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Abstract—Having analyzed the spectrum of the quasar PKS 1232+0.82 taken by Petitjean et al. (2000),
we identified HD molecular lines in an absorption system at redshift z = 2.3377. We estimated the column
density of HDmolecules in this system,N(HD) = (1 − 4)× 1014 cm−2. The excitation temperature of the
first rotational level J = 1 relative to the ground state J = 0 is Tex = 70 ± 7 K. As far as we know, this is
the first detection of HD molecules at high redshift. c© 2001 MAIK “Nauka/Interperiodica”

Key words: quasar spectra, observational cosmology
INTRODUCTION

The relative abundance of deuterium [D]/[H] pro-
duced during Big Bang nucleosynthesis is one of the
key parameters of modern cosmology, because it is
the most sensitive indicator of the baryon density in
the Universe.

The deuterium abundance at early cosmological
epoch (10–14 Gyrs ago) can be determined from
high-redshift quasar spectra. Until now, only atomic
lines of D I and H I have been used to measure the
relative abundances of D I and H I. However, this
method runs into serious difficulties. The D I and H I
wavelengths almost coincide, viz λ(H I)/λ(D I) =
1.00027. Moreover, the column densities of D I and
H I differ by a factor of 10−4 − 10−5. Therefore, D I
lines are very weak and virtually undetectable when
the column density of hydrogen is low. When the
hydrogen column density is high enough, H I lines
are saturated and broadened, so that D I lines are lost
in the H I lines. In addition, one cannot be sure that
the lines treated as D I lines are actually D I and not
produced by an intervening weak H I cloud shifted
in velocity by −80 km s−1. (The latter explanation
is possible, because the lines in question are situated
within the Ly-α forest where absorption features are
numerous.) The above difficulties may be the reason
why the [D]/[H] values determined from atomic lines
by different authors differ by more than an order of
magnitude. For example, 2 × 10−4 (Webb et. al
1997) and 1.6 × 10−5 (Pettini and Bowen 2001).
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The above difficulties do not arise if the relative
abundances of molecules [HD]/[H2] are measured,
because the corresponding wavelengths differ sig-
nificantly while the redshift parameter is the same.
However, it may be difficult to derive [D]/[H] from
[HD]/[H2] because of uncertainties in the chemistry.
Nevertheless, this is an independent access to the
deuterium abundance in these remote clouds.
Until now, HD lines have not been identified in

quasar spectra. Moreover, for a long period, from
1985 to 1997, the only molecular absorption system
was known, viz. the H2 system at zabs = 2.811 im-
printed in the spectrum of PKS 0528-250 (Levshakov
and Varshalovich 1985). At present, only four re-
liable absorption systems of molecular hydrogen H2

are known in quasar spectra (Petitjean et al. 2000;
Levshakov et al. 2001) and no other molecules have
been detected in their optical spectra.

RESULTS OF ANALYSIS
OF THE PKS 1232+082 SPECTRUM

Here, we report on the identification of HD lines in
the absorption system at zabs = 2.3377 in the spec-
trum of PKS 1232+082 (zem = 2.57 andmV = 18.4).
To the best of our knowledge, this is the first identifi-
cation of redshifted HD molecules.
A high-resolution spectrum of PKS 1232+082

was taken using UVES with the 8.2-m ESO VLT
telescope by Petitjean et al. (2000). The spectrum
contains the strong absorption system of molecular
hydrogen H2 at zabs = 2.3377 previously found by Ge
and Bechtold (1999).
2001 MAIK “Nauka/Interperiodica”
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Portions of the VLT spectrum for PKS 1232+082 taken by Petitjean et al. (2000). The solid line represents our theoretical
HD spectrum.
We found several HD lines of the Lyman series
B 1Σ+–X 1Σ+ corresponding to R(0) transitions
from the ground state J = 0, v = 0, and some ten-
tative lines R(1) from the first rotational level J = 1,
v = 0.
The figure shows portions of the observed spec-

trum for PKS 1232+082 and our synthetic fit of HD
lines. We see R(0) lines in the L 5-0, L 4-0, L 3-0, and
L 0-0 bands and some possible R(1) lines, whereas
HD lines in L 2-0 and L 1-0 bands are heavily blended
by H2 lines. Parameters of the identified HD lines
are given in the table. We took the spectroscopic
data on laboratory lines from the measurements by
Dabrowski and Herzberg (1976) and the oscillator
strengths from Allison and Dalgarno (1970).
The weighted mean value of the redshift parameter
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Parameters of the identified lines of HD molecules in
the spectrum of PKS 1232+082 in the system at zabs =
2.3377

Transition λlab, Å λobs, Å zabs

L 5-0 R(0) 1042.854 3480.729(3) 2.337695

R(1) 1043.229 3482.219(9) 2.337699

L 4-0 R(0) 1054.298 3518.935(4) 2.337704

R(1) 1054.734 3520.397(12) 2.337711

L 3-0 R(0) 1066.279 3558.923(3) 2.337703

R(1) 1066.706 3560.34b . . .

L 2-0 R(0) 1078.835 3600.83b . . .

R(1) 1079.248 3602.21b . . .

L 1-0 R(0) 1092.006 3644.79b . . .

R(1) 1092.404 3646.12b . . .

L 0-0 R(0) 1105.845 3690.972(2) 2.337694

R(1) 1106.221 3692.23 . . .

b HD line is blended

for the measured HD absorption system is
zabs(HD) = 2.337700(5),

in good agreement with zabs(H2) = 2.33771 (Petit-
jean et al. 2000).
According to our estimates, the column densities

of HD molecules in the ground state J = 0 and in the
first rotational state J = 1 are

NJ=0(HD) = (1 − 3) × 1014 cm−2,

NJ=1(HD) = (4 − 8) × 1013 cm−2.

The population of the first rotational level relative
to the ground state may be characterized by the exci-
tation temperature:

Tex = 70 ± 7 K.

However, the R(1) lines have low S/N ratios, so
that this value may be considered as an upper limit on
Tex. New observations with higher S/N are necessary
to confirm the lines from the J=1 level.
A detailed analysis of the relative abundances

[HD]/[H2] and the corresponding estimates of [D]/[H]
will be performed elsewhere. Note that an additional
ASTRONOMY LETTERS Vol. 27 No. 11 2001
problem of interstellar chemistry (concerned with the
formation and destruction of molecules) has to be
solved to determine [D]/[H] from [HD]/[H2].

In conclusion, we emphasize that the detection of
HD molecules in absorbing matter at such a high
redshift may be of importance in understanding the
formation of the first generation of stars, because HD
molecules could be important cooling agents in the
primordial condensations where heavy elements were
in deficit.
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Abstract—The core (injector) and the jet (relativistic plasma outflow) of AGN objects are surrounded by
an ionized medium, an H II region observed in emission lines. The synchrotron radiation from the core
and the jet is observed through a thin screen that cocoons the structure under consideration. The screen
transparency depends on wavelength and distance from the injector. We consider the objects 3C 345
and 1803 + 784 whose core emission at decimeter wavelengths is absorption by more than 25 dB. The
visible bright compact component is the bright nearby portion of the jet that extends outside the dense
part of the screen. We explore the possibility of measuring the screen transparency from absorption in Hα
recombination lines with different quantum numbers at centimeter wavelengths. c© 2001 MAIK “Nau-
ka/Interperiodica”
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INTRODUCTION

AGN objects are galaxies with enhanced nuclear
activity. These can be various types of galaxies and
galaxies at different formation stages of their nuclei
and at different stages of their activity. As follows from
high-angular-resolution radio observations, nuclear
activity manifests itself as the ejection of relativistic
plasma flow at a velocity close to the speed of light
and its subsequent self-focusing into a thin jet. Oc-
casionally, dense knots of relativistic plasma respon-
sible for radio outbursts are ejected. The outburst
radio emission is delayed and decreases in intensity
with increasing wavelength. The plasma temperature
reaches the Compton limit, T = 1012 K (Kellermann
and Pauliny-Toth 1969). In several cases, this limit is
exceeded.
However, variability that does not correlate or

anticorrelates with high-frequency outbursts again
increases at low frequencies. This is probably at-
tributable to a change in the transparency of the
ambient ionized gas. The quasars 3С 345 and
1803 + 784 are typical AGN objects. Below, we con-
sider the possibility of studying the ambient ionized
medium from hydrogen recombination absorption
lines.

THE FINE STRUCTURE OF AGN OBJECTS

The quasars 3С 345 and 1803+784 have similar
redshifts: z = 0.595 and 0.68, respectively. Their

*E-mail: lmatveen@mx.iki.rssi.ru
1063-7737/01/2711-0686$21.00 c©
cores are the injectors of relativistic plasma. A plasma
flow is ejected at a relativistic velocity and is focused
into a thin, helically wound jet. The core (injector)
radio emission dominates at millimeter and short cen-
timeter wavelengths. The optical depth of the jet
decreases with increasing distance from the core, and
only its nearby part is visible in the frequency range
under consideration. The jet optical depth increases
with wavelength, which results in the dominance of
its radio emission. Radio outbursts correspond to
the compact components, dense knots of relativistic
plasmamoving at velocities close to the speed of light.
The brightness temperatures of the compact optically
thick structures reach Tb ≈ 1012 K.
In several cases, high-frequency radio outbursts

are accompanied by a reduction in the intensity of the
low-frequency emission (negative outbursts). This
phenomenon was particularly pronounced in the ob-
ject 0950 + 658 at a frequency of 2.6 GHz (Fiedler
et al. 1987). Aller and Aller (1982) noted a general
anticorrelation between the high-frequency and low-
frequency emissions. The time scale of the low-
frequency variability is 1–2 years.

Quasar 3С 345. Radio outbursts were observed in
this object in the frequency range 8–89.6 GHz dur-
ing its enhanced activity between 1981.5 and 1982.5
(Bregman et al. 1986; Unwin et al. 1983). Studies
of one of the most intense outbursts at epoch 1981.6
revealed a cutoff in its spectrum at the frequency
f = 8GHz. The low-frequency spectral index is α ≥
2.6. The observed features at decimeter wavelengths
are attributable to absorption in the ambient ionized
2001 MAIK “Nauka/Interperiodica”
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medium, whose electron density depends on nuclear
activity (Matveyenko et al. 1986)
The fine structure of the quasar 3C 345 was

investigated at low frequencies, at the decimeter
wavelengths λ = 18, 49, and 92 cm (Rantakyro et
al. 1992; Matveyenko 1993; Matveyenko et al.
1996a, 1996b; Matveyenko and Witzel 1999). Most
of the 18-cm emission is produced by a bright,
compact (10 × 5 mas) region that lies at a distance
of 2 mas from the injector. The effective size of
the region changes from epoch to epoch, but the
brightness temperature is virtually constant, Tpeak ≈
0.2 × 1012 K, which determines the change in the
radio flux density. In this case, the core brightness
temperature does not exceed a few percent of Tpeak.

At λ = 49 cm, the bright compact region is at
16 mas from the injector and has an effective size of
5 × 4 mas. Its brightness temperature is Tb ≈ 0.5 ×
1012 K, while the apparent core brightness tempera-
ture is 0.003 Tpeak or 25 dB lower (Matveyenko et al.
1996).
At 92 cm, the size of the bright region is 22.6 ×

9.4 mas and Tb ≈ 1011 K. This region corresponds to
the nearby part of the jet and lies at∼ 30mas from the
injector (Hong Xia-yu et al. 1995). The core radio
emission is virtually invisible.
Studies of the fine structure in the quasar 3С 345

at 6 cm show that the core (injector) brightness tem-
perature is lower than the temperature of the nearby
compact objects, Tb ≈ 0.2Tpeak (epoch 1990), with
the brightness temperatures of the latter reaching
1012 K (Unwin and Wehrle 1992; Ros et al. 2000;
Klare et al. 2001). The optical depth of the relativistic
plasma in the injector region cannot be lower than
that in the nearby components; neither can its bright-
ness temperature. Such a reduction can be caused by
the absorption of synchrotron radiation even at this
frequency.
Thus, the core spectrum is similar to the out-

burst spectrum and has a low-frequency cutoff at f ≈
7 GHz. The low-frequency spectral index is α ≈ 4
(Matveyenko et al. 1982; Matveyenko and Witzel
1999).

Quasar 1803 + 784. Measurements of the fine
structure in the object 1803 + 784 at λ = 18 cm
(Matveyenko and Witzel 1999; Britzen et al. 2001;
Matveyenko et al. 2000) show that the peak bright-
ness temperature of the compact source is almost
equal to the Compton limit, Tpeak ≈ 1012 K. This
source lies at 2 mas from the core. The core bright-
ness temperature is no less than 25 dB lower than the
brightness temperature Tpeak, which corresponds to
the screen absorption in the injector region at 18 cm
bymore than 25 dB. The optical depth of the screen at
ASTRONOMY LETTERS Vol. 27 No. 11 2001
this wavelength decreases with distance from the in-
jector as τ ≈ 5.5(1−R/R0) (Matveyenko andWitzel
1999).
A similar spectrum with a low-frequency cutoff

is observed for the nucleus of the Seyfert galaxy
NGC 1275 (radio source 3С 84, z = 0.0176). The
cutoff frequency is f ≈ 10GHz, and the low-frequency
spectral index is α ≈ 3.3. The optical depth at
18 cm is τ ≈ 9, the emission measure is ME ≈
7 × 107 cm−6 pc, and Ne ≈ 104 cm−3 (Matveyenko
et al. 1980, 1985)

H II REGION

The emission from H II regions of AGN objects
is observed in narrow and broad Hα emission lines.
The electron density of these narrow-line regions is
Ne ∼= 105–106) cm−3. As follows from the regions’
luminosities, their effective sizes are ∼ 1021L46 cm,
where L46 is the ultraviolet luminosity, in units of
1046 erg s−1. For broad lines, the regions are ∼
1018.5 L46 cm in size, and their electron density can
reach ∼ 108 cm−3. The electron temperatures of
the regions under consideration are Te = 2 × 104 K
(Netzer 1987). The dense blobs in the H II regions
are almost completely opaque to radio waves, but they
constitute only a small part of the screen.
For the quasars 3С 345 and 1803 + 784, the

effective size of the narrow-line H II region reaches
∼ 1020 cm or∼ 3 pc (∼ 8mas). This ionized medium
covers the core (injector) region, the compact com-
ponents, and the nearby bright part of the jet, which
produce most of the object’s emission at centimeter
and decimeter wavelengths.
The spatial distribution of the ionized matter and

its relationship to the object’s fine structure are un-
clear. Thismay be thematter accreted onto the disk in
the azimuthal plane. At the same time, the relativistic
plasma flow is ejected along the rotation axis of the
accretion disk and moves in a low-density medium.
This medium is partly swept up by the flow and partly
is drawn apart and envelops it by a thin, dense layer
like a cocoon wall. The thickness of the cocoon wall
is determined by the condition of equilibrium between
the thermal- and relativistic-plasma pressures. The
pressure in the jet is proportional to the square of
the ambient density, PJ ∼ ρ2, and decreases with
distance from the injector as R−2 (Begelman et al.
1984). In this case, the electron density decreases
as Ne ∼R−2, while the wall thickness increases as
∼R. The screen transparency depends on its optical
depth and emission measure; the latter decreases as
ME ∼ R−3

The outburst and AGN-core spectra exhibit breaks
and are characteristic of the synchrotron radiation
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Table 1.

Hα f , GHz ∆f , MHz

50 51.071 2918

75 15.281 591

100 6.478 190

125 3.327 78

Table 2.

3C 345 1803 + 784

z 0.595 0.68

f0/f 1.595 1.68

F , Jy 8 2.5

from optically thick regions. However, their low-
frequency cutoffs are steeper (α > 3) than those that
follow from the reabsorption of synchrotron radiation,
whose spectral index under actual conditions must
be α < 2.5. The spectral break is observed at long
centimeter wavelengths, at f ≈ 7GHz.
Thus, the spectral features and the low-frequency

variability can be explained by the absorption of syn-
chrotron radio emission from relativistic electrons in
an ionized medium, the cocoon wall. The time scale
of the low-frequency variability (∼ 1 year) and the
absorption level imply that the electron density and
the screen wall thickness are Ne � 105 cm−3 and
l < 0.01 of a light year, respectively. Variations in the
ionization of the medium result in variability of the
visible low-frequency radio emission from the object
(Matveyenko 1993).
The screen transparency is determined by its op-

tical depth. The optical depth of the ionized medium
depends on frequency:

τ = 0.08T−1.35
e [(1 + z)f ]−2.1

∫
N2
e (l)dl,

where f is the frequency of the received emission in
GHz, Te = 2 × 104 K is the electron temperature of
the ionized gas, l is the screen thickness in pc, and
Ne(l) is the line-of-sight electron density distribution
in cm−3.
The screen electron density in the injector region

is Ne = 105–106 cm−3 and decreases with distance
as ∼R−2; the screen wall thickness increases as∼R,
while the emission measure decreases as ME ∼ R−3.
The observed reduction in the jet brightness tem-

perature with distance from the core is attributable
to a decrease in the optical depth of the relativistic
plasma flow. At short decimeter wavelengths, the jet
is optically thick up to ∼ 20 mas, and the brightness
temperature is close to the Compton limit.
The bright compact sources at decimeter wave-

lengths are the nearby parts of the jet visible through
an absorbing screen. Their positions relative to the
injector are determined by the screen transparency.
The lower the frequency, the farther the screen from
the injector becomes transparent, and, accordingly,
the nearby part of the jet (bright component) becomes
visible.
In the object 1803 + 784, the absorption of radio

emission at λ = 18 cm (f0 = 1 GHz) reaches ∼
25 dB. This corresponds to an optical depth τ ≈ 5,
which decreases with distance from the injector as
τ ≈ 6(1 − R/R0)−3, where R0 = 3 mas. The screen
optical depth depends on frequency, ∼f−2.1. At
6.2 cm (f0 = 4.8 GHz), it is smaller than at 18 cm
by a factor of 9, τ ≈ 0.6, and the absorption does not
exceed 1.8. In this case, the apparent core brightness
temperature is lower than the temperature of the
nearby bright components, Tb ≈ 5 × 1011 K, which
has been observed by many authors (Unwin and
Wehrle 1992; Klare et al. 2001; Ros et al. 2000).

ABSORPTION
IN RECOMBINATION LINES

The absorption of synchrotron radiation in AGN
objects in an ionized medium can be independently
determined from absorption in recombination lines.
Measurements at different frequencies (in different
lines) allow the screen absorption to be determined as
a function of the distance from the injector.
Recombination lines with different principal quan-

tum numbers Hα, their frequencies f , and line sep-
arations ∆f are given in Table 1 (Kardashev 1959;
Lang 1974).
Radio telescopes are most sensitive at centimeter

wavelengths. According to studies of recombination
lines in the Orion Nebula, the line-to-continuum ra-
tio increases with decreasing quantum number. This
ratio is at a maximum for the lines with quantum
numbers n = 50–100. In the Orion Nebula, the
Hα = 109 line, f0 = 5009MHz, has the width∆f =
485 kHz, and the line-to-continuum temperature ra-
tio is TL/TC = 5.2% (Mezger and Hendenson 1967).
In our case, the apparent frequencies of this line for
the objects 3С 345 and 1803 + 784 are 3140 and
2982 MHz, respectively (Table 2).
Most of the radio telescopes operate in the range

5–6 GHz, which corresponds to the frequency of the
objects under consideration, f0 = 8–9 GHz. The
adjacent lines have the quantum numbers nx = 83
(f0 = 8093MHz, f = 5058MHz) and nx = 84 (f0 =
7807.7MHz, f = 4879.8MHz) for the quasar 3С 345
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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and nx = 85 (f0 = 8385.9 MHz, f = 4991.6 MHz)
for the object 1803 + 784. The TL/TC ratio for the
lines with these quantum numbers is even slightly
higher than that given above. The line separation
∆f ∼= 3f/nx is 176 MHz (Gordon 1976).
The increment in antenna temperature when

pointing at the source is

Ta(f) ∼ T0e
−τ(f) + Te(1 − e−τ(f)),

where T0 = 1012 K is the brightness temperature of
the central region that produces most of the object’s
radio emission, Te = 2 × 104 K is the electron tem-
perature of the H II screen, and τ(f) is the screen
optical depth.
The visibility of a recombination absorption line

is determined by the screen transparency, by the de-
pendence of its optical depth on frequency f . At
high frequencies, τ(0) < 1 and T (f) ≈ T0 + Teτ . The
brightness temperature is T0 � Te and Ta(f) ∼ T0.
At low frequencies, τ(0) � 1 and T (f) ≈ T0e

−τ +
Te ≈ T0e

−τ .
The line profile isGaussian; its width is determined

by the Doppler broadening (temperature Tе) and mi-

croturbulence
√

v2
t (Gordon 1976):

∆f/f = [4 ln 2(2kT/mc2 + 2v2
t /3c

2)]1/2,

where m is the mass of the hydrogen atom, and k is
the Boltzmann constant.
The thermal line width for T ≈ 104 K is ∆ν/ν ≈

10−4 and∼500 kHz for f ≈ 5GHz. Since the turbu-
lence of the medium in the core regions of AGN ob-
jects is unknown, we cannot estimate the line broad-
ening.

CONCLUSIONS

Measurements of AGN objects in hydrogen Hα
radio recombination lines at centimeter wavelengths
allow the parameters of the ionized medium that sur-
rounds the injector and the nearby part of the jet to be
determined. The expected line absorption accounts
for 5% of the brightness temperature of relativistic
plasma (background), Tb ≈ 1012 K. We plan to carry
out measurements for the typical quasars 3С 345 and
1803 + 784, whose radio flux densities at 6 cm are
given in Table 2.
These measurements can be made with the

100-m Effelsberg radio telescope at 5 GHz. The
expected width of the recombination-line profile at
these frequencies is ∼500 kHz. The frequency reso-
lution may be taken to be 50 kHz. The line separation
is ∆f ≈ 180 MHz. Given that the redshift z is
inaccurate, the band analyzed is taken to be 10 MHz.
The sensitivity of the antenna under consideration is
ASTRONOMY LETTERS Vol. 27 No. 11 2001
∼2K Jy−1. The increment in antenna temperature
is Ta = 15 K and Ta = 5 K for the objects 3С 345
and 1803 + 784, respectively. The expected effect is
TL = 0.05ÒC or 0.75 K and 0.25 K. The fluctuation
sensitivity is δ ≈ 0.002 К for an averaging of 200 s.
The signal-to-noise ratio is 25 and 8, respectively.
The effect under consideration must also show up

directly in measurements of the relative brightness
temperature for the nucleus of 3С 345 on radio maps
obtained in different channels at 6 cm with the MK-4
or VLBA systems.
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Abstract—We present our UBV RI observations of the nucleus of the Seyfert Galaxy NGC 5548 from
1990 until 2000 at four astronomical observatories: the Crimean Station of the Sternberg Astronomical
Institute, the Special Astrophysical Observatory of the Russian Academy of Sciences, the Crimean
Astrophysical Observatory (Ukraine), and theMountMaidanak Observatory of the Ulugbek Astronomical
Institute (Uzbekistan). All data have been reduced to a single system and are given for an A = 14.3′′
aperture. Large light variations have been observed in the galactic nucleus over the last ten years: the total
variability amplitude through theA = 14.3′′ aperture was 1m. 8, 1m. 4, 0m. 94, 0m. 65, and 0m. 35 inU ,B, V ,RJ,
and IJ, respectively. The structure function of the variable component shows a power-law dependence on
the time shift with the index b ≈ 0.7. Treating the variability as a superposition of random outbursts with
various durations and amplitudes is consistent with the observations. The maximum outburst duration
inferred from the structure function is about 500 days. The best agreement between the observed and
computed color–magnitude relations is achieved when the galaxy’s brightness and color indices through
theA = 14.3′′ aperture are V = 14.17,U −B = 0.23,B −V = 0.95, V −RJ = 1.06, V − IJ = 1.68, while
the colors of the variable component are, on average, U −B = −1.10, B − V = 0.15, V −RJ = 0.50,
V − IC = 0.75, and they vary only slightly with its brightness. This implies that the outburst color indices
are constant to a first approximation. However, there is evidence that the energy distribution of some
outbursts differs from the average one. Some outbursts may exhibit enhanced ultraviolet and optical U
radiation. c© 2001 MAIK “Nauka/Interperiodica”

Key words: active galactic nuclei, quasars, and radio galaxies
1. INTRODUCTION

The Seyfert galaxy NGC 5548 is one of the best
studied galaxies with active nuclei. Both ground-
based facilities and satellites are used for its investi-
gation. An intensive international monitoring of the
NGC 5548 nucleus was performed from 1993 until
1998. However, interest in this galaxy has not waned.
Therefore, systematically supplementing the existing
photometric database with new observations seems
to be of importance in studying both the long-term
and short-term nuclear variability of this galaxy.

*E-mail: doroshen@sai.crimea.ua
1063-7737/01/2711-0691$21.00 c©
Systematic UBV photometry of NGC 5548 has
been performed at the Crimean Station of the Stern-
berg Astronomical Institute (SAI) since 1968, and its
regular UBVRI observations have been carried out
at Crimean Astrophysical Observatory since 1989.
In 1990, the staff at Mount Maidanak Observatory
of the Ulugbek Astronomical Institute (Uzbekistan)
joined the observations with a UBVR photometer
using their telescopes, and patrol BV R observations
of NGC 5548 with a CCD photometer have been
carried out by the staff of the Special Astrophysical
Observatory in the Caucausus since 1998.

Our objective was to collect together the UBVRI
2001 MAIK “Nauka/Interperiodica”
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observations at these observatories from 1990 until
mid-2000, reduce them to a single system, and per-
form an initial analysis of the data obtained.

2. OBSERVATIONS

Most of the photometric observations were carried
out with photometers in which photomultipliers were
used as the detectors. This yielded reliable photomet-
ric results in the spectral range 3600 to 10000 Å. The
drawback of many CCD arrays is a low quantum effi-
ciency in the ultraviolet. Therefore, photometers with
photomultipliers are still more efficient than CCD
photometers in the U band.
The observations at the Crimean Station of the

SAI were carried out using a 60-cm Zeiss telescope
mostly with a UBV pulse-counting photometer. The
instrumental system was close to the standard photo-
metric system of Johnson (1966). Each estimate was
the sum of the photons accumulated in several (from
8 to 15) 10-s-long exposures. The rms error of each
estimate for the nucleus of NGC 5548 through the
A = 14.3′′ aperture was, on average, 0m. 026, 0m. 015,
and 0m. 022 in U ,B, and V , respectively. The compar-
ison star during these observations was always star C
from Lyuty (1972). Its UBV RJ magnitudes are U =
11.23 ± 0.02, B = 10.98 ± 0.02, V = 10.43 ± 0.01,
and RJ = 10.14 ± 0.02.
The observations with a thermoelectrically cooled

ST-6 375 × 242-pixel CCD camera were performed
on 14 nights. Below, the estimates obtained with
this photometer appear with an abbreviation SAIc.
The photometer is equipped with broadband filters
that reproduce a UBVRI system close to Johnson’s
standard photometric system. When a reducing lens
is used, the CCD image scale is 1.8′′ per pixel. The
instrumental field of view is 9.5′ × 7.2′. Star ST1 from
the list of comparison stars studied by Penston et al.
(1971), which is commonly used as a comparison star
during CCD observations, fell on one frame together
with the galaxy. Its BVRI magnitudes are given
in Romanishin et al. (1995), and its U magnitude
was taken as a mean of the data from Lyuty (1972)
and Penston et al. (1971): U = 14.48, B = 14.45,
V = 13.76, RC = 13.35, and IC = 13.04. The CCD
images were processed with the software developed
by Vlasyuk (1993). However, because the level of
dark current in our camera was high and because it
was impossible (for technical reasons) to sufficiently
cool it, these observations have a low signal-to-noise
ratio, so the mean error of a single estimate was 0m. 06,
0m. 035, and 0m. 023 for the observations in B, V , and
R, respectively.
The observations at Mount Maidanak High-

Altitude Observatory in Uzbekistan (Mdn) were
made using two 60-cm reflectors equipped with
pulse-counting photometers. The photomultiplier
was FEU-79. The measurements were obtained
with standard UBVR filters in Johnson’s system
through 24.2′′ and 26′′ apertures. The comparison
star was star C. The observational errors were 0m. 034,
≈0m. 016, 0m. 015, and 0m. 017 in U , B, V , and R,
respectively. It is worth mentioning that the Obser-
vatory at Mount Maidanak is comparable in astro-
climatic parameters to the world’s best observatories
(Ehgamberdiev et al. 2000).

The observations at the Special Astrophysical
Observatory (SAO) in the Caucasus were occasion-
ally carried out with a 1-m telescope butmostly with a
60-cm telescope (Zeiss-600) using a photome-
ter with a liquid-nitrogen-cooled 1040×1160-pixel
CCD array. The photometer is equipped with a set of
broadband B, V , R, and I filters. The instrumental
field of view on the Zeiss-600 telescope is 7.5′ × 8.5′.
Star ST1 mentioned above served as a comparison
star. The galaxy’s brightness was measured through
À = 10′′ and 15′′ apertures centered on the source’s
peak brightness. The mean measurement error in
the magnitude of the nucleus through the À = 10′′
aperture is 0m. 025 in B and 0m. 021 in V and R.
Details on this instrument and on the observing
technique and initial data reduction can be found in
Amirkhanian et al. (2001).

The photometric observations at the Crimean
Astrophysical Observatory (CrAO) were performed
with a 1.25-m telescope (AZT-11) using a chopping
photometer–polarimeter (Piirola 1973), which allows
quasi-simultaneous measurements in five optical
bands close to Johnson’s UBV RI system. During
observations in the photometric mode, the instrument
is a two-beam one: the sky background is also
subtracted during an exposure. However, because the
objective and background apertures are close (about
26 arcseconds), there is the risk of light from the
outer parts of the galaxy falling on the background
aperture. Therefore, when observing galaxies, the sky
background was measured separately, at a distance
of 7–8′′ arcminutes from the galactic nucleus. An
A = 15′′ aperture was used. The observations were
carried out by the method of differential photometry
with respect to the comparison star using a check
star. The comparison stars (С1 and С are the main
and check ones, respectively) were taken from Lyuty
(1972). The signal accumulation time on a single
counter of each photomultiplier was 10 s. We made
eight measurements for each object during one series
of observations, from which we then calculated the
means and rms deviations of a single measurement.
Typically, they did not exceed 0m. 01. The telescope is
automatic, and an offset photoelectric guide is used
in the observations. The accuracy of pointing at the
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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galaxy and subsequent guiding is 1/5 of the seeing or,
in the worst case, it is∼1 arcmin for 5′′ seeing.

3. DATA REDUCTION

In general, at all four observatories (SAI, SAO,
Mdn, and CrAO), the end product of the observa-
tions and their subsequent reduction are the series of
internally homogeneous magnitude estimates for the
nuclear region of NGC 5548. However, obtaining
a single series that is as homogeneous as possible
involves difficulties.
First, difficulties arise because the apertures used

for the measurements at different observatories differ
in size. Consequently, the galaxy’s stellar radiation
actually gave a different contribution to each of these
series. To reduce all observations to the A = 14.3′′
aperture, we used the surface-brightness distribu-
tions in the galaxy itself from Romanishin et al.
(1995) and Doroshenko et al. (1998). TheA = 14.3′′
aperture was chosen because most of the observa-
tions were made in the Crimea using a UBV pho-
tometer with this aperture. The surface-brightness
distribution given in Doroshenko et al. (1998) is
based on multiaperture UBV photometry. Roman-
ishin et al. (1995) obtained it by analyzing direct
CCD images in B, V , R, and I. There is satis-
factory (within the limits of the error measurements)
agreement between these distributions in B and V .
Below, we therefore used the surface-brightness dis-
tributions in B, V , R, and I from Romanishin et
al. (1995), because they were traceable to much
larger distances from the nucleus (from 1′′ to 75′′)
and because they had smaller errors than those from
Doroshenko et al. (1998). In U , in the range of
distances 3′′ to 60′′ from the center, we took the
surface-brightness distribution from Doroshenko et
al. (1998). These surface-brightness distributions
allow us to take into account the galactic contribution
through different apertures and to reduce all observa-
tions to the A = 14.3′′ aperture.
Second, despite the adaptation of the photomet-

ric systems of all the instruments used to John-
son’s standard system, some differences still remain
in practice. Therefore, we reduced the subsequent
construction of a homogeneous UBV series to deter-
mining the coefficients of linear regression between
the SAI series as the most complete and homoge-
neous one, on the one hand, and all the remain-
ing series, on the other. This can be accomplished
most reliably when there are many common dates
of observations between different observatories. The
regression coefficients in equations of the form

Mag(SAI) = aMag(CrAO,Mdn,SAO) + b (1)

are given in Table 1.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
Table 1. Regression coefficients in Eqs. (1)

Mag a b r n

CrAO

U (SAI) 0.854 1.720 0.92 21

B (SAI) 1.151 –2.131 0.96 21

V (SAI) 1.115 –1.515 0.95 24

Mdn

U (SAI) 1.266 –3.578 0.97 16

B (SAI) 1.023 –0.393 0.98 63

V (SAI) 1.079 –1.118 0.98 17

R (CrAO) 0.986 0.280 0.97 25

SAO

B (SAI) 0.932 0.978 0.98 17

V (SAI) 1.097 –1.292 0.96 24

R (CrAO) 0.878 1.351 0.93 20

Since no R observations were carried out at the
Crimean Station of the SAI and since there were few
common dates of observations between CrАО and
Mdn or between CrАО and SAO, we matched all R
data by using the fact that there were many common
dates of observations between the Crimean Station of
the SAI and the Crimean Astrophysical Observatory.
Therefore, based on these common dates between
SAI and CrАО, we sought a correlation between the
V (SAI) and R (CrАО) estimates. It turned out to
be high (r = 0.987 for n = 21 coincident dates). As
a result, we derived an equation for the transforma-
tion of SAI V magnitudes to CrAO R magnitudes:
RJ(CrAO) = 0.688V (SAI) + 3.347. The new series
of R magnitudes thus obtained was combined with
the original CrAO R measurements. In this way,
we obtained a more complete series of R data, to
which the SAO and Mount Maidanak observations
can be adjusted. Of course, this leads to a less reliable
combination of the R data into a single light curve.
The corresponding regression coefficients are given in
Table 1.

Occasionally, we also used the IJ magnitude es-
timates obtained at the Crimean Astrophysical Ob-
servatory alone for our analysis. These magnitude
estimates are few in number but span a long time
interval. Since they were made with a 15′′ aperture,
we applied only an aperture correction to them.

The combined series of UBV RJIJ magnitudes for
the nucleus of NGC 5548 through the A = 14.3′′
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Table 2. UBV RJIJ magnitudes of NGC 5548 through
A = 14.3′′

Date JD2400000+ U B V RJ IJObs.

Feb. 21, 1990 47944.522 13.94 14.49 13.77 – – SAI

Mar. 16, 1990 47967.348 14.17 14.63 13.88 – – SAI

Mar. 19, 1990 47970.499 14.20 14.66 13.83 – – SAI

Mar. 19, 1990 47970.513 14.03 14.60 13.85 – – SAI

Mar. 22, 1990 47973.422 14.21 14.59 13.88 – – SAI

apertures from 1990 until 2000 inclusive is given in
Table 2.1 Below, we give several rows from this table.

4. ANALYSIS

4.1. Macrovariability Parameters

Figure 1 shows the light curves since 1990.
The filled and open circles indicate the SAI data
and the data from all the remaining observatories,
respectively. In addition, the dashed line repre-
sents the brightness of the stellar component of
the galaxy itself through the A = 14.3 aperture.
The continuum data at λ = 5100 Å, as obtained
during an international monitoring of NGC 5548
(AGNWATCH) (www.astronomy.ohiostate.edu/
∼agnwatch/data.html), are represented by a thin
line. These data were first recalculated to B and V
magnitudes using formulas from Romanishin et al.
(1995) and then reduced to the A = 14.3′′ aperture.
Note the excellent agreement of our B and V data
with the AGNW data.
As the observations of NGC 5548 have been car-

ried out at the Crimean Station of the SAI since 1969,
we can compare the light curve at the beginning of
these observations with the light curve for the last ten
years. The historical U light curve is shown in Fig. 2.
We see that, because the efforts of the four observa-
tories were united in 1999–2000, the time resolution
has significantly improved, and strong outbursts have
been traced in more detail. The variability amplitude
is largest in U and decreases from U to I. The total
variability amplitude in magnitudes for 1969–2000
was 1m. 8, 1m. 4, 0m. 94, 0m. 65, and 0m. 35 in U , B, V ,
RJ, and IJ, respectively. However, in none of these
bands did the nuclear brightness reach the level of the
underlying galaxy in this time. The lowest brightness
of the nucleus was in 1996, 1998, and 1999.
Apart from outbursts, smoother light variations

show up on long time scales. A simple examination

1Table 2 is published in electronic form only and is accessi-
ble via ftp cdsarc.u-strasbg.fr/pub/cats/J (130.79.128.5) or
http://cdsweb.u-strasbg.fr/pub/cats/J.
of the U light curve (Fig. 2) indicates that the bright-
ness, on average, rose between 1969 and 1980, and
then there was a period of stabilization; subsequently,
violent nuclear activity was observed.
To perform an initial analysis of the variability on

long time scales, we calculated the mean flux density
and the ratio of the corresponding standard deviations
corrected for observational errors to the mean flux
(Fvar = stdvar(F )/〈F 〉) for two intervals of observa-
tions: 1969–1989 and 1990–2000. These param-
eters are given in Table 3. Also given in this table
are the maximum-to-minimum flux ratios (Rmax =
Fmax/Fmin), which characterize the variability ampli-
tude.
An analysis of Table 3 and an examination of Fig. 2

show that the mean flux density varies with time. The
variability in the spectral range λ3600–7000 Å may
not be a strictly stationary process, although it is
close to it.

4.2. Structure Function

The subsequent analysis of our photometric data
is performed with the structure function (SF ). It can
be used to study both stationary and nonstationary
processes.
The structure function was introduced by Kol-

mogorov in 1941 (Rytov 1976) to analyze statisti-
cal problems associated with the turbulence theory.
In astronomical practice, the structure function has
been widely used to analyze time series since the
study by Simonetti et al. (1985).
To bring the reader up to date, we briefly consider

some properties of SF . Researchers mostly use the
structure function only of the first order (SF1), which
for a random process x(t), by definition, is a math-
ematical expectation of the square of the difference
x(t+ τ) − x(t), i.e.,

SF1(τ) = M [x(t+ τ) − x(t)]2,

where τ is the time shift. For stationary processes, the
structure function is uniquely related to the autocor-
relation function by

SF1(τ) = 2D[x(t)] × [1 −ACF (τ)],

where D[x(t)] is the dispersion of the process, and
ACF is its autocorrelation function.
The slope of the autocorrelation function varies

with shift. For sufficiently small time shifts, the pro-
cess may be considered as a linear trend. In that case,
SF1 ∝ τ2. On large time scales, the slope of SF1

decreases, passing to 2D[x(t)] in the limit when τ →
∞, because on long time scales the random variables
become statistically independent. Adding measure-
ment errors to the process causes SF1 to increase by
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Table 3. Variability parameters

Years Band 〈F 〉, mJy Fvar Rmax Years Band 〈F 〉, mJy Fvar Rmax

1990–2000 U 8.707 0.35 5.32 1969–1990 U 9.672 0.32 5.01

B 10.00 0 15 3.59 B 10.73 0.23 2.86

V 14.01 0.12 2.37 V 14.53 0.15 2.07

RJ 23.77 0.12 1.82

IJ 31.42 0.08 1.38
2Derr, where Derr is the dispersion of the observa-
tional errors. For a wide range of processes, there is a
power-law dependence of SF1 on time interval. Many
processes can be represented as a superposition of
a large number of pulses with a deterministic shape
(shot noise). If the spectral density P (f) increases
as 1/fγ with decreasing f , then such a process is
called flicker noise. It is well known (Malakhov 1968)
that a power-law power spectrum is obtained as a
special case in the shot noise model. If γ takes on
values from 1 to 3, then the structure function for such
processes is SF1 ∝ τb, where b changes from 0 to 2
(Malakhov 1968). More complex structure function
may correspond to actual processes.
Figure 3 shows the structure functions (SF1) con-

structed on a logarithmic scale for the U , B, V , and
RJ fluxes over the entire period of observations of this
object since 1969. We calculated the structure func-
tions by breaking down the time interval into equally
spaced bins on a logarithmic scale and determined
pairs of the times of observations tj > ti for each bin
in such a way that their difference τ = tj − ti was
within a given bin; we then calculated

SF1(τk) =
∑
j,i

[x(tj) − x(ti)]2/nk,

where nk is the number of pairs in the kth bin. Each
series of observations obtained in theCrimea, or in the
Caucasus, or at Mount Maidanak, was broken down
into bins of equal length, and the general structure
function was calculated as a weighted mean of the
structure functions from a separate series, while the
weights were defined by the number of pairs in the
kth bin from each series. Figure 3 clearly shows
an upper plateau and an inclined line. The lower
plateau attributable to observational errors on short
time scales is indicated by the dashed line. All struc-
ture functions have a gap on times log τ from −1
to 0. This is because there are no observations on
time scales from 3 hours to 1 day in our data. This
gap can apparently be filled only by organizing a
collection of data from observing stations scattered all
over the world, as was done during the international
monitoring of NGC 5548 performed from 1993 until
1998. For comparison, the open circles in Fig. 3c
ASTRONOMY LETTERS Vol. 27 No. 11 2001
indicate the structure function for NGC 5548 during
1988–1996, as inferred from the continuum data at
λ = 5100 Å of the International Consortium AGNW,
which were recalculated for the V band and the A =
14.3′′ aperture.
Our comparison suggests that the V structure

functions in the linear part, as inferred from our
and the AGNW data, are similar. According to the
AGNW data, SF1 is well filled on time scales from
2 hours to 1 day. The international monitoring data
reach the lower plateau at the observational error level
even for τ < 1 days.
The main parameters of the structure function de-

rived from our data (slope and correlation coefficient)
for various time delays are given in Table 4.
Let us first consider the structure function on large

time scales. In the U ,B, V , and R bands, a similarity
can be noted between SF1 on time scales 1 < τ <
1000 days. As we see from Fig. 3, when passing from
U to R, the inclined part of the structure function
becomes increasing less smooth. The absence of SF1

smoothness in R can be attributed in part to data
incompleteness. However, although the V data are
most complete and accurate, the structure function
in V is, nevertheless, less smooth than that in U . The
slopes b of the logarithm of the structure function in
all spectral bands are close, within the error limits:
b = 0.73 ± 0.02 in U and b = 0.66 ± 0.03 inR. There
may still be a tendency for the slope to decrease
when passing from U to R. An interesting feature of
the derived structure functions is a turnover on time
scales log τ ≈ 2.7. The time scale that corresponds to
reaching the upper plateau in all structure functions
is ∼500 days. It determines the maximum time scale
when the flux variations are still correlated.
The structure function on time scales from 10 min

to 2.5 hours is clearly not a continuation of the struc-
ture function on time scales larger than 1 day. For
small time scales, the slope b of the structure function
in U and B is nearly zero. In V , although it passes
above the observational errors, its slope is b ∼ 0.33
for the correlation coefficient r = 0.77 ± 0.10. In R,
the slope of the structure function is b ∼ 0.28 for the
correlation coefficient r = 0.49 ± 0.18. However, in
all bands, the structure function on small time scales



696 DOROSHENKO et al.

 

13.0

12.5

13.5

14.0

14.5

15.0

14.0

13.5

14.5

15.0

13.5

13.0

14.0

12.0

12.5

13.0

13.5
48000 48500 49000 49500 50000 50500 51000 51500 52000

JD 240000+

 

R

 

J

 

V
B

U

 

1990 1992 1994 1996 1998 2000
Year

Fig. 1. UBV RJ light curves of NGC 5548 through the A = 14.3′′ aperture. The filled and open circles represent the SAI
observations and the observations at the other observatories, respectively. The dashed line indicates the galaxy’s brightness
through the A = 14.3′′ aperture.
passes above the line attributable to the observational

errors. The excess is, on average, (1.8–1.6)σ. On

small time scales, we may have to do with a random

process of a slightly different nature than that charac-

teristic of long time delays.
4.3. Analysis of Color–Magnitude Relations
The observed U −B, B − V , V −R, and V −

I color indices correlate with brightness variations:
on average, they decrease when the object becomes
brighter. It would be natural to explain such depen-
dencies by an increasing role of the parent galaxy with
decreasing brightness of the variable component in
the nucleus and by the fact that the color indices of
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 2. Light curve of NGC 5548 through the A = 14.3′′ aperture over the entire period of photoelectric observations at
Crimean Station of the SAI.
the galaxy are appreciably larger than those of the
variable source. It is worth noting that such a de-
pendence manifests itself in the U −B color only for
V > 13m. 6, i.e., when the object becomes faint. Since
the observed U −B color index remains, on average,
at the U −B = −0.9 level when the V magnitude
changes from 13m. 1 to 13m. 6, this means that the
corresponding color index of the variable source varies
little with its brightness, because its contribution
dominates in a bright state. Since the galactic color
index begins to dominate in a faint state, the total
color index increases starting from some level when
the brightness of the variable source decreases even if
its color index is constant.
Bearing in mind the possible constancy of the

color indices of the variable component as its bright-
ness varies, we can estimate U −B, B − V , V −
R, and V − I of the variable component averaged
over the entire data set even without any knowl-
edge of the galactic contribution to the total flux.
Such estimates are usually made by analyzing the
slopes of the regression lines in flux–flux diagrams
in two different bands. The slope of the straight line
gives the flux ratio in the two color bands. Using
the equation for the transformation of magnitudes to
fluxes, according to the absolute calibration by John-
son (1966), we determined the color indices: U −
B = −1.10 ± 0.01, B − V = 0.09 ± 0.01, V −RJ =
0.48 ± 0.02, and V − IJ = 0.81 ± 0.06 .
Thus, we know the galactic fluxes (in mJy)

through the A = 14.3′′ aperture (FU = 1.535, FB =
4.204, FV = 7.644, FRJ = 13.165, and FIJ =
19.684), as inferred from the data of Romanishin
et al. (1995) and Doroshenko et al. (1998). In
addition, we know the color index of the variable
ASTRONOMY LETTERS Vol. 27 No. 11 2001
component. Consequently, we can calculate the ex-
pected (in observations) dependence of color indices
on the V magnitude for the total flux through the
A = 14.3′′ aperture and compare it with the observed
dependence, which is shown in Fig. 4. To simplify
the figure, the filled circles indicate the observational
data averaged over small bins of V magnitudes. The
vertical and horizontal bars near each circle corre-
spond to the standard deviations in the distribution of
data in each bin in V . The thin solid line represents
model 1 for the above fluxes from the galaxy and the
color indices of the variable component. This model
satisfactorily describes only the observed variations of
U −B with V . The calculated variations in the other
color indices disagree with the observations: the thin
solid line lies above the observed values. However,
as follows from experience and from the aperture
magnitudes of NGC 5548 from Romanishin et al.
(1995), the galaxy’s magnitudes are determined with
a large error, particularly through a small aperture
such as we used. Therefore, we considered other
models with galactic fluxes deviating by 15–25%
from the above values. The situation with B − V ,
V −RJ, and V − IJ significantly improved when,

Table 4. Parameters of the structure function

Band 9 min–2.5 hours 1.4–900 days

b σb r b σb r

U −0.16 0.32 −0.15 0.72 0.02 0.98

B 0.10 0.09 0.28 0.69 0.02 0.98

V 0.33 0.07 0.77 0.65 0.03 0.96

RJ 0.28 0.11 0.49 0.66 0.03 0.96
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Fig. 3. Structure function for the variable flux from the NGC 5548 nucleus: our data are represented by the filled circles, and
the AGNWATCH V data are represented by the open circles.
for the same color indices of the variable source, we
took galactic fluxes that were 25% lower in U and
B than the values considered in model 1 and that
were 20 and 15% higher in R and I (model 2). In
the figure, this model is indicated by the dotted line.
In Fig. 4b, the dotted line coincides with the heavy
solid line. Moreover, the calculated values become
quite satisfactory if we slightly change the color
indices of the variable component and take them to
be equal: U −B = −1.02, B − V = 0.09, V −RJ =
0.50, and V − IJ = 0.75 (model 3). In Fig. 4, model 3
is represented by the heavy solid line. Model 4,
where the galactic flux in U and B differs from the
initially assumed flux by a mere 15 and 10%, is
also in satisfactory agreement with the observations.
Model 4 is even in slightly better agreement with
the observations than model 3, given that the color
indices of the galactic component (B − V = 0.95,
V −RJ = 1.06, and V − IJ = 1.68) correspond more
closely to elliptical galaxies. Recall that, according
to the study by Romanishin et al. (1995), the galaxy
NGC 5548 has a huge bulge with an effective radius
of ≈7′′. Parameters of the galaxy and the variable
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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component for all the models considered are given in
Table 5.
Thus, analyzing the observed color indices and

their correlation with variations in the total bright-
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ness, we concluded that the colors of the variable
sources are, on average, U −B = −1.06 ± 0.04,
B − V = 0.09 ± 0.01, V −RJ = 0.48 ± 0.02, and
V − IJ = 0.75 ± 0.02, while the galaxy’s magnitudes
through the A = 14.3′′ aperture are U = 15.35, B =
15.12, V = 14.17, RJ = 13.43, and IJ = 12.87. The
small difference inB − V presented here and in Lyuty
and Doroshenko (1993), who gaveB − V = −0.01±
0.02, results from using different calibrations when
transforming fluxes to magnitudes.

4.4. The Color Indices of Individual Major Events

According to our analysis in the previous section,
we took the color indices for the variable component
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when the number of outbursts depends on duration as a power law with the index α = −1.6 and the outburst amplitudes
depend on duration as a power law with the index β = 0.2. (c) The structure functions for the observed (filled circles) and
modeled (open circles) processes.
averaged over the entire data set and assumed them
to be constant as the brightness varied. However, it
is by no means obvious that individual characteristic
events on the light curve that may be associated with
strong outbursts have the same color characteristics.
Let us consider the flux–flux relation for some of such
events. For the regression coefficients to be reliably
calculated, these events must cover sufficiently large
light variations on a small time scale. For our analy-
sis, we chose six events:
no. 1—Mar. 1972–Apr. 1974 (JD 2441392–2149),
no. 2—Feb. 1990–Aug. 1991 (JD 2447944–8483),
no. 3—May 1992–Apr. 1993 (JD 2448745–9108),
no. 4—Feb. 1996–Feb. 1997 (JD 2450139–50491),
no. 5—Mar. 1997–Aug. 1998 (JD 2450522–51052),
and no. 6—Jan.–Aug. 1999 (JD 2451197–51408).

For them, we calculated the slopes of the straight
lines (bBU , bV B , bRV ) in the FB–FU , FV –FB, and
FR–FV planes. The results are presented in Fig. 5,
in which the open circles indicate the slopes and
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Table 5.Galactic fluxes through theA = 14.3′′ aperture and the color indices of the variable component for various model
color–magnitude relations.

Model
Galaxy, fluxes in mJy Variable component

FU FB FV FRJ FIJ U–B B–V V –RJ V–IJ

1 1.535 4.204 7.644 13.165 19.684 –1.10 0.09 0.48 0.81

2 1.151 3.153 7.644 15.798 22.637 –1.10 0.09 0.48 0.81

3 1.151 3.153 7.644 15.798 22.637 –1.02 0.09 0.50 0.75

4 1.305 3.784 7.797 15.798 22.637 –1.10 0.15 0.50 0.75
their errors calculated from the combined data of the
four observatories, and the filled circles indicate the
corresponding coefficients calculated from the SAI
data alone. The dashed line represents the same
coefficients simultaneously for the entire data set. We
see from the figure that the slopes of the straight lines
in the FR–FV and FV –FB planes for individual
events are equal, within the error limits, to the mean
and to each other. In the FB–FU plane, however,
some slopes of the straight lines significantly differ
from the mean and from each other. Thus, for ex-
ample, events nos. 3 and 4 significantly differ in slope
bBU both from the mean and from the corresponding
values for events nos. 5 and 6. This means that the
energy distribution in events nos. 3 and 4 is enhanced
in the ultraviolet compared to the energy distribution
in events nos. 5 and 6 or compared to the average
spectrum of the variable component. Several bluer
outbursts may be involved in events nos. 3 and 4.

5. DISCUSSION

The jaggedness of the light curves for the nuclei
of Seyfert galaxies has prompted researchers to con-
sider them in terms of a shot noise model as a su-
perposition of independent outbursts whose duration
has a power-law distribution (Terebizh et al. 1989;
Sergeev 1999). Under certain conditions imposed
on the outburst amplitude and duration, this process
may result in the first-order structure function being a
power law with an index b from 0 to 2. It has emerged
that the outburst shape is of no importance if only it
has no singularities; i.e., the derivative of the outburst
shape must be bounded. Sergeev (1999) showed that
if the number of outbursts per unit time of duration
ω depend on duration as a power law, i.e., n(ω) ∼
ωα, and if the outburst amplitudes also depend on
duration as a power law, i.e., A(ω) ∼ ωβ , then the
structure function would also tend to a power law
depending on interval τ with index b = α+ 2β + 2,
i.e., SF1 → τα + 2β + 2.
We modeled such a process for various α and

β, as applied to the available actual epochs of ob-
servations and taking into account the fact that the
ASTRONOMY LETTERS Vol. 27 No. 11 2001
observed structure function on a logarithmic scale
had the slope b = 0.7. In this case, we assumed
that, first, the outburst amplitude decreased with de-
creasing outburst duration, i.e., β > 0, and, second,
there were physical constraints on the burst dura-
tion, i.e., a power-law distribution of outbursts took
place in some range of durations, ωmin < ω < ωmax.
Thus, there were simply no outbursts with a dura-
tion outside this range. Figure 6b shows a typical
realization of a random process with α = −1.6 and
β = 0.2. In this case, the mean time interval between
two sequences of outbursts was taken to be dt =
0.01 days, i.e., the outbursts significantly overlapped.
ωmin = 0.001 days and ωmax = 300 days are close
to the observed values. When treating the nuclear
variability of active galaxies as a superposition of
outbursts with various amplitudes and durations, the
maximum time interval of the correlated variations
inferred from observations may be considered to be
the maximum outburst duration. Recall that the
maximum interval of the correlated flux variations was
found from observations to be ∼500 days. Taking
the above range of outburst durations allowed us to
obtain features on the modeled light curve that were
close in duration to the observed ones. Modeling the
process with ωmax ≈ 50–100 days did not give the
prolonged brightness rises or declines on the light
curves that were actually observed. For comparison,
Fig. 6a shows the observed V light curve. Figure 6c
illustrates the structure functions for the observed
light curve (filled circles) and for the modeled light
curve with noise corresponding to observational er-
rors of 2% superimposed (open circles). The observed
error is indicated in the figure by the dotted line. As
we see from a comparison of the model and the ob-
servations, the model light curve is generally similar
to the observed one in light-curve jaggedness and
in amplitude and duration of strong outbursts. The
structure functions for these light curves coincide.
We can thus conclude that our assumptions about
a power-law dependence of the amplitude on dura-
tion and about a power-law distribution of outburst
durations are quite real. We cannot completely rule
out the possibility that a shot- or flicker-noise process
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takes place in the observed nuclear variability of active
galaxies. Previously, Terebizh et al. (1989) reached a
similar conclusion by analyzing the power spectrum
for optical brightness variations in the nucleus of the
Seyfert galaxy NGC 4151.

6. CONCLUSIONS

Summarizing the results of our study of the pho-
tometric variability in NGC 5548, we can say that
in more than 30 years, the total variability amplitude
through the A = 14.3′′ aperture has been 1m. 8, 1m. 4,
0m. 94, 0m. 65, and 0m. 35 in U , B, V , RJ, and IJ,
respectively.
On time scales of∼1 days, an additional variability

with almost the same amplitude in all bands, ∼0m. 1–
0m. 08, is apparently observed in some cases.
The structure function of the variable component

exhibits a power-law dependence on the time shift
with an index of b ≈ 0.7, suggesting that the observed
variability is similar to noise. A more specific analysis
of this issue indicates that the view of the photometric
variability in active galactic nuclei as a superposition
of random outbursts with various durations and am-
plitudes (shot noise) is consistent with the observa-
tions. The maximum outburst duration determined
from the structure function is about 500 days.
The agreement between the observed and com-

puted color–magnitude relations is best when the
galaxy’s brightness and color indices through theA =
14.3′′ aperture are V = 14.17, U −B = 0.23, B −
V = 0.95, V −RJ = 1.06, and V − IJ = 1.68, which
correspond to V −RC = 0.74 and V − IC = 1.31 in
Cousins’s system. These color indices are close to
those for elliptical galaxies, which confirms the con-
clusion by Romanishin et al. (1995) that the effective
radius of the bulge in this galaxy is very large (Reff ≈
7′′). The color indices of the variable component
vary little with its brightness and are, on average,
U −B = −1.10, B − V = 0.15, V −RJ = 0.50, and
V − IJ = 0.75 (or V −RC = 0.34 and V − IC = 0.58
in Cousins’s system).
In light of our treatment of the nuclear variability

as a superposition of random outbursts, the con-
stancy of the color indices of the nucleus as its bright-
ness varies may imply (to a first approximation) the
constancy of the outburst color indices. However,
there is evidence that the energy distribution of some
outbursts differs from the average one. Some out-
bursts may have enhanced ultraviolet radiation.
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Abstract—We present new photometric UBVRI and spectroscopic observations of the symbiotic star
YY Her during its return to quiescence after a strong outburst in 1993. High-resolution spectra of YY Her
at similar phases at outburst maximum (ϕ = 0.48) and in quiescence (ϕ = 0.37) are presented for the first
time. The ephemeris of YY Her has been refined (P = 586d). The last two observed minima (in 1999 and
2000) differed radically in shape from the 1997 minimum described previously. Both were sharp and deep
(∆U ∼ 1m. 6, ∆V ∼ 0m. 9). To explain this shape of the V light curve, which is only slightly affected by
nebular emission, it should be assumed that the cool component of YY Her fills much of its Roche lobe
and has a hot spot on the hemisphere facing the hot component. The emission spectrum rich in Fe II
lines, which is characteristic of symbiotic stars, was observed during the outburst, but high-ionization
lines (He II λ4686) were also observed. The He I λλ5876, 7065 lines exhibit distinct P Cyg profiles; the
centers of the absorption components are shifted from the emission ones by Vr ≈ 100 km s−1, suggesting
moderate outflow velocities. c© 2001 MAIK “Nauka/Interperiodica”

Key words: symbiotic stars
INTRODUCTION

The symbiotic star YY Her has been observed
photographically and visually since 1890. A detailed
analysis of its light curves by Munari et al. (1997a)
revealed a periodicity in the visual band with P =
590d and amplitude 0m. 3. These authors also pointed
to the existence of several points at phases near the
minimum during which the visual brightness was
abnormally low. However, they failed to reach a cor-
rect conclusion about the actual variability amplitude
because of the scarcity of observations and the large
number of missed minima.

In quiescence, the ultraviolet + optical spectrum
of YY Her can be satisfactorily interpreted in terms of
a three-component model composed of a cool com-
ponent, a gaseous nebula, and a hot component. In
most studies, the hot component of YY Her in qui-
escence is a subdwarf with a temperature of ∼105 K
[see Munari et al. (1997b) and references therein].
The cool component of YY Her at minimum light was
classified by optical TiO molecular bands as a red
giant of a spectral type slightly later than M4. Based

*E-mail: aat@sai.msu.ru
1063-7737/01/2711-0703$21.00 c©
on the depths of near-infrared TiO bands, Murset and
Schmid (1999) obtained a similar spectral type.

As in all classical symbiotic stars, nova-like out-
bursts have been observed in YY Her. Munari et al.
(1997a) detected four outbursts in its visual and pho-
tographic light curves. The last strong outburst oc-
curred in 1993 (Munari et al. 1997b). It was con-
cluded from optical and ultraviolet observations that
the spectral energy distribution for the hot component
during outbursts could not be represented by a single
Planck function (which can be done with satisfactory
accuracy for the star in quiescence). In the near ul-
traviolet, an additional radiation source whose energy
distribution is similar to the spectrum of a blackbody
with a temperature of∼15000 K and whose luminos-
ity at maximum light accounts for <20% of the hot
component’s luminosity contributes significantly to
the total flux.

In quiescence, the hot and cool components have
approximately equal luminosities, while at the max-
imum of the 1993 outburst, the bolometric flux from
the hot component rose by almost an order of magni-
tude (from 1.3 × 10−9 to 12.2 × 10−9 erg cm−2 s−1).
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. U and V light curves for YY Her. The open circles
represent data from Tatarnikova et al. (2000). The filled
circles represent our data. The vertical bars near the
horizontal axis for the V band mark the dates of minima.

This behavior does not fit into the thermonuclear-
flash model, in which a hot subdwarf evolves into an
A–F supergiant with the bolometric flux changing
only slightly (Mikolajewska and Kenyon 1992).

We extended our photometric and spectroscopic
observations to cover the star’s quiescent state, which
allowed us not only to refine the ephemeris, but also to
reach definitive conclusions regarding the red giant’s
light curve and the complex structure of the nebula
around the hot component of YY Her. In the case of
symbiotic stars, one of the most important questions
is the nature of the cool component, because the
various models for the quiescent and active states
of symbiotic stars are based on this or, to be more
precise, on the cool component’s mass-loss rate.

OBSERVATIONS

Tables 1 and 2 give photoelectric UBVRI observa-
tions of YY Her. The observations are being carried
out with a 0.6-m telescope at Crimean Station of the
Sternberg Astronomical Institute (SAI); their errors
do not exceed 0m. 03. The magnitudes of the standard
star HD 168957 are U = 6m. 35, B = 6m. 91, and V =
7m. 01. The star that Munari et al. (1997a) designated
as G on the finding chart was chosen as the standard;
its magnitudes are V = 13m. 08, R = 12m. 44, and I =
11m. 94. Figure 1 shows the U and V light curves
for YY Her constructed by using previously published
data (see Tatarnikova et al. 2000)

Spectroscopic observations of YY Her in the range
4000–7500 Å with a dispersion of 8 Å/pixel are being
carried out with a 1.25-m telescope at the Crimean
Station of the SAI. The two spectra taken on Au-
gust 4, 2000 (ϕ = 0.85), and October 4, 2000 (ϕ =
0.95), are similar to the August 21, 1997 spectrum
(ϕ = 0.01) described previously by Tatarnikova et al.
(2000), but the line fluxes are slightly weaker, as is
the flux beyond the Balmer jump estimated from theU

magnitude (Min = 2451848 + 586dE). Table 3 gives
the emission-line fluxes determined by fitting the line
profile with a Gaussian.

High-resolution (0.2 Å/pixel) spectra were taken
with the 1.8-m Padoa Astronomical Observatory
telescope (Italy) on August 1, 1993, at maximum
light during the strong 1993 outburst [three days
before, a low-resolution spectrum was obtained;
it was used by Munari et al. (1997a, 1997b) to
determine the components’ physical parameters) and
on October 28, 1999, in quiescence. Since the
latter spectrum was underexposed, the equivalent
widths for lines with wavelengths shorter than for
Hα could not be accurately determined. Five-point
smoothing was applied to all spectra. Table 4 lists
laboratory wavelengths of the identified lines, their
radial velocities, FWHMs, and equivalent widths.

In quiescence, only lines of hydrogen and singly
ionized helium can be identified in a high-dispersion
spectrum. The absence of the [O III] 4959 and 5007
lines may result not only from decline in the activity of
the hot component of YY Her, but also from underex-
posure.

During the outburst, a high-resolution spectrum
exhibits a large number of Fe II emission features
(see Fig. 2a), which is typical of most symbiotic
stars during their outbursts. However, in contrast
to classical symbiotic stars, such as, for example,
BF Cyg (Cassatella et al. 1992), the hot component
of YYHer proved to be hot enough for the He II λ4686
line to be present in the spectrum even in its active
state (see Table 4).

Figure 2b shows the Hα profiles during the out-
burst and in quiescence. Both spectra were taken at
similar phases, but the star was 3m brighter in U on
August 1, 1993 (ϕ = 0.48), than onOctober 28, 1999
(ϕ = 0.37). The line profile has a complex, asymmet-
ric shape even in quiescence. During the outburst, the
red Hαwing wasmost broadened; this wing extended
to velocities of 1300 km s−1, while in quiescence, it
extended to a mere 500 km s−1. For comparison,
Fig. 2c shows the Hα profile of the symbiotic star
AS 338, which exhibits a distinct P Cyg profile. In the
case of YYHer, a P Cyg profile is observed for the He I
λλ5876,7065 lines (see Fig. 2d), whose absorption
components lie at Vr ≈ −130 km s−1.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Table 1. Photometric UBV observations of YY Her

JD 2440000+ U B V

11275 15.10 14.85 13.71

11276 15.21 14.95 13.61

11284 14.75 14.73 13.66

11287 14.80 14.99 13.56

11306 15.01 15.06 13.60

11307 14.86 14.96 13.57

11308 14.86 15.03 13.51

11313 14.78 14.84 13.51

11319 14.80 14.73 13.36

11336 14.50 14.66 13.22

11345 14.47 14.68 13.26

11367 14.58 14.49 13.14

11370 14.39 14.47 13.10

11374 14.61 14.46 13.03

11376 – 14.48 13.14

11387 – 14.38 13.10

11397 14.29 14.40 13.08

11400 14.22 14.43 13.08

11422 14.02 14.52 13.11

11434 13.96 14.32 13.00

11453 13.79 14.22 13.01

11475 14.07 13.92 13.08

11493 13.58 14.22 13.01

11634 13.66 14.06 12.86

11678 13.88 14.07 12.93

11720 14.43 14.40 13.15

11752 14.23 14.35 13.11

11762 14.60 14.44 13.10

11820 14.56 14.75 13.43

11845 14.88 14.98 13.79

11864 14.98 15.08 13.61

VARIABILITY

Regular photometric observations of the symbiotic
star YY Her have been carried out since June 1995.
Previously, only separate UBV points, which mostly
covered the brightness maximum during the 1993
outburst, and a fairly complete visual light curve were
available. The brightness of YY Her rapidly evolved
ASTRONOMY LETTERS Vol. 27 No. 11 2001
Table 2. Photometric VRI observations of YY Her

JD 2440000+ V R I

11865 13.52 11.76 10.06

11866 13.52 11.74 10.05

11867 13.57 11.76 10.09

11868 13.57 11.73 10.08

11879 13.46 11.71 10.09

11887 13.33 11.58 10.00

11888 13.33 11.59 10.02

11953 13.10 11.45 10.08

during the initial period after its outburst. Thus, for
example, its U brightness in the first two months
declined at a rate dU/dt ≈ 0.01 mag day−1, which
is an order of magnitude faster than that recorded by
Kolotilov et al. (2001) for the symbiotic star AS 338.
During the three subsequent orbital cycles, the sys-
tem slowly returned to quiescence; its U brightness
declined at a rate dU/dt ≈ 5.7 × 10−4 mag day−1.

The 1997 minimum (see Fig. 3) was fairly broad
with a period of constant minimum brightness lasting
at least for 130 days (judging by the U light curve).
It should be noted that the brightness decline at short
wavelengths began earlier, more specifically, at least
60 days earlier in U than in V . The reverse was
observed as the star was emerging from its minimum:
the rise in brightness took effect first in the visual and
then in the ultraviolet.

The next minimum observed in 1999 was narrow.
Figure 3 shows part of theU light curve together with
a symmetric curve const× | cos(x)|. We managed
to observe only one branch, when the star emerged
from its minimum. If the light curve is assumed to
be symmetric about the phase of primary minimum,
then it may be concluded that there was no state of
constant brightness at the 1999 minimum, in con-
trast to that observed in 1997. The color indices
near minimum light corrected for interstellar red-
dening [E(B − V ) = 0m. 2] are 〈U − B〉1999 = 0m. 25
and 〈B − V 〉1999 = 1m. 34, although the 〈B − V 〉 color
is the same as that during the previous minimum;
judging by 〈U − B〉, the star became much redder
(〈U − B〉1997 = −0m. 1). This is because the contri-
bution of the nebular emission to the total flux be-
came smaller than that during the previousminimum,
which is attributable to decline in the activity of the
hot component of YY Her. Note also an increase in
the variability amplitude in all bands when passing
to quiescence: ∆U = 1m. 6, ∆B = 1m, and ∆V =
0m. 8 (during the 1997 minimum, ∆U = 1m. 15, ∆B =
0m. 75, and ∆V = 0m. 5). Since the near-ultraviolet
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Table 3. Emission-line fluxes and equivalent widths of the Hβ and He II λ4686 lines*

Date U Phase 4340 H I 4363 [O III] 4686 He II 4740 He I 4861 H I 5876 He I 6678 He I 4861 WHβ
WHe II

Aug. 4, 2000 14.23 0.85 15.7 7.3 22.8 6.5 33.2 5.4 18.9 39.1 26.8

Oct. 4, 2000 14.56 0.95 – – 18.2 – 22.7 – 10.9 36.0 28.9
∗ The fluxes are given in units of 10−13 erg cm−2 s−1. The equivalentwidths were taken relative to the continuumat 3600 Å calculated
from the U magnitude.

Table 4. FWHMs, heliocentric radial velocities, and equivalent widths of emission and absorption (Na I) lines in YY Her.
The values for October 28, 1999, and August 1, 1993, are given in and without parentheses, respectively

λ, Å ∆λ, Å V , km s−1 W , Å

He II, 4686∗ 0.93 −91 2.11

Hβ 0.75(0.68) −11(−1.3) 29.2(−)

He I, 4921 0.55 −23 1.88

Fe II, 4924∗ 0.61 −42 1.47

[OIII], 4959 0.38 −49 0.26

[OIII], 5007∗ 0.92 −48 2.28

He I, 5015 0.41 −74 1.38

Fe II, 5018 0.50 −24 1.57

Fe II, 5168 0.52 −29 0.98

Fe II, 5197 0.46 −26 0.54

Fe II, 5235 0.44 −26 0.62

Fe II, 5284 0.39 −37 0.38

Fe II, 5317 0.44 −26 1.01

Fe II, 5363 0.39 −25 0.30

He I, 5875(P Cyg) 0.72(0.67) −6(3.2) 5.28(8.75)

Na I, 5890(abs) 0.32 −20 0.28

Na I, 5896(abs) 0.3 −23 0.18

Fe II, 6456? 0.7 −29 0.51

Hα 1.15(0.80) 2(13) 129.4(112.9)

He I, 6678 0.80(0.41) −19(−17.6) 4.46(8.50)

He I, 7065(P Cyg) 0.74(0.73) −10(−5.6) 2.99(4.53)

∗ A blend of several lines.
light variations undoubtedly result from an eclipse
of most of the nebula (>80%) and since the nebula
is associated with the hot component, it should be
assumed that YY Her has a large inclination to the
line of sight, i.e., it is seen almost edge-on.

Similar variability amplitudes were observed in
quiescence for the eclipsing symbiotic star BF Cyg,
although the temperatures of the hot components of
these stars differ greatly [Thot = 60000 K for BF Cyg
(Mikolajewska et al. 1989) and Thot = 100000 K for
YY Her]. However, the light curves of YY Her have
no sinusoidal shape characteristic of several symbi-
otic stars and BF Cyg in particular. Judging by the
light curve, theminimum occurred beforeMJD11275
(where MJD = JD–2440000), which is at least 30
days earlier than that calculated from the ephemeris
given by Munari et al. (1997a).

The coverage of the 2000 minimum by V obser-
vations was most complete. Since it is similar in
shape and depth to the previous minimum, it may be
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 2. Portion of the spectrum for YY Her during the strong 1993 outburst (Fig. 2a) and Hα profiles in quiescence and during
the outburst (Fig. 2b); Fig. 2c shows Hα profiles of the symbiotic stars YY Her (August 1993) и AS 338 (November 1993),
and Fig. 2d shows He I λλ5876, 7065 profiles during the outburst. In all cases, the continuum-normalized flux is along the
vertical axis.
concluded that YY Her returned to quiescence and
that its active phase lasted slightly longer than three
orbital cycles. The middle of the minimum was at
MJD = 11849; below, we assume it to be the phase
of minimum light. The period was found from a
series of V observations, including visual magnitude
estimates from Munari et al. (1997a) when YY Her
was in quiescence, by using the code of Yu.K. Kol-
pakov (SAI, http://infra.sai.msu.ru/kolpakov) to be
586 days. In Fig. 1, the dates of minima are given by

Min(V ) = 2451848 + 586dE.

Mikolajewska (Copernicus Astronomical Center)
gives the following ephemeris:

Min(V ) = 2448919.8 + 589.4dE.

The light curves suggest that the dates of minima
slightly differ in different bands.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
DISCUSSION

Cool Component

A shallow secondary minimum is occasionally ob-
served in V at a phase of ∼0.5 (see Fig. 1); it is also
seen in the visual light curve of YY Her published by
Munari et al. (1997a). This minimum most likely
results from the ellipticity of the cool component (for
Thot ≈ 105 K, Tcool ≈ 3500 K, and equal bolometric
fluxes of the components, the ratio of their radii is
∼0.001, which rules out the possibility that an eclipse
of part of the red giant by the hot component affects
the light curve). This means that the cool component
of YY Her fills much of its Roche lobe.

The primary minimum in V cannot be explained
by an eclipse of the gaseous nebula alone. Figure 4
shows the optical spectra of YY Her at phases close



708 TATARNIKOVA et al.

 

15

–0.5 0 0.5

14

13

Phase

 
U

Fig. 3. Comparison of the U light curves during the
minima of 1997 (triangles) and 1999 (open circles). The
solid line represents a symmetric curve const× | cos(x)|.

to the 1997 and 2000 minima, as well as the model
energy distributions as a sum of the emissions from
the nebula and the red giant. The spectral energy dis-
tributions for red giants were taken from Beshenova
and Kharitonov (1975), M3.5, and Silva and Cornell
(1992), M4. We assumed the nebular emission to
consist of free–free and free–bound H II and He III
emissions [a(He) = 0.1] and the electron temperature
of the nebula to be Te = 20000 K. Judging by the
fit to the May 12, 1997 spectrum (Fig. 4a), only the
red giant emitted in V at that time; subsequently, by
August 21, 1997 (Fig. 4b), the V brightness declined
further by almost 0m. 5 [these spectra were consid-
ered by Tatarnikova et al. (2000)]. This change in
brightness should be entirely attributed to the cool
component. A similar pair of spectra were taken
in 2000 (Figs. 4c, 4d). At that time, the visual
brightness difference was 0m. 3. Consequently, the
cool component of YY Her is variable.

For the V light curve to be constructed for the cool
component of YY Her, the combined contribution of
the hot component and the nebulamust be subtracted
from the overall light curve. Therefore, based on all
the available spectra [including those from Tatarniko-
va et al. (2000)] taken either before the outburst or
after October 1994, when the optical energy distri-
bution could be satisfactorily described in terms of
a three-component model (a cool component, a hot
component, and a nebula absorbing all Lc photons of
the hot component), we constructed a dependence of
Vhot on U :

Vhot = 0.978U + 1.60,

where Vhot is the total magnitude of the nebula + hot
component (or only the nebula at phases close to the
minimum) determined by convolving the calculated
energy distribution with the transmission curve in V ,
and U is the observed photometric magnitude.

Subsequently, we corrected the V light curve for
the emissions from the hot component and the neb-
ula. Figure 5 shows the light curve of the cool com-
ponent fromMJD= 10194 folded with the ephemeris
given in the preceding section. Its characteristic
features are a sharp primary minimum with a depth
of 0m. 8 and a broader secondary minimum with a
depth of 0m. 3. Also shown in this figure is the fold-
ing of all the available R magnitude estimates; for
clarity, these data points are displaced along the ver-
tical axis to coincide with the V magnitudes of the
cool component. Although the effect of the Paschen
continuum on the R magnitude is negligible, these
estimates cannot be ascribed to the cool component
alone because of the presence of a bright Hα line
whose equivalent width at maximum light is 113 Å.
However, allowance for the contribution of this line
would change theRmagnitude estimates by no more
than 0m. 1. The available data points suggest that the
secondary minimum is also observed inR and that its
amplitude is approximately equal to the amplitude in
the visual band. The secondary minimum most likely
results from the ellipticity effect. It should then be
assumed that the cool component of YY Her nearly
fills its Roche lobe and that the system is observed
almost edge-on. The ultimate confirmation of this
would be the detection of a secondary minimum on
the infrared light curves.

It should be noted that as the system was emerg-
ing from its last minimum, the brightness of the cool
component rose more slowly with increasing wave-
length. As the V brightness of YY Her rose by 0m. 5,
when, judging by the 1997 spectra, this change can
be assumed to be entirely attributable to the cool
component, its R brightness increased by 0m. 3, while
its I brightness was nearly constant (only erratic light
variations at a ∆I = 0m. 1 level were observed). The
folding of all the available R magnitude estimates
shows (see Fig. 5) that the amplitude of the primary
minimum in R is slightly smaller than that in V ,
whereas in I, the primary minimum is virtually un-
observable: the estimates from Table 2 for the primary
minimum match the out-of-eclipse magnitude esti-
mates for the system from Table 4 in Munari et al.
(1997a). Such a strong wavelength dependence of
the eclipse depth suggests that this feature may result
from the egress of a hot spot on the cool component’s
surface illuminated by the hot component (reflection
effect). This is also confirmed by the fact that, as was
shown by Tatarnikova et al. (2000), the spectral type
of the cool component determined from TiO bands
exhibits a phase dependence, with the latest spectral
type being observed at primary minimum. However,
the theoretical calculations of the reflection effect for
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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symbiotic stars by Proga et al. (1996, 1998) do not
confirm any significant effect of the hot component’s
radiation on the temperature and optical brightness of
the cool component.

Further optical and infrared photometric observa-
tions will allow the light curves of the cool component
to be constructed at various wavelengths. This, in
turn, will make it possible to interpret the light curves
in terms of a model that includes the ellipticity and
hot-spot effects.

If the period of constant brightness observed in
1997 is assumed to be associated with an eclipse of
the nebula by the red giant, then the components’
sizes with respect to the separation between the cool
component and the nebula (p), more specifically, the
sizes of the cool component and the dense, compact
part of the nebula (Rcool/p and Rneb/p), can be es-
timated from the phases of the inner and outer con-
ASTRONOMY LETTERS Vol. 27 No. 11 2001
tacts. As has been shown previously by Tatarnikova
et al. (2000), the cool component significantly over-
fills its Roche lobe for spherical components in a cir-
cular orbit of radius p and for a nebula that surrounds
the hot component (i.e., if p is equal to a, the orbital
semimajor axis for YY Her). Since the derived radius
of the giant must be within the Roche lobe, it remains
to assume that much of the gaseous nebula lies be-
tween the components rather than near the hot com-
ponent. At approximately equal masses of the cool
and hot components of YY Her, the compact gaseous
nebula should be placed almost halfway between the
components (p = a/2). However, such estimates
significantly depend on the nebula’s geometry, and for
symbiotic stars, there is reason to suggest that the
nebula is bipolar in shape. Skopal et al. (1997) ran
into a similar problem when analyzing the minimum
observed in BF Cyg during a bright outburst in 1989.
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In this case, the conditionRgiant < RRoche requires an
abnormally large component mass ratio for BF Cyg
(q > 6). It should be noted that the phase of constant
brightness was observed in BF Cyg only during the
first minimum after the onset of its outburst, while for
YY Her, this minimum is third from the onset of an
active phase. The first two minima may have been
similar in shape, but this cannot be firmly established
because of the breaks in the observations.

Spectroscopic observations in the red could be
very helpful in determining the luminosity class for the
cool component of YYHer. This is because the depths
of optical TiO bands are a reliable criterion for deter-
mining only the temperature (or spectral type) of the
cool component, while the absorption lines available
in this wavelength range cannot be reliably measured
due to the complex behavior of the continuum. How-
ever, criteria that allow a red giant to be distinguished
from a supergiant have been developed in the red
spectral range [e.g., Kenyon and Fernandez-Castro
(1987) used the Na I λλ8181,8195 doublet for this
purpose].

The Nebula and the Hot Component

The difference in shape between the 1997 min-
imum and the 1999 and 2000 minima is probably
attributable to a change in the nebular structure. The
1997 minimum appears as if the densest compact part
of the nebula, which gives the largest contribution
(80%) to the U flux, were totally eclipsed. In con-
trast, judging by the absence of a phase of constant
brightness near the minimum, an extended nebula
with sizes of the order of the cool component’s size
is eclipsed at the subsequent minima, i.e., the nebula
increased in size. However, the fact that the star
at the 1999 minimum was almost 0m. 7 fainter in U
than at the 1997 minimum suggests that the activity
of the hot component during this period continued
to decline and that the number of Lc photons de-
creased. Whereas, judging by the fit to the August 21,
1997 spectrum (see Fig. 4b), the nebula’s emission
measure at the 1997 minimum was ME = n2

eV =
9.5 × 1057(d/10 kpc)2 cm−3, its emission measure at
the next minimum must be approximately a factor
of 2 smaller. The nebula’s size can increase as the
volume emission measure decreases only when the
mean electron density decreases.

If the cool component is assumed to fill its Roche
lobe, then its luminosity must be 3600L� (Tatarniko-
va et al. 2000). For the spectral type М4, we
obtain Rg = 170R�. The mean electron density of
the eclipsed compact structure can then be deter-
mined from the 1997 minimum: 2 × 1010 cm−3; a
similar high density was obtained byMikolajewska et
al. (1989) for the inner region of the nebula in the
symbiotic star BF Cyg.
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Abstract—In 1982 and 1993, we carried out highly accurate photoelectric WBVR measurements for the
close binary ITCas. Based on these measurements and on the observations of other authors, we determined
the apsidal motion [ω̇obs = (11◦.0± 2◦.5)/100 years]. This value is in agreement with the theoretically calcu-
lated apsidal motion for these stars [ω̇th = (14◦ ± 3◦)/100 years]. c© 2001 MAIK “Nauka/Interperiodica”

Key words: eclipsing variable stars, apsidal motion
INTRODUCTION

ITCassiopeiae (ITCas) (GSC 3650–959, α2000 =
23h42m01s, δ2000 = +51◦44′.6, F6 V+F6 V, P =
3d.90, e = 0.089, V = 11m. 2) was discovered by Fadee-
va as an eclipsing binary on the basis of photographic
observations; she also obtained its first photographic
light curve (Parenago 1938). Florya (1946) con-
structed a complete light curve of this system by
using 337 photographic plates (from 1933 until 1939)
and refined its orbital period (P = 3d.89672). In
addition, Busch (1975) obtained a photographic light
curve by reducing 1958–1973 photographic plates.

We carried out the first photoelectric WBVR
measurements at the Tien-Shan Observatory of the
Sternberg Astronomical Institute (SAI) in 1982.
The photoelectric light curve was used to calculate
the components’ photometric parameters and orbital
elements (Khaliullin and Kozyreva 1989). Our 1993
photometric measurements presented here aimed at
investigating the apsidal motion in IT Cas.

OBSERVATIONS

In 1993, we made photometric WBVR measure-
ments (Kornilov et al. 1991) of IT Cas with a 50-cm
AZT-14 reflector at the Tien-Shan High-Altitude
Astronomical Observatory of the SAI (Moscow State
University) using the four-channel photoelectric
photometer designed by Kornilov and Krylov (1990).
We obtained the light curves at primary and sec-
ondary minima and estimated the brightness outside
the minima.

The Tien-Shan observations from 1982 (Khali-
ullin and Kozyreva 1989) were reprocessed and sig-
nificantly corrected for this study: we modified the

*E-mail: valq@sai.msu.ru
1063-7737/01/2711-0712$21.00 c©
background subtraction procedure (this is, in particu-
lar, true for the July 16, 1982 observations) and, more
importantly, eliminated the error in the calculated
heliocentric correction to the phase (July 22, 1982).
A new table of the 1982 and 1993 observations was
placed on the Web page at http://lnfm1.sai.msu.ru/
∼valq (broad-band photometry).

Figures 1 and 2 show our V observations of ITCas
in 1993 relative to the comparison star HD 236202
(BD+50◦ 4119). We obtained theWBVRmagnitudes
for IT Cas and the comparison star HD 236202 with
respect toWBVR standards (Khaliullin et al. 1985) in
1982 and 1993.

Photoelectric observations of the eclipsing binary
JT Cas have also been carried out by a number of
other authors. Several B, V , and R light curves at
minima were obtained during the 1994–1995 cam-
paign at the Mount Maidanak High-Altitude Obser-
vatory in Uzbekistan by Zakirov (Sandberg Lacy et
al. 1997). In 1995, Wolf (Holmgren and Wolf 1996)
measured the primary and secondary minima of this
star at the Ondřejev Observatory near Prague. The
observations were performed with a CCD array in R.

During 1982–1985, Sandberg Lacy obtained a
radial-velocity curve for IT Cas (Sandberg Lacy et al.
1997) and determined the components’ masses.

ALGORITHMS AND MODELS

Light-Curve Solution.
A Model and Minimization Method

We seek for the photometric parameters and or-
bital elements by using a simple model of two spher-
ical stars with a linear limb-darkening law that move
around a common center of mass in elliptical orbits.
The light curve of this model depends on the following
parameters:
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) V light curve for IT Cas at primary minimum.
Residuals from the theoretical light curve that was cal-
culated with the photometric elements from Table 3 are
shown in panel (b).

r1, 2, the radii of the primary and secondary com-
ponents;

u1, 2, the limb-darkening coefficients for the com-
ponents;

L1, 2, the components’ luminosities in fractions of
the system’s total luminosity;

i, the orbital inclination;
e, the orbital eccentricity;
ω, the longitude of periastron of the primary orbit;
EI, the epoch of the primaryminimum in JD� cor-

responding to the epoch of the observations analyzed;
L3, the parameter of the “system’s third-light pa-

rameter” (which is related to the system’s magnitude
outside the minimum as −2.5 log(L1 + L2 + L3) +
const = m0).

The brightness during an eclipse can be deter-
mined at any JD by analytic integration. At the
contact times of the stellar disks, when the second
derivatives abruptly change, the derivatives are calcu-
lated from analytic expansions in a small parameter.
This allowed us to use a quasi-Newtonian method
with an analytic calculation of the derivatives of the
functional (Gill and Murray 1978) as a minimizing
algorithm.

The functional to be minimized contains a sum of
the squares of the difference between the observed
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 2. Same as Fig. 1 for the secondary minimum.

and theoretical magnitudes at each point and the
Lagrange function that includes simple and linear
constraints on the sought-for parameters.

Analyses of the light curves for several eclipsing
binaries show that the iterations converge to the min-
imum even from a very distant initial point when cer-
tain constraints are imposed on the initial conditions,
for example, when the correct quadrant is chosen for
the periastron longitude.

The effect of the limb-darkening coefficients u1

and u2 on the system’s brightness manifests itself
in the light-curve segments immediately adjacent
to the contact points of the stellar disks. We find
that because these parameters weakly affect the light
curve, they can be reliably determined only from
high-accuracy (δ ≤ 0m. 005) observations with the
required completeness in these light-curve segments.
Since, in general, the accuracy of the light curves for
most systems under study is considerably lower, we
recommend to use the appropriate theoretical values
for u1 and u2 (Wade and Rucinski 1985).

We imposed the following constraints on the
sought-for parameters:

0 < r1, 2 < 0.5,
0 < e < 0.9,

π/4 < i < π/2,
0 < ω < 2π,

0 < L1,2 < 1,
0 < u1,2 < 1,
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−1/4P < ∆EI < 1/4P,

where ∆EI is the difference between the initial ap-
proximation and the actual epoch of the primary min-
imum.

With additional information, more stringent con-
straints can be used.

To avoid obtaining a false minimum, one of the fol-
lowing two inequalities was included in the Lagrange
function:

0 ≤ r1 − r2 ≤ 1
or

0 ≤ r2 − r1 ≤ 1.

A condition is chosen if additional information is
available on the components’ radii. If there is no such
information, then the calculation is performed by two
independent methods and the method with smaller
residuals between the theoretical and observed light
curves is chosen.

Computational experience shows that the quasi-
Newtonian method with an analytic calculation of
the derivatives of the functional is a very reliable and
quick way of analyzing the light curves of eclipsing
systems, despite the large number of parameters and
constraints.

Determining the Apsidal Motion

Subsequently, we modified the algorithm for cal-
culating the elements to simultaneously use all light
curves of the system. To this end, we added the
following parameters to the set of variables:

ω̇, the apsidal motion;
dP , the correction to the period of primary mini-

mum;
Li

3, the third-light parameters for each light curve
involved in the solution.

Using the third-light parameters for each light
curve compensates for the change in the system’s
brightness outside the minimum that can result from
physical variability of the star or the comparison star
and from the errors in the light-curve correction for
the Earth’s atmosphere. These parameters are cal-
culated only when the depth of the minimum can be
reliably determined from the light curve. Therefore,
observations that cover only one branch of the mini-
mum are not used for the analysis.

The small value and the absence of systematic
variations in the residuals for each light curve serve
as a check on the solution.

Note the following advantages of the method:
(1) All light curves are taken into account;
(2) The velocity of apsidal rotation enters into the

functional as a free parameter;
(3) The systematic errors attributable to the long-
period variability of the observed stars are compen-
sated; and

(4) Apart from the epoch of minima, i.e., the in-
formation used in the method of analyzing О–С dia-
grams (Gimenez and Garsio-Pelayo 1983; Sandberg
Lacy 1992), the widths of the minima are also taken
into account.

Estimating the Errors in the Close-Binary’s
Photometric Parameters and in Its Orbital Elements

Note that the errors can be considered only for the
chosen binary model. Analyzing the behavior of the
residuals for different light curves of the system serves
as a check on the adequacy of the model. In this
way, we can detect the components’ ellipticity or the
reflection effect that was disregarded in the model.

In the chosen model, it must be verified that the
residuals from the theoretical model have a nearly
normal distribution. This is true if the systematic
measurement errors and the physical fluctuations
of the stars under study or the comparison stars
are taken into account. We used the Kolmogorov–
Smirnov criterion to test the hypothesis of a normal
distribution of the residuals. The light curves whose
residuals showed significant deviations from the
normal distribution were rejected.

In searching for errors in the parameters, we su-
perimposed a normally distributed noise signal with
a variance equal to the estimated variance of the ob-
served light curve on the theoretical light curve found
by minimization. The curves obtained in this way
were used to seek for new sets of parameters. Multiple
application of the described procedure yielded sets of
deviations of the sought-for parameters, which were
used to determine the distributions of errors in the
calculated parameters.

Figure 3 shows model distributions of the devia-
tions of some parameters for the star IT Cas under
study.

PARAMETERS OF THE STARS
AND ORBITAL ELEMENTS FOR IT CAS.

THE APSIDAL MOTION

Weused an algorithmbased on the quasi-Newtonian
minimization method to determine the components’
parameters, orbital elements, and the apsidal motion
for IT Cas.

For the solution, we used our 1982 and 1993 ob-
servations at Tien-Shan and Zakirov’s V observa-
tions in 1995 at Mount Maidanak (Sandberg Lacy et
al. 1997). Zakirov’s 1994 observations were not used
in our analysis, because their accuracy was several-
fold lower.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 3. The distribution functions for r1, r2, i, e, ω, and ω̇obs obtained by varying a model light curve. The thin line represents
the normal distributions functions with the appropriate means and variances of these parameters (Table 2).
From the large series of 1995 observations, we
chose only those with a sufficient number of points
on both branches of the minima. We required that the
branches of the minima be generally undistorted by
the systematic errors due to variations in the atmo-
spheric transparency.

The analyzed minima are listed in Table 1. The
ASTRONOMY LETTERS Vol. 27 No. 11 2001
stars’ parameters and the system’s orbital elements
determined by using the entire set of light curves are
given in Table 2.

In our search for the epochs of the minima given
in Table 1, we performed calculations using each
individual light curve. According to Table 2, we
fixed the components’ relative radii (r1 and r2), limb-
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Table 1. The heliocentric epochs of minima for IT Cas as derived from measurements of different authors

JD� – 2440000 O–C Min Authors

5167.3158 0d.0000 I Kozyreva and Zakharov (this paper)

5173.3542 0.0000 II Kozyreva and Zakharov (this paper)

9239.3141 0.0002 I Kozyreva and Zakharov (this paper)

9245.3534 −0.0010 II Kozyreva and Zakharov (this paper)

9923.3716 −0.0001 II Sandberg Lacy et al. (1997)

9927.2687 0.0004 II Sandberg Lacy et al. (1997)

9948.5032 −0.0008 I Holmgren and Wolf (private communication)

9954.5441 −0.0009 II Holmgren and Wolf (private communication)

9956.2972 −0.0001 I Sandberg Lacy et al. (1997)

9962.3382 0.0000 II Sandberg Lacy et al. (1997)

Table 2. Parameters of the components and orbital elements for IT Cas as inferred from the 1982–1995 photoelectric
light curves

Element or parameter Value Element or parameter Value

r1 0.1096+5
−8 u1 0.58 (adopted)

r2 0.1102+9
−6 u2 0.58 (adopted)

i 89◦.8+2
−1 EI JD� 2445167d.3158+3

−3

e 0.089 ± 0.002 EII JD� 2445169d.4576+6
−6

ω0 332◦ ± 2◦ ϕII 0p.5497± 0.0002

ω̇obs 11◦+2
−3/100 yrs PI 3d.8966489+3

−3

L1 0.496+3
−7 PII 3d.8966509+5

−5

L2 0.497+5
−3 σ 0m. 0155
darkening coefficients (u1 and u2), orbital inclination
(i), eccentricity (e), the initial longitude of periastron
(ω0), and the period of the primary minimum (PI ). In
view of the detected physical light fluctuations in the
system, we varied L3, the third-light parameter. We
sought for the times of conjunction of the components
during a primary eclipse (TI) as free parameters. The
absence of appreciable systematic deviations of the
residuals (the difference between observed and the-
oretical brightnesses) for points of the minimum as a
function of eclipse phase served as a check on the de-
rived epoch of theminimum. The times of conjunction
for the secondary minima (ÒII) were calculated from
the well-known relation in Kopal (1978) by assuming
that the rate of change in the longitude of periastron
(ω̇) was constant:

T2 = T1 +
P

2
+

2Pe cos ω

π

−2Pe3(1 + 3
√

1 − e2)
3π(1 +

√
1 − e2)3

cos 3ω + . . . ,
ω = ω0 + ω̇(t − t0).

Here, P is the orbital period of the close binary, t is the
time of the corresponding eclipse, and t0 is the time
when the periastron longitude was ω0.

To calculate O–C (Table 1), we used the epheme-
rides of the primary and secondary minima (Table 2)
computed with the derived elements.

The stars’ parameters and orbital elements match,
within the error limits, the solution obtained for this
system by other authors (Sandberg Lacy et al. 1997).
The system IT Cas consists of two F5 V stars with
nearly equal radii and luminosities.

When analyzing a large series of published ob-
servations (Sandberg Lacy et al. 1997), we found
that IT Cas exhibited quasi-periodic (about a month)
light variations with an amplitude of∼0m. 03 in V out-
side the minimum. Such light variations outside the
minimum are also characteristic of our observations
of this star. Since the observations were carried out
with different comparison stars, the above variations
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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refer to the long-period light variations in the IT Cas
itself. We emphasize that, apart from other elements,
our method of seeking for the elements and the ap-
sidal motion includes the set of parameters Li

3 that
normalizes the brightness outside the minimum for
each light curve used in the analysis. This parameter
compensates for the star’s light variations caused by
its long-period variability.

The apsidal motion obtained simultaneously with
the remaining parameters in a free search is

ω̇obs = (11◦.0◦ ± 2◦.5)/100 years.

CONCLUSIONS AND DISCUSSION

We theoretically calculated the classical and rela-
tivistic terms of apsidal motion by using the system’s
absolute parameters (Sandberg Lacy et al. 1997) and
the corresponding constants of apsidal motion (Claret
and Gimenez 1992). The stars’ relative parameters
and orbital elements were taken from Table 2. The
theoretical apsidal motion for this system is

ω̇th = ω̇cl + ω̇rel = (10◦ ± 3◦)/100 years

+(4.0◦ ± 0◦.2)/100 years

= (14◦ ± 3◦)/100 years.

Thus, within the accuracy, the observed apsidal
motion ω̇obs for IT Cas agrees with its theoretical
value. This result is yet another confirmation that
the calculations of the internal structure for main-
sequence stars (Claret and Gimenez 1992) are cor-
rect.

The method of analyzing an O–C diagram, the
time dependence of the difference between the ob-
served and calculated epochs of minima (Gimenez
and Garsio-Pelayo 1983, Sandberg Lacy 1992), is
commonly used to determine the apsidal motion. The
errors of this method depend on the accuracy of de-
termining the epochs of minima from light curves.
Because of the asymmetry in the light curves for
systems with eccentric orbits, light fluctuations, and
measurement errors, different methods for determin-
ing the epochs of minima yield differing results. To
obtain a correct estimate for the apsidal motion, it is
not enough to compare the epochs of minima derived
by different authors; it is also necessary to make sure
that the systematic errors are negligible or equal.

Let us compare the result for IT Cas from Sand-
berg Lacy et al. (1997),

ω̇obs = (23◦.1 ± 22◦.2)/100 years

with that published by Holmgren and Wolf (1996),
ω̇obs = (93◦.2 ± 14◦.6)/100 years.

The two results were obtained by analyzing O–
C diagrams (Sandberg Lacy 1992). In both cases,
all the known epochs of minima for IT Cas, even the
ASTRONOMY LETTERS Vol. 27 No. 11 2001
photographic ones, were used. The list of the epochs
of minima used in the former case was supplemented
with the 1995 observations in Uzbekistan. The dif-
ference by a factor of 4 suggests that the method is
unreliable. For IT Cas, this is explained by peculiar-
ities of the system’s geometry. First, the longitude of
the orbital periastron (∼330◦) is close to a position
at which the time derivative of O–C is small (the
slopes of O–C for the primary and secondary min-
ima on the plot), causing the error of the method to
double. Second, at a low eccentricity (0.089), the
amplitude of variations in the O − C differences for
the epochs of the primary and secondary minima over
the entire observing period is comparable to the errors
of photographic observations. All of these factors
determine the incorrect result of Holmgren and Wolf
(1996) and the large error in the apsidal motion found
by Sandberg Lacy et al. (1997).

Another method of determining the apsidal mo-
tion is based on calculating the difference between
the longitudes of periastron obtained for two differ-
ent epochs of observations. In this method, one of
the necessary conditions is the availability of highly
accurate light curves for two pairs of primary and
secondary minima closely spaced in time for each
epoch; one pair must be sufficiently far from the other.

During one season, high-quality observations can
be obtained only for one minimum, with the apsidal
motion being determined by assuming that the sys-
tem’s geometry is unchanged. This assumption for
the light curve at a different, much later epoch can
lead to systematic variations in the residuals between
the calculated and observed curves due to the varia-
tions in the orbital inclination or eccentricity. Since
the calculated apsidal motion will be erroneous, this
method requires a mandatory check on the behavior
of the residuals.

To illustrate the method of comparing two epochs,
we took the R light curves for IT Cas obtained by
Wolf in 1995. These data were kindly made avail-
able to us by the author. As the first epoch, we
took our 1982 observations. For both light curves,
the elements were determined with the fixed orbital
eccentricity (e = 0.0893) and inclination (i = 90◦.0)
calculated when freely seeking for the elements by
using the 1982 light curves. The limb-darkening
coefficients u1 and u2 were fixed according to their
theoretical values, 0.58 in V and 0.46 in R for the two
components (Wade and Rucinski 1985).

The apsidal motion calculated from these two pairs
of light curves is

ω̇obs = (10◦ ± 3◦)/100 years.

This value agrees, within the error limits, with our
main result.
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The apsidal motion that we derived for IT Cas
agrees with its theoretical value, but it is considerably
lower and more accurate than that in Sandberg Lacy
et al. (1997)
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Abstract—We present photoelectric and spectroscopic observations of the protoplanetary object
V1853 Cyg, a B supergiant with an IR excess. Over two years of its observations, the star exhibited rapid
irregular light variations with amplitudes ∆V = 0m. 3, ∆B = 0m. 3, ∆U = 0m. 4 and no correlation between
color and magnitude. Its mean magnitude has not changed since the first UBV observations in 1973
(Drilling 1975). Low-resolution spectroscopic observations show that the spectrum of V1853 Cyg in 2000
corresponded to that of a B1–B2 star with Teff ∼ 20000 K. High-resolution spectroscopic observations
confirm the conclusion that the profiles of absorption and emission lines are variable. We identified the
star’s spectral lines and measured the equivalent widths of more than 40 lines. The star’s radial velocity
is 〈Vr〉 = −49 ± 5 km s−1, as measured from absorption lines, and ranges from −50 to −85 km s−1 for
different lines, as measured from shell emission lines. The velocity of the dust clouds on the line of sight
determined from diffuse interstellar bands (DIBs) and from interstellar Na I lines is 〈Vr〉 = −16± 5 km s−1.
The P Сyg profiles of the He I λ5876 Å and λ6678 Å lines suggest an ongoing mass loss by the star. An
analysis of the observational data confirms the conclusion that the star belongs to the class of intermediate-
mass protoplanetary objects. c© 2001 MAIK “Nauka/Interperiodica”

Key words: protoplanetary objects, photoelectric and spectroscopic observations
INTRODUCTION

LSII + 34◦26 is a star from the Catalog of Lumi-
nous Stars (Stok et al. 1960). Turner and Drilling
(1984) estimated its distance to be ∼ 17.8 kpc by
assuming that this star was a massive B1.5 Ia–Iabe
supergiant. Its magnitude variations over five nights
with amplitudes of 0m. 1 in B and V and 0m. 2 in U
(Turner and Drilling 1984) gave grounds to include
it in the 68th list of variable stars (Kholopov et al.
1987), where it was designated as V1853 Cyg and
classified as an α Cygni variable. Since the IRAS
satellite detected far-IR radiation from the object,
Parthasarathy (1993) suggested that V1853 Cyg =
IRAS 20462 + 3416 is a low-mass post-AGB B-type
supergiant surrounded by a cold dust envelope with
Tdust ∼ 100 K located at a distance of 3–4.6 kpc,
rather than a massive population I B star. The spec-
trum of V1853 Cyg consists of absorption lines typ-
ical of an early B supergiant and the emission-line
spectrum of a gaseous shell. The H I and He I lines

*E-mail: vera@sai.msu.ru
1063-7737/01/2711-0719$21.00 c©
have P Cyg profiles, which, together with the pres-
ence of shifted C IV and Si IV absorption lines in the
stellar UV spectrum, are indicative of mass outflow
from the star (Garcia-Lario et al. 1997). The profiles
of absorption lines and H I and He I emission lines
change, which may be evidence for a variable stellar
wind (Smith and Lambert 1994; Garcia-Lario et al.
1997). Garcia-Lario et al. (1997) determined the
electron density in the circumstellar envelope, ne ∼
104 cm−3, from the intensity ratio of the [S II] doublet
emission lines I(λ6717)/I(λ6731) = 0.5. Ueta et al.
(2000) discovered a large reflection nebula∼3′′ in size
around V1853 Cygwith the Hubble Space Telescope.

UBV OBSERVATIONS

Photometrically variable protoplanetary objects
are the focus of our special attention (Arkhipova et
al. 2000, 2001b). There are few published photo-
metric observations of V1853 Cyg: two magnitude
estimates in 1973 (Driling 1975) and five magnitude
estimates in 1979 (Turner 1983). Therefore, in 1999,
2001 MAIK “Nauka/Interperiodica”
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Table 1. UBV observations of V1853 Cyg in 1999–2000

JD 2400000+ U B V U–B B–V JD 2400000+ U B V U–B B–V

51336.503 10.262 11.114 10.909 −0.852 0.205 51746.435 10.618 11.358 11.200 −0.740 0.158
51345.460 10.438 11.270 11.093 −0.832 0.177 51747.370 10.317 11.123 10.946 −0.806 0.177
51346.488 10.481 11.305 11.102 −0.824 0.203 51750.447 10.527 11.321 11.120 −0.794 0.201
51347.503 10.398 11.218 11.047 −0.820 0.171 51752.437 10.326 11.144 10.951 −0.818 0.193
51351.484 10.299 11.143 10.956 −0.844 0.187 51753.485 10.419 11.208 11.016 −0.789 0.192
51352.442 10.480 11.289 11.101 −0.809 0.188 51754.515 10.531 11.291 11.109 −0.760 0.182
51369.513 10.474 11.255 11.099 −0.781 0.156 51755.387 10.384 11.192 11.002 −0.808 0.190
51402.400 10.318 11.120 10.939 −0.802 0.181 51759.458 10.409 11.195 11.037 −0.786 0.158
51409.432 10.406 11.210 11.023 −0.804 0.187 51761.371 10.511 11.306 11.151 −0.795 0.155
51411.383 10.554 11.332 11.177 −0.778 0.155 51762.474 10.295 11.148 10.967 −0.853 0.181
51451.388 10.378 11.169 10.979 −0.791 0.190 51763.517 10.541 11.283 11.097 −0.742 0.186
51452.302 10.427 11.202 11.048 −0.775 0.154 51764.369 10.462 11.241 11.070 −0.779 0.171
51453.363 10.271 11.098 10.908 −0.827 0.190 51765.426 10.464 11.285 11.141 −0.821 0.144
51454.243 10.326 11.160 10.995 −0.834 0.165 51766.417 10.438 11.213 11.027 −0.775 0.186
51455.346 10.470 11.280 11.064 −0.810 0.216 51767.456 10.465 11.204 11.016 −0.739 0.188
51456.309 10.294 11.113 10.938 −0.819 0.175 51768.415 10.471 11.266 11.104 −0.795 0.162
51457.309 10.345 11.155 10.983 −0.810 0.172 51776.492 10.418 11.207 10.968 −0.789 0.239
51458.384 10.386 11.214 11.072 −0.828 0.142 51777.492 10.545 11.303 11.107 −0.758 0.196
51459.243 10.484 11.226 11.063 −0.742 0.163 51778.499 10.364 11.147 10.925 −0.783 0.222
51467.374 10.261 11.073 10.900 −0.812 0.173 51779.484 10.637 11.486 11.320 −0.848 0.166
51691.445 10.408 11.189 11.010 −0.781 0.179 51779.512 10.689 11.509 11.294 −0.820 0.215
51692.524 10.388 11.250 11.070 −0.862 0.180 51780.499 10.347 11.137 10.950 −0.790 0.187
51693.453 10.423 11.216 10.998 −0.793 0.218 51781.451 10.280 11.097 10.910 −0.817 0.187
51694.397 10.340 11.129 10.957 −0.789 0.172 51782.492 10.442 11.175 10.978 −0.733 0.197
51695.500 10.438 11.242 11.064 −0.804 0.178 51789.464 10.557 11.396 11.163 −0.839 0.233
51701.500 10.321 11.211 10.933 −0.890 0.278 51791.474 10.491 11.293 11.104 −0.802 0.189
51702.424 10.587 11.298 11.114 −0.711 0.184 51806.347 10.292 11.142 10.969 −0.850 0.173
51703.437 10.350 11.129 10.941 −0.779 0.188 51815.367 10.378 11.192 11.036 −0.814 0.156
51705.485 10.422 11.158 10.994 −0.736 0.164 51815.372 10.358 11.210 11.046 −0.852 0.164
51706.465 10.382 11.182 11.007 −0.800 0.175 51816.372 10.320 11.113 10.940 −0.793 0.173
51707.456 10.353 11.179 11.029 −0.826 0.150 51817.482 10.416 11.225 11.029 −0.809 0.196
51708.412 10.402 11.184 11.019 −0.782 0.165 51818.459 10.411 11.219 10.982 −0.808 0.237
51709.492 10.548 11.200 11.019 −0.742 0.181 51818.476 10.395 11.190 10.984 −0.795 0.206
51710.475 10.445 11.210 11.060 −0.765 0.150 51820.387 10.578 11.304 11.121 −0.726 0.183
51720.456 10.464 11.263 11.090 −0.799 0.173 51821.273 10.443 11.219 11.081 −0.776 0.138
51721.441 10.497 11.264 11.073 −0.767 0.191 51822.413 10.400 11.128 10.965 −0.728 0.163
51722.495 10.423 11.196 11.013 −0.773 0.183 51823.426 10.380 11.170 11.012 −0.790 0.158
51724.499 10.327 11.116 10.944 −0.789 0.172 51824.313 10.343 11.158 10.990 −0.835 0.168
51725.499 10.329 11.129 10.936 −0.801 0.193 51824.321 10.341 11.152 10.970 −0.811 0.182
51728.481 10.385 11.193 11.022 −0.808 0.171 51836.364 10.322 11.112 10.934 −0.790 0.178
51729.490 10.389 11.149 10.995 −0.760 0.154 51841.363 10.318 11.130 10.949 −0.812 0.181
51730.497 10.340 11.156 10.982 −0.816 0.174 51849.358 10.551 11.289 11.073 −0.738 0.216
51732.485 10.402 11.210 11.044 −0.808 0.166 51850.302 10.664 11.350 11.177 −0.686 0.173
51734.488 10.385 11.142 10.988 −0.757 0.154 51853.321 10.602 11.279 11.089 −0.677 0.190
we included this star in our program of research
on the variability of protoplanetary objects. During
two observing seasons (1999–2000), we obtained
∼90 UBV observations for the star. Our obser-
vations were carried out with a UBV photometer
attached to a 60-cm Zeiss telescope at the Crimean
Station of the Sternberg Astronomical Institute.
The comparison stars were BD +34◦4152 (V =
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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9m. 95, B = 10m. 24, U = 10m. 34, Appenzeller 1966)
and GSC no. 2695.1362, whose magnitudes were
determined by using BD+34◦4152 for reference: V =
11m. 24, B = 11m. 64, U = 11m. 83. Table 1 gives our
UBV observations, and Fig. 1 shows the star’s UBV
light curves. V1853 Cyg exhibits rapid erratic light
variations with amplitudes of∆V ∼ 0m. 3,∆B ∼ 0m. 3,
and∆U ∼ 0m. 4. There is no correlation between color
and magnitude (Fig. 2) and no periodicity with P >

1d.. The variability amplitude ∼0m. 3 suggests flux
variations by a factor of 1.3; since the gas continuum
emission Ec ∼ n2

e, the electron density must vary by
a factor of 1.14, which is quite possible for a variable
mass-loss rate. Therefore, the photometric variabil-
ity seems to be caused by a variable stellar wind.
However, during some observing intervals (e.g.,
JD 2451703–2451734), the star exhibited smooth,
monotonic night-to-night brightness changes; ac-
cordingly, pulsations with close short periods cannot
be ruled out. Both a variable stellar wind and rapid
low-amplitude pulsations appear to be responsible for
the variability. The star’s mean brightness estimated
from the 1999–2000 observations, 〈V 〉 = 11m. 03,
〈B〉 = 11m. 21, 〈U〉 = 10m. 42, has been virtually con-
stant since 1973 (V = 11m. 07, B = 11m. 24, and U =
10m. 48) (Drilling 1975).

EXTINCTION

Turner (1983) estimated the color excess of the
star to be E(B–V ) = 0m. 38 by assuming that its
spectral type was B1.5 I. For neighboring stars,
E(B − V ) = 0m. 21–0m. 27 (Turner 1983). The ex-
tinction inferred from the intensity of the λ2200 Å
band was estimated to be E(B − V ) = 0m. 24 ± 0m. 05
(Parthasarathy 1993). As in many protoplanetary
objects (Arkhipova et al. 2000), the color excess of
V1853 Cyg appears to be partly (≥0m. 1) attributable
to the circumstellar dust envelope whose extinction
law differs from the interstellar one.

SPECTROSCOPIC OBSERVATIONS

In 2000, three low-resolution spectrograms of
V1853 Cyg were obtained in the wavelength range
4300–10000 Å. The observations were carried out
with a 125-cm reflector at the Crimean Station of
the Sternberg Astronomical Institute using a fast
spectrograph. The detector was a SBIG ST6 274 ×
375CCD array, which, in combination with a 600 line
mm−1 grating, yielded a resolution of 5.5 Å pixel−1.
The spectrum of V1853 Cyg exhibits the Hα and
Hβ emission lines and He I lines; the most intense
absorption features belong to Na I and O II.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 1. UBV light curves of V1853 Cyg in 1999–2000.

The He I λ6678 Å line is also seen in absorption.
We transformed the fluxes in the spectra taken on
July 4 and 29, and on October 20, 2000, to absolute
fluxes. The standard star was 3Vul (B9V) (Voloshina
et al. 1982). Figure 3 shows portions of the spectra
in the wavelength range 6500–7100 Å. Noteworthy
are the different continuum levels and variability of the
Hα, He I λ6678 Å, and λ7065 Å line profiles. The
energy distribution in the wavelength range 4300–
10000 Å corrected for the interstellar extinction with
E(B − V ) = 0m. 38 corresponds to the radiation from
a star with Teff ∼ 20000 K. The equivalent widths of
the Balmer lines vary within W (Hβ) = 1.3–2.6 Å,
W (Hα) = 11.5–16.2 Å.
A CCD spectrum of V1853 Cyg was taken at the

Special Astrophysical Observatory on June 12/13,
2000, with the PFES echelle spectrometer (Panchuk
et al. 1998) at the prime focus of the 6-m tele-
scope. The 4290–7220 Å spectrum consists of 22
∼200 Å echelle orders with a ∼25 Å overlap. The
three-pixel resolution (projected entrance-slit width)
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Fig. 3. Low-resolution spectrum of V1853 Cyg in the
wavelength range λ6500–7100 Å.

is R ∼ 15000. We performed the standard reduction
of echelle spectra (dark-current subtraction, cosmic-
ray hit removal, echelle-order extraction, and lin-
earization) using the ECHELLE context of the ESO-
MIDAS package (version 98NOV).

As has been noted previously (Smith and Lambert
1994, Garcia-Lario et al. 1997), the line spectrum
of V1853 Cyg is represented by two components:
the absorption spectrum of a B1.5 supergiant and
the emission spectrum of a low-excitation gaseous
shell superimposed on it. We identified lines in the
spectrum of V1853 Cyg using the tables of Moore
(1945) and the catalog of emission lines by Meinel
et al. (1969). Table 21 lists the lines in the wave-
length range λ4290–7200 Å. The first column gives

1Table 2 is published in electronic form only and is accessi-
ble at ftp cdsarc.u-strasbf/fr/pub/cats/J (130.79.128.5) or
http://cdsweb.u-strasbg.fr/pub/cats/J.
instrumental wavelengths of the spectral lines. The
subscripts à and å denote absorption and emission
features, respectively. The second column contains
laboratory wavelengths of the lines, and the third
column contains species andmultiplet numbers. Fig-
ure 4 shows portions of the spectrum taken on June
12/13, 2000. The star’s spectrum exhibits the entire
set of lines typical of a B supergiant. In addition to
H I and He I lines, these include numerous O II,
N II, and C II absorption features. Also present are
Si III, Al III, and Fe II lines. Note that there are
very weak He II λ4686 Å and λ6171 Å absorption
lines in the spectrum. The star’s spectrum clearly
shows numerous diffuse interstellar bands (DIBs),
as well as strong Na I D1 and D2 interstellar lines
(Fig. 4d): Wλ(D1) = 0.76 Å and Wλ(D2) = 0.65 Å.
The hydrogen- and helium-line profiles are complex.
The stellar Hα and Hβ absorption lines are filled
with shell emission lines; a narrow emission feature is
superimposed on the broad Hγ absorption line. The
He I λ4387.9 Å and λ5047.7 Å lines are in absorption,
whereas the λ4921 Å, λ4471 Å, and λ5016 Å absorp-
tion lines have emission components. The λ7065 Å
line is in emission, while the λ5876 Å and λ6678 Å
lines have P Cyg profiles. The emission spectrum of
the gaseous shell is also represented by [N II], [S II],
and Si II lines. Also present is a weak Na I D2 emis-
sion feature, which is distorted by a strong Na I D2

absorption. There are no [O III] lines. The intensity
ratio of the [S II] doublet I(λ6717)/I(λ6731) = 0.51
corresponds to ne = 1.1 × 104 cm−3. Table 3 gives
equivalent widths of the most prominent absorption
lines in the spectrum and compares them with the
previously determined values. As we see from Table 3,
our equivalent widths of the N II lines exceed those
determined by Garcia-Lario et al. (1997) by a factor
of two or more, whereas theO II, Al III, and S III lines
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 4. Portions of the echelle spectrum for V1853 Cyg taken on June 12/13, 2000.
show much smaller differences. Equivalent widths of
the emission lines are given in Table 4.

Numerous radial-velocity determinations are avail-
able for V1853 Cyg. As was noted previously (Smith
and Lambert 1994; Garcia-Lario et al. 1997),
the star’s radial velocities exhibit large and rapid
TRONOMY LETTERS Vol. 27 No. 11 2001
variations. Table 5 gives the heliocentric velocities
inferred from many absorption and emission lines.
The mean velocity derived from O II, N II, C II,
Si III, and Al III absorption lines was 〈Vr〉 = −49 ±
5 km s−1 and corresponds to the radial velocity of
the star itself. The mean radial velocities differ for
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different emission lines. Thus, the heliocentric radial
velocities determined from [N II] and Si II lines are
−68 ± 2 km s−1, which is in excellent agreement
with those determined by Smith and Lambert (1994).
However, [S II] lines yield Vr = −85 ± 1 km s−1,
which may result from the stratification of emissions
in the gaseous shell. The radial velocities determined
from diffuseNa I D1 and D2 interstellar lines and from
diffuse interstellar bands (DIBs) are similar, −12 and

−16 km s−1, respectively.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Table 3. Equivalent widths of absorption lines in the spec-
trum of V1853 Cyg

λ, Å Species
Wλ, mÅ

(Garcia-Lario
et al. 1997)

Wλ, mÅ

4906.817 O II 99 104

4921.931 He I 200 530

4925.343 S II 150 147

4943.006 O II 73 133

5002.703 N II 41 165

5005.150 N II 49 145

5010.621 N II 42 130

5015.678 He I 70 63

5045.099 N II 109 228

5160.026 O II 77 92

5639.477 Si II 61 59

5666.629 N II 101 212

5676.017 N II 111 226

5679.558 N II 153 376

5686.213 N II 33 115

5696.604 Al III 176 254

5710.766 N II 78 110

5722.730 Al III 134 159

5739.734 Si III 247 375

6402.246 Ne I 210 187

6578.052 C II 303 191

6678.154 He I 330 88

6721.358 O II 137 219

It was of interest to test the conclusion by Garcia-
Lario et al. (1997) about the mass-loss episode that
occurred in 1993–1995. To this end, we compared
the profile of the He I λ6678 Å line observed on June
12/13, 2000, with the 1992–1995 observations of the
above authors. In Fig. 4e, we clearly see an intense
emission component of the He I λ6678 Å line; thus,
mass outflow from the star was also observed in 2000.
In our view, there is a variable stellar wind on short (of
the order of several days) time scales, as confirmed by
photometric variability and by variability of the radial
velocities determined from emission lines.

COMPARISON OF V1853 Cyg WITH V886 Her

The photometric behavior of V1853 Cyg on a time
scale of several years bears a striking similarity to that
of another protoplanetary object, the В1-supergiant
ASTRONOMY LETTERS Vol. 27 No. 11 2001
Table 4. Equivalent widths of emission lines in the spec-
trum of V1853 Cyg

λ, Å Species Wλ, mÅ

4861.33 H I 1530
5041.06 Si II 85
5056.02 Si II 203
5158.80 [Fe II] 45
5875.6 He I 568
5889.95 Na I D2 86
5957.61 Si II 157
5978.97 Si II 338
5999.47 N I 53
6032.30 Fe III 91
6347.09 Si II 371
6371.36 Si II 178
6449.21 [Zr II] 53
6548.1 [N II] 153
6562.8 H I 1150
6583.6 [N II] >378
6633.78 O I 43
6678.15 He I 81
6717.0 [S II] 65
6731.30 [S II] 117
7065.19 He I 630

V886 Her (Arkhipova et al. 1996, 1998, 2001a).
Like V1853 Cyg, V886 Her exhibits rapid erratic
light variations with amplitudes ∆V ∼ 0m. 3, ∆B ∼
0m. 3, and ∆U ∼ 0m. 4 and no correlations between
color and magnitude. However, a trend in the mean
brightness is observed in V886 Her: the star has
dimmed by ∼0m. 5 in V since the 1970s, whereas the
mean brightness of V1853 Cyg has not changed in
27 years. V886 Her also exhibited rapid spectral
evolution, while V1853 Cyg has remained an early-B
star at least for the last 30 years.
The absorption spectrum of V886 Her corre-

sponds to a B1 supergiant with a temperature Teff =
22000 ± 500 K (Partharathy et al. 2000). In con-
trast to the spectrum of V1853 Cyg, its emission
spectrum is richer and contains numerous forbidden
and permitted lines of ionized metals [Fe II], Fe II,
[Fe III], [Cr II], [Ti II], Ti II, [V II], V II, [Zr II], [Ni II],
[Cu II], [Mn II], neutral metals [Ni II], [Cr I], [Ti I],
an intense [N II] λ5755 Å auroral line, as well as
[O I] lines and an intense O I λ7002 Å line, which is
absent from the spectrum of V1853 Cyg. Figure 5
shows portions of echelle spectra for V1853 Cyg
and V886 Her. The difference between the emission
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Table 5.Mean heliocentric radial velocities of V1853 Cyg
as inferred from lines of various species

Species Number of lines Vr, km s−1 σ(Vr), km s−1

O II a∗ 29 −54 4
N II a 12 −51 3
C II a 6 −43 4
Si III a 5 −56 5
Al III a 3 −43 3
He II a 1 −49 0
H I e∗∗ 3 −50 3
He I e 3 −54 10
[N II] e 2 −68 1
[S II] e 2 −85 0
Si II e 5 −68 2
Na I D2 e 1 −85 0
Na I a 2 −12 0
DIB a 7 −16 5
Note: a∗ is absorption, e∗∗ is emission.

spectra stems from the fact that the shell of V886
Her, first, is excited by a hotter star and, second,
has a higher density, which is estimated from [S II]
lines to be ne = 2 × 104 см−3, and is apparently more
extended. Both stars exhibit variable H I and He I
line profiles (Arkhipova et al. 2001a). As has been
pointed out previously, the variations of the H I and
He I line profiles in the spectrum of V886 Her may be
related to the spectral evolution of the star. However,
when comparing V886 Her and V1853 Cyg, we may
assume the variations of the hydrogen- and helium-
line profiles in the spectrum of V886 Her on a short
time scale to be most likely the result of a variable
stellar wind.
Given the similarity in photometric behavior and

some spectral characteristics of V1853 Cyg and
V886 Her, it may be assumed that these are related
objects at the same stage of stellar evolution—on
the way from AGB supergiants to young planetary
nebulae. However, the times it take them to traverse
this path differ markedly. As a more massive star
(M = 0.7M�), V886 Her evolves “before our eyes,”
traversing the path from А to early-B star in a hun-
dred years. At the same time, in 30 years, V1853 Cyg
did not approach on the Hertzsprung–Russell dia-
gram to the hotter progenitors of planetary nebulae
and, according to the theory of stellar evolution at
late stages (Blocker 1995), must be less massive. We
estimate it to be∼0.6Ì�.

CONCLUSIONS
Our photometric and spectroscopic observations

of V1853 Cyg in 1999–2000 have led us to the fol-
lowing conclusions:
(1) Since the star is not a massive supergiant, it
does not belong to theαCygni type of variables; being
most likely a post-AGB star together with another
related object, V886 Her, it represents a new type
of variables whose variability is associated with their
evolutionary status.

(2) Given the peculiarities of its photometric vari-
ability, which cannot be explained by the short-period
pulsations alone, and the P Cyg profiles of He I lines
in the spectrum of V1853 Cyg, we assume that mass
outflow from the star continues and that the time
scale of stellar-wind intensity variations is of the order
of a day.

(3) The star’s mean brightness has not changed in
30 years, neither its spectral type and, consequently,
its temperature characteristics — the star did not
show any rapid evolutionary changes, in contrast to
V886 Her. Therefore, we believe it to be a protoplan-
etary object of intermediate mass (M ∼ 0.6M�).

Given the short time scales of light variations
in V1853 Cyg, it is desirable to carry out further
photometric observations of the star in an effort to
reveal a possible periodic variability with P < 1 days
and spectroscopic observations to confirm the stellar-
wind variability as one of the causes of the star’s rapid
variability.
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Estimation of Errors in the Distances to Intrinsically Reddened Stars
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Abstract—We show that adding the intrinsic color excess∆EB−V of a star to the interstellar EB−V can
significantly change the estimate of its distance r. When ∆EB−V changes from 0m. 0 to 0m. 5, the relative
error δ in the estimated distance rapidly increases to 99.5%. For ∆EB−V > 0m. 5, r cannot be determined
from the distance modulus. The error δ depends neither on absolute magnitude MV , nor on apparent
magnitude mV , nor on interstellar extinction but depends only on the star’s intrinsic reddening ∆EB−V .
We provide quantitative estimates of the intrinsic reddening in stars. The mean values of ∆EB−V for B0
stars in open clusters and associations are 0m. 2 and 0m. 35, respectively;∆EB−V for Be stars is 0m. 1–0m. 2;
the effect of cooler companions on the color indices of OB stars can vary. The individual values of∆EB−V

for separate OB stars exceed 0m. 5 and reach 0m. 6–0m. 7. We show that the intrinsic reddening of cluster
stars produced by circumstellar gas–dust envelopes can be separated from the interstellar reddening even
for the same extinction law. c© 2001 MAIK “Nauka/Interperiodica”

Key words: star clusters and associates, circumstellar envelopes, interstellar extinction
INTRODUCTION

The practical importance of accurately estimating
the distances to stars, particularly to OB stars, is
difficult to overestimate. Large errors in the estimated
distances arise when the star has an intrinsic red-
dening mistaken for an interstellar one. There are
methods that allow intrinsic reddening in some stars
to be revealed and quantitatively estimated. Here, our
goal is to estimate the possible errors in the distances
to stars whose intrinsic reddening is disregarded.

RELATIVE ERRORS IN THE DISTANCES
TO INTRINSICALLY REDDENED STARS

The relative error in the distance to a star when its
intrinsic reddening is ignored is

δ =
r1 − r

r
× 100%, (1)

where r1 is the distance to the star calculated from the
actual interstellar reddening EB−V ,

log r1 = 1 + 0.2 (mV − 3EB−V − MV ) , (2)

and r is the distance calculated under the erroneous
assumption that all of the reddening (both actual in-
terstellar EB−V and intrinsic circumstellar ∆EB−V )
is interstellar:

log r = 1 (3)

+ 0.2[mV − (3EB−V + 3∆EB−V ) − MV ].

*E-mail: maxag@mail.uln.ru
1063-7737/01/2711-0728$21.00 c©
Our calculations show that the relative error
rapidly increases and reaches 100% even at∆EB−V =
0m. 5:

0 < ∆EB−V < 0m. 5, 0 < δ < 100%. (4)

Figure 1 shows an increase of the relative error
in the distance δ with intrinsic reddening of a star
∆EB−V . We see from Fig. 2 that as the star’s
intrinsic reddening ∆EB–V increases, its calculated
distance r decreases, while the difference∆r = r1 − r
increases. At∆EB−V = 0m. 5, the error∆r is equal to
the distance r to be determined. For ∆EB−V > 0m. 5,
the difference∆r is larger than r, and the distance de-
termination without allowance for the star’s intrinsic
reddening loses its meaning altogether.
In addition, it has emerged that δ calculated from

the apparent magnitude mV , absolute magnitude
MV , interstellar reddening EB−V , and intrinsic red-
dening ∆EB−V of a star is by no means a function
of all these quantities but depends solely on the star’s
intrinsic reddening. Indeed, substituting (2) and (3)
in (1) yields

δ =
101+0.2mV −0.6EB−V −0.2MV (1 − 10−0.6∆EB−V )
101+0.2mV −0.6EB−V −0.2MV × 10−0.6∆EB−V

(5)

×100% =
(
100.6∆EB−V − 1

)
× 100%,

i.e.,
δ = f(∆EB−V ). (6)

Thus, it follows that the error δ depends neither
on the spectral type, nor on the luminosity class
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Relative error δ in the distance to a star versus
intrinsic color excess∆EB−V .

expressed by the absolute magnitude, nor on the
apparent brightness of a star, nor on the interstellar
extinction but depends solely and significantly on the
star’s intrinsic reddening.

QUANTITATIVE ESTIMATES
OF THE INTRINSIC REDDENING

IN OB STARS

The interstellar extinction from the Sun to a clus-
ter is determined, on average, from all cluster stars.
However, it was noticed that the reddening of O–B3
stars is larger than that of later-type cluster mem-
bers, i.e., many OB stars exhibit an intrinsic excess
reddening (Raznik 1965a). The excess reddening
averaged within each spectral subtype reaches amax-
imum in the subtype B0, falls off to the subtypes B3
and O9, O8, and again increases in hotter O stars.
For B0 stars of clusters and associations, ∆EB−V =
0m. 2 and ∆EB−V = 0m. 35, respectively. However,
there are stars with a very large intrinsic reddening.
For instance, ∆EB−V of some stars in the cluster
NGC 6530 reaches 0m. 6; the largest ∆EB−V in the
cluster NGC 6531 is 0m. 5; in the cluster χ Per, it is
also 0m. 5; in the cluster NGC 6611, it reaches 0m. 7;
and in the associations Cep III, Cep IV, and Cyg VI,
it is 0m. 6, 0m. 7, and 0m. 7, respectively (Raznik 1967a).

PHENOMENA RESPONSIBLE
FOR THE INTRINSIC REDDENING

OF STARS

Later-type stars with a large intrinsic reddening
have been found near O5 stars that reddened only
slightly or did not redden at all. Thus, for example,
there is star no. 76 (B5, ∆EB−V = 0m. 35) in the
cluster NGC 7510 near star no. 3, star no. 73 (B8,
∆EB−V = 0m. 75) in the cluster NGC 1893 near star
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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reddening ignored and the associated error ∆r versus
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no. 13, star no. 82 (B8, ∆EB−V = 0m. 60) near star
no. 2, and star no. 104 (B4, ∆EB−V = 0m. 65) near
star no. 49. The O stars listed above are located in
different parts of the cluster (Raznik 1965b). The
cluster stars are numbered according to the catalog
of Hoag et al. (1961).
The observed phenomenon can be explained by the

fact that the strong stellar winds from early O stars
drive away both their circumstellar envelopes and the
interstellar matter in the cluster. The nearest stars are
located the gas–dust condensations formed around
O5 stars. The sizes and masses of such rings reach
0.1 pc and 10−4M�, respectively. Of considerable
interest is the work on cooler O9.5V stars by Massa
(1995). These stars were shown to produce winds
that disperse the circumstellar envelopes, freeing the
photospheric emission of O9.5V stars from additional
reddening. However, no objects reddened under the
effect of the dispersed remnants of circumstellar mat-
ter have been found near stars of this type.
It would be reasonable to assume that still cooler

B0–B3 stars could not drive away the matter and,
hence, are surrounded by gas–dust envelopes. This
assumption is confirmed by the fact that the extinc-
tion law for early B stars, to a first approximation,
proves to be the same as that for interstellar clouds.
This is seen on the two-color (U–B)–(B–V ) dia-
gram for young clusters in Fig. 3, which shows the
change in the appearance of the two-color diagrams
for open clusters. The points were obtained by av-
eraging the color excesses EB−V and EU−B within
each spectral subtype. All the points corresponding
to the cluster stars are displaced along the reddening
line because of the interstellar extinction. The dis-
placement of the points corresponding to reddened
early B stars in the same direction is larger, sug-
gesting an additional intrinsic reddening that follows
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Fig. 3. Changes in the two-color diagrams for open clus-
ters due to the displacement of the points corresponding
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the same law as in the interstellar medium. Thus,
in clusters, the reddening of light from B stars in
their circumstellar envelopes can be separated from
the interstellar reddening even for the same extinction
law.
The dispersion of points along the reddening line

can be explained by the different orientation of the
equatorward-flattened gas–dust envelopes relative to
the line of sight. The displacement of the points
perpendicular to the reddening lines is suggestive of
different reddening mechanisms: the radiation from
emission-line envelopes, the influence of close cooler
companions on the continuum of the hot star, and
others.
Be stars are known to be cooler and redder than

B stars of the corresponding spectral subtypes; their
B–V and U–B color indices do not change simulta-
neously and regularly. Themean∆EB−V of B0e stars
are a mere 0m. 1, but in some stars, its value reaches
0m. 2 and more (Raznik 1967b).
Of particular interest are close binary OB stars

with cooler components. For example, a study of
the star V1016 Ori has shown it to be a complex
quadruple system containing a primary B0 star, an
infrared companion, and an A0 companion with its
dust envelope. Vitrichenko (1999) and Bondar’ et al.
(2000) emphasize that an A0 companion causes the
system as a whole to redden. This effect is responsible
for the abnormal reddening law.
One of the results of the detailed and comprehen-

sive study of the star BM Ori by Vitrichenko and
Larionov (1996) was the explanation of its excess
reddening. The interstellar extinction AV for BM Ori
determined from its color excess is 1m. 37 and turns
out to be larger than that for the other Trapezium
stars that form a spatial grouping. Allowance for
the contribution to the continuum of the B3 V star
from its close F0 companion accounts for the excess
reddening of the star and results in a correction of its
interstellar extinction. It proved to be a factor of 2
smaller: AV = 0m. 70. Since this value is 0m. 2 lower
than the mean extinction for the other Trapezium
stars, the authors do not rule out the possibility that
the reddening of these stars is also related to the
emission from their companions.

CONCLUSIONS

Adding the intrinsic color excess ∆EB−V of a
star to the interstellar excess EB−V can significantly
change the distance estimated from its modulus.
When∆EB−V changes from 0m. 0 to 0m. 5, the relative
error in the estimated distance δ rapidly increases to
99.5%.

The error δ depends neither on the star’s spectral
type, nor on its luminosity, nor on its apparent bright-
ness, nor on the interstellar reddening but depends
on ∆EB−V alone. The derived law is of importance
in determining the distances to OB stars, which are
commonly used as distance indicators for the stellar
systems containing them.

Below we provide quantitative estimates of the ex-
cess reddening in some stars. According to published
data, the mean (within the spectral subtype) intrinsic
reddening ∆EB−V of OB stars reaches a maximum
in the subtype B0:

∆EB−V = 0m. 2 for cluster stars,

∆EB−V = 0m. 35 for stars in associations.

The excess reddening of some OB stars is larger
than 0m. 5 and reaches 0m. 6–0m. 7 (Raznik 1965b,
1967a).

Among the excessively reddened stars, there are
stars with gas–dust and emission-line envelopes,
stars with close cooler companions, and others. The
reddening ofOB cluster stars with circumstellar gas–
dust envelopes can be separated from the interstellar
reddening even for the same extinction laws.

Our quantitative estimates of∆EB−V give an idea
of the possible errors in the distances to stars whose
intrinsic reddening is disregarded.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Abstract—The Boltzmann kinetic equation is analyzed in the MHD approximation. This analysis requires
an explicit expression for the collision integral Fc. In the classical theory, Fc = −νf (1)

µ Ωµ, where f (1)
µ is

the first spherical harmonic in the Galactic-cosmic-ray (GCR) distribution, Ωµ are the components of a
unit particle velocity vector, and the frequency ν of collisions between GCRs and interplanetary magnetic-
field nonuniformities is assumed to be a scalar. The assumption that νij is a tensor (which is the result of
anisotropy in the interplanetary medium) distinguishes this study from others. Since the anisotropic GCR
effects in the heliomagnetosphere are marginal, the nondiagonal elements of tensor νij were set equal to
zero. Our analysis has yielded the diffusion-tensor components D||, D⊥, and DA, which are expressed in
terms of interplanetary parameters. The energy dependencies of D||, D⊥, and DA are in good agreement
with the experimental data and calculations by other authors. c© 2001 MAIK “Nauka/Interperiodica”

Key words: cosmic rays, nonthermal emission
INTRODUCTION

The interplanetary propagation of Galactic cosmic
rays (GCRs) is generally described by the Boltzmann
kinetic equation

∂f

∂t
+ V

∂f

∂r
+ ω [p× b]

∂f

∂p
= Fc, (1)

where f is the distribution function; r, V, p, and
ω are the radius vector, velocity, momentum, and
Larmor frequency of the particle, respectively; b is a
unit magnetic induction vector of the interplanetary
magnetic field (IMF); and Fc is the collision integral.
In Eq. (1), the convection and particle magnetic drift
are disregarded to focus attention on the diffusion.

The components of the GCR diffusion tensor in
interplanetary space are derived in Section 1. In
Section 2, we show that the GCR diffusion tensor
components can be expressed in principle in terms
of interplanetary parameters. The applicability range
of the derived relations are qualitatively analyzed in
Section 3.

1. GCR DIFFUSION CURRENT
IN THE MHD APPROXIMATION

The explicit form of Fc must be known to solve
Eq. (1). Let us expand the function f in a series in
small parameter Ω (unit particle velocity vector) and

*E-mail: space@mail.kz
1063-7737/01/2711-0732$21.00 c©
restrict ourselves to the zeroth and first moments of
the distribution function:

f = f (0) + f (1)
α Ωα, (2)

where Ωα are the components of the unit velocity
vector.

In the classical theory (Krymskiı̆ and Transkiı̆
1973), the collision integral is postulated in the form

Fc = −νf (1)
µ Ωµ, where the frequency of collisions

between GCRs and IMF nonuniformities ν is a
scalar. This expression for Fc holds for a relatively
dense plasma in a weak magnetic field.

However, the GCR density is so low that the
magnetic-field effect on the particle motion is signif-
icant. This is confirmed by numerical simulations of
the particle motion in the IMF, which show a large
discrepancy between the classical theory and calcula-
tions (Giacolone et al. 1999). Therefore, we assume
the collision integral to be a tensor, νij .

The diagonal elements of tensor νij are directly
related to collisional processes, whereas the nonsym-
metric part of νij is related to anisotropic effects.
Since the latter are negligible in the heliomagneto-
sphere, the nondiagonal elements of tensor νij were
assumed to be zero. In that case,

νij =



ν|| 0 0

0 ν⊥ 0

0 0 ν⊥


 .
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Using expansion (2), let us write out Eq. (1) com-
ponent by component, multiply it by Ωσ, and average
it over all directions. The quasi-steady-state Boltz-
mann kinetic equation then takes the form:

V

3
∂f (0)

∂xσ
+ ωeασγbγf

(1)
α = −νσσf

(1)
σ . (3)

Below, we use the rule of summation over the dummy
indices.

Since the differential particle density and the cur-
rent density are, respectively,

n = 4πp2f (0), jµ =
4πp2V

3
f (1)

µ , (4)

Eq. (3) can be written as

V 2

3
∇n+ ω [b× j] = −ν||j|| − ν⊥j⊥. (5)

Equation (5) is a standard MHD equation in which
abrupt changes in the GCR current are disregarded
and the collection of cosmic-ray particles is repre-
sented as an incompressible fluid.

Solving Eq. (5) for j yields

j = − V
2

3ν||
∇||n

− V 2∇⊥n

3ν⊥

(
1 +

(
ω

ν⊥

)2
) +

V 2ω [b×∇n]

3ν2
⊥

(
1 +

(
ω

ν⊥

)2
) .

Assuming that j = −D||∇||n−D⊥∇⊥n−
DA [b×∇n], λ|| = V/ν||, λ⊥ = V/ν⊥, and ρ = V/ω,
we obtain

D|| =
λ||V

3
, D⊥ =

1
3

λ⊥V

1 +
(
λ⊥
ρ

)2 , (6)

DA = − 1
3ρ

λ2
⊥V

1 +
(
λ⊥
ρ

)2 = −λ⊥
ρ
D⊥,

whereD||,D⊥, andDА are, respectively, the diffusion
tensor components along and across the IMF and the
antisymmetric part of the diffusion tensor.

Thus, for the diffusion tensor components to be
derived, we must determine the scattering mean free
paths λ⊥ and λ||.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
2. DETERMINING λ⊥ AND λ||

2.1. Models

The GCR propagation in the heliomagnetosphere
in our approximation can be represented as the de-
flection of particles by a regular helical magnetic field
and the scattering by nonuniformities.

The regular field deflects charged particles. Con-
sequently, the scattering mean free path (this term
is something of a misnomer; here it should be un-
derstood as the mean free path before the particle
deflection by the field through an angle π/2) λð = ρ,
where ρ is the particle Larmor radius.

Let us now consider the effect of IMF nonunifor-
mities with a scale size l. Their action is scattering in
nature. In the case of magnetic-field fluctuations in
absolute value, the particle scattering mean free path

is λh ∼ N

nσ
, where the number of particle collisions

with nonuniformities for a deflection through π/2 is

N =
π2

16 arctan2 αl

2ρ

, (7)

n ∼ d−3 is the density of nonuniformities, d is the
separation between them, σ ∼ l2 is the cross section
for particle interaction with a nonuniformity, α = 1 +
δB

B
, δB is the magnetic-field fluctuation in nonuni-

formities, and B is the induction of the regular IMF.
Below, we assume, for definiteness, that α = 1.5.

Since l and d are of the same order of magnitude,
we obtain

λn =
Cl

arctan2 αl

2ρ

,

where C ∼ π2

16

(
d

l

)3

is the proportionality factor,

which generally depends on the radial distance.
Joining the two cases yields the scattering mean

free path for the particle propagation across a regular
magnetic field:

λ⊥ =
ρ

1 +
ρ

Cl
arctan2 αl

2ρ

.

For the particle propagation along a regular magnetic
field, the latter will not affect the scattering mean free
path:

λ|| =
Cl

arctan2 αl

2ρ

.
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Table 1. Calculation of γ1(R) for R0 = 1 GV and γ2(R) for R1 = 5 GV

R, GV 0.10 0.16 0.25 0.40 0.63 1.0 1.6 2.5 4.0 6.3 10 16 25

γ1(R) 0.40 0.47 0.55 0.67 0.82 1.05 1.19 1.36 1.50 1.60 1.67 1.72 1.76

γ2(R) 0.61 0.62 0.64 0.67 0.71 0.75 0.80 0.87 0.94 1.02 1.10 1.18 1.25

Table 2. Calculation of γ1(R) for R0 = 1.4 GV and γ2(R) for R1 = 13 GV

R, GV 0.10 0.16 0.25 0.40 0.63 1.0 1.6 2.5 4.0 6.3 10 16 25

γ1(R) 0.30 0.32 0.40 0.47 0.58 0.65 0.90 1.08 1.25 1.39 1.50 1.58 1.63

γ2(R) 0.54 0.55 0.56 0.57 0.59 0.61 0.63 0.67 0.71 0.76 0.82 0.89 0.97
Passing to the particle rigidity using the relation

ρ[cm] =
R [volts]

300 · B [oersteds]
, we obtain

λ|| =
1

150B
CR0

arctan2 αR0

R

, (8)

λ⊥ =
1

300B
R

1 + R
2CR0

arctan2 αR0

R

,

where R0 = 150lB is a parameter, the quantities R
and R0 are given in volts, B is in oersteds, and λ⊥
and λ|| are in cm.

Let us now determine C and R0 based on inter-
planetary magnetic measurements (Hedgecock 1975;
NASA NSSDC 1998).

2.2. Determining R0

Having analyzed the frequency spectra of magnetic-
field fluctuations, Hedgecock (1975) obtained

D|| ∼ R2−νβ for R� R1,

D|| ∼ R2β for R� R1,

and
D⊥ ∼ Rνβ for R� R1,

D⊥ ∼ R2β for R� R1.

Here, R1 is a parameter that varies with solar cycle,
and 1 < ν ≤ 2 is the power-law index of the frequency
spectrum for IMF fluctuations. To describe both
cases, the following relation (Ashirov 1983) was used:

D|| ∼ R0.5

(
1 +

R

R1

)1.5

β. (9)

Representing D|| ∼ Rγ(R)β, we find γ1(R) from for-
mula (6) and γ2(R) from formula (9). The results for
the minimum value of R1 = 5 GV from Hedgecock
(1975), which corresponds to R0 = 1 GV (these val-
ues are apparently typical of low solar activity) are
presented in Table 1, while the results for the max-
imum value of R1 = 13 GV and the corresponding
R0 = 1.4 GV (these values are apparently typical of
relatively high solar activity) are presented in Table 2.

As we see, R0 ∼ 1–2 GV changes only slightly
with solar cycle. Assuming the nonuniformity scale
size l to be independent of solar activity and equal
to 1.5 × 1011 cm, we obtain the IMF strength near
the Earth’s orbit H0 = 4.4γ at solar minimum and
H0 = 6.2γ at solar maximum, in agreement with the
NASA NSSDC results (1998).

It can be shown that for R� R1, D⊥ also has a
satisfactory energy dependence, whereas forR� R1,
D⊥ is proportional to R rather than to R2. Con-
sequently, for such energetic particles (50 GeV or
more), the formula for D⊥ is inapplicable (see Sec-
tion 3).

2.3. Determining the Coefficient C

It follows from (6) that the degree of IMF nonuni-
formity is

α =
D⊥
D||

=


1 +

2CR0

R arctan2 αR0

R



−1

(10)

×


1 +


1 +

R arctan2 αR0

R
2CR0




−2


−1

.

Given R0 and α0 (the degree of IMF nonuniformity
for particles with R = 1 GV) (Hedgecock 1975), we
can determine C at the Earth’s orbit: C ∼ 1.5 at solar
minimum and C ∼ 3 at solar maximum. If l depends
linearly on r (uniform expansion), then C does not
change with distance from the Sun.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 1. Calculation of (a) D⊥/D|| and (b) DA/D|| (the
solid line, dots, and the dotted line represent our calcu-
lations with formula (6), the calculations by Giacolone et
al. (1999), and the calculations using the classical theory
[formulas (11)], respectively).

3. APPLICABILITY RANGE

The reasoning of this section is qualitative, be-
cause it is difficult to accurately describe the condi-
tions under which the MHD treatment is valid.

(1) The MHD approximation assumes that the
macroscopic quantities used to describe the phe-
nomenon under consideration change only slightly on
the mean free path (Pikel’ner 1966)

λ

n
|∇n| � 1,

λ

ε̄
|ε̄| � 1,

λ

B
|∇B| � 1,

where ε̄ is the mean energy of the particles.

(2) We disregard the term
∂f

∂t
when deriving

Eq. (5), because our treatment is quasi-steady-state
and requires the absence of any abrupt changes in the
cosmic-ray current (in particular, Forbush effects),
which is true for the model of a quiet solar wind
(Parker 1965).

(3) When deriving formula (7), we used the model
of a leading center, which is applicable for
T

n

∣∣∣∣∂B∂t
∣∣∣∣� 1,

ρ

B
|∇B| � 1,

V||T

B
|∇B| � 1,

where T =
2π
ω

is the period of particle gyration along

a regular IMF line, and V|| is the particle veloc-
ity component along the magnetic field (Alfven and
Falthemmer 1967).
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CONCLUSIONS

The diffusion tensor for GCRs in the heliomag-
netosphere is described by Eqs. (6) for GCR parti-
cles with R = 20 GV. The derived expression (6) for
D⊥ and D|| have energy dependencies that are in
agreement with the experimental data obtained from
measurements of the frequency spectrum for IMF
fluctuations. In the approximation of a dense plasma
in a weakmagnetic field (λ⊥ ≈ λ|| = λ� ρ), Eqs. (6)
take the classical form

D|| =
λV

3
, D⊥ =

1
3

λV

1 +
(
λ

ρ

)2 , (11)

DA = − 1
3ρ

λ2V

1 +
(
λ

ρ

)2 .

The figure shows the plots of
D⊥
D||

and
DA

D||
against

η =
λ||
ρ

calculated from Eqs. (6). Also shown for

comparison are the results by Giacolone et al. (1999)

and
D⊥
D||

and
DA

D||
calculated from formulas (11). The

discrepancy between our
D⊥
D||

curve and the calcula-

tions by Giacolone et al. (1999) for η < 5 is insignif-
icant, because this case is virtually unrealizable in in-
terplanetary space; the discrepancy for η > 100 stems
from the fact that in this range, our approximation
is inapplicable. The nonsymmetric diffusion tensor
component DА includes only the Hall diffusion, and,

as a result, our
DA

D||
curve lies below the computed

points (Giacolone et al. 1999). Therefore, for the
problems of GCR modulation in the heliomagneto-
sphere to be solved quantitatively, the particle drift at-
tributable to a gradient in the large-scale IMF and to
IMF-line curvature must also be taken into account.

The unsteady-state equation for GCR transport in
the heliomagnetosphere is

∂n

∂t
=

∂

∂xi

(
Dij

∂n

∂xj

)

− (ui + Vd,i)
∂n

∂xi
+

1
3
∂Rn∂ui

∂R∂xi
,

where ui are the components of the solar-wind veloc-
ity vector, and Vd,i are the velocity vector components
for the magnetic GCR drift attributable to a gradi-
ent in the large-scale IMF and IMF-line curvature
(Florinski and Jokipii 1999).
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Rivin (1998) asserts that the GCR intensity cor-
relates more closely with interplanetary parameters
than with geomagnetic and heliomagnetic indices.
In light of this assertion, our attempt to express the
diffusion tensor components in terms of interplantary
parameters appears logical. Good agreement with the
experimental data and calculations by other authors
confirm the possibility of using our results to solve
the problems of moderate-energy (0.1 < R < 20 GV)
GCR modulation.
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Abstract—The damping of fast kink oscillations of solar coronal loops attributable to the radiation of
MHD waves into the surroundings is considered in the thin-tube approximation. The oscillation damping
decrement is calculated both by using a new energy method and by solving the dispersion equation for
magnetic-tube eigenmodes. The two approaches are in good agreement under appropriate assumptions.
The damping is negligible if MHDwaves are radiated perpendicular to the magnetic field. The low Q factor
of the loop oscillations in active regions found with the TRACE space telescope is associated with the gen-
eration of running waves that propagate alongmagnetic field lines. c© 2001MAIK “Nauka/Interperiodica”

Key words: Sun, coronal loops, MHD oscillations, acoustic damping
INTRODUCTION

With the launch of the TRACE space telescope
in April 1998, it has become possible to investigate
the transition region and the solar corona with a high
spatial resolution (<1′′) in the far ultraviolet (171 Å).
One of the most interesting results obtained with this
instrument was the detection of quasi-periodic trans-
verse displacements of coronal loops in active regions
with an amplitude of several thousand kilometers and
a period close to 5 min (Aschwanden et al. 1999;
Schrijver et al. 1999; Nakariakov et al. 1999; Schri-
jver and Brown 2000). The oscillations were observed
at the initial phase of flare development immediately
after the propagation of a disturbance at a velocity
of 700 km s−1 (Aschwanden et al. 1999). Thus,
it has been convincingly shown that the coronal-
loop oscillations excited through flare energy release
actually exist.

An interesting feature of the observed quasi-
periodic displacements was their rapid damping:
their amplitude during a few periods decreased by
more than 50%. Having compared the observed
and theoretical periods, Aschwanden et al. (1999)
concluded that the loop oscillations in the solar
corona were produced by standing waves of the fast
kink mode. However, these wave modes are subject
to weak damping because of ion viscosity and electron

*E-mail: yur@crao.crimea.ua
1063-7737/01/2711-0737$21.00 c©
heat conductivity (Tsap 2000). Consequently, the
following question arises: What is the cause of such
strong damping of fast kink loop oscillations in the
solar corona? Nakariakov et al. (1999) associated
the observed oscillation damping with the resonant
absorption of magnetohydrodynamic (MHD) waves
in a turbulent plasma. Their analysis was, to a greater
extent, qualitative. An increase in the viscosity and
resistivity of a turbulent plasma by eight or nine
orders of magnitude compared to those for an ideal
plasma also seems unlikely. Based on the idea of
flare sunquakes by Kosovichev and Zharkova (1998),
Schrijver and Brown (2000) suggested that the oscil-
lations of coronal loopswere caused by quasi-periodic
displacements of their footpoints in the photosphere,
which are rapidly damped due to perturbations of the
dense surroundings. In our view, this scenario cannot
be considered justifiable enough, because the large-
scale MHD waves excited by flare energy release are
completely reflected from the lower solar atmosphere.
We consider this issue in more detail in Section 3.

The so-called acoustic mechanism (Kleczek and
Kuperus 1969, Zaitsev and Stepanov 1975, Spruit
1982, Ryutova 1988) may play a significant role in
the damping of MHD oscillations of magnetic tubes.
Its essence is that an oscillating magnetic tube can
lose energy through the radiation of MHD waves
into the surroundings. This phenomenon is similar
to the radiation of acoustic waves by an oscillating
membrane. The acoustic damping mechanism in
2001 MAIK “Nauka/Interperiodica”
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the solar atmosphere was first considered by Kleczek
and Kuperus (1969). A model in which filaments
were represented as valves radiating acoustic waves
was proposed to interpret the damping of prominence
oscillations. However, this approximation disregards
the action of electromagnetic forces, which are of
crucial importance in the upper solar atmosphere. A
more justifiable and detailed analysis of the acous-
tic damping mechanism is contained in Zaitsev and
Stepanov (1975). The damping decrement of radial
coronal-loop oscillations was determined from the
dispersion equation for magnetic-tube eigenmodes.
Despite its appeal, this approach (see also Spruit
1982, Kopylova and Tsap 2000) can lead to errors, be-
cause the transcendental equation is complex. There-
fore, in our view, the method based on an analysis
of energy relationships appears more convincing. In
particular, Ryutova (1988) used the energy transfer
equation for a wave packet to estimate the acoustic
damping decrement for MHD oscillations of mag-
netic tubes. However, it includes the wave group
velocity, which cannot always be determined with the
required accuracy from the dispersion equation. In
addition, Ryutova (1988) restricted her analysis to
the oscillations of magnetic tubes without an exter-
nal magnetic field, which is unacceptable for coronal
loops.

Here, we propose a new energy method to calcu-
late the acoustic damping decrement for thin mag-
netic tubes, which we use to interpret the observed
strong damping of coronal-loop oscillations in active
regions. In Section 1, we present the equations that
describe fast kink oscillations of magnetic tubes and
the radiation of MHD waves into the surroundings
produced by them; in Section 2, we estimate the
acoustic damping decrement of oscillations by using
both the energy conservation law and by solving the
dispersion equation. Based on our results, in Sec-
tion 3, we present our view of the problem of a low Q
factor for fast kink loop oscillations.

1. FAST KINK OSCILLATIONS OF A THIN
MAGNETIC TUBE

AND THE RADIATION OF MHD WAVES

In single-fluid ideal magnetohydrodynamics, the
equations of motion, induction, continuity, and en-
tropy balance are

ρ

(
∂v
∂t

+ (v∇)v
)

= −∇p+
(∇× B) × B

4π
, (1)

∂B
∂t

= ∇× (v × B), (2)

∂ρ

∂t
+ ∇(ρv) = 0, (3)
∂S

∂t
+ (v∇)S = 0. (4)

where the entropy is S = pρ−γ , and the adiabatic
constant is γ = 5/3.

Let an axisymmetric magnetic tube [B0 =
(0, 0, Bz(r)] be disturbed from the equilibrium by an
external field. Assume that v = v′, ρ = ρ0 + ρ′, p =
p0 + p′, and B = Bzez + B′, where the subscript and
the prime denote, respectively, the equilibrium and
perturbed quantities, with the latter being propor-
tional to δf(r) exp(−iωt+ inϕ+ ikz). The following
system of linearized equations can then be easily
derived from Eqs. (1)–(4):

−iωρ0δvr =− ∂
∂r

(
δp +

δBzBz

4π

)
+
ikBz

4π
δBr, (5)

−iωρ0δvϕ =
in

r

(
δp +

δBzBz

4π

)
+
ikBz

4π
δBϕ, (6)

−iωρ0δvz = −ikδp − kBz

4πω
δvr
∂Bz

∂r
, (7)

δBr = −kBz

ω
δvr, (8)

δBϕ = −kBz

ω
δvϕ, (9)

−iωδBz = −1
r

∂

∂r
rBzδvr −

inBz

r
δvϕ, (10)

−iωδρ+
1
r

∂

∂r
rρ0δvr +

in

r
ρ0δvϕ (11)

+ ikρ0δvz = 0,

−iω(δp − c2sδρ) + δvr

(
∂p0
∂r

− c2s
∂ρ0
∂r

)
= 0, (12)

where c2s = γp0/ρ0 is the speed of sound.
Given the equilibrium condition

∂

∂r

(
p0(r) +

B2
0(r)
8π

)
= 0, (13)

after simple but cumbersome transformations, rela-
tions (5)–(12) reduce to the system of equations that
was first derived by Hain and Lüst (1958) (see also
Appert et al. 1974):

iρ0(ω2 − k2v2A)
1
r

∂

∂r
(rδvr) (14)

= ω
(
µ2 − n

2

r2

)
δP,

ω
∂δP

∂r
= iρ0(ω2 − k2v2A)δvr, (15)

where vA = Bz/(4πρ0)1/2 is the Alfvèn velocity,
δP = δp+ δBzBz/(4π) is the perturbation amplitude
of the total pressure,

µ2 =
(k2c2s − ω2)(ω2 − k2v2A)
(v2A + c2s)(k2c2T − ω2)

, (16)
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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c2T =
v2Ac

2
s

v2A + c2s
.

If there is a whole numberN of half-waves on the en-
tire length of a magnetic tube with fixed ends, which
corresponds to a coronal loop with its feet frozen in
the photosphere, then a standing wave can be excited
in it. In that case, representing the solution as

f ′ = δf(r) exp(−iωt)(exp(ikz + inϕ) (17)

± exp(−ikz − inϕ)),

it can be concluded that Eqs. (14) and (15) will not
change. This conclusion follows from the linear inde-
pendence of the terms with the factors exp(ikz+ inϕ)
and exp(−ikz − inϕ), as well as from the invariance
of Eqs. (14) and (15) when−k and−n are substituted
for k and n.

Eliminating the perturbation in radial velocity vr
in (14) using (15) and assuming the plasma inside
and outside the magnetic tube to be virtually homo-
geneous (thin-tube approximation), we obtain

1
r

∂

∂r

(
r
∂δP

∂r

)
−
(
n2

r2
− µ2

)
δP = 0. (18)

We write the solutions of the Bessel equation (18) for
the internal (i) and external (e) parts of the magnetic
tube as follows:

δPi = C1Zn(µir), δPe = C2Zn(µer). (19)

Here, C1 and C2 are constants, and the cylinder
functions are

Zn(µir) =

{
Jn(µir), Reµi � Imµi

In(µir), Reµi � Imµi,

Zn(µer) =

{
H

(1)
n (µer), Reµe � Imµe

Kn(µer), Reµe � Imµe,

where Jn(µir) and In(µir) are the Bessel func-

tions (of the first kind and modified); H(1)
n (µer) and

Kn(µer) are the Hankel and Macdonald functions,
respectively. We emphasize that the behavior of the
Macdonald function for a real argument is monotonic
rather than oscillating. Therefore, if the solution in
the external region is expressed in terms of Kn(µer),
the tube oscillations will not result in the generation
of radially propagating waves.

We join the solutions inside and outside the tube
based on the continuity conditions for the total pres-
sure and radial velocity at the tube boundary, r = a,
which suggests

δPi(a) = δPe(a), vri(a) = vre(a). (20)

The first equality follows from the equation of mo-
tion (1) (Trubnikov 1996), whereas the second equal-
ity follows from the integration of Eq. (14) from (a−
ξ) to (a+ ξ) and then letting ξ tend to zero.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
Using (15) and (20), we derive the dispersion
equation for the magnetic-tube eigenmodes

ρe(ω2 − k2v2Ae
)µi
Z ′

n(µia)
Zn(µia)

(21)

= ρi(ω2 − k2v2Ai
)µe
Z ′

n(µea)
Zn(µea)

,

where ρi and ρe are the equilibrium plasma densities
inside and outside the tube, respectively, and Z ′

n(x) =
dZn(x)/dx. Let us expand the cylinder functions in a
series by setting n = 1 (Watson 1949)

Z1(µir) =
µir

2
− (µir)3

16
+ . . . , (22)

Z1(µer) = D(− 1
µer

+
µer

2
ln
µer

2
+ C) + . . . ,

where C ≈ 0.58 is the Euler constant; and D is a
coefficient, which is 2i/π for the Hankel function
and 1 for the Macdonald function. Assuming the
longitudinal component of the wave vector k to be real
and setting ω = ω0, we derive the dispersion relation
for fast kink modes from (21) for |µa| � 1 using (22)
(Spruit 1982, Roberts et al. 1984, Roberts 1995):

ω2
0 = k2

ρiv
2
Ai

+ ρev
2
Ae

ρi + ρe
. (23)

Equation (23) describes the waves both inside and
outside the tube. We emphasize that for Reµer � 1
(Watson 1949),

H(1)
n (µer) ≈

(
2
πµer

)1/2

ei(µer−nπ/2−π/4); (24)

i.e., the radial perturbations take the form of a run-
ning cylindrical wave with thewave vector component
kr = µe. Consequently, for the region of space under
consideration, we can determine the radial group ve-
locity of the waves vgr = ∂ω0/∂µe. However, since,
according to (16) and (21), the function ω0 gener-
ally cannot be expressed in terms of the independent
quantities µe and cse , vgr is difficult to obtain from the
dispersion equation (21). That is why using the en-
ergy transfer equation for a wave packet (Kadomtsev
1976)

∂ε

∂t
+ ∇(vgε) = 0,

where ε is the wave energy density, to determine the
decrement of the acoustic damping attributable to the
radial radiation of waves runs into serious difficulties.
Below, we show that the approach based on an anal-
ysis of the energy conservation law is more fruitful.
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2. CALCULATING THE ACOUSTIC
DAMPING DECREMENT

In the MHD approximation, the energy conserva-
tion law without viscosity and heat conductivity can
be represented as (Braginskiı̆ 1963)

∂ε

∂t
+ ∇q = 0. (25)

Here,

ε =
1
2
ρv2 +

3
2
p+

B2

8π
, (26)

qβ =
(

1
2
ρv2 +

5
2
p

)
vβ + Sβ, (27)

where S = (c/(4π))E × B is the Umov–Poynting
vector. Taking into account the frozen-in condition
for magnetic field lines

E = −1
c
v × B

and substituting the last relation in (27), we derive the
expression for the energy flux density

qβ =
(

1
2
ρv2 +

5
2
p+

B2

4π

)
vβ − BαBβ

4π
vα. (28)

If running waves are excited in the equilibrium
medium, then, because the perturbed quantities are
small, taking ω = ω0 − iν and assuming ν � ω0, we
have instead of expressions (26) and (28)

〈ε(t)〉= G
2

(
ρ0|δv|2

2
+
c2s
2

|δρ|2
ρ0

+
|δB|2
8π

)
e−2νt, (29)

〈qβ(t)〉 = G
(
|δPδvβ | −

|δBαδvα|
8π

Bβ (30)

− |δBβδvα|
8π

Bα

)
e−2νt,

where 〈ε(t)〉 and 〈qβ(t)〉 are the period-averaged wave
energy density and flux, respectively; G = 1; and the
modulus sign denotes the product of complex con-
jugates. To derive relation (29), we expanded p in a
small parameter ρ′ using Eq. (4) and set 5/4δp ≈ δp.
Including the coefficient G in (29) and (30) can be
explained as follows.

Equations (29) and (30) were derived under the
assumption that the waves could freely propagate in
all directions. At the same time, when a standing
wave is excited in the magnetic tube, Eqs. (26) and
(27) must be averaged not only over time but also over
space, in particular, over the z and ϕ coordinates. In
this case, using relations (17), (26), and (27), we can
show that the energy density 〈ε(t)〉 and the energy
flux densities 〈qr(t)〉 and 〈qϕ(t)〉 double compared
to those for a running wave. Consequently, when a
standing wave is excited in the tube, we must take
G = 2 in (29) and (30).
Let the kink magnetic-tube oscillations generate
radially propagating waves in the external medium
(Reµe � Imµe). We separate a cylindrical volume
that encloses a tube of length L, inside which the
oscillation energy W (t) far exceeds the wave energy.
Integrating (25) over this volume using the obvious
relations

〈ε(t)〉 = 〈ε〉e−2νt, 〈qβ(t)〉 = 〈qβ〉e−2νt, (31)

we then obtain for the acoustic damping decrement

ν =
Fr

2W
. (32)

Here,
Fr = 2πrL〈qr〉 (33)

= 4πrL
{
|δPδvr | −

|δBrδvz|
8π

Bz

}
,

W = 2πL
∫ ∞

0
〈ε〉r dr, (34)

where W and Fr are the oscillation energy and the
radial wave energy flux at time t = 0, respectively.
Note that, as follows from (28), the radial energy flux
is 〈qr〉 = 0 if the solution of the Bessel equation (18)
can be expressed in terms of the Macdonald function
K1(µer).

In the thin-tube approximation, assuming the
terms of Eqs. (7) and (10)–(12) with the derivative
of the unperturbed quantities with respect to r to be
zero, we have

δvz =
ω0kc

2
s

ω2
0 − k2c2s

δBz

Bz
. (35)

If the wave phase velocity is vp = ω0/k > cs, then we
derive from (8), (33), and (35) for the radial wave flux

Fr = 4πrL|δPδvr |. (36)

We calculate the kink-oscillation energy W by
using phase relations between perturbed quantities.
Substituting (9) in (6) yields

δvϕ =
ω0δP

rρ0(k2v2A − ω2
0)
. (37)

For |µr| � 1, the cylinder functions Zn and their
derivatives ∂Zn/∂r may be assumed to be either real
or imaginary [see (22)]. Therefore, relations (7)–(9),
(12), (15), (35), and (37) lead us to conclude that the
perturbations in radial velocity v′r and magnetic field
B′

r vary in antiphase with the remaining perturbed
parameters.

As follows from (26), the energy density of the
standing waves in the magnetic tube averaged over
z and ϕ can be represented as

〈ε(t)〉 (38)

= 2e−2νtRe
[(
ρ0δv

2

2
+
c2s
2
δρ2

ρ0
+
δB2

8π

)
e−2iω0t

]
.
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Given the phase relations between the perturbed
quantities, it follows from (38) that

〈ε(t)〉 = 2e−2νt

[(
ρ0

|δvr |2
2

+
|δBr|2

8π

)
cos2 ω0t

(39)

+

(
ρ0

|δv2ϕ + |δvz |2

2
+

|δB2
ϕ| + |δBz |2

8π

)
sin2 ω0t

]

or, according to (31),

〈ε〉 = 2
(
ρ0|δvr|2

2
+

|δBr|2
8π

)
. (40)

In view of (8) and (40), formula (34) gives

W = 4πL
∫ ∞

0

{
ρ0|δvr|2

2

(
1 +

v2A
v2p

)}
r dr. (41)

Thus, taking into account (22) and (24), we derive
from (36) and (41)

Fr = 8L|C2|2
ω0

ρe(k2v2Ae
− ω2

0)
, (42)

Wi =
π|C1|2L

4
|µia|2ω2

0

ρi(ω2
0 − k2v2Ai

)2

(
1 +

v2Ai

v2p

)
, (43)

We =
4|C2|2L
π

(44)

× ω2
0

ρe|µea|2(ω2
0 − k2v2Ae

)2

(
1 +

v2Ae

v2p

)
,

where

Wi = 2πL
∫ a

0
〈ε〉r dr, We = 2πL

∫ ∞

0
〈ε〉r dr.

Note that during the integration, we assumed the ar-
guments of the cylinder functions to be much smaller
than unity and retained terms of the first order of
smallness in their power expansion (22).

Using the joining condition (20) and the disper-
sion relation for fast kink modes (23), we obtain from
(42)–(44)

ν =
Fr

2(Wi +We)
(45)

=
π|v2Ae

− v2Ai
||µea|2

2(ρi + ρe)v2p
ω0

(
1
ρe

+
1
ρi

)−1

,

with
Wi

We
=
ρi

ρe

v2p + v2Ai

v2p + v2Ae

. (46)

Relation (46) shows that the energy of the fast kink
oscillations in the external region can exceed the os-
cillation energy inside the tube if

ρi

ρe
<
v2p + v2Ae

v2p + v2Ai

.
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Hence, tenuous magnetic tubes cannot be the source
of free oscillations. Note that when calculating the
acoustic damping decrement, Ryutova (1988) took
into account only the tube internal energyWi.

When vAe > vAi or vAe < vAi , instead of (45), we
derive, respectively,

ν

ω0
=
π

2
|µea|2

ρi

ρi + ρe

B2
e

B2
e +B2

i

(47)

or
ν

ω0
=
π

2
|µea|2

ρe

ρi + ρe

B2
i

B2
e +B2

i

. (48)

Thus, we see that when ρi > ρe and Bi ≈ Be, the
damping of loop oscillations is stronger if vAe > vAi .

Let us now compare the results obtained by using
the energy method with the estimates that follow from
the solution of the dispersion equation (21). Since the
argument of the Bessel functions is complex, we have,
according to (22),

H
(1)′

1 (µea)

H
(1)
1 (µea)

= − 1
µea

(49)

− µea

2

(
ln
(
|µea|

2

)
± 2π

)
.

Disregarding the term with a logarithmic dependence
in Eq. (49) and substituting it in the dispersion equa-
tion (21) yields

ρe(k2v2Ae
− ω2) + ρi(k2v2Ai

− ω2)(1 ± iπµ2
ea

2) = 0.
(50)

Setting the frequencyω = ω0 − iν in (50) andmaking
the real and imaginary parts equal between them-
selves, we obtain

ρe(k2v2Ae
− ω2

0) + ρi(k2v2Ai
− ω2

0) (51)

= ±2πνω0ρi|µea|2,

ρi(k2v2Ai
− ω2

0) = ∓2νω0(ρi + ρe)
π|µea|2

. (52)

Since the right-hand part of Eq. (51) is negligi-
ble, the previously derived dispersion relation for kink
modes (23) follows from it. In turn, Eq. (52) gives

ν = ±
π(v2Ae

− v2Ai
)|µea|2

2(ρi + ρe)v2p
ω0

(
1
ρe

+
1
ρi

)−1

. (53)

We see that ν given by Eqs. (45) and (53) are equal in
absolute value. It should be noted that Spruit (1982)
used the dispersion equation to calculate the acoustic
damping decrement for fast kink oscillations. It is
easy to verify that Eq. (53) and the relation derived by
Spruit (1982) differ by the coefficient 2π. The cause of
this discrepancy cannot be elucidated, because Spruit
(1982) gave no intermediate transformations.
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3. THE GENERATION AND PROPAGATION
OF RUNNING WAVES IN THE SOLAR

ATMOSPHERE

Before analyzing the strong damping of coronal-
loop oscillations in active regions detected with the
TRACE space telescope, we note the following.
According to observations, the plasma temperature
and density inside oscillating loops are ∼ 106 K and
109 cm−3, respectively, whereas the magnetic-field
strength lies within the range 5–60 G (Aschwanden
et al. 1999). Although the question of the magnetic-
field configuration is still an open question, it is well
known that the radii of curvature of the loops are
comparatively large, while their thicknesses change
by a mere 10–20% (Schrijver et al. 1999). Since
the transverse displacements of oscillating loops are
an order of magnitude larger in amplitude than their
lengths, we have reason to model these magnetic
structures as thin tubes, restricting ourselves to the
linear approximation when describing the wave pro-
cesses (see also Aschwanden et al. 1999, Nakariakov
et al. 1999).

In the preceding section, we derived relations
to determine the acoustic damping decrement for
oscillations of thin magnetic tubes ν in the case
where they radiate radial MHD waves. According
to relation (47), the decrement for Bi ≈ Be and
ρi � ρe is ν ≈ (π/4)|µea|2ω0, and, since |µea| � 1,
the Q factor of the oscillations is Q = ω0/(2ν) ≈
(2/π)|µea|−2 � 1. Moreover, if c2se

/v2Ae
� 1 in

the external region, we find from the equilibrium
condition (13) and from Eqs. (16) and (23) that

v2Ae
=
ρi

ρe

(
3
5
c2si

+ v2Ai

)
, µ2

e =
v2Ae

− v2Ae

v2Ae

k2. (54)

As we see from (54), µ2
e < 0 for ρi > ρe, i.e., an

oscillating loop cannot generate radially propagat-
ing MHD waves when the plasma β = c2se

/v2Ae
� 1

in the external region. Nevertheless, the acoustic
mechanism is capable of producing a strong damping
of fast kink coronal-loop oscillations if the following
factors are taken into account.

The appearance of coronal loops is currently
believed to be associated with the emergence of a
nonuniform (filamentary) magnetic flux on the solar
surface (Parker 2000). It may therefore be assumed
that the background coronal magnetic field differs
in configuration from the loop itself, remaining, for
example, open. As a result, the conditions for the
generation of standing waves in the external region
are violated, and the fast kink oscillations lead to
the generation in the surroundings of running waves
propagating upward along magnetic field lines. Let
us estimate the acoustic damping decrement in the
case under consideration.
According to (30), we represent the wave energy
flux along the external magnetic field as

〈qz(t)〉 =
(
|δpδvr | −

|δBrδvr|
8π

Bz (55)

− |δBϕδvϕ|
8π

Bz

)
e−2νt.

Assuming that c2se
/v2Ae

� 1 and integrating (55)
over the surface perpendicular to the tube axis and
bounded below by radius a, in view of (8), (9), and
(31), we have

Fz = 2π
∫ ∞

a
〈qz〉r dr (56)

= 2π
∫ ∞

a

{
ρ0
v2A
2vp

(δv2r + δv2ϕ)
}
r dr.

It then follows from (15), (19), (37), and (56) that

Fz = π|C2|2
v2Ae

vp

ω2
0

ρe|µea|2(ω2
0 − k2v2Ae

)2
. (57)

As previously, we obtain for the acoustic damping
decrement using (19), (20), (22), (41), and (57)

ν =
Fz

Wi +We
=
vp
2L

B2
e

B2
i +B2

e

. (58)

When standing waves are excited, the longitudinal
component of the wave number is k = Nπ/L, and
Eq. (58) reduces to

ν

ω0
=

1
2πN

B2
e

B2
i +B2

e

. (59)

For Be ≈ Bi and N = 1, the Q factor of the oscilla-
tions, according to (59), isQ ≈ 2π, i.e., the standing-
wave amplitude decreases by a factor of e in time
τ = Q/(πT ) ≈ 2T . Thus, because of the excitation of
running waves propagating along magnetic field lines
by an oscillating coronal loop, the acoustic damping
may turn out to be so strong that the loop will make
only a few oscillations.

To conclude this section, let us consider in more
detail the hypothesis of the photospheric nature of the
observed transverse loop displacements proposed by
by Schrijver and Brown (2000). Let anMHDwave be
excited through flare energy release in the coronal part
of the magnetic tube. It can reach the photosphere
without being reflected if its length is (Pikelner 1966)

λ� 4πH, (60)

where H is the scale height. Taking H = 300 km in
the latter inequality, we obtain λ� 3800 km. This
means that only small-scale MHD waves can pen-
etrate into the lower solar atmosphere. Since the
maximum standing-wave length in coronal loops is
λ = 2L = 3 × 104–3 × 105 km, their internal region,
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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in view of (60), is an ideal resonator for waves with
Nt = N − 1 � L/(2πH) =10–100 nodes.

Let us calculate the ratio of the perturbation am-
plitudes at various levels of the solar atmosphere
when small-scale (λ� 3800 km) MHDwaves prop-
agate into the photosphere. We write the wave energy
flux along the magnetic tube as

F =
ρδv2

2
vAST , (61)

where ST is the tube cross section. Assuming that
F = const and BST = const, we obtain, according
to (61),

δvp
δvc

=
(
np

nc

)1/4

, (62)

where δvp and δvc are the velocity perturbation ampli-
tudes in the photosphere and the corona, respectively;
and np and nc are the corresponding densities. Taking
np ≈ 1017 cm−3 and nc ≈ 109 cm−3, we find from
(62) that δvp/δvc ≈ 10−2. Since the perturbation
amplitude in the corona in the linear approximation
is δξc � λ, we derive for δξc ≈ 100 km at the photo-
spheric level δξp = δξcδvp/δvc ≈ 1 km, which is more
than two orders of magnitude smaller than the values
assumed by Schrijver and Brown (2000). Conse-
quently, the large-scale MHD waves attributable to
flare energy release are completely reflected from the
lower solar atmosphere, whereas small-scale MHD
waves cannot cause significant changes in the posi-
tions of the loop footpoints in the photosphere. As for
the other possible perturbation sources (shock waves,
accelerated particles, thermal fronts), their contribu-
tion to the feet perturbation due to substantial energy
losses through the propagation from the corona to the
photospheremust be even smaller than that for Alfvèn
waves.

DISCUSSION AND CONCLUSIONS

We have considered the acoustic damping mecha-
nism for fast kink oscillations of thin magnetic tubes.
Two approaches were used to calculate the damping
decrement: the first is based on the energy conser-
vation law, and the second is based on an analysis
of the dispersion relation for magnetic-tube eigen-
modes. The proposed energy method for calculat-
ing the acoustic damping decrement allowed us to
obviate the main difficulty that arises when using
the transfer equation for a wave packet: the need to
determine the transverse wave group velocity from the
dispersion equation. Each of the two methods has
its own shortcomings. At the same time, detailed
analytic calculations show that under appropriate as-
sumptions, the methods are in good agreement.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
As follows from our results, the radiation of radial
MHD waves does not lead to a significant damping
of kink magnetic-tube oscillations. This is because
an oscillating magnetic tube produces perturbations
in the external region that are oscillatory in nature
near the boundary, with their amplitude in the radial
direction rapidly decreasing. Only relatively far from
the boundary (r � a) do the displacements transform
into cylindrical waves, which can effectively transfer
the tube oscillation energy to the surroundings.

We associate the observed strong damping of fast
kink oscillations with an open magnetic-field con-
figuration in the quiet corona, which leads to the
generation of running waves in the external region
propagating along magnetic field lines. However,
some of the waves can be reflected to become stand-
ing waves. Clearly, this weakens the energy outflow
from the oscillating loop and reduces the damping.
It should also be noted that if the number of nodes
in the standing wave is Nt � 1, then the acoustic
damping of fast kink oscillations is negligible. This
result suggests that only small-scale kink waves can
effectively heat the coronal loops. However, such per-
turbations are capable of easily penetrating the dense
photospheric layers where the dissipative processes
increase appreciably in importance.

Fast kink oscillations primarily result in a modu-
lation of the loop magnetic-field direction. Therefore,
one might expect them to be easiest to detect using
microwave observations, because the radio-emission
mechanisms are most sensitive to changes in the
angle between the line of sight and the magnetic-field
direction. However, the acceleration and propaga-
tion of charged particles are determined by the solar
coronal magnetic field, and much of the solar-flare
energy, which subsequently goes into plasma heating
and emission (Miller et al. 1997), is accounted for
by the accelerated particles. Hence, the modulation
of the emission produced by fast kink oscillations can
also appear in other wavelength ranges.
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Abstract—The method of singular spectral analysis (SSA) is described and used to analyze the series of
Wolf numbers that characterizes solar activity from 1748 until 1996. Since this method is relatively new,
we detail its algorithm as applied to the data under study. We examine the advantages and disadvantages
of the SSA method and the conditions for its applicability to an analysis of the solar-activity data.
Certain regularities have been found in the dynamics of this series. Both short and long (80–100-
year) periodicities have been revealed in the sunspot dynamics. We predict the solar activity until 2014.
c© 2001 MAIK “Nauka/Interperiodica”

Key words: Sun, nonlinear dynamics, solar cyclicity
INTRODUCTION

It has long been noticed that the solar activity is
related to the number of sunspots visible on the solar
disk. The sunspot number varies greatly within an
11-year interval called the solar cycle. The accom-
panying change in the solar magnetic-field structure
indirectly affects the Earth’s climate and has a prob-
able relationship to natural disasters. Since the solar
magnetic activity is significant, its analysis is of great
practical interest.

Various tracers are used to describe the dynamics
of solar magnetic activity, of which the Wolf number
(relative sunspot number) is most convenient. The
dynamics of this parameter is quasi-periodic in pat-
tern. However, accurate predictions are difficult to
make, because simplemodels of the process disregard
many important factors of the solar magnetic activ-
ity. During the last 250 years, the duration of the
solar cycle has varied by no more than 20%, while
its amplitude has varied by more than a factor of
10. Even sophisticated models do not give a detailed
description of these variations.

Recently, many methods for predicting and recon-
structing the dynamics of the series of Wolf numbers
have been proposed (see Schatten 1997, Nagovi-
tsyn 1997, Wilson et al. 1998, Hoyt and Schatten

*E-mail: loskutov@moldyn.phys.msu.su
1063-7737/01/2711-0745$21.00 c©
1998, Hathaway et al. 1999, and references therein).
Since they all have various drawbacks, predicting
the sunspot dynamics from the available observa-
tional data alone, without constructing a model of the
phenomenon, has become very promising. Here, an
analysis of time series by themethods of nonlinear dy-
namics (see Afraı̆movich and Reı̆man 1989, Casdagli
1989, Loskutov and Mikhaı̆lov 1990, Ruelle 1990,
Sauer et al. 1991, Malinetskiı̆ and Potapov 2000, and
references therein) can give a significant contribution.
In this case, however, there are also many difficulties
that stem from the fact that the series ofWolf numbers
is apparently not a strictly deterministic system and
has no well-defined dimensionality (Lowrence et al.
1993, 1995); besides; it is relatively short.

As a new method for analyzing and predicting the
dynamics of the time series formed by Wolf numbers,
we propose to use a singular spectral analysis (SSA).
As we show below, it provides highly reliable pre-
dictions of the amplitude of the 11-year solar cycle
and is suitable for revealing longer cycles. It can
also be used to study regularities in series of other
astrophysical indices. Since this method is relatively
new and covered little in the literature, we detail its
algorithm as applied to the formulated problem.

SINGULAR SPECTRAL ANALYSIS
The SSA method (Broomhead and King 1986a,

1986b; Broomhead and Jones 1989; Vautard et al.
2001 MAIK “Nauka/Interperiodica”
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1992; Danilov and Zhiglyavskiı̆ 1997) used here al-
lows the following:

–to distinguish the components of a time series
obtained from a sequence of values of a quantity taken
at equal time intervals;

–to find periodicities in a series that are not known
in advance;

–to smooth initial data on the basis of selected
components;

–to best separate a component with a period
known in advance; and

–to predict the subsequent behavior of the ob-
served dependence.

The SSA method is efficient enough to success-
fully compete with numerous smoothing techniques
(Danilov and Zhiglyavskiı̆ 1997, Percival and Walden
1993, Theiler et al. 1992, Kaplan and Glass 1992).
Moreover, SSA-based predictions in many cases
yield more reliable results than do other known algo-
rithms (see Casdagli 1989, Danilov and Zhiglyavskiı̆
1997, Deppish et al. 1991, Murray 1993, Cao
et al. 1995, Keppenne and Ghil 1995, and references
therein).

The SSA method is based on the passage from
an analysis of the initial linear series (xi)Ni=1 to an
analysis of a multidimensional series composed of its
sets, which, apart from xi itself, contain a certain
number of xi−j , j = 1, . . . , τ , at preceding times.

Let us briefly describe the main stages of SSA
application to the specific series (xi)Ni=1.

(1) At the first stage, the one-dimensional series
is transformed to a multidimensional one. For this
transformation, it is necessary to take some number
of delays τ ≤ [(N + 1)/2], where [·] denotes the in-
teger part of a number, and to represent the initial τ
values of the sequence as the first column of some
matrix X. The sequence values from x2 to xτ+1 are
chosen for the second column of this matrix, and so
on. The last τ elements of the sequence xn, . . . , xN

correspond to the last column with number n = N −
τ + 1. Thus, the transformed series takes a matrix
form

X =




x1 x2 x3 . . . xτ . . . xn

x2 x3 x4 . . . xτ+1 . . . xn+1

x3 x4 x5 . . . xτ+2 . . . xn+2

...
...

...
. . .

...
. . .

...

xτ xτ+1 xτ+2 . . . x2τ−1 . . . xN




.

The constructed matrix X is rectangular, but in the
limiting case, i.e., for τ = (N + 1)/2 and odd N , it
degenerates to a square matrix.
(2) Next, the corresponding covariance matrix is
constructed for matrix X

C =
1
n

XXT .

(3) Now, the eigenvalues and eigenvectors of ma-
trix C must be determined. This requires its de-
composition into eigenvectors C = V ΛV T, where we
introduced

Λ =




λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λτ ,




the diagonal matrix of eigenvalues, and

V =
(
V 1, V 2, . . . , V τ

)
=




v1
1 v2

1 . . . vτ
1

v1
2 v2

2 . . . vτ
2

...
...

. . .
...

v1
τ v2

τ . . . vτ
τ ,




the orthogonal matrix of eigenvectors for matrix
C. Clearly, Λ = V TCV , det C =

∏τ
i=1 λi, and∑τ

i=1 λi = τ (the latter equality holds only for the
prenormalized rows of matrix X).

(4) The matrix of eigenvectors V is commonly
represented as a transition matrix to the principal
components Y = V TX = (Y1, Y2, . . . , Yτ ) of the ini-
tial series, where Yi, i = 1, 2, . . . , τ , are the rows of
length n. In this case, the eigenvalues λ1, λ2, . . . , λτ

may be considered as a contribution of the principal
components Y1, Y2, . . . , Yτ to the total information
content of the time series (xi)Ni=1. The initial matrix
can then be completely reconstructed from the de-
rived principal components

X =
(
V 1, V 2, . . . , V τ

)




Y1

Y2

...

Yτ




=
τ∑

i=1

V iYi;

in turn, the time series (xi)Ni=1 can be reconstructed
from it. Note that, in general, not all of the prin-
cipal components Y1, Y2, . . . , Yτ but only some of
them that are significant in terms of the information
content are used to reconstruct the time series (see
Broomhead and King 1986a, 1986b; Broomhead and
Jones 1989; Vautard et al. 1992). More specifically,
each row vector Yi, i = 1, 2, . . . , τ , may be considered
as the result of projecting a τ-dimensional set of
points, each of which is specified by the τ-coordinate
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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column vector of matrix X, onto the direction that
corresponds to eigenvector V i. Thus, the series turns
out to be represented as a set of τ components Yi; the
weight of component Yi in the initial sequence (xi)Ni=1
can be specified via the corresponding eigenvalue λi,
which, in turn, corresponds to eigenvector V i.

The transformations Yi = (V i)TX, i = 1, 2, . . . , τ ,

Yi[l] =
r∑

q=1
vi
qx

l
q, l = 1, 2, . . . , n, are linear filters. In

the case under consideration, the eigenvectors V i are
the transition functions of these linear filters, while
the filters themselves are tuned to the components of
the multidimensional series X and, consequently, to
the components of the initial series (xi)Ni=1.

Each ith eigenvector includes τ components, i.e.,

V i =
(
vi
1, v

i
2, . . . , v

i
τ

)T
. Let us construct a depen-

dence of components vi
k, k = 1, 2, . . . , τ on their

number: vi = vi(k). Using the orthogonality of
eigenvectors, the subsequent analysis of sequence
(xi)Ni=1 can then be performed by studying the dia-
grams constructed by analogy with Lissajous figures.
More specifically, the components vi

k and vj
k are

plotted in pairs along the axes. If the constructed
diagrams are nearly circular, then the functions
vi = vi(k) and vj = vj(k) will be similar to periodic
functions with close amplitudes and with a phase shift
of about a quarter of the period.

Thus, a quantity that has the meaning of a period
can be calculated for some pairs of eigenvectors V i

and V j . Consequently, a graphical analysis gives an
idea of the frequencies of the components that form
the initial time series (xi)Ni=1.

For a given τ , the number of all possible pairs of
the principal components is ∼τ2. Clearly, all these
pairs are very difficult to analyze even at small τ .
Moreover, since only a few plots are spiral in shape at
large τ , the range of search should be narrowed before
beginning a graphical analysis. This can be easily
done if we arrange V i and Yi in order of decreasing
eigenvalues and if we consider only those pairs of
eigenvectors that have close values of λi. In the λ =
λ(i) diagram, these pairs at sufficiently large λ appear
as steps against the background of a general decrease
in λ(i) with increasing i. By examining these steps,
we can determine theminimum value ofλmin(i) below
which the function λ = λ(i) relaxes to an exponential
tail.

(5) Suppose that only the first r of the τ compo-
nents were retained for the subsequent analysis. The
ASTRONOMY LETTERS Vol. 27 No. 11 2001
first r eigenvectors V i are then used to reconstruct
the initial matrix X. In that case,

X̃ =
(
V 1, V 2, . . . , V r

)




Y1

Y2

...

Yr




=
r∑

i=1

V iYi,

where X̃ is the reconstructed matrix with n columns
and τ rows. The initial time series reconstructed from
this matrix is now defined as

x̃s =




1
s

s∑
i=1

x̃i,s−i+1, 1 ≤ s ≤ τ

1
τ

τ∑
i=1

x̃i,s−i+1, τ ≤ s ≤ n

1
N − s + 1

N−s+1∑
i=1

x̃i+s−n,n−i+1, n ≤ s ≤ N.

This method of obtaining the sequence (x̃i)Ni=1 is
called a SSA smoothing of the initial time series
(xi)Ni=1 over the first r components of τ .

(6) At the next stage of SSA application, one may
consider a prediction of the initial time sequence (see
Keppenne and Ghil 1995, Danilov 1997, Ghil 1997,
and references therein), i.e., a construction of series
(xi)

N+p
i=1 , which is an extension of the known data

(xi)Ni=1. In turn, the prediction for p points ahead
reduces to applying the operation of prediction for one
point p times.

The basic idea of finding xN+1 is as follows. Let
there be a set of x1, x2, . . . , xN . We now construct a
sample in the form of matrix X. The previously se-
lected eigenvectors V 1, V 2, . . . , V r of matrix C may
be taken as a basis of the surface containing this
sample.

Let us write the parametric equation for this sur-

face as S(P ) =
r∑

i=1
piV

i, where the set of r param-

eters pi corresponds to each value of vector S(P ),
which is a column of height τ . In that case, the kth
(k = 1, 2, . . . , n) column of the initial matrix X has
its own set of parameters P k = (pk

1, p
k
2 , . . . , p

k
r ) and,

consequently,

X1 = S(P 1), X2 = S(P 2), . . . , Xn = S(Pn).
To predict xN+1, it is necessary to construct the
(n + 1)th column Xn+1 of matrix X, which, in turn,
corresponds to some value of parameters Pn+1 =
(pn+1

1 , pn+1
2 , . . . , pn+1

r ). This set of parameters can be

found from the relation S(P ) =
r∑

i=1
piV

i based on the
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Fig. 1.Monthly mean Wolf numbers.
(xi)Ni=1 data alone. The predicted column is written

as XN+1 = S
(
Pn+1

)
.

Let us introduce the following notation:

V∗ =




v1
1 v2

1 . . . vr
1

v1
2 v2

2 . . . vr
2

...
...

. . .
...

v1
τ−1 v2

τ−1 . . . vr
τ−1




,

p̃ =




p̃n+1
1

p̃n+1
2
...

P̃n+1
r




, Q =




xN−τ+2

xN−τ+3

...

xN




,

Vτ =
(
v1
τ , v

2
τ , . . . , vr

τ

)
.

The parameters (pn+1
1 , pn+1

2 , . . . , pn+1
r ) can be deter-

mined from the system of equations V∗P̃ = Q for P̃ .
Thus, the final expression for the predicted value reads

xN+1 =
VτV

T
∗ Q

1 − VτV T
τ

.

In the simplest case, to predict the next values
requires only appropriately changing the matrix Q
and again multiplying it by VτV T

∗ /(1 − VτV
T
τ ). Ad-

ditionally, however, the entire SSA algorithm can be
partially or completely repeated for each next point. In
this case, the matrices Vτ and V∗ also change.

(7) At the final stage of SSA application, one
chooses the main parameter, the number of delays
τ used to construct the multidimensional sample X.
As with the selection of principal components, the
choice of τ significantly depends on the problem being
studied.

Let the problem consist in smoothing a series by
the SSAmethod, i.e., in reconstructing the series us-
ing known periodicities. In that case, as was already
noted above, separating the principal component is
filtering the series with the filter transition function
in the form of an eigenvector of this principal com-
ponent. The larger τ , the larger the number of parallel
filters, the narrower the passband of each of them, and
the better the series smoothing.

If unknown (hidden) periodicities must be deter-
mined in the observed sequence, then we should first
take the largest possible value of τ . After rejecting
nearly zero eigenvalues, the delay must then be re-
duced.

Suppose that it is necessary to separate one
known periodicity. In this case, we should choose
τ to be equal to the sought-for period.

Finally, let the problem consist in extending the
series under study by a specified value (i.e., in pre-
dicting the evolution of the observed process). We
should then take the maximum admissible value of τ
and then choose r.

USING THE SSA METHOD TO ANALYZE
SOLAR MAGNETIC ACTIVITY

Here, we apply the SSA method to observational
data on solar activity. Wolf proposed to use the
sunspot number as ameasure of solar activity in 1848.
To this end, he considered the sum of the total number
of spots seen on the solar disk and ten times the
number of regions in which these spots were located.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 2. Prediction of the solar activity for 216 points (18 years ahead) from monthly mean Wolf numbers. The vertical
line corresponds to the boundary of the rejected values. We used 500 and 150 components for the decomposition and
reconstruction, respectively. The computations were performed in three stages. After predicting another 72 points, the
components of the series were recomputed.
The latter summand is intended to reconcile the mea-
surements made under different conditions. By com-
paring the previous observations obtained from var-
ious sources, Wolf reconstructed the solar-activity
data until 1818 with several small gaps and with
acceptable accuracy. Later, the monthly means were
reconstructed until 1749 (this series was used here)
and the yearly means until 1700. In the latter case,
however, the error in the data can be several tens of
percent.

The sequence chosen for our analysis spans a
wide period, from January 1749 until December 1996,
without gaps and with good time resolution (see
Fig. 1, where the time at intervals of one month
and the corresponding Wolf number are plotted along
the horizontal and vertical axes, respectively). Thus,
there is a total of 2976 values.

At the first stage of SSA application, the max-
imum admissible value of τ should be taken. For
our studies, we chose τ = 500, which allowed the
periodicities up to a period of 42 years to be covered.
Using larger τ significantly complicated numerical
calculation. Moreover, a slight increase in τ (to 600)
did not cause any significant changes in the results
of the first principal-component decomposition but
considerably reduced the computer resources.

Because of the large τ , the sequence of the roots
of eigenvalues for the matrix of the second moments
arranged in decreasing order rapidly relaxed to an
exponential tail. In combination with a large number
of initial points, this leads to the fact that even the first
principal component represents only a slight smooth-
ing of the initial series, and it is almost completely
ASTRONOMY LETTERS Vol. 27 No. 11 2001
reconstructed from the first four or five components
(the sum of the first five eigenvalues exceeds 99% of
their total). Moreover, the form of the first principal
component changes little at small τ , for example, at
τ = 5, which is attributable to the SSA stability for
this parameter. Therefore, using a large τ is justifiable
only from the viewpoint of prediction.

To test the prediction by the SSA method, let us
truncate the sequence of monthly mean Wolf num-
bers on the right by 216 points (18 years) and try
to reconstruct it according to the following scheme.
Determine the optimum parameters of the algorithm
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for reconstructing this series by an additional trun-
cation of the derived series and decompose it into
τ = 500 components. In this case, we must choose
such a number of the first components for which the
agreement between the predicted values and these
additionally rejected data is best. Subsequently, we
reconstruct the initially truncated part of 216 points
by using the parameters found.

It can be established by a direct exhaustive search
that the best results are obtained for r = 150 (the
number of selected components). Let us again take
the initial series truncated only by 216 points and
use the r chosen for its prediction. The prediction
quality can be further increased if we break down the
predicted interval into segments and recompute the
principal components after predicting each of these
segments. Ideally, such a recomputation must be
done after predicting each point, but this increases the
computational time. Figure 2 shows our prediction
for which the components were recomputed three
times at intervals of 72 points (which is almost iden-
tical to a prediction for 216 points with no breakdown
into intervals).

We could try to analyze the components of the
series for the presence of particular periods or for
the separation of known periods. However, their
large number and the associated similarity between
the components Yi of the initial series makes this
problem very complex (although quite solvable); i.e.,
the information contained in the series of monthly
mean Wolf numbers is, in a sense, redundant. In
addition, since something certain can hardly be said
about periodicities of several months, even in the case
of their separation, it is easier to take a series with a
large time step.
Let us now consider the series of yearly mean
Wolf numbers. Since the series contains a mere 248
points, the maximum possible delay is τ = 123. Let
us choose it as the initial one. The first 50 eigenvalues
are shown in Fig. 3. The first value gives the principal
component responsible for the trend; the steps form
the pairs of components with numbers 2–3, 4–5, 6–
7, 8–9, and 11–12; and the dependence relaxes to an
exponential tail starting from number 14. The eigen-
vectors for pairs 2–3, 4–5, 8–9, and 11–12 (Fig. 4)
correspond to 11-year periodicities (the spiral two-
dimensional plot for components 2 and 3 is shown
in the left panel of Fig. 5). However, in addition to
this (obvious) 11-year cycle, Gleisberg’s presumed
80-year cycle shows up (see the pair of eigenvectors 6
and 7 in Fig. 5). Since the corresponding eigenvalues
are not quite equal (the step is skewed; see Fig. 3)
and since the phase shift differs from π/2, the plot for
them is not spiral in shape. Nevertheless, the peri-
odicity is traceable, although very small eigenvalues
correspond to it.

For a better separation of the 80-year periodicity,
we can try to adjust τ for it. For the decomposition
of the series with τ = 80 of eigenvectors, vectors 4
and 7 correspond to this period. The eigenvalues that
correspond to these vectors are close, but the total
contribution of these components at the given τ ex-
ceeds 5%. The two-dimensional plot for components
4 and 7 resembles a circumference (Fig. 6). Figure 7
shows the 80-year cycle obtained by reconstructing
the series from these two components alone.

Let us now use the SSA method to predict the
series of yearly mean Wolf numbers. Let us truncate
it on the right by 18 years (i.e., by 18 points) and
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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try to reconstruct them. To this end, we additionally
remove an 11-point-long segment and attempt to re-
construct them with the maximum possible accuracy.
We perform this procedure in different parts of the
series by choosing the best number of eigenvectors
for the reconstruction.

For the derived 219-point-long series (219 =
248 − 18 − 11, where 248 is the total number of
points; see above), the maximum admissible τ is
109. As numerical analyses show, the prediction
for 11 points strongly depends on the choice of the
components used for the reconstruction. However,
the qualitative picture is satisfactory for a wide range
of choices. Nevertheless, this value of τ is clearly
large for a quantitative prediction. At its lower values,
it is much easier to select the required number of
components. For example, at τ = 33, the prediction is
satisfactory when choosing the first 11 components.
Therefore, we use these parameters to reconstruct
the 18 distant points. In contrast to the case with
monthly mean initial data and τ = 500, it is now
possible, for τ = 33, to recompute the eigenvectors
every time by taking into account the last predicted
point (both at the stage of vector selection for the
prediction and during the prediction itself). The
prediction corrected at each step is shown in Fig. 8.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
In addition, we considered a series of natural log-
arithms of the initial series. Taking the logarithm
is commonly used to analyze time series (e.g., in a
correlation analysis) and occasionally yields better re-
sults. As with yearly meanWolf numbers, we use τ =
123. In this case, the general form of the eigenval-
ues and eigenvectors did not change fundamentally.
Thus, it was unnecessary to use the logarithmic series
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Fig. 9. Prediction of solar activity until 2014.

in this case, because all the main periodicities and the
prediction were obtained from the initial series.

At the final stage, we used the SSA method for
the actual prediction of solar activity. To this end,
we took the series of yearly mean Wolf numbers from
1748 until 1996. Since this yearly mean series ends
at a minimum of solar activity, it is of interest to
describe its two subsequent maxima. This requires
extending the yearly mean sequence by 18 points.
We decomposed the series into 33 components and
selected the first 11 of them for the prediction.

The prediction until 2014 is shown in Fig. 9. It
can be seen from this figure that the maximum of
solar cycle 23 occurs in the first half of 2000 and
its amplitude is 122. The error in the maximum
amplitude is typically of the order of 5–10. This is
in excellent agreement with the maximum of Wolf
numbers that apparently occurred in the middle of
2000 and that had a smoothed value of 121. As we
see from the figure, in the immediate future, the Sun
will be relatively quiet (compared to the two previous
11-year periods), while themaximum of solar cycle 24
(presumably in 2011) will be comparatively low. Its
estimation yields a Wolf number of 117 (Fig. 9).

For comparison and testing the stability of our
result, we also analyzed the series of monthly mean
Wolf numbers. However, this analysis introduced no
significant additions in the prediction.

If follows from our experience of SSA application
that the prediction for more than one and a half 11-
year cycles is not informative. At the same time, the
Wolf numbers in Fig. 9 (prediction for 18 years ahead)
may be considered quite reliable.

CONCLUSIONS

An analysis of time series by the SSA method
will probably rank high among the various techniques
used to analyze and predict experimental data. Since
the initial series is decomposed into components
whose analytic form is not fixed in advance, the
SSA method allows us to satisfactorily separate
components with specified periods from the series
and to predict its dynamics. The only criterion for
SSA applicability is the information content of the
sequence under study. In this case, the constraints on
the number of points and characteristic periods are
generally much weaker than in other methods (e.g.,
in a correlation or Fourier analysis).

Here, we have considered the possibility of ana-
lyzing the sequence of Wolf numbers that character-
ize solar activity by the SSA method. Despite the
relatively small length of this sequence, the method
makes it possible to reveal its components that corre-
spond to the already known solar cycles and allows for
a reconstruction using only some of its components.
We also found that even short series of observations
could be predicted with acceptable accuracy by the
SSA method.

Like any other method, SSA has its own draw-
backs. First, there is a problem of accurately de-
termining the unknown frequencies in the sequence
under study (for a sufficiently long series, this problem
can be solved by a Fourier analysis). Second, SSA
does not include well-defined component selection
rules for a reconstruction, particularly for a prediction.
Finally, when applied to an analysis of solar activity, it
does not allow the occurrence times of activity peaks
(maximumWolf numbers) to be accurately estimated,
although it gives an accurate estimate of their am-
plitude. As a result, a systematic phase shift is ac-
cumulated in the predicted series. Nevertheless, as
follows from our analysis, the SSA method described
above serves as a good supplement to the available
experimental data reduction techniques, particularly
for analyzing and predicting fairly short time series to
which the series of Wolf numbers belongs (there are
only data on 23 11-year cycles).
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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In the next papers on solar-activity analysis, we
will explore the possibility of correcting the cycle
phase by using other prediction methods and solar-
cycle regularities. It is also possible to improve the
governing parameters of this method and/or to use
additional information, for example, an empirical re-
lationship between solar-cycle amplitude and phase
(Dmitrieva et al. 2000). Note also that the decom-
position components in the SSA method are gen-
erally harmonic functions. However, because of the
nonlinearity in the behavior of the solar magnetic-
field generation mechanism, significant anharmonic-
ity emerges. As a result, the rise phase of the solar
cycle is appreciably shorter than its decline phase.
Although the maximum amplitude in the 11-year cy-
cle calculated by SSA is close to its true value, its
occurrence time is determined inaccurately. Hence,
significant errors are possible in the current Wolf
numbers at the rise and decline phases immediately
before and after the maximum of the 11-year cycle.

In general, it can be said that SSA is fairly efficient
and very promising method for predicting the dynam-
ics of solar magnetic activity. It can also be used
to study regularities in series of other astrophysical
indices.
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Original Russian Text Copyright c© 2001 by Agekyan, Orlov, Kretser.
Unstable Periodic Orbits in a Rotationally Symmetric Potential

T. A. Agekyan, V. V. Orlov*, and N. Yu. Kretser
Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, Petrodvorets, 198904 Russia

Received October 23, 2000

Abstract—We derive an equation to determine the coordinates of the points at which unstable periodic
orbits emerge from a zero-velocity contour in an arbitrary rotationally symmetric potential. Examples of
such orbits are given for several model potentials. c© 2001 MAIK “Nauka/Interperiodica”

Key words: nstable periodic orbits, rotationally symmetric potential
A rotationally symmetric potential is one of the
most common forms of potential in nature. The grav-
itational potentials of planets, stars, globular clusters,
and many galaxies are exactly or almost exactly rota-
tionally symmetric.

For the problems of stellar dynamics, analytical
and celestial mechanics to be completely solved, a
rigorous theory of the motion in a rotationally sym-
metric potential field must be constructed. The foun-
dations of this theory were laid by Agekyan (1972,
1974), Agekyan and Pit’ev (1977), Agekyan et al.
(1992), and Pit’ev (1981). The method uses exact
laws of the direction field produced by an infinite
trajectory in a gravitational field.

Here, our goal is to determine the coordinates of
the points on a zero-velocity contour in a rotation-
ally symmetric potential field from which unstable
periodic orbits emerge and to give examples of such
orbits.

The trajectory of a body lies in the region of pos-
sible motions in the meridional plane bounded by the
zero-velocity contour

U(r, z) + I = 0, (1)

where U(r, z) is the reduced potential, and I is the
energy integral.

Box-shaped and tube-shaped trajectories form
angular points with the vertices on the zero-velocity
contour. Ollongren (1962) proved that the sides
of such orbits at the angular point are mutually
orthogonal. Differentiating Eq. (1) yields

∂U

∂r
dr +

∂U

∂z
dz = 0. (2)

*E-mail: vor@astro.spbu.ru
1063-7737/01/2711-0754$21.00 c©
We then have

tan ϕ =
dz

dr
= −

∂U

∂r
∂U

∂z

, (3)

where ϕ is the angle formed by the tangent to the
zero-velocity contour at a given point and the R axis.

Consider the difference
Ψ = ϕ − f, (4)

where f is the angle between the tangent to one of
the sides of a box-shaped or tube-shaped orbit at the
angular point and the R axis. We then have

tan Ψ =
tan ϕ − tan f

1 + tan f tan ϕ
. (5)

Using (3), we obtain

tan Ψ =

∂U

∂r
cos f +

∂U

∂z
sin f

∂U

∂r
sin f − ∂U

∂z
cos f

. (6)

For equality (6) to define unstable periodic orbits,
it is necessary that both the numerator and denom-
inator of the fraction simultaneously become zero
(that there be an uncertainty). In that case,



∂U

∂r
cos f +

∂U

∂z
sin f = 0

∂U

∂r
sin f − ∂U

∂z
cos f = 0.

(7)

Applying the L’Hospital rule to (6) yields

tan Ψ =
(

∂2U

∂r2
cos2 f + 2

∂2U

∂r∂z
cos f sin f

+
∂2U

∂z2
sin2 f +

(
−∂U

∂r
sin f +

∂U

∂z
cos f

)
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Fig. 1. The first unstable periodic orbit in the Contopou-
los potential with parameters A = 1, B = 0.65, ε = 0.2,
β = 0, and α = 0; the energy integral is I = 1. The
coordinates of the starting point are r0 = 0.22954 and
z0 = 1.86779.

× 1
2(U(r, z) + I)

(
−∂U

∂r
sin f

+
∂U

∂z
cos f

)/(
∂2U

∂r2
sin f cos f (8)

− ∂2U

∂r∂z
(cos2 f − sin2 f)

− ∂2U

∂z2
sin f cos f +

(
∂U

∂r
cos f +

∂U

∂z
sin f

)

× 1
2(U(r, z) + I)

(
−∂U

∂r
sin f +

∂U

∂z
cos f

)
.

For the property of instability to be preserved, both the
numerator and denominator of fraction (8) must also
be simultaneously equal to zero at the point under
consideration.

Since, according to (7), the last terms in the nu-
merator and denominator of the right-hand part of (8)
meet this condition, it is necessary that the following
condition be satisfied
∂2U

∂r2
cos2 f + 2

∂2U

∂r∂z
cos f sin f +

∂2U

∂z2
sin2 f = 0.

(9)

∂2U

∂r2
sin f cos f − ∂2U

∂r∂z
(cos2 f − sin2 f) (10)

− ∂2U

∂z2
sin f cos f = 0.
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Fig. 2. The second unstable periodic orbit in the Con-
topoulos potential with the same parameters as in Fig. 1.
The coordinates of the starting point are r0 = 1.39544
and z0 = 0.75798.

Excluding the angle f from equalities (9) and (10)
leads to the condition(

∂2U

∂r2

∂2U

∂z2
−
(

∂2U

∂z2

)2

− 2
(

∂2U

∂r∂z

)2
)

 

–0.1

0.2

0.3

0.4

–0.2

–0.3

–0.4

 
Z

R

 

0.1

0.10 0.3 0.5–0.3

–0.1

Fig. 3. The first unstable periodic orbit in the Henon–
Heiles potential with A = 1, B = 1, ε = −1, β = 1/3,
and α = 0; the energy integral is I = 0.09. The coor-
dinates of the starting point are r0 = 0.49090 and z0 =
0.0949.
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Fig. 4. The second unstable periodic orbit in the Henon–
Heiles potential with the same parameters as in Fig. 3.
The coordinates of the starting point are r0 = −0.32771
and z0 = 0.37764.

×
((

∂2U

∂r2

)2

− ∂2U

∂r2

∂2U

∂z2
+ 2
(

∂2U

∂r∂z

)2
)

(11)

+
(

∂2U

∂r2

∂2U

∂r∂z
+

∂2U

∂r∂z

∂2U

∂z2

)2

= 0,

which together with Eq. (1) defines the coordinates of
the points on the zero-velocity potential from which
unstable periodic orbits emerge. The method was
applied to the Pit’ev model potential

U(r, z) = −1
2
(Ar2 + Bz2) (12)

+ ε rz2 + β r3 + α.

The Contopoulos model potential corresponds to
β = 0 and α = 0 in (12); the Henon–Heiles model
potential corresponds to α = 0. The potential and
energy integral were specified. We determined the
coordinates of the points fromwhich unstable periodic
orbits emerged from zero-velocity contour.

The equation of the trajectory
∂f

∂r
cos f +

∂f

∂z
sin f (13)

− 1
2(U(r, z) + I)

(
−∂U

∂r
sin f +

∂U

∂z
cos f

)
= 0

was numerically integrated by the fourth-order Runge–
Kutta method for the specified potential and energy
integral. As the initial conditions, we used the
coordinates of the points at which unstable periodic
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Fig. 5. Unstable periodic orbit in the Pit’ev potential
with A = 2, B = −12, ε = −18, β = 1, and α = −1;
the energy integral is I = 1.13. The coordinates of the
starting point are r0 = 0.05915 and z0 = 0.13392.

orbits emerge from the zero-velocity contour. The
initial value f0 was calculated from the condition

tan f0 =
∂U

∂z
/
∂U

∂r
.

The numerical integration of Eq. (13) continued
over one period (Figs. 1–5). The orbits are seen
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Fig. 6. The results of prolonged integration of the orbit
shown in Fig. 3 (the number of turns was increased
several-fold compared to Fig. 3 for the same integration
step).
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Fig. 7. The results of prolonged integration of the orbit
shown in Fig. 5 (the number of turns was increased
several-fold compared to Fig. 5 for the same integration
step).

to be periodic, because the trajectory returns to the
starting point. Figures 6 and 7 present the results of
the longer integration of Eq. (13) for the two periodic
orbits found over several periods.

In the course of time, the trajectories blur, which
argues for the instability of the periodic orbits we
found.

The number of unstable periodic orbits in the re-
gion of possible motions under consideration can be
ASTRONOMY LETTERS Vol. 27 No. 11 2001
equal to zero, one, two, or, possibly, more. Unstable
periodic orbits can be simple or complex in shape. It
is virtually impossible to find unstable periodic orbits
by numerical methods. The turns of each of them fills
a certain area in the region of possible motions.

The existence of unstable periodic orbits and the
clear-cut pattern of their axial lines show that the
popular opinion about the comparatively rapid chaoti-
zation in the system of orbits in the gravitational field
of a rotationally symmetric potential may be wrong.
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