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Abstract—Results are presented from the simulations of discharges with fast L–H transitions in the JET toka-
mak. During a transition, electron temperature perturbations propagate into the plasma core over a time much
shorter than the transport time characteristic of this device. It is shown that the experimentally observed varia-
tions in the electron temperature may be caused by the change in the particle source intensity in the plasma
when the atomic flux decreases, which is detected from the drop in the intensity of the Dα hydrogen spectral
line. Hence, the experiments under consideration can be explained without the assumption about the nonlocal
character of transport processes in tokamaks, which was made in some papers devoted to JET experiments. The
plasma component responsible for the apparent nonlocal character of transport processes is the neutral compo-
nent, whose propagation time across the plasma column is sufficiently short (t < 100 µs). © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

To date, several types of discharges with improved
confinement (as compared to the usual discharge,
referred to as the L-mode) have been obtained in toka-
maks. The fundamental and best understood improved
confinement mode is the so-called H-mode obtained for
the first time in the ASDEX tokamak [1]. H-mode dis-
charges with different confinement qualities have been
obtained almost in all tokamaks, which differ in size,
parameters, and plasma heating methods. The H-mode
confinement mode was chosen as the basic one for the
next generation reactors: ITER and DEMO [2, 3]. A
great body of experimental and theoretical data has
been accumulated in studies of these modes and the
transition from the L- to H-mode (the L–H transition)
in tokamaks. However, available L–H transition models
still fail to explain some aspects of the problem.

One of the characteristic features of the L–H transi-
tion, by which this transition is now distinguished, is a
sudden and rapid drop in the emission intensity of the
çα (Dα) hydrogen spectral line, which is accompanied
by an increase in the plasma density. In different
regions of the plasma column, the emission intensity is
reduced to different levels. In the scrape-off layer
(SOL) and the divertor, the emission intensity drops by
a factor of 10 or more. In the plasma core, the reduction
is several times lower [4]. The reduction in the çα
emission intensity indicates the reduction in the hydro-
gen neutral flux into the plasma column. The conse-
quences of such a significant reduction in the atomic
flux have not yet been sufficiently analyzed.

The study of the dynamics of the L–H transition is
of great interest, because it can throw light on the mech-
anisms governing transport processes both at the
1063-780X/02/2801- $22.00 © 0001
plasma edge and in the core and, in particular, on the
coupling between them.

Early experiments showed that, after the L–H tran-
sition, plasma transport first decreases rather rapidly
(over a time of ~100 µs) in a narrow (~1–2 cm wide)
layer adjacent to the separatrix and, then, the region
with a decreased plasma transport extends over the
plasma core with characteristic transport times (tens to
hundreds of milliseconds) [4–6].

However, the measurements of the radial electron
temperature profile during an L–H transition in the JET
tokamak (shot no. 26021) [7] showed that the change in
Te propagated into the plasma core (down to ρ/ρmax ~
0.4–0.5) over a time of ~4–7 ms, which is much shorter
than transport times characteristic of this device. Later,
similar results were also obtained in shots in other
devices [8, 9].

Since no mechanisms were identified for such a
rapid propagation of perturbations into the plasma core
(except for the possible propagation of MHD perturba-
tions), an analysis of these experiments allowed the
authors of [10, 11] to conclude that transport processes
in tokamaks are of nonlocal character and the confine-
ment regime changes simultaneously throughout the
plasma column. At present, paper [7] and other analo-
gous papers present the experimental basis for theories
describing the nonlocal (global) character of transport
in tokamaks.

However, there does exist a plasma component that
can ensure a rapid propagation of a signal into the
plasma core. This is the plasma neutral component.

In many discharges, neutrals play a significant role
in the plasma energy balance, being responsible for
energy losses through convection and charge exchange
of the bulk plasma with the heating beams during neu-
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tral beam injection (NBI). The ionization of neutrals is
a source of cold electrons in the major part of the
plasma column. Hence, a rapid change in the neutral
flux into the plasma column (which is detected from the
reduction of the çα emission intensity during the L–H
transition) can markedly change the plasma energy bal-
ance and can result in an additional heating of the
plasma regions that are subject to the action of the neu-
tral component.

It should be noted that the time during which neu-
trals propagate toward the center of the plasma column
is very short (≤100 µs). Hence, the steady-state radial
profiles of the neutral density on the time scale of inter-
est (several milliseconds) form almost instantaneously,
and the effects associated with the change in the neutral
density also almost instantaneously extend over a major
part of the plasma column.

It is of interest to consider in detail the conse-
quences of the change in the neutral flux into the
plasma during an L–H transition and to compare them
quantitatively with experimental results.

In this paper, we present the results of detailed sim-
ulations of the JET discharge with an L–H transition
described in [7]. The model takes into consideration the
behavior of the plasma neutral component. The plasma
region where the neutral component plays a significant
role is determined. It is shown that the rapid propaga-
tion of the jump in Te into the plasma core in discharges
of this kind can be explained without recourse to the
assumption about the nonlocal character of transport
processes in tokamaks. These effects may be attributed
to the behavior of the neutral component, which is
responsible for the apparent nonlocal character of cou-
pling in view of the fairly high velocity of neutrals.

In [12], a model was proposed that adequately
describes discharges with a slow L–H transition and the
decisive role of the time evolution of the particle source
during such a transition was demonstrated. The results
of [12] can be briefly formulated as follows. As the
parameters of the SOL change during the L–H transi-
tion, the layer permeability to the hydrogen molecule
beam (which feeds the plasma with particles) increases.
As a result, the molecules reach plasma layers with a
higher temperature and the character of their dissocia-
tion changes. In the SOL plasma with a lower tempera-
ture, the molecules usually dissociate into two atoms,
whereas, in a hotter plasma, the dissociation of a mole-
cule into an atom and an ion becomes important. Since
the neutral source intensity in this case decreases by
nearly one-half, the emission intensity of the çα spec-
tral line also decreases (the ions do not contribute to the
çα emission), although the total particle source does
not change. In addition, the particle source that previ-
ously fed particles to the SOL, thus maintaining the
high plasma density there, now shifts toward the
plasma surface (into the layer of width ~1–2 cm adja-
cent to the separatrix). As a result, the density in this
region increases and pedestals form in the radial den-
sity profiles. This, in turn, leads to a decrease (in inverse
proportion to the density) in the electron heat conduc-
tivity at the plasma edge, the formation of thermal bar-
riers, and the suppression of convection due to the flat-
tening of the density profile in deeper plasma regions.
As the radial profiles vary, the process gradually prop-
agates into the plasma core. As was shown in [12, 13],
this model provides a rather good quantitative descrip-
tion of discharges with L–H transitions in the ASDEX,
DIII-D, and JET tokamaks [1, 14, 15].

In this paper, most attention is focused on the initial
phase of the H-mode immediately after the L–H transi-
tion. This phase lasts for several tens of milliseconds
and exhibits a rapid penetration of the Te perturbation
into the plasma core. In order to distinguish the effects
related to the behavior of the neutral component, the
plasma behavior immediately after the L–H transition
was simulated using the fixed transport coefficients
describing the behavior of the plasma parameters in the
L-mode before the transition. We assume that, on
longer time scales, the behavior of the plasma parame-
ters in response to a change in the transport coefficients
can be described by a model similar to that used in [12,
13] (a more detailed analysis of this problem is beyond
the scope of this paper).

In Section 2, a model used in calculations is
described. In Section 3, we present the results from the
simulations of the initial phase of the H-mode and con-
sider the role of the neutral component. In the Conclu-
sion, the results obtained are discussed and some infer-
ences are made.

2. DESCRIPTION OF THE MODEL

Simulations were performed with the 1.5D ASTRA
code [16] for calculating the 2D equilibrium of the
tokamak plasma column in the three-moment approxi-
mation, 1D transport, and the processes associated with
NBI heating.

The heat and particle transport was described by the
magnetic surface–averaged equations

(1)

(2)

(3)

where Γe = –De  + neVp , qe, i = –ne, iχe, i  +

(5/2)Γe, iTe, i , t is time, ρ is the label of the magnetic sur-

face, ne = , and Γe = .

The ionization source Sion is the sum of the sources
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plasma edge (Sia) and atoms of the heating beam (SNBI)
and the source of particles produced immediately by
dissociation of molecules (Sim):

The heat sources and sinks are written in the following
form:

where POH is the Ohmic heating power, Pe – NBI and
Pi − NBI are the powers transferred to electrons and ions
from the heating beam, Pei describes the Coulomb heat
exchange between electrons and ions, Prad is the radia-
tive loss power, and  are the electron and ion
heat sinks related to the interaction with neutrals (the
ionization loss for electrons and the charge-exchange
loss for ions).

The behavior of the neutral component was
described by the kinetic equation in the flat slab approx-
imation. This approximation seems to be quite applica-
ble to atoms arriving from the plasma periphery,
because the JET tokamak has an elongated cross sec-
tion and the plasma thickness with respect to charge
exchange and ionization is high. It will be shown below
that, in the plasma core (at ρ/ρmax < 0.4–0.5), where the
flat slab approximation may be incorrect, the particles
are mainly produced by the heating beams.

When calculating the radial neutral density profile,
we used a simplified model for the recycling of atoms
near the wall. It was assumed that the atomic flux into
the plasma consists of the fluxes of cold and warm
atoms. The cold atoms are produced via the dissocia-
tion of deuterium atoms arriving from the wall and the
gas puffing system. The warm atom flux is the sum of
the flux of fast atoms produced via molecule dissocia-
tion and the atomic flux that is formed when the atoms
and plasma ions escaping from the plasma are reflected
from the discharge chamber wall. This model is
described in more detail in [17]. The model was cali-
brated with the atomic distribution function measured
from the Doppler profile of the çβ line in the T-11 toka-
mak [18]. Calculations with allowance for recycling
gave the characteristic energies of two groups of atoms
(~1.8 eV and ~20 eV, which are close to the experimen-
tal ones) and the proportion between the populations of
these groups (1 : 0.25).

In order to more clearly demonstrate the effects
associated with the behavior of the neutral component
(neglecting possible variations in the transport coeffi-
cients), we present the results of simulations with the
use of the following model transport coefficients that
are independent of the plasma parameters and do not

Sion∑ Sia SNBI Sim.+ +=

Pe∑ POH Pe NBI– Pei– Prad– Pe n0– ,–+=

Pi∑ Pi NBI– Pei Pi n0– ,–+=

Pe i n0–,
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change during the initial phase of the L–H transition:

(4)

The radial dependence of the transport coefficients
and the normalization factor κ were chosen such that, in
the L-mode before the L–H transition, the experimental
radial profiles of the plasma parameters (in particular,
the profile Te(r)) are well reproduced by the model.
These coefficients remained fixed in the course of cal-
culations of the time evolution of the plasma parame-
ters. Such an approach should inevitably lead to a dis-
crepancy between the calculation and experiment on
the time scale comparable to the characteristic transport
time. However, it allowed us to single out the effects
related to the behavior of the neutral component at the
first several tens of milliseconds. Slower variations of
the plasma parameters were simulated in [12, 13].

The atomic influxes were chosen so as to provide a
density growth rate consistent with the experiment
under consideration.

3. SIMULATION RESULTS

In simulations, the L–H transition was initiated (in
accordance with the results of [12] and the time behav-
ior of the çα emission measured in [7]) by reducing the
flux of cold atoms into the plasma by nearly one-half
and introducing the corresponding ion source at the
plasma edge for the behavior of the average plasma
density to coincide with the experiment.

As was already noted in the Introduction, it was
shown in [12] that such a behavior of the particle source
is related to the fact that hydrogen molecules penetrate
deeper into the plasma in the H-mode and the dominant
dissociation channel is the dissociation of a molecule
into an atom and an ion, instead of two atoms as in the
L-mode, when dissociation proceeds in colder periph-
eral regions of the plasma column.

Simulations show that, within the time interval
under consideration (~10–30 ms), the radial density
profile has no time to vary significantly and the main
effects are associated with the change in the hydrogen
neutral density in the plasma column.

Figure 1 illustrates how the particle source calcu-
lated for the discharge of interest varies during the L–H
transition. The particle source consists of two compo-
nents. In the central region of the plasma column, the
particle source produced by the heating beam of fast
neutrals is dominant. As the distance from the plasma
axis increases, the intensity of this source decreases and
the source of neutrals arriving from the plasma periph-
ery becomes dominant.

Since the particle source, in essence, reflects the dis-
tribution of atoms across the plasma column, it
becomes clear from an analysis of this figure why the
effects from neutrals arriving from the plasma periph-

χe D χ i κ 1 3 r/a( )3
+( ),= = =

V p 0.25Dr/a
2
.–=
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ery are experimentally detectable during the L–H tran-
sition only for ρ/ρmax * 0.4–0.5 and are absent in
deeper plasma regions [7]. In deeper regions, the dom-
inant role is played by the source of atoms from the
heating beam SNBI , which varies only slightly.

The mean energy of the warm atom component cal-

culated by the recycling model is  ≈ 100 eV, the
energy of the cold component is ~2 eV, and the density
ratio between the warm and cold components at the

plasma edge is /  ≈ 20%.

Figure 1 also shows the curve corresponding to the
calculations of the plasma particle source related to the
ionization of neutral influxes without allowance for
recycling. This curve corresponds to a neutral energy of
2 eV, which is often used in such calculations. It can be
seen that such calculations give a substantially underes-
timated particle source intensity for the plasma core; it
is appreciable only near the edge. For this reason, such
calculations do not allow one to reveal the effect of neu-
trals at ρ/ρmax < 0.7.

Simulations show that, in this case, the main change
in the electron energy balance is due to the change in
the cold electron source related to the ionization of
atoms. The convection losses change only slightly

En0

w

n0
w

n0
c

15

10

5

0 0.2 0.4 0.6 0.8 1.0

Sion, 1019 m–3 s–1

ρ/ρmax
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Fig. 1. Results of the simulations of the ionization particle
source intensity Sion for the L- and H-modes in JET (shot
no. 26021) with allowance for the recycling of atoms
(heavy and dashed lines, respectively) and without recy-
cling (light line); SNBI is the ionization source intensity
related to the heating beam.
because the radial plasma density profile has no time to
vary. The charge exchange affects the ion component.
The heating beam losses change; however, this change
does not exceed several percent in this discharge. It
should be noted that, if the heating beam losses
changed more strongly, this might be noticed in the
central region, which is not observed experimentally.

The role of the particle source during the L–H tran-
sition can be traced by analyzing the equations for the
electron temperature and density. Substituting the den-
sity derivative from Eq. (1) into Eq. (2), we obtain the
following equation:

(5)

At early times after the L–H transition, the conduc-
tivity heat fluxes in this model do not change, because
the radial profiles are still unchanged and the transport
coefficients are constant. Among the heat sources, only
the heat source related to the ionization of atoms
changes. However, the intensity of this source is low. If
we neglect this source, then we can see that the change
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Fig. 2. Comparison of the time dependence of the electron
temperature in JET (shot no. 26021) measured from the
plasma electron cyclotron emission at different radii (solid
lines) with the calculated one (dashed lines).
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in Te is related precisely to the change in the particle
source intensity:

(6)

The final simulation results for the time interval
including the beginning of the H-mode are shown in
Fig. 2, where the time dependences of the calculated
electron temperature at different radii are compared
with those determined experimentally [7].

We see that the simulation results describe well the
experimental behavior of Te, particularly, within the
time interval of interest to us (the first several tens of
milliseconds after the L–H transition).

An increasing discrepancy at later times is a conse-
quence of the use of the model time-independent trans-
port coefficients. In the actual experiment, the radial
profiles of the plasma parameters change after the L–H
transition, which causes the transport coefficients to
change accordingly. As was shown in [12], the use of
more complicated (dependent on density and tempera-
ture) transport coefficients makes it possible to ade-
quately describe the slow variations of the plasma
parameters after the L–H transition.

4. CONCLUSION

In this paper, we have presented the results from
simulations of one of the most typical JET discharges
with a fast L–H transition [7], when the penetration of
electron temperature variations into the plasma core
(down to ρ/ρmax ~ 0.4–0.5) occurs over a time on the
order of several milliseconds, which is much shorter
than transport times characteristic of this device. Most
attention was focused on studying the effects associated
with the change in the hydrogen neutral density during
the L–H transition, which was detected from the change
in the çα emission intensity.

Simulations have shown that the change in the
growth rate of Te at ρ/ρmax * 0.4–0.5 during the L–H
transition is mainly due to the decrease in the intensity
of the cold electron source related to the ionization of
hydrogen atoms in the plasma. The charge-exchange
losses of the decelerated ions from the injected beams
also slightly decrease; however, for the given discharge,
the corresponding contribution comprises only several
percent, which is detectable only for the ion compo-
nent.

The study of the radial dependence of the particle
source intensity makes it possible to explain why the
effect is detectable only for ρ/ρmax * 0.4–0.5. In deeper
regions, the main source is related to the heating-beam
atoms; this source does not change during the L–H tran-
sition.
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When calculating the radial profiles of the atomic
density and the ionization source intensity, it is neces-
sary to take into account the recycling of atoms at the
wall, because they penetrate deeper into the plasma due
to the presence of the fast neutral component, which is
formed when the charge exchange ions and atoms are
reflected from the elements of the device construction.
As a result, the source of atoms arriving from the
plasma periphery becomes detectable against the back-
ground of the source of atoms from the heating beam in
the deeper regions of the plasma.

The results obtained allow us to conclude that the
neutral plasma component may be responsible for the
apparent nonlocal character of certain processes occur-
ring during the L–H transition (the propagation of elec-
tron temperature perturbations over a time shorter than
the characteristic particle and energy transport times).
Variations in the electron temperature immediately
after the L–H transition can be described well even with
the time-independent transport coefficients.

Finally, note that, since it is possible to explain the
mentioned JET experiments by rather simple, elemen-
tary effects, these experiments cannot be considered as
unambiguous evidence of the nonlocal character of
transport processes in tokamaks. In other similar cases,
it is necessary to perform an additional analysis with
allowance for the behavior of the neutral plasma com-
ponent. Taking into account the contribution of the neu-
tral component will allow one to more correctly esti-
mate the role of different mechanisms for the onset of
the L- and H-modes in tokamaks.
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Abstract—We propose a set of experiments with the aim of studying for the first time relativistic nonlinear
optics in the fundamental limits of single-cycle pulse duration and single-wavelength spot size. The laser sys-
tem that makes this work possible is now operating at the Center for Ultrafast Optical Science at the University
of Michigan. Its high repetition rate (1 kHz) will make it possible to perform a detailed investigation of relativ-
istic effects in this novel regime. This study has the potential to make the field of relativistic optics accessible
to a wider community and to open the door for real-world applications of relativistic optics, such as electron/ion
acceleration and neutron and positron production. © 2002 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

Over the past 15 years, we have seen a revolution in
the generation of ultraintense laser pulses [1]. Present-
day lasers can produce pulses with intensities five to six
orders of magnitude greater than those previously pos-
sible, giving access to new physical regimes. One of
these regimes is the so-called “relativistic regime,”
where the quiver energy of the electrons is equal to or
greater than their rest-mass energy [2].

As in the 1960s, when lasers opened up the field of
bound-electron nonlinear optics [3] with the demon-
stration of harmonic generation, stimulated Raman and
stimulated Brillouin scattering, optical Kerr effect, etc.,
the past decade has revealed a new class of phenomena
based on the relativistic character of the electron. This
relativistic behavior suggests the possibility of extend-
ing the field of laser optics from the eV to the
MeV/GeV regime. Let us stress in particular the gener-
ation of X-ray and γ-ray photons [4–6], as well as the
generation of energetic particle beams of electrons [7],
neutrons [8], and ions [9]. A number of theoretically
predicted relativistic effects, such as relativistic self-
focusing [10], laser wakefield acceleration (LWFA)
[11], quasistatic magnetic field generation by relativis-
tic electron beams accelerated inside self-focusing
channels [12], harmonic generation [13, 14], and non-

1 This article was submitted by the authors in English.
1063-780X/02/2801- $22.00 © 20012
linear Thomson scattering [15], were also demonstrated
experimentally, and MeV ions and γ-rays were used for
the production of nuclear reactions [16]. Until now, all
these experiments were performed with lasers deliver-
ing intensities in the relativistic regime without full
control over the duration, shape, or spot size of the laser
pulse.

The aim of this paper is to propose relativistic optics
experiments with truly table-top lasers under highly
controlled conditions. We will focus on the coherent
aspects of light–matter interaction in the relativistic
regime. This implies working with pulses consisting of
only a few optical cycles. In order to avoid beam
breakup by relativistic self-focusing, we must match
the laser input numerical aperture (NA) to the channel
NA. This condition requires that the beam be focused to
a 1-λ diameter. Only recently have we proved experi-
mentally that the following three basic conditions can
be met simultaneously [17]: (i) relativistic intensities,
(ii) pulse duration of a few optical cycles, and
(iii) focused spot size of 1 µm. These conditions are sat-
isfied by the kilohertz chirped pulse amplification
(CPA) laser developed at the Center for Ultrafast Opti-
cal Science (CUOS); this laser has the advantage of
being stable, compact, and relatively inexpensive.

Our experimental regime differs from and comple-
ments present studies where experiments are performed
with relatively long pulses (0.1–1 ps), large spot sizes
002 MAIK “Nauka/Interperiodica”
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(10 µm), and low repetition rates (<10 Hz). Our exper-
iments will address electron and ion acceleration, rela-
tivistic transparency, relativistic self-focusing, coherent
relativistic structures (such as solitons and vortices),
coherent Thomson scattering by relativistic electrons,
and neutron and positron production.

2. RELATIVISTIC EFFECTS

First of all, relativistic effects qualitatively modify
the electron dynamics in the field of the electromag-
netic wave. From the exact solution of the equations of
motion of a charged particle in a propagating planar
electromagnetic wave [18], it follows that the trans-
verse component of the generalized momentum of an
electron is constant,

, (1)

and that the energy and the longitudinal component of
the momentum are related by

(2)

It is convenient to express the laser field amplitude in
terms of the normalized vector potential a = eA/mec2,
where A is the laser-field vector potential. The value of
a can be obtained from the expression
Iλ2/a2 = 1.37 × 1018 W µm2/cm2, where I and λ are the
laser intensity and wavelength, respectively. In the ref-
erence frame where the electron was at rest before the
interaction with the laser pulse, the electron kinetic
energy K = mec2(γ – 1) and momentum p are given by
[18, 19]

(3)

Here, a⊥ (x – ct) = eA⊥ (x – ct)/mec2. We can see that, for

a > , the electron acquires a relativistic energy and
the longitudinal component of its momentum is larger
than the transverse component.

For a simple plane wave (A⊥ (x – ct) =
−(Ec/ω)cos(ωt – kx)), the force in the direction of the
laser pulse propagation can be expressed as

(4)

This expression shows two forces: one is proportional
to ∂|E |2/∂x (the ponderomotive force) and the other is
spatially oscillating with a period of λ/2. In the relativ-
istic regime, where v  ~ c, the magnetic term in the
Lorentz force (e/c)v × B becomes as important as the
electric part, eE, and the resulting force is directed
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along the propagation direction. These features are the
hallmarks of relativistic nonlinear optics.

The enormous oscillating transverse field of the
laser pulse acts on the electrons as a longitudinal,
fully rectified field. At 1019 W/cm2, this field corre-
sponds to an equivalent electric field of 60 GV/cm.
The electrons in the plasma are subjected to this large
Lorentz force and are pushed forward leaving the
massive ions behind. The associated charge separa-
tion produces an electrostatic field [11, 20] up to

Ebreak = meωpec , corresponding to the
Akhiezer–Polovin wave-break limit [2]. Here, ωpe =

 is the electron plasma frequency and γph =

1/  ≈ ω/ωpe . The accelerating field propa-
gates at the phase velocity v ph, which is equal to the

group velocity  of the driving pulse,
whereas the accelerated electrons move at v  ≈ c. The
maximum electron energy is determined by the acceler-
ating field over a walk-off distance

(5)

which is the distance over which electrons and photons
move out of phase by λp/2 = πc/ωpe . For a > 1, the
dependence of the wakefield amplitude on the driver
laser pulse amplitude should be taken into account (see
[20, 21]). Electron energies as large as 100 MeV have
been observed, corresponding to accelerating gradients
of 2 GeV/cm [11].

The distribution of the light intensity across the
beam changes the electron mass profile. In addition, the
ponderomotive force of the light causes a redistribution
of the electron density. These two effects change the
index of refraction so that it is maximum on the axis,
which leads to self-focusing. As a result, the laser beam
shrinks to a single-wavelength spot size and the laser
intensity increases accordingly. The threshold power
for the pulse self-focusing is given by Pc [GW] =
17.3(ω/ωpe)2.

Relativistic self-focusing plays an important role in
the production of high-energy electron beams inside the
self-focusing channel. Once the electrons are acceler-
ated, they can attract the ions behind them and provide
a collimated beam of ions. Proton energies up to
30 MeV have been observed, corresponding to acceler-
ating gradients of 60 GeV/cm [9], which is the highest
acceleration gradient observed to date in the laboratory.
The large ponderomotive pressure associated with self-
focusing is also at the origin of the so-called “hole bor-
ing” [22] in fast ignition [23]. The use of the ions accel-
erated by the laser pulse in order to ignite the thermo-
nuclear fuel provides a novel approach to the fast igni-
tion of fusion targets [24].

2 γph 1–( )/e

4πne
2
/me

1 v ph
2
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c 1 ωpe
2
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lacc λ p/2 v ph/c 1–( ) λ p ω/ωpe( )2
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Relativistic nonlinearities in a plasma interacting
with ultrashort high-intensity laser pulses lead to the
formation of long-lived slow-propagating coherent
structures such as solitons and magnetic vortices. These
structures are part of the complex nonlinear interaction
between the laser pulse and the plasma and represent
the basic ingredients of the long-time plasma behavior
in the wake of the laser pulse.

Solitons appear in the form of stable structures
where low-frequency electromagnetic radiation is
trapped and, together with magnetic vortices and high-
energy particles, represent an important channel of con-
version of the electromagnetic pulse energy into plasma
energy [25, 26]. In a homogeneous plasma, their prop-
agation velocity is very small; however, in an inhomo-
geneous plasma, they are accelerated against the den-
sity gradient [27] and their electromagnetic energy can
thus be extracted and detected experimentally [28].

Vortices appear in the more general context of the
generation of a quasistatic magnetic field in the plasma
[29]. Superstrong quasistatic magnetic fields in laser
plasma have been studied extensively for many years.
They are observed in laser-produced plasmas and can
affect the plasma dynamics and the laser self-focusing
[12].

To perform the experimental studies of relativistic
nonlinear optics in the fundamental limit of single-
cycle pulse duration and single-wavelength spot size,
we will use the recently developed ultrashort laser tech-
nology assembled at CUOS. With this technology, the
coherent interaction of ultrashort pulses with near-crit-
ical-density plasmas can be studied in the relativistic-
intensity regime. The duration of a 0.8-µm laser pulse
will be 5–10 fs (or 2–4 optical cycles) and the intensity
will be 2 × 1018–5 × 1019 W/cm2, which corresponds to
a2 . 1–25. The pulse will be focused to a single-wave-
length spot size in order to match it to the relativistic
channel size. The target will be made of thin metallic or
C-H films 20–50 nm in thickness. The plasma density
will be controlled by exciting the thin target prior to the
main pulse arrival by means of a properly timed auxil-
iary pulse. Experiments will be done in real time (at a
repetition rate of 0.3–1 kHz) in order to optimize the
signal-to-noise ratio. Concerning relativistic electrons,
the measurements of their energy will be carried out
with a magnetic spectrometer. In order to reconstruct
the ultrarelativistic electron spectrum, a nuclear activa-
tion technique can be used.

Coherent interaction of ultrashort pulses with plas-
mas will show (i) relativistic self-focusing, (ii) electron
and ion acceleration, (iii) coherent Thomson scattering,
(iv) relativistic transparency, (v) relativistic solitons,
(vi) relativistic electron vortices, and (vii) electron–
positron pair production.
3. THE DESIGN OF LABORATORY 
EXPERIMENTS FOR THE STUDY

OF RELATIVISTIC NONLINEAR OPTICS

3.1. Relativistic Self-Focusing: Study of the Optimal 
Coupling of the Laser in the Waveguide 

Fundamental Mode

For our laser output equal to 1 mJ in 10 fs, corre-
sponding to a power of 100 GW, relativistic self-focus-
ing occurs in plasmas with densities greater than
0.17ncr . In order to avoid the breakup of the beam into
filaments, we propose matching the numerical aperture
of the input optics to the numerical aperture of the rel-
ativistic channel. The plasma index of refraction inside
the self-focusing channel is given by n(r) =

 with γ(r) =  and

ωpÂ(r) = . An expansion of the refractive

index n(r) ≈ 1 – (r)/2γ(r)ω2 corresponds to a simple
waveguide with a quadratically varying index n(r) =
n(0) – α2r2/2, where α = (ωpe/γ)'' near the axis. From
waveguide theory, we can show that the optimum
numerical aperture for the relativistic waveguide is
given by NA = ωp0/ω, where ωp0 is the plasma fre-
quency at low intensities. For (ω/ωp0)2 ≈ 5, we have
NA ≈ 0.4, which corresponds to a waveguide diameter
of ≈λ or 0.8 µm. We can obtain this spot size by using
an f/1 parabola corrected with a deformable mirror. For
a given laser wavelength, the value of the channel
numerical aperture determines the plasma density for
the rest of the experiments.

In order to verify that this optimal coupling is indeed
obtained for these ultrashort pulses when the numerical
apertures are matched, we have performed two-dimen-
sional (2D) particle-in-cell (PIC) simulations with the
fully relativistic code described in [30]. In Fig. 1, we
show the results of the simulations of the laser plasma
matching. An underdense plasma slab with density n
equal to 0.5ncr is located in the region 10λ < x < 50λ.
The ion-to-electron mass ratio is 1836. The incident
laser pulse is linearly polarized with the magnetic field
vector parallel to the z direction and the electric field in
the (x, y) plane (p-polarized pulse). The laser pulse is
20 fs long with the wavelength equal to λ = 0.8 µm. It
is focused at the plasma–vacuum interface located at
x = 10λ. The width of the focal spot is about 1λ. Here,
the laser intensity is equal to I = 5 × 1019 W/cm2; i.e.,
a = 4.8. In this case, the optimal conditions for the
laser–plasma matching are met. Just after the focus, the
laser pulse becomes guided due to relativistic self-
focusing, as is seen in Fig. 1. Here, we show the distri-
bution of the electromagnetic energy density in the
(x, y) plane at t = 15, 30, 45, and 60 (here and below,
time is in units of the laser field period 2π/ω and coor-
dinates are in units of λ). At t = 50, the laser pulse has
already lost almost all its energy. We also see the hosing
of the laser pulse, which was discussed in [31, 32].
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Fig. 1. Distribution of the electromagnetic energy density in the (x, y) plane at t = (a) 15, (b) 30, (c) 45, and (d) 60 for the case of
the optimal matching of a high-intensity (a = 4.8) laser pulse with an underdense (n/ncr = 0.5) plasma.
The ponderomotive pressure of the light forms a
channel seen both in the electron and ion density distri-
butions shown in Figs. 2a and 2b. The laser pulse accel-
erates the electrons predominantly in the forward direc-
tion and the ions in the transverse direction. The maxi-
mum electron energy is about 12 MeV (Fig. 2c). The
ions inside the plasma are accelerated in the transverse
direction due to the nonlinear ion wave breaking up to
energies of about 0.5 MeV (see Fig. 2d).

A case of nonoptimal laser–plasma matching is
obtained by focusing the laser pulse to 5λ inside the
plasma. Just after the focus, the pulse breaks into sev-
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
eral filaments. As a result, the laser pulse energy deple-
tion is much faster than in the previous case. In addi-
tion, instead of a well-pronounced channel, several rel-
atively short and wide channels appear. This
nonoptimal regime of laser–plasma matching is shown
in Figs. 3 and 4 for the same parameters as in Figs. 1,
2a, and 2b, except for the focal position. At approxi-
mately t = 40, the pulse has lost most of its energy.

These features, observed in PIC simulations, corre-
late well with observations of a laser channel produced
in a gas jet. This experiment was performed with 400-fs
laser pulses at λ = 1 µm. A laser beam focused to a spot
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Fig. 2. Distributions of (a) the electron and (b) ion densities in the (x, y) plane and (c) electron and (d) ion kinetic energies inside
the channel vs. the x coordinate at t = 70 for the case of the optimal matching of a high-intensity (a = 4.8) laser pulse with an under-
dense (n/ncr = 0.5) plasma. The electron and ion densities are in units of ncr, and the electron and ion energies are in units of mec
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and mic
2, respectively.
size of about 10 µm with an f/3.3 parabolic mirror inter-
acted with a He gas jet with the density ne ≈ 0.08ncr .
The experimental setup was described in [33]. Figure 5
shows shadowgrams of a He plasma in the (a) defocus-
ing and (b) relativistic self-focusing and self-channel-
ing dominated regimes for a laser intensity of 6 ×
1019 W/cm2 and different distances from the nozzle top.
The increase in the distance from the nozzle top corre-
sponds to a less sharp vacuum–gas interface, which
leads to a breaking of the laser–plasma matching con-
ditions. The defocusing-dominated regime is character-
ized by the formation of a short on-axis channel and
off-axial laser filamentation. On the other hand, the
regime of relativistic self-channeling is characterized
by the trapping of a significant portion of the laser beam
into a long on-axial plasma channel, which extends to
the end of the gas jet.

3.2. Study of Electron and Ion Acceleration

3.2.1. Electron acceleration inside the self-focus-
ing channel. Past studies have all dealt with pulses
longer than 100 fs and could not differentiate between
various mechanisms for electron acceleration. It is
expected that, inside the self-focusing channel, the
wakefield will not have a regular structure due to the
transverse inhomogeneity of the plasma density and the
wakefield amplitude, which cause the transverse wave
breaking [34]. Nevertheless, fast electrons are gener-
ated inside the channel, as has been seen in experiments
and computer simulations. For example, PIC simula-
tions performed in [35] seem to indicate a fairly high
rate of electron acceleration in the regime when a wake-
field with a regular structure is not generated. The elec-
tron acceleration under such conditions can be due to a
nonlinear interplay of wakefield breaking [36], direct
laser acceleration (DLA) [35, 37], betatron-resonance
acceleration by the electromagnetic wave in an inho-
mogeneous quasistatic magnetic field generated in the
self-focusing channel [38], and hosing of the laser
pulse [39]. The advantage of using an ultrashort laser
pulse in conjunction with a thin target was also stressed
in [40], where, using PIC simulations, the electron

energy scaling I (instead of ) was shown for near-
critical-density plasmas. If we respect the NA condi-
tions found above, the light will be optimally coupled
in the waveguide fundamental mode. In this channel,
because of the shortness of the pulse, we expect that the
first electrons will be driven by DLA, as is seen in
Fig. 6, where the phase planes (x, px, e) and (x, py, e) of
the electrons accelerated by the p-polarized pulse are
presented. We can see electrons accelerated up to the
momentum px, e ≈ 40mec, which corresponds to an
energy of about 20 MeV.

The CUOS experimental arrangement will give us a
unique opportunity to resolve the time structure of the
electron beam with femtosecond resolution. We can
manipulate the electron beam immediately after the
point where it is generated by using the ponderomotive
potential of a high-intensity synchronized pulse. A
cross correlation between the electron pulse and the
laser pulse can be obtained. This cross correlation will
give us the time structure of the electron beam directly.

We conclude that, for an intensity of 5 × 1019 W/cm2,
the accelerating field can be on the order of 10 GV/cm
and an electron energy of up to 20 MeV will be obtain-
able at a high repetition rate (1 kHz).

3.2.2. Ion acceleration during the laser pulse
interaction with underdense and overdense plas-
mas. As was demonstrated in previous works [9], it is

I
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Fig. 3. Same as in Fig. 1 for nonoptimal laser–plasma matching.
expected that the charge separation between electrons
and ions will in turn accelerate the ions, thus providing
a collimated beam of MeV ions. The electron beam

cone angle 2θ is typically given by  = 2/(γ –1).
Taking advantage of the improved signal-to-noise ratio
at kilohertz repetition rates, the time-of-flight of ions
will be measured across the electron beam cone. This
study will be done as a function of intensity, laser polar-
ization, plasma density, and plasma length.

θtan
2
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In Fig. 7, we present the results of the PIC simula-
tions of the interaction of a 20-fs p-polarized laser pulse
(a = 4.8) with a slab of underdense (n/ncr = 0.5) plasma.
We can see that, at t = 200, the laser pulse has made a
channel in the electron (Fig. 7a) and ion (Fig. 7b) den-
sities. The fast ions are localized inside a narrow jet
with a length on the order of 10 µm and a width of about
1 µm. The electric field generation and the ion beam
collimation appear to be due to the self-generated mag-
netic field and its interaction with the plasma–vacuum
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Fig. 4. Same as in Figs. 2a and 2b for nonoptimal laser–plasma matching.

Fig. 5. Shadowgrams of laser interaction with a He jet target for a laser beam focused at a distance of (a) 1.5 and (b) 0.5 mm from
the top of a supersonic gas nozzle. The probe beam is orthogonal to the pump beam and is delayed by 10 ps. The high-intensity laser
beam propagates from left to right. An external plasma cone is formed due to He ionization by the spatial wings of the laser beam.
interface at the rear side of the plasma slab (see [41] for
details). The x-component of the ion momentum is
equal to 0.1mi c, which corresponds to an ion energy of
5 MeV, and the transverse component of the ion
momentum is 0.01mi c. We find that the emittance of
the ion beam is 10–4 mm rad.
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Fig. 6. Phase planes (a) (x, px, e) and (b) (x, py, e) of the electrons accelerated by a p-polarized pulse at t = 40. The electron momen-
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In order to simulate ion acceleration in an overdense
plasma, we studied the interaction of a p-polarized laser
pulse with an aluminum foil. The foil is assumed to be
fully ionized with an ion charge number equal to 13 and
atomic weight equal to 27. The foil thickness is 0.8 µm,
and the foil plasma density is n = 6.5ncr . The foil is
localized at x = 10λ and is preceded by a 5.2-µm-long
low-density plasma layer, where the density increases
exponentially from zero to the critical density on the
left-hand side boundary of the foil. A 20-fs-long laser
pulse is focused on the foil into a spot with a diameter
of 0.8 µm. At the focal spot, the pulse amplitude is a =
6.8, which corresponds to the intensity I = 1020 W/cm2.
In Fig. 8, we show the distribution of the (a) electron
and (b) ion densities in the (x, y) plane and (c) the ion
phase plane (x, px, i) at t = 200. We see that the maximum
ion energy gain is about 48 MeV.

3.3. Coherent Thomson Scattering

During the interaction of a relativistically intense
electromagnetic wave of amplitude a @ 1 with elec-
trons, the scattered light spectrum contains high har-
monics with frequencies up to ωa3 [15]. When the laser
pulse is scattered by electron bunches moving with rel-
ativistic velocities, a further frequency upshifting can
appear. In this way, the scattering of an ultrashort pulse
by electrons generated with γ up to 10 can be studied (at
I . 5 × 1019 W/cm2 if we assume that γ scales as the
intensity I). In the backscattering mode, an upshift is
expected corresponding to 4γ2ω [42]. Thus, radiation
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with a wavelength down to 0.1 nm can be produced.
The intensity of this radiation will be a function of the
electron pulse duration. For a duration longer than the
laser period (i.e., 3 fs), the scattered light will scale like
Ne, whereas for pulses shorter than the light period, a
coherent scattering is expected with a signal intensity

scaling as , where Ne is the electron density in the
electron bunch. This possibility illustrates once more
the advantage of using highly controlled pulses limited
in time to a single oscillation period and focused over
dimensions of a laser wavelength.

We will study the Thomson scattering of a counter-
propagating laser pulse by the electron beam. Because of
the small transverse size of the electron beam, the elec-
tron density will be relatively high (close to 1020 cm–3).
Probing optical pulses will be focused on the electron
beam output. The spectrum of the scattered light will be
studied as a function of the input light intensity and the
density of the accelerated electrons.

Ne
2

3.4. Relativistic Transparency

Our high-repetition-rate “relativistic” laser will
make possible a detailed study of the propagation of a
few-cycle pulses in near-critical-density plasmas. A
low-frequency wave can propagate through the plasma
if the plasma electrons do not screen the electric field of
the wave. The condition for wave propagation requires
that the convective electric current –env  be smaller
than the displacement current ∂tE/4π in the wave; i.e.,

(6)

In the nonrelativistic limit, we have v  ~ eE/meω and
the transparency condition is equivalent to ω > ωpe . In
the ultrarelativistic limit (a @ 1, v  ≈ c), we can write
that the plasma becomes transparent if ω > ωpe/ |a |1/2 [2,
43], which corresponds to the lowering of the plasma
frequency. Hence, the attenuation distance will scale as
γ1/2. This effect significantly changes the transmission

en0v
ωE
4π
--------.≤
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of a thin film with a thickness comparable to the skin
depth. A slab of plasma with a finite length l can screen
an electric field not larger than E = 4πneel. We see that,
in the case of extremely thin films with thicknesses
smaller than the skin depth, the relativistic transparency
conditions change [14]. For relativistically strong

waves with a @ 1, a film is transparent if ω > l/2ac.
This study will require a high-contrast pulse.

We will produce slightly overcritical plasmas. As in
the self-focusing study, we will change the plasma den-
sity and length by varying the film thickness and the
prepulse characteristics, such as delay time and inten-
sity. Then, we will focus on studying relativistic trans-
parency as a function of the plasma parameters (density
and length) and the input pulse characteristics (inten-
sity and polarization). The output pulse will be charac-
terized in the spectral and time domains. The time-
domain study will be done by cross correlation between
the input and output pulses.

ωpe
2
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3.5. Relativistic Solitons

Solitons are a basic ingredient of electromagnetic
plasma turbulence, and numerical simulations indicate
that they occur in the nonlinear laser plasma interaction
[26]. On the basis of the indications provided by the
numerical results on soliton formation, we will concen-
trate on subcycle low-frequency solitons [44]. In a non-
uniform plasma, the propagation of the subcycle soli-
tons is strongly affected by the inhomogeneity of the
medium. The solitons are accelerated toward the
plasma–vacuum interface, where they radiate their
energy away in the form of low-frequency electromag-
netic bursts during their nonadiabatic interaction with
the plasma boundary. These bursts can be used in order
to detect subcycle solitons.

Figure 9 presents the results of the 2D PIC simula-
tions of the laser pulse propagation in a homogeneous
plasma. The laser pulse is linearly polarized with the
electric field vector parallel to the z direction and the
magnetic field in the (x, y) plane (s-polarized pulse).
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The other parameters are the same as in Figs. 1 and 2.
Here, we show the distributions of (a) the z-component
of the electric field and the (b) electron and (c) ion den-
sities in the (x, y) plane at t = 55. The laser pulse prop-
agates inside the self-focusing channel with a diameter
about one-half of the laser wavelength. This makes the
pulse amplitude increase up to the value am ≈ 8. We can
see that the laser pulse leaves behind low-frequency
solitons. The solitons are seen as bright spots in the
electric field distribution and as bubbles in the electron
and ion densities. Rigorously speaking, when the bub-
bles in the ion density distribution appear, these struc-
tures have lost their soliton properties and are called
“postsolitons” [45, 46].

We can describe the formation of these postsolitons
as follows. Since the soliton formation time is much

shorter than the ion response time ti ≈ 2π  =

2π , ions can be assumed to be at rest during the
soliton formation. Inside a nonpropagating soliton
(subcycle soliton [44]), the maximum electromagnetic
field amax and the soliton frequency ωs are related as

amax = 2 /ωs , and the soliton width is equal to

c/ . The ponderomotive pressure of the elec-
tromagnetic field inside the soliton is balanced by the
force due to the charge-separation electric field. The
amplitude of the resulting electrostatic potential is

given by φ = . The ponderomotive pressure
displaces the electrons outward and the Coulomb repul-
sion in the electrically nonneutral ion core pushes the
ions away. The typical ion kinetic energy corresponds
to an electrostatic potential energy on the order of
mec2amax . This process is similar to the so-called “Cou-
lomb explosion” inside self-focusing channels (see
[9]). As a result, the bubbles in the ion density distribu-
tion are formed.

3.6. Relativistic Electron Vortices

In the case of a self-focused laser pulse propagating
in an underdense plasma, the fast electron beam is
strongly localized in the plane perpendicular to its
propagation direction. The separation between the fast
electron current and the return current is expected to
lead to a strongly inhomogeneous magnetic field. In a
2D model, the magnetic field is essentially dipolar; it
consists of two “ribbons” of opposite polarities and
vanishes at the axis of the fast electron beam. These two
ribbons can be seen as the intersection of the cylindrical
magnetic sheet that would be produced in a 3D config-
uration by a cylindrical laser pulse with the z = 0 plane.

A rough estimate of the magnitude of the generated
magnetic field can be obtained by observing that the
transverse size of the self-focusing channel is on the
order of the inverse collisionless electron skin depth

mi/meωpe
1–

ωpi
1–

ωpe
2 ωs

2
–

ωpe
2 ωs

2
–

1 amax
2

+

de = c/ωpe . Since the current density in the channel is
given by j ≈ –enc, we obtain for the generated magnetic
field eB/mecω ≈ ωpe/ω. For a relativistic laser pulse
(a > 1) with the wavelength 1 µm propagating in a
plasma with a near-critical density, the amplitude B of
the generated quasistatic magnetic field is extremely
large, being on the order of 100 MG or even higher. As
a consequence of the equation ∇  × B = –4πenv /c, the
quasistatic magnetic field in a plasma dominated by the
electron dynamics is associated with electron fluid vor-
tices with vorticity ∇  × v = ∆Bc/4πen. The correspond-
ing electron fluid motion takes the form of an antisym-
metric vortex row [29]. The distance between the vorti-
ces is comparable to the collisionless skin depth. The
vortex row moves as a whole in the direction of the
laser pulse propagation with a velocity much smaller
than the pulse group velocity.

Inside the vortex, the radial component of the force
due to the magnetic pressure and the centrifugal force
of the electron rotation is balanced by the force due to
the charge-separation electric field [47]. Similar to the
case of the postsolitons discussed above, the electri-
cally nonneutral core pushes the ions away and acceler-
ates them. The typical ion energy is also on the order of
mec2a.

Two-dimensional PIC simulations of the propaga-
tion of linearly polarized laser pulses in a plasma for the
same parameters as in Figs. 1–3 show the quasistatic
magnetic field generated inside the self-focusing chan-
nel. In Fig. 10, we show the distribution of the z-com-
ponent of the magnetic field in the (x, y) plane at t = 70
for (a) an s-polarized pulse and (b) a p-polarized pulse.

3.7. Pair Production

The kilohertz system is capable of producing inten-
sities in the range of 1019 W/cm2. At these intensities,
the ponderomotive potential is higher than 2mec2. This
produces conditions for the electron–positron pair gen-
eration [48]. Positrons were observed in the interaction
of a relatively long and wide high-intensity laser pulse
with matter [49]. Therefore, it is possible to produce (in
a very controlled way) electron–positron pairs, when a
single-cycle laser pulse is focused into a one-wave-
length focus spot. The trident pair production has a
cross section

(7)

where α is the fine structure constant, r0 is the classical
electron radius, Z is the nuclear charge number, and Eν
is the electron kinetic energy. For γ = 10 electrons and
an interaction volume of 10–12 cm3, we can expect to
produce as many as 104 pair/s per one relativistic elec-
tron.

This work will depend on our success in producing
electrons with 10 < γ < 50. The efficiency will depend
on the Z value of the target material. Positrons will also

σT 9.6 10
4– αr0Z( )2

Eν/2mec
2

2–( )× ,≅
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Fig. 10. Distribution of the z-component of the quasistatic magnetic field in the (x, y) plane at t = 70 for the cases of (a) an s-polarized
pulse and (b) a p-polarized pulse. The magnetic field is in units of mecω/e.
be analyzed by the time-of-flight technique. Emitted
γ-rays can be detected with our streak camera. Since we
know precisely the instant of generation, we can accu-
mulate the signal by using the streak camera in the jit-
ter-free mode to time-resolve the generation processes
on the subpicosecond time scale.

4. EXPERIMENTAL SETUP

4.1. The Ultrashort-Pulse Laser

The experimental study will be carried out using the
Ultrafast Photon Source (UPS) Laser Facility at CUOS.
The UPS is a high-repetition-rate 0.8-µm Ti : sapphire
laser based on the chirped pulse amplification (CPA)
design. It is the most powerful sub-10-fs laser and the
first kilohertz laser that can produce relativistic intensi-
ties.

The following are the features of this laser that make
it ideal for the proposed relativistic nonlinear optics
studies:

Sub-10-fs pulse. The UPS laser produces 21-fs
3-mJ pulses directly. By using a hollow-core fiber and
chirped mirror technique, these pulses are compressed
to 8 fs with ≈1 mJ energy. The measured pulse duration
is shown in Fig. 11. Work is in progress to obtain 6-fs
1-mJ pulses by optimizing the compression.

Relativistic intensity. The laser can produce
focused intensities above 1018 W/cm2 with both 21-fs
and sub-10-fs pulses. The intensity was determined by
measuring the focal spot size, pulse duration, and pulse
energy. In the case of 21-fs pulses, an intensity of >5 ×
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
1018 W/cm2 was confirmed by the observation of charge
states up to Ar13+ [50]. We believe that sub-10-fs 1-mJ
pulses will be focused to intensities above 1019 W/cm2

in the near future.

Wavelength scale focal spot. In order to generate
intensities greater than 1018 W/cm2, an f/1 paraboloid is
used to focus the beam. A deformable mirror is used to
correct the wave-front distortion from the laser system
and to precompensate the aberration caused by the
focusing optics. Figure 12 shows the image and line
graph of the focal spot. The FWHM spot size is 1.6 µm,
and 78% of the total energy is inside the 1/e2 radius.
The actual spot size will be much smaller than that
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Fig. 11. Autocorrelation trace of the 8-fs pulse.



24 MOUROU et al.
1.6 µm

250

200

150

100

50

0
–2–4 0 2 4

X, µm

I

1 µm

Fig. 12. The image and line graph of a near-diffraction-limited focal spot with a diameter of 1.6 µm.
shown. The difference is due to aberrations arising in
the microscope objective used in our imaging system.
The focal spot will match the NA of a relativistic chan-
nel, thus favoring the formation of single stable fila-
ment.

Marechal’s criterion guarantees losses at the focus
of less than 20% provided that the rms wave-front error
is less than 1/14. The most efficient way to deliver this
wave-front quality is to use a deformable mirror cou-
pled to a wave-front measurement system or a focal
intensity feedback loop. While several wave-front mea-
surement systems are available, none offers measure-
ments with a numerical aperture of 0.4 corresponding
to f/1 optics. Consequently, we will utilize a genetic
algorithm with feedback from the second harmonic
generation or from the ionization threshold in gas as a
means of optimizing the focal intensity in our laser
system.

Using such a system, we have demonstrated the rel-
ativistic intensity generation from 21-fs pulses and the
potential to focus 8-fs pulses to relativistic intensities.
In the course of obtaining these results, we have noted
that the laser system maintains sufficient stability so
that we rarely have to reoptimize the deformable mirror
settings.

In addition to the advantages of obtaining a small
focal spot and high focal intensity, the deformable mir-
ror also significantly decreases stray light that might
cause damage to areas of the target not under inves-
tigation.

4.2. The Target

In order to delve into the realm of relativistic nonlin-
earity under the new conditions of high stability, high
NA, and a high repetition rate, it will be necessary to
use a target that can be replenished within a millisec-
ond. With low-repetition-rate systems, there is no
problem in delivering pulses with intensities of 1018–
1020 W/cm2 to targets of gases, clusters, liquids, or sol-
ids. The long time between shots allows plenty of time
for target manipulation. At a 1-kHz repetition rate,
however, only experiments involving gas and cluster
targets have been performed to date. In order to work
with near-critical-density plasmas, we propose to
manipulate solid thin-film targets to obtain a new spec-
imen for each laser shot. This can only be done without
damaging neighboring material because the pulse
energy of the 1-kHz laser is in the 1-mJ range.

By using adaptive optics, we will generate a 1-µm
focal spot with a Gaussian profile. This will be directed
toward a target film 10–100 nm in thickness mounted
on a support grid. As the experiment continues, the tar-
get will be moved to bring new material into place for
the next shot. Commercial grids 2 mm in diameter with
square patterns of 12.5-µm period are available. The
5-µm Ni grid bars can absorb 150 µJ of energy without
melting and 4.7 mJ before vaporizing. With the precise
focus previously discussed, it will be possible to avoid
direct absorption of the laser radiation outside the
7.5 µm clear aperture of these cells. Then, with the
greatest portion of the laser energy being directed to the
target film, the anticipation is that the outermost perim-
eter of each cell will not melt and resolidification of any
melted grid material will occur due to radiation cool-
ing. Thus, proceeding at a 1-kHz rate, the 20000 cells
of a target grid will last 20 s. A new grid will be moved
into place while background calibrations are carried
out. This increase from single-shot to 20000-shot mea-
surements will have the effect of increasing signal-to-
noise by a factor of 150.
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Rapid registration of the target grid will be accom-
plished by using a video feedback from a full aperture
alignment laser transmitted through the target and from
a reduced aperture alignment laser monitoring diffrac-
tion from the grid. Once a target grid is registered, it
will be scanned throughout its aperture.

5. SUMMARY

It is only in the last decade that we have been able to
produce laser intensities in the relativistic regime. This
capability has placed us at the threshold of a fundamen-
tally new regime in nonlinear optics that could be as
fruitful as conventional bound-electron nonlinear
optics. A host of novel effects have been demonstrated:
the generation of X-ray and γ-ray pulses, the production
of high-energy electron and ion beams, the generation
of higher harmonics from solids, relativistic self-focus-
ing, nonlinear Thomson scattering, etc. The lasers
involved in these studies, although more compact than
their predecessors, are still very large and expensive,
with energies on the joule level, repetition rates from
0.01 to 10 Hz, and a pulse duration of ≈100 fs. Owing
to progress in short-pulse generation and the applica-
tion of deformable mirrors for beam focusing, we have
recently shown that it is possible to produce relativistic
intensities (I > 1018 W/cm2) at a 1-kHz repetition rate.
The laser pulse energy is in the millijoule range, with
sub-ten-femtosecond duration, i.e., in the single-cycle
regime. It has a one-wavelength focal spot size. This
system is truly table-top and makes the study of laser–
matter interaction in a new regime possible. The advan-
tages of operating in this new regime are the following.
First, the ultrashort time scale of a few optical cycles
will favor a coherent laser–matter interaction. It is
expected that electron acceleration in this regime will
be proportional to the laser intensity rather than the
square root of the intensity. Second, the very small spot
size, limited by the laser wavelength, will provide a nat-
ural cut-off for spatial instabilities that dominate with
larger spot sizes. We, therefore, expect, much like in a
single-mode fiber, clean propagation in the plasma and
an optimum coupling between the laser beam and the
relativistic filament. Third, because of the high repeti-
tion rate and enhanced signal-to-noise ratio, we will be
able to perform a precise study of laser–matter interac-
tion in this regime. This proposal will concentrate par-
ticularly on relativistic self-focusing, relativistic trans-
parency, laser acceleration by optical rectification in
plasma (direct laser acceleration), coherent Thomson
scattering from accelerated electrons, relativistic soli-
tary waves, relativistic electron vortices associated with
the quasistatic magnetic field generation, and positron
generation.

To perform this study, we will use the recently
developed ultrashort laser technology, assembled at
CUOS. Specifically, we will employ compressed milli-
joule pulses of a few cycles in conjunction with
deformable mirrors to reach spot sizes of one micron
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
[17, 51] to develop an accurate understanding of rela-
tivistic nonlinear optics. We aim to demonstrate that
relativistic nonlinear optics experiments can be carried
out with a true table-top laser system, which will pro-
vide an inherently superior signal-to-noise ratio.
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Abstract—The first numerical study is presented of the self-consistent potential of a dust grain in a nitrogen
plasma with a condensed disperse phase at room and cryogenic temperatures and at high gas pressures for
which the electron and ion transport in the plasma can be described in the hydrodynamic approximation. It is
shown that the potential of the dust grain is described with good accuracy by the Debye potential, in which case,
however, the screening radius turns out to be larger than the electron Debye radius. The difference between the
radii is especially large in a plasma with high ionization rates (about 1016–1018 cm–3 s–1) at room temperature.
It is found that, in a certain range of the parameters of a nitrogen dusty plasma, the parameter describing the
interaction between the grains exceeds the critical value above which one would expect the formation of
plasma–dust structures such as Coulomb crystals. For a plasma at cryogenic temperature (T = 77 K), this range
is significantly wider. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the past decade, the problems related to a dusty
(or aerosol or complex) plasma or a plasma with a con-
densed disperse phase (CDP) have attracted increased
interest in the context of fundamental physics and
purely technological applications [1, 2]. Numerical cal-
culations of a non-self-sustained discharge (an NSSD)
in nitrogen with a CDP at atmospheric pressure were
reported in paper [3], which was aimed at simulating
dust grain charging in a nitrogen dusty plasma. The
results obtained in [3] showed that the grains may
acquire a significant negative electric charge. Paper [3]
also reported preliminary results from the investigation
of the formation of ordered plasma–dust structures in
an NSSD in nitrogen with a CDP. At present, the meth-
ods of molecular dynamics are applied to simulate gas–
liquid–solid-state phase transitions in systems of parti-
cles whose interactions are described by different
potentials: the Coulomb potential [4, 5]; the Lennard-
Jones potential [4–6]; the potential that depends on the
interparticle distance according to a power law [4, 5];
and the Debye screening potential, which is also called
the Yukawa potential [7–12]. The simulations show that
the conditions for phase transitions depend sensitively
on the shape of the interaction potential. Thus, the
phase state of a system with the Coulomb potential of
interaction among the particles (as is often assumed in
the so-called single-component plasma approximation)
is determined by one parameter (the coupling parame-
ter), whereas the phase state of a system in which the
particles interact by means of the Yukawa potential is
described by two parameters—the coupling parameter
1063-780X/02/2801- $22.00 © 0028
and the structure parameter. In a nonideal dusty plasma,
the shape of the potential by means of which charged
dust grains interact is a priori unknown: it may differ
markedly from the potential of the interaction between
charged dust grains in an ideal plasma. Here, we inves-
tigate the self-consistent potential of a charged dust
grain and the possibility of the formation of ordered
plasma–dust structures in a dusty plasma created by a
fast electron beam in nitrogen at room and cryogenic
temperatures.

2. NUMERICAL MODELING OF THE DOMAIN 
OF EXISTENCE OF A COULOMB CRYSTAL

IN NITROGEN

As was noted above, the phase state of a system of
dust grains in the single-component plasma approxima-
tion is determined by one parameter, namely, the cou-
pling parameter or the Coulomb parameter of the inter-
action between charged particles [6]:

(1)

Here, e is the proton charge, q is dust grain charge in
units of the elementary charge, k is Boltzmann’s con-
stant, T is the particle temperature, the radius ad of the
Seitz–Wigner cell is equal to

(2)
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and nd is the dust density. Note that, in the literature, the
coupling parameter is also defined as the ratio of the
interaction energy to the thermal energy of the particles
that occur at the mean interparticle distance a = (nd)–1/3:

In the single-component plasma approximation, dust
crystallization occurs under the condition [6]

Γ ≥ Γc ≈ 172 or  ≥  ≈ 106. (3)

For a system of particles whose potential is described
by the Debye screening potential

(4)

where r is the distance from the particle to the point of
observation and RD is the Debye screening radius, Ikezi
[7] proposed to use the crystallization condition

(5)

where he introduced a new coupling parameter for a
Debye plasma:

(6)

In [8–12], a system of particles interacting by means
of potential (4) was simulated using the Monte Carlo
(MC) method. It was shown that the conditions for
phase transitions are determined by two (rather than
one) parameters—the coupling parameter Γs and the
structure parameter λ, which is defined as λ = a/RD . The
critical values of the coupling parameter, Γsc , above
which dust crystallization occurs were calculated in [8–
12] for different values of the structure parameter λ.
The results obtained in those papers are presented in
Fig. 1, which also shows the approximate dependence
that was proposed by Vaulina and Khrapak [13]. One
can see that, in the range of large values of the structure
parameter (λ > 8), this approximation underestimates
the parameter Γsc . For a dusty plasma created by a beam
of fast electrons in nitrogen, the values of the structure
parameter λ lie precisely in this range. That is why we
applied the least squares method to the results of [8–12]
and obtained the expression Γsc = 54/λ1.38, which
describes well the calculated dependence (Fig. 1, curve 6)
in the range λ > 1, which is most typical of experiments
with dusty plasmas.

Ordered crystalline structures of dust grains were
first observed in RF discharges [14–21]. Later, ordered
dust structures were observed in double layers [22], in
the strata of a dc glow discharge [23, 24], in a thermally
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excited plasma [25, 26], and in a nuclear-track plasma
[27, 28]. In order to determine the coupling and struc-
ture parameters, it is necessary to know the dust grain
charge, the screening radius, and the interparticle dis-
tance. The last parameter is relatively simple to find, but
it is fairly complicated to determine the dust grain
charge and Debye radius. Among the researchers
whose observations of ordered crystalline structures
were cited above, the authors of [14, 15] carried out the
most complete investigations of the dust grain charge q
and Debye screening radius RD (see also more recent
papers [29–31]). The results of these investigations
showed that the experimentally measured Debye radii
are larger than the ion Debye radii by a factor of 4 to 10
(this point will be discussed in more detail below); the
relative error in determining RD did not exceed a factor
of 2. In [29–31], the values of RD were determined only
for the series of experiments carried out in [15] at dif-
ferent pressures, but they were not determined for the
series of experiments carried out at different levels of
the supplied RF power. That is why we recalculated the
ion Debye radii presented in [15] to the electron Debye
radii, assuming that the electron and ion densities are
the same and the electron temperature is 3 eV. The elec-
tron Debye radii recalculated in this way were found to
agree well with the experimentally determined values
of the Debye radius. In Fig. 1, we show the values of the
coupling parameter that were computed from the recal-
culated Debye radii for the conditions under which the
dust structures in the liquid or crystalline phase were
observed in the experiments of [15]. The calculated
points are seen to occur mainly in the regions corre-
sponding to the observed phases. For a more precise
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Fig. 1. Dependence of the critical value of the coupling
parameter Γs on the structure parameter λ: (1, 2) the results
of [9], (3) the results of [10], (4) the results of [12], (5) the
dependence Γsc = 106/(1 + λ + λ2/2) [13], (6) the depen-

dence Γsc = 54/λ1.38, and (7–10) the experimental data of
[15] recalculated for different pressures (closed and open
circles) and different powers of an RF discharge (crosses
and pluses) (symbols 7 and 9 refer to a crystalline phase,
and symbols 8 and 10 refer to a liquid phase).
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experimental verification of the results obtained from
MC calculations of the conditions for phase transitions
on the basis of the Yukawa potential and the applicabil-
ity of these results to dusty plasmas, it is necessary to
develop more precise methods for dusty plasma diag-
nostics.

The region where a Coulomb crystal may exist in a
nitrogen plasma was simulated using the model that
was described in detail in [3, 32]. Briefly, the numerical
model is based on a finite-difference method imple-
mented on a nonuniform grid that becomes finer toward
the grain surface, the implicit Crank–Nicholson
scheme, and the matrix sweep method. The model
implies the solution of the set of one-dimensional con-
tinuity equations and Poisson’s equation in the Seitz–
Wigner cell:

(7)

Here, ne and ni are the electron and ion densities, N is
the neutral density, Q is the rate of gas ionization by an
external ionizing source, kion is the rate constant of gas
ionization by the plasma electrons, βei is the electron–
ion dissociative recombination coefficient, je and ji are
the electron and ion current densities, and E is the elec-
tric field strength. The electron and ion flux densities
are treated in the drift–diffusion approximation:

(8)

where ke and ki are the mobilities of electrons and ions
and De and Di are their diffusion coefficients. The drift–
diffusion (or hydrodynamic) approximation for trans-
port processes is valid under the condition that the elec-
tron and ion mean free paths are much shorter than the
characteristic dimension of the problem; for a nitrogen
density of about 2.7 × 1019 cm–3, this condition holds
for both ions and electrons. The electric field potential
is determined from the equation

(9)

The problem was solved with the following bound-
ary conditions at the grain surface [3]:

(10)

Here, r0 is the grain radius and λe and λi are the electron
and ion mean free paths. The correction factors γ0e and
γ0i are only weakly dependent on the ratio of the mean
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free paths to the grain radius, and, in the limit λe/r0  0
(or λ i / r0  0), they approach the Hopf constant: γ0e =
γ0i = γ0 ≈ 0.71. For our analysis, it is important to justify
the use of the boundary conditions (10), because they
were derived without allowance for the drift motion of
the plasma particles under consideration [33, 34].

Hagelaar et al. [35] showed that, in a planar prob-
lem, the boundary conditions for a plasma in contact
with the wall have the form

(11)

(12)

where Re and Ri are the reflection coefficients of the
wall surface for electrons and ions, the electron and ion
thermal velocities v th, e and v th, i are defined as v th, e(i) =

, and γ is the secondary ion–electron
emission coefficient. Conditions (11) and (12) were
written under the assumption that the coordinate of the
wall is x = x0, which is to the left of the plasma, and that
the Cartesian coordinate x is perpendicular to the wall
and points toward the plasma. It was also assumed that
the electric field is directed toward the wall (the compo-
nent Ex is negative); this indicates that the drift flux of
positive ions is directed toward the wall (as is the case
with negatively charged dust grains). In conditions (11)
and (12), the left-hand sides are hydrodynamic fluxes
and the right-hand sides are kinetic fluxes.

From these conditions, we can obtain

(13)

(14)

First, we take into account the conditions v th, e(i) @
vdrift, e(i) = ke(i)|Ex|, which are satisfied when the fields are
not too strong (the condition for the electrons coincides
with the applicability condition of the two-term
approximation for the electron energy distribution
function; for nitrogen, the two-term approximation is
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valid up to a reduced electric field of 2 × 1015 V cm2).
Second, we take into account the fact that, in a steady-
state regime, the electron and ion fluxes onto the grain
surface are equal to each other, so that the ion–electron
emission can be incorporated by simply introducing a

new reflection coefficient for the electrons:  = (γ +
Re)/(1 + γ) ≈ γ + Re . Finally, we also take into account

the expression De(i) = λe(i)v th, e(i), which holds in the

kinetic transport theory. As a result, we can simplify
conditions (13) and (14) to

(15)

(16)

Davison [33] showed that the replacement  = nr
reduces the spherical problem of particle diffusion to
the planar problem for the quantity . Consequently, in
our problem, we finally obtain from conditions (15) and
(16)

(17)

(18)

Note that the reflection coefficient for low-energy
charged particles is practically zero, in which case con-
ditions (17) and (18) differ from conditions (10) only in
that the coefficients in front of the derivatives are some-
what smaller. The boundary conditions were investi-
gated most systematically in [33, 34]; that is why, in
simulations, we used conditions (10). Notably, the
quantities γ0, e(i) depend on the ratio λe(i) /r0. Based on
the results obtained in [33, 34], we calculated the quan-
tities γ0, e(i) over a wide range of values of the ratio
λe(i) /r0; for λe(i) /r0 ≤ 1, these quantities are approxi-
mated well by the expression

(19)

When developing the theory of probes at elevated pres-
sures, Gorbunov et al. [36] used a different approxima-
tion, which describes the calculated results much worse
(note that, in [36], the expressions approximating γ0 in
the spherical and cylindrical cases were entangled with
one another). In the simulations described below, the
ratio λe(i) /r0 is smaller than 0.2, while expression (19)
implies that, even for λe(i) /r0 ≈ 0.5, the deviation of the
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quantities γ0, e(i) from the Hopf constant can be
neglected.

Now, we discuss the question of how various pro-
cesses of electron emission from the grain surface (such
as thermal emission, field emission, and ion–electron
and secondary electron emissions under the action of a
fast electron beam) affect the dust grain charge (recall
that this question was briefly analyzed in [32]). In our
simulations, these processes, which may change the
boundary conditions at the grain surface, were ignored
for the following two reasons: first, thermal and field
emissions from the “cold” grains play a negligible role,
and, second, the electric field is insufficiently strong for
the avalanche ionization of the gas (even near the grain
surface, where the electric field is the strongest), and
the secondary ion–electron emission coefficient γ is
usually on the order of 10–2 or smaller. Consequently, in
accordance with condition (17), taking into account the
ion–electron emission can change the boundary condi-
tions only slightly.

Let us discuss the process of the secondary electron
emission (SEE) under the action of the beam electrons
in more detail. Thus, the experiments of [3] were car-
ried out with a 120-keV electron beam with the current
density jb = 90 µA/cm2. The mass range of the electrons
with such an energy in nitrogen is Re ≈ 18 mg/cm2 [37],
which corresponds to the mean free path Le ≈ 14 cm at
atmospheric pressure, and, in glass–carbon com-
pounds, the mean free path is about Le, d ≈ 90 µm. In [3],
spherical glass–carbon grains with a mean diameter of
24 µm were used.

The SEE coefficient σ depends on the properties and
structure of both the grain surface and grain material,
the energy of the incident electrons, and the angle of
incidence. For conventional materials (in particular, for
glass–carbon compounds), the coefficient σ reaches its
maximum value (on the order of unity) at electron ener-
gies of about several hundred electronvolts [37]. For
higher electron energies, the coefficient σ gradually
decreases. Under the condition Le, d > 2r0, the beam
electrons with higher energies may knock the second-
ary electrons out of the grain surface opposite to that on
which they are incident. However, for conventional
materials, the SEE coefficient associated with such a
“shooting-through” effect of the beam is also smaller
than unity [37]. The smallness of the SEE coefficient is
associated with the short mean free path of the second-
ary electrons created within the grain: only the elec-
trons that are produced in a thin surface layer can
escape from the grain. For estimates, we set σ = 1.
Then, the flux of the secondary electrons from the grain
surface under the action of a fast electron beam with
current density jb is described by the expression

(20)Jee
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Table 1.  Parameters for approximating the potential of a dust grain with the radius r0 = 12 µm for different ionization rates
in a dusty nitrogen plasma with the neutral density N = 2.5 × 1019 cm–3 and dust density nd = 105 cm–3 at room temperature
(í = Ti = Te = 300 K)

Q, cm–3 s–1 1.5 × 1012 1.5 × 1013 1.5 × 1014 1.5 × 1015 1.5 × 1016 1.5 × 1017 7.5 × 1017

RD, µm 28.728 14.976 8.264 4.639 2.609 1.467 0.981

RD, e 40.458 21.092 11.638 6.533 3.674 2.066 1.382

RD, a 40.247 29.942 19.701 12.247 7.570 4.814 3.705

qcal –3351.927 –4328.708 –5961.526 –9220.038 –15495.92 –25351.38 –34088.65

q1 –4432.554 –5981.463 –9437.905 –19788.97 –56167.31 –172939.3 –308065.8

q2 –4600.606 –6375.184 –10785.03 –26627.10 –106031.7 –598937.3 –1853496

RD, a short 61.504 43.465 28.709 18.891 12.437 7.66 5.147

q1, short –3404.71 –4439.58 –6251.96 –10 087 –18267.1 –34466.4 –54224.1

Table 2.  Parameters for approximating the potential of a dust grain with the radius r0 = 12 µm for different ionization rates
in a dusty nitrogen plasma with the neutral density N = 2.5 × 1019 cm–3 and dust density nd = 105 cm–3 at cryogenic temperature
(í = Ti = Te = 77 K)

Q, cm–3 s–1 1.5 × 1012 1.5 × 1013 1.5 × 1014 1.5 × 1015 1.5 × 1016 1.5 × 1017 7.5 × 1017

RD, µm 15.525 8.563 4.805 2.702 1.519 0.854 0.571

RD, e 21.956 12.109 6.795 3.821 2.149 1.208 0.808

RD, a 17.813 12.011 7.249 4.34 2.579 1.614 1.028

qcal –3391.431 –6035.777 –11519.84 –20830.43 –33428.32 –49930.00 –64624.17

q1 –31055.76 –153166.4 –2221586 –4.585 × 107 –5.163 × 108 –4.926 × 109 –6.44 × 1011

q2 –36394.98 –208078.8 –4379966 –1.934 ×108 –9.578 × 109 –9.91 × 1011 –5.94 × 1015

RD, a short 59.147 45.855 36.075 27.603 19.591 15.894 11.939

q1, short –3431.37 –6144.80 –11829.57 –21686.37 –35735.77 –49958.70 –64659.30
In [3], it was noted that, in a steady state, the ion flux
(as well as the electron flux) onto the grain surface is
nearly equal to the Langevin flux:

(21)

Now, from expressions (20) and (21), we can determine
the dust grain charge at which the SEE current becomes
equal to the ion current:

(22)

Let us estimate the charge of dust grains of radius
12 µm for the beam current density jb = 90 µA/cm2 (at
a gas density under normal conditions, equal to 2.687 ×
1019 cm–3, this corresponds to the gas ionization rate
Q = 1.5 × 1017 cm–3 s–1 [38]). A nitrogen plasma at

atmospheric pressure is dominated by  ions, whose
mobility at room temperature is equal to 2.3 cm2/V s
[39]. Then, taking into account the relationship σ = 1,
we find that, for Q = 1.5 × 1017 cm–3 s–1, the critical
grain charge is about qe ≈ 1850. The results of numeri-
cal modeling described below (see Tables 1, 2) show
that, at such a high ionization rate, the grain charge is
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one order of magnitude larger than the estimate that we
have just obtained. Hence, we can conclude that, with
allowance for dependence (22) of the grain charge qe on
the ionization rate, the SEE can be ignored in our anal-
ysis.

The fluxes through the right boundary of the ele-
mentary cell were set equal to zero. The condition for
the cell to be electrically neutral implies that the electric
field at the cell boundary should vanish:

(23)

In order to calculate the coupling parameter of the
Debye plasma, it is necessary to know the Debye
screening radius. Recall that the Debye potential is
introduced as a solution to Poisson’s equation with the
Boltzmann distributions of the ion and electron densi-
ties under the assumption that the coupling parameter is
small. However, in a dusty plasma, the coupling param-
eter is not small and, in addition, the electron and ion
distributions are thermodynamically nonequilibrium,
because electron and ion fluxes onto the dust grains are
not counterbalanced by the electron and ion fluxes
emitted from the grain surfaces. From the probe theory
[40–42], it is well known that, when the negative poten-
tial of the probes is sufficiently high in absolute value,

je r ad= 0, ji r ad= 0, E r ad= 0.= = =
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the electron density is approximately described by the
Boltzmann distribution; on the other hand, the density
of the positive ions, which are attracted by the negative
charge of a dust grain, does not obey a Boltzmann dis-
tribution even approximately.1 That is why, for a dusty
plasma, the so-called Poisson–Boltzmann equation
(i.e., Poisson’s equation with Boltzmann distributions
for electrons and ions), which is widely applied in the
literature, is, in our opinion, physically unjustified. The
question of whether the Debye potential with the
screening radius derived from the theory of an ideal
plasma can be used to describe a strongly nonideal sys-
tem also requires justification. This question has
already been discussed in the literature (see, e.g., [1,
43]). Another question to be addressed is whether or not
the dust component takes part in the screening of the
dust grain charge. Tsytovich [1] arrived at the following
conclusion: if there are many dust grains inside the
Debye sphere, then the dust component affects the
screening processes and the plasma Debye radius
should be described by the expression

(24)

where RD, e , RD, i, and RD, d are the Debye radii of the
electron, ion, and dust components, respectively. How-
ever, under laboratory conditions, there is less than one
dust grain inside a Debye sphere, so that the dust cannot
be regarded as a plasma component and the Debye
radius in such a plasma should be determined by the
plasma electrons and ions.

Under discharge conditions, the electron tempera-
ture Te is much higher than the ion temperature Ti (Te @
Ti); consequently, it seems likely that the Debye radius
should be determined by the ion component [7]. In con-
trast, Thomas et al. [16] assumed that RD ≈ RD, e. This
assumption was based on the fact that, according to
Bohm’s theory, the ions in an RF discharge enter the
space-charge electrode sheath (where ne ! ni) with an
energy of about the electron thermal energy.2 As a
result, the authors of [16] concluded that the ion tem-
perature should be comparable to the electron tempera-
ture, in which case RD ≈ RD, e. In our opinion, this con-
clusion is erroneous, because the energy with which the
ions enter the sheath is associated with the directed
(rather than thermal) ion motion. It is precisely the ther-
mal motion of electrons and ions that ensures the
screening of the dust grain charges in dusty plasmas.

In [29, 30, 44–46], different experimental methods
were used to determine the Debye screening radius in
RF discharges in He at the pressures p = 1–100 Pa [29]
and p = 22 Pa [30], in Kr at the pressures p = 7–40 Pa
[44], and in Ar at the pressures p = 2–3 Pa [45] and p =

1 For positively charged dust grains, the situation is opposite.
2 The condition for the sheath to be stable implies that the ion

energy at the entrance to the sheath should be higher than 1/2kTe
[40].
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2.7 Pa [46]. The most reliable results on the Debye
radius were obtained by Konopka et al. [46], who
experimentally measured the potential of the interac-
tion between the grains in the range from about RD to
about 3RD and then calculated the Debye radius by
adjusting the theoretical dependence (4) to fit the exper-
imental points. They established that the experimen-
tally measured interaction potential is described by
expression (4) with an accuracy of 10–20%. Estimates
showed that the Debye screening radii measured in the
experiments of [29, 30, 44–46] were an order of magni-
tude larger than the ion Debye radius; consequently, we
can conclude that the Debye screening radius is most
likely determined by the electron component.

The nature of the screening of the electric field of a
highly charged macroparticle in a colloidal plasma was
investigated numerically by Bystrenko and Zagorodny
[47]. They simulated the behavior of the grain potential
by solving the Poisson–Boltzmann equation and by
MC calculation of the evolution of an ensemble of
charged particles in the electric field of a grain. They
established that the results from the investigation of the
radial charge distribution by solving the Poisson–Bolt-
zmann equation agree fairly well with the MC simula-
tion results. They found that the grain potential deter-
mined from the solution to the Poisson–Boltzmann
equation differs markedly from that predicted by the
Debye–Hückel theory; moreover, the smaller the grain,
the larger is the discrepancy. Bystrenko and Zagorodny
[48] investigated the question of how the effects that
they revealed in [47] influence the conditions for phase
transitions in a colloidal plasma.

However, the results of [47, 48] were obtained with-
out allowance for the electron and ion absorption by
dust grains (in that case, the plasma is thermodynami-
cally equilibrium and, accordingly, the ions and elec-
trons obey Boltzmann distributions) and, hence, are
inapplicable to a dusty plasma. In simulating the behav-
ior of a dusty plasma, Lapenta [49, 50] showed that the
calculated grain potential can be approximately
described by the Debye potential, whose screening
radius does not differ appreciably from the electron
Debye radius. When investigating NSSDs in helium at
atmospheric pressure, Ivanov et al. [51] numerically
calculated the dust grain potential using a model that
differs from our model only in a few details. They
found that the screening radius obtained from the
Yukawa potential, which is the best approximation for
the calculated potential, differs markedly from the
Debye radius calculated from the plasma parameters.
Moreover, the screening radius obtained by approxi-
mating the calculated potential by the Yukawa potential
was found to be even larger than the electron Debye
radius.

Here, we present the results of calculations of the
radial profile of the dust grain potential in a dusty nitrogen
plasma at room (T = 300 K) and cryogenic (T = 77 K)
temperatures. The rate of gas ionization by a fast elec-
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Fig. 2. Radial profiles of the calculated and approximate potentials of a dust grain with the radius r0 = 12 µm in a homogeneous

nitrogen plasma with the dust density nd = 105 cm–3 at (a) room and (b) cryogenic temperatures for Q = (1) 1.5 × 1012, (2) 1.5 ×
1014, (3) 1.5 × 1015, (4) 1.5 × 1016, (5) 1.5 × 1017, and (6) 7.5 × 1017 cm–3 s–1. The curves with symbols are calculated results, and
the dashed curves are approximations by the Debye potential.
tron beam was varied in the range 1.5 × 1012–7.5 ×
1017 cm–3 s–1, the dust density was 103–107 cm–3, the
grain radius was 6–50 µm, and the gas density was set
equal to the density under normal conditions. The cal-
culations were carried out on the reference and auxil-
iary grids described by the expressions

where M is the number of mesh points on the reference
grid, hk = (1 + α)kh, h = α(ad – r0)/{(1 + α)M – 1 – 1}, and
the parameter α describes the extent to which the grids

rk 0= r0, rk 1+ rk hk, rk M=+ ad,= = =

rk 1/2+ rk 1+ rk+( )/2,=
are nonuniform (for α = 0, we deal with uniform grids
with a regular spacing h). For T = 300 K, most of the
calculations were carried out at M = 61 and α = 0.05.
For T = 77 K, the calculations were mostly performed
at M = 201 and α = 0.05, because, at cryogenic temper-
ature, the electron mobility is high and the electron dif-
fusion coefficient is large. In test calculations, we
increased the number of mesh points up to 1001 and
varied the parameter α from 0 to 0.1. Figure 2 shows
the potentials calculated for grains with the radius r0 =
12 µm at the dust density nd = 105 cm–3. At low ioniza-
tion rates, the grain potential is seen to decrease far
more gradually than at high ionization rates. At a high
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
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ionization rate of the gas at cryogenic temperature, the
potential drops especially sharply. Figure 2 also shows
the curves obtained by applying the least squares
method to approximate the grain potential by expres-
sion (4) at points lying at moderate and large distances
from the grain, except for several points closest to the
boundary of the Seitz–Wigner cell. From Fig. 2, we can
see that, for the given dust density, the potentials calcu-
lated at the distances r = 30–100 µm from the grain are
approximated well by the Debye potential. As the
boundary of the Seitz–Wigner cell is approached, the
deviation of the calculated potential from the Debye
potential increases because the boundary condition (23)
requires that the cell be quasineutral. When solving the
Poisson–Boltzmann equation for the Seitz–Wigner cell
in a colloidal plasma, Alexander et al. [52] proposed to
ensure plasma quasineutrality in the cell by approxi-
mating the numerical solution for the potential by the
expression

(25)

where A, B, and D are constants and the Debye radius
RD is governed by the ions of a colloidal plasma. In the
Debye–Hückel theory, potential (25) is the solution to
the linearized Poisson–Boltzmann equation in a spher-

ϕ A
r
--- r/RD–( )exp

B
r
--- r/RD( )exp D,+ +=
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ical cell of finite radius. Note, however, that, since this
approach makes it possible to improve the potential
only at distances on the order of the Debye length from
the grain, it cannot be used in the case under discussion,
in which the Debye radius is appreciably smaller than
the radius of an elementary cell.

In Fig. 3, we compare the radial profiles of the ion
and electron densities with the Boltzmann distribu-
tions. One can see that, near the dust grain, the ion den-
sity profile differs radically from the Boltzmann distri-
bution, while the electron density profile qualitatively
follows it (especially at low ionization rates of the gas).
This behavior of the profiles stems from the following
circumstances. In the region near the grain where the
plasma is nonquasineutral, both the drift component
(which is the main component over most of the cell vol-
ume) and the diffusive component of the current of pos-
itive ions are directed toward the grain and are not
counterbalanced. That is why the ion plasma compo-
nent is strongly nonequilibrium and, as a consequence,
the ion density profile ni(r) cannot be described by the
Boltzmann distribution. On the other hand, the drift and
diffusive components of the electron current are oppo-
sitely directed and almost completely counterbalance
one another. From Fig. 3, we can see that the condition
∇ ne @ ∇ ni fails to hold only in a narrow layer close to
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the grain surface. Consequently, in the first approxima-
tion, the term that accounts for the diffusive ion current
can be discarded. Then, using the condition that the
total electron and ion current in the steady state be zero
and neglecting the radial variation of the ion density, we
can obtain

(26)

where ne0 = ni0 =  are the electron and ion den-
sities in a plasma that is not perturbed by the dust com-
ponent. The last of the approximate equalities (26) was
obtained using the condition ke @ ki and the Einstein
relationship

(27)

As follows from Fig. 3, the condition ni(r) ≈ const is
better satisfied at low rates of gas ionization; conse-
quently, it is at low ionization rates that the electron
density distribution is better described by the Boltz-
mann expression (26). Figure 3 also shows the electron
and ion density profiles calculated from the probe the-
ory for Q = 1.5 × 1012 cm–3 s–1 [40]. We can see that,
first, the electron density profile nearly coincides with
the Boltzmann distribution and, second, although the
ion density profile is closer to the calculated profile than
the Boltzmann distribution, it still remains markedly
different from the calculated one.

Tables 1 and 2 list the parameters for approximating
the potential of a dust grain with the radius r0 = 12 µm
in a dusty nitrogen plasma with the neutral density N =
2.5 × 1019 cm–3 and dust density nd = 105 cm–3 at room
and cryogenic temperatures. The effective dust grain
charge can be determined from the above approximate
expression for the potential, or from the requirement
that the electric field at the grain surface should coin-
cide with the Coulomb field of a grain with an effective
charge q1, or from the condition that the potential be
completely described by expression (4). In the first
case, we are dealing with the Derjaguin–Landau–Ver-
wey–Overbeek (DLVO) potential, which incorporates
the finite sizes of the grains [47]:

(28)

where RD, a is the approximate Debye radius. The elec-
tric field is described by the expression

(29)
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In expression (4), the effective charge q1 and the
approximate charge (which will be denoted below by
q2) are related by

; (30)

under the condition r0 ! RD, a, they nearly coincide.

Note that it is the squared approximate charge  that
enters the expression for the coupling parameter Γs.

For comparison, Tables 1 and 2 present the values of
the plasma Debye radius and electron Debye radius cal-
culated from the classical expressions

(31)

From Tables 1 and 2, one can see that, at low rates of
gas ionization, the approximate screening radius RD, a
nearly coincides with the electron Debye radius and, as
the ionization rate increases at room temperature, the
approximate radius departs increasingly from the elec-
tron Debye radius in such a way that RD, a > RD, e. When
the gas is ionized by an external source at the rate Q =
1.5 × 1012 cm–3 s–1, the electron and ion densities far
from the dust grain are about 109 cm–3. In experiments
on determining the Debye radius [29, 30, 44–46], the
densities of charged particles were lower than or equal
to this. Presumably, it is for this reason that, in those
experiments, the measured Debye screening radii coin-
cided with the electron Debye radii (however, we can-
not speak of exact coincidence, because either the
Debye radius itself or the electron density and temper-
ature were measured with low accuracy).

The approximation of the data listed in Tables 1 and 2
by simple expressions showed that the dependence of
the Debye radius RD, a and the calculated grain charge
qcal on the ionization rate is described with good accu-
racy by the relationships

(32)

(33)

where RD, a is in cm and Q is in cm–3 s–1. Note that,
according to expressions (33), the dust grain charge at
low ionization rates approaches the value predicted by
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a simplified theory of grain charging [53] at low dust
density:

. (34)

At cryogenic temperature (T = 77 K), we have ki =
1.9 V cm2/s and ke = 51850 V cm2/s, so that q0 = –565; at
room temperature (T = 300 K), we have ki = 2.3 V cm2/s
and ke = 16280 V cm2/s, so that q0 = –1910. It is of
interest to note that, at room and cryogenic tempera-
tures, the dust grain charges as functions of the ioniza-
tion rate obey the same power law.

A comparison between the grain charges in Tables 1
and 2 that were calculated numerically and were
approximated from the potential at moderate and large
distances from the grain shows that the effective and
approximate charges are both larger than the calculated
charge, q1 > qcal and q2 > qcal (according to Fig. 2, the
approximate potential at r = r0 is higher than the calcu-
lated one). Such a value of the effective charge of a dust
grain cannot be explained in terms of an ion cloud
around the grain (in this case, the effective charge
would be smaller than the real charge). Approximating
the potential from the data obtained at short distances
from the grain (r = 12–20 µm) showed that, in accor-
dance with Tables 1 and 2, the approximate charge
q1, short nearly coincides with the calculated charge
(especially at low ionization rates) and the Debye
radius is appreciably larger than that approximated
from the points lying at moderate distances from the
grain.

The dependence of the coupling parameter on the
gas ionization rate for a dusty nitrogen plasma at room
temperature is illustrated in Fig. 4a, which shows that
the approximations of the potential from the data calcu-
lated at both short and long distances from the grain
lead to nearly the same behavior of the coupling param-
eter as the gas ionization rate changes. That is why, in
what follows, we will determine the coupling parame-
ter Γs at T = 300 K by using the parameters for approx-
imating the grain potential from the data obtained over
the entire Seitz–Wigner cell. On the other hand, at T =
77 K (Fig. 4b), the approximations from the data
obtained at short and long distances from the grain lead
to radically different values of Γs. This difference stems
from the fact that, at cryogenic temperature, the grain
potential exhibits a more complicated behavior (Fig. 2).
From Fig. 4b, we can see that, at T = 77 K, the Γs values
approximated from the data obtained at short distances
from the grain are larger than Γsc for ionization rates up
to Q ~ 1017 cm–3 s–1; in contrast, at T = 300 K, we have
Γs > Γsc for ionization rates up to Q ≈ 3 × 1014 cm–3 s–1.
Hence, we can conclude that, at cryogenic temperature,
the parameter range in which the ordered dust-grain
structures can exist at dust densities higher than 105 cm–3

will be significantly wider in comparison with that at

q0

kTer0

e
2

------------- 1
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 ln–=
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room temperature. On the other hand, according to the
approximations from the data obtained at moderate and
long distances from the grain, the parameter range over
which the crystallization condition Γs ≥ Γsc is satisfied
at room temperature turns out to be only slightly wider
than that at cryogenic temperature.

Figure 5 illustrates the coupling parameter calcu-
lated as a function of the structure parameter at r0 =
12 µm for a dusty nitrogen plasma at room temperature.
In Fig. 5, we also show the range of plasma parameters
where ordered plasma–dust structures such as Coulomb
crystals are expected to form. It is seen in Figs. 4 and 5
that there exists a range of dusty plasma parameters in
which the coupling parameter Γs substantially exceeds
its critical value Γsc .

Figure 5 also shows that, as the gas ionization rate
increases at a fixed dust density, the coupling parameter
Γs goes through a maximum. Such behavior is associ-
ated with the fact that, at low ionization rates, the dust

grains acquire a small charge, so that the values of Γ̃

104

102

100

10–2

10–4

10–6

10–8

1012 1014 1016 1018

1
2
3
4

(b)

Q, cm–3s–1

102

100

10–2

10–4

10–6

10–8

(a)

1
2
3
4

Γs

Fig. 4. Dependence of the coupling parameter on the gas
ionization rate in a dusty nitrogen plasma at (a) room and
(b) cryogenic temperatures for r0 = 12 µm and nd = 105 cm–3.
The critical values Γsc (curves 1, 3) and the coupling param-
eter (curves 2, 4) are calculated from the parameters for
approximating the potential at short (curves 1, 2) and long
(curves 3, 4) distances from the grain.
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and, accordingly, Γs are both small. As Q grows, 
increases, in which case Γs also increases, although the
Debye radius decreases, which leads to an increase in
the structure parameter and a decrease in the exponen-
tial factor in formula (6). As Q grows further, an

increase in , which is associated with an increase in
the grain charge, becomes insufficient to cancel out a
decrease in the exponential factor, so that the coupling
parameter Γs starts decreasing. Note that, as the dust
density increases at a constant ionization rate, the cou-
pling parameter exhibits an interesting behavior: it also
goes through a maximum. Such behavior can be
explained as follows. At low dust densities, the grain
charge is practically independent of nd . An increase in
nd leads to a reduction in the interparticle distance and,
accordingly, in the structure parameter:

This indicates that Γs increases with nd. For high dust
densities, the simplified theory of grain charging [53]
predicts the following dependence of the dust grain
charge on the parameters of the dusty plasma: q ∝

. In this case, we obtain  ∝  and Γs ∝

exp(– ). Hence, taking into account the
smallness of the structure parameter, we see that, at
high dust densities, the coupling parameter Γs is a
decreasing function of nd.
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Fig. 5. Dependence of the coupling parameter on the struc-
ture parameter in a dusty nitrogen plasma containing dust
grains with the radius r0 = 12 µm at room temperature for

nd = (1) 2 × 105, (2) 5 × 105, (3) 2 × 106, and (4) 5 × 106 cm–3.

Curve 5 shows the dependence Γsc = 54/λ1.38. The dotted
curves are the contour lines of the ionization rate Q = (I–VI)
1.5 × (1012–1017) and (VII) 7.5 × 1017 cm–3 s–1.
3. CONCLUSIONS
The results of our study can be summarized as fol-

lows.
(i) The self-consistent potential of a dust grain can

be approximated with reasonable accuracy by the
Debye potential. At low gas ionization rates, the Debye
screening radius RD, a practically coincides with the
electron Debye radius RD, e . At higher ionization rates,
the radius RD, a becomes significantly larger than RD, e.

(ii) At low ionization rates, the electron density
closely obeys a Boltzmann distribution. As the ioniza-
tion rate increases, the radial electron density profile
progressively deviates from the Boltzmann distribu-
tion. On the other hand, the Boltzmann distribution
cannot be used for ions, even as a rough approximation.

(iii) For a homogeneous nitrogen plasma ionized by
an external source, there exists a parameter range in
which an ensemble of dust grains is expected to pass
over to a crystalline phase.

(iv) The plasma parameter range in which Coulomb
crystals of dust grains can exist at cryogenic tempera-
ture (T = 77 K) may turn out to be much wider than that
at room temperature (T = 300 K).
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Abstract—Results are presented from two-dimensional gas-dynamic simulations of plasma acceleration in the
channel of a pulsed electrodynamic accelerator. The electrical conductivity of the plasma is assumed to be infi-
nite and its thermal conductivity is neglected. The effect of the initial plasma density distribution on the accel-
eration efficiency is investigated. It is shown that the acceleration efficiency can be as high as ~40%, the accel-
eration length being one order of magnitude larger than the width of the initial gas density distribution. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Pulsed electrodynamic accelerators [1–3] are capa-
ble of producing plasmoids with an energy of about
100 kJ and a directed stream velocity of up to 108 cm/s.
An accelerator of this type consists of two coaxial metal
electrodes connected to a capacitor bank. The interelec-
trode gap is filled with a working gas. Pulsed electrody-
namic accelerators can be divided into two classes
depending on the manner in which the working gas is
admitted into the interelectrode gap: systems in which
the gap is entirely filled with the gas and systems in
which the gas is localized near the entrance holes. The
discharge of a bank of capacitors initiates an electrical
breakdown of the gas and causes the formation of a cur-
rent sheet, in which the plasma is accelerated by the
gradient of the magnetic field pressure. Since, in vac-
uum, the magnetic field strength is inversely propor-
tional to the radius, B ∝ 1/r, the magnetic field pressure
and, accordingly, the plasma motion velocity are higher
near the internal electrode. As a result, the current sheet
becomes inclined to the electrodes, leading to a radial
redistribution of the plasma mass. Nevertheless, for the
initial plasma density distribution with a half-width of
10 cm in a 160-cm-long accelerator with conical elec-
trodes (the external electrode is between 80 and 30 cm
in diameter, and the interelectrode distance increases
from 3.6 to 7.2 cm), the plasma shell between the elec-
trodes remains continuous and the acceleration effi-
ciency is about 20% [3]. Stable acceleration is achieved
by the use of so-called compact toroids [4] and is
ensured by an additional poloidal magnetic field, which
is frozen in the plasma of the forming toroid. However,
such systems are not considered in our paper.

In electrodynamic models in which the plasma is
regarded as an electrically conducting shell with a
localized mass and in one-dimensional models
1063-780X/02/2801- $22.00 © 20040
reviewed by Kalmykov [1], the radial redistribution of
the plasma mass in the accelerator channel is neglected.
The dynamics of a plasma uniformly filling a ring-
shaped channel of constant radius was considered in
two-dimensional numerical studies of the plasma focus
[5, 6] (Maxon and Eddleman [6] asserted that the
results obtained by Potter [5] are erroneous). In those
papers, the analysis was carried out with allowance for
the finite electrical conductivity, thermal conductivity,
and the temperature difference between the electrons
and ions. The total current flowing through the plasma
was determined by solving the electric-circuit equation.
However, the acceleration efficiency, as well as the ini-
tial plasma density distributions of finite width that
make it possible to achieve higher plasma stream veloc-
ities at a higher efficiency, was not studied.

The goal of our paper is to investigate the accelera-
tion efficiency in systems filled entirely or locally with
a plasma. We use a simplified model in which the
plasma is completely ionized and perfectly conducting,
the plasma thermal conductivity is neglected, and the
total current through the accelerator is constant in time.
This model corresponds to a sufficiently high plasma
density, n > 1016 cm–3, at which the current sheet is
opaque to the gas and a shock wave (SW) forms [1]. We
study how the plasma dynamics is affected by the initial
plasma density distribution and the accelerator dimen-
sions. We also investigate the possibility of plasma
acceleration over a distance one order of magnitude
larger than the width of the initial gas density distribu-
tion.

2. METHOD FOR NUMERICAL SOLUTION

We treat the problem in the gas-dynamic approxi-
mation, assuming that the specific plasma resistivity is
zero and neglecting plasma thermal conductivity, ion-
002 MAIK “Nauka/Interperiodica”
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ization kinetics, and the effects associated with differ-
ent electron and ion velocities. We solve the following
set of equations:

where ρ is the density, v is the velocity, B is the mag-
netic field, p is the pressure, and ε is the specific internal
energy. We use the equation of state for an ideal gas, p =
(γ – 1)ρε, with the adiabatic index γ = 5/3. The set of
equations is written in dimensionless form. The main
dimensional units are taken to be those of length, den-
sity, and magnetic field. The problem is assumed to be
axisymmetric (∂/∂ϕ = 0) and is treated in two-dimen-
sional geometry. The magnetic field inside the plasma
is absent because of the infinite electrical conductivity
of the plasma. Outside the plasma, the magnetic field
B = (0, 0, Bϕ) is created by the currents flowing along
the plasma surface and in the electrodes. The plasma
surface is a contact boundary (CB) between the plasma
and vacuum. The absorption of the plasma by the elec-
trodes is neglected, and the velocity vector component
perpendicular to the electrode surfaces is set equal to
zero.

The Eulerian approach allows us to calculate highly
deformed plasma streams, which cannot be calculated
by regular Lagrangian methods without readjustment
of the numerical grid. For this reason, the basic set of
equations is solved on a fixed rectangular grid. The val-
ues of the density, pressure, specific internal energy,
and magnetic field refer to the centers of the cells of the
difference grid, while the values of the velocity vector
components refer to the centers of the cell boundaries.
The vacuum regions are explicitly distinguished by the
volume density method [7]. This method implies that
each cell of the difference grid is assigned the relative
volume plasma concentration 0 ≤ β ≤ 1, which is equal
to the ratio of the plasma volume in the cell to the cell
volume. The cells with zero relative concentration
(β = 0) are treated as vacuum cells, in which the mag-
netic field is calculated from the formula B(r) = B0r0/r.
The contact boundary passes through the cells with
0 < β < 1, in which the plasma density is calculated
from the volume actually occupied by the plasma.

At each time step, the basic set of equations is
solved in two stages. In the first stage, the equations are
solved in Lagrangian variables using an implicit, com-
pletely conservative difference scheme [8]. In the sec-
ond stage, the velocity, density, and internal energy
found in the first stage are used to compute the fluxes of
the plasma volume, mass, momentum, and total energy
(i.e., the sum of kinetic and internal energies) through
the boundaries of the fixed cells by an explicit scheme

∂ρ
∂t
------ — ρv( )⋅+ 0,=

∂ ρv( )
∂t

-------------- — ρv v⋅( )⋅+ — p– — B×[ ] B,×+=

∂ ρε( )
∂t

-------------- — ρεv( )⋅+ p— v,⋅–=
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of first-order accuracy. The plasma fluxes from the cell
are calculated based on the analysis of the plasma den-
sity in the neighboring cells [7]. Then, the density,
velocity, and internal energy are calculated from the
laws of mass, energy, and momentum conservation
using the previously calculated fluxes. An analogous
two-stage approach to finding the solution is used in the
coarse particle method [9]. However, our approach to
solving the basic equation in the first stage is based on
a difference scheme other than that applied in [9]. The
above difference scheme is completely conservative [8]
and ensures first-order accuracy in both space and time.
In all calculations, the sizes of the grid cells were ∆z =
2.5 × 10–3 in the axial direction and ∆r = 1.25 × 10–3 in
the radial direction.

3. CALCULATED RESULTS

The electrodynamic accelerator under investigation
consists of two coaxial cylindrical electrodes with a
plasma between them. The calculations were per-
formed for the external electrode radius R1 = 1 and dif-
ferent values of the internal electrode radius R2. Ini-
tially, the plasma–vacuum CB is the z = 0 plane. A con-
stant magnetic field B(r) = B0/r is applied within the left
half-space z < 0; the calculations were carried out for
B0 = 1. The same field was specified in the vacuum cells
that appear in the right half-space z > 0 during the
plasma motion. The acceleration efficiency η = EK/ES

was determined as the ratio of the plasma kinetic
energy EK to the total energy of the magnetic field and
plasma, ES = EB + EK + EI , where EB is the energy of the
magnetic field between the z = 0 plane and the CB and
EI is the plasma internal energy.

3.1. Accelerator with a Continuous Uniform 
Plasma Filling

Let a plasma with the density ρ0 = 1 and pressure
p0 = 6 × 10–6 fill the half-space z > 0. In the limit ∆R =
R1 – R2  0, the motion is one-dimensional and the
solution to the relevant equations describes a shock

wave propagating in the plasma. In the limit p0 ! /2,
the shock front velocity D and plasma velocity U are
equal to

(1)

The propagation velocity of the CB is equal to the
plasma velocity U, and the plasma pressure in the SW

is equal to the magnetic field pressure, p = /2. The
specific internal energy in the SW is equal to the spe-
cific kinetic energy, ε = U 2/2. The magnetic field
energy EB is equal to the sum of the internal (EI) and
kinetic (EK) energy of the plasma occupying the region

B0
2
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Fig. 1. Plasma density distribution in the interelectrode gap at the time t = 2.4 in an accelerator with a uniform initial plasma filling
and an internal electrode of radius R2 = 0.5.
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Fig. 2. Time evolutions of η for R2 = (1) 0.9, (2) 0.75, and
(3) 0.5 in an accelerator with a uniform initial plasma filling.

Fig. 3. Time evolution of the plasma shell thickness δ in an
accelerator with a uniform initial plasma filling.
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Fig. 4. Profile of the plasma density ρ along the z-axis at the
time t = 0.5 in an accelerator with a uniform initial plasma
filling.
between the CB and the shock front. Consequently, in a
narrow interelectrode gap (∆R/R1 ! 1), the acceleration
efficiency is equal to η = 1/4. In a finite-width gap, the
plasma mass is redistributed as is shown in Fig. 1 and
the acceleration efficiency is lower. A significant por-
tion of the plasma is accumulated near the external
electrode and has a low (in comparison with U) veloc-
ity. For R2 = 0.5, the width of the plasma layer acceler-
ated near the internal electrode by the time t = 2.4 is
equal to 0.05, which is much smaller than (D – U)t =
0.98. This is attributed to both the inclination of the CB
to the electrodes and the radial plasma flow toward the
external electrode. Because of this flow, a smaller
amount of the plasma is accelerated and, accordingly,
the plasma velocity increases. By this time, the velocity
v c of the CB near the internal electrode is equal to v c =
1.6, which is higher than the value U = 1.22 obtained
from formula (1). Figure 2 shows time evolutions of the
acceleration efficiency η for several values of R2. For a
relatively narrow interelectrode gap (∆R/R1 = 0.1), the
efficiency is close to that obtained in the one-dimen-
sional model and is seen to decrease slowly with time.
For ∆R/R1 = 0.5, the acceleration efficiency decreases
rapidly as time elapses, because the plasma moving at
a relatively low velocity is accumulated near the exter-
nal electrode.

3.2. Accelerator with a Finite-Width Initial Plasma 
Density Distribution

All numerical results presented below were
obtained for an internal electrode with the radius R2 =
0.9 and for a plasma with a free right boundary (the cor-
responding boundary condition is p = 0), the width of
the initial plasma density distribution being ∆z. First,
we describe the results obtained for a homogeneous
plasma with the density ρ = 1. The results from one-
dimensional simulations (the plasma moves only in the
axial direction) are illustrated in Fig. 3, which shows
how the plasma shell thickness δ evolves in time at the
radius r = 1. Before the SW reaches the right plasma
boundary (this occurs at the time t = 0.12), the plasma
dynamics is the same as in an accelerator with a semi-
infinite plasma filling. After the SW reaches the right
plasma boundary, the velocity of the right boundary
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
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Fig. 5. Plasma density distribution in the interelectrode gap at the time t = 0.259 in an accelerator in which the width of the initial
uniform plasma density distribution is ∆z = 0.1.
becomes higher than that of the left boundary and the
plasma shell thickness increases. This case is illustrated
by Fig. 4, which shows the z-profile of the plasma den-
sity. The results of two-dimensional calculations also
show that the plasma shell thickness increases after the
SW reaches the right plasma boundary. However, after
a certain time interval, the shell thickness stops increas-
ing and starts decreasing. As a result, at a certain time,
the plasma shell in the interelectrode gap becomes dis-
continuous: it detaches from the internal electrode
(Fig. 5). This effect is caused by the radial plasma flow
toward the external electrode. For the initial plasma
density distribution with the width ∆z = 0.1, the coordi-
nate of the point of detachment is z = 0.42, and, for the
initial distribution having two times that width, this
coordinate is z = 0.63. For ∆z = 0.3, we have z = 0.92.
The time evolution of the acceleration efficiency η is
shown in Fig. 6. Before the SW reaches the right (free)
plasma boundary, the efficiency evolves in the same
manner as in an accelerator with a semi-infinite plasma
filling. After the SW reaches the right plasma boundary,
the plasma heating terminates and the acceleration effi-
ciency η starts to increase, reaching the value η = 0.425
(for the initial plasma density distribution with the
width ∆z = 0.1) by the time at which the plasma
detaches from the internal electrode.

Also, we considered a plasma with the initial den-
sity distribution

(2)

with the parameter a = 0.2. The acceleration of such a
plasma is different from what takes place in the previ-
ous case in that the specific internal energy in a propa-
gating SW increases at the decreasing part of the
plasma density distribution (z > 2a). After the SW
reaches the right plasma boundary, the velocity of the
right boundary becomes substantially higher than that
of the left boundary and the plasma shell thickness
increases to a much greater extent in comparison with

ρ z( ) z 2a–( )2
/a

2
–[ ] , 0exp z 4a≤ ≤

0, in the remaining region,
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that in the case of an accelerator filled uniformly with a
plasma. As a result, the plasma shell in the interelec-
trode gap becomes discontinuous after a far longer time
and the plasma passes a distance that is much larger
than the width of its initial density distribution. The
plasma shell becomes discontinuous at the point z = 2.9
at the time t = 1.0 (Fig. 7). It is of interest to note that a
discontinuity occurs at the center of the interelectrode
gap rather than at the internal electrode (as is the case
in an accelerator filled uniformly with a plasma). For
the problem at hand, the plasma dynamics is illustrated
by Fig. 8 and the time evolution of η is shown in Fig. 9.
A decrease in the acceleration efficiency in the initial
stage is associated with the propagation of the CB in the
direction in which the plasma density increases. After
the CB passes through the region with the highest den-
sity, the acceleration efficiency starts to increase, reach-

0.25

0.050 0.10 0.15 0.25 t

0.35

0.40

0.20
0.20

0.30

η

Fig. 6. Time evolution of the acceleration efficiency η in an
accelerator in which the width of the initial uniform plasma
density distribution is ∆z = 0.1 and the radius of the internal
electrode is R2 = 0.9.
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Fig. 7. Plasma density distribution in the interelectrode gap at the time t = 1.0 in an accelerator with the initial plasma density dis-
tribution (2).

Fig. 8. Plasma dynamics in the interelectrode gap in an accelerator with the initial plasma density distribution (2): t = (a) 0.91,
(b) 0.95, (c) 0.97, and (d) 0.98.
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ing the value η = 0.37 by the time at which the plasma
shell becomes discontinuous.

4. CONCLUSION

In an accelerator in which the interelectrode gap is
continuously and uniformly filled with a plasma, the
acceleration efficiency is lower than 25% because of
the strong plasma heating by the SW. In accelerators
with thicker interelectrode gaps, the acceleration effi-
ciency is far lower because of the presence of radial
plasma flow and the small thickness of the accelerated
plasma. In an accelerator with a finite-width initial
plasma density distribution, the acceleration efficiency
can be as high as ~40%; however, the plasma shell
becomes discontinuous at a certain distance from the
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0.8
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0.25

Fig. 9. Time evolution of the acceleration efficiency η in an
accelerator with the initial plasma density distribution (2).
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initial CB position. The distance by which the initial
plasma is displaced before the discontinuity occurs
depends on the shape of the plasma density distribution
and may be much larger than its initial width.
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Abstract—The electron distribution function is modeled numerically with allowance for Coulomb collisions
and quasilinear effects under cyclotron resonance conditions by solving a two-dimensional kinetic equation
containing the quasilinear diffusion operator and the Coulomb collision operator in the Landau form. Two sim-
plified model collision integrals that make it possible to describe electron heating by microwave radiation are
considered. The first model collision operator is obtained by introducing the parametric time dependence of the
temperature of the background Maxwellian electrons into the linear collision integral. It is shown that the heat-
ing of the bulk electrons can be described in a noncontradictory way if the temperature dynamics of the back-
ground electrons is calculated from the equation of energy balance, which is governed by the amount of the
microwave power absorbed by the resonant electrons with the distribution function modified due to quasilinear
effects. This conclusion is confirmed in a more rigorous fashion by comparing the solutions obtained using the
first model Coulomb collision integral with those obtained using the second model integral, namely, the non-
linear operator derived by averaging the distribution function of the scattering electrons over pitch angles. The
time-dependent linear collision integral is used to obtain analytic solutions describing quasi-steady electron
heating with allowance for the quasilinear degradation of microwave power absorption. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In present-day magnetic-confinement-fusion exper-
iments on electron cyclotron resonance (ECR) heating
of plasmas and ECR current drive, the microwave
power can be so high that the deviation of the distribu-
tion function of resonant electrons from an equilibrium
one leads to a significant change in the microwave
power deposition profiles. Thus, the absorption of elec-
tron cyclotron waves in a collisionless plasma will
eventually result in the formation of a quasilinear pla-
teau in the electron distribution function (EDF) in the
resonance region of the electron phase space, in which
case the plasma becomes transparent to microwave
radiation and the heating terminates [1]. In actual
experiments, this is, of course, not the case because the
quasi-steady distribution function of resonant electrons
that forms under the action of their Coulomb collisions
with nonresonant electrons has no plateaulike region,
so that a certain amount of microwave power is always
deposited in the plasma. Another effect of Coulomb
collisions is that they cause the perturbations of the dis-
tribution function to expand from the local energy dep-
osition region in velocity space into the entire phase
space, thereby resulting in the heating of the bulk of
electrons.

In most cases, the evolution of the EDF in phase
space during intense heating can be described by a Fok-
ker–Planck equation that contains the so-called quasi-
linear diffusion operator, which accounts for the inter-
1063-780X/02/2801- $22.00 © 20046
action of resonant electrons with the microwave field,
and the Coulomb collision operator (see, e.g., reviews
[2, 3]). In most schemes for ECR plasma heating (e.g.,
those with a quasi-transverse low-field-side launching
of a microwave beam into a toroidal device), the reso-
nant cyclotron interaction is localized in the thermal
region of the electrons velocity space, in which case it
is necessary to use the exact nonlinear electron–elec-
tron (e–e) collision operator. However, the problem for-
mulated in such a way is often too cumbersome for
numerical analysis and, in some cases, is an unneces-
sary complication. Here, we consider two ways of sim-
plifying the binary Coulomb collision integral in the
Landau form [1–4]. We use as an example the spatially
homogeneous kinetic equation describing the dynamics
of the EDF during electron heating by a given packet of
electron cyclotron waves propagating transverse to the
magnetic field. We neglect possible mechanisms for
energy and particle losses, including electron–ion (e–i)
energy exchange, and assume that the plasma electrons
are heated on a time scale much shorter than the energy
confinement time.

2. FORMULATION OF THE PROBLEM

We consider a spatially homogeneous quasilinear
kinetic equation describing the dynamics of the EDF
averaged over the phase of gyration in a constant mag-
002 MAIK “Nauka/Interperiodica”
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netic field and over the “rapid” electron oscillations in
a microwave field:

(1)

where Lcoll is the Coulomb collision operator and Lql is
the quasilinear diffusion operator. The operators are
defined in the two-dimensional space of electron veloc-
ities (because of the averaging over the phase of the
electron cyclotron gyration) and have the Fokker–
Planck form. However, none of the coordinate systems
provide a simultaneous separation of variables in both
the quasilinear diffusion and Coulomb collision opera-
tors. In fact, the quasilinear diffusion operator is of a
diagonal form in the “cylindrical” variables (v ⊥ , v ||),
where v ⊥  and v || are the electron velocity components
perpendicular and parallel to the magnetic field, while
the simplified collision operators (which will be ana-
lyzed below) are of a diagonal form in the “spherical”
variables (v , θ), where v  is the absolute value of the
electron velocity and θ is the electron pitch angle (the
angle between the electron velocity vector and the mag-
netic field direction). In this paper, the quasilinear dif-
fusion operator often (but not always) plays the role of
a small correction to the Coulomb collision operator,
because the quasilinear diffusion occurs only in a lim-
ited region of electron phase space and it is assumed
that the plasma is not too rarefied. For this reason, it is
more convenient to write the kinetic equation in a
spherical coordinate system, in which the collision
operator takes the simplest form and the quasilinear dif-
fusion operator contains mixed partial derivatives.

We are interested in such solutions to Eq. (1) that
correspond to the initial Maxwellian EDF with temper-
ature Te0 and density Ne. We assume that the EDF
f(t, u, µ) normalized to Ne(me /2πTe0)3/2 depends on the
three variables: the time t; the absolute value u = v /v e0
of the dimensionless electron velocity (normalized to

the initial electron thermal velocity v e0 = );
and the cosine of the electron pitch angle, µ = cosθ. In
dimensionless variables, the initial condition takes the
form:

(2)

If the heating radiation propagates strictly transverse to
the external magnetic field, the EDF is even in the angu-
lar variable µ, so that it is sufficient to consider the EDF
in the region (0 < u < ∞, 0 < µ < 1) and to impose the
boundary conditions

(3)

The boundaries u = 0 and µ = 1 are associated with the
use of spherical coordinates rather than with the very
nature of the problem. When the original problem is
formulated in a natural way, it is sufficient to require

∂f
∂t
----- Lcoll f Lql f ,+=
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that the derivatives of the EDF at these boundaries be
finite.

As an example, we consider the following model
problem. We assume that the plasma is heated by a
given steady-state noise packet of electron cyclotron
waves with the simplest possible distribution of the
spectral intensity Iω, which is assumed to be constant in
a certain frequency range:

(4)

An analogous distribution can be used, in particular, to
model ECR plasma heating by monochromatic micro-
wave radiation at a certain magnetic surface inside the
toroidal plasma column, in which case the effective
broadening of the heating radiation spectrum is associ-
ated with the variation of the resonant electron gyrofre-
quency at the intersection of a quasi-optical microwave
beam with the magnetic surface [5, 6]. We assume that
all modes of the heating radiation propagate in the same
direction, strictly transverse to the external magnetic
field. In this case, the resonant cyclotron interaction
gives rise to the electron diffusion over transverse
velocities and the quasilinear diffusion operator is usu-
ally represented in cylindrical variables as [1–3, 5, 6]

(5)

where u⊥  = u  and u|| = uµ. In spherical coordi-
nates, expression (5) takes the form

(6)

In the lowest non-trivial order in an expansion in v /c ! 1,
the quasilinear diffusion coefficient is approximately
equal to [1]

(7)

Here, νql . π2e2c–3  is the “quasilinear” fre-

quency, where  is the refractive index multiplied by
the polarization factor for the transversely propagating
waves under consideration. The region in phase space
u ∈ , in which the quasilinear diffu-
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sion operator is nonzero, is determined by the relativis-
tic resonance condition

(8)

where s is the number of the cyclotron mode, ωH is the
nonrelativistic electron gyrofrequency, and c is the
speed of light in free space. To be specific, in what fol-
lows, we assume that the plasma is heated by an
extraordinary wave at the second harmonic of the elec-
tron cyclotron frequency; this corresponds to m = 0 and
n = 2 (for an ordinary wave at the fundamental har-
monic of the electron cyclotron frequency, we have m = 2
and n = 0).

Since the characteristic electron velocity is much
higher than the ion velocity, the e–i part of the Coulomb
collision operator contributes only to the pitch angle
scattering and the Landau collision integral can be rep-
resented as [2, 7, 8]

(9)

where [ f, f ] is the e–e part of the collision operator,
νee(u) is the transport rate of e–e collisions, the inverse
time ν0 of thermal collisions corresponds to the initial

electron temperature, and Zeff = /Ne is the
effective ion charge number. The two methods that will
be used below to provide a simplified description of
electron heating by the quasilinear equation are based
on the replacement of the exact e–e collision integral by
a simpler operator that describes how the EDF is mod-
ified due to collisions between resonant electrons and
an effective ensemble of the background electrons with
a simplified velocity distribution function.

One of the most common and natural ways of sim-
plifying the collision integral is to linearize it under the
assumption that the perturbed EDF differs from the
equilibrium Maxwellian function fM only slightly:

(10)

Moreover, the perturbation f – fM in this formula can be
replaced with the EDF f itself, because, for the equilib-

rium electron distribution, we have [ fM , fM] = 0.
The first term on the right-hand side of formula (10)
describes the modification of the EDF due to collisions
of nonequilibrium electrons with Maxwellian elec-
trons, and the second term accounts for the correction
introduced by collisions of background electrons with
nonequilibrium electrons. In fact, the second term is
important only when an ordered macroscopic motion is
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driven in the plasma, in which case it describes the can-
cellation of the frictional force between the main and
background components [2]:

(11)

In the case of transverse launching of microwaves into
the plasma, when no currents are excited in the plasma,
each of the terms in Eq. (11) equals zero, and the EDF
is perturbed in a fairly localized resonance region. In
this case, the change in the background electron colli-
sions can be neglected, so that we arrive at the linear
collision operator corresponding to the first term in
expression (10) [2, 7, 8]. With the possible electron
heating in mind, we represent the Maxwellian distribu-
tion function of the background electrons as

(12)

where the electron temperature Te is time-dependent.
Then, the operator describing collisions of electrons
with the Maxwellian core takes the form

(13)

where
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In expressions (13)–(15), all of the coefficients also
depend on the background electron temperature.

Omitting the second term in formula (10) also
allows us to overcome additional numerical difficulties
associated with the fact that the solutions to the kinetic
equation cease to be positively defined [2]. However,
when describing the heating processes by the linear col-
lision integral (13), it is necessary to take into account
the fact that this operator does not generally ensure the
conservation of electron energy. Thus, if we assume
that the temperature and density of the background
plasma are both fixed, then the solutions to the kinetic
equation will approach a steady state in which the
absorbed microwave power is nonzero, while the phys-
ical energy sinks are absent. In order to avoid this situ-
ation, we refine the linear collision integral by introduc-
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ing the parametric dependence of the temperature of the
background Maxwellian EDF on time, Te = Te(t). This
parametric dependence is to be determined from the
energy balance in the plasma–microwave field system.
We assume that the total absorbed microwave power
Pabs is eventually deposited in the background plasma;
this assumption leads to the energy balance equation

(16)

Using the explicit expression (6) for the quasilinear dif-
fusion operator, we integrate Eq. (16) by parts to obtain

(17)

The kinetic equation with the collision operator so
defined has no steady-state solutions; instead, it has
quasisteady solutions that describe an increase in the
energy of the bulk electrons in the absence of energy
losses.

Another way to derive an approximate e–e collision
operator is to simplify the exact collision integral under
the assumption that the distribution of the background
electrons is isotropic in velocity space. Let us consider
a reduced collision integral in which the distribution
function of the scattering electrons is averaged over the

pitch angles, F(u) = (u, µ)dµ. In explicit form, this

operator can be deduced by the Rosenbluth potential
technique [2, 7, 8]; as a result, we arrive at an operator
differing from the linear operator only in that the coef-
ficients in front of the derivatives are integral functions
of the averaged EDF:
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(21)

This nonlinear operator can easily be incorporated in
the existing computational schemes based on the linear
collision integral. An obvious advantage of nonlinear
operator (18) is that it automatically conserves the
electron energy (this property is a consequence of the
analogous property of the exact collision integral

[F, F]). For an isotropic EDF, operator (18) coin-
cides with the exact Landau collision integral. Note that
the dependence of the EDF on the pitch angle variable
can be neglected for a plasma exhibiting a high degree
of isotropy associated, e.g., with elastic collisions of
electrons with multicharged ions (such that Zeff @ 1).

Below, we present the results of numerical investi-
gation of the two-dimensional kinetic equation with the
above collision integrals. The method for solving the
kinetic equation numerically [9] is based on the results
of [10, 11]. Note that, since it is impossible to simulta-
neously separate the variables in the quasilinear diffu-
sion and Coulomb collision operators, the problem as
formulated is somewhat more difficult to solve than the
traditional diffusion problem.

3. FORMATION OF A QUASILINEAR 
PERTURBATION OF THE EQUILIBRIUM EDF

Numerical simulations show that, if the microwave
field is strong enough for the quasilinear effects to be
pronounced, then we can distinguish two stages of the
interaction of microwaves with electrons. In the first
stage, a plateaulike perturbation appears fairly rapidly
in the EDF in the resonance region in phase space; dur-
ing this process, the total electron energy increases
insignificantly. In the second, slower, stage of “qua-
sisteady” heating, the energy of the background elec-
trons increases and qualitative changes in the shape of
the EDF are insignificant.

In order to describe how the EDF deforms in the ini-
tial stage, it is sufficient to employ the kinetic equation
with the simplest linear collision integral (13) and
assume that the temperature of the background plasma
is unchanged. The results of the relevant simulations
carried out for a sufficiently strong microwave field are
illustrated in Fig. 1a. The initial stage begins with a
rapid equalization of the EDF over transverse electron
energy throughout the resonance region. At the bound-
aries of this region, the gradients of the EDF become
very steep, while, outside the resonance region, the
EDF is perturbed only slightly. The steepening of the
gradients of the EDF at the boundaries of the resonance
region gives rise to a collisional electron flux, resulting
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Fig. 1. Solutions to the kinetic equation with the linear collision integral at a fixed temperature of the background electrons: (a) plots
of the function f(t, u, µ = 0) at successive times ν0t = (1) 0, (2) 0.01, (3) 0.02, (4) 0.1, (5) 0.2, (6) 0.5, (7) 1, (8) 3, and (9) 5 and
(b) the relief of the steady-state EDF. The pump microwave field intensity corresponds to νql /ν0 = 3, the parameters of the resonance
region are u0 = 1 and ∆u = 0.3, and the effective ion charge number is Zeff = 1.
in a far slower process that leads to the increase in the
electron energy. In this case, the quasilinear diffusion
operator can be regarded as a kind of “pump,” which
initiates the electron flux through the resonance region
from the low-velocity to the high-velocity range. This
effect takes place in a wide range of microwave field
intensities: if the microwave field is sufficiently strong
to ensure the quasilinear deformation of the distribution
function of the resonant electrons, then the electron flux
from the nonresonant low-energy region becomes
appreciable. As a result, the EDF relaxes to a steady
state (Fig. 1b). The relaxation time is determined by the
rate at which zero-energy electrons diffuse up to the
resonance energy and is independent of the power of

the quasilinear pump microwave field: tst ≈ (u0).
This estimate fails to hold when the resonance region
approaches very low energies (u0 – ∆u ! u0) or when the

microwave radiation intensity is too low (  ! ∆u).

The approximate collision integral with a fixed tem-
perature of the background plasma is valid if the total
energy Wst of the electrons in the steady state is close to
the initial energy W0, i.e., the energy corresponding to
the background electron distribution:

(22)
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Dqltst

η
W st W0–
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--------------------- ! 1.≡
The maximum electron energy can be estimated by
assuming that the microwave field is sufficiently strong
to neglect the effect of collisions on the formation of the
quasilinear plateau in the EDF in the resonance region
in velocity space. In the steady state, the EDF estab-
lished outside the resonance region corresponds to an
isotropic Maxwellian distribution; inside the resonance
region, it is uniform over transverse electron velocity.
Taking into account the continuity of the EDF at the
boundaries of the resonance region, one can readily
show that, inside the region, the EDF should also be
isotropic and the steady-state distribution function
should have the form

(23)

where the constant n0 is determined from the condi-
tion that the number of electrons is conserved. The
expressions for the total energy corresponding to the
EDF (23) and for the quantity η are fairly compli-
cated:
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However, for ∆u ≤ 0.2, it is sufficient to retain only the
linear term in the expansion in ∆u:

(25)

In the applicability range of expression (25), the factor
in square brackets is close to unity. Consequently, the
relative energy unbalance associated with the approxi-
mate character of the linear collision operator is equal
to η ≈ ∆u and the electron temperature in the collision
integral can be assumed to be fixed under the condition
∆u ! 1. The time dependence of the temperature of the
background electrons can be introduced correctly if an
increase in the electron energy is markedly larger than
the error associated with the difference in the energies
corresponding to the perturbed and background elec-
tron distributions: W – W0 @ ηW0.

The kinetic equation with the linear collision inte-
gral in which the background electron temperature is
time-dependent or with the nonlinear collision integral
has no steady-state solutions; however, in other
respects, the dynamics of the formation of the per-
turbed EDF in the initial stage is qualitatively the same.
As an example, Fig. 2 illustrates the evolution of the
EDF calculated using the energy balance equation (16)
with the time-dependent temperature of the background
electrons (the scales on the axes are chosen so that the
Maxwellian distribution function is represented by a
straight line). Solutions 1–6 in Fig. 2 are seen to be
essentially the same as those in Fig. 1a. This indicates

that, on time scales t ≤ 0.5 , the EDF computed by
different methods evolves in essentially the same way.
On longer time scales (Fig. 2, curves 7–9), the number
of high-energy electrons increases because of the
increase in the effective electron temperature. For com-
parison, the dashed curve in Fig. 2 represents the
steady-state solution obtained for a fixed electron tem-
perature (Fig. 1a, curve 9).

4. QUASI-STEADY ELECTRON HEATING

After the rapid stage, in which a quasilinear plateau
appears in the EDF, the absorbed microwave power
substantially decreases but remains finite, because the
formation of a plateau is hindered by collisions. For this
reason, the majority of electrons are heated on a longer
time scale in comparison with that on which the quasi-
linear perturbations develop (the initial heating stage is
illustrated in Fig. 2).

Figure 3 shows time evolutions of the total electron
energy calculated from the kinetic equation with linear
[see Eqs. (13)–16)] and nonlinear [see Eqs. (18)–(21)]
collision integrals for two parameter sets differing in
microwave intensity and position of the resonance
region in velocity space. For the linear model, varia-
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Fig. 2. Formation of the EDF f(u, µ = 0) according to the
kinetic equation with the time-dependent linear collision
integral for the same times and parameter values as those in
Fig. 1. The ordinate is the EDF on a logarithmic scale, and
the abscissa is the squared electron velocity. The dashed
curve corresponds to curve 9 in Fig. 1a.
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Fig. 3. Electron energy dynamics calculated by integrating
the kinetic equation numerically. Curve 1 was obtained with
the nonlinear collision integral, and curves 2 and 3 were
obtained with the time-dependent linear collision integral.
Curves 2 and 3 differ in the methods by which the energy
was determined: curve 2 was computed by integrating the
product of the electron energy and the time-dependent EDF
[see relationship (26)], and curve 3 was computed from the
energy balance equation [see relationship (27)]. The param-
eters of the family of curves (a) are νql /ν0 = 0.5, u0 = 2, and
∆u = 0.3, and the parameters of the family of curves (b) are
νql /ν0 = 1, u0 = 1, and ∆u = 0.3. In both cases, the effective
ion charge number is unity.



52 SHALASHOV, SUVOROV
0.2

40 8 12 16 20
ν0t

0.4

0.6

0.8

1.0

Pabs(t)/Pabs(0)

1

2

3

4

5

6
7 8 9

40 8 12 16 20

1.5

2.5
W(t)/W(0)

1

2

3

4

5
6

7
8

9

1.0

2.0

(a) (b)

ν0t

Fig. 4. Time evolutions of (a) the absorbed microwave power and (b) electron energy for νql /ν0 = (1) 0.01, (2) 0.05, (3) 0.1, (4) 0.25,
(5) 0.5, (6) 1.0, (7) 2.0, (8) 3.0, and (9) 5.0. The parameters of the resonance region are u0 = 1 and ∆u = 0.3, and the effective ion
charge number is Zeff = 1. The time evolutions were calculated using the linear collision integral in which the electron temperature
was determined from the energy balance equation.
tions in the energy of the electron component were cal-
culated in two ways: first, by integrating the electron
energy with the time-dependent EDF,

(26)

and, second, from the energy balance equation (16),

(27)

We can see that, if the temperature of the background
electrons in the linear collision integral is determined
from the energy balance equation, then the solutions to
the linear and nonlinear problems coincide fairly
closely in a wide range of the parameters. Notably, in
the model with the linear collision integral, the energy
conservation law is satisfied only asymptotically: the
rate at which the total electron energy increases on long
time scales is equal to the absorbed microwave power,
although the energy balance equation implies that this
property is peculiar only to the background electrons,

 ≈  ≡ Pabs .

Note that the parameters of the background electron
distribution may be determined using the Chapman–
Cowling approach [12], in which the density and tem-
perature of the background electrons are incorporated
into the linearized kinetic equation in such a way that
the perturbed EDF f1 = f – fM is assigned zero values of
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---mv
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f d

3v,∫=
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t
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Ẇ Ẇb
the electron density and energy. If the total number of
electrons is conserved, this indicates that the time-
dependent temperature of the background electrons in
the linear collision integral is determined by the total
electron energy:

(28)

where W(t) is given by formula (26). For the collision
integral that conserves the electron energy, this way of
determining the time-dependent temperature of the
background electrons is exactly equivalent to the
method based on the energy balance equation (16);
generally, formula (28) gives rise to the additional

energy sink term Pc = mv 2Lcoll fd3v in the energy

balance equation. Numerical calculations show that the
solutions to the kinetic equation with the linear colli-
sion integral (13), in which the time-dependent temper-
ature of the background electrons is determined from
relationship (28), deviate substantially from the solu-
tions to the kinetic equation with the reduced nonlinear
collision integral (18). Relationship (28) implies that
the sink term Pc always remains finite, thereby explain-
ing this continuously increasing deviation, while the
energy balance equation (16) implies that Pc  0,
which corresponds to the asymptotic conservation of
electron energy in the quasisteady heating regime.

Figure 4 shows time evolutions of the total electron
energy and absorbed microwave power (both normal-
ized to their values corresponding to the initial Max-

3
2
---NeTe t( ) W t( ),=
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2
---∫
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wellian EDF) for different microwave field intensities.
Figure 4a illustrates the effect of the quasilinear degra-
dation of the absorbed power: the stronger the micro-
wave field, the faster is the rate at which the relative
(normalized to the equilibrium value) absorbed power
decreases with time. As a result, for a sufficiently strong
microwave, the absolute value of the absorbed micro-
wave power no longer increases with the field intensity:
the time dependence of the electron energy approaches
a certain universal curve, which is independent of the
microwave field intensity (see Fig. 4b), and the relative
absorbed power becomes inversely proportional to the

microwave field intensity, Pabs/Pabs(0) ~ .

In order to qualitatively explain the above numerical
results, we turn to the model one-dimensional kinetic
equation with a linear collision integral, from which we
can analytically obtain a qualitative estimate of the qua-
sisteady electron heating rate. In the kinetic equation
(1) with operators (6), (9), and (13), we represent the
EDF as a sum of the isotropic part F(u) and a small cor-
rection δf(u, µ). Then, we perform averaging over the
pitch angle variable and omit small terms on the order
of δf(u, µ) and the time derivatives, which are small in
the quasisteady heating regime. The anisotropic part of
the EDF can be neglected in one of two cases: when the
rate of isotropization due to e–i elastic collisions is high
(Zeff @ 1) or when the resonance region in velocity
space is sufficiently narrow (2∆u ! u0). As a result, we
arrive at a one-dimensional quasisteady kinetic equa-
tion for the isotropic EDF component F(u), which cor-
responds to the absence of electron fluxes in velocity
space:

(29)

where (u) is the quasilinear diffusion coefficient
averaged over the electron pitch angle. The expression
for the absorbed microwave power can be easily
derived for a sufficiently narrow resonance region in
velocity space, when the EDF changes only slightly
during the formation of a quasilinear plateau and is
close to the Maxwellian distribution function of the
background electrons, while the derivative of the EDF
in the resonance region can change substantially:

(30)
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As a result, expression (17) for the absorbed microwave
power becomes

(31)

where Fee(u0), Dee(u0), and fM(u0) are functions of the
temperature of the background electrons. Expression (31)
implies that, first, when the microwave field is suffi-
ciently strong (  @ Dee), the maximum (for a given
position of the resonance region in velocity space)
microwave power absorbed in the quasisteady heating
regime is independent of the microwave field intensity
and, second, the electron energy as a function of time
approaches a certain universal curve (Fig. 4b). Since
Dee is a bounded function of the electron temperature,
there always exists a lower bound for the microwave
field intensity at which the inequality  @ Dee will be
satisfied throughout the entire heating process (see the
Appendix for details). This bound depends only on the
initial conditions. In the approximation at hand, the
electron heating rate is proportional to the width of the
resonance region, while its dependence on the position
of the resonance region is more complicated. From
formula (31), we can see that the absorbed microwave
power tends to zero in both limits u0  0 and
u0  ∞. Hence, we arrive at the following conclu-
sion: in phase space, there may in principle exist an
optimum position of the energy deposition region at
which the electron heating is most efficient.1 This may
be proved by substituting relationship (31) into the
energy balance equation (16) and finding the time
dependence of the electron temperature in explicit
form. In the Appendix, we carry out an analogous anal-
ysis for the case in which the absorbed microwave
power reaches a steady level. In particular, it is shown
that, if there is no need to heat the plasma to very high
temperatures, then the heating is most efficient when
the energy is pumped into thermal electrons (u0 ~ 1).
We also discuss there the applicability conditions for
the validity of the above approximations.

5. CONCLUSION

We have considered two simplified model e–e colli-
sion integrals that make it possible to describe electron
heating by microwave radiation under ECR conditions.
With these model collision integrals, the kinetic equa-
tions have close solutions describing the perturbed dis-
tribution function of the resonant electrons and the qua-
sisteady heating of all plasma electrons under the con-
ditions of the quasilinear degradation of the absorbed
microwave power. The model integrals have their own
specific advantages and require almost the same expen-
diture of computational resources. The simplified non-

1 Strictly speaking, expression (31) fails to hold in the range
u0 ≤ ∆u, for which, however, the conclusion also remains valid.

Pabs Te( ) NeTe0
16

π
-------

Fee u0( )u0
3∆u

Dee u0( )/Dql u0( ) 1+
------------------------------------------------ f M u0( ),≈

Dql

Dql
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linear collision integral is advantageous in that it auto-
matically conserves the total electron energy. In turn,
the model with the time-dependent linear collision inte-
gral can be generalized in a more natural way to a spa-
tially inhomogeneous case in which the temperature
and density profiles are prescribed and either their time
evolutions or their steady-state shapes are known. As
for the hydrodynamic parameters of the background
plasma (primarily, electron temperature and density),
they can be determined directly from the experimental
data or found by solving the set of transport equations
with allowance for energy and particle transport in real
space. In the latter case, the kinetic model can be incor-
porated into transport equations as a means of deter-
mining the source describing the absorption of micro-
wave power with allowance for the perturbations of
the EDF.
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APPENDIX

Electron Temperature Dynamics at a High Heating 
Power

Here, we solve the energy balance equation (16)
analytically using relationship (31) for the absorbed
microwave power and assuming that the absolute value
of the absorbed power is maximum, i.e., that the satura-
tion condition  @ Dee is satisfied. The relationship

between the coefficients  and Dee can change during
plasma heating, because the latter coefficient depends
on the temperature of the background electrons: being
a function of temperature, the coefficient Dee(Te)
increases from zero to the maximum value (at a certain
temperature) and then decreases monotonically to zero.
It can be proved rigorously that, at the temperature at
which the coefficient Dee(Te) is maximum, the follow-
ing equalities should hold:

(32)

Since the constant α, which is the root of the above
transcendental equation, is close to unity, we set α = 1.
The inequality  @ Dee is satisfied at unlimited heat-
ing of the plasma if one of the following two sufficient
conditions holds: (i) this inequality is satisfied at the
initial instant and the initial temperature corresponds to
the decreasing part of the dependence Dee(Te) (i.e.,

 @ Dee(Te0) and Te0 ≥ , which is equivalent to
u0 ≤ 1) or (ii) this inequality is satisfied at the most

Dql
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Fig. 5. Dependence of the electron temperature achieved at a certain time on the position of the resonance region. Plot (a) presents
the result calculated by the analytic formula (35), and plots (b) and (c) are computed using the linear and nonlinear collision oper-
ators, respectively, for νql /ν0 = 1 and ∆u = 0.3. Curves 1–7 are computed at different dimensionless times τ = ν0∆ut: (1) 1.0, (2) 5.0,
(3) 10, (4) 20, (5) 50, (6) 100, and (7) 1000.
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“unfavorable” instant,  @ . As an example, we
present the explicit form of condition (ii) for an extraor-
dinary wave at the second harmonic of the electron
cyclotron frequency:

(33)

For the maximum absorbed microwave power, the
desired energy balance equation has the form

(34)

The solution to Eq. (34) with the initial condition
Te(0) = Te0 can be represented implicitly as

(35)

where θ = Te/Te0 and τ = ν0∆ut are the dimensionless
temperature and dimensionless time. From this expres-
sion, we can determine the characteristic time of the

quasisteady heating: th ≈ (u0)u0/∆u.

In the narrow resonance region approximation, the
width of the resonance region and the collision fre-
quency determine only the normalizing factor for the
dimensionless time τ; in dimensionless variables, the
heating dynamics depends only on the resonant veloc-
ity u0. As was noted in Section 4, this dependence is
characterized by a certain optimum value of u0 at which
the electrons are heated to a given temperature at the
highest rate. This is illustrated in Fig. 5a, which shows
the family of solutions (35) describing how the electron
temperature achieved at different instants of the dimen-
sionless time τ depends on the position of the resonance
region. At the extremes of the curves, the relationship
between the temperature, the dimensionless time, and
the position of the resonance region can be obtained by
a numerical approximation. As an example, we have

(36)

(37)

For comparison, Figs. 5b and 5c illustrate numerical
results obtained with the above two model collision
integrals for a resonance region of finite width and for
a finite intensity of the pump microwave field. The
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microwave field strength was chosen to satisfy the ine-
quality  @ Dee; the discrepancy between the analyt-
ical and numerical curves at high temperatures stems
from the finite width of the resonance region and van-
ishes as ∆u decreases.

Solution (35) can be examined analytically using
the following asymptotic expressions for the func-
tion G:

(38)

(39)

For moderate heating (1 ≤ Θ ≤ 10), the argument of the
function G is on the order of unity, so that, instead of the
asymptotic expressions (38) and (39), we can use the
approximations of G in the transition region; e.g., in the
region 0.1 ≤ x ≤ 2, we have

(40)

where a ≈ 0.166, b ≈ 0.019, and c3 ≈ –0.185. Thus, with
expressions (38)–(40), the temperature dependences of
the optimum heating conditions are close to those in
formulas (36) and (37).

The sufficient conditions for the applicability of
Eqs. (29), (31), (34), and (35) are that the EDF in the
resonance region should change insignificantly (|fM(u0 +
∆u) – fM(u0)| ! fM(u0)) and the characteristic heating
time th should be much longer than both the time of the

plateau formation, tql ≈ ∆u2/ , and the collisional

relaxation time, tst ≈ (u0); i.e.,

(41)

Hence, all three conditions impose restrictions on the
width of the resonance region.
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Abstract—A linear theory of the Cherenkov amplification in a transversely nonuniform waveguide in an infi-
nitely strong magnetic field is constructed with allowance for both ordered and thermal motions of plasma elec-
trons. The effect of these electron motions on the threshold for the onset of Cherenkov instability is investigated.
The amplification coefficients and the conditions for the onset of the instability are determined. © 2002 MAIK
“Nauka/Interperiodica”.
1. At present, relativistic Cherenkov plasma masers
(RCPMs) are the only devices in which the mean
microwave frequency can be continuously tuned in a
band with an upper-to-lower boundary frequency ratio
of 7 at a power of 50 MW [1]. In an RCPM, this tuning
range is achieved by changing the plasma density.

In this area of research, good agreement has been
achieved between theory and experiment [2, 3]. Never-
theless, some of the effects that have not been incorpo-
rated into the RCPM theory can be important under cer-
tain conditions. In particular, these are the effects of
thermal and ordered motions of plasma electrons on the
threshold for the onset of Cherenkov instability.

Here, we construct a linear theory of the Cherenkov
amplification in a transversely nonuniform waveguide
in an infinitely strong magnetic field with allowance
for, specifically, thermal and ordered motions of plasma
electrons.

We start with the projection of the Maxwell equa-
tion onto the z-axis,

, (1)

and the Vlasov equation for beam and plasma electrons,

(2)

Since we are considering fast processes, we can neglect
ion motion, assuming that the ions constitute an immo-

bile positive background. We set Ez = (r)e–iωt + ikz and
f = f0 + f1 (where f1 ~ Ez) and linearize Eqs. (1) and (2)
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in a standard way to obtain

(3)

where γ(v ) = (1 – v 2/c2)–1/2 is the relativistic factor. We
supplement Eq. (3) with the following boundary condi-

tion at the waveguide wall: (R) = 0, where R is the
waveguide radius. The unperturbed distribution func-
tion describing a plasma and a cold beam can be repre-
sented as

(4)

Here, fp(p) is the distribution function of the plasma
electrons, nb is the density of the beam electrons, u is
their unperturbed velocity, γ = γ(u), and P⊥α (r) are the
beam (α = b) and plasma (α = p) profiles. As a result,
we arrive at the equation

(5)

Here, ωα = (4πe2nα /m)1/2 is the Langmuir frequency of
the plasma electrons (α = p) or the beam electrons
(α = b), and the following notation is introduced:

(6)
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For an immobile hot plasma, for which fp(p) is a
Maxwellian distribution function, we have

(7)

Here, vT is the thermal velocity of the plasma electrons
and F(x) = x2[J+(x) – 1], where J+(x) is the familiar
function [4], satisfying the asymptotic expressions

(8)

When the directed motion of plasma electrons is
taken into account, we can represent the distribution
function of the cold plasma electrons as fp(p) = npδ(p +
mv p) and obtain

(9)

If the plasma electrons move from the collector toward
the cathode, we have v p > 0; otherwise, we have v p < 0.
Note that passing over to the frame of reference with
respect to which the plasma electrons are at rest reduces
our problem to the familiar problem of an immobile
cold plasma [5]. Nevertheless, it is expedient to carry
out the analysis in the laboratory frame. The reason for
this is twofold. First, the experimental data are usually
recorded in the laboratory frame. Second, in actual
experiments, the beam–plasma interaction region is
bounded in the longitudinal direction by cavity bound-
aries, which are fixed in the laboratory frame.

In experiments carried out by Strelkov and
Ul’yanov [1], only axisymmetric field harmonics were
excited. Consequently, in what follows, we restrict our-
selves to considering the axisymmetric case, in which
the transverse Laplacian operator has the form ∆⊥  =

∂r(r∂r).

We consider a cable wave–based version of a
plasma amplifier. Specifically, we assume that an annu-
lar beam and an annular plasma are separated in space
and are infinitely thin, so that their profiles can be rep-
resented as

(10)

where ∆α is the plasma thickness (α = p) or the beam
thickness (α = b). Equation (5) implies that the radial
derivative of the longitudinal component of the electro-
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magnetic field undergoes a jump at both the plasma and
the beam:

(11‡)

(11b)

In turn, the field (r) is continuous.

We consider the case in which the plasma and the
beam are separated only slightly, so that, in formula (6),
the integral over the region where the plasma and beam
fields overlap is not small. To be specific, we also set
0 < rb ≤ rp < R. As will be clear later, the case in which
the beam and the plasma have the same radius (i.e.,
rb = rp) is a particular case; generally, the form of the
resulting dispersion relation is independent of the sign
of the inequality rb < rp . In a plasma waveguide, the
only waves that can propagate in the frequency range
ω < ωp are surface waves (in this range, the internal
waves are damped). Under the above assumptions, the
longitudinal component of the field of the surface
waves has the form

(12)

where

(13‡)

(13b)

In(x) and Kn(x) are modified Bessel functions, and C is
a constant.

The matching conditions (11) yield the dispersion
relation
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Ẽ ' rp 0+( ) Ẽ ' rp 0–( )–
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where

(15)

α = k⊥ rb , β = k⊥ rp , and ζ = k⊥ R. The parameter κ⊥  sat-
isfies the equation [2]

(16)

In the long-wavelength limit k⊥ R ! 1, we have

(17)

2. First, we consider the case when an infinitely thin,
annular plasma and beam have the same radius (rp = rb),
i.e., when the beam slips along the plasma surface. In
this case, the dispersion relation (14) becomes

(18)

Now, we turn to the immobile hot plasma model, in
which the quantity K(ω, k) is described by expression (7).
We represent the solution to Eq. (18) in the form

(19)

and assume that the inequality
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is satisfied. In this case, Eq. (18) reduces to the cubic
equation
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where ξ = u/vT is the reciprocal of the dimensionless
thermal velocity of the plasma electrons. In the asymp-
totic limit ξ @ 1, Eq. (21) can be written as
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where

(23‡)

(23b)

(23c)

(23d)

For A = 0, the solution to Eq. (22) corresponds to the
single-particle Cherenkov resonance, which occurs
under the condition

(24)

As the thermal velocity vT of the plasma electrons
increases, their resonant Langmuir frequency ωp

decreases because of the increase in the phase velocity
of the plasma wave. In fact, in the absence of an elec-
tron beam, the wave dispersion law in a plasma cavity
has the form

(25)

The Cherenkov resonance condition (24) implies that,
for nonrelativistic beams, the shift in the resonant fre-
quency is the largest.

Under the resonance condition (24), the instability
of a hot plasma may develop in two different ways. The
case |δx | ! |B | corresponds to a dissipative instability
with the amplification coefficient

(26)

in which case, under condition (24), we have

(27)

Consequently, in terms of the Langmuir frequency of
the beam electrons, the inequality |δx | ! |B | takes the
form
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We can see that the dissipative instability in the system
is triggered by an electron beam with a very low density
(lower than the density of plasma electrons whose
velocities lie in a narrow interval around the velocity u).
In the opposite asymptotic limit, the maximum amplifi-
cation coefficient is equal to

(29)

As the resonant frequency ωp shifts toward lower fre-
quencies, the amplification coefficient (29) in a hot
plasma decreases only by a factor of (1 – 3γ–2ξ–2)1/3

rather than C1/3. Solution (29) is valid under the condi-
tions

(30)

Let us consider the case B = 0, which corresponds to
the condition

(31)

This condition gives A = ξ–2. In the asymptotic limit
|δx| ! A, the amplification coefficient has the form

(32)

Solution (32) applies to low-current beams such that

(33)

In the opposite asymptotic limit, we arrive at the maxi-
mum amplification coefficient (29).

If we neglect exponentially small terms that account
for Landau damping by fast plasma electrons, then we
find that Eq. (22) has real coefficients and immediately
obtain the threshold for the onset of instability in a hot
plasma:

(34)

The threshold plasma density np decreases with
increasing thermal velocity vT , whose value turns out
to be somewhat underestimated because energy transfer
from the wave to the plasma is ignored.
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Now, we turn to a model in which the cold electron
plasma component moves as a single entity with veloc-
ity v p . Since we are interested only in the Cherenkov
instability (as in the case of an immobile hot plasma),
we again represent the desired solution to the disper-
sion relation in form (19). Under condition (20), we
arrive at the cubic equation

(35)

which leads to the single-particle Cherenkov resonance
condition

(36)

and the maximum amplification coefficient

(37)

The condition for wave amplification in a plasma, or,
equivalently, the condition for the dispersion relation
(35) to have complex roots, takes the form

(38)

If the plasma electrons move from the collector toward
the cathode, then the instability threshold in terms of ωp

increases; in contrast, if the plasma electrons move
from the cathode toward the collector, then the instabil-
ity threshold in terms of ωp decreases. The resonant
plasma frequency ωp shifts in an analogous manner.
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3. Here, we consider a spatially separated beam and
plasma in the long-wavelength limit k⊥ R ! 1. In this
case, we have

(39)

where Sα = 2πrα∆α is the cross-sectional area of the
beam (α = b) or the plasma (α = p). The integral over
the region where the plasma and beam fields overlap is
equal to

(40)

We write Eq. (14) in terms of δx and then reduce it to
the cubic equation

(41)

Here, we have introduced the notation

(42‡)

(42b)

where Q = K(ω, ω/u), Q ' = (ω/u) (ω, ω/u), G = Q '/Q,
and the prime denotes the derivative with respect to k
(d/dk). We also denote the frequency detuning by

(43)

Under the assumption that the coefficients of
Eq. (41) are real, we arrive at the following condition
for the existence of complex roots:

(44)

For  > 1, the threshold value of ωp decreases. How-
ever, the threshold value of ωp cannot be made arbi-

trarily small by increasing . The reason is that our

approximation fails to describe the case in which 
values are large, i.e., in which the plasma is close to the
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waveguide wall and interacts with the beam only
slightly. For a low-density beam such that

(45)

condition (44) becomes

(46)

As in the case when the beam and plasma have the same
radius, the effect of the beam on the threshold plasma

density is described by the law  [5]. For G = 0,  =
1.58 (which corresponds to R = 1.8 cm, rb = 0.6 cm, and
rp = 0.9 cm), and γ = 2, we obtain ε ! 5.87 × 10–4. When

(47)

we arrive at a condition other than condition (44):

(48)

In this case, the effect of the beam on the threshold
plasma density is described by a linear law. For the
experimental conditions of [1], we have ε = 7 × 10–3;
this indicates that the threshold plasma density satisfies
condition (48).

4. In conclusion, we compare our results with the
experimental data of [1]. In those experiments, the
plasma was created by exciting xenon discharges in a
device operated with a hot cathode. The plasma temper-
ature was about 3 eV, and the maximum electron energy
spread, according to different estimates, did not exceed
10 eV. The corresponding velocity spread of the plasma
electrons is ∆v  = 1.9 × 105 m/s, the correction being
∆v /u = 7 × 10–4. Consequently, in the linear stage of
development of an instability in such a plasma, kinetic
effects play an insignificant role. The stochastic motion
of plasma electrons can manifest itself only in the non-
linear instability stage. When the excited radiation is
broadband, the plasma is “heated” due to the stochasti-
zation of electron trajectories in the field of many
waves; as a result, the resonance condition (24)
changes.

In finite-length systems (cavities), the instabilities
may also change their nature. The reason for this is that,
in a plasma cavity, the only instability that may develop
in a plasma whose density is just below the threshold is
a nonresonant instability, which cannot be used to
accelerate charged particles and occurs regardless of
whether the Cherenkov resonance conditions are satis-
fied or not [6, 7]. The onset of this instability at the
plasma branch of the natural waves of the cavity leads
to a strong plasma heating due to the stochastization of
electron trajectories in the field of many waves [8, 9].
As was shown in [8, 9], such plasma heating is very
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efficient and may trigger the Cherenkov instability.
However, it should be recognized that the nonresonant
instability develops on long time scales, so that this
heating effect can be observed only when the beam
duration is sufficiently long.

In actual experiments, the plasma current from the
cathode toward the collector is about Ip = 100 A. For the
plasma density np = 3 × 1013 cm–3, plasma thickness ∆p =
0.1 cm, and plasma radius rp = 1 cm, this current is car-
ried by the plasma electrons moving with the directed
velocity vp = 3.5 × 105 m/s. Nevertheless, the plasma
electron velocity may be substantially higher, because
the front of the beam injected into the cavity pushes the
plasma toward the collector. The effect of the accelera-
tion of plasma electrons in the field of a beam with an
unneutralized charge may become important when the
plasma density is low, i.e., when the plasma frequency
ωp is close to the threshold. In this case, the Cherenkov
instability can occur due to Doppler shift even when the
plasma density is below the threshold. The Cherenkov
instability continues to grow until the beam front
reaches the collector and causes secondary emission,
which leads to the current neutralization of the beam.
Because of this, the plasma current induced by second-
ary emission is carried by the electrons moving from
the collector toward the cathode with the directed
velocity

(49)

Under the experimental conditions of [1], specifi-
cally, nb = 1.2 × 1012 cm–3, ∆b = 0.1 cm, rb = 0.6 cm
(which corresponds to Ib = 2.3 kA), np = 4 × 1012 cm–3,
∆p = 0.1 cm, and rp = 0.9 cm, this directed velocity is
about v p ≈ 0.2u. As a result, the electron plasma density
turns out to be below the threshold, so that the time
scale on which the instability develops is equal in order

v p

nbSb

npSp

-----------u.≈
of magnitude to the electron transit time L/u and, there-
fore, depends on the cavity length. Hence, when the
plasma frequency ωp is close to the threshold, it is only
in long systems that the instability has enough time to
develop. For long cavities, this effect leads to a decreas-
ing dependence of the threshold value of ωp on the cav-
ity length L, thereby explaining the corresponding
dependence revealed in the experiments of [1].

REFERENCES

1. P. S. Strelkov and D. K. Ul’yanov, Fiz. Plazmy 26, 329
(2000) [Plasma Phys. Rep. 26, 303 (2000)].

2. M. V. Kuzelev, O. V. Lazutchenko, and A. A. Rukhadze,
Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42, 958 (1999).

3. I. N. Kartashov, M. A. Krasil’nikov, M. V. Kuzelev, and
A. A. Rukhadze, in Proceedings of the XXVIII Zvenig-
orod Conference on Plasma Physics and Controlled
Nuclear Fusion, 2001, p. 245.

4. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze,
Principles of Plasma Electrocdynamics (Vysshaya
Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).

5. M. V. Kuzelev and A. A. Rukhadze, in Electrodynamics
of Dense Electron Beams in a Plasma (Nauka, Moscow,
1990), p. 336.

6. D. N. Klochkov and M. Yu. Pekar, Fiz. Plazmy 23, 650
(1997) [Plasma Phys. Rep. 23, 602 (1997)].

7. D. N. Klochkov, M. Yu. Pekar, and A. A. Rukhadze,
Kratk. Soobshch. Fiz., No. 4, 7 (1999).

8. V. A. Buts, O. V. Manuœlenko, K. N. Stepanov, and
A. P. Tolstoluzhskiœ, Fiz. Plazmy 20, 794 (1994) [Plasma
Phys. Rep. 20, 714 (1994)].

9. V. A. Buts, A. N. Kupriyanov, O. V. Manuœlenko, and
A. P. Tolstoluzhskiœ, Izv. Vyssh. Uchebn. Zaved., Prikl.
Nelineœnaya Din. 1, 57 (1993).

Translated by I. A. Kalabalyk
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002



  

Plasma Physics Reports, Vol. 28, No. 1, 2002, pp. 63–70. Translated from Fizika Plazmy, Vol. 28, No. 1, 2002, pp. 68–76.
Original Russian Text Copyright © 2002 by Starostin, Boller, Peters, Udalov, Kochetov, Napartovich.

                                 

LOW-TEMPERATURE 
PLASMA

               
RF Discharge in CO2 Laser Mixtures at Moderate Pressures
S. A. Starostin*, K. J. Boller*, P. J. M. Peters*, Yu. B. Udalov**, 

I. V. Kochetov***, and A. P. Napartovich***
*University of Twente, 7500 AE Enschede, The Netherlands

**Nederlands Center for Laser Research, 7500 CK Enschede, The Netherlands
***Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow oblast, 142190 Russia

Received August 2, 2001

Abstract—The voltage–power characteristics and spatial structure of an RF discharge in the mixtures of ëé2
and N2 molecular gases with He at total pressures of tens of torr are studied. One-dimensional numerical sim-
ulations of an RF discharge are carried out within two approaches: (i) the distribution function and the related
kinetic coefficients are assumed to be functions of the local reduced field, and (ii) the kinetic coefficients are
functions of the electron mean energy, which is calculated with allowance for both electron heat conduction and
diffusion. The latter approach is shown to better describe the existing experimental dependence of the discharge
voltage and the phase shift between the discharge current and voltage on the driving power. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Recently, great progress has been achieved in creat-
ing ëé2 and CO capillary and slab lasers excited by a
capacitive transverse RF discharge (see, e.g., [1–3]). In
these lasers, the gas mixtures are cooled via electrodes,
to which an RF driving voltage is applied. The proper-
ties of this type of discharge were investigated experi-
mentally in [4–8]. The discharge operated in capillaries
(used in laser devices [4]), plasma slabs [5, 8], and spe-
cially designed cells [6, 7]. In particular, the depen-
dences of the discharge voltage and the phase shift
between the discharge voltage and current on the dis-
charge current and the driving power were studied in [6,
7]. To attain a high lasing power and efficiency, it is
necessary that the gas mixture pressure p be tens of torr,
the driving field frequency f  be in the range from tens
to hundreds of megahertz, and the interelectrode spac-
ing be d = 0.1–0.25 cm [1, 2]. Under these conditions,
numerical simulations of an RF discharge are rather
complicated because of the large value of the pd param-
eter. Early studies on numerical simulations of an RF
discharge are reviewed in [9]. Analytical models
describe an RF discharge only qualitatively [10]. In a
number of papers, the characteristics of an RF dis-
charge were calculated numerically (see, e.g., [5, 11,
12] and review [9]). However, no comparative studies
of the results of numerical simulations and available
experimental data have been made.

It is generally believed that, at elevated gas pres-
sures, the nonlocal character of the electron energy dis-
tribution function can be neglected throughout the
entire volume, including the sheaths. However, a true
threshold pressure for the applicability of the local
model, as well as the dependence of this pressure on
1063-780X/02/2801- $22.00 © 0063
various parameters (gas composition, discharge power,
etc.), is still unknown.

The aim of this study is to investigate this problem
under conditions typical of the active medium of a slab
ëé2 laser.

To this end, numerical simulations are performed
using two different one-dimensional models of an RF
discharge. Both of them include Poisson’s equation for
the electric field, transport equations for electrons and
positive and negative ions, and the heat conduction
equation for the gas temperature in the discharge gap.
In the first model (referred to as local), the rates of elec-
tron production and loss and the electron transport
coefficients are assumed to be functions of the local
value of the reduced electric field E/N (where E is the
electric field and N is the density of neutral particles).
The local model is identical to the model of [11]. In the
second model (referred to as nonlocal), described in
detail in [9], the rates of electron production and loss
and the transport coefficients are assumed to be func-
tions of the electron mean energy. To determine this
energy, the balance equation with allowance for elec-
tron heat conduction and diffusion is solved. Hence,
possible deviations of the electron mean energy and the
accompanying plasma characteristics from those deter-
mined by the local electric field are taken into account.

2. EXPERIMENTAL SETUP

The rms voltage is measured directly at the ëé2
laser electrodes, which are the same as those used in
experiments on optimizing the laser parameters (see
[13] and references therein). The discharge gap dimen-
sions are d = 0.2 cm, a = 1.5 cm, and L = 37 cm. A slab
is formed by gold-coated copper electrodes and side
2002 MAIK “Nauka/Interperiodica”
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walls made from aluminum oxide. A set of matching
coils is connected in parallel to the electrodes to ensure
both a homogeneous electric field along the electrodes
and the resonant matching to the power supply. One
electrode is grounded, whereas the other is connected
to a 100-MHz voltage source. A ëO2 : N2 : He (1 : 1.5 :
12) + 5% Xe gas mixture is used.

The measurements were carried out using a Textron-
ics TDS 640A oscillograph with a bandwidth of
500 MHz and a high-voltage probe with an input
impedance of 20 MΩ , 2 pF and an output impedance of
1 MΩ . To measure the RF voltage, the probe was cali-
brated in the frequency range of interest by measuring
the voltage drop across a 50-Ω load resistor connected
to the RF generator. In the absence of the reflected sig-
nal (the incident and reflected RF powers were mea-
sured with a Werlatone C2310 directional coupler), all
the power is dissipated in the load and the voltage is V =

, where w is the power dissipated in the load and
R is the load resistance. Based on these measurements,
the voltage calibration factor was determined.

3. DISCHARGE MODEL
Following [11], when simulating an RF discharge,

we took into account one positive and one negative ion
species. The continuity equations for these components
were solved together with the continuity equation for
the electron density and Poisson’s equation for the elec-
tric field. The continuity equations took into account
both drift and diffusion. The gas temperature was deter-
mined from the time-independent heat conduction
equation.

Note that the results of numerical simulations of the
discharge parameters (especially the phase shift
between the discharge current and voltage) are sensitive
to the exact value of the thermal conductivity of the gas
mixture, which was determined from the thermal con-
ductivities of the individual components by the proce-
dure described in [14]. The thermal conductivities of
the individual components and their temperature
dependences were taken from [15].

When simulating an RF discharge, we used the local
and nonlocal models. In the local model, the rates of
ionization and electron attachment, the electron mobil-
ity, and the coefficients of electron recombination and
diffusion depend only on the local E/N value, which is
the case of [11].

Under the conditions of interest, the rate of electron
momentum relaxation in the plasma of an RF discharge
in a CO2 : N2 : He mixture is two orders of magnitude
higher than the frequency of the driving field. Near the
electrodes, the rate of electron energy relaxation is also
higher than the frequency of the driving field; however,
in the middle of the discharge gap, they can be of the
same order of magnitude. Generally, the electron
energy relaxation length is 10–3 cm. It will be shown
below that the thickness of the sheaths (where the elec-

wR
tric field sharply increases, whereas the electron density
decreases) is ~10–2 cm. Taking into account the non-
steady and nonlocal character of the kinetic coefficients
requires solving the space- and time-dependent Boltz-
mann equation, which is a rather complicated problem
(in [16], such a problem was solved for the case of pure
He). Although the electron energy distribution function
is different from the Maxwellian one, it is possible to
introduce the electron mean energy, regarding it as the
main characteristic of the distribution function. We
assume that all the coefficients depend only on this
mean energy, as was done in [9]. In this case, in order
to find the electron mean energy, it is necessary to solve
the equation for this energy with allowance for electron
heat conduction. At every instant, the electron mean
energy is determined at any point of the interelectrode
gap. Then, the ionization and attachment rate constants
are calculated as functions of this energy (these func-
tions were determined beforehand by numerically solv-
ing the Boltzmann equation for the electron energy dis-
tribution function). The transport coefficients, which
are used to solve the time-dependent equation for the
electron mean energy and the continuity equations, are
also found. This nonlocal model was previously used in
modeling an RF discharge in a He : Ar : Xe mixture
[17].

The equations are supplemented with the relevant
boundary and initial conditions. The discharge voltage
is derived from a given RF power. To solve the set of
equations numerically, the finite-difference scheme,
which was proposed in [18] for describing processes in
semiconductor devices and first used in [19] for simu-
lating an RF discharge, is applied.

In numerical simulations, we used a spatial mesh
with a nonuniform cell size, which decreased when
approaching the electrodes. In general, the number of
such spatial cells was about 100. A steady state was
reached after several thousands of RF cycles, which
took about 10 h of processing time of an IBM-compat-
ible PC with a Pentium III-733 processor.

4. RESULTS AND DISCUSSION

Only a few experimental studies of a planar RF dis-
charge in ëé2-containing mixtures used in ëé2 lasers
are available in the literature.

In [8], measurements of the rms discharge voltage
were carried out at lower specific driving powers and in
a gas mixture (ëO2 : N2 : He : Xe = 1 : 1 : 3 : 0.25) with
a higher content of molecular gases than in our study.
The results of numerical simulations with the use of the
above two models together with the experimental data
from [8] are shown in Fig. 1. At low specific powers,
both models provide similar results. As the driving
power increases, the nonlocal model shows a more
rapid increase in the rms discharge voltage and better
matches the experimental data than the local model.
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002



        

RF DISCHARGE IN CO

 

2

 

 LASER MIXTURES AT MODERATE PRESSURES 65

                                                                                                                         
In [6, 7], an RF discharge ran in the specially
designed cells—discs with diameters D = 3 and 1.7 cm
and interelectrode spacing of 0.25 and 0.175 cm,
respectively. In addition to the rms discharge voltage,
the phase shift between the discharge current and volt-
age as a function of the discharge input power was also
measured. The measurements were performed in a
wide pressure range p = 20–130 torr in the gas mixture
ëO2 : N2 : He : Xe = 19 : 19 : 57 : 5. Note that, in [7],
the measurements were carried out with a refined tech-
nique and the measured phase shift was lower than
in [6].

To find the phase shift between the discharge current
and voltage, two methods for processing simulation
results were used: spectral decomposition and the least
squares method. Since, in simulations, the voltage at
the electrodes was specified as sinusoid (its amplitude
was determined by the given driving power), there were
high-frequency harmonics in the calculated discharge
current. An example of the simulated discharge current
is shown in Fig. 2. The spectral decomposition was car-
ried out with the help of the fast Fourier transform [20]
and a numerical code kindly provided by N.N. Elkin.
Based on the spectral decomposition results, the phase
shift between the discharge voltage and the fundamen-
tal harmonic of the current was determined. The nonlin-
ear distortion factor, which was determined as the ratio
of the sum of the squared amplitudes of higher current
harmonics to the squared amplitude of the fundamental
harmonic, is ~1%. In the least squares method, the dis-
charge current was approximated by the function Jd =
Jd0sin(2πft + φ), where f is the known frequency of the
driving field. As a result, the amplitude of the discharge
current density Jd0 and the phase shift φ were deter-
mined. The difference between the phase shifts deter-
mined by the two different methods did not exceed one-
tenth of a degree.

Figure 3a presents the measured [7] and simulated
rms discharge voltages versus the driving power for dif-
ferent gas mixture pressures. The solid and dashed lines
show the simulation results obtained with the nonlocal
and local models, respectively. It is seen that the nonlo-
cal model better describes the experimental data, espe-
cially at reduced pressures. The difference between the
results of the alternative models is largest at a pressure
of 20 torr and, then, decreases with increasing pressure.
Figure 3b presents the phase shift between the dis-
charge voltage and current. The symbols show the
experimental data from [7], and the curves show the
simulation results obtained with the nonlocal (solid
line) and local (dashed line) models. With the exception
of the lowest pressure range (near 20 torr), the nonlocal
model describes fairly well the experimental data from
[7]. The local model predicts a phase shift much lower
than the measured one.

We measured the rms discharge voltage as a func-
tion of the discharge input power in the CO2 : N2 : He =
1 : 1.5 : 12 + 5% Xe gas mixture with a higher helium
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
content at two mixture pressures: 50 and 120 torr. The
experimental and simulation results are shown in Fig. 4.
As was expected, the difference between the rms dis-
charge voltages calculated using the local (curves 1, 2)
and nonlocal (1', 2') models decreases as the gas mix-
ture pressure increases. It is notable that, under the
given conditions, the local model predicts an increase
in the rms discharge voltage with gas pressure (cf.
curves 1', 2') at a constant driving power, which dis-
agrees with the experimental data. The nonlocal model
predicts a decrease in the rms discharge voltage with
increasing gas mixture pressure (cf. curves 1, 2), which
is in agreement with the experiment (see, e.g., review
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Fig. 1. Discharge voltage URMS vs. discharge power density
for the mixture ëé2 : N2 : He : Xe = 1 : 1 : 3 : 0.25 at p =
50 torr, d = 0.25 cm, L = 23 cm, a = 3 cm, and f = 81 MHz.
The symbols show the experimental data from [8]; the
curves show the simulation results obtained with the nonlo-
cal (solid line) and local (dashed line) models.

Fig. 2. Time evolution of (1) the discharge voltage, (2) cal-
culated current, and (3) current approximated by Jd =
Jd0sin(2πft + φ) for the mixture ëé2 : N2 : He : Xe =
19 : 19 : 57 : 5 at p = 130 torr, d = 0.175 cm, D = 1.7 cm,
f = 125 MHz, and 〈W 〉  = 123 W/cm3.



66 STAROSTIN et al.
[4]). This decrease is related to the fact that the rms dis-
charge voltage is combined from the voltage drops
across the positive column and electrode sheaths [10].
The rms reduced field (E/N)RMS in the middle of the
discharge gap is determined by the balance between
the electron production and loss and, according to
numerical simulations (Fig. 6), depends slightly on
the pressure and specific driving power; therefore, E
increases with pressure p. Consequently, at a constant
specific driving power W = JE, the discharge current
density J decreases. Since the continuity of the total
discharge current at the electrodes is ensured by the
displacement current, the decrease in J leads to a
reduction in ∂Eel /∂t ~ J and a subsequent decrease in
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Fig. 3. (a) Discharge voltage URMS and (b) phase shift
between the discharge current and voltage vs. discharge
power density for the mixture ëé2 : N2 : He : Xe = 19 : 19 :
57 : 5 at d = 0.175 cm, D = 1.7 cm, and f = 125 MHz. The
symbols show the experimental data from [7] for p = 20
(closed circles), 40 (triangles), 70 (open squares), 100 (open
circles), and 130 (closed squares) torr. The curves show the
computation results obtained with the nonlocal (solid line)
and local (dashed line) models for p = (1) 20, (2) 40, (3) 70,
(4) 100, and (5) 130 torr.

(a)

(b)
both the electric field Eel in the sheath and voltage
drop across the sheath. Hence, the quantity URMS .

 decreases with pressure if the
second term in the radicand dominates. In the opposite
case, URMS increases with pressure. Our calculations
confirm this consideration.

In experiments [6, 7], the data processing made it
possible to separate the voltage drops across the plasma
and the sheaths; for this reason, further numerical sim-
ulations are carried out for the conditions of [7].

The reduced electric field E/N is an important
parameter that determines both the energy fraction
spent on the excitation of vibrational levels and the
related efficiency of the lasers based on vibrational–
rotational transitions. The profiles of the rms E/N are
shown in Figs. 5a–5d for different driving powers and
gas pressures. It is seen that, at a pressure of 20 torr, the
local model (Fig. 5a) predicts narrower sheaths and a
less pronounced sheath shrinking with increasing driv-
ing power than the nonlocal model (Fig. 5b). At a pres-
sure of 130 torr, both models show similar E/N profiles
(Figs. 5c, 5d).

As was discussed above and is seen in Fig. 5, the
value of E/N in the middle of the discharge gap changes
slightly with increasing driving power. The increase in
the discharge input power leads to an increase in the
electron density. As the gas mixture pressure decreases,
the electron losses due to ambipolar diffusion start to
dominate in the electron balance in the middle of the
discharge gap. The dependence of the rms reduced
electric field in the middle of the discharge gap on the
electron density is shown in Fig. 6. At pressures of 70–
130 torr, the difference between the E/N values calcu-
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Fig. 4. Discharge voltage URMS vs. the discharge power den-
sity for the mixture ëé2 : N2 : He = 1 : 1.5 : 12 + 0.5% Xe
at d = 0.2 cm, L = 37 cm, a = 1.5 cm, and f = 100 MHz. The
symbols show the experimental data for p = 50 (squares)
and 120 (triangles) torr. The curves show the computation
results obtained with the (1, 2) nonlocal and (1', 2') local
models for p = (1, 1') 50 and (2, 2') 120 torr.
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Fig. 5. Profiles of the rms reduced electric field (E/N)RMS
within the (a, c) local and (b, d) nonlocal models: (a, b) p =
20 torr and 〈W〉 = (1) 5, (2) 10, (3) 15, (4) 20, and (5) 26 W/cm3

and (c, d) p = 130 torr and 〈W 〉  = (1) 96, (2) 104, (3) 110,
(4) 117, and (5) 123 W/cm3.
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lated using the alternative models is small. As the pres-
sure decreases to 20 torr, this difference becomes sig-
nificant. As the pressure increases from 20 to 130 torr,
the E/N value in the middle of the discharge gap
decreases from 6 × 10–16 to 2.6 × 10–16 V cm2. The local
model predicts that E/N decreases with increasing elec-
tron density, whereas, according to the nonlocal model,
the reduced field increases and this increase becomes
less pronounced with increasing gas pressure.

The small signal gain profiles in molecular lasers
depend on the profiles of the specific driving power.
Figure 7 shows the profiles of the specific driving
power Wtotal for different averaged specific driving pow-
ers 〈W 〉  and gas mixture pressures p. As is the case of
the reduced electric field, the Wtotal profiles calculated
using the local and nonlocal models differ greatly at a
gas mixture pressure of 20 torr (Figs. 7a, 7b) and are
similar at a pressure of 130 torr (Figs. 7c, 7d). Simula-
tions show that the corresponding sheaths occur in the
profiles of the electron, positive ion, and negative ion
densities. Note that, at a pressure of 20 torr and an aver-
age specific driving power of 〈W 〉  = 26 W/cm3, the local
model predicts a significant increase in the specific
driving power near the electrodes (Fig. 7a, curve 5).
This increase is related to the increase in the positive
ion current. The profiles of the rms densities of the con-
duction current, positive and negative ion currents, and
displacement current calculated using the local and
nonlocal models for a pressure of 20 torr and 〈W 〉  =
26 W/cm3 are shown in Figs. 8a and 8b, respectively. In
the middle of the discharge gap, the main contribution
to the total current is provided by the electrons
(Figs. 8a, 8b, curves 1), whereas near the electrodes, the
displacement current prevails (Figs. 8a, 8b, curves 2).
As the driving power increases, the electric field near
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Fig. 6. Reduced electric field (E/N)RMS vs. electron density
ne (both in the middle of the discharge gap) calculated using
the (1–5) nonlocal and (1', 3', 5') local models for p = (1, 1')
20, (2) 40, (3, 3') 70, (4) 100, and (5, 5') 130 torr.
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(4) 117, and (5) 123 W/cm3.
the electrodes also increases, thus ensuring a higher
displacement current, which is proportional to ∂E/∂t.
The increase in the E/N near the electrodes leads to an
increase in the ionization rate and the positive ion den-
sity; as a result, the fraction of the positive ion current
in the total current becomes higher (Fig. 8a, curve 3).
Simulations predict that the fraction of the negative ion
current is small (Figs. 8a, 8b, curves 4).

In [6], a method for separating out the voltage drops
across the plasma and sheaths from the discharge volt-
age was proposed. The method is based on the equiva-
lent circuit of an RF discharge, including the sheath
capacitance connected in series with the parallel con-
nection of the plasma active resistance and the dis-
charge gap capacitance, which is determined by the dis-
charge geometry. Given the driving power, the dis-
charge voltage, and the phase shift between the current
and voltage, we can determine the rms voltage drops
across the sheaths and plasma [6]. Using that procedure
and based on the results of simulations, we determined
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Fig. 8. Profiles of the rms current densities within the
(a) local and (b) nonlocal models for p = 20 torr and 〈W 〉  =
26 W/cm3: (1) electron current, (2) displacement current,
(3) positive ion current, and (4) negative ion current.
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these voltage drops, which are shown in Fig. 9 together
with the experimental data (symbols) from [7]. In both
the experiment and simulations, the voltage drop across
the plasma slightly depends on the discharge input
power (Fig. 9a). Both the local and nonlocal models
give close results; however, the experimental data are
somewhat lower. The sheath voltages calculated using
the nonlocal model (Fig. 9b, solid lines) agree better
with the experimental data than those obtained with the
local model (Fig. 9b, dashed lines). Based on these
results, the capacitance and thickness of the sheaths can
be determined. This method for determining the sheath
thickness is more suitable than the techniques based on
the profiles of the rms reduced electric field, the profiles
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Fig. 9. Voltage drops (a) across the plasma, UpRMS, and
(b) across the sheath, UsRMS, vs. discharge power density
for the mixture ëé2 : N2 : He : Xe = 19 : 19 : 57 : 5 at d =
0.175 cm and f = 125 MHz. The symbols show the experi-
mental data from [7] for p = 20 (closed circles), 40 (trian-
gles), 70 (open squares), 100 (open circles), and 130 (closed
squares) torr. The curves show the simulation results
obtained with the (solid line) nonlocal and (dashed line)
local models for p = (1, 1') 20, (2) 40, (3, 3') 70, (4) 100, and
(5, 5') 130 torr.
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of the electron density averaged over the RF period,
etc., because it does not require any extra criteria. The
sheath thickness determined from the results of simula-
tions by the nonlocal model agrees satisfactorily with
the experimental data from [7]. Note that the local
model underestimates the sheath thickness by a factor
of 1.5–2.

5. CONCLUSION

A comparison of the results of numerical simula-
tions by the local and nonlocal models with the experi-
mental data from both the present study and the litera-
ture has shown that the nonlocal model better describes
the dependences of the discharge voltage and the phase
shift between the discharge current and voltage on the
driving power in a wide pressure range. In particular,
the nonlocal model predicts a decrease in the discharge
voltage with increasing gas pressure at a constant driv-
ing power, which agrees with the experimental data,
whereas the local model predicts the opposite behavior.

On the whole, the nonlocal model satisfactorily
describes the dependences of the discharge voltage, the
phase shift between the current and voltage, and the
voltage drops across the plasma and electrode sheaths
on the discharge input power.
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Abstract—Comparative measurements of the absorbed microwave power are performed using the diamagnetic
diagnostics and a multichannel diagnostics receiving the second harmonic electron cyclotron emission from the
plasma. The specific features of the experiments and the results obtained are discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Until the present time, the determination of the
absorbed power, power deposition region, and plasma
energy in experiments with high-power gyrotron com-
plexes for electron heating has been one of the most
challenging problems in high-temperature plasma
research. The complexity of the problem of the power
deposition in a plasma and heat transport in closed
magnetic confinement systems is related to the variety
of processes occurring in a high-temperature plasma
when high-power microwave beams interact resonantly
with electrons. These processes lead to the appearance
of runaway electron beams (“tails”) and electrons
trapped in magnetic ripples, whose motion is unaf-
fected by the rotational transform of magnetic lines. A
more rapid loss of trapped electrons from the plasma
leads to the generation of an electric field, which affects
the electron ambipolar diffusion and, accordingly, the
plasma thermal conductivity [1–4]. The study of these
effects requires knowledge of the power deposition pro-
files.

In this paper, we present the results of comparative
measurements of the plasma energy and the absorbed
power from diamagnetic signals (at the instant when
the microwave power is switched off) and from the tem-
perature decay at different radii inside the plasma col-
umn. The temperature was measured with the help of
multichannel superheterodyne detectors receiving the
second harmonic X-mode electron cyclotron emission
(ECE) from the plasma.

2. DESCRIPTION OF THE EXPERIMENT

The L-2M stellarator has two helical windings of
different polarities (l = 2) and toroidal-field coils. The
1063-780X/02/2801- $22.00 © 20007
number of field periods is N = 14, the major radius of
the torus is R = 1 m, and the mean plasma radius is ap =
0.11 m. The plasma cross section is elliptical in config-
uration. In the cross sections of the stellarator (that will
be referred to as “standard”), the ellipse is inclined to
the major radius at an angle of α = 45°, and it is inclined
at an angle of α = 90° in the “nonstandard” cross sec-
tion. A 75-GHz gyrotron with a power up to 300 kW
was positioned in the standard section at the low-field
side (LFS). Eight channels of a superheterodyne
receiver [four channels in the range 68–74 GHz at the
LFS and four channels in the range 76–81 GHz at the
high-field side (HFS)] were located nearly 1.57 m from
the gyrotron in a similar standard section, whereas the
71- and 77-GHz channels were positioned in the non-
standard section and received signals from the HFS.
Band-pass filters were used to prevent the detectors
from gyrotron radiation, so that the radiation within the
band ∆f = 75.3 ± 1.5 GHz did not penetrate into the
detector inputs.

The Shafranov (outward) shift of the magnetic axis
(Rax(0) = 0.97 m) during plasma heating amounts to
∆r = 1.8–3.3 cm; i.e., the magnetic axis comes close to
the center of the vacuum chamber (R = 1 m). The mag-
netic system produces a field configuration such that
the resonance microwave-heating region lies in the
middle of the slope of a local magnetic well. According
to calculations, this leads to the appearance of stellara-
tor magnetic “traps” asymmetrically profiled along the
minor radius. The depth of the outer (with respect to the
magnetic axis) traps is one order of magnitude greater
than that for the inner traps. We may assume that the
population of trapped electrons on the outside of the
magnetic axis is greater than on the inside. As is known,
the trapped electrons can give rise to a radial electric
002 MAIK “Nauka/Interperiodica”
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field and, thereby, can change the ambipolar neoclassi-
cal diffusion of the plasma. As the magnetic field B(0)
increases, the electron-temperature distribution across
the plasma column becomes asymmetric because of the
Shafranov shift [5].

The time evolutions of the plasma energy and its
derivative (W and dW/dt) were determined from dia-
magnetic measurements [6–9].

We write the plasma-energy balance equation in the
form [7]

(1)

where Pabs is the heating microwave power and Ploss is
the total loss power, including heat conduction, convec-
tion, charge exchange, and radiation and anomalous
losses. For the steady state, we have Pabs = Ploss .

It is known that a jump in the diamagnetic-signal
derivative after the microwave power is switched off
determines the total absorbed power Pabs (provided that
the loss power does not change during the jump):

(2)

dW
dt

-------- Pabs Ploss,–=

Pabs
dWe

t t0–=( )

dt
----------------------

dWe

t t0+=( )

dt
-----------------------,–=
where t0 is the instant when the microwave power is
switched off and We is the plasma energy. Assuming the
heat flux to be continuous, the power deposition profile
can be obtained from the local energy balance equation
for electrons. At the instant when the microwave power
is switched off, we have

(3)

where ne and Te are the plasma density and the electron
temperature, respectively. Integrating over the plasma
volume, we can determine the value of the absorbed
microwave power (Pabs).

When measuring the local temperature variations
after the microwave power is switched off, it is impor-
tant to appropriately choose the time interval ∆t during
which ∆Te is measured in order to correctly determine
∂Te/∂t. If the observation time interval is too long, then
other processes can affect the measurements of the
power deposition profile. It is known that, in the power
deposition region, the temperature decay curve shows a
knee (the derivative jump) at the instant when the heat-
ing power is switched off (Fig. 1), whereas there is no
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Fig. 1. Experimental time dependences of the heating power (PO1-ECRH), diamagnetic signal (W), diamagnetic-signal derivative
(dW/dt), and electron temperature Te( f ) for typical microwave pulses with ∆tMW = (a) 10 and (b) 6 ms.
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such knee in the temperature decay curve at the plasma
radii where heat is transferred via heat conduction and
the maximum of the phase signal in power-modulation
experiments is markedly delayed. In our previous
experiments with amplitude microwave-power modu-
lation [4], it was found that the characteristic modula-
tion frequency of signals intended for determining the
power deposition region in the L-2M stellarator should
be no less than 4 kHz; consequently, the chosen time
interval ∆t in our experiments should be &250 µs. With
this modulation frequency, the measured profile of the
absorbed power became consistent with the absorption
parameters calculated for L-2M by ray tracing and with
a kinetic model [10, 11]. The plasma density did not
vary substantially over such a short observation
interval.

3. EXPERIMENTAL RESULTS

Figures 1a and 1b show the curves describing the
time behavior of the microwave power (PO1-ECRH),
the diamagnetic signal (W), the diamagnetic-signal
derivative (dW/dt), and the electron temperature (Te)
measured at different frequencies in the range f = 68–
81 GHz for two pulses with different values of micro-
wave pulse duration and plasma density: (a) ∆tMW =
10 ms, ne = 1.7 × 1019 m–3, and Prad > 40 kW and
(b) ∆tMW = 6 ms, ne = 1.1 × 1019 m–3, and Prad = 20 kW.
The jump in the diamagnetic-signal derivative mea-
sured at the time when the microwave pulse is switched
off gives the value of the absorbed power [see formula
(2)]. Previously, in [6–8], we discussed in detail the
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
efficiency of plasma heating determined with the help
of a “fast” (<100 µs) diamagnetic diagnostics.

With the available multichannel ECE detector sys-
tem, it was reasonable to perform comparative mea-
surements of the absorbed power by another diagnostic.
Figures 2a and 2b show the signals of local measure-
ments of the decrease ∆Te in the electron temperature
after the microwave power is switched off. Analyzing
these signals, we can obtain the local and integral data
on the absorbed power. As was stated above, the time
interval chosen to measure the electron temperature
decay time is of crucial importance. For example,
points in Fig. 2a were obtained with ∆t = 200 µs (which
is typical of our experiments), whereas points in Fig. 2b
were obtained with ∆t = 700 µs. The time interval
700 µs results in a nearly flat profile of the power dep-
osition (probably, because of the effect of heat conduc-
tion influencing the local variations in ∆Te). Note that
the chosen time interval, which is appropriate for deter-
mining the power deposition region, is more than one
order of magnitude shorter than the plasma energy con-
finement time defined by the formula τe = W/P and is
shorter than τincr (τincr = dW/dP). This was also demon-
strated in other stellarators [12, 13]. In this paper, we do
not concern ourselves with the factors influencing the
time behavior of the temperature decay.

It was found that the experimental points for pulses
typical of the experiment can be fitted well by a Gauss-
ian profile: ∆Te = y0 + Aexp(–x2/w2), where x = r/a. Fig-
ures 3a and 3b illustrate typical radial distributions of
∆Te obtained from experimental data processing.
Assuming that the plasma density profile is shaped as
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Fig. 2. Local temperature decay for an averaging time equal to (a) 200 and (b) 700 µs.
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Fig. 3. Radial distribution of ∆Te fitted with a Gaussian profile for (a) a microwave pulse duration of 6 ms and an average plasma

density of 1.12 × 1019 m–3 (shot no. 50770) and (b) a microwave pulse duration of 10 ms and an average plasma density of 1.7 ×
1019 m–3 (shot no. 50766).
n(x) = n0(1 – x4) (which is typical of L-2M), for a micro-
wave pulse duration of 6 ms, an average plasma density
of 1.12 × 1019 m–3, and an observation time interval of
∆t = 200 µs, we obtain from Fig. 3a that the integral
absorbed power is Pabs = 155 kW. The value of the
absorbed power deduced from diamagnetic measure-
ments is 140 kW. In the second case (Fig. 3b), for a
microwave pulse duration of 10 ms and an average
plasma density of 1.7 × 1019 m–3, we have Pabs =
120 kW, whereas diamagnetic measurements yield
95 kW. A satisfactory agreement between the results
from the two diagnostics confirms the reliability of the
fast diamagnetic diagnostics and the correctness of the
choice of the time interval for measuring the tempera-
ture variations by the ECE diagnostics.

The heating efficiency η = Pabs/Pin in these experi-
ments was no less than 0.75. The question as to the
“missing microwave power” remains unclear.

It should be noted that diamagnetic measurements,
which are actually insensitive to the temperature pro-
file, also require a very short observation time
(<100 µs) [7]. The agreement between the results from
the measurements of Pabs by both diagnostics indicate
that there exist relatively fast processes carrying energy
away from the plasma.

Note also that, in many pulses at an average plasma
density of <1019 m–3, we observed a more intense ECE
(as compared to the thermal ECE) at frequencies below
the gyrotron frequency (72–70 GHz) from the LFS
(these data are not shown in the figures). This effect
may be attributed to electrons emitting at lower fre-
quencies due to the relativistic increase in their mass. In
this case, we may speak about the radiative temperature
(Trad). When constructing the distributions ∆Te(r), Trad
was substituted for the data obtained from the ECE
measurements at frequencies above the gyrotron fre-
quency (at the same magnetic surface), because it was
previously shown that an increase in Trad does not lead
immediately to a substantial increase in the diamag-
netic signal [14].

4. CONCLUSION

The experiments performed have shown a good
agreement between the data on the absorbed microwave
power measured by the diamagnetic diagnostics and the
local measurements of ∆Te from the plasma ECE after
the microwave power is switched off. The optimum
time intervals required to correctly measure the
absorbed power have been determined experimentally.
However, it remains unclear how to predict this time
theoretically.
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Abstract—A model is proposed for a low-current RF discharge with secondary electron photoemission from
the electrode surface caused by photons originating in the electrode sheath. The low-current state of RF dis-
charges at moderate pressures is peculiar in that the electrons and ions produced during the preceding periods
of the RF field promote the development of the discharge during subsequent periods. Since the ion space charge
is induced during many periods of the RF field, even comparatively moderate fields in the electrode sheath are
sufficient to ensure the conditions under which the current is self-sustaining, in which case the electron photo-
emission dominates over the remaining secondary processes at the electrode surface. In a low-current RF dis-
charge, the ion–electron emission has essentially no impact on the formation of the electrode sheath because
the half-period of the RF field is much shorter than the ion transit time through the sheath. The sheath results
from the overlap of the secondary electron avalanches triggered by electron photoemission from the electrode
surface. The sheath parameters are determined by the conditions under which the current in the sheath is self-
sustaining due to the secondary electron photoemission from the electrode surface. The capacitive susceptance
of the electrode sheath is substantially higher than its electrical conductance. Low-current RF discharges can
only exist when the time required for the ions to drift through the sheath and reach the electrode is much longer
than the half-period of the RF field. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, RF discharges have many practical
applications in plasma chemistry and plasmochemical
technologies, as well as in displays and lasers, so that
the investigation of RF discharges plays an increasingly
important role in modern-day gas-discharge physics.

It was established experimentally that moderate-
pressure RF discharges may exist in two states: one in
which the current density is significantly lower than the
normal current density in a glow discharge and another
in which the current density is close to the normal cur-
rent density. The RF discharges in these states were
called, respectively, low-current and high-current RF
discharges [1] or α- and γ-discharges [2].

Although different criteria for transitions from one
discharge state to another are widely discussed in the
literature, a complete understanding of the mechanism
for these transitions has not yet been attained.

In [3, 4], the low-current and high-current states of
RF discharges were distinguished by the extent to
which the displacement and ion currents in the elec-
trode sheath differ from one another. In [5, 6], these
states were distinguished by the difference in the rates
of gas ionization by plasma electrons and fast electrons
that are produced through secondary emission and are
accelerated in the sheath. Raizer et al. [7] proposed that
the sheath breakdown condition be regarded as a crite-
rion for the transition from the low-current to the high-
current discharge state.
1063-780X/02/2801- $22.00 © 20071
This paper is devoted to investigating the process of
secondary electron photoemission from the electrode
surface caused by photons originating in the electrode
sheath in a low-current RF discharge. The sheath results
from the overlap of the secondary electron avalanches
triggered by electron photoemission from the electrode
surface and is completely formed on a time scale equal
to the electron transit time through the sheath. At mod-
erate pressures, the parameters of the electrode sheath
in a low-current RF discharge are governed by the con-
ditions under which the current in the sheath is self-sus-
taining due to the photon-driven secondary electron
emission from the electrode surface, but the capacitive
susceptance of the sheath is substantially higher than its
electrical conductance. In turn, the high-current state of
an RF discharge results from the conditions under
which the current is self-sustaining due to the second-
ary electron emission caused by the bombardment of
the electrode surface by the ions, the time scale on
which the high-current discharge state is established
being equal to the ion transit time through the sheath.
The existence of the low-current state of an RF dis-
charge is governed by the value of the ratio of the time
required for the ions to drift through the sheath and
reach the electrode to the half-period of the RF field.
This ratio depends on the current density, which in turn
depends on the slope of the current–voltage (I–V) char-
acteristic of the sheath. If this ratio is much larger than
unity, we are dealing with a low-current RF discharge,
and, if this ratio is &1, the discharge is in the high-cur-
rent state.
002 MAIK “Nauka/Interperiodica”
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As will be shown below, in a low-current RF dis-
charge, the effective coefficient of the secondary elec-
tron photoemission from dielectric-coated electrode
surfaces may be as large as about unity. In this case, the
voltage across the sheath is such that the Faraday dark
space is absent and, accordingly, the sheath evolves into
a positive column in a uniform fashion.

In addition, a study will be made of the mechanism
for filling the positive column with the electrons that
originate in the sheath over many RF field periods.
Because of these electrons, a low-current RF discharge
acquires the nature of a non-self-sustained discharge,
thereby becoming stable against the displacement
caused by a high-speed gas flow.

2. DISTINGUISHING FEATURES 
OF A LOW-CURRENT RF DISCHARGE

An RF discharge is in the low-current state if the
ions originating in the sheath drift toward the electrode
surface over many RF field periods. The low-current
state of an RF discharge at a moderate pressure is pecu-
liar in that the electrons and ions produced during the
preceding periods of the RF field promote the develop-
ment of the discharge during subsequent periods. Since
the ion space charge is induced during a number of RF
field periods, the sheath field should only compensate
for a small loss of drifting ions at the electrode surface.
For this reason, even a comparatively moderate field in
the sheath is sufficient for the current to be self-sustain-
ing, in which case the electron photoemission domi-
nates over the remaining secondary effects at the elec-
trode surface.

During the formation of the electrode sheath in a
low-current discharge, the ion-driven secondary elec-
tron emission plays a negligible role, because the half-
period of the RF field is much shorter than the ion tran-
sit time through the sheath. The sheath forms as a result
of secondary electron photoemission from the electrode
surface. The time scale on which the electrode sheath
develops is equal to the electron transit time through the
sheath. The sheaths with oscillating boundaries appear
at both electrodes simultaneously. As the sheath thick-
ness at one of the electrons increases, the sheath thick-
ness at the other electrode decreases (Fig. 1).

In a low-current RF discharge, the capacitive sus-
ceptance of the sheaths is considerably higher than their
electrical conductance. The voltage across the sheaths
and the current in them become shifted in phase, the
phase shift being approximately equal to π/2. When the
current reaches its maximum value, the voltage drops
across the sheaths cancel one another [8]. At the times
ωt = π/2 and 3π/2, the thicknesses of the sheaths are the
same and are equal to d, the field in the positive column
is the strongest (because of the active current flowing
through the column), and there is no phase shift
between the voltage and the current (Fig. 1). At the
instant when the field in one of the electrode sheaths is
the strongest, the thickness of the other sheath is maxi-
mum and is equal to 2d (the field in the positive column
passes through zero at the times ωt = 0, π, and 2π).

Because of the nonlocal effects, the electrons origi-
nate near the exit from the sheath. Since the ionization
rate depends exponentially on the field strength, the
electrons are produced primarily at the time at which
the field in the sheath is maximum and the voltage
passes through zero and reverses polarity. During the
period with this field direction, the electrons do not drift
from the electrode toward the center of the discharge
gap (Fig. 1). Just after the production of a group of elec-
trons, the sheath starts to shrink toward the electrode.
The electrons move in the same direction and at the
same speed as the sheath boundary. The fields in the
electrode sheaths of a low-current discharge prevent the
electrons from reaching the electrode surfaces.

Since the field near the electrode is nonzero over
essentially the entire RF field period, the electrons can
arrive at the electrode only when the sheath boundary
reaches the electrode surface. The potential barrier near
the electrode reflects a fraction of the electrons. The
reflection coefficient of a metal electrode in the pres-
ence of a thin layer of an adsorbed electropositive gas
or a gas of dipolar molecules is much larger than that in
the absence of such layer, especially for slow electrons,
whose energy is insufficient for them to overcome the
potential barrier [9]. For slow electrons, the reflection
coefficients of metals are 0.1–0.4, while those of dielec-
trics are 0.5–0.8 [10].

When the electrons are reflected back into the dis-
charge gap, the field in the gap is directed from the
reflecting electrode. The sheath forms after the elec-
trons have flown away from the electrode, in which case
the electrons move in the weak field of the positive col-
umn. Behind the electrons, the field is stronger. As the
sheath forms, the excited gas particles produce photons
on return to the ground state. When the electrodes initi-
ating low-current RF discharges are coated with dielec-
tric, the nonreflected electrons are captured by surface
defects (traps) and fill the surface quantum levels in an
energetically forbidden zone [11]. It is precisely these
electrons that take part directly in photoemission from
the electrode surface during the subsequent RF field
period, because the photon energy required to knock
them out of a dielectric is lower than that for a metal (it
is approximately the excitation energy). The filling of
the surface quantum levels by the nonreflected elec-
trons and the presence of the photon-producing elec-
trons that originated during the preceding RF field
period and were reflected from the electrode surface
govern the evolution of a low-current RF discharge dur-
ing the subsequent field period: the discharge develops
at the expense of the photoemission of electrons from
the electrode surface. In this case, during one field
period, the ion loss at the electrode surface is small, so
that the ion–electron emission is insignificant.
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
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In the mean field of the sheath in a low-current RF
discharge, the ions drift slowly toward the electrode.
The ions adsorbed on the dielectric surface charge it
over many periods of the RF field. In contrast to the
ions, the electrons are reflected well from the dielectric
surface; therefore, the ion-induced surface charge will
remain unchanged. One photon of energy γν is capable
of knocking many electrons out of the dielectric sur-
face, especially the electropositive coatings [12] and
dielectric coatings whose surface quantum levels are
prefilled with electrons [11].

In turn, the value of the effective coefficient of the
secondary electron photoemission from the electrode
surface depends on both the ratio of the number of pho-
tons to the number of ions originating in the sheath,
αν/α, and on the mean probability for the ions to reach
the electrode surface, ζ ~ 0.5 [13]:

In moderate sheath fields in a low-current RF dis-
charge, collisions involving electrons make excitation
far more probable than ionization. The reason for this is
that the excitation probability curves have relatively
narrow peaks at low electron energies, while the ioniza-
tion probability curves have wide peaks at high electron
energies [11]. As a result, for moderate fields, the ratio
αν /α is large [14]. In turn, large values of γν and αν /α
ensure large values of the effective coefficient of the
secondary electron photoemission from the dielectric-
coated electrode surface.

3. CALCULATION MODEL

The parameters of a low-current RF discharge were
calculated using the approximate model that was devel-
oped by Smirnov [3] in order to determine the parame-
ters of the electrode sheath with allowance for the
adsorption of ions on the electrode surface. Since the
ion space charge in the electrode sheath in a low-cur-
rent RF discharge is induced over many RF field peri-
ods and the ion loss from the sheath per period is small,
the ion density in the sheath can be assumed to be
approximately constant. That this assumption is valid
for a low-current RF discharge was confirmed by com-
paring it with the results from numerical modeling car-
ried out in [3, 7]. On the other hand, this assumption
fails to hold for high-current RF discharges, in which
the ion density cannot be constant, because the ions are
produced and adsorbed during one half-period of the
RF field, so that the sheath alternately appears and dis-
appears at the electrodes. Unlike the conventional
numerical methods, our calculation model does not
require that the applied voltage be specified and yields
correct values of the electrode sheath thickness and the
electric field distribution, which are close to those com-
puted from simulation.

During one field period in a low-current RF dis-
charge, the number of ions adsorbed on the electrode

γ αν/α( )ζγν.=
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
surface should be equal, on average, to the number of
ionization-produced ions [3]:

(1)

where α is the ionization rate constant, γ is the second-
ary photoemission coefficient, E(0, t) is the electric
field at the electrode surface, d(t) is the sheath thick-

E 0 t,( )niµi〈 〉 γE 0 t,( )niµi α xd
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Fig. 1. (a) Time evolutions of the sheath thickness d(t)
(curves 1 and 2 refer to the left and right electrodes, respec-
tively), current I, and the total voltage U across the sheaths.
(b) Profiles of the field strength E along the discharge gap at
different times ωt = (1) 0, (2) π/2, (3) π, (4) 3π/2, and (5) 2π.
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ness, ni is the ion density, µi is the ion mobility, and the
angular brackets 〈… 〉  indicate time average.

Under the assumption that the ion density in the
sheath is constant and that the electric field in the posi-
tive column can be neglected, Eq. (1) (which is a gen-
eralization of the Townsend condition for the current in
the sheath to be self-sustaining), the equations for field
oscillations and the thickness of the sheath near the
right electrode (x = xr), and Poisson’s equation,

determine the period-averaged quantities E and d,
which are the same for both electrodes. The ionization
rate constant α is described by the dependence

E x t,( ) E 1 ωtcos xr x–( )/d–+( ),=

0 xr x– d t( ),< <
d t( ) d 1 ωtcos+( ),=

ni E/4πed=

α x t,( ) Ap Bp/E x t,( )–( ),exp=
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Fig. 2. Dependence of the maximum voltage across the
sheath on the current density for the pressures p = 5, 10, and
30 torr; secondary emission coefficients γ = 0.01, 0.1, and 1;
and frequencies ω/2π = (a) 1.76 MHz and (b) 13.6 MHz.
where the constants A and B depend on the type of gas,
p is the gas pressure, and E is the field strength at the
electrode surface at the instant when the sheaths near
both electrodes are of equal thickness d.

The parameters of a low-current RF discharge in air
were calculated by Smirnov [3] for a frequency of
13.6 MHz and γ = 0.1 and also in my earlier paper [15]
for a frequency of 1.76 MHz and γ = 0.3–1. Although the
model developed here does not take into account the pro-
duction of negative ions, it nevertheless can be applied to
air, which is known to be an electronegative gas. The rea-
son for this is the following: experience gained in
research on glow discharges in air shows that negative
ions are destroyed by the produced active particles. Free
electrons originate presumably under the action of nitro-
gen and oxygen metastable molecules [13].

4. CALCULATED RESULTS 
AND COMPARISON WITH EXPERIMENT

The results presented below were calculated for dif-
ferent values of the pressure, frequency, and secondary
photoemission coefficient γ. For metal electrodes, γ val-
ues are appreciably smaller than those for dielectric-
coated electrodes because no charge is induced at the
metal electrode surface and the surface quantum levels
are not filled with electrons. Figure 2 illustrates the
dependence of the maximum voltage across the sheath
in RF discharges in air on the current density. The
curves were calculated for A = 8.61/(cm torr) and B =
254 V/(cm torr) at pressures of p = 5, 10, and 30 torr;
frequencies of 1.76 and 13.6 MHz; and γ values of 0.01,
0.1, and 1. The calculated results are correct only for
current densities such that the ratio of the ion transit
time through the sheath to the half-period of the RF
field is much larger than unity, in which case the ion
density in the sheath is approximately constant and the
discharge is in the low-current state. The dependence of
this ratio on the current density is illustrated in Fig. 3.
In the case at hand, the current in the sheath is domi-
nated by the displacement current, but the parameters
of the sheath are determined by the processes of elec-
tron production in it, i.e., by the active current. At the
point at which the I–V characteristic of the sheath is
minimum, the current density calculated from the total
current magnitude (equal to the square root of the sum
of the squared amplitudes of the displacement and
active currents) is much lower than the normal current
density in a glow discharge (Fig. 2).

At a pressure of 5 torr, the I–V characteristic of the
sheath has a pronounced minimum in the current den-
sity range in which the ions are adsorbed on the elec-
trode surface over many RF field periods for all γ values
under consideration. The calculated current density
(Fig. 2) agrees fairly well with the density value
0.5 mA/cm2, measured in experiments with RF dis-
charges initiated by metal (brass) electrodes in air
(Fig. 4a), the experimental parameters being the fol-
lowing: the frequency is 1.76 MHz, the distance
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
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between the electrodes is 30 mm, the voltage is 500 V,
the current is 0.24 A, the area of the electrode surface is
48 cm2, and the gas flow velocity is 100 m/s. As the
pressure increases, the minimum in the I–V characteris-
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Fig. 3. Dependence of the ratio ∆ of the ion transit time
through the sheath to the half-period of the RF field on the
current density for the pressures p = 5, 10, and 30 torr; sec-
ondary emission coefficients γ = 0.01, 0.1, and 1; and fre-
quencies ω/2π = 1.76 MHz (dashed curve) and 13.6 MHz
(solid curve).
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tic becomes less pronounced and shifts toward higher
current densities, for which the ratio of the ion transit
time through the sheath to the half-period of the RF
field decreases to a considerable extent (Fig. 3). It is for
this reason that, in experiments with uncoated metal
electrodes, the low-current state of an RF discharge at a
frequency of 1.76 MHz was not achievable at pressures
higher than 5 torr.

The calculated results show that, in a low-current
RF discharge, the current density depends weakly on γ,
because the current in the sheath is dominated by the
displacement current. However, for large values of the
effective secondary photoemission coefficient γ, which
are characteristic of dielectric-coated electrodes, the
voltage across the sheath in a low-current RF discharge
is strongly sensitive to the γ value. In a low-current RF
discharge in air, the voltage across the sheath for γ = 1
is lower than that for γ = 0.01 by an amount greater than
400 V (Fig. 2). Such a large amount explains the
absence of the Faraday dark space in discharges initi-
ated by electrodes with a 10-mm-thick dielectric quartz
ceramic coating (the remaining parameters are the fol-
lowing: the pressure is 30 torr, the voltage is 4.2 kV, the
current is 1.3 A, the area of the electrode surface is
128 cm2, and the gas flow velocity is 100 m/s) and its
presence in discharges initiated by uncoated metal elec-
trodes (Fig. 4). A decrease in the voltage across the
(‡)

(b)

Fig. 4. Photographs of low-current RF discharges at the frequency ω/2π = 1.76 MHz in an air flow with a velocity of 100 m/s
between the electrodes with a spacing of 30 mm. Photograph (a) was taken in experiments with brass electrodes at p = 5 torr and
j = 0.5 mA/cm2, and photograph (b) was taken in experiments with dielectric-coated electrodes at p = 30 torr and j = 1 mA/cm2.
The air flow is directed from right to left.
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sheath results in the disappearance of the electron flux
from the sheath, thereby explaining the absence of the
Faraday dark space, which is associated precisely with
this flux [13]. In addition, large γ values change the
slope of the left (descending) part of the I–V character-
istic of the sheath: this part shifts toward lower current
densities (toward the ordinate axis) (Fig. 2). When the
slope is sufficiently gentle, the electrode sheath can be
sustained in a steady state at the left part the I–V char-
acteristic at a negative gradient of the voltage [16], as is
the case in experiments with 1.76-MHz RF discharges
initiated by dielectric-coated electrodes (with a spacing
of 30 mm) in air at a pressure of 60 torr. At higher pres-
sures, the discharge develops in the form of many fila-
ments; such discharge evolution is characteristic of the
case when the density of the secondary electrons is
insufficiently high for their avalanches, triggered by
photoemission from the electrode surface, to overlap
[17]. Moreover, Seguin et al. [17] succeeded in initiat-
ing RF discharges in the low-current state using elec-
trodes with a 10-mm dielectric coating and with a
0.5-mm dielectric coating, in which case the ballast
resistance of the discharge plays a far lesser role. How-
ever, such discharge states were achieved at pressures
lower than 15 torr.

For RF discharges in gases other than air, the posi-
tion of the minimum point of the I–V characteristic
changes. Thus, owing to the constants A = 31/(cm torr)
and B = 34 V/(cm torr), the I–V characteristic for dis-
charges in helium is minimum at lower current densi-
ties in comparison with those for discharges in air. That
is why the pressure range in which low-current RF dis-
charges can be initiated in helium is wider than that for
discharges in air. This same conclusion was reached in
the experiments of [1].

5. FILLING OF THE DISCHARGE GAP
WITH THE ELECTRONS PRODUCED

IN THE SHEATH

The electrons that are produced near the sheath
boundary in the preceding period of the RF field and are
reflected from the electrode at the instant when the
sheath boundary reaches the electrode surface during
the subsequent RF field period can fill the discharge gap
until the field in the gap pushes them away from the
electrode. Since the electrons that have been reflected
from the electrodes fill the discharge gap and are
trapped in the positive column by the sheath fields,
which point toward the electrodes and prevent them
from reaching the electrode surfaces, the electron den-
sity in the positive column can become elevated, as is
the case in non-self-sustained discharges. It is because
of this effect in a low-current RF discharge and because
the currents in the sheaths are closed primarily by the
displacement current that the discharge region is not
displaced under the action of high-speed gas flows like
those in experiments with air [18, 19].
In high-speed flows of electronegative gases (e.g.,
air), electron losses increase with flow velocity if the
electron transit time through the discharge region in the
longitudinal direction is shorter than the time required
for the density of active molecules (which give rise to
electron attachment [13]) to reach a steady level. When
the electron density in the positive column is elevated,
the loss of active molecules is compensated for by an
increase in the field strength in the column, leading to
the strong dependence of the voltage on the gas flow
velocity, as is the case in the experiments of [20] and
experiments with non-self-sustained discharges. In this
case, the current in the electrode sheaths in a low-cur-
rent RF discharge is dominated by the displacement
current.

The effect of the filling of the discharge gap with the
electrons from the electrode sheath depends on the gap
length, the duration of the half-period of the RF field,
and the electron drift velocity. If the half-period is long
enough for the electrons to fill the entire discharge gap,
then the I–V characteristic of the positive column is
increasing and the column plays the role of the ballast
for the sheath. The longer the discharge gap, the lesser
is the extent to which the sheath is ballasted by the col-
umn. The reason for this is that the half-period of the
RF field is too short for the electrons reflected from the
electrode to fill the entire discharge gap. As a result, the
current density increases and the ratio of the ion transit
time through the sheath to the half-period of the RF
field changes (Fig. 3). This circumstance may explain
the dependence of the state of an RF discharge on the
electrode spacing [1].

6. CONCLUSION

A physical model is constructed in which the exist-
ence of the low-current state of an RF discharge at mod-
erate pressures is attributed to the mechanism implying
that the current in the electrode sheath is self-sustained
due to the secondary electron photoemission from the
electrode surface. A low-current RF discharge can be
initiated when the ions originating in the electrode
sheath are adsorbed on the electrode surface over many
RF field periods. Since the ion space charge is also
induced over many RF field periods, even compara-
tively moderate fields are sufficient to ensure the condi-
tions under which the secondary processes at the elec-
trode surface are self-sustaining.

The parameters of the electrode sheath are deter-
mined by the conditions for the current in the sheath to
be self-sustained due to the secondary electron photoe-
mission from the electrode surface, in which case the
capacitive susceptance of the sheath is substantially
higher than its electrical conductance.

The electrons generated owing to ionization in the
sheath and reflected from the electrode during the pre-
ceding RF field period produce photons during the sub-
sequent RF field period. In turn, these photons knock
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
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the new electrons out of the electrode surface. A low-
current RF discharge develops as a result of the second-
ary electron photoemission and the overlap of the sec-
ondary electron avalanches.

The moderate field strength in the sheath, the charg-
ing of the dielectric-coated electrode surface by the
ions, and the filling of the surface quantum levels by
electrons ensure the high photoemission yield γν and
the high effective value of the secondary electron pho-
toemission coefficient γ during the corresponding RF
field periods.

The current density in a low-current RF discharge is
weakly sensitive to the γ value, because the total current
in the electrode sheath is dominated by the displace-
ment current. On the other hand, large γ values strongly
affect the voltage across the sheath. In turn, the value of
the voltage across the sheath is also responsible for the
appearance of both an electron flux at the sheath bound-
ary and the Faraday dark space, which are absent in a
low-current RF discharge initiated by dielectric-coated
electrodes.

The effect of large γ values is such that the descend-
ing part of the I–V characteristic of the sheath shifts
toward lower current densities (toward the ordinate
axis) and the slope of this part changes. It is because of
this effect that low-current RF discharges can be initi-
ated by dielectric-coated electrodes at elevated pres-
sures. The development of a low-current discharge is
promoted by an increasing I–V characteristic of the
positive column (provided that the electrons from the
sheath fill the entire discharge gap) and the ballasting
effect of the dielectric coating reactance.

The existence of the low-current state of an RF dis-
charge is governed by the value of the ratio between the
time required for the ions to drift through the sheath
toward the electrode and the half-period of the RF field.
For the high-current state of an RF discharge, this ratio
is &1, whereas, for the low-current state, it is much
larger than unity. Although the capacitive current in the
electrode sheath of a low-current RF discharge is sub-
stantially higher than the active current, the sheath
parameters are determined by the conditions under
which the current is self-sustained due to the secondary
electron photoemission (with the effective coefficient γ)
from the electrode surface.

The physical model proposed here for describing
low-current moderate-pressure RF discharges made it
possible to explain the normal value of the current den-
sity and the dependence of the discharge shape on pres-
sure, electrode spacing, the type of gas, and the coating
of the electrodes with a dielectric, as well as such
effects as the absence of the Faraday dark space in dis-
PLASMA PHYSICS REPORTS      Vol. 28      No. 1       2002
charges initiated by dielectric-coated electrodes and the
stability of the discharge region against the displace-
ment caused by a high-speed gas flow.
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Abstract—A series of experiments with a fully ionized turbulent lithium plasma is described. Discharges with
a heat flux density onto the wall of 1–3 kW/cm2 and an electron density of ~1015 cm–3 are obtained. The energy
can be transferred to the wall by both Li+ and Li++ ions. The measurements show that the photon flux corre-
sponding to the main resonant transition of lithium atoms is a factor of 104–105 less than it could be if all the
ions arriving at the wall recombined there. A mechanism is proposed for energy transfer onto the wall via the
recombination of Li++ ions to Li+ ions in the cold wall region of the discharge and the subsequent energy emis-
sion by Li+ ions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Increasing the fraction of radiative energy flux in the
total energy flux onto the wall of a thermonuclear
device is a promising method for protecting the first
wall from sputtering [1]. At present, the efficiency of
energy reemission at the periphery of a tokamak with
the use of special additives can attain 90%. A further
increase in the fraction of the reradiated energy can be
achieved using lithium vapor.

The evaporation and ionization of lithium films can
also be used to protect the surface of divertor plates
from ultra-high-power fluxes arising during current dis-
ruptions.

2. DESCRIPTION OF THE EXPERIMENT

Experiments were carried out in the Robotron
device intended for producing a dense, strongly ionized
metal vapor plasma. A schematic of the experimental
setup is shown in Fig. 1. An initial plasma was pro-
duced by a vacuum arc discharge between cathode 12
and anode 11, shaped as a diaphragm. Solid lithium was
loaded into the cathode. Electrode 5 was used to initiate
the vacuum arc. The injector was supplied from a
capacitor bank with a stored energy of up to 700 J. The
injector discharge current was limited by a ballast resis-
tor. A lithium plasma flowed into a quartz tube with an
inner diameter of 26 mm, in which the cathode and
anode of the main discharge were placed. The main dis-
charge was powered by two capacitor banks that could
be switched on independently with a controlled time
delay. The maximum energy of the two charged banks
was 2.5 kJ. The discharge current (up to 2.5 kA) was
limited by a ballast resistor. The cathode of the main
discharge was also equipped with an ignition electrode
1063-780X/02/2801- $22.00 © 20078
(which is not shown in the figure). All the electrodes
were made from fine-grained vanadium.

Unlike in [2], the injector was placed inside a pulsed
solenoid with a magnetic-field induction of up to 0.05 T.
The solenoid served to improve the transportation of
the lithium plasma from the injector to the main dis-
charge. Both the injection and the solenoid current
durations were on the order of 1 ms, and the main dis-
charge duration was 4–5 ms.

Typically, the delay time between the start of injec-
tion and the beginning of the main discharge was 0.3–
0.5 ms. In discharges, we observed voltage spikes with

1

2

3 4 5
6 7

8
9

101112

Fig. 1. Experimental setup: (1) metal cylinder, (2) Li,
(3) insulator, (4) pumping-out, (5) ignition electrode,
(6) solenoid winding, (7) vacuum chamber, (8) main dis-
charge cathode, (9) quartz tube, (10) main discharge anode,
(11) injector anode, and (12) injector cathode.
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a duration of about 1ms. In some shots, the spike ampli-
tude exceeded the initially applied voltage.

The current was measured by Rogowski coils. The
electrode voltage was determined from the current
flowing through a resistor by using a galvanically
decoupled pair of a photodiode and an LED. The dis-
charge operated in a repetitive mode with a repetition
rate of 0.2 Hz.

The optical measurements were performed in the
visible spectral region with the help of a monochroma-
tor with a linear dispersion of 1.3 nm/mm or interfer-
ence filters. Radiation was observed either across the
discharge tube (in the mid-perpendicular plane) or
along the system axis through the aperture in the cath-
ode of the main discharge. The radiation was detected
by photomultipliers equipped with broadband amplifi-
ers. The spectral complex was calibrated with a refer-
ence source. The discharge spectrum contained the
lines of atomic and ionized lithium and vanadium, as
well as the lines of the Balmer series of impurity hyd-
rogen.

The experimental data were recorded with the help
of a multichannel ADC with a maximum sampling fre-
quency of 500 kHz.

3. RESULTS OF MEASUREMENTS

The electron plasma density was measured from the
Stark broadening of the çβ line. The line profile was
scanned by readjusting the monochromator slit after
every shot. The scanning step was 0.025 nm. Simulta-
neously, the second photomultiplier traced the integral
line intensity, which was then used to normalize the
measured line intensity at a fixed wavelength. When
processing the line profiles, both the instrumental func-
tion and the Doppler broadening profile were assumed
to be Gaussian. Their relative contributions were taken
into account by using a Voigt function. The measure-
ments were performed for three different values of the
discharge current. It turned out that, under our experi-
mental conditions, the Doppler broadening could be
neglected. Results of these measurements are shown in
Fig. 2.

The profile of the electron temperature and its abso-
lute value were not measured. The evaluation of the
average temperature from the Spitzer conductivity of
the plasma seems to be incorrect because of strong
plasma turbulence. In [3], the following relationship
was obtained for a steady-state discharge (assuming that
heat loss is governed by heat conduction): eaE/T0 ≈ 1,
where a is the tube radius, E is the applied field, and T0
is the temperature at the axis. According to this for-
mula, the temperature T0 in our discharges is on the
order of 10 eV. Because of the convective heat
exchange caused by turbulence, this formula gives an
overestimated value of the temperature.

The typical intensity of the 670.7-nm resonant
atomic lithium radiation at a discharge current of 2.1–
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2.5 kA was 5 × 1014–2 × 1015 photon/(cm2 s sr). In
repetitive discharges, this intensity initially grows from
shot to shot and, then, is stabilized at a certain level.

As in [4], we observed the emission of singly
charged lithium ions corresponding to the 23P–23S1
548.5-nm transition. The averaged (over the discharge
cross section) density of the excited ions in the 23P state
at the maximum of the radiation pulse was 2 × 108–
1.5 × 109 cm–3.

4. DISCUSSION OF THE RESULTS

Let us examine the experimental data on the Stark
broadening of the çβ line. The choice of the axes in
Fig. 2 seems to be most informative, because, if radia-
tion is neglected, then the measured density turns out to
be closely related to the heat flux onto the wall. If only
Li+ ions arrive at the wall, then this flux can be esti-
mated as q1 = ni1Vi E1 (line 1), where ni1 is the density
of Li+ ions, Vi ≈ 6 × 105 cm/s is the ion-acoustic veloc-
ity, and E1 ≈ 10 eV is the energy transferred to the wall
by a Li+ ion (including the ionization energy).

When designing the Robotron device, it was sug-
gested by one of the authors (E.V. Mudretskaya) that
Li++ ions would constitute a considerable fraction of the
plasma ions in spite of the very high energy of second-
ary ionization. It was also believed that the hot wall of
a quartz tube would not be substantially destroyed by
the lithium ion flow. The relative stability of quartz
tubes against the reduction by lithium ions was con-
firmed in the first experiments with a lithium plasma
[4]. These experiments demonstrated the presence of
radiation from lithium ions attributed to the 23P–23S1
transition from the excited level with an energy of
61.28 eV, which indirectly confirmed the presence of
Li++ ions.

We also observed a rather intense radiation from
singly charged lithium ions in this line. Since the
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q, kW/cm2

Fig. 2. Electron density for different densities of the heat
flux onto the wall of the discharge chamber. Experimental
points 1, 2, and 3 correspond to the electron densities in
shots with maximum discharge currents of 2.5, 2, and 1 kA,
respectively. Straight lines 1 and 2 are described in the text.
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energy difference between this level and the doubly
ionized state of atomic lithium (E2 = 75.64 eV) is rela-
tively small, we can use the Saha–Boltzmann formula
to estimate the density of Li++ ions from the measured
density of singly charged ions in the 23P state:

(1)

where Nz is the density of ions with the charge number
Z (in cm–3); Ne is the electron density (in cm–3); gz is the
total statistical weight of ions with the charge number
Z; nz – 1, k is the reduced (per unit statistical weight) den-
sity of ions with the charge number Z – 1 in the kth state
(in cm–3); Iz – 1 and Ek are the ionization energy of an ion
with the charge number z – 1 and the excitation energy
of its kth level (in eV), respectively; T is the electron
temperature (in eV); and Z = 0 corresponds to neutrals.

Estimates show that, at the above density of the
excited ions and a temperature of 3–4.5 eV, the
expected density of Li++ ions is (0.2–4) × 1014 cm–3.
Using the Saha equation, we can estimate the degree of
secondary ionization in the temperature range 3–4.5 eV.
Figure 3 shows the calculated curve ni2/(ni1 + ni2) for the
total density ni = ni1 + ni2 = 1015 cm–3.

If only Li++ ions arrive at the wall, then the heat flux
onto the wall can be estimated as q2 = ni2ViE2, where
ni2 = 2ne is the density of Li++ ions and E2 ≈ 80 eV
(Fig. 2, line 2). We can see that most of the experimen-
tal points fall in a domain between the lines ni1 and ni2.
These lines correspond to an ion flux of 1020–
1021 ion/(cm2 s).

If the probability of the neutralization of an ion
arriving at the wall is close to unity, then the discharge
is sustained by an intense recycling of lithium on the
discharge chamber wall. Hence, every ion neutralized
on the wall must be ionized again. The probability of
electron-impact excitation is usually higher than the
probability of ionization. Therefore, it seems reasonable

NzNe/nz 1– k,  = 2gz 3 10
21

T
3/2

Iz 1– Ek–( )/T–[ ]exp××
k 1>( ),

1.0

0.8

0.6

0.4

0.2

3.0 3.5 4.0 4.5

ni2/(ni2 + ni1)

Te, eV

Fig. 3. Relative content of doubly charged ions in the
plasma as a function of the electron temperature (calculated
by the Saha formula).
to assume that the lithium resonant radiation flux should
be on the order of or higher than the ion energy flux onto
the wall. However, the experimental values of the lith-
ium resonant radiation flux are lower by several orders
of magnitude: 5.5 × 1014–2 × 1015 photon/(cm2 s sr).

This discrepancy can be explained by the contribu-
tion from radiation associated with the three-body
recombination of Li++ ions in the cold edge plasma. Let
us estimate the thickness of a plasma layer with the
temperature Te = 0.4 eV, required to radiate a power of
q ~ 1 kW/cm2, assuming that ion recombination is
accompanied by the emission of an energy of 75 eV.
The number of recombination events per unit volume in

unit time is given by the expression N = α ni2 (Z = 2)

[5], where α ≈ 5 × 10–26  cm6/s is the recombina-
tion rate constant. Then, at the densities ne ≈ 1015 cm–3

and ni2 ≈ 1014 cm–3, the sought thickness is equal to L ≈
q/(N × 75 × 1.6 × 10–19) ≈ 0.3 cm. Upon three-body
recombination, the third particle carries away an energy
on the order of Te and, consequently, the bound electron
appears at one of the high levels. The remaining energy
on the order of ~(Ei – Te) ~ 70 eV is lost in cascade tran-
sitions.

The mechanism for the transport of a Li++ plasma to
the low-temperature region can probably be associated
with turbulence caused by the current–convective insta-
bility [2]. A characteristic parameter of the problem on
the onset of helical instability is the so-called magnetic
Rayleigh number [6]: Ra* = 2σEBa3σT/cηχ, where σ ≈
2e2nτe/me is the plasma conductivity, σT = d lnσ/d lnT =

1.5, η ≈ nTiτi is the ion viscosity, and χ = k/5n ≈ 

is the thermal diffusivity. The instability develops when
Ra* > 3191. Substituting the expressions for the ion
viscosity and the electron thermal diffusivity into the
formula for Ra* and estimating the longitudinal mag-
netic field produced by the current itself as B ≈
2πaσE/c, we obtain

(2)

where re = e2/mec2 is the classical electron radius. In the
initial phase of the discharge, the time during which the
ion and electron temperatures equalize can be longer
than the growth time of the instability near the axis, so
that the temperatures Te and Ti can differ substantially.
Assuming for estimates that (eEa/Te)2 ≈ 2 and Te/Ti ≈ 3,
we obtain that the helical instability develops under the
condition n ≥ 1014 cm–3, which is satisfied in the dis-
charges under study.
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5. CONCLUSIONS

(i) The photon flux corresponding to the resonant
lithium line is a factor of 104–105 lower than it could be
if all the ions arriving at the wall recombined there,
assuming that energy is totally transferred by these
ions.

(ii) The most probable mechanism for heat transfer
onto the wall is the recombination of Li++ ions to Li+

ions in the cold wall region of the discharge and the
subsequent energy emission by Li+ ions.
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Department at the Institute of General Physics of the
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After graduating from Moscow State University in
1954, Kovriznykh began to work at the Lebedev Phys-
ical institute, in the laboratory headed by V.I. Veksler.
During the first several years, he carried out a series of
studies on the conventional methods for charged parti-
cle acceleration and the theory of new methods of radi-
ative acceleration of plasma bunches. Based on these
studies, he defended his candidate’s dissertation in
1959. Then, he turned to the field of plasma physics and
controlled nuclear fusion, where his talent as a theoret-
ical physicist blossomed.

Kovriznykh’s works on plasma turbulence and non-
linear interaction of waves are widely known. In 1967,
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he defended his doctoral dissertation on the statistical
theory of wave interaction in plasma. In subsequent
years, he repeatedly applied himself to these problems,
in particular, to the problem of charged particle acceler-
ation in the interaction of high-power electromagnetic
radiation with plasmas.

Kovriznykh contributed greatly to controlled fusion
research. He was one of the initiators of the studies on
high-temperature plasma physics at the institute. His
pioneer works on the stability of the structure of helical
magnetic fields and the neutralization of resonant per-
turbations resulted in the development of a new stellar-
ator concept that is presently used at all the leading stel-
larator laboratories in the world.

Kovriznykh is one of the founders of the neoclassi-
cal transport theory, underlying the modern concept of
magnetic plasma confinement. For these works, he was
awarded a Lenin Prize in 1984.

For almost two decades, Kovriznykh has been the
head of the Plasma Physics Department (until 1982,
headed by Professor M.S. Rabinovich). During this
time, the experimental investigations at stellarators cre-
ated at the Department showed considerable promise
for using this type of magnetic confinement devices in
controlled fusion research. Kovriznykh’s works in this
field received wide recognition; now, he is one of the
leaders of the stellarator program in the world.

Kovriznykh conducts important organizing work.
He is the chairman of the Scientific Council of the Rus-
sian Academy of Sciences on the problem “Plasma
Physics,” a member of the editorial boards of a number
of Russian and foreign journals, a member of several
international committees, and a member of the program
and organizing committees of several large interna-
tional conferences.

Lev Mikhaœlovich greeted his 70th birthday full of
ideas and energy. The members of the Editorial Board
and his colleagues from the Institute of General Physics
wish him robust health, happiness, and fulfillment of all
his creative intentions.
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