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Abstract—Quantum spacetime nonlocality, i.e., retardation of the interaction between an electron and its own
radiation field at distances of about the Compton wavelength, is established. By taking into account a finite vari-
ance of the electron-coordinate increment in the intrinsic coordinate system, the radiative damping coefficient
is obtained as a divergence-free function of frequency not subject to the well-known paradoxes of the classical
theory of radiative damping. A relation between radiative damping, the Lamb shift, and the electromagnetic
mass of the electron is found. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problems of radiative damping and electromag-
netic mass that arose at the beginning of the 20th cen-
tury continue to attract attention of many researchers in
view of the special importance of their solution [1–11].
Radiative damping is the reaction of the self-generated
radiation field to the simultaneous effects of motion of
a charged particle and the electromagnetic vacuum
field. This fundamental effect in electrodynamics is
related to issues of paramount importance in physics.

In this paper, we continue the analysis presented
in [11] and consider the paradoxes formulated a cen-
tury ago in the theory of radiative damping. It is well
known that the classical expression for radiative damp-
ing force,

(1)

entails instability of free electron motion. Physically,
this paradox follows from the fact that the reaction of
the self-generated radiation field of a pointlike charged
particle does not allow for retardation of the interaction.
This leads to acceleration of the particle, and the cau-
sality principle is violated. Moreover, the self-energy of
a pointlike charged particle is infinite. Therefore, self-
action can be consistently described in classical elec-
trodynamics only by introducing a renormalization pro-
cedure [12]. Solution of this problem is related to the
fundamental problems of locality and nonlocality in
modern quantum theory. One is led to the question:
How does a local physical theory take into account the
retardation of the interaction between a charged particle
and its own radiation field?

Despite considerable progress in quantum electro-
dynamics (QED), the application of its traditional
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methods to the problem of radiative damping has
encountered certain difficulties. We note here that cal-
culation of a friction force of any physical nature is a
key problem in quantum statistical physics. The inter-
dependence and mutual influence of methods of quan-
tum field theory and statistical physics are well known.
Methods of quantum field theory are successfully
applied to solve the fundamental problems in statistical
physics and condensed matter physics [13]. At the same
time, some methods of statistical physics are most
suited for solving certain fundamental problems in
quantum field theory, including the problem of radia-
tive damping [4, 11, 14–16].

In [11], one of us (G.F.E.) proposed a solution to the
radiative damping problem based on methods of the
fluctuation-dissipation theory of nonlinear open quan-
tum systems [17–19]. One fundamental distinction of
this theory from the linear theory of Brownian motion
in quantum systems developed by Schwinger [20] and
Senitzky [21] and from other methods lies in its scope
for dealing with fluctuations and retardation of interac-
tions in calculating physical effects. An exact formula
for the radiative damping force was used in [11] to cal-
culate the radiative damping coefficient in the nonrela-
tivistic limit for the dynamical variables of the electron.
At the same time, a final solution to the problem must
include the contribution to physical effects due to large
momenta transferred from the radiation field to the
electron. Therefore, calculation of the radiative damp-
ing coefficient must rely on relativistic dynamics and
take into account the internal degrees of freedom of the
electron.

Owing to the fundamental fact that the Dirac elec-
tron has internal degrees of freedom, the variance of a
coordinate increment r(t) – r(t1) is finite in the intrinsic
coordinate system. Since the variance (r(t) – r(t1))2 is
finite, and the coordinate operators taken at different
004 MAIK “Nauka/Interperiodica”
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instants do not commute, the interaction between the
electron and its own radiation field is retarded over a
distance of about the Compton wavelength. This quan-
tum spacetime nonlocality solves the problem of a
pointlike electron in quantum theory and thus elimi-
nates the paradoxes of self-acceleration and causality
violation inherent in classical theory. Moreover, the
removal of divergences in calculations of fundamental
QED effects makes it possible to relate radiative damp-
ing to the Lamb shift and the finite contribution to the
electromagnetic mass due to the reaction of the radia-
tion field.

2. STARTING EQUATIONS
AND RADIATIVE DAMPING COEFFICIENT

The interaction of the Dirac electron with the elec-
tromagnetic vacuum field and its own radiation field
determines radiative damping and electromagnetic
electron mass, offers a fundamental mechanism of fluc-
tuations, and provides physical explanations for the
Lamb shift and the anomalous magnetic moment of the
electron. These QED effects can be analyzed in the
framework of the one-particle fluctuation-dissipation
quantum electrodynamics proposed in [11]. Allowance
for retardation of the interaction between the electron
and the radiation field not only resolves the radiation-
damping paradox, but also rules out any divergence in
calculations of the aforementioned effects in electrody-
namics.

Consider the interaction of a relativistic electron
with a quantized radiation field embedded in an exter-
nal potential field V(r, t). The total Hamiltonian of the
system is

(2)

where A(r, t) and A0(r, t) constitute the field potential,
F is the Hamiltonian of the quantum radiation field, and
a and β are the Dirac matrices. In the transverse gauge
for the field potential,

(3)

Under this condition, the scalar potential A0(r, t)
responsible in this case for the Coulomb interaction
does not give rise to observable effects in the one-elec-
tron problem and can be omitted in the Hamiltonian of
the system.

The starting equations corresponding to Hamilto-
nian (2) are Maxwell’s equations for the field potential

H ca p
e
c
--A r t,( )– 

 ⋅=

+ βmc2 eA0 r t,( ) V r t,( ) F,+ + +

divA r t,( ) 0.=
JOURNAL OF EXPERIMENTAL 
and the Lorentz equation for the dynamical variables of
the Dirac electron:

(4)

where

is the canonical momentum of the electron.

The Lorentz force exerted on the electron by the
radiation field on the right-hand side of Eq. (4) is deter-
mined by the total derivative of the vector potential and
the velocity . In the Heisenberg representation,
the components of the field potential in Eq. (4) are func-
tions of the electron coordinate r(t). Therefore, it is
convenient to represent them as Fourier integrals:

(5)

where Aj(k, t) does not depend explicitly on the dynam-
ical variables of the electron. The current density com-
ponents are canonically conjugate to Aj(k, t) and are
derived from Hamiltonian (2):

Furthermore, expression (2) entails Maxwell’s
equations for the Fourier components Aj(k, t) of the
field potential:

(6)

We seek a solution of Eq. (6) in the form

(7)

Here, the term containing photon Green’s function
Djl(k, t – t1) is the electron’s own radiation field, and the
absolute term A0(k, t) is the unperturbed electromag-
netic vacuum field. In the adopted gauge (3), Green’s

d
dt
-----πj t( ) ∇ jV r t,( )+

=  
e
c
-- d
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-----A j r t,( )–

e
c
-- ∇ j ṙα t( )Aα r t( ) t,( ),+

πj t( ) p j
e
c
--A j r t( ) t,( )–=

ṙα t( )

A j r t( ) t,( ) kd

2π( )3
------------- ik r⋅( )A j k t,( ),exp∫=

δH
δA j k t,( )
----------------------–

e
c
-- ṙ j t( ) ik r t( )⋅( ).exp=

k2 1

c2
---- d2

dt2
-------+ 

  A j k t,( ) 4π
c

------eṙ j t( ) ik r t( )⋅( ).exp=

A j k t,( ) A j
0 k t,( )=

+
e
c
-- t1D jl k t t1–,( ) ik– r t1( )⋅( )ṙl t1( ).expd

∞–

∞

∫
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function and its Fourier spectrum are expressed as fol-
lows [13]:

(8)

Owing to  (ε > 0), a correct detour is taken
around the pole of the retarded Green’s function.

We substitute solution (7) into vector potential (5)
determining the quantum Lorentz force in Eq. (4).
Symmetrizing the product of the commuting operators
Aj(k, t) and exp(ik · r(t)), we obtain

Dropping the second term in the expression for the
Lorentz force, we arrive at the following equation of
motion of the relativistic electron allowing for its own
radiation field:

(9)

Thus, we ignore the effect of the electromagnetic vac-
uum field on the electron. This considerably simplifies
the initial stage of analysis of the interaction retardation
effect.

To analyze the radiative damping effect, we con-
sider the electron in a uniform electric field of strength
E(t). The corresponding interaction energy is

The external force fj(t) = eEj(t) introduced here is
canonically conjugate to the electron coordinate rj(t).
According to time-dependent perturbation theory, the

D jl k t,( ) 4πc
k

--------- ckt( ) δjl

klk j

k2
--------– 

  η t( ),sin=

D jl k ω,( ) tD jl k t,( ) iωt( )expd

∞–

∞

∫=

=  4π k2 κ2+( ) 1– δjl

klk j

k2
--------– 

  ,

k k , κ2 iω
c

------ 
 

2

1 iε ωsgn+( ).= =

iε ωsgn

A j r t( ) t,( ) e
c
-- t1

d3k

2π( )3
-------------D jl k t t1–,( )∫d

∞–

∞

∫=

× 1
2
--- ik r t( )⋅( )exp ṙl t1( ) ik– r t1( )⋅( )exp,[ ] +.

d
dt
-----πj t( ) ∇ jV r t,( )+

e2

c2
---- d

dt
-----–=

× t1
d3k

2π( )3
-------------D jl k t t1–,( )∫d

∞–

∞

∫

× 1
2
--- ik r t( )⋅( )exp ṙl t1( ) ik– r t1( )⋅( )exp,[ ] + F j t( ).=

V t( ) r jeE j t( )– r j f j.–= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
coordinate operator rβ(t) of an electron driven by an
external force is written as [22]:

where  corresponds to free evolution (f = 0) and

(10)

is the linear random response equal to the quantum

Poisson bracket of  and  taken with the
opposite sign and multiplied by the Heaviside step
function η(τ). Averaging Eq. (10) over the initial state
of the entire system, we obtain

(11)

where

is the so-called difference-time linear response. It is
isotropic:

(12)

Under a periodic perturbation

,

Eq. (11) yields

where

is the linear susceptibility determining the frequency
dependence of energy dissipation and dispersion due to
reaction of the radiation field. To calculate the suscep-
tibility modified to allow for the radiative force con-

r j t( ) r j
0 t( ) t1ϕ̂ jl t t1,( ) f l t1( ),d

∞–

∞

∫+=

r j
0 t( )

ϕ̂ jl t t1,( ) i
"
--- r j

0 t( ) rl
0 t1( ),[ ] –η t t1–( )

δr j t( )
δ f l t1( )
-----------------= =

r j
0 t( ) rl

0 t1( )

r j t( )〈 〉 t1ϕ jl t t1,( ) f l t1( ),d∫=

δr j t( )
δ f l t1( )
-----------------

f 0=

=  
i
"
--- r j

0 t( ) rl
0 t1( ),[ ] –η t t1–( ) ϕ jl t t1,( )=

ϕ jl t t1,( ) ϕ t t1,( )δjl.=

f α t( ) f α ω( ) iωt–( )exp c.c.+=

rα t( )〈 〉 χ ω( ) f α ω( ) iωt–( )exp c.c.,+=

χ ω( ) τ iωτ( )ϕ τ( )expd∫=
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tained in (9), one must find its increment induced by the
perturbation, i.e., calculate the derivative

(13)

Here, we make use of isotropy of the linear response
and transverse gauge (3) for Green’s function.

We assume that the nonlinearity associated with the
radiative force is small. Therefore, fluctuations of
response can be neglected according to nonlinear fluc-
tuation-dissipation theorems [22]. Thus, the response in
Eq. (13) can be replaced by its mean value. Using
Eqs. (11) and (12), we obtain

(14)

where

(15)

Angle brackets mean averaging over the ground state of
the entire system. Both function (15) and its Fourier
spectrum,

will be called the radiative damping coefficient. By vir-
tue of (14) and (15), Eq. (9) takes the form

(16)

In the approximation adopted here, the radiative
damping coefficient is calculated without using the sec-
ond term on the right-hand side of the Lorentz equation.
Moreover, we ignore the contribution to Eq. (15) due to
the parametric effect of electromagnetic vacuum fluctu-
ations.

In the intrinsic coordinate system, the average coor-
dinate 〈rj(t)〉  of the electron in the potential field V(r) =

1
m
----

δF j t( )
δ f l t2( )
-----------------

=  –
d
dt
----- t' γ̂ jl t t',( ) d

dt'
------ϕ̂ jl t' t2,( ) .d∫

1
m
----

δF j t( )
δ f l t2( )
----------------- d

dt
----- t'γ jl t t'–( ) d

dt'
------ϕ t' t2–( ),d∫–=

γ jl t t1–( ) e2

mc2
--------- d3k

2π( )3
-------------D jl k t t1–,( )∫=

× 1
2
--- ik r t( )⋅( )exp ik– r t1( )⋅( )exp,[ ] + .

γ jl ω( ) τγ jl τ( ),d∫=

1
m
---- d

dt
-----πj

1
m
---- ∇ jV r( )+

+
d
dt
----- t1γ jl t t1–( )ṙl t1( )d∫ 1

m
---- f j t( ).=
JOURNAL OF EXPERIMENTAL 
mΩ2r2/2 and uniform electric field is governed by the
equation

(17)

Now, we use Eq. (17) to find the response to the har-
monic force

assuming that γjl(τ) = δjlγ(τ). By definition,

(18)

Taking the Fourier transform of Eq. (17), we obtain

According to definition (18), the linear susceptibility
has the form

(19)

By the causality principle, susceptibility (19) must be
an analytic function of the complex variable ω in the
upper half-plane [23].

3. QUANTUM SPACETIME NONLOCALITY

The radiative damping coefficient satisfies the cau-
sality principle and allows for the retardation of inter-
action between the electron and its own radiation field.
The latter property is explained by the finite speed of
light and the use of the electron-coordinate Heisenberg
operator taken at different instants. The essentially non-
linear dependence of (15) on the coordinate operators
r(t) and r(t1) is determined by the product of exponen-
tial factors

(20)

where ∆r = r(t) – r(t1) is the operator of displacement
over the time interval t – t1. The unitary operator
exp(−iB) appears in Eq. (20) because the operators r(t)
and r(t1) taken at different instants do not commute. It
affects the retardation of the interaction between the
electron and radiation field. In the nonrelativistic limit,
this retardation was taken into account in [11] in order
to resolve the self-acceleration paradox. In contrast to
classical electrodynamics, QED involves a funda-

d2

dt2
------- r j t( )〈 〉 Ω 2 r j t( )〈 〉+

=  
1
m
---- f j t( ) d

dt
----- t1γ jl t t1–( ) d

t1d
------ rl t1( )〈 〉 .d∫–

f j t( ) f j ω( ) iωt–( ),exp=

r j ω( )〈 〉 χ ω( ) f j ω( ).=

Ω2 ω2–( ) r j ω( )〈 〉 1
m
---- f j ω( ) ω2γ ω( ) r j ω( )〈 〉 .+=

χ ω( ) 1
m
---- 1

ω2 1 γ ω( )+( ) Ω2–
---------------------------------------------.–=

ik r t( )⋅( ) ik– r t1( )⋅( )expexp

=  ik ∆r⋅( ) iB–( ),expexp
AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004
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mental small parameter, the fine-structure constant
α = e2/"c. Therefore, product (20) contained in expres-
sion (15) for the radiative damping coefficient can be
approximately calculated for the free evolution of the
electron coordinate operator rj(t) governed by the
Hamiltonian

(21)

According to the Heisenberg equations,

(22)

The momentum p and Hamiltonian (21) of the electron
are integrals of motion. The commutator of the Dirac
matrices a and β yields

(23)

Solving Eqs. (22) combined with Eq. (23), we obtain

(24)

where  = , which follows from the condi-

tion  ≡ H2 = c2p2 + . Solution (24) was originally
obtained by Schrödinger (see [24]).

We use solution (24) to calculate the variance of the
operator

(25)

in the electron’s intrinsic coordinate system. Using the
commutator of the matrices αj and , we derive the fol-
lowing expression for the variance of increment (25):

(26)

where

The variance of an increment of the Dirac electron
coordinate is finite in the intrinsic coordinate system in
contrast to the case of a relativistic spinless particle.

H ca p βε0, ε0+⋅ mc2.= =

ṙ j t( ) cα j,=

α̇ j t( ) 1
i"
----- α j H,[ ] .=

α jH Hα j+ 2c p j.=

r j t( ) r j 0( )
c2 p j

H
---------- t

"

2H̃
------- 2H̃

"
-------t 

 sin–+=

+ α j 0( ) "c

2H̃
------- 2H̃

"
-------t 

 sin

+ α̇ j 0( ) "
2c

4H̃
2

---------- 1
2H̃
"

-------t 
 cos– ,

H̃ c2 p2 ε0
2

+

H̃
2 ε0

2

F0 k r t( ) r t1( )–( )⋅ k ∆r⋅= =

α̇ j

F0
2 k

2λ0
2 ω0t( )sin

2
x2 ω0t( ),sin

2
= =

ω0
mc2

"
---------, x

k
k0
----, λ0

1
k0
----.= = =
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Fast oscillation at long times (t @ t0 = 1/ω0) is insignif-
icant, and we can write

(27)

Thus, the variance of r(t) – r(t1) for the Dirac elec-
tron is finite in the intrinsic coordinate system by virtue
of the internal degrees of freedom defined by the Dirac
matrices. As shown below, the finite variance entails
retardation of the interaction between the electron and
its own radiation field. Thus, the well-known paradoxes
of radiative damping and logarithmic divergence in
QED are resolved. The retardation of the interaction is
determined by the time required for light to travel the
Compton wavelength:

Therefore, the quantum theory of radiative damping
must be essentially non-Markovian to allow for retarda-
tion of the interaction between electron and radiation
field. Since the characteristic retardation time t0 is very
small, the approximation of free evolution of r(t) in
Eqs. (9) and (20) over times on the order of t0 is justi-
fied.

To find the radiative damping coefficient, we must
calculate the product in (20). The factor exp(ik · ∆r) is
strictly determined by solution (24), where operator (25)
has property (26). A nontrivial part of the calculation of
the unitary operator exp(–iB) is associated with the
dependence of the electron coordinate r(t) on momen-
tum and the Dirac matrices dictated by Eq. (24). After
some calculations, we have

(28)

and the inverse product of the exponentials

where n is the unit vector along k and τ = t – t1. Using
these expressions, one can write the anticommutator in
formula (15) for the radiative damping coefficient in
explicit form. Since the expression for the operator ∆r

F0
2 1

2
---k2λ0

2≈ 1
2
---x2.=

t0
λ0

c
----- "

mc2
---------

1
ω0
------.= = =

ik r t( )⋅( ) ik– r t1( )⋅( )expexp ik ∆r⋅( )exp=

×
iω0τ

2
----------- βx xarctan n a x xarctan–( )⋅+[ ]–

 
 
 

exp

ik– r t1( )⋅( ) ik r t( )⋅( )expexp

=  ik r t( )⋅( )exp ik– r t1( )⋅( )exp[ ] †

k k–→

=  
iω0τ

2
----------- βx xarctan– n a x xarctan–( )⋅+[ ]–

 
 
 

exp

× ik ∆r⋅( ),exp
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includes the Dirac matrices by virtue of Eq. (24), we
can represent exp(ik · ∆r) as

(29)

where ∆r = |∆r | = λ0 |sin(ω0τ) | does not involve the
Dirac matrices. In what follows, the small term sin(k∆r)
in Eq. (29) is disregarded. By virtue of expressions (28)
and (29) combined with (24) for ∆r in the intrinsic
coordinate system, the anticommutator in Eq. (15) in
the isotropic case is

(30)

where

Substituting (30) into expression (15) for the radia-
tive damping coefficient, averaging over the electron
ground state 〈β〉  = 1, and calculating the integral over
the angular coordinates in the wave-vector space, we
obtain

(31)

3.1. First, we consider the asymptotic contribution
to γ(τ) corresponding to high momentum transfer as
x  ∞. In this case, we can set  = π/2 and
rewrite (31) as

(32)

ik ∆r⋅( )exp k∆r( )cos
ik ∆r⋅

k∆r
---------------- k∆r( ),sin+=

ik r t( )⋅( )exp ik– r t1( )⋅( )exp,[ ] +〈 〉

=  2 x ω0τ( )sin( ) ω0τ f x( )( ),coscos

f x( ) = 0.5 x xarctan–( )2 x2 xarctan
2

+ 0.5x x.arctan≈

γ τ( )
4αω0

3π
------------- xx xω0τ( )sind

0

∞

∫=

× f x( )ω0τ( ) x ω0τ( )sin( )η τ( ).coscos

xarctan

γ τ( ) α
3π
------ω0 xxd

0

∞

∫=

× 1 π
4
---+ 

  ω0τ ω0τ( )sin+ 
  xsin





+ 1 π
4
---+ 

  ω0τ ω0τ( )sin– 
  xsin

+ 1 π
4
---– 

  ω0τ ω0τ( )sin+ 
  xsin

+ 1 π
4
---– 

  ω0τ ω0τ( )sin– 
  x




η τ( ).sin
JOURNAL OF EXPERIMENTAL 
Since the integrand is even with respect to x, we use the
causality principle (τ > 0) and calculate (32) to obtain

To calculate the frequency dependence of the radiative
damping coefficient,

we set the argument of the δ function equal to zero:

(33)

Then, we obtain the asymptotic formula

(34)

which satisfies the causality principle and is free of the
self-acceleration paradox. The main conclusion that
follows from our asymptotic analysis is that the region
defined by condition (33) provides a considerable
contribution to the radiative damping coefficient.
Therefore, we can use (33) to rewrite the starting for-
mula (31) as

(35)

Hence, we obtain the frequency dependence of the
damping coefficient:

(36)

γ τ( )
αω0

3
----------δ' 1 π

4
---– 

  ω0τ ω0τ( )sin– 
  η τ( ).=

γ ω( ) t iωt( )γ t( )expd

∞–

∞

∫=

=  
αω0

3
---------- t iωt( )expd

∞–

∞

∫

× δ' 1 π
4
---– 

  ω0t ω0t( )sin– 
  η t( ),

ω0t*( )sin 1 π
4
---– 

  ω0t* θ 0.56,= = =

ω0t* 2.55.=

γ ω( ) α
3
--- iω

ω0
------ 1

1 π/4– ω0t*( )cos–[ ] 2
-------------------------------------------------------=

+
ω0t*( )sin

1 π/4– ω0t*( )cos– 3
----------------------------------------------------- iωt*( ),exp

γ τ( )
4αω0

3π
-------------=

× x x xω0τ( ) f x( )ω0τ( ) xθ( )η τ( ).coscossind

0

∞

∫

γ ω( )
4αω0

3π
------------- τ iωτ( )expd

∞–

∞

∫=

× x x xω0τ( ) f x( )ω0τ( ) xθ( )η τ( ).coscossind

0

∞

∫
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In the asymptotic limit,  = π/2 and expres-
sion (36) reduces to (34).

3.2. Now, we analyze the contribution to Eq. (31)
due to low momentum transfer at low frequencies. In
this region, the fast oscillation in expression (26) for the
electron-coordinate variance can be disregarded; i.e.,

 ≈ x2/2 according to Eq. (27). In view of this esti-

mate, expression (31) for θ = 1/  entails (35).
The basic property of radiative damping coeffi-

cient (36) is that it characterizes the retardation of the
interaction between the electron and its own radiation
field. To elucidate this property, one can ignore the
quantum corrections associated with the factor 
and set cos(f(x)ω0τ) ≈ 1 in Eq. (36). Then, the fre-
quency dependence of the radiative damping coeffi-
cient is written as

(37)

Calculating the integral in (37), we obtain

(38)

In view of Eq. (38), linear susceptibility (19) at Ω = 0 is

(39)

It is easy to see that susceptibility (39) has no poles in
the upper half-plane of the complex variable ω and
therefore satisfies the causality principle.

At the same time, the radiative damping coefficient

derived from the classical Abraham–Lorentz formula [1],
gives rise to a pole of susceptibility (39) in the upper ω
half-plane, which leads to the self-acceleration paradox
in the classical radiative damping theory [23].

Formula (39) for the linear response implies the fol-
lowing equation of motion for an electron in external
electric field:

(40)

xarctan

F0
2

2

xarctan

γ ω( ) α
4ω0

3π
--------- xxd

∞–

∞

∫=

× τ iωτ( ) xω0τ( ) x

2
------- 

  η τ( ).cossinexpd

–∞

∞

∫

γ ω( ) i
2α
3

------- ω
ω0
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In particular, in the absence of the external field,
Eq. (40) becomes

which describes stable free motion of the electron with
v = const.

Thus, the retardation of the interaction resolves the
self-acceleration paradox inherent in classical Abra-
ham–Lorentz theory. Moreover, Eq. (40) provides a rig-
orous justification of classical approximate formulas
for the radiative damping force. Since the radiative
damping force “switches on” after a delay t0, during the
delay interval, the electron can be treated as driven by
the external force only. Therefore, the equation of
motion for this interval has the form

Substituting

into Eq. (40), we obtain

(41)

This equation rigorously justifies the formal proce-
dure of eliminating the self-acceleration paradox com-
monly used in the classical theory [3, 25].

Finally, we present the expression

(42)

for the imaginary part of the radiative damping coeffi-
cient obtained in [16] by taking into account electro-
magnetic vacuum fluctuations. This quantity deter-
mines radiative damping proper.

The real part of the radiative damping coefficient
determines the so-called dispersion or self-energy of
the electron. In particular, the zero-frequency damping
coefficient γ(0) = γ'(0) determines the contribution to
the electromagnetic electron mass due to reaction of the
radiation field.
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4. RADIATIVE DAMPING, 
ELECTROMAGNETIC MASS

OF THE ELECTRON, 
AND THE LAMB SHIFT

The physical significance of the quantum nonlocal-
ity (retardation of interaction) is not restricted to reso-
lution of paradoxes inherent in the classical theory of
radiative damping. The retardation of the interaction
between the electron and the radiation field removes
divergences inherent in traditional QED methods. In
particular, the above formulas for γ(ω) imply that the
contribution of the reaction of the radiation field to the
electromagnetic electron mass is finite. Indeed, setting
ω = 0 in asymptotic formula (34), we obtain

(43)

Let us find out how physical effects caused by the
interaction of the electron with its own radiation field
are related to electromagnetic vacuum field.

4.1. By the causality principle, the real part γ'(ω) of
the radiative damping coefficient is uniquely deter-
mined by its imaginary part. It follows from the Kram-
ers–Kronig relations that

In view of Eq. (42), we have the following expression
for the electromagnetic mass of the electron:

Thus, we come to the fundamental conclusion that the
electron mass is only in part of electromagnetic nature.
Calculation of the lepton mass spectrum is an open
problem. The relation between radiative damping con-
trolled by γ''(ω) and the electromagnetic electron mass
determined by dispersion relations indicates that
knowledge of the imaginary part of the radiative damp-
ing coefficient over the entire frequency range is indis-
pensable.

4.2. Moreover, the Callen–Welton fluctuation-dissi-
pation theorem can be invoked to determine the contri-
bution of γ''(ω) to the Lamb shift, a phenomenon
entirely due to fluctuations.

Suppose that an electron in the spherically symmet-

ric potential field V(r) = /2 is subjected to elec-
tromagnetic vacuum fluctuations. By the Callen–Wel-

δmel m0γ 0( )
αm0

3
----------

ω0t*( )sin

1 π/4– ω0t*( )cos– 3
-----------------------------------------------------.= =

γ' ω( ) 1
π
--- ω'

γ'' ω'( )
ω ω'–
---------------d

∞–

∞

∫–
2
π
--- ω'

γ'' ω'( )ω'

ω2 ω'2–
--------------------.d

0

∞

∫–= =

δmel m0γ' 0( )
2m0

π
--------- ω'

γ'' ω'( )
ω'

---------------d

0

∞

∫= =

=  
2m0α

π
------------- x

x/ 2( )cos
1 0.5 xarctan+
-----------------------------------d

0

∞

∫ 0.5αm0.≈

mΩn
2
r2
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ton fluctuation–dissipation theorem, the spectral den-
sity of coordinate-projection fluctuations at zero
temperature is determined by the imaginary part of sus-
ceptibility (19):

Therefore, the total square of coordinate fluctuations
has the form

(44)

According to Welton [26], the Lamb shift is due to a
fluctuation-induced correction to the potential energy
that can be found as follows. Consider the electron in a
hydrogen atom with the effective potential

(45)

where r is the average location of the electron, δr is its
fluctuation, and V(r) = –e2/r. We expand potential (45)
into a series in fluctuations of the electron’s location
and average over the unperturbed vacuum state. Owing
to isotropy, this expansion has the form

.

Thus, the fluctuation correction can be written in
dimensionless variables as

where a is the Bohr radius.

According to perturbation theory, the first correction
to the nth level is

(46)

Accurate calculations remain beyond the scope of this
paper in view of the approximations made above. For
this reason, we calculate the Lamb shift given by
Eq. (46) by applying the Callen–Welton fluctuation–
dissipation theorem to a very simple oscillator model of
the bound electron state in the hydrogen atom with
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potential (45). Using expression (42) for the imaginary
part of the radiative damping coefficient, we obtain

(47)

where  = Ωn/ω0 is a characteristic frequency propor-
tional to α2 and weakly dependent on the level number
n. To calculate the integral in (47), we divide the inte-
gration interval into two parts: from 0 to α and from α
to infinity. We note that quantum nonlocality eliminates
the divergence of integral (47) at the upper limit x = ∞.
The resulting high-frequency contribution of the range
α < x < ∞ is calculated accurately, because motion of
the electron can be treated as free in this range:

Calculations in the low-frequency range 0 < x < α
are less accurate, because we use an oscillator model of
the bound state and disregard the change in the radiative
damping coefficient γ(ω) due to the bound state of the
electron. In this approximation, according to (47),

The sum of the two parts is the Lamb shift given by
Eq. (47):

Thus, the important dissipation characteristic γ''(ω)
calculated here by taking into account the interaction
retardation simultaneously determines the Lamb shift
and the self-energy part including the electromagnetic
mass of the electron.

5. CONCLUSIONS

This paper reports a new QED approach free of
divergences characteristic for the traditional methods of
quantum field theory. The Lamb shift and other QED
effects are actively investigated in current experiments.
The new methods and results presented in this work
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may provide a starting point for transcending the limi-
tations of perturbation theory and reducing the gap
between theory and experiment.

It is proved that the interaction between the Dirac
electron and its own radiation field in local quantum
theory is retarded by about the time required for light to
travel the Compton wavelength. The quantum space-
time nonlocality is directly associated both with the
finiteness of the variance of coordinate increment and
with the phase factor arising due to the fact that coordi-
nate operators taken at different times do not commute.

Thus, it is rigorously shown how the interaction
between the Dirac electron and its own radiation field is
retarded. This retardation eliminates the divergences
and paradoxes associated with the classical electron as
a pointlike entity. The solution to the century-old para-
dox of self-acceleration is of fundamental importance
per se and can be essential for further development of
theory. Finally, the relation between radiative damping,
finite contribution to the electromagnetic mass of the
electron, and the Lamb shift is found.
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Abstract—We consider the corrections to the deuterium hyperfine structure originating from the two-photon
exchange between an electron and deuteron, with deuteron excitations in the intermediate states. In particular,
the motion of the two intermediate nucleons as a whole is taken into account. The problem is solved in the zero-
range approximation. The result is in good agreement with the experimental value of deuterium hyperfine split-
ting. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Hyperfine splitting in the deuterium ground state
has been measured with high accuracy. The most pre-
cise experimental result, obtained with an atomic deu-
terium maser, is given by [1]

(1)

On the other hand, theoretical calculation, including
higher order pure QED corrections, gives

(2)

This value was obtained by using the theoretical result
for the hydrogen hyperfine splitting in [2],

which does not include the proton structure and recoil
radiative correction, and by further combining it with
the theoretical ratio of the hyperfine constants in hydro-
gen and deuterium from [3],

based on the ratio of the nuclear magnetic moments and
including the reduced mass effect in |ψ(0)|2.

It was recognized long ago that the discrepancy

 (3)

is due to the effects caused by the finite size of the deu-
teron. Such effects are obviously much larger in deute-
rium than in hydrogen. The corresponding contribu-
tions to deuterium hyperfine splitting were discussed

νexp 327 384.3525222 17( ) kHz.=

νQED 327 339.27 7( ) kHz.=

1 420451.95 14( ) kHz,

4.3393876 8( ),

νexp νQED– 45 kHz=

¶This article was submitted by the authors in English.
1063-7761/04/9802- $26.00 © 20181
long ago with some intuitive arguments [4], and then in
more detail in [5–7].

We believe that in the past, the most systematic
treatment of such effects, which are due to electron–
deuteron interaction of second order in α, was per-
formed in [8]. The effective Hamiltonian of the hyper-
fine interaction of second order in α = e2/4π was
derived therein from the elastic forward scattering
amplitude of virtual photons off the deuteron.

In particular, the low-energy theorem for forward
Compton scattering [9–12] was generalized in [8] to the
case of virtual photons and a target with an arbitrary
spin. The corresponding contribution of the momentum
transfers k, bounded from above by an inverse deuteron
size of κ = 45.7 MeV, to the relative correction to the
deuterium hyperfine structure is

(4)

Here, me and mp are the electron and proton masses,
respectively, and µd = 0.857 is the deuteron magnetic
moment. The relative corrections ∆ are defined here and
below as the ratios of the corresponding contributions
to the electron-deuteron scattering amplitude to the
spin-dependent Born term in this amplitude,

(5)

where s is the deuteron spin.

At larger momentum transfers of k > κ, the ampli-
tude of the Compton scattering on a deuteron is just the

∆el
d 3α

8π
------- µd 2– 3

µd

-----– 
  me

mp

------ κ
me

------.ln=

T0 –
2πα

3memp
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coherent sum of those amplitudes on free proton and
neutron. This correction is given by

(6)

where µp = 2.79 and µn = –1.91 are the proton and neu-
tron magnetic moments and mρ = 770 MeV is the usual
hadronic scale.

Noteworthy also is the strong numerical cancella-
tion between ∆el and ∆in .

The next correction to the deuterium hyperfine
structure, obtained in [8], is induced by the deuteron
virtual excitations due to spin currents only. It is given
by

(7)

There is also a correction due to a finite distribution
of the deuteron charge and magnetic moment.1 In the
zero-range approximation used in [8], this correction is

(8)

2. LEADING INELASTIC NUCLEAR 
CORRECTION 

TO THE DEUTERIUM HYPERFINE STRUCTURE

The leading inelastic nuclear correction is of the rela-
tive order αme/κ (as well as the Zemach correction (8)).
The corresponding effect calculated in [8] is addition-
ally enhanced by a large factor:

In the present paper, we consider two more effects of
the same order αme/κ. Although both of them are pro-
portional to

(and are therefore essentially smaller numerically than
the effect considered in [8]), we believe that their inves-
tigation is worth considering.

We use the gauge A0 = 0, where the photon propaga-
tor is given by

(9)

1 In the case of hydrogen, this problem was considered many years
ago by Zemach [13].
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The electron–deuteron nuclear-spin-dependent scatter-
ing amplitude generated by the two-photon exchange is

(10)

where lµ = (me, 0, 0, 0) is the electron momentum. The

structure γi(  –  + me)γj reduces to –iωeijlσl , where s
is the electron spin. We calculate the nuclear matrix ele-
ments entering the deuteron Compton amplitude Mmn in
the zero-range approximation, which allows us to
obtain all results in a closed analytical form.

The inelastic 1/κ contribution to the hyperfine struc-
ture is induced by the combined action of the convec-
tion and spin currents. Because the convection current
is spin-independent, all the intermediate states are trip-
let ones, as is the ground state. Therefore, the spin cur-
rent operator

simplifies to

(11)

In the initial state |0〉 , the deuteron is at rest, but in the
excited state, the system of nucleons moves as a whole
with the momentum k and its wave function is therefore
given by |n〉exp(ik · R), where |n〉  refers to the deuteron
internal degrees of freedom and is a function of

 and  is the deuteron cen-
ter-of-mass coordinate. Thus, a typical matrix element
of the spin current can be written as

(12)

A typical matrix element of the convection current
transforms as

(13)

where  acts on the relative coordinate r.
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We first take the intermediate states |n〉  in the corre-
sponding nuclear Compton amplitude to be just plane
waves, eigenstates of . We thus take into account all
states with l ≠ 0, which are free in our zero-range
approximation, and in addition, the 3S1 wave function in
the free form

(the deviation of the 3S1 wave function from the free one
is considered below). Then, with the zero-range-
approximation deuteron wave function

(14)

the only matrix element entering the amplitude is

(15)

Thus the amplitude simplifies to

(16)

Because the motion of the system as a whole is
taken into account in the intermediate states, this
expression differs from the corresponding one in our
previous paper [8] in two respects. First, in [8], the
operator  in (13) was identified with p, and instead
of 2pm, n we therefore obtained (2p – k/2)m, n in an ana-
log of the present formula (16). At present, the term
proportional to µn in (16) is an odd function of p and
therefore vanishes after integration over dp. Second,
the energy difference in the denominator has acquired
the contribution k2/4mp , which is the kinetic energy of
the proton–neutron system as a whole, and thus

has transformed into

We now substitute (16) in (10) and take the integral
over ω under the condition ω @ κ2/m. For the relative
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correction to the hyperfine structure, we obtain

(17)

The result of integration over p and then over k is given
by

(18)

The logarithmic contribution here originates from inte-
gration of the term 3/2k in square brackets in (17) over
the range

The result (18) differs from the corresponding one
in [8] by a term proportional to µp + µn , which is rela-
tively small numerically. It is only natural that our
present account of the motion of the proton–neutron
system as a whole in the intermediate states results in a
correction proportional to µp + µn .

We now calculate the correction  corresponding
to the effect of deviation of the intermediate 3S1 wave
function Ψp(r) from the free one. In the zero-range
approximation, Ψp(r) is given by

(19)

This follows, for instance, from the orthogonality to
deuteron wave function (14). Below, we use the func-
tion

(20)

After integration over ω, the expression for 
becomes

(21)

∆in
2( ) 2ακµ pme

π4µdmp

----------------------- p kdd

k4
-------------∫∫=

× pk

p k/2–( )2 κ2+[ ] 2
-------------------------------------------

mp

p2 k
2
/4 κ2+ +

---------------------------------- 3
2k
------– .

∆in
2( ) α

µp

µd

-----
me

κ
------ 6α

π
-------

µp

µd

-----
me

mp

------
mp

κ
------.ln–=

κ2/mp ! k ! κ .

∆in
3( )

Ψp r( ) pr( )sin
pr

------------------
1

κ ip+
-------------- ipr( )exp

r
----------------------–=

=  
κ pr( )sin p pr( )cos–

pr κ ip+( )
----------------------------------------------------.

ρp r1 r2,( ) Ψp r1( )Ψp* r2( ) ψp r1( )ψp* r2( )–=

=  
p p r1 r2+( )( )cos κ p r1 r2+( )( )sin–

κ2 p2+( )pr1r2

---------------------------------------------------------------------------------------.

∆in
3( )

∆in
3( ) 4α µ p µn+( )me

π3µdmp

------------------------------------ k p p2dd∫∫=

× r1 r2ψ0 r1( )ψ0 r2( )ρp r1 r2,( )
kr1( )sin

kr1
--------------------dd∫∫

×
kr2( )sin

kr2
--------------------

1 κr2+( )
kr2( )2

----------------------
kr2( )sin

kr2
-------------------- kr2( )cos– 

 –

×
mp

p2 k2/4 κ2+ +
--------------------------------- 3

2k
------– .
SICS      Vol. 98      No. 2      2004



184 KHRIPLOVICH, MILSTEIN
The integral over p is

(22)

where

We now integrate (21) over r1 and r2 and then over k.
The final result for the discussed correction is given by

(23)

Again, it is only natural that due to common selection
rules, the contribution of the 3S1 intermediate state is
proportional to µp + µn . We also note that the first term
in (23) is additionally suppressed by the small numeri-
cal factor

We finally return to the effect due to a finite distribu-
tion of the deuteron charge and magnetic moment. The
Zemach correction ∆f in Eq. (8) can also be easily
derived in the present approach. Using the identity

we obtain the corresponding amplitude

(24)

where

(25)

is the deuteron form factor in the zero-range approxi-
mation. We note that in our approximation, the electric
and magnetic form factors, which in the present case
enter the convection current and spin current matrix
elements, respectively, coincide and are equal to F(k).

p
p2ρp r1 r2,( )

p2 k2/4 κ2+ +
---------------------------------d

0

∞

∫ 2π
r1r2k2
--------------=

× Q κ+( ) Q r1 r2+( )–[ ]exp[
– 2κ κ r1 r2+( )–[ ] ] ,exp

Q κ2 k2/4+ .=

∆in
3( ) α

µp µn+
µd

-----------------
me

κ
------1

3
--- 2 2 2ln–( )–=

+
3α
π

-------
µp µn+

µd

-----------------
me

mp

------
mp

κ
------.ln

2 2 2ln–
3

-------------------- 0.20.=

ψ0〈 |p̂ ik r/2⋅( ) ψ0| 〉exp
k
4
--- ψ0〈 | ik r/2⋅( ) ψ0| 〉 ,exp=

Mmn
f e

2mp

---------- 
  2

µp µn+( )ω F2 k( ) 1–[ ]=

×
kmienrskrss kniemrskrss–
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2–
--------------------------------------------------------------,

F k( ) ψ0〈 | ik r/2⋅( ) ψ0| 〉exp
4κ
k
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4κ
------arctan= =
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Integration over ω leads to the following result for
the relative correction ∆f:

(26)

There is no logarithmic term in ∆f because

In fact, result (26) agrees with (8) because µp + µn = µd

within our accuracy.

Corrections (18), (23), and (26) combine into the
compact result

(27)

We note that the logarithmic part of ∆c coincides
with the corresponding logarithmic term in [8] (see
Eq. (27) therein). This is quite natural: the logarithmic
contribution is dominated by small k and cannot there-
fore be influenced by an extra power of k arising from
the recoil of the proton–neutron system as a whole.

The leading term in (27) coincides with the result
in [5].2 However, we could not find any correspondence
between our arguments and those in [5]. In particular, it
is stated explicitly in [5] that the motion of the interme-
diate proton–neutron system as a whole is neglected
there.

3. DISCUSSION OF THE RESULTS

Our total result for the nuclear-structure corrections
to the deuterium hyperfine structure, comprising contri-
butions (4), (6), (7), and (27), is

(28)

2 We are sorry for misquoting the result of [5] in our paper [8].
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Numerically, this correction to the hyperfine splitting in
deuterium is given by

(29)

It should be compared with the lacking 45 kHz
(see (3)). We believe that the agreement is quite satis-
factory if one recalls the crude nuclear model (zero-
range approximation) used here; in particular, the deu-
teron form factors calculated in the zero-range approx-
imation are certainly harder than the real ones, and the
negative Zemach correction is therefore underesti-
mated in that approximation.

We mention here that in recent paper [14], elastic
contributions and the Zemach effect were considered in
a quite different theoretical technique, but with a cer-
tain phenomenological description of the deuteron
form factors. The result is smaller than the correspond-
ing part of ours by 13 kHz.

Clearly, the nuclear effects discussed are responsi-
ble for the bulk of the difference between the pure QED
calculations and the experimental value of the deute-
rium hyperfine splitting. Calculation of this correction,
including accurate treatment of nuclear effects, would
serve as one more sensitive check of detailed models of
the deuteron structure.

∆ν 50 kHz.=
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Abstract—We show that, for the asymptotically strong (super-Schwinger) magnetic field B exceeding the crit-
ical value Bcr = m2c3/eh = 4.4 × 1013 G, the vacuum polarization effects become important not only in the
γ-range, but also for softer electromagnetic quanta, including X-rays and optical photons, and for electromag-
netic waves of radio frequencies. This is a consequence of the linearly growing term }B/Bcr present in the vac-
uum polarization in an asymptotically strong magnetic field. The results may be essential in studying reflection,
refraction, and splitting of X-rays, light and radio waves by magnetic fields of magnetars, and in considering
emission of such waves by charged particles. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although much time has passed since our first
understanding of the refracting and birefringing proper-
ties of a strong magnetic field in vacuum, the photon
splitting effect [1] and the effect of photon capture [2–8]
are the only essential consequences of them that have
been considered in a realistic astrophysical context.
Both effects are currently discussed mostly in applica-
tion to electromagnetic radiation in the γ-range. They
depend crucially on the deviation of the photon disper-
sion curve from its customary shape in the empty vac-

uum,  = |k|2, where k0 is the photon energy and k is
its momentum. For magnetic fields B below the
Schwinger critical value,

where m and e are the electron mass and charge, the
only essential source of this deviation is the singular
behavior of the polarization operator Πµν(k) near the
thresholds of creation of mutually independent electron
and positron on Landau levels n, n' by a photon (the
cyclotron resonance) [2–4] or an even stronger singular
behavior of Πµν near the points of a mutually bound
e+e–-pair (the positronium atom) formation [5–7, 9]. To
reach (at least the lower of) these positions, the photon
must belong to the γ-ray range, with its energy above or
on the order 1 MeV. For this reason, the effect of photon
capture, with its transformation into an electron–
positron pair, derived from the singular behavior of
Πµν(k), applies mostly to the γ-quanta, as long as their
propagation in a pulsar magnetosphere of traditional
pulsars is concerned. It was estimated that fields of
about B = 0.1Bcr are sufficient to provide this effect [4]

k0
2

B Bcr≤ m2c3/eh 4.4 1013×  Gs,= =

¶This article was submitted by the author in English.
1063-7761/04/9802- $26.00 © 20186
and to protect the positronium atom into which the cap-
tured γ-quantum is transformed against ionization by
the accelerating electric field in the polar gap and by
thermal photons [5–9].

Also, the Adler effect [1] of photon splitting γ  γγ
in such fields is usually discussed for γ-quanta [10–13].
There are two reasons why, again, the γ-range is impor-
tant. The first one is that the photon splitting becomes
possible in the magnetic field because the deviation of

the dispersion curve from the  = k2 law opens a kine-
matical aperture for this process. The stronger the devi-
ation, the wider the aperture (and the deviation is strong
near the thresholds). In addition, there is a strong bire-
fringence for the photons in the γ-range, because only
one eigenvalue κ2(k) of the tensor Πµν is singular near
the lowest (n = n' = 0) threshold, while the other two
eigenvalues κ1, 3(k) remain finite until the next thresh-
olds (n = 0, n' = 1 or n = 1, n' = 0) are reached. This
implies that the photons of only one polarization mode
are substantially affected by the medium. This birefrin-
gence leads to polarization selection rules in the photon
splitting process, which are well pronounced. The sec-
ond reason is dynamical. The matrix elements of the
photon splitting are subject to the same resonant behav-
ior near the thresholds as the polarization operator. The
aforesaid explains why the γ-range is first to be affected
by the magnetized vacuum.

The situation changes considerably in super-
Schwinger magnetic fields B @ Bcr , which are believed
to exist in soft γ-ray repeaters and anomalous X-ray
pulsars (see, e.g., [14]). In this asymptotic range, a lin-
early increasing term proportional to B/Bcr appears in
one of the eigenvalues, κ2, of the polarization operator
[15, 16], thus providing an extra large contribution (in
addition to the cyclotron resonance) to the refraction of
the vacuum.

k0
2
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In Section 3, we study the consequences of this phe-
nomenon for photon propagation, on the basis on the
first three leading contributions to the asymptotic
expansion of the polarization-operator eigenvalues for
large B, which have been obtained within the one-loop
approximation. One of these consequences is a fre-
quency-independent, but direction-sensitive, large
refraction index for propagation nonparallel to the mag-
netic field in one (of three) polarization modes in the
kinematical domain far from the threshold. The corre-
sponding strong polarization- and direction-sensitive
refraction occurs for electromagnetic radiation of any
frequency range, including the X-ray, optical, and radio
ranges.

In the preceding Section 2, exact results on electro-
magnetic radiation propagation in the magnetized vac-
uum are described. These follow only from the general
properties of relativistic, gauge, and charge invariance
[17] and the Onsager theorem [18]. The results in Sec-
tion 2 are valid irrespective of any approximation and
the field strength, unless the opposite is explicitly indi-
cated.

In the Appendix, the asymptotic expansion used in
Section 3 is derived.

2. ELECTROMAGNETIC EIGENMODES
IN AN EXTERNAL MAGNETIC FIELD

There are three propagating eigenmodes corre-
sponding to vacuum excitations with photon quantum
numbers in an external magnetic field B. The dispersion
law, i.e., the dependence of the energy k0 of the quan-
tum (or the frequency in the wave) on its momentum k,
is given for each mode by the solution of the equation

(1)

where k|| and k⊥  are the respective momentum compo-
nents parallel and perpendicular to magnetic field B and
k2 is the photon 4-momentum squared,

The κi in the right-hand sides in Eqs. (1) are eigenvalues
of the polarization operator [2, 3, 17].

A general consequence of the relativistic covariance
is that the eigenvalues depend on the two combinations
of the momentum specified in (1). This implies that
solutions of dispersion equations (1) have the general
structure

(2)

and that the direction of the group velocity v = ∂k0/∂k
in each mode does not coincide (for k⊥  ≠ 0) with that of
the phase velocity k/k0. To see this, we calculate the
components of the respective group velocities v ⊥  and v ||

k2 κ i k0
2

k ||
2– k ⊥

2,( ), i 1 2 3,, ,= =

k2 k ⊥
2 k ||

2 k0
2
.–+=

k0
2

k ||
2 f i k ⊥

2( ), i+ 1 2 3,, ,= =
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across and along the magnetic field B on solutions (2)
of each dispersion equation (1),

(3)

It follows from (3) that the angle θ between the direc-
tion v of the electromagnetic energy propagation and
the external magnetic field satisfies the relation

(4)

where ϑ  is the angle between the photon momentum
(phase velocity) and the external field,  ≡ k⊥ /k||.
The following statement holds: If the phase velocity

|k|/k0 exceeds the velocity of light c, i.e., if  +  >

 (or fi( ) <  in (2)), but the group velocity (3)

does not,  +  ≤ 1, then  < . The condi-
tions of this statement are fulfilled for the dispersion
laws found within approximation-dependent calcula-
tions of κi . For super-Schwinger fields, treated within
the one-loop approximation, this fact follows explicitly
from the equations in Section 3. Therefore, the photon
tends to deviate closer to the magnetic field line.

It follows from the gauge invariance that

(5)

This property implies that, for each mode, there always
exists a dispersion curve with fi(0) = 0, which passes

through the origin in the (  – , ) plane. However,
only two of these three solutions may simultaneously
correspond to physical massless particles: photons. The
third solution is a nonphysical degree of freedom, char-
acteristic of gauge theories: in a magnetic field, a pho-
ton has two degrees of freedom, the same as in an
empty vacuum. Which of the modes becomes nonphys-
ical depends on the propagation direction and on the

specific form of the function fi( ) in (2). We discuss
this point for the super-Schwinger field limit in the next
section. Massive branches of solutions of (1), with
fi(0) > 0, may also exist despite (5). For these, the num-
ber of physical degrees of freedom is three, and, hence,
all three equations (1) can simultaneously have physi-
cal solutions (see, e.g., the positronium branches
obtained in [7, 19, 20]).

v ⊥
∂k0

∂k ⊥
--------≡

k ⊥

k0
-----

∂k0
2

∂k ⊥
2

--------=

=  
k ⊥

k0
-----

1 ∂κ i/∂k ⊥
2–

1 ∂κ i/∂ k0
2

k ||
2–( )+

-------------------------------------------
k ⊥

k0
-----

f i k ⊥
2( )d

dk ⊥
2

------------------,=

v ||
∂k0

∂k ||
--------≡

k ||

k0
----.=

v ⊥

v ||
------ θtan≡ 1

∂κ i

∂k ⊥
2

--------– 
  1

∂κ i

∂ k0
2 k ||

2–( )
-----------------------+ 

  1–

ϑ ,tan=

ϑtan

k ⊥
2 k ||

2

k0
2

k ⊥
2 k ⊥

2

v ⊥
2 v ||

2 θtan ϑtan

κ i 0 0,( ) 0, i 1 2 3., ,= =

k0
2

k ||
2 k ⊥

2

k ⊥
2
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The refraction index ni in mode i is

(6)

Unlike κi , the refractive index ni is not a Lorentz scalar.
It may depend on two energy-momentum variables after
the dispersion relation is reduced to (2). Gauge invari-
ance property (5) implies that the refraction index (6) for
parallel propagation, k⊥  = 0, is exactly equal to unity for
the massless (fi(0) = 0) branches in every mode,

(7)

The electromagnetic wave propagating strictly along
the external constant and homogeneous magnetic field
propagates with the velocity of light c in vacuum, the
phase and group velocities coinciding in this case.

If, within a certain approximation, the eigenvalue κi

is a linear function of its arguments with condition (5)
being satisfied, refraction index (6) for the correspond-
ing dispersion relation depends on a single combination
of the photon energy and momentum, which is the
propagation direction ϑ . This happens in a nonresonant
situation, for instance, as described in the next section.

The polarizations of the modes are described in an
approximation-independent way [3, 17] by the rela-
tions

(8)

(9)

(10)

where e(i) and h(i) are the electric and magnetic fields in
the ith mode (i = 1, 2, 3); the cross denotes the vector
product; and boldface letters with subscripts “||” and
“⊥ ” denote vectors along the directions parallel and
perpendicular to the external magnetic field, respec-
tively. In mode 1, the electric field e is parallel to k⊥ ; in
mode 2, it lies in the plane containing the vectors k and
B; and in mode 3, it is orthogonal to this plane, which
means that mode 3 is always transversely polarized.

We note that the normalizations in Eqs. (8), (9), and
(10) are different, and we can therefore judge the van-
ishing of some components compared to others within
one equation, but not between different equations.

ni
k
k0
------ 1

κ i

k0
2

----+ 
  1/2

1
k ⊥

2 f i k ⊥
2( )–

k0
2

--------------------------+
 
 
  1/2

.= = =

ni
|| 1.=

e 1( ) k⊥

k ⊥
------k0, h 1( )–

k⊥

k ⊥
------ k||× 

 = = ,

e⊥
2( ) k⊥ k ||, e||

2( ) k||

k ||
----- k ||

2 k0
2–( ),= =

h 2( ) k0 k⊥

k||

k ||
-----× 

  ,–=

e 3( ) k0

k⊥

k ⊥
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k ||
-----× 

  , h⊥
3( )–

k⊥

k ⊥
------k ||,–= =

h||
3( ) k||

k ||
-----k ⊥ ,=
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Concerning the direction of propagation, two cases
are essentially different. If k⊥  = 0, we are talking about
longitudinal propagation. Otherwise, a Lorentz boost
exists along the external (constant and homogeneous)
magnetic field, which does not change the value of the
magnetic field; nor does it introduce an extra electric
field—it nullifies k||. Hence, the general case of nonpar-
allel propagation k⊥  ≠ 0, k|| ≠ 0 is reduced to purely
transversal propagation, k|| = 0 (in the corresponding
reference frame). One should bear in mind, however,
that the above transformation changes the photon
energy k0 and should be treated with caution when one
considers a field with curved force lines.

For transversal propagation, k ⊥ B (k|| = 0), modes 2
and 3 are transversely polarized (e(2), (3) ⊥  k) in two
mutually orthogonal planes, e(2) ⊥  e(3), while mode 1 is
longitudinally polarized (e(1) || k) with no magnetic field
in it, h(1) = 0. It should not correspond to a photon
(depending on the dispersion law).

On the contrary, for longitudinal propagation, k || B
(k⊥  = 0), modes 1 and 3 are transversely polarized
(e(1, 3) ⊥  B) and their electric field vectors lie in mutu-
ally orthogonal planes, e(1) ⊥  e(3), as they always do,
while mode 2 is longitudinally polarized (e(2) || B) and
does not contain a magnetic field, h(2) = 0. Mode 2 is
then should not correspond to a photon, whereas
mode 1 is a physical electromagnetic wave, which
matches the electromagnetic wave of mode 3: together,
they may form a circularly polarized transversal wave
because of the degeneracy property

(11)

This relation reflects the cylindrical symmetry of the
problem of a photon propagating along the external
magnetic field.

Another remark of almost general character is in
order. One might expect the possibility of Cherenkov
radiation by a charged particle moving in an optically
dense medium formed by the magnetized vacuum.
However, this effect does not take place for Cherenkov
photons softer than those with k0 = 2m. We consider
emission of a photon by an electron in a magnetic field,
unaccompanied by a change in its Landau quantum
number, n = n' (otherwise, this would be cyclotron, and
not Cherenkov, radiation). According to kinematical
analysis of the energy and momentum conservation
in [21] (and to the study [21] of analyticity regions of
the one-loop photon polarization operator in an elec-
tron–positron plasma in a magnetic field, calculated
in [18]), the Cherenkov photon with k0 < 2m can only
belong to the right lower sector

(12)

in the (  – , ) plane. The essential reason for this
is the degeneration of the electron energy with respect

κ1 k0
2 k ||

2–( ) 0,( ) κ3 k0
2 k ||

2–( ) 0,( ).=

k0
2   k || 

2 – 0, k ⊥ 
2 0 ≥≤

k0
2

k ||
2 k ⊥

2
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to the center-of-orbit position in the transversal plane.
No dynamical calculations hitherto known ensure pen-
etration of photon dispersion curves into this sector.
The only exception is a nonphysical situation owing to
exponentially strong external fields, which will be men-
tioned in subsection 3.2. We conclude that no Cheren-
kov emission of a photon with k0 < 2m is possible under
standard conditions.

3. PHOTON DISPERSION
IN A SUPER-SCHWINGER MAGNETIC FIELD

3.1. Asymptotic Expansion 
of Polarization Tensor Eigenvalues 

In the asymptotic region of supercritical magnetic
fields B @ Bcr and restricted energy of longitudinal
motion,

the three eigenvalues κ1, 2, 3(k) of the polarization oper-
ator (if it is calculated within the one-loop approxima-
tion as in [17, 22]) have the following behavior, derived
from equations of [3] (see the Appendix),

(13)

(14)

(15)

Here, α = 1/137 is the fine structure constant and C =
0.577 is the Euler constant. Equations (13) and (15) are
accurate up to terms decreasing with B as
(Bcr/B)  or faster. Equation (14) is accurate up
to terms logarithmically increasing with B. In κ1, 3 , we
also took the limit

which is not the case for κ2, where the factor

exp( /2m2B) is kept different from unity, because
it is important near the cyclotron resonance, as
explained in Section 3.2 below. The integral in (14) can
readily be calculated, but we do not need its explicit
form here.
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–( ) 1 η2–( )–

--------------------------------------------------------,

1–

1

∫

κ3 k0
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k ||
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2,( ) αk2

3π
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------- C–ln 

 =

–
α
3π
------ 0.21k ⊥

2 1.21 k0
2

k ||
2–( )–( ).

B/Bcr( )ln

k ⊥
2
 ! B/Bcr( )m2,

k ⊥
2 Bcr–
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The parts increasing with B in κ1, 2, 3 were written
in [16], and their derivation from equations of [3] is
traced in detail in [19, 20]. The linearly increasing term
in Eq. (14) was obtained in [15] in a different way
using a two-dimensional (one time, one space) dia-
grammatic technique developed to describe the asymp-
totic magnetic field regime. The logarithmic terms in
the expressions above do not dominate over the con-
stant terms unless exponentially large magnetic fields
are included into consideration.1 The derivation of all
terms in Eqs. (13)–(15), including those that do not grow
with B, is given in the Appendix using a straightforward
method different from the one applied earlier in [19, 20].
The asymptotic expressions used in [13] do not coin-
cide with ours, except for the term linear in B.

The limiting expressions (13)–(15) satisfy the exact
properties (11) and (5).

In this paper, we only deal with the transparency

region,  –  ≤ 4m2 (i.e., with the kinematical
domain where κ1, 2, 3 are real), because we are interested
in photons with k0 < 2m, or even k0 ! 2m, which never

reach the free pair creation threshold  –  = 4m2.
The eigenvalue κ2 in (14) has a singular branching point

in the complex plane of the variable (  – ) near the

lowest pair creation threshold (  – )thr = 4m2.
Thresholds of creation of e+e–-pairs with the electron
and the positron on excited Landau levels n, n' ≠ 0,

(16)

are shifted in the asymptotic regime to the infinitely
remote region. Therefore, the eigenvalues κ1, 3 , which
are responsible for photons of such polarizations that
can only create e+e– pairs with at least one charged par-
ticle in an excited Landau state, do not contain imagi-
nary parts or singular branching points in this regime.
On the other hand, eigenvalue κ2 has only one singular
branching point, which corresponds to the possibility
that an electron and a positron are created in the lowest
Landau states by the photon polarized as in mode 2.
The singular threshold behavior of (14) near the point

1 That would be unreasonable not only because such fields are
hardly expected to exist in nature, but mainly because their con-
sideration is beyond the scope of quantum electrodynamics: the
logarithmically increasing terms in (13) and (15) are associated
with the absence of asymptotic freedom in QED (cf. analogous
asymptotic behavior [23] in the Euler–Heisenberg effective
Lagrangian).
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is

(17)

As could be expected, this is the same as the behavior
of the exact one-loop expression for κ2(k) [3] near this
threshold, before the limiting transition to large fields
has been performed.

3.2. Propagation of Eigenmodes 
in the Super-Schwinger Field Limit 

If Eq. (13) for κ1 is taken as the right-hand side of
Eq. (1), the latter has only one solution, which is the
trivial dispersion law k2 = 0. When the relation k2 = 0 is
satisfied, however, the 4-potential corresponding to the
electromagnetic field of mode 1 becomes proportional
to the photon 4-momentum vector kµ , unless k|| = 0
(see [3, 19, 20]). Therefore, for nonparallel propaga-
tion, mode 1 corresponds to only the gauge degree of
freedom discussed in Section 2, with no real electro-
magnetic field associated with it.

The solutions of Eq. (1) for the second mode i = 2
shown in the figure is dominated by the cyclotron reso-
nance (17), which causes a strong deviation of the dis-
persion curves from the shape k2 = 0 (the light cone). As

κ2 k( ) 2αBm3

Bcr
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A family of dispersion curves for mode 2 (solutions of
Eq. (1) with Eq. (14) taken for the right-hand side) below

the threshold  –  = 4m2. The values of the external

magnetic field corresponding to the curves are (from left to
right) B = 10Bcr, 100Bcr, and 1000Bcr. The straight line is
the light cone dispersion curve for B = 0. The dashed hori-
zontal line marks the maximum to which the photon with
the energy k0 may proceed if k0 < 2m. The variables along

the axes are plotted in the units of 4m2 ≈ 1 MeV2. 

k0
2

k||
2
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  ∞ near the threshold on the dispersion curves,

the quantity Bcr/m2B must be kept different from
zero even in the large-field limit under consideration.

The behavior of the dispersion curves of mode 2
near the threshold for super-Schwinger magnetic fields
B @ Bcr is the same as for the “moderate” fields B ≤ Bcr ,
and therefore it also presents the photon capture effect
for photons harder than 2m, known for such fields [4]:

if we calculate (4) near the threshold  –  = 4m2

using Eq. (17) as κ2 to obtain

(18)

we conclude that the angle θ between the external mag-
netic field and the direction of the wave packet propa-
gation in mode 2 tends to zero, the faster, the stronger
the field. If the photon energy k0 is slightly less than 2m,
the photon may be close to the threshold when its k|| dis-
appears. At this upper point, the wave packet stops,
because the group velocity length

equal to /  according to the second line in (3) and
(18), disappears together with k||.

Applied to the conventional pattern of a pulsar mag-
netosphere, this effect acts as follows [4]. A curvature
γ-quantum emitted tangentially to the magnetic force
line, i.e., placed initially at the origin in the figure, then
evolves along its dispersion curve as it propagates in the
dipole magnetic field with its force line curved, because
the components k|| and k⊥  are changing. The maximum

value of the ordinate  –  occurs at k|| = 0, and it is

the photon energy squared, . If the latter is greater
than 4m2, the photon may reach the horizontal asymp-
tote in the figure. Here, its group velocity dk0/dk⊥  across
the magnetic field disappears, dk0/dk⊥   0, and hence
it propagates along the magnetic field and does not
cross the threshold, because the other branch of the dis-
persion curve, which passes above the threshold, is sep-
arated from the initial branch by a gap. A mixed state, a
photon pair, is actually formed [4], analogous to the
polariton known in condensed matter physics. The
massless part of its spectrum is represented by the dis-
persion curves in the figure. The photon gradually turns
into the e+e– pair and exists mostly in that form when it
is finally propagating along the magnetic force lines.
This capturing effect is important for the formation of
pulsar radiation with fields of B > 0.1Bcr, because it pre-
vents the screening of the accelerating electric field in the
polar gap (if the binding of the electron–positron pair
into a positronium atom is taken into account [5–9]). It
may also be essential for magnetars with fields of
approximately 1014–1015 G.
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The new features introduced by super-Schwinger
fields are that the dispersion curves for mode 2 in the
figure already deviate from the light cone far from the
resonance region. This means that, although photons
softer than 2m = 1 MeV cannot proceed to the values of
the ordinate in the figure higher than their energy
squared (corresponding to k|| = 0), they can still reach
the region where the transversal group velocity dk0/dk⊥
becomes much less than unity and are therefore cap-
tured in a trajectory almost parallel to the magnetic
field. This is how the capture effect extends to photon
energies below the limit k0 = 2m. The cyclotron singu-
larity at the pair-creation threshold in such fields is so
strong that even low-energy photons that are unable to
create a pair are sensitive to it provided that they belong
to mode 2!

In addition to extension of the photon capture effect
to softer photons, taking super-Schwinger fields into
consideration produces another impact. It leads to a
large direction-dependent refraction of mode 2 electro-
magnetic waves of low frequency. To see this, we con-
sider the limit

(19)

in Eq. (14), which reduces to neglecting  –  in the
integrand in (14). Then, (14) becomes

(20)

The exponential factor in (20) cannot be significant
within region (19). Dispersion equation (1) for mode 2
(i = 2) then has solutions that express the photon energy
k0 as a function of its transversal and longitudinal
momentum,

(21)

Equation (21) analytically presents the linear parts of
the dispersion curves in the figure adjacent to the origin
for various values of B. The components v ⊥ , || of the
group velocity, Eq. (3), calculated from (21) are

(22)

The modulus of the group velocity squared is now
given by

(23)

where ϑ  is the angle between the photon momentum
and the field,  = k⊥ /k||. Equation (23) has the max-
imum value of unity for the parallel propagation, ϑ = 0,
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in accordance with the general statement in Section 2,
and is minimum for perpendicular propagation, ϑ = π/2.

Expression (4) for the angle θ between the direction
of the electromagnetic energy propagation and the
external magnetic field in the super-Schwinger limit for
mode 2 becomes

(24)

Because  < , the photon emitted tangentially
to curved force lines bends towards these lines. This is
also related to low-frequency radiation.

The refraction index (6) in mode 2 for  –  !
4m2 and B @ Bcr is given by

(25)

The refraction index obtained depends on the direction
of the photon momentum, characterized by the angle ϑ ,
but does not depend on its energy. In other words, there
is no frequency dispersion in a wide range from slow
radio waves up to soft γ-rays with k0 ! 2m. This is a
consequence of the fact that only linear parts in
momenta squared were actually left in κ2 (correspond-

ingly,  in (2) is proportional to  according
to (21)).

Refraction index (25) reaches its maximum for
transversal propagation (k|| = 0, ϑ  = π/2),

(26)

For B ~ 10Bcr , the deviation of refraction index (26)
from unity exceeds that value for gases at atmospheric
pressure in the optic range by an order of magnitude;
for B ~ 1000Bcr , it reaches a value characteristic of
transparent liquids and glass; the refraction index (26)
becomes equal to that of diamond (n = 2.4) for B = 27 ×
1016 G.

Contrary to the case of mode 2 just considered, the
polarization tensor eigenvalue κ3 in (15) contains nei-
ther the contribution linearly growing with the external
field nor the resonance. For mode 3, dispersion equa-
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tion (1) with its right-hand side given as (15) has the
solution

(27)

where

(28)

The well-known absence of asymptotic freedom in
QED manifests itself in the minus before the logarithm
in (28). This results in pathological consequences for
the fields as large as Bcrexp(3π/α). In this domain, the

coefficient of  in (27) first becomes less than zero
and then greater than unity as the field grows. The cor-
responding dispersion laws are nonphysical because
they lead to a group velocity greater than unity. In the
negative slope case in (27),

the dispersion curve enters sector (12), acceptable for
Cherenkov radiation. However, this is the Cherenkov
emission of tachyons! It is also odd that, in the latter
case, electromagnetic waves can only propagate inside
the cone

with its axis along the external field, irrespective of the
way they are produced. This domain of exponentially
large external fields is of no interest to us in this paper.

For fields that are not exponentially large, with log-
arithmic terms on the order of unity, one should treat all
the terms marked by the coefficient α/3π in (27) as
small. Then, finally, the dispersion law for mode 3
becomes

(29)

Notably, the field-containing logarithmic terms have
cancelled at this point. Thus, dispersion law (29) of
mode 3 is saturated in the sense that, unlike Eq. (21) for
mode 2, it has reached the universal form, independent
of the external field in the super-Schwinger limit. The
refraction index of mode 3 corresponding to (29) is

(30)

As in (25), the maximum refraction in mode 3 is achieved
in perpendicular propagation, ϑ  = π/2:

(31)

k0
2 k ||

2 k ⊥
2 Z α /3π–

Z
----------------------,+=

Z 1
α
3π
------ B

Bcr
-------ln C– 1.21– 

  .–=

k ⊥
2

e
B

Bcr
------- 0.21– C– 3π/α–( ) 1,>exp>

0 ϑ 1– α
3πZ
----------+<tan<

k0
2 k ||

2 k ⊥
2

1 α
3π
------– 

  .+=

n3 1
α
6π
------ ϑ .sin

2
+=

n3
⊥ 1 3.8 10 4– .×+=
JOURNAL OF EXPERIMENTAL 
This refraction index is of the order of that of gaseous
ammonia and cannot be made larger by increasing the
external field any further.

4. CONCLUSIONS

We have found that, in the asymptotic case of exter-
nal magnetic fields B that can be orders of magnitude
larger than the Schwinger value 4.4 × 1013 G, the refrac-
tive capacity of the magnetized vacuum grows unlimit-
edly with this field for electromagnetic radiation
belonging to polarization mode 2, but reaches satura-
tion at a moderate level of corrections on the order of
α/3π for mode 3. For the “parallel energy” of the pho-

ton not close to the cyclotron resonance,  –  !
4m2, the refraction effects for mode 2 substantially
exceed the above small corrections, typical of the non-
asymptotic domain, already for B ~ 10Bcr . In the range
of photon frequencies/energies extending from zero to
soft γ-rays, a regime is established for which the disper-
sive properties of the magnetized vacuum are indepen-
dent of the photon frequency/energy in each mode, but
depend on the direction of its propagation. Apart from
the fact that the refraction index in mode 2 for the prop-
agation nonparallel to the external field increases
numerically with field, it is remarkable that the angle
between the group velocity and the direction of the pho-
ton momentum also increases, the wave packet being
attracted by the force line of the external field. The
effect of γ-quantum capture by a strong magnetic field,
known to exist due to resonance phenomena associated
with free and bound pair creation, is thus extended to
lower energy ranges. Therefore, not only hard γ-rays,
but also X-rays, light, and radio waves experience the
strong dispersive influence of the magnetized vacuum
when the magnetic fields are on the order of magnitude
of those estimated to exist in magnetars. In view of this,
electromagnetic energy canalization phenomena may
become important not only within the traditional con-
text described in Section 3.2, but also in application to
scattering of electromagnetic waves falling onto the
magnetic field from outside [2]. These may be, for
instance, the X-rays emitted from the accretion disk or
from the pulsar surface outside the region where the
magnetic field enters it. The problem of electromag-
netic radiation being bent by the dipole magnetic field
of a neutron star was recently addressed in [24], and the
competition of this process with the effects of gravity
was considered.2 We insist, however, that such effects
cannot be adequately treated disregarding the refraction
index dependence on the direction of propagation and
using the quadratic-in-field expressions for the polar-
ization operator, only valid in the low-field limit, as is
the case in [24].

2 The author is indebted to H. Mosquera Cuesta, who drew his
attention to that work.
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APPENDIX

In this Appendix, the asymptotic expansion pre-
sented in Section 3.1 is derived from expressions in [3,
19, 20].

The three eigenvalues κi, i = 1, 2, 3 of the photon
polarization operator in the one-loop approximation,
calculated using the exact electron propagator in an
external magnetic field, can be expressed as linear com-
binations of the three functions Σi ,

(A.1)

where the new notation

(A.2)

is introduced for the momentum variables, with k2 =
z1 + z2. Here, Σi are dimensionless functions of the three
ratios Bcr/B, z2Bcr /m2B, and z1Bcr /m2B, given by

(A.3)

(A.4)
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(A.5)

where

(A.6)

and

(A.7)

(A.8)

(A.9)

The notation “lim” in (A.4) stands for the asymptotic
limit

(A.10)

The fact that Σi is independent of the fourth possible
dimensionless variable z1/z2 seems to be an approxima-
tion-independent manifestation of analyticity proper-
ties due to dispersion relations of the Kramers–Kronig
nature.

We first consider . It is independent of the pho-
ton energy and momentum. With 

(A.11)

Eq. (A.4) can be represented as

(A.12)

The integrals in (A.11) are explicitly calculated to give

(A.13)
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Our goal is now to find the asymptotic behavior
of (A.12) as

(A.14)

The integrands in (A.12) do not contain singularities at
t = 0, but would diverge as t  ∞ if we precisely set
the limiting value

We must therefore divide the integration domain into
two parts. In addition,

as t  ∞, and, hence, we have to add and subtract this

limit beforehand in the integrand of . This is not
required in treating the cases of i = 1 and 3, because

sufficiently fast. Thus, we have

(A.15)

where T is an arbitrary positive number, δi2 is the Kro-
necker delta, and C is the Euler constant. We have omit-
ted the exponentials in the first two integrals after the
second equality sign in (A.15) because the resulting
integrals converge. We then used the asymptotic expan-
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sion of the standard exponential–integral function (up
to terms linearly decreasing with B/Bcr) [25]:

(A.16)

The most slowly decreasing term neglected in

is

because

as t  ∞. Other neglected terms decrease at least as
fast as Bcr /B, because 3gi(t)/sinht – δi2 decreases expo-
nentially, as exp(–2t), for i = 2, 3 when t is large.

Numerical calculations using the MATHCAD code
make it possible to evaluate the constants

(A.17)

involved in (A.15) as

(A.18)

Finally, in the asymptotic regime B/Bcr @ 1, we have
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up to terms decreasing at least as fast as integral powers
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The asymptotic expansion of (A.7)–(A.9) in powers
of exp(–t) and exp(ηt) produces an expansion of (A.5)
into a sum of contributions coming from thresholds (16),
the singular behavior at the threshold points originating
from the divergences of the t-integration in (A.5) near
t = ∞ (see [3, 19, 20] for details). The leading terms in
the expansion of (A.7)–(A.9) at t  ∞ are

(A.21)

(A.22)

(A.23)

Changing to τ = t/eB and taking into account that
M(∞, η) = 1/2 (see (A.6)), we evaluate (A.5) near the
lowest singular thresholds (n = 0, n' = 1 or n' = 0, n = 1
for i = 1 in (16), n = n' = 1 for i = 3, and n = n' = 0 and
n = n' = 1 for i = 2) as

(A.24)

After integration over τ, we obtain, e.g.,

(Α.25)

The pole in the above expression, caused by the integra-
tion over t, turns into the inverse square root singularity
after the integration over η (cf. the derivation of (17)
from (14)). In the limit (A.14), (A.20) when B @ m2,
B @ |z1|, no singularity remains in this expression (it is
shifted to the infinitely remote region) and we are left
with

The same situation occurs for  and for higher

thresholds (also for contributions into  other than

σ1 t η,( )
tsinh

------------------- 
 

t ∞→

1 η–
2

------------ t η 1–( )( ) ),exp=

σ2 t η,( )
tsinh

------------------- 
 

t ∞→

1 η2–
4

-------------- 1 2 2t–( )exp+( ),=

σ3 t η,( )
tsinh

------------------- 
 

t ∞→

2 2t–( )exp .=

Σi
2( ) 2αeB

π
-------------- η τ m2τ–( )expd

0

∞

∫d

1–

1

∫=

×
σi eBτ η,( )

eBτsinh
-------------------------- 

 
t ∞→

×
z2

2eB
----------–

z1 1 η– 2+( )
4

---------------------------τ– 
 exp 1– .

Σ1
2( ) 4αeB

π
-------------- η 1 η–( )d

1–

1

∫=

×
z2/2eB–( )exp

4m2 4 1 η–( )eB z1 1 η2
–( )+ +

--------------------------------------------------------------------------


–
1

4m2 4 1 η–( )eB+
-------------------------------------------

 .

Σ1
2( ) 2α

π
-------

z2

2eB
----------– 

 exp 1– 
  .=

Σ3
2( )

Σ2
2( )
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
those coming from the first term in (A.22)). The result
of the calculation analogous to (A.25) is

We conclude that, in the limit (A.14), (A.20), there are
no cyclotron resonances in eigenvalues κ1,3 according

to (A.1), and that  does not introduce a singular
contribution into κ2. Consequently, there is no reason to
keep the ratio eB/z2 finite as B  ∞, in Σ1, 3, because
z2 may grow infinitely on the dispersion curve only
when there is a resonance.

We must, therefore, consider only the limit when all

the three arguments in  tend to zero. Handling this
limit in (A.5) is straightforward:

(A.26)

Both integrations here converge, and, hence, this con-
tribution decreases as z1/eB and z2/eB when B  ∞.
This is to be neglected within our scope of accuracy.

The situation is different with . The resonance
behavior is present here due to the contribution of the
leading asymptotic term (1 – η2)/4 in (A.22). It is
responsible for the first threshold at –z1 = 4m2 (the
ground Landau state n = n' = 0 in (16)), which remains
in place as B  ∞. We must, therefore, keep the ratio
z2/eB nonzero in passing to the limit of large fields
(because z2  ∞ near the singular threshold on the
dispersion curve) for the contribution of this term to

. The contributions of nonleading terms in expan-

sion (A.22) to  are nonsingular and should be
treated along the same lines as Σ1, 3 above. They
decrease as z1/eB, z2/eB and are to be neglected. Finally,
for (A.5), we are left in the limit (A.14), (A.20) with

(A.27)

With t = eBτ and the asymptotic form M(eBτ, η) = 1/2,
eBτ @ 1, we finally obtain the leading contribution to
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 in the limit (A.14), (A.20):

(A.28)

Combining Eqs. (A.28) and (A.19) in accordance
with (A.1), and bearing (A.2) and (A.3) in mind, we
obtain expressions (13)–(15) for the polarization oper-
ator eigenvalues if we also neglect the constant and log-

arithmic terms in κ2 coming from  in (A.19) as
compared to the terms increasing linearly with B.
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Abstract—The actual enthalpies and entropies of clustering and the properties of clusters characterizing their
catalytic effect on the rate of relaxation of vibrational degrees of freedom are used to compute (N2O)N and
(CO2)N cluster formation and growth in gases expanding into a vacuum through a sonic nozzle. Relations are
found between characteristics of gaseous N2O and CO2 in the nozzle source and in the jet flow containing clus-
ters and those of the molecular cluster beam formed from the axial region of the jet. Calculated and measured
values of the following cluster-beam characteristics are compared: intensity, flux density for molecules in the
beam, scaling parameters for transition to well-developed condensation in the jet, cluster size distribution func-
tion, mean cluster size, and internal cluster temperature. Realistic characterization of cluster properties ensures
good agreement between calculated and measured results and provides a basis for adequate description of the
mechanisms of molecular cluster formation in supersonic jets issuing from sonic nozzles characterized by
extremely rapid decrease in gas temperature and highly nonequilibrium distribution of energy over molecular
degrees of freedom. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

We present a model that describes clustering in
molecular gases freely expanding into a vacuum and
that predicts the characteristics of a cluster beam
formed in the axial region of the jet. Even though clus-
tering by bulk condensation in supersonic jets has been
a subject of considerable interest [1, 2], the dependence
of condensation kinetics on cluster size characteristics
and the influence of nonequilibrium in a molecular-gas
jet flow on cluster formation have yet to be studied.

Free expansion of gases into vacuum is character-
ized by extremely high rates of decrease in gas temper-
ature (~106 K/s). Despite the rapid drop in gas density
along the jet axis (nj ~ (d∗ /x)2, where d∗  is the sonic-
nozzle exit diameter and x is the distance from the noz-
zle exit along the jet axis), high degrees of gas super-
saturation are reached for certain values of nozzle
source pressure P0 and temperature T0, leading to con-
densation [3]. The kinetics of the initial stage of con-
densation are described by the theory of homogeneous
nucleation [4–6]. At high degrees of gas supersatura-
tion, the condensation nuclei are clusters consisting of
several molecules. Under these conditions, the liquid
droplet theory developed in [4–6] cannot be applied to
describe the formation and growth of clusters [7, 8].
Furthermore, the rapid drop in the density nj gives rise
to a highly nonequilibrium distribution of energy over
molecular degrees of freedom. The vibrational, rota-
tional, and (during collisionless expansion) transla-
tional degrees of freedom are frozen consecutively
1063-7761/04/9802- $26.00 © 200197
downstream along the jet [9, 10]. Relaxation of inter-
nal degrees of freedom resumes after molecules aggre-
gate into clusters [11–15], impeding condensation in
the jet [16].

The nozzle beam method is widely used to study
condensation processes and properties of weakly bound
molecular clusters. This has motivated studies of rela-
tions between gas characteristics in the nozzle source,
characteristics of the jet flow of a condensing gas, and
cluster properties. In this paper, we propose a model of
condensation based on cluster size characteristics and
compute the formation of (N2O)N and (CO2)N clusters
in gases freely expanding into vacuum to find relations
between the characteristics mentioned above. Numeri-
cal results are compared with those obtained in beam
measurements.

2. COMPUTATIONAL MODEL

The present model is based on the results obtained
by measuring the binding enthalpy h for small (N2O)N

and (CO2)N clusters as a function of the cluster size N
[17, 18]. These results can be used to express a key
parameter in condensation theory, the work of cluster-
ing ∆G(N) (see [4–6]), in terms of actual physical prop-
erties of a cluster. Indeed,

(1)

in an isothermal process, where –Nh(N) and ∆S(N) are
the changes in enthalpy and entropy associated with

∆G N( ) Nh N( )– T∆S N( ),+=
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clustering in a gas at temperature T and pressure P (the
cluster temperature is Tc = T).

The change in entropy associated with aggregation
of N molecules into a cluster can be represented as the
sum of changes in the entropies corresponding to inter-
nal and external degrees of freedom. The change in the
entropy of translational and rotational motion is calcu-
lated in explicit form, since it corresponds to a change
in the number of these degrees of freedom only. The
entropy of intermolecular vibrations in a cluster is set
equal to the vibration entropy in a liquid, because clus-
ters of size N < 10 are “liquid” at typical temperatures
of cluster formation in jets (between 100 and 150 K)
[19–21]. For larger clusters, the jumps in the enthalpy
and entropy of a cluster due to phase transition (solidi-
fication) are taken into account. The resulting expres-
sion for ∆G(N) is (see [7, 8])

(2)

Here, kB is the Boltzmann constant;  is the constant
preexponential factor in the expression for pressure
over a flat liquid surface; Tf(N) and L(N) are the cluster
melting point and heat of fusion, respectively; Θ = 0 at
T > Tf; and Θ = 1 at T < Tf. The difference in entropy of
translational and rotational degrees of freedom between

a cluster and a molecule, , is due to the difference
between their masses and moments of inertia and, for
CO2 and N2O linear molecules, to the extra rotational
degree of freedom of a cluster.

For clusters of size not greater than N ≈ 10, the heat
of fusion can be neglected (see [19–21]), and expres-
sion (2) reduces to

(3)

An analysis of expression (3) leads to the following
important conclusions.

1. The dependence of ∆G on N is determined by the

first two terms, while the contribution due to 
reduces the value of ∆G, but weakly depends on N.

2. The activation barrier in the formation of small
clusters (the maximum of ∆G(N)) arises as a result of
competition between the enthalpy term –Nh and the
entropy-related term

Aggregation of molecules into a cluster is always
advantageous in terms of energy, but clustering is
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impeded by the decrease in entropy associated with
aggregation of molecules.

3. The key entropy-related term in (3) can be rewrit-
ten as

where v g = kBT/P is the average volume per molecule in

a gas and v l ≡ kBT/  is the coordinate part of the aver-
age phase space volume per particle in a liquid (i.e., the
phase space volume per molecule in a small cluster is
set equal to the phase space volume per particle in a
liquid).

4. The factor N – 1 in the entropy-related term in (3)
is due to the thermal motion of a cluster as a whole.
Thus, the entropy change associated with clustering is
substantially reduced by taking into account the exter-
nal degrees of freedom for a small cluster. However,
their contribution to the enthalpy of clustering is on the
order of kBT, which is much smaller than Nh. This
method for taking into account the thermal motion of a
cluster is better justified as compared to those proposed
in [4, 5].

The dependence (T) is ignored in (2) and (3)

because (T) varies weakly at the low gas tempera-
tures characteristic of jet flows. In calculations with
constant T0 and varying P0, the dependence h(T) is also
neglected, because its influence on condensation is
essential only for the small clusters forming in a narrow
jet region where temperature varies within a range of
20 K.

Following the approach proposed in [22], we repre-
sent gas condensation in a jet flow as two interrelated
processes. One of these is the formation of condensa-
tion nuclei of size N = N∗ . The rate of nucleation is
computed by solving classical kinetic equations [23].
The other process is the growth of cluster size starting
from N = N∗ . The rate of cluster growth is determined
by the difference in flux between the gas molecules col-
liding with the cluster and the molecules evaporating
from the cluster. The inward flux is calculated in the
approximation of free-molecular flow for a spherical
cluster. The outward flux of evaporating molecules
depends on the saturation pressure Pc over a cluster,
which is found by using the condition

(4)

and expression (2). The cluster temperature Tc is deter-
mined by the difference of the inward and outward
energy fluxes, i.e., by the energy released as a result of
condensation onto a cluster and the energy carried away
by evaporating molecules. Since evaporating molecules
are in thermal equilibrium with the cluster, the energy

kBT N 1–( ) v g/v l( ),ln

Pl
0

Pl
0

Pl
0

∂∆G
∂N

-----------
P Pc= T, Tc=

0=
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carried away by each molecule released from a cluster
is

(5)

where h'(N) is the change in enthalpy due to release of

a molecule from a cluster and  is the specific heat
associated with the internal cluster degrees of freedom.
The factor ξ allows for a non-Maxwellian velocity dis-
tribution for molecules evaporating from the cluster.
For a molecule having two rotational degrees of free-
dom, ξ = 3 [24]. Similarly, the energy per molecule
released by a condensing gas is

Using these assumptions, we obtain the following
expression for the rate of cluster size variation:

(6)

Here, νN is the frequency of molecule–cluster collisions
expressed as

(7)

where σ1 is the gas kinetic cross section of a molecule,
m is the molecule mass, and r is a constant introduced
to allow for loose packing of molecules in a cluster and
calculated by using the density of molecules in the liq-
uid phase. The physical meaning of (6) is as follows.
The release of the latent heat of condensation keeps the
temperature of a growing cluster above the ambient gas
temperature. The flux of evaporating molecules
increases exponentially with Tc. As a consequence, the
temperature Tc tends to a steady value at which the out-
ward and inward heat fluxes are balanced. Therefore,
the cluster growth rate in a supersaturated gas is mainly
determined by heat transfer to the gas. We note here that
even a small concentration of easily condensing mole-
cules in a carrier gas, such as H2O in CO2 or CO2 in N2,
can initiate premature condensation of the carrier gas,
because fast heat transfer accelerates aggregation of the
additive into clusters, which play the role of nucleation
centers in carrier-gas condensation. As a result, hetero-
molecular (mixed) clusters are produced in jets [25–27].
The rate of heat transfer is proportional to νN and Tc − T.
Therefore, the second term in (6) determines the frac-
tion of condensing molecules in the total number of
molecules colliding with the cluster. In our computa-
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tions, we assume local equilibrium in the incident-mol-
ecule–cluster system, because the fraction of clustered
molecules calculated under this assumption agrees with
experimental data. For example, it was found in [28]
that about 3% of the molecules colliding with a
(CO2)n = 2–4 cluster in a supersonic expanding flow con-
dense on the cluster. This finding is consistent with our
results. Our computations show that the fraction of con-
densing molecules increases with N, reaching about 8%
for N = 10.

The functions L(N) and Tf(N) in (2) were con-
structed by using numerical results [19], and their vari-
ation revealed their weak effect on computations of
condensation in a jet. The function h(N) in (2) and (3)
was determined from the results of bolometric mea-
surements of the enthalpies of bonding for (CO2)N and
(N2O)N clusters [17, 18] and from the results obtained
by modeling small clusters of CO2 molecules [19]. Fig-

ure 1 shows h( ) measured by varying P0 (1) and
T0 (2) for gaseous N2O. Triangles in Fig. 1 represent
numerical results borrowed from [19]. The data repre-
sented by symbols 1–3 were approximated as follows:

(8)

Here, B and h2 are empirical parameters and  is the
heat of sublimation. The constant ω and the value of N0
at which the functions in (8) are matched were deter-
mined by the continuity conditions for h(N) and its
derivative at N = N0. The approximation (8) with B =
7064 J/mol and h2 = 831 J/mol obtained for (N2O)N
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Fig. 1. Size dependence of binding enthalpy h(N) in
(N2O)N (1, 2, 4, 6) and (CO2)N (3) and enthalpy h'(N) of
release of an N2O molecule from a cluster (5).
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clusters corresponds to curve 4 in Fig. 1. This curve was
used in (5) to find the enthalpy h'(N) (curve 5). Curves
a and b are the heat of sublimation and heat of vapor-
ization for liquid N2O, respectively. Relying on the
droplet theory of nucleation [4] based on the concept of
cluster surface tension, we calculated curve 6 for h(N),
setting the surface tension equal to 2.4 × 10–2 N m–1.
This value was obtained by using Eq. (154.9) from [29]
in the low-temperature (Tc) limit. It is clear that curve 6
disagrees with experimental data.

The condensation equations were combined with
the system of equations describing one-dimensional
expansion of an inviscid non-heat-conducting perfect
gas with isentropic exponent γ0 = 1.3 upstream of the
nozzle exit and γ = 1.4 in the supersonic flow region.
The contribution of thermal motion of clusters to the
gas pressure in the jet flow was neglected (see below).
The streamtube geometry was prescribed by using the
results calculated in [30] for γ = 1.4, which are consis-
tent with the experiment described in [31] in the case of
free expansion of CO2 and N2O without condensation.
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Fig. 2. Variation of critical cluster size N∗ , mean cluster size

, condensate mass fraction qj, nucleation rate I, gas
supersaturation ε, gas temperature Tj , and cluster tempera-
ture Tc along an N2O jet.
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Vibrational relaxation of molecules and the heat of con-
densation released in clustering increase the jet angle
and have a certain effect on cluster properties (see
below).

The cluster beam intensity J (molecular flux density
in the beam) was computed in the continuum approxi-
mation upstream of the skimmer (a hollow conical dia-
phragm with an opening that does not distort the flow in
a near-axis region of the jet). Downstream of the skim-
mer, particles were assumed to move without collisions
with equal velocities U along the beam axis. Under
these conditions, the expression for J corresponding to
a small angle of observation has the form (see [8])

(9)

Here, Jm and Jc are the free-molecule and cluster partial
beam intensities, respectively; njU is the flux density
for molecules entering the skimmer; 2ϕ is the angle
spanned by the skimmer opening at the point where J is
measured; qj is the mass fraction of the condensate
(clustered molecules) entering the skimmer;

is the Mach number for molecules; and fj(N) is the clus-
ter size distribution normalized to unity at the skimmer
entrance.

The function fj(N) was computed by partitioning the
nucleation region (about 10d∗  along the jet axis) into

100 cells. The growth of the clusters forming in each
cell was computed separately.

3. NUMERICAL RESULTS 
AND COMPARISON WITH EXPERIMENT

The starting parameters required to compute con-
densation of N2O and CO2 in jets issuing from a sonic
nozzle, B and h2 in (8), were determined by comparing

the computed and measured J and  (mean cluster size
in a beam) as functions of P0 at T0 = 285 K. The best
agreement was achieved with B = 7064 and 7479 J/mol
and h2 = 831 and 997 J/mol for N2O and CO2, respec-
tively. The functions h(N) and h'(N) used in computa-
tions of N2O condensation are shown in Fig. 1 (curves 4
and 5, respectively).

Figure 2 shows how the basic characteristics of the
gas and cluster phases vary along the axis of an N2O jet
when P0 = 7 × 104 Pa, T0 = 285 K, and d∗  = 1.0 mm.

Under these conditions, the clustering begins near the

J Jm Jc+ 0.5n jUϕ2γM2= =

× 1 q j–( ) q j N f j N( ) Nd

2

∞

∫+ .

M
mU2

γkBT
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nozzle exit (at x/d∗  < 1). The highest nucleation rate, I ≈
5 × 1027 m–3 s–1, and the smallest nucleus size, N∗  ≈ 4,

are observed at x/d∗  ≈ 1.2. These extremely high and

low values of I and N∗ , respectively, are explained by a

high gas supersaturation in the jet, ε = Pj/Ps ≈ 1000, due
to an extremely high rate of decrease in gas temperature
Tj in a free jet. Here, Pj is the static gas pressure at a
point xj on the jet axis, and Ps is the gas pressure on the
saturation curve that corresponds to Tj . The function
ε(x/d∗ ) computed for an isentropically expanding gas

with γ0 = 1.3 upstream of the nozzle exit and γ = 1.4
downstream of the nozzle is shown in Fig. 2 by a
dashed curve, and an analogous function computed for
condensing gas is shown by a solid curve. The rapid
drop in ε within the interval 1.2 < x/d∗  < 2 is caused by

the release of heat of condensation associated with
steep growth of the condensate fraction qj in the jet. The

curves representing qj and  in Fig. 2 have similar
shapes at x/d∗  > 1.5; i.e., the increase in qj is due to an

increase in  rather than in the number of clusters. The
limit values approached at large x/d∗  are qj = 15% and

 = 68 for the values of P0, T0, and d∗  used in the

computations. The corresponding concentration of
clusters of size  in the jet is about 0.2%. The cluster
concentration rapidly decreases with increasing P0,

because the positive slope of (P0) is greater than that
of qj(P0). The heat release due to condensation in the jet
causes the variation of Tj to deviate from an isentropic
curve. The function Tj(x/d∗ ) is shown in Fig. 2 by a

solid curve; the isentropic curve extended to x/d∗  > 1,

by a dashed curve. Since the latent heat of condensation
is absorbed by clusters, we have Tc > Tj . The curve of
Tc(x/d∗ ) shown in Fig. 2 was computed for clusters of

size N = . The difference Tc – Tj is tens of kelvins.
However, it is obvious that the difference Tc – Tj for
strongly bound atomic clusters forming in a jet can be
as high as hundreds of kelvins, and “hot” clusters of this
kind can be detected by analyzing thermal radiation
spectra [32].

Note that Tc depends on the enthalpy of vaporization
h'(N) per molecule released from a cluster (see Eq. (5)
and Fig. 1). Figure 1 demonstrates that the function
h'(N) has a sharp maximum. The maximum value of
h'(N) is close to the enthalpy of sublimation (shown by
curve a in Fig. 1). This implies the existence of a range
of cluster size in which clusters are characterized by
higher stability with respect to vaporization of mole-
cules. We call such clusters hyperstable. According to
our computations, the presence of hyperstable clusters
manifests itself by peaks in curves of Tc(N) at N ≈ 20

N j

N

N j

N j

N j

N j
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and 16 for (N2O)N and (CO2)N clusters, respectively.
The temperature Tc corresponding to N > 30 in the
beam far from the nozzle depends weakly on N; in par-
ticular, Tc = 94 ± 2 and 105 ± 2 K for (N2O)N and (CO2)N

clusters, respectively. Electron diffraction measure-
ments have shown that the nanosized (CO2)N clusters
produced in a jet are solid and their temperature is Tc =
108 ± 10 K [33], which agrees well with the values of
Tc computed and h(N) measured in the present study
(see Figs. 1 and 2).

In our computations, the decrease in N due to vapor-
ization of molecules does not exceed one percent when
the cluster residence time in the beam is about 10–3 s
and the temperature of clusters entering the skimmer is
about 1000 K. Under these conditions, Tc decreases to
78 and 88 K for (N2O)10 and (N2O)100 clusters, respec-
tively. In the general case, the effect of radiative heat
transfer on N and Tc may also play an important role.
The values of N and Tc for weakly bound low-tempera-
ture clusters can be affected by the radiation coming
from the heated walls of the vacuum chamber. When
dealing with strongly bound atomic clusters character-
ized by a high initial temperature, one must take into
account the radiation emitted by these clusters. In par-
ticular, we detected the thermal radiation of C60 clusters
and found that the corresponding rate of radiative loss

is proportional to  [34].

Important characteristics of gas condensation and
clustering in a jet include the cluster size distributions
in the jet and beam, fj(N) and f(N), respectively. These
functions are required to obtain correct cross sections
for various processes involving clusters [35].

Figure 3 shows fj(N) (curves 1–3) and f(N) (curves 3'
and 4) for (N2O)N clusters. Curves 1–3 and 3' were
obtained for T0 = 285 K, d∗  = 1 mm, and various values
of x/d∗  and P0. Curves 1 and 2 correspond to x/d∗  = 3

and 100, respectively, at P0 = 3.7 × 104 Pa. Curves 3 and
3' were obtained for P0 = 8.5 × 104 Pa at x/d∗  = 100 and
at a large distance from the skimmer (i.e., for ϕ ! 1 in
the beam, see Eq. (9)), respectively. Curve 4 is the bell-
shaped f(N) measured in [36] by means of mass spec-
trometry at P0 = 3.2 × 105 Pa, T0 = 215 K, and d∗  =
0.35 mm.

Curve 1 in Fig. 3 demonstrates that fj(N) is a mono-
tonically decreasing function of N near the nozzle exit.
This behavior is characteristic of steady-state conden-
sation [23]. As the distance from the nozzle increases,
the curve of fj(N) tends to become bell-shaped and

exhibits a small local maximum when  < 60 (see
curve 2). The bimodal form of curve 2 is explained by
the presence of hyperstable clusters (see curve 5 in
Fig. 1). With increasing , the bell-shaped portions of
fj(N) and f(N) tend to have a more regular form (see

Tc
5

N j

N j
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202 VOSTRIKOV, DUBOV
curves 3 and 3' in Fig. 3). However, the functions fj(N)
and f(N) tend to have “tails” corresponding to small
clusters (see curves 3 and 3'). This change in fj(N) and
f(N) correlates with the behavior of I, ε, Tc (see Fig. 2),
and gas density as functions of x/d∗ . Figure 2 shows

that I vanishes with increasing x/d∗  while qj/  ≈
const. This means that the cluster size increases,
whereas the number of clusters remains nearly con-
stant. The condensation nuclei that form far from the
nozzle cannot grow because the ambient gas density
rapidly decreases. These condensation nuclei are
responsible for the tails of fj(N) and f(N). Comparing
the tails of fj(N) and f(N) (curves 3 and 3' in Fig. 3), one
finds that the tail almost disappears in the beam and the
function f(N) shifts toward larger N. These changes are
caused by the increase in the concentration of heavier
clusters due to their narrower transverse spread (the
transverse particle velocity in the beam is v ⊥  ∝
(mN)−1/2). Expression (9) implies that f(N) ∝  Nfj(N) and

the increase in  depends on the width of fj(N):  –

 = δj , where δj is the relative variance. Accord-
ing to our calculations of δj(Nj), the value of δj is a
nonmonotonic function varying between 0.3 and 0.7
at x/d∗  = 100 [7, 8].

The behavior of the computed f(N) agrees with
experimental observations [2, 36, 37]. However, they
were interpreted without taking into account the evolu-
tion of fj(N) in jets. In particular, the model proposed
in [37] explained the development of a bell-shaped f(N)
by coalescence of small clusters in a jet. However, even
if the probability of cluster–cluster aggregation in col-
lisions is high [38], the effect of coalescence on f(N) is

N j

N N

N j N j

0 10 20 30 40 50 100 200 300 400 500 600

1000 2000 3000 40000

5 × 10–3
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3
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N

N
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0

Fig. 3. Size distribution functions for (N2O)N clusters com-
puted at x/d∗  = 3 (1) and x/d∗  = 100 (2, 3) for P0 = 3.7 ×

104 (1, 2) and P0 = 8.5 × 104 Pa (3, 3') on the jet axis (1–3)
and in the beam (3'). Curve 4 is f(N) measured in an (N2O)N
beam [36].
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weak because the frequency of collisions between them
in a jet is low:

Aggregation of condensation nuclei cannot cause any
significant increase in cluster size either. Because h
strongly depends on N (see Fig. 1), cluster–cluster
aggregation results in a sharp increase in Tc , which
stimulates vaporization. Our estimates show that coa-
lescence does not lead to a faster increase in , as com-
pared to molecule-by-molecule condensation.

Note that the small-cluster tail in a measured f(N)
should mainly be attributed to experimental conditions.
For example, a tail is observed when f(N) is measured
at the skimmer exit, i.e., in the jet (see curves 3 and 3'
in Fig. 3). In mass spectrometry of clusters ionized by
electron impact, the tail appears as a result of cluster
fragmentation and ejection of small cluster ions from
large clusters [36, 39, 40].

In Fig. 3, the width of a computed f(N) (curve 3') is
noticeably smaller than that of a measured one
(curve 4). This is an expected discrepancy, because the
additional jet expansion due to the heat release associ-
ated with cluster nucleation was not taken into account
in the gasdynamic part of our computations.

We also performed a comparative numerical analy-
sis of cluster properties in a jet and in a beam, using the
simplified approach developed in [22]. It was assumed
in [22] that the cluster growth rate scales with N2/3, i.e.,
with the cluster surface area. Under this assumption,
fj(N) can be disregarded and computations are simpli-
fied. We found that this simplification leads to poor
agreement between computed and measured results,
which is explained by the complex form of the function
fj(N) (see Fig. 3). For this reason, the results presented
below were obtained in computations taking into
account the evolution of fj(N).

Beam intensity is the most reliably measured char-
acteristic of cluster beams [41], because its measure-
ment does not require primary ionization of clusters.
Expression (9) implies that beam intensity is sensitive
to the onset and development of condensation in a jet.
Accordingly, we compared the computed and measured
results in terms of J as a function of P0 and T0 in the first
place. Note that weakly bound molecular clusters char-
acterized by a wide range of  must be produced in a
large-scale apparatus providing a high rate of evacua-
tion of the gas issuing from the nozzle. Our experi-
ments were conducted in a large-scale beam generator
equipped with cryogenic vacuum pumps [42], which
made it possible to study clustering of molecular gases
in a wide range of  for various P0, T0, and d∗  [18, 25,
39, 43]. In what follows, the data obtained by using this
apparatus are compared with computed results.

νN N–

νN N1/6q j

N
---------------------.≈

N

N

N
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In Fig. 4, the solid curves of qj and M were com-
puted at x/d∗  = 100 for N2O jets, whereas the solid

curves of J, Jm, , and condensate fraction q = (J –
Jm)/J correspond to N2O beams at a large distance from
the skimmer (where ϕ ! 1, see (9)). The dashed curve
is a measured J(P0). These results were obtained for
T0 = 285 K and d∗  = 1 mm. The leftmost portions of the
J(P0) curves are merged in Fig. 4. Since similar curves
were obtained for CO2, we present only the dash-and-

dot curve of (P0) computed for CO2 at T0 = 300 K and
d∗  = 1.9 mm. In Fig. 4, open and closed symbols repre-
sent the mean cluster size measured for (N2O)N and
(CO2)N , respectively. Symbols labeled 1, 2, and 3 cor-

respond, respectively, to the , , and

 ion sizes measured with a retarding potential
analyzer [35] (the ions were created in the region of
intersection of cluster and electron beams). Symbols
labeled 4 represent the lowest pressure at which (N2O)2
and (CO2)2 dimers were detected by means of mass
spectrometry in [18] and [42], respectively. The results
of measurements performed by other authors are shown
by symbols 5–9 in Fig. 4. These data were matched
with computations (in terms of P0, T0, and d∗ ) by using
the scaling parameters for condensation downstream of
a sonic nozzle considered below. The data represented
by symbols 5 and 6 were obtained in the mass spectro-

metric studies of  and  ion currents
reported in [36] and [37], respectively. Symbol 7 denotes

the values of  obtained by measuring the 
ion current with a retarding potential analyzer [44].
Symbols 8 and 9 correspond to the electron diffraction
measurements of  for (CO2)N clusters reported in [33]
and [45], respectively. The fact that the computed val-
ues of  systematically exceed the measured ones is
explained as follows. In experiments, inelastic colli-
sions of clusters with electrons reduce N because of
cluster evaporation and fragmentation [2, 36, 39]. Size

 was overestimated since the computations did not
take into account the decrease in the overall molecular
collision frequency caused by the additional jet expan-
sion due to vibrational relaxation in molecule–cluster
collisions and heat release by condensation. Neverthe-
less, the computed values of  are in fair agreement
with the measured ones. Moreover, the computed
results agree with experiment in terms of behavior of
J(P0). This observation will be discussed now in some
detail.

Both the bending of curves in Fig. 4 and the
decrease in Jm(P0) are associated with gas condensation
in a jet. An increase in qj(P0) leads to a rise of gas tem-
perature in the jet (see Fig. 2), which reduces the Mach

N
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number (see Fig. 4). The decrease in M(P0) in the inter-

val of P0 where  is small reduces the slope of J(P0)
and causes Jm(P0) to decrease (see (9)). According

to (9), intensity increases with  as qj M. Our com-
putations showed that the bending curves of J(P0) flat-
ten out for a gas characterized by a low latent heat of

condensation and a slowly varying (P0), in agree-
ment with experiment [46]. The fact that the computed
J is higher than the measured one is explained by the
use of simplifying assumptions in the gasdynamic part
of the computations. The numerical model ignores the
“background” deceleration and scattering of molecules
due to their interactions with those scattered by the skim-
mer and those penetrating into the low-density parts of
the jet and the beam from the vacuum chamber [3].
These effects are more pronounced for lower M, i.e., for
higher rates of heat release by condensation. Clusters
are less sensitive to background deceleration as com-
pared to molecules because of difference in mass.
Therefore, the measured Jm(P0) decreases more rapidly,
as compared to the computed one, with increasing gas
flow rate (i.e., with increasing background gas density
in the vacuum chamber). The resulting curve of J(P0)
has a sharp minimum [3, 47], and the corresponding
beam tends to contain more clusters as P0 increases. In
effect, the curve of q(P0) becomes even steeper (see
Fig. 4). Computations are further simplified by using
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Fig. 4. Mach number M, condensate fractions qj (in jets) and
q (in beams), total beam intensity J, intensity Jm of the free-

molecule beam component, mean cluster size  in N2O
beam (solid curves), and mean (CO2)N cluster size (dash-
and-dot curve) computed as functions of nozzle source
pressure. Also shown are J(P0) measured for N2O beams

(dashed curve) and  measured for (N2O)N and (CO2)N
clusters (open and closed symbols, respectively). Vertical
arrows indicate the threshold pressures for well-developed
condensation in N2O and CO2 jets.
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204 VOSTRIKOV, DUBOV
the Mach number Mc(N) = M in (9) for all clusters
entering the skimmer, with M calculated by assuming
continuum-flow expansion upstream of the skimmer.
However, a real jet flow characterized by a low value of
P0d∗  involves a transition to collisionless gas expansion

and “frozen” M at a certain xf /d∗  = . The ensuing
effect on the properties of a free-molecule beam was
analyzed in [10]. In cluster beams, the value of (N)
decreases with increasing N. This explains why the
downstream acceleration of particles due to heat release
by condensation was observed only for molecules or
clusters with N ≤ 4 [46]. The cluster velocity U does not
increase when the cluster size is large [48]. The effects
described here affect the measured J(P0) and explain
their disagreement with the computed curves shown in
Fig. 4.

We set γ = 1.4 in computing the expansion down-
stream of the nozzle; i.e., we assumed that the vibra-
tional degrees of freedom of molecules were frozen.
This assumption is valid when expansion is not associ-
ated with condensation [9]. However, when the degree
of gas supersaturation in a jet reaches a critical level,
one must allow for transfer of vibrational energy to a
cluster in almost every molecule–cluster collision and
subsequent rapid thermalization of the transferred
energy in the cluster [11–13]. According to the experi-
mental observations reported in [16], even a low degree
of vibrational excitation impedes the formation of con-
densation nuclei in a jet and a higher gas density in the
nozzle source is required to reach the condensation
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Fig. 5. Mach number M, condensate fraction qj in jets, total

beam intensity J, and mean cluster size  in N2O beams
(solid curves) computed as functions of nozzle source tem-
perature. Also shown are J(T0) (dashed curve) and  (sym-
bols corresponding to 1 and 3 in Fig. 4) measured for N2O
beams. The vertical arrow indicates the threshold tempera-
ture for well-developed condensation in N2O jets.
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threshold. Instead of using the size-dependent rates of
V–T relaxation in molecule–cluster collisions obtained
for N2O and CO2 [13] in our condensation computa-
tions performed for various T0, we relied on a simpler
computational procedure. Good agreement between
numerical results and experiment was achieved when a
change in T0 was combined with a certain correction of
the dimer binding enthalpy h2 in (8): when T0 was
increased, the enthalpies h2 for (N2O)2 and (CO2)2 were
reduced relative to their values at T0 = 285, and vice
versa. This procedure took into account the impeding
effect of vibrational energy on the formation of conden-
sation nuclei and cluster growth. Good agreement of
computed functions J(T0) and (T0) with experiment
was achieved when the change in h2 was equal to the
change in the specific vibrational enthalpy of gas in the
nozzle source. This is illustrated by the numerical
results presented in Fig. 5.

Solid curves in Fig. 5 represent the beam intensity J,
the mean cluster size , the Mach number M, and the
condensate fraction qj as functions of temperature at
x/d∗  = 100. Both computed and measured J(T0) are
shown in arbitrary units, and their minima are matched.
The existence of a minimum in J(T0) is attributed to the
mechanisms responsible for the sharp increase in the
slope of the J(P0) curves in Fig. 4. Figure 5 also shows

the values of  corresponding to our experimental
results represented by symbols 1 and 3 in Fig. 4. The
values of T0 used to compute the curves of  plotted
here were obtained by invoking a scaling parameter for
gas condensation in jets issuing from sonic nozzles
[49]. The constants involved in the scaling parameter
are found in the present study (see below). The com-
puted results are in good agreement with experiment.
The slightly higher values of the measured (T0) at
low T0, as compared to the numerical results, are
explained by the lower accuracy of the scaling parame-
ter as applied to a wider interval of T0 (see below).

The parameter values P0 = P0, c and T0 = T0, c corre-
sponding to J(P0, T0) increasing with the condensate
fraction in the jet (indicated by arrows in Figs. 4 and 5)
were called the threshold parameters for well-devel-
oped condensation in the jet [18]. Performing computa-
tions for various P0, T0, and d∗ , we obtained relations
between P0, c , T0, c , and d∗  that are consistent with
experimental results and with the scaling parameter
proposed in [49]:

(10)

where Ac, α, and β are empirical constants. Varying
P0 , T0 , and d∗ , we found that β = 0.7 and 0.6, α = 4.85

and 4.45, Zc = 5.2 × 10–8 Pa mm0.7 K–4.85 and 3.5 ×
10−7 Pa mm–0.6 K–4.45 for N2O and CO2, respectively. It
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can readily be shown that scaling parameter (10) is
associated with a constant molecular collision fre-
quency in a jet under conditions of gas supersaturation
[3]. Therefore, Eq. (10) provides an accurate relation
between the condensate characteristics obtained for dif-
ferent values of P0 , T0 , and d∗ .

According to (10), the threshold parameters for
well-developed condensation obey the quasi-isentropic
relation

between gas characteristics in the nozzle source and
those in the jet. Therefore, one can define a quasi-isen-
tropic exponent γeff for expansion of a condensing gas
by the relation α = γeff/(γeff – 1). Computations and
experiments in which T0 and d∗  were varied from 240
to 320 K and from 0.5 to 5.0 mm, respectively, showed
that γeff = 1.26 for N2O and 1.29 for CO2. For these
gases, γ0 ≈ 1.3 at T = 290 K [50]. The fact that the values
of γeff were found to be slightly lower than γ0 is
explained by the heat release associated with the con-
densate nucleation and vibrational relaxation preceding
the onset of well-developed condensation as P0 is
increased. Because of the lower slope of the P–T phase
transition curve for N2O as compared to CO2, the
supersaturation conditions in the N2O jet are reached at
a higher gas density in the nozzle source. Accordingly,
gaseous N2O carries a greater initial amount of vibra-
tional energy, as compared to CO2, and γeff(N2O) <
γeff(CO2). It should also be noted that the constants
in (10) are valid for a narrow interval of T0. This clearly
explains why experimental data lie above the computed

(T0) curve in Fig. 5.

4. CONCLUSIONS

Overall, the proposed computational model based
on a realistic physical characterization of clusters pro-
vides a basis for acquiring comprehensive and reliable
information about the mechanisms of cluster formation
and growth in supersonic free jets of molecular gases.
The model can be used to find relations between gas
characteristics in the nozzle source, the jet, and the
beam formed from an axial part of the jet.

A natural extension of the model of gas condensa-
tion in supersonic jets should rely on a more accurate
description of the nucleation kinetics. The inherent dif-
ficulties of the classical kinetic theory (which ignores
temperature dependence, nonequilibrium effects, and
discrete variation of size) can be dealt with by simulat-
ing directly a sequence of elementary acts of condensa-
tion of C molecules to a CN cluster (CN + C  CN + 1).
The number of such reactions is restricted because of
the small size of condensation nuclei, which will sim-
plify their simulation.

P0T0
γ0/ γ0 1–( )–

P jT j
γ0/ γ0 1–( )–

=

N
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Abstract—Recently, it has been observed that the effective dipolar interactions between nuclear spins of spin-
carrying molecules of gas in closed nanocavities are independent of the spacing between all the spins. We derive
an exact time-dependent polarization for all spins in the spin-1/2 ensemble with spatially independent effective
dipolar interactions. If the initial polarization is on a single (first) spin, P1(0) = 1, then the exact spin dynamics
of the model exhibits periodic short pulses of the polarization of the first spin, typical of systems having a large
number N of spins. If N @ 1, then within the period 4π/g (2π/g) for odd (even) N-spin clusters, with g standing
for spin coupling, the polarization of spin 1 switches quickly from unity to the time-independent value of 1/3

over a time interval of about . Thus, spin 1 spends almost the entire time in the time-independent con-
dition P1(t) = 1/3. The period and the width of the pulses determine the volume and the form factor of the ellip-
soidal cavity. The formalism is adapted to the case of time-varying nanofluctuations of the volume V(t) of cav-
itating nanobubbles. If the coupling g(V(t)) is varied by the Gaussian-in-time random noise due to the variation
of the volume V(t), then the envelope of the polarization peaks passes irreversibly to 1/3. The polarization
dynamics of a single spin exhibit a Gaussian (exponential) time dependence when the correlation time of

fluctuations of the nanovolume is larger (smaller) than , where  is the variance of the
g(V(t)) coupling. Finally, we report exact calculations of the NMR line shape for the N-spin gaseous aggre-
gate. © 2004 MAIK “Nauka/Interperiodica”.

g N( )
1–

δg( )2〈 〉
1/2–

δg( )2〈 〉
1. INTRODUCTION

The nature of ergodicity as a fundamentally impor-
tant element for a consonant description of statistical
mechanics is currently being discussed in the context of
NMR [1]. Spin dynamics is ergodic if the initial polar-
ization prepared at a single (first) spin is spread over the
system, leading over time to the spatially uniform dis-
tribution of polarization, as expected on the basis of
simple physics. On the other hand, nonergodic behav-
ior, which was recently observed numerically in the
nuclear spin-1/2 1D chains with the general XYZ spin
Hamiltonian [2], enters such that the time-averaged
polarization of the first spin turns out to be several times
larger than the time-averaged polarization of any other
spin in the chain. This observation of nonergodicity has
been extended to 1D chains and rings with the XY
Hamiltonian [3], demonstrating analytically that the
time-averaged polarization of the first spin differs by a
factor of 1.5–2 from the time-averaged polarization of
all other spins in the chain. These considerations in 1D
spin clusters address the problem of the nature of
ergodicity for different spin Hamiltonians. Motivated
by the study of nonergodic spin dynamics and because
an exact solution is a fortuitous exception in statistical
mechanics, we assume in this paper that spin interac-

¶This article was submitted by the authors in English.
1063-7761/04/9802- $26.00 © 20207
tions can be considered independent of the spacing
between the spins rather than having an r–3 dependence.

Recently, a spin Hamiltonian with space-indepen-
dent spin couplings has been applied for exploring the
NMR spectra of the gas of spin-carrying molecules
undergoing fast thermal motion within nonspherical
cavities [4]. In that report, the authors arrived at the
space-independent effective spin couplings by motion-
ally averaging the exact dipolar Hamiltonian over uni-
formly distributed spatial coordinates of the spins in
nanometer-size cavities. This technique is expected to
have promising application for determining pore
shapes and sizes [5] by NMR spectra.

With regard to the effective nuclear spin Hamilto-
nian with infinite-range couplings, it is noteworthy that
this type of interactions has also been proposed in the
theory of nanoelectrodes [6, 7]. There, the infinite-
range dipolar nuclear interactions are induced indi-
rectly due to the fast energy transfer between the elec-
tron and nuclear spins. On the coarse-grain time scale
of the fast electron spin dynamics, the slow effective
nuclear spin dynamics is governed by an effective
nuclear spin Hamiltonian with infinite-range interac-
tion. Quite apart from its importance as a physical
model in NMR experiments for the many-spin aggre-
gate in a confined volume [4, 6, 7] and few proton mole-
cules [8], the model with infinite-range spin interac-
004 MAIK “Nauka/Interperiodica”
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tions is of fundamental interest in its own right because
it makes it possible to treat the three-dimensional case
exactly, without any reference to 1D spin ordering. It
represents the quantum nonequilibrium version of the
exactly solvable equilibrium spin model [9], has a map-
ping to the BCS pairing Hamiltonian of superconduc-
tivity [10], and has long been considered a test for
many-body problems in higher spatial dimensions,
D @ 1. The objective of this paper is to present the
exact solution of nonergodic dynamics with an infinite-
range spin Hamiltonian in the N-spin ensemble.

To our knowledge, the only result reported on this
model is that of Waugh [11], who announced (without
proof) that the time-averaged polarization of the first
spin is exactly equal to (N + 2)/3N and the polarization
of any other spin is exactly 2/3N for an odd numbered,
N, spin cluster. To clarify the problem of spin dynamics,
the present paper reports a detailed analytic theory on
the average polarization for both odd- and even-num-
bered spin clusters; it also gives a theory on spin
dynamics that is entirely missing in [11]. A condensed
form of this paper was published in [12]. A brief over-
view of the present paper is as follows. In Section 2, we
construct the effective nuclear spin Hamiltonian of
spin-carrying molecules in a nanocavity. Section 3
gives the formalism required to obtain the exact time-
dependent polarization. This is followed by Section 4,
which discusses three issues of the polarization dynam-
ics that are amenable to the techniques of Section 2: the
nonergodicity of the polarization dynamics of a single
spin in the nanocavity, the polarization dynamics of a
single spin within a fluctuating nanobubbles, and the
spectral line shape of the nuclear spin ensemble.
Finally, Section 5 summarizes the results of the calcu-
lations and compares the results obtained with the
known analytic results for the XY Hamiltonian.

2. EFFECTIVE NUCLEAR SPIN HAMILTONIAN 
IN A NANOCAVITY

The purpose of this section is to construct an effec-
tive spin Hamiltonian  that governs spin dynamics of
spin-carrying molecules in a nanosized cavity on the
coarse-grain temporary scale on the order of 10 ps. At
these space-time scales, the effective spin Hamiltonian
differs from the exact dipolar Hamiltonian; in particu-
lar, the many-body spin Hamiltonian  has a high
symmetry that permits the exact solution for the spec-
trum and, as a result, the exact derivation of the polar-
ization dynamics of the gas within the nanocavity. In
this section, we summarize the main ideas of [4]; how-
ever, in deriving the effective spin Hamiltonian  by
averaging over spin spatial coordinates, we generalize
the effective spin coupling to the case of a nonperfect
gas in the nanocavity.

H

H

H

JOURNAL OF EXPERIMENTAL 
The starting point of the derivation of operator  is
the expression

(1)

for the density matrix with completely specified coor-

dinates  and momenta  of N
spin-carrying molecules. The propagator U(t) is associ-
ated with the time-dependent exact dipolar Hamilto-
nian (in frequency units)

(2)

where γ stands for the gyromagnetic ratio, Inα (α = x, y,
z) specify the spin-1/2 operators, and θij(t) is the instant
polar angle between the vector rij(t) from ri(t) to rj(t)
and the external magnetic field B.

A cornerstone fact for the construction of an effec-
tive spin Hamiltonian is the significant difference
between the time scale of the relaxation in the phase
space rN – pN and the time scale of the spin dynamics
under the Hamiltonian in Eq. (2). Actually, for hydro-
gen gas at room temperature and atmospheric pressure,
the following estimations hold. The average concentra-
tion

and the mean free path

for the radius of a molecule a ≈ 10–8 cm and the thermal
velocity  ≈ 105 cm/s. Then, a simple order-of-magni-
tude calculation leads us to expect that for a gas in the
cavity with a size of , ≈ 10 nm, the Knudsen diffusion
coefficient is

$ ≈ , ≈ 10–1 cm2/s,

the characteristic time scale of the spatial relaxation of
the gas (due to the diffusive reflection from the wall of
the pore) to the spatially homogeneous distribution is

and the characteristic time scale of the velocity relax-
ation towards the Maxwell distribution is

These time scales tv and tdif are well separated from the
NMR time scale tnmr = 10–4–10–3 s associated with the

H

ρ t In rn t( ) pn t( ), ,{ } n 1=
N,( )

=  U t( )ρ 0 In rn 0( ) pn 0( ), ,{ } n 1=
N,( )U 1– t( ),

rn t( ){ } n 1=
N pn t( ){ } n 1=

N

H t( ) hi j, t( )
1 i j≤ ≤

N

∑ ,=

hi j, t( ) γ2
"P2 θij t( )cos( )rij

3– t( ) IiI j 3IizI jz–( ),=

n 2.7 1019 molecules/cm3,×≈

λ nπa2( ) 1–
10 4–  cm≈=

v

v

tdif ,2
/$ 10 11–  s,≈≈

tv ,/v 10 11–  s.≈≈
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dipolar interaction in Eq. (2). The smallness of the
parameter

(3)

where

allows one to determine the average nuclear spin
Hamiltonian governing the behavior of the nuclear
spins over coarse-grain time intervals ∆t obeying

(4)

Averaging the exact Hamiltonian over time ∆t is per-
formed to the zeroth order in the perturbation expan-
sion in powers of the parameter ε, yielding an average
(or effective) Hamiltonian [13]

(5)

with corrections on the order of 2(ε1).
The decisive point of the following treatment is the

replacement of time integration in Eq. (5), with integra-
tion over spatial coordinates within the confined region.
Equating the temporal averaging with the spatial aver-
aging makes sense under the ergodic hypotheses [14],

(6)

where the notation implies that a representative point
lying in the whole phase space rN – pN, while moving
over a time interval t (trel ! t ! tnmr), spends only a frac-
tion,

of the entire time t within the volume drNdpN, with E
being the total energy. Relation (6) incorporates the
Gibbs stochastic level of description into the dynamical
treatment of molecular collisions. The phase space
degrees of freedom are assumed to relax to their equi-
librium distribution at a given temperature T.

We introduce the equilibrium pair distribution func-
tion for molecules 1 and 2,

(7)

ε
trel

tnmr

-------- 10 7–
 ! 1,= =

trel max tv tdif,( ),=

trel ! ∆t ! tnmr.

hi j,
1
∆t
----- hi j, ri t'( ) r j t'( ),( ) t',d

0

∆t

∫=

δt drN d pN,( )
t

------------------------------- Z
1– E

kT
------– 

  drNd pN ,exp=

Z 1– E
kT
------– 

  drNd pNexp

D2 r1 r2,( )

=  

r3
3… r3

N
U rN( )

kT
---------------– 

 expd

V

∫d

V

∫

r3
1… r3

N
U rN( )

kT
---------------– 

 expd

V

∫d

V

∫
------------------------------------------------------------------,
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where U(rN) denotes intermolecular electrostatic inter-
actions (recall that ||U ||/||H || ≈ 107 [15]). Then, taking
ergodicity (6) for granted, the evolution of the spin
degrees of freedom on the coarse-grain time scale ∆t in
Eq. (4) is governed by the static (time-independent)
effective Hamiltonian

(8)

with space-independent pair couplings g for any pair of
spins i and j,

(9)

The effective operator  involves only the (slow) spin
operators, whereas the (fast) spatial coordinates of the
nucleus (labeled by indices i and j) are integrated out.
On the coarse-grain scale ∆t, any nuclear spin “feels”
the field that is independent of the spatial coordinates of
all the other spins flying within the nanocavity, but it
depends on the quantum states of those spins.

The effective spin coupling g encodes the informa-
tion about the shape and size of the nanocavity. The pri-
mary objective of the preceding discussion is to present
the expression for the coupling g in Eq. (9) for an ellip-
soidal nanocavity.

For perfect hard-sphere molecules within the nano-
cavity, the pair distribution function is given by 

 

for the molecules i and j in the cavity. Hence, the aver-
aging in Eq. (9) gives

(10)

where the function θ(x) (= 1(0) for x > 0(< 0)) excludes
the intersection of two hard spheres having a diameter
σ. In this paper, we use the remarkable fact [4] that the
volume V of the nanocavity enters the expression for
the effective coupling g in Eq. (10), which itself enters
the polarization (defined below in Section 3), giving
rise to a dependence of the polarization on the volume
of the nanocavity that is by no means as trivial as sim-
ply proportional to the volume.

The transformation of coordinates r1 and r2 to the
relative coordinate r12 = r1 – r2 and the coordinate of the

H hi j, , hi j,

1 i j<≤

N

∑ g IiI j 3IizI jz–( )
1 i j<≤

N

∑= =

g γ2
" r3

i r3
jD2 ri r j,( )P2 θijcos( )rij

3– .dd

V

∫
V

∫=

H

D2 ri r j,( ) V 2–=

g
γ2

"F
V

------------,=

F
1
V
--- r3

1 r3
2θ r1 r2– σ–( )P2 θ12cos( )r12

3– ,dd

V

∫
V

∫=
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center of gravity r = (r1 + r2)/2 (see Fig. 1) reduces form
factor F in Eq. (10) to the form

(11)

It is convenient to assume that the initial point of the
vector r12 = r1 – r2 starts at the origin of the frame of ref-
erence xyz connected with the ellipsoid (see Fig. 1).
Straightforward integration over r12 in Eq. (11), see,
e.g., [16], yields the sought-for form factor:

(12)

Here, ε is the eccentricity of the ellipsoid with major
axes a and b = c. Equation (12) shows that the depen-
dence of the form factor on the angle α between the z
axis of the reference frame of the ellipsoid and the Z
axis of the laboratory frame of reference is factored out.

F θ r1 r2– σ–( ) r3
12P2d θ12cos( )r12

3– .

V

∫=

F IπP2 αcos( ),=

I

2
3
--- 2 1

ε2
---- 1– 

  1
1
3
--- εarctanh– 

  , a b,≥+

2
3
--- 2 1

ε 2
------- 1+ 

  1
1
ε
----- εarctanh– 

  , a b.≤–








=

Z ||B

spin-1/2 probe
z

y

X
Y

α

x

r12

θ

nanocavity

φ

Fig. 1. Schematic representation of a nanocavity partially
occupied by spin-carrying molecules undergoing rapid ther-
mal motion.
JOURNAL OF EXPERIMENTAL
For a @ b, we have ε = 1 and I = 2/3. For a = b, we have
ε  0, and Eq. (12) gives I = 0. For a ! b, |ε|  ∞
and I = 2/3 – 2 = –4/3. These limiting cases confirm the
result reported in [4].

3. POLARIZATION DYNAMICS

We consider the spin Hamiltonian  of an N-spin
cluster in a uniform external magnetic field B parallel to
the Z axis of a fixed reference frame XYZ and the space-
independent spin couplings g in Eq. (10),

(13)

where ω = γB denotes the Zeeman frequency and ζ is an
arbitrary factor.

The standard way of approaching the N-spin aggre-
gate is to find the polarization at the nth spin at time
instant t given the initial polarization at the first spin,

(14)

The Hamiltonian in Eq. (13) can be rewritten as (up to
the constant gN(1 – ζ/2)/4)

(15)

where

is the total spin and

is its projection on the z axis. The polarization Pn(t) in

Eq. (14) is unchanged if we modify the Hamiltonian 
in Eq. (15) to the effective one,

(16)

In addition, the equivalence of polarizations Pn(t) of all
spins except for the first one, as well as time conserva-

H

H ω Inz

n 1=

N

∑=

+
g
2
--- ζ ImzInz ImxInx– ImyIny–{ } ,

m n≠

N

∑

Pn t( )
tr iHt( )exp I1zexp iHt–( )Inz{ }

tr I1z
2{ }

-----------------------------------------------------------------------.=

H ωIz
g
2
--- ζ 1+( )Iz

2 g
2
--- I2,–+=

I In

n 1=

N

∑=

Iz Inz

n 1=

N

∑=

H

H'
g
2
--- I2.–=
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tion of the total polarization , makes it pos-

sible to focus on the first spin only,

(17)

where the dimensionless time scale is defined as τ =
gt/2.

A powerful tool for investigating the problem in
Eq. (17) is the theory of coupling of angular momenta
[17, 18]. To describe it, we consider the total spin clus-
ter composed of two subsystems A and B. The sub-
system A has only the spin I1 = IA , and the remaining
fragment B of the spin cluster has the spin IB , with the
total spin being I = IA + IB . The states of the two sub-
systems A and B are coupled together within the state of
the whole system A ⊗ B via the Clebsch–Gordan (CG)
coefficients

(18)

where IA = 1/2 and mA = ±1/2 are, respectively, the spin
and its magnetic quantum numbers for the first spin,
and IB and mB = m – mA are the spin and its magnetic
quantum numbers of fragment B. For IB = 0, only I = 1/2
and m = ±1/2 are allowed. For IB ≥ 1/2, the allowed I
and m are as follows: I = IB ± 1/2, –I ≤ m ≤ I. The CG
coefficients are given by (see, e.g., [19])

(19)

The two pairs of independent variables (IB, mB) and
(IA = 1/2, mA = ±1/2) are used for determining the trace
in Eq. (17) for the whole N-spin system A ⊗  B,

(20)

Pn t( )
n 1=
N∑

P1 τ( )
tr iτ I2( )exp I1z iτ I2–( )I1zexp{ }

tr I1z
2{ }

---------------------------------------------------------------------------,=

IA IB I m, , ,| 〉

=  CIA mA, ; IB mB,
I m,

IAmA| 〉 IBmB| 〉
mA 1/2±=

mB m mA–=

∑ ,

C1/2 1/2; IB m 1/2–,,
IB 1/2+ m,

C1/2 –1/2; IB m 1/2+,,
IB 1/2– m,

=

=  
IB 1/2 m+ +

2IB 1+
----------------------------- 

 
1/2

,

C1/2 –1/2; IB m 1/2+,,
IB 1/2+ m,

C1/2 1/2; IB m 1/2–,,
IB 1/2– m,

=

=  
IB 1/2 m–+

2IB 1+
----------------------------- 

 
1/2

.

tr …{ } w IB( )

IB IB
min=

NB/2

∑=

× IA IB I m, , ,〈 |… IA IB I m, , ,| 〉 ,
m I–=

I

∑
I IB 1/2–=

IB 1/2+

∑
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where NB = N – 1 is the number of spins in fragment B;

the minimal value of IB is  = 0 for even NB and

 = 1/2 for odd NB . The factor

(21)

is the number of ways of grouping NB individual spins-
1/2 into the total spin IB . The factor w(IB) satisfies the
relation [17, 18, 20],

(22)

The right-hand side of Eq. (22) is the number of states
for each allowed eigenvalue mB of the fragment B. 

To deal with the diagonal evolution matrices in
Eq. (17), we introduce additional bases of the bra,
〈IA, IB, I ', m ' |, and ket, |IA, IB, I ', m ' 〉 , vectors in the Hil-
bert space *(IA) ⊗  *(IB) for fixed values IA = 1/2 and
IB; we then use the completeness of the 2(2IB + 1)
orthonormal basis vectors belonging to the space
*(IA) ⊗  *(IB),

(23)

and, finally, insert the representation of unity in
Eq. (23) in front of the rightmost operator I1z in
Eq. (17), whose matrix elements are given by

(24)

With these algebraic steps, we immediately obtain the
polarization P1(τ) in terms of the CG coefficients as

(25)

IB
min

IB
min

w IB( )
2IB 1+
NB 1+
-----------------

NB 1+
1
2
---NB IB 1+ + 

 
 

=

w IB( )
IB mB≥

NB/2

∑
NB

1
2
---NB IB+ 

 
 

.=

1* IA( ) * IB( )⊗

=  IA IB I' m', , ,| 〉
m' I–=

I

∑
I' IB 1/2–=

IB 1/2+

∑ IA IB I' m', , ,〈 | ,

IA IB I' m', , ,〈 | I1z IA IB I m', , ,| 〉 δm m',=

× mAC1/2 mA; IB, m' mA–,
I' m', C1/2 mA; IB, m mA–,

I m, .
mA 1/2±=

∑

P1 τ( ) 2
NB 1–( )–

w IB( )

IB IB
min=

NB/2

∑=

×    δ m m ' , 

I m I

 

≤ ≤

 

–

 

I

 

'

 

m

 

'

 

I

 

'

 

≤ ≤

 

–

 ∑  

I

 

B

 

1/2–

 

I I

 

B

 

1/2+

 

≤ ≤

 

I

 

B

 

1/2–

 

I

 

'

 

I

 

B

 

1/2+

 

≤ ≤

 ∑

× iτ I I 1+( ) I' I' 1+( )–{ }( )exp

× mAC1/2 mA; IB m' mA–,,
I' m', C1/2 mA; IB m mA–,,

I m,

mA 1/2±=

∑ 
 
  2

.
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For the term IB = 0, only the single pair (I = 1/2, I ' = 1/2)
is allowed in the sum in Eq. (25), and for IB ≥ 1/2, the
four pairs of (I, I') must be distinguished in this sum
depending on the (+) or (–) sign in the expressions,

(26)

Armed with the polarization P1(τ) in Eq. (25), we

now decompose it into the time-independent part 

and the oscillating part ,

(27)

The time-independent contribution  to the function
P1(τ) is provided by the quantum numbers m, m'
belonging to the states I = I ' = IB ± 1/2 if IB ≥ 1/2, and
by the quantum numbers m, m' belonging to the states
I = I ' = 1/2 if IB = 0,

(28)

Our aim is now to sum over the indices m and I for a
fixed value of IB  in Eq. (28). To this end, we start with
the state IB = 0 that arises for even NB (see the comments
to Eq. (20)). For IB = 0, only I = 1/2 is allowed and the

partial polarization (IB) in Eq. (28) is given by

(29)

Next, we consider the contribution to  in Eq. (28)
from the spin IB ≥ 1/2. In this situation, I = IB ± 1/2 are
allowed and, invoking the CG coefficients in Eq. (19),

the contributions (IB) to  can be conveniently
written as

(30)

Combining (IB = 0) in Eq. (29) and (IB) in
Eq. (30) results in

(31)
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The sum over µ in Eq. (31) easily yields

(32)

and substituting w(IB) from Eq. (21), we arrive at the
sought-for result,

(33)

The remaining sum over IB in Eq. (33) depends on
whether NB is an even or odd number. If NB is an even

number, then  = 0 and straightforward summation
over IB in Eq. (33), with the known sums involving the
binomial coefficients

(34)

yields the polarization

(35)

for an odd N = NB + 1 spin cluster [11]. If NB is an odd

number, then  = 1/2 and some simple algebra gives
the polarization,

(36)

for an even N = NB + 1 spin cluster.

When N @ 1, the polarization  in Eq. (36)
behaves as

Equations (35) and (36) give the sought-for time-inde-

pendent contributions  to the total polarization P1(τ)
in Eq. (27) for odd- and even-numbered spin clusters,
respectively.
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It remains to find the time-dependent contribution

 to the total polarization P1(τ) in Eq. (25).
Among the four pairs (I, I') in Eq. (26), only the pairs
(I, I') with I ≠ I ' contribute to the time-dependent part of
the function P1(τ) in Eq. (25). This occurs for IB ≥ 1/2
only, because otherwise, i.e., for IB = 0, the allowed val-
ues I = I ' = 1/2 are already encountered in the time-

independent polarization . Thus, among the four
pairs (I, I') in Eq. (26), only the two pairs (I = IB + 1/2,
I ' = IB – 1/2) and (I = IB – 1/2, I ' = IB + 1/2) are allowed
and provide complex conjugate contributions to the

real-valued function . It suffices to deal with the
first pair, (I = IB + 1/2, I ' = IB – 1/2). The polarization
becomes

(37)

To complete the derivation of the function , we
use the expression for the factor w(IB) in Eq. (21), the
CG coefficients in Eq. (19), and sum over m and m' in
Eq. (37) for a fixed value of IB . This gives

(38)

Finally, by gathering the expressions for  in

Eqs. (35) and (36) and the expression for  in
Eq. (38), we pass (with the substitution k = IB – 1/2 for
even N and k = IB for odd N) to the total polarization at
the first spin,

(39)
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for an even 

 

N

 

-cluster, and

(40)

for an odd 

 

N

 

-cluster, with the coefficient

arising in both cases. Formulas (39) and (40) are the
central result of the paper. They are used to describe a
variety of systems in the next section.

4. DISCUSSION

 

4.1. Nonergodic Spin Dynamics 

 

As Eq. (40) states, for large odd-

 

N

 

 clusters, the time-
averaged polarization 

 
〈

 
P

 

1

 
(

 
τ

 
)

 
〉

 
 of spin 1 tends to 1/3,

while the time-averaged polarization 2/3  N   of any other
spin tends to 0; i.e., polarization of spin 1 does not
spread uniformly over the 

 

N

 

-spin cluster. We call this
behavior the nonergodic spin dynamics, to compare it
with the ergodic spin dynamics providing the 1/

 

N

 

polarization for all spins in an

 

 N

 

-spin ensemble. Fig-
ure 2a shows the behavior of the polarization P1(τ) for
a series of odd-N clusters. The principle features of the
periodic pulses of the polarization are determined by
two factors: first, time reversibility of the dynamics
affects the exact reentrance of the polarization to the
prepared value P1(0) = 1 after each period 4π/g, and,
second, gives rise to the time interval with the time-
independent polarization of spin 1 (see the Appendix
for details). For large-N clusters, the total period 4π/g
can be partitioned into the switching time

and the stopping time

recall that τ = gt/2. As shown in the Appendix, the
polarization P1(τ) peaks at the instants t = 0, 2π/g, 4π/g,
…. The profile of the function P1(τ), e.g., around τ = 0,
is

(41)

The function P1(τ) has the same profile around all the
instants τ = mπ for all integers m. The interval between
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Fig. 2. a—Polarization P1(τ) in Eq. (40) of the first spin is varied with the dimensionless time τ = gt/2 for the series of an odd total
number N of spins. b—Polarization P1(τ) in Eq. (39) for the series of even N.
the successive peaks and their widths are

(42)

respectively. In other words, for large-N clusters, the

polarization of spin 1 stays at the fixed value  = 1/3
almost the whole time. The oscillating part of P1(τ) is
an odd function of time with respect to the instants τ =
π/2, 3π/2, …, as apparent from Eq. (40).

Figure 2b shows the profiles of the polarization for
N-spin clusters with even N. For large even values of N,
the polarization at spin 1 stays fixed over a long time
interval

within each period 2π/g. Unlike odd-N clusters, the
profiles of P1(τ) for even-N clusters are even functions
of time with respect to time instants τ = π/2, 3π/2, ….

Using the experimental values of the time interval T
and the width of the pulses ∆T in Eq. (42) together with
the expressions for the coupling g in Eqs. (10) and (12),

T
2π
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-----------,= =
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tst 2π
g
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2 1( )

N
-----------– 

 =
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we find that the volume and form factor are given by

(43)

where c = N/V denotes the concentration of the mole-
cules carrying spin 1/2 and the angle α is assumed to be
known.

4.2. Polarization Dynamics
in Fluctuating Nanobubbles 

Equations (39) and (40) can be adapted to account
for the time dependence of the volume of the nanocav-
ity, thereby providing a means to explore NMR imag-
ing of cavitation bubbles in water [21], blood [22], etc.,
along with conventional high-speed photography. The
dynamics of the surface of a typical behavior of bub-
bling occurs on a millisecond time scale [21], i.e., at the
same time scale relevant for the nuclear spin dynamics.
It is therefore jusitifiable to ask how the dynamics of a
nanosize volume affects the nuclear spin dynamics. Our
intention in this section is to show that fluctuations of
the nanovolume (governed either by external inputs or

V
4
c
--- T

∆T

------ 
  2

,=

F
a
b
--- 

  P2 αcos( ) 8
c
--- T

γ2
"∆T

2
---------------,=
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by inherently thermal noise) drive the polarization to
the nonergodic value 1/3 irreversibly, and therefore,
time-periodic pulsation of the polarization breaks down
as time proceeds.

The formulation in Section 3 is easily extended to
the case of a time-varying volume V because the cou-
pling g(V(t)) enters Hamiltonian (13) as a common fac-
tor in front of the operator part. The form function of

the polarization (τ) in Eq. (38), which has been
derived for time-independent coupling g, is generalized
to the case of a function g(t) provided that the time τ =
gt/2 in Eq. (38) is replaced with a new time,

(44)

We are interested in transformation (44),

(45)

where δg(t) is Gaussian random noise characterized by
the first two moments

(46)

where 〈(δg)2〉  is the variance and γ(t) denotes the corre-
lation function, for example, γ(t) = exp(–t/tc), with tc

being the correlation time. In accordance with the com-
ment before Eq. (44), we replace the factor

in Eq. (38) with

The Gaussian averaging of this factor over the random
function δg(t) is performed as follows (see, e.g., [15]):

(47)

where

(48)

We first restrict our attention to the polarization for
even N, with N @ 1, and then close the section with the
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final result for odd N, N @ 1. We write polarization (38)
averaged by using (47) as

(49)

The exponent in Eq. (49) tell us that successive peaks
of the time-dependent part of P1(t) reduce to zero as
t  ∞, and therefore only the time-independent part

of P1(t), i.e.,  = 1/3 in Eq. (33), survives as t  ∞
after the Gaussian averaging over the function δg(t).
The integral over t' in the constant T 2 in Eq. (48) can be
evaluated in the two asymptotic cases, for the large and
the small correlation times [15],

(50)

To find function P1(t) in Eq. (49) for N @ 1, we can
replace the sum in Eq. (49) with Gaussian averaging, as
in Eq. (A.3) in the Appendix, which gives

(51)
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Fig. 3. Polarization dynamics of a single spin, P1(t), within
the N = 134 spin aggregate when the volume of the nanocav-
ity fluctuates, providing relative variance of the g coupling
equal to 〈(δg)2〉/〈g〉2 = 10–4 [see Eqs. (51) and (52)]. 
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where

(52)

Figure 3 shows the polarization dynamics of a single
spin within the N = 134 spin aggregate for

Using formulas given in the Appendix, we simplify the
sum over n in Eq. (51) via the Poisson resummation for-
mula. Defining the partial sums entering Eq. (51) by

(53)

and

(54)

we obtain

(55)

To find the envelope of the successive peaks of the
function P1(t) in Eq. (55), we substitute the time t =
2πm/〈g〉  in Eqs. (53–55), with m running over integer
numbers. This gives polarization at discrete values m,

(56)
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The functions S1(m) and S2(m) inherit their dependence
on the “time” m through the constant a in Eqs. (52)
and (50),

(58)

where we substitute t = 2πm/〈g〉  in Eqs. (52) and (50).
For N @ 1 and m @ 1, we drop the summand 2/N in
Eq. (58) assuming that a @ 1,

(59)

For a @ 1, we find the sums over k in Eqs. (56) and (57)
by again using the Poisson resummation formula,
Eq. (A.5), which accelerates convergence of the sums
for a @ 1. Reading Eq. (A.4) backwards, from the right-
hand side to the left-hand side, we obtain

(60)

Thus, Eqs. (53) and (54) become

(61)

(62)

and Eq. (55) therefore gives the polarization of the first
spin,

(63)

with a in Eq. (59).

We conclude this section with the result for the total
polarization for an odd total number N of spins. Due to
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alternating peaks of the polarization P1(t) in Eq. (40)
(see also Fig. 2a), we obtain

(64)

Equation (64), with a in Eq. (59), shows that the polar-
ization peaks P1(m) of a spin-carrying gas have a Gaus-
sian and an exponential time dependence for large and
small correlation times, respectively, of nanobubble
fluctuations.

4.3. NMR Line Shape 

To calculate the NMR line shape exactly, we use the
same effective Hamiltonian (13) as described in Sec-
tion 3. The NMR line shape is the Fourier transform of
the free induction decay (FID), F(t), of an N-spin
ensemble [15]. It was the NMR line shape on the pro-
tons in hydrogenated thin silicon films provided the
first experimental evidence for the validity of effective
Hamiltonian (13) in nanocavities [4]. We are interested
in the FID signal

(65)

The reason for there being an exact solution for the FID
in Eq. (65) is that the total Hamiltonian in Eq. (13) can
be expressed in terms of the three collective spin oper-
ators Iα just as in Eq. (15). Because [I2, Iα] = 0, we can
rewrite Eq. (65) as

(66)

with G = 3g/2 for dipolar interactions in the effective
Hamiltonian (13) with ζ = 2. The Heisenberg equation
of motion for the operator

is solved exactly as

The averaging in Eq. (65) is performed in an
N!/(N↑!N↓!)-fold degenerate basis of states (N↑, N↓)
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with N↑ (N↓) spins up (down), such that N↑ + N↓ = N and
Iz = (N↑ – N↓)/2. The averaging gives the FID

(67)

The effect of dephasing of proton spins within the
nanocavity due to interactions with the protons at the
surface of the nanocavity is introduced phenomenolog-
ically as

(68)

where the time T2 relevant for the experiments [4] is
T2 ≈ 1–3 ms. The moments of the line shape are

(69)

where ℑ (ω) enters through the Fourier transformation
of the FID,

(70)

The function ℑ (ω) is meaningful for the frequencies
0 < ω < γ2"/σ3, with σ standing for the diameter of
hard-sphere spin-carrying molecules. The upper cutoff
of the frequency provides finite second and fourth
moments for gT2 @ 1,

(71)

The moment M2 derived in [4] by the Van Vleck for-
mula coincides with M2 in Eq. (70), as it should. The
line shape in the nanocavity volume appears to be vol-
ume-dependent (via the coupling g in Eq. (10)), allow-
ing one to determine the volume of the nanopores in a
hydrogenated silicon film [4].

5. CONCLUSIONS

We have presented the exact time-dependent
description of spin-1/2 dynamics with infinite-range
spin interactions and the initial polarization prepared
on a single spin 1, i.e., P1(0) = 1. Spin dynamics for
odd- and even-numbered clusters demonstrates peri-
odic pulses of polarization P1(τ) on spin 1. For large-N
clusters with odd N, the polarization on spin 1 has
pulses over the time interval

from P1(0) = 1 to the time-independent polarization,
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which therefore lasts

within any period 4π/g. For large-N clusters with even
N, the switching time is

and the period equals 2π/g. The stationary polarization
on spin 1 is nonergodic, because its value tends to 1/3
(instead of tending to the ergodic value 1/N) as N tends
to infinity. The profiles of the polarizations within
the series of odd (even) large clusters are remarkably
similar.

The specific polarization profile in clusters with infi-
nite-range spin interactions is in sharp contrast with the
polarization profiles in 1D clusters with the nearest-
neighbor XY Hamiltonian [3]. Two differences can be
drawn from the results.

1. The overall behavior of the polarization P1(t) in
the system with an infinite-range interaction is strictly
reversible and periodic with a period 4π/g for any N,
whereas on large 1D chains (N @ 1) with the XY Hamil-
tonian, the polarization P1(t) on spin 1 moves in an
irregular fashion.

2. For N-spin clusters with N @ 1, the polarization
P1(t) of spin 1 exhibits a plateau region at the noner-

godic value  = 1/3; the pulses of the polarization

P1(t) have a short time span of about 4π2(1)/(g ).
This is in contrast to the behavior of the polarization
P1(t) in 1D spin chains with the XY Hamiltonian, where
polarization on spin 1 depends on time in an irregular
fashion with tst = 0.

Finally, this paper demonstrates the sensitivity of
the polarization dynamics (reversibility and ergodicity
in many-spin systems) to the radius of the interaction.
Incorporation of the real dipolar interactions into the
theory is the most challenging task of dynamics theory
and an accurate answer has not yet been attained,
although the general picture of the spin dynamics is
known to be diffusional [23].
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APPENDIX

Derivation of Eq. (41) 

We want to prove that the function  in
Eq. (38) for N @ 1 has the form of periodic pulses, each
having a width of

at equidistant instants τ = 0, 2π, 4π, …, such that the

profile of , e.g., at the time instant τ = 0, is

(A.1)

To prove Eq. (A.1), we introduce the new variable

in Eq. (38), such that the function  takes the
form (recall that the total number of spins is equal to
N = NB + 1)

(A.2)

Next, we use the asymptotic formula for the binomial
distribution,

(A.3)

Equation (A.3) allows us to consider the summation in
Eq. (A.2) as averaging over the Gaussian distribution
function. To simplify the calculation of Eq. (A.2) fur-
ther, we apply the Poisson identity [24]

(A.4)

In many circumstances, including the present ones, the
resulting sum over k in the right-hand side of Eq. (A.4)
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converges much faster than the original sum over , in
the left-hand side of Eq. (A.4). To apply Eqs. (A.4) to
Eq. (A.2), we can expand the sum in Eq. (A.2) up to
n = ∞ because the terms in the sum in Eq. (A.2) practi-
cally vanish for n > N/2 and N @ 1. Thus, by Poisson
identity (A.4), we introduce the sum (a partial contribu-
tion to the sum in Eq. (A.2))

(A.5)

To show that the function S1(τ) has the form of Gauss-
ian peaks at the equidistant instants τ = 0, ±π, ±2π, …,
it suffices to analyze the function S1(τ) around the point
τ = 0. The leading contribution to the sum in Eq. (A.5)
is then made by the term k = 0. We note that if we ana-
lyze the peak around τ = mπ, where m is an integer, then
the leading contribution to S1(τ) comes from the term
k = –m. Thus, in considering N @ 1, we can drop all
terms in Eq. (A.5) except the leading term k = 0, which
yields

(A.6)

Analogously, we determine the partial sum

(A.7)

At N @ 1, the function S1(τ) in Eq. (A.6) makes a neg-
ligible contribution to the function

in comparison with the contribution of the function
S2(τ) in Eq. (A.7), yielding the sought-for result in
Eq. (A.1).

In general, the function  for an arbitrary τ has
pulses at the moments τ = kπ with integer k,

(A.8)
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Abstract—Femtosecond pulses of a Cr:forsterite laser are used to study second- and third-harmonic generation
in a layer of single-wall carbon nanotubes produced by low-velocity spraying. The harmonic amplitude in our
experiments scales as (Ip)n as a function of the pump intensity Ip , with n = 2 and 3 for the second and third har-
monics, respectively. This scaling law holds up to pump intensities on the order of 1012 W/cm2. The ratio of the
maximum signal to the averaged background in the spectra of the second and third harmonics is estimated as
50 and 30, respectively. The second and third harmonics produced by a linearly polarized pump field are also
linearly polarized, with their polarization vectors oriented along the polarization direction of the pump field.
The capabilities of nonlinear-optical methods for structural and morphological analysis of carbon nanotubes are
discussed, as well as ways to create solid-state carbon-nanotube generators of optical harmonic. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The nonlinear optics of carbon nanotubes (CNTs) is
a new growing field of research that integrates advances
in solid-state physics, laser science, photonics, physics
of low-dimensional structures, nanoscale optics, and
nanotechnologies. Research in this field is strongly
motivated by the rapid progress in CNT technologies,
opening ways of creating new materials with unique
properties, including ultrahigh strength and broadly tun-
able electric conductivity [1–4]. Theoretical studies pre-
dict strong optical nonlinearities of CNTs [5–7], sug-
gesting the possibility of using these nanoscale systems
for the generation of optical harmonics, including har-
monics of high orders [9, 10]. Results of experiments
devoted to the investigation of nonlinear-optical phe-
nomena in CNT systems and analysis of nonlinear-opti-
cal properties of CNTs are briefly summarized in the
table. Until recently experimental efforts were mainly
focused on optical limiting in CNT suspensions and
CNT–polymer composite materials [11–16]. Experi-
ments on degenerate four-wave mixing [17, 18] show
that CNTs offer much promise for the creation of new
nonlinear-optical materials and the development of
switching and limiting photonic devices. Experiments
performed in the past few years have demonstrated (see
table) a high potential of CNTs as a nonlinear material
1063-7761/04/9802- $26.00 © 20220
for ultrafast optics and photonics. Investigation of the
optical Kerr effect on the femtosecond time scale in
CNT solutions [19] has revealed strong fast-response
optical nonlinearities of CNTs. Chen et al. [20] have
demonstrated ultrafast optical switching in CNT–poly-
mer composite materials. Stanciu et al. [21] report
third-harmonic generation (THG) in reflection of fem-
tosecond Cr:forsterite-laser pulses from a CNT sample.
The third-harmonic signal displayed saturation under
conditions of experiments [21] with sufficiently low
pump intensities on the order of 1010 W/cm2.

In this work, we experimentally study generation of
the second and third harmonics by femtosecond pulses
of a Cr:forsterite laser in a layer of single-wall carbon
nanotubes produced by low-velocity spraying. Based
on the results of these experiments, we will discuss new
possibilities of structural and topological analysis of
CNTs using optical harmonic generation.

2. PREPARATION 
OF CARBON-NANOTUBE SAMPLES

Carbon-nanotube samples were produced with the
use of the recently developed technique of low-velocity
spraying [22, 23]. One of the main advantages of this
technique is that carbon nanoparticles produced by
004 MAIK “Nauka/Interperiodica”
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Catalog of nonlinear-optical phenomena experimentally demonstrated in CNT materials

Process Nonlinear suscepti-
bility CNT samples Laser Pulse duration Refer-

ences

Optical limiting χ(3) (ω; ω, –ω, ω) suspensions and polymer 
composites

mostly Nd:YAG 
laser

nano- and pico-
second pulses

[11–16]

Degenerate four-
wave mixing

χ(3) (ω; ω, –ω, ω) suspension Nd:YAG laser 8 ns, 30 ps [17]

solid-state sample Nd:YAG laser nanosecond 
pulses

[18]

Optical Kerr effect χ(3) (ω; ω, –ω, ω) solution Ti:sapphire laser 120 fs [19]

Optical switching χ(3) (ω; ω, –ω, ω)
χ(3) (ω2; ω2, –ω1, ω1)

polymer composites Fiber laser 150 fs [20]

Third-harmonic gen-
eration

χ(3) (3ω; ω, ω, ω) solid-state sample Cr:forsterite 160 fs [21]

75 fs this work

Second-harmonic 
generation

χ(3) (2ω; ω, ω) solid-state sample Cr:forsterite 75 fs this work
laser-induced pyrolysis at the first stage of this process
are then used as a solid precursor for CNT growth with
no metal catalysts, which are usually employed in stan-
dard CNT technologies [24, 25]. No additional purifi-
cation is required for CNT samples produced with the
use of this technique.

Technologically, the procedure of CNT-sample
preparation by low-velocity spraying consists of two
steps. The first step involves the generation of carbon
nanoparticles by laser-induced pyrolysis of an ethyl-
ene–acetylene mixture. This process, initiated by CO2-
laser radiation, yields carbon nanoparticles with a mean
size of 50 ± 20 nm. At the second step, a beam of carbon
nanoparticles passes through a nozzle in an argon gas
jet, expanding to a vacuum chamber evacuated to a
pressure of 10–6 atm. The gas flow rate was kept con-
stant at a level of 30 m/s. In the vacuum chamber, car-
bon nanoparticles were deposited on a (100) surface of
a silicon substrate. The substrate was then heated,
which resulted in a self-organized growth of single-
wall carbon nanotubes.

The morphology and the composition of CNT sam-
ples were analyzed with the use of a scanning electron
microscope (Jeol 5400) with a spatial resolution of
about 3 nm and by means of Raman scattering. The
diameter of single-wall CNTs in the samples under
study ranged from 0.9 up to 1.5 nm. The CNT length
exceeded 1 µm. Analysis of scanning electron micro-
scope images (Fig. 1) shows that CNTs tend to form
bundles in our samples with a typical diameter of about
30 nm.

3. THE LASER SYSTEM

The laser system employed in our experiments
(Fig. 2) consisted of a Cr4+:forsterite master oscillator,
a stretcher, an optical isolator, a regenerative amplifier,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and a compressor. The master oscillator, pumped with
a fiber ytterbium laser, generated 30–50-fs light pulses
with a repetition rate of 120 MHz. The central wave-
length of this laser radiation was 1250 nm with a band-
width of 26 nm and the mean power of about 180 mW.

Horizontally polarized 30–50-fs pulses were then
stretched up to 700 ps in a grating stretcher (Fig. 2).
Upon passing through a Faraday isolator and a λ/4
plate, the light pulses became vertically polarized.
These pulses were then transmitted through a broad-
band polarizer to be injected in the regenerative ampli-
fier at the moment of time corresponding to maximum
population inversion, created by pump pulses with a
repetition rate of 1 kHz. A switch was used to set a hor-
izontal polarization of pulses injected into the cavity of
the amplifier. An amplified pulse with an energy of
100 µJ was coupled out of the amplifier through the
switch, triggered at the moment of time corresponding
to optimal amplification. Radiation coming out of the
amplifier was vertically polarized again. The amplified
pulse was returned to the isolator along the same optical
path. Radiation passing through the isolator in the
backward direction experienced no change in its polar-
ization since polarization rotations introduced by the
λ/4 plate and the Faraday isolator compensate for each
other. The pulses coupled out of the isolator through the
broadband polarizer were transmitted through a λ/2
plate and compressed to a 75-fs duration in a grating
compressor. Approximately 50% of the pulse energy
was lost at this stage. Radiation generated by the
Cr:forsterite laser system was focused onto a CNT film
deposited onto a glass substrate (Fig. 3).

4. INTERACTION OF LASER RADIATION 
WITH CARBON NANOTUBES

The quasi-one-dimensional structure of carbon nan-
otubes is the key to understanding the regimes of inter-
SICS      Vol. 98      No. 2      2004
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Fig. 1. Scanning electron microscope image of a carbon-nanotube sample. The spatial scale marker corresponds to 1 µm.
action of laser radiation with CNT systems. Quantum
confinement of electrons in directions perpendicular to
the nanotube axis is manifested in the density spectrum
of electron states [26], displaying van Hove singulari-
ties (Fig. 4). Fluorescence and Raman studies [26, 27]
indicate a strongly resonant character of the interaction
of laser radiation with CNTs, revealing the significance
of optical van Hove transitions between electron states
in the valence and conduction bands (Fig. 4).

The use of strong optical nonlinearities of CNT sys-
tems for the generation of reliably detectable harmonic
signals, resulting from the nonlinear coherent scatter-
ing of pump radiation from CNTs and carrying infor-
mation on the structure and physical properties of
CNTs, is at the heart of our harmonic-generation exper-
iments. Optical harmonics were generated in our exper-
iments using pump radiation with a wavelength of
1.25–1.27 µm produced by a femtosecond Cr:forsterite
laser. Within this wavelength range, scattering of radia-
tion by CNT systems can be enhanced due to a series of
one-photon resonances corresponding to v 1  c1
transitions between the electron states in the valence
and conduction bands (Fig. 4) with CNT indices
(10, 3), (10, 5), (11, 1), (8, 7), (13, 2), and (9, 5), as well
as two-photon resonances corresponding to v 2  c2
transitions (Fig. 4) with CNT indices (10, 3), (7, 5),
(11, 1), and others.
JOURNAL OF EXPERIMENTAL 
Absorption spectra of CNT samples employed in
our experiments display clearly resolved peaks at 1.28
and 2.2 eV (Figs. 5a, 5b). These peaks are attributed to
optical van Hove transitions. Pump radiation used in
our experiments is thus red-detuned from both one- and
two-photon resonances with the frequency of optical
transitions characteristic of the predominant type of
CNTs in the samples. However, the optical density of
our CNT systems at the energy of 2 eV, corresponding
to the exact two-photon resonance under conditions of
our experiments (Fig. 5b), is only a few percent lower
than the optical density at the maximum of the absorp-
tion spectrum. Our samples are, therefore, character-
ized by a sufficiently high content of CNTs with elec-
tron-state spectra meeting conditions of a two-photon
resonance with the frequency of a Cr:forsterite laser
(Figs. 4, 5).

The efficiency of nonlinear-optical processes,
including second-harmonic generation (SHG) and
THG, increases with the growth in the pump radiation
intensity. Optical breakdown, however, imposes a limi-
tation on the pump intensity. In the case of shorter
pulses, the efficiency of nonlinear-optical interactions
in solids can often be increased due to higher intensities
corresponding to laser fluences at the threshold of opti-
cal breakdown. To illustrate this possibility, we use the
following qualitative arguments.
AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004
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Let us represent the intensities of the second and
third harmonics, ISH and ITH , perturbatively generated
by a pump pulse with an intensity right below the
breakdown threshold as

where χ(n) is the nth-order nonlinear-optical suscepti-
bility, n = 2, 3; Fth(τ) is the breakdown threshold
fluence; and τ is the pump pulse duration. With the scal-
ing law

which is typical of a broad class of optical materials
irradiated with pulses having durations τ > 10 ps [28–
30], the intensities of the second and third harmonics
scale as

and

For shorter pulses, including pulses in the femtosecond
range of durations, the dependence of the threshold flu-

ISH χ 2( ) 2
Fth τ( )/τ[ ] 2, ITH χ 3( ) 2

Fth τ( )/τ[ ] 3,∝∝

Fth τ1/2,∝

ISH 1/τ for SHG∝

ITH 1/τ3/2 for THG.∝

Fig. 2. Diagram of a Cr:forsterite femtosecond laser system
with a regenerative amplifier.
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ence on the pulse duration becomes even slower than
Fth ∝  τ1/2 [29], allowing even higher intensities of the
second and third harmonics to be achieved around the
breakdown threshold [31]. The use of femtosecond
pulses in our experiments thus provides a substantial
increase in the yield of optical harmonics relative to the
picosecond regime. This argument agrees well with the
results of earlier experiments on four-wave mixing in
CNTs [32], performed with the use of nanosecond
pump pulses.

5. RESULTS AND DISCUSSION

Amplified Cr:forsterite-laser pulses were focused
on a CNT film to generate the second and third harmon-
ics. Harmonic signals were detected in our experiments
in transmission geometry (Fig. 3). We investigated the
spectral and polarization properties of optical harmon-
ics and measured the harmonic yields as functions of
the pump radiation intensity. The second- and third-
harmonic yields scaled (Figs. 6, 7) as (Ip)n, where Ip is
the pump intensity and n is the harmonic number,
within the range of pump intensities up to at least
1012 W/cm2, indicating the perturbative regime of non-
linear-optical interactions and suggesting a convenient
calibration for the second and third harmonics
employed as spectroscopic probes: 

 

THG in reflection from multiwall CNTs, as demon-
strated by Stanciu et al. [21], is saturated at pump inten-
sities on the order of 1010 W/cm2, resulting in a scaling
law of (Ip)q, q < 3, for the third-harmonic yield. The
results of our measurements show that the intensity
range of unsaturated increase in the harmonic yield can
be extended under certain conditions up to 1012 W/cm2.

The spectra of the second and third harmonics gen-
erated by 75-fs pulses of a Cr:forsterite laser passing
through a CNT sample are shown in the insets to Figs. 6
and 7, respectively. Under the conditions of the experi-
ments reported in [21], THG signal was detected
against intense nonresonant background. It is important
that the ratio η of the harmonic signal at the center of
harmonic spectral lines to the background is 30 for

In χ n( ) 2
I p

n .∝
Fig. 3. Diagram of the experimental setup for second- and third-harmonic generation in carbon-nanotube samples using amplified
75-fs pulses of a Cr:forsterite laser.
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SICS      Vol. 98      No. 2      2004



224 AKIMOV et al.
Fig. 4. Diagram of the density of electron states for a carbon
nanotube, featuring van Hove singularities. Nonlinear-opti-
cal scattering, including harmonic generation, can be
enhanced in a system of carbon nanotubes due to one- and
two-photon resonances at the frequencies of the first
(v1  c1) and second (v2  c2) optical van Hove
transitions between the states in the valence and conduction
bands.

Fig. 5. Spectra of optical density measured for CNTs syn-
thesized by low-velocity spraying within the range of pho-
ton energies (a) from 1.0 up to 1.4 eV and (b) from 1.7 up
to 2.7 eV.
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THG and 50 for SHG under conditions of our experi-
ments, offering THG and SHG as sensitive techniques
for CNT detection in transparent materials. The second
and third harmonics produced by a linearly polarized
pump field were also linearly polarized, with their
polarization vectors oriented along the polarization
direction of the pump field. The fact that linearly polar-
ized pump radiation gives rise to linearly polarized sec-
ond and third harmonics with a very low depolarization
degree opens the ways to analyze the structure proper-
ties of CNTs via polarization measurements on the sec-
ond and third harmonics.

Our experimental data, however, give no access to
the absolute values of the quadratic and cubic nonlinear
susceptibilities responsible for SHG and THG. The
measurement of nonlinear-optical susceptibilities usu-
ally involves a calibration against the harmonic yield
from a reference sample with known nonlinear suscep-
tibility. Such a procedure, which was earlier employed
to estimate the nonlinear susceptibility of CNTs in sus-
pensions [17], becomes inapplicable in the case of
CNTs on a substrate, leading to considerable errors
because of spatial inhomogeneities and strong scatter-
ing in the CNT sample.

In view of an amazing diversity of carbon nano-
tubes, featuring different point-group symmetries and
broadly tunable, structure-sensitive band gaps [33],
nonlinear-optical techniques offer much promise as a
tool for local probing of CNTs capable for detecting the
band gap and identifying the spatial structure of nano-
tubes. In particular, second-harmonic generation is
governed by the second-order nonlinear susceptibility
χ(2)(2ω; ω, ω), which vanishes for centrosymmetric
media. Second-harmonic generation thus allows the
detection of nanotubes in a host made of centrosym-
metric material with no background related to the non-
linearity of the host. The second harmonic can be gen-
erated in CNT materials through surface nonlinear-
optical interactions, as well as due to nondipole nonlin-
ear terms or the chirality of some types of CNTs. Meth-
ods of measurements distinguishing between these
SHG mechanisms would allow SHG to be used to iden-
tify the type of CNTs and to detect chiral nanotubes in
a sample. Ensembles of chiral CNTs are of special
interest for practical implementation of concepts
related to the nonlinear optics of media with broken
mirror symmetry and observation of a new class of
nonlinear-optical phenomena inherent in chiral materi-
als [34–38].

The results of our experiments show that quasi-one-
dimensional CNT structures offer new possibilities for
optical harmonic generation. Quantum confinement
gives rise to singularities in the density spectrum of
electron states. Such systems possess strong nonlinear-
ities, which can be enhanced due to one- or multiphoton
resonances (Fig. 4), suggesting the ways of creating
solid-state generators of optical harmonics. An illumi-
nating and comprehensive overview of the role of one-
AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004
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and multiphoton resonances in optical-harmonic gener-
ation is provided in classical textbooks on nonlinear
optics [39, 40]. In our experimental situation, we do not
expect any effects related to the interference of one- and
multiphoton excitation pathways [41–44] since the
conditions of one- and multiphoton resonances for the
same pump frequency can be simultaneously satisfied
in our case only for physically different CNTs (CNTs
of different structure). The frequencies of optical van
Hove transitions are determined by the CNT diameter d

Fig. 6. The yield of the second harmonic generated in a
layer of single-wall CNTs on a glass substrate in transmis-
sion as a function of the energy of a 75-fs Cr:forsterite laser
pump pulse. The diameter of the focused pump beam on the
surface of the CNT sample is 120 µm. The solid line repre-
sents the quadratic scaling law of the pump pulse energy,
which is typical of the perturbative regime of second-har-
monic generation. The inset shows the spectrum of the sec-
ond harmonic.

Fig. 7. The yield of the third harmonic generated in a layer
of single-wall CNTs on a glass substrate in transmission as
a function of the energy of a 75-fs Cr:forsterite laser pump
pulse. The diameter of the focused pump beam on the sur-
face of the CNT sample is 120 µm. The solid line represents
the cubic scaling law of the pump pulse energy, which is
typical of the perturbative regime of third-harmonic gener-
ation. The inset shows the spectrum of the third harmonic.
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and the chiral angle α. In particular, the frequencies νi

of the first (i = 1) and second (i = 2) van Hove transi-
tions v 1  c1 and v 2  c2 (Fig. 4) are given by the
following approximate expression [26]:

where a is a constant, bi and ci are parameters varying
for different optical transitions, and Anm is the parame-
ter depending on the CNT indices m and n. Methods of
nonlinear spectroscopy can thus be employed to probe
the structure and determine the sizes of CNTs.

6. CONCLUSIONS

The table puts the experimental results presented in
this work in the context of earlier studies on the nonlin-
ear optics of CNTs. Amplified 75-fs pulses of a Cr:for-
sterite laser were employed in our experiments to gen-
erate the second and third harmonics in a system of sin-
gle-wall CNTs. The second- and third-harmonic yields
in our experiments scaled as (Ip)n, where Ip is the pump
intensity and n is the harmonic number, within the
range of pump intensities up to at least 1012 W/cm2,
indicating the perturbative regime of nonlinear-optical
interactions and suggesting a convenient calibration for
the second and third harmonics employed as spectro-
scopic tools in CNT systems. High-contrast second-
and third-harmonic signals observed in our experi-
ments suggest optical harmonics as a highly sensitive
probe for the diagnostics of carbon nanotubes. The fact
that linearly polarized pump radiation gives rise to lin-
early polarized second and third harmonics with a very
low depolarization degree opens ways to analyze the
structural properties of CNTs via polarization measure-
ments on the second and third harmonics.
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Abstract—Four-photon correlations of the output radiation of a parametric amplifier with a vacuum at the input
are considered for an arbitrary parametric gain coefficient. Such states are interpreted in the literature as four-
photon states. It is shown that the fourth-order correlation function for such states in the limit of a small num-
ber of photons has an asymptotics typical of two-photon states. Nevertheless, even in the “classical” limit of
high intensities, the level of four-photon correlations, i.e., the value of the normalized fourth-order correlation
function, is substantially greater than that for coherent and even thermal fields. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Most experiments in quantum optics are related to
the generation of nonclassical light of different types,
i.e., light whose properties can be described only within
the framework of a consistent quantum-mechanical
approach. However, there exist only a few types of non-
classical light that can be prepared experimentally at
present. First of all, there is one-photon light, which is
obtained via one-photon transitions in atoms [1], via
luminescence of quantum dots [2, 3], and with the help
of some transformation performed with two-photon
light [4]. In turn, two-photon light can be obtained
through two-photon transitions in atoms [5], but much
more efficiently, due to spontaneous parametric down-
conversion [6]. In the limit of a large number of pho-
tons, two-photon light is transformed to squeezed light,
which is also nonclassical [7]. Recently, two-photon
light was generated due to hyperparametric down-con-
version [8]. Note also that both one-photon and two-
photon states of light (belonging to the Fock states) are
generated in all the cases mentioned above only in
superposition with the vacuum state.

Generation of other types of nonclassical light, for
example, higher order Fock states, is of interest first of
all from the fundamental point of view. The applica-
tions of such states have been discussed in connection
with the problem of quantum information [9] and the
concept of quantum lithography [10]; however, these
problems are far from being realized at present.
Attempts to experimentally prepare three- and four-
photon states are mainly stimulated by the so-called
Greenberger–Horne–Zeilinger (GHZ) paradox [11].
The paradox appears when one attempts to classically
describe the results of an interference experiment with
the state having the form

(1)Ψ| 〉 1

2
------- + + + +| 〉 – – – –| 〉+( )=
1063-7761/04/9802- $26.00 © 20227
(the four-photon GHZ state) or

(2)

(the three-photon GHZ state). Here, the symbol
|+ + + +〉  denotes the state of four photons with the
right circular polarization, the symbol |– – – –〉
denotes the state of four photons with the left circular
polarization, etc.

In [12, 13], the GHZ state was obtained from a
group of four photons formed due to a random overlap
of photon pairs upon parametric down-conversion. One
of the photons serves as “trigger,” while the three
remaining photons form a state with the polarization
part of type (2). Groups of three photons obtained in
this way were called in many papers three-photon
states. Similarly, groups of four photons appearing due
to a random overlap of photon pairs are called four-
photon states [14]. It is affirmed in [14] that such
groups of four photons represent four-photon entangled
states. Observation of four-photon interference was
reported, i.e., the dependence of the counting rate of
four-photon coincidences on the phase introduced
between different groups of four photons (more exactly,
between the pump pulses generating these groups).
Note here that the presence of the interference pattern
observed in coincidences of photocounts for four pho-
tons is well explained by the interference observed in
coincidences of two photons and typical of two-photon
light.

The question arises: can the states obtained in this
way can be treated as “true four-photon states?” Obvi-
ously, the answer depends on the experiment for which
the four-photon states are prepared. For example, the
method described above is suitable for realization of
the conditions of the three-photon GHZ paradox
because it makes it possible to prepare polarization

Ψ| 〉 1

2
------- + + +| 〉 – – –| 〉+( )=
004 MAIK “Nauka/Interperiodica”
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state (2). However, it seems that parametric down-con-
version cannot be used to solve the problem of observa-
tion of four-photon interference [14]. Finally, of inter-
est is the character of four-photon correlations, i.e., a
set of fourth-order intensity correlation functions or, in
experimental terms, the number of coincidences of
photocounts for four photons. It is from this point of
view that we analyze the parametric down-conversion
of light. Because it was emphasized in [14] that para-
metric down-conversion was stimulated, we consider
the case of an arbitrary coefficient of parametric gain.
Therefore, perturbation theory, which is commonly
used for the description of multiphoton correlations,
proves to be inapplicable.

Three cases can be distinguished in the description
of parametric down-conversion, which differ from each
other from the point of view of photon statistics. These
are the cases of the single-mode (collinear and fre-
quency-degenerate) regime, two-mode (nondegenerate
in frequency, angle of scattering, or polarization), and
four-mode regime (when, for example, scattered radia-
tion has two frequency and two polarization modes).
The latter regime was used in [14]. It is this regime that
leads to the generation of two-photon Bell states, i.e.,
states of the type

(3)

Here, H and V are photon states with horizontal and
vertical polarizations, respectively, and subscripts 1 and
2 denote the frequency (or spatial) modes.

2. THE ONE-MODE REGIME

In this case, the parametric interaction Hamiltonian
has the form

(4)

where Γ is the parametric gain, and a† and a are the
photon creation and annihilation operators. In the first
order of perturbation theory, the state vector of the field
emitted via parametric down-conversion is a superposi-
tion of the vacuum and two-photon states

(5)

However, an exact solution is given by the vector of the
state that also contains—except for the two-photon

Φ± 1

2
------- H1H2| 〉 V1V2| 〉±( ),≡

Ψ± 1

2
------- H1V2| 〉 V1H2| 〉±( ).≡

H
1
2
---i"Γ a†2 a2–( ),=

ψ| 〉 C0 0| 〉 C1 2| 〉 .+=
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state—the four-photon, six-photon states, etc.:

(6)

It is convenient to characterize the number of groups
of four photons by the fourth-order correlation function

(7)

This function is measured by the number of coinci-
dences of photocounts from four detectors in the exper-
iment similar to the Brown–Twiss experiment (Fig. 1a),
with the normalization to the product of the average
detected intensities. The normalized fourth-order corre-
lation function characterizes the radiation efficiency for
detection of four-photon effects [15]. For example,
g(4) = 1 for coherent radiation, and g(4) = 4! = 24 for
thermal (Gaussian) radiation. In the context of this
paper, of interest is the value of g(4) for four-photon
radiation (in superposition with the vacuum), which
could be obtained through the parametric decay of
pump photons into groups of four photons. The state
vector for such radiation has the form

The fourth-order correlation function for this state is

(8)

where N ≡ 〈a†a〉  is the average number of photons.
Consider now a state generated upon parametric

down-conversion with the Hamiltonian (4). Within the
framework of the Heisenberg approach, the correlation
functions can be found exactly for any parametric gain
Γ. By writing the Heisenberg equations for the creation
and annihilation operators, we obtain the solution in the
form

and similarly for the creation operator. Here,  and a0

are the creation and annihilation operators at the instant
t = 0 (or neglecting parametric interaction). The
fourth-order correlation function is determined by
expression (7), where a† ≡ a†(t), a ≡ a(t), and averaging
is performed over the vacuum state. The second-order
correlation function can be found similarly. As a result,
we obtain

(9)

(10)

ψ| 〉 C0 0| 〉 C1 2| 〉 C2 4| 〉 C3 6| 〉 …+ + + +=

=  Cn 2n| 〉 .
n 0=

∞

∑

g 4( ) a†4a4〈 〉
a†a〈 〉 4

------------------.=

Ψ| 〉 C0 0| 〉 C1 4| 〉 .+=

g 4( ) 6

N3
------,=

a t( ) a0 Γ t( )cosh a0
† Γ t( )sinh+=

a0
†

ga
4 t( ) 24 72 Γ t( )coth

3
9 Γ t( ),coth

4
+ +=

ga
2( ) t( ) 2 Γ t( ).coth

2
+=
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The average number of photons is N = sinh2(Γt). One
can see that both fourth-order and second-order corre-
lation functions increase infinitely at small parametric
gain coefficients

when Γt  0. Such asymptotics means that only the
pair correlation of photons takes place: according
to (8), the four-photon states should result in a faster
increase in g(4) at small N. The asymptotics at large

parametric gain coefficients (Γt @ 1) gives  

105 and   3. Therefore, in the limit of large
gains, the output radiation of a degenerate parametric
amplifier should have super-Poissonian or even super-
Gaussian statistics.

The statistics of the output radiation of a degenerate
parametric amplifier with a vacuum at the input was
studied earlier in [16], where the correlations functions
of all orders were obtained in the general form, includ-
ing results (9) and (10).

3. THE TWO-MODE REGIME

Consider now parametric down-conversion in the
nondegenerate (two-mode) case. This case is realized
through collinear frequency-nondegenerate parametric
down-conversion, through noncollinear frequency-
degenerate scattering, or through type II parametric
down-conversion in the collinear frequency-degenerate
regime. Correspondingly, photons from one pair belong
to two different frequency, spatial, or polarization
modes. Let us denote the creation and annihilation
operators in these modes by a†, a and b†, b. Then, the
interaction Hamiltonian has the form

(11)

By solving the Heisenberg equation, we obtain

(12)

The exact expressions for the fourth- and second-order
correlation functions are

(13)

(14)

ga
4( ) t( ) 9

Γ t( )4
------------ 9

N2
------, ga

2( ) t( ) 1
Γ t( )

---------- 1
N
----∝ ∝ ∝ ∝

ga
4( )

ga
2( )

Hab i"Γ a†b† ab–( ).=

a t( ) a0 Γ t( )cosh b0
† Γ t( ),sinh+=

b t( ) b0 Γ t( )cosh a0
† Γ t( ).sinh+=

gab
4( ) t( ) a†( )2

b†( )2
a2b2〈 〉

a†a〈 〉 2
b†b〈 〉 2

-----------------------------------------≡

=  4 16 Γ t( )coth
2

4 Γ t( ),coth
4

+ +

gab
2( ) t( ) a†b†ab〈 〉

a†a〈 〉 b†b〈 〉
---------------------------- 1 Γ t( )coth

2
+= =
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(the scheme for measuring  is shown in Fig. 1b).
One can see that the asymptotics of correlation func-
tions at small parametric gains also has a two-photon

character; i.e.,  on the order of 1/N2 and (t) on
the order of 1/N. For large parametric gains, we obtain

  24 and   2. Such statistics could be

gab
4( )

gab
4( ) gab

4( )

gab
4( ) gab

2( )

p s

i

BS1 BS3

BS2

CC

(a)

(b)

BS1s

i

p

BS2

CC

(c)

p
s

i

PBS1

PBS2

CC

Fig. 1. Scheme of the experiment for measuring g(4) for the
output radiation of a parametric converter. Only pump radi-
ation (p) is incident on a nonlinear crystal; the signal (s) and
idle (i) modes correspond to a vacuum. (a) The one-mode
regime: the signal and idle photons belong to one spatial
and one frequency mode. The fourth-order correlation func-
tion is measured using three nonpolarizing beamsplitters
BS1, BS2, and BS3; four photodetectors; and the fourfold
photocount coincidence scheme CC. (b) The two-mode
regime: the signal and idle photons belong to different
modes (in this case, different spatial modes). The fourth-
order correlation function is measured using two nonpolar-
izing beamsplitters BS1 and BS2, four photodetectors, and
the fourfold photocount coincidence scheme CC. (c) The
regime of generation of the Bell states. The signal and idle
photons are emitted to two spatial and two polarization
modes. The fourth-order correlation function is measured
using two polarizing beamsplitters PBS1 and PBS2, four
photodetectors, and the fourfold photocount coincidence
scheme CC.
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inherent in thermal radiation, but we should take into
account that in this case two different modes a and b are
involved. Therefore, the statistics can be called super-
Gaussian in the two-mode case as well.

4. GENERATION OF BELL STATES

Consider now the regime of parametric down-con-
version that was used in [14] and that leads, in the limit
of a small parametric gain coefficient, to the generation
of one of the Bell states (3), namely, state Ψ– in super-
position with a vacuum. As above, we consider the case
of an arbitrary parametric gain coefficient. The interac-
tion Hamiltonian has the form

(15)

Here, a† and b† are, as before, the creation and annihi-
lation operators for the two modes, which can be fre-
quency or spatial modes, and the subscripts H and V
denote vertical and horizontal polarizations, respec-
tively.

The solution for the creation and annihilation oper-
ators has the form

(16)

For the fourth- and second-order correlation functions,
we obtain

(17)

One can see that the statistics in this case is character-
ized by an even lower value of four-photon correlations
than in the two-mode case; nevertheless, it is super-

Gaussian:   4 and   2 for Γt  0.
The scheme for measuring the corresponding fourth-
order correlation function is shown in Fig. 1c. We can
also consider the case when the fourth-order moment is
measured in the same regime of parametric down-con-
version (Fig. 1c):

HaHbV
i"Γ aH

† bV
† aV

† bH
†–( ) H.c.+=

aH t( ) aH0 Γ t( )cosh bV0
† Γ t( ),sinh+=

bV t( ) bV0 Γ t( ) aH0
† Γ t( ),sinh–cosh=

aV t( ) aV0 Γ t( ) bH0
† Γ t( ),sinh–cosh=

bH t( ) bH0 Γ t( )cosh aV0
† Γ t( ).sinh+=

gaHbV aV bH

4( ) t( )

=  
aH

† bV
† aV

† bH
† aHbVaVbH〈 〉

aH
† aH〈 〉 bV

† bV〈 〉 aV
† aV〈 〉 bH

† bH〈 〉
------------------------------------------------------------------------

=  1 2 Γ t( ) Γ t( ),coth
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This correlation function is equal to 4 + 16coth2(Γt) +
4coth4(Γt), as in the two-mode case.

Therefore, the state generated via parametric down-
conversion is characterized by substantially weaker
four-photon correlations than the true four-photon
state, which could be obtained, for example, due to the
decay of pump photons into groups of four photons in
a medium with the fourth-order nonlinearity (of course,
the probability of such a process is extremely low).
Nevertheless, four-photon correlations for this state
even in the limit of large parametric gains are substan-
tially stronger than those for classical sources with
Poisson or Gaussian statistics. In this sense, the stron-
gest correlations should be observed in the degenerate
regime of parametric down-conversion.
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Abstract—A new method is proposed for ab initio calculations of nonstationary quantum processes on the
basis of a probability representation of quantum mechanics with the help of a positive definite function (quan-
tum tomogram). The essence of the method is that an ensemble of trajectories associated with the characteristics
of the evolution equation for the quantum tomogram is considered in the space where the quantum tomogram
is defined. The method is applied for detailed analysis of transient tunneling of a wave packet. The results are
in good agreement with the exact numerical solution to the Schrödinger equation for this system. The probabil-
ity density distributions are obtained in the coordinate and momentum spaces at consecutive instances. For tran-
sient tunneling of a wave packet, the probability of penetration behind the barrier and the time of tunneling are
calculated as functions of the initial energy. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Computer simulation of quantum processes is one
of the important trends in contemporary quantum
physics. In spite of considerable advances made in
this direction in recent years, serious difficulties also
exist. In particular, the quantities used in most simula-
tion techniques (such as the wave function and Wigner
function) are not positive definite (see, for example,
reviews [1, 2]). This gives rise to problems associated
with convergence of integrals, which is most impor-
tant for Fermi systems (“problem of sign”). This diffi-
culty can probably be overcome by using a positive
definite function describing the quantum state of the
system.

Indeed, there exist representations of quantum
mechanics in which the state of a system is described
with the help of positive definite functions in the phase
space ([3–5]; see also [1]) or in the space of extended
and rotated coordinate systems. The corresponding
function is known as the marginal distribution or quan-
tum tomogram [6–11]; a remarkable feature of this func-
tion is that it is a probability distribution describing the
quantum state completely [12, 13]. A quantum tomo-
gram is a function depending on variables {X, µ, ν},
where X = µq + νp, q and p being the coordinates and
momenta of the system, respectively, and µ and ν, the
parameters of rotation and extension of the system in
the phase space. The quantum tomogram is positive
definite and normalized in X; consequently, it is a dis-
tribution function for quantity X.

Here, we propose a new method for computer simu-
lation of nonstationary quantum processes, which is
based on the tomographic formulation of quantum
1063-7761/04/9802- $26.00 © 20231
mechanics. In the framework of this method, the evo-
lution of the system is described by introducing an
ensemble of trajectories in space {X, µ, ν}, which obey
the dynamic equations derived from the evolution
equation for the quantum tomogram. In contrast to the
simulation technique based on the numerical solution
of the Schrödinger equations on a net, the methods
using trajectories (in particular, in the phase space)
make it possible to consider a relatively large number
of degrees of freedom since there is no need in this
case to store in the computer memory huge arrays of
numbers representing, say, a wave function. For exam-
ple, the method of “Wigner trajectories” in the phase
space, which is based on the Wigner formulation of
quantum mechanics [14], has been recently applied
successfully for analyzing tunneling of a wave packet
[15–17] as well as several identical interacting parti-
cles [17].

The proposed technique is used for solving the prob-
lem of transient tunneling of a wave packet through a
potential barrier. The evolution of the probability den-
sity distribution is determined in the coordinate and
momentum spaces. Transient tunneling is analyzed by
calculating the probability of passage of a wave packet
behind the barrier and the tunneling time. The results are
compared with the exact numerical solution of the
Schrödinger equation. The method is also tested by
comparing with the exact solution for a wave packet in
a harmonic potential (in particular, for a coherent
state). The method is described in Section 2. The main
results are given in Section 3 (motion in an oscillator)
and Section 4 (transient tunneling). Conclusions are
given in Section 5.
004 MAIK “Nauka/Interperiodica”
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2. SIMULATION TECHNIQUE

2.1. Description of Quantum Evolution with the Help 
of Trajectories in Space {X, µ, ν} 

A quantum tomogram w(X, µ, ν) is connected with
a density matrix ρ(q, q') via the relation [18, 19]

(1)

(2)

Let us consider a particle of mass m in a one-dimen-
sional space. If the system Hamiltonian is given by

(3)

we can apply integral transformation (2) to the time-
dependent equation describing the evolution of the den-
sity matrix to obtain [6]

(4)

where we assume that " = 1 and  is expressed as
follows:

(5)

Equation (4) can be written in the form

(6)

where functions G depend on the quantum tomogram,
its derivatives, and primitives (the primitives corre-
spond to the terms containing (∂/∂X)–1 in Eq. (4)).
Functions G for the problem considered here will be
given in explicit form below. Evolution equation (6) has

ρ q q',( ) 1
2π
------ w X µ q q'–, ,( )∫=

× i X
µ q q'+( )

2
----------------------– 

  µ X ,ddexp

w X µ ν, ,( ) 1

4π2
--------=

× i k X µq– νp–( ) p q q'–( )+[ ]–{ }exp∫
× ρ q q',( ) p k q q'.dddd

H
p2

2m
------- V q( ),+=

ẇ
µ
m
----∂w

∂ν
-------– 2

∂V q̃( )
∂q

--------------- ν
2
--- ∂

∂X
------- 

  w–

+ 2
1–( )n 1+

2n 1+( )!
----------------------∂2n 1+ q̃( )

∂q2n 1+
--------------------- ν

2
--- ∂

∂X
------- 

 
2n 1+

w
n 1=

∞

∑ 0,=

q̃

q̃
∂

∂X
------- 

 
1– ∂
∂µ
------.–=

∂w
∂t
-------

∂w
∂X
-------GX X µ ν, ,( ) ∂w

∂µ
-------Gµ X µ ν, ,( )+ +

+
∂w
∂ν
-------Gν X µ ν, ,( ) 0,=
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the form of the continuity equation for the quantum
tomogram:

(7)

This equation is similar to the continuity equation for
the classical distribution function or to the Liouville
equation whose characteristics are classical trajectories
in the phase space, which obey the Hamilton equations
of motion. The quantum tomogram is positive definite
and will be used as the trajectory distribution function
in space {X, µ, ν}. Comparison of Eqs. (6) and (7)
shows that the equations of motion for the trajectories
in the given case have the form

(8)

The ensemble of trajectories is introduced to avoid
direct computation of the distribution function. For
example, finite difference methods employ a net on
which, for example, the wave function is specified
when the Schrödinger equation is solved numerically.
Such an approach often makes it possible to attain high
accuracy; however, the number of elements in the array
representing the wave function and the number of ele-
mentary operations corresponding to a transition to the
next time “stratum” increases exponentially with the
number of degrees of freedom. For this reason, it is dif-
ficult to employ the net methods of simulation even for
studying a system with four or five degrees of freedom.
At the same time, the methods using trajectories make
it possible to consider systems consisting of thousands
and more particles (e.g., in classical molecular dynam-
ics). In modeling based on the classical molecular
dynamics method, independent trajectories in the phase
space are used. Since we are dealing with quantum-
mechanical problems, the right-hand side of the equa-
tion of motion (8) for quantum trajectories contains a
function depending on the distribution function for
these trajectories (i.e., on the density of trajectories at a
given point). For this reason, the trajectories in this
method are generally not independent. An ensemble of
trajectories is used to avoid direct calculation of the
quantum tomogram on a net. However, the quantum
tomogram appears in the equation of motion for the tra-
jectories. Since we refuse to calculate the quantum
tomogram in explicit form, a certain approximation of
this function must be used to obtain the right-hand side
of equations of motion (8). We will use the local expo-
nential approximation (see also an analogous approxi-
mation for the Wigner function from [17] and the liter-
ature cited therein)

(9)

dw
dt
------- ∂w

∂t
-------

∂w
∂X
------- Ẋ

∂w
∂µ
-------µ̇ ∂w

∂ν
------- ν̇+ + + 0.= =

Ẋ GX X µ ν, ,( ), µ̇ Gµ X µ ν, ,( ),= =

ν̇ Gν X µ ν, ,( ).=

w X µ ν, ,( ) w0 y ya t( )–( )Aa t( ) y ya t( )–( )[–{exp=

+ ba t( ) y ya t( )–( ) ] } ,
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where y = {X, µ, ν}, ya is the point under study, and
matrix Aa and vector ba are the parameters of this
approximation. Instead of derivatives and primitives of
the quantum tomogram, evolution equation (4) now
contains certain combinations of these parameters.
Matrix Aa and vector ba can be determined by calculat-
ing the mean values of X, µ, ν and their mean products
in the vicinity of the given point. After this, functions G
become known and Eq. (8) can be solved numerically.

Approximation (9) is not universal, but provides
good results if the average distance between trajectories
is not very large, and the corresponding quantum tomo-
gram (distribution function) is smooth. For instance,
this approximation might be inapplicable if we con-
sider a plane wave with a wave vector k; in this case,

This approximation should be used with care in study-
ing an infinite motion as well since the distance
between the trajectories increases with time in this
case. If the number of trajectories in the vicinity of the
point at which approximation (9) is applied is too small,
this approximation will not reconstruct the quantum
tomogram adequately due to insufficient statistics.

We consider the motion of a wave packet in a har-
monic oscillator and its tunneling from a potential well
through a barrier. A comparison of the results of simu-
lation in the quantum tomography representation with
the results of exact numerical calculation shows that
approximation (9) is valid for the given problems (see
Sections 3 and 4). In the case of tunneling, there exist
both the region of finite motion (in the potential well)
and the region of infinite motion (behind the barrier);
however, the approximation can be used. If the value of
the initial energy is high enough, the packet tunnels
through the barrier almost completely; consequently,
the evolution of most trajectories corresponds to infi-
nite motion, and approximation (9) does not provide
correct solutions to quantum equations of motion any
longer (see the end of Section 4). However, local
approximation (9) turns out to be quite satisfactory on
the whole even for quite large time intervals (see
Fig. 5).

2.2. Computation of Mean Values 

To analyze the problems under investigation, the
mean values of several quantities are required. In the
quantum tomography representation, the mean value
〈A〉  of a physical quantity (the corresponding operator
is ) is calculated by the formula [20]

(10)

where A(µ, ν) is the Fourier transform of the Weyl sym-

w X µ 0 ν 1=,=,( ) δ X k–( ).=

A q̂ p̂,( )

A〈 〉 A µ ν,( )eiXw X µ ν, ,( ) X µ ν ,ddd∫=
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bol AW(q, p) of operator :

(11)

The Weyl symbol of operator  can be expressed
as follows:

(12)

We will calculate the mean values by using the fol-
lowing approximation of the quantum tomogram:

(13)

here, summation is carried out over all J trajectories and
Xj(t), µj(t), and νj(t) are the coordinates of the jth trajec-
tory in space {X, µ, ν} at instant t. Such an approxima-
tion exactly corresponds to the use of an ensemble of
trajectories: in the regions where function w(X, µ, ν) is
small, the trajectories are sparse, while the density of
trajectories is higher in the regions where function
w(X, µ, ν) is large. The larger the number of trajectories
used, the more successful the application of approxima-
tion (13). If the wave function of a particle has the form
of a compact wave packet (even if it consists of several
individual parts) in the course of simulation, approxi-
mation (13) can be employed since in this case we have
compact sets of trajectories in space {X, µ, ν}, and rich
statistics can be gathered. A similar situation takes
place for the problems considered here; consequently,
the use of the given approximation does not distort the
results significantly as compared to the exact quantum
computations (see Sections 3 and 4).

We consider the quantities that depend either only
on q or only on p (see Section 4). If operator 
depends only on , the expression for 〈A〉  assumes the
form

(14)

where A(X) is a function corresponding to operator
 in the coordinate representation: A(X) = A(q = X).

Analogously, the mean values of the corresponding
physical quantities for operators  are given by the
formula

(15)

For example, the probability densities in the coordinate

A q̂ p̂,( )

A µ ν,( ) AW q p,( ) i µq νp+( )–[ ] q pdd

4π2
------------.exp∫=

A q̂ p̂,( )

AW q p,( )

=  
"

2π
------ ξ η Tr A q̂ p̂,( )eiξ q̂ iη p̂+[ ]d e iξq– iηp– .d∫

w X µ ν t, , ,( )

=  δ X X j t( )–( )δ µ µj t( )–( )δ ν ν j t( )–( );
j 1=

J

∑

A q̂( )
q̂

A〈 〉 A X( )w X µ 1 ν 0=,=,( ) X ,d∫=

A q̂( )

B p̂( )

B〈 〉 B X( )w X µ 0 ν 1=,=,( ) X .d∫=
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and momentum spaces can be expresses as w(X, µ = 1,
ν = 0) and w(X, µ = 0, ν = 1), respectively. To analyze
tunneling, we will use the probability of a reaction and
the tunneling time. We define the reaction probability
as

(16)

where qa = 0.6709 (the point corresponding to the
potential maximum). In accordance with this definition,
the maximal value of the reaction probability is equal to
unity. The reaction probability shows the part of the
packet behind the barrier at a given instant. Let us sup-
pose that the wave packet is localized on the left of the
barrier at the initial instant and moves towards the bar-
rier. Then the initial value of the reaction probability is
zero; subsequently, as a result of passage above the bar-
rier and tunneling, part of the packet component
appears on the right of the barrier and the reaction prob-
ability increases.

The technique used here makes it possible to deter-
mine the tunneling time of a wave packet, which is an
important characteristic of tunneling. The number of
theoretical methods for determining the tunneling time
is quite large [21–32]. We will calculate the tunneling
time as the difference between the times of emergence
(see [16, 33]) of particles at points xa and xb locates on
different sides of the barrier:

(17)

The time of emergence of a particle at point x0 is

ψ x t,( ) 2 x,d

qa

∞

∫

tT xa xb,( ) t xb( )〈 〉 t xa( )〈 〉 .–=

0

0 q

V

V0

mω2
0/b

Fig. 1. External potential V(q) (19): dashed and solid curves
correspond to a harmonic oscillator with b = 0 and b > 0,

respectively. The barrier height is V0 = m3 (6b2).ω0
3
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defined by the formula

(18)

2.3. Model Physical Problem 

We will now consider (see also Sections 3 and 4) the
motion of a wave packet in a one-dimensional space in
the external potential

(19)

For b = 0, this potential corresponds to a harmonic
oscillator. If b > 0, we have a potential well with an infi-
nitely high wall on the left and a potential barrier on the
right (Fig. 1). Since formula (19) contains the coordi-
nate only to the second and third powers, all derivatives
of the potential of an order higher than third are equal
to zero and the evolution equation has the form (" = 1)

(20)

For potential (19), the evolution equation can be written
as

(21)

Dynamic equations (8) assume the form

(22)
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3. WAVE PACKET
IN A HARMONIC OSCILLATOR

Let us consider the motion of a wave packet in a har-
monic oscillator. The external potential is described by
formula (19) with b = 0. We will use the system of units
" = m = ω0 = 1.

For a quadratic potential, dynamic equations (22) do
not contain terms with quantum tomogram w. This con-
siderably simplifies the simulation and reduces time
expenditures. As a result, the number of dynamic tra-
jectories can be increased (as compared to the simula-
tion of motion in a potential with b ≠ 0) and high accu-
racy can be achieved.

In Figs. 2 and 3, the analytic solution of the problem
on the motion of a wave packet in a harmonic oscillator
(dashed curves) is compared with the results of model-
ing in the quantum tomography representation (solid
curves); this simulation technique will be referred to as
the quantum-tomographic dynamics (QTD) method.
We consider the motion of a Gaussian wave packet with
an initial mean coordinate of q0 = –1 and a momentum
of p0 = 0. The dispersion of the wave packet in the coor-
dinate space is σx = 〈x2〉  – 〈x〉2 = 0.5 (see Fig. 2), while
its dispersion in the momentum space is σp = 0.5/σx .
The wave packet vibrates in the oscillator with a period
of T = 2π, expands in the coordinate space, and con-
tracts to the initial width over a time period of T/2. The
expansion and compression in the momentum space
occur in antiphase to this process in the coordinate
space. Figure 3 illustrates the evolution of the coherent
state. The dispersion in the coordinate space is equal
approximately to 0.7. The width of such a packet
remains unchanged during its motion in the oscillator.

The results of QTD and analytic solutions are very
close (see Figs. 2 and 3). Small differences appear only
due to the fact that the number of trajectories and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
time step for QTD are finite. Such a coincidence indi-
cates that QTD might be an appropriate technique for a
number of problems, which provides results to a high
degree of accuracy. It turned out that this technique
could also be used for solving more complicated prob-
lems such as those involving transient tunneling. An
example of such a simulation will be considered in the
next section.

4. SIMULATION
OF WAVE PACKET TUNNELING

We study the tunneling of a wave packet through
barrier V(q) described by formula (19). We will now use
the atomic units of measurement, " = me = |e| = 1, where
me and e are the mass and charge of a free electron. We
consider a particle of mass m = 2000. The parameters
of the potential are ω0 = 0.01 and b = 0.2981. Such a
potential has a minimum at point q = 0 (V(0) = 0) and a
maximum at point q = 0.6709 (V(0.6709) = 0.015).
Consequently, the particle moves in a potential well
with an infinitely high left wall and a barrier with a
height of 0.015 at point q = 0.6709. This model pro-
vides a simplified description, for example, of transient
tunneling of a hydrogen atom from a trap. Similar prob-
lems are important for atomic optics. For example, in
order to obtain coherent beams of atoms (atomic laser),
an attempt can be made to obtain a Bose condensate of
atoms. Experimental methods exist for obtaining a
Bose condensate in traps. A transition from a Bose con-
densate at rest to a moving Bose condensate is possible
in principle if the atoms of the condensate tunnel
beyond the trap boundaries. A theoretical description of
the phenomena involved in this case can be obtained
after solving the problem of transient tunneling of
atoms.
t = 0 T/4 T/2

0

0.2

0.4

0.6

0.8

–2 0 2 x

|ψ(x, t)|2

t = 0

T/4

0

0.2

0.4

0.6

0.8

–2 0 2 p

|ψ(p, t)|2

(a) (b)

Fig. 2. Motion of a wave packet in a harmonic oscillator. The probability density in the (a) coordinate and (b) momentum spaces at
instants t = 0, t = T/4, and t = T/2: solid curves correspond to simulation by the QTD method and dashed curves represent the analytic
solution (" = m = ω0 = 1).
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At the initial instant, the wave packet is on the left
of point q = 0 and its mean momentum is zero. The par-
ticle can either vibrate in the potential well or find itself
behind the barrier, having tunneled through the barrier
or passed above it. The probabilities of these processes
are determined by the initial energy of the wave packet.
We are dealing with the problem in which all parame-
ters are fixed except the initial mean coordinate q0 of
the wave packet (the initial mean momentum is equal to
zero, and the dispersions of the wave packet in the coor-
dinate and momentum spaces are equal approximately
to 0.15 and 3.3, respectively).

t = 0

T/4

T/2

0

0.2

0.4

0.6

–2 0 2 x

|ψ(x, t)|2

Fig. 3. Evolution of a coherent state of a harmonic oscilla-
tor. The probability density in the coordinate space at
instants t = 0, t = T/4, and t = T/2: solid curves correspond
to simulation by the QTD method and dashed curves repre-
sent the analytic solution (" = m = ω0 = 1).
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Fig. 4. Dimensionless reaction probabilities, defined by for-
mula (16), for three values of the initial mean coordinate of
a wave packet: curves 1, 2, and 3 correspond to q0 = –0.2,
−0.3, and –0.4 at. units. Solid curves correspond to simula-
tion by the QTD method and dashed curves represent the
exact numerical solution.
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4.1. Reaction Probability 

Figure 4 shows the time dependences of the reaction
probabilities defined by formula (16) for three values of
the initial average coordinate of the wave packet: q0 =
−0.2, –0.3, and –0.4 with an initial mean energy of
0.75V0, 1.25V0, and 2.0V0, respectively. Solid curves
represent the results of simulation by the QTD method,
while dashed curves correspond to numerical solution
of the Schrödinger equation (exact quantum-mechani-
cal calculations). The number of wave packet compo-
nents with a high energy increases due to an increase in
the mean energy with |q0|. As a result, the number of
components behind the barrier (which either pass above
or tunnel through it) increases. Consequently, with
increasing |q0|, the reaction probability also increases
(the curves in Fig. 4 corresponding to different values
of q0 are located above one another). Qualitatively, the
reaction probability exhibits the same time variation for
all values of q0 considered here. The components pass-
ing behind the barrier cannot return since the potential
for q > 0.6709 decreases upon an increase in the coor-
dinate; consequently, the reaction probability cannot
decrease with time. First, it increases rapidly due to the
above-barrier passage of component with energies
larger than the barrier height (this can be verified by
analyzing the classical solution of this problem, when
only the above-barrier passage is possible). Then, the
reaction probability continues to increase gradually due
to tunneling. All these features can be seen on the
curves corresponding both to QTD and to the numerical
solution of the Schrödinger equation.

The reaction probability for QTD turns out to be
slightly higher than in the case of exact numerical solu-
tion. A slight difference can also be noted in the modes
of increase in the reaction probability for QTD and for
the exact solution: in the former case, the curves are
less smooth. These differences are due to the finite
number of trajectories used for QTD: for a smaller
number of trajectories (this case is not shown in the fig-
ure), the reaction probability resembles ladder steps
even more strongly. (This is associated with a slight
exaggeration of the role of wave packet oscillations in
a quantum well when a finite number of trajectories are
used.) The quantitative difference between QTD and
exact calculation also becomes stronger. However, for a
large number of trajectories (as in the case represented
in Fig. 4), the QTD results are quite close to the results
of exact quantum-mechanical calculations (good
matching with the results obtained by the method of
Wigner trajectories is also observed [15]).

4.2. Evolution of a Wave Packet
and Tunneling Time 

In addition to the reaction probability, we also
obtained a number of new qualitative and quantitative
results, which describe in detail the behavior of a wave
packet in the process of tunneling.
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Here and below, we consider tunneling of a wave
packet with an initial mean value of coordinate of q0 =
–0.2. Normalized probability densities in the coordi-
nate (|ψ(x)|2) and momentum (|ψ(p)|2) spaces are shown
in Figs. 5 and 6, respectively. Several consecutive
instants are considered. Continuous solid curves illus-
trate the shape of the wave packet, obtained from exact
quantum-mechanical calculations. Histograms corre-
spond to the results of a QTD run. For the same number
of trajectories, several such runs can be executed and
the probability density can be averaged over these runs;
in this case, the curves become smoother. We will com-
pare here the results a single QTD run with the results
of exact quantum-mechanical calculations. The corre-
spondence of the histograms (QTD) to the continuous
curves (exact solution) in Fig. 5 is not ideal, but the sim-
ilarity is obvious.

Let us first consider the evolution of a packet in the
coordinate space (Fig. 5). Initially, the wave packet has
a Gaussian shape (Fig. 5a). It moves towards the poten-
tial minimum at point x = 0 (the initial mean momen-
tum is equal to zero, but the potential decreases in the
direction of x = 0), passes through this point, and
impinges on the barrier. During its motion, the wave
packet expands (due to dispersion in the momentum
space; cf. the left and right curves in Fig. 5a); as a result
of the collision with the barrier, the shape of the wave
packet changes even more strongly (t = 300 in Fig. 5b
and t = 400 in Fig. 5c). The wave packet is slightly com-
pressed and some of its component pass through the
barrier so that a part of the wave packet appears on the
right of the barrier (x = 0.6709). Since the probability of
overcoming the barrier is the higher the larger the
energy of the impinging particle, the transmitted part of
the wave packet must be enriched by high-energy com-
ponents (see below).

All characteristic details described above are
present both for the exact solution and for the QTD.
The histograms in Figs. 5 are in better agreement with
the continuous curves representing the exact solution
for earlier instants; however, even after the interaction
with the barrier (Fig. 5c), the similarity remains quite
obvious. This means that approximations (9) and (13)
give satisfactory results for the given problem.

Let us now consider the evolution of a wave packet
in the momentum space. In order to confirm the conclu-
sion concerning the acceleration of the transmitted part
of the wave packet, we will compare the probability
densities (|ψ(p)|2) in the momentum space at instants
t = 0 and t = 400 (Fig. 6). Since the wave function first
has the shape of a Gaussian wave packet, the initial
probability distribution is Gaussian both in the coordi-
nate and in the momentum space (cf. Figs. 5a and 6a)).
However, after the interaction of the wave packet with
the barrier, the probability distribution in the momen-
tum space is modified considerably (Fig. 6b). The num-
ber of high-momentum components in the transmitted
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
part of the wave packet is larger (as compared to the
entire packet in the initial state) since the probability of
transmission behind the barrier increases with energy.
This means that the barrier serves as an energy selector

–0.5 0 0.5
x, at. units

0

1

2

|ψ(x)|2

(a)

(b)

(c)

t = 0 200

0 1 x, at. units
0

1

2
|ψ(x)|2

300

0 1 2
x, at. units

0

1

2
|ψ(x)|2

400

Fig. 5. Probability density in the coordinate space for QTD
(histograms) and exact solution (solid curves) at instants t =
0, 200 at. units (a); 300 at. units (b), and 400 at. units (c).
The top of the barrier is at point 0.6709 at. unit, q0 =
−0.2 at unit.
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Fig. 6. Probability density in the momentum space for QTD (histograms) and exact solution (solid curves) at t = 0 (a) and 400 at.
units (b).
and the interaction with the barrier enriches the trans-
mitted part with high-energy components. The coinci-
dence of the histogram (QTD) and the solid curve
(exact solution) for the momentum distribution over a
relatively long period of time (T = 400; see Fig. 6b) is
much worse than for the distribution in the coordinate
space (see Fig. 5c). This is due to the fact that we oper-
ate with a limited number of trajectories, while the
region considered for t = 400 in the momentum space
should be large since the transmitted part of the packet
is accelerated. As a result, the momentum distribution
strongly expands with time, and the number of trajecto-
ries with values of µ and ν close to µ = 0 and ν = 1
becomes too small for a given momentum p (see Sec-
tion 2.2). For the initial value of the mean coordinate
q0 = –0.2 we are dealing with, the initial energy of the
wave packet is not very high (approximately 0.75V0,
where V0 is the barrier height); consequently, its larger
part remains in the quantum well (at instant t = 400,
only 20% of the wave packet is behind the barrier; see
Fig. 4). For this reason, the distribution in the coordi-
nate space turns out to be more compact.

Figure 7 shows the dependence of the tunneling time
of a wave packet on the initial value of its mean coordi-
nate. The tunneling time is defined by formula (17) as the
difference between the instants at which the packet is
present at points xa = 0.5 × 0.6709 and xb = 2.0 × 0.6709
(the potential attains its maximum value at point x =
0.6709). For q0 < 0, the larger its absolute value, the

higher the initial energy  of the wave packet.
Usually, tunneling is the stronger, the higher the energy.
An increase in the wave packet energy also corresponds
to an increase in the average velocity of the transmitted
part and of the entire wave packet as a whole. In this
case, the part of the wave packet behind the barrier

ψ Ĥ ψ〈 〉
JOURNAL OF EXPERIMENTAL
passes through the barrier region (the distance between
points xa and xb) during a shorter time; consequently, an
increase in the value of |q0| reduces the tunneling time.
The discrepancy between the QTD results (squares in
Fig. 7) and the results of exact computations is within
the computational error. The maximum deviation from
the exact result is observed for large values of |q0|. This
is probably due to the fact that the packet in this case
passes behind the barrier almost completely (see Fig. 4)
so that the evolution of most trajectories corresponds to
an infinite accelerated motion. In such a situation, the
trajectories diverge from one another to large distances
and approximation (13) represents quantum tomogram
less accurately than for smaller values of |q0|.

–0.4 –0.3 –0.2
20

30

40

50

60

q0, at. units

tT, at. units

Fig. 7. Tunneling time tT with errors for several values of
the initial mean coordinate q0 of a wave packet. The QTD
results (squares) are compared with the results of exact
numerical calculation (circles).
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5. CONCLUSIONS

We have developed a new method for numerical
simulation of nonstationary quantum-mechanical pro-
cesses and applied it for studying the problem of tun-
neling of a wave packet through a potential barrier. The
method is based on the tomographic formulation of
quantum mechanics. A quantum tomogram is used, in a
sense, as a distribution function for an ensemble of tra-
jectories in space {X, µ, ν}, where X = µq + νp is the
coordinate measured in a rotated and extended frame of
reference, q and p being the coordinate and momentum
of the system, respectively. The trajectories evolve in
time in accordance with equations resembling the
Hamilton equations of motion; consequently, an analog
of the molecular dynamics method can be used.

The results of simulation of the motion of a wave
packet in an oscillator reproduce the analytic solution
to a high degree of accuracy. The new method is used in
the problem of wave packet tunneling for obtaining var-
ious quantities characterizing tunneling (probability of
passage behind the barrier, tunneling time, etc.). These
results are in good agreement with the results of simu-
lation with the help of Wigner trajectories and with the
results of exact quantum-mechanical calculations.

The technique developed here has two advantages in
describing a quantum state since (i) it employs a real
positive definite function and (ii) the computation of
this function in the course of simulation is replaced by
analysis of evolution of an ensemble of trajectories. The
first advantage might be useful for simulating Fermi
systems, when considerable difficulties (“sign prob-
lem”) are associated with the sign variation of the func-
tion used for describing the quantum state. The second
advantage will probably make it possible to consider a
larger number of degrees of freedom as compared to net
methods. For this reason, we hope that the quantum-
tomographic dynamics method will become a conve-
nient and powerful tool for simulating quantum pro-
cesses.
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Abstract—The excitation spectra of crystalline ensembles of coherently emitting interacting quantum electric
dipole oscillators are investigated. The system of dynamic equations derived for a one-dimensional crystal of
the J-aggregate type can be used in various limiting cases for studying optical photons as well as X-ray and
gamma quanta. An exact analytic solution to the dispersion equation is obtained for polaritons (mixed states
of Frenkel excitons and transverse photons). It is shown that the high-frequency polariton branch with anom-
alously high radiation broadening has the limiting wave vector corresponding to the spectral edge not
because the broadening becomes comparable to the frequency (as was generally accepted earlier), but due to
smooth joining of this polariton branch with the other (nonphysical) branch determined from the dispersion
equation. At this point, the derivative of the dispersion curve goes to infinity, which is an analog of the well-
known Migdal–Kohn singularity in the phonon spectra of metals. It is shown that the low-frequency polariton
branch also exhibits slight broadening due to the fact that the proper radiation width is taken into account
exactly. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Spectral characteristics of coherent electromagnetic
dipole radiation emitted by crystalline systems of
atoms and molecules with allowed electric dipole tran-
sitions have been studied for a long time [1–4]. Coher-
ent gamma radiation emitted by a crystalline chain of
“aligned” nuclei in atoms was analyzed in [1], while the
shift and broadening of the Mössbauer line in a three-
dimensional crystal was investigated in [2]. In the low-
frequency optical spectral region, analogous spectral
characteristics for various types of crystals were stud-
ied for polaritons (coherent mixed states of Coulomb-
type Frenkel excitons and transverse photons) [3, 4]. In
spite of a considerable difference in the ratios of the
radiation wavelength λ to the lattice constant a (λ/a !
1 for gamma quanta and λ/a @ 1 for optical photons),
the corresponding coherent states are limiting wave
solutions to the same dispersion equation. For this rea-
son, spectral singularities in one optical limit make it
possible to judge the possibility of finding an analogous
singularity in the other limit of gamma radiation. In the
optical range, experimental and theoretical analysis of
the polariton spectrum in bounded crystals (J-aggre-
gates, molecular crystalline chains of infinitely large [5]
and finite lengths [6], two-dimensional crystals of a
monolayer type, stacks of planes [7, 8], superlattices [9],
etc.) occupies a special place. The interest in these stud-
1063-7761/04/9802- $26.00 © 20240
ies is due to the fact that, in the case of bounded crystals
formed by monomers with dipole optical transitions,
one of the two polariton branches determined earlier
in [3, 5] for one- and two-dimensional crystals (namely,
the high-frequency branch) has, due to the delayed
interaction, a large radiation width determined by the
probability of emission of photons into the space out-
side the crystal. In the model of an unbounded three-
dimensional crystal, such a radiation width was not
found for polaritons of the high-frequency branch [3].

It was shown in [3, 5] that the radiation half-widths
"Γ for polaritons in one- and two-dimensional crystals
are given by

respectively, where "γ is the natural half-width of the
line emitted by an isolated dipole oscillator. For optical
transitions with dipole transition energies in a mono-
mer, which are typical of molecular crystals (E0 ≈ 5 eV,
λ ≈ 10–6 cm, a ≈ 10–8 cm), the value of Γ exceeds the
value of γ by several orders of magnitude. For optical
transitions with a dipole transition moment of P ≈ 2e ×
10–8 cm and "γ = P2/"3c3 ≈ 10–2 MeV, the value of
"Γ is relatively high (1–100 MeV). This effect of anom-
alously large broadening, which was discovered in [5],
was later observed in experiments with picosecond

"Γ 1( )
"γ λ/a( ), "Γ2

"γ λ/a( )2,≈ ≈

E0
3
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lasers [10, 11]. At present, this effect is known as super-
radiance [12].

An analysis of the polariton spectrum for one-
dimensional crystals revealed [5] that, in the range of
wave vectors k < E0/"c, for the same k, there exist two

polariton branches with energies , viz., the high-

frequency branch with an energy of  > k"c and with

the large radiation half-width  mentioned above,

and the low-frequency branch with an energy of  <

k"c with zero radiation width. For k = 0, energy  is
approximately equal to the energy of a Coulomb exci-

ton; as the value of k increases, energy  decreases,
approaching the optical axis E = "kc. In this case, half-

width  (for the angle of inclination of dipoles to the
crystal axis considered in [3, 5]) increases significantly
in the vicinity of this axis.

Due to convergence of the decreasing frequency and
the increasing broadening in the vicinity of the optical
axis, it was assumed earlier that the concept of a quasi-
particle becomes meaningless; this region of the spec-
tral edge was not studied in detail since the dispersion
curve broke.

Upon an increase in k (both in the region of k <

E0/"c and for k > E0/"c), the energy  of the low-fre-
quency branch increases monotonically, approaching
E0. It should be noted that the natural radiation half-
width "γ was not taken into account explicitly in [3, 5];
for this reason, an additional parameter (the wave vec-
tor of the cutoff for one of the diverging integrals) had
to be introduced in computations.

In the present study, the polariton spectrum for a
one-dimensional crystal (as the first in the series of
bounded crystals) will be analyzed in greater detail
without resorting to any additional parameters, but tak-
ing into account natural damping of an isolated mono-
mer for various angles of inclination of the dipole
moment of the transition to the crystal axis. The corre-
sponding dispersion equation will be derived. For the
critical angle θ of inclination of the dipole moment of the

transition to the crystal axis (θ = θ0 = arccos(1/ )),
when the Coulomb interaction between dipoles is iden-
tically equal to zero, three exact analytic solutions to
this dispersion relation will be obtained. These solu-
tions reveal most clearly the following characteristic
singularities of the polariton spectrum. The solutions
with the highest and lowest frequencies correspond to

polariton branches  and . The third solution,
with a frequency intermediate between the first two fre-
quencies, defines the branch of nonphysical states. This
nonphysical branch is interesting only to the extent to
which its dispersion relation determines the behavior of
real polariton branches since all these branches are

Ek
r n,( )

Ek
r( )

Γ k
r( )

Ek
n( )
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r( )

Ek
r( )

Γ k
r( )

Ek
n( )

3

Ek
r( ) Ek
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solutions to the same dispersion equation. The solution
of the dispersion equation shows that, with increasing

k, branch  smoothly joins with the branch of non-
physical states for a certain k = kc . At the linking point,

which is the termination point of the  branch, the
derivative

i.e., a singularity is present at the edge of the spectrum.
This singularity is an analog of the Migdal–Kohn sin-
gularity in the phonon spectra of metals with a strong
screening of the ion–ion interaction by the electron sub-
system [13]. The anomalously large radiation half-

width  (superradiance) increases with k, but has a
definite value at the branch termination point, which is
considerably smaller than the branch energy at this
point. Consequently, branch termination is determined
not by the fact that the broadening becomes comparable
to the energy, but by the smooth joining of this branch
with that of nonphysical states, and an analog of the
Migdal–Kohn singularity is observed at the linking
point. The presence of this new singularity in the polari-
ton spectrum might be of interest for subsequent exper-
imental investigations similar to numerous experimen-
tal studies of the Migdal–Kohn singularity. It should be
noted that, in contrast to [3, 5], the low-frequency

polariton branch  also exhibits a certain weak but

finite broadening  < γ depending on k in view of the
inclusion of γ. For angles of inclination differing from
θ0, the dispersion equation obtained in this way was
solved numerically because some of the Coulomb
dipole–dipole sums could not be represented analyti-
cally. At a certain critical point k = kc , the termination
of the radiation branch with an analog of the Migdal–
Kohn singularity is observed in this case as before. In
general, the behavior of polariton branches and their
radiation broadenings are quite similar to those men-
tioned above. Some quantitative changes will be dis-
cussed below. It would be definitely interesting to further
investigate possible manifestations of analogs of the
observed singularities in polariton spectra for bounded
two-dimensional crystals in development of [7, 8] and
three-dimensional finite-volume crystals in develop-
ment of [2] for γ quanta.

2. DERIVATION 
OF THE DISPERSION EQUATION

Let us consider a one-dimensional crystal with
monomers at sites na (n = 0, ±1, ±2, …), oriented so
that the dipole moment of the optical transition in each
monomer forms an angle θ with the crystal axis. As in
the case of an isolated oscillator [14], we will analyze

Ek
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natural dipole oscillations of this system first in the
classical approach and then in quantum theory in the
representation of secondary quantization. In the classi-
cal theory of electromagnetic radiation emitted by a
system of dipole oscillators, taking into account the
retarded interaction at frequency ω with the time
dependence exp(–iωt), the electric field strength Emω(n)
generated by the dipole at the nth site with the Fourier
component dnω and acting on the dipole at the mth site
is given by [15]

(1)

Here, sc is the unit vector in the direction of the crystal
axis. The first term with |n – m|–3 defines the field in the
nearest Coulomb nonwave zone, the second term with
|n – m|–2 describes the field in the intermediate zone,
and the third term with |n – m|–1 defines the field in the
wave zone. The dynamic equation of motion for a classi-
cal dipole oscillator as a pair of charges (–e, e) with
masses (M  ∞, µ), coupled by an elastic force with
frequency ω0 of natural oscillations, has the form [14]

(2)

where γ represents the half-widths of the line (γ < ω0)
emitted by the isolated dipole oscillator, which deter-
mines its attenuation due to radiative friction [14], and
T is the corresponding coupling constant determined by
the same constant γ. Constants T and γ will be renor-
malized below in the quantum approach. Since all
dipole moments are oriented in the same direction
dnω = dnωsd with the unit vector sd along the direction of
the dipoles, the substitution of Eq. (1) into (2) after pro-
jecting Eq. (2) onto sc leads to the following system of
secular equations for amplitude dnω:

(3)

Emω n( ) dnω 3sc scdnω( )–( ) ---
=

× 1

n m– 3a3
-----------------------– iω/c
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2
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2
-----------------------+ 
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a n m–
-------------------

 i
ωa
c

------- n m– 
 exp .

ω2 ω0
2– i2γω0+( )dmω T Emω n( ),
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T
e2

µ
----, γ 1

3
---T
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------,= =

ω2 ω0
2– i2γω0+( )dmω

=  T α 1
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----------------------- iω/c
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– β ω2/c2

n m– a
-------------------

 i
ωa
c
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 exp dnω,
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2

= =
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In quantum theory, in the representation of second-
ary quantization, the corresponding Hamiltonian has
the form [3, 16]

(4)

In these relations, , Bn, , and aqj are the Bose
operators of creation and annihilation for excitations of
quantum harmonic oscillators and for photons with
wave vector q and with two (j = 1, 2) unit vectors of
polarization eqj orthogonal to q; P is the corresponding
matrix element of the dipole moment operator for a
transition between the state of zero-point oscillations
and the first excited state; and V is the main quantiza-
tion volume for photons. Quadratic Hamiltonian (4)
can be diagonalized by the standard Bogoliubov–Tyab-
likov u, v  transformation [3]. In this case, the system of
equations for functions un, vn, uqj, and vqj, which exe-

cute a transition from operators , Bn, , and aqj to
the polariton creation and annihilation operators ξ+, ξ [3]
with energy E, has the form

(5a)

(5b)

(5c)

Substituting Eq. (5b) into (5c) and then into (5a) leads

H H0 H f H int, H0+ + "ω0Bn
+Bn,

n

∑= =

H f "qcaqj
+ aqj,

qj

∑=

H int PnEn, Pn

n

∑– sdP Bn
+ Bn+( ),= =

P
"e2

2µω0
-------------,=

En i eq jCq aqj a–qj
+–( ) ina qsc( )( )exp ,

qj

∑=

Cq
2π"cq

V
----------------.=

Bn
+ aqj

+

Bn
+ aqj

+

E "ω0–( )un iP Cq sdeqj( ) uqj v qj––( )
qj

∑–=

× ina qsc( )( ),exp

E "qc–( )uqj iPCq sdeqj( )=

× um v m+( ) ima qsc( )–( ),exp
m

∑

v n

"ω0 E–
"ω0 E+
--------------------un, v qj–

E "cq–
E "cq+
-------------------uqj.= =
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to the following equation for um:

(6)

Passing in this equation from summation over q to inte-
gration,

,

choosing retarded waves by an appropriate circumven-
tion of a pole in the phonon Green function,

(7)

and calculating the corresponding integrals, we arrive
at the equation

(8)

This equation is a quantum analog of Eq. (3) with rede-
fined constants γ and T. Passing from Eq. (6) to (8), we
assumed for the self-action term with n = m in Eq. (6)
that the diverging real part defines an infinite field mass
included in µ in accordance with the general approach
[14]. It is exactly this procedure that was carried out
implicitly in [3, 5] by introducing an additional cutoff
parameter for the corresponding diverging integral.
This determined the reason for terminating the radia-
tion branch, which was formulated earlier. The imagi-
nary component in relation (7) for the term with n = m
determines the natural redefined half-width "γ.

In view of translation invariance, Eq. (8) has a solu-
tion in the form of a plane wave

with the wave vector k. For this solution, the substitu-
tion of this solution into Eq. (8) leads to the following

E2
"

2ω0
2–( )un

8P2π"ω0

V
-----------------------=

× sd eqj⋅( )2 "cq( )2 i n m–( )a qsc( )( )exp

E2
"cq( )2–

--------------------------------------------------------------------um.
mqj

∑

V 1– 2π( ) 3– qd∫∑

1

E2
"cq( )2– iε+

--------------------------------------- P
1

E2
"cq( )2–

----------------------------=

– iπδ E2
"

2c2q2–( ), ε +0,

E2
"

2ω0
2– i"22γω0+( )un

=  T"
2 α 1

n m– 3a3
----------------------- iE/"c

n m– 2a2
-----------------------– 

 



m n≠
∑

– βE2/"2c2

a n m–
-------------------

 i
Ea
"c
------- n m– 

 exp um,

T
2P2ω0

"
---------------, γ

2P2ω0
3

3"c3
----------------.= =

un u ikan( )exp=
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dispersion equation for wave vector k and frequency
ω = E/":

(9)

It can easily be seen that, in the cases when the retarded
interaction is ruled out (i.e., for c  ∞), only the Cou-
lomb dipole–dipole sum determining the energy of
Coulomb excitons is preserved on the right-hand side
of Eq. (9) [3].

In the dimensionless variables Ω = ωa and K = ka,
five of the six sums,

(10)

appearing on the right-hand side of Eq. (9) can be rep-
resented analytically after certain calculations [17]:

(11a)

(11b)

(11c)

(11d)

(11e)

In these relations, the step function θ(x) = 1 for x > 0
and 0 for x < 0, while L(x) is the known special
Lobachevsky function with the corresponding integral

ω2 ω0
2– i2γω0+

=  2T α 1

r3a3
--------- iω/c

r2a2
-----------– 

  βω2/c2

ra
-------------– 

 
r 1=

∞

∑

× kra( ) iωra
c

------------ 
  .expcos

Sωk
r m, r m– Ωr( ) Kr( ),coscos

r 1=

∞

∑=

Sωk
i m, r m– Ωr( ) Kr( ), mcossin

r 1=

∞

∑ 1 2 3,, ,= =

Sωk
r 1, 1

4
--- 1 Ω K–( ) 1 Ω K+( )cos–( )cos–[ ] ,ln–=

Sωk
i 1, π

2
---θ Ω K–( ) Ω

2
----,–=
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r 2, 1

2
--- π2

3
----- Ω2 K2+

2
-------------------+ 

 =

–
π
2
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r 3, 1

2
--- π2Ω

3
---------- Ω2 3ΩK2+

6
---------------------------+ 

 =

–
π
2
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  ,
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representation convenient for numerical calculations [17].
It should be noted that relations (11a) and (11b) were
used in [1] as the basic relations for analyzing coherent
emission of gamma quanta. There exists no analytical

representation for function  (Coulomb dipole-
dipole sum); however, this is a rapidly converging sum
which can easily be calculated numerically.

For the Green function Gωk corresponding to system
of equations (9), which describes the response of the
system to an external action, we obviously have the fol-
lowing representation:

(12)

In accordance with Eq. (9), quantities  and  in
this relation, which are equal to the real and imaginary
parts of the self-energy component to within dimen-
sional coefficients, have the form

(13a)

(13b)

It should be noted that  contains the quantities ,

, and  having analytic representation in
Eqs. (11). Substituting Eqs. (11) into (13b), we obtain

(14)

The dependence ω = ω(k) of frequency ω on the
wave vector for polaritons as poles of Gωk is determined
as a solution to the dispersion equation

(15)

The dependences Γ(k) of radiation half-widths on k for
polariton branches with a fixed k can be determined in
the standard way from the corresponding frequency
dependence of the imaginary part of the Green func-
tions that determine the density of polariton states as
well as the cross sections of scattering, absorption, etc.:

(16)

Such an approach is most convenient when there are
two converging resonances instead of one isolated res-

Sωk
r 3,

Gωk
1

ω2 ω0
2

– i2γω0 Wωk'– iWωk''+ +
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Wωk'' 2T β ω2
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--------Sωk

i 1, α 1

a3
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i 3,– α ω
ca2
--------Sωk
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Wωk'' Sωk
i 1,

Sωk
i 3, Sωk

r 2,

Wωk'' 2T
1

a3
----- βΩ2 π Ω–( )

2
-------------------------



=

– α1
2
--- π Ω2 K2–( )

2
--------------------------- 2Ω3

3
----------– 

 

 θ Ω K–( )

+
Ω2

3
------θ K Ω–( )

 .

ω2 ω0
2

– Wωk'– 0.=

σk ω( )
2γω0 iWωk''+

ω2 ω0
2– Wωk'–( )2

2γω0 Wωk''+( )
2

+
------------------------------------------------------------------------------------.=
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onance, and it is possible to single out one zero and the
nonzero derivative corresponding to it in the expansion
of G–1.

3. DISPERSION RELATIONS
FOR POLARITONS

In order to prove the existence of the third branch in
principle, we consider the special case of the angle

In this case, α ≡ 0, β = β0 = 2/3, and the Coulomb com-
ponent of interaction between monomers, as well as the
interaction in the intermediate region, is absent. The
Eq. (15) determining the polariton frequency has the
form

(17)

We will seek the inverted dependence k = k(ω) instead
of the dependence ω = ω(k). We transform Eq. (17) to

(18)

The left-hand side of this equation is identically equal
to (cos(ka) – cos(ωa/c))2, and two solutions to Eq. (18)
for k = k(ω) have the form

(19a)

(19b)

Pay attention to the fact that the function of frequency
in the argument of arccos in expression (19a) has a dip
at point , which can be determined from the equation

(20)

since the first component in expression (19a) decreases
with increasing frequency, while the second component
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increases therewith. Consequently, for a fixed k smaller
than a certain value of kc determined by parameter A,
there exist two frequencies ωr(k) and ωc(k) with k <
ωc(k)/c < ωr(k)/c, which satisfy Eq. (19a), while no
such branches exist for k > kc . The highest of these fre-
quencies, ωr(k), corresponds to the polariton branch

with energy , which was found earlier. Frequency
ωc(k) with k < ωc(k)/c is the nonphysical solution dis-
cussed above. It can be seen from formulas (19) that the
pole of G for this branch has the form ωc(k) – ω + iΓ,
which corresponds to amplitude exp(–iωc(k)t + Γt)
increasing with time due to the sign reversal in the cor-
responding derivative in solutions (19a) and (17). In
addition, as will be shown below, the group velocity for
this nonphysical branch exceeds the velocity of light.
The third polarization branch, ωn(k) with k > ωn(k)/c,
can be determined from Eq. (19b) and is the second

low-frequency branch  [3, 5].

The k = k(ω) dependences (19) are shown in Fig. 1
in dimensionless variables ν = ω/ω0, q = kc/ω0 in the
form of the direct dependence ν = ν(q) for two values
of base parameters ω0a/c = 0.01 and 2T/ac2 = 0.1,
which are close to experimental values. Figure 1a
shows the main quadrant 0 < ν < 1, 0 < q < 1 on the
phase plane, where all polariton branches are present
and exhibit the strongest changes. Curve 1 corres-
ponding to the high-frequency component ωr(k) of
solution (19a) represents the radiative branch. On the
given scale, curve 2 corresponding to the low-fre-
quency component of solution (19a) almost coincides
with the optical axis ν = q on the high-frequency side
and strongly deviates from this axis only in the square
region shown by the dashed contour, where it joins with
curve 1 for infinitely large derivatives. Curve 3 repre-
senting solution (19b) corresponds to the nonradiative
polariton branch ωn(k). For small values of q, it coin-
cides with the optical axis on the low-frequency side,
but as the value of q > 1 increases, it tends asymptoti-
cally to ν = 1 as it approaches the boundary k = π/a of
the Brillouin zone. Figure 1b clearly shows on a larger
scale that curve 2 gradually splits from the optical axis
upon an increase in q starting from q = 0.8. Since the
main changes in the dispersion curves occur in the
region shown by the dashed contour in Fig. 1a, it is this
region that is represented in Fig. 1b on a larger scale.
The numbering of branches 1, 2, and 3 is the same as in
Fig. 1a. Straight line 4 represents the optical axis. It can
be clearly seen from Fig. 1b that curve 1 corresponding
to radiative polaritons and curve 2 corresponding to
nonphysical states are linked at point C with infinitely
large derivatives |dν/dq| = ∞. It is interesting to note
that, because of the termination of branch 1 at point C,
states 1 cannot be effectively excited by photons with
the transverse wave vector

Ek
r( )

Ek
n( )

ktr ωc/c( )2 k2– ,<
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since the branch of such photons does not intersect
curve 1.

It was noted above that dependence Γ(k) was deter-
mined by using the frequency dependence σk(ω). Fig-
ure 2a shows this dependence for q = 0.81. Broad high-
frequency resonance 1 (solid curve) corresponds to
radiative branch 1 in Fig. 1. Narrower resonance 2 with
a lower frequency (dashed curve) corresponds to non-
physical states. The high peak (reduced by a factor of
30) with the lowest frequency and a small (but finite)
width corresponds to branch 3. Naturally, two reso-
nances 1 and 2 should be separated and nonphysical
resonance 2 should be eliminated. However, the separa-
tion of two resonances 1 and 2 at this stage in the same
way as in experimental data processing is unnecessary
in our opinion. The radiation half-width Γ of branch 1
was determined in the standard manner as the differ-
ence between the frequency corresponding to the peak

0 0.5 1.0

1

2 3

32

0.5

1.0
ν

q

4

2 3

1

ν

q

C

0.82

0.84

0.82

0.84

(a)

(b)

Fig. 1. Dispersion curves for polaritons: (a) dispersion
curve for θ = θ0; (b) analog of the Migdal–Kohn singularity
in the radiative branch.
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of resonance 1 and the frequency on the high-frequency
wing of resonance 1, at which the value of σ decreases
by half as compared to the maximal value in resonance.
Dependence Γ(k)/ω0 for the radiative branch is repre-
sented by curve 1 in Fig. 2b. It can be seen that the value
of Γ increases with k. The anomalously large half-width
Γc = 4.8 × 10–2ω0 at point C, as a manifestation of
superradiance, considerably (by two orders of magni-
tude) exceeds the natural half-width γ = 1.67 × 10–4ω0.
At the same time, it is small as compared to the fre-
quency of the polariton branch at point C, which is
equal to ωr(kC) = 0.843ω0; i.e., γ ! Γc ! ωr(kc). Curve 3
in Fig. 2b shows the dependence of the half-width of
peak 3 (conditionally speaking, nonradiative branch 3)
on k, enlarged by a factor of 103. The value of this half-
width was defined as the difference between the fre-
quency corresponding to the maximum of peak 3 in
Fig. 2a and the frequency corresponding to the point on

× 1/30
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4

6

0

1
2

3

0.80 0.84 0.88

σ

× 103

3

σ

1

C

0.03

0.04

0.05

0.82 0.84 0.86

ν

q

(a)

(b)

Fig. 2. (a) Frequency dependence of the density of polariton
states and (b) the corresponding dependences of the radia-
tion widths of polaritons on the wave vector.
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the low-frequency wing of the peak, at which the value
of σ decreases by half. It is clear even from general con-
siderations that the width of this branch is equal to zero
for k = 0.With increasing k, this branch acquires an
insignificant half-width smaller than γ. The value of the
half-width in Fig. 3 amounts to 3.5 × 10–5ω0 < γ; as the
value of k increases, the half-width asymptotically
tends to γ. The fact that polariton states with a width
smaller than γ exist follows even from an analysis of a
system of two oscillators [1], for which the high-fre-
quency term from two split terms, corresponding to k =
0, has a width larger than γ, while the low-frequency
term corresponding to k = π/a is smaller than γ.

The analytic expressions derived above make it pos-
sible to trace the evolution of the spectra upon variation
of angle θ. Figure 3 shows the dispersion curves for a
crystal with θ = π/2, studied in [3, 5]. We used the same
values of the main parameters as in the previous figures.
Since the energy of the Coulomb interaction has

1

2 3

4

0.85 0.90
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0.90

0.82 0.84 0.86
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Γ

ν

(a)

(b)

C

Fig. 3. (a) Dispersion curves describing polariton branches
with an analog of the Migdal–Kohn singularity (b) and the
corresponding radiation width of polaritons for θ = π/2.
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increased considerably, the frequency of a Coulomb
exciton (with c  ∞) for k = 0 amounts to, in accor-
dance with relation (9),

where ζ is the Rieman zeta function (ζ(3) = 1.202).
Accordingly, in absolute units, all dispersion curves are
shifted to the region of higher frequencies and larger
wave vectors as compared to the previous values. For
convenience of comparison with previous results, the
curves in Fig. 3 are plotted in variables normalized to
ωCoul; i.e., dimensionless variables ν = ω/ωCoul and q =
kc/ωCoul are used. It can be seen from Fig. 3a that the sit-
uation has not changed qualitatively as compared to
Fig. 1b. However, the curves in Fig. 3a display a certain
quantitative shift of the entire system of dispersion
branches towards higher frequencies and larger wave
vectors. Figure 3b shows the dependence of q on the
half-width of the radiative branch. The form of this
dependence is generally the same as in Fig. 2b, but the
half-width is doubled as compared to Fig. 2b. This is
natural since the retarded interaction attains its maxi-
mal value for θ = π/2, while in the wave zone, for θ = 0,
this interaction is absent altogether. As the value of θ
decreases relative to θ0, changes in the dispersion
curves and broadening in the opposite direction as com-
pared to Fig. 3 were observed. Obviously, as the cou-
pling constant (corresponding to the oscillator strength
of a dipole transition in an isolated monomer)
decreases, the polariton branches are “pressed against”
lines ν = 1 and ν = q, and the broadenings decrease
accordingly so that the broadening at the critical point
becomes much smaller than the critical frequency. Con-
sequently, it is the above-mentioned mechanism of ter-
mination of the spectrum with an analog of the Migdal–
Kohn singularity, and not the comparability of the
broadening and the frequency of the radiative branch,
that plays a decisive role in this case. This previously
unknown singularity of the polariton spectrum might be
of interest for experimental investigations similar to
numerous experiments carried out for studying the
Migdal–Kohn singularity.
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Abstract—The double photoionization of helium at high photon energies is considered using a nonrelativistic
approach. The central region of the energy spectrum and its contribution to the total process cross section and
to the ratio between the double and single ionization cross sections are studied. Interelectronic interaction in
the initial state is included exactly, whereas the interaction between the fast outgoing electrons is calculated by
perturbation theory. A detailed derivation of the expression for the cross section ratio between double and single
ionizations is given. The corresponding results obtained by other authors are analyzed and corrected. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The double ionization of an atom by a single photon,
which opens up the possibility of effectively studying
electron correlations in the atom, has attracted attention
of many researchers. Because of the one-particle char-
acter of electron–photon interactions, simultaneous
knocking-out of two electrons by one photon is fully
determined by interelectronic interaction. In the
asymptotic nonrelativistic energy region (I ! ω ! m,
where I is the atom ionization energy, ω is the photon
energy, and m is the mass of the electron; we use the
" = c = 1 relativistic system of units), several simple
formulas for the ratio between the double and single
ionization cross sections and for the energy distribution
of photoelectrons were obtained [1, 2]. As distin-
guished from the single photoeffect when electrons are
ejected with a certain energy, the electron energy in the
double photoeffect can assume any value because the
excess photon energy is distributed between two elec-
trons. The energy spectrum of electrons extends from
zero to Emax = ω – I++, where I++ is the double ionization
energy of the atom. The spectrum is symmetrical with
respect to the middle of the energy interval, E0 = Emax/2.
The largest contribution to the total cross section is
made by the edge spectrum regions where one electron
is slow and the other fast (E1 ~ Emax, E2 ~ I or E1 ~ I,
E2 ~ Emax). The contribution of the edge spectrum
region is proportional to ω–7/2 at high photon energies.
The single photoeffect cross section behaves similarly.
For this reason, the ratio R between the total cross sec-
tions of double and single photoionization is indepen-
dent of ω in the asymptotic region of photon energies.
1063-7761/04/9802- $26.00 © 20248
The central photoelectron spectrum region (E1 ~ E2),
where both electrons are fast, also makes a noticeable
(about 5–10% [2]) contribution to the total cross sec-
tion. This contribution, however, decreases more
slowly (as ω–5/2) as the photon energy increases. As a
result, the ratio R between the total cross sections
includes a contribution R' that increases as ω grows
(R' ∼ ω ). This contribution is nevertheless smaller than
the edge contribution in the nonrelativistic region. The
other spectrum regions make substantially smaller con-
tributions and are usually not considered.

In the edge spectrum region, the momentum trans-
ferred to the nucleus is larger. One electron should
therefore be near the nucleus, whereas the second one
may be situated anywhere within the atom. In the cen-
tral spectrum region, two electrons can absorb one pho-
ton by dividing its energy and momentum between
themselves. The process occurs at large distances from
the nucleus (on the order of the size of the atom) and is
accompanied by the transfer of a small momentum q ~
η (η is the mean bound electron momentum) to the
nucleus. Interelectronic distances should then be small
to ensure fairly strong electron–electron interaction,
which causes both electrons to acquire large momenta

in the opposite directions (p1, 2 ≈  @ ω, p1 ≈ –p2).
Such a quasi-free double ionization mechanism was
considered for the first time in [1] and, in more detail,
in [2]. The central double photoionization spectrum
region was also studied at relativistic energies [3, 4]. It
was shown in [4] that the contribution of the central
region was two times smaller in the nonrelativistic limit
than that obtained in [2] for the initial state wave func-

mω
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tion1 used in [4]. Recently, two more works have been
published [5, 6] in which the quasi-free mechanism was
studied. The results obtained in [5] were also approxi-
mately two times smaller than those reported in [2]. The
authors of more recent work [6], who used a very accu-
rate two-electron initial state wave function [7, 8], how-
ever, calculated the contribution of the central spectrum
region to the ionization cross section by the equation
obtained in [2]. Accordingly, their results exceeded
those reported by Kornberg and Miraglia [5] approxi-
mately twofold.

The purpose of this work was to give a detailed der-
ivation of the formula that described the central elec-
tron energy spectrum region. We only consider asymp-
totic nonrelativistic photon energies, I ! ω ! m, at
which the central spectrum region makes the most
noticeable contribution.

2. THE AMPLITUDE
OF THE DOUBLE PHOTOEFFECT 

IN THE CENTRAL ENERGY SPECTRUM 
REGION

We consider the double photoionization of helium
and helium-like ions on the assumption that the
momenta of both photoelectrons satisfy the condition
p1, p2 @ η. Such electrons belong to the central energy
spectrum region. In the nonrelativistic approximation,
the total wave function of a two-electron system is
given by the product of the spin and coordinate wave
functions. As the principal part of electron–photon
interaction at nonrelativistic energies does not contain
spin operators, the spin function of the atom does not
change and drops out of the problem. By virtue of the
Pauli principle, the symmetry properties of the coordi-
nate wave function with respect to the permutation of
electrons also remain unchanged. When the ground
state of helium is ionized, the coordinate wave function
is symmetrical. In what follows, the wave function of
the system is identified with its coordinate part.

The general equation for the amplitude of double
photoionization has the form

(1)

The numbers 1 and 2 in parentheses stand for the argu-
ments of the electrons. The  electron–photon interac-
tion operator is a one-particle operator. In the coordi-
nate representation, we have

(2)

We exclude the Nγ multiplier from the amplitude and
transfer it into the equation for the cross section. Here,

1 The calculations in [2] were performed for various initial state
wave functions.

M++ Ψ f 1 2,( ) γ̂ 1( ) γ̂ 2( )+ Ψi 1 2,( )〈 〉=

=  2 Ψ f γ̂ Ψi〈 〉 .

γ̂

γ̂ Nγ
ie∇
m

---------– 
  eik r⋅ , Nγ

2πα
ω

----------.= =
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α = e2 = 1 / 137 and k, ω, and e are the photon momen-
tum, energy, and polarization vector, respectively.

We use the exact two-electron functions of helium
and helium-like ions as the initial state wave function
Ψi . The particular form of these functions is only nec-
essary for obtaining numerical results. The wave func-
tion Ψf of the final state is constructed using perturba-
tion theory with respect to interelectronic interaction.
In a zeroth approximation, Ψf is the product of one-par-
ticle Coulomb functions ψp . Both photoelectrons have
high energies E1, 2 ~ ω/2 @ I and large momenta p1, 2 @
η in the central spectrum region. On the other hand, the
Coulomb parameter ξ is small (ξ1, 2 = η/p1, 2 ! 1) and
the wave functions ψp of the continuous spectrum can
be expanded in powers of this parameter. We only con-
sider the low-order terms of this expansion that corre-
spond to plane waves. With the first two expansion
terms, we obtain

(3)

(4)

(5)

(6)

Here, I++ is the double ionization energy of the K shell,
V12 is the interelectronic interaction operator, G12 is the
two-particle Green operator, and H1 and H2 are the one-
particle Hamiltonians. In the plane-wave approxima-
tion, H1 and H2 are the Hamiltonians of free particles.
Equality (6) is the energy conservation law for the pro-
cess under consideration.

Substituting (3) and (4) into (1) yields

(7)

(8)

2.1. Calculation of the Amplitude A(0) 

The matrix element that determines the amplitude
A(0) is calculated in the coordinate representation,

(9)

Ψ f Ψ f
0( ) Ψ f

1( ),+=

Ψ f
0( ) 1

2
------- ψp1

r( )ψp2
r'( ) p1 p2+[ ]=

≈ 1

2
------- ip1 r⋅( )exp ip2 r'⋅( )exp p1 p2+[ ] ,

Ψ f
1( ) G12V12Ψ f

0( ),=

G12 E f H1– H2– i0+( ) 1– ,=

E f E1 E2+ ω I++ ω.≈–= =

M++ 2 A 0( ) A 1( ) p1 p2+ +( ),=

A 0( ) ψp1
ψp2

γ̂ Ψi〈 〉 ,=

A 1( ) ψp1
ψp2

V12G12γ̂ Ψi〈 〉 .=

A 0( ) 1
m
---- r r' ip1– r ip2 r'⋅–⋅( ) ie∇–( )expdd∫=

× ik r⋅( )Ψi r r',( )exp
ep1

m
-------- r r'dd∫=
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The integrand in (9) contains two rapidly oscillating
functions and is inconvenient for numerical purposes.
Numerical estimates can easily be obtained in terms of
new variables,

(10)

The drdr' element is then replaced by dRdr. It follows
from (10) that

(11)

Then,

(12)

(13)

The amplitude A(0) takes the form

(14)

We consider the central spectrum region, where the
momentum transferred to the nucleus is small (q ~ η).
The integral in R contains a feebly oscillating function
and is saturated at large (on the order of atomic size)
R ~ q–1 ~ η–1. Conversely, the integral in r contains a
rapidly oscillating function (a ≡ |a| @ q) and is saturated

at small ρ ~ a–1 ~ . This integral can be recast as
follows:

(15)

Here, ∆ρ ≡  is the Laplace operator in variable r. The
term in square brackets can be found from the
Schrödinger equation for the helium atom (helium-like
ion) written in the variables R and r,

(16)

where εi is the initial state energy.

× ik1– r ip2 r'⋅–⋅( )Ψi r r',( ), k1exp p1 k.–=

R
1
2
--- r r'+( ), r r' r.–= =

r R r/2, r'– R r/2.+= =

k1r p2r'+ qR ar, q+ p1 p2   k – ,+= =  

a p

 

2

 

q

 

/2,–=

Ψi r r',( ) Φi R r,( ).=

A 0( ) e p1⋅
m

------------ Re iq– R⋅ re ia– r⋅ Φi R r,( ).d∫d∫=

p2
1–

I a R,( ) re ia r⋅– Φi R r,( )d∫≡

=  
1

a2
----- rΦi R r,( )∆ρe ia– r⋅d∫–

=  
1

a2
----- re ia– r⋅ ∆ρΦi R r,( )d∫–

≈ 1

a2
----- re ia– r⋅ ∆ρΦi R r,( )[ ] ρ 0→ .d∫–

∇ ρ
2

∆R

4m
-------–

∆ρ

m
-----– αZ

R r/2–
---------------------– αZ

R r/2+
----------------------– α

ρ
--- εi–+ 

 

× Φi R r,( ) 0,=
JOURNAL OF EXPERIMENTAL 
Leaving the principal terms only in (16) when ρ 
0, we obtain

(17)

Substituting (17) into (15) yields

(18)

(19)

(20)

2.2. Calculation of the Amplitude A(1) 

The A(1) amplitude is also calculated in the coordi-
nate representation,

(21)

(22)

(23)

An analysis of the equation for A(1) shows that the

principal contribution on the order of αη /  to the
amplitude is acquired in the region f ~ s ~ η, whereas
the contribution of the region f ~ s ~ p1 is (p1/η)3 times
smaller. For this reason, we can use a simpler expres-
sion for G12, which is obtained from (23) by ignoring
the (f 2 + s2)/2m term compared with ω. We then have

(24)

(25)

∆ρΦi R r,( )[ ] ρ 0→
mα
ρ

--------Φi R 0,( ).=

I a R,( ) mα
a2

--------Φi R 0,( ) re ia– r⋅

ρ
-------------d∫–≈

=  
4πα
a4

----------mΦi R 0,( ),–

A 0( ) 4πα
a4

----------e– p1S q( ),⋅=

S q( ) Re iq– R⋅ Φi R 0,( )d∫=

=  re iq– r⋅ Ψi r r,( ).d∫

A 1( ) 1
m
---- r r'Ψ f

1( ) r r',( ) ie∇–( )eik r⋅ Ψi r r',( ),dd∫=

Ψ f
1( ) r r',( ) Ψ f

0( )〈 |V12G12 r r',| 〉=

=  r1 r2 ip1– r1 ip2 r2⋅–⋅( )expdd∫
× α

r1 r2–
------------------ r1 r2,〈 |G12 r r',| 〉 ,

r1 r2,〈 |G12 r r',| 〉 fd

2π( )3
------------- sd

2π( )3
-------------∫=

×
if r1 r–( )⋅ is r2 r'–( )⋅+[ ]exp

ω f 2 s2+( )/2m– i0+
---------------------------------------------------------------------------.

p1
4

r1 r2,〈 |G12 r r',| 〉 1
ω
----δ r1 r–( )δ r2 r'–( ),=

Ψ f
1( ) r r',( ) α

ω
----

ip1– r ip2– r'⋅ ⋅( )exp
r r'–

-----------------------------------------------------.=
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Substituting (25) into (21) and integrating by parts
yields

(26)

Further calculations are easy to perform in terms of
the R and r variables. Leaving the principal term of the
expansion in q/p1 only, we find the simple equation
for A(1):

(27)

2.3. The Derivation of the Equation
for the Amplitude M++ of the Process 

To find the amplitude M++, we must add exchange
terms to A(0) and A(1). Applying the law of conservation
of momentum yields

(28)

(29)

(30)

A comparison of (28) and (30) shows that, because of
the cancellation of the principal terms in the total
(including exchange terms p1  p2) A(0) amplitude,
this amplitude becomes of the same order of smallness
as the total A(1) amplitude, which is the reason why
these amplitudes are considered jointly.

Let us express the energies and momenta of photo-
electrons via ∆ = E1 – E2,

(31)

A 1( ) α
mω
-------- r r'

e p1⋅
ρ

------------ ie r⋅
ρ3

------------+ 
 dd∫=

× ip1– r ip2– r'⋅ ⋅ ik r⋅+( )Ψi r r',( ).exp

A 1( ) α
mω
-------- R r

e p1⋅
ρ

------------ ie r⋅
ρ3

------------+ 
 dd∫=

× iq– R ia– r⋅ ⋅( )Φi R r,( )exp

≈ α
mω
-------- R iq– R⋅( )Φi R 0,( )expd∫

× r ia– r⋅( )
e p1⋅

ρ
------------ ie r⋅

ρ3
------------+ 

 expd∫
=  

2πα
mω
----------e q⋅

a2
----------S q( ).

A 0( ) p1 p2+ 4παS q( )
e p1⋅

a
4

------------
e p2⋅

b4
------------+ 

 –=

=  4παS q( ) e p1
1

a4
----- 1

b4
-----– 

 ⋅ e q⋅
b4

----------+ ,–

a p2 q/2– , b p1 q/2– ,= =

A 1( ) p1 p2+
2πα
mω
----------e qS q( ) 1

a2
----- 1

b2
-----+ 

  .⋅=

     

E1
ω ∆+

2
--------------, E2

ω ∆–
2

-------------,= =

p1
2 m ω ∆+( ), p2

2 m ω ∆–( ).= =
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The momentum q transferred to the nucleus is small
in the central spectrum region. The laws of conser-
vation of energy and momentum can therefore be writ-
ten as

(32)

Solving these equations simultaneously yields the con-
straint on |∆|,

(33)

Condition (33) determines the boundaries of the central
spectrum region. In the lowest order in the (ω/m)1/2

parameter, we have

(34)

(35)

In summing (28) and (30), we notice that the terms pro-
portional to e · q are cancelled2 and we arrive at the sim-
ple equation for 

 

M

 

++

 

(36)

3. THE CONTRIBUTION
OF THE CENTRAL SPECTRUM REGION
TO THE TOTAL DOUBLE IONIZATION

CROSS SECTION

The differential double ionization cross section is
determined by the equation

(37)

Substituting (36) into (37) yields the contribution of the
central spectral region to the cross section,

(38)

To calculate the total cross section, we must change
from 

 

d

 

p

 

2

 

 to 

 

d

 

q

 

 and replace 

 

d

 

p

 

1

 

 with 

 

mp

 

1

 

dE

 

1

 

d

 
Ω

 

1

 

. It fol-
lows from the definition of

 

 q

 

 [Eq. (12)] that the energy

 

E

 

2

 

 is a function of 

 

E

 

1

 

 and 

 

q

 

,

(39)

 

2

 

The cancellation of the terms proportional to 

 

e

 

 · 

 

q

 

 in the ampli-
tude of the double photoeffect in the central spectrum region was
noticed for the first time in [9].

E1 E2+ ω, p1 p2+ k.= =

∆ ω ω
m
----  ! ω.≤

E1 E2
ω
2
----, p1 p2 mω,= = = =

b4 a4– 4mω m∆ p1 q⋅–( ) . 4mωp1 k.⋅=

M++ 4πα 2F,–=

F S q( )
4 e n1⋅( ) k n1⋅( )

mω( )2
---------------------------------------, n1

p1

p1
-----.= =

dσ++ Nγ
2

M++ 2dp1dp2

2π( )6
------------------2πδ E1 E2 ω–+( ).=

dσc.r.
 ++ 4πα( )3 F 2dp1dp2

ω 2π( )5
------------------δ E1 E2 ω–+( ).=

E2 E1
k p1⋅

m
-------------

κ2

2m
-------, k+– k q.+= =
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Taking this dependence into account, the removal of the
δ function in (38) yields

(40)

The integration in q can be performed from zero to
infinity. Indeed, the q > η region makes a small contri-
bution to the cross section because the |S(q)|2 value rap-
idly decreases as q increases.3 We then have

(41)

(42)

The integration of (41) in the angles is simple. As the
two final electrons are identical, the result should be
divided by 2,

(43)

4. THE SINGLE IONIZATION CROSS SECTION

Let us determine the single ionization cross section
σ+ of the helium atom in the nonrelativistic approxima-
tion for a high-frequency photon and an arbitrary sym-
metrical function of the initial state. The amplitude of
the single photoeffect is4 

(44)

Here, p =  and the Coulomb parameter ξ = η/p =

 ! 1. For this reason, we use a plane wave as the
wave function of the free electron and the bound elec-
tron in the final state is described by the Coulomb wave
function ϕ1s (we consider the ionization of the ground
state of the helium atom). The two-electron wave func-
tion of the initial state Ψi(r, r') can be an arbitrary ana-
lytic function or given numerically.

3 If Ψi(r, r') is given by the product of Coulomb functions

ϕ1s(r)ϕ1s(r'), then S(q) = [µ2/(q2 + µ2)]2, where µ = 2η.
4 The  multiplier of the  operator is included into the

equation for the cross section.

E1δ E1 E2 ω–+( )d∫ 2
k p1⋅

p1
2

-------------– 
  1– 1

2
---.≈=

dσc.r.
 ++

dΩ1
------------

27πα3

mω( )3
--------------- p1B e n1⋅( )2 n n1⋅( )2, n

k
ω
----,= =

B
qd

2π( )3
------------- S q( ) 2∫ rΨi

2 r r,( ).d∫= =

σc.r.
 ++ 28π2α 3

15m5
----------------- m

ω
---- 

 
5/2

B.=

2πα/ω γ̂

M+ 2 Ψ f〈 |γ̂ Ψi| 〉 2
m
------- r r'dd∫= =

× e ip– r⋅ ϕ1s r'( ) e ip– r'⋅ ϕ1s r( )+[ ]

× ie∇–( )eik r⋅ Ψi r r',( ).

2mω
I/ω
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The integration by parts transforms (44) into

(45)

In the derivation of (45), it was taken into account

that ω/p =  ! 1 and only the principal term was
left in the expansion in this parameter; that is, the dipole
approximation was used.

Next, consider the integral

(46)

Using the Green theorem and the smallness of r ~ p–1,
we obtain

(47)

The Schrödinger equation for the helium atom in the
variables r and r' has the form

(48)

where ∆(∆') is the Laplace operator in the variable r
(r'). It follows from this equation that

(49)

Substituting (49) into (47) yields

(50)

and the amplitude [Eq. (45)] takes the form

(51)

(52)

M+ 2
m
------- r r'dd∫=

× e pe i– p k–( ) r⋅ ϕ1s r'( ) iηe r⋅
r

---------eik r⋅ ϕ1s r( )e ip– r'⋅–⋅
 
 
 

× Ψi r r',( ) 2
m
-------ep≈

× r r'e ip– r⋅ ϕ1s r'( )Ψi r r',( ).dd∫

ω/2m

J p r',( ) re ip– r⋅ Ψi r r',( ).d∫=

J p r',( ) 1

p
2

----- rΨi∆e ip– r⋅d∫–=

=  
1

p2
----- re ip– r⋅ ∆Ψid∫–

≈   1
 
p

 
2

 ----- r e 
i

 
p

 
–

 
r

 
⋅ ∆Ψ i ( ) 

r
 

0
 

→
 . d  ∫  –

∆
2m
-------– ∆'

2m
-------– αZ

r
-------– αZ

r'
-------– α

r r'–
--------------- εi–+ 

 

× Ψi r r',( ) 0,=

∆Ψi r r',( )
r 0→

2η
r

------Ψi 0 r',( ).–=

J p r',( ) 8πη
p4

----------Ψi 0 r',( )=

M+ 2
m
-------e p r'ϕ1s r'( )J p r',( )d∫⋅=

=  2
e p⋅

m
----------8πη

p4
----------N ,

N rϕ1s r( )Ψi 0 r,( ).d∫=
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In the one-particle approximation with Coulomb func-
tions, we have

The differential and total cross sections for the single
ionization of the K shell of the atom are given by the
equations

(53)

(54)

5. THE CONTRIBUTION
OF THE CENTRAL REGION TO THE RATIO 

OF THE CROSS SECTIONS

The ratio between the nonrelativistic cross sections
of single and double ionization in the high-frequency
limit can be represented as the sum of R0 (the contribu-
tion of the edge spectrum region) and R' (the contribu-
tion of the central spectrum region),

(55)

The R0 value is independent of the photon energy, and
its value has been well established, R0 = 1.67% [5, 10].
Conversely, the R' contribution linearly depends on the
photon energy, as is easy to see when we divide (43)
by (54),

(56)

(57)

Equation (56) only differs from the one obtained by
Drukarev [2] by the 1/2 multiplier. Unfortunately, [2]
does not contain details of calculations, and we cannot
therefore identify the reason for the discrepancy. The
more recent paper by Kornberg and Miraglia [5] also
contains errors, because it ignores interelectronic inter-
action in the final state, which results in the appearance
of terms proportional to ω–1 in the equation for R'. Nev-
ertheless, the term proportional to ω was calculated
in [5] correctly, however, only for the Ψi(r, r') function
of a special form. Using the same function, we obtain
R' = 3.49 × 10–5ω [keV] (cf. 4.02 × 10–5ω [keV] in [5]).

N N1s η3/π( )1/2
.= =

dσ+ 2πα
ω

---------- M+ 2 dp

2π( )3
-------------2πδ E I ω–+( )=

=  
α

2πω
----------- M+ 2

mpdΩp,

σ+ 32 2π2α 3
Z2

3m5
------------------------------- m

ω
---- 

 
7/2

N2.=

R
σ++

σ+
--------

σe.r.
 ++

σ+
---------

σc.r.
 ++

σ+
---------+ R0 R'.+= = =

R'
4 2

5Z2
----------C

ω
m
----,=

C
B

N2
------

r Ψi r r,( ) 2d∫
rϕ1s r( )Ψi 0 r,( )d∫

2
-------------------------------------------------.= =
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A 15% difference arises because we use (54) for σ+,
whereas Kornberg and Miraglia use the equation from
[11] with the ground state wave function from [12]. The
advantage of our approach is the use of the same initial
state wave function for double and single ionizations,
whereas Kornberg and Miraglia use different initial
functions for σ++ and σ+.

6. CONCLUSIONS

We derived equations that described the contribu-
tion of the central region of the electron energy spec-
trum to the total cross section of double ionization and
to the ratio between the double and single ionization
cross sections for the initial wave functions of the most
general form. We assert that the contribution of the cen-
tral region to the cross section ratio obtained in [2] is
exaggerated twofold. The result for R' obtained in [5] is
erroneous. It contains terms proportional to ω and ω–1.
The term proportional to ω correctly describes the con-
tribution of the central region to R, whereas the term
proportional to ω–1 disappears if interelectronic interac-
tion in the final state is included.
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Abstract—On the basis of the generalized Sturm expansion of the radial part of the Coulomb Green function,
a computational method is proposed and numerical results are presented for the dynamic hyperpolarizability γ
and the corrections E(4) (quadratic in the light intensity) to the quasi-energy of the ground and excited states of
hydrogen with principal quantum numbers n ≤ 5 in a monochromatic light field. In this approach, the problem
is reduced to the summation of well-convergent double series of the hypergeometric kind, which ensures reli-
able numerical results both for states with a large n, and in a wide range of field frequencies ω, including the
above-threshold frequency range of "ω @ |En| (|En| is the ionization potential of the state |nlm〉  under investiga-
tion). We consider the frequency dependence of γ and E(4), their differences for the cases of linear and circular
polarizations of the field, and the relation between their real and imaginary parts, which determine the laser
field-induced corrections to the position and width of energy levels. For n = 5, the significant role of mixing the
|nlm〉  states with different values of l by a laser field in the region of resonances on intermediate bound states is
demonstrated. The linear (in intensity) corrections to the photoionization cross section for excited states are
analyzed and the threshold intensity corresponding to the onset of atomic level stabilization is estimated for a
number of states with n = 3 and n = 5. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The analysis of interaction of an atomic system with
high-intensity laser radiation is simplified considerably
in the case of a periodic (in particular, harmonic) time
dependence of the external field. Spectral characteris-
tics of an atom interacting with a monochromatic light
wave,

(1)

(F and ω are the amplitude and frequency of the wave
and e is the unit vector of polarization, e · e* = 1), are
determined by the spectrum of complex quasi-energies
En = ReEn – (i/2)Γn , which correspond to the unper-

turbed atomic spectrum  and determine the shift

(ReEn – ) and ionization broadening (Γn) of energy

levels  by the field of the light wave [1]. If the field
amplitude (1) is small as compared to the characteristic
intraatomic field Fn (Fn = Fat/n3, Fat = 5.142 ×
109 V/cm), the quasi-energy can be determined in per-
turbation theory by calculating the corrections to
unperturbed energy level E(0). For states that do not pos-
sess an intrinsic dipole moment, the corrections contain
only the terms with even powers of F:

(2)

Excited states of the hydrogen atom may possess a
dipole moment, but the effect of this quantity on the

F t( ) FRe ee iωt–{ }=

En
0( )

En
0( )

En
0( )

E E 0( ) E 2( ) E 4( ) …, E
k( )

Fk.∼+ + +=
1063-7761/04/9802- $26.00 © 20254
quasi-energy spectrum is not pronounced in the fre-
quency range "ω @ F|〈nlm|e · r|nl 'm '〉| considered
here [1]; consequently, the expansion of E has the
form (2) in this case also.

Perturbation of the spectrum is usually analyzed in
the language of dynamic polarizability (DP) α and
hyperpolarizability (DHP) γ, which determine the sec-
ond-order corrections

(3)

as well as the fourth-order corrections

(4)

in F to the unperturbed energy level in relation (2).

Parameters α and γ introduced via relations (3) and
(4) also determine the first- and third-order terms in F
in the expansion of the atomic dipole moment P(t)
induced by an external field at frequency ω:

(5)

E 2( ) 1
4
---αF2,–=

E 4( ) 1
8
---γF4,–=

P j t( ) Re P j
ω( )e iωt– P j

3ω( )e 3iωt– …+ +{ } ,=

P j
ω( ) α jkekF γ jklmek*elemF3,+=

α α jke j*ek, γ γjklme j*ek*elem.= =
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Consequently, these parameters determine the cross
section of Rayleigh scattering of light by an atom and
the corrections to this cross section, which are linear in
the wave intensity (for a gaseous medium, these param-
eters determine the refractive index including the cor-
rections on the order of F2). It should be borne in mind
that tensors αjk and γjklm are usually determined in
terms of the mean value of the dipole moment operator
on wave functions calculated in perturbation theory up
to terms on the order of F3. However, such a definition
of γ becomes meaningless for frequencies exceeding

the single-photon ionization threshold ("ω > )
since the components of tensor γjklm go to infinity, while
relation (4) gives, as before, the shift of an atomic
level [2]. Formally, the divergence is due to the fact that
the fourth-order matrix elements, which determine

γjklm , contain Green functions G(+)(  + "ω) and

G(−)(  + "ω) for an atomic electron with an asymp-
totic form of diverging and converging waves with the
same energy; this leads to divergence of the corre-

sponding matrix elements for  + "ω > 0 [2]. At the
same time, quantity γ in relation (4) contains only the
Green functions with the asymptotic form of diverging

waves (G(+)(%)) and, hence, remains finite for  +
"ω > 0.1 According to the discussion in [4], the diver-
gences mentioned above are due to the fact that, in a
strong laser field (when effects on the order of F4

become significant), it is necessary to take into account
the quasi-stationary form of atomic levels and to calcu-
late the mean value of the dipole moment operator
using the appropriately normalized “dual” wave func-
tions of the quasi-stationary state. The “dual” dipole

moment defined in this way remains finite for  +
"ω > 0, coincides with the conventional definition for

 + "ω < 0, and leads to the same definition of DHP
γ as in formula (4).

The polarizabilities of hydrogen-like states, which
determine the main (in F) correction to energy and level

width (for "ω > ), have been studied in numerous
publications starting from the middle of the 1960s and
have been investigated in detail (see, for example, [1,
5−7] and the literature cited in [7]). In particular, the
closed analytic expressions obtained recently in [7] for
the DP of arbitrary states |nlm〉  make it possible to carry
out rather simple numerical calculations and to analyze
the asymptotic behavior of DP (including that in the
Rydberg spectral region). The DHP and the quadratic
(in wave intensity) correction to energy in relation (2)
have been studied less thoroughly since computations

1 The formula for α contains only one Green’s function; for this
reason, the definitions of DP in terms of tensor αjk and by for-
mula (3) give the same result; see Section 59 in [3].

En
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in this case cannot be carried out analytically even for
the ground state2 and the results obtained from numer-
ical calculations are scarce. Most publications pertain
to the ground state and below-threshold frequency val-
ues [1, 5]. Although, for a Coulomb potential, numeri-
cal methods exist for calculating directly the E(k) terms
of expansion (2) even for values of k much greater
than 4 (see, for example, [10, 11]), the application of
these methods for highly excited states and/or above-
threshold frequencies involves considerable computa-
tional difficulties. The dispersion dependence of γ for
below-threshold and above-threshold frequencies
"ω ~ |En| for the ground state and first excited states of
hydrogen was analyzed in [2], where it was proved that
typical values of γ in different frequency intervals may
differ by many orders of magnitude.

In the present study, a new method is proposed on
the basis of the special representation for the radial
Coulomb Green function obtained in [12] (see also [7]).
This method can be used for calculating the DHPs for
excited states of hydrogen with the principal quantum
number n ~ 10, including those for above-threshold fre-
quencies exceeding the ionization threshold |En| for the
state under study by more than an order of magnitude.
The atomic parameters describing multiphoton pro-
cesses in the above-threshold frequency range are inter-
esting in view of the use of high (ultraviolet) harmonics
of radiation from optical-range lasers in recent experi-
ments, in view of the development of the nonlinear
laser spectroscopy methods of highly excited atomic
levels (for which even the frequencies of optical-range
lasers correspond to the far above-threshold region),
and also in connection with the possibility of using hard
UV radiation from free-electron lasers in atomic exper-
iments. Above-threshold multiphoton transitions via
virtual states of the continuum are of special interest
in analyzing the stabilization (retardation) effect in the
decay of an atom in a high-frequency field upon an
increase in the field intensity, which was discovered
experimentally in 1993 [13]. Experiments on stabi-
lization of hydrogen-like 5g states of neon [14, 15]
show that the onset of stabilization corresponds to the
threshold range of intensities Ithr ~ 1013−1014 W/cm2,
which are smaller than the intraatomic intensity (~3.5 ×
1016 W/cm2) so that Ithr can be estimated by analyzing
the imaginary part of sequential terms of expansion (2)
(see Section 3.2).

The general formulas required for calculating the
DHPs of excited states are given in Section 2, where the
method for calculating the compound radial matrix ele-
ments is described (the calculation of these elements
presents the main difficulty in analysis of the ampli-
tudes of multiphoton transitions in the above-threshold
frequency range). Section 3.1 contains the results of
numerical calculations of DHP as well as the shift and

2 Except for the low-frequency region in which γ can be expanded
into a converging series in ω2 with rational coefficients [8, 9].
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width of excited Coulomb states, while linear (in wave
intensity) corrections to the probability of the photoef-
fect are considered in Section 3.2, where the critical
fields corresponding to the onset of stabilization of
atomic levels are estimated. The algorithm for comput-
ing compound matrix elements for above-threshold
frequencies, which can be used for analyzing arbitrary
fourth-order transitions with exact account for virtual
states of the continuum, is described in detail in the
Appendix.

2. GENERAL FORMULAS 
FOR DYNAMIC HYPERPOLARIZABILITY 

AND COMPUTATIONAL TECHNIQUE

2.1. Isolated Levels 

In spite of the fact that unperturbed energy levels for
an electron in a central field are degenerate in the orbital
angular momentum component m, quantity m also
remains a conserved quantum number for quasi-energy
states with a special choice of the quantization axis for
linear and circular polarizations of field F(t) (in this
paper, we confine our analysis to such polarizations
only). In the case of linear polarization, the quantiza-
tion axis is directed along the polarization vector, while
for a circularly polarized wave, this axis coincides with
the direction of wave propagation. In the Coulomb
field, the energy levels are also degenerate in the orbital
quantum number l, the nondiagonal elements of the
quasi-energy matrix Ql, l' = l ± 2(F) differing from zero
even in the first nonvanishing (~F2) order of perturba-
tion theory. Consequently, sublevels of the shell n with
different values of l and with a fixed m are mixed by the
field even for linear or circular polarization of the wave
[1]. Only the states |nlm〉  with |m| = l = n – 1, |m| = n − 2,
l = n – 1, n – 2 and |m| = n – 3, l = n – 2 can be regarded
as isolated. Such states include, in particular, the 1s and
2s states as well as 2p and 3p states with any values of
m. For such states, the expressions for DP and DHP can
be derived using the standard formula of perturbation
theory for quasi-energy states [16] disregarding degen-
eracy. Choosing the operator V describing the interac-
tion between an electron and a wave in the “form of
velocity,” i.e., using the notation with the momentum
operator p = –i∇  (here and below, atomic units are used
except for specially stipulated cases),

(6)

we can write the DHP as a combination of fourth-order

V r t,( ) 1
c
---A t( )– p

1

2c2
--------A2 t( ),+⋅=

A t( ) c
ω
----FIm ee iωt–{ } ,=
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matrix elements of perturbation theory,

(7)

where

(8)

GE is the Coulomb Green function and  is the

reduced Coulomb Green function (in the spectral
decomposition of the latter function, all states corre-

sponding to the unperturbed value of energy  are
omitted). It should also be noted that, in our notation,
the DP has the form

(9)

and E(2) = –(1/4)αnlmF2 in accordance with formula (3).
It can be seen from expression (7) that the term with

A2 in operator (6) makes zero contribution to the DHP
of an isolated energy level. The expression for γnlm

using the interaction operator in the “form of length”,

(10)

can be derived from formulas (7) and (8) using the sim-
ple substitution ∇ /ω  r. The choice of the interac-
tion operator in form (6) makes it possible to separate
the factor ω–4 in the expression for γnlm (see Eq. (7));
this reduces the mutual compensation of matrix ele-
ments at high frequencies and, as a result, leads to a
higher accuracy in computations. Consequently, the

γnlm
F4

2ω4
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1( ) l l; ω–,( ) T pr
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∇ rGEn
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AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004



DYNAMIC HYPERPOLARIZABILITIES OF EXCITED STATES OF HYDROGEN 257
“velocity form” of operator V turns out to be more con-
venient when the DHP is calculated in the range of
above-threshold frequencies ω > |En|. In addition, oper-
ator (6) leads to more compact expressions for matrix
elements in calculations with the generalized Sturm
expansion of the Coulomb Green function [7] (see
Eq. (33) below), which will be used in this study. At
the same time, the operator of interaction in the “form
of length” makes it possible to reduce the compensa-
tion of matrix elements in the low-frequency range
and leads to more compact expressions for γnlm when
the standard Sturm expansion (31) of the Coulomb
Green function is used.

2.2. Degenerate Levels 

It was noted above that, in view of the Coulomb
degeneracy of energy levels in the orbital angular
momentum l, the perturbation theory for degenerate
levels should be used for calculating the perturbation of
the spectrum of excited states (except for the states stip-
ulated in the previous section) even in the case of a lin-
early or circularly polarized wave. In this case, the
computational procedure for quasi-energy E is as fol-
lows [16]. Suppose that we have N states corresponding

to an unperturbed energy level . The proper wave-
function of the zeroth approximation can be repre-
sented in the form of a linear combination of N unper-

turbed functions . Coefficients ai of this combina-
tion and quasi-energy E satisfy the system of equations

(11)

where ∆E = E – . Matrix elements Qij = Qij(F) can
be expanded into a power series in F:

(12)

In the first nonvanishing order in F, we have

(13)

where matrix elements  written in terms of opera-
tor ∇  have the form

(14)

and exhibit the symmetry property,  =  (which

En
0( )

Φi
0( )| 〉

a j Qij ∆Eδij–( )
j 1=

N

∑ 0,=

En
0( )

Qij Qij
2( ) Qij

4( ) …, Qij
k( ) Fk.∼+ +=

a j
0( ) Qij

2( ) E 2( )δij–( )
j 1=

N

∑ 0,=

Qij
2( )

Qij
2( ) F2

4ω2
---------δij–=

+
F2

4ω2
--------- njm〈 | e* ∇⋅( )( G
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0( ) ω+

e ∇⋅( ) nim| 〉
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0( ) ω–
e* ∇⋅( ) nim| 〉 )

Qij
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
becomes obvious after integrating the matrix elements
in Eq. (14) with respect to angular variables; see [6, 7]).
Solving Eq. (13), we obtain a set of second-order cor-

rections  to energy  and the corresponding

coefficients  defining the regular wave function
|Φα〉  in the zeroth approximation. For above-threshold

frequencies (ω > ), the Green function  in

Eq. (14) has an imaginary part so that  and  are
complex-valued and |Φα〉  describes a quasi-stationary
quasi-energy state decaying as a result of single-photon
ionization of degenerate states mixed by the field. We

assume that coefficients  satisfy the relation

(15)

which corresponds to the normalization condition
imposed on the wave functions of quasi-stationary
quasi-energy states [4, 17]. Condition (15) corresponds
to the fact that wave function 〈Φα| in the first nonvan-
ishing order of perturbation theory has the form

(16)

although coefficients  may be complex-valued (for
frequencies higher the single-photon ionization thresh-
old); i.e., the bra function is obtained not as a simple
complex conjugation of the ket function |Φα〉 , which is
due to the non-Hermitian form of symmetric matrix

.

In order to determine the fourth-order correction

 to quasi-energy  + , we extend the method
proposed in [18] for stationary perturbation theory in
the presence of closely spaced levels to quasi-stationary
quasi-energy states. We write Eq. (11) to within the
fourth-order terms in F:

(17)

Multiplying this equation by , summing over i with

due regard for the symmetry of , and taking into
account Eq. (13), we find that the first term in Eq. (17)
vanishes, while the second term, on account of normal-
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ai α,
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ization condition (15), gives the following expression

for correction :

(18)

The explicit expression for matrix elements  in
terms of operator ∇  has the form

(19)

where we have retained notation (8), while indices and
arguments i and j correspond to the values of the orbital
angular momentum for degenerate states. It should be
noted that, in calculating correction E(4) for degenerate
states, the term with A2 in Eq. (6) makes a nonzero con-

tribution since the expression for  in Eq. (19) can-
not be written any longer in a simple analytic form fol-
lowing from formula (9) (the first term in formula (9)
eliminates the dependence on A2 in the expression for γ
in the case of an isolated energy level).

2.3. Separation of Angular Variables 

Expressions (7) and (19) can be simplified by inte-
grating with respect to angular variables in the matrix
elements and summing over the components of polar-
ization vector e for the linear (e = ez) and circular (e =

(ex + iξey)/ , ξ = ±1) polarizations of the light field.
Writing the Green functions in the form of a multipole
expansion,

(20)

where gl is the radial component of the Green function,
Ylm  are spherical functions, and  = r/r, and carry-
ing out the standard computations using the irreducible
tensor operator technique [19], we obtain the following
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expression for the fourth-order matrix element of the
general form:

(21)

here,  e  
i
  =  e  or  e * in the case of photon emission or

absorption, respectively;  = ; and the stan-
dard notation [19] is used for the Clebsch–Gordon
coefficients and 6

 

j

 

 symbols. Passing from the reduced
to radial matrix elements in accordance with the well-
known formula [19]

(22)

we can write expression (21) in terms of the combina-
tion of fourth-order radial matrix elements,

(23)

where

(24)

Relation (22) implies that, for a fixed 
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, the quantity 

 

l
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 4; in other
words, only the 
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th sublevels of the 

 

n

 

th shell with iden-
tical parities are mixed. Analogously, the first term in
Eq. (19) can be reduced to a linear combination of the
products of the second- and third-order radial matrix
elements:

(25)

Ultimately, the dependence on the magnetic quan-
tum number is separated in a correction on the order of
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F4 for isolated levels, and quantity E(4) in linear (L) and
circular (c) fields can be expressed in terms of parame-

ters , which depend on the frequency and polar-
ization type [5, 20],

(26)

where (a)p is Pochhammer’s symbol. Expression (26)
can be written in elementary form. In a linear field, only

three parameters  with even p differ from zero:

(27)

In a circular field, the fourth-order correction to quasi-
energy is determined by five invariant parameters; in

this case,  in formula (27) is replaced by ,
and the terms with odd powers of m are added:

(28)

Rather cumbersome expressions for irreducible com-

ponents of  in terms of radial matrix elements
for an arbitrary l are of no interest and are not given
here (the results for the s, p, and d states can be found,
for example, in [20]). It should only be noted that, in
view of the difference in the dipole selection rules,

parameters  and  contain different combi-
nations of radial matrix elements so that their frequency
dependences differ significantly. In particular, parame-

ter  for s states exhibits two-photon resonant sin-
gularities on intermediate n's states, while no such res-
onances are observed in the case of circular polariza-
tion.

Parameters  in Eq. (26) are similar to irreducible
DP components of state |nlm〉 , which determine the
quadratic (in F) correction to quasi-energy,

(29)

the only difference is that the value of E(2) in linear and
circular fields is determined by the same parameters
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components  and  with p = 0, 2, 4 are linearly
independent.

For degenerate energy levels, corrections E(2) and
E(4) cannot be parameterized explicitly analogously to
Eqs. (29) and (26), although the dependence on the

magnetic quantum number in matrix elements  and

 can be separated by using the Clebsch–Gordon
coefficients in this case also. After this, the evaluation
of the corrections is reduced to the calculation of radial
matrix elements, the standard procedure of diagonal-

ization of matrix  in the second order in F (see
Eq. (13)), and the determination of E(4) in accordance
with formula (18).

2.4. Calculation of Compound Radial Matrix Elements 
for Virtual Transition to the Continuum 

The main difficulty in the calculation of DHP for
above-threshold values of frequency is associated
with the evaluation of fourth-order radial matrix ele-
ments (23). The main condition for evaluating the com-
pound matrix elements successfully is the existence of
an appropriate representation for the radial component
of the Coulomb Green function. The use of the spectral
decomposition

(30)

is helpful in a general analysis of radial matrix elements
(the investigation of the resonance structure and high-
frequency asymptotic form as well as the separation of
the real and imaginary parts of transition amplitudes).
However, this spectral decomposition is absolutely
ineffective for numerical calculations because of the
necessity to integrate over the continuous spectrum, the
slow convergence of the sum over the discrete spec-
trum, and the compensation of contributions from these
spectra to matrix elements. It is most convenient to
evaluate matrix element (23) using the expansion of the
Coulomb Green function in the Sturm functions
Skl(2r/ν) [21],

(31)

where

(32)
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 is the generalized Laguerre polynomial, ν = (–2E –
i0)–1/2, and η = Zν, Z being the nuclear charge. Using
relation (31), it is possible to represent matrix ele-
ments (23) and (25) in the form of series of hypergeo-
metrical polynomials, which converge, however, only
for negative energy parameters of the Green function
(%i < 0). For above-threshold frequency values, when at
least some of the energies in the Green functions
become positive, the convergence of the Sturm series
for matrix elements is violated; in this case, the evalua-
tion of the matrix elements is a more complicated prob-
lem. In order to solve this problem, a generalized Sturm
expansion of the Coulomb Green function was pro-
posed in [22]. This expansion contained a free parame-
ter α, the appropriate choice of which can ensure the
convergence of the series for matrix elements, includ-
ing the case of positive energies (%i > 0) in the Cou-
lomb Green function. Such a representation of the Cou-
lomb Green function was used for calculating the non-
linear susceptibilities of the hydrogen atom at
frequencies exceeding the ionization threshold (in par-
ticular, DHP for the 1s, 2s, and 2p states [2]). However,
the effectiveness of this method decreases rapidly with
increasing frequency and principal quantum number n
of the initial atomic state.

A convenient version of the expansion of the Cou-
lomb Green function in the Sturm functions with free
parameters was proposed in [7, 12], where gl(E) was
represented in the form of a double series in functions
Skl(2r/α) and Sk'l(2r'/α'):

(33)

Coefficients  of this expansion can be expressed in
terms of the hypergeometric Gaussian function 2F1 and
Appell function F1:

(34)

Here,
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and  is the binomial coefficient. Factor f has the form

For identical parameters α = α', coefficients  can be
simplified,

(35)

(where k< = min{k, k'}, k> = max{k, k'}, and expres-
sion (33) coincides with the result obtained in [23]. For
α = α' = ν, expansion (33) is transformed into (31).

An important circumstance ensuring considerable
versatility of application of expansion (33) for practical
purposes is the factorized dependence of the terms in
the series on r, r', and energy parameter ν. The entire

energy dependence is contained in kernel (ν; α, α'),
which is independent of radial variables. A rational
choice of (generally complex-valued) parameters α and
α' in accordance with the specific features of a concrete
problem makes it possible in some cases to radically
simplify the procedure for calculating matrix elements.
Representation (33) turned out to be helpful for analytic
calculations and made it possible to obtain universal
closed expressions for the matrix elements of two-photon
bound-bound and bound-free transitions from an arbi-
trary |nl〉 state in the form of a linear combination of four

quantities  in the general case [7]. It will be shown in
the Appendix that the application of expansion (33) is
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also quite effective for calculating numerically the
amplitudes of higher-order multiphoton transitions.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Dispersion Dependence 
of Dynamic Hyperpolarizability and Level Shift 

in a Strong Light Field 

The algorithm described in the Appendix was used
for systematic computation of the DHP for states with
n = 1−5 and in individual test computations for higher
energy levels. For 1s, 2s, and 2p states, the results of
computations are in complete agreement with available
results in the frequency range below the two-photon
ionization threshold [2, 24]; the results obtained in the
above-threshold range considerably extend the results
described in [2]. The accuracy of computations was
also controlled by independently calculating the value
of γ with the interaction operator in the A–p (Eq. (6))
and F–r (Eq. (10)) representations; the results were
found to be completely identical.

It follows from the general formulas in Section 2
that DHP γ (or correction E(4) to the quasi-energy,
which is quadratic in intensity) exhibits a complex
dependence on the quantum numbers of the atomic
state in question as well as on the frequency and polar-
ization of the light wave. Among general properties of
the DHP, the pole and threshold singularities in the dis-
persion dependence are worth noting; these are one-
photon (third-order) resonances and two-photon (first-
order) resonances, as well as threshold anomalies [25]
typical of potentials with the Coulomb asymptotic
form, which are observed when one- and two-photon
ionization channels are open.

In the case of nondegenerate |nlm〉  states, DHP γ =

 in the linear (L) and circular (c) fields can be writ-
ten in terms of irreducible components, which are pro-

portional to quantities  in formula (26). For spher-
ically symmetric s states, the DHP is determined by
only one parameter (scalar DHP), which, in contrast to
the DP, is different for linear and circular fields:

In the case of p states, after the separation of the depen-
dence on the magnetic quantum number, the quantity

γnlm is determined by the scalar , vector ,

and tensor  DHPs, which are analogous to the
corresponding irreducible polarizability components of
the |nlm〉  state [2],

(36)
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L c,

γp
L c,
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L γL, γn00

c γc.= =

γL c,
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where ξ = ±1 is the degree of circular polarization of the
light wave.

Figure 1 shows the DHPs of the 1s state for linearly
and circularly polarized fields at frequencies above the
single-photon ionization threshold up to values of ω =
100|Ε1s| = 50 at. units. (At higher frequencies, the appli-
cability of the dipole approximation becomes question-
able since the order of magnitude of nondipole correc-
tions is determined by parameter (αω)2, α = 1/137.)
The results shown in the figure demonstrate the compu-
tational potentialities of the method and singularities in
the DHP approaching the asymptotic form in the high-
frequency range. The curves were plotted by separating
the asymptotic form of the DHP [2]:

(37)

The general form of this relation was established using
the method described in [26], and constant A was deter-
mined numerically in the region of ω ~ 200|Ε1s|. It can
be seen from Fig. 1 that the asymptotic value of DHP is
attained at much higher frequencies as compared to the
case of DP α1s(ω) (especially for the real part that
reverses its sign for ω ≈ 8|Ε1s|), where Reα1s(ω) is very
close to its asymptotic value of –1/ω2. This apparently
complicates approximation of the DHP by simple ana-
lytic formulas even in the range of above-threshold
frequencies. It can be mentioned for comparison that
the asymptotic ratio obtained analytically is aL/ac = 1.5,

γL c, aL c, A
1 i–

ω7.5
----------, aL 3,= =

ac 2, A 0.26.= =

2

1

0

–1

–2

–3
1 2 4 8 16 32 64 ω~

Imαω4.5

ReγL/γhf
Reγc/γhf

Reαω2

Imγc/γhf

ImγL/γhf

Fig. 1. Real and imaginary parts of the DHP for the 1s state
of hydrogen above the single-photon ionization threshold in
a linearly (bold curves) and circularly (fine curves) polar-
ized fields. The solid and dot-and-dash curves correspond to
the real and imaginary parts of the DHP, respectively. The
curves were plotted by separating the high-frequency
asymptotic factor γhf = Aω–7.5 (see formula (37)). The real
part of the DP (bold dashed curve) and its imaginary part
(fine dashed line) are shown for comparison. The field fre-
quency is measured in units of the ionization potential:  =
ω/|En|, n = 1.

ω̃
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while the numerical ratio of the real and imaginary parts
of the DHP for linear and circular polarizations at fre-
quencies ω = 100|Ε1s|, 150|Ε1s|, 250|Ε1s| is ReγL/Reγc =
1.17, 1.19, and 1.22, while ImγL/Imγc = 1.30, 1.33, and
1.36, respectively.

Figures 2–4 show the frequency dependence of γ for
the 2s state in the below-threshold and above-threshold
regions. It should be noted that the real part of the DHP

2

1

0

–3

–4
0.50 0.55 0.60 0.65 0.70 0.75 0.80

ω~

Re(γLω6)

0.85

n = 3 n = 4

–2

–1

n = 5

Im(γLω6)
Im(γcω6)

Fig. 3. Real and imaginary parts of the DHP for the 2s state
of hydrogen in the frequency range between the two- and
one-photon ionization thresholds for a linearly polarized
field. Solid and dot-and-dash curves correspond to the real
and imaginary parts of the DHP, respectively. Fine vertical
lines indicate the position of one-photon resonances on
states 3p, 4p, and 5p. In this frequency region, the DHPs for
circularly and linearly polarized fields virtually coincide;
slight difference is observed only for imaginary parts
ImγL, c between the one-photon ionization threshold and the
first resonance, where Imγc is shown by the fine dot-and-
dash curve.

1.0

0.5

0

–0.5

–1.0
0.05 0.10 0.15 0.20 0.25 0.30 0.35

ω~

γL/107

0.40

γc/107 n = 3 n = 4

Fig. 2. DHP for the 2s state of hydrogen in the below-
threshold frequency range in a linearly (solid curves) and
circularly (dot-and-dash curves) polarized fields. Fine verti-
cal lines indicate the position of two-photon resonances on
states with n = 3 (3s, 3d for linearly and 3d for circularly
polarized fields) and n = 4 (4s and 4d for linearly and 4d for
circularly polarized fields);  = ω/|En|, n = 2.ω̃
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for excited states has “down” resonances in the above-
threshold frequency range (corresponding to one- and
two-photon resonant transitions of an electron to low-
lying levels, which are allowed by the dipole selection
rules). Figure 4 illustrates the dependence of the reso-
nance structure on the wave polarization: some reso-
nances that are observed in the linearly polarized field
are absent in the circularly polarized field. In the given
case, a two-photon down resonance on the 1s state is
observed in the linear field at ω = 1.5|En|, while in the
circular field this resonance is forbidden by the selec-
tion rules in magnetic quantum number m (since ∆m =
±2 in this case, and the two-photon 2s–1s transition is
ruled out). Obviously, Imγ shows no down resonances.

Figures 5 and 6 show the irreducible components of
γs, v, t for the DHP of the 2p state in the above-threshold
frequency region. In this case, only a single-photon res-
onance on the lower-lying 1s state is obviously possible
at ω = 3|En|. It should be noted that a comparison of
Figs. 5 and 6 with Fig. 4 shows that the value of γ2p at
high frequencies decreases slightly more rapidly than γ2s.

The behavior of hyperpolarizability of highly
excited states is illustrated in Figs. 7–11, which repre-
sent some of the results obtained for states with n = 5.
Figures 7 and 8 show the dispersion dependence of the
real and imaginary parts of the fourth-order correction
E(4) (determined by DHP γnm) for states |n = 5, m = 0〉 .
It should be recalled that these states are degenerate in
the orbital quantum number (the states with identical
parity being mixed); consequently, the position of
energy levels in a light field should be calculated by
diagonalizing the quasi-energy matrix even in the sec-
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–3.0
1 2 4 8 16 32

ω~

Re(γLω7)/10–2

n = 1

Im(γLω7)/10–2

Re(γcω7)/10–2

Im(γcω7)/10–2

Fig. 4. Real and imaginary parts of the DHP for the 2s state
of hydrogen behind the single-photon ionization threshold
for linearly (bold curves) and circularly (fine curves) polar-
ized fields. Solid curves correspond to the real parts, and
dot-and-dash curves, to the imaginary part of the DHP;

 = ω/|En|, n = 2. The fine vertical line corresponds to the
two-photon “down” resonance on the 1s state, which is
absent in the case of circular polarization of the wave.

ω̃
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ond order in the field amplitude. Calculations show that
degeneracy is especially significant for low frequencies
(ω & |En|) as well as in the vicinity of resonances. At
frequencies much higher than the ionization threshold,
the effect of degeneracy is virtually absent in view of a
more rapid decrease in nondiagonal (in l, l') elements of
the quasi-energy matrix for ω  ∞ [26]. In addition,
as can be seen from the figures, the state with l = 4 prac-
tically does not mix with the states corresponding to l =
0 and l = 2 at any frequency. The curves show that two
from the three even states obtained as a result of mixing
do not exhibit a one-photon “down” resonance on the
3p and 2s states, while this resonance is absent only for
one of the three states with l = 4 if degeneracy is
neglected. This fact of resonance “vanishing” becomes
obvious if we write the quasi-energy matrix in the res-
onance approximation in the second order of perturba-

Fig. 5. Real and imaginary parts of the scalar and tensor
DHPs for the 2p state of hydrogen at frequencies above the
single-photon ionization threshold in a linearly polarized
field. Solid and dot-and-dash curves correspond to the real
and imaginary parts of the DHP, respectively;  = ω/|En|,
n = 2. The fine vertical line corresponds to the one-photon
“down” resonance on the 1s state.

ω̃
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tion theory and then calculate E(4). In this case, the
terms containing resonance singularities are mutually
compensated for two out of the three levels.

The frequency region in the vicinity of resonances
requires special treatment since perturbation theory
becomes inapplicable when ω approaches the reso-
nance transition frequency. A peculiar situation arises
when the energy levels of the initial n shell are mixed in
orbital angular momentum l. It can be seen from Fig. 7
that an “extra” two-photon down resonance, which is
not associated with physical factors, appears in the 2p
state in the imaginary part of E(4). This is due to pecu-
liarities in the normalization of quasi-stationary quasi-
energy states (15), for which the dual bra function can
be obtained using formula (16). In this case, the reso-
nance existing only in real-valued fourth-order matrix
elements appears in the imaginary part of E(4) (which
cannot have resonance singularities in the given situa-
tion) due also to the complex-valuedness of coefficients

 of the mixture. A correct analysis of the frequency
range in the vicinity of the given resonances requires
taking into account the fact that quasi-resonance levels

for which  –  ≈ kω are also regarded as close
levels in the quasi-energy formalism. In our case of a

two-photon resonance on the 2p state, we have  –

 ≈ 2ω; i.e., n = 5, n' = 2, k = 2. Thus, a proper wave
function of the zeroth approximation with a definite
value of angular momentum projection m must contain
a linear combination of both the quasi-energy states
|nlm〉  of the initial shell n, which are degenerate in l, and
(quasi-resonance) states |n'l'm〉exp(ikωt). In this case, in
the spectral decomposition of Green function ,

states |n'l 'm〉  that have already been included in the
wave function in the zeroth approximation should be
omitted. The results of calculations with an admixture
of quasi-resonance states to the regular wave function
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Fig. 6. Real (a) and imaginary (b) parts of the scalar, vector, and tensor hyperpolarizabilities for the 2p state of hydrogen in the
above-threshold region for circularly polarized field;  = ω/|En|, n = 2. The fine vertical line corresponds to the one-photon down
resonance on the 1s state.
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Fig. 7. Real (a) and imaginary (b) parts of the fourth-order correction E(4) for even states with n = 5, m = 0 in the above-threshold
region for linearly polarized field; F = 0.01 at. unit,  = ω/|En|. Solid and dashed curves are plotted taking into account and disre-
garding the degeneracy in l, respectively.
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of the zeroth approximation are shown in Fig. 9 illus-
trating the dispersion dependence of E(4) for levels
|n = 5, m = 0〉  in the vicinity of the two-photon “down”
resonance on the 2p state for odd states. It can be seen
from the figures that correction E(4) in the resonance
region becomes a smooth function of frequency; as the
frequency deviates farther and farther from the reso-
nance, the effect of admixed energy levels from the
shell with a different quantum number n' (n' = 2 in our
case) becomes insignificant.

Figure 10 shows the dependence of the level shift on
field amplitude F taking into account the terms on the
orders of F2 and F4 for states with n = 5, m = 0. The cal-
culations (both including and disregarding the degener-
acy in l) were carried out for a field with linear polar-
ization and frequencies ω = 1.5|En| and ω = 4|En|. The
values of F were limited by the condition of applicabil-
JOURNAL OF EXPERIMENTAL
ity of perturbation theory; i.e., the calculations were
performed up to values of field intensity such that the
contributions from terms on the order of F4 were sev-
eral times smaller than the contribution from terms on
the order of F2. Figure 11 shows for comparison the
dispersion dependence of the DHP for isolated state
|n = 5, l = 4, m = 4〉  in a linearly polarized field.

Numerical calculations for excited states show, on
the whole, that the behavior of γ with increasing n con-
siderably depends on the frequency range: for small
values of ω, the DHP increases rapidly with n analo-
gously to the static case; consequently, the contribution
of E(4) to ∆E becomes significant. The role of fourth-
order corrections is most significant in the vicinity of
the ω values for which polarizability α vanishes and in
the vicinity of two-photon resonances, which are
observed for E(4) and are absent for E(2). Behind the sin-
 AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004
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Fig. 9. Real (a) and imaginary (b) parts of the fourth-order correction E(4)/F4 for odd states with n = 5, m = 0 in the above-threshold
frequency region for linearly polarized field taking into account (solid curves) and disregarding (dot-and-dash curves) the admixture
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gle-photon ionization and outside the down resonance
region, the value of γ decreases monotonically but rap-
idly with increasing n, and the role of corrections on the
order of F4 to the Stark shift and to the level splitting is
insignificant. However, for ω > |En|, the imaginary parts
of α and γ are most interesting.

3.2. Corrections to the Probability of Photoeffect
in a Strong Light Field 

For above-threshold frequencies, correction ∆E to
quasi-energy acquires an imaginary part determining
the ionization broadening Γof an isolated or degenerate
level,

Γ 2Im∆E.–=
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In the frequency interval |En|/2 < ω < |En|, the polar-
izability is real-valued and the imaginary part of correc-
tion ∆E = E(2) + E(4) is determined by the imaginary part
of the DHP. Direct calculation of Imγ is based on the
application of the familiar relation

(38)

(symbol V.p. stands for the principal value of integral)
for the transformation of the integral term in the spec-
tral decomposition of Green function (30) with a posi-
tive energy of En + 2ω. In the case of isolated states,

evaluating Im (En + ω, En + 2ω, En + ω) with the
help of relation (38), we can easily obtain an explicit
expression for Imγ in the form of a combination of the

1
x i0–
------------- V.p.

1
x
--- 

  iπδ x( )+=

Rll
l1l2l3
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products of two-photon radial matrix elements of tran-
sitions to the continuous spectrum,

(39)

As a result, as follows from general considerations, the
imaginary part of E(4) can be expressed in terms of two-

Al1l2

2( ) 2
, 2Re Al 1+ l,

2( )* Al 1 l,–
2( )( ),

Al1l2

2( ) En 2ω+ l2,〈 |D̂ l2 l1,( )=

× gl1
En ω+( )D̂ l1 l,( ) nl| 〉;

l1 l 1, l2± l1 1.±= =

Fig. 11. Dispersion dependence of the fourth-order correc-
tion E(4) for state |n = 5, l = 4, m = 4〉  in a linearly polarized
field;  = ω/|En|.ω̃
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l in a linearly polarized field with frequency ω = 4|En = 5| =
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photon ionization probability W(2):

(40)

For ω > |En|, the one-photon ionization channel is
opened; the ionization probability W(1) in the lowest
order of perturbation theory is determined by the imag-
inary part of the DP:

(41)

In this frequency range, Imγ is due to the presence of
the imaginary part not only in the Green function
gL(En + 2ω), but also in gL(En + ω). Accordingly, ImE(4)

acquires additional terms from matrix elements

(%1, %2, %3) with energy %1 = En + ω or/and %3 =
En + ω:

(42)

where

These matrix elements describe the interference of the
amplitudes of conventional photoeffect and a three-
photon process with reemission of photons (according
to the scheme En + 2ω – ω = En + ω. Thus, in this fre-
quency range, ImE(4) is the sum of two components:

(43)

In addition to terms (42), component W(1–3) also
includes the terms originating from the imaginary part
of products R(1)R(2) (so-called “nondiagrammatic”
terms). The probability of single-photon ionization
(resulting in the production of photoelectrons with
energy En + ω), calculated to within terms on the order
of F4, is defined by the sum

(44)

Direct calculation of correction W(1–3) by the meth-
ods of nonstationary perturbation theory involves con-
siderable difficulties associated, in particular, with the

necessity of computing matrix elements 

and  of three-photon transitions to the con-

W 2( ) 2ImE 4( )–
1
4
---ImγF4.= =

W 1( ) 2ImE 2( )–
1
2
---ImαF2.= =

Rl1l2l3

ll

(a) 2Re Al1

1( )*Al1l2l3

3( ) ω 2ω,( )( ),

(b) 2Re Al1

1( )*Al1l2l3

3( ) ω 0,( )( ),

(c) 2Re Al1

1( )*Al1l2l3

3( ) ω– 0,( )( ),

Al1

1( ) En ω+ l1,〈 |D̂ l1 l,( ) nl| 〉 ,=

Al1l2l3

3( ) ω1 ω2,( ) En ω+ l1,〈 |D̂ l1 l2,( )gl2
En ω2+( )=

× D̂ l2 l3,( )gl3
En ω1+( )D̂ l3 l,( ) nl| 〉 ,

l1 l 1, l2± l1 1, l3± l2 1 l= 1+ .±= = =

2ImE 4( )– W 2( ) W 1–3( ).+=

Wi W 1( ) W 1–3( ).+=

Al1l2l3

3( ) ω 2ω,( )

Al1l2l3

3( ) ω 0,( )
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Probabilities of one-photon (W(1)) and two-photon (W(2)) ionization and linear (in intensity) correction W(1) (W(1–3)) for a num-
ber of states with principal quantum numbers n = 3 and 5; Ithr is the intensity corresponding to the stabilization threshold

n m l w, eV W(1)/F2, at. units W(2)/F4, at. units W(1–3)F4, at. units Ithr , W/cm2

3 0 1 5 1.4254 658.410 –100.10 2.570 × 1014

3 1 1 5 0.9130 27.58 –60.811 2.710 × 1014

3 1 2 5 0.2624 3.3032 14.305 –

3 2 2 5 0.1577 1.6677 –11.966 2.379 × 1014

5 2 3 2 1.0034 205.10 220.13 –

5 3 3 2 0.5740 95.591 –605.95 1.710 × 1013

5 3 4 2 0.1019 8.0334 –32.508 5.659 × 1013

5 4 4 2 0.0568 3.7133 –47.731 2.148 × 1013
tinuum. In these matrix elements, the energy of the first
Green function coincides with the electron energy in
the final state, which leads to their divergence. It was
noted in [16, 27] that such divergences cannot be elim-
inated by regularizing the integrals and are compen-
sated only in the final expression for W(1–3). Correct cal-
culations according to the above scheme (which would
lead to corrections not only to the total probability of
photoeffect, but also to the angular distribution of pho-
toelectrons) have not been carried out as yet. However,
in our approach, the value of W(1–3) can be determined
from Eq. (43) by subtracting the two-photon ionization
probability W(2) (which can easily be calculated; see,
for example, [28]) from the imaginary part of the DHP.
It should be noted that, in contrast to probability W(2),
which is essentially positive, correction W(1–3) (associ-
ated with reemission of photons) and, accordingly, the
entire quantity ImE(4) can be either positive or negative
depending on frequency ω. Numerical calculations
show (see Figs. 1, 4, 12, 13, and table) that both possi-
bilities are indeed realized.

The interest in the correction term W(1–3) that deter-
mines the deviation from the linear dependence of pho-
toeffect probability W(1) on the intensity upon an
increase in F is due to the effect of stabilization of an
atom in a strong field, which has been studied intensely
in recent years (see reviews [29]). The stabilization effect
consists in a slowing down (or even decrease) of the ion-
ization probability with increasing field strength F. For a
negative value of W(1–3) (for a given frequency), such
slowing down must obviously be observed upon a tran-
sition from small to moderate field strengths, which can
be regarded as the onset of stabilization. Consequently,
the intensity range corresponding to the onset of stabi-
lization can be estimated by calculating higher order
corrections in perturbation theory in F to the conven-
tional cross section of photoeffect (naturally, such esti-
mates are valid only for fields F < Fr , where Fr deter-
mines the convergence radius of perturbation theory for
the complex quasi-energy). The effect of stabilization
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in a linearly polarized laser field was observed experi-
mentally in [14, 15] for the circular state |n = 5, l = 4,
m = 4〉  of the Ne atom (with the maximal possible val-
ues of m and l for the given n), which is close to a
hydrogen-like state in view of the smallness of quantum
defects for states with l = 4. It was noted in Section 2.1
that states with m = l = n – 1 are isolated; consequently,
the ionization probability for such states can be calcu-
lated using the standard formula of perturbation theory,
disregarding degeneracy. Considering that transitions
to states with an orbital angular momentum smaller
than l are forbidden for such states in a linearly polar-
ized field, we arrive at the following expressions:

(45)

(46)

W 1( ) πF2

2ω2
--------- 1

2l 3+
-------------- Al 1+

1( ) 2
,=

W 1–3( ) F4

4ω4
--------- π

2l 3+( )2
---------------------=

× Re Al 1+
1( )*Al 1+ l l 1+, ,

3( ) ω 0,( ) Al 1+
1( )*Al 1+ l l 1+, ,

3( ) ω– 0,( )+




+ Al 1+
1( )*Al 1+ l l 1+, ,

3( ) ω 2ω,( ) 4 l 1+( )
2l 5+

-------------------+

× Al 1+
1( )*Al 1+ l 2+ l 1+, ,

3( ) ω 0,( )(

+ Al 1+
1( )*Al 1+ l 2+ l 1+, ,

3( ) ω– 0,( )

---+ Al 1+
1( )*Al 1+ l 2+ l 1+, ,

3( ) ω 2ω,( )

–
1

2π
------Im Rll

l 1 1( )+ ω–( ) Rll
l 1 1( )+ ω( )+( )[

---× Rll
l 1 2( )+ ω–( ) Rll

l 1 2( )+ ω( )+( ) )




.
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4 6 10
It should be observed that these formulas are valid not
only for states with m = l = n – 1, but also for states with
m = l = n – 2.

Tikhonova et al. [30] analyzed experiment [15] in
terms of continuum-interference stabilization; in the
framework of perturbation theory, this can be interpreted
as the inclusion of diagrammatic terms of form (a) from
formula (42) in correction W(1–3) to the photoeffect

probability. Matrix element  in this case
was estimated with the help of the “pole” approxima-
tion [31], in which only the imaginary part correspond-
ing to the term with the δ function on the right-hand
side of Eq. (38) is taken into account in both Green

functions in amplitude . In the pole
approximation, the amplitude is factorized into single-
photon factors, which simplifies the computation of this
amplitude considerably (in particular, with such an
approach, the above-mentioned divergences do not
arise). An additional simplification used in [30] lies in
the inclusion of only one matrix element of form (a) in
Eq. (42) with l1 = l + 1, l2 = l + 2 from the two matrix
elements allowed by the selection rules for linear polar-
ization. This is substantiated by the Bethe rule, accord-
ing to which it is this matrix element that makes the
largest contribution to the total amplitude. As a result,
we obtain the following approximate expression for
probability Wi:

(47)

This estimate is attractive due to its simplicity; how-
ever, its correctness can be established only from a
comparison with exact calculations. The considerable

Al1l2l3

3( ) ω 2ω,( )

Al1l2l3

3( ) ω 2ω,( )

Wi W 1( ) 1
πF
ω

------- 
 

2 2 l 1+( )
2l 5+( ) 2l 3+( )

--------------------------------------–=

---× En 2ω+ l 1+,〈 |D l 1+ l 2+,( ) En ω+ l 2+,| 〉 2 .
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difference between estimate (47) and the exact relation
given by the sum of expressions (45) and (46) lies in its
fixed sign: in accordance with formula (47), correction
W(1–3) is always negative (i.e., it reduces the ionization
probability), while general formula (46) does lead to
this result.

Formula (44) is valid only for values of F at which
the correction term is small; however, this formula can
be extrapolated, for obtaining estimates, to the region
of values of F for which the first and second terms in
Eq. (44) are on the same order of magnitude. Since
W(1) ~ F2 and W(1–3) ~ F4, probability Wi (44) as a func-
tion of the wave intensity is a parabola with a finite
maximum at W(1–3) < 0. The value of F2 for which Wi

attains its maximum value is treated in [30] as the sta-
bilization threshold Ithr:

In contrast to [30], we disregard in our analysis the
shape of the laser pulse; for this reason, our value of Ithr

is smaller by a factor of  than the value given by for-
mula (8) in [30]. The results of exact numerical calcu-
lations are represented in Figs. 12, 13 and the table. Fig-
ure 12 shows the dependence of ionization probability
Wnm on F2 at frequency ω = 4|En = 5| = 2.168 eV for each
from five possible states with n = 5, m = 0. It can be seen
that two from the five |n = 5, m = 0〉  states exhibit a ten-
dency to stabilization since the total ionization proba-
bility for these states increases with F at a lower rate as
compared to F2. Figure 13 shows the frequency depen-
dences of photoionization probability W(1), two-photon
ionization probability W(2), and correction W(1–3) associ-
ated with the reemission of photons as well as total cor-
rection (43) in a linearly polarized wave. It can be seen
from the figures that W(2) and W(1–3) have the same order

I thr
W 1–3( )

2W 1( )--------------.=

2
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of magnitude in the near-threshold region, while the
contribution from W(1–3) to ImE(4) becomes predomi-
nant upon an increase in ω. Pay attention to different
modes of behavior of W(1–3) for the ground 1s state and
excited circular states with m = l = n – 1 and with m =
l = n – 2 (in particular, |n = 5, l = 4, m = 4〉). In the latter
case, the value of W(1–3) is negative everywhere, indicat-
ing a tendency to stabilization at any above-threshold
frequency, while W(1–3) > 0 for the ground state in the
near-threshold frequency range.

The table contains the values of F–2W(1), F–4W(1–3),
and Ithr for frequencies ω = 0.0735 = 2 eV and ω =
0.1838 = 5 eV for some isolated states. A comparison
of the value of Ithr = 2.1 × 1013 W/cm2 for state |n = 5,
l = 4, m = 4〉  at frequency ω = 3.675|E5| = 2 eV from the
table with the value of Ithr = 2.8 × 1014 W/cm2 obtained
in [30] shows that the results differ by an order of mag-
nitude. A similar situation takes place for state |n = 3,
l = 2, m = 2〉  at a frequency of ω = 3.308|E3| = 5 eV:
Ithr = 2.4 × 1014 W/cm2 according to our calculations
and Ithr = 1.4 × 1015 W/cm2 according to [30]. In the
case of the 1s state for which estimate (47) could be
applied, this estimate does not even provide a correct
qualitative dependence of the single-photon ionization
probability W1s on the field strength at frequencies near
the ionization threshold (see above).

Thus, in numerical analysis of the amplitudes of
multiphoton processes described by higher order
matrix elements in perturbation theory, which corre-
spond to virtual multiphoton transitions to the contin-
uum (i.e., containing two or more Green functions with
positive energies %i), various estimates based on the
inclusion of a finite number of intermediate states in the
discrete spectrum or in a narrow region of states in the
continuum should be treated with care. As a matter of
fact, the numerical values of these amplitudes depend
significantly both on the interference (mutual compen-
sation) of partial radial matrix elements and on the
quantum numbers of the initial and final states as well
as on energies %i of intermediate states. The application
of the generalized Sturm expansion of the Coulomb
Green function makes it possible to avoid integration
over virtual states in the continuum and to reduce the
problem to computing well-converging series of the
hypergeometrical type. Thus, the technique described
above is equivalent to analytic continuation of the
Sturm series for compound radial matrix elements to
the region of positive energies of the Green functions,
in which the standard Sturm series diverge. The results
described above show that the method proposed here
makes it possible to calculate correctly the higher order
radial matrix elements in a wide frequency range up to
frequencies two or three orders of magnitude higher
than ionization potential |En| as well as for highly
excited states.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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APPENDIX

We will describe the computational algorithm for
the fourth-order matrix elements (23) using the general-
ized Sturm expansion (33) of the Coulomb Green func-
tion. Direct substitution of expression (33) into (23)
leads to the sextuple series with six free parameters
α1−3, :

(A.1)

For the values

(A.2)

of the free parameters, four series from six are termi-
nated due to the emerging orthogonality of the
Laguerre polynomials [32]:

(A.3)

Indeed, let us write the result of action of operators 
on radial functions Rnl in the special form

(A.4)

where

Since the Sturm function Skl depends on coordinate r in

the same way as Rnl(r), we can write (l ', l)Skl(2Zr/n)
in a form analogous to (A.4). After this, all integrals in
expression (A.1) are reduced to (A.3). As a result,

α1–3'

Rll'
l1l2l3 %1 %2 %3, ,( ) nl'〈 |D̂ l l3,( )=

× gl3
%3 α3 α3', ,( )D̂ l3 l2,( )gl2

%2 α2 α2', ,( )

× D̂ l2 l1,( )gl1
%1 α1 α1', ,( )D̂ l1 l,( ) nl| 〉 .

α1 α2 α2' α3'= = , α3 α1'= n/Z ,= =

e ρ– ρ β– Ln
β ρ( )Lm

β ρ( ) ρd

0

∞

∫ Γ β n 1+ +( )
n!

------------------------------δmn.=

D̂

D̂ l 1+ l,( )Rnl r( ) 2Z5/2

n3 d( )2l 1+[ ] 1/2
---------------------------------=

× ρle ρ/2– Ld 3–
2l 3+ ρ( ) Ld 1–

2l 3+ ρ( )–( ),
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n3 d 3–( )2l 5+[ ] 1/2
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× ρle ρ/2– s 1+( ) s 2+( )Ld 3–
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– d 1–( ) d 2–( )Ld 1–
2l 3+ ρ( ) ),

d n l, s– n l, ρ+ 2Zr/n.= = =

D̂
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matrix element  can be expressed via a linear
combination of 16 double series of the form

(A.5)

It should be noted that a fourth-order matrix element
can also be reduced to a combination of series of the
same form if we use the F–r representation (10) for
operator V. In this case, the required transformations
can be carried out using the recurrent relation for
Laguerre polynomials (see [32]):

However, the corresponding expression for  turns
out to be much more cumbersome and contains
125 double series of type (A.5) in the general case.

An appropriate choice of the remaining free param-
eter α1 ≡ α can ensure the convergence of series 
in expression (A.5) for positive energies of the Green
function and accelerate the convergence of these series
for negative energies. For illustration, we will consider
the asymptotic forms of the general term of series (A.5)
(these forms can be determined using the results
obtained in [22]) at the edges and on the diagonal of
matrix αkk':

(1) for a fixed k and k'  ∞:

(A.6)

(2) for a fixed k' and k  ∞:

(A.7)

(3) for k' = k  ∞:

(A.8)

Rll'
l1l2l3
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l2 ν2; α α,( )Ak' n ν1 ν2 α, , ,( )Bk n ν2 ν3 α, , ,( )
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k k', 0=
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Here, Ci are constants independent of k and k'. It fol-
lows from relations (A.6)–(A.8) that, by choosing
parameter α in complex form with Reα > 0 and
Imα > 0, we ensure the convergence of the series in the
below-threshold (νi > 0) and above-threshold (Imνi > 0)
cases since all radixes with powers k, k' are modulo
smaller than unity. At the same time, the application of
the standard Sturm expansion of (α ' = α = ν2) in
formula (A.1) leads to a diverging series.

As regards the numerical calculation of the kernel

 of expansion (33) of the Coulomb Green function,
it should be observed that the Appell function in the
first term of expression (34) contains an integer nega-
tive parameter –k' and is equivalent to the linear combi-
nation of k' + 1 hypergeometric functions 2F1 that can-
not be reduced to polynomials, while the Appell func-

tion in the expression for  is a finite polynomial in

both arguments. Consequently,  contains two essen-
tially different groups of terms: complete (nonpolyno-
mial) hypergeometric functions 2F1 and the product of
hypergeometric polynomials of one (2F1) and two vari-
ables (F1). However, the application of such a represen-

tation of  for practical computations is often com-
plicated in view of considerable compensation of the
terms in linear combinations for function F1. In most
cases, it is more convenient to calculate the Appell
function via its representation in the form of a single
integral [33].
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Abstract—Frequency-angular distributions of signal wave intensity are calculated for spontaneous parametric
down-conversion and parametric frequency conversion in spatially nonuniform nonlinear media. Wave reflec-
tion from interfaces is taken into account, and both regular and irregular nonuniform distributions of second-
order nonlinear susceptibility are considered. A unified approach using a scattering matrix and a generalized
Kirchhoff law is applied in calculations of spontaneous and stimulated processes in dissipative nonlinear media.
Interference of electromagnetic zero-point fluctuations of the vacuum, nonlinear interference, and nonlinear
diffraction are examined for media with various absorptive properties. Theoretical foundations are developed
for diagnostics of nonuniform distributions of the second-order susceptibility, based on measurement of the line
profiles of nonlinear signals. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Media with spatially varying linear and nonlinear
optical properties are currently attracting much atten-
tion [1, 2]. They are widely used in nonlinear optics and
laser physics [3–9]. Characteristics of parametric pro-
cesses in crystals with deep modulation of the second-
order nonlinear susceptibility are the subject of ongo-
ing research [3, 4, 6–8]. In our view, progress in this
area is important for laser spectroscopy of solids and
polymers, because parametric processes offer novel
opportunities for analyzing the structure of inhomoge-
neous multidomain crystals and polymer materials and
their transformations [9].

Spatial nonuniformity (periodic or random, depend-
ing on a particular specimen) strongly affects the non-
linear optical processes in which phase matching is a
necessary condition. Energy conservation is a strict
requirement. Under steady-state conditions, it reduces
to the zero algebraic sum of the frequencies of the inter-
acting waves. By contrast, momentum conservation
may hold up to a certain mismatch when part of the
momentum carried by light waves is transferred to the
medium. In the general case, parametric processes in
inhomogeneous media depend on changes in linear and
nonlinear optical parameters across interfaces, geome-
try of individual regions, characteristics of boundaries,
scattering and absorption coefficients, the coefficients
characterizing nonlinear optical conversion, etc. Analy-
sis of the integral effect of the combination of all factors
on a two- or three-dimensional scattering spectrum is a
difficult task. The problem is substantially simplified by
invoking the generalized Kirchhoff law (a nonlinear ana-
log of the Kirchhoff law) formulated by Klyshko [10, 11]
in the framework of a unified phenomenological
1063-7761/04/9802- $26.00 © 20272
approach to spontaneous and stimulated parametric
interactions in weakly nonlinear dissipative media. The
generalized Kirchhoff law can be used to determine
second-order correlation functions for the output field
by using the corresponding functions prescribed at the
input end and to calculate both frequency-angular dis-
tribution of the output radiation intensity and its statis-
tical characteristics. In calculations of this kind, a linear
relationship between the Heisenberg operators of the
input and output fields is postulated. (The only excep-
tion is the pump field, which is treated as a classical wave
of prescribed intensity.) This relationship is formulated
in terms of a scattering matrix. The matrix can be calcu-
lated within the framework of classical nonlinear optics,
and its elements determine the relations between the
classical field strengths for all input and output modes.

In this paper, we present the results obtained by
applying the generalized Kirchhoff law to parametric
processes in media with nonuniform distributions of
optical parameters. We consider spontaneous paramet-
ric down-conversion (SPDC) and stimulated parametric
frequency conversion (PC) in media without an inver-
sion center [10]. SPDC is the scattering or decay of
pump photons of frequency ω0 caused by quantum field
fluctuations in a medium with nonzero second-order
nonlinear susceptibility χ(2).1 As a result, photon pairs
correlated with respect to the time and location of their
origin are created in the medium. The frequencies of
these photons, ω1 and ω2, are related as follows:

(1)

1 SPDC [12–14] was predicted by Klyshko in a paper presented in
1966 at the All-Union Conference on Nonlinear Media in Cher-
nogolovka.

"ω0 "ω1 "ω2.+=
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Their propagation directions are determined by the
phase matching condition

(2)

where kj is the jth wave vector, |kj| = njωj/c, and nj is the
refractive index at ωj (j = 0, 1, 2). The frequencies ω1
and ω2 may vary from zero to ω0. By convention, the
wave with the frequency between ω0/2 and ω0 is the
called signal wave (ω1) and the other one, with the fre-
quency below ω0/2, is called the idler wave (ω2). Nor-
mally, the frequency of the signal wave generated in an
experiment lies in a range well suited for measurement.
The phase matching condition for the wave vectors kj is
satisfied up to a mismatch ∆k that depends on the
absorption, geometry of the illuminated specimen, and
dispersion of the refractive index.

The emergence of photons at ω1 and ω2 via SPDC
(without any input at these frequencies) can be
explained only in the framework of a consistent quan-
tum-theoretical treatment. Outside the absorption band,
scattered radiation leaves the medium, consisting of
correlated photon pairs (biphotons) [15, 16]. SPDC can
be interpreted as the result of scattering of the pump
wave by electromagnetic fluctuations of the vacuum in
a nonlinear medium. If one of the output frequencies
lies in an absorption band, e.g., a photon resonance
absorption band, then a photon–polariton pair is cre-
ated. In this case, the pump is scattered both by vacuum
fluctuations and by thermal fluctuations of the scatter-
ing medium [17, 18]. When the input contains not an
only pump wave, but also a signal- or idler-frequency
wave, then spontaneous light scattering is accompanied
by parametric conversion of pump photons into bipho-
tons. In contrast to SPDC, stimulated parametric fre-
quency conversion can be described by both quantum
and classical models [19].

Here, we use the generalized Kirchhoff law in ana-
lyzing some specific effects of spatial inhomogeneity
on SPDC and PC spectra. In Section 2, we apply the
generalized Kirchhoff law to calculate the signal line
profile in the simplest case of a slab of a nonlinear
medium. This model was examined previously in anal-
yses based on different approaches [10]. The present
study includes calculation of the scattering matrix and
provides a methodological basis for further analysis. In
Section 3, we calculate the frequency-angular distribu-
tions for SPDC and PC signal waves in a slab with
reflecting boundaries [20]. We analyze the fine interfer-
ence structure of line profiles for various cases of signal
and idler absorption. Next, we consider the effects of
electromagnetic zero-point fluctuations of the vacuum
(Section 4) and spatial distribution of the effective sec-
ond-order susceptibility (Section 5) on the SPDC spec-
trum.

The present study is focused on the characteristics
of three-wave SPDC and parametric difference-fre-
quency generation in a spatially nonuniform medium.

k0 k1 k2 ∆k,–+=
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However, the results obtained for difference-frequency
generation can be modified to describe optical har-
monic generation and sum-frequency generation, as
well as cascade processes of higher orders, in the con-
stant-pump approximation by assuming linear amplifi-
cation of the remaining waves.

2. SCATTERING MATRIX 
AND SIGNAL LINE PROFILE IN A SLAB

For three-wave parametric interactions, the average
number of signal and idler output photons, N1' ≡

 and N2' ≡ , dictated by the generalized
Kirchhoff law is

(3)

(4)

where I is the identity matrix and  is an entry of the
scattering matrix

The subscripts 1' and 2' run through all signal and idler
output modes; the subscripts 1 and 2, through all corre-
sponding input modes;

are the matrices representing the second-order

moments of the input field;  and  are transposed

matrices;  and ak are the creation and annihilation
operators for kth-mode photons;

is the temperature factor, where ωp is the phonon reso-
nance frequency. Normally, this factor can be neglected
since it is much less than unity at room temperature.
The difference between expressions (3) and (4) is due
to the assumption that only idler waves are absorbed.
This assumption is more likely to hold for real pro-
cesses, as compared to substantial signal or pump
absorption.

The scattering matrix  defines the relationship
between the creation and annihilation operators for the

a1'
† a1'〈 〉 a2'

† a2'〈 〉

N1' Û1'1 N1 N0 I+ +( )Û1'1
†

=

+  U ̂ 1'2 N ˜ 2 N 0 – ( ) U ˆ 1'2
†

 N 0 I ,––

N2' Û2'1 Ñ1 N0 I+ +( )Û2'1
†

=

+  U ̂ 2'2 N 2 N 0 – ( ) U ˆ 2'2
†

 N 0 ,+

Ûi' j

Û Û1'1 Û1'2

Û2'1 Û2'2 
 
 

.=

N1( )ij a1i
† a1 j〈 〉 , N2( )ij a2i

† a2 j〈 〉≡≡

Ñ1 Ñ2

ak
†

N0 1/ "ωp/kT( )exp 1–[ ]≡

Û
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input and output fields and their first-order moments,

 and :

(5)

Each mode satisfies the following relations outside the
nonlinear medium up to general normalization factors:

where Ej is the electric field amplitude and θj is the
angle of wave incidence (the angle between the normal
vector to the surface and the wave vector). In the
absence of scattering, the scattering matrix is unitary
and

where σmn = (–1)m + 1δmn (δmn is Kronecker’s delta).
Each element of the matrix can be determined experi-
mentally. However, it is frequently sufficient to calcu-
late these elements theoretically by solving equations
for slowly varying field amplitudes. Substituting the

resulting elements of  into (3) and finding the average
number of photons for each output mode, one can cal-
culate the output intensity PωΩ as a function of fre-
quency and scattering (observation) angle, i.e., the line
profile or form factor. (Intensity is defined here as the
energy emitted by a unit surface area into unit solid
angle per unit spectral interval per unit time.) The out-
put signal intensity is

(6)

where v  is the volume per mode in the wave-vector
space. Accordingly, the signal received with a quantum
detector efficiency η1 in the far-field region is

(7)

where ξ1(ω1, Ω1) ≡ η1/"ω1ccosθ1. The integral is calcu-
lated over the bandwidth and aperture of the detector,
(∆ωdet) and (∆Ωdet).

The correlation moment K ' ≡ 〈a1'a2'〉*, which deter-
mines the statistical properties of the output biphoton
field, is expressed as

(8)

The moments N1' and N2' and the second-order correla-
tor K' determine the fourth-order moment of the scat-
tered field,

a1
†〈 〉 a2〈 〉,( ) a1'

†〈 〉 a2'〈 〉,( )

a1'
†〈 〉 Û1'1 a1

†〈 〉 Û1'2 a2〈 〉 ,+=

a2'〈 〉 Û2'1 a1
†〈 〉 Û2'2 a2〈 〉 .+=

a j
†〈 〉 a j〈 〉 A j E j

θ jcos
ωj

-------------,≡∼ ∼

Ûσ̂Û
† σ̂,=

Û

Pω1Ω1

"ω1
3 θ1cos

c2v
------------------------N1',=

P1 ω1 Ω1ξ1 ω1 Ω1,( )Pω1Ω1
,d

∆Ωdet

∫d

∆ωdet

∫=

K̃ Û2'1 Ñ1 N0 I+ +( )Û
˜

1'1 Û
˜

2'2 N2 N0–( )Û
˜

1'2.+=

a1i'
† a1 j'

a2m'
† a2n'

〈 〉 N1i'1 j'
N2m' 2n'

K1i'2m'
K1 j' 2n'

* ,+=
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which characterizes the correlation between signal and
idler photons. It can be found by measuring the cross cor-
relation of the signal and idler detector outputs [15, 16].

Consider a strong pump wave E0 exp(ik0 · r – iω0t)
and much weaker signal and idler waves E10 exp(ik1 ·
r – iω1t) and E20 exp(ik2 · r – iω2t) incident on a slab of
thickness l. In the constant-pump approximation, the
reduced wave equations describing the process are
written as follows [21]:

(9)

Here,

is the dimensionless wave-vector mismatch, σj ≡
2πχωj/cnjcosϑ j , and yj ≡ αjl/2cosϑ j . The convolution

of second-order nonlinear susceptibility tensor 
with signal, idler, and pump unit polarization vectors is
denoted by χ; αj denotes the absorption coefficient at
the frequency ωj; and ϑ j is the angle between the nor-
mal vector to the surface and a particular wave vector
inside the slab. In the case of weak absorption, αj is

related to the imaginary part of permittivity  as fol-

lows: αj = ωj /cnj .

Interaction between E1(z), E2(z), and E0 exp(ik0 · r –
iω0t) can be described by the parametric interaction
matrix  relating plane waves satisfying conditions (1)
and (2):

(10)

where

with E1, 2(–l/2) and E1, 2(l/2) denoting input and output

wave amplitudes. Since the matrix  is identical to 
in the case under analysis, its elements are expressed as
follows by virtue of (9):

(11)

dE1 z( )
dz

---------------- iσ1E0E2* z( ) iz∆
l

--------– 
  y1

l
----E1 z( ) 0,=+exp+

dE2 z( )
dz

---------------- iσ2E0E1* z( ) iz∆
l

--------– 
  y2

l
----E2 z( ) 0.=+exp+

∆ l k1z k2z k0z–+( ) δ1 δ2 δ0–+≡ ≡

χ̂ 2( )

ε j''

ε j''

ŵ

A1 l/2( )
A2 l/2( ) 

 
  w11 w12

w21 w12 
 
  A1 l/2–( )

A2 l/2–( ) 
 
 

,=

A1 2,
l
2
---± 

  E1 2,
l
2
---± 

  θ1 2,cos
ω1 2,

-----------------,≡

ŵ Û

w11 e µ– γcosh η γsinh
γ

-----------------+ 
  ,=

w22 e µ*– γ µ γsinh
γ

-----------------–cosh 
  ,=

w12 iβe y/2– γsinh
γ

-------------, w21 iβ*e y/2– γsinh
γ

-------------,=–=
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where

(12)

In cases of experimental interest, only the lowest
order terms can be retained in the power series expan-
sions of . Then,

(13)

where

(14)

When only idler waves are absorbed, the generalized
Kirchhoff law entails the following energy relation
between SPDC signal characteristics:

By virtue of (6) and (13), this leads to the following
expression for SPDC intensity in the linear approxima-
tion with respect to pump:

(15)

where

(15')

is the form factor that determines signal intensity as a
function of phase mismatch. Coefficient C0 depends on

pump intensity P0, specular transmissivity  of the
input surface, the layer thickness, and the effective sec-
ond-order susceptibility χ:

y y1 y2, µ y1 y2 i∆+ +( )/2,≡+≡
η y1– y2 i∆+ +( )/2,≡

γ β 2 η 2+ ,≡

β
2πω1ω2χlE0

c2 k1zk2z

-------------------------------
θ0cos

n0 ϑ 0cos
--------------------.≡

ŵ

w11 e
y1–

β 2
f 1 η( ),+≈

w22 e
y2–

β 2
f 2 η( ),+≈

w12 iβf η( ), w21 i– β* f η( ),≈≈

f 1 η( ) 1

2η( )2
------------- e

y2– i∆–
1 2η–( )e

y1–
–[ ] ,≡

f 2 η( ) 1

2η( )2
------------- e

y1– i∆+
1 2η+( )e

y2–
–[ ] ,≡

f η( ) 1
2η
------ e

y2– i∆/2–
e

y1– i∆/2+
–[ ] .≡

N1'
SPDC w11

2 1.–=

Pω1Ω1

SPDC

y1 0=

y2 0≠

C0g ∆ y2,( ),=

g ∆ y2,( ) 2

∆2 y2
2+( )2

------------------------ ∆2 y2
2–( ) 1 e

y2–
∆cos–( )[≡

– 2y2∆e
y2–

∆ y2 ∆2 y2
2+( ) ]+sin

t0
2

C0

"ω1
4ω2

c5n0n1n2

---------------------P0t0
2χ2l

2 θ0 θ1coscos
ϑ 0 ϑ 1 ϑ 2coscoscos

---------------------------------------------.≡
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For parametric conversion of an idler input of radi-

ance N2, we have N1' =  + , where NSPDC is

spontaneous “noise” and  = |w12|2N2 is the PC sig-
nal radiance measured in units of number of photons
per mode. In the linear (spontaneous–stimulated)
regime of conversion, the corresponding intensity is

(16)

where

is the form factor describing the observed spectrum
corrected for absorption at both signal and idler fre-
quencies. In particular, if only idler waves are absorbed,
then the line profile due to parametric conversion char-
acterized by an isotropic input intensity distribution
(when all modes in the idler channel are uniformly pop-
ulated) is

(16')

Expressions (15') and (16') for the SPDC and PC
form factors imply that the line profiles of isotropic
SPDC and PC waves are different in the case of non-
zero, but weak, absorption at the idler frequency
(y2 ~ 1). It should be noted here that absorption at a sig-
nal frequency does not entail any distinction of this
kind. However, the SPDC and PC line profiles are sim-
ilar in the case of strong absorption at the idler fre-
quency (y2 @ 1). Then, both waves have Lorentzian
profiles as functions of the wave-vector mismatch:

(17)

When the medium is transparent at all frequencies, we
obtain well-known expressions for spontaneous [10] and

N1'
SPDC N1'

PC

N1'
PC

Pω1Ω1

PC

y1 0≠

y2 0≠

C0F ∆ y1 y2, ,( )N2,=
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2y1–( )exp 2 y1 y2+( )–[ ] ∆ 2y2–( )exp+cosexp–
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-----------------------------------------------------------------------------------------------------------------------

F ∆ 0 y2, ,( )

≡
1 2 y2–( ) ∆ 2y2–( )exp+cosexp–

y2
2 ∆2+

--------------------------------------------------------------------------------.
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stimulated [19] waves as functions of the mismatch:

(18)

where sincx = sinx/x.

When the slab is transparent, the angular frequency
bandwidths of these waves depend only on its thick-
ness. In the case of substantial absorption (condition
yj ! 1 is violated for j = 1 and/or j = 2), the widths are
determined by both thickness and absorption coeffi-
cients αj for the slab material. As an example, consider
the line shape characteristics for signal with a wave-
length of 625 nm when parametric interaction of ooe
type takes place inside a slab of KDP crystal parallel to
the z axis. The pump has extraordinary polarization and
a wavelength of 488 nm and propagates along the nor-
mal to the slab. KDP crystal is virtually transparent to
pump and signal in the visible range. The corresponding
idler wavelength is 2.23 µm. The idler absorption coeffi-
cient is α2 ≈ 0.5 cm–1. Expressions (18) apply to slabs of
thickness between 0.1 and 2 cm (the line profile scales
with sinc2(∆/2)). The spectral width for the principal
maximum in the signal profile emitted by a 1-cm-thick
slab is 0.5 nm, and the corresponding angular width is
0.03°. When the slab thickness is ten times smaller
(1 mm), these widths are 5.4 nm and 0.35°, respec-
tively. With decreasing signal wavelength, the idler
wavelength increases and the absorption coefficient α2

Pω1Ω1

SPDC

y1 0=
y2 0=

C0sinc2∆
2
---,=

Pω1Ω1

PC

y1 0=
y2 0=

C0N2sinc2∆
2
---,=

0–l/2 l/2 z

E1(z)

E3(z)

E0
(+)

E0
(–)

E4(z)

E2(z)

E4

E20

E0

E3

E10

E30

E1

E

E2

E40

θ2
θ2

θ0

θ1
θ1

(

Fig. 1. Diagrams of waves propagating outside and inside a
reflecting slab.
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grows even faster. For example, if a signal is detected at
572 nm, then the idler wavelength is 3.32 µm. When
α2 ≈ 100 cm–1 expressions (17) apply to slabs 0.5 cm or
thicker. The FWHM of signal emitted by a 1 cm thick
slab is 2 nm, and the corresponding angular width
is 0.2°.

3. SCATTERING MATRIX 
AND SIGNAL LINE PROFILE FOR A SLAB 

WITH REFLECTING BOUNDARIES

The analysis developed above does not take into
account reflection from the boundaries of nonlinear
medium. It is clear that reflection gives rise to effects
due to interference, which affects the scattered-wave
line profile.

The pump, signal, and idler modes inside and out-
side a reflecting slab can be divided into forward and
backward ones (propagating in the positive and nega-
tive directions along the z axis) (see Fig. 1). The for-
ward and backward wave vectors associated with the
same frequency differ only by the signs of their z-com-
ponents. Wave vectors having equal magnitudes and
opposite signs arise when signal and idler waves are
incident upon the slab from both directions. Denote the
forward (k1z > 0) and backward (k1z < 0) signal waves
by subscripts 1 and 3, respectively, and the forward and
backward idler waves by subscripts 2 and 4, respec-
tively. The amplitude of each wave varies as the wave
propagates across the slab because of parametric inter-
action. Additional variation of the amplitude is caused
by absorption inside the slab and reflection from its
boundaries. Linear scattering is neglected here. We
denote the amplitudes of the forward and backward sig-
nal and idler waves leaving the slab by Ej (j = 1, 2, 3, 4),
those of the incident waves by Ej0, and those propagat-
ing across the slab by Ej(z).

The boundary conditions relating the amplitudes
outside and inside the slab (at z = ±l/2) can be repre-
sented as follows [20]:

(19)

where

The elements of the diagonal matrix  are

where t1 and t2 are the amplitude transmissivities char-
acterizing the slab boundaries. The nonzero compo-

A' ρ̂A''+ τ̂A0, A τ̂A'' ρ̂*A0,+= =

A0 A10 A20* A30 A40*, , ,{ }≡ , A A1 A2* A3 A4*, , ,{ } ,≡

A' A1 l/2–( ) A2* l/2–( ) A3 l/2( ) A4* l/2( ), , ,{ } ,≡

A'' A1 l/2( ) A2* l/2( ) A3 l/2–( ) A4* l/2–( ), , ,{ } .≡

τ̂

τ1 τ3 t1
n1 ϑ 1cos

θ1cos
--------------------, τ2 τ4 t2

n2 ϑ 2cos
θ2cos

--------------------,= = = =
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nents of the matrix  are

where rj denotes the amplitude reflectivities of the slab
boundaries. Both rj and tj are calculated by using the
Fresnel formulas [22]. If the optical density of the
medium outside the slab is lower, then rj < 0. When
anisotropy is allowed for, the coefficients rj and tj

depend both on the propagation direction of the inci-
dent waves and on their respective angles of incidence.
Moreover, we may consider the effects due to birefrin-
gence, in which case each incident plane wave is asso-
ciated with two forward and backward waves propagat-
ing across the slab. To simplify further analysis, we
assume that the parametric interaction involves only
signal and idler waves of definite polarization. We also
assume that the orientation of the optical axes of the
anisotropic layer is such that birefringence effects van-
ish and the polarizations of linearly polarized incident
waves remain invariant after reflection and refraction at
the slab boundary.

Reduced equations (9) relate both the forward
waves E1(z) and E2(z) and the backward waves E3(z)
and E4(z) pairwise. The only difference between the

pairs is that the forward pump amplitude  must be
substituted into (9) to calculate E1(z) and E2(z), whereas

the backward pump amplitude  must be substituted
to calculate E3(z) and E4(z). The incident pump ampli-

tude is related to the amplitudes  and  inside
the slab by the Airy formulas

Interaction between E1(z), E2(z), E3(z), and E4(z) in

the presence of pumps  and  can be represented
in terms of a general parametric interaction matrix as
A'' = , where

(20)
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The elements wij (i = 1, 2) are identical to those of the
parametric interaction matrix defined by (11) in the

absence of reflection (after the change E0  ).

The components  characterize interaction between
the backward waves and are similar to wij , with the

exception that E0 is replaced by  in expression (12)

for β. The relation  =  means that the inverse
matrix characterizes conversion of waves propagating
in the negative direction along the z axis.

Combining (19) with (20), we find the scattering

matrix  for a slab:

(21)

Expressions for the elements of  were presented
in [20].

If neither signal nor idler wave is absorbed, then we
have the condition

(22)

By the generalized Kirchhoff law (represented by (3)),
the SPDC signal radiance in a slab that partially absorbs
idler waves and partially reflects all waves is expressed
as

(23)

For PC of an idler input of radiance N2, we have

(24)

Instead of (15), we obtain the following expression
for the SPDC signal intensity:

(25)

Here, the supplementary functions determining the
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form factor for scattered waves are

(26)

Rj ≡  is the reflection coefficient defined as the corre-
sponding reflected-to-incident intensity ratio for a wave

of frequency ωj ,  ≡ , and  ≡ rj exp(–yi).
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Fig. 2. SPDC line shape in a transparent slab that reflects
signal waves (r1 = –0.3): (a) other waves are not reflected;
(b) idler and pump waves are reflected (r2 = –0.5 and
r0 = −0.5).
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For a medium that is transparent at idler frequencies,
but partially absorbs signal waves, an expression for
SPDC intensity is derived from the generalized Kirch-
hoff law written represented by (4). Instead of (25), we
obtain

(27)

Here, the value of δ ≡ δ2 – δ1 – δ0 differs from that of
∆ ≡ δ2 + δ1 – δ0.

In the case of arbitrary laws of wave absorption and
reflection in the slab, the PC signal intensity is
expressed as

(28)

It is obvious that the PC line profile in the presence of
reflections differs from the SPDC line profile in the
absence of both absorption at signal frequencies
(cf. (25) and (28)) and appreciable absorption at idler
frequencies (cf. (27) and (28)).

Reflections in a slab give rise to fine interference
structure in SPDC and PC line profiles. When the crys-
tal is transparent, the modulation due to frequency- or
angle-dependent variation of sinc2(∆/2) combines with
additional modulation of two types. One of these is
associated with the behavior of terms containing 2δ1
and 2δ2. Moreover, these factors characterize the Airy
linear interference of signal and idler waves in a slab.
Interference of this kind occurs when the superposition
of incident and reflected waves of each particular fre-
quency is independent of the presence of other waves.
This interference also manifests itself in spectra associ-
ated with nonlinear interaction. It leads to double peri-
odic modulation of spectra with periods determined by
the conditions δj = πn, where n is an integer. The corre-
sponding modulation depth is determined by the reflec-
tion coefficients R1 and R2.

Figure 2a shows an example of a frequency-depen-
dent SPDC line profile in the case of Airy linear inter-
ference between reflected signal waves when R2 = 0.
Whether the pump is reflected or not, the SPDC line
profile remains invariant. The relation between the Airy
modulation period and the modulation controlled by
the function sinc2(∆/2) is determined by specific
parameters of the medium. The SPDC signal intensity
mainly concentrates within the principal maximum of
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sinc2(∆/2), i.e., within the frequency bandwidth ∆ω1s

given, as in a nonreflecting slab, by the expression

(29)

where um denotes group velocities in the crystal. To
observe extra peaks in the frequency profile of a scat-
tered-wave line, we must have the condition ∆ωml <
∆ω1s , where ∆ωml = πum/lcosϑm is the frequency spac-
ing between the peaks due to linear interference of sig-
nal or idler waves. Analogous relations for angular
intervals determine the observability of Airy interfer-
ence in the angular SPDC line profile. For example,
when parametric interaction of the type considered at
the end of the preceding section takes place inside a
1-cm-thick slab of KDP crystal, the modulation period
associated with wave interference varies between 0.013
and 0.014 nm, whereas the spectral width of the princi-
pal maximum is substantially larger (0.5 nm). The cor-
responding period of interference modulation in the
angular line profile is similar to the angular width of the
principal maximum (0.02°).

The other type of SPDC line profile modulation, due
to wave reflection in the slab, is of greater interest.
Modulation of this type is associated with change in the
combination of parameters δj:

It can be observed only when both signal and idler
waves are reflected by the boundaries. Note that the
reflected pump wave somewhat changes the overall
intensity distribution, but it is not required to observe
interference. The peaks associated with changes in the
mismatch δ by multiples of π (which is equivalent to
changes in δ2 – δ1 by multiples of π) are spaced approx-
imately as the Airy interference maxima. For example,
the inverse frequency widths of the Airy maxima, ∆ωml

and , satisfy the relation

(30)

However, the occurrence of the peaks associated with
changes by multiples of π in the mismatch ∆ + 2δ0 and,
therefore, in δ2 + δ1 (if δ0 is constant) is strictly related
to the initial mismatch. Interference of this type can be
classified as nonlinear, because the locations of the
peaks depend on the phases of all waves involved in a
parametric interaction. The frequency bandwidth due to
the nonlinear interference associated with the phase

∆ω1s

Pω1Ω1
ω1d∫

Pω1sΩ1

-------------------------≡

=  
2π ϑ2 ϑ 0–( )cos

u2
1– u1

1– ϑ 1 ϑ 2–( )cos– l
---------------------------------------------------------,

∆ 2δ0, δ, 2 δ2 δ1–( ) 2 δ δ0+( ),≡+

2 δ1 δ2+( ) 2 ∆ δ0+( ).≡

∆ω1'

∆ω1'( ) 1– ∆ω1l( ) 1– ∆ω2l( ) 1– .+=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
incursion 2(δ1 + δ2) ≡ 2(∆ + δ0) is determined by the
relation

(31)

The corresponding modulation period is smaller than
the frequency width of the central maximum of
sinc2(∆/2) by a factor of four. The period of the nonlin-
ear interference associated with the phase incursion ∆ +
2δ0 is smaller than the frequency width of the same cen-
tral maximum by a factor of two. Figure 2b shows an
example of frequency-domain scattered-wave line pro-
file observed in the case when the signal, idler, and
pump waves are reflected from the boundaries. It dem-
onstrates that nonlinear interference leads to periodic
variation in the amplitude of high-frequency modula-
tion of the spectrum.

Nonlinear interference is caused by parametric
interaction between forward and backward waves and
linear interference between signal waves of frequency
ω1. Similar effects were observed, for example, in stud-
ies of frequency–angular intensity distribution and cor-
relation between SPDC signal and idler channel inten-
sities in slabs of a nonlinear crystal separated by layers
of an optically linear medium [23–26].

Figure 3 illustrates the influence of the signal and
idler waves on the interference pattern observed at the
signal frequency. With increasing absorption, the visi-
bility of the interference pattern, which is determined
by linear and nonlinear interference of the absorbed
wave, decreases. The variation of visibility concurs
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Fig. 3. SPDC line shape in a reflecting slab (r0 = –0.5, r1 =
–0.3, r2 = –0.5) for several values of absorption coefficients
at signal and idler frequencies: (a) α1l = 0, α2l = 1;
(b) α1l = 1, α2l = 0; (c) α1l = 0, α2l = 10.
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with analogous variations of the basic line profile,
which is characteristic of the slab in the absence of
reflection. The increase in absorption at both frequen-
cies leads to gradual decrease in contrast, and the inter-
ference structure of the line profile is eventually blurred
out. The effects of reflection on the SPDC line profile
can be observed experimentally only under certain con-
ditions. These conditions are generally violated when
SPDC is used in spectroscopy, but this does not pre-
clude determination of volume-averaged values of
refractive index and absorption coefficient at idler fre-
quencies from smoothed scattered-wave line profiles.
Reflection effects must be taken into account in mea-
surements of integral scattered-wave intensity. For
example, this is required when SPDC is used in pho-
tometry [20, 27–29].

4. INTERFERENCE 
OF ELECTROMAGNETIC ZERO-POINT 

FLUCTUATIONS OF THE VACUUM

Consider SPDC in the case when the idler wave is
reflected by the slab boundaries, whereas the signal and
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Fig. 4. SPDC line shape for a slab that reflects only idler
waves (r0 = r1 = 0): (a) r2 = –0.5, (b) r2 = –0.9.
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pump are not. Suppose that the idler wave can be
absorbed. Figure 4 shows the frequency-domain line
profiles corresponding to several values of the absorp-
tion coefficient r2. It is clear that the overall signal line
profile is modulated. The modulation frequency and
depth are described by the Airy linear interference for
idler (rather than signal) waves.

Generally, the efficiency of each act of parametric
conversion depends, among other factors, on the aver-
age values of field operators in the input idler and signal
modes [10]. In SPDC observations, only the pump
wave is incident on the crystal. The thermal population
of the modes is too low to ensure the required scattering
efficiency. In this case, the role of seed is played only
by the so-called electromagnetic zero-point fluctua-
tions of the vacuum at the idler frequency when a signal
wave is detected or at the signal frequency when an
idler wave is detected. Recall that the effective radiance
of zero-point fluctuations of the vacuum in PC pro-
cesses is one photon per mode [30]. If the seed is an
external free wave “separated” from its source, then its
intensity inside the crystal will depend on the absorp-
tion and reflection coefficients of the medium at the
idler frequency and therefore affect the signal spec-
trum. In SPDC, idler waves are generated only via
decay of the pump. The “free” idler wave is then
reflected by the slab boundaries and absorbed as it
propagates through the medium. In the linear-amplifi-
cation approximation, the emerging idler wave weakly
interacts with the pump and feedback is negligible.
Therefore, the idler wave does not affect the signal
spectrum, and the line profile shown in Fig. 4 must not
be sensitive to the intensity distribution of the idler
wave generated in the medium. Thus, the signal line
profile shown here is due only to the field fluctuations
at the idler frequency, which participate initially in each
elementary act of scattering and subsequently in the
interference of the signal waves originating from differ-
ent points in a nonlinear medium. The interference
structure of the signal line with parameters determined
by the idler-frequency properties of the crystal can be
attributed to interference of zero-point fluctuations of
the vacuum [31].

The interference pattern in the line profile or the sig-
nal–idler intensity cross-correlation function reflects
the spatial distribution of the vacuum states of the field
in the slab. Spatial nonuniformity must be taken into
account in a comprehensive quantum-theoretic analysis
of the problem even at the stage of field quantization.
To perform quantization, the field strength operator in
an individual mode is represented as follows [32]:

(32)

where  =  and aj(t) = ajexp(–iωjt) are
the jth-mode photon creation and annihilation opera-
tors, respectively, and νj(r) is an eigenfunction of the

E j r t,( ) ν j r( )a j t( ) ν j* r( )a j
† t( ),+=

a j
† t( ) a j

† iωjt( )exp
AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004



PARAMETRIC FREQUENCY CONVERSION IN LAYERED NONLINEAR MEDIA 281
corresponding boundary value problem for the spatial
field distribution described by Maxwell’s equations and
medium-specific boundary conditions. It is obvious
that every jth-mode field has the same spatial distribu-
tion νj(r) irrespective of its quantum state, which may
be a Fock-space state with a constant number of pho-
tons, a mixed or vacuum one, etc. When the slab has
reflecting boundaries, an interference pattern corre-
sponding to νj(r) is observed, and similar patterns are
characteristic of both a single-mode equilibrium ther-
mal field and a vacuum-state field. Since both signal
and idler input fields are in the vacuum state in SPDC,
the signal spectrum exhibits an interference structure
associated with the vacuum states of the field at the
idler frequency. A different quantum state of the field
added to the input in the idler channel can change the
frequency-domain line profile of the scattered wave.
However, the change will occur only when all modes
are populated nonuniformly, i.e., when the mode occu-
pation number (mean number of photons in a mode)
varies from mode to mode because of the additional
field. Otherwise, the signal line profile will be similar to
that due to the interference of zero-point fluctuations of
the vacuum described here.

If R0, R1, and y2 in (25) are assumed to be small, this
expression describes light scattering by interference
polaritons [33] in those spectral regions where the con-
tribution of the Raman tensor to the scattered-wave
intensity is negligible. The contribution to light scatter-
ing by polaritons due to parametric processes is the
main source of signal in spectral regions far from
phonon resonances when the difference of idler and
phonon wavenumbers (measured in cm–1) is greater
than the phonon decay constant. The curves connecting
the interference peaks of the same order m = δ2/π =
k2zl/π can be used to determine the dispersion of inter-
ference polaritons. As R2  1, the conditions for total
reflection of the polariton waves trapped in the slab are
satisfied. In this case, peaks in the fine signal-profile
structure correspond to scattering by waveguide polari-
tons [33–35]. For example, this is characteristic of para-
metric interaction in lithium niobate crystals, when the
idler wave corresponds to the upper polariton branch
with wavenumbers about 2000 cm–1. In this case, obser-
vation of linear interference of zero-point fluctuations
of the vacuum requires either a receiver with a suffi-
ciently high resolution or a sufficiently thin crystal film,
because the spacing between the lines is 0.2 cm–1 and
4 cm–1 for 1 cm and 500 µm thick slabs.

5. SCATTERING MATRIX
AND SIGNAL LINE PROFILE IN MEDIA

WITH SPATIALLY MODULATED SECOND-
ORDER SUSCEPTIBILITY

We consider three-wave parametric interaction in a
specimen of a layered medium with second-order sus-
ceptibility varying in one direction. First, we suppose
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
that the value of χ(2) varies periodically. We assume that
the spatial modulation of linear susceptibility is so
weak that the effects due to variation of refractive index
and absorption coefficient can be neglected. This
approximation is valid, for example, in analysis of para-
metric processes in ferroelectric crystals with regular
domain structure [1, 3, 4, 6–9]. In such crystals, a
change in the sign of spontaneous polarization between
domains is associated with a change in all even-order
susceptibilities in the expansion of polarizability in
powers of field strength, while the odd-order suscepti-
bilities remain invariant [36].

Periodically varying second-order susceptibility can
be represented as the Fourier series

(33)

with spatial-harmonic amplitudes

(34)

where d is the period of a one-dimensional “nonlinear
superlattice” (modulation period) and qm = qm denotes
vectors of the reciprocal superlattice, with an integer m
and q ≡ (2π/d)n (n is the unit normal vector to the layer
boundaries). In the approximation considered here, the
amplitudes of forward waves are continuous across the
input boundary of the medium, and the scattering
matrix is identical to the matrix of the parametric inter-
action of forward waves. The nonlinear polarization at
the frequency ω1 is expressed as

(35)

The nonlinear polarization at the frequency ω2 is given
by a similar expression. The corresponding reduced
equations are

(36)

Here, the z axis is aligned with the normal to the non-
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is the dimensionless wave-vector mismatch for the mth
harmonic, ∆m/l differs from the mismatch ∆/l in a spa-
tially uniform medium by the magnitude of the recipro-
cal-superlattice vector qm , and

When the PC coefficient is small, the absolute val-
ues of the parameters β1m ≡ iσ1mE0l and β2m ≡

characterizing the efficiency of wave interac-

tion in the slab are small: |βm | =  ! 1.
The parameter βm is defined analogously to the param-
eter β for a homogeneous medium (see (12)), with
χ  .

The solution of Eq. (36) determines the elements of
the scattering matrix, which is identical to the paramet-
ric interaction matrix for waves in the layered medium
considered here. In the linear-amplification approxima-

tion (up to terms of order ),

(37)

where

The functions f(ηm) and f1(ηm) are defined by (14)
with the replacements ∆  ∆m and η  ηm ≡ (–y1 +
y2 + i∆m)/2 = η – imql:

(38)

In (37), the element w12 contains contributions of all
spatial harmonics , which are similar to the expres-
sion for a homogeneous specimen (cf. (37) and (13)),
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but with ∆  ∆m and χ  . The expression for
w11 contains additional summands corresponding to
interference of the contributions due to different har-
monics  and  (m ≠ m').

When the idler wave is absorbed, the generalized
Kirchhoff law dictates the following expression for the
signal intensity PωΩ in SPDC:

(39)

Here, the coefficient C is equal to C0/χ2 for a homoge-
neous medium (see (15), (16), (25)–(28)) and n
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The scattered-wave line profile in a periodically modu-
lated medium is characterized by two terms. One of
them is the sum of contributions of individual harmon-
ics. In each summand, the intensity distribution relative
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The value of each summand is proportional to the
squared amplitude of the corresponding harmonic. The
other term in (39) contains products of different har-
monics  and describes their interference.

When neither signal nor idler wave is absorbed, the
SPDC intensity is

(40)
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domain boundaries and the transition-layer thickness is
negligible as compared to the thickness of a domain of
either sign. In this case, (40) yields the following
expression for the SPDC line profile:

where ρ ≡ (l1 – l2)/d is a parameter characterizing the
asymmetry of the domain system (d = l1 + l2 is the
superlattice period). Both spectral and angular spacings
between the peaks due to nonlinear diffraction increase
with decreasing superlattice period. Unlike the widths
of the peaks, they are independent of the total thickness
of a specimen. For example, consider collinear para-
metric interaction of ooe type in a lithium niobate crys-
tal with regular domain structure and domain walls par-
allel to the xz crystallographic plane. For this configu-
ration, the difference between the curves corresponding
to zeroth- and first-order quasi-matching is about
100 cm–1 if the domain layer thickness is 5 µm.
Accordingly, the difference is smaller by an order of
magnitude if the thickness is 50 µm. These values are
obtained for a 488-nm pump propagating in the crystal-
lographic planes yz of domains at an angle of 57°,
crossing the domain walls. In this case, collinear inter-
action is observed when the signal wavelength is about
510 nm.

Expression (40) for signal intensity contains the
amplitudes  and phases ϕm of the spatial harmonics

 ≡ exp(iϕm) (which are complex-valued in the
general case). When the imaginary part of χ(2)(r) van-
ishes (far from the resonances of the medium), it holds
that

The direct relation between SPDC spectrum and spatial
distribution of second-order susceptibility can be used
as a basis for measuring χ(2)(r) in layered spatially non-
uniform crystals and nonlinear structures. Measuring
the ratio of the peak intensities associated with nonlin-
ear diffraction in different orders of quasi-matching, for
which |∆| = 2πmn, one can find the ratio of different har-
monic amplitudes . Since the interference terms
directly depend on the phases ϕm , the signal intensity is
redistributed among the quasi-matching maxima when
∆ ≠ 2πmn. The interference is most pronounced in scat-

Pω1Ω1 y1 0=
y2 0=

Cχ2 sinc2 ∆/2( )
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χm
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tering by specimens spanning just a few superlattice
periods.

When the idler wave is absorbed, each peak associ-
ated with nonlinear diffraction is broadened, but not
shifted (see Fig. 6). If y2 @ 1 and the number of
domains is so large that n @ y2/n, then (39) reduces to

(41)

The width of each nonlinear-diffraction peak on the
scale of ∆ is determined by the integral absorption y2
over the entire crystal thickness nd, whereas informa-
tion about the phases ϕm is lost. Nevertheless, the non-
linear-diffraction bands can be observed if the absorp-
tion over a superlattice period, y2/n, is relatively weak.
For example, if the domain size measured along the
idler-wave propagation direction does not exceed 5 µm,
then the diffraction pattern can be observed in the range
of idler frequencies such that α2 ≤ 2000 cm–1. Con-
versely, if absorption is so strong that y2/n @ 1, then the
nonlinear-diffraction bands are blurred out and the line
of a parametrically scattered wave is a single broad
Lorentzian curve centered at ∆ = 0. In the latter case,
even the values of |χm| cannot be measured.
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Fig. 5. SPDC line shape in a transparent ferroelectric with
regular domain structure for different domain thickness
ratios.
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thickness and integral absorption y2 are the same in all cases.

y'2
SPDC spectra can also be used to measure the com-
plete profile χ(2)(z) in a weakly absorbing specimen of
thickness l with an arbitrary distribution of second-
order susceptibility. Consider the situation when the
specimen is a part of a periodic medium in which the
period of χ(2)(z) is equal to l. If the pump occupies only
a slab {–l/2, l/2} in the medium, then the parametrically
scattered signal is identical to that generated by a spec-
imen of thickness l. The corresponding SPDC intensity
distribution is described by (39) and (40) with n = 1 and

(42)

In principle, the inverse problem of reconstruction
of a complete profile χ(2)(z) can be solved by using any
three-wave parametric process, including stimulated
up-conversion, second-harmonic generation, and cas-
cade processes [3, 4, 6–9]. However, when using a
stimulated process, one always has to deal with insuffi-
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cient or nonuniform population of the converter modes
induced by input radiation. For example, the line profile
of parametric conversion determined by the scattering
matrix elements w12 is generally expressed as

(43)

where N(ω2, θ2) is the distribution of the photon num-
ber in the input idler mode, whereas strictly uniform
population of input idler modes is guaranteed (by virtue
of zero-point fluctuations of the vacuum) when sponta-
neous SPDC is used in the linear-amplification approx-
imation. Information about domain structure can also
be obtained by measuring a line profile even under the
simplest conditions, when the effects due to interfer-
ence are negligible. The number and relative intensity
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of shifted curves can be used to find the number of spa-
tial harmonics and the relative values of ; the shift
direction and spacing between the parametric curves, to
determine the direction and period of variation of sec-
ond-order nonlinear susceptibility [9, 37–40].

6. CONCLUSIONS

In this study, we describe frequency-angular distri-
butions for spontaneous parametric down-conversion
and stimulated parametric conversion by applying a
general approach based on the scattering matrix and the
generalized Kirchhoff law. This approach makes it pos-
sible to solve a problem in quantum optics without
invoking the formal procedure of field quantization for
a spatially nonuniform nonlinear medium consisting of
a nonlinear crystal and the surrounding space. The
eigenfunctions of the corresponding wave problem
describing a spatial distribution governed by Maxwell’s
equations subject to boundary conditions are not
required. The elements of the scattering matrix are cal-
culated for classical waves and then used as coefficients
relating the quantum operators of input and output
waves. The approach relies on the similarity between
Maxwell’s equations for classical fields and the Heisen-
berg equations for field operators in free space. Thus,
intensity distributions can be obtained both for classical
down-converted signals and for signals of essentially
quantum nature generated via scattering of a pump by
electromagnetic zero-point fluctuations of the vacuum.

Even though the generalized Kirchhoff law allows
one to ignore the spatial distribution of modes in calcu-
lations, it can be used to obtain correct spatial and spec-
tral distributions of scattered-wave intensity. In partic-
ular, we have obtained expressions for SPDC involving
interference and waveguide polaritons without using
the spatial dependence of the wavefunctions describing
the corresponding states of the field in a slab. The cal-
culated SPDC line profiles reflect the behavior of νm(r)
for eigenmodes in spatially nonuniform media, includ-
ing crystalline slabs characterized by absorption, semi-
transparent boundaries, and nonuniformly distributed
second-order susceptibility. In addition to its conve-
nience, an important advantage of the approach based
on the generalized Kirchhoff law is the possibility to
allow for absorption of signal or idler waves. As in for-
mulations of fluctuation-dissipation theorems, absorp-
tion is taken into account on a phenomenological level.
The distinction is that the generalized Kirchhoff law
deals with directly measurable characteristics: correla-
tion functions of input and output fields.

It should be noted that the use of the generalized
Kirchhoff law in the calculation of the line profile for a
stimulated difference-frequency signal reduces to a
standard classical calculation of the input field intensity
based on the scattering-matrix elements relating the
input and output fields. Expressions (16), (28), and (43)
for the line profile for a stimulated difference-fre-

χm
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quency signal generated in a layered inhomogeneous
medium are obtained directly by solving the reduced
equations for slowly varying field amplitudes. Analo-
gous equations describe both sum-frequency (in partic-
ular, second-harmonic) generation and each three-wave
stage of stimulated cascade processes of higher orders.
The only difference lies in the definitions of wave-vec-
tor mismatch ∆ in terms of δj for sum-frequency gener-
ation: the signal and idler wave vectors must be taken
with opposite signs.

Analysis of the SPDC intensity spectrum can serve
as a basis for measuring spatial variations of linear and
nonlinear optical susceptibilities. One advantage is that
SPDC has a very broad spectrum determined by the
spectrum of zero-point fluctuations of the vacuum,
whereas the signal spectrum in any stimulated fre-
quency-conversion process is restricted to the spectrum
of incident radiation. Note also that the method based
on SPDC makes it possible to examine domain struc-
tures lying in the bulk of a crystal, man-made layered
structures, and photonic crystals. The results presented
here can be applied to measure one-dimensional distri-
butions of χ(2) in media with vanishingly small varia-
tions of linear susceptibility. The approach based on the
generalized Kirchhoff law can be extended to media
with nonuniform nonlinearities characterized by arbi-
trary irregular distributions of refractive indices and
absorption coefficients.
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Abstract—We suggest a theoretical model of dust clustering in a low-temperature plasma that includes a
description of all the main stages of this process, from the initial growth and coagulation of particles to the sat-
uration phase. Based on the constructed theory, we have explained the experimentally observed threshold
behavior of the coagulation process for the first time and estimated the critical microparticle size upon reaching
which transition from the growth of particles through the deposition of material from the gas phase to their
coagulation becomes possible. Using the derived analytical expressions for the coagulation rate constant, we
numerically simulated the clustering process based on data taken for real experimental conditions and studied
the evolution of the particle size distribution function during the entire process. A direct comparison of the
numerical calculations with experimental data shows them to be in good agreement with the actually observed
pattern of the phenomenon. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, studies in the field of a dusty low-
temperature plasma have aroused broad interest and
have been of great practical importance in connection
with rapid progress of microelectronics and with the
transition of production to nanotechnology. Micron-
and submicron-sized particles have long been known to
nucleate and grow as a side effect in most commercial
plants used in semiconductor production. Dust clusters
have been found in plasma etching [1, 2], chemical
vapor deposition [3, 4], and sputtering deposition [5, 6]
reactors. Since macroparticles in a plasma generally
acquire significant negative charges, they prove to be
locked by an electrostatic field and can grow for a long
period until the discharge is quenched or they are
removed from the discharge glow region under self-
gravity. State-of-the-art semiconductor technology
allows one to deal with objects with sizes on the order
of 0.1 µm even now. However, further sophistication
and miniaturization of electronic devices require plac-
ing an increasingly large number of elements on a chip,
which cannot be done without exploring the range of
sizes of several tens of nanometers. Therefore, the
appearance of dust during a technological cycle is a
serious problem, because macroparticles with sizes of
20–100 nm falling on the substrate can give rise to a
fatal defect, thereby sharply reducing the chip yield.

However, apart from the processes in which the
presence of nanoparticles leads to undesirable effects,
there is a wide range of problems related to the produc-
tion of materials with special properties. Thus, investi-
gating and using the nucleation and growth of particles
1063-7761/04/9802- $26.00 © 20287
in a plasma are of great interest, because their proper-
ties, such as size monodispersity and chemical compo-
sition, may be well controllable. Nanoparticles synthe-
sized in a plasma are used in ceramic production [7],
and powders of pure metals, alloys, and composite
materials are produced in magnetron sputtering reac-
tors [8].

In recent years, the need for understanding the
growth of dust particles and controlling these processes
has led to the appearance of many experimental works in
this field. The growth of dust clusters in silane [9–19],
germanium [20, 21], and methane [22, 23] plasmas,
where argon and helium were commonly used as the
buffer gas, has been studied extensively. The expe-
rimental parameters were typical of the conditions in
chemical film deposition reactors: the SiH4, GeH4, and
CH4 contents were varied within the range 5–15%, the
pressure in the reactor was 10–80 Pa, the discharge
power was 10–100 W, and the frequency was 3.5–
28 MHz. The growth dynamics of dust particles has
also been investigated in experiments in which the ini-
tial material for clustering was produced via substrate
sputtering. These experiments were carried out with
various materials (copper, aluminum, graphite, tung-
sten, titanium, and others) [24–26]. Apart from an anal-
ysis of the clustering dynamics itself, the factors and
parameters that had the strongest effect on the particle
growth rate were sought. The influence of a gas flow
[27, 28], temperature gradient, and frequency modula-
tion [29] on dust formation was studied. These experi-
ments showed that noticeable suppression of the clus-
tering process could be achieved by a special choice of
conditions.
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A generalization of the experimental results yields
the following pattern of dust particle formation and
growth. In general, this process proceeds in three
phases: the initial growth phase, the coagulation phase,
and the saturation phase. In the first phase, the particles
uniformly grow to sizes on the order of 10 nm. They
have an almost regular spherical shape and a narrow
size distribution. In the coagulation phase, the growth
rate of dust particles rapidly increases, because the
probability of collisions between the particles them-
selves increases sharply. The surfaces of the dust grains
formed in this phase can have distinctly different
shapes and topologies: both a spherical one [22, 30] and
a fractal one formed from linked chains of initial crys-
tallites [13, 21]. In the saturation phase, the coagulation
essentially ceases and the particles continue to grow
very slowly via the gas-phase deposition of material. In
general, the characteristic clustering time can vary from
fractions of a second to several hours, depending on the
conditions of a specific experiment. However, the dust
growth rate is, on average, much higher than the growth
rate of films from the gas phase. For comparison, we
can give data from [21], where the dust growth rate
reached 100–800 nm s–1, while the characteristic film
deposition rate is only 0.064–0.12 nm s–1 [17].

In addition to experimental studies, extensive theo-
retical investigations aimed at offering a proper expla-
nation for the mechanism of rapid cluster growth have
also been carried out. The initial phase of dust particle
nucleation from the gas phase in silane was studied in
detail in [17, 31–35]. The authors considered the
sequences of chemical reactions that resulted in [SinHx]
clustering; the clusters with n ≥ 10 were assumed to be
formed particles that grew further via the gas-phase
deposition of radicals [36, 37].

The coagulation phase of dust particles begins when
they reach some critical size, typically 2–10 nm.
Although the dynamics of the process has been well
studied experimentally, the mechanism of this phenom-
enon still remains unclear in many respects. The princi-
pal question that many investigators have attempted to
answer is how dust particles can actively grow in the
presence of the significant like charges accumulated by
them. According to the approximation of restricted
orbits [38], the collision cross section for such particles
must be exponentially small. Several models that solve
this problem have been suggested in the literature. The
first ballistic model assumes that dust particles coagu-
late into clusters through a collision between charged
and uncharged dust grains [32, 39] or during a collision
between weakly charged particles [40–42]. The fact
that the dust number density in the initial coagulation
phase generally exceeds the ion and electron number
density in a plasma is an argument for this assumption.
As a result, according to the quasineutrality condition,
a large fraction of the macroparticles are uncharged.
This model can account for the onset of saturation and
the termination of coagulation. In this case, the dust
JOURNAL OF EXPERIMENTAL
number density falls below the ion number density in
the volume. As a result, almost all the macroparticles
are charged, which is why the process terminates. How-
ever, the existence of the initial critical macroparticle
size below which no coagulation takes place remains
incomprehensible in this model. In addition, as has
been repeatedly pointed out by many authors [15, 21],
the collision frequency that corresponds to the thermal
cross section for the interaction between dust grains
cannot account for such a high cluster growth rate
observed experimentally. Thus, we conclude that addi-
tional attraction must exist between particles.

The anomalously high coagulation rate can be
explained by assuming that some of the dust particles
are positively charged and that collisions take place
mostly between oppositely charged particles. The
authors of this model point out that, since the mean dust
particle charge in the initial coagulation phase is small
and undergoes fluctuations about zero and since colli-
sions of dust grains with high-energy electrons can lead
to secondary electron emission from their surfaces, a
positive charge is actually present on any macroparticle
for some time [13, 43]. However, there is strong doubt
that this hypothesis is fruitful, because the presence of
a sufficient number of high-energy electrons in the vol-
ume that are capable of providing the necessary number
density of positively charged macroparticles will most
likely require creating special conditions. Meanwhile,
practice shows that dust clusters actively grow in ordi-
nary situations.

In addition, we should also take into account the fact
that it would be more appropriate to consider the evolu-
tion of the charge on an individual macroparticle rather
than the total content of the positively charged dust in
the volume. In general, the characteristic fluctuation
time of the dust grain charge is much shorter than the
time it takes for the grain to collide with another parti-
cle. Since the charging time is mainly determined by
collisions with electrons, we can write τe/τd ~ ndv d/nev e

for estimation, where ne , nd are the electron and macro-
particle number densities, and v e , v d are their thermal
velocities. For silicon particles 10 nm in size at room
temperature, v d ~ 102 cm s–1; the electron velocity at a
temperature Te ~ 3 eV characteristic of most experi-
ments is v e ~ 108 cm s–1. Since v d/v e ~ 10–5–10–6 under
these conditions and the number density ratio nd/ne does
not exceed 102–103 in most cases, we obtain τe/τd ! 1.
This implies that, when considering a pair particle–par-
ticle interaction, we must deal with the mean particle
charge rather than the instantaneous one. Thus, it
should be recognized that the currently existing theoret-
ical description of the coagulation process is unsatisfac-
tory and needs to be improved further.

Here, based on our previously suggested polarization
model for the interaction between dust particles [44], we
theoretically calculate the formation and growth of dust
clusters. The main idea of the model is that, being
 AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004
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placed in the electric field produced by a neighboring
macroparticle, a dust particle is polarized, which, in
turn, leads to a redistribution of ion flows along its sur-
face. This asymmetry gives rise to an additional force
acting on the particle along the electric vector. The prin-
cipal distinctive feature of the suggested model is that,
in this case, the force from the plasma flows is propor-
tional to the electric field strength, as is the force of
Coulomb repulsion. Our expression for the force
exerted on the macroparticles from a plasma flow
allows the contribution of the plasma to be parametri-
cally taken into account when calculating the pair inter-
action. Depending on conditions in the system, this
contribution may prove to be dominant and can lead to
effective attraction between the particles.

The goal of our study is to construct a theoretical
model for the growth of macroparticles in a plasma that
describes the three clustering phases mentioned above
as well as the time evolution of the particle size distri-
bution function and the time dependence of the dust par-
ticle number density and mean size. As the starting point
for constructing our theory, we took the experimentally
obtained pattern of the phenomenon from [13], which is
the most typical behavior of the system. Here, we
briefly give basic parameters of the experiment [13] and
the main evolutionary stages of the system observed in
this case. The experiment was carried out in an argon
plasma with a 10% SiH4 content under a pressure of
13 Pa. The discharge was maintained by an electric
field with a frequency of 6.5 MHz; the applied power
was 40 W. Within the first approximately 0.2 s after dis-
charge initiation, the particles were outside the resolu-
tion range of the methods for determining the sizes used
in the experiment (about 5 nm). Within 0.5 s after dis-
charge initiation, the particle size increased to 15 nm
and coagulation began. After 1.0 s, the appearance of
two groups of particles with a narrow size distribution
was clearly observed. The group of small particles sub-
sequently remained within the same range from 10 to
20 nm over the entire period of the experiment from
0.5 until 4 s, while their density decreased from 1.5 ×
109 cm–3 0.5 s after discharge initiation to 3 × 108 cm–3

1.0 s after the start. Photographs taken with an electron
microscope show that the particles from the first group
have a more or less regular spherical shape, while the
particles from the second group are fractal structures
consisting of coalesced particles 10–20 nm in size.
Their growth rate in the initial phase was very high; the
mean size reached 75 nm 1.2 s after the start of the
experiment. Subsequently, saturation set in, and the
particles continued to grow more slowly: up to approx-
imately 110 nm by 4.0 s. Their number density
remained virtually constant, 4 × 107 cm–3.

Below, we perform all our calculations by using the
above data. The initial growth of dust particles and their
coagulation will be considered separately. The attain-
ment of some critical size by the particles, which will
also be estimated in our model, will be used as the cri-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
terion for the transition from one cluster growth regime
to the other.

2. THE INITIAL GROWTH
OF DUST PARTICLES

The main feature of the evolution of a system in the
phase of initial growth is the formation of a fraction of
dust particles in the volume with an approximately con-
stant number density that have an almost regular spher-
ical shape and a narrow size distribution. Below, we
calculate the growth rate of clusters in this phase and
estimate the dust particle size dispersion.

Simplistically, the initial growth of clusters can be
subdivided into two concurrent subprocesses. The first
describes the nucleation of future particles, and the sec-
ond describes their subsequent growth via the deposi-
tion of material from a plasma. Assuming the particle
shape to be spherical, we will describe the evolution of
the dust subsystem by introducing a particle volume
distribution function f(V, t), where V = (4/3)πa3 is the
volume of the individual particle and a is its radius. We
normalize the distribution function of the dust number
density in the volume as follows:

(1)

The equation for the distribution function that describes
the particle growth via the gas-phase deposition of
material can be written as

(2)

In this equation, ν0 is the frequency of collisions of
a dust particle with radicals and gas atoms, and u0 is the
increase in the volume of the macroparticle through the
attachment of one particle from the gas phase to it.
Below, we will estimate this quantity as the volume of
the molecule being attached.

We estimate the collision frequency as

(3)

where  is the mean thermal velocity of the active
radicals and na is their number density. In this case, the
probability that an incident atom will stick to the surface
of a dust particle when they collide is assumed to be
equal to unity. As was shown in several papers [17, 19],
for a silane plasma, the main particle responsible for the
growth of clusters from the gas phase is the neutral SiH2
radical.

Since the increase in the volume of the macroparti-
cle as it attaches one molecule from the gas is much

nd t( ) f V t,( ) V .d

0

∞

∫=

∂f V t,( )
∂t

------------------- ν0 V u0–( ) f V u0 t,–( )= ν0 V( ) f V t,( ).–

ν0 πa2nav a,≈

v a
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smaller than its volume, Eq. (2) can be rewritten in dif-
ferential form:

(4)

Supplementing this equation with the initial and bound-
ary conditions

(5)

we obtain a completely definite problem for the distri-
bution function to be found. In the last equation, k(t) is
the nucleation rate of future macroparticles with an ini-
tial volume V0 @ u0.

Equation (4) can be easily solved by using the
Laplace transform, and its solution can be written as

(6)

where

(7)

In Eq. (6), the Heaviside function

(8)

and b is the time before the appearance of particles with
a given size:

(9)

To calculate the cluster growth rate, we need to pass
from the macroparticle volume distribution function to
the macroparticle size distribution function by assum-
ing that all particles are spherical in shape and that dV =
4πa2da. Equation (6) then transforms to

(10)

where the radius of the nucleation center is denoted
by a0. Substituting (3) into (9) and performing integra-
tion over the sizes yields the following expression for
the delay time:

(11)

As we see from Eq. (10) for the distribution function,
the pattern of its evolution with time is the propagation
of a wave in the space of macroparticle sizes. In this
case, for any time, the shape of the curve in the space of
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macroparticle sizes does not change, while the curve
itself drifts toward larger sizes at a constant rate cf:

(12)

We see from Eq. (10) that the form of the macropar-
ticle size distribution function for any time is com-
pletely determined by the time dependence of the
nucleation rate. The nucleation process is a complex
sequence that consists of several tens of chemical reac-
tions [32, 33], and the determination of its temporal
characteristics is an independent and complex problem.
To find the form of the distribution function in our case
and to make further estimates, we will consider this
process in simplified form.

Let only one reaction that involves active radicals of
one type and molecules of the initial gas underlie the
macroparticle nucleation process. Denote, as previ-
ously, the number densities of the radicals and the ini-
tial gas molecules by na and n0, respectively. If the elec-
tron impact dissociation of initial gas molecules is
taken as the main production mechanism of radicals,
then the production rate of radicals can be written as c =
kenen0. The destruction of the radicals that formed will
be governed by two processes—the reaction with parti-
cles of the initial gas followed by the nucleation of
future macroparticles and the sticking to the already
existing dust particles in the volume. Assuming that the
steady state comes fast, we write the equilibrium equa-
tion for the reactions as

(13)

where we use the following notation: k0—the rate con-
stant for the nucleation reaction, kd—the rate constant
for the destruction on the surfaces of existing dust par-
ticles, and nd—the dust number density.

We see from Eq. (13) that the dust nucleation and
the deposition of material on the already existing nucle-
ation centers compete with each other. In the initial
phase of the process, when the dust content in the vol-
ume is small, the main removal mechanism of active
radicals is nucleation. However, over the course of
time, as the number density and surface area of the
nucleation centers increase, this process must give way
to the destruction of molecules on dust particles. In this
case, the formation of new growth centers in the vol-
ume terminates almost completely. The satisfaction of
the following condition can serve as the criterion for the
transition from one regime to the other:

(14)

Let us estimate the time in which the transition from the
first regime to the second will take place. The nucle-
ation rate is defined by the relation k(t) = k0nan0.
Expressing na from (13) and substituting it into the last

c f

v anau0

4
-----------------.=

k0nan0 kdnand+ kenen0,=

k0n0 kdnd.∼
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expression, we obtain

(15)

Since k0n0 @ kdnd in the nucleation phase, the dust par-
ticle size remains virtually unchanged, as does the rate
constant for the destruction of radicals on macroparti-
cles, kd . In this case, the solution of Eq. (15) can be
written as

(16)

Let us estimate the time it takes for the nucleation to
almost cease by using (16) and condition (14):

(17)

For our estimates, we take the following parameters:
Te = 2.5 eV; Ta = 0.025 eV — the gas temperature, which
is assumed to be the room one; ne ~ 1 × 109 cm–3; and
aa ~ 2.5 Å—the characteristic size of the initial gas mol-
ecules and the active radicals. According to [33], the typ-
ical particle nucleation center is a [SinHx]-type cluster,
where n ~ 10. We estimate its size as 101/3aa ≈ 5.4 Å. The
thermal velocities  = 9.3 × 107 cm s–1 and  = 4 ×
104 cm s–1 correspond to the above temperatures. There-
fore, using the expressions for the interaction rate con-

stants k = , we obtain k0 ≈ 7.9 × 10−11 cm3 s–1, kd ≈
3.6 × 10–10 cm3 s–1, and ke ≈ 1.8 × 10−7 cm3 s–1. Substitut-
ing all parameters into (17), we write the estimate for the
nucleation time as τ ≈ 1.2 × 10–3 s.

Let us now estimate the rate of macroparticle growth
via the gas-phase deposition of active radicals. This is
nothing but the drift rate of the distribution function in
the space of particle sizes, cf , that we calculated above
(see (12)). The number density of the radicals can be
derived from Eq. (13). In the initial nucleation phase,
the following estimate is valid for it:

We estimate the change in the volume of the macropar-
ticle when a radical is attached to it as

For the growth rate, we then obtain cf ≈ 15 nm s–1. In
fact, this estimate is an upper limit, because when cal-
culating this quantity, we assumed that the number den-
sity of the radicals was constant. However, as the dust
particle size and, accordingly, the sticking rate constant
increase, the number density of the radicals decreases,
which will eventually cause the material deposition rate
to decrease and the further cluster growth to slow down.

dnd
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Intense nucleation takes place only for a short time,
following which the number density of the nucleation
centers changes only slightly. Therefore, the width of
the macroparticle size distribution function can be esti-
mated as ∆a ~ cfτ ≈ 0.02 nm.

Thus, we arrive at the following pattern of the initial
growth of clusters: in this phase, the nucleation centers
of future particles are produced for a short time on the
order of 10–3, following which their number density
ceases to change and their size begins to increase. This
growth proceeds at an approximately constant rate of
10–15 nm s–1. Since the nucleation centers are pro-
duced only for a very short time, the particle size distri-
bution is virtually monodisperse. Our model is in close
agreement with experimental data (see the Introduc-
tion) both qualitatively and quantitatively. In the next
section, we consider the coagulation of dust particles.

3. THE COAGULATION RATE 
OF DUST PARTICLES IN THE APPROXIMATION 

OF POLARIZATION INTERACTION

We calculated the force exerted on a dust particle in
an electric field with allowance made for its polariza-
tion previously [44]. Below, we write out only the
resulting expression:

(18)

Here, Zd is the dust grain charge, E0 is the electric field,
Zi is the ion charge,  is the ion number density near
the macroparticle surface, nd is the dust number density,
n0 is the number density of the neutral gas atoms, σ0 is
the cross section for the interaction of ions with neutral

gas atoms,  is the mean square of the macroparticle
size, a is the radius of the chosen particles, and

(19)

where

(20)

In the latter relation, Ti is the ion temperature and ϕ0 is
the potential on the dust particle surface. When the
macroparticle is spherical in shape, the potential on its
surface is related to the particle size by

(21)

Fd ZdeE0

Ziñi
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Next, let us consider two dust particles a1 and a2 that
interact with each other with forces f12 and f21, where
f12 is the force exerted on the first particle from the sec-
ond one and f21 is the force exerted on the second parti-
cle from the first one. We take (18), in which the electric
field is produced by the charge of the neighboring par-
ticle, as the expression for the force. As a result, we
obtain a system of two particles with a pair central
interaction in which the presence of plasma is taken
into account parametrically. Next, we will solve the
problem of the scattering of two particles by each other
in this system.

However, it should be noted that, despite its similar-
ity to the standard problem that considers the pair inter-
action between two particles, the problem of dust parti-
cle interaction in a plasma has an important distinction.
Given the ion flows, the third Newton law will not hold
for the interaction forces; i.e., in general, f12 ≠ –f21 for
particles of different sizes. This conclusion is not sur-
prising, because the presence of plasma makes the sys-
tem unclosed. As a result, situations are possible where
one of the particles runs away from the second particle
(it has such a size that the electrostatic repulsion
exceeds the force from the ion flow) and the second par-
ticle catches up with it. This process results in energy
transfer from the plasma to the dust subsystem accom-
panied by its heating. The heating of the dust subsystem
was actually observed experimentally [45, 46].

Denote the radius vector that connects the first and
the second particles by r = r2 – r1, where r1 and r2 are
the radius vectors of the first and the second particles in
a fixed frame of reference. Its change with time can
then be described by the equation

(22)

Substituting the expressions for the forces into (22)
yields

(23)

where the subscripts denote the parameters pertaining
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to the first and the second particles, respectively,

is the reduced mass, and fe.s. is the force of electrostatic
repulsion that would act between the two particles in
the absence of plasma.

Thus, we find that the original problem is equivalent
to the problem of the motion of a particle with mass µ
in a centrally symmetric field with an interaction poten-
tial energy U(r):

(24)

where Ue.s.(r) is the energy of electrostatic repulsion
between the dust grains.

The problem of the motion of a macroparticle in the
field of a fixed center with a given centrally symmetric
potential can be easily solved. In this case, the collision
cross section is

(25)

where Rmin is the minimum distance to which the parti-
cle can approach the center and upon reaching which a
collision occurs and v  is the relative velocity.

For spherical particles, Rmin = a1 + a2, m1, m2 ~ ,

, and Ue.s. is given by

In our subsequent analysis, we also assume that, on
average, the potential on the surfaces of all particles is
the same; ϕ0 = const. This conclusion follows from the
fact that the macroparticles are in a conducting medium
and the potential difference would be rapidly offset by
the currents produced in it. For Ue.s. , we can then write

(26)

The ion number densities near the macroparticles,
 and , are determined by the potential on the dust
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grain surfaces as well as by the particle sizes and the
conditions in the plasma. The number density can vary
greatly, depending on the situation being realized. The
two main factors that affect the form of the ion distribu-
tion function are the absorption of ions on the macro-
particle surface and the relationship of the dust grain
size a to the ion mean free path λi in a plasma. The
former factor is significant for large particles, because
the lifetime of the ions near a macroparticle for a * λi

decreases sharply, causing their number density to
decrease appreciably compared to the case without
absorption on the surface. This situation corresponds to
the hydrodynamic limit. However, under typical condi-
tions of the experiments in which the growth of parti-
cles from the gas phase is studied, the opposite case is
typical. In this case, the Boltzmann exponential law can
serve as a valid estimate of :

(27)

where ni is the volume-averaged ion number density.
For the interaction cross section, we then finally

obtain

(28)

Next, let us introduce the parameter

(29)

which determines the sign of the interaction between
the two particles. The particles are attracted for χ > 0
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and repelled for χ < 0. Denote also the cross section for
the interaction between uncharged particles by σT =
π(α1 + α2)2.

Let us now calculate the rate constant for the inter-
action between macroparticles of different sizes:

(30)

In this expression, the averaging is over the relative par-
ticle velocities. Assume that the macroparticle velocity
distribution is Maxwellian with a temperature T0 equal
to the gas temperature and consider separately two
cases: χ ≥ 0 and χ < 0.

For χ ≥ 0, which corresponds to the attraction
between the particles,

(31)

Integrating (31) yields

(32)

where  is the mean relative velocity of the dust parti-
cles.

For the repulsion between the particles (χ < 0), we
write

(33)

where vmin =  is the minimum relative
velocity of the dust grains at which a collision is possi-
ble. Performing integration as in the previous case
yields

(34)

Let us now analyze the results obtained and first con-
sider the expression for χ. For our estimates, we take the
neutral gas number density n0 = 3.25 × 1015 cm–3, which
corresponds to the pressure P = 13 Pa, and the dust
number density nd = 1.5 × 109 cm–3; we estimate the
cross section for the interaction of ions with neutral gas
atoms from the following considerations. The main
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ions in a mixture of Ar and SiH4 are  because of
the lower ionization potential of silane and the nonres-

onant charge exchange of argon ions on SiHx . 
interact with neutral gas particles through polarization,
and the interaction cross section was estimated to be
σ0 ≈ 0.5 × 10–14 cm2. We use this estimate in our subse-
quent calculations. In this case, the relation

holds good up to root-mean-square macroparticle sizes
a ~ 0.8 µm. We then obtain

(35)

Let us now consider the ratio Zie|ϕ0|/Ti . The initial
model that we constructed to describe the interaction
between dust particles assumes a Maxwellian velocity
distribution with an equilibrium temperature Ti for the
ions. However, in the case discussed here, the dust par-
ticle sizes are much smaller than the characteristic ion
mean free path in a plasma, a ! λi . As a result, the ions
between collisions with neutral gas atoms spend much
of their time by moving in finite trajectories in the mac-
roparticle field. Thus, the ion velocity distribution can-
not be considered an equilibrium one, and the mean
kinetic energy of the ions near the macroparticles is
much higher than that in the surrounding gas. In our
model, we take into account the latter circumstance by
applying a correction for the ion temperature parameter
and by assuming that, on average, the increase in the
kinetic energy of the ions is proportional to the energy
gained by them in the macroparticle field. This assump-
tion is confirmed by our previous calculations using the
method of molecular dynamics [47], although,
undoubtedly, it is a forced assumption and stems from
the fact that there is probably no exact analytical
expression for the ion distribution function in the range
of parameters under consideration. Thus, we assume
that

(36)

where ζ is a dimensionless parameter, ζ & 1. Returning
to expression (35) and taking the neutral gas tempera-
ture to be equal to the room temperature T0 = 0.025 eV,
we find that, in general, the inequality ξ2 ! 1 always
holds in the range of particle sizes concerned, 10–
100 nm, with number densities nd ~ 1 × 109 cm–3.

For low values of ξ, the asymptotic behavior of the
function Φ(ξ) is

(37)
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Substituting (37) into (29) and using (35) and (36), as

well as the condition n0σ0/ndπ  @ 1, then yields

(38)

Consider the dependence of χ on the sizes of the inter-
acting particles. Let, for definiteness, a1 and a2 be the
sizes of the smaller and larger particles, respectively.
Denote their ratio by α: α = a2/a1 ≥ 1. The size-depen-
dent part of expression (38) can then be rewritten as

(39)

The values of the function f(α) in the last expression lie
within the range 1 ≤ f(α) & 1.1. Thus, we find that the
sign of the interaction between two particles of differ-
ent sizes is determined almost completely by the size of
the smaller particle.

Let us now consider the growth phase of particles
that precedes the onset of their coagulation. As we
showed in the previous section, the dust particle size
distribution in this evolutionary stage of the system is in
the form of a narrow peak and their shape is a regular
sphere. The number density of the macroparticles in the
volume is virtually constant, while their size uniformly
increases through the gas-phase deposition of radicals.

Let us determine how the particle interaction cross
section behaves as the particle size increases. To calcu-
late the potential on the macroparticle surface, we use
expression (21) and the quasineutrality relation:

(40)

where  is the mean charge accumulated by the mac-
roparticle. Since the particle size distribution is narrow,
we may conclude that all of the particles carry almost
identical charges equal to . Denote also P = ne/ni .
After all transformations, we then obtain

(41)

where we also denoted

(42)

When the dust content in the volume is large and the
dust number density is comparable to the carrier num-
ber densities, which is almost always true for the range

a2

χ
Zieπni

n0σ0 ϕ0
--------------------

a1a2 a1
2 a2

2+( )
a1

3 a2
3+

-------------------------------- 1/ζ( )exp
ζ

---------------------- 1.–=

a1a2 a1
2 a2

2+( )

a1
3 a2

3
+

-------------------------------- a1 f α( ) a1
α 1 α2+( )

1 α3+
------------------------.= =

Zdnd ne+ Zini,=

Zd

Zd

χ
Ue.s.

T0
---------

Zini 1 P–( )
nd

--------------------------- 
 

2e2/2a
T0

------------- a
a*
------ 1– 

  ,=

a*
n0σ0 1 P–( )

πnd

----------------------------- ζ 1
2ζ
------– 

  .exp≈
AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004



COAGULATION AND GROWTH MECHANISMS FOR DUST PARTICLES 295
1

2

3

4
0

40

80

120

160

200

5 10 15
20 25

30 35 40 45

a, nmni, 109 Òm–3

C
oa

gu
la

tio
n 

ra
te

 c
on

st
an

t, 
ar

b.
 u

ni
ts

Fig. 1. Coagulation rate constant for spherical particles versus their radius a and ion number density ni . The coagulation rate con-

stant is given in units of the thermal collision rate constant kT = , where  is the mean relative particle velocity, and σT =

2πa2 is the thermal collision cross section.

2v σT v
of problems under consideration, the parameter P ! 1
and it may be omitted in subsequent calculations.

Relation (41) is the main factor that governs the dust
particle coagulation rate. If the dust particle radius is
smaller than some critical size, which we denoted
above by a∗ , then χ will be negative, and, according
to (34), the interaction rate constant will exponentially
decrease with increasing Ue.s./T0. However, as soon as
the particle size exceeds the critical value, the coagula-
tion rate increases sharply, because the energy of the
electrostatic interaction between dust grains signifi-
cantly exceeds the energy of their thermal motion. In
Fig. 1, the coagulation rate constant  between dust
particles divided by the rate constant of the collisions
caused by the thermal motion of the dust grains alone is
plotted against particle radius and ion number density.
The particle radius is along one of the axes, and the ion
number density is along the other axis. In constructing
this plot, we assumed that the particle size distribution
was monodisperse, which is characteristic of the initial
coagulation phase. For our calculations, we took the
above number densities of the macroparticles and the
neutral gas atoms and assumed the parameter ζ to be
equal to 0.13. In this case, we obtain an estimate of
a∗  ≈ 4.8 nm for the critical macroparticle radius. We
see from the figure that when the particles reach this
size, the cross section for their interaction increases
rapidly.

ka1a2
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Thus, we may conclude that the transition from the
initial growth of dust particles to their coagulation is a
distinct threshold process, and this result is in close
agreement with a large number of experimentally
obtained descriptions of the process.

We would also like to note yet another feature of our
model. As many investigators have pointed out, the
coagulation process takes place under conditions when
the dust number density is either higher than or approx-
imately equal to the ion number density. In this case,
the accumulation of large negative charges by dust par-
ticles, which, in turn, leads to a strengthening of the
electrostatic repulsion between them, has so far been
assumed to be mainly responsible for the termination of
the coagulation. However, in this approach, explaining
the high growth rates of the particles as they coagulate
involves serious difficulties. Meanwhile, in our model,
the role of the electrostatic interaction between macro-
particles proves to be opposite. This is because the
forces exerted on the particles from the ion flows, as
well as the forces of electrostatic repulsion, are propor-
tional to the electric field strength. We clearly see from
Fig. 1 that, as the ion number density increases, which
is equivalent to an increase in the charge accumulated
by macroparticles, the coagulation rate constant rapidly
increases. This conclusion is confirmed experimen-
tally: the coagulation rate of dust particles increases
with discharge power, which, in turn, governs the ion-
ization rate in a plasma [29].
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In the next section, we investigate the growth
dynamics of dust particles in the coagulation phase by
using the interaction rate constants derived above and
discuss the causes of the termination of coagulation at
some stage.

4. THE DYNAMICS OF A DUST SYSTEM 
IN THE COAGULATION PHASE

Thus, we have found that the onset of coagulation
between dust particles is a threshold process, and the
coagulation sets in when they reach a critical size. To
describe the coagulation process, we introduce, as
above, a particle volume distribution function, f(V, t).
The coagulation equation with the solution f(V, t) is
generally written as

(43)

where the first term on the right-hand side reflects the
departure of particles from a given size range and the
second term corresponds to their arrival. The coagula-
tion rate constant k(t) in the integrand is given by rela-
tions (32) and (34), in which the initial parameters are
defined by expressions (26), (29), and (36). This con-
stant is a function of time due to the time dependence
of the integrated quantities that characterize the proper-
ties of the dust system. These include the potential on
the macroparticle surface ϕ0 and the total macroparticle

surface area , which is a measure of the intensity
of interaction between the dust and the ion subsystem.
In general, the ion number density in real conditions
can also change appreciably as the dust clusters grow
and can, in turn, affect the dynamics of the process
under consideration. However, in constructing our
model, we assume it to be constant, because otherwise
we would have to solve the full system of plasma–
chemical equations, which would require knowledge of
many additional details and specific experimental con-
ditions.

Equation (43), which describes the coagulation
dynamics in integral form, assumes that the dust parti-
cle size distribution function is continuous, or, more
specifically, that the minimum possible change in parti-
cle size during a collision is much smaller than the
characteristic sizes of the particles themselves. Since
the initial particle distribution in our problem is very
narrow, the step of change in their size during collisions
is comparable to the size itself; as a result, the above
approach is inapplicable. To properly describe the pro-
cess, we will then need to rewrite Eq. (43) in discrete
form.
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ndπa2
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During coagulation, particles with an approximately

equal volume V0 = (4/3) , where a0 ~ a∗ , are the
building material for clustering. Therefore, instead of
the continuous distribution function f(V, t), we may
introduce a discrete sequence of the number densities
of clusters with different sizes, fn , where n ≥ 1 is the
number of initial particles involved in clustering. The
discrete analog of Eq. (43) can then be written as

(44)

As the initial condition, we assume that all particles had
the same size and that their number density was nd0 at
the start of the coagulation process:

(45)

The formulas for the coagulation rate constant
derived in the previous section describe the interaction
between two spherical particles of arbitrary sizes. How-
ever, in calculating the interaction between the clusters
that are formed when macroparticle coalesce, these for-
mulas become inapplicable in the form in which they
were originally written and need to be generalized.

Let the cluster consist of n spherical microparticles
with volume V0. As practice shows, the surface topol-
ogy of this structure can be completely arbitrary—both
nearly spherical and strongly fractal, consisting of
chains of coalesced dust microparticles. Let us write
out the basic cluster parameters in the limiting situa-
tions. In both cases, the mass of the cluster is defined as
the sum of the masses of its constituent particles, mn =
nm0. For a spherical topology, dense packing, and large
n, the cluster surface area is Sn ≈ n2/3S0 and the cluster
size is defined as an ≈ n1/3a0, where S0 and a0 are the sur-
face area and size of the initial crystallites, respectively.
An expression for  can then be derived by substi-

tuting a1 =  and a2 =  into the above for-
mulas.

The case of a fractal topology is more complicated
and should be considered separately. As the model of
such a macroparticle, we will consider a combination
of nc chains of initial particles coalescing at one point
that is the cluster center. The total number of particles
in the cluster is equal to n as before. The surface area of
the cluster in this case is close to the total area of its
constituent particles, Sn ≈ nS0. The additional conclu-
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sion that the integrated parameter  remains con-
stant during the entire process when modeling the
growth of fractal structures also follows from this asser-
tion. The question as to what should be meant by the
size of a fractal particle is much more difficult to
answer unambiguously. Nevertheless, this parameter is
of great importance in performing calculations,
because the electric capacitance of the dust cluster is
related to it. In general, the representation of a fractal
structure as a point charge when modeling the electro-
static interactions is a rough approximation. However,
for lack of a better approximation, in our model we will
consider clusters in the shape of a sphere with an effec-
tive radius aeff , which is chosen in such a way that the
area of the corresponding spherical surface is equal to
the real surface area of the cluster: aeff = n1/2a0.

The next feature of fractal structures that should be
taken into account when modeling the interaction is the
sharp reduction in the efficiency of attraction between
them compared to spherical particles of the same size.
This is because the dragging force from the ion flows
that we calculated in the spherical geometry is propor-
tional to the particle surface area. For fractal particles,
however, provided that they may be considered to be
conductive, their accumulated charges will concentrate
at the ends of the chains. Accordingly, ion flows will
have a directed action only on a limited region of the
cluster surface. If the cluster consists of nc chains, with
the total number of constituent particles being n, then
its geometrical size can be estimated as a ≈ n/nca0. The
surface area of the sphere that corresponds to this size

is S = 4π(n/nc)2 , while the effective surface area that
contributes to the interaction is much smaller: Seff ≈

4π nc. In this case, the efficiency of the attractive
force exerted on the cluster changes by a factor of γ:

(46)

For large fractal structures, the number of chains is
much smaller than the number of their constituent
microparticles. As a result, γ ! 1 and the efficiency of
the attraction between large particles sharply decreases.
In this case, the cross section for the interaction
between them is determined by electrostatic repulsion.
Thus, we conclude that fractal clusters can grow only
via the attachment of the smallest particles, i.e., those
that serve as the initial building material in the coagula-
tion phase, to them. Given that the force of microparti-
cle attraction to the cluster is proportional to the electric
field strength and provided that the charges in the clus-
ter concentrate at the ends of the chains, we find that
these ends will be the most likely locations of the
attachment of new particles. This is the explanation for
the typical formation pattern of such fractal structures,
more specifically, the fact that the number of chains
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remains virtually constant during the growth of a fractal
cluster, while their length increases rapidly.

Thus, the properties of the microparticle material
from which clusters are formed play a key role in deter-
mining the macroparticle formation mechanism in the
coagulation phase; the higher the conductivity of the
material, the higher the fractal dimension of the grow-
ing structures. In general, this tendency was observed
by the authors of several experimental works [24–26]
who studied the growth of dust structures with various
substances served as their material.

When the charges on the macroparticle surface are
distributed uniformly and are not accumulated on a
small area, which is characteristic of nonconducting
materials, new particles are attached to the cluster at an
arbitrary location. In this case, the number of chains
steadily increases, and in the limit of a spherical topol-
ogy, this number has the same order of magnitude as the
number of microcrystallites on the cluster surface, nc ~
n2/3. Then, as would be expected, γ ≈ 1.

In this study, we numerically simulate the coagula-
tion process in which fractal structures grow, and we
assume in our subsequent calculations that the number
of chains in the cluster increases as nκ, where κ = 2/3
for n ≤ 6 and smoothly tends to zero for large n. Thus,
we take into account the fact that the efficiency of the
attractive forces exerted on small clusters is comparable
to the efficiency of the interaction between spherical
particles.

Given the aforesaid, the following substitution
should be made in expression (38) for χ for fractal par-
ticles to modify it:

(47)

where a0 is the radius of the initial microparticles from
which clusters grow; n1 and n2 are the numbers of crys-
tallites that constitute the interacting macroparticles;
and nc1 and nc2 are the numbers of chains in the first and
the second clusters. We should also make changes to
the expression for Ue.s.:

(48)

The coagulation rate constant  is plotted against
cluster size at the initial time in Fig. 2. For our calcula-
tions, we took the initial particle size to be a0 = 7.5 nm,
which slightly exceeds the threshold value, and the dust
particle number density to be ni ≈ 1.5 × 109 cm–3. We
see from the plot that the most likely collisions are
those between the particles with the largest size differ-
ence. As a result, the dust cloud separates into two
groups of particles: the first group consists of small
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Fig. 2. Coagulation rate constant  for fractal particles versus their sizes d1 and d2. By the particle size, we mean twice its effec-

tive radius, d = 2aeff . The plot corresponds to the start of coagulation: t = 0.
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crystallites with a roughly regular shape, while the sec-
ond group consists of branched structures growing
through the attachment of particles from the first group.
This characteristic feature of the distribution function
was observed in many experiments [9–21]. Here, it
should be noted that, the higher the selectivity of the
interaction rate constant to the selection of particles
with differing sizes, the narrower the particle size dis-
persion in both groups. The latter assertion is general
and should be taken into account when constructing
models of the interaction in dust clouds different from
our model.

Next, we numerically solved Eq. (44) by using a
simple explicit scheme:

(49)

with an adaptive time step τ. All of the mean quantities
and the interaction rate constants that depend on them
were recalculated at each time step. For fractal parti-
cles, the main quantity that governs the cluster growth
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dynamics is the potential on the macroparticle surface.
Assuming that this potential is the same for all particles
and taking into account the quasineutrality relation and
the smallness of P, we can express it in terms of the dust
number density and the mean effective particle radius:

(50)

Let us now discuss the results obtained. The coagu-
lation dynamics is shown in Figs. 4–7. First, note that
the saturation phase begins in the course of time and the
process virtually terminates. This closely corresponds
to the experimentally observed behavior of the dust sys-
tem in the coagulation phase, but the mechanism of this
phenomenon requires a special analysis.

In Fig. 3, the coagulation rate constant is plotted
against cluster size at the time the computation finishes,
which corresponds to 2.3 s after the start of the process.
A comparison of this plot with the analogous plot at the
initial time (Fig. 2) indicates that the pattern of particle
interaction changes radically in the time during which
clusters rapidly grow. The dependence of the interac-
tion rate constant on such integrated parameters as the
macroparticle potential and number density and the
total surface area is responsible for this change.
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Fig. 3. Coagulation rate constant  for fractal particles versus their sizes d1 and d2. The plot was constructed for t = 2.3 s after

the onset of coagulation and corresponds to the saturation phase.
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As we noted above, when the interaction between
fractal particles is considered, their potential is the
main parameter that affects the pattern of particle inter-
action. Its change with time is shown in Fig. 4. We see
from the figure that this parameter monotonically
increases during the entire experiment, although its
absolute change is moderately large, a factor of 2.5
compared to its initial value. Nevertheless, this change
has a crucial effect on the subsequent development of
the entire process. The point is that the onset of coagu-
lation itself is possible only after the initial microparti-
cles reach some threshold size. Subsequently, they
serve as the source of material for the growth of clus-
ters, but their sizes still remain in the threshold range.
The latter, in turn, is very sensitive to the integrated
parameters of the system and can shift in one or another
direction as they change. As the particle charges grow,
the behavior of the interaction rate constant in the
threshold range also changes in pattern. It becomes
sharper, causing the sensitivity of the process to a
threshold shift to increase further.

As the macroparticle potential increases, the coagu-
lation transition region shifts toward larger sizes. As a
result, the main reservoir of the crystallites involved in
clustering proves to be in the range of parameters for
which collisions between particles become unlikely.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
This is clearly seen from Fig. 3 and is consistent with
the above estimate of the critical crystallite size (42),
which suggests that the critical size must increase with
decreasing dust number density.
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Fig. 4. Potential on the macroparticle surface ϕ0 versus
time. The solid curve corresponds to the direct calculation,
and the dashed curve was obtained by using relation (52).
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Let us now trace the dynamics of the process. We
will consider two groups of particles: the first group
consists of initial spherical particles with size a0 and
serves as the major source for the growth of clusters,
and the second group includes clusters composed of
two or more crystallites. The dust particle number den-
sity is plotted against time in Fig. 5. The solid and
dashed curves correspond to the first and the second
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Fig. 5. Dust particle number density versus time. The solid
curve represents the evolution of the number density of the
initial crystallites that serve as the building material in clus-
tering; the dashed curve indicates the change in cluster
number density with time; and the dash–dotted curve indi-
cates the change in total dust number density in the volume,
including the macroparticles of both groups.
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Fig. 6. Mean macroparticle size versus time. By the particle
size, we mean twice its effective radius, d = 2aeff . The solid
line corresponds to the size of the particles from the larger
group formed during the coalescence of initial crystallites;
the dashed line corresponds to the mean particle size in the
system as a whole.
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groups, respectively. Also shown here is the change in
total dust number density (dash–dotted line). Within the
first 0.2 s after the start of coagulation, the number den-
sity of the initial particles rapidly decreases by about an
order of magnitude, while the number density of the
forming clusters increases synchronously. Subse-
quently, there comes a time when the initial particle
group under the changed conditions ceases to be
involved in the growth of dust structures, and the
decrease in their number density slows down sharply.
At the same time, the cluster number density reaches its
maximum and begins to decrease. This is because new
material ceases to be supplied for the building and the
particles in the second group grow further via collisions
between them; this growth gradually slows down as the
coagulation threshold shifts and as the number of small
clusters decreases. As a result, the saturation phase
accompanied by the attainment of steady-state values
by all system parameters starts about 0.5 s after the
onset of coagulation.

Figure 6 shows the dynamics of the change in mean
particle size. By the particle size, we mean their diam-
eter, because most of the experimental works deal pre-
cisely with this parameter. The calculated values of 
served as the input data for constructing the plots. The
solid line corresponds to the mean cluster size, while
the dashed line corresponds to the mean particle size in
the system as a whole; the latter size, in particular, takes
into account the presence of seed microparticles in the
volume. We see from the figure that the mean cluster
size is much larger than the sizes of the initial micropar-
ticles, while the total mean particle size in the system is
much smaller because of the high percentage of the
crystallites from the first group remaining in the
volume.

The detailed dynamics of the change in the macro-
particle size distribution function or, more precisely, in
the partial cluster number densities fn is shown in Fig. 7
for various times. The particle diameter (in nm) is along
the x axis, the time is along the y axis, and the decimal
logarithm of the number density is along the z axis. We
clearly see from the figure that two distinct groups with
narrow dispersion appear in the particle size distribu-
tion in the course of time. The time of distinct separa-
tion of the larger group comes shortly after the depar-
ture of initial microparticles into the range of parame-
ters inaccessible to interaction about 0.3 s after the start
of the process. This is because the size of macroparti-
cles increases further via small clusters composed of
several crystallites.

Apart from the dynamics of the change in system
parameters with time, the relations between the inte-
grated quantities themselves, in particular, the relation
between the dust number density nd , the mean particle
size , and the potential on the particle surface, are of
great interest. For the particle sizes and number densi-

aeff
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Fig. 7. Time evolution of the macroparticle size distribution function.
ties taken at arbitrary times, the following relation
holds with a high accuracy:

(51)

This is illustrated by Fig. 8. Accordingly, given (50), we
find that the potential is related to the particle size by

(52)

The accuracy with which this relation holds can be esti-
mated from Fig. 4, which shows two curves for the
potential. The solid curve corresponds to the direct cal-
culation, while the dashed curve was constructed by
using (52).

The result obtained is somewhat unexpected. The
point is that expression (51) resembles the mass conser-
vation condition for spherical particles of equal sizes
with radius aeff . At the same time, it is not related in any
way to the conservation of material, because the mass
conservation condition for fractal clusters is completely
different:

(53)

Here, we denoted the dust number density at the onset
of coagulation by nd0 and the mean number of crystal-
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lites in the clusters by . During our calculations, this
relation served as the stability criterion for the numeri-
cal scheme and held with an accuracy as high as 0.1%.
The result is also unusual in that the criterion for choos-

n
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Fig. 8. Relationship between the dust number density and
the mean particle size for an arbitrary time. The ratio
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Comparison of the numerical simulations with experimental data [13]

Parameter Experiment Numerical calculation

Rate of increase in microparticle radius during initial growth, cf 15 nm s–1 15 nm s–1

Crystallite radius corresponding to coagulation threshold, a* 7.5–10 nm *4.8 nm

Dispersion of particle size distribution during initial growth, ∆a – ~0.02 nm

Separation time of two particle groups in coagulation phase (from start) 0.5 s 0.3 s

Time at which coagulation is saturated (from start) 0.7 s 0.5 s

Number density of particles in first group in saturation phase 3 × 108 cm–3 2.9 × 108 cm–3

Number density of particles in second group in saturation phase 4 × 107 cm–3 1.2 × 108 cm–3

Cluster size in saturation phase 75 nm 40 nm
ing  that we used here was largely arbitrary, and we
did not make any special estimates on this score. Thus,
the high accuracy with which relations (51) and (52)
hold when numerically simulating the dynamics of the
process and the fact that an interaction model can gen-
erally be chosen in many ways suggest that our rela-
tions are universal, although the reason why they are
valid is not quite clear.

DISCUSSION

To summarize, let us formulate our main results and
make several additional remarks regarding their possi-
ble applications and the ways of furthering the studies
in this field.

We constructed a theoretical model that includes a
description of all the main stages of the growth of dust
structures in a low-temperature plasma, from the initial
growth of particles and their coagulation to the satura-
tion phase. We also completely traced the evolution of
the particle size distribution function over the entire
process, and the main features of its change with time
closely corresponded to the actually observed pattern of
the phenomenon. These include the high monodisper-
sity of the particle size distribution in the phase of ini-
tial growth and its separation into two narrow groups of
particles in the coagulation phase. Based on the con-
structed model, we explained the threshold behavior of
the coagulation process and estimated the critical
microparticle size upon reaching which a transition
from the growth of particles via the gas-phase deposi-
tion of material to their coagulation becomes possible.

Using the analytically derived expression for the
coagulation rate constant, we numerically simulated
the clustering process based on data from real experi-
ments. The results of these experiments were briefly
outlined in the Introduction, and they can now be
directly compared with the results of our numerical
simulations. The main parameters to be compared
include the temporal characteristics of the process that
describe the duration of its various phases; the sizes of
the forming particles; and the particle number densities

aeff
JOURNAL OF EXPERIMENTAL 
in the saturation phase. The results of our comparison
are given in the table.

Looking at these data, we may conclude that, in gen-
eral, our model yields parameters close to their experi-
mental values. There is a difference only in the number
density and sizes of the forming clusters. However, this
difference is attributable to the peculiarities of separat-
ing the groups in [13] and in our study. In our study, the
first group includes only initial crystallites, while struc-
tures composed of two or three microparticles contrib-
ute noticeably to the number density of the clusters
included in the second group. These agglomerates are
also responsible for the slightly smaller mean size of
the particles in the second group. We see from Fig. 7
that the peak in the size distribution of clusters in the
second group lies well above the value given in the
table and corresponds to approximately 60 nm. In [13],
the separation of particles into groups was not so dis-
tinct; in addition, a different method of estimating the
cluster size based on calculations of the area of their
projection onto the plane was used by the authors
of [13]. The numerically calculated and experimentally
obtained temporal characteristics of the particle growth
proved to be similar. However, it should be noted that
the ion number density strongly affects them. In our
calculations, we assumed it to be equal to the initial
dust particle number density, because it is mentioned in
the experimental work that these number densities have
similar values, but no accurate ni is given there. Our
additional calculations indicate that increasing the ion
number density causes an appreciable acceleration of
the process, although the characteristic cluster number
densities and sizes in the saturation phase do not change
much.

The above comparison indicates that our model for
the growth of dust particles may well serve for estima-
tions when describing the actually observed processes.
However, it should be noted that our theory have sev-
eral points that need to be seriously improved in the
future. The first consists in an arbitrary definition of the
dependence of the number of chains in a cluster on the
total number of its constituent crystallites. The choice
AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004
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of this dependence mainly affects the final particle size
in the saturation phase and the dispersion of their size
distribution, but the temporal characteristics of this pro-
cess do not change appreciably.

The main difficulty in studying the model under dis-
cussion is that there are currently no well-developed
analytical methods for calculating the distribution func-
tion of ions and electrons near nanometer-size dust par-
ticles. To perform our calculations, we had to use an
equilibrium ion distribution function in which Ti , the
ion temperature near a microparticle, took into account
the heating of the ion subsystem in the dust grain field
and was taken in the form Ti ≈ ζZie|ϕ0| as the basis. This
approximation was taken on the basis of our previous
numerical calculations of the ion distribution near a
macroparticle [47]. The choice of ζ for simulating the
coagulation process in terms of our model proved to be
of crucial importance, because the critical crystallite
size after reaching which the coagulation process
begins strongly depends on this parameter. Thus, we
conclude that knowledge of the specific ion distribution
function in the immediate vicinity of dust clusters is the
key to describing their growth, and particular attention
should be given to this question in further studies.

In general, our main results pertain to the simulation
of the coagulation and growth of dust structures with a
fractal topology. However, the growth of spherical clus-
ters is also a widespread phenomenon and is commonly
observed experimentally [22, 30]. As has been noted
above, the material from which a cluster is formed must
play a major role in determining the shapes of the grow-
ing structures and a fractal topology of the cluster sur-
face in our model corresponds to conducting materials.
Since the expression for the forces exerted on macro-
particles from ion flows was initially derived for this
case, the pattern of interaction between nonconducting
particles should be discussed separately.

In the latter case, the polarization of particles in the
electric field of its neighbors is low, and the associated
additional ion flows cannot compensate for the forces
of electrostatic repulsion between dust grains. Never-
theless, the ion flows can also become anisotropic here.
The point is that when the dust number density is of the
same order of magnitude as the ion number density or
larger than the latter, the mean charges accumulated by
the macroparticles do not exceed several electron
charges. In this case, a sharp anisotropy is observed in
the charge distribution along the cluster surface; as a
result, the charge acquires a large dipole moment. The
electric field of neighboring particles must lead to a turn
of the cluster in such a way that its dipole moment is
directed along the external field. We then arrive at the
situation that existed for conducting particles with the
only difference that the cluster dipole moment there
was produced by a redistribution of moving charges
along its surface. As in the case of conducting dust
grains, we obtain a redistribution of ion flows on the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cluster surface, and this will produce an effective force
of attraction between particles under certain conditions.

An important feature of this description is the
dependence of the pattern of interaction between
microparticles on their size. First, increasing the size of
the cluster causes its mass to increase, which will even-
tually make the time of its turn in an external field
longer than the time of the change in its dipole moment
caused by the absorption of ions and electrons from a
plasma. As a result, the directed action of ion flows will
be lost. Second, the charge of the cluster will increase
with its size, and the charge distribution along the sur-
face will become more uniform. In this case, the dipole
moment will decrease, as will the anisotropy of the ion
flows on the particle surface. Thus, we may conclude
that the forces of attraction between nonconducting
particles will act only on small crystallites; as a result,
as in the case of a fractal topology, dust structures will
grow via particles of smaller diameters, with the only
difference that it will now be uniform, because the
charge on the surfaces of nonconducting macroparti-
cles is distributed uniformly. As in the case of fractal
cluster growth considered above, the selectivity of the
interaction rate constant with respect to the particle size
will give rise to two groups of particles: the first will
serve as the source of material, and the second will uni-
formly increase in size through particles from the initial
group.
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Abstract—The longitudinal, εl(ω, k), and transverse, εtr(ω, k), permittivities of a monatomic gas were calcu-
lated. The frequency ranges in which the permittivity ε(ω) and permeability µ(ω) of a gas without spatial dis-
persion have a physical meaning were determined. The limiting magnetic susceptibility χ(ω) at ω = 0 and the
static magnetic susceptibility were found. The question of whether an electromagnetic wave with antiparallel
group and phase velocities can propagate through a monatomic gas is discussed. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Determining the permittivity tensor εij(ω, k) [1–3]
reduces to calculating the density of the electric current
induced by an electromagnetic field E(r, t), B(r, t) in a
medium:

(1.1)

Here,  is the electric current density operator, and

 is the density matrix that satisfies the equation [4,
Section 6]

(1.2)

where  is the total Hamiltonian1 of the “medium +
electromagnetic field” system, including the interaction

energy  between them.

Denote the complete set of quantum numbers that
characterize the stationary states of the medium in the
absence of a field by α (or β) and the corresponding
energy levels by Eα (or Eβ). In this notation, the solution

of Eq. (1.2) in the linear (in ) approximation is

(1.3)

where ωαβ = Eα – Eβ,  =  is the density
matrix of the medium in the absence of a field and
Uαβ(ω) is the Fourier component of the matrix element

1 We use a system of units in which " = 1.

j r t,( ) Sp Ŵ ĵ r t,( )( )/SpŴ .=

ĵ r t,( )

Ŵ

Ŵ i Ĥ Ŵ,[ ] ,–=

Ĥ

Û

Û

Wαβ t( ) Wα
0( )δαβ=

+ Wα
0( ) Wβ

0( )–( )
Uαβ ω( )
ωαβ ω–
-------------------e iωt– ω,d∫

Wαβ
0( ) Wα

0( )δαβ
1063-7761/04/9802- $26.00 © 20305
Uαβ(t). We assume that the medium in the absence of a
field is in thermodynamic equilibrium at temperature T.
In this case [4, Section 31],

(1.4)

where F is the free energy of the medium.2 We see

from (1.3) and (1.4) that Sp  = 1.

The current density operator  consists of two
parts:

(1.5)

where  is the (time-independent) current density
operator in the absence of a field, and the operator

δ  is proportional to the field. Substituting (1.3)
and (1.5) into (1.1), we obtain the following expression
for the Fourier components of the current density in the
linear (in field) approximation:

(1.6)

The permittivity tensor of the medium can be derived

2 The temperature is measured in energy units.

Wα
0( ) e

F Eα–( )/T
, SpŴ

0( )
Wα

0( )

α
∑ 1,= = =

Ŵ

ĵ r t,( )

ĵ r t,( ) ĵ
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r( ) δ ĵ r t,( ),+=

ĵ
0( )

r( )

ĵ r t,( )

j ω k,( ) Wα
0( ) δjαα ω k,( )∫

α
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–
Uαβ ω( ) jβα

0( ) k( )
ωβα ω+

--------------------------------
jαβ

0( ) k( )Uβα ω( )
ωβα ω–

--------------------------------+ 
 

β
∑ .
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from (1.6) [1, Section 2; 2, Section 12; 3, Section 31]:3 

(1.7)

For reasons of symmetry, the permittivity tensor for
an isotropic nongyrotropic medium can be written as
[1, Section 2; 2, Section 1; 3, Section 28]

(1.8)

where εl(ω, k) and εtr(ω, k) are the longitudinal and
transverse permittivities.

The scalar potential of the electromagnetic field is
assumed to be equal to zero. The Fourier components of
the fields E(ω, k) and B(ω, k) and the vector potential
A(ω, k) are then related by [2, Section 12]

(1.9)

2. THE LONGITUDINAL
AND TRANSVERSE PERMITTIVITIES

OF A MONATOMIC GAS

If the medium is an ideal gas, then to determine the
current density j(r, t), it will suffice to calculate the cur-
rent produced by one molecule: multiplying it by the
total number of molecules NV (N is the number of mol-
ecules per unit volume, and V is the volume of the gas)
yields an expression for j(r, t) in the gas.

Denote the coordinates of Z electrons and the atomic
nucleus in the laboratory frame of reference in which
the field E(r, t), B(r, t) is specified by Ra (a = 1, 2, …,
Z) and Rn , respectively. The atom–field interaction
energy in the linear (in field) approximation if we dis-
regard the terms on the order of m/Mn , where m and Mn

are the electron and nuclear masses, respectively, is [5,
Section 113]

(2.1)

where µB = e/2mc is the Bohr magneton, and  =
−i∂/∂Ra and  are the electron momentum and spin
operators, respectively.

3 Summation is everywhere meant to be over the doubly repetitive
indices i, j, … = x, y, z.

εij ω k,( ) δij
4πi
ω

--------σij ω k,( ),+=

ji ω k,( ) σij ω k,( )E j ω k,( ).=

εij ω k,( ) εtr ω k,( ) δij

kik j

k2
--------– 

  εl ω k,( )
kik j

k2
--------,+=

E ω k,( ) = 
iω
c

------A ω k,( ), B ω k,( ) = ik A ω k,( ).×

Û µB P̂a A Ra t,( )⋅[
a

∑=

+ A Ra t,( ) P̂a 2ŝa B Ra t,( )⋅+⋅ ] ,

P̂a

ŝa
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The expression for the current density operator is

(2.2)

It differs from the standard expression for the current
density [1, Section 31; 2, Section 12; 6, Section 24]
only by the inclusion of spins.

To calculate the matrix elements in (1.6), we should
pass from Ra and Rn to the coordinates of the electrons
relative to the nucleus, ra , and to the coordinates of the
atomic center of mass, R [7, Sections 13, 40]:

(2.3)

where M = Zm + Mn is the atomic mass.

The complete set of quantum numbers and the
atomic energy can be represented as

(2.4)

Here, P is the momentum of the atomic center of mass,
J is the angular momentum (J = 0, 1/2, 1, 3/2, …), M =
J, J – 1, …, –J is the angular momentum component
along the z axis, and EJn is the atomic energy in the
frame of reference in which P = 0; n numbers atomic
states with equal J and M, but with different energies.

Simple calculations yield the following expressions
for the matrix elements of the Fourier components of
operators (2.1) and (2.2):

(2.5)

ĵ r t,( )
NV

-------------
e

2m
------- δ Ra r–( ) P̂a 2iP̂a ŝa×+( )[

a
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+ P̂a 2iP̂a ŝa×–( )δ Ra r–( ) ]

–
e2

2mc
----------A r t,( ) δ Ra r–( ).

a

∑

ra Ra Rn,–=

R
1
M
----- m Ra MnRn+

a

∑ 
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k( ) PJMn
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∑
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We introduced the operators4  = –i∂/∂ra and

(2.6)

Given (2.4), the normalization condition (1.4) after
passing from summation to integration over P takes the
form

(2.7)

Using formulas (2.4)–(2.7), we can determine the
current density j(ω, k) (see (1.6)) and then the permit-
tivity tensor (see (1.7)):

(2.8)

Here, ωp =  is the plasma frequency of the
atomic electrons (Ne = ZN),

(2.9)

 =  is the mean thermal velocity of the atoms,

(2.10)

(2.11)

4 Strictly speaking, the term related to the spin–orbit interaction [6,
Sections 55, 59] should be added to the operator ; the minus

sign on the right-hand side of formula (55.7) in [6] was omitted,
and m should be substituted for m2 in formula (59.12).
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The last equality in (2.11) can be easily obtained by tak-
ing into account the fact that after time reversal [5, Sec-
tion 60],

Since the states |JMn〉  with different M are trans-
formed via the irreducible representation D(J) of the
rotation group and since all of the states |JMn〉  (irre-
spective of M) are either even or odd, it is easy to show

that (for given J and n)  are transformed
through the representation D(0) + D(2) of the rotation
group. Consequently, they can be written as

(2.12)

Finally, it follows from the equality  = 

that  are real. They can be calculated, for
example, by using the formulas

(2.13)

where ei are the unit vectors along the coordinate axes.

As must be the case, substituting (2.12) reduces the
permittivity tensor (2.8) to form (1.8), where the longi-
tudinal and transverse permittivities are given by

(2.14)

The integral in (2.10) for real z has no meaning. We
assume that ω > 0 in (2.14) (and below) and that the
field proportional to exp(–iωt) adiabatically switches
on for t  –∞ and make the corresponding substitu-
tion ω  ω + iδ, where δ  +0 [1, Section 11; 3,
Section 29; 5, Section 42]. In plasma theory, this rule
for bypassing the pole in integrals of form (2.10) is
called the Landau bypassing rule [3, Section 29].
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Below, we will need the following limiting expres-
sions for the function F(z), z = z' + iz'', z'' > 0 [1, Sec-
tion 12; 3, Section 31]:

(2.15)

We assume that the field is a moderately short-wave-
length one: if the Bohr radius aB = 1/me2 is on the order
of the atomic radius, then kaB ! 1. The matrix elements
in (2.11) can then be expanded in power series of the
small parameter kaB . Retaining the terms of the second
order of smallness, we write operator (2.6) as

(2.16)

where

(2.17)

and  are transformed via the representation D(3) +

2D(2) + D(0) and give no contribution to  with
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Ĉ
2( ) 1

12
------ p̂ara

2 ra
2p̂a+( ),

a
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∑
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JOURNAL OF EXPERIMENTAL 
the adopted accuracy (on the order of (kaB)2). Note that

(2.18)

where d and Qij are the dipole and quadrupole electric
moments of the atom, respectively [5, Section 75].

It is convenient to calculate the matrix elements of
operators (2.16)–(2.18) by introducing the correspond-
ing spherical tensors and using the Wigner–Eckart the-
orem and the standard properties of the 3j symbols [5,
Sections 106, 107]. As a result, we obtain

(2.19)

where 〈Jn||…||J'n' 〉  are the reduced matrix elements;

R00 = Rii [5, Section 107]. Since  commutes with the

p̂ m
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------, r ra
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∑ d
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1
3e
------Qij,–= =

AJ'n' Jn,
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+ AJ'n' Jn,
l tr q( ), k( ) AJ'n' Jn,

l tr s( ), k( ),+

AJ'n' Jn,
l tr d( ), k( )

m2ωJ'n' Jn,
2

3e2
---------------------- Jn P J'n'〈 〉 2=

+
2
3
---k2Re Jn P J'n'〈 〉 J'n' Cl tr, Jn〈 〉 ,

Ĉ
l

Ĉ
2( )

2Ĉ
3( )

+( ),–=

Ĉ
tr

Ĉ
1( )

Ĉ
2( )

– Ĉ
3( )

,+=

AJ'n' Jn,
l m( ) k( ) 0,=

AJ'n' Jn,
tr m( ) k( )

1
12
------k2 Jn J S+ J'n'〈 〉 2,=

AJ'n' Jn,
l q( ) k( )

4
3
---AJ'n' Jn,

tr q( ) k( )=

=  
1

270e2
--------------m2ωJ'n' Jn,

2 k2 Jn Q J'n'〈 〉 2,

AJ'n' Jn,
l s( ) k( )

=  
1
36
------m2ωJ'n' Jn,

2 k2 Jn R0 J'n'〈 〉 2,

AJ'n' Jn,
tr s( ) k( ) 0,=

Ĵ
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Hamiltonian of the atom [5, Section 29],

(2.20)

In the zero approximation in spin–orbit interaction, we

Jn J J'n'〈 〉 δ J'Jδn'n J J 1+( ) 2J 1+( ).=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
can calculate the matrix elements 〈Jn||S||J'n' 〉  to the end
[8, Section 50]. Denote the atomic term unsplit by the
spin–orbit interaction by LSn, so that J = L + S, L + S –
1, …, |L – S|. Then,
(2.21)

J'L'S'n' S JLSn〈 〉 1
2
---δL'LδS'Sδn'n δJ'J

2J 1+
J J 1+( )
-------------------- J J 1+( ) S S 1+( ) L L 1+( )–+[ ]





=

– δJ' J 1+,
J 2 L S+ + +( ) J 1 S L–+ +( ) J 1 L S–+ +( ) L S J–+( )

J 1+
----------------------------------------------------------------------------------------------------------------------------------------

– δJ' J 1–,
J L S 1+ + +( ) J S L–+( ) J L S–+( ) L S 1 J–+ +( )

J
------------------------------------------------------------------------------------------------------------------------------





;

i.e., the matrix elements of the spin  are nonzero only
for transitions inside the fine structure of the term.

Formulas (2.14) and (2.19) give the final expres-
sions for εl(ω, k) and εtr(ω, k). Below, we restrict our
analysis to moderately high temperatures: if ω0 is the
energy interval between the ground and the first excited
atomic levels, then T ! ω0. Given (2.7), formula (2.14)
then takes the form

(2.22)

We mark the states of the ground atomic level by the
subscript 0: |J0M0n0〉  and . If L0 = 0 or S0 = 0, then
the ground term has no fine structure, with ω0 ~ ωR =
1/(maB)2. If L0 and S0 ≠ 0, then [5, Section 72]

for the normal multiplet, and

for the inverted multiplet; here, the constant  ~

ωR(Ze2/c)2.

Below, we will have to use a quantity proportional
to the difference εtr(ω, k) – εl(ω, k). We specially denote
it by

(2.23)

Ŝ

εl tr, ω k,( ) 1
ωp

2

ω2
------

4πNe2

m2ω2 2J0 1+( )
------------------------------------––=

× ΦJn J0n0, ω k; T,( )AJn J0n0,
l tr, k( ).

Jn

∑

EJ0n0

J0 L0 S0– , ω0 AL0S0
J0 1+( ),= =

J0 L0 S0, ω0+ AL0S0
J0,= =

AL0S0

1 1
µ ω k,( )
-----------------–

ω2

c2k2
---------- εtr ω k,( ) εl ω k,( )–[ ]=

=  
πe2N

3 mc( )2 2J0 1+( )
---------------------------------------- ΦJn J0n0, ω k; T,( )MJn J0n0, ,

Jn

∑–
where

(2.24)

3. THE LONGITUDINAL 
AND TRANSVERSE PERMITTIVITIES
IN VARIOUS FREQUENCY RANGES

We will derive expressions for εtr, l(ω, k) in various
frequency ranges from formula (2.22). Let us first con-
sider the case where ω is close to the frequency of a par-
ticular atomic transition: the detuning δJn = ω – 
satisfies the condition

(3.1)

Since we disregard the (natural and collisional) width
νJn of the excited level, the detuning in (3.1) cannot be
very small: |δJn| @ νJn . When condition (3.1) is satis-

MJn J0n0, MJn J0n0,
d( ) MJn J0n0,

m( )+=

+ MJn J0n0,
q( ) MJn J0n0,

s( ) ,+

MJn J0n0,
d( ) 8Re J0n0 p Jn〈 〉 Jn Cµ J0n0〈 〉 ,=

Ĉ
µ

Ĉ
1( )

3Ĉ
3( )

,+=

MJn J0n0,
m( ) J0n0 J S+ Jn〈 〉 2,=

MJn J0n0,
q( ) m2ωJn J0n0,

2

90e2
------------------------ J0n0 Q Jn〈 〉 2,–=

MJn J0n0,
s( ) m2ωJn J0n0,

2

3
------------------------ J0n0 R0 Jn〈 〉 2.–=

ωJn J0n0,

δJn  ! ωJn J'n', ,

Jn( ) J0n0( ), J'n'( ) Jn( ).≠≠
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fied, it will suffice to retain only the second term in
function (2.9). Then, as follows from (2.22)

(3.2)

where  is a smooth function of the frequency in
range (3.1). Note that k  is identical to the Doppler
width of the spectral line that corresponds to the
J0n0  Jn transition [9, Sections 20; 10, Section 103].
Expression (2.23) takes the form

(3.3)

Let us now consider the case where ω is far from the
resonance frequencies:

(3.4)

In this case, according to (2.9) and (2.15), we have with
the adopted accuracy

(3.5)

With the same accuracy, we obtain from (2.22), (2.19),
(2.23), and (2.24)

(3.6)

εl tr, ω k,( ) ε̃ ω( )
4πe2N

m2ω2 2J0 1+( ) δJn k2/2M–( )
----------------------------------------------------------------------+=

× F
δJn k2/2M–

2kv
-----------------------------

 
 
 

AJn J0n0,
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ε̃ ω( )
v

     

1 1
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-----------------–

πe2N

3 mc( )2 2J0 1+( ) δJn k2/2M–( )
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× F
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2kv
-------------------------

 
 
 

MJn J0n0, .

δJn  @ kv k2/M, Jn( ) J0n0( ).≠,

ΦJn J0n0, ω k; T,( )
2ωJn J0n0,

ω2 ωJn J0n0,
2–

-----------------------------=

× 1
k2

M ω2 ωJn J0n0,
2–( )

----------------------------------------+

×
ω2 ωJn J0n0,

2+

2ωJn J0n0,
------------------------------

3ω2 ωJn J0n0,
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ω2 ωJn J0n0,
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---------------------------------T+
 
 
 

.

εl tr, ω k,( ) 1
ωp

2

ω2
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8πe2N

m2ω2 2J0 1+( )
------------------------------------+–=

×
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ωJn J0n0,
2 ω2–
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'∑

× AJn J0n0,
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2
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------------------------------------------------+
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(3.7)

where

and

(3.8)

is the Lande factor of the JLSn atomic level [5, Sec-
tion 113]. In (3.6) and (3.7), we take into account the
fact that, as follows from (2.19)–(2.21),

(3.9)

If, in addition to conditions (3.4), conditions (3.1) are
also satisfied, then the expressions derived from (3.6)
and (3.7) are identical to the expressions derived
from (3.2) and (3.3) when it is considered that in this

case, ω2 –  ≈ 2  and (see (2.15))

(3.10)

(3.11)

(3.12)

–
4πe2N

m2ω2 2J0 1+( )
------------------------------------AJ0n0 J0n0,
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---× MJn J0n0, J0 J0 1+( )g0
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∑=
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1
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4πe2N
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-------------------------------------------–=

× AJn J0n0,
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1 1
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The case of low frequencies, ω ! ω0, is contained in
formulas (3.6) and (3.7). The terms proportional to k2 in

the expression for  at Jn ≠ J0n0 are on the

order of mωR(kaB)2, while the remaining terms in
square brackets in (3.6) at ω ! ω0 are on the order of
mωR(kaB)2m/M. We disregard these terms (on the order
of m/M) from the outset. Therefore, at ω ! ω0,

(3.13)

We know [2, Section 12] how the pole at ω = 0 in the
expression for εij(ω, k) can be eliminated if the contri-
bution of only dipole transitions is considered. A simi-
lar procedure can also be performed in (3.13). First,
note that

(3.14)

The sums (proportional to 1/ω2) that result from the
substitution of (3.14) into (3.13) can be calculated by
using formulas (2.17)–(2.19), the Wigner–Eckart theo-
rem, and the standard properties of the 3j and 6j sym-
bols [5, Sections 106–110]. As a result, we obtain

(3.15)
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The final expressions can be derived from (3.13)–(3.15)
and (3.9)

(3.16)

(3.17)

(3.18)

Formula (3.18) can also be derived from (3.7) by using
a transformation similar to the transformation used
when passing from (3.13) to (3.16) and (3.17).
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1
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The longitudinal permittivity εl(ω, k) is a regular
function of ω. Using (2.19), we obtain from (3.16)

(3.19)

(3.20)

Thus, the limiting value

(3.21)

does not depend on the order of the passage to the limit:
first kaB  0 and then ω/ωR  0, or vice versa, first
ω/ωR  0 and then kaB  0.

In contrast to εl(ω, k), the transverse permittivity
εtr(ω, k) and the permeability µ(ω, k) have singularities
at ω = 0. The function Φ0(ω, k; T) has the following lim-
iting expressions (see (2.9) and (2.15)):

(3.22)

(3.23)

(3.24)

The conditions in (3.22) are satisfied for kaB !
ω/ωR . Therefore, using (2.19) and (3.19), we obtain
from (3.17) and (3.18)

(3.25)
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T
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1 1
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(3.26)

(3.27)

If the condition k @  in (3.23) and (3.24) is
satisfied, then the condition kaB @ ω/ωR is also satis-
fied. In this case, we obtain from (3.17) and (3.18)

(3.28)

(3.29)

The function Φ0 = Φ0(ω, k; T) = –4M/k2 if k @ M  and
Φ0 = Φ0(ω, k; T) = –1/T if k ! M  (see (3.23)
and (3.24)).
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4. PERMITTIVITY ε(ω) 
AND PERMEABILITY µ(ω)

In the approach to the electrodynamics of material
media in which, apart from the vectors E and B, the
vectors D and H are also introduced, the properties of
an isotropic medium are characterized by the permittiv-
ity ε(ω) and the permeability µ(ω) [1, Section 2; 10,
Section 77]:

(4.1)

They are related to the longitudinal, εl(ω, k), and trans-
verse, εtr(ω, k), permittivities considered here by [1,
Section 2; 10, Section 103]

(4.2)

where µ(ω, k) is the function introduced in (2.23). It is
clear from these relations that ε(ω) and µ(ω) have phys-
ical meaning only when the k dependences of εl(ω, k)
and µ(ω, k) may be ignored. Thus, as follows from the
results of Section 3, ε(ω) loses its physical meaning (as
the coefficient that relates D(ω) and E(ω)) not only at ω
close to the frequency of any permitted transition [10,
Section 103], but also in all of the ω ranges in which
electric quadrupole and completely symmetric transi-
tions contribute appreciably to εl(ω, k).

According to (4.2), the magnetic permeability µ(ω) at
low (ω ! ωR) frequencies is defined by formulas (3.26)
and (3.27). If we introduce the magnetic susceptibility
χ(ω) = [µ(ω) – 1]/4π, then, according to (3.27), its low-
frequency limit will be defined by the formula

(4.3)

In order of magnitude, |χ(0)| ≈ N ωR/mc2 ! 1,

because N  < 10–4 and ωR/mc2 ≈ 10–4. The static sus-
ceptibility in a uniform field can be obtained from (3.29)
for Φ0 = –1/T,

(4.4)

where χ(0) is given by (4.3). If the g factor of the
ground atomic level is nonzero, then the last term
in (4.4) is much larger than χ(0); it is on the order of
χ(0)ωR/T; however, χst(0) ! 1 in this case as well. As
must be the case, expression (4.4) for χst(0) matches the
Van Vleck standard formula [4, Section 52]. The
T-independent diamagnetic and paramagnetic terms are

D ω( ) ε ω( )E ω( ), B ω( ) µ ω( )H ω( ).= =

ε ω( ) εl ω k,( ), µ ω( ) µ ω k,( ),= =

χ 0( )
Ne2

6 mc( )2
----------------- m
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+
1

2J0 1+
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ωJn J0n0,
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also retained at high frequencies (see (4.3) and (3.26)).
Therefore, there is no reason to believe [10, Section 79]
that, in contrast to ε(ω), µ(ω) loses its physical meaning
with increasing ω relatively early or that we should set
µ(ω) = 1. However, at optical frequencies, the contribu-
tion of electric quadrupole transitions to µ(ω) is compa-
rable to the contribution of magnetic dipole and com-
pletely symmetric transitions (see (3.26) and (2.24)), so
the vector

at these frequencies loses the meaning of magnetic
moment per unit volume of the gas in accordance with
[10, Section 79].

5 
In conclusion, let us consider the question of

whether a transverse electromagnetic wave with a
group velocity antiparallel to its phase velocity can
propagate through a monatomic gas. At present, this
question is widely discussed in the literature (see,
e.g., [11] and references therein). In [12], attention was
given to interesting features of the propagation of an
electromagnetic wave with antiparallel group and phase
velocities through a transparent isotropic medium.6

The  dispersion relation for a transverse electromag-
netic wave in an isotropic nongyrotropic medium is [1,
Section 6]

(4.5)

For the wave damping to be ignored (i.e., for the wave
vector k to be real), we must require for εtr = εtr' + iεtr''

that the following conditions be satisfied [1, Section 6]:

(4.6)

For the phase, uf = ωk/k2, and group, ugr = (k/k)dω/dk,
velocities of the wave, we find from Eq. (4.5) that

(4.7)

Thus, the group and phase velocities can be antiparallel
only if the spatial dispersion is taken into account [2,
Sections 7, 10]. In the frequency range where ε(ω) and
µ(ω) (see (4.2) and (2.23)) have physical meaning,
Eq. (4.5) is equivalent to the equation [10, Section 83]

(4.8)

5 The reasoning given in [10] proves this result alone.
6 It is clear from symmetry considerations that the group and phase

velocities of any wave in an isotropic medium are either parallel
or antiparallel.
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while conditions (4.6) and (4.7) are equivalent to the
following conditions [13]:

(4.9)

(4.10)

The first condition in (4.6) is satisfied only if ω is not
too close to any of the eigenfrequencies of the atom: the
detuning |δJn| @ , where  is the total width of the
Jn level, including the natural and collisional width νJn

and the Doppler width . In this case (see (3.6), (3.9),
and (2.19)),

(4.11)

Assuming that ω and |δJn| ~ ωR in (4.11) and using (3.22),
we find that

(4.12)

It follows from this relation and from (4.7) that ugr || uf

for waves with frequencies far from the atomic transi-
tion frequencies.

At low frequencies (ω ! T), equality (4.11) reduces
to (see (3.28))

(4.13)
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If g0 = 0, then (4.12) remains valid; if, however, g0 ≠ 0,
then

(4.14)

Consequently, ugr || uf for low-frequency waves as well.
It remains to consider a wave with a frequency

close to  of a particular atomic transition: con-

dition (3.1) is satisfied, but |δJn| @  as before. In this
case, equality (4.11) reduces to (see (3.11) and (2.19))

(4.15)

For the Jn levels to which magnetic dipole and electric
quadrupole transitions are permitted, we find that

(4.16)

because even ωR/νJn < 107 and |δJn| @  > νJn .

For the Jn levels to which an electric dipole transi-
tion is permitted, we obtain from (4.15)

(4.17)

The contribution of the first term on the right-hand

side is on the order of N (ωR/mc2)(m/M)(ωR/δJn)2.
Since m/M < 10–3, the first term is on the order of unity
only for |δJn| < 10–6ωR . If, however, |δJn| @ , then the
first term on the right-hand side of (4.17) is smaller than
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unity in order of magnitude. The second term on the
right-hand side of (4.17) differs in order of magnitude
from the first term by a factor of (T/ωR)(ωR/|δJn|), so it
can become approximately equal to unity even for
|δJn| ≤ 10–4ωR . If, in this case, δJn < 0, then the second
condition (4.6) is also satisfied, and, according to (4.7),
the group and phase velocities of the wave can be anti-
parallel.

Thus, the group velocity of the transverse electro-
magnetic wave in a monatomic gas at all frequencies
coincides in direction with its phase velocity, except for
frequencies slightly detuned from the frequencies of
electric dipole transitions toward longer wavelengths.
In this case (see (3.11) and (3.12)),

,

and conditions (4.9) and (4.10) are inapplicable.
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Abstract—A field-theoretic approach is applied to describe behavior of three-dimensional, weakly disordered,
elastically isotropic, compressible systems with long-range interactions at various values of a long-range inter-
action parameter. Renormalization-group equations are analyzed in the two-loop approximation by using the
Padé–Borel summation technique. The fixed points corresponding to critical and tricritical behavior of the sys-
tems are determined. Elastic deformations are shown to changes in critical and tricritical behavior of disordered
compressible systems with long-range interactions. The critical exponents characterizing a system in the critical
and tricritical regions are determined. © 2004 MAIK “Nauka/Interperiodica”.
The effect of long-range interaction described by the
power law 1/r–D–a was studied analytically in the frame-
work of the ε expansion [1–3] and numerically by
Monte Carlo methods [4–6] for two- and one-dimen-
sional systems. It was shown that effects due to long-
range interaction are essential for the critical behavior
of Ising systems when a < 2. The two-loop approxima-
tion applied in [7] directly in the three-dimensional
space corroborates the predictions of the ε expansion
for homogeneous systems with long-range interactions.

In structural phase transitions without piezoelectric
effect in the paraphase, elastic deformations play the
role of a secondary order parameter whose fluctuations
are not critical in most cases [8, 9]. Since the main con-
tribution to striction effects in the critical region is due
to the distance dependence of the exchange integral,
only isotropic elastic systems are discussed below.

It was shown in [10, 11] that coupling between
order-parameter fluctuations and elastic deformations
can be responsible both for change in critical behavior
and for emergence of tricritical and tetracritical points.
The introduction of frozen point impurities into a sys-
tem both changes the critical behavior and eliminates
multicritical points [12]. The analysis presented in [13]
showed that frozen structural defects introduced into
spin systems with long-range interactions increased the
value of a long-range parameter corresponding to the
transition to mean-field critical behavior. The effect of
elastic deformations on homogeneous systems with
long-range interactions also changes the critical behav-
ior [14]. Therefore, it would be interesting to analyze
the combined effect of structural defects and elastic
deformations on systems with long-range interactions.

In this work, the critical behavior of disordered
compressible systems with long-range interactions in
1063-7761/04/9802- $26.00 © 20316
the three-dimensional space is described for various
values of the long-range parameter a.

The Hamiltonian of the disordered Ising model
including elastic deformations and long-range interac-
tions can be written as

(1)

where Sq is an order parameter, u0 is a positive constant,
τ0 ~ |T – Tc|/Tc, Tc is the phase-transition temperature, a
is the long-range parameter, ∆τq is a random impurity
field (e.g., random temperature), a1 and a2 are the elas-
tic constants of a crystal, and a3 is the quadratic stric-
tion constant. The coupling between impurities and the
nonfluctuating order parameter

where uαβ is the strain tensor, is specified by the random
field hq thermodynamically conjugate to uαα(x). In
Eq. (1), integration is performed in the terms depending
on nonfluctuating variables not coupled to the order

H0
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parameter Sq , and the y0 terms (describing homoge-
neous deformations) are separated. It was shown in [8]
that this separation is necessary because inhomoge-
neous deformations yq are responsible for exchange of
acoustic phonons and for long-range effects that are
absent under homogeneous deformations.

When the impurity concentration is low, random
fields ∆τq , hq , and h0 can be treated as Gaussian and
specified by the function

(2)

where A is a normalization factor and bi denotes posi-
tive constants proportional to the concentration of fro-
zen structural defects.

Using the replica procedure to average over the ran-
dom fields generated by frozen structural defects, we
obtain an effective Hamiltonian of the system:

(3)

where the positive constants δ0, g0, , λ, and λ0 can
be expressed in terms of ai and bi . The properties of the
original system can be obtained in the limit m  0,
where m is the number of replicas (images).

Define an effective Hamiltonian depending only on
the strongly fluctuating order parameter S by the rela-
tion

(4)

If an experiment is carried out at constant volume, then
y0 is a constant and integration in Eq. (4) is performed
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over inhomogeneous deformations, whereas homoge-
neous deformations do not contribute to the effective
Hamiltonian. At constant pressure, the Hamiltonian is
modified by adding the term PΩ , volume is represented
in terms of the strain tensor components as

, (5)

and integration over homogeneous deformations is also
performed in Eq. (4). It was noted in [15] that the qua-
dratic terms in Eq. (5) can be important at high pres-
sures and for crystals with large striction effects. The
result is

(6)

The effective coupling constant v 0 = u0 – z0/2, which
arises in the Hamiltonian owing to the striction effects
determined by g0, can have positive and negative val-
ues. Therefore, this Hamiltonian describes both first-
and second-order phase transitions. When v 0 = 0, the
system exhibits tricritical behavior. Furthermore, the
effective interaction determined by the difference z0 –
w0 in Eq. (6) can also change the order of the phase
transition. This representation of the effective Hamilto-
nian entails the existence of a higher order critical point
where tricritical curves intersect when v 0 = 0 and z0 =
w0 [16]. Note that Hamiltonian (6) is isomorphic to the
Hamiltonian of the disordered Ising model with long-
range interactions under the tricritical condition z0 = w0.

Using the standard renormalization-group proce-
dure based on the Feynman diagram technique [17, 18]
with the propagator G(k) = 1/(τ + |k|a), we derive the
following expressions for the functions βv , βδ, βz, βw, γt,
and γϕ specifying the differential renormalization-
group equation:
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(7)

In terms of the new effective interaction vertices

(8)

the functions βi , γt , and γϕ are expressed as
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(9)

This redefinition is meaningful for a ≤ D/2. In this case, J0, J1, and G are divergent functions. Introducing the cutoff
parameter Λ, we obtain finite expressions for the ratios

(10)
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The integrals are performed numerically. For a ≤
D/2, a sequence of J1/  and G/  corresponding to
various values of Λ is calculated and extrapolated to
infinity.

It is well known that perturbation-theory series are
asymptotic and expressions (9) cannot be applied
directly since the interaction vertices for fluctuations of
order parameters in the fluctuation region are too large.
For this reason, the required physical information was
extracted from these expressions by applying the Padé–
Borel method extended to the four-parameter case. The

J0
2 J0

2
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appropriate direct and inverse Borel transforms have
the form

(11)

f v δ z w, , ,( ) ci1 … i4, , v 1
i1v 2

i2v 3
i3v 4

i4

i1 … i4, ,
∑=

=  e t– F v 1t v 2t v 3t v 4t,, ,( ) t,d

0

∞

∫
F v δ z w, , ,( )

=  
ci1 … i4, ,

i1 … i4+ +( )!
---------------------------------v 1

i1v 2
i2v 3

i3v 4
i4.

i1 … i4, ,
∑
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Fixed points and eigenvalues of the stability matrix (for complex eigenvalues, only real parts are presented)

No. b1 b2 b3 b4

a = 1.8

1 0.064189 0.046878 0 0 0.626* 0.626* –0.123 –0.123

2 0.064189 0.046878 0.066101 0 0.626* 0.626* 0.124 0.125

3 0.064189 0.046878 0.066101 0.066101 0.626* 0.626* 0.124 –0.124

a = 1.9

4 0.066557 0.040818 0 0 0.559* 0.559* –0.118 –0.118

5 0.066557 0.040818 0.065716 0 0.559* 0.559* 0.119 0.119

6 0.066557 0.040818 0.065716 0.065716 0.559* 0.559* 0.119 –0.119

v 1* v 2* v 3* v 4*
To obtain an analytic continuation of the Borel trans-
form of a function, a series in an auxiliary variable θ is
introduced:

(12)

The Padé approximant [L/M] is applied to this series at
θ = 1. This procedure was proposed and tested in [19–22]
for describing the critical behavior of a number of sys-
tems characterized by several interaction vertices for
order-parameter fluctuations. It was found in [19–22]
that Padé approximants in the variable θ preserve the
symmetry of the system. This property is important for
analysis of multivertex models. The approximants [2/1]
are used to calculate the β functions in the two-loop
approximation.

Critical behavior is completely determined by the
stable fixed points of the renormalization group trans-
formation. These points can be found from the condi-
tion

(13)

The requirement of stability of a fixed point reduces to
the condition that the eigenvalues bi of the matrix

(14)

be positive.
The exponent ν characterizing the growth of the cor-

relation radius near the critical point (Rc ∝  |T – Tc|–ν) is
determined by the relation

The Fisher exponent η describing the behavior of
the correlation function near the critical point in the

F̃ v δ z w θ, , , ,( )

=  θk ci1 … i4, ,

k!
---------------v 1

i1v 2
i2v 3

i3v 4
i4δi1 … i4 k,+ + .

i1 … i4, ,
∑

k 0=

∞

∑

βi v 1* v 2* v 3* v 4*, , ,( ) 0 i 1 2 3 4, , ,=( ).=

Bi j,
∂βi v 1* v 2* v 3* v 4*, , ,( )

∂v j

---------------------------------------------------=

ν 1
2
--- 1 γt+( ) 1– .=
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wave vector space (G ∝  k2 + η) is determined by the scal-
ing function γϕ: η = γϕ . The remain-
ing critical exponents can be determined from the scal-
ing relations.

The table shows the stable fixed points of the renor-
malization group transformation and the fixed-point
eigenvalues of the stability matrix for a = 1.8 and 1.9. It
was shown in [13] that stable fixed points exist in the
physical region (  > 0) for disordered systems only
when a ≥ 1.8. When a < 1.8, the stable points of any
three-dimensional impurity system are characterized
by negative values of the vertex .

An analysis of the critical points and their stability
shows that the fixed critical points of disordered sys-
tems with long-range interactions (nos. 1 and 4) are
unstable under elastic deformations. The critical behav-
ior of disordered compressible systems with long-range
interactions is described by their respective fixed points
(nos. 2 and 5). The phase diagram of the substance can
contain tricritical points specified by fixed points
(nos. 3 and 6).

Calculations of the critical exponents for the stable
fixed points (nos. 2 and 5) yield

(15)

For the tricritical points (nos. 3 and 6), the critical expo-
nents are

(16)

Thus, elastic deformations change both critical and
tricritical behavior of three-dimensional disordered
Ising systems with long-range interactions.

v 1* v 2* v 3* v 4*, , ,( )

v i*

v 1*

a 1.9, ν 0.685, η 0.034,= = =

a 1.8, ν 0.682, η 0.051.= = =

a 1.9, ν 0.652, η 0.034,= = =

a 1.8, ν 0.649, η 0.051.= = =
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SOLIDS
Structure
Cascades of Atomic Displacements in Solids: 
The Ballistic Stage
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Abstract—The evolution of cascades of atomic displacements in solids is analyzed. The charge-exchange, ion-
ization, and elastic scattering cross sections are calculated for the atoms and ions involved in cascade evolution.
The effects due to the material density are taken into account. These results are used to perform the first Monte
Carlo computations of cascades based on the knowledge of microscopic processes without invoking phenome-
nological potentials. The proposed approach is unique in that detailed characteristics of atomic processes are
obtained by ab initio calculation and applied to analyze cascades of atomic displacements. Subcascade devel-
opment is described, and a relation between the number of Frenkel pairs and the energy of the primary knock-
on atom is found for a wide energy range. This provides a basis for characterizing the dose dependence of the
hardening of reactor pressure vessel steel and for comparing the effects of primary radiation damage for fission
and fusion reactors. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Interactions of atomic particles passing through mat-

ter have been studied for a long time (e.g., see [1–3]).
Understanding of the physical principles that underlie
the key processes and calculation of their consequences
are required primarily for evaluating the performance
of structural materials used in nuclear power engineer-
ing. Current progress in computer simulation makes it
possible to examine these processes in more detail.
First, we can perform ab initio calculations of cross
sections for various atomic collision processes and use
the results to simulate cascades of atomic displace-
ments in solids. Second, new numerical approaches
based on the use of wavelet analysis in solving three-
dimensional heat and mass transfer equations can be
applied to investigate the quasi-thermodynamic stage
of a cascade. In this paper, we consider the ballistic
stage of the evolution of a cascade of atomic displace-
ments in iron. The subsequent quasi-thermodynamic
stage is analyzed in [4]. We consider metals irradiated
to neutrons with energy sufficiently high to damage the
crystalline structure. Further analysis shows that our
approach applies to the case of irradiation by high-
energy ions as well.

Irradiation-induced effects can be loosely defined as
the sequence of events initiated in a solid by the neu-
tron–nucleus interaction in which a primary knock-on
atom (PKA) giving rise to a cascade of atom–atom
interactions is created. This leads to the development of
regions (with size varying from tens to hundreds of
1063-7761/04/9802- $26.00 © 20322
angstroms) characterized by relatively intense energy
release (thermal spikes) and high concentration of
interstitial–vacancy (Frenkel) pairs [5–8]. Their diffu-
sive spread, driven by the elevated temperatures in ther-
mal spikes and the gradients of the chemical potential
of point defects, results in the formation of a supersat-
urated two-component solid solution of interstitials and
vacancies. Its subsequent dissociation initiates the evo-
lution of microstructural elements: nucleation, growth,
and climb of various dislocation loops and dislocation
elements; nucleation and growth of voids; “dissolu-
tion” and formation of ensembles of fine phase parti-
cles; diffusion of alloying and impurity atoms giving
rise to dislocation atmospheres and segregations at
grain boundaries; etc. The evolution of a microstruc-
ture, in turn, leads to irradiation-induced macroscale
effects, such as radiation growth, swelling, and changes
in electrical and thermal conductivity and in mechani-
cal properties.

At high temperatures (T ≥ 0.3Tm, where Tm is the
melting point), the irradiation-induced effects are due
solely to the dissociation of the supersaturated solid
solution. It is well known that these effects can be
described by reaction rate equations [9–13]. In addition
to constants determined by the structure and properties
of the solid and the point defects, one must also define
“sources,” i.e., calculate the rates of generation of point
defects and their total number, which are determined by
the flux and energy spectrum of neutrons.
004 MAIK “Nauka/Interperiodica”
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Cascade evolution in solids has been discussed in
extensive literature [14–19]. Recent publications were
mainly focused on the number of Frenkel pairs that sur-
vive after the ballistic stage and on spontaneous recom-
bination of such pairs and point-defect clusters, which
can substantially contribute to the formation of a super-
saturated solid solution. Cascades with PKA energies
up to 60 keV in solids have been simulated by using
molecular-dynamics models that take into account
crystalline structure, but ignore ionization of atoms and
electron capture by ions [18, 20].

However, irradiation-induced effects of different
nature manifest themselves at temperatures of about
0.3Tm, including the irradiation-induced hardening of
VVER reactor pressure vessel steel. This effect is
caused by the development of an ensemble of nanoscale
precipitates initiated by subcascades of certain size.
Therefore, description of subcascading (i.e., splitting of
cascades into smaller cascades having well-defined
parameters [4]) and evolution of particular subcas-
cades at the quasi-thermodynamic stage is required to
understand both precipitate formation and hardening
kinetics as determined by the neutron energy spectrum
and dose rate.

The present study of cascade evolution is focused on
characterization of subcascades in a wide range of PKA
energy, which can be done by treating the material as
amorphous. Since the starting point of our analysis is
PKA production, the methods developed here can also
be applied to describe the effects induced by ion irra-
diation.

2. CASCADE EVOLUTION: AN OVERVIEW

Cascades of atomic displacements develop in a
material irradiated by particles whose energy is suffi-
ciently high to knock atoms out of their sites. This
effect is of interest both for studies of physical pro-
cesses and for practical applications. The PKA pro-
duced by an initial neutron has a high energy. Moving
through the material, it collides with another atom and
knocks it out of its site. When a relatively small amount
of energy is transferred, the secondary atom either
returns to the ground state after being excited or decel-
erates because of energy loss. In either case, the mate-
rial is heated by phonon emission and absorption.
When the transferred energy is relatively high, the sec-
ondary atom can initiate a new branch of the cascade.
As the process repeats, the cascade branches out like a
tree and Frenkel pairs are created. In the course of the
cascade evolution, the charges of the incident and target
atoms can change via ionization or electron capture.

All of these processes are described by the electro-
magnetic interaction Lagrangian. In any theory with a
dimensionless coupling constant (including electrody-
namics), a dominant role is played by processes charac-
terized by relatively low energy transfer (recall the
infrared singularity associated with massless photons,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
which is cut off by form factors). The relative signifi-
cance of each process outlined above is determined by
similar factors. Therefore, one can expect the following
scenario of cascade evolution (confirmed by calcula-
tions) to occur. Initially, the PKA moves along an
almost straight path, losing small portions of its energy
and occasionally deviating as it displaces another high-
energy atom, which initiates a new branch of the cas-
cade. The degree of cascade branching depends on the
initial energy and on the relative intensity of various
processes in the material. The ballistic stage of the cas-
cade evolution lasts until the initial energy is com-
pletely converted into heat in the material. Phase tran-
sitions can occur in regions of intense heat release.

Thus, to describe the evolution of a cascade of
atomic displacements and possible ensuing effects, the
following information is required:

(i) at the initial stage, the characteristics of the
knock-on processes initiated by particles with different
energies;

(ii) at the ballistic stage, the characteristics of inter-
actions between atoms and ions for different energies of
the primary atom (or ion) passing through the material
(interaction potentials, charge-exchange cross sections,
density effects, etc.);

(iii) at the quasi-thermodynamic stage, the three-
dimensional temperature and structure evolution and
the initiation of phase-particle formation depending on
certain conditions.

These three stages are distinguished by their dura-
tion. A PKA is created by a neutron in a very short time,
from 10–23 to 10–20 s, determined by the finite nuclear
force range. Atomic collisions and recombination of
Frenkel pairs at the ballistic stage last for 10–16 to
10−13 s. The thermal effects determine the duration of
the entire process (about 10–10 s in the case of a phase
transition characterized by a nonzero latent heat).

Here, we consider the first two stages as a unified
ballistic stage, because they determine the dynamics of
cascades of atomic displacements in iron irradiated by
neutrons. We analyze the displacement of a PKA by an
initial neutron and calculate cross sections for atom–
atom and atom–ion collisions. These characteristics are
used to perform Monte Carlo simulations of cascades.
As a result, the key parameters of the regions of maxi-
mum energy release are determined.

This approach is unique in that characteristics of
atom–atom and atom–ion interactions are calculated ab
initio and applied to simulate and analyze cascades of
atomic displacements.

3. SIMULATION OF CASCADES 
OF ATOMIC DISPLACEMENTS

To substantiate our method for simulating cascades
of atomic displacements in solids, we describe the bal-
SICS      Vol. 98      No. 2      2004
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listic stage of cascade evolution outlined above in more
detail.

1. First, we consider the knock-on process in which
a primary iron atom is knocked out by a neutron. Since
the atom–nucleus interaction is controlled by nuclear
forces, it can be calculated as a sudden perturbation.

In the nonrelativistic case, the kinetic energy trans-
ferred from a neutron having a kinetic energy En

reaches a maximum value Emax when the PKA moves in
the same direction:

(1)

where A is the mass number (A = 56 for iron). Thus, the
kinetic energy of the knocked-on iron atom is at least
14.5 times lower than the neutron energy. Note that the
angular distribution of scattered neutrons is isotropic in
the center-of-mass system and the emission angle of the
atom in the laboratory system θ is less than 90° when
the energies are relatively low. In this case, the energy
of the atom is found by multiplying the right-hand side
of (1) by cos2θ. The resulting average energy of the
atom is lower than the neutron energy by a factor of 29.
This implies that the iron energy spectrum is much
softer than the neutron spectrum.

The energy of almost every neutron in nuclear
power reactors does not exceed 10 MeV. An iron PKA
cannot be ionized under this energy constraint. Indeed,
the energy of the outermost (4s2) electron in an iron
atom is 7.8 eV. One can easily show that it cannot be
knocked out when the atom is hit by a neutron with an
energy below 11.6 MeV. This estimate is based on the
equality of the bound-electron and PKA velocities,
which follows from an analysis of sudden perturbations
(see [21–23]). The squared velocity of an electron with
energy 7.8 eV is about 3 × 10–5c2. The energy of an
atom having this velocity is about 800 keV (electron
energy multiplied by the atom-to-electron mass ratio).
The estimate for the minimum neutron energy follows
from Eq. (1). By virtue of the factor cos–2θ, an even
higher energy is required to create a PKA with a non-
zero lateral velocity. The energy of electrons in the
next-to-outermost (3d6) shell is 9.0 eV. The correspond-
ing lower bound for the neutron energy required to
knock an electron out of this shell is 13.6 MeV. How-
ever, the probability of ionization is low even for higher
energies. For a low nucleus velocity vA, it is roughly
estimated as follows [21]:

(2)

Using the Thomas–Fermi model, one can calculate
the total ionization energy, i.e., the energy required to
remove all electrons from a neutral atom [24]. The most
accurate estimate based on empirical data is Ee =
16Z7/3 = 32 keV, i.e., much higher than the electron

Emax
4

A 2+
-------------En,=

W v A
2 /c2

 ! 1.≈
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energies in outer shells. These estimates demonstrate
that primary ions with Z = 26 (completely ionized iron
atoms) cannot play any significant role in the problem
analyzed here. (The scattering cross section for these
particles was used in a recent study of cascades [25].)

We conclude that the development of a cascade in
iron exposed to neutrons with energy below 10–20 MeV
must be initiated by a neutral PKA.

2. The ballistic stage of cascade evolution is essen-
tially determined by four processes: elastic scattering
of atoms (or ions), which preserves the charges of the
colliding particles (while some energy is required to
knock an atom out of its lattice site); ionization of the
incident atom (or ion) by the target atom, which pro-
duces an ion with a higher charge; electron capture by
the projectile ion, which reduces its charge; and ioniza-
tion of the target atom. The first and last processes do
not change the charge of the projectile, but reduce the
projectile energy. These processes must be taken into
account. The projectile charge is changed by the second
and third processes.

The cross sections for these processes are calculated
for the first time in this study by using results borrowed
from [26–32]. The essential novelty of the present
approach is that we use density functional theory in ab
initio computations of cross sections without invoking
phenomenological adjustable potentials. Moreover,
both elastic scattering and charge-changing processes
are taken into account. They are extremely important
for our conclusions about the cascade evolution. The
computations performed in this study are briefly
described in Appendices 1 and 2. This description is
sufficient to develop a Monte Carlo scheme and eluci-
date the relative roles played by various processes in
cascade evolution according to the calculated cross sec-
tions.

Cascades are simulated by using the calculated
cross sections in the optical-thickness approximation
for an amorphous material (e.g., see [25, 33]). The opti-
cal thickness of a material with respect to the processes
mentioned above for a projectile atom (or ion with
charge Z) of energy E is defined as

(3)

where ρ is the material density and σn is the cross sec-
tion for elastic scattering (n = el), projectile ionization
(n = ip), or electron capture (n = ep) by the projectile
ion. The stopping power of the material is expressed as

(4)

On Z E,( ) ρσn Z E',( ) E'd
Rd

------- 
 

1–

E',d

0

E

∫=

Ed
Rd

------ 2Iρσit Z E,( )= ρE
θ
2
---σel Z E θ, ,( ) θ,dsin

2

0

θc

∫+
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where I is the effective ionization potential for a target
atom, σit is the ionization cross section for the target
atom, and σel(Z, E, θ) is the differential elastic scatter-
ing cross section. The integral is calculated to the angle
θc defined by the minimum energy required to form a
Frenkel pair. This energy is set equal to the standard
average threshold displacement energy Ed ≈ 40 eV [34],
which is related to the angle θc by the kinematic relation
Ed = Esin2(θc/2) [2].

The first term in Eq. (4) is associated with ionization
and electronic excitation of the medium, whose contri-
butions are equal (hence the factor 2 in this term); the
second term is associated with phononic excitations.
The total elastic scattering cross section, which is con-
tained in (3) and is responsible for cascading, is related
to the differential cross section as follows:

(5)

As a first step in a cascade simulation, the optical
thicknesses corresponding to the three possible pro-
cesses involving ions (or two processes involving
atoms) with initial energy E are calculated according to
the formulas written out above. The cross sections as
functions of energy are obtained in the calculations
described in the Appendices.

Figure 1a shows the optical thickness with respect to
elastic scattering versus energy for projectile Fe atoms
(Z = 0) and ions (Z = 1, 2, and 8). The largest optical
thickness obviously corresponds to scattering of neutral
atoms. It decreases with increasing ion charge and has
a much lower value for the Fe8+ ion (which has no
valence electrons).1 

Figure 1b shows the optical thickness with respect
to ionization versus energy for projectile Fe atoms and
ions with Z = 1 and 2. Note that the thickness is substan-
tially lower for the ions as compared with the atom.
Comparing Figs. 1a and 1b, one finds that elastic scat-
tering dominates at energies below about 2 keV; i.e.,
charge-changing processes are less important at low
energies, even though they should still be taken into
account.

Figure 1c shows the optical thickness with respect to
electron capture versus energy for projectile ions with
Z = 1, 2, and 3. It is an essentially nonmonotonic
function of the ion charge. Figures 1b and 1c demon-
strate that the Fe2+ ion is characterized by a large mean
free path.

1 Note that mean free path is an exponential of optical thickness.
Therefore, even a small change in optical thickness results in a
drastic change in mean free path.

σel Z E,( ) σel Z E θ, ,( ) θ.d

θc

π

∫=
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The functions On(E) are used in the Monte Carlo
method involving inverse functions to generate random
free paths with respect to elastic scattering or ionization
of an atom or ion and with respect to electron capture
by an ion [25, 33]. To simulate a particular cascade, the
energy lost in each channel is calculated and the pro-
cess corresponding to the highest (i.e., closest to E)
post-collision energy E' of an atom or ion is identified
as an event. The coordinates of the event are found with
the use of Eq. (4). In the case of a charge-changing
event, the simulation is continued iteratively according
to the same scheme (with the use of the optical thick-
ness that corresponds to the resulting ion). In the case
of elastic scattering, the scattering angle is determined
and simulations are performed for both particles.

The relative probabilities of different processes are
determined by their respective cross sections and kine-
matic characteristics. Elastic scattering cross sections
are typically smaller than inelastic ones (see Appendi-
ces). Therefore, as an atom (or ion) moves through mat-
ter, its energy is dissipated mostly via excitation and
charge exchange, whereas new cascade branches are
initiated less often occasionally. This and other proper-
ties of cascades are demonstrated in the next section.
Note that the development of a cascade involves recom-
bination of interstitials and vacancies that are suffi-
ciently close to one another. Its impact on cascade prop-
erties is also discussed in the next section.

In this paper, we consider the cascades initiated by
primary knock-on atoms with energy having a certain
value or uniformly distributed over a certain interval. In
applications, one must analyze interactions of initial
neutrons with target atoms to find the PKA energy dis-
tribution. If the neutron spectrum is known for a partic-
ular reactor, this can easily be done by using standard
tables of experimental data concerning neutron–
nucleus interactions in the energy range in question.

4. CHARACTERISTICS OF CASCADES
OF ATOMIC DISPLACEMENTS IN SOLIDS

4.1. Structure of Cascades 

As a cascade develops, atoms of the solid are
knocked out of their lattice sites. Connecting the scat-
tering sites (vacancies) successively with one another
and with the corresponding interstitials, one obtains a
graph. The number of vertices in a treelike cascade
graph is the number of vacancies (or interstitials) minus
one. The number of its edges (including the initial one)
equals the total number of vacancies and interstitials,
i.e., twice the number of Frenkel pairs.

The main objective is to find the locations of clusters
of Frenkel pairs, their size, spatial distribution, and
other characteristics of such clusters. Our analysis is
focused on relatively large clusters (subcascades).

Figure 2a shows a simulated cascade corresponding
to a PKA energy of 300 keV. (Since the two-dimen-
SICS      Vol. 98      No. 2      2004
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Fig. 1. Optical thickness vs. atom or ion energy: (a) elastic scattering of iron atom and ions with Z = 1, 2, and 8; (b) ionization of
incident iron atom and ions with Z = 1 and 2; (c) electron capture by incident ions with Z = 1, 2, and 3.
sional projection of a three-dimensional cascade is
plotted here, some elements that are separated in the
direction perpendicular to the plane overlap in the fig-
ure.) Even a visual survey of the cascade reveals at least
JOURNAL OF EXPERIMENTAL
two types of processes associated with the vertices of a
cascade tree. The most frequent process (in which a
small amount of energy is lost) is either ionization or
displacement of a relatively slow iron atom hit by a pro-
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Fig. 2. Two-dimensional projection of a simulated cascade: (a) before recombination and (b) after spontaneous recombination. All
pairs are assumed to recombine at distances less than 6 Å. Circles and crosses denote interstitials and vacancies, respectively.
jectile (atom or ion). The displaced atom either
becomes an interstitial after traveling a short path or
displaces several atoms, i.e., gives rise to a branch with
few edges.

Much less frequently, the energy transferred to the
displaced atom is sufficiently high to sustain the devel-
opment of a branch that has many edges and involves
dense groups of Frenkel pairs, which are called subcas-
cades here. Computations show that the treelike struc-
ture on a subcascade level strongly depends on the sim-
ulated evolution of the charge states of atoms along
their paths.

In the least frequent process, the energy of an atom
is split into two almost equal parts and two similar
branches are created. Both ensuing minor cascades
involve subcascades.

This pattern of cascade evolution is explained by the
fact that small amounts of energy are transferred more
frequently.

The two-dimensional projection of a cascade shown
in Fig. 2a demonstrates that interstitials tend to lie at its
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
periphery, whereas vacancies group together around the
cascade’s centerline and subcascade centers.

Initially, each primary knock-on atom is neutral.
However, if its energy is high (tens or hundreds of kilo-
electronvolts), it loses its outermost shell in collisions
and becomes a Fe2+ ion almost immediately. This is
clear from comparison of the optical thicknesses plot-
ted in Figs. 1a–1c. Therefore, the “trunk” of a cascade
tree typically follows the path traveled by a Fe2+ ion.

However, the number of pairs produced in a cascade
is determined by branching and subcascading. In these
processes, much lower energies are transferred (hun-
dreds of electronvolts); i.e., elastic scattering plays the
dominant role (see Fig. 1) and the projectiles are mostly
atoms.

This trend is illustrated by Fig. 3, where the charge
of a particle participating in a cascade with a PKA
energy of 700 keV is plotted versus its energy. Almost
every particle whose energy is higher than 5 keV is an
ion with Z = 2. The number of neutral atoms and ions
with Z = 1 and 3 is negligible. As the particle energy
SICS      Vol. 98      No. 2      2004
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decreases in a developing cascade, neutral atoms tend
to play the dominant role. Nevertheless, the contribu-
tion of ions with Z = 2 should not be neglected even if
they have low energies. Figure 3 demonstrates the
important role played by charge exchange in cascade
evolution (particularly at high energies) and subcascade
development.

4.2. Number of Frenkel Pairs in a Cascade 

The dependence of the mean number n of Frenkel
pairs on the initial PKA energy E is of primary impor-
tance. To find it, we simulated 104 cascades with 0.5 ≤
E ≤ 900 keV. The number of Frenkel pairs produced at
the consecutive steps of each cascade was recorded.
Figure 4 shows the resulting number-of-pairs distribu-
tion plotted versus energy. The mean number of pairs is
represented by solid curves. The scatter of data points
around the curves widens toward high energies.2 

2 Note that each data point represents the number of pairs in a par-
ticular cascade and their mean number is obtained by averaging
over cascades with equal initial PKA energies.

3

2

1

0

0.1 1 10 100 E, keV

Z

Fig. 3. Charge vs. energy for particles in a cascade with a
PKA energy of 700 keV.
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Our results agree with predictions of the Norgett–
Robinson–Torres (NRT) model [35, 36] at very low
energies (E ≤ 5 keV):

(6)

The results based on the NRT model are shown by the
dashed curve in Fig. 4. Our results predict a much lower
number of Frenkel pairs at high energies. Note that the
results of recent molecular-dynamics simulations of
cascades of atomic displacements performed for differ-
ent phenomenological potentials [37–39] were so dis-
parate that no definite conclusion could be reached.

The energy dependence of the variance D of number
of pairs before spontaneous recombination is well
approximated by a power law with the exponent equal
to 0.5036. Recall that the width of the Poisson distribu-
tion scales with the square root of mean number of
Frenkel pairs. Since the number of pairs increases with
PKA energy slower than a linear function, the distri-

n 0.8E/2Ed.≈

3000

2500

2000

1500

1000

500

0
50 100 150 200 250 300

E, keV

n

Fig. 4. Number of Frenkel pairs vs. PKA energy before
recombination (+) and after recombination (×). Solid curves
represent the mean number of pairs before recombination.
The dashed curve is predicted by the NRT model (before
recombination) [35, 36].
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bution shown here is wider than a corresponding Pois-
son one.

Once a pair is created, it can disappear via spontane-
ous recombination if the vacancy and interstitial are
separated by a sufficiently small distance. Figure 2b
shows the cascade obtained after all pairs with relative
distances smaller than 6 Å have recombined in the cas-
cade illustrated by Fig. 2a. The number of pairs that sur-
vive under the same condition for relative distance is
shown in the lower part of Fig. 4 for all simulated cas-
cades. It is clear that this number is several times
smaller than the number of initially produced pairs.

Nevertheless, surviving subcascades make up large
clusters of Frenkel pairs in cascade-tree branches. Even
though the number of surviving pairs is smaller, the
energy deposited in this region is the same. Quantitative
analysis of subcascades and their characteristics should
be based on an energy criterion, because the energy

Z = 0

2 8

2 4 6 8

2.5

2.0

1.5

1.0

0.5

0

–0.5

V

b, arb. units

Fig. 5. Potentials of interaction of iron atoms (Z = 0) and
ions (Z = 2 and 8) with a target iron atom vs. distance.
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Fig. 7. Energy dependence of the cross section of ionization
of iron atoms (Z = 0) and ions (Z = 1, 2, 5) by a target iron
atom.
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deposition (heat release) in subcascade regions deter-
mines the type and intensity of thermal spikes and
phase particles.
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Fig. 6. Energy dependence of the cross section of elastic
scattering of (1) iron atoms and (2) Fe2+ and (3) Fe8+ ions
by a target iron atom.
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Cross section for ionization of a target iron atom by an inci-
dent iron atom (or ion) at several values of projectile energy
Ep in the laboratory system

Ep,
keV/nucleon
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Fe Fe2+ Fe8+

0.1 3.1 × 10–15 3.0 × 10–15 3.2 × 10–15

1.0 3.3 × 10–14 3.0 × 10–14 2.0 × 10–14

10 3.2 × 10–13 2.2 × 10–13 2.1 × 10–13

100 1.6 × 10–13 1.2 × 10–13 1.2 × 10–13

1000 2.6 × 10–14 1.9 × 10–14 2.2 × 10–14

Fig. 8. Energy dependence of the cross section of electron
capture of iron ions (Z = 1, 2, 5, 8) by a target iron atom.
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5. CONCLUSIONS

We have described characteristics of the ballistic
stage of evolution of cascades of atomic displacements
initiated by primary knocked-on atoms with energies
up to 900 keV. The energy limit imposed here is not
substantial. It is dictated by the energy interval of prac-
tical importance rather than by the adopted computa-
tional scheme. The material was treated as amorphous
in Monte Carlo computations (its crystalline structure
was ignored), because we analyzed the large-scale
structure of cascades. One essential distinction of this
approach as compared to previous studies is that all
necessary cross sections are calculated ab initio with-
out invoking phenomenological adjustable potentials.
This is done by taking into account the contributions of
all electron shells of the projectile and target atoms and
the dependence of the cross sections on the material
density. We have used ionization and charge-exchange
cross sections in analyzing the evolution of the charge
state of the incident atom associated with a decrease in
its energy. This process determines the structure of cas-
cades (including subcascades of certain size). These
computations were performed by running original
codes developed at the Lebedev Physical Institute.

The calculated cross sections were used to formu-
late a model that admits algorithmic implementation in
programs for computing cascade characteristics. The
cascade characteristics were determined by simulating
104 cascades with PKA energy E ranging from 0.5 to
900 keV. We have calculated the number of Frenkel
pairs as a function of the PKA energy at the end of the
ballistic stage and after spontaneous recombination.
The results obtained agree with those predicted by the
standard NRT model [35, 36] for the low-energy range
(E ≤ 5 keV), but differ substantially at higher energies.

It is also important that our approach can be used to
describe the structure of a cascade, including separate
treatment of the path traveled by the primary atom and
the regions of subcascade formation. The definition of
subcascade may depend on the ensuing process to be
analyzed (one possible definition and the correspond-
ing evolution at the quasi-thermodynamic stage are
described in [4]). We emphasize here that approximate
treatment of the material as amorphous, which is suffi-
cient for characterizing the developing structure of cas-
cades, provides a basis for classifying cascades. This
makes it possible to compute the primary radiation
damage caused by radiation with various energy spec-
tra, e.g., in fusion and fission reactors.

Another important conclusion that follows from our
analysis of cascade structure is the feasibility of com-
putation of the hardening of VVER reactor pressure
vessel steel as a function of the neutron dose.
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APPENDIX 1

Elastic Scattering Cross Sections 

Let us consider the elastic scattering cross sections,
i.e., the cross sections characterizing processes that do
not change the colliding partners (in particular, their
charge). In such processes, only kinetic energy is trans-
ferred from the incident atom (or ion) to an atom of the
material. The recoil atom participates in the develop-
ment of a cascade. Therefore, these processes are
important for estimating the energy lost by incident
atoms and the energy spectra of recoil atoms. These
cross sections strongly depend on the energy and the
charge states of the colliding partners.

The cross sections were calculated according to
classical mechanics. For an interaction potential V(r),
the impact parameter b is related to the scattering angle
θ in the center-of-mass system as follows [2]:

(7)

with

(8)

where E0 is the particle energy in the laboratory system.
The lower limit of integration is the distance r0 between
the colliding particles at closest approach, which is
found by solving the equation

(9)

The differential elastic scattering cross section is
given by the formula [2, 26]

(10)

or, equivalently,

(11)

If the interaction potential is known, then the scattering
cross section is obtained by integrating (10) or (11)
with respect to the scattering angle from a certain min-
imum value to π. Thus, knowledge of interaction poten-
tials is crucial for calculating elastic scattering cross
sections.

We consider only binary elastic collisions. We use
density functional theory to calculate the energy corre-
sponding to a given electron density. The electron den-
sity is calculated by using a simple superposition
approximation. The potential of interaction between

θ π 2b
rd

r2g r( )
---------------,

r0

∞

∫–=

g r( ) 1 2V r( )
E0

--------------– b2

r2
-----– ,=

g r0( ) 0.=

σd 2πb b,d=

dσ
dΩ
-------

b
θsin

----------- db
dθ
------ .=
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atoms and ions can be expressed in terms of the density
functional %(ρ) as follows [27]:

(12)

where ρi denotes the ith-particle electron density and R
is the distance between particles. The coordinate r is
related to the electron density and is used as an integra-
tion variable. Examples of application of this formula
can be found in [28, 29], where it was shown that this
approximation provides a sufficiently accurate descrip-
tion of properties of solids. In the cases considered
here, the potentials are as shown in Fig. 5.

The potentials thus obtained are used in Eqs. (7)–(9)
to calculate the impact parameter as a function of scat-
tering angle and determine the behavior of differential
elastic scattering cross sections as functions of scattering
angle and initial energy by means of Eqs. (10) and (11).

The angular distributions of particles in elastic scat-
tering processes are uniquely related to their energy
spectra. The scattering angle is kinematically related to
the energy lost by the incident particle as follows (e.g.,
see [2]):

(13)

In the problem considered here, the minimum energy
loss is either the energy Ed ≈ 40 eV required to create a
Frenkel pair in iron or an energy of about 100 eV; in the
latter case, we neglect the processes in which the dis-
placed atom cannot create another Frenkel pair and its
energy dissipates in the material.

This model was used to calculate elastic scattering
cross sections in the energy range of interest for the
present study. The results are shown in Fig. 6 for the
cut-off angle corresponding to a minimum energy loss
of 40 eV (threshold displacement energy for iron). (The
program employed in the computations was written in
C++ at the Department of Theoretical Physics of the
Lebedev Physical Institute.)

Note that one can easily determine the scope of the
classical approach advocated here. The approach is not
valid when the impact parameter is large and quantum-
mechanical expressions should be used (e.g., see [40]).
In what follows, we show that collisions with large
impact parameters can be neglected in our analysis,
because an atom of a solid cannot be knocked out and
set in motion by such a collision. Accordingly, low
energy losses (and, by Eq. (13), small scattering angles)
cannot be associated with cascade initiation, even
though they contribute to the energy lost by the incident
particle. Since the integrals are cut off at small angles
in our calculations, the quantum-mechanical contribu-
tion is not important.

V R( ) % ρ1 R r+( ) ρ2+ r( )[ ]=

– % ρ1 R r+( )[ ] % ρ2 r( )[ ] ,–

∆E E0 θ/2( ).sin
2

=
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A quantitative proof of the above assertion makes
use of some estimates given in [40]. The classical scat-
tering angle is written as

(14)

where p is the total momentum of the incident particle,
pt is its transverse component, and v  is the particle’s
velocity. In quantum mechanics, the diffraction angle is
estimated as

(15)

The minimum value of the impact parameter for which
the classical approach is inapplicable is determined by
equating these angles:

(16)

This equation was solved numerically for each poten-
tial given by (12) to find the energy dependence of the
minimum impact parameter. The angle θd was esti-
mated by Eq. (15). We also used (13) to calculate the
cut-off angles θmin required to determine cross sections.
It was shown that the validity criterion for the classical
approach,

, (17)

holds within several orders of magnitude for the energy
range of interest here.

APPENDIX 2

Cross Sections 
for Charge-Changing Ion–Atom Processes 

Now, consider processes in which charge is trans-
ferred between the interacting particles: ionization of
the projectile atom or ion by the target atom, which cre-
ates an ion with a higher charge; electron capture by the
projectile ion, which reduces its charge; and ionization
of the target atom. Allowing for these processes, one
can evaluate, in particular, the fraction of the PKA
energy transferred to electrons during the evolution of
a cascade.

The ionization and charge-exchange cross sections
for iron atoms or ions incident on iron atoms at rest in
a target were calculated for energy ranging from
0.1 keV/nucleon to 1 MeV/nucleon, i.e., within four
orders of magnitude. The cross sections of the follow-
ing processes have been calculated:

(18)

(19)

(20)

θcl

pt

p
---- dV b( )

db
---------------

b
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-------,≈ ≈

θd
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pb
------.≈

dV b( )
db

--------------- b
2

v .≈

θmin θd>

Feq+ Fe Fe q 1+( )+ Fe e–, Z+ ++ 0–8;=

Feq+ Fe Fe q 1–( )+ Fe+, Z++ 1–26;=

Feq+ Fe Feq+ Fe+ e–, Z+ ++ 0–26.=
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Analogous calculations were performed for atoms and
ions of several different materials, but their results are
not used in this paper.

The ionization cross sections were computed in the
modified first Born approximation by using the LOSS
code developed in the Optics Department of the Lebe-
dev Physical Institute and described in [30]. The elec-
tronic structure of both incident and target particles was
taken into account. The wave functions required to
describe transitions of electrons from atomic bound
states to continuum states were calculated in the partial
wave representation by solving the Schrödinger equa-
tion numerically with an effective field of the atomic
core.

The cross sections for ionization of a target neutral
Fe atom by Fe ions increase from about 10–15 cm2 at
E ≈ 0.08 keV/nucleon to about 10–13 cm2 at E ≈
10 keV/nucleon (see table) and gradually decrease to
about 10–14 cm2 at E ≈ 400 keV/nucleon. These cross
sections are nonmonotonic functions of the charge of
the incident ion.

The cross sections for ionization of incident iron
ions by a target neutral Fe atom strongly depend on the
energy and electronic structure of the colliding part-
ners. They reach maximum values (~10–13 cm2) for Fe
and Fe1+ at E ≈ 15 keV/nucleon. For ions with different
degrees of ionization, the ionization cross sections are
lower by an order of magnitude, and their maximum
values are reached at E ≈ 100–200 keV/nucleon.

The cross sections of charge exchange by electron
capture were computed by using the CAPTURE code
developed at the Optics Department of the Lebedev
Physical Institute and described in [31]. The computa-
tions were performed by using the Brinkman–Kramers
approximation and the impact parameter representa-
tion. Capture from each electron shell of the target atom
was taken into account. We used normalized charge-
exchange probabilities valid even for a large number of
channels (up to 500). Hydrogen-like wave functions
were also used, with the effective charge calculated by
taking into account the screening of the target nucleus.

The charge-exchange cross sections calculated
without allowing for the effect of target density (see
below) also exhibit nonmonotonic behavior. They are
almost constant at low energies and decrease according
to power laws varying between E–2 and E–3 at higher
energies. The largest cross section corresponds to
Fe26+ + Fe collisions, reaching a maximum of 6 ×
10−13 cm2 at E ≈ 0.08 keV/nucleon. Note that charge
exchange in high-energy collisions is due solely to the
capture of inner electrons from the target atom.

The effect of target density (N ≈ 0.8 × 1023 cm–3) is
essential for our computations, since it can reduce
charge exchange cross sections by several orders of
magnitude (see [32] for details). This effect is also
responsible for nonmonotonic behavior of charge-
exchange cross sections as functions of the charge and
JOURNAL OF EXPERIMENTAL 
energy of the incident ion, due to the contribution of
electron capture from inner shells of the target atom.

In brief, the effect of target density on charge
exchange can be explained as follows. The total charge-
exchange cross section is the sum of the cross sections
of electron capture into the ground state and all excited
states of the scattered projectile. When the target den-
sity is low, these states vary from the ground state to
those with infinitely large quantum numbers. As the
density increases, excited atoms tend to be ionized by
target atoms and the total charge-exchange cross sec-
tion decreases accordingly. Note that ionization of
highly excited ions is characterized by very high rates

proportional to , where Zt is the nuclear
charge of the target atom, Nt is the target density, v  is
the ion velocity, and n the principal quantum number of
the excited state. When the density is very high, as in
our case, the atom produced by charge exchange is in
the ground state or in one of the lowest excited states.
The corresponding cross sections are much smaller, and
their dependence on the energy and charge of the inci-
dent ion is weaker. In other words, charge-exchange
cross sections may exhibit nonmonotonic behavior
when the target density is high.

These effects manifest themselves in numerical
results: the computed cross sections rapidly decrease
and exhibit nonmonotonic behavior. This substantially
complicates computations, particularly in view of the
fact that the electron-capture cross section must be
found for every shell of the target atom when the energy
is high.

Nevertheless, we computed the cross sections for
incident ions of any degree of ionization, including
neutral atoms, taking into account the effect of solid tar-
get density. In total, about 100 cross sections have been
computed. Some of them are presented here.

First, let us consider the variation of the charge of
the projectile atom (or ion) along the cascade path,
which can be associated only with ionization of the
atom (or ion) and electron capture. The cross sections
of these processes (σip and σep, respectively) were com-
puted, as functions of energy, for all possible initial
charge numbers (from 0 to 26). The results are shown
in Figs. 7 and 8 only for selected charge states to sim-
plify presentation.

As mentioned above, we computed the cross section
of ionization of a target atom σit by a projectile atom or
ion for various initial charges of the incident particle.
The results depend on energy, but are virtually indepen-
dent of charge. This is demonstrated by the table, where
results obtained for the iron atom and two ions are pre-
sented. The cross sections obtained for different ions
are similar to those shown in the table.

The data presented in the first column of the table
agree with the curve corresponding to Z = 0 in Fig. 7
since atom–atom collisions are symmetric. The curves

Z t
2N tv

1– n2
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corresponding to ions lie close to it because the cross
sections are virtually independent of ion charge.
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Abstract—A theoretical model describing nucleation of the misfit dislocations with delocalized cores in island
films is proposed. The parameters of nanoislands (quantum dots) with such delocalized misfit dislocations in
the Ge/Si system are estimated. Within the framework of the proposed model, nucleation of the delocalized mis-
fit dislocations at the quantum dots in a broad range of parameters is energetically more favorable than nucle-
ation of the perfect misfit dislocations usually considered in the models of dislocated quantum dots. © 2004
MAIK “Nauka/Interperiodica”.
I. INTRODUCTION

In recent years, spatially ordered ensembles of semi-
conductor nanoislands (quantum dots) have been exten-
sively studied in both basic and technological aspects
(see, e.g., [1–15]). The functional properties of such
nanoislands, opening wide prospects for applications in
microelectronics and optoelectronics, significantly
depend on the defect structure of these objects. In par-
ticular, nucleation of the misfit dislocations (MDs) in
nanoislands leads to degradation of their unique prop-
erties [2]. This circumstance poses an important task of
determining the critical parameters of MD nucleation
in nanoislands.

The MDs in nanoislands can be perfect, partial, or
split (see Figs. 1a–1c, respectively). These types of
MDs are analogous to the perfect [16–25], partial, and
split [26–30] MDs in continuous films. Each configura-
tion of the partial and split MDs in a strained nanois-
land includes one or two partial dislocations (with the
Burgers vectors not coinciding with the basis vectors of
crystal lattices of the nanoisland or the substrate) and a
stacking fault (Figs. 1b and 1c). In the general case,
continuous crystalline films may also feature nucle-
ation of the MDs of another type, representing MDs
with the Burgers vector “smeared” over an extended
dislocation core [31]. Such MDs, referred to below as
delocalized misfit dislocations, have been considered
only in continuous films [31]. Until recently, theoretical
models of the MD nucleation in nanoislands considered
only perfect (undissociated) MDs (Fig. 1a) (see,
e.g., [13–15]). Recently, we proposed new theoretical
models describing the nucleation of partial split MDs in
nanoislands [32, 33].

The main aim of this study was to provide a theoret-
ical analysis of the conditions of nucleation of the delo-
calized MDs (Fig. 1d) in nanoislands.
1063-7761/04/9802- $26.00 © 200334
2. THE MODEL
OF A DELOCALIZED MISFIT DISLOCATION

IN A NANOISLAND

Consider a heteroepitaxial system representing an
island on a semiinfinite substrate (Fig. 1). Let the
nanoisland have the shape of a regular pyramid with a
square base of the side length l and the faces sloped at
an angle α to the substrate surface. The nanoisland and
the substrate are assumed to be isotropic elastic materi-
als possessing the same values of the shear modulus G

(a)

(b)

(c)

(d)

α
b

α

2a

l

Fig. 1. Schematic diagrams showing the possible configura-
tions of MDs in a pyramidal nanoisland on a substrate:
(a) perfect dislocation with a linear core; (b) partial disloca-
tion with a linear core and a stacking fault; (c) split disloca-
tion composed of two partial dislocations (with linear cores)
and a stacking fault between them; (d) delocalized disloca-
tion with the Burgers vector uniformly distributed along an
extended core representing a band of finite width.
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and the Poisson ratio ν. In our model, the island–sub-
strate boundary is characterized by a one-dimensional
misfit f = 2(ai – as)/(ai + as), where ai and as are the crys-
tal lattice parameters of the island and substrate,
respectively. This misfit f is modeled by a system of
edge dislocations (called coherent dislocations) with
the Burgers vectors dbex continuously distributed along
the island–substrate boundary with a linear density
of f/db.

The difference between the crystal lattice parame-
ters of nanoisland and substrate gives rise to misfit
stresses in the nanoisland. Relaxation of the misfit
stresses in nanoislands and thin films usually takes
place at the expense of nucleation and growth of the
MDs and their combinations [13–33]. The most fre-
quently encountered types are perfect MDs [13–25]
and sometimes partial and split MDs [26–30, 32, 33]. In
addition to these types, thin films also admit nucleation
of delocalized MDs [31]. Each delocalized MD is char-
acterized by the Burgers vector distributed along an
extended dislocation core, in contrast to perfect and
partial MDs with linear cores.

In this paper, we will consider delocalized MDs in
nanoislands, where the nucleation conditions are differ-
ent from those in the usual thin films (studied in [31]).
The difference in the MD nucleation conditions is
related to the fact that the geometry of a nanoisland dif-
fers from that of a continuous thin film. In particular,
the island geometry makes possible the nucleation of
delocalized MDs at the island–substrate boundary, near
the line of intersection of this interface with the side
face of the nanoisland (Fig. 1d). In this case, the free
side face produces significant screening of the MD
stress field, thus decreasing the elastic energy of MDs
and facilitating their nucleation in the island.

Let us consider in more detail the formation of a per-
fect MD with a delocalized core at the island–substrate
boundary (Fig. 1d). In the general case, this defect rep-
resents an inhomogeneous, continuous distribution of
dislocations along a certain region of the boundary. For
the sake of simplicity, we will model such an MD with
a delocalized core by a homogeneous distribution of
dislocations (called anticoherent dislocations).

The nucleation of an MD with a delocalized core is
energetically favorable if the island energy difference
∆W between the state with an MD and the coherent
state is negative. The exact analytical calculation of the
energy of an island with MD on a substrate requires the
knowledge of expressions for the edge dislocation
stress field near a free surface formed by the free sur-
faces of the island and the substrate (Fig. 1d). Since no
such expressions for the MD formation in the island are
available, the energy of this process will be calculated
for an island on a substrate modeled by an infinite elas-
tic cylinder of radius R (Fig. 2). In this model, the
island–substrate boundary represents a band intersect-
ing the cylinder parallel to its axis and making an angle
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
α with the cylinder surface. The angle α corresponds to
that between the base and side face of a real island. In
the coordinate system adopted in Fig. 2, the island–sub-
strate boundary corresponds to the segment (|x | < l/2 =
Rsinα, y = y0 = Rcosα). The MDs are modeled by anti-
coherent dislocations uniformly distributed along the
region |x | < a of the boundary at a linear density
of 1/(2a).

3. THE ENERGY CHARACTERISTICS
OF A DELOCALIZED MISFIT DISLOCATION

IN A NANOISLAND

Let us determine a change in the model system
energy related to the formation of an MD with a delo-
calized core at the island–substrate boundary. The
energy change ∆W (per unit length of the boundary) can
be represented as

(1)

where Wd is the proper elastic energy of the MD, W d – f

is the energy of the elastic interaction between the dis-
location and the misfit stress field, and W c is the MD
core energy.

The proper MD energy Wd is calculated as the
energy of the elastic interaction between the anticoher-
ent dislocation with the Burgers vectors –b/(2a)dxex ,
where b = ai is the interatomic distance in the island:

(2)

Here, g(x, x') is the energy of interaction between two
parallel dislocations (situated at points x and x') with
the unit Burgers vectors b = –ex . This quantity is calcu-

∆W Wd Wd f– Wc,+ +=

Wd 1
2
--- b

2a
------ 

 
2

  g x x ' ,( ) x x '. dd 
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–

 

a

 ∫  

a

 

–

 

a

 ∫  =  
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xl

 

/2

 

a–a–l

 

/2

 

R

y

 

0

 

z

 

α

 

Fig. 2. 

 

A model MD with a delocalized core in a two-phase
cylinder with an interface (island–substrate boundary). A
misfit between the two crystal lattices and the delocalized
MD are modeled by a continuous distribution of coherent
(black symbols) and anticoherent (open symbols) disloca-
tions.
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lated using an expression [23] for the stress function for
a dislocation in a cylinder as g(x, x') = (2sinαx/l,
2sinαx'/l), where

(3)

(4)

 = 2sinαy0/l, and D = G/[2π(1– ν)].

The energy of the elastic interaction between the
MD and the misfit stress field is calculated as the
energy of interaction between coherent and anticoher-
ent dislocations:

(5)

The MD core energy is related to the distortion of
chemical bonds at the interface as a result of the MD
formation. Following [31], we represent this energy as

(6)

where ∆γ is a change in the specific surface energy of
the interface upon the formation of an MD with a delo-
calized core.

g̃

g x̃ x'˜,( ) D M 1–( ) 1 2 ỹ0
2 M 1+( )–[ ] Mln–{ } ,=

M
x̃ x'˜–( )2

ỹ0
4 x̃2 x'˜ 2 2–+( ) ỹ0

2 x̃x'˜ 1–( )2+ +
-----------------------------------------------------------------------------,=

ỹ0

Wd f– b
2a
------ f g x x',( ) xd x'.d

l/2–

l/2

∫
a–

a

∫–=

Wc 2a∆γ,=

10

5

0

–5

–10

–15

–20

∆W, ∆W
~

∆W
~

0 0.05 0.10 0.15 a~

1

2

3

Fig. 3. Plots of the energy difference ∆W due to the forma-
tion of a delocalized MD in a nanoisland versus dimension-
less halfwidth  of this defect for ∆γ = 0 (1), 0.03 (2), and

0.066 J/m2 (3). The horizontal line shows the  value
corresponding to the formation of a perfect MD with a

localized core at the center of the island base (∆W and 

values are expressed in units of Db2/8).

ã

∆W̃

∆W̃
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Substituting expressions (2), (5), and (6) into rela-
tion (1), we obtain

(7)

where  = 2asinα/l.

The ∆W values were determined by analytically cal-
culating the inner integrals and numerically calculating
the outer integral in Eq. (7). Figure 3 shows the plots of
∆W( ) in the interval 0 < a < l/2 for various values of
the parameter ∆γ, l = 100b, and α = 11°. Calculations
were performed for Ge/Si nanoislands with the follow-
ing parameters: f = 0.042; b = 0.566 nm; G = 40 GPa;
ν = 0.26. For comparison, the horizontal line in Fig. 3

shows the  value corresponding to the formation of
a perfect MD with a localized core.

As can be seen from Fig. 3, there exists a certain
equilibrium defect length  =  corresponding to a

minimum of ∆W. The  value decreases upon increase
in ∆γ. For any value of ∆γ not exceeding a specific sur-
face energy of 0.066 J/m2 for the stacking fault in the

Ge/Si system, we have ∆W( ) < 0 and ∆W( ) < ,
so that the formation of an MD with a delocalized core
in the island becomes energetically favorable. Thus, the
accommodation of misfit stresses via nucleation of
delocalized MDs is an alternative to the formation of a
localized dislocation that can take place even in small
islands, where the formation of usual dislocations is
energetically unfavorable.

4. CONCLUSIONS

We have performed a theoretical analysis of the con-
ditions favoring the nucleation of delocalized MDs—
misfit defects of the new type—in nanoislands (quan-
tum dots). The theory shows that, in a broad range of
structural and geometric parameters, the formation of
such localized MDs (Fig. 1d) in nanoislands in the
Ga/Si system can be energetically more favorable than
the nucleation of usual perfect MDs (Fig. 1a). This
result makes interesting the experiments on identifica-
tion of the types of MDs in nanoislands, since various
MDs must be, strictly speaking, sensitive to different
parameters of the structure, chemical composition, and
technology of nanoislands. In particular, the conditions
for nucleation of a delocalized MD (Fig. 1d) signifi-
cantly depend on the energy of distorted chemical
bonds in the extended core of this dislocation, in con-
trast to the case of a perfect MD (Fig. 1a).

∆W
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ã

∫



=

  
4
 
a

b
 ------ f –  g x ˜ x '˜ ,( ) x '˜ d 

α

 

sin–

 

α

 

sin

 ∫  dx ˜ 16
 

a ∆γ
 

b
 

2
 ----------------+ 





 ,

ã
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Identification of MDs of various types and determi-
nation of the critical parameters controlling their for-
mation opens possibilities for developing a technology
for obtaining ensembles of nanoislands possessing
improved functional characteristics. In addition, the
identification of various types of MDs in nanoislands
will contribute to the development of basic notions
about the physics of defects in nanostructured solids.
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Abstract—A field-theoretic approach is applied to describe behavior of homogeneous three-dimensional sys-
tems with long-range interactions defined by two order parameters at bicritical and tetracritical points. Renor-
malization-group equations are analyzed in the two-loop approximation by using the Padé–Borel summation
technique. The fixed points corresponding to various types of multicritical behavior are determined. It is shown
that effects due to long-range interactions can be responsible for a change from bicritical to tetracritical behav-
ior. © 2004 MAIK “Nauka/Interperiodica”.
It was shown in [1] that effects due to long-range
interaction described by the power law 1/r–D – a with
a < 2 are responsible for a change in critical behavior.
It was also revealed that three-dimensional systems
with a < 1.5 are described by mean-field critical expo-
nents.

This paper deals with effects of long-range interac-
tion on systems described by two fluctuating order
parameters. The phase diagrams of such systems can
contain bicritical and tetracritical points. In the former
case, a multicritical point is the point of intersection of
two second-order phase transition curves and one first-
order phase transition curve. In the latter case, it is the
point of intersection of four second-order phase transi-
tion curves. In the neighborhood of a multicritical
point, the system exhibits critical behavior character-
ized by competing types of ordering. Whereas one crit-
ical parameter is replaced by the other at a bicritical
point, the ordering types can coexist in a mixed phase
at a tetracritical point. Such systems can be described in
terms of two order parameters that are transformed
under different irreducible representations [2].

The model Hamiltonian is written as

H0
1
2
--- dDq τ1 qa+( )ΦqΦ q–∫=

+
1
2
--- dDq τ2 qa+( )ΨqΨ q–∫
1063-7761/04/9802- $26.00 © 0338
(1)

where Φ and Ψ are fluctuating order parameters, u01
and u02 are positive constants,

Tc1 and Tc2 are the corresponding phase-transition tem-
peratures, and a is the long-range parameter.

This Hamiltonian admits a wide diversity of multi-
critical points. The conditions for tetracritical and

bicritical behavior are  < u1u2 and  ≥ u1u2, respec-
tively.

In the field-theoretic approach [3], the asymptotic
critical behavior and structure of phase diagrams in the
fluctuation region are governed by the Callan–Symanc-
zyk equation for the vertex parts of irreducible Green
functions. The β and γ functions contained in the Cal-
lan–Symanczyk equation for renormalized interaction
vertexes u1, u2, and u3 are calculated by a standard
method based on the Feynman diagram technique and
a renormalization procedure [4]. As a result, the follow-
ing expressions for β functions are obtained in the two-
loop approximation:

+ u01 dD qi{ } Φ q1Φq2( ) Φq3Φ q1– q2– q3–( )∫
+ u02 dD qi{ } Ψ q1Ψq2( ) Ψq3Ψ q1– q2– q3–( )∫

+ 2u03 dD qi{ } Φ q1Φq2( ) Ψq3Ψ q1– q2– q3–( ) ,∫

τ1 T Tc1– /Tc1, τ2 T Tc2– /Tc2,∝∝

u3
2 u3

2

βu1 u1– 36J0u1
2 4J0u3

2
1728 2J1 J0

2–
2
9
---G– 

  u1
3– 192 2J1 J0

2–
2
9
---G– 

  u1u3
2

64 2J1 J0
2–( )u3

3,––+ +=

βu2 u2– 36J0u2
2 4J0u3

2
1728 2J1 J0

2–
2
9
---G– 

  u2
3– 192 2J1 J0

2–
2
9
---G– 

  u2u3
2

64 2J1 J0
2–( )u3

3,––+ +=
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(2)

βu3 u3– 16J0u3
2 12J0u1u3 12J0u2u3 320 2J1 J0

2–
2
5
---G– 

  u3
3– 288 2J1 J0

2–
2
3
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  u1
2u3–+ + +=

– 288 2J1 J0
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2
3
---G– 

  u2
2u3 576 2J1 J0

2–( )u1u3
2

576 2J1 J0
2–( )u2u3

2
,––

J1
dDqdD p

1 q a+( )2
1 p a+( ) 1 q

2
p2 2p q⋅+ +

a/2
+( )

----------------------------------------------------------------------------------------------------------,∫=

J0
dDq

1 q a+( )2
------------------------,∫=

G
∂

∂ k a
----------- dDqdD p

1 q2 k2 2k q⋅+ +
a

+( ) 1 p a+( ) 1 q2 p2 2p q⋅+ +
a/2

+( )
--------------------------------------------------------------------------------------------------------------------------------.∫–=
In terms of the new effective interaction vertices

(3)

the β functions are expressed as

v 1

u1

J0
-----, v 2

u2

J0
-----, v 3
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J0
-----,= = =

β1 v 1– 36v 1
2 4v 3
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– 192 2 J̃1 1–
2
9
---G̃– 

  v 2v 3
2 64 2 J̃1 1–( )v 3

3,–
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(4)

This redefinition is meaningful for a ≤ D/2. In this
case, J0, J1, and G are divergent functions. Introducing
the cutoff parameter Λ, we obtain finite expressions for
the ratios

βu3 v 3– 16v 3
2 12v 1v 3 12v 2v 3+ + +=

– 320 2 J̃1 1–
2
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---G̃– 

  v 3
3
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2v 3 288 2 J̃1 1

2
3
---G̃–– 

  v 2
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(5)
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-------------------------------------------------------------------------------------------------------- dDq
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0
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∫
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,

0

Λ

∫
0

Λ

∫=
as Λ  ∞.
The integrals are performed numerically. For a ≤

D/2, a sequence of J1/  and G/  corresponding to
various values of Λ is calculated and extrapolated to
infinity.

J0
2 J0

2

It is well known that perturbation theory series are
asymptotic and expressions (4) cannot be applied
directly since the interaction vertexes for order-param-
eter fluctuations in the fluctuation region are too large.
For this reason, the required physical information was
extracted from these expressions by applying the Padé–
ICS      Vol. 98      No. 2      2004
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Fixed points and eigenvalues of the stability matrix

a b1 b2 b3

1.9 0.035842 0.035842 0.039202 0.069 0.505 0.702

1.8 0.033682 0.033682 0.034575 0.090 0.571 0.753

1.7 0.031287 0.031287 0.031334 0.113 0.629 0.809

1.6 0.027427 0.027427 0.026699 0.157 0.738 0.919

1.5 0.026514 0.026514 0.025973 0.171 0.762 0.949

v 1* v 2* v 3*
Borel method extended to the four-parameter case. The
appropriate direct and inverse Borel transforms have
the form

(6)

(7)

To obtain an analytic continuation of the Borel trans-
form of a function, a series in an auxiliary variable θ is
introduced:

(8)

The Padé approximant [L/M] is applied to this series at
θ = 1. The [2/1] approximant is used to calculate the β
functions in the two-loop approximation. The critical
behavior is completely determined by the stable fixed
point  satisfying the system of equations

(9)

The requirement of stability of a fixed point reduces to

f v 1 v 2 v 3, ,( ) ci1i2i3
v 1

i1v 2
i2v 3

i3

i1 i2 i3, ,
∑=

=  e t– F v 1t v 2t v 3t z1t z2t w1t w2t, , , , , ,( ) t,d

0

∞

∫

F v 1 v 2 v 3, ,( )
ci1 i2 i3, ,

i1 i2 i3+ +( )!
-------------------------------v 1

i1v 2
i2v 3

i3.
i1 i2 i3, ,
∑=

F̃ v 1 v 2 v 3 θ, , ,( )

=  θk ci1i2i3

k!
-----------v 1

i1v 2
i2v 3

i3δi1 i2 i3 k,+ + .
i1 i2 i3, ,
∑

k 0=

∞

∑

v 1* v 2* v 3*, ,( )

βi v 1* v 2* v 3*, ,( ) 0 i 1 2 3, ,=( ).=
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the condition that the eigenvalues bi of the matrix

(10)

lie in the right half-plane.
The resulting system of summed β functions has a

wide diversity of fixed points lying in the physical
region of vertexes with v i ≥ 0. A complete analysis of
the fixed points corresponding to the behavior of only
one order parameter was presented in [1]. Here, the
simultaneous critical behavior of both order parameters
is considered. The stable fixed points and eigenvalues
of the stability matrix are listed in the table.

An analysis of the critical points and their stability
leads to certain conclusions. When a > 1.6, bicritical

behavior is observed (  ≥ v 1v 2), as in the case of a
short-range interaction [2]. When 1.5 < a ≤ 1.6, tetrac-

ritical behavior is observed (  < v 1v 2).

Thus, effects due to long-range interaction are
responsible for a change from bicritical to tetracritical
behavior when 1.5 < a ≤ 1.6.
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Abstract—Femtosecond pump–probe measurements of reflection from crystallographic planes are performed
to investigate lattice relaxation dynamics in the NdBa2Cu3O7 – x high-temperature superconductor. Ultrafast
phonon response is examined over a wide temperature range for various orientations of the pump and probe
polarization vectors with respect to particular crystallographic axes. The initial phases of coherent phonons are
measured, and hysteretic behavior is revealed in the transition between two temperature regions above Tc for
the ac plane. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The use of femtosecond laser pulses has opened up
new vistas for real-time examination of lattice dynam-
ics [1]. There is currently active interest in pump–probe
measurements of lattice relaxation in high-temperature
superconductors [2–8]. Time-domain studies of pro-
cesses responsible for relaxation to equilibrium are fre-
quently conducted to elucidate details of lattice dynam-
ics that cannot be inferred from frequency-domain data.

Recently, pump–probe reflection spectroscopy of
coherent phonons and carrier transport in YBa2Cu3O7 – x

has revealed crossovers characterized by dramatic
change in the relaxation dynamics of the carriers and
lattice in the pseudogap state [7, 8]. The crossovers
exhibit hysteretic behavior with respect to temperature
variation, thus indicating the inhomogeneity of the
pseudogap state. This feature had been predicted theo-
retically [9–11], but lacked experimental support [12].
The experiments were conducted on films, which made
it impossible to measure the anisotropy of optical
response.

In this paper, we report the results of a femtosecond
pump–probe experiment on bulk NdBa2Cu3O7 – x single
crystals, which are isomorphous to YBa2Cu3O7 – x . The
study was conducted to obtain detailed information on
lattice relaxation dynamics over a temperature range
including both superconducting and pseudogap states.
Dynamical optical responses from two crystallographic
planes are compared for various orientations of the
pump and probe polarization vectors with respect to
one another and to particular crystallographic axes.
1063-7761/04/9802- $26.00 © 200341
2. EXPERIMENTAL

The NdBa2Cu3O7 – x single crystals under study
were parallelepipeds whose faces lay in the crystallo-
graphic planes to within 3°. The crystals were oriented
by x-ray diffraction. The critical temperature Tc was
95 K, indicating a doping level close to that of the
YBa2Cu3O7 – x films examined in [7, 8]. The crystals
were placed in an optical helium cryostat, which made
it possible to vary the temperature from 10 to 300 K.

The optical response was examined in the time and
frequency domains. The time-domain measurements
employed a 780-nm Ti:sapphire laser with a pulse
width less than 50 fs and a repetition rate of 78 MHz.
The response was detected with a fast scanning system
[8, 13]. We measured ∆R(τ) = R(τ) – R0, where R is the
reflectivity in the excited state, τ is the probe time delay,
and R0 is the reflectivity before excitation. To identify
and evaluate phonon modes, the time-domain response
was mapped into the frequency domain by numerical
Fourier transform (FT). The response anisotropy was
examined with respect to the ab and ac crystallographic
planes. Two types of angular dependence were investi-
gated. We aligned the pump vector with a crystallo-
graphic axis and varied the angle ϑ  between the pump
and probe polarization vectors. Alternatively, we set ϑ
to 90° and varied the angle α between the pump polar-
ization vector and a crystallographic axis.

We also measured spontaneous Raman scattering in
the x(zz)x and z(x'x')z configurations (the prime denotes
rotation through 45°). The Raman spectra were
obtained with a 647-nm Kr+ laser and a triple spectro-
meter equipped with a multichannel detector. This part
04 MAIK “Nauka/Interperiodica”
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of the experiment was focused on fully symmetric
phonons.

A detailed description of the apparatus employed
can be found in [1, 14].

3. RESULTS

Figure 1 displays typical results obtained by mea-
suring the optical response of a NdBa2Cu3O7 – x single
crystal. Within a relaxation time of several picosec-
onds, the monotonically decreasing nonexponential
reflectivity due to electronic relaxation [8] is modulated
by small-amplitude oscillations caused by coherent
phonons [1, 15] (see also the inset to Fig. 1a).

The coherent-phonon spectra obtained for both crys-
tallographic planes exhibit two modes (see Fig. 1b),
which should be attributed to Ba and Cu ions by com-
parison with the Raman spectra shown in Fig. 2. The Ba
and Cu modes of the Raman spectra are located at ν1 =
3.6 THz and ν2 = 4.7 THz, respectively [16]. Note that
the Ba mode in the z(x'x')z spectrum is much stronger,

0.05

0.10

0.15

2 4 6
0

104 ∆ R/R0

τ, ps

2 3 4 5 6

Ba

Cu

FT

ν, THz

Fig. 1. (a) Time- and (b) frequency-domain representations
of reflection from the ac plane of the NdBa2Cu3O7 – x single
crystal at room temperature. The solid curve is the optical
response. The dot-and-dash curve is the autocorrelation
function of the incident pulse. The inset is an enlarged view
of coherent-phonon oscillations.

(a)

(b)

0
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whereas the modes have comparable magnitudes in the
spectra of YBa2Cu3O7 – x that correspond to the basis
polarizations [14] and in the x(zz)x spectrum of
NdBa2Cu3O7 – x.

Being fully symmetric, both phonon modes obey the
transformation law for second-rank tensors of the form

In this paper, we analyze only the oscillatory compo-
nent of the optical response as a function of ϑ , α, and
temperature.

First, we consider the case when ϑ  = 90° and both
pump and probe polarization vectors are in the ab
plane. The Cu mode predominates at room temperature.
As T is decreased, the Ba mode grows, while the Cu
mode remains almost invariant. At T < Tc , the Ba mode
is almost as strong as the Cu one (see Fig. 3). The FT
spectra shown in Fig. 3a indicate that the oscillation
magnitudes are very sensitive to variation of ϑ . Further-
more, the patterns obtained for ϑ  = 0 and ϑ  = 180° are
dissimilar, whereas the corresponding crystallographic
directions are equivalent.

However, the amplitude ratio β = ABa/ACu is almost
invariant over the entire range of ϑ  (see Fig. 3b). This
finding is consistent with the high degree of isotropy in
the ab plane due to twinning and the fact that |a| ≈ |b|.
Figure 3b suggests that β varies as a periodic function

Ag
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c 
 
 
 
 

.=

z(x'x')z
x(zz)x

B
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Fig. 2. Room-temperature Raman spectra of the
NdBa2Cu3O7 – x single crystal for two scattering configu-
rations.
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with a period close to 90°, but the data points available
are too few to provide conclusive evidence.

Let us now consider the ac-plane measurements.
Figures 4–7 present FT spectra obtained at room and
liquid-helium temperature by varying α or ϑ , with α
measured relative to the c axis.

Figure 4 shows the results of room-temperature
measurements in which α was set to 0, 45°, or 90°
while ϑ  was held constant at 90°. (Note that the pump
polarization vector is aligned with the a axis when α =
90° and makes 45° with each crystallographic axis
when α = 45°.) Figure 4b shows FT spectra normalized
to unity in order to visualize the behavior of β. In these
measurements, the largest oscillation amplitude is
observed when the pump beam is polarized along the a
axis (α = 90°). According to Fig. 4, β also varies with
α. This is explained by anisotropy with respect to the ac

32 4 5 6
ν, THz

ϑ  = 0

90°

180°

FT

a epr

b
ep

ϑ

(a)

0 45° 90° 135° 180°
ϑ

0.3

0.6

0.9

β

(b)

Fig. 3. Reflection from the ab plane at 10 K: (a) Fourier
transform of the oscillatory component; (b) amplitude ratio
of the Ba and Cu modes vs. relative orientation of polariza-
tions.
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plane, which is produced both by the lattice and by the
charge carriers.

Figure 5 illustrates the results obtained at 10 K for
the same combinations of α and ϑ  by electrooptical
sampling. In this method, anisotropy is evaluated by
measuring the squared difference of the matrix ele-
ments, which are uniquely determined by the corre-
sponding angles with respect to the probe polarization
vector, ±π/4. Again, both oscillation magnitude and β
depend on α. Note, however, that their largest values
correspond to α = 45°.

The Fourier spectra and the graph of β versus ϑ
shown in Fig. 6 were obtained at 10 K for several values
of ϑ . In contrast to the ab-plane case, β exhibits a strong
angle dependence here. This provides additional evi-
dence for the anisotropy of phonon response. Note also
that the largest oscillation amplitude is observed when
ϑ  = 90°, whereas the response is much weaker when
ϑ  = 0°.

Figures 7a and 7b show the FT spectra obtained at
10 K by the standard method and by electrooptical sam-
pling, respectively, for the same three values of α. Note

T = 295K

α = 45°
α = 0
α = 90°

FT

α

a

c

ep

epr

2 3 4
0

5
ν, THz

0.5

1.0
(b)

(a)

FT

Fig. 4. Reflection from the ac plane at room temperature:
(a) Fourier transform of the oscillatory component vs. angle
between the pump polarization vector and the c axis; (b) FT
data normalized to unity.
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that the largest oscillation magnitude measured by elec-
trooptical sampling corresponds to α = 45°, as in the
room-temperature measurements.

The results presented above (particularly in Figs. 4
and 7) suggest that the amplitude ratio β depends not
only on the measurement geometry, but also on temper-
ature. Figure 8 shows the results of a more detailed
study of this dependence in which the amplitude ratio
was measured by varying temperature from about 250
to 10 K and back. Here, β(T) exhibits hysteretic
behavior at T > Tc analogous to that observed for
YBa2Cu3O7 – x films [7, 8]. These results mean that the
pseudogap phase affects the lattice polarizability per-
pendicular to the ac plane; i.e., they point to a three-
dimensional nature of the pseudogap. They can be used
to assess the accuracy of theoretical models describing
the pseudogap state.

We evaluated the initial coherent-phonon phases for
the ac plane at room temperature. The zero time point
was found by measuring the autocorrelation function of
the laser pulse with the use of a nonlinear crystal. The

α = 45°
α = 90°

α = 0

T = 10 K

α

a

c

ep

epr

2 3 4 5
ν, THz

0.5

1.0

Fig. 5. Reflection from the ac plane at 10 K measured by
electrooptical sampling: (a) Fourier transform of the oscil-
latory component vs. angle between the pump polarization
vector and the c axis; (b) FT data normalized to unity.

(a)

(b)

0

FT
FT
JOURNAL OF EXPERIMENTAL 
oscillatory component of the response was approxi-
mated by the function

The initial values of the amplitudes, frequencies, and
time constants were derived from FT spectra. The
results shown in Fig. 9 imply that the initial phases are
0 and π/2 for the Cu and Ba modes, respectively. The
phase shift was confirmed by analyzing the FT phases.

4. DISCUSSION

We start by comparing the pump–probe reflection
measurements with the Raman spectra. As with
YBa2Cu3O7 – x, the oscillatory component of reflectiv-
ity mapped into the frequency domain differs from the
Raman spectrum. The difference in phonon line shape

∆R
R0
------- 

 
osc

A1 t/τ1–( ) ν1t ϕ1+( )sinexp=

+ A2 t/τ2–( ) ν2t ϕ2+( ).sinexp

Fig. 6. Reflection from the ac plane at 10 K: (a) Fourier
transform of the oscillatory component; (b) amplitude ratio
of the Ba and Cu modes vs. relative orientation of polariza-
tions.
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is predictable because the methods measure distinct
states of the phonon system. In pump–probe measure-
ments, the phase is well defined since phonons are
brought into a coherent state by the pump, and the spec-
tral range of frequency-domain response characterizes
the rate of phase memory loss. In spontaneous Raman
spectroscopy, the linewidth characterizes the phonon
energy dissipation [1] via interaction with other phonon
modes (acting as a thermal reservoir) and the attenua-
tion of an optical phonon is mainly due to its anhar-
monic decay into two acoustic modes.

At room temperature, β < 1 and β ≥ 1, respectively,
in the time response and Raman spectrum of
YBa2Cu3O7 – x measured for a crystallographic plane.
The same is true of NdBa2Cu3O7 – x. Below Tc, both
methods yield β ≥ 1 for YBa2Cu3O7 – x, but the β–T
characteristics measured by these methods are differ-
ent. For NdBa2Cu3O7 – x in the superconducting state,
β @ 1 in the time response at liquid-helium temperature

FT
(a)

α

a

c

epepr

α = 90°
α = 45°
α = 0

2 3 4
0

5
ν, THz

0.5

1.0
(b)

FT

T = 10 K

Fig. 7. Comparison between FT spectra of reflection from
the ac plane at 10 K obtained for different angles between
the pump polarization vector and the c axis by (a) standard
method of detection and (b) electrooptical sampling. The
data for α = 90° and α = 0 in panel (a) are multiplied by 103

and 500, respectively. The data in panel (b) are normalized
to unity.
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even though ABa grows with decreasing temperature,
whereas the Raman spectrum gives β @ 1. Therefore, it
appears unlikely that the disagreement between the
time- and the frequency-domain measurements can be
fully explained in terms of the absolute values of
Raman tensor components. It is also difficult to under-
stand the dissimilarity between the FTs shown in
Fig. 3a for ϑ  = 0° and ϑ  = 180°. However, since the
Raman tensor of a phonon can be expressed in terms of
partial derivatives of the dielectric tensor with respect
to the phonon normal coordinates, the Raman tensor
components are, in general, complex numbers [14, 17].
Whereas standard Raman-spectroscopy measurements
are insensitive to the phase factors of the tensor compo-
nents, this is not the case when the incident and scat-
tered polarization vectors are not parallel to the princi-
pal axes of the Raman tensor [17]. In such configura-
tions, two tensor components contribute to the Raman
spectrum and its intensity depends on their phases.
Owing to the coherent nature of lattice response, phase
factors are important for pump–probe measurements.
Therefore, the discrepancy between pump–probe and
Raman data must be explained in terms of the phase
factors [5]. Mathematically, it is analogous to the dis-
tinction between a difference of squares and the square
of difference.

The importance of the phase factors is illustrated by
Fig. 3a. The dissimilarity between the curves obtained

for ϑ  = 0 and ϑ  = 180° (  and [100] directions) can
be understood by noting that

100[ ]

beϕb aeϕa+ 2 beϕb
2 aeϕa

2+≠
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6
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50 100 150 200 250

Tc

β
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Fig. 8. Amplitude ratio of the Ba and Cu modes vs. temper-
ature for the ac plane. Arrows indicate directions of temper-
ature variation.
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since the interference term, being proportional to
cos(ϕb + ϕa), has different values at ϕa = 0 and ϕa = π.
This line of reasoning can also explain different types
of angular dependence obtained for the ac plane, such
as the discrepancy between the FT spectra measured by
the standard method of detection and by electrooptical
sampling for each α (Fig. 7).

The first observations of hysteretic behavior in the
ReBa2Cu3O7 – x system, where Re represents a rare-
earth ion, were reported shortly after the discovery of
high-temperature superconductivity [12, 18–22]. In
most cases, the phenomenon was revealed by ultra-
sonic measurement of certain elastic constants. For
optical modes, hysteresis was originally detected in
YBa2Cu3O7 – x in pump–probe laser measurements [7, 8].
Analogous hysteretic curves were obtained for
NdBa2Cu3O7 – x in the present experiment. Since a com-
parison of β obtained for T > Tc and T < Tc suggests that
the corresponding coherent-phonon spectra are alike,
the lattice in the normal state must have some proper-
ties of the superconducting state.

Hysteresis in NdBa2Cu3O7 – x differs from that in
YBa2Cu3O7 – x by a wider range of β and a slight dis-
tinction between crossover points. In particular, the
transition from the pseudogap state to the normal state
with increasing temperature occurs at a lower tempera-
ture. However, detailed comparison is hindered by the
wide difference in temperature resolution between this
experiment and previous ones [7, 8].

The existence of crossovers in the normal state was
interpreted as due to the aforementioned inhomogene-
ity of the pseudogap state [7, 8]. This phenomenon was

105 (∆R/R0)osc
0.1

0

–0.1
0 0.3 0.6 4 5

Cu
Ba

τ, ps

Fig. 9. Determination of the initial coherent-phonon phases
for the Cu mode (dotted curve) and the Ba mode (solid
curve).
JOURNAL OF EXPERIMENTAL 
attributed to local pairing and electron-pair delocaliza-
tion [9], treated in terms of weak and strong pseudogap
regimes of a nearly antiferromagnetic Fermi liquid
(NAFL) [10], and explained by the formation of stripes
[11]. However, it was noted that none of these models
predicted the hysteresis. Moreover, the three-dimen-
sional nature of the pseudogap established in the
present experiment implies that essentially two-dimen-
sional models of the pseudogap state (such as NAFL
theory) are poorly suited to the study of hysteresis.
However, the possibility that the hysteresis is caused by
charge ordering was indicated in [23], where the hyster-
esis was attributed to the lattice anharmonicity associ-
ated with the double-well potential generated by the
oxygen bridge.

Finally, some comments are in order concerning the
initial phase of coherent phonons. In femtosecond
pump–probe experiments, the phase can be stabilized
by reducing the pump pulse width to below the inverse
of the phonon mode frequency. Phase measurements
are frequently used to single out the mechanism respon-
sible for generation of coherent phonons, because the
two competing phenomenological models proposed to
describe coherent lattice dynamics tend to predict dif-
ferent values of the phase. In particular, the initial phase
is ±π/2 (the phonon mode behaves as a cosine) in the
mechanism known as displacive excitation of coherent
phonons (DECP), whereas the model of transient stim-
ulated Raman scattering predicts zero phase (sinusoidal
pattern) [1]. We note here that this distinction oversim-
plifies the relation between the phonon phase and the
mechanism of phonon generation. In their pioneering
work, Kütt et al. [3] successfully used calculations
based on the DECP model to explain certain properties
of coherent phonons in YBa2Cu3O7 – x, including tem-
perature dependence, even though the phase was found
to be zero. However, neither the initial phase value nor
detection of off-diagonal Raman-active phonons can be
explained by DECP calculations [1].

The phase shift of π/2 between the Cu and Ba
phonon modes measured in this study should not be
taken to imply that these modes are generated by essen-
tially different mechanisms, because the modes have a
variety of common features. In fact, the properties of
coherent phonon as a quantum entity are largely deter-
mined by the measurement method [1, 25]. Also note
that the absolute phase has no physical meaning
because the quantity measured in any experiment is a
phase difference. We plan to conduct an experimental
comparison of coherent-phonon phases measured by
the standard method of detection and by electrooptical
sampling in the same configuration.

5. CONCLUSIONS

For a bulk NdBa2Cu3O7 – x single crystal, the anisot-
ropy of the coherent-phonon component of the optical
response was examined by femtosecond pump–probe
AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004



COHERENT PHONONS IN NdBa2Cu3O7 – x SINGLE CRYSTALS 347
measurements of reflection from crystallographic
planes. The time-domain data were mapped into the
frequency domain by numerical Fourier transform. The
dependence of the amplitude ratio of the Ba and Cu
modes on the angle between the pump and probe polar-
ization vectors was found to be weak for the ab plane
and strong for the ac plane. The anisotropy is explained
by the difference between the absolute values of Raman
tensor components and the influence of their phase fac-
tors. Hysteretic behavior of the optical response is
revealed in a temperature range above Tc . For the same
plane, it is shown that the initial phases of the fully
symmetric Cu and Ba phonon modes are shifted by π/2
at room temperature.
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Abstract—Propagation of a light pulse through a weakly inhomogeneous optical fiber is analyzed. The non-
linear envelope equation describing the evolution of polarized pulses is determined by statistical properties of
inhomogeneities in the optical fiber. The isotropic Manakov system of equations is shown to be applicable in
the presence of high-frequency small-scale defects in the fiber. In the presence of only large-scale inhomoge-
neities, the signal dynamics are described by an anisotropic system of equations. © 2004 MAIK “Nauka/Inter-
periodica”.
Currently, fiber optic communication systems are
considered the most promising in information transfer
over long distances. Such a system is a sequence of
optical fibers and amplifiers. The amplifiers are
required to compensate for losses inside a fiber. In the
linear regime (when pulse power is low), the channel
capacity is primarily limited by the noise generated by
amplifiers. Since the amplitude of spontaneous emis-
sion noise is independent of signal power, considerable
effort is applied to develop soliton systems, where a
sequence of digits is encoded into high-power soliton
pulses. These systems are characterized by essentially
nonlinear signal dynamics. In the case of an ideal fiber,
the dynamics are described by the nonlinear
Schrödinger equation [1]. In this study, we analyze the
more realistic case of a fiber with random fluctuating
index profile and polarization-dependent evolution of
electric-field energy density. We show that the form of
an averaged large-scale equation describing this system
strongly depends on the statistics of fluctuations and
their scale distribution.

The light pulses used in information transfer have
narrow spectral widths δω compared to the carrier fre-
quency ω0. They can be described in terms of the enve-
lope defined by a two-component complex vector y =
(ψ1, ψ2):

(1)

Here, E is the electric field of a pulse; z is the longitu-
dinal coordinate in a fiber; and t is the retarded time
related to the physical time tphys as t = tphys – z/c, where
c is the group velocity of the packet. The evolution
equation for the vector y is obtained by averaging
Maxwell’s equations for the electromagnetic field in

E y z t,( ) iω0t( )exp y* z t,( ) iω0t–( ).exp+=
1063-7761/04/9802- $26.00 © 20348
the fiber medium over the fast-oscillation period 2π/ω0.
Taking into account the Kerr nonlinearity in chromatic
dispersion and choosing appropriate units of y, z, and t,
one can reduce this equation to the following form [2]:

(2)

The matrix (z) describing birefringence effects is a
random function of z because the fiber shape is irregu-
lar. This irregularity can be caused by static stresses,
technological defects, etc. In what follows, we assume
that Vαβ @ 1 unless stated otherwise. Physically, this
means that the effects due to nonlinearity and chro-
matic dispersion are much weaker than birefringence
for optical pulses of typical width ∆ and amplitude A.
This condition is satisfied in real communication lines
[1]. In the units of measure used in Eq. (2), ∆ ~ 1 and
A ~ 1.

In Eq. (2), we omit the terms containing time deriv-
atives due to the same inhomogeneities, such as

(z)∂ty and ξ(z) y, where (z) and ξ(z) are random
matrix and scalar functions, respectively. These correc-
tions for random dispersion are small (about δω/ω0) as
compared to the terms retained in Eq. (2), and their con-
tribution is significant only at large z. The effective
deterministic equation describing unperturbed evolu-
tion (if this equation exists, see below) is determined by

the statistical properties of the matrix (z) at z ≤ 1. The
form of this averaged equation may depend on the
parameters of the problem. In this paper, we refine the

i∂zy– ∂t
2y 4

3
--- ψ1

2 ψ2
2+( )y+=

+
2
3
--- ψ1

2 ψ2
2+( )y* V̂ z( )y … .+ +

V̂

m̂ ∂t
2 m̂

V̂

004 MAIK “Nauka/Interperiodica”



        

EFFECTIVE EQUATION OF NONLINEAR PULSE EVOLUTION 349

                                  
applicability conditions both for specific effective
equations and for deterministic description in general.

The term V(z)y in evolution equation (2) is respon-
sible for strong dependence of the vector y on z. This
dependence is eliminated by the transformation

(3)

The equation of motion for the field Y(z, t) contains
rapidly oscillating functions of z. However, their ampli-
tudes do not exceed unity, which means that the oscil-
lation scale (about 1/V) is much smaller than the scale
of significant variation of signal amplitude (about 1).
Therefore, an averaged description of the system’s
dynamics is possible.

The matrix (z) is treated as traceless (this can be
achieved by a phase transformation of the field y). Fur-
thermore, we consider fibers that do not exhibit natural

optical activity. Therefore, (z) can be represented as

(see [3]), where b(z) is the difference of the wave vec-
tors for different polarizations and the angle θ(z) char-
acterizes the orientation of these polarizations with
respect to fixed coordinate axes. It is easy to check that
the ordered exponential in Eq. (3) can be represented as

(4)

with

(5)

where  ≡ dθ/dz. The matrix (z) is the evolution
operator for spin 1/2 in the varying magnetic field

h(τ) = (0, , b). Therefore, the explicit form of (z)
strongly depends on the ratio of the amplitude h to the

characteristic scale l of its variation ( /θ ~ /h ~ 1/l).

If the fluctuating amplitude h =  is much larger
than 1/l (which is analogous to the characteristic fre-
quency of the field h(τ)), then the following estimate

for the operator (z) holds up to values of z that are
exponentially large in hl @ 1 [4, 5]:

(6)

y z t,( ) 7 i V̂ τ( ) τd

0

z

∫ Y z t,( ).exp=

V̂

V̂

V̂ z( ) b σ̂3 θcos σ̂1 θsin+( )=

7 i V̂ τ( ) τd

0

z

∫exp
i
2
---σ̂2θ– Ŵ z( ),exp=

Ŵ z( ) 7 i bσ̂3
θ̇
2
---σ̂2+ 

  τd

0

z

∫ ,exp=

θ̇ Ŵ

θ̇ Ŵ

θ̇ ḣ

θ̇2
b2+

Ŵ

Ŵ z( ) i h τ( ) τd

0

z

∫ iΓσ̂3+ 1 γ σ̂+ γ*σ̂––+( ),exp=

γ O
1
hl
----- 

  , Γ 1.∼ ∼
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Here, Γ is the first correction in the adiabatic expansion
for the spinor phase (which is sometimes called the

Berry phase [6]) and  = (  ± i )/2. Indeed, the
varying profile h(τ) can be represented in this case as a
superposition of inhomogeneities of characteristic
size l. First, consider one such fluctuation localized
near the point z = 0. For z ≤ l, the off-diagonal elements

in the matrix (z) are determined by the “instanta-

neous” values (z), h(z), (z), (z), … and are on the

order of (z)/h(z) ~ (hl)–1. It is easy to see that this
parameter is an adiabaticity parameter: the first correc-
tion to the adiabatic approximation of W(z) is pro-

portional to (z)/h(z). For z @ l, all derivatives (z),

(z), … vanish and the off-diagonal elements γ are on
the order of exp(iChτs), where the singular point (or
zero) τs of the analytic continuation of h(z) into the
upper half-plane is nearest to the real axis (for details,
see [4, 5]). If this function has no scales other than l,
then Imτs ~ l and γ(z @ l) ~ exp(–const · hl). When
inhomogeneities are repeatedly encountered by a pulse
propagating along the fiber, such exponentially small
corrections add up. Therefore, the applicability of esti-
mate (6) is limited with respect to z. The inequality
hl @ 1 means that the scale of variation of h is much
larger than the length 1/h. Since h @ 1, we can average
over 1/h-scale oscillations after substituting Eqs. (4)
and (6) into Eq. (2). The resulting system of equations,

(7)

was used in [7] to analyze the effects of small noise
terms ξ1, 2 having a relative order of magnitude h–1.

The above analysis is applicable when the Fourier
components of the field h(z) with k ~ h @ 1/l are sup-
pressed. For a random field θ(z), these conditions are
satisfied when the correlation function Q(z) =

〈 (z) (0)〉  is decreasing at z @ l and analytic at z 
0. If there exist regions of rapidly varying θ(z) (sharp
bends, defects of structure, etc.), then the form of the

matrix (z) is determined by their statistical proper-
ties. For example, expression (6) is applicable at mod-
erate distances z when the amplitudes of inhomogene-

ities are not too large, but with γ ~ . Here, n is the
number of such microscopic defects per unit length
estimated as the asymptotic value of the Fourier trans-
form Q(z) at k ~ h–1. A similar “Brownian” increase in
γ is characteristic of intervals where the amplitude h(z)
is about 1/l (i.e., regions of nearly circular fiber cross
section). The corresponding n is estimated as the frac-

σ̂± σ̂1 σ̂2

Ŵ

θ̇ θ̇̇ ḣ

θ̇

θ̇ θ̇
θ̇̇

i∂zΨ1– 1 ξ1+( )∂t
2Ψ1 2 Ψ1

2 2
3
--- Ψ2
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  Ψ1,+=
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tion of these intervals in the total distance z. We define
zc as the distance for which the off-diagonal elements of

(z) are about unity. For a fiber with weak defects,
zc ~ 1/n. For a fiber with sharp bends and jumps in θ, the
length zc is estimated as the characteristic distance
between such defects. After averaging over scales
exceeding zc , only the identity representation of the

group SU(2) in the tensor product (z) ⊗  (z) ⊗  …
is retained. Otherwise, the group SU(2) would contain
a subgroup invariant under multiplication by matrices

(z1, z2) with arbitrary z1 and z2. There is no such
group unless the amplitude of fluctuations of the direc-
tion of h(z) is zero. This obviously follows from the fact
that matrices exp(h1 · ) and exp(h2 · ) with noncol-
linear vectors h1 and h2 do not commute. Reduction to
an identity representation is equivalent to averaging
over an invariant measure on the group SU(2) (e.g.,
see [8]).

Averaging over SU(2) can be carried out in the equa-
tion for varying Y(z, t) if zc ! 1. In this case, the form
of the effective equation is determined by the nonzero
averages

(8)

We conclude that the evolution of a light pulse in a fiber
with a relatively high density of microscopic defects is
described by the Manakov equations [9]

(9)

where x denotes small chaotic perturbations (see
above). Equations (9) were derived by various methods
by Menyuk and Wai (see [10, 11] and references cited
therein). However, these authors erroneously con-
cluded that system (9) is universally applicable as a
model of pulse evolution if the correlation length of
fluctuations of fiber inhomogeneities is much less than
both dispersion and nonlinearity length scales (l ~

1/  ! 1 in the present units). It was shown above that
one must take into account the relative values of b ~ h
and 1/l, as well as the short-wavelength asymptotic
behavior of the correlation function of these fluctua-
tions, which is determined by rare events. The impor-
tance of the value of hl in the linear problem of evolu-
tion of polarization was emphasized in [12].

In principle, an averaged description based on
Eq. (7) of Eq. (9) is applicable if zc @ 1 @ h–1 or zc ! 1,
respectively. If z ~ zc , the signal shape is determined by

the detailed behavior of the functions (z). Indeed, the
averaging over SU(2) can be performed only if the tra-

jectory of (z) has traversed the neighborhood of any
point of the group manifold a sufficient number of

Ŵ

Ŵ Ŵ

Ŵ

ŝ ŝ

W11
2 W12

2〈 〉 1/6, W11
4 W12

4+〈 〉 2/3.= =

i∂zY– 1 x+( )∂t
2Y 16

9
------ Ψ1

2 Ψ2
2+( )Y,+=

θ̇

V̂

Ŵ
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times. The ratio 1/zc is a good measure of this “covering
density” on the nonlinearity scale (i.e., over lengths of
about 1). When z ~ zc , fluctuations of the moments of

the ordered exponential (z) are also on the order of
unity and there is no self-averaging. In the limit of zc @
zc ~ 1, fluctuating stresses inside the fiber combined
with shape fluctuations destroy the pulse [7, 13]; i.e.,
the maximum amplitude falls well below its initial
value. The values of z and zc can be compared by mea-
suring the ellipticity of a signal that is linearly polarized
along one of the principal axes at z = 0 in the linear
regime.

Finally, we present the basic conclusions of this
work. Since we discuss signal propagation in a random
medium, only statistics of various observables are gen-
erally meaningful. However, the system can be
described by deterministic equations when the zc (char-
acteristic length of change in wave polarization of order
unity) has either of two limit values. If z ! zc , where z
is the fiber length, then polarization adiabatically fol-
lows the variations of the principal axes of the fiber and
Eqs. (7) are applicable. In the opposite limit of z ≥ 1 @
zc , effective self-averaging associated with uniform dis-
tribution of polarization over the Poincaré sphere is
obtained, and pulse evolution is described by the Mana-
kov equations (9). If zc ~ 1, the system cannot be
described by any deterministic model. We note that the
fiber can be deformed intentionally to reduce zc to
zc ! 1 in the soliton regime of information transfer. The
reason is that Manakov system (9) is integrable. This
property is very important with regard to interaction
between solitons via disorder-induced radiation: this
interaction in integrable case (9) is much weaker than
that in nonintegrable cases [7, 13, 14], and the signal
structure is noticeably distorted at much longer dis-
tances.
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Abstract—An analysis of the stochastic layer in a driven pendulum is extended to the case when the separatrix
map contains both single- and double-frequency harmonics. Resonance invariants of the first three orders are
found for the double-frequency harmonic. Combined with the previously known single-frequency invariants,
they can be used to obtain further information about the layer, in particular, to examine the neighborhoods of
zeros of Melnikov integrals. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of interaction between nonlinear reso-
nances and the onset of dynamical chaos in typical (i.e.,
nonintegrable) Hamiltonian systems remains unsolved
and is the subject of ongoing research. The problem can
frequently be reduced to analysis of the behavior of a
pendulum driven by a quasiperiodic perturbation
(under initial conditions close to the main resonance):

(1)

(2)

where ε1, ε2 ! 1.

Dynamics in the neighborhood of the main-reso-
nance separatrices have been analyzed in many studies
(e.g., see [1–3]). Recall that each separatrix of this kind
is a combination of two trajectories connecting two
saddle points and corresponding to forward and back-
ward time evolution. Motion along separatrices is char-
acterized by infinitely large periods and substantial
interaction between resonances. This region has been
commonly considered as the “origin” of chaos.

This is true when the main resonance corresponds to
an analytic potential with exponentially decreasing
Fourier amplitudes. In this case, each separatrix is split
by any perturbing resonance into two distinct trajecto-
ries that do not return to their respective starting saddle
points, but intersect at the so-called homoclinic points.
The free ends of these trajectories make up an infinite
number of loops of indefinitely increasing length filling
a narrow region near the unperturbed separatrix. These
loops are responsible for the formation of a stochastic
layer, in which three parts should be distinguished: an
upper one of width wu (where the phase y rotates so that
p > 0), a middle one of width wm (where the phase oscil-

H y p t, ,( ) p2

2
----- ω0

2 y V y t,( ),+cos+=

V y t,( ) ε1 m1y Ω1t–( )cos ε2 m2y Ω2t–( ),cos+=
1063-7761/04/9802- $26.00 © 20352
lates), and a lower one of width wl (where the phase y
rotates so that p < 0).

However, entirely different behavior may be
observed when the potential is a smooth function with
Fourier amplitudes decreasing as a power of the har-
monic number (see [4] and references therein). Striking
examples of integer- and fractional-resonance separa-
trices preserved despite the presence of strong local
chaos in perturbed piecewise linear systems were dis-
cussed in [5–7].

Analysis of the stochastic layer in a driven pendu-
lum was developed in several steps. The first detailed
study of layer formation was presented by Chirikov [1]
for a symmetric high-frequency perturbation:

(3)

where Ω @ ω0 and m is an integer. He used the standard
map and an original criterion for resonance overlap to
show that the three parts of the layer have equal widths
in the high-frequency limit:

(4)

where λ = Ω/ω0 is the so-called adiabaticity parameter

and w = H(x, p, t)/  – 1 is the relative energy deviation
from the unperturbed separatrix.

The quantity W in (4) is the harmonic amplitude of
the separatrix map with frequency Ω for system (1), (3):

(5)

This map (originally introduced in [8]) approximately
describes the near-separatrix dynamics at moments T0
when the system passes through a stable equilibrium

V y t,( ) ε m
2
----y Ωt– 

 cos ε m
2
----y Ωt+ 

  ,cos+=

wu wm wl λW , λ ∞ ,= = =

ω0
2

w w W x, xsin+ x λ 32/ w( ),ln+= =

x ΩT0mod 2π( ).=
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(see also [1]). Iterating the map, one can find the energy
width (4) of the layer.

The theoretical value W = Wt is expressed as

(6)

in terms of the Melnikov integrals Am(λ) introduced
in [1] (see also [9, 11]). It should be emphasized that Wt
is an exponentially decreasing function of λ in the high-
frequency limit λ  ∞.

Chronologically, the next step was to analyze the
case of a high-frequency asymmetric perturbation (2).
The first numerical experiments showed that the corre-
sponding dynamics are entirely different from those
observed in the symmetric case [9, 10]. In addition to
the frequencies Ω1 and Ω2 of perturbation (2), the spec-
trum of the separatrix map contains harmonics with
amplitudes proportional to ε1ε2 and frequencies equal
to the sum and difference of the primary (perturbation)
frequencies. Even more surprising is the fact that these
secondary harmonics completely determine the sto-
chastic-layer width under certain conditions. In the
example considered in [10], the contribution of the
sum-frequency secondary harmonic to the amplitude of
the separatrix map is greater than the contributions of
the primary harmonics by a factor of several hundreds.
This is explained by the exponential dependence of Wt
on frequency, which leads to an unexpectedly strong
effect of weak low-frequency harmonics.

In [11], the resonance invariants of the first three
orders were found for separatrix map (5) and the results
obtained by using these invariants were compared with
numerical findings. It was also shown that each of these
invariants adequately represents the corresponding res-
onance in terms of location and geometry and provides
a reliable estimate for the jump in the width of the sto-
chastic layer merging with the resonance. However,
note that no analytical tool, including the invariants,
can be used to describe chaotic dynamics and, in partic-
ular, to characterize the stochastic-layer width.

Finally, the low-frequency asymptotics associated
with symmetric perturbation (3) were analyzed in a
recent study [12], where it was shown that the energy
width of the corresponding stochastic layer is indepen-
dent of frequency. This follows directly from the
asymptotic properties of Melnikov integrals and from
the fact that their derivation in [1] did not make use of
any simplifying assumptions. Being valid for any per-
turbation frequency, they tend to constant values
(depending only on m) as λ  0, whereas the separa-
trix-map amplitude scales linearly with λ. This implies
that the contribution of the secondary harmonics gener-
ated under an asymmetric perturbation vanishes in this
limit, in contrast to the case of high-frequency pertur-
bation.

It was also shown in [12] that the problem is most
difficult to analyze in the intermediate frequency range
0.1 & λ & 5, where the adiabaticity parameter cannot

W t λ( ) ελ Am λ( )=
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be treated as small or large. Moreover, it was noted that
resonance invariants could play an important role in
this range. An analysis of this possibility is presented
below, after a discussion of the spectrum of the separa-
trix map.

2. RESONANCE INVARIANTS 
OF THE SEPARATRIX MAP

In the intermediate frequency range, the separatrix
map for a pendulum driven by symmetric perturbation (3)
actually has two harmonics, with frequencies Ω and 2Ω
(see [12]). It should be rewritten as

(7)

where W1 and W2 denote the single- and double-fre-
quency amplitudes, respectively. As either low- or high-
frequency asymptotic limit is approached, the double-
frequency harmonic weakens and its contribution can
be neglected. However, this cannot be done in the inter-
mediate range, particularly in the neighborhoods of
Melnikov integrals, since they are localized in this
range and their number increases in proportion to the
harmonic number m [1]. Moreover, when the value of
the adiabaticity parameter λ corresponds to a zero of an
integral, the single-frequency harmonic amplitude goes
through zero (its sign changes) and the separatrix map
in this neighborhood has again only one frequency, as
in (5), but the frequency is 2Ω (which follows from (7)
with W1 = 0).

Using the technique proposed in [9], one can show
that this harmonic is a secondary one, i.e., proportional
to ε2 (which is supported by numerical experiment),
and corresponds to the frequency difference. We omit
this analysis here because the resulting expressions are
too cumbersome.

The resonance invariants for separatrix map (5) with
single frequency were found in [11]. Here, the double-
frequency invariants are found, which makes it possible
to examine the neighborhoods of Melnikov integrals.

Recall that both the separatrix map and Chirikov’s
standard map belong to the class of so-called explicit
rotation maps of the form

(8)

where J is action, θ is angle, ν(J) is the frequency of
unperturbed motion, and Q(θ + 2π) = Q(θ) is a trigono-
metric polynomial in the general case (e.g., see (7)).

w w W1 x W2 2x,sin+sin+=

x x λ 32/ w( ), xln+ ΩT0mod 2π( ),= =

J J ξdQ θ( )
dθ

---------------, θ– θ 2πν J( ),+= =
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Difference equations (8) are known to be equivalent
to the Hamiltonian equations of motion perturbed by
kicking:

(9)

where 

δ∗ (t) = /2π 

is a periodic delta function [1, 2].
For the separatrix map that has only the double-fre-

quency harmonic,

In [13], the resonance invariant of order q was
defined as the function of the form

(10)

which satisfies the following condition along the true
trajectories of system (9):

(11)

where D/Dt is the generalized derivative equal to the
sum of the classical derivative and a component associ-
ated with discontinuities [14]. It was also shown in [13]
that each term in (10) is preserved within the intervals
between kicks and changes only at the kicking
moments. Thus, the classical derivative in (10) is zero
everywhere, and condition (11) should be interpreted as
a constraint on a jump of the first kind in a step func-
tion.

Following the technique detailed in [13], find the
resonance invariants of the first three orders for the dou-
ble-frequency harmonic:

(12)

(13)

(14)

Here, primes denote derivatives with respect to J, and

θ̇ ν J( ), J̇ ξδ* t( )dQ θ( )
dθ

---------------,–= =

1 2 ntcos
n 1≥
∑+

Q θ( ) 2θcos
2

---------------, ν J( ) λ
2π
------ 32

J
------.ln= =

Sq J t( ) θ t( ) t, ,( ) r0 J( ) ξn

n!
-----Gn J θ t, ,( ),

n 1=

q

∑+=

D
Dt
------Sq J t( ) θ t( ) t, ,( ) 2 ξq 1+( ),=

G1 J θ t, ,( )
r0' J( )

2 2πν J( )( )sin
---------------------------------- 2Θ,cos=

G2 J θ t, ,( )
a1' J( )

4 4πν J( )( )sin
---------------------------------- 4Θ,cos=

G3 J θ t, ,( )
r0''' J( ) 3a2' J( )+
16 6πν J( )( )sin
------------------------------------- 6Θcos=

– 3
r0''' J( ) a2' J( )+

16 2πν J( )( )sin
------------------------------------- 2Θ.cos
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use is made of the relations

(15)

where 0 < t∗  ≤ 2π is the local time between consecutive

kicks.

Expressions (12)–(14) contain resonance denomi-
nators, which should be eliminated by the method
described in [15]. To do this, the function  contained
in them must be defined so that the number and multi-
plicity of its zeros are equal to the number and multi-
plicity of poles of the resonance denominators, respec-
tively. These functions and the invariants of the first
three orders for the double-frequency harmonic are
expressed in terms of x and w in the Appendix.

3. COMPARISON OF NUMERICAL RESULTS 
AND INVARIANTS

As an example, consider the symmetrically per-
turbed system (1), (3) with

The corresponding separatrix map is (7) with the nearly
equal amplitudes W1 = 3.81 × 10–3 and W2 = 2.93 × 10−3.
The adiabaticity parameter is λ = 1.8.

The main stochastic layer is illustrated by the left-
hand panel of Fig. 1, where the ordinate axis is the rel-
ative width v  = w/|W1 + W2|. At first glance, the pattern
in the upper part of the layer is reminiscent of a half-
integer resonance. However, it represents two integer
resonances whose interior regions (stability islands) are
not related to one another.

The right-hand panel shows the contour map of the
first-order invariant of the separatrix map (see
Eq. (A.5)), which correctly describes the combined
effect of both harmonics contained in (7).

The next two figures correspond to the second and
third double-frequency invariants. Accordingly, they
are plotted for the zero of a Melnikov integral, where
the single-frequency harmonic vanishes (A4(λ) = 0 at
λ = λ1 = 1.41715). The ordinate axis in these figures is
v  = w/W2.

Figure 2 corresponds to system (1), (3) with ε =
0.0287 and Ω = 1.41715, for which W1 = 0 and W2 =
6.7 × 10–3 in separatrix map (7). The figure shows two
chaotic trajectories. The upper one encompasses the
half-integer resonance of the separatrix map, whose

Θ θ π t*–( )ν J( ),+=

a1 J( ) r0' 2πν J( )( ),cot=

a2' J( ) a1' 4πν J( )( )cot ,=

r0'

ω0 1.0, ε 0.01, m 4, Ω 1.8.= = = =
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Fig. 1. Stochastic layer of the main resonance (left) and contour map of first-order invariant (A.5) (right) for harmonic amplitudes
W1 = 3.81 × 10–3 and W2 = 2.93 × 10–3 in (7).
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Fig. 2. Stochastic layer of the main resonance (lower trajectory of the two in left panel) and the first- and third-order invariants (A.5)
and (A.7) (upper and lower contours in right panel) for harmonic amplitudes W1 = 0 and W2 = 6.7 × 10–3 in (7).
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Fig. 3. Stochastic layer of the main resonance (left) and the first- and second-order invariants (A.5) and (A.6) (upper and lower con-
tours in right panel) for harmonic amplitudes W1 = 0 and W2 = 7.0 × 10–3 in (7).
islands are mapped to one another. The lower trajectory
is the main stochastic layer. The figure illustrates the
pattern corresponding to a perturbation under which
these objects are about to merge.

In the main layer, one can clearly see groups of four
and six islands described by the second and third dou-
ble-frequency invariants (Eqs. (A.6) and (A.7), respec-
tively). An analysis of these groups shows that the
former represents a fourth-order resonance and the lat-
ter corresponds to two separate third-order resonances
with alternating islands. In the main layer, these reso-
nances overlap. The curves of the corresponding invari-
ants intersect, comprising an unsightly pattern. For this
reason, we plotted only the curves of the third invariant
here.

Finally, Fig. 3 illustrates the main resonance merg-
ing with the main stochastic layer at ε = 0.03. Here, the
layer width increases stepwise by the phase volume of
the merging resonance. Again, the curves representing
the second and third invariants intersect, and only the
second one is depicted as an example.

To demonstrate the accuracy of the second and third
double-frequency invariants, we examined the neigh-
borhood of the only zero of the Melnikov integral with
m = 4. It was mentioned above that the number of zeros
of such integrals increases with m. According to our
preliminary measurements, the separatrix map contrib-
utes to each zero via the only double-frequency har-
JOURNAL OF EXPERIMENTAL 
monic. We expect that the importance of the invariants
found in this study will substantially increase with m.

4. CONCLUSIONS
Driven pendulum, as well as its discrete counterpart

(the standard map), is a very popular model of nonlin-
ear dynamics, investigated and employed in numerous
studies.

The resonance invariants of the separatrix map con-
sidered in [11] and in this study can be used as a basis
for more detailed studies of the stochastic layer of the
pendulum in the intermediate-frequency range, which
is most difficult to analyze. Practical work has shown
that this task can be accomplished by using the invari-
ants of the first three orders.

It is also advisable to develop the general theory of
invariants further and to derive second- and third-order
expressions allowing for the contributions of both har-
monics contained in (7), as done for the first invariant
(see (A.5)).
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APPENDIX

Resonance Invariants of the Separatrix Map 
with Double Frequency 

Practical calculation of invariants of the separatrix
map should be performed after changing from the
action–phase variables (J, θ) back to (x, w). Accord-
ingly, primes in all equations written out below denote
derivatives with respect to w. As pointed out in [11],
straightforward use of expressions (12)–(14) is
impeded by the numerical instability of calculation of
the contour maps of the invariants. This impediment
can be dealt with by changing from w to the new
variable

(A.1)

To obtain a correct representation of resonances in the
(x, w) plane, one should set t∗  equal to 2π in (15).

The particular functions  proposed in [13] to
eliminate the small denominators of the standard map
were found to apply to the single-frequency separatrix
map and were employed in [11]. However, new func-
tions were required in the double-frequency case. In our
notation,

(A.2)

for the first-order invariant,

(A.3)

for the second-order one, and

(A.4)

for the third-order one. The first three double-frequency
invariants are written out below. Since the first invariant
provides a good description of the two-frequency sepa-
ratrix map (7) as well (see Fig. 1), we express it in terms
of both W1 and W2:

(A.5)

z w( ) λ
2
--- 32

w
------.ln=

r0'

r0' 2zsin=

r0' 2z 4zsinsin
2 4zsin

2
------------- 8zsin

4
-------------–= =

r0' 2z 4z 6zsinsin
2

sin
2 1

16
------ 2zsin(= =

+ 3 6z 10z 2 14zsin– 18zsin+sin–sin )

S1 e 2z/λ– 2z λ 2zcos+sin( ) 1 λ2+
32

--------------+=

× W1 z x z–( )coscos
W2

2
------- 2 x z–( )cos+ ,
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(A.6)

(A.7)

In the last expression,
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NONLINEAR 
PHYSICS
Behavior of Reaction-Diffusion Waves
with Fast Activator Diffusion near Propagation Threshold
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Abstract—Numerical simulation is performed to analyze behavior of reaction-diffusion waves in a medium
whose parameters are near both the propagation threshold and diffusive (oscillatory) instability boundary. The
wave decays in the subthreshold parameter region and propagates at a constant velocity in the parameter region
well above the threshold. Just above the threshold, the wave velocity exhibits alternate intervals of chaotic and
constant-amplitude oscillations. The transition from steady to chaotic propagation is a sequence of period-dou-
bling bifurcations that occupies a narrow interval of the bifurcation parameter. In the subthreshold region, the
wave decay time is a random function of the bifurcation parameter increasing on average toward the threshold.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Reaction-diffusion waves are frequently described
by a mathematical model containing two diffusion
equations with sources [1–3]. The source intensity
increases nonlinearly with the concentration of one
component (activator) and decreases as a function of
the other component (inhibitor). An active medium
with parameters near the propagation threshold for
reaction-diffusion waves was considered in [4]. A
quasi-stationary equation was obtained for the wave
velocity. Its solutions corresponding to the suprathresh-
old and subthreshold values of parameters describe the
onset of a steady propagation regime and a slow decay
characterized by a certain characteristic time. Since
near-critical waves are highly sensitive to disturbances
(variations of parameters), small random inhomogene-
ities (always present in any real medium) induce strong
chaotic oscillations of wave velocity and amplitude.
The dispersion and correlation time of the oscillations
increase as the threshold is approached.

The high near-threshold sensitivity promotes the
development of instability. In a quiescent medium, sta-
bility is controlled by the inhibitor-to-activator diffusiv-
ity ratio. Diffusive instability can develop at both large
and small values of this parameter. When the inhibitor
diffusivity is high, the uniform distribution of concen-
trations is unstable. Local buildup of the activator
increases the reaction rate, whereas the compensating
effect of an accumulating inhibitor is impossible. For-
mation of stripe patterns, spots, etc., is observed. As the
activator diffusivity increases, steadily propagating
fronts and pulses transform into pulsating ones and the
wave velocity tends to oscillate about an average value.
Penetration of the activator into the substance ahead of
1063-7761/04/9802- $26.00 © 20359
the front is followed by a “burst” after which the wave
decelerates until a new activator-rich layer forms.

In waves of exothermic reaction, the roles of activa-
tor and inhibitor are played by heat and reaction prod-
ucts, respectively. The instability parameter is the
Lewis number L defined as the ratio of mass and ther-
mal diffusivities. The numerical simulation reported
in [4] was performed for L = 1, in which case a wave
propagating with a constant velocity is stable in the
entire parameter region above the threshold. Here, we
consider diffusive (oscillatory) instability under condi-
tions of high near-threshold sensitivity and set L = 0.
The corresponding waves can be described by the equa-
tions

where η is the concentration of the reaction products,
t is time, k is interpreted as a collision frequency, E is
the activation energy, ϕ is assumed to scale with con-
centration of the initial substance, T is temperature, χ is
thermal diffusivity, x is the coordinate along the direc-
tion of wave propagation, Q is the heat of reaction, c is
specific heat, T0 is the ambient temperature, and τ is the
thermal relaxation time. The reaction-diffusion wave is a
moving layer that separates the initial substance (η = 0)
from the reaction products (η = 1). Waves of this type
(traveling fronts), as well as traveling pulses, are char-
acterized by propagation thresholds (see review [3] and
references therein). Above the threshold, each combi-

∂η
∂t
------ k 1 η–( )e E/T– ϕ η T,( ),= =

∂T
∂t
------ χ∂2T

∂x2
--------- Q

c
----ϕ

T T0–
τ

---------------,–+=
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nation of parameters corresponds to two wave solutions
and only the fast wave is stable. These solutions merge
and cease to exist at the threshold. Reaction-diffusion
waves of different nature exhibit qualitatively similar
behavior near the threshold. However, the phenomena
associated with the exothermic reaction are more clear-
cut and easier to analyze.

Owing to the exponential dependence on tempera-
ture, the nonlinearity of the source is essential only in a
small neighborhood of the temperature maximum, i.e.,
in the reaction zone. The ratio of wave width to reac-
tion-zone thickness is determined by the Zeldovich
number

(1)

(2)

Since Z @ 1 under typical conditions, the source term ϕ
can be approximated by a delta function. Then, the
wave velocity u(t) is described by a nonlinear integral
equation that is not easier to solve as compared to the
starting equations. However, the velocity varies slowly
near the threshold, which makes it possible to derive a
simple first-order equation by using an expansion in
powers of the acceleration du/dt [4]. An analysis of the
applicability of the quasi-stationary equation has
shown that it is not valid when L is small. This result is
obviously due to diffusive instability: the wave moves
unsteadily, and its acceleration is not low. The present
analysis of a wave whose properties are determined
both by proximity to the threshold and by oscillatory
loss of stability relies on numerical simulation. Using
the reaction time τR = (1/k)exp(E/Tb) as the reference

time and defining the reference length for x as ,
we rewrite the equations for concentration and temper-
ature as

(3)

(4)

where Θ is the temperature measured from Tb in units
of ATb, with A = Tb/E. The Semenov number S = τ/τR is
the key varied parameter. We set Z = 6 because, accord-
ing to [5, 6], the effects due to instability become
noticeable at this value: the wave propagates at a con-
stant velocity when 1/S = 0, whereas the threshold value
Sth may be adjoined by a narrow region of oscillatory
behavior. The length of the interval on which our
numerical experiments were performed, x0 = 1000,
exceeds the wave width by a factor of ten and is
300 times greater than the leading-edge zone that deter-

Z E Tb T0–( )/Tb
2,=

Tb T0 Q/c.+=

χτR

∂η
∂t
------ Φ η Θ,( ), Φ 1 η–( ) Θ

1 AΘ+
------------------ 

  ,exp= =

∂Θ
∂t
------- ∂2Θ

∂x2
---------– ZΦ Θ Z+

S
--------------,–=
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mines the wave velocity and amplitude. Therefore, we
can use the simple boundary condition

(5)

at x = 0 and x = x0. The initial conditions (see details
below) were such that the wave propagated leftwards.
Every time when the point where η(x) = 0.5 entered the
left half of the interval (i.e., once x < x0/2), the wave
profile was updated, i.e., shifted by ten grid points.
Simultaneously, a segment of this length was added and
removed at the left and right endpoints of the interval,
respectively. The time interval between such consecu-
tive shifts was found to be 15 to 20 time steps, at least.
The time step was 0.01, and the mesh size was 0.05.
These values are small as compared to the minimal time
of reaction burst (in a periodic or chaotic regime) and
the reaction-zone thickness, respectively.

When the value of S is substantially higher than Sth ,
the velocity of steady wave propagation is independent

of S: u0 ≈ 0.398. It is close to the result 1/  obtained
in the narrow-reaction-zone approximation, whereas
Sth ≈ 326.2 is much higher than the threshold value 2eZ2

obtained in the same approximation. This is a manifes-
tation of oscillatory instability, which must be particu-
larly strong near the threshold, where the wave is highly
sensitive. The analysis that follows shows that diffusive
instability not only raises the propagation threshold, but
also substantially complicates wave propagation in the
near-threshold parameter region.

2. ONSET OF PERIODIC REGIME

The wave propagation is steady when S > S1 ≈ 381,
and pulsations correspond to a relatively small parame-
ter interval of width about 0.1Sth . When S is reduced to
S1, a hysteretic hard transition to pulsating propagation
is observed: as S is increased, oscillations disappear at
S0 ≈ 384 > S1. Figure 1 shows the maximal and minimal
values of velocity in the pulsating regime versus S. The
curves plotted in the graph were obtained as follows.
We took arbitrary values Si > S0 and Sf < S1. We solved
system (3) numerically for

where t0 is the run time for a particular variant. A com-
putation was performed over the time interval t0 as the
value of S was increased from Sf to Si according to this
formula. We see that the location of the transition point
depends on t0 (retardation effect, see [7]). Increase in t0
leads to saturation, and distinct equilibrium points are
approached with increasing and decreasing S. There-
fore, the hard transition to the periodic regime is not
equivalent to a retarded soft transition due to a slow

∂Θ/∂x 0=

Z

1
S
--- 1

Si
---- 1

Sf
---- 1

Si
----– 

  t
t0
---,+=
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decrease in S. These results were checked by perform-
ing computations at constant S. Once a chosen value
of S was reached, its variation was stopped while the
computation was continued until a steady state was
obtained (the corresponding run time is 104, which is
much longer than any reasonable relaxation time). In
particular, we obtained a wave propagating at a con-
stant velocity for S = 383 after the decrease in S was
stopped. This regime is represented by a large circle in
Fig. 1, and the other two circles determine the peak-to-
peak amplitude of the oscillation observed when S was
increased to the same value.

However, the oscillation amplitude is small near S0.
The transition from pulsating to steady propagation
may be interpreted as a hard one that is close to a soft
transition. This means that the boundary of the basin of
attraction is close to the equilibrium point correspond-
ing to steady propagation. In the region of hysteretic

378 382 386 390
S

0.30

0.34

0.38

u

1 2 3 4

Fig. 1. Peak-to-peak amplitude of velocity oscillation vs.
Semenov number. Curves 1–4 were obtained for slowly
varying S with t0 = (1–4) × 105, respectively; symbols, for
constant S.
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behavior, the steady regime is formally stable with
respect to infinitesimal disturbances, but those of finite
(even small) amplitude must destabilize this regime.
This situation is reminiscent of the Poiseuille flow at
high Reynolds numbers (e.g., see [8]). The flow can be
sustained by removing perturbation sources at the pipe
entrance, but a weak disturbance is sufficient to initiate
a transition to a turbulent flow regime. The role of dis-
turbance can be played by any small inhomogeneity
encountered by a wave propagating in a real medium.

The parametric effect on a steadily propagating
wave in the hysteresis region was examined by using a
function y(t) such that

(6)

Figure 2 illustrates the oscillatory loss of stability for
Sa = 383 and different y. First, this value was reached by
slowly decreasing S. It was held constant over a time
interval of 103 until the onset of a steady propagation
regime, and then the perturbation y(t) was “switched
on.” The graph shown in Fig. 2a was obtained by vary-
ing y randomly within (–0.1, 0.1) at each step over an
interval of 103. This “white noise” induced chaotic
oscillation of velocity. After it was switched off, the
amplitude slowly increased to its value in the steady
regime. Figure 2b illustrates the oscillation induced by
a pulse having the form of one period of the function
y = ksinωt, and the period of the limit cycle corre-
sponding to this value of S is 2π/ω = 56.11. When k =
0.025, the relaxation time is almost equal to the period.
At lower k, the amplitude increases at a slower rate. At
larger k, a large-amplitude oscillation develops in one
period and then the amplitude decreases, approaching
its steady-state value as illustrated by the graph. Note
that the amplitude of oscillation at the steady-state fre-
quency illustrated by Fig. 2a begins to increase after the

S
Sa

1 y t( )+
-------------------.=
40 8 12

t × 10–4

0.33

0.34

(a) (b)

6.0 6.5 7.0

t × 10–3

0.30

0.33

0.36

uu

Fig. 2. Oscillations induced by (a) noise and (b) “resonant” pulse.
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white noise is switched off. The effect of white noise on
steady wave propagation leads only to velocity fluctua-
tions of increasing intensity whose spectrum shifts
toward low frequencies as transition point S1 is
approached. Analogous behavior is exhibited by fluctu-
ations near the propagation threshold when L = 1 [4].

3. PERIOD-DOUBLING SEQUENCE
AND INTERMITTENCY

The regime whose incipience is described in the pre-
ceding section occupies almost the entire interval

326 330

~ ~
~ ~

374 378

S

0.2

0.3

0.4

0.5

0.6

0.7

u

Fig. 3. Extrema of u(t) vs. S.

326.6326.5326.4326.3

0.70

0.65

0.60

0.55

umax

S∞

S

Fig. 4. Maxima of u(t) vs. S (part of bifurcation diagram).
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(Sth, S1). The oscillation frequency decreases with S
while the peak-to-peak amplitude increases. At S below
S2 ≈ 328, a period-doubling sequence is observed. Fig-
ure 3 depicts the bifurcation diagram. The intervals
between consecutive points of period doubling tend to
decrease in a geometric progression with common ratio
1/δ close to the tabular value of the Feigenbaum con-
stant [9]. Using this value, we find S∞ ≈ 326.611. Fig-
ure 4 shows the distribution of maxima of u in the cha-
otic interval (Sth, S∞). The segment enclosed in the
frame is similar to the overall pattern up to a scaling
transformation. One can see “gaps” in which the distri-
bution concentrates near a limited number of points.
The regions of chaotic behavior expand and overlap
with decreasing S. Regions of condensation appear, and
the graphs of u(t) exhibit intermittency (see [8] and
Fig. 5). Note that the numerical analysis performed for
1/S = 0 in [10] revealed period-doubling bifurcations
associated with increase in Z. No limit point was found
for this period-doubling sequence, and the region of
chaotic behavior has never been investigated. Intermit-
tency was observed only when the model was modified
by introducing a phase-transition front ahead of the
reaction zone.

As the threshold Sth is approached, the chaotic
amplitude distribution tends to widen (see Figs. 3
and 4) and the frequency spectrum becomes more com-
plicated. Figure 6 shows examples of spectra observed
in the period-doubling and chaotic intervals. One may
characterize the general tendency as gradual transition
from discrete to continuous spectra. However, instances
of recurrent discrete spectra stand out against this back-
ground trend. These are obvious manifestations of fre-
quency locking, which leads to concentration of veloc-
ity maxima near several points and the occurrence of
“gaps” in Fig. 4. The regime observed just above the
threshold can be characterized as well-developed

8.28.07.8 8.4 8.6
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0.7

u

Fig. 5. Example of intermittency at S = 326.313, which cor-
responds to marginal overlapping of amplitude distribu-
tions, for a total run time of 105.
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Fig. 6. Frequency spectra of velocity oscillations vs. n (ωn = 2πn/t0 for a total run time of t0 = 105) for S = 350 (1), 328 (2),
326.914 (3), 326.640 (4), 326.620 (5), 326.611 (6), 326.551 (7), 326.500 (8), 326.466 (9), 326.400 (10), 326.375 (11), 326.350 (12),
326.313 (13), 326.250 (14), 326.230 (15), 326.219 (16), and 326.213 (17).
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Fig. 7. Long-term wave propagation above the threshold at S = 326.213: (a) velocity vs. time; (b) frequency spectrum (ωn = 2πn/t0,
as in Fig. 6).
chaos. Figure 7 shows both function u(t) and its spec-
trum. The velocity variance is similar to the mean
velocity 〈u〉  in order of magnitude. The highest spectral
density corresponds to n ~ 100, i.e., ω ~ 10–3, which is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
two orders of magnitude lower than the typical fre-
quency, ~u2, and an order of magnitude less than the
inverse average time interval between neighboring
peaks in Fig. 7a. The shift of the spectrum toward lower
SICS      Vol. 98      No. 2      2004
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Fig. 8. Wave decay time vs. increment above the threshold. The inset shows an enlarged view of the segment between dashed vertical
lines.
frequencies reflects the increase in the correlation time
of pulsations toward the threshold [4].

4. DECAY TIME

When S < Sth , no steady propagation is observed;
i.e., the waves decay. The characteristic decay time tq

was estimated in [4] as tq ∝  (Sth – S)–β with β nearly
equal to 1/2, in agreement with solutions to the quasi-
stationary equation. Numerical simulations of decay
for L = 0 reveal an “average” increase in tq close to that
obtained in [4]. However, this monotonic trend is mod-
ulated by irregular variations of the decay time (see
Fig. 8). These variations can be explained by noting
that the long-term dynamics are chaotic just above the
threshold, as shown above. In this regime, short inter-
vals of fast propagation characterized by high activator
concentrations in the reaction zone are followed by
long intervals of “depression” characterized by low
activator concentrations, and vice versa. These intervals
occur at random. It is obvious that a “depressed” wave
is more sensitive to activator losses [5]: a sufficiently
long interval of “depression” is followed by an irrevers-
ible decline rather than activation. Under the present
initial conditions, the onset of a prolonged and deep
“depression” turns out to be a random function of S. It
is clear that a change in initial conditions will result in
JOURNAL OF EXPERIMENTAL 
different locations and magnitudes of the maxima and
minima in Fig. 8. However, the general pattern is inde-
pendent of initial conditions.

The results depicted in Fig. 8 were obtained by
using the concentration distributions in a wave propa-
gating with a constant velocity u as initial conditions:

(7)

(8)

where

These distributions are written for a reaction zone of
zero thickness initially located at x = x1 = 500. The
value S = 400 corresponds to u ≈ 0.313. According
to (3), the instantaneous wave velocity is

(9)

where the integral on the right-hand side is independent
of its limits if they are separated from the reaction zone
by distances much greater than the reaction-zone thick-
ness. The decay time tq was measured from the instant

x x1, η< 0, Θ Z+ Z k+ x x1–( )[ ] ,exp= =

x x1, η> 1, Θ Z+ Z k– x x1–( )[ ] ,exp= =

k±
u
2
--- u2

4
----- 1

S
---+ .±=

u t( ) Φ x,d∫=
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of the last burst preceding an irreversible decrease in
velocity.

In Fig. 8, the jumps correspond to the values of S at
which the number of peaks in the curve of decaying u(t)
changes. When the number of bursts is constant, the
function tq(S) is smooth. As the threshold is
approached, the lengths of such smooth intervals
decrease. Reducing the interval between the values of S
used to compute the decay, we distinguish finer details
of the graph (see inset, where the symbols used to plot
the main graph are shown for comparison.) The rear-
rangement of decay pattern is the most obvious conse-
quence of diffusive instability in the subthreshold
parameter region.

5. CONCLUSIONS
The oscillatory instability of reaction-diffusion

waves leads to periodic regimes and transition to cha-
otic behavior analogous to those observed in other well-
studied systems (e.g., in flows with increasing Rey-
nolds number). The wave instability in question is due
to the temperature sensitivity of the reaction rate
(see [3]), which increases with the parameter Z. How-
ever, this parameter was held constant in our numerical
experiments, while the Semenov number (which mea-
sures proximity to the wave propagation threshold) was
varied. Near the threshold, reaction-diffusion waves are
highly sensitive [4] and the instability develops even at
moderate values of Z.

Ignoring details of the pattern discussed here, such
as consecutive transitions between chaotic regimes, we
see that the prevalent trends observed as S  Sth are
the increase in velocity variance and shift of the oscil-
lation spectrum toward lower frequencies above the
threshold and the power-law growth of decay time
below the threshold. All of these trends were revealed
in [4] by simulating a wave that is not characterized by
diffusive instability. They are explained by divergence
of sensitivity at the low-frequency threshold, which is
due to the weakness of the “restoring force” associated
with deviations from a steady state that easily develop
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and take a long time to decay. In the state space, the
basin of attraction of the attractor in question is small.
This situation is analogous to dynamics in a shallow
potential well, in which case a stable equilibrium is
close to a flat one. Another example of a highly sensi-
tive system is a substance near the point of a continuous
phase transition, in which case critical behavior is
caused by thermal noise. Active systems are typically
perturbed by more intense sources.
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Abstract—The character of interaction between thermal (vibrational) and configurational cluster excitations is
considered under adiabatic conditions when a cluster is a member of a microcanonical ensemble. The hierarchy
of equilibration times determines the character of atomic equilibrium in the cluster. The behavior of atoms in
the cluster can be characterized by two effective (mean) temperatures, corresponding to the solid and liquid
aggregate states, because the typical time for equilibration of atomic motion is less than the transition time
between aggregate states. If the cluster is considered for a time much longer than the typical dwell time in either
phase, then it is convenient to characterize the system by only one temperature, which is determined from the
statistical–thermodynamic long-time average. These three temperatures are not far apart, nor are the cluster heat
capacities evaluated on the basis of these definitions of temperature. The heat capacity of a microcanonical
ensemble may be negative for two coexisting phases if the mean temperature is defined in terms of the mean
kinetic energy, rather than as the derivative of energy with respect to microcanonical entropy. However, if the
configurational excitation energy is smaller than the total excitation energy separating the phases, then the
two-state model predicts a positive heat capacity under either definition of temperature. Moreover, if the cluster
is sufficiently large, then the maximum values of the microcanonical and canonical heat capacities are equal.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The contemporary description of cluster evolution is
based on saddle-crossing dynamics involving a large
number of local minima for the potential energy of this
system at zero temperature depending on the configura-
tion of atoms [1–6]. Each local minimum corresponds
to a locally stable configuration. A certain number of
these lie at the point of lowest energy in a basin, while
others, at higher energies in the same basin, correspond
to configurational excitations from that lowest point.
Neighboring local minima are separated by saddle
points of the potential energy surface [7]. At low tem-
peratures, most of the time the cluster is then found near
the local energy minima and the durations of interme-
diate states during transitions across saddles between
neighboring minima are brief. Taking the cluster aggre-
gate states as a group of atomic configurations near
local minima of the cluster potential energy [8], we
obtain a precise picture of the cluster phase transitions,
characterized by bands of dynamical coexistence of
phases [9–12]. In the case of solid–liquid equilibrium,
this means that the system is found in the solid aggre-
gate state over certain periods; the remainder of the
time, it is found in the liquid state, if the cluster can be
located in two aggregate states. (It is also possible for a
cluster to exhibit more than two phases in such a
dynamic equilibrium, e.g., a “surface-melted” state
together with a solid and a liquid state [13, 14].)

¶This article was submitted by the authors in English.
1063-7761/04/9802- $26.00 © 20366
Using these concepts, one can generalize thermody-
namics of bulk systems and relate these to clusters as
systems of small, finite numbers of bound atoms or
molecules. Within the framework of the saddle-cross-
ing dynamics, one can define the cluster aggregate states
as sets of atomic configurations near local minima of the
cluster potential energy with nearby energies [8], and a
cluster aggregate state can therefore include a finite
number of elementary configurational excitations. In
the classical thermodynamics of bulk systems, the
aggregate state includes many configurational excita-
tions, which leads to a uniform spatial distribution of
atoms for a liquid. Next, the hierarchy of cluster times
leads to the corresponding phenomenon of phase coex-
istence in clusters [9–12].

Thus, the properties and dynamics of cluster evolu-
tion allow one to apply thermodynamics to clusters.
One must use a Gibbsian ensemble to describe the ther-
modynamics of clusters; some of the familiar concepts
and characteristics of bulk systems disappear and some
that are equivalent in common situations become
inequivalent. For example, the distinction between
phase and component is lost because phase equilibrium
occurs on the same short time scale as the equilibrium
among reacting components. Hence, the Gibbs phase
rule loses its meaning for small systems [3]. Using this
perspective, we here consider the heat capacity of a
cluster that does not exchange energy with an environ-
ment; i.e., the cluster is in a microcanonical ensemble
of atoms [15].
004 MAIK “Nauka/Interperiodica”
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For clusters, the typical time for establishing vibra-
tional thermal equilibrium is brief compared with that
for establishing configurational equilibrium in the solid
and liquid states [16]. Under microcanonical condi-
tions, this time scale separation in clusters makes it pos-
sible to identify the temperatures of the solid and liquid
states separately; the cluster is submitted to a two-tem-
perature description. Likewise, under canonical condi-
tions, the solid and liquid states can be assigned differ-
ent mean energies and potential energies. If the time in
which the cluster is observed is long compared to the
typical time for dynamic equilibration between the
aggregate states, it becomes appropriate to use a single
cluster temperature, i.e., to model this cluster by one
averaged aggregate state.

In an ensemble at a constant energy, the effective
temperature of a cluster, solid or liquid, can be defined
in either of two ways. One is the mean kinetic energy
per degree of freedom; the other is the derivative of the
internal energy with respect to the microcanonical
entropy at constant volume. While these are equivalent
for a canonical ensemble of macroscopic systems (with
the conventional canonical entropy), they are not neces-
sarily equivalent for microcanonical ensembles, partic-
ularly of small systems. Defined in terms of kinetic
energy, the effective temperature of the solid is neces-
sarily higher than that of a liquid at the same energy.
Hence, increasing the energy in the zone of coexistence
of the solid and the liquid (i.e., in the transition region)
can lead to an effective temperature decrease. In the fol-
lowing, we consider this problem in terms of two aggre-
gate states, with the additional simplifying assumptions
that the separate caloric curves for the solid and liquid
states are parallel straight lines, i.e., the transition
energy is independent of the temperature, and that the
difference of the solid and liquid temperatures is rela-
tively small. These simplifications make it possible to
understand the cluster properties near the melting point
in a simple way. (We use the term “melting point” to
mean the temperature at which the free energies of the
solid and liquid clusters are equal. There is, of course,
no sharp melting point for small clusters.)

Under these conditions, when equilibrium is estab-
lished at each new cluster energy, each small increase
of that energy near the melting point goes partly to exci-
tation of thermal (vibrational) motion and partly to con-
figuration excitation. Consequently, the heat capacity
of an isolated cluster changes near the melting point. If
the temperature is defined as the entropy derivative of
the internal energy, then the heat capacity almost cer-
tainly remains positive and typically increases as more
degrees of freedom absorb energy.1 However, if the
mean potential energy of the liquid form is significantly
higher than that of the solid, and the temperature is

1 Only if the available phase space were to decrease with the
energy for some pathological system could its caloric curve show
a negative slope with this definition of temperature. Such a situa-
tion is logically possible, but physically almost unimaginable.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
defined in terms of mean kinetic energy per degree of
freedom, then the system may exhibit a negative heat
capacity and a region of a negative slope, an “S-bend,”
in its caloric curve. This behavior of cluster heating has
been observed for clusters on the basis of theoretical
[17–22] and experimental studies [23–28]. Below, we
consider this problem in detail.

2. HIERARCHY OF CLUSTER TIMES

We first analyze the character of equilibrium in a
cluster. We use the two-state approximation for cluster
aggregate states [8], which extends the thermodynamic
concept of the aggregate states from bulk to clusters,
and we assume the existence—local stability and ther-
mal equilibration—of two aggregate states, solid and
liquid. Although clusters may exhibit several aggregate
states in equilibrium, for example, associated with
melting of different cluster shells [13, 14], the model
that we use here involves the assumption that in a given
range of parameters, the cluster can be found only in
two aggregate states. The character of cluster equilib-
rium is determined by typical times for processes
within the cluster. The typical time for establishing
thermal equilibrium τeq between bound atoms is on the
order of

(1)

where ωD is the Debye frequency, roughly inversely pro-
portional to the period of cluster oscillations (~10–14 s at
room temperature). The typical dwell time of a cluster in
the vicinity of the free energy minimum τag associated
with each aggregate state is long compared with τeq,

(2)

because transitions between aggregate states require
that the cluster overcome a significant free energy bar-
rier. We consider a cluster of bound atoms as a member
of a microcanonical ensemble and neglect the interac-
tion between the cluster and environment, i.e.,

(3)

where τth is the typical time for the exchange of energy
between the cluster and its environment; for shorter
times, the cluster can be considered as an isolated par-
ticle. We introduce a typical time τ of cluster observa-
tion such that

(4)

This hierarchy of cluster times leads to a particular
pattern of cluster behavior. Indeed, during τeq , thermal
equilibrium is established for the vibrational motion of
the cluster atoms and the thermal motion of atoms can

τeq
1

ωD

-------,∼

τeq ! τaq,

τaq ! τ th,

τaq ! τ  ! τ th.
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then be characterized by temperature [16]. Because of
criterion (2), this temperature is different for the two
aggregate states. We therefore introduce separate tem-
peratures of atoms for the solid Tsol and liquid Tliq
aggregate states. In particular, in the Dulong–Petit
limit, the cluster energy is given by

(5)

where n is the number of cluster atoms and ∆E is the
fusion energy. This implies that

(6)

Along with these temperatures, one can introduce a
general cluster temperature T for a large time on the
order of τ, which can be expressed in terms of an aver-
age energy of an individual cluster atom if the average
is taken for a time on the order of τ long enough for the
cluster to change its aggregate state many times.

3. TWO-AGGREGATE APPROACH

Considering the approximation of two aggregate
states [8], we express the total partition function of a
cluster as

(7)

where Zsol and Zliq , and the partition functions for the
solid and liquid cluster states, respectively, are related
by

(8)

The respective probabilities wsol and wliq that the cluster
is found in the solid and liquid states are

(9)

From the thermodynamic relation, we have

(10)

where Ssol(T) and Sliq(T) are the entropies of the solid
and liquid states at the given temperature, T is the effec-
tive temperature that characterizes the rates of transi-
tions between the solid and liquid states, and ∆E and ∆S
are the changes of the thermodynamic variables at the
phase transition.

E 3n 6–( )T sol ∆E 3n 6–( )T liq,+= =

∆T T sol= T liq–
∆E

3n 6–
---------------.=

Z Zsol Z liq,+=

p T( )
Z liq

Zsol
--------.=

wsol
1

1 p+
------------, wliq

p
1 p+
------------.= =

p
∆E
T

-------– Sliq T liq( ) Ssol T sol( )–+exp=

=  ∆E
T

-------– ∆S+ ,exp
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Although clusters exhibit bands of coexistence
rather than the sharp melting points of bulk systems, we
can, as mentioned above, define the melting point of a
cluster by analogy with that of the bulk as the tempera-
ture of equal free energies of the two phases. In this
way, the precise definition is that of the “equality” tem-
perature Teq such that

(11)

and hence,

As the general cluster temperature, the effective cluster
temperature T tends to Tsol as p  0 (wsol = 1) and
tends to Tliq in the limit as p  ∞, or when wliq = 1. (It
is sometimes convenient to use the quantity (wliq –
wsol)/(wliq + wsol) simply because it varies only between
–1 and +1 [13, 14].)

4. ENTROPY OF AN ISOLATED CLUSTER
IN THE TWO-STATE APPROACH

When a cluster does not interact with its environ-
ment, a thermodynamic equilibrium is established. In
addition to the temperatures of the solid Tsol and liquid
Tliq aggregate cluster states, this allows us to introduce
the general cluster temperature from the thermody-
namic relation

(12)

where E and S are the cluster energy and entropy. This
definition can be used for the two aggregate states sep-
arately or for the long-time average over both aggregate
states. Here, we use the latter option and evaluate the
entropy S of a cluster in a long-term equilibrium (with
or without the environment) between two aggregate
states. Basing this analysis on a general entropy for-
mula [29], we have

(13)

where i is a cluster state and wi is the probability that the

cluster is found in this state . Along with
wsol and wliq in Eq. (9), we introduce the probability Xj

for the cluster to be in the jth state if the cluster is first
found in the solid aggregate state, and the probability Yk

for the cluster to be in kth state if it is initially in the liq-
uid aggregate state. That is, we introduce a kind of con-
ditional probability. According to the definition, we
have

(14)

p Teq( ) 1,=

wsol Teq( ) wliq Teq( ) 1/2.= =

dE TdS,=

S wln〈 〉– wi wi,ln
i

∑–= =

wii∑ 1=( )

wsol wliq+ 1, X j

j

∑ Yk

k

∑ 1.= = =
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From this, we obtain the cluster entropy 

(15)

where

(16)

are the entropies of the corresponding aggregate states.
We thus express the entropy of a cluster with two aggre-
gate states through entropies of each aggregate state
and the entropy of the cluster configuration state Sconf ,
equal to

(17a)

(17b)

where xi is the probability for the cluster to be in a given
aggregate state, and we use Eqs. (9). We note that this
expression is valid under the assumption that the cluster
is observed in a long-term equilibrium; i.e., it can be
located many times in each aggregate state during the
observation time. Thus, expression (15) for the cluster
entropy is a sum of terms corresponding to the solid and
liquid aggregate states, and also of the term that
accounts for configurational excitation.

5. TEMPERATURE OF A CLUSTER
AS A MICROCANONICAL ENSEMBLE

OF ATOMS

It follows from the above discussion that an isolated
cluster with two aggregate states can be considered in
the two-temperature approach if criterion (2) is satis-
fied; i.e., the typical time τeq for thermodynamic equil-
ibration of the atomic thermal motion in each aggregate
state is short compared with the dwell time τag of the
cluster in each aggregate state. When we observe a
cluster over a time long compared with τag , we can
model the cluster with two aggregate states by a cluster
with one aggregate state, and thus introduce a single
average cluster temperature T. For this purpose, we can
use the connection between the kinetic energy of clus-
ter atoms and their temperature. Connecting the mean
kinetic energy of cluster atoms averaged over a time
long enough to reflect the kinetic energies of atoms in

S wsol X j wsolX j( )ln
j

∑– wliq Yk wliqYk( )ln
k

∑–=

=  wsolSsol wliqSliq Sconf+ + ,

Ssol X j X j, Sliqln
j

∑ Yk Ykln
k

∑= =

Sconf xi xiln
i

∑– wsol wsolln– wliq wliqln–= =

=  1 p+( )ln
p

1 p+
------------ p,ln–

dSconf

dp
-------------

pln

1 p+( )2
-------------------,–=
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both aggregate states, we then define the (long-term)
cluster temperature as

(18)

This is the definition of temperature one would use in
the context of traditional statistical physics, i.e., on the
basis of a very long time average. This remains a useful
and valid approach, but the availability of measure-
ments fast enough for one to observe the individual
aggregate states justifies the extension of the concep-
tual framework to describe each aggregate state by
itself, in order to supplement our long-time-average
description.

Turning to the two-temperature approach for a clus-
ter, we assume the cluster heat capacity to be indepen-
dent of the temperature in the range of phase coexist-
ence; in other words, the caloric curves for the solid and
liquid states are straight lines, as shown in the figure.
We use the parameters of this curve

(19a)

and for simplicity assume that

(19b)

According to Eq. (18), the statistical temperature T is
expressed via these parameters as

(20)

Evidently, within the framework of the general temper-
ature, it follows from (10) that

(21)

T wsolT sol wliqT liq.+=

T
T sol T liq+

2
----------------------, ∆T T sol T liq,–= =

∆T  ! T .

T T
∆T
2

------- 1 p–
1 p+
------------.+=

p
∆E
T

-------– ∆S+exp .=

E

TTm

Tliq

Tsol

T
1

2

∆E

dE
dT

= C0

–

Caloric curves of an isolated cluster with two aggregate
states in the one-temperature approach: (1) the case of a
positive heat capacity; (2) the case of a negative heat capac-
ity near the melting point.
ICS      Vol. 98      No. 2      2004



370 BERRY, SMIRNOV
For simplicity, we assume that the entropy jump ∆S at
the phase transition and the transition energy ∆E are
independent of the temperature. In addition, we have
for the cluster energy E under our assumptions (see
figure)

(22)

where C0 is the cluster heat capacity far from the melt-
ing point.

We now use Eq. (12) as the thermodynamic defini-
tion of the cluster temperature T,

(23)

That is, we use the entropy–energy definition, rather
than the mean kinetic energy definition for temperature.
Because this formula is also valid for each aggregate
state, we have the relations

for the cluster temperature of a given aggregate state.
On the basis of these formulas and formula (17) for the
entropy of a cluster with two aggregate states, we then
express the cluster temperature as

(24)

where

(25)

in accordance with Eqs. (17). It can be seen that the sta-
tistical and thermodynamic temperature definitions (20)
and (23) are different. But the difference between them
is small in the present case because we have imposed
criterion (19b). In particular, at the equality point
(p = 1), we have Teq =  in accordance with (20), and
Eq. (24) then gives

(26)

Thus, although the definitions of the cluster tempera-
ture are different, under assumption (19b) this differ-
ence is only of the second order in terms of the expan-
sion in the small parameter ∆T/ .
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6. HEAT CAPACITY OF A CLUSTER 
AS A MICROCANONICAL ENSEMBLE

OF ATOMS

We now construct caloric curves for a large cluster,
supposing that the caloric curves for the solid and liquid
aggregate states are parallel straight lines and the dis-
tance between these lines satisfies criterion (19b). The
cluster state corresponds to the solid caloric curve at
low temperatures below the equality point, and to the
liquid caloric curve at high temperatures above that
temperature, Teq . The intermediate part of the caloric
curve near the melting point can have two forms, as
shown in the figure; in case 1, the cluster heat capacity
is positive at any temperature, and in case 2, it is nega-
tive near Teq . In principle, both cases are possible.
Based on their experimental study of sodium clusters of
hundreds of atoms, Haberland et al. [30, 31] infer that
the case of a negative cluster heat capacity near Teq is
more representative. Initially, the accuracy of the exper-
imental data [23–26] left some possibility to question
that inference, but more recent, independent measure-
ments have made the instance of certain microcanonical
negative heat capacities much more plausible [27, 28].
All these experiments, in effect, base the evaluation of
temperature on the kinetic energy of the atoms of the
clusters, consistent with this definition being the one
that allows negative heat capacities. Below, we analyze
this problem using the above approach. Within the
framework of the statistical and thermodynamic con-
siderations, we introduce the general temperature for an
isolated cluster that can be found in both the solid and
liquid states.

We evaluate the heat capacity C of a cluster of
bound atoms as a member of a microcanonical ensem-
ble near the melting or equality point. When we intro-
duce one cluster temperature T, its heat capacities are

where E is the internal cluster energy and  is given by
Eq. (19a). We assume in the discussion here that Tsol
and Tliq are almost equal; hence, we are not dealing with
the general case. Relation (21) is valid under our
assumption and gives

(27)

For simplicity, we assume here that the cluster parame-
ters ∆E and ∆S are independent of the cluster tempera-
ture T. Under these conditions, for the statistical defini-
tion of the temperature, we have, taking the differential
of (20) and using Eq. (22),

C
dE
dT
-------, C0

dE
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-----------,= = = =
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This implies that

(28)

We now consider the case of the thermodynamic
definition of the cluster temperature when a cluster with
two aggregate states is modeled by a cluster with one
average aggregate state. Taking the differential of (24)
and expanding it in a small parameter ∆T/ , we then
have

Ignoring the second term in the right-hand side of this
equation in comparison with the first one because
of (19b), we then obtain

(29)

Because the maximum heat capacity of the cluster
corresponds to the equality or melting point (if its value
is positive), we consider Eq. (29) at Teq , where p = 1,

T =  = Teq , and therefore,

(30)

We note that Eq. (28) follows from this if we ignore the
last term, i.e., if we neglect the configurational part Sconf
in expression (15) for the cluster entropy. The physical
solution of Eq. (30) is given by

(31)

Formulas (28) and (31) for the cluster heat capacity,
based on the two different definitions of the cluster tem-
perature, lead to identical results in the limiting cases
Z = 0 and Z = ∞. The maximum ratio of the heat capac-
ities according to formulas (31) and (28) corresponds to

Z = 1 and is (1 + )/2 ≈ 1.2. Thus, if an isolated clus-
ter with two aggregate states is modeled by a cluster
with one temperature, the values of its heat capacity
depend on the definition of the cluster temperature.
However, for the statistical and thermodynamic defini-
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tions of the cluster temperatures, the values of the clus-
ter heat capacity coincide within the limits of 20% in
the cases considered here.

We now analyze the character of the consumption of
energy that is transferred to an isolated cluster very
slowly, such that equilibrium is established for each
input of energy. We divide the total energy of the
ensemble of bound atoms into the kinetic energy of
atoms, the potential energy of the interaction between
atoms, and the energy of configurational excitation. For
simplicity, we take the ratio between the kinetic and
potential energy to be governed by the virial relation;
this ratio is therefore independent of excitation. More-
over, these excitations involve sufficiently low energies
such that they can be supposed to be harmonic oscilla-
tions. Therefore, the excitation energy can be thought to
be consumed in two channels, thermal motion of atoms
and configurational excitation. It is clear that the cluster
total heat capacity must be greater than if configuration
excitation were absent, because only a part of the input
energy is consumed by the thermal motion of atoms. A
significant part must go toward increasing excitation of
“new” degrees of freedom that are unexcited at lower
temperatures but fully excited at higher temperatures.
Hence, in the range of the phase change, the heat capac-
ity exceeds that in the temperature ranges far from the
phase change.

The configurational and vibrational contributions
may nonetheless be strongly linked in the following
way. If the configurational excitations bring the cluster
to a region of high potential energy and, thus, to a
region of low kinetic energy, then, during those inter-
vals in which the configurational excitation is high, the
kinetic temperature is necessarily low. This situation
does not conform to our above assumption that Tsol and
Tliq are almost equal. In accordance with this assump-
tion, configurational excitation requires relatively little
energy. Consequently, we can suppose that clusters of
sizes far from the “magic number” or closed-shell sizes
are likely to conform to the assumption, but that the
“magic number” or closed-shell clusters are least likely
to satisfy it.

If the configurational excitation energy requires a
significant part of the cluster internal energy, the heat
capacity may become negative because an increase in
the total cluster energy leads to a decrease in its thermal
(or vibrational) energy. Just this situation is proposed
by Haberland [30, 31] for sodium clusters consisting of
a hundred or more atoms. Evidently, the conditions
favorable for clusters to have a negative heat capacity
apply to such systems. Based as it is on Eqs. (28)
and (31), the analysis here, with its strong assumptions,
leads to a positive cluster heat capacity at any cluster
temperature. We can therefore interpret the assump-
tions leading to this conclusion as sufficient conditions
for a positive heat capacity. This should not be inter-
preted as implying that negative heat capacities cannot
occur in microcanonical systems; they certainly can
SICS      Vol. 98      No. 2      2004
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occur if the kinetic definition of temperature is used. In
fact, we can now say that the next challenge in this field
is finding sufficient conditions for a negative heat
capacity, in terms of the relative energies and phase
space volumes of the solid and liquid phases, and then
finding what classes of systems best satisfy those con-
ditions—or those for strictly positive heat capacities.

Equations (28) and (31) characterize the increase in
the cluster heat capacity near the melting point. We now
consider this increase for a large cluster with Z @ 1.
Because for a large cluster C0 ~ n, where n is the num-
ber of atoms comprising the cluster, criterion (19b)
becomes

(32)

such that the increase in the heat capacity for such large
clusters is strong. In this limit, Eqs. (28) and (31) give
the maximum heat capacity that corresponds to the
equality or melting point

(33)

This expression also involves the assumption that the
transition thermodynamic parameters ∆E and ∆S are
independent of the temperature. The maximum heat
capacity has the same value in the case of isothermal
heating [8].

We now apply Eq. (30) to the Lennard–Jones cluster
of 13 atoms, taking its parameters from the computer
modeling [10] of this cluster. Assuming the Dulong–
Petit law to be valid at melting, we have the heat capac-

Tm
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2

-----------.= =

The parameters of the isolated Lennard–Jones cluster con-
sisting of 13 atoms at the melting point. The data are obtained
on the basis of [10]

Parameter Value

Em 13.6

∆E 2.46

η(Em) 0.39

Tsol 0.32

Tliq 0.26

Tm 0.29

Z(Tm) 0.46

, (28)
1.46

, (31)
1.73

Cmax

C0
-----------

Cmax

C0
-----------
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ity of this cluster C0 = 3n – 6 = 33. The temperatures of
the solid Tsol and liquid Tliq states are

(34)

where η is the part of the cluster excitation energy E
that is transformed into kinetic energy of the atoms.
Thus, we express the temperature of cluster atoms
through the total kinetic energy. Parameters in the table
refer to the equality or melting point (p(Em) = 1, T =
Teq), and we use reduced energy units with the energy
unit given by the binding energy per bond.

The data in the table, based on cluster computer sim-
ulation [10], show the validity of criterion (19b); the
small parameter ∆T/Teq used above is equal to 0.2 for
the Lennard–Jones cluster of 13 atoms. This small
parameter determines the accuracy of using one cluster
temperature. We note that the increase of the heat
capacity near the melting point is not strong for this
cluster, and the heat capacity is positive at any temper-
ature. This does not agree with the supposition of a neg-
ative heat capacity of clusters near Teq [30, 31] of the
sort inferred from experiments with sodium clusters
[23–26]. A more exacting test with Lennard–Jones
clusters would require examining the behavior of a
larger system, e.g., a closed-shell icosahedral structure
of 55 or 137 atoms.

7. CONCLUSIONS

It follows from the above analysis that the behavior
of a real isolated cluster with two aggregate states can
be described using either one aggregate state with a
general temperature or two aggregate states with two
temperatures. The latter requires that the vibrational
modes of the cluster equilibrate rapidly compared with
the rate of passage between aggregate states, such that
temperatures of those states can be well defined. In
reality, such thermodynamic equilibrium is established
for many kinds of clusters and other small systems dur-
ing the time the system resides in each aggregate state.
The single-temperature description requires that, dur-
ing an observation time, a cluster changes its aggregate
state many times. Although the statistical and thermo-
dynamic definitions of the temperature lead to different
temperatures and heat capacities, the differences
between these values are not large under the assump-
tions used in this work. In addition, under these
assumptions, the maximum heat capacities of a large
cluster at the melting point coincide for the adiabatic
and isothermal regimes of energy input, and in the case
of the adiabatic regime (or for an isolated cluster), the
heat capacities of a large cluster coincide for the statis-
tical and thermodynamic definitions of temperature. A
system satisfying the conditions invoked here does not
exhibit a negative heat capacity of the type reported for
an isolated cluster [30, 31]. The analysis provides con-

T sol
2ηE
C0

----------, T liq
2η E ∆E–( )

C0
-----------------------------,= =
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ditions sufficient for the heat capacity of an isolated
cluster in a microcanonical ensemble with two aggre-
gate states to be positive at any size and temperature.
The question is now open to find comparable general
conditions that produce the negative heat capacities that
have been seen in experiment and theory.
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Abstract—The coding of quantum communication channels in real time is considered as applied to the situa-
tion when information is coded into continuous quantum degrees of freedom (into the shape of the amplitude
of quantum states with an arbitrary number of photons). It is shown that the nonlocalizability of states in quan-
tum field theory requires that the identity of particles should be taken into account. This, together with the finite-
ness of the limit speed of propagation, leads to the fact that the formulas for the transmission rate of nonrela-
tivistic communication channels have an asymptotic character; i.e., these formulas are formally valid only when
the separation between messages is infinite (when the identity of particles can be neglected) and, hence, when
the transmission rate in [bit/message s] is infinitely small. A real-time information capacity of a sequential rel-
ativistic quantum communication channel is obtained that takes into account the identity of particles for pure
signal states with an arbitrary number of photons. An explicit analytic expression is obtained for the transmis-
sion rate of a quantum channel of finite bandwidth for one-photon input states. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The transmission capacity is an important character-
istic of a communication channel that determines the
speed of information transmission through the channel.
This parameter defines an asymptotic bound for long
messages up to which information can be transmitted
without error (more precisely, with arbitrarily small
error probability). Classical information theory and the
coding theorems that determine this asymptotic bound
for communication channels are formulated in terms of
statistical ensembles. A source of discrete messages is
described by a finite or infinite set of signals (an alpha-
bet) x = {xi} each of which is sent by the source into a
communication channel with a priori probabilities
{p{xi}}. A discrete memoryless communication chan-
nel is defined by an output alphabet y = {yi}, which may
partially or completely coincide with the input alpha-
bet, and by the transition probabilities {p(yj |xi)} that
actually describe the transmission characteristics of the
communication channel.

The mutual information of a source is described by
the Shannon entropy [1], which is given by

(1)

for an ensemble x; here, the logarithm is to the base 2.
The quantity H(x) is equal to the amount of information

H x( ) p xi( ) p xi( )log
i

∑–=
1063-7761/04/9802- $26.00 © 20374
in bits per symbol. More precisely, for a sufficiently
long sequence of length n (n  ∞), information in
bits per symbol of a sequence is equal to H(x) with a
probability of one.

The model of statistical ensembles corresponds to a
real-life situation. For example, the frequency of occur-
rence of letters xi (symbols of alphabet) in a sufficiently
long fragment of a standard English text tends to a pri-
ori probabilities of p(xi). The amount of information in
bits per symbol in a text is equal to 1.3 bit per byte
(eight bits), H(x) = 1.3/8. Accordingly, the redundancy
of the text is 1–1.3/8 ≈ 84%. This means that a suffi-
ciently long fragment of the text can be compressed to
84% without loss of useful information.

The amount of information per symbol that can be
transmitted through a communication channel is given
by mutual information,

(2)

where H(x|y) is the conditional entropy of the input
with respect to the output, which describes the loss of
information in the communication channel, for exam-
ple, due to noise. Accordingly, information that can be

I x; y( ) H x( ) H x y( ),–=

H x y( ) p y j( )
p y j xi( )p xi( )

p y j( )
-------------------------------

p y j xi( ) p xi( )

p y j( )
------------------------------,log

i j,
∑–=
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transmitted by a sufficiently long sequence tends to
In(x; y) = nI(x; y).

The maximum (more precisely, the smallest upper
bound) of mutual information over all possible a priori
input probabilities p(xi),

, (3)

represents the transmission capacity of the communica-
tion channel and determines the largest possible
amount of information per symbol that can be transmit-
ted through a communication channel without error
(with an arbitrarily small error probability) [1].

Notice that the transmission capacity C determines
the speed of information transmission in terms of the
number of bits (≤1) per message (a symbol of the alpha-
bet) [bit/message] rather than in terms of the real-time
transmission rate [bit/message s], which is of great
practical interest.

The arguments given above are purely mathematical
and do not apply to physical reality; the information
carriers themselves, which are assigned certain sym-
bols of the alphabet, are also not specified, although
information carriers in any real-life situation are repre-
sented by specific physical objects (either classical or
quantum). In nonrelativistic classical physics, when
one interprets the transmission capacity of discrete
channels as the rate of information transmission, one
implies the following. Since no fundamental con-
straints are imposed on the preparation time of a (local-
ized or spatially extended) classical object, the trans-
mission rate is limited only by the frequency of mes-
sages of information carriers sent into a communication
channel, which, in essence, may be arbitrarily large. If
the frequency of messages sent into a communication
channel is 1/T, then the information transmission rate is

(4)

All of the aforesaid applies to classical discrete
communication channels. In general, a classical signal
is described by a real function of coordinates and time.
The possibility of transmitting information by time-
continuous signals of finite bandwidth is given by the
well-known Whittaker–Shannon–Kotelnikov sampling
theorem [2]. This theorem states that, for a signal f(t)
with finite bandwidth (supp f(ω) ∈ ∆ω ), the number of
independent degrees of freedom (symbols of a continu-
ous alphabet) on a finite time interval T is equal to
2∆ωT. If there is no noise in the channel and no con-
straints are imposed on the amplitudes of the function
at the sampling points, then, formally, the transmission
capacity tends to infinity because each of the 2∆ωT
degrees of freedom may take arbitrary values.

The transmission capacity of a classical channel
with additive Gaussian noise, finite bandwidth, and

C I x; y( )
p xi( )
lim max

In x; y( )
n

------------------
n ∞→
lim= =

p(xi)
max

C
T
---- bit

message  s
------------------------ .
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Gaussian distribution of a continuous input signal of
limited power is given by the well-known Wiener–
Shannon formula [1].

The description of classical communication chan-
nels where signal depends only on time is an idealiza-
tion. If we assume that information is transmitted
through space by electromagnetic waves (it is this situ-
ation that we consider here), which are described by the
Maxwell equations, then we cannot consider signals
that are functions of coordinates only. Therefore, the
approaches described above are idealistic and do not
fully apply to the situation. Moreover, at low signal lev-
els, one inevitably has to take into account quantum
phenomena. For example, in quantum cryptographic
systems (where a quantum communication channel is
given, as a rule, by an optical-fiber communication
line), when a signal level is close to the one-photon
level, the situation requires a relativistic quantum
description because photons, being massless particles,
are essentially relativistic objects. Determination of the
fundamental restrictions imposed by the quantum char-
acter of a signal and by the special theory of relativity
on the transmission rate of a signal has already attracted
practical interest. Since all real prototypes of quantum
cryptosystems employ an optical fiber, which has a
finite transmission bandwidth due to the properties of
the material, the derivation of formulas for the trans-
mission capacity, which describe the rate of informa-
tion transmission, is also of practical interest.

2. NONRELATIVISTIC QUANTUM 
COMMUNICATION CHANNELS 

WITH DISTINGUISHABLE STATES

Up to now, we have been dealing with classical
communication channels. As the signal level decreases
to the level of individual photons, one inevitably
encounters fundamental constraints imposed on the
transmission capacity and the transmission rate of clas-
sical information by means of quantum states. This
question is of practical interest in relation to the prob-
lems of quantum cryptography.

Profound and good results have recently been
obtained concerning the coding in nonrelativistic quan-
tum communication channels [3–6]. Significant
progress has been made in the understanding of the
transmission of quantum states proper, as well as the
transmission of classical information by means of dis-
tributed quantum communication channels (superdense
coding; see, for example, [7]). In spite of the progress
made, a clear answer has not been obtained to the ques-
tion about the real-time transmission rate of classical
information by means of quantum states. This is prima-
rily associated with the fact that the above-mentioned
coding theorems are formulated as communication pro-
tocols in the space of states of a quantum system (in a
Hilbert space), without explicitly introducing space-
time into the problem and, hence, without explicitly
taking into account the spacetime structure of the quan-
SICS      Vol. 98      No. 2      2004
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tum states. Without taking into account these circum-
stances, one cannot obtain the constraints imposed both
by the quantum character of the states and by the pres-
ence of the limit speed of propagation.

By analogy with the classical case, the coding theo-
rems that determine the channel capacities when trans-
mitting classical information by means of quantum
states are formulated in terms of quantum statistical
ensembles [3–7]. A classical alphabet {

 

x

 

i

 

} is assigned a
quantum alphabet that is described by density matrices
{

 

ρ

 

i

 

} prepared by a source with a priori probabilities
{

 

p

 

i

 

}. The state space of an individual quantum carrier is
a Hilbert space 

 

*

 

 

 

of states in which the operator of the
density matrix acts. A message of length

 

 n

 

 is described
by the tensor product of separate symbols of the quan-
tum alphabet (density matrices) in separate messages:

(5)

The state space of messages of length 

 

n

 

 is the tensor
product

(6)

The quantum communication channel itself is
described by the transformation (map) of the input
operators of density matrices into the output operators
of density matrices. According to the Kraus representa-
tion theorem [8], the transformations of the density
matrices 

 

ρ

 

 into the density matrices 

 

ρ

 

', which are
admissible by quantum-mechanical laws, are given by
the map

(7)

which is a linear, trace-preserving, and completely pos-
itive map. Any such transformation is given by the rep-
resentation

(8)

where the operators 

 

V

 

k

 

 form a partition of unity in 

 

*

 

:

(9)

Such a mapping of operators into operators is called
either a tool (according to the terminology of [8]) or a
superoperator. By specifying a superoperator, one com-
pletely describes a quantum communication channel,
as in the case when the description of a channel in the
classical case is specified by transition probabilities.

pi
n( ) pi1

ρi2
… ρin

⊗ , i⊗ ⊗ i1 i2 … in, , ,( ).= =

*⊗ n * * … *⊗ .⊗ ⊗=

ρ' 7 ρ[ ] ,=

7 …[ ] Vk …[ ] Vk
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∑=
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Accordingly, a particular message of length 

 

n

 

 (5) at
the output of a channel is described as follows:

(10)

The extraction of classical information from quan-
tum states at the receiving end is performed by mea-
surements performed over the output density matrix

 

7

 

[

 

ρ

 

(

 

n

 

)

 

]. Any measurement is described by a certain par-
tition of unity in 

 

*

 

⊗

 

n

 

:

(11)

where the subscript 

 

k

 

 enumerates the results of mea-
surements. Note that we do not assume that the mea-
surements are performed immediately over a message
of length 

 

n

 

 as a whole (the so-called collective mea-
surements) rather than over a state in each message. It
is these measurements on which the mutual informa-
tion between input and output attains its maximum.
Note that there is nothing of the kind in classical dis-
crete memoryless communication channels (it suffices
to perform a measurement over each individual mes-
sage; see [5–7]).

The amount of mutual information between output
and input for an ensemble of length 

 

n

 

 is given by

(12)

where

(13)

is the probability that a particular message 

 

i 

 

of length 

 

n

 
at the transmitting end is interpreted as a message 

 
j

 
 at

the receiving end. The amount of mutual information
between the input and output of a communication chan-
nel depends on which measurements are used for
extracting classical information from a quantum
ensemble.

The transmission capacity (the number of bits) per
message is defined by

(14)

which is the maximum of mutual information over all
possible a priori input probabilities and measurements
at the receiving end (the states 

 

ρ

 

i

 

 of the carriers them-
selves are assumed to be fixed). The quantity 

 

C

 

 repre-
sents the amount of classical information in bits (

 

≤

 

1)
per message (per symbol of the quantum alphabet 

 

ρ

 

i

 

)
that can be transmitted through a communication chan-
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ON THE TRANSMISSION RATE OF CLASSICAL INFORMATION 377
nel in the limit of long sequences with arbitrarily small
error probability.

It should be noted that the expression of messages (5)
and (10) in terms of a tensor product of density matrices
automatically presumes that quantum states in each
message are sent into a communication channel inde-
pendently of each other. However, the maximum of
mutual information is attained for collective measure-
ments at the receiving end when one measures the state
of individual messages as a single composite quantum
object rather than the states in each separate message.
At this point, we have a fundamental difference
between quantum and classical channels.

The fact that the source sends quantum states that
are described by the density matrices ρi and are chosen
by the source according to a priori probabilities pi

implies that the state of the source is described by the
density matrix

(15)

Accordingly, the state at the output of the channel
results from the action of the superoperator on the den-
sity matrix ρ (15) of the source. Then, we obtain

(16)

The amount of classical information (in bits) that can be
extracted from a quantum ensemble at the output of the
channel as a result of measurements is essentially
bounded by a quantity given by the fundamental ine-
quality proved by Holevo [3]:

(17)

where the equality is attained if and only if the density
matrices in the ensemble commute, [ , ] = 0 (i ≠ j).
Here, H(ρ) is the von Neumann entropy, which is a
quantum analog of the Shannon entropy:

(18)

If the density matrices  correspond to pure states,

 = |ϕi 〉〈ϕ i |, then the condition that the density matri-
ces should commute implies that the states are orthog-
onal. Orthogonal quantum states are certainly distin-
guishable and, in this sense, are analogous to classical
states. In this case, the von Neumann entropy reduces
to the Shannon entropy:

(19)

ρ piρi.
i

∑=

ρ' 7 ρ[ ] piρi'
i

∑ pi7 ρi[ ] .
i

∑= = =

χ H piρi'
i

∑ 
 
 

piH ρi'( ),
i

∑–≤

ρi' ρi'

H ρ( ) Tr ρ ρlog{ } .–=

ρi'

ρi'

χ H p( )≤ pi pi.log
i

∑–=
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A remarkable result is that the Holevo fundamental limit
is attainable and represents the transmission capacity of
a quantum communication channel [3, 5–7],

(20)

Up to now, we have not specified the type of the object
that was assigned a quantum state ρi . Moreover, the
problem involves neither time nor space. Therefore, we
can say nothing about the information transmission rate
in real time in terms of [bit/message s]. In nonrelativis-
tic quantum mechanics, such an approach is not self-
contradictory in principle. Although the problem does
not involve time, it is assumed (although is not explic-
itly stipulated) that, because there are no fundamental
constraints on the preparation time of the quantum
states (even spatially extended ones) and, hence, on the
measurement time of these states, the transmission rate
is bounded only by the sending frequency of states into
the communication channel. The latter frequency may
be arbitrarily large.

3. RELATIVISTIC QUANTUM COMMUNICATION 
CHANNELS WITH IDENTICAL PARTICLES

A quite different situation occurs in the relativistic
case. Since photons are the only acceptable information
carriers for transmitting information to large distances
and, because they have zero mass, are essentially rela-
tivistic particles, one cannot determine the transmission
rate of classical information by means of quantum
states without explicitly introducing Minkowski space-
time.

Any real transmission of information occurs in time
and space. Moreover, the very existence of spacetime
suggests that there exist only certain types of elemen-
tary quantum systems (particles). This means that the
basis vectors of irreducible unitary representations of
the Poincaré group that act in a Hilbert space of states
are associated with various types of particles (electrons,
positrons, photons, neutrinos, etc.). The basis vectors
corresponding to different irreducible representations
(different types of particles) have different transforma-
tion properties under the transformations of Minkowski
spacetime [9–11].

Further, we will consider a one-dimensional situa-
tion. This approximation is physically justified because
optical-fiber systems, which play the role of quantum
communication channels, are quasi-one-dimensional
systems. A quantized photon field has a transverse char-
acter; for further consideration, the fact that the photon
field has zero mass is significant. We will ignore the
polarization degrees of freedom since we will focus on
the coding into the shape of the quantized state of the
photon field. Earlier [12], we considered a quantum
binary communication channel when the coding was

C H pi7 ρi[ ]
i

∑ 
 
 

piH 7 ρi[ ]( )
i

∑–
 
 
 

.
pi{ }

lim= max
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performed into polarization degrees of freedom of a
one-photon state. The coding into continuous degrees
of freedom (not necessarily of a one-photon state) that
is considered below is more complicated.

The symbols of the classical (finite or infinite)
alphabet {xi} are assigned pure states of a quantized
field. A symbol of the classical alphabet is assigned the
amplitude ϕi (a shape, a smoothing function) of an ni-
photon state |ϕi〉 . The state of a quantized field is repre-
sented as (the number of photons ni in the state is deter-

mined by the number of birth operators )

(21)

where the field operators (more precisely, operator-val-
ued generalized functions) for a massless field are given
by

(22)

The creation and annihilation operators satisfy the Bose
commutation relations

(23)

The operator-valued generalized functions  can-
not be regarded as mere operators acting in *, even if

they are unbounded operators. If we assume that 
are mere operators, then, according to Jaffe [13], the
requirement that a scalar product in * should be
Lorentz invariant implies that the matrix element

, interpreted as the creation amplitude
of a particle at  = (x, t), its propagation in spacetime,
and annihilation at  = (x ', t '), t ' > t, is equal to a con-
stant independent of  and , which contradicts the
relativistic causality.

The generalized basis vectors (more precisely, con-
tinuous linear functionals in *) are given by

(24)

where  and  belong to Ω* (to the conjugate space
of the space of test functions ϕ ∈ Ω ). Physical states
(normalized vectors in *) are obtained from Ω—a
space of infinitely differentiable functions that decrease

ϕ+ x̂k( )

ϕ i| 〉 … x̂1… x̂ni
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× ϕi x̂1,  … ,  x ˆ  n i
 ( )ϕ 

+ x ˆ 1 ( ) …ϕ 
+ x ˆ n 

i
 ( ) 0 | 〉 ,

ϕ+ x̂( ) k̂eik̂ x̂a+ k̂( )θ k0( )δ k̂
2

( ),d∫=

x̂ x t,( ), k̂ k k0,( ).= =

a– k̂( ) a+ k'ˆ( ),[ ] k0δ k k'–( ).=

ϕ+ x̂( )
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0〈 |ϕ – x'ˆ( )ϕ+ x̂( ) 0| 〉
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x'ˆ
x̂ x'ˆ

a+ k̂( ) 0| 〉 k| 〉 , k k'〈 〉 k0δ k k'–( ),= =
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x̂| 〉 k| 〉
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at infinity faster than an inverse power of any polyno-
mial—by smoothing the basis vectors with the test
functions (amplitudes). For an 

 

n

 

i

 

-photon state corre-
sponding to symbol 

 

i

 

 of the alphabet, we have

(25)

The amplitude 

 

ϕ

 

(

 

k

 

1

 

, …) is defined by its values on the
mass surface 

 

k

 

0

 

 = 

 

|

 

k

 

|

 

. The generalized basis vectors are

 

|

 

k

 

1

 

, …

 

〉 ∈ Ω

 

*, 

 

ϕ ∈ Ω

 

, 

 

|ϕ〉 ∈

 

 

 

*

 

. The construction 

 

Ω ⊂

 
*

 
  ⊂  Ω* is called an equipped Hilbert space (the Gel-

fand triple) [11, 14].

Further, we will consider the states that propagate in
one direction k > 0; it is these states that carry informa-
tion between remote users. In this case, the amplitude
of a state is given by

(26)

where

Below, we will need a coordinate–time representation
of states. In this representation, a state is expressed as

(27)

For the states that propagate in one direction, the ampli-
tude depends only on the difference τl = xl – tl (l1, …,
ni). Physical states in * are defined by the values of the
amplitude on the mass surface. The dependence of the
amplitude of the states propagating in one direction on
the difference τ = x – t reflects the fact that, if a mea-
surement result was obtained at a moment t in the
neighborhood of a point (x, x + dx), then a similar result
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ON THE TRANSMISSION RATE OF CLASSICAL INFORMATION 379
can be obtained at a moment t' in the neighborhood of
a point (x ', x ' – x + t + dx). Next, we have

(28)

(29)

Since photons are bosons, the amplitude of a state
should be symmetric with respect to the permutation of
particles. This result follows automatically if the gener-
alized basis vectors  themselves (more pre-
cisely, continuous linear functionals) are symmetric.
By definition, we have [10–12]

(30)

where the symbol {j} under the sign of summation
implies all possible permutations of indices. Accord-
ingly, a scalar product of generalized basis vectors is
given by

(31)

These relations represent a definition of generalized
basis vectors (continuous linear functionals—general-
ized functions). This orthogonality relation means that
the basis vectors with different numbers of particles are
orthogonal.

Now, let us consider a transmission of classical
information by means of quantum states. Different
symbols of the classical alphabet {xi} are assigned the
states of a (not necessarily one-photon) quantized field
with different amplitudes (shapes of multiphoton pack-
ets) |ϕi〉 . Let us calculate the transmission rate in terms
of [bit/message s] for a channel with finite bandwidth
∆k (here, we use the system of units in which " = c = 1).

By analogy with [1, 3–7], we will apply the method
of random coding (random choice of code words),
which is reduced to the following. Randomly choose N
symbols |ϕi〉  of the alphabet with probabilities pi . Gen-
erate M such random vectors of states, each of length N.
Here, we have an essential difference from quantum
channels in the nonrelativistic case, where it is assumed
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that the states are distinguishable and a message of
length 

 

N

 

 is described by a vector of states as the tensor
product

(32)

This expression implies that quantum states in each
separate message are sent into a communication chan-
nel independently of the preceding and subsequent
states.

In the relativistic case, the situation is essentially
different for two reasons. Because the amplitudes of the
states defined on the mass surface are essentially non-
localizable, one has to take into account the identity of
particles. Due to the identity of particles, the states in
individual messages cannot be assumed independent.
In quantum field theory, nonlocalizability means that
the amplitude of a state (a smoothing function) is differ-
ent from zero in the entire space and cannot be exactly
equal to zero outside any compact domain of the space.
Moreover, the amplitude cannot decay exponentially at
infinity. The square integrability (normalization condi-
tion) of 

 

ϕ

 

(

 

k

 

) imposes constraints on the admissible
decrease rate of 

 

ϕ

 

(

 

τ

 

) at infinity (

 

τ

 

  

 

∞

 

). An answer is
given by the Wiener–Paley theorem [15]. For a square-
integrable function 

 

ϕ

 

(

 

k

 

) that is equal to zero on the half-
line 

 

k

 

 < 0 but is not identically zero, the following inte-
gral must converge:

Hence, the amplitude 

 

ϕ

 

(

 

τ

 

) on the light cone cannot
decrease exponentially but can decrease by a law arbi-
trary close to an exponential function:

where 

 

α

 

 is any positive number. This implies that the
states are nonlocalizable (different from zero outside
any compact domain). A fundamental cause of such
nonlocalizability is the fact that physical states are
determined by the values of the amplitude on the mass
surface. Moreover, as was shown by Hegerfeldt [16],
the possibility of strict localizability of the amplitude
would contradict the relativistic causality.

It is also known that the nonlocalizability is closely
related to the causality in the quantum relativistic field.
As was pointed out in [16], if one could strictly localize
the amplitude of a state in a finite domain at the initial
moment, then, at subsequent moments, the amplitude
of the state would be different from zero in the domains
separated from the original domain by a spacelike inter-
val; this would lead to a situation when the speed of
information transmission would be faster than the
speed of light.

Thus, because the states of a quantized field are non-
localizable, the amplitudes of states in different mes-
sages inevitably overlap. In this case, one can speak
only of a general vector of state of the whole message

ϕ i1
| 〉 ϕ i2

| 〉 … ϕ iN
| 〉⊗ *⊗ N

.∈⊗ ⊗

ϕ τ( )ln

1 τ2+
------------------ τd
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∞
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ϕ τ( ) α τ / … τlnln( )ln( )ln–{ } ,exp∝
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of length N and take into account the identity of parti-
cles. It is this fact that imposes a fundamental constraint
on the speed of information transmission through quan-
tum communication channels. In the nonrelativistic
description (which, strictly speaking, is inapplicable to
photons), these constraints (especially the identity of
particles) have not been taken into account up to the
present. Note that taking into account the identity of
particles is also essential for the processes of teleporta-
tion [17] and when realizing quantum algorithms in real
physical systems [18, 19]. 

The states in individual messages can be made dis-
tinguishable by increasing the time separation between
successive messages by a large value (in principle, up
to infinity). However, the speed of information trans-
mission in this case will tend to zero. Therefore, to clear
up the question about the transmission rate of a quan-
tum communication channel (the real-time speed of
information transmission), one cannot, in general,
apply formulas obtained without taking into account
the identity of particles because the latter formulas are
valid only for infinite separation between messages,
which corresponds to an infinitely slow transmission of
information. In this sense, the formulas for the trans-
mission rate for distinguishable particles have an
asymptotic character. The decrease in the time interval
between separate messages suggests that the identity of
particles should be taken into account.

Our immediate task is to clear up the question about
the transmission speed of classical information by
means of quantum states, depending on the shape of
these states, the separation between individual mes-
sages, the channel bandwidth, and the observation time
window at the receiving end.

The propagation of states toward the receiving end
is determined by the action of a unitary operator that
describes the translation. In order to avoid cumbersome
calculations, we do not write out a general expression
for the translation operator; however, we will assume
that measurements at the receiving end are performed
over states that are translated in spacetime.

The state vector corresponding to a code word of
length N from a random set of M code words is given by

(33)
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,∈
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where

(34)

The amplitudes of the states  in two successive
messages represent amplitudes (packets in separate
messages) that are displaced by  and .

The fact that independent states in separate mes-
sages do not exist follows from the identity of particles.
More formally, the states in all messages are generated
from the common vacuum operator |0〉  that describes an
empty communication channel. The state vector of the
entire message represents a symmetrized vector whose
space of states is a symmetrized vector product

Sym  rather than the tensor product .
Note once again that the state of an entire message

can be represented as a tensor product of separate inde-
pendent messages only if the time interval between sep-
arate messages is sufficiently large (formally, when this
interval is infinite,   ∞).

The density matrix corresponding to the code word
from a random set has the form

(35)

which, after averaging E over all possible random sets
of code words, yields a complete density matrix of all
possible messages of length N:

(36)

where Pi is the probability of occurrence of a particular
message that corresponds to the state vector

.

If the measurement time at the receiving end was
unlimited, then the amount of classical information that
can be extracted from an ensemble of messages of
length N (36) would be given by the following expres-
sion (which is obtained from the Holevo inequality [3]):

(37)
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However, actually, all measurements are bound and
are performed in finite (even though arbitrarily large)
domains of spacetime. Since the states of the massless
field of photons depend only on the difference τ = x – t,
one can perform measurements either at a fixed
moment of time in a certain spatial domain or in the
neighborhood of a certain point of space but during a
certain finite period of time, waiting until the entire
state reaches this point. More precisely, in the first case,
measurements are performed by a spatially distributed
device, so that an interaction between this device and a
state is switched on at all points of the domain at the
moment t. In the second case, when a measurement is
performed in a bounded domain of space, the state of a
field is unitarily transformed into a state of a localized
atomic system (detector); moreover, a unitary transfor-
mation lasts a certain finite period of time that is neces-
sary for the state to eventually reach a local device.

Further, for short, we will say that measurements are
performed within a time window, which we denote by
T; here, by T, we mean a spacetime domain (in the
above-mentioned sense of T = ∆(x – t)).

Both situations are formally described identically
and, according to the general theory of quantum-
mechanical measurements, correspond to the introduc-
tion of measuring operators that form a partition of
unity. This means that each spacetime domain is
assigned a measuring operator, so that the sum of oper-
ators assigned to the entire space is equal to unity.

As applied to our situation, there are two domains
(two time windows),

Information is extracted by an observer from the time
window T of measurement.

The measurements in a finite time window corre-
spond to the introduction of a certain superoperator that
gives a density matrix that an observer at the receiving
end can see in the time window T. The introduction of
such a superoperator allows one to apply formula (37)
to calculate the transmission capacity. We are interested
in the limit when the length of a particular message
tends to infinity (the limit of long sequences as N 
∞). In this case, the time window TN necessary for the
measurement also increases with N. We are interested
in the limit of the ratio of the amount of classical infor-
mation extracted from a message of length N to the size
of the time window TN . It is this limit that represents the
transmission rate of the communication channel in
terms of the number of classical bits per one message
per unit time, [bit/message s].

Next, we will need a tool that transforms a state
defined in an infinite time window into a state that an
observer can see in a finite time window. One can easily
construct an operator-valued measure that describes
measurements in a finite time window. Any measure-
ment is described by a partition of unity. The full iden-
tity operator is a direct sum of symmetrized identity

T T+ ∞ ∞,–( ).=
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operators in subspaces with different numbers of pho-
tons m = 0, 1, …, ∞:

(38)

where

(39)

If the measurements are performed in a finite time win-
dow T, then the partition of unity that describes this
measurement is

(40)

where

(41)

The operator-valued measure (40), (41) is sufficient
to obtain the probabilities of measurement results in a
finite time window. However, to calculate the transmis-
sion rate, one needs the density matrix of the ensemble
of messages that an observer can see in the finite time
window (–T, T) in which the measurements are per-
formed. An operator-valued measure alone is insuffi-
cient for these purposes; one needs the very tool (a
superoperator) that leads to this measure. According to
the Kraus theorem [8], any superoperator can be repre-
sented as

(42)

where the operators  and  must satisfy

I I m( ),
m 0=

∞

∪= ⊗

I m( ) …
k1… kmdd
k1…kn

-----------------------

0

∞

∫
0

∞

∫=

× k1 … kn, ,| 〉 k1 … km, ,〈 | .

I m( ) } m( )
T( ) } m( )

T( ),+=

T T+ ∞ ∞,–( ),=

} m( )
T( ) …

τ1… τmdd

2π( )m
----------------------- …

k1… kmdd

k1…km

-----------------------

0

∞

∫
0

∞

∫


T–

T

∫
T–

T

∫=

∫ × i k1τ1 …  +  k m τ m +  ( )( ) k 1 … ,  k m ,| 〉 exp  




× …

 

k

 

1

 

'

 

…

 

k

 

m

 

'

 

dd

k

 

1

 

' …km'
----------------------- –i k1'( τ1(exp

0

∞

∫
0

∞

∫


+  …  +  k m ' τ m )) k 1 ' … ,  k m ' ,〈 |




 .

7 …[ ] 7 m( )

m 0=

∞
∪= V T( ) j

m …[ ] V T( ) j
m( )+

j

∑
m 0=

∞
∪=

+ V T( ) j
m …[ ] V T( ) j

m( )+
,

j

∑
m 0=

∞
∪

⊗ ⊗

⊗

V T( ) j
m( ) V T( ) j

m( )
SICS      Vol. 98      No. 2      2004



 

382

  

MOLOTKOV
the relation

(43)

The operator-valued measure generated by a superoper-

ator is expressed in terms of the operators 
in (42) and (43) as follows:

(44)

As the operators , one can choose the follow-
ing operators:

(45)

The density matrix of the ensemble of messages that an
observer can see in the finite time window (–T, T) is
obtained by the action of a superoperator and is given
by

(46)

Now, we have to determine the explicit form of the
operators entering in (42) and (43); to this end, we
should specify the properties of the quantum communi-
cation channel since the operators in (42) and (43) rep-
resent a formalized description of the properties of the
quantum communication channel.

So far, we have not imposed any restrictions on the
transmission bandwidth of the quantum communica-
tion channel. In any real-life situation, the transmission
bandwidth is finite. In what follows, we will assume
that the bandwidth is finite and equal to ∆k (this is a free
parameter that describes the channel and can be arbi-
trary, even arbitrarily large). In this case, the integrals
in (39)–(41) should be taken with respect to each ki over
a finite interval ∆k rather than over the interval (0, ∞).
If we have to determine the properties of a channel with
infinite bandwidth, we can let the bandwidth in the final
expressions tend to infinity.
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Now, our task is reduced to the extraction of the
square root from the operators }. Such an operator
exists and is given by

(47)

The vectors  satisfy the integral equation

(48)

where the integral operator is expressed as

(49)

where

(50)

The eigenvectors of the integral operator are given by

(51)

the functions entering in (47), (48), and (51) satisfy the
following integral equation:

(52)

The maximal eigenvalue corresponds to the maximum
of the functional, and the eigenfunction of this eigen-
value yields an optimal shape of the state. This equation
was earlier studied in [20, 21]; the eigenvalues of the
equation are positive and form a sequence that decreases
as the number n increases (1 > λ0 > λ1 > … > 0, n = 0, 1,
…, ∞). The eigenvalues depend on the parameter
∆k · T; the first several eigenvalues for different values
of the parameter ∆k · T have been obtained in [20] (for
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large values of ∆k · T, they rapidly tend to 1; for exam-
ple, λ0 = 0.99589 for ∆k · T = 4). The asymptotic behav-
ior of the eigenvalues for ∆k · T @ 1 for fixed n is also
known and given by

(53)

i.e., the eigenvalues are exponentially close to unity.
The eigenvalues give the maximum possible degree of
localization of states in spacetime within a given chan-
nel bandwidth ∆k. Recall that T = ∆(x – t) is a distance
on the light cone.

The density matrix that an observer can see in a
finite time window consists of two terms (46). The first
term represents an effective density matrix that an
observer can see in the window (–T, T). The second
term represents a density matrix that corresponds to the
results of measurements performed outside the obser-
vation time window. In other words, this term is con-
structed so that it corresponds to the measurement
results obtained outside the observation time window
(–T, T). When a measurement is performed in a finite
window, any measurement result takes place either in
this window or outside it. For the observer, the mea-
surement results outside the window look like the
absence of recording in the window (–T, T). Therefore,
the observer should associate the absence of a result in
the observation window (formally, the result is obtained
but is not available to the observer) with an uncertain
result. Therefore, the density matrix in (46) can be rep-
resented as

(54)

where

(55)

Here, we introduced a formal state |?〉  that describes the
results outside the window. This state is orthogonal to
all the other states. It implies that the result of any mea-
surement takes place either in (–T, T) or outside it. The
result of any measurement within the window (–T, T)
can be represented in terms of a partition of unity in this
window. Such unity is given by }(T), while the vectors

 form a complete orthogonal basis (orthogonal
partition of unity) within the observation time window.
Therefore, any (orthogonal or nonorthogonal) measure-
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ments within a window are reduced to the measure-
ments over the density matrix described by the first
term in (54). The second term in (54) is responsible
only for the probability of the absence of a result within
the window (or for the probability of a result outside the
window), which can be expressed in terms of a state
orthogonal to any other state in the first term. The prob-
ability of such results is defined as

(56)

as is prescribed by the action of the second part of the
superoperator. Here, the summation over j is replaced
by the integration with respect to dτ.

The difficulties described that are associated with
the construction of an orthogonal basis in a finite time
window arise due to the nonorthogonality of the origi-
nal basis in the τ representation (the generalized basis
vectors |τ〉 for different τ are not orthogonal even for the
infinite bandwidth). If the generalized basis vectors
were orthogonal, then the effective density matrix in a
finite time domain would be obtained simply by pro-
jecting this matrix onto this domain. In our case, we
have to apply a slightly more complicated calculation
procedure.

If we have the density matrix that is available to the
observer who performs measurements in a finite time
window, then we can apply the Holevo formula. Using
the method of doubly typical sequences (see [3, 6] for
details), we can obtain the following inequality for the
mean decoding error at the receiving end (N, M)
for arbitrarily small ε > 0 and δ > 0:

(57)

where

(58)

The decoding error at the receiving end tends to zero if
the number of code words M (that are uniquely identi-
fied with probability one) for an ensemble of messages
of length N does not exceed

(59)
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What is important here is the limit of χ(N)/N as N 
∞. This limit is always less than χ(1)N because the over-
lap of individual packets decreases the distinguishabil-
ity of the code words due to the identity of particles. For
example, if one uses orthogonal states of separate pack-
ets and the spatial carriers of these packets do not over-
lap (the packets of individual messages are separated by
a large interval; formally, by an infinite interval), then
the quantity 

tends to the classical limit. In the case of overlapping
spatial amplitudes (such overlapping always takes
place due to the essential nonlocalizability of the ampli-
tudes of states), separate code words, even if each of
them is constructed from orthogonal packets, cease to
be orthogonal, i.e., certainly distinguishable. Even in
the case of arbitrarily strongly localized carriers, we
have

only for the infinite separation of states, τ0 = ∞.
The quantity

tends to the limit of distinguishable particles, which is
attained in the limit of an infinitely small transmission
rate.

The ratio χ(N)/N is a decreasing function of N for
fixed separation τ0 and shape of the amplitude. For τ0 =
0, we have χ(N) = 0 because all states from a typical sub-
space become identical. Suppose that at least one
packet is shifted in time to infinity (τ0 = ∞). In this case,
the density matrix is

and

(60)

The sequence χ(N)/N decreases and is bounded from
below; therefore, the limit exists and is equal to

(61)

The quantity χ∞ is the transmission capacity and defines
the rate of information transmission in terms of the
number of bits per message per photon; however, it is
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not the bit rate because it requires access to the entire
branch of the light cone. The transmission capacity χ∞
cannot be calculated analytically; however, it can be
determined numerically for given shape of a packet and
separation τ0 between messages:

(62)

Suppose that the time taken for sending a message of
length N is chosen equal to

(63)

(here, T is time per one message). Recall that τ0i are the
separation intervals between individual messages; i.e.,
the amplitudes of states (packets) are given by

In the spacetime representation, this situation corre-
sponds to a shift by τ0i between two successive mes-
sages i and i + 1.

The transmission rate of a channel with finite band-
width ∆k is equal to

(64)

which represents the number of bits per one message
per unit time. Formulas (62)–(64) give a closed-form
expression for the transmission rate of a sequential
quantum channel as a function of the bandwidth (∆k),
packet shape (ρi), separation τ0i between individual
messages, and the observation time window at the
receiving end. Recall that the time window T = ∆(x – ct)
represents a distance on the light cone for the photon
field.
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For a given channel bandwidth ∆k, the maximum
degree of localization in spacetime is determined by the
solutions of the integral equation (52) and its eigenval-
ues (53). For a given bandwidth ∆k, the size of the time
window T outside which the normalization of packets is
exponentially small is determined by (53). Here, suc-
cessive messages can be assumed independent and the
packet overlap and identity of particles can be
neglected. Formally, the overlapping disappears com-
pletely only for infinite separation of messages. In this
limit, one can apply formulas for the transmission
capacity, which describes the amount of information
per message, for nonrelativistic quantum communica-
tion channels with distinguishable states. However, in
terms of speed of information transmission, the trans-
mission capacity will tend to zero.

If the separation between successive messages is not
infinite, then one cannot neglect the identity of parti-
cles. In this case, one should apply formulas (62) and
(63). The order of magnitude of the transmission rate is
given by

where the density matrix ρi is constructed from pure
states (27), which are chosen with a priori probabilities
pi . The value of T for which the messages can be
assumed independent (overlapping) is determined by
formula (53), T > 1/∆k. For the states that are optimal in
spacetime (very short for a given bandwidth), one can
choose T to be several times greater than 1/∆k due to the
fact that part of the normalization of the state in the time
window T exponentially rapidly reaches unity. The
decrease in the time window increases the overlapping
and, hence, decreases the distinguishability of states in
individual messages; therefore, the estimate given
above for the transmission rate is an upper estimate.
The exact value of the transmission rate is given by (62)
and (64) and is no greater than this estimate.

4. TRANSMISSION RATE 
OF A PARALLEL QUANTUM CHANNEL

WITH ORTHOGONAL ONE-PHOTON INPUT 
STATES

The formulas obtained in the preceding section
describe a general situation for a communication chan-
nel, which can be conventionally called a parallel chan-
nel. In this situation, the states are physically sent into
a communication channel successively in time.

Another limiting situation is also possible when all
the states are sent in the entire bandwidth of the channel
in the same time window. Such a method of transmis-
sion is used in the so-called multiplexed mode, when
each state (respectively, each symbol of the alphabet) in
the message corresponds to its own frequency band-

C ∆k T,( )
H ρ( )

T
-----------, ρ≤ piρi,

i

n

∑=
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width. If the frequency bandwidths for separate states
do not overlap, then the state space of messages is a ten-
sor product of Hilbert spaces of states for each fre-
quency bandwidth, rather than a symmetrized tensor
product as in the case of the sequential communication
channel. In this case, one can obtain final analytic for-
mulas for orthogonal input states with a certain space-
time shape. These states represent a quantum analog of
sampling functions [2].

To clear up the general formulas and their relation to
the classical case, when the alphabet is coded into a
time shape of a signal, we give an example of calculat-
ing the transmission capacity of a communication
channel with finite bandwidth when the input signal
states are one-photon states. The symbols of the classi-
cal alphabet {xi} are assigned pure one-photon states
with different shapes of packets (amplitudes).

Let us return for a while to the classical case and
consider the coding of a source on a finite time interval
(–T, T) for the case of a continuous classical input sig-
nal defined in a finite frequency band ∆k.

A classical signal is defined by the time function

(65)

where the subscript i runs through 2∆kT values corre-
sponding to independent degrees of freedom of the sig-
nal; hence, we obtain an orthogonal set of functions that
describe independent degrees of freedom of the signal:

(66)

Often, these functions are also called sampling func-

tions [2]. The quantity  describes the amplitude,

and  makes the sense of the signal power at a certain
harmonic ui(t).

Amplitudes  are random variables with certain
a priori input probabilities; the probability distributions
for each sampling test function are independent. In this
case, the problem is reduced to the coding of 2∆kT
independent sources. Formally, each pi describes an a
priori distribution of input probabilities in one of inde-
pendent (parallel) channels. Physically, this situation is
realized when narrow pulses of intensity pi are applied
to the input of a channel with finite bandwidth ∆k suc-
cessively over equal sampling times [t – i/(2∆k)].

In the quantum case, there is no direct analogy with
the classical case considered above. Consider an exam-
ple of coding a quantum source in a channel with finite
transmission bandwidth ∆k, which is most similar to
the classical case. As input signal states of the source,
we choose the states that are orthogonal in a finite time
window T (which is assumed to be fixed at the receiving

u t( ) piui t( ),
i

∑=

ui t( ) ∆k
2π∆k t i/ 2∆k( )–[ ]sin

2π∆k t i/ 2∆k( )–[ ]
-----------------------------------------------------.=

pi

pi
2

pi
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end). These states satisfy the integral equation (52);
they represent analogs of orthogonal sampling test
functions that are defined in a finite time window and
have a finite frequency bandwidth. These states depend
only on the product ∆k · T:

(67)

The a priori probabilities of the states are {pi}. We
assume that the number of symbols in the alphabet is
bounded by a certain number Nmax. In the classical case,
such a restriction implies that the signal intensity for
each sampling function is bounded by a certain value
(by the intensity of each sampling harmonic).

A significant difference between the quantum and
classical cases manifests itself during a physical real-
ization. In the classical case, one can apply narrow
pulses at sampling times to the input of a channel with
a finite frequency bandwidth. These pulses are added
up in the channel to form a complete time-continuous
signal (65). At the receiving end, one measures the
amplitude of signal (65) at equidistant moments of time
[t – i/(2∆k)] and extracts the values of pi into which
information is coded. In this case, due to the classical
nature of the signal, such a process is continuous in
time, and the signal itself is not destroyed under the
measurements. Therefore, in formal mathematical con-
sideration, one can assume that the quantities pi are
transmitted through independent parallel channels due
to the orthogonality of the sampling harmonics.

In the ultraquantum case, when the input states are
one-photon states, such a realization is certainly impos-
sible. Arguments analogous to those in the classical
case immediately encounter the following obstacles.
Suppose that strongly localized states that can be
assumed independent are applied to the input of a chan-
nel successively over equal sampling intervals. Sup-
pose that this sequence can be described by the tensor
product of separate messages rather than by a symme-
trized tensor product. The states are so strongly local-
ized that one can neglect the overlapping of adjacent
states. Although a quantum state of the photon field
cannot be strictly localized, it can be made arbitrarily
strongly localized. In this case, the states at the output
of the channel essentially overlap. The general state at
the output cannot be described (due to the identity of
particles) as a tensor product of separate states of the
form (5) but should be described by a unified tensor of
states, as is done in Section 3 for a sequential commu-
nication channel. There is an interesting question con-
cerning the transition from the classical to the quantum
case. Such a transition is performed by decreasing the
intensity (the number of photons) of each sampling

ui ∆k T⋅( )| 〉 kd

k
------ui T k,( ) k| 〉 ,

∆k

∫=

ui ∆k T⋅( ) ui' ∆k T⋅( )〈 〉 δ i i', .=
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function. Below, we consider a case when the number
of photons is maximally reduced, namely, reduced to
the one-photon level.

To make the analysis maximally close to that in the
classical case, consider the following method of cod-
ing. We apply the following arguments to preserve the
structure of independent states in each message and,
hence, to preserve the structure of the tensor product.
Any derivation of the coding theorems and of the
expression for the transmission capacity suggests the
use of long typical sequences whose length in the final
formulas tends to infinity. Since the chosen orthogonal
states in a finite time window T depend only on the
product of the channel bandwidth multiplied by the
time window, to form a sequence of messages of length
n (where n is arbitrary and tends to infinity), we divide
the frequency bandwidth of the channel into n identical
nonoverlapping frequency bands of width ∆k/n each of
which corresponds to one of parallel channels. The
quantum states in parallel channels with nonoverlap-
ping frequency bandwidths can be represented by a ten-
sor product.

The n-fold decrease in the frequency bandwidth
leads to the effective increase in the observation time
window by a factor of nT. Such a scaling of the time
window is necessary to guarantee that the input states
corresponding to the symbols of the alphabet in
sequences of different lengths are invariant (indepen-
dent of n). However, since the signal amplitude depends
only on the product (∆k/n) · nT, the signal input states
themselves within the bandwidth ∆k/n will have the
same localization in the time window nT (67).

The physical realization of the coding reduces to the
following. Choose a number n and divide a channel into
n independent parallel channels. The quantum states (68)
are simultaneously (in parallel) sent into each fre-
quency channel with a priori probabilities pi . The total
number of input states in all parallel channels is given
by the tensor product of states in separate independent
channels. At the receiving end, one performs a collec-
tive measurement, in the time window nT, over the ten-
sor product of the output density matrices in all the
channels. The transmission rate is calculated as the
limit of Cn/nT.

In view of the aforesaid, we have

(68)

and the a priori probabilities {pi} in n independent par-
allel channels. The subscript ik refers to the states in the
kth parallel channel. There is no need to introduce this
subscript into the argument of ((∆k/n)nT). At the
receiving end, the measurements over n states are per-
formed in the time window nT. Now, the density matrix

ρik
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n
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  uik

∆k
n

------nT 
 =

uik
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of a particular message of length n can be represented
as the tensor product

(69)

and state  is sent into the kth channel with probabil-
ity pi . This means that, since the argument of a state is
independent of n, the density matrix of each channel
can be represented as

(70)

The superoperator that sends the input density matrix (70)
to the density matrix at the output in the finite time win-
dow nT acts as follows:

(71)
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The first term of the density matrix in (71) is responsi-
ble for the measurement results in the time window T
that is available for observation. The second term is
responsible for the measurement results outside T. For
an observer, these results imply the absence of a state
(the absence of recording in the time window T). For-
mally, the state |?〉  is orthogonal to all the other states.
For a dummy state |?〉 , it suffices to preserve only a
diagonal term with respect to the new index ? to pre-
serve the unit trace of the density matrix.

Strictly speaking, one should introduce an index that
enumerates parallel channels into the identity operator
in (72). However, since all these channels are identical
and the results are independent of the position of the
bandwidth, we omit the index. Next, we have

(73)

(74)

The transmission capacity is calculated as the limit as
n  ∞. When the number of channels tends to infinity
and, hence, nT  ∞ (for fixed initial T), we have the
following expression for the transmission rate
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Using (71)–(74) and the orthogonality of the functions
ui , we obtain

(76)
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Next,

(77)

where

H pi7 ρi[ ]
i

Nmax
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=  µi µi µ⊥ µ⊥ ,log–log
i
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∑–
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(78)

(79)

(80)

(81)

Taking into account (75)–(81), we have the following
final expression for the transmission rate in terms of the
number of bits per message (per alphabet symbol) per
unit time:

(82)

Let us analyze the expression obtained. The first term in
the numerator describes the entropy of the source with
orthogonal (distinguishable) signals that correspond to
a priori probabilities µi , µ⊥  (i = 1, …, Nmax). The second
term represents an analog of the conditional entropy
between the input and output and describes a decrease
in the entropy of the source due to the finiteness of the
observation window. For a given channel bandwidth
∆k, when the observation time window tends to infinity,
T  ∞, we have µi  pi and µ⊥   0, and the
numerator tends to the transmission rate of an ideal
(noiseless) classical channel with a priori probabilities pi:

(83)

This quantity represents the rate of information trans-
mission in terms of [bit/message]; however, in the sense
of the speed of transmission [bit/message s], we have

(84)
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This result is associated with the fact that, for the input
states 
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u

 

i
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 (67) that are orthogonal in a finite time win-
dow, the quantities 

 

λ

 

i
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) with moderately large 
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tend to unity exponentially rapidly with respect to the
parameter 
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 · 
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 (53). Therefore, in a real-life situation,
one can choose the time window 

 

T

 

 several times greater
than the inverse of the frequency bandwidth of the
channel, 

 

T
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 1/

 

∆

 

k

 

. In this case, the states “interfere” in
this time window with exponential accuracy in this
parameter. For a given channel bandwidth, one can
always choose the time window 

 

T

 

 so that the tails of the
states outside this window are exponentially small, less
than any physically meaningful level (for example,

 

e

 

−
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); in this case, 
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≈

 

 40/

 

∆

 

k

 

. Recall that the number of
atoms in the visible part of the universe is estimated as
10

 

77

 

. The aforesaid implies that, for a given channel
bandwidth, in the ultraquantum limit of one-photon
states, it suffices to separate successive messages by

 

T

 

 

 

≈

 

 10/
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 in time so that the messages could be
assumed independent. Each message (in the limit of
long sequences) carries 

 

C

 

 bits, while the time interval
between messages is

 

 T

 

.
In this situation, it does not matter how to send the

states into the channel, either sequentially or in parallel,
because one can neglect the overlap of these states
when sending them successively over intervals of 

 

T

 

.
Accordingly, one can also neglect the identity of parti-
cles and can apply formulas for the transmission capac-
ities of communication channels with distinguishable
(not identical) particles [3–7] that were obtained earlier.
In this case, one should bear in mind that the transmis-
sion rate is given by 

 

C

 

/

 

T

 

 (

 

T

 

 is chosen with regard to the
aforesaid); i.e., the time interval between successive
messages of states cannot be less than  T.  Sometimes, it
is convenient to use the dimensionless transmission rate

(85)

This quantity represents the transmission rate per one
message per unit time and within unit bandwidth.

If the transmission bandwidth of a channel is
unbounded (

 

∆

 

k

 

  

 

∞

 

; although such a situation does
not occur in reality), then the states can be sent into a
channel with any frequency (since the time window can
be chosen as 

 

T

 

 

 

≈

 

 1/

 

∆

 

k

 

  0); in this case, to obtain the
transmission capacities, one can apply formulas for the
channels where the quantum states in each message are
assumed to be independent (nonoverlapping) and,
hence, are described by a tensor product rather than by
a symmetrized tensor product.

In conclusion, note that the dimensionless transmis-
sion rate (85) is Lorentz invariant; it does not change
when the observation at the receiving end is made in a
frame of reference that moves with respect to the frame
of reference of the source. In other words, the transmis-
sion rate is invariant with respect to the measurements
in a moving system of coordinates. This result is intu-

C̃ ∆k T⋅( )
C

∆k T⋅
--------------.=
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itively clear since a transition to a moving frame of ref-
erence leads to the effective compression of the fre-
quency spectrum of a state due to the Doppler effect,

(if the observer moves in the same direction as the
state), and, consequently, to the effective spatial dila-
tion of the state. The latter circumstance requires larger
time,

to guarantee the same proportion of the state in the time
window. However, since an answer depends only on the
product ∆k · T, the result remains the same and does not
depend on the direction of motion of the observer (on
the sign of β = v /c). This conclusion can be explained

as follows. Since the scalar product  is Lorentz
invariant, k = k0 for a photon propagating in one direc-
tion, and the spacetime variables enter only in the com-
binations τ = x – t, the quantity kτ which determines the
answer, is also Lorentz invariant (see, for example, [22]).

5. CONCLUSIONS

Thus, we have demonstrated that the nonlocalizabil-
ity of states in quantum field theory leads to a situation
when separate messages cannot generally be described
as independent because they inevitably overlap, which
requires that one should take into account the identity
of particles. This fact, combined with the finiteness of
the limit speed of propagation, suggests that the formu-
las for the transmission rate of nonrelativistic commu-
nication channels have an asymptotic character (i.e.,
they are formally valid only for the infinite separation
between messages, when one can neglect the identity of
particles). Formulas (62) and (82) give the transmission
rate as a function of the parameters of the communica-
tion channel and the shape of the signal states.
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Abstract—In a strong electric field, there are bound states of an electron at the surface of liquid helium, inter-
acting with a large cluster of atoms in the bulk of liquid. This phenomenon is related to long-range interaction
between the electron and the dipole moment of the cluster. The electron, holding the cluster under the liquid
surface, is localized at this surface. One electron is capable of binding a cluster of up to 106 atoms. The value
of the binding energy may reach up to several kelvins. © 2004 MAIK “Nauka/Interperiodica”.
A two-dimensional electron gas at the surface of liq-
uid helium is characterized by very high mobility. This
is related to the ideal purity of this fluid: at cryogenic
temperatures, all foreign particles are frozen out of
helium, which is experimentally observed as a snowfall
of small crystals of hydrogen and air [1, 2]. In recent
years, there has been extensive investigation of the prop-
erties of foreign particles formed in liquid helium, for
example, by laser sputtering. There are well-developed
experimental techniques for introducing such impurities
through the surface into the bulk of liquid helium [3, 4].

An interesting problem is related to the existence of
charged complexes at the liquid helium surface, formed
between electrons and macroscopic clusters. Recently,
we have proposed and theoretically studied a model
cluster formed below the liquid helium surface, com-
prising an electron tightly bound to the cluster by the
polarization attraction forces [5]. Previously, the bound
states of electrons at the surface of macroscopic clus-
ters were studied by Khaikin [6] with respect to the
influence of the cluster surface curvature on the station-
ary energy levels of an electron at this surface. We have
also investigated [7] ions of large radius at the surface
of liquid helium.

In this study, we will consider the bound states of an
electron at the surface of helium, interacting with a
macroscopic cluster situated below the surface. It will
be demonstrated that in a sufficiently strong electric
field, such bound states can form even for giant clusters
with dimensions on the order of R ~ 103 Å. The essence
of this phenomenon consists in that the liquid helium
surface plays the role of the third body reducing dimen-
sionality of the problem. The electron does not pene-
1063-7761/04/9802- $26.00 © 20390
trate into helium because the energy required for this
incorporation is very high, V0 ~ 1 eV, which corresponds
to an electric breakdown field strength of E0 ≈ 108 V/cm.
On the other hand, the cluster is held within the liquid
because of repulsion from the surface under the action
of van der Waals forces. Switching on the electron–
cluster interaction in a strong electric field gives rise to
the self-localization effect, whereby the cluster is posi-
tioned at a certain depth  under the liquid helium
surface and the electron performs a limited oscillatory
motion along the surface.

The potential energy of the electron–cluster system
under consideration can be expressed as

(1)

where ρe , ze are the electron coordinates and zB is the
cluster depth. The cluster is modeled by a sphere of
radius R with the dielectric permittivity eB (see figure).

The electron potential energy Ve(ze) corresponds to
an ansatz wave function ϕ0(ze) such that [8]

(2)

where E is the external electric field strength, eh = 1.054
is the permittivity of He4, and z0 is a characteristic scale
of electron motion along the z axis. For E = 0, we have

zB0
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z0 ≈ 100 Å; in a strong field E, this parameter is esti-
mated as z0 ≈ ("2/meE)1/3.

Let us consider the potential energy of the cluster
VB(zB). With neglect of the gravity force, this energy
can be represented as a sum of two parts:

(3)

The first (electrostatic) part VBE(zB) describes repulsion
of a dipole with the moment d from the surface [9]:

(4)

Relation (4) is derived assuming that zB > R. In a homo-
geneous electric field E, the cluster acquires the dipole
moment d expressed in terms of the effective radius R∗
by Eq. (4).

The second (van der Waals) part Vβh(zB) comprises a
sum of the term independent of zB , having the sense of
the work of escape from the liquid Vβh(z∞), and the term
describing repulsion from the surface of liquid helium.
The latter term is determined for zB @ R as

(5)

where nB and nh are the atomic densities of the cluster
and liquid helium, respectively, and v hB is the potential
of interaction between cluster and helium molecules.
The integration in Eq. (5) is performed over the half-
space zh > 0. Since the zB value is assumed to be macro-
scopically large, the potential v hB in Eq. (5) decreases
with increasing distance r between the interacting mol-
ecules as 1/r7 and depends only on their polarizabilities
βB and βh [10]:

(6)

where α is the fine structure constant.
Using Eqs. (5) and (6) and taking into account defi-

nition of the dielectric constant e = 1 + 4πβn, we even-
tually obtain

(7)

(8)
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where the relation between R∗  and R is determined
by (4).

The interaction between the electron and the cluster
is also described as a sum of two components:

(9)

where ρe is the electron coordinate in the horizontal
plane. The polarized cluster generates an electric field
that can be described for R ! zB by the point dipole
potential Φ(r) = (d · r)/r3. This potential restricts the
electron motion in the horizontal plane (the first term
in (9)). The electron also polarizes the cluster repre-
senting a dielectric sphere. In the limit of r @ R, this
influence can be described considering the electron
field E = –er/r3 as homogeneous. The second term in
Eq. (9) describes the additional energy of the dipole in
the electron field.

The problem of electron motion in the system under
consideration was solved in the adiabatic approxima-
tion used previously for electrons at the liquid helium
surface in an external electric field [8]. First, let us con-
sider the motion in the z direction perpendicular to the
liquid helium surface. This motion is determined by the
potential energy component Ve (2). The electron is
“pressed” to the surface by the external field and by the
image forces, so that the lowest energy level corre-
sponds to an average height of  ≈ 50 Å above the sur-
face, which is much smaller as compared to zB and ρe

(  ! zB, ρe). For this reason, in (9), we may neglect 

in the sum zB + . Assuming also that ρe ! zB , we may

VeB ρe ze zB, ,( )
eER*

3 zB ze+( )

zB ze+( )2 ρe
2+[ ] 3/2

--------------------------------------------–=

–
e2R*

3

2 zB ze+( )2 ρe
2+[ ]

------------------------------------------,

ze

ze ze

ze

He

E

d
R

zB

e
ρe

Schematic diagram of an electron–cluster complex at the
surface of liquid helium in an external electric field E.
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expand the energy (9) into a series with respect to a
small parameter (ρe/zB)2:

(10)

The second term in (10) is the potential of a harmonic
oscillator with the zero-order frequency

(11)

A similar expansion was used for determining the
energy levels of an electron at the liquid helium surface
in the potential field of a positive ion situated below the
surface [11] or a positively charged surface impurity at
the substrate supporting the liquid helium film [12, 13].

Expansion (10) can only be performed provided that
the zero-order oscillation energy is small as compared
to the electron–cluster binding energy:

(12)

For a cluster with the effective size R∗  = 500 Å, situated

at a distance on the order of zB = 104 Å below the liquid
helium surface, condition (12) will be fulfilled in exter-
nal electric fields of E @ 300 V/cm.

Now let us estimate the critical distance  corre-
sponding to the minimum energy of the system under
consideration. With neglect of the zero-order oscilla-
tions and the gravity, this energy is expressed as

(13)

where Etot = E + e/ . For an ice cluster, eB = 80 and the
expression in square brackets is positive. Since (eh –
1)/(eh + 1) ≈ 1/300, we may ignore the first term on the
right-hand side of (13). From the condition of mini-
mum for V(zB), we obtain the following relation
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between  and the external electric field strength (in
e.s.u.):

. (14)

For a cluster with R∗  = 500 Å, the condition  @ R is
valid for E ! 30000 V/cm, that is, in the entire range of
field strengths used in experiments. For such a cluster,
the energy of binding to an electron localized at the liq-
uid helium surface in a field of E = 3000 V/cm is U0 ≈
6 × 10–17 erg ≈ 0.5 K. It can be shown that, for a cluster
of smaller effective size R∗  = 100 Å, the interval of
electric field strengths featuring stable charged macro-
scopic clusters in liquid helium is also sufficiently
wide. In a field of E = 30000 V/cm, we have  ~

10−5 cm and a binding energy of U0 ≈ 5 K.

It would be interesting to determine the critical con-
centration of such complexes at the liquid helium sur-
face. As is known, the maximum surface density of free
electrons over a thick liquid helium film is restricted to
109 cm–2. Above this level, the charged surface
becomes unstable [14]. This instability is related to the
ability of electrons to move freely over the surface. In
a strong electric field “pressing” electrons to the sur-
face, it is more energetically favorable for electrons to
group over a scale on the order of the instability wave-
length and to sink down in the form of many-electron
droplets [8].

The system of charged complexes described above
possesses a much lower mobility that depends on the
cluster size and the “pressing” field strength. In addi-
tion, the external electric field can be reduced as com-
pared to the case of free electrons because each electron
is additionally pressed to the liquid helium surface by
the force of polarization attraction to the bound cluster.
However, if the field E is much smaller than 4πσ, where
σ is the surface density of electrons, these electrons will
occur in a quasistationary state and move upward from
the liquid helium surface. Under these conditions, the
mechanism leading to the development of instability on
a charged liquid helium surface may become inopera-
tive (or suppressed) in the system of charged com-
plexes. At the surface of such a liquid helium film, the
critical electron density is much greater than that
related to renormalization of the effective acceleration
of gravity g due to the van der Waals attraction of atoms
to the substrate [15]. The presence of a macroscopic
cluster below the surface may lead to an additional
gravity renormalization effect.

Using the proposed system of charged complexes, it
is possible to study the Wigner crystallization of elec-
trons at the liquid helium surface by tracing the order-
ing of clusters below the surface, which can be moni-
tored (for sufficiently large clusters) by optical methods.

zB0

zB0

10 4–

E
----------=

zB0

zB0
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