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Abstract—The relationship of dark matter to giant black holes (BHSs) in galactic nuclei is investigated. The
simultaneous evolution of dark and baryonic matter under the effect of an averaged self-consistent gravitational
field is considered. The distribution of dark matter is shown to remain spherically symmetric even if thereisan
appreciable asymmetry in the distribution of baryonic matter in the galaxy. A kinetic equation that describesthe
evolution of the distribution function for dark matter with gravitational scattering by starsis derived. A signif-
icant flux of dark matter on a seed BHe at the galactic center is shown to arise under these conditions. The law
of growth of the seed BH viathe absorption of dark matter has been established. The seed BH is shown to grow
significantly, up to 10'—10®M,, in the lifetime of the galaxy. Observational data are briefly analyzed, and the
presented theory has been found to be in reasonable agreement with experimental data. © 2004 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, the intensive development of tech-
nology and the use of new methods for astrophysical
observations (gas kinematics, maser kinematics, echo
mapping, and stellar kinematics) have led to thereliable
detection of a large number (more than 80) of giant
black holes (BHs) [1, 2] with massesin the range (2 x
10°-3 x 109 M, (M = 2 x 102 g isthe solar mass). The
mass distribution is shown in Fig. 1. Analysis of obser-
vational data has revealed a relationship between the
mass of a giant BH at the galactic center and the mass
of the bulge.! The stellar rotation velocity in the bulge
is generally much lower than the characteristic vel ocity
dispersion 0. Therefore, the shape of the bulge does not
differ too much from the spherical shape, and the num-
ber density of stars in it rapidly increases toward the
galactic center. The characteristic bulge radius, ry,
increases with galactic mass: r, ~ 1-30 kpc in the gal-
axies observed. The mass of giant BHs, My,,, is lower
than the bulge mass of the host galaxies by approxi-
mately three orders of magnitude.

Nondissipative dark matter is currently believed to
constitute the bulk of the matter in the Universe. Itisin
dark matter that density fluctuations grow; these fluctu-
ations form a large-scale gravitationally bound object,
a galactic halo, at the nonlinear stage. An important
property of this halo isthe singular density distribution
at its center [3]. The baryonic matter captured by the
gravitational field of the halo gradually settles to the
center and forms galaxies. The presence of asingularity

1 The bulgeisthe densest central region of agalaxy, which consists
mostly of old stars.

in the distribution of dark matter leads to the possible
formation of a primary BH [4] with amass on the order
of 103M,, at the center of the future galaxy during the
contraction of baryonic gas. Subsequently, the seed BH
rapidly grows viathe flow of baryonic and dark matter
from the bulge into it. In this paper, we investigate the
evolution of dark matter and its absorption by a BH at
the galactic center.

The paper has the following structure. In Section 2,
we consider the distribution of dark matter in a galaxy
and its evolution under the effect of the averaged self-
consistent gravitational field of baryonic matter that
sinks to the central region of the galaxy due to energy
losses and forms a bulge. We solve the problem in the
adiabatic approximation by assuming that the baryonic
matter is spherically symmetric.

In Section 3, we analyze the role of the deviations
from spherical symmetry. The distribution of dark mat-
ter that adiabatically contracts under the effect of the
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Fig. 1. The mass distribution of giant BHs (according
to [1]).
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2 ILYIN et al.

combined large-scale self-consistent gravitational field
of baryonic and dark matter is shown to remain spheri-
cally symmetric even if there is an appreciable asym-
metry in the distribution of baryonic matter.

In Section 4, we study the growth of aseed BH at the
galactic center viathe direct capture of dark matter par-
ticles that move in an averaged self-consistent gravita-
tional potential. We show that this mechanism isineffi-
cient in real conditions and cannot cause any apprecia-
bleincrease in the mass of the seed BH.

In Sections 5 and 6, we investigate the evolution of
the distribution function for dark matter when the adia-
baticity condition is violated. The main process of this
kind is the gravitational scattering of particles during
their collisions with stars in the bulge. An important
property of this process is that the particle mean free
path is much larger than the bulge scale length; there-
fore, collisions are rare. Taking this property into
account, we derive an expression for the collision inte-
gral averaged over the oscillations of the dark matter
particles captured in the self-consistent gravitational
field and obtain a kinetic equation that describes the
evolution of the distribution function for dark matter in
Section 5. We show that diffusion in angular momen-
tum space plays a mgjor role here, because the initia
distribution function is singular.

In Section 6, we solve the diffusion equation, deter-
mine the flux of dark matter on a BH, and establish the
law of its growth.

Finally, in Section 7, we briefly analyze observa
tiona data. This analysis indicates that the growth of
giant BHs via the absorption of dark matter is consi-
derable.

In general, we may assert that the theory presented
here is in reasonable agreement with the available
observational data for giant BHs. Further development
of the theory and observations and their detailed com-
parison are undoubtedly of considerable interest.

2. THE INFLUENCE OF BARYONIC MATTER
ON THE DISTRIBUTION OF DARK MATTER
IN THE CENTRAL REGIONS OF A GALAXY

Nondissipative dark matter plays a crucial role in
the formation of the large-scale structure of the Uni-
verse—galaxies, clusters of galaxies, and superclusters.
The evolution of small nonuniformities in the initial
distribution of dark matter at the nonlinear stage leads
to the gravitational contraction of dark matter and the
formation of primary singularities of the density p after
the passage of which amultistream flow is developed in
the collisionless gas of dark matter. According to the
analytical theory developed by Gurevich and Zybin [5],
under very general assumptions about the shape of the
initial perturbation, the development of flow oscilla-
tions gradually leads to the stirring of dark matter and
the formation of stable, spherically symmetric self-cap-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

tured objectswith asingular density distribution at their
centers:

p=Kr? &=12/ (1)

Although this result was analytically obtained rela-
tively long ago, for a long time only plane nonlinear
structures had been obtained in numerical calculations.
Navaro et al. [6] were ableto aso show the existence of
stable, spherically symmetric clumps only by using
special computational methods that actually reduced to
the separation of individual density maxima. A further
improvement in computational methods made it possi-
ble to separate a singular density profile in the central
region of a clump with a singularity parameter & close
to (1) [7]. Thus, now, numerical simulations may be
considered to have confirmed the results of the analyti-
cal theory almost completely.

Following [5], let us consider a separate local per-
turbation of the dark matter density p(r) in the follow-
ing form near the maximum r = 0O:

Pizo = Pol=5- -2 azbze (2

The growth of Jeans instability and the subsequent
kinetic stirring of dark matter give rise to a nondissipa
tive gravitational singularity (NGS) with scaling (1)
and a spherically symmetric stationary distribution
function

f(E,m) = folooa(m*—1213%), )

where
_ + 2 12
I(E, m) = %éfdr%—w(r)—%%

is the radial action, m is the magnitude of the angular
momentum, E = v3/2 + (r) isthe energy, Y(r) Or?7is
the NGS potential, r, aretheturning points of dark mat-
ter particles, and f, and |, are constants that depend on
the scale and shape of theinitial perturbation. In partic-
ular,

I, = 0.16€, 4
where
€ = (ei+e§—elez)ﬂz, €, = (a—b)/a,
€, = (a-c¢)/a

are the dlipticity parameters near the maximum of the
initial density (2). If the parameterse, , are assumed to
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DARK MATTER IN GALAXIES AND THE GROWTH OF GIANT BLACK HOLES 3

be generally random variables uniformly distributed in
segment [0, 1], then the mean &= ./5/12, whence

0= 0.1. (5)

Thus, as follows from (3) and (4), the angular
momenta of dark matter particles in the central region
after NGS formation are low and proportiona to the
radial action I, while their orbits are highly elongated
toward the NGS center.

Let us now consider the influence of the baryonic
component on the structure of distribution function (3).
Because of energy radiation during inelastic collisions,
baryonic matter gradually sinks to the bottoms of
potential wells produced by cold dark matter and forms
galaxies, with the dark matter forming a giant galactic
halo. The existence of a dark matter halo in galaxiesis
confirmed by rotation curves [8]. Other examples of
such objects are clusters of galaxies. The dark matter
hal o shows up here viathe gravitational confinement of
alarge amount of hot gas[9].

As follows from (1), the dark matter mass concen-
trated in the central NGSregion tendsto zero asthe size
of this region decreases asr¥7. Therefore, although the
total fraction of baryonic matter is small, its concentra-
tion in the central region greatly increases as it cools
down and settles to the NGS center. This, in turn, can
significantly affect the total gravitational potential W
produced by both dark, Y4, and baryonic, {,,, matter
and thereby can change law (1).

In this section, we assume the distribution of the
baryonic component to be spherically symmetric,

Wy = Wy(r).

The characteristic scale r, on which deviations from
universal law (1) would be expected due to the influ-
ence of baryons is defined by the relation My(rp) =
My(ro), where M, isthe mass of the baryonic matter and
My is the mass of the dark matter. In general, this ine-
guality holdsin the bulge.

The main feature of the process under consideration
isthat the particles of baryonic matter lose their energy
slowly—in a time comparable to the lifetime of the
Universe. During this time, the particles of dark matter
captured by the gravitational field in the central part of
the hal o oscillate many times. Thus, the change in total
self-consistent potential W is adiabatically slow. Under
these conditions, the radial action is known [10] to be
an integral of motion (an adiabatic invariant). Since the
initial distribution function depends on the integral s of
motion Iz and m, it retains its form (3) as a function of
theradial action and the angular momentum throughout
the slow evolution of the total potential from W = i, to

W=y + Y.
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To determine the dark matter space density in the
field W(r, t), itisconvenient to passfrom Iy and mto the
variables E and m using the relation

R(Emt)-—J’drHE w(r, t)—mD . (6)

Sincetheradial action explicitly dependsontimein (6),
the digtribution function of dark matter particles
expressed in terms of energy and angular momentum,
f(E, m, t), also depends on time. In this case, the dark
matter space density is given by

p(r,t) = fif dmZIdEf(E, m, t)
" U

x -, t)—— ,

where Q isthe energy range in which thefollowing ine-
quality holds:

E—W(r, t)—m/2r*>0.

Below, we will be interested in the region of space
r <r.where, to afirst approximation, we may disregard
the influence of the dark mass on the total potential and
assumethat W = (. For simplicity, werestrict our anal-
ysis to the case where the baryonic mass and potential
in the final state have a power-law dependenceonr:

n-1

M) Or", @, Or""", nx0. (8)

Theradial action (6) may then be represented in factor-
ized form:

I = 1o(ry)C(W), 9
where

l, = GYMIPAr)rY?, = Ir_n

o) = _Idﬁg g —”5%3—1%

B- -B(u)——

ry
G isthe gravitational constant.
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Using these relations and changing the variables
E,m=r,, nin (7), we may also represent the dark
matter space density as a power law:

9 39

04 = Ky 1 (10)

It isimportant to note that, in the absence of the bary-
onic component, the exponent in (10) does not depend
on the parameters f, and |, of theinitial perturbation.

It follows from (10) and (1) that the densities of the
baryonic and dark components at n = 9/7 change as
r 127, For anisothermal distribution of baryonic matter,
P, O r2and n = 1. It then follows from (10) that the
dark matter density increases as r='%8 whenr — 0,
i.e., slightly more slowly than the baryonic density. The
largest contraction of dark matter would be expected at
n = 0, when a compact massive baryonic object is
formed at the NGS center. The dark matter distribution
initsvicinity is
-39/16

pgar (11)

Note, however, that when ablack hole servesassuch
an object, law (11) isviolated dueto the capture of dark
matter particles by the BH. This question is considered
in more detail in Section 6.

3. THE INFLUENCE OF ASYMMETRY
IN THE DISTRIBUTION OF BARYONIC MATTER
ON THE DISTRIBUTION FUNCTION
FOR DARK MATTER

Above, we assumed the distribution of the baryonic
component to be spherically symmetric. This restric-
tion could actually be severe. Indeed, the baryonic
potential usually containsasmall spherically asymmet-
ric part (associated, for example, with the asymmetry in
the distribution of baryonic matter in the bulges of
elliptical and spiral galaxies), while, in genera, the
angular momenta of the dark matter particles are not
conserved as they move in an asymmetric potential.
Therefore, at first glance, even a small asymmetric
addition to the potential can significantly change the
particle angular momenta in a time much longer than
the characteristic oscillation period of the dark matter
particles, thereby also changing the form of distribution
function (3). Actualy, for a smal asymmetry and a
slow change of the potential, the evolution of the radial
action I, the magnitude of the angular momentum m,
and the angular momentum component m, consistsonly
in small oscillations of these quantities about their
initial values, while their mean values are virtualy
constant.

The generalization of the well-known theorem on
the adiabatic invariance of action variables [10] proves
this assertion. The collisionless motion of dark matter
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particles in a spherically symmetric, time-independent
potential W, is described by the kinetic equation

of
— + =
where
2 2 2
_ Pr, Pe Py
Hy= —+—+ + Y
T2 % 2%60%
is the Hamiltonian,
0, mf Duz
Pr =V pezl:rn_'_—-z—{]1p¢:mz
O sin“ed

are the canonica momenta, and {,} are the Poisson
brackets. Next, let us make the canonical transformation
to the action—angle variables. Using the always existing
arbitrariness in constructing these variables [11], we
choose I, m, and m, as the action variables. Using the
generating function

2 12

S, 1) = ﬁ'[dr%(l, m) —wo—%g
(13)

) A2

g, m, U
+Ide%ﬂ __ZD +mz(l),

sin e

we define the corresponding angular variables @ in a
standard way:

_ 09 1)

I 14
(in what follows, x denotes the set of spherical coordi-
nates r, 6, and ¢; | denotes the set of action variables
{1} ={lg, m m}; and ¢ denotesthe set of angular vari-
ables.) Expressing the energy E in terms of the action
variables and differentiating it with respect to I, we
obtain the frequencies w(l) = 0E/0l, that correspond to
unperturbed motion in a time-independent, spherically
symmetric potential. In this case, since E does not
explicitly depend on m,, frequency w; is identically
equal to zero. For this reason, the particle motion is
degenerate in one coordinate and takes place in aplane
perpendicular to the angular momentum vector. The
kinetic equation in the new variablesis

of of _

3 + ‘*’ka% =0. (15)
Let us now consider the perturbed potential W,

which differs from W, by the small asymmetric term
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DARK MATTER IN GALAXIES AND THE GROWTH OF GIANT BLACK HOLES 5

eW;. We aso assume that the potential explicitly
depends on the Slow timet; = t:

W = Wyr, ty) +eWy(r, 0, ¢, ty).
The perturbed kinetic equation can now be written as

af+ _ [@Hlaf 0H, of

at kacpk bg.a1,~ a1, 0]

Dacg(alk al, opl” (16)

where H; is defined according to general rules[10]:

0S(x, I,t;)
TR

1

Hai(l, @ t) = Wi(x, ty) +

We solve Eqg. (16) by a modified method of pertur-
bation theory that allows the appearance of secular
termsto be avoided. The idea of the method isto repre-
sent the function f as a series of successive approxima-
tions,

f=foref,+ef,+...,

by formally assuming that f, are functions of many
times:

fo = £, 9,10, 11,15, ...),
where

ty=t, t, =¢€t, t,=¢€%t, ...
Accordingly, operator 9/0t can also be represented as a
series:

0 20
a—tl+€—+....

0 _ 0
3t ot ¢ 3,

It follows from the equation of the zeroth approxima-
tion

oty
at,

ofy _
ka(pk =0

and from the fact that initial function (3) does not
depend on the angular variables @ and the third action
variable m, that f, does not depend on ¢, m,, and the fast
timet, either:

fo = follg Mty ...).
The equation of the first approximation is

1y, 0ty 01, _ OH,01,g
ot, ka% ¢ 0l

ot,
Averaging this equation over the angular variables @
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and the fast time t, using the operations

3

0.0, =

(2)
—Ilinm_l_J'dt0
yields
ofy _
a
0y, 35 _ 01,
at, ka(pk 0@, 01,

Thisequation withtheinitial conditionf,=0att=0can
be easily solved by the method of characteristics:

to

oH (I, - iy, tl)(ﬂg

f, = J’dt0 Iy AT, a7)
0
The equality
of, _0fy _
at, ~am, 0

ensures that solution (17) is limited, although the fre-
guency w; isequal to zero. We write the equation of the
second approximation as

0fy, 3ty 0f,, 0f,

at2 ot, ot "acg(

- 0 PH D 0 fPHi. 0
Daqq( ool 1D’

whence after averaging over ty, t;, and ¢, we obtain a
diffusion equation in the form

S = o RellorTo (18)
where the diffusion coefficients are
Ree(1)
0H1(I (p, t)aH, (I, @— axy, ty) (19)

Idto

Since Hamiltonian H, isnow a 2re-periodic function
of theangular variables ¢, it may be expanded in amul-

200,

Pt ty
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tiple Fourier series:

Hil o, t) = ho(l, 1), (20)

where

n={n;, N, ngd, NQO=N;Q, +nNyQ, + N3@s.

Substituting these expansions into (19) and averaging
over @, we obtain

to

Rt = an”phnh_nfdtanp(—i nwty) .
n 0

Next, we assume that frequencies w,(l) are indepen-
dent in the sense that the equality

n,w; +n,w, = 0

implies n; , = 0. (The set of variables | for which this
condition is not satisfied has a zero measure). Integra-

tion over t, thenyields

1 :
R, = z nknphnh—nm(l'{' exp(—inwty))

N ,#0
+ z N hyh_pto.
n,=0
This expression contains the secular term
z ncnyh,h_yto.
n,=0

However, thisterm contributes only to Rsg; therefore, it
may be discarded, because f, is independent of I, =m,.
We then obtain

1 .
R, = z nknphnh_nm(l—exp(—lnwto))

n; ,#0

1 .
= - z nknphnh_n@exp(—l nwt,).

N ,#0
Averaging this equality now over t, finally yields
= ofy _
Rkp - O, a_tz - O

Thus, we have shown that the presence of an asym-
metric term on the order of € in the gravitational poten-
tial does not change initial distribution function (3) for
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dark matter particles, to within small terms of order €2.
A more detailed analysis based on consistent perturba-
tion theory indicates that, actually, the deviations of the
averaged action variables from their initial values are
generally exponentially small if the adiabaticity condi-
tions are satisfied. (For example, for the so-called
Arnold diffusion, the mean rate of departure of the vari-

ables is on the order of exp(1/./¢) [11].) Thisimplies
that the departure of the action variables cannot be
recorded in any order of perturbation theory. Therefore,
nonadiabatic processes play a much more important
role in the dynamics of dark matter in real galactic sys-
tems. They will be considered in the following sections.

4. THE GROWTH OF A BLACK HOLE
DUE TO THE DIRECT ABSORPTION
OF DARK MATTER

Let a primary BH that begins to grow due to the
absorption of dark matter be formed at the NGS center
viathe contraction of baryonic matter. The flux of dark
matter on a BH with mass M, is composed of particles
the angular momenta of which satisfy the inequality

m<m, = 2Crg, (21)
where ry = 2GMy,/c? is the gravitational radius of the
BH [12]. Their absorption causes the number of parti-
clesintheloss cone (21) to decrease. On the other hand,
the BH growth causes my and, hence, the loss cone to
increase. Thus, the law of BH growth is determined by
these two competing processes.

L et us determine the conditions under which the BH
growth stops and its mass reaches

My, = My + My,

where M,, is the mass of the seed baryonic BH and My
is the mass of the absorbed dark matter. Since the par-
ticleangular momenta are conserved during spherically
symmetric evolution, the BH will capture only those
particles that are in the loss cone of the final BH with
mass M,,,. The total mass of these particles can be
determined from the initial distribution function f, by
using the equality

N(f;: M) = J'd3rd3v f,(r, v)8(m,—m),

where

[0, x<0,
O

M, x=0.

On the other hand, their total mass must determine My;
hence

6 =

Mg = N(fj; My +My). (22)
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DARK MATTER IN GALAXIES AND THE GROWTH OF GIANT BLACK HOLES 7

Thus, if Eq. (22) has a solution M, > 0, then the BH
will stop growing at total mass M,,,. Otherwise, the BH
will grow indefinitely. However, as we show below,
Eq. (22) has a solution in almost all reasonable cases,
moreover, the total mass of the captured dark matter
particles My is much lower than the seed baryonic
mass Mj,.

As amodel example, let us consider the growth of
the seed BH for an initia isothermal distribution of
dark matter. In this case, the distribution function, the
density, and the potential are

_ __ Po 0 EQ
f(E,m = —————exp=—, 23
I( ) 2]‘[ d2)3/2 p|:| O'g:l ( )
p(r) = —p;’ , (24)
r
Yy(r) = 4nGpglnr, (25)

where gy is the dark particle velocity dispersion and

Po = os /21G. The density of the particles with angular

momentalower than m, determined from theinitial dis-
tribution (23) is

U
pg(r) = _2%1_

whence the total mass of the particle with angular
momenta lower than my is

N, = ZHE%E m,. (26)
Given (21) and (26), Eq. (22) takes the form
Q%+MD (27)

where
81
Q = —(Gpoy)™”.

It isimportant to note that the dimensionless parameter
Qisaways small in real conditions. Indeed, since, for
example, the mass of our galactic halo is M ~ 10°M,,
and its radius is Ry, ~ 100 kpc, we find from (24)
and (27) that Q ~ 103, A similar situation also takes
place in other galaxies. Thus, the absorbed dark mass
My is proportional to the baryonic mass and, according
to (27), accounts for about 0.1% of the seed baryonic
mass M,,.
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It is easy to verify that this conclusion will change
only dightly if the distribution function for dark matter
differs significantly from the isothermal distribution
and is described by formula (3). Indeed, the total mass
of the particles with angular momentalower than m is
now defined by the expression

= dscpwdl mdmm dm,
féofafin

x fol g 8(m” =151 7)8(my—m);

hence
- (2n)38fog|“d39/8. 29)
Let us now rewrite Eq. (22) as
W= Qe e (29)
where
Q=QM?® Q= (2n —fOD4 "

Hocd

The constant f, can be determined from the relation
= (2m)°[dl g fdm’
fo

x fol g 0(m” = 1512)8(m; —m),

where, according to (9), the radial action of the bound-
ary particles |, isrelated to the hal o radius R, and mass
M, by

I 1G M RH.
T
Hence, we obtain

7116
M;,

= §(2T[)3(GRH)9/16.

9/8
Om

(30)

Using this relation, we can show that, under the condi-
tions of our galaxy, parameter Q is still small (on the
order of 107?) and the mass of the dark matter captured
by the BH is negligible.

We emphasize that a previous study of this ques-
tion [13] by other authorsled them to assert that the BH
grows indefinitely viathe direct onflow of dark matter.
The cause of theerror lay inthefact that the authors dis-
regarded the change in the dark matter distribution
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8 ILYIN et al.

function due to the capture of the particles that fell
within the loss cone. As a result, the loss cone was
alwaysfilled, which caused the BH to grow indefinitely.

Thus, the dynamics of dark matter particles when
the angular moments are conserved cannot be responsi-
blefor any appreciable BH growth, because the number
of particlesinthelossconerapidly decreasesand theloss
coneitsalf growstoo dowly to provide theinflux of new
particles. As follows from the results of Section 3, the
presence of asmall asymmetry in the potential does not
lead to any significant change in the dark particle angu-
lar momentaand to thefilling of theloss cone. Thesim-
plest nonadiabatic processes that can lead to the filling
of the loss cone are collisions of dark matter particles
with stars. This process is considered in following sec-
tions.

5. THE KINETIC EQUATION

The distribution function for dark matter particles,
f(r, v, t), with allowance made for their gravitational
interaction with stars satisfies the following kinetic
equation:

S{Ho = S, 3y

where H, is the Hamiltonian that corresponds to the
particle motion in the averaged potential and St[f] is
the collision term. Since the gravitational interaction of
dark matter particleswith individual starsisidentical to
the Coulomb interaction, the collision term may be
written in Landau form [14]:

9 9
Sf] = a_wkpa_vpf,

v, (32)

where

Wy, = 2TG°MgA Idgv'wka(v', r),

— (12 3
Wip = (U, — Uup)/u,

v, are the components of the dark particle velocity v,
F(v', K) isthe distribution function of the stars, u = v' —
v isthe relative velocity of the stars and dark particles,
and A\ ~ 10 isthe gravitational Coulomb logarithm [15].

Actually, as was noted above, the frequency of par-
ticle collisions with stars is much lower than the char-
acteristic frequency of their orbital motion. Under these
conditions, the kinetic equation (31) can be signifi-
cantly simplified. To this end, as in Section 3, we
rewrite it in the action—-angle variables,

of ., of

5t Ogg = Suel 11, (33)
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and take into account the fact that initial distribution
function (3) does not depend on the angular variables ¢.
Therefore, its changeisattributable only to the collision
term (32). However, as was noted above, collisions are
rare and St[ f] O vf, wherev is the collision frequency.
For this reason, we will again seek a solution of
Eq. (33) intheform

f = fo+vify,

where Vf; isasmall correction to f,, and both terms f,
and f, depend on the fast, t, = t, and slow, t; = vt, times.
In the zeroth approximation in v,

af,  of, _

o, e

0,

whence, as above, it follows that the main part of the
distribution function f, does not depend on the angular
variables and the fast time. The first approximation
yields

Averaging this eguation over the angular variables
and the fast time and taking into account the fact that
the second and third terms become zero after the aver-
aging, wefinally obtain

(1) _ =
= Sl (34)

(Here, we omitted the subscript O in the distribution
function and returned to ordinary timet.)

Thus, under the above assumptions regarding the
collision frequency v, we may seek the distribution
function that depends only on the action variables as a
solution of kinetic equation (34) with the averaged col-
lision term:

S = % [ost ol 1.

35
2 (35)

The kinetic equation in averaged form (34) wasfirst
derived by Budker and Belyaev [16] in studying the
dynamics of relativistic particles. In[17-19], this equa-
tion was used to study the dynamics of particles and
starsin thefield of a Coulomb center.

Our objectiveisto study the dynamics of particlesin
an arbitrary centrally symmetric field. It is first neces-
sary to derive expression (35) for the averaged collision
integral. Following [16], we consider the tensor differ-
ential form (23) formally in the six-dimensional space
of velocities and coordinates X = (v, X):

0 o _ 0 0

v gy, - ax, gy, PV S L b
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DARK MATTER IN GALAXIES AND THE GROWTH OF GIANT BLACK HOLES 9

by assuming the spatial components of the tensor W to
be zero. In this six-dimensional space, we make the
canonical transformation to the action—-angle variables:

Y = {IRvmva; (Plv(sz(P?}-

After thistransformation, the differential form becomes

X“ — Yu.;

9 0 _ 0
a_xuW“Vax @av av-/OR Revgy,
_9Y,aY,

Ruv = Gx,0%,

where ./g isthe Jacobian. However, the Jacobian of the
canonical transformation is known to be unity. There-
fore, the differential form in the new variablesis

0 ) 0 0

ax, WA, T av, WY,

It should be recalled that we seek a solution of kinetic
equation (34) that does not depend on the angular vari-
ables @. Hence,

0.9 _
avRap = O

Next, when averaged over @, the terms (3/0@)R(0/0l)
also become zero and the expression for the averaged
collision integral again takes three-dimensional form:

= 0= 0
St[f] = a—lk'Rk'p-anf, (36)
where
3 alk al,
Rep = (21 )I 0V 6V Wip- (37)

To obtain the specific differential form on the right-
hand side of Eq. (36), we must specify the distribution
function of the stars F. Observational data for the
dynamics of stars in the bulge suggest that, to a first
approximation, the distribution function of the stars
may be assumed to beisotropic, i.e., dependent only on
the energy

2
L _V
=+
E > W),

but not on the angular momentum. For simplicity, we
also assume that the distribution function of the stars
depends on energy as a power law:

F(v',r) = F,E™ (38)
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It can be shown that the potential produced by stars
with distribution (38) also dependsonr as apower law:

_4

2B -
Distribution function (38) and potential (39) can be

determined if we know the stellar velocity dispersion

W(r) = Yo%, o = (39)

o= Jovo=Jo3

specified as a function of the distance to the galactic
center:
o(r) = oor*” (40)

In this case, the velocity dispersion, together with the
parameters o, and a, isuniquely related to the distribu-
tion function (38) and potential (39) by

Ixz(l +x212) Pdx
Y, = 3052 ,
Ix4(1 +x%12) P dx

a(l+a)

Fo = Wi,

00

(41)°G Ixz(l +x212) P dx
0

For a = 0, these relations formally become mean-
ingless. However, as can be shown, stellar distribution
function (38) for a — 0 transforms from a power-law
one to an isothermal one identical in form to (23) with
a distance-independent velocity dispersion o. In gen-
eral, parameter o issmall in the bulge.

Calculations show that the quadratic form W,
from (32) for an isotropic stellar distribution function
F(E") becomes

W, = A(E, r)ékp (42)
where
1617 > .
A= TG MoA [ dE
W(r)
M, E<E',
x F(E) By .
( )EB-V—%L—V—ZH, E>E,
v 3v
Dl E<E',
A-B = 191—‘26 M@/\IdE‘F(E)DV
3 7., E>E.
W(r) v
No.1 2004
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Another factor that simplifies our calculations is
that, as follows from (9), the radial action of the parti-
clesmoving in potential (39) can be accurately fitted by
the following simple relation:

I(E, m) = J(E) —b,m, (42)

where b, is a positive constant and

D 1
EA/QJ'A/ 1—x%dx

20 Euq+1/2 a>0
\](E) = % T[LIJ]JU ] )
Oo . 0OED
[—=exp , a=0.
bl

(Note that equality (42) isexact and b = 1 for Coulomb
and oscillatory potentials[10].)

In view of (42), it seems natural to make a linear
change of variables,

IRv m1 mz > \], m, mz.

In this case, expression (37) for the tensor will not
change, becausethe transformation islinear. Therefore,
below, by the variables| in (36) and (37) we mean J, m,
and m,.

Now, note that initial distribution function (3) has
the same form in the new variables, because the coeffi-
cient |, (4) issmall:

f(3, m) = f,d%8(m° —133%). (43)

Since the initia function (43) does not depend on
the variables m,, a solution of Eq. (36) can aso be
sought in the form of afunction of only J and m. Taking

thisfact into account and cal culating the coefficients of
guadratic form (37), we may write the collision term

using (41) as
1 0 m%zz

= Of
aJ%lz R11 D

Sif] = Rlz"fD

(44)

where

Ru = E.?_EZE(A_B)Vﬁa

Re = 2H0A-B)nT,
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We represent the operation of averaging over the angu-
lar variables as

Iy

_ 2 dr
0.0, = TE m)IVr(...),

where

T ool
&

isthe radial oscillation period of the dark matter parti-
clesand

2 172

vi = 2L W0 -5

isthe radial velocity. Next, since the angular momenta
of dark matter particles are low, we will calculate the
coefficients Ryp(J, m) in (44) a& m = 0 in the first
approximation. In addition, we seefrom theform of ini-
tia distribution function (43) that for moderately long
times, as long as the distribution function has a sharp
maximum at m = lyJ, |, < 1, the diffusion in J may be
ignored compared to the diffusion in m. Thus, we write
the averaged kinetic equation (34) as a diffusion equa-
tion only in the space of angular momentam:

af(J, m, 1)

ot _RU)

mo_f@m1,  (45)

mam om

where the diffusion coefficient

R = ﬁ22|m:0 = DAr2|]p

calculated from the distribution of stars with the veloc-
ity dispersion (40) is

RUJ) = 0.46GMAacy ** gy, (46)

For an isothermal distribution of stars in the bulge,

o = 0 and the diffusion coefficient R is a J-independent

constant. We emphasize that the possibility of passing

to the diffusion equation only in angular momentum

spaceisattributable to the statement of the problem and

to the singularity of initial distribution function (3) con-
taining the small parameter |.

6. THE FLUX OF DARK MATTER
ON A BLACK HOLE

Through the direct capture of the particles that fell
into the loss cone of a seed BH, the distribution func-
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DARK MATTER IN GALAXIES AND THE GROWTH OF GIANT BLACK HOLES 11

tion of the dark matter particlesin atime on the order
of one period of their orbital motion takes the form

f(3,m,0) = f,3Y°8(m*~153%)8(m-m,), (47)

which differs from (43) by the factor 6(m — m,). The
diffusion of dark matter particles in the angular
momentum space followed by their fall into the loss
cone (21) and absorption by the BH is described by dif-
fusion eguation (45) with initial condition (47) and the
boundary condition

flnzm = O.

9

(49)

The solution of the diffusion equation may be repre-
sented as

[

f(J,mt) = J’dmlG(J, m, m;,t) f(J, m,0), (49)
m

where G isthe Green function of boundary-value prob-
lem (48):

[

G = I dAm, Z,(my, my) Z,(m, my) exp(-AR(I)t);
0

Z is the orthonormalized system of eigenfunctions for
boundary-value problem (48):

Z,(m, my)
_ JO(’\/X my) No(«/xm) — No(«/xmg)\]o(«/xm).
(33(J/Amg) + N3 (Amg)) ™

and J, and N, are the zero-order Bessel and Neumann
cylinder functions. Let us now calculate the flux of dark
matter onto a BH. Let D be the region in phase space
specified by the inequalities

lg = J-b,m=0, m=2m; -msm,<m.

The total mass of the dark matter is defined by theinte-
gral

N(t) = Idgl dof(J, m,1).

Next, it followsfrom the conservation of total mass that
the flux through the boundary is

= —dN/dt.
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Using Eq. (32), we obtain

(Bl P Jd = O
St) = Id Id (pa—lkRkapf(J,m, t).
D

Transforming the volume integral into a surface
integral using the Stokes formula and taking into
account the fact that dark matter flows only through the
m=m surface, we obtain

s = 22’ | dJR(J)mgaimf(J, m, t)‘m:mg. (50)

b,my

Substituting the solution of diffusion equation (49) into
(50) yields

3 o0 y+l_oo

) = 2@&,&, [ a3 [
mg/I0 0

Z,(163. m)

(32(JAmy) + N3 (JAm)) "

x exp(-AR,J't)

where

9 R, = 046AGM,07®"®.

(51)

Next, it is convenient to introduce the normalized time
T = IRyt
and make the following changes
A =ATYEY, gy = 1T
_ -1/(2-y)
my —» X = mgT .

The expression for the flux then takes the form

3 f
) = 22222 Ro 0,

0

(52)

[

7=8Y g () = [y,

¢ = To-8y’

Hy(x,y) = y”s”j dn exp(-ny")
0

y Jo(«/ﬁx) No(«/ﬁw — No(«/ﬁ X)Jo(«/HY)_
J5(nx) + No(J/nx)
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Fig. 3. Stellar velocity dispersion versus distance to the our
galactic center (according to [21]).

It can be shown that H/(x, y) is a finite, positively
defined function that becomes exactly equal to zero at
y = x and exponentially small for y > x + 4. Therefore,
we may assert that the flux of dark matter onto aBH at
time t is composed of particles with a radial action in
the range

m
4T1/(2 v

—H<J< My, (53)
lo lo o

Thus, the region of space J from where dark matter
flows grows with time as tY-Y, The following esti-
mate is valid for the function ® in the total flux (52):

1/8+vy/2
o) =x "
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Using this estimate, we finally obtain an expression for
the flux of dark matter onto a BH through the m=m,
boundary of the loss cone:

18 +y/2
fo 172 My

9/8+yR0‘

(2m)’
) = 2= (54)

v2

Expression (54) was derived by assuming that the

boundary of the loss cone was time-independent.
Actually, the boundary moves together with the total
BH mass. However, it follows from (54) that the flux
depends weakly on m,. Therefore, expression (54) may
be used to allow for the motion of the boundary as the
BH grows by formally assuming that m, is time-
dependent:

t

my(t) = 4GMy,(t)/c.

Thus, we write the BH growth law as

My _ (2m)°AG Y2 o
dt T DCE Ig/8+y tuz

2lvlilj8+y/2

Assuming the mass of the seed BH to be low, we obtain
the following solution of this equation:
M,, = Ct”=*), (55)

8/(7—4y)

c= %V 4y (246G " _fo
- 2

D Tt Dc|:| 9/8+y

Ra%

where relation (30) may be used to estimate the parame-
ter fo. Thus, the BH grows viathe absorption of dark mat-
ter scattered during collisons with stars as a power law:

M,, Ot%, a=4/7.

7. CONCLUSIONS

In conclusion, let us compare the results of the the-
ory presented above with observational data. In Fig. 2,
stellar rotation velocities are plotted against distance to
the centers of our galaxy and the galaxies M 31 and
NGC 4258 [20]. We see that the distribution of starsin
the bulgesof M 31 and NGC 4258 is nearly isothermal;
i.e., the stars have an amost constant, distance-inde-
pendent orbital velocity (and, hence, dispersion), o =
0, ~ 200 km s, up to the region of BH influence (r <
4—7 pc). Assuming the mass and size of the dark matter
hal os around these galaxies to be approximately equal,
10'?M,, and 100 kpc, respectively, we obtain f, = 7.3 x
108 g 8 cm ¥4 and |, = 0.1 from (30) and (5). We have
a=y=0and R, = 6.1 x 10® cm* s from (40) and (51).
Next, assuming that the BH age t is comparable to the
age of the Universe, t = 3 x 10% s, we obtain the BH
mass from (55), My, = 5 x 10’"M,. Thus, the theoretical
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BH massesfor these galaxies are closeto their observed
values:

M, = 4.5(2.0-8.5) x 107M, for M 31,
My, = 3.9(3.8-4.0) x 107M, for NGC 4258.

In the central region of the galactic bulge, the
assumption of an isothermal stellar distribution at r <
100 pcisinvalid. At the sametime, aswe seefrom (53),
dark matter flows mainly from the central region. Stel-
lar velocity dispersion is plotted against distance in
Fig. 3[21]. We seethat on ascalefrom 10 to 100 pc, the
dispersion may be roughly represented as

0.3

_ 0r o
o=60 km/le_O od]

It then follows from (40) that a = 0.6. In this case, for-
mula (55) yields 2 x 10’"M, for the BH mass, which is
much higher than the observed value of M, = 2.6 %
10°M. More complete information about the stellar
distribution function, its evolution, and the evolution of
the dark matter distribution in the central region of the
bulge is required to estimate the BH mass more accu-
rately. The contribution from the BH itself to the total
gravitational potential can also play an important role.
Nevertheless, in general, we see that even in a rough
approximation, alowance for the absorption of dark
matter alone by aseed BH makesit possible to obtain a
reasonable estimate for the observed masses of alarge
number of giant BHs (see Fig. 1). Thisfact may be con-
sidered as a further confirmation of the general theory
for the large-scale structure of the Universe [5] based
on the assumption about the corpuscular nature of dark
matter.

Note also that the general kinetic theory developed
in Section 5 allows us to a so describe the absorption of
baryonic matter or, more precisely, the capture of the
stars themselves by the BH in the central region of the
bulge via their gravitational scattering. This processis
extremely important, in particular, for giant BHs with
My, ~ 10°M,, and active galactic nuclei.

It should be noted that another important process
described by kinetic equation (34) is the possible
decreasein the amount of dark matter in the bulge. The
change in the energy of dark matter particles via their
collisionswith starsleadsto their heating and expulsion
from the bulge (a phenomenon similar to Fermi accel-
eration) and, hence, to a decrease in the dark matter
density compared to the baryonic density. Qualitatively,
this result agrees with the observations in recent years
discussed in detail in[22, 23].

Further development of the consistent kinetic theory
discussed above and its detailed comparison with
observational data will undoubtedly provide insight
into the main physical processesin galactic nuclei.
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Abstract—The transport of a two-component gas mixture in subnanometer channels is investigated theoreti-
caly for an arbitrary filling of channels. Specia attention is paid to consistent inclusion of density effects,
which are associated both with the interaction and with afinite size of particles. Theanalysisiscarried out using
the hard-sphere model, in which the interaction is manifested as the effective (dynamic) attraction of particles,
leading to their correlation. The adsorption isotherm is calculated and the ground state of the mixture in one-
dimensional channelsisinvestigated. It is shown, using the density functional method, that the two-component
mixture in channels with increasing degree of filling is transformed into a spatially inhomogeneous state. This
givesriseto short-lived clusterswith size and lifetime increasing with the degree of channel filling. The descrip-
tion of transport in subnanometer channels is reduced in this case to the description of diffusion in a spatially
inhomogeneous high-density one-dimensional system. The transport of particles in a medium with short-lived
clusters occurs as a collective effect of the barrier-free transfer of density excitation. It is shown that, for high
fill factors, the two-component mixture acquires a new property: clusters with a definite size are stabilized in
channels due to effective attraction emerging between particles. The lifetime of formed clustersincreases expo-
nentially in accordance with the Arrhenius law; at a low temperature, channels with such clusters might be
blocked to transport of particles of the mixture. The dependences of fluxes on the mixture composition (degree
of filling) and pressure obtained theoretically are in good agreement with the experimentally observed regular-

ities. © 2004 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Molecular transport in subnanometer channels
attracts considerable attention both from the standpoint
of fundamental science [1-8] and in connection with
numerous applications of membrane technologies and
nanotechnologies [9-13]. Among other things, this is
due to the anomalously high coefficients of gas separa-
tion observed for synthesized ceramic membranes of
complex oxides (zeolites); the channels formed in the
atomic structure of these compounds have a diameter
from 0.3 to 1.4 nm [10]. Such membranes form the
basis of new technologies for separation, processing,
and utilization of substances [13]. Transport of mole-
cules in subnanometer channels of diameter d < 1 nm
(to be more precise, smaller than double the diameter of
molecules) with walls impenetrable to molecules can
take place only along the channel axis and is one-
dimensional [3].

It is well known that an increase in the density of
particles (fill factor 8) in a channel in one-dimensional
(1D) systems does not lead to a phase transition to the
condensed state [ 14] and anucleus of a new phase does
not appear in the system. At the same time, the state of
a high-density 1D system of particles is characterized
by the emergence of strong density fluctuations, the
lifetime and the size of short-lived clusters formed in
the system increasing with 8. According to the results

obtained in our previous publication [3], the transport
of particlesoccurs asacollective process of barrier-free
transport of density excitation. Thisleadsto anincrease
in the flux j and the diffusion coefficient D upon an
increase in the fill factor. Such a mechanism makes it
possible to explain the dependences of D and j on the
degree of channel filling with a one-component gas,
which are observed for various molecules. It turned out,
however, that the dependence of transport selectivity on
the pressure in a two-component gas mixture is non-
monotonic: the selectivity attainsits maximal value and
then decreases instead of increasing. Thus, the mecha-
nism of diffusion enhancement in a 1D channel, which
was proposed in [3], isinapplicable for two-component
mixtures.

Thetransport of atwo-component mixturein subna-
nometer channelswas considered earlier [15, 16] onthe
basis of the generalized phenomenological Stephan—
Maxwell equation. The authors of these publications
used the dependence of the chemical potential on the
fill factor, taking into account the finite size of parti-
cles, but disregarding their interaction. The depen-
dences obtained in [15, 16] also indicate a monotonic
increase in the diffusion coefficients, fluxes, and
selectivity upon an increase in 6 and, hence, fail to
describe the experimental data for two-component
mixtures.

1063-7761/04/9801-0102$26.00 © 2004 MAIK “Nauka/ Interperiodica’



TRANSPORT OF A TWO-COMPONENT MIXTURE IN ONE-DIMENSIONAL CHANNELS

Here, we analyze the transport of a two-component
gas mixture in subnanometer channels theoretically for
an arbitrary degree of channel filling. The main prob-
lem in this case is to consistently take into account the
density effects associated with both the interaction and
the finite size of the particles. Thisis done in the hard-
sphere model, in which the interaction is manifested as
an effective (dynamic) attraction of particles, leading to
their correlation [17]. It is well known [17, 18] that,
applying this model to a 3D system, one can describe
the density effects qualitatively and even quantitatively
in some cases. Comparison with experimental datawith
the theoretical dependences obtained, which is carried
out in Section 4, demonstrates the possibility of quanti-
tative description of diffusion of atwo-component mix-
turein a 1D system.

In Section 2, the adsorption isotherm of amixturein
1D channels is calculated; this isotherm relates the fill
factor and the concentration of particles in channels to
the temperature, pressure, and composition of a mix-
ture of gases whose diffusion has been studied in exper-
iments [15, 16, 19]. The ground state of a mixture of
particles in 1D channels is analyzed by the density
functional method [20] generalized to the case of atwo-
component mixture. However, in contrast to [20], the
free energy is abtained by directly calculating the cor-
relation function and the response function using the
method developed for 1D systems [21]. The density
functional method is used to derive, from microscopic
considerations, the equation of motion for the order
parameter of the system, which is the Fourier compo-
nent of the deviation of the particle concentration from
its mean value. Analysis of this equation shows that the
two-component mixturein channelsistransformed to a
spatially inhomogeneous state upon anincreasein 8. As
a result, short-lived clusters appear in channels, the
cluster size and lifetime increasing with 8. A new and
unexpected result obtained in this caseisthe emergence
of aminimum in the fluctuating part of the free energy
asafunction of the wave vector and the Fourier compo-
nent of the order parameter. Thus, at high filling levels,
the two-component mixture acquires a new property:
clusters of a definite size are stabilized by a potential
barrier due to the emergence of effective attraction
between particles in the channels. Such a situation is
typical of transitions of the system to an inhomoge-
neous state [22]. The lifetime of clusters formed
increases exponentially in accordance with the Arrhe-
niuslaw; at alow temperature, channelswith such clus-
ters might be blocked to the transport of particlesform-
ing the mixture. It should be noted that the idea of sta-
bilizing the clusters of one component by the other
component in 1D systemswas put forthin [7]. Thus, the
description of transport in nanochannels is reduced to
the description of diffusion in a spatially inhomoge-
neous high-density 1D system.
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For aweakly nonequilibrium system, the problem of
computing fluxesina1D channel isreduced to the cal-
culation of relaxation frequency spectra for density
fluctuations of mixture components (Section 3). Spec-
tra wy(k) were determined by using the response func-
tions derived in Section 2. Analysis of the dependences
of w on k and on fill factor 6 proved that a hydrody-
namic (acoustic) spectrum wy (k) = gk istypical of clus-
ters (6 ~ 1, finite values of k), while for transport of
excitations over distances much longer than the charac-
teristic size of clusters (k < 1), the spectrum is of the
diffusion type, w (k) O D;k?, for an arbitrary fill factor.
In accordance with the dependences of spectra and
fluxes on the fill factor obtained here, three regimes of
particletransport can besingled out. For 6 < 1, we have
diffusion of solitary particles. As the value of 6
increases, the flux and the diffusion coefficient increase
due to the barrier-free (hydrodynamic) transport of par-
ticles along the increasing part of the length of a 1D
channel filled with the short-lived clustersformed iniit.
Asthevalue of 8 increasesfurther and the potential bar-
rier () stabilizing the clusters arises, particle fluxes
decrease exponentially since the value of E; increases
with 6. Thus, an increase in the fill factor givesrise to
the new property of 1D two-component systems (trans-
port being blocked by the clusters formed).

A comparison of the theory with experimental data
and discussion of results can befound in Section 4. The
obtained dependences of the fluxes on the mixture com-
position (fill factor) and of the selectivity on pressure
successfully describe the experimental data known to
the authors.

2. GROUND STATE OF A SYSTEM
IN 1D CHANNELS

Let us consider the surface of a porous body in con-
tact with a two-component gas mixture at temperature
T and pressure P. Suppose that N adsorption centers are
located on the surface. We assume that the particles on
the outer surface do not interact with one another. We
also assume that the energy of a gas molecule on the

surfaceis equal to €, i = 1, 2, depending on the spe-
cies of the molecule. We a so suppose that k cylindrical
channels (k > 1) of diameter d and length L emerge at
the surface. We assume that the diameter of a cylinder

is comparable to the maximal diameter of the gas mol-

ecule. Let us assume that € is the binding energy of

the ith particle at the mouth of a channel, N(l') is the
number of particles of the ith species above the mem-
brane, g©) is the total number of particles of theith spe-
ciesin the channel, n®) is the total number of ith parti-
cles in the channel and on the surface, and N; is the
number of “seats’ in the channel. Then the partition
function of the grand canonical ensemble taking into

No.1 2004



104

account the interaction of gas particles in the channel
has the form

2 W)@ (D)
_ (N—K)!'exp[Bey (N;”—n"")]
® % 2 2NN (N0

k! exp[Bel’(n) —q¥]
(n(l) _ q(l))! [K _ (n(l) _ q(l))] !
Notexp(Bey’q")
q"1(Ng—g®)!
(i)

N +q® = n®,

2.1)

exp(BuND)Z (@™, d?),

Here, the second sum corresponds to summation over

configurations, B = T, €% is the binding energy of
particles of the ith component in the channel, . is the
chemical potential, and Z(q®, g®@) is the partition
function corresponding to the inclusion of particle
interaction in the channel. Considering that the main
contribution to the partition function comes from states
with a large number of particles (¥ > 1), we can
replace partition function Z;,(g®, g®) by the partition
function for particles interacting in the channel, calcu-

lated for the mean value q(') of the number of particles
of each species in the channel. From the standpoint of
physics, this correspondsto “ averaging over channels,”
when a single channel (whose state is calculated by
averaging the parameters of particlesin k channels) is
considered instead of the large number of channels. It
should be noted that this approximation is possible
since the number of channels having a diameter of d <

1 nm and emerging on 1 cm? of the zeolite membrane
surfaceislarge: k; ~ 7% ~ 10% cmr2 > 1, wherel, isthe
characteristic distance between the channels on the
membrane surface [23]. Using relation (2.1) and fol-

lowing the method proposed in [3], we obtain for the
adsorption isotherm

a4 _ . D p
Bp=c +(1-0)—2—,
oa”  prpd el
D
2c0=c—P
Ou " Tp+pld

a - p
5 €0 = (1-c)—==,

av p+ pO
s | (2.2)
Py = I‘_‘EDTCH %‘1—5 a@eXp[‘B(eg) +Findl,
i =12,
0 _ 1w
S = I
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where a = L/N, is the mean distance between the seats
in a channel, ¢ is the concentration of the first compo-
nent in the gas phase above the membrane, ¢, and ¢, are
the concentrations of the components in a channel, o,
and o, are the diameters of molecules of the first and
second species, 0, = (0, + 0,)/2 isthe average diame-
ter, O is the fill factor of the channel, and F;,; has the
meaning of the free energy of interaction per gas parti-
cle in the channel. The concentrations of the compo-
nents in the channel are chosen so that the following
relation is satisfied:

c,+c, = 1. (2.3)
In accordance with relations (2.2), calculation of the

adsorption isotherm is reduced to calculation of the
value of F;;

Fi(0, T) = =TIn(Q\ /L"), (2.4)

where

N N
Qu = [ [exp| B S Uy | T o (2.5)

w=12 w=12

U(x") isthe potential energy of interaction of particles
of speciesw separated by distance x from each other.

It is convenient for subsequent computations to
introduce, instead of coordinates x; of individual parti-

cles in a channel, “pair” coordinates Z\" =[x, , — | ,
where | = 1, m = 1 corresponds to the location of two
particles of the first species in the vicinity of point x;;
| =2, m= 2 corresponds to the same for particles of the

second species, and so on. Obviously, the coordinates
are connected viathe relation

N 1 N 12 N 22

Yi Tl Y=L, YUl (29
i=1 i=1 i=1

Here, N;; has the meaning of the total number of pairs
of closely spaced particles of speciesi and j and L,
(L,, L) is the effective length “occupied” by all pairs
N1 (Ngp, Ny,) of particles. Considering that L, + L, +
L;= L and, as a consequence, the impossibility of
mutual “hopping” of particles over one another, we can
reduce integration with respect to coordinates x; to inte-

gration with respect to coordinates Z;™, which corre-

spondsto summation over all possible configurations of
pairs of particles of the first and second species in the
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channel. Consequently, we obtain the foll owing expres-
sion for Qy from Eq. (2.5):

o0 00 Ny N1,
_ 11 g 12 O
QN = J'J'6|:| Zi —L1|:|X6|:J Zi _Lﬂ
0o o =1 - =1 .

N22

H
x 5%2 - LOd(L, + Ly+ Ly—L) (2.7)
0
=1

xexp| B
k,mI:1,2

Using the delta function representation in the form of a
line integral [21] and carrying out integration with
respect to Z!m independently for different values of
indices| and m, we obtain

161n4-f' . .fexp(SlLl)

(&™) |[7] o e de .

x [jexpmum“) ~S.G dzi”}
0 i
x exp(ssz)[Iexp[BU(aﬁz) -S4 dzﬂ (28)
0 i

x eXp(SaLs)[jeXp[BU(Z?Z) ~S ozﬂ
0 i

x exp{JL—(L;+L,+Lj)]} d5,dS,dS;dS.

Integrating this relation with respect to Z!m for thesim-

plest form of the intermolecular interaction potential of
the hard-sphere type,

Ep! Zill>0-11
UE) = 0
’ Zi So-ll
0, {*>0,,
UgH =0, (2.9)
DDO! Zi _Gav,
Epl Zi22>0-21
UE™) = g
’ Zi So—Zl
we obtain
=L rne 2
Qv = 4T[NF(Ncl+1)F(Nclcz+1)F(Nc2+1)(2.10)

x[L=N(01C; + 0,C; + 204,6,C)] "
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Here, we have used the definition N; = Nci¢; (N is the
total number of particlesin achannel) and the represen-
tation of a factoria in terms of the gamma function,
N! = (N + 1). Eliminating the factor corresponding to
an ideal gas from relation (2.10) and substituting the
result into Eq. (2.4), we obtain the following expression
for Fiy:

Fix = -TIn(1-C8),

211
Cs= Gi(clci +0,C5 + 20,,C,Cy). (211)
av

Asc, — Oorc, — 0, expression (2.11) is trans-
formed into the corresponding expression for the free
energy of aone-component gasin a1D channel [3].

From relations (2.2) and (2.11) for the adsorption
isotherm of atwo-component gas, wefinally derive the
expressions

a, _ p(1-Co) p(1-C8)
0—9 = ¢ ~(1)+(1_ ~(2)
av p(1-CB) + pg p(1-C8) + pg
v - 1 d-ofe®f L oo (212

Po 1_C|:| c 0 %(11] G(Z) p[ B 2 1
=12

Using these relations and specifying the external condi-
tions, we can obtain the fill factor and the component
concentration in the channel. Forc=0and c = 1, iso-
therm (2.12) transforms into the isotherm for a one-
component gas, which was obtained in [3].

Let us now analyze the ground state of amixturein
1D channels. It is known [3] that short-lived clusters
can beformed in 1D channelsin the case of a one-com-
ponent gas. The formation of clusters can apparently be
expected in the case of atwo-component gasaswell. In
order to describe possible transition to an inhomoge-
neous clustered state, we must calculate and analyze
the free energy of the system taking into account fluc-
tuations and the equation determining the amplitude of
these fluctuations in the system (equation for the order
parameter). Since molecular transport depends on the
lifetime of clusters, the goal of analyzing the equation
for the order parameter is to determine the characteris-
tic lifetime of clusters as a function of the channe fill
factor and, hence, on the pressure, temperature, and
composition of the mixture above the membrane.
According to [20], the free energy of particles in a
channel taking into account the fluctuation component
can be written in the form (here and below, we assume
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summation over recurrent indices)

1

1
F, = Fy+ z!’d)\ JaxadxaUap (X, — ;) (2.13)

e g((lzlg(xl! XZ! )\) = F(O) + F11

where F© isthe free energy calculated for a spatialy
homogeneous state of particles in the channel divided
by temperature; F; has the meaning of the fluctuation

correction to the free energy; gia(Xy, %o, A) is the pair
distribution function (a, B = 1, 2 are the species of par-
ticles); and A is the interaction constant. For A — 0O,
the system can be reduced to an ideal system, whilethe
casewithA — 1 correspondsto areal system. Inorder
to describe the ground state of the system and the kinet-
ics of relaxation to this state, we must pass from free
energy F to its mean value [20]

T

A= Dg+D, Dy = limTFOn]dt,

T - ®©

(2.14)
0

T

A = lim T_lj'Fl[n(t, X)] dt.
0

Here, T is the characteristic time of “coarsening,”
Trmom <€ T <€ Tyens: Tmom DEING the characteristic time of
momentum relaxation of the system and Ty, the char-
acteristic time of density relaxation of the system. In
relations (2.14), A isan analog of the free energy of an
equilibrium system and A is the fluctuation correction
to the mean value A . Functional A attainsits minimal
value for the equilibrium state of the system.

Quantity A can be expressed in terms of the response
function Byge(X, X, t, t') of the system, which is defined
as

dny(x, 1) = IBGB(X, X, t,t)eVe'(x, t)dxdt', (2.15)

where dn, (X, t) is the density fluctuation of particles of
species a and eVEXt(x, t) is a weak external field
depending on time. Response function B,4(X, X, t,t)

can be derived by directly varying functional A over
on(x, t) [20]:

Bap(% X, 1, 1) = —(3°D/3ng(x, H)Sny(x, ). (2.16)

Using this relation, we can obtain the expansion of
functional (2.13) into a series in deviations on of den-
sity from its mean value in the case of a multicompo-
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nent system. In the Fourier representation, the result
has the form

1 - *
A= E_Idk dooBUE(k, w)on,(k, w)ong (K, w)

1 BBk, )
+ 3Idkdoodk dw 6ny(k', @)

x dn,(k, w)dng (k, w)on,(k', ) (2.17)

5 Bap(k, w)
on,(k', w)dn; (K", w'")

1 ] U n U
+ er'dkd(odk dw'dk" dw

x 8Ny (k, w)dng (k, w)dn,(k', w)dnz(k, w) + ....

Here, Bqa(k, w) is the response function of the multi-
component system in the Fourier representation. It fol-
lows from the fluctuation-dissi pative theorem [24] that
response function B,g(K, w) is directly proportional to
the pair distribution; this enables us to calculate
Bog(k, w) for a 1D system with an arbitrary density, for
which the pair distribution is exactly known [21].

To calculate the value of A, we use the local approx-
imation that makes it possible to replace functional
derivatives by ordinary derivatives [20]:

50

- d’¢
m = 6(X - X1)6(X - X2)

—. (2.18)
dp’
Using this relation, we obtain from Eq. (2.17)

A = %J'dkdwﬁ;;(k, W)3ng (K, 6)3N% (K, ©)

1 o OBap(k, @)
+ 3‘[dkdoodk dw any(k', @)

x 8Ny (K, w)dng (k, w)dn,(k', w) (2.19)

0°Bap(k, 00)
an,(k', w)onz (k", w")

1 [ 1 n "
+ ZIdk dowdk'dw dk " dw

x dng (K, w)dn; (k, w)dn,(k', w)onz (K, w) + ...

Thus, the evaluation of functiona (2.19) in the 1D
case can be reduced to the cal cul ation of response func-
tions. In the case of two-component systems, the equa-
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tions for determining partia response functions 3 have
the form [20]

Bk, @) = Bk @) + BV, )Rk, w)B(K, ),

Bll(k w) Bk, (,0) O
D Bau(k, ) Bk, w) D
(2.20)

Rll(k W) Ryp(k, 00) 0
D R, (K, ) Ryy(k, w) D

B(k, ©) =Bk, @) =

R(k, w) = Ry(k, ) =

e _ 0Bk @) Bk )
Bk @) =Bk ) = g R
B8, @) Bk, ) 1

Here, B{(k, ) and B (k, ) are the partial response
functions for noninteracting and interacting particles,
respectively. The quantity R, (k, w) describes the effec-
tive dynamic interaction between particles and is
defined as

62
26n i(k, w)dn,(k, w)
X IVi.k.(x —X)Bi(X X, t, t)dxdx'dtdt'.

Rk w) =

Vi(K) -
(2.21)

Premultiplying expression (2.20) by (B”(k, w)) " and
postmultiplying it by ﬁ_l(k, w) , we obtain

A0

Bk, )

Over long time periods (t > T,,,y), function R, (k, w)
can be represented in the form

= Bk w) + R(k, w). (2.22)

A0

Rk, 0) = (B, 0)) —p(k, 0).

In view of homogeneity and the absence of correlations
in a system of noninteracting particles, we have
5(0) 5(0)

(2.23)

8k, 0) = B (0, 0) = b, where
b, = _0_2 aSc : (2.24)
0L

Shbeing the entropy of the two-component gas divided
by temperature in the absence of the intermolecular

NlZ N22
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interaction. In this case, we obtain the following
expression for the effective interaction from Eq. (2.28):

A0

Rk, 0) = (30,0)" -7k 0).

Substituting this expression into Eg. (2.22), we obtain
the following relation for response function @(k, w):

(2.25)

A0

Bk w = Bk @)

A0

+ Bk 0 -(370.0) "

(2.26)

In order to calculate the response function fB(k, 0)
for a system of interacting particles, we can use the
fluctuation-dissipative theorem connecting response

function ﬁ(k, 0) to the pair correlation function for a
system of interacting particles:
Bij(k,0) = bﬁl +¢iC;0 v,](k)] (2.27)
Here, v;i(K) is the pair correlation function divided by
temperature [17]. Relation (2.27) is a generalization of
the known relation B(k, 0) = —6[1 + 6v(K)] [3, 20] for
one-component to two-component systems.
Thus, the cal culation of the response function can be
reduced to the calculation of the pair correlation func-
tion or function g, called apair distribution[17] and in

terms of the pair correlation function through the
relation

Vii(K) = g;;(k) — (k).

We will calculate the pair distribution using the method
described in [21] and determine g;,(k). Functions g;,(k)
and g,,(K) are calculated similarly. Pair distribution
0,1(X) can be written in the form [21]

(2.28)

gu® = 5 Wn(, (2.29)

where the function Wh(K) is the Fourier transform of

thefunction WL (2) , whichisequal to the probability of

finding two particles of the first species separated from
each other by m other particles and by a distance (.

Function lJJrlnl(k) can be written in the form

z (_gm—n—l,n,I(Z)QNn—(m—n—I), Ny —n, NZZ—I(L _Z)

Wil = fogee=o=e
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where Qmn1({) is the configuration integral corre-
sponding to the presence of m pairs of particles of the
first species, n pairs of particles of the first and second
species, and | pairs of particles of the second speciesin
achannel. For m=Nj;, n=N,,, and | = N,,, the expres-

sion for configuration integral Qnm n.1(7) coincides with
formula (1.6) in [21]:

Quni(Q) = fdsupn(sn "] "T@(9]'e™

Uy (0 (2.31)
P9 = Iexp( Sx)exp - —L=Hx.

Here, { hasthe meaning of a coordinate and @;(S) isthe
Laplace transform of function f;(x) = exp(-U;;(X)/T). In
the case of an intermolecular interaction potential inthe
form of that in the hard-sphere model, we have

0, x>0y,
Uu(x) = 0 '
[F°, X<0y,
M, x>0
Up(X) = 0 “ (2.32)
[P°, X< 0u,
Epl X>0—21
Uxp(X) = O
[°, X<0,

Substituting these relations into Eq. (2.31), we obtain
the following expression for the configuration integral :

m n |

Qmni(§) = eXpH?rED[q)n%} [¢12%} [q)zz%},
¢11|j_|-|] = lr;e)(p%_glga

(2.33)
¢12% = %eXpE—BC"Q%v

Here, p has the meaning of one-dimensional “pres-
sure”. Substituting relations (2.33) into (2.30), we
obtain the following expression for pair distribution

G (K):

gu(k) = $exp(ikol)[$—ik—"%exp(ikol)}

x {1— explik(0m 0]} (234)

x{1—exp[ik(o,—oy)]} .

Inthelong-wave approximation (0< k< 2rvmax{ g,, 0,}),
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expression (2.34) contains no poles and we obtain

yon2y

1
X) = —
9 Geffm_x_zma>o(m—1)!(1/eeﬁ—1)’“
0_y-—m|
y= —X g, = Nl '
ag(C, ¢ L ’

2 2
8u1(C1, C)) = 04Cy + 0,C; +20,,CCy.

Functions g;,(X) and g,,(X) can be calculated similarly.
Substituting expressions (2.35) and (2.27) into (2.26)
and carrying out the normalization procedure (see Sec-
tion 3 below), we obtain the final expression for

response function ﬁ(k, 0):

1
B(k, 0) (2.36)

E ay app E

_ B 1+aubiciivu(K)  1+ap8’cicAvi(K D

E ayy ax» E

0 1+a,0°C,CAV,(K) 1+ a,0°CoAv,(K) O

Here,
A=y R —v (0), a=—LF (237
ij ij ij , ij 6q6cf

F isthe free energy of atwo-component gas with inter-
action per unit temperature, which can be calculated by

differentiating configuration integral Qn twice with
respect to concentration. Function ﬁ(o)(k, w) can be

obtained by generalizing the response function of the
one-component gas,

_1 _ g e 0 F
Bl o) B0 o T 06° wdj
derived in [3], to the case of atwo-component mixture:
W] (A .
. i El o 1+ blzé
5(0) ’
K, w O (2.38
B ) D%H_Dbﬂ%H b22 (2.38)
o” = DK, WP = —iDKA
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Here, Dy, D,, @i, and w” are the diffusion coeffi-

cients and the relaxation frequency spectra for pure
components.

109

Substituting relations (2.36) and (2.38) into
Eqg. (2.26), we obtain the following expression for
response function B(k, w):

u w g
- ——(—)bll_ 2 2
B(k’ (‘0) Eib _ 6121
0P = 1+ ay,6%C,CAv,(K)

It is convenient for subsequent analysis to pass to
new variables. For a two-component system, the rela
tion ¢, + ¢, = 1 holds and quantity dn can be represented
in the form

sn(k, ) = % _11 Ei(k,w), (2.40)

where & can beinterpreted as an order parameter. Sub-
dtituting Eq. (2.40) into (2.19), we obtain the expres-
sion for functional A,

1 2 0Q
A = Sokdw@| o> + SokdwSTIE o
(2.41)
Q.. 4
+ fdkdw— &, | + ...,
I anzlak' |
where
Q =Bk, w) — Brxk, w
Bk, w) — Bk, w) (2.42)

—Ba(k, w) + Bo(k, w).

Series (2.41) can be summed and written in the form
B = 3[okdald Q0 Eu k). (249)

The formal proof of the correctness of representing
guantity A in form (2.43) without analyzing the conver-
gence of the corresponding series follows from the
expansion of expression (2.43) into a power series of
order parameter €. This expansion exactly reproduces
series (2.41) (at least to within terms on the order of &°).

Using relations (2.39), (2.42), and (2.43), we can
obtain the dependence of functional A on the wave vec-
tor and order parameter of the system. The minimum of
functional A determines the ground state of the system.
Substituting relation (2.39) into (2.43), evaluating the
derivative of A with respect to the order parameter, and
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Doy A2 E
(P71 4 a,0%,c,Av,(K) O

V) 21,07C1CAV o )D. (2.39)
w Az g

mbzz_ > 2 O

w; 1+8,0°C5AV,(K) O

applying the inverse Fourier transformation in fre-
guency w to the resulting relation, we abtain

08 _ &, 20(Fi(E K)

= P (2.44)

where

= ﬂ311 —by, | by— bzﬂ_l
D = +
U b, D, U’

FifEo K =500 + & WE,

ag;
1+ a,0°cCAv 4, (K)

Q(c,K) =

2a,, _ ay
1+a,,0°C,CAVH(K) 1+ a,,0°CoAV(K)

+

Equation (2.44) has the same form as the equation usu-
ally used for the order parameter. The role of the order
parameter is played in this case by the quantity defined
by relation (2.40). It should be noted that the order
parameter here could be either positive or negative. The
cases when & > 0 and & < O correspond to the density
fluctuation of the first and the second component,
respectively. The role of the diffusion coefficient is

played by quantity D depending on the fill factor and
the concentration of componentsin channels via coeffi-
cients a; and b;; defined by relations (2.24) and (2.36).
It should be noted that the concentration of the compo-
nents in a channel (and its fill factor) could be deter-
mined unambiguously from isotherm (2.12) proceeding
from the pressure, temperature and composition of the
gas mixture.

Analysis of function F;(§,, k) makes it possible to
investigate the possibility for atransition of the system
to an inhomogeneous state. For example, when the
minimum of function F, is attained for & # 0, k=0, a
conventional phase transition to a homogeneous state
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Fig. 1. Dependence of free energy F4 on the order parameter and wave vector for various concentrations of the first component in
the mixture: (a) c=0.1 (6 =0.67); (b) c=0.25(8 =0.71); (c) c=0.3 (6 =0.74), and (d) c = 0.45 (6 = 0.75).

takes place[22]. The minimum at & = 0, k = k. # O cor-
responds to the propagation of a density wave over a

distance of r ~ k;*. In the case when the minimum is

attained at & # 0 and k # 0, atransition to an inhomoge-
neous state with clusters formed in the system is real-
ized [22]. Local minima here determine metastable
states. Figure 1 showsthe graphsillustrating the depen-
dence of F; on order parameter & and wave vector k for
a mixture in which one of the gases (first) is a strong
sorbate, while the other gasis aweak sorbate. The cho-
sen parameters (a=3.8A, 0, =4.3A,0,=36A,¢, =
0.61eV, e,=0.38¢eV, P =2000kPa, and T = 300 K) cor-
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respond to a methane-butane molecular mixture [15]
and make it possible to describe adsorption and fluxes of
these one-component gases in zeolite membranes. It
should be noted that the choice of parametersP, T, and ¢
unambiguously determines fill factor 6 and concentra-
tions ¢, and ¢, of gasesin achannel (see Egs. (2.14)).

For low concentrations of the first component in a
gas mixture and for fill factors 8 < 0.7, function F; has
only oneminimumat & =0, k=0 (Figs. 1laand 1b). This
corresponds to a homogeneous state of the system. An
increase in the concentration of the first component
leads to the emergence of local minimain function F; .
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Fig. 2. Dependence of lifetime T on wave vector k for c = 0.1 (a), 0.3 (b), and 0.45 (c).

In this case, the global minimum is shifted to point & =
&.> 0, k=k.. Inthiscase, the ground state of the system
becomes spatially inhomogeneous, which corresponds
to theformation of clustersin the system. Thissituation
will be analyzed in greater detail below.

Equation (2.44) for the order parameter also allows
us to calculate the characteristic relaxation times for the
emerging density fluctuation depending on external con-
ditions. For this purpose, we expand function F4(§,, k)
into a series in the vicinity of &, = 0 to within the first
nonvanishing term:

FiEi K) OAMR)E. (2.45)
Substituting Eq. (2.45) into (2.44), we obtain
&y &k 1
ko Sk 2 2.46
ot T 2A(k) DK (2.46)

The quantity T isthelifetime of the kth mode of the den-
sity fluctuation emerging in the vicinity of &, = 0. The
curves describing the lifetime of the emerging fluctua-
tion as a function of the wave vector for different mix-
ture compositions are shown in Fig. 2.

It can be seen from Fig. 2 that, for alow concentra-
tion of the highly adsorbed component, the lifetime
decreases monotonically with increasing wave vector,
whilethe free energy hasaminimum at & = 0. From the
standpoint of physics, this means that the state of the
system in achannel for agiven composition of the mix-
ture is homogeneous and the growth of clustersisener-
getically disadvantageous. It should be noted that the
fill factor of the channel issmall in this case, but short-
lived clusters with alifetime of

(2.47)

can be formed due to density fluctuations. Here, D =
Doexp(—E,/T) is the diffusion coefficient of solitary

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

particles, E, is the diffusion activation energy, and r is
the characteristic size of fluctuations. Characteristic
sizer is, determined, asin [3], from the position of the
extremum of theimaginary part of the spectrum divided
by the square of the wave vector. It should be noted that
the value of r increases with the fill factor of the chan-
nel [3]. Expression (2.48) can be derived by expanding
order parameter (2.44) into a series in the vicinity of
& = 0. For low concentrations, expression (2.47) coin-
cides with the characteristic diffusion decay time for
density fluctuations.

An increase in the concentration of the first compo-
nent of the mixture to ¢ = 0.3 elevates the fill factor of
the channel to 6 = 0.74 (see Fig. 1c), while F; acquires
two more minimafor k ~ 1. Figure 3 shows the depen-
dences of the free energy on the order parameter for dif-
ferent values of thewave vector at ¢ =0.3. It can be seen
from thefigurethat the free energy minimum isattained
at point & = 0 for values of the wave vector 0 <k < 0.4.

For k., = 0.5, function F; has two minima (at Eﬁo) =0
and £ = 0.35) and the state with £” is separated
from the state with Eﬁo’ by a potential barrier. Since the
global minimum is attained at & = £, the state with
&

attained at & = £ and is clustered. It should be noted
that, in accordance with formula (2.40), clusters of the

is metastable. The ground state of the system is

first component are formed in the channel since Eﬁl’ >
0. The lifetime of the clusters can be determined by
passing from Eq. (2.44) for the order parameter to asto-
chastic differential equation (Langevin equation) and
the corresponding Fokker—Plank equation viathe intro-
duction of additive noise. Steady-state solutions to the
Fokker—Planck equation define the probability of the
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Fig. 3. Dependence of free energy F, on the order parameter for different values of the wave vector for ¢ = 0.3: k= 0.1(a), 0.3 (b),
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Fig. 4. Dependence of free energy F, on the order parameter for different values of the wave vector for ¢ = 0.45: k= 0.1(a), 0.3 (b),

and 0.5 (c).

system being in the state described by order parameter
£ For the lifetime, we have

2
I~ eplEa
TDDOexpDT 6%,

OF = Fy(c+ &P k)T.

(2.48)

The decay of acluster formed in the system occursvia
the overcoming of an energy barrier of height oF. From
the standpoint of physics, this can be interpreted as an
effective increase in the diffusion activation energy for
the particles in the cluster. However, for ¢ = 0.3, the
barrier height issmall (0F ~ 0.2T; see Fig. 1c) and life-
time (2.48) is comparable to time (2.47). A further
increase in the first component concentration in the
mixture leads to negative values of the lifetime for a
certain value of k = k. < 1 (see Fig. 2¢). In this case,

clusterswithasizeof r ~ k;l areformed in the channel;
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for k < k,, fluctuations decay over a finite time, while
for k > k., the emerging density fluctuations evolve.
Such a situation istypical of transitions to an inhomo-
geneous condensate state [22].

The curves describing the dependence of the free
energy on the order parameter for different values of the
wave vector are shown in Fig. 4. Since function F; has
asingleminimum at & = 0 for k~ O, the state of particles
in the channel is homogeneous. However, as the wave
vector increases, curve F,(&) acquires two more min-
ima separated from the state with & = 0 by potential bar-
riers. A further increasein the wave vector leadsto dis-
appearance of the barriers between the state with & =0
and the states corresponding to two other minimaof F,,
and the state with & = 0 becomes unstable.

Thus, for alow concentration of the highly adsorbed
component, thefill factor of the channel issmall and the
state of the system in the channel is homogeneous. As
the concentration of the highly adsorbed component
increases, the fill factor of the channel increases and
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short-lived clusters of the highly adsorbed component
can be formed in the channel. A further increasein the
concentration (and the fill factor of the channel) leads
to an increase in the lifetime of the clusters formed in
the channel. At a certain concentration of the highly
adsorbed component, the clusters in the channel
become long-lived and the ground state of the system
becomes clustered.

The formation of clusters of one of the components
in achannel may strongly affect the transport of the gas
through the membrane [3]. In the next section, partial
gas fluxes through the membrane will be calculated and
the effect of clusters on the mechanisms of transport
will be analyzed.

3. TRANSPORT IN A TWO-COMPONENT GAS
IN A HIGH-DENSITY 1D SYSTEM

In order to calculate partial fluxes and to analyze the
transport, we will use the approach proposed in [3]. It
will be shown below that the evaluation of the flux can
be reduced to the calculation of the relaxation fre-
guency spectra w(k) for density fluctuations of the
components. We can judge the mechanism of particle
transport in a subnanometer channel from the type of
dependence of the spectrum on the wave vector of the
system.

We can write the expression determining the relax-
ation of the Fourier component n(k, t) of the number
density of particlesin a channel in the case of an arbi-
trary density n(k, t) under conditions of slight deviation
from equilibrium [3, 25]:

Ak, 1) = iok)n(k, t).

It follows from this relation that the equation for fluctu-
ation amplitude dn can be written in the form

(3.1)

on(k, t) = iw(k)on(k, t), (3.2
where w(k) isthe relaxation frequency spectrum for the
system under study; in the case of diffusion of noninter-
acting particles, this spectrum has the form [24]

® = ay(k) = —iDK’. (3.3)

Equation (3.2) describes relaxation of the kth com-
ponent of density fluctuation for an arbitrary value of
the wave vector. In particular, this equation for k # 0
makes it possible to describe the relaxation of density
fluctuations and the propagation of a perturbation over
a finite-size cluster in the case of its formation. For
k —= 0, Eq. (3.2) describes the relaxation of density
fluctuation on a large spatial scale. This quantity is
associated with macroscopic fluxes. In order to calcu-
late the fluxes, we write the continuity equation

a+divj = 0 (3.4)
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and apply the Fourier transformation to this equation:
ikj(k,t) = —n(k,t). (3.5

Substituting Eqg. (3.1) into (3.5), we obtain the follow-
ing relation for flux j(Kk):

i(k 1) = Nk XK t&‘*’(k). (3.6)
For partia fluxes, we have
ity = Y00, 37)

wheren; isthe density of theith component and w, isthe
corresponding spectrum. Thetotal gasflux isdefined as
the sum of partial fluxes of the components:

2
> il t) = jlk Y. (3.8)

It followsfrom Eq. (3.7) that partial fluxes are deter-
mined by relaxation frequency spectra w (k). Thus, the
problem is reduced to computing these spectra. The
relaxation frequency spectra can be determined from
the condition of the existence of nonzero density fluc-
tuations for each component in an arbitrarily weak
external field. Consequently, applying the Fourier
transformation to Eq. (2.15), wefind that the relaxation
frequency spectrum can be determined by solving the
following system of homogeneous equations:

(3.9)

-1 D1D_
Bkwdo-—O=0.
0-10

Here, matrix B(k, w) of the response functions is
defined by relation (2.39). In view of d-function singu-
laritiesfor k —= O that emergein pair correlation func-
tions (2.28) appearing in Eq. (2.39), we must calculate
spectraw (k) and the values of w(k = 0), after which the
renormalization procedure must be carried out. Using
Eqg. (2.39) and passing to the limit kK — O, we obtain
for spectraw,(k =0)

. 040
B0 wo ~ O
0-10

| e
o
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b, +ay —ayp (3.10)
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(0)

where quantities a;, by, w; ", and oo(zp) are defined by

relations (2.24), (2.37), and (2.38). For 0 = wy(k=0),
we abtain from relation (3.10)

(P)
_wp (3 —8yp)

o = —p

(p)n 12 (3.11)
W = ) (322—321).

by, — 0y

On the other hand, substituting Eq. (2.39) into (3.10),
we obtain the following expressions for relaxation fre-
guency spectra w,(K) of the system under investigation:

1 1
X |: — ,
GZCZV k b_l eZC C,V k b_1:|
1 ll( ) 11 1“2 12( ) 12 (3 )

1 1 }
X - :
[ezcivzz(k) +hy  87CiCva(K) + by

Tildes indicate that & (k = 0) # w® (quantities
are defined in relations (3.11)).
We will carry out the renormalization procedure for

spectra (3.12) taking into account relations (3.11), i.e.,
imposing the requirement

& = (k= 0). (3.13)
Taking into account the expressions for w'™, we find

from relations (3.11) and (3.12) that
bll b12

aj—ad, = - ,
T bllezcivll(k) +1 b129201C2V12(k) +1
or
b b
a'll = 2 2 1 ’ alZ = 2 2 ’
b,07°civy(K) +1 b1,07CiCVp(K) +1
similarly, for a,,, we have
by,

(3.14)

Ay = .
? 7 bpBcivap(K) + 1

In order to separate singularities of pair correlation
function v;(k) for k — 0, we expand it into a seriesin
the vicinity of k = 0 to within first-order terms. Using
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relations (3.12), we then obtain

iD,K* [ 1

(k) =
0 = BBl o) + kiG] b7

1
B 92C1C2[V12(0) +kvi(K)] + bzé} (3.15)

iD,K* [ ay
b1y —b1ol 1 + ka,,06%ci viy(K)

_ ap }
1+ kalzﬁzclczv'lz(k)
Taking into account the long-wave approximation and
the smallness of k, replacing the derivative in the last
expression by the difference kv;;(k) = v;(k) — v;(0),
omitting primes, and carrying out similar calculations
for w,, wefinally obtain

wy(k) =

i le2 [ a1y
by —bpl1+ allezCi[Vn(k) —vy(0)]

3 ap }
1+ 1,6°C,Co[Via(K) —V1(0)]
iD,k* 8
b2, — b21|:1 + 8,0°C5[ VoK) —V,(0)]

(3.16)

(k) =

_ dy; }
1+ a21ezclc2[v21(k) —V,1(0)]

Using relations (2.12), (3.7), and (3.16) and passing to
the limit for kK — 0, we can obtain the dependence of
partia fluxes of the components on the pressure, tem-
perature and composition of the mixture. For k # 0O,
expressions (3.2) and (3.16) enable us to analyze the
relaxation mechanism of the emerging density fluctua-
tion with a characteristic size of r = 21vk.

In order to analyze the experimentally observed par-
tial fluxes, it isconvenient to passto the coordinate rep-
resentation. Spectra (3.16) have the real and imaginary
parts since pair correlation function v;(k) is a complex
guantity in accordance with relations (2.28) and (2.33).
Separating the real and imaginary parts of the spectra
and applying the inverse Fourier transformation to
expression (3.7), we obtain (summation over recurring
indicesis not carried out)

. on,
I = niwi_Di&,
_ 21
W, = Rewi%HI—D, (3.17)
D, = Im®@K
K i 2t
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Here, D; is the diffusion coefficient of a component, L
isthe channel length, and Y isthe term emerging dueto
the mutual effect on the mixture componentsin achan-
nel for large fill factors. It should be noted that, since
L > r., where r. is the characteristic size of clusters,
passing to the limit for k — 217L in relation (3.17)
corresponds to averaging over characteristic scales of
inhomogeneities in the case when the ground state of
the system is clustered. Separating the terms linear in
the wave vector from the real part of the spectrum, we
obtain the following expression for :

_ 10U,
g = —Di-‘rTa; +Vi.

Here, thefirst term describes the transport of molecules
of theith component, which isinduced by the effective
intermolecular interaction, while the second term has
the meaning of the “drag” effect familiar in the kinetics
of mixtures. Substituting Eq. (3.18) into (3.17), we
obtain the final expression for partia fluxes:

. on n,o0U;
Ji ax DT ax
Thus, it follows from this equation that the partial flux
is the sum of three terms. The first term corresponds to
diffusion transport, while the second term emerges due
to field diffusion. These two terms in the k representa-
tion can be combined into one by introducing the effec-
tive diffusion coefficient

D, = DR+ 2U (k3

It was shown in the previous section that, for large
fill factors, clusters are formed in the system. The
mechanism of density relaxation may be different for
the case of transport over the characteristic scale L,
when 2nag, /L <€ 1 and k — 0 (which corresponds to
macroscopic transport of gas components through the
channel), and for the case when k # 0, which corre-
sponds to relaxation over distances comparable to the
size of clusters formed in the system. To prove this, we
must analyze dependences Av;(k). In order to avoid
cumbersome formulas, we consider this problem in
greater detail in the limiting case of ¢, = 1, which cor-
responds to a one-component mixture.

Passing to the limit for ¢, — 1 in Eqg. (3.16), we

obtain the relaxation frequency spectrum for a one-
component system,

(3.18)

+Vin;. (3.19)

(3.20)

_iDK
(k) = T’ (3.21)
wherev(k) isthe pair relaxation function, which is con-
nected to the pair distribution viathe relation

v(K) = g(K) —3(K). (3.22)
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Pair distribution g(k) can be derived from Eq. (2.34) by
passing to the limit for ¢; — 1.

_ ke[, . L .0 ko -

o) = 3¢ [1 ikobs - 1H-e } .

It should be noted that, in accordance with formula(3.21),

the pair distribution and, hence, the pair correlation

function associated with it depend not on the wave vec-
tor k, but on the product ik:

(3.23)

V(K) = V(ik). (3.24)
Let us now writerelation (3.21) in the form
iDok’
w(k) = °
1+ v(0) +v(k) —v(O
R CECRE (325
iDok iDok

1+v(0) +Av - 1+v(0) + ReAv +ilmAv’

Separating the real and imaginary parts from relation
(3.25), we obtain

iDoK[(1-6)*+ ReAV]

9 = [(1-0)%+ReAv]” + (ImAV)?
, (3.26)
Dok ImAv
[(1-8)%+ReAv]” + (ImAv)?
Here, we have used the fact that
1+v(0) = (1-8)°. (3.27)

Thisrelation follows from the known relation [17]

oL
006 ~1+v(0)
describing the increase in the compressibility with den-

sity. Using relation (3.24), we now expand Av to within
first-order terms:

Av = av_(k)
0(iK)[k=0
Thevalue of v'(0) isfinitefor 8 # 0. For example, using

direct expansion into the Taylor series, we can obtain
from Egs. (3.22) and (3.23)

ik=iv'(0)k. (3.28)

V(0) = -0+ gez—%e? (3.29)
Substituting relation (3.28) into Eq. (3.26), we get
iDk’(1—6)°
k)= (1 ;)4(+ v"“(c)»k2
5 (3.30)
Dok*v'(0)

(1-8)* +vAO)K
To calculate the fluxes for high densities (6 ~ 1), we
must consider two limiting transitions in relation (3.30):
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for 8 — 1 and k — 0. From the standpoint of phys-
ics, the transition for 8 — 1 and k # O corresponds to
analysis of transport in a dense cluster. The transition
for K — 0 and arbitrary 0 is equivalent to analysis of
diffusion in a channel of length L > r_, wherer_isthe
characteristic size of acluster. For 8 — 1, we obtain,
instead of relation (3.30),

Dok

"ok (3.31)

w(k) = —

This relation shows that spectrum w(K) corresponds to
the hydrodynamic mode [17], for which quantity
Dy/v'(0) isthe effective velocity of sound.

Passing inrelation (3.30) to thelimit for k— O and
retaining the lowest order in wave number k, we obtain

iDk®
(1-8)"

w(k) = — (3.32)

This relation shows that the spectrum in this case is of
the diffusion type with the diffusion coefficient

Do

= (—I—_—é—)z, (333)

which increases indefinitely as6 — 1.

It should be noted that, in accordance with
Eqg. (3.30), both relaxation mechanisms (hydrodynamic
and diffusion) operate in the system when k # 0 and
8 # 1. From the standpoint of physics, this corresponds
to the diffusion transport between clusters (diffusion
mode), over which density perturbations propagate
(hydrodynamic mode). In spite of different interpreta-
tions of the sequence of limiting transitions, the calcu-
lated dependences of fluxes on external conditions are
found to be equivalent from the standpoint of physics.
This is due to the fact that the hydrodynamic compo-
nent is manifested in the second casein theincreasein
the effective diffusion coefficient D = Dy/(1 — 6)? for
high values of fill factor 6.

In the two-component case, the transition for k —
0 corresponds to the transition from relation (3.16)
to (3.11). It can be seen from relation (3.11) that the

spectra obtained are of the diffusion type since oo( P =

-iD)K?, ] =1, 2, while quantities a; and by, arelndepen—
dent of k. Thelimiting transition for 8 — 1 inthetwo-
component case involves considerable computational
difficulties. However, the above analysis shows that the
relaxation frequency spectra for the components also
acquire a hydrodynamic mode in view of the depen-
dence of pair correlation function (2.28) on factor ik for
60— 1.

Depending on the sequence of the limiting transi-
tion, adecisiveroleinrelation (3.19) is played either by
the term corresponding to diffusion or the nongradient
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(hydrodynamic) part of the flux. Since the gas flux for
arbitrary fill factorsis measured in experiments on the
penetrability of the membrane over large distance (L >
r., K— 0), the limiting transition for k — 0 should
be performed first. In this case, the effects associated
with the formation of clusters are taken into account in
the dependence of the diffusion coefficient on the con-
centration and fill factor of the channel. Numerical cal-
culations show that the last term in relation (3.16) is
insignificant in the entire range of concentrations and
fill factors of the channel. Thus, the relaxation fre-
guency spectrum of a two-component system can be
treated as a diffusion spectrum in the entire range of
concentrations and fill factors, where therole of the dif-
fusion coefficient is played by a quantity taking into
account clustering of the components in the channel.

It should be noted that, for calculating response
function (2.39), relaxation frequency spectra (3.16)
and, as aconsequence, partial fluxes (3.19), we used the
fluctuation-dissipative theorem (2.27) that presumes a
homogeneous ground state of the system. In the case
when the ground state of the system is clustered (see
Fig. 1d), the kinetic version of the fluctuation-dissipa-
tive theorem [24] should be used,

dn(x, t)on(x', t)O

00

= —TJ’B(X, X, t, D[ F(x 1) = F'(X, T)] oI, (3.34)
0

where f(x, 1) is the probability of a particle being
located at point x. In accordance with the detailed bal-
ancing principle, in the case when states x and x' differ
from the equilibrium state insignificantly, we have

f(x,t) O f(x, t)expDAED

an (3.35)

where AE is the energy difference between states x and
X'. Using this relation, we obtain the following expres-
sion for the fluctuation-dissipative theorem:

dn(k, w)on(k', w)l
= —TIdxdx'dtexp(ikx)exp(ik'x')exp(iwt)
(3.36)

I B(x, X, t, T)expgATEadr

Applying the Fourier transformation to thisrelation and
using Eq. (3.9), we obtain the relaxation frequency
spectrum in the form

W™(K) = ok exp A (3.37)

?
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Thus, the application of relation (3.34) instead
of (2.39) leads to the emergence of an additional expo-
nential term in relation (3.19),

ity = Y000 epR A

17 (3.38)

where AE isthe depth of the potential well occupied by
the system. In the case of small fill factors of the chan-
nel, the state of the system is homogeneous and AE =0
(see Fig. 1a). Then relation (3.38) transforms
into (3.19). As the fill factor of the channel increases,
the state of the system becomes clustered. For AE < T,
the exponential in relation (3.38) can be disregarded,
and the flux virtually coincides with the flux calcul ated
for a homogeneous state. This is due to the fact that
expression (2.48) for the lifetime of clusters practically
coincides with expression (2.47) for the lifetime of
clusters in a homogeneous state. In this case, as noted
above, density excitation propagates viaa cluster, lead-
ing to an increase in the effective diffusion coefficient.
A further increase in the fill factor of the channel
increases the value of AE. The flux thereby decreases,
which can be explained by an increasein the lifetime of
the clusters formed in the channel. As a result, the
mechanism of excitation transport via a cluster is not
realized.

Thus, for small fill factors of the channel, the trans-
port in the system follows the diffusion mode. This can
be demonstrated by passing to the limit of small fill fac-
tors 8 in relation (3.16). Then the second terms in the
denominator become insignificant and the spectra are
reduced to diffusion spectra (3.11). An increase in the
fill factor results in the formation of clusters. It was
shown in the previous section that, depending on thefill
factor of the channel, the clusters formed may be either
short-lived or stable in the case when the ground state
of the system is clustered. For short-lived clusters (see
Fig. 1b), the transport between clusters occurs via dif-
fusion, while the transport over clusters occurs via a
rapid barrier-free transfer of density excitation, and the
arrival of a particle from one side of a cluster leads to
the emergence of a particle from the other side [3]. In
this case, the spectra contain both the diffusion and the
hydrodynamic mode, and the effective diffusion coeffi-
cient increases in accordance with Eg. (3.33). An
increasein thefill factor of the channel reducesthe dis-
tance between clusters and increases their size. Since
the transport over a cluster is faster than the diffusion
transport, the effective diffusion coefficient and the par-
tial flux increase. However, an increase in the fill factor
also increases the lifetime of the clusters formed in the
channel; as aresult, the rate of excitation transfer over
acluster decreases. In the case when a cluster is stable
(seeFig. 1d), the transport of excitation over the cluster
is ruled out and the presence of such a cluster in the
channel leads to blockage of transport in the system.
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Using relations (3.16) and (3.38), we can calculate
the partial gas fluxes proceeding from the data on the
penetrability for pure components. Figures 5a and 5b
show the dependence of partial fluxes on the mixture
composition in the case when both gases are dightly
adsorbed. The energies of interaction and the diameters
of particles correspond to a methane-argon mixture
(a=38A,0,=36A,0,=30A,¢,=038¢V, ¢, =
0.25eV [15], P = 100 kPa, and T = 300 K).

It can be seen from Fig. 5a that an increase in the
concentration of the first component for fixed pressure
and temperature reduces the degree of channel filling
with the second component, while the degree of chan-
nel filling with the first component increases. A
decreasein thetotal fill factor of the channel in the con-
centration range 0 < ¢ < 0.4 of first component takes
place due to depletion of the channel in the second
component (Fig. 5b). An increase in the total fill factor
of the channel for ¢ > 0.4 is associated with preferred
enrichment of the channel in the first component (see
Fig. 5b). The partial flux of the first component in this
case increases monotonically due to an increase in the
degree of channel filling with the first component (see
Fig. 5a), whilethe partial flux of the second component
decreases dueto adecrease in the degree of channel fill-
ing with the second component. The transport is of the
diffusion type, and clusters are not formed in the chan-
nel inview of small fill factors of the channel (6 < 0.25
for any composition of the mixture).

Figures 5¢c and 5d show the dependence of partial
fluxes on the mixture composition in the case when one
of the gases (first) is a strong sorbate, while the other
gasisaweak sorbate. The energy of interaction and the
diameter of particles correspond to a butane-methane
mixture (a=3.8A,0,=43A,0,=36A,¢,=061eV,
€, =0.38 eV [15], P = 2000 kPa, and T = 300 K). The
behavior of the total and partial fill factors of the chan-
nel upon an increase in the concentration of the first
(highly adsorbed) component in this case coincides
gualitatively with the case of dightly adsorbed gases
described above: the partial degree of channel filling
with the first (highly adsorbed) component increases
monotonically against the background of a monotonic
decreasein the degree of channel filling with the second
(slightly adsorbed) component (see Fig. 5c). The
behavior of partial fluxes in this case is less trivial. It
can be seen from the figure that the partial flux of the
first component increases in the concentration interval
0 < c< 0.2 Thisisdue to the fact that, in accordance
with relation (2.47), short-lived clusters (see Fig. 1a)
whose size increases with concentration are formed for
such concentrations and fill factors of the channel. The
transport over clusters occurs viaa barrier-free transfer
of density excitation, which increases the effective dif-
fusion coefficient. This process is similar to the trans-
port in one-component systems for high fill factors[3].
It should be noted, however, that the formation of clus-
ters and the mechanism of transfer of density excitation
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Fig. 5. Dependence of the total and partial fill factors of a channel (g, ¢) and partia fluxes (b, d) on the composition of methane—
argon (a, b) and butane—ethane mixtures (c, d): 1—total fill factor of a channel; 2, 3—degrees of channel filling with the first and
second components, respectively; 4, 5—partial fluxes of the first and second components, respectively; c isthe concentration of the

first component in the mixture.

through a cluster in a two-component mixture can be
realized for smaller fill factors (0 = 0.71; see Figs. 1b,
5¢, and 5d) as compared to the one-component case
(6= 0.8). An increase in the concentration of the first
component increases the lifetime of the clustersformed
in the system (see Figs. 2b and 3c). As aresult of this
increase, the transport over clusters becomes sower
and theflux decreases. A further increasein the concen-
tration leads to the formation of stable clusters in the
channel (see Figs. 2c and 4c); in accordance with rela-
tion (2.28) the lifetime of these clustersis much longer
than the lifetime (2.47) of short-lived clusters since
OF > T. In this case, the transfer of density excitation
over clustersis ruled out and the partial flux vanishes.

Thus, three mechanisms of particle transport in a
channel are possible in the two-component case. For
small fill factors, the transport occurs via diffusion. An
increasein thefill factor leadsto the formation of short-
lived clusters in a channel. As in the one-component
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case, this leads to an increase in the effective diffusion
coefficient due to barrier-free transport of density exci-
tation over a cluster. Asthefill factor increases further,
the characteristic lifetime of clustersincreases, leading
to a decrease in the flux. A further increase in the fill
factor makes the clusters stable, and the so-called
blocking effect takes place, when the partia flux of one
of the components vanishes.

A decrease in pressure does not lead to a qualitative
change in the behavior of the dependences of partial
fluxes on the mixture composition.

4. COMPARISON WITH EXPERIMENT

The transport of two-component gas mixtures in
MFI zeolite membranes (Silicalite, ZSM-5) with apore
diameter of ~ 0.6 nm has been studied by the technique
widely used for one-component gases [15]. However,
in contrast to rich variety of experimentswith one-com-
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ponent gases, a consistent analysis of atwo-component
mixture has not been reported in the literature. The
most detailed information on penetrability for two-
component mixturesis givenin [15, 16].

The experiments [15, 16] on penetration of two-
component mixtures were made in a chamber with a
porous stainless steel substrate with a thickness of
approximately 3 mm. A polycrystalline layer of zeolite
ZSM-5 with athickness of ~ 50 um and a random ori-
entation of crystals was deposited on the substrate.
Zeolites have a complex crystalline structure based on
silicon oxide with admixtures of sodium and aluminum
[15]. The crystalline structure of zeolite ZSM-5 is
formed by straight channelswith an elliptical cross sec-
tion (0.57 x 0.52 nm?) intersecting sinusoidal channels
with acircular cross section of diameter 0.54 nm [23].
The measured adsorption capacity and the calculated
fraction of moleculesin the channel intersections make
it possible to treat the channels as one-dimensional for
the molecular mixtures under study [23]. The experi-
ments [15, 16] were carried out at temperatures from
300to 700 K under pressures from 25 to 500 kPaon the
external side of the membrane. The purity of the mix-
ture components was higher than 99.95%. The mixture
composition at the membrane exit was measured on a
guadrupole mass spectrometer with a sensitivity of
approximately 25 ppm when a Faraday cell was used
for recording.

The selectivity measured in the experiments was
determined as the relative change in concentration c of
n-butane molecules and concentration 1 —c of methane
molecules at the membrane entrance (F) and exit (P):

0cp,ncn

T a-d o—d,

(4.1)

It should be noted that, for a constant composition of
the mixture at the entrance to the membrane, the selec-
tivity is proportional to the ratio of partia fluxes of the
mixture components at the membrane exit:
a03,/3,. 4.2
It wasfound experimentally [15] that the partial flux
of the highly adsorbed gas n-C,H,, at T = 300 K under
atotal pressure of P = 100 kPa changes considerably
(by a factor of several units) in the presence of the
dlightly adsorbed component CH, as compared to the
flux of a pure gas, while the partial flux of the dightly
adsorbed gas changes by two orders of magnitudeinthe
presence of the strongly absorbed component. Depend-
ing on the mixture composition, selectivity a variesand
attains its maximum value a,,, = 380 for a concentra-
tionratio of 5: 95 at the entrance to the membrane.
It was shown [16] that the dependences of partial

fluxes on the mixture composition and external pres-
sure for the mixtures studied (C,Hs—CH, and C;Hg—
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Fig. 6. Dependence of partial fluxes on the mixture compo-
sition for dlightly adsorbed gases: 1, 2—theoretical depen-
dences for CO, and N, fluxes, respectively; c is the CO,

concentration above the membrane; squares correspond to
experimental data from [19]; a= 3.8 A, 01 =3.8A, 05 =
3.6 A [15]; P =100 kPa, T = 300 K.

CH,) are monotonic in the range of experimental pres-
sures. The partial flux of methane decreasesin the pres-
ence of the second component (ethane or propane),
while the partial flux of the second component
increases with its concentration in the mixture. The
selectivity of both mixtures increases monotonically
with the concentration of the more highly adsorbed
component in the mixture. The dependences of the par-
tial fluxes on the total pressure of the mixture are also
monotonic, but the pressure dependence of selectivity
in ethane for the mixture C,H;—CH, has a peak at a
pressure of P = 300 kPa[16]. Similar dependences of
partial fluxes were observed in experiments with
another mixture of dlightly adsorbed gases (CO,—N.)
[19] (Fig. 6).

The theory developed in the previous sections
enables us to describe peculiarities in the transport of
binary gas mixtures in zeolite membranes. In the case
of a mixture of dightly adsorbed gases, when the fill
factor of a channdl is small (6 < 1) for any mixture
composition, the system relaxes in accordance with the
diffusion mechanism, corresponding to diffusion of
solitary particles without the formation of clustersin a
channel. In this case, in accordance with Egs. (2.12),
(3.16), and (3.38), the partial flux of thefirst component
decreases monotonically upon an increase in the con-
centration of the second component, while the partial
flux of the second component increaseswith its concen-
tration in the mixture.

Figure 6 shows that the theoretical curves calculated
by formulas (2.12), (3.16), and (3.38) are in good
agreement with the experimental data borrowed
from [19]. The mean distance a between the seatsin a
channel was estimated proceeding from the value cor-
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Fig. 7. Ratio of the partial fluxes of butane and methane as
a function of the butane concentration; c is the concentra-
tion of n-C4H o above the membrane; squares correspond to

experimental data obtained in [15]; a=3.8 A, 0; = 4.3 A,
0,=3.6 A [15]; P= 100 kPa, T = 300 K.

responding to close packing of a unit cell of aZSM-5
membrane with nitrogen [23].

The degree of channel filling for mixtures with a
strongly absorbed component depends on the mixture
composition; it is significant and can be as high as
0 ~ 1. In this case, in accordance with the arguments
put forth in Section 3, the dependence of fluxes on the
mixture composition is nonmonotonic due to the
formation of clustersin a channel. Figure 7 shows how
the ratio of partial fluxes of gases for the mixture
n-C,H,,—CH, depends on the butane concentration in
the mixture under a pressure of P = 100 kPa at temper-
ature T = 300 K. It can be seen from the figure that the
ratio of partial fluxes increases with the concentration

BORMAN et al.

of the highly adsorbed component (butane) in the con-
centration range 0 < ¢ < 0.35. Analysis of experimental
data [15] and calculations based on formulas (2.12),
(3.16), and (3.38) show that the methane flux for a
butane concentration of ¢ > 0.05 changes insignifi-
cantly upon an increase in the butane concentration in
the mixture. In this case, the behavior of the flux ratio
is completely determined by the behavior of the butane
flux. The increase in the butane flux is due to the fact
that, in accordance with formula (2.47), short-lived
butane clusters are formed for concentrationsof 0 < ¢ <
0.35 and for thefill factors corresponding to these con-
centrations (see Fig. 1d); the size of these clusters
increases with the concentration of the highly adsorbed
component. The transport over clusters (see Fig. 1b)
occurs via barrier-free transfer of density excitation,
leading to an increase in the effective diffusion coeffi-
cient for butane, which is observed for ¢ < 0.35. The
increase in the butane concentration in the mixture
increases the lifetime of the clusters formed in the sys-
tem (see Figs. 2b and 3c). With increasing lifetime, the
transport over the clusters slows down and the butane
flux decreases for concentrations of ¢ > 0.35. A further
increasein the concentration resultsin the formation of
stable clustersin a channel (see Figs. 2¢c and 4c), lead-
ing to arapid (exponential) decrease in the butane flux
upon an increase in its concentration in the mixture.

Thus, it follows from the theory that the butane flux
becomes exponentially small for a butane concentra-
tion of ¢ > 0.6 in the mixture and the transport of parti-
cles must be blocked. It should be noted that calcula-
tions based on formulas (2.12), (3.16), and (3.38) for
butane concentrationsin the interval 0 < ¢ < 0.05 show
that the methane flux decreases approximately by an
order of magnitude upon an increase in the butane con-
centration, which is also in qualitative agreement with
the experimental data [15]. The numerical difference
between the predictions of the theory devel oped above
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Fig. 8. Dependence of the ethane selectivity (&) and of the partial fluxes of CoHg (b) and CH, (c) for the C,Hg—CH,4 mixture on the

total pressure of the mixture: 1—calculations based on formulas (2.12), (3.16), (3.38), and (4.1); 2—calculations based on the
generalized Maxwell-Stefan equation [16]; squares correspond to experimental data obtained in [16]; a=3.8A, 0, =384, 0,=

3.6 A [15]; Jp = 63 mmole/(m? s), Py = 100 kPa.
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and the experimental data in this range of butane con-
centrations is due to the fact that relations (2.12), (3.16),
and (3.38) were derived for the model potential of inter-
molecular interaction of the type of interaction (2.9)
between hard spheres. It is well known that the poten-
tials of hard spheres correctly describe the behavior of
real systems for high densities [17, 18]. In order to
describe the behavior of the system in the entire range
of fill factors, potentials of the Lennard—Jones type,
which take into account the attraction between particles
even in the zeroth order in density, should be used.
However, although the application of thistype of poten-
tials of intermolecular interaction does not qualitatively
change the results, it leads to the formation of butane
clusters at lower degrees of channel filling and, hence,
to a sharper decrease in the methane flux upon an
increase in the butane concentration in the concentra-
tion range under investigation.

Relations (2.12), (3.16), (3.38), and (4.1) also make
it possible to derive the dependence of the selectivity on
the pressure, temperature, and composition of the mix-
ture. Figure 8a shows how the ethane selectivity for the
C,Hg—CH, mixture with aconcentration ratio of 50 : 50
at the entrance depends on the total pressure of the mix-
ture [16]. It can be seen that the dependence is non-
monotonic. This is due to the fact that the diffusion
coefficient first increases due to an increase in the pres-
sure and fill factor of the channel as a result of the for-
mation of short-lived clusters and that the partial ethane
flux increases (Fig. 8b). Theincreasein thetotal fill fac-
tor of the channel is determined by the increase in the
partial fill factors for both components. This process
continues until the channel filling with ethane slows
down. In this case, the fill factor of the channel
increases mainly due to channel filling with methane.
At such pressures, the increase in the ethane flux slows
down (see Fig. 8b), while the methane flux continuesto
increase (Fig. 8c). The theoretical dependences plotted
in the figures show that a further increase in pressure
due to an increase in the lifetime of ethane clusters
formed in the channel must lead to a decrease in the
ethaneflux (Fig. 8b). Thus, the analysis of experimental
data proves that the theory constructed here describes
the experimental results satisfactorily.

One of the main results of the proposed theory isthe
prediction of nonmonotonic dependences of partial
fluxes and selectivities on the mixture composition and
pressure (see Figs. 7 and 8), while conventional models
[15, 16, 19] (in particular, the generalized Maxwell—
Stefan equation [15, 16]) lead to monotonic depen-
dences of these quantities on the same parameters (see
Fig. 8d). The qualitative discrepancy between the
dependences in question is due to the fact that conven-
tional models [15, 16, 19] take into account only the
finite size of particles, while the interaction between
particles in a channel is disregarded. It is well known
[17, 18, 26], however, that the interaction between par-
ticlesin dense systems plays a decisive role both in the
construction of the equations of state of the system and
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in the description of transport. For example, the inclu-
sion of interaction between particles of the hard-sphere
type leads to the emergence of peaks in the pair corre-
lation function at distances equal to one, two, three,
etc., particle diameters [17, 18, 27]. This fact indicates
the existence of “ effective” attraction between particles
and necessitates the inclusion of cluster formation in
the description of the behavior of the system at high
densities, when it passes to a spatially inhomogeneous
state. It was demonstrated above that this leads to the
emergence of nonmonotonic dependences of fluxesand
selectivities on external parameters.

It should be noted that the stabilization of clustersin
1D systems by the second component at high fill fac-
tors, which has been investigated here, was obtained
numerically in arecent work [7]. It should be bornein
mind, however, that, in accordance with our previous
results [3], clusters with a large but finite lifetime can
be formed even in a one-component system with high
degrees of channel filling. It was 1D gold clusters of
thistype that were apparently observed in recent exper-
iments under the ultrahigh vacuum conditions[9].
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Abstract—A mechanism of theinterlayer exchange coupling in layered structures of the Fe/Cr(001) type with
rough interfaces is proposed. The theory is based on amodel of the charge-induced spin density wave (SDW)
formed in the chromium layer. It is shown that the effective magnetic coupling between thick ferromagnetic
layers arises due to variations of the SDW vector orientation in the antiferromagnetic layer over acharacteristic
length ¢ determined by the exchange stiffness of chromium. A general expression for the effective magnetic
coupling energy E(y) as a function of the angle Y between magnetic moments of the ferromagnetic layersis
obtained and numerically analyzed for an arbitrary value of the parameter p{, where p is the density of
monoatomic steps on the interface. For p{ > 1, the form of E(Y) istypical of a model with the * biquadratic”
interaction, whileinthe case of p{ < 1, the dependence obtained differs significantly. The proposed mechanism
isused to interpret the results of measurements of the interlayer exchange coupling in Fe/Cr(001) structures.
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1. INTRODUCTION

It is well known that the quality of interfaces
between ferromagnetic (FM) and antiferromagnetic
(AFM) layers in magnetic multilayer structures of the
Fe/Cr type is a factor determining the magnitude and
character of the effective exchange coupling between
the neighboring FM layers [1-6]. For elucidating the
mechanisms of thisinfluence, it is necessary to study in
detail both the morphology of interfaces and the pro-
cess of redistribution of the charge and spin densities of
guasiparticles at these interfaces.

A comparative analysis of the properties of inter-
facesin the structures obtained using different technol-
ogies must take into account the different scales of fluc-
tuations of the surface relief on the Fe/Cr boundaries.
First, any method used for the growth of such muilti-
layer structures|eads to unavoidable small-scal e fluctu-
ationswithin several boundary atomic layers, caused by
the mutual diffusion of atoms of the two metalsin con-
tact and by the breakage (frustration) of regular inter-
atomic bonds [1, 2, 6]. Second, any technology
involves more or less pronounced large-scale (“geo-
metric”) fluctuations of the surface relief, referred to in
the literature as the interface “roughness’ [1-3]. This
roughness is usually described [1, 4, 5] in terms of two

statistical characteristics, the dispersion o = /[hJ
(vertical roughness) and the correlation length R (lat-
eral roughness) of fluctuations in the relief height h.
The values of o characterizing the degree of roughness
in the direction perpendicular to the interface plane
usually vary within 2-6 A, while the |ateral parameter

R can vary within three orders of magnitude: from sev-
eral nanometers (in the case of molecular beam epitaxy
of a three-layer Fe/Cr/Fe(001) structure on an
Ag(001)/Fe/GaAs(001) substrate [4]) to severd
microns (for the epitaxial layer growth of chromium on
Fe(001) whiskers[1, 5]).

Specia magnetic properties of Fe/Cr multilayer sys-
temsarerelated to aspecific AFM order inherent in chro-
mium, taking the form of a spin density wave (SDW). In
alayered structure, this SDW is highly sensitive both to
the presence of interfaces as such and to the structure of
these boundaries. Previoudly [7, 8], we proposed amodel
of the magnetic ordering in layered structures of the
Fe/Cr type with perfectly smooth interfaces. The order
appears in these structures below a certain temperature
T, that is significantly higher than the Négl temperature
(Ty) of bulk chromium. According to this model (called
the charge-induced SDW modél), a short-range AFM
order appearsin the chromium layer due the charge den-
sty redistribution at the interfaces between iron and
chromium. The results obtained in [8] showed that the
SDW formed in the chromium layer aligns the magnetic
moments of the neighboring Fe layers, rendering them
collinear (parallel or antiparalldl, depending on the num-
ber N of monolayersin theintermediate Cr layer).

We also considered amodel problem of determining
the energy-optimized configuration of a charge-
induced SDW at the Fe/Cr interface containing one
isolated monoatomic step (referred to below as a
monostep) [9]. It was found that, provided theiron lay-
ersare sufficiently thick to exclude the formation of fer-
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romagnetic domain walls, the most energetically favor-
able configuration is that with a 90° AFM domain wall
formed inside the chromium layer. The character of the
mutual orientation of magnetic moments in the neigh-
boring iron layers changesto noncollinear, whereby the
angle between these moments has acertain value differ-
ent from O or 1t It was naturally suggested that thisvery
change of the SDW configuration in the Fe/Cr type
structures with rough interfaces may account in many
cases for the noncollinear ordering of magnetic
moments of the neighboring Fe layers—a phenomenon
extensively discussed in recent years [1-3].

In this study, aimed at verification of the above
hypothesis, we have generalized the model [9] to the
case of an arbitrary density of monosteps and a rela-
tively thin AFM layer (with athickness below the dou-
bled “amplitude’ correlation length &(T), on which
scal e the SDW amplitude varies acrossthe AFM layer).
For such systems, it can be naturally assumed that the
AFM order in the chromium layer is characterized by a
considerable longitudinal magnetic stiffness (i.e., the
SDW amplitude is almost constant across the AFM
layer). On the other hand, our previous analysis [9]
showed that the direction of the SDW polarization vec-
tor inthe AFM layer changes along the interface over a
characteristic “angular” correlation length ¢(T) and is
highly sensitive to fluctuations in the exchange cou-
pling at the Fe/Cr interface. In this paper, the interface
structure is modeled by a system of flat regions (of an
average length R) separated by monosteps, whereby the
sign of the surface exchange potential exhibits a jump-
like alternation upon crossing every step. By varying
the ratio of the characteristic lengths {(T) and R, it is
possible to consider the properties of structures with
interfaces possessing various degrees of roughness.
This analysis will show how and to what extent the
equilibrium SDW configuration in the AFM layer
determines the mutual (in the general case, noncol-
linear) orientation of magnetic moments in the neigh-
boring iron layers.

By decreasing the FM layer thickness, it is possible
to obtain an inhomogeneous magnetic configuration of
the system other than that suggested in [9]. This is
related to the formation of a 180° FM domain wall in
the iron layer, whereas a 90° AFM domain wall in the
chromium layer is not formed. Below we will consider
this situation in more detail to show that the system
geometry, together with the quality of interfaces, deter-
minesto a considerable extent the criteriaof applicabil-
ity of the proposed model to real layered structures of
the Fe/Cr type.

2. THE MODEL OF ANTIFERROMAGNETIC
DOMAIN WALLS IN STRUCTURES
WITH HOMOGENEOUS MAGNETIZATION
OF FERROMAGNETIC LAYERS

Using the approach devel oped previoudly [8, 9], we
will consider the simplest structure-forming element of
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the Fe/Cr system—a three-layer structure (trilayer)
comprising two FM layers (Fe) separated by an AFM
spacer (Cr). Technological Fe/Cr interfaces are parallel
to the nyn, plane; the normal n, to this plane coincides
with the growth direction and is parallel to the [100]
cubic axis (ny, ny, n, are the unit basis set vectors). We
consider the temperature interval T corresponding to a
short-range AFM order inthe chromium layer: T <T <
Ty (Ty < T¢, where T is the Curie temperature for the
iron layers). The FM layers are assumed to be suffi-
ciently thick, so that the magnetization S inside these
layers at T, < T can be considered as homogeneous
and independent of temperature. The AFM spacer
thickness L can bevaried within rather broad limits, but
so that L > 2€,, where &, is the coherence length rang-
ing, according to various estimates, from seven to ten
Cr monolayers. In the temperature interval under con-
sideration, the sublattice magnetization o(r) in the
AFM layer can be significantly inhomogeneous
(depending on the layer thickness L) and strongly
dependent on temperature [7, 8].

Let us introduce an order parameter (with the
dimension of energy) describing the SDW envelope,
A(r) = Ua(r), where U is the effective SDW potential
(the explicit form of which is not discussed here; for
this see, e.g., review [10]). The considerations will be
restricted to the case of atransversely polarized SDW,
whereby o(r) U n, (this situation, corresponding to an
experimental situation with not too thick AFM spacers,
L <100 A, has been studied most frequently [1-6]). In
this case, the order parameter can be written as

A(r) = nyAy(r) +nA,(r), )

wherer = (x, Y, 2); x| <1 (I isahalf of the AFM spacer
thickness, L = 21); ly|, |z| < 15 (215 is the spacer sizein
the ny and n, directions, ;> 1). Assuming that the A(r)
value is small (JA| < TT) and dowly varying in space
(loA/or| < TIT/Ey), let us write an expression for the
thermodynamic potential F[A] of the AFM layer in the
form of a Ginzburg—L andau expansion in powers of the
A(r) function and its derivatives. Since this approach
was thoroughly justified in [8, 9], we omit the com-
ments and present the final expression for the func-
tional F[A]:

F=F+F, @
F, = %va(r)dxdydz, ©)

JuL g @

fV = C1A2+szFm_rD

Fy = 2[dydz(A%(1,y,2) + A*(-1,y.2))

+§Idydz(n(|, v,z m(l,y, 2)A(l,y, 2) ©)
+n(-,y,2m(-l,y,2A(-l,y, 2)).
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Here, the integration is performed within the AFM
spacer boundaries as denoted above; the values of x =
*l in Eq. (5) correspond to theright- and left-hand inter-
faces. The quantities F, and F, have the meaning of the
volume and surface parts of the total thermodynamic
potential. Expressions for the coefficients ¢, ¢,, v, and
Aaregivenin[9, 10]; these values were calcul ated pre-
vioudly (see, eg., [10]); inwhat follows, ¢;, ¢, >0, v <
0, and A > 0 (these conditions correspond to the AFM
exchange at the Fe/Cr interface). The parameter A is
proportional to the magnetization of the FM layer. The
value of this magnetization is assumed to be constant
over each iron layer, while its orientation m(l, y, 2)
(Im|=1) inthe general caseisafunction of the coordi-
nates. The quantity v in Eq. (4) isthe projection of the
electron velocity onto the growth direction n, in flat
regions of the Fermi surface of chromium (these
regions are responsible for the SDW formation in the
octahedral model [11]).

The expansion according to Egs. (3) and (4) isvalid,
strictly speaking, in amost the entire region of |x| <,
except for the AFM spacer regions with awidth on the
order of &, at the interfaces, where the local approxima-
tion (2) for the functional F[A] becomesincorrect. Fine
details of the charge and spin distributions on such a
scale are not described within the framework of our
approach: these details can be considered as implicitly
taken into account by the coefficients v and A. The
“exchange” term linear in A appearing in Eq. (5) is
directly related to the exchange interaction between
spins of the FM and AFM layers. The “ Coulomb” term
guadratic in A reflects the charge transfer between the
layers of different metals (Fe vs. Cr) and the resulting
contact potential difference arising between the FM and
AFM layers. According to the estimates obtained in [8,
9], the Coulomb term predominates over the exchange
term in a broad temperature range T > T, and deter-
mines both the characteristic temperature T, for the
short-range AFM order formation and the SDW ampli-
tude. The SDW is induced due to an increase in the
electron spin susceptibility of chromium near the inter-

face. Theratio of &/D = tanh(1/€) , where& = v, /c,/c,

isthe AFM correlation length and D = 2c, v§/|v| isthe

gpatia scale of the charge density redistribution at the
interface, characterizesthe critical temperature To(L) as
dependent on the AFM spacer thickness. This depen-
dence shows a quite good correlation with a real phase
diagram of the Fe/Cr(001) structure [1, 2]. No difficul-
ties are encountered when the proposed model is used
for the interpretation of variations of the critical tem-
peratures T, and Ty caused by the introduction of
dopants into the chromium layer [12].

Despite a relatively less pronounced influence on
the SDW amplitude, the exchange term determinesto a
considerable extent details of the spatial distribution of
the SDW and its orientation relative to the magnetiza-
tion Sn(xl, y, 2) in the FM layers. This term plays an
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important role in the description of alayered structure
with not perfectly smooth (i.e., rough) interfaces at
which both small- and large-scale fluctuations of the
charge and spin potentials unavoidably take place.
Averaging over the small-scale fluctuations can be, in
principle, performed within the framework of a stan-
dard model describing the SDW interaction with point
impurities [10, 11], but allowance for the large-scale
fluctuations presents a more complicated problem. The
results of experiments [4] showed that a shortwave
(with a period of two monolayers) component of the
magnetic coupling between Fe layers is determined to
a considerable extent by compact regions of the Cr
spacer of aconstant thickness, with a characteristic lat-
eral size on the order of 3—4 nm. Indeed, the exchange
contribution to the surface energy F. of a structure with
the ideal flat interfaces sharply changes (in contrast to
the Coulomb contribution) its sign when the Cr spacer
thickness is varied by only one monolayer [1-3]. This
dependence of the energy on the evenness of the num-
ber N of monolayersin the spacer allowsthelong-range
fluctuationsin the Cr layer thickness to be simply mod-
eled by introducing the random factors n(l, y, 2) into
Eqg. (5). According to this model, the interface consists
of ideal flat terraces on which n has a constant value of
+1 or —1. The boundaries between adjacent terraces
represent monoatomic steps; crossing such a step
changes the sign of n to opposite. The steps are ran-
domly distributed over the yz plane, while being ori-
ented aong n, and n, axes coinciding with the easy
magneti zation axes of the Fe/Cr(100) structure possess-
ing abcc crystal lattice. Thismodel structureis consis-
tent with empirical data on the Fe/Cr(100) interface
morphology [4].

Previously [9], we have performed a self-consistent
calculation of the thermodynamically equilibrium
states of the functional determined by Egs. (2)—(5) in
the temperature range of T > Ty, both for the ideal flat
Fe/Cr interface and for the interface with isolated
monosteps. In the former case, the SDW polarization
vector in the Cr spacer and the magnetic moments of
both Fe layers always lie in the same (e.g., xz) plane-in
other words, the collinear stateis preferred. In the latter
case, the density of monosteps on the interface was
assumed to be small enough to ignore the contribution
tothetotal system energy related to theinhomogeneity-
induced transverse (relative to n,) SDW deformations.
It was established that such AFM spacer thickness fluc-
tuations give rise to a noncollinear configuration of the
magnetic moments of Fe layers. Below, these results
are generalized so as to include the case of arelatively
thin AFM layer (§; <1 < ¢(T)) and an arbitrary density
of monostepsin the yz plane.

Finding equilibrium three-dimensional configura-
tions of the system described by the functional accord-
ing to Egs. (2)—(5) in the genera case is an extremely
difficult (if not desperate) task. Therefore, some
assumptions have to be made in order to simplify the
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problem to an acceptablelevel whileretaining the phys-
ica meaning of the results. We will consider only
coplanar magnetic configurations with both A(r) and
m(l, y, 2) vectorslying in the interface plane. Of most
interest isthelimiting case of thick FM layers, whereby
both these layers can be considered as homogeneously
magnetized, so that m(zl, y, 2) = m(zl), although in the
general case m(l) # +m(-). Notethat, in the absence of
the exchange interaction at the interfaces (A = 0), the
ground state of the system is strictly described by asca
lar SDW with a one-dimensional symmetric envelope
A(r) = A(x) [9]. Switching on aweak exchange (A < 1)
can influence the structure and parameters of the
ground state in a system with perfectly smooth inter-
faces provided only that the AFM spacer is sufficiently
thick (I > D) and/or the temperature is sufficiently high
(T=T,). Otherwise, intheregion {l <D, T < Ty}, only
asmall correction (proportional to A?) tothe A, (X) value
appears. In this context, we will restrict the consider-
ation of the Fe/Cr structureswith rough interfacesto the
region of Cr spacer thicknesses and temperatures {I <
D, T< T}, inwhich the SDW amplitude can be consid-
ered asindependent of the parameter A and almost con-
stant across the Cr spacer (Jx| <1) [9]:

1/2
Ar) = A0 = ZEOL 0% <1 ()

On the other hand, as was pointed out above, the
SDW orientation is highly sensitive to jumps of the
exchange potential related to the Cr spacer thickness
variations. In the approximation adopted, variation of
the transverse coordinates y, z is accompanied over the
entire spacer thickness only by rotation of the vector
A(r) (1) without achangein its magnitude. The thermo-
dynamic potential (2)—5) reduces to a one-parametric
functional for the static SDW orientation fluctuations:

F = Fa+F, ()
Fa = —C,V /41D, (8)

Fo = lcv2n? J’dydz%% Eg E

{ total}

_ BN
AA[COSEQD J’ dydzcos@ 9)
{odd}

+S|nEMJD J’ dydzsm(p}

{e\/en}

Here, F,isapart of thefunctional F that isindependent
of the angle of rotation @ = @y, 2) of the SDW vector.
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The function @y, 2) isintroduced as follows:
A(r) =0, A, (r) = -Acosg(y, 2),
Ay(r) = -Asing(y, 2),

where A isdetermined by formula(6). The vector m(xl)
is defined as

(10)

m(zl) = 0, my(l) = ign%’g,
(11)

m,(zl) = cos%%,

where | is the angle between the magnetization direc-
tionsinthe FM layers. In Eq. (9), integration in thefirst
term is performed over the whole interface, while inte-
grals in the second and third terms are taken over the
fragments containing odd and even numbers N of Cr
monolayers, respectively. Figure 1 schematically
shows the geometry and the magnetic structure of a
Fe/Cr/Fe(001) trilayer in the vicinity of a monostep.

3. THE SHORT-RANGE ANTIFERROMAGNETIC
ORDER STRUCTURE
AT AN ARBITRARY DENSITY
OF MONOSTEPS ON THE INTERFACE

Writing equations for minimization of the func-
tiona (7)—(9) is quite asimpletask. However, even if it
were possible to construct the exact solutions for a
given configuration of n(l, y, zZ) determining the frag-
ments of interfaces with odd and even N, the procedure
of averaging of the interlayer exchange coupling over a
random distribution {n(zl, y, 2))} cannot be performed
in practice and requires making additional simplifying
assumptions. We will assume that (i) one of the two
interfaces is perfectly smooth, (ii) the Cr spacer thick-
ness exhibits variations only in one direction (n,), and
(i) these variations are periodic; that is, for

n(lo+le) <z<ly+n(ly+1o),

we have
n-hy.2 =1, n(y2 =1,
and for
lo+n(ly+ 1) <z<n(l,+1),
we have

n(,y,z = -1

Here, nisaninteger and |, and |, are the lengths of the
fragmentswith odd and even N, respectively. The above
assumptions render the problem one-dimensional,
restrict the domain of the variable to the segment -, <
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Fig. 1. A schematic diagram illustrating the geometry and magnetic structure of a Fe/Cr/Fe(001) trilayer in the vicinity of a
monostep. Large ("3D”) top and bottom arrows indicate the orientation of magnetic momentsin the FM layers. The rows of small
thin arrows show achangein the local magnetization direction in the AFM spacer (all vectors are in the yz plane). The bottom curve
qualitatively shows the variation of the SDW polarization angle @(2) in the wide terrace limit.

z < |, and limit variation of the function @(2) to the
interval 0 < @< 172; thelengths|, and | play therole of
fluctuating quantities. Note that, if both interfaces were
rough, the limits of variation of the angle @ in the gen-
eral case would be different.

Variation of the functional F,in Eq. (9) leadsto the
sine-Gordon equations,

d’p, cos

d’e sing _
—~ 5z -0 2 2
dz ¢

=0
dZ

(12)

(where the first and second equations describe the
behavior of the angular phase ¢(2) of the order parame-
ter for the Cr spacer fragments with odd and even N,
respectively), with the condition of continuity of the
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derivative d@/dz on the boundaries of fragments;, we
supplement this by the natural condition of continuity
for the function ¢(2) possessing a period of I,+ I,. In
Egs. (12), we introduced the quantities

2o 2cvEd [ rin
(= N Q:—OD = COSEm;
(13
DADZ = gnDH:l
QeD (h

where ( is called the “angular” correlation length (in
contrast to the “amplitude” correlation length &); this
value characterizes the SDW orientation fluctuationsin
athin intermediate AFM layer of the Fe/Cr/Fe trilayer
with thick FM layers.

No. 1 2004



128

Solutions of Egs. (13) have the following form:

O
EQarcsm[d EZ % kq%} 0=<z<l,,
O
®(2) = O (14)
%T 2arcsm[ Ze } -l,£2<0,

where dn isthe elliptic Jacobian function with modulus
k. The boundary conditions determine the unknown
parameters {z, z, k., kg viathe following system of
equations:

2% o _ ok, ZEtle - ok,
Co Ce
I [
o O.,[le O
k.k.cn 57 kq]cn TR kED (25)
A gale ogedle 02 e
ﬁdnEEZo’ kqjd 5 kﬂ = kyks,
[ |
(J'o O (J'e O
ok B T e S ke
0 o O e e 0O
dnEiZZo’ kq] dnEQZe’ kQD

where sn and dn are the Jacobian elliptic functions,
K(K) is the complete eliptic integral of the first kind,

and K = J1-K isthe complementary modulus [13].

Equations (14)—(16) completely determine the spin
density distribution in the AFM layer for a given set of
{l,, 1 and Y. Now it would be important to determine
the scale of roughness R that accountsfor the maximum
contribution to the interlayer exchange or, in other
words, to find the optimum values of |, and |, and the
corresponding angle ;.

In the limit of wide terraces (I, I > (., ¢, and
k,, k. — 1), the SDW has a constant phase ¢ over
almost the entire Cr layer (¢ =0 for an odd N and ¢ =
102 for an even N) and changes at the rare monosteps
with the formation of thin domain walls on the scale of
the angular correlation length . This state can be con-
sidered as alattice of independent topological kinks of
the type

1l
%Qar [s;ech%zZ Z‘D} z>0,
o2 =0 EFE , (17)
— i 1l
%rz 2arcsm[ hD 7 . K } z<0,
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smhg‘% =1+ /Zcot%lzﬁ,
smhgj% =1+ /2tan%%,

each bearing atopological charge of Q = 1/4 [14]. The
size C of the region of inhomogeneous SDW polariza-
tion determined by formula (13) is a characteristic of
the Fe/Cr structure. The parameters of matching of the
solution (17) depend only on the value of ), whose
deviation from 102 leads to a shift in the center of grav-
ity (distortion) of the domain wall (17) relative to the
point z= 0. Inthislimit of negligibly small contribution
from domain walls to the total system energy [9], we
had previoudly calculated the effective exchange
energy and justified the existence of noncollinear states
in Fe/Cr structures with a certain angle Y, (such that

cos(Py/2) = I/ /12 + 12) between the magnetic moments
of the FM layers.

Our approach is fundamentally different from that
developed by Slonczewski in the well-known torsional
model (proximity magnetism model) [15]. Fishman [16],
applying that model to the Fe/Cr type systems, explained
noncollinear magnetization of the neighboring FM lay-
ers by assuming a strong exchange interaction at the
interface between components of the multilayer struc-
ture. Thisinteraction led to separation of theAFM layer
along the monostep into domains featuring SDWs of
helicoidal configuration with opposite orientations.
However, estimates based on the band theory of antifer-
romagnets with SDWs are indicative of a smal
exchange (A < 1) in Fe/Cr multilayer structures|[7, 8].
Therefore, the stateswith helicoida structures are ener-
getically less favorable than the states described by
Eq. (14) [9]. Note that, in the case of wide terraces fea-
turing state (17), the angle between the magnetic
moments of iron layers and those of the interfacial
monolayers of chromium by no means amounts to
180°. For example, at 1, =1, we have Yo = 90°, whereas
far from the domain WaII this angle is equal to 135°.
Thus, the bonds involved in the exchange at the inter-
face are partly frustrated (see Fig. 1). Below, we will
calculate the energy of exchange coupling between the
neighboring FM layers for an arbitrary density of
monosteps.

4. THE ENERGY OF EXCHANGE
COUPLING BETWEEN NEIGHBORING
FERROMAGNETIC LAYERS

L et the above assumptions concerning the morphol -
ogy of Fe/Cr interfaces still be valid. Substituting solu-
tions (14) into thermodynamic potential (9) and per-
forming integration, we obtain an expression for the
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total system energy (effective exchange energy per unit
area (215)?) as afunction of the angle y:

E(p) = —AAD/\cosE“JD+(1 /\)smDJJD

4 (1-A) (k) sin

+ ZH\(kO) cos b

—4[/\ CoS3; %d" kD
4 | (18)
o 1 Oog2@le | 00

—ksnEZ K chEQZ ke

+(1—/\)%sin%%%%—e,kg

| 0
_Ksnlle, kD’ kDD}D
7, g, o) B

where

and E(u, k) istheincomplete eliptic integral of the sec-
ond kind [13]. In the course of transformations, we
excluded the parameters z, and z, by using Egs. (15);
the remaining parameters k, and k, in Eg. (18) can be
calculated using Egs. (16).

Expression (18) can be ssimplified only in some lim-
iting cases. For example, in the case of almost isolated
monosteps, the final result is as follows (lengthy alge-
brais omitted):

E(p) = —AA[/\cosD“j+(1 /\)sn%}

+ 4AAZp[Jcos%2Ma an%ﬁ%

A/cos%%+ AJsiny + sin%%}.

(19)

Thisformulais valid under the conditions

lo [
2>1 =>1,
(o Ce

which imply a sufficiently smooth interface and angles
) not very close to 0 or 1t (see (13)). Thefirst term in
the dependence of the exchange energy on angle U in
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Eqg. (19) coincides with the relation obtained previ-
ously [9], while the second term (a correction on the
order of p{ < 1) represents a positive energy (17) of a
lone 90° domain wall in chromium, multiplied by the
linear density of monosteps p = 2/(l, + |). The next
small term proportional to

(Ky o)* O exp(—o /oo,

representing overlapped tails of the neighboring
domain walls, was neglected. It should be noted that

(sincel ~ /A, see (13)), the conditions of applicability
of the wide terrace approximation are somewhat
improved with increasing temperature or decreasing
AFM spacer thickness, although the magnitude of the
effective exchange energy (19) tendsto decrease:

[E(W)l O AA.

Thus, formula (19) can be used for the interpretation of
experimental data on the effective coupling in Fe/Cr
structures with high-quality interfaces and relatively
thick iron layers.

In the limit of closely spaced monosteps, the SDW
phase @(2) in the AFM layer exhibits small oscillations
about the angle ¢(0):

®(2) = 0)+3(2), 1810 (pY~,

-1/2

_ . J_D le W Eh
@(0) = ZawnJZEa [1+ tanDzD}

Retaining termsto within the second order of smallness
with respect to the ratio |, /{ < 1, we obtain (cumber-
some transformations are omitted)

E(w) = —%é[l+(2/\—1)2+2(2/\—1)cosq1] 12
o 1 (20

_G?ZAPZ[E(\COSDEED +g1 /\)sm%zuag} .

If the interfacial relief represents a plane with sepa-
rate narrow hills of monoatomic height (such that
(p0)?> 1and, eg., l,>l,or A — 1), thefirst termin
expression (20) predominates. This implies that the
magnetic moments of the neighboring FM layersin the
Fe/Cr structure in equilibrium are parale (p = 0); in
contrast, for |, < |, or A — 0, these moments are anti-
parallel (y =172).

In a more interesting situation of strong roughness
(representing a Fe/Cr interface cut with a network of
monoatomic steps), the integral characteristic of fluctu-
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ations in the Cr spacer thicknessis A = 1/2 (or |, = |,).
In the case of

2./612A-17p < 1,

the angular dependence (20) of the interlayer magnetic
coupling energy takes aform corresponding to the effec-
tive exchange with a“biquadratic” interaction [1-3]:

E(y) —E(TU2) = J,cosy + J,cos y, (21)

The coefficients in this expression for the interlayer
interaction energy have arather smpleform and can be
readily evaluated as functions of the Cr spacer thick-
ness L and the temperature T. Note that J,(L, T) ~
A(L, T), while the coefficient J, is not explicitly related
to the SDW amplitude (because % ~ A). In this respect,
the behavior of the biquadratic coupling coefficient,
Jo(L, T) ~ (c,(T)L)2, exhibitsauniversal character inde-
pendent of the particular model of the AFM order
parameter A(L, T) (such as, e.g., (6)) inathin chromium
layer.

The condition of |J,| < 2J, correspondsto an equilib-
rium noncollinear state with an angle between the mag-
netic moments of the FM layers dependent on the inter-
face morphology parameters,

cosy, = 24(2A -1)p°Z?,
and the effective exchange energy
E(Y,) —E(TW2) = —-6AA(A —1)°p°C°.
In particular, for
242N —1)p°* — 0,

the magnetic moments of the FM layers are mutually
perpendicular (Y, = 1v2) and the SDW polarization vec-
tor isvirtually not affected by the spacer thickness fluc-
tuations (Y(2) = 114).

Formula (21) indicates that impaired technological
quality of theinterface (L — 1/2, (p{)? —> ) must
lead to a significant decrease in the interlayer coupling
energy in Fe/Cr structures as compared to a value
(about AA) characteristic of the wide terrace limit. This
conclusion was confirmed by numerical analysis of
E(y) according to Eq. (18). This analysis was per-
formed by simultaneously solving Egs. (16) with
respect to k, and k, for the interface roughness parame-
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ters(p¢, N\) varied within broad limits. Figure 2a shows
theresults of our numerical calculationsfor A =1/2 and
(p0)1=0.1, 1,2, 3,4, 8, »; thedotted curve corresponds
to the calculations using approximate formula (19) with
(p0Q)* =8 (thedataare plotted for 0 < Y < 172, since the
function E(y) for A = 1/2 is mirror symmetric relative
to Y =172).

Figure 2b presents the results of our numerical cal-
culationsfor A = /4 and (pQ) 1 =1, 2, 4, 8, 16, ; the
dotted curve refers to the calculations using approxi-
mate formula (19) with (p{)* = 16 (the pattern of
exchange energy E() for A = 3/4 can be obtained as a
mirror reflection of Fig. 2b relative to the vertical axis
Y = 172). As can be seen, the function E() for p{ = 1/8
exhibits only atrivial minimum at | = 1t The tendency
to the transition from noncollinear to collinear mag-
netic configuration for the FM layers with impaired
interface quality is general for A # 1/2. A comparison
of the families of E()) curves constructed for various
values of the parameter A\ showsthat the case of A =1/2
corresponds to the minimum amplitude of oscillations
in the exchange coupling energy. Thisamplitude signif-
icantly decreases with increasing disorder on the inter-
faces. However, the amplitude of oscillations in the
exchange coupling energy becomes weakly dependent
on the p{ value already for A = 1/4.

5. AN ALTERNATIVE APPROACH:
THE MODEL
OF FERROMAGNETIC DOMAIN WALLS

The model of AFM domain walls considered above
has certain limitations of both physical and geometric
character, which hinders description of the magnetic
order in somereal structures. In particular, we assumed
that the FM layers are homogeneously magnetized (that
is reasonable for the layers of sufficiently large thick-
ness). However, since iron as such possesses a finite
magnetic stiffness y, it can be energetically favorable
for thin FM layers to split into domains—and this will
significantly modify the SDW structure in the chro-
mium layer. A self-consistent calculation of the spin
density distribution in the entire structure for arbitrary
thicknesses and geometries of the Fe and Cr layersis
practically impossible. For this reason, below we only
consider a situation that is, in a certain sense, opposite
to the case analyzed above and is apparently closer to
thelimit of thin FM layers. Note, however, that it isnec-
essary to strictly define a particular geometry (rather
than only amagnetic configuration) of the system under
consideration.

Let us consider, for example, an asymmetric trilayer
(frequently studied in experiments) comprising a thin
(“upper”) and thick (“lower”) FM iron layer separated
by an AFM spacer of chromium. We retain the assump-
tions made in Sections 2 and 3 concerning the Fe/Cr
interface morphology. However, now we will addition-
ally assumethat the order parameter in the AFM spacer
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has a fixed direction (corresponding to the maximum
gain in the exchange energy on the lower interface that
is assumed to be perfectly smooth) and that the rough-
ness of the upper (x = I) interface causes an inhomoge-
neous redistribution of magnetization in a thin FM
layer, so that thelatter separatesinto FM domainsaong
the monosteps.

If the AFM spacer features a homogeneously polar-
ized SDW with an amplitude of A(r) = —-nA(x), the
magnetic moments in the upper FM layer experience
the action of the exchange field £A(l) changing sign
upon crossing each monostep. As aresult, the orienta
tion of the vector m(l, y, 2) in the FM layer gradually
varies over a characteristic length ¢, so as to adjust to
the external field +A(l). Inthelower FM layer, the mag-
netization is constant and equal to m(-) = n,. The ther-
modynamic potential (2)—(5) acquires the form of the
effective functional

F = Fa+Fy, (22)
Fy = dy I dydz%?g E%dz)gzg
{ total} (23)
—AA[ ,[ dydzcosd — J’ dydzcosd | — AA(21)°.

{ odd}

Note that, in the limit under consideration (I/D — 0),
the energy F, and the SDW amplitude A are given by
expressions (8) and (6), respectively. The quantity F,
equal s the sum of the functional of static magnetization
orientation fluctuations in the upper FM layer and the
exchange energy on the lower Fe/Cr interface (the last
term in (23)). The function ¢ = ¢(y, 2) is defined as
follows:

m(l,y,2) =0, my(l,y,2) = cosd(y, 2),
my(l,y,2) = sing(y, 2).

{even}

(24)

In the approximation of a one-dimensional periodic
structure of monaosteps on the upper interface, variation
of thefunctional F,, in Eq. (23) leadsto the sine-Gordon

equations
d’¢ . sind

@_ﬂzo =¥ 2% -9 25
d7 Z2 ' d22+ Z2 : (25)

Here, the first and second equati ons describe the behav-
ior of the angular phase ¢(2) of the magnetization in
parts of the FM layer that come into contact with the Cr
spacer fragmentswith odd and even N, respectively. We
also introduce the natural conditions of continuity of
the function ¢(2) and its derivative dd/dz on the
monosteps. Here, the value of the correlation length ¢
for the magnetization orientation fluctuations in the
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Fig. 2. The angular dependences of the effective interlayer
exchange coupling energy E = E()/AA ( isthe anglein
radians) calculated for A = 1/2 (a) and /4 (b) and various

values of the parameter (pZ)‘1 (indicated at the curves).
Solid curves show the results of numerical analysis of the
exact formulas (16) and (18); dotted curves are calculated

by the approximate formula (19) for (pZ)‘1 =8 (a) and
19 (b).

iron layer of thickness d in the Fe/Cr structure is
defined as

2dy

¢ =2h (26)

The structure and energy of states of the functional
(22)«23), as well as their variation depending on the
parameters |/C and 1/, can be calculated and studied
in detail as was done above for functional (9). We will
not dwell on this case here; we will only mention the
characteristic features of these states.

In the case of arelatively small distance between
monosteps (I, | < ), the domain of variation of the

function determined by Egs. (25) is restricted to the
interval 0 < ¢(2) < 1t Ascan be shown for asufficiently

high density of monosteps, such that (p?¢? > 1 and
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N\ = 1/2, the direction of magnetization of the FM layer
weakly oscillates about the average value

I It
O] = T o[
¢D‘2D 2+D4(D . (27)
In other words, the magnetization of the upper iron
layer is almost completely oriented 90° relative to that
in the lower layer,

o= 1,

The exchange coupling energy per unit area of the
interfaceis

(m,) = 0.

AA

E=-AA———F.
24p212

(28)

In the limit of wide terraces, such that
k|0,e: 2exp(_|o, eIZZ) — 0,

the pattern is different. Far from a monostep, the mag-
netization is amost antiparallel relative to spinsin the
chromium monolayer adjacent to the interface. For def-
initeness, let usassumethat ¢ =0foranodd Nand ¢ =
1t for an even N; in the vicinity of a monostep, vector
m(x = I, z) exhibits rotation by 180° over the angular
correlation length { (26). This state can be considered
asasystem of almost isolated topol ogical domain walls
of thetype

Elwwn[wch%uﬂ}, z>0,

0 ¢

42 = 0 . (29)
m—arcsin| sech=——-+-=|, z<0.
a [ 072 D}

The condition of matching for thissolutionat z=0isas
follows:

sinhg%z sinh%% -1

As can be seen, the vector of magnetization m(x =1, 2)
according to Eq. (24) for the upper FM layer in the
vicinity of amonostep exhibits anoncollinear local ori-
entation relative to the homogeneous magnetization of
the lower FM layer. Therefore, the lone domain
wall (29)—30) can be assigned amagnetization compo-
nent aong the ny axis:

(30)

J’my(z)dz = 2./2¢. (31)
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The description of a domain wall with the opposite
(negative) magnetization is obtained by replacing ¢(2)
by ¢(2) £ 1tin Eq. (25). In the case of an ultimately low
density of monosteps (p —= 0), the system represents
a set of isolated 180° domain walls of different signs
with the energy

= 2AAf1-4p7L - %2%

With alowance for an exponentially small (propor-
tional to exp(-,, ¢/{)) interaction between the neighbor-
ing domain walls, it is possible to conclude that the
most energetically favorable magnetic structure is that
with monotonically increasing (or decreasing) angular
function ¢(2) having the shape of the “devil’s staircase”
type. This structure is characterized by wide (almost
over the entire terrace width) plateaus with a constant
magnetization orientation along n,: $(2) = (2n + 1)mtfor
aneven N and ¢(2) = 2nrtfor an odd N (nisan integer).
These plateaus are separated by thin FM domain walls
of strictly aternating polarization signs along the n,
axis. Averaging over the entire area of the interface
yields

(32)

(n=2A-1, OmO=0.

In the general case, when the relations between
model parameters are not assimple (e.g., I, < { <, or,
viceversa, |, < { <1,), even the simplified model of a
rough interface adopted above requires a complicated
analysis far beyond the framework of this paper. It can
be shown that there is a transition with respect to the
parameter p¢, A between two qualitatively different
regimes of magnetization distribution in the thin FM
layer, as briefly described abovein thelimitsof |, I, <
Candly, l,> C.

As was noted above, the assumption of a thick
“upper” FM layer made for the calculations in Sec-
tions 3 and 4 was opposite to that made in Section 5.
Therefore, expressions for the exchange energy
obtained in the models of AFM and FM domain walls
cannot be compared from the standpoint of the relative
energy gain. A more general theoretical analysis of the
possible magnetic configurations in the system with an
arbitrary geometry of the iron and chromium layers,
which is beyond the limits of the one-dimensional
approximation, remains to be conducted. Nevertheless,
below we will attempt, based on the results, to make
certain inferences concerning the character of the effec-
tive interlayer exchange coupling in real structures of
various geometry and quality of the Fe/Cr interface.

6. CONCLUSIONS
The presence of structural defects on the boundaries
between FM and AFM layers leads both to the frustra-
tion of bondsinvolved in theinterlayer exchange and to
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the formation of inhomogeneous spin configurations
inside the layers. This statement seemsto be valid for a
broad class of magnetic nanostructures of the type
under consideration (Fe/Cr, Co/Cr. Fe/Mn, etc.), while
the mechanisms involved in the development of the
inhomogeneity and frustration for each particular sys-
tem have to be specified. In this paper, we have pro-
posed a theoretical scheme taking into account both
factors, intended for description of the effective
exchange coupling between FM layers in the Fe/Cr
type structure. This structure is commonly accepted as
a model system and, at the same time, considered as
highly promising for practical use in superhigh-density
magnetic recording devices.

Experimental investigations of amagnetic configura-
tion of the Fe—Cr system even of the simplest geometry,
such as a chromium film on a Fe(001) whisker [1, 5]
or athiniron film on amassive chromium single crys-
tal [17, 18], revedled a high sensitivity of this system
with respect to structural parameters of the Fe/Cr inter-
face and the temperature. The magnetic coupling
between FM layers in more complicated systems
(trilayers, superlattices, etc.) is aso an important probe
of the quality of interfaces as determined by the mate-
rial’s preparation technology. For symmetric Fe/Cr/Fe
trilayer structures with a wedge-shaped AFM spacer
and relatively thick (5 nm) FM layers epitaxially grown
on GaAg/Fe/Ag(001) substrates, Schmidt et al. [4]
studied the interlayer coupling using the magneto-opti-
cal Kerr effect and characterized the interface morphol-
ogy by scanning tunneling microscopy (STM). The
magneto-optical data showed evidence of a significant
(severafold) variations in the amplitude of the short-
wave component of the effective interlayer exchange
potential depending on the temperature regime of the
layer growth. On the other hand, a thorough statistical
analysis of the STM images of the growth front in the
same samples revealed a direct correlation between the
amplitude of the shortwave oscillations of the effective
interlayer exchange potential and alongitudinal rough-
ness parameter of the interface (the R value in the best
case was about 22 nm). It was established that the dom-
inant role determining the effective exchange coupling
between the FM layerswas played by special regions of
the Cr spacer with a constant thickness (N = const) and
alateral size of not lessthan 3—4 nm (“pillars’ in terms
of [4]), whereas the other regions (“edges’) of the Cr
spacer featuring frequent monolayer-order thickness
fluctuations were barely involved in the interlayer
exchange.

The approach developed in the main sections of this
paper provides atheoretical basisfor the empirical con-
clusions following from the results obtained in [4]. A
more rigorous description of the system would require
a sdf-consistent (generally speaking, three-dimen-
sional) calculation of the order parameter A(r) in aran-
dom field of the AFM layer thickness fluctuations, fol-
lowed by averaging over these fluctuations. Neverthe-
less, even the simplest model of the interface

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

133

morphology using a minimum number of parameters
(A and p{) and the approximation of magnetic inhomo-
geneities by one-dimensional variations of the SDW
vector (analogous to the domain walls) allowed us to
reveal the main features of the interlayer exchange.
According to formulas (19)—«21) and Fig. 2, the long-
wave components of the roughness fluctuations must
make the main contribution to the interlayer exchange;
on the other hand, it is also evident that this contribu-
tion is limited by the small statistical weight of these
components. Therefore, there must exist an optimum
fluctuation with a certain characteristic length R, that
can be quite naturally related to the “pillars’ observed
in[4].

It should be noted that expression (21) is formally
analogous to the traditional phenomenological model
with bilinear and biquadratic terms. We may suggest
that the interlayer exchange behavior of the Fe/Cr
structures grown in the optimum regime can be
expected to exhibit deviations from (21) toward (19).
Based on the magnetization hysteresis observations,
Schreyer et al. [19] stated that a biquadratic model can-
not explain the residual 50° coupling between the
neighboring FM layersin a[Fe(52 A)/Cr(17 A)] super-
|lattice with rather broad terraces (R= 100 A). Thereare
many other experimental facts (see, e.q., [6, 12, 20] and
the discussion in review [3]) that cannot be given satis-
factory interpretation within the framework of the
biquadratic model either. According to our rough esti-
mates, the correlation length { on which the SDW vec-
tor orientation changes in the chromium layer amounts
to about 1-5 nm, so that an angular dependence of E()
close to expression (19) can be expected in the experi-
ments using trilayers grown by layer epitaxy. As the
quality of the interface decreases (in our scheme, this
correspondsto A —» 1/2, p{ — oo, the probability of
rather wide regions appearing in the AFM layer with
N = const becomes negligibly small and the interlayer
coupling acquires the traditional form of Eq. (21).

Let usbriefly consider the dependence of theinterlayer
exchangeonthe AFM layer thicknessand thetemperature.
Demokritov et al. [20] treated experimenta data obtained
using Kerr magnetometry and the Brillouin light scatter-
ing for symmetric Fe(100 A)/Cr(0-20 A)/Fe(100 A)
structures with relatively thick FM layers within the
framework of a bilinear—biquadratic exchange model.
Using qualitative estimates obtained under the assump-
tions that the magnetic structure of the chromium layer
is weakly distorted and that iron layers are homoge-
neously magnetized, the authors of [20] justified this
model and obtained an angular dependence of the inter-
layer exchange coupling energy that coincides substan-
tially with that given by formula (21) calculated above
inthelimit of p{ < 1and A = 1/2. The experimentsalso
showed that the biquadratic interaction parameter
decreasesininverse proportion to the Cr spacer thickness
and linearly decreases with increasing temperature in the
interval from 77 to 473 K. This behavior of quantity
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Jo(L, T) is quite consistent with the estimate J,(L, T) ~
(c(T)L)™ predicted in Section 4 (for the temperature
variation of the coefficient c,(T), see, e.g., [10]).

In the structures with thin (not exceeding 20 A) iron
layers and highly perfect Fe/Cr interfaces (to which the
model of amost isolated monosteps is applicable), the
state with a 180° FM domain wall described by formu-
las (29)—(30) seemsto be energetically most favorable.
Thisvery state was directly observed in thewell-known
experiments using SEM in combination with polariza-
tion analysisfor the unique structures grown in the opti-
mum regime on a thick iron layer (whisker) [1]. The
surface of a whisker is almost perfectly smooth (p =
1 um™). Using a structure with a wedge-shaped chro-
mium spacer, it is possible to obtain (within the same
sample) a sequence of very wide (I, =1, = R =10 um)
and amost perfectly smooth plane terraces of regular
shapes covering the AFM spacer fragments with differ-
ent numbers N of chromium monolayers.

In accordance with the results obtained in Section 5
for the interlayer exchange according to a mechanism
of the 180° FM domain walls, the magnetization of a
thin Fe layer is oriented noncollinearly relative to the
whisker magnetization only in a narrow region (on the
order of ¢). Pierceet al. [1] pointed out that the noncol-
linear coupling between FM layers exhibited a sharp
drop at achromium spacer thickness close to 24 mono-
layers (i.e., under conditions of the interlayer exchange
coupling phase dip). Our analysis suggeststhat thisfact
is related to a complex rearrangement of the spatial
structure of SDWs in the chromium layer of variable
layer thickness L = 2I, which was recently considered
in[21]. Thisrearrangement naturally leadsto achangein
the SDW amplitude at the Fe/Cr interface, thusdetermin-
ing, according to formula(26), thescale ~ A(1)"2 of the
magnetization orientation fluctuationsin theiron layer. It
should be noted in conclusion that an E() dependence
resembling relation (19) for A = 1/2 and {p = 0 was
obtained in [22] by using acompletely different micro-
scopic model.

In our opinion, the effective exchange coupling in
most experiments (both with Fe/Cr/Fe(001) trilayers
and [Fe/Cr](001) superlattices) is related to variations
of the SDW vector orientation in the chromium layer as
described in Sections 3 and 4. The situation with the
appearance of 180° FM domain walls considered in
Section 5 is the exception rather than the rule. A rough
gualitative estimate of the region of model parameters
corresponding to the states with inhomogeneous mag-
netization of the iron layersis provided by the relation

dy < 8L, where the quantity d = ¢, vﬁ A?/2 can be natu-

raly treated as the exchange stiffness of a thin chro-
mium layer.
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Abstract—A model of the energy band structure of iron borate (FeBO5) is proposed that combines a one-elec-
tron description of the sp states of boron and oxygen with a many-electron description of the d states of iron.
The Green functions of d electrons are cal culated using the exact L ehmann spectral representation. The energies
of the d-type quasi particles are calculated using terms of the d*, d®, and d® electron configurations. The optical
absorption spectrum of FeBO5isdetermined by local excitonsand by the electron excitations with charge trans-
fer. The latter excitations control the nature of the dielectric gap in FeBO; crystals. The model parameters are
determined from a comparison to the exciton energies. The density of single-particle statesin FeBO; is calcu-
lated. The main bandsin the calculated optical absorption spectrum agree well with experimental datafor ener-

giesup to 3 eV. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Iron borate FeBO; is one of afew magnets combin-
ing transparency in the visible spectral range with
spontaneous magnetization at room temperature. This
is a weak ferromagnet with nearly antiparallel spin
sublattices of Fe** ionsin the (111) base plane at tem-
peratures below the Néel temperature Ty, = 348 K [1].
The FeBO; crystals possess a cal cite structure bel ong-

ing to the space group R3¢ (D3y) [1, 2], inwhich Fe3*
ions are surrounded by an oxygen octahedron of an
almost cubic symmetry; bond lengths; Fe-O, 2.028 A
and Fe-Fe, 3.601 A; O—Fe-O bond angles, 91.82° and
88.18° [3]. Under normal ambient conditions, FeBO;is
an insulator with a fundamental absorption edge at

EY =2.9eV [4]. Despite many yearsof research, there
has been permanent interest in studying the properties
of FeBO; crystals. Recent investigations revealed a
structural phase transition in FeBO; [5], a collapse of
the magnetic moment of Fe** ions under pressure [6],
peculiarities in the concentration dependence of the
magnetic and optical properties of some solid solutions
of the V,Fe, _,BO; system [7], and the light-induced
breakage of the magnetic order under conditions of
pulsed optical pumping [8].

At the same time, relationships between the
observed properties and the el ectron structure of FeBO,
have not yet been established even on a qualitative
level. There are difficulties in application of the stan-
dard band theory to FeBO;, which are related to strong
electron correlations involving the d electrons of iron.

Indeed, a one-electron approach to the d° electron con-
figuration of Fe** ion leads to a partly filled band and
the metallic state. In the Hubbard model with strong
electron correlations, whereby U > W (U is the Cou-
lomb interaction parameter and Wisthewidth of ahalf-
filed d band), we obtain an antiferromagnetic state of
the Mott—Hubbard dielectric. However, in FEBO; (as
well asin many other real substances), asimple pattern
based on the Hubbard model is complicated by the
presence of alarge number of d(f) orbitals.

This paper proposes a many-€lectron model taking
into account all d orbitals and strong electron correla
tions involving d electrons. Within the framework of
this model, the density of single-particle states of d
electrons contains contributions dueto local quasi parti-
cleswith energies

Q; = E(d"") -E;(d"),

where E;(d") denotes the ith term of the d" configura-
tion. In the case of FeBO;, the energies of both high-spin

and various low-spin terms of Fe?*, Fe**, and Fe** ions
become significant. An analogous approach was
employed intheanalysisof magnetismind metals[9, 10]
and layered cuprates [11]. The model parameters are
determined from a comparison to the energies of exci-
ton peaks in the optical absorption spectrum. The cal-
culated density of single-particle states, N(E), is com-
pared to the experimental absorption spectrum in a
broad range of energiesE < 3 eV.
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The paper is organized as follows. Section 2
describesthe proposed many-el ectron multiband model
of FeBO;. Section 3 is devoted to calculation of the
local Green functions of d electrons, which iscompared
to the exact Lehmann spectral representation. Section 4
considers the experimental absorption spectrum of
FeBO; measured in a broad energy range. Section 5
compares the calculated density of states N(E) to the
experimental absorption spectra. Finaly, in Section 6
we will discuss the temperature dependence of these
spectra.

2. A MANY-ELECTRON MULTIBAND MODEL
OF THE ELECTRON STRUCTURE OF FeBO,

The ab initio one-electron energy band calculations
performed for FeBO; using the density functional
method in the local spin density approximation [12]
and the generalized gradient approximation [13],
together with the calculation of molecular orbitals of a
FeB;O; cluster [7], reveded the following electron
structure of FeBO;. The empty conduction band € con-
sists predominantly of the s and p states of boron. The
top of the valence band €, isformed mostly by the sand
p states of oxygen. The energy gap E, between valence
and conduction bands in the antiferromagnetic phase
amountsto 2.5 eV [12], which is quite close to the fun-
damental absorption edge (Ey = 2.9 eV). The band of
d electrons occurs at the top of the valence band, and
the crystal field parameter isA = 1 eV [12]. The degree
of hybridization of the d electrons of iron with the sand
p electrons of oxygen is very smal [7, 12], much
smaller as compared to the case of 3d metal oxides.
Thisisrelated to a very strong hybridization inside the
BO; group, where the (BO5)*~ ion doesin fact exist and
the electron orbitals of oxygen are closed to boron
(which accounts for the small p—d hybridization). This
circumstance significantly simplifies the many-electron
model, for whichthed" (n=4, 5, 6) termsof ironin the
crystal field can be calculated, rather than the terms of
ametal—oxygen complex (asin copper oxides[11]).

The intraatomic part of the Hamiltonian for d elec-
trons can be written as

n)\a nxa%

- S

N
+ z z(V)\)\'n)\cn)\'c'_‘])\)\'aloa)\o'a;da)\'c)’

AN o0
28]

where ny, = a{c ., & IS the operator of d electron
creation on one of the five orbitals A with the spin pro-
jection 0 (6 = —0). Thefirst term in (1) describes the
atomic d levels in the crystal field. A small uniaxia
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component of the crystal field is ignored and it is
assumed that
€(tyy) = €4—24/5, €(ey) = g4+ 3A/5.

The other terms in Hamiltonian (1) represent the Cou-
lomb intraorbital (U,) and interorbital (V,,) repulsion
and the Hund exchange J,,.. For the sake of simplicity,
we neglect the orbital dependence of the Coulomb
matrix elements, assuming that the three parameters
(U, V, and J) are related by the well-known condition
U=2v+J

The kinetic energy of d electrons, as determined by
interatomic hopping, is described by the Hamiltonian

Z ztﬁ)\ar)\o J)\0+HC (2)

i,j,o0 AN

where t?j” isthe matrix element of hopping betweenith

and jth lattice sites. The main matrix element corre-
sponds to the hops between nearest neighbors. t ~
thq/]e, — €4l However, in view of the weak p—d hybrid-
ization between Fe and O atoms, this element is also
small, t < U, which accounts for the strong electron
correlation effects. Thus, the model parameters are the
two Coulomb integrals, U and J, the crystal field mag-
nitude A, the position of the one-electron d level rela
tive to the top of the valence band ¢, (& = ¢4—¢,), and
the hopping integral t. The parameters will be deter-
mined by comparison with the experimental optical and
photoemission spectra (see Section 4).

The Fe** ion has ad® configuration that can occur in
various spin and orbital terms. The considerations
below will aso imply the knowledge of the terms of
d* (Fe**) and d® (Fe?*) configurations for description of
the hole and el ectron creation in the many-electron sys-
tem. The energies of terms in each of these d" configu-
rations are expressed via the Racah parameters A, B,
and C [14, 15]. The B, C and A values for the terms of
Fe** ion were determined in [16]: B = 680 cm™, C =
3160 cmrt, and A = 12700 cm ™.

With neglect of a small uniaxial component of the
crystal field, threet,, levels and two e, levels are degen-
erate. For the d® configuration, the ground state °A,
(with & = +5/2) is described by the wave function

+ o+ Lt +

Id° S=5/2,S = 5/20= t],t; t; e, €, |00

i 3

E,(d°) = 5e4+ 10V —10J,
wheret,, A\ =1,2,3)and €, (A = 1, 2) are the oper-
ators of creation of t,, and g, electrons, respectively, in

one of the orbital states A with the spin projection o;
and |00 s the vacuum state for d electrons. The lowest
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excited term 4T, has a nonzero orbital moment and the
spin S= 3/2.
The other excited terms with S= 3/2 can be written

in a similar manner. For example, the term A, has a

configuration of t5;eje; with an energy of

Ey,(d) = 5g4+ 10V —6J.

The low-spin excited term 2T, with a configuration of

toytoy hasan energy of

E,»(d®) = 5g4—2A+2U + 8V —4J.

Let usalsowritethe ground and lower excited terms

of the d* and d° configurations. For d*, the main term 5

for S= 2, & = 2 has a configuration of t3;e; with an

energy of
E,(d") = 4e,—3A/5+ 6V —6J.

Inwhat follows, wewill also consider the term 3T, with
S=1and an energy of

E,(d") = 4e,—8A/5+U +5V—3J

and the term 1E( 5} t5, ) with S= 0 and the energy

Eo(d") = 4e,—8A/5+2U + 4V —2J.

For d®, the main term °T, has a configuration of

1

sulsg€ with an energy of

to
E,(d®) = 6g,—2A/5+ U + 14V —10J,

the excited spin triplet 3T, has an energy of E;(d®), and

31,1

the spin singlet 1A, (t,,t,,) has an energy of Eq(d®). For
the given values of B and A for each term, the corre-
sponding energies relative to the lowest term of each
configuration can be numerically determined using the
Tanabe-Sugano diagrams [14, 15] (see Fig. 1 below).
Note that a half-occupied d® configuration should pos-
sess the electron—hole symmetry. This symmetry is
revealed when the one-electron energies are measured
from the chemical potential level (see Section 5).

3. ONE-PARTICLE GREEN FUNCTION
OF d ELECTRONS

For establishing a relationship between many-€lec-
tron terms and the spectrum of one-particle excitations
determining the density of single-particle states, N(E),
we use an approach based on the generalization of Hub-
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3T, 4T, 2.03 37,
5g IR EIEN

d* d’ d®

Fig. 1. A diagram of terms for Fe**, Fe3*, and Fe?* ionsin
FeBO3. The crossindicates the occupied |owest sublevel of
the term 6A, of Fe** ion at T = 0. Figures at the levels indi-
cate the energies (in eV) relative to the lowest sublevel.

bard's ideas. Since the hops between atoms are small,
the exact one-particle Green function G, (w) =

11F: alc [ITlin the zero-order approximation with respect

to t reduces to the local function GO(w). A consistent
method for calculating the Green functions at t/U < 1
is provided by the representation of Hubbard's X oper-
ators constructed on the eigenstates of H. In our case,
these are the aforementioned terms of d" configura-
tions. For the initial Hubbard model without orbital
degeneracy, the corresponding perturbation theory has
been developed in [17, 18] and the case of arbitrary
degeneracy was considered in [19].

The structure of the Green functions of d electrons
is revealed by the exact Lehmann spectral representa
tion [20], in which electrons are described as super-
positions of various quasiparticles. According to this,
forT=0,

Pk ), Bu(k, )

Go(k w) = . : (4)
- Dw—Qm w—Q;D
where the quasiparticle energies are
Qn, = En(N+1) —Eo(N) -, -
Qn = Eo(N) —En(N-1) -,

and their spectral weights are determined by the matrix
elements

An(k, @) = |0, N|am, N + 107, ©
Bu(k, @) = |0, N —1]a,,[0, NIIF.

Here, |m, NOdenotes the mth many-electron eigenstate
of asystem with N electrons,
Him, NO= E,Jm, NG

so that index misessentially the band index numerating
guasiparticles possessing the spin 1/2, the charge e (as
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seen in the matrix elements), theenergy Q. (Q;,), and
the spectral weight A, (B,)-

At a finite temperature, Lehmann’s representation
can be written, for example, for the retarded Green
function (see[21, 22)),

Ann(k
Gk @) = y W, O
& W=, +i0

()
x[1+ exp(—Qun/ )],

where Q. = E,(N + 1) —E(N) —u and W, is the sta-
tistical weight of state |[nCdetermined by the Gibbs dis-
tribution with the thermodynamic potentia Q:

W, = exp(Q-E,+uN)/T.

At T £ 0, both the ground state |0, NCland excited states
[n, NOare populated. In this case, quasiparticles are
denoted by two indices, mand n, and are considered as
excitations in a many-electron system, whereby elec-
tron added to the N-electron system in the state |n, N[J
induces a transition to the final (N + 1)-electron state
Im, N+ 10

In Lehmann’s representation, |m, NCis the unknown
state of the whole crystal. As will be shown below,
the same structure is inherent in the local Green func-
tion G according to the generalized tight binding
method [19]. This function is determined by the local
many-electron terms |m, NCbbtained in Section 2. Inthe
case of FeBO;, significant contributionsresult from the
terms with N = 4, 5, and 6. Denoting |[m, NO= |p[] we
define Hubbard’s X operator at sitef as

X{ = |pg = |[mNImNT. €S)

In standard writing, X operators appear with cum-
bersome notation indicating the initial and final states.
In order to simplify this notation, we will use the idea
of Zaitsev [17], according to which a pair of indices
(p, q) isreplaced by the so-called root vector (p, ) ~—
ao(p, q) = a. Sincethe set of these vectorsis denumera-
ble, we introduce the numeration o — o, and then
indicate only the number n of the root vector:

le)q X(:(pr q) X‘fxn X? .

This essentially implies that we construct atable of the
correspondence between pairs (p, g), vectors a,,, and
indices n necessary for explicitly calculating the com-
mutation relations. Let us define vectors a so asto cor-
respond to the process of electron annihilation, N, —
N, = +1. Then, the operators of €lectron creation (anni-
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hilation) in state |fAcCcan be written in the X represen-
tation as

g = Zym(n)x?1
” ©)
ane = 3 Via(M(XD)',

Yas(N) = Dblagnslqh= MN|ag.|m, N+ 10  (10)

Since the Hamiltonian H, in the representation of
the Hubbard operators is diagonal, the local Green
functions of d electrons are immediately calculated as

F(n)

w-Q,+i0’ (11)

Gira(k ) = 5 Yag(Myio(n)

where Q, = E (N + 1) — E,(N) is the quasiparticle

energy and F(n) = X0+ OX{%0 is the occupation
factor. Evidently, the Green functions (11) realize Leh-
mann’s representation inside the unit cell but, in con-
trast to noncomputabl e energies and matrix elementsin
such a representation, all quantities entering into
expression (11) can be calculated viathe local charac-
teristics of terms. Here, index n numerates quasi parti-
cleswith a charge e, spin 1/2, energy Q,,, and spectral

weight Aue(N) = ye(N)Yie (NF(N). By virtue of
completion of the basis set of many-electron states |pl)

the total spectral weight is the same as that of free
electrons.

In the diagram technique developed for X operators
[17-19], the series of perturbation theory are con-
structed for the matrix Green function,

Dk, ) = OXY(XE) ',

rather than for the €l ectron Green function rel ated to the
former in the X representation (9) as

G)\)\',c(kl (*)) = zy)\c(n)y;o(nl)Dnn'(ki (*))

It is possible to write a generalized Dyson equation for

the Green function D, in which the perturbation renor-
malizes both the mass operator and the spectral weight.
In the simplest Hartree—Fock approximation, the mass
operator is determined as the Fourier transform of the
hopping integral t,.(k). As a result, the dispersion of
quasiparticles is described by the following equation:

det]| 8 (0 — Q)/F(N) —ty(K)] = O. (12)
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There is an obvious analogy between Eqg. (12) and
the dispersion equation obtained in the one-electron
tight binding method: the structures of these expres-
sions are identical. However, there are important dis-
tinctions as well: first, the local energies Q,, include
(unlike the one-electron energies ¢,,) intracell Cou-
lomb interactions; second, the band index n of aquasi-
particle is determined by a pair of indices of the initial
and final states (differing from the band index A of free
electrons); third, the band structure of quasiparticles
depends (viathe occupation factors F(n)) on the density
of electrons, temperature, and externa fields;, and
fourth, a one-electron rigid band model cannot be
developed for quasiparticles.

For determining the occupation numbers and the
factors F(n), it is necessary to solve an equation for the
chemical potential. In the X representation, this equa-
tion can be written as

z N D(?’IN, mNEl

f,mN

Ne = (13)

mN, mN

where X O is the occupation number for the mth
term of dN configuration at the f site. Each term of d
contributes N electronsto their total number N,. A solu-
tion of thisequation for FeBO; at T = 0 appears as

XM™™0=0
foral mand N # 5, and as
D(+5/2’ +5/2D -1
: =

for N = 5. For the other d® configurations, the occupa-
tion numbersare zero. We takeinto account that, for S=
5/2 in amagnetically ordered phase, the term Eg,(d®) is
split with respect to the spin projection and only the
lowest sublevel isoccupied in each sublattice (+5/2 and
—5/2 for sublattices A and B, respectively). Of course,
there are zero-point quantum spin fluctuations leading
to small population of the sublevels adjacent to S=5/2
(& = 3/2); this small effect is considered below (see
Section 5).

Interatomic hopping in the antiferromagnetic phase
is suppressed by the spin—polaron effect [23]. For the
hops between nearest neighbors, the effective hopping
integral is determined by the product of occupation fac-
tors for the two sites belonging to different sublattices
(A and B) [24]. For the lowest Hubbard band, the effec-
tive hopping Hamiltonian t, differs from the one-elec-
tron integral t,

ti — t2( D(:\5/2' +5/2D+ D(:\Z +2D

+5/2, +5/2, +2,+2 (14)
x(Xg™ ™ O+ X" D,

where X0 and X500 are the occupation numbers of
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and |+2[are the spin sublevels of the terms Eg ,(d®) and
E,(d*) split with respect to the spin projection in the
internal molecular field. For the sublattice A, the level
[+5/200s occupied (being the lowest sublevel), whilefor
the sublattice B (where the lowest level is |-5/20) the
level |+5/20at T = 0 is unoccupied. Therefore, for

FeBO; at T = 0, OX5”>™0 = 0 and, hence, the

occupation numbers of al d* and d® sublevels are also
zero and the widths of the Hubbard bands are close to
zero too.

Asaresult, it isthe poles of thelocal Green function
(11) that determine single-particle contributions of the
d-type to N(E). Figure 1 shows the lowest levels of the
d4, d®, and d® configurations (the cross indicates the
occupied lowest sublevel of the term ®A; of the Fe**
ion). Nonzero occupation factors are inherent in the
transitions A, — d* (hole creation) and 6A;, — d®
(electron creation), but the matrix elementsy,;(n) given
by formula (10) are nonzero only when the difference
between the spins of terms |pland |qls 1/2. In the case
under consideration, this implies that nonzero spectral
weight and nonzero contribution to the density of states
N(E) will be only due to transitions between the lowest
terms of all configurations:

Q, = Egp(d°) —Ex(d%),
Q, = Ep(d°%) —Espo(d).

The energy levels Q, and Q, or the energy band Q, (k)
and Q(k) appearing with allowance for the weak inter-
atomic hopping are analogs of the lower and upper Hub-
bard subbands. In addition, it isof interest to consider the
quasiparticles for which the matrix element (10) differs
from zero, while the spectral weight in the ground state
is zero because of zero occupation numbers: such states
arereferred to as virtua. The virtual states can acquire
nonzero weights upon a change in the electron config-
uration (e.g., in CuO, layers after hole doping [12]) or
upon optical pumping of excited levels. For FeBO3, an
example of such avirtual d state is offered by a quasi-
particle with an energy of

Q, = Egp(d°) —Ex(d). (16)

For comparison with experiment, it is necessary to
determine the model parameters as discussed below.
Previoudly, the optical absorption was studied sepa
rately in various spectral intervals. For this reason, the
next section is devoted to the experimental absorption
spectrum of FeBO; measured in a broad energy range,
E < 3 eV, covering the entire bandgap width E,.

(15

4. OPTICAL ABSORPTION SPECTRUM
OF FeBO; IN A BROAD ENERGY RANGE

Previoudly [25-27], the optical absorption and the

state |pCin the sublattices A and B, respectively; [+5/2[0 magneto-optical Faraday effect in iron borate were

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

No. 1 2004



140

3 T T T T
C

2
=
>
T 2 :
>
%)
o
° 1L |
E A B
i
@]

0_ 1 | | | .

1.5 2.0 2.5 3.0
Energy, eV

Fig. 2. The optical absorption spectrum of a FeBO3 single
crystal measured at 83 K.

studied in the visible and near-infrared (1.0-2.3 eV)
spectral range. The results of analogous measurements
in the region of strong absorption (2.6-3.3 eV) were
reported in [4]. For the sake of convenience, we present
the absorption spectrum of FeBO; measured in abroad
energy range.

FeBO; single crystals were grown by V.V. Rudenko
by spontaneous crystallization from solution melt. The
crystals had the shape of thin hexahedral plates of a
greenish color. The thicknesses of plates selected for
the optical measurements were about 80 pum for the
former spectral interval and 20 um for the latter, the
sample areain both cases being about 2 mm?. Orienta-
tion of the plates corresponded to the easy magnetiza-
tion plane, with the hard axis (coinciding with the opti-
cal axisof the crystal) being normal to the plate surface.
Thus, by applying a small external field parallel to the
plane of the crystal, it was possible to readily change
the magnetic moment direction in the plane. The optical
absorption spectra were measured using an automated
spectrometer in atemperature range from 80 to 300 K.

The combination of a high Néel temperature (T =
348 K) and transparency in the visible spectral range
allows usto perform a detailed comparison of the opti-
cal absorption and magneto-optical effectsin thetrans-
mission mode in the region of three absorption bands
wit minimum energies. Our measurements revealed the
same three groups of absorption bands (A, B, and C,
Fig. 2) asthosereported in [4, 25-27]. These bands can
be interpreted within the framework of the proposed
many-€lectron model as described below. The main dif-
ference of our interpretation consistsin that, in addition
to the d—d transitions °A;4(°S) —» “T 4(“G) (group A),
6Alg(6s) - 4T29(4G) (group B), and 6Alg(es) - 4Algf
“E4(*G) (group C), the C band contains contributions
due to the p—d transitions with charge transfer. We use
the data of Fig. 2 and the X-ray photoelectron spec-
trum [12] for determining the Coulomb parameters of
the model.
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Proceeding from expressions for the d—d exciton
energies, the parameters of A—C bands, and the addi-
tional peaks observed in the Kerr effect in terms of the
Racah parameters, it was found [28] that B = 680 cm
and A = 12700 cm for FeBOs; from the same data, we
readily obtain C = 3160 cm. Note that these values
of B and C are somewhat lower than the analogous
parameters of the free Fe3* ion, but the ratio C/B = 4.65
istypical. The crystal field parameter A = 1.57 eV is
greater as compared to the result (A = 1 eV) of the band
calculations [12]. Using the known values of B and C,
we determine the positions of the lowest excited terms
of d®configurations with spins 3/2 and 5/2 (see Fig. 1)
relativeto the ground term A, from the Tanabe-Sugano
diagrams [14]. The lowest terms of d* and d® configu-
rations are also schematically depicted in Fig. 1. Their
guantitative characteristics are not presented here
because, generally speaking, each d" configuration has
its own level (depending on the chemical potential)
from which the energies are measured. Moreover, even
determination of the positions of excited terms relative
to the lowest term for d* and d® configuration require
knowledge of the corresponding B and A values.

Although the energies of these terms will not be
required below, we present here for reference the corre-
sponding energies determined from the Tanabe-Sug-
ano diagrams assuming that the B and A for F*, Fe*,
and Fe** are the same (in eV):

Fe*: ECE) =0, E(T,) =059, E(IT,) = 1.60,
Fe?: E(T,) =0, E(*A)=0.17, E(*T,)=0.76,
E(T,) = 1.18.

At the same time, the difference E(d™)—E(d") of the
energies of these terms has the meaning of energy
increment per added electron. A peak at this energy is
present on the density of single-particle states N(E). In
particular, for the lowest and highest Hubbard sub-
bands, we obtain

Q, = g4+ 3A/5+4V -4],
Q. = g4—2A/5+U +4V.

In FeBO; at T = 0, the level Q, isfilled, while the
level Q. isempty. Thisimplies that the level Q, deter-
mines the d-type peak in the experimental X-ray photo-
electron spectra or the X-ray absorption spectra
Indeed, such a peak was observed in the X-ray photo-
electron spectra at a binding energy of 1.4 eV [12].
Measuring the energies of single-particle states from
the top of the valence band ¢, we set Q,—, =—-1.4 eV.

As can be seen from the optical absorption spectra,
the intensity of peak C is much greater than those of
peaks A and B. According to the commonly accepted
interpretation of thisfact, peak C isformed not only by
d—d exciton (A, — “A,), but makes a contribution due

(17)
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to the ptd® — p’d°® transition with chargetransfer. The
latter transition, reflecting the formation of ahole at the
top of the valence band and the filling of level Q., has
the energy Q—<, = 2.8 eV. Using the optical data, we
can also determine the Hund exchange parameter J.
The ground term 6A, and the excited term “A; of the d®
configuration possess the energies (independent of the
crystal field) indicated in Section 2. The difference in
these energies, determining the exciton energy for
band C (22600 cm™), is E(*A)-E(°A,) = 4J, from
which it follows that J = 5650 cm™ = 0.70 eV. This
value of the Hund exchangeistypical of 3d elements.

5. THE DENSITY
OF SINGLE-PARTICLE STATES IN FeBO,

A scheme of the density of states obtained for the
proposed model is depicted in Fig. 3. The diagram
shows empty s and p conduction bands with the bottom
of the band ¢, filled valence s and p bands with the top
of the band €, and the bandgap €; — €, = Ejo = 2.9 V.
Thin solid lines (with neglect of the electron dispersion
and damping, described by delta functions) show the
energies of local d quasiparticles. With allowance for
the spin—polaron suppression of interatomic d—d hop-
ping in the magnetically ordered phase (14), the dia-
gram shows only the local d maxima. A fluctuational
contribution to the formation of narrow d bands cer-

tainly exists, being estimated as ts ~t2n,, wherenyisthe
concentration of zero-point quantum fluctuations [24].
For a three-dimensional isotropic antiferromagnet, the
typical value of S— [H{= 0.078 [29] yidlds n, = 0.03
and t, = 0.035 eV, with the corresponding bandwidth of
2zt,= 0.42 eV.

The upper filled d band Q, (15) is situated below the
top of the valence band, while the lower empty d band
Q. is below the bottom of the conduction band (inside
the bandgap). Thus, the dielectric gap is determined by
the excitations with charge transfer, pd®> — p°d®,
from the top of the valence band to the conduction Q.
(chargetransfer gap intermsof Zaanen et al. [30]. Note
that the energy of transitions between lower and upper
Hubbard bands,

Q.-Q, = Ey(d°) + Ey(d") ~2Eq(d”),  (18)
can be considered as the effective Coulomb repulsion
energy Ug. In the Hubbard model Uy = U, but in our
case Uy # U (because of the orbital effects): Uy = U +
4J — A. This parameter (in comparison to the d-band
width) determines the character of strong electron cor-
relations in the system studied. The experimental val-
ues of Q, and Q. presented in Section 4 yield Uy =
42eV.ForJ=0.7¢eV and A =157 eV, weobtan U =
297eV andV=(U-J)/2=1.15¢eV.
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Fig. 3. Schematic diagram of the density of statesin amag-
netically ordered phase of FeBO3. The Fermi level is situ-

ated above the top of the valence band €,,.

A solution of Eq. (13) for thefilled d° configuration
is the chemical potential occurring between the empty
level Q. and thefilled level Q,:

_1 e +948 L av_
V= 2(QC+QV) -sd+2+lo+4v 2J.

Measuring energies relative to the chemical potential
clearly revea sthe electron—hole symmetry of the system:

u A
Qc_u = §_§+2‘] = _(Qv_u)'

The spectral weights of states Q, and Q. (with
allowance for spin) is unity, rather than two as in the
case of free electrons. In the diagram of Fig. 3, primed

symbols indicate the virtua levels Q, (16), Q, =

E('T,) — E,(d%), and Q. = E(*A,) — E,(d*). The spec-
tral weight of these levels in the ground state is zero,
while the energies of transitions Q, Q,, Q. —-Q,, and
Q' —Q, coincide with the exciton energies €,, €z, and
€c. Under the conditions of optical pumping of the
terms “T,, “T,, and #A,, their populations are no longer
zero and the spectral weights of the virtual levels Q,,

Q. , QU are proportional to the concentration of opti-

caly excited Fe** ions. Thus, the exciton transitions
inside the same d" configuration can be represented by
avirtua leve in the one-electron density of states, and
the Q, —= Q, transition corresponds to the appearance
of aholein the band Q, and electron in the band Q'

Let us consider interpretation of the optical absorp-
tion spectrum within the framework of the proposed
model. Since the exciton band A was used for determin-
ing the model parameters, the coincidence of theoreti-
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cal and experimental energiesfor thisband istrivial. At
low temperatures, band A exhibits splitting into compo-
nentsA,—A,. Line A, isinterpreted as a magnon satel-
lite of the pure exciton line, and bands A,—A ,, as mag-
non repetitions of the exciton—magnon line A, [25].
Indeed, at low temperatures, the spin levels E{(d") are
split by the internal molecular field | E0with respect to
the spin projection M,

Eg(d", M,) = E(d") - (BTM,. (19)

At T =0, only the sublevel M, = +5/2 of theterm 6A, is
occupied, so that transitions to the lower sublevel
M, = +5/2 of the 4T, term require the participation of a
magnon.

Asfor the peak B, this absorption band corresponds
to the exciton with € = E(“T,)—E(®A,). The band C con-
tains contributions due to exciton ec = E(*A))-E(A,)
and due to transitions from the top of the valence band
to the bands Q.. (excitation with charge transfer).

6. TEMPERATURE DEPENDENCE
OF THE INTENSITY OF BAND A

The temperature dependence of the band structure of
local quasiparticles is revealed by genera formula (7)
showing temperature blurring of the distribution func-
tion. However, magnetic materials exhibit a stronger
dependence due to interrelated electron and magnetic
subsystems. All the absorption lines A;—A, shift by
40 cm toward lower energies when the temperature
increasesin the range from 30 to 200 K [28]. For theA;
component, relation (19) yields

AE(T) = E5/2(d51 +5/2) - E3/2(d5, +3/2)
= AE(0) + 1 (301

Asthetemperature T grows, the value of [ decreases
so that AE shifts toward smaller energies. The results
of measurements of the sublattice magnetization

[(T) [31] show that

[51(30 K) — (5200 K) _ 1
(51130 K) 8

Using this estimate and the shift of exciton A,,

DE(30 K) ~AE(200 K) =31 x 2,
it is possible to evaluate the Fourier transform of the
interatomic exchangeintegral forg=0as| = 0.015¢eV.
This value determines the Néel temperature and, in the
simplest variant of the mean field approximation,

Ty = IS(S+1)/3.

This yields Ty = 317 K, which is quite close to the
experimental value of Ty = 348 K. We can also relate
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the magnetic and electron parameters by assuming that
| = Jz, where J is the indirect exchange interaction
between neighboring Fe** ions. Estimating this quan-
tity as

J 02t/ Uy,

weobtaint, = 0.05 eV. In Section 4, the fluctuation con-
tribution was estimated as t, = 0.035 eV. Therefore, the
electron, magnetic, and optical properties of FeEBO; in
the proposed model exhibit a sufficiently good mutual
agreement.

7. CONCLUSIONS

A question can arise asto how correct aretheresults
of one-electron energy band calculations [12, 13] and
can these results be applied to a system such as FeBO;
with electron—spin correlations. Indeed, calculations
[12] performed in the approximation of the local spin
density functional ignore the correlation effects. As a
result, the Fermi level falls within a partly occupied d
band that implies the metallic state. Calculations [13]
performed in the generalized gradient approximation
take into account nonlocal corrections to the density
functional, although it is not clear whether this
approach adequately describes the regime of strong
electron correlations. Nevertheless, the antiferromag-
netic phase exhibits a dielectric state [13]. The calcula
tion of pressure-induced changes in the magnetic state
also rather well reproduces the magnetic and structural
phase transitions observed recently [5, 6].

We believe that the results of band calculations in
the local density functional approximation can be used
as the initial information that should be supplemented
by corrections for the transition from one-electron
description of d electronsto local quasiparticles—excita
tions between d" and d"*?* terms. There are no reasons
for not believing the results of band calculationsfor the
sand p states of boron and oxygen. The bandgap width

Ef_f) is close to the experimental value, the crystal field

A is 1.5 times the value according to the band theory,
and the d band width in thistheory is significantly over-
estimated.

On the other hand, it is by no means possible to use
the level positions and occupation statistics obtained
for the one-electron d band. The strong electron corre-
lations not only split the d band into Hubbard's sub-
bands, but (even moreimportantly) change the statistics
of quasiparticles of the d type. As was demonstrated
above, this givesriseto very unusua virtual states with
the spectral weights determined by the nonstoi chiome-
try or theincident light intensity.

Recently, [32], we interpreted the phase transition
under pressure in FeBO; within the framework of the
same model as being due to the intersection of the lev-
els of terms ®A; and “T, caused by increasing crystal
field A. The model parametersin [32] were partly deter-
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mined using the results of band calculations [12] and
partly based on the optical data. Subsequently, it was
established that this approach can lead to ambiguous
results, since the theoretical and experimental values of
the same quantity are not independent. In this study, we
have used only experimental data for determining the
model parameters. As aresult, the values of U = 3 eV
and J = 0.7 eV have proved to be much greater than
those obtained in [32]. However, the conclusions [32]
concerning the nature of the phase transition in FeBO,
under pressure remain fully valid.

To summarize, we have constructed a many-elec-
tron model of the band structure of FeBO; taking into
account both the one-electron s and p states of boron
and oxygen and many-electron terms of Fe?*, Fe**, and
Fe** ions formed under the conditions of strong intra-
atomic d—d correlations. The density of one-electron
states exhibits a set of narrow peaks related to local
quasiparticles of the d type on the background of
valence and conduction bands. Each quasiparticle cor-
responds to an electron with charge e, spin /2, and a
reduced spectral weight. Only the sum of the spectral
weights of al quasiparticles gives the one-electron
spectral weight. Using this approach, it is possible to
identify, with good fit to experiment, the main features
of the absorption spectrum of FeBO; related both to
excitons and the electron excitations with charge trans-
fer. The parameters of electron and magnetic structures
are also well consistent.
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Abstract—Atomic systems with three or more equidistant energy levels, in which a cascade process is possi-
ble, are considered. Hamiltonians obtained for such systems are anal ogous to Hei senberg Hamiltonians, but for
systems with integral spins. For Dicke states in multilevel systems, quantum-mechanical mean values of the
energy of a cooperative system are calculated taking into account weak interactions between atoms. The type
of emission preceding superradiant avalanche emission of the system is analyzed. It can be expected that a
coherent state may be formed, in which collective processes affect one another not only via population of the
intermediate common layer, but also via phasing of pure quantum states. The single superfluorescence pulse
that can be formed in this case is not a simple superposition of two or more pulses of sequential superradiant
transitionsin two-level systems. © 2004 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

It is well known that simple quantum systems
(ensembles of two-level atoms interacting via a radia-
tion field, electrostatic field, dipole—dipole interaction,
etc.) exhibit a number of light-induced phase transi-
tions[1]. Analysis of such nonequilibrium phasetransi-
tions has shown that a deep-rooted analogy exists with
second-order nonequilibrium phase transitions that
emerge in a spin system when there is interaction with
a constant (Coulomb exchange interaction) that
exceeds the energy of thermal motion, leading to spin
disorientation. Spontaneous spin coorientation arising
in the system in this case is manifested on a macro-
scopic scale in residual magnetization. Phase transi-
tionsare also induced in quantum-optical systemsby an
interaction leading to the establishment of a definite
order in the orientation of so-called energy spins (or
isospins) [2, 3] observed in the case of Dicke superra-
diance [4]. The correlation of optical dipole moments
of individual atoms observed in this case leads to the
formation of a macrascopic dipole moment, which is
proportional to the number of emitters. Consequently,
the superradiant intensity turns out to be proportional to
the square of this number, while the superfluorescence
timeisinversely proportional to thisnumber. Moreover,
aswas shown in [1] from analysis of the polariton gen-
eration state in an open medium of two-level atoms
interacting via the Stokes field during Raman scatter-
ing, the emergence of the superradiance regime is sub-
stantially one possible phase transition.

Superfluorescence belongs to the class of coherent
optical phenomena. The concept of coherence in this
case pertains to the emitting system rather than to the
electromagnetic field. The reason for the emergence

and evolution of coherenceis assumed to be associated
with the total radiation field of atoms that affects the
state of each atom. Consequently, the mechanism of
interaction via the reradiated field is regarded as the
most universal type of interaction in such systems.
However, an atomic ensemble in the medium of two-
level atoms with constant dipole moments can also be
collectivized due to the static dipole—dipol e interaction.
In crystals, an additional interaction via phonons also
takes place.

The analogy with equilibrium second-order phase
transitions occurring in magnetic systems is so much
more deep-rooted that the Hamiltonian describing the
behavior of two-level atoms in the radiation field and
taking into account the interaction between atoms is
anal ogous to the Heisenberg Hamiltonian for spin sys-
tems. Attempts at reducing the Hamiltonian directly to
the Heisenberg Hamiltonian [5] as in the case of spin
systems were repeatedly made in quantum optics.

At the same time, the group-theoretical approach
[6, 7], which in fact generalizes the Dicke theory to the
case of multilevel emitters, was developed and effectively
applied even in early works on superradiance [6, 7]. It
was noted that it is important in the Dicke theory to
choose the stationary states of the unperturbed Hamil-
tonian in the form of irreducible representations of the
U, group in the energy space of a system. In the case
of a multilevel system, the basis of irreducible repre-
sentation of the SU,, group (n is the number of energy
levels) plays asimilar role.

The electric dipole interaction plays an important
role in the stabilization of superradiant states even
when atoms possess only dipole moments of transi-
tions. The effect of the Coulomb interaction on super-
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fluorescence of a system of two-level atoms was stud-
iedin[8] using a semiclassical approach. It was shown
that the Coulomb interaction induces coherent transport
of excitation in the system of atoms, which leads to
approximate spatial homogeneity of inversion in a
chain of atoms. Thus, the statement was formulated and
proved consistently that the Coulomb dipole—dipole
interaction not only preserves (contrary to the prevail-
ing opinion) the superradiant state, but even facilitates
the stabilization of this state. It was also proved that the
Coulomb interaction must be taken into account in all
systems with a small Fresnel number, since the time t,
of “exchange” of excitations in such systems is much
shorter than the superradiance time 1x. An attempt at
including the Coulomb interaction for a small number
of atoms was also made in earlier publications [9],
where it was proved that the el ectrostatic interaction in
the semiclassical approximation does not affect the
superfluorescence dynamics, but leads to phase modu-
lation. However, a more detailed analysis of superfluo-
rescence dynamics taking into account the Coulomb
interaction [8] revealed that the fluorescence as a func-
tion of time exhibits clearly manifested oscillations,
which could be attributed to the propagation of wave-
type excitations in the system.

Mechanisms of phasing and the role of the dipole—
dipole interatomic interaction in cooperative systems
were studied in[10], where superfluorescence effectsin
various physical systems, including small (Dicke col-
lection of atoms) and extended (coherent waves in a
magnetized plasma) systems, were studied from a uni-
fied point of view.

The Hamiltonian of a system of two-level atoms,
which takes into account the Coulomb dipole interac-
tion as well as interactions via the reradiated field and
is similar to the Heisenberg Hamiltonian in the theory
of magnetism, was derived from the first principles
in [11]. The Hamiltonian obtained in this way is used
for studying wave excitations of the system, which are
similar to spin waves in ferro- or antiferromagnets. It
was shown that it is these excitations which lead to the
characteristic temperature dependence of the superflu-
orescence intensity. In addition, the critical temperature
at which superfluorescence disappears and a second-
order phase transition occurs in the system was calcu-
lated.

The case of three-level systemswas studied in detail
in [6] on the basis of the group-theoretical method.
Namely, complete classification of coherent states is
given and properties of spontaneous radiation are ana-
lyzed.

In a system of three-level atoms, the following
modes leading to qualitatively different dynamics are
possible.

1. Cascade superradiance [12], when the 3-2 and
2-1transitionsare alowed and the 3—1 transition isfor-
bidden.
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2. Two-frequency superradiance (A scheme) [13],
when the 3-2 and 3—1 transitions are allowed, but the
2-1 transition is forbidden.

3. Superradiance with a common lower level
(V scheme).

In the superradiance limit, when the collective
superfluorescence times are much shorter that the time
of noncorrelated decay, the equations of pure superra-
diance generalizing the equation for an aggregate of
two-level atoms were derived in [6] and the solutions
are classified depending on theinitial occupancy of lev-
els; the cases listed above were actually derived in [6].

Cascade superfluorescence was considered in [12]
in the semiclassical approximation. It was shown that,
under the condition 1, < T, (1, isthetime of the 3-2 col-
lective decay and 1, is the same of the 2—1 transition),
superradiance pul sesfor the upper and lower transitions
do not overlap and the system decay can be described
in the two-level model approximation. For 1, > 1,, the
pulses emitted in the first and second transitions over-
lap and it is assumed that these pulses mutually affect
the decay kinetics only via the population of the com-
mon level. The same mutual effect of collective pro-
cesses on two transitions is also typical of other decay
modes in three-level systems. Equidistant levels and
semiclassical states of the Glauber type for the multi-
level Dicke problem are considered in [7].

In the above-mentioned publications, the main
mechanism determining the system collectivization is
the interatomic interaction via the reradiated field; the
same interaction also determines the structure of the
Hamiltonian of the system. It should be noted, however,
that the constant of thisinteraction is small [1] in com-
parison with the equilibrium temperature of the atomic
system, with the equilibrium thermal radiation of the
system, and, finally, with the intensity of the pumping
field which playsthe role of the parameter being varied
in radiating systems and is an analog of temperature.
Tracing the adopted analogy with spin systems, we can
recollect that the constant of the direct magnetic-dipole
interaction isalso infinitesimal as compared to the char-
acteristic constants of the ferromagnetic system,
athough the operator of thisinteraction explicitly con-
tains the dot product of the spin operators for pairwise
interacting particles. However, it is not this product that
determines the collective effect of coorientation of
spinsin the system. It was proved in [11] that the struc-
ture of the Dicke Hamiltonian for asystem of two-level
atoms might indeed resemble the Heisenberg Hamilto-
nian, while the interaction constant is of the same
exchange nature as the Heisenberg parameter. In addi-
tion, this parameter is no longer small and may be as
large as severa T's in accordance with the estimated
givenin[11], where T is the gas temperature in energy
units. Thisinteraction leads to splitting of energy levels
of the system of two-level atoms, which are degenerate
in the principa cooperative number.
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Here, we consider a special case of a system with
three or more equidistant energy levels, in which a cas-
cade process can occur. For such systems, Hamilto-
nians similar to Heisenberg Hamiltonians [11], but for
systems of integral spins were obtained. In contrast to
two-level atoms, for which Dicke's states are the eigen-
states for the corresponding Hamiltonian, these states
for multilevel atoms are not the eigenstates for the
Hamiltonian taking into account the dipole interaction.
For these states, quantum-mechanical mean energy val-
ues for cooperative systems are calculated taking into
account weak interatomic interaction. Analysis of the
radiation emitted by the system prior to superradiant
avalanche emission shows that we can expect the stabi-
lization of a coherent state in which collective pro-
cesses mutually affect one another not just viathe pop-
ulation of the intermediate common level, but also via
phase rel ations between pure quantum states. In thissit-
uation, a single superfluorescence pul se can be formed,
which is not a simple superposition of two or more
pulses of sequential superradiant transitions in two-
level systems. It turns out, in addition, that three-level
systems must exhibit a delay preceding the final emis-
sion of coherent radiation, which is analogous to that
observed in a system of two-level atoms [11]. Such a
delay should not be observed for four- or five-level sys-
tems, and the process of spontaneous emission
smoothly transforms into a superradiant state.

2. HAMILTONIAN
OF A COOPERATIVE SYSTEM (j = 1)

Let us consider a three-level cascade diagram in
which the energy levels form a sequence

E,<E,<E,.

The state of each atom can be described by aspinor x [4],
where

0,0 0,0 0,0
EdE oV0 0lo

X(1) = 000, x(2) =000 x(3) =0op0
Ul 00 0

010 0oQ 0oQ

indicate that an atom isin an energy state with E = E;,
E,, and E;, respectively, or, in other notation,

x() =1i=1j,=-10 x(9=li=1j,=00
X(3) =1i=1j,=10

where j and j, denote the value of the so-called isoen-
ergy spin and its component. Then the state of a system
of two noninteracting atoms can be written in the form
of the simple product of spinorsy, and ¥,,, correspond-
ing to atoms | and I1:

X = X)X (k),
whereindicesi and k assume values of 1, 2, and 3.
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If, analogoudly to [4], we introduce the operator

~ Hioof
j = |:| Dy
z DO 00 g
000-1
the Hamiltonian of the noninteracting system can be
written in the form
|:|0 = 8(]|z+]||z),
€ = Eg—E, = E,—E,.

In this case, we have

|:|0X|,|| = 8(]|z+]||z)X|,||- (1

Some energy states of a system of two interacting
atoms, e.g., such that the first atom is in a state with
energy E; and the other isin a state with energy E, (in
this case, the energy of the systemisE = E; + E,) or,
similarly, for a state with E = E; + E;, may correspond
to the functions

Xin = Xi(2)Xxu(1),
Xin = Xi(3)Xu(2),
Xin = Xi(3)Xu(1).

X = Xi(D)xu(2),
X = Xi(2)Xu(3),
X = Xi(D)xu(3),

Thus, the system is degenerate. In addition, functions
X, and x; ;, are mutually orthogonal.

We will take into account the interaction of atoms
whose mechanism may be any of those listed above in
accordance with the experimenta situation. We will
describe this interaction symbolically with the help of

operator V, ;. The constant of any of the interaction
types listed above is smaller than the energy difference
€ so that conventional perturbation theory with degen-
eracy isapplicable. The correction to the total energy of
the system for this perturbation is well known [7]:

e = K+A, )

where,

K= &|,|||\A/I,II|X|,||D A= &;,|||\A/I,II|X|,||D

in the case under consideration. In this case, the isospin
functions of the symmetric and antisymmetric forms
will be regular wave functionsin the zeroth approxima-
tion. The symmetric regular wave functions corre-
sponding to the upper sign in formula (2) describe the
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states with total isospin J of apair of atom and with its
component J,:

|9=2J,=20= |1, 151, 13
b=2J,=10

1

= = (|1, 1|1, 0G + |1, 0GIL, 10),

ﬁ(l 41, 04 + |1, O, 10)

|3=2J,=00= |1,05[L, 03,

3=2,3,=-10
| (39)

1
= —(]1,-10J1, 03+ [1, 041, -10),
ﬁ(l (311, Of3 + |1, 0|1, —163)

J=2J,=-20= [1,-10L, -10
1

|9=0,J,=00= —(|1, 1GJ1, -15
z /\/é

+11, 101, 14— 2|1, O4|1, OL)).

The regular antisymmetric wave functions correspond-
ing to the lower sign have the form

B=1J,=10

= L (11,101, 03— 11, 01, 13),

2

J=1,J,=00

L (L 101, 13- 11, 151, 1),

2

(3b)

N=113,=-10
1
= — (|1, -10JL, 03— [1, 0L, -1).
ﬁ(l (311, 0L -1, OG1, —1L3)

It can be seen from relation (2) that, if theinteractionis
taken into account, antisymmetric states are more
advantageous for A > 0 and, conversely, symmetric
states are more advantageous for A < 0. The energy
states of a diatomic system with E = 2E, and E = 2E;
are initially nondegenerate; for such states, only one
(namely, symmetric) state is realized. The state with
E = 2E, is doubly degenerate; on account of the inter-
action, this state splits into two states (symmetric state
[J=0, J,=0Cand antisymmetric state |J = 1, J,= 00} cor-
responding to different energy sublevels.

We introduce the operator
Pii=j102+ (1 Ejz)z— 1,

where ]1)(; jly, ]12, ]Zx, ]2y, ]22 are equivalent to the
matrices of the operator of the x, y, and zcomponents of

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

the momentum, which is equal to unity. We can verify
that the eigenval ue of the operator

¥ = (u+]2)’

for a symmetric state corresponds to the total isospin J
of asystem of two noninteracting atoms, which is equal
to 2 or 0. For an antisymmetric state, the total isospin J
of the system is equal to 1. Similarly, it can easily be
seen that the eigenvalues of operator P;,1 are equal to
+1 for symmetric states and to —1 for antisymmetric
states. Then, the operator describing the interaction of
the two atoms and explicitly taking into account their
isospin states can be written in the form

hie = K + APy 1
or

P = K+ A1 G2+ (1 G2)°-1). (4)

If we now consider a system of N atoms and take
into account pair interactions only, the corresponding
Hamiltonian can be written in the form

Hiw = (K _A)W
ey . ®)
+AZ[(jk|:j|) +j 0,
k<l
where k and | are the numbers of the atoms. Then the
total Hamiltonian describing the system of pairwise
interacting three-level atoms has the form

A =63 detAS [Gc0) + k0l +NE,. (6)
k k<l

It should be noted here that, in contrast to a two-
level system, the Dicke states [4] characterized by the
value of the total isospin of the system (or the so-called
the cooperative quantum number R) and the isospin
component along the z axis (polarization number m) are
not the eigenstates of operator (6) due to the presence
of the nonlinear term in this operator.

3. DICKE STATES

We will calculate the energy values for amultiparti-
cle isospin system. The second sum appearing in for-

mula (5) can be expressed in terms of operator R of
the sguared total isospin of the system:

2 s 1D'~2 '.*ZD
I<Z<|Jk|:]| -QEQ—ZJ%- )

The quadratic term can be written in terms of oper-
ator 3° of the squared pair spin and calculated taking
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into account quantum averaging over states with defi-
nite values of the pair isospin,

S ()’

k<l

042 _a2.20 ..
¥-2 [0, 3,|j1j2.J.i, 0000,
XZ%( oy |i1izJ2] Dé:é

e nls,

N(N 1)

(8)

where 0D, J,|j1j,j0i,J are the Clebsch-Gordon
coefficients.

The eigenvalue of operator (7) acting on state |R, m

with total isospin R and its projection m has the form

PR 1 .
ij Or = 5(R(R+1)=Nj(j +1)). €)
The averaged value of operator (8) hasthe form

Z(Jkﬁl)

Then the energy of interaction corresponding to for-
mula (5) is given by

4R(R 1) 10

Eine = (K_A)W
(11)
[w +5(R(R+1)=Nj(j + 1))}
Considering that |
we obtain

= 1, for the energy of interaction,

N(N-1) ,N(N+1) A
2 —A 2

The total energy of a cooperative system has the
form

Eint =K

SR(7R-1). (12)

E, = em+ NE, + K N(N=1)
N N+1) A (13
% AR(7TR-1).

The states with a definite polarization number mare
not degenerate any longer since the degeneracy in the
total isospin (or cooperative quantum number of the
system) isremoved in view of theinteraction described

by the second term in formula (5). Dicke states |R, m[]

with different values of R (R can assume valuesfrom N
to |m]), but with the same m now correspond to differ-
ent energy sublevels as in the case of two-level sys-
tems[11].
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It can easily be seen that, for A > 0, the state corre-
sponding to the minimal energy of asublevel isthe state
with the minimal possible value of R = |m| for a given
m; i.e,, R=0inastate with m= 0. The state

IR=0,m=00

kr<|| (|Jk 1 ja =100 =1, j5 =-10 (14)

=1, ja =10 = 1, j4 = 10
—2ljk=Ljx=00j,=1,j, =00

is completely symmetric.

According to Dicke[4], theradiation intensity of the
system is defined as

I = Io(R+m)(R—m+1),

wherel,istheintensity of radiation emitted by an atom
[4, 13]. This expression clearly shows that coherent
radiation can be emitted if Rislargeand |m|issmall. In
state (14), the system does not emit at all; the probabil -
ity of atransition from this state is equal to zero.

Let us consider in greater detail the evolution of the
system until theinstant when its coherent decay begins.
For a transition of the system from state |mJto state
|[m — 1C1the probability of the system being on one of
sublevels degenerate in Risfinite. This probability can
be calculated with the help of the relation specialy
derived in [7] for a degenerate system:

2
1 Vir_1Vir

VRR_VR—lR—le(m_(m_ 1))

_ ‘B(N(Nz—l)_AN(N; 1) AR(7R 1F

Wg_1 =

y %N(Nz‘l) —AN(N2+ Dy %‘(R—l)(?R—S)%

In this case, the system tends to be on a sublevel with
theminimal possible R (namely, with R=m). Thisleads
to a decrease in the radiation intensity at each step in
accordance with the law

| O1(R+m) = 2ml,.

From all possible states |R, mCwithm= 0, it is precisely
the state with R = 0 that is most advantageous from the
energy point of view. However, it was noted by Dicke
[4] that the system does not emit in this state, being in
a sort of “frozen” state in a shallow well. The system
can perform atransition from asublevel withR=0to a

No.1 2004
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sublevel with R= N only as aresult of interaction with
the radiation field, which induces avalanche emission
of the entire cooperative system [4, 11]. This effect of
gradual “freezing” of the system can explain the exist-
ing delay preceding the emission of a superradiant
pulse. A transition to this state is always accompanied
by the emission of incoherent radiation with a decreas-
ing intensity.

Thus, the state preceding a superradiant pulseisthe
state of the system in which half the atoms are distrib-
uted uniformly between the upper level E = E; and the
lower level E = E,, while the other half populate the
middlelevel E = E,.

4. HAMILTONIAN
OF A FIVE-LEVEL COOPERATIVE SYSTEM

(i1=2

A cooperative system of five-level atoms can be
described as a system of particles with an energy spin
(isospin) of j = 2. Inthe case of apair of such atoms, the
symmetry of energy levels is as follows: even states
with isospins J = 4, 2, 0 of the pair of atoms are sym-
metric, while odd stateswith isospinsJ = 3, 1 of the pair
of atoms are antisymmetric. We will write the complete
system of eigenvalues of the dot product operator

j1 02 of atomic isospins:

J = 4, E = 4 (symmetric),
J =3, fl_EjAz = 0 (antisymmetric),

J =2, j10. = -3 (symmetric), (15)
J=1, m = -5 (antisymmetric),

J =0, 11E]2 = —6 (symmetric).

Let us how compose an operator P, » taking into
account the symmetry properties of the spin function of
a pair of atoms in such a way that the action of this
operator on a symmetric state results in an eigenvalue
of (+1), while its action on an antisymmetric state
results in an eigenvalue of (=1). This operator has the
form

Po2 = ?—iLé(JAl o) + é(JAl 02)°
13- .2 5, = (10
—3gU1b2) =5(:02) - 1.

If we now replace +A in expression (2) by this oper-
ator, we abtain the following expression for the Hamil-
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tonian of a system of N five-level pairwise interacting
atoms:

N(N 1), A

Hiw = (K—A) 6

Z%(J EjJ) +(Ji E]J)

i<j

(17)
- 1—63(ii 015 G -6 EL
]

5. GROUND STATE
OF A SYSTEM WITH j = 2

We will calculate the values of the operators appear-
ing informula (17) and averaged over Dicke states tak-
ing into account the Clebsch—Gordon coefficients:

S (100" = 6R(R-1),

1<)

= —(R(R+ 1) —6N),

(18)
= _3R(R-1),

I<]

z JIEJJ)

Then the energy of interaction has the form

= 2ER(R-1),

N(N 1) A7R

0

En = (K=A) 2D10(13R+ 37) - 15ND
Thetotal energy of a cooperative system withj = 2 has

the form
E, = em+ (K—A)w
(19)
2%7—R(BR +37) - 15N,
D

It can be seen from thisrelation that the ground state for
A > 0 is a state with the maximal cooperative number
R = N of the system. Thus, immediately after the pump-
ing to the uppermost state (in m), the system aways
passesto symmetric states only, remaining on sublevels
with the maximal cooperative number, since it is these
states that correspond to the lowest sublevels for a
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given m. The system can emit radiation in such a state,
the radiation intensity increasing until the system
attains a state with small values of |m| and with large
values of R. In this case, the intensity becomes propor-
tiona to the squared number of atoms and emission
becomes cooperative.

6. COOPERATIVE SYSTEM
OF FOUR-LEVEL ATOMS

A cooperative system of four-level atoms can be
described as a system of particles with an isospin of
] =3/2. Possible symmetric and antisymmetric pair
states of such a system will be listed below. Asin the
previous cases, al symmetric states correspond to the
correction to the pair interaction energy of atoms,
which is given by

e = K+A

whileall antisymmetric combinations correspond to the
correction given by

e = K=A.

Thus, we can introduce an operator that automatically
takes into account the symmetry of states and the corre-
sponding sign of the energy correction:

I53/2, 32 = S(Il []Az)3 + %(Il E]A2)2
(20)
-2 02 -2
g2 73
This operator has an eigenvalue equa to +1 for the

action on symmetric states and an eigenvalue equal to
=1 for the action on antisymmetric states.

Symmietric states have the form
|3 =3,J3,=30= |3/2,3/208/2, 3/2[)
1
J =3 J,=20= —(J3/2,3/2003/2, 1/20
I ﬁ(l B
+13/2, 1/208/2, 3/21},

=3 J,=10= (|3/2, 3/208/2, ~1/200
1

5

+13/2, 1/20B/2, 1/25@,

+[3/2, -1/20B/2, 3/20)
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|3 =3,J,=00= (|3/2, 1/20B/2, -1/20
3
+13/2, -1/2008/2, 1/20—=—
I B 0 o
+(]3/2, 3/20B/2, -3/20
1

+13/2,-3/2[B/2, 3/120) —,
I 1B 93 NG

M=1J,=10= —@3/2, 1/2008/2, 1/20

(21)

+ E(B/z, 3/2008/2, -1/20
+13/2, -1/208/2, 3/20),

3
J=1,J,=00= ——(|3/2, 3/208/2, -3/20
I 2£3(| B

+13/2, =3/200B/2, 3/20)

- i5(|3/2, 1/208/2, ~1/20

2./5

+13/2, -1/20B/2, 1/20),

while antisymmetric states have the form

1
J=2,J,=20= =(|3/2,3/203/2, 1/20
I ﬁ(l s

—[3/2, 1/20B/2, 3/20),
1
J=23,=10= —(|3/2, 3/208/2, —1/20
I ﬁ(l 13
—[3/2, -1/2008/2, 3/20),

U=21J,=00= %(|3/2, 1/2018/2, —1/200
312, ~1/21[8/2, 1/2
1|3/, 1201812, 1/20) -
+ 2312, 3120812, ~3/20

—[3/2, =3/208/2, 3/20),

19=0,3, = 00= 3(3/2, 3/20R/2, ~3/20]
_[3/2,-3/2(B/2, 3/20)
—%(|3/2, 1/208/2, ~1/200
_[3/2, ~1/2[B/2, 1/20).

If we now replace A in formula(2) by operator (20),
we obtain the following expression for the Hamiltonian
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of asystem of N four-level pairwise interacting atoms:

~ N(N 1)
Hmt— K+A (J Ej)
2,6’9 ‘

(23)
e’ - (JkEl)—Gm

Energy values averaged over Dicke states have theform

02 75N(N-1) , 11 75N(N-1)

En = ADST 2 TR 2
_2 _Bya_ D_6_7DD N(N-1)
3 BRR+ )-8 - 0305~ 2
(24)
En = me+WK

—AF(ZNN 1037) + 7 R(R+1)D

It follows hence that, as in the previous case, sublevels
with the maximal cooperative number are more advan-
tageous from the energy point of view for definite val-
ues of m. Thus, the system of four-level atoms behaves
similarly to a system of atoms with five equidistant
energy levels.

7. INTERACTION CONSTANT

It was shown in previous sections that the degener-
acy of Dicke states with definite values of m in an
atomic system is removed if we take into account the
pair dipole-dipole interaction of atoms in this system.
The extent of splitting of energy levels with given val-
ues of mfor different values of cooperative number Ris
completely determined by theintensity of the exchange
and not direct dipole interaction [11]. Before the fina
emission of a coherent superradiant pulse, systems of
two- and three-level atomsarein the state |R=0, m= 00
of intermediate equilibrium in a potential well with a
depth determined by the constant of the exchange
dipole interaction. For systems of four- and five-level
atoms, sublevels with the maximal number R remain
the most advantageous states with respect to energy;
consequently, as the system passes to states with lower
and lower values of m, the system emits with an
increasing intensity

I = Io(R+m)(R—-m+1)

until it ultimately passes to a state with m = 0, after
which a coherent superradiant pulse is emitted.

L et us estimate the exchange dipol e interaction con-
stant, which determines the depth of the well for an
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intermediate quasi-equilibrium state preceding the
superradiant emission (the system does not emit in this
state). For this purpose, we take into account the over-
lapping of coordinate wave functions @ of identica
interacting atoms. In accordance with the exchange
perturbation theory [6], the correction to the interaction
energy associated with transposition of atomsis defined
by the formula

e(r) = (PV(r)| o), (25)

where the prime marks the wave function of atoms,
which differsfrom theinitial (unprimed) functioninthe

transposition of nuclei, and V(r) is the potential
energy of interaction of atomsin the dipole approxima-
tion, r being the distance between the nuclei.

The computational model similar to that used in [14]
is as follows. We describe the interaction of atoms in
the form of a potential of the type of the Sutherland
potential

V(r) = or®

D
[,
where C is a constant defined as the product of the
dipole moments of transitions between “ operating” lev-
els of athree-, four-, and five-level system and a isthe
distance at which the repulsive forces operate between

the atoms.

Suppose that T is the gas temperature. Then the

probability of the distance between neighboring atoms
being equal to Ris defined by the Boltzmann function

exp(=V(r)IT)
B

where Z isthe normalization factor, which can be deter-
mined from the condition

r<da,

W(r) =

p

J’W(r)dr =1

(p is the mean distance between the atoms). The aver-
aged value of energy can be determined using the mod-
ified formula

g = (P (r)W(r)®), (26)

which is equivalent to averaging with the density
matrix in the coordinate representation. The vector of
state of the relative motion of atoms can be written in
the form

|®) = &+ f(O)r,
where z = r cosO is the coordinate measured along the
axis connecting the atoms; f(©) is the scattering ampli-
tude determined by the interatomic interaction, i.e., by
potential V; k = p/# is the wave number; and p is the
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momentum of the relative motion of atoms. The vector
of statein which the transposition of atomsistaken into
account has the form

|®) = e+ f(r- O)/r.

Using these definitions, we obtain the following
expression for the required energy [14]:

g = 3bT1 gﬂfkro bd%

ka® a
(27)

%L+—2-I—l——ED A;

here, A is the interaction constant appearing in for-
mula (2); r, isthe effective radius of exchange interac-
tion, which is determined by the extent of overlapping

of coordinate wave functions; b = C/T; and f is the
scattering amplitude averaged over the region of over-
lapping of coordinate wave functions.

Let us consider numerical estimates [14] for atomic
hydrogen. In the temperature range T = 4.2 x 104 erg
(=300 K), constant b = 5 x 10°c (where ¢ = 0.3) and
k = 1 (the values are given in atomic units). The poten-
tial barrier radius in the Sutherland model is usually
chosen in the region of the Van der Waal s minimum and
is equal approximately to a = 5, while the effective
radiusr, = 10. For such values of the quantities appear-
ing in formula (27), we obtain A = 3T. The constant of
direct dipole—dipole interaction for the given parame-
tersisA =2 x 10 erg, i.e., equal to one-sixth of the
above vaue.

The increase in the constant of interaction of atoms
due to exchange effects is a consequence of interfer-
ence-induced redistribution of the atomic concentration
in the gas in such a way that the probability of the
“interference” contact of atoms, which are connected in
pairs viathe dipole interaction, increases significantly.

8. CONCLUSIONS

The cascade scheme of emission of multilevel atoms
with equidistant energy states considered here is such
in the classical meaning of this term; however, it is
treated as a unified system characterized by the quan-
tum isospin number and its component along a condi-
tionally preferred axis rather than as a cascade of con-
secutive two-level transitions. It is this analogy with a
system of particleswith states completely characterized
by a certain momentum and its component that makes
it possible to use standard methods for describing spin
systems. The cooperative number and its component,
which characterize Dicke states, are precisely the total
isospin of the system and its component in this termi-
nology.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

It was demonstrated above that the realization of the
ground state of atomic superradiant systems is gov-
erned by a certain regularity: atoms with isospinsj =
1/2 and j = 1 are mainly condensed to a state with a
cooperative number of R = 0, followed by a “suspen-
sion” of the system, after which superradiation is emit-
ted with a certain delay. On the other hand, the ground
state of a system with particles having isospins| = 3/2
and j = 2 is characterized by the maximal cooperative
number, which ensures a smooth transition to the
regime of collective coherent emission of a superradi-
ance pulse. This regularity can be formally explained
by the structure of the Hamiltonians describing the
behavior of a system of atoms with the pair interaction
(namely, the power of dot product operators for isos-
pins). For example, this operator appears to the first
power in a system of two-level atoms [11]; to the first
and second powers in a system of three-level atoms; to
the first, second, and third powers in a system of four-
level atoms; and from the first to the fourth powersin a
system of five-level atoms. In the case of four- and five-
level atoms, the terms with even powers of these oper-
ators practically compensate one another in the range of
variation of the total isospin of a pair. Thus, the cubic
term plays adecisive role here, whileit is the quadratic
term with atypical parabolic well and with a minimum
corresponding to R = 0 that determines the situation in
asystem of three-level atoms.

The constants of exchange dipole interaction esti-
mated above make it possible to judge the degree of
splitting of collective energy levels and, hence, the
extent to which the dipol e interaction factor affectsthe
(presence or absence of a) delay preceding a superra-
diation pulse. For example, the estimates of the dipole
exchange interaction constants for alkali atoms
belonging to the sodium group give a value of 0.06—
0.07 eV, and the above splitting plays a significant role
for transitions in awavelength range from 3to 9 um.

Superradiance effects, which occur due to transi-
tions between closely spaced Landau levels in a
strongly magnetized plasma [10], open prospects for
realizing theideaof asystem consisting of alarge num-
ber of equidistant levels (e.g., in low-dimensional sys-
tems of the type of semiconducting films placed in a
magnetic field). Such systems can ensure the presence
of any number of discrete Landau levels, which are
equidistant a priori. It is such systems that can be used
for experimental observation of the Dicke effect in mul-
tilevel systemsin pure form.
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Abstract—Thewave functions of Co?* and Fe?* ions near the ground state in the CaCO5-type | attice have been
calculated from EPR datain the Abragam—Pryce approximation. The orbital angular momentum contributions
to the anisotropic and antisymmetric parts of exchange coupling are determined assuming that this interaction
between the magnetic ions occurring in nonequivalent positionsisisotropic with respect to spin orientations. It
is shown that, in the given approximation, the exchange coupling components in the basal plane for such
Fe?*—Fe?* and Co?*—Fe?* ion pairs are missing. This fact explains the uniaxial antiferromagnetic ordering in
FeCO, and the presence of alow-lying oscillation branch for Fe?* impurity ionsin antiferromagnetic CoCOj.
The EPR spectra of exchange-coupled Co**—Co?*, Fe*—Fe?*, and Co?*—Fe?* pairs occupying nonequivalent
positions have been calculated and their parameters have been numerically estimated. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The phenomenon of weak ferromagnetism in anti-
ferromagnetic compounds has been observed since
1940 and was originally studied by Schultz [1],
Bizette[2], and Néel and Pauthenet [3]. The hypothesis
that thisferromagnetism is caused by the sloped state of
magnetic moments and is related to a specific symme-
try of their local environment was originally formulated
by Borovik-Romanov and Orlova[4]. Transition metal
carbonates of the MeCO;, type with Me = Mn, Co, and
Ni were studied by Borovik-Romanov and coworkers
[5-20] for many years and became the model objects
for the investigation of this phenomenon. A phenome-
nological description of weak ferromagnetism was
developed by Dzyaloshinski [21]. An analysis of the
symmetry of these compounds revealed that the pres-
ence of asloped state is determined by the antisymmet-
ric part of exchange coupling. It was established in [21]
that the magnitude of this interaction is determined by
relativistic corrections and must be significantly
smaller than the total exchange value. A microscopic
approach developed by Morija[22] allowed the magni-
tude of the exchange coupling to be calculated, which
has proved to be on the order of the Ag/g fraction of the
superexchange energy. This estimate was obtained
under the assumptions that the lowest energy level in
the magneticionisthe orbital singlet and the spin—orbit
coupling is small as compared to the splitting of orbital
levels by the crystal field. Thisimplies that the magni-
tude of Ag (the deviation of g from the pure-spin value,
caused by an admixture of the orbital angular momen-
tum of excited states), isrelatively small—in agreement

with the term “weak” ferromagnetism. However, the
orbital angular momentum in many cases is by no
means suppressed and the antisymmetric exchange
(expressed viaeffective spins) may be no lessimportant
than the isotropic exchange: sometimes the former can
even exceed the latter in magnitude.

At the present time, the magnetic properties of the
compounds MnCO;, FeCO;, CoCOs, and NiCO; are
known in sufficient detail. However, some facts still
have to be explained, including the following.

(i) The compound FeCOgisauniaxial antiferromag-
net with two sublattices, the magnetic moments of
which are oriented along the C; axis of the crystal [23],
whereas the other compoundsin this group at low tem-
peratures are easy-plane antiferromagnets with sloped
magnetic moments of the sublattices[5, 7, 15].

(ii) The magnitude of the Dzyaloshinski field Hp
(characterizing the antisymmetric part of exchange
coupling) variesin thisgroup within two orders of mag-
nitude: from Hy = 4 kOe for MnCQO; [5] to Hp =
160 kOe for NiCO4 [15]. For CoCO; and NiCO;, the
antisymmetric coupling component is of the same order
of magnitude as the isotropic exchange. At the same
time, the Hp values for CoCO; determined from the
static and resonance measurements exhibit an amost
twofold difference: the magnetization measurements
give Hp = 27 kOe [ 7], while the resonance experiment
yields Hy = 52 kOe [14]. The g values obtained from
the electron paramagnetic resonance (EPR) measure-
ments [24, 25] and from the antiferromagnetic reso-
nance (AFMR) [9, 14] data do not coincide either.
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Fig. 1. Schematic diagrams of (&) the crystallographic unit cell and (b) the local environment of a magnetic atom in the CaCOs3

(calcite) type lattice.

(i) The frequency of splitting in the AFMR spec-
trum of CoCO;, whichisrelated to theimpurity of Fe?*
ions, corresponds to an exchange field of Hg = 6 kOe.
This value is significantly lower as compared to the
exchange fieldsin CoCO; and FeCO;.

(iv) The AFMR spectrum of MnCO; [11] displaysa
gap related to the hyperfine interaction. No such gap is
found in the spectrum of CoCQOg, although the values of

hyperfine splittings observed for the EPR on Mn?* and

Co?* ionsin isomorphous crystal lattices are compara-
ble [24-27].

Evidently, these variations in the magnetic proper-
tiesarerelated to differencesin the microscopic state of
magnetic ions. A significantly weaker magnitude of the
Dzyaoshinski interaction in MnCO; as compared to
that in CoCO; and NiCO, is most probably explained
by the absence of the orbital angular momentum contri-
bution to the ground state of the Mn?* ion (for which
L=0 and S = 5/2). A small contribution from the
orbital angular momentum appears due to an admix-
ture of excited states according to the model used by
Morija [22]. At the same time, the magnetic moments
in the ground states of Co?* and Ni?* ions are deter-
mined by the contributions from both orbital angular
momentum and spin. These states can be calculated
using datafor the EPR on theseions. The spatial motion
of electronsin the magnetic ionsis not only manifested
in the magnetic moment of an individual atom, but
determines the character of exchange coupling aswell.
Since the form of this interaction in the general case
depends on the particular exchange integrals of certain
electron levels in the magnetic ions, the calculation of
exchange coupling requires the knowledge of the elec-
tron wave functions.
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However, knowledge of the wave function of the
ground state of a magnetic ion described in terms of the
total spin and the orbital angular momentum also
allowsthe contributions to the anisotropic and antisym-
metric parts of exchange coupling to be determined. If
the exchange coupling between ions, considered as a
function of the true spins, isisotropic, these additional
contributions appear on passage from description of
exchange coupling in terms of the true spin to use of the
effective spin variables [28], since the latter variables
are employed in description of the EPR spectra. It will
be demonstrated below that this transformation influ-
ences the positions of levels of the exchange-coupled
pairs provided only that (i) the state of magneticionsis
determined by the admixture of the orbital angular
momentum and (ii) these pairs of magnetic ions occupy
noneguivalent positionsin the crystal lattice. Using this
approach, it is possible to show that the exchange cou-
pling componentsin the basal plane for such Fe**—Fe**
and Co?*—Fe?* pairs are absent. This fact explains the
uniaxial antiferromagnetic ordering in FeCO; and the
presence of a low-lying oscillation branch due to Fe?*
impurity ions in the CoCO; lattice.

Figure 1a shows a schematic diagram of the crystal-
lographic unit cell in the CaCO; (calcite) type lattice.
Here, Ca?* ions occupy two noneguivalent positions on
the rhombohedron diagonal (C; axis). Their local envi-
ronment shown in Fig. 1b includes six oxygen atoms
occurring at the corners of a hexagonal prism. The
upper and lower bases of this prism represent equilat-
eral triangles rotated 60° relative to each other. The
prisms surrounding the two Ca?* ions are also mutually
rotated by 60°.

The EPR spectra of individual ions in isomorphous
structures have been studied in sufficient detail for
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Table 1. Experimental data obtained from the EPR spectraof Co?* and Fe?* ionsin isomorphous CdCO, and CaCO; lattices

Sample f, GHz 9 an |A x 10%, cmt [B| x 10%, cm™*
CdCO; + Co?* 33.87 3.07+£0.03 4,96 + 0.02 37+4 164 + 10
21.31 3.06 £ 0.01 494 +0.01 393 154+7
CaCO; + Co?* 9.2 3.406 £ 0.01 4817 +£0.01 53+1 132+ 3
CaCO; + Fe?* 9.4 9.85+0.01 <0.2 - -

Mn?* [26, 27], Co?* [24, 25], Ni?* [15], and Fe?* [29].
At low temperatures, the ground states of Co?* and Fe?*
ionsis characterized by an effective spin of S'=1/2 and
that of Ni?*ions, by aspinof S' = 1. Below wewill con-
sider only the stateswith S' = 1/2. The estimates of this
interaction will be also obtained only for CoCO; and

the impurity of Fe?* in the CoCO; matrix.

Thus, the results of investigations of the states of
paramagnetic ions on amicroscopic level are of consid-
erable importance for understanding the nature of
exchange coupling. The aim of this study was to calcu-
late, based on the EPR data, the functions describing
the ground state of magnetic Co?* and Fe?* ions and to
determine the orbital angular momentum contributions
to the anisotropic and antisymmetric parts of exchange
coupling. Based on these results, the EPR spectra of
exchange-coupled Co?*—Co?*, Fe**—F¢e**, and Co**—Fe?*
ion pairs occupying nonequivalent positions will be
calculated and the effect of the antisymmetric contribu-
tion on the EPR spectrum will be determined depend-
ing on the presence of the anisotropic exchange.

2. WAVE FUNCTION
OF THE GROUND STAGE OF Co? ION
IN THE CALCITE-TYPE LATTICE DETERMINED
BASED ON THE EPR DATA

The EPR data for individual ions are usually inter-
preted in terms of the spin Hamiltonian. For the Co?*
ions under consideration, this Hamiltonian can be writ-
ten as

ﬂ = g||BHzAS'Z+ gDB(Hx§< + HyAS;/)

o aa e 1
+AlS, + B(I1:5+ 1,S),

where (3 is the Bohr magneton; g, and g, are the longi-

tudinal and transverse g factors, respectively; A and B

are hyperfine interaction constants, | is the nuclear
spin; and S' is the effective spin (S' = 1/2). The experi-
mental g factors and hyperfine interaction constants for
spin Hamiltonian (1) of some ions are presented in
Table 1.

Ground state “F of the free Co?* ion has an electron
configuration of 3d’ and exhibits a sevenfold orbital
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degeneracy. The next term, P, belonging to the same
freeion configuration, is situated 14500 cm above the
ground state level. In the calcite-type lattice, Co?* ions
occur in an octahedral environment. The cubic crystal
field component splitsthe F terminto asinglet and two
underlying triplets. When the quantization axis is
directed along C;, the wave functions of the lower trip-
let are asfollows[30]:

|00= (2/3)W3 o+ /5/18(W3 53— W3 _3),
|10= «/%waz"' «/F&P:«;,—la )
F10= «/%Lps,—z—«/mws,l-

Since the matrix elements of the orbital angular
momentum projections in the representation of these
functions differ by a constant factor of a = —3/2 from
anal ogous elements in the representation of eigenfunc-
tions of the free Co?* ion in the #F state with L = 1, the
former elements can be considered as eigenfunctions of
an apparent operator of the angular momentum [' = 1.
The trigonal component of the crystal field and the
spin—orbit coupling further split this triplet into six
Kramers doublets, of which three doublets are charac-
terized by the quantum number m= +1/2, two doublets
possess m = +3/2, and one doublet has m = +5/2. On the
energy scale, these doublets are separated by hundreds
of inverse centimeters. The general scheme of these
levelsisdepicted in Fig. 2.

Now let us calculate the distances between levels
near the ground state and the wave functions of cobalt
ionsin the calcite-type lattice using the results of calcu-
lations performed by Abragam and Pryce [31] and the
published EPR data [24, 25]. In order to use these
results for the ground state wave function calculations,
it is necessary to reproduce the Abragam—Pryce calcu-
|ation scheme, which will be also used below for deter-
mining the ground state of Fe?*.

The optica absorption measurements for CoCO,
show that the splitting of levelsreaches 22000 cm [32],
which is much greater than the distance to the *P term
of the free Fe** ion. For thisreason, Abragam and Pryce
proceeded from aset of functions of the *F and P states
that were different from set of functions (2). Assuming
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that the set includes the doublet ¢, and ¢, and the sin-
glet ¢,, with the energy separation A, and choosing the
orbital basis functionsin the form of

1L0= —/172(9, +i9,),
00= ¢, ©)

F10= J1/2($,—id,),

we have to determine the eigenvalues of the Hamilto-
nian

W= A=) —oAlS—aA(:&+1)8). (4

Here, the angular momentum operator is written in the

form of —al', where |' is the apparent orbital angular
momentum operator with an eigenvaluel'=1; a and o'
are constants equal approximately to 3/2 for Co?*. The
deviations from 3/2 are determined by an admixture of
the “P state and by the influence of the trigonal crystal
field component. The first term of Hamiltonian (4)

reflects the fact that the levels with |, = +1 are

separated by A from the level with |, = 0. The second

term described the spin—orbit coupling (for Co?*, A =
—-180 cm™).

Since the operator |, + S, commutates with Hamil-

tonian (4), the eigenvalues of this operator (m = £1/2,
+3/2, and +£5/2) can be used for the classification of lev-
els. If the corresponding functions are written in the

form of |I;, SCiwhere |, =0, +1 and S, = £1/2, £3/2,
the matrix of operator W separatesinto three matrices:

[£1, £3/20)0, +1/20}+1, ¥1/20

F1,£3/2| (3/2)ar —J/3/2a'’A 0O (5)
212 _ Braax A —J2a'A
1,71/2 0 —J2a'h  (1/2)ar

form==x1/2;
[0, £3/200 |+1, £1/20
[0, +3/2 A =J32a'A ©)

1, +£1/2] _ /312a'A —(1/2)a
for m=+3/2, and

&1, +3/2|-/372aA| for m = +5/2. ©)

For the lower doublet corresponding to m = +1/2, the
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+1/2

+3/2
+1/2

Fig. 2. The general scheme of splitting of the ground state

energy levels for Co?* ion in a rhombohedral environment
under the action of (a) atrigonal crystal field A and (b) spin—
orbit coupling.

wave function can be written as

|1/20= al-1, 3/2| +b|0, 1/2| + c|1, ~1/2[]

8
[-1/20= al1,-3/2| + b|0, =1/2| + c}-1, 1/20] ®)
Here and below, the first and second terms in brackets
indicate the values of projections of the orbital and spin
momenta, respectively. Using the normalization condi-
tion

a’+b’+c’ =1 9)
introducing the parameter x such that

E = %G)\(x+3) (10)

(with the energy E being an eigenvalue of matrix (5)),
and taking into account representation (8), we obtain
therelations

a:b:cz—“[(é:——q,:—“/—g—, (11)
X a'  x+2
_ A’ 0. Aa
SR ST SR
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Table 2. Hyperfine interaction constants calculated for various values of the parameter p for Co?* ions in isomorphous

CdCO; and CaCO;q lattices

Parameters CdCO; + Co?* CaCO; + Co?*

p 0.6 1.0 1.4 0.6 1.0 1.4
X 353 3.26 3.08 3.02 2.08 2.68
a 1.24 1.56 1.85 1.26 1.55 1.81
Oy 2.66 2.60 255 2.86 2.79 253
o 0.40 0.46 0.51 0.55 0.62 0.88
(9g1+ I e 3.06 34
Ax10% cm -7 8 22 8 37 60
Ap * 104, cm? 39 53
g 361 3.67 3.70 353 3.59 361
ain 1.34 1.28 1.25 1.28 1.22 1.20
[ 4.95 4.95 4.95 4.81 4.81 4.81
951+ 9 Dexp 4.95 4.817
B x 10%, cm™t 170 | 154 | 146 159 | 143 | 138
Bexp X 104, cmt 154+ 7 132+ 3
A, cmt -144 | -407 | -598 -3 | -275 | -458

Now let us express the g factor components as
functions of parameters a, a', and x. Substituting
functions (8) in the expressions

g = 200/2 IEZ+2A?2|1/2|1 0
0o = 20/2Lx+ 25-1/20)
we arrive at
gy = 41/25,J1/20= 6a° + 2b° - 2¢%,
Os, = 40/2AS-1/20= 4b° + 4,/3ac,
gy = 2/2LJ1/20= —2a/2T;1/20 "
= 2a(a’-c?),
0 = 20/2 L-1/20= —2a' /21311720
= —/8a'bc.

Taking into account the normalization condition (9) and
using relation (11), we eventually obtain the formulas

3 4
Ao +2)E2 -
g, = 2+ % (X+2)2D
+%+ 8 -
X (x+2) (15)
D+ 20 + 12

_ X+2 (Xx+2)x

O =4—¢ g
+=+ 5

X" (x+2)

where p = (a/a’)?.
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The hyperfine interaction constants A and B in spin
Hamiltonian (1) can be expressed via the g value com-
ponents [31]. These constants are determined by three
contributions; from orbital angular momentum (A, B,),
spin momentum (As, Bg), and unpaired electrons (Ag,
By). The latter contribution appears as a result of the
configuration interaction between 3sd’4s and 3s*4d’
states; in the case of Co?* ions, this contribution is usu-
aly ignored. Taking this into account, the A and B val-
ues can be written in the following form:

A = A+ Ag = Pgy—(kI2)Pgg,

(16)
B = B+ Bs = Pg.;—(ki2)Pgg,

where P = 2yBRr 2 (for Co?*, P = 0.0225 cm™ and

k=0.325).

Based on the results of calculations performed by
Abragam and Pryce [31], the distances between levels
are calculated asfollows. First, we set p = 0.6, 1.0, and
1.4in Egs. (15) and substitute the g and g, values from
Table 1 to obtain the corresponding sets of parameters
x and a (Table 2). In order to select the optimum p
value, we have to compare the hyperfine interaction
constants A and B calculated using expressions (16) to
the experimental data. To thisend, we find from expres-
sion (14) the orbital and spin components of theg value
and substitute these quantities into expressions (16).
The results of these calculations and the experimental
data (Aep, Bexp) are also presented in Table 2. For both
constants, the best fit to the experimental hyperfine
interaction constants and g factors is observed for
p=1.4. The distributions of energy levels near the
ground state can be obtained by solving the secular
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Table 3. Energy levels and the corresponding g factors cal-
culated for Co?* ionsin CdCO; lattice

m Energy, cm™ 9 ado
+1/2 -1018 3.05 4.95
+3/2 —732 5.0 0
+1/2 -381 4.7 1.96
+1/2 131 1.75 1
+3/2 300 0.72 0
+5/2 502 2.28 0

equations based on matrices (5)—(7) for the given
parameters p, X and a. The energies of these levels and
the corresponding g values are presented in Table 3 and
the mutual arrangement of levelsis depicted in Fig. 2.
The distance to the nearest excited state is about
300 cm™. The ground state corresponds to a doublet
described by the wave function (8) with the coefficients
presented in Table 4.

3. THE WAVE FUNCTION
OF THE GROUND STATE OF Fe?* ION
IN THE CALCITE-TYPE LATTICE

The experimentally observed spectrum of Fe?* ion
in the calcite-type lattice is described, in the absence of
nuclear spin, by Hamiltonian (1) with the g value com-
ponents given in Table 1 [29]. The numerical calcula-
tion with allowancefor all states of thefreeion by diag-
onalization of a 25-order matrix was also reported
in[29]. Analytical expressions obtained for the wave
functions of Fe** ion near the ground state and the cor-
responding g values are derived below based on the
spin Hamiltonian method described in Section 2.

The ground state °D of the free Fe?* ion has an elec-
tron configuration of 3d® and exhibits afivefold orbital
degeneracy. In the calcite-type lattice, where Fe* ions
occur in a cubic crystal field of octahedral symmetry,
the °D term splitsinto Ty triplet and an above-lying E
doublet with a separation on the order of 10* cm™. The
axial field of trigonal symmetry splits the triplet into a
singlet and the so-called non-Kramers doublet sepa-
rated by more than 10 cmt. The mutual arrangement of
the doublet and singlet depends on the sign of the axial
field: in a calcite-type lattice, the doublet corresponds

149

to a lower level. The spin—orbit coupling splits the
orbital tripletinto 3 x 5 = 15 level swith aseparation on
the order of 500 cm™. The general scheme of these lev-
elsisdepictedin Fig. 3.

Thewave functions of the lower triplet for the quan-
tization axis directed along C; are as follows [30]:

P20,
N213W, 5 — 13y, 4,
N213W, 5+ 113U, ;.

According to the spin Hamiltonian method, the orbital
triplet T,, is assigned an effective orbital angular
momentum ' = 1 and the calcul ation is performed using
Hamiltonian (4) with S=2, A =-100 cm™, and o = 1.
In this case, the matrix of operator W separates into
four matrices characterized by eigenvalues of operator

I, +S, withm=0, +1, +2, and +3:

17

[1,-10 0,00 1,10

4,-Y4 ar —J/3a'x O (18)
0.0 —/Z3a'x A —/3a'A
FLA 0 —fBan on
form=0,
I+1,00 |0, +10 [¥1, +20
*1,0) 0 -J3aAx 0 (19)
O+1 _Ba'A A —J2a'A
F1,£2 0 -J/2a'n 2a\
form==1,
1, 1000, 220
ES R T| R S (20)
©,£2| _ pa'x A
form=+2,
[(*1, +2||-20A| for m = £3. (22)

The lower doublet corresponds to m = £1. The wave

Table 4. Wave functions of Co?* and Fe?* ionsin the vicinity of the ground state in the CaCO4-type lattice

lon Wave functions

Coefficients

C02+
Fe*
|OCE= a1, OO+ B0, 10+ y|-1, 20

[£0= ajF1, £3/20+ b0, +1/20+ cjt1, ¥1/20
[+10= d+1, OCF e]0, +10+ f|F1, 20

a=0.53,b=-0.76,c=0.37
d=0.17,e=0.22,f=0.96
a?=y?=0.45,32=0.10
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Fig. 3. The general scheme of splitting of the ground state

energy levels for Fe?* ion in a rhombohedral environment
under the action of (a) atrigonal crystal field and (b) spin—
orbit coupling.

function of this state can be represented as

[+10= d|1, 00+ e[0, 10+ -1, 20

22
10= dj-1, 00+ e]0, —10¢+ f[1, 200 (22)

Using the normalization condition (9), we obtain for
matrix (19) the relations

_ 3\ a*(E-2)a)® & - E*(E—2\a)?
b2 ; - b2 ;
(23)
_ 2\ %a’E?
Z 1

d2

f 2
where

Table 5. Energy levels calculated for Fe?* ionsin a CaCO;-
type lattice

m Energy, cm™
0 -185 -100 609
1 —233 —-43 600
2 57 567 —
3 200 — —
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> = 3\ %a?(E-2ha)’ + EX(E—2Aa)® + 2)\ %0 B2,

and E is the energy determined by diagonalization of
matrix (19). Substituting functions (22) into the expres-
sions

gy = 2L, + 2510

L (24)
Op = 20| Lx+ 2510
in the approximation employed, we obtain
g, = 4 +2f%) +2a(f’~d®), g5 =0. (25

Let us estimate the energies of levelsand theg value
using data [33] on the M 6sshauer spectroscopy of Fe**
ions in a CoCO; matrix. The temperature dependence

of the quadrupole splitting showed that A = 525 cm™.
Using Hamiltonian (4) with thisvalueof A, a =a' =1,
and A =-100 cm2, we obtain the energies of levels pre-
sented in Table 5. For the lowest level withm=+1, E =
—233 cmL; for the next level withm=0, E=-185cm?;
thus, the separation of these levels amounts to 48 cm.
The general arrangement of levelsisdepicted in Fig. 3.

Substituting the energy of the lowest level into for-
mulas (23), we obtain the coefficients of the wave func-
tion (22) of the ground state of Fe?* ion (Table4). Using
formula (25), we obtain for the g value in the ground
state g, = 9.4. The difference of this result from the
experimental value (g = 9.85) was shown [29] to be
due to an admixture of excited states. In addition to the
wave functions of the ground state of the Fe?* ion, sub-
sequent analysis will require the function of the adja-
cent excited state with m= 0. The form of thisfunction
and the corresponding coefficients determined using
matrix (18) are presented in Table 4.

4. THE EPR SPECTRA OF EXCHANGE-COUPLED
Co**—Co?*, Fe?*—Fe?*, AND Co?*—e?* ION PAIRS
OCCUPYING NONEQUIVALENT
CRYSTALLOGRAPHIC POSITIONS

The results of EPR measurements for exchange-
coupled ion pairs alow the parameters obtained to be
used for the description of magnetically ordered sys-
tems.The possibility to measure the EPR spectra of
such pairs and the reliability of interpretation of these
spectra are limited by the following factors. First, the
intensity of signals in the spectrum, which is propor-
tiona to the squared concentration of paramagnetic
couples, turns out to be two to three orders of magni-
tude lower than the intensity of signals from individual
ions. Second, the presence of alarge number of nearest
neighbors featuring nonzero exchange coupling (e.g.,
in Cr,0O4 there are 11 such neighbors at a distance of
5.73 A with exchange coupling values ranging from
240 to about 0.5 cm [34, 35]) resultsin that an exper-
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imental EPR spectrum contains a continuous series of
linesin the vicinity of signals due to individual ions.

For these reasons, the EPR spectra of exchange-cou-
pled pairs are usually observed for theions with frozen
or missing orbital angular momentum. In order to
ensure reliable interpretation of the EPR data, the anal-
ysisis performed using the results of simultaneous opti-
cal absorption, EPR, and electron-nuclear double reso-
nance (ENDOR) measurements. The most reliable EPR
and ENDOR data correspond to magnetic fields that
significantly differ from the resonance fields of individ-
ual ions. An additional useful piece of information is
provided by investigations of the angular dependence
of the spectra and the temperature dependence of the
intensities of signals determined by the population of
levelsin the exchange-coupled ion pairs.

Let us consider the possibility of observing the res-
onance absorption due to exchange-coupled Co?*—Co?,
Fe?*—Fe**, and Co?*—Fe?* ion pairs occurring inside the
unit cell depicted in Fig. 1a. In order to determine the
energy levels for these pairs, it necessary first to per-
form transformation of the spin projections to a com-
mon coordinate system and second, to derive an expres-
sion for the exchange coupling (see Eq. (26) below)
using projections of the effective spin S' = 1/2, rather
than of the true spin, asthe variablesin Hamiltonian (1).

The exchange coupling Hamiltonian is usually writ-
ten in the commonly accepted form proposed by
Heisenberg,

hae membe i a (26)
= (J2)(SS+S) + IS,

where S; and S, are the true spins of magnetic ions.
For S, =S, = 1/2, the eigenvalues of the Hamiltonian are
E, = J/4 for the total spin of S=1 and E, = —(3/4)J for
S=0. On the passage to acommon quantization axisfor
the ions occupying nonequivalent positions, it is neces-
sary to use a transformation of the spin projections
upon rotation of the coordinate axes in the xy plane:

S, = S,cosp —S,sing, S, = Ssing + S,cosh.

In the common coordinate system with ¢ = 60°, Hamil-
tonian (26) takes the following form:

Hex = ny(élxéZX + é’lyé'Zy)
+ JZASleSZZ + D(AsleSZy— éQXAsly) (27)
= %(ny + ID)ASIASE'F %(ny_lD)é’IASZ + JzélzéZz,
where J,, = J/2, D = /3], J,= J; the primein the spin

notation is omitted and S still denotes the total spin.
Thus, nonequivalent positions of the paramagneticions
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result in the exchange coupling becoming anisotropic
and in the appearance of an antisymmetric term.

Denoting |L/2[E |+[and |-1/2CE= -] we can write
the matrix of Hamiltonian (27) in the |+, 0 |+ [t[tep-
resentation as

[+, +0 |+ -0 - +0 | -0
&, 4| J,/4 0 0
4 0 -34 (I +iDy2 0 | ®®
+Hl 0 (J,-iD)2 -JJ4 0
e ) 0 0 J,/4
with the eigenvalues for S= 1,
B, = -J,/4+J,, E., = J/4, (29)
and for S=0,
Eo = =J,/4-1,,. (30)

For a purely spin state (in the absence of an orbital
angular momentum), the levels of Hamiltonian with
the matrix (27) are the same as those in the case of iso-
tropic exchange (26). In the presence of a contribution
due to the orbital angular momentum, the exchange
coupling becomes anisotropic (J,, # J/2) and the form
of the Hamiltonian matrix (27) qualitatively changes
the system of levels. The anisotropy leadsto splitting of
the states in the pair with S= 1 according to (29), and
the D value, as will be shown below, influences the
positions of levels in the case when the magnetic field
vector isin the plane perpendicular to the C; axis.

In order to determine the exchange coupling compo-
nents in terms of the effective spin S' = 1/2, it is heces-
sary to find the matrix of Hamiltonian (27) in the repre-
sentation of the ground state wave functions (presented
in Table 4) and compare this with matrix (28). The
resulting exchange constants J,, and J, determined in
this way for Hamiltonian (27) are given in Table 6. As
can be seen for Fe?*—Fe?* and Co*—Fe?* pairs, the
exchange coupling in the plane perpendicular to the Cq
axis is absent. Based on these results, it is possible to
explain why the magnetic moments in antiferromag-
netic FeCO; are aligned in the triple axis [23] and the
impurity mode frequency of Fe?* ion in the antiferro-
magnetic FeCO; is very small.

For experimental observation of the EPR spectrum
of exchange-coupled pairs, it is necessary to estimate
the parameters of the spin Hamiltonian. Substituting
the coefficients for Co?* from Table 4, we obtain

Jy = 168J, J,=165J, D = 291J.
The energy levels of apair are E,; = 0.41J, E; = 1.27]
for S=1and E, =-2.09J for S= 0. The exchange cou-
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pling J can be estimated using the Néel temperature Ty,
of the antiferromagnetic ordering. For CoCO;, Ty =
18.1 K, which corresponds to an exchange coupling
energy of about —12 cm. Since the exchange field in
this compound is oriented in the basal plane and is cre-
ated by two nearest neighbors, the exchange coupling
energy per atom amounts to J,, = 6 cm™. Taking into

account that J,, = 2(/3ac + b?)2J = 6 cm?, we obtain
J= 3.6 cm? and estimate the energy levels as E,; =
148 cm, E;=4.58 cmt for S= 1 and E, = —-7.52 cmt
for S=0. As can be seen from these estimates, the pop-
ulation of levels of the upper triplet at 4-10 K will be
sufficient to observe the resonance transitions with
Am= %1 in the region of frequencies corresponding to
awavelength below 3 mm. Theidentification of linesin
the EPR spectrum of thision pair would be significantly
facilitated by data on the frequency and temperature
dependences. Using the triplet splitting determined in
this way, it is possible to evaluate the exchange cou-
pling.

Figure 4 (solid curves) shows the energy levels of
the exchange-coupled Co**—Co?* pair calculated as
functions of the magnetic field strength. For the com-
parison, dashed lines indicate the positions of levelsin
the case when magnetic ions occupy the equivalent
positions (¢ = 0). As can be seen from these data, the
antisymmetric exchange influencesthe positions of lev-
els only when the magnetic field vector is in the plane
perpendicular to the C; axis. It should be noted that, in
the absence of an anisotropic contribution to exchange
coupling, the presence of nonequivalent positions does
not affect the energies of levels.

The value of exchange coupling in CoCO; is much
smaller than the separation of the ground and first
excited levels of Co?* ion and, hence, the presence of
this interaction does not influence the wave function of
the ground state. In the case of Fe?* ion, the distance to
the excited level amountsto tens of inverse centimeters
and the exchange coupling in the basal plane is absent.
Therefore, it would be of interest to consider the influ-
ence of the excited states on the position of levels for

Table 6. Exchange coupling parameters of Hamiltonian (27) calculated in the Abragam—Pryce approximation

lon pair Jy D J,
Co?"—Co* 2(/3ac+b%)°] 2./3(3ac + b?)°J (3a2 + b?—c?)?J
Fe?*_Fe?* 0 0 A& + 212
Co?—Fe?* 0 0 2382 + b2 — )+ 2(2) J
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the exchange-coupled Fe?*—Fe?* and Co*—Fe?* ion  two two-dimensiona matrices with m=+1,
pairs.

Let us find the exchange Hamiltonian with allow- I+1, 00 0, +10
ance for the excited state. To this end, we proceed from ’ '
aHamiltonian in the form 31,0| —ABJ+E,+E, D,J
A = W+ Hex, @y O+ D,J —ABJ+E,+E, |
- o _ (33)
where W is the operator of crystal field (4). For the =1, 00 0, -100
Fe?*—Fe** pair, the matrix of Hamiltonian (31) in the :
representation of the wave functions of the ground and 21,01 ABI+Eo+E, DpJ(1+1./3)12 ,
excited states of Fe2* ion separatesinto two one-dimen- 0 -1 p,y(1+iJ/3)/2 ABI+E,+E,
siona matrices with m=+2,
(1, +1 |2Eo + AZJ|, (32)  and one three-dimensional matrix with m=0,
[+1,-10 0, 00 1, +10
F1,-1| —-A’J+2E, FI(1+i.3)/2 0
: > (34)
0.0 Fa(1+i/3)/2 B*J+2E, FJ
=1+ 0 FJ —AX+2E,
where 2, 52242 242
e, = 25, A2y (A +B) I F
A= +2f% B=a’-V 8(E;—E;) Ei—-E
2 2
D, = (J/6da + J/6eB + 2fy)’, = 2E,—0.25] _0.06J° _21J

42000 525°

_ 2
D, = (A/éder JéeB+2fa) ' Let us obtain numerical estimates for the above
F = ay(6d°+ 4% + 2./6df (a® + y?) results. Substituting the values of parameters into the

expansions of wave functions, we obtain
+6€B" +ep(a +y)(6d + 2.61),

A=05 B=0, D,=D,=461, F =463.
E, isthe energy of the ground state with m=+1, and E;
is the energy of the excited state with m= 0. From this  As can be seen from these data, the correctionsto posi-
it follows that, in the vicinity of the ground state with  tions of the levels are significant for the distances from
an energy of 2E,, there are four levelswith energiesof  excited levels on the order of 40 cm .

Anaogous calculations can be performed for the

€, = €, = 2E,+ A’J = 2E,+0.25], Co?*—Fe?* ion pair. In representation of the functions
) from Table 4, the matrix for determining the eigenval-
€3 = 2Ey—A"J = 2E,-0.257, ues of Hamiltonian (31) is as follows:

|+, +10 |+,-10 |- 00 |- +10 [+,00 |- -10

E+U as-E 0 0 0 0 0
-1 o -—AJ-E BJ 0 0 0
0 o BJ DJ-E O 0 0 (35)
&+l o 0 0 -AJ-E CJ 0o |
30 o 0 0 CJ] DJI-E O
3,-1| O 0 0 0 0 AJ-E

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98 No.1 2004



154

where

A = (€°/2+ %) (3a°+b*=c?) = 0.31,
B = (J/3ac+b%)(2./6dy + 2./6eB + 4fa) = 1.47,
C = (J3ac+b%)(2./6da + 2./6eB + 4fy) = 1.47,
D = (3a°+b°—c?)(a’-y?) = 0.

From this it follows that, in the vicinity of the ground
state with the energy 2E,, the levels are displaced
approximately by 1.5J and their splitting amounts
to 0.2J.

5. CONCLUSIONS

An analysis of the behavior of exchange-coupled
ion pairs in the magnetic field allows the role of the
orbital angular momentum in the formation of their
energy spectrum to be rationalized. In the general case,
the influence of this momentum reduces to rendering
the exchange coupling anisotropic. Thisresultsin split-
ting of the state with S= 1. An antisymmetric contribu-
tion related to the nonequivalent positions of magnetic
ionsin the pair influences the dependence of their level
energies on the magnetic field oriented in the plane per-
pendicular to the C; axis. In the case when the anisotro-
pic contribution to exchange coupling is absent, the
antisymmetric contribution does not influence the posi-
tions of energy levels of the exchange-coupled pairs. It
should be also noted that the positions of levels of the
exchange-coupled Fe**—Fe?* and Co?*—F€e** ion pairs
are significantly affected by the presence of a singlet
excited state of the Fe?* ion.

The results of this investigation help us understand
the facts pointed out in the Introduction. In the case
when Fe?* ions enter the CaCO;-type lattice, the pres-
ence of an orbital angular momentum results in the
complete absence of the exchange coupling component
in the basal plane perpendicular to the C; axis. This
explains why FeCO; is a uniaxial antiferromagnet and
accounts for a small value of the exchange field at the
iron impurity ions in antiferromagnetic CoCO;. If the
magnetic ions occupy honequivalent crystallographic
positions, there appears an exchange coupling compo-
nent that |eads to sloped magnetic moments of the sub-
lattices in the case of antiferromagnetic ordering. In
CoCO; and NiCO3, the magnitude of antisymmetric
exchange exceeds the isotropic exchange in the basal
plane.

The absence of a gap related to the hyperfine split-
ting in CoCO; can be understood based on the analysis
of data presented in Table 2. As can be seen, the hyper-
fine interaction constants can vary from negative to
positive values in response to small changes in the
parameter p characterizing the configuration interac-
tion. Thisis evidence of high sensitivity of these con-
stants to the form of the function describing the ground
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state of a magnetic ion. Therefore, the presence of
strong exchange fields can significantly influence these
values for CoCOs;.

To summarize, the results of thisinvestigation are as
follows. For Co?* ionsin the calcite-type crystal lattice:

(i) The energy levels of the Co?* ion and the corre-
sponding wave functions are determined in the
Abragam—Pryce approximation using the experimental
g values and hyperfine interaction constants.

(ii) Expressions for Hamiltonians of the exchange
coupling and the Dzya oshinski interaction are found
proceeding from the known wave functions of the
ground state.

For Fe?* ionsin the calcite-type crystal lattice:

(i) The g values, energy levels, and wave functions
of Fe** ion in the vicinity of the ground state are calcu-
lated in the Abragam—Pryce approximation.

(if) The exchange coupling in the basa plane of a
cacite-type lattice for the Fe**—Fe?* and Co**—Fe?* ion
pairs is shown to be absent in the Abragam—Pryce
approximation.

(iii) The energy levels of the exchange-coupled
Fe?*—Fe** and Co?*—Fe?* ion pairs are determined with
allowance for the excited states.
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Abstract—Time-resolved photoluminescence (PL) spectra of self-assembled CdSe/ZnSe quantum dots (QDs)
are measured with aview to identifying the QD-size dependence of carrier capture and recombination in asin-
gle QD. The PL is excited by optical absorption in the ZnSe barrier layers under weak and strong irradiation
with femto- and nanosecond laser pulses, respectively. In the case of weak excitation, the PL dynamics observed
inaQD and the barrier layers are attributed to (i) fast carrier diffusion in the barrier layers, (ii) intense capture
of carriersby the QD, (iii) fast carrier relaxation to the QD ground state, and (iv) dependence of the carrier cap-
ture and recombination times on the QD size. In the case of strong excitation, PL spectra are measured for dif-
ferent levels of excitation intensity and PL intensity isexamined as afunction of excitation intensity. It is estab-
lished that (i) an increase in excitation intensity has a stronger effect on a high-frequency part of the spectrum
and (ii) the intensity characteristic is essentially nonlinear. These findings are explained by state filling and/or
decrease in carrier capture rate as the QD becomesincreasingly full. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent years have seen considerable interest in I1—
VI semiconductor quantum dots (QDs). Aside from
their unusual physical properties, QDs of this type sug-
gest rich possihilitiesfor creating high-speed, low-power
optoel ectronic devices, such aslight-emitting diodes and
lasers for the blue—green spectral range [1-9].

This paper presents a photoluminescence (PL) spec-
troscopy study of linear and nonlinear optical proper-
ties of self-assembled CdSe/ZnSe QDs grown by
mol ecular-beam epitaxy (MBE). The goal isto identify
the QD-size dependence of carrier capture and recom-
binationinasingle QD. The study consists of two parts,
inwhich PL spectra are obtained after weak and strong
excitation by femto- and nanosecond laser pulses,
respectively.

Due to size quantization, the optical-transition ener-
gies of a QD vary with its size, which results in strong
inhomogeneous broadening of the PL spectrum. The
properties of asingle QD have been examined by near-
field optical microscopy [1] and spatially resolved tech-
niques [10, 11]. In the latter case, the researchers
employed a nanoaperture [10] or fabricated a reason-
able number of QD islands by lithography [11].

A different approach was followed in this study. In
the first part, we measured time-resolved inhomoge-
neously broadened PL spectra of awhole array of QDs
at 20K and analyzed the PL dynamicsin different spec-
tral regions. The dependence of carrier capture and

recombination on QD size was thus determined for a
single QD without using spatially resolved techniques.
Note that if the excitation is weak enough, QDs lumi-
nesce by recombination of electron-hole pairstin the
ground state and the homogeneous PL spectral broad-
ening of asingle QD iswithin 1 meV at liquid-helium
temperature [12]. For a single CdSe/ZnSe QD, the full
width at half maximum (FWHM) measured in [11] was
about 0.07 meV at 5 K.

In the second part, we investigated how the PL spec-
trum varies with excitation intensity and hence with the
carrier density inasingle QD. A possible mechanism of
this variation is analyzed.

2. MATERIALS, METHODS, RESULTS,
AND DISCUSSION

Arrays of CdSe/ZnSe QDs were fabricated with a
two-chamber MBE machinein the Stranski—K rastanow
growth mode on a GaAs(001) substrate misoriented by
6° toward [010]. A GaAs buffer layer was first formed

lAIthough electron—hole pairs bound by Coulomb attraction are
commonly referred to as excitons when the discrete excited states
of QDs are described, they are not true excitons, i.e., quasiparti-
cles capable of dissociating into free electrons and holes [13, 14].

The Coulomb interaction energy in a QD is approximately ?/ed,
where d is the mean QD size and ¢ is permittivity. This energy,
though greater than that characteristic of two- and one-dimen-
sional systems, is still much less than the level separation of free
electrons and holes.

1063-7761/04/9801-0156$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Weak excitation: (a) a PL spectrum of the specimens at 20 K; (b) time plots of PL and excitation intensity. Spectral regions 1
and 2 in panel (a) correspond to QDs and barrier layers, respectively; curves 1-3 in panel (b), to QDs (spectral region 1), barrier

layers (spectral region 2), and the excitation pulse, respectively.

on the substrate, and then a trilayered structure was
made in which 2.8 monolayers of CdSe were sand-
wiched between ZnSe layers 40 nm-thick. The three
layerswere successively grown at 260, 320, and 280°C,
respectively. We al so used this method to produce spec-
imens in which ten QD layers of CdSe were separated
by 12-nm-thick ZnSe barrier layers.

The CdSe thickness exceeded 2.3 monolayers, the
point of transition to three-dimensiona growth [9, 15—
17]. The density of QDsin the layer was about 10 cnr2.,
The use of a misoriented substrate under the growth
conditions indicated above prevented the formation of
two-dimensional CdSe idands and ensured step-flow
growth (direct incorporation of adatoms into surface
steps). When an exactly oriented GaAs(001) substrate
isused, transition from two- to three-dimensional CdSe
growth does not occur under typical conditions, which
may be explained by insufficiently fast diffusion due to
low growth temperature [18-21].

Electron and atomic-force microscopy measure-
ments have shown that CdSe/ZnSe QDs created by a
similar method and having a similar PL spectrum
(peaking at 2.26 to 2.38 eV) tend to be spherical caps
about 20 nm in diameter and between 2 and 3 nmin
height [11].

In the present study, the linear and nonlinear optical
properties of CdSe/ZnSe QDs were measured mainly
by laser-based spectroscopic methods, including a
time-resolved one.

2.1 Weak-Excitation Photoluminescence

In the case of weak excitation, we explored the
dynamics of PL by measuring time-resolved PL spectra
at 20 K. PL was excited by the focused second-har-
monic emission (hv = 3.1 eV) of a Ti:sapphire laser
under pulsed conditions (with a pulse width of about
100 fs, afluence of 0.2 pJcm?, and a repetition rate of
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82 MHz), pumped by an Ar laser. In this setting, optical
absorption and carrier generation took place mainly
in the ZnSe barrier layers.? The PL spectra were
recorded by crossing a lock-in streak camera (Hama
matsu C1587) and a polychromator. The measuring
system provided a time resol ution better than 10 ps.

Figure 1 shows a PL spectrum of the specimens and
time plotsof PL intensity for the QDs and barrier layers
over specific spectral regions. An intensity—time plot
for the excitation pulse is aso included in order to
determine the time resolution of the measuring system.

Figures 2a and 2b display time-resolved PL spectra
of the QDs and time plots of PL intensity, respectively.
The PL spectra shown in Fig. 2a were measured over
different periods after excitation. The time plots shown
in Fig. 2b correspond to the spectral regions specified in
Fig. 2a.

InFig. 1a, the PL spectrum consists of astrong (2.3
2.5eV) and aweak band (2.8 eV), which appear to cor-
respond to the QDs and barrier layers, respectively.
Notethat theformer is blue-shifted by morethan 0.5 eV
relative to the 1.8-eV energy gap of bulk CdSe as a
result of size quantization. The large FWHM of the
strong band (about 80 meV) can be attributed to the
inhomogeneous broadening due to variability of the
QD size. The estimated spread of QD size is less
than 10%.

It was also established that (i) the PL decay time of
the barrier layersisabout 7 ps, which issmaller than the
recombination time for bulk ZnSe; (ii) PL is much
stronger in the QDs as compared to the barrier layers;
and (iii) the PL risetimeis as short as 8-24 ps, depend-
ing on the QD size (see below for details). These find-

2 Excitation by this method resultsin intense PL of the QDs. When
an Ar laser is used as an excitation source (with a photon energy
less than the ZnSe energy gap), a much lower PL intensity is
achieved, because the pumping radiation is poorly absorbed by
QD layers.
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Fig. 2. Weak excitation: (a) time-resolved PL spectra of the QDs measured at 20 K; (b) time plots of PL intensity for the spectral
regions specified in panel (a). The PL spectra of Fig. 2a correspond to the periods (1) 0-23, (2) 23-47, (3) 48-72, (4) 87-110,

(5) 122-145, and (6) 145-169 ps after the end of excitation.

ingsimply (i) fast carrier diffusion in the barrier layers,
(i) intense carrier capture by the QDs, and (iii) fast car-
rier relaxation to the ground electron-hole state of the
QDs. Thus, there is no phonon bottleneck in the speci-
mens under study [22].

Figure 2ademonstrates that PL decays more rapidly
in a high-frequency region (the PL peak is red-shifted
with time). Note also that the rise and fall times of PL
intensity are longer for lower frequency regions
(Fig. 2b).

The observed PL dynamics can be explained by
variation of QD size. Recombination of € ectron—hole
pairsin aQD can be radiative or radiationless. The rate
of radiationless recombination increases with decreas-
ing QD size because of the growing influence of the
CdSe/ZnSe interface. This accounts for the changesin
the shape of PL spectrum illustrated by Fig. 2a. The
role played by nonlinear processes in these changes
must beinsignificant in view of therelatively low inten-
sity of second-harmonic emission of the Ti:sapphire
laser.

The time plots shown in Fig. 2b can be interpreted
by invoking a three-level model [23]. To do this, one
should introduce two time constants: t; and t. The
former is the sum of the carrier diffusion time for the
barrier layers, the carrier capture time for the QD, and
the time of relaxation to the ground electron—hol e state
in the QD. The time constant T is the recombination
time of an electron-hole pair (excitonic lifetime). The
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exciton density n as a function of time is governed by
the equation

dn _ 1

(n e—t/rZ n
I oY

)-2, @)
subject to the initial conditionn=0att =0. Here, nyis
the excited-carrier density and y characterizes the effi-
ciency of carrier migration into the QD.

It follows that the PL intensity | evolves as

—t/1s

ynoT.

—t/T

IOn = )

>

The table lists the results obtained by applying the
above approach Eqg. (2) to the PL time plots shown in
Fig. 2b and taking into account the time resolution of
the measuring system. It shows how these parameters
vary with QD size, which decreaseswith increasing fre-
quency.

For each specific spectral region, the PL decay can

be accurately represented as e ”", with B < 1 givenin

the table. The stegper decrease in the recombination
time for smaller QDs can be attributed to an increasing
contribution of radiationless recombination. The use of
a stretched exponential appears to provide an adequate
approximation of the dependence of T on QD size even
over anarrow size range.
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Fig. 3. Strong excitation: PL spectra (80 K) of the QDs for the excitation intensities (A) 0.057 and (B) 1.5 MW/cm?. Closed circles
represent saturation excitation intensities for different spectral regions.

Note also that 15 increases with QD size. This may
be explained by the increase in its capture component.
It was shown in [24, 25] that the capture of electrons
from abarrier layer into aquantum well may cause neg-
ative and positive charging of the quantum well and an
adjacent barrier region, respectively. The growing Cou-
lomb barrier inhibits the increase in carrier density in
the quantum well. The decline of the carrier capture
rate that ensues as the quantum well becomes increas-
ingly full (see [26]) should be more pronounced in
larger QDs because of alonger carrier lifetime.

At the same time, the dependence of ts on the QD
Size cannot be attributed to its relaxation component.
Onewould rather expect it to be larger for smaller QDs,
where the QD levels are less closely spaced, provided
that resonant transitions are impossible (the level sepa-
ration is not equal to the optical-phonon energy [27]).
Furthermore, the time of relaxation to the ground state
for I1I-V1 QDswasfound to belessthan 1 ps; i.e., there
is no phonon bottleneck [9, 22, 28].

The diffusion component of s must be insignificant
since the ZnSe barrier thickness is small in the speci-
mens examined in this study.

2.2 Srong-Excitation Photoluminescence

In the case of strong excitation, we investigated how
PL varied with excitation intensity. The PL was excited
by the third-harmonic emission (hv = 3.45 eV) of a Q-
switched Nd:YAIO, laser with a pulse width of 14 ns.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

Figure 3 shows the PL spectra of the specimens
recorded at 80 K for two levels of excitation intensity.
Note that an increase in excitation has a stronger effect
on a high-frequency part of the spectrum (the peak is
blue-shifted). Figure 4 demonstrates that the PL inten-
sity measured for the high-frequency regions indicated
in Fig. 3, which correspond to different QD sizes, isan
essentially nonlinear function of excitation intensity.

Theseresults can be explained by analyzing the con-
tributions of the processesthat can take place in QDs at
high densities of electron—hole pairs. state filling [29,
30], the Stark effect [31], and temperature-dependent
change in transition energy. The curves of Fig. 4 should
be attributed to the filling of the QD ground level sub-
ject to the Pauli exclusion principle. The measured
recombination timein the QDsis much smaller than the

Table

Spectral region Ts, PS T, psS B
a 23+2 410+ 20 1
b 16+1 418+ 7 1
c 13+1 3576 1
d 12+1 244 +7 09+0.1
e 11+1 144+ 8 0.7+01
f 8+1 112+8 06+0.1
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Fig. 4. Strong excitation: PL intensity vs. excitation inten-

sity for spectral regions 1-3 of Fig. 3.

excitation pulse width: T < 1,. Accordingly, the steady-
state density of the carriersinjected into asingle QD is

(1-R)(1-€e*)Wr
T,ShyN ' (3)

Nop = X

where x characterizesthe carrier-injection efficiency, R
is the specimen’s reflectance, a is the specimen’s
absorption coefficient, L is the total thickness of the
barrier layers, Wis the excitation-pulse energy, Sisthe
area of excitation, and N isthe QD density. Since mea-
surements of the specimen’s transmittance have shown
that nop > 10, the steady-state carrier density is suffi-
cient to ensure level filling in asingle QD.

The nonlinear intensity characteristic was approxi-
mated by the saturation model

n
1+n/ng

(4)

where | isthe PL intensity, nisthe QD carrier density
asafunction of excitation intensity, and n,isits satura-
tionlevel [30]. Furthermore, n = P, where P, isthe sat-
uration excitation intensity. The PL intensity at P = P
is half as high as that reached in the case of a linear
intensity characteristic.

At high frequencies, P, was found to increase with

frequency from 0.4 to 0.9 MW/cm? (Fig. 3). Both this
effect and the blue shift can be attributed to shorter
recombination timesin smaller QDs.
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The behavior of P, at low frequencies (Fig. 3) may
be associated with a considerable red shift in the fre-
guency corresponding to the ground-state transition,
due to the Stark effect and a temperature-dependent
change in transition energy. Accordingly, the increase
in PL intensity (Fig. 3) should result from the contribu-
tion of neighboring smaller QDs of higher density. The
variation of P, may also be associated with the decrease
in capturerate with increasing QD size (see Section 2.1).
This effect is more pronounced for large QDs because
they are characterized by longer carrier lifetimes.

3. CONCLUSIONS

PL spectra of self-assembled CdSe/ZnSe QDs were
measured by generating carriersinthe ZnSebarrier lay-
ers by means of weak and strong pulsed laser radiation
on time scales of femto- and nanoseconds, respectively.

In the case of weak excitation, time-resolved PL
spectrawere obtained. It isfound that both rise and fall
times of PL intensity are shorter for higher frequency
regions. Thisfinding is attributed to shorter carrier cap-
ture times and the recombination times of electron—
hole pairs (excitons) corresponding to smaller QDs.

In the case of strong excitation, PL spectra were
measured for different levels of excitation intensity and
PL intensity was examined as a function of excitation
intensity. The changein PL spectrum and the nonlinear
nature of the intensity characteristic were explained by
(i) state filling, (ii) ared shift in the ground-state-tran-
sition frequency due to the Stark effect and a tempera-
ture-dependent change in transition energy, and
(iii) decrease in capture rate as the QD becomes
increasingly full.

Thus, the use of time-resolved laser PL spectro-
scopy made it possible to determine the QD-size
dependence of carrier capture and recombination in a
single QD.
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Abstract—The conductivity and the distribution of electric field, current, and charge density in a periodic two-
component system composed of rhombswith an arbitrary vertex angle of 2a areinvestigated. The effective con-

ductivity of such a medium is represented by a tensor with components oiflf(a) and oifzf(or) in the principal

axes that satisfy the Dykhne relation oiflf(a) offf(a) = 0,0,, where 04, 0, are the isotropic conductivities of

medialand 2. In addition, therelation oﬁfzf(a) = oéflf(nlz —a) issatisfied. The principal axesaredirected along

the diagonals of the rhombs. It is shown that there are threelinesin therectangle0<a <1/2,-1<Z<1(Z=
(01 —05)/(04 + 05)) on which the charge density is expressed in terms dlliptic functions. An explicit expression
is obtained for all physical quantities on these lines. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A periodic two-component system composed of
rhombs with a vertex angle of 2a seemsto be the sim-
plest in which the effective conductivity is not isotro-
pic, whereby the Dykhne relation for the components

of the conductivity tensor with components o4(ar) and
0%(0) inthe principal axes [1-4],

0gi(@)05(0) = 0,05, 1)

is insufficient for the complete reconstruction of the
tensor of effective conductivity. In (1), the quantities o,
0, are the isotropic conductivities of the media. The

components o;(0) and 0%(a) satisfy the following
obvious relation:

0a(0) = og(TU2—a). )

Below, we will show that even the first terms of pertur-
bation theory in the parameter

0,—-0,

z =22 3)

o,t0,

for the components of the tensor of effective conductiv-
ity nontrivially depend on the angle a. Therefore, it is
hardly possible that one can obtain exact algebraic for-

mulas for the tensor components o () and o5:(a) .

Nevertheless, in the domain of parameters (0 < a <172,
-1 < Z < 1), there exist three lines on which one can
obtain a closed-form expression for the charge density,
concentrated on the boundaries of domains (1) and (2),
in terms of eliptic functions. In the domain Z — 1,
o — 0, the charge density and other physical quanti-
ties essentially depend on the ratio of small parameters
(1-2/a.

2. CHARGE DENSITY
IN A PERIODIC SYSTEM COMPOSED
OF RHOMBS WITH A VERTEX ANGLE OF 2a

Choose a coordinate system (X, y) with the origin at
avertex of acertain rhomb and the axes directed along
the diagonals of the rhombs (see Fig. 1). In this case,
the vectors of a unit cell can be chosen as

2asina(1,0); 2acosa(0, 1), 4

where aisthelength of the side of the rhomb. The con-
tinuity of current on the boundaries of rhombs deter-
mines the jump of electric field E,

1 2
0.EY = 0,EY, (5)

wheren isanormal vector to the side of the rhomb and

EY | E® isaprojection of eectric field onto the nor-
mal vector. The Maxwell equation divE = 41, where

1063-7761/04/9801-0162$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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p is the charge density, yields the second equation for
the electric field jump

EP—E? = 4mp. (6)

The relation between the scalar potential ¢ and the
charge density is given by

¢==aw—mq&neu—nm«o, @

where G is the Green function of the Laplace operator
on the plane,
1

G:2T[

Injr —ry. (8)

The dectric field E, is directed along axis y; this

allows us to find the component 6%(a) of the conduc-
tivity tensor in the principal axes. There are obvious

relations between the components o5;(a) and o (o)
of the conductivity tensor in the principal axes,

11 _ 20U ]
0gi(0) = OG5 — 0=,

2 ©
0u(@) = ogi(@) = 0.

Charges are localized only along the sides of the
rhombs. Due to the trangl ation symmetry and two sym-
metry planes, there exist only two independent func-
tions p,, p, that determine the charge density on all the
sides of therhombs. Asaresult, taking into account for-

mulas (4), we obtain the following expression for the
scalar potential ¢:

¢ = Epy—2a

1

XIdt Y {[In((x~atsina —2aKsina)?
o KL

+(y—atcosa —2aL cosa)?) ¥
+In((x + atsina —2aK sina)®
+ (y—atcosa — 2aL cosa)?)"*1p,(t) (10)
+[In((x—atsina —2aK sina)®
+ (y + atcosa — 2al cosa )?) "

+In((x + atsina —2asina)®

+(y +atcosa —2al cosa)?) 1p,(1)} .
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Fig. 1. Periodic two-component system of rhombic type.

Boundary conditions (5) and (6) and expression (10)
for the scalar potential ¢ yield two equationsfor p4, p,.
A simple verification shows that the functions p;, p,
satisfy the simple relation

P2(t) = —p4(D). (11)

As aresult, we have only one equation for p4(t):

1

O . .
ZTEEOSM + an(ZG)J’dtpl(t)
0
» [ t+K+L
Z ' 2. 2 ' 2 2
(t+t'+2K)sin"a + (t—t'+2L) cos a

K, L

" __K*L —  ®
(t—t'—2K) sin"a + (t—t'+ 2L)"cos «a

B K+L
(t+1t +2K)?sin“a + (t +t' — 2L) cos’ o

t—K-L o _ ,
* — = |0= putt).
(t—t'-=2K) sin"a + (t+t'—2L)“cos a-[]
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For a = 174, formula (12) reduces to the expression
obtained in [3].

In (12), we can perform one summation. Asaresult,
we reduce Eq. (12) to

1

z0O .
E[EEOS'M + nIdtpl(t)
0

y sinh(mttan a(t + t' + 2K))
Z [cosh(rttan a(t +t' + 2K)) — cos(mi(t —t'))

K

+ sinh(ttcot a(t —t' + 2K))
cosh(Ttcot a(t —t' + 2K)) — cos(m(t +t'))

sinh(Ttcot a(t + t' + 2K))
cosh(ttcot a(t +t' + 2K)) — cos(m(t —t'))

sinh(mttan a(t —t' + 2K))
cosh(mttan a(t —t' + 2K)) — cos(m(t +t'))
sinh(tcot a(t —t' — 2K))
cosh(Ttcot a(t —t' —2K)) — cos(Ti(t —t'))
B sinh(mttan a(t —t' + 2K))
cosh(mtan a(t —t' + 2K)) — cos(i(t —t'))

(13)

sinh(ttcot a(t + t' — 2K))
cosh(Ttcot a(t + t' —2K)) — cos(Ti(t + t'))

B sinh(mtan a(t + t' + 2K))
cosh(rttan a(t +t' + 2K)) — cos(Ti(t +t')

)}%: Pa(t).

where

0,—0
zZ = 22 (14)
0, +0,

Thefunction p,(t) isadoubly periodic analytic function
of the complex variable t and has two branching points
in each parallelogram of periods. Let us determine the
behavior of p,(t) in the neighborhood of the branching
pointst = {0, 1}. The asymptotics of the function p,(t)
ast —» Qisproportional to a power of t:
p,(t) O AIt™. (15)
The coefficient v can be obtained from thefollowing
equation derived from Eq. (13):

Zsin(Za)J'dttl_zv
0 (16)

1 1 _
[ - |=n
t°+ 1—-2tcos(2a) t°+1-—2tcos(2a)
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Calculating the integralsin (16), we obtain

« dttl—Zv
-([t2 + 1+ 2tcos(20)
_ T sin(2a(1-2v))
sn(2a) sin(2mv)

00

(17)
dtt' >
J(:t2 +1—2tcos(20)

m  sin(2nv+2a(1-2v))
sin(2a) sin(2mv)

Then, the equation for the parameter v follows from
Egs. (16) and (17):

sin(mv+2a(1-2v)) _
sin(mtv) B

1, (18)

For o =174, Eq. (18) coincideswith theresult of [3]. In
the neighborhood of the point t = 1, the function p,(t)
can be represented as

B
t) = ——. 19
P0= = (19)
Parameter 1 satisfies the equation
Zsin(np+ 20(1-2)) _ 1 (20)

sin(Tty)

Equations (18) and (20) were obtained in [5].

The two periods (1, 1) can be determined by
Eqg. (13) and are given by

_ 2 , _ 2itana
U THitna’ T 1+itana’ (1)
The charge density p4(t) can be represented as
p1(t) = A(@(D)’ + AT(a(tD)D), (22)

where @(t) isadoubly periodic function.

Notice the following important property of the ker-
nel in Eq. (13): theintegral with respect to external vari-
able t' does not depend on angle a and, hence, coin-
cides with the expression obtained in [3]. Integrating
Eq. (13) with respect to external variablet', we obtain

1 1

ZLE sna +2T[J’dt(l—2t)p1(t)g = [dip.(0. (23
2T[|:| . 0 !
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The component 0(t) of the conductivity tensor is

expressed in terms of the charge density p,(t) by the
formula

(24)

1
4711 0.0
o) = L2 [ctpa(®).

E,shao; -0,
0

3. PERTURBATION THEORY
WITH RESPECT TO PARAMETER Z

Perturbation theory in Egs. (12) and (13) is trivial.
Setting

Pi(t) = Eop(t)sina, (25)

we abtain the following expression up to the second-
order termsin Z:

2
B(t) = %T+ %Zsjn(za)

dtZ[ t+K+L
I (t+t +2K)? sma+(t t+2L)° cos’a

+ K+L (26)

(t—t —2K)%sin‘a + (t—t' + 2L)%cos

B K+L
(t+t' +2K)%sin‘a + (t+ t' —2L)%cos’ o

+

t—K-L } N
(t—t'—2K)%sin‘a + (t+ t' —2L)%cos’™
In third-order perturbation theory, we obtain the fol-

lowing expression for the conductivity o2(at) from (23),
(24), and (26):

20,0
22 _ 1 2
Og(0) = P

Z 1
D EJ'olt(1—2t)
0

y sinh(mttan a(t + t' + 2K))
_([dtk:z_w[cosh(ntan a(t + 0+ 2K)) = cos(m(i—1))

+ sinh(Ttcot a(t —t' + 2K))
cosh(ttcot a(t —t' + 2K)) — cos(mi(t +1'))

sinh(ttcot a(t + t' — 2K))
cosh(Ttcot a(t + t' — 2K)) — cos(m(t —t'))
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sinh(mttan a(t —t' — 2K))
cosh(Tttan a(t —t' — 2K)) — cos(Ti(t + t'))

(27)

_ sinh(rttan a(t —t'— 2K))
cosh(Tttan a(t —t' — 2K)) — cos(Ti(t —t'))

sinh(Ttcot a(t —t' + 2K))
cosh(Ttcot a(t —t' + 2K)) — cos(Ti(t —t'))

+ sinh(Ttcot a(t +t'—2K))
cosh(ttcot a(t +t' — 2K)) — cos(Ti(t +1'))

B sinh(tttan a(t +t' + 2K))
cosh(mttan a(t + t' + 2K)) — cos(i(t + t'))]

It follows from (27) that the conductivity o2(a)
can be represented as

20,0,0 Z7° a
oL+ L+ 5 (Fy0) + Fz(O())E,

o) = (28)

where

Fi(a) = Fl%[—ag, Fy(a) = —FZE’ET—GE. (29)

It follows from the Dykhne theory that the function
F,(a) isindependent of a and equals unity:

Fi(a)=1.

From (27) and (28), we derive the function

(30)

1

Fi(a) = J'dt'(l —2t")
0

[

1
x fdt
2

sinh(Ttcot a(t —t' + 2K))
[cosh(ncot o(t—t'+ 2K)) — cos(mi(t —t"))

+ sinh(Ttcot a(t + t' — 2K))
cosh(rtcot a(t +t'—2K)) — cos(m(t + t'))

(31)

_ sinh(tttan a(t —t'— 2K))
cosh(Tttan a(t —t' — 2K)) — cos(Ti(t —t'))

B sinh(mtan a(t + t' + 2K))
cosh(rtan a(t + t' + 2K)) — cos(m(t + t'))]

Integrating by parts the right-hand side of Eq. (31),
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F, Thefunction F,(a) isanontrivial function of a. The
0.35 . . . . . . results of the numerical calculation of the function
F,(a) aregivenin Fig. 2.
0.301 .
025+ A 4, EXACT SOLUTIONS OF THE EQUATION
FOR p;
0.20 .
There are three lines in the rectangle {0 < a < 172,
0.15+ 4 0 <v < 1/2} on which the function ¢(t) is éliptic. One
of theseisthe straight linea = 174. Inthiscase, T = (1"),
0.10} - M =-v,and @=B0", whered isthe Weierstrass ellip-
tic function [3] and B is a numerical factor. There are
0.05F . two lines on which
0 01 02 03 04 05 06 07 W4 W=-1-v, (34)
. and, hence, @isan dliptic function. On these lines, the
Fig. 2. function a;(v), a,(Vv) is defined by formulas (18), (20),
and (34), which lead to the equation
a
' sin(mtv+ 2a(1-2v))
sin
2 . | ) (35)
+ sin(mp+2a(1-2y)) _ 0
a sin(mty) |
V4 - . . . . .
Solutions to this equation are given by
v T (1+v
6 . ay(v) = m a, = 5—0(1 = ﬁ (36)
All three of these lines are shown in Fig. 3. On
V8 . lines (36), the elliptic function @ can be expressed in
a, terms of function 6, [6]:
0 1/2 \Y = J
0,(Z |KZ (-1)" expD Titan a%( ZJD 37)
Fig. 3. -
? x exp(i (2K = 1)1
we obtain It follows from (37) that

1

Fy(a) = 4Idt'<t'—<t'>2)
0

L < sinh(Ttcot a(t' + 2K))
K:zqm[cosh(ncot o(t' + 2K)) — cos(mt")

B sinh(mttan a(t' + 2K))
cosh(Tttan a(t' + 2K)) — cos(Trt')]

Inthelimitasa — 0O, we obtain
1

Fo(@)g .o = 4J’dt(t—t2)(1_t) = %
0

(Z+17] _ —IT[
St -
(38)
+ T 2i
(32) 6%%% = —exp%rtan o— '”2‘391%

Formulas (38) make it possible to express the ellip-
tic function @ with periods{Tt, 1} as

0, L= Zf
O ¢ 4o
0= — . (39)

(33) %i nz/t 91 %
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The function @(2) satisfies the relation

|Trz/tel|:-t|:| - ie—ntan(x/4 (41)
ADP1-2) = ™™, (40) -
x5 (1) exp[—mtan a(K* =K (1-2)) +iTKZ],
We also present the following useful relations: K'= o

EJZ : (-1)""tex [—ntana%(—— }sn%[z%

0 Z P chosa
o1l-2) = =L 0.

O ( (1/4) tana) —ttan oK sh —|(n/2 a)|:| E

E 1+22e co %[Kz wsa 0| o

The function @(2) satisfiesthe differential equation ~ where

(@) +Cip’ +C9 -C™ 9 =0, (4 A = AT, (45)
where The coefficient |A| is given by Eqg. (23):
i 1
fnBee (m2=) —(T[/4)tancD2 z 0 .
C, = D—Blcosa e o (43) ETE:L-'- 2T[I|A|Idt(l—2t)
0
C. = 1217 eziorDBZ 2By
1= 8B. B.L j v j(T—20)\V\ *
COSz(X [BBO 81D X[(([(t)el(n_za)) —(((p(t)e( 2 )) ) :|E (46)
O
- z(_l)lula(_l{j 1
- 2:' —_ d i(T—2a) V_ i (T1—2a)\ V4 ¥
K=1 = IIAII tl (pt)e ) —((et)e )) |-
 expfran atk - 293 °
The component o2(a) is defined by (24):
- —ritan ak? 22 : 0,0,
- = 47| A
B, 1+2ze ) O«r(0) T | |Gl_ 5
h 1 (47)
R [ (@0 ™2 ~ (a0 ™))
B3 — z K2e™ anal , O
K=t Consider thelimit caseasa — 172. From (41), we
o 17 obtain
_ K+1 .
B, = Z (-1) B<—§] ®1-2) = exp[mz(tana —i)], )
K=t ®2) = exp[n(1-2)(tana —i)].
X exp E_man a%( - 1‘32%_ The parametersv, A, and Z are given by formulas (18),
2 (36), and (45):
Formulas (22), (34), and (41) imply that, in the 20
interval (0, 1) of the real axis, the charge density can be v=1-—, A=A expEE’ET+ HVEE..H
represented as (49)

1 2
v " . Z == t = -,
pi(t) = { Al + AL@)"} Eosina, (44) o vVina = o
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Using (48) and (49), we can reduce the expression
for the charge density to

p.(t) = Eysina{2mw(1—t)e** ™% |

i{ (o))" — ((@(t)e ™))"} (50)
= 2mv(1-t)e”* Y,
The coefficient |A| is defined by (46) and (50):
Z O _
2mviAl = Dl'oltt %e% = n—(5+e) (51)

Using (47), (50), and (51), we obtain the following

expression for the component o2(a) of the conductiv-
ity tensor asa — TU2:

40,0,e*+1
0,+056°+5

o) = = 0.677130,. (52)

The component o:(0) is reconstructed by the
Dykhnerelation

ow(0) = 0.492270,, o —» /2. (53)

Note that a = 0 is a singular point. In particular,

F,(a) (see Eq. (31)) isaperiodic odd function of a with

period 1t such that F,(a — +0) = 1/3. Hence, an

expansion of this function in trigonometric series con-
tains infinitely many harmonics.

5. CONDUCTIVITY
IN THE DOMAIN Z — 1

Consider the range of values of the parameter Z that
are close to unity:

1-Z<1. (54)

Suppose aso that angle a satisfies the conditions

T as>1-7

a>1-7, 5

(55

Under conditions (54) and (55), parameter v isclose
to 1/2:

=

Y 5—6 o<l (56)
From Eq. (18), we determine
_ 1/2
-0 20-72) n (57)

U1 - (1-40im)3-
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Under conditions (56), the charge density p, in the
zero approximation is given by (15):

C(a)

p1=Egs (58)

where é(a) isavalue of order unity, provided that

5> 1-27. (59)

The component o%(a) is defined by (24) and,
under conditions (56) and (59), isequal to

0,0, C(a)

22 _
Og(0) = 21101_02 5

(60)

When o = 174, we have C (1q(4)) = L/rt Thus, for
Z — 1 and awide range of angles a satisfying condi-

tion (55), the components () and og(a) of the

tensor of effective conductivity differ only by a numer-
ical factor of order unity.

Inthedomainwherea — Oand Z — 1, we deter-
mine both parameters u and v from Egs. (18) and (20):

1-2v = 1—Ztan(T[v)

a
iy 2a (61)

u:_

Equation (61) impliesthat the parameter v isafunc-
tion of theratio of two small parameters{a, 1 — Z} with
the range of variation (0, 1/2). In this domain, the
charge density experiences a strong variation and the

ratio of the components o4(a) and o4(a) is also an
essential function of the parameter a/(1 — Z).

6. CONCLUSIONS

We have investigated the conductivity and the
charge and current distributionsin a periodic two-com-
ponent system composed of rhombs with an arbitrary
vertex angle of 2a. Investigation of special cases has
shown that one can hardly expect simple algebraic
expressions for the components of the tensor of effec-
tive conductivity [7]. We have shown that, in the plane
of parameters (a, v), there are three lines on which an
explicit expression is obtained for the charge density
and the tensor of effective conductivity in terms of
eliptic functions. At a point of general position on the
plane {a, v}, the charge density is a doubly periodic
analytic function of parameter t with two branching
points in the parallelogram of periods.
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Abstract—The broadening of atwo-photon resonance is studied experimentally at the 4s 1S,—6s 3S; transition
in azinc atom upon absorption of two waveswith asmall detuning from an intermediate statein collisions with
CO,, CO, and NO molecules. The measured absolute values of broadening cross sections greatly exceed gas-
kinetic cross sections and are (9.4 + 2.4, 6.5 + 1.6, and 3.9 + 1.0) x 104 cm? for CO,, CO, and NO, respec-

tively. Anomalously large rate constants and cross sections obtained in experiments are explained by the effi-
cient resonance quenching of the excited states of zinc atoms in collisions with molecules accompanied by
transfer of the energy of excited atomsto vibrational-rotational degrees of freedom of molecules. © 2004 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Callisions of electronically excited atomswith mol-
ecules have been extensively studied over along period
of time (see, for example, [1, 2]). These collisions are
accompanied by avariety of processes such as quench-
ing of excited states, ionization, and chemical reac-
tions. The investigation of these processes is important
for the understanding of the collision kinetics, the phys-
ics of plasmas and lasers, laser isotope separation, etc.
The most popular method for measuring the absolute
values of the rate constants of such processes is the
detection of the time dependence of theintensity of flu-
orescence from excited levels as a function of the con-
centration of another gas. An alternative method is the
detection of the widths of absorption lines of atoms.
Thismethod also givesinformation on spectral shifts of
absorption lines caused by various physical processes.
Thefirst studiesin this field were performed by classi-
cal absorption methods [3]. To exceed the Doppler
broadening, the experiments were performed at high
gas pressures. Later, the authors of [4] proposed a
method based on the simultaneous absorption of two
photons by an atom with the same energies and oppo-
sitely directed momenta. In this case, the shape of the
absorption line is determined only by homogeneous
broadening. The absence of Doppler broadening allows
the experiments to be performed at comparatively low
pressures (afew orders of magnitude lower than in the
one-photon method), and the spectral resolution is
determined only by aradiation source.

The broadening and shift of two-phaoton absorption
resonances have been experimentally studied to date

mainly for the Rydberg atoms of akali metals [5-7].
Thisis explained by the fact that, to study two-photon
absorption for other elements, an intense tunable UV
radiation source is required.

In thiswork, we studied experimentally for the first
time the broadening of the two-photon resonance at the
4s1S,-6s3S, transition in a zinc atom colliding with
CO,, CO, and NO molecules. Thistransitionis of inter-
est because it isinvolved in the process of excitation of
zinc atoms upon photochemical separation of zinc iso-
topes|[§].

2. EXPERIMENTAL

Experiments were performed on a setup for laser
separation of zinc isotopes[8]. The scheme of the setup
for excitation of zinc atoms is shown in Fig. 1. The
atoms were excited in an interaction chamber repre-
senting a horizontally positioned quartz cylinder of
diameter 3 cm and length 100 cm. Granulated zinc with
residual impurities of other elements less than 10%%
was placed at the bottom of the cylinder. The interac-
tion region was heated with an externa furnace with
automatic temperature control, which was measured
with a chromel—copel thermocouple with an accuracy
of 0.5°C. After careful degassing in vacuum upon
pumping by a magnetic-discharge pump, the gas under
study was pumped through the interaction region at a
rate of 0.5 I/s. The gas was pumped by a backing pump
and its pressure was measured with a McLeod gauge.
We used in our experiments CO, with residual impuri-
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ties of O, and H,O in amounts less than 1%, CO with
impurities of O, and formic acid less than 0.5%, and
NO with impurities of NO, and O, lessthan 0.5%. Con-
trol experiments were performed with helium and
argon. The working temperature of the chamber was
275°C, and the calculated concentration of zinc atoms
in the interaction region was 7 x 10*? at./cm?®.

Zinc atoms were excited to the 6s3S; state by two
counterpropageting beams at the wavelengths A; =
0.307 um and A, = 0.303 um from two lasers described
in[9] (see Fig. 2). A cw dye laser pumped by an argon
laser was used as a master oscillator. Narrowband laser
radiation with alinewidth lower than 5 MHz was ampli-
fied in athree-stage scheme of amplifiers pumped by a
pulsed Cu laser. The amplified radiation wasdoubled in
anonlinear BBO crystal. The average power of each of
the laser beams in the interaction chamber was approx-
imately 1 W, the pulse duration was 10 ns, the linewidth
was no more than 40 MHz, the pul se repetition rate was
12 kHz, and the beam diameter was 1 cm. The counter-
propagating pulses were combined using adelay linein
such away that their power maxima in time coincided
in the center of the region of interaction with zinc
vapors. Both waves had linear and mutually orthogonal
polarizations because the two-photon transition under
study is forbidden for parallel polarizations [10]. The
beam frequencies were detuned by 9 GHz from the

exact resonance with the 4p 3P2 level. This circum-
stance and the closeness of the energies of the two
counterpropagating photons reduces the Doppler
broadening, thereby making it possible to resolve the
isotopic structure. After excitation of zinc atoms to the
upper 6s3S, state, this state decays via direct and cas-

cade optical transitionsto long-lived 4p 3Pf levelswith
a lifetime of 10 ps. Two-photon absorption was
detected by the luminescence signal at the wavelengths
1.3 and 0.48 um with a germanium photodiode 9
(Fig. 1) and a selective voltmeter 11 at a 130-Hz fre-
guency of modulation of one of the beamswith the help
of amechanical chopper. This detection technique pro-
vided a better signal-to-noise ratio than direct detection
of the UV radiation absorption with photodiode 10 and
selective voltmeter 12. The output signals of the selec-
tive voltmeter were detected by a computer by continu-
ously varying the wavelength of one of the beams, the
wavelength of the other beam being constant. Each of
the experimental points corresponded to a measure-
ment time of 10 ms (averaging was performed over
about one hundred laser pulses). The wavelength of
tunable radiation was detected simultaneously with a
wavemeter. The absolute error of the UV radiation fre-
guency measurement was 400 MHz, and the relative
error during the time of measurements of 1 min was
smaller than 20 MHz.
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3. SHAPE
OF THE TWO-PHOTON RESONANCE LINE
IN A ZINC ATOM

To measure the width of the two-photon 4s!S—
6s3S, line resonance line (we will denote the states by
g and f, respectively), it is necessary to determine the
shape of the absorption line for counterpropagating
waves with unequal frequencies and asmall detuning &

of radiation frequencies from the intermediate 4p 3P2
state, which we will denote by n. For the fixed, v,, and
tunable, v,, frequencies of exciting radiation and the
frequencies vy, and v, of trangitions in the atom, the
value of d is determined by the condition

O = Vi —Vpg=Vi—V,>0. (D)

The requirement of the resonance leads to the con-
dition

|4
V1+V2+(V2_V1)E = Vigs (2

where v isthe projection of the velocity of an atom on
the direction of radiation propagation. According
to [11], the rate of the two-photon g — f transition in
the field of two counterpropagating waves is deter-
mined by the expression

Q10
ng(VZ) = 462
., .1 ®
v o
XY Vot (Vi—V,)=—=V;—V —A} +=5=0
@: 0 1 2 c 1 2 Eﬁ][l

where Q, and Q, are the Rabi frequencies for the one-
photon g —= n and n — f transitions, y is the line-

10 9
IE 7
13

At

Fig. 1. Scheme of the experimental setup: (1) interaction
chamber; (2) gas inlet; (3) gas evacuation; (4) pressure
gauge; (5, 6) laser systems; (7) mirrors; (8) mechanical
chopper; (9, 10) photodetectors; (11, 12) selective voltme-
ters; (13) computer; (14) wavemeter.
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6s 3S1

~
~

5p 1P1

1.4 pm
5s 1S0 —_
1.1 ym

0.21 pm

4s lSO

Fig. 2. Energy level diagram of a zinc atom.

width of the two-photon transition, and A is the reso-
nance frequency shift. Thelinewidth yis determined by
the radiative and collision broadenings:

Y = Yo+ kn/m, (4)

wherek isthe rate constant of collision broadening, nis
the concentration of molecules, and y; is the transition
linewidth in the absence of collisions. The averaging of
expression (3) over the Maxwell distribution of atoms
over velocities gives a profile with a diminished Dop-
pler width (v; — v,)u/c, where u is the most probable
velocity of atomsin gas. Thisresidual Doppler width of
the two-photon resonanceis equal to 16 MHz, whichis
lower than other widths (widths of the spontaneous and
stimulated transitionsfrom the upper level and laser lin-
ewidths), which are independent of the atom velocity.
Asaresult, we obtain the dependence of the probability
of two-photon absorption on frequency

-1
Q20

= 2 E[ —Vy =V, = 4]
W, (Vv 2 Vg—V \Y A ‘|‘D|:J . (5
gf( 2) 62V 0 V1T V2 ] @D ©)

The profile of the absorption line proves to be
shifted with respect to the center by the value A, which
is determined by the total contribution of the collision
shift A, and thefield shift caused by thefield at the fre-

quency v,:

A = Ay + Q3143. (6)
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The oscillator strengths of the working transitionsin
azinc atom f,, = 1.4 x 10~* and fy, = 1.6 x 102 [12] dif-
fer by two orders of magnitude. At equal intensities of
exciting radiation, the field shift at the f—n transition
leads to an increase in the transition frequency approx-
imately by 200 MHz for a pulse power of | =
10 kW/cm? and is comparable to the experimental
width of the resonance.

The number of atoms excited to the 6s 3S, state by a
10-nspulseis

Q2Q5N,VyT
48°[(Av)* + (y12)] ()
AV = Vo=V, —V,—A,

N¢(v,) =

where N, is the concentration of atoms in the ground
state and V is the volume of the region of interaction
between laser radiation and atoms. The absorbed radia-
tion power is determined by the number of excited
atoms and monotonically decreases with increasing y.
Estimates made from (7) show that approximately 10%
of the atoms are excited per pulse in the interaction
region. This agrees with the calculation of the number
of photons absorbed when 1% of a radiation is
absorbed. Excited atoms can relax over severa chan-
nels, with atotal lifetime equal to 1/2mty In this case, a
detected luminescence signal is described by the
expression

S(v;) = CN¢(y, +kin)ly,

wherey, isthe decay rate of the level in the absence of
guenching collisions with molecules and C is a con-
stant. Therefore, a signal detected in experiments is
described by the expression

CQIQ2N,V1(y, + k,n)

= Sy + (2]

)

Note that the value of Sv,) increases with increasing
relaxation rate of the f level due to the population of
low-lying levels at which relaxation occurs and from
which spontaneous or stimulated radiation is detected.
Figure 3 shows the experimental dependence of the
luminescenceintensity of the ®*Zn isotope on frequency
Vv, (curve 1) obtained at temperature T = 548 K, pres-

sure Peo, =1Torr, and 8 = 9 GHz. Unlike (8), the two-

photon absorption band is asymmetric, which we
observed for al the spectra studied. The asymmetric
shape of the absorption band is caused by fluctuations
of radiation intensity from pulse to pulse (up to 10%).
Each of the measured points was obtained by averaging
the signal over more than 100 pulses. In this case, the
averaging of S(v,) over the interval of variation in the
radiation intensity gives, in the first approximation, the
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following expression for the experimentally detected
signal:
A
(Av —a)® + (y/2)
< %I. + BAv 51
(Av —a)® + (y/2)

Sexp(VZ) =
)

where the parameters A, B, and a, which are indepen-
dent of v,, are selected by fitting the experimental data.
Figure 3 shows the dependences (curves 2 and 3) corre-
sponding to the approximation of experimental data by
expression (9) and Lorentzian profile (8) by the least-
squares method. In the case of approximation by
expression (9), which describes an asymmetric contour,
the error of measurements of y is somewhat lower than
that for the L orentzian contour, whilethe absolute value
islarger. The processing of several experimental curves
by both these methods gives values of y which differ
from each other no more than by 15%, which is within
the accuracy of other measurements. In this study,
experimental data were approximated by Lorentzian
profiles, because processing based on (9) would be too
cumbersome.

Two-photon absorption of two counterpropagating
waves, which were slightly detuned from an intermedi-
ate state, was first observed in [13] at the 35-4D transi-
tion in a sodium atom; however, the lineshape was not
studied. The two-photon absorption line observed upon
pulsed excitation can have a broad symmetric pedestal
due to the short duration of radiation (a few nanosec-
onds) and a high pulse power (afew tens of MW/cm?).
This was experimentally demonstrated for a helium
atom at the 25-3S transition [14]. In our case, such a
pedestal was not observed because of a significantly
lower pulse power.

4. RESULTS

Experiments with different gases were performed
at the ssmetemperature T=548 K and 6 = 9 GHz. Fig-
ure 4 shows the luminescence spectra obtained at dif-
ferent CO, pressures in the interaction chamber.
Because natural zinc consists mainly of even isotopes,
64 (48.6%), 66 (27.9%), and 68 (18.8%), they were
detected experimentally. The isotope shifts at this two-
photon transition were Avgses = 860 MHz and
Avgg 65 = 930 MHz. These values differ somewhat from
the values Avgg ¢4 = 689 MHZz and Avgg 66 = 677 MHZ
obtained earlier at the one-photon 4s 'S—4p 3P, transi-
tion [15]. One can see from Fig. 4 that the spectrum
broadens with increasing gas pressure in the interaction
region. The dashed curve in Fig. 4 shows the approxi-
mation of the spectrum by three Lorentzian profiles for
Pco, =7 Torr. Analysis of the extrapol ation obtained in

this way showed that width y was the same within 5%

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

04 T T T T T T T

0.3

0.2

0.1

Luminescence signal, rel units

0
-04 -0.2 0 0.2 0.4
Detuning of the radiation frequency v,

from the absorption line, GHz

Fig. 3. Two-photon absorption spectrum of the 847Zn iso-
tope. Curve 1 is experiment at T = 548 K, PCOZ =1 Torr,
and 6 = 9 GHz; curves 2 and 3 are the approximations of the

experimental spectrum by the least-squares method by
expressions (9) and (8), respectively.

T T T T T
» 0.6f 2 .
= 66
ng 64
= N 68
s 04r j .
.20 I
8 i
(=]
S 02F -
£ Ny -
£ 1
=) N
— L = S o)
0 | |
~1 0 1 2

Detuning of the radiation frequency v,
from the absorption line of the *Zn isotope, GHz

Fig. 4. Two-photon absorption spectra at the 4s l%—65 381
trangition in a zinc atom at PC02 =03 (1), 1), ad

7 Torr (3); The dashed curveisthe approximation of curve 3
by Lorentzian profiles. Theisotope numbers are shown over
the peaks.

for the three isotopes for all absorption spectra
detected.

Figure 5 shows the two-photon absorption line-
widths measured as functions of the CO,, CO, and NO
gas pressures in the interaction region. These depen-
dences are well approximated by straight lines. We
determined from the slopes of the straight lines the
broadening of the two-photon resonance in azinc atom
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500
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Fig. 5. Dependence of the two-photon absorption linewidth
on the gas pressure: (1) CO,; (2) CO; (3) NO.

1.5F .

Signal, rel. units

) | | |
-0.5 0 0.5 1.0 1.5 20 25
Detuning of the radiation frequency v,
from the absorption line of the %4Zn isotope, GHz

Fig. 6. Two-photon absorption spectra of a zinc atom at a
pressure of PCOZ = 3.5 Torr measured (1) from the

absorbed UV radiation power and (2) from the lumines-
cence signal.

in the presence of different gases. The results are pre-
sented in the table. The absolute values of the rate con-
stant of the broadening process were determined by
expression (4). The collision broadening cross sections

Experimental results

Molecule Broadening | Rateconstant | Cross section
yIP, MHz/Torr | k, 10°cm®s | o, 104 cm?
Co, 35+9 6.2+ 16 94+24
CO 28+ 7 50+13 6.5+1.6
NO 16+4 29+0.7 39+10
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were calculated by the expressionc = k/vV , where v =

JV3+ V5 isthe average value of the relative velocity

of two different particlesin agas[16]. The approxima-
tion by astraight linein Fig. 5intheregion of zero pres-
sure gives the initial broadening y, = 200 MHz. This
value is determined by the Stark broadening and the
decay of the 6s3S; level for a time much shorter than
the spontaneous decay time, equal to 30 ns[17]. Thisis
caused by superradiance to lower states due to large
cross sections for optical transitions Oges, = 4 X
107 cm? and g 4, = 3 x 1073 cnr?. In this case, the
condition for the appearance of superradiance over
length L isreadily fulfilled (oN; L > 10), which strongly
shortens the upper-level lifetime.

Figure 6 shows the two-photon absorption spectra
obtained by direct detection of the absorbed average
radiation power and from the luminescence signal. The
approximation of these spectra by Lorentzian profiles
at different pressures gives coincident linewidths. How-
ever, thesignal-to-noiseratio in the case of direct detec-
tion of absorption is substantially lower than that under
recording luminescence, as illustrated in Fig. 6. The
fraction of absorbed radiation power is usually a few
percent. No pressure shifts of the absorption bands
were observed within the absolute accuracy of mea-
surement of the radiation frequency, equal to 400 MHz
under any experimental conditions studied.

The amplitude of the absorbed power resonance
monotonically decreases with increasing molecular
pressure in the interaction region due to an increase in
the transition linewidth. A luminescence signa
detected at the resonance center for the %4Zn isotope
behavesin amore complicated way, asshownin Fig. 7.
For CO, and CO molecules, this signa first increases,
achieving amaximum, and then decreaseswith increas-
ing pressure. This experimental fact is described by
expression (8) and is caused by an increase in the rate
of decay of the excited level to the intermediate

5p3 Pg, 1o State, from which emission is recorded with

ameasuring system. This makes it possible to measure
the rate constants independently by a different method.
The processing of the experimental dependences of the
luminescence intensity by expression (8) using the
least-squares method gives broadening values coinci-
dent with those presented in the table. This confirmsthe
validity of the rate constants and cross sections
obtained from the two-photon resonance broadening.
The maximum of curve 3 for NO molecules is located
at higher pressures dueto alower value of the two-pho-
ton resonance broadening. Note in conclusion that the
two-photon resonance broadening in collisions with
inert gas atoms at pressures of up to 5 Torr does not
exceed the initial value of 200 MHz.
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5. DISCUSSION

The cross sections for collisions of different elec-
tronically excited atoms with molecules are usually on
theorder of 1025 cm?[1, 2]. Asfollowsfrom theresults
presented in the table, the experimental cross sections
for collisions of excited zinc atoms (6s 3S,) with CO,,
CO, and NO molecules are much greater and substan-
tially exceed gas-kinetic cross sections. Such anoma
lously high cross sections can be explained by the res-
onance process, in which the excitation energy istrans-
ferred to the vibrational state:

Zn(6s°S;)) +M — Zn(5p *P) + M* + AE. (10)

It is known [18] that the dependence of the probability
of such processes on the energy gap AE between theini-
tial and final states has a distinct resonance nature. An
almost exact resonance corresponds to rather large
cross sections on the order of 10723 cm?. Moderate cross
sections on the order of 10716 cm? correspond to detun-
ing from the resonance by a few KT, and when the
detuning exceeds a few tenths of an electronvolt, the
cross section becomes negligibly small. Figure 8 illus-
trates the correspondence between the transition energy
in a zinc atom and vibrationa transition energies in
CO,, CO, and NO molecules. The energy level diagram
of azinc atom is taken from [19], the vibrationa -rota-
tiona energies of CO, from [20], and those for NO and
COfrom[21, 22]. It followsfrom Fig. 8 that the values
of AE for all thethree molecul es studied in the paper are
lower than the kinetic energy KT of colliding particles.
Such a situation was studied in [23], where the cross
section o =3 x 10714 cm? was obtained for collision res-
onance processes of energy transfer from Na(ns) (n =
5-11) atoms to CH, and CD, molecules. In such pro-
cesses, the fundamental molecular vibrations are
excited. The cross section for collisions of zinc atoms
with CO, moleculesisthreetimes larger than the above
value, athough the molecules are excited into less
intense (by three to four orders of magnitude) overtone
vibrations. The excited zinc atoms also can decay at the
6s3S—5p P, transition due to collisions with mole-
cules, emitting then luminescence at 1.4 and 1.1 um
(see Fig. 2). The 6s3S-5p 1P, transition energy is in
resonance with intense vibrational -rotational v absorp-
tion bands of CO, molecules (AE =2 x 102 eV) and the
0-1transition in CO (AE = 4 x 1072 eV), these value of
AE being smaller than the relative kinetic energy of col-
liding particles (KT =5 x 102 eV). For NO molecules,
AE =8x1072eV. The6s3S-5p P, transition, being an
intersystem crossing transition, is weakly allowed and
is shown in Fig. 2 by the dashed arrow. However, the
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Fig. 7. Dependence of the luminescence signal at the
absorption line center of the 84Zn isotope on the molecular
gas pressure in the interaction region: (1) CO,; (2) CO;
(3) NO.
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Fig. 8. Energy level diagram of a zinc atom and the transi-
tion energies of molecules studied in the paper. The arrow
shows the average energy of particlesin gas.

collision transfer of the energy of this transition to the
vibrational energy of molecules can be rather efficient.

6. CONCLUSIONS

We have studied the decay of the upper 6s3S, state
of azinc atom caused by collisions with CO,, CO, and
NO molecules by the method of two-photon laser spec-
troscopy in counterpropagating waves with close fre-
guencies. Unlike the popular time-resolved method of
detection of luminescence at a fixed transition, the
study of the broadening of the absorption line gives
complete information on the decay rate upon collisions
with other particles. The absolute cross sections mea-
sured in the paper greatly exceed gas-kinetic cross sec-
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tions. This can be explained by the resonance electronic
energy transfer to the vibrational degrees of freedom.

Such processes were earlier experimentally studied

only one-electron atoms of alkali metals.
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Abstract—Experiments on two-photon interference are discussed in the case when there is absorption of all
the modes participating in the process of spontaneous parametric down-conversion (SPDC) of light. The objects
of investigation are 10- to 80-A-thick ultrathin gold films deposited on fused-silica substrates. Conditions are
determined under which the effect of absorption of the signal and pump waves on the interference pattern is
small. Itis shown that, under these conditions, the visibility of the interference pattern and the shape of the fre-
guency—angular spectrum at the signal frequency are determined by the optical parameters of the medium at the
idler frequency, which belongs to the near-infrared region. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

For over two decades, two-photon interference [1-3]
has attracted the attention of physicists. Thisinterest is
primarily associated with the interpretation of anumber
of experiments based on two-photon interference, as
well as with the fact that two-photon (nonclassical)
states of light are relatively easy to obtain. The most
efficient source of such states is the spontaneous para-
metric down-conversion (SPDC) of light. Recently,
various aspects of two-photon interference have been
investigated in the context of the physics of quantum
information: various fields of quantum information,
such as generation of entangled states, quantum cryp-
tography, quantum teleportation, etc. [4], intensively
use the accumulated experience in the preparation,
transformation, and measurement of two-photon light.
This experience seems to be useful for developing
guantum communication devices that employ nonclas-
sical states of light asinformation carriers. At the same
time, another property of two-photon interference,
which may be useful in spectroscopy, has not received
due attention. The point is that the interference pattern
itself bears information about the properties of the
medium (or several media) in which the generation and
transformation of two-photon light occurs. Hence, one
can solve the inverse problem; namely, one can recover
the properties of the scattering and/or transforming
medium from the interferograms of two-photon inter-
ference, as it is done in Raman or polariton spectros-
copy. The latter method is the limiting case of the
SPDC when the frequency of one of the waves fals
within the range of lattice oscillations of a nonlinear
crystal [5]. In this sense, the interferometry of sponta-
neous parametric down-corversion is a generalization
of the method of polariton spectroscopy to nonlinear
media, where x@ = 0.

The line shape of two-photon SPDC in a separate
layer was considered in [6, 7] when the interference
phenomena associated with the reflection and absorp-
tion of all the waves participating in the process were
taken into account. The spectroscopic aspects of two-
photon interference were discussed in the literature in
the context of nonlinear diffraction [8, 9]. In [10], a
method of diagnosing quasiregular domain structures
by the frequency—angular spectra of SPDC was consid-
ered. In [11-14], the authors analyzed the capabilities
of two-photon interferometry as amethod that makesit
possible to evaluate the optical parameters of sub-
stances placed in a nonlinear interferometer.

In the present paper, we discuss the application of
the method of two-photon interference to the study of
thin metal films deposited on fused-silica substrates.

2. TWO-PHOTON INTERFERENCE
IN THE MACH-ZEHNDER SCHEME

2.1. Mach—Zehnder Nonlinear Interferometer
with Several Layers

Consider asystem of n + 2 = x plane layers (Fig. 1).
Thefirst and thelast |ayers have anonzero value of qua-
dratic susceptibility x@ = x, while in the intermediate
layers, this parameter isequal to zero and the layers dif-
fer only in their permittivity &,, where q is the layer
number. In the literature, such a system was called the
Mach—Zehnder nonlinear interferometer (MZNI) [15].
Thisterm reflects the fact that alaser beam propagating
across the layers induces nonlinear polarization in the
first and the last layers due to X; these layers are analo-
gous to beam-splitters that divide/mix spatia—fre-
guency modes. The optical fields with new frequencies
generated by the nonlinear process have different phase
delays while propagating across intermediate layers

1063-7761/04/9801-0031$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Scheme of the Mach—-Zehnder nonlinear interferom-
eter with two nonlinear crystals.

(g=1,...,n—1) and, hence, may mterfere at the output
of the system if they are coherent.! The phase del ays of
the field components are determined by the dispersion
of dielectric permittivity € (w). The oscillating behavior
of theintensity of the generated fields asafunction of a
certain parameter of the system, for example, the opti-
cal thickness of intermediate (linear) layers, has been a
subject of study by the method of nonlinear interferom-
etry [12, 16]. In our case, a biphoton field is generated
in the first and the second nonlinear crystals during the
SPDC [17]. Recall that, during the SPDC, a photon (p)
of the laser pump spontaneously decays into a pair of
photons, the so-called signal (s) andidler (i) photons. In
the stationary case, the photon frequencies are related
by the energy conservation law,

Wy = W+ W, (D)

while the propagation direction of the generated wave
is determined by the dispersion law of the medium,

Kk = %’ £(w) )

via the phase-matching condition
Kp+Kst+ki+A. (©)]

Here, k; (j = p, s, i) are the wave vectors and A is the
wave mismatch associated with the dimensions of non-
linear crystals. Since the layers are assumed to be infi-
nite in the transverse direction, we have A; — 0,

where A, = ki — ky — ki'. When the pump wave propa-

gates along the z axis, we have kp = k; .Asaresult, we
obtain astrict relation between the scattering directions

1 The coherence of the components of interfering fields is guaran-
teed by common laser pumping, which is assumed to be classical
and fixed.
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of the signal and idler photons: k; = —k{' or ksind, =
—k;sing,, where 9 and 9, are the angles between the z
axis and the scattering directions of the signal and idler
photonsin the crystals, respectively. In the low-absorp-
tion approximation, which is valid in the transparency
regions of the crystals, the dispersion relation (2) con-
tains the real parts of the wave vector k = 2mm;/wy (j =
S, p, i) and the dielectric permittivity.

Formally, the intensity of the SPDC as afunction of
frequency and the scattering angle (the line shape) is
proportional to the squared modulus of the sum of
amplitudes of biphoton fields emitted from different
macroscopic regions [18]. In our case, there are two
such regions, which are nonlinear crystalsinthe MZNI:

2
fm
2

The amplitudes f,,, determine the wave function of the
biphoton filed. They depend on the intensity of the laser
pump field, the quadratic susceptibility of acrystal, the
frequencies of interacting fields, etc. The third term
in (4) describes the periodic modulation of the scatter-
ing intensity as a function of the relative phase of the
two amplitudes. In stationary experimental conditions,
two-photon interference, or interference of biphotons
in the second order in the field, manifestsitself as alter-
nating maxima and minimain the intensity of the fre-
guency—angular spectraof the SPDC; therelative phase
in (4) depends on the variation of the direction and/or
frequency of observation [11].

If the crystals are transparent at all three frequencies
Wy, W, and wy, then the intensity of the observable (sig-
nal) wave as a function of frequency and scattering
angleisgiven by

2

I |(, 65) O = |, + |, + 2Re(f,f5).(4)

15(85, W)

. [sm(AI/Z) (5)

2
oM
——EI—/-E—COS%[—Z%AL+qzlAq|%} ,

whereA' = k;, — kg — ki isthe zcomponent of the wave
mismatch in the intermediate media. The first coeffi-
cient in (5) describes the frequency—angular line shape
of the spontaneous parametric down-conversion in a
plane nonlinear layer [17]. The second coefficient is
due to the interference between the signal fields gener-
ated in the extremelayers; this coefficient isresponsible
for the modulation of the line shape due to the contribu-
tions of the phase mismatches &' = A'l' in the intermedi-
ate materials. The explicit form of the wave mismatches
0 and &' as functions of the parameters observed in the
experiment (thewavelength A, and theangle 8 isgiven
in[12].
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Formula (5) is a particular case of the expression
obtained in [19] for the MZNI containing severa trans-
parent linear media. Thisformulais obtained when one
takes into account the contribution of the dispersion of
al intermediate layers (without taking into account
reflections) to the propagators of the signal and idler
modes, as well as of the pump mode. Note that, in the
real interferometer schemes used in the experiments
in [12-14], the observed line shape of down-conversion
is given precisely by (5) because there always exist air
gaps between nonlinear crystals and the dispersive sub-
stance, so that the whole scheme actually consists of
five, rather than three, layers.

2.2. Taking into Account Losses
at the Idler Frequency

From the viewpoint of interpreting the experimental
results, the following case is of interest. In the scheme
shown in Fig. 1, one detects a signa wave, while the
idler (nonobservable) modes experience losses due to,
for example, absorption or reflection. This case was
first considered by Mandel and colleagues in [20]. In
the scheme suggested, they succeeded in spatially sep-
arating the signal and idler modes generated in different
nonlinear crystals. In thisconfiguration, it is convenient
to control the transmission in the idler mode by insert-
ing filters with different optical densities. The effect
observed in this case was called induced coherence
because the visibility of the interference pattern
observed in asigna mode depends on the transmission
coefficient of the filter inserted into the idler mode.
In[11-14], it was pointed out that the induced coher-
ence can find application in spectroscopy when the
idler modes fall within the infrared region of the spec-
trum, while the signal mode is detected in the visible
region.

The physical scheme considered in the present
paper (Fig. 1) does not essentialy differ from the
scheme proposed in [20]. However, from the experi-
mental point of view, the MZNI scheme considered
hereis more convenient because the optical -path differ-
ence between the signal and idler modes is maintained
constant automatically [11]. In this scheme, the line
shape of the signal wave for a finite amplitude of the
transmission coefficient 1; of a certain intermediate
layer at idler frequencies is determined by the follow-
ing expression, which takes losses into account:

1rsin(Al/2)7?
Is((’oy es) U §|: Al/2 i|
(6)

O O > O
x L + || cos[Al + Z Aql%.

The transmission coefficient T1; relates the annihila-
tion operators of photons in idler modes after the first
and second nonlinear crystals [21]. Note that the idler
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field generated in the first crystal has a characteristic
spectral luminosity on the order of 108 < 1 photons per
mode and does not influence the SPDC process in the
second crystal (a spontaneous regime); this yields the
relation

Bip(w) = T8 (W) + 1 8e(0). @

The second term in (7) is attributed to the unitarity of
the transformation: the operator &,,. describesthe vac-
uum field that is admixed to the idler mode with the

weight re" for |t ]2 < 1; in this case,

ef

o+ [ = 1

The coefficient i describes losses due to reflection
and absorption.

According to the scheme shown in Fig. 1, for iden-
tical nonlinear crystals (€, = €, and X; = X4), the idler
modes k;; and k;, are degenerate; therefore, formally,
formula (7) makes it possible to take losses into
account. A detailed analysis of (6) in the multimode
case was carried out in [21].

Formula (6) implies that the visibility of interfer-
ence pattern, which isdefined in a standard way [22] by

[
V - max mln, (8)

Imax+ Imin

falls to zero as 1, — O; this fact was pointed out
in [20]. For instance, if

|Ti|2 O eXp{—GII'} ’

where q; is the Bouguer absorption coefficient at idler
frequency, attenuation of the idler mode due to absorp-
tion in the intermediate medium deterioratesthe visibil-
ity of the interference pattern. Formula (6) displays an
essential property of two-photon interference: lossesin
the idler mode do not change the integral intensity of
the SPDC but only affect its shape. This property
underlies the two-photon interferometric method for
estimating the absorption coefficient of nonlinear crys-
talsin the near-infrared region [14, 23].

2.3. Taking into Account Losses
at Pump and Sgnal Frequencies

If the linear layers between two nonlinear crystals
introduce losses in the p and s modes, then, on the one
hand, the pump amplitude in the second crysta
decreases,

@ _ . .
Ep - TPEP !
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Fig. 2. Transmission coefficient of samples as afunction of
wavelength.

therefore, the amplitude of the signal wave generated in
the second crystal is given by

f, 0 xEéz) =XT pEf,l).

On the other hand, due to the losses of the signal wave

generated in the first crystal while passing through

intermediate layers, this amplitude decreases at the

input of the second crystal:
fll losses

— (1)
right f1|left = Tf DTXEy,

where f1|right isthe amplitude on the right boundary of

the first crystal and f1|| it is the amplitude on the left

boundary of the second crystal. Thus, amplitudes that
differ not only in phase but also in absolute value con-
tribute to the interference of biphoton fields. This may
deteriorate the visibility of two-photon interference.
The difference in amplitude is the more conspicuous,
the greater the frequency dispersion of the transmission
coefficient 1, ,(w), or the greater the difference of the
parameter 14T, from unity. Using (4), we can estimate
the visibility of interference pattern in two-photon
interference for different amplitudes:

211 ©

vVO—=-2
[T/ "+ 1

It followsfrom (9) that, even for |t/T,| = 2, thevisibility
of interferenceis till sufficiently high: V = 80%. Thus,
we can assert that losses in the pump modes and in the
signal (observable) mode do not affect the visibility of
two-photon interference while the parameter [t/T,|

does not differ too much from unity. For instance, V =
90% if

0.6 <11, < 16. (10)

Hence, under condition (10), the observable deteriora-
tion of the visibility of two-photon interference is
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mainly attributed to the losses in the idler (nonobserv-
able) mode. This fact serves as a basis for the analysis
of experimental data obtained in the present work.
Under condition (10), formula (6) gives a relation
between the visibility of two-photon interference,
which can be measured experimentally, and the losses
at the idler frequency:

V=t (11a)

If we take into account that |t|* O exp{—a;15,}, then the

absorption coefficient at the idler frequency proves to
be logarithmically related to V:

o _2InV

I,

(11b)

Thus, measuring the visibility of two-photon interfer-
ence, one can directly evaluate the absorption coeffi-
cient of a substance (in the infrared region) placed
between nonlinear crystals.

Note that the lossesin the sand p modes do not lead
to a decrease in the integral intensity of the signal of
parametric down-conversion. Therefore, it would be
interesting to verify experimentally which of the two
factors proves to be dominant as losses increase in all
themodes s, p, and i: the disappearance of interference
under a still appreciable total intensity of the signal of
parametric down-conversion or the total disappearance
of the signal.

3. EXPERIMENT
3.1. Description of Samples

We used 0.2-mm-thick polished fused-silica plates
with an area of 15 x 15 mm? as the substrates. A gold
film was deposited on these substrates by the cathode
sputtering method. We investigated films with integral
thicknesses of 10, 20, 30, 50, and 80 A in the working
area. Due to the small thickness, the films did not con-
tinuously cover the substrate; they were characterized
by a cluster structure when the thickness was less than
30 A and by a porous structure for greater thickness.

The transmission coefficient of the samples was
measured by an M400 spectrophotometer as afunction
of the wavelength. The results of these measurements
areshownin Fig. 2.

3.2. Experimental Setup
and Measurement Technique

In the experiment, we measured two-dimensional
frequency—angular spectra of spontaneous parametric
down-conversion of light emitted from the MZNI. As
the nonlinear media, we used lithium niobate crystals
doped with magnesium oxide, LiNbO; : MgO (5%).
Between these nonlinear media, we placed gold films
of various thicknesses deposited on fused-silica sub-
strates. The thickness of crystals was 440 um, and the
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thickness of the fused-silica substrates was 200 pum. An
argon laser operating at the 488-nm line with an output
power of 1 W and a beam diameter of 2 mm? served as
the pump source; the scattered field was collimated by
an objective lens and focused onto the input dlit of an
| SP-51 spectrograph.

To obtain panoramic spectra, we used a photo-
graphic technique that is the standard one for SPDC
spectroscopy [24]. Quantitative information about the
line shape of down-conversion was aobtained by two
methods. In thefirst method, the angular distribution of
intensity at several signal wavelengths was recovered
after taking into account the nonlinear dependence of
the blackening of photographic film as a function of
light intensity. In the second method, the line shape was
recorded directly by the angular scanning of two-
dimensional spectra at a fixed wavelength. A
Hamamatsu R5600U photomultiplier tube was placed
in the focal plane of the spectrographic camera and
could move aong two coordinates (the angle 65 and the
wavelength A). The output pulses of the photomulti-
plier tube were amplified, subjected to amplitude dis-
crimination, and fed to a counter. The entire electronic
part of the receiving system was assembled in the
CAMAC standard.

Typical photographs of the spectra and the corre-
sponding angular intensity distributions obtained dur-
ing scanning are shown in Figs. 3 and 4.

4. DISCUSSION

The diagrams shown in Fig. 2 allow one to estimate
the parameter [t/T,| introduced in the preceding sec-
tion. For the signa wavelengths 5685, 5707, and
5731 A (the corresponding idler frequencies, defined
by (1), are equal to 2902, 2970, and 3043 cm L, respec-
tively) at which the spectra were processed, the values
of the parameter |t/T,| are given in the table. One can
see that this parameter satisfies condition (10). Thus, at
these wavel engths, the visibility of two-photon interfer-
enceismainly determined by losses at idler frequencies
in the infrared region.

The visibility of two-photon interference as a func-
tion of losses was experimentally investigated when
gold films of various thicknesses were placed into the
MZNI. Figures 3 and 4 show that interference phenom-
ena in two-photon light virtually disappear for a film
thickness of 50 A. A test photograph of an 80-A-thick
sample shows that there is no angular—frequency mod-
ulation. At the same time, we certainly observed an
SPDC signal even in films 100 A in thickness. Hence,
we can conclude that the method of two-photon inter-
ference is more sensitive to the losses 1, at idler fre-
quencies than to the losses 1, and 1 at pump and signal
frequencies, which result in a decrease in the integral
intensity of the spectra.

The transmission coefficient at a frequency of
2970 cmr* determined by formulas (6) and (11a) from
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Fig. 3. Photographs of angular-frequency spectra of the
SPDC obtained in the system nonlinear crystal—fused-silica
substrate—gold film—nonlinear crystal for films of various
thicknesses; (a) in the absence of afilm, (b) for afilm thick-
nessof 10 A, and (c) for afilm thickness of 50 A.

the angular scans of interferograms is shown in Fig. 5
as afunction of film thickness. We did not observe an
appreciable difference in the behavior of these func-
tions in the range of idler frequencies from 2900 to
3040 cmL. This fact suggests that the absorption coef-
ficient of the films shows weak dispersion in this spec-
tral domain. A similar conclusion can be drawn from a
visua analysis of the fregquency—angular spectra
(Fig. 3) that were obtained in a wider range (2400-
3700 cm™): in these spectrograms, one cannot distin-
guish regions where the visibility is appreciably varied.

According to (11), the visibility of the interference
pattern depends on the transmission coefficient at the
idler frequency. In this range, the optical properties of
metals are primarily determined by free electrons. The
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Fig. 4. Angular distribution of the SPDC intensity for films of variousthicknesses; (a) in the absence of afilm, (b) for afilm thickness
of 10 A, (c) for afilm thickness of 30 A, and (d) for afilm thickness of 50 A. Distribution (a) is obtained by recovering the intensity
from the blackening level of afilm by Photoshop 6.0 software for A, = 5684 A. Distributions (b)—(d) are obtained by photoelectric

recording of signals for A= 5707 A.

relation between the dielectric permittivity and the
basic optical constantsis given by the following formu-

and (13), we can derive the absorption coefficient,

: 20
las[22]: a; = —é‘)—'nK = ;EK, (14)
Ree = n*(1-k?), (12) o g |

where A is the idler wavelength in vacuum. Approxi-

Ime = 410 _ 2n%K., (13) mating the experimental curve (Fig. 5) by an exponential

wherenisthereal part of therefractiveindex i =n(1 +
iK) and k is the extinction coefficient. From (12)

function (solid curve), weobtaina; =2.8 x 106cm™ at a
frequency of w, = 3000 cm (or Ay = 3.3 um). Unfor-
tunately, we had no information about the optical con-

Table
Sarnple |TS|2 ITplz Itsltpl

No. 1 thickness, A
ess, 5685 A 5707 A 5731 A 4880 A 5685 A 5707 A 5731 A
1 10 0.79 0.79 0.79 0.84 0.974 0.974 0.974
2 20 0.75 0.74 0.74 0.80 0.968 0.962 0.962
3 30 0.71 0.71 0.70 0.74 0.98 0.98 0.973
4 50 0.69 0.69 0.69 0.64 1.038 1.038 1.038
5 80 0.58 0.58 0.58 0.5 1.077 1.077 1.077
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stants of the filmsin the infrared region. Therefore, we
used the data given in [25]. Substituting the values of
the refractive index n = 0.8 and the extinction coeffi-
cient K = 20 into (13), we obtain a; = 6.1 x 10° cm™?,
which is about five timesless than the value obtained in
our experiments.

The difference between the experimental and cal cu-
lated values of the absorption coefficient, which is sub-
stantialy greater than the measurement error, can be
attributed to several factors.

First, the optical constants of gold presented in [25]
refer to thick films. Itiswell known that the optical con-
stants in ultrathin films, of thickness less than 10 nm,
are significantly affected by the film structure: an
ultrathin film is considered as a set of separate islands.
For instance, it was pointed out in [26] that the cluster
structure leads to a significant increase in absorption.
A giant increase in the absorption of infrared radiation
in metal particles was pointed out, for example, in [27].
The optical properties of fractal clusters, in particular,
an anomalous behavior of susceptibility, was consid-
ered in [28]. Recently, the optical properties of metal
island films near the percolation threshold have been
intensively discussed in the literature [29].

Second, the measurement technique for the absorp-
tion coefficient, based on two-photon interference, may
giveresultsthat substantially differ from those obtained
earlier. The point is that, in conventional methods for
investigating metal films, one measures the reflection
and transmission coefficients of “free’ waves, i.e.,
waves with nonzero mean occupation of modes inci-
dent to a sample from free space. The dispersion rela-
tions for the transmission coefficient of filmsin thevis-
ibleregion (Fig. 2) have been obtained precisely in this
way. However, in the method of two-photon interfer-
ence, the optical parameters at a nonobservable (idler)
frequency depend on fluctuating vacuum fields with
zero mean occupation number of modes. There are
examplesin the literature where a comparison of these
two methods shows a significant discrepancy precisely
when measuring the absorption coefficient: the absorp-
tion measured by the SPDC spectroscopy (field fluctu-
ations) [30] proves to be about an order of magnitude
greater than that obtained by four-wave coherent scat-
tering by polaritons (excitation of polaritons by bihar-
monic pumping) [31] or by direct measurement of
infrared transmission [32]. The physical nature of this
discrepancy has not yet been revealed, and one may
suppose that experiments on two-photon interferencein
the Mach—Zehnder scheme will provide an answer to
this question.?

Note that the approach considered in the present
paper does not allow us to make any conclusions about

2 Note that recent publications (see, for example, [33]) on the spec-
troscopic applications of the so-called frequency-entangled pho-
ton pairs do not answer the question posed since these works deal
with the contribution of the direct transmission of a rea idler
wave to the distribution of photocount coincidences.
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Fig. 5. Amplitude transmission coefficient at afrequency of

2970 cm™! as a function of film thickness, obtained from
angular scans of interferograms. The solid line representsan
exponential approximation of the experimental data; cir-
cles, photographically acquired data; squares, data acquired
by the photomultiplier.

the dispersion of the real part of the refractive index of
films. Thisis associated with the small thickness of the
films. Aswas shown in [11, 13], the distinct features of
the dispersion of therefractiveindex that arise near res-
onance freguencies must be accompanied by the varia-
tion of the curvature of interference orders or with the
appearance of crooks in the spectra of two-photon
interference. This is associated with the fact that, by

definition, the wave mismatch &' = A'l;, of the film
involves the real parts of the wave vectors

Re(k) = %’Re(ﬁ) = %)n.

The strong dispersion of n leads to an increase in the
wave mismatch A', whichleadsto avariation in the phase
of the interference pattern versus frequency/angle. The
value of n of gold ranges from 0.2 to 1.2 as the wave-
length varies from 0.3 to 1 um. In the near-infrared
region, when A; = 3 um, the value of n provesto be on
the order of unity and weakly increases with wave-
length [24, 34, 35]. However, sincethe film thicknessis

about tens of angstromsand |, <1, I3, the correspond-

ing mismatch &, is small, and its contribution to the

line shape (6) is negligible compared with the contribu-
tions of the mismatchesinthe nonlinear crystals, d = Al,

and in the quartz substrate, d; = A'l;.

5. CONCLUSIONS
We have discussed experiments on two-photon
interference in the presence of absorption in al the
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modes that participate in the spontaneous parametric
down-conversion of light. The objects of study were
ultrathin gold films 10, 20, 30, 50, and 80 A in thickness
deposited on a fused-silica substrate.

We have determined conditions under which the
effect of the absorption for the signal and pump wave
ontheinterference patternisnegligible. We have shown
that, under these conditions, the visibility of the inter-
ference pattern and the form of the frequency—angular
spectrum on the signal wave are determined by the opti-
cal parameters of the medium at an idler frequency,
which belongs to the near-infrared region.

The results obtained have allowed us to revea a
number of features of the effect of absorption on the
spontaneous parametric down-conversion of light. By
the method of two-photon interferometry, we have
measured the absorption coefficient of gold filmsin the
neighborhood of A = 3.3 um; the value of this coeffi-
cient, a = 2.8 x 105 cm?, is greater than the appropriate
value for thick films by afactor of five.
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Abstract—Corrections of orders a® and a® to the superfine ground-state structure of the muonic hydrogen
atom were cal culated. The cal culations took into account the effects of the structure of the nucleus on one- and
two-loop Feynman amplitudes with the help of the electromagnetic form factors of the proton and the modifi-
cation of the superfine part of the Breit potential caused by the electronic polarization of the vacuum. The total
splitting of the 1Sstateis 182.725 meV; thisvalue can be used as areliabl e estimate in conducting a correspond-
ing experiment with an accuracy of 30 ppm. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Precision measurements of the energy spectra of the
simplest atomic systems (muonium, positronium,
hydrogen atom, muonic hydrogen, etc.) are of great
importance for high-accuracy verification of the Stan-
dard Model and the theory of bound states. Two-parti-
cle bound states are an effective tool for refining the
values of fundamental physical constants (the fine struc-
ture constant, the ratio between the masses of the muon
and electron, the Rydberg constant, the proton charge
radius, etc.) used for creating standards of units [1]. It
can be claimed that a necessary supplement to the use
of large accelerators for penetrating deep into particles
and to the search for new interactionsis the observation
of fine effects in low-energy physics, including bound
states in quantum electrodynamics. These effects can
be used to extract such details of interaction behavior at
small distances that can only be observed at very high
energies|[2].

Like electronic hydrogen, muonic hydrogen (up) is
the simplest atomic system, whose energy spectrum is
to asubstantial extent determined by strong interaction
effects. These effects are primarily related to two pro-
ton form factors (electric Gz and magnetic G,,;), which
describe the charge and magnetic moment distribu-
tions. For the Lamb shift, the major contribution to the
energy spectrum of order (Za)* is determined by the
differential characteristic of these distributions,
namely, the proton charge radius r,,. For this reason, a
comparison of the experimental Lamb shift value and
its theoretical estimate obtained with corrections high-
order in a can be used to more precisely determine the
r, value. For instance, measurements of the 2P-2S
Lamb shift in pup with an accuracy of 30 ppm would
allow us to obtain the proton charge radius with an
accuracy one order of magnitude higher than that

obtainable by the other methods [3]. When calculating
corrections for the structure of the nucleus to the super-
fine splitting of energy levels (see [4-11]), we must
know the electromagnetic form factors of the proton
themselves. The most recent experimental measure-
ments of Gg and G,, were performed in Mainz 20 years
ago [12].

Another important strong interaction contribution to
the energy spectrum of the hydrogen atom is related to
the polarizability of the proton [13-16]. This contribu-
tion arises already in one-loop muon (electron)—proton
interaction amplitudes, when, for instance, various
baryon resonances can be created in the intermediate
state as a result of virtual Compton scattering by the
proton. Precise calculations of this effect can be per-
formed using experimental data and theoretical con-
structions of the polarization structural functions of the
nucleon. The proton structure and polarizability effects
introduce major theoretical uncertainty into the equa-
tionsfor various energy levels, primarily into the super-
fine splitting of the ground state of the hydrogen atom,
which has the form

AEmeFo? — EF(1+ 5QED 4 5% + 5™ +6HVP),

£F = 8,0 MeMem3 (1)
3 (m+my)’

where [p is the magnetic moment of the proton in
nuclear magnetons, m, is the mass of the muon (elec-
tron), m, isthe mass of the proton, 3P is the quantum
el ectrodynamic contribution, 8"VP is the contribution of
the hadronic vacuum polarization, and the corrections
&% and & are the contributions of strong interactions
related to the structure of the nucleus and its polariz-
ability. Equation (1) is valid for both muonic and elec-
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tronic hydrogen, but the particular forms of corrections
are substantially different for these two species. The
superfine splitting of the ground state of the electronic
hydrogen atom was measured to a high accuracy many

yearsago [17],
HFS, _
Av, (ep) = 1420405.7517667(9) kHz. (2

The present-day discrepancy between theory and
experiment (without taking proton polarizability into
account), which can be represented by the ratio [18]

HFS

DEipea(€P) —AEg (ep) _
E"(ep)

contains one of the principal errors caused by the inac-
curacy of determining the proton form factors. The
main part of the one-loop correction for the structure of
the proton is given by the following equation (the Zem-
ach correction) [4]:

—45(1.1)x10°, (3)

_ _F2ua dp
AE, = EF
’ = (P + W)’ (@)
2 2
x [GE(_p )Gu(=P )—1} = EF(—ZUG)RW
Hp
where
W = ap, g =mm/(m,+m,)

is the reduced mass of two particles and R, isthe Zem-
ach radius. In the coordinate representation, the Zem-
ach correction (4) is determined by the convolution of
the distribution density of the proton magnetic moment
pm(r) and the distribution density of the electric charge
Pe(r). The Zemach radius, which istheintegral charac-
teristic of proton structure effects on the superfine split-
ting of energy levels, can be treated as a new proton
parameter, which coincides for the electronic and
muonic hydrogen atoms to within O(a). The Zemach
contribution for muonic hydrogen is

AE, = —1.362 % 0.068 meV, (5)

where the error, estimated at 5%, includes the uncer-
tainty in proton form factor measurements [12]. There-
fore, along with measurementsfor el ectronic hydrogen,
designing an experiment in which the superfine split-
ting of the ground state of muonic hydrogen can be
measured at the same accuracy of 30 ppm as with
Lamb shift measurements would provide new infor-
mation on possible values of the & and & contribu-
tions[19].

Performing such an experiment requires corrections
of various orders to be calculated equally accurately.
Although calculations of the superfine structure of the
hydrogen atom have been conducted over many years
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and have already reached an accuracy of 108 for quan-
tum electrodynamic contributions &%FP [20, 18], their
results cannot be directly applied to muonic hydrogen
by merely replacing the mass of the electron by the
mass of the muon. The main reason for thisis correc-
tions for the structure of the nucleus (see above).
Indeed, with muonic hydrogen, the main region of
intermediate loop momentum integrals is on the order
of the mass of the muon. It follows that high-accuracy
theoretical calculations of such amplitudes can only be
performed by directly integrating them taking into
account experimental data on the electromagnetic form
factors of the proton.

Various contributions to the energy levels of muonic
atoms were studied long ago [21]. For this reason, a
new, more complete analysis of all possible corrections
to the superfine structure of pp at an accuracy level of
30 ppm is required. The principal corrections of order
a® to the superfine structure of the 2S state of up were
studied in [22]. These corrections are very important
for determining the 2P—2S Lamb shift from experi-
ment. In this work, we calculate various contributions
of orders a® and a® to the superfine structure of muonic
hydrogen that are determined by the electromagnetic
and strong interaction effects. Our purpose was to
numerically determine the superfine structure of
muonic hydrogen with the accuracy specified above
and obtain areliable reference value for performing the
corresponding experiment. Some problems in design-
ing an experiment for measuring the superfine structure
of the pup atom were discussed in [23].

2. VACUUM POLARIZATION EFFECTS
IN ONE-PHOTON INTERACTION

Our calculations of various energy levels of hydro-
gen-like atoms are performed within the framework of
the quasi-potential approach, in which a bound state of
two particles is described by the Schrédinger-type
equation [24]

(6)

_ 99
I(znfv(p’ d, M)y(a),

where
b’ = Ei—m; = E5>—mj,

Mg = E;E/M isthe relativistic reduced mass, M = E; +
E, isthe mass of the bound state, and E; , are the ener-
gies of free particles in the center-of-mass frame. The
quasi-potential in (6) is constructed in quantum electro-
dynamics by perturbation theory with the use of the
two-particle scattering amplitude T projected onto the
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positive-frequency states outside the mass surface at
zero relative energies of the particles,

V= VOav@aey® g
T=TY+T7@+704

(7)

WL EY

2 @ _ @ fo T ®)
V¥ =T =T xG xT7, ...
Theinitia approximation to the quasi-potential V(p, q,
M) for a bound system was selected in the form of the
usual Coulomb potential,

V(p,a,M) = V(p—q) +AV(p, g, M).

Theincrease in the lepton massin muonic hydrogen
compared with its electronic counterpart decreases the
radius of the Bohr orbit in up. As aresult, the Compton
wave length of the electron and the radius of the Bohr
orbit become commensurate [1],

2
A I = 0737384
pe* M

(m.isthemass of the electron and L isthe reduced mass
in the up atom). This substantially enhances the role
played by vacuum polarization effects in the energy
spectrum of the pp atom [25]. Corrections for vacuum
polarization in one-photon interaction are shown in
Fig. 1.

To determine the contribution of diagramain Fig. 1
(electronic vacuum polarization) to the particle interac-
tion operator, we must perform the following substitu-
tion in the photon propagator [25]:

1
1« vi(1-v?3)

= ~=(dv . 9
K* nJ(: K*(1-v?) -4} ®

—+ = K2 Opd(Za)? Omi(Za)?

(electronic hydrogen, |1, isthe reduced mass of two par-
ticles in the hydrogen atom), then, ignoring the first
term in the denominator in the right-hand side of (6),
we obtain

_ a
15Tm;

However, if

k? Op®(Za)? Omi(Za)?
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() (b) (©) (d)

Fig. 1. One- and two-loop vacuum polarization effects in
one-photon interaction.

(muonic hydrogen, m, is the mass of the muon), then
po and m, are values of one order and we cannot
expand the denominator in (9) in a. With muonic
hydrogen, we must construct the superfine part of the
potential in the 1y approximation using the exact equa-
tion (9). Further, when we consider values of orders a®
and a®, we take into account that the appearance of the
mass of the electron m, ~ pa in the denominator of the
amplitude effectively decreases the order of the contri-
bution in a by one. It is well known that, in the one-
photon approximation, the quasi-potential of the super-
fine interaction between the muon and proton has the
form [26]

41Z0 1 + Kl
mm, 4 ?

ARG W

x[(6, 6,)k” — (0, (k) (6, K)].

For Sstates, (10) reduces to

81Za 0, Eb'z
3mm, 4

Vi (k) = (1+x), (12)

wherek = 1.792847337(29) is the anomal ous magnetic
moment of the proton. Averaging potential (11) over
Coulomb wave functions yields the main contribution
of order (Za)* to the superfine splitting of the 1S state
of the pup atom, or the Fermi energy

8 4 Lls
EF = 2(Za)'E—(1+k) = 182.443 meV. (12
3 )mlmz( ) (12)

The modification of the Coulomb potential
VEKk) = -ze*/k®

caused by vacuum polarization is determined taking
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into account (9) [22],

1(22 +1) dE.
k*+ 4m eE

VSa(k) = —4TiZa ]J = (13)

The Fourier transform of (13) gives the corresponding
operator in the coordinate representation,

J.dEA/ 1(22 +1)

120 exp(—2meEr)E.

ViR(r) =

(14)

Similarly, we can calculate the contribution of the elec-
tronic polarization of the vacuum to the superfine part
of the 1y potential for the Sstatesin the momentum and
coordinate representations, respectively,

AniZa(l+K)2 a
o Al
1

©Je?—1(282 1) 45
I3E (k*+4mZe?)

Virve(k) =
(15)

VHFS " = 8Zua(1+k)(o; Eb'z)g
Ly, VP 3mm, 4 T

8128 1)
3¢’

x (16)
|
222
x| matn) - ep(-2mn) |

The last equation can be used to calculate the cor-

rection for the electronic polarization of the vacuum to

the superfine structure of the pp atom of order a®. Bear-

ing in mind that the wave function of the 1S state of up
has the form

3/2

Uiolr) = D™, W = pza, (17)
Jm
let us write this correction as
AETFS = 81(Z)' (A +)a me
VP 3m;m, TI3W?
©JOWAmd)E? —1DW

+
- I expD—r—T—eg——l—)Drdr} = 0.398 meV.
0
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The contribution of the muonic vacuum polarization
can be obtained from (16), in which m, should be

replaced by m,. This correction is of order a® for the
reason specified in discussing (9). Itsvalueis

AE; wve = 0.004 meV. (19)
Contributions of the same order (a®) arise from the dia-
grams of two-loop electronic polarization of the vac-
uum shown in Figs. 1b, 1c, and 1d. The interparticle
interaction potential corresponding to the amplitude
with two sequential electronic loops can be obtained by
applying replacement (9) two timesin the photon prop-
agator. |n the coordinate representation, this propagator
has the form

HFS
Vly ve-vp(r) =

gniza (1 +k) (01 62) ror?
3m;m, 4 O

® [c2 2 © [2 2
va E _1(24‘?. +1)dEJ' n —1(24['] +1)df1
1 3¢ 3n
(20)

S L
[6(” (-6

x (n“exp(-2mgnr) —E4exp(—2me5r))}

and gives the following result for the energy spectrum:

AE, vp_vp = 0.001 meV. (21)
The contributions of diagrams 1c and 1d (Fig. 1), which
are determined by the second-order polarization opera-
tor, can be calculated after the following replacement in
the photon propagator [27]:

1

1 oo f(v)
- = dv
K2 Dﬂ{ aml + K3(1-v?)
1
= EEDZ? dv v
b3 2+ KP(1-v?)

0

0
><[(3—v2)(1+v2)[L|2D1 VO 4 o | 25'11 v
. 071

$ ity iv In1+VInv} 22)

2 1-v 2 1-v
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11 2 20, VA, 14V
+ | == _ + + —
[16(3 v)(1+vH) 4}'“1 v

2

+[gv(3—v2)ln1_v —2v(3—v2)lnv}

+ §v(5—3v2)E;
8 0

The contribution value can then conveniently be calcu-
lated in the coordinate representation with reduction of
the interparticle interaction potential to the form

1
81Za (1 + K)o’ f(v)dv

HFS _
AVly, 2-loop VP(r) -

3mm, Uil
0
(23)
m; 0 2m,r O
x| d(r) — - expl3 0.
m(l-v) O, /1-yvO0

Operator (23) gives the following contribution to the
superfine structure of the pp atom:

HFS

AE;y 5100p vp = 0.002 meV. (24)

Note that, as we determine contributions to the energy
spectrum numerically, the corresponding results are
given with an accuracy of 0.001 meV.

3. SECOND-ORDER PERTURBATION THEORY

Second-order perturbation theory corrections to the
energy spectrum are determined by the reduced Cou-
lomb Green function [28], whose partial expansion is
written as

Gur, 1) = ng(f F)Yim() Yi(n'). (25)

The g,,(r, r") radial function wasobtained in[28] in the

form of the Sturm expansion in Laguerre polynomials.
For the 1S state, this function iswritten as

e o B Lyl a(X)
Oy(r, 1) = —4u°Za SHZZW

(26)

where x = 2uZar and L, are the usual Laguerre poly-
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nomials defined as

X, ,—Mm n
m _€exX |:|d|:| —X_N+m
Ln(¥) = TR (e ' x 7). (27)
As several quasi-potential terms contain &(r), we must

know Ga(r,0). The corresponding equation for the
reduced Coulomb Green function was obtained in [29]
using the Hostler representation for the Coulomb Green
function and subtracting the pole term. This gave
Zap®2e™*?
4 X

x [2x(Inx + C) +x2—5x—2],

where C = 0.5772... is the Euler constant. The main
contribution of order a® is determined in second-order
perturbation theory by the equation

<w1|vvp|w ><w IVTﬁw]}
2 = (29)

Gug(r, 0) =

(28)

HFS

in which AVy, ° ~ &(r). Using (14) and (28), (29) can
be rewritten as

HFS  _
AE; sopr = —

FZO( A/ -1
f s b ZEZD
eEDD (30)

IdxexpD—x%l

><[2x(lnx+C)+x —5x—-2] = 0.795 meV.

The contribution of order a® in second-order perturba-
tion theory, which is determined by vacuum polariza-
tion, can be obtained from (29) after the replacement

HFS HFS
AVly - AVly VP-

We used the explicit equations for the wave function

P3(r) , reduced Coulomb Green function (25), and (28)
to obtain this correction in the form

8
10/EE-1
_[dE%l 225 ; (31)

Jdr]%l 1 D“/—lH% N, —
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o ED rlD
2 + e + e
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_%L eED %L eﬂm %l eED eﬂD
W2 eEDD
+— InsL+
mi %- + eED %- %‘
5 1
eED meED Mg |
Z%L + %L W ‘wiO
The corresponding contribution was estimated at
AES S = 0.002 meV. (33)

Second-order perturbation theory also gives other rela
tivistic corrections of order (Za)®, including recoil

(a) (b)

Fig. 2. Proton structure corrections of order (Za)®. The
solid circle is the proton vertex operator.
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effects, which were studied in [30, 31, 32]. Their values
are listed in the table.

4. PROTON STRUCTURE
AND VACUUM POLARIZATION EFFECTS

Corrections for the structure of the proton make a
large relative contribution to the energy spectrum of
muoni ¢ hydrogen compared with its el ectronic counter-
part, because the mass ratio between the electron and
muon is my/m, = 4.83633210(15) x 10-3[1]. These cor-
rections to the superfine structure of pp are determined
by the one-loop diagrams shown in Fig. 2.

In order to construct the quasi-potential that corre-
sponds to these two diagrams, let us write the protonic
tensor in the form

( _ [ w
M, = u(qz)[y“Fl 2m20““’k FZ}
(34

bz—R"' m, \
(Po—k)*—m; + io[val ~ om0k F2}u(p2),

where p, and ¢, are the 4-momenta of the proton in the
initial and final states. Sequentially projecting the muon
and proton onto the 'S, and 3S, states with the use of the
projection operators

('S = [U(P) V(P sep = (123;)

#°S) = [U(p)V(p)ls., = %é

(e* isthe polarization vector of the statewith spin S= 1)
and ignoring the momenta of the relative motion of the
particlesin theinitial and final states, we obtain the fol-
lowing contribution to the superfine structure:

(35)

HFS _ F Zamm,

AEY LU
. 8I3(1+K)

x[ ik [16'( k°|:2+32k 2 — 64K’KoF>

(k) m; (36)

+ 16k KoF3 + 128K*'K3F, F, + 64k K3F3 + 32k°F2

1
+ 64k°F,F :
! 2}(k“-4m§kg‘§)(k“-4m§k§)

L et us passto the integration over the four-dimensional
Euclidean space in (36),

Id“k = 4nIk3dk Isj n‘odp, k, = kcosp.  (37)
After the analytic integration in angle ¢, we can repre-
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Corrections of order a® and a® to the hyperfine structure (HFS) of the ground state of the muonic hydrogen atom
Contribution to the HFS of the pp atom Contribution, meV Refs.

Fermi energy E- 182.443 [18], (12)
Correction for the anomal ous magnetic moment of the muon a,E" of order a®, a® 0.213 [18]
Relativistic correction (3/2)(Za)?EF of order a® 0.015 [43]
Relativistic and radiative correctionsfor recoil taking into account K of the nucleus of 0.014 [30]
order a®
Contribution of one-loop electronic polarization of the vacuum to 1y interaction of 0.398 (18)
order a®
Contribution of one-loop muonic polarization of the vacuum to 1y interaction of 0.004 (29
order a®
Second-order perturbation theory corrections determined by the polarization of the 0.797 (30) +(33)
vacuum of orders a® and a®
Correction for the structure of the nucleus of order a® -1.215 [22], (40)
Correction for the structure of the nucleus of order a® -0.014 [8]
Contribution of the electronic polarization of the vacuum + corrections for the struc- -0.021 43
ture of the nucleus of order a®
gr%rgrriok()gti on of thetwo-loop electronic polarization of the vacuum to 1y interaction of 0.003 (21) + (24)
Correction for the intrinsic muon energy + corrections for the structure of the nucleus 0.008 (50)
of order a®
Vertex corrections + corrections for the structure of the nucleus of order a® -0.014 (61)
Jellyfish diagram correction + corrections for the structure of the nucleus of order a® 0.004 (66)
Correction for the hadronic polarization of the vacuum of order o® 0.004 (45)
Correction for the polarizability of the proton of order a® 0.084 [16]
Contribution of weak interaction 0.002 [36]
Total correction 182.725 £ 0.062

sent (36) in the form of a one-dimensional integral in 2 2

loop momentum k, [128Fim;

Za

AEHFS — _EF—
. 8rn’(1 + k)

“dk
80 SEV(K),

0

!
+
(my —my)K(k + A/4m; + k%)

+128F,F,m; — 16F-k* — 64F, F,k’ — 48FK’].

2FK°
+
m,m,

V(K) =

U
(my —my)k(k + J4m; + k%)

x [—128Fimi— 128F,F,n’ + 16F3Kk* + 64F ,F,k*
(39)
+16F3K° +

2

2
m, m,

32F2m2K? . 4F3K"  4F3K
mj
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To remove infrared divergence in (38), we must take
into account the contribution of the iterative term of
quasi-potential (8) to the superfine structure of the pp
atom,

NERES, = —Dv,, x G x v, [f°

_ _6_4u4(Z(X)5(1+ K)w% (39
3 mm,m’ -([ K’

where angle brackets denote averaging the interaction
operator over the Coulomb wave function of the ground
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| |
| !
_ G/ _ G !
| |
[ |
1 1
(b) ©) (d

Fig. 3. Proton structure and vacuum polarization correc-

tionsof order a (Za)5. The dashed line denotes the Coulomb
photon.

dtate, and index HFSisindicative of the separation of the
superfine part in the iterative term of quasi-potential (8).
The total contribution of (38) and (39) coincides with
the result obtained in [22]. The integration in (38)
and (39) was performed using the parametrization for
the electromagnetic form factors of the proton obtained
by analyzing elastic lepton—ucleon scattering [12].
The correction for the proton structure of order (Za®)
was found to be

HFS

AEg °+ AEje % = —1.215 meV. (40)

The proton structure effects must be taken into account
also in the amplitudes of a higher order in a shown in
Fig. 3.

The contribution of diagrams 3a and 3b (Fig. 3) to
the potential can be determined as with the amplitudes
shown in Fig. 2. Replacement (9) then should be made
in the propagator of one of the exchange photons. The
corresponding correction to the superfine splitting of
the energy level takes the form

Za a
AENTS, = _pr 29 oa
Ve 811(1+K)n3 s
21— v?3)d ()
v v?/3)dv
dkVp(K
Ik "1 —v?) + 4m J' ve(K),

wherethe V,p(K) potential only differsfrom V(k) in (38)
by the additional multiplier k. Although the integral
in (41) isfinite, the amplitude terms of the quasi-poten-
tial in Figs. 3aand 3b should be augmented by two iter-
ative terms shown in Figs. 3c and 3d. The first term
[Ve x G x AVyp “[Jwhich is of order a(Za)*, should be
subtracted, because the 2y amplitudes 3aand 3b (Fig. 3)
reproduce the contribution of the lower order. The sec-
ond term Wy x G' x Vi, °[Jalso of order a(Za)?, is

similar in structure to equation (29) of second-order
perturbation theory. The contributions of the specified
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iterative terms to the superfine structure of the up atom
coincide,

DERESpre = 2DV x G x AVIET®
= 20/5pxG' ><AV”FSd*FS @)

F4(Zu)pa v (1 v /3)dv

f Ik(l—v)+1

where we additionally reduced the integration momen-
tum Kk to the dimensionless form with the help of the
electron mass m,. The effect of the proton structure and
vacuum polarization on the 2y exchange amplitudes in
the superfine structure of the yup atom then amounts to

AEys % + 20Efs yp. g = —0.021 meV.  (43)
The contribution of the hadronic polarization of the
vacuum to the superfine structure of the ground state of
Mp was studied in [33]. Here, werepresent it in adiffer-

ent form using (39) and (42),

HFS _ F a(Za)
AFaw = —E 412(1 +K)
p(s)ds “4)
_[ J'devp(k)
amf;

Partitioning the entire range of the integration in sinto
the interval's within which the cross section of the e*e”
annihilation into hadrons

p(s = o"(e'e — hadrons)/3so,,

is known from experiment [34], we can perform the
integrationin (44). Contribution (44) coincideswith the
result obtained in [33],

HFS

AETS = 0.004 meV. (45)

5. PROTON STRUCTURE EFFECTS
AND ENERGETIC PROPER
AND VERTEX CORRECTIONS
OF ORDER a(Za)®

There exist severa other important contributions of
order a® that are determined by the diagrams shown in
Figs. 4 and 5. The radiative corrections of these ampli-
tudes of order a(Za)®, including recoil effects, were
studied earlier for both the Lamb shift and the superfine
structure of hydrogen-like atoms [18, 35, 36]. The
Fried-Yennie calibration [37-39], in which the ampli-
tudes on the mass surface do not contain infrared diver-
gences, can conveniently be used for radiative photons.
The infrared finiteness of Feynman diagrams in this
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calibration allows the standard subtraction procedureto
be performed on the mass surface without introducing
the mass of the photon. Consider radiative corrections
that are determined by the energetic embeddings proper
into the muon line. The renormalized mass operator in
the Fried—Yennie calibration is [18]

—3px
. (46
mex + (i —p°)(1-X) (49

Z(p) = 5(p—m)°[ox
0

Performing embeddings (46) in the lepton tensor
present in two-photon exchange interactions and using
projection operators (35), we can construct the super-
fine part of the quasi-potential for the diagrams shown
in Fig. 4. As previously, the proton—photon interaction
vertex should be determined by the electric and mag-
netic form factors, because the characteristic loop
momenta are on the order of the muon mass. The con-
volution of the proton and lepton tensors in Lorentzian
indices and calculation of the traces of Dirac y matrices
were performed using the Form system [40]. Going
over to the Euclidean space of variable k allows the cor-
rection to the superfine structure of the pp atom to be
written as

1 00

wes _ (Zo)°Wes a
8105 [ [k
0 0

A E2y, SE — T[2n3

(47)

T

x J'sin2 @doV (k, @, X),
0

Vee(k ¢, %)
_ 1
(K + 4m§cosch)[(xmf + )‘(kz)2 + 4mf>‘(2k2cosch]

O 4m; 8m;
x 0 —5K*F5(x + 6%) cos’ p— —k*xF3
m, m,

+ 16mfF2cos4cp(4Fl>‘<— F,x—2F,X)
+ 16m§c052(p(fo + 6Ff>‘( + 2F,F,x+ 8F,;F,x (48)

4
+ Fax + 2F5%) + 32mixF, (F, + Fy) — 4—k2F§>‘<cosch
m;

8k’ o_ 202, 4
——F3X— 16k F;%cos @
m,

+16k’xcos’ @(F? + 4F,F, + F)

0
+ 32K°F,X(F, + F,) E
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s B

(a) (b)

Fig. 4. Proton structure and intrinsic muon energy effects of
order a(Za)®.

(a) (b) () (d)

Fig. 5. Proton structure effects and vertex muon corrections
of order a(Za)°.

After the integration in @ in (47), we obtain the repre-
sentation of contribution (47) in the form of the inte-
gralsin parameter x and momentum k for use in numer-
ical caculations,

1 o
Za)
AENFS. = EFME) xdx [dk
2y, SE T[Z(lK)ns IO'([ JO.

m,

8F3k® 1
% a_ 5~ T 32F(F, + Fz)}m

k3F2 6 2k3F2_
bl e 2 M R+ F))
m, my(xmj+Xxk?) m;

01 k0
Chy(k, ) hy(k, X2

2km; KF2
+[ r;r'1|:2(2|:1+ F2)>‘(—-—-22(xmf+>‘(k2)}
m
i ’ (49)
2 K 01 __knld
h2(k, ) ma(xme + xk?)Eha(k, ) hy(k x)H | 7
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hyk, X) = Ky 4m2XK + (xime + k)2
+ (XM + XK%) JAmb + K,

hy(k, X) = JAmERCKE + (x? + %K)

+(xml+>‘<k ).

Contribution (49) calculated with the use of the F; and
F, form factors from [12] was

AE}, & = 0.008 meV. (50)

Consider calculations of vertex corrections. The
renormalized equation for the one-particle vertex oper-

M@ _
My

V(p)FP (=p, —k + my)y, v (a,) (K2 2km)[mx k®z(1 - xz)+2mk2x2]
(py) Pr—k+my)y,v(a, VLT L

MARTYNENKO, FAUSTOV

ator in the Fried-Yennie calibration was obtained
in[41] (p?= m}),

1 1 (1)

u(p,p k) = ,_deJ'dz[ £+

(2
Fu } (51)
A

where
A= mfx+ 2pk(1—x)z—kzz(1—xz),

andthe F{ and F{? functionswere definedin[41]. In

accordancewith (51), thelepton tensor is separated into
two terms,

2.2 2 (52)
(k 4koml)[(m1x kz(l xz)) —4m1k0x Z]
M@ = YRDF Py K My, V(g (= 2K mylmix - kC2(1 - xz>+2m1k2x2]. 53)

222

(k* = 422 [(mPx = KP2(1 — x2)) — 4mPKxPZ]

For simplicity, we consider the main contribution in m,/m, only, which allows us to represent the first part of the
vertex correction of order F.;” and the second part of order F\’ in the form

8mym
AENTS = IO _8MMe o rrisin? quig(kak
avvett = ~E A5 (1+K)nnI I I @(PI
(54)
« V(% K @)[Fi(F +F,) - (1+K)]
(k + 4mlcos (p)(k + 4mzcos (p)[[mlx +K z(1- zx)] + 4mlk cos (p)‘(zzz]
Vy(% k, @) = —2mix°(1—X) + K°m2(6x°2 — 8x°Z" — 3x°z + 8xz — 3X)
(55)
+ K47 —6X°Z —5X°2 + 12x2° — 2x2° — 62 + 32),
32mm :
AESS = FD}D 12 (x(1—x)dx[dzfmsin’ k*dk
2y, vert 2 D’-D(1+K)T[n-]’( ) I I (Fd(PI
(56)
y V(% K, @)F,(Fy + Fy)
(K2 + 4rm2cos’ @) (K + 4micos @) [ mix + K2z(1 — 2x)]° + 4mikcos? o]
Vo(x, K, @) = m‘IXZZ(ZZ— 1) - kzmix22(4xz2 —2Xxz—-4z+2) + k"'z3(2x223 — XL —AXZ + 2xz+ 22— 1). (57)
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The analytic integration in @ in (54) and (56) and the
subtraction of the iterative contribution

HFS FS

_ f
AEiter, 2y vert — D/1yx G le ert

1 1 o
= FF[EDZ dz[dx dk4—“
HICEE

from the sum of (54) and (56) (we must take one pho-
ton, and the second photon must contain the superfine
part of the potential with the magnetic form factor value
at zero) yieldsthefollowing equation for the vertex cor-
rection, which is determined by the diagrams shown in
Figs. 5aand 5b:

(58)

21 1 o

NESTS = -EFB% [ex[dzfck
o 0 0

B Fu(FitFy) [—2miXs

Bk(1 + K)mim, X7

+ K°mix(6X°Z° — 8xZ° — 3xz + 82— 3)
+K'2(4X°Z = 6X°Z —5X°7 + 12X — 2Xz2— 62— 3)]

x[ J1+b? J1+a?

b(a®—b%*)(b*-c?) a(a’-b’)(a*-c?)

Fi(Fy+Fy)Xx
2(1 + K)momykx’z*

(59)

+ 1+ }+

c(b®-c?)(a’-c?)
x [MixX°z(2z— 1) — 2k’mixZ*(2XZ° — xz— 2z + 1)

+K'Z2(2X°F = X7 — 4xZ + 2xz+ 22— 1)]

x[ J1+b? J1+a®

b(a® - b?)(b? = c?)’ At (@)

1 J1+c?

+ —
2c1+ (B2 —cA)(a2—¢?) 2¢°(b°—c’)(a’~c?)

L Al+c J1+¢ LA

c(b®=c?)(@°-c%) c*-c?)(a®-c?)’] K

Ooa4d
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2 2
3.2 = k_2’ b2 = k_z’
4m; 4m;
(60)
2 2 2
2 [Mix+Kk"z(1-x2)]
c = 2,22 2
Amik X"z
Vertex corrections (59) were found to be
AERFS, = —0.014 meV. (61)

Another vertex-type diagram with one enveloping pho-
ton and two exchange photonsis a“jellyfish”-type dia-
gram. Itscontribution to the energy spectrumisof order
a(Za)®. In the region of small loop momenta, this dia-
gram gives a finite result in the Fried—Yennie calibra-
tion. The equation for the lepton tensor present in
amplitudes 5¢ and 5d (Fig. 5) obtained in [36] was

LW = Z rxdx[(1-2)dz § —, 62
e 4],(! '[( ) 2 (62)

=1

where A had the sameform asin (51), and the MER,) ten-

sor functionswerereported in [36]. The character of the
further transformations of amplitudes 5c and 5d (Fig. 5)
in constructing the superfine part of the muon—proton
interaction operator is the same as with the other
amplitudes shown in Figs. 4 and 5. Omitting the
details of these transformations performed using form
[40], let us write the contributions to the superfine
structure of the pup atom that correspond to the three

Mﬂl,) functions. In the main order in my/m,, they have
the form

640 (Za)°w’s;,

3.3
mn

HFS _
AE; jaiyiisn =

XJ'xde’(l—z)(l—sz)
0 0 (63)

(<] 1

sinchd(p
x (kdkF,(F,+F
‘([ 1(F1 2){(k2

+ 4micos’ @)

[Mix + K*z(1 — x2)]

X
[mix + k22(1 —Xx2)] g 4mfk2 cosch>‘(222
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1280 (Za)°1%8)

HFS _
AE; jaiysisn =

31N
0

xdx[(1-2)dzfkdkF,(F,+F,)
3.3 J. ‘([ ‘!. I\r1 2

1 o

(64)

n .2 2 2 2002, 2 2,2
N sn“pde  [Mix+KZ(1-x2)] [K"XZ"(1—Xz) + mj(X"z+ 2xZ—Xx—37)]
{ (K + 4m5cos’ @) {[mPx + KP2(1—x2)]* + 4mikcos Py
5120(Za)°us the hydrogen-like system related to the anomalous
AEL Sy = ( - )3“ 0 magnetic moment of the muon a,EF [18] (we used the
3mn experimental value for the anomalous magnetic
1 1 0

xdexI(l—Z)szzj'kgdkmiFl(Fl +F5)
o o0 0 (65)

Tt

. 2
dg
x (X +XzZ—Xz—1) SN @
Jw

+ 4mécos’ )

X

[mfx + k22(1 - Xx2)] s
{ [mix + kzz(l —Xx2)] 2y 4mik2cosz(p>‘(zz} :

The integration in angle @ in (63)—65) can be per-
formed analytically. Without writing down the resulting
equations, we will give the eventual numerical result
for the contribution of diagrams 5¢ and 5d (Fig. 5) to
the superfine structure of the pp atom,

3
AE e = ZAEn“,,-Feﬁyﬁsh = 0.004 meV.  (66)
n=1

Note that, in the point proton approximation, when the
form factors of the nucleus, which enter the amplitudes
shown in Figs. 4 and 5, are replaced by their values at
zero,

Fi(0) = 1, Fy0) = K,
contributions (64)—66) increase approximately two-
fold.

6. CONCLUSIONS

We calculated various quantum electrodynamic
effects, structure effects, and the effects of the polariza-
tion of the proton and the hadronic polarization of the
vacuum on the superfine structure of the muonic hydro-
gen atom. The contributions of orders a® and a® were
considered. It was taken into consideration that the
po/m, ratio was close to one for some corrections; for
this reason, we did not increase the order in o in these
contributions. The numerical results for the contribu-
tions obtained in this work are listed in the table. The
table also contains the quantum el ectrodynamic correc-
tions to the Fermi energy for the superfine structure of
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moment of the muon a;;” = 11659203(8) x 10-°[42]),

the Breit relativistic correction of order (Za)® [43], the
relativistic and radiative effects of the same order with
recoil (Za)®my/m, taking into account the anomalous
magnetic moment of the proton [30], the correction for
the structure of the nucleus of order (Za)® [22] (see
Eqg. (40) above), the correction for the structure of the
nucleus of order (Za)®In(Za)?[8], and the contributions
of the hadronic polarization of the vacuum [33], proton
polarizability [16], and weak interaction via exchange
of aZ boson [18].

Consider several points related to the calculations
performed above.

(1) For muonic hydrogen, of great importance are
the effects of vacuum polarization, which modify the
spin-dependent part of the one-photon interaction
potential.

(2) All loop amplitudes were calculated taking into
account the structure of the proton with the help of elec-
tromagnetic form factors. The point proton approxima-
tion substantially (approximately twofold) exaggerates
the results.

(3) The energetic corrections proper and the vertex
corrections of order a(Za)® were calculated using the
equations for the corresponding lepton factors in the
amplitude terms of the quasi-potential obtained by
Eides, Grotch, and Shelyuto in the Fried—Yennie cali-
bration. We augmented these equations where neces-
sary by subtracting the iterative terms of the interparti-
cle interaction potential .

The first result for the superfine structure of the
ground state of muonic hydrogen given in the table can
serve as a reliable estimate in performing the corre-
sponding experiment, the designing of which is cur-
rently under way [23]. As has been mentioned above,
the correction values were obtained with a 0.001 meV
accuracy. Thetheoretical error caused by the uncertain-
ties in the fundamental parameters (fine structure con-
stant, proton magnetic moment, etc.) entering the Fermi
energy is around 10° meV. The other part of the theo-
retical error is related to corrections higher in order.
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This part can be estimated from the leading contribu-
tion of ahigher order in a and m,/m,

%(ZG)ZM(ZC()Z = 0.0005 meV

(we used the fine structure constant o =

137.03599976(50) [1]).

The total contribution to the superfine structure of
muonic hydrogen obtained in this work (see table) is
useful to compare with the superfine splitting calcu-
lated in the point proton approximation, in which only
the electromagnetic form factors of the proton at zero
are taken into account,

Ge(0) =1, Gu(O) =p
(the only exceptionisthe Zemach correction). The super-
fine structure of the ground state can then be obtained
only with accuracy O((my/m,)a®) in the form [18]

EHFS

(QED) = E" Dl 2uoR, + 5 (ZO() +a,

30 mlmZ I
2
Tm—m; ml

+a(Za)Hn2—%+ 1 [

1+k
* (ZG)Z#;Z[%Q rx)+ 1< XBinza)* (@)

K(12 - 11k)] 11 K(11+31K)
—%(1+K)——Dln2+318 TH

-2 22

——(ZO() In(Za) “mir, 0= 181.177 meV.
O

The significant discrepancy between this value and the
value obtained by us, 182.725 meV, isexplained by sev-
eral reasons, including the modification of the Breit
potential for muonic hydrogen as a result of the elec-
tronic polarization of the vacuum, proton structure
effects in constructing two- and three-photon interpar-
ticleinteraction potentials, and theinclusion of the had-
ronic polarization of the vacuum and proton polariz-
ability in our calculations. A further improvement of
the theoretical result given in thetable will primarily be
related to corrections for the structure and polarizabil-
ity of the proton, the theoretical error in these values
being approximately 340 ppm. The overwhelming part
of this error is determined by corrections for the struc-
ture of the nucleus, which are of order (Za)® (the Zem-
ach correction). It follows that performing experimen-
tal measurements of the superfine splitting of the 1Sand
2Senergy levels in muonic hydrogen with an accuracy

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

of 30 ppm would alow us to obtain a more reliable
(accurate to 107°) value for the Zemach radius, which
can be used to improve the theoretical result for the
superfine structure of the ground state of the hydrogen
atom and to more accurately estimate the possible con-
tribution of proton polarizability. Increasing the num-
ber of problems related to studying the superfine struc-
ture of the energy spectra of hydrogen-like atoms,
including the superfine structure of excited energy lev-
els [44] and the superfine structure of the “new” sim-
plest atomic systems, will decrease the uncertaintiesin
the fundamental physical parameters and increase the
precision of verifying the Standard Model in low-
energy physics.
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Abstract—Complete screening of the negative dust grain charge by acloud of trapped ionsin plasmasisinves-
tigated. In the plasma electric field, the compound dust particle “dust grain + ion cloud” acquires a dipole
moment due to displacement of the centers of positive and negative charges in the opposite directions within
the compound particle. By analogy to the van der Waal s attractive interaction potential, the dipole—dipoleinter-
actions of the compound dust particle can have an attractive behavior. It is shown that, for the electric field
strengthstypically observed in experiments, the dipole—dipole attractive force exceeds the shadowing force that
is connected with the reciproca interception of ions by the neighboring dust grains. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

A cloud of dust particlesin plasmas, confined by the
walls (electrodes), is characterized by a self-organizing
property that reveads itself as the capability of dust
grains to form ordered spatial structuresin the vicinity
of electrodes[1-12]. The dust grainsin a cloud usually
have an electric charge of the same sign (negative);
according to the general consideration, at large inter-
grain distances, such a capability of self-organization
impliesthe existence of an attractive force between dust
grains having the same polarity. In the past, various
mechanisms had been proposed for the dust grain
attraction in dusty plasmas. They are asfollows:

(i) The attraction of dust grains in the wake poten-
tial [13-16]: theions are focused in the negative poten-
tial region of the wake field behind amoving dust grain
and provide a possibility for attracting the following
negatively charged grainin alinear chain [17, 18].

(if) The shadowing force [19, 20]: the reciprocal
shadowing of a pair of dust grains in a nonstreaming
plasma and, as a result, reciprocal interception of ions
moving from the outside of the system of the grain pair,
leading to a net momentum transfer that pushes the
grains to meet each other. This, in effect, represents an
attractive force between two dust grains.

(iif) When placed into an external electric field (for
instance, in the field of another charged dust particle),
the dust grain, considered a conductor, ispolarized. The
excess of charges with a definite sign on one side leads

TThis article was submitted by the authorsin English.

to an anisotropy of the plasmaparticle flows to the
dust-particle surface. Even when there is an equality of
theion and el ectron currentsto the dust particle surface,
the momentum transferred to the dust particle by the
ions incident on the surface considerably exceeds the
momentum brought by electrons. Therefore, an addi-
tional force exerted by the plasma flow acts on a dust
particle in the electric field. This additional force has
the same direction as the electric field and can exceed
the electrostatic force acting on the dust particle in the
electricfield [21]. Theforceis proportional to the elec-
tric field strength. If the given grain is placed into the
electric field of another grain and the distance between
the grainsis much larger than the Debye radius (which
is the most interesting case for investigating the grain—
grain interactions), then the electric field and the force
become very small as aresult of the Debye shielding.

Furthermore, under the condition of avolume distri-
bution of dust particles, the neighboring dust grains sur-
rounding the given grain from every side can intercept
the ions flowing towards the grain, and the attractive
forces described in items (ii) and (iii) must be substan-
tialy less.

It seems more consistent to relate the creation of the
attractive force to the screening of the dust charge by a
cloud of trapped ions [22]. Below, we assume that the
dust electric charge is completely screened by an ion
cloud. Such a possihility is investigated and predicted
in [23, 24]. Taking into consideration large distances
between the grains instead of bare dust grains, we can
operate with the grains “dressed” in the jacket of anion
cloud. The system “grain + ion cloud” is said to be a
compound (dust) particle in what follows. In an exter-

1063-7761/04/9801-0053$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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nal electric field, the centers of the negative and positive
charges within the compound particle are displaced
from each other and the compound particle acquires a
dipole moment. The dipole—dipole interactions of the
compound dust particle can have an attractive nature by
analogy with the van der Waals interaction in solid-
state physics.

This paper is devoted to a quantitative analysis of
the attractive force acting between the compound dust
particles. It isshown below that the attractive force con-
nected with dipole—dipole interactions of compound
particles can exceed the shadowing force [19, 20].
Hence, a special feature of the interaction potential of
dust particlesin plasmas must be the existence of some
equilibrium distance between dust grains at which the
forces of attraction and repulsion balance each other.
The paper is organized asfollows. In Section 2, we dis-
cuss the theory of ion trapping in the potential well and
calculate the induced dipole moment in a self-consis-
tent eectric field in plasmas. An expression for the
attractive force associated with dipole—dipole interac-
tionsis obtained. For typical laboratory conditions, the
newly found dipole-dipole attractive force predomi-
nates over the shadowing force. Section 3 contains a
summary and approximations required for developing
the present theory.

2. THEORY

We assume plasmato be collisionless, which means
that the ion mean free path is much larger than the
plasma Debye length, A, > Ap. IN[25], the capture of
particles by a nonstationary potential well in a colli-
sionless plasma was proposed. A brief description of
this nonstationary capture is given in [26]. The nonsta-
tionarity of the potential well means that the height of
the walls forming the well increasesin time and is sat-
urated at some stationary value. Therefore, initially free
particles, passing a distance on the order of magnitude
of the extent of the well, can collide with the growing
wall. After reflection, a particle can meet an analogous
obstacle moving in the opposite direction. At thetime a
stationary well is established, a definite number of par-
ticlesis captured by the well. The distribution function
of trapped particles can be found from the continuity
condition for the distribution function at the limiting
level of the trapped-particle energy. At this level, the
distribution function of trapped particles must be equal
to the distribution function of free particles. In our case,
capture of ions by the potential well occurs during the
process of dust grain charging. The adiabaticity condi-
tion [25, 26] (i.e., the condition that the creation of the
well proceeds slowly), which isnecessary for analytical
description of nonstationary particle trapping, is ful-
filled: if the Debye radius Ay exceeds the dust grain
size a, then the characteristic time T = Ap/awy, of dust
grain charging (which is the same as the characteristic
time in which the potential well is created) is much
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larger than the time T, necessary for an ion to traverse
the width of the well (here, wy; is the ion plasma fre-
guency). As shown below, the width of the well is on
the order of Ap. ThetimeT,; can be estimated asfollows:
the potential of the grain isusually given by |¢,| = TJ/e,
where T, isthe electron temperature and e > O istheion
charge. For the average velocity of ionsin the well, we

then have
vV, = e_——l(I)O' :/\/ie
N m m

(where misthe ion mass), whence

A 1

T==2=—,
Vi pi

Therefore, the condition of the adiabaticity of ion cap-
turing, T > 1, isfulfilled at A\p > a.

According to [ 25, 26], upon the adiabatic creation of
the well, the distribution function of trapped particles
(ions) is constant and equals the value of the distribu-
tion function of free particles (ions) at the limiting
energy level of the trapped particles. The physical rea-
son for this result is as follows. in a collisionless
plasma, the trapped particles do not leave the well and
the probability of finding them in the well is one.

To analyze the dust cloud formation, we consider
the motion of ions in the field of a negatively charged
dust grain. Dust grains are assumed to be absolutely
absorbed and are considered spherical with a radius a
much smaller than the Debye radius, a < Ap [27-30].
At the spherical symmetry of the grain field, the depen-
dence of the ion effective potential energy on the dis-
tancer to the center of force, r =0, is

2
L
2
r

Uegr(r; L) = > +U(r), (D)

where

U(r) = ed(r) = —elo(r)|

istheion potential energy and ¢(r) isthe electric poten-
tial. The angular momentum L isan integral of motion.
From the equality

3dU(r)
dr ’ @)

L2
= =
m

we can find the extremum values of Ug(r; L). The qual-
itative dependence of r3dU/dr onr isdepicted in Fig. 1.
It is due to the specific dependence of the potential
energy U(r) onr (see[31, pp. 255-266]). At short dis-
tances (for r smaller than the Debye radius Ap), the
potential energy U(r) decreases as 1/r, i.e., slower than
Ur2. For r = Ap, U(r) decreases exponentially due to
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the Debye screening, i.e., faster than 1/r2. The behavior
of U(r) at large distances (r > Ap) significantly depends
on the conditions at the dust grain surface. If the dust
grain surface absorbs electrons and ions, the potential
energy U(r) decays as 1/r> at r — o (see [31,
pp. 140-141; 32, 33]). In Fig. 1, the intersection points
of the curve with the dashed horizontal lines indicate
the extremum points of Ug(r; L). The characteristic
values Lo, L, and L, are determined as follows.

(1) Far fromthe grain, r > Ap, the potential energy
U(r) can be written as[31, 32]

2

U@ = V.55, ®

where U,, is a constant. We then have

sdUn]

= 2ma’|U.). 4)
errﬂw | |

Lo =m

At L < L,, the effective potential energy Ug; has only
one extremum point, which corresponds to aminimum.

(2) The characteristic angular momentum L, is
determined from the condition that the maximum value
of the effective potential energy is equal to the value
of the effective potential energy on the grain surface,
r =a[33, 34]. L, and the corresponding point r ..., of the
maximum of the effective potential energy can be
found from the system of equations

Ueff(a; Lp) = Ueff(rmax(l—p); Lp)1 (5)
2
Ly _ gedu(r)n _ ©)
m dr Drery
Equation (5) yields

1- |U(rmax)|/|U(a)|
1-a’lri, (7)
= 2ma’lu(a)l.

L7 =2ma’|U(a)|

Usualy, rp. > Ap. As the angular momentum L
increases, the minimum point of U (r; L) moves away
from the center and the distance between the extremum
points decreases. We stress that only those trapped ions
that have the angular momentum L < L, can reach the
grain surface and be absorbed. At L > L, the edge of the
well isfar from the grain surface.

(3) The maximum value of r3dU/dr is reached at a
certain point r, (>Ap), where
80Uy _

[ar or |:J:|rk = 0. (8)
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Pau)/dr
LkZ /m ________

2
L2 mp - -

Loz/m' - ==

0r min0 “'min

Fig. 1. A qualitative plot of the auxiliary function r3du/dr
VS. T.

and r, is aways between the maximum and minimum
points. The characteristic angular momentum L, is
defined as

2 _ sdUn
Lk =m err:rk- (9)

At L = L, the extremum points coincide and the func-
tion Ug(r; L) has an inflection at this point. If L > L,
the function Ug(r; L) decreases monotonically with
increasing r.

(4) At L > Lo, Eq. (2) has two roots. For a more
detailed description of ion motion, we must also deter-
mine the angular momentum L, at which the small root
(corresponding to the minimum of Ug(r; L)) coincides
with the radius a of the grain,

L3 _ gedU(r)

m dr O _, (19
Hence, if the angular momentum isin the range
Lo<L <L, (11)

then U(r; L) has both maximum and minimum points.
The qualitative dependence of Ug(r; L) onr for various
values of the angular momentum isshownin Fig. 2. We
can now determine the surface that separates the
regions of infinite and finite motion of ionsin the veloc-
ity space(v,, vg), where v, and vy arethe velocity com-
ponents along and acrossthe radial direction. The stan-
dard definition of the angular momentum is

L = mvyr. (12

Theionswith the angular momentum L < L (or with

the velocity component vq < (a/r) ./2|U,,|/m) and with
anegative total energy

E(v,, vg ) <0, (23
mv?
E(v, Vg r) = Tr +Ug(r; L) (14)
No.1 2004
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Ueff

o

=——————""min0

Fig. 2. A qudlitative plot of Ug(r; L) vs. r for different val-
ues of the angular momentum: (1) L < Lg, (2) L = Ly,
R L=Ly (@ Ly<L<Lyand ()L =Ly

can be trapped in the potential well. The ions with the
angular momentum in the range L, < L < L, can be
trapped if their total energy satisfies the condition

E(Vrv Vevr)SUeff(rmax; L) (15)

The ions with the angular momentum larger than L,
(L > L) are not trapped. The dependence of |U,,| on the
grain surface potential |U(a)| for equal electron and ion
temperatures (T, = T)) is depicted in [31, p. 317] and
shows that one always has

Ul 1
<=,
lU(a)l 3

With increasing |U(a)|, thisratio decreases. A more pre-
cise relation between |U,,| and |U(a)| can be established
from the quasineutrality condition, in the case where
the ion and electron densities are roughly equal. This
occurs far from the grain (r > Ap). Under this condi-
tion, a calculation quite similar to that given in [34]
shows that for a nonisothermal plasma, T, > T, and the
inequality

U <3U(@) (16)

is satisfied for the absorbing grains if

@), 1
T, 2

The latter relation is usualy fulfilled with a large
reserve both in laboratory and space plasmas [28].
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From (13) and (16), it follows that the zero point r, of
the effective potential energy Ug(r; L) at L < L, is
alwayscloseto the center (r = 0) in comparison with the
grain surface, ry < a. Indeed, we find from Eq. (1) that
Ugi(r; L) at r = aisnegative (see curve Lin Fig. 2),

Ugi(a; Lo) <|U,|—IU(a) <0, L<L,  (17)

Consequently, when L is smaller than a certain critical
value L, the dust grain surface is within the well and
the ions faling into the potential well are therefore
immediately lost due to absorption onto the dust grain
surface. Hence, the formation of trapped ion cloudsthat
can shield the grain electric field is possible only for
L>L,.

According to the general theory [25, 26], for the sta-
tionary well, the distribution function of the trapped
particlesf,, is constant and the value of f;;, is defined by
the value of the distribution function of untrapped par-
ticles at the limiting energy, in our case, by the energy
level Ug(rma L). Considering the distribution function
of untrapped ions as a Maxwell-Boltzmann one, we
obtain

fir = No(mV2mT,)%?

(18)
x eXp(—Ug(rma(L); L)/Ti).

We emphasize that r,, here depends on the angular
momentum L (see Eq. (2)). Because we are interested
in distances not very large compared t0 Ap, I' < I
(see dso Eq. (21)), we can choose the Debye—Hiickel
form

u(r) = U@ expd—4

5 (19

for the potential energy of ion interactions with a dust
grain. It should be stressed that the Debye-Hiickel law
holds even in the nonlinear regime[23]. It is somewhat
modified by theion flow [16]. The latter also produces
awake field, which is not the focus of this paper. The
dependence of U(r) on r definitely corresponds to the
dependences necessary for the classification of ion
motion according to the angular momentum (see Sec-
tion 1). We note that dependence (3) is valid only for
very large distancesr, r > Ap. From (2), (6), and (19),
we find the critical value of the angular momentum L,
and the corresponding maximum point r .., of the effec-
tive potentia energy

L3 = ma’u(a) L+ 20, (20)
D

A
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_y B o
r.max(l-a) - )\DEInDaD

+ |n|: max( a)%l ma;\(DLa)E}E (21)
O
=A Ing—[lﬂnd\'}%} @DDE

Comparing (4) and (20) by means of (16), we find that
L, > Ly and, consequently, the effective potential energy
has both aminimum and amaximumfor L>L,.AtL =
L., the minimum point of the effective potential energy
coincideswiththedust grainradius. For L <L, thedis-
tance of the minimum point of Ug(r; L) from the center
(r = 0) is smaller than the grain radius and all trapped
ions are absorbed by the dust grain surface. From (2)
and (4), it followsthat, at L = L,, the point of the mini-
mum of the effective potential energy is given by [9]

gVl
U@

For |U,| < (/2)|U(a)|, we have r 0 < a (see Fig. 2).
Thisresult isphysically expected, becausetheionswith
small angular momenta impact the dust grain surface
and are absorbed. We can therefore restrict ourselves by
considering the ion angular momenta L = L, and dis-
tances r < r.(L,), defined by (21). Obvioudy, the
Debye—H{ickel potential (19) isapplicablefor such dis-
tances, and we use it for estimations in what follows.
For instance, using the Debye—Hickel shielded poten-
tial for the critical distancer, defined by (8), we abtain
re= 1L61A,.

Different kinds of potential wellsthat make a contri-
bution to ion trapping can be gathered in two groups.
For the angular momentum in the range

(22)

rm|n0

L.sL<L,, (23)

or

ma |U(a)|%l+ aD<L2<2ma2|U(a)|, (24)

the distribution function is defined by (18) (with the
corresponding r (L)) and only theionswith an energy

E<Ug(a; L) (25)
can take part in forming the cloud shielding the grain
field. The ions with larger energy E = Ug(a; L) dis
appear due to absorption on the dust surface. Condi-
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tions (25), (12), and (14) alow usto define the limiting
value for the velocity component along the radial direc-
tion,

L0 lm_z
vis| S - - Ru@I-uon) -
x[O(r—a)-6(r-r(L)],
where O(X) is the step function (@(x) = 1if x= 0 and

O(X) =0if x<0). Theturning point (L) isthesolution
of the equation

Lol 1020y -

2Dd2

It turns out that, for agiven L, the distance r can change
in the range

U@l =0. (@7

as<r<f(L) (28)

defined by the energy level Ug(a). According to the
general definition, the number density of trapped ions
in the angular momentum range (23) is

n,(r) = 2nJ’v9dvedvrfitr, (29
wheref;,, isdefined by (18) and the limits of integration

over vy and v, must be chosen according to (12), (23),
and (26). Introducing the variable

s = L%/2ma’|U(a)|,

we find

a)| 72
T, O

2 _afu
et

ny(r) =

U(a) _a’

1
I dsexp[ T

1 +an
2 )\D

g 20
x{sﬂ—%ﬂ—%
O A0

L U(rme(9)
oex(S) T

(30)

uep]”
U(a)D

x[O(r—-a) -0(r -r(s)],

where r,(S) and 7(s) areto be found from (2), (19),
and (27). In what follows, we assume the grain size to
be so small that the inequality

U(a) &

<1
T A2

(31)
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is fulfilled. In accordance with (2) and (19), the expo-
nential function in the integrand of (30) can then be
replaced by 1 and we find after integration that

2 2 3/2
ny(r) = #Tnoa_z 1_%Bhu'|('?)|g
O [, _a Or—aj 3_.2 -0 (32)
gl [1 P D}[l rz}g
x[O(r—a)-0(r —fF(1)],
where
F(1) = )\Dln[%lng\—;ln%%] (33)

Similar calculations can be performed for ions with
the angular momentum in the range

LosL<Ly, (39
or

2ma’|u(a)| < L*<0.419 x 2mai,|U(a)l.  (35)

In thisrange, the surface of thegrainisoutsidethewell.
The energy border of thewell isdefined by Ugi(r ma L),
and for the limiting value of the velocity component
along theradia direction, we have

V<[ 20U =]Ural L))

1 D} (36)
x[O(r —F(L)) —O(r —rma(L))],
where (L) (Zrm(L)) isthe solution of the equation

2(UE) U (L))

L?mt 1 [

m$2 r2 (L)

(37)

:0,

and r.(L), which is again the maximum point, also
satisfies this equation. The procedure, quite analogous
to that used above, gives the following expression for
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the number density n,(r) of the trapped ions with the
angular momentum in the range (34):

n(r) = 2n 2 0Y@D

Jmoprd T 0
}\D
0.419—
a D 2
x I dsexp[j——za —lU(a)ls
1 O Mac(S) T

+|U(rrg+(5))|guu(r)l—|U(rmax(S))|)/|U(a)| (38)

—St -1
0" ro(s)Xd

x[O(r —F(8)) —O(r —rma(9))] -

Here, r..(9) isagain defined by (2) and (19), and 7(s)

isthe root of the expression under the radical (cf. (19)
and (37)). From (30) and (38) (and also from the depen-
dence of the wells on the angular momentum described
in Sections 2 and 3), it follows that a cloud of trapped
ions is localized in a spherica layer restricted by the
spheres with the radii a and r(1) (the latter is defined
by (33)). Integrating the sum of ny(r) and n,(r) over the
space, we find the total number N of trapped ions,
which we assume to be equal to the charge number Z of
the grain,

1/2
2 2
a D}

3/2
0 U
N=4 Pom yagda U@

NoA Z. 39
3 3|:|3 0 q] D Ti |:| ( )

I n estimating (39), we used the condition of the smallness
of adust grain, a << Ap. The possibility of such acompen-
sation of charges was recently predicted in [23, 24]. In
our model, therefore, the electric charge of the dust
grainis screened by the trapped ion cloud and the inter-
action of the compound particle (dust grain + ion cloud)
at large distances cannot be realized as an interaction of
charges. In an externa (or induced) electric field, the
centers of positive and negative charges within such a
compound particle can be shifted and the particles
acquire adipole moment that can lead to dipole—dipole
interactions of the compound particles. Below, we find
the electric field necessary for shifting the centers of
charges over adistancer, with
a<<r <A, (40)
and determine the corresponding induced dipole
moment. At shifting distancesr < Ap (much less than
the size of the trapped ion cloud; cf. (33)), we can
assume that the form of the dust cloud remains
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unchanged under shifting. From (32) and (38), the total
ion number density at r << Ap isgiven by

_ -4 rlu@I
(1) = () + () = g =52
i (41
X? a;1—1%+1E O(r —a).

For the electric field strength, which is defined as

r

E = L34T[Idr‘r'2en(r'), (42)
r a
we then obtain
_ _8 A ralu(a)®?
E = 3ﬁ53 nq][r T ] er. (43)

Equation (43) represents the electric field within the
cloud of trapped ions generated by these ions. Placing
acharged grain at distancer from the center, in order to
keep it in equilibrium, one needs to apply an external
electric field whose value can be found from Eq. (43).
The direction of the external field must be opposite to
the displacement of the centers of the positive and neg-
ative charges [35-37].

Inequalities (40) and relation (39) give thefollowing
restriction on the electric field:

(44)

According to (39) and (43), the induced dipole moment
and the polarizability of the compound particle (dust
grain + ion cloud) are given by

P = Zer = a(E)E, (45)
where
a(E) = %EfTeEESA%- (46)

Due to the specific dependence of the electric field
within the compound particle at distance r from the
center (Eq. (43)), the polarizahility reveals a nonlinear
behavior. At large distances, the interaction energy
between the compound particlesin the external electric
field can beinterpreted as the dipole—dipol e interaction

V = Rig[P1 [P,-3(n [P,) Ln [P)], (47)

where R (> Ap) is the distance between the dust parti-
cles, n = R/R, and P; and P, are the dipole moments of
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the dust particles. Depending on the orientation of the
dipole moments, the potential energy can acquire an
attractive character. For identical dust particles, the
attractive force becomes maximum when the dipole
moments are parallel to each other and to n. According
to Egs. (47) and (46), this attractive force is given by

r - lopZeER

- ™ )\DE] R4le (48)

In [19, 20], the effective attractive force between two
isolated dust grainsdueto their reciprocal shadowingin
the plasmahas been investigated. According to [29], the
value of the shadowing forceis

_3a’Zef

Fa = B R (49)

Comparison of Egs. (48) and (49) revealsthat the shad-
owing force is smaller than the force due to dipole—
dipole interactions for electric field strengths that are
typical inlaboratory experiments[38—40]. Indeed, rela-
tion |F| > F4, isidentical to theinequality

E* < 10E,, (50)

where

}2}\_1131/22_6

RaR » (51)

E, = 76

For E = E,, conditions (44) and (50) can be satisfied if
A2/aR > 1 (A\p/R < 1). Taking a = 10-* cm, Z = 10%,
Ao =14x%x102cm,and R=10"cm, wehaveE=E, =
50 V/cm. According to Eg. (46), the potential energy
and the interacting force decrease as the electric field
strength increases. Apparently, the dipole-dipole inter-
action potential energy, asdiscussed here, may berespon-
sible for the formation of many-layer structuresthat have
been observed in laboratory experiments [8-11] where
the behavior of a dust particle cloud in the plasma dis-
charge was investigated.

3. CONCLUSIONS

We have considered complete shielding of the dust
grain charge by the trapped ions in plasmas. In the
plasmaelectric field, aneutral compound particle (dust
grain + ion cloud) acquires dipole moments that can
lead to their interaction by the potential energy of the
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dipole—dipole type. We note that our calculations for
dipole—dipoleinteractionsare valid under thefollowing
assumptions.

(1) The surface of the dust grain is absolutely
absorbing.

(2) For the distancesin which we are interested, the
spatial dependence of the ion potential energy in the
field of a dust grain follows the Debye—-Hiickel law
(see (19)). The latter holds even in the nonlinear
regime, as demonstrated in [23]. The ion flow dlightly
affects the Debye-Huickel potential [16], and, in addi-
tion, generatesawakefield, which isnot thetopic of the
present paper.

(3) It is assumed that, in a collisionless plasma, ion
trapping is the result of adiabatic change of the poten-
tial well’s shape in time [25, 26]. Therefore, the steady
state is reached before dust-neutral interactions take
place.

(4) The number density of trapped ions is small
compared to the total ion number density. The trapped
ions do not take part in the formation of the potential
well.

In conclusion, we mention that some aspects of the
interaction observed experimentally [8-11], for exam-
ple, formation of regular equidistant layers of dust
grains, can be explained by the theory devel oped here.
Finally, the present dipole-dipole attractive force can
be incorporated in molecular dynamics simulation
studies of charged dust particle behavior in dusty
plasmas.
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Abstract—Optical properties of cholesteric liquid crystals with a pitch larger than the wavelength of light are
considered. Normal waves of the medium and the Green function of the electromagnetic field are analyzed. A
general algorithm based on the application of the Kirchhoff method is proposed for calculating the scattered
light intensity in media with a one-dimensional periodic structure. The WKB vector method is used for calcu-
lating the spatial correlation function of thermal fluctuations of the director. It is found that the transformation
of two fluctuation modes takes place is some regions. The angular and polarization dependences of the intensity
of light scattered from fluctuations of the director are calculated. It is found, in particular, that the intensity of
scattering is a nonmonotonic function of the size of the system. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, considerabl e attention has been paid
to investigation of liquid crystals (LCs) by various
methods. The interest in this problem is provoked by a
number of anomalies in physical properties of these
systems and by their wide application in graphics dis-
play systems (above al, in LC displays).

The light scattering techniqueis one of the effective
methods for studying LC systems. Peculiar optical and
structural properties of liquid crystals considerably
complicate the description of light scattering. Such
properties include strong optical anisotropy, the pres-
ence of regular spatial structures, abnormally large
fluctuations of the order parameter, and anomalously
high optical activity.

In this connection, a number of physical problems
arise, which have been studied insufficiently so far. One
of such problemsisthe description of light scattering in
mediawith asmoothly varying periodic structure. Scat-
tering of light is usually considered under the assump-
tion that the medium is spatially homogeneous, or fluc-
tuations and the propagation of waves in inhomoge-
neous media are described on the basis of smal
parameters, which make it possible to reduce the solu-
tion of the problem to that for a certain effective homo-
geneous medium. For homogeneous systems, normal
waves and the field of a point source (the Green func-
tion of the electromagnetic field) are known and the
spatia correlation function of thermal fluctuations of
permittivity, from which light is scattered, are calcu-
lated quite easily. The condition of spatial homogeneity
of a system makes it possible to obtain simple expres-

sions for the intensity of scattered light in closed form
by passing to the 3D spectrum of Fourier fluctuations.

The problem becomes more complicated when the
spatial homogeneity of the medium is violated consid-
erably. Thisimmediately givesriseto several problems
such as the description of the structure of the incident
field (normal waves in the medium), the calculation of
the Green function of the electromagnetic field, and
analysis of the correlation function of permittivity fluc-
tuations.

Typical examples are the problems of propagation
and scattering of light in media with periodically vary-
ing properties (in particular, in media with one-dimen-
sional periodic structures). Such mediainclude choles-
teric liquid crystals (CLCs), twisted nematic liquid
crystals (NLCs), and certain kinds of smectic liquid
crystals (SLCs).

Although this problem has been considered for a
long time, it involves significant mathematical difficul-
ties since the problem is reduced to solving a system of
differential equations with periodic coefficients, which
have no exact solution in the general case. For example,
the exact solution of the problem on propagation of
electromagnetic waves in CLCs was obtained only for
waves propagating along the symmetry axis of the sys-
tem [1-3]. Theformal analytic solution for the problem
inthe case of oblique incidence [4—6] hasthe form of an
infinite seriesand isdifficult for analysis. For thisreason,
various approximate and numerical methods are widely
used in the optics of layered LCs [7-11]. In this case,
main attention is paid to the situation when the wave-
length is on the order of the structural period and the
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methods developed for X-rays diffraction have been
found to be effective [8]. Such an approach remains
most popular for CLCs even now [11-15]. Thiscaseis
characterized by the emergence of forbidden bands.
The problems with normal waves and the field of a
point source [16-19], as well as the spectrum of ther-
mal vibrations of the director [20-23], have beeninves-
tigated using this method.

The opposite case, when the wavelength is much
smaller than the characteristic size of the LC structure,
has been studied insufficiently. However, this problem
has become important in recent years in connection
with the application of twist cells of weakly twisted
NLCs and CLCs with alarge pitch in graphics display
systems.

It is well known that, when light propagates along
the axis of the cholesteric in such systems, the adiabatic
regime occurs, when the polarization of waves rotates
together with the optical axis[24]. For high intensities
of incident light, nonlinear effects (such as the genera-
tion of the third harmonic) were observed [25]. In the
general case of oblique incidence, it is natural in this
case to use the WK B method since the size of inhomo-
geneitiesis much larger than the wavelength. It is diffi-
cult to directly apply the WKB method for electromag-
netic waves since this gives rise of a system of coupled
equations[4, 5, 26]. This problem was solved in[27, 28]
for electromagnetic waves propagating in localy iso-
tropic media with smooth inhomogeneities. The gener-
alization of the WKB method, proposed in [29] for
CLCswith alarge pitch, hasmadeit possible to obtain
an analytic solution of the problem with oblique inci-
dence of light (in particular, normal waves were deter-
mined). On the basis of this method, the field of a point
source in such a medium was also obtained [30-32].

In order to describe scattering of light, we must
know, in addition to the optical parameters of the sys-
tem, the correlation function of thermal fluctuations of
permittivity. The main contribution to scattering in
CLCs comes from fluctuations of the director. The
problem of the director thermal noisein CLCswas con-
sidered only for fluctuations with characteristic scales
on the order of or larger than the structure period
(“smecticlike” CLCs) [20-23]. In the opposite case of
a“nematiclike” CLCs, fluctuations have not been stud-
ied. It should be noted that fluctuations were analyzed
for some physical systems with regular inhomogene-
ities (e.g., in studying the influence of the gravity effect
in the vicinity of the liquid—vapor critical point on den-
sity fluctuations) [33]. However, the correlation radius
of fluctuations in this case is much smaller than the
characteristic size of regular inhomogeneities in the
system. This problem can be reduced to that for a
locally homogeneous medium with parameters
smoothly varying from point to point. The system con-
sidered here is distinguished by the fact that the corre-
lation length of director fluctuations we are interested
inislimited only by the size of the system [34]. For this
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reason, the local homogeneity approximation is inap-
plicablein this case.

In this study, we use a vector generalization of the
WKB method for calculating the correlation function
of director fluctuations in CLCs with a large pitch. A
general algorithm is proposed for calculating the inten-
sity of scattered light for layered systems. This enabled
us to derive explicit expressions for the angular and
polarization dependences of theintensity of single scat-
tering of light in CLCs in the case when the pitch is
much larger than the wavelength. The results are repre-
sented in aform convenient for comparison with exper-
iment.

The article has the following structure. In Section 2,
the general equations describing the elastic energy and
fluctuations, as well as the propagation of electromag-
netic waves in CLCs, are considered. In Section 3, the
general algorithm for calculating the intensity of scat-
tered light in layered mediais constructed on the basis
of the Kirchhoff method. Section 4 is devoted to deter-
mining the normal waves and the Green function of the
electromagnetic field in CLCs with a pitch larger than
the wavelength of light. In Section 5, the correlation
function of director fluctuations in CLCs is calculated.
Theintensity of scattered light is calculated in Section 6,
where various experimental geometries are analyzed.
The algorithm of the vector WKB method used for
determining the normal waves and the correlation func-
tion in CLCsis given in the Appendix.

2. BASIC EQUATIONS

A CLC can be described by free energy in the form
[34]

) 1 2
E = |:0+§J'dl’[K11(d'Vn) (2.1)

+ Ky(neurln + py)® + Kag(n x curln)?],

where F; is the energy of a homogeneous system and
Ky (I =1, 2, 3) are the Frank moduli. The unit vector
n=n(r) of the director characterizes the direction of
the local preferred orientation of the longer axes of the
molecules. The minimum of energy (2.1) corresponds
to ahelicoidal equilibrium distribution of the director,

n’(r)=n%2) = (cos@, sin@O0). (2.2)
Here, we have introduced the Cartesian system of coor-
dinates with the z axis coinciding with the axis of the
cholesteric in the CLCs, @ = @(2) = pez + ¢, angle @,
determining the direction of the director on the plane
z=0, p, = /d, where d is the pitch of the cholesteric.
Director n°(r) in Eq. (2.2) is perpendicular to the z axis
and rotates uniformly around this axis.
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Optical propertiesof acholesteric are determined by
permittivity tensor € ; in an equilibrium CLC, thisten-
sor has the form [34]

Eap(r) Z€0p(@) = €043 + £N(DNR(D,  (23)

where €, = g, — €n, ) and € being the permittivities
along and across n°.

The Maxwell equations for a monochromatic wave
in such amedium have the form

= iko(r)H(r),
= —ik,E(r)E(r),

curl E(r)

2.4

curlH(r) 24)

where E and H are the vectors of electric and magnetic

fields and k, = w/c, w being the circular frequency

and c, the velocity of light in vacuum. Henceforth, we

will assume that the medium is nonmagnetic, pag(r) =

qp- Eliminating vector H from system (2.4), we obtain
the wave equation for vector E:

(curlcurl —K3&(r))E(r) = O. (2.5)

In solving the scattering problem, it is convenient to

use the integral representation for wave equation (2.5),

E(r) = E°(r)+k§J’dr'f°(r,r')6é(r')E(r‘), (2.6)

where 38(r) = &(r) — &%) are the fluctuations of the
permittivity tensor, and field E9(r) and the Green func-

tion 'T'O(r, r') of the electromagnetic field satisfy the
equations

(curlcurl —K3&(2)E%r) = 0, 2.7)

(curleurl —K2E°@) T, ) = 8(r—r)i.  (2.8)

Here, | isthe unit matrix.

Since Eq. (2.7) is homogeneous, field E(r) can be
expressed in the form of alinear combination of normal
waves of problem (2.7). In order to formulate the prob-
lem unambiguously, Eg. (2.8) should be supplemented
with the corresponding boundary conditions. In an
unbounded medium, such conditions are the radiation
conditions [35]. In view of the symmetry of the CLC
relative to displacements in the XY plane, we have

%,y =T% o —rh: 2 2), wherer = (x, ).

The second term on the right-hand side of Eqg. (2.6)
corresponds to scattered field E© generated by incident
field E9(r). Solving this equation by iterations and con-
fining the analysis to the lowest order in &€, we obtain
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scattered field E® in the single-scattering approxima-
tion,

EO(r) = kgIdr'?O(rD—r'D; z,2)58(r)E(r). (2.9)

The properties of scattered light are determined by
the coherence function

ES(r)EPHr )0

= Ko[drydryToy, (Fin—rin; 21, 21) (2.10)

0* ' ' ' ' ' 0* , ,
X Tpe (F a0 =T 555 Zoy ) Gyueu(T 1 T ENTDE, (1Y),

where Gy, (11, r5) = [Bg,(r)dez,(ry)0 is the corre-
lation function of permittivity fluctuations, angle brack-
ets [..0Odenote statistical averaging, and the asterisk
indicates complex conjugation. In view of the symme-

the CLC, we @(r Ll =
G(rin—"rom 21, 2) .

Thus, in order to cal culate coherence function (2.10),
we must know the normal waves determining the form

of field E°(r), Green function 'T'O, and correlation func-

try of have

tion § for permittivity fluctuationsin our system.

The largest contribution to 8¢ in LCs comes from
fluctuations of the director [34],

n(r) = n°@) +3n(r); (2.11)

here, we confine our analysisto these fluctuations only.
Under this assumption, not only the equilibrium, but
also the fluctuating permittivity tensor has a form
analogous to expression (2.3) with the substitution
n%2 — n(r):

€qp(r) = €q04p + €4NG(r)Ng(r). (2.12)
Subtracting expression (2.3) from (2.12), we obtain

the relation between fluctuations of the permittivity and
the director in the CLC,

3e4p(r) = £a(N2(DBNG(r) + 3G (r)NG(2),

as well as the relation between the corresponding cor-
relation functions,

Gapyel 03 2.2) = €2[N@NY(2)Gpslr 0 2 2)
+N(DN32)Gp(T 15 2.2)
+NANY(2) Gaolr 0; 2.2)

+ N2 e (T 15 2. 2)].

(2.13)

(2.14)
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Here,

wa(F10— o0 21, Z
Qup(ri0="r20s Z1, 25) (2.15)
= [BNg(r 10, 20)ONG(F 50, Z)U

is the correlation function of director fluctuations.

To calculate the correlation function of director fluc-
tuationsin the Gaussian approximation, we can confine
ourselvesto the contribution to free energy (2.1), which
isquadratic in dn:

2

SF = %Idr{ Koy (08 0)2+ K ,[n° 0058 n)]
(2.16)

+ K[ (3n CO)N° + (n° C10)3n] °} .

In deriving this equation, we took into account the fact
that the relations divn® = 0 and curl n® = —pyn® are valid
for helicoidal structure (2.2). Since |n| = [n% = 1, the
condition dn [0 n° is satisfied in the main order in on.
Vector dn = (dn,, dn,, dn,) can be parameterized with
the help of two quantities. In the case of CLCs, the
parameterization [20, 21]

dn,(r) = —uy(r)sing(2),
ony(r) = uy(r)cosy(2),
on,(r) = uy(r)
isnormally used. Modes u; and u, determine the fluctu-

ations of the director in the XY plane and along the z
axis, respectively (Fig. 1). In vector form, we have

(2.17)

dn(r) = uy(r)h®@) + uy(r)h®, (2.18)

where
hD(2) = h?xn’%2), h® =e, (2.19)

Equation (2.18) leads to the expression for the cor-
relation function of director fluctuationsin terms of the
correlation matrix of scalar quantities u, ,,

9up(r o 21, 25)

2
2.20
= Y Gulrsi 21 )N @)hg (), (220
kl=1
where
Gu(rig—ron; 23, 2
kl( 10 20 1 2) (221)
=Gy(ry,rp) = i(rdu(rr)d
Substituting relation (2.17) into Eg. (2.16),
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ny(r')

Fig. 1. Modes u; , of director fluctuationsina CLC.

we obtain
OF = %Idr{ Ky (~Sin@a,u; + cospa,u; +d,u,)”
+ K[ cos@( 9,u, —9,(u, Cos@))

+ sing(d,(~u; Sn@) —a,u,)]°

+ Kg[ (—U, poSing + cos@d, (—U; Sing) (2.22)

+sin@a,(~u;sing) )

+ (U, pyCos® + cos@o, (u,cose) + S n(pay(ulcoscp))2

+(cos@au, + Sinea,u,)’1},

whered, =0/0l,1 =x,y, z

Since an equilibrium CLC is spatially homogeneous
in a plane orthogonal to the z axis, it is convenient to
pass to the 2D Fourier spectrum. Henceforth, we will
use a continuous 2D Fourier transform in the form

iqy

f(@. 2",

_ ¢_dg
f(r) = I(Zn)z

f(q,2) = J’erf(r)e_iqDE.

(2.23)

Inthis case, the distortion energy (2.22) assumesthe
form

d2
5F = Ia%zeSFq, (2.24)
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Fig. 2. Geometry of a conventional experiment on light
scattering: k() is the wave vector of the incident wave, Ve,

is the scattering volume, k(® is the wave vector of the scat-
tered wave, and r isthe point of observation.

where
5F, = %Idz{Kll|azu2+i(—§nmx+ cosQ,) ;|

+ K go|-0,u; + iU,(cosgq, — singg,)|”

_ _ , (2.25)
+ K[ |u,po +i(COs@Q, + SiNgay) u,|

+|ugl*(cosa, + singag,)*1}

Integrating by parts and disregarding the terms outside
the integral, we can represent quantity oF, as the qua-
dratic form

5F, = %J’uE(q,z)&ZL(q,z)u(q,z)dz, (2.26)
where
u= gg

Matrix s is a second-order differential operator. In
a coordinate system with the x axis directed along vec-
tor g (0« =g, g, = 0), this matrix has the form

O >.2 . . 0
9 = O g°sin"@ igqsingd, g
quazgn(p _az 0

0 ) . ... 0O
-0, -—igd,sin
+Kph NNt (2.27)
O-igsingd, q°sin"@ [
O > o . O
+ KO dCos® —ipgcosy O
B[]

. 2 2 Pk
1 Pegcosep g cos @+ Py

where 82 = 0%/022.

The fluctuation probability is proportional to
exp[—0F/ksT], where kg is the Boltzmann constant and
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T istemperature. |n accordance with the general princi-
ples of statistical mechanics[36], the calculation of the
correlation function can be reduced to the inversion of

matrix s , which is equivalent to solving the equation

A, 26(; 2. z) = keTd(z—2)1.  (2.28)
To solve this equation unambiguously, we must sup-
plement it with the boundary conditions. In an

unbounded system, we can use for such conditions the
principle of attenuation of correlations, i.e., the condi-

tion G(q; z z) —~ O forz—» *w,

3. GENERAL THEORY
OF SINGLE LIGHT SCATTERING
IN A LAYERED MEDIUM

From the optical point of view, cholesterics havethe
form of a spatially inhomogeneous medium whose
properties vary along the cholesteric axis. Normal
waves and the field of a point source in such a medium
have a complex structure. In addition, the correlation

function 4 (r,, r,) of permittivity fluctuations depends
in this case not only on the differencer , —r, of the spa-
tial coordinates, but also on their absolute values. For
this reason, the problem of light scattering in CLCs has
specific features. In order to illustrate them, we will
briefly describe the conventional approach to solving
the problem of light scattering in a homogeneous iso-

tropic medium with a permittivity of sﬂ( = €50/

3.1. Homogeneous Medium

In the usual formulation of the problem of light scat-
tering, it is assumed that a plane wave

EV(r) = E,e"exp(ik® 1)

is incident on the sample, where E, is the field ampli-
tude, 9 isthe polarization vector, k() isthe wave vector
of the incident wave (e’ O k(®), and the scattered field
with polarization vector €9 is detected at large dis-
tances from scattering volume V. (Fig. 2). In this case,
we can assume that the scattered field is a quasi-plane
wave with wave vector k©®. To disregard refraction at
the boundary, we assume that the sample is surrounded
by a homogeneous medium with permittivity €;. In this

case, kO] = |k©| = k, where k = ky, /€, isthe wave num-
ber in the medium.
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In an isotropic medium, we have 'T'O(r,r') =
T%r —r), where
eikR
TOuB(R) = PGB(R)4_T[R’

in the approximation of afar-fiedld (wave) zone (kR > 1)
and

(3.1)

R
Pap(R) = 8up— Ra L (3.2
isthe transverse projector onto a plane perpendicular to
R [37]. The presence of tensor P, in Eq. (3.1) ensures
the transverse form of the field of a point source in the
far-field zone.

At large distances from the sample, when R = |r —
r'f> Vif’ ~r', we can carry out the substitution |r —r'| =
r in the nonexponential factors of formula(3.1) and use
the “Fraunhoffer” approximation [r —r'|=r —r'-r/rin
the exponent (the latter approximation also presumes

the fulfillment of the condition kV2> < r). As aresult,

we obtain from expression (3.1) the *plane-wave’
approximation for the Green function,

—|k v g

Toap(" = 2 ©

r= Paﬁ(r) , (3.3

where k©® = kr/r is the wave vector of the scattered
wave.

Setting EO(r) = EO(r) in Eq. (2.9) and using for-
mula (3.3), we obtain the following expression for the
scattered field:

k2eikr i

EQ(r) = Eoy—Pug(n)ey’
(34)

x J’dr'6£By(r')ei(k(')_k(S))D'.

\%

sc

Thus, we find that the scattered field is determined
by the 3D Fourier component of permittivity fluctua-
tions d&(Q) in volume Vg, where Q = k® — k(0 isthe

scattering vector. Considering that €5’ Py; = €, we

obtain, in particular, the following expression for the
scattered field component with polarization e:

jkr

S k2 S) A i
E9r) = E, Ze e958Q)e". (35)

Consequently, the corresponding intensity (Poynt-
ing vector modulus) of scattered light,

16 = g /el [EO1D,

(3.6)
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has the form

Vo 1Okl N

(s _ 0 X0 (9)(9) (i) A()
i ~ (—45‘?52‘;2‘ o Cg(vau(Q)ep € (3.7)
where 1 istheintensity of incident light and G(Q) is
the 3D Fourier transform of the correlation function of

permittivity fluctuations; in the case of a homogeneous
medium, this function depends only on the difference

of the coordinates, @(r, ry = @(r —r"). Here, we take
into account the relation [B&Q) O deHQ)D =

VSCC:?;(Q) , Where [J isthe symbol of the tensor product.

It should be emphasized that, from the symmetry
point of view, the fact that the scattered field in for-
mula (3.5) is expressed in terms of asingle 3D Fourier
harmonic of fluctuations &€ isaconsequence of spatial
homogeneity of the system relative to its optical prop-
erties.

3.2. AMediumwith Periodic Inhomogeneities

Let us now consider the situation of interest, when
the properties of a medium change periodically.

In a simple approach that enables us to take into
account periodic inhomogeneities, the so-called kine-
matic approximation in the theory of diffraction isused

[8, 9]. We write permittivity tensor £(r) inthe form
€ap(1) = E0Bqp + Deqp(r) + Begg(r),

where the terms A&%(r) and 3%(r) take into account
periodic inhomogeneities of the structure and random

fluctuations, respectively. Treating A8°(r) + 8%(r) asa
perturbation, we can assume that the incident and scat-
tered fields propagate in ahomogeneous medium; anal-
ogously to expression (3.4), we then obtain the corre-
sponding scattered field with polarization €9 in the
form

2 _iki
koel r

4Tr

(s) -
SR (3.9)

x [ me’(Q)e" + e (5EQ)e"].

The first term in the sum on the right-hand side of this
equation corresponds to scattering from the periodic
structure (diffraction), while the second term describes
conventional Rayleigh scattering (3.4).

Formulas (3.4) and (3.8) correspond to the single
scattering approximation. However, while this approx-
imation in expression (3.4) is substantiated by the
smallness of thermal fluctuations d&(r) , periodic part
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AEq(r) of inhomogeneities in relation (3.8) is usually
not small and the single scattering approximation is
generally invalid in this case. The application of afor-
mula of type (3.8) for describing light scattering can be
justified only in the case of very small periodicinhomo-
geneities or for very thin samples.

The problem of including the effect of small inho-
mogeneities on light scattering can be solved correctly
if we pass from the description of scattering in terms of
normal waves Eq(r) O exp(ik - r) and Green function

To(r —r") of ahomogeneous medium with permittivity
€00, to norma waves E°(r) and Green function
'T'O(r, r')y of a periodically inhomogeneous medium
with permittivity £g5 = £o3yp + A€qg(r) -

In this case, the field singly scattered from random
fluctuations d¢ is described by formula (2.9). Thisfor-
mula takes into account single scattering from fluctua-
tions d&(r) and al orders of scattering from periodic

structure A&y(r) (diffraction). The latter statement fol-
lows from the fact that Egs. (2.7) and (2.8) defining

E%(r) and T%r, r') inintegral form can be written as

E(r) = Eo(r)+k§J"T'o(r — 1) A&(r)Er')dr',

T, r) = Tolr =1)
ko[ Tolr — )D& T, rdr,

Iterating these equations, weindeed obtain all ordersin
AE, on the right-hand side.

It should be noted that, in contrast to the case of

homogeneous medium (3.1), Green function To(r, r
is no longer afunction of the differencer —r' and nor-
mal waves E%(r) do not have the simple form of aplane
wave Oexp(ik - r). Accordingly, plane-wave approxi-
mation (3.3) for the Green function in the coordinate
representation is not valid either. Consequently, the
intensity of single scattering in such a medium is not
proportional to the 3D Fourier transform of permittivity
fluctuations &€ on wave vector Q = k©® — k),

Thus, conventional algorithm (3.1)—3.7) for calcu-
lating the intensity of scattering is inapplicable in this
case and another approach is required.

In addition to the difficulty associated with the
inclusion of periodic inhomogeneities, which can be
overcome by using formula (2.9) instead of (3.4), there
exists one more difficulty in the scattering problem for
inhomogeneous systems. In contrast to formula (3.4),
formula (2.9) describes the scattered field only inside
the medium. However, in experiment, the intensities of
scattering outside the medium are measured. For scat-
tering mediathat are homogeneous on the average, this
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problem is usually solved as follows. In the simplest
case, we assume that the scattering volumeis placed in
a homogeneous medium with permittivity €,, which
enables us to disregard refraction at the sample bound-
ary. In amore consistent approach, the refraction at the
sample boundariesistaken into account. Since theinci-
dent wave in the homogeneous medium is plane, and
the scattered wave in the far-field zone in the sample
can aso be regarded as quasi-plane, the problem of
refraction can be solved using the conventional Fresnel
formulas. However, in this case, there is a subtle point
associated with a nontrivial correction of solid angled
in the case of refraction even in an isotropic system.
This problem for anisotropic scattering media is con-
Sidered in [38].

Optical properties of the scattering system with
periodic inhomogeneitiesin the scattering medium and
of the surrounding homogeneous medium differ dras-
tically. Normal waves and the Green function inside
and outside the scattering volume are substantially
different (in particular, the incident and scattered
waves can be treated as plane only outside the sam-
ple); this does not allow us to disregard the presence
of the boundary.

In order to overcome these difficulties, we can use
the following algorithm for computing the intensity of
single scattering in media with one-dimensional peri-
odic inhomogeneities. Suppose that the scattering vol-
ume has the form of aflat layer 0 < z < L with large
transverse dimensions L > L; aplane waveisincident
on thisvolume from the side z= —o, while the scattered
field is registered in the region z > L, i.e., in the front
hemisphere. The latter is not of principal importance
since scattering in the rear hemisphere (z < 0) can also
be considered in the same way.

We first determine incident field EV(r) in the
medium, which is generated by incident plane wave

EYV(r) with wave vector k® outside the medium. Here

and below, subscripts “in” and “out” correspond to the
quantities calculated inside and outside a inhomoge-
neous medium, respectively. The relation between the
field components inside and outside the sample at its
boundary can easily befound on the basis of the general
boundary conditions in electrodynamics. For flat-lay-
ered media with boundaries parallel to the layers, the
wave inside the medium has the form

ik
b

Ein(r) = "(k0, 2)e (3.9)
where function 8" (k", ) is determined by the prop-
erties of the flat-layered medium, the polarization of
incident wave E{)(r) , and its amplitude. Consequently,
we require only the corresponding relation for the Fou-
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rier components of fields Egjt(k(i), 2) and Ei(r?(k(i), 2 in
coordinates x and y.

It should be noted that, in view of the identity kf +

k% = kg, which is valid outside the flat-layered
medium, it is sufficient to specify vector k; and thesign
of component k, in order to define the total wave vector
k. For thisreason, it is sufficient to specify vector kg)
if we know thedirection of incidence of thewave onthe
sample (positive or negative relative to z). The sameis

also true of wave vector k(DS) of the scattered wave:

ik® o,

ESr) = 89KY, e (3.10)

Scattered field E(k®, L) at boundary z= L inside
the inhomogeneous sample can be determined using
formulas (2.9) and (3.9). We have

L

EQKS, L) = kéjdz?(’(k‘;); L, 2)
) (3.12)

x 38k -kY, 208" (kY, 2).

It can be seen that, in addition to knowledge of func-
tions c%m(k(i), z), we will require in this case the
expression for the Fourier components of Green func-
tion T°(kY; 2 2).

Using the boundary conditions, we can determine
the relation between field E(oi)t(r) outside the sample

and field Efﬁ)(r) inside the sample at its boundary. In
fact, we require the corresponding relation only for

Fourier components Efj,)t(k(ms), L) and Ei(rf)(k(ms), L).

Field Eff,}t(r) at observation point r far away from
the sample can be determined from the values of field

ng,)t(r o, L) at the boundary of the scattering volume

outside the sample with the help of the Kirchhoff
method [39].

3.3. Kirchhoff Method

We will first elucidate the application of the Kirch-
hoff method in the case of a scalar wave field. We con-
sider an arbitrary domain I' bounded by a closed sur-
face = that is completely outside an inhomogeneous
sample (i.e., in a homogeneous medium). Inside
domain I, field E(r) = E.,(r) satisfies the Helmholtz
equation

(A +K3eo)E(r) = 0. (3.12)
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Let function T(r, r') = T.(r, r") satisfy the equation

(A +Keo)T(r, 1) = =3(r —r') (3.13)
foradlr,r' [T .ThenEgs. (3.12) and (3.13) lead to the
Kirchhoff-Helmholtz integral theorem [39]

E(r) = Idzr'(T(r, r)O,.E(r') (314

—E(r) 0, T(r, r)) 0§(r),
wherer [T isanarbitrary point, r' (X , and s(r') isthe
outward normal to surface Z at point r'.

Equation (3.13) does not define function T(r, r")
unambiguously; additional boundary conditions are
required. If wetake T|s = 0 asthe boundary condition to
this equation, field E(r) at the point of observation in
this case can be expressed in terms of the values of field
E(r") on surface 2

E(r) = —(d’r'E(r') 0, T(r, r') O(rY).

>

(3.15)

Theform of the Green function satisfying the condi-
tion T|x = O is determined by the shape of the sample.
Let us consider the simplest case when surface 2 is a
part of plane z= L with alargetransverse dimension L,
which is enclosed in alarge hemisphere. If Green func-
tion T(r, r") satisfies the radiation conditions at infinity
(it is precisely these functionsthat will be chosenin our
subsequent analysis), the contribution to integral (3.15)
from this hemisphere tendsto zero asits size increases.
In this case, the boundary condition T|; = 0 is reduced
to T|,-, = 0; using the mirror mapping method, we

obtain
iklr —r'| ik\""’i\D
T(r, r') = i%_?_TEL
4TiEr —r| |r—rl|D

where r isthe mirror image of point r' relative to the
flat boundary z= L.

We assume that the field is measured at point r =
(rg, 2, z—L > L. Then we can apply an approximation
of type (3.3) in both terms of formula (3.16). Consider-
ing that s(r") - O, = —0/0Z in our geometry, we obtain
from Eq. (3.15)

(3.16)

E(r)

—iKy./€0€  Zz —ikL
= ————"¢
21T rr
(3.17)

ik o,

x [d’r E(rL, L)e
|

Thus, for L, > A, where A isthewavelength of light, we
find that the field at point r is proportional to the trans-
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verse Fourier component of the field on plane .

ko,\/_oe Z Ik(

(s)
21 rr E(k L)

Er) = = (3.18)

Then the corresponding intensity has the form

kool 7 [EKS, L))

|DIEO” = S350

(3.19)

Let us now consider the actual vector form E(r) of
the electromagnetic field. Field E(r) = E,(r) outside
the inhomogeneous sampl e satisfies the wave equation

(curlcurl —k3e,)E(r) = O. (3.20)

It can easily be verified that the system of three coupled
equations (3.20) is equivalent to the system

%(A+k§ao)E(r) =0,

(3.22)
[divi(r) = 0.

The first equation in this system indicates that each
of the three vector components of the field satisfies the
scalar Helmholtz equation

(A +K5go)Eq(r) = 0, (3.22)
while the second equation shows that all three compo-
nentstogether satisfy the additional condition divE =0,
which corresponds to a transverse electromagnetic
field. Consequently, a scalar formula of the type of
Kirchhoff equation (3.18) is formally applicable to
each of three field components E,. However, we disre-
garded the transversality condition divE = 0 in
Egs. (3.21). In order to take this condition into account,
we multiply the set of three scalar formulas (3.18) for

each component of the field by projector P(r) (3.2),
which ensures the transversality of the field in the far-
field zone. As aresult, we obtain a vector analog of the
Kirchhoff formulain the form?

E(r) = 'kz‘ﬁ_(’erf'k( BrEKY,L). (3.23)

L1t iswell known [39] that direct extension of the scalar Kirchhoff
formulato the vector case givesrise to the problem of violation of
the transversality condition divE = 0. In order to eliminate this
contradiction, we can use the vector Kirchhoff-Kotler formula
(see, for example, [40]). However, in the approximation of the
far-field zone of the sample, the nontransversality of field E ison
the order of A/Lg < 1 when the conventional Kirchhoff formulas
are used. In such a situation, the application of simple vector for-
mula (3.23), in which thefield transversality is ensured by projec-
tor Pyg(r), is equivalent to applying the simple Kirchhoff—Kotler
method.
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In this case, in view of the relation eEf)PcXB = eff),
we obtain, analogously to Egs. (3.5)—3.7), the formula
for the intensity of the scattered field component with
polarization €9:

kS < o s
J;?TC 4°:[§’ ﬁ%ﬂ e EQKS, ). (324

In the case of spatially homogeneous systems, this
formula is transformed into expression (3.7). Indeed,
carrying out the Fourier transformation with respect to
transverse variables x and y in formula (2.9), we obtain

L
EOK® L) = Eokgfdzfo(k(ﬁ), L-2)
J (3.25)

iy iz

x 38k -k, 2)e"e

The Fourier transform of Green function T’O(r) with
respect to coordinates x and y has the form

|k \L Z|

T, L-2) = PK®),  (3.26)

2k<5’

where kis) = A/kgeo - k(DS)2 . For ahomogeneous system,
in which the values of ¢, inside and outside the sample
coincide, we have

ER (k. L) = Eakd, ).
Since k© = kg /e, r/r, we can write

K = koufee2r,

Substituting Eg. (3.26) into (3.25) and taking into
account the condition Z < L, we obtain

P(k") = P(r).

Elonks, L)
(3.27)

Ek i |k L
= 20 2P(r)58(ks—k;)e'e

Substituting this expression into formula (3.23) and
forming the dot product of the left- and right-hand sides
and vector €9, we obtain Eq. (3.5).

Applying formula (3.24) to the problem of light
scattering in CLCs, we cannot disregard the difference
between fieldsE;,, and E;. In order to find the relation
between these fields, we take into account the fact that
the tangential component of the field does not change
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upon the transition through the interface between two
media,

Efok®,0 = EfLkY, 0),

E® (kO (s) 1, (9 (3.28)
outD(k L) - ElnD(k L)v

while components E,, (k, L) and E, (kY

be obtained from the condition divD = 0.

In the case when the pitch is much larger than the
wavelength, d > A, we can use the geometrical optics
approximation for the interior of the CLC. Fields E;,
and E,, at the boundaries inside and outside the
medium satisfy linear equations of the form

0) can

~ out

(I)(k(l), o) _ (k(l) O)E(l)(k(l) O), 229
(s) YO (81, () (3.29)

EQkS, 0) = k5’ DER (k' L),
where transition matrices M** ™ and "~ ™" can

easily be derived from Egs. (3.28) and the condition
divD =0.

Using formulas (3.11), (3.29) and relation

BE Ky, 2) B €*(kp, Z)F S]Cg (kg z, 2), where S5 is
the cross-sectional area of the sample, we find the cor-
responding quantity in formula (3.24), which defines
the intensity of single scattering:

(e EQKE, LI = Kisdel?

in - out

Mqﬁ

in - OUt

&k, LMy kD, L) J’dzl

(3.30)

L

IdzzTBp(k(DS), L, zl)T5¢(k(s) L, z,)

X Goupu(kS —kY: 2, 2)EVKY, 2)EPHKY, 2,).

Here, we hawe omitted for simplicity transition matri-

ces M™" "k W, 0), which make it possible to express

thefield inside the medium in terms of thefield incident
on the sample.

4. OPTICS OF CLCs WITH A LARGE PITCH

L et usconsider the problem of propagation of waves
in CLCs. It ismore convenient for our purposes to con-
sider directly, instead of wave equation (2.7), the sys-
tem of Maxwell equations (2.4) for an equilibrium
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CLC. Taking into account the relations divé’E =0and
divH = 0inthe (g, 2) representation, we can reduce the
problem to a system of equations of the form

O O
o]
9558 7
S
0-HyO
(4.1)
0 0
0 o 0 0 1-q’/keea 0 E,
z_iQE 0 0 1 0 DE Eyg
O 0 -
8xy(E-) syy(E-) q /k 0 0 DE Hx E
O _
7e9®) £® o o goHO

where & = pyz is adimensionless variable, Q = ky/py =
2d/A is a dimensionless parameter, and A is the wave-
length of light. The x and y coordinate axes are chosen
in the same way as in Eq. (2.27); i.e., the direction of
the x axis coincides with the direction of vector g. In
accordance with relations (2.2) and (2.3), the permittiv-
ity tensor components have the form

0o _ 2 0o _ .
€ = EnTELCOS @, &, = €,SNQCOSQ

0o _ .2
€y = EntELSN Q.

Since we consider an equilibrium CLC in this section,
we have omitted superscript “0” on field component
E(r) (the subscript on the components of point source

field T(r, r') will also be omitted).

A system of type (4.1) was used in [41] for describ-
ing the propagation of waves in CLCs. An analogous
system of equations was numerically solved in [41] for
A ~d. Inour case, where A < d (Q > 1), direct numer-
ical methods areineffectivein view of therapidly oscil-
lating solution; for constructing the solution, the vector
generalization of the WKB method is more effective
here.

4.1. Normal Waves

An asymptotic WKB solution to system (4.1) was
obtained in [29]. According to [29], four normal waves
exist for agiven g in CLCs with alarge pitch. Two of
these waves propagate in the direction of positive val-
ues of z, while the other two waves propagate in the
opposite direction. Reconstructing components E, from
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the equation divé’E = 0, we can write these waves in
the form

EX() = EAY(0: 2 2)e”(q, 2

u ) = (42)
x expdq o* |’[kZ (q, 2)dz],
0 4 0

wherej = 1, 2; the plus and minus signs correspond to

the direction of wave propagation. Constants EJ’ char-
acterizetheinitial field amplitude on the plane z,. Here,

K(q, 2) ~ky; €9(q, 2) are unit vectors, and AV(q; z, z,)
are the amplitude factors. All these quantities are
smoothly varying functions over the scale of A. Conse-
quently, waves (4.2) arelocally plane waves with wave

1

e, 2 = 2 2
ko€ —Qq cos @

JE

vectorsk0)(q, 2) = (g, k' (q, 2)) and polarization vec-

tors €9)(q, 2). In the main order in large parameter Q,
we have

kP(q,2 =kM(@) = Jeaks -,

8a
K?(a,2) = js”ké—qz—e—m(q m°@)’,

4.3)
A z2) =1, AP(q; 2 2)

- J ke (q @) k(a.z) @9
£7Ks + £,(q (2N kK7(a,2)

and polarization vectors el)(q, 2) in the coordinate sys-
tem used above have the form

(k% sing, -k cosp, —qsing),

(4.5)

e?(q,2 =

(K3 — q°) coso, Kaesing, —gk'? cosg).

J(e, — o cos’ ) (K2e? + £, cos @)

Since vectors el)(q, 2) in Egs. (4.5) are real-valued,
waves (4.2) inthe main order in Q locally exhibit alin-
ear polarization.

Quantities Al)X(q; z, z,) in Egs. (4.4) can bewrittenin
the form

B(j)(q, Z)

(i)(q- - B , 6
AT(a; 2 2) 894, 29 (4.6)
where
BYq 2= BY(q) = |
(0,2 (a) O
4.7)

JEKE +£,(q 0°@)°

0 Kok (0, 2)

Formulas (4.2)—«(4.7) are quite formal in appear-
ance. The physical meaning of waves EO(r) will
become clearer if we pay attention to the fact that polar-
ization vectors €i)(q, 2) in Egs. (4.5) satisfy the condi-
tions

B?(q,2 =

eYq,2 0n’®@, €%q,2 0k, 2,

(4.8)
£°2e%(q,2 0k“(q, 2,

2|n the next order in the large parameter, vectors e(j)(q , 2) acquire
an imaginary correction and, hence, waves (4.2) become weakly
polarized elliptically [31] (cf. formula (A.12) in Appendix).
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and that vector ed(q, 2) lies in the plane of vectors
k@(q, 2) and n°2). It should aso be noted that, in
accordance with Egs. (4.3), the wave numbers

Ka,2) = Ja*+k%(a, 2
of these waves satisfy the relations

kY%q,2) = Ko,

k(z)z(q’z) _ k(z) EDSH (49)

2 i)
€,t+e,COS0

where 6 is the angle between n%2) and k@(q, 2). It
should be borne in mind here that the second of these
equalitiesis an equation for k@(q, 2) since

n’@ k?(q,2)/k?(q, 2
qcos@(2)/k(q, 2).

A comparison of formulas (4.8) and (4.9) with the
conventional formulas for polarizations and wave vec-
tors of normal wavesin a homogeneous uniaxial aniso-
tropic medium [37] shows that two waves (4.2)—4.5)
are localy the ordinary (superscript (1)) and extra-
ordinary (superscript (2)) waves at a given point in
the CLC.

Thus, formulas (4.2)—«4.5) correspond to the adia-
batic mode of wave propagation. These formulas can be

cosf =
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treated as a generalization of the well-known Mauguin
solution [24] to the case of oblique incidence. The
physical meaning of these formulasisasfollows. When
a normal wave with number j is incident on the plane

Z =z, it acquires aphaseincursion . kﬁj)(q, Z)dZ asa

result of propagation in the medium and falls on the z
plane as a normal wave with the same number j. Since
el)(q, 2) differs from el)(q, z,), the polarization vector
rotates in this case. The fact that amplitude factors
AV(q, 2) in Egs. (4.4) become functions of zis associ-
ated with the energy conservation that must be ensured
for a wave propagating in an inhomogeneous medium
without absorption (see Egs. (4.11)—4.14) below).

Wave vector k0)(q, 2) at agiven point of the CLC is
directed along the normal to the wave front. For the
ordinary ray, wave vector k® = k®(q) does not depend
on point z, while wave vector k@ = k@(q, 2) for the
extraordinary ray varies in magnitude and direction
depending on z At the same time, the direction of
polarization vectors €d)(q, z) vary with z for both types
of waves. However, in any case, for afixed value of q,
wave vector k0(g, z) adways lies in the same plane
(containing vectors q and e,) both for the ordinary and
the extraordinary ray.

Thetrajectory of wave propagation in an anisotropic
medium is characterized by the ray vector of the wave,
which isdirected along the Poynting vector. For aplane
wave in an anisotropic medium, the Poynting vector has
the form [37]

c 2
= — - 0
S(r) 8T[ko[k|E| E(EUK)]. (4.10)
In particular, for waves (4.2), we obtain
()2
=
= —A
ST = g, A @2 (4.11)

x[k"(q, 2 -e"(a, 2 (k"(q, 2) &"(q, 2))].

Since e - k@ = 0, we have S9(q, 2) || k®(qg) and the
ordinary ray has a rectilinear trgjectory. At the same
time, €2 - k@ # 0 in the genera case; in accordance
with expression (4.11), vector S?(q, z) does not remain
in the same plane upon a variation of z. Consequently,
the trgjectory of the extraordinary ray, a tangent to
which at each point must be parallel to Si(r) at this
point, does not lie in the same plane. Figure 3 shows a
typical trgjectory of the extraordinary ray, calculated on
the basis of formula (4.11).

L et us analyze the consequences of the energy con-
servation law divS%) = 0 for waves (4.2). In our case, we

have divs® = 9,5 (q, 2) = 0. Consequently, compo-
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Fig. 3. Trgjectory of the extraordinary ray inaCLC. Calcu-
lationswere madefor e, = 2.0 and g) = 2.5. All distances are

given in units of d.

nent $j)(q, 2) is independent of z Then, we obtain
from Eqg. (4.11)

()2 —_ ~)
| A .(q,Z) = Qo (@ | @12)
x ko[kP(a, 2 —eP(a, 2 (k(a, 2 &V(a,2)] ",

where C{’ are arbitrary dimensionless functions of q.
Using Egs. (4.5), we find

kgj) —eS’k“’ [é(J')
Ko
kP (a)/k, for j=1 (4.13)
= E K?(q, 2)koe?
R il for j = 2.

(K22 + £,9°cos’ ¢(2)

In accordance with Egs. (4.7), the right-hand side of
this equation coincides with 1/B"2(q, z) and we
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Fig. 4. Types of trgjectories of raysin CLC: 1laand 1b are
ordinary rays, curve 2a is the extraordinary ray outside the
waveguide channel, and curve 2b is the extraordinary ray
trapped in the waveguide channel.

obtain from Eq. (4.12)

AV%q,2) = c(@)BV(q, 2. (4.14)

This expression transforms into Eq. (4.6) if we set
c(q) = /BO(q, z,). The latter choice is convenient

since amplitude EY in Eq. (4.2) isindependent of the
choice of initial point z, in this case.

L et usconsider the conditions under whichwaves (4.2)
can propagate to the bulk of the CLC. Let usfirst con-

sider the ordinary wave. It should be noted that kil) is

real-valued under the condition g < kf)eEI . Inthiscase,
the ordinary wave propagates to the region with any
values of z. For g2 > K3e,, quantity k" becomesimag-

inary and the ordinary wave does not propagate in the
medium with arbitrary values of zand z,.

For the extraordinary wave, the conditions of prop-
agation are more complex and depend on the relation
between parameters g and z. In this case, the following
situations are possible.

(i) If g2 > komax(g;, €.), the value of ki (q, 2) is
imaginary for any zand such awave does not propagate
inthe CLC.

(ii) If 2 < K3 min(g;, €1), the value of ki (g, 2) will
bereal for all values of zand the wave propagatesin the
medium into the region with any z.

(iii) If komin(e,, €) < @2 < kymax(g;, &), the
extraordinary wave can propagate in the medium only
for definite values of z. Therange of corresponding val-
ues of z is determined by the inequality cos’@(z) <

(K &~ P)/oe, for £, > 0 and the inequality cos’@(z) 2
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(kS &, — 99/, for £, < 0 (it should be noted that the

condition 0 < g(k; & — P)/g’e, < 1 is satisfied in the
range of g in question).
Thus, in the latter case, the effect of trapping of the

extraordinary ray in the CLC is observed [31, 32]. The
physical pattern of the effect is that the extraordinary
ray beginsto rotate and the quantity kf) (g, 2) vanishes
at acertain point z= z*(q) and then reversesitssign. In
acertain sense, this effect isanalogousto thetotal inter-
nal reflection from a certain planein the medium. Since
the refractive index is a periodic function, such a ray
will be aternately reflected from two planes perpendic-
ular to the z axis. Consequently, a plane wave channel
is formed, in which the extraordinary wave can propa
gate to the region of indefinitely large values of r,
remaining within a period in z. Figure 4 schematically
shows the projections of the trgjectories of the ordinary
and extraordinary rays onto the yz plane, which demon-
strate the effect of waveguide propagation.

4.2. The Field of a Point Source
The corresponding problem (2.8) for the field

T’O(q ; Z, 2;) of apoint source can be reduced to a sys-
tem of equations of the form

FQTUq: 2 2) = d(z—2)T, (4.15)
where
2(2)
O 2 O
0 2.0 2.0 .0
E __622 - kosxx _kosxy I qa_Z E
. 2 0
= 2.0 0 2 2.0
% Ko€xy 57 + 0" —KoEyy 0 %
= 0 2 2 d
E qu_Z 0 q"—ko€n E

is a second-order linear differential operator.

We obtained the solution to this system in [32] with
the help of the vector WKB method. The construction
of the solution isbased on the method developed in[29]
for a homogeneous equation. The solution of inhomo-
geneous equation (4.15) is constructed as a superposi-
tion of solutions (4.2) to the corresponding homoge-
neous equation in two regions z > z; and z < z; sepa-
rately by choosing the superposition coefficients that
ensure the required type of the singularity on the right-
hand side of Eqg. (4.15). Theresult [32] has the form

(a:22) = T 22) +T%q; 2 2),  (4.16)
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where

T 2 2) = B“)(q 2B"(q, z)el(a, 2)

(4.17)

x el(q, zoexpm jk”(q z)dz

Let us analyze the limit p, — 0 in Eq. (4.17),
which corresponds to a homogeneous uniaxia aniso-
tropic medium (nematic liquid crystal in our physical
context). In this limit, quantities n°2), k{(q, 2),
BU)(q, 2), and €d)(q, 2) become independent of point z
n%(2) = n°, k (0, 2 = k (), BY(q, 2) = BY(q), and
el)(q, 2) = €0)(q), while functions T(”(q; z,7;) become
dependent only on the difference in the spatial coordi-
nates T(q; 2 z) = TV(q; z—2,) . In this case, for-
mula (4.17) assumes the form

Qxn’

Q

en(Q) =

Tap(@; 2—2)
2 B(I)Z(q)e(J)(q) l)(q)e'k (q)\z zl‘

The expression for the field of a point source in a
homogeneous anisotropic medium in the 3D Fourier
representation has the form [42]

€)a(Q)€(;)p(Q)
a (Q) - = () ()B
’ koJ -, €0(Q)E%e(Q)

KHQ  QuQp

Q-kJ(Q-i0 Q&%Q
Here, Qis the 3D wave vector, e; are the polarization
vectors, and k;, are the wave numbers of two (ordinary
and extraordinary) plane waves propagating in the
homogeneous anisotropic medium. Thelast term on the
right-hand side of this equation is associated with the
near field of a dipole and is immaterial for the subse-
guent analysis. In the case of a uniaxial medium, the
corresponding polarization vectors and the wave hum-

bers of the ordinary and extraordinary waves have the
form

(4.18)

(4.19)

, k(l)(Q) = ko«/e_mv
n°(Q2°Q) —-Q(Q&’n’

e2(Q) = ’ (4.20)
JQE°Q)* - 2(Qe°Q)(QE°n")(Q ") + Q(QE’n’)’
€€
k(Q) = koQ/\/ ——1! >
enQ” +£,(Q ()
We write wave vector Q in theform Q =(q, g,) and Py

carry out the inverse Fourier transformation in variable Top(d: 2) = (J)% e

0, in Eq. (4.19): OJ 1 , 0q, 423)
e(l)ﬂe(J)B ia; M
eE e

To%(q: 2) = j qZTuB(q a)e™. (4.21)

The main contribution to the asymptotic form of the
integral for z> A is determined by the residues at the
first-order poles on two dispersion surfaces,

o’ +d; —kG(d; ;) = O, (4.22)
j =1, 2. Denoting the two solutions to each dispersion
equation in g, as g, = +q.” (q), we obtain from rela-
tion (4.19)
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where the values of ej; and k;, are calculated on the
wave vector Q”(a) = (g, 9’(a)).

Substituting expressions (4.20) for k(zj)(Q) into
Eqg. (4.22) and solving the obtained equations with j =
1, 2 for q,, we find that, in both cases, g’ = k{(q),
where k!"(q) is defined in relations (4.3) (for j = 2, we
must take into account the fact that Q - n® = q - nO).
Thus, Q9(q) = (g, k(q) ) =k9(q). It can easily be ver-
ified using relations (4.20) that the values of g;,(k9(q))
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and k;;)(k0(q)) in this case coincide with €l)(qg) and
k0)(q) in Egs. (4.3) and (4.5) for p, = 0. The identity

k(@B @ _ _ k"q)
o ke (a)2°e" (@)
_ 19k((, d) 0
2000, |g=i0a]

can also be verified easily for both casesj =1, 2. Asa
result, relation (4.23) coincides with Egs. (4.16)
and (4.17).

(4.24)

5. CORRELATION FUNCTION
FOR DIRECTOR FLUCTUATIONS
INA CLCWITH A LARGE PITCH

Problem (2.28) for operator (2.27) can be reduced to
solving anonhomogeneous system of two second-order
differential equations with periodic coefficients. The
solution to the corresponding homogeneous system
(which hasthe form of two matrix functionsof zand z;,
i.e., the exponential function with the exponent linear in
zand z; and a periodic function with period 2d = 217p,)
satisfies the Floquet theorem [43]. In order to find the
exponents and the Fourier harmonics of a periodic
function, astandard algorithm for Hill-type equationsis
used [43], leading to an infinite system of trinomial
recurrence relations. This approach was used in [20, 21]
for adetailed analysis of the problem of director fluctu-
ations in CLCs. In these publications, the lower har-
monics of the 3D Fourier spectrum of correlation func-
tion § were determined under the assumption that
a/p, <€ 1, when the contributions from the Fourier har-
monicsrapidly decrease with increasing numbers of the

HKz 0 gd
50 Ky pdE’

O~2 .
s EQ (Ky,Sin“@+ K05 @)
0 iQcos@(Ky +Kg)

where Q = g/p,. Equation (5.1) forms a system of two
second-order differential equations. This system has
four linearly independent solutions. Using four linearly
independent column vectors of the solutions to

Eq. (5.1), we construct two matrices 0,(§) and 0,(§) ,
suchthat 0,(F) —» O for & —» +o0 and 0,(§) —~ O
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.~ . Up
+i1Q(Ky; —Ky)sined
01

_l é COS(p(Kzz + K33)

Qa(Kp,Sin“ @+ K 53008 @) + K

harmonics. From the physical point of view, the limit
a/p, — 0 corresponds to asmecticlike CLC, whichis
confirmed by the result obtained in [20]: the main con-
tribution to the correlation function is

6(a, k) 00%/(K; + copy ™),

where ¢, is a dimensionless constant. Director fluctua-
tions in smectics A are characterized precisely by this
type of acorrelator [34].

The situation for CLCs with a large pitch corre-
sponds to the opposite limiting case of a nematic-like
CLC, for which py/g — 0. From the point of view of
the conventional Floquet approach, the problem is that
the main contribution to the correlation function comes
from abroad spectrum of Fourier harmonicswith large
numbers for periodic factors. In such a situation, the
methods based on the Floquet theory areineffective and
it is more expedient to apply the WKB method in the
large parameter g/p, > 1.

5.1. General Algorithmfor Calculating
the Correlation Function in Media
with One-Dimensional Inhomogeneities

Equation (2.28), together with the condition of

decreasing for G (z, z,) asz —» +w, hastheform of an
equation for the Green function. It should be noted that
Eq. (2.28) becomes homogeneous for z # z,. We will
first solve the homogeneous equations for the cases
when z > z, and z < z; separately. Then, using the conti-

nuity conditionsfor function G and thejump of its deriv-
ativefor z= z;, we will construct the Green function.

The system of homogeneous eguations has the form

1dd
(—
00dg
(5.1)

U
Hu® = o,
g

for § —= —o0. Such a choice ensures the required
behavior of G(E, £,) at infinity.
We will seek the Green function in the form

D0(§) V(&) for &=2&4,

BEE) =
880 =5y o) for E<ty,

(5.2)
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where V7, and 7, are 2 x 2 matrices. To find eight ele-
ments of these matrices, we will use the conditions
imposed on the Green function in the vicinity of point
& = &,. These conditions include the continuity of the
function itself and a jump of its first derivative, such
that Eq. (2.28) is satisfied,

G(E,+0,&) = G(E,—0,&y),
kDG _0G 0 keT7 (5:3)
Dfﬁtil—o 0¢ azzl+cl] Po
where
. O 0
K = DK22 0 0.
00 KyO

Substituting relations (5.2) into (5.3), we obtain the
system of eight equations for the elements of matrices

Vio:

[FJl(El) Vi€ = 0(EDV,(EY,

o, o L. Y
€DV 1(§1) —Ux(ED) V(&) = —KgTpo K .

This formula can easily be derived by integrating
Eq. (2.28) with respect to zin an infinitely small inter-
val containing point z;. Solving system (5.4), we abtain

~ kBT,\_lA ~—1

vy = —1; wK 7,
Po

(5.5)

where W(E) = (0,(€) 0'(€) — 0yE) 0'@) ™= 1,2

Substituting relation (5.5) into (5.2), we finaly
obtain the following expression for the Green function:

GE, &) =keTpy
m(z)uf(zl)w(al)K for &8,
[0,(8) 05" (€ )WE YK ™ for E<E,.

(5.6)

The choice of matrices 0, and 0, is ambiguous (for

example, their columns can be multiplied by arbitrary
constants); however, this ambiguity disappears in for-

mula (5.6) due to factors w.

Pay attention to the fact that G(€, £,) — Ofor |E—
&1] — oo in view of our choice of matrices 0, ,; i.e,
the boundary conditions for G are satisfied.

This scheme for constructing the Green function
with the hel p of the solutions to the homogeneous equa-
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tion is universal and does not necessitate the use of
large parameter Q .

5.2. Application of the WKB Method
for Determining the Correlation Function

The presence of the large parameter in our problem
will be used here for explicitly constructing solutionsu
to homogeneous equation (5.1). Wewill find these solu-
tions using the vector WKB method. Introducing the
vector

_ Ldu
iQdE’
we reduce Eg. (5.1) to the system of four first-order
equations:
dy
dg

Here, we used the notation

(|QB+C)LIJ (5.7)

BOOlO%
5_-00001(g
Bbloobsm’

00 b,b, 00
(5.8)

where

Kllsinch+ K33cosch
K22 ’

b, =

Kzzsinch+ K330032(p
K11 ’

JDsm(p,

b, =

b3 - |j<ll

%L—K—ll sing,
%—p

K
c, = %L + K—3%coscp,

11

CosQ,

1 K33

Cy = —i=
: QK11
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The solution to system (5.7) can be written in the
form

Y(E) = ME, &) P (Eo), (5.9)

where M(E, &) isthe evolution matrix for this system,
M(E, &,) = 1. Wewill find the evolution matrix in the

main order in parameter Q.

The procedure for constructing the evolution matrix
is described in the Appendix. In accordance with
Eq. (A.17), we have

13

N ~ [~

NIE, &g) = U(a)dﬁgéexp[—jgzu.(x)
fo (5.10)

1, .aC A P O -1
+ %% g (x)C(x)U(x)Hl%uxEJ €,

where iy, are the eigenvalues of matrix B (I = 1-4) and
the columns of matrix U are formed by the eigenvec-
tors of matrix B. Here, we have used the notation
deg(x,) for the diagona matrix with dementsxy, %, ...
onthediagonal. It should be noted that expression (5.10)

is inapplicable when the eigenvalues of matrix B con-
verge. It can be seen from expression (A.15) that the
value of V,,, becomeslargein this case and the condition

[Viml <€ Q of applicability of the WKB method (A.18)
may be violated.

Formula (5.10) gives the solution to Eq. (5.7) for
any initial conditions W(¢y). This solution can be
treated asalinear combination of four linearly indepen-
dent vectors forming the columns of evolution matrix
M(E, &) with four coefficients (elements of vector

¥(&0)-

In order to construct the Green function, we require
solutions u in the form of the first two components of
solution W(&). As the columns of matrices 0, ,(¢) , we
can use the vectors whose components are the first two
elements of the columns of matrix M(E, &) U(E,) or
linear combinations of these columns.

Let us first determine the evolution matrix
M(E, &,) (5.10). For this purpose, we must know the
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eigenvalues and eigenvectors of matrix B. The eigen-
values can be determined from the relation
det(B—ipl) = 0, (5.11)

which has the form of a biquadratic equation. Solving
this equation, we obtain

MO =[S0 + KBS a(@,
1
| = 1,2,
Mz = —H1,  Ha = —Ha.

(5.12)

Eigenvectors y, satisfy the relation By, = ipy,. We
find these vectors and use them to construct matrix

U@) = (i), wa&), wa(&), wa(®)):

v (5.13)
E—iu[lsin(p 1 igf'sing -1 E
ZE 1 Siggtsng -1 —iuglsin(pé_
sin i sin i
E —ip(f siiip iplcp —;nch E

The arbitrariness in the choice of vectors (&) and,

hence, matrix U(€) isassociated with the normalization
factors, which may depend on &. It can easily be seen,
however, that the right-hand side of expression (5.10) is
independent of the choice of normalizations of vectors

(). Then we determine matrix U7(§):

-1 -1

0" = w2
2K 4;c08 @

(5.14)

Kl Sng Kol Kypsing —iKygpy E
—KuHi  iKypl,Sn@ iKypp, Kypsing B

Ky Sng  Kypps  Kpsng 1K, 7

. L .0
Kllp-i IK»H,SINQ 1K 5H, =Ky SneO

X
I o o

Disregarding theterm on the order of 1/ Q (i.e., element
C;) in matrix c (5.8), since it makes zero contribution
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to the evolution matrix in approximation (5.10) used
here, we obtain

AL (Kn—Kzz)S'n(P
(U-CU 2K 35C0S@

l=1,..,4

I+1
= (5.15)

The diagonal elements of matrix U~80/8& can be
represented in aform convenient for integration:

EU_HED _ ;(coscplm)' +
o0&l 2 cosg/y,

K- Kzz(COS(p)( 1)+t
2K;;  cos@

1(cos@)
2 CcosQ

(5.16)

=1, ..., 4. Subtracting this expression from (5.15) and
integrating, we obtain

# (5.17)
1, WElcosg 1 |cosq

2 "L@)[cos(Eo + @) 2 [c0s(Ee + @)

Substituting this relation into Eg. (5.10), we obtain

|cos(&o + o)
|cos

x dig] | “l'((; expErQ jul(a)datuu €.

In order to find the correlation function, we must
construct matrices 0,(§) and 0,(§) . Choosing the first
two components of the columns of matrix
M(E, €,)U(E,) , which exhibit the required behavior at
infinity, we obtain

ME, &) = UE)
(5.18)

Tsng 1

D—i [l .
0,8 = F7H 3 Dep(d),
—ip; sineQ

(5.19)
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where

|cos(&o + o)
|cos

13
0 -
xdidgd MO epd Iul(z')daﬁ"%,
W) O 1 0
| =

exp(P:) =

(5.20)

Thus, the conditions 0,(§) —~ 0 for & — +o00 and
0,(§) — 6forE — —oo are satisfied for matrices (5.19)

Substituting matrices G, ,(§) from relations (5.19)
into expression (5.6) for the correlation function and

neglecting the terms on the order of 1/ Q inthe preex-
ponential factors, we obtain

keT
20K 55c0s®(&;) cos( &)

y E sgn(& —&1)sing(&) isgn(& —&1)Ho(€) %

GE, &y =

O =i H4(€) sing() O

0 N &1 0 O

Bexp Q J’uldE'D B

3 . b 0 3 G2y
% E JH(Q)H4(E D) E

g Ll

ex
St L -
O Ha(@)ua(&) O

« 5 SON(E -8 Sn@(E&) E) F
O isgn(&,—&)Hy(E1) —sin@(&y) U

It is convenient to split function G into two parts
associated with indices ; and W,. Returning from
dimensionlessvariable & to variable z, wefinally obtain

G(a; 21, 20) = Gu(; 2, 2) + G0} 23, 2),  (5.22)
where
. _ KgT
Gi(a; 2, 2) = 20K 53c0sQ(Z;) COSQ(Z,)
2 (5.23)
x exqu J’u (z)dz‘DW(”(q 2, 2,),
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O
0 sing(z,) SinQz,) NH1(Z) D
isgn(z; —z,)sing(z) —=
(1)(q 2,2) = E NH1(Z) H4(20) s JH(20) E,
Disnz-zsnez % meynE
0 H1(22) 0
(5.24)
0 @0
0 S@@) ~isgn(z; —2,) Sn@(z) 2L
W 2,2) = £ THEA 0
O . N Ha(Z2) sinQ(zy) sin@(z,) O
—isgn(z, —z,)sin@(z) —=
E v ' NH2A(Zy) A H(Z1) H(20) %
Here, cosg =q - ng/qand sing = ./g° - (q [hy)*/q. 1Ya; 22) = Bsgn(Z—i)i——ﬂ(z), Ju@E,
1 Z
Figure 5 shows the correlation function component g (5.26)

G;; expressed in relative units. The figure was
obtained asaresult of numerical calculations based on
formulas (5.22)—(5.24). Corrections decrease exponen-
tially with increasing distance |z — z|. It is also worth
noting that correlations increase at z = z, as the value of
©(2) approaches 1/2. The latter circumstance is deter-
mined by the fact that the values of cosq(z ,) in the
denominator of the common multiplier in relation (5.23)
approach zero. This indicates that we approach the
region in which the WKB method is inapplicable and
formula (5.27) is not valid. This question will be dis-
cussed in greater detail at the end of this section.

Matrices W(')(q Z,, Z,) can bewrittenintheform

Wa; 21, 2) = 19(q; 21, 2)1PHA; 2, 20),

where

(5.25)

%a;22) =

J_D

sing(z
©6i2.2) = Bli@) -isn(z-2) 2248
Carrying out summationinkand | informula(2.20),
we obtain the final expression for the correlation func-
tion of director fluctuations from formulas (2.19),
(2.20), (5.22)—5.26):

(; 21, 2,) = ke T
Gapds 2 22) = 20K 33c050(z,) cos@(z,)
2 %
O [
% Z expq J’uj(z)dzD (5:27)
i=1 b 7 [

X ft(xj)(q; Z,, zz)f(j)th; 25, 2y),

where f0)(q; z, 2) = Zk N 2|(J)(Q; z, Z)h®(2). In the

coordinate system used by us here, vectors f0) have the
form

|sgn(z z')sm o2, 2sgn(z Z)sin2¢(2), pl(z)g

f(z)(q z22) = ./uz(z —sing(2), cos®(2), —isgn(z— z,)snc(pz()z)g

It should be noted, in particular, that

t9%a; 2z 2) M@ =0,

S g2
M@ -

t9q; 2 2)I° = w2 +

Relations (5.27) and (2.14) lead to the permittivity

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

(5.28)
correlation function 9g5,(Q; 1, 2,) in the form
. _ kBT*‘:g

Gpond0: 21, 22) = 20K 33€050(z,) cOSQ(Z,)
’ 2 (5.29)

3 expErq J’ ; (Z)d2< DG 21, 2)),

i=1
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where

Mz, 2) = n(2)n(2)
x 1z, 2) "Nz, 2)
+ (22 f (21, 2) 152, 20)
+niz)n(2) {2, 2) 1Nz, 2)
+n3z)n(2) t (21, 2) 12, 22).

Let us consider the domain of applicability for for-
mulas (5.27) and (5.29). In addition to the inequality
g > Py, two congtraints associated with inequalities (A.19)
and (A.20) may appear. Since 4, , ~ 1, inequality (A.20)
gives |z —z,| < o/ ;.

The constraint (A.19) is most significant for our
analysis. Thisis dueto the fact that, in accordance with
relations (5.12), eigenvalues p, and W, coincide when
cosp= 0. Consequently, formula(5.27) becomes mean-
inglessif point z-(such that cos@(z) = 0) getsinto the
domain between points z; and z,.3

L et us consider the constraint imposed by this effect
on the domain of applicability of formulas (5.27) and
(5.29). For this purpose, we introduce a new variable
(= poz+ @—TU2 = @—T10U2 and expand , into a series
in the vicinity of point { =0

(5.30)

1.
=1-=C/° | =1,2,

Mz = =My, Mg = —Ho,

where C, = 1 — Kg4/K,,. It should be noted that the cor-
responding lines W,(¢) and W,(¢) do not intersect at
point ¢ = 0, but are just contiguous to each other. We
can obtain the following estimate for matrix element
V,, inthe vicinity of point { = 0:

1
Vi O (1 0(Z?)).
In this case, the first condition in (A.18) hasthe form

QP> 1. (5.32)

This means that expression (5.27) is applicable only in

the cases when Q|Z|* > 1 and Q|¢,> > 1, and there
are no points between ¢ and ¢, at which the values of
My, » coincides (i.e., points at which cos@ = 0).

3 In addition, since the equality M1 = M, is satisfied identically for
K11 = Ky, the fulfillment of inequality |Ki; — Ky >
2(K11Kxo/K33)(po/0) is required; in particular, our formulas (5.27)
and (5.29) do not permit the application of the one-constant
approximation for the Frank energy (2.1).
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G(q), Z z

1.8

1.0

Fig. 5. Component of the CLC correlation function
G11(0; 2 z) expressed in relative units as a function of

coordinates z and z; of two points.

Analysis of the behavior of the correlation function
in the vicinity of the points for which cos@ = 0 requires
the application of the approaches used for analyzing
turning points in the WKB method. This question was
considered in detail in our previous publication [44],
whereit was shown that the correl ation function of fluc-
tuations is actually bounded in the vicinity of regions
cos@(z;) = 0 and cosg(z,) = 0. It isimportant, however,
that the main contribution to integral (3.30) in the prob-
lem of light scattering considered here comes from the
domain |z, — z,| < d (see Section 6.1 below). In addi-
tion, in the case when both points z , are simulta-
neously in the region cos@(z; ,) = 0O, the singularity in
the correlation function is cancelled out. This can eas-
ily be verified since, in the limit zz — 2z, and
cosq(z;), cos®(z,) — 0, the exponents ,(2),
My(2) —= 1 in formula (5.23) and the condition

1, Wai2,2)  —+ 0 is satisfied. The
absence of asingularity inthis case can be explained by
thefact that a CLC ispractically indistinguishable from
anematic in the region of close values of z; and z,, and
it was proved above that correlation function (5.21) for
an NLC isfinite for cosg, = 0.

Thus, in the scattering problem, we can confine our
analysis to expression (5.27) for the correlation func-
tion, provided that inequalities q > p, and

lz,-2,| < qlp; (5.33)

hold.

5.3. Limiting Cases
Let us analyze the behavior of expression (5.27) for
po — 0. Thislimiting transition correspondsto a tran-
sition to an NLC. If we set py, = 0, formula (5.22)
assumes the form
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T _qlll‘z_zl‘ D 1 . 2 . . |:|
Al o) = Bl1€ O —Hsn@ isgn(z—z)sing, g
G(q; z—2zy) =X 0 , 0
20K35C0S @ isgn(z—z,)sin @, My O
(5.34)
JkeTe™ 7 B W, -isgn(z-z)sngy
2 0 . . a2 r
20KC0s @y [-isgn(z—z)sing,  —{, Sin"@y, [
Carrying out Fourier transformation (4.21) with respect to variable z— z;,, we obtain
A kg T
G(a, k) = °
(Ka0"cos’ @y + Ka(q”sin gy + k) (KasG”cos @ + Ko(@°Sin" gy + K3))
0 (5.35)

% E (K3C0S" @ + Ko Sin“ @o) g + Ky k:
0 Ak SINQo(Kyy —Ky,)

It isworth noting that, for @, — 102, formula (5.34)
acquires an indeterminacy that can easily be expanded
and leads to a finite expression for @, = 2. Conse-
guently, correlation function (5.35) has no singul arities
in the vicinity of this point.

If we passto acoordinate system in which ny = e, and

q || e, matrix G becomes diagonal and formula(5.35) is

transformed to the well-known formulafor the correla-
tion function of NLC [34]:

kg T

Gyp(k) = ——=———3;.
° K33k§+ Kaaké “

It would be interesting to compare our result (5.22)

for correlation matrix G (d; 3, ), whichisvalid in the
limit g > p, (nematic-like CLCs), with the well-known

result for G (q; z,, z,), which was obtained in the oppo-
site limiting case q < p, (smecticlike CLCs) [20, 21].
For simplicity, we consider the one-constant approxi-
mation, in which the Frank moduli are equa (K;; =
Ky, = K43 = K). We will beinterested in the behavior of

G (9; 7, ) asafunction of modulus g of the wave vec-
tor and of quantity z; — z,.

For q > p,, the components of correlation matrix G
exhibit, in accordance with relation (5.22), a character-
istic dependence on q and z; — z, of the form

1
Gpy(Q; 21, 2,) O a exp(—a|z,—zj). (5.36)
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gK,singo(Ky; —Ky,) 0

. o
(K33C032(Po + Ky S nz(Po)q2 + Kzzki O

On the other hand, the three-dimensional Fourier
transforms of the elements of the correlation matrix for
g << pp can be written as[21]

ZpSkBT
G , = ,
TP
ke T (5.37)
Gx(0,0) = m
0 z
G, =G, =0.

These expressions were obtained by averaging over
many pitches of a helix. For this reason, modes u, and
u, do not correlate (the nondiagonal elements of the
correlation matrix are equal to zero) in contrast to our
results, in which nearly local fluctuations are taken into
account. It is noteworthy that director fluctuationsin a
plane perpendicular to the helix axis (G,,) in thislimit-
ing case are of atype analogous to fluctuations of dis-
placements of layers in smectic-A. At the same time,
fluctuations along the helix axis (G,,) are of the same
type as fluctuations of the director in a nematic, but are
limited by the pitch of acholesteric helix.

Passing to the (q, 2) representation in formula (5.37),
we obtain

2 0 o?lz, — 2|0
Gl % -2) Do expp T2
q’y2pe+a® U J2ps+qT

1 (5.38)

Gp(d; z,-2) O

Jpo+d
x exp(—v/ Po + 02— 4.
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Although these expressions are applicable only for
g < po, we formally extrapolate them to region g > p,

and compare with result (5.36) for G. This enables us
to estimate the behavior of fluctuation modes in a
wide range of g. For g > p,, we obtain, instead of
relations (5.38),

Po

Gu(Q; 2,-2) queXp( Q|21—22|)

(5.39)

1
Gx(d; 2,-2,) Danp(_fﬂzl - Z2|)-

The exponentia factors in relations (5.39) and (5.36)
coincide. However, the coefficients of the exponent for
mode u,, which corresponds to fluctuations in a plane
perpendicular to the cholesteric axis, are different in
these formulas. On the other hand, the coefficients for
mode u, corresponding to fluctuations along the helix
axis coincide. The latter circumstance suggests that the
expression for G,, derived by us for region g > p, is
applicable in awider range of g values. The first mode
turns out to be more sensitive to the pitch and its behav-
ior differsstrongly in the caseswhen q < p, and g > p.

6. LIGHT SCATTERING IN CLCs

Let us consider a CLC sample in the form of aflat
layer of thickness L with large transverse dimensions
(Fig. 6). A plane wave with wave vector k@ isincident
on the sample. We analyze the scattered wave with
wave vector k©® in the far-field region of the sample.

For simplicity, we confine our analysis to the case
when the polarization of incident light outside the sam-

pleis chosen so that incident wave EX(r) of only one

of two admissible types (4.2) is formed in the sample;
otherwise, we must carry out summation with respect
to (i) inside the medium. Analogously, we choose the
polarization of scattered line outside the samplein such

away that it corresponds to scattered wave Ei(,f)(r) of

only one of admissible types (4.2) inside the sample.
This alows us to avoid summation with respect to (s)
inside the medium in the subsequent analysis. Thus,
indices (i) and (s) can be identified here with numbers 1
or 2 depending on the type of the incident and scattered
waves.

In this geometry, in accordance with relations (3.24)
and (3.30), the intensity of singly scattered light in
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e

Fig. 6. Geometry of light scattering in CLC.

CLCsisdefined by the expression

|9 = «/_oc kososu[ﬂ] e®el
8T 472 2000 0 &

x M~ kS, DMy Mk, L) [z o1
1

L

J’dzzTBp(k(s) L, ) Tes (kS L, 2)

x Gouau(k® —k; 7, 2)8VKY, )P, 2,).

This expression for the scattering intensity contains
conjugate pairs of incident fields and the Green func-
tions. Using relations (4.2) and (4.17), we obtain

€KY, 2)E0 K, 2) = EP°AKE: 2,,0)
x AYKY: 2,, 0) exp{—i | GAGEs z)dz} (62)

x (k) z)el(kE; 2),

K Lz) = =

4K

(8)*

ThakS; L, 2) Toy

Z

x exp{i [, z)dz} BY*KEY, BUKE, 2) (6.3)

4
x BOKkY, 2)eP kY, LeP kS, L)

x e(S)(k(S)’ Zl)e 5)(k(3), ZZ)

Substituting expressions (6.3) for the Green func-
tions, (5.29) for the correlation function, and (6.2) for
the incident field into formula (6.1), we find that the
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scattering intensity assumes the form of the sum of two

double integrals corresponding to two fluctuation
modes of the director,

2 2 L L
19 =51 =3 dz, (dz
].le OzI 1-([ 2

=19

Z

x exp[i I(kf)(k(s’, 2) —kOK"Y, z))dz}

Z

Z

O ()
xexpB—unj(z)d DAY (ky'; z, 0)
0] ) []

(6.4)
x A(i)(k(i); 2, o) B(s)(k(s), Zl) B(S)(k(S), 22)

()1, (5) (91, (5)
x ey (Ko, z)ey (Ko, 2p)

X Mo (s 21, Z) V(K 2D (K, 22),
whereq = k¥ — k%, and

] = Ez«/ﬁ_oc2 Ko€o Em[gsz(s)z(k(s) L)
° 7 8m g2t Y

(S) (S)p ain - outyp (S)
xeot ey MuB (kD ’ L)

x My~ Mk, Del (S, L)eP (kS L).

6.1. Large Parametersin the Expression
for Intensity

The presence of large parameters Q = ky/p,and Q =
g/po in our system makes it possible to considerably
simplify general expression (6.4) for the scattering
intensity. For this purpose, it is convenient to return to
the dimensionlessvariable & = pyz. Then the expression
for |; assumes the form

LpoLpo
I, = d€ dg,F(&1, €2)
' { { ’ (6.5)

x eXp(i PopE 1, &) + PO(E 4, £2),

where @, is the phase associated with the incident
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field and the Green function,

D8 ) = pi

& &2
w | kD@ = ' (8)1,(8) s '
“kz (0, £)dE + IO, )| 6 o
&1

&
&

_ 1 ® L) gy
= = [Ak(k®, kD, £)de.
po.! (k5 &')dg

Here, Ak, (kS kT, &) = KIS, &) -k kT, €), and
K and k) are equal to k' or k% depending on the
types of the incident and scattered waves. “Phase”
d)é‘o)r(El, &,) of the correlation function has the form

&

o)(E, €, = —fj; [w(a. &)de]. 6.7)
&1

In accordancewith formulas (5.27) and (5.28), function
F;(€1, &) associated with the preexponential factorsin
the expressions for the incident field, Green function,
and correlation function can be written in the form

Fi(€1,82) = Fuj(€1, &) +18gn(&2 —&1) F2i(&1 &),

where Fy;(&1, &,) and Fy(&,, &,) are smooth functions.

Integral (6.5) has the form of a dependence on large
parameters ky/p, ~ o/py, Which is typical of problems
that can be solved by the steepest descent method. In
our case, the problem is complicated by the singularity
in the phase function on the line §; = &,, which is asso-
ciated with the sign of the modulus in the exponent in
Eqg. (6.7) aswell as the singularity of the type sgn(§, —
&) of function F;(&4, &,) on the sameline.

Real-valued exponent (6.7) attains is maximum on
line&,; = &,. Onthe sameline, thisfactor hasasingular-
ity associated with the presence of the sign in the modu-
lus. As a result of the latter circumstance, oscillations
associated with phase ®,,; are not eliminated compl etely.
Consequently, line &, = &, makes the main contribution
to the asymptotic form of the entireintegral (6.5).

Passing to new variables &, = (§; + &,)/2 and &_ =
(&, — &1)/2, we expand the phase functionsin the vicin-

4 The contributions from the stationary points of oscillating factor
with phase (6.6), which lie outside line &; = &5, are multiplied by
exponentially small factors with phase (6.7) and can be dis-
carded.
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ity of line {_= 0 to within first-order terms. This gives

D4, &) = iD(Er, &) + PUNEL )

. (6.8)
~ %Akz(a)z_— 2—qu,-(E+)|fE_|-
o Po

Thus, the integrals determining the intensity of scat-
tered light have a structure of the form

Lpg +oo
| =2 [ dE, [dE

J&] 69
(€., &)

X [F1j(€+ €) +isgn(€ ) Fy (€. & )] e

We have extended the integration with respect to vari-
able &_ from —oo to +oo since the contribution in &_
comes only from a narrow neighborhood of §_=0.

Splitting the integration domain into two regions
(=, 0) and (0, +) and replacing the preexponential
smooth functions F; 5 by their vaues for §_ = 0, we
obtain the following expression for the internal integral
in formula (6.9):

+o00

[Fi. g)e” e

0 .
= o epfEAK(EIE + (€ )E

X (Fyj(€+, 0) —iF5(&., 0))

+00

2 2q (6.10)
" J;dE_exp[pOAkz(&)E_ pouj(mz_}

|(e(1)’ e(z)) —

Joeaks Tk + £.KE? cos’ (g(L) —y)

x (Flj(E+a O) + iF2j(E+’ O))

— qpoH;(€.)F1i(€.. 0) _ Ko PoAKAE ) Fo;(E., 0).
QCUAE,) +AKAE,) oM. +AKI(E.)

Thus, we obtain the following expression for the scat-
tering intensity in the form of a simple integral in the
main order in the large parameter:

Lpg
Iy = ZPOI de,
0 (6.11)
A EF(E., 0) ~AKAE) Py € O)
U, + AKSE,)

6.2. Main Geometries of Scattering

Let us consider the scattering of light with various
polarizations.

Scattering of the (0)—(0) type does not exist. This
can easily be verified if we take into account the fact
that the expression for the scattering intensity contains
scalar products of the polarization vectors of incident
and scattered waves and the director vector appearing
in expression (5.30) for the correlation function, while
the polarization vector of the ordinary wave is orthogo-
nal to thedirector. In thiscase, the situationissimilar to
that in an NLC.

L et us consider scattering of the (0)—(e) type. Carry-
ing out summation over recurring indices and integra-
tion with respect to the difference variable in expres-
sion (6.4), we obtain

Lpo

Vo(kS, kY, E.)

Po K33

edkoks” (K, L) I

' 0052(E+ + Qo) (6.12)

quE)V(kY, &) - [KPKS, £,) —kPED 1w kY, €.)

2
2
i=1

(&) + KOk, &) -k’

where y, is the angle between vectors g and k& and y; is the angle between vectors g and k", and

Vo(k, kY, )

ko Koo —kS?cos’(@( -vy)

(6.13)

T KAKY, &) ke, — K2 coP (@D -y)
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K’k sn’ @
Koy M)

Vy(k$, &) =

(i)2

k
+§—sin2(cp(£>—vi)ul(z),

AKSENOVA et al.

Wik, &) = Wyk?, &)
_ 2k7K(kD)

2
o€o

_ _ (6.15)
sin(®(9) —vi)Sng(9).

€0 The intensity of the (€)—(0) scattering can easily be
derived from theintensity of the (0)—(€) scattering by car-
D20 () rying out the substitutions €V = & and k® <= k@,
| kz (k2 The calculation of the intensity of th -
() gy — 0 e calculation of the intensity of the (€)—(€e) scat
Va(k3, &) Ke Ha(8) (6.14) tering is different since, after convolutions, the contri-
o=H bution to scattering comes from all four terms of corre-
lation functions (5.30). Summing over recurring indi-
kD2 sn‘g(9) ces and integrating with respect to the difference
——=—sin"(e(& —vi) : variable in expression (6.4), we obtain the intensity of
2 (€)
Kog Hz the (e)—(e) scattering in the form
i S Lpo
(62, 62) = JoEakeT ke (kS (Ko7 + £ak?”cos (GIL) —y,)] g8,
’ Po AKas kKPS 1)[K3e2 + e,k cos’ (- y)]e? -([ cos’ (&, + @) 616)
} Z Z VO 0 5y BEIVIKE K &) [k, &) ~kIKE ENWIKE, K, &)
0 O ™0 S+ S i .
S& T UE) + KK, £) -k KY, €]
Here, the following notation has been introduced: wherej =1, 2, and
- K2y —kS?cos™ (&) —ve) . 2
VEKE K, &) = S P Wk iy, 8) = ~oz SN Y
Kogn — ko' cos (9(&) —vi) > Ha(8)
kD?cos”(9(8) —v) x Sin( Q&) —y1)sin(@(&) -v)
k(K KAk, &) )
ORI LI
2 S i S, i ’
VKD, kY, ) = vPKY, kY, ) % ' (6.18)
_ kP cos(q(8 ~y,) cos(@(8 V) Valky, K, €)
kKD, ORI K, €)
Ky K, _ .
i = =< [n — sin -
Vg4)(k(Ds) k(DI) £ = kgeg—k(D)ZCOSZ((D(E)—Vi) kg H2(&)sin(@( &) —y1)sin(@( &) —v-)
Y ke, —kS?cos’ —Vs .
A CLY) Ky, DK (K, 8) s 8)
. KD cos (@8 ~v,) % Mo(8)
KKE, kP KS, ©)
y; being the angle between vectors g and k;,
VKD, kD, 8) = ik, k2, 8), e .
W ks,kl, :W‘klaklv ’
V(_Z)(k(s) kO §) = V(3)(k(5) kO £) J2 (ko D ) ]3( D. 2
j ) D~1 o (].) Ko WE )(k(IIIS)! k(DI)1 E) - WE )(k(DS)’ k(DI)a E)
= V k s, k : ’ , ~ i s
J( O m] E) - Wj(k(), k(D);E);
VIS kS, 8) = VikS. kS, ), WOk, k. 8) = Wi(kE, kT, ),
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wherej =1, 2, and

W&ubi)=—$%@
0

x [kikP(k,, &) Sin(@(d —yy) (6.19)

+ kokP(k1, &) SIN(@ —Y,)1,
Wa(ky, K &) = —Wa(ky, Ko, £).

Expressions (6.12) and (6.16) make it possible to
calculate the intensity of single scattering of light by a
CLC cdll to the front hemisphere for an arbitrary orien-
tation of the director in the boundary planes. Theinten-
sity of scattering to the rear hemisphere can be calcu-
lated with the help of the same methods.

The use of large parameters Q = ky/p, and Q = g/py
imposes certain limitations on the geometrical condi-
tions of scattering, under which formulas (6.12) and
(6.16) are applicable. First, angle y between vectors

k(Di) and k(DS) cannot be very small (y > py/k, ~ A/d)

since expressions for the correlation function in Sec-
tion 5.2 were derived for g > p,. Second, the angles

formed by wave vectors k® and k® of the incident and
scattered waves of the extraordinary typewith thezaxis
should not be too close to 90°. Thisis due to the effect
of trapping of the extraordinary ray in the flat wave
channel, which was described in Section 4.1. Finally,
the condition for applicability of the WKB approxima-
tion (5.27) for the correlation function, which is associ-
ated with inequality (5.33), limits the thickness L of an

admissible CLC: L < ky/ p> ~ To?/A. Thelatter inequal-
ity implies that the formulas derived by us make it pos-
sible, in particular, to analyze the CL C containing many
periods of a helix.

We calculated the intensity of scattered light in the
above geometries. In these cal culations, we introduced
angle @ between director vector n® and vector k) on the
plane z = 0, as well as angle y between the transverse
components of the wave vectors of incident and scat-
tered light. These angles are shownin Fig. 7.

We calculated scattering intensities 1(e®, €2) and
1(e, &), Figure 8 shows the constant-intensity lines
for light scattered in a cholesteric with total twisting
angle Lp, = 172, when the angle of incidencerelative to
axis zis equal to 1V8 and @ = T74. The maximal inten-
sity for both types of scattering is attained in region
k® = k®, It can be seen that the “ spot on the screen” for
the (0)—(e) scattering is much broader than for the
(e)—(e) scattering. Theintensity of the (€)—€) scattering
at the center is formally unlimited, while the intensity
for the (0)—€) scattering is finite. A more complex
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Fig. 8. Isolines of intensity of scattered light for the (0)—(€) (a)
and (e)—e) (b) types of scattering. The distances on the axes
are in relative units which are the same for both types of
scattering. The intensities are calculated for €5 = 0.5, e =
2.0,K1; =3.0x 10 dyne, Ky, = 2.0 x 10® dyne, and K3 =
50x 108 dyne; the angle of incidence is U8, @ = 174, and
Lpp = 172. The peak height for the (0)—(e) scattering is
2.1 relative units. The intensity isolines are plotted at five
levels: 2.0, 1.0, 0.5, 0.2, and 0.05.
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Fig. 9. Isolines of intensity of scattered light for the
(0)—(e) (a) and (e)—(€) (b) types of scattering. The distances
on the axes are in relative units which are the same for both
types of scattering. The values of permittivities and Frank
moduli are the same asin Fig. 8. The angle of incidence is
14, @ = 174, and Lpg = 172. The peak height for the (0)—(e)
scattering is 0.68 relative unit. The intensity isolines are
plotted at five levels: 0.5, 0.2, 0.1, 0.05, and 0.01.

shape of the peak for the (e)—(e) scattering is also worth
noting. Figure 9 shows the same intensities, but for an
angle of incidence of 174.

A specific feature of the given system is the nonlin-
ear dependence of theintensity of first-order light scat-
tering on the sample volume V = S-.L. Namely, upon a
change in the sample thickness, quantity I/L as a func-
tion of parameter Lp, begins to oscillate. The depen-
denceof | on S;remainslinear in this case. Thisfeature
isrepresented in Fig. 10 for both types of scattering.
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Fig. 10. Dependence of quantity I/L on parameter Lpg for
scattering of the type (0)—(e) (a) and (e)—(e) (b), expressed
in relative units. The values of permittivities and Frank
moduli are the same asin Fig. 8. The angle of incidence is
108, the angle of scattering is 174, y = 106, and @ = 174.

We also calculated the degree of polarization P for
scattering of the extraordinary wave [39],

_ || (e(z)’ e(z)) — (e(z)’ e(l))|
|(e(2), e(2)) + |(e(2), e(l))

Intensity | (e, e) of scattering of the (€)—(0) type can
be derived analogously to the intensity (6.12) of the
(0)—e) scattering. The constant-polarization curves are
showninFig. 11. These curves arerather intricate since
the (e)—<e) and (e)—(0) peaks differ significantly. The
(e)—e) scattering peak is much higher and decreases
sharply with the angle, whilethe (€)—(0) scattering peak
is more gently sloping and has a considerably smaller
height. As a result, in the vicinity of zero scattering
angle, the degree of polarization is close to unity; then
it rapidly decreases to zero, after which it starts to
increase again. In the region where the (e)—(0) scatter-
ing intensity increases, the isoline P = 0.5 in Fig. 11
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Fig. 11. Isolines of the degree of polarization for the (€)—(0)
and (e)—(e) types of scattering. The distancesontheaxesare
in relative units. The values of permittivities and Frank
moduli are the same asin Fig. 8. The angle of incidence is
W4, @ = 14, and Lpg = 102. The isolines of the degree of
polarization are plotted at three levels: 0.5, 0.2, and 0.0.

becomes larger and closed for large scattering angles,
for this reason, we depict only a part of thisline.

7. CONCLUSIONS

We have studied light scattering in cholesterics
with a large pitch. In solving this problem, it was
found that spatial inhomogeneity of the medium is
significant for describing normal waves and the Green
function as well as for calculating the spatial correla-
tion functions of permittivity fluctuations and the ther-
mal noise spectra.

The computational method used here may turn out
to be helpful in studying light scattering in various lay-
ered media and the media with one-dimensional peri-
odicity, when the wavelength of light issmaller than the
spatial inhomogeneity of a medium. In particular, the
approach developed by us can be used to study the
problem of light propagation and scattering in a
waveguide channel.

Our calculations show that the proposed theory
makes it possible to obtain information on correlation
functions (in media whose properties change in space)
by measuring the angular and polarization characteris-
tics of scattered light intensity.
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APPENDIX

Vector WKB Method
Let us consider an equation of the type

FeMEED = (BB+OMEE) (A
with theinitial condition M(Ey, &) =T, where Q > 1,

B = B(§), and C = C(£). It is convenient to carry out
the substitution of the unknown, after which the system
becomes diagonal in the main order in large parameter

Q . For this purpose, we represent M(&, £,) intheform

M(E, &) = UE)HE, &), (A.2)

where U(&) isacertain nondegenerate matrix that will
be chosen later and H isanew unknown satisfying the
initial condition F(E,, &5) = U7 (&) .

In this case, Eq. (A.1) assumes the form

oH
ot

We now choose U (&) insuch away that matrix 0~ B0
becomes diagondl, i.e.,

+0e0-09YTq.

.o
= HQ0™80 5e0 (A.3)

0780 = A, (A.4)
where A is adi agonal matrix composed of the eigen-
values of matrix B .° In this case, the columns of matrix

U are eigenvectors of matrix B. Then Eq. (A.3)
assumes the form

aH ~ 16U yteodly
el |Q[/\+ S -0 LE0 }

If we disregard the term of the relative order of 1/Q in
the brackets on the right-hand side of this formula, the

(A.5)

5 The situation when matrix B cannot be reduced to the diagonal
form at some pointsis considered in [45] as applied to problem of
wave propagation and the theory of oscillations and in [44] as
applied to fluctuationsin CLCs.
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system splits, in view of the diagonal form of matrix A,
into the independent equations

aﬂ(o) _ LA
ot 1QAH ).

The solution to these equations has the form

(A.6)

1
AoE &) = exp[ifz j/‘\(&')d&}o‘l(zo). (A7)
&o

The main drawback of this formula of the “zero-
order approximation” is that it gives, together with

Eq. (A.2), an expression for M(&,&,), which is not

invariant relative to an arbitrary (but depending on
point &) choice of normalization of eigenvectors of

matrix B . In order to overcome this difficulty, we must
obtain a solution in the next order in Q. For this pur-
pose, we represent H(E, &,) in the form

HE E0) = U@ Hw(E &),

where U(1(€) isanondegenerate matrix that has not yet
been determined. Substituting relation (A.8) into (A.5),

we obtain the equation for A(y(&, &),

aH(l) = |QELJ(1)[

(A.8)

with the initid condition Hu(Ep &, =

UE)07(E).

We now choose matrix U 1)(€) so that

u(l)[/\ 55,' 1%%-0 cug}om = Aw, (A.10)

where /\(1) isadiagona matrix composed of the eigen-
values of the matrix appearing in the brackets in
Eqg. (A.10). Then Eqg. (A.9) assumes the form

~

OH

a¢
It should be noted that, for Q > 1, matrix A +
iQ™" (090 /05 — 07'C0) isclose to matrix A ; con-
sequently, matrices A and A1) are also close and,

= 1000
= EQ/\(l) U(1) 3t HH(l) (A11)
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hence, matrix Uy in Eq. (A.10) is close to the identity
matrix; i.e.,

0@ =1+ ‘5\7&),
) o (A.12)
OE) =1 —éwz),

where V = O(1).
It followsfrom relations (A.12) that the second term

in the parenthesesin Eq. (A.11) ison the order of 1/Q°
relative to the first term. Disregarding this term, we
obtain

Ho@E &0 = exp{l QJ./\(I)(E)dE}U(l)(Eo)U (€o)-
(A.13)

Substituting formulas (A.12) into Eqg. (A.10), we
obtain the following expressions for new matrices A1)
and V in the main ordersin Q:

A =iy += Bj‘lau o

—10U Oteod
Vi = COE ;
! I(“m lJ'I)B-J DIm (A-15)

[ #m,

here, Y, =—/\,. The determination of diagonal termsV,,

of matrix V requiresthe next iteration in our method of
successive diagonalization, i.e., a substitution of the
form

HuE &) = U@ HEe(E &)

into (A.11) and the computation of the values of Uy
and H ) taking into account corrections on the order of
i 522. However, the contributions from the diagonal
part of V in the expression

ME &) = U@ UwE)HwE &)
for the evolution operator in the “first approximation”,
which are connected with external factors U1)(§) in
Eq. (A.16) and U(E,) in Eq. (A.13), are cancelled
with the contribution from the diagonal part of V,

which is due to term U1)d0 ) /08 in Eq. (A.11). For
this reason, we can disregard the diagonal terms of

matrix V in the order in f) we are interested in.

(A.16)
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Disregarding corrections on the order of 1/ Q in
expressions (A.12) for matrices Uy and U, (i.e., in
fact replacing these matrices by identity matrices), we
obtain from Eq. (A.16) matrix M(E,£,) in the WKB
approximation:

g
M(E, &) = 0<z>&a\g§exp[—;giu.<x>
b0 (A.17)
RV é(x)U(xE“de} @J*(zo).

This formulafor C = 0 isavector analog of the clas-
sical WKB approximation.

The domain of applicability of this formula is
defined by the inequalities

Q>1, V&) <Q,

5 ) (A.18)
Q J'(/\(Z)(E') - AwE)nde| < 1,
%

where Ay isthe corresponding diagonal matrix in the
second approximation.

Thefirst inequality smply indicatesthat Q isalarge
parameter. The second inequality is associated with dis-
regard of terms +iV(£)/Q in expressions (A.12) in
the derivation of Eq. (A.17); in accordance with rela-
tion (A.15), thisinequality imposes the following con-
straint on the closeness of eigenvalues |, and W, in the
entire interval from ¢y to &;:

min [1(E) ~k(E) > Q7. (A1L9)

g

Finally, the third inequality indicates the smallness of
the next correction to the exponential term in
Eqg. (A.17) for any &;, & and setsalimit ontheadmissible
width of region & — &, inwhichthe WKB formula(A.17)
can be used. In order of magnitude, Ayi(€) —Apu(€) ~

3] Q2 consequently, we have
€81 < pQ,

where i, isthe mean value of y, oninterval [£; £].

(A.20)
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Abstract—The binding of ligands to DNA molecules in solution is characterized by a distribution function
determining the probability that a certain number of ligands per DNA molecule are adsorbed. As aresult of the
binding to polycations, rigid linear double-stranded DNA molecules (with negative charges of the phosphate
groups neutralized by the positive charges of ligands) exhibit a phase transition. Experimental data on the bind-
ing of chitosan to DNA are interpreted assuming that chitosan exhibits equilibrium adsorption on DNA. When
the number of chitosan molecules adsorbed on DNA exceedsacertain critical value, the DNA molecule covered
by chitosan becomes capabl e of interacting with like DNA molecules. Thisinteraction (attraction) resultsin the
formation of particles constituting aliquid-crystalline dispersion. It is shown that the proposed model with cer-
tain parameters provides a description of certain experimental data characterizing the formation of cholesteric
liquid-crystalline dispersions. An analysis of the experimental data makesit possible to determine both the size
of a site occupied by an amino sugar unit of chitosan adsorbed on DNA and the energy of interaction of this
unit with DNA. © 2004 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The equilibrium binding of ligand moleculesto lin-
ear polymersin solutionsis considered asthe Langmuir
adsorption process, whereby the linear polymer macro-
molecule represents a one-dimensional matrix—a lat-
tice of reactive centers—and the ligand is adsorbed on
these centers of the matrix. The principles of this
approach were formulated by Hill [1, 2] and by Magee,
Gibbs, and Zimm [3]. This phenomenon attracts much
attention and there are several dozens of papers devel-
oping various adsorption models and establishing rela-
tionships describing the binding of biologicaly active
ligands to DNA matrices (see, eg., [4-13]). A ligand
bound to DNA usually covers severa base pairs on a
DNA molecule, rendering these sites inaccessible for
the other ligand molecules. From the standpoint of
physics, the behavior of adsorbed ligands is analogous
to the behavior of a lattice gas with alowance for the
excluded volume.

The binding of ligands to DNA is most adequately
described in terms of a distribution function that deter-
mines the probability of finding a DNA molecule with
a certain number of adsorbed ligands in solution. This
function was originally introduced by Reiter and
Epstein [14, 15] for description of the binding of
extended ligands to DNA. In [16], this function was
used for analyzing the arrangement of ligands on DNA

molecules. Poland [17, 18] thoroughly considered
the application of such a distribution function to
description of the binding of various ligands to macro-
molecules.

In this study, the probability distribution function is
used to describe a process in which the noncooperative
“critical neutralization” of DNA phosphates by the
ligands bearing positively charged groups leads to
DNA condensation. The condensed form of double-
stranded (duplex) DNA attracts the attention of
researchers by offering a model describing certain
peculiarities of the state of DNA in biological objects
such as viruses, protozoan chromosomes, etc. [19].

There are two possible modes of condensation for
the double-stranded molecules of nucleic acids (NAS):

(i) “Entropy condensation” isa processin which the
driving force is a change in the system entropy. This
type of condensation takes place when NA molecules
(or segments of the same high-molecular-weight NA
molecule) are separated from an aqueous polymer or an
aqueous salt solution [20, 21]. It should be noted that,
when NA is separated from an agueous polymer solu-
tion, the polymer molecules do not enter into the com-
position of a new NA phase. The process of NA phase
separation can be described to a sufficiently good accu-
racy within the framework of the Flory theory (see,
e.g., [20]).
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(i) “Enthalpy condensation” is a process in which
the driving force is attraction between neighboring NA
molecules (or segments of the same NA molecule). The
intermolecular attraction forces are mostly of the elec-
trostatic nature, including the London dispersion inter-
action and interactions of the dipole-induced dipole
type. These forces are rather weak at large intermol ec-
ular distances R but grow rapidly when NA molecules
approach one another, the interaction energy varying
approximately in proportion to 1/R® [21]. Apparently,
when a surface charge density on the NA moleculesis
sufficiently low (asaresult of neutralization of the neg-
ative charges of the phosphate groups of NAs by the
positive charges of polycation groups), the dispersion
forces equilibrate and then exceed the electrostatic
repulsion between adjacent NA molecules, inducing
the condensation process.

It should be noted that, in the case of high-molecu-
lar-weight NA molecules, condensation is an intramo-
lecular process (manifested as compactization or glob-
ulization), whereas for low-molecular-weight NAS, this
is an intermolecular process.

In the case of enthalpy condensation, the process
can devel op according to one of two possible scenarios:
(a) neutralization of the negative charges of the phos-
phate groups of NAs by the positive charges of polyca
tions and attraction of the adjacent molecules in NA—
polycation complexes; (b) the formation of polycation
crosslinks between the neighboring NA molecules,
determining the effective proximity of these molecules.
Condensation of the latter type was observed in exper-
imentswith polycations representing spermine, spermi-
dine, etc. (see, e.g., [13, 22] and references therein).

Irrespective of the particular enthalpy condensation
scenario, the added polycations enter into the composi-
tion of a new phase. Experimental data show that the
condensation of NAs is aways switched on when the
polycation concentration in solution reaches a certain
“critical” level. This process is described by a charac-
teristic S-shaped curve of the degree of NA condensa-
tion versus polycation concentration [23-27].

Recently [28], it was demonstrated that the use of
chitosan as a polycation leads to the formation of alig-
uid-crystalline phase of NAs and that the character of
spatial packing of the adjacent NA molecules in this
phase can be controlled by changing the spacing of
amino groups in chitosan molecules at a constant
molecular weight of chitosan (i.e., at a constant length
of the molecule). The interest in chitosan—a biode-
gradable polymer called a “polymer of the 21st cen-
tury” —has stimulated investigations into the properties
of liquid crystals formed as a result of chitosan—DNA
interaction [28].

In this study, we have attempted to develop atheory
describing the interaction between DNA molecules (of
severa hundred base pairs in size) and chitosan—an
extended ligand occupying several base pairs upon

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

binding to DNA. Theresultswill be compared to exper-
imental data characterizing a phase transition in DNA
caused by neutralization of the negative charges of the
phosphate groups of DNA by the positive charges of the
amino groups of chitosan. Our description is based on
the following assumptions:

(i) Chitosan bindsto DNA in anoncooperative man-
ner, whereby the solution contains both DNA mole-
culesfree of chitosan and those on which one, two, etc.,
chitosan molecules are adsorbed—up to the maximum
DNA coverage by chitosan (it is assumed that the
bound chitosan molecules neither overlap nor dangle
from DNA ends).

(ii) An essential part in chitosan binding to DNA is
the interaction of the charged amino groups of chitosan
with DNA phosphates, whereby the charge of the latter
groups is gradually neutralized when bound chitosan
covers a DNA molecule.

(iif) When the chitosan coverage reaches a certain
critical level, DNA molecules pass to a modified state
required for the formation of a cholesteric liquid-crys-
talline phase called liquid-crystalline dispersion.

(iv) The abnormal optical activity of a liquid-crys-
talline form of the DNA—chitosan complex is directly
proportional to the concentration of DNA moleculesin
the modified state (the same is valid for an “apparent”
optical density characterizing the light scattering from
liquid-crystalline dispersion particles consisting of
DNA—chitosan complexes).

It should be noted that we will neither consider nor
take into account any interactions between DNA mole-
cules covered by chitosan (nor shall we consider the
possible crosslinking, whereby one chitosan molecule
binds to two DNA molecules). Thus, we only estimate
the number of DNA molecules capable of entering into
such interactions.

2. A MODEL OF LIGAND ADSORPTION
ON DNA MOLECULES

Let us consider a solution at constant temperature
and pressure, containing DNA molecules with
adsorbed ligands as well asfree DNA and ligand mole-
cules. A DNA molecule represents a matrix—a linear
polymer containing N reactive centers (the function of
such centers is performed by base pairs with atoms of
the sugar-phosphate core). A bound ligand occupies L
successive centers, rendering them inaccessible for
binding other ligand molecules. It should be noted that
we do not consider particular sterical details and pecu-
liarities of the ligand—-DNA interactions. These L cen-
terswill bereferred to asthe binding site. If the reactive
centers of agiven matrix are numbered from one end to
the other, the first binding site comprises a sequence of
the first L centers. Let K be the chemical equilibrium
constant for the reaction of ligand binding to one bind-
ing site of the matrix. We will consider the case when
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ligand binding to any site is characterized by the same
equilibrium binding constant (the so-called homopoly-
mer binding). The solution under consideration con-
tains DNA molecules with various numbers q of
adsorbed ligands. In the saturated state, a DNA mole-
cule containing N centersis capabl e of adsorbing g, =
N/L ligand molecules. The equilibrium properties of the
system representing a DNA matrix with adsorbed
ligands are determined when the free energy Af(q, N) of
the system is calculated. Thisfunction can bewritten as
follows (see [29]):

-Af(g, N)/RT

1
= In[(N-qgL +qg)!/q'(N—-qgL)!] + gInKm, @)
where mis the free ligand concentration in solution, R
isthe universal gas constant, and T is the temperature.

The first term in the right-hand part of formula (1)
corresponds to the statistical entropy, representing the
number of permutations of the ligands and individual
vacant centers. If aDNA molecule has bound g ligands,
there are N — gL vacant centers on this molecule. The
statistical entropy is equal to the logarithm of the
degree of degeneracy of a macroscopic state of the
matrix with adsorbed ligands, or to the logarithm of the
number of permutations in the sequence of elements of
two types—ligands and free centers:

A, N) = Inw = INCY g @)

It should be recalled that we are considering one matrix
bearing adsorbed ligands. The properties of this sub-
system involve an uncertainty related to the statistical
entropy. Indeed, if it is known that there are g ligands
adsorbed on the matrix, no certain answer can be given
to the question as to which particular reactive centers
are occupied and which are vacant. The statistical
entropy of the matrix with adsorbed ligands is a mea-
sure of this uncertainty.

L et us denote by M(q) the concentration of matrices
with q adsorbed ligands (M(0) being the concentration
of matrices free of adsorbed ligands). In accordance
with the Boltzmann distribution, we have

IN[M(q)/M(0)] = -Af(gq, N)/RT, (3)

where quantity Af(g, N) is defined by Eq. (1). Once the
free ligand concentration m in solution is known, the
concentration of matrices bearing q ligands can be cal-
culated. Indeed, if the concentration of ligand-free
matrices is M(0), the concentration of matrices bearing
g ligands according to Eq. (3) is

M(q) = M(0)exp(-Af(g, N)/RT). 4

Consider a system including a single matrix. The
matrix can occur in one of the g, + 1 states: it can be
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either free of ligandsor bear 1, 2, ..., Qs ligand mole-
cules. The probability that the matrix occursin acertain
state exponentialy depends on the free energy corre-
sponding to this state. This probability determines the
number of matrices bearing q ligands in solution.
Denoting by C,, the total concentration of matrices in
solution, we can write

qmax Qmax

> M(@) = % M(O)exp(-Af(g, N)/RT) = Cy. (5)

a=0 q=0

Now let us arbitrarily chose one matrix among all con-
tained in solution. The probability of finding a matrix
bearing q ligandsis given by the ratio of the concentra-
tion of such matrices M(q) to the total concentration of
matrices in solution Cy,:

(@) = M(Q)/Cy. (6)

There is a certain distribution of matrices between
states ®(q) for each concentration m of free ligandsin
solution. This distribution function, presenting an
exhaustive characteristic of the system under consider-
ation, can be written as

q
(D(Q) - quﬂl—qL+q(Km) , (7)

z Cﬂl—qLﬂq(Krn)q
q=1

with the obvious condition that

Omax

> @ =1
q=0

The distribution function is independent of the concen-
tration of matrices in solution, but depends on the
lengths of both the ligand and the matrix. As for the
dependence on the concentration m of free ligands in
solution, the range of these vales featuring significant
changes in the distribution function is determined by
the equilibrium binding constant K. Indeed, note that
@d(qg) depends only on the product Km. The average
number of ligands [Gadsorbed on one matrix is also
determined by the Km value. For this average, Eq. (7)
yields

Omax

Omax Z qC?\l—qL+q(Km)q
=% a®(q) = = (8)
g=0

Z Cl(il—qL+q(Krn)q
q=0
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Fig. 1. Schematic diagrams showing DNA in states of dif-
ferent coverage by adsorbed ligands and the condensation
of DNA-ligand complexes upon reaching critical coverage.
DNA may exist in three different states in solution: (1) nor-
mal state, whereby the ligand coverage is below critical;
(2) modified state, when the ligand coverage is above the
critical level; (3) liquid-crystaline dispersion of DNA—
ligand complexes.

In the experiments with polycations bound to DNA, it
is convenient to use arelative quantity called the cover-
age of a matrix by ligands. If a given matrix binds q
ligands, each covering L reactive centers of the matrix,
the coverage of the matrix is defined asa = gL/N.

3. THE BINDING OF POLY CATIONS
TO DNA AND THE EQUILIBRIUM
OF TWO STATES

We assume that arigid double-stranded DNA mole-
cule (with a molecular weight not exceeding 10° dal-
tons (D)) having bound a certain critical number q;; of
ligands becomes capable of interacting with other like
DNA molecules, this interaction eventually providing
for the DNA transition to a condensed state. In particu-
lar, DNA molecules coated by chitosan become capable
of interacting with each other, provided that the nega-
tive charges of the phosphate groups of DNA are com-
pensated to a sufficiently large degree by the amino
groups of chitosan. Thisinteraction makes possible the
formation of aliquid-crystalline dispersion [28].

Below, a DNA matrix upon binding q = g, ligands
(i.e., with DNA charges compensated to a sufficiently
large degree) will be referred to as occurring in the
modified state (or state 2), in contrast to the normal
state of the DNA matrix (state 1) observed for q < Qg
(Fig. 1). If chitosan is considered as a polycation, we
may suggest that, as the chitosan concentration in solu-
tion isincreased, a growing proportion of DNA mole-
cules in solution passes to state 2, thus making liquid-
crystalline dispersion formation possible. In this paper,
we are not interested in the process of dispersion forma-
tion: consideration is restricted to estimating, using the
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above distribution function, the fraction of DNA mole-
cules capable of participating in the process of liquid-
crystalline dispersion formation.

State 2 is distinguished by the fact that the DNA
matrix bearing a critical number of chitosan molecules
behaves as a molecule acquiring new properties mani-
fested by the ability to form liquid-crystalline disper-
sion. If an overwhelming majority of DNA molecules
that have passed into state 2 enter into liquid-crystalline
dispersion particles, we can assume that the DNA frac-
tioninliquid-crystalline dispersion is a parameter char-
acterizing theratio of DNA moleculesin states 1 and 2.
Then, state 2 represents the liquid-crystalline phase that
can be readily detected by measuring the anomalous
amplitude of the optical response signal in the circular
dichroism spectrum or the signal of light scattering
from liquid-crystalline dispersion particles (apparent
optical density) [28].

In order to calculate the proportion of DNA mole-
cules occurring in state 2, we will find the relations
describing the probability of finding a DNA molecule
in solution with a number of bound ligands g greater
than g;;. Denoting this probability by R, we can write

Omex
Omax Z Cﬂl—qL+q(Km)q
R= Y o = = NG

Cmax
9= Qoi q q
t z CN—qL+q(Krr|)
q=0

Let Cpna denote the total concentration of DNA (in
base pairs), so that Cpya = NCyy. Denoting by C;;q the
total concentration of ligands in solution, we have

Amax

Cig = m+ qu)(Q)CM
CIcr\t

Omax
q q
Z qCN—qL+q(Km)
= m+ q:qcﬂt

Amax

N Z Clqil—qL+q(Krn)q
q=0

(10)

CDNA'

Using Egs. (9) and (10), it is possible to calculate the
fraction of molecules in state 2 as a function of the
ligand concentration ion solution (see [29]).

Indeed, oncethe K and L values are known, Egs. (9)
and (10) can be solved by numerical methods and the
function R(C,;,) can be constructed for the given values
of thematrix length N and the DNA solution concentra-
tion Cpna- Thisis most conveniently done by using a
set of the free ligand concentrations min solution, rang-
ing from m = 0.0V/K to /K (as can be seen, this very
interval features significant binding of ligands to
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Fig. 2. Thedistribution functions ®(q) characterizing ligand
binding to DNA in solution for various concentrations m of
aligand covering 17 base pairs on a DNA molecule having
alength of N = 800 base pairs. Curves 1-3 were cal culated
by formula (7) for Km = 0.001, 0.163, and 0.872, respec-
tively. The cross-hatched region correspondsto DNA mole-
cules binding 38 or more ligands and occurring in state 2
according to the model of Fig. 1.

DNA). As aresult, we obtain an R(C,y) curve describ-
ing the DNA transition from a state in which less than
Oqit ligands are adsorbed, on average, on one DNA mol-
ecule to the state in which the average number of
adsorbed ligands [q(s greater than ;.

Figure 2illustrates variation of the distribution func-
tion ®d(q) for a DNA solution with increasing free
ligand concentration m. As concentration m grows, the
number of DNA moleculeswith q > q.;; and, hence, the
R(Ciig) value increase.

In practice, however, the problem is formulated dif-
ferently: given the experimental distribution of R(C,),
it is required to evaluate the size L of a binding site

R

1.0

0.5

1073 10*

Clig

10°°

1077

occupied by the ligand bound to DNA and to estimate
the constant K of interaction between aligand and the
binding site. Below we will demonstrate how this prob-
lem can be solved for the binding of chitosan to DNA in
cases when thisinteraction resultsin the formation of an
liquid-crystalline dispersion of chitosan-covered DNA.

4. THEORETICAL CURVES
OF THE CHITOSAN BINDING
TO DNA COMPARED WITH EXPERIMENTAL
DATA ON LIQUID-CRYSTALLINE DISPERSION
FORMATION: RESULTS
AND DISCUSSION

Previously [28], experimental data on the binding of
chitosan to DNA and the formation of aliquid-crystal-
line DNA dispersion were obtained by methods of cir-
cular dichroism and apparent optical density. Figure 3
shows the corresponding families of characteristic
S-shaped curves describing this binding process. The
experimental techniques are described elsewhere [28].
The size of DNA molecules was about 800 base pairs.
The chitosan preparation employed was deacetylated to
85% (i.e., it contained 85% active amino groups). The
molecular weight of chitosan used in various experi-
ments varied from 2 to 32 kD, which correspondsto the
number of amino sugar residues changing approxi-
mately from 10 to 160 (one such residue had a molecu-
lar weight of about 200 D).

We calculated the theoretical curves of chitosan
binding to DNA for each experiment using the results
of independent measurements of circular dichroism and
the apparent optical density. Based on the published data,
it was assumed that a DNA molecule passes to the mod-

R

1.0

0.5

107 107

1070

C]ig

Fig. 3. A comparison of the experimental data (black squares) and theoretical results (curves) describing the binding of chitosan
with various molecular weights to DNA: R s the response signal amplitude normalized to maximum for the measurements of (a)
circular dichroism and (b) optical absorption; C;;4 is the ligand (chitosan) concentration in solution; M is the molecular weight of
chitosan. Solid curves show the results of theoretical calculations performed for DNA molecules occurring in the modified state
upon chitosan absorption to a coverage of a = 0.8; dashed curves correspond to a = 0.7.
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Fig. 4. A plot of the sum A(L) of square deviations of theo-
retical curves of from experimental datafor chitosan with a
molecular weight of 13.6 kD. Each point is constructed by
selecting K so as to ensure the best fit of theory to experi-
ment for agiven L (in base pairs). Solid and dashed curves
refer to the calculations using data on the optical absorption
and circular dichroism, respectively.

ified state at a ligand coverage of a = 0.8 (the cacula-
tionswere also performed for a =0.7, sincethereissome
evidence that the a value can be lower than 0.8 [30]).
Taking certain L values, we determined the binding
constants K corresponding to the best fit of theory to
experiment. Then, once the critical coverage a is
known, we can determine the values of q; = aN/L for
the given L and N and calculate the corresponding theo-
retical curvesusing Egs. (9) and (10).

A criterion for selecting the optimum binding con-
stant K was the sum of sguare deviations of the theoret-

ical values of the fraction of DNA moleculesinthelig-
uid-crystalline state, from the experimental values. For
each experimental curve, it was found that this fraction
for the signal maximum corresponds approximately to
unity. Further increase in the chitosan concentration in
solution gives rise to irreversible processes related to
precipitation of liquid-crystalline dispersion particles.

Our approach can be illustrated by an anaysis of
two experimental curves obtained from the measure-
ments of circular dichroism and the apparent optical
density for chitosan with a molecular weight of 13.6 D
(corresponding to about 68 amino sugar residues per
molecule). Taking into account that one sugar residueis
about 5 A in length and that two adjacent DNA base
pairs are spaced by 3.4 A, we can suggest that the max-
imum possible size of a binding site occupied on DNA
by aligand consisting of 68 residues (assuming it to be
paralel to the long DNA axis) amounts to L = 68 x
5/3.4 = 100 base pairs (reactive centers of the matrix).
It should be noted that this estimate is definitely over-
stated, since achitosan molecule can wind itself around
a DNA molecule as a helix (isogeometric with the
phosphate core shape), in which case the binding site
will be smaller by half (covering L ~ 50 base pairs). In
this purely sterical model, we consider chitosan as a
physical object, ignoring the fact that only every second
group bears a charge (i.e., neglecting details and the
nature of the chitosan—-DNA interaction): we are inter-
ested only in estimating the size of the DNA segment
covered by chitosan (or, in terms of our model approach,
the number of reactive centers of the matrix rendered
inaccessible for binding other ligand molecules).

Figure 4 presents the plots of the sum A of sguare
deviations calculated for L ranging from 10 to 120 base
pairs (i.e., for theinterval definitely containing the size
of the binding site for one chitosan molecule). As can

L L
100 . . . . 100 . . . :
(a) (b)
I L l/-/
. 50 - .
30 a 15 30

M, kD

M, kD

Fig. 5. Plotsof thesize L of the DNA binding site (in base pairs) for chitosan of various molecular weights M, providing for the best
fit of theory to experiment for () circular dichroism and (b) apparent optical density.
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Table 1. Estimates of the size L of the binding sites covered by chitosan molecules of various molecular weights on DNA
and estimates of the equilibrium interaction constants K for chitosan binding to these sites. Upper and lower panels show the
L and K values determined from an analysis of the circular dichroism and the optical absorption data, respectively

Molecular . L . a=0.7 a=0.38
weight, kD i e Ko MY | Koo M | Ky ML | Koy M
2 7 3 20 2x10* 6x10* 2% 10° 2x10°
2.1 10 3 25 2x10* 5x10* 2x10° 2x10°
4.1 12 7 24 3x10° 1x10° 1x 108 6 x 10°
7.8 17 11 33 4x10° 1x 107 3x10° 2 x 1010
13.6 40 32 60 2x10° 5x 107 1x 107 4 x 10%
19 55 39 95 6 x 10° 8 x 10° 4 x 108 4 x 1010
26.7 70 60 110 2x10° 8 x 107 8 x 10° 3x10°
31 90 70 150 2x10° 6 x 108 5x 10° 9 x 1010
M(_Jlecular . L L a=07 a=08
weight, kD Kmin, M Kmax: M Krmins M Kmax M
2 5 3 16 2x10* 6 x 10* 2x10* 1x10°
2.1 9 6 20 2x10* 4x10* 9x 10* 2x10°
41 9 8 12 2x10° 1x 108 4 x 106 6 x 10°
7.8 17 13 20 1x 108 9x10° 8 x 10° 9x10°
13.6 40 32 65 2x10° 4 x 10% 9x10° 4 x 10%
19 50 40 75 1x 108 7 x 107 2 x 107 4 x 10%
26.7 80 60 120 1x10° 3x10° 1x 107 3x 101
31 75 60 110 1x10° 9x 1010 6 x 106 9 x 1010

be seen, the best fit of theory to experiment is obtained
for L = 40 base pairs. For each L value, we determined
the constant K minimizing the sum A(L) (these mini-
mum values are plotted in Fig. 4). The minimization
procedure was performed using MATLAB software.

Table 1 summarizestheresults of calculationsfor all
experimental curves. The upper and lower panel show
the K and L values determined from an analysis of the
circular dichroism and the optical absorption data,
respectively; L, and L, correspond to the minimum
and maximum binding sites, respectively; Ky, and Ko
are the minimum and maximum binding constants,
respectively, as determined by least squares.

Figure 5 shows the results of analysis of the experi-
mental data obtained by methods of circular dichroism
and optical absorption (apparent optical density). As
can be seen, the data obtained by the two techniques are
close and give approximately the same estimates: the
size of the binding site of chitosan on DNA is propor-
tional to the molecular weight of chitosan. This fact
indicates that long chitosan molecules bind to DNA in
the same manner as short ones. Thus, the relation
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between the size of the binding site and the molecular
weight of chitosan can be expressed as

L =cM, (1)
where c is the proportionality factor. From an analysis
of the circular dichroism spectra, this coefficient is esti-
mated asc = 2.64 + 0.25 kD2, while the optical absorp-

tion date refine this estimate as ¢ = 2.79 + 0.15 kD,
Adopting the latter estimate, it is possible to calculate

Table 2. The energy parameters of chitosan binding to DNA
determined by an analysis of theresults of circular dichroism
and optical absorption measurements

a | Experimental method a b, 10* M~
0.7 | Circular dichroism 013+008 | 19+1.2
Optical absorption 0.09+005 | 28+19
0.8 | Circular dichroism 0.14+008 | 87+5.6
Optical absorption 0.10+007 | 11.8+4
No. 1 2004
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Table 3. The equilibrium interaction constants for various polycations bound to double-stranded DNA molecules

Compound Conditions K, Mt Refs.
Poly(L-lysine) Mol. weight 36.600 8.3x 10° [31]
Thiolated poly(L-lysine) Mol. weight 36.600 1.3 x 10% [31]
Histonelike (sperm-specific protein from | (300 amino acid residues, (1-9) x 108 [32]
Soisula solidissima) protaminelike protein)
Spermidine 17 mM 1.4 x 108 [23]
Spermine 1mM 1.87 x 10° [33]
Pentalysine 01M 4.7 x 10° (binding to poly(A)-poly(T)) | [34]
Cetyltrimethylammonium bromide (CTAB) 1.2x10° [35]

that five amino sugar residues (weighing about 1 kD)
occupy approximately 2.8 base pairs of DNA. The
length of a sugar-phosphate DNA core per base pair is
about 7.2 A, so that five amino sugar residues cover a
20-A-long DNA segment. These five residues possess a
somewhat greater intrinsic length of ~25 A (the differ-
ence probably reflects the fact that about 1/5 of the
amino sugar chain of chitosan can dangle from DNA,
forming loops and/or other structures).

Assuming that the mode of chitosan binding to
DNA isindependent of the size of thisligand, the bind-
ing energy should vary in an additive manner depend-
ing on the size L of the binding site occupied by chito-
san and, hence, the binding constant should exponen-
tially depend on this size. Thus, we may suggest that
the binding constant obeys the relation

K = bexp(al). (12

Table 2 presents the estimates of parametersa and b
obtained from our analysis of the experimental datafor
two values of the critical DNA coverage by chitosan,
o = 0.7 and 0.8. Note that the values of constants
obtained from this analysis are, on the whole, consis-
tent with the data characterizing the binding of poly-
cations to DNA published by various researchers
(Table 3). According to Table 2, variations in the free
energy of binding per base pair arerelatively small: the
binding constant increases only by afactor of about 2.8
when the size of the chitosan binding site increases by
ten base pairs.

It should be also noted that we have attempted to
describe the formation of aliquid-crystaline DNA dis-
persion as a result of the chitosan binding to DNA
based on some other models, in particular, the Porshke
model [13]. According to this model, NAs exhibit com-
pactization via the formation of complexes in which
one ligand molecule binds to two DNA molecules.
However, we failed to obtain a satisfactory description
of the available experimental data on thisbasis. Thisis
not surprising, since we are dealing with aliquid-crys-
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talline phase in which DNA molecules retain their
mobility, which is evidence for the absence of chitosan
crosslinks.

5. CONCLUSIONS

We have proposed a model according to which
reaching a certain coverage of DNA by chitosan in
solution induces the transition of DNA into a modified
state providing for an effective interaction between chi-
tosan—-DNA complexes and the formation of a liquid-
crystalline DNA dispersion.

We have considered a model of noncooperative
binding of ligands to DNA and shown, for the example
of chitosan binding to DNA, how to evaluate the frac-
tion of modified DNA fragments “prepared” to the
phase transitions. A description of the phase transitions
in single DNA molecules as a result of cooperative
interactions between adsorbed ligands was recently
proposed by Lando, Teif, et al. [36, 37].
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