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Abstract—We study a compact group of 18 galaxies in the cluster A1367 with redshifts z = 0.0208−0.025.
The group’s center of activity in the radio is the galaxy NGC 3862, whose radio flux is an order of magnitude
stronger than for the other members of the group. We present coordinates derived from the Palomar plate
archive together with recessional velocities, and analyze other characteristics of the group’s galaxies. The
results of 1400MHz observations of NGC 3862 with the RATAN-600 radio telescope are presented. These
observations indicate that the galaxy’s radio emission is variable. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The evolution of galaxies and their clusters is a
central topic of modern astrophysics. Interest in these
questions comes from attempts to follow the evolu-
tion of galaxies and explain the formation of galaxies
and clusters of galaxies, as well as from possibilities
for deriving information on the physical conditions
in clusters, galaxies, and galactic nuclei. To achieve
progress in these areas, it is important to study iso-
lated, compact groups of galaxies in clusters together
with their morphology, radio and optical spectra, and
X-ray emission.

It is also interesting in its own right to study
active galactic nuclei that display activity over a wide
wavelength range, from the X-ray to the radio. This
study deals with a compact group containing an ac-
tive galaxy. We have already presented preliminary
studies of galaxies in the clusters A569 [1], A1185 [2],
A2151 [3], and a cluster in Cetus [4]. In those studies,
we found and identified a number of radio objects
with known radio spectra, whose optical properties
are of considerable interest. Some 45% of these radio
sources were identified with compact galaxies, and a
large fraction have their strongest radio emission in
their active nuclei.

Here, we study a compact group of galaxies sur-
rounding NGC 3862 in the cluster A1367. The sec-
ond section presents a catalog of the galaxies, while
the third section discusses the radio properties of the
galaxies based on our RATAN-600 observations and
published data together with their optical properties.
1063-7729/05/4906-0431$26.00
2. THE CATALOG

A compact group of galaxies with a low velocity
dispersion is present in the cluster A1367, in the
vicinity of NGC 3862 (Fig. 1). The group is interest-
ing because of its morphology, because it is distinct
from the rest of the cluster members, and also because
NGC 3862 is an active galaxy with one of the few
known galactic optical jets.

When compiling the catalog, we used coordinates
for the galaxies calculated at the Institute of Optics
and Electronics (INAOE, Mexico) based on glass
copies of the Palomar Sky Atlas plates using a blink
comparator and the technique described in [5]. The
rms uncertainties in the coordinates were calculated
using reference stars from the PPMNcatalog, and are
∆RA = ±1.5′′, ∆DEC = ±2.0′′.

The table presents the resulting coordinates of
the galaxies, along with their optical characteristics,
measured using an Automatic Plate Measuring facil-
ity [6]. The columns of the table present (1) a run-
ning number for each galaxy; (2, 3) the equatorial
coordinates for equinox 2000.0; (4) the magnitude
from [6]; (5) the angular size of the galaxy’s major axis
(calculated by us using data from [6], in arcseconds);
(6) the ellipticity, 1− b/a, where a and b are the major
and minor axes [6]; (7) the position angle, PA [6];
(8) the radial velocity from the NASA Extragalactic
Database [7]; and (9) the galaxy’s name [7]. Note
that galaxies 12 and 13 are considered a single galaxy
in [6], and we determined the sizes of these galaxies
from the Palomar images.

As we noted above, this compact group is charac-
terized by a relatively low velocity dispersion (Vmean =
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. The compact group of galaxies in the cluster
A1367.

6450± 511 km/s), confirmation that the group galax-
ies are close together in space. Another interesting
feature is displayed by the spatial positions of the
galaxies: they form a chainlike curve, which can be
fit with high significance. To estimate the probability
for such an arrangement to occur by chance, we
approximated the curved path with a second-order
polynomial. The square deviation of the galaxy po-
sitions from the approximating curve is an order of
magnitude lower than the density of galaxies in the
vicinity of the compact group, providing evidence that
the group is real and confirming that the arrangement
of the galaxies in the plane of the sky is not ran-
dom. The galaxies may have formed along the ridge
of an expanding front, or might be the result of the
ejection of matter from NGC 3862 that moved along
the path now traced by the galaxy positions, grad-
ually sweeping up matter and causing the galaxies
to grow. This last possibility is supported by the fact
that the galaxies’ sizes increase and their color indices
change systematically with increasing distance from
the central galaxy in the group, NGC 3862: the closer
to NGC 3862, the redder the galaxies’ colors. On
average, the colors of the galaxies that are closest to
NGC 3862 are 0.6m redder than the colors of galaxies
at the group periphery, providing evidence for strong
extinction in the neighborhood of NGC 3862. To con-
clude this section, we note that the statistical mean
magnitude for this group of galaxies is 12.2m ± 2.5m

and the mean size is 30′′ ± 18.0′′ [6], corresponding to
a mean galaxy size of 12 kpc for a mean recessional
velocity of 6450 km/s. The size of NGC 3862 is
17.8 kpc for its recessional velocity of 6511 km/s and
H = 75 km s−1Mpc−1.

3. THE RADIO PROPERTIES OF NGC 3862
AND OUR RATAN-600 RADIO

OBSERVATIONS

Weak 21-cm radio emission was found for galax-
ies 2 and 4 in the group (with the fluxes being 111.9
and 81.5 mJy, respectively) [8]; weak radio emis-
sion for galaxy 5 with a flux of 10 mJy was also
reported in [9]. The group’s radio activity center is
NGC 3862, for which an abundance of radio data are
available [7–9].

It was found in 1968 [10] that the size of the
radio source 3C 264 (NGC 3862) increased with
decreasing frequency, which was interpreted as a
spectral-index gradient across the galaxy. Further
higher-resolution studies [11] at 11 cm (θ = 12′′ ×
34′′) and 6 cm (θ = 6.5′′ × 19′′) revealed the presence
of a large-scale asymmetry in the galaxy’s radio-
brightness distribution to the northeast, leading to
the galaxy’s classified as a head–tail radio galaxy.

Further observations [12] at 1465 MHz with even
higher resolution, θ = 2.7′′ × 4′′, demonstrated that
NGC 3862 has a nucleus that is <3′′ in size and an
extended component elongated toward the northeast.
Bridle and Vallee [12] explained the large-scale struc-
tural asymmetry of NGC 3862 as the result of the
diffusion of relativistic electrons that were left behind
the moving galaxy. However, later observations [8, 9]
demonstrated the presence of two features toward the
northeast which, in our opinion, are related to the
activity of NGC 3862 and represent periodic ejections
of matter toward PA = 32◦−37◦.

The complete radio spectrum of NGC 3862 is pre-
sented in Fig. 2. Note the scatter of the flux densities
over a wide frequency range.

Jointly analyzing the data with various resolu-
tions, we can distinguish and construct the spectra
for the corona and a nuclear region about 3′′ in size
(marked “A” in Fig. 2). In Fig. 2, measurements
from 1964 to 1980 are displayed using circles, where-
as measurements obtained after 1980 are shown by
crosses. The flux density appears to slowly decrease
with time.

To confirm earlier suspicions of radio variability
of NGC 3862, we obtained observations with 160′′
resolution using the RATAN-600 radio telescope
in March 2003. Our flux-density measurements at
21 cm were obtained using feed cabin 2 of the
northern sector of the RATAN-600 radio telescope.
We carried out seven independent observations to im-
prove the accuracy of our 21-cm flux measurements.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Parameters of the studied galaxies

No. RA (2000.0) DEC (2000.0) R θ 1 − a/b PA v, km/s Galaxy name

1 11h44m47.61s 19◦34′59.7′′ 12.68m 23.5◦ 0.07 7◦ 6256

2 11 44 49.79 19 32 4.5 9.53 49.1 0.38 46 6255 NGC 3857

3 11 44 51.76 19 36 39.4 12.10 29.0 0.36 14 6556

4 11 44 51.91 19 31 55.2 17.31 12.3 0.38 125

5 11 44 52.08 19 27 21.7 9.49 61.2 0.65 59 5468 NGC 3859

6 11 44 55.56 19 29 41.9 12.58 24.5 0.35 172 6457

7 11 45 2.60 19 38 37.5 15.63 14.2 0.17 23

8 11 45 3.69 19 37 20.0 10.94 29.3 0.13 46 6908 IC 2955

9 11 45 4.43 19 41 1.4 13.70 17.2 0.05 34

10 11 45 4.83 19 36 32.6 9.38 41.5 0.08 96 6511 NGC 3862

11 11 45 4.89 19 37 26.4 19.32 8.5 0.20 117

12 11 45 4.96 19 38 26.8 10

13 11 45 5.43 19 38 20.0 8

14 11 45 15.17 19 23 34.5 9.94 41.7 0.28 84 6997 NGC 3864

15 11 45 29.38 19 24 7.1 9.40 75.1 0.72 175 7457 NGC 3867

16 11 45 29.80 19 26 44.9 9.68 47.5 0.49 80 6386 NGC 3868

17 11 45 34.91 19 25 6.0 12.99 22.0 0.08 21

18 11 45 36.94 19 23 41.5 14.36 18.2 0.25 35
The system noise temperature was ≈70 K, the
continuum bandwidth 10 MHz, and the time con-
stant 6 s.We used 3C 123, which has a flux of 46.61 Jy
at 21 cm, as a reference source. The observations
and data reduction were done using standard software
written at the RATAN-600 radio-spectrometry com-
plex. The effective area of the telescope at the eleva-
tion of 3C 123 was 982 m2, and the right-ascension
correction was found to be−0.38s.

We reduced the observations using the standard
RATAN-600 software for the reduction of spectro-
scopic data. We measured the observational param-
eters using code designed to carry out a Gaussian
analysis of the transit curves after correction for
smoothing by the output device of the continuum
channel. The resulting mean parameters for five ob-
servations were RA(2000.0) = 11h45m06.12s ± 0.2s
and the flux at 21 cm P = 4.70 ± 0.1 Jy.

Previous observations at 21 cm obtained in 1981
and 1995 yielded P = 5.94 ± 0.17 Jy [13] and P =
5.45 ± 0.12 Jy [14]. Our 2003 RATAN-600 flux, P =
4.70 ± 0.1 Jy, is 1.24 ± 0.27 Jy lower than the value
observed in 1981, representing a decrease by about
20% in 22 years.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
Let us now estimate the characteristic magnetic
fields for the two emitting regions: the corona and
plane of the galaxy.

Combined with the higher-resolution observa-
tions [8, 9, 15], our RATAN-600 data can be used
to separate out the individual radio-emitting com-
ponents and reveal the nature and character of the
radio emission from these components. The galaxy’s
corona is responsible for more than 40% of the
radio emission, and has a spectral index of α = 0.95,
whereas the spectral index of the radio emission from
the galactic plane is α = 0.67.

We can use the known flux density, size of the
emitting region, and distance to the galaxy to es-
timate the magnetic-field strength (see, for exam-
ple, [16]). Our estimated magnetic-field strength in
the plane of NGC 3862 is H(pl) = 3.5 × 10−6 Oe for
α = 0.67, with the field in the corona beingH(cor) =
0.86 × 10−6 Oe for α = 0.95.

It is also of interest to compare the jet’s physi-
cal parameters derived from optical data with those
we have estimated from the radio emission. For this
purpose, we use recent data on the optical activity
of the jet of NGC 3862. Hubble Space Telescope
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Fig. 2. Radio spectrum of NGC 3862; the spectrum of the
compact nucleus is marked “A.”

high-resolution optical measurements at 3400 Å and
4850 Å [17] display a compact core and a 270-pc-
long jet in position angle PA = 37◦, close to the direc-
tion of the radio jets [8, 9]. Crane et al. [17] conclude
that the optical jet emission is synchrotron radiation
with a spectral index of 1.4, and that the emission
from the nucleus has a spectral index of α = 1.2.

Using the standard known formulas for syn-
chrotron radiation [16], we find that the 3400 Å and
4850 Å radiation are emitted by relativistic elec-
trons with energies ofE = 1.8× 104−1.8× 106 MeV
in a magnetic field of H = 5 × 10−4 Oe, with the
density of the relativistic electrons being K =
10−9−10−11 erg/cm3. The lifetime of such electrons
is estimated to be about 103 years, in good agreement
with the size of the optical jet.

4. CONCLUSIONS

We have studied a compact group of galaxies in
the vicinity of NGC 3862 in the cluster A1367 (z =
0.0208−0.025). We measured the coordinates of the
18 members of the group with the blink comparator
of the Institute of Optics and Electronics using the
coordinates of reference stars. Four group members
have been found to have radio emission, with the
most active galaxy in the radio being NGC 3862,
which may be ejecting matter in position angle PA =
32◦−37◦, observed as a jet in both the radio and
optical. By analyzing this galaxy’s radio emission
observed with various resolutions over a wide wave-
length range, we were able to separate out the ra-
dio emission from the galaxy’s nucleus, plane, and
corona. We find a flattening of the radio spectrum
toward the nucleus. We had earlier obtained a similar
result based on analysis of a large amount of data for
the cluster A569 [1].

Our RATAN-600 observations of NGC 3862
demonstrate that the 21-cm emission is time-
variable, with the 21-cm flux currently decreasing
by approximately 70 mJy per year. Given the small
uncertainties in the measured fluxes, we consider
this result to be firm. Since the radio structure is
associated with a jet, we suggest that the activity of
NGC 3862 is periodic.
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Abstract—We obtained the photometric distances and radial velocities for the molecular gas for 270 star-
forming regions and estimated the distance to the Galactic center from ten tangent points to be R0 =
8.01 ± 0.44 kpc. Estimates of R0 derived over the last decade are summarized and discussed; the average
value is R0 = 7.80 ± 0.33 kpc. We analyze deviations from axial symmetry of the gas motion around the
Galactic center in the solar neighborhood. Assuming a flat rotation curve, we obtain Θ0 ∼ 200 km/s for
the circular velocity of the Sun from regions beyond the Perseus arm. We used these Galactic constants
to construct the Galactic rotation curve. This rotation curve is flat along virtually its total extent from
the central bar to the periphery. The velocity jump in the corotation region of the central bar in the first
quadrant is 20 km/s. We present analytical formulas for the rotation curves of the Northern and Southern
hemispheres of the Galaxy forR0 = 8.0 kpc and Θ0 = 200 km/s. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The distance to the center of the Galaxy R0 is
a key parameter for determining the physical char-
acteristics of the Galaxy and Galactic objects. In
1985, the International Astronomical Union Assem-
bly adopted the value R0 = 8.5 kpc. However, more
modern determinations with continually decreasing
scatter are converging to a somewhat lower value.
Especially important in this regard are results based
on the motion of the star S2 around the black hole
at the center of the Galaxy [1]. Estimates of another
Galactic constant, Θ0—the velocity of the Galactic
rotation at the distance R0—display a large scatter.
Another fundamental characteristic of the Galaxy is
its rotation curve, or the dependence of the rotational
velocity on distance from theGalactic center, which is
related to the mass distribution in the Galaxy. Along
with the Galactic constants, the rotation curve serves
as the main tool for determining the distances to ob-
jects of the disk component of the Galaxy with known
velocities.
In contrast to other galaxies, whose rotation

curves can essentially be determined directly from
observations, the large uncertainty in the photometric
distances to stars poses a major problem in the
case of our own Galaxy. The location of the Sun in
the Galactic plane and the presence of dust in the
interstellar medium greatly reduce the possibilities
of observing some objects in the optical, especially
toward the inner region of the Galaxy, where only
the nearest 2 to 3 kpc are accessible for observation.
Only radio astronomical observations in HI and CO
1063-7729/05/4906-0435$26.00
lines can be used to derive the rotation curve in the
central regions of the Galaxy. The rotation curve in
the outer Galaxy can be determined only using stars
with known photometric distances. Attempts have
been made to determine the rotation curve using
various types of very distant objects with known
velocities and independently determined distances,
such as young OB stars and open clusters [2–4],
classical Cepheids [5–7], and planetary nebulae and
AGB-stars [8]. In the radio, rotation curves can be
derived from the terminal velocities corresponding
to the steep wings of the HI and CO line profiles
observed in the Galactic plane in the direction of the
longitudes of the first and fourth quadrants (assuming
that the angular velocity of the Galaxy decreases
monotonically with Galactocentric radius) [9–12].
As a rule, the rotation curves derived from different
objects differ; this is due, first and foremost, to
the different velocity dispersions of these objects,
associated with differences in their ages. The lowest
velocity dispersions are possessed by the gaseous
component of the Galaxy and young stars. This
makes them especially sensitive to small perturba-
tions of the gravitational potential due to the spiral
arms and other resonances. Rotation curves derived
from gas have wavelike humps, some of which are
due to the systematic velocities in the spiral-density
waves. As we consider older objects, their velocity
dispersion increases, their kinematics become closer
to dynamical equilibrium, and their rotation in the
Galaxy is described by smoother curves. Therefore, it
is necessary to take into account these dependences
for a given class of object when determining the
c© 2005 Pleiades Publishing, Inc.
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Table 1.Mean calibration of the absolute magnitudes of O stars based on data from [27, 28]

Sp I la Iab Ib II III IV V

O2 −6.95 −6.00 −5.60

O3 −6.95 −6.00 −5.60

O3.5 −6.95 −6.00 −5.60

O4 −6.60 −6.00 −5.50

O5 −6.60 −5.00 −5.00

O5.5 −6.60 −5.00 −5.00

O6 −6.60 −6.60 −6.60 −5.40 −5.40 −4.90 −4.90

O6.5 −6.60 −6.60 −6.60 −5.40 −5.40 −4.90 −4.90

O7 −6.50 −6.50 −6.50 −5.40 −5.40 −4.90 −4.90

O7.5 −6.50 −6.50 −6.50 −5.40 −5.40 −4.70 −4.70

O8 −6.45 −6.45 −6.45 −5.40 −5.40 −4.70 −4.70

O8.5 −6.40 −6.40 −6.40 −5.40 −5.40 −4.50 −4.50

O9 −6.00 −6.00 −6.00 −5.20 −5.20 −4.20 −4.20

O9.5 −6.00 −6.00 −6.00 −5.20 −5.20 −4.20 −4.20

O9.7 −6.05 −6.05 −6.05 −5.20 −5.15 −4.20 −4.10

B0 −6.10 −6.10 −6.10 −5.20 −5.10 −4.20 −4.00
distances for a certain class of objects by means of
its rotation curve.
When determining the Galactic constants and ro-

tation curve, a substantial role is played by the as-
sumption of axial symmetry of the Galaxy and its
circular rotation. However, surveys of atomic and
molecular gas in the central region of the Galaxy
revealed strong asymmetries. In the 1970s, the ex-
istence of a bar was suggested as one of the expla-
nations for the unusual kinematics of the gas in the
central part of the Galaxy [13, 14]. However, the hy-
pothesis of radial outflows of gas associated with the
3-kpc arm was then the predominant interpretation
of this kinematic asymmetry. Only new observations
obtained in the 1990s [15–18] provided independent
evidence for the presence of a bar in the central region
of the Galaxy. A crucial role in the discovery of the bar
was played by data provided by the COBE/DIRBE
infrared space telescope [19–21]. Different models
give slightly different parameters for the bar. Esti-
mates of the bar corotation radius are in the range
3.5–5 kpc, and the major axis is oriented at an an-
gle φ ∼ 15◦−45◦ relative to the direction toward the
Galactic center. According to [22, 23], the bar is a tri-
axial structure with axial ratios a : b : c ∼ 1 : 0.6 : 0.4
and φ ∼ 25◦.
There is no doubt that the presence of the cen-

tral bar must influence the kinematics of the outer
regions. Analysis of the distribution of radial and ro-
tational velocities relative to the Local Standard of
Rest (LSR) in the nearest vicinity of the Sun revealed
a well-defined stellar component that rotates more
slowly and has radial velocities u ≤ −30 km/s. This
component is formed of old stars, and is related to
the outer Lindblad resonance of the central bar [24].
Models of the gas kinematics for the bar and disk [21,
25] show that, beyond the bar corotation region, the
motion of the gas gradually approaches the expected
circular motion.

The aim of the present paper is to determine the
Galactic constants and construct the rotation curve
using improved data on the distances and velocities
of star-forming regions (SFRs). In Section 2, we
present a list of HII regions or SFRs with revised
photometric distances and radial velocities, and, in
Section 3, estimates of the distance to the center of
the Galaxy, R0, using tangent points. A compari-
son of the estimates for R0 in the first and fourth
quadrants in another method suggests that the shape
and kinematics of the Galaxy in the solar neighbor-
hood are possibly asymmetric. Section 4 discusses
data on the Galactic constants obtained over the last
decade in the context of our current understanding of
Galactic structure, and derives a most probable value
of R0. In Section 5, we estimate the Galactic rota-
tional velocity at the solar Galactocentric distance. In
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 1. l − V contour map of CO emission [32] for the fourth quadrant. The filled circles show the positions of SFRs located at
tangent points.
Section 6, we discuss currently available data on Θ0

and A−B; in Section 7, we construct the Galactic
rotation curve for the northern and southern sky.

2. THE INPUT DATA

We used SFRs for our study, mainly diffuse
nebulae (HII regions) with known exciting stars.
Radial velocities were taken from the catalog of
star-forming regions [26], mainly for the molecular
gas surrounding young stars. The distances to the
SFRs were partially taken to be the distances to
the clusters associated with SFRs and partially
redetermined using published data on the exciting
stars and applying a unified spectral class–absolute
magnitude calibration. The calibration for the O stars
was taken from several papers of Walborn, a long-
time researcher on the spectral classification for
massive stars, and his coauthors. Table 1 is based on
Walborn’s papers [27, 28]. For the B stars, we used
the calibration of Vacca et al. [29]. The reddening
coefficient Rv for the O stars was taken to be 3.2
after [30]. When O stars were included in the new
catalog of O stars [31], we took the corresponding
photometric and spectral data from this catalog.
The BV photometry and spectra of the remaining
stars were checked against the data in the SIMBAD
database. This yielded the data in Table 2, which
is available at http://cdsweb.u-strasbg.fr/cats (it is
presented in electronic form only). This table contains
the main characteristics of 270 Galactic SFRs, as
well as the radial velocities of the molecular clouds
ASTRONOMY REPORTS Vol. 49 No. 6 2005
associated with them. The columns of Table 2 give
the name of the nebula or young stellar cluster, its
Galactic coordinates l and b, its photometric dis-
tance and the corresponding error, its radial velocity
reduced to the LSR, and the references to the data
on the exciting star and the data used to determine
the distance (the star’s name, V and B − V , and the
distance derived from them).

3. DETERMINATION OF R0

To investigate the possible asymmetry of the
Galaxy, all estimates were derived separately for
the first and fourth quadrants. We used previously
known methods to determine R0. The first is to
estimate R0 based on data for SFRs located close
to tangent points. If a region at Galactic longitude l
is located at a tangent point and its distance to the
Sun is known, R0 = D sin l cos b, where D is the
photometric distance to the SFR (we assume here
that young stars have circular orbits).
To find SFRs located close to tangent points,

all SFRs with known photometric distances were
plotted on the (l − V ) diagram for the Galactic CO
survey [32]. We selected SFRs located at the outer
high-velocity ridge of the diagram, which should cor-
respond to tangent points. Figure 1 shows the l − V
diagram for the fourth quadrant; the positions of the
SFRs are plotted by filled circles. There are three such
regions in the first quadrant and 18 in the fourth quad-
rant. We introduced an additional criterion to be sure
that the selected regions are indeed close to tangent
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Table 3. Parameters of SFRs located at tangent points

No. l, deg b, deg D, kpc VLSR, km/s R0, kpc Refs. Comments

1 286.21 −0.20 2.23 ± 0.20 −21.5 7.99 [33] 1

2 290.35 1.62 2.90 ± 0.30 −19.0 8.34 [33, 34] 2

3 290.60 0.31 2.90 ± 0.40 −23.4 8.24 [33] 3

4 291.30 −0.69 2.70 ± 0.30 −24.0 7.43 [34] 4

5 296.22 −3.55 3.60 ± 0.50 −30.0 8.15 [35]

6 298.36 2.23 3.75 ± 0.40 −29.6 7.89 5

7 305.71 1.53 4.80 ± 1.00 −57.1 8.22 [31] 6

8 307.85 0.21 4.50 ± 1.00 −50.0 7.33 [36] 7

9 309.27 −0.46 5.35 ± 0.50 −48.9 8.69 [36] 8

10 312.51 −2.69 5.64 ± 0.70 −47.7 8.35 [36] 9
Comments (the last column):
1. NGC 3324:

LSS 1695, O8.5V, V = 8.233, B − V = 0.114, D = 1.87 kpc;
LSS 1697, O6.5V, V = 7.818, B − V = 0.148, D = 1.74 kpc;
LSS 1714, B1.5V, V = 10.89, B − V = 0.39, D = 2.15 kpc.

2. St 13,D = 2.70 kpc:
LSS 2231, B0V, V = 9.30, B − V = −0.01, D = 3.00 kpc;
HD 097848, O8V, V = 8.68, B − V = −0.01, D = 3.00 kpc.

3. NGC 3572,D = 2.7 kpc:
LSS 2199, O7.5III, V = 7.888, B − V = 0.06,D = 2.62 kpc;
LSS 2171, O4V, V = 8.256, B − V = 0.10,D = 2.99 kpc;
LSS 2210, B0II, V = 8.77, B − V = 0.20, D = 3.16 kpc;
LSS 2211, B0V, V = 10.08, B − V = 0.22, D = 3.04 kpc.

4. LSS 2217, O7.5 III, V = 8.67, B − V = 0.19, D = 3.10 kpc;
LSS 2226, O7.5III, V = 8.07, B − V = 0.16,D = 2.46 kpc;
LSS 2233, B0.5V, V = 9.23, B − V = 0.05, D = 2.26 kpc;
LSS 2253, O9.5/B0V, V = 9.61, B − V = 0.22, D = 2.71 kpc;
LSS 2255, B1V, V = 10.16, B − V = 0.11, D = 2.72 kpc;
LSS 2151, B0.5IV, V = 9.67, B − V = 0.16, D = 3.03 kpc.

5. LSS 2620, O9.5V, V = 10.23, B − V = 0.26, D = 3.35 kpc;
LSS 2625, B2III, V = 11.01, B − V = 0.39, D = 3.80 kpc;
LSS 2626, O6V, V = 10.42, B − V = 0.37, D = 4.13 kpc.

6. LSS 2997, O6.5Iab, V = 9.50, B − V = 0.53, D = 4.81 kpc.
7. LSS 3119, O6I, V = 9.19, B − V = 0.49, D = 4.5 kpc.
8. LSS 3159, B1Ib, V = 10.24, B − V = 0.55, D = 5.35 kpc.
9. LSS 3225, B1.5III, V = 11.43, B − V = 0.32, D = 5.6 ± 1.3 kpc.
points: that the error in the estimated distance to an
SFR due to the difference between the position of
the SFR and the tangent point be smaller than the
error in the distance itself, σD. This can be expressed

as the inequality R
√

1 − (R0 sin l/R)2 < σD, where
R is theGalactocentric distance of the SFR and σD is
the error in the distance to the region D. R0 was
varied between 6.5 and 8.5 kpc. Ten SFRs were left
in the fourth quadrant after applying this criterion.
Table 3 lists the Galactic coordinates, photometric
distances and their errors, and radial velocities rel-
ative to the LSR of these SFRs, together with the
calculated values ofR0. The resulting weighted mean
valueR0 = 8.01 ± 0.44 kpc was found using the data
for all the SFRs, with the weight of an SFR being the
inverse of the square of the distance error.

The second method we used to estimate R0 re-
quires the radial velocities of the SFRs. We approx-
imated the rotational velocities of the SFRs in the
first and fourth quadrants by the rotational velocities
of the CO gas in them, which are determined from
their terminal velocities (taken from [9] for the first
quadrant and from [11] for the fourth quadrant). We
assumed that the molecular gas and SFRs have simi-
lar kinematics. This procedure was applied separately
to the first and fourth quadrants.
We selected from Table 2 all SFRs at longitudes

15◦ < l < 75◦ and 280◦ < l < 350◦ with positive ve-
locities in the first quadrant and negative velocities in
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 2. The difference between the circular velocities of the SFRs and the CO gas as a function of the adopted R0 for (a) the
first quadrant and (b) the fourth quadrant.
the fourth quadrant. We determined the Galactocen-
tric distancesR and circular velocitiesΘ(HII) of these
regions for the grid of values R0 = (6; 12) kpc and
Θ0 = (180; 250) km/s. We found R(CO) and Θ(CO)
from the terminal velocities for every longitude in the
CO-survey. We then determined for every node of the
grid the difference Θ(SFR)− Θ(CO) averaged over
all HII regions, with weights that were proportional to
the inverse of the error in the Galactocentric distance
to the region:

ε(R0) =
∑i=n

i=1 [Θi(CO) − Θi(HII)]/δRi(HII)
∑i=n

i=1 (1/δRi(HII))
,

where n is the number of HII regions that are used
to determineR0. The results are virtually independent
of the Galactic constant Θ0. The dependences of ε
on R0 for the first and fourth quadrants are shown in
Figs. 2a and 2b. Note that we rejected regions that
gave rise to sudden sharp peaks in this smoothly
varying dependence from the initial list of SFRs.
This is quite justified, since the distance dependence
of the rotational velocity of the CO gas is far from
smooth. In the first quadrant, we rejected the SFRs
G55.84–3.79, G76.88+1.95, and G80.38+0.40. The
plot in Fig. 2a is based on 32 SFRs. In the fourth
quadrant, we rejected 284.75–3.06, 286.21–0.20,
287.28–0.88, 294.57–1.11, 299.30–0.31, 309.27–
0.46, and 312.51–2.69. The remaining 23 SFRs
yielded the curve in Fig. 2b. The curves in Figs. 2a
and 2b are completely different. Figure 2b clearly
shows a deep minimum at 8.0 kpc, while a trend
toward lower R0 and a broad minimum near 6.5 kpc
ASTRONOMY REPORTS Vol. 49 No. 6 2005
can be seen in Fig. 2a (for the first quadrant). Such
differences could be due to asymmetry in the orbital
kinematics of objects in the first and fourth quadrants.
However, this hypothesis requires additional study,
which will become possible only when the distances
to the HII regions are known more accurately.
The weighted mean of these R0 estimates is close

to 8.0 ± 0.36 kpc, since the estimates obtained using
the second method have appreciably larger standard
errors.
Thus, our analysis using data on SFRs in the solar

neighborhood has revealed a possibility for asymme-
try in the kinematics of the Galaxy relative to its
center. If confirmed, this asymmetry could be related
either to the presence of a bar in the Galactic center
or to the fact that, according to the new data of [37],
the Galaxy is a triaxial ellipsoid.

4. ADOPTED VALUE OF R0

Table 4 lists various values of R0 that have been
obtained, mainly after the HIPPARCOS experiment,
together with the corresponding errors, references,
and the types of objects used for the estimates. These
data yield the weighted mean value R0 = 7.80 ±
0.32 kpc. We have assigned the most confidence
to estimates obtained using objects in the vicinity
of the Galactic nucleus, since they are not affected
by possible asymmetry of the kinematic data, and
essentially provide a geometrical determination of the
distance to the Galactic center from the orbit of the
star S2 around the central black hole—Sgr A∗. It
is clear that R0 lies in the range 7.5–8.2 kpc. At the
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Table 4. Summary of R0 estimates

R0, kpc Refs. Objects

7.9 ± 0.8 [12] Hydrogen HI

7.6 ± 0.4 [38] Globular clusters

7.5 ± 1.0 [10] Hydrogen HI

8.1 ± 0.3 [5] 278 Cepheids

7.1 ± 0.5 [7] Cepheids

8.3 ± 1.0 [39] RR Lyrae stars in the Galactic center

7.66 ± 0.32 [40] Cepheids

7.1 ± 0.4 [41] Gas distribution

8.4 ± 0.4 [42] Red stars in the Galactic bulge

8.2 ± 0.3 [43] Red stars in M31 and Galactic center

7.3 ± 0.3 [44] Cepheids, open clusters, red giants

7.9 ± 0.3 [45] RR Lyr and δ Scu stars in the Galactic center

7.9 ± 0.85 [46] Cluster in the Galactic center

7.94 ± 0.42 [1] The orbit of S2 around the Galactic center

8.2 ± 0.40 [47] Open clusters

8.0 ± 0.36 This paper Star-forming regions
same time, modeling of the Galactic bar and disk after
the DIRBE experiment shows that, if R0 = 7.5 kpc,
the local extinction in the J band does not agree
with admissible extinction in the V band. Thus, it
is most likely that R0 > 7.5 kpc [48]. We therefore
suppose that R0 is close to 8 kpc, and will adopt
the value 8.0 kpc for convenience in our subsequent
computations.

5. DETERMINATION OF Θ0

The existence of a nearly flat rotation curve for
the inner Galaxy was first suggested in [48], based
on data from an HI survey. Later, an essentially flat
rotation curve was obtained by Brand and Blitz [35]
for the entire range ofR studied, using data on optical
nebulae with known photometric distances. A flat
curve was obtained by Russeil [50], who adopted
R0 = 7.1 kpc and Θ0 = 184 km/s.
Let us suppose, as is indicated by the results of [35]

and [50], that the rotation curve is flat, and derive Θ0

using the distances and radial velocities of the SFRs
only, applying the function W (R) = (V/ sin l) cos b,
which is valid for the outermost HII regions, located
beyond the Perseus arm, and adopting R0 = 8 kpc.
We apply these restrictions, first, in order to exclude
the Perseus arm, which clearly has abnormal kine-
matics and, second, because the W (R) curves for
different Θ0 values diverge more with distance from
the Sun. We will set the lower limit for the distances
to be used to R/R0 = 1.35. There are 32 HII re-
gions with known distances in this region. The
function W (R) for a flat rotation curve is W (R) =
(V/ sin l) cos b = (R0/R)ΘR − Θ0, and depends only
on Θ0 and R0/R. Figure 3 shows the dependence of
W (R) onR0/R for the HII regions.We approximated
this dependence as y = Θ0(R0/x− 1) and applied the
IDL 5.4 approximation routine LMFIT to find Θ0.
The result is Θ0 = 202 ± 4 km/s for R0 = 8 kpc.
This result remains essentially unchanged even if we
remove the point that is most distant from the center.
For comparison, adopting R0 = 7.5 kpc yields Θ0 =
193 ± 4 km/s. Thus, assuming a flat rotation curve,
we obtain for the Galactic constants R0 = 8 kpc
and Θ0 = 200 ± 4 km/s. This means that the Oort
relation is A−B = Θ0/R0 = 25 km/s kpc.

6. THE VALUES OF Θ0 AND A−B

Summaries of previous determinations of the Oort
constants A−B = Ω0 and Θ0 are given in Tables 5
and 6. The angular and circular velocities in these
tables display a large scatter, due to several combined
effects. It is known that the velocity dispersions for
particular types of objects increases with the age of
their population. The components of the solar proper
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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motion also depend on the type of objects used to de-
termine them. The azimuthal component of the solar
motion is most uncertain. Detailed studies of the solar
motion based on the kinematics of main-sequence
stars in the HIPPARCHOS catalog [61] have shown
that the radial (U0) and vertical (W0) components
depend only weakly on the B − V color index of the
stellar sample, while the azimuthal component (V0)
increases with B − V , and is also proportional to the
assumed velocity dispersion. The value of V0 reduced
to zero dispersion is 5.25 km/s; this is rather different
from the values that are usually obtained. The Oort
constants in the solar vicinity are also strongly in-
fluenced by the closest spiral arms and resonances
due to the central bar. As was shown in [20, 24],
the outer Lindblad resonance passes quite near the
solar orbit, about 1 kpc closer to the Galactic cen-
ter. Olling and Dehnen [59] described the kinematics
of the Galaxy using new data on the solar proper
motion, dividing their sample of B − V values into
separate groups and taking into account the influence
of the spiral structure and the resonances produced
by the central bar on the Oort constants. Using a
sample of 106 stars from the ACT and TYCHO-2
catalogs, they obtained very different angular veloc-
ities for the two extreme populations of the Galaxy:
A−B = 21.1 km/s kpc for young main-sequence
stars and A−B = 32.8 km/s kpc for old red stars.
Thus, the angular velocity derived from the Oort

constants depends on the velocity dispersion of the
sample of stars used, the size of the velocity ellipsoid,
the inhomogeneity of the sample in space and in terms
of the constituent objects, and the influence of spiral
arms and resonances. If we exclude data based on old
red stars, extreme values [59], and the data of [52] (due
to the inhomogeneity of the sample presented in [57])
from Table 5, we obtain the mean value A−B =
Θ0/R0 = 27.2 ± 2.3 km/s kpc.
The values we have derived fit into this range well.

7. GALACTIC ROTATION CURVE
FROM MOLECULAR GAS

Fich et al. [3] used HI velocities at tangent points
for the inner Galaxy and CO velocities and photomet-
ric distances for the outer Galaxy to construct the ro-
tation curve. They studied eight different approximat-
ing functions for the rotation curve, and identified the
two that yielded the best descriptions: y = a1/x+ a2

and y = b1x
b2 + b3/x. Here, y = Θ/Θ0 or y = Ω/Ω0

and x = R/R0. As a result, assuming R0 = 8.5 kpc
and Θ0 = 220 km/s, they derived a1 = 1.00746, a2 =
−0.017112, and b1 = 0.49627, b2 = −0.00421, and
b3 = 0.49632. Both curves are virtually identical and
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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young disk objects. The solid curve corresponds to a flat
rotation curve withΘ0 = 200 km/s.

give almost flat rotation curves. Using 400 HII re-
gions and reflection nebulae together with HI line
data for the inner Galaxy, Brand et al. [35] obtained
for the sameR0 andΘ0 the values b1 = 1.00767, b2 =
0.00394, and b3 = 0.00712. Assuming R0 = 7.1 kpc
andΘ0 = 184 km/s, Russeil [50] obtained b1 = 0.705
and b2 = 0.35 · 10−8 using her own data on optical
HII regions with known photometric distances and
Hα velocities.
Due to the large uncertainty in stellar distances,

we consider the rotation curve based on the CO tan-
gent velocities in the first and fourth quadrants for the
inner Galaxy and on HII regions for the outer Galaxy
to be more trustworthy. This curve is more accurate
than the curve based on HII regions alone. Therefore,
to construct our rotation curve, we used the CO
surveys [9] in the first quadrant and [62] in the fourth
quadrant for the inner Galaxy, and optical nebulae
with known distances to their exciting stars and radial
velocities for the associated molecular clouds or for
the recombination lines of hydrogen of HII regions
for the outer Galaxy (Table 2). These data yielded the
radial angular-velocity distribution for R0 = 8.0 kpc
and Θ0 = 200 km/s.
Figure 4 shows the distribution of the observa-

tional data describing the variation of the Galactic
angular velocity with radius Ω(R), derived from CO
data for the first and fourth quadrants (horizontal
and vertical dashes) for the inner Galaxy, and from
data for HII regions alone for the outer Galaxy. We
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Table 5. Summary of estimates of A−B ≡ Ω0

A−B, km s−1kpc−1 AssumedR0, kpc Refs. Objects

25.3 ± 1.3 7.9 [12] Hydrogen HI

25.9 ± 1.1 7.1 [51] Gas distribution

30.9 ± 1.6 7.66 [40] Cepheids

31.6 ± 1.4 8.5 [52] 1352 O–B5 stars

27.19 ± 0.87 8.5 [53] 220 Cepheids

25.2 ± 1.9 7.1 [41] Gas distribution

28.7 ± 1.0 7.5 [54] Cepheids and open clusters

28.0 ± 2.0 8.0 [55] Sgr A*

28.0 ± 2.0 8.0 [56] Sgr A*

30.1 ± 1.0 8.5 [57] 240 O–B5 stars

29.1 ± 1.0 7.1 [7] OB associations

27.5 ± 1.4 7.5 [4] Cepheids and open clusters

26.6 ± 1.4 8.5 [4] Cepheids and open clusters

27.6 ± 1.7 [58] Globular cluster M4

21.1 ± 1.2 [59] Young main-sequence stars

32.8 ± 1.2 [59] Old red giants

Table 6. Summary of determinations ofΘ0

Θ0, km/s AssumedR0, kpc Refs. Objects

200 ± 10 7.9 [12] Hydrogen HI

184 ± 8 7.1 [51] Gas distribution

237 ± 12 7.66 [40] Cepheids

268.7 ± 11.9 8.5 [52] 1352 O–B5 stars

243.3 ± 12.0 8.5 [52] 170 Cepheids

219 ± 20 8.0 [55] Sgr A*

270 8.0 [60] HIPPARCOS stars

255.5 ± 8.33 8.5 [57] 240 O–B5 stars
also show the corresponding error bars in Fig. 4.
A velocity jump due to the central bar is visible at
3.8–4.0 kpc in the first quadrant. This jump is larger
in the first quadrant than in the fourth quadrant,
since the major axis of the bar is located in the first
quadrant. We approximated this dependence using
the functions indicated abovewith the IDL 5.4 routine
LMFIT. For the total sample, after excluding points
inside the bar corotation region (R < 4.0 kpc), we
obtained the rotation-curve parameters b1 = 1.015,
b2 = −0.00397, and b3 = 0.00864. This yields for the
radial dependence of the angular velocity

Ω/Ω0 = 1.015(R0/R)0.00397 + 0.00864(R0/R).

This relation is plotted by the solid curve in Fig. 4a.
The curve corresponding to the equation

Ω = Θ0/R
b1
1 (R0)a1 ,

with a1 = 0.07 and b1 = 1 − a1 is shown by the dots
in the same figure.
Both curves are virtually the same outside the

solar circle, while, inside the solar circle, the dashed
curve lies slightly below the solid curve. In the region
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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of the bar, the solid curve passes exactly between
the points representing near and distant parts of the
Galactic bar.
Figure 4b shows the distribution of the obser-

vational data for the Galactic rotation curve. If we
exclude the Perseus-arm region, the distribution is
flat, to first approximation. Nevertheless, as we noted
above, the rotation curves for the Northern sky (first
and second quadrants) and the Southern sky (third
and fourth quadrants) differ.
When deriving kinematic distances from observed

velocities, it is important to use a rotation curve that
includes the direction toward the objects under study.
Accordingly, Figs. 5a and 5b show rotation curves for
the Northern and Southern sky separately. For more
convenient application of these to the distance deter-
minations, we approximated both distributions using
nonlinear equations with the IDL routines LMFIT
and POLYFITW. We obtained for the Northern rota-
tion curve the analytical expression

Θ = a0 + a1R+ a2R
2 + a3R

3

+ a4R
4 + a5R

5,
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with a0 = −503.424, a1 = 433.336, a2 = −97.028,
a3 = 9.97301, a4 = −0.477901, and a5 =
0.00865043.
The analytic expression for the Southern rotation

curve has the form

Θ = b0 + b1R+ b2R
2 + b3R

3

+ b4R
4 + b5R

5,

where b0 = −364.553, b1 = 329.293, b2 = −70.3912,
b3 = 7.05383, b4 = −0.3364, and b5 = 0.00617765.
When determining kinematic distances in the di-

rection of the Perseus arm, one must bear in mind
that, as is shown in [63], the observed radial velocities
do not correspond to the distances in this case, since
the gravitational well in this arm is much deeper than
the variations of the gravitational field in the arms
within the solar circle.

8. CONCLUSION

We have used data on 270 SFRs with photo-
metric distances and radial velocities derived from
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their molecular gas to estimate the Galactic con-
stants R0 and Θ0 and construct the Galactic rota-
tion curve. Despite the presence of a barlike struc-
ture in the Galactic center, it is possible, to first
approximation, to assume axially symmetric motion
for the gas component. Estimating the distance to
the Galactic center from ten tangent points under
this assumption yielded the mean value R0 = 8.01 ±
0.44 kpc. Together with other determinations over the
last decade, we obtain the weighted mean valueR0 =
7.80 ± 0.32 kpc. Fich et al. [3], Brand et al. [35],
and Russeil [50] derived almost flat rotation curves.
Assuming a flat rotation curve, we obtained Θ0 =
200 km/s for the solar circular velocity using the
SFRs beyond the Perseus arm. We then used the
values R0 = 8.0 and Θ0 = 200 km/s to derive the
Galactic rotation curve. To first approximation, we
can assume that, starting from the location of the
central bar (i.e., from ∼4 kpc) and out to 15–16 kpc,
the curve is virtually flat (∼200 km/s) and can be
described by the expression Θ = 218.13 − 1.827R.
We obtained different analytical expressions for the
rotation curves for the Northern and Southern hemi-
spheres of the Galaxy. The velocity jump in the first
quadrant in the corotation region of the central bar is
20 km/s.
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Abstract—The close neutron-star binary system comprised of the radio pulsars PSR J0737–3039 A,B
is discussed. An analysis of the observational data indicates that the wind from pulsar A, which is more
powerful than the wind from pulsar B, strongly distorts the magnetosphere of pulsar B. A shock separating
the relativistic wind from pulsar A and the corotating magnetosphere of pulsar B should form inside the
light cylinder of pulsar B. A weakly diverging “tail” of magnetic field is also formed, which stores a magnetic
energy on the order of 1030 erg. This energy could be liberated over a short time on the order of 0.1 s as a
result of reconnection of the magnetic-force lines in this “tail,” leading to an outburst of electromagnetic
radiation with energies near 100 keV, with an observed flux at the Earth of 4 × 10−11 erg cm−2 s−2. Such
outbursts would occur sporadically, as in the case of magnetic substorms in the Earth’s magnetosphere.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Lyne et al. [1] report the discovery of a unique bi-
nary system: two neutron stars, both observed as ra-
dio pulsars (PSR J0737–3039 A and B) and with the
system having a small orbital period of 0.1 d. Com-
ponent A is a millisecond pulsar with period PA =
22.7 ms, while component B is an ordinary pulsar
with period PB = 2.773 s. The uniqueness of this sys-
tem is that, in addition to being a natural laboratory
for the measurement of general-relativistic effects, it
also provides the opportunity to study the structure
of the pulsars’ magnetospheres. The reason is that
the plane of the orbital motion is inclined only 3◦ to
the line of sight, so that we can observe the propaga-
tion of the radio waves from one pulsar through the
magnetosphere of the other. Periodic eclipses of both
pulsars are observed in the radio [1, 2]. It is important
that the eclipses of themore powerful millisecond pul-
sar A are brief (about 27 s), which corresponds to an
eclipsing region near pulsar B of about 1.9 × 109 cm,
appreciably smaller than B’s magnetosphere, RLB =
cPB/2π = 1.3 × 1010 cm. The quantity RL (in this
case, RLB) is the radius of the light surface where
the corotation speed of the plasma is comparable
to the speed of light c. This is due to the fact that
the neutron-star binary system is so close that the
plasma wind coming from the millisecond pulsar A
penetrates and strongly distorts the magnetosphere
of pulsar B. The total rate of rotational energy loss by
pulsar A is

ĖA = 5.8 × 1033

(
J

1045 g cm2

)
erg/s,
1063-7729/05/4906-0446$26.00
since Ė = 4π2J(Ṗ /P 3), ṖA = 1.7× 10−18, and J �
1045 g cm2 is the standard value for the moment
of inertia of a neutron star. The distance between
the stars is d = 8.5 × 1010 cm. With this separation,
the flux of stellar-wind energy from pulsar A in
the vicinity of pulsar B is FA = ĖA/4πd2 = 6.4 ×
1010 erg cm−2 s−1. Assuming the wind is relativistic,
we can find the energy density in the stellar wind from
pulsar A acting on the magnetosphere of pulsar B:
WA = FA/c = 2.1 erg/cm3. The magnetic field for
which the stellar-wind energy would be comparable
to the magnetic-field energy (B2/8π = WA) is Ba =
7.3 G. This value corresponds to the magnetic field
inside the magnetosphere of pulsar B. Even if this is
the value at the magnetosphere boundary, r = RLB ,
the magnetic field at the surface of the neutron star
should be 1.6 × 1013 G, in strong contradiction to its
rotational energy losses.

The flux of charged particles in A’s wind com-
presses the magnetic field in the magnetosphere
of pulsar B where the wind encounters and flows
past B, stretching out the field on the opposite side
of B (forming a so-called magnetospheric “tail”).
Thus, the structure of B’s magnetosphere is strongly
distorted by the wind from A, and resembles the
shape acquired by the magnetosphere of the Earth
due to the action of the solar wind flowing past its
dipolar magnetic field. In this case, the rotational
energy losses of pulsar B should differ markedly from
those for a “classical” ordinary radio pulsar. The
figure shows a schematic of the interaction between
radio pulsars A and B. It is usually assumed that a
rotating dipolar magnetic field leads to the radiation of
c© 2005 Pleiades Publishing, Inc.
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electromagnetic radiation at a frequency equal to the
rate of rotation of the neutron star, ω = Ω = 2π/P .
This is called magnetic-dipole radiation, and is the
mechanism via which a neutron star loses rotational
energy. To order of magnitude, these magnetic-dipole
losses are equal to

ĖMD � B2Ω4R6c−3,

where B is the dipolar magnetic field at the surface
of the star and R is the star’s radius. These losses
are also proportional to the square of the sine of the
inclination of the dipole axis to the rotational axis;
since we do not know this quantity for pulsar B,
we will take it to be of order unity. On this basis,
we estimate the magnetic field at the surface of the
radio pulsar using the relation ĖMD = JΩΩ̇: B �
(PṖ−15)1/2 × 1012 G, where Ṗ−15 is the deceleration
of the rotation in units of 10−15 s/s. We find for
pulsar B ṖB = 0.88 × 10−15 and the corresponding
magnetic field BB � 1.6 × 1012 G [1].
Magnetic-dipole radiation arises during the ro-

tation of a dipolar field in a vacuum, but in reality,
the pulsar magnetosphere is filled with relativistic
plasma. In this case, the magnetic-dipole radiation
is screened [3], and the rotational energy losses are
associated with electric currents flowing in the mag-
netosphere in the vicinity of open field lines, which
close at the surface of the neutron star in a region with
size r0 � R(RΩ/c)1/2 near the poles. The rotational
energy losses are associated with radiation by the
relativistic wind generated in the magnetosphere. To
order of magnitude, the radiated energy is

Ėc � B2Ω4R6c−3i,

where i = j/jGJ is the dimensionless electrical cur-
rent flowing in the magnetosphere in units of the so-
called Goldreich–Julian current jGJ = BΩ/2π. The
current flowing along the neutron-star surface at the
polar cap creates a braking torque K � πjBr4

0/c,
which leads to the energy losses Ėc = KΩ. We can
see that, when the current is j � jGJ , the magnetic-
dipole energy losses and energy losses associated
with currents are comparable.

2. THE MAGNETOSPHERE OF PULSAR B

The distorted structure of the magnetic field in the
magnetosphere of pulsar B should strongly influence
its energy losses. We denote the distance from the
center of pulsar B where a shock dividing the wind
from pulsar A and the magnetosphere of B forms
ra (the Alfven radius). Within r < ra, the magnetic
field of B is close to dipolar and the magnetosphere
corotates with the pulsar at the angular speed ΩB .
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Schematic of the interaction between pulsars A and B.
The wind from the stronger pulsar A penetrates the light
surface of pulsar B, leading to the formation of an elon-
gated tail in the magnetosphere of B.

Thus, BB(R/ra)3 = Ba = (8πWA)1/2 = 7.3 G. The
projection of the region with r � ra onto the stellar
surface along the magnetic field in the vicinity of the
magnetic poles is r0 � R(R/ra)1/2. We can see that
the size of the polar cap is appreciably larger than in
the case of an ordinary pulsar (ra � c/ΩB = RLB)
due to the flow of the companion’s wind past the
pulsar. Furthermore, the electric current j flowing in
the polar region is also increased. The maintenance
of a magnetic field in the magnetosphere tail B � Ba

requires a current j = Bac/2πra � jGJ (c/ΩBra) �
jGJ . The electrical current j closing in the polar
region at the stellar surface creates a braking torque
that leads to the rotational energy losses

ĖB = B2
BΩBr3

a (R/ra)
6 ,

which exceed the magnetic-dipole losses by a factor
of (c/ΩBra)3. This increase in the loss rate is asso-
ciated with the more efficient action of the rotating
magnetic field of the star as a unipolar inductor [4].
The potential difference arising at the contacts of
the inductor is U = Ω∆f/c, where ∆f is the dif-
ference of the magnetic fluxes at the two contacts.
For an ordinary pulsar, ∆f = Br2

0 � BR2(RΩ/c),
while, in our case, the magnetosphere tail closes a
region r � ra with the light surface r = RL, ∆f =
BR2(R/ra) � BR2(RΩ/c). The magnitude of the
electric current flowing in the magnetosphere, I =
πjr2

a, likewise increases. This leads to an increase in
the rotational losses of the star:

ĖB = UI = B2
BR6ΩBr−3

a .

The electrical potential U acts on the charged parti-
cles in the magnetosphere, giving rise to a relativistic
wind from pulsar B.

Using the two relations

ĖB = B2
BR6ΩBr−3

a , 2ĖA = cB2
B

(
R

ra

)6

d2,
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we can independently determine the values of ra

and BB :

ra =

(
cd2

2ΩB

ĖB

ĖA

)1/3

,

BB = ĖB

(
cd

ΩBR3

)(
1

2cĖA

)1/2

.

Substituting the observed values for d, ΩB, ĖA, and
ĖB = 1.6 × 1030 erg/s, we obtain

ra = 2.4 × 109 cm, BB = 1011

(
R

106 cm

)−3

G.

(1)

Note that this value for ra—the size of pulsar B’s
magnetosphere—coincides with the size of the re-
gion that eclipses the radio emission from pulsar A,
1.9 × 109 cm. This indicates that there is, indeed, an
interface separating the wind from pulsar A and the
magnetosphere of pulsar B. This interface lies in the
region where the pressures of the wind and of the
magnetosphere magnetic field are equal, and has the
form of a shock and contact discontinuity at the front
and lateral surfaces.
This raises the question of the nature of the radio

eclipse at r � ra. Various opinions about this have
been expressed in the literature.
1. Kaspi et al. [2] and Lyutikov [5] have proposed

that the eclipses are due to cyclotron absorption of
the radio waves from pulsar A by relativistic particles
in the wind from pulsar B near the shock interface.
However, the magnetic field near the magnetosphere
boundary of pulsar B, B � Ba = 7.3 G, implies a
modest electron-cyclotron frequency in this region,
νca � 107 s−1, which is appreciably lower than the
radio frequencies at which the eclipses are observed,
νca � ν � 109 s−1. This hinders the realization of
an electron-cyclotron resonance that is capable of
strongly absorbing the radio emission of pulsar A.
2. Another mechanism that can explain the

eclipses is the linear transformation of electromag-
netic waves frozen in the pulsar wind into longitudinal
waves in the strong gradient of the electron density
in the vicinity of the shock [6]. The transformation
coefficient has an exponential dependence on the
frequency of the waves, exp{−ν/νcr}, which can
explain the absence of a frequency dependence for the
eclipse characteristics at frequencies ν < νcr, as is
observed for J0737–3039, if νcr > 109 s−1.
Our estimate of the magnetic field at the surface

of pulsar B (BB = 1011 G) is an order of magni-
tude lower than estimates based on magnetic-dipole
losses (1.6 × 1012 G [1]). Essentially, a neutron star
with BB = 1011 G and PB = 2.77 s should not be a
radio pulsar, and pulsar B would not be a radio pulsar
without a second neutron star as a close companion.
Pulsar B lies below the “death line” for ordinary neu-
tron stars on theB−P diagram. The relativistic wind
from pulsar A flowing past its magnetosphere cre-
ates the conditions required for the generation of an
electron–positron plasma in the polar regions, there-
by also leading to the generation of radio emission. It
follows that the radio emission should arise in inner
regions of the pulsar magnetosphere (r < ra), where
the magnetosphere corotates with the star. This inner
region of the magnetosphere with size ra is at least
an order of magnitude smaller than the light surface,
RL = 1.3 × 1010 cm.
It is important that the size of the surface from

which the relativistic wind flows from pulsar B can be
estimated by equating the energy fluxes from the two
pulsars:

S = 4πd2
(
ĖB/ĖA

)
.

This area corresponds to a radius of r =
2d(ĖB/ĖA)1/2 = 2.8 × 109 cm. The closeness of this
radius to ra = 2.4 × 109 cm indicates that all the
wind from pulsar B flows out through its magne-
tosphere tail. The divergence angle of the tail 2θ
is determined by the divergence angle of the wind
from pulsar A at a distance ra from the center of
pulsar B: 2θ = 2ra/d = 5.6 × 10−2 rad = 3.2◦. This
is close to the angle between the line of sight and
the orbital plane for the binary system. This indicates
that we can observe the magnetospheric tail, and
therefore observe radio eclipses of pulsar A. The tail
will extend to large distances l, until its magnetic
field B = Ba(1 + l/d)−2 becomes comparable to the
interstellar field. It is clear, however, that the effective
size of the tail is equal to the distance between the
pulsars, d = 8.5 × 1010 cm. Indeed, the energy stored
in the tail’s magnetic field is

εm =
∫

B2

8π
πr2

a

(
1 +

l

d

)−2

dl =
B2

a

8π
πr2

ad.

In our case, the stored magnetic energy is εm = 3.3×
1030 erg.

3. FLARES

The magnetic field in the tail is directed in different
directions on opposite ends of the tail—a configura-
tion that is unstable to magnetic reconnection. The
characteristic time for reconnection is given by the
ratio of the transverse size of the tail ra to the Alfven
speed va. Inside the magnetosphere, the energy den-
sity of the particles is lower than the energy density
ASTRONOMY REPORTS Vol. 49 No. 6 2005



GAMMA-RAY BURSTS 449
of the magnetic field, so that va � c. Thus, the decay
time for current sheets in the magnetosphere tail is
roughly τ � 0.1 s. The magnetic energy stored in the
tail should be transformed into the energy of acceler-
ated particles on this time scale, with the subsequent
radiation of electromagnetic radiation. Electrons and
positrons in the magnetosphere will be accelerated
by the electric field arising due to the annihilation of
the magnetic field, E � B(ra/cτ) = 7.3 cgs = 2.2 ×
103 V/cm. Themaximumenergy that can be acquired
by these electrons and positrons is Emax = Era =
5 × 1011 eV. On the other hand, the particles cannot
achieve very high energies due to synchrotron losses.
The energy balance for the particles is determined by
the equation

dE
dt

= ecE − 2
3
e4B2

m2
ec

3
γ2,

where γ = E/mec
2 is the Lorentz factor of the par-

ticles. In our case, when E � B, the characteristic
limiting Lorentz factor determined by the synchrotron
losses is

γc = (3c/2reωc)1/2 � 3.5 × 107.

Here, re is the classical radius of the electron and ωc
is the electron-cyclotron frequency, ωc = eB/mec �
1.3 × 108 s−1. Thus, we can see that during the re-
connection, particles can be accelerated to maximum
Lorentz factors of the order of

γmax = Emax/mec
2 � 106.

The characteristic frequency for synchrotron ra-
diation by accelerated particles with γ � γmax is
ω � ωcγ

2
max � 1.3 × 1020 s−1. The energy of the

corresponding synchrotron photons is Eph = �ω �
10−7 erg � 105 eV = 100 keV. The synchrotron-loss
time is τr = γ2

cγmaxω
−1 � 10 s. All the energy stored

in the magnetic tail, ε � εm = 3.3 × 1030 erg, will
go into gamma-ray radiation over this time scale.
Since the accelerated particles will move along
the magnetic field in the tail at relativistic speeds
(γ � γmax � 106), the directivity of the synchrotron
radiation will be determined by the divergence angle of
the magnetic field in the tail, 2θ = 3.2◦ � γ−1

max. With
this divergence angle, the flux of gamma-ray energy
in the direction of the Earth, which is at a distance
D � 0.6 kpc from the binary system, will be equal to

Fph = εm/πθ2D2τr � 4 × 10−11 erg cm−2 s−1.

Thus, flares of gamma-ray radiation with energies
near 100 keV, durations of about 10 s, and fluxes
ASTRONOMY REPORTS Vol. 49 No. 6 2005
of 4 × 10−11 erg cm−2 s−1 may be observed during
the radio eclipses of pulsar A. These flares should be
irregular, as is the case for magnetic substorms in the
Earth’s magnetosphere, due to the release of energy
during the reconnection of magnetic field lines in the
“tail” that forms due to the action of the solar wind.

In conclusion, we note that Istomin and
Komberg [7, 8] have considered a model for the
origin of cosmological gamma-ray bursts in which
the energetics of the process is provided by the
reconnection of magnetic-field lines in the narrow
magnetospheric tail of a neutron star or white dwarf,
as in the case of the binary pulsar considered here.
However, in this model, the tail arises due to the
action of the shock from a supernova that occurs in a
close binary containing a compact magnetized stellar
object. In this context, gamma-ray observations of
PSR J0737–3039 could shed light on this possible
mechanism for the radiation of “classical” gamma-
ray bursts.
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Abstract—We present a technique to calculate the boundary conditions for simulations of the development
of large-scale convective instability in the cores of rotating white-dwarf progenitors of type Ia supernovae.
The hydrodynamical equations describing this situation are analyzed. We also study the impact of the
boundary conditions on the development of the thermal outburst. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Hydrodynamical processes in astrophysical ob-
jects are usually simulated within restricted domains.
For this reason, the modeling of the relevant physical
processes is influenced by the selection of boundary
conditions. This is particularly important in models of
large-scale convection, which require long computa-
tional times. In these cases, perturbations developing
in the system expand over the entire computational
domain, and their interaction with the boundary af-
fects the convection pattern. Various types of bound-
ary conditions for convection problems have been
suggested and studied. Using the method of char-
acteristics, Hossain and Mullan [1] found two types
of boundary conditions for an open computational
domain, which proved to be very suitable for studies
of the convective zone in the Sun. It was shown that,
when the domain is closed and pressure averaging
is applied at the boundary, this results in qualita-
tive changes in the convection pattern and the type
of acoustic oscillations that arise. Stein and Nord-
lund [2] fixed the energy and introduced a buffer layer
in which the density and velocity fluctuations had
finite amplitude. A zero velocity gradient was adopted
at the lower boundary, and the pressure was selected
taking into account the density variations. Gadun [3]
used the condition of the absence of an average mass
flux through the upper and lower boundaries of the
domain.

Here, we use the local method of characteristics
to study the impact of various boundary conditions
on the development of convective processes in type Ia
supernova outbursts. The simulations of convection
in a supernova presented in [4] indicate the complexity
of the flow structure: in particular, there are regions at
the boundary where matter flows in or out at various
rates. Some restrictions must therefore be imposed
1063-7729/05/4906-0450$26.00
on the selection of boundary conditions, in order to
make them suitable for this particular problem. Tra-
ditional boundary conditions used in previous models
for convection in supernovae implied that the hydro-
dynamical parameters of the matter in boundary cells
were constant, which is inappropriate when the large-
timescale evolution of the matter flow is considered.

2. FORMULATION OF THE PROBLEM,
INITIAL CONDITIONS, AND BASIC

FORMULAS

In the course of its evolution, a star with a mass
lower than 8M� leaves the main sequence and turns
into a red giant. A core consisting of a mixture of car-
bon and oxygen produced by thermonuclear burning
in the inner layers of the star begins to form at its cen-
ter. The core contains strongly ionized plasma, which
can be described by the equation state for degenerate
matter. Essentially, this is a white dwarf (WD) in
the process of formation; under certain conditions, it
may become a predecessor to a type Ia supernova.
During its formation, themass and temperature of the
WD gradually increase. When the critical tempera-
ture ∼3 × 108 K has been reached, the CO mixture
in the center of the WD ignites, and another core
consisting of nuclei of iron-peak elements begins to
form inside the WD. This process may result in a
violation of thermal andmechanical equilibrium in the
star and in the development of large-scale hydrody-
namical instabilities. The thermonuclear burning of
the degenerate matter in the WD occurs in a defla-
gration mode, as was shown in [5].

We will consider a rotating WD in which ther-
mal instability has started to develop. According to
current evolutionary concepts [6], the mass of the
CO layer together with the “iron” core is roughly
c© 2005 Pleiades Publishing, Inc.
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one and a half solar masses; i.e., close to the Chan-
drasekhar limit. We will assume that the carbon and
oxygen have equal masses, the radius of the star is
R0 = 1.5× 108 cm, and its central density is ρ0 = 2×
109 g/cm3. The equation of state p = p(ρ, S) will be
taken in a tabulated form appropriate for totally ion-
ized matter, with the electron–positron component
described by Fermi–Dirac statistics applying various
asymptotics and the ion component described in an
ideal-gas approximation [7, 8].

If the stellar matter is taken to be a compressible,
nonviscous fluid, the hydrodynamical equations in the
Euler variables can be written in the form





∂ρ

∂t
+ divm = 0,

∂mi

∂t
+
∂Πik

∂xk
= ρgi,

∂(ρS)
∂t

+ div(ρSv) = 0,

(1)

where Πik = p δik + ρvivk, m = ρv is the momen-
tum, gi are the components of the gravitational ac-
celeration, p is the pressure, and S is the entropy. We
chose spherical coordinates in which (x1, x2, x3) =
(r, θ, φ), and the Lame coefficients are (h1, h2, h3) =
(1, r, r sin θ). The formulas for the divergence of a
vector and tensor in two dimensions in curvilinear
coordinates are given in the Appendix to [4]. It is
convenient to present the system (1) in divergent
form. To this end, we introduce the vector w, which
consists of conservative variables and enters into the
partial time derivative, as well as the flux vectors
F(w), G(w), and H(w), which enter into the partial
derivatives with respect to the spatial variables. We
also introduce the source vector S(w), which enters
into the right-hand side of the vector equation:

wt +
1
r2
∂

∂r

(
r2F

)
+

1
r sin θ

∂

∂θ
(sin θG) (2)

+
1

r sin θ
∂

∂φ
H = S,

where
w = (ρ,mr,mθ,mφ, ρS)T ,

F =
(
mr, p+ ρv2

r , ρvθvr, ρvφvr,mrS
)T
,

G =
(
mθ, ρvrvθ, p+ ρv2

θ , ρvθvφ,mθS
)T
,

H =
(
mφ, ρvrvφ, ρvθvφ, p + ρv2

φ,mφS
)T
,

S =
{

0, ρgr +
1
r

[
2p+ ρ

(
v2
θ + v2

φ

)]
,

ρgθ +
1
r

(
p+ ρv2

φ

)
cot θ − 1

r
ρvrvθ,

ρgφ − ρvφ

r
(vr + vθ cot θ) , 0

}T

.
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3. CHARACTERISTIC ANALYSIS

The system (2) is hyperbolic and describes the
propagation of waves either entering or leaving the
computational domain at its boundary, with veloci-
ties corresponding to various characteristics. A set of
characteristics exists for each direction in the three-
dimensional space; in spherical coordinates, these
directions are r, θ, and φ. The waves emerging from
the computational domain are totally specified by the
solution (2) inside this domain; therefore, there is
no need to specify any boundary condition to de-
scribe these waves. On the contrary, the propagation
of waves entering the computational domain from
the outside is specified by the solution (2) outside
the domain and, thus, requires the specification of
some particular boundary conditions. The number of
boundary conditions can vary with time from zero to
five, depending on the velocity of the matter at the
boundary. All possible cases of the boundary condi-
tions for a hyperbolic system of equations are pre-
sented in [9].

To describe the behavior of the waves and deter-
mine the boundary conditions, the characteristics of
the system (2) must be analyzed. In spherical coor-
dinates, we can carry out this analysis only for the
r direction. Let us rewrite the system (2) in the form

wt +
∂F
∂r

+
1

r sin θ
∂

∂θ
(sin θG) (3)

+
1

r sin θ
∂

∂φ
H − S +

2F
r

= 0.

We write the derivative ∂F/∂r in the form

∂F
∂r

=
∂F
∂w

∂w
∂r

= A(w)
∂w
∂r
, (4)

where A(w) is the Jacobian matrix with the elements

aij =
∂Fi

∂wj
.

The Jacobian of a hyperbolic system of equations
has a complete set of right-handed and left-handed
eigenvectors corresponding to the real eigenvalues.
Hence, A(w) can be presented in the form

A(w) = RwΛR−1
w , (5)

where Rw is the matrix whose columns are the
right-handed eigenvectors, R−1

w is the inverse matrix,
whose rows are the left-handed eigenvectors, and Λ is
the diagonal matrix of the eigenvalues: Λij = 0 for
i �= j, Λij = λi for i = j, where λi are the solutions
for the characteristic equation

det|λE −A| = 0. (6)

The solution of (6) is presented by the eigenval-
ues λ1 = vr + c, λ2 = vr − c, and λ3 = λ4 = λ5 = vr,
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where c =
√

(pρ)s is the sound speed. The right-
handed eigenvectors of the Jacobian A(w) were cal-
culated in [4]. Let us write the matrix of right-handed
eigenvectors Rw:

Rw =











1 1 1 0 0

vr + c vr − c vr 0 0

vθ vθ 0 1 0

vφ vφ 0 0 1

S S −ρ
ξ

+ S 0 0











.

Here, for convenience, we denote ξ = (ps)ρ/(pρ)s.
The inverse matrix of the left-handed eigenvectors
R−1

w is

R−1
w =













1
2
− vr

2c
− Sξ

2ρ
1
2c

0 0
ξ

2ρ
1
2

+
vr

2c
− Sξ

2ρ
− 1

2c
0 0

ξ

2ρ
Sξ

ρ
0 0 0 −ξ

ρ

−vθ + vθ
Sξ

ρ
0 1 0 −vθ

ξ

ρ

−vφ + vφ
Sξ

ρ
0 0 1 −vφ

ξ

ρ













.

Using (4) and (5) and multiplying (3) byR−1
w from

the left, we obtain

R−1
w wt + ΛR−1

w

∂w
∂r

(7)

+R−1
w

{
1

r sin θ
∂

∂θ
(sin θG)

+
1

r sin θ
∂

∂φ
H − S +

2F
r

}
= 0.

The termR−1
w wt represents the time derivatives of the

amplitudes of waves propagating along the charac-
teristics:

at = R−1
w wt.

For example, with accuracy to within a factor of ρ/2c,
the first component,

(a1)t =
(
R−1

w wt

)
1

=
1
2

(
ξ
∂S

∂t
+
∂ρ

∂t
+
ρ

c

∂vr

∂t

)

=
ρ

2c

(
1
ρc

∂p

∂t
+
∂vr

∂t

)
,

is the time derivative of the amplitude of the wave
propagating along the characteristic that corresponds
to the velocity vr + c (see, for example, [10]). Let us
introduce the vector

L = ΛR−1
w

∂w
∂r
, (8)

and write (7) in the form

at + L +R−1
w

[
1

r sin θ
∂

∂θ
(sin θG) (9)

+
1

r sin θ
∂

∂φ
H − S +

2F
r

]
= 0.

The selection of the boundary conditions depends
on the way in which the L are determined. According
to (8), they can be written in the form

L1 =
1
2

(vr + c)
{
ξ
∂S

∂r
+
∂ρ

∂r
+
ρ

c

∂vr

∂r

}
, (10)

L2 =
1
2

(vr − c)
{
ξ
∂S

∂r
+
∂ρ

∂r
− ρ

c

∂vr

∂r

}
,

L3 = −vrξ
∂S

∂r
,

L4 = vrρ
∂vθ

∂r
− vrvθξ

∂S

∂r
,

L5 = vrρ
∂vφ

∂r
− vrvφξ

∂S

∂r
.

In numerical simulations, formulas (10) should be
used only for waves that are leaving the computa-
tional domain; i.e., for characteristics whose eigen-
values λi are positive. For the remaining character-
istics, the boundary conditions should be constructed
based on physical reasoning.

4. NONREFLECTING BOUNDARY
CONDITIONS

When modeling the development of large-scale
convective instability in the core of a pre-supernova,
nonreflecting boundary conditions can be used, mak-
ing it possible to obtain a stable solution even for a
rapidly rotating star. The use of this type of bound-
ary condition was first suggested by Hedstrom [11].
Nonreflecting boundary conditions assume that no
perturbations enter the computational domain from
the outside. This means that the amplitudes of waves
arriving from the direction r normal to the boundary
(for which λi < 0) do not vary with time, at = 0. It
follows from (9) that this condition is satisfied if

L = −R−1
w

{
−S +

2F
r

}
.

We have omitted the terms
1

r sin θ
∂

∂θ
(sin θG) and

1
r sin θ

∂

∂φ
H ,
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since they describe variations of hydrodynamical val-
ues due to the fluxes in the θ and φ directions, and
thus cannot affect perturbations arriving normal to
the boundary. The amplitudes of waves propagating
along the considered characteristics depend only on r
and t.

In the given problem, the suppression of arriving
perturbations is justified, since the evolution of a star
and the development of hydrodynamical instability are
essentially specified by processes in the central region
of the star, while processes in its outer layers only
slightly affect the thermal outburst. Thus, we obtain
for Li corresponding to the condition λi < 0

L1 =
1
2

(
−1 +

vr

c
+
Sξ

ρ

)
C1 −

1
2c
C2 −

ξ

2ρ
C5,

(11)

L2 =
1
2

(
−1 − vr

c
+
Sξ

ρ

)
C1 +

1
2c
C2 −

ξ

2ρ
C5,
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L3 = −Sξ
ρ
C1 +

ξ

ρ
C5,

L4 =
(

1 − Sξ

ρ

)
vθ C1 − C3 +

ξ

ρ
vθ C5,

L5 =
(

1 − Sξ

ρ

)
vφC1 − C4 +

ξ

ρ
vφC5,

where Ci are the components of the vector

C = −S +
2F
r
.

Let us multiply the system (7) byRw from the left:

wt +RwL +
1

r sin θ
∂

∂θ
(sin θG)

+
1

r sin θ
∂

∂φ
H − S +

2F
r

= 0.

In open form, this system of equations has the ap-
pearance





∂ρ

∂t
+ L1 + L2 + L3 +

1
r sin θ

∂

∂θ
(sin θmθ) +

1
r sin θ

∂mφ

∂φ
+

2mr

r
= 0,

∂mr

∂t
+ (vr + c)L1 + (vr − c)L2 + vrL3 +

1
r sin θ

∂

∂θ
(sin θρvrvθ)

+
1

r sin θ
∂

∂φ
(ρvrvφ) − ρgr −

ρ

r

(
v2
θ + v2

φ

)
+

2ρv2
r

r
= 0,

∂mθ

∂t
+ vθ (L1 + L2) + L4 +

1
r sin θ

∂

∂θ

[
sin θ

(
p+ ρv2

θ

)]
+

1
r sin θ

∂

∂φ
(ρvθvφ)

− ρgθ −
1
r

(
p+ ρv2

φ

)
cot θ +

3
r
ρvrvθ = 0,

∂mφ

∂t
+ vφ (L1 + L2) + L5 +

1
r sin θ

∂

∂θ
(sin θρvθvφ) +

1
r sin θ

∂

∂φ

(
p+ ρv2

φ

)

− ρgφ +
ρvφ

r
(3vr + vθ cot θ) = 0,

∂ (ρS)
∂t

+ S (L1 + L2) +
(
−ρ
ξ

+ S

)
+

1
r sin θ

∂

∂θ
(sin θmθS) +

1
r sin θ

∂

∂φ
(mφS) +

2mrS

r
= 0.

(12)
We use either (10) or (11) to calculate the Li, de-
pending on the sign of the corresponding eigenvalues.
Namely, four cases of matter flow at the boundary are
possible.

1. Subsonic outflow: |vr| < c, vr ≥ 0; L1, L3, L4,
L5 are calculated using (10), and L2 using (11).

2. Subsonic inflow: |vr| < c, vr < 0; L1 is calcu-
lated using (10), and L2, L3, L4, and L5 using (11).

3. Supersonic outflow: |vr| ≥ c, vr > 0; all the Li

are calculated using (10).
4. Supersonic inflow: |vr| ≥ c, vr < 0; all theLi are
calculated using (11).

5. BOUNDARY CONDITIONS
THAT ARE STATIONARY

WITH RESPECT TO THE RADIUS

Another type of boundary condition that can be
applied for simulations is conditions that are sta-
tionary with respect to the radius. To derive such
boundary conditions, we will rewrite the system (12)
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in physical variables, i.e., we transform the conser-
vative variables (ρ,mr,mθ,mφ, ρS) into the variables
(ρ, vr, vθ, vφ, S). We obtain after simple manipulation





∂ρ

∂t
+ L1 + L2 + L3 +

1
r sin θ

∂

∂θ
(sin θρvθ)

+
1

r sin θ
∂

∂φ
(ρvφ) +

2ρvr

r
= 0,

∂vr

∂t
+
vθ

r

∂vr

∂θ
+

vφ

r sin θ
∂vr

∂φ
− c

ρ
(L2 − L1)

− gr −
v2
θ + v2

φ

r
= 0,

∂vθ

∂t
+
vθ

r

∂vθ

∂θ
+

vφ

r sin θ
∂vθ

∂φ
+

1
ρr

∂p

∂θ
+

1
ρ
L4

− vθ

ρ
L3 − gθ +

vrvθ

r
−
v2
φ

r
cot θ = 0,

∂vφ

∂t
+
vθ

r

∂vφ

∂θ
+

vφ

r sin θ
∂vφ

∂φ
+

1
ρr sin θ

∂p

∂φ

+
1
ρ
L5 −

vφ

ρ
L3 − gφ +

vφ

r
(vr + vθ cot θ) = 0,

∂S

∂t
+
vθ

r

∂S

∂θ
+

vφ

r sin θ
∂S

∂φ
− 1
ξ
L3 = 0.

(13)

Boundary conditions that are stationary with re-
spect to the radius assume that the physical param-
eters at the boundary can vary only due to fluxes
along the θ and φ directions. Therefore, the combined
contribution from the other terms must be zero. This
results in the conditions





L1 + L2 + L3 +
2ρvr

r
= 0,

− c
ρ

(L2 − L1) − gr −
v2
θ + v2

φ

r
= 0,

1
ρ
L4 −

vθ

ρ
L3 − gθ +

vrvθ

r
−
v2
φ

r
cot θ = 0,

1
ρ
L5 −

vφ

ρ
L3 − gφ +

vφ

r
(vr + vθ cot θ) = 0,

−1
ξ
L3 = 0.

Hence, we derive the expressions for the Li:

L1 =
ρ

2c

(

gr +
v2
θ + v2

φ

r

)

− ρvr

r
, (14)

L2 = − ρ

2c

(

gr +
v2
θ + v2

φ

r

)

− ρvr

r
,

L3 = 0,

L4 = ρgθ −
ρvrvθ

r
+
ρv2

φ

r
cot θ,

L5 = ρgφ − ρvφ

r
(vr + vθ cot θ) .
As in the case of nonreflecting boundary conditions,
formulas (14) are used only for negative eigenvalues,
and formulas (10) should be used for positive eigen-
values.

Note that any extrapolation of the physical vari-
ables, for example, vr, will result in instability in
these variables in the r direction. In other words, the
steady-state condition cannot be reduced, for exam-
ple, to the condition

∂vr

∂r
= 0. (15)

To prove this, let us multiply the expression for L1

from (10) by 2/(vr + c), and the expression for L2 by
2/(vr − c), then subtract the second from the first.
(We are considering the case vr �= ±c.) This yields

∂vr

∂r
=
c

ρ

(
L1

vr + c
− L2

vr − c

)
.

If we use the condition (15) to calculate the velocity
component vr at the boundary, i.e., if we assume
that (vr)N = (vr)N−1, where N is the number of a
boundary cell, we will obtain

L1

vr + c
=

L2

vr − c
.

However, another condition must be satisfied for a
stationary flow:

L1 + L2 = −2ρvr

r
,

which follows from (14).

All attempts to extrapolate physical variables at
the boundary during simulations result in numerical
instabilities.

6. DIFFERENCE SCHEME

We can construct a difference grid by manipu-
lating the fourth equation of (12), bringing the term
1/r ρvφvθ cot θ inside the derivative:

1
r sin θ

∂

∂θ
(sin θρvθvφ) +

ρvθvφ cot θ
r

=
1

r sin2 θ

∂

∂θ

(
sin2 θρvθvφ

)
.

We number the cells of the difference grid with the
indices i, j and k, which vary in the r, θ, and φ
directions, respectively. Integer indices are related to
the cell centers, and half-integer indices to the cell
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 1. Meridional cross section of the isentropic sur-
faces for the case of historical boundary conditions at
t = 0.15 s. The arrows indicate the direction of the mat-
ter flow.

boundaries. To write the equations of (12) in differ-
ence form, we replace the derivatives with the differ-
ential relations

∂w
∂t

=
wn+1 − wn

τ
,

1
r sin θ

∂

∂θ
(sin θG)

=
sin θj+1/2Gj+1/2 − sin θj−1/2Gj−1/2

ri
(
cos θj−1/2 − cos θj+1/2

) ,

1
r sin2 θ

∂

∂θ

(
sin2 θG

)

=
sin2 θj+1/2Gj+1/2 − sin2 θj−1/2Gj−1/2

ri sin θj
(
cos θj−1/2 − cos θj+1/2

) ,

1
r sin θ

∂

∂φ
H =

Hk+1/2 − Hk−1/2

ri sin θj
(
φk+1/2 − φk−1/2

) ,

where wn is the value of the vector w at the nth
time step and τ is the time step. In reality, all values
on a three-dimensional grid are denoted with three
indices, but we have omitted the repeating indices for
simplicity.

Note that, if we expand the derivative with respect
to θ in the third equation of (12), then the term
p cot θ/r will appear, which will cancel out this same
term in the free term. To ensure that this also occurs in
the differential approximation, we must assume that,
ASTRONOMY REPORTS Vol. 49 No. 6 2005
Fig. 2. Same as Fig. 1 for t = 0.20 s.

in the corresponding term of the free term,

cot θ =
sin θj+1/2 − sin θj−1/2

cos θj−1/2 − cos θj+1/2
.

We must assume that cot θ = cot θj in the term
pv2

φ cot θ/r. All remaining values in (12) are also
related to the centers of cells. In the expressions (10)
for Li, the derivatives with respect to r are approxi-
mated by “reverse” differences. For example, L1 will
be written in the form

(L1)i =
1
2

((vr)i + ci)

×
{
ξi
Si − Si−1

ri − ri−1
+
ρi − ρi−1

ri − ri−1
+
ρi

ci

(vr)i − (vr)i−1

ri − ri−1

}
.

The method used to calculate the fluxes G and H at
the cell boundaries is described in [4].

If we wish to determine the components of the
gravitational acceleration, we must solve for the equi-
librium configuration of a rotating gaseous sphere [4].
Due to the axial symmetry of the problem, gφ = 0,
and only gr and gθ are present. In the calculations,
we fixed the values of these components in tabulated
form and did not vary them with time.

The system of equations (12) is used only at the
cell boundaries. In the remainder of the domain, the
computations must be carried out using the initial
system (2), which can be solved in an analogous
fashion (described in [4]).
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Fig. 3. Same as Fig. 1 for the case of nonreflecting
boundary conditions.

The time step τ is specified by the Courant con-
dition, and is calculated at each step n using the
formula

τ = CCour min
i,j,k

{
ri+1/2 − ri−1/2

|vr| + c
,

ri
(
θj+1/2 − θj−1/2

)

|vθ| + c
,
ri sin θj

(
φk+1/2 − φk−1/2

)

|vφ| + c

}
,

where CCour = const is the Courant number (0 <
CCour < 1). The minimum is taken over the total
computational domain.

7. RESULTS FOR DIFFERENT
BOUNDARY CONDITIONS

We modeled a thermal outburst in a rotating star
using three types of boundary conditions:

(1) historical;
(2) nonreflecting;
(3) stationary with respect to the radius for inflow-

ing and nonreflecting for outflowing matter.
The computations were carried out on a {Nφ ×

Nθ ×Nr} = {40 × 80 × 40} grid with Courant num-
berCcour = 0.8 in the approximation of rigid-body ro-
tation. The ratio of the rotational T and gravitationW
energies was taken to be T/|W | = 0.01, which cor-
responds to an angular velocity for the rotation of
Ω0 = 2.0732 s−1.

Figures 1 and 2 present a meridional cross section
of the isentropic surfaces for the case of historical
Fig. 4. Same as Fig. 3 for t = 0.20 s.

boundary conditions for times t = 0.15 s and t =
0.20 s. We can see a densification of the contours
of constant entropy in the vicinity of the boundary
of the computational domain, due to the reflection
of perturbations reaching the boundary. This results
in variations in the matter flow. The matter that has
been burned in the center, which possesses increased
entropy, starts to move at the inner surface of the
computational domain. The boundary conditions do
not allow a free outflow of matter along the axes of
rotation, and prevent the formation of a regular jet
structure. All the convective motion is strictly limited
to the region within the computational domain.

Figures 3 and 4 present the results of the com-
putations with nonreflecting boundary conditions for
the same times. In this case, no reflection of the
perturbations from the boundary is visible. The type
of convective motion is maintained, and matter freely
passes through the boundary.

Figures 5 and 6 present the results of the compu-
tations with boundary conditions that are stationary
with respect to the radius for inflowing and nonreflect-
ing for outflowing matter. This mixed type of bound-
ary condition was selected based on the following
physical reasoning. The velocity of the matter flow
along the rotational axis approach supersonic values;
consequently, only a small fraction of the matter can
be reflected from the boundary and return to the com-
putational domain. Therefore, nonreflecting boundary
conditions were used for the outflowing matter. This
essentially reduces to computing only L2 using (11)
for the case of subsonic outflow, since only L2 corre-
sponds to a negative eigenvalue forλ2 = vr − c. Thus,
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 5. Same as in Fig. 1 for the case of boundary con-
ditions that are stationary with respect to the radius for
inflowing and nonreflecting for outflowing matter.

supersonic outflow does not require the determination
of boundary conditions. Cool thermonuclear fuel from
the outer layers of the star should flow in along the
equatorial plane. Here, we set up steady-state inflow
conditions.

The results obtained with this type of boundary
condition differ very little from those obtained with
the nonreflecting boundary conditions. The evolution
of the isentropic surfaces is similar in both cases
(Figs. 4, 6), with matter flowing along the equatorial
plane from the boundary toward the center. In the
case of nonreflecting boundary conditions (Fig. 4),
this flow captures some of the burned matter with
increased entropy and transports it back toward the
center, which does not happen when the boundary
conditions for the inflowing matter are stationary
with respect to the radius (Fig. 6). However, this
process does not substantially affect the thermal
outburst, since the mass fraction of the burned
matter that is transported back toward the center is
extremely small. Nonetheless, we prefer the use of
boundary conditions that are stationary with respect
to the radius for inflowing matter and nonreflecting
for outflowing matter, since, as can be seen from
Figs. 5 and 6, the influence of the boundary is lowest
in this case.

We also studied a model with more rapid rota-
tion: T/|W | = 0.05, Ω0 = 4.2880 s−1. In this case,
the differences become appreciable. With historical
ASTRONOMY REPORTS Vol. 49 No. 6 2005
Fig. 6. Same as Fig. 5 for t = 0.20 s.

boundary conditions, reflection from the boundary de-
stroys the convective process and results in numeri-
cal instabilities in the vicinity of the boundary. With
nonreflecting boundary conditions and steady-state
radial inflow, the boundary does not affect the type and
velocity of the convective motion, and no numerical
problems occur. Note that, with this rotation, the type
of motion at the boundary in the equatorial plane is
changed when the convection reaches this region.
Initially subsonic inflow becomes supersonic, and the
number of characteristics that must be determined,
depending on the type of boundary condition, will
change.

8. CONCLUSION
We have shown that, on large timescales with an

existing convection pattern, nonreflecting boundary
conditions for the outgoing flow and the condition of
a steady-state flow for the incoming flow should be
used. Nonreflecting boundary conditions for incom-
ing perturbations yield similar results for all cases of
the flow at the boundary. The traditional use of histor-
ical boundary conditions, as well as extrapolating the
calculated values at the boundary, are inappropriate
and result in numerical instabilities. These boundary
conditions can be applied only in early stages of the
development of convection in the star, when the influ-
ence of boundary conditions can be neglected.
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Abstract—It is shown that cyclotron radiation by electrons near the surface of a neutron star with a mag-
netic field of∼1012 G can easily provide the observed quiescent radiation of magnetars (Anomalous X-ray
Pulsars and Soft Gamma-ray Repeaters). Pulsed emission is generated by the synchrotron mechanism at
the periphery of the magnetosphere. Short-time-scale cataclysms on the neutron star could lead to flares
of gamma-ray radiation with powers exceeding the power of the X-ray emission by a factor of 2γ2, where
γ is the Lorentz factor of the radiating particles. It is shown that an electron cyclotron line with an energy
of roughly 1 MeV should be generated in the magnetar model. The detection of this line would serve as
confirmation of the correctness of this model. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Interest in magnetars—anomalous X-ray pulsars
(AXPs) and soft gamma-ray repeaters (SGRs)—has
risen recently due to the detection of cyclotron ab-
sorption lines with energies of about 5–8 keV for
several of these sources [1–3]. In the most popu-
lar theory [4], these objects are neutron stars with
anomalously strong surface magnetic fields Bs of
the order of 1014–1015 G (two to three orders of
magnitude higher than the fields of ordinary pul-
sars). The magnetic-field strength can be derived
from the observed parameters of the cyclotron lines.
If it is assumed that the observed lines are emit-
ted at the electron-cyclotron frequencies, the implied
magnetic-field strengths do not exceed 1012 G; i.e.,
they correspond to the values characteristic of ordi-
nary radio pulsars.

The proponents of the standard magnetar model
suggest that the objects can still possess fields of
1014–1015 G if the observed absorption lines cor-
respond to proton-cyclotron frequencies. However,
in this case, it is unclear why we do not observe
electron-cyclotron lines formed in more distant re-
gions of the magnetosphere. Such lines should be
observed, since the magnetic field falls off with dis-
tance from the surface (according to an inverse cubic
law in the case of a dipolar field). Doubt is also cast
on the proton-cyclotron hypothesis by the results
of [5], which demonstrate that, in fields exceeding the
critical value Bcr = 2πm2c3/eh = 4.4 × 1013 G, the
proton cyclotron lines should be smeared by effects
associated with the polarization of the vacuum, and
1063-7729/05/4906-0459$26.00
should therefore not be observed. Accordingly, in-
creasing importance is being acquired by alternative
models that do not require fields of the order of 1014–
1015 G.

In [6], we proposed a model based on the theory
developed by Machabeli and collaborators over more
than 20 years (see, for example, [7–9]). The idea be-
hind this model is as follows. Electromagnetic waves
are generated in the electron–positron plasma filling
the magnetosphere. These waves propagate along
the pulsar’s magnetic-field lines, and quasilinear
diffusion develops due to the influence of these waves
on the particles. This diffusion changes the particle-
distribution function from one- to two-dimensional;
i.e., the resonance particles of the plasma acquire
orthogonal momenta. This, in turn, brings the syn-
chrotron mechanism into action, which generates
high-frequency optical or X-ray synchrotron radia-
tion, depending on the parameters of the plasma [10,
11]. The wavelength of this high-frequency radiation
λ is much smaller than the “mean” distance between
the particles, n−1/3 (where n is the plasma density),
so that this radiation essentially does not interact with
the ambient medium.

In addition to the waves propagating along the
field lines, a drift wave that moves across themagnetic
field is generated in the plasma in association with
the drift of particles due to the curvature of the pul-
sar field [8]. This wave encircles the magnetosphere,
and gives rise to variations in the radius of curvature
of the surrounding magnetic-field lines. The high-
frequency synchrotron radiation propagates tangent
to the field lines in the region where it is generated.
c© 2005 Pleiades Publishing, Inc.
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Therefore, in the presence of variations in the curva-
ture of the field lines, radiation will be directed toward
the observer with a period equal to the period of the
drift waves. In our model, it is precisely this period
that determines the spacing between the X-ray pulses
in AXPs and SGRs.

We present here a qualitative explanation for the
observed X-ray quiescent radiation, and discuss a
possible origin of gamma-ray bursts. Our model does
not require the introduction of unusually strong mag-
netic fields, and explains the observations fully in the
framework of standard theories for the radiation of
ordinary radio pulsars.

2. GENERATION OF THE X-RAY
BACKGROUND

We must separate the radiation generated in the
magnetosphere into two components: eigenmode ra-
diation and radiation in a one-particle approxima-
tion. The eigenmodes result from the radiation of the
ensemble of particles making up the plasma in the
pulsar magnetosphere. In the second type of radia-
tion, each particle in this ensemble is treated as an
independent source of radiation. The former case is
realized when the wavelength λ is larger than the
“mean” distance between particles in a plasma with
density n (λ > n−1/3), while the second case is real-
ized when λ < n−1/3.

In the standard theory [12, 13], the rotation of a
conducting star with a frozen-in magnetic field in-
duces an electric field that has a component along the
magnetic field. This electric field tears charges from
the surface of the neutron star, and can lead to the
creation of electron–positron pairs. This process will
occur only under certain conditions. First, the energy
of the gamma-ray photon involved εγ must exceed
2mec

2, where me is the mass of the electron and c is
the speed of light. Second, the angle between the
propagation of the gamma-ray and the magnetic field
must be large enough to satisfy the inequality [14]

B⊥εγ > 1018 G eV. (1)

The gamma-rays are emitted along tangents to
the curved magnetic-field lines. The angle between
the direction of propagation of the gamma-ray and
the magnetic field increases as the radiation travels
from the place where it is generated, and condition (1)
will begin to be satisfied when this angle becomes
sufficiently large. At the same time, the gamma-rays
will begin to be absorbed due to the development of
the conversion process

γ +B → e+ + e− +B + γ′. (2)
The electrons e− and positrons e+ created at the sur-
face of the neutron star should have fairly large trans-
verse momenta p⊥ (or pitch angles, ψ =
arctan p⊥/p||), which are radiated away due to syn-
chrotron losses on a time scale t ∼ 10−15–10−14 s.
Simultaneously, the electrons and positrons in the
powerful magnetic-field of the pulsar (Bs ∼
1011–1012 G) “settle” into Landau quantum levels.

Let us consider the range of frequencies at which
radiation will be generated near the surface of the
neutron star.

It is known (see, for example, [15]), that a fre-
quency ν in the frame of the observer is associated
with a frequency ν0 in the co-moving frame (in which
V|| = 0) by the relation

ν = ν0
(1 − V 2/c2)1/2

1 − V cosα/c
, (3)

where α is the angle between the particle velocity and
the line of sight toward the observer.

If the Lorentz factor of the radiating particles is
γ = (1 − V 2/c2)−1/2 � 1 and the angle α is small,
expression (3) can be written

ν =
2ν0

1/γ + α2γ
, (4)

and, when α2γ � 1/γ,

ν ≈ 2ν0γ. (5)

In the case of large values of α,

ν ≈ ν0/γ. (6)

If

1 � α2γ � 10, (7)

and Bs ∼ 1012 G, then the electron-cyclotron fre-
quency,

ν0 =
eBs

2πmc
(8)

falls into the soft X-ray range (1–10 keV) in the
observer’s frame, and this X-ray radiation can escape
into interstellar space after first crossing the magne-
tosphere filled with electron–positron plasma. Since
the scatter in the angles α can be substantial and the
distribution of Lorentz factors for the particles will not
be monoenergetic, the resulting spectrum should be
broad. Here, we consider only approximate estimates,
and will carry out a more detailed calculation of the
resulting spectrum in a future paper.

Since the dipolar magnetic field of the neutron star
falls off with distance in accordance with an inverse
cubic law, only the frequency in the generation region
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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can coincide with frequencies of harmonics corre-
sponding to transitions between Landau levels [16]:

εm − εn = (p2
⊥m − p2

⊥n)/2me = hν0S, (9)

S = (m− n) = ±1,±2, . . .

As we noted above, lines corresponding to these har-
monics have been observed [1]. However, they have
been interpreted as cyclotron lines associated with
the absorption of non-relativistic protons in magnetic
fields of ∼1014–1015 G [17]. If this interpretation is
correct, electron-cyclotron lines should be observed
near 1 MeV. The detection of these lines would pro-
vide clear confirmation of the existence of magnetic
fields with B > Bcr; however, no such observational
data have been reported.

In our model, protons do not play an important
role, and it is electron-cyclotron lines that have been
observed, so that such lines should not be observed
near 1 MeV.

According to the theory of radiation by individual
relativistic particles, the observer will receive radia-
tion within a cone with opening angle θ ∼ 1/γ (see,
for example, [18]).

Wewill suppose that the radiation described by our
model makes the dominant contribution to the X-ray
quiescent radiation due to magnetars.

Another source of radiation along tangents to the
magnetic field is present at distances comparable to
the radius of the light cylinder [6], which creates the
pulsed component, along with a possible additional
contribution to the magnetar X-ray quiescent radia-
tion. This radiation is likewise concentrated in a cone,
so that the observer should observe a pattern of two
cones, as is shown schematically in Fig. 1.

3. IRREGULAR BURSTS OF POWERFUL
GAMMA-RAY RADIATION

As we noted above, if the angle between the di-
rection of propagation of the radiation and the line of
sight is such that 1 < α2γ < 10, the observer receives
soft X-ray radiation. However, for various reasons
(such as a starquake), the cone for the background
radiation component can become tilted, such that the
angle α becomes very small (α2γ2 � 1). In this case,
in accordance with formula (3), the frequency can be
shifted into the gamma-ray range (ν ∼ 2γν0). This
frequency depends strongly on the Lorentz factor of
the radiating particles. It seems reasonable to sup-
pose that particles with various energies should par-
ticipate in this process, so that the resulting spectrum
should be broad.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 1. Schematic of the two cones of radiation: cone I
contains quasicontinuous X-ray radiation, while cone II
contains the pulsed component.

The transformation of the power of the radiation
into the observer’s frame is described by the relation

Pν = Pν0
1

1 − V cosα/c
. (10)

When α→ 0, the power Pν grows sharply, and can
reach values

Pν ≈ 2Pν0γ
2. (11)

We again emphasize that, in the quiescent state
(1 < α2γ < 10), the observer will detect soft X-ray
radiation directed along the corresponding field lines.
At times when α < 1/γ, the formation of powerful
flares of gamma-ray radiation is possible. According
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Fig. 2. Distribution of Lorentz factors for the relativistic
plasma in the pulsar magnetosphere. The dashed curve
shows the distribution for positrons.

to formula (11), this gamma-ray radiation can be a
factor of 2γ2 stronger than the X-ray background
radiation. If the X-ray power is ∼1036 erg/s, Lorentz
factors γ ∼ 104 are required to provide gamma-ray
powers of 1044 erg/s. In the traditional model for radio
pulsars, such energies are possessed by secondary
electrons and positrons in the high-energy tail of the
distribution (Fig. 2) [19].

4. DISCUSSION AND CONCLUSIONS

1. We have shown the fundamental possibility of
explaining the X-ray background radiation of AXPs
and SGRs at 1–10 keV using a model with surface
magnetic fields for the neutron stars of ∼1012 G. The
spectrum is formed primarily due to the cyclotron
mechanism acting near the surface of the star, and
should be fairly broad.

An analogous model for the formation of the di-
rectional beam and spectrum of the X-ray radiation
of an anisotropic distribution of relativistic particles
using the accreting pulsar Her X-1 as an example
was considered in [20, 21].

2. Short-time-scale cataclysmic events on the
neutron star that lead to a temporary coincidence
between the axis of the radiation cone and the line
of sight toward the Earth could give rise to bursts of
gamma-ray emission.

3. The power of the gamma-ray flares should be
a factor of 2γ2 higher than the power of the X-ray
background emission. The flare spectrum should also
be fairly broad.

4. The detection of electron-cyclotron lines near
1 MeV in AXPs and SGRs would provide support
for the magnetar model. The absence of these lines in
the observed spectra of these sources, on the contrary,
provides indirect evidence in support of our model.
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Abstract—It is shown that scattering of electromagnetic waves by Langmuir waves taking into account
the electrical drift motion of the particles is the most efficient nonlinear process contributing to a radio
pulsar’s spectrum. If an inertial interval exists, stationary spectra with spectral indices of−1.5 or−1 can be
formed, depending on the wave excitation mechanism. The obtained spectra are in satisfactory agreement
with observational data. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Our aim here is to consider possible nonlinear pro-
cesses that could contribute to the radiation emitted
in a pulsar magnetosphere. The observed spectra of
pulsars have been studied in detail (see, e.g., [1–3]).
Pulsars typically have steeper spectra than other cos-
mic objects. The radio emission of various pulsars
displays a wide range of spectral indices α (I ∼ να,
where I is the observed intensity and ν is the ra-
diated frequency), from +1.4 to −3.8 [1]. However,
in the overwhelming majority of pulsars, −1.5 > α >
−2 [2]. Another characteristic feature of the spectra
is a low-frequency cutoff (an abrupt change in the
sign of the spectral index), observed in some pulsars
from 39 to 400 MHz [4], and a high-frequency break
(a sharp increase in the spectral index), observed from
400 MHz to 9 GHz [5].

We assume that the pulsar radiation is generated
and its spectrum formed in the magnetosphere. The
radiation leaves the magnetosphere, escapes into in-
terstellar space, and reaches the observer, conserving
the properties of the natural modes of the magne-
tospheric plasma. This approach has been able to ex-
plain a number of the main observed properties of pul-
sar radiation, such as its polarization properties [6],
nulling [7], micropulses [8], mode switching [9], etc.

There is no doubt that the spectrum of any ra-
diating object, including a pulsar, is one of its most
important characteristics. However, there are virtu-
ally no theoretical models for the formation of a pul-
sar’s spectrum. Successful modeling obviously re-
quires studies of the turbulent state of the pulsar
magnetosphere. There is no general theory of tur-
bulence, and we must make do with the methods
of weak-turbulence theory. In our case, such an ap-
proximation is justified by the actual situation: in a
pulsar magnetosphere, we are dealing with a flow of
relativistic electron–positron plasma that is driven
1063-7729/05/4906-0463$26.00
beyond the light cylinder, after which the conditions
change abruptly, so that there may not be enough
time for the development of strong turbulence.

We consider here nonlinear processes that, in our
opinion, are responsible for the formation of the char-
acteristic spectrum of a pulsar’s radio emission. The
development of the theory of nonlinear processes in
plasmas has resulted in the methods that we will use
to analyze the plasma turbulence (see, e.g., [10, 11]).

Before proceeding to an analysis of nonlinear pro-
cesses, we briefly describe the considered model for
the pulsar magnetosphere in Section 2. Section 3
examines the natural modes of an electron–positron
plasma and reviews linear mechanisms for their gen-
eration. In Section 4, we analyze the relevant nonlin-
ear processes, and obtain stationary solutions for the
spectra and present a physical analysis of the results
in Section 5.

2. THE PLASMA OF A PULSAR
MAGNETOSPHERE

We adhere to the generally accepted model of a
pulsar magnetosphere [12, 13], in which a relativistic
flow of electron–positron plasma pierced by an elec-
tron beam is moving along open force lines of the
pulsar magnetic field B0. We will assume a dipolar
pulsar magnetic field.Wewill take “open” field lines to
be those intersecting the surface of the light cylinder
(this is a hypothetical cylinder, on whose surface the
linear velocity of a magnetic-field line reaches the
speed of light c in the case of rigid-body rotation). We
suppose that an electrostatic field is generated at the
pulsar surface along the open field lines [12], which
pulls out charges from the surface of the neutron
star, and that it is the electrons accelerated in this
field that form the primary beam. The primary beam
moves along curved field lines, generating gamma-
rays, which, in turn, propagate along tangents to the
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Distribution function f of the pulsar-
magnetosphere plasma. The solid and dashed curves
show the distribution functions for electrons and
positrons, respectively.

field lines, producing electron–positron pairs at ener-
gies εγ > 2mec

2 (whereme is the electron mass) [13].
This initiates a cascade process, which ceases when
the shielding of the accelerating electrostatic field is
full. In the generally accepted theory, the distribution
function f has the form shown in Fig. 1. This distri-
bution function can be represented

f = fp + ft + fb, (1)

where fp describes the bulk of the plasma, ft the
long tail, which extends in the direction of the plasma
motion, and fb the beam of primary particles.

The distribution function (1) is one-dimensional,
and extends asymmetrically toward the light cylin-
der. The solid and dashed curves in Fig. 1 show the
distribution functions of the electrons and positrons,
respectively. The shift of the distribution functions
is due to the fact that the primary beam consists of
particles of only one sign.

It is assumed that

npγp ≈ ntγt ≈
1
2
nbγb, (2)

where γp, γt, and γb are the Lorentz factors and np,
nt, and nb the densities of the particles of the bulk,
tail, and primary beam of the plasma, respectively.

For typical pulsars, γb ∼ 106–107, n0
b ∼

1011 cm−3, γt ∼ 104, n0
t ∼ 1013–1014 cm−3, γp ∼

10, and n0
p ∼ 1017 cm−3. The subscript 0 denotes

values at the pulsar surface. With distance from the
surface, the densities decrease as n = n0(r0/r)3,
where r0 ≈ 106 cm is the radius of the star and r is
the distance from the pulsar center. Note that the
dipole magnetic field of the pulsar also obeys a cubic
law: |B0| = |B0
0 |(r0/r)3, where |B0

0 | ∼ 1012 G is the
magnetic induction at the surface.

It follows from the condition of quasi-neutrality
that

∆γ = γ+ − γ− =
∫
f+γd

3p−
∫
f−γd

3p. (3)

Here, the subscripts ± refer to positrons and elec-
trons, respectively, and the values of f± are normal-
ized such that ∫

f±d
3p = 1. (4)

The value of ∆γ is small, but this quantity plays a
key role in explaining the polarization properties of
pulsars.

The radio emission of most pulsars is 2–10% cir-
cularly polarized at their intensity peaks. According
to [6], this circular polarization can exist only within
a small angle θ between the wave vector k and the
pulsar magnetic fieldB0:

θ2 � ω

ωB
∆γ � 1. (5)

This means that the observer receives emission
that is formedwithin a small angle near themagnetic-
field lines, and the field lines are directed toward the
observer when the waves leave the plasma. It is,
therefore, natural for us to consider waves gener-
ated along tangents to the slightly curved magnetic-
field lines. This is consistent with the linear theory
of electron–positron plasmas: waves are generated
essentially along lines of force [6, 14].

3. LINEAR WAVES AND THEIR
GENERATION

Due to the absence of gyrotropy, the spectrum
of a magnetized electron–positron plasma is rather
simple. It consists of three branches [14]: a purely
transverse t wave and two potential–nonpotential
lt waves. The t wave has no exact counterpart in a
common electron–ion plasma. The electric vector of
this wave is perpendicular to the plane containing the
wave vector k and the magnetic field. During field-
aligned propagation, the spectrum of these waves is

ωt = kc(1 − δ), (6)

where δ ≡ ω2
p/(4ω2

B〈γ3〉),

ωp ≡
(

8πe2np

me

)1/2

, ωB ≡ e|B0|
mec

(7)

are the plasma and cyclotron frequency, respectively,
the angular brackets denote averaging over the distri-
bution function, and 〈γ〉 ≈ γp.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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The lt waves are divided into two branches: lt1
and lt2. The electric vectors of these waves lie in the
plane containing the vectors k and B0. During field-
aligned propagation (k||B0), the lt2 wave has sub-
light speed (ω < kc) and merges with the t wave into
an electromagnetic wave with the spectrum (6) and
its electric vector in some arbitrary direction perpen-
dicular toB0.

During field-aligned propagation, the upper (lt1)
branch is longitudinal in its lower part and represents
a Langmuir wave (l); its dispersion in the super-light-
speed range (ω � kc) is [15, 16]

ω2
l = ω2

p〈γ−3〉 + 3k2c2
(

1 − 〈γ−5〉
〈γ−3〉

)
, (8)

and, for ω ≈ kc,
ωl ≈ c [k − α(k − k0)] , (9)

where k2
0 = 2〈γ〉ω2

p/c
2 and α = 〈γ〉/2〈γ3〉.

It follows from (6) and (9) that for

k ≈ k̄ ≡ k0

(

1 +
1
2
ω2

p

ω2
B

〈γ3〉
)

, (10)

the frequency of the Langmuir wave becomes equal
to the frequency of the electromagnetic wave. The
dispersion curves of the waves propagating along the
magnetic field in an electron–positron plasma are
shown in Fig. 2.

Mechanisms for the generation of waves in the
relativistic electron–positron plasma of the pulsar
magnetosphere have been widely discussed in the
literature (see, e.g., [17]). We favor the maser mecha-
nism [18]. The magnetosphere plasma is nonequilib-
rium for two reasons: the presence of a high-energy
beam, and the asymmetric and one-dimensional na-
ture of the distribution function. If the Cherenkov res-
onance condition is fulfilled, the drift Cherenkov reso-
nance wave-generation mechanism is possible when
the drift motion of particles in the slightly curved
magnetic field is taken into account [6]. The linear
stage was studied in detail in [19], and the quasi-
linear stage in [20]. Here, we will consider instead an-
other mechanism: resonance at the abnormal Doppler
effect, for which the necessary condition is [6]

ω − k||v|| − k⊥um
⊥ +

ωB

γr
≈ 0. (11)

Here, k|| and k⊥ are the projections of the wave
vector along and across the magnetic field, um

⊥ ≡
cv||γr/ωBRB is the drift velocity of the particles due
to the curvature of the magnetic field,RB is the radius
of curvature of the magnetic field lines, and γr is the
Lorentz factor of the resonant particles.

A detailed analysis demonstrates that wave gen-
eration is possible on fast particles of the tail and
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 2. Dispersion curves of waves propagating along the
magnetic field in an electron–positron plasma.

beam [21] if 2γ2
r δ > 1. Substituting (2) into the reso-

nance condition (11), we find for k⊥ = 0

ωt ≈ k||c ≈
ωB

γrδ
. (12)

For typical pulsar parameters [22, 23], it follows
from (12) that the frequency of the generated t waves
is below the cyclotron frequency:

ωt � ωB. (13)

It is important to emphasize that the transverse
waves are strongly damped at the cyclotron reso-
nance by particles of the plasma bulk and relatively
slow particles of the tail. The condition for the cy-
clotron resonance is

ω − k||v|| − k⊥um
⊥ − ωB

γr
≈ 0. (14)

Analysis of this equation demonstrates that cyclotron
damping is efficient when

ωt � 2γpωB. (15)

The linear mechanisms for the generation of waves
via the abnormal Doppler-effect resonance or drift-
Cherenkov resonance excite transverse electromag-
netic t waves. In turn, nonlinear interactions redis-
tribute the energy of the generated waves among var-
ious modes and scales; if certain conditions discussed
below are fulfilled, this results in the formation of a
stationary turbulence spectrum.

4. NONLINEAR PROCESSES
We will use the weak-turbulence parameter to

construct a theory for the turbulent processes occur-
ring in a plasma. For a relativistic electron–positron
plasma, this parameter is

|E|2
mec2npγp

� 1, (16)
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where E is the electric field of the wave.
Condition (16) means that we describe the devel-

opment of turbulence for which the energy density of
the waves is less than the mean energy density of the
particles.

In addition to the small parameter (16), there are
two other small parameters for the magnetosphere
plasma, whose existence considerably simplifies the
subsequent analysis. The first is ω2

p/ω
2
B � 1. The

second,

γ2
p

(ω − k||v||)2

ω2
B

� 1, (17)

enables us to proceed to the so-called drift approxi-
mation.

In common laboratory plasma for which the
weak-turbulence condition is fulfilled, three-wave
resonant decay processes should be the most in-
tense [25]. There are additional limitations to real-
izing the resonant decay conditions in an electron–
positron plasma. In particular, since the particles
in an electron–positron plasma have identical mass
and equal and opposite charges, second- and higher-
orders terms that are proportional to odd powers of
the charge do not contribute to the nonlinear cur-
rents, since the contributions from the electrons and
positrons completely cancel. In addition, as we noted
above, the observer receives waves that propagate
within a small angle (θ � 1) relative to the magnetic
field. It also follows from the resonant condition (11)
that the generated waves propagate nearly along the
magnetic-field lines [14].

The decay of a potential Langmuir l wave into
two transverse t waves was considered in [26], and
all possible three-wave decays for nearly field-aligned
wave propagation were studied in [27]. As we noted
above, these studies focused on possible decays of the
l wave, since it was assumed that, as in a common
plasma, the most unstable and most readily excited
waves are Langmuir waves. However, in a plasma
with a strong relativistic beam, the so-called kinetic-
instability approximation is violated when the reso-
nance width ω − k||v|| is smaller than the increment.
In this case, the number of particles involved in the
resonance is small, and the instability does not de-
velop.

The presence of a resonance at the abnormal
Doppler effect, which is a powerful source of t waves,
changes the situation radically. The question of pos-
sible decays of the t waves that may be responsible
for the observed spectral parameters of the pulsar
radiation becomes much more interesting.

It is convenient to use quantum-mechanical con-
cepts to study the nonlinear processes. We introduce
the amplitude aλ
k and the plasmon occupation num-

berNλ
k (see, e.g., [11, 24, 25, 28]):

ωkN
λ
k ≡ ωk〈aλ

ka
λ
k
∗〉 (18)

=
1
ωk

(
∂

∂ω
ω2ελk

)

ω=ωλ
k

|Ek|2
4π

.

Here,

ελk ≡
eλi

∗
eλj
ω2

(
kikjc

2 + ω2εij
)
, (19)

eλ is the polarization vector for waves of type
λ(lt, l, t), Eλ

j ≡ eλjE, εij is the permittivity tensor, an
asterisk denotes complex conjugation, and angular
brackets denote averaging over phases.

It follows fromMaxwell’s equations that

∂tak + iωλ
k (20)

=
∑

λ1λ2

∫
dk1dk2dω1dω2a

λ1
k a

λ2
k

∗

× δ(k − k1 − k2)δ(ω − ω1 − ω2)Vλ|λ1λ2
,

where the matrix element of the decay λ→ λ1 + λ2 is

Vλ|λ1λ2
= 4π

ωλ1
k1
ωλ

k

ωλ
k

(ωλ1
k1

− ωλ2
k2

) (21)

× (∂ωω
2ελ)−1/2

ω=ωλ
k

(∂ωω
2ελ)−1/2

ω=ω
λ1
k1

× (∂ωω
2ελ)−1/2

ω=ω
λ2
k2

σλ|λ1λ2
,

and σλ|λ1λ2
is the nonlinear conductance tensor.

For identical polarizations of all three waves, the
process t→ t′ + t′′ at k⊥ = 0 is forbidden, because
the second-order current is proportional to the third
power of the charge (j(2) ∼ e3) and the contributions
from electrons and positrons completely cancel. This
process is formally possible in the case of propagation
at a small angle to the magnetic field, but the matrix
element of the interaction [27]

Vt|t′t′′ ∼ ω3
p/ω

3
B � 1 (22)

is negligible.
It remains to consider processes involving l waves.

In an electron–ion laboratory plasma, the most
efficient nonlinear process is the decay of Langmuir
waves to Langmuir and ion-acoustic waves [29].
This process is accompanied by a “reddening” of
the Langmuir plasmon; i.e., a transfer of energy to
longer-wavelength perturbations.

There is no exact counterpart for this process in
an electron–positron plasma. The process l→ l′ + t,
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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where we have a transverse t wave instead of a lon-
gitudinal potential ion–acoustic wave, can be con-
sidered to be the most analogous. In the case of
strictly field-aligned propagation, the electric vectors
of the l waves are directed along the magnetic field
(El||El′ ||B0), whereas the electric field of the t wave
is Et ⊥ B0. Therefore, such a decay is impossible in
this case. If the wave propagates at a small angle θ to
the magnetic field, the matrix element is [27]

Vl|l′t ≈
e

mec

ω2
p

ωBωl

√
ωl

ωl′

klc√
ωt
θ. (23)

Since the maximum value of θ does not exceed δ, we
conclude that the matrix element of this process is
also quite small.

Another possible three-wave process, l + l′ → t,
was considered in [30]; the matrix element of this
process is also described by (23), and, accordingly, is
small.

The decay l→ t+ t′, considered in [26], requires
the propagation of t waves in opposite directions.
Otherwise, it is impossible to satisfy the resonant-
decay conditions

ωl = ωt + ωt′ , kl = kt + kt′ . (24)

Naturally, this process cannot play any role in the
formation of the pulsar radio emission at frequencies
exceeding that of the Langmuir waves.

The process t→ t′ + l without including the drift
motion of plasma particles was considered in [27]. In
this case, the interaction involves near-light-speed
Langmuir waves with ωl ≈ klc. For field-aligned
propagation, the matrix element of the interaction is

Vt|lt′ ≈
e

mec

ω2
p

ωBωl

√
ωtωt′

ωl
. (25)

Comparison of (22), (23), and (25) demonstrates
that, even without the drift motion of the particles, the
process t→ t′ + l is the dominant three-wave pro-
cess. Taking into account the drift motion of plasma
particles makes this process even more efficient,
due to the presence of the strong external magnetic
fieldB0.

For simplicity of presentation, we will consider the
case of strictly field-aligned wave propagation. For
twaves, the electric vector isEt ⊥ B0. Therefore, drift
motion along B0 is possible due to oscillations of the
t and t′ waves. For concreteness, we will take the
fieldsEt andEt′ to be directed along the x and y axes,
respectively (Fig. 3). Themagnetic fieldB0 is directed
along the z axis. In this case, Et

x leads to drift motion
of the particles along y:

ud
y = c

Et
x

B0
, (26)
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Fig. 3. Scheme for the calculation of nonlinear drift cur-
rents.

which, in turn, crossing the magnetic field of the
t′ wave, generates a nonlinear longitudinal field:

E =
1
c

[
ud,B′

]
. (27)

We especially emphasize that the electrical drift
velocity (26) is the same for electrons and positrons.
Therefore, the drift of the particles does not re-
sult in the generation of a current in the linear
approximation.

If the resonant conditions

ωt = ωl + ωt′ , kt = kl + kt′ (28)

are fulfilled, the beating of the t and t′ waves generat-
ing the longitudinal electrical field (27) resonates with
the slightly sub-light-speed Langmuir oscillations.

Since the Langmuir waves are longitudinal, in
the presence of particles with velocities equal to the
phase velocity of the wave, they can be subject to
collisionless Landau damping. In this case, instead of
the process t→ t′ + l, we should consider nonlinear
scattering of t waves by particles of the plasma—the
so-called wave–particle–wave interaction [24, 25].
The condition for this resonance is

ωt − ωt′ = (kt|| − kt′ ||)v||, (29)

where v|| is the longitudinal velocity of the resonant
particle.

Combining (6) and (29) and using the fact that
v|| ≈ c[1 − 1/(2γ2)], we readily find that the reso-
nance can take place for particles with γ factors

γr ≈
√

1/2δ. (30)

According to the theory developed in [6, 19, 22],
the waves are generated near the light cylinder, at
distances of the order of 109 cm from the surface of
the star. Consequently,

γr ∼ 102−103. (31)
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Scattering could be rather efficient if the Langmuir
waves satisfying conditions (28) are strongly damped.
The Langmuir waves could be damped on particles
of the bulk plasma. However, due to the violation
of the applicability of the kinetic approximation in a
relativistic plasma, efficient collisionless damping is
hindered (though possible). Here, we will consider the
case when the Langmuir waves are weakly damped,
so that the dominant process is the decay t→ t′ + l.

Maxwell’s equations describing the evolution of
the fields in the case of exactly field-aligned wave
propagation can be reduced in the standard manner to

(
∂2

∂t2
− c2 ∂

2

∂z2

)
E⊥ + 4π

∂jNL
⊥
∂t

= 0, (32)

∂Ez

∂t
+ 4πjNL

z = 0. (33)

The nonlinear currents jNL
⊥ and jNL

z in (32), (33)
can readily be calculated in a simplified scheme; sub-
stituting (26) to (27) and using Faraday’s law, we
obtain

jNL
z = − i

4π

(
kt

z

ωt
ExE

′
y +

kt′
z

ωt′
E′

xEy

)

. (34)

The transverse current can be computed as
follows:

jNL
⊥ = ud

⊥ρe, (35)

where the perturbation of the charge density ρe is
determined from the Poisson equation divE = 4πρe,
and Ez is determined from (26).

Substituting into (32) and (33) electric fields in
the form

Ez,⊥(t) = Ez,⊥k(t)ei(ωt−kz) + c.c., (36)

and using (32)–(35) together with the linear disper-
sion equations (6) and (9), we obtain for the ampli-
tudes slowly varying with time the equations

∂Exkt

∂t
=
i

2
cωl

B0

(
kt′

ωt′
+
kl

ωl

)

Ezkl
E∗

ykt′
, (37)

∂Eykt′

∂t
= − i

2
cωl

B0

(
kt

ωt
+
kl

ωl

)
Ezkl

E∗
xkt
, (38)

∂Ezkl

∂t
= − i

2
cωl

〈γ〉B0

(
kt

ωt
+
kt′

ωt′

)

ExktE
∗
ykt′
. (39)

Supposing that there are many waves with ran-
dom phases, and introducing the occupation numbers

Nx,yk =
|Ex,yk|2
4πωt

, Nzk =
〈γ2〉|Ezk|2

8πωl
, (40)
in the standard manner [24, 25], we obtain from (37)–
(39) the matrix element for the interaction

Vt|lt′ ≈
c

B0
(ωtkt′ + ωt′kt)

√
ωl

ωtωt′〈γ2〉 . (41)

Comparison of (25) and (41) demonstrates that
taking into account the drift of the particles increases
the matrix element, i.e., intensifies the considered
process.

5. STATIONARY SPECTRA

Typical of the case we have considered is the sit-
uation when ωt, ω

′
t � ωl, and, consequently, the step

for the transfer of the high frequency t waves is small.
In addition, we assume that the spectrum forms after
the escape of the radiation from the linear-generation
region; i.e., there is no pumping in the energy redistri-
bution region. As we noted above, damping of waves
with frequencies below 2γpωB can also be neglected.
Thus, we come to the classical inertial interval, in
which a Kolmogorov-type spectrum is formed.

According to [10], the spectra formed in the Kol-
mogorov (inertial) interval, where there are no sources
or sinks of waves, are completely determined by the
matrix element for the interaction (41) and the disper-
sion characteristics of interacting waves, which are
described by (6) and (9). This problem admits two
stationary solutions for the occupation numbers Nk,
which have the form [10]

Nk1 = A1k
−s−d, Nk2 = A2k

−s−d+1/2, (42)

where d is the dimension of the problem and s is
the index for the degree of homogeneity of the ma-
trix element of the interaction. The first stationary
solution, Nk1 = A1k

−5/2, corresponds to a constant
energy flux from large-scale to small-scale irregular-
ities, while the second solution, Nk1 = A2k

−2, cor-
responds to a constant flux of the plasmon number
toward large-scale perturbations.

In the case considered, d = 1 and s = 3/2; there-
fore, possible stationary spectra are Nk1 = A1k

−5/2

and Nk2 = A2k
−2. Taking into account the linear

character of the dispersion of the t waves and the
quasi-one-dimensional character of the problem, we
obtain for the energy spectrum Eω, which is propor-
tional to the observed emission intensity Iω:

Iω1 ∼ Eω1 ∼ ω−3/2, Iω2 ∼ Eω2 ∼ ω−1. (43)

Which of the spectra is realized in a particular
pulsar depends on the linear mechanisms for the wave
excitation and absorption. If, as is supposed in Sec-
tion 3, waves are excited via a resonance at the ab-
normal Doppler effect, which is especially efficient
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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when ωt � ωB, while damping at the cyclotron reso-
nance is efficient when ωt � 2γpωB, the spectrum Eω1

should be realized.
Aswe noted above, the radio emission ofmost pul-

sars has spectral indices −1.5 > α > −2. Therefore,
our result, α = −1.5, is quite satisfactory. However,
we should bear in mind the important restrictions we
have imposed to simplify the analysis, in particular,
the assumption that there exists an inertial interval
and the requirement that the spectrum be stationary.

6. CONCLUSION

We have considered the formation of spectra in the
weakly turbulent electron–positron plasma of a pul-
sar magnetosphere. All available data about pulsars
confirm the presence of a very strong magnetic field,
|B0| ∼ 1012 G, at the stellar surface. This compels
us to consider the theory of plasma turbulence for
strong magnetic fields, where, in our opinion, the
determining role should be played by the electrical
drift of the particles, which results in the efficient
nonlinear generation of a longitudinal electrical field
during interactions between two t waves. The pres-
ence of a strong external magnetic field simplifies
the problem and makes it quasi-one-dimensional.
Applying well-known methods of the theory of weak
turbulence, we have calculated the spectral indices
of stationary spectra that can be formed in the in-
ertial interval. Analysis of the linear mechanisms for
wave generation and damping shows that a situation
with wave generation resulting from resonance at the
abnormal Doppler effect and damping taking place
at the cyclotron resonance is most probable. In this
case, a spectrum with an index of −1.5 should be
realized. This result is in satisfactory agreement with
the observations: the observed spectral indices for
most pulsars are −1.5 > α > −2.
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Abstract—A criterion for the choice of optimal softening length ε for the potential and the choice of time
step dt forN-body simulations of a collisionless stellar system is analyzed. Plummer andHernquist spheres
are used as models to analyze how changes in various parameters of an initially equilibrium stable model
depend on ε and dt. These dependences are used to derive a criterion for choosing ε and dt. The resulting
criterion is compared to Merritt’s criterion for choosing the softening length, which is based on minimizing
the mean irregular force acting on a particle with unit mass. Our criterion for choosing ε and dt indicate
that εmust be a factor of 1.5−2 smaller than the mean distance between particles in the densest regions to
be resolved. The time step must always be adjusted to the chosen ε (the particle must, on average, travel a
distance smaller than 0.5 ε during one time step). An algorithm for solvingN-body problems with adaptive
variations of the softening length is discussed in connection with the task of choosing ε, but is found not to
be promising. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The evolution of gravitating systems on time in-
tervals shorter than the time scale for two-body re-
laxation is described by the collisionless Boltzmann
equation. The number of particles in N-body simu-
lations of such systems is usually several orders of
magnitude smaller than the number of stars in real
systems. This approach usually involves solving the
collisionless Boltzmann equation using Monte Carlo
methods, and then using particles in the N-body
simulations to produce a representation of the density
distribution in the system. In practice, integrating the
equations of motion of the particles involves smooth-
ing the pointwise potential of each individual particle,
e.g., by substituting a Plummer sphere potential for
the actual potential. This procedure modifies the law
governing the interactions between particles at small
distances:

Freal
ij = Gmimj

rj − ri

|rj − ri|3
(1)

→ Fsoft
ij = Gmimj

rj − ri

(|rj − ri|2 + ε2)3/2
,

where Freal
ij and Fsoft

ij are the real and softened forces,
respectively, on a particle of mass mi located at
point ri produced by a particle of mass mj located
at point rj , and ε is the softening length for the
potential. Other methods of the softening length for
the potential are possible.
1063-7729/05/4906-0470$26.00
Potential smoothing is used in N-body simula-
tions for two reasons.

First, attempts to solve the equations of motion of
gravitating points using purely Newtonian potentials
and simple constant-step integration always lead to
problems during close pair encounters (the integra-
tion scheme diverges). Correct modeling of such sys-
tems requires the use of either variable-step integrat-
ing algorithms or sophisticated regularization meth-
ods, which lead to unreasonably long CPU times. No
such problems arise when a softened potential is used.

Second, smoothing the potential reduces the
“graininess” of the particle distribution, thereby mak-
ing the potential of the model system more similar to
that of a system with a smooth density distribution,
i.e., a system described by the collisionless Boltz-
mann equation.

It is obvious that ε cannot be too large: this would
result in substantial distortion of the potential, and
would also impose strong constraints on the spatial
resolution of structural features of the system. It is
important to have an objective criterion for choosing
the softening length in N-body simulations. In this
paper, we derive such a criterion by analyzing the time
variations of the distribution functions for spherically
symmetric models with different values of ε.

2. MERRITT’S CRITERION
FOR CHOOSING ε

Merritt [1] proposed a criterion for choosing the
softening length based on the minimization of the
c© 2005 Pleiades Publishing, Inc.
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mean irregular force acting on a particle. He in-
troduced the mean integrated square error (MISE),
which characterizes the difference between the force
produced by a discrete set of N bodies and the force
acting in a system with a continuous density distri-
bution ρ(r):

MISE(ε) = E

(∫
ρ(r)|F(r, ε) − Ftrue(r)|2dr

)
.

(2)

Here, E denotes averaging over many realizations of
the system, F(r, ε) is the force acting on a particle
with unit mass located at the point r produced by
N particles with softened potentials, and Ftrue(r) is
the force acting on the same particle in a system with
a continuous density distribution ρ(r).

Two factors contribute to the MISE.

(1) Fluctuations of the discrete density distribu-
tion. These are very important at small ε, decrease
with ε (see the left-hand branch of the curve in Fig. 1)
and for a given ε, decrease with increasing N [1].

(2) Errors in the representation of the potential
(the difference between the softened potential and a
point-mass potential). These errors, on the contrary,
are very large for large ε, decrease with decreasing ε,
and do not depend onN (the right-hand branch of the
curve in Fig. 1).

The MISE reaches its minimum at some ε = εm
(Fig. 1). Merritt suggested that this εm be adopted as
the optimal choice of the softening length in N-body
simulations. This quantity depends onN and, e.g., in
the case of a Plummer model, can be approximated
by the dependence εm ≈ 0.58N−0.26 in the interval
N = 30−300 000 (in virial units, where G = 1, the
total mass of the model is Mtot = 1, and the total
energy of the system is Etot = −1/4) [2].

3. FORMULATION OF THE PROBLEM

Merritt’s criterion is based on minimizing the
mean error in the representation of the force in an
equilibrium system at the initial time. It is of interest
to derive a criterion for choosing the softening length
based directly on the dynamics of the system. If a
stable equilibrium configuration is described by a
discrete set of N bodies, due to various errors, the
parameters of the system (e.g., the effective radius)
will deviate from their initial values with time. The
smaller these deviations are, the more adequately the
model reproduces the dynamics of the system. It is
reasonable to suppose that these variations will be
minimized for some ε.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 1.Dependence of theMISE on the softening length ε
for a Plummer model with N = 1000.

We analyzed two equilibriummodels: a Plummer-
sphere model,

ρ(r) =
3Mtot

4π
a2
P(

r2 + a2
P

)5/2
, (3)

as an example of a model with a nearly uniform den-
sity distribution, and a Hernquist-sphere model,

ρ(r) =
Mtot

2π
aH

r(r + aH)3
, (4)

with an isotropic velocity distribution [3], as an ex-
ample of a model with a strongly nonuniform density
distribution. In (3) and (4), aP and aH are the scale
lengths of the density distributions for the Plum-
mer and Hernquist models (the Plummer and Hern-
quist models contain about 35 and 25% of their to-
tal masses inside the radii aP and aH, respectively).
We use here virial units (G = 1, Mtot = 1, Etot =
−1/4), for which aP = 3π/16 ≈ 0.59 and aH = 1/3.
We computed the gravitation force using the TREE
method [4]. In the computations, we set the param-
eter θ, which is responsible for the accuracy of the
computation of the force in the adopted algorithm,
equal to 0.75. Test simulations made with higher (θ =
0.5) and lower (θ = 1.0) accuracy showed that our
conclusions are independent of θ within the indicated
interval. Hernquist et al. [5] showed that the errors in
the representation of the force in the TREE method
are smaller than the errors due to smoothing of the
potential, so that the above approach can be used
to solve the formulated problem. We integrated the
equations of motion of the particles using a stan-
dard leap-frog scheme with second order of accu-
racy in time step. The number of particles was N =
10000, and the computations were carried out in the
NEMO [6] software package.
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Fig. 2. Dependence of ∆r and ∆v on ε for different times for the Plummer-sphere model. The horizontal line shows the natural
noise levels for∆r and∆v . The vertical lines indicate the position of εm—the optimal softening length according to the criterion
of Merritt (for N = 10 000, εm = 0.05 in virial units), and the minimum εdt to which the time step was adjusted (εdt = 0.006).
Averaging was performed over several models for each ε. The time step is dt = 0.01.
We investigated two methods for smoothing the
potential. The first is based on substituting the Plum-
mer potential for the point-mass potential, and mod-
ifies the force of interaction between the particles
according to the scheme (1). The second method
uses a cubic spline [7] to smooth the potential. We
report here results only for the first method, but all our
conclusions remain unchanged in the case of spline
smoothing.

We analyzed how various global parameters of
the system are conserved, in particular, the variation
of the particle distribution function in space and,
separately, the variation of the particle-velocity dis-
tribution.

We characterized the deviation of the particle dis-
tribution in space at time t from the initial distribution
using the quantity ∆r, which was computed as fol-
lows. We subdivided the model into spherical layers
and computed for each layer the difference between
the number of particles at time t and the number at the
initial time. We then computed ∆r as the sum of the
absolute values of these differences and normalized
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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it to N , the total number of particles in the system.
The thickness of the layers was 0.1 and the maximum
radius was equal to 2 (each of the spherical layers
in both models contained a statistically significant
number of particles, always greater than 50). Note
the following (very important) point: ∆r will not be
equal to zero for two random realizations of the same
model. This quantity has appreciable natural noise
due to the finite number of particles considered. We
estimated the level of this natural noise to be the
mean ∆r averaged over a large number of pairs of
random realizations of the model.

We computed the parameter ∆v for the distribu-
tion of particles in velocity space in a similar way.
For the results reported here, the thickness of the
layer was 0.1 and the maximum velocity was 1.5 (this
choice of maximum velocity ensured that each spher-
ical layer contained a statistically significant number
of particles for both models—more than 30).

We also computed the two-body relaxation time
for the models as a function of ε. We determined this
timescale as the time over which the particles deviate
significantly from their initial radial orbits (the devi-
ation criterion and method used to estimate it were
similar to those employed by Athanossoula et al. [8]).
The estimation method can be briefly described as
follows. We constructed a random realization of the
system (the Plummer or Hernquist sphere). In this
system, we chose a particle moving toward the center
in an almost radial orbit and located about one effec-
tive radius from the center. The orbit of this particle
was adjusted to a strictly radial one. We followed
the evolution of the entire system until this particle
traveled a distance equal to 1.5 times its initial dis-
tance from the center. Knowing the time tp that has
elapsed since the start of the motion and the angle
ASTRONOMY REPORTS Vol. 49 No. 6 2005
of deflection of the particle from its initial orbit, αp,
we can compute the time required for the particle to
deviate from its initial direction by one radian. We
then average the resulting time over a large number
of similar particles to estimate the two-body relax-
ation time

1
trelax

=

〈
αp√
tp

〉2

, (5)

where trelax is the two-body relaxation time and 〈. . .〉
denotes averaging over a large number of test par-
ticles. Formula (5) is valid in the diffusion approx-
imation, i.e., assuming small angles for individual
scattering acts.

4. RESULTS OF NUMERICAL SIMULATIONS

4.1. The Plummer Sphere

Figures 2–4 illustrate the results of the computa-
tions for the Plummer sphere. Our main conclusions
are the following.

(1) Deviations of the softened potential from the
Newtonian potential become important when ε > εm.
The system adjusts to the new potential by changing
its distribution function. The adjustment is almost
immediate, and occurs on time scales t� 20 (one
time unit corresponds approximately to the crossing
time for the core, aP). Such a strongly smoothed
system that has evolved far from its initial state shows
hardly any further changes (Fig. 2). This result agrees
well with the behavior of the fractional error of the
total energy of the system for large ε, discussed by
Athanossoula et al. [2, Fig. 7].

(2) Close pair encounters are computed incorrectly
when the particle travels a distance greater than ε
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during one time step dt. This introduces an error,
which rapidly accumulates and results in substantial
changes in ∆r and ∆v (Fig. 2). This happens when
ε < εdt = σvdt, where σv is the mean velocity disper-
sion in the system (σv ≈ 0.7 in the adopted virial units
for the Plummer model).

(3) The evolution of the system outside the interval
εdt < ε < εm is simulated incorrectly.

(4) A comparison of the relaxation time of the
system (Fig. 4) with the time scale for the variations
of the density distribution in the system (∆r) shows
that, in the interval εdt < ε < εm, ∆r varies only in-
significantly on time intervals a factor of two to three
shorter than the relaxation time. When ε = εm, the
system preserves its structure for the longest time,
since the relaxation time is maximum for this ε (upper
panel in Fig. 2).

(5) At the same time, it is clear from Fig. 3 that,
for the model considered, εm exceeds the mean dis-
tance between particles in the central regions, so that
we expect strong modification of the potential in a
substantial fraction of the system at ε = εm. As they
adjust to the changed potential, the particles rapidly
change their dynamical characteristics (∆v; lower
panel in Fig. 2). It follows that εm is by no means
the best choice from the viewpoint of conserving the
initial velocity distribution function, although ∆v re-
mains approximately constant after the adjustment
has ended.

(6) The effect of the two factors affecting theMISE
(the “graininess” of the potential and its modification
as a result of smoothing) are separated in time. The
first factor acts on time scales comparable to the
relaxation time (for a given ε), whereas systematic
errors in the representation of the potential appear
almost immediately. It follows that if the systematic
errors are small for the chosen ε, then the N-body
model represents the initial system very accurately,
but only over a time interval that is a factor of 2 or 3
shorter than the relaxation time for this ε.

(7) Choosing ε to be a factor of 1.5–2 smaller
than themean distance between particles in the dens-
est region yields the optimal solution from the view-
point of conserving both ∆r and ∆v. For the Plum-
mer sphere with N = 10000, this corresponds to ε ≈
0.01−0.02 (in virial units). We can see from Fig. 2
that the simulation of the system is almost optimal
when ε ≈ 0.01−0.02, but this is achieved by restrict-
ing the evolution time of the system (t ≤ 100). When
ε = εm ≈ 0.05, the system is simulated satisfactorily
on time scales t ≤ 300, but we must pay for this
increased evolution time: the system is not correctly
represented by the model from the very start.

4.2. The Hernquist Sphere

Figures 3–5 illustrate the computation results for
the Hernquist-sphere model. Our main conclusions
are the following.

(1) We can see from Fig. 3 that, with the
Hernquist-sphere model, εm is comparable to the
mean distance between particles in the very central
regions of themodel (which contain less than 1% of all
particles). This means that the MISE can be affected
even by a small number of particles with strongly
modified potentials.

(2) Figure 5 shows that the change in the particle
distributions in the configuration and velocity space
(∆r and∆v) are indistinguishable from the noise even
for ε > εm, right to ε ≈ 0.02. This is explained by the
fact that, when ε = 0.02, only 10% of the particles
have ε values greater than the mean distance between
particles, and only this small number of particles have
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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strongly modified potentials. We simply do not ob-
serve the adjustment of these central regions to the
new potential.

(3) We showed in the previous section that, for
nearly uniform models, ε should be about a factor
of 1.5–2 smaller than the mean distance between
particles in the densest regions. This criterion cannot
be directly applied to significantly nonuniform mod-
els, since the central density peaks would be washed
out due to the finite number of particles. For such
models, εmust be about a factor of 1.5–2 smaller than
the mean distance between particles in the regions
to be resolved. In the case of a Hernquist sphere
with N = 10000, the N-body model with ε = 0.01
ASTRONOMY REPORTS Vol. 49 No. 6 2005
adequately represents the system everywhere except
for the most central regions, which contain 2−3%
of all the particles (Fig. 3). When ε = 0.02, even the
regions containing 10% of all particles are not simu-
lated correctly.

(4) Unlike the Plummer sphere, in the case of the
Hernquist sphere, significant changes in ∆r and ∆v

occur on times of the order of two “relaxation times”
t = 100 (Figs. 4 and 5). We put the term relaxation
time in quotes here, because this concept is not ap-
plicable in the Hernquist model. The relaxation time
is, by definition, a local parameter, and has different
values in the central region and periphery for the
strongly nonuniform systems we analyze here.
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5. DO N-BODY SIMULATIONS NEED
ADAPTIVE CODE?

A number of authors have discussed the possi-
bility of developing a code for N-body simulations
with an adaptively adjustable softening length; i.e.,
with ε varying as a function of the mean distance
between particles at a given point of the system [1, 9].
Dehnen [9] showed, based on the formalism of Mer-
ritt [1], that the use of such an adjustable softening
length significantly decreases the role of the irregular
forces averaged over the entire system. It follows from
the results reported here that the only possible ad-
vantage of such a code might be a reduction of com-
puting time when modeling very nonuniform models.
This follows from the fact that one can choose larger
softening lengths, and thereby longer time steps, in
less dense regions.

We encountered a problem when implementing
such a code, however. The change of ε for individual
particle results in an asymmetric change of the total
energy of the system. When ε is increased (εsmall →
εmean), particles located near a radius of about 2εmean
pass from a “harder” to a “softer” potential, i.e.,
the absolute value of the potential energy decreases.
A decrease in ε (εbig → εmean) results in the opposite
effect, but, in this case, on average, the change in the
potential influences the greater number of particles
located near the radius 2εbig, so that the absolute
value of the total potential energy of the system grad-
ually increases with time. Our N-body simulations
showed significant increases in the total energy. Vari-
ous artificial methods can be suggested to compen-
sate for this energy change, but it remains unclear
how this will affect the evolution of the system as a
whole.

6. CONCLUSIONS

The results of our study indicate that the softening
length ε in N-body simulations should be a factor of
1.5−2 smaller than the mean distance between parti-
cles in the densest regions to be resolved. In this case,
the time step must be adjusted to the chosen ε (on
average, the particle must travel a distance smaller
than one-half ε during one time step).

The use of code with variable softening lengths
appears to be of limited value, and does not show
particular promise.
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Abstract—The spatial and temporal brightness distributions of the Fe XIV 530.3 nm coronal green line
(CGL) and cyclic variations of these distributions are analyzed for a long time interval covering more than
five 11-year cycles (1943–2001). The database of line brightnesses is visually represented in the form of a
movie. Substantial restructuring of the spatial distribution of the CGL brightness occur over fairly short
time intervals near the so-called reference points of the solar cycle; such points can be identified based on
various sets of solar-activity indices. Active longitudes are observed in the CGL brightness over 1.5–3 yr.
Antipodal and “alternating” active longitudes are also detected. The movie can be used to compare the
CGL brightness data with other indicators of solar activity, such as magnetic fields. The movie is available
at http://helios.izmiran.rssi.ru/hellab/Badalyan/green/. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The intensity of the solar FeXIV λ530.5 nm coro-
nal emission line, which is the brightest coronal line
in the optical, is a highly informative index of solar
activity. A long series of systematic observations of
the green line covering more than five past activity
cycles is now available. An important advantage of
this index is that it refers to all heliographic lati-
tudes simultaneously, thus providing uniform data for
studying solar activity over the entire surface of the
Sun, in contrast to Wolf numbers, for example, which
characterize low-latitude activity or polar faculae ap-
pearing at high latitudes.

The coronal green line (CGL) originates in the
lower corona at temperatures of ∼2 MK, which
are most favorable for the production of the FeXIV
ion. Calculations of the ionization equilibrium in the
corona [1] indicate that the ionization curve of FeXIV
is fairly narrow, so that the abundance of FeXIV ions
decreases dramatically and the line weakens with
either decreases or substantial increases in the tem-
perature of the emission region. On the other hand,
since the intensity of an emission line is proportional
to the square of the density, the regions that are
brightest in the CGL are dense loops and clusters
of loops in the inner corona. The existence of such
regions is related to and controlled by the coronal
magnetic fields. Thus, studies of the spatial and tem-
poral distributions of the CGL brightness can be used
to trace the evolution of the coronal magnetic fields.
It is important that the CGL brightness is a directly
1063-7729/05/4906-0477$26.00
measurable index, in contrast to the strength of the
coronal magnetic field, which can only be calculated
using photospheric observations and adopting certain
assumptions. Another important point is that the time
interval covered by CGL observations is much longer
than the interval for which systematic data on the
photospheric magnetic fields are available.

The long series of CGL brightness observations
supplements and complements currently available
extra-atmospheric observations of the corona. The
coronal images obtained with the Yohkoh, SOHO,
TRACE, and CORONAS spacecraft cover the period
since 1991. Such observations enable us to compare
coronal images in various UV and X-ray lines with
daily maps of the observed magnetic field. The radia-
tion in the FeXII λ195 Å line recorded by instruments
on spacecraft is emitted in nearly the same regions as
the CGL. Images taken in the λ195 Å line show that
the coronal emission is enhanced over active regions
and weaker over coronal holes. However, since the
instruments on various spacecraft are not identical,
the observational data can be very nonuniform. This,
along with the relatively short duration of the period
covered by the extra-atmospheric observations, hin-
der the use of these observations for studies of long-
period and cyclic variations in the physical conditions
in the inner corona.

Comparisons of the spatial and temporal CGL
brightness distributions with the strength of the mag-
netic field and its components represent a promis-
ing method for studying solar-activity variations and
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Cyclic variation in the brightness of the coronal green line, Imax, adopted for the movie (heavy curve) compared to the
brightness variations in Iobs observed in the equatorial zone ±20◦ (light curve).
mechanisms for coronal heating. In [2, 3], we con-
sidered the relationship between cyclic variations in
the CGL brightness and the coronal magnetic fields.
We compared synoptic maps of the CGL brightness
distribution and of the magnetic field at the level of the
green-line emission calculated in a potential approx-
imation based on observations of the photospheric
field. This indicated some degree of correlation be-
tween the green-line intensity and the strength of the
coronal magnetic field.

Long-term CGL brightness monitoring observa-
tions are also important for studies of so-called ac-
tive longitudes. Investigation of this phenomenon re-
quires long series of data, and numerous studies have
been dedicated to this problem [4–8]. However, the
available results are not always trustworthy, and are
even contradictory in some cases. This stems from
various facts. First, the rotational speeds of some
tracers appear to differ from the Carrington velocity.
Moreover, it has been shown that the solar plasma
that entrains these tracers exhibits two different an-
gular rotational speeds. Second, as is well known, the
rate of rotation depends on the latitude, and this de-
pendence may be different for different tracers. Finally,
the technique of using tracers has the fundamental
drawback that the tracers do not form a continuous
numerical field. Therefore, to derive such a field for,
e.g., sunspots, the frequency of sunspot emergence
at a given point of the solar surface must be taken
into account. For example, spots emerge only rarely
at latitudes above 30◦, making the results less reliable
there. Thus, the CGL brightness data have the real
advantage that they from a uniform and continuous
numerical field over the entire solar disk over a long
timescale. A short-timescale, CGL brightness inves-
tigation of active longitudes was carried out in [9–11].
Regions of faint green-line emission are of consid-
erable interest. Waldmeier [12, 13] termed them coro-
nal holes (Löcher in German). Subsequently, they
were identified with regions of reduced EUV and
X-ray brightness [14–16]. A detailed atlas of synoptic
CGL brightness maps for 1947–1976 [17] was used
to identify regions of faint CGL emission with prop-
erties similar to those of coronal holes. A comprehen-
sive study of the sizes and locations of regions of faint
CGL emission revealed a relationship between these
regions and the solar wind and geomagnetic activ-
ity [18]. Such regions may be associated statistically
with regions of reduced magnetic field at the same
latitude.

We study here the spatial and temporal CGL
brightness distributions during cycles 18–23. We
have used a sequence of synoptic maps of the CGL
brightness, with each map representing an average
over six Carrington rotations, to trace cyclic varia-
tions in the spatial distribution of the CGL bright-
ness, reveal active longitudes and their evolution, and
identify alternating and antipodal active longitudes.
These maps were used to compose a movie, which
is available at http://helios.izmiran.rssi.ru/hellab/
Badalyan/green/, where color illustrations for this
paper can also be found.

2. BRIEF DESCRIPTION OF THE MOVIE

To obtain a photometrically uniform database of
FeXIV 530.3 nm coronal emission line intensities, we
compiled monitoring coronagraphic measurements
that had been systematically carried out by a relatively
small network of coronal stations (see [19, 20] for
details concerning the compilation of the database;
a brief description of the database can also be found
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 2. Typical synoptic maps of the coronal green line for cycle 21. Each map is an average over six Carrington rotations; the
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maximum brightness shown in black and the minimum brightness in white. Heliographic longitude and latitude are plotted as
the horizontal and vertical coordinates. The steps ∆I for the successive maps are 7.5, 11, 15, 20, 22.5, and 10 absolute coronal
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in [3, 21, 22]). The data obtained at various observa-
tories were reduced to a height of 60′′ over the limb.
The spatial resolution is ∼13◦ in solar longitude (one
observation per day) and 5◦ in solar latitude. The
intensity of the green line is represented in absolute
coronal units (acu, one millionth of the emission of the
solar-disk center within 1 Å in the continuum next
to the line). The original measurements refer to the
eastern and western limbs, and the final data are re-
duced to the central meridian. It is these data that we
used to construct the movie and all the figures given
here. The CGL brightness database covers the period
1939–2001 and can be used to study time variations
in the CGL brightness for individual latitude zones.
This database has already been employed to analyze
spatial and temporal changes and cyclic variations in
the CGL brightness [20, 23–25].

We studied the evolution of the distribution of the
CGL brightness using our movie, which contains
784 frames and covers the period from 1943 to 2001
(cycles 18–22 and half of cycle 23). Each frame is
a CGL-brightness synoptic map averaged over six
consecutive Carrington rotations. The time shift be-
tween successive frames is equal to one rotation.
In each frame (and in the figures presented here),
time increases from right to left and, accordingly,
the Carrington longitude increases from left to right.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
The time indicated at the lower right corner of each
frame corresponds to the beginning of the fourth of
the six rotations within the averaging interval used
for the map; i.e., to the center of the time interval
considered. This time corresponds to the rightmost
point of the horizontal axis. The curve in the lower
left part of the frame represents the annual mean Wolf
number, and the red point indicates the Wolf number
at the beginning of the fourth rotation in the averaging
interval; this time is indicated in the lower right part of
the frame. Averaging over six Carrington rotations is
best suited to reveal long-lived features on relatively
large scales.

The brightness of the corona is color coded in each
frame. The entire brightness range for the given frame
is divided into eight gradations, with the maximum
brightness shown in yellow and the minimum bright-
ness in cyan. By the maximum brightness, Imax, we
mean the highest contour level, which was chosen
separately for each frame so as to satisfy the following
conditions.

(1) The relative changes in the brightnesses of in-
dividual structures should be traceable from frame to
frame. To this end, we tried to successively choose the
maximum brightnesses so that they did not differ too
strongly from one another, and all the main features
of the brightness distributions were best represented
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in the frames. At the same time, the successive max-
imum brightnesses should change monotonically.

(2) The time variation of the maximum bright-
nesses over successive frames should, by and large,
follow the cyclic variation in the CGL brightness.

The parameters of each frame are given in a table
at the website indicated above. Figure 1 shows the
time variations of the maximum brightness over a
sequence of frames (heavy curve). The variation in
the chosen maximum brightness Imax agrees very well
with the cyclic variation in the CGL brightness Iobs in
the equatorial region. When the two conditions stated
above are met, not all possible brightness gradations
can always be represented in a frame. The reason for
this is that, in reality, the coronal brightness does
not always vary with time monotonically, and periods
of temporary decreases or increases in the overall
brightness are noted fairly frequently. Furthermore, to
better represent the general decrease in the bright-
ness of the corona near the activity minima in the
movie, we intentionally raised the maximum bright-
ness adopted for the corresponding frame. For this
reason, only three or even two gradations can be seen
in some frames (see, e.g., the first map in Fig. 2 below,
where four gradations are present).

The maps for 1954 should be noted separately. We
had to change the lowest brightness value for that
epoch and use Imin = 4 acu instead of zero, so that the
corresponding frames (a total of 16) do not visually fall
out of the general sequence of frames. This situation
may result from calibration errors associated with the
stations that operated during that period.

Subsequent analyses demonstrated that appre-
ciable restructurings in the general brightness dis-
tribution of the CGL become more pronounced
when a long sequence of synoptic maps is consid-
ered. Constructing special map tables containing
15–20 frames each (similar to that shown below in
Fig. 3) proved to be very convenient for determining
the epochs of such restructurings.

3. SOME PROPERTIES
OF THE SPATIAL BRIGHTNESS

DISTRIBUTION OF THE GREEN LINE
DURING THE ACTIVITY CYCLE

The long series of synoptic maps for the CGL
brightness enables us to trace gradual changes in
the brightness distribution during the solar-activity
cycle. Epochs of specific restructurings in the syn-
optic map were identified, and compared with refer-
ence points in the cyclic curve, which can be deter-
mined using sets of solar-activity indices, primarily
sunspots [26–30]. The reference points define the
epochs of fundamental changes in the spatial and
temporal organization of solar activity more precisely
ASTRONOMY REPORTS Vol. 49 No. 6 2005
than do jumps in the time derivatives of various in-
dices. The concept of reference points is important for
understanding the nature of solar activity and fore-
casting of this activity. The essence of reference points
is that tmA and tAM correspond to the beginning and
end of the growth phase of the activity cycle, respec-
tively, while tMD and tDm represent the beginning
and end of the decline phase. Usually, the points m
andM—the epochs of minimum and maximum of the
activity cycle—are added to these reference points.

Figure 2 illustrates the evolution of the CGL
brightness distribution during the 21st activity cycle
as an example. A specific brightness range from zero
to Imax is chosen for each map, with the darkest color
corresponding to the maximum CGL brightnesses
and white to the minimum brightnesses. As in the
movie, we chose the step ∆I in accordance with the
cyclic variations in the CGL brightness, in order to
better represent the transition from the minimum
to the maximum of the cycle. Thus, each map has
its own brightness scale. The maximum number of
color gradations is eight; however, some maps do
not contain all colors—see, e.g., maps 1, 2, and 6
in Fig. 2 (see Section 2 above). The maps in Fig. 2
illustrate the restructuring of the corona at the refer-
ence points. The heading of each map contains the
six-Carrington-rotation time interval over which the
averaging was done. Recall that time increases from
right to left in this and the following figure.

The following scenario for the evolution of the
CGL brightness can be described, using cycle 21 as
an example (Fig. 2). The green line is faint almost
everywhere on the Sun at the cycle minimum, and
only isolated brightened regions are observed. Near
the reference point tmA (the beginning of the growth
phase), two “rivers” with isolated, brighter “islands”
appear. By tAM (the beginning of the cycle-maximum
phase), the two rivers become stable and brighten
considerably. During the activity maximum, the rivers
begin to approach and touch each other; by tMD

(the beginning of the decline phase), they merge into
one river with two well-defined “streams.” Finally,
one narrower river forms by the reference point tDm

(the beginning of the minimum phase), and begins to
break up into separate bright islands. This evolution-
ary pattern can be traced during all five activity cycles.

The evolution of the spatial and temporal CGL
brightness distribution can be traced in more detail
using successive synoptic maps. The evolution of the
large-scale structure of the green corona for the de-
cline phase of cycle 21 is shown in Fig. 3. As in Fig. 2,
each map represents an average over six rotations.
The time interval between successive maps is three
rotations. Gradual changes in the CGL brightness
distribution and the presence of active longitudes can
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Times of spatial restructurings in the CGL brightness distribution

Cycle tmA tAM M tMD tDm

18 1230 1229 1244 1242 1251 1256 1276 1282 1313 1306

19 1360 1363 1376 1379 1390 1393 1424 1419 1444 1440

20 1497, 1499, 1525 1520, 1540 1540 1560 1558 1596 1598,

1514 1519 1529 1615

21 1657 1656, 1677 1680 1684 1692 1698, 1715 1749 1759,

1665 1714 1748

22 1791 1781, 1815 1812 1820 1818 1834 1840 1877 1875

1804

23 1924 1929, 1954 1955 1956 1961

1940
be seen over 1.5–3 years. For example, an activity en-
hancement at longitudes∼210◦ that gradually moves
to 240◦ can be noted in maps 1–5. This active longi-
tude is most pronounced in the northern hemisphere
during this period. Maps 6 and 7 already exhibit a
brightening at these longitudes in the southern hemi-
sphere, which later gradually disappears. In contrast,
a depression of brightness can be seen at these lon-
gitudes in map 12 and the following maps. In many
cases, two pronounced brightenings are observed at
nearly the same longitudes in both the northern and
southern hemispheres (see, e.g., maps 10, 11, and 14)
as a single activity complex existing simultaneously
in both hemispheres. As the activity minimum is ap-
proached, a general decrease in the green-line bright-
ness is clearly visible in the maps.

The table presents the epochs of restructurings of
the spatial brightness distribution of the CGL de-
termined for the above scenario for the cyclic CGL
brightness variations. The activity-cycle number is
given in the first column of the table. For each ref-
erence point, the number of the Carrington rotation
that corresponds to a CGL brightness restructuring
is indicated in the left column, together with the
rotation number for the reference points determined
from the Wolf numbers and large-scale magnetic
fields (see [30]). In some cases, the reference points
determined from the Wolf numbers and large-scale
magnetic fields are obviously in disagreement (es-
pecially for tmA), and two values are given in the
table. In two cases, the epoch of restructuring could
not be unambiguously determined based on the CGL
brightness.

Note that, when the idea of reference points was
suggested [26], it was assumed that the reference-
point epochs based on different solar-activity indices
would coincide. This is usually the case. However, it
is fairly difficult to accurately determine the reference
points. Therefore, as much information as possible
should be employed, and the use of coronal data is
very promising in this regard.

Figure 4 presents nine yearly latitude–time syn-
optic maps for cycle 21. Two “rivers” and their
evolution are clearly visible in these maps. The
brightness distribution during the ascending branch
of the activity cycle definitely exhibits 27-day and
13-day periods; accordingly, two antipodal (sepa-
rated by 180◦) longitudes arise, which are present
almost synchronously in both hemispheres of the
Sun. During 1982, at the beginning of the decline
phase, the 27-day period can easily be identified
from the outer enveloping contour. The 13-day pe-
riod is still observed near the equator. As 1984 is
approached, the bright regions begin to penetrate
into the opposite hemisphere. This effect is especially
pronounced in 1984. This phenomenon could be
called “alternating” active longitudes, since the active
longitudes in the northern and southern hemispheres
are activated alternately. This is manifest in the
formation of a four-sector structure of the corona (the
13-day period in the brightness variations). Finally,
only the 27-day period is observed in the equatorial
zone during 1985. This means that only one active
longitude was present on the Sun at that time.

4. CONCLUSION
We have analyzed cyclic variations in the bright-

ness distribution of the coronal green line using our
movie illustrating these variations in a database com-
prising data for 1943 to 2001. Our analysis of the
spatial brightness distribution of the CGL for five
cycles demonstrates the following.

(1) The spatial brightness distribution of the CGL
experiences substantial changes within relatively
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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short time intervals near the reference points of the
cycle determined using other solar-activity indices.

(2) Active longitudes are manifest in the bright-
ness of the corona over time scales of about
1.5–3 years. In many cases, as one of these longi-
tudes becomes fainter, another that is shifted by 180◦
becomes activated.

(3) During periods of high activity, two active lon-
gitudes separated by 180◦ are present, resulting in
variations with a period of 13–14 days. When the ac-
tivity is lower, only one active longitude is observed in
each hemisphere, and these two longitudes are shifted
relative to each other by half a Carrington rotation.

Our analysis demonstrates that CGL brightness
data are highly informative. The brightness of the
CGL is among the few solar-activity indices that
can be used to study solar activity over all helio-
graphic latitudes using the same observational da-
ta. The CGL intensity clearly reflects the effect of
variations in solar-activity mechanisms, of which the
magnetic field is probably the most important. Our
analysis demonstrates how the green corona fits into
the general scenario for cyclic variations in the solar
activity. Long series of CGL brightness observations
can be used to reconstruct series of magnetic-field
data or to test series obtained using other indirect
techniques. These series can also be employed to
identify coronal holes—an important element of so-
lar activity in terms of their effects at the Earth—
during periods when they are not directly observed
from spacecraft.

Our movie, which illustrates the spatial and tem-
poral variations in the green corona over a long time
interval, can be used to compare the CGL brightness
with other characteristics of solar activity, in particu-
lar, with magnetic fields.
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19. J. Sýkora, Bull. Astron. Inst. Czech. 22, 12 (1971).
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Abstract—The results of several sets of measurements of the frequency of radio signals during coronal-
sounding experiments carried out from 1991 to 2000 using the ULYSSES and GALILEO spacecraft
are presented and analyzed. The S-band signals (carrier frequency f = 2295 MHz) were received at the
three 70-m widely spaced ground stations of the NASA Deep Space Network. As a rule, the frequency-
fluctuation spectra at frequencies above 1 mHz are power-laws. At small heliocentric distances,R < 10R�
(R� is the solar radius), the spectral index is close to zero; this corresponds to a spectral index for the
one-dimensional turbulence spectrum p1 = 1. The index of the frequency-fluctuation spectra in the region
of the supersonic solar wind at distances R > 30R� is between 0.5 and 0.7 (p1 = 1.5–1.7). The results
demonstrate a substantial difference between the turbulence regimes in these regions: in the region of the
established solar wind, the power-law spectra are determined by nonlinear cascade processes that pump
energy from the outer turbulence scale to the small-scale part of the spectrum, whereas such cascade
processes are absent in the solar wind acceleration region. Near the solar minimum, the change in the
turbulence regime of the fast, high-latitude solar wind occurs at greater distances than for the slow, low-
latitude solar wind. Spectra with a sharp cutoff at high frequencies have been detected for the first time.
Such spectra are observed only at R < 10R� and at sufficiently low levels of the electron density fluctua-
tions. The measured cutoff frequencies are between 10 and 30 mHz; the cutoff frequency tends to increase
with heliocentric distance. The variance of the plasma-density fluctuations has been estimated for the slow,
low-latitude solar wind. These estimates suggest that the relative fluctuation level at distances 7R� <
R < 30R� does not depend on heliocentric distance. The cross correlation of the frequency fluctuations
recorded at widely spaced ground stations increases with the index of the frequency-fluctuation spectrum.
At distances R ≈ 10R�, the rate of temporal changes in irregularities on the scale of several thousand
kilometers is less than or comparable to the solar wind velocity. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Long-term studies using local methods and
sounding of circumsolar plasma using radio signals
from both natural and man-made sources demon-
strate that turbulence is a constant property of the
solar wind: all plasma parameters at all heliocentric
distances and heliolatitudes experience random fluc-
tuations, which are characterized by a broad spec-
trum of spatial and temporal scales. The evolution
of the turbulence and its interaction with the moving
plasma flow is of primary interest for the physics of the
solar wind; this is, in particular, relevant to the inner
region of the flow, where it is accelerated to supersonic
and super-Alfvénic velocities. However, precisely
1063-7729/05/4906-0485$26.00
these regions, at both low and high heliolatitudes,
are currently accessible only to radio-propagation
methods. Interplanetary scintillations (intensity fluc-
tuations) of radio waves are due to relatively small-
scale (of the order of 100 km) irregularities in the elec-
tron density of the solar wind plasma [1]. Sounding
using monochromatic spacecraft signals allows us to
measure the phase and frequency fluctuations of radio
signals [2–4]. Under the experimental conditions that
are realized, as a rule, such measurements yield infor-
mation about larger-scale (≥1000 km) irregularities
of the electron density. Radio-sounding experiments
using monochromatic signals have been carried out
since 1991 using the ULYSSES spacecraft, and
c© 2005 Pleiades Publishing, Inc.
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since 1995 using GALILEO. A considerable amount
of data on the frequency fluctuations of radio signals
at various heliocentric distances and heliolatitudes
and at various phases of the solar cycle has been
accumulated in these experiments. Even the very first
results demonstrated that the available observational
material contains valuable information on solar wind
irregularities. In particular, due to the extended du-
rations of individual measurement sets and the high
stability of the spacecraft radio transmitters, it was
possible to obtain the first estimates of the outer scale
of the turbulence, at heliocentric distances from 7R�
to 80R� [5, 6].

We report here new results obtained from radio-
sounding data using the ULYSSES and GALILEO
spacecraft, related to the level and spatial spectrum
of density fluctuations in the inner regions of the
solar wind, as well as the dynamics of the density
irregularities during their motion relative to the path
of the radio signal.

2. BASIC THEORETICAL RELATIONSHIPS

In this section, we present basic theoretical ex-
pressions relating the observed statistical character-
istics of the frequency fluctuations of radio-sounding
signals to the spatial spectrum of the turbulence and
the velocity of the solar wind. We assume that the
three-dimensional spatial spectrum of the electron
density fluctuations in the solar wind ΦN (q) can be
represented

ΦN (q) = C(r)(q2 + q20)
−p/2 exp(−q2/q2m), (1)

where r is the heliocentric distance, q is the wave
number, p is a three-dimensional exponent, and
L0 = 2π/q0 and Lm = 2π/qm are the outer and inner
scales of the turbulence, respectively (L0 � Lm). If
the spectrum (1) is normalized to the variance of the
density fluctuations σ2

N (r), the structural constant
C(r) is

C(r) = A(p, q0, qm)σ2
N (r), (2)

where

A(p, q0, qm) (3)

=






(p − 3)Γ(p/2)qp−3
0 (2π)−3/2

Γ[(p − 1)/2]
for 3 < p < 4,

[
4π ln

(
2q0
qm

)]−1

for p = 3.

If we assume that the spatial fluctuations are
“frozen” into the plasma and are convectively trans-
ported at velocity V , then, as is shown in [7], the tem-
poral power spectrum of the frequency fluctuations
of the radio-sounding signal G′
f (ν) for the electron

density fluctuation spectrum (1) is

G′
f (ν, V ) = D(r, V, λ)ν2(ν2

0 + ν2)−(α+2)/2 (4)

× exp(−ν2/ν2
0 ),

where
D(r, V, λ) = Bπ−1(λre)2σ2

N (R)V ν2
0Λeff , (5)

α = αf = p− 3 is the index of the frequency-
fluctuation spectrum, λ is the radio wavelength, re =
2.82× 10−13 cm is the classical radius of the electron,
Λeff ≈ R is the effective thickness of the layer with
modulating irregularities that is adjacent to the point
of closest approach, ν0 = V/L0 and νm = V/Lm are
temporal frequencies corresponding to the outer and
inner turbulence scales, and the constant B is

B =






α for 0 < α < 1,[
ln
(

2qm
q0

)]−1

for α = 0.
(6)

However, strictly speaking, the spatial pattern of
the fluctuations is not frozen in; this may be due either
to an intrinsic change in the irregularities during their
transport by the solar wind (this takes place for irreg-
ularities associated with waves propagating relative
to the moving plasma) or to the presence in the line
of sight of an instantaneous spread of outflow veloci-
ties [8]. The deviations from freezing can be described
by some velocity distribution function ϕ(V ), which
we assume to be one-dimensional. Strong variability
of the fluctuation pattern will correspond to a con-
siderable spread of velocities 〈∆V 2〉 ≥ 〈V 〉2; in the
opposite case, when 〈∆V 2〉 	 〈V 〉2, the effects of
deviation from freezing will be negligible. With the
variability of the moving pattern taken into account,
relationship (4) for the frequency-fluctuation spec-
trum becomes

Gf (ν) =
∫
G′

f (ν, V )ϕ(V )dV. (7)

Let us suppose that, as is the case for the solar
wind, the spread of possible velocities in the distri-
bution ϕ(V ) is limited by some values Vmin and Vmax
(so that Vmin ≤ V ≤ Vmax), Vmin and Vmax are of the
same order, and the power-law part of the density-
fluctuation spectrum (1) is fairly broad (q0 	 qm). It
then follows from (7) that, even in the presence of
considerable variability of the pattern, the shape and
parameters of the frequency-fluctuation spectrum
Gf (ν) will be determined by (4), with the velocity of
the irregularitiesV replaced by its effective valueVeff :

Veff = (〈V p−2〉)1/(p−2), (8)

〈V p−2〉 =
∫
V p−2ϕ(V )dV.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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In the particular case p = 3, the velocity Veff [for-
mula (8)] coincides with the average velocity of the
irregularities 〈V 〉. The frequency-fluctuation spec-
trum (4), (7) has a maximum at the fluctuation fre-
quency

νmax =






(
2
α

)1/2

ν0 for 0 < α < 1,

(ν0νm)1/2 for α = 0.
(9)

It can readily be verified that there is no such
maximum in the wave-phase fluctuation spectrum
Gph(ν) ∼ ν−2Gf (ν). According to [5, 6], the ex-
pected characteristic frequency νmax [formula (9)] in
the region of the developed solar wind, R > 20R�
with α ≈ 0.6–0.7 and V = const, is νmax ∼ 0.1 mHz.
In the region of the solar wind acceleration at R <
10R�, where spectra with α ≈ 0 are observed [2], the
values of νmax can be much higher: νmax ≥ 1 mHz.
However, in this case, the spectral maximum (9)
will be pronounced weakly and will be of little use
for determining the outer (or inner) turbulence scale.
Substituting νmax from (9) into (4), we find the spec-
tral density of the fluctuations at the peak frequency:

Gf (νmax) = λ−1B1(λre)2σ2
N (r)R, (10)

where

B1 =






2
[

α
α+ 2

](α+2)/2
for 0 < α ≤ 1,

[
ln
(

2qm
q0

)]−1

for α = 0.
(11)

If we know the values of α, Veff , and Gf (νmax)
from measurements, (10) and (11) can be used to
estimate the variance of the density fluctuations in the
solar wind plasma, σ2

N (R).
The motional velocity of the irregularities can be

estimated from simultaneous measurements of the
frequency fluctuations at widely spaced ground sta-
tions. In this case, the temporal cross-correlation
function for the frequency fluctuations K(ρ, τ) is re-
lated to the corresponding cross-correlation function
for the phase fluctuationsKph(ρ, τ) as

K(ρ, τ) = −
∂2Kph(ρ, τ)

∂τ2
, (12)

where ρ is the projection of the baseline vector onto
the region of efficient phase modulation adjacent to
the point of closest solar approach in the line of sight
and τ is the time shift. The functionK(ρ, τ) peaks at
some shift τ = τ0; this value can be used to find the
apparent convective velocity of the spatial pattern of
the fluctuations:

Vapp = x/τ0, (13)
ASTRONOMY REPORTS Vol. 49 No. 6 2005
where x is the projection of the vector ρ onto the
radial direction. The velocity Vapp does not depend
on the anisotropy of the irregularities [9]; for widely
spaced measurements of the frequency fluctuations,
it is determined by the third and fourth moments of
the distribution ϕ(V ):

Vapp = 〈V 4〉/〈V 3〉. (14)

Under certain assumptions about the velocity
distribution function ϕ(V ), the measured value of
Vapp (14) can be used to find Veff (8). In par-
ticular, if the velocity dispersion is insignificant,
then Veff ≈ Vapp. Even in the case of two flows
with different velocities and equal weights, when

ϕ(V ) =
1
2
[δ(V − V1) + δ(V − V2)], ∆V = V2 − V1,

Veff ≈ 1
2
(V1 + V2), the relative velocity difference is

Vapp − Veff

Veff
≈ 3∆V 2

(4V 2
eff + 3∆V 2)

, and for ∆V ≤ Veff

does not exceed 0.4.

3. OBSERVATIONS AND DATA REDUCTION

We used as our input data the results of radio
sounding of the circumsolar plasma carried out from
1991 to 2000 with the GALILEO and ULYSSES
spacecraft. During the ingress and egress phases of
the solar conjunction, the three 70-m radio telescopes
of the Deep Space Network in Goldstone (USA),
Canberra (Australia), and Madrid (Spain) recorded
the frequency of the S-band downlink carrier signal
emitted by an onboard transmitter (λ = 13 cm, f =
2295 MHz) at a sampling rate of 1 Hz. The obser-
vations were carried out for radio ray path closest
approach distances ofR = 5–80R�.

The processing of the raw data included the cre-
ation of long continuous series of frequency measure-
ments containing thousands and even tens of thou-
sands of one-second samples. The series were formed
from consecutive individual sessions carried out at
different stations. The spacecraft was always visible
by at least one ground station, ensuring continuity of
the frequency record. The frequency fluctuations pro-
duced by turbulence in the circumsolar plasma were
found by subtracting the slowly varying component
(trend), which was approximated by a polynomial fit
to the observational segment to be processed.

The subsequent data processing consisted of find-
ing the temporal power spectra of the frequency fluc-
tuations of the downlink sounding signals via a Fast
Fourier Transform (FFT). In all time intervals when
the spacecraft was visible from two stations, the fre-
quency measurements were carried out at both sta-
tions. The data of these joint observations were cross
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Fig. 1. Temporal power spectra of the frequency fluctua-
tions based on GALILEO data.

correlated to find the convective velocity of the ir-
regularities across the downlink radio path. This is
approximately equal to the solar wind speed, since the
change of the closest-approach distance with time,
vgr ≈ 24 km/s, is much lower than this speed.

4. SPECTRAL PARAMETERS
OF THE SOLAR WIND TURBULENCE

Figure 1 shows the frequency-fluctuation spec-
trum obtained from continuous measurements over
more than a day at the Canberra, Madrid, Goldstone,
and again Canberra stations on January 9–10, 1997.
The duration of the observations was about 27 h
(∼105 measurements), and the average distance of
closest approach was R ≈ 27.3R�. These data were
averaged over three measurements to reduce the ef-
fect of instrumental noise. We obtained the temporal
spectrum using an FFT with 215 = 32768 points.

The shape of the temporal spectrum presented in
Fig. 1 is typical of most of the observational series
processed in this way: there is a local, smoothly vary-
ing maximum at a low fluctuation frequency and a
power-law interval ν > νmax, which extends to fre-
quencies where the measured fluctuations become
lower than the noise level. The main parameters of the
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Fig. 2. Spectral index α of the temporal spectra of the
frequency fluctuations of the radio signals from the (a)
ULYSSES and (b) GALILEO spacecraft at various he-
liocentric distances R.

frequency-fluctuation spectrum [from which we can
find the outer turbulence scale L0 and the rms fluctu-
ations of the electron density σN using (9) and (10)]
are the frequency of the maximum νmax (equal, in
this case, to 4 × 10−5 Hz), the spectral density at
this maximum Gf (νmax) ≈ 2 Hz, and the index α in
the inertial interval ν > νmax (α = 0.73). The average
velocity V in the time interval when the spectrum was
determined (derived from cross-correlation process-
ing of the simultaneous frequency measurements at
two stations) was V ≈ 2 × 102 km; hence, we obtain
L0 ≈ 8.28 × 106 km, σN = 2 × 102 cm−3, and the
index of the spatial spectrum of the electron density
turbulence p = 3.73.

Figure 2 shows the index α of the frequency-
fluctuation spectra as a function of heliocentric dis-
tance; α is equal to the index of the spatial spec-
trum of the plasma turbulence minus three. Figure 2a
presents the values of α obtained from the ULYSSES
data (1991). The horizontal axis for Fig. 2a is la-
beled above. Figure 2b (horizontal axis labeled below)
presents the results for GALILEO frequency mea-
surements carried out from April 24 to May 24, 2000.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 3. Spectral index α of the frequency-fluctuation
spectrum as a function of the heliolatitude of the sounded
region (ULYSSES data).

The dashed lines in Figs. 2a and 2b show the spec-
tral index for the Kolmogorov–Obukhov turbulence
spectrum (2/3). On the whole, the data of Fig. 2 char-
acterize turbulence modes of the circumsolar plasma
for mid-latitude (Fig. 2a) and low-latitude (Fig. 2b)
regions during epochs of high solar activity. These
results testify that, near the solar-activity maximum,
the turbulence is well developed at heliocentric dis-
tances R > 12R� (its index is close to 2/3), whereas
the turbulence remains undeveloped at smaller dis-
tances, R < 10R�.

Similar changes in the index for low-latitude re-
gions of the solar wind were found earlier [2] from
measurements of the phase-fluctuation spectra for
radio signals from the VIKING spacecraft. However,
the phase-fluctuation spectra [2] were obtained in a
narrower spectral interval that was entirely within the
power-law segment of the power spectrum. The in-
dices of the frequency-fluctuation spectra for various
heliolatitudes are given in Fig. 3. These were ob-
tained from ULYSSES data acquired in 1995, when
the spacecraft was moving from the Southern hemi-
sphere to the equatorial region. For all the data of
Fig. 3, the point of closest approach in the line of sight
was within a fairly narrow interval of heliocentric dis-
tances, from 22R� to 32R�; therefore, Fig. 3 char-
acterizes the actual heliolatitude dependence of α.
This is confirmed by the fact that there is no radial
dependence of α for the low-latitude and mid-latitude
data of Fig. 2 in the given interval of heliocentric
distances. As we can see from Fig. 3, α ≈ 0.6–0.7
ASTRONOMY REPORTS Vol. 49 No. 6 2005
 

10

 

1

 

10

 

–2

 

10

 

–1

 

10

 

–1

 

10

 

–3

 

ν

 

, Hz

10

 

0

 

10

 

2

 

10

 

–2

 

10

 

–1

 

10

 

0

 

10

 

–2

 

10

 

0

 

10

 

–1

 

10

 

1

 

(‡)

(b)

(c)

 

R

 

 = 11.3 

 

R

 

�

 

R

 

 = 9.0 

 

R

 

�

 

R

 

 = 6.3 

 

R

 

�

 
G

 
, Hz

 
2

 
/Hz

Fig. 4. Frequency-fluctuation spectra of the GALILEO
radio downlink signals (experiments in 1999–2000) at
small heliocentric distancesR: (a) R = 11.3 R�, (b) R =
9.0 R�, (c) R = 6.3 R�.

at low latitudes (ϕ < 50◦), whereas the spectral index
shows a tendency to systematically decrease toward
the poles. The turbulence remains undeveloped for
latitudes above 50◦, and only in low-latitude regions
(ϕ < 40◦) is the turbulence close to Kolmogorov.

Examples of flat spectra with low spectral index
are shown in Figs. 4a–4c. All three spectra were
obtained via an FFT of 2048 frequency-fluctuation
measurements for GALILEO radio-sounding data
acquired in 1999 and 2000. Figure 4a shows the
spectrum derived from measurements in a session
on May 11, 2000, when the sounded region was at
a heliocentric distance of R = 11.3R�. The spec-
trum in Fig. 4b was obtained for April 3, 1999, with
R = 9R�, and the spectrum in Fig. 4c for May 11,
2000, with R = 6.3R�. We can see that the spectral
density depends on the fluctuation frequency only
weakly in the frequency interval 10−3–4 × 10−2 Hz.
Another important feature of the spectra at small
heliocentric distances is the presence of a sharp de-
crease in the spectral density at high fluctuation fre-
quencies. This feature is most pronounced at the
smallest distances of closest approach (Fig. 4c, R =
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6.3R�). As R increases, the break steepness de-
creases (Figs. 4b, 4c) and the spectrum becomes
purely power-law. The break frequency νB tends to
increase with increasingR: νB ≈ 4× 10−2 Hz atR =
6.3R�, νB ≈ 4.9 × 10−2 Hz at R = 9R� and νB >
5 × 10−2 Hz at R = 11R�.

Figure 5 presents the break frequency as a func-
tion of heliocentric distance derived from GALILEO
data acquired from 1997 to 2000. The value of νB ,
which is in the range 0.01–0.05 Hz, indeed, tends
to increase with R. As we noted above (see Fig. 3),
nearly flat spectra with low spectral indices α were
also obtained for the 1995 ULYSSES radio-sounding
data for high-latitude regions of the solar super-
corona. However, in those experiments, the sounded
regions were rather far from the Sun (R > 20R�),
and no sharp break was observed in the frequency-
fluctuation spectrum.

5. CROSS-CORRELATION PARAMETERS
FOR THE FREQUENCY FLUCTUATIONS

AND DYNAMICS OF THE DENSITY
IRREGULARITIES

Let us spend some time considering some of the
dynamic properties of the turbulence that follow from
an analysis of the cross-correlation functions for the
frequency fluctuations measured simultaneously at
widely spaced receiving stations. We chose a set of
simultaneousULYSSES frequency-fluctuationmea-
surements received at Madrid and Goldstone on Au-
gust 16, 1991 with a total duration of about 2 h for a
detailed study of the cross-correlation functions. The
session began at 16h45m UT and ended at 18h45m UT.
The heliocentric distance of the point of closest solar
approach in the line of sight was about 12R�, the
projection of the baseline onto the closest-approach
region was ρ ≈ 6500 km, and the baseline was di-
rected almost radially relative to the Sun. We divided
the observational dataset into six 20-min intervals in
order to study the variability of the irregularities.

Our analysis shows that the dispersion and shape
of the frequency-fluctuation spectra calculated for
the short intervals are approximately identical at the
two ground stations. At the same time, these pa-
rameters vary randomly from one short interval to
another: α varies between 0.25 and 1.05, while the
rms frequency fluctuations σf vary much less, from
0.9 to 1.2 Hz. The velocity of the fluctuation pattern
Vapp, derived from the shift of the cross-correlation
maximum (a delay of about 15 s), changed only in-
significantly, and was close to 400 km/s, both in
the entire observational interval and in the 20-min
subintervals for which the maximum level of cross-
correlationKmax exceeded the statistical errors.

Of all the correlation and spectral parameters, the
correlation at the maximum, Kmax, was subject to
the strongest changes: it varied from statistically in-
significant values to 0.4. A comparison of the power
spectra and cross-correlation functions obtained in
the same time intervals for the joint measurements
shows that Kmax increases almost linearly with in-
creasing spectral index α. When α is about unity,
Kmax can reach 0.5, even without filtration of the
raw data. When α < 0.4, no correlation is observed.
Therefore, the efficiency of using joint measurements
of the signal frequency at widely spaced stations to
find the velocity of motion of the solar wind irregu-
larities decreases at small heliocentric distances (R <
10R�), where the spectra become flat and the index
of the spatial plasma-turbulence spectrum is close to
three. We should point out an important origin of the
observed variations of the frequency-fluctuation cor-
relation coefficient. As was shown in [10], the corre-
lation depends on the angle ψ between the projection
of the baseline onto the plane of the sky and the radial
direction. We have ψ ≈ 0 for simultaneous reception
at Madrid and Goldstone, which are at approximately
the same latitude. For joint sessions at these stations,
a correlation is always observed (atR > 10R�), even
if no high-frequency filtration of the fluctuations is
applied.
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Figure 6 shows the cross-correlation function for
the ULYSSES frequency fluctuations for all the da-
ta of August 16, 1991 received at the Madrid and
Goldstone stations. The upper curve (Fig. 6a) was
obtained for the data averaged over Ta = 13 s, and the
lower curve for the raw data (Ta = 1 s). The corre-
lation coefficient increases strongly with Ta, and the
Kmax(α) dependence persists even after smoothing.
The time shift for which the cross-correlation func-
tion reaches its maximum is τmax ≈ 15 s; this corre-
sponds to a velocity of Vapp = 430 km/s. When us-
ing the two other combinations of stations, Madrid–
Canberra and Goldstone–Canberra, for which ψ is
considerably greater than zero, no correlation at all is
found in a number of sessions, while, in others, there
is a correlation only in some time intervals. As was
shown in Section 3, we can determine the rms elec-
tron density fluctuations in the circumsolar plasma
σN using (10)–(11), the measured temporal spectra,
and simultaneous widely spaced observations of these
fluctuations, which enable us to find the velocity of
motion of the fluctuations Vapp via a cross-correlation
analysis. In this method, we determine α, Gf (νmax),
σf , and νmax from the temporal spectra, and Vapp from
the correlation function, which we assume to be close
to the velocity Veff from (8). We obtained estimates
of σN from GALILEO data near the solar-activity
minimum, on January 10 to 30, 1997, for heliocentric
distances from 7R� to 30R�. The value of σN varies
from 50 to 150 electrons/cm3. We estimated the rel-
ative level of the plasma-density fluctuations using
data on the mean density, which was also measured
near the solar minimum at low heliolatitudes based on
the group delay of the VIKING downlink signals [11].
The value of σN/N is approximately constant for he-
liocentric distances from 7R� to 30R�, and is 0.12–
0.23 for the conditions under which the experiments
were carried out: low solar activity, equatorial lati-
tudes, slow solar wind, and a characteristic size of
the irregularities close to the outer turbulence scale
(∼106 km).

Another radio-physics method was implemented
in an experiment with the ULYSSES spacecraft: the
solar wind electron density, its variations, and the de-
gree of plasma inhomogeneity were determined from
measurements of the differential group delay at two
coherent frequencies [12]. The results of this exper-
iment demonstrate that the degree of inhomogene-
ity σN/N depends strongly on the position of the
sounded region relative to the neutral line of the he-
liospheric current system. Our data, which were ob-
tained for the slow solar wind (V ≈ 250–350 km/s),
are consistent with the corresponding results of [12].
The dependence of the degree of inhomogeneity on
heliocentric distance is different for the fast solar
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 6. Cross correlation of the frequency fluctuations
recorded at widely spaced stations in Madrid and Gold-
stone (ULYSSES 1991 data), with fluctuation averaging
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wind (V > 500 km/s): in the region of formation and
acceleration of the solar wind, it is quite small (a
fraction of a percent), while it increases to 7–10%
with increasing R in the region of steady flow.

6. DISCUSSION

Our results indicate that the power spectrum of
the solar wind density fluctuations is a power-law at
frequencies exceeding several millihertz. The expo-
nent recalculated for a three-dimensional spectrum at
heliocentric distances less than 20R� is p ≈ 3.0–3.2,
whereas the spectrum becomes steeper at distances
exceeding 30R�, with p ≈ 3.6–3.7. There are indi-
cations that the power spectrum of the magnetic-
field fluctuations behaves in a similar way. Indeed,
the temporal spectra of Faraday-rotation fluctuations
at heliocentric distances of 5–10R� correspond to
magnetic-field fluctuation power spectra with p ≈
3.0 [13]. Local measurements of the magnetic-field
fluctuations on the HELIOS spacecraft at distances
of 0.3–1 AU correspond to steeper power spectra
with p ≈ 3.6–3.7 [14].

The as yet unclarified question of the physical pro-
cesses leading to the abrupt change in the turbulence
regime in the transition from the plasma-acceleration
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region to the steady-flow region requires a separate
quantitative analysis. We will restrict our consider-
ation of this observational fact below to a general
qualitative scheme that is consistent with the model
proposed in [15] to explain the spectra of smaller-
scale fluctuations measured using the scintillation
method.

We will assume the solar wind turbulence to be
an ensemble of Alfvén and magnetoacoustic waves
transported by a plasma flow; the largest energy of
the turbulent perturbations is associated with weakly
damped Alfvén waves, which, at sufficiently low
frequencies, are in the direct-propagation regime. The
magnetoacoustic waves to which the plasma-density
fluctuations are attributed are generated locally by
nonlinear stimulated interactions involving Alfvén
waves. In the solar wind acceleration region, where
the magnetic field is strong and the Alfvén velocity
considerably exceeds the sound speed, the turbulence
is weak, and the fastest probable nonlinear process
is the interaction of oppositely directed Alfvén and
slow magnetoacoustic waves [15]. Here, the energy
level of slow exceeds that of fast magnetoacoustic
waves, and the quasi-stationary power spectra of
the magnetic-field fluctuations (Alfvén waves) and
plasma-density fluctuations (slow magnetoacoustic
waves) have identical one-dimensional exponents
p1 = p− 2 = 1 [15], in full consistency with the
frequency-fluctuation and Faraday-rotation mea-
surements. Note that spectra with p1 = 1 result from
the drift of Alfvén waves toward low frequencies with
conservation of their total number and without cas-
cade processes that transfer turbulent energy to high
frequencies. The relative level of the Alfvén waves in-
creases with heliocentric distance due to the smooth
plasma inhomogeneity related to the expansion. In
addition, the ratio of the sound speed to the Alfvén
speed also increases. The combination of these effects
results in an increase of the relative contribution
of fast magnetoacoustic waves and, beginning from
heliocentric distances of 10–20R� (according to
the estimates of [15]), to the activation of cascade
processes that pump energy to high frequencies, with
a corresponding change in the turbulence spectrum
from a flat spectrum with p1 = 1 to a typical inertial
spectrum with a constant spectral-energy flux with
p1 = 1.5–1.7 (p1 = 3/2 for an Iroshnikov–Kraichnan
spectrum, and p1 = 5/3 for a Kolmogorov spectrum).

As is shown in Section 4, near a solar minimum,
the region where the turbulence makes a transition to
a mode with energy cascading to higher frequencies
is located farther from the Sun for the high-latitude,
fast solar wind than for the low-latitude, slow wind.
This can be explained if there are stronger magnetic
fields in the regions above polar coronal holes and, as
a consequence, lower ratios of the sound speed to the
Alfvén velocity and lower relative levels of turbulence
energy, so that the cascade processes are activated
somewhat farther from the Sun than in the slow so-
lar wind.

Turbulence is weak in the acceleration region,
possibly due to an increase in the relative ampli-
tude of the Alfvén waves that generate the magne-
toacoustic waves. The frequency-fluctuation spectra
with a sharp cutoff observed in near-solar regions
(Section 4)—in particular, the increase in the cutoff
frequency with heliocentric distance—testify to an
absence of cascade processes. Indeed, frequencies of
the order of 10−2 Hz are considerably lower than the
frequencies corresponding to the characteristic scales
of the magnetized plasma (the gyroradius or the in-
ertial scale of the ions), on which we could expect
strong linear absorption or a change in the behavior of
the wave dispersion. If we assume that the cutoff fre-
quency results from the pumping of energy to smaller
scales, it would have displayed the opposite radial
dependence. We can suppose that the cutoff in the
turbulence spectrum is initially formed in the middle
corona, near the coronal temperature maximum, due
to the linear absorption of Alfvén waves propagating
outward. If the turbulence level is anomalously low in
this case, then nonlinear processes outside the corona
have no time to smooth the cutoff in the power spectra
of the waves leaving the corona.

According to the estimates of [16], the charac-
teristic nonlinear increments for the evolution of the
angular distribution of the wave vectors are small
compared to the reciprocal timescale for the estab-
lishment of the power spectrum with p1 = 1. There-
fore, the strong anisotropy of the angular distribution
of the waves, with the prevalence of transverse wave
vectors, which is initially formed in the primary region
where the inhomogeneities are generated at the base
of the corona, will persist to a distance of about 10R�.
Therefore, we expect that the change in the turbu-
lence regime will also be accompanied by a change
in the anisotropy of the irregularities: from strongly
elongated in the radial direction at small heliocentric
distances to weakly anisotropic in the region of the
steady solar wind.

Note that, in principle, there is an alternative ex-
planation of the collected spectral data, based on the
idea that nonlinear interactions between the irregu-
larities are completely suppressed in the solar wind
acceleration region, and that the flat power spectra
of the magnetic-field and plasma-density fluctuations
with p1 = 1 either reflect the initial conditions in the
zone in which the irregularities form in the lower
corona [17, 18] or are related to some universal mech-
anisms for the formation of known spectra, such as
flicker noise. Without considering this possibility in
detail, we note that, in this case, as well, the change
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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in the turbulence regime can only be due to the acti-
vation of cascade processes that are absent in regions
that are closer to the Sun. Here, it is interesting that
spectra with p1 = 1 can also be formed by the local
generation of waves with a linear dispersion law due
to instabilities with increments that are proportional
to the frequency, as a result of the pumping of energy
to lower frequencies during the stimulated scattering
of waves on ions [19].

Finally, let us consider the data of Section 5 re-
lating to the dynamics of the spectral parameters and
the changes in the spatial pattern of the fluctuations
during its motion between the radio paths. The fast
variations of the shape of the frequency-fluctuation
spectrum indicate that the variation timescale, which
was determined by the duration of the short samples
and was about 20 min, is shorter than or comparable
to the timescale for the transport of irregularities with
scales comparable to the outer turbulence scale. This
is consistent with the results of [6], which indicate
that the convection timescale for the outer turbulence
scale is≥1 h.

The observed decorrelation between the fluctu-
ations measured at different stations could be due
to (1) motions of the irregularities transverse to the
baseline between ground stations, (2) a spread in
the instantaneous velocity in the line of sight due
to the presence of flows with different velocities, and
(3) intrinsic changes in the irregularities during their
motion between the two radio-signal paths. In all
three cases, the decorrelation of the frequency fluc-
tuations is amplified with an increase in the ratio of
the longitudinal baseline to the irregularity scale. As
the index of the fluctuation spectrum increases, the
relative contribution of large-scale irregularities also
increases; this explains the corresponding increase
in the cross-correlation. Filtration of high-frequency
fluctuations should produce a similar result, as is
observed in the actual experiments.

The first of the origins of the decorrelation listed
above does not play an important role, since we
have analyzed a specially selected set of variations,
for which the angle between the baseline and the
radial direction was small. To describe the other
two possible origins, we can introduce a certain rate
of random variability w. Since the chosen filtration
timescale, 13 s, is similar to the delay of the fluctua-
tions, the main contribution to the cross-correlation
comes from irregularities on scales close to the radial
baseline projection. The maximum cross-correlation
for the filtered data is fairly high (Kmax ≥ 0.6), but
is, at the same time, appreciably different from unity;
thus, we conclude that w is comparable to, but does
not exceed, the solar wind speed V (w � V ).

The variability of the fluctuation pattern at the
considered heliocentric distance, about 12R�, is
ASTRONOMY REPORTS Vol. 49 No. 6 2005
probably related to intrinsic changes in the irreg-
ularities, since, due to the fairly small thickness of
the efficiently modulating layer of the medium, the
instantaneous velocity spread in the line of sight
cannot be comparable to the average solar wind
speed. A similar conclusion for smaller scale inho-
mogeneities (100 km) in a comparable interval of
heliocentric distances was drawn in [20]. The physical
explanation that the variations of the irregularities
during their motion (the “seething” pattern in the
terms of [20]) play the main role, and not the instan-
taneous velocity spread in the line of sight (the wind
pattern), is that, at distances ∼10R� from the Sun,
the propagation velocities of MHD waves in the solar
wind plasma are comparable to the average solar wind
speed.
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Abstract—Decade-averaged Wolf numbers are reconstructed for the time interval 8005 B.C.–1945 A.D.
using radiocarbon data derived from tree rings. Comparisons of other paleoastrophysical reconstructions of
solar activity with this temporal series verify its validity and reliability. A prediction of the mean solar activity
for the next forty years is made using these reconstructedWolf numbers. It is likely that the mean solar ac-
tivity during 2005–2045 will be lower than the activity of recent decades. This conclusion is compared with
the long-term predictions proposed by other researchers. The prospects for paleoastrophysical predictions
for the long-term variations of solar activity in the future are discussed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The forecasting of solar activity is both an interest-
ing scientific problem and very important for the life of
present-day humankind. The Sun’s activity governs
a number of processes in the Earth’s atmosphere
and environment, thus affecting numerous aspects
of modern civilization. For example, the powerful
corpuscular radiation emitted during solar flares and
coronal ejections disrupts radio communications and
disables spacecraft equipment, as well as affecting
meteorological processes (the transparency of the
Earth’s atmosphere, atmospheric circulation, and
the temperature distribution in the atmosphere) [1].
Plausible effects exerted on the Earth’s climate by
Galactic cosmic rays modulated by solar activity have
been intensively discussed [2–4]. Possible relations of
long-term climatic changes to corresponding varia-
tions in the solar luminosity are discussed in [5, 6].
Numerous indications of the reality of solar–climatic
relations confirm that solar activity is one of the most
important factors determining the state of the lower
terrestrial atmosphere.

The forecasting of changes in solar activity is be-
coming more and more important for meteorology
and climatology. Such predictions are especially im-
portant from the standpoint of the global warming
that has been observed over the past century and
has growing implications for the entire existence of
humankind. Although global warming is usually as-
sociated with the greenhouse effect, there are indi-
cations that increases in solar activity, along with
increases in the carbonic acid content, are also factors
responsible for the growth in temperature over the
1063-7729/05/4906-0495$26.00
20th century (see, for example, [7–9]). Thus, long-
term (over tens of years and more) forecasting of solar
activity becomes useful for making predictions about
the climate in the future.

However, such forecasting is not simple, since it
requires information on solar activity over hundreds
of years or more; i.e., on the history of our star over
numerous centuries. It is obvious that targeted obser-
vations of the Sun using various instruments cannot
supply us with this information. The longest series
of solar data, namely data on numbers of sunspot
groups, covers only the four last centuries, with the
trustworthy part of the data series being even shorter.
Analysis of indirect indicators of solar activity studied
by solar paleoastrophysicists cover numerous cen-
turies and millennia, and can thereby clarify prospects
for long-range forecasting.

Paleoastrophysics is concerned with astrophysical
phenomena whose signals reached the Earth before
the time of instrumental astronomy. The basic ideas
of paleoastrophysics were formulated by B.P. Kon-
stantinov and G.E. Kocharov in the mid-1960s. It
was shown that we can obtain reliable information on
a number of astrophysical phenomena of the distant
past, including long-term variations in the intensity
of solar and Galactic cosmic rays, magnetic and flar-
ing activity of the Sun, supernova outbursts, and
gamma-ray bursts, using various natural archives.
This paper presents a brief review of long-term re-
constructions of solar activity obtained recently. The
mean solar activity for the first half of the 21st century
is predicted using the Wolf numbers reconstructed
from radiocarbon data for 8005 B.C.–1945 A.D.
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) The 14C concentration in tree rings from
the northwest US [14] after removing the long-term
trend. (b) Decade-averaged Wolf numbers reconstructed
from the radiocarbon data. (c) Decade-averaged Wolf
numbers reconstructed from the radiocarbon data for
1700–1900 (solid curve) and detected instrumentally
(dashed curve). (d) Decade-averaged Wolf numbers re-
constructed from the radiocarbon data for 1600–1900
(solid curve) and numbers of sunspot groups detected
instrumentally (dashed curve).

2. MODERN PALEO-RECONSTRUCTIONS
OF THE SOLAR ACTIVITY

The study of concentrations of cosmogeneous iso-
topes in natural archives is a one of the basic methods
of experimental paleoastrophysics. Cosmogeneous
radiocarbon 14C and radioberyllium 10Be originate in
the Earth’s stratosphere and upper troposphere due
to the effect of energetic Galactic cosmic rays (GCR)
modulated by the solar activity. Molecules containing
14C and 10Be that are formed are rapidly oxidized
to 14CO2 and 10BeO. The beryllium oxide is then
captured by aerosols, washed out by precipitation,
and preserved in polar ices and sea-bottom deposits.
14CO2 is involved in a chain of geophysical and
geochemical processes forming the global carbon
cycle, and is finally fixed in tree rings [10–12]. Thus,
the concentrations of 10Be in ices and of radiocarbon
in tree rings depend on solar activity. Studies of
various historical chronicles (sunspot observations
with the unaided eye or auroral observations) provide
another method for obtaining information on the solar
activity in the past.
The study of past solar activity using radiocarbon

data has been carried out since the end of the 1960s,
and has already revealed numerous important fea-
tures (long maxima and minima, long-term periodic-
ity, etc.). Note, however, that 14C describes the solar
activity in a nonlinear fashion; namely, the carbon
cycle is similar to a high-frequency filter that atten-
uates the short-term variations in the atmospheric
radiocarbon production much more strongly than the
long-term variations. Therefore, the statistics of the
solar activity recorded in the radiocarbon record may
be seriously garbled. We can avoid such distortion by
employing the Wolf numbers reconstructed from the
radiocarbon series using some carbon-cycle model,
rather than the original 14C data.
We predict long-term solar activity based on a

reconstruction of the decade-averaged Wolf numbers
for 8005 B.C.–1945 A.D. performed by Ogurtsov [13]
using data on ∆14C for tree rings for the northwest
US [14] and a five-reservoir model of the carbon
cycle. This model was thoroughly studied by Soviet
researchers, who showed that the model adequately
describes the 14C variations for time periods exceed-
ing several decades (see, for example, [15, 16]). The
Wolf numbers were calculated from the radiocarbon
data by solving a set of integro-differential equations,
presented in [13]. The model parameters (time peri-
ods for exchanges between reservoirs and the initial
radiocarbon concentrations) were adjusted to obtain
the best agreement with the Wolf numbers detected
instrumentally.
The reconstructed Wolf (RW) numbers obtained

using this technique are presented in Fig. 1b, and
the original radiocarbon series in Fig. 1a (after re-
moval of the long-term trend). Figure 1c compares
the RW numbers with those detected instrumentally,
averaged over 11-year periods, and interpolated for
decades in 1700–1900 (before the start of anthro-
pogenic carbon emission, which strongly distorts the
atmospheric 14C concentration). We can see that
these series agree well, with the correlation coefficient
being 0.82—appreciably higher than the correlation
coefficient for theWolf numbers and the original∆14C
series, −0.62. The correlation coefficient for the RW
series and similarly averaged and interpolated num-
bers of sunspot groups [17] reaches 0.9 for 1615–
1895 (Fig. 1d).
Figure 2 shows the temporal RW series along with

other recent paleo-reconstructions of solar activity for
the last millennium.
Figure 2b shows the Wolf numbers reconstructed

by Stuiver and Quay [18] (scanned and digitized)
based on the same radiocarbon series as for our RW
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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series, but using another model for the carbon cy-
cle, Fig. 2c the reconstruction of the solar activity
performed in [19] based on data on the 10Be con-
centration in Antarctic ices, and Fig. 2d the recon-
structed Wolf numbers obtained by Nagovitsyn [20]
using the data of Schove [21], who had estimated
the periods of maxima and minima of quasi-11-year
solar cycles and the approximate Wolf numbers at the
maxima starting from 1090 (mainly using historical
accounts of auroras). Observations of sunspots with
the unaided eye carried out by Eastern astronomers
and collected by Wittmann and Xu [22] and averaged
over 45-year periods are presented in Fig. 2e. Figure 2
demonstrates that the various paleo-indicators of so-
lar activity obtained from such different sources as the
cosmogeneous isotopes stored in terrestrial archives
and historical accounts of auroras and sunspots are
generally in reasonably good agreement. The global
maxima and minima of the solar activity are fairly
clear in most of these temporal series. The correlation
coefficients between the various reconstructions are
0.52–0.80. This supports the idea that modern pale-
oastrophysics can supply us with trustworthy infor-
mation, at least about the qualitative features of the
temporal behavior of solar activity.

3. PREDICTIONS OF THE MEAN SOLAR
ACTIVITY FOR THE COMING DECADES

We used the RW series, which is the longest
reconstructed series currently available, to forecast
the mean solar activity for the coming decades. We
used the technique of Sugihara and May [23] for
nonlinear forecasting. In this method, a sequence
of d-dimensional vectors is extracted from the ini-
tial one-dimensional temporal series, xi = x(ti) (i =
1, . . . , n), using the procedure of Packard and Tak-
ens [24, 25]:

Xi = X(ti) = {x(ti), x(ti + τ), (1)

x(ti + 2τ), . . . , x(ti + (d− 1)τ)},
i = 1, . . . , (n − dτ).

This d-dimensional series X(ti) (i = 1, . . . , n) is
divided into two (usually roughly equal) portions,
namely Y (ti) = X(ti) (i = 1, . . . , n/2) and Z(ti) =
X(ti+n/2) (i = 1, . . . , n/2). The first portion forms a
“library” of trajectories of the dynamic system and
is used as a “known past” to forecast the “future”
for the second portion. For instance, if we wish to
forecast the future x(tk+p) (after p time steps) for
the point xk = x(tk) in the second portion of the se-
ries, we first determine the d-dimensional point Z(tl)
containing xk and select some nearest neighbors of
Z(tl) among the points Y (ti), then move this set
of nearest neighbors by p steps into the future, and
ASTRONOMY REPORTS Vol. 49 No. 6 2005
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Fig. 2. (a)Wolf numbers reconstructed in [18] from radio-
carbon data [14]. (b) Wolf numbers reconstructed in [19]
from radiocarbon data [14]. (c) Wolf numbers recon-
structed in [20] from the 10Be concentration in Antarctic
ices. (d) Wolf numbers reconstructed in [20] from the
data of [21]. (e) Observations of sunspots by the unaided
eye averaged over 45-year intervals (MM is the Medieval
maximum, LMM the last Medieval maximum, wm the
Wolf minimum, sm the Sperer minimum, and mm the
Maunder minimum) [22].

determine its geometric center, Yc. The corresponding
coordinate Yc is taken to be the forecast x(tk+p).
The RW series was modified for the forecasting. It

remained unchanged before 1900, but the true Wolf
numbers averaged over 11-year periods and inter-
polated over decades were used after 1900. We call
this series of 1096 points the RW1 series. To obtain
a long-term forecast for the decade-averaged solar
activity, the first 996 points of the RW1 series were
used as a database of trajectories of the dynamic
system. The number of nearest neighbors and the
parameters d and τ were selected using an empir-
ical procedure providing the minimum error for the
forecast (see [26] for details). Figure 3a presents the
forecast of the decade-averaged solar activity for the
next forty years (to 2045) obtained using the author’s
own code, while Fig. 3b shows the forecast obtained
using the TISEAN code [27].
The accuracy is relatively low, and the forecast
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Fig. 3. Predictions of the mean solar activity for the
next forty years based on the reconstructedWolf numbers
(8005 B.C.–1945 A.D.). (a) The bold solid curve with
large squares and thin solid curve with small squares
show forecasts made by the author using his own code,
for d = 3 and the five nearest neighbors and for d = 4 and
the four nearest neighbors, respectively. The thin dashed
curve with filled circles shows the forecast produced by
the TISEAN code, and the bold dashed curve with hollow
circles show the observed Wolf numbers (averaged over
11-year periods and interpolated over decades). (b) The
bold solid curve with squares shows the forecast pre-
sented in [28], the thin solid curve with triangles shows
the forecast of [29], and the bold dashed curve with hollow
circles is the same as in the upper plot.

uncertainty increases from ≈16 (2015) to almost 25
(2045). In other words, the error is appreciably
smaller than the series variance (which is 26) only
for predictions over 10–20 yrs (1–2 steps forward).
However, despite the low accuracy of the predictions
of the mean solar activity for each single point, the
net tendency for a decrease in activity in 2005–2045
is quite clear. Thus, this analysis of the RW1 series
suggests that the mean solar activity in the first half of
this century will probably be lower than it is now. The
predictions of solar activity obtained in [28, 29] using
more classical linear methods are shown in Fig. 3b.
The prediction of Nagovitsyn and Ogurtsov [28]
was obtained via multiple-scale cloning using the
series [14]. Miletskii [29] used the Wolf-number
reconstruction of [20] and employed a linear model.
Figure 3b shows that the predictions obtained in [28,
29] also indicate a decrease in solar activity during
the first half of the 21st century, though it is more
pronounced than is predicted by the present work.
Komitov and Kaftan [30] also predicted a significant
decrease in solar activity for the 21st century using
Schove’s series as a paleo-indicator.

4. CONCLUSIONS

We have analyzed a radiocarbon reconstruction of
the Wolf numbers reflecting the Sun’s behavior over
the last 10 000 yrs to predict the mean solar activity
over the next several decades. The accuracy of the
long-term forecasts is fairly low, and the calculations
showed that only predictions over a single step (ten
years) forward are reasonably accurate. Nevertheless,
the results indicate that, on average, the solar activity
in the first half of this century will be lower than it is
now. This conclusion agrees with other predictions
of [28–30], which likewise used solar paleoastro-
physics to deduce that there is likely to be a decrease
in solar activity in the first half of the 21st century.
In summary, a paleoastrophysical approach to long-
term forecasting of solar activity seems promising and
deserving of further study.
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