 1) and the left-hand
edge of the analogous curve for the line λ + dλ be δy.
We require that the intensity dip between the lines
would be not less than 20%. Then, assuming δy ! 1, we
arrive at the inequality

(4)

Solving this inequality with an allowance for δy ! 1,
we obtain

(5)

from which it follows that δ(∆θ) ≥ |χhr|(2 + δy)/sin2θB.

Using the Bragg law, we obtain an estimate for the
spectral resolution for the flat-crystal spectrometer:

(6)

1 δy/2 δy( )1/2–+ 0.4( )1/2.≤

δy 1 1 2 1 0.4( )1/2–( )–{ }–[ ] 0.735,≈≥

dλ /λ θBδ ∆θ( ).cot≥
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For the (220) reflection of CuKα radiation from a sili-
con crystal, this yields dλ/λ ≥ 7.7 × 10–5. This resolu-
tion is 2–3 orders of magnitude lower as compared to
that of a focusing bent-crystal spectrometer.

It should be noted that the modern level of develop-
ment of measuring instrumentation allows distinguish-
ing of line intensities differing by less than 20%, which
somewhat improves theoretical estimates of the spec-
tral resolution obtained in this study.
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Abstract—A reflex triode with virtual cathode (VC) was studied in which a controlled-length TEM-waveguide
feedback was introduced between the region of generation (VC localization) and a diode region. At a certain
feedback length, the microwave output power of the reflex triode increases by a factor of 1.6 as compared to the
same system without feedback. © 2002 MAIK “Nauka/Interperiodica”.
Microwave oscillators with virtual cathodes (VCs)
constitute one of the main classes of oscillators for
high-power relativistic electronics. This class includes
vircators and reflex triodes, the latter providing for the
maximum microwave generation efficiency achieved in
practice. Advances in the development and investiga-
tion of reflex triodes with VCs were reviewed in [1, 2]. 

In recent years, there has been a definite trend in the
development of microwave generators with VCs,
whereby maximum efficiency in the generation of stim-
ulated radiation is achieved by creating a positive feed-
back between the region of generation (where the VC is
localized) and a diode region. There are various meth-
ods for creating a waveguide feedback in vircators (see,
e.g., [3, 4]) which significantly increase both the effi-
ciency and controllability of these oscillators. In the
context of this study, it is necessary to mention a virca-
tor [5, 6] in which the feedback is mediated by a disper-
sionless TEM wave. 

To our knowledge, no investigations of the effect of
feedback in the reflex triodes with VCs have been
reported until now. Below, we consider the results of
experimental investigation of a reflex triode with VC
into which a positive TEM-waveguide feedback was
introduced as proposed in [7]. 

The experiments were performed on a setup repre-
senting a power supply system loaded on a reflex triode.
The power supply system consisted of a pulsed current
generator (PCG), an electric-explosion converter
(EEC), and a gas-filled uncontrolled discharge gap
(DG) with the following characteristics. For PCG:
stored energy, 42 kJ; voltage, up to 100 kV; short-cir-
cuit current, up to 500 kA; intrinsic inductance, 150 nH;
and electric capacitance (in a pulse), 8 µF. For EEC: ini-
tial resistance 18 mΩ; break current, 220–240 kA; and
open-circuit voltage, 550 kV. For DG: working gas
1063-7850/02/2810- $22.00 © 20839
mixture, 60% N2 + 40% SF6; pressure, up to 5 atm; and
breakdown voltage, 350–450 kV. The power supply
system delivered pulses of 450–500 kV voltage and
20−300 kA current with a leading front duration of
30 ns and a total pulse width of 100–150 ns. 

Figure 1 shows a schematic diagram of the reflex tri-
ode. This comprised an all-metal vacuum cylindrical
chamber with a diameter of 720 mm and a length of
420 mm. One end of the cylinder represented an insu-
lating window through which microwave radiation was
extracted, while the opposite edge was closed with a
high-voltage insulator. An explosion-emission graphite
cathode with a diameter of 90 mm and a variable length
of 335–360 mm was mounted inside the chamber per-
pendicularly to its axis. A metal grid anode with a geo-
metric transparency of 70% was fastened in an anode
holder with a feedthrough mounted on the edge insula-
tor. The anode holder also bore a hollow cylinder with

1

2

3

4 5

6

7

e

Fig. 1. Schematic diagram of a reflex triode with controlled-
length TEM-waveguide feedback: (1) insulator; (2) anode
holder; (3) vacuum chamber; (4) anode grid; (5) microwave
radiation output window; (6) TEM-waveguide feedback
channel; (7) virtual cathode. 
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Fig. 2. Typical oscillograms of the detector signals mea-
sured for the reflex triode without feedback (uppermost
curve) and with the feedback varied by increasing the anode
cylinder length starting from 90 mm in 10-mm steps. 
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Fig. 3. A plot of the microwave power versus anode cylinder
length for a reflex triode with VC. The power is normalized
to that of a triode without feedback (corresponding to the
unity level indicated by the dashed line). 
TE
a diameter of 150 mm, surrounding the cathode to form
a coaxial feedback line with a wave impedance of
30.6 Ω. The cylinder had a telescopic design which
allowed its length to be mechanically varied from 90 to
156 mm, thus controlling the feedback. 

The output microwave radiation power was mea-
sured with 6D13D type detectors positioned at a dis-
tance of 5.5 m from the radiation extraction window of
the reflex triode. The microwave spectrum was mea-
sured using a wideband antenna of the P6-23A type
coupled, via a feeder tract, to an SRG-7 digital registra-
tor possessing a transmission band with a boundary at
5 GHz. The antenna was mounted at a distance of 1.5 m
from the output window of the reflex triode. 

Here, we present the data obtained for the reflex tri-
ode with a cathode–anode spacing of 21 mm, in micro-
wave radiation spectrum falls within the 2–3.5 GHz
range. In the absence of an anode cylinder forming the
feedback, the microwave radiation power was esti-
mated at 100 MW. Figure 2 shows the oscillograms of
signals measured without and with the feedback for an
anode cylinder length varied in 10-mm steps under
otherwise equal conditions of operation of the high-
voltage reflex triode. 

Figure 3 shows a plot of the normalized microwave
power versus length of the coaxial (feedback) line, con-
structed by processing the above oscillograms at the
signal maximum and taking into account that the radia-
tion power is proportional to the square of the wave
amplitude. As can be seen from Fig. 3, a certain feed-
back length allows the output power of the reflex triode
to be increased by a factor of 1.6 as compared to the
same triode without feedback. 
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Abstract—Within the framework of a global model, the nonmaxwellian behavior of electrons is taken into
account in terms of a two-temperature approximation. Using the condition of stationary discharge, it is possible
to determine the temperature of high-energy electrons Teh as an eigenvalue. For a given gas, this temperature is
a function of the parameter pΛ and weakly (logarithmically) depends on the conditions, being virtually the same
for various types of gas discharge at pΛ = const. Using the energy balance for the electron gas, it is possible to
determine the electron density ne from the absorbed power. © 2002 MAIK “Nauka/Interperiodica”.
Fast evaluation of the parameters of a low-pressure
gas discharge, in which the charged particles are lost
predominantly on the walls and the plasma is character-
ized by smooth profiles, is most widely performed
within the framework of a global model [1–4]. This
approach is based on the balance equations for average
concentrations of particles and employs the reaction (in
particular, ionization) constants obeying the Arrhenius
relations with the ratios of the activation energy to the
electron temperature (~exp(–Ej/Te)). For this descrip-
tion to be adequate for real situations, it is necessary
that the effective electron temperature only slowly vary
in the cross section. This implies that the characteristic
diffusion length Λ is small compared to λT (λT @ λ, Λ),
which is the distance for which the thermal conductiv-
ity (leveling Te over the volume) dominates in the
energy balance of the electron gas [8]. In the global
model, the electron temperature Te (or the average
energy  = 3Te /2) entering into the exponential expres-
sion for the frequencies (v j) of processes involving
electrons is determined from the energy balance equa-
tion for the whole electron gas. 

However, it was established long ago (see, e.g. [5,
6]) that the electron energy distribution function (EDF)
significantly differs from the Maxwell distribution
(except for the so-called Langmuir paradox observed in
the collisionless regime, when the EDF is well approx-
imated by the Maxwell function [7]). For a not very
large degree of ionization (ne/n < 10–3) in the inelastic
energy range (ε > ε1), the EDF is essentially nonequi-
librium and depleted of high-energy electrons. The
EDF formation is nonlocal [8]; i.e., the distribution

ε

1063-7850/02/2810- $22.00 © 20841
depends on the physical quantities (primarily field
strengths) in a region determined by the electron relax-
ation length λT , rather than at a given point. This
approach is usually valid for pΛ < 1 Torr cm. In order
to determine the EDF, which depends in this case only
on the total energy ε = w + eφ(r) (kinetic plus potential),
it is necessary to average the Boltzmann equation over
the entire discharge volume [8]. 

For a real (nonequilibrium and nonlocal) EDF, the
calculations of v j based on the Maxwell distribution are
physically senseless and the errors of data obtained
using this approach are difficult to estimate even quali-
tatively. For this reason, it was recently suggested (see,
e.g., [9, 10]) to use a global model with the EDF repre-
senting a distribution of the Druvestein–Davydov type, 

(1)

At x > 1, this EDF decays with increasing energy more
rapidly than does the Maxwell function, thus being
closer to real situations. 

We believe that using an EDF of type (1) is inexpe-
dient because, strictly speaking, this distribution is
valid only for an elastic energy balance of electrons
(see, e.g. [5, 6]). However, it is the inelastic losses that
dominate in the energy balance of electrons of a low-
pressure gas discharge and, hence, the distribution of
type (1) with the parameters (c1, c2, x) determined from
the atomic quantities is never realized. Moreover, con-
sidering the distribution (1) merely as an approximation
with the fitting parameters c1, c2, x is also unfavorable,
since these values cannot be determined from reason-

f 0 ε( ) c1 c2ε
x–( ).exp=
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able physical considerations related to special features
of the EDF formation. 

The purpose of this paper is to suggest the simplest,
physically justified approximation of this type for
description of the nonmaxwellian EDF within the
framework of a global model. 

An analysis of the kinetic equation and a compari-
son of the results of calculations and experiments
reported by various researchers shows that the real EDF
in a gas discharge plasma is usually satisfactorily
approximated in terms of two groups of electrons with
the temperatures Teb and Teh: 

(2)

For ε ≤ ε1, expression (2) introduces an additional con-
stant which provides (unlike the two-exponent EDF
approximations used in [11–13]) for correct matching
of both the function and its derivative at ε = ε1. 

Using the distribution function (2), it is possible to
calculate all the required electron characteristics. In
particular, for a linear energy dependence σj(ε) =
σ0j(ε/εj – 1) of the cross sections of inelastic processes
(direct ionization, excitation of lower states, etc.), the
rate constants can be determined as 

(3)

In order to establish the main relationships between
the parameters, let us turn to the scaling law for gas dis-
charges, which follows from an analysis of the balance
of particles and energies [5]. Here, the main parameters
of the problem are pΛ, the gas pressure multiplied by
the characteristic diffusion length, and W, the power
absorbed per unit volume. In dc discharges, a combina-
tion of these parameters leads to the well-known simi-
larity parameters pΛ and i/Λ (where i is the discharge
current) [5]. The calculation of Λ for various discharge
geometries was described in [1]. For example, in a
plane-parallel geometry (x = 0, L), Λ = L/π; for a cylin-
der of radius R, Λ = R/2.405. 

The condition of stationary discharge implies equal-
ity of the rates of ionization and diffusion loss on the
walls: 

(4)

A kinetic description of the ionization process shows
that v i can be represented as a sum v i = v di + v st of the
rates of direct (v di) and stepwise (v st) ionization (for
more detail, see, e.g., [14]). When the stepwise ioniza-
tion dominates, it is a common practice to use an esti-
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mate of v i ≈ civ ex, where ci is a coefficient on the order
of unity and v ex is the rate of excitation of the lower
states (immediate ionization approximation [14]). The
characteristic time τs of the loss of electrons and ions
on the walls can be estimated using the interpolation
formula [1]

(5)

where τa = Λ2/Da is the characteristic time of ambipolar

diffusion, τb = aΛ/Vb, Vb =  is the Bohm veloc-
ity, and a is a coefficient on the order of unity. Since τs
in formula (5) is determined by the discharge volume
geometry, we may calculate the ionization rate from
relation (4) using the corresponding diffusion loss, even
without knowledge of the high-energy part of the EDF.
In turn, once v i is known, it is possible to reliably esti-
mate the temperature of the high-energy electrons (Teh).
Indeed, since this part weakly (logarithmically)
depends on Teb, we can calculate Teh by formulas (2)
and (4), where Teb under logarithm is replaced by Teh
without significant loss of accuracy. 

Eventually, it follows from Eqs. (2)–(5) that the Teh
value for a given gas depends only on the parameter pΛ.
Arbitrarily selecting any EDF that sharply (exponen-
tially) depends on the energy, including the Druvestein
function (1) or the Maxwell distribution, yields more or
less close values of Teh via formula (4) which logarith-
mically depend on the discharge parameters. Appar-
ently, this low sensitivity of the calculations with
respect to details of the high-energy part of the EDF is
exactly what accounts for the successful use of global
models in calculations. 

The kinetic equation leads to the following esti-
mate of the temperature of the high-energy part of the
EDF [8]: 

(6)

where DE = 2〈(eEeffλ)2v 〉/3 is the coefficient of energy
diffusion in an effective (spatially averaged) electric
field (for detail, see [8]). As can be seen from (6) and is
evident from the physical considerations, Teh (and,
hence, the ionization rate v i) is determined by the
“heating” electric field, which is longitudinal in the
positive plasma column and high-frequency in the RF
and microwave discharges. 

Since it is the field that supplies the energy to elec-
trons, a question naturally arises as to why the calcula-
tions using Eqs. (2)–(5) determine the ionization rate v i
and the temperature Teh as functions of only the param-
eter pΛ. The main reason for this is that, in all problems
of plasma physics, neither the motion of particles nor
the fields can be considered as preset: the fields are
determined both by the external conditions and by the
motion of charged particles, while the motion of parti-

τ s τa τb,+=

Te/M

Teh v j/DE

j

∑ ,=
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cles is determined by the fields. Therefore, all problems
should be treated as self-consistent: the plasma admits
penetration into the discharge volume of only those
fields “required” for a stationary regime. The ionization
rate is determined by the form of the EDF (i.e., by Teh),
which is determined by fields in the plasma. On the
other hand, it is necessary that the production of
charged particles compensate for their loss, which
depends primarily on the discharge geometry and the
pressure (pΛ). As a result, the effective average heating
field 〈Eeff 〉 , which can be calculated from relation (6)
using the Teh value determined by Eqs. (2)–(4), is also
determined by the parameter pΛ. This possibility was
also pointed out in [21]. The spatial distribution of the
self-consistent fields in the volume is a priori unknown.
Determining the field profiles in the plasma of various
discharges (ECR, ICP, SW, etc.) is an independent,
complicated problem. Attempts at finding Teh as a func-
tion of the field strength via relations of the type of (6)
usually lead to cumbersome and vague expressions
(see, e.g., [13, Eq. (17)]). 

Since the absorbed power W = 〈e2 ne/(mv )〉
depends on Eeff and ne , determining the quantity
〈Eeff 〉(Teh) requires recourse to the energy balance of the
electron gas: 

(7)

where the energy losses correspond to various inelastic
processes (εj are the electron energy losses due to a jth
elementary event at a rate of v j), elastic losses (va and
v ei are the frequencies of elastic electron–atom and
electron–ion collisions), and diffusion cooling (ϕw is
the potential difference between the axis and wall).
When the ionization rate is close to the excitation rate
and the wall potential in a nonlocal regime is close to
the ionization potential [8], we obtain 

(8)

This relation is indicative of the linearity of ne(W).
Once the right-hand part of relation (8) is known, it is
possible to determine the electron density from the
absorbed power deposited in the discharge (or from the
discharge current for a dc discharge). 

Knowledge of the temperature of slow electrons
(Teb) is necessary for determining the rates of low-
threshold processes (such as stepwise), the coefficient
of ambipolar diffusion, the potential jump in the near-
wall layer, etc. When the role of electron–electron col-
lisions is small (v e ! W/(neTeb)), the EDF of electrons
with ε ≤ ε1 for the inelastic energy balance is indepen-

dent of the field: f0(ε) ~ /(ελ(ε)) [8]. Accordingly,

the average energy determined with this EDF for a
power dependence of the frequency of elastic collisions
v (ε) ~ εn is also independent of the field: /ε1 ≈ 3(n +

Eeff
2

W  = ε jv jne δ v a v ei+( ) Te T–( )ne eϕwne/τ s,+ +
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1)/5(n + 2) [8]. A growth in the degree of ionization
(increase in W) leads to “maxwellization” of the EDF as
a result of the electron–electron collisions. For the
given external conditions and known mechanisms of
ionization and losses, the temperature of the high-
energy part Teh according to (4) remains virtually
unchanged. Therefore, an increase in the frequency of
electron–electron collisions leads to a change in the
EDF of slow electrons; i.e., the “distribution body”
temperature Teb approaches the unchanged “tail” tem-
perature Teh. This process is accompanied by a decrease
in DE (and, hence, in the field strength). In the literature
(see, e.g., [5, 6, 14]), changes in the EDF with increas-
ing electron density are frequently considered for a
fixed field strength. In such cases, variations of the
degree of ionization modify both the “body” and the
“tail” of the distribution. The figure presents the EDFs
for various discharges in argon experimentally mea-
sured by different researchers for approximately the
same parameter pΛ ≈ 30 mTorr cm (curve 1, [15,
Fig. 5d]; curve 2, [16, Fig. 5]; curve 3 [17, Fig. 1]; and
curve 4 [18, Fig. 10c]). As can be seen, the high-energy
parts of the EDFs exhibit a striking coincidence, which
confirms the above estimates. 

It should also be noted that with high-frequency dis-
charges (CCP, ICP, ECR, SW, etc.), regimes with a
large role being played by an “external” (relative to the
plasma region) energy supply that are analogous to the
negative glow region for a hollow cathode can be real-
ized. These conditions may lead to the formation of a
characteristic low-energy peak of maxwellian elec-
trons [19] closed by the self-consistent field in the cen-
tral region where the deposited energy is small. Then,
the EDF of the plasma will exhibit three characteristic
regions playing different roles: ensuring quasineutral-
ity, carrying current, and producing ionization. In such
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EDFs for induction discharges in argon (cylindrical geome-
try): (1) R = 22.5 cm, h = 2 cm, p = 9 Pa [15]; (2) R = 7.5 cm,
h = 10 cm, p = 1.33 Pa [16]; (3) R = 10 cm, h = 10.5 cm, p =
1.33 Pa [17]; (4) R = 7.5 cm, h = 6 cm, p = 3 Pa [18]. 
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more general cases, one should use a three-temperature
approximation distinguishing slow (bulk), intermedi-
ate, and fast electrons [8] such that Tei > Teh, Teb. Since
the ambipolar field and lifetime τa are determined by
the slow electrons, τa will increase, which may lead to
a decrease in the electron temperature in the fast part of
the EDF [20]. 

Acknowledgments. One of the authors (L.D.T.)
gratefully acknowledges the support of the Russian
Foundation for Basic Research (project no. 01-02-16874)
and NATO (grant SfP no. 97354). 

REFERENCES

1. M. Lieberman and A. Lichtenberg, Principles of Plasma
Discharges and Materials Processing (Wiley, New York,
1994).

2. A. V. Rozhansky and L. D. Tsendin, Transport Phenom-
ena in Partially Ionized Plasma (Taylor & Francis, Lon-
don, 2001).

3. C. Lee and M. A. Lieberman, J. Vac. Sci. Technol. A 13
(2), 368 (1995).

4. A. J. Lichtenberg, V. Vahedi, M. A. Lieberman, et al.,
J. Appl. Phys. 75, 2339 (1994).

5. G. Francis, Ionization Phenomena in Gases (Butter-
worths, London, 1960).

6. V. L. Ginsburg and A. V. Gurevich, Usp. Fiz. Nauk 70,
201 (1960) [Sov. Phys. Usp. 3, 115 (1960)].

7. A. A. Kudryavtsev and L. D. Tsendin, Zh. Tekh. Fiz. 69
(11), 34 (1999) [Tech. Phys. 44, 1290 (1999)].
TEC
8. L. D. Tsendin, Plasma Sources Sci. Technol. 4, 200
(1995).

9. J. T. Gudmundsson, Plasma Sources Sci. Technol. 10, 76
(2001).

10. M. W. Kiehlbauch and D. B. Graves, J. Appl. Phys. 91
(6), 3539 (2002).

11. W. L. Morgan and L. Vriens, J. Appl. Phys. 51 (10), 5300
(1980).

12. A. Hartgers and J. A. M. van der Mullen, J. Phys. D 34,
1907 (2001).

13. T. Kimura and K. Ohe, J. Appl. Phys. 89 (8), 4240
(2001).

14. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Usp.
Fiz. Nauk 107, 353 (1972) [Sov. Phys. Usp. 15, 375
(1973)].

15. G. Mumken, J. Phys. D 32, 804 (1999).
16. H. Sigh and D. B. Graves, J. Appl. Phys. 87, 4098

(2000).
17. V. A. Godyak, R. V. Piejak, and B. M. Alexandrovich,

J. Appl. Phys. 85, 3081 (1999).
18. U. Kortshagen, I. Pukropski, and M. Zethoff, J. Appl.

Phys. 76, 2048 (1994).
19. V. A. Godyak, in Electron Kinetics and Applications of

Glow Discharges, Ed. by U. Kortshagen and L. D. Tsen-
din (Plenum, New York, 1997), pp. 241–256.

20. S. V. Berezhnoj, I. D. Kaganovich, and L. D. Tsendin,
Fiz. Plazmy 24 (7), 603 (1998) [Plasma Phys. Rep. 24,
556 (1998)].

21. A. S. Smirnov and K. E. Orlov, Plasma Sources Sci.
Technol. 8, 37 (1999).

Translated by P. Pozdeev
HNICAL PHYSICS LETTERS      Vol. 28      No. 10      2002



  

Technical Physics Letters, Vol. 28, No. 10, 2002, pp. 845–847. Translated from Pis’ma v Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 28, No. 20, 2002, pp. 15–21.
Original Russian Text Copyright © 2002 by Grigor’ev, Vorontsov, Zav’yalov, Chvalun.

                       
The Effect of Adsorption on the Conductivity 
of Self-Organized Metal–Poly(para-xylene) Nanocomposites

E. I. Grigor’ev, P. S. Vorontsov, S. A. Zav’yalov, and S. N. Chvalun
Karpov Institute of Physical Chemistry, State Scientific Center of the Russian Federation, 

Moscow, 103064 Russia
e-mail: evg@cc.nifhi.ac.ru

Received April 29, 2002

Abstract—The effect of adsorbed electron donor (ammonia, alcohols, water) and electron acceptor (molecular
hydrogen, dichlorobutene, chloroform) molecules on the conductivity of polymeric nanocomposites, represent-
ing poly(p-xylene) containing metal (lead, copper, or palladium) nanoparticles (~10 nm in size), was studied as
dependent on the metal content and the gas or vapor pressure at room temperature. It was found that the con-
ductivity significantly (up to eight orders of magnitude) increases due to the adsorption of electron donor mol-
ecules and decreases upon the adsorption of electron acceptors. A mechanism of the sensor response is pro-
posed according to which the adsorption simultaneously changes the fractal characteristics of the nanocompos-
ites and the electron work function of metal nanoparticles. © 2002 MAIK “Nauka/Interperiodica”.
Development of analytical instruments of a new
type referred to as “electronic nose” requires the cre-
ation of “smart” materials capable of exhibiting a large
and reversible response to various chemicals present in
the surrounding gaseous or liquid phase. In recent
years, considerable research interest has been drawn to
the so-called polymeric nanocomposites—materials
comprising an insulating polymer matrix with dis-
persed metal or semiconductor nanoparticles [1–3].

The polymeric nanocomposites are characterized by
a fractal structure [2]. When the concentration (volume
fraction V) of nanoparticles reaches a threshold (criti-
cal) value Vc , an infinite conducting cluster is formed
and the nanocomposite exhibits a sharp growth in con-
ductivity. For nanoparticle concentrations below this
percolation threshold, the conductivity of nanocompos-
ites is determined by the tunneling of charge carriers
through thin polymer spacers between nanoparticles
and depends on the distance between these particles,
the dielectric permittivity of the polymer matrix, and
the electron work function of the nanoparticles. The
electrical response of nanocomposite sensors is related
to a change in these characteristics caused by the mol-
ecules of gases and/or vapors adsorbed on the surface
of nanoparticles or absorbed by the polymer matrix.

For example, swelling of the polymer matrix of a
polymer–soot nanocomposite with a filler content
above the percolation threshold in vapors of various
solvents leads to breakage of the conducting path, with a
resulting increase in the resistance of the composite [4].
The conductivity of a composite, in which the polymer
is grafted on the surface of soot particles, is determined
by the tunneling of carriers between the carbon nano-
particles. Swelling of the polymer leads to an increase
1063-7850/02/2810- $22.00 © 20845
in the distance between these nanoparticles. Accord-
ingly, the resistance of the nanocomposite exhibits
exponential growth with the solvent vapor pressure [5].
In the case of a CuS–poly(vinyl acetate) nanocompos-
ite, the variation of conductivity was attributed in [6] to
a change in the dielectric permittivity of the polymer
matrix as a result of water absorption, which also influ-
ences the tunneling between nanoparticles.

A large sensor response was observed for nanocom-
posites comprising a poly(p-xylene) matrix containing
metal or semiconductor nanoparticles in [7, 8]. It is
believed that the conductivity of such systems changes
as a result of adsorption-induced variation of the elec-
tron work function of the nanoparticles. Therefore, by
varying the chemical types of a polymer matrix and a
filler and by modifying the nanocomposite structure, it
is possible to synthesize nanocomposites that exhibit a
significant response as sensors at a sufficiently high
selectivity.

The aim of our experiments was to study the effect
of adsorption on the conductivity of poly(p-xylene)
films containing metal (Pd, Pb, Cu) nanoparticles in
relation to the metal content and the strength of interac-
tion between adsorbed molecules and the particle sur-
face.

The samples were synthesized by codepositing
metal vapor and p-xylene monomer onto a substrate
with platinum contacts cooled to a liquid nitrogen tem-
perature. Subsequent heating of the condensate up to
room temperature led to polymerization of the mono-
mer molecules and to aggregation of the metal atoms
with the formation of nanoparticles. The procedure was
described in detail elsewhere [9]. Mutual influence of
the simultaneous polymerization and aggregation pro-
002 MAIK “Nauka/Interperiodica”
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cesses leads to self-organization of the nanoparticles.
According to data from atomic force microscopy [10],
small (5–10 nm in size) metal nanoparticles are stabi-
lized in the amorphous region and decorate the greater
(200–300 nm) poly(p-xylene) nanocrystals. The depen-
dence of the conductivity of samples on the volume
metal fraction exhibits a percolation character [11] with
a threshold of about 5 vol %, which is characteristic of
chain structures [12].

In the presence of electron donor (ammonia, alco-
hols, water) molecules, the conductivity of samples sig-
nificantly (up to eight orders of magnitude) increased,
while the adsorption of electron acceptors (molecular
hydrogen, dichlorobutene, chloroform) led to a
decrease in the conductivity. Upon evacuation of the
gas phase, the room-temperature conductivity restored
on the initial level. For the samples containing Cu nano-
particles, the exposure to chloroform at room tempera-
ture resulted in irreversible changes in the conductivity.
The time of the sensor response varied from several
seconds to several minutes, depending on the sensor
type and gas pressure.

In our case, the main mechanism by which adsorp-
tion influences the conductivity of nanocomposites
consists in changing the electron work function of
nanoparticles. The adsorption of electron donor mole-
cules (e.g., ammonia) on a metal decreases the electron
work function [13]; as a result, the potential barrier also
decreases and the conductivity increases. Upon the
adsorption of an electron acceptor (e.g., molecular hydro-
gen on Pd), the electron work function increases [14], the
potential barrier grows, the tunneling current drops, and
the conductivity decreases.

In the dielectric (insulator) state, the conductivity of
composites is determined by the tunneling mechanism
of charge carrier transport and obeys the following
relation [15]:

(1)

where A is a constant factor, ϕ is the electron work
function of nanoparticles, Vc is the percolation thresh-
old, ∆V = Vc – V, V is the volume fraction of a metal, and
n = 1.6 in a three-dimensional case. In the region of
validity of the Henry law, the electron function is pro-
portional to the adsorbate pressure P in the gas phase
(ϕ ~ P) and, hence,

(2)

Figures 1 and 2 show the plots of ln(σ/σ0), where σ0
is the initial conductivity, versus pressure P for the
adsorption of ammonia, ethanol, propanol, and water
on a Pb-containing nanocomposite and for the adsorp-
tion of molecular hydrogen on Pd-containing samples.
As can be seen, the relation (2) is valid for the conduc-
tivity of Pb-containing samples exposed to ammonia,
ethanol, and propanol vapor and for the Pd-containing
sample in hydrogen. For the adsorption of ammonia
and hydrogen, deviation of the plots from the linear

σ Aϕ1/2V c ∆V n–( ),exp∝

σln P1/2.∼
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Effect of the metal (Pb) content in a poly(p-xylene) based nanocomposite sensor on the sensitivity s with respect to ammonia

s, ppm–1 1.1 × 104 8.4 × 103 5.1 × 102 2.1 5

∆V 2.5 × 10–2 2 × 10–2 1.5 × 10–2 1 × 10–2 5 × 10–3
law (2) at high pressures is related to violation of the
Henry law. For Pb-containing samples exposed to water
vapor, the conductivity varies according to Eq. (2) only
at low vapor pressures and then exhibits a sharp growth.

The values of sensitivity s = σ/(σ0p)|p  0 to
ammonium for the nanocomposites with various vol-
ume fractions of a metal (Pb) in the nanocomposite are
presented in the table. As can be seen, the sensitivity
decreases when the metal content approaches the per-
colation threshold. This is at variance with Eq. (1),
according to which the sensitivity must grow. The char-
acter of variation of the sensor conductivity as a func-
tion of the water vapor pressure and of the sensitivity as
a function of the metal concentration is indicative of an
adsorption-induced change in the fractal characteristics
of nanocomposites.

According to the model of the dynamic network of
random resistances [16], we may suggest that a
decrease (increase) in the electron work function of a
nanoparticle as a result of adsorption leads to the for-
mation (breakage) of conducting bonds between nano-
particles and to an increase (decrease) in the effective
conducting volume in the nanocomposite. For adsor-
bate molecules (e.g., ammonia) strongly interacting
with the surface, a change in the sensor conductivity
due to variations in the effective conducting volume
dominating at low adsorbate pressures. In contrast, for
molecules (e.g., water) weakly interacting with the sur-
face of nanoparticles, the influence of this factor is
more pronounced at high pressures.

The proposed mechanism of the adsorption-induced
changes in the conductivity of nanocomposites is also
confirmed by variations in the current–voltage charac-
teristics of samples observed in the presence of gases.
Indeed, the characteristics change from linear, observed
in vacuum, to nonlinear in the presence of ammonia. At
a certain metal concentration in the nanocomposite, the
dielectric breakdown takes place even at small applied
voltages, after which the parameters of samples do not
return to the initial level. The initially nonlinear current–
voltage characteristics become linear in the presence of
electron acceptor molecules such as dichlorobutene.
Especially pronounced was the change in the initially
linear current–voltage characteristics of the copper-con-
taining nanocomposites with a metal content above the
percolation threshold: upon adsorption of chloroform,
the characteristics acquired a nonlinear shape typical of
samples with under-threshold metal concentrations.

The above data are indicative of adsorption-induced
variations in the magnitude of local electric fields and,
hence, in the effective structural characteristics of the
nanocomposites studied. Analogous changes in the
TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      20
structural characteristics of nanocomposites have been
observed under the action of other external parameters
such as temperature [17] and field frequency [18]. 

Thus, it was demonstrated that high sensitivity to the
adsorption of gases and vapors observed for metal-con-
taining nanocomposites based on poly(p-xylene) is
related to simultaneous changes in the fractal character-
istics of the composite and in the electron work func-
tion of metal nanoparticles as a result of adsorption.
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in the Course of Crystallization

L. N. Korotkov, S. A. Konstantinov, Yu. V. Barmin, I. V. Babkina, 
A. V. Bondarev, V. V. Posmet’ev, and S. N. Kozhukhar’

Voronezh State Technical University, Voronezh, Russia
e-mail: 1_korotkov@mail.ru

Received May 6, 2002

Abstract—The laws of formation of an equilibrium crystalline structure of lead titanate during crystallization
from an amorphous state were studied. The initial thermal treatment leads to structural relaxation of the amor-
phous state. Subsequently, an intermediate state is formed whereby cubic phases with perovskite and pyro-
chlore structures coexist in the amorphous matrix. Finally, an equilibrium tetragonal phase is established at
room temperature. © 2002 MAIK “Nauka/Interperiodica”.
Lead titanate (PbTiO3) is one of the main compo-
nents of ferroelectric materials employed in various
electronic devices. In cases when the compound is syn-
thesized by spraying in vacuum [1–3] or by chemical
vapor deposition from organometallic compounds [3–6],
the initial material usually possesses an amorphous
structure and acquires ferroelectric properties upon
thermal treatment. The properties of the final material
significantly depend on the conditions of annealing,
which is naturally related to changes in the real structure.

Amorphous and semicrystalline compounds pre-
pared from ferroelectric crystals offer the possibility of
controlled variation of the structure and the crystal
grain size of samples. This makes such materials con-
venient objects for investigating the effects of viola-
tions in the translation symmetry of a crystal lattice on
the cooperative phenomena taking place in samples on
both meso- and microscopic levels. Original investiga-
tions of this kind, undertaken more than two decades
ago, were connected to a considerable extent with the
study of amorphous and semicrystalline lead titanate
[7–9]. However, despite the number of publications
devoted to this object, no detailed investigations of the
process of structural variations in the course of crystal-
lization in a broad temperature range have been per-
formed. In this context, the aim of our experiments was
to study features of the formation of an equilibrium
crystal structure of lead titanate.

The samples for investigation were prepared in the
form of thin plates cut to ~3 × 3 × 0.01 mm from a melt-
spun material. To this end, a powder of synthesized lead
titanate was melted in a quartz ampule at a temperature
of 1300°C and quenched by pouring onto a rapidly
rotating copper disk. An analysis of the chemical com-
position of the as-quenched samples using an electron-
probe microanalyzer of the JXA-840 type showed the
1063-7850/02/2810- $22.00 © 20848
following composition (at. %): Pb, 15.59; Ti, 14.07;
O, 63.49; and Si (impurity), 6.85.

During experiments, the samples of the initial amor-
phous material were heated to a certain temperature
(Tan) and annealed at this temperature for ~20 min.
After each annealing step, the X-ray diffraction curves
I(2θ) were measured in a Bragg–Brentano scheme on a
DRON-3 diffractometer using MoKα radiation filtered
by an MGP-RD50 graphite monochromator in a dif-
fracted beam. The measurements were performed in the
point-by-point mode with a 40-s data accumulation at
each step.

Figure 1a shows the I(2θ) curve of a sample mea-
sured before the thermal treatment. The shape of this
diffraction pattern is typical of an amorphous material.
Thermal annealing at temperatures below 600°C did
not led to the formation of a crystalline phase (Fig. 1b),
although the first peak in the I(2θ) curve slightly shifted
toward greater angles and somewhat increased in
height.

Taking into account that the maximum contribution
to the scattering intensity is due to lead atoms [10], we
can estimate the radius R1 (i.e., the Pb–Pb distance) of
the first coordination sphere using the expression for a
monoatomic amorphous body [10]:

(1)

The values of R1 (see table) approximately corre-
spond to the parameter a = 3.899 Å [11] of the unit cell
of a crystalline PbTiO3. From this we conclude that the
short-range order structures of the amorphous and crys-
talline PbTiO3 are not significantly different, although
the atoms in the amorphous state are packed somewhat
more closely. This conclusion agrees with the EXAFS
data [9], according to which the Pb–Ti and Pb–O dis-

R1
7.73λ

4π θsin( )
----------------------.=
002 MAIK “Nauka/Interperiodica”



        

VARIATION OF THE STRUCTURE OF AMORPHOUS LEAD TITANATE 849

                                                                                          
tances in lead titanate exhibit a slight (~5%) growth
upon crystallization of the samples. A decrease in R1 as
a result of the thermal treatment is evidence of structural
relaxation in the amorphous material, which is appar-
ently related to a decrease in the free volume [12].

After annealing at Tan ~ 600°C, sharp peaks appear
on the background characteristic of the amorphous
state (Fig. 2a). This is evidence of the formation of
crystalline regions in the amorphous matrix. An analy-
sis of the positions of the Bragg peaks observed at room
temperature indicated the presence of a cubic PbTiO3
phase with perovskite structure and a cubic Pb2Ti2O7
phase with pyrochlore structure. According to the pub-
lished data [3, 9, 13], the latter phase is not characteristic
of lead titanate and can be related to the presence of a sil-
icon impurity in the material studied [13].

The cubic PbTiO3 phase, existing in the usual crys-
talline lead titanate at temperatures above the ferroelec-
tric phase transition (Tc ≅  490°C), remains stable up to
room temperature. This is unambiguously confirmed
by the absence of reflections characteristic of the tetrag-
onal phase (cf. diffractograms in Figs. 2a–2c). By taking
into account the nanocrystalline character of the struc-
ture formed in the initial stage of crystallization, we may
suggest that the dimensional effect is among the factors
leading to stabilization of the paraelectric phase [14, 15].

At the same time (see table), the parameters of the
unit cells of both crystalline phase present in the sam-
ples significantly (by ~10%) exceed the values reported
in the literature [11]. This is probably related to a vio-
lation of the local stoichiometry in the compound stud-
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Fig. 1. X-ray diffraction patterns of a PbTiO3 sample in
(a) the initial state and (b) after the anneal at 570°C.
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ied. We may suggest that an increase in the unit cell
parameters is caused by a partial substitution of Pb4+ and
Pb2+ ions for Ti4+, which was observed in crystalline lead
titanate annealed under appropriate conditions [16].

Subsequent thermal treatments (Tan ~ 620 and
670°C) led to an increase in the intensity of X-ray dif-
fraction reflections (Figs. 2b, 2c), which is indicative of
a growth in the total fraction of crystalline phases (see
table). This was accompanied by the transformation of
lead titanate from the cubic into tetragonal modifica-
tion. It should be noted that the regime of thermal
annealing after which the tetragonal lattice distortions
become noticeable approximately corresponds to the
conditions of treatment leading to the formation of an
anomaly (at ~490°C) in the temperature dependence of
the dielectric permittivity [17]. This anomaly is a sign
of the ferroelectric phase transition.

After the final annealing stage, the X-ray diffraction
lines related to the cubic Pb2Ti2O7 phase disappear and
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Data on the structure of lead titanate after sequential anneals at various temperatures

Step no. Tan, °C Structure Amorphous 
phase fraction, % R1, Å

Unit cell parameters, Å

a c a, c (Ref.)

1 470 Amorphous 100 3.785

2 500 Amorphous 100 3.784

3 540 Amorphous 100 3.764

4 570 Amorphous 100 3.746

5 600 Amorphous 81

PbTiO3 (cub., perovskite) 4.39 3.96 [14]

Pb2Ti2O7 (cub., pyrochlore) 11.58 10.4 [11]

6 620 Amorphous 69

PbTiO3 (cub., perovskite) 4.39

Pb2Ti2O7 (cub., pyrochlore) 11.62

7 670 Amorphous 0

PbTiO3 (tetr., perovskite) 3.917 4.177 3.899

4.153 [11]
the diffractogram exhibits only peaks corresponding to
the tetragonal modification of lead titanate (Fig. 2c).
The resulting lattice is characterized by parameters a
and c close to the published values [11].

Thus, the experimental results reported above
showed that the short-range order structures of lead
titanate in the crystalline and amorphous states are
apparently do differ not significantly; however, the lat-
ter structure is somewhat more closely packed. Thermal
anneals in the crystallization temperature region lead to
an initial structural relaxation in the amorphous state.
Subsequent thermal treatment leads to the formation of
a state characterized by the coexistence of a cubic
PbTiO3 phase with perovskite structure and a cubic
Pb2Ti2O7 phase with pyrochlore structure in the amor-
phous matrix at room temperature. Final anneals lead to
the formation of an equilibrium tetragonal phase of lead
titanate.
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Abstract—The process of variation of the density of an amorphous carbon sample under the action of car-
bon atoms with energies in the range from 10 to 500 eV was numerically modeled using the methods of
molecular dynamics. It is shown that a maximum densification of the substrate takes place for energies of
bombarding carbon atoms in the interval of 30–40 eV. The results of calculations are compared to experi-
mental data. © 2002 MAIK “Nauka/Interperiodica”.
The model of shallow implantation (subplantation)
leading to an increase in density of the subsurface layer
of a substrate under the action of implanted homoatoms
was originally proposed by Lifshitz et al. [1]. This
model was theoretically confirmed [2] by a method tak-
ing into account the Coulomb interaction between col-
liding particles [3]. 

In order to study this model in the energy range from
10 to 100 eV, Uhlmann et al. [4] performed a molecular
dynamics (MD) calculation proceeding from first prin-
ciples. The calculation referred to a disordered lattice
containing 130 carbon atoms to which no more than
20 new atoms were added in the course of modeling.
The results generally confirmed the validity of the sub-
plantation model for incident particle energies exceed-
ing 30 eV. However, it was possible to add only a rela-
tively small number of atoms to the initial system
within the framework of the approach employed, since
MD methods based on ab initio calculations require
much computation time and are relatively expensive.
On the other hand, restricted statistics significantly
decreases the reliability of the results. 

In this study, dependences of the absolute values of
the sample density (amorphous carbon) on the distance
from a surface bombarded by atoms added to the sys-
tem were determined using the classical MD tech-
niques. A semiempirical formulation of the many body
problem reduced to the use of a pair interatomic inter-
action potential in the form suggested by Brenner [5, 6]
allowed the number of particles added to the system to
be significantly increased in comparison to the case of
the ab initio MD calculations. 

The results of our numerical experiments showed
evidence of a densification of the substrate material in
the subsurface region observed for energies of incident
atoms in the interval from 3 to 40 eV. The data pre-
sented below are in a good agreement with our data
reported previously (in relative units) [7]. It should be
1063-7850/02/2810- $22.00 © 20851
noted that the statistical averaging of the number of
nearest neighbors performed in [7] was probably insuf-
ficiently correct; it masked the local character of the
subplantation effect. This circumstance is also con-
firmed by the data obtained in [8], where an increase in
the number of nearest neighbors averaged over the total
number of atoms required modification of the shape of
the Brenner potential. We present the absolute values of
the density distribution; this allows the original calcu-
lated values to be compared to the experimental data
from [8] without introducing changes to the empirical
potential. 

The semiempirical pair potential of the C–C interac-
tion employed in this study was originally introduced
by Brenner [5, 6]. This potential refines the shape of the
potential function suggested by Tersoff [9] and (in con-
trast to the latter potential) allows us to describe both
the lattices of diamond and graphite and the conjugated
bonds in hydrocarbons. The proposed potential ensures
a better agreement with experiment for modeling car-
bon clusters containing small numbers of atoms. The
classical MD approach [10] is based on numerical inte-
gration of the equations of motion, whereby forces
acting upon every atom of the system are determined
using the dependence of the potential function on the
distance. 

We employed two models of the substrate as com-
posed of amorphous carbon. The mutual arrangement
of atoms modeling the substrate material was taken
from [11], where it was determined proceeding from
first principles. The first model corresponded to amor-
phous carbon with a density on the order of 2 g/cm3

(low-density substrate), while the second model had a
density on the order of 3 g/cm3 (high-density substrate).
Both substrates consisted of cells composed of 128 car-
bon atoms. For energies of atoms added to the system
not exceeding 30 eV, the substrate comprised eight such
cells (1024 atoms), while the substrate bombarded by
002 MAIK “Nauka/Interperiodica”
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carbon atoms with energies exceeding 100 eV con-
tained 16 cells (2048 atoms). 

The periodic boundary conditions fixed atoms on
the boundaries and on the bottom of the cell, while the
upper surface of the cell remained free. Since atoms at
the cell surface are not fixed and contain a large number
of dangling bonds, the substrate surface in the model
employed is far from equilibrium. For this reason,
before adding new carbon atoms to the substrate, the
surface was allowed to relax for 2 ps. During the subse-
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Fig. 1. Material density profiles obtained after adding 400
carbon atoms to an initial amorphous carbon substrate of
(1) high and (2) low density. Zero coordinate D corresponds
to the initial substrate surface. 
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Fig. 2. A plot of the density of amorphous carbon versus the
energy of atoms bombarding the substrate surface. Black
squares represent the experimental EELS data [12]; curves
show the results of our numerical experiments for the
(1) high-density and (2) low-density substrates. 
TE
quent 2 ps, excess energy was removed from the system
by introducing damping with a time constant on the
order of 2 ps into the equations of motion. The same
procedure was employed in the course of adding new
atoms to the system, whereby a carbon atom possessing
a certain energy was normally incident onto the sub-
strate surface and struck a randomly selected point on
this surface. Prior to adding each subsequent atom, the
substrate was allowed to evolve for 4 ps according to
the algorithm described for the free surface. The com-
putation process was terminated upon adding 400
atoms to the system. 

Figure 1 presents the results of numerical modeling
for carbon atoms incident with an energy of 30 eV. As
is seen, the depth profile of the material density exhibits
a maximum at a certain distance from the initial sur-
face. The absolute value in the maximum significantly
depends on the initial material density, the maximum
density (~3.5 g/cm3) being observed for the high-den-
sity substrate. 

A comparison of the numerical and real experiments
at various energies was performed for the results of cal-
culations at a depth of 4 Å from the initial surface. The
experimental profiles were restored from the values of
plasma frequencies [12] determined from electron
energy loss spectroscopy (EELS). This method is sen-
sitive to the state of the sample surface, which justifies
the comparison of real and numerical experiments. 

Figure 2 shows a plot of the densities versus the
energy of incident atoms. As can be seen from this plot,
the substrate material reaches a maximum density for
incident energies of 30–40 eV. The numerical results
for the substrates of both types repeat the shape of the
experimental plot but differ from the latter in absolute
value. This discrepancy is probably related to the fact
that the experiments reported in [12] were performed
on silicon, while our substrate was made of amorphous
carbon. 

Thus, we have constructed a realistic model and
used it to study the effect of densification of an amor-
phous carbon substrate in the course of bombardment
with carbon atoms at various energies. A comparison of
the results of numerical and physical experiments
shows that selection of the initial substrate material and
the energy range of bombarding particles is of practical
importance for realization of diamond synthesis by the
method of low-energy ion (atom) bombardment. 
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Abstract—Variation of the optical and electrical properties of films of hydrated vanadium pentoxide under the
action of an applied electric field was studied. The samples exhibited an “internal” electrochromic effect caused
by a redistribution of hydrogen ions in the film, rather than by their penetration from outside (electrolyte). The
process of cathodic polarization at a current of I ~10–5 A for t ~ 10 min is accompanied by a local increase in
the hydrogen concentration (confirmed by direct measurements of the ionic conductivity), leading to a change
in the optical properties. This is manifested by an increase in the transmission coefficient in the longwave spec-
tral region and by a shift of the absorption edge (at hν = 2.3 eV) toward greater wavelengths. According to the
IR spectroscopy data, this is also accompanied by some increase in the water content in colored regions of the
V2O5 · nH2O film. © 2002 MAIK “Nauka/Interperiodica”.
The process of electromigration is of considerable
interest in various fields of solid state physics and are
important from the standpoint of electronic technology
and operation of solid state electronic devices. For
example, the electromigration of metal atoms (Cu, Al)
from conductors in integrated circuits is one of the rea-
sons for failures in electronic equipment. On the other
hand, the electromigration of gold can be used as an
effective technology for the formation of contacts in
nanoelectronic devices [1]. 

The class of materials and phenomena in which a
high ionic conductivity plays the determining role
includes superionic conductors and solid electrolytes,
the electrochromic effect in transition metal oxides, and
electroforming in amorphous semiconductors. In the
latter case, chemical and structural transformations in a
strong electric field result in the formation of channels
possessing special electrical properties (negative differ-
ential conductivity) [2]. The electrochromic effect is
related to the injection of cations—usually hydrogen or
alkali metals—from outside (electrolyte) under the
action of an applied field [3]. 

At present, hydrated vanadium pentoxide V2O5 ·
nH2O obtained by sol–gel technology draws the atten-
tion of researchers owing to a number of promising
applications [4–6]. From the standpoint of electrical
properties, vanadium pentoxide is a semiconductor fea-
turing mixed electronic and ionic (proton) conductivity.
While the intrinsic ionic conductivity of hydrated vana-
dium pentoxide has been studied in sufficient detail,
changes in the material properties related to the process
of electromigration have remained practically unstudied. 
1063-7850/02/2810- $22.00 © 20854
The aim of our experiments was to study modifica-
tion of the optical and electrical properties of a V2O5 ·
nH2O (n = 1.6–1.8) xerogel under the action of an
applied dc voltage. The samples were prepared as
described elsewhere [7]. The optical properties in the
visible range (λ = 400–900 nm) were studied with an
SF-46 spectrophotometer using films on glass sub-
strates, while the IR spectra (ν = 400–4000 cm–1) were
recorded on a Specord M80 spectrophotometer using
films on silicon substrates. The ac conductivity of
Au/V2O5 · nH2O/Al sandwich structures was measured
using a VM-507 instrument in the frequency range
from 5 Hz to 0.5 MHz. 

The sample films with a thickness of d ≈ 10 µm on
glass substrates were treated by passing a constant cur-
rent of 10–20 µA for a time period of 10–30 min in a
two-electrode planar system with an interelectrode dis-
tance of ~1 mm. The passage of current through a sam-
ple was accompanied by the appearance and gradual
increase of a red spot at the cathode. The effect was
fully reversible. In the sandwich structures studied, a
deposited Al electrode (1 mm in diameter) served as the
cathode. In these samples, the currents and the colora-
tion times were approximately the same as those in the
planar structures. However, the voltage drop across
such structures was significantly smaller (not exceed-
ing several volts) than that in the planar scheme. The
observed effect of coloration is qualitatively similar to
the electrochromic effect, but it takes place in a “dry”
system not involving an electrolyte. For this reason, we
termed the observed phenomenon the “internal” elec-
trochromic effect. The usual electrochromic effect in
002 MAIK “Nauka/Interperiodica”
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V2O5 was originally reported in [8]. In addition, V2O5
exhibits photo- and thermochromic effects [6, 9]. In [6],
the photochromic behavior was studied for V2O5 films
prepared using sol–gel technology. 

Figure 1a shows the transmission coefficient as a
function of the light wavelength. As can be seen, color-
ation of the sample is accompanied by a shift of the
absorption edge toward longer wavelengths. As a result,
the optical bandgap width decreases from 2.28 to
2.22 eV (Fig. 1b). The bandgap Eg ≈ 2.3 eV agrees well
with the corresponding value Eg = 2.35 eV reported for
V2O5 films [10]. This coincidence indicates that the
intrinsic absorption in V2O5 · nH2O, as well as that in a
pure (anhydrous) vanadium pentoxide, is due to the
O2p  V3d electronic transitions. A small variation
of Eg is probably related to some distortion of the V–O
polyhedra in the structure of V2O5 · nH2O (the bandgap
in V2O5 is known to be extremely sensitive to such dis-
tortions, for example, to symmetrization of the oxygen
octahedron [9]). 

It should be noted that, despite the change in Eg
being insignificant (not exceeding 0.1 eV), the
observed visual contrast is rather pronounced. The film
color changed from yellow-green or yellow-brown
(depending on the film thickness d) to red or dark pur-
ple, respectively. This is related to the fact that colora-
tion leads not only to a shift of the absorption edge but
also to a significant decrease in the level of absorption
in the red spectral region (increase in transmission, see
Fig. 1a). A comparison of the IR absorption spectra of
the initial and colored films shows evidence of an
increase in the concentration of water molecules in the
colored spot (probably due to interaction of H+ ions
with V−OH defects). In addition, colored samples
exhibit more intense absorption in the range from 2800
to 3600 cm–1 (corresponding to the stretching vibrations
of water molecules) and in the region of 1600 cm–1 (H2O
bending vibrations) [5]. At the same time, the intensities
of the absorption bands in the region of 500–700 cm–1

corresponding to vibrations of the V–O bonds remain
virtually unchanged. 

In order to elucidate the mechanism responsible for
modification of the optical properties of a V2O5 gel, we
also studied the electrophysical properties of initial and
modified films. Measurements of the impedance Z and
phaseshift angle ϕ showed that Z decreases with
increasing frequency, while the frequency dependence
of  = –  exhibits a characteristic minimum at
~500 Hz. The analysis of changes in the Z( f ) and

( f ) values was performed based on an equivalent
scheme, depicted in Fig. 2. As is known, the choice of
one or another substitution scheme to describe the
properties of a given structure is determined by the fre-
quency characteristics. For example, the scheme in the
inset to Fig. 2 describes the behavior of a system with a
minimum in the dielectric loss tangent [11]. In select-

δtan ϕcot

δtan
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ing the equivalent scheme, we took into account that the
system studied possesses electronic conductivity (R),
ionic conductivity (r), and a capacitance (C). In this
scheme, resistance r describes losses caused by the
migration polarization of protons [11]. Using the exper-
imental data for Z( f ) and ( f ) and taking into
account the condition of minimum for ( f ), we cal-
culated the frequency dependences of the ionic compo-
nent of the resistance for the initial and colored films
(Fig. 2). In order to determine three unknowns (R, r, C)
from two equations (for Z and ), the function R(f)
was considered to be preset, R = Af –s (where A = const).
The dependence of the conductivity of disordered mate-
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Fig. 1. Modification of the optical properties of a V2O5 gel
as a result of the internal electrochromic effect, illustrated
by (a) the experimental transmission spectrum and (b)
absorption coefficient (calculated as described in [10]) in
the coordinates corresponding to direct forbidden transi-
tions: (1) initial film; (2) the same film after application of
an electric field (I = 8 µA, t = 10 min). 
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rials behaving as σ ~ f s (s = 0.7–0.9) is well known [2].
We have experimentally verified this law upon removal
of water from one of the samples by annealing at T =
300°C, which eliminates the ionic conductivity compo-
nent [4]. It was found that the dispersion of R(f) is actu-
ally described by a power function in a broad frequency
range with s = 0.71 ± 0.07. 

As can be seen from Fig. 2, cathodic polarization
leads to a local increase in the ionic conductivity and,
hence, results in an increasing proton concentration in
the colored region. This accounts for the electrochro-
mic coloration, that is, for modification of the optical
properties (Fig. 1). It should be noted that, in contrast to
the standard electro- and photochromic effects in V2O5,
we observed an opposite color contrast: from yellow to
red, rather than from yellow to green [4, 6, 8, 9]. This
behavior can be explained by the presence of water, the
concentration of which (according to the IR data) also
increases in the course of coloration. However, this
question (concerning the contrast inversion) is not quite
clear and requires additional investigation. 

Thus, the results presented above indicate that the
films of a V2O5 · nH2O xerogel exhibit modification of
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Fig. 2. Frequency dependences of the resistance modeling
the ionic component of the conductivity of a V2O5 gel:
(1) initial film; (2) the same film after coloration in a sand-
wich structure exposed to an electric field (I = 20 µA, t =
30 min). The inset shows an equivalent scheme used in the
calculations. 
TEC
their optical and electrical properties caused by the
redistribution of protons as a result of electromigration
under the action of an applied electric field. In conclud-
ing, it should be noted that electrochromic materials are
promising for use in small-size displays, current-con-
trolled optical filters, etc. [3, 4, 6, 8]. In this respect, the
observed “internal” electrochromic effect, showing the
possibility of eliminating electrolyte, is of special inter-
est for technical applications. 
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Abstract—The cutoff conditions are determined for a planar waveguide containing an amplifying (or absorb-
ing) waveguide layer. The dependence of the waveguide layer thickness and propagation constant on the level
of gain (damping) in the waveguide under the cutoff conditions is numerically analyzed. © 2002 MAIK
“Nauka/Interperiodica”.
Introduction. The behavior of guided optical
modes in planar waveguide structures with absorption
has been extensively studied [1–5]. In recent years,
considerable research attention has been devoted to the
active waveguide structures possessing amplification
properties [6, 7]. In particular, active waveguide struc-
tures based on erbium-doped silicon are of interest due to
the peak in gain at 1.54 µm, which makes compensation
of the intrinsic and dispersive losses possible [8–10]. 

The presence of an imaginary component in the
dielectric permittivity of one layer of a waveguide
structure renders the waveguide mode propagation con-
stant a complex quantity [2, 11] and leads to the appear-
ance of surface modes of the polariton type [12].
Another important characteristic of a waveguide struc-
ture is the cutoff thickness Lc for which a mode converts
from waveguide to radiative [1]. In a traditional three-
layer waveguide structure with real permittivities of
layers, the cutoff thickness Lc corresponds to a mini-
mum propagation constant βC = 2π/λ1, which is the
same for all waveguide modes (λ1 is the light wave-
length in the substrate). 

The presence of gain (damping) in a waveguide
leads to violation of this correspondence. No detailed
analysis of the cutoff conditions for various modes in
such structures has been reported in the literature. We
used numerical methods to study the cutoff conditions
and the corresponding characteristics of a planar three-
layer waveguide with an active guiding layer. 

Description of the model. Consider a planar three-
layer waveguide structure comprising the substrate, the
main waveguide layer, and the coating material. Let the
permittivities of the substrate (ε1) and the coating mate-
rial (ε3) in the frequency range studied be real and the
waveguide layer possess a complex permittivity ε2 =

 + i . Arrange the structure such that the x axis is
perpendicular to the boundaries between layers of the
structure. The interface of the substrate and waveguide

ε2' ε2''
1063-7850/02/2810- $22.00 © 20857
layer coincides with the plane x = –L, while the inter-
face of the waveguide layer and coating material coin-
cides with the plane x = 0. 

The electromagnetic field components of the
waveguide mode propagating in the z axis direction can
be presented in the following form:

(1)

where α = x, y, z; β = β1 + iβ2 is the complex propaga-
tion constant, the imaginary part of which characterizes
the mode damping (β2 < 0) or gain (β2 > 0) and the real
part, the phase velocity; and Φα(x) are the components
of the vector profile function determining the distribu-
tion of the mode field across the waveguide. The β1
value is usually called the propagation constant of the
absorbing (amplifying) waveguide. The component Fy

denotes the electric field component Ey for a TE mode
and the magnetic field component Hy for a TM mode.
In the waveguide geometry chosen, this component is
transverse with respect to the propagation direction and
tangential with respect to the layer boundaries. The cor-
responding component of the profile function is as fol-
lows: 

(2)

where A is the normalization constant, ζ = 1 for TE
modes, and ζ = ε2/ε3 for TM modes. In the case under
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consideration, the transverse components of the wave
vector (p, q, and h) in each layer of the structure are
complex quantities whose real and imaginary parts are
defined as 

(3)

Here, the parameters p, q, h correspond to j = 1–3,
respectively, and 

where k0 = ω/c and c is the speed of light in vacuum. For
z components of the waveguide mode field, the Max-
well equations yield the following relations: Fz(x) =
±i(γ(x)k0)–1dFy /dx, where the upper sign and γ(x) = 1
for all layers of the waveguide structure correspond to
the Hz component of the TE modes, while the lower
sign and γ(x) = εj correspond to the Ez component of the
TM modes. 

Solution of the problem. For a nonabsorbing
waveguide structure, the quantities p, q, and h are real
values. In this case, the cutoff condition is expressed as
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Fig. 1. Plots of the propagation constant β1 and the mode
gain β2 versus the waveguide layer thickness for the first
four TE (solid curves) and TM (dashed curves) modes at

 = 0.05. n2''
TE
p = 0, whereby the mode is radiated into the substrate.
The cutoff waveguide thickness Lc is determined from
the dispersion equation obtained using the boundary
conditions for the tangential components of the electric
and magnetic fields in the structure with p = 0. The loss
of the waveguide properties also takes place for h = 0,
in which case trigonometric solutions in the waveguide
layer change to hyperbolic. This leads to violation of
the continuity condition for the field components with
amplitudes decreasing with increasing distance from
the waveguide layer. 

In the case of the complex parameters p, q, and h, it
follows from relations (2) that the waveguide mode is
radiated into the substrate for p' = 0 and into the coating
material for q' = 0. Violation of the waveguide properties
in the whole structure (by analogy with the absorbing
structure) takes place for h' = 0. According to expres-
sions (3), these equalities hold provided that uj ≤ 0 and
v j = 0. From this it follows that, in the waveguide
regime, the propagation constant and the mode damp-
ing obey the following conditions: 

(4)

The appearance of radiative modes in the substrate
and/or coating material takes place for β2 = 0 and,
respectively, 

(5)

(for certainty, here and below we assume that  > ε1).
Thus, the cutoff thickness in a waveguide with gain can
be determined by solving a dispersion equation with the
parameters p, q, and h corresponding to the above cut-
off conditions: 

(6)

Here, η = 1 for TE modes and ε2/ε1 for TM modes; pc =

, qc = , and hc =  for
β2 = 0. Equation (6) is complex and can be separated
into real and imaginary parts, which yields two equa-
tions for the unknown parameters Lc and β1c . These
equations possess no analytical solutions and are not
presented here due to their being too cumbersome. The
results of analysis, performed based on the numerical
solution, are presented below in plots of certain
waveguide characteristics. 

Numerical analysis. For a numerical analysis of the
cutoff regime in the waveguide structure under consid-
eration, let us assume for certainty that ε1 > ε3 (this
implies the cutoff for a waveguide mode converting
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into a radiative mode at the waveguide–substrate inter-
face). The values of the parameters of structure and
radiation were selected as follows: ε1 = 14.44; ε2 =

(3.86 + i )2, ε3 = 1.00, and λ = 0.6328 µm. This set
corresponds to a real waveguide structure with a silicon
substrate and an active waveguide layer based on doped
silicon [10]. The positive and negative signs at  cor-
respond to the cases of gain and damping, respectively. 

Figure 1 presents the plots of the propagation con-
stant and the mode gain for the TE (solid curves) and
TM (dashed curves) modes with m = 0–3 at an amplifi-
cation parameter of  = 0.05. As can be seen from
these data, the propagation constants at the cutoff thick-
ness β1c for the modes of various orders are different (in
contrast to the case of nonabsorbing waveguide). As the
mode index increases, the cutoff onset is observed at
greater waveguide thickness and smaller propagation
constants. This leads to a significant expansion of the
region of propagation constants for which the
waveguide regimes are realized. At a fixed thickness L
of the waveguide, the TE modes exhibit greater values
of the propagation constant and gain as compared to
those of the TM modes. An analysis shows that an
increase in gain in the waveguide layer leads to an

increase in the difference ∆β1, 2 =  –  and to the
appearance of features in the behavior of the TM mode
near the cutoff, whereby the propagation constant
increases with thickness L at a slower rate. In addition,
radiative modes in a substrate with the given  appear
at a smaller thickness for the TE modes than for the TM
modes. 

Figure 2 presents the plots of the propagation con-
stant β1c and the waveguide thickness Lc in the cutoff

regime as functions of the parameter  for the TE
(solid curves) and TM (dashed curves) modes with m =
0–3. The initial values (at  = 0) of the parameters

β1c = k0  and Lc for all modes correspond to the case
of a transparent waveguide structure. As can be seen,
these values for the TE modes decrease virtually mono-
tonically with increasing , the drop being more pro-
nounced for the higher modes. For the TM modes, no
such monotonic behavior is observed. The appearance
of a break in the β1c( ) curve and a step in Lc( )
observed for the TM3 mode is related to the regime of
radiative modes in the coating material being approached:

β1c = k0 . An analogous break takes place with
increasing n2 for each subsequent TM mode of a lower
order. As a result, the TM modes of various orders dif-
fering by unity (TM2 and TM3 in Fig. 2b) can possess
the same cutoff thickness and different critical propaga-
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tion constants β1c . In the case of absorbing waveguide
layers (  < 0), the dependences of the propagation and
damping constants of various modes on the layer thick-
ness are analogous to those depicted in Fig. 1, except
that β2 acquires negative values. It should also be noted
that the interval of values of the parameter  in Fig. 2
in fact corresponds to the waveguides with absorption.
Only the initial parts of these curves describe
waveguide structures with gain that are characterized
by  ! 1. 

The features of the cutoff regimes observed for both
orthogonal mode polarizations in the waveguide struc-
tures with amplifying (absorbing) waveguide layers can
be used to create active optoelectronic devices based on
structures of the insulator–semiconductor–insulator
type. 
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Abstract—A relation between the Joule–Thomson effect and the Darcy law is established within the frame-
work of a kinetic approach. This relation is of a purely dissipative nature. The dependence of the Joule–Thom-
son coefficient αW on the permeating liquid viscosity is studied. © 2002 MAIK “Nauka/Interperiodica”.
During the diffusion saturation of porous structures
with a liquid [1], it is possible to realize conditions of
the so-called Joule–Thomson effect. Although this
effect is considered in every textbook on statistical
physics, it is expedient to briefly describe the physical
essence of the phenomenon observed. 

Consider a cylinder provided with a perfect thermal
insulation arbitrarily separated into two compartments
by a porous (e.g., paper) spacer, the pressures and tem-
peratures in the left and right compartments being P1,
T1 and P2, T2, respectively. When compressed by a pis-
ton, a liquid in the left compartment with a volume of V1
will slowly permeate through the porous spacer (also
referred to as the membrane) into the right compartment,
thus increasing its volume V2. In this system, the depen-
dence of the pressure on the temperature is sharply man-
ifested in both compartments. Introducing the tempera-
ture difference δT = T1 – T2 and the pressure difference
δP = P1 – P2, we can express the relation between these
quantities as δT = αδP. Owing to the smallness of the
temperature and pressure variations, the coefficient α
can be formally defined as a coefficient of expansion of
T(P) in a Taylor series and represented by the partial
derivative (∂T/∂P)W, where W denotes the enthalpy,
which remains constant in the course of the process
under consideration. Indeed, since (δE)S, V, N = (δΩ)µ, V, T
and E1 – E2 = Ω1 – Ω2 = P2V2 – P1V1 (where Ω = –PV),
it follows that E1 + P1V1 = E2 + P2V2 = W = const. 

It is evident that the entropy is not conserved
(despite the condition that the cylinder is thermally
insulated and the global entropy is conserved), since a
real system always features a friction of liquid in the
pores of the membrane. 

In order to evaluate the derivative (∂T/∂T)W , let us
pass from the variables (P, W) to a more convenient
pair, for example, (P, T). In these terms, 

α α W ∂T /∂P( )W
∂ T W,( )
∂ P W,( )
--------------------∂ T P,( )

∂ T P,( )
------------------= = =

=  
∂ T P,( )
∂ P W,( )
--------------------∂ T W,( )

∂ T P,( )
------------------- ∂W /∂P( )T ∂T /∂W( )P–=
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and we eventually arrive at the formula 

From this expression, it follows that (according to
the equation of state pV = NT) for the ideal gas the
derivative (∂V/∂T)p = V/T and the coefficient αW is zero.
Such a result suggests a relation between the coefficient
αW and the interaction of permeating liquid with the
surface of pores. Thus, the Joule–Thomson coefficient
αW represents a purely dissipative characteristic of the
irreversible thermodynamic process and must be
related to the permeability coefficient K, which enters
into the Darcy formula and is dependent on the liquid
viscosity η. 

The aim of this study is to establish a relation
between αW and K on a strict mathematical level. For
this purpose, let us calculate the dissipative function
dQ/dt. By definition, dQ/dt = TdS/dt, where S is the
entropy. Since we are dealing with a classical Boltz-
mann gas of molecules, a general expression for the
entropy through a nonequilibrium distribution function
fp can be written as 

(1)

where dΓ = Vd3p is the element of the phase space vol-
ume, 〈fp〉  is the equilibrium Boltzmann distribution
function, 

(2)

εp = p2/2M is the translational energy of molecules, and
T0 is the equilibrium temperature. 

As can be seen, the volume V does not enter into the
final expression. The integral in the denominator of (1)
can be readily calculated to yield 

αW ∂T /∂P( )W Cp
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S
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By differentiating formula (1) with respect to time, we
obtain 

(3)

According to the Boltzmann equation,  = L{fp}.
Here, L{fp} denotes the collision integral for molecules
of a classical gas. In the so-called tau-approximation,
L{fp} = –δfp/τp , where τp is the relaxation time and δfp =
fp – 〈 fp〉 . Using the expression for the total derivative, 

assuming the force F acting upon the molecules to be
equal to zero, and considering the distribution to be sta-
tionary for the times δt @ 〈τ p〉 , we obtain a formula for
the required correction δfp , 

(4)

Here, a quasi-equilibrium distribution is introduced due
to the relation 

(5)

where V(r, t) and T(r, t) are the inhomogeneous distri-
butions of the macroscopic velocity and temperature in
the liquid flow. 

Relation (4) yields, in a linear approximation with
respect to small gradients, the required correction to the
equilibrium distribution function: 

(6)

Now, we can return to formula (2). By putting fp = 〈 fp〉  +
δfp , taking the total derivative with respect to time equal
to dfp/dt = d /dt = –δfp/τp , and using the known
expansion of the natural logarithm into the Taylor series
(according to which ln(1 + x) ≈ x for small x), we obtain
the following expression for the dissipative function: 

(7)

where 

Let us consider each of the two terms separately,
beginning with J1. Using expression (6) and taking into
account that the equilibrium distribution function is

S f p f pd3 p/Z .ln∫–=
. .
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TEC
〈 fp〉  = exp{–εp/T0}, we obtain 

Upon integration with respect to the angular variables,
the second integrand (proportional to the temperature
gradient) yields zero. By employing the rule of averag-
ing over the angular variables, according to which

pk(…)d3p = (δik/3) (…)d3p, the first term can be

eventually transformed to 

(8)

Using one of the major equations of hydrodynamics
(continuity equation) ∂ρ/∂t + div(ρV) = 0, where ρ is
the liquid density, and assuming that the liquid is
incompressible, we put ρ = const and obtain divV = 0.
This result implies that J1 = 0. 

Returning to Eq. (7), we obtain 

As can be seen, this quantity is non-negative for any
value of the parameters (according to the second law of
thermodynamics). By substituting solution (6) into this
formula, we arrive at 

By calculating the square of the expression in square
brackets and retaining only even powers of the product
of p and v (odd powers will vanish upon integration
with respect to the angular variables), we obtain 

(9)

In order to simplify this expression for the dissipative
function, we will us the rule of integration (averaging)
over the angular variables. Let us introduce 〈v iv k〉 =
(δik/3)v 2 and 〈v iv kpnpm〉 = v 2p2a(δikδnm + δinδkm + δimδkn),
where a is the unknown coefficient to be determined. This
is achieved through convolution with respect to indices i–
k and n–m in the left and right sides of the last expression,
which yields a = 1/15. Thus, we arrive at 

(10)

This expression is sufficient to establish a relation
between the permeability coefficient K in the Darcy law

J1 T0/Z( ) δ f p/τ p( ) f p〈 〉 d3 pln∫=

=  ZT0( ) 1– f p〈 〉 ε p p∇( ) vV( ) v∇ T( )εp/T0+{ } d3 p.∫–

v i∫ vp∫

J1 divV/3ZT0( ) pv f p〈 〉 d3 p.∫–=

Q δ f p
2 d3 p/τ p f p〈 〉 .∫=

.

Q ZT0( ) 1– τ p f p〈 〉∫=

× v∇ T( ) εp pV–( )/T0 p∇( ) vV( )+[ ] 2d3 p.

.

Q ZT0( ) 1– τ p f p〈 〉 v∇ T( )2 εp
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2 /3T0
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and the dissipative characteristics of the permeating liq-
uid flow. Taking into account that, in order of magni-

tude, dV ≅  FV =  (see [1]) and ignoring the flow

inhomogeneity over distances on the order of the mem-
brane thickness in Eq. (10), we can assume all even
derivatives of the flow velocity to be zero. As a result, 

(11)

As for the force F in the left-hand side of this rela-
tion, this value can be estimated as follows. Since F =
S(P1 – P2) = –δ|S|∇ P, where |S| = S is the membrane
area, we can approximately write FV = –δS∇ PV. At the
same time, the permeation rate according to the Darcy
law is V = –K∇ P and the dissipative function can be
expressed as 

(12)

By equating (11) and (12), we obtain the relation 

(13)

According to the Joule–Thomson effect, the tempera-
ture and pressure variations on the two sides of the sub-
strate are related as δT = αWδP. Rewriting this relation
in terms of gradients, we obtain ∇ T = αW∇ P. By substi-
tuting this into the right-hand side of Eq. (13) and
assuming that both the flow velocity and temperature
gradient possess a single nonzero component—namely,
that perpendicular to the membrane plane (coinciding
with the xy plane), whereby V = (0, 0, Vz) and ∇ T = (0,
0, ∂T/∂z)—we eventually arrive at the desired relation, 

(14)

Thus, we have analytically strictly proved (although it
was evident from the very beginning) that the perme-
ation rate is related to the entropy of the liquid (more
precisely, to the derivative of the entropy with respect
to time!) and determined by friction in the pores of the
membrane. In turn, the entropy is proportional to the
logarithm of the phase space volume (S = ln∆Γ), from
which it follows that the entropy production is dS/dt =
(∆Γ)–1d(∆Γ)/dt. According to the Liouville theorem,
the phase space volume ∆Γ is conserved in the absence
of collisions, so that ∆Γ = ∆Γmax, dS/dt = 0 and, hence,
S = Smax = ln(∆Γmax). Taking into account the irrevers-
ibility of the filtration process, we may now ascertain
that the derivative d(∆Γ)/dt is positive and, with allow-
ance for collisions, the phase space volume increases.
For large times (t  ∞), this volume tends to acquire
the maximum value ∆Γmax. Thus, under nonequilibrium
conditions, the phase volume decreases at the initial
time instant (t = 0) and then (t > 0) increases. 

F∫ Q
.

FV 1/3ZT0( ) τ pv
2 f p〈 〉 ε p

2 ∇ T( )2{∫=

+ 0.2 p2 ∇ T( )2V2 2 V∇ T( )2+[ ] } d3 p.

Q δSK ∇ P( )2.=
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2 ∇ T( )2{∫=
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K  = αW
2 /3δZST0

3( ) τ pv
2 f p〈 〉 ε p

2 0.6 p2Vz
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Owing to the presence of the flow velocity V, the
Maxwell distribution function becomes quasi-equilib-
rium and includes, in addition to the kinetic energy of
the translational motion εp = p2/2M, the term pV (see
above). Thus, the entropy S becomes dependent on the
flow velocity V. For this very reason, a derivative of the
dissipative function with respect to velocity yields the
friction force F = Ffr, which can be expressed as F =
∂(TdS/dt)/∂V. This circumstance was employed above to
establish a relation between the permeability coefficient
and microscopic properties of the liquid (formula (14)). 

Returning to formula (14) and employing the gaso-
kinetic approximation, according to which the kine-
matic viscosity coefficient ν is estimated as ν ≈
Z−1 v 2〈 fp〉d3p, we can readily establish a relation

between K and ν. Indeed, by assuming that εp ~ T0 and
vT @ Vz (the latter condition allows us to ignore the

term 0.6p2  as compared to ), we obtain 

(15)

In fact, formula (15) reflects a solution of the prob-
lem concerning a relation between the permeability
coefficient K and the Joule–Thomson coefficient αW .
However, we also planned to find a relation between αW

and the dissipative properties of the membrane, in partic-
ular, with friction. In expressing αW from formula (15),
we obtain αW = (3KVpT0/ν)1/2, where Vp = Sδ is the vol-
ume of pores. Now let us use the well-known relation
K = A/η, where A can be expressed, for example, via the
Slichter formula A = AS = m2d2/96(1 – m) (d is the diam-
eter of closely packed cylinders in the Slichter model).
In denoting the liquid density by ρ, we obtain a dissipa-
tive relation for the real Joule–Thomson coefficient: 

(16)

For the ideal liquid (or gas), the interaction between
molecules is zero and the relaxation time tends to infin-

ity (τ  ∞). Since the kinematic viscosity ν = τ ,
we conclude that ν  ∞ and, hence, αW = 0. 

Thus, we have (i) found a relation between the
Joule–Thomson coefficient and the Darcy law (mem-
brane permeability), (ii) established that αW is inversely
proportional to the square root of viscosity (equation
(16)), and (iii) derived a relation between the dissipa-
tive function and the friction force. 
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Abstract—Sapphire-based composite layers implanted with 40-keV Cu+ ions to a total dose of 1.0 × 1017 cm–2

at an ion beam current density varied from 2.5 to 10 µA/cm2 were studied using Rutherford backscattering and
optical reflectance methods. The appearance of optical plasma resonance lines in the reflectance spectra indi-
cates that ion implantation allows copper nanoparticles to be synthesized in the subsurface region of the dielec-
tric crystal studied. © 2002 MAIK “Nauka/Interperiodica”.
Composite materials representing dielectric matri-
ces containing dispersed metal nanoparticles are prom-
ising for applications in optoelectronics. An example of
such optoelectronic devices is offered by a prototype of
an integrated circuit (microchip) in which the function
of connecting elements (replacing conventional con-
ductors) is performed by optical waveguides (OWGs)
and the signals are transmitted by light [1].

The OWGs can be represented by layers of synthetic
sapphire (Al2O3) deposited onto semiconducting sub-
strates. The sapphire layer accommodates optical
detectors that convert electric signals into light. The
focused light beam in a sapphire OWG is generated by
a miniature laser and transmitted via optical paths to a
high-speed photodetector capable of converting the
photon flux into electrons. It is believed that the use of
OWGs instead of metal conductors will provide for a
100-fold increase in the rate of data transfer. It is even
more important that the use of insulators (sapphire)
instead of semiconductors provide for a considerable
decrease in the energy consumption [1]. Prototypes of
the integrated optoelectronic devices created to date
allow controlled data transfer at a rate of up to 1 Gbit/s,
with good prospects for increasing the switching rate
up to 5 Gbit/s.

An important position among the key elements of
dielectric-based OWGs belongs to nonlinear optical
switches, which ensure signal conversion at a charac-
teristic time of the laser action of the order of pico- and
femtoseconds. As is known [2, 3], insulators containing
metal nanoparticles synthesized by the ion implantation
method exhibit giant values of the nonlinear cubic per-
mittivity in this range of action times and, hence, can be
successfully implemented in integrated optoelectronic
devices.
1063-7850/02/2810- $22.00 © 0864
Experience gained from using the ion implantation
techniques for various purposes has allowed metal
nanoparticles to be successfully synthesized in various
glasses and ionic crystals (in particular, in sapphire sub-
strates). The table presents data compiled from avail-
able publications on the types of metal nanoparticles
and conditions for their formation in Al2O3 directly by
ion implantation without additional post-implantation
treatments (such as thermal or laser annealing). It
should be noted that, from the standpoint of the effi-
ciency of manifestation of the nonlinear optical proper-
ties by nanoparticles, noble metals are most preferred,
especially copper [4]. However, as can be seen from the
data in the table, no successful syntheses of copper
nanoparticles in the volume of Al2O3 have been
reported in the literature.

In this context, the purpose of our study was to
check for the principal possibility of obtaining compos-
ite materials via synthesis of metal nanoparticles in a
sapphire substrate through the implantation of copper
ions. Although the bombardment of sapphire by copper
ions has been studied before, the implantation of high-
energy (130 keV–2.1 MeV) copper ions did not led to
the nucleation of copper nanoparticles, whereas the
subsequent thermal treatment resulted in the formation
of copper oxide nanoparticles [16, 17]. Such data are
not included in the table. In our experiments, the forma-
tion of metal nanoparticles was studied under the con-
ditions of low-energy (<100 keV) ion implantation. 

Substrates for the synthesis of composite materials
represented Al2O3 characterized by high optical trans-
parency in a broad spectral range from ~220 to 900 nm.
The substrates were implanted with 40-keV Cu+ ions to
a total dose of 1.0 × 1017 cm–2 at an ion beam current
density varied from 2.5 to 10 µA/cm2. The implantation
2002 MAIK “Nauka/Interperiodica”
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was effected at room temperature in an ILU-3 implanter
at a controlled residual pressure of 10–5 Torr. The
implanted samples were analyzed by Rutherford back-
scattering (RBS) using a beam of 2-MeV 4He+ ions
extracted from a Van de Graaf accelerator. The RBS
spectra were converted into depth–concentration pro-
files of implanted copper ions with the aid of a Data
Furnace computer program. The optical reflectance
spectra in a wavelength range from 350 to 800 nm were
measured on a Monolight single-beam optic fiber
device using a primary light beam incident at 90° to the
sample surface. 

Figure 1 shows typical depth–concentration profiles
reconstructed from the RBS data for copper ions
implanted into the subsurface layer of a sapphire sub-
strate. Both curves, constructed for two values of the
primary ion beam current density, reveal a maximum in
the copper concentration near the surface, followed by
a monotonic decrease in the metal content with a depth
up to 60 nm. The features of these profiles and the fac-
tors determining such implant distributions were con-
sidered elsewhere [18] and will not be dwelled upon
here. It should only be noted that a shift in the position
of the maximum in the depth–concentration profile
observed for a sample irradiated at a greater ion beam
TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      20
current density is related to a higher temperature of the
target and, hence, a greater diffusion mobility of copper
in the dielectric matrix.
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10 µA/cm2

260
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20
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D, nm

C, 1020 cm–3

0

Fig. 1. Profiles (reconstructed from the RBS data) of the
atomic concentration C versus depth D for Cu+ ions
implanted at various ion beam current densities into sap-
phire substrates irradiated to a total ion dose of 1017 cm–2.
A summary of data on the types of metal nanoparticles and the conditions of their synthesis in Al2O3 by ion implantation

Implanted
 metal Matrix Ion beam 

energy, keV Ion dose, cm–2 Ion current
density, µA/cm2

Substrate
temperature, K Refs.

α-Fe α-Al2O3 100 4 × 1016–2 × 1017 300 McHargue et al., 1987 [5]

[0001] 160 – 77 1990 [6]

1998 [7]

α-Fe α-Al2O3 160 1 × 1017 2 300 Sklad et al., 1992 [8]

[0001]

α-Fe α-Al2O3 60 2 × 1016–1.2 × 1017 2 – Jang et al., 1997 [9]

Poly-Al2O3

α-Fe α-Al2O3 100 1 × 1017 3 300 Sakamoto et al., 1999 [10]

α-Fe α-Al2O3 160 1 × 1017 – – Monteiro et al., 2002 [11]

4 × 1017

α-Al2O3

Co [0001] 150 5 × 1017 – 300 Margues et al., 2001 [12]

[0221]

[1120]

Ag Al2O3 50 5–19 × 1016 1–5 300 Rahmani and Townsend, 
1989 [13]77

Ag Al2O3 25–30 2 × 1016–2 × 1017 0.6–6.2 300 Steiner et al., 1998 [14]

Pt Al2O3 160 5 × 1016 0.4 300 Alves et al., 1999 [15]

[0001]
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During implantation, the concentration of Cu+ ions
in the target exceeds their limiting solubility in Al2O3,
which leads to the nucleation and growth of metal
nanoparticles. Assuming that the metal clusters form as
a result of the sequential attachment of Cu0 (neutralized
Cu+ ions), we may suggest that the growth of nanopar-
ticles is controlled simultaneously by the diffusion
coefficient and by the local concentration of copper
ions. If the mobility of Cu0 in the glass matrix is not
large, the nanoparticles grow predominantly at the
expense of incorporated Cu+ ions. Since the absolute
concentration of metal ions in the implanted layer
increases, in accordance with the implant depth–con-
centration profile, in proportion to the implantation
time (or the accumulated ion dose), the process of
nanoparticle nucleation and growth is time-dependent
as well. It is evident that the dimensions of metal parti-
cles formed at various depths are proportional to the
factor of glass matrix filling by the metal at the same
depths and, hence, are also determined by the implant
depth–concentration profile. At the same time, the sub-
strate temperature is another important factor influenc-
ing the nucleation and growth of nanoparticles. We may
expect coarser metal nanoparticles to form under con-
ditions of elevated target temperature and higher
implant mobility. 

Figure 2 presents the experimental optical reflec-
tance spectra of the samples obtained by implantation
of Cu+ into Al2O3 at various ion beam current densities.
Broad selective bands being observed in the visible
spectral range is direct evidence of the formation of
copper nanoparticles in the bulk of sapphire: these
bands are caused by the plasma polariton resonance in
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Fig. 2. Optical reflectance spectra of Al2O3 substrates
implanted with 40-keV copper ions at various ion beam cur-
rent densities.
TE
the metal nanoparticles [19]. Preliminary comparative
analysis of the electron-microscopic and spectroscopic
data for metal particles synthesized by various methods
showed that these optical resonances (related to the col-
lective oscillations of free electrons) are manifested in
copper particles in the visible spectral range when the
particle size exceeds ~2 nm and can be observed in nano-
particles as large as several tens of nanometers [19]. As
can be seen from Fig. 2, the position of the maximum
in the reflectance spectrum shifts toward longer wave-
lengths (from 620 to 650 nm) and significantly grows
in intensity with increasing ion beam current density.
In accordance with the optical properties of small
metal particles described by the Mie electromagnetic
theory [20], both the wavelength shift and the intensity
buildup indicate that increasing the ion beam current
leads to a growth of metal nanoparticles in size. 

Thus, we have experimentally demonstrated the
principal possibility of synthesizing copper nanoparti-
cles in a volume of sapphire substrates at a depth of a
several tens of nanometers, which is required for the
development of miniature optoelectronic devices. It is
shown that the dimensions of the synthesized metal
nanoparticles can be controlled by varying the primary
ion beam current density in the course of ion implanta-
tion. The use of ion implantation for the synthesis of
metal nanoparticles, which is widely used in semicon-
ductor technologies, offers a decrease in the general
energy consumption during the fabrication of com-
bined optoelectronic microchips based on sapphire–
semiconductor compositions. 
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Abstract—A method for constructing explicit solutions of integral equations with difference kernels on finite
segments is proposed. Equations with kernels of sufficiently general type are considered. The method opens a
promising direction for the investigation and practical application of solutions for this class of equations.
© 2002 MAIK “Nauka/Interperiodica”.
The integral equations with difference kernels on
finite segments can be represented as 

where K(x) ∈  L1(a, b). Such equations have been
derived for a number of problems in physics and tech-
nologies, including the problems of optimum synthesis,
light scattering in the atmosphere, diffraction from a rib-
bon, a cylinder with a slit, a sphere with holes [1], and
the motion of a wing under water. These equations are
also encountered in solving important mathematical
problems such as the theory of inverse problems, reduc-
tion of the Volterra operators to the simplest form, and
factorization of operators. Thus, the equations with dif-
ference kernels are rather widely applied. Extensive lit-
erature on related questions is cited in review [2] and in
monograph [3]. 

Here, we will consider an equation of the first kind:

(1)

To date, the most complete results for Eq. (1) were
published in [3]. According to this monograph, for
Eq. (1) with an arbitrary right-hand part f(x), g(t) can
be expressed by an explicit formula, provided that a
solution to this equation is known for f(x) = 1. Unfortu-
nately, the problem of constructing an explicit solution
to Eq. (1) with f(x) = 1 has not yet been solved. This gap
is filled, to a certain extent, by this paper, which pro-
poses a method of constructing an explicit solution to
Eq. (1) in a sufficiently general situation. According to
this, there is no need to assume that f(x) = 1. For the

K x t–( )g t( ) td

a

b

∫ λg x( ) f x( ), x a b,[ ] ,∈+=

K x t–( )g t( ) td

a

b

∫ f x( ), x a b,[ ] .∈=
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sake of brevity, Eq. (1) can be transformed through a
linear change of variables to the following form: 

(2)

We assume that K(z) can be represented on the segment
[–π, π] by the Fourier series 

(3)

(4)

where the quantities  for large n can be estimated as 

(5)

By substituting expression (3) into Eq. (2) and inte-
grating, we arrive at the following form of the initial
equation: 

(6)

In using estimate (5), Eq. (6) can be differentiated m
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times (m = 0, 1, 2, …), which yields 

(7)

where 

(8)

are unknown coefficients. Introducing the notation 

(9)

we can rewrite Eq. (7) as 

(10)

Finally, after introduction of the variable 

(11)

Eq. (10) takes the form 

(12)

where L is a right-hand semicircle of unit radius (see
figure). Equation (12) with unknown coefficients yn is
readily reduced to the classical Riemann problem [4]
on the arc L by representing the series in (12) as a sum
of two functions, Φ+(ξ) and Φ–(ξ), representing limit-
ing values of a certain analytical function Φ(z) outside
and inside a unit circle, respectively: 

(13)

The choice of functions Φ+(ξ) and Φ–(ξ) uniquely
determines the behavior of the solution Φ(z) to the Rie-
mann problem at infinity. Both the existence of a solu-
tion g(t) to this equation and its behavior in the vicinity
of ends (t = ±π/2) of the finite integration interval
depend on this selection and on the character of decay
of the Fourier coefficients (5) of the kernel of the initial
equation (1). As a rule, all these conditions are well
known, being determined by the physical or mathemat-
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ical problem reduced to Eq. (1). In particular, for the
solutions Φ(z) limited at infinity, the functions Φ+(ξ)
and Φ–(ξ) should be selected in the following form: 

(14)

For the solutions tending to zero at infinity, these func-
tions should take the form 

(15)

It should be noted that other conditions can be selected
as well, for example, for Φ(z) possessing poles either in
the unit circle or at infinity. Of course, the course of
action can be reversed, whereby the behavior of the
solution g(t) at the ends of the integration interval can
be determined and the solutions to Eq. (2) can be stud-
ied by selecting Φ(z) with the appropriate behavior at
infinity in the Riemann problem (13). Since this prob-
lem has been well studied [4–6], choice of the appropri-
ate variant for representing series (12) as a sum of two
functions Φ+(ξ) and Φ–(ξ) for the Riemann problem
(13) is quite possible. 

For example, let us find solutions to Eq. (2) for the
functions Φ+(ξ) and Φ–(ξ) adopting representation (15).
This case corresponds to finding a solution to the Rie-
mann problem (13) that would tend to zero at infinity.
According to [4–6], this solution has the form 

(16)
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where C is an arbitrary constant,  is the Kronecker

delta, and (z) (s = 1–4) are solutions to the corre-
sponding homogeneous Riemann problems: 

(17)

In the case of s = 2, the function F(ξ) must obey the
condition 

(18)

In all formulas, the square root branch is determined by
being positive at infinity. 

After application of the Sokhotsky formulas [4–6],
representation of Φ(z) in the form of (16) allows the
series (12) to be restored on the entire circle L +  (see
figure) for all the cases under consideration (s = 1–4): 

(19)

From (19), we find the coefficients , and then, by

using (9), we obtain the Fourier coefficients  for the
function g(t) representing a solution to the initial equa-
tion (2). In the example under consideration, we obtain

four sets of the coefficients for  (s = 1–4): 

(20)
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solutions to the initial equation (2) can be written using
one of the following formulas: 

(21)

where the coefficients  are determined by expres-
sions (20). 

Let us estimate the convergence of series (21). As is
known [4], a special integral over the arc L entering into
formula (20) has a finite value at the ends of arc L.
Therefore, the convergence of series (21) is determined
by the behavior of functions (17) from the homoge-
neous Riemann problem in the vicinity of the ends of
arc L and by the exponent α from the estimate (5) of the
decay of the Fourier coefficients of the kernel of the ini-
tial equation (2). As a result, we obtain the following
estimate: 

(22)

(23)

Thus, Eq. (2) for s = 1 has a single integrable solution
g(t) unlimited at the ends of the interval t = ±π/2, pro-
vided that the exponent α obeys the conditions in (22).
For s = 2, the solution is limited at the ends of the inter-
val for 0 ≤ α < 1/2 and is unlimited for 1/2 < α < 1. In
the case of s = 2, the right-hand part must also satisfy
the condition of solvability (18). For s = 3 and 4, the
solution is limited in the vicinity of one end of the inter-
val and unlimited at the other end, while the exponent
α must obey the same conditions as in (22). 

In conclusion, it should be pointed out that the pro-
posed method allows explicit solutions to be con-
structed for equations with arbitrary kernels admitting
representation (3)–(5) on a finite interval. The results
known to date (the primary of which are considered
in [2–4]) represent particular cases of the proposed
method. For example, consider the equation 

(24)

According to [3], this equation possesses the explicit

solution g(t) = const/ , which can be checked
directly. Let us apply the proposed method to this prob-
lem. By calculating the Fourier coefficients of the ker-
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nel in (24) according to (4), where the integral can be
explicitly calculated, we obtain 

(25)

Thus, we have m = 1, α = 0, f(x) = 1, and F(x) = 0. A
solution corresponding to s = 1 will be unlimited at the
ends of the interval t = ±π/2. Upon substituting the Fou-
rier coefficients of the kernel from (25) into (20) and
(21), we obtain the same result as above: g(t) =

const/ . 
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Abstract—Surface-barrier structures of the Ag–GaP type based on high-quality epitaxial n-GaP layers with n =
(0.5–30) × 1016 cm–3 were studied. It was found that the potential barrier height depends on the method of sur-
face treatment prior to the metal deposition and correlates with the structural nonideality coefficient and the
intermediate layer thickness. For high-quality structures with a reverse current below 10–14 A, the barrier height
is ϕ = 1.55 ± 0.04 eV. For structures with a relatively thick intermediate layer, the barrier may reach up to ϕ =
1.7 ± 0.07 eV. The dependence of the barrier height on the method of the GaP surface treatment is related to the
absence of rigid pinning of the Fermi level on the GaP surface. © 2002 MAIK “Nauka/Interperiodica”.
Surface-barrier structures of the metal–gallium
phosphide type are of considerable interest for applica-
tions, primarily due to the large bandgap width in GaP
(Eg = 2.27 eV at 300 K) and good technological prop-
erties of this material. While the surface barrier height
in silicon- and gallium arsenide-based metal–semicon-
ductor structures weakly depends on the metal type [1],
the situation in metal–GaP structures is different. It is
believed that the maximum potential barrier height is
achieved in Pt–n-GaP (1.45 eV) and Au–n-GaP
(1.36 eV) structures, while the value reported for the
Ag–n-GaP system is 1.2 eV [2]. For this reason, the lat-
ter system is less interesting from the standpoint of the
development of electronic devices for high-temperature
and high-power applications, shortwave photodetectors
(Schottky UV photodiodes), etc. 

Below we will demonstrate that, in contrast to the
commonly accepted opinion, the potential barrier
height of Ag–n-GaP structures is essentially greater
than that of the Pt–n-GaP structure, which makes the
former system preferable for the aforementioned appli-
cations. 

Sample structures of the Me–GaP type (Me = Ag,
Pt, Au) were prepared by vacuum deposition (Ag, Au),
ion-plasma sputtering (Pt), and magnetron sputtering
(Pt, Ag) of a metal after preliminary ion-sputter clean-
ing of a semiconductor substrate surface. The main
experiments were performed with epitaxial n-GaP lay-
ers grown by liquid- or vapor-phase epitaxy; the epitax-
ial layers were usually doped with sulfur (in some cases
with tellurium) to a free charge carrier concentration of
(0.5–5) × 1016 cm–3. The ohmic contacts in the base
region were fabricated using laser techniques [3] or by
vacuum deposition of gold according to the standard
procedure. 
1063-7850/02/2810- $22.00 © 20872
The longwave photosensitivity threshold of the sam-
ple structures was well described by the relationship 

(1)

which offered the possibility of determining the surface
barrier height ϕ with a high precision, as illustrated in
Fig. 1. The reverse current reached 10–14 A at V = 1 V.
The direct branch of the current–voltage characteristic
obeyed the exponential law

, (2)

for the current varied within six orders of magnitude
(for the best samples). The structural nonideality coef-
ficient β was found to vary from 1.05 to 5, depending
both on the method of contact preparation and on the
surface processing technique. We suggested that this
scatter could be explained by the presence of an inter-

Iph "ω ϕ–( ),∼

I eU/βkT( )exp∼
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Fig. 1. Determination of the potential barrier height from
the photoelectric measurements. 
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mediate (transition) layer between the metal and semi-
conductor. For most methods employed for fabricating
metal–semiconductor structures, the appearance of
such interlayers cannot be avoided in practice. 

In order to verify the hypothesis, we studied the
depth-composition profiles of the surface of several
samples treated by various methods. The profiles were
obtained by measuring the Auger electron spectra in the
course of layer-by-layer etching of the samples by
argon ions to a total depth of 35 nm. An analysis of the
Auger spectra showed that the samples upon prelimi-
nary mechanochemical polishing were characterized
by the most perfect semiconductor surface and by a
minimum thickness of the intermediate layer (about
3 nm). The structures treated by other methods exhib-
ited intermediate layers with a thickness of 10 nm or
greater. 

There was a certain correlation between the inter-
mediate layer thickness, the nonideality coefficient β,
and the reverse dark current. As mentioned above, the
structures of highest quality were obtained using the
method of mechanochemical polishing, in which the
intermediate layer thickness was below 3 nm and the
nonideality coefficient was β = 1.1–1.2. For the sam-
ples prepared by etching in aqua regia (HF + NHNO3
mixture), the intermediate layer was 3–5-nm thick and
the nonideality coefficient increased to β = 1.6–1.8. The
samples prepared by magnetron sputtering were char-
acterized by β values as large as 3–5 and dark currents
of 1 nA or greater. 

It was found that the height of the Ag–GaP potential
barrier also depends on the technology of structure
preparation and exhibits a correlation with the nonide-
ality coefficient (and, hence, with the intermediate layer
thickness). The results of these measurements are sum-
marized in Fig. 2. As is seen, an increase in β is accom-
panied by a clear growth in the reverse (dark) current.
The values of the potential barrier height usually fall
within one of three spots, corresponding to the three
methods of surface treatment. The average levels of ϕ
for these groups are indicated by dashed lines in Fig. 2.
The samples upon mechanochemical polishing pos-
sessed nonideality coefficients close to unity and
showed minimum values of the dark current (about
10 fA). For these samples, the potential barrier height
in the Ag–GaP structure amounted to 1.55 ± 0.04 eV. 

The structures with an etched surface of the epitax-
ial layer probably contained a maximum amount of
defects at the metal–semiconductor boundary, which
accounted for an increase in the reverse current of up to
10–13 A. The barrier height in these samples was 1.7 ±
0.07 eV. We believe that the difference in ϕ observed
for the samples treated by various methods is indicative
TECHNICAL PHYSICS LETTERS      Vol. 28      No. 10      20
of the absence of rigid pinning of the Fermi level on the
GaP surface. 

Since the values of ϕ presented above for the Ag–
GaP structures studied here significantly differ from the
published value of ϕ = 1.2 eV obtained more than three
decades ago and commonly accepted as a reference
value, we undertook control measurements of the bar-
rier height in well-characterized platinum–gallium
phosphide contacts. According to the data obtained by
various researchers, the potential height of the Pt–GaP
barrier is 1.45 eV [2–4]. Our measurements yielded
1.45 ± 0.02 eV (Fig. 1), which fully agrees with the
published data. 

In the sample structures with thick intermediate lay-
ers, a large nonideality coefficient β, and a reverse cur-
rent of 1 nA or greater, the ϕ values decreased to
1.35 eV (to fall within the third spot in Fig. 2). The
structures based on n-GaP with n > (2–3) × 1017 cm–3

possessed low quality and showed ϕ as low as ≈1.2 eV,
which probably explains the low values reported previ-
ously. 
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Abstract—Excitation and ionization of an atom interacting with a short electromagnetic pulse is studied within
the framework of the sudden perturbation approximation. The excitation and ionization probabilities and the
spectra and cross sections of reradiation of the pulse by the atom are calculated. It is suggested that the pro-
cess of reradiation of ultrashort electromagnetic pulses by multielectron atoms possesses a coherent charac-
ter. © 2002 MAIK “Nauka/Interperiodica”.
Recently, Kaplan and Shkolnikov [1] reported on
the possibility of generating electromagnetic pulses
with a duration of τ ~ 10–21–10–22 s. This opens new
prospects for investigation of the interaction of
ultrashort electromagnetic pulses with matter. In this
context, it is important to study the interaction of atoms
with ultrashort pulses of a strong electromagnetic field.
It should be noted that a nonperturbative description of
the interaction of atoms with field pulses of a duration
comparable with (or exceeding) the characteristic
atomic times presents a difficult task and requires appli-
cation of numerical methods. An example is offered by
the study [2] of the excitation and ionization of atoms
interacting with a strong pulsed electromagnetic field at
a pulse duration of 3.8–15.2 fs (see also [3–6] and ref-
erences therein). 

In the systems considered above, the characteristic
atomic time τα ~ 10–17 s is much greater than the dura-
tion of the aforementioned ultrashort pulses. In such
cases, a basis for the solution can be provided by the
approximation of sudden perturbations [7], which
poses no restrictions on the magnitude of perturbation
and is applicable provided that τ/τa ! 1. There are
numerous examples when atoms are excited or ionized
under the action of sudden perturbations. In many of
the practically important cases, the perturbation is
insufficiently small for the perturbation theory to apply;
however, there are also many cases [7–17] when the
perturbation duration is much shorter than the charac-
teristic atomic times. This makes it possible to solve the
problem using analytical methods without posing limi-
tations on the magnitude of perturbation. 

We have used the sudden perturbation approxima-
tion to study the excitation and ionization of an atom
interacting with a short electromagnetic pulse. The
excitation and ionization probabilities and the spectra
1063-7850/02/2810- $22.00 © 20874
and cross sections of reradiation of the pulse by the
atom are calculated. 

The potential of interaction of the atomic electrons
with an electromagnetic field pulse possessing a Gaus-
sian shape 

(1)

can be written as follows (here and below, we use the
atomic system of units): 

(2)

Here, ra are the coordinates of atomic electrons (a = 1,
2, …, N) and N is the number of atomic electrons. The
function V(t) differs from zero only during a time
period of τ ~ α–1, which is much shorter than the char-
acteristic periods of an unperturbed atom described by
a Hamiltonian H0. Then, in solving the Schrödinger
equation, we can ignore evolution of the wave function
under the action of unperturbed Hamiltonian during the
perturbation action. Therefore, the amplitude of transi-
tion of the atom from an initial state ϕ0 to a certain final
state ϕn as a result of the sudden perturbation is [7] 

(3)

where ϕ0 and ϕn belong to a complete orthonormalized
system of eigenfunctions of the unperturbed Hamilto-
nian H0, so that H0ϕn = εnϕn . Using formula (3), it is
possible to calculate the probabilities w0n = |a0n|2 of the
excitation or ionization of the perturbed atom. Repre-
sentation of the perturbation in the form of potential (2)

E E0 α2t2–{ } ω 0t( )cosexp=

V t( ) V ra t,( )≡ E t( ) ra.
a 1=

a N=

∑=

a0n ϕn i V t( ) td

∞–

+∞

∫–
 
 
 

exp ϕ0 ,=
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allows the probabilities w0n to be expressed through
well-known inelastic atomic formfactors [9]: 

(4)

where 

Figure 1 presents data on the excitation probabilities
for several initial levels and on the total ionization prob-
ability of a hydrogen atom calculated as functions of
the momentum transfer q. Figure 2 shows the results of
our calculations of the single and double ionization
probabilities for a helium atom. These figures also illus-
trate unitarity of the approach following from expres-
sions (4), according to which  = 1, where the sum-
mation is performed over all possible final states of the
atom. 

The cross sections for reradiation of the sudden
pulse of a strong electromagnetic field can be calcu-
lated using the following procedure. In the sudden per-
turbation approximation, evolution of the initial state is
described by the function 

(5)

satisfying the equation 

(6)

and obeying the condition Ψ0(t)  ϕ0 for t  –∞.
Let us also introduce a total orthonormalized system of
functions 

(7)

satisfying Eq. (6) and obeying the condition Φn(t)  ϕn

for t  +∞. Obviously, the transition amplitude (3)
can be rewritten as a0n = 〈Φn(t)|Ψ0(t)〉 . The amplitude of
photon emission will be calculated in the first order of
perturbation theory (as corrections to states (5) and (7))
for the interaction U between atomic electrons and the
electromagnetic field [18]. The sudden perturbation
V(t) is taken into account by functions Φn(t) and Ψ0(t)
(without limitations on the magnitude of V): 

(8)
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where  and ak, σ are the operators of creation and
annihilation of a photon with the frequency ω, momen-
tum k, and polarization σ (σ = 1, 2); uk, σ are the unit
vectors of polarization; ra are the coordinates of atomic
electrons; and  are the momentum operators of
atomic electrons. In the dipole approximation, the
amplitude of a photon emission with simultaneous tran-
sition of the atom from state ϕ0 to state ϕn is 

(9)

Upon summation of the amplitudes |b0n(ω)|2 over polar-
izations, integration over the photon emission angles,
and summation over all final atomic states ϕn , we
obtain the total emission spectrum: 

ak σ,
+

pa

(

b0n ω( ) 2π
ω
------ 

 
1/2

uk σ, t
itω( )exp

ω
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Fig. 1. The results of calculations for hydrogen atom:
W(q, 1), the probability of staying in the ground state;
W(q, 2) and W(q, 3), the probabilities of excitation to the
states with n = 2 and 3, respectively; W(q), total ionization
probability. 
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Fig. 2. Calculated probabilities of the single (W1+) and dou-
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(10)

where c = 137 is the speed of light and 

(11)

Thus, we determined the total spectrum of emission
from the atom during the time of action of the sudden
perturbation V(t). For V(t) expressed by formula (2), the
total emission spectrum is as follows: 

(12)

where N is the number of atomic electrons and (ω) is
the Fourier image of the function E(t): 

Using formula (9), it is also possible to obtain the spec-
trum of photons emitted with simultaneous transition of
the atom from state ϕ0 to an arbitrary state ϕn under the
action of perturbation (2): 

(13)

The total spectrum (12) has the form dW/dω =
W0n/dω, where the summation is performed over

the complete set of atomic states. As follows from (4),
the relative contribution of transitions with excitation of
the atom to an arbitrary state ϕn is dW0n/dW = w0n .
Therefore, Figs. 1 and 2 also present the corresponding
relative contributions to the total pulse reradiation spec-
trum due to transitions with simultaneous excitation or
ionization of a hydrogen or helium atom. 

In order to determine cross sections for the pulse
reradiation, according to [19], it is necessary to multi-
ply spectra (10), (12), and (13) by ω and divide by the
energy flux I expressed as the integral over time of the
absolute value of the Poynting vector S(t) = c(4π)−1E2(t): 

It is necessary to note an important feature of the
emission under the action of a sudden perturbation:
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according to (12) and (13), the intensity of emission for
multielectron atoms is proportional to the number of
atomic electrons squared, which is evidence of a coher-
ent character of the process of ultrashort pulse reradia-
tion. 
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Abstract—The problem of interaction of a centered wave of rarefaction with a shear layer is solved in the case
of a small flow vorticity in the shear layer. The solution is found in the form of an asymptotic series with respect
to a small parameter of the problem. A system of equations derived in the zero approximation describes the flow
in a simple wave. A uniformly applicable first-order expansion is constructed using the method of deformed
coordinates. © 2002 MAIK “Nauka/Interperiodica”.
Let us consider the interaction of a centered rarefac-
tion wave 1 with a vortex (shear) layer 2 of finite thick-
ness (Fig. 1). The region of interaction is bounded from
the left by a weak discontinuity A1A2A3 (which is a con-
tinuation of the weak discontinuity OA1 separating the
uniform flow and the Prandtl–Meyer wave) and from
below by a weak discontinuity A1F1C1 originating from
point A1 (the point of intersection of weak discontinui-
ties OA1 and QA1). The Mach numbers M1 and M2 (in
the regions below and above the shear layer, respec-
tively), the distribution M(y) of this number across the
layer, and the slope angle ϕ2 of a weak discontinuity
OB1 terminating the simple wave are considered to be
preset. 

The interaction of a simple wave with a shear layer
is encountered in descriptions of supersonic streams [2]
and shock waves interacting with simple waves [3] and
in the problems of external aerodynamics [4, 5]. A
small level of vorticity of the shear layers involved in
these problems allows this factor to be ignored and the
flow to be considered as potential. However, this sim-
plification leads to physically incorrect consequences
(see, e.g., [4]) and hinders adequate description of the
flow pattern [2]. 

The main purpose of this paper is to obtain an ana-
lytical solution, with allowance for the flow vorticity,
based on an asymptotic expansion of the gasdynamic
functions with respect to a small parameter δ =

|M(y) – M1|/M1 characterizing the flow vorticity in

the shear layer 2 (Fig. 1). 

A flow in the region of interaction is described by a
system of Euler equations. It is convenient to pass from

y
÷max
1063-7850/02/2810- $22.00 © 20877
this system to an extended system of equations [1]. For
a flat supersonic flow, the new system is as follows: 

(1)

.

Here, ϑ  is the slope of the flow velocity vector rela-
tive to the abscissa axis, α = 1/M), γ is the adi-
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-----------------------------±=
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2Γ M( ) ϑcos
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Γ M( ) γM2

A
----------, A M2 1– ,= =
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2Γ M( )

-----------------------------------------------------------------------,=

∂M
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-------- ν P3 ϑtan–

P2 ϑ α–( )tan P1 ϑ α+( )tan–
2

-----------------------------------------------------------------------+ ,=

∂ϑ
∂y
------- = 

P1 P2–
2Γ M( )
-----------------,

∂M
∂y
-------- = ν P3

P1 P2+
2

------------------– ,

ν  = 
µ

1 ε+( )M
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(arcsin
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abate index, and 

The functions 

characterize the intensity of small perturbations propa-
gating along characteristics of the first (P1) and second
(P2) families and along the current lines (P3). In partic-
ular, for a simple Prandtl–Meyer wave, P2 = P3 = 0 and 

(2)

Here, the constant c changes upon passage from one to
another characteristic of the first family. For a centered
wave, this value is constant over the wave and equal to
the abscissa x0 of the wave center (x0, y0). For wave 1 in
Fig. 1, x0 = y0 = 0. In the shear layer 2, which is parallel
to the abscissa axis, P1 = P2 = 0 and P3 is proportional
to the vorticity: 

(3)

where M(y) and S(y) are distributions of the Mach num-
ber and the entropy in the shear layer. 

Z  = 
M2 2–( )

2 M2 1–( )
------------------------ µ

1 ε+( )M3
------------------------, ψ = 

1

2 1 ε+( )M2 M2 1–
------------------------------------------------,

µ 1 ε M2 1–( ), ε+
γ 1–
γ 1+
------------.= =

P1 2,
∂ pln
∂y

------------ Γ M( )∂ϑ
∂y
-------,±=

P3
∂ pln
∂y
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1 ε+( )M2

µ
------------------------∂ Mln

∂y
--------------+=

P1
2 1 ε+( ) M2 1– ϑ α+( )cos

2

x c–
----------------------------------------------------------------------.=

P3 y( ) 1–
γ 1–( )

----------------dS y( )
dy

-------------- 1 ε+( )M y( )
µ y( )

------------------------------dM y( )
dy

----------------,= =

M2
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Q2

M1 1

2

O

Fig. 1. A schematic diagram illustrating the interaction of a
centered wave of rarefaction with a shear layer. 
TE
Let us seek a solution in the region of interaction in
the following form: 

(4)

In the zero approximation, system (1) describes the

flow in a centered Prandtl–Meyer wave with  =

 = 0 and  determined by formula (2). The quan-
tities ν(0) and A(0) are related to the Mach number M1 of
the uniform flow ahead of wave 1 and to the polar angle
ϕ by the relations 

Now let us pass to a polar coordinate system in
Eqs. (1), substitute series (4) into this system, and
equate the terms at equal powers of δ. As a result, we
obtain for the functions f (1) 

(5)

System (5), as well as the initial system (1), is writ-
ten in the invariant form [1]. In addition, the matrix in
the right-hand part of (5) is triangular. These circum-
stances allow us to obtain an analytical solution to sys-
tem (5) by sequentially solving the linear inhomoge-
neous first-order equations in partial derivatives with

respect to functions , , ϑ (1), A(1), and . 

It should be noted that the region of interaction is
infinite in r. This circumstance leads to nonuniformity
of the asymptotic expansion. Indeed, integration of the
last three equations of system (5) along the characteris-
tics of the first family leads to the appearance of secular
terms of the type rα(ϕ) in the expressions for ϑ (1), A(1),

f  = δk f k( ),   δ 0,   f A ϑ P 1 P 2 P 3 , , , ,{ } . ∈  
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Fig. 2. A comparison of the results of analytical and numerical calculations (see the text for explanations). 
and , which makes the expansion inapplicable at
large distances from the wall. 

In order to obtain a uniformly applicable first
approximation, let us employ the method of deformed
coordinates [6, 7] and pass from (r, ϕ) to the new vari-
ables (s, t) using the formulas 

As a result, the new equation for ϑ (1) is 

By selecting ϕ2 from the condition 

(6)

we arrive at 

where the function ϑ (0) + δϑ(1) remains constant in the
region above the vortex layer. Equation (6) can be
rewritten as 

P1
1( )

ϕ s δϕ2 s t,( ) …, r+ + t.= =
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∂
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1
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At t = t0, we obtain the flow in a simple wave with ϕ = s.
For this reason, the arbitrary function (s) in the last
equation should be taken equal to zero.With this choice
of (s), the parametric variable s is determined by the
implicit relation 

(7)

Figure 2 presents the results of calculations of the
distribution of vorticity P3 and the Mach number M on
the terminal wave characteristic OB3. These results
were obtained for M1 = 3, M2 = 3.1, Mw1 = 3.3, and a
velocity profile in the vortex layer described by a cubic
parabola. For these initial conditions, δ = 0.033. Solid
curves in Fig. 2 correspond to the data obtained using
an asymptotic expansion, while dotted curves represent
the values calculated by the method of characteristics.
As can be seen from this figure, even the former
approximation provides for a good coincidence with
the exact calculation: the maximum relative error of
determination of the Mach number was about 10–4. It is
interesting to note that an increase in the level of vortic-
ity does not lead to a catastrophic growth in the error.
Indeed, for a Mach number of M2 = 4, the parameter δ
is 0.33 and the maximum relative error of determina-
tion of the Mach number is on the order of 10–2. 

Conclusion. We have demonstrated that the prob-
lem under consideration belongs to the class of singu-
larly perturbed problems of vortex gasdynamics. A uni-
formly applicable first approximation was obtained
using the method of deformed coordinates. 
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