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Abstract—The relationship of dark matter to giant black holes (BHs) in galactic nuclei is investigated. The
simultaneous evolution of dark and baryonic matter under the effect of an averaged self-consistent gravitational
field is considered. The distribution of dark matter is shown to remain spherically symmetric even if there is an
appreciable asymmetry in the distribution of baryonic matter in the galaxy. A kinetic equation that describes the
evolution of the distribution function for dark matter with gravitational scattering by stars is derived. A signif-
icant flux of dark matter on a seed BHe at the galactic center is shown to arise under these conditions. The law
of growth of the seed BH via the absorption of dark matter has been established. The seed BH is shown to grow
significantly, up to 107–108M(, in the lifetime of the galaxy. Observational data are briefly analyzed, and the
presented theory has been found to be in reasonable agreement with experimental data. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, the intensive development of tech-
nology and the use of new methods for astrophysical
observations (gas kinematics, maser kinematics, echo
mapping, and stellar kinematics) have led to the reliable
detection of a large number (more than 80) of giant
black holes (BHs) [1, 2] with masses in the range (2 ×
106–3 × 109)M( (M( = 2 × 1033 g is the solar mass). The
mass distribution is shown in Fig. 1. Analysis of obser-
vational data has revealed a relationship between the
mass of a giant BH at the galactic center and the mass
of the bulge.1 The stellar rotation velocity in the bulge
is generally much lower than the characteristic velocity
dispersion σ. Therefore, the shape of the bulge does not
differ too much from the spherical shape, and the num-
ber density of stars in it rapidly increases toward the
galactic center. The characteristic bulge radius, rb ,
increases with galactic mass: rb ~ 1–30 kpc in the gal-
axies observed. The mass of giant BHs, Mbh , is lower
than the bulge mass of the host galaxies by approxi-
mately three orders of magnitude.

Nondissipative dark matter is currently believed to
constitute the bulk of the matter in the Universe. It is in
dark matter that density fluctuations grow; these fluctu-
ations form a large-scale gravitationally bound object,
a galactic halo, at the nonlinear stage. An important
property of this halo is the singular density distribution
at its center [3]. The baryonic matter captured by the
gravitational field of the halo gradually settles to the
center and forms galaxies. The presence of a singularity

1 The bulge is the densest central region of a galaxy, which consists
mostly of old stars.
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in the distribution of dark matter leads to the possible
formation of a primary BH [4] with a mass on the order
of 103M( at the center of the future galaxy during the
contraction of baryonic gas. Subsequently, the seed BH
rapidly grows via the flow of baryonic and dark matter
from the bulge into it. In this paper, we investigate the
evolution of dark matter and its absorption by a BH at
the galactic center.

The paper has the following structure. In Section 2,
we consider the distribution of dark matter in a galaxy
and its evolution under the effect of the averaged self-
consistent gravitational field of baryonic matter that
sinks to the central region of the galaxy due to energy
losses and forms a bulge. We solve the problem in the
adiabatic approximation by assuming that the baryonic
matter is spherically symmetric.

In Section 3, we analyze the role of the deviations
from spherical symmetry. The distribution of dark mat-
ter that adiabatically contracts under the effect of the
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Fig. 1. The mass distribution of giant BHs (according
to [1]).
004 MAIK “Nauka/Interperiodica”



 

2

        

ILYIN 

 

et al

 

.

                                             
combined large-scale self-consistent gravitational field
of baryonic and dark matter is shown to remain spheri-
cally symmetric even if there is an appreciable asym-
metry in the distribution of baryonic matter.

In Section 4, we study the growth of a seed BH at the
galactic center via the direct capture of dark matter par-
ticles that move in an averaged self-consistent gravita-
tional potential. We show that this mechanism is ineffi-
cient in real conditions and cannot cause any apprecia-
ble increase in the mass of the seed BH.

In Sections 5 and 6, we investigate the evolution of
the distribution function for dark matter when the adia-
baticity condition is violated. The main process of this
kind is the gravitational scattering of particles during
their collisions with stars in the bulge. An important
property of this process is that the particle mean free
path is much larger than the bulge scale length; there-
fore, collisions are rare. Taking this property into
account, we derive an expression for the collision inte-
gral averaged over the oscillations of the dark matter
particles captured in the self-consistent gravitational
field and obtain a kinetic equation that describes the
evolution of the distribution function for dark matter in
Section 5. We show that diffusion in angular momen-
tum space plays a major role here, because the initial
distribution function is singular.

In Section 6, we solve the diffusion equation, deter-
mine the flux of dark matter on a BH, and establish the
law of its growth.

Finally, in Section 7, we briefly analyze observa-
tional data. This analysis indicates that the growth of
giant BHs via the absorption of dark matter is consi-
derable.

In general, we may assert that the theory presented
here is in reasonable agreement with the available
observational data for giant BHs. Further development
of the theory and observations and their detailed com-
parison are undoubtedly of considerable interest.

2. THE INFLUENCE OF BARYONIC MATTER 
ON THE DISTRIBUTION OF DARK MATTER
IN THE CENTRAL REGIONS OF A GALAXY

Nondissipative dark matter plays a crucial role in
the formation of the large-scale structure of the Uni-
verse—galaxies, clusters of galaxies, and superclusters.
The evolution of small nonuniformities in the initial
distribution of dark matter at the nonlinear stage leads
to the gravitational contraction of dark matter and the
formation of primary singularities of the density ρ after
the passage of which a multistream flow is developed in
the collisionless gas of dark matter. According to the
analytical theory developed by Gurevich and Zybin [5],
under very general assumptions about the shape of the
initial perturbation, the development of flow oscilla-
tions gradually leads to the stirring of dark matter and
the formation of stable, spherically symmetric self-cap-
JOURNAL OF EXPERIMENTAL 
tured objects with a singular density distribution at their
centers:

(1)

Although this result was analytically obtained rela-
tively long ago, for a long time only plane nonlinear
structures had been obtained in numerical calculations.
Navaro et al. [6] were able to also show the existence of
stable, spherically symmetric clumps only by using
special computational methods that actually reduced to
the separation of individual density maxima. A further
improvement in computational methods made it possi-
ble to separate a singular density profile in the central
region of a clump with a singularity parameter ξ close
to (1) [7]. Thus, now, numerical simulations may be
considered to have confirmed the results of the analyti-
cal theory almost completely.

Following [5], let us consider a separate local per-
turbation of the dark matter density ρ(r) in the follow-
ing form near the maximum r = 0:

(2)

The growth of Jeans instability and the subsequent
kinetic stirring of dark matter give rise to a nondissipa-
tive gravitational singularity (NGS) with scaling (1)
and a spherically symmetric stationary distribution
function

(3)

where

is the radial action, m is the magnitude of the angular
momentum, E = v 2/2 + ψ(r) is the energy, ψ(r) ∝  r2/7 is
the NGS potential, r± are the turning points of dark mat-
ter particles, and f0 and l0 are constants that depend on
the scale and shape of the initial perturbation. In partic-
ular,

, (4)

where

are the ellipticity parameters near the maximum of the
initial density (2). If the parameters e1, 2 are assumed to

ρ Kr ξ– , ξ 12/7.= =

ρt 0= ρ0 1 x2

a2
----- y2

b2
-----– z2

c2
----–– 

  , a b c.≥ ≥=

f E m,( ) f 0IR
1/8δ m2 l0

2IR
2–( ),=

IR Ė m,( )
2

π
------- r E ψ r( )– m2

2r2
-------– 

 
1/2

d

r–

r+

∫=

l0 0.16e=

e e1
2

e2
2

e1e2–+( )1/2
, e1 a b–( )/a,= =

e2 a c–( )/a=
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be generally random variables uniformly distributed in

segment [0, 1], then the mean 〈e〉  = , whence

(5)

Thus, as follows from (3) and (4), the angular
momenta of dark matter particles in the central region
after NGS formation are low and proportional to the
radial action IR , while their orbits are highly elongated
toward the NGS center.

Let us now consider the influence of the baryonic
component on the structure of distribution function (3).
Because of energy radiation during inelastic collisions,
baryonic matter gradually sinks to the bottoms of
potential wells produced by cold dark matter and forms
galaxies, with the dark matter forming a giant galactic
halo. The existence of a dark matter halo in galaxies is
confirmed by rotation curves [8]. Other examples of
such objects are clusters of galaxies. The dark matter
halo shows up here via the gravitational confinement of
a large amount of hot gas [9].

As follows from (1), the dark matter mass concen-
trated in the central NGS region tends to zero as the size
of this region decreases as r9/7. Therefore, although the
total fraction of baryonic matter is small, its concentra-
tion in the central region greatly increases as it cools
down and settles to the NGS center. This, in turn, can
significantly affect the total gravitational potential Ψ
produced by both dark, ψd , and baryonic, ψb , matter
and thereby can change law (1).

In this section, we assume the distribution of the
baryonic component to be spherically symmetric,

The characteristic scale rc on which deviations from
universal law (1) would be expected due to the influ-
ence of baryons is defined by the relation Mb(rc) ≥
Md(rc), where Mb is the mass of the baryonic matter and
Md is the mass of the dark matter. In general, this ine-
quality holds in the bulge.

The main feature of the process under consideration
is that the particles of baryonic matter lose their energy
slowly—in a time comparable to the lifetime of the
Universe. During this time, the particles of dark matter
captured by the gravitational field in the central part of
the halo oscillate many times. Thus, the change in total
self-consistent potential Ψ is adiabatically slow. Under
these conditions, the radial action is known [10] to be
an integral of motion (an adiabatic invariant). Since the
initial distribution function depends on the integrals of
motion IR and m, it retains its form (3) as a function of
the radial action and the angular momentum throughout
the slow evolution of the total potential from Ψ = ψd to
Ψ = ψd + ψb .

5/12

l0〈 〉 0.1.≈

ψb ψb r( ).=
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To determine the dark matter space density in the
field Ψ(r, t), it is convenient to pass from IR and m to the
variables E and m using the relation

(6)

Since the radial action explicitly depends on time in (6),
the distribution function of dark matter particles
expressed in terms of energy and angular momentum,
f(E, m, t), also depends on time. In this case, the dark
matter space density is given by

(7)

where Ω is the energy range in which the following ine-
quality holds:

Below, we will be interested in the region of space
r < rc where, to a first approximation, we may disregard
the influence of the dark mass on the total potential and
assume that Ψ = ψb . For simplicity, we restrict our anal-
ysis to the case where the baryonic mass and potential
in the final state have a power-law dependence on r:

(8)

The radial action (6) may then be represented in factor-
ized form:

(9)

where

,

G is the gravitational constant.

IR E m t, ,( )
2

π
------- r E Ψ r t,( ) m2

2r2
-------–– 

 
1/2

.d

r–

r+

∫=

ρ r t,( )
2π
r2

---------- m2 E f E m t, ,( )d

Ω
∫d

0

∞

∫=

× E Ψ r t,( ) m2

2r2
-------–– 

 
–1/2

,

E Ψ r t,( ) m2/2r2–– 0.≥

Mb r( ) rn, ψb rn 1– , n 0.≥∝∝

IR I0 r+( )C µ( ),=

I0 G1/2Mb
1/2 r+( )r+

1/2, µ m
I0
----,= =

C µ( )
2

π
------- β αn 2– αd

β

1

∫ µ2

2
----- 1

β2
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1
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SICS      Vol. 98      No. 1      2004



4 ILYIN et al.
Using these relations and changing the variables
E, m ° r+, µ in (7), we may also represent the dark
matter space density as a power law:

(10)

It is important to note that, in the absence of the bary-
onic component, the exponent in (10) does not depend
on the parameters f0 and l0 of the initial perturbation.

It follows from (10) and (1) that the densities of the
baryonic and dark components at n = 9/7 change as
r−12/7. For an isothermal distribution of baryonic matter,
ρb ∝  r–2 and n = 1. It then follows from (10) that the
dark matter density increases as r–15/8 when r  0,
i.e., slightly more slowly than the baryonic density. The
largest contraction of dark matter would be expected at
n = 0, when a compact massive baryonic object is
formed at the NGS center. The dark matter distribution
in its vicinity is

(11)

Note, however, that when a black hole serves as such
an object, law (11) is violated due to the capture of dark
matter particles by the BH. This question is considered
in more detail in Section 6.

3. THE INFLUENCE OF ASYMMETRY
IN THE DISTRIBUTION OF BARYONIC MATTER 

ON THE DISTRIBUTION FUNCTION 
FOR DARK MATTER

Above, we assumed the distribution of the baryonic
component to be spherically symmetric. This restric-
tion could actually be severe. Indeed, the baryonic
potential usually contains a small spherically asymmet-
ric part (associated, for example, with the asymmetry in
the distribution of baryonic matter in the bulges of
elliptical and spiral galaxies), while, in general, the
angular momenta of the dark matter particles are not
conserved as they move in an asymmetric potential.
Therefore, at first glance, even a small asymmetric
addition to the potential can significantly change the
particle angular momenta in a time much longer than
the characteristic oscillation period of the dark matter
particles, thereby also changing the form of distribution
function (3). Actually, for a small asymmetry and a
slow change of the potential, the evolution of the radial
action IR , the magnitude of the angular momentum m,
and the angular momentum component mz consists only
in small oscillations of these quantities about their
initial values, while their mean values are virtually
constant.

The generalization of the well-known theorem on
the adiabatic invariance of action variables [10] proves
this assertion. The collisionless motion of dark matter

ρd K'r
9
16
------n

39
16
------–

.=

ρd r–39/16.∝
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particles in a spherically symmetric, time-independent
potential Ψ0 is described by the kinetic equation

(12)

where

is the Hamiltonian,

are the canonical momenta, and {,} are the Poisson
brackets. Next, let us make the canonical transformation
to the action–angle variables. Using the always existing
arbitrariness in constructing these variables [11], we
choose IR , m, and mz as the action variables. Using the
generating function

(13)

we define the corresponding angular variables φ in a
standard way:

(14)

(in what follows, x denotes the set of spherical coordi-
nates r, θ, and ϕ; I denotes the set of action variables
{Ik} = {IR, m, mz}; and ϕ denotes the set of angular vari-
ables.) Expressing the energy E in terms of the action
variables and differentiating it with respect to Ik , we
obtain the frequencies ωk(I) = ∂E/∂Ik that correspond to
unperturbed motion in a time-independent, spherically
symmetric potential. In this case, since E does not
explicitly depend on mz , frequency ω3 is identically
equal to zero. For this reason, the particle motion is
degenerate in one coordinate and takes place in a plane
perpendicular to the angular momentum vector. The
kinetic equation in the new variables is

(15)

Let us now consider the perturbed potential Ψ,
which differs from Ψ0 by the small asymmetric term

∂f
∂t
----- H0 f,{ }+ 0,=

H0
pr

2

2
-----

pθ
2

2r2
-------

pϕ
2

2r2 θsin
2

--------------------- Ψ0+ + +=

pr v r, pθ m2 mz
2

θsin
2

------------–
 
 
 

1/2

, pϕ mz= = =

S x I,( ) 2 r E I m,( ) Ψ0– m2

2r2
-------– 

 
1/2

d∫=

+ θ m2 mz
2

θsin
2

------------–
 
 
 

1/2

mzϕ ,+d∫

φk
∂S x I,( )

∂Ik

------------------=

∂f
∂t
----- ωk

∂f
∂φk

--------+ 0.=
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εΨ1. We also assume that the potential explicitly
depends on the slow time t1 = εt:

The perturbed kinetic equation can now be written as

(16)

where H1 is defined according to general rules [10]:

We solve Eq. (16) by a modified method of pertur-
bation theory that allows the appearance of secular
terms to be avoided. The idea of the method is to repre-
sent the function f as a series of successive approxima-
tions,

by formally assuming that fk are functions of many
times:

where

.

Accordingly, operator ∂/∂t can also be represented as a
series:

.

It follows from the equation of the zeroth approxima-
tion

and from the fact that initial function (3) does not
depend on the angular variables φ and the third action
variable mz that f0 does not depend on φ, mz , and the fast
time t0 either:

The equation of the first approximation is

Averaging this equation over the angular variables φ

Ψ Ψ0 r t1,( ) εΨ1 r θ ϕ t1, , ,( ).+=

∂f
∂t
----- ωk

∂f
∂φk

--------+ ε
∂H1

∂φk

---------- ∂f
∂Ik

-------   
∂
 
H
 

1 ∂  
I

 
k
 ----------–  ∂

 
f ∂φ k
 --------  

  ,=

H1 I φ t1, ,( ) Ψ1 x t1,( )
∂S x I t1, ,( )

∂t1
--------------------------.+=

f f 0 ε f 1 ε2 f 2 …,+ + +=

f k f k I φ t0 t1 t2 …, , , , ,( ),=

t0 t, t1 εt, t2 ε2t …,= = =

t∂
∂

t0∂
∂ ε

t1∂
∂ ε2

t2∂
∂ …+ + +=

∂ f 0

∂t0
-------- ωk

∂ f 0

∂φk

--------+ 0=

f 0 f 0 IR m t1 …, , ,( ).=

∂ f 0

∂t1
--------

∂ f 1

∂t0
-------- ωk

∂ f 1

∂φk

--------+ +
∂H1

∂φk

----------
∂ f 0

∂Ik

--------.=
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and the fast time t0 using the operations

yields

This equation with the initial condition f1 = 0 at t = 0 can
be easily solved by the method of characteristics:

(17)

The equality

ensures that solution (17) is limited, although the fre-
quency ω3 is equal to zero. We write the equation of the
second approximation as

whence after averaging over t0, t1, and φ, we obtain a
diffusion equation in the form

(18)

where the diffusion coefficients are

(19)

Since Hamiltonian H1 is now a 2π-periodic function
of the angular variables φ, it may be expanded in a mul-

…〈 〉 φ
1

2π( )3
------------- φ3 …d∫ ,=

…〈 〉 T
1
T
--- t0…d

0

T

∫T ∞→
lim=

∂ f 0

∂t1
-------- 0,=

∂ f 1

∂t0
-------- ωk

∂ f 1

∂φk

--------+
∂H1

∂φk

----------
∂ f 0

∂Ik

--------.=

f 1 t0'
∂H1 I φ ωt0'– t1, ,( )

∂φk

--------------------------------------------
∂ f 0

∂Ik

--------.d

0

t0

∫=

∂ f 0

∂I3
--------

∂ f 0

∂mz

--------- 0= =

∂ f 0

∂t2
--------

∂ f 1

∂t1
--------

∂ f 2

∂t0
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∂ f 2

∂φk

--------+ + +

=  
Ik∂
∂ ∂H1

∂φk

---------- f 1 
 

φk∂
∂ ∂H1

∂Ik

---------- f 1 
  ,–

∂ f 0

∂t2
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Ik∂
∂

Rkp I( )
I p∂
∂

f 0,=

Rkp I( )

=  t0'
∂H1 I φ t1, ,( )

∂φk

-----------------------------
∂H1 I φ ωt0'– t1, ,( )

∂φp

-------------------------------------------d

0

t0

∫
φ t0 t1, ,

.
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tiple Fourier series:

(20)

where

Substituting these expansions into (19) and averaging
over φ, we obtain

.

Next, we assume that frequencies ωk(I) are indepen-
dent in the sense that the equality

implies n1, 2 = 0. (The set of variables I for which this
condition is not satisfied has a zero measure). Integra-
tion over  then yields

This expression contains the secular term

However, this term contributes only to R33; therefore, it
may be discarded, because f0 is independent of I3 = mz .
We then obtain

Averaging this equality now over t0 finally yields

Thus, we have shown that the presence of an asym-
metric term on the order of ε in the gravitational poten-
tial does not change initial distribution function (3) for

H1 I φ t1, ,( ) hn I t1,( )einφ,
n

∑=

n n1 n2 n3, ,{ } , nφ n1φ1 n2φ2 n3φ3.+ +≡≡

Rkp〈 〉 φ nknphnh n– t0' inωt0'–( )expd

0

t0

∫
n

∑=

n1ω1 n2ω2+ 0=

t0'

Rkp〈 〉 φ nknphnh n–
1

inω
--------- 1 inωt0–( )exp+( )

n1 2, 0≠
∑=

+ nknphnh n– t0.
n1 2, 0=

∑

nknphnh n– t0.
n1 2, 0=

∑

Rkp〈 〉 φ nknphnh n–
1

inω
--------- 1 inωt0–( )exp–( )

n1 2, 0≠
∑=

=  nknphnh n–
1

inω
--------- inωt0–( ).exp

n1 2, 0≠
∑–

Rkp 0,
∂ f 0

∂t2
-------- 0.= =
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dark matter particles, to within small terms of order ε2.
A more detailed analysis based on consistent perturba-
tion theory indicates that, actually, the deviations of the
averaged action variables from their initial values are
generally exponentially small if the adiabaticity condi-
tions are satisfied. (For example, for the so-called
Arnold diffusion, the mean rate of departure of the vari-

ables is on the order of exp(1/ ) [11].) This implies
that the departure of the action variables cannot be
recorded in any order of perturbation theory. Therefore,
nonadiabatic processes play a much more important
role in the dynamics of dark matter in real galactic sys-
tems. They will be considered in the following sections.

4. THE GROWTH OF A BLACK HOLE
DUE TO THE DIRECT ABSORPTION

OF DARK MATTER

Let a primary BH that begins to grow due to the
absorption of dark matter be formed at the NGS center
via the contraction of baryonic matter. The flux of dark
matter on a BH with mass Mbh is composed of particles
the angular momenta of which satisfy the inequality

(21)

where rg = 2GMbh/c2 is the gravitational radius of the
BH [12]. Their absorption causes the number of parti-
cles in the loss cone (21) to decrease. On the other hand,
the BH growth causes mg and, hence, the loss cone to
increase. Thus, the law of BH growth is determined by
these two competing processes.

Let us determine the conditions under which the BH
growth stops and its mass reaches

where Mb is the mass of the seed baryonic BH and Md

is the mass of the absorbed dark matter. Since the par-
ticle angular momenta are conserved during spherically
symmetric evolution, the BH will capture only those
particles that are in the loss cone of the final BH with
mass Mbh . The total mass of these particles can be
determined from the initial distribution function fi by
using the equality

where

On the other hand, their total mass must determine Md;
hence

(22)

ε

m mg< 2crg,=

Mbh Mb Md,+=

N f i; Mbh( ) r3
v

3 f i r v,( )θ mg m–( ),dd∫=

θ
0, x 0,<
1, x 0.≥




=

Md N f i; Mb Md+( ).=
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DARK MATTER IN GALAXIES AND THE GROWTH OF GIANT BLACK HOLES 7
Thus, if Eq. (22) has a solution Md > 0, then the BH
will stop growing at total mass Mbh . Otherwise, the BH
will grow indefinitely. However, as we show below,
Eq. (22) has a solution in almost all reasonable cases;
moreover, the total mass of the captured dark matter
particles Md is much lower than the seed baryonic
mass Mb .

As a model example, let us consider the growth of
the seed BH for an initial isothermal distribution of
dark matter. In this case, the distribution function, the
density, and the potential are

(23)

(24)

(25)

where σd is the dark particle velocity dispersion and

ρ0 = /2πG. The density of the particles with angular
momenta lower than mg determined from the initial dis-
tribution (23) is

whence the total mass of the particle with angular
momenta lower than mg is

(26)

Given (21) and (26), Eq. (22) takes the form

(27)

where

It is important to note that the dimensionless parameter
Q is always small in real conditions. Indeed, since, for
example, the mass of our galactic halo is MH ~ 1012M(

and its radius is RH ~ 100 kpc, we find from (24)
and (27) that Q ~ 10–3. A similar situation also takes
place in other galaxies. Thus, the absorbed dark mass
Md is proportional to the baryonic mass and, according
to (27), accounts for about 0.1% of the seed baryonic
mass Mb .

f i E m,( )
ρ0

2πσd
2( )3/2

---------------------- E

σd
2

-----– 
  ,exp=

ρ r( )
ρ0

r2
-----,=

ψd r( ) 4πGρ0 r,ln=

σd
2

ρg r( )
ρ0

r2
----- 1

mg
2

2σd
2r2

--------------–
 
 
 

exp–
 
 
 

,=

Ng 2π
ρ0

G
----- 

 
1/2

mg.=

Md

Mb

------- Q 1
Md

Mb

-------+ 
  ,=

Q
8π
c

------ Gρ0( )1/2.=
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It is easy to verify that this conclusion will change
only slightly if the distribution function for dark matter
differs significantly from the isothermal distribution
and is described by formula (3). Indeed, the total mass
of the particles with angular momenta lower than mg is
now defined by the expression

hence

(28)

Let us now rewrite Eq. (22) as

(29)

where

The constant f0 can be determined from the relation

where, according to (9), the radial action of the bound-
ary particles Im is related to the halo radius RH and mass
MH by

Hence, we obtain

(30)

Using this relation, we can show that, under the condi-
tions of our galaxy, parameter Q is still small (on the
order of 10–2) and the mass of the dark matter captured
by the BH is negligible.

We emphasize that a previous study of this ques-
tion [13] by other authors led them to assert that the BH
grows indefinitely via the direct onflow of dark matter.
The cause of the error lay in the fact that the authors dis-
regarded the change in the dark matter distribution

Ng φ3 IR m mzd

m–

m

∫d

0

∞

∫d

0

∞

∫d∫=

× f 0IR
1/8δ m2 l0

2IR
2–( )θ mg m–( );

Ng 2π( )38
9
--- f 0

mg

l0
------ 

 
9/8

.=

Md

Mb

------- Q 1
Md

Mb

-------+ 
  9/8

,=

Q Q'Mb
1/8, Q' 2π( )38

9
--- f 0

4G
l0c
------- 

  9/8

.= =

Mh 2π( )3 IR m2d

0

∞

∫d

0

∞

∫=

× f 0IR
1/8δ m2 l0

2IR
2–( )θ mg m–( ),

Im
1
π
---G1/2MH

1/2RH
1/2.≈

f 0
9
8
--- π9/8

2π( )3
-------------

MH
7/16

GRH( )9/16
-----------------------.=
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function due to the capture of the particles that fell
within the loss cone. As a result, the loss cone was
always filled, which caused the BH to grow indefinitely.

Thus, the dynamics of dark matter particles when
the angular moments are conserved cannot be responsi-
ble for any appreciable BH growth, because the number
of particles in the loss cone rapidly decreases and the loss
cone itself grows too slowly to provide the influx of new
particles. As follows from the results of Section 3, the
presence of a small asymmetry in the potential does not
lead to any significant change in the dark particle angu-
lar momenta and to the filling of the loss cone. The sim-
plest nonadiabatic processes that can lead to the filling
of the loss cone are collisions of dark matter particles
with stars. This process is considered in following sec-
tions.

5. THE KINETIC EQUATION

The distribution function for dark matter particles,
f(r, v, t), with allowance made for their gravitational
interaction with stars satisfies the following kinetic
equation:

(31)

where H0 is the Hamiltonian that corresponds to the
particle motion in the averaged potential and St[ f ] is
the collision term. Since the gravitational interaction of
dark matter particles with individual stars is identical to
the Coulomb interaction, the collision term may be
written in Landau form [14]:

(32)

where

v k are the components of the dark particle velocity v,
F(v', k) is the distribution function of the stars, u = v' –
v is the relative velocity of the stars and dark particles,
and Λ ~ 10 is the gravitational Coulomb logarithm [15].

Actually, as was noted above, the frequency of par-
ticle collisions with stars is much lower than the char-
acteristic frequency of their orbital motion. Under these
conditions, the kinetic equation (31) can be signifi-
cantly simplified. To this end, as in Section 3, we
rewrite it in the action–angle variables,

(33)

∂f
∂t
----- H0 f,{ }+ St f[ ] ,=

St f[ ]
v k∂
∂

Wkp v p∂
∂

f ,=

Wkp 2πG2M(Λ v '3 wkpF v' r,( ),d∫=

wkp u2δkp ukup–( )/u3,=

∂f
∂t
----- ωk

∂f
∂φk

--------+ StI φ, f[ ] ,=
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and take into account the fact that initial distribution
function (3) does not depend on the angular variables φ.
Therefore, its change is attributable only to the collision
term (32). However, as was noted above, collisions are
rare and St[ f ] ∝  νf, where ν is the collision frequency.
For this reason, we will again seek a solution of
Eq. (33) in the form

where νf1 is a small correction to f0, and both terms f0
and f1 depend on the fast, t0 = t, and slow, t1 = νt, times.
In the zeroth approximation in ν,

whence, as above, it follows that the main part of the
distribution function f0 does not depend on the angular
variables and the fast time. The first approximation
yields

Averaging this equation over the angular variables
and the fast time and taking into account the fact that
the second and third terms become zero after the aver-
aging, we finally obtain

(34)

(Here, we omitted the subscript 0 in the distribution
function and returned to ordinary time t.)

Thus, under the above assumptions regarding the
collision frequency ν, we may seek the distribution
function that depends only on the action variables as a
solution of kinetic equation (34) with the averaged col-
lision term:

(35)

The kinetic equation in averaged form (34) was first
derived by Budker and Belyaev [16] in studying the
dynamics of relativistic particles. In [17–19], this equa-
tion was used to study the dynamics of particles and
stars in the field of a Coulomb center.

Our objective is to study the dynamics of particles in
an arbitrary centrally symmetric field. It is first neces-
sary to derive expression (35) for the averaged collision
integral. Following [16], we consider the tensor differ-
ential form (23) formally in the six-dimensional space
of velocities and coordinates X = (v, x):

f f 0 ν f 1,+=

∂ f 0

∂t0
-------- ωk

∂ f 0

∂φk

--------+ 0,=

ν
∂ f 0

∂t1
--------

∂ f 1

∂t0
-------- ωk

∂ f 1

∂φk

--------+ + 
  StI φ, f 0[ ] .=

∂ f I t,( )
∂t

----------------- St f I t,( )[ ] .=

St f[ ] 1

2π( )3
------------- φ3 StI φ, f[ ] .d∫=

v k∂
∂

Wkp v k∂
∂

Xµ∂
∂

Wµν Xν∂
∂

, µ ν, 1 … 6,, ,= =
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DARK MATTER IN GALAXIES AND THE GROWTH OF GIANT BLACK HOLES 9
by assuming the spatial components of the tensor W to
be zero. In this six-dimensional space, we make the
canonical transformation to the action–angle variables:

After this transformation, the differential form becomes

where  is the Jacobian. However, the Jacobian of the
canonical transformation is known to be unity. There-
fore, the differential form in the new variables is

It should be recalled that we seek a solution of kinetic
equation (34) that does not depend on the angular vari-
ables φ. Hence,

Next, when averaged over φ, the terms (∂/∂φ)R(∂/∂I)
also become zero and the expression for the averaged
collision integral again takes three-dimensional form:

(36)

where

(37)

To obtain the specific differential form on the right-
hand side of Eq. (36), we must specify the distribution
function of the stars F. Observational data for the
dynamics of stars in the bulge suggest that, to a first
approximation, the distribution function of the stars
may be assumed to be isotropic, i.e., dependent only on
the energy

but not on the angular momentum. For simplicity, we
also assume that the distribution function of the stars
depends on energy as a power law:

(38)

Xµ ° Yµ'; Y IR m mz; φ1 φ2 φ3, ,, ,{ } .=

Xµ∂
∂

Wµν Xν∂
∂ 1

g
-------

Yµ'∂
∂

gRµ'ν' Yν'∂
∂

,=

Rµ'ν'

∂Yµ'

∂Xµ
----------

∂Yν'

∂Xν
---------Wµ ν, ,=

g

Xµ∂
∂

Wµν Xν∂
∂

Yµ'∂
∂

Rµ'ν' Yν'∂
∂

.=

Y∂
∂

R φ∂
∂

0.=

St f[ ]
Ik'∂
∂

Rk' p' I p'∂
∂

f ,=

Rk' p'
1

2π( )3
------------- φ3 ∂Ik'

∂v k

---------
∂I p'

∂v p

---------Wkp.d∫=

E' v '2

2
------- Ψ r( ),+=

F v ' r,( ) F0E' β– .=
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It can be shown that the potential produced by stars
with distribution (38) also depends on r as a power law:

(39)

Distribution function (38) and potential (39) can be
determined if we know the stellar velocity dispersion

specified as a function of the distance to the galactic
center:

(40)

In this case, the velocity dispersion, together with the
parameters σ0 and α, is uniquely related to the distribu-
tion function (38) and potential (39) by

For α = 0, these relations formally become mean-
ingless. However, as can be shown, stellar distribution
function (38) for α  0 transforms from a power-law
one to an isothermal one identical in form to (23) with
a distance-independent velocity dispersion σ. In gen-
eral, parameter α is small in the bulge.

Calculations show that the quadratic form Wkp

from (32) for an isotropic stellar distribution function
F(E') becomes

(41)

where

Ψ r( ) Ψ0rα , α 4
2β 1–
---------------.= =

σ v k
2〈 〉 v 2/3〈 〉 ,= =

σ r( ) σ0rα /2.=

Ψ0 3σ0
2

x2 1 x2/2+( ) β–
xd

0

∞

∫

x4 1 x2/2+( ) β–
xd

0

∞

∫
-------------------------------------------,=

F0
α 1 α+( )

4π( )2G x2 1 x2/2+( ) β–
xd

0

∞

∫
--------------------------------------------------------------Ψ0

2/α .=

Wkp A E r,( )δkp B E r,( )
v kv p

v 2
------------,–=

A
16π2

3
-----------G2M(Λ E'd

Ψ r( )

∞

∫=

× F E'( )

1, E E ',<

3
2
---v '

v
----- 1 v '2

3v 2
---------– 

  , E E',>






A B–
16π2

3
-----------G2M(Λ E'F E'( )

1, E E ',<

v '3

v 3
-------, E E'.>







d

Ψ r( )

∞

∫=
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10 ILYIN et al.
Another factor that simplifies our calculations is
that, as follows from (9), the radial action of the parti-
cles moving in potential (39) can be accurately fitted by
the following simple relation:

(42)

where bα is a positive constant and

(Note that equality (42) is exact and b = 1 for Coulomb
and oscillatory potentials [10].)

In view of (42), it seems natural to make a linear
change of variables,

In this case, expression (37) for the tensor will not
change, because the transformation is linear. Therefore,
below, by the variables I in (36) and (37) we mean J, m,
and mz.

Now, note that initial distribution function (3) has
the same form in the new variables, because the coeffi-
cient l0 (4) is small:

(43)

Since the initial function (43) does not depend on
the variables mz , a solution of Eq. (36) can also be
sought in the form of a function of only J and m. Taking
this fact into account and calculating the coefficients of
quadratic form (37), we may write the collision term
using (41) as

(44)

where

IR E m,( ) J E( ) bαm,–≈

J E( )

2 1 xα– xd

0

1

∫
πΨ0

1/α-----------------------------------E1/α 1/2+ , α 0,>

σ
π

------- E

2σ2
--------- 

  , αexp 0.=










=

IR m mz J m mz., ,, ,

f J m,( ) f 0J1/8δ m2 l0
2J2–( ).=

St f[ ] 1
m
----

m∂
∂

m R22
∂f
∂m
------- R12

∂f
∂J
------+ 

 =

+
J∂

∂
R12

∂f
∂m
------- R11

∂f
∂J
------+ 

  ,

R11
∂J
∂E
------ 

 
2

A B–( )v 2〈 〉 φ,=

R12
∂J
∂E
------ 

  A B–( )m〈 〉 φ,=

R22 Ar2 B

v 2
------m2–

φ
.=
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We represent the operation of averaging over the angu-
lar variables as

where

is the radial oscillation period of the dark matter parti-
cles and

is the radial velocity. Next, since the angular momenta
of dark matter particles are low, we will calculate the
coefficients (J, m) in (44) at m = 0 in the first
approximation. In addition, we see from the form of ini-
tial distribution function (43) that for moderately long
times, as long as the distribution function has a sharp
maximum at m = l0J, l0 ! 1, the diffusion in J may be
ignored compared to the diffusion in m. Thus, we write
the averaged kinetic equation (34) as a diffusion equa-
tion only in the space of angular momenta m:

(45)

where the diffusion coefficient

calculated from the distribution of stars with the veloc-
ity dispersion (40) is

(46)

For an isothermal distribution of stars in the bulge,
α = 0 and the diffusion coefficient R is a J-independent
constant. We emphasize that the possibility of passing
to the diffusion equation only in angular momentum
space is attributable to the statement of the problem and
to the singularity of initial distribution function (3) con-
taining the small parameter l0.

6. THE FLUX OF DARK MATTER 
ON A BLACK HOLE

Through the direct capture of the particles that fell
into the loss cone of a seed BH, the distribution func-

…〈 〉 φ
2

T E m,( )
------------------ rd

v r

----- …( ),

r–

r+

∫=

T 2 rd
v r

-----

r–

r+

∫=

v r 2 E Ψ r( )– m2

2r2
-------– 

 
1/2

=

Rab

∂ f J m t, ,( )
∂t

------------------------- R J( )
1
m
----

m∂
∂

m
m∂
∂

f J m t, ,( ),=

R R22 m 0= Ar2〈 〉 φ= =

R J( ) 0.46GM(Λσ0
2/ 2 α+( )Jα / 2 α+( ).=
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tion of the dark matter particles in a time on the order
of one period of their orbital motion takes the form

(47)

which differs from (43) by the factor θ(m – mg). The
diffusion of dark matter particles in the angular
momentum space followed by their fall into the loss
cone (21) and absorption by the BH is described by dif-
fusion equation (45) with initial condition (47) and the
boundary condition

(48)

The solution of the diffusion equation may be repre-
sented as

(49)

where G is the Green function of boundary-value prob-
lem (48):

Z is the orthonormalized system of eigenfunctions for
boundary-value problem (48):

and J0 and N0 are the zero-order Bessel and Neumann
cylinder functions. Let us now calculate the flux of dark
matter onto a BH. Let D be the region in phase space
specified by the inequalities

The total mass of the dark matter is defined by the inte-
gral

Next, it follows from the conservation of total mass that
the flux through the boundary is

f J m 0, ,( ) f 0J1/8δ m2 l0
2J2–( )θ m mg–( ),=

f m mg= 0.=

f J m t, ,( ) m1G J m m1 t, , ,( ) f J m 0, ,( ),d

mg

∞

∫=

G λm1Zλ m1 mg,( )Zλ m mg,( ) λ R J( )t–( );expd

0

∞

∫=

Zλ m mg,( )

=  
J0 λmg( )N0 λm( ) N0 λmg( )J0 λm( )–

J0
2 λmg( ) N0

2 λmg( )+( )1/2
-----------------------------------------------------------------------------------------------------;

IR J bαm 0, m mg, m mz m.≤ ≤–≥≥–=

N t( ) I3 φ3 f J m t, ,( ).dd

D

∫=

S dN /dt.–=
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Using Eq. (32), we obtain

Transforming the volume integral into a surface
integral using the Stokes formula and taking into
account the fact that dark matter flows only through the
m = mg surface, we obtain

(50)

Substituting the solution of diffusion equation (49) into
(50) yields

where

(51)

Next, it is convenient to introduce the normalized time

and make the following changes

The expression for the flux then takes the form

(52)

S t( ) I3 φ3
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∂

Rkp I p∂
∂

f J m t, ,( ).dd

D
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π
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0
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× λRα Jγt–( )
Zλ l0J mg,( )
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------------------------------------------------------------------,exp

γ α
2 α+
-------------, Rα 0.46ΛGM(σ0

2/ 2 α+( ).= =

T l0
γ– Rα t=

λ η λ T2/ 2 γ–( ), J y l0JT 1/ 2 γ–( )– ,= =

mg x mgT 1/ 2 γ–( )– .=
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π
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ζ 7 8γ–
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------------------, Φγ x( ) yHγ x y,( ),d

x

∞
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12 ILYIN et al.
It can be shown that Hγ(x, y) is a finite, positively
defined function that becomes exactly equal to zero at
y = x and exponentially small for y > x + 4. Therefore,
we may assert that the flux of dark matter onto a BH at
time t is composed of particles with a radial action in
the range

(53)

Thus, the region of space J from where dark matter
flows grows with time as t1/(2 – γ). The following esti-
mate is valid for the function Φ in the total flux (52):

mg

l0
------ J

mg

l0
------

4
l0
---T1/ 2 γ–( ).+< <
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Fig. 2. Rotation curves for our galaxy, M 31, and NGC 4258
(according to [20]).

1 10 100 1000

Radius, pc

40

50

60

70
80
90

100

200

νlos
2〈 〉 km  s –1 ,  

Fig. 3. 

 

Stellar velocity dispersion versus distance to the our
galactic center (according to [21]).
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Using this estimate, we finally obtain an expression for
the flux of dark matter onto a BH through the m = mg

boundary of the loss cone:

(54)

Expression (54) was derived by assuming that the
mg boundary of the loss cone was time-independent.
Actually, the boundary moves together with the total
BH mass. However, it follows from (54) that the flux
depends weakly on mg . Therefore, expression (54) may
be used to allow for the motion of the boundary as the
BH grows by formally assuming that mg is time-
dependent:

Thus, we write the BH growth law as

Assuming the mass of the seed BH to be low, we obtain
the following solution of this equation:

(55)

where relation (30) may be used to estimate the parame-
ter f0. Thus, the BH grows via the absorption of dark mat-
ter scattered during collisions with stars as a power law:

7. CONCLUSIONS

In conclusion, let us compare the results of the the-
ory presented above with observational data. In Fig. 2,
stellar rotation velocities are plotted against distance to
the centers of our galaxy and the galaxies M 31 and
NGC 4258 [20]. We see that the distribution of stars in
the bulges of M 31 and NGC 4258 is nearly isothermal;
i.e., the stars have an almost constant, distance-inde-
pendent orbital velocity (and, hence, dispersion), σ =
σ0 ~ 200 km s–1, up to the region of BH influence (r <
4–7 pc). Assuming the mass and size of the dark matter
halos around these galaxies to be approximately equal,
1012M( and 100 kpc, respectively, we obtain f0 ≈ 7.3 ×
108 g s9/8 cm–9/4 and l0 ≈ 0.1 from (30) and (5). We have
α = γ = 0 and Rα ≈ 6.1 × 1033 cm4 s–3 from (40) and (51).
Next, assuming that the BH age t is comparable to the
age of the Universe, t ≈ 3 × 1017 s, we obtain the BH
mass from (55), Mbh ≈ 5 × 107M(. Thus, the theoretical
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BH masses for these galaxies are close to their observed
values:
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In the central region of the galactic bulge, the
assumption of an isothermal stellar distribution at 
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100 pc is invalid. At the same time, as we see from (53),
dark matter flows mainly from the central region. Stel-
lar velocity dispersion is plotted against distance in
Fig. 3 [21]. We see that on a scale from 10 to 100 pc, the
dispersion may be roughly represented as
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much higher than the observed value of 
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. More complete information about the stellar
distribution function, its evolution, and the evolution of
the dark matter distribution in the central region of the
bulge is required to estimate the BH mass more accu-
rately. The contribution from the BH itself to the total
gravitational potential can also play an important role.
Nevertheless, in general, we see that even in a rough
approximation, allowance for the absorption of dark
matter alone by a seed BH makes it possible to obtain a
reasonable estimate for the observed masses of a large
number of giant BHs (see Fig. 1). This fact may be con-
sidered as a further confirmation of the general theory
for the large-scale structure of the Universe [5] based
on the assumption about the corpuscular nature of dark
matter.

Note also that the general kinetic theory developed
in Section 5 allows us to also describe the absorption of
baryonic matter or, more precisely, the capture of the
stars themselves by the BH in the central region of the
bulge via their gravitational scattering. This process is
extremely important, in particular, for giant BHs with
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 and active galactic nuclei.

It should be noted that another important process
described by kinetic equation (34) is the possible
decrease in the amount of dark matter in the bulge. The
change in the energy of dark matter particles via their
collisions with stars leads to their heating and expulsion
from the bulge (a phenomenon similar to Fermi accel-
eration) and, hence, to a decrease in the dark matter
density compared to the baryonic density. Qualitatively,
this result agrees with the observations in recent years
discussed in detail in [22, 23].

Further development of the consistent kinetic theory
discussed above and its detailed comparison with
observational data will undoubtedly provide insight
into the main physical processes in galactic nuclei.

r
10 pc
------------- 
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Abstract—The transport of a two-component gas mixture in subnanometer channels is investigated theoreti-
cally for an arbitrary filling of channels. Special attention is paid to consistent inclusion of density effects,
which are associated both with the interaction and with a finite size of particles. The analysis is carried out using
the hard-sphere model, in which the interaction is manifested as the effective (dynamic) attraction of particles,
leading to their correlation. The adsorption isotherm is calculated and the ground state of the mixture in one-
dimensional channels is investigated. It is shown, using the density functional method, that the two-component
mixture in channels with increasing degree of filling is transformed into a spatially inhomogeneous state. This
gives rise to short-lived clusters with size and lifetime increasing with the degree of channel filling. The descrip-
tion of transport in subnanometer channels is reduced in this case to the description of diffusion in a spatially
inhomogeneous high-density one-dimensional system. The transport of particles in a medium with short-lived
clusters occurs as a collective effect of the barrier-free transfer of density excitation. It is shown that, for high
fill factors, the two-component mixture acquires a new property: clusters with a definite size are stabilized in
channels due to effective attraction emerging between particles. The lifetime of formed clusters increases expo-
nentially in accordance with the Arrhenius law; at a low temperature, channels with such clusters might be
blocked to transport of particles of the mixture. The dependences of fluxes on the mixture composition (degree
of filling) and pressure obtained theoretically are in good agreement with the experimentally observed regular-
ities. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Molecular transport in subnanometer channels
attracts considerable attention both from the standpoint
of fundamental science [1–8] and in connection with
numerous applications of membrane technologies and
nanotechnologies [9–13]. Among other things, this is
due to the anomalously high coefficients of gas separa-
tion observed for synthesized ceramic membranes of
complex oxides (zeolites); the channels formed in the
atomic structure of these compounds have a diameter
from 0.3 to 1.4 nm [10]. Such membranes form the
basis of new technologies for separation, processing,
and utilization of substances [13]. Transport of mole-
cules in subnanometer channels of diameter d < 1 nm
(to be more precise, smaller than double the diameter of
molecules) with walls impenetrable to molecules can
take place only along the channel axis and is one-
dimensional [3].

It is well known that an increase in the density of
particles (fill factor θ) in a channel in one-dimensional
(1D) systems does not lead to a phase transition to the
condensed state [14] and a nucleus of a new phase does
not appear in the system. At the same time, the state of
a high-density 1D system of particles is characterized
by the emergence of strong density fluctuations, the
lifetime and the size of short-lived clusters formed in
the system increasing with θ. According to the results
1063-7761/04/9801- $26.00 © 20102
obtained in our previous publication [3], the transport
of particles occurs as a collective process of barrier-free
transport of density excitation. This leads to an increase
in the flux j and the diffusion coefficient D upon an
increase in the fill factor. Such a mechanism makes it
possible to explain the dependences of D and j on the
degree of channel filling with a one-component gas,
which are observed for various molecules. It turned out,
however, that the dependence of transport selectivity on
the pressure in a two-component gas mixture is non-
monotonic: the selectivity attains its maximal value and
then decreases instead of increasing. Thus, the mecha-
nism of diffusion enhancement in a 1D channel, which
was proposed in [3], is inapplicable for two-component
mixtures.

The transport of a two-component mixture in subna-
nometer channels was considered earlier [15, 16] on the
basis of the generalized phenomenological Stephan–
Maxwell equation. The authors of these publications
used the dependence of the chemical potential on the
fill factor, taking into account the finite size of parti-
cles, but disregarding their interaction. The depen-
dences obtained in [15, 16] also indicate a monotonic
increase in the diffusion coefficients, fluxes, and
selectivity upon an increase in θ and, hence, fail to
describe the experimental data for two-component
mixtures.
004 MAIK “Nauka/Interperiodica”
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Here, we analyze the transport of a two-component
gas mixture in subnanometer channels theoretically for
an arbitrary degree of channel filling. The main prob-
lem in this case is to consistently take into account the
density effects associated with both the interaction and
the finite size of the particles. This is done in the hard-
sphere model, in which the interaction is manifested as
an effective (dynamic) attraction of particles, leading to
their correlation [17]. It is well known [17, 18] that,
applying this model to a 3D system, one can describe
the density effects qualitatively and even quantitatively
in some cases. Comparison with experimental data with
the theoretical dependences obtained, which is carried
out in Section 4, demonstrates the possibility of quanti-
tative description of diffusion of a two-component mix-
ture in a 1D system.

In Section 2, the adsorption isotherm of a mixture in
1D channels is calculated; this isotherm relates the fill
factor and the concentration of particles in channels to
the temperature, pressure, and composition of a mix-
ture of gases whose diffusion has been studied in exper-
iments [15, 16, 19]. The ground state of a mixture of
particles in 1D channels is analyzed by the density
functional method [20] generalized to the case of a two-
component mixture. However, in contrast to [20], the
free energy is obtained by directly calculating the cor-
relation function and the response function using the
method developed for 1D systems [21]. The density
functional method is used to derive, from microscopic
considerations, the equation of motion for the order
parameter of the system, which is the Fourier compo-
nent of the deviation of the particle concentration from
its mean value. Analysis of this equation shows that the
two-component mixture in channels is transformed to a
spatially inhomogeneous state upon an increase in θ. As
a result, short-lived clusters appear in channels, the
cluster size and lifetime increasing with θ. A new and
unexpected result obtained in this case is the emergence
of a minimum in the fluctuating part of the free energy
as a function of the wave vector and the Fourier compo-
nent of the order parameter. Thus, at high filling levels,
the two-component mixture acquires a new property:
clusters of a definite size are stabilized by a potential
barrier due to the emergence of effective attraction
between particles in the channels. Such a situation is
typical of transitions of the system to an inhomoge-
neous state [22]. The lifetime of clusters formed
increases exponentially in accordance with the Arrhe-
nius law; at a low temperature, channels with such clus-
ters might be blocked to the transport of particles form-
ing the mixture. It should be noted that the idea of sta-
bilizing the clusters of one component by the other
component in 1D systems was put forth in [7]. Thus, the
description of transport in nanochannels is reduced to
the description of diffusion in a spatially inhomoge-
neous high-density 1D system.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
For a weakly nonequilibrium system, the problem of
computing fluxes in a 1D channel is reduced to the cal-
culation of relaxation frequency spectra for density
fluctuations of mixture components (Section 3). Spec-
tra ωi(k) were determined by using the response func-
tions derived in Section 2. Analysis of the dependences
of ωi on k and on fill factor θ proved that a hydrody-
namic (acoustic) spectrum ωi(k) = cik is typical of clus-
ters (θ ~ 1, finite values of k), while for transport of
excitations over distances much longer than the charac-
teristic size of clusters (k ! 1), the spectrum is of the
diffusion type, ωi(k) ∝  Dik2, for an arbitrary fill factor.
In accordance with the dependences of spectra and
fluxes on the fill factor obtained here, three regimes of
particle transport can be singled out. For θ ! 1, we have
diffusion of solitary particles. As the value of θ
increases, the flux and the diffusion coefficient increase
due to the barrier-free (hydrodynamic) transport of par-
ticles along the increasing part of the length of a 1D
channel filled with the short-lived clusters formed in it.
As the value of θ increases further and the potential bar-
rier (Ei) stabilizing the clusters arises, particle fluxes
decrease exponentially since the value of Ei increases
with θ. Thus, an increase in the fill factor gives rise to
the new property of 1D two-component systems (trans-
port being blocked by the clusters formed).

A comparison of the theory with experimental data
and discussion of results can be found in Section 4. The
obtained dependences of the fluxes on the mixture com-
position (fill factor) and of the selectivity on pressure
successfully describe the experimental data known to
the authors.

2. GROUND STATE OF A SYSTEM
IN 1D CHANNELS

Let us consider the surface of a porous body in con-
tact with a two-component gas mixture at temperature
T and pressure P. Suppose that N adsorption centers are
located on the surface. We assume that the particles on
the outer surface do not interact with one another. We
also assume that the energy of a gas molecule on the

surface is equal to , i = 1, 2, depending on the spe-
cies of the molecule. We also suppose that κ cylindrical
channels (κ @ 1) of diameter d and length L emerge at
the surface. We assume that the diameter of a cylinder
is comparable to the maximal diameter of the gas mol-

ecule. Let us assume that  is the binding energy of

the ith particle at the mouth of a channel,  is the
number of particles of the ith species above the mem-
brane, q(i) is the total number of particles of the ith spe-
cies in the channel, n(i) is the total number of ith parti-
cles in the channel and on the surface, and N0 is the
number of “seats” in the channel. Then the partition
function of the grand canonical ensemble taking into

ε0
i( )

ε1
i( )

N1
i( )
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account the interaction of gas particles in the channel
has the form

(2.1)

Here, the second sum corresponds to summation over

configurations, β = T –1,  is the binding energy of
particles of the ith component in the channel, µ is the
chemical potential, and Zint(q(1), q(2)) is the partition
function corresponding to the inclusion of particle
interaction in the channel. Considering that the main
contribution to the partition function comes from states
with a large number of particles (q(i) @ 1), we can
replace partition function Zint(q(1), q(2)) by the partition
function for particles interacting in the channel, calcu-

lated for the mean value  of the number of particles
of each species in the channel. From the standpoint of
physics, this corresponds to “averaging over channels,”
when a single channel (whose state is calculated by
averaging the parameters of particles in κ channels) is
considered instead of the large number of channels. It
should be noted that this approximation is possible
since the number of channels having a diameter of d <
1 nm and emerging on 1 cm2 of the zeolite membrane

surface is large: κ1 ~  ~ 1014 cm–2 @ 1, where lc is the
characteristic distance between the channels on the
membrane surface [23]. Using relation (2.1) and fol-
lowing the method proposed in [3], we obtain for the
adsorption isotherm

(2.2)

Θ
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where a = L/N0 is the mean distance between the seats
in a channel, c is the concentration of the first compo-
nent in the gas phase above the membrane, c1 and c2 are
the concentrations of the components in a channel, σ1
and σ2 are the diameters of molecules of the first and
second species, σav ≡ (σ1 + σ2)/2 is the average diame-
ter, θ is the fill factor of the channel, and Fint has the
meaning of the free energy of interaction per gas parti-
cle in the channel. The concentrations of the compo-
nents in the channel are chosen so that the following
relation is satisfied:

(2.3)

In accordance with relations (2.2), calculation of the
adsorption isotherm is reduced to calculation of the
value of Fint

(2.4)

where

(2.5)

 is the potential energy of interaction of particles
of species w separated by distance x from each other.

It is convenient for subsequent computations to
introduce, instead of coordinates xi of individual parti-

cles in a channel, “pair” coordinates ,
where l = 1, m = 1 corresponds to the location of two
particles of the first species in the vicinity of point xi;
l = 2, m = 2 corresponds to the same for particles of the
second species, and so on. Obviously, the coordinates
are connected via the relation

(2.6)

Here, Nij has the meaning of the total number of pairs
of closely spaced particles of species i and j and L1
(L2, L3) is the effective length “occupied” by all pairs
N11 (N12, N22) of particles. Considering that L1 + L2 +
L3 = L and, as a consequence, the impossibility of
mutual “hopping” of particles over one another, we can
reduce integration with respect to coordinates xi to inte-

gration with respect to coordinates , which corre-
sponds to summation over all possible configurations of
pairs of particles of the first and second species in the

c1 c2+ 1.=

Fint θ T,( ) T QN/LN( ),ln–=

QN   =   … β U x i
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channel. Consequently, we obtain the following expres-
sion for QN from Eq. (2.5):

(2.7)

Using the delta function representation in the form of a
line integral [21] and carrying out integration with

respect to  independently for different values of
indices l and m, we obtain

(2.8)

Integrating this relation with respect to  for the sim-
plest form of the intermolecular interaction potential of
the hard-sphere type,

(2.9)

we obtain

(2.10)
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Here, we have used the definition Nij = Ncicj (N is the
total number of particles in a channel) and the represen-
tation of a factorial in terms of the gamma function,
N! = Γ(N + 1). Eliminating the factor corresponding to
an ideal gas from relation (2.10) and substituting the
result into Eq. (2.4), we obtain the following expression
for Fint :

(2.11)

As c1  0 or c2  0, expression (2.11) is trans-
formed into the corresponding expression for the free
energy of a one-component gas in a 1D channel [3].

From relations (2.2) and (2.11) for the adsorption
isotherm of a two-component gas, we finally derive the
expressions

(2.12)

Using these relations and specifying the external condi-
tions, we can obtain the fill factor and the component
concentration in the channel. For c = 0 and c = 1, iso-
therm (2.12) transforms into the isotherm for a one-
component gas, which was obtained in [3].

Let us now analyze the ground state of a mixture in
1D channels. It is known [3] that short-lived clusters
can be formed in 1D channels in the case of a one-com-
ponent gas. The formation of clusters can apparently be
expected in the case of a two-component gas as well. In
order to describe possible transition to an inhomoge-
neous clustered state, we must calculate and analyze
the free energy of the system taking into account fluc-
tuations and the equation determining the amplitude of
these fluctuations in the system (equation for the order
parameter). Since molecular transport depends on the
lifetime of clusters, the goal of analyzing the equation
for the order parameter is to determine the characteris-
tic lifetime of clusters as a function of the channel fill
factor and, hence, on the pressure, temperature, and
composition of the mixture above the membrane.
According to [20], the free energy of particles in a
channel taking into account the fluctuation component
can be written in the form (here and below, we assume
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summation over recurrent indices)

(2.13)

where  is the free energy calculated for a spatially
homogeneous state of particles in the channel divided
by temperature; F1 has the meaning of the fluctuation

correction to the free energy;  is the pair
distribution function (α, β = 1, 2 are the species of par-
ticles); and λ is the interaction constant. For λ  0,
the system can be reduced to an ideal system, while the
case with λ  1 corresponds to a real system. In order
to describe the ground state of the system and the kinet-
ics of relaxation to this state, we must pass from free
energy F to its mean value [20]

(2.14)

Here, τ is the characteristic time of “coarsening,”
τmom ! τ ! τdens , τmom being the characteristic time of
momentum relaxation of the system and τdens the char-
acteristic time of density relaxation of the system. In

relations (2.14),  is an analog of the free energy of an
equilibrium system and ∆ is the fluctuation correction

to the mean value . Functional  attains its minimal
value for the equilibrium state of the system.

Quantity ∆ can be expressed in terms of the response
function βαβ(x, x', t, t ') of the system, which is defined
as

(2.15)

where δnα(x, t) is the density fluctuation of particles of

species α and  is a weak external field

depending on time. Response function 
can be derived by directly varying functional ∆ over
δn(x, t) [20]:

(2.16)

Using this relation, we can obtain the expansion of
functional (2.13) into a series in deviations δn of den-
sity from its mean value in the case of a multicompo-
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nent system. In the Fourier representation, the result
has the form

(2.17)

.

Here, βαβ(k, ω) is the response function of the multi-
component system in the Fourier representation. It fol-
lows from the fluctuation-dissipative theorem [24] that
response function βαβ(k, ω) is directly proportional to
the pair distribution; this enables us to calculate
βαβ(k, ω) for a 1D system with an arbitrary density, for
which the pair distribution is exactly known [21].

To calculate the value of ∆, we use the local approx-
imation that makes it possible to replace functional
derivatives by ordinary derivatives [20]:

(2.18)

Using this relation, we obtain from Eq. (2.17)

(2.19)

.

Thus, the evaluation of functional (2.19) in the 1D
case can be reduced to the calculation of response func-
tions. In the case of two-component systems, the equa-

∆ 1
2
--- k ωβαβ

1– k ω,( )δnα k ω,( )δnβ* k ω,( )dd∫=

+
1
3
--- k ω k' ω'

δβαβ
1– k ω,( )

δnγ k' ω',( )
--------------------------dddd∫

× δnα k ω,( )δnβ* k ω,( )δnγ k' ω',( )

+
1
4
--- k ω k' ω' k'' ω''

δ2βαβ
1– k ω,( )

δnγ k' ω',( )δnδ* k'' ω'',( )
-----------------------------------------------------dddddd∫

× δnα k ω,( )δnβ* k ω,( )δnγ k' ω',( )δnδ* k ω,( ) …+

δ2ϕ
δρ x1( )δρ x2( )
------------------------------- δ x x1–( )δ x x2–( )

d2ϕ
dρ2
---------.≈

∆ 1
2
--- k ωβαβ

1– k ω,( )δnα k ω,( )δnβ* k ω,( )dd∫=

+
1
3
--- kd ω k' ω'

∂βαβ
1– k ω,( )

∂nγ k' ω',( )
--------------------------ddd∫

× δnα k ω,( )δnβ* k ω,( )δnγ k' ω',( )

+
1
4
--- k ω k'd ω'd k''d ω''dd

∂2βαβ
1– k ω,( )

∂nγ k' ω',( )∂nδ* k'' ω'',( )
-----------------------------------------------------d∫

× δnα k ω,( )δnβ* k ω,( )δnγ k' ω',( )δnδ* k ω,( ) …+
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tions for determining partial response functions β have
the form [20]

(2.20)

Here,  and βik(k, ω) are the partial response
functions for noninteracting and interacting particles,
respectively. The quantity Rik(k, ω) describes the effec-
tive dynamic interaction between particles and is
defined as

(2.21)

Premultiplying expression (2.20) by  and

postmultiplying it by , we obtain

(2.22)

Over long time periods (t @ τmom), function Rik(k, ω)
can be represented in the form

(2.23)

In view of homogeneity and the absence of correlations
in a system of noninteracting particles, we have

 = (0, 0) = bij , where

(2.24)

S being the entropy of the two-component gas divided
by temperature in the absence of the intermolecular

β̂ k ω,( ) β̂
0( )

k ω,( ) β̂
0( )

k ω,( )R̂ k ω,( )β̂ k ω,( ),+=

β̂ k ω,( ) βik k ω,( )≡ β11 k ω,( ) β12 k ω,( )

β21 k ω,( ) β22 k ω,( ) 
 
 

,=

R̂ k ω,( ) Rik k ω,( )≡ R11 k ω,( ) R12 k ω,( )

R21 k ω,( ) R22 k ω,( ) 
 
 

,=

β̂
0( )

k ω,( ) βik
0( ) k ω,( )≡ β11

0( ) k ω,( ) β12
0( ) k ω,( )

β21
0( ) k ω,( ) β22

0( ) k ω,( ) 
 
 
 

.=

βik
0( ) k ω,( )

Rik k ω,( ) Vik k( )
1
2
--- δ2

δni k ω,( )δnk k ω,( )
-------------------------------------------–=

× Vi'k' x x'–( )βi'k' x x' t t', , ,( ) xd x'd td t'.d∫
β̂

0( )
k ω,( )( )

1–

β̂
1–

k ω,( )

β̂
0( )

k ω,( )( )
1–

β̂
1–

k ω,( ) R̂ k ω,( ).+=

R̂ k 0,( ) β̂
0( )

k 0,( )( )
1–

β̂
1–

k 0,( ).–=

β̂
0( )

k 0,( ) β̂
0( )

bij
∂2S

∂ci∂c j

---------------,–≡
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interaction. In this case, we obtain the following
expression for the effective interaction from Eq. (2.28):

(2.25)

Substituting this expression into Eq. (2.22), we obtain

the following relation for response function :

(2.26)

In order to calculate the response function 
for a system of interacting particles, we can use the
fluctuation-dissipative theorem connecting response

function  to the pair correlation function for a
system of interacting particles:

(2.27)

Here, νij(k) is the pair correlation function divided by
temperature [17]. Relation (2.27) is a generalization of
the known relation β(k, 0) = –θ[1 + θν(k)] [3, 20] for
one-component to two-component systems.

Thus, the calculation of the response function can be
reduced to the calculation of the pair correlation func-
tion or function gik , called a pair distribution [17] and in
terms of the pair correlation function through the
relation

(2.28)

We will calculate the pair distribution using the method
described in [21] and determine g11(k). Functions g12(k)
and g22(k) are calculated similarly. Pair distribution
g11(x) can be written in the form [21]

(2.29)

where the function  is the Fourier transform of

the function , which is equal to the probability of
finding two particles of the first species separated from
each other by m other particles and by a distance ζ.

Function  can be written in the form

R̂ k 0,( ) β̂
0( )

0 0,( )( )
1–

β̂
1–

k 0,( ).–=

β̂ k ω,( )

β̂
1–

k ω,( ) β̂
0( )

k ω,( )( )
1–

=

+  β ̂ 
1–

 k 0 , ( ) β ˆ 
0

 
( )

 0 0 , ( ) ( ) 
1–

 .–

β̂ k 0,( )

β̂ k 0,( )

βij k 0,( ) bij
1– cic jθ

2ν ij k( )+[ ] .–=

ν ij k( ) gij k( ) δ k( ).–=

g11 k( ) Ψm
11 k( ),

m 1=

∞

∑=

Ψm
11 k( )

Ψm
11 ζ( )

Ψm
11 k( )
(2.30)Ψm
11 k( ) ζeik

Qm n– l– n l, , ζ( )QN11 m n– l–( )– N12 n– N22 l–, , L ζ–( )
l 0=

N22

∑
n 0=

N12

∑
QN11 N12 N22, , L( )

-------------------------------------------------------------------------------------------------------------------------,d∫=
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where  is the configuration integral corre-
sponding to the presence of m pairs of particles of the
first species, n pairs of particles of the first and second
species, and l pairs of particles of the second species in
a channel. For m = N11, n = N12, and l = N22, the expres-

sion for configuration integral  coincides with
formula (1.6) in [21]:

(2.31)

Here, ζ has the meaning of a coordinate and φij(S) is the
Laplace transform of function fij(x) ≡ exp(–Uij(x)/T). In
the case of an intermolecular interaction potential in the
form of that in the hard-sphere model, we have

(2.32)

Substituting these relations into Eq. (2.31), we obtain
the following expression for the configuration integral:

(2.33)

Here, p has the meaning of one-dimensional “pres-
sure”. Substituting relations (2.33) into (2.30), we
obtain the following expression for pair distribution
g11(k):

(2.34)

In the long-wave approximation (0 ≤ k ≤ 2π/max{σ1, σ2}),

Qm n l, , ζ( )

Qm n l, , ζ( )

Qm n l, , ζ( ) S φ11 S( )[ ] m φ12 S( )[ ] n φ22 S( )[ ] leSζ ,d∫°=

φij S( ) Sx–( )
Uij x( )

T
--------------– 

 expexp x.d

0

∞

∫=

U11 x( )
0, x σ1,>
∞, x σ1,≤




=

U12 x( )
0, x σav,>
∞, x σav,≤




=

U22 x( )
0, x σ2,>
∞, x σ2.≤




=

Qm n l, , ξ( )
pξ
T

------ 
  ϕ11

p
T
--- 

 
m

ϕ12
p
T
--- 

 
n

ϕ22
p
T
--- 

 
l

,exp=

ϕ11
p
T
--- 

  T
p
---

pσ1

T
---------– 

  ,exp=

ϕ12
p
T
--- 

  T
p
---

pσav

T
-----------– 

  ,exp=

ϕ22
p
T
--- 

  T
p
---

pσ2

T
---------– 

  .exp=

g11 k( )
p
T
--- ikσ1( ) p

T
--- ik–

p
T
--- ikσ1( )exp–

1–

exp=

× 1 ik σav σ1–( )[ ]exp–{ } 1–

× 1 ik σ2 σ1–( )[ ]exp–{ } 1– .
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expression (2.34) contains no poles and we obtain

(2.35)

Functions g12(x) and g22(x) can be calculated similarly.
Substituting expressions (2.35) and (2.27) into (2.26)
and carrying out the normalization procedure (see Sec-
tion 3 below), we obtain the final expression for

response function :

(2.36)

Here,

(2.37)

F is the free energy of a two-component gas with inter-
action per unit temperature, which can be calculated by
differentiating configuration integral  twice with

respect to concentration. Function  can be
obtained by generalizing the response function of the
one-component gas,

derived in [3], to the case of a two-component mixture:

(2.38)

g11 x( )
1

θeff
-------

y m
σ1

aeff
-------– 

 
m 1–

m 1–( )! 1/θeff 1–( )m
--------------------------------------------------

m x ma 0>–,
∑=

× y m–
1/θeff 1–
---------------------– 

  ,exp

y
x

aeff c1 c2,( )
------------------------, θeff

Naeff c1 c2,( )
L

----------------------------,= =

aeff c1 c2,( ) σ1c1
2 σ2c2

2 2σavc1c2.+ +=

β̂ k 0,( )

1

β̂ k 0,( )
----------------

=  

a11

1 a11θ
2c1

2∆ν11 k( )+
---------------------------------------------–

a12

1 a12θ
2c1c2∆ν12 k( )+

--------------------------------------------------–

a21

1 a21θ
2c1c2∆ν21 k( )+

--------------------------------------------------–
a22

1 a22θ
2c2

2∆ν22 k( )+
---------------------------------------------–

 
 
 
 
 
 
 

.

∆ν ij k( ) ν ij k( ) ν ij 0( ), aij
∂2F

∂ci∂c j

---------------,–≡–≡

QN

β̂
0( )

k ω,( )

1
β0 k ω,( )
-------------------

1
θ
--- 1 ω

ω0
------+ 

 –
∂2F

∂θ2
--------- 1 ω

ω0
------+ 

  ,= =

1

β̂
0( )

k ω,( )
----------------------

1 ω
ω1
------+ 

  b11 1 ω
ω1
------+ 

  b12

1 ω
ω2
------+ 

  b21 1 ω
ω2
------+ 

  b22
 
 
 
 
 
 
 

,=

ω1
p( )

iD1k2, ω2
p( )– iD2k2.–= =
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Here, D1, D2, , and  are the diffusion coeffi-
cients and the relaxation frequency spectra for pure
components.

ω1
p( ) ω2

p( )
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Substituting relations (2.36) and (2.38) into
Eq. (2.26), we obtain the following expression for
response function β(k, ω):
(2.39)1
β k ω,( )
-----------------

ω
ω1

p( )---------b11
a11

1 a11θ
2c1

2∆ν11 k( )+
---------------------------------------------–

ω
ω1

p( )---------b12
a12

1 a12θ
2c1c2∆ν12 k( )+

--------------------------------------------------–

ω
ω2

p( )---------b21
a21

1 a21θ
2c1c2∆ν21 k( )+

--------------------------------------------------–
ω

ω2
p( )---------b22

a22

1 a22θ
2c2

2∆ν22 k( )+
---------------------------------------------–

 
 
 
 
 
 
 

.=
It is convenient for subsequent analysis to pass to
new variables. For a two-component system, the rela-
tion c1 + c2 = 1 holds and quantity δn can be represented
in the form

(2.40)

where ξ can be interpreted as an order parameter. Sub-
stituting Eq. (2.40) into (2.19), we obtain the expres-
sion for functional ∆,

(2.41)

where

(2.42)

Series (2.41) can be summed and written in the form

(2.43)

The formal proof of the correctness of representing
quantity ∆ in form (2.43) without analyzing the conver-
gence of the corresponding series follows from the
expansion of expression (2.43) into a power series of
order parameter ξ. This expansion exactly reproduces
series (2.41) (at least to within terms on the order of ξ5).

Using relations (2.39), (2.42), and (2.43), we can
obtain the dependence of functional ∆ on the wave vec-
tor and order parameter of the system. The minimum of
functional ∆ determines the ground state of the system.
Substituting relation (2.39) into (2.43), evaluating the
derivative of ∆ with respect to the order parameter, and

δn k ω,( ) 1

1– 
 
 

ξ k ω,( ),=

∆ 1
2
--- k ωΩ ξk ω,

2 2
3
--- k ω∂Ω

∂n
------- ξk ω,

2ξk ω,dd+dd=

+ k ω∂2Ω
∂n2
---------- ξk ω,

4 …,+dd∫

Ω β11
1– k ω,( ) β12

1– k ω,( )–≡

– β21
1– k ω,( ) β22

1– k ω,( ).+

∆ 1
2
--- k ω ξ k ω,

2 Ω n c ξk ω,+ k ω, , ,( ).dd∫=
applying the inverse Fourier transformation in fre-
quency ω to the resulting relation, we obtain

(2.44)

where

Equation (2.44) has the same form as the equation usu-
ally used for the order parameter. The role of the order
parameter is played in this case by the quantity defined
by relation (2.40). It should be noted that the order
parameter here could be either positive or negative. The
cases when ξ > 0 and ξ < 0 correspond to the density
fluctuation of the first and the second component,
respectively. The role of the diffusion coefficient is

played by quantity  depending on the fill factor and
the concentration of components in channels via coeffi-
cients aij and bij defined by relations (2.24) and (2.36).
It should be noted that the concentration of the compo-
nents in a channel (and its fill factor) could be deter-
mined unambiguously from isotherm (2.12) proceeding
from the pressure, temperature and composition of the
gas mixture.

Analysis of function F1(ξk , k) makes it possible to
investigate the possibility for a transition of the system
to an inhomogeneous state. For example, when the
minimum of function F1 is attained for ξ ≠ 0, k = 0, a
conventional phase transition to a homogeneous state

∂ξk

∂t
-------- D̃k2∂ F1 ξk k,( )( )

∂ξk

----------------------------,–=

D̃
b11 b12–

D1
--------------------

b22 b21–
D2

--------------------+ 
  1–

,=

F1 ξk k,( )
1
2
---Ω c ξk+ k,( )ξk

2,≡

Ω c k,( )
a11

1 a11θ
2c1

2∆ν11 k( )+
---------------------------------------------–=

+
2a12

1 a12θ
2c1c2∆ν12 k( )+

--------------------------------------------------
a22

1 a22θ
2c2

2∆ν22 k( )+
---------------------------------------------.–

D̃
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Fig. 1. Dependence of free energy F1 on the order parameter and wave vector for various concentrations of the first component in
the mixture: (a) c = 0.1 (θ = 0.67); (b) c = 0.25 (θ = 0.71); (c) c = 0.3 (θ = 0.74), and (d) c = 0.45 (θ = 0.75).
takes place [22]. The minimum at ξ = 0, k ≡ kc ≠ 0 cor-
responds to the propagation of a density wave over a

distance of r ~ . In the case when the minimum is
attained at ξ ≠ 0 and k ≠ 0, a transition to an inhomoge-
neous state with clusters formed in the system is real-
ized [22]. Local minima here determine metastable
states. Figure 1 shows the graphs illustrating the depen-
dence of F1 on order parameter ξ and wave vector k for
a mixture in which one of the gases (first) is a strong
sorbate, while the other gas is a weak sorbate. The cho-
sen parameters (a = 3.8 Å, σ1 = 4.3 Å, σ2 = 3.6 Å, ε1 =
0.61 eV, ε2 = 0.38 eV, P = 2000 kPa, and T = 300 K) cor-

kc
1–
JOURNAL OF EXPERIMENTAL 
respond to a methane–butane molecular mixture [15]
and make it possible to describe adsorption and fluxes of
these one-component gases in zeolite membranes. It
should be noted that the choice of parameters P, T, and c
unambiguously determines fill factor θ and concentra-
tions c1 and c2 of gases in a channel (see Eqs. (2.14)).

For low concentrations of the first component in a
gas mixture and for fill factors θ ≤ 0.7, function F1 has
only one minimum at ξ = 0, k = 0 (Figs. 1a and 1b). This
corresponds to a homogeneous state of the system. An
increase in the concentration of the first component
leads to the emergence of local minima in function F1.
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Fig. 2. Dependence of lifetime τ on wave vector k for c = 0.1 (a), 0.3 (b), and 0.45 (c).
In this case, the global minimum is shifted to point ξ =
ξc > 0, k = kc . In this case, the ground state of the system
becomes spatially inhomogeneous, which corresponds
to the formation of clusters in the system. This situation
will be analyzed in greater detail below.

Equation (2.44) for the order parameter also allows
us to calculate the characteristic relaxation times for the
emerging density fluctuation depending on external con-
ditions. For this purpose, we expand function F1(ξk, k)
into a series in the vicinity of ξk = 0 to within the first
nonvanishing term:

(2.45)

Substituting Eq. (2.45) into (2.44), we obtain

(2.46)

The quantity τ is the lifetime of the kth mode of the den-
sity fluctuation emerging in the vicinity of ξk = 0. The
curves describing the lifetime of the emerging fluctua-
tion as a function of the wave vector for different mix-
ture compositions are shown in Fig. 2.

It can be seen from Fig. 2 that, for a low concentra-
tion of the highly adsorbed component, the lifetime
decreases monotonically with increasing wave vector,
while the free energy has a minimum at ξ = 0. From the
standpoint of physics, this means that the state of the
system in a channel for a given composition of the mix-
ture is homogeneous and the growth of clusters is ener-
getically disadvantageous. It should be noted that the
fill factor of the channel is small in this case, but short-
lived clusters with a lifetime of 

(2.47)

can be formed due to density fluctuations. Here, D =
D0exp(–Ea/T) is the diffusion coefficient of solitary

F1 ξk k,( ) λ k( )ξk
2.∼

∂ξk

∂t
--------

ξk

τ
----, τ–

1

2λ k( )D̃k2
-----------------------.= =

τ r2

D
----∼ r2

D0
------

Ea

T
----- 

 exp=
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particles, Ea is the diffusion activation energy, and r is
the characteristic size of fluctuations. Characteristic
size r is, determined, as in [3], from the position of the
extremum of the imaginary part of the spectrum divided
by the square of the wave vector. It should be noted that
the value of r increases with the fill factor of the chan-
nel [3]. Expression (2.48) can be derived by expanding
order parameter (2.44) into a series in the vicinity of
ξ = 0. For low concentrations, expression (2.47) coin-
cides with the characteristic diffusion decay time for
density fluctuations.

An increase in the concentration of the first compo-
nent of the mixture to c = 0.3 elevates the fill factor of
the channel to θ = 0.74 (see Fig. 1c), while F1 acquires
two more minima for k ~ 1. Figure 3 shows the depen-
dences of the free energy on the order parameter for dif-
ferent values of the wave vector at c = 0.3. It can be seen
from the figure that the free energy minimum is attained
at point ξ = 0 for values of the wave vector 0 < k < 0.4.

For kc ≈ 0.5, function F1 has two minima (at  = 0

and  = 0.35) and the state with  is separated

from the state with  by a potential barrier. Since the

global minimum is attained at ξ = , the state with

 is metastable. The ground state of the system is

attained at ξ =  and is clustered. It should be noted
that, in accordance with formula (2.40), clusters of the

first component are formed in the channel since  >
0. The lifetime of the clusters can be determined by
passing from Eq. (2.44) for the order parameter to a sto-
chastic differential equation (Langevin equation) and
the corresponding Fokker–Plank equation via the intro-
duction of additive noise. Steady-state solutions to the
Fokker–Planck equation define the probability of the

ξc
0( )

ξc
1( ) ξc

1( )

ξc
0( )

ξc
1( )

ξc
0( )

ξc
1( )

ξc
1( )
SICS      Vol. 98      No. 1      2004



112 BORMAN et al.
(a) (b) (c)

–0.2 0 0.2 0.4

0.04

0.08

0.12

0.16

0.20

0
–0.2 0 0.2 0.4

0.04

0.08

0.12

0.16

0.20

0
–0.2 0 0.2 0.4

0

0.1

–0.1

0.2

F1 F1 F1

ξ ξ ξ
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system being in the state described by order parameter

. For the lifetime, we have

(2.48)

The decay of a cluster formed in the system occurs via
the overcoming of an energy barrier of height δF. From
the standpoint of physics, this can be interpreted as an
effective increase in the diffusion activation energy for
the particles in the cluster. However, for c = 0.3, the
barrier height is small (δF ~ 0.2T; see Fig. 1c) and life-
time (2.48) is comparable to time (2.47). A further
increase in the first component concentration in the
mixture leads to negative values of the lifetime for a
certain value of k = kc < 1 (see Fig. 2c). In this case,

clusters with a size of r ~  are formed in the channel;

ξc
1( )

τ r2

D0
------

Ea

T
----- δF– 

  ,exp∼

δF F1 c ξc
1( ) kc,+( )T .=

kc
1–
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for k < kc , fluctuations decay over a finite time, while
for k > kc , the emerging density fluctuations evolve.
Such a situation is typical of transitions to an inhomo-
geneous condensate state [22].

The curves describing the dependence of the free
energy on the order parameter for different values of the
wave vector are shown in Fig. 4. Since function F1 has
a single minimum at ξ = 0 for k ~ 0, the state of particles
in the channel is homogeneous. However, as the wave
vector increases, curve F1(ξ) acquires two more min-
ima separated from the state with ξ = 0 by potential bar-
riers. A further increase in the wave vector leads to dis-
appearance of the barriers between the state with ξ = 0
and the states corresponding to two other minima of F1,
and the state with ξ = 0 becomes unstable.

Thus, for a low concentration of the highly adsorbed
component, the fill factor of the channel is small and the
state of the system in the channel is homogeneous. As
the concentration of the highly adsorbed component
increases, the fill factor of the channel increases and
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short-lived clusters of the highly adsorbed component
can be formed in the channel. A further increase in the
concentration (and the fill factor of the channel) leads
to an increase in the lifetime of the clusters formed in
the channel. At a certain concentration of the highly
adsorbed component, the clusters in the channel
become long-lived and the ground state of the system
becomes clustered.

The formation of clusters of one of the components
in a channel may strongly affect the transport of the gas
through the membrane [3]. In the next section, partial
gas fluxes through the membrane will be calculated and
the effect of clusters on the mechanisms of transport
will be analyzed.

3. TRANSPORT IN A TWO-COMPONENT GAS
IN A HIGH-DENSITY 1D SYSTEM

In order to calculate partial fluxes and to analyze the
transport, we will use the approach proposed in [3]. It
will be shown below that the evaluation of the flux can
be reduced to the calculation of the relaxation fre-
quency spectra ω(k) for density fluctuations of the
components. We can judge the mechanism of particle
transport in a subnanometer channel from the type of
dependence of the spectrum on the wave vector of the
system.

We can write the expression determining the relax-
ation of the Fourier component n(k, t) of the number
density of particles in a channel in the case of an arbi-
trary density n(k, t) under conditions of slight deviation
from equilibrium [3, 25]:

(3.1)

It follows from this relation that the equation for fluctu-
ation amplitude δn can be written in the form

(3.2)

where ω(k) is the relaxation frequency spectrum for the
system under study; in the case of diffusion of noninter-
acting particles, this spectrum has the form [24]

(3.3)

Equation (3.2) describes relaxation of the kth com-
ponent of density fluctuation for an arbitrary value of
the wave vector. In particular, this equation for k ≠ 0
makes it possible to describe the relaxation of density
fluctuations and the propagation of a perturbation over
a finite-size cluster in the case of its formation. For
k  0, Eq. (3.2) describes the relaxation of density
fluctuation on a large spatial scale. This quantity is
associated with macroscopic fluxes. In order to calcu-
late the fluxes, we write the continuity equation

(3.4)

ṅ k t,( ) iω k( )n k t,( ).=

δṅ k t,( ) iω k( )δn k t,( ),=

ω ω0 k( ) iDk2.–= =

ṅ div j+ 0=
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and apply the Fourier transformation to this equation:

(3.5)

Substituting Eq. (3.1) into (3.5), we obtain the follow-
ing relation for flux j(k):

(3.6)

For partial fluxes, we have

(3.7)

where ni is the density of the ith component and ωi is the
corresponding spectrum. The total gas flux is defined as
the sum of partial fluxes of the components:

(3.8)

It follows from Eq. (3.7) that partial fluxes are deter-
mined by relaxation frequency spectra ωi(k). Thus, the
problem is reduced to computing these spectra. The
relaxation frequency spectra can be determined from
the condition of the existence of nonzero density fluc-
tuations for each component in an arbitrarily weak
external field. Consequently, applying the Fourier
transformation to Eq. (2.15), we find that the relaxation
frequency spectrum can be determined by solving the
following system of homogeneous equations:

(3.9)

Here, matrix β–1(k, ω) of the response functions is
defined by relation (2.39). In view of δ-function singu-
larities for k  0 that emerge in pair correlation func-
tions (2.28) appearing in Eq. (2.39), we must calculate
spectra ωi(k) and the values of ωi(k = 0), after which the
renormalization procedure must be carried out. Using
Eq. (2.39) and passing to the limit k  0, we obtain
for spectra ωi(k = 0)

(3.10)

ikj k t,( ) ṅ k t,( ).–=

j k t,( )
n k t,( )ω k( )

k
-------------------------.=

ji k t,( )
ni k t,( )

k
---------------ωi k( ),=

ji k t,( )
i 1=

2

∑ j k t,( ).=

β 1– k ω,( ) 1

1– 
 
 

0.=

β 1– 0 ω,( ) 1

1– 
 
 

=  

ω
ω1

p( )---------b11
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ω1
p( )---------b12– a11 a12–+

ω
ω2

p( )---------b22
ω

ω2
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 
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 
 
 
 
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0,=
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where quantities aij , bij , , and  are defined by

relations (2.24), (2.37), and (2.38). For  ≡ ωi(k = 0),
we obtain from relation (3.10)

(3.11)

On the other hand, substituting Eq. (2.39) into (3.10),
we obtain the following expressions for relaxation fre-
quency spectra ωi(k) of the system under investigation:

(3.12)

Tildes indicate that (k = 0) ≠  (quantities 
are defined in relations (3.11)).

We will carry out the renormalization procedure for
spectra (3.12) taking into account relations (3.11), i.e.,
imposing the requirement

(3.13)

Taking into account the expressions for , we find
from relations (3.11) and (3.12) that

or

similarly, for a22, we have

(3.14)

In order to separate singularities of pair correlation
function νij(k) for k  0, we expand it into a series in
the vicinity of k = 0 to within first-order terms. Using

ω1
0( ) ω2

p( )

ωi
0( )

ω1
0( ) ω1

p( ) a11 a12–( )
b11 b12–

---------------------------------,–=

ω2
0( ) ω2

p( ) a22 a21–( )
b22 b21–

---------------------------------.–=

ω̃1 k( )
iD1k2

b11 b12–
--------------------=

× 1

θ2c1
2ν11 k( ) b11

1–+
-------------------------------------- 1

θ2c1c2ν12 k( ) b12
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-------------------------------------------– ,

ω̃2 k( )
iD2k2

b22 b21–
--------------------=
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2ν22 k( ) b22

1–+
-------------------------------------- 1

θ2c1c2ν21 k( ) b21
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-------------------------------------------– .

ω̃i ωi
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ω̃i ωi
0( )
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b11θ
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----------------------------------------------,–=
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JOURNAL OF EXPERIMENTAL
relations (3.12), we then obtain

(3.15)

Taking into account the long-wave approximation and
the smallness of k, replacing the derivative in the last
expression by the difference  ≈ νij(k) – νij(0),
omitting primes, and carrying out similar calculations
for ω2, we finally obtain

(3.16)

Using relations (2.12), (3.7), and (3.16) and passing to
the limit for k  0, we can obtain the dependence of
partial fluxes of the components on the pressure, tem-
perature and composition of the mixture. For k ≠ 0,
expressions (3.2) and (3.16) enable us to analyze the
relaxation mechanism of the emerging density fluctua-
tion with a characteristic size of r ≈ 2π/k.

In order to analyze the experimentally observed par-
tial fluxes, it is convenient to pass to the coordinate rep-
resentation. Spectra (3.16) have the real and imaginary
parts since pair correlation function νij(k) is a complex
quantity in accordance with relations (2.28) and (2.33).
Separating the real and imaginary parts of the spectra
and applying the inverse Fourier transformation to
expression (3.7), we obtain (summation over recurring
indices is not carried out)

(3.17)
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------------------------------------------------------------------=
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----------------------------------------------------------------------- .

ji niψi Di

∂ni
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-------,–=

ψi Reωi k
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Here, Di is the diffusion coefficient of a component, L
is the channel length, and ψ is the term emerging due to
the mutual effect on the mixture components in a chan-
nel for large fill factors. It should be noted that, since
L @ rc , where rc is the characteristic size of clusters,
passing to the limit for k  2π/L in relation (3.17)
corresponds to averaging over characteristic scales of
inhomogeneities in the case when the ground state of
the system is clustered. Separating the terms linear in
the wave vector from the real part of the spectrum, we
obtain the following expression for ψ:

(3.18)

Here, the first term describes the transport of molecules
of the ith component, which is induced by the effective
intermolecular interaction, while the second term has
the meaning of the “drag” effect familiar in the kinetics
of mixtures. Substituting Eq. (3.18) into (3.17), we
obtain the final expression for partial fluxes:

(3.19)

Thus, it follows from this equation that the partial flux
is the sum of three terms. The first term corresponds to
diffusion transport, while the second term emerges due
to field diffusion. These two terms in the k representa-
tion can be combined into one by introducing the effec-
tive diffusion coefficient

(3.20)

It was shown in the previous section that, for large
fill factors, clusters are formed in the system. The
mechanism of density relaxation may be different for
the case of transport over the characteristic scale L,
when 2πσav/L ! 1 and k  0 (which corresponds to
macroscopic transport of gas components through the
channel), and for the case when k ≠ 0, which corre-
sponds to relaxation over distances comparable to the
size of clusters formed in the system. To prove this, we
must analyze dependences ∆νij(k). In order to avoid
cumbersome formulas, we consider this problem in
greater detail in the limiting case of c1 = 1, which cor-
responds to a one-component mixture.

Passing to the limit for c1  1 in Eq. (3.16), we
obtain the relaxation frequency spectrum for a one-
component system,

(3.21)

where ν(k) is the pair relaxation function, which is con-
nected to the pair distribution via the relation

(3.22)

ψi Di
1
T
---

∂Ui

∂x
--------- Vi.+–=

ji Di

∂ni

∂x
------- Di

ni

T
----

∂Ui

∂x
---------– Vini.+–=

Di Di
0( ) 1

ni

T
----Ui k( )+ 

  .=

ω k( )
iD0k2

1 ν k( )+
-------------------,–=

ν k( ) g k( ) δ k( ).–=
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Pair distribution g(k) can be derived from Eq. (2.34) by
passing to the limit for c1  1:

(3.23)

It should be noted that, in accordance with formula (3.21),
the pair distribution and, hence, the pair correlation
function associated with it depend not on the wave vec-
tor k, but on the product ik:

(3.24)

Let us now write relation (3.21) in the form

(3.25)

Separating the real and imaginary parts from relation
(3.25), we obtain

(3.26)

Here, we have used the fact that

(3.27)

This relation follows from the known relation [17]

describing the increase in the compressibility with den-
sity. Using relation (3.24), we now expand ∆ν to within
first-order terms:

(3.28)

The value of ν'(0) is finite for θ ≠ 0. For example, using
direct expansion into the Taylor series, we can obtain
from Eqs. (3.22) and (3.23)

(3.29)

Substituting relation (3.28) into Eq. (3.26), we get

(3.30)

To calculate the fluxes for high densities (θ ~ 1), we
must consider two limiting transitions in relation (3.30):
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for θ  1 and k  0. From the standpoint of phys-
ics, the transition for θ  1 and k ≠ 0 corresponds to
analysis of transport in a dense cluster. The transition
for k  0 and arbitrary θ is equivalent to analysis of
diffusion in a channel of length L @ rc , where rc is the
characteristic size of a cluster. For θ  1, we obtain,
instead of relation (3.30),

(3.31)

This relation shows that spectrum ω(k) corresponds to
the hydrodynamic mode [17], for which quantity
D0/ν'(0) is the effective velocity of sound.

Passing in relation (3.30) to the limit for k  0 and
retaining the lowest order in wave number k, we obtain

(3.32)

This relation shows that the spectrum in this case is of
the diffusion type with the diffusion coefficient

(3.33)

which increases indefinitely as θ  1.
It should be noted that, in accordance with

Eq. (3.30), both relaxation mechanisms (hydrodynamic
and diffusion) operate in the system when k ≠ 0 and
θ ≠ 1. From the standpoint of physics, this corresponds
to the diffusion transport between clusters (diffusion
mode), over which density perturbations propagate
(hydrodynamic mode). In spite of different interpreta-
tions of the sequence of limiting transitions, the calcu-
lated dependences of fluxes on external conditions are
found to be equivalent from the standpoint of physics.
This is due to the fact that the hydrodynamic compo-
nent is manifested in the second case in the increase in
the effective diffusion coefficient D ≈ D0/(1 – θ)2 for
high values of fill factor θ.

In the two-component case, the transition for k 
0 corresponds to the transition from relation (3.16)
to (3.11). It can be seen from relation (3.11) that the

spectra obtained are of the diffusion type since  =
–iDjk2, j = 1, 2, while quantities aij and bij are indepen-
dent of k. The limiting transition for θ  1 in the two-
component case involves considerable computational
difficulties. However, the above analysis shows that the
relaxation frequency spectra for the components also
acquire a hydrodynamic mode in view of the depen-
dence of pair correlation function (2.28) on factor ik for
θ  1.

Depending on the sequence of the limiting transi-
tion, a decisive role in relation (3.19) is played either by
the term corresponding to diffusion or the nongradient

ω k( )
D0k
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iD0k2

1 θ–( )2
-------------------.–=

D
D0

1 θ–( )2
-------------------,≈

ωj
p( )
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(hydrodynamic) part of the flux. Since the gas flux for
arbitrary fill factors is measured in experiments on the
penetrability of the membrane over large distance (L @
rc, k  0), the limiting transition for k  0 should
be performed first. In this case, the effects associated
with the formation of clusters are taken into account in
the dependence of the diffusion coefficient on the con-
centration and fill factor of the channel. Numerical cal-
culations show that the last term in relation (3.16) is
insignificant in the entire range of concentrations and
fill factors of the channel. Thus, the relaxation fre-
quency spectrum of a two-component system can be
treated as a diffusion spectrum in the entire range of
concentrations and fill factors, where the role of the dif-
fusion coefficient is played by a quantity taking into
account clustering of the components in the channel.

It should be noted that, for calculating response
function (2.39), relaxation frequency spectra (3.16)
and, as a consequence, partial fluxes (3.19), we used the
fluctuation-dissipative theorem (2.27) that presumes a
homogeneous ground state of the system. In the case
when the ground state of the system is clustered (see
Fig. 1d), the kinetic version of the fluctuation-dissipa-
tive theorem [24] should be used,

(3.34)

where f(x, τ) is the probability of a particle being
located at point x. In accordance with the detailed bal-
ancing principle, in the case when states x and x' differ
from the equilibrium state insignificantly, we have

(3.35)

where ∆E is the energy difference between states x and
x'. Using this relation, we obtain the following expres-
sion for the fluctuation-dissipative theorem:

(3.36)

Applying the Fourier transformation to this relation and
using Eq. (3.9), we obtain the relaxation frequency
spectrum in the form

(3.37)
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Thus, the application of relation (3.34) instead
of (2.39) leads to the emergence of an additional expo-
nential term in relation (3.19),

(3.38)

where ∆E is the depth of the potential well occupied by
the system. In the case of small fill factors of the chan-
nel, the state of the system is homogeneous and ∆E = 0
(see Fig. 1a). Then relation (3.38) transforms
into (3.19). As the fill factor of the channel increases,
the state of the system becomes clustered. For ∆E ! T,
the exponential in relation (3.38) can be disregarded,
and the flux virtually coincides with the flux calculated
for a homogeneous state. This is due to the fact that
expression (2.48) for the lifetime of clusters practically
coincides with expression (2.47) for the lifetime of
clusters in a homogeneous state. In this case, as noted
above, density excitation propagates via a cluster, lead-
ing to an increase in the effective diffusion coefficient.
A further increase in the fill factor of the channel
increases the value of ∆E. The flux thereby decreases,
which can be explained by an increase in the lifetime of
the clusters formed in the channel. As a result, the
mechanism of excitation transport via a cluster is not
realized.

Thus, for small fill factors of the channel, the trans-
port in the system follows the diffusion mode. This can
be demonstrated by passing to the limit of small fill fac-
tors θ in relation (3.16). Then the second terms in the
denominator become insignificant and the spectra are
reduced to diffusion spectra (3.11). An increase in the
fill factor results in the formation of clusters. It was
shown in the previous section that, depending on the fill
factor of the channel, the clusters formed may be either
short-lived or stable in the case when the ground state
of the system is clustered. For short-lived clusters (see
Fig. 1b), the transport between clusters occurs via dif-
fusion, while the transport over clusters occurs via a
rapid barrier-free transfer of density excitation, and the
arrival of a particle from one side of a cluster leads to
the emergence of a particle from the other side [3]. In
this case, the spectra contain both the diffusion and the
hydrodynamic mode, and the effective diffusion coeffi-
cient increases in accordance with Eq. (3.33). An
increase in the fill factor of the channel reduces the dis-
tance between clusters and increases their size. Since
the transport over a cluster is faster than the diffusion
transport, the effective diffusion coefficient and the par-
tial flux increase. However, an increase in the fill factor
also increases the lifetime of the clusters formed in the
channel; as a result, the rate of excitation transfer over
a cluster decreases. In the case when a cluster is stable
(see Fig. 1d), the transport of excitation over the cluster
is ruled out and the presence of such a cluster in the
channel leads to blockage of transport in the system.

ji k t,( )
ni k t,( )

k
---------------ωi k( ) ∆E

T
-------– 

  ,exp=
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Using relations (3.16) and (3.38), we can calculate
the partial gas fluxes proceeding from the data on the
penetrability for pure components. Figures 5a and 5b
show the dependence of partial fluxes on the mixture
composition in the case when both gases are slightly
adsorbed. The energies of interaction and the diameters
of particles correspond to a methane–argon mixture
(a = 3.8 Å, σ1 = 3.6 Å, σ2 = 3.0 Å, ε1 = 0.38 eV, ε2 =
0.25 eV [15], P = 100 kPa, and T = 300 K).

It can be seen from Fig. 5a that an increase in the
concentration of the first component for fixed pressure
and temperature reduces the degree of channel filling
with the second component, while the degree of chan-
nel filling with the first component increases. A
decrease in the total fill factor of the channel in the con-
centration range 0 < c < 0.4 of first component takes
place due to depletion of the channel in the second
component (Fig. 5b). An increase in the total fill factor
of the channel for c > 0.4 is associated with preferred
enrichment of the channel in the first component (see
Fig. 5b). The partial flux of the first component in this
case increases monotonically due to an increase in the
degree of channel filling with the first component (see
Fig. 5a), while the partial flux of the second component
decreases due to a decrease in the degree of channel fill-
ing with the second component. The transport is of the
diffusion type, and clusters are not formed in the chan-
nel in view of small fill factors of the channel (θ ≤ 0.25
for any composition of the mixture).

Figures 5c and 5d show the dependence of partial
fluxes on the mixture composition in the case when one
of the gases (first) is a strong sorbate, while the other
gas is a weak sorbate. The energy of interaction and the
diameter of particles correspond to a butane–methane
mixture (a = 3.8 Å, σ1 = 4.3 Å, σ2 = 3.6 Å, ε1 = 0.61 eV,
ε2 = 0.38 eV [15], P = 2000 kPa, and T = 300 K). The
behavior of the total and partial fill factors of the chan-
nel upon an increase in the concentration of the first
(highly adsorbed) component in this case coincides
qualitatively with the case of slightly adsorbed gases
described above: the partial degree of channel filling
with the first (highly adsorbed) component increases
monotonically against the background of a monotonic
decrease in the degree of channel filling with the second
(slightly adsorbed) component (see Fig. 5c). The
behavior of partial fluxes in this case is less trivial. It
can be seen from the figure that the partial flux of the
first component increases in the concentration interval
0 < c < 0.2. This is due to the fact that, in accordance
with relation (2.47), short-lived clusters (see Fig. 1a)
whose size increases with concentration are formed for
such concentrations and fill factors of the channel. The
transport over clusters occurs via a barrier-free transfer
of density excitation, which increases the effective dif-
fusion coefficient. This process is similar to the trans-
port in one-component systems for high fill factors [3].
It should be noted, however, that the formation of clus-
ters and the mechanism of transfer of density excitation
ICS      Vol. 98      No. 1      2004
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Fig. 5. Dependence of the total and partial fill factors of a channel (a, c) and partial fluxes (b, d) on the composition of methane–
argon (a, b) and butane–ethane mixtures (c, d): 1—total fill factor of a channel; 2, 3—degrees of channel filling with the first and
second components, respectively; 4, 5—partial fluxes of the first and second components, respectively; c is the concentration of the
first component in the mixture.
through a cluster in a two-component mixture can be
realized for smaller fill factors (θ = 0.71; see Figs. 1b,
5c, and 5d) as compared to the one-component case
(θ ≥ 0.8). An increase in the concentration of the first
component increases the lifetime of the clusters formed
in the system (see Figs. 2b and 3c). As a result of this
increase, the transport over clusters becomes slower
and the flux decreases. A further increase in the concen-
tration leads to the formation of stable clusters in the
channel (see Figs. 2c and 4c); in accordance with rela-
tion (2.28) the lifetime of these clusters is much longer
than the lifetime (2.47) of short-lived clusters since
δF @ T. In this case, the transfer of density excitation
over clusters is ruled out and the partial flux vanishes.

Thus, three mechanisms of particle transport in a
channel are possible in the two-component case. For
small fill factors, the transport occurs via diffusion. An
increase in the fill factor leads to the formation of short-
lived clusters in a channel. As in the one-component
JOURNAL OF EXPERIMENTAL 
case, this leads to an increase in the effective diffusion
coefficient due to barrier-free transport of density exci-
tation over a cluster. As the fill factor increases further,
the characteristic lifetime of clusters increases, leading
to a decrease in the flux. A further increase in the fill
factor makes the clusters stable, and the so-called
blocking effect takes place, when the partial flux of one
of the components vanishes.

A decrease in pressure does not lead to a qualitative
change in the behavior of the dependences of partial
fluxes on the mixture composition.

4. COMPARISON WITH EXPERIMENT

The transport of two-component gas mixtures in
MFI zeolite membranes (Silicalite, ZSM-5) with a pore
diameter of ~ 0.6 nm has been studied by the technique
widely used for one-component gases [15]. However,
in contrast to rich variety of experiments with one-com-
AND THEORETICAL PHYSICS      Vol. 98      No. 1      2004
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ponent gases, a consistent analysis of a two-component
mixture has not been reported in the literature. The
most detailed information on penetrability for two-
component mixtures is given in [15, 16].

The experiments [15, 16] on penetration of two-
component mixtures were made in a chamber with a
porous stainless steel substrate with a thickness of
approximately 3 mm. A polycrystalline layer of zeolite
ZSM-5 with a thickness of ~ 50 µm and a random ori-
entation of crystals was deposited on the substrate.
Zeolites have a complex crystalline structure based on
silicon oxide with admixtures of sodium and aluminum
[15]. The crystalline structure of zeolite ZSM-5 is
formed by straight channels with an elliptical cross sec-
tion (0.57 × 0.52 nm2) intersecting sinusoidal channels
with a circular cross section of diameter 0.54 nm [23].
The measured adsorption capacity and the calculated
fraction of molecules in the channel intersections make
it possible to treat the channels as one-dimensional for
the molecular mixtures under study [23]. The experi-
ments [15, 16] were carried out at temperatures from
300 to 700 K under pressures from 25 to 500 kPa on the
external side of the membrane. The purity of the mix-
ture components was higher than 99.95%. The mixture
composition at the membrane exit was measured on a
quadrupole mass spectrometer with a sensitivity of
approximately 25 ppm when a Faraday cell was used
for recording.

The selectivity measured in the experiments was
determined as the relative change in concentration c of
n-butane molecules and concentration 1 – c of methane
molecules at the membrane entrance (F) and exit (P):

(4.1)

It should be noted that, for a constant composition of
the mixture at the entrance to the membrane, the selec-
tivity is proportional to the ratio of partial fluxes of the
mixture components at the membrane exit:

(4.2)

It was found experimentally [15] that the partial flux
of the highly adsorbed gas n-C4H10 at T = 300 K under
a total pressure of P = 100 kPa changes considerably
(by a factor of several units) in the presence of the
slightly adsorbed component CH4 as compared to the
flux of a pure gas, while the partial flux of the slightly
adsorbed gas changes by two orders of magnitude in the
presence of the strongly absorbed component. Depend-
ing on the mixture composition, selectivity α varies and
attains its maximum value αmax = 380 for a concentra-
tion ratio of 5 : 95 at the entrance to the membrane.

It was shown [16] that the dependences of partial
fluxes on the mixture composition and external pres-
sure for the mixtures studied (C2H6–CH4 and C3H8–

α c
1 c–
----------- 

 
F

/
c

1 c–
----------- 

 
P

.=

α J1/J2.∝
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CH4) are monotonic in the range of experimental pres-
sures. The partial flux of methane decreases in the pres-
ence of the second component (ethane or propane),
while the partial flux of the second component
increases with its concentration in the mixture. The
selectivity of both mixtures increases monotonically
with the concentration of the more highly adsorbed
component in the mixture. The dependences of the par-
tial fluxes on the total pressure of the mixture are also
monotonic, but the pressure dependence of selectivity
in ethane for the mixture C2H6–CH4 has a peak at a
pressure of P ≈ 300 kPa [16]. Similar dependences of
partial fluxes were observed in experiments with
another mixture of slightly adsorbed gases (CO2–N2)
[19] (Fig. 6).

The theory developed in the previous sections
enables us to describe peculiarities in the transport of
binary gas mixtures in zeolite membranes. In the case
of a mixture of slightly adsorbed gases, when the fill
factor of a channel is small (θ ! 1) for any mixture
composition, the system relaxes in accordance with the
diffusion mechanism, corresponding to diffusion of
solitary particles without the formation of clusters in a
channel. In this case, in accordance with Eqs. (2.12),
(3.16), and (3.38), the partial flux of the first component
decreases monotonically upon an increase in the con-
centration of the second component, while the partial
flux of the second component increases with its concen-
tration in the mixture.

Figure 6 shows that the theoretical curves calculated
by formulas (2.12), (3.16), and (3.38) are in good
agreement with the experimental data borrowed
from [19]. The mean distance a between the seats in a
channel was estimated proceeding from the value cor-
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J1, J2

Fig. 6. Dependence of partial fluxes on the mixture compo-
sition for slightly adsorbed gases: 1, 2—theoretical depen-
dences for CO2 and N2 fluxes, respectively; c is the CO2
concentration above the membrane; squares correspond to
experimental data from [19]; a = 3.8 Å, σ1 = 3.8 Å, σ2 =
3.6 Å [15]; P = 100 kPa, T = 300 K.
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responding to close packing of a unit cell of a ZSM-5
membrane with nitrogen [23].

The degree of channel filling for mixtures with a
strongly absorbed component depends on the mixture
composition; it is significant and can be as high as
θ ~ 1. In this case, in accordance with the arguments
put forth in Section 3, the dependence of fluxes on the
mixture composition is nonmonotonic due to the
formation of clusters in a channel. Figure 7 shows how
the ratio of partial fluxes of gases for the mixture
n-C4H10−CH4 depends on the butane concentration in
the mixture under a pressure of P = 100 kPa at temper-
ature T = 300 K. It can be seen from the figure that the
ratio of partial fluxes increases with the concentration

0
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10
J1/J2

0.1 0.2 0.3 0.4 0.5 0.6
c

Fig. 7. Ratio of the partial fluxes of butane and methane as
a function of the butane concentration; c is the concentra-
tion of n-C4H10 above the membrane; squares correspond to
experimental data obtained in [15]; a = 3.8 Å, σ1 = 4.3 Å,
σ2 = 3.6 Å [15]; P = 100 kPa, T = 300 K.
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of the highly adsorbed component (butane) in the con-
centration range 0 < c < 0.35. Analysis of experimental
data [15] and calculations based on formulas (2.12),
(3.16), and (3.38) show that the methane flux for a
butane concentration of c > 0.05 changes insignifi-
cantly upon an increase in the butane concentration in
the mixture. In this case, the behavior of the flux ratio
is completely determined by the behavior of the butane
flux. The increase in the butane flux is due to the fact
that, in accordance with formula (2.47), short-lived
butane clusters are formed for concentrations of 0 < c <
0.35 and for the fill factors corresponding to these con-
centrations (see Fig. 1a); the size of these clusters
increases with the concentration of the highly adsorbed
component. The transport over clusters (see Fig. 1b)
occurs via barrier-free transfer of density excitation,
leading to an increase in the effective diffusion coeffi-
cient for butane, which is observed for c < 0.35. The
increase in the butane concentration in the mixture
increases the lifetime of the clusters formed in the sys-
tem (see Figs. 2b and 3c). With increasing lifetime, the
transport over the clusters slows down and the butane
flux decreases for concentrations of c > 0.35. A further
increase in the concentration results in the formation of
stable clusters in a channel (see Figs. 2c and 4c), lead-
ing to a rapid (exponential) decrease in the butane flux
upon an increase in its concentration in the mixture.

Thus, it follows from the theory that the butane flux
becomes exponentially small for a butane concentra-
tion of c > 0.6 in the mixture and the transport of parti-
cles must be blocked. It should be noted that calcula-
tions based on formulas (2.12), (3.16), and (3.38) for
butane concentrations in the interval 0 < c < 0.05 show
that the methane flux decreases approximately by an
order of magnitude upon an increase in the butane con-
centration, which is also in qualitative agreement with
the experimental data [15]. The numerical difference
between the predictions of the theory developed above
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Fig. 8. Dependence of the ethane selectivity (a) and of the partial fluxes of C2H6 (b) and CH4 (c) for the C2H6–CH4 mixture on the
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generalized Maxwell–Stefan equation [16]; squares correspond to experimental data obtained in [16]; a = 3.8 Å, σ1 = 3.8 Å, σ2 =
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and the experimental data in this range of butane con-
centrations is due to the fact that relations (2.12), (3.16),
and (3.38) were derived for the model potential of inter-
molecular interaction of the type of interaction (2.9)
between hard spheres. It is well known that the poten-
tials of hard spheres correctly describe the behavior of
real systems for high densities [17, 18]. In order to
describe the behavior of the system in the entire range
of fill factors, potentials of the Lennard–Jones type,
which take into account the attraction between particles
even in the zeroth order in density, should be used.
However, although the application of this type of poten-
tials of intermolecular interaction does not qualitatively
change the results, it leads to the formation of butane
clusters at lower degrees of channel filling and, hence,
to a sharper decrease in the methane flux upon an
increase in the butane concentration in the concentra-
tion range under investigation.

Relations (2.12), (3.16), (3.38), and (4.1) also make
it possible to derive the dependence of the selectivity on
the pressure, temperature, and composition of the mix-
ture. Figure 8a shows how the ethane selectivity for the
C2H6–CH4 mixture with a concentration ratio of 50 : 50
at the entrance depends on the total pressure of the mix-
ture [16]. It can be seen that the dependence is non-
monotonic. This is due to the fact that the diffusion
coefficient first increases due to an increase in the pres-
sure and fill factor of the channel as a result of the for-
mation of short-lived clusters and that the partial ethane
flux increases (Fig. 8b). The increase in the total fill fac-
tor of the channel is determined by the increase in the
partial fill factors for both components. This process
continues until the channel filling with ethane slows
down. In this case, the fill factor of the channel
increases mainly due to channel filling with methane.
At such pressures, the increase in the ethane flux slows
down (see Fig. 8b), while the methane flux continues to
increase (Fig. 8c). The theoretical dependences plotted
in the figures show that a further increase in pressure
due to an increase in the lifetime of ethane clusters
formed in the channel must lead to a decrease in the
ethane flux (Fig. 8b). Thus, the analysis of experimental
data proves that the theory constructed here describes
the experimental results satisfactorily.

One of the main results of the proposed theory is the
prediction of nonmonotonic dependences of partial
fluxes and selectivities on the mixture composition and
pressure (see Figs. 7 and 8), while conventional models
[15, 16, 19] (in particular, the generalized Maxwell–
Stefan equation [15, 16]) lead to monotonic depen-
dences of these quantities on the same parameters (see
Fig. 8a). The qualitative discrepancy between the
dependences in question is due to the fact that conven-
tional models [15, 16, 19] take into account only the
finite size of particles, while the interaction between
particles in a channel is disregarded. It is well known
[17, 18, 26], however, that the interaction between par-
ticles in dense systems plays a decisive role both in the
construction of the equations of state of the system and
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in the description of transport. For example, the inclu-
sion of interaction between particles of the hard-sphere
type leads to the emergence of peaks in the pair corre-
lation function at distances equal to one, two, three,
etc., particle diameters [17, 18, 27]. This fact indicates
the existence of “effective” attraction between particles
and necessitates the inclusion of cluster formation in
the description of the behavior of the system at high
densities, when it passes to a spatially inhomogeneous
state. It was demonstrated above that this leads to the
emergence of nonmonotonic dependences of fluxes and
selectivities on external parameters.

It should be noted that the stabilization of clusters in
1D systems by the second component at high fill fac-
tors, which has been investigated here, was obtained
numerically in a recent work [7]. It should be borne in
mind, however, that, in accordance with our previous
results [3], clusters with a large but finite lifetime can
be formed even in a one-component system with high
degrees of channel filling. It was 1D gold clusters of
this type that were apparently observed in recent exper-
iments under the ultrahigh vacuum conditions [9].
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Abstract—A mechanism of the interlayer exchange coupling in layered structures of the Fe/Cr(001) type with
rough interfaces is proposed. The theory is based on a model of the charge-induced spin density wave (SDW)
formed in the chromium layer. It is shown that the effective magnetic coupling between thick ferromagnetic
layers arises due to variations of the SDW vector orientation in the antiferromagnetic layer over a characteristic
length ζ determined by the exchange stiffness of chromium. A general expression for the effective magnetic
coupling energy E(ψ) as a function of the angle ψ between magnetic moments of the ferromagnetic layers is
obtained and numerically analyzed for an arbitrary value of the parameter ρζ, where ρ is the density of
monoatomic steps on the interface. For ρζ @ 1, the form of E(ψ) is typical of a model with the “biquadratic”
interaction, while in the case of ρζ ! 1, the dependence obtained differs significantly. The proposed mechanism
is used to interpret the results of measurements of the interlayer exchange coupling in Fe/Cr(001) structures.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the quality of interfaces
between ferromagnetic (FM) and antiferromagnetic
(AFM) layers in magnetic multilayer structures of the
Fe/Cr type is a factor determining the magnitude and
character of the effective exchange coupling between
the neighboring FM layers [1–6]. For elucidating the
mechanisms of this influence, it is necessary to study in
detail both the morphology of interfaces and the pro-
cess of redistribution of the charge and spin densities of
quasiparticles at these interfaces.

A comparative analysis of the properties of inter-
faces in the structures obtained using different technol-
ogies must take into account the different scales of fluc-
tuations of the surface relief on the Fe/Cr boundaries.
First, any method used for the growth of such multi-
layer structures leads to unavoidable small-scale fluctu-
ations within several boundary atomic layers, caused by
the mutual diffusion of atoms of the two metals in con-
tact and by the breakage (frustration) of regular inter-
atomic bonds [1, 2, 6]. Second, any technology
involves more or less pronounced large-scale (“geo-
metric”) fluctuations of the surface relief, referred to in
the literature as the interface “roughness” [1–3]. This
roughness is usually described [1, 4, 5] in terms of two

statistical characteristics, the dispersion σ = 
(vertical roughness) and the correlation length R (lat-
eral roughness) of fluctuations in the relief height h.
The values of σ characterizing the degree of roughness
in the direction perpendicular to the interface plane
usually vary within 2–6 Å, while the lateral parameter

h2〈 〉
1063-7761/04/9801- $26.00 © 20123
R can vary within three orders of magnitude: from sev-
eral nanometers (in the case of molecular beam epitaxy
of a three-layer Fe/Cr/Fe(001) structure on an
Ag(001)/Fe/GaAs(001) substrate [4]) to several
microns (for the epitaxial layer growth of chromium on
Fe(001) whiskers [1, 5]).

Special magnetic properties of Fe/Cr multilayer sys-
tems are related to a specific AFM order inherent in chro-
mium, taking the form of a spin density wave (SDW). In
a layered structure, this SDW is highly sensitive both to
the presence of interfaces as such and to the structure of
these boundaries. Previously [7, 8], we proposed a model
of the magnetic ordering in layered structures of the
Fe/Cr type with perfectly smooth interfaces. The order
appears in these structures below a certain temperature
T0 that is significantly higher than the Néel temperature
(TN) of bulk chromium. According to this model (called
the charge-induced SDW model), a short-range AFM
order appears in the chromium layer due the charge den-
sity redistribution at the interfaces between iron and
chromium. The results obtained in [8] showed that the
SDW formed in the chromium layer aligns the magnetic
moments of the neighboring Fe layers, rendering them
collinear (parallel or antiparallel, depending on the num-
ber N of monolayers in the intermediate Cr layer).

We also considered a model problem of determining
the energy-optimized configuration of a charge-
induced SDW at the Fe/Cr interface containing one
isolated monoatomic step (referred to below as a
monostep) [9]. It was found that, provided the iron lay-
ers are sufficiently thick to exclude the formation of fer-
004 MAIK “Nauka/Interperiodica”
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romagnetic domain walls, the most energetically favor-
able configuration is that with a 90° AFM domain wall
formed inside the chromium layer. The character of the
mutual orientation of magnetic moments in the neigh-
boring iron layers changes to noncollinear, whereby the
angle between these moments has a certain value differ-
ent from 0 or π. It was naturally suggested that this very
change of the SDW configuration in the Fe/Cr type
structures with rough interfaces may account in many
cases for the noncollinear ordering of magnetic
moments of the neighboring Fe layers—a phenomenon
extensively discussed in recent years [1–3].

In this study, aimed at verification of the above
hypothesis, we have generalized the model [9] to the
case of an arbitrary density of monosteps and a rela-
tively thin AFM layer (with a thickness below the dou-
bled “amplitude” correlation length ξ(T), on which
scale the SDW amplitude varies across the AFM layer).
For such systems, it can be naturally assumed that the
AFM order in the chromium layer is characterized by a
considerable longitudinal magnetic stiffness (i.e., the
SDW amplitude is almost constant across the AFM
layer). On the other hand, our previous analysis [9]
showed that the direction of the SDW polarization vec-
tor in the AFM layer changes along the interface over a
characteristic “angular” correlation length ζ(T) and is
highly sensitive to fluctuations in the exchange cou-
pling at the Fe/Cr interface. In this paper, the interface
structure is modeled by a system of flat regions (of an
average length R) separated by monosteps, whereby the
sign of the surface exchange potential exhibits a jump-
like alternation upon crossing every step. By varying
the ratio of the characteristic lengths ζ(T) and R, it is
possible to consider the properties of structures with
interfaces possessing various degrees of roughness.
This analysis will show how and to what extent the
equilibrium SDW configuration in the AFM layer
determines the mutual (in the general case, noncol-
linear) orientation of magnetic moments in the neigh-
boring iron layers.

By decreasing the FM layer thickness, it is possible
to obtain an inhomogeneous magnetic configuration of
the system other than that suggested in [9]. This is
related to the formation of a 180° FM domain wall in
the iron layer, whereas a 90° AFM domain wall in the
chromium layer is not formed. Below we will consider
this situation in more detail to show that the system
geometry, together with the quality of interfaces, deter-
mines to a considerable extent the criteria of applicabil-
ity of the proposed model to real layered structures of
the Fe/Cr type.

2. THE MODEL OF ANTIFERROMAGNETIC 
DOMAIN WALLS IN STRUCTURES

WITH HOMOGENEOUS MAGNETIZATION
OF FERROMAGNETIC LAYERS

Using the approach developed previously [8, 9], we
will consider the simplest structure-forming element of
JOURNAL OF EXPERIMENTAL 
the Fe/Cr system—a three-layer structure (trilayer)
comprising two FM layers (Fe) separated by an AFM
spacer (Cr). Technological Fe/Cr interfaces are parallel
to the nynz plane; the normal nx to this plane coincides
with the growth direction and is parallel to the [100]
cubic axis (nx , ny , nz are the unit basis set vectors). We
consider the temperature interval T corresponding to a
short-range AFM order in the chromium layer: TN < T <
T0 (T0 ! TC , where TC is the Curie temperature for the
iron layers). The FM layers are assumed to be suffi-
ciently thick, so that the magnetization S inside these
layers at T0 ! TC can be considered as homogeneous
and independent of temperature. The AFM spacer
thickness L can be varied within rather broad limits, but
so that L > 2ξ0, where ξ0 is the coherence length rang-
ing, according to various estimates, from seven to ten
Cr monolayers. In the temperature interval under con-
sideration, the sublattice magnetization s(r) in the
AFM layer can be significantly inhomogeneous
(depending on the layer thickness L) and strongly
dependent on temperature [7, 8].

Let us introduce an order parameter (with the
dimension of energy) describing the SDW envelope,
D(r) = Us(r), where U is the effective SDW potential
(the explicit form of which is not discussed here; for
this see, e.g., review [10]). The considerations will be
restricted to the case of a transversely polarized SDW,
whereby s(r) ⊥  nx (this situation, corresponding to an
experimental situation with not too thick AFM spacers,
L ≤ 100 Å, has been studied most frequently [1–6]). In
this case, the order parameter can be written as

(1)

where r = (x, y, z); |x | ≤ l (l is a half of the AFM spacer
thickness, L = 2l); |y |, |z | ≤ l⊥  (2l⊥  is the spacer size in
the ny and nz directions, l⊥  @ l). Assuming that the D(r)
value is small (|∆| ! πT) and slowly varying in space
(|∂D/∂r| ! πT/ξ0), let us write an expression for the
thermodynamic potential F[D] of the AFM layer in the
form of a Ginzburg–Landau expansion in powers of the
D(r) function and its derivatives. Since this approach
was thoroughly justified in [8, 9], we omit the com-
ments and present the final expression for the func-
tional F[D]:

(2)

(3)

(4)

(5)

D r( ) ny∆y r( ) nz∆z r( ),+=

F Fv Fs,+=

Fv
1
2
--- f v r( ) x y z,ddd∫=

f v c1D2 c2v F
2 ∂D

∂r
------ 

 
2

c2D4,+ +=

Fs
ν
4
--- y z D2 l y z, ,( ) D2 l– y z, ,( )+( )dd∫=

+
A
2
--- y z η l y z, ,( )m l y z, ,( )D l y z, ,( )(dd∫
+ η l– y z, ,( )m l– y z, ,( )D l– y z, ,( ) ).
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Here, the integration is performed within the AFM
spacer boundaries as denoted above; the values of x =
±l in Eq. (5) correspond to the right- and left-hand inter-
faces. The quantities Fv and Fs have the meaning of the
volume and surface parts of the total thermodynamic
potential. Expressions for the coefficients c1, c2, ν, and
A are given in [9, 10]; these values were calculated pre-
viously (see, e.g., [10]); in what follows, c1, c2 > 0, ν <
0, and A > 0 (these conditions correspond to the AFM
exchange at the Fe/Cr interface). The parameter A is
proportional to the magnetization of the FM layer. The
value of this magnetization is assumed to be constant
over each iron layer, while its orientation m(±l, y, z)
(|m| = 1) in the general case is a function of the coordi-
nates. The quantity vF in Eq. (4) is the projection of the
electron velocity onto the growth direction nx in flat
regions of the Fermi surface of chromium (these
regions are responsible for the SDW formation in the
octahedral model [11]).

The expansion according to Eqs. (3) and (4) is valid,
strictly speaking, in almost the entire region of |x| < l,
except for the AFM spacer regions with a width on the
order of ξ0 at the interfaces, where the local approxima-
tion (2) for the functional F[D] becomes incorrect. Fine
details of the charge and spin distributions on such a
scale are not described within the framework of our
approach: these details can be considered as implicitly
taken into account by the coefficients ν and A. The
“exchange” term linear in D appearing in Eq. (5) is
directly related to the exchange interaction between
spins of the FM and AFM layers. The “Coulomb” term
quadratic in D reflects the charge transfer between the
layers of different metals (Fe vs. Cr) and the resulting
contact potential difference arising between the FM and
AFM layers. According to the estimates obtained in [8,
9], the Coulomb term predominates over the exchange
term in a broad temperature range T > TN and deter-
mines both the characteristic temperature T0 for the
short-range AFM order formation and the SDW ampli-
tude. The SDW is induced due to an increase in the
electron spin susceptibility of chromium near the inter-
face. The ratio of ξ/D = , where ξ = vF

is the AFM correlation length and D = 2c2 /|ν| is the
spatial scale of the charge density redistribution at the
interface, characterizes the critical temperature T0(L) as
dependent on the AFM spacer thickness. This depen-
dence shows a quite good correlation with a real phase
diagram of the Fe/Cr(001) structure [1, 2]. No difficul-
ties are encountered when the proposed model is used
for the interpretation of variations of the critical tem-
peratures T0 and TN caused by the introduction of
dopants into the chromium layer [12].

Despite a relatively less pronounced influence on
the SDW amplitude, the exchange term determines to a
considerable extent details of the spatial distribution of
the SDW and its orientation relative to the magnetiza-
tion Sm(±l, y, z) in the FM layers. This term plays an

l/ξ( )tanh c2/c1

v F
2
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important role in the description of a layered structure
with not perfectly smooth (i.e., rough) interfaces at
which both small- and large-scale fluctuations of the
charge and spin potentials unavoidably take place.
Averaging over the small-scale fluctuations can be, in
principle, performed within the framework of a stan-
dard model describing the SDW interaction with point
impurities [10, 11], but allowance for the large-scale
fluctuations presents a more complicated problem. The
results of experiments [4] showed that a shortwave
(with a period of two monolayers) component of the
magnetic coupling between Fe layers is determined to
a considerable extent by compact regions of the Cr
spacer of a constant thickness, with a characteristic lat-
eral size on the order of 3–4 nm. Indeed, the exchange
contribution to the surface energy Fs of a structure with
the ideal flat interfaces sharply changes (in contrast to
the Coulomb contribution) its sign when the Cr spacer
thickness is varied by only one monolayer [1–3]. This
dependence of the energy on the evenness of the num-
ber N of monolayers in the spacer allows the long-range
fluctuations in the Cr layer thickness to be simply mod-
eled by introducing the random factors η(±l, y, z) into
Eq. (5). According to this model, the interface consists
of ideal flat terraces on which η has a constant value of
+1 or –1. The boundaries between adjacent terraces
represent monoatomic steps; crossing such a step
changes the sign of η to opposite. The steps are ran-
domly distributed over the yz plane, while being ori-
ented along ny and nz axes coinciding with the easy
magnetization axes of the Fe/Cr(100) structure possess-
ing a bcc crystal lattice. This model structure is consis-
tent with empirical data on the Fe/Cr(100) interface
morphology [4].

Previously [9], we have performed a self-consistent
calculation of the thermodynamically equilibrium
states of the functional determined by Eqs. (2)–(5) in
the temperature range of T > TN both for the ideal flat
Fe/Cr interface and for the interface with isolated
monosteps. In the former case, the SDW polarization
vector in the Cr spacer and the magnetic moments of
both Fe layers always lie in the same (e.g., xz) plane–in
other words, the collinear state is preferred. In the latter
case, the density of monosteps on the interface was
assumed to be small enough to ignore the contribution
to the total system energy related to the inhomogeneity-
induced transverse (relative to nx) SDW deformations.
It was established that such AFM spacer thickness fluc-
tuations give rise to a noncollinear configuration of the
magnetic moments of Fe layers. Below, these results
are generalized so as to include the case of a relatively
thin AFM layer (ξ0 < l ! ξ(T)) and an arbitrary density
of monosteps in the yz plane.

Finding equilibrium three-dimensional configura-
tions of the system described by the functional accord-
ing to Eqs. (2)–(5) in the general case is an extremely
difficult (if not desperate) task. Therefore, some
assumptions have to be made in order to simplify the
SICS      Vol. 98      No. 1      2004
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problem to an acceptable level while retaining the phys-
ical meaning of the results. We will consider only
coplanar magnetic configurations with both D(r) and
m(±l, y, z) vectors lying in the interface plane. Of most
interest is the limiting case of thick FM layers, whereby
both these layers can be considered as homogeneously
magnetized, so that m(±l, y, z) = m(±l), although in the
general case m(l) ≠ ±m(–l). Note that, in the absence of
the exchange interaction at the interfaces (A = 0), the
ground state of the system is strictly described by a sca-
lar SDW with a one-dimensional symmetric envelope
∆(r) = ∆+(x) [9]. Switching on a weak exchange (A ! 1)
can influence the structure and parameters of the
ground state in a system with perfectly smooth inter-
faces provided only that the AFM spacer is sufficiently
thick (l > D) and/or the temperature is sufficiently high
(T ≥ T0). Otherwise, in the region {l < D, T < T0}, only
a small correction (proportional to A2) to the ∆+(x) value
appears. In this context, we will restrict the consider-
ation of the Fe/Cr structures with rough interfaces to the
region of Cr spacer thicknesses and temperatures {l <
D, T < T0}, in which the SDW amplitude can be consid-
ered as independent of the parameter A and almost con-
stant across the Cr spacer (|x | < l) [9]:

(6)

On the other hand, as was pointed out above, the
SDW orientation is highly sensitive to jumps of the
exchange potential related to the Cr spacer thickness
variations. In the approximation adopted, variation of
the transverse coordinates y, z is accompanied over the
entire spacer thickness only by rotation of the vector
D(r) (1) without a change in its magnitude. The thermo-
dynamic potential (2)–(5) reduces to a one-parametric
functional for the static SDW orientation fluctuations:

(7)

(8)

(9)

Here, FA is a part of the functional F that is independent
of the angle of rotation φ = φ(y, z) of the SDW vector.

∆ r( ) ∆+ x( )
v F

2
------- 1

lD
------ 1

ξ2
-----– 

  1/2
, l/D ! 1.= =

F FA Fφ,+=

FA c2v F
4 /4lD2,–=

Fφ lc2v F
2∆2 y z

∂φ
∂y
------ 

 
2 ∂φ

∂z
------ 

 
2

+ 
 dd

total{ }
∫=

– A∆ ψ
2
---- 

  y z φcosdd

odd{ }
∫cos

+
ψ
2
---- 

  y z φsindd

even{ }
∫ .sin
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The function φ(y, z) is introduced as follows:

(10)

where ∆ is determined by formula (6). The vector m(±l)
is defined as

(11)

where ψ is the angle between the magnetization direc-
tions in the FM layers. In Eq. (9), integration in the first
term is performed over the whole interface, while inte-
grals in the second and third terms are taken over the
fragments containing odd and even numbers N of Cr
monolayers, respectively. Figure 1 schematically
shows the geometry and the magnetic structure of a
Fe/Cr/Fe(001) trilayer in the vicinity of a monostep.

3. THE SHORT-RANGE ANTIFERROMAGNETIC 
ORDER STRUCTURE 

AT AN ARBITRARY DENSITY
OF MONOSTEPS ON THE INTERFACE

Writing equations for minimization of the func-
tional (7)–(9) is quite a simple task. However, even if it
were possible to construct the exact solutions for a
given configuration of η(±l, y, z) determining the frag-
ments of interfaces with odd and even N, the procedure
of averaging of the interlayer exchange coupling over a
random distribution {η(±l, y, z))} cannot be performed
in practice and requires making additional simplifying
assumptions. We will assume that (i) one of the two
interfaces is perfectly smooth, (ii) the Cr spacer thick-
ness exhibits variations only in one direction (nz), and
(iii) these variations are periodic; that is, for

we have

and for

we have

Here, n is an integer and lo and le are the lengths of the
fragments with odd and even N, respectively. The above
assumptions render the problem one-dimensional,
restrict the domain of the variable to the segment –le ≤

∆x r( ) 0, ∆z r( ) ∆ φ y z,( ),cos–= =

∆y r( ) ∆ φ y z,( ),sin–=

mx l±( ) 0, my l±( ) ψ
2
---- 

  ,sin±= =

mz l±( ) ψ
2
---- 

  ,cos=

n lo le+( ) z lo n lo le+( ),+< <

η l– y z, ,( ) 1, η l y z, ,( ) 1,= =

lo n lo le+( ) z n lo le+( ),< <+

η l y z, ,( ) 1.–=
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ψ/2

ny

nz

nx

ψ/2

π/2

φ

0 lo/2 z–le/2

Fig. 1. A schematic diagram illustrating the geometry and magnetic structure of a Fe/Cr/Fe(001) trilayer in the vicinity of a
monostep. Large (”3D”) top and bottom arrows indicate the orientation of magnetic moments in the FM layers. The rows of small
thin arrows show a change in the local magnetization direction in the AFM spacer (all vectors are in the yz plane). The bottom curve
qualitatively shows the variation of the SDW polarization angle φ(z) in the wide terrace limit.
z ≤ lo, and limit variation of the function φ(z) to the
interval 0 < φ < π/2; the lengths lo and le play the role of
fluctuating quantities. Note that, if both interfaces were
rough, the limits of variation of the angle φ in the gen-
eral case would be different.

Variation of the functional Fφ in Eq. (9) leads to the
sine-Gordon equations,

(12)

(where the first and second equations describe the
behavior of the angular phase φ(z) of the order parame-
ter for the Cr spacer fragments with odd and even N,
respectively), with the condition of continuity of the

d2φ
dz2
-------- φsin

ζ0
2

-----------– 0, d2φ
dz2
-------- φcos

ζ e
2

------------+ 0= =
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derivative dφ/dz on the boundaries of fragments; we
supplement this by the natural condition of continuity
for the function φ(z) possessing a period of lo + le . In
Eqs. (12), we introduced the quantities

(13)

where ζ is called the “angular” correlation length (in
contrast to the “amplitude” correlation length ξ); this
value characterizes the SDW orientation fluctuations in
a thin intermediate AFM layer of the Fe/Cr/Fe trilayer
with thick FM layers.

ζ2 2lc2v F
2∆

A
--------------------,

ζ
ζo
----- 

  2 ψ
2
---- 

  ,cos= =

ζ
ζ e
---- 

  2 ψ
2
---- 

  ,sin=
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Solutions of Eqs. (13) have the following form:

(14)

where dn is the elliptic Jacobian function with modulus
k. The boundary conditions determine the unknown
parameters {zo, ze, ko, ke} via the following system of
equations:

(15)

(16)

where sn and dn are the Jacobian elliptic functions,
K(k) is the complete elliptic integral of the first kind,

and k' =  is the complementary modulus [13].

Equations (14)–(16) completely determine the spin
density distribution in the AFM layer for a given set of
{lo, le} and ψ. Now it would be important to determine
the scale of roughness R that accounts for the maximum
contribution to the interlayer exchange or, in other
words, to find the optimum values of lo and le and the
corresponding angle ψ0.

In the limit of wide terraces (lo, le @ ζo, ζe and
ko, ke  1), the SDW has a constant phase φ over
almost the entire Cr layer (φ = 0 for an odd N and φ =
π/2 for an even N) and changes at the rare monosteps
with the formation of thin domain walls on the scale of
the angular correlation length ζ. This state can be con-
sidered as a lattice of independent topological kinks of
the type

(17)
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each bearing a topological charge of Q = 1/4 [14]. The
size ζ of the region of inhomogeneous SDW polariza-
tion determined by formula (13) is a characteristic of
the Fe/Cr structure. The parameters of matching of the
solution (17) depend only on the value of ψ, whose
deviation from π/2 leads to a shift in the center of grav-
ity (distortion) of the domain wall (17) relative to the
point z = 0. In this limit of negligibly small contribution
from domain walls to the total system energy [9], we
had previously calculated the effective exchange
energy and justified the existence of noncollinear states
in Fe/Cr structures with a certain angle ψ0 (such that

cos(ψ0/2) = lo/ ) between the magnetic moments
of the FM layers.

Our approach is fundamentally different from that
developed by Slonczewski in the well-known torsional
model (proximity magnetism model) [15]. Fishman [16],
applying that model to the Fe/Cr type systems, explained
noncollinear magnetization of the neighboring FM lay-
ers by assuming a strong exchange interaction at the
interface between components of the multilayer struc-
ture. This interaction led to separation of the AFM layer
along the monostep into domains featuring SDWs of
helicoidal configuration with opposite orientations.
However, estimates based on the band theory of antifer-
romagnets with SDWs are indicative of a small
exchange (A ! 1) in Fe/Cr multilayer structures [7, 8].
Therefore, the states with helicoidal structures are ener-
getically less favorable than the states described by
Eq. (14) [9]. Note that, in the case of wide terraces fea-
turing state (17), the angle between the magnetic
moments of iron layers and those of the interfacial
monolayers of chromium by no means amounts to
180°. For example, at lo = le , we have ψ0 = 90°, whereas
far from the domain wall this angle is equal to 135°.
Thus, the bonds involved in the exchange at the inter-
face are partly frustrated (see Fig. 1). Below, we will
calculate the energy of exchange coupling between the
neighboring FM layers for an arbitrary density of
monosteps.

4. THE ENERGY OF EXCHANGE 
COUPLING BETWEEN NEIGHBORING 

FERROMAGNETIC LAYERS

Let the above assumptions concerning the morphol-
ogy of Fe/Cr interfaces still be valid. Substituting solu-
tions (14) into thermodynamic potential (9) and per-
forming integration, we obtain an expression for the

zo

ζo
----- 

 sinh 1 2
ψ
2
---- 

 cot ,+=
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ζ e
---- 

 sinh 1 2
ψ
2
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 tan ,+=
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2 le

2+
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total system energy (effective exchange energy per unit
area (2l⊥ )2) as a function of the angle ψ:

(18)

where

and E(u, k) is the incomplete elliptic integral of the sec-
ond kind [13]. In the course of transformations, we
excluded the parameters zo and ze by using Eqs. (15);
the remaining parameters ko and ke in Eq. (18) can be
calculated using Eqs. (16).

Expression (18) can be simplified only in some lim-
iting cases. For example, in the case of almost isolated
monosteps, the final result is as follows (lengthy alge-
bra is omitted):

(19)

This formula is valid under the conditions

which imply a sufficiently smooth interface and angles
ψ not very close to 0 or π (see (13)). The first term in
the dependence of the exchange energy on angle ψ in
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Eq. (19) coincides with the relation obtained previ-
ously [9], while the second term (a correction on the
order of ρζ ! 1) represents a positive energy (17) of a
lone 90° domain wall in chromium, multiplied by the
linear density of monosteps ρ = 2/(lo + le). The next
small term proportional to

representing overlapped tails of the neighboring
domain walls, was neglected. It should be noted that

(since ζ ~ , see (13)), the conditions of applicability
of the wide terrace approximation are somewhat
improved with increasing temperature or decreasing
AFM spacer thickness, although the magnitude of the
effective exchange energy (19) tends to decrease:

Thus, formula (19) can be used for the interpretation of
experimental data on the effective coupling in Fe/Cr
structures with high-quality interfaces and relatively
thick iron layers.

In the limit of closely spaced monosteps, the SDW
phase φ(z) in the AFM layer exhibits small oscillations
about the angle φ(0):

Retaining terms to within the second order of smallness
with respect to the ratio lo, e/ζ ! 1, we obtain (cumber-
some transformations are omitted)

(20)

If the interfacial relief represents a plane with sepa-
rate narrow hills of monoatomic height (such that
(ρζ)2 @ 1 and, e.g., lo @ le or Λ  1), the first term in
expression (20) predominates. This implies that the
magnetic moments of the neighboring FM layers in the
Fe/Cr structure in equilibrium are parallel (ψ = 0); in
contrast, for lo ! le or Λ  0, these moments are anti-
parallel (ψ = π/2).

In a more interesting situation of strong roughness
(representing a Fe/Cr interface cut with a network of
monoatomic steps), the integral characteristic of fluctu-
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ations in the Cr spacer thickness is Λ ≈ 1/2 (or lo ≈ le).
In the case of

the angular dependence (20) of the interlayer magnetic
coupling energy takes a form corresponding to the effec-
tive exchange with a “biquadratic” interaction [1–3]:

(21)

The coefficients in this expression for the interlayer
interaction energy have a rather simple form and can be
readily evaluated as functions of the Cr spacer thick-
ness L and the temperature T. Note that J1(L, T) ~
∆(L, T), while the coefficient J2 is not explicitly related
to the SDW amplitude (because ζ2 ~ ∆). In this respect,
the behavior of the biquadratic coupling coefficient,
J2(L, T) ~ (c2(T)L)–1, exhibits a universal character inde-
pendent of the particular model of the AFM order
parameter ∆(L, T) (such as, e.g., (6)) in a thin chromium
layer.

The condition of |J1| < 2J2 corresponds to an equilib-
rium noncollinear state with an angle between the mag-
netic moments of the FM layers dependent on the inter-
face morphology parameters,

and the effective exchange energy

In particular, for

the magnetic moments of the FM layers are mutually
perpendicular (ψ0 = π/2) and the SDW polarization vec-
tor is virtually not affected by the spacer thickness fluc-
tuations (ψ(z) ≈ π/4).

Formula (21) indicates that impaired technological
quality of the interface (L  1/2, (ρζ)2  ∞) must
lead to a significant decrease in the interlayer coupling
energy in Fe/Cr structures as compared to a value
(about A∆) characteristic of the wide terrace limit. This
conclusion was confirmed by numerical analysis of
E(ψ) according to Eq. (18). This analysis was per-
formed by simultaneously solving Eqs. (16) with
respect to ko and ke for the interface roughness parame-

2 6 2Λ 1– ζρ  ! 1,

E ψ( ) E π/2( )– J1 ψ J2 ψ,cos
2

+cos=

J1 A∆ Λ 1
2
---– 

  , J2–
A∆

96ρ2ζ2
-----------------,= =

E
π
2
--- 

  –
A∆
2

------- J2.–=

ψ0cos 24 2Λ 1–( )ρ2ζ2,=

E ψ0( ) E π/2( )– 6A∆ 2Λ 1–( )2ρ2ζ2.–=

24 2Λ 1–( )ρ2ζ2 0,
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ters (ρζ, Λ) varied within broad limits. Figure 2a shows
the results of our numerical calculations for Λ = 1/2 and
(ρζ)–1 = 0.1, 1, 2, 3, 4, 8, ∞; the dotted curve corresponds
to the calculations using approximate formula (19) with
(ρζ)–1 = 8 (the data are plotted for 0 ≤ ψ ≤ π/2, since the
function E(ψ) for Λ = 1/2 is mirror symmetric relative
to ψ = π/2).

Figure 2b presents the results of our numerical cal-
culations for Λ = 1/4 and (ρζ)–1 = 1, 2, 4, 8, 16, ∞; the
dotted curve refers to the calculations using approxi-
mate formula (19) with (ρζ)–1 = 16 (the pattern of
exchange energy E(ψ) for Λ = 3/4 can be obtained as a
mirror reflection of Fig. 2b relative to the vertical axis
ψ = π/2). As can be seen, the function E(ψ) for ρζ ≥ 1/8
exhibits only a trivial minimum at ψ = π. The tendency
to the transition from noncollinear to collinear mag-
netic configuration for the FM layers with impaired
interface quality is general for Λ ≠ 1/2. A comparison
of the families of E(ψ) curves constructed for various
values of the parameter Λ shows that the case of Λ = 1/2
corresponds to the minimum amplitude of oscillations
in the exchange coupling energy. This amplitude signif-
icantly decreases with increasing disorder on the inter-
faces. However, the amplitude of oscillations in the
exchange coupling energy becomes weakly dependent
on the ρζ value already for Λ = 1/4.

5. AN ALTERNATIVE APPROACH: 
THE MODEL 

OF FERROMAGNETIC DOMAIN WALLS

The model of AFM domain walls considered above
has certain limitations of both physical and geometric
character, which hinders description of the magnetic
order in some real structures. In particular, we assumed
that the FM layers are homogeneously magnetized (that
is reasonable for the layers of sufficiently large thick-
ness). However, since iron as such possesses a finite
magnetic stiffness γ, it can be energetically favorable
for thin FM layers to split into domains—and this will
significantly modify the SDW structure in the chro-
mium layer. A self-consistent calculation of the spin
density distribution in the entire structure for arbitrary
thicknesses and geometries of the Fe and Cr layers is
practically impossible. For this reason, below we only
consider a situation that is, in a certain sense, opposite
to the case analyzed above and is apparently closer to
the limit of thin FM layers. Note, however, that it is nec-
essary to strictly define a particular geometry (rather
than only a magnetic configuration) of the system under
consideration.

Let us consider, for example, an asymmetric trilayer
(frequently studied in experiments) comprising a thin
(“upper”) and thick (“lower”) FM iron layer separated
by an AFM spacer of chromium. We retain the assump-
tions made in Sections 2 and 3 concerning the Fe/Cr
interface morphology. However, now we will addition-
ally assume that the order parameter in the AFM spacer
AND THEORETICAL PHYSICS      Vol. 98      No. 1      2004
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has a fixed direction (corresponding to the maximum
gain in the exchange energy on the lower interface that
is assumed to be perfectly smooth) and that the rough-
ness of the upper (x = l) interface causes an inhomoge-
neous redistribution of magnetization in a thin FM
layer, so that the latter separates into FM domains along
the monosteps.

If the AFM spacer features a homogeneously polar-
ized SDW with an amplitude of D(r) = –nz∆(x), the
magnetic moments in the upper FM layer experience
the action of the exchange field ±∆(l) changing sign
upon crossing each monostep. As a result, the orienta-
tion of the vector m(l, y, z) in the FM layer gradually
varies over a characteristic length ζ, so as to adjust to
the external field ±∆(l). In the lower FM layer, the mag-
netization is constant and equal to m(–l) = nz. The ther-
modynamic potential (2)–(5) acquires the form of the
effective functional

(22)

(23)

Note that, in the limit under consideration (l/D  0),
the energy FA and the SDW amplitude ∆ are given by
expressions (8) and (6), respectively. The quantity Fϕ
equals the sum of the functional of static magnetization
orientation fluctuations in the upper FM layer and the
exchange energy on the lower Fe/Cr interface (the last
term in (23)). The function ϕ = ϕ(y, z) is defined as
follows:

(24)

In the approximation of a one-dimensional periodic
structure of monosteps on the upper interface, variation
of the functional Fϕ in Eq. (23) leads to the sine-Gordon
equations

(25)

Here, the first and second equations describe the behav-
ior of the angular phase ϕ(z) of the magnetization in
parts of the FM layer that come into contact with the Cr
spacer fragments with odd and even N, respectively. We
also introduce the natural conditions of continuity of
the function ϕ(z) and its derivative dϕ/dz on the
monosteps. Here, the value of the correlation length ζ
for the magnetization orientation fluctuations in the

F FA Fϕ ,+=

Fϕ dγ y z
∂ϕ
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 
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iron layer of thickness d in the Fe/Cr structure is
defined as

(26)

The structure and energy of states of the functional
(22)–(23), as well as their variation depending on the
parameters lo/ζ and le/ζ, can be calculated and studied
in detail as was done above for functional (9). We will
not dwell on this case here; we will only mention the
characteristic features of these states.

In the case of a relatively small distance between
monosteps (lo, le < ζ), the domain of variation of the
function determined by Eqs. (25) is restricted to the
interval 0 < ϕ(z) < π. As can be shown for a sufficiently
high density of monosteps, such that (ρ2ζ2 @ 1 and

ζ2 2dγ
A∆
---------.=
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Fig. 2. The angular dependences of the effective interlayer
exchange coupling energy E = E(ψ)/A∆ (ψ is the angle in
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values of the parameter (ρζ)–1 (indicated at the curves).
Solid curves show the results of numerical analysis of the
exact formulas (16) and (18); dotted curves are calculated
by the approximate formula (19) for (ρζ)–1 = 8 (a) and
19 (b).
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Λ ≈ 1/2, the direction of magnetization of the FM layer
weakly oscillates about the average value

(27)

In other words, the magnetization of the upper iron
layer is almost completely oriented 90° relative to that
in the lower layer,

The exchange coupling energy per unit area of the
interface is

(28)

In the limit of wide terraces, such that

the pattern is different. Far from a monostep, the mag-
netization is almost antiparallel relative to spins in the
chromium monolayer adjacent to the interface. For def-
initeness, let us assume that ϕ = 0 for an odd N and ϕ =
π for an even N; in the vicinity of a monostep, vector
m(x = l, z) exhibits rotation by 180° over the angular
correlation length ζ (26). This state can be considered
as a system of almost isolated topological domain walls
of the type

(29)

The condition of matching for this solution at z = 0 is as
follows:

(30)

As can be seen, the vector of magnetization m(x = l, z)
according to Eq. (24) for the upper FM layer in the
vicinity of a monostep exhibits a noncollinear local ori-
entation relative to the homogeneous magnetization of
the lower FM layer. Therefore, the lone domain
wall (29)–(30) can be assigned a magnetization compo-
nent along the ny axis:

(31)
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The description of a domain wall with the opposite
(negative) magnetization is obtained by replacing ϕ(z)
by ϕ(z) ± π in Eq. (25). In the case of an ultimately low
density of monosteps (ρζ  0), the system represents
a set of isolated 180° domain walls of different signs
with the energy

(32)

With allowance for an exponentially small (propor-
tional to exp(–lo, e/ζ)) interaction between the neighbor-
ing domain walls, it is possible to conclude that the
most energetically favorable magnetic structure is that
with monotonically increasing (or decreasing) angular
function ϕ(z) having the shape of the “devil’s staircase”
type. This structure is characterized by wide (almost
over the entire terrace width) plateaus with a constant
magnetization orientation along nz: ϕ(z) = (2n + 1)π for
an even N and ϕ(z) = 2nπ for an odd N (n is an integer).
These plateaus are separated by thin FM domain walls
of strictly alternating polarization signs along the ny

axis. Averaging over the entire area of the interface
yields

In the general case, when the relations between
model parameters are not as simple (e.g., lo < ζ < le or,
vice versa, le < ζ < lo), even the simplified model of a
rough interface adopted above requires a complicated
analysis far beyond the framework of this paper. It can
be shown that there is a transition with respect to the
parameter ρζ, Λ between two qualitatively different
regimes of magnetization distribution in the thin FM
layer, as briefly described above in the limits of lo, le !
ζ and lo, le @ ζ.

As was noted above, the assumption of a thick
“upper” FM layer made for the calculations in Sec-
tions 3 and 4 was opposite to that made in Section 5.
Therefore, expressions for the exchange energy
obtained in the models of AFM and FM domain walls
cannot be compared from the standpoint of the relative
energy gain. A more general theoretical analysis of the
possible magnetic configurations in the system with an
arbitrary geometry of the iron and chromium layers,
which is beyond the limits of the one-dimensional
approximation, remains to be conducted. Nevertheless,
below we will attempt, based on the results, to make
certain inferences concerning the character of the effec-
tive interlayer exchange coupling in real structures of
various geometry and quality of the Fe/Cr interface.

6. CONCLUSIONS

The presence of structural defects on the boundaries
between FM and AFM layers leads both to the frustra-
tion of bonds involved in the interlayer exchange and to

E 2A∆ 1 4ρζ 1 1

2
-------– 

 – 
  .–=

mz〈 〉 2Λ 1, my〈 〉– 0.= =
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the formation of inhomogeneous spin configurations
inside the layers. This statement seems to be valid for a
broad class of magnetic nanostructures of the type
under consideration (Fe/Cr, Co/Cr. Fe/Mn, etc.), while
the mechanisms involved in the development of the
inhomogeneity and frustration for each particular sys-
tem have to be specified. In this paper, we have pro-
posed a theoretical scheme taking into account both
factors, intended for description of the effective
exchange coupling between FM layers in the Fe/Cr
type structure. This structure is commonly accepted as
a model system and, at the same time, considered as
highly promising for practical use in superhigh-density
magnetic recording devices.

Experimental investigations of a magnetic configura-
tion of the Fe–Cr system even of the simplest geometry,
such as a chromium film on a Fe(001) whisker [1, 5]
or a thin iron film on a massive chromium single crys-
tal [17, 18], revealed a high sensitivity of this system
with respect to structural parameters of the Fe/Cr inter-
face and the temperature. The magnetic coupling
between FM layers in more complicated systems
(trilayers, superlattices, etc.) is also an important probe
of the quality of interfaces as determined by the mate-
rial’s preparation technology. For symmetric Fe/Cr/Fe
trilayer structures with a wedge-shaped AFM spacer
and relatively thick (5 nm) FM layers epitaxially grown
on GaAs/Fe/Ag(001) substrates, Schmidt et al. [4]
studied the interlayer coupling using the magneto-opti-
cal Kerr effect and characterized the interface morphol-
ogy by scanning tunneling microscopy (STM). The
magneto-optical data showed evidence of a significant
(severalfold) variations in the amplitude of the short-
wave component of the effective interlayer exchange
potential depending on the temperature regime of the
layer growth. On the other hand, a thorough statistical
analysis of the STM images of the growth front in the
same samples revealed a direct correlation between the
amplitude of the shortwave oscillations of the effective
interlayer exchange potential and a longitudinal rough-
ness parameter of the interface (the R value in the best
case was about 22 nm). It was established that the dom-
inant role determining the effective exchange coupling
between the FM layers was played by special regions of
the Cr spacer with a constant thickness (N = const) and
a lateral size of not less than 3–4 nm (“pillars” in terms
of [4]), whereas the other regions (“edges”) of the Cr
spacer featuring frequent monolayer-order thickness
fluctuations were barely involved in the interlayer
exchange.

The approach developed in the main sections of this
paper provides a theoretical basis for the empirical con-
clusions following from the results obtained in [4]. A
more rigorous description of the system would require
a self-consistent (generally speaking, three-dimen-
sional) calculation of the order parameter D(r) in a ran-
dom field of the AFM layer thickness fluctuations, fol-
lowed by averaging over these fluctuations. Neverthe-
less, even the simplest model of the interface
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
morphology using a minimum number of parameters
(Λ and ρζ) and the approximation of magnetic inhomo-
geneities by one-dimensional variations of the SDW
vector (analogous to the domain walls) allowed us to
reveal the main features of the interlayer exchange.
According to formulas (19)–(21) and Fig. 2, the long-
wave components of the roughness fluctuations must
make the main contribution to the interlayer exchange;
on the other hand, it is also evident that this contribu-
tion is limited by the small statistical weight of these
components. Therefore, there must exist an optimum
fluctuation with a certain characteristic length R0 that
can be quite naturally related to the “pillars” observed
in [4].

It should be noted that expression (21) is formally
analogous to the traditional phenomenological model
with bilinear and biquadratic terms. We may suggest
that the interlayer exchange behavior of the Fe/Cr
structures grown in the optimum regime can be
expected to exhibit deviations from (21) toward (19).
Based on the magnetization hysteresis observations,
Schreyer et al. [19] stated that a biquadratic model can-
not explain the residual 50° coupling between the
neighboring FM layers in a [Fe(52 Å)/Cr(17 Å)] super-
lattice with rather broad terraces (R ≥ 100 Å). There are
many other experimental facts (see, e.g., [6, 12, 20] and
the discussion in review [3]) that cannot be given satis-
factory interpretation within the framework of the
biquadratic model either. According to our rough esti-
mates, the correlation length ζ on which the SDW vec-
tor orientation changes in the chromium layer amounts
to about 1−5 nm, so that an angular dependence of E(ψ)
close to expression (19) can be expected in the experi-
ments using trilayers grown by layer epitaxy. As the
quality of the interface decreases (in our scheme, this
corresponds to Λ  1/2, ρζ  ∞, the probability of
rather wide regions appearing in the AFM layer with
N = const becomes negligibly small and the interlayer
coupling acquires the traditional form of Eq. (21).

Let us briefly consider the dependence of the interlayer
exchange on the AFM layer thickness and the temperature.
Demokritov et al. [20] treated experimental data obtained
using Kerr magnetometry and the Brillouin light scatter-
ing for symmetric Fe(100 Å)/Cr(0–20 Å)/Fe(100 Å)
structures with relatively thick FM layers within the
framework of a bilinear–biquadratic exchange model.
Using qualitative estimates obtained under the assump-
tions that the magnetic structure of the chromium layer
is weakly distorted and that iron layers are homoge-
neously magnetized, the authors of [20] justified this
model and obtained an angular dependence of the inter-
layer exchange coupling energy that coincides substan-
tially with that given by formula (21) calculated above
in the limit of ρζ ! 1 and Λ ≈ 1/2. The experiments also
showed that the biquadratic interaction parameter
decreases in inverse proportion to the Cr spacer thickness
and linearly decreases with increasing temperature in the
interval from 77 to 473 K. This behavior of quantity
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134 MEN’SHOV, TUGUSHEV
J2(L, T) is quite consistent with the estimate J2(L, T) ~
(c2(T)L)–1 predicted in Section 4 (for the temperature
variation of the coefficient c2(T), see, e.g., [10]).

In the structures with thin (not exceeding 20 Å) iron
layers and highly perfect Fe/Cr interfaces (to which the
model of almost isolated monosteps is applicable), the
state with a 180° FM domain wall described by formu-
las (29)–(30) seems to be energetically most favorable.
This very state was directly observed in the well-known
experiments using SEM in combination with polariza-
tion analysis for the unique structures grown in the opti-
mum regime on a thick iron layer (whisker) [1]. The
surface of a whisker is almost perfectly smooth (ρ ≈
1 µm–1). Using a structure with a wedge-shaped chro-
mium spacer, it is possible to obtain (within the same
sample) a sequence of very wide (lo = le = R = 10 µm)
and almost perfectly smooth plane terraces of regular
shapes covering the AFM spacer fragments with differ-
ent numbers N of chromium monolayers.

In accordance with the results obtained in Section 5
for the interlayer exchange according to a mechanism
of the 180° FM domain walls, the magnetization of a
thin Fe layer is oriented noncollinearly relative to the
whisker magnetization only in a narrow region (on the
order of ζ). Pierce et al. [1] pointed out that the noncol-
linear coupling between FM layers exhibited a sharp
drop at a chromium spacer thickness close to 24 mono-
layers (i.e., under conditions of the interlayer exchange
coupling phase slip). Our analysis suggests that this fact
is related to a complex rearrangement of the spatial
structure of SDWs in the chromium layer of variable
layer thickness L = 2l, which was recently considered
in [21]. This rearrangement naturally leads to a change in
the SDW amplitude at the Fe/Cr interface, thus determin-
ing, according to formula (26), the scale ζ ~ ∆(l)–1/2 of the
magnetization orientation fluctuations in the iron layer. It
should be noted in conclusion that an E(ψ) dependence
resembling relation (19) for Λ ≡ 1/2 and ζρ ≡ 0 was
obtained in [22] by using a completely different micro-
scopic model.

In our opinion, the effective exchange coupling in
most experiments (both with Fe/Cr/Fe(001) trilayers
and [Fe/Cr](001) superlattices) is related to variations
of the SDW vector orientation in the chromium layer as
described in Sections 3 and 4. The situation with the
appearance of 180° FM domain walls considered in
Section 5 is the exception rather than the rule. A rough
qualitative estimate of the region of model parameters
corresponding to the states with inhomogeneous mag-
netization of the iron layers is provided by the relation

dγ < δL, where the quantity δ = c2 ∆2/2 can be natu-
rally treated as the exchange stiffness of a thin chro-
mium layer.
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Abstract—A model of the energy band structure of iron borate (FeBO3) is proposed that combines a one-elec-
tron description of the sp states of boron and oxygen with a many-electron description of the d states of iron.
The Green functions of d electrons are calculated using the exact Lehmann spectral representation. The energies
of the d-type quasiparticles are calculated using terms of the d4, d5, and d6 electron configurations. The optical
absorption spectrum of FeBO3 is determined by local excitons and by the electron excitations with charge trans-
fer. The latter excitations control the nature of the dielectric gap in FeBO3 crystals. The model parameters are
determined from a comparison to the exciton energies. The density of single-particle states in FeBO3 is calcu-
lated. The main bands in the calculated optical absorption spectrum agree well with experimental data for ener-
gies up to 3 eV. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Iron borate FeBO3 is one of a few magnets combin-
ing transparency in the visible spectral range with
spontaneous magnetization at room temperature. This
is a weak ferromagnet with nearly antiparallel spin
sublattices of Fe3+ ions in the (111) base plane at tem-
peratures below the Néel temperature TN = 348 K [1].
The FeBO3 crystals possess a calcite structure belong-

ing to the space group  [1, 2], in which Fe3+

ions are surrounded by an oxygen octahedron of an
almost cubic symmetry; bond lengths: Fe–O, 2.028 Å
and Fe−Fe, 3.601 Å; O–Fe–O bond angles, 91.82° and
88.18° [3]. Under normal ambient conditions, FeBO3 is
an insulator with a fundamental absorption edge at

 = 2.9 eV [4]. Despite many years of research, there
has been permanent interest in studying the properties
of FeBO3 crystals. Recent investigations revealed a
structural phase transition in FeBO3 [5], a collapse of
the magnetic moment of Fe3+ ions under pressure [6],
peculiarities in the concentration dependence of the
magnetic and optical properties of some solid solutions
of the VxFe1 – xBO3 system [7], and the light-induced
breakage of the magnetic order under conditions of
pulsed optical pumping [8].

At the same time, relationships between the
observed properties and the electron structure of FeBO3
have not yet been established even on a qualitative
level. There are difficulties in application of the stan-
dard band theory to FeBO3, which are related to strong
electron correlations involving the d electrons of iron.

R3c  D 3 d 
6 ( )

Eg
0( )
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Indeed, a one-electron approach to the d5 electron con-
figuration of Fe3+ ion leads to a partly filled band and
the metallic state. In the Hubbard model with strong
electron correlations, whereby U @ W (U is the Cou-
lomb interaction parameter and W is the width of a half-
filed d band), we obtain an antiferromagnetic state of
the Mott–Hubbard dielectric. However, in FeBO3 (as
well as in many other real substances), a simple pattern
based on the Hubbard model is complicated by the
presence of a large number of d(f) orbitals.

This paper proposes a many-electron model taking
into account all d orbitals and strong electron correla-
tions involving d electrons. Within the framework of
this model, the density of single-particle states of d
electrons contains contributions due to local quasiparti-
cles with energies

where Ei(dn) denotes the ith term of the dn configura-
tion. In the case of FeBO3

 

, the energies of both high-spin
and various low-spin terms of Fe

 

2+

 

, Fe

 

3+

 

, and Fe

 

4+

 

 ions
become significant. An analogous approach was
employed in the analysis of magnetism in

 

 d

 

 metals [9, 10]
and layered cuprates [11]. The model parameters are
determined from a comparison to the energies of exci-
ton peaks in the optical absorption spectrum. The cal-
culated density of single-particle states, 

 

N

 

(

 

E

 

), is com-
pared to the experimental absorption spectrum in a
broad range of energies 

 

E

 

 

 

≤

 

 3 eV.

Ωij Ei dn 1+( ) E j dn( ),–=
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The paper is organized as follows. Section 2
describes the proposed many-electron multiband model
of FeBO3. Section 3 is devoted to calculation of the
local Green functions of d electrons, which is compared
to the exact Lehmann spectral representation. Section 4
considers the experimental absorption spectrum of
FeBO3 measured in a broad energy range. Section 5
compares the calculated density of states N(E) to the
experimental absorption spectra. Finally, in Section 6
we will discuss the temperature dependence of these
spectra.

2. A MANY-ELECTRON MULTIBAND MODEL
OF THE ELECTRON STRUCTURE OF FeBO3

The ab initio one-electron energy band calculations
performed for FeBO3 using the density functional
method in the local spin density approximation [12]
and the generalized gradient approximation [13],
together with the calculation of molecular orbitals of a
FeB6O6 cluster [7], revealed the following electron
structure of FeBO3. The empty conduction band εc con-
sists predominantly of the s and p states of boron. The
top of the valence band εv is formed mostly by the s and
p states of oxygen. The energy gap Eg0 between valence
and conduction bands in the antiferromagnetic phase
amounts to 2.5 eV [12], which is quite close to the fun-
damental absorption edge (Eg0 = 2.9 eV). The band of
d electrons occurs at the top of the valence band, and
the crystal field parameter is ∆ ≈ 1 eV [12]. The degree
of hybridization of the d electrons of iron with the s and
p electrons of oxygen is very small [7, 12], much
smaller as compared to the case of 3d metal oxides.
This is related to a very strong hybridization inside the
BO3 group, where the (BO3)3– ion does in fact exist and
the electron orbitals of oxygen are closed to boron
(which accounts for the small p–d hybridization). This
circumstance significantly simplifies the many-electron
model, for which the dn (n = 4, 5, 6) terms of iron in the
crystal field can be calculated, rather than the terms of
a metal–oxygen complex (as in copper oxides [11]).

The intraatomic part of the Hamiltonian for d elec-
trons can be written as

(1)

where nλσ = aλσ , aλσ is the operator of d electron
creation on one of the five orbitals λ with the spin pro-
jection σ (  = – σ). The first term in (1) describes the
atomic d levels in the crystal field. A small uniaxial

Hat ελnλσ
Uλ

2
------nλσnλσ+ 

 
λ σ,
∑=

+ Vλλ 'nλσnλ'σ' Jλλ 'aλσ
† aλσ'aλ'σ'

† aλ'σ–( ),
σ σ',
∑

λ λ ',
λ λ '≠( )

∑

aλσ
†

σ
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component of the crystal field is ignored and it is
assumed that

The other terms in Hamiltonian (1) represent the Cou-
lomb intraorbital (Uλ) and interorbital (Vλλ ') repulsion
and the Hund exchange Jλλ ' . For the sake of simplicity,
we neglect the orbital dependence of the Coulomb
matrix elements, assuming that the three parameters
(U, V, and J) are related by the well-known condition
U = 2V + J.

The kinetic energy of d electrons, as determined by
interatomic hopping, is described by the Hamiltonian

(2)

where  is the matrix element of hopping between ith
and jth lattice sites. The main matrix element corre-
sponds to the hops between nearest neighbors: t ~

/|εp – εd|. However, in view of the weak p–d hybrid-
ization between Fe and O atoms, this element is also
small, t ! U, which accounts for the strong electron
correlation effects. Thus, the model parameters are the
two Coulomb integrals, U and J, the crystal field mag-
nitude ∆, the position of the one-electron d level rela-
tive to the top of the valence band εv (δ = εd – εv), and
the hopping integral t. The parameters will be deter-
mined by comparison with the experimental optical and
photoemission spectra (see Section 4).

The Fe3+ ion has a d5 configuration that can occur in
various spin and orbital terms. The considerations
below will also imply the knowledge of the terms of
d4 (Fe4+) and d6 (Fe2+) configurations for description of
the hole and electron creation in the many-electron sys-
tem. The energies of terms in each of these dn configu-
rations are expressed via the Racah parameters A, B,
and C [14, 15]. The B, C and ∆ values for the terms of
Fe3+ ion were determined in [16]: B = 680 cm–1, C =
3160 cm–1, and ∆ = 12700 cm–1.

With neglect of a small uniaxial component of the
crystal field, three t2g levels and two eg levels are degen-
erate. For the d5 configuration, the ground state 6A1

(with Sz = +5/2) is described by the wave function

(3)

where  (λ = 1, 2, 3) and  (λ = 1, 2) are the oper-
ators of creation of t2g and eg electrons, respectively, in
one of the orbital states λ with the spin projection σ;
and |0〉 is the vacuum state for d electrons. The lowest

ε t2g( ) εd 2∆/5, ε eg( )– εd 3∆/5.+= =

Ht   t ij 
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' a i λσ 

† a j λ ' σ

λ λ
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i j
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 ∑  H.c.,+=

tij
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t pd
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d5 S 5/2= Sz 5/2=, ,| 〉 t1↑
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excited term 4T1 has a nonzero orbital moment and the
spin S = 3/2.

The other excited terms with S = 3/2 can be written
in a similar manner. For example, the term 4A1 has a

configuration of  with an energy of 

The low-spin excited term 2T2 with a configuration of

 has an energy of 

Let us also write the ground and lower excited terms
of the d4 and d6 configurations. For d4, the main term 5E

for S = 2, Sz = 2 has a configuration of  with an
energy of 

In what follows, we will also consider the term 3T1 with
S = 1 and an energy of 

and the term 1E( ) with S = 0 and the energy

For d6, the main term 5T2 has a configuration of

 with an energy of 

the excited spin triplet 3T1 has an energy of E1(d6), and

the spin singlet 1A1( ) has an energy of E0(d6). For
the given values of B and ∆ for each term, the corre-
sponding energies relative to the lowest term of each
configuration can be numerically determined using the
Tanabe–Sugano diagrams [14, 15] (see Fig. 1 below).
Note that a half-occupied d5 configuration should pos-
sess the electron–hole symmetry. This symmetry is
revealed when the one-electron energies are measured
from the chemical potential level (see Section 5).

3. ONE-PARTICLE GREEN FUNCTION 
OF d ELECTRONS

For establishing a relationship between many-elec-
tron terms and the spectrum of one-particle excitations
determining the density of single-particle states, N(E),
we use an approach based on the generalization of Hub-

t2g
3↑ eg

↑ eg
↓

E3/2'' d5( ) 5εd 10V 6J .–+=

t2g
3↑ t2g

2↓

E1/2 d5( ) 5εd 2∆– 2U 8V 4J .–+ +=

t2g
3↑ eg

↑

E2 d4( ) 4εd 3∆/5– 6V 6J .–+=

E1 d4( ) 4εd 8∆/5– U 5V 3J–+ +=

t2g
2↑ t2g

2↓

E0 d4( ) 4εd 8∆/5– 2U 4V 2J .–+ +=

t2g
3↑ t2g

↓ eg
2↑

E2 d6( ) 6εd 2∆/5– U 14V 10J ,–+ +=

t2g
3↑ t2g

↓
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bard’s ideas. Since the hops between atoms are small,
the exact one-particle Green function Gkσ(ω) =

〈〈 akσ 〉〉  in the zero-order approximation with respect
to t reduces to the local function G(0)(ω). A consistent
method for calculating the Green functions at t/U ! 1
is provided by the representation of Hubbard’s X oper-
ators constructed on the eigenstates of Hat . In our case,
these are the aforementioned terms of dn configura-
tions. For the initial Hubbard model without orbital
degeneracy, the corresponding perturbation theory has
been developed in [17, 18] and the case of arbitrary
degeneracy was considered in [19].

The structure of the Green functions of d electrons
is revealed by the exact Lehmann spectral representa-
tion [20], in which electrons are described as super-
positions of various quasiparticles. According to this,
for T = 0,

(4)

where the quasiparticle energies are

(5)

and their spectral weights are determined by the matrix
elements

(6)

Here, |m, N〉  denotes the mth many-electron eigenstate
of a system with N electrons,

so that index m is essentially the band index numerating
quasiparticles possessing the spin 1/2, the charge e (as

akσ
†

Gσ k ω,( )
Am k ω,( )
ω Ωm

+–
---------------------

Bm k ω,( )
ω Ωm

––
---------------------+ 

  ,
m

∑=

Ωm
+ Em N 1+( ) E0 N( )– µ,–=

Ωm
– E0 N( ) Em N 1–( )– µ,–=

Am k ω,( ) 0 N,〈 |akσ m N 1+,| 〉 2,=

Bm k ω,( ) m N 1–,〈 |akσ 0 N,| 〉 2.=

H m N,| 〉 Em m N,| 〉 ,=

Fig. 1. A diagram of terms for Fe4+, Fe3+, and Fe2+ ions in
FeBO3. The cross indicates the occupied lowest sublevel of

the term 6A1 of Fe3+ ion at T = 0. Figures at the levels indi-
cate the energies (in eV) relative to the lowest sublevel.
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seen in the matrix elements), the energy  , and
the spectral weight Am (Bm).

At a finite temperature, Lehmann’s representation
can be written, for example, for the retarded Green
function (see [21, 22]),

(7)

where  = Em(N + 1) – En(N) – µ and Wn is the sta-
tistical weight of state |n〉  determined by the Gibbs dis-
tribution with the thermodynamic potential Ω:

At T ≠ 0, both the ground state |0, N〉  and excited states
|n, N〉  are populated. In this case, quasiparticles are
denoted by two indices, m and n, and are considered as
excitations in a many-electron system, whereby elec-
tron added to the N-electron system in the state |n, N〉
induces a transition to the final (N + 1)-electron state
|m, N + 1〉.

In Lehmann’s representation, |m, N〉  is the unknown
state of the whole crystal. As will be shown below,
the same structure is inherent in the local Green func-
tion G(0) according to the generalized tight binding
method [19]. This function is determined by the local
many-electron terms |m, N〉  obtained in Section 2. In the
case of FeBO3, significant contributions result from the
terms with N = 4, 5, and 6. Denoting |m, N〉  ≡ |p〉 , we
define Hubbard’s X operator at site f as

(8)

In standard writing, X operators appear with cum-
bersome notation indicating the initial and final states.
In order to simplify this notation, we will use the idea
of Zaitsev [17], according to which a pair of indices
(p, q) is replaced by the so-called root vector (p, q) 
a(p, q) ≡ a. Since the set of these vectors is denumera-
ble, we introduce the numeration a  an and then
indicate only the number n of the root vector:

This essentially implies that we construct a table of the
correspondence between pairs (p, q), vectors an, and
indices n necessary for explicitly calculating the com-
mutation relations. Let us define vectors a so as to cor-
respond to the process of electron annihilation, Nq –
Np = +1. Then, the operators of electron creation (anni-

Ωm
+ Ωm
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ω Ωmn

+– i0+
-------------------------------

m n,
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× 1 Ωmn
+– /T( )exp+[ ] ,

Ωmn
+

Wn Ω En– µN+( )exp /T .=
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pq p| 〉 q〈 | mN| 〉 m'N'〈 | .= =
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an          X f

n .                         
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hilation) in state |fλσ〉  can be written in the X represen-
tation as

(9)

(10)

Since the Hamiltonian Hat in the representation of
the Hubbard operators is diagonal, the local Green
functions of d electrons are immediately calculated as

(11)

where Ωn = Em'(N + 1) – Em(N

 

) is the quasiparticle

energy and 

 

F

 

(

 

n

 

) =  +  is the occupation
factor. Evidently, the Green functions (11) realize Leh-
mann’s representation inside the unit cell but, in con-
trast to noncomputable energies and matrix elements in
such a representation, all quantities entering into
expression (11) can be calculated via the local charac-
teristics of terms. Here, index 
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 numerates quasiparti-
cles with a charge 
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, spin 1/2, energy 
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completion of the basis set of many-electron states 
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the total spectral weight is the same as that of free
electrons.

In the diagram technique developed for 

 

X

 

 operators
[17–19], the series of perturbation theory are con-
structed for the matrix Green function,

rather than for the electron Green function related to the
former in the 

 

X

 

 representation (9) as

It is possible to write a generalized Dyson equation for

the Green function , in which the perturbation renor-
malizes both the mass operator and the spectral weight.
In the simplest Hartree–Fock approximation, the mass
operator is determined as the Fourier transform of the
hopping integral 

 

t

 

nn

 

'

 

(

 

k

 

). As a result, the dispersion of
quasiparticles is described by the following equation:

(12)
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There is an obvious analogy between Eq. (12) and
the dispersion equation obtained in the one-electron
tight binding method: the structures of these expres-
sions are identical. However, there are important dis-
tinctions as well: first, the local energies Ωn include
(unlike the one-electron energies ελσ) intracell Cou-
lomb interactions; second, the band index n of a quasi-
particle is determined by a pair of indices of the initial
and final states (differing from the band index λ of free
electrons); third, the band structure of quasiparticles
depends (via the occupation factors F(n)) on the density
of electrons, temperature, and external fields; and
fourth, a one-electron rigid band model cannot be
developed for quasiparticles.

For determining the occupation numbers and the
factors F(n), it is necessary to solve an equation for the
chemical potential. In the X representation, this equa-
tion can be written as

(13)

where  is the occupation number for the mth
term of dN configuration at the f site. Each term of dN

contributes N electrons to their total number Ne . A solu-
tion of this equation for FeBO3 at T = 0 appears as

for all m and N ≠ 5, and as

for N = 5. For the other d5 configurations, the occupa-
tion numbers are zero. We take into account that, for S =
5/2 in a magnetically ordered phase, the term E5/2(d5) is
split with respect to the spin projection and only the
lowest sublevel is occupied in each sublattice (+5/2 and
–5/2 for sublattices A and B, respectively). Of course,
there are zero-point quantum spin fluctuations leading
to small population of the sublevels adjacent to S = 5/2
(Sz = 3/2); this small effect is considered below (see
Section 5).

Interatomic hopping in the antiferromagnetic phase
is suppressed by the spin–polaron effect [23]. For the
hops between nearest neighbors, the effective hopping
integral is determined by the product of occupation fac-
tors for the two sites belonging to different sublattices
(A and B) [24]. For the lowest Hubbard band, the effec-
tive hopping Hamiltonian tv differs from the one-elec-
tron integral t,

(14)

where  and  are the occupation numbers of
state |p〉  in the sublattices A and B, respectively; |+5/2〉

Ne N X f
mN mN,〈 〉 ,
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X f
mN mN,〈 〉

X f
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2 t2 XA
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+2 +2,〈 〉+( )=

XB
+5/2 +5/2,〈 〉 XB

+2 +2,〈 〉+( )× ,
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and |+2〉  are the spin sublevels of the terms E5/2(d5) and
E2(d4) split with respect to the spin projection in the
internal molecular field. For the sublattice A, the level
|+5/2〉  is occupied (being the lowest sublevel), while for
the sublattice B (where the lowest level is |–5/2〉) the
level |+5/2〉  at T = 0 is unoccupied. Therefore, for

FeBO3 at T = 0,  = 0 and, hence, the
occupation numbers of all d4 and d6 sublevels are also
zero and the widths of the Hubbard bands are close to
zero too.

As a result, it is the poles of the local Green function
(11) that determine single-particle contributions of the
d-type to N(E). Figure 1 shows the lowest levels of the
d4, d5, and d6 configurations (the cross indicates the
occupied lowest sublevel of the term 6A1 of the Fe3+

ion). Nonzero occupation factors are inherent in the
transitions 6A1  d4 (hole creation) and 6A1  d6

(electron creation), but the matrix elements γλσ(n) given
by formula (10) are nonzero only when the difference
between the spins of terms |p〉  and |q〉  is 1/2. In the case
under consideration, this implies that nonzero spectral
weight and nonzero contribution to the density of states
N(E) will be only due to transitions between the lowest
terms of all configurations:

(15)

The energy levels Ωv and Ωc, or the energy band Ωv(k)
and Ωc(k) appearing with allowance for the weak inter-
atomic hopping are analogs of the lower and upper Hub-
bard subbands. In addition, it is of interest to consider the
quasiparticles for which the matrix element (10) differs
from zero, while the spectral weight in the ground state
is zero because of zero occupation numbers: such states
are referred to as virtual. The virtual states can acquire
nonzero weights upon a change in the electron config-
uration (e.g., in CuO2 layers after hole doping [12]) or
upon optical pumping of excited levels. For FeBO3, an
example of such a virtual d state is offered by a quasi-
particle with an energy of 

(16)

For comparison with experiment, it is necessary to
determine the model parameters as discussed below.
Previously, the optical absorption was studied sepa-
rately in various spectral intervals. For this reason, the
next section is devoted to the experimental absorption
spectrum of FeBO3 measured in a broad energy range,
E ≤ 3 eV, covering the entire bandgap width Eg0.

4. OPTICAL ABSORPTION SPECTRUM
OF FeBO3 IN A BROAD ENERGY RANGE

Previously [25–27], the optical absorption and the
magneto-optical Faraday effect in iron borate were

XB
+5/2 +5/2,〈 〉

Ωv E5/2 d5( ) E2 d4( ),–=

Ωc E2 d6( ) E5/2 d5( ).–=

Ωv' E3/2 d5( ) E2 d4( ).–=
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studied in the visible and near-infrared (1.0–2.3 eV)
spectral range. The results of analogous measurements
in the region of strong absorption (2.6–3.3 eV) were
reported in [4]. For the sake of convenience, we present
the absorption spectrum of FeBO3 measured in a broad
energy range.

FeBO3 single crystals were grown by V.V. Rudenko
by spontaneous crystallization from solution melt. The
crystals had the shape of thin hexahedral plates of a
greenish color. The thicknesses of plates selected for
the optical measurements were about 80 µm for the
former spectral interval and 20 µm for the latter, the
sample area in both cases being about 2 mm2. Orienta-
tion of the plates corresponded to the easy magnetiza-
tion plane, with the hard axis (coinciding with the opti-
cal axis of the crystal) being normal to the plate surface.
Thus, by applying a small external field parallel to the
plane of the crystal, it was possible to readily change
the magnetic moment direction in the plane. The optical
absorption spectra were measured using an automated
spectrometer in a temperature range from 80 to 300 K.

The combination of a high Néel temperature (TN =
348 K) and transparency in the visible spectral range
allows us to perform a detailed comparison of the opti-
cal absorption and magneto-optical effects in the trans-
mission mode in the region of three absorption bands
wit minimum energies. Our measurements revealed the
same three groups of absorption bands (A, B, and C,
Fig. 2) as those reported in [4, 25–27]. These bands can
be interpreted within the framework of the proposed
many-electron model as described below. The main dif-
ference of our interpretation consists in that, in addition
to the d–d transitions 6A1g(6S)  

4T1g(4G) (group A),
6A1g(6S)  

4T2g(4G) (group B), and 6A1g(6S)  
4A1g,

4Eg(4G) (group C), the C band contains contributions
due to the p–d transitions with charge transfer. We use
the data of Fig. 2 and the X-ray photoelectron spec-
trum [12] for determining the Coulomb parameters of
the model.
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Fig. 2. The optical absorption spectrum of a FeBO3 single
crystal measured at 83 K.
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Proceeding from expressions for the d–d exciton
energies, the parameters of A–C bands, and the addi-
tional peaks observed in the Kerr effect in terms of the
Racah parameters, it was found [28] that B = 680 cm–1

and ∆ ≈ 12700 cm–1 for FeBO3; from the same data, we
readily obtain C = 3160 cm–1. Note that these values
of B and C are somewhat lower than the analogous
parameters of the free Fe3+ ion, but the ratio C/B = 4.65
is typical. The crystal field parameter ∆ = 1.57 eV is
greater as compared to the result (∆ = 1 eV) of the band
calculations [12]. Using the known values of B and C,
we determine the positions of the lowest excited terms
of d5 configurations with spins 3/2 and 5/2 (see Fig. 1)
relative to the ground term 6A1 from the Tanabe–Sugano
diagrams [14]. The lowest terms of d4 and d6 configu-
rations are also schematically depicted in Fig. 1. Their
quantitative characteristics are not presented here
because, generally speaking, each dn configuration has
its own level (depending on the chemical potential)
from which the energies are measured. Moreover, even
determination of the positions of excited terms relative
to the lowest term for d4 and d6 configuration require
knowledge of the corresponding B and ∆ values.

Although the energies of these terms will not be
required below, we present here for reference the corre-
sponding energies determined from the Tanabe–Sug-
ano diagrams assuming that the B and ∆ for F4+, Fe3+,
and Fe2+ are the same (in eV):

Fe4+: E(5E) = 0, E(3T1) = 0.59, E(1T2) = 1.60,

Fe2+: E(5T2) = 0, E(1A1) = 0.17, E(3T1) = 0.76,

E(3T2) = 1.18.

At the same time, the difference E(dn+1)–E(dn) of the
energies of these terms has the meaning of energy
increment per added electron. A peak at this energy is
present on the density of single-particle states N(E). In
particular, for the lowest and highest Hubbard sub-
bands, we obtain

(17)

In FeBO3 at T = 0, the level Ωv is filled, while the
level Ωc is empty. This implies that the level Ωv deter-
mines the d-type peak in the experimental X-ray photo-
electron spectra or the X-ray absorption spectra.
Indeed, such a peak was observed in the X-ray photo-
electron spectra at a binding energy of 1.4 eV [12].
Measuring the energies of single-particle states from
the top of the valence band εv, we set Ωv–εv = –1.4 eV.

As can be seen from the optical absorption spectra,
the intensity of peak C is much greater than those of
peaks A and B. According to the commonly accepted
interpretation of this fact, peak C is formed not only by
d–d exciton (6A1  4A1), but makes a contribution due

Ωv εd 3∆/5 4V 4J ,–+ +=

Ωc εd 2∆/5– U 4V .+ +=
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to the p6d5  p5d6 transition with charge transfer. The
latter transition, reflecting the formation of a hole at the
top of the valence band and the filling of level Ωc , has
the energy Ωc–εv = 2.8 eV. Using the optical data, we
can also determine the Hund exchange parameter J.
The ground term 6A1 and the excited term 4A1 of the d5

configuration possess the energies (independent of the
crystal field) indicated in Section 2. The difference in
these energies, determining the exciton energy for
band C (22600 cm–1), is E(4A1)–E(6A1) = 4J, from
which it follows that J = 5650 cm–1 = 0.70 eV. This
value of the Hund exchange is typical of 3d elements.

5. THE DENSITY
OF SINGLE-PARTICLE STATES IN FeBO3

A scheme of the density of states obtained for the
proposed model is depicted in Fig. 3. The diagram
shows empty s and p conduction bands with the bottom
of the band εc, filled valence s and p bands with the top
of the band εv , and the bandgap εc – εv = Eg0 = 2.9 eV.
Thin solid lines (with neglect of the electron dispersion
and damping, described by delta functions) show the
energies of local d quasiparticles. With allowance for
the spin–polaron suppression of interatomic d–d hop-
ping in the magnetically ordered phase (14), the dia-
gram shows only the local d maxima. A fluctuational
contribution to the formation of narrow d bands cer-

tainly exists, being estimated as  ~ t2n0, where n0 is the
concentration of zero-point quantum fluctuations [24].
For a three-dimensional isotropic antiferromagnet, the
typical value of S – 〈Sz〉  ≈ 0.078 [29] yields n0 = 0.03
and tv ≈ 0.035 eV, with the corresponding bandwidth of
2ztv ≈ 0.42 eV.

The upper filled d band Ωv (15) is situated below the
top of the valence band, while the lower empty d band
Ωc is below the bottom of the conduction band (inside
the bandgap). Thus, the dielectric gap is determined by
the excitations with charge transfer, p6d5  p5d6,
from the top of the valence band to the conduction Ωc
(charge transfer gap in terms of Zaanen et al. [30]. Note
that the energy of transitions between lower and upper
Hubbard bands,

(18)

can be considered as the effective Coulomb repulsion
energy Ueff. In the Hubbard model Ueff = U, but in our
case Ueff ≠ U (because of the orbital effects): Ueff = U +
4J – ∆. This parameter (in comparison to the d-band
width) determines the character of strong electron cor-
relations in the system studied. The experimental val-
ues of Ωv and Ωc presented in Section 4 yield Ueff =
4.2 eV. For J = 0.7 eV and ∆ = 1.57 eV, we obtain U =
2.97 eV and V = (U–J)/2 = 1.15 eV.

tv
2

Ωc Ωv– E2 d6( ) E2 d4( ) 2E5/2 d5( ),–+=
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A solution of Eq. (13) for the filled d5 configuration
is the chemical potential occurring between the empty
level Ωc and the filled level Ωv:

Measuring energies relative to the chemical potential
clearly reveals the electron–hole symmetry of the system:

The spectral weights of states Ωv and Ωc (with
allowance for spin) is unity, rather than two as in the
case of free electrons. In the diagram of Fig. 3, primed

symbols indicate the virtual levels  (16),  =

E  – E2(d4), and  = E(4A1) – E2(d4). The spec-
tral weight of these levels in the ground state is zero,

while the energies of transitions –Ωv, –Ωv, and

–Ωv coincide with the exciton energies εA, εB , and
εC. Under the conditions of optical pumping of the
terms 4T1, 4T2, and 4A1, their populations are no longer
zero and the spectral weights of the virtual levels ,

,  are proportional to the concentration of opti-
cally excited Fe3+ ions. Thus, the exciton transitions
inside the same dn configuration can be represented by
a virtual level in the one-electron density of states, and
the Ωv   transition corresponds to the appearance
of a hole in the band Ωv and electron in the band Ω'.

Let us consider interpretation of the optical absorp-
tion spectrum within the framework of the proposed
model. Since the exciton band A was used for determin-
ing the model parameters, the coincidence of theoreti-

µ 1
2
--- Ωc Ωv+( ) εd

U
2
---- ∆

10
------ 4V 2J .–+ + += =

Ωc µ– U
2
---- ∆

2
---– 2J+ Ωv µ–( ).–= =

Ωv' Ωv''

T4
2( ) Ωv''

Ωv' Ωv''

Ωv'''

Ωv'

Ωv'' Ωv'''

Ωv'

Fig. 3. Schematic diagram of the density of states in a mag-
netically ordered phase of FeBO3. The Fermi level is situ-
ated above the top of the valence band εv.
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cal and experimental energies for this band is trivial. At
low temperatures, band A exhibits splitting into compo-
nents A1–A4. Line A1 is interpreted as a magnon satel-
lite of the pure exciton line, and bands A2–A4, as mag-
non repetitions of the exciton–magnon line A1 [25].
Indeed, at low temperatures, the spin levels ES(dn) are
split by the internal molecular field I〈Sz〉  with respect to
the spin projection Mz:

(19)

At T = 0, only the sublevel Mz = +5/2 of the term 6A1 is
occupied, so that transitions to the lower sublevel
Mz = +5/2 of the 4T1 term require the participation of a
magnon.

As for the peak B, this absorption band corresponds
to the exciton with εB = E(4T2)–E(6A1). The band C con-
tains contributions due to exciton εC = E(4A1)–E(6A1)
and due to transitions from the top of the valence band
to the bands Ωc (excitation with charge transfer).

6. TEMPERATURE DEPENDENCE 
OF THE INTENSITY OF BAND A

The temperature dependence of the band structure of
local quasiparticles is revealed by general formula (7)
showing temperature blurring of the distribution func-
tion. However, magnetic materials exhibit a stronger
dependence due to interrelated electron and magnetic
subsystems. All the absorption lines A1–A4 shift by
40 cm–1 toward lower energies when the temperature
increases in the range from 30 to 200 K [28]. For the A1
component, relation (19) yields

As the temperature T grows, the value of 〈Sz〉  decreases
so that ∆E shifts toward smaller energies. The results
of measurements of the sublattice magnetization
〈Sz〉(T) [31] show that

Using this estimate and the shift of exciton A1,

it is possible to evaluate the Fourier transform of the
interatomic exchange integral for q = 0 as I ≈ 0.015 eV.
This value determines the Néel temperature and, in the
simplest variant of the mean field approximation,

This yields TN = 317 K, which is quite close to the
experimental value of TN = 348 K. We can also relate

ES dn Mz,( ) ES dn( ) I Sz〈 〉 Mz.–=

∆E T( ) E5/2 d5 +5/2,( ) E3/2 d5 +3/2,( )–=

=  ∆E 0( ) I Sz〈 〉 .+

Sz〈 〉 30 K( ) Sz〈 〉 200 K( )–

Sz〈 〉 30 K( )
---------------------------------------------------------------- 1

8
---.≈

∆E 30 K( ) ∆E 200 K( ) 5
2
--- I

1
8
---,×≈–

TN IS S 1+( )/3.=
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the magnetic and electron parameters by assuming that
I = Jz, where J is the indirect exchange interaction
between neighboring Fe3+ ions. Estimating this quan-
tity as

we obtain tv ≈ 0.05 eV. In Section 4, the fluctuation con-
tribution was estimated as tv ≈ 0.035 eV. Therefore, the
electron, magnetic, and optical properties of FeBO3 in
the proposed model exhibit a sufficiently good mutual
agreement.

7. CONCLUSIONS

A question can arise as to how correct are the results
of one-electron energy band calculations [12, 13] and
can these results be applied to a system such as FeBO3
with electron–spin correlations. Indeed, calculations
[12] performed in the approximation of the local spin
density functional ignore the correlation effects. As a
result, the Fermi level falls within a partly occupied d
band that implies the metallic state. Calculations [13]
performed in the generalized gradient approximation
take into account nonlocal corrections to the density
functional, although it is not clear whether this
approach adequately describes the regime of strong
electron correlations. Nevertheless, the antiferromag-
netic phase exhibits a dielectric state [13]. The calcula-
tion of pressure-induced changes in the magnetic state
also rather well reproduces the magnetic and structural
phase transitions observed recently [5, 6].

We believe that the results of band calculations in
the local density functional approximation can be used
as the initial information that should be supplemented
by corrections for the transition from one-electron
description of d electrons to local quasiparticles–excita-
tions between dn and dn + 1 terms. There are no reasons
for not believing the results of band calculations for the
s and p states of boron and oxygen. The bandgap width

 is close to the experimental value, the crystal field
∆ is 1.5 times the value according to the band theory,
and the d band width in this theory is significantly over-
estimated.

On the other hand, it is by no means possible to use
the level positions and occupation statistics obtained
for the one-electron d band. The strong electron corre-
lations not only split the d band into Hubbard’s sub-
bands, but (even more importantly) change the statistics
of quasiparticles of the d type. As was demonstrated
above, this gives rise to very unusual virtual states with
the spectral weights determined by the nonstoichiome-
try or the incident light intensity.

Recently, [32], we interpreted the phase transition
under pressure in FeBO3 within the framework of the
same model as being due to the intersection of the lev-
els of terms 6A1 and 4T2 caused by increasing crystal
field ∆. The model parameters in [32] were partly deter-

J 2tv
2/Ueff,∼

Eg
0( )
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mined using the results of band calculations [12] and
partly based on the optical data. Subsequently, it was
established that this approach can lead to ambiguous
results, since the theoretical and experimental values of
the same quantity are not independent. In this study, we
have used only experimental data for determining the
model parameters. As a result, the values of U ≈ 3 eV
and J ≈ 0.7 eV have proved to be much greater than
those obtained in [32]. However, the conclusions [32]
concerning the nature of the phase transition in FeBO3
under pressure remain fully valid.

To summarize, we have constructed a many-elec-
tron model of the band structure of FeBO3 taking into
account both the one-electron s and p states of boron
and oxygen and many-electron terms of Fe2+, Fe3+, and
Fe4+ ions formed under the conditions of strong intra-
atomic d–d correlations. The density of one-electron
states exhibits a set of narrow peaks related to local
quasiparticles of the d type on the background of
valence and conduction bands. Each quasiparticle cor-
responds to an electron with charge e, spin 1/2, and a
reduced spectral weight. Only the sum of the spectral
weights of all quasiparticles gives the one-electron
spectral weight. Using this approach, it is possible to
identify, with good fit to experiment, the main features
of the absorption spectrum of FeBO3 related both to
excitons and the electron excitations with charge trans-
fer. The parameters of electron and magnetic structures
are also well consistent.
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Abstract—Atomic systems with three or more equidistant energy levels, in which a cascade process is possi-
ble, are considered. Hamiltonians obtained for such systems are analogous to Heisenberg Hamiltonians, but for
systems with integral spins. For Dicke states in multilevel systems, quantum-mechanical mean values of the
energy of a cooperative system are calculated taking into account weak interactions between atoms. The type
of emission preceding superradiant avalanche emission of the system is analyzed. It can be expected that a
coherent state may be formed, in which collective processes affect one another not only via population of the
intermediate common layer, but also via phasing of pure quantum states. The single superfluorescence pulse
that can be formed in this case is not a simple superposition of two or more pulses of sequential superradiant
transitions in two-level systems. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that simple quantum systems
(ensembles of two-level atoms interacting via a radia-
tion field, electrostatic field, dipole–dipole interaction,
etc.) exhibit a number of light-induced phase transi-
tions [1]. Analysis of such nonequilibrium phase transi-
tions has shown that a deep-rooted analogy exists with
second-order nonequilibrium phase transitions that
emerge in a spin system when there is interaction with
a constant (Coulomb exchange interaction) that
exceeds the energy of thermal motion, leading to spin
disorientation. Spontaneous spin coorientation arising
in the system in this case is manifested on a macro-
scopic scale in residual magnetization. Phase transi-
tions are also induced in quantum-optical systems by an
interaction leading to the establishment of a definite
order in the orientation of so-called energy spins (or
isospins) [2, 3] observed in the case of Dicke superra-
diance [4]. The correlation of optical dipole moments
of individual atoms observed in this case leads to the
formation of a macroscopic dipole moment, which is
proportional to the number of emitters. Consequently,
the superradiant intensity turns out to be proportional to
the square of this number, while the superfluorescence
time is inversely proportional to this number. Moreover,
as was shown in [1] from analysis of the polariton gen-
eration state in an open medium of two-level atoms
interacting via the Stokes field during Raman scatter-
ing, the emergence of the superradiance regime is sub-
stantially one possible phase transition.

Superfluorescence belongs to the class of coherent
optical phenomena. The concept of coherence in this
case pertains to the emitting system rather than to the
electromagnetic field. The reason for the emergence
1063-7761/04/9801- $26.00 © 20014
and evolution of coherence is assumed to be associated
with the total radiation field of atoms that affects the
state of each atom. Consequently, the mechanism of
interaction via the reradiated field is regarded as the
most universal type of interaction in such systems.
However, an atomic ensemble in the medium of two-
level atoms with constant dipole moments can also be
collectivized due to the static dipole–dipole interaction.
In crystals, an additional interaction via phonons also
takes place.

The analogy with equilibrium second-order phase
transitions occurring in magnetic systems is so much
more deep-rooted that the Hamiltonian describing the
behavior of two-level atoms in the radiation field and
taking into account the interaction between atoms is
analogous to the Heisenberg Hamiltonian for spin sys-
tems. Attempts at reducing the Hamiltonian directly to
the Heisenberg Hamiltonian [5] as in the case of spin
systems were repeatedly made in quantum optics.

At the same time, the group-theoretical approach
[6, 7], which in fact generalizes the Dicke theory to the
case of multilevel emitters, was developed and effectively
applied even in early works on superradiance [6, 7]. It
was noted that it is important in the Dicke theory to
choose the stationary states of the unperturbed Hamil-
tonian in the form of irreducible representations of the
SU2 group in the energy space of a system. In the case
of a multilevel system, the basis of irreducible repre-
sentation of the SUn group (n is the number of energy
levels) plays a similar role.

The electric dipole interaction plays an important
role in the stabilization of superradiant states even
when atoms possess only dipole moments of transi-
tions. The effect of the Coulomb interaction on super-
004 MAIK “Nauka/Interperiodica”
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fluorescence of a system of two-level atoms was stud-
ied in [8] using a semiclassical approach. It was shown
that the Coulomb interaction induces coherent transport
of excitation in the system of atoms, which leads to
approximate spatial homogeneity of inversion in a
chain of atoms. Thus, the statement was formulated and
proved consistently that the Coulomb dipole–dipole
interaction not only preserves (contrary to the prevail-
ing opinion) the superradiant state, but even facilitates
the stabilization of this state. It was also proved that the
Coulomb interaction must be taken into account in all
systems with a small Fresnel number, since the time τc

of “exchange” of excitations in such systems is much
shorter than the superradiance time τR . An attempt at
including the Coulomb interaction for a small number
of atoms was also made in earlier publications [9],
where it was proved that the electrostatic interaction in
the semiclassical approximation does not affect the
superfluorescence dynamics, but leads to phase modu-
lation. However, a more detailed analysis of superfluo-
rescence dynamics taking into account the Coulomb
interaction [8] revealed that the fluorescence as a func-
tion of time exhibits clearly manifested oscillations,
which could be attributed to the propagation of wave-
type excitations in the system.

Mechanisms of phasing and the role of the dipole–
dipole interatomic interaction in cooperative systems
were studied in [10], where superfluorescence effects in
various physical systems, including small (Dicke col-
lection of atoms) and extended (coherent waves in a
magnetized plasma) systems, were studied from a uni-
fied point of view.

The Hamiltonian of a system of two-level atoms,
which takes into account the Coulomb dipole interac-
tion as well as interactions via the reradiated field and
is similar to the Heisenberg Hamiltonian in the theory
of magnetism, was derived from the first principles
in [11]. The Hamiltonian obtained in this way is used
for studying wave excitations of the system, which are
similar to spin waves in ferro- or antiferromagnets. It
was shown that it is these excitations which lead to the
characteristic temperature dependence of the superflu-
orescence intensity. In addition, the critical temperature
at which superfluorescence disappears and a second-
order phase transition occurs in the system was calcu-
lated.

The case of three-level systems was studied in detail
in [6] on the basis of the group-theoretical method.
Namely, complete classification of coherent states is
given and properties of spontaneous radiation are ana-
lyzed.

In a system of three-level atoms, the following
modes leading to qualitatively different dynamics are
possible.

1. Cascade superradiance [12], when the 3–2 and
2−1 transitions are allowed and the 3–1 transition is for-
bidden.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. Two-frequency superradiance (Λ scheme) [13],
when the 3–2 and 3–1 transitions are allowed, but the
2−1 transition is forbidden.

3. Superradiance with a common lower level
(V scheme).

In the superradiance limit, when the collective
superfluorescence times are much shorter that the time
of noncorrelated decay, the equations of pure superra-
diance generalizing the equation for an aggregate of
two-level atoms were derived in [6] and the solutions
are classified depending on the initial occupancy of lev-
els; the cases listed above were actually derived in [6].

Cascade superfluorescence was considered in [12]
in the semiclassical approximation. It was shown that,
under the condition τ1 < τ2 (τ1 is the time of the 3–2 col-
lective decay and τ2 is the same of the 2–1 transition),
superradiance pulses for the upper and lower transitions
do not overlap and the system decay can be described
in the two-level model approximation. For τ1 > τ2, the
pulses emitted in the first and second transitions over-
lap and it is assumed that these pulses mutually affect
the decay kinetics only via the population of the com-
mon level. The same mutual effect of collective pro-
cesses on two transitions is also typical of other decay
modes in three-level systems. Equidistant levels and
semiclassical states of the Glauber type for the multi-
level Dicke problem are considered in [7].

In the above-mentioned publications, the main
mechanism determining the system collectivization is
the interatomic interaction via the reradiated field; the
same interaction also determines the structure of the
Hamiltonian of the system. It should be noted, however,
that the constant of this interaction is small [1] in com-
parison with the equilibrium temperature of the atomic
system, with the equilibrium thermal radiation of the
system, and, finally, with the intensity of the pumping
field which plays the role of the parameter being varied
in radiating systems and is an analog of temperature.
Tracing the adopted analogy with spin systems, we can
recollect that the constant of the direct magnetic-dipole
interaction is also infinitesimal as compared to the char-
acteristic constants of the ferromagnetic system,
although the operator of this interaction explicitly con-
tains the dot product of the spin operators for pairwise
interacting particles. However, it is not this product that
determines the collective effect of coorientation of
spins in the system. It was proved in [11] that the struc-
ture of the Dicke Hamiltonian for a system of two-level
atoms might indeed resemble the Heisenberg Hamilto-
nian, while the interaction constant is of the same
exchange nature as the Heisenberg parameter. In addi-
tion, this parameter is no longer small and may be as
large as several T’s in accordance with the estimated
given in [11], where T is the gas temperature in energy
units. This interaction leads to splitting of energy levels
of the system of two-level atoms, which are degenerate
in the principal cooperative number.
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Here, we consider a special case of a system with
three or more equidistant energy levels, in which a cas-
cade process can occur. For such systems, Hamilto-
nians similar to Heisenberg Hamiltonians [11], but for
systems of integral spins were obtained. In contrast to
two-level atoms, for which Dicke’s states are the eigen-
states for the corresponding Hamiltonian, these states
for multilevel atoms are not the eigenstates for the
Hamiltonian taking into account the dipole interaction.
For these states, quantum-mechanical mean energy val-
ues for cooperative systems are calculated taking into
account weak interatomic interaction. Analysis of the
radiation emitted by the system prior to superradiant
avalanche emission shows that we can expect the stabi-
lization of a coherent state in which collective pro-
cesses mutually affect one another not just via the pop-
ulation of the intermediate common level, but also via
phase relations between pure quantum states. In this sit-
uation, a single superfluorescence pulse can be formed,
which is not a simple superposition of two or more
pulses of sequential superradiant transitions in two-
level systems. It turns out, in addition, that three-level
systems must exhibit a delay preceding the final emis-
sion of coherent radiation, which is analogous to that
observed in a system of two-level atoms [11]. Such a
delay should not be observed for four- or five-level sys-
tems, and the process of spontaneous emission
smoothly transforms into a superradiant state.

2. HAMILTONIAN
OF A COOPERATIVE SYSTEM (j = 1)

Let us consider a three-level cascade diagram in
which the energy levels form a sequence

The state of each atom can be described by a spinor χ [4],
where

indicate that an atom is in an energy state with E = E1,
E2, and E3, respectively, or, in other notation,

where j and jz denote the value of the so-called isoen-
ergy spin and its component. Then the state of a system
of two noninteracting atoms can be written in the form
of the simple product of spinors χI and χII , correspond-
ing to atoms I and II:

where indices i and k assume values of 1, 2, and 3.

E1 E2 E3.< <

χ 1( )
0

0

1 
 
 
 
 

, χ 2( )
0

0

0 
 
 
 
 

, χ 3( )
1

0

0 
 
 
 
 

= = =

χ 1( ) j 1= jz 1–=,| 〉 , χ 2( ) j 1= jz 0=,| 〉 ,==

χ 3( ) j 1= jz 1=,| 〉 ,=

χI II, χI i( )χII k( ),=
JOURNAL OF EXPERIMENTAL 
If, analogously to [4], we introduce the operator

the Hamiltonian of the noninteracting system can be
written in the form

In this case, we have

(1)

Some energy states of a system of two interacting
atoms, e.g., such that the first atom is in a state with
energy E1 and the other is in a state with energy E2 (in
this case, the energy of the system is E = E1 + E2) or,
similarly, for a state with E = E1 + E3, may correspond
to the functions

Thus, the system is degenerate. In addition, functions
χI, II and  are mutually orthogonal.

We will take into account the interaction of atoms
whose mechanism may be any of those listed above in
accordance with the experimental situation. We will
describe this interaction symbolically with the help of

operator . The constant of any of the interaction
types listed above is smaller than the energy difference
ε so that conventional perturbation theory with degen-
eracy is applicable. The correction to the total energy of
the system for this perturbation is well known [7]:

(2)

where,

in the case under consideration. In this case, the isospin
functions of the symmetric and antisymmetric forms
will be regular wave functions in the zeroth approxima-
tion. The symmetric regular wave functions corre-
sponding to the upper sign in formula (2) describe the

ĵz

1 0 0

0 0 0

0 0 1– 
 
 
 
 

,=

Ĥ0 ε ĵIz ĵIIz+( ),=

ε E3 E2– E2 E1.–= =

Ĥ0χI II, ε ĵIz ĵIIz+( )χI II, .=

χI II, χI 1( )χII 2( ), χI II,' χI 2( )χII 1( ),= =

χI II, χI 2( )χII 3( ), χI II,' χI 3( )χII 2( ),= =

χI II, χI 1( )χII 3( ), χI II,' χI 3( )χII 1( ).= =

χI II,'

V̂ I II,

ε 1( ) K A,±=

K χI II,〈 |V̂ I II, χI II,| 〉= , A χI II,'〈 |V̂ I II, χI II,| 〉=
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states with total isospin J of a pair of atom and with its
component Jz:

(3a)

The regular antisymmetric wave functions correspond-
ing to the lower sign have the form

(3b)

It can be seen from relation (2) that, if the interaction is
taken into account, antisymmetric states are more
advantageous for A > 0 and, conversely, symmetric
states are more advantageous for A < 0. The energy
states of a diatomic system with E = 2E1 and E = 2E3
are initially nondegenerate; for such states, only one
(namely, symmetric) state is realized. The state with
E = 2E2 is doubly degenerate; on account of the inter-
action, this state splits into two states (symmetric state
|J = 0, Jz = 0〉  and antisymmetric state |J = 1, Jz = 0〉) cor-
responding to different energy sublevels.

We introduce the operator

where , , , , ,  are equivalent to the
matrices of the operator of the x, y, and z components of

J 2 Jz 2=,=| 〉 1 1,| 〉1 1 1,| 〉2=

J 2 Jz 1=,=| 〉

=  
1

2
------- 1 1,| 〉1 1 0,| 〉2 1 0,| 〉1 1 1,| 〉2+( ),

J 2 Jz 0=,=| 〉 1 0,| 〉1 1 0,| 〉2,=

J 2 Jz 1–=,=| 〉

=  
1

2
------- 1 1–,| 〉1 1 0,| 〉2 1 0,| 〉1 1 1–,| 〉2+( ),

J 2 Jz 2–=,=| 〉 1 1–,| 〉 1 1–,| 〉 ,=

J 0 Jz 0=,=| 〉 1

3
------- 1 1,| 〉1 1 1–,| 〉2(=

+ 1 1–,| 〉1 1 1,| 〉2 2 1 0,| 〉1 1 0,| 〉2 ).–

J 1= Jz 1=,| 〉

=  
1

2
------- 1 1,| 〉1 1 0,| 〉2 1 0,| 〉1 1 1,| 〉2–( ),

J 1= Jz 0=,| 〉

=  
1

2
------- 1 1,| 〉1 1 1–,| 〉2 1 1–,| 〉1 1 1,| 〉2–( ),

J 1= Jz 1–=,| 〉

=  
1

2
------- 1 1–,| 〉1 1 0,| 〉2 1 0,| 〉1 1 1–,| 〉2–( ).

P̂1 1, ĵ1 ĵ2⋅ ĵ1 ĵ2⋅( )2
1,–+=

ĵ1x ĵ1y ĵ1z ĵ2x ĵ2y ĵ2z
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the momentum, which is equal to unity. We can verify
that the eigenvalue of the operator

for a symmetric state corresponds to the total isospin J
of a system of two noninteracting atoms, which is equal
to 2 or 0. For an antisymmetric state, the total isospin J
of the system is equal to 1. Similarly, it can easily be

seen that the eigenvalues of operator  are equal to
+1 for symmetric states and to –1 for antisymmetric
states. Then, the operator describing the interaction of
the two atoms and explicitly taking into account their
isospin states can be written in the form

or

(4)

If we now consider a system of N atoms and take
into account pair interactions only, the corresponding
Hamiltonian can be written in the form

(5)

where k and l are the numbers of the atoms. Then the
total Hamiltonian describing the system of pairwise
interacting three-level atoms has the form

(6)

It should be noted here that, in contrast to a two-
level system, the Dicke states [4] characterized by the
value of the total isospin of the system (or the so-called
the cooperative quantum number R) and the isospin
component along the z axis (polarization number m) are
not the eigenstates of operator (6) due to the presence
of the nonlinear term in this operator.

3. DICKE STATES

We will calculate the energy values for a multiparti-
cle isospin system. The second sum appearing in for-

mula (5) can be expressed in terms of operator  of
the squared total isospin of the system:

(7)

The quadratic term can be written in terms of oper-

ator  of the squared pair spin and calculated taking

Ĵ
2

ĵ1 ĵ2+( )2
=

P̂1 1,

ĥint K AP̂1 1,+=

ĥint K A ĵ1 ĵ2⋅ ĵ1 ĵ2⋅( )2
1–+( ).+=

Ĥ int K A–( )N N 1–( )
2

----------------------=

+ A ĵk ĵl⋅( )2
ĵk ĵl⋅+[ ] ,

k l<
∑

Ĥ ε Ĵkz

k

∑ A ĵk ĵl⋅( )2
ĵk ĵl⋅+[ ]

k l<
∑ NE2.+ +=

R̂
2

ĵk ĵl⋅
k l<
∑ 1

2
--- R̂

2
ĵk

2

k

∑–
 
 
 

.=

Ĵ
2
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into account quantum averaging over states with defi-
nite values of the pair isospin,

(8)

where  are the Clebsch–Gordon
coefficients.

The eigenvalue of operator (7) acting on state |R, m〉
with total isospin R and its projection m has the form

(9)

The averaged value of operator (8) has the form

(10)

Then the energy of interaction corresponding to for-
mula (5) is given by

(11)

Considering that j = 1, for the energy of interaction,
we obtain

(12)

The total energy of a cooperative system has the
form

(13)

The states with a definite polarization number m are
not degenerate any longer since the degeneracy in the
total isospin (or cooperative quantum number of the
system) is removed in view of the interaction described
by the second term in formula (5). Dicke states |R, m〉
with different values of R (R can assume values from N
to |m|), but with the same m now correspond to differ-
ent energy sublevels as in the case of two-level sys-
tems [11].

ĵk ĵl⋅( )2

k l<
∑ N N 1–( )

2
----------------------=

× Ĵ
2

2 ĵ
2

–( )
2

J Jz j1 jz1
j2 jz2

,〈 〉 2

Jz jz1
jz2

,
∑ 

 
 

 
 
 

,
J

∑

J Jz j1 jz1
j2 jz2

,〈 〉 2

ĵk ĵl⋅
k l<
∑ 1

2
--- R R 1+( ) Nj j 1+( )–( ).=

ĵk ĵl⋅( )2

k l<
∑ 4

3
--- R R 1–( )

2
---------------------.=

Eint K A–( )N N 1–( )
2

----------------------=

+ A
2R R 1–( )

3
-------------------------

1
2
--- R R 1+( ) Nj j 1+( )–( )+ .

Eint K
N N 1–( )

2
---------------------- A

N N 1+( )
2

-----------------------–
A
6
---R 7R 1–( ).+=

Etot εm NE2 K
N N 1–( )

2
----------------------+ +=

– A
N N 1+( )

2
----------------------- A

6
---R 7R 1–( ).+
JOURNAL OF EXPERIMENTAL A
It can easily be seen that, for A > 0, the state corre-
sponding to the minimal energy of a sublevel is the state
with the minimal possible value of R = |m| for a given
m; i.e., R = 0 in a state with m = 0. The state

(14)

is completely symmetric.
According to Dicke [4], the radiation intensity of the

system is defined as

where I0 is the intensity of radiation emitted by an atom
[4, 13]. This expression clearly shows that coherent
radiation can be emitted if R is large and |m| is small. In
state (14), the system does not emit at all; the probabil-
ity of a transition from this state is equal to zero.

Let us consider in greater detail the evolution of the
system until the instant when its coherent decay begins.
For a transition of the system from state |m〉  to state
|m − 1〉, the probability of the system being on one of
sublevels degenerate in R is finite. This probability can
be calculated with the help of the relation specially
derived in [7] for a degenerate system:

In this case, the system tends to be on a sublevel with
the minimal possible R (namely, with R = m). This leads
to a decrease in the radiation intensity at each step in
accordance with the law

From all possible states |R, m〉  with m = 0, it is precisely
the state with R = 0 that is most advantageous from the
energy point of view. However, it was noted by Dicke
[4] that the system does not emit in this state, being in
a sort of “frozen” state in a shallow well. The system
can perform a transition from a sublevel with R = 0 to a

R 0= m 0=,| 〉

=  
1

3
------- jk 1 jzk, 1= =| 〉k jl 1 jzl, –1= =| 〉 l(

k l<
∏

+ jk 1 jzk, 1–= =| 〉k jl 1 jzl, 1= =| 〉 l

– 2 jk 1 jzk, 0= =| 〉 jl 1 jzl, 0= =| 〉 )

I I0 R m+( ) R m– 1+( ),=

wR 1–
1

V RR V R 1– R 1––
-----------------------------------

V R 1– VrR

ε m m 1–( )–( )
------------------------------------

r

∑
2

=

---=  K
N N 1–( )

2
---------------------- A

N N 1+( )
2

-----------------------–
A
6
---R 7R 1–( )+ 

 

× K
N N 1–( )

2
---------------------- A

N N 1+( )
2

-----------------------–
A
6
--- R 1–( ) 7R 8–( )+ 

 

× εA
6
--- 14R 8–( ) 

 
1– 2

.

I I0 R m+( )∝ 2mI0.=
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EXCHANGE DIPOLE INTERACTION IN A MULTILEVEL COOPERATIVE SYSTEM 19
sublevel with R = N only as a result of interaction with
the radiation field, which induces avalanche emission
of the entire cooperative system [4, 11]. This effect of
gradual “freezing” of the system can explain the exist-
ing delay preceding the emission of a superradiant
pulse. A transition to this state is always accompanied
by the emission of incoherent radiation with a decreas-
ing intensity.

Thus, the state preceding a superradiant pulse is the
state of the system in which half the atoms are distrib-
uted uniformly between the upper level E = E3 and the
lower level E = E1, while the other half populate the
middle level E = E2.

4. HAMILTONIAN 
OF A FIVE-LEVEL COOPERATIVE SYSTEM

(j = 2)

A cooperative system of five-level atoms can be
described as a system of particles with an energy spin
(isospin) of j = 2. In the case of a pair of such atoms, the
symmetry of energy levels is as follows: even states
with isospins J = 4, 2, 0 of the pair of atoms are sym-
metric, while odd states with isospins J = 3, 1 of the pair
of atoms are antisymmetric. We will write the complete
system of eigenvalues of the dot product operator

 of atomic isospins:

(15)

Let us now compose an operator  taking into
account the symmetry properties of the spin function of
a pair of atoms in such a way that the action of this
operator on a symmetric state results in an eigenvalue
of (+1), while its action on an antisymmetric state
results in an eigenvalue of (–1). This operator has the
form

(16)

If we now replace ±A in expression (2) by this oper-
ator, we obtain the following expression for the Hamil-
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--- ĵ1 ĵ2⋅( )3

+=

–
13
36
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tonian of a system of N five-level pairwise interacting
atoms:

(17)

5. GROUND STATE 
OF A SYSTEM WITH 

 

j

 

 = 2

We will calculate the values of the operators appear-
ing in formula (17) and averaged over Dicke states tak-
ing into account the Clebsch–Gordon coefficients:

(18)

Then the energy of interaction has the form

The total energy of a cooperative system with

 

 j

 

 = 2 has
the form

(19)

It can be seen from this relation that the ground state for
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 > 0 is a state with the maximal cooperative number

 

R

 

 = 

 

N

 

 of the system. Thus, immediately after the pump-
ing to the uppermost state (in 

 

m

 

), the system always
passes to symmetric states only, remaining on sublevels
with the maximal cooperative number, since it is these
states that correspond to the lowest sublevels for a
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given m. The system can emit radiation in such a state,
the radiation intensity increasing until the system
attains a state with small values of |m| and with large
values of R. In this case, the intensity becomes propor-
tional to the squared number of atoms and emission
becomes cooperative.

6. COOPERATIVE SYSTEM
OF FOUR-LEVEL ATOMS

A cooperative system of four-level atoms can be
described as a system of particles with an isospin of
j = 3/2. Possible symmetric and antisymmetric pair
states of such a system will be listed below. As in the
previous cases, all symmetric states correspond to the
correction to the pair interaction energy of atoms,
which is given by

while all antisymmetric combinations correspond to the
correction given by

Thus, we can introduce an operator that automatically
takes into account the symmetry of states and the corre-
sponding sign of the energy correction:

(20)

This operator has an eigenvalue equal to +1 for the
action on symmetric states and an eigenvalue equal to
−1 for the action on antisymmetric states.

Symmetric states have the form
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while antisymmetric states have the form

(22)

If we now replace ±A in formula (2) by operator (20),
we obtain the following expression for the Hamiltonian

J 3 Jz 0=,=| 〉 3/2 1/2,| 〉 3/2 1– /2,| 〉(=

+ 3/2 1– /2,| 〉 3/2 1/2,| 〉 ) 3

2 5
----------

+ 3/2 3/2,| 〉 3/2 3– /2,| 〉(

+ 3/2 3– /2,| 〉 3/2 3/2,| 〉 ) 1

2 5
----------,

J 1 Jz 1=,=| 〉 2
5
--- 3/2 1/2,| 〉 3/2 1/2,| 〉–=

+ 3
10
------ 3/2 3/2,| 〉 3/2 1– /2,| 〉(

+ 3/2 1– /2,| 〉 3/2 3/2,| 〉 ) ,

J 1 Jz 0=,=| 〉 3

2 5
---------- 3/2 3/2,| 〉( 3/2 3– /2,| 〉=

+ 3/2 3– /2,| 〉 3/2 3/2,| 〉 )

–
1

2 5
---------- 3/2 1/2,| 〉( 3/2 1– /2,| 〉

+ 3/2 1– /2,| 〉 3/2 1/2,| 〉 ) ,

J 2 Jz 2=,=| 〉 1

2
------- 3/2 3/2,| 〉( 3/2 1/2,| 〉=

– 3/2 1/2,| 〉 3/2 3/2,| 〉 ) ,

J 2 Jz 1=,=| 〉 1

2
------- 3/2 3/2,| 〉( 3/2 1– /2,| 〉=

– 3/2 1– /2,| 〉 3/2 3/2,| 〉 ) ,

J 2 Jz 0=,=| 〉 1
2
--- 3/2 1/2,| 〉( 3/2 1– /2,| 〉=

– 3/2 1– /2,| 〉 3/2 1/2,| 〉 )

+  1
2
--- 3/2 3/2 ,| 〉( 3/2 3– /2 ,| 〉 

– 3/2 3– /2

 

,| 〉

 

3/2 3/2

 

,| 〉 )

 

,

J 0 Jz 0=,=| 〉 1
2
--- 3/2 3/2,| 〉( 3/2 3– /2,| 〉=

– 3/2 3– /2,| 〉 3/2 3/2,| 〉 )

–
1
2
--- 3/2 1/2,| 〉( 3/2 1– /2,| 〉

– 3/2 1– /2,| 〉 3/2 1/2,| 〉 ) .
AND THEORETICAL PHYSICS      Vol. 98      No. 1      2004



EXCHANGE DIPOLE INTERACTION IN A MULTILEVEL COOPERATIVE SYSTEM 21
of a system of N four-level pairwise interacting atoms:

(23)

Energy values averaged over Dicke states have the form

(24)

It follows hence that, as in the previous case, sublevels
with the maximal cooperative number are more advan-
tageous from the energy point of view for definite val-
ues of m. Thus, the system of four-level atoms behaves
similarly to a system of atoms with five equidistant
energy levels.

7. INTERACTION CONSTANT

It was shown in previous sections that the degener-
acy of Dicke states with definite values of m in an
atomic system is removed if we take into account the
pair dipole–dipole interaction of atoms in this system.
The extent of splitting of energy levels with given val-
ues of m for different values of cooperative number R is
completely determined by the intensity of the exchange
and not direct dipole interaction [11]. Before the final
emission of a coherent superradiant pulse, systems of
two- and three-level atoms are in the state |R = 0, m = 0〉
of intermediate equilibrium in a potential well with a
depth determined by the constant of the exchange
dipole interaction. For systems of four- and five-level
atoms, sublevels with the maximal number R remain
the most advantageous states with respect to energy;
consequently, as the system passes to states with lower
and lower values of m, the system emits with an
increasing intensity

until it ultimately passes to a state with m = 0, after
which a coherent superradiant pulse is emitted.

Let us estimate the exchange dipole interaction con-
stant, which determines the depth of the well for an
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intermediate quasi-equilibrium state preceding the
superradiant emission (the system does not emit in this
state). For this purpose, we take into account the over-
lapping of coordinate wave functions 

 

Φ

 

 of identical
interacting atoms. In accordance with the exchange
perturbation theory [6], the correction to the interaction
energy associated with transposition of atoms is defined
by the formula

(25)

where the prime marks the wave function of atoms,
which differs from the initial (unprimed) function in the

transposition of nuclei, and  is the potential
energy of interaction of atoms in the dipole approxima-
tion, 
 

r 
 

being the distance between the nuclei.
The computational model similar to that used in [14]

is as follows. We describe the interaction of atoms in
the form of a potential of the type of the Sutherland
potential

where 

 

C

 

 is a constant defined as the product of the
dipole moments of transitions between “operating” lev-
els of a three-, four-, and five-level system and 

 

α

 

 is the
distance at which the repulsive forces operate between
the atoms.

Suppose that 

 

T

 

 is the gas temperature. Then the
probability of the distance between neighboring atoms
being equal to 

 

R

 

 is defined by the Boltzmann function

where 

 

Z

 

 is the normalization factor, which can be deter-
mined from the condition

(

 

ρ

 

 is the mean distance between the atoms). The aver-
aged value of energy can be determined using the mod-
ified formula

(26)

which is equivalent to averaging with the density
matrix in the coordinate representation. The vector of
state of the relative motion of atoms can be written in
the form

where 

 

z

 

 = 

 

r

 

cos

 

Θ

 

 is the coordinate measured along the
axis connecting the atoms; 

 

f

 

(

 

Θ

 

) is the scattering ampli-
tude determined by the interatomic interaction, i.e., by
potential 

 

V

 

; 

 

k

 

 = 

 

p

 

/
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 is the wave number; and
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momentum of the relative motion of atoms. The vector
of state in which the transposition of atoms is taken into
account has the form

Using these definitions, we obtain the following
expression for the required energy [14]:

(27)

here, A is the interaction constant appearing in for-
mula (2); r0 is the effective radius of exchange interac-
tion, which is determined by the extent of overlapping
of coordinate wave functions; b = C/T; and  is the
scattering amplitude averaged over the region of over-
lapping of coordinate wave functions.

Let us consider numerical estimates [14] for atomic
hydrogen. In the temperature range T = 4.2 × 10–14 erg
(≈300 K), constant b = 5 × 103c (where c ≈ 0.3) and
k ≈ 1 (the values are given in atomic units). The poten-
tial barrier radius in the Sutherland model is usually
chosen in the region of the Van der Waals minimum and
is equal approximately to α ≈ 5, while the effective
radius r0 ≈ 10. For such values of the quantities appear-
ing in formula (27), we obtain A ≈ 3T. The constant of
direct dipole–dipole interaction for the given parame-
ters is A ≈ 2 × 10–14 erg, i.e., equal to one-sixth of the
above value.

The increase in the constant of interaction of atoms
due to exchange effects is a consequence of interfer-
ence-induced redistribution of the atomic concentration
in the gas in such a way that the probability of the
“interference” contact of atoms, which are connected in
pairs via the dipole interaction, increases significantly.

8. CONCLUSIONS

The cascade scheme of emission of multilevel atoms
with equidistant energy states considered here is such
in the classical meaning of this term; however, it is
treated as a unified system characterized by the quan-
tum isospin number and its component along a condi-
tionally preferred axis rather than as a cascade of con-
secutive two-level transitions. It is this analogy with a
system of particles with states completely characterized
by a certain momentum and its component that makes
it possible to use standard methods for describing spin
systems. The cooperative number and its component,
which characterize Dicke states, are precisely the total
isospin of the system and its component in this termi-
nology.
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It was demonstrated above that the realization of the
ground state of atomic superradiant systems is gov-
erned by a certain regularity: atoms with isospins j =
1/2 and j = 1 are mainly condensed to a state with a
cooperative number of R = 0, followed by a “suspen-
sion” of the system, after which superradiation is emit-
ted with a certain delay. On the other hand, the ground
state of a system with particles having isospins j = 3/2
and j = 2 is characterized by the maximal cooperative
number, which ensures a smooth transition to the
regime of collective coherent emission of a superradi-
ance pulse. This regularity can be formally explained
by the structure of the Hamiltonians describing the
behavior of a system of atoms with the pair interaction
(namely, the power of dot product operators for isos-
pins). For example, this operator appears to the first
power in a system of two-level atoms [11]; to the first
and second powers in a system of three-level atoms; to
the first, second, and third powers in a system of four-
level atoms; and from the first to the fourth powers in a
system of five-level atoms. In the case of four- and five-
level atoms, the terms with even powers of these oper-
ators practically compensate one another in the range of
variation of the total isospin of a pair. Thus, the cubic
term plays a decisive role here, while it is the quadratic
term with a typical parabolic well and with a minimum
corresponding to R = 0 that determines the situation in
a system of three-level atoms.

The constants of exchange dipole interaction esti-
mated above make it possible to judge the degree of
splitting of collective energy levels and, hence, the
extent to which the dipole interaction factor affects the
(presence or absence of a) delay preceding a superra-
diation pulse. For example, the estimates of the dipole
exchange interaction constants for alkali atoms
belonging to the sodium group give a value of 0.06–
0.07 eV, and the above splitting plays a significant role
for transitions in a wavelength range from 3 to 9 µm.

Superradiance effects, which occur due to transi-
tions between closely spaced Landau levels in a
strongly magnetized plasma [10], open prospects for
realizing the idea of a system consisting of a large num-
ber of equidistant levels (e.g., in low-dimensional sys-
tems of the type of semiconducting films placed in a
magnetic field). Such systems can ensure the presence
of any number of discrete Landau levels, which are
equidistant a priori. It is such systems that can be used
for experimental observation of the Dicke effect in mul-
tilevel systems in pure form.

ACKNOWLEDGMENTS

This study was supported financially by the Russian
Foundation for Basic Research (project no. 02-02-17686),
the program “Universities of Russia” (project
no. UR.01.01.040), and the Ministry of Education of
the Russian Federation (grant no. E02-3.2-287).
AND THEORETICAL PHYSICS      Vol. 98      No. 1      2004



EXCHANGE DIPOLE INTERACTION IN A MULTILEVEL COOPERATIVE SYSTEM 23
REFERENCES

1. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskiœ,
Cooperative Phenomena in Optics (Nauka, Moscow,
1988); S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chir-
kin, Introduction to Statistical Radio Physics and Optics
(Nauka, Moscow, 1981); Yu. L. Klimontovich, The
Kinetic Theory of Electromagnetic Processes (Nauka,
Moscow, 1980; Springer, Berlin, 1983).

2. R. Bonifacio, P. Schwendiman, and F. Haake, Phys. Rev.
A 4, 302, 854 (1971).

3. F. De Martini and G. Preparata, Phys. Lett. 48, 43
(1974); B. Coffey and R. Friedberg, Phys. Rev. A 17,
1033 (1978).

4. R. H. Dicke, Phys. Rev. 93, 99 (1954).

5. V. I. Yukalov, Acta Phys. Pol. A 57, 295 (1980).

6. T. M. Makhviladze and L. A. Shelepin, Zh. Éksp. Teor.
Fiz. 62, 2066 (1972) [Sov. Phys. JETP 35, 1080 (1972)];
L. A. Shelepin, Zh. Éksp. Teor. Fiz. 54, 1463 (1968)
[Sov. Phys. JETP 27, 784 (1968)].

7. T. M. Makhviladze and L. A. Shelepin, Preprint No. 145,
FIAN (Inst. of Physics, USSR Academy of Sciences,
Moscow, 1971); É. Sh. Teplitskiœ, Teor. Mat. Fiz. 2, 399
(1970).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
8. A. I. Zaœtsev, V. A. Malyshev, and E. D. Trifonov, Zh.
Éksp. Teor. Fiz. 84, 475 (1983) [Sov. Phys. JETP 57, 275
(1983)].

9. K. Nakamura and S. J. Washimiga, J. Phys. C 13, 3483
(1980); H. Steudel, Ann. Phys. (Leipzig) 37, 57 (1980);
C. R. Stroud, J. H. Eberly, W. L. Lama, and L. Mandel,
Phys. Rev. A 5, 1094 (1972).

10. L. I. Men’shikov, Usp. Fiz. Nauk 169, 113 (1999) [Phys.
Usp. 42, 107 (1999)].

11. E. V. Orlenko and B. G. Matisov, Zh. Éksp. Teor. Fiz.
116, 1148 (1999) [JETP 89, 612 (1999)].

12. A. V. Andreev, R. V. Arutyunyan, and Yu. A. Il’inskiœ,
Opt. Spektrosk. 50, 1050 (1981) [Opt. Spectrosc. 50, 578
(1981)]; A. V. Andreev, V. I. Emel’yanov, and
Yu. A. Il’inskiœ, Usp. Fiz. Nauk 131, 653 (1980) [Sov.
Phys. Usp. 23, 493 (1980)].

13. V. A. Malyshev, I. V. Ryzhov, E. D. Trifonov, and
A. I. Zaœtsev, Opt. Commun. 180, 59 (2000); F. Haake
and R. Reibold, Phys. Lett. A 92, 29 (1982); Phys.
Rev. A 29, 3208 (1984); Opt. Acta 31, 107 (1984).

14. E. V. Orlenko and A. A. Rumyantsev, Fiz. Nizk. Temp.
15, 485 (1989) [Sov. J. Low Temp. Phys. 15, 272
(1989)]; E. Orlenko, I. Mazets, and B. Matisov, Zh.
Tekh. Fiz. 73, 30 (2003) [Tech. Phys. 48, 26 (2003)].

Translated by N. Wadhwa
SICS      Vol. 98      No. 1      2004



  

Journal of Experimental and Theoretical Physics, Vol. 98, No. 1, 2004, pp. 144–155.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 125, No. 1, 2004, pp. 160–172.
Original Russian Text Copyright © 2004 by Meshcheryakov.

                                                                                                

SOLIDS
Electronic Properties
The Crystal Field and Exchange Coupling
in Iron Group Metal Carbonates

V. F. Meshcheryakov
Moscow Institute of Radio Engineering, Electronics, and Automatics (Technical University), 

Moscow, 117454 Russia
e-mail: niin@ranet.ru
Received May 27, 2003

Abstract—The wave functions of Co2+ and Fe2+ ions near the ground state in the CaCO3-type lattice have been
calculated from EPR data in the Abragam–Pryce approximation. The orbital angular momentum contributions
to the anisotropic and antisymmetric parts of exchange coupling are determined assuming that this interaction
between the magnetic ions occurring in nonequivalent positions is isotropic with respect to spin orientations. It
is shown that, in the given approximation, the exchange coupling components in the basal plane for such
Fe2+−Fe2+ and Co2+–Fe2+ ion pairs are missing. This fact explains the uniaxial antiferromagnetic ordering in
FeCO3 and the presence of a low-lying oscillation branch for Fe2+ impurity ions in antiferromagnetic CoCO3.
The EPR spectra of exchange-coupled Co2+–Co2+, Fe2+–Fe2+, and Co2+–Fe2+ pairs occupying nonequivalent
positions have been calculated and their parameters have been numerically estimated. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The phenomenon of weak ferromagnetism in anti-
ferromagnetic compounds has been observed since
1940 and was originally studied by Schultz [1],
Bizette [2], and Néel and Pauthenet [3]. The hypothesis
that this ferromagnetism is caused by the sloped state of
magnetic moments and is related to a specific symme-
try of their local environment was originally formulated
by Borovik-Romanov and Orlova [4]. Transition metal
carbonates of the MeCO3 type with Me = Mn, Co, and
Ni were studied by Borovik-Romanov and coworkers
[5–20] for many years and became the model objects
for the investigation of this phenomenon. A phenome-
nological description of weak ferromagnetism was
developed by Dzyaloshinski [21]. An analysis of the
symmetry of these compounds revealed that the pres-
ence of a sloped state is determined by the antisymmet-
ric part of exchange coupling. It was established in [21]
that the magnitude of this interaction is determined by
relativistic corrections and must be significantly
smaller than the total exchange value. A microscopic
approach developed by Morija [22] allowed the magni-
tude of the exchange coupling to be calculated, which
has proved to be on the order of the ∆g/g fraction of the
superexchange energy. This estimate was obtained
under the assumptions that the lowest energy level in
the magnetic ion is the orbital singlet and the spin–orbit
coupling is small as compared to the splitting of orbital
levels by the crystal field. This implies that the magni-
tude of ∆g (the deviation of g from the pure-spin value,
caused by an admixture of the orbital angular momen-
tum of excited states), is relatively small—in agreement
1063-7761/04/9801- $26.00 © 20144
with the term “weak” ferromagnetism. However, the
orbital angular momentum in many cases is by no
means suppressed and the antisymmetric exchange
(expressed via effective spins) may be no less important
than the isotropic exchange: sometimes the former can
even exceed the latter in magnitude.

At the present time, the magnetic properties of the
compounds MnCO3, FeCO3, CoCO3, and NiCO3 are
known in sufficient detail. However, some facts still
have to be explained, including the following.

(i) The compound FeCO3 is a uniaxial antiferromag-
net with two sublattices, the magnetic moments of
which are oriented along the C3 axis of the crystal [23],
whereas the other compounds in this group at low tem-
peratures are easy-plane antiferromagnets with sloped
magnetic moments of the sublattices [5, 7, 15].

(ii) The magnitude of the Dzyaloshinski field HD

(characterizing the antisymmetric part of exchange
coupling) varies in this group within two orders of mag-
nitude: from HD = 4 kOe for MnCO3 [5] to HD =
160 kOe for NiCO3 [15]. For CoCO3 and NiCO3, the
antisymmetric coupling component is of the same order
of magnitude as the isotropic exchange. At the same
time, the HD values for CoCO3 determined from the
static and resonance measurements exhibit an almost
twofold difference: the magnetization measurements
give HD = 27 kOe [7], while the resonance experiment
yields HD = 52 kOe [14]. The g values obtained from
the electron paramagnetic resonance (EPR) measure-
ments [24, 25] and from the antiferromagnetic reso-
nance (AFMR) [9, 14] data do not coincide either.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagrams of (a) the crystallographic unit cell and (b) the local environment of a magnetic atom in the CaCO3
(calcite) type lattice.

(a)
(b)

C3

Ca O C
(iii) The frequency of splitting in the AFMR spec-
trum of CoCO3, which is related to the impurity of Fe2+

ions, corresponds to an exchange field of HE ≈ 6 kOe.
This value is significantly lower as compared to the
exchange fields in CoCO3 and FeCO3.

(iv) The AFMR spectrum of MnCO3 [11] displays a
gap related to the hyperfine interaction. No such gap is
found in the spectrum of CoCO3, although the values of
hyperfine splittings observed for the EPR on Mn2+ and
Co2+ ions in isomorphous crystal lattices are compara-
ble [24–27].

Evidently, these variations in the magnetic proper-
ties are related to differences in the microscopic state of
magnetic ions. A significantly weaker magnitude of the
Dzyaloshinski interaction in MnCO3 as compared to
that in CoCO3 and NiCO3 is most probably explained
by the absence of the orbital angular momentum contri-
bution to the ground state of the Mn2+ ion (for which
L = 0 and S = 5/2). A small contribution from the
orbital angular momentum appears due to an admix-
ture of excited states according to the model used by
Morija [22]. At the same time, the magnetic moments
in the ground states of Co2+ and Ni2+ ions are deter-
mined by the contributions from both orbital angular
momentum and spin. These states can be calculated
using data for the EPR on these ions. The spatial motion
of electrons in the magnetic ions is not only manifested
in the magnetic moment of an individual atom, but
determines the character of exchange coupling as well.
Since the form of this interaction in the general case
depends on the particular exchange integrals of certain
electron levels in the magnetic ions, the calculation of
exchange coupling requires the knowledge of the elec-
tron wave functions.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
However, knowledge of the wave function of the
ground state of a magnetic ion described in terms of the
total spin and the orbital angular momentum also
allows the contributions to the anisotropic and antisym-
metric parts of exchange coupling to be determined. If
the exchange coupling between ions, considered as a
function of the true spins, is isotropic, these additional
contributions appear on passage from description of
exchange coupling in terms of the true spin to use of the
effective spin variables [28], since the latter variables
are employed in description of the EPR spectra. It will
be demonstrated below that this transformation influ-
ences the positions of levels of the exchange-coupled
pairs provided only that (i) the state of magnetic ions is
determined by the admixture of the orbital angular
momentum and (ii) these pairs of magnetic ions occupy
nonequivalent positions in the crystal lattice. Using this
approach, it is possible to show that the exchange cou-
pling components in the basal plane for such Fe2+–Fe2+

and Co2+–Fe2+ pairs are absent. This fact explains the
uniaxial antiferromagnetic ordering in FeCO3 and the
presence of a low-lying oscillation branch due to Fe2+

impurity ions in the CoCO3 lattice.

Figure 1a shows a schematic diagram of the crystal-
lographic unit cell in the CaCO3 (calcite) type lattice.
Here, Ca2+ ions occupy two nonequivalent positions on
the rhombohedron diagonal (C3 axis). Their local envi-
ronment shown in Fig. 1b includes six oxygen atoms
occurring at the corners of a hexagonal prism. The
upper and lower bases of this prism represent equilat-
eral triangles rotated 60° relative to each other. The
prisms surrounding the two Ca2+ ions are also mutually
rotated by 60°.

The EPR spectra of individual ions in isomorphous
structures have been studied in sufficient detail for
SICS      Vol. 98      No. 1      2004
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Table 1.  Experimental data obtained from the EPR spectra of Co2+ and Fe2+ ions in isomorphous CdCO3 and CaCO3 lattices

Sample f, GHz g|| g⊥ |A| × 104, cm–1 |B| × 104, cm–1

CdCO3 + Co2+ 33.87 3.07 ± 0.03 4.96 ± 0.02 37 ± 4 164 ± 10

21.31 3.06 ± 0.01 4.94 ± 0.01 39 ± 3 154 ± 7

CaCO3 + Co2+ 9.2 3.406 ± 0.01 4.817 ± 0.01 53 ± 1 132 ± 3

CaCO3 + Fe2+ 9.4 9.85 ± 0.01 <0.2 – –
Mn2+ [26, 27], Co2+ [24, 25], Ni2+ [15], and Fe2+ [29].
At low temperatures, the ground states of Co2+ and Fe2+

ions is characterized by an effective spin of S ' = 1/2 and
that of Ni2+ ions, by a spin of S ' = 1. Below we will con-
sider only the states with S ' = 1/2. The estimates of this
interaction will be also obtained only for CoCO3 and
the impurity of Fe2+ in the CoCO3 matrix.

Thus, the results of investigations of the states of
paramagnetic ions on a microscopic level are of consid-
erable importance for understanding the nature of
exchange coupling. The aim of this study was to calcu-
late, based on the EPR data, the functions describing
the ground state of magnetic Co2+ and Fe2+ ions and to
determine the orbital angular momentum contributions
to the anisotropic and antisymmetric parts of exchange
coupling. Based on these results, the EPR spectra of
exchange-coupled Co2+–Co2+, Fe2+–Fe2+, and Co2+–Fe2+

ion pairs occupying nonequivalent positions will be
calculated and the effect of the antisymmetric contribu-
tion on the EPR spectrum will be determined depend-
ing on the presence of the anisotropic exchange.

2. WAVE FUNCTION 
OF THE GROUND STAGE OF Co2+ ION

IN THE CALCITE-TYPE LATTICE DETERMINED 
BASED ON THE EPR DATA

The EPR data for individual ions are usually inter-
preted in terms of the spin Hamiltonian. For the Co2+

ions under consideration, this Hamiltonian can be writ-
ten as

(1)

where β is the Bohr magneton; g|| and g⊥  are the longi-
tudinal and transverse g factors, respectively; A and B

are hyperfine interaction constants,  is the nuclear
spin; and S ' is the effective spin (S ' = 1/2). The experi-
mental g factors and hyperfine interaction constants for
spin Hamiltonian (1) of some ions are presented in
Table 1.

Ground state 4F of the free Co2+ ion has an electron
configuration of 3d7 and exhibits a sevenfold orbital

Ĥ g||βHzŜz' g⊥ β HxŜx' HyŜy'+( )+=

+ AÎzŜz' B ÎxŜx' Î yŜy'+( ),+

l̂
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degeneracy. The next term, 4P, belonging to the same
free ion configuration, is situated 14500 cm–1 above the
ground state level. In the calcite-type lattice, Co2+ ions
occur in an octahedral environment. The cubic crystal
field component splits the 4F term into a singlet and two
underlying triplets. When the quantization axis is
directed along C3, the wave functions of the lower trip-
let are as follows [30]:

(2)

Since the matrix elements of the orbital angular
momentum projections in the representation of these
functions differ by a constant factor of α = –3/2 from
analogous elements in the representation of eigenfunc-
tions of the free Co2+ ion in the 4F state with L = 1, the
former elements can be considered as eigenfunctions of
an apparent operator of the angular momentum l ' = 1.
The trigonal component of the crystal field and the
spin–orbit coupling further split this triplet into six
Kramers doublets, of which three doublets are charac-
terized by the quantum number m = ±1/2, two doublets
possess m = ±3/2, and one doublet has m = ±5/2. On the
energy scale, these doublets are separated by hundreds
of inverse centimeters. The general scheme of these
levels is depicted in Fig. 2.

Now let us calculate the distances between levels
near the ground state and the wave functions of cobalt
ions in the calcite-type lattice using the results of calcu-
lations performed by Abragam and Pryce [31] and the
published EPR data [24, 25]. In order to use these
results for the ground state wave function calculations,
it is necessary to reproduce the Abragam–Pryce calcu-
lation scheme, which will be also used below for deter-
mining the ground state of Fe2+.

The optical absorption measurements for CoCO3

show that the splitting of levels reaches 22000 cm–1 [32],
which is much greater than the distance to the 4P term
of the free Fe2+ ion. For this reason, Abragam and Pryce
proceeded from a set of functions of the 4F and 4P states
that were different from set of functions (2). Assuming

0| 〉 2/3( )ψ3 0, 5/18 ψ3 3, ψ3 3–,–( ),+=

1| 〉 5/6ψ3 2, 1/6ψ3 1–, ,+=

1–| 〉 5/6ψ3 2–, 1/6ψ3 1, .–=
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that the set includes the doublet ϕx and ϕy  and the sin-
glet ϕz , with the energy separation ∆, and choosing the
orbital basis functions in the form of

(3)

we have to determine the eigenvalues of the Hamilto-
nian

(4)

Here, the angular momentum operator is written in the

form of – , where  is the apparent orbital angular
momentum operator with an eigenvalue l ' = 1; α and α'
are constants equal approximately to 3/2 for Co2+. The
deviations from 3/2 are determined by an admixture of
the 4P state and by the influence of the trigonal crystal
field component. The first term of Hamiltonian (4)
reflects the fact that the levels with  = ±1 are

separated by ∆ from the level with  = 0. The second
term described the spin–orbit coupling (for Co2+, λ =
–180 cm–1).

Since the operator  +  commutates with Hamil-
tonian (4), the eigenvalues of this operator (m = ±1/2,
±3/2, and ±5/2) can be used for the classification of lev-
els. If the corresponding functions are written in the
form of | , Sz〉 , where  = 0, ±1 and Sz = ±1/2, ±3/2,

the matrix of operator  separates into three matrices:

(5)

for m = ±1/2;

(6)

for m = ±3/2, and 

(7)

For the lower doublet corresponding to m = ±1/2, the

1| 〉 1/2 ϕ x iϕ y+( ),–=

0| 〉 ϕ z,=

1–| 〉 1/2 ϕ x iϕ y–( ),=

Ŵ ∆ 1 l̂z'
2

–( ) αλ l̂z' Ŝz– α'λ l̂x' Ŝx l̂y' Ŝy+( ).–=

α l'ˆ l'ˆ

lz'

lz'

lz' Ŝz

lz' lz'

Ŵ

1 3/2±,+−| 〉 0 1/2±,| 〉 1 1/2+−,±| 〉

1+− 3/2±,〈 |
0 1/2±,〈 |
1± 1/2+−,〈 |

(3/2)αλ 3/2α'λ– 0

3/2α'λ– ∆ 2α'λ–

0 2α'λ– (1/2)αλ

0 3/2±,| 〉 1± 1/2±,| 〉

0 3/2±,〈 |
1± 1/2±,〈 |

∆ 3/2α'λ–

3/2α'λ– (1/2)αλ–

1± 3/2±,〈 | 3/2αλ–    for   m 5/2. ± =     
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wave function can be written as

(8)

Here and below, the first and second terms in brackets
indicate the values of projections of the orbital and spin
momenta, respectively. Using the normalization condi-
tion

(9)

introducing the parameter x such that

(10)

(with the energy E being an eigenvalue of matrix (5)),
and taking into account representation (8), we obtain
the relations

(11)

(12)

1/2| 〉 a 1– 3/2, b 0 1/2, c 1 1/2–,| 〉 ,+ +=

1/2–| 〉 a 1 3– /2, b 0 1– /2, c 1– 1/2,| 〉 .+ +=

a2 b2 c2+ + 1=

E
1
2
---αλ x 3+( )=

a : b : c
6

x
------- : 

α
α'
---- : 

8
x 2+
------------,–=

 
∆ λα

 
'

 2 

α

 
---------- 3
 

x

 
--- 4

 

x

 

2+
------------+

 

 
 

 
–

 
λα

 

2
-------

 
x

 
3+

 
( )

 
.+=

 

χ

 

p

 

4

 

P

 

4

 

F

 

ψ

ϕ

|

 

0

 

〉

|

 

±1

 

〉

∆

 

±5/2
±3/2

±1/2

±1/2

±3/2

±1/2

(a) (b)

 

Fig. 2. 

 

The general scheme of splitting of the ground state
energy levels for Co

 

2+

 

 ion in a rhombohedral environment
under the action of (a) a trigonal crystal field 

 

∆

 

 and (b) spin–
orbit coupling.
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Table 2.  Hyperfine interaction constants calculated for various values of the parameter p for Co2+ ions in isomorphous
CdCO3 and CaCO3 lattices

Parameters CdCO3 + Co2+ CaCO3 + Co2+

p 0.6 1.0 1.4 0.6 1.0 1.4

x 3.53 3.26 3.08 3.02 2.08 2.68

α 1.24 1.56 1.85 1.26 1.55 1.81

gS|| 2.66 2.60 2.55 2.86 2.79 2.53

gL|| 0.40 0.46 0.51 0.55 0.62 0.88

(gS|| + gL||)exp 3.06 3.4

A × 104, cm–1 –7 8 22 8 37 60

Aexp × 104, cm–1 39 53

gS⊥ 3.61 3.67 3.70 3.53 3.59 3.61

gL⊥ 1.34 1.28 1.25 1.28 1.22 1.20

gS⊥  + gL⊥ 4.95 4.95 4.95 4.81 4.81 4.81

(gS⊥  + gL⊥ )exp 4.95 4.817

B × 104, cm–1 170 154 146 159 143 138

Bexp × 104, cm–1 154 ± 7 132 ± 3

∆, cm–1 –144 –407 –598 –3 –275 –458
                    
Now let us express the g factor components as
functions of parameters α, α ', and x. Substituting
functions (8) in the expressions

(13)

we arrive at

(14)

Taking into account the normalization condition (9) and
using relation (11), we eventually obtain the formulas

(15)

where p = (α/α')2 .

g|| 2 1/2〈 | L̂z 2Ŝz 1/2| 〉 ,+=

   g ⊥ 2 1/2 〈 | L ˆ x 2 S ˆ x 1/2– | 〉 ,+=

   g S || 4 1/2 〈 | S ˆ z 1/2 | 〉 6 a 
2

 2 b 
2

 2 c 
2

 ,–+= = 

g

 

S

 

⊥

 

4 1/2

 

〈 |

 

S

 

ˆ

 

x

 

1/2–

 

| 〉

 

4

 

b

 

2

 

4 3

 

ac

 

,+= =

   g L || 2 1/2 〈 | L ˆ z 1/2 | 〉 2 α 1/2 〈 | l ˆ z ' 1/2 | 〉 –= =

=  2

 

α

 

a

 

2

 

c

 

2

 

–

 

( )

 

,

        g L ⊥ 2 1/2 〈 | L ˆ x 1/2– | 〉 2 α ' 1/2 〈 | l ˆ z ' 1/2– | 〉 –= =

=  8

 

α

 

'

 

bc

 

.–

g|| 2

4 α 2+( ) 3

x2
----- 4

x 2+( )2
-------------------– 

 

p
6

x2
----- 8

x 2+( )2
-------------------+ +

---------------------------------------------------------,+=

g⊥ 4
p

2α
x 2+
------------ 12

x 2+( )x
--------------------+ +

p
6

x2
----- 8

x 2+( )2
-------------------+ +

------------------------------------------------,=
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The hyperfine interaction constants A and B in spin
Hamiltonian (1) can be expressed via the g value com-
ponents [31]. These constants are determined by three
contributions: from orbital angular momentum (AL, BL),
spin momentum (AS, 

 

B

 

S

 

), and unpaired electrons (

 

A

 

sk

 

,

 

B

 

sk

 

). The latter contribution appears as a result of the
configuration interaction between 3

 

sd

 

7

 

4

 

s

 

 and 3

 

s

 

2

 

4

 

d

 

7

 

states; in the case of Co

 

2+

 

 ions, this contribution is usu-
ally ignored. Taking this into account, the

 

 A 

 

and

 

 B

 

 val-
ues can be written in the following form:

(16)

where 

 

P

 

 = 2

 
γββ

 

N

 

r

 

–3

 

 (for Co

 

2+

 

,

 

 P

 

 = 0.0225 cm

 

–1

 

 and

 k   = 0.325).
Based on the results of calculations performed by

Abragam and Pryce [31], the distances between levels
are calculated as follows. First, we set 

 

p

 

 = 0.6, 1.0, and
1.4 in Eqs. (15) and substitute the 

 

g

 

⊥

 

 and 

 

g

 

||

 

 values from
Table 1 to obtain the corresponding sets of parameters

 

x

 

 and 

 

α

 

 (Table 2). In order to select the optimum 

 

p

 

value, we have to compare the hyperfine interaction
constants

 

 A

 

 and 

 

B

 

 calculated using expressions (16) to
the experimental data. To this end, we find from expres-
sion (14) the orbital and spin components of the 

 

g 

 

value
and substitute these quantities into expressions (16).
The results of these calculations and the experimental
data (

 

A

 

exp

 

, 

 

B

 

exp

 

) are also presented in Table 2. For both
constants, the best fit to the experimental hyperfine
interaction constants and 

 

g

 

 factors is observed for

 

p

 

 = 1.4. The distributions of energy levels near the
ground state can be obtained by solving the secular

A AL AS+ PgL|| k/2( )PgS||,–= =

B BL BS+ PgL⊥ k/2( )PgS⊥ ,–= =
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equations based on matrices (5)–(7) for the given
parameters p, x and α. The energies of these levels and
the corresponding g values are presented in Table 3 and
the mutual arrangement of levels is depicted in Fig. 2.
The distance to the nearest excited state is about
300 cm–1. The ground state corresponds to a doublet
described by the wave function (8) with the coefficients
presented in Table 4.

3. THE WAVE FUNCTION 
OF THE GROUND STATE OF Fe2+ ION

IN THE CALCITE-TYPE LATTICE

The experimentally observed spectrum of Fe2+ ion
in the calcite-type lattice is described, in the absence of
nuclear spin, by Hamiltonian (1) with the g value com-
ponents given in Table 1 [29]. The numerical calcula-
tion with allowance for all states of the free ion by diag-
onalization of a 25-order matrix was also reported
in [29]. Analytical expressions obtained for the wave
functions of Fe2+ ion near the ground state and the cor-
responding g values are derived below based on the
spin Hamiltonian method described in Section 2.

The ground state 5D of the free Fe2+ ion has an elec-
tron configuration of 3d6 and exhibits a fivefold orbital
degeneracy. In the calcite-type lattice, where Fe2+ ions
occur in a cubic crystal field of octahedral symmetry,
the 5D term splits into T2g triplet and an above-lying Eg

doublet with a separation on the order of 104 cm–1. The
axial field of trigonal symmetry splits the triplet into a
singlet and the so-called non-Kramers doublet sepa-
rated by more than 10 cm–1. The mutual arrangement of
the doublet and singlet depends on the sign of the axial
field: in a calcite-type lattice, the doublet corresponds

Table 3.  Energy levels and the corresponding g factors cal-
culated for Co2+ ions in CdCO3 lattice

m Energy, cm–1 g|| g⊥

±1/2 –1018 3.05 4.95

±3/2 –732 5.0 0

±1/2 –381 4.7 1.96

±1/2 131 1.75 1

±3/2 300 0.72 0

±5/2 502 2.28 0
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to a lower level. The spin–orbit coupling splits the
orbital triplet into 3 × 5 = 15 levels with a separation on
the order of 500 cm–1. The general scheme of these lev-
els is depicted in Fig. 3.

The wave functions of the lower triplet for the quan-
tization axis directed along C3 are as follows [30]:

(17)

According to the spin Hamiltonian method, the orbital
triplet T2g is assigned an effective orbital angular
momentum l ' = 1 and the calculation is performed using
Hamiltonian (4) with S = 2, λ = –100 cm–1, and α = 1.

In this case, the matrix of operator  separates into
four matrices characterized by eigenvalues of operator

 +  with m = 0, ±1, ±2, and ±3:

(18)

for m = 0,

(19)

for m = ±1,

(20)

for m = ±2,

(21)

The lower doublet corresponds to m = ±1. The wave

ψ2 0, ,

2/3ψ2 2, 1/3ψ2 1–, ,–

2/3ψ2 2–, 1/3ψ2 1, .+

Ŵ

l̂z' Ŝz

1 1–,| 〉    0 0,| 〉    1 1,–| 〉

1 1–,〈 |
0 0,〈 |
1 1,–〈 |

αλ 3α'λ– 0

3α'λ– ∆ 3α'λ–

0 3α'λ– αλ

1 0,±| 〉  0 1±,| 〉  1+− 2±,| 〉

1± 0,〈 |
0 1±,〈 |
1+− 2±,〈 |

0 3α'λ– 0

3α'λ– ∆ 2α'λ–

0 2α'λ– 2αλ

1± 1±,| 〉 0 2±,| 〉

1± 1±,〈 |
0 2±,〈 |

αλ– 2α'λ–

2α'λ– ∆

1± 2±,〈 | 2αλ–    for   m 3. ± =                                             
Table 4.  Wave functions of Co2+ and Fe2+ ions in the vicinity of the ground state in the CaCO3-type lattice

Ion Wave functions Coefficients

Co2+ a = 0.53, b = –0.76, c = 0.37

Fe2+ d = 0.17, e = 0.22, f = 0.96

|0〉  = α|1, 0〉  + β|0, 1〉  + γ|–1, 2〉 α 2 = γ2 = 0.45, β2 = 0.10

±| 〉 a 1 ±3/2,+−| 〉 b 0 ±1/2,| 〉 c ±1 1/2+−,| 〉+ +=

1±| 〉 d 1 0,±| 〉 e 0 1±,| 〉 f 1 2±,+−| 〉+ +=
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function of this state can be represented as

(22)

Using the normalization condition (9), we obtain for
matrix (19) the relations

(23)

where

+1| 〉 d 1 0,| 〉 e 0 1,| 〉 f 1 2,–| 〉 ,+ +=

     1– | 〉 d 1– 0 ,| 〉 e 0 1– ,| 〉 f 1 2– ,| 〉 .+ +=

d2 3λ2α'2 E 2λα–( )2

Σ
-------------------------------------------, e2 E2 E 2λα–( )2

Σ
---------------------------------,= =

f 2 2λ2α'2E2

Σ
----------------------,=

                                

Eg

5D

T2g

|±1〉

|0〉
0
±1

±2

±3

±2

±1
0
0
±1

(a) (b)

Fig. 3. The general scheme of splitting of the ground state
energy levels for Fe2+ ion in a rhombohedral environment
under the action of (a) a trigonal crystal field and (b) spin–
orbit coupling.

Table 5.  Energy levels calculated for Fe2+ ions in a CaCO3-
type lattice

m Energy, cm–1

0 –185 –100 609

±1 –233 –43 600

±2 57 567 –

±3 200 – –
JOURNAL OF EXPERIMENTAL A
and E is the energy determined by diagonalization of
matrix (19). Substituting functions (22) into the expres-
sions

(24)

in the approximation employed, we obtain

(25)

Let us estimate the energies of levels and the g value
using data [33] on the Mössbauer spectroscopy of Fe2+

ions in a CoCO3 matrix. The temperature dependence
of the quadrupole splitting showed that ∆ = 525 cm–1.
Using Hamiltonian (4) with this value of ∆, α = α' = 1,
and λ = –100 cm–1, we obtain the energies of levels pre-
sented in Table 5. For the lowest level with m = ±1, E =
−233 cm–1; for the next level with

 

 m

 

 = 0, 

 

E 

 

= –185 cm

 

–1

 

;
thus, the separation of these levels amounts to 48 cm

 

–1

 

.
The general arrangement of levels is depicted in Fig. 3.

Substituting the energy of the lowest level into for-
mulas (23), we obtain the coefficients of the wave func-
tion (22) of the ground state of Fe

 

2+

 

 ion (Table 4). Using
formula (25), we obtain for the 

 

g

 

 value in the ground
state 

 

g

 

||

 

 = 9.4. The difference of this result from the
experimental value (

 

g

 

||

 

 = 9.85) was shown [29] to be
due to an admixture of excited states. In addition to the
wave functions of the ground state of the Fe

 

2+

 

 ion, sub-
sequent analysis will require the function of the adja-
cent excited state with 

 
m

 
 = 0. The form of this function

and the corresponding coefficients determined using
matrix (18) are presented in Table 4.

4. THE EPR SPECTRA OF EXCHANGE-COUPLED 
Co

 

2+

 

–Co

 

2+

 

, Fe

 

2+

 

–Fe

 

2+

 

, AND Co

 

2+

 

–Fe

 

2+

 

 ION PAIRS 
OCCUPYING NONEQUIVALENT 

CRYSTALLOGRAPHIC POSITIONS

The results of EPR measurements for exchange-
coupled ion pairs allow the parameters obtained to be
used for the description of magnetically ordered sys-
tems.The possibility to measure the EPR spectra of
such pairs and the reliability of interpretation of these
spectra are limited by the following factors. First, the
intensity of signals in the spectrum, which is propor-
tional to the squared concentration of paramagnetic
couples, turns out to be two to three orders of magni-
tude lower than the intensity of signals from individual
ions. Second, the presence of a large number of nearest
neighbors featuring nonzero exchange coupling (e.g.,
in Cr

 

2

 

O

 

3

 

 there are 11 such neighbors at a distance of
5.73 Å with exchange coupling values ranging from
240 to about 0.5 cm

 

–1

 

 [34, 35]) results in that an exper-

Σ 3λ2α'2 E 2λα–( )2
E2 E 2λα–( )2 2λ2α'2E2,+ +=

g|| 2 1〈 | L̂z 2Ŝz 1| 〉 ,+=

g⊥ 2 1〈 | L̂x 2Ŝx 1–| 〉 ,+=

g|| 4 e2 2 f 2+( ) 2α f 2 d2–( ), g⊥+ 0.= =
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imental EPR spectrum contains a continuous series of
lines in the vicinity of signals due to individual ions.

For these reasons, the EPR spectra of exchange-cou-
pled pairs are usually observed for the ions with frozen
or missing orbital angular momentum. In order to
ensure reliable interpretation of the EPR data, the anal-
ysis is performed using the results of simultaneous opti-
cal absorption, EPR, and electron-nuclear double reso-
nance (ENDOR) measurements. The most reliable EPR
and ENDOR data correspond to magnetic fields that
significantly differ from the resonance fields of individ-
ual ions. An additional useful piece of information is
provided by investigations of the angular dependence
of the spectra and the temperature dependence of the
intensities of signals determined by the population of
levels in the exchange-coupled ion pairs.

Let us consider the possibility of observing the res-
onance absorption due to exchange-coupled Co2+–Co2+,
Fe2+–Fe2+, and Co2+–Fe2+ ion pairs occurring inside the
unit cell depicted in Fig. 1a. In order to determine the
energy levels for these pairs, it necessary first to per-
form transformation of the spin projections to a com-
mon coordinate system and second, to derive an expres-
sion for the exchange coupling (see Eq. (26) below)
using projections of the effective spin S ' = 1/2, rather
than of the true spin, as the variables in Hamiltonian (1).

The exchange coupling Hamiltonian is usually writ-
ten in the commonly accepted form proposed by
Heisenberg,

(26)

where  and  are the true spins of magnetic ions.
For S1 = S2 = 1/2, the eigenvalues of the Hamiltonian are
E1 = J/4 for the total spin of S = 1 and E0 = –(3/4)J for
S = 0. On the passage to a common quantization axis for
the ions occupying nonequivalent positions, it is neces-
sary to use a transformation of the spin projections
upon rotation of the coordinate axes in the xy plane:

In the common coordinate system with ϕ = 60°, Hamil-
tonian (26) takes the following form:

(27)

where Jxy = J/2, D = Jxy , Jz = J; the prime in the spin

notation is omitted and  still denotes the total spin.
Thus, nonequivalent positions of the paramagnetic ions

Ĥex J Ŝ1 Ŝ2⋅=

=  J /2( ) Ŝ1
+
Ŝ2

–
Ŝ1

–
Ŝ2

+
+( ) JŜ1zŜ2z,+

Ŝ1 Ŝ2

Sx Sx' ϕ Sy' ϕ , Sysin–cos Sx' ϕsin Sy' ϕ .cos+= =

Ĥex Jxy Ŝ1xŜ2x Ŝ1yŜ2y+( )=

+ JzŜ1zŜ2z D Ŝ1xŜ2y Ŝ2xŜ1y–( )+

=  
1
2
--- Jxy iD+( )Ŝ1

+
Ŝ2

– 1
2
--- Jxy iD–( )Ŝ1

–
Ŝ2

+
JzŜ1zŜ2z,+ +

3

Ŝ
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result in the exchange coupling becoming anisotropic
and in the appearance of an antisymmetric term.

Denoting |1/2〉 ≡ |+〉  and |–1/2〉 ≡ |–〉 , we can write
the matrix of Hamiltonian (27) in the |±, ±〉 ≡ |±〉|±〉 rep-
resentation as

(28)

with the eigenvalues for S = 1,

(29)

and for S = 0,

(30)

For a purely spin state (in the absence of an orbital
angular momentum), the levels of Hamiltonian with
the matrix (27) are the same as those in the case of iso-
tropic exchange (26). In the presence of a contribution
due to the orbital angular momentum, the exchange
coupling becomes anisotropic (Jxy ≠ Jz/2) and the form
of the Hamiltonian matrix (27) qualitatively changes
the system of levels. The anisotropy leads to splitting of
the states in the pair with S = 1 according to (29), and
the D value, as will be shown below, influences the
positions of levels in the case when the magnetic field
vector is in the plane perpendicular to the C3 axis.

In order to determine the exchange coupling compo-
nents in terms of the effective spin S ' = 1/2, it is neces-
sary to find the matrix of Hamiltonian (27) in the repre-
sentation of the ground state wave functions (presented
in Table 4) and compare this with matrix (28). The
resulting exchange constants Jxy and Jz determined in
this way for Hamiltonian (27) are given in Table 6. As
can be seen for Fe2+–Fe2+ and Co2+–Fe2+ pairs, the
exchange coupling in the plane perpendicular to the C3
axis is absent. Based on these results, it is possible to
explain why the magnetic moments in antiferromag-
netic FeCO3 are aligned in the triple axis [23] and the
impurity mode frequency of Fe2+ ion in the antiferro-
magnetic FeCO3 is very small.

For experimental observation of the EPR spectrum
of exchange-coupled pairs, it is necessary to estimate
the parameters of the spin Hamiltonian. Substituting
the coefficients for Co2+ from Table 4, we obtain

The energy levels of a pair are E±1 = 0.41J, E0 = 1.27J
for S = 1 and E0 = –2.09J for S = 0. The exchange cou-

+ +,| 〉  + –,| 〉   – +,| 〉  – –,| 〉

+ +,〈 |
+ –,〈 |
– +,〈 |
– –,〈 |

Jz/4 0 0 0

0 Jz/4– Jxy iD+( )/2 0

0 Jxy iD–( )/2 Jz/4– 0

0 0 0 Jz/4

,

E0 –Jz/4 Jxy, E±1+ Jz/4,= =

E0 –Jz/4 Jxy.–=

Jxy 1.68J , Jz 1.65J , D 2.91J .= = =
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Fig. 4. Plots of the energy levels versus magnetic field strength H for exchange-coupled Co2+–Co2+ ion pairs: (a) H || C3;
(b) H ⊥ C3. Dashed lines show the position of energy levels in the case when magnetic ions occur in equivalent crystallographic
positions (ϕ = 0).

H, kOe

S = 1

S = 1

S = 0
pling J can be estimated using the Néel temperature TN

of the antiferromagnetic ordering. For CoCO3, TN =
18.1 K, which corresponds to an exchange coupling
energy of about –12 cm–1. Since the exchange field in
this compound is oriented in the basal plane and is cre-
ated by two nearest neighbors, the exchange coupling
energy per atom amounts to Jxy ≈ 6 cm–1. Taking into

account that Jxy = 2( ac + b2)2J ≈ 6 cm–1, we obtain
J ≈ 3.6 cm–1 and estimate the energy levels as E±1 =
1.48 cm–1, E0 ≈ 4.58 cm–1 for S = 1 and E0 = –7.52 cm–1

for S = 0. As can be seen from these estimates, the pop-
ulation of levels of the upper triplet at 4–10 K will be
sufficient to observe the resonance transitions with
∆m = ±1 in the region of frequencies corresponding to
a wavelength below 3 mm. The identification of lines in
the EPR spectrum of this ion pair would be significantly
facilitated by data on the frequency and temperature
dependences. Using the triplet splitting determined in
this way, it is possible to evaluate the exchange cou-
pling.

3
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Figure 4 (solid curves) shows the energy levels of
the exchange-coupled Co2+–Co2+ pair calculated as
functions of the magnetic field strength. For the com-
parison, dashed lines indicate the positions of levels in
the case when magnetic ions occupy the equivalent
positions (ϕ = 0). As can be seen from these data, the
antisymmetric exchange influences the positions of lev-
els only when the magnetic field vector is in the plane
perpendicular to the C3 axis. It should be noted that, in
the absence of an anisotropic contribution to exchange
coupling, the presence of nonequivalent positions does
not affect the energies of levels.

The value of exchange coupling in CoCO3 is much
smaller than the separation of the ground and first
excited levels of Co2+ ion and, hence, the presence of
this interaction does not influence the wave function of
the ground state. In the case of Fe2+ ion, the distance to
the excited level amounts to tens of inverse centimeters
and the exchange coupling in the basal plane is absent.
Therefore, it would be of interest to consider the influ-
ence of the excited states on the position of levels for
Table 6.  Exchange coupling parameters of Hamiltonian (27) calculated in the Abragam–Pryce approximation

Ion pair Jxy D Jz

Co2+–Co2+ (3a2 + b2 – c2)2 J

Fe2+–Fe2+ 0 0 4(e2 + 2f 2)2J

Co2+–Fe2+ 0 0 2(3a2 + b2 – c2)(e2 + 2f 2) J

2 3ac b2+( )
2
J 2 3 3ac b2+( )

2
J
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the exchange-coupled Fe2+–Fe2+ and Co2+–Fe2+ ion
pairs.

Let us find the exchange Hamiltonian with allow-
ance for the excited state. To this end, we proceed from
a Hamiltonian in the form

(31)

where  is the operator of crystal field (4). For the
Fe2+–Fe2+ pair, the matrix of Hamiltonian (31) in the
representation of the wave functions of the ground and
excited states of Fe2+ ion separates into two one-dimen-
sional matrices with m = ±2,

(32)

Ĥ Ŵ Ĥex,+=

Ŵ

1± 1±,〈 | 2E0 A2J+ ,
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two two-dimensional matrices with m = ±1,

(33)

and one three-dimensional matrix with m = 0,

+1 0,| 〉 0 +1,| 〉

+1 0,〈 |
0 +1,〈 |

ABJ– E0 E1+ + D1J

D1J ABJ– E0 E1+ +
,

–1 0,| 〉 0 –1,| 〉

–1 0,〈 |
0 –1,〈 |

ABJ E0 E1+ + D2J 1 i 3+( )/2

D2J 1 i 3+( )/2 ABJ E0 E1+ +
,

(34)

+1 –1,| 〉 0 0,| 〉 –1 +1,| 〉

+1 –1,〈 |
0 0,〈 |

–1 +1,〈 |

A2J– 2E0+ FJ 1 i 3+( )/2 0

FJ 1 i 3+( )/2 B2J 2E0+ FJ

0 FJ A2J– 2E0+

.

where

E0 is the energy of the ground state with m = ±1, and E1
is the energy of the excited state with m = 0. From this
it follows that, in the vicinity of the ground state with
an energy of 2E0, there are four levels with energies of 

A e2 2 f 2, B+ α2 γ2,–= =

D1 6dα 6eβ 2 fγ+ +( )2
,=

D2 6dγ 6eβ 2 fα+ +( )2
,=

F αγ 6d2 4 f 2+( ) 2 6df α2 γ2+( )+=

+ 6e2β2 eβ α γ+( ) 6d 2 6 f+( ),+

ε1 ε2 2E0 A2J+ 2E0 0.25J ,+= = =

ε3 2E0 A2J– 2E0 0.25J ,–= =
S

Let us obtain numerical estimates for the above
results. Substituting the values of parameters into the
expansions of wave functions, we obtain

As can be seen from these data, the corrections to posi-
tions of the levels are significant for the distances from
excited levels on the order of 40 cm–1.

Analogous calculations can be performed for the
Co2+–Fe2+ ion pair. In representation of the functions
from Table 4, the matrix for determining the eigenval-
ues of Hamiltonian (31) is as follows:

ε4 2E0 A2J– A2 B2+( )2
J2

8 E1 E0–( )
------------------------------– F2J2

E1 E0–
-----------------–=

=  2E0 0.25J– 0.06J2

42000
----------------

21J2

525
-----------.––

A 0.5, B 0, D1 D2 4.61, F 4.63.= = = = =
(35)

+ +1,| 〉 + 1–,| 〉 – 0,| 〉 – +1,| 〉 + 0,| 〉 – 1–,| 〉

+ +1,〈 |
+ 1–,〈 |

– 0,〈 |
– +1,〈 |

+ 0,〈 |
– 1–,〈 |

AJ E– 0 0 0 0 0

0 AJ– E– BJ 0 0 0

0 BJ DJ E– 0 0 0

0 0 0 AJ– E– CJ 0

0 0 0 CJ DJ E– 0

0 0 0 0 0 AJ E–

,
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where

From this it follows that, in the vicinity of the ground
state with the energy 2E0, the levels are displaced
approximately by 1.5J and their splitting amounts
to 0.2J.

5. CONCLUSIONS
An analysis of the behavior of exchange-coupled

ion pairs in the magnetic field allows the role of the
orbital angular momentum in the formation of their
energy spectrum to be rationalized. In the general case,
the influence of this momentum reduces to rendering
the exchange coupling anisotropic. This results in split-
ting of the state with S = 1. An antisymmetric contribu-
tion related to the nonequivalent positions of magnetic
ions in the pair influences the dependence of their level
energies on the magnetic field oriented in the plane per-
pendicular to the C3 axis. In the case when the anisotro-
pic contribution to exchange coupling is absent, the
antisymmetric contribution does not influence the posi-
tions of energy levels of the exchange-coupled pairs. It
should be also noted that the positions of levels of the
exchange-coupled Fe2+–Fe2+ and Co2+–Fe2+ ion pairs
are significantly affected by the presence of a singlet
excited state of the Fe2+ ion.

The results of this investigation help us understand
the facts pointed out in the Introduction. In the case
when Fe2+ ions enter the CaCO3-type lattice, the pres-
ence of an orbital angular momentum results in the
complete absence of the exchange coupling component
in the basal plane perpendicular to the C3 axis. This
explains why FeCO3 is a uniaxial antiferromagnet and
accounts for a small value of the exchange field at the
iron impurity ions in antiferromagnetic CoCO3. If the
magnetic ions occupy nonequivalent crystallographic
positions, there appears an exchange coupling compo-
nent that leads to sloped magnetic moments of the sub-
lattices in the case of antiferromagnetic ordering. In
CoCO3 and NiCO3, the magnitude of antisymmetric
exchange exceeds the isotropic exchange in the basal
plane.

The absence of a gap related to the hyperfine split-
ting in CoCO3 can be understood based on the analysis
of data presented in Table 2. As can be seen, the hyper-
fine interaction constants can vary from negative to
positive values in response to small changes in the
parameter p characterizing the configuration interac-
tion. This is evidence of high sensitivity of these con-
stants to the form of the function describing the ground

A e2/2 f 2+( ) 3a2 b2 c2–+( ) 0.31,= =

B 3ac b2+( ) 2 6dγ 2 6eβ 4 fα+ +( ) 1.47,= =

C 3ac b2+( ) 2 6dα 2 6eβ 4 fγ+ +( ) 1.47,= =

D 3a2 b2 c2–+( ) α2 γ2–( ) 0.= =
JOURNAL OF EXPERIMENTAL 
state of a magnetic ion. Therefore, the presence of
strong exchange fields can significantly influence these
values for CoCO3.

To summarize, the results of this investigation are as
follows. For Co2+ ions in the calcite-type crystal lattice:

(i) The energy levels of the Co2+ ion and the corre-
sponding wave functions are determined in the
Abragam–Pryce approximation using the experimental
g values and hyperfine interaction constants.

(ii) Expressions for Hamiltonians of the exchange
coupling and the Dzyaloshinski interaction are found
proceeding from the known wave functions of the
ground state.

For Fe2+ ions in the calcite-type crystal lattice:
(i) The g values, energy levels, and wave functions

of Fe2+ ion in the vicinity of the ground state are calcu-
lated in the Abragam–Pryce approximation. 

(ii) The exchange coupling in the basal plane of a
calcite-type lattice for the Fe2+–Fe2+ and Co2+–Fe2+ ion
pairs is shown to be absent in the Abragam–Pryce
approximation.

(iii) The energy levels of the exchange-coupled
Fe2+–Fe2+ and Co2+–Fe2+ ion pairs are determined with
allowance for the excited states.
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Abstract—Time-resolved photoluminescence (PL) spectra of self-assembled CdSe/ZnSe quantum dots (QDs)
are measured with a view to identifying the QD-size dependence of carrier capture and recombination in a sin-
gle QD. The PL is excited by optical absorption in the ZnSe barrier layers under weak and strong irradiation
with femto- and nanosecond laser pulses, respectively. In the case of weak excitation, the PL dynamics observed
in a QD and the barrier layers are attributed to (i) fast carrier diffusion in the barrier layers, (ii) intense capture
of carriers by the QD, (iii) fast carrier relaxation to the QD ground state, and (iv) dependence of the carrier cap-
ture and recombination times on the QD size. In the case of strong excitation, PL spectra are measured for dif-
ferent levels of excitation intensity and PL intensity is examined as a function of excitation intensity. It is estab-
lished that (i) an increase in excitation intensity has a stronger effect on a high-frequency part of the spectrum
and (ii) the intensity characteristic is essentially nonlinear. These findings are explained by state filling and/or
decrease in carrier capture rate as the QD becomes increasingly full. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent years have seen considerable interest in II–
VI semiconductor quantum dots (QDs). Aside from
their unusual physical properties, QDs of this type sug-
gest rich possibilities for creating high-speed, low-power
optoelectronic devices, such as light-emitting diodes and
lasers for the blue–green spectral range [1–9].

This paper presents a photoluminescence (PL) spec-
troscopy study of linear and nonlinear optical proper-
ties of self-assembled CdSe/ZnSe QDs grown by
molecular-beam epitaxy (MBE). The goal is to identify
the QD-size dependence of carrier capture and recom-
bination in a single QD. The study consists of two parts,
in which PL spectra are obtained after weak and strong
excitation by femto- and nanosecond laser pulses,
respectively.

Due to size quantization, the optical-transition ener-
gies of a QD vary with its size, which results in strong
inhomogeneous broadening of the PL spectrum. The
properties of a single QD have been examined by near-
field optical microscopy [1] and spatially resolved tech-
niques [10, 11]. In the latter case, the researchers
employed a nanoaperture [10] or fabricated a reason-
able number of QD islands by lithography [11].

A different approach was followed in this study. In
the first part, we measured time-resolved inhomoge-
neously broadened PL spectra of a whole array of QDs
at 20 K and analyzed the PL dynamics in different spec-
tral regions. The dependence of carrier capture and
1063-7761/04/9801- $26.00 © 20156
recombination on QD size was thus determined for a
single QD without using spatially resolved techniques.
Note that if the excitation is weak enough, QDs lumi-
nesce by recombination of electron–hole pairs1

 in the
ground state and the homogeneous PL spectral broad-
ening of a single QD is within 1 meV at liquid-helium
temperature [12]. For a single CdSe/ZnSe QD, the full
width at half maximum (FWHM) measured in [11] was
about 0.07 meV at 5 K.

In the second part, we investigated how the PL spec-
trum varies with excitation intensity and hence with the
carrier density in a single QD. A possible mechanism of
this variation is analyzed.

2. MATERIALS, METHODS, RESULTS, 
AND DISCUSSION

Arrays of CdSe/ZnSe QDs were fabricated with a
two-chamber MBE machine in the Stranski–Krastanow
growth mode on a GaAs(001) substrate misoriented by
6° toward [010]. A GaAs buffer layer was first formed

1 Although electron–hole pairs bound by Coulomb attraction are
commonly referred to as excitons when the discrete excited states
of QDs are described, they are not true excitons, i.e., quasiparti-
cles capable of dissociating into free electrons and holes [13, 14].
The Coulomb interaction energy in a QD is approximately e2/εd,
where d is the mean QD size and ε is permittivity. This energy,
though greater than that characteristic of two- and one-dimen-
sional systems, is still much less than the level separation of free
electrons and holes.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Weak excitation: (a) a PL spectrum of the specimens at 20 K; (b) time plots of PL and excitation intensity. Spectral regions 1
and 2 in panel (a) correspond to QDs and barrier layers, respectively; curves 1–3 in panel (b), to QDs (spectral region 1), barrier
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on the substrate, and then a trilayered structure was
made in which 2.8 monolayers of CdSe were sand-
wiched between ZnSe layers 40 nm-thick. The three
layers were successively grown at 260, 320, and 280°C,
respectively. We also used this method to produce spec-
imens in which ten QD layers of CdSe were separated
by 12-nm-thick ZnSe barrier layers.

The CdSe thickness exceeded 2.3 monolayers, the
point of transition to three-dimensional growth [9, 15–
17]. The density of QDs in the layer was about 1011 cm–2.
The use of a misoriented substrate under the growth
conditions indicated above prevented the formation of
two-dimensional CdSe islands and ensured step-flow
growth (direct incorporation of adatoms into surface
steps). When an exactly oriented GaAs(001) substrate
is used, transition from two- to three-dimensional CdSe
growth does not occur under typical conditions, which
may be explained by insufficiently fast diffusion due to
low growth temperature [18–21].

Electron and atomic-force microscopy measure-
ments have shown that CdSe/ZnSe QDs created by a
similar method and having a similar PL spectrum
(peaking at 2.26 to 2.38 eV) tend to be spherical caps
about 20 nm in diameter and between 2 and 3 nm in
height [11].

In the present study, the linear and nonlinear optical
properties of CdSe/ZnSe QDs were measured mainly
by laser-based spectroscopic methods, including a
time-resolved one.

2.1 Weak-Excitation Photoluminescence 

In the case of weak excitation, we explored the
dynamics of PL by measuring time-resolved PL spectra
at 20 K. PL was excited by the focused second-har-
monic emission (hν = 3.1 eV) of a Ti:sapphire laser
under pulsed conditions (with a pulse width of about
100 fs, a fluence of 0.2 µJ/cm2, and a repetition rate of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
82 MHz), pumped by an Ar laser. In this setting, optical
absorption and carrier generation took place mainly
in  the ZnSe barrier layers.2 The PL spectra were
recorded by crossing a lock-in streak camera (Hama-
matsu C1587) and a polychromator. The measuring
system provided a time resolution better than 10 ps.

Figure 1 shows a PL spectrum of the specimens and
time plots of PL intensity for the QDs and barrier layers
over specific spectral regions. An intensity–time plot
for the excitation pulse is also included in order to
determine the time resolution of the measuring system.

Figures 2a and 2b display time-resolved PL spectra
of the QDs and time plots of PL intensity, respectively.
The PL spectra shown in Fig. 2a were measured over
different periods after excitation. The time plots shown
in Fig. 2b correspond to the spectral regions specified in
Fig. 2a.

In Fig. 1a, the PL spectrum consists of a strong (2.3–
2.5 eV) and a weak band (2.8 eV), which appear to cor-
respond to the QDs and barrier layers, respectively.
Note that the former is blue-shifted by more than 0.5 eV
relative to the 1.8-eV energy gap of bulk CdSe as a
result of size quantization. The large FWHM of the
strong band (about 80 meV) can be attributed to the
inhomogeneous broadening due to variability of the
QD size. The estimated spread of QD size is less
than 10%.

It was also established that (i) the PL decay time of
the barrier layers is about 7 ps, which is smaller than the
recombination time for bulk ZnSe; (ii) PL is much
stronger in the QDs as compared to the barrier layers;
and (iii) the PL rise time is as short as 8–24 ps, depend-
ing on the QD size (see below for details). These find-

2 Excitation by this method results in intense PL of the QDs. When
an Ar laser is used as an excitation source (with a photon energy
less than the ZnSe energy gap), a much lower PL intensity is
achieved, because the pumping radiation is poorly absorbed by
QD layers.
ICS      Vol. 98      No. 1      2004
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Fig. 2. Weak excitation: (a) time-resolved PL spectra of the QDs measured at 20 K; (b) time plots of PL intensity for the spectral
regions specified in panel (a). The PL spectra of Fig. 2a correspond to the periods (1) 0–23, (2) 23–47, (3) 48–72, (4) 87–110,
(5) 122–145, and (6) 145–169 ps after the end of excitation.
ings imply (i) fast carrier diffusion in the barrier layers,
(ii) intense carrier capture by the QDs, and (iii) fast car-
rier relaxation to the ground electron–hole state of the
QDs. Thus, there is no phonon bottleneck in the speci-
mens under study [22].

Figure 2a demonstrates that PL decays more rapidly
in a high-frequency region (the PL peak is red-shifted
with time). Note also that the rise and fall times of PL
intensity are longer for lower frequency regions
(Fig. 2b).

The observed PL dynamics can be explained by
variation of QD size. Recombination of electron–hole
pairs in a QD can be radiative or radiationless. The rate
of radiationless recombination increases with decreas-
ing QD size because of the growing influence of the
CdSe/ZnSe interface. This accounts for the changes in
the shape of PL spectrum illustrated by Fig. 2a. The
role played by nonlinear processes in these changes
must be insignificant in view of the relatively low inten-
sity of second-harmonic emission of the Ti:sapphire
laser.

The time plots shown in Fig. 2b can be interpreted
by invoking a three-level model [23]. To do this, one
should introduce two time constants: τΣ and τ. The
former is the sum of the carrier diffusion time for the
barrier layers, the carrier capture time for the QD, and
the time of relaxation to the ground electron–hole state
in the QD. The time constant τ is the recombination
time of an electron–hole pair (excitonic lifetime). The
JOURNAL OF EXPERIMENTAL 
exciton density n as a function of time is governed by
the equation

(1)

subject to the initial condition n = 0 at t = 0. Here, n0 is
the excited-carrier density and γ characterizes the effi-
ciency of carrier migration into the QD.

It follows that the PL intensity I evolves as

(2)

The table lists the results obtained by applying the
above approach Eq. (2) to the PL time plots shown in
Fig. 2b and taking into account the time resolution of
the measuring system. It shows how these parameters
vary with QD size, which decreases with increasing fre-
quency.

For each specific spectral region, the PL decay can

be accurately represented as , with β < 1 given in
the table. The steeper decrease in the recombination
time for smaller QDs can be attributed to an increasing
contribution of radiationless recombination. The use of
a stretched exponential appears to provide an adequate
approximation of the dependence of τ on QD size even
over a narrow size range.

dn
dt
------

1
τΣ
----- n0γe

t /τΣ–
( ) n

τ
---,–=

I n∝ e t /τ– e
t /τΣ–

–
τ τ Σ–

--------------------------γn0τ .=

e t /τ( )β–
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Fig. 3. Strong excitation: PL spectra (80 K) of the QDs for the excitation intensities (A) 0.057 and (B) 1.5 MW/cm2. Closed circles
represent saturation excitation intensities for different spectral regions.
Note also that τΣ increases with QD size. This may
be explained by the increase in its capture component.
It was shown in [24, 25] that the capture of electrons
from a barrier layer into a quantum well may cause neg-
ative and positive charging of the quantum well and an
adjacent barrier region, respectively. The growing Cou-
lomb barrier inhibits the increase in carrier density in
the quantum well. The decline of the carrier capture
rate that ensues as the quantum well becomes increas-
ingly full (see [26]) should be more pronounced in
larger QDs because of a longer carrier lifetime.

At the same time, the dependence of τΣ on the QD
size cannot be attributed to its relaxation component.
One would rather expect it to be larger for smaller QDs,
where the QD levels are less closely spaced, provided
that resonant transitions are impossible (the level sepa-
ration is not equal to the optical-phonon energy [27]).
Furthermore, the time of relaxation to the ground state
for II–VI QDs was found to be less than 1 ps; i.e., there
is no phonon bottleneck [9, 22, 28].

The diffusion component of τΣ must be insignificant
since the ZnSe barrier thickness is small in the speci-
mens examined in this study.

2.2 Strong-Excitation Photoluminescence 

In the case of strong excitation, we investigated how
PL varied with excitation intensity. The PL was excited
by the third-harmonic emission (hν = 3.45 eV) of a Q-
switched Nd:YAlO4 laser with a pulse width of 14 ns.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Figure 3 shows the PL spectra of the specimens
recorded at 80 K for two levels of excitation intensity.
Note that an increase in excitation has a stronger effect
on a high-frequency part of the spectrum (the peak is
blue-shifted). Figure 4 demonstrates that the PL inten-
sity measured for the high-frequency regions indicated
in Fig. 3, which correspond to different QD sizes, is an
essentially nonlinear function of excitation intensity.

These results can be explained by analyzing the con-
tributions of the processes that can take place in QDs at
high densities of electron–hole pairs: state filling [29,
30], the Stark effect [31], and temperature-dependent
change in transition energy. The curves of Fig. 4 should
be attributed to the filling of the QD ground level sub-
ject to the Pauli exclusion principle. The measured
recombination time in the QDs is much smaller than the

Table

Spectral region τΣ, ps τ, ps β

a 23 ± 2 410 ± 20 1

b 16 ± 1 418 ± 7 1

c 13 ± 1 357 ± 6 1

d 12 ± 1 244 ± 7 0.9 ± 0.1

e 11 ± 1 144 ± 8 0.7 ± 0.1

f 8 ± 1 112 ± 8 0.6 ± 0.1
SICS      Vol. 98      No. 1      2004
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excitation pulse width: τ ! τp. Accordingly, the steady-
state density of the carriers injected into a single QD is

(3)

where χ characterizes the carrier-injection efficiency, R
is the specimen’s reflectance, α is the specimen’s
absorption coefficient, L is the total thickness of the
barrier layers, W is the excitation-pulse energy, S is the
area of excitation, and N is the QD density. Since mea-
surements of the specimen’s transmittance have shown
that nQD > 10, the steady-state carrier density is suffi-
cient to ensure level filling in a single QD.

The nonlinear intensity characteristic was approxi-
mated by the saturation model

(4)

where I is the PL intensity, n is the QD carrier density
as a function of excitation intensity, and ns is its satura-
tion level [30]. Furthermore, ns ≈ Ps , where Ps is the sat-
uration excitation intensity. The PL intensity at P = Ps
is half as high as that reached in the case of a linear
intensity characteristic.

At high frequencies, Ps was found to increase with
frequency from 0.4 to 0.9 MW/cm2 (Fig. 3). Both this
effect and the blue shift can be attributed to shorter
recombination times in smaller QDs.

nQD χ 1 R–( ) 1 e αL––( )Wτ
τpShγN
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Fig. 4. Strong excitation: PL intensity vs. excitation inten-
sity for spectral regions 1–3 of Fig. 3.
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The behavior of Ps at low frequencies (Fig. 3) may
be associated with a considerable red shift in the fre-
quency corresponding to the ground-state transition,
due to the Stark effect and a temperature-dependent
change in transition energy. Accordingly, the increase
in PL intensity (Fig. 3) should result from the contribu-
tion of neighboring smaller QDs of higher density. The
variation of Ps may also be associated with the decrease
in capture rate with increasing QD size (see Section 2.1).
This effect is more pronounced for large QDs because
they are characterized by longer carrier lifetimes.

3. CONCLUSIONS
PL spectra of self-assembled CdSe/ZnSe QDs were

measured by generating carriers in the ZnSe barrier lay-
ers by means of weak and strong pulsed laser radiation
on time scales of femto- and nanoseconds, respectively.

In the case of weak excitation, time-resolved PL
spectra were obtained. It is found that both rise and fall
times of PL intensity are shorter for higher frequency
regions. This finding is attributed to shorter carrier cap-
ture times and the recombination times of electron–
hole pairs (excitons) corresponding to smaller QDs.

In the case of strong excitation, PL spectra were
measured for different levels of excitation intensity and
PL intensity was examined as a function of excitation
intensity. The change in PL spectrum and the nonlinear
nature of the intensity characteristic were explained by
(i) state filling, (ii) a red shift in the ground-state-tran-
sition frequency due to the Stark effect and a tempera-
ture-dependent change in transition energy, and
(iii) decrease in capture rate as the QD becomes
increasingly full.

Thus, the use of time-resolved laser PL spectro-
scopy made it possible to determine the QD-size
dependence of carrier capture and recombination in a
single QD.
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Abstract—The conductivity and the distribution of electric field, current, and charge density in a periodic two-
component system composed of rhombs with an arbitrary vertex angle of 2α are investigated. The effective con-

ductivity of such a medium is represented by a tensor with components  and  in the principal

axes that satisfy the Dykhne relation  = σ1σ2, where σ1, σ2 are the isotropic conductivities of

media 1 and 2. In addition, the relation  =  is satisfied. The principal axes are directed along
the diagonals of the rhombs. It is shown that there are three lines in the rectangle 0 < α ≤ π/2, –1 < Z < 1 (Z =
(σ1 – σ2)/(σ1 + σ2)) on which the charge density is expressed in terms elliptic functions. An explicit expression
is obtained for all physical quantities on these lines. © 2004 MAIK “Nauka/Interperiodica”.
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11 α( ) σeff
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σeff
22 α( ) σeff

11 π/2 α–( )
1. INTRODUCTION

A periodic two-component system composed of
rhombs with a vertex angle of 2α seems to be the sim-
plest in which the effective conductivity is not isotro-
pic, whereby the Dykhne relation for the components

of the conductivity tensor with components  and

 in the principal axes [1–4],

(1)

is insufficient for the complete reconstruction of the
tensor of effective conductivity. In (1), the quantities σ1,
σ2 are the isotropic conductivities of the media. The

components  and  satisfy the following
obvious relation:

(2)

Below, we will show that even the first terms of pertur-
bation theory in the parameter

(3)

for the components of the tensor of effective conductiv-
ity nontrivially depend on the angle α. Therefore, it is
hardly possible that one can obtain exact algebraic for-

mulas for the tensor components  and .

σeff
11 α( )

σeff
22 α( )

σeff
11 α( )σeff

22 α( ) σ1σ2,=

σeff
11 α( ) σeff

22 α( )

σeff
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11 π/2 α–( ).=

Z
σ1 σ2–
σ1 σ2+
-----------------=

σeff
11 α( ) σeff

22 α( )
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Nevertheless, in the domain of parameters (0 < α < π/2,
–1 < Z < 1), there exist three lines on which one can
obtain a closed-form expression for the charge density,
concentrated on the boundaries of domains (1) and (2),
in terms of elliptic functions. In the domain Z  1,
α  0, the charge density and other physical quanti-
ties essentially depend on the ratio of small parameters
(1 – Z)/α.

2. CHARGE DENSITY
IN A PERIODIC SYSTEM COMPOSED 

OF RHOMBS WITH A VERTEX ANGLE OF 2α

Choose a coordinate system (x, y) with the origin at
a vertex of a certain rhomb and the axes directed along
the diagonals of the rhombs (see Fig. 1). In this case,
the vectors of a unit cell can be chosen as

(4)

where a is the length of the side of the rhomb. The con-
tinuity of current on the boundaries of rhombs deter-
mines the jump of electric field E,

, (5)

where n is a normal vector to the side of the rhomb and

,  is a projection of electric field onto the nor-
mal vector. The Maxwell equation divE = 4πρ, where

2a α 1 0,( ); 2a α 0 1,( ),cossin

σ1En
1( ) σ2En

2( )=

En
1( ) En

2( )
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ρ is the charge density, yields the second equation for
the electric field jump

(6)

The relation between the scalar potential ϕ and the
charge density is given by

(7)

where G is the Green function of the Laplace operator
on the plane,

(8)

The electric field E0 is directed along axis y; this

allows us to find the component  of the conduc-
tivity tensor in the principal axes. There are obvious

relations between the components  and 
of the conductivity tensor in the principal axes,

(9)

Charges are localized only along the sides of the
rhombs. Due to the translation symmetry and two sym-
metry planes, there exist only two independent func-
tions ρ1, ρ2 that determine the charge density on all the
sides of the rhombs. As a result, taking into account for-
mulas (4), we obtain the following expression for the
scalar potential ϕ:

(10)

En
1( ) En

2( )– 4πρ.=

ϕ E0y 4π r2
1G r r1–( )ρ r1( ),d∫–=

G
1

2π
------ r r1– .ln=

σeff
22 α( )

σeff
11 α( ) σeff

22 α( )

σeff
11 α( ) σeff

22 π
2
--- α– 

  ,=

σeff
12 α( ) σeff

21 α( ) 0.= =

ϕ E0y 2a–=

× td

0

1

∫ x at α 2aK αsin–sin–( )2(ln[{
K L,
∑

+ y at α 2aL αcos–cos–( )2 )1/2

+ x at α 2aK αsin–sin+( )2(ln

+ y at αcos– 2aL αcos–( )2 )1/2 ]ρ1 t( )

+ x at αsin– 2aK αsin–( )2(ln[

+ y at αcos 2aL αcos–+( )2 )1/2

+ x at αsin 2a αsin–+( )2(ln

+ y at αcos 2aL αcos–+( )2 )1/2 ]ρ2 t( ) } .
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Boundary conditions (5) and (6) and expression (10)
for the scalar potential ϕ yield two equations for ρ1, ρ2.
A simple verification shows that the functions ρ1, ρ2
satisfy the simple relation

(11)

As a result, we have only one equation for ρ1(t):

(12)

ρ2 t( ) ρ1 t( ).–=

Z
2π
------ E0 α 2 2α( ) tρ1 t( )d

0

1

∫sin+sin




× t K L+ +

t t' 2K+ +( )2 αsin
2

t t'– 2L+( )2 αcos
2

+
-------------------------------------------------------------------------------------------------

K L,
∑

+
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t t'– 2K–( )2 αsin
2

t t'– 2L+( )2 αcos
2

+
------------------------------------------------------------------------------------------------

–
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t t' 2K+ +( )2 αsin
2

t t' 2L–+( )2 αcos
2

+
-------------------------------------------------------------------------------------------------

+
t K– L–
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2
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
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y

E0
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Fig. 1. Periodic two-component system of rhombic type.
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For α = π/4, formula (12) reduces to the expression
obtained in [3].

In (12), we can perform one summation. As a result,
we reduce Eq. (12) to

(13)

where

(14)

The function ρ1(t) is a doubly periodic analytic function
of the complex variable t and has two branching points
in each parallelogram of periods. Let us determine the
behavior of ρ1(t) in the neighborhood of the branching
points t = {0, 1}. The asymptotics of the function ρ1(t)
as t  0 is proportional to a power of t:

(15)

The coefficient ν can be obtained from the following
equation derived from Eq. (13):

(16)

Z
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Calculating the integrals in (16), we obtain

(17)

Then, the equation for the parameter ν follows from
Eqs. (16) and (17):

. (18)

For α = π/4, Eq. (18) coincides with the result of [3]. In
the neighborhood of the point t = 1, the function ρ1(t)
can be represented as

(19)

Parameter µ satisfies the equation

(20)

Equations (18) and (20) were obtained in [5].

The two periods (τ, τ') can be determined by
Eq. (13) and are given by

(21)

The charge density ρ1(t) can be represented as

(22)

where φ(t) is a doubly periodic function.

Notice the following important property of the ker-
nel in Eq. (13): the integral with respect to external vari-
able t ' does not depend on angle α and, hence, coin-
cides with the expression obtained in [3]. Integrating
Eq. (13) with respect to external variable t', we obtain

(23)
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The component  of the conductivity tensor is
expressed in terms of the charge density ρ1(t) by the
formula

(24)

3. PERTURBATION THEORY
WITH RESPECT TO PARAMETER Z

Perturbation theory in Eqs. (12) and (13) is trivial.
Setting

(25)

we obtain the following expression up to the second-
order terms in Z:

(26)

.

In third-order perturbation theory, we obtain the fol-

lowing expression for the conductivity  from (23),
(24), and (26):
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(27)

It follows from (27) that the conductivity 
can be represented as

(28)

where

(29)

It follows from the Dykhne theory that the function
F1(α) is independent of α and equals unity:

(30)

From (27) and (28), we derive the function

(31)

Integrating by parts the right-hand side of Eq. (31),
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we obtain

(32)

In the limit as α  0, we obtain

(33)
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The function F2(α) is a nontrivial function of α. The
results of the numerical calculation of the function
F2(α) are given in Fig. 2.

4. EXACT SOLUTIONS OF THE EQUATION
FOR ρ1

There are three lines in the rectangle {0 < α < π/2,
0 < ν < 1/2} on which the function φ(t) is elliptic. One
of these is the straight line α = π/4. In this case, τ = (τ'),
µ = –ν, and φ = B℘ ν, where ℘  is the Weierstrass ellip-
tic function [3] and B is a numerical factor. There are
two lines on which

, (34)

and, hence, φ is an elliptic function. On these lines, the
function α1(ν), α2(ν) is defined by formulas (18), (20),
and (34), which lead to the equation

(35)

Solutions to this equation are given by

(36)

All three of these lines are shown in Fig. 3. On
lines (36), the elliptic function φ can be expressed in
terms of function θ1 [6]:

(37)

It follows from (37) that

(38)

Formulas (38) make it possible to express the ellip-
tic function φ with periods {τ, τ'} as

(39)
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The function φ(z) satisfies the relation

(40)

We also present the following useful relations:

φ z( )φ 1 z–( ) eπ α iπ–tan .=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(41)eiπz/τθ1
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The function φ(z) satisfies the differential equation

(42)

where

(43)

Formulas (22), (34), and (41) imply that, in the
interval (0, 1) of the real axis, the charge density can be
represented as

(44)
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where

(45)

The coefficient |A | is given by Eq. (23):

(46)

The component  is defined by (24):

(47)

Consider the limit case as α  π/2. From (41), we
obtain

(48)

The parameters ν, A, and Z are given by formulas (18),
(36), and (45):
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Using (48) and (49), we can reduce the expression
for the charge density to

(50)

The coefficient |A | is defined by (46) and (50):

(51)

Using (47), (50), and (51), we obtain the following

expression for the component  of the conductiv-
ity tensor as α  π/2:

(52)

The component  is reconstructed by the
Dykhne relation

(53)

Note that α = 0 is a singular point. In particular,
F2(α) (see Eq. (31)) is a periodic odd function of α with
period π such that F2(α  +0) = 1/3. Hence, an
expansion of this function in trigonometric series con-
tains infinitely many harmonics.

5. CONDUCTIVITY
IN THE DOMAIN Z  1

Consider the range of values of the parameter Z that
are close to unity:

1 – Z ! 1. (54)

Suppose also that angle α satisfies the conditions

(55)

Under conditions (54) and (55), parameter ν is close
to 1/2:

(56)

From Eq. (18), we determine
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Under conditions (56), the charge density ρ1 in the
zero approximation is given by (15):

(58)

where  is a value of order unity, provided that

(59)

The component  is defined by (24) and,
under conditions (56) and (59), is equal to

(60)

When α = π/4, we have (π(4)) = 1/π. Thus, for
Z  1 and a wide range of angles α satisfying condi-

tion (55), the components  and  of the
tensor of effective conductivity differ only by a numer-
ical factor of order unity.

In the domain where α  0 and Z  1, we deter-
mine both parameters µ and ν from Eqs. (18) and (20):

(61)

Equation (61) implies that the parameter ν is a func-
tion of the ratio of two small parameters {α, 1 – Z} with
the range of variation (0, 1/2). In this domain, the
charge density experiences a strong variation and the

ratio of the components  and  is also an
essential function of the parameter α/(1 – Z).

6. CONCLUSIONS

We have investigated the conductivity and the
charge and current distributions in a periodic two-com-
ponent system composed of rhombs with an arbitrary
vertex angle of 2α. Investigation of special cases has
shown that one can hardly expect simple algebraic
expressions for the components of the tensor of effec-
tive conductivity [7]. We have shown that, in the plane
of parameters (α, ν), there are three lines on which an
explicit expression is obtained for the charge density
and the tensor of effective conductivity in terms of
elliptic functions. At a point of general position on the
plane {α, ν}, the charge density is a doubly periodic
analytic function of parameter t with two branching
points in the parallelogram of periods.
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Abstract—The broadening of a two-photon resonance is studied experimentally at the 4s 1S0–6s 3S1 transition
in a zinc atom upon absorption of two waves with a small detuning from an intermediate state in collisions with
CO2, CO, and NO molecules. The measured absolute values of broadening cross sections greatly exceed gas-
kinetic cross sections and are (9.4 ± 2.4, 6.5 ± 1.6, and 3.9 ± 1.0) × 10–14 cm2 for CO2, CO, and NO, respec-
tively. Anomalously large rate constants and cross sections obtained in experiments are explained by the effi-
cient resonance quenching of the excited states of zinc atoms in collisions with molecules accompanied by
transfer of the energy of excited atoms to vibrational-rotational degrees of freedom of molecules. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Collisions of electronically excited atoms with mol-
ecules have been extensively studied over a long period
of time (see, for example, [1, 2]). These collisions are
accompanied by a variety of processes such as quench-
ing of excited states, ionization, and chemical reac-
tions. The investigation of these processes is important
for the understanding of the collision kinetics, the phys-
ics of plasmas and lasers, laser isotope separation, etc.
The most popular method for measuring the absolute
values of the rate constants of such processes is the
detection of the time dependence of the intensity of flu-
orescence from excited levels as a function of the con-
centration of another gas. An alternative method is the
detection of the widths of absorption lines of atoms.
This method also gives information on spectral shifts of
absorption lines caused by various physical processes.
The first studies in this field were performed by classi-
cal absorption methods [3]. To exceed the Doppler
broadening, the experiments were performed at high
gas pressures. Later, the authors of [4] proposed a
method based on the simultaneous absorption of two
photons by an atom with the same energies and oppo-
sitely directed momenta. In this case, the shape of the
absorption line is determined only by homogeneous
broadening. The absence of Doppler broadening allows
the experiments to be performed at comparatively low
pressures (a few orders of magnitude lower than in the
one-photon method), and the spectral resolution is
determined only by a radiation source.

The broadening and shift of two-photon absorption
resonances have been experimentally studied to date
1063-7761/04/9801- $26.00 © 20024
mainly for the Rydberg atoms of alkali metals [5–7].
This is explained by the fact that, to study two-photon
absorption for other elements, an intense tunable UV
radiation source is required.

In this work, we studied experimentally for the first
time the broadening of the two-photon resonance at the
4s 1S0–6s 3S1 transition in a zinc atom colliding with
CO2, CO, and NO molecules. This transition is of inter-
est because it is involved in the process of excitation of
zinc atoms upon photochemical separation of zinc iso-
topes [8].

2. EXPERIMENTAL

Experiments were performed on a setup for laser
separation of zinc isotopes [8]. The scheme of the setup
for excitation of zinc atoms is shown in Fig. 1. The
atoms were excited in an interaction chamber repre-
senting a horizontally positioned quartz cylinder of
diameter 3 cm and length 100 cm. Granulated zinc with
residual impurities of other elements less than 10–4%
was placed at the bottom of the cylinder. The interac-
tion region was heated with an external furnace with
automatic temperature control, which was measured
with a chromel–copel thermocouple with an accuracy
of 0.5°C. After careful degassing in vacuum upon
pumping by a magnetic-discharge pump, the gas under
study was pumped through the interaction region at a
rate of 0.5 l/s. The gas was pumped by a backing pump
and its pressure was measured with a McLeod gauge.
We used in our experiments CO2 with residual impuri-
004 MAIK “Nauka/Interperiodica”
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ties of O2 and H2O in amounts less than 1%, CO with
impurities of O2 and formic acid less than 0.5%, and
NO with impurities of NO2 and O2 less than 0.5%. Con-
trol experiments were performed with helium and
argon. The working temperature of the chamber was
275°C, and the calculated concentration of zinc atoms
in the interaction region was 7 × 1012 at./cm3.

Zinc atoms were excited to the 6s 3S1 state by two
counterpropagating beams at the wavelengths λ1 =
0.307 µm and λ2 = 0.303 µm from two lasers described
in [9] (see Fig. 2). A cw dye laser pumped by an argon
laser was used as a master oscillator. Narrowband laser
radiation with a linewidth lower than 5 MHz was ampli-
fied in a three-stage scheme of amplifiers pumped by a
pulsed Cu laser. The amplified radiation was doubled in
a nonlinear BBO crystal. The average power of each of
the laser beams in the interaction chamber was approx-
imately 1 W, the pulse duration was 10 ns, the linewidth
was no more than 40 MHz, the pulse repetition rate was
12 kHz, and the beam diameter was 1 cm. The counter-
propagating pulses were combined using a delay line in
such a way that their power maxima in time coincided
in the center of the region of interaction with zinc
vapors. Both waves had linear and mutually orthogonal
polarizations because the two-photon transition under
study is forbidden for parallel polarizations [10]. The
beam frequencies were detuned by 9 GHz from the

exact resonance with the 4p 3  level. This circum-
stance and the closeness of the energies of the two
counterpropagating photons reduces the Doppler
broadening, thereby making it possible to resolve the
isotopic structure. After excitation of zinc atoms to the
upper 6s 3S1 state, this state decays via direct and cas-

cade optical transitions to long-lived 4p 3  levels with
a lifetime of 10 µs. Two-photon absorption was
detected by the luminescence signal at the wavelengths
1.3 and 0.48 µm with a germanium photodiode 9
(Fig. 1) and a selective voltmeter 11 at a 130-Hz fre-
quency of modulation of one of the beams with the help
of a mechanical chopper. This detection technique pro-
vided a better signal-to-noise ratio than direct detection
of the UV radiation absorption with photodiode 10 and
selective voltmeter 12. The output signals of the selec-
tive voltmeter were detected by a computer by continu-
ously varying the wavelength of one of the beams, the
wavelength of the other beam being constant. Each of
the experimental points corresponded to a measure-
ment time of 10 ms (averaging was performed over
about one hundred laser pulses). The wavelength of
tunable radiation was detected simultaneously with a
wavemeter. The absolute error of the UV radiation fre-
quency measurement was 400 MHz, and the relative
error during the time of measurements of 1 min was
smaller than 20 MHz.

P1
0

P j
0
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3. SHAPE 
OF THE TWO-PHOTON RESONANCE LINE

IN A ZINC ATOM

To measure the width of the two-photon 4s 1S0–
6s 3S1 line resonance line (we will denote the states by
g and f, respectively), it is necessary to determine the
shape of the absorption line for counterpropagating
waves with unequal frequencies and a small detuning δ

of radiation frequencies from the intermediate 4p 3
state, which we will denote by n. For the fixed, ν1, and
tunable, ν2, frequencies of exciting radiation and the
frequencies νfn and νng of transitions in the atom, the
value of δ is determined by the condition

(1)

The requirement of the resonance leads to the con-
dition

(2)

where v  is the projection of the velocity of an atom on
the direction of radiation propagation. According
to [11], the rate of the two-photon g  f transition in
the field of two counterpropagating waves is deter-
mined by the expression

(3)

where Ω1 and Ω2 are the Rabi frequencies for the one-
photon g  n and n  f transitions, γ is the line-
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Fig. 1. Scheme of the experimental setup: (1) interaction
chamber; (2) gas inlet; (3) gas evacuation; (4) pressure
gauge; (5, 6) laser systems; (7) mirrors; (8) mechanical
chopper; (9, 10) photodetectors; (11, 12) selective voltme-
ters; (13) computer; (14) wavemeter.
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width of the two-photon transition, and ∆ is the reso-
nance frequency shift. The linewidth γ is determined by
the radiative and collision broadenings:

(4)

where k is the rate constant of collision broadening, n is
the concentration of molecules, and γ0 is the transition
linewidth in the absence of collisions. The averaging of
expression (3) over the Maxwell distribution of atoms
over velocities gives a profile with a diminished Dop-
pler width (ν1 – ν2)u/c, where u is the most probable
velocity of atoms in gas. This residual Doppler width of
the two-photon resonance is equal to 16 MHz, which is
lower than other widths (widths of the spontaneous and
stimulated transitions from the upper level and laser lin-
ewidths), which are independent of the atom velocity.
As a result, we obtain the dependence of the probability
of two-photon absorption on frequency

(5)

The profile of the absorption line proves to be
shifted with respect to the center by the value ∆, which
is determined by the total contribution of the collision
shift ∆col and the field shift caused by the field at the fre-
quency ν2:

(6)
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Fig. 2. Energy level diagram of a zinc atom.
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The oscillator strengths of the working transitions in
a zinc atom fng ≈ 1.4 × 10–4 and ffn ≈ 1.6 × 10–2 [12] dif-
fer by two orders of magnitude. At equal intensities of
exciting radiation, the field shift at the f–n transition
leads to an increase in the transition frequency approx-
imately by 200 MHz for a pulse power of I =
10 kW/cm2 and is comparable to the experimental
width of the resonance.

The number of atoms excited to the 6s 3S1 state by a
10-ns pulse is

(7)

where N1 is the concentration of atoms in the ground
state and V is the volume of the region of interaction
between laser radiation and atoms. The absorbed radia-
tion power is determined by the number of excited
atoms and monotonically decreases with increasing γ.
Estimates made from (7) show that approximately 10%
of the atoms are excited per pulse in the interaction
region. This agrees with the calculation of the number
of photons absorbed when 1% of a radiation is
absorbed. Excited atoms can relax over several chan-
nels, with a total lifetime equal to 1/2πγ. In this case, a
detected luminescence signal is described by the
expression

where γ1 is the decay rate of the level in the absence of
quenching collisions with molecules and C is a con-
stant. Therefore, a signal detected in experiments is
described by the expression

(8)

Note that the value of S(ν2) increases with increasing
relaxation rate of the f level due to the population of
low-lying levels at which relaxation occurs and from
which spontaneous or stimulated radiation is detected.
Figure 3 shows the experimental dependence of the
luminescence intensity of the 64Zn isotope on frequency
ν2 (curve 1) obtained at temperature T = 548 K, pres-
sure  = 1 Torr, and δ = 9 GHz. Unlike (8), the two-
photon absorption band is asymmetric, which we
observed for all the spectra studied. The asymmetric
shape of the absorption band is caused by fluctuations
of radiation intensity from pulse to pulse (up to 10%).
Each of the measured points was obtained by averaging
the signal over more than 100 pulses. In this case, the
averaging of S(ν2) over the interval of variation in the
radiation intensity gives, in the first approximation, the
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following expression for the experimentally detected
signal:

(9)

where the parameters A, B, and a, which are indepen-
dent of ν2, are selected by fitting the experimental data.
Figure 3 shows the dependences (curves 2 and 3) corre-
sponding to the approximation of experimental data by
expression (9) and Lorentzian profile (8) by the least-
squares method. In the case of approximation by
expression (9), which describes an asymmetric contour,
the error of measurements of γ is somewhat lower than
that for the Lorentzian contour, while the absolute value
is larger. The processing of several experimental curves
by both these methods gives values of γ which differ
from each other no more than by 15%, which is within
the accuracy of other measurements. In this study,
experimental data were approximated by Lorentzian
profiles, because processing based on (9) would be too
cumbersome.

Two-photon absorption of two counterpropagating
waves, which were slightly detuned from an intermedi-
ate state, was first observed in [13] at the 3S−4D transi-
tion in a sodium atom; however, the lineshape was not
studied. The two-photon absorption line observed upon
pulsed excitation can have a broad symmetric pedestal
due to the short duration of radiation (a few nanosec-
onds) and a high pulse power (a few tens of MW/cm2).
This was experimentally demonstrated for a helium
atom at the 2S–3S transition [14]. In our case, such a
pedestal was not observed because of a significantly
lower pulse power.

4. RESULTS

Experiments with different gases were performed
at the same temperature T = 548 K and δ = 9 GHz. Fig-
ure 4 shows the luminescence spectra obtained at dif-
ferent CO2 pressures in the interaction chamber.
Because natural zinc consists mainly of even isotopes,
64 (48.6%), 66 (27.9%), and 68 (18.8%), they were
detected experimentally. The isotope shifts at this two-
photon transition were ∆ν66, 64 = 860 MHz and
∆ν68, 66 = 930 MHz. These values differ somewhat from
the values ∆ν66, 64 = 689 MHz and ∆ν68, 66 = 677 MHz
obtained earlier at the one-photon 4s 1S0–4p 3P1 transi-
tion [15]. One can see from Fig. 4 that the spectrum
broadens with increasing gas pressure in the interaction
region. The dashed curve in Fig. 4 shows the approxi-
mation of the spectrum by three Lorentzian profiles for

 = 7 Torr. Analysis of the extrapolation obtained in
this way showed that width γ was the same within 5%

Sexp ν2( ) A

∆ν a–( )2 γ/2( )2+
--------------------------------------------=

× 1 B∆ν
∆ν a–( )2 γ/2( )2+

--------------------------------------------+ 
  ,

PCO2
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for the three isotopes for all absorption spectra
detected.

Figure 5 shows the two-photon absorption line-
widths measured as functions of the CO2, CO, and NO
gas pressures in the interaction region. These depen-
dences are well approximated by straight lines. We
determined from the slopes of the straight lines the
broadening of the two-photon resonance in a zinc atom
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Fig. 3. Two-photon absorption spectrum of the 64Zn iso-
tope. Curve 1 is experiment at T = 548 K,  = 1 Torr,

and δ = 9 GHz; curves 2 and 3 are the approximations of the
experimental spectrum by the least-squares method by
expressions (9) and (8), respectively.
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in the presence of different gases. The results are pre-
sented in the table. The absolute values of the rate con-
stant of the broadening process were determined by
expression (4). The collision broadening cross sections
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Fig. 5. Dependence of the two-photon absorption linewidth
on the gas pressure: (1) CO2; (2) CO; (3) NO.

Experimental results

Molecule
Broadening

γ/P, MHz/Torr
Rate constant
k, 10–9 cm3/s

Cross section
σ, 10–14 cm2

CO2 35 ± 9 6.2 ± 1.6 9.4 ± 2.4

CO 28 ± 7 5.0 ± 1.3 6.5 ± 1.6

NO 16 ± 4 2.9 ± 0.7 3.9 ± 1.0

Detuning of the radiation frequency ν2 
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Fig. 6. Two-photon absorption spectra of a zinc atom at a
pressure of  = 3.5 Torr measured (1) from the

absorbed UV radiation power and (2) from the lumines-
cence signal.
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were calculated by the expression σ = k/ , where  =

 is the average value of the relative velocity
of two different particles in a gas [16]. The approxima-
tion by a straight line in Fig. 5 in the region of zero pres-
sure gives the initial broadening γ0 = 200 MHz. This
value is determined by the Stark broadening and the
decay of the 6s 3S1 level for a time much shorter than
the spontaneous decay time, equal to 30 ns [17]. This is
caused by superradiance to lower states due to large
cross sections for optical transitions σ6s–5p ≈ 4 ×
10−11 cm2 and σ6s–4p ≈ 3 × 10–13 cm2. In this case, the
condition for the appearance of superradiance over
length L is readily fulfilled (σNf L > 10), which strongly
shortens the upper-level lifetime.

Figure 6 shows the two-photon absorption spectra
obtained by direct detection of the absorbed average
radiation power and from the luminescence signal. The
approximation of these spectra by Lorentzian profiles
at different pressures gives coincident linewidths. How-
ever, the signal-to-noise ratio in the case of direct detec-
tion of absorption is substantially lower than that under
recording luminescence, as illustrated in Fig. 6. The
fraction of absorbed radiation power is usually a few
percent. No pressure shifts of the absorption bands
were observed within the absolute accuracy of mea-
surement of the radiation frequency, equal to 400 MHz
under any experimental conditions studied.

The amplitude of the absorbed power resonance
monotonically decreases with increasing molecular
pressure in the interaction region due to an increase in
the transition linewidth. A luminescence signal
detected at the resonance center for the 64Zn isotope
behaves in a more complicated way, as shown in Fig. 7.
For CO2 and CO molecules, this signal first increases,
achieving a maximum, and then decreases with increas-
ing pressure. This experimental fact is described by
expression (8) and is caused by an increase in the rate
of decay of the excited level to the intermediate

5p 3  state, from which emission is recorded with
a measuring system. This makes it possible to measure
the rate constants independently by a different method.
The processing of the experimental dependences of the
luminescence intensity by expression (8) using the
least-squares method gives broadening values coinci-
dent with those presented in the table. This confirms the
validity of the rate constants and cross sections
obtained from the two-photon resonance broadening.
The maximum of curve 3 for NO molecules is located
at higher pressures due to a lower value of the two-pho-
ton resonance broadening. Note in conclusion that the
two-photon resonance broadening in collisions with
inert gas atoms at pressures of up to 5 Torr does not
exceed the initial value of 200 MHz.

v v

v 1
2 v 2

2+

P0.1.2
0
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5. DISCUSSION 

The cross sections for collisions of different elec-
tronically excited atoms with molecules are usually on
the order of 10–15 cm2 [1, 2]. As follows from the results
presented in the table, the experimental cross sections
for collisions of excited zinc atoms (6s 3S1) with CO2,
CO, and NO molecules are much greater and substan-
tially exceed gas-kinetic cross sections. Such anoma-
lously high cross sections can be explained by the res-
onance process, in which the excitation energy is trans-
ferred to the vibrational state:

(10)

It is known [18] that the dependence of the probability
of such processes on the energy gap ∆E between the ini-
tial and final states has a distinct resonance nature. An
almost exact resonance corresponds to rather large
cross sections on the order of 10–13 cm2. Moderate cross
sections on the order of 10–16 cm2 correspond to detun-
ing from the resonance by a few kT, and when the
detuning exceeds a few tenths of an electronvolt, the
cross section becomes negligibly small. Figure 8 illus-
trates the correspondence between the transition energy
in a zinc atom and vibrational transition energies in
CO2, CO, and NO molecules. The energy level diagram
of a zinc atom is taken from [19], the vibrational-rota-
tional energies of CO2 from [20], and those for NO and
CO from [21, 22]. It follows from Fig. 8 that the values
of ∆E for all the three molecules studied in the paper are
lower than the kinetic energy kT of colliding particles.
Such a situation was studied in [23], where the cross
section σ ≈ 3 × 10–14 cm2 was obtained for collision res-
onance processes of energy transfer from Na(ns) (n =
5−11) atoms to CH4 and CD4 molecules. In such pro-
cesses, the fundamental molecular vibrations are
excited. The cross section for collisions of zinc atoms
with CO2 molecules is three times larger than the above
value, although the molecules are excited into less
intense (by three to four orders of magnitude) overtone
vibrations. The excited zinc atoms also can decay at the
6s 3S1–5p 1P1 transition due to collisions with mole-
cules, emitting then luminescence at 1.4 and 1.1 µm
(see Fig. 2). The 6s 3S1–5p 1P1 transition energy is in
resonance with intense vibrational-rotational ν3 absorp-
tion bands of CO2 molecules (∆E = 2 × 10–2 eV) and the
0–1 transition in CO (∆E = 4 × 10–2 eV), these value of
∆E being smaller than the relative kinetic energy of col-
liding particles (kT = 5 × 10–2 eV). For NO molecules,
∆E = 8 × 10–2 eV. The 6s 3S1–5p 1P1 transition, being an
intersystem crossing transition, is weakly allowed and
is shown in Fig. 2 by the dashed arrow. However, the

Zn 6s  
3 S 1 ( ) M Zn 5 p  

3 P j 
0 ( ) M* ∆ E .+ + +                                         
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collision transfer of the energy of this transition to the
vibrational energy of molecules can be rather efficient.

6. CONCLUSIONS

We have studied the decay of the upper 6s 3S1 state
of a zinc atom caused by collisions with CO2, CO, and
NO molecules by the method of two-photon laser spec-
troscopy in counterpropagating waves with close fre-
quencies. Unlike the popular time-resolved method of
detection of luminescence at a fixed transition, the
study of the broadening of the absorption line gives
complete information on the decay rate upon collisions
with other particles. The absolute cross sections mea-
sured in the paper greatly exceed gas-kinetic cross sec-
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Fig. 7. Dependence of the luminescence signal at the
absorption line center of the 64Zn isotope on the molecular
gas pressure in the interaction region: (1) CO2; (2) CO;
(3) NO.
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tions. This can be explained by the resonance electronic
energy transfer to the vibrational degrees of freedom.

Such processes were earlier experimentally studied
only one-electron atoms of alkali metals.
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Abstract—Experiments on two-photon interference are discussed in the case when there is absorption of all
the modes participating in the process of spontaneous parametric down-conversion (SPDC) of light. The objects
of investigation are 10- to 80-Å-thick ultrathin gold films deposited on fused-silica substrates. Conditions are
determined under which the effect of absorption of the signal and pump waves on the interference pattern is
small. It is shown that, under these conditions, the visibility of the interference pattern and the shape of the fre-
quency–angular spectrum at the signal frequency are determined by the optical parameters of the medium at the
idler frequency, which belongs to the near-infrared region. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For over two decades, two-photon interference [1–3]
has attracted the attention of physicists. This interest is
primarily associated with the interpretation of a number
of experiments based on two-photon interference, as
well as with the fact that two-photon (nonclassical)
states of light are relatively easy to obtain. The most
efficient source of such states is the spontaneous para-
metric down-conversion (SPDC) of light. Recently,
various aspects of two-photon interference have been
investigated in the context of the physics of quantum
information: various fields of quantum information,
such as generation of entangled states, quantum cryp-
tography, quantum teleportation, etc. [4], intensively
use the accumulated experience in the preparation,
transformation, and measurement of two-photon light.
This experience seems to be useful for developing
quantum communication devices that employ nonclas-
sical states of light as information carriers. At the same
time, another property of two-photon interference,
which may be useful in spectroscopy, has not received
due attention. The point is that the interference pattern
itself bears information about the properties of the
medium (or several media) in which the generation and
transformation of two-photon light occurs. Hence, one
can solve the inverse problem; namely, one can recover
the properties of the scattering and/or transforming
medium from the interferograms of two-photon inter-
ference, as it is done in Raman or polariton spectros-
copy. The latter method is the limiting case of the
SPDC when the frequency of one of the waves falls
within the range of lattice oscillations of a nonlinear
crystal [5]. In this sense, the interferometry of sponta-
neous parametric down-conversion is a generalization
of the method of polariton spectroscopy to nonlinear
media, where χ(2) = 0.
1063-7761/04/9801- $26.00 © 20031
The line shape of two-photon SPDC in a separate
layer was considered in [6, 7] when the interference
phenomena associated with the reflection and absorp-
tion of all the waves participating in the process were
taken into account. The spectroscopic aspects of two-
photon interference were discussed in the literature in
the context of nonlinear diffraction [8, 9]. In [10], a
method of diagnosing quasiregular domain structures
by the frequency–angular spectra of SPDC was consid-
ered. In [11–14], the authors analyzed the capabilities
of two-photon interferometry as a method that makes it
possible to evaluate the optical parameters of sub-
stances placed in a nonlinear interferometer.

In the present paper, we discuss the application of
the method of two-photon interference to the study of
thin metal films deposited on fused-silica substrates.

2. TWO-PHOTON INTERFERENCE
IN THE MACH–ZEHNDER SCHEME

2.1. Mach–Zehnder Nonlinear Interferometer
with Several Layers

Consider a system of n + 2 = x plane layers (Fig. 1).
The first and the last layers have a nonzero value of qua-
dratic susceptibility χ(2) ≡ χ, while in the intermediate
layers, this parameter is equal to zero and the layers dif-
fer only in their permittivity εq , where q is the layer
number. In the literature, such a system was called the
Mach–Zehnder nonlinear interferometer (MZNI) [15].
This term reflects the fact that a laser beam propagating
across the layers induces nonlinear polarization in the
first and the last layers due to χ; these layers are analo-
gous to beam-splitters that divide/mix spatial–fre-
quency modes. The optical fields with new frequencies
generated by the nonlinear process have different phase
delays while propagating across intermediate layers
004 MAIK “Nauka/Interperiodica”
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(q = 1, ..., n – 1) and, hence, may interfere at the output
of the system if they are coherent.1 The phase delays of
the field components are determined by the dispersion
of dielectric permittivity εl(ω). The oscillating behavior
of the intensity of the generated fields as a function of a
certain parameter of the system, for example, the opti-
cal thickness of intermediate (linear) layers, has been a
subject of study by the method of nonlinear interferom-
etry [12, 16]. In our case, a biphoton field is generated
in the first and the second nonlinear crystals during the
SPDC [17]. Recall that, during the SPDC, a photon (p)
of the laser pump spontaneously decays into a pair of
photons, the so-called signal (s) and idler (i) photons. In
the stationary case, the photon frequencies are related
by the energy conservation law,

(1)

while the propagation direction of the generated wave
is determined by the dispersion law of the medium,

(2)

via the phase-matching condition

(3)

Here, kj (j = p, s, i) are the wave vectors and D is the
wave mismatch associated with the dimensions of non-
linear crystals. Since the layers are assumed to be infi-
nite in the transverse direction, we have ∆⊥  0,

where ∆⊥  =  –  – . When the pump wave propa-

gates along the z axis, we have kp = . As a result, we
obtain a strict relation between the scattering directions

1 The coherence of the components of interfering fields is guaran-
teed by common laser pumping, which is assumed to be classical
and fixed.
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Fig. 1. Scheme of the Mach–Zehnder nonlinear interferom-
eter with two nonlinear crystals.
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of the signal and idler photons:  = –  or kssinϑ s =
−kisinϑ i, where ϑ s and ϑ i are the angles between the z
axis and the scattering directions of the signal and idler
photons in the crystals, respectively. In the low-absorp-
tion approximation, which is valid in the transparency
regions of the crystals, the dispersion relation (2) con-
tains the real parts of the wave vector kj ≡ 2πnj/ωj (j =
s, p, i) and the dielectric permittivity.

Formally, the intensity of the SPDC as a function of
frequency and the scattering angle (the line shape) is
proportional to the squared modulus of the sum of
amplitudes of biphoton fields emitted from different
macroscopic regions [18]. In our case, there are two
such regions, which are nonlinear crystals in the MZNI:

(4)

The amplitudes fm determine the wave function of the
biphoton filed. They depend on the intensity of the laser
pump field, the quadratic susceptibility of a crystal, the
frequencies of interacting fields, etc. The third term
in (4) describes the periodic modulation of the scatter-
ing intensity as a function of the relative phase of the
two amplitudes. In stationary experimental conditions,
two-photon interference, or interference of biphotons
in the second order in the field, manifests itself as alter-
nating maxima and minima in the intensity of the fre-
quency–angular spectra of the SPDC; the relative phase
in (4) depends on the variation of the direction and/or
frequency of observation [11].

If the crystals are transparent at all three frequencies
ωp, ωs, and ωi , then the intensity of the observable (sig-
nal) wave as a function of frequency and scattering
angle is given by

(5)

where ∆' =  –  –  is the z component of the wave
mismatch in the intermediate media. The first coeffi-
cient in (5) describes the frequency–angular line shape
of the spontaneous parametric down-conversion in a
plane nonlinear layer [17]. The second coefficient is
due to the interference between the signal fields gener-
ated in the extreme layers; this coefficient is responsible
for the modulation of the line shape due to the contribu-
tions of the phase mismatches δ' = ∆'l ' in the intermedi-
ate materials. The explicit form of the wave mismatches
δ and δ' as functions of the parameters observed in the
experiment (the wavelength λs and the angle θs) is given
in [12].
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Formula (5) is a particular case of the expression
obtained in [19] for the MZNI containing several trans-
parent linear media. This formula is obtained when one
takes into account the contribution of the dispersion of
all intermediate layers (without taking into account
reflections) to the propagators of the signal and idler
modes, as well as of the pump mode. Note that, in the
real interferometer schemes used in the experiments
in [12–14], the observed line shape of down-conversion
is given precisely by (5) because there always exist air
gaps between nonlinear crystals and the dispersive sub-
stance, so that the whole scheme actually consists of
five, rather than three, layers.

2.2. Taking into Account Losses 
at the Idler Frequency 

From the viewpoint of interpreting the experimental
results, the following case is of interest. In the scheme
shown in Fig. 1, one detects a signal wave, while the
idler (nonobservable) modes experience losses due to,
for example, absorption or reflection. This case was
first considered by Mandel and colleagues in [20]. In
the scheme suggested, they succeeded in spatially sep-
arating the signal and idler modes generated in different
nonlinear crystals. In this configuration, it is convenient
to control the transmission in the idler mode by insert-
ing filters with different optical densities. The effect
observed in this case was called induced coherence
because the visibility of the interference pattern
observed in a signal mode depends on the transmission
coefficient of the filter inserted into the idler mode.
In [11–14], it was pointed out that the induced coher-
ence can find application in spectroscopy when the
idler modes fall within the infrared region of the spec-
trum, while the signal mode is detected in the visible
region.

The physical scheme considered in the present
paper (Fig. 1) does not essentially differ from the
scheme proposed in [20]. However, from the experi-
mental point of view, the MZNI scheme considered
here is more convenient because the optical-path differ-
ence between the signal and idler modes is maintained
constant automatically [11]. In this scheme, the line
shape of the signal wave for a finite amplitude of the
transmission coefficient τi of a certain intermediate
layer at idler frequencies is determined by the follow-
ing expression, which takes losses into account:

(6)

The transmission coefficient τi relates the annihila-
tion operators of photons in idler modes after the first
and second nonlinear crystals [21]. Note that the idler

Is ωs θs,( ) 1
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field generated in the first crystal has a characteristic
spectral luminosity on the order of 10–8 ! 1 photons per
mode and does not influence the SPDC process in the
second crystal (a spontaneous regime); this yields the
relation

(7)

The second term in (7) is attributed to the unitarity of
the transformation: the operator  describes the vac-
uum field that is admixed to the idler mode with the

weight  for |τi |2 < 1; in this case,

The coefficient  describes losses due to reflection
and absorption.

According to the scheme shown in Fig. 1, for iden-
tical nonlinear crystals (ε1 ≡ ε4 and χ1 ≡ χ4), the idler
modes ki1 and ki2 are degenerate; therefore, formally,
formula (7) makes it possible to take losses into
account. A detailed analysis of (6) in the multimode
case was carried out in [21].

Formula (6) implies that the visibility of interfer-
ence pattern, which is defined in a standard way [22] by

(8)

falls to zero as τi  0; this fact was pointed out
in [20]. For instance, if

where αi is the Bouguer absorption coefficient at idler
frequency, attenuation of the idler mode due to absorp-
tion in the intermediate medium deteriorates the visibil-
ity of the interference pattern. Formula (6) displays an
essential property of two-photon interference: losses in
the idler mode do not change the integral intensity of
the SPDC but only affect its shape. This property
underlies the two-photon interferometric method for
estimating the absorption coefficient of nonlinear crys-
tals in the near-infrared region [14, 23].

2.3. Taking into Account Losses
at Pump and Signal Frequencies 

If the linear layers between two nonlinear crystals
introduce losses in the p and s modes, then, on the one
hand, the pump amplitude in the second crystal
decreases,

âi2 ωi( ) τ iâi1 ωi( ) ri
effâvac ωi( ).+=

âvac

ri
eff

τ i
2 ri

eff 2
+ 1.=

ri
eff

V
Imax Imin–
Imax Imin+
-----------------------,=

τ i
2 α il'–{ } ,exp∝

Ep
2( ) τpEp

1( );=
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therefore, the amplitude of the signal wave generated in
the second crystal is given by

On the other hand, due to the losses of the signal wave
generated in the first crystal while passing through
intermediate layers, this amplitude decreases at the
input of the second crystal:

where  is the amplitude on the right boundary of

the first crystal and  is the amplitude on the left

boundary of the second crystal. Thus, amplitudes that
differ not only in phase but also in absolute value con-
tribute to the interference of biphoton fields. This may
deteriorate the visibility of two-photon interference.
The difference in amplitude is the more conspicuous,
the greater the frequency dispersion of the transmission
coefficient τs, p(ω), or the greater the difference of the
parameter τs/τp from unity. Using (4), we can estimate
the visibility of interference pattern in two-photon
interference for different amplitudes:

(9)

It follows from (9) that, even for |τs/τp| = 2, the visibility
of interference is still sufficiently high: V ≈ 80%. Thus,
we can assert that losses in the pump modes and in the
signal (observable) mode do not affect the visibility of
two-photon interference while the parameter |τs/τp|
does not differ too much from unity. For instance, V ≥
90% if

(10)

Hence, under condition (10), the observable deteriora-
tion of the visibility of two-photon interference is

f 2 χEp
2( )∝ χτ pEp

1( ).=

f 1 right
f 1 left

τ s f 1 τ sχEp
1( ),∝=losses
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Fig. 2. Transmission coefficient of samples as a function of
wavelength.
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mainly attributed to the losses in the idler (nonobserv-
able) mode. This fact serves as a basis for the analysis
of experimental data obtained in the present work.
Under condition (10), formula (6) gives a relation
between the visibility of two-photon interference,
which can be measured experimentally, and the losses
at the idler frequency:

(11a)

If we take into account that |τi|2 ∝  exp{–αi }, then the
absorption coefficient at the idler frequency proves to
be logarithmically related to V:

(11b)

Thus, measuring the visibility of two-photon interfer-
ence, one can directly evaluate the absorption coeffi-
cient of a substance (in the infrared region) placed
between nonlinear crystals.

Note that the losses in the s and p modes do not lead
to a decrease in the integral intensity of the signal of
parametric down-conversion. Therefore, it would be
interesting to verify experimentally which of the two
factors proves to be dominant as losses increase in all
the modes s, p, and i: the disappearance of interference
under a still appreciable total intensity of the signal of
parametric down-conversion or the total disappearance
of the signal.

3. EXPERIMENT

3.1. Description of Samples 

We used 0.2-mm-thick polished fused-silica plates
with an area of 15 × 15 mm2 as the substrates. A gold
film was deposited on these substrates by the cathode
sputtering method. We investigated films with integral
thicknesses of 10, 20, 30, 50, and 80 Å in the working
area. Due to the small thickness, the films did not con-
tinuously cover the substrate; they were characterized
by a cluster structure when the thickness was less than
30 Å and by a porous structure for greater thickness.

The transmission coefficient of the samples was
measured by an M400 spectrophotometer as a function
of the wavelength. The results of these measurements
are shown in Fig. 2.

3.2. Experimental Setup
and Measurement Technique 

In the experiment, we measured two-dimensional
frequency–angular spectra of spontaneous parametric
down-conversion of light emitted from the MZNI. As
the nonlinear media, we used lithium niobate crystals
doped with magnesium oxide, LiNbO3 : MgO (5%).
Between these nonlinear media, we placed gold films
of various thicknesses deposited on fused-silica sub-
strates. The thickness of crystals was 440 µm, and the

V   =  τ i .

l2'

α i
2 Vln

l2'
------------.–=
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thickness of the fused-silica substrates was 200 µm. An
argon laser operating at the 488-nm line with an output
power of 1 W and a beam diameter of 2 mm2 served as
the pump source; the scattered field was collimated by
an objective lens and focused onto the input slit of an
ISP-51 spectrograph.

To obtain panoramic spectra, we used a photo-
graphic technique that is the standard one for SPDC
spectroscopy [24]. Quantitative information about the
line shape of down-conversion was obtained by two
methods. In the first method, the angular distribution of
intensity at several signal wavelengths was recovered
after taking into account the nonlinear dependence of
the blackening of photographic film as a function of
light intensity. In the second method, the line shape was
recorded directly by the angular scanning of two-
dimensional spectra at a fixed wavelength. A
Hamamatsu R5600U photomultiplier tube was placed
in the focal plane of the spectrographic camera and
could move along two coordinates (the angle θs and the
wavelength λs). The output pulses of the photomulti-
plier tube were amplified, subjected to amplitude dis-
crimination, and fed to a counter. The entire electronic
part of the receiving system was assembled in the
CAMAC standard.

Typical photographs of the spectra and the corre-
sponding angular intensity distributions obtained dur-
ing scanning are shown in Figs. 3 and 4.

4. DISCUSSION 

The diagrams shown in Fig. 2 allow one to estimate
the parameter |τs/τp| introduced in the preceding sec-
tion. For the signal wavelengths 5685, 5707, and
5731 Å (the corresponding idler frequencies, defined
by (1), are equal to 2902, 2970, and 3043 cm–1, respec-
tively) at which the spectra were processed, the values
of the parameter |τs/τp| are given in the table. One can
see that this parameter satisfies condition (10). Thus, at
these wavelengths, the visibility of two-photon interfer-
ence is mainly determined by losses at idler frequencies
in the infrared region.

The visibility of two-photon interference as a func-
tion of losses was experimentally investigated when
gold films of various thicknesses were placed into the
MZNI. Figures 3 and 4 show that interference phenom-
ena in two-photon light virtually disappear for a film
thickness of 50 Å. A test photograph of an 80-Å-thick
sample shows that there is no angular–frequency mod-
ulation. At the same time, we certainly observed an
SPDC signal even in films 100 Å in thickness. Hence,
we can conclude that the method of two-photon inter-
ference is more sensitive to the losses τi at idler fre-
quencies than to the losses τp and τs at pump and signal
frequencies, which result in a decrease in the integral
intensity of the spectra.

The transmission coefficient at a frequency of
2970 cm–1 determined by formulas (6) and (11a) from
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
                                          

the angular scans of interferograms is shown in Fig. 5
as a function of film thickness. We did not observe an
appreciable difference in the behavior of these func-
tions in the range of idler frequencies from 2900 to
3040 cm–1. This fact suggests that the absorption coef-
ficient of the films shows weak dispersion in this spec-
tral domain. A similar conclusion can be drawn from a
visual analysis of the frequency–angular spectra
(Fig. 3) that were obtained in a wider range (2400–
3700 cm–1): in these spectrograms, one cannot distin-
guish regions where the visibility is appreciably varied.

According to (11), the visibility of the interference
pattern depends on the transmission coefficient at the
idler frequency. In this range, the optical properties of
metals are primarily determined by free electrons. The
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Fig. 3. Photographs of angular-frequency spectra of the
SPDC obtained in the system nonlinear crystal–fused-silica
substrate–gold film–nonlinear crystal for films of various
thicknesses; (a) in the absence of a film, (b) for a film thick-
ness of 10 Å, and (c) for a film thickness of 50 Å.
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Fig. 4. Angular distribution of the SPDC intensity for films of various thicknesses; (a) in the absence of a film, (b) for a film thickness
of 10 Å, (c) for a film thickness of 30 Å, and (d) for a film thickness of 50 Å. Distribution (a) is obtained by recovering the intensity
from the blackening level of a film by Photoshop 6.0 software for λs = 5684 Å. Distributions (b)–(d) are obtained by photoelectric
recording of signals for λs = 5707 Å.
relation between the dielectric permittivity and the
basic optical constants is given by the following formu-
las [22]:

(12)

(13)

where n is the real part of the refractive index  = n(1 +
iκ) and κ is the extinction coefficient. From (12)

Reε n2 1 κ2–( ),=

Imε 4πσ
ω

---------- 2n2κ ,= =

n̂
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and (13), we can derive the absorption coefficient,

(14)

where λ0i is the idler wavelength in vacuum. Approxi-
mating the experimental curve (Fig. 5) by an exponential
function (solid curve), we obtain αi ≈ 2.8 × 106 cm–1 at a
frequency of ωi ≈ 3000 cm–1 (or λ0i ≈ 3.3 µm). Unfor-
tunately, we had no information about the optical con-

α i

2ωi

c
--------nκ 4π

λ0i
------κ ,= =
Table

No. Sample
thickness, Å

|τs|2 |τp|2 |τs/τp|

5685 Å 5707 Å 5731 Å 4880 Å 5685 Å 5707 Å 5731 Å

1 10 0.79 0.79 0.79 0.84 0.974 0.974 0.974

2 20 0.75 0.74 0.74 0.80 0.968 0.962 0.962

3 30 0.71 0.71 0.70 0.74 0.98 0.98 0.973

4 50 0.69 0.69 0.69 0.64 1.038 1.038 1.038

5 80 0.58 0.58 0.58 0.5 1.077 1.077 1.077
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stants of the films in the infrared region. Therefore, we
used the data given in [25]. Substituting the values of
the refractive index n ≈ 0.8 and the extinction coeffi-
cient κ ≈ 20 into (13), we obtain αi ≈ 6.1 × 105 cm–1,
which is about five times less than the value obtained in
our experiments.

The difference between the experimental and calcu-
lated values of the absorption coefficient, which is sub-
stantially greater than the measurement error, can be
attributed to several factors.

First, the optical constants of gold presented in [25]
refer to thick films. It is well known that the optical con-
stants in ultrathin films, of thickness less than 10 nm,
are significantly affected by the film structure: an
ultrathin film is considered as a set of separate islands.
For instance, it was pointed out in [26] that the cluster
structure leads to a significant increase in absorption.
A giant increase in the absorption of infrared radiation
in metal particles was pointed out, for example, in [27].
The optical properties of fractal clusters, in particular,
an anomalous behavior of susceptibility, was consid-
ered in [28]. Recently, the optical properties of metal
island films near the percolation threshold have been
intensively discussed in the literature [29].

Second, the measurement technique for the absorp-
tion coefficient, based on two-photon interference, may
give results that substantially differ from those obtained
earlier. The point is that, in conventional methods for
investigating metal films, one measures the reflection
and transmission coefficients of “free” waves, i.e.,
waves with nonzero mean occupation of modes inci-
dent to a sample from free space. The dispersion rela-
tions for the transmission coefficient of films in the vis-
ible region (Fig. 2) have been obtained precisely in this
way. However, in the method of two-photon interfer-
ence, the optical parameters at a nonobservable (idler)
frequency depend on fluctuating vacuum fields with
zero mean occupation number of modes. There are
examples in the literature where a comparison of these
two methods shows a significant discrepancy precisely
when measuring the absorption coefficient: the absorp-
tion measured by the SPDC spectroscopy (field fluctu-
ations) [30] proves to be about an order of magnitude
greater than that obtained by four-wave coherent scat-
tering by polaritons (excitation of polaritons by bihar-
monic pumping) [31] or by direct measurement of
infrared transmission [32]. The physical nature of this
discrepancy has not yet been revealed, and one may
suppose that experiments on two-photon interference in
the Mach–Zehnder scheme will provide an answer to
this question.2 

Note that the approach considered in the present
paper does not allow us to make any conclusions about

2 Note that recent publications (see, for example, [33]) on the spec-
troscopic applications of the so-called frequency-entangled pho-
ton pairs do not answer the question posed since these works deal
with the contribution of the direct transmission of a real idler
wave to the distribution of photocount coincidences.
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the dispersion of the real part of the refractive index of
films. This is associated with the small thickness of the
films. As was shown in [11, 13], the distinct features of
the dispersion of the refractive index that arise near res-
onance frequencies must be accompanied by the varia-
tion of the curvature of interference orders or with the
appearance of crooks in the spectra of two-photon
interference. This is associated with the fact that, by
definition, the wave mismatch δ' = ∆'  of the film
involves the real parts of the wave vectors

The strong dispersion of n leads to an increase in the
wave mismatch ∆', which leads to a variation in the phase
of the interference pattern versus frequency/angle. The
value of n of gold ranges from 0.2 to 1.2 as the wave-
length varies from 0.3 to 1 µm. In the near-infrared
region, when λi ≈ 3 µm, the value of n proves to be on
the order of unity and weakly increases with wave-
length [24, 34, 35]. However, since the film thickness is
about tens of angstroms and  ! l, , the correspond-

ing mismatch  is small, and its contribution to the
line shape (6) is negligible compared with the contribu-
tions of the mismatches in the nonlinear crystals, δ = ∆l,
and in the quartz substrate,  = ∆' .

5. CONCLUSIONS

We have discussed experiments on two-photon
interference in the presence of absorption in all the
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Fig. 5. Amplitude transmission coefficient at a frequency of
2970 cm–1 as a function of film thickness, obtained from
angular scans of interferograms. The solid line represents an
exponential approximation of the experimental data; cir-
cles, photographically acquired data; squares, data acquired
by the photomultiplier.
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modes that participate in the spontaneous parametric
down-conversion of light. The objects of study were
ultrathin gold films 10, 20, 30, 50, and 80 Å in thickness
deposited on a fused-silica substrate.

We have determined conditions under which the
effect of the absorption for the signal and pump wave
on the interference pattern is negligible. We have shown
that, under these conditions, the visibility of the inter-
ference pattern and the form of the frequency–angular
spectrum on the signal wave are determined by the opti-
cal parameters of the medium at an idler frequency,
which belongs to the near-infrared region.

The results obtained have allowed us to reveal a
number of features of the effect of absorption on the
spontaneous parametric down-conversion of light. By
the method of two-photon interferometry, we have
measured the absorption coefficient of gold films in the
neighborhood of λ ≈ 3.3 µm; the value of this coeffi-
cient, α ≈ 2.8 × 106 cm–1, is greater than the appropriate
value for thick films by a factor of five.
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Abstract—Corrections of orders α5 and α6 to the superfine ground-state structure of the muonic hydrogen
atom were calculated. The calculations took into account the effects of the structure of the nucleus on one- and
two-loop Feynman amplitudes with the help of the electromagnetic form factors of the proton and the modifi-
cation of the superfine part of the Breit potential caused by the electronic polarization of the vacuum. The total
splitting of the 1S state is 182.725 meV; this value can be used as a reliable estimate in conducting a correspond-
ing experiment with an accuracy of 30 ppm. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Precision measurements of the energy spectra of the
simplest atomic systems (muonium, positronium,
hydrogen atom, muonic hydrogen, etc.) are of great
importance for high-accuracy verification of the Stan-
dard Model and the theory of bound states. Two-parti-
cle bound states are an effective tool for refining the
values of fundamental physical constants (the fine struc-
ture constant, the ratio between the masses of the muon
and electron, the Rydberg constant, the proton charge
radius, etc.) used for creating standards of units [1]. It
can be claimed that a necessary supplement to the use
of large accelerators for penetrating deep into particles
and to the search for new interactions is the observation
of fine effects in low-energy physics, including bound
states in quantum electrodynamics. These effects can
be used to extract such details of interaction behavior at
small distances that can only be observed at very high
energies [2].

Like electronic hydrogen, muonic hydrogen (µp) is
the simplest atomic system, whose energy spectrum is
to a substantial extent determined by strong interaction
effects. These effects are primarily related to two pro-
ton form factors (electric GE and magnetic GM), which
describe the charge and magnetic moment distribu-
tions. For the Lamb shift, the major contribution to the
energy spectrum of order (Zα)4 is determined by the
differential characteristic of these distributions,
namely, the proton charge radius rp . For this reason, a
comparison of the experimental Lamb shift value and
its theoretical estimate obtained with corrections high-
order in α can be used to more precisely determine the
rp value. For instance, measurements of the 2P–2S
Lamb shift in µp with an accuracy of 30 ppm would
allow us to obtain the proton charge radius with an
accuracy one order of magnitude higher than that
1063-7761/04/9801- $26.00 © 20039
obtainable by the other methods [3]. When calculating
corrections for the structure of the nucleus to the super-
fine splitting of energy levels (see [4–11]), we must
know the electromagnetic form factors of the proton
themselves. The most recent experimental measure-
ments of GE and GM were performed in Mainz 20 years
ago [12].

Another important strong interaction contribution to
the energy spectrum of the hydrogen atom is related to
the polarizability of the proton [13–16]. This contribu-
tion arises already in one-loop muon (electron)–proton
interaction amplitudes, when, for instance, various
baryon resonances can be created in the intermediate
state as a result of virtual Compton scattering by the
proton. Precise calculations of this effect can be per-
formed using experimental data and theoretical con-
structions of the polarization structural functions of the
nucleon. The proton structure and polarizability effects
introduce major theoretical uncertainty into the equa-
tions for various energy levels, primarily into the super-
fine splitting of the ground state of the hydrogen atom,
which has the form

(1)

where µP is the magnetic moment of the proton in
nuclear magnetons, m1 is the mass of the muon (elec-
tron), m2 is the mass of the proton, δQED is the quantum
electrodynamic contribution, δHVP is the contribution of
the hadronic vacuum polarization, and the corrections
δstr and δpol are the contributions of strong interactions
related to the structure of the nucleus and its polariz-
ability. Equation (1) is valid for both muonic and elec-

∆Etheor
HFS EF 1 δQED δstr δpol δHVP+ + + +( ),=

EF 8
3
---α4 mPm1

2m2
2

m1 m2+( )3
--------------------------,=
004 MAIK “Nauka/Interperiodica”
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tronic hydrogen, but the particular forms of corrections
are substantially different for these two species. The
superfine splitting of the ground state of the electronic
hydrogen atom was measured to a high accuracy many
years ago [17],

 = 1420405.7517667(9) kHz. (2)

The present-day discrepancy between theory and
experiment (without taking proton polarizability into
account), which can be represented by the ratio [18]

(3)

contains one of the principal errors caused by the inac-
curacy of determining the proton form factors. The
main part of the one-loop correction for the structure of
the proton is given by the following equation (the Zem-
ach correction) [4]:

(4)

where

is the reduced mass of two particles and Rp is the Zem-
ach radius. In the coordinate representation, the Zem-
ach correction (4) is determined by the convolution of
the distribution density of the proton magnetic moment
ρM(r) and the distribution density of the electric charge
ρE(r). The Zemach radius, which is the integral charac-
teristic of proton structure effects on the superfine split-
ting of energy levels, can be treated as a new proton
parameter, which coincides for the electronic and
muonic hydrogen atoms to within O(α). The Zemach
contribution for muonic hydrogen is

(5)

where the error, estimated at 5%, includes the uncer-
tainty in proton form factor measurements [12]. There-
fore, along with measurements for electronic hydrogen,
designing an experiment in which the superfine split-
ting of the ground state of muonic hydrogen can be
measured at the same accuracy of 30 ppm as with
Lamb shift measurements would provide new infor-
mation on possible values of the δstr and δpol contribu-
tions [19].

Performing such an experiment requires corrections
of various orders to be calculated equally accurately.
Although calculations of the superfine structure of the
hydrogen atom have been conducted over many years

∆νexp
HFS ep( )

∆Etheor
HFS ep( ) ∆Eexp

HFS
ep( )–

EF ep( )
--------------------------------------------------------- 4.5 1.1( ) 10 6– ,×–=

∆EZ EF2µα
π2

---------- pd

p2 W2+( )2
--------------------------∫=

×
GE p2–( )GM p2–( )

µP

---------------------------------------- 1– EF 2µα–( )Rp,=

W αµ , µ m1m2/ m1 m2+( )= =

∆EZ 1.362 0.068 meV,±–=
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and have already reached an accuracy of 10–8 for quan-
tum electrodynamic contributions δQED [20, 18], their
results cannot be directly applied to muonic hydrogen
by merely replacing the mass of the electron by the
mass of the muon. The main reason for this is correc-
tions for the structure of the nucleus (see above).
Indeed, with muonic hydrogen, the main region of
intermediate loop momentum integrals is on the order
of the mass of the muon. It follows that high-accuracy
theoretical calculations of such amplitudes can only be
performed by directly integrating them taking into
account experimental data on the electromagnetic form
factors of the proton.

Various contributions to the energy levels of muonic
atoms were studied long ago [21]. For this reason, a
new, more complete analysis of all possible corrections
to the superfine structure of µp at an accuracy level of
30 ppm is required. The principal corrections of order
α5 to the superfine structure of the 2S state of µp were
studied in [22]. These corrections are very important
for determining the 2P–2S Lamb shift from experi-
ment. In this work, we calculate various contributions
of orders α5 and α6 to the superfine structure of muonic
hydrogen that are determined by the electromagnetic
and strong interaction effects. Our purpose was to
numerically determine the superfine structure of
muonic hydrogen with the accuracy specified above
and obtain a reliable reference value for performing the
corresponding experiment. Some problems in design-
ing an experiment for measuring the superfine structure
of the µp atom were discussed in [23].

2. VACUUM POLARIZATION EFFECTS
IN ONE-PHOTON INTERACTION

Our calculations of various energy levels of hydro-
gen-like atoms are performed within the framework of
the quasi-potential approach, in which a bound state of
two particles is described by the Schrödinger-type
equation [24]

(6)

where

µR = E1E2/M is the relativistic reduced mass, M = E1 +
E2 is the mass of the bound state, and E1, 2 are the ener-
gies of free particles in the center-of-mass frame. The
quasi-potential in (6) is constructed in quantum electro-
dynamics by perturbation theory with the use of the
two-particle scattering amplitude T projected onto the

G f[ ] 1– ψM
b2

2µR

--------- p2

2µR

---------– 
  ψM p( )≡

=  
qd

2π( )3
-------------V p q M, ,( )ψM q( ),∫

b2 E1
2 m1

2– E2
2 m2

2,–= =
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positive-frequency states outside the mass surface at
zero relative energies of the particles,

(7)

(8)

The initial approximation to the quasi-potential V(p, q,
M) for a bound system was selected in the form of the
usual Coulomb potential,

The increase in the lepton mass in muonic hydrogen
compared with its electronic counterpart decreases the
radius of the Bohr orbit in µp. As a result, the Compton
wave length of the electron and the radius of the Bohr
orbit become commensurate [1],

(me is the mass of the electron and µ is the reduced mass
in the µp atom). This substantially enhances the role
played by vacuum polarization effects in the energy
spectrum of the µp atom [25]. Corrections for vacuum
polarization in one-photon interaction are shown in
Fig. 1.

To determine the contribution of diagram a in Fig. 1
(electronic vacuum polarization) to the particle interac-
tion operator, we must perform the following substitu-
tion in the photon propagator [25]:

(9)

If

(electronic hydrogen, µe is the reduced mass of two par-
ticles in the hydrogen atom), then, ignoring the first
term in the denominator in the right-hand side of (6),
we obtain

However, if

V V 1( ) V 2( ) V 3( ) …,+ + +=

T T 1( ) T 2( ) T 3( ) …,+ + +=

V 1( ) T 1( ),=
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"
2
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"
mec
--------- 0.737384=

1

k2
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π
--- v

v 2 1 v 2/3–( )
k2 1 v 2–( ) 4me

2–
----------------------------------------.d

0

1

∫
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2
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α
15πme

2
----------------.–
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(muonic hydrogen, m1 is the mass of the muon), then
µα and me are values of one order and we cannot
expand the denominator in (9) in α. With muonic
hydrogen, we must construct the superfine part of the
potential in the 1γ approximation using the exact equa-
tion (9). Further, when we consider values of orders α5

and α6, we take into account that the appearance of the
mass of the electron me ~ µα in the denominator of the
amplitude effectively decreases the order of the contri-
bution in α by one. It is well known that, in the one-
photon approximation, the quasi-potential of the super-
fine interaction between the muon and proton has the
form [26]

(10)

For S states, (10) reduces to

(11)

where κ = 1.792847337(29) is the anomalous magnetic
moment of the proton. Averaging potential (11) over
Coulomb wave functions yields the main contribution
of order (Zα)4 to the superfine splitting of the 1S state
of the µp atom, or the Fermi energy

(12)

The modification of the Coulomb potential

caused by vacuum polarization is determined taking

V1γ
HFS k( )

4πZα
m1m2
--------------1 κ+

4
------------ 1

k2
-----=

× s1 s2⋅( )k2 s1 k⋅( ) s2 k⋅( )–[ ] .

V1γ
HFS k( )

8πZα
3m1m2
----------------

s1 s2⋅
4

---------------- 1 κ+( ),=

EF 8
3
--- Zα( )4 µ3

m1m2
------------- 1 κ+( ) 182.443 meV.= =

VC k( ) Ze2/k2–=

(a) (b) (c) (d)

Fig. 1. One- and two-loop vacuum polarization effects in
one-photon interaction.
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into account (9) [22],

(13)

The Fourier transform of (13) gives the corresponding
operator in the coordinate representation,

(14)

Similarly, we can calculate the contribution of the elec-
tronic polarization of the vacuum to the superfine part
of the 1γ potential for the S states in the momentum and
coordinate representations, respectively,

(15)

(16)

The last equation can be used to calculate the cor-
rection for the electronic polarization of the vacuum to
the superfine structure of the µp atom of order α5. Bear-
ing in mind that the wave function of the 1S state of µp
has the form

(17)

let us write this correction as

(18)
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The contribution of the muonic vacuum polarization
can be obtained from (16), in which me should be
replaced by m1. This correction is of order α6 for the
reason specified in discussing (9). Its value is

(19)

Contributions of the same order (α6) arise from the dia-
grams of two-loop electronic polarization of the vac-
uum shown in Figs. 1b, 1c, and 1d. The interparticle
interaction potential corresponding to the amplitude
with two sequential electronic loops can be obtained by
applying replacement (9) two times in the photon prop-
agator. In the coordinate representation, this propagator
has the form

(20)

and gives the following result for the energy spectrum:

(21)

The contributions of diagrams 1c and 1d (Fig. 1), which
are determined by the second-order polarization opera-
tor, can be calculated after the following replacement in
the photon propagator [27]:

(22)
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The contribution value can then conveniently be calcu-
lated in the coordinate representation with reduction of
the interparticle interaction potential to the form

(23)

Operator (23) gives the following contribution to the
superfine structure of the µp atom:

(24)

Note that, as we determine contributions to the energy
spectrum numerically, the corresponding results are
given with an accuracy of 0.001 meV.

3. SECOND-ORDER PERTURBATION THEORY

Second-order perturbation theory corrections to the
energy spectrum are determined by the reduced Cou-
lomb Green function [28], whose partial expansion is
written as

(25)

The  radial function was obtained in [28] in the
form of the Sturm expansion in Laguerre polynomials.
For the 1S state, this function is written as

(26)
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nomials defined as

(27)

As several quasi-potential terms contain δ(r), we must

know . The corresponding equation for the
reduced Coulomb Green function was obtained in [29]
using the Hostler representation for the Coulomb Green
function and subtracting the pole term. This gave

(28)

where C = 0.5772… is the Euler constant. The main
contribution of order α5 is determined in second-order
perturbation theory by the equation

(29)

in which  ~ δ(r). Using (14) and (28), (29) can
be rewritten as

(30)

The contribution of order α6 in second-order perturba-
tion theory, which is determined by vacuum polariza-
tion, can be obtained from (29) after the replacement

We used the explicit equations for the wave function

, reduced Coulomb Green function (25), and (28)
to obtain this correction in the form
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(32)

The corresponding contribution was estimated at

(33)

Second-order perturbation theory also gives other rela-
tivistic corrections of order (Zα)6, including recoil
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Fig. 2. Proton structure corrections of order (Zα)5. The
solid circle is the proton vertex operator.
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effects, which were studied in [30, 31, 32]. Their values
are listed in the table.

4. PROTON STRUCTURE 
AND VACUUM POLARIZATION EFFECTS

Corrections for the structure of the proton make a
large relative contribution to the energy spectrum of
muonic hydrogen compared with its electronic counter-
part, because the mass ratio between the electron and
muon is me/m1 = 4.83633210(15) × 10–3 [1]. These cor-
rections to the superfine structure of µp are determined
by the one-loop diagrams shown in Fig. 2.

In order to construct the quasi-potential that corre-
sponds to these two diagrams, let us write the protonic
tensor in the form

(34)

where p2 and q2 are the 4-momenta of the proton in the
initial and final states. Sequentially projecting the muon
and proton onto the 1S
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 states with the use of the
projection operators
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 is the polarization vector of the state with spin 
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= 1)
and ignoring the momenta of the relative motion of the
particles in the initial and final states, we obtain the fol-
lowing contribution to the superfine structure:

(36)

Let us pass to the integration over the four-dimensional
Euclidean space in (36),
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Corrections of order α5 and α6 to the hyperfine structure (HFS) of the ground state of the muonic hydrogen atom

Contribution to the HFS of the µp atom Contribution, meV Refs.

Fermi energy EF 182.443 [18], (12)

Correction for the anomalous magnetic moment of the muon aµEF of order α5, α6 0.213 [18]

Relativistic correction (3/2)(Zα)2EF of order α6 0.015 [43]

Relativistic and radiative corrections for recoil taking into account κ of the nucleus of 
order α6

0.014 [30]

Contribution of one-loop electronic polarization of the vacuum to 1γ interaction of 
order α5

0.398 (18)

Contribution of one-loop muonic polarization of the vacuum to 1γ interaction of 
order α6

0.004 (19)

Second-order perturbation theory corrections determined by the polarization of the 
vacuum of orders α5 and α6

0.797 (30) + (33)

Correction for the structure of the nucleus of order α5 –1.215 [22], (40)

Correction for the structure of the nucleus of order α6 –0.014 [8]

Contribution of the electronic polarization of the vacuum + corrections for the struc-
ture of the nucleus of order α6

–0.021 (43)

Contribution of the two-loop electronic polarization of the vacuum to 1γ interaction of 
order α6

0.003 (21) + (24)

Correction for the intrinsic muon energy + corrections for the structure of the nucleus 
of order α6

0.008 (50)

Vertex corrections + corrections for the structure of the nucleus of order α6 –0.014 (61)

Jellyfish diagram correction + corrections for the structure of the nucleus of order α6 0.004 (66)

Correction for the hadronic polarization of the vacuum of order α6 0.004 (45)

Correction for the polarizability of the proton of order α5 0.084 [16]

Contribution of weak interaction 0.002 [36]

Total correction 182.725 ± 0.062
sent (36) in the form of a one-dimensional integral in
loop momentum k,

(38)
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--------------–+ +
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To remove infrared divergence in (38), we must take
into account the contribution of the iterative term of
quasi-potential (8) to the superfine structure of the µp
atom,

(39)

where angle brackets denote averaging the interaction
operator over the Coulomb wave function of the ground

+
µ

m1 m2–( )k k 4m2
2 k2++( )

------------------------------------------------------------------ 128F1
2m2

2[

+ 128F1F2m2
2 16F1

2k2– 64F1F2k2– 48F2
2k2– ] .

∆Eiter str,
HFS V1γ G f× V1γ×〈 〉 str
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–=

=  
64
3
------µ4 Zα( )5 1 κ+( )

m1m2πn3
-------------------------------------- kd

k2
-----,

0

∞

∫–
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state, and index HFS is indicative of the separation of the
superfine part in the iterative term of quasi-potential (8).
The total contribution of (38) and (39) coincides with
the result obtained in [22]. The integration in (38)
and (39) was performed using the parametrization for
the electromagnetic form factors of the proton obtained
by analyzing elastic lepton–nucleon scattering [12].
The correction for the proton structure of order (Zα5)
was found to be

(40)

The proton structure effects must be taken into account
also in the amplitudes of a higher order in α shown in
Fig. 3.

The contribution of diagrams 3a and 3b (Fig. 3) to
the potential can be determined as with the amplitudes
shown in Fig. 2. Replacement (9) then should be made
in the propagator of one of the exchange photons. The
corresponding correction to the superfine splitting of
the energy level takes the form

(41)

where the VVP(k) potential only differs from V(k) in (38)
by the additional multiplier k2. Although the integral
in (41) is finite, the amplitude terms of the quasi-poten-
tial in Figs. 3a and 3b should be augmented by two iter-
ative terms shown in Figs. 3c and 3d. The first term

〈Vc × Gf × 〉 , which is of order α(Zα)4, should be
subtracted, because the 2γ amplitudes 3a and 3b (Fig. 3)
reproduce the contribution of the lower order. The sec-

ond term 〈  × G f × 〉 , also of order α(Zα)4, is
similar in structure to equation (29) of second-order
perturbation theory. The contributions of the specified

∆Estr
HFS ∆Eiter str,

HFS+ 1.215 meV.–=

∆Estr VP,
HFS EF Zα

8π 1 κ+( )n3
-----------------------------2

α
π
---–=

× v 2 1 v 2/3–( ) vd

k2 1 v 2–( ) 4me
2+

----------------------------------------- kVVP k( ),d

0

∞

∫
0

1

∫

∆VVP
HFS

VVP
c V1γ

HFS

(a) (b) (c) (d)

+ – –Gf Gf

Fig. 3. Proton structure and vacuum polarization correc-
tions of order α(Zα)5. The dashed line denotes the Coulomb
photon.
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iterative terms to the superfine structure of the µp atom
coincide,

(42)

where we additionally reduced the integration momen-
tum k to the dimensionless form with the help of the
electron mass me . The effect of the proton structure and
vacuum polarization on the 2γ exchange amplitudes in
the superfine structure of the µp atom then amounts to

(43)

The contribution of the hadronic polarization of the
vacuum to the superfine structure of the ground state of
µp was studied in [33]. Here, we represent it in a differ-
ent form using (39) and (42),

(44)

Partitioning the entire range of the integration in s into
the intervals within which the cross section of the e+e–

annihilation into hadrons

is known from experiment [34], we can perform the
integration in (44). Contribution (44) coincides with the
result obtained in [33],

(45)

5. PROTON STRUCTURE EFFECTS
AND ENERGETIC PROPER 

AND VERTEX CORRECTIONS 
OF ORDER α(Zα)5

There exist several other important contributions of
order α6 that are determined by the diagrams shown in
Figs. 4 and 5. The radiative corrections of these ampli-
tudes of order α(Zα)5, including recoil effects, were
studied earlier for both the Lamb shift and the superfine
structure of hydrogen-like atoms [18, 35, 36]. The
Fried–Yennie calibration [37–39], in which the ampli-
tudes on the mass surface do not contain infrared diver-
gences, can conveniently be used for radiative photons.
The infrared finiteness of Feynman diagrams in this
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∫
4mπ
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calibration allows the standard subtraction procedure to
be performed on the mass surface without introducing
the mass of the photon. Consider radiative corrections
that are determined by the energetic embeddings proper
into the muon line. The renormalized mass operator in
the Fried–Yennie calibration is [18]

(46)

Performing embeddings (46) in the lepton tensor
present in two-photon exchange interactions and using
projection operators (35), we can construct the super-
fine part of the quasi-potential for the diagrams shown
in Fig. 4. As previously, the proton–photon interaction
vertex should be determined by the electric and mag-
netic form factors, because the characteristic loop
momenta are on the order of the muon mass. The con-
volution of the proton and lepton tensors in Lorentzian
indices and calculation of the traces of Dirac γ matrices
were performed using the Form system [40]. Going
over to the Euclidean space of variable k allows the cor-
rection to the superfine structure of the µp atom to be
written as

(47)

(48)

ΣR p( )
α
π
--- p̂ m–( )2 x

3 p̂x–

m1
2x m1

2 p2–( ) 1 x–( )+
-------------------------------------------------------.d

0

1

∫=

∆E2γ SE,
HFS Zα( )5µ3

π2n3
--------------------δl0

α
π
--- x xd

0

1

∫ k kd

0

∞

∫=

× φsin
2 φVSE k φ x, ,( ),d

0

π

∫
VSE k φ x, ,( )

=  
1

k2 4m2
2 φcos

2
+( ) xm1

2 xk2+( )2
4m1

2x2k2 φcos
2

+[ ]
---------------------------------------------------------------------------------------------------------------------

×
4m1

2

m2
2

---------k2F2
2 x 6x+( ) φcos

2
–

8m1
2

m2
2

---------k2xF2
2–





+ 16m1
2F2 φcos

4
4F1x F2x– 2F2x–( )

+ 16m1
2 φcos

2
F1

2x 6F1
2x 2F1F2x 8F1F2x+ + +(

+ F2
2x 2F2

2x ) 32m1
2xF1 F1 F2+( ) 4k4

m2
2

--------F2
2x φcos

2
–+ +

–
8k4

m2
2

--------F2
2x 16k2F2

2x φcos
4

–

+ 16k2x φcos
2

F1
2 4F1F2 F2

2+ +( )

--+ 32k2F1x F1 F2+( )




.
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After the integration in φ in (47), we obtain the repre-
sentation of contribution (47) in the form of the inte-
grals in parameter x and momentum k for use in numer-
ical calculations,

(49)
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Fig. 5. Proton structure effects and vertex muon corrections
of order α(Zα)5.

(a) (b)

Fig. 4. Proton structure and intrinsic muon energy effects of
order α(Zα)5.

(a) (b) (c) (d)
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Contribution (49) calculated with the use of the F1 and
F2 form factors from [12] was

(50)

Consider calculations of vertex corrections. The
renormalized equation for the one-particle vertex oper-

h1 k x,( ) k 4m1
2x2k2 xm1

2 xk2+( )2
+=

+ xm1
2 xk2+( ) 4m2

2 k2+ ,
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+ xm1
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∆E2γ SE,
HFS 0.008 meV.=
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ator in the Fried–Yennie calibration was obtained

in [41] (p2 = ),

(51)

where

and the  and  functions were defined in [41]. In
accordance with (51), the lepton tensor is separated into
two terms,
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(53)

For simplicity, we consider the main contribution in m1/m2 only, which allows us to represent the first part of the

vertex correction of order  and the second part of order  in the form

(54)
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The analytic integration in φ in (54) and (56) and the
subtraction of the iterative contribution

(58)

from the sum of (54) and (56) (we must take one pho-
ton, and the second photon must contain the superfine
part of the potential with the magnetic form factor value
at zero) yields the following equation for the vertex cor-
rection, which is determined by the diagrams shown in
Figs. 5a and 5b:

(59)
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(60)

Vertex corrections (59) were found to be

(61)

Another vertex-type diagram with one enveloping pho-
ton and two exchange photons is a “jellyfish”-type dia-
gram. Its contribution to the energy spectrum is of order
α(Zα)5. In the region of small loop momenta, this dia-
gram gives a finite result in the Fried–Yennie calibra-
tion. The equation for the lepton tensor present in
amplitudes 5c and 5d (Fig. 5) obtained in [36] was

(62)

where ∆ had the same form as in (51), and the  ten-
sor functions were reported in [36]. The character of the
further transformations of amplitudes 5c and 5d (Fig. 5)
in constructing the superfine part of the muon–proton
interaction operator is the same as with the other
amplitudes shown in Figs. 4 and 5. Omitting the
details of these transformations performed using form
[40], let us write the contributions to the superfine
structure of the µp atom that correspond to the three

 functions. In the main order in m1/m2 , they have
the form
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(64)
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The integration in angle φ in (63)–(65) can be per-
formed analytically. Without writing down the resulting
equations, we will give the eventual numerical result
for the contribution of diagrams 5c and 5d (Fig. 5) to
the superfine structure of the µp atom,

(66)

Note that, in the point proton approximation, when the
form factors of the nucleus, which enter the amplitudes
shown in Figs. 4 and 5, are replaced by their values at
zero,

contributions (64)–(66) increase approximately two-
fold.

6. CONCLUSIONS
We calculated various quantum electrodynamic

effects, structure effects, and the effects of the polariza-
tion of the proton and the hadronic polarization of the
vacuum on the superfine structure of the muonic hydro-
gen atom. The contributions of orders α5 and α6 were
considered. It was taken into consideration that the
µα/me ratio was close to one for some corrections; for
this reason, we did not increase the order in α in these
contributions. The numerical results for the contribu-
tions obtained in this work are listed in the table. The
table also contains the quantum electrodynamic correc-
tions to the Fermi energy for the superfine structure of
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the hydrogen-like system related to the anomalous
magnetic moment of the muon aµEF [18] (we used the
experimental value for the anomalous magnetic

moment of the muon  = 11659203(8) × 10–10 [42]),
the Breit relativistic correction of order (Zα)6 [43], the
relativistic and radiative effects of the same order with
recoil (Zα)6m1/m2 taking into account the anomalous
magnetic moment of the proton [30], the correction for
the structure of the nucleus of order (Zα)5 [22] (see
Eq. (40) above), the correction for the structure of the
nucleus of order (Zα)6ln(Zα)2 [8], and the contributions
of the hadronic polarization of the vacuum [33], proton
polarizability [16], and weak interaction via exchange
of a Z boson [18].

Consider several points related to the calculations
performed above.

(1) For muonic hydrogen, of great importance are
the effects of vacuum polarization, which modify the
spin-dependent part of the one-photon interaction
potential.

(2) All loop amplitudes were calculated taking into
account the structure of the proton with the help of elec-
tromagnetic form factors. The point proton approxima-
tion substantially (approximately twofold) exaggerates
the results.

(3) The energetic corrections proper and the vertex
corrections of order α(Zα)5 were calculated using the
equations for the corresponding lepton factors in the
amplitude terms of the quasi-potential obtained by
Eides, Grotch, and Shelyuto in the Fried–Yennie cali-
bration. We augmented these equations where neces-
sary by subtracting the iterative terms of the interparti-
cle interaction potential.

The first result for the superfine structure of the
ground state of muonic hydrogen given in the table can
serve as a reliable estimate in performing the corre-
sponding experiment, the designing of which is cur-
rently under way [23]. As has been mentioned above,
the correction values were obtained with a 0.001 meV
accuracy. The theoretical error caused by the uncertain-
ties in the fundamental parameters (fine structure con-
stant, proton magnetic moment, etc.) entering the Fermi
energy is around 10–5 meV. The other part of the theo-
retical error is related to corrections higher in order.

aµ
exp
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This part can be estimated from the leading contribu-
tion of a higher order in α and m1/m2,

(we used the fine structure constant α–1 =
137.03599976(50) [1]).

The total contribution to the superfine structure of
muonic hydrogen obtained in this work (see table) is
useful to compare with the superfine splitting calcu-
lated in the point proton approximation, in which only
the electromagnetic form factors of the proton at zero
are taken into account,

(the only exception is the Zemach correction). The super-
fine structure of the ground state can then be obtained
only with accuracy O((m1/m2)α6) in the form [18]

(67)

The significant discrepancy between this value and the
value obtained by us, 182.725 meV, is explained by sev-
eral reasons, including the modification of the Breit
potential for muonic hydrogen as a result of the elec-
tronic polarization of the vacuum, proton structure
effects in constructing two- and three-photon interpar-
ticle interaction potentials, and the inclusion of the had-
ronic polarization of the vacuum and proton polariz-
ability in our calculations. A further improvement of
the theoretical result given in the table will primarily be
related to corrections for the structure and polarizabil-
ity of the proton, the theoretical error in these values
being approximately 340 ppm. The overwhelming part
of this error is determined by corrections for the struc-
ture of the nucleus, which are of order (Zα)5 (the Zem-
ach correction). It follows that performing experimen-
tal measurements of the superfine splitting of the 1S and
2S energy levels in muonic hydrogen with an accuracy
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of 30 ppm would allow us to obtain a more reliable
(accurate to 10–3) value for the Zemach radius, which
can be used to improve the theoretical result for the
superfine structure of the ground state of the hydrogen
atom and to more accurately estimate the possible con-
tribution of proton polarizability. Increasing the num-
ber of problems related to studying the superfine struc-
ture of the energy spectra of hydrogen-like atoms,
including the superfine structure of excited energy lev-
els [44] and the superfine structure of the “new” sim-
plest atomic systems, will decrease the uncertainties in
the fundamental physical parameters and increase the
precision of verifying the Standard Model in low-
energy physics.
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Abstract—Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is inves-
tigated. In the plasma electric field, the compound dust particle “dust grain + ion cloud” acquires a dipole
moment due to displacement of the centers of positive and negative charges in the opposite directions within
the compound particle. By analogy to the van der Waals attractive interaction potential, the dipole–dipole inter-
actions of the compound dust particle can have an attractive behavior. It is shown that, for the electric field
strengths typically observed in experiments, the dipole–dipole attractive force exceeds the shadowing force that
is connected with the reciprocal interception of ions by the neighboring dust grains. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A cloud of dust particles in plasmas, confined by the
walls (electrodes), is characterized by a self-organizing
property that reveals itself as the capability of dust
grains to form ordered spatial structures in the vicinity
of electrodes [1–12]. The dust grains in a cloud usually
have an electric charge of the same sign (negative);
according to the general consideration, at large inter-
grain distances, such a capability of self-organization
implies the existence of an attractive force between dust
grains having the same polarity. In the past, various
mechanisms had been proposed for the dust grain
attraction in dusty plasmas. They are as follows:

(i) The attraction of dust grains in the wake poten-
tial [13–16]: the ions are focused in the negative poten-
tial region of the wake field behind a moving dust grain
and provide a possibility for attracting the following
negatively charged grain in a linear chain [17, 18].

(ii) The shadowing force [19, 20]: the reciprocal
shadowing of a pair of dust grains in a nonstreaming
plasma and, as a result, reciprocal interception of ions
moving from the outside of the system of the grain pair,
leading to a net momentum transfer that pushes the
grains to meet each other. This, in effect, represents an
attractive force between two dust grains.

(iii) When placed into an external electric field (for
instance, in the field of another charged dust particle),
the dust grain, considered a conductor, is polarized. The
excess of charges with a definite sign on one side leads

¶This article was submitted by the authors in English.
1063-7761/04/9801- $26.00 © 20053
to an anisotropy of the plasma-particle flows to the
dust-particle surface. Even when there is an equality of
the ion and electron currents to the dust particle surface,
the momentum transferred to the dust particle by the
ions incident on the surface considerably exceeds the
momentum brought by electrons. Therefore, an addi-
tional force exerted by the plasma flow acts on a dust
particle in the electric field. This additional force has
the same direction as the electric field and can exceed
the electrostatic force acting on the dust particle in the
electric field [21]. The force is proportional to the elec-
tric field strength. If the given grain is placed into the
electric field of another grain and the distance between
the grains is much larger than the Debye radius (which
is the most interesting case for investigating the grain–
grain interactions), then the electric field and the force
become very small as a result of the Debye shielding.

Furthermore, under the condition of a volume distri-
bution of dust particles, the neighboring dust grains sur-
rounding the given grain from every side can intercept
the ions flowing towards the grain, and the attractive
forces described in items (ii) and (iii) must be substan-
tially less.

It seems more consistent to relate the creation of the
attractive force to the screening of the dust charge by a
cloud of trapped ions [22]. Below, we assume that the
dust electric charge is completely screened by an ion
cloud. Such a possibility is investigated and predicted
in [23, 24]. Taking into consideration large distances
between the grains instead of bare dust grains, we can
operate with the grains “dressed” in the jacket of an ion
cloud. The system “grain + ion cloud” is said to be a
compound (dust) particle in what follows. In an exter-
004 MAIK “Nauka/Interperiodica”
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nal electric field, the centers of the negative and positive
charges within the compound particle are displaced
from each other and the compound particle acquires a
dipole moment. The dipole–dipole interactions of the
compound dust particle can have an attractive nature by
analogy with the van der Waals interaction in solid-
state physics.

This paper is devoted to a quantitative analysis of
the attractive force acting between the compound dust
particles. It is shown below that the attractive force con-
nected with dipole–dipole interactions of compound
particles can exceed the shadowing force [19, 20].
Hence, a special feature of the interaction potential of
dust particles in plasmas must be the existence of some
equilibrium distance between dust grains at which the
forces of attraction and repulsion balance each other.
The paper is organized as follows. In Section 2, we dis-
cuss the theory of ion trapping in the potential well and
calculate the induced dipole moment in a self-consis-
tent electric field in plasmas. An expression for the
attractive force associated with dipole–dipole interac-
tions is obtained. For typical laboratory conditions, the
newly found dipole–dipole attractive force predomi-
nates over the shadowing force. Section 3 contains a
summary and approximations required for developing
the present theory.

2. THEORY

We assume plasma to be collisionless, which means
that the ion mean free path is much larger than the
plasma Debye length, λmfp @ λD. In [25], the capture of
particles by a nonstationary potential well in a colli-
sionless plasma was proposed. A brief description of
this nonstationary capture is given in [26]. The nonsta-
tionarity of the potential well means that the height of
the walls forming the well increases in time and is sat-
urated at some stationary value. Therefore, initially free
particles, passing a distance on the order of magnitude
of the extent of the well, can collide with the growing
wall. After reflection, a particle can meet an analogous
obstacle moving in the opposite direction. At the time a
stationary well is established, a definite number of par-
ticles is captured by the well. The distribution function
of trapped particles can be found from the continuity
condition for the distribution function at the limiting
level of the trapped-particle energy. At this level, the
distribution function of trapped particles must be equal
to the distribution function of free particles. In our case,
capture of ions by the potential well occurs during the
process of dust grain charging. The adiabaticity condi-
tion [25, 26] (i.e., the condition that the creation of the
well proceeds slowly), which is necessary for analytical
description of nonstationary particle trapping, is ful-
filled: if the Debye radius λD exceeds the dust grain
size a, then the characteristic time τ ≈ λD/aωpi of dust
grain charging (which is the same as the characteristic
time in which the potential well is created) is much
JOURNAL OF EXPERIMENTAL 
larger than the time τi necessary for an ion to traverse
the width of the well (here, ωpi is the ion plasma fre-
quency). As shown below, the width of the well is on
the order of λD . The time τi can be estimated as follows:
the potential of the grain is usually given by |ϕ0| ≈ Te/e,
where Te is the electron temperature and e > 0 is the ion
charge. For the average velocity of ions in the well, we
then have

(where m is the ion mass), whence

Therefore, the condition of the adiabaticity of ion cap-
turing, τ @ τi , is fulfilled at λD @ a.

According to [25, 26], upon the adiabatic creation of
the well, the distribution function of trapped particles
(ions) is constant and equals the value of the distribu-
tion function of free particles (ions) at the limiting
energy level of the trapped particles. The physical rea-
son for this result is as follows: in a collisionless
plasma, the trapped particles do not leave the well and
the probability of finding them in the well is one.

To analyze the dust cloud formation, we consider
the motion of ions in the field of a negatively charged
dust grain. Dust grains are assumed to be absolutely
absorbed and are considered spherical with a radius a
much smaller than the Debye radius, a ! λD [27–30].
At the spherical symmetry of the grain field, the depen-
dence of the ion effective potential energy on the dis-
tance r to the center of force, r = 0, is

(1)

where

is the ion potential energy and ϕ(r) is the electric poten-
tial. The angular momentum L is an integral of motion.
From the equality

(2)

we can find the extremum values of Ueff(r; L). The qual-
itative dependence of r3dU/dr on r is depicted in Fig. 1.
It is due to the specific dependence of the potential
energy U(r) on r (see [31, pp. 255–266]). At short dis-
tances (for r smaller than the Debye radius λD), the
potential energy U(r) decreases as 1/r, i.e., slower than
1/r2. For r * λD, U(r) decreases exponentially due to

v i

e ϕ0

m
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m
-----≈ ≈
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v i
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ωpi

-------.≈ ≈
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the Debye screening, i.e., faster than 1/r2. The behavior
of U(r) at large distances (r @ λD) significantly depends
on the conditions at the dust grain surface. If the dust
grain surface absorbs electrons and ions, the potential
energy U(r) decays as 1/r2 at r  ∞ (see [31,
pp. 140−141; 32, 33]). In Fig. 1, the intersection points
of the curve with the dashed horizontal lines indicate
the extremum points of Ueff(r; L). The characteristic
values L0, Lp , and Lk are determined as follows.

(1) Far from the grain, r @ λD , the potential energy
U(r) can be written as [31, 32]

(3)

where U∞ is a constant. We then have

(4)

At L ≤ L0, the effective potential energy Ueff has only
one extremum point, which corresponds to a minimum.

(2) The characteristic angular momentum Lp is
determined from the condition that the maximum value
of the effective potential energy is equal to the value
of the effective potential energy on the grain surface,
r = a [33, 34]. Lp and the corresponding point rmax of the
maximum of the effective potential energy can be
found from the system of equations

(5)

(6)

Equation (5) yields

(7)

Usually, rmax > λD . As the angular momentum L
increases, the minimum point of Ueff(r; L) moves away
from the center and the distance between the extremum
points decreases. We stress that only those trapped ions
that have the angular momentum L < Lp can reach the
grain surface and be absorbed. At L > Lp , the edge of the
well is far from the grain surface.

(3) The maximum value of r3dU/dr is reached at a
certain point rk (>λD), where

(8)

U r( ) U∞
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and rk is always between the maximum and minimum
points. The characteristic angular momentum Lk is
defined as

(9)

At L = Lk , the extremum points coincide and the func-
tion Ueff(r; L) has an inflection at this point. If L > Lk ,
the function Ueff(r; L) decreases monotonically with
increasing r.

(4) At L > L0, Eq. (2) has two roots. For a more
detailed description of ion motion, we must also deter-
mine the angular momentum La at which the small root
(corresponding to the minimum of U
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 of the grain,
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Hence, if the angular momentum is in the range
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The qualitative dependence of 
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for various
values of the angular momentum is shown in Fig. 2. We
can now determine the surface that separates the
regions of infinite and finite motion of ions in the veloc-
ity space (  v  r  ,  v  θ  ), where  v r  and  v θ  are the velocity com-
ponents along and across the radial direction. The stan-
dard definition of the angular momentum is

(12)
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Fig. 1. A qualitative plot of the auxiliary function r3dU/dr
vs. r.
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can be trapped in the potential well. The ions with the
angular momentum in the range L0 < L < Lk can be
trapped if their total energy satisfies the condition

(15)

The ions with the angular momentum larger than Lk

(L > Lk) are not trapped. The dependence of |U∞| on the
grain surface potential |U(a)| for equal electron and ion
temperatures (Te ≈ Ti) is depicted in [31, p. 317] and
shows that one always has

With increasing |U(a)|, this ratio decreases. A more pre-
cise relation between |U∞| and |U(a)| can be established
from the quasineutrality condition, in the case where
the ion and electron densities are roughly equal. This
occurs far from the grain (r @ λD). Under this condi-
tion, a calculation quite similar to that given in [34]
shows that for a nonisothermal plasma, Te @ T, and the
inequality

(16)

is satisfied for the absorbing grains if

The latter relation is usually fulfilled with a large
reserve both in laboratory and space plasmas [28].

E v r v θ r, ,( ) Ueff rmax; L( ).≤

U∞

U a( )
--------------- 1

3
---.<

U∞
1
2
--- U a( )<

U a( )
Te

--------------- 1
2
---.>

0

Ueff

r0 r m
in

0

rmin rk rmax

1
2
3

4
5

r

Fig. 2. A qualitative plot of Ueff(r; L) vs. r for different val-
ues of the angular momentum: (1) L ≤ L0, (2) L = La ,
(3) L = Lp , (4) Lp < L < Lk , and (5) L = Lk . 
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From (13) and (16), it follows that the zero point r0 of
the effective potential energy Ueff(r; L) at L ≤ L0 is
always close to the center (r = 0) in comparison with the
grain surface, r0 < a. Indeed, we find from Eq. (1) that
Ueff(r; L0) at r = a is negative (see curve 1 in Fig. 2),

(17)

Consequently, when L is smaller than a certain critical
value L0, the dust grain surface is within the well and
the ions falling into the potential well are therefore
immediately lost due to absorption onto the dust grain
surface. Hence, the formation of trapped ion clouds that
can shield the grain electric field is possible only for
L > La .

According to the general theory [25, 26], for the sta-
tionary well, the distribution function of the trapped
particles fitr is constant and the value of fitr is defined by
the value of the distribution function of untrapped par-
ticles at the limiting energy, in our case, by the energy
level Ueff(rmax; L). Considering the distribution function
of untrapped ions as a Maxwell–Boltzmann one, we
obtain

(18)

We emphasize that rmax here depends on the angular
momentum L (see Eq. (2)). Because we are interested
in distances not very large compared to λD , r & rmax

(see also Eq. (21)), we can choose the Debye–Hückel
form

(19)

for the potential energy of ion interactions with a dust
grain. It should be stressed that the Debye–Hückel law
holds even in the nonlinear regime [23]. It is somewhat
modified by the ion flow [16]. The latter also produces
a wake field, which is not the focus of this paper. The
dependence of U(r) on r definitely corresponds to the
dependences necessary for the classification of ion
motion according to the angular momentum (see Sec-
tion 1). We note that dependence (3) is valid only for
very large distances r, r @ λD . From (2), (6), and (19),
we find the critical value of the angular momentum La

and the corresponding maximum point rmax of the effec-
tive potential energy

(20)

Ueff a; L0( ) U∞ U a( ) 0, L L0.≤<–≤

f itr n0 m/2πTi( )3/2=

× Ueff rmax L( ); L( )/Ti–( ).exp
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r
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-----------– 
 exp–=

La
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as

(21)

Comparing (4) and (20) by means of (16), we find that
La > L0 and, consequently, the effective potential energy
has both a minimum and a maximum for L ≥ La . At L =
La , the minimum point of the effective potential energy
coincides with the dust grain radius. For L < La , the dis-
tance of the minimum point of Ueff(r; L) from the center
(r = 0) is smaller than the grain radius and all trapped
ions are absorbed by the dust grain surface. From (2)
and (4), it follows that, at L = L0, the point of the mini-
mum of the effective potential energy is given by [9]

(22)

For |U∞| < (1/2)|U(a)|, we have rmin0 < a (see Fig. 2).
This result is physically expected, because the ions with
small angular momenta impact the dust grain surface
and are absorbed. We can therefore restrict ourselves by
considering the ion angular momenta L ≥ La and dis-
tances r ≤ rmax(La), defined by (21). Obviously, the
Debye–Hückel potential (19) is applicable for such dis-
tances, and we use it for estimations in what follows.
For instance, using the Debye–Hückel shielded poten-
tial for the critical distance rk defined by (8), we obtain
rk ≈ 1.61λD .

Different kinds of potential wells that make a contri-
bution to ion trapping can be gathered in two groups.
For the angular momentum in the range

(23)

or

(24)

the distribution function is defined by (18) (with the
corresponding rmax(L)) and only the ions with an energy

(25)

can take part in forming the cloud shielding the grain
field. The ions with larger energy E ≥ Ueff(a; L) dis-
appear due to absorption on the dust surface. Condi-
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tions (25), (12), and (14) allow us to define the limiting
value for the velocity component along the radial direc-
tion,

(26)

where Θ(x) is the step function (Θ(x) = 1 if x ≥ 0 and
Θ(x) = 0 if x < 0). The turning point  is the solution
of the equation

(27)
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is fulfilled. In accordance with (2) and (19), the expo-
nential function in the integrand of (30) can then be
replaced by 1 and we find after integration that

(32)

where

(33)

Similar calculations can be performed for ions with
the angular momentum in the range

(34)

or

(35)

In this range, the surface of the grain is outside the well.
The energy border of the well is defined by Ueff(rmax; L),
and for the limiting value of the velocity component
along the radial direction, we have

(36)

where  (≠rmax(L)) is the solution of the equation
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and rmax(L), which is again the maximum point, also
satisfies this equation. The procedure, quite analogous
to that used above, gives the following expression for
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the number density n2(r) of the trapped ions with the
angular momentum in the range (34):

(38)

Here, rmax(s) is again defined by (2) and (19), and 
is the root of the expression under the radical (cf. (19)
and (37)). From (30) and (38) (and also from the depen-
dence of the wells on the angular momentum described
in Sections 2 and 3), it follows that a cloud of trapped
ions is localized in a spherical layer restricted by the
spheres with the radii a and  (the latter is defined
by (33)). Integrating the sum of n1(r) and n2(r) over the
space, we find the total number N of trapped ions,
which we assume to be equal to the charge number Z of
the grain,

(39)

In estimating (39), we used the condition of the smallness
of a dust grain, a ! λD. The possibility of such a compen-
sation of charges was recently predicted in [23, 24]. In
our model, therefore, the electric charge of the dust
grain is screened by the trapped ion cloud and the inter-
action of the compound particle (dust grain + ion cloud)
at large distances cannot be realized as an interaction of
charges. In an external (or induced) electric field, the
centers of positive and negative charges within such a
compound particle can be shifted and the particles
acquire a dipole moment that can lead to dipole–dipole
interactions of the compound particles. Below, we find
the electric field necessary for shifting the centers of
charges over a distance r, with
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and determine the corresponding induced dipole
moment. At shifting distances r ! λD (much less than
the size of the trapped ion cloud; cf. (33)), we can
assume that the form of the dust cloud remains
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unchanged under shifting. From (32) and (38), the total
ion number density at r ! λD is given by

(41)

For the electric field strength, which is defined as

(42)

we then obtain

(43)

Equation (43) represents the electric field within the
cloud of trapped ions generated by these ions. Placing
a charged grain at distance r from the center, in order to
keep it in equilibrium, one needs to apply an external
electric field whose value can be found from Eq. (43).
The direction of the external field must be opposite to
the displacement of the centers of the positive and neg-
ative charges [35–37].

Inequalities (40) and relation (39) give the following
restriction on the electric field:

(44)

According to (39) and (43), the induced dipole moment
and the polarizability of the compound particle (dust
grain + ion cloud) are given by

(45)

where

(46)

Due to the specific dependence of the electric field
within the compound particle at distance r from the
center (Eq. (43)), the polarizability reveals a nonlinear
behavior. At large distances, the interaction energy
between the compound particles in the external electric
field can be interpreted as the dipole–dipole interaction

(47)
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n r( ) n1 r( ) n2 r( )+
4

3 π
----------n0

U a( )
Ti

---------------
3/2

= =

× a
r
--- r

a
--- 1– r

a
--- 1+ 

  1–

Θ r a–( ).

E
r

r3
----4π r'r'2en r'( ),d

a

r

∫=

E
8

3 π
---------- 4π

3
------n0 

  a
r
--- U a( )

Ti

---------------
3/2

er.=

6
π
---e2Z2

λD
4

---------- ! E
2
 ! 

6
π
---e2Z2

λD
4

----------
λD

a
------.

P Zer α E( )E,= =

α E( ) 6
π
--- Ze

λD
2 E

---------- 
  3

λD
3 .=

V
1

R3
----- P1 P2 3 n P1⋅( ) n P2⋅( )⋅–⋅[ ] ,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the dust particles. Depending on the orientation of the
dipole moments, the potential energy can acquire an
attractive character. For identical dust particles, the
attractive force becomes maximum when the dipole
moments are parallel to each other and to n. According
to Eqs. (47) and (46), this attractive force is given by

(48)

In [19, 20], the effective attractive force between two
isolated dust grains due to their reciprocal shadowing in
the plasma has been investigated. According to [29], the
value of the shadowing force is

(49)

Comparison of Eqs. (48) and (49) reveals that the shad-
owing force is smaller than the force due to dipole–
dipole interactions for electric field strengths that are
typical in laboratory experiments [38–40]. Indeed, rela-
tion |F| @ Fsh is identical to the inequality

(50)

where

(51)

For E = E0, conditions (44) and (50) can be satisfied if

 @ 1 (λD/R ! 1). Taking a ≈ 10– 4 cm, Z ≈ 104,
λD ≈ 1.4 × 10– 2 cm, and R ≈ 10–1 cm, we have E = E0 ≈
50 V/cm. According to Eq. (46), the potential energy
and the interacting force decrease as the electric field
strength increases. Apparently, the dipole–dipole inter-
action potential energy, as discussed here, may be respon-
sible for the formation of many-layer structures that have
been observed in laboratory experiments [8–11] where
the behavior of a dust particle cloud in the plasma dis-
charge was investigated.

3. CONCLUSIONS

We have considered complete shielding of the dust
grain charge by the trapped ions in plasmas. In the
plasma electric field, a neutral compound particle (dust
grain + ion cloud) acquires dipole moments that can
lead to their interaction by the potential energy of the
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dipole–dipole type. We note that our calculations for
dipole–dipole interactions are valid under the following
assumptions.

(1) The surface of the dust grain is absolutely
absorbing.

(2) For the distances in which we are interested, the
spatial dependence of the ion potential energy in the
field of a dust grain follows the Debye–Hückel law
(see (19)). The latter holds even in the nonlinear
regime, as demonstrated in [23]. The ion flow slightly
affects the Debye–Hückel potential [16], and, in addi-
tion, generates a wake field, which is not the topic of the
present paper.

(3) It is assumed that, in a collisionless plasma, ion
trapping is the result of adiabatic change of the poten-
tial well’s shape in time [25, 26]. Therefore, the steady
state is reached before dust-neutral interactions take
place.

(4) The number density of trapped ions is small
compared to the total ion number density. The trapped
ions do not take part in the formation of the potential
well.

In conclusion, we mention that some aspects of the
interaction observed experimentally [8–11], for exam-
ple, formation of regular equidistant layers of dust
grains, can be explained by the theory developed here.
Finally, the present dipole–dipole attractive force can
be incorporated in molecular dynamics simulation
studies of charged dust particle behavior in dusty
plasmas.
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Abstract—Optical properties of cholesteric liquid crystals with a pitch larger than the wavelength of light are
considered. Normal waves of the medium and the Green function of the electromagnetic field are analyzed. A
general algorithm based on the application of the Kirchhoff method is proposed for calculating the scattered
light intensity in media with a one-dimensional periodic structure. The WKB vector method is used for calcu-
lating the spatial correlation function of thermal fluctuations of the director. It is found that the transformation
of two fluctuation modes takes place is some regions. The angular and polarization dependences of the intensity
of light scattered from fluctuations of the director are calculated. It is found, in particular, that the intensity of
scattering is a nonmonotonic function of the size of the system. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, considerable attention has been paid
to investigation of liquid crystals (LCs) by various
methods. The interest in this problem is provoked by a
number of anomalies in physical properties of these
systems and by their wide application in graphics dis-
play systems (above all, in LC displays).

The light scattering technique is one of the effective
methods for studying LC systems. Peculiar optical and
structural properties of liquid crystals considerably
complicate the description of light scattering. Such
properties include strong optical anisotropy, the pres-
ence of regular spatial structures, abnormally large
fluctuations of the order parameter, and anomalously
high optical activity.

In this connection, a number of physical problems
arise, which have been studied insufficiently so far. One
of such problems is the description of light scattering in
media with a smoothly varying periodic structure. Scat-
tering of light is usually considered under the assump-
tion that the medium is spatially homogeneous, or fluc-
tuations and the propagation of waves in inhomoge-
neous media are described on the basis of small
parameters, which make it possible to reduce the solu-
tion of the problem to that for a certain effective homo-
geneous medium. For homogeneous systems, normal
waves and the field of a point source (the Green func-
tion of the electromagnetic field) are known and the
spatial correlation function of thermal fluctuations of
permittivity, from which light is scattered, are calcu-
lated quite easily. The condition of spatial homogeneity
of a system makes it possible to obtain simple expres-
1063-7761/04/9801- $26.00 © 20062
sions for the intensity of scattered light in closed form
by passing to the 3D spectrum of Fourier fluctuations.

The problem becomes more complicated when the
spatial homogeneity of the medium is violated consid-
erably. This immediately gives rise to several problems
such as the description of the structure of the incident
field (normal waves in the medium), the calculation of
the Green function of the electromagnetic field, and
analysis of the correlation function of permittivity fluc-
tuations.

Typical examples are the problems of propagation
and scattering of light in media with periodically vary-
ing properties (in particular, in media with one-dimen-
sional periodic structures). Such media include choles-
teric liquid crystals (CLCs), twisted nematic liquid
crystals (NLCs), and certain kinds of smectic liquid
crystals (SLCs).

Although this problem has been considered for a
long time, it involves significant mathematical difficul-
ties since the problem is reduced to solving a system of
differential equations with periodic coefficients, which
have no exact solution in the general case. For example,
the exact solution of the problem on propagation of
electromagnetic waves in CLCs was obtained only for
waves propagating along the symmetry axis of the sys-
tem [1–3]. The formal analytic solution for the problem
in the case of oblique incidence [4–6] has the form of an
infinite series and is difficult for analysis. For this reason,
various approximate and numerical methods are widely
used in the optics of layered LCs [7–11]. In this case,
main attention is paid to the situation when the wave-
length is on the order of the structural period and the
004 MAIK “Nauka/Interperiodica”
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methods developed for X-rays diffraction have been
found to be effective [8]. Such an approach remains
most popular for CLCs even now [11–15]. This case is
characterized by the emergence of forbidden bands.
The problems with normal waves and the field of a
point source [16–19], as well as the spectrum of ther-
mal vibrations of the director [20–23], have been inves-
tigated using this method.

The opposite case, when the wavelength is much
smaller than the characteristic size of the LC structure,
has been studied insufficiently. However, this problem
has become important in recent years in connection
with the application of twist cells of weakly twisted
NLCs and CLCs with a large pitch in graphics display
systems.

It is well known that, when light propagates along
the axis of the cholesteric in such systems, the adiabatic
regime occurs, when the polarization of waves rotates
together with the optical axis [24]. For high intensities
of incident light, nonlinear effects (such as the genera-
tion of the third harmonic) were observed [25]. In the
general case of oblique incidence, it is natural in this
case to use the WKB method since the size of inhomo-
geneities is much larger than the wavelength. It is diffi-
cult to directly apply the WKB method for electromag-
netic waves since this gives rise of a system of coupled
equations [4, 5, 26]. This problem was solved in [27, 28]
for electromagnetic waves propagating in locally iso-
tropic media with smooth inhomogeneities. The gener-
alization of the WKB method, proposed in [29] for
CLCs with a large pitch, has made it possible to obtain
an analytic solution of the problem with oblique inci-
dence of light (in particular, normal waves were deter-
mined). On the basis of this method, the field of a point
source in such a medium was also obtained [30–32].

In order to describe scattering of light, we must
know, in addition to the optical parameters of the sys-
tem, the correlation function of thermal fluctuations of
permittivity. The main contribution to scattering in
CLCs comes from fluctuations of the director. The
problem of the director thermal noise in CLCs was con-
sidered only for fluctuations with characteristic scales
on the order of or larger than the structure period
(“smecticlike” CLCs) [20–23]. In the opposite case of
a “nematiclike” CLCs, fluctuations have not been stud-
ied. It should be noted that fluctuations were analyzed
for some physical systems with regular inhomogene-
ities (e.g., in studying the influence of the gravity effect
in the vicinity of the liquid–vapor critical point on den-
sity fluctuations) [33]. However, the correlation radius
of fluctuations in this case is much smaller than the
characteristic size of regular inhomogeneities in the
system. This problem can be reduced to that for a
locally homogeneous medium with parameters
smoothly varying from point to point. The system con-
sidered here is distinguished by the fact that the corre-
lation length of director fluctuations we are interested
in is limited only by the size of the system [34]. For this
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
reason, the local homogeneity approximation is inap-
plicable in this case.

In this study, we use a vector generalization of the
WKB method for calculating the correlation function
of director fluctuations in CLCs with a large pitch. A
general algorithm is proposed for calculating the inten-
sity of scattered light for layered systems. This enabled
us to derive explicit expressions for the angular and
polarization dependences of the intensity of single scat-
tering of light in CLCs in the case when the pitch is
much larger than the wavelength. The results are repre-
sented in a form convenient for comparison with exper-
iment.

The article has the following structure. In Section 2,
the general equations describing the elastic energy and
fluctuations, as well as the propagation of electromag-
netic waves in CLCs, are considered. In Section 3, the
general algorithm for calculating the intensity of scat-
tered light in layered media is constructed on the basis
of the Kirchhoff method. Section 4 is devoted to deter-
mining the normal waves and the Green function of the
electromagnetic field in CLCs with a pitch larger than
the wavelength of light. In Section 5, the correlation
function of director fluctuations in CLCs is calculated.
The intensity of scattered light is calculated in Section 6,
where various experimental geometries are analyzed.
The algorithm of the vector WKB method used for
determining the normal waves and the correlation func-
tion in CLCs is given in the Appendix.

2. BASIC EQUATIONS

A CLC can be described by free energy in the form
[34]

(2.1)

where F0 is the energy of a homogeneous system and
Kll (l = 1, 2, 3) are the Frank moduli. The unit vector
n = n(r) of the director characterizes the direction of
the local preferred orientation of the longer axes of the
molecules. The minimum of energy (2.1) corresponds
to a helicoidal equilibrium distribution of the director,

(2.2)

Here, we have introduced the Cartesian system of coor-
dinates with the z axis coinciding with the axis of the
cholesteric in the CLCs, φ = φ(z) = p0z + φ0, angle φ0
determining the direction of the director on the plane
z = 0, p0 = π/d, where d is the pitch of the cholesteric.
Director n0(r) in Eq. (2.2) is perpendicular to the z axis
and rotates uniformly around this axis.

F F0
1
2
--- rd K11 divn( )2[∫+=

+ K22 ncurln p0+( )2 K33 n curln×( )2+ ] ,

n0 r( ) n0 z( )≡ φ φ 0,sin,cos( ).=
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Optical properties of a cholesteric are determined by
permittivity tensor ; in an equilibrium CLC, this ten-
sor has the form [34]

(2.3)

where εa = ε|| – ε⊥ , ε|| and ε⊥  being the permittivities
along and across n0.

The Maxwell equations for a monochromatic wave
in such a medium have the form

(2.4)

where E and H are the vectors of electric and magnetic
fields and k0 = ω/c, ω being the circular frequency
and c, the velocity of light in vacuum. Henceforth, we
will assume that the medium is nonmagnetic, µαβ(r) =
δαβ. Eliminating vector H from system (2.4), we obtain
the wave equation for vector E:

(2.5)

In solving the scattering problem, it is convenient to
use the integral representation for wave equation (2.5),

(2.6)

where  =  –  are the fluctuations of the
permittivity tensor, and field E0(r) and the Green func-

tion  of the electromagnetic field satisfy the
equations

(2.7)

(2.8)

Here,  is the unit matrix.

Since Eq. (2.7) is homogeneous, field E0(r) can be
expressed in the form of a linear combination of normal
waves of problem (2.7). In order to formulate the prob-
lem unambiguously, Eq. (2.8) should be supplemented
with the corresponding boundary conditions. In an
unbounded medium, such conditions are the radiation
conditions [35]. In view of the symmetry of the CLC
relative to displacements in the XY plane, we have

 ≡ , where r⊥  = (x, y).

The second term on the right-hand side of Eq. (2.6)
corresponds to scattered field E(s) generated by incident
field E0(r). Solving this equation by iterations and con-
fining the analysis to the lowest order in , we obtain

ε̂

εαβ
0 r( ) εαβ

0 z( )≡ ε⊥ δαβ εanα
0 z( )nβ

0 z( ),+=

curlE r( ) ik0µ̂ r( )H r( ),=

curlH r( ) ik0ε̂ r( )E r( ),–=

curlcurl k0
2ε̂ r( )–( )E r( ) 0.=

E r( ) E0 r( ) k0
2 r'T̂

0
r r',( )δε̂ r'( )E r'( ),d∫+=

δε̂ r( ) ε̂ r( ) ε̂0 r( )

T̂
0

r r',( )

curlcurl k0
2ε̂ z( )–( )E0 r( ) 0,=

curlcurl k0
2ε̂0 z( )–( )T̂

0
r r',( ) δ r r'–( ) Î .=

Î

T̂
0

r r',( ) T̂
0

r⊥ r⊥' ; z z',–( )

δε̂
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scattered field E(s) in the single-scattering approxima-
tion,

(2.9)

The properties of scattered light are determined by
the coherence function

(2.10)

where  =  is the corre-
lation function of permittivity fluctuations, angle brack-
ets 〈…〉  denote statistical averaging, and the asterisk
indicates complex conjugation. In view of the symme-

try of the CLC, we have  ≡

.

Thus, in order to calculate coherence function (2.10),
we must know the normal waves determining the form

of field E0(r), Green function , and correlation func-

tion  for permittivity fluctuations in our system.

The largest contribution to  in LCs comes from
fluctuations of the director [34],

(2.11)

here, we confine our analysis to these fluctuations only.
Under this assumption, not only the equilibrium, but
also the fluctuating permittivity tensor has a form
analogous to expression (2.3) with the substitution
n0(z)  n(r):

(2.12)

Subtracting expression (2.3) from (2.12), we obtain
the relation between fluctuations of the permittivity and
the director in the CLC,

(2.13)

as well as the relation between the corresponding cor-
relation functions,

(2.14)

E s( ) r( ) k0
2 r'd∫ T̂

0
r⊥ r⊥' ; z z',–( )δε̂ r'( )E0 r'( ).=

Eα
s( ) r1( )Eβ

s( )∗ r2( )〈 〉

=  k0
4 r1' r2' Tαγ

0 r1⊥ r1⊥' ; z1 z1',–( )dd∫
× Tβζ

0* r2⊥ r2⊥' ; z2 z2',–( )&γνζµ r1' r2',( )Eν
0 r1'( )Eµ

0* r2'( ),

&γνζµ r1' r2',( ) δεγν r1'( )δεζµ* r2'( )〈 〉

&̂ r1' r2',( )

&̂ r1⊥' r2⊥' ; z1' z2',–( )

T̂
0

&̂

δε̂

n r( ) n0 z( ) δn r( );+=

εαβ r( ) ε⊥ δαβ εanα r( )nβ r( ).+≡

δεαβ r( ) εa na
0 z( )δnβ r( ) δnα r( )nβ

0 z( )+( ),=

&αβγδ r⊥ ; z z',( ) εa
2 nα

0 z( )nγ
0 z'( )gβδ r⊥ ; z z',( )[=

+ nα
0 z( )nδ

0 z'( )gβγ r⊥ ; z z',( )

+ nβ
0 z( )nγ

0 z'( )gαδ r⊥ ; z z',( )

+ nβ
0 z( )nδ

0 z'( )gαγ r⊥ ; z z',( ) ] .
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Here,

(2.15)

is the correlation function of director fluctuations.

To calculate the correlation function of director fluc-
tuations in the Gaussian approximation, we can confine
ourselves to the contribution to free energy (2.1), which
is quadratic in δn:

(2.16)

In deriving this equation, we took into account the fact
that the relations divn0 = 0 and curln0 = –p0n0 are valid
for helicoidal structure (2.2). Since |n| = |n0| = 1, the
condition δn ⊥  n0 is satisfied in the main order in δn.
Vector δn = (δnx, δny, δnz) can be parameterized with
the help of two quantities. In the case of CLCs, the
parameterization [20, 21]

(2.17)

is normally used. Modes u1 and u2 determine the fluctu-
ations of the director in the XY plane and along the z
axis, respectively (Fig. 1). In vector form, we have

(2.18)

where

(2.19)

Equation (2.18) leads to the expression for the cor-
relation function of director fluctuations in terms of the
correlation matrix of scalar quantities u1, 2,

(2.20)

where

(2.21)

Substituting relation (2.17) into Eq. (2.16),

gαβ r1⊥ r2⊥ ; z1 z2,–( )

=  δnα r1⊥ z1,( )δnβ r2⊥ z2,( )〈 〉

δF
1
2
--- rd K11 ∇ δ n⋅( )2 K22 n0 ∇ δ n×( )⋅[ ] 2

+{∫=

+ K33 δn ∇⋅( )n0 n0 ∇⋅( )δn+[ ] 2 } .

δnx r( ) u1 r( ) φ z( ),sin–=

δny r( ) u1 r( ) φ z( ),cos=

δnz r( ) u2 r( )=

δn r( ) u1 r( )h 1( ) z( ) u2 r( )h 2( ),+=

h 1( ) z( ) h 2( ) n0 z( ), h 2( )× ez.= =

gαβ r⊥ ; z1 z2,( )

=  Gkl r⊥ ; z1 z2,( )hα
k( )

z1( )hβ
l( )

z2( ),
k l, 1=

2

∑

Gkl r1⊥ r2⊥ ; z1 z2,–( )

≡ Gkl r1 r2,( ) uk r1( )ul r2( )〈 〉 .=
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we obtain

(2.22)

where ∂l ≡ ∂/∂l, l = x, y, z.

Since an equilibrium CLC is spatially homogeneous
in a plane orthogonal to the z axis, it is convenient to
pass to the 2D Fourier spectrum. Henceforth, we will
use a continuous 2D Fourier transform in the form

(2.23)

In this case, the distortion energy (2.22) assumes the
form

(2.24)

δF
1
2
--- r K11 – φ∂xu1sin φ∂yu1cos ∂zu2+ +( )2{d∫=

+ K22 φ ∂yu2 ∂z u1 φcos( )–( )cos[

+ φ ∂z u1 φsin–( ) ∂xu2–( )sin ]2

+ K33 –u2 p0 φsin φ∂x u1 φsin–( )cos+([

+ φ∂y u1 φsin–( )sin )2

+ u2 p0 φcos φ∂x u1 φcos( )cos φ∂y u1 φcos( )sin+ +( )2

+ φ∂xu2cos φ∂yu2sin+( )2 ] } ,

f r( )
qd

2π( )2
------------- f q z,( )e

iq r⊥⋅
,∫=

f q z,( ) r⊥ f r( )e
iq r⊥⋅–

.d∫=

δF
q2d

2π( )2
-------------δFq,∫=

z

x

y

n0(r')

n0(z')
n0(r'')

z'

z''
u2(r'')

n0(z'')

u1(r'')

u2(r')

u1(r')

Fig. 1. Modes u1, 2 of director fluctuations in a CLC.
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where

(2.25)

Integrating by parts and disregarding the terms outside
the integral, we can represent quantity δFq as the qua-
dratic form

(2.26)

where

Matrix  is a second-order differential operator. In
a coordinate system with the x axis directed along vec-
tor q (qx = q, qy = 0), this matrix has the form

(2.27)

where  ≡ ∂2/∂z2.

The fluctuation probability is proportional to
exp[−δFq/kBT], where kB is the Boltzmann constant and

δFq
1
2
--- z K11 ∂zu2 i – φqxsin φqycos+( )u1+ 2{d∫=

+ K22 –∂zu1 iu2 φqycos φqxsin–( )+ 2

+ K33 u2 p0 i φqx φqysin+cos( )u1+ 2[

+ u2
2 φqx φqysin+cos( )2 ] } .

δFq
1
2
--- u∗ q z,( )!̂ q z,( )u q z,( ) z,d∫=

u
u1

u2 
  .=

!̂

!̂ K11
q2 φsin

2
iq φ∂zsin

iq∂z φsin ∂z
2– 

 
 
 

=

+ K22
∂z

2– iq∂z φsin–

iq φ∂zsin– q2 φsin
2

 
 
 
 

+ K33
q2 φcos

2
i p0q φcos–

i p0q φcos q2 φcos
2

p0
2+ 

 
 
 

,

∂z
2

e(i)

k(i)

r'
Vsc

e(s)
k(s)

r

Fig. 2. Geometry of a conventional experiment on light
scattering: k(i) is the wave vector of the incident wave, Vsc

is the scattering volume, k(s) is the wave vector of the scat-
tered wave, and r is the point of observation.
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T is temperature. In accordance with the general princi-
ples of statistical mechanics [36], the calculation of the
correlation function can be reduced to the inversion of

matrix , which is equivalent to solving the equation

(2.28)

To solve this equation unambiguously, we must sup-
plement it with the boundary conditions. In an
unbounded system, we can use for such conditions the
principle of attenuation of correlations, i.e., the condi-

tion    for z  ±∞.

3. GENERAL THEORY 
OF SINGLE LIGHT SCATTERING

IN A LAYERED MEDIUM

From the optical point of view, cholesterics have the
form of a spatially inhomogeneous medium whose
properties vary along the cholesteric axis. Normal
waves and the field of a point source in such a medium
have a complex structure. In addition, the correlation

function (r1, r2) of permittivity fluctuations depends
in this case not only on the difference r1 – r2 of the spa-
tial coordinates, but also on their absolute values. For
this reason, the problem of light scattering in CLCs has
specific features. In order to illustrate them, we will
briefly describe the conventional approach to solving
the problem of light scattering in a homogeneous iso-

tropic medium with a permittivity of  = ε0δlk .

3.1. Homogeneous Medium 

In the usual formulation of the problem of light scat-
tering, it is assumed that a plane wave

is incident on the sample, where E0 is the field ampli-
tude, e(i) is the polarization vector, k(i) is the wave vector
of the incident wave (e(i) ⊥  k(i)), and the scattered field
with polarization vector e(s) is detected at large dis-
tances from scattering volume Vsc (Fig. 2). In this case,
we can assume that the scattered field is a quasi-plane
wave with wave vector k(s). To disregard refraction at
the boundary, we assume that the sample is surrounded
by a homogeneous medium with permittivity ε0. In this

case, |k(i)| = |k(s)| = k, where k = k0  is the wave num-
ber in the medium.

!̂

!̂ q z,( )Ĝ q; z z1,( ) kBTδ z z1–( ) Î .=

Ĝ q; z z1,( ) 0̂

&̂

εlk
0

E i( ) r( ) E0e i( ) ik i( ) r⋅( )exp=

ε0
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In an isotropic medium, we have  ≡

, where

(3.1)

in the approximation of a far-field (wave) zone (kR @ 1)
and

(3.2)

is the transverse projector onto a plane perpendicular to
R [37]. The presence of tensor Pαβ in Eq. (3.1) ensures
the transverse form of the field of a point source in the
far-field zone.

At large distances from the sample, when R = |r –

r'| @  ~ r', we can carry out the substitution |r – r'| ≈
r in the nonexponential factors of formula (3.1) and use
the “Fraunhoffer” approximation |r – r'| ≈ r – r' · r/r in
the exponent (the latter approximation also presumes

the fulfillment of the condition k  ! r). As a result,
we obtain from expression (3.1) the “plane-wave”
approximation for the Green function,

(3.3)

where k(s) = kr/r is the wave vector of the scattered
wave.

Setting E0(r) = E(i)(r) in Eq. (2.9) and using for-
mula (3.3), we obtain the following expression for the
scattered field:

(3.4)

Thus, we find that the scattered field is determined
by the 3D Fourier component of permittivity fluctua-
tions  in volume Vsc , where Q = k(s) – k(i) is the

scattering vector. Considering that  = , we
obtain, in particular, the following expression for the
scattered field component with polarization e(s):

(3.5)

Consequently, the corresponding intensity (Poynt-
ing vector modulus) of scattered light,

(3.6)

T̂
0

r r',( )

T̂
0

r r'–( )

T0αβ R( ) Pαβ R( )
eikR

4πR
----------,≈

Pαβ R( ) δαβ
Rα Rβ

R2
-------------–=

Vsc
1/3

Vsc
2/3

T0αβ r r'–( ) Pαβ r( )
eikr

4πr
---------e ik s( ) r'⋅– ,≈

Eα
s( ) r( ) E0

k0
2eikr

4πr
------------Pαβ r( )eγ

i( )=

× r'δεβγ r'( )ei k i( ) k s( )–( ) r'⋅ .d

Vsc

∫

δε̂ Q( )

eα
s( )Pαβ eβ

s( )

E s( ) r( ) E0

k0
2eikr

4πr
------------e s( )δε̂ Q( )e i( ).=

I i( )
s( ) c

8π
------ ε0 E s( ) 2

,=
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has the form

(3.7)

where  is the intensity of incident light and  is
the 3D Fourier transform of the correlation function of
permittivity fluctuations; in the case of a homogeneous
medium, this function depends only on the difference

of the coordinates,  = . Here, we take

into account the relation  =

Vsc , where ⊗  is the symbol of the tensor product.

It should be emphasized that, from the symmetry
point of view, the fact that the scattered field in for-
mula (3.5) is expressed in terms of a single 3D Fourier
harmonic of fluctuations  is a consequence of spatial
homogeneity of the system relative to its optical prop-
erties.

3.2. A Medium with Periodic Inhomogeneities 

Let us now consider the situation of interest, when
the properties of a medium change periodically.

In a simple approach that enables us to take into
account periodic inhomogeneities, the so-called kine-
matic approximation in the theory of diffraction is used
[8, 9]. We write permittivity tensor  in the form

where the terms  and  take into account
periodic inhomogeneities of the structure and random

fluctuations, respectively. Treating  +  as a
perturbation, we can assume that the incident and scat-
tered fields propagate in a homogeneous medium; anal-
ogously to expression (3.4), we then obtain the corre-
sponding scattered field with polarization e(s) in the
form

(3.8)

The first term in the sum on the right-hand side of this
equation corresponds to scattering from the periodic
structure (diffraction), while the second term describes
conventional Rayleigh scattering (3.4).

Formulas (3.4) and (3.8) correspond to the single
scattering approximation. However, while this approx-
imation in expression (3.4) is substantiated by the
smallness of thermal fluctuations , periodic part

I i( )
s( ) VscI0

i( )k0
4

4π( )2r2
-------------------eα

s( )eβ
s( )&ανβµ Q( )eµ

i( )eν
i( ),=

I0
i( ) &̂ Q( )

&̂ r r',( ) &̂ r r'–( )

δε̂ Q( ) δε̂∗ Q( )⊗〈 〉

&̂ Q( )

δε̂

ε̂ r( )

εαβ r( ) ε0δαβ ∆εαβ
0 r( ) δεαβ r( ),+ +=

∆ε̂0 r( ) δε̂ r( )

∆ε̂0 r( ) δε̂ r( )

E s( ) r( ) E0

k0
2eikr

4πr
------------=

× e s( ) ∆ε̂0 Q( )e i( )⋅ e s( ) δε̂ Q( )e i( )⋅+[ ] .

δε̂ r( )
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 of inhomogeneities in relation (3.8) is usually
not small and the single scattering approximation is
generally invalid in this case. The application of a for-
mula of type (3.8) for describing light scattering can be
justified only in the case of very small periodic inhomo-
geneities or for very thin samples.

The problem of including the effect of small inho-
mogeneities on light scattering can be solved correctly
if we pass from the description of scattering in terms of
normal waves E0(r) ∝  exp(ik · r) and Green function

 of a homogeneous medium with permittivity
ε0δαβ to normal waves E0(r) and Green function

 of a periodically inhomogeneous medium

with permittivity  = ε0δαβ + .

In this case, the field singly scattered from random
fluctuations  is described by formula (2.9). This for-
mula takes into account single scattering from fluctua-
tions  and all orders of scattering from periodic
structure  (diffraction). The latter statement fol-
lows from the fact that Eqs. (2.7) and (2.8) defining

E0(r) and  in integral form can be written as

Iterating these equations, we indeed obtain all orders in
 on the right-hand side.

It should be noted that, in contrast to the case of

homogeneous medium (3.1), Green function 
is no longer a function of the difference r – r' and nor-
mal waves E0(r) do not have the simple form of a plane
wave ∝ exp(ik · r). Accordingly, plane-wave approxi-
mation (3.3) for the Green function in the coordinate
representation is not valid either. Consequently, the
intensity of single scattering in such a medium is not
proportional to the 3D Fourier transform of permittivity
fluctuations δε on wave vector Q = k(s) − k(i).

Thus, conventional algorithm (3.1)–(3.7) for calcu-
lating the intensity of scattering is inapplicable in this
case and another approach is required.

In addition to the difficulty associated with the
inclusion of periodic inhomogeneities, which can be
overcome by using formula (2.9) instead of (3.4), there
exists one more difficulty in the scattering problem for
inhomogeneous systems. In contrast to formula (3.4),
formula (2.9) describes the scattered field only inside
the medium. However, in experiment, the intensities of
scattering outside the medium are measured. For scat-
tering media that are homogeneous on the average, this

∆ε̂0 r( )

T̂0 r r'–( )

T̂
0

r r',( )

εαβ
0 ∆εαβ

0 r( )

δε̂

δε̂ r( )
∆ε̂0 r( )

T̂
0

r r',( )

E0 r( ) E0 r( ) k0
2

T̂0 r r'–( )∆ε̂0 r'( )E0 r'( ) r',d∫+=

T̂
0

r r',( ) T̂0 r r'–( )=

+ k0
2 T̂0 r r''–( )∆ε̂0 r''( )T̂

0
r'' r',( ) r''.d∫

∆ε̂0

T̂
0

r r',( )
JOURNAL OF EXPERIMENTAL
problem is usually solved as follows. In the simplest
case, we assume that the scattering volume is placed in
a homogeneous medium with permittivity ε0, which
enables us to disregard refraction at the sample bound-
ary. In a more consistent approach, the refraction at the
sample boundaries is taken into account. Since the inci-
dent wave in the homogeneous medium is plane, and
the scattered wave in the far-field zone in the sample
can also be regarded as quasi-plane, the problem of
refraction can be solved using the conventional Fresnel
formulas. However, in this case, there is a subtle point
associated with a nontrivial correction of solid angled
in the case of refraction even in an isotropic system.
This problem for anisotropic scattering media is con-
sidered in [38].

Optical properties of the scattering system with
periodic inhomogeneities in the scattering medium and
of the surrounding homogeneous medium differ dras-
tically. Normal waves and the Green function inside
and outside the scattering volume are substantially
different (in particular, the incident and scattered
waves can be treated as plane only outside the sam-
ple); this does not allow us to disregard the presence
of the boundary.

In order to overcome these difficulties, we can use
the following algorithm for computing the intensity of
single scattering in media with one-dimensional peri-
odic inhomogeneities. Suppose that the scattering vol-
ume has the form of a flat layer 0 ≤ z ≤ L with large
transverse dimensions L⊥  @ L; a plane wave is incident
on this volume from the side z = –∞, while the scattered
field is registered in the region z > L, i.e., in the front
hemisphere. The latter is not of principal importance
since scattering in the rear hemisphere (z < 0) can also
be considered in the same way.

We first determine incident field  in the
medium, which is generated by incident plane wave

 with wave vector k(i) outside the medium. Here
and below, subscripts “in” and “out” correspond to the
quantities calculated inside and outside a inhomoge-
neous medium, respectively. The relation between the
field components inside and outside the sample at its
boundary can easily be found on the basis of the general
boundary conditions in electrodynamics. For flat-lay-
ered media with boundaries parallel to the layers, the
wave inside the medium has the form

(3.9)

where function  is determined by the prop-
erties of the flat-layered medium, the polarization of

incident wave , and its amplitude. Consequently,
we require only the corresponding relation for the Fou-

Ein
i( ) r( )
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i( ) k⊥
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rier components of fields  and  in
coordinates x and y.

It should be noted that, in view of the identity  +

 = ε0, which is valid outside the flat-layered
medium, it is sufficient to specify vector k⊥  and the sign
of component kz in order to define the total wave vector

k. For this reason, it is sufficient to specify vector 
if we know the direction of incidence of the wave on the
sample (positive or negative relative to z). The same is

also true of wave vector  of the scattered wave:

(3.10)

Scattered field  at boundary z = L inside
the inhomogeneous sample can be determined using
formulas (2.9) and (3.9). We have

(3.11)

It can be seen that, in addition to knowledge of func-

tions , we will require in this case the
expression for the Fourier components of Green func-

tion .

Using the boundary conditions, we can determine

the relation between field  outside the sample

and field  inside the sample at its boundary. In
fact, we require the corresponding relation only for

Fourier components  and .

Field  at observation point r far away from
the sample can be determined from the values of field

 at the boundary of the scattering volume
outside the sample with the help of the Kirchhoff
method [39].

3.3. Kirchhoff Method 

We will first elucidate the application of the Kirch-
hoff method in the case of a scalar wave field. We con-
sider an arbitrary domain Γ bounded by a closed sur-
face Σ that is completely outside an inhomogeneous
sample (i.e., in a homogeneous medium). Inside
domain Γ, field E(r) = Eout(r) satisfies the Helmholtz
equation

(3.12)
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Let function T(r, r') = Tout(r, r') satisfy the equation

(3.13)

for all r, r' ∈ Γ . Then Eqs. (3.12) and (3.13) lead to the
Kirchhoff–Helmholtz integral theorem [39]

(3.14)

where r ∈ Γ  is an arbitrary point, r' ∈ Σ , and s(r') is the
outward normal to surface Σ at point r'.

Equation (3.13) does not define function T(r, r')
unambiguously; additional boundary conditions are
required. If we take T|Σ = 0 as the boundary condition to
this equation, field E(r) at the point of observation in
this case can be expressed in terms of the values of field
E(r') on surface Σ:

(3.15)

The form of the Green function satisfying the condi-
tion T|Σ = 0 is determined by the shape of the sample.
Let us consider the simplest case when surface Σ is a
part of plane z = L with a large transverse dimension L⊥ ,
which is enclosed in a large hemisphere. If Green func-
tion T(r, r') satisfies the radiation conditions at infinity
(it is precisely these functions that will be chosen in our
subsequent analysis), the contribution to integral (3.15)
from this hemisphere tends to zero as its size increases.
In this case, the boundary condition T|Σ = 0 is reduced
to T|z = L = 0; using the mirror mapping method, we
obtain

(3.16)

where  is the mirror image of point r' relative to the
flat boundary z = L.

We assume that the field is measured at point r =
(r⊥ , z), z – L @ L⊥ . Then we can apply an approximation
of type (3.3) in both terms of formula (3.16). Consider-
ing that s(r') · ∇ r' = –∂/∂z' in our geometry, we obtain
from Eq. (3.15)

(3.17)

Thus, for L⊥  @ λ, where λ is the wavelength of light, we
find that the field at point r is proportional to the trans-
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verse Fourier component of the field on plane Σ:

(3.18)

Then the corresponding intensity has the form

(3.19)

Let us now consider the actual vector form E(r) of
the electromagnetic field. Field E(r) = Eout(r) outside
the inhomogeneous sample satisfies the wave equation

(3.20)

It can easily be verified that the system of three coupled
equations (3.20) is equivalent to the system

(3.21)

The first equation in this system indicates that each
of the three vector components of the field satisfies the
scalar Helmholtz equation

(3.22)

while the second equation shows that all three compo-
nents together satisfy the additional condition divE = 0,
which corresponds to a transverse electromagnetic
field. Consequently, a scalar formula of the type of
Kirchhoff equation (3.18) is formally applicable to
each of three field components Eα . However, we disre-
garded the transversality condition divE = 0 in
Eqs. (3.21). In order to take this condition into account,
we multiply the set of three scalar formulas (3.18) for

each component of the field by projector  (3.2),
which ensures the transversality of the field in the far-
field zone. As a result, we obtain a vector analog of the
Kirchhoff formula in the form1 

(3.23)

1 It is well known [39] that direct extension of the scalar Kirchhoff
formula to the vector case gives rise to the problem of violation of
the transversality condition divE = 0. In order to eliminate this
contradiction, we can use the vector Kirchhoff–Kotler formula
(see, for example, [40]). However, in the approximation of the
far-field zone of the sample, the nontransversality of field E is on
the order of λ/L⊥  ! 1 when the conventional Kirchhoff formulas
are used. In such a situation, the application of simple vector for-
mula (3.23), in which the field transversality is ensured by projec-
tor Pαβ(r), is equivalent to applying the simple Kirchhoff–Kotler
method.

E r( )
ik0 ε0–

2π
-------------------eikr

r
-------z

r
--e

ikz
s( )

L–
E k⊥

s( ) L,( ).=

I E r( ) 2∝
k0

2ε0

4π2
---------- 1

r2
---- z

r
-- 

 
2

E k⊥
s( ) L,( )

2
.=

curlcurl k0
2ε0–( )E r( ) 0.=

∆ k0
2ε0+( )E r( ) 0,=

divE r( ) 0.=



∆ k0
2ε0+( )Eα r( ) 0,=

P̂ r( )

E r( )
ik0 ε0–

2π
-------------------=

eikr

r
-------z

r
--e

ikz
s( )

L
P̂ r( )E k⊥

s( ) L,( ).
JOURNAL OF EXPERIMENTAL 
In this case, in view of the relation  = ,
we obtain, analogously to Eqs. (3.5)–(3.7), the formula
for the intensity of the scattered field component with
polarization e(s):

(3.24)

In the case of spatially homogeneous systems, this
formula is transformed into expression (3.7). Indeed,
carrying out the Fourier transformation with respect to
transverse variables x and y in formula (2.9), we obtain

(3.25)

The Fourier transform of Green function  with
respect to coordinates x and y has the form

(3.26)

where  = . For a homogeneous system,
in which the values of ε0 inside and outside the sample
coincide, we have

Since k(s) = k0 r/r, we can write

Substituting Eq. (3.26) into (3.25) and taking into
account the condition z' < L, we obtain

(3.27)

Substituting this expression into formula (3.23) and
forming the dot product of the left- and right-hand sides
and vector e(s), we obtain Eq. (3.5).

Applying formula (3.24) to the problem of light
scattering in CLCs, we cannot disregard the difference
between fields Ein and Eout . In order to find the relation
between these fields, we take into account the fact that
the tangential component of the field does not change
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upon the transition through the interface between two
media,

(3.28)

while components  and  can
be obtained from the condition divD = 0.

In the case when the pitch is much larger than the
wavelength, d @ λ, we can use the geometrical optics
approximation for the interior of the CLC. Fields Ein
and Eout at the boundaries inside and outside the
medium satisfy linear equations of the form

(3.29)

where transition matrices  and  can
easily be derived from Eqs. (3.28) and the condition
divD = 0.

Using formulas (3.11), (3.29) and relation

〈δ (k⊥ , z) ⊗ δ *(k⊥ , z')〉  = S⊥ (k⊥ ; z, z'), where S⊥  is
the cross-sectional area of the sample, we find the cor-
responding quantity in formula (3.24), which defines
the intensity of single scattering:

(3.30)

Here, we have omitted for simplicity transition matri-

ces , which make it possible to express
the field inside the medium in terms of the field incident
on the sample.

4. OPTICS OF CLCs WITH A LARGE PITCH 

Let us consider the problem of propagation of waves
in CLCs. It is more convenient for our purposes to con-
sider directly, instead of wave equation (2.7), the sys-
tem of Maxwell equations (2.4) for an equilibrium
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CLC. Taking into account the relations div E = 0 and
divH = 0 in the (q, z) representation, we can reduce the
problem to a system of equations of the form

(4.1)

where ξ = p0z is a dimensionless variable, Ω = k0/p0 =
2d/λ is a dimensionless parameter, and λ is the wave-
length of light. The x and y coordinate axes are chosen
in the same way as in Eq. (2.27); i.e., the direction of
the x axis coincides with the direction of vector q. In
accordance with relations (2.2) and (2.3), the permittiv-
ity tensor components have the form

Since we consider an equilibrium CLC in this section,
we have omitted superscript “0” on field component
E(r) (the subscript on the components of point source

field  will also be omitted).

A system of type (4.1) was used in [41] for describ-
ing the propagation of waves in CLCs. An analogous
system of equations was numerically solved in [41] for
λ ~ d. In our case, where λ ! d (Ω @ 1), direct numer-
ical methods are ineffective in view of the rapidly oscil-
lating solution; for constructing the solution, the vector
generalization of the WKB method is more effective
here.

4.1. Normal Waves 

An asymptotic WKB solution to system (4.1) was
obtained in [29]. According to [29], four normal waves
exist for a given q in CLCs with a large pitch. Two of
these waves propagate in the direction of positive val-
ues of z, while the other two waves propagate in the
opposite direction. Reconstructing components Ez from
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the equation div  = 0, we can write these waves in
the form

(4.2)

where j = 1, 2; the plus and minus signs correspond to

the direction of wave propagation. Constants  char-
acterize the initial field amplitude on the plane z0. Here,

 ~ k0; e(j)(q, z) are unit vectors, and A(j)(q; z, z0)
are the amplitude factors. All these quantities are
smoothly varying functions over the scale of λ. Conse-
quently, waves (4.2) are locally plane waves with wave
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vectors k(j)(q, z) = (q, ± (q, z)) and polarization vec-
tors e(j)(q, z). In the main order in large parameter Ω ,
we have

(4.3)

(4.4)

and polarization vectors e(j)(q, z) in the coordinate sys-
tem used above have the form
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Since vectors e(j)(q, z) in Eqs. (4.5) are real-valued,
waves (4.2) in the main order in Ω locally exhibit a lin-
ear polarization.2 

Quantities A(j)(q; z, z0) in Eqs. (4.4) can be written in
the form

(4.6)

where

(4.7)

Formulas (4.2)–(4.7) are quite formal in appear-
ance. The physical meaning of waves E(j)(r) will
become clearer if we pay attention to the fact that polar-
ization vectors e(j)(q, z) in Eqs. (4.5) satisfy the condi-
tions

(4.8)

2 In the next order in the large parameter, vectors e(j)(q, z) acquire
an imaginary correction and, hence, waves (4.2) become weakly
polarized elliptically [31] (cf. formula (A.12) in Appendix).
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and that vector e(2)(q, z) lies in the plane of vectors
k(2)(q, z) and n0(z). It should also be noted that, in
accordance with Eqs. (4.3), the wave numbers

of these waves satisfy the relations

(4.9)

where θ is the angle between n0(z) and k(2)(q, z). It
should be borne in mind here that the second of these
equalities is an equation for k(2)(q, z) since

A comparison of formulas (4.8) and (4.9) with the
conventional formulas for polarizations and wave vec-
tors of normal waves in a homogeneous uniaxial aniso-
tropic medium [37] shows that two waves (4.2)–(4.5)
are locally the ordinary (superscript (1)) and extra-
ordinary (superscript (2)) waves at a given point in
the CLC.

Thus, formulas (4.2)–(4.5) correspond to the adia-
batic mode of wave propagation. These formulas can be
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treated as a generalization of the well-known Mauguin
solution [24] to the case of oblique incidence. The
physical meaning of these formulas is as follows. When
a normal wave with number j is incident on the plane

z = z0, it acquires a phase incursion  as a

result of propagation in the medium and falls on the z
plane as a normal wave with the same number j. Since
e(j)(q, z) differs from e(j)(q, z0), the polarization vector
rotates in this case. The fact that amplitude factors
A(j)(q, z) in Eqs. (4.4) become functions of z is associ-
ated with the energy conservation that must be ensured
for a wave propagating in an inhomogeneous medium
without absorption (see Eqs. (4.11)–(4.14) below).

Wave vector k(j)(q, z) at a given point of the CLC is
directed along the normal to the wave front. For the
ordinary ray, wave vector k(1) = k(1)(q) does not depend
on point z, while wave vector k(2) = k(2)(q, z) for the
extraordinary ray varies in magnitude and direction
depending on z. At the same time, the direction of
polarization vectors e(j)(q, z) vary with z for both types
of waves. However, in any case, for a fixed value of q,
wave vector k(j)(q, z) always lies in the same plane
(containing vectors q and ez) both for the ordinary and
the extraordinary ray.

The trajectory of wave propagation in an anisotropic
medium is characterized by the ray vector of the wave,
which is directed along the Poynting vector. For a plane
wave in an anisotropic medium, the Poynting vector has
the form [37]

(4.10)

In particular, for waves (4.2), we obtain

(4.11)

Since e(1) · k(1) = 0, we have S(1)(q, z) || k(1)(q) and the
ordinary ray has a rectilinear trajectory. At the same
time, e(2) · k(2) ≠ 0 in the general case; in accordance
with expression (4.11), vector S(2)(q, z) does not remain
in the same plane upon a variation of z. Consequently,
the trajectory of the extraordinary ray, a tangent to
which at each point must be parallel to S(j)(r) at this
point, does not lie in the same plane. Figure 3 shows a
typical trajectory of the extraordinary ray, calculated on
the basis of formula (4.11).

Let us analyze the consequences of the energy con-
servation law divS(j) = 0 for waves (4.2). In our case, we

have divS(j) = ∂z (q, z) = 0. Consequently, compo-

kz
j( ) q z',( ) z'd

z0

z∫

S r( )
c

8πk0
----------- k E 2 E E∗ k⋅( )–[ ] .=

S j( ) r( )
c E0

j( ) 2

8πk0
----------------A j( )2 q z,( )=

× k j( ) q z,( ) e j( ) q z,( ) k j( ) q z,( ) e j( ) q z,( )⋅( )–[ ] .

Sz
j( )
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nent (q, z) is independent of z. Then, we obtain
from Eq. (4.11)

(4.12)

where  are arbitrary dimensionless functions of q.
Using Eqs. (4.5), we find

(4.13)

In accordance with Eqs. (4.7), the right-hand side of
this equation coincides with 1/B(j)2(q, z) and we

Sz
j( )

A j( )2 q z,( ) C0
j( ) q( )=

× k0 kz
j( ) q z,( ) ez

j( ) q z,( ) k j( ) q z,( ) e j( ) q z,( )⋅( )–[ ] 1–
,

C0
j( )

kz
j( ) ez

j( )k j( ) e j( )⋅–
k0

-----------------------------------------

=  

kz
1( ) q( )/k0   for j 1= 
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obtain from Eq. (4.12)

(4.14)

This expression transforms into Eq. (4.6) if we set

 = 1/B(j)2(q, z0). The latter choice is convenient

since amplitude  in Eq. (4.2) is independent of the
choice of initial point z0 in this case.

Let us consider the conditions under which waves (4.2)
can propagate to the bulk of the CLC. Let us first con-

sider the ordinary wave. It should be noted that  is

real-valued under the condition q2 ≤ . In this case,
the ordinary wave propagates to the region with any

values of z. For q2 > , quantity  becomes imag-
inary and the ordinary wave does not propagate in the
medium with arbitrary values of z and z0.

For the extraordinary wave, the conditions of prop-
agation are more complex and depend on the relation
between parameters q and z. In this case, the following
situations are possible.

(i) If q2 > max(ε||, ε⊥ ), the value of (q, z) is
imaginary for any z and such a wave does not propagate
in the CLC.

(ii) If q2 ≤ min(ε||, ε⊥ ), the value of (q, z) will
be real for all values of z and the wave propagates in the
medium into the region with any z.

(iii) If min(ε||, ε⊥ ) < q2 ≤ max(ε||, ε⊥ ), the
extraordinary wave can propagate in the medium only
for definite values of z. The range of corresponding val-
ues of z is determined by the inequality cos2φ(z) ≤
ε⊥ ( ε|| – q2)/q2εa for εa > 0 and the inequality cos2φ(z) ≥

A j( )2 q z,( ) C0
j( ) q( )B j( )2 q z,( ).=

C0
j( ) q( )

E0
j( )

kz
1( )

k0
2ε⊥

k0
2ε⊥ kz

1( )

k0
2 kz

2( )

k0
2 kz

2( )

k0
2 k0

2

k0
2

–z*

0

z*

z

y

1a 2a

1b

2b

Fig. 4. Types of trajectories of rays in CLC: 1a and 1b are
ordinary rays, curve 2a is the extraordinary ray outside the
waveguide channel, and curve 2b is the extraordinary ray
trapped in the waveguide channel.
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ε⊥ ( ε|| – q2)/q2εa for εa < 0 (it should be noted that the

condition 0 < ε⊥ ( ε|| – q2)/q2εa < 1 is satisfied in the
range of q in question).

Thus, in the latter case, the effect of trapping of the
extraordinary ray in the CLC is observed [31, 32]. The
physical pattern of the effect is that the extraordinary

ray begins to rotate and the quantity (q, z) vanishes
at a certain point z = z*(q) and then reverses its sign. In
a certain sense, this effect is analogous to the total inter-
nal reflection from a certain plane in the medium. Since
the refractive index is a periodic function, such a ray
will be alternately reflected from two planes perpendic-
ular to the z axis. Consequently, a plane wave channel
is formed, in which the extraordinary wave can propa-
gate to the region of indefinitely large values of r⊥ ,
remaining within a period in z. Figure 4 schematically
shows the projections of the trajectories of the ordinary
and extraordinary rays onto the yz plane, which demon-
strate the effect of waveguide propagation.

4.2. The Field of a Point Source 

The corresponding problem (2.8) for the field

 of a point source can be reduced to a sys-
tem of equations of the form

(4.15)

where

is a second-order linear differential operator.
We obtained the solution to this system in [32] with

the help of the vector WKB method. The construction
of the solution is based on the method developed in [29]
for a homogeneous equation. The solution of inhomo-
geneous equation (4.15) is constructed as a superposi-
tion of solutions (4.2) to the corresponding homoge-
neous equation in two regions z > z1 and z < z1 sepa-
rately by choosing the superposition coefficients that
ensure the required type of the singularity on the right-
hand side of Eq. (4.15). The result [32] has the form

(4.16)

k0
2

k0
2

kz
2( )

T̂
0

q; z z1,( )

+̂ z( )T̂
0

q; z z1,( ) δ z z1–( ) Î ,=

+̂ z( )

=  

z2

2

∂
∂– k0

2εxx
0– k0

2εxy
0– iq

z∂
∂

k0
2εxy

0–
z2

2

∂
∂

q2 k0
2εyy

0–+– 0

iq
z∂

∂
0 q2 k0

2ε⊥– 
 
 
 
 
 
 
 
 
 

T̂
0

q; z z1,( ) T̂
1( )

q; z z1,( ) T̂
2( )

q; z z1,( ),+=
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where

(4.17)

Let us analyze the limit p0  0 in Eq. (4.17),
which corresponds to a homogeneous uniaxial aniso-
tropic medium (nematic liquid crystal in our physical

context). In this limit, quantities n0(z), (q, z),

B(j)(q, z), and e(j)(q, z) become independent of point z:

n0(z) = n0, (q, z) = (q), B(j)(q, z) = B(j)(q), and

e(j)(q, z) = e(j)(q), while functions  become
dependent only on the difference in the spatial coordi-

nates:  = . In this case, for-
mula (4.17) assumes the form

Tαβ
j( ) q; z z1,( )

i
2k0
--------B j( ) q z,( )B j( ) q z1,( )eα

j( ) q z,( )=

× eβ
j( ) q z1,( ) i kz

j( ) q z',( ) z'd

z1

z

∫ 
 
 

.exp

kz
j( )

kz
j( ) kz

j( )

T̂
j( )

q; z z1,( )

T̂
j( )

q; z z1,( ) T̂
j( )

q; z z1–( )
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(4.18)

The expression for the field of a point source in a
homogeneous anisotropic medium in the 3D Fourier
representation has the form [42]

(4.19)

Here, Q is the 3D wave vector, e(j) are the polarization
vectors, and k(j) are the wave numbers of two (ordinary
and extraordinary) plane waves propagating in the
homogeneous anisotropic medium. The last term on the
right-hand side of this equation is associated with the
near field of a dipole and is immaterial for the subse-
quent analysis. In the case of a uniaxial medium, the
corresponding polarization vectors and the wave num-
bers of the ordinary and extraordinary waves have the
form

Tαβ
j( ) q; z z1–( )

=  
i

2k0
--------B j( )2 q( )eα

j( ) q( )eβ
j( ) q( )e

ikz
j( ) q( ) z z1–

.

Tαβ
0 Q( )

1

k0
2

----
e j( )α Q( )e j( )β Q( )

e j( ) Q( )ε̂0e j( ) Q( )
-------------------------------------

j 1 2,=

∑=

×
k j( )

2( ) Q( )

Q2 k j( )
2( ) Q( ) i0––

---------------------------------------
QαQβ

Qε̂0Q
--------------.–
(4.20)

e 1( ) Q( )
Q n0×

Q
----------------, k 1( ) Q( ) k0 ε⊥ ,= =

e 2( ) Q( )
n0 Qε̂0Q( ) Q Qε̂0n0( )–

Qε̂0Q( )
2

2 Qε̂0Q( ) Qε̂0n0( ) Q n0⋅( )– Q2 Qε̂0n0( )
2

+
-----------------------------------------------------------------------------------------------------------------------------------,=

k 2( ) Q( ) k0Q
ε⊥ ε||

ε⊥ Q2 εa Q n0⋅( )
2

+
-------------------------------------------.=
We write wave vector Q in the form Q = (q, qz) and
carry out the inverse Fourier transformation in variable
qz in Eq. (4.19):

(4.21)

The main contribution to the asymptotic form of the
integral for z @ λ is determined by the residues at the
first-order poles on two dispersion surfaces,

(4.22)

j = 1, 2. Denoting the two solutions to each dispersion

equation in qz as qz = ± (q), we obtain from rela-
tion (4.19)

Tαβ
0 q; z( )

qzd
2π
-------Tαβ

0 q; qz( )e
iqzz.

∞–

∞

∫=

q2 qz
2

k j( )
2 q; qz( )–+ 0,=

qz
j( )
S

(4.23)

where the values of e(j) and k(j) are calculated on the

wave vector  ≡ (q, ).

Substituting expressions (4.20) for  into
Eq. (4.22) and solving the obtained equations with j =

1, 2 for qz , we find that, in both cases,  = ,

where  is defined in relations (4.3) (for j = 2, we
must take into account the fact that Q · n0 = q · n0).

Thus, Q(j)(q) = (q, ) = k(j)(q). It can easily be ver-
ified using relations (4.20) that the values of e(j)(k(j)(q))

Tαβ
0 q; z( )

i

k0
2

---- k j( )
2 2qz

∂k j( )
2

∂qz

----------– 
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j 1 2,=
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×
e j( )αe j( )β
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0e j( )
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iqz
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z
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k j( )
2 Q( )

qz
j( ) kz

j( ) q( )

kz
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kz
j( ) q( )
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and k(j)(k(j)(q)) in this case coincide with e(j)(q) and
k(j)(q) in Eqs. (4.3) and (4.5) for p0 = 0. The identity

(4.24)

can also be verified easily for both cases j = 1, 2. As a
result, relation (4.23) coincides with Eqs. (4.16)
and (4.17).

5. CORRELATION FUNCTION 
FOR DIRECTOR FLUCTUATIONS
IN A CLC WITH A LARGE PITCH

Problem (2.28) for operator (2.27) can be reduced to
solving a nonhomogeneous system of two second-order
differential equations with periodic coefficients. The
solution to the corresponding homogeneous system
(which has the form of two matrix functions of z and z1,
i.e., the exponential function with the exponent linear in
z and z1 and a periodic function with period 2d = 2π/p0)
satisfies the Floquet theorem [43]. In order to find the
exponents and the Fourier harmonics of a periodic
function, a standard algorithm for Hill-type equations is
used [43], leading to an infinite system of trinomial
recurrence relations. This approach was used in [20, 21]
for a detailed analysis of the problem of director fluctu-
ations in CLCs. In these publications, the lower har-
monics of the 3D Fourier spectrum of correlation func-
tion  were determined under the assumption that
q/p0 ! 1, when the contributions from the Fourier har-
monics rapidly decrease with increasing numbers of the

kz
j( ) q( )B j( )2 q( )

k0
---------------------------------

k j( )2 q( )
k0

2e j( ) q( )ε̂0e j( ) q( )
----------------------------------------=

× qz
1
2
---

∂k j( )
2 q qz,( )
∂qz

---------------------------
qz kz

j( ) q( )=
– 

 
1–

ĝ

JOURNAL OF EXPERIMENTAL
harmonics. From the physical point of view, the limit
q/p0  0 corresponds to a smecticlike CLC, which is
confirmed by the result obtained in [20]: the main con-
tribution to the correlation function is

where c0 is a dimensionless constant. Director fluctua-
tions in smectics A are characterized precisely by this
type of a correlator [34].

The situation for CLCs with a large pitch corre-
sponds to the opposite limiting case of a nematic-like
CLC, for which p0/q  0. From the point of view of
the conventional Floquet approach, the problem is that
the main contribution to the correlation function comes
from a broad spectrum of Fourier harmonics with large
numbers for periodic factors. In such a situation, the
methods based on the Floquet theory are ineffective and
it is more expedient to apply the WKB method in the
large parameter q/p0 @ 1.

5.1. General Algorithm for Calculating
the Correlation Function in Media

with One-Dimensional Inhomogeneities 

Equation (2.28), together with the condition of

decreasing for (z, z1) as z  ±∞, has the form of an
equation for the Green function. It should be noted that
Eq. (2.28) becomes homogeneous for z ≠ z1. We will
first solve the homogeneous equations for the cases
when z > z1 and z < z1 separately. Then, using the conti-

nuity conditions for function  and the jump of its deriv-
ative for z = z1, we will construct the Green function.

The system of homogeneous equations has the form

ĝ q kz,( ) q2/ kz
2 c0 p0

2– q4+( ),∼

Ĝ

Ĝ

(5.1)

K22 0

0 K11 
 
 
 

d2

dξ2
-------- iΩ̃ K11 K22–( ) φ 0 1

1 0 
 
 

ξd
d

sin+–

+ Ω̃2
K11 φsin

2
K33 φcos

2
+( ) iΩ̃ φ K22 K33+( )cos–

iΩ̃ φ K11 K33+( )cos Ω̃2 K22 φsin
2

K33 φcos
2

+( ) K33+ 
 
 
 

u ξ( ) 0,=
where  = q/p0. Equation (5.1) forms a system of two
second-order differential equations. This system has
four linearly independent solutions. Using four linearly
independent column vectors of the solutions to
Eq. (5.1), we construct two matrices  and ,

such that    for ξ  +∞ and   

Ω̃

û1 ξ( ) û2 ξ( )

û1 ξ( ) 0̂ û2 ξ( ) 0̂
 

for ξ  –∞. Such a choice ensures the required

behavior of  at infinity.

We will seek the Green function in the form

(5.2)

Ĝ ξ ξ 1,( )

Ĝ ξ ξ 1,( )
û1 ξ( )v̂ 1 ξ1( ) for ξ ξ 1,≥
û2 ξ( )v̂ 2 ξ1( ) for ξ ξ 1,<




=
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where  and  are 2 × 2 matrices. To find eight ele-
ments of these matrices, we will use the conditions
imposed on the Green function in the vicinity of point
ξ = ξ1. These conditions include the continuity of the
function itself and a jump of its first derivative, such
that Eq. (2.28) is satisfied,

(5.3)

where

Substituting relations (5.2) into (5.3), we obtain the
system of eight equations for the elements of matrices

:

(5.4)

This formula can easily be derived by integrating
Eq. (2.28) with respect to z in an infinitely small inter-
val containing point z1. Solving system (5.4), we obtain

(5.5)

where  = (  – )–1, j = 1, 2.

Substituting relation (5.5) into (5.2), we finally
obtain the following expression for the Green function:

(5.6)

The choice of matrices  and  is ambiguous (for
example, their columns can be multiplied by arbitrary
constants); however, this ambiguity disappears in for-
mula (5.6) due to factors .

Pay attention to the fact that   0 for |ξ –

ξ1|  ∞ in view of our choice of matrices ; i.e.,

the boundary conditions for  are satisfied.

This scheme for constructing the Green function
with the help of the solutions to the homogeneous equa-

v̂ 1 v̂ 2

Ĝ ξ1 0+ ξ1,( ) Ĝ ξ1 0– ξ1,( ),=
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-------
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∂Ĝ
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tion is universal and does not necessitate the use of

large parameter .

5.2. Application of the WKB Method 
for Determining the Correlation Function 

The presence of the large parameter in our problem
will be used here for explicitly constructing solutions u
to homogeneous equation (5.1). We will find these solu-
tions using the vector WKB method. Introducing the
vector

we reduce Eq. (5.1) to the system of four first-order
equations:

(5.7)

Here, we used the notation

(5.8)

where

Ω̃

v
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iΩ̃
------du

dξ
------,=

dΨ
dξ
-------- iΩ̃B̂ Ĉ+( )Ψ.=
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0 0 1 0
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 
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0 0 0 0
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 
 
 
 
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,=
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2
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2
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--------------------------------------------------,–=
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2

+
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--------------------------------------------------,–=
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The solution to system (5.7) can be written in the
form

(5.9)

where  is the evolution matrix for this system,

 = . We will find the evolution matrix in the

main order in parameter .

The procedure for constructing the evolution matrix
is described in the Appendix. In accordance with
Eq. (A.17), we have

(5.10)

where iµl are the eigenvalues of matrix  (l = 1–4) and

the columns of matrix  are formed by the eigenvec-

tors of matrix . Here, we have used the notation

 for the diagonal matrix with elements x1, x2, …
on the diagonal. It should be noted that expression (5.10)

is inapplicable when the eigenvalues of matrix  con-
verge. It can be seen from expression (A.15) that the
value of Vlm becomes large in this case and the condition

|Vlm| !  of applicability of the WKB method (A.18)
may be violated.

Formula (5.10) gives the solution to Eq. (5.7) for
any initial conditions Y(ξ0). This solution can be
treated as a linear combination of four linearly indepen-
dent vectors forming the columns of evolution matrix

 with four coefficients (elements of vector
Y(ξ0)).

In order to construct the Green function, we require
solutions u in the form of the first two components of
solution Y(ξ). As the columns of matrices , we
can use the vectors whose components are the first two

elements of the columns of matrix  or
linear combinations of these columns.

Let us first determine the evolution matrix

 (5.10). For this purpose, we must know the

Y ξ( ) M̂ ξ ξ 0,( )Y ξ0( ),=

M̂ ξ ξ 0,( )

M̂ ξ ξ 0,( ) Î

Ω̃

M̂ ξ ξ 0,( ) Û ξ( )diag Ω̃µl x( )-----



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∫–exp



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+ Û
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∂x
-------------- Û
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x( )Ĉ x( )Û x( )– 

 
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
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
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1– ξ0( ),

〈

B̂

Û
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diag xl( )

〈
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Ω̃

M̂ ξ ξ 0,( )

û1 2, ξ( )

M̂ ξ ξ 0,( ) Û ξ0( )

M̂ ξ ξ 0,( )
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eigenvalues and eigenvectors of matrix . The eigen-
values can be determined from the relation

(5.11)

which has the form of a biquadratic equation. Solving
this equation, we obtain

(5.12)

Eigenvectors yl satisfy the relation yl = iµlyl . We
find these vectors and use them to construct matrix

 = (yl(ξ), y2(ξ), y3(ξ), y4(ξ)):

(5.13)

The arbitrariness in the choice of vectors yl(ξ) and,

hence, matrix  is associated with the normalization
factors, which may depend on ξ. It can easily be seen,
however, that the right-hand side of expression (5.10) is
independent of the choice of normalizations of vectors

yl(ξ). Then we determine matrix :

(5.14)

Disregarding the term on the order of 1/  (i.e., element

c3) in matrix  (5.8), since it makes zero contribution
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Û ξ( )

Û
1– ξ( )

Û
1– 1–

2K33 φcos
2

--------------------------=

×

iK11µ1 φsin K22µ2
2 K22 φsin iK11µ1–

K11µ1
2– iK22µ2 φsin iK22µ2 K11 φsin

iK11µ1 φsin– K22µ2
2 K22 φsin iK11µ1

K11µ1
2 iK22µ2 φsin iK22µ22 K11 φsin– 

 
 
 
 
 
 
 

.

Ω̃

Ĉ
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to the evolution matrix in approximation (5.10) used
here, we obtain

(5.15)

The diagonal elements of matrix  can be
represented in a form convenient for integration:

(5.16)

l = 1, …, 4. Subtracting this expression from (5.15) and
integrating, we obtain

(5.17)

Substituting this relation into Eq. (5.10), we obtain

(5.18)

In order to find the correlation function, we must
construct matrices  and . Choosing the first
two components of the columns of matrix

, which exhibit the required behavior at
infinity, we obtain

(5.19)

Û
1–
ĈÛ( )ll

K11 K22–( ) φsin
2K33 φcos

-------------------------------------- 1–( )l 1+ ,=

l 1 … 4., ,=

Û
1– ∂Û/∂ξ

Û
1– ∂Û
∂ξ
------- 

 
ll

1
2
---

φ/µlcos( )'
φ/µlcos

------------------------- 1
2
--- φcos( )'

φcos
-----------------+=

–
K11 K22–

2K33
---------------------- φcos( )'

φcos
----------------- 1–( )l 1+ ,

Û
1–
ĈÛ Û

1– ∂Û
∂ξ'
-------– 

 
ll

ξ'd

ξ0

ξ

∫

=  –
1
2
---

µl ξ0( ) φcos
µl ξ( ) ξ0 φ0+( )cos
---------------------------------------------ln

1
2
--- φcos

ξ0 φ0+( )cos
---------------------------------.ln–

M̂ ξ ξ 0,( ) Û ξ( )
ξ0 φ0+( )cos

φcos
---------------------------------=

× diag
µl ξ( )
µl ξ0( )
------------- Ω̃ µl ξ'( ) ξ'd

ξ0

ξ

∫–
 
 
 

exp
 
 
 

Û
1– ξ0( ).

〈

û1 ξ( ) û2 ξ( )

M̂ ξ ξ 0,( )Û ξ0( )

û1 ξ( )
iµ1

1– φsin– 1

1– iµ2
1– φsin– 

 
 
 

Φ̂–( ),exp=

û2 ξ( )
iµ1

1– φsin 1–

1– iµ2
1– φsin– 

 
 
 

Φ̂+( ),exp=
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where

(5.20)

Thus, the conditions    for ξ  +∞ and

  for ξ  –∞ are satisfied for matrices (5.19)

Substituting matrices  from relations (5.19)
into expression (5.6) for the correlation function and

neglecting the terms on the order of 1/  in the preex-
ponential factors, we obtain

(5.21)

It is convenient to split function  into two parts
associated with indices µ1 and µ2. Returning from
dimensionless variable ξ to variable z, we finally obtain

(5.22)

where

(5.23)

Φ̂±( )exp
ξ0 φ0+( )cos

φcos
---------------------------------=

× diag
µl ξ( )
µl ξ0( )
------------- Ω̃ µl ξ'( ) ξ'd

ξ0

ξ

∫±
 
 
 

exp
 
 
 

,

l 1 2.,=

〈

û1 ξ( ) 0̂

û2 ξ( ) 0̂

û1 2, ξ( )

Ω̃

Ĝ ξ ξ 1,( )
kBT

2qK33 φ ξ1( ) φ ξ( )coscos
-------------------------------------------------------=

× ξ ξ 1–( ) φ ξ( )sinsgn i ξ ξ 1–( )µ2 ξ( )sgn

iµ1 ξ( )– φ ξ( )sin 
 
 

×

Ω̃ µ1 ξ'd

ξ

ξ1

∫–
 
 
 

exp

µ1 ξ( )µ1 ξ1( )
------------------------------------------- 0

0

Ω̃ µ2 ξ'd

ξ

ξ1

∫–
 
 
 

exp

µ2 ξ( )µ2 ξ1( )
-------------------------------------------

 
 
 
 
 
 
 
 
 
 
 
 

× ξ1 ξ–( ) φ ξ1( )sinsgn iµ1 ξ1( )

i ξ1 ξ–( )µ2 ξ1( )sgn φ ξ1( )sin– 
 
 

.

Ĝ

Ĝ q; z1 z2,( ) Ĝ1 q; z1 z2,( ) Ĝ2 q; z1 z2,( ),+=

Ĝ j q; z1 z2,( )
kBT

2qK33 φ z1( ) φ z2( )coscos
--------------------------------------------------------=

× q µ j z( ) zd

z1

z2

∫–
 
 
 

Ŵ
j( )

q; z1 z2,( ),exp
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(5.24)

Ŵ
1( )

q; z1 z2,( )

φ z1( )sin φ z2( )sin

µ1 z1( )µ1 z2( )
---------------------------------------– i z1 z2–( ) φ z1( )

µ1 z2( )

µ1 z1( )
------------------sinsgn

i z1 z2–( ) φ z2( )
µ1 z1( )

µ1 z2( )
------------------sinsgn µ1 z1( )µ1 z2( )

 
 
 
 
 
 
 
 

,=

Ŵ
2( )

q; z1 z2,( )

µ2 z1( )µ2 z2( ) –i z1 z2–( ) φ z2( )
µ2 z1( )

µ2 z2( )
------------------sinsgn

–i z1 z2–( ) φ z1( )
µ2 z2( )

µ2 z1( )
------------------sinsgn

φ z1( )sin φ z2( )sin

µ2 z1( )µ2 z2( )
---------------------------------------–

 
 
 
 
 
 
 
 

,=
Here, cosφ = q · n0/q and sinφ = /q.

Figure 5 shows the correlation function component
G11 expressed in relative units. The figure was
obtained as a result of numerical calculations based on
formulas (5.22)–(5.24). Corrections decrease exponen-
tially with increasing distance |z – z1 |. It is also worth
noting that correlations increase at z = z1 as the value of
φ(z) approaches π/2. The latter circumstance is deter-
mined by the fact that the values of cosφ(z1, 2) in the
denominator of the common multiplier in relation (5.23)
approach zero. This indicates that we approach the
region in which the WKB method is inapplicable and
formula (5.27) is not valid. This question will be dis-
cussed in greater detail at the end of this section.

Matrices  can be written in the form

(5.25)

where

g2 q n0⋅( )2–

Ŵ
j( )

q; z1 z2,( )

Wαβ
j( ) q; z1 z2,( ) lα

j( ) q; z1 z2,( )= lβ
j( )∗ q; z2 z1,( ),
JOURNAL OF EXPERIMENTAL
(5.26)

Carrying out summation in k and l in formula (2.20),
we obtain the final expression for the correlation func-
tion of director fluctuations from formulas (2.19),
(2.20), (5.22)–(5.26):

(5.27)

where f (j)(q; z, z') = (q; z, z')h(k)(z). In the

coordinate system used by us here, vectors f (j) have the
form

l 1( ) q; z z',( ) i z z'–( ) φ z( )sin

µ1 z( )
-----------------sgn µ1 z( ), 

  ,=

l 2( ) q; z z',( ) µ2 z( ) –i z z'–( ) φ z( )sin

µ2 z( )
-----------------sgn, 

  .=

gαβ q; z1 z2,( )
kBT

2qK33 φ z1( ) φ z2( )coscos
--------------------------------------------------------=

× q µ j z( ) zd

z1

z2

∫–
 
 
 

exp
j 1=

2

∑

× f α
j( ) q; z1 z2,( ) f β

j( )∗ q; z2 z1,( ),

lk
j( )

k 1 2,=∑
(5.28)

f 1( ) q; z z',( )
1

µ1 z( )
---------------- –i z z'–( ) φ z( )sin

2
sgn

i
2
--- z z'–( ) 2φ z( ) µ1 z( ),sinsgn, 

  ,=

f 2( ) q; z z',( ) µ2 z( ) φ z( )sin– φ z( )cos –i z z'–( ) φ z( )sin
µ2 z( )

-----------------sgn, , 
  .=
It should be noted, in particular, that

Relations (5.27) and (2.14) lead to the permittivity

f j( ) q; z z',( ) n 0( ) z( )⋅ 0,=

f j( ) q; z z',( )
2 µ j z( )

φ z( )sin
2

µ j z( )
-------------------.+=
correlation function &βδγν(q; z1, z2) in the form

(5.29)

&βδγν q; z1 z2,( )
kBTεa

2

2qK33 φ z1( )cos φ z2( )cos
--------------------------------------------------------=

× q µ j z( ) zd

z1

z2

∫–
 
 
 

}βδγν
j( ) q; z1 z2,( ),exp

j 1=

2

∑
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where

(5.30)

Let us consider the domain of applicability for for-
mulas (5.27) and (5.29). In addition to the inequality
q @ p0, two constraints associated with inequalities (A.19)
and (A.20) may appear. Since µ1, 2 ~ 1, inequality (A.20)

gives |z1 – z2 | ! q/ .

The constraint (A.19) is most significant for our
analysis. This is due to the fact that, in accordance with
relations (5.12), eigenvalues µ1 and µ2 coincide when
cosφ = 0. Consequently, formula (5.27) becomes mean-
ingless if point z∗  (such that cosφ(z∗ ) = 0) gets into the
domain between points z1 and z2.3 

Let us consider the constraint imposed by this effect
on the domain of applicability of formulas (5.27) and
(5.29). For this purpose, we introduce a new variable
ζ = p0z + φ0 – π/2 = φ – π/2 and expand µl into a series
in the vicinity of point ζ = 0

(5.31)

where Cl = 1 – K33/Kll . It should be noted that the cor-
responding lines µ1(ζ) and µ2(ζ) do not intersect at
point ζ = 0, but are just contiguous to each other. We
can obtain the following estimate for matrix element
V12 in the vicinity of point ζ = 0:

In this case, the first condition in (A.18) has the form

(5.32)

This means that expression (5.27) is applicable only in

the cases when  @ 1 and  @ 1, and there
are no points between ζ and ζ1 at which the values of
µ1, 2 coincides (i.e., points at which cosφ = 0).

3 In addition, since the equality µ1 = µ2 is satisfied identically for
K11 = K22, the fulfillment of inequality |K11 – K22| @
2(K11K22/K33)(p0/q) is required; in particular, our formulas (5.27)
and (5.29) do not permit the application of the one-constant
approximation for the Frank energy (2.1).

}βδγν
j( )

z1 z2,( ) nβ
0( ) z1( )nγ

0 z2( )=

× f δ
j( ) z1 z2,( ) f ν

j( )∗ z2 z1,( )

+ nδ
0 z1( )nγ

0 z2( ) f β
j( ) z1 z2,( ) f ν

j( )∗ z2 z1,( )

+ nβ
0 z1( )nν

0 z2( ) f δ
j( ) z1 z2,( ) f γ

j( )∗ z2 z1,( )

+ nδ
0 z1( )nν

0 z2( ) f β
j( ) z1 z2,( ) f γ

j( )∗ z2 z1,( ).

p0
2

µl 1
1
2
---Clζ

2, l–≈ 1 2,,=

µ3 µ1, µ4– µ2,–= =

V12
1

ζ3
----- 1 O ζ2( )+( ).∼

Ω̃ ζ 3
 @ 1.

Ω̃ ζ 3 Ω̃ ζ1
3
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Analysis of the behavior of the correlation function
in the vicinity of the points for which cosφ = 0 requires
the application of the approaches used for analyzing
turning points in the WKB method. This question was
considered in detail in our previous publication [44],
where it was shown that the correlation function of fluc-
tuations is actually bounded in the vicinity of regions
cosφ(z1) = 0 and cosφ(z2) = 0. It is important, however,
that the main contribution to integral (3.30) in the prob-
lem of light scattering considered here comes from the
domain |z1 – z2 | ! d (see Section 6.1 below). In addi-
tion, in the case when both points z1, 2 are simulta-
neously in the region cosφ(z1, 2) = 0, the singularity in
the correlation function is cancelled out. This can eas-
ily be verified since, in the limit z1  z2 and
cosφ(z1), cosφ(z2)  0, the exponents µ1(z),
µ2(z)  1 in formula (5.23) and the condition

  0 is satisfied. The
absence of a singularity in this case can be explained by
the fact that a CLC is practically indistinguishable from
a nematic in the region of close values of z1 and z2, and
it was proved above that correlation function (5.21) for
an NLC is finite for cosφ0 = 0.

Thus, in the scattering problem, we can confine our
analysis to expression (5.27) for the correlation func-
tion, provided that inequalities q @ p0 and

(5.33)

hold.

5.3. Limiting Cases 

Let us analyze the behavior of expression (5.27) for
p0  0. This limiting transition corresponds to a tran-
sition to an NLC. If we set p0 = 0, formula (5.22)
assumes the form

Ŵ
j( )

q; z1 z2,( )
j 1 2,=∑

z1 z2–  ! q/ p0
2

0

1.0

1.8

1.0
1.5

0.5
0

0.5 1.0 1.5

G11(q), z, z1

φ(z1)

φ(z)

Fig. 5. Component of the CLC correlation function
G11(q; z, z1) expressed in relative units as a function of
coordinates z and z1 of two points.
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(5.34)

Carrying out Fourier transformation (4.21) with respect to variable z – z1, we obtain

(5.35)

Ĝ q; z z1–( )
kBTe

qµ1 z z1––

2qK33 φ0cos
2

-------------------------------  ×   µ
 

1
1–

 φ
 

0 
sin

 

2

 
–

 
i z z

 
1 

– ( ) φ
 

0 
sinsgn

 
i z z

 

1

 
–

 
( ) φ

 

0

 
sin

 
2

 
sgn

 
µ

 

1

 
 
 
 
 

 =

+

 

k

 

B

 

Te

 

q

 

µ

 

2

 

z z

 

1

 

––

 

2

 

qK

 

33

 

φ

 

0

 

cos

 

2

 

-------------------------------  ×
µ

 
2 

i z z
 

1 
–

 
( ) φ

 
0 

sinsgn–
 

i z z
 

1

 
–

 
( ) φ

 

0

 
sinsgn–

 
µ

 

2
1–

 
φ

 

0

 
sin

 
2

 
–

 
 
 
 
 

 .

Ĝ q kz,( )
kBT

K33q2 φ0cos
2

K11 q2 φ0sin
2

kz
2+( )+( ) K33q2 φ0cos

2
K22 q2 φ0sin

2
kz

2+( )+( )
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

× K33 φ0cos
2

K22 φ0sin
2

+( )q2 K11kz
2+ qkz φ0 K11 K22–( )sin

qkz φ0 K11 K22–( )sin K33 φ0cos
2

K11 φ0sin
2

+( )q2 K22kz
2+ 

 
 
 

.

It is worth noting that, for φ0  π/2, formula (5.34)
acquires an indeterminacy that can easily be expanded
and leads to a finite expression for φ0 = π/2. Conse-
quently, correlation function (5.35) has no singularities
in the vicinity of this point.

If we pass to a coordinate system in which n0 = ez and

q || ex, matrix  becomes diagonal and formula (5.35) is
transformed to the well-known formula for the correla-
tion function of NLC [34]:

It would be interesting to compare our result (5.22)

for correlation matrix (q; z1, z2), which is valid in the
limit q @ p0 (nematic-like CLCs), with the well-known

result for (q; z1, z2), which was obtained in the oppo-
site limiting case q ! p0 (smecticlike CLCs) [20, 21].
For simplicity, we consider the one-constant approxi-
mation, in which the Frank moduli are equal (K11 =
K22 = K33 = K). We will be interested in the behavior of

(q; z1, z2) as a function of modulus q of the wave vec-
tor and of quantity z1 – z2.

For q @ p0, the components of correlation matrix 
exhibit, in accordance with relation (5.22), a character-
istic dependence on q and z1 – z2 of the form

(5.36)

Ĝ

Gαβ k( )
kBT

K33kz
2 Kαα k ⊥

2+
-----------------------------------δαβ.=

Ĝ

Ĝ

Ĝ

Ĝ

Gβγ q; z1 z2,( )
1
q
--- q z1 z2––( ).exp∼
JOURNAL OF EXPERIMENTAL
On the other hand, the three-dimensional Fourier
transforms of the elements of the correlation matrix for
q ! p0 can be written as [21]

(5.37)

These expressions were obtained by averaging over
many pitches of a helix. For this reason, modes u1 and
u2 do not correlate (the nondiagonal elements of the
correlation matrix are equal to zero) in contrast to our
results, in which nearly local fluctuations are taken into
account. It is noteworthy that director fluctuations in a
plane perpendicular to the helix axis (G11) in this limit-
ing case are of a type analogous to fluctuations of dis-
placements of layers in smectic-A. At the same time,
fluctuations along the helix axis (G22) are of the same
type as fluctuations of the director in a nematic, but are
limited by the pitch of a cholesteric helix.

Passing to the (q, z) representation in formula (5.37),
we obtain

(5.38)

G11 q qz,( )
2 p0

2kBT

K 2 p0
2qz

2 q2qz
2 q4+ +( )

----------------------------------------------------,=

G22 q qz,( )
kBT

K p0
2 q2 qz

2+ +( )
-------------------------------------,=

G12 G21 0.= =

G11 q; z1 z2–( )
p0

2

q2 2 p0
2 q2+

------------------------------
q2 z1 z2–

2 p0
2 q2+

------------------------–
 
 
 

,exp∼

G22 q; z1 z2–( )
1

p0
2 q2+

---------------------∼

× p0
2 q2+ z1 z2––( ).exp
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Although these expressions are applicable only for
q ! p0, we formally extrapolate them to region q @ p0

and compare with result (5.36) for . This enables us
to estimate the behavior of fluctuation modes in a
wide range of q. For q @ p0 , we obtain, instead of
relations (5.38),

(5.39)

The exponential factors in relations (5.39) and (5.36)
coincide. However, the coefficients of the exponent for
mode u1, which corresponds to fluctuations in a plane
perpendicular to the cholesteric axis, are different in
these formulas. On the other hand, the coefficients for
mode u2 corresponding to fluctuations along the helix
axis coincide. The latter circumstance suggests that the
expression for G22 derived by us for region q @ p0 is
applicable in a wider range of q values. The first mode
turns out to be more sensitive to the pitch and its behav-
ior differs strongly in the cases when q ! p0 and q @ p0.

6. LIGHT SCATTERING IN CLCs

Let us consider a CLC sample in the form of a flat
layer of thickness L with large transverse dimensions
(Fig. 6). A plane wave with wave vector k(i) is incident
on the sample. We analyze the scattered wave with
wave vector k(s) in the far-field region of the sample.

For simplicity, we confine our analysis to the case
when the polarization of incident light outside the sam-

ple is chosen so that incident wave  of only one
of two admissible types (4.2) is formed in the sample;
otherwise, we must carry out summation with respect
to (i) inside the medium. Analogously, we choose the
polarization of scattered line outside the sample in such

a way that it corresponds to scattered wave  of
only one of admissible types (4.2) inside the sample.
This allows us to avoid summation with respect to (s)
inside the medium in the subsequent analysis. Thus,
indices (i) and (s) can be identified here with numbers 1
or 2 depending on the type of the incident and scattered
waves.

In this geometry, in accordance with relations (3.24)
and (3.30), the intensity of singly scattered light in

Ĝ

G11 q; z1 z2–( )
p0

2

q3
----- q z1 z2––( ),exp∼

G22 q; z1 z2–( )
1
q
--- q z1 z2––( ).exp∼

Ein
i( ) r( )

Ein
s( ) r( )
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CLCs is defined by the expression

(6.1)

This expression for the scattering intensity contains
conjugate pairs of incident fields and the Green func-
tions. Using relations (4.2) and (4.17), we obtain

(6.2)

(6.3)

Substituting expressions (6.3) for the Green func-
tions, (5.29) for the correlation function, and (6.2) for
the incident field into formula (6.1), we find that the

I s( ) ε0c2

8π
--------------

k0
6ε0

4π2
----------

S⊥

r2
----- z

r
-- 

 
2

eα
s( )eγ

s( )=

× Mαβ
in out→ k⊥

s( ) L,( )Mγδ
in out→ k⊥

s( ) L,( ) z1d

0

L

∫

× z2Tβρ
0 k⊥

s( ); L z1,( )Tδϕ
0* k⊥

s( ); L z2,( )d

0

L

∫

× &ρνϕµ k⊥
s( ) k⊥

i( ); z1 z2,–( )%ν
i( ) k⊥

i( ) z1,( )%µ
i( )∗ k⊥

i( ) z2,( ).

%ν
i( ) k⊥

i( ) z1,( )%µ
i( )∗ k⊥

i( ) z2,( ) E0
i( )2 A i( ) k⊥

i( ); z1 0,( )=

× A i( ) k⊥
i( ); z2 0,( ) i kz

i( ) k⊥
i( ) z',( ) z'd

z1

z2

∫–exp

× eν
i( ) k⊥

i( ); z1( )eµ
i( ) k⊥

i( ); z2( ),

Tβρ
s( ) k⊥

s( ); L z1,( )Tδϕ
s( )* k⊥

s( ); L z2,( )
1

4k0
2

--------=

× i kz
s( ) k⊥

s( ) z',( ) z'd

z1

z2

∫ B s( )2 k⊥
s( ) L,( )B s( ) k⊥

s( ) z1,( )exp

× B s( ) k⊥
s( ) z2,( )eβ

s( ) k⊥
s( ) L,( )eδ

s( ) k⊥
s( ) L,( )

× eρ
s( ) k⊥

s( ) z1,( )eϕ
s( ) k⊥

s( ) z2,( ).

k(i)

L

k(s)

y

x
z

Fig. 6. Geometry of light scattering in CLC.

I(x, y)
ICS      Vol. 98      No. 1      2004



84 AKSENOVA et al.
scattering intensity assumes the form of the sum of two
double integrals corresponding to two fluctuation
modes of the director,

(6.4)

where q =  – , and

6.1. Large Parameters in the Expression
for Intensity 

The presence of large parameters Ω = k0/p0 and  =
q/p0 in our system makes it possible to considerably
simplify general expression (6.4) for the scattering
intensity. For this purpose, it is convenient to return to
the dimensionless variable ξ = p0z . Then the expression
for Ij assumes the form

(6.5)

where Φopt is the phase associated with the incident
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field and the Green function,

(6.6)

Here,  =  – , and

 and  are equal to  or  depending on the
types of the incident and scattered waves. “Phase”

 of the correlation function has the form

(6.7)

In accordance with formulas (5.27) and (5.28), function
Fj(ξ1, ξ2) associated with the preexponential factors in
the expressions for the incident field, Green function,
and correlation function can be written in the form

where F1j(ξ1, ξ2) and F2j(ξ1, ξ2) are smooth functions.

Integral (6.5) has the form of a dependence on large
parameters k0/p0 ~ q/p0, which is typical of problems
that can be solved by the steepest descent method. In
our case, the problem is complicated by the singularity
in the phase function on the line ξ1 = ξ2, which is asso-
ciated with the sign of the modulus in the exponent in
Eq. (6.7) as well as the singularity of the type sgn(ξ1 –
ξ2) of function Fj(ξ1, ξ2) on the same line.

Real-valued exponent (6.7) attains is maximum on
line ξ1 = ξ2. On the same line, this factor has a singular-
ity associated with the presence of the sign in the modu-
lus. As a result of the latter circumstance, oscillations
associated with phase Φopt are not eliminated completely.
Consequently, line ξ1 = ξ2 makes the main contribution
to the asymptotic form of the entire integral (6.5).4 

Passing to new variables ξ+ = (ξ1 + ξ2)/2 and ξ– =
(ξ2 – ξ1)/2, we expand the phase functions in the vicin-

4 The contributions from the stationary points of oscillating factor
with phase (6.6), which lie outside line ξ1 = ξ2, are multiplied by
exponentially small factors with phase (6.7) and can be dis-
carded.
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ity of line ξ– = 0 to within first-order terms. This gives

(6.8)

Thus, the integrals determining the intensity of scat-
tered light have a structure of the form

(6.9)

We have extended the integration with respect to vari-
able ξ– from –∞ to +∞ since the contribution in ξ–
comes only from a narrow neighborhood of ξ– = 0.

Splitting the integration domain into two regions
(−∞, 0) and (0, +∞) and replacing the preexponential
smooth functions F1j, 2j by their values for ξ– = 0, we
obtain the following expression for the internal integral
in formula (6.9):
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Thus, we obtain the following expression for the scat-
tering intensity in the form of a simple integral in the
main order in the large parameter:

(6.11)

6.2. Main Geometries of Scattering 

Let us consider the scattering of light with various
polarizations.

Scattering of the (o)–(o) type does not exist. This
can easily be verified if we take into account the fact
that the expression for the scattering intensity contains
scalar products of the polarization vectors of incident
and scattered waves and the director vector appearing
in expression (5.30) for the correlation function, while
the polarization vector of the ordinary wave is orthogo-
nal to the director. In this case, the situation is similar to
that in an NLC.

Let us consider scattering of the (o)–(e) type. Carry-
ing out summation over recurring indices and integra-
tion with respect to the difference variable in expres-
sion (6.4), we obtain
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where γs is the angle between vectors q and  and γi is the angle between vectors q and , and

(6.13)
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The intensity of the (e)–(o) scattering can easily be
derived from the intensity of the (o)–(e) scattering by car-
rying out the substitutions e(1)  e(2) and k(s)  k(i).

The calculation of the intensity of the (e)–(e) scat-
tering is different since, after convolutions, the contri-
bution to scattering comes from all four terms of corre-
lation functions (5.30). Summing over recurring indi-
ces and integrating with respect to the difference
variable in expression (6.4), we obtain the intensity of
the (e)–(e) scattering in the form

W1 k⊥
i( ) ξ,( ) W2 k⊥

i( ) ξ,( )=

=  
2k ⊥

i( )kz
1( ) k ⊥

i( )( )
k0

2ε⊥

------------------------------- φ ξ( ) γi–( ) φ ξ( ).sinsin
(6.16)

I e 2( ) e 2( ),( )
J0

p0
-----

εa
2kBT
qK33
--------------

kz
2( ) k⊥

i( ) 0,( ) k0
2ε⊥

2 εak ⊥
s( )2 φ L( ) γs–( )cos

2
+[ ]

kz
2( ) k⊥

s( ) L,( ) k0
2ε⊥

2 εak ⊥
i( )2 φ γi–( )cos

2
+[ ]ε ⊥

2
---------------------------------------------------------------------------------------------------

ξ+d

ξ+ φ0+( )cos
2

--------------------------------

0

L p0

∫=

× V0
k( ) k⊥

s( ) k⊥
i( ) ξ+, ,( )

qµ j ξ+( )V j
k( ) k⊥

s( ) k⊥
i( ) ξ+, ,( ) kz

2( ) k⊥
s( ) ξ+,( ) kz

2( ) k⊥
i( ) ξ+,( )–[ ] W j

k( ) k⊥
s( ) k⊥

i( ) ξ+, ,( )–

q2µ j
2 ξ+( ) kz

2( ) k⊥
s( ) ξ+,( ) kz

2( ) k⊥
i( ) ξ+,( )–[ ] 2

+
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

k 1=

4

∑
j 1=

2

∑

Here, the following notation has been introduced:

(6.17)

V0
1( ) k⊥

s( ) k⊥
i( ) ξ, ,( )

k0
2ε⊥ k ⊥

s( )2 φ ξ( ) γs–( )cos
2

–

k0
2ε⊥ k ⊥

i( )2 φ ξ( ) γi–( )cos
2

–
--------------------------------------------------------------=

×
k ⊥

i( )2 φ ξ( ) γi–( )cos
2

kz
2( ) k⊥

s( ) ξ,( )kz
2( ) k⊥

i( ) ξ,( )
---------------------------------------------------,

V0
2( ) k⊥

s( ) k⊥
i( ) ξ, ,( ) V0

3( ) k⊥
s( ) k⊥

i( ) ξ, ,( )=

=  
k ⊥

s( )k ⊥
i( ) φ ξ( ) γs–( ) φ ξ( ) γi–( )coscos

kz
2( ) k⊥

i( ) ξ,( )kz
2( ) k⊥

s( ) ξ,( )
------------------------------------------------------------------------------------,

V0
4( ) k⊥

s( ) k⊥
i( ) ξ, ,( )

k0
2ε⊥ k ⊥

i( )2 φ ξ( ) γi–( )cos
2

–

k0
2ε⊥ k ⊥

s( )2 φ ξ( ) γs–( )cos
2

–
--------------------------------------------------------------=

×
k ⊥

s( )2 φ ξ( ) γs–( )cos
2

kz
2( ) k⊥

i( ) ξ,( )kz
2( ) k⊥

s( ) ξ,( )
---------------------------------------------------,

V j
1( ) k⊥

s( ) k⊥
i( ) ξ, ,( ) Ṽ j k⊥
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γj being the angle between vectors q and kj ,
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where j = 1, 2, and

(6.19)

Expressions (6.12) and (6.16) make it possible to
calculate the intensity of single scattering of light by a
CLC cell to the front hemisphere for an arbitrary orien-
tation of the director in the boundary planes. The inten-
sity of scattering to the rear hemisphere can be calcu-
lated with the help of the same methods.

The use of large parameters Ω = k0/p0 and  = q/p0

imposes certain limitations on the geometrical condi-
tions of scattering, under which formulas (6.12) and
(6.16) are applicable. First, angle γ between vectors

 and  cannot be very small (γ @ p0/k0 ~ λ/d)
since expressions for the correlation function in Sec-
tion 5.2 were derived for q @ p0. Second, the angles
formed by wave vectors k(i) and k(s) of the incident and
scattered waves of the extraordinary type with the z axis
should not be too close to 90°. This is due to the effect
of trapping of the extraordinary ray in the flat wave
channel, which was described in Section 4.1. Finally,
the condition for applicability of the WKB approxima-
tion (5.27) for the correlation function, which is associ-
ated with inequality (5.33), limits the thickness L of an

admissible CLC: L ! k0/  ~ πd2/λ. The latter inequal-
ity implies that the formulas derived by us make it pos-
sible, in particular, to analyze the CLC containing many
periods of a helix.

We calculated the intensity of scattered light in the
above geometries. In these calculations, we introduced
angle φi between director vector n0 and vector k(i) on the
plane z = 0, as well as angle γ between the transverse
components of the wave vectors of incident and scat-
tered light. These angles are shown in Fig. 7.

We calculated scattering intensities I(e(1), e(2)) and
I(e(2), e(2)). Figure 8 shows the constant-intensity lines
for light scattered in a cholesteric with total twisting
angle Lp0 = π/2, when the angle of incidence relative to
axis z is equal to π/8 and φi = π/4. The maximal inten-
sity for both types of scattering is attained in region
k(s) ≈ k(i). It can be seen that the “spot on the screen” for
the (o)–(e) scattering is much broader than for the
(e)−(e) scattering. The intensity of the (e)–(e) scattering
at the center is formally unlimited, while the intensity
for the (o)–(e) scattering is finite. A more complex
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Fig. 7. Projections of the wave vectors onto the xy plane.
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Fig. 8. Isolines of intensity of scattered light for the (o)–(e) (a)
and (e)–(e) (b) types of scattering. The distances on the axes
are in relative units which are the same for both types of
scattering. The intensities are calculated for εa = 0.5, ε⊥  =

2.0, K11 = 3.0 × 10–6 dyne, K22 = 2.0 × 10–6 dyne, and K33 =

5.0 × 10–6 dyne; the angle of incidence is π/8, φi = π/4, and
Lp0 = π/2. The peak height for the (o)–(e) scattering is
2.1 relative units. The intensity isolines are plotted at five
levels: 2.0, 1.0, 0.5, 0.2, and 0.05.
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shape of the peak for the (e)–(e) scattering is also worth
noting. Figure 9 shows the same intensities, but for an
angle of incidence of π/4.

A specific feature of the given system is the nonlin-
ear dependence of the intensity of first-order light scat-
tering on the sample volume V = S⊥ L. Namely, upon a
change in the sample thickness, quantity I/L as a func-
tion of parameter Lp0 begins to oscillate. The depen-
dence of I on S⊥  remains linear in this case. This feature
is represented in Fig. 10 for both types of scattering.
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Fig. 9. Isolines of intensity of scattered light for the
(o)−(e) (a) and (e)–(e) (b) types of scattering. The distances
on the axes are in relative units which are the same for both
types of scattering. The values of permittivities and Frank
moduli are the same as in Fig. 8. The angle of incidence is
π/4, φi = π/4, and Lp0 = π/2. The peak height for the (o)−(e)
scattering is 0.68 relative unit. The intensity isolines are
plotted at five levels: 0.5, 0.2, 0.1, 0.05, and 0.01.
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We also calculated the degree of polarization P for
scattering of the extraordinary wave [39],

Intensity I(e(2), e(1)) of scattering of the (e)–(o) type can
be derived analogously to the intensity (6.12) of the
(o)–(e) scattering. The constant-polarization curves are
shown in Fig. 11. These curves are rather intricate since
the (e)–(e) and (e)–(o) peaks differ significantly. The
(e)–(e) scattering peak is much higher and decreases
sharply with the angle, while the (e)–(o) scattering peak
is more gently sloping and has a considerably smaller
height. As a result, in the vicinity of zero scattering
angle, the degree of polarization is close to unity; then
it rapidly decreases to zero, after which it starts to
increase again. In the region where the (e)–(o) scatter-
ing intensity increases, the isoline P = 0.5 in Fig. 11

P
I e 2( ) e 2( ),( ) I e 2( ) e 1( ),( )–
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Fig. 10. Dependence of quantity I/L on parameter Lp0 for
scattering of the type (o)–(e) (a) and (e)–(e) (b), expressed
in relative units. The values of permittivities and Frank
moduli are the same as in Fig. 8. The angle of incidence is
π/8, the angle of scattering is π/4, γ = π/6, and φi = π/4.
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becomes larger and closed for large scattering angles;
for this reason, we depict only a part of this line.

7. CONCLUSIONS

We have studied light scattering in cholesterics
with a large pitch. In solving this problem, it was
found that spatial inhomogeneity of the medium is
significant for describing normal waves and the Green
function as well as for calculating the spatial correla-
tion functions of permittivity fluctuations and the ther-
mal noise spectra.

The computational method used here may turn out
to be helpful in studying light scattering in various lay-
ered media and the media with one-dimensional peri-
odicity, when the wavelength of light is smaller than the
spatial inhomogeneity of a medium. In particular, the
approach developed by us can be used to study the
problem of light propagation and scattering in a
waveguide channel.

Our calculations show that the proposed theory
makes it possible to obtain information on correlation
functions (in media whose properties change in space)
by measuring the angular and polarization characteris-
tics of scattered light intensity.
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APPENDIX

Vector WKB Method 

Let us consider an equation of the type

(A.1)

with the initial condition  = , where  @ 1,

 = , and  = . It is convenient to carry out
the substitution of the unknown, after which the system
becomes diagonal in the main order in large parameter

. For this purpose, we represent  in the form

(A.2)

where  is a certain nondegenerate matrix that will

be chosen later and  is a new unknown satisfying the

initial condition  = .

In this case, Eq. (A.1) assumes the form

(A.3)

We now choose  in such a way that matrix 
becomes diagonal, i.e.,

(A.4)

where  is a diagonal matrix composed of the eigen-

values of matrix .5 In this case, the columns of matrix

 are eigenvectors of matrix . Then Eq. (A.3)
assumes the form

(A.5)

If we disregard the term of the relative order of 1/  in
the brackets on the right-hand side of this formula, the

5 The situation when matrix  cannot be reduced to the diagonal
form at some points is considered in [45] as applied to problem of
wave propagation and the theory of oscillations and in [44] as
applied to fluctuations in CLCs.
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∂ξ
------- Û
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system splits, in view of the diagonal form of matrix ,
into the independent equations

(A.6)

The solution to these equations has the form

(A.7)

The main drawback of this formula of the “zero-
order approximation” is that it gives, together with

Eq. (A.2), an expression for , which is not
invariant relative to an arbitrary (but depending on
point ξ) choice of normalization of eigenvectors of

matrix . In order to overcome this difficulty, we must

obtain a solution in the next order in . For this pur-

pose, we represent  in the form

(A.8)

where  is a nondegenerate matrix that has not yet
been determined. Substituting relation (A.8) into (A.5),

we obtain the equation for ,

(A.9)

with the initial condition  =

.

We now choose matrix  so that

(A.10)

where  is a diagonal matrix composed of the eigen-
values of the matrix appearing in the brackets in
Eq. (A.10). Then Eq. (A.9) assumes the form

(A.11)

It should be noted that, for  @ 1, matrix  +

( /∂ξ – ) is close to matrix ; con-

sequently, matrices  and  are also close and,
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hence, matrix  in Eq. (A.10) is close to the identity
matrix; i.e.,

(A.12)

where  = O(1).

It follows from relations (A.12) that the second term

in the parentheses in Eq. (A.11) is on the order of 1/
relative to the first term. Disregarding this term, we
obtain

(A.13)

Substituting formulas (A.12) into Eq. (A.10), we

obtain the following expressions for new matrices 

and  in the main orders in :

(A.14)

(A.15)

here, µl = –iΛll . The determination of diagonal terms Vll

of matrix  requires the next iteration in our method of
successive diagonalization, i.e., a substitution of the
form

into (A.11) and the computation of the values of 

and  taking into account corrections on the order of

1/ . However, the contributions from the diagonal

part of  in the expression

(A.16)

for the evolution operator in the “first approximation”,

which are connected with external factors  in

Eq. (A.16) and  in Eq. (A.13), are cancelled

with the contribution from the diagonal part of ,

which is due to term /∂ξ in Eq. (A.11). For
this reason, we can disregard the diagonal terms of

matrix  in the order in  we are interested in.

Û 1( )
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Disregarding corrections on the order of 1/  in

expressions (A.12) for matrices  and  (i.e., in
fact replacing these matrices by identity matrices), we

obtain from Eq. (A.16) matrix  in the WKB
approximation:

(A.17)

This formula for  =  is a vector analog of the clas-
sical WKB approximation.

The domain of applicability of this formula is
defined by the inequalities

(A.18)

where  is the corresponding diagonal matrix in the
second approximation.

The first inequality simply indicates that  is a large
parameter. The second inequality is associated with dis-

regard of terms  in expressions (A.12) in
the derivation of Eq. (A.17); in accordance with rela-
tion (A.15), this inequality imposes the following con-
straint on the closeness of eigenvalues µl and µm in the
entire interval from ξ0 to ξ:

(A.19)

Finally, the third inequality indicates the smallness of
the next correction to the exponential term in
Eq. (A.17) for any ξ0, ξ and sets a limit on the admissible
width of region ξ – ξ0, in which the WKB formula (A.17)
can be used. In order of magnitude, Λ(1)ll(ξ') – Λ(2)ll(ξ') ~

µl(ξ') ; consequently, we have

(A.20)

where  is the mean value of µl on interval [ξ0; ξ].
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Equilibrium Adsorption of Ligands
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Abstract—The binding of ligands to DNA molecules in solution is characterized by a distribution function
determining the probability that a certain number of ligands per DNA molecule are adsorbed. As a result of the
binding to polycations, rigid linear double-stranded DNA molecules (with negative charges of the phosphate
groups neutralized by the positive charges of ligands) exhibit a phase transition. Experimental data on the bind-
ing of chitosan to DNA are interpreted assuming that chitosan exhibits equilibrium adsorption on DNA. When
the number of chitosan molecules adsorbed on DNA exceeds a certain critical value, the DNA molecule covered
by chitosan becomes capable of interacting with like DNA molecules. This interaction (attraction) results in the
formation of particles constituting a liquid-crystalline dispersion. It is shown that the proposed model with cer-
tain parameters provides a description of certain experimental data characterizing the formation of cholesteric
liquid-crystalline dispersions. An analysis of the experimental data makes it possible to determine both the size
of a site occupied by an amino sugar unit of chitosan adsorbed on DNA and the energy of interaction of this
unit with DNA. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The equilibrium binding of ligand molecules to lin-
ear polymers in solutions is considered as the Langmuir
adsorption process, whereby the linear polymer macro-
molecule represents a one-dimensional matrix—a lat-
tice of reactive centers—and the ligand is adsorbed on
these centers of the matrix. The principles of this
approach were formulated by Hill [1, 2] and by Magee,
Gibbs, and Zimm [3]. This phenomenon attracts much
attention and there are several dozens of papers devel-
oping various adsorption models and establishing rela-
tionships describing the binding of biologically active
ligands to DNA matrices (see, e.g., [4–13]). A ligand
bound to DNA usually covers several base pairs on a
DNA molecule, rendering these sites inaccessible for
the other ligand molecules. From the standpoint of
physics, the behavior of adsorbed ligands is analogous
to the behavior of a lattice gas with allowance for the
excluded volume.

The binding of ligands to DNA is most adequately
described in terms of a distribution function that deter-
mines the probability of finding a DNA molecule with
a certain number of adsorbed ligands in solution. This
function was originally introduced by Reiter and
Epstein [14, 15] for description of the binding of
extended ligands to DNA. In [16], this function was
used for analyzing the arrangement of ligands on DNA
1063-7761/04/9801- $26.00 © 20093
molecules. Poland [17, 18] thoroughly considered
the   application of such a distribution function to
description of the binding of various ligands to macro-
molecules.

In this study, the probability distribution function is
used to describe a process in which the noncooperative
“critical neutralization” of DNA phosphates by the
ligands bearing positively charged groups leads to
DNA condensation. The condensed form of double-
stranded (duplex) DNA attracts the attention of
researchers by offering a model describing certain
peculiarities of the state of DNA in biological objects
such as viruses, protozoan chromosomes, etc. [19].

There are two possible modes of condensation for
the double-stranded molecules of nucleic acids (NAs):

(i) “Entropy condensation” is a process in which the
driving force is a change in the system entropy. This
type of condensation takes place when NA molecules
(or segments of the same high-molecular-weight NA
molecule) are separated from an aqueous polymer or an
aqueous salt solution [20, 21]. It should be noted that,
when NA is separated from an aqueous polymer solu-
tion, the polymer molecules do not enter into the com-
position of a new NA phase. The process of NA phase
separation can be described to a sufficiently good accu-
racy within the framework of the Flory theory (see,
e.g., [20]).
004 MAIK “Nauka/Interperiodica”
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(ii) “Enthalpy condensation” is a process in which
the driving force is attraction between neighboring NA
molecules (or segments of the same NA molecule). The
intermolecular attraction forces are mostly of the elec-
trostatic nature, including the London dispersion inter-
action and interactions of the dipole–induced dipole
type. These forces are rather weak at large intermolec-
ular distances R but grow rapidly when NA molecules
approach one another, the interaction energy varying
approximately in proportion to 1/R5 [21]. Apparently,
when a surface charge density on the NA molecules is
sufficiently low (as a result of neutralization of the neg-
ative charges of the phosphate groups of NAs by the
positive charges of polycation groups), the dispersion
forces equilibrate and then exceed the electrostatic
repulsion between adjacent NA molecules, inducing
the condensation process.

It should be noted that, in the case of high-molecu-
lar-weight NA molecules, condensation is an intramo-
lecular process (manifested as compactization or glob-
ulization), whereas for low-molecular-weight NAs, this
is an intermolecular process.

In the case of enthalpy condensation, the process
can develop according to one of two possible scenarios:
(a) neutralization of the negative charges of the phos-
phate groups of NAs by the positive charges of polyca-
tions and attraction of the adjacent molecules in NA–
polycation complexes; (b) the formation of polycation
crosslinks between the neighboring NA molecules,
determining the effective proximity of these molecules.
Condensation of the latter type was observed in exper-
iments with polycations representing spermine, spermi-
dine, etc. (see, e.g., [13, 22] and references therein).

Irrespective of the particular enthalpy condensation
scenario, the added polycations enter into the composi-
tion of a new phase. Experimental data show that the
condensation of NAs is always switched on when the
polycation concentration in solution reaches a certain
“critical” level. This process is described by a charac-
teristic S-shaped curve of the degree of NA condensa-
tion versus polycation concentration [23–27].

Recently [28], it was demonstrated that the use of
chitosan as a polycation leads to the formation of a liq-
uid-crystalline phase of NAs and that the character of
spatial packing of the adjacent NA molecules in this
phase can be controlled by changing the spacing of
amino groups in chitosan molecules at a constant
molecular weight of chitosan (i.e., at a constant length
of the molecule). The interest in chitosan—a biode-
gradable polymer called a “polymer of the 21st cen-
tury”—has stimulated investigations into the properties
of liquid crystals formed as a result of chitosan–DNA
interaction [28].

In this study, we have attempted to develop a theory
describing the interaction between DNA molecules (of
several hundred base pairs in size) and chitosan—an
extended ligand occupying several base pairs upon
JOURNAL OF EXPERIMENTAL
binding to DNA. The results will be compared to exper-
imental data characterizing a phase transition in DNA
caused by neutralization of the negative charges of the
phosphate groups of DNA by the positive charges of the
amino groups of chitosan. Our description is based on
the following assumptions:

(i) Chitosan binds to DNA in a noncooperative man-
ner, whereby the solution contains both DNA mole-
cules free of chitosan and those on which one, two, etc.,
chitosan molecules are adsorbed—up to the maximum
DNA coverage by chitosan (it is assumed that the
bound chitosan molecules neither overlap nor dangle
from DNA ends).

(ii) An essential part in chitosan binding to DNA is
the interaction of the charged amino groups of chitosan
with DNA phosphates, whereby the charge of the latter
groups is gradually neutralized when bound chitosan
covers a DNA molecule.

(iii) When the chitosan coverage reaches a certain
critical level, DNA molecules pass to a modified state
required for the formation of a cholesteric liquid-crys-
talline phase called liquid-crystalline dispersion.

(iv) The abnormal optical activity of a liquid-crys-
talline form of the DNA–chitosan complex is directly
proportional to the concentration of DNA molecules in
the modified state (the same is valid for an “apparent”
optical density characterizing the light scattering from
liquid-crystalline dispersion particles consisting of
DNA–chitosan complexes).

It should be noted that we will neither consider nor
take into account any interactions between DNA mole-
cules covered by chitosan (nor shall we consider the
possible crosslinking, whereby one chitosan molecule
binds to two DNA molecules). Thus, we only estimate
the number of DNA molecules capable of entering into
such interactions.

2. A MODEL OF LIGAND ADSORPTION 
ON DNA MOLECULES

Let us consider a solution at constant temperature
and pressure, containing DNA molecules with
adsorbed ligands as well as free DNA and ligand mole-
cules. A DNA molecule represents a matrix—a linear
polymer containing N reactive centers (the function of
such centers is performed by base pairs with atoms of
the sugar-phosphate core). A bound ligand occupies L
successive centers, rendering them inaccessible for
binding other ligand molecules. It should be noted that
we do not consider particular sterical details and pecu-
liarities of the ligand–DNA interactions. These L cen-
ters will be referred to as the binding site. If the reactive
centers of a given matrix are numbered from one end to
the other, the first binding site comprises a sequence of
the first L centers. Let K be the chemical equilibrium
constant for the reaction of ligand binding to one bind-
ing site of the matrix. We will consider the case when
 AND THEORETICAL PHYSICS      Vol. 98      No. 1      2004
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ligand binding to any site is characterized by the same
equilibrium binding constant (the so-called homopoly-
mer binding). The solution under consideration con-
tains DNA molecules with various numbers q of
adsorbed ligands. In the saturated state, a DNA mole-
cule containing N centers is capable of adsorbing qmax =
N/L ligand molecules. The equilibrium properties of the
system representing a DNA matrix with adsorbed
ligands are determined when the free energy ∆f(q, N) of
the system is calculated. This function can be written as
follows (see [29]):

(1)

where m is the free ligand concentration in solution, R
is the universal gas constant, and T is the temperature.

The first term in the right-hand part of formula (1)
corresponds to the statistical entropy, representing the
number of permutations of the ligands and individual
vacant centers. If a DNA molecule has bound q ligands,
there are N – qL vacant centers on this molecule. The
statistical entropy is equal to the logarithm of the
degree of degeneracy of a macroscopic state of the
matrix with adsorbed ligands, or to the logarithm of the
number of permutations in the sequence of elements of
two types—ligands and free centers:

(2)

It should be recalled that we are considering one matrix
bearing adsorbed ligands. The properties of this sub-
system involve an uncertainty related to the statistical
entropy. Indeed, if it is known that there are q ligands
adsorbed on the matrix, no certain answer can be given
to the question as to which particular reactive centers
are occupied and which are vacant. The statistical
entropy of the matrix with adsorbed ligands is a mea-
sure of this uncertainty.

Let us denote by M(q) the concentration of matrices
with q adsorbed ligands (M(0) being the concentration
of matrices free of adsorbed ligands). In accordance
with the Boltzmann distribution, we have 

(3)

where quantity ∆f(q, N) is defined by Eq. (1). Once the
free ligand concentration m in solution is known, the
concentration of matrices bearing q ligands can be cal-
culated. Indeed, if the concentration of ligand-free
matrices is M(0), the concentration of matrices bearing
q ligands according to Eq. (3) is

(4)

Consider a system including a single matrix. The
matrix can occur in one of the qmax + 1 states: it can be

∆ f q N,( )/RT–

=  N qL– q+( )!/q! N qL–( )![ ]ln q Km,ln+

∆S q N,( ) N qL– q+( )!
q! N qL–( )!

---------------------------------ln CN qL– q+
q .ln= =

M q( )/M 0( )[ ]ln ∆ f q N,( )/RT ,–=

M q( ) M 0( ) ∆ f q N,( )/RT–( ).exp=
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either free of ligands or bear 1, 2, …, qmax ligand mole-
cules. The probability that the matrix occurs in a certain
state exponentially depends on the free energy corre-
sponding to this state. This probability determines the
number of matrices bearing q ligands in solution.
Denoting by CM the total concentration of matrices in
solution, we can write

(5)

Now let us arbitrarily chose one matrix among all con-
tained in solution. The probability of finding a matrix
bearing q ligands is given by the ratio of the concentra-
tion of such matrices M(q) to the total concentration of
matrices in solution CM:

(6)

There is a certain distribution of matrices between
states Φ(q) for each concentration m of free ligands in
solution. This distribution function, presenting an
exhaustive characteristic of the system under consider-
ation, can be written as

(7)

with the obvious condition that

The distribution function is independent of the concen-
tration of matrices in solution, but depends on the
lengths of both the ligand and the matrix. As for the
dependence on the concentration m of free ligands in
solution, the range of these vales featuring significant
changes in the distribution function is determined by
the equilibrium binding constant K. Indeed, note that
Φ(q) depends only on the product Km. The average
number of ligands 〈q〉  adsorbed on one matrix is also
determined by the Km value. For this average, Eq. (7)
yields

(8)

M q( )
q 0=

qmax

∑   =   M 0( ) ∆ f q N , ( )/ RT – ( ) exp 

q

 

0=

 

q
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q Km( )q

q 1=
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In the experiments with polycations bound to DNA, it
is convenient to use a relative quantity called the cover-
age of a matrix by ligands. If a given matrix binds q
ligands, each covering L reactive centers of the matrix,
the coverage of the matrix is defined as α = qL/N.

3. THE BINDING OF POLYCATIONS
TO DNA AND THE EQUILIBRIUM 

OF TWO STATES

We assume that a rigid double-stranded DNA mole-
cule (with a molecular weight not exceeding 106 dal-
tons (D)) having bound a certain critical number qcrit of
ligands becomes capable of interacting with other like
DNA molecules, this interaction eventually providing
for the DNA transition to a condensed state. In particu-
lar, DNA molecules coated by chitosan become capable
of interacting with each other, provided that the nega-
tive charges of the phosphate groups of DNA are com-
pensated to a sufficiently large degree by the amino
groups of chitosan. This interaction makes possible the
formation of a liquid-crystalline dispersion [28].

Below, a DNA matrix upon binding q ≥ qcrit ligands
(i.e., with DNA charges compensated to a sufficiently
large degree) will be referred to as occurring in the
modified state (or state 2), in contrast to the normal
state of the DNA matrix (state 1) observed for q < qcrit
(Fig. 1). If chitosan is considered as a polycation, we
may suggest that, as the chitosan concentration in solu-
tion is increased, a growing proportion of DNA mole-
cules in solution passes to state 2, thus making liquid-
crystalline dispersion formation possible. In this paper,
we are not interested in the process of dispersion forma-
tion: consideration is restricted to estimating, using the

1 2 3

Fig. 1. Schematic diagrams showing DNA in states of dif-
ferent coverage by adsorbed ligands and the condensation
of DNA–ligand complexes upon reaching critical coverage.
DNA may exist in three different states in solution: (1) nor-
mal state, whereby the ligand coverage is below critical;
(2) modified state, when the ligand coverage is above the
critical level; (3) liquid-crystalline dispersion of DNA–
ligand complexes.
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above distribution function, the fraction of DNA mole-
cules capable of participating in the process of liquid-
crystalline dispersion formation.

State 2 is distinguished by the fact that the DNA
matrix bearing a critical number of chitosan molecules
behaves as a molecule acquiring new properties mani-
fested by the ability to form liquid-crystalline disper-
sion. If an overwhelming majority of DNA molecules
that have passed into state 2 enter into liquid-crystalline
dispersion particles, we can assume that the DNA frac-
tion in liquid-crystalline dispersion is a parameter char-
acterizing the ratio of DNA molecules in states 1 and 2.
Then, state 2 represents the liquid-crystalline phase that
can be readily detected by measuring the anomalous
amplitude of the optical response signal in the circular
dichroism spectrum or the signal of light scattering
from liquid-crystalline dispersion particles (apparent
optical density) [28].

In order to calculate the proportion of DNA mole-
cules occurring in state 2, we will find the relations
describing the probability of finding a DNA molecule
in solution with a number of bound ligands q greater
than qcrit . Denoting this probability by R, we can write

(9)

Let CDNA denote the total concentration of DNA (in
base pairs), so that CDNA = NCM . Denoting by Clig the
total concentration of ligands in solution, we have

(10)

Using Eqs. (9) and (10), it is possible to calculate the
fraction of molecules in state 2 as a function of the
ligand concentration ion solution (see [29]).

Indeed, once the K and L values are known, Eqs. (9)
and (10) can be solved by numerical methods and the
function R(Clig) can be constructed for the given values
of the matrix length N and the DNA solution concentra-
tion CDNA. This is most conveniently done by using a
set of the free ligand concentrations m in solution, rang-
ing from m = 0.01/K to 1/K (as can be seen, this very
interval features significant binding of ligands to

R Φ q( )
q qcrit=

qmax

∑
CN qL– q+

q Km( )q

q qcrit=

qmax

∑

CN qL– q+
q Km( )q

q 0=

qmax

∑
-------------------------------------------------.= =

Clig m qΦ q( )CM
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qmax

∑+=

=  m

qCN qL– q+
q Km( )q
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qmax

∑

N CN qL– q+
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q 0=
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∑
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DNA). As a result, we obtain an R(Clig) curve describ-
ing the DNA transition from a state in which less than
qcrit ligands are adsorbed, on average, on one DNA mol-
ecule to the state in which the average number of
adsorbed ligands 〈q〉  is greater than qcrit .

Figure 2 illustrates variation of the distribution func-
tion Φ(q) for a DNA solution with increasing free
ligand concentration m. As concentration m grows, the
number of DNA molecules with q > qcrit and, hence, the
R(Clig) value increase.

In practice, however, the problem is formulated dif-
ferently: given the experimental distribution of R(Clig),
it is required to evaluate the size L of a binding site

0.30

0.15

25 50qcrit
q

Φ

1
2

3

Fig. 2. The distribution functions Φ(q) characterizing ligand
binding to DNA in solution for various concentrations m of
a ligand covering 17 base pairs on a DNA molecule having
a length of N = 800 base pairs. Curves 1–3 were calculated
by formula (7) for Km = 0.001, 0.163, and 0.872, respec-
tively. The cross-hatched region corresponds to DNA mole-
cules binding 38 or more ligands and occurring in state 2
according to the model of Fig. 1.
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occupied by the ligand bound to DNA and to estimate
the constant K of interaction between a ligand and the
binding site. Below we will demonstrate how this prob-
lem can be solved for the binding of chitosan to DNA in
cases when this interaction results in the formation of an
liquid-crystalline dispersion of chitosan-covered DNA.

4. THEORETICAL CURVES 
OF THE CHITOSAN BINDING

TO DNA COMPARED WITH EXPERIMENTAL 
DATA ON LIQUID-CRYSTALLINE DISPERSION 

FORMATION: RESULTS 
AND DISCUSSION

Previously [28], experimental data on the binding of
chitosan to DNA and the formation of a liquid-crystal-
line DNA dispersion were obtained by methods of cir-
cular dichroism and apparent optical density. Figure 3
shows the corresponding families of characteristic
S-shaped curves describing this binding process. The
experimental techniques are described elsewhere [28].
The size of DNA molecules was about 800 base pairs.
The chitosan preparation employed was deacetylated to
85% (i.e., it contained 85% active amino groups). The
molecular weight of chitosan used in various experi-
ments varied from 2 to 32 kD, which corresponds to the
number of amino sugar residues changing approxi-
mately from 10 to 160 (one such residue had a molecu-
lar weight of about 200 D).

We calculated the theoretical curves of chitosan
binding to DNA for each experiment using the results
of independent measurements of circular dichroism and
the apparent optical density. Based on the published data,
it was assumed that a DNA molecule passes to the mod-
1.0

0.5

0
10–7 10–6 10–5 10–4

Clig

M = 26.7 7.8 2.1

10–7 10–6 10–5 10–4

Clig

R R

1.0

0.5

0

M = 31 7.8 2.1

(a) (b)

Fig. 3. A comparison of the experimental data (black squares) and theoretical results (curves) describing the binding of chitosan
with various molecular weights to DNA: R is the response signal amplitude normalized to maximum for the measurements of (a)
circular dichroism and (b) optical absorption; Clig is the ligand (chitosan) concentration in solution; M is the molecular weight of
chitosan. Solid curves show the results of theoretical calculations performed for DNA molecules occurring in the modified state
upon chitosan absorption to a coverage of α = 0.8; dashed curves correspond to α = 0.7.
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ified state at a ligand coverage of α = 0.8 (the calcula-
tions were also performed for α = 0.7, since there is some
evidence that the α value can be lower than 0.8 [30]).
Taking certain L values, we determined the binding
constants K corresponding to the best fit of theory to
experiment. Then, once the critical coverage α is
known, we can determine the values of qcrit = αN/L for
the given L and N and calculate the corresponding theo-
retical curves using Eqs. (9) and (10).

A criterion for selecting the optimum binding con-
stant K was the sum of square deviations of the theoret-

500 100 L

0.01

0.1

1

∆

Fig. 4. A plot of the sum ∆(L) of square deviations of theo-
retical curves of from experimental data for chitosan with a
molecular weight of 13.6 kD. Each point is constructed by
selecting K so as to ensure the best fit of theory to experi-
ment for a given L (in base pairs). Solid and dashed curves
refer to the calculations using data on the optical absorption
and circular dichroism, respectively.
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ical values of the fraction of DNA molecules in the liq-
uid-crystalline state, from the experimental values. For
each experimental curve, it was found that this fraction
for the signal maximum corresponds approximately to
unity. Further increase in the chitosan concentration in
solution gives rise to irreversible processes related to
precipitation of liquid-crystalline dispersion particles.

Our approach can be illustrated by an analysis of
two experimental curves obtained from the measure-
ments of circular dichroism and the apparent optical
density for chitosan with a molecular weight of 13.6 D
(corresponding to about 68 amino sugar residues per
molecule). Taking into account that one sugar residue is
about 5 Å in length and that two adjacent DNA base
pairs are spaced by 3.4 Å, we can suggest that the max-
imum possible size of a binding site occupied on DNA
by a ligand consisting of 68 residues (assuming it to be
parallel to the long DNA axis) amounts to L = 68 ×
5/3.4 = 100 base pairs (reactive centers of the matrix).
It should be noted that this estimate is definitely over-
stated, since a chitosan molecule can wind itself around
a DNA molecule as a helix (isogeometric with the
phosphate core shape), in which case the binding site
will be smaller by half (covering L ~ 50 base pairs). In
this purely sterical model, we consider chitosan as a
physical object, ignoring the fact that only every second
group bears a charge (i.e., neglecting details and the
nature of the chitosan–DNA interaction): we are inter-
ested only in estimating the size of the DNA segment
covered by chitosan (or, in terms of our model approach,
the number of reactive centers of the matrix rendered
inaccessible for binding other ligand molecules).

Figure 4 presents the plots of the sum ∆ of square
deviations calculated for L ranging from 10 to 120 base
pairs (i.e., for the interval definitely containing the size
of the binding site for one chitosan molecule). As can
100

50

0 15

L

30
M, kD

100

50

0

L

15 30
M, kD

(a) (b)

Fig. 5. Plots of the size L of the DNA binding site (in base pairs) for chitosan of various molecular weights M, providing for the best
fit of theory to experiment for (a) circular dichroism and (b) apparent optical density.
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Table 1.  Estimates of the size L of the binding sites covered by chitosan molecules of various molecular weights on DNA
and estimates of the equilibrium interaction constants K for chitosan binding to these sites. Upper and lower panels show the
L and K values determined from an analysis of the circular dichroism and the optical absorption data, respectively

Molecular 
weight, kD L Lmin Lmax

α = 0.7 α = 0.8

Kmin, M–1 Kmax, M–1 Kmin, M–1 Kmax, M–1

2 7 3 20 2 × 104 6 × 104 2 × 105 2 × 105

2.1 10 3 25 2 × 104 5 × 104 2 × 105 2 × 105

4.1 12 7 24 3 × 105 1 × 106 1 × 106 6 × 106

7.8 17 11 33 4 × 105 1 × 107 3 × 106 2 × 1010

13.6 40 32 60 2 × 106 5 × 107 1 × 107 4 × 1010

19 55 39 95 6 × 105 8 × 109 4 × 106 4 × 1010

26.7 70 60 110 2 × 106 8 × 107 8 × 106 3 × 109

31 90 70 150 2 × 106 6 × 108 5 × 106 9 × 1010

Molecular 
weight, kD L Lmin Lmax

α = 0.7 α = 0.8

Kmin, M–1 Kmax, M–1 Kmin, M–1 Kmax, M–1

2 5 3 16 2 × 104 6 × 104 2 × 104 1 × 105

2.1 9 6 20 2 × 104 4 × 104 9 × 104 2 × 105

4.1 9 8 12 2 × 105 1 × 106 4 × 106 6 × 106

7.8 17 13 20 1 × 106 9 × 106 8 × 106 9 × 109

13.6 40 32 65 2 × 106 4 × 1010 9 × 106 4 × 1010

19 50 40 75 1 × 106 7 × 107 2 × 107 4 × 1010

26.7 80 60 120 1 × 106 3 × 109 1 × 107 3 × 1010

31 75 60 110 1 × 106 9 × 1010 6 × 106 9 × 1010
be seen, the best fit of theory to experiment is obtained
for L = 40 base pairs. For each L value, we determined
the constant K minimizing the sum ∆(L) (these mini-
mum values are plotted in Fig. 4). The minimization
procedure was performed using MATLAB software.

Table 1 summarizes the results of calculations for all
experimental curves. The upper and lower panel show
the K and L values determined from an analysis of the
circular dichroism and the optical absorption data,
respectively; Lmin and Lmax correspond to the minimum
and maximum binding sites, respectively; Kmin and Kmax

are the minimum and maximum binding constants,
respectively, as determined by least squares.

Figure 5 shows the results of analysis of the experi-
mental data obtained by methods of circular dichroism
and optical absorption (apparent optical density). As
can be seen, the data obtained by the two techniques are
close and give approximately the same estimates: the
size of the binding site of chitosan on DNA is propor-
tional to the molecular weight of chitosan. This fact
indicates that long chitosan molecules bind to DNA in
the same manner as short ones. Thus, the relation
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
between the size of the binding site and the molecular
weight of chitosan can be expressed as

(11)

where c is the proportionality factor. From an analysis
of the circular dichroism spectra, this coefficient is esti-
mated as c = 2.64 ± 0.25 kD–1, while the optical absorp-
tion date refine this estimate as c = 2.79 ± 0.15 kD–1.
Adopting the latter estimate, it is possible to calculate

L cM,=

Table 2.  The energy parameters of chitosan binding to DNA
determined by an analysis of the results of circular dichroism
and optical absorption measurements

α Experimental method a b, 104 M–1

0.7 Circular dichroism 0.13 ± 0.08 1.9 ± 1.2

Optical absorption 0.09 ± 0.05 2.8 ± 1.9

0.8 Circular dichroism 0.14 ± 0.08 8.7 ± 5.6

Optical absorption 0.10 ± 0.07 11.8 ± 4
SICS      Vol. 98      No. 1      2004



100 NECHIPURENKO et al.
Table 3.  The equilibrium interaction constants for various polycations bound to double-stranded DNA molecules

Compound Conditions K, M–1 Refs.

Poly(L-lysine) Mol. weight 36.600 8.3 × 109 [31]

Thiolated poly(L-lysine) Mol. weight 36.600 1.3 × 1010 [31]

Histonelike (sperm-specific protein from 
Spisula solidissima)

(300 amino acid residues; 
protaminelike protein)

(1–9) × 108 [32]

Spermidine 17 mM 1.4 × 106 [23]

Spermine 1 mM 1.87 × 105 [33]

Pentalysine 0.1 M 4.7 × 103 (binding to poly(A)-poly(T)) [34]

Cetyltrimethylammonium bromide (CTAB) 1.2 × 103 [35]
that five amino sugar residues (weighing about 1 kD)
occupy approximately 2.8 base pairs of DNA. The
length of a sugar-phosphate DNA core per base pair is
about 7.2 Å, so that five amino sugar residues cover a
20-Å-long DNA segment. These five residues possess a
somewhat greater intrinsic length of ~25 Å (the differ-
ence probably reflects the fact that about 1/5 of the
amino sugar chain of chitosan can dangle from DNA,
forming loops and/or other structures).

Assuming that the mode of chitosan binding to
DNA is independent of the size of this ligand, the bind-
ing energy should vary in an additive manner depend-
ing on the size L of the binding site occupied by chito-
san and, hence, the binding constant should exponen-
tially depend on this size. Thus, we may suggest that
the binding constant obeys the relation

(12)

Table 2 presents the estimates of parameters a and b
obtained from our analysis of the experimental data for
two values of the critical DNA coverage by chitosan,
α = 0.7 and 0.8. Note that the values of constants
obtained from this analysis are, on the whole, consis-
tent with the data characterizing the binding of poly-
cations to DNA published by various researchers
(Table 3). According to Table 2, variations in the free
energy of binding per base pair are relatively small: the
binding constant increases only by a factor of about 2.8
when the size of the chitosan binding site increases by
ten base pairs.

It should be also noted that we have attempted to
describe the formation of a liquid-crystalline DNA dis-
persion as a result of the chitosan binding to DNA
based on some other models, in particular, the Porshke
model [13]. According to this model, NAs exhibit com-
pactization via the formation of complexes in which
one ligand molecule binds to two DNA molecules.
However, we failed to obtain a satisfactory description
of the available experimental data on this basis. This is
not surprising, since we are dealing with a liquid-crys-

K b aL( ).exp=
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talline phase in which DNA molecules retain their
mobility, which is evidence for the absence of chitosan
crosslinks.

5. CONCLUSIONS

We have proposed a model according to which
reaching a certain coverage of DNA by chitosan in
solution induces the transition of DNA into a modified
state providing for an effective interaction between chi-
tosan–DNA complexes and the formation of a liquid-
crystalline DNA dispersion.

We have considered a model of noncooperative
binding of ligands to DNA and shown, for the example
of chitosan binding to DNA, how to evaluate the frac-
tion of modified DNA fragments “prepared” to the
phase transitions. A description of the phase transitions
in single DNA molecules as a result of cooperative
interactions between adsorbed ligands was recently
proposed by Lando, Teif, et al. [36, 37].
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