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1. INTRODUCTION

We face two problems when integrating the Ein-
stein-Dirac equations.

The first, purely technical problem stems from the
fact that the Einstein—Dirac equations constitute a com-
plex system of nonlinear partial differential equations
of the second order for 24 unknown functions. Previ-
ously, some of the particular exact solutions [1-6] to
the Einstein-Dirac equations in homogeneous space
have been obtained only for diagona metrics of the
Riemannian event space.

The second problem is fundamental in nature and
stems from the fact that the spinor field functions g in
the Riemannian event space can be determined only in
certain nonholonomic orthonormal bases (tetrads)
which that must be specified, or atetrad gaugeis said to
be needed. A large number of such gauges are known,
and different authors have suggested various gauges.
All of these are either noninvariant under transforma-
tion of the variables of the observer’s coordinate system
or are written in the form of differential equations,
which complicates theinitial system of equations.

Physically, all gauges are equivalent, because the
Einstein—Dirac eguations are invariant under the choice
of tetrads. Mathematically, however, using a bad gauge
(i.e., additional equations that close the Einstein-Dirac
equations) can greatly complicate the equations, while
using a good gauge can significantly simplify them.

I'n many respects, the problem of choosing a reason-
able tetrad gauge stems from the fact that the solutions
of the Einstein—Dirac equations have previously been
obtained only for diagonal metrics. Since the basisvec-
tors of a holonomic coordinate system for such metrics
are orthogonal, the tetrads associated with the orthogo-
nal holonomic basis of the Riemannian space can be
chosen naturally.

In this paper, we use a new tetrad gauge [7] that is
algebraic and, at the same time, isformed in an invari-

ant way. Using this gauge alows the number of
unknown functions in the Einstein—Dirac equations to
be reduced by six, while keeping the equations invari-
ant under transformation of the observer’s coordinate
system.

With the tetrad gauge used here, all of the equations
can be written as equations of the first order only for
two invariants of the spinor field and the Ricci rotation
symbols of the proper vector bases determined by the
spinor field. The tetrad gauge transforms the Dirac
equations to eguations for the Ricci rotation symbols
and for the spinor field invariants, with the Ricci rota-
tion symbols in the Dirac equations being linear and
without derivatives. Therefore, the Dirac equations in
homogeneous Riemannian space close the system of
Einstein equations for the Ricci rotation symbols with-
out using additional equations. In this case, we can first
integrate the first-order equations for the Ricci rotation
symbols and the spinor field invariants and then inte-
grate the first-order equations for the tetrad (Lamé)
coefficients.

These two factors—the reduction in the number of
unknown functions by six and the possibility of inte-
grating the second-order equationsin two steps— con-
siderably simplify the Einstein-Dirac equations. As a
result, it becomes possible to obtain new exact solu-
tions of these equations.

A general exact solution of the Einstein-Dirac equa-
tions in homogeneous Riemannian space of the first
type according to the Bianchi classification was
obtained in [7-9]. Recently, new papers in which the
authors discuss model s described by the Einstein equa-
tions with the cosmological constant (including those
with the spinor fields) have appeared. In this paper, we
obtain a general exact solution to the system of Ein-
stein-Dirac equations with the cosmological constant
in homogeneous Riemannian space in connection with
increasing interest in studying the role of the cosmolog-
ical constant.
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2. THE SPINOR FIELDS

IN FOUR-DIMENSIONAL RIEMANNIAN SPACE

Let V be the four-dimensional Riemannian space
with metric signature (+, +, +, —) referred to a coordi-
nate system with variables x' and with aholonomic vec-
tor basisJ; (i =1, 2, 3, 4). We specify the metric tensor
of space V in basis J; by the covariant components g;;;
the connectivity is defined by the Christoffel symbols

Ff] In space V, we introduce a smooth field of
orthonormal bases (tetrads) e,(x') (a=1, 2, 3, 4) inthe
form

e, = hyJ, J; = he, )

where h? and h, are the scale factors. Below, we
denote the indices of the tensor components calculated
in basisJ; by the Latin lettersi, j, k, ..., and the indices
of the tensor components cal culated in the orthonormal
bases e, by thefirst Latin lettersa, b, ¢, d, e, and f.

The differential of the vectors of the orthonormal
basis e,(x') is defined by the Ricci rotation symbols
de, = 4A;, abebdx' , Which can be expressed in terms of the
scale factors

l .
Dy o = 5[he(dih;a-0;h;,)
| > -J j 2
—h}(8;hjc—0;hic) + hPhih3(9;ha, — 9chyp) .

Here, 0, = 9/0X.

Let us define the spinor field of the first rank, y(x'),
in Riemannian space V specified by the contravariant
components PA(x') (A =1, 2, 3, 4) in the orthonormal
bases e,(x'). The spinor indices arejuggled by using the
formulas Y* = e*8g and Y, = e,gPB. In theseformulas,
E = |lesgl| and E* = ||g"8|| are the covariant and contra-

variant components of the metric spinor, respectively,
given by the equations

Va = -Ev.E", E' =-E. 3)

Here, T is the transposition symboal; vy, are the four-
dimensional Dirac matrices, which, by definition, sat-
isfy the equation

yayb + ybya = 2gab| '

where | is a unit four-dimensional matrix; and ||gyl| =
diag(1, 1, 1, —1) are the covariant components of the
metric tensor in the orthonormal basis e, .

Let us also define the conjugate spinor field by the
covariant components |t = ||qJ;|| using the relation

Y= "B, in which the dot above the letter means
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complex conjugation; the invariant spinor of the second
rank 3 is given by the equations

. — T

Va= BV B =B @)

In general, the four-component spinor field Y has
two real invariants, p and n, that can be determined by
using the equation

pexp(in) = W'y +iy'y°y, (5)
where

5 1 abcd

V' = 578 Va¥eYeYan

€2cd gre the components of the four-dimensional Levi—
Civita pseudotensor, £123*= —1. Using the spinor field s
and the conjugate spinor field P* in Riemannian space
V, we can determine the proper orthonormal vector
basis €, of the spinor field:

e, =TJ, & =80, &-=0J,

The vector components Tt, &', o', and U’ are specified by
therelations [7, 10]

pE' = Re(Y'EY'W),
pu' = iY'y'y,

prt = Im(Y'Ey'p),
+ i 5

| (©)
PO = P yYy Yy,

in which the spintensorsy' = h;ya satisfy the equation
VY vy = 2,
Clearly, the scale factors F\; that correspond to the
proper basis €, are defined by the matrix
& ot Ut
F]i _ T[Z Ez 02 U2 ) (7)
_’_[3 E3 0_3 u3

- E4 o Ut

If the spintensorsy,, E, and 3 are specified as

000i 0001
yy=|00iof  _joo-10]
0-i00 0-100
- 000 1000
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00i O 00i 0

Ys = O_OO_I v Ya= QOOI : (8)
-1000 i000
0i0O0 0i0O0
0100 0010

E = -1000 0001
000-1 1000
0010 0100

then the components of the spinor Y calculated in the
proper basis €, are defined by theinvariantsp and n as
follows[7, 10]:

o - .1 i
Pr=0 ¢ =i @aexp%ng,

P¥=0 0=ziltoepdin

The covariant derivatives of the spinor fields Y and
Y* in Riemannian space are known to be given by the
equations [11]

(9)

1 i
Dsw = aqu_ZAsijnyan

. N (10)
Dsw+ = asw+ + Z_qJ+As,ijyle-

The following equations are valid for the covariant
derivatives of the spinor fields ¢ and *:

1 1 i
0w = Bio.np-2y%0.n - 74, vy,
(11)
+ + 1 1 i

Dsw = llJ %Iaslnp_éysasn + ZAs,ijylylg-
Here, the invariants of the spinor field are defined by
Eg. (5), and the Ricci rotation symbols, A, =
ﬁ?ﬁﬁﬁiy be » COrrespond to the proper bases of the spinor

field and can be calculated by using the formula

-

1
Agi = é(TqDST[j_njDsT[i +&0:& —&;0E;

+ 0,050 —0;0.0; —u;0gu; + u;0g;).

(12)

Equations (11) in four-dimensional pseudo-Euclid-
ean space were obtained in [7, 12]. Egs. (11) in Rie-
mannian space can be derived from the corresponding
equations in pseudo-Euclidean space by substituting
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the covariant derivatives for the partial derivatives.
Egs. (11) areidentically valid by the definition of p, n,
and Ag ;.

3. THE EINSTEIN-DIRAC EQUATIONS
WITH THE COSMOLOGICAL CONSTANT

L et us consider the system of equations
YW +my =0,

1
Rab_ERgab"'}\gab = KTabv
1 (13)
Tab = Z[lIJ+VanUJ

—(OpW )Yal + W'Y, 0a0 — (T YW 1.

Here, Y is the four-component spinor field in four-
dimensional Riemannian event space V specified in the
orthonormal basis e,; m, A, and K are constants;, R =
g®R,, is the scalar curvature of space V, R® are the
Ricci tensor components calculated in the basis e,
g®= diag(1, 1, 1, -1); and T,, are the energy—
momentum tensor components for the spinor field in
thebasise,.

Since Egs. (13) are invariant under an arbitrary
pseudoorthogonal transformation of the tetrads e,, the
equations that define the tetrad e, must be added to
close Egs. (13). These additional equations are com-
monly called gauge conditions. Asthe gauge conditions
for the tetrads e,, we assume that an arbitrary e, tetrad
in Egs. (13) isidentical to the proper tetrad of the spinor

fieldy, i.e., e, = &,. For thisgauge, the scale factors h;
in Egs. (13) are identical to the coefficients H; defined
by matrix (7).

In this case, the Dirac equations can be written as

equations for the Ricci rotation symbols Aa, be and the
invariants of the spinor field [7, 10]:

. . .
d,Inp+ 4, o = 2ma,sinn,

y . . (14)
a°n + %eadeAb, «d = 2ma”cosn.

Here,
0, = hig, = {19, €9, 0'9,,u'd}

is the differentiation operator along the vectors of the
proper basis, and 6, = ¢° = (0, 0, 1, 0) are the compo-
nents of the vector &; in the proper basis.
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The symbols Aa, pe 1IN EQS. (14) are related to the
scale factors F]L by

- - .

Dy ve = [h (0ph;c—dchyp) + .0y + 0ph1,)
(15)
hb(aahjc + achja) ] .

Equations (14) are identical to the Dirac equations
in the proper basis €,. These equations can aso be

derived from the Dirac equations in system (13) by
changing the derivativesin them using formula(11) and
by subsequent algebraic transformations.

Substituting hl, for A, . in Egs. (14) leads to the
following system of invariant tensor equations [7, 10]:

Opm =0, 0pE =0,

0,00 = 2mpsinn, Opu = 0,
1 ijms (16)
O'n =58 (TGUnTG+ & Unds

+0,0,0s—u;0,Us) = 2ma cosn.

It isconvenient to write the Einstein equationsin the
proper basis €, as

-

Rap = KTap + E;‘Kmpcosr] + )\Dgab (17)

To transform the Einstein equations to (17), we
should take into account the fact that, in view of (13),
the following equation holds:

= —kTa+ 4\ = kmpcosn + 4A. (18)

An expression for the tetrad components of the
energy—momentum tensor in the gauge e, = &, was
obtained in [10]:

- 1 o v o v
Tab = Zp[_obaan _oaabn
(19)
1. ¢ cde:
+ éo-e(Aa, cdsb ©+ Ab cd€a )i|
The tensor components Iiab can be expressed in
terms of the Ricci rotation symbols as

1 v. v . v
Rab = _a][’\/__g(hg:Ab ac_h:)Ac, ac)]
J-g (20)
_Af,bCAc af + Ac, aCAf,bfi
where g = det]|g; ||

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

ZHELNOROVICH

Equations (14)—(20) in the given coordinate system
x' form a closed system of equations for the functions
i(xJ), &(x)), 0i(xJ), w(x)), p(x)), and n(x)). The metric
tensor components for Riemannian space are related to
the functions (x}), &(x)), o;(x}), and u;(x}) by
—-u'u. (2

g' = hhig® = M +&¢ +o'd

4. THE GENERAL EXACT SOLUTION
OF THE ENSTEIN-DIRAC EQUATION
IN HOMOGENEOQOUS SPACE

Let us consider the four-dimensional Riemannian
space referred to a synchronous coordinate system with
variables x' in which, by definition, the following equa-
tions hold:

0u=9"=-1, 9x=0¢"=0 a=123 (22

We will seek asolution of Egs. (14)—20) in the syn-
chronous coordinate system by assuming that all of the
sought-for functions depend only on the parameter
x4 =t. Thus, the event space is assumed to be a homo-
geneous space of thefirst type according to the Bianchi
classification.

In this case, Egs. (16) can be written as

0,(J—gpT") = 0,(~—gp&") = 8,(/~gpu*) = 0

04(~-gpo’) = 2m./—gpsinn, (23)
d,n = —2ma*cosn.
Equations (23) and the equation
9445“41T4+E4E4+ 0404—u4u4 - (24)

form a complete system for the functions #, &4, %, u?,

n, and p~/—g. The general solution of Egs. (23) and
(24)is[8, 9]

G E _u 1
= C G J1+c cos’ (2mt + )
eC,sin(2mt +
e : (2 9 5
J1+C0cos (2mt +¢)
exp(in) = & 1+iCgcos(2mt+¢) |
J1+ C2cos(2mt + ¢)

where ¢, C, C¢, G5, C 2 1, and C, > O are the integra-
tion constants; the coefficient € can take on any of the
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two values. +1 or —1. In view of the synchronism con-
dition (24), the constants C are related by

Cr+Ci+Co-Ch = -1. (26)
Let usdenoteh, = hi = (1, &%, 0%, u). Wefind from
solution (25) that

{ hlv h21 h4}
= L {CnCypC}. @D
Jl + Cf, cosz(2mt +¢)

Thus, we seethat, in view of solution (25), the direc-
tion of the three-dimensional vector with the compo-
nents h;, h,, and h, does not depend on the parameter t.

It follows from definition (15) that the Ricci rotation
symbols, A, ., can be represented as

-

1
Aa, be = é(hbsac - hcsab - haabc) ) (28)
where, by definition,
Sab = Spa = F1iaa4F‘ib + F]iba4F]ia1 (29)

Qap = —8pa = F];aAF]ib_F]ibale]ia-

Since the quantities h, in (28) are defined by solu-
tion (25) as functions of the parameter t, Eqg. (28)

expresses the 24 dependent functions A, ,. only in
terms of the 16 functions s,, and a,,.

It follows from Egs. (14) that the antisymmetric
guantities a, are defined by the equality

8y = 4M[(G,h, — Gpha) SNN —€4nc46°h"cosN] . (30)
Using Egs. (30) and definitions (19) and (20) for

'T'ab and R,,, we can write the Einstein equations (17)
as the equivalent system of equations

a4(’\/__gsab) - 2m’\/__g(hasbc + hbsac)acgnn

1 c-e
-2.4J-g Bncosr] + éKpE(scefasf) + EgerpSy) DO an

= (kmpJ/—gcosn + 2A/=9) (dap *+ hahy),

()7 =5, = 8(kpmcosn +A).
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Inview of solution (25), the quantity p./—gcosn on
the right-hand side of thefirst equationin (31) isacon-
stant:

p.J/—gcosn = €C,. (32)

The first equation in (31) can be obtained by con-
tracting the Einstein equations (17) with the compo-
nents of the tensor 8. + h.h? in index a. The second

equation in (31) can be obtained by contracting the Ein-
stein equations (17) with the components of the tensor
g® + 2h?hP inindicesa and b.

Contracting the first equation in (31) with g® in
indices a and b yields the equation

9,0,/ = gKmSCp W (33)
that defines the quantity ~/—g.

If the cosmological constant A > 0, then the solution
of Eq. (33) is

J—g = &M
2\ (34)
x Co[—1+ f,sinh(4/3At) + f,cosh(/3At)],
where f; and f, are arbitrary constants.
For A <0, weabtain
g = STC{-1+ fSn[BAG-t)l},  (35)

where f and t, are the integration constants. The case of
A =0was considered in [7-9].

Since the direction of the three-dimensional vector
with the components h;, h,, and h, does not depend on
the parameter t, the components h; and h, can be made
equal to zero by a constant Lorentz transformation of
the basis vectors €, , €, , and &,. It is easy to see that
the initial system of equations (14)—(20) is invariant
under an arbitrary L orentz transformation of the vectors
of the basis ,, €,, and &, that is independent of the
variables x'. Therefore, it will suffice to consider the
solution of Egs. (14)—20) only for h; = h, = 0. Under

this condition, the first equation in (31) can be written
in expanded form as

04(Ss/-g) —4ma”sinn s;5./—g
= (ekmC, + 21J=g)(u*)",
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04(S23/—g) —2ma*sinns,;s/—g

—%mcosn + %Kpgu“sm/—_g =0

04(S13+/-9) — 2m043inr]513«/__9
1
+ %mcosn + ZKpHu4323Jfgj =0,
1

= eKkMC, + 2\ /g,

1
a4(522/\/—_9) - Z%mCOSn + ZKPEU4312«/—_§1
= ekmC, + 2\ ./—Q,
o+ 2N /=g (%)
1
a4(312«/——9) - %mcosr] + ZKPE

><U4(511—312)«/—_§J =0,

1
0u(510478) + Fomeosn + Jief

x U's,,/—g—2mu*sinnsy, /—g = 0,

0,4(S04/-9) — %mcosn + %Kp%
x U'sy,/—g—2mu’sinns,s./—g = 0,
04(Ssan/~g) —2msinn (0*s;, + U's33) /g
= (ekmC, + 2A/~g)a’u*
04(Sasn/—g) — 4mu’sinn s,/—g
= (ekmC, + 2A/=g)(c*)".
The genera solution of Egs. (36) is

1= UGN+ 557000 + 3BSN(C +B)) |
2= U 3N+ 557000 3BSN(2(C +B)) |

_ 2, 43 1
S ép(u) S\H@au/—_(%,

2 2 1
Suy = épu4(0'4) %\‘ +§64@,
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Si2 = —3pu‘Boos(2({ +)),
Do (37)
S1i3 = 5p(U7) Acos({ +a),
S = 2p(U")ASN( +01),

sl

Sy = %pu“o“Acos(Z +0),

_ 2 4, 42
Su = 50" () N+

C,C.

Sy = %pu404Asin(Z+0().

Here, A, B, N, a, and [ are arbitrary constants, ./—g in
solution (37) is defined by equalities (34) and (35), and
Cisgiven by

= I%mcosr] + %Kpgu“dt
- cactanpN(mt+ 9 1
0 Ji+c2 0 4

The parameter T in (38) depends on the cosmol ogi-
ca constant A and is defined by the integra

= J’puAdt.

(39)

Inview of Egs. (18) and (32), the scalar curvature R
of the Riemannian event space can be expressed in

terms of ./—g:
ekmC
J-g

R = P+ 4A. (39)

It thus follows that the points at which ./~g becomes
zero are the singular points of the curvature tensor.

Substituting the components s, from (37) into the
second equation of system (31) yields a relation
between the integration constants A, B, Nand f,, f,. For
A >0, we obtain

2DlA += B +InB<n,

f2_f2 = ;Ci e

If £2 > f2, then formula (34) for ~/—g can be rep-
resented as

g = ZTC{-1+ feosh[JBA(t-to)l},  (40)

where t, and f are arbitrary constants, f2 = f; - ff :
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Thesingular points of the solution are defined by the
equation
f cosh[/3A(t—t,)] = 1.

The solution has one singular point at f = 1 and two sin-
gular pointsfor 0 <f< 1. 1f f< 0 (inthiscase, € = -1),
then the solution has no singular points.

If fg < ff,then the following equality is valid for
J-g:

g = ZC{-1+ fnh[BAC-to)]},  (4D)

inwhichf2=f2 — f2 . Inthis case, the solution has one
singular point defined by the equation

fsinh[J/3A(t—ty)] = 1.
If f, = +f, =, then

9 = SIC -1+ fep(£ /BN . (42)

For A < 0, we abtain the following formula for the
integration constant f in Eq. (35):

AleA+B+

£2 1
uly 3

N%zl

In this case, there is an infinite number of singular
points at which ,/—g becomes zero.

The positivity condition, ./~g > 0, imposes con-
straints on the possible values of the integration con-
stants and the domain of existence of the solution.

Using definition (9) and solution (25) for pand n, let
uswrite out the solution for the spinor field components
in the proper basis.

=
1
I+

(43)

0
iJstl +iC,cos(2mt + ¢)
2./~9
0
i/\/SCpl_iCGCOS(th +0)
2.9
where ./—g isgiven by (35) or (40)<(42), depending on
the sign of A.
Equations (25), (30), and (37) completely define the
Ricci rotation symbols A, ,,. by formula (28) and con-
stitute the first integral of Egs. (14)—<20). To find the
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general solution of Egs. (14)—(20), it will now sufficeto
integrate Egs. (29), from which it follows that

- 1 -
d,hip = E(Sab"' ag)hy. (44)

Given definition (7) of Fﬁ" and solutions (30) and
(37) for s, and a,;,, EQs. (44) can be transformed to

(%(u“oi ~o'u)
= 2AImcos(Z +a) +£sin( +a)]

+(u'o, cu)DgA/l_dr“/_ 3I\%

S, +im) = (& +im) (45

J_—N

I—COS
p nD

w i x
Eéfdt
_Z_(Ej —im)Bexp[-2i(¢ + )]
+ LllA(u“oj —o*u)exp[i(Z +a)].
The system of equations (45) must be complemented

with the synchronism condition

U4q =040, — =0, a=123. (46)

Inview of Egs. (25), we obtain

T= J’pu4dt = CpCuJ’dftg.

If the cosmological constant is positive, A > 0, and
km# 0, then using Egs. (40) and (41), we obtain

. dt
_ 47
sKm.[_1+fsinh[«/§\(t—to)] 0

and

) dt

8KmI_1+fCOSh[«/3_)\(t—to)] o
For A <0 (f2> 1), using (35), wefind that

_ dt (49)

F-Km.[—l + fsin[J/=3A(t—ty)]
Integrals (47)—(49) can be found in [13].
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Let us now change the unknown functions (T, &,,
Oy, ) —= (T8, €5, 8,) inEgs. (45):

& +im = (E)\ + ”TA)(«/_Q)U3 E %NT—iZE,
g, = 0,(/=0)u*exp D—%N%, (50)
b, = 8,(479)" "o exp N,

where C is given by Eq. (38), * and u* are defined by

solution (25), and ./—g is defined by equalities (35) or
(40)—(42). As aresult, the synchronism condition (46)
is satisfied identically, and the system of equations (45)
transformsto asystem of linear equationswith constant
coefficients:

S5 +im) = fK(EN+im)

[ : . [ .
~7BeXP(=2iB) (&~ i) + ZAexp(-ic)8,,  (51)
d 1 . 1

50 = ZA(ngcosa +&2sina) + 5N,

Atj =4, Egs. (45) aresatisfied identically in view of the
conditionsh, = h, = 0.

The following characteristic equation for the eigen-
value q corresponds to Egs. (51) for each value of the
index A\ =1, 2, 3:

2(N —20)(16q° + k* = A* = B?)

) _ (52)
+ A" [2N-Bsin(2(a —-B))] = 0.

In general, the solution of Eq. (52) is given by the
Cardano formulas. A simple solution of thisequationis
obtained, for example, for A=0or 2N =Bsin(2(a —p)).
The solution of Egs. (51) for A = 0 was considered
in[8,9].

Let us consider the case where the equation 2N =
Bsin(2(a —)) holds, A# 0. Inthis case, the eigenvalues
are

% /A +B%—k? —%‘-A/A2+BZ—K2.

If 0 <A?+ B? < k2, then the solution of Egs. (51) can be
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written as

&+im =

[

exp(—ia)Ei—AHAexp%N
0
+[-[k + Bexp(2i(a —B))] F, + 4iQG,] cos(Qr) (53)

+[-[k + Bexp(2i(a —B))] G, —4iQF,] sin(Qr) El

6, = [k —Bcos(2(a —fB))]Hyexp

ol

Nt
+ A[F, cos(QT) + G, sin(QT)] .
Here,
_1/%2 2 2
Q= 7K A" —-B",
F., G,, and H, are the integration constants.

For the spatial components of the metric tensor, we
obtain the following expression using Egs. (21) and (50):

1 0
Oop = (J—_g)z"“expg—éNrEEHaHBzzexp(Nr)

+F,Fg[S+ Mcos(2Qt1) + 8QNsin(2Q1)]

+ G, Gp(S—Mcos(2Qt) —8QNsin(2Qr)]
+(FoGp + FpGy)
x [Msin(2Qt) —8QNcos(2Q1)]

(54)

+ (FaHg + FoHo) 2 AexpEENTloos(Qr)
+(GyHp + GBHG)ZKAeXp%NT%Sin(QT) E;

O
where 2N = Bsin(a — 3), and we use the following nota-
tion for the constants:

M = A’+ B’ +KBcos2(a —B),
S = K[k + Bcos(2(a —PB))],
Z® = A’ +[k —Bcos(2(a —B))]°.
The quantity ./—g on the right-hand side of equal-
ity (54) isdefined by Egs. (35) or (40)—(41). Formula(54)
defines the oscillatory approach to the singular points

of the solution.
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Themetric is particularly simple when the phases a
and (3 satisfy the conditiona —B =k, k=0, £1, £2, ...:

g _ (A/_—g)2/3
ap 16Q2
S+ Mcos(2Qt) Msin(2Qt) 2kAcos(QT)
X Msin(2Qt) S—Mcos(2Qt1) 2kAsn(QT)
2kAcos(Qt)  2kAsin(Qr) i

In this case, N = 0; A and B are arbitrary; and the
constants F,, G, , and H, are given by the equalities

-1/2

’ Ol 0} ’
-1/2

O,
H, = {0,0,(k*-B%) "3 .

Fo = {(k*-B?

G, = {0, (kK*=B%) (55)

If A2 + B2 > k2, then the trigonometric functions
in (54) are substituted with hyperbolic functions.

The case where the integration constants A and B in
Egs. (51) are equal to zero, A = B = 0O, correspondsto a
diagona metric g;. Inthis case,

&+ = K(=F, +iG)) exp ki

0, = KHAeXp%N‘[E,
(56)

Gur = K*(4=0)" | e@HENEFo Fy + GoGp)
¥ exp%NTEHGHB]
Here, /—g takes the form of (35) or (40)—(42).

If we defineF,, G,, and H, by the relations

Fo = {k 0,0, Ga=1{O,K_,0}, (57)
H, = {0,0,k },

then metric (56) is diagonal:

gaB - (@)2/3dlag{ e—NT/3, e—NT/3, eZNT/S} )

For A=B=N=0, metric (54) correspondsto aniso-
tropic Universe:

(58)

Oup = K2(4/=0) (FuFg + GoGy + HoHg).  (59)

Here, ,/—g isgiven by formula (40) in which f2 =1 for
A>0; for A <0, Eq. (35) inwhichf2 =1 holds.
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Calculating the energy—momentum tensor of the
spinor field for the solutions obtained yields the foll ow-
ing relation for its component T,, in the synchronous
coordinate system:

emC
T, = mpcosn = e,

/=

Since, by definition, C, > 0, the above solutions with
€= -1 correspond to a negative energy density; for
€ = 1, the energy density of the spinor field is positive.

Let us consider the transformation of the variables
of the observer’s coordinate system (x*, t) — (X%, 1)
defined by the equation dt = pu*dt. The explicit depen-
dence of the function t(t) is given by relations (47),
(48), or (49). Our calculation shows that the following
equation holds in the coordinate system with variables
x4 and T:

(60)

[0,(/=00"" = S(J~9g"y = 0. (6)

Thus, the coordinate system with variables x* and 1
is harmonic. It is easy to see that the parameterst and
1/C,, where the integration constant C, is defined by
solution (25), have the same dimensions.

After the transformation (x%, t) — (X%, 1), the spa-
tial part of the metric does not change. It should be
noted that the time dependence of the determinant y =
det||gqg|| of the spatial metric tensor components, which
governsthe expansion or contraction of the Universe, is
distinctly different in the synchronous and harmonic
coordinate systems. This difference is responsible for
the significant difference between the evolutionary sce-
narios of the Universein the synchronous and harmonic
coordinate systems.

In conclusion, we note some of the qualitative dif-
ferences between our solutions of the Einstein equa-
tions with the cosmological constant A # 0 in the syn-
chronous coordinate system and the solutions of these
equations without any cosmological constant.

(1) At A £ O, there are solutions without singular
points (solution (40) forf>1,e=-landf< 0, € =-1).

(2) There are solutions with a horizontal asymptote

for ./—g; i.e, the Universe can expand only to acertain
limit defined by the integration constants (solution (42)).

(3) There are solutions with an infinite number of
singular points. In this case, the Universe passes
through a closed cycle of evolution (solution (35)).
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Abstract—The currently available data on solar neutrino flux variation in radiochemical experiments and
Cherenkov measurements have so far defied a simple interpretation. Some of the results concerning these vari-
ations are indicative of their relationship to processes on the solar surface. It may well be that a poorly under-
stood, uncontrollable factor correlating with solar activity indices affects the neutrino flux measurements. This
factor is assumed to modulate the detection efficiency on different detectors in different ways. To test this
assumption, we have analyzed al available radiochemical measurements obtained with the Brookhaven
(1970-1994, 108 runs), GALLEX (1991-1997, 65 runs), and SAGE (1989-2000, 80 runs) detectors for possi-
ble instability of the detection efficiency. We consider the heliophysical situation at the final stage of the run,
the last 7-27 days, when the products of the neutrino reaction with the target material had already been accu-
mulated. All of the main results obtained previously by other authors were found to be reproduced for chlorine—
argon measurements. The neutrino flux anticorrelates with the sunspot numbers only for an odd solar cycle. A
similar behavior is observed for the critical frequencies of the E-ionosphere. The neutrino flux probably corre-
lates with the A, magnetic activity index only for an even solar cycle. The predominance of acertain sign of the
radial interplanetary magnetic field (IMF) in the last 14 (or 7) days of the run has the strongest effect on the
recorded neutrino flux. The effect changes sign when the polarity of the general solar magnetic field isreversed
and is most pronounced for the shortest runs (less than 50 days). The dependence of the flux on IMF polarity
completely disappearsif the corresponding index is taken for the first rather than the last days of the run. The
IMF effect on the recorded neutrino flux was also found for short runs in the gallium—germanium experiment,
but this effect for a given timeinterval in the SAGE measurements is opposite in sign to that detected with the
Brookhaven and GALLEX detectors. The anticorrelation with the A, activity index, which is absent in the
SAGE measurements, contributes significantly to the flux variations on the GALLEX detector. If a magnetic
storm with a sudden commencement occurs in the last 7 days of the run, then an effect of generally the same
type, asignificant increase in the variance, is observed for all three detectors. In all other indices, the flux vari-
ations on the Brookhaven and GALLEX detectors are the opposite of those on the SAGE detector. We have
found that the GALLEX and SAGE measurements for the runs that ended simultaneously, to within about
10 days or less, anticorrelate, while the Brookhaven and GALLEX measurements correlate. We conclude that
there are fictitious variations in the measurements under consideration that are attributable to the influence of
geophysical factors (probably, very-low-frequency electromagnetic fields) controllable by solar activity on the
physical—chemical kinetics of the target material. We discuss possible experiments to check whether the
detected effects areredl. If all of these effects areindeed real, then the neutrino flux was underestimated in the
radiochemical measurements. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION 1.1. The Chlorine-Argon Experiment

The question of possible solar neutrino variationsin
a chlorine-argon experiment that was raised by
G.T. Zatsepin back in the 1960s and initiated by Bazi-
levskayaet al. [1] has already been discussed for almost
two decades. Many authors have independently ana-
lyzed the accumulated experimental data by using var-
ious heliogeophysical indices. If we summarize the
results of thiswork, then the following picture emerges
(al of the necessary information about the experiment
itself and a bibliography of previous publications are
given in the monograph [2]).

(1) Thereisasignificant anticorrel ation between the
neutrino flux and the globa solar activity index, the
sunspot numbers R, only after 1977 [3, 4]. No convinc-
ing interpretation of the absence of such an anticorrela-
tion for 1970-1976 has been offered.

(2) A smilar anticorrelation is observed if the
photospheric magnetic fields measured with a magne-
tograph are used as a heliophysical index. The anticor-
relation proves to be statistically significant only for
low-heliolatitude data (the disk center [5, 6]). It isaso
more pronounced for 1977-1990, with the spring
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months of each year making an important contribution
to such variations.

(3) Most of the authors agree that there is an annual
period in the intensity variations [7-9]. This period is
found when analyzing data irrespective of any helio-
physical indices[10, 11] and when correlating the flux
Q with the sunspot numbers R [3, 8] and the coronal
index (the intensity of the A = 5303 A line[12]). All of
the authorsinterpret the annual period as resulting from
the Earth’s spatial displacements relative to the helio-
equator.

(4) Thereisaweak positive correlation between the
neutrino flux and the magnetic activity level (the A,
index [13, 14], theaaindex [6]). Thiscorrelation isusu-
aly interpreted as resulting from variations in solar
wind parameters. It seems to be more pronounced for
the wind density estimated in direct measurements
(1973-1993[15]). It isnot quite clear how this correla
tion matches with the anticorrelation between the neu-
trino flux and the sunspot numbers.

(5) Thereis a positive correlation between the neu-
trino flux and the Galactic cosmic-ray intensity mea-
sured with neutron monitors. Most of the authors agree
that this correlation is not causal, but results from the
anticorrelation between Q and R. The correlation
between the neutrino flux and chromospheric flares has
not been confirmed.

(6) A dignificant linear anticorrelation has been
observed between the neutrino flux and the frequency
shift of the free solar acoustic oscillations (P-modes,
1980-1991 [16]). It is not clear whether this anticorre-
lation is causal. Since the above shift anticorrelates
with the solar radius, the neutrino flux may be assumed
to positively correlate with the solar-radius variations.

(7) A set of periodsisfound in the neutrino flux vari-
ations. Various (more than ten) authors are unanimous
that a quasi-biennial period (2.17 £ 0.03 years) is
observed. As regards other periods, the results slightly
disagree. The periods of 8-9 and 4.5-5 yearsare quoted
most commonly (see, e.g., [17-20]). Clearly, the peri-
odograms (power spectra) must exhibit a one-year
period; it is actually present. At the same time, it also
often exhibits a period of 1.3 years. A big surprise was
the detection of one of the solar rotation modes
(28.34 days) in the neutrino flux variations [21].

(8) There is compelling evidence suggesting that
many authors have overestimated the statistical signifi-
cance of their results concerning the neutrino flux vari-
ations and the corresponding correlations [22-24].
However, we cannot agree with the opinion that all of
the above results are attributable to statistical fluctua-
tions. Most of them are consistent with the well-known
patterns of solar—terrestrial physics. For example,
almost all of the variation periods (listed in (7)) are the
well-known cosmophysical periods.
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1.2. The Gallium-Ger manium Experiments

For obvious reasons, the question of neutrino flux
variations in the GALLEX and SAGE experiments is
less clear. It seems that no correlation with the sunspot
number is found in these measurements [25], although
the annual period is probably present. Two specific
results deserve rapt attention.

(1) The GALLEX measurements revealed a period
close to one of the solar rotation modes (28 days).
There may a so be aperiod that coincideswith the well-
known harmonic of the solar free inertial oscillations
(about 157 days) [25]. A period closeto 28 days may be
present in the Brookhaven experimental data [25].

(2) There is aremarkable feature in the set of data
from both gallium—germanium experiments: the distri-
bution of their results exhibits two peaks. The bimodal
pattern of the distribution could be indicative of the
existence of two discrete intensities [26]. The time
scale of the transition between the states was estimated
by the authors to lie within the range of 10-60 days.

The situation described above must be complemented
by data on the high-energy neutrinos observed with
Cherenkov detectors. According to KAMIOKANDE
data [27], the neutrino flux shows no anticorrelation
with the sunspot numbers for solar cycle 22 (a weak
correlation is not ruled out). The absence of intensity
variations that correlate with solar activity in these and
subsegquent measurements callsinto question thereality
of the neutrino flux variations in the radiochemical
experiments.

2. THE EXPERIMENT
AND THEORETICAL MODELS

The behavior patterns described above must be
compared with the following three major types of mod-
els that describe the variations.

(1) The neutrino source in the solar core is stable;
variations arise when the neutrino flux propagates
through the solar matter due to the transitions between
various neutrino states, in particular, due to its interac-
tion with solar subphotospheric magnetic field, as long
as the neutrino is postulated to have a large magnetic
moment (for the physics of these phenomena, see[28]).

(2) The neutrino sourcein the core pul sates due to the
excitation of specia oscillations; these oscillations are
synchronized with the solar activity variations[29, 30].

(3) The neutrino flux is stable both in the solar core
and near the Earth; variations arise from unnoticed vari-
ations in the detection efficiency in the instrument
itself; i.e., they are fictitious. These variations are con-
jugate with the solar activity variations, because the
solar activity itself affects the measuring technique
through geophysical fields, acting as an uncontrollable
factor [31].

Many publications are devoted to the first type of
models. A familiarity with them shows that a large
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number of various fitting assumptions are made when
comparing experimental data with specific computa-
tional models. Therefore, the popular belief that the
problem of neutrino flux variations has been solved
almost completely is a gross exaggeration.

In contrast, the idea of solar core oscillations
receives little support. These oscillations, if they actu-
aly exist, must seemingly be synchronized with the
natural timer—the oscillations attributable to a motion
of the Sun with respect to the system’s barycenter. The
periods found for the parameters of this motion (in
years)—2.41, 3.51, 4.26, ... [32]—are in poor agree-
ment with the periods found in the chlorine-argon
experiment (see Section 1.7).

To most researchers, the third type of models seems
to be completely implausible. Inthiscase, themainidea
isthat the reaction products (radioactive Ar3” and Ge™)
in the target liquid may prove to be bonded somehow
with a certain molecular structure and do not always
fall into the counting system. Of course, such bonding
ispossiblein principle at acertain stage of the complex
technique of extracting a small number of product
atoms from alarge number of target atoms. This possi-
bility seemsto be ruled out, because the extraction effi-
ciency is controlled in real time by adding a known
number of atoms of the corresponding stable isotope to
the target material. However, this procedureis not quite
correct: neutral Ar3 atoms are added for control, while
the neutrino reaction product appears in the form of a
fast ion. It may well be that the bonding into a structure
will be different in these cases. This well-known prob-
lem of ahot ion can be solved by adding an appropriate
radioactive isotope to the target material, where the
product being extracted also appearsin hot form. Inthis
case, however, the uncertainty is not completely elimi-
nated either: this experiment only simulatesthe real sit-
uation, without replicating it in all details. In addition,
these changes are isolated episodes in nature. Whether
the extraction efficiency changes from session to
session in normal working conditions is till an open
guestion.

The bonding of Ar**” or Ge*’* ions can include var-
ious reactions. Until now, only one type of this process
has been discussed: falling into a molecular cavity trap.
In particular, three possible “containers’ for the neu-
trino reaction product have been proposed for Art3’:
Jacobs[33] assumed that the globules produced by per-
chloroethylene polymerization could play an important
rolein the possible argon bonding. Subsequently, argon
during the cooling may prove to be bonded in the struc-
ture formed in a microbubble (babstone) [34]. If there
iswater in the form of an admixture in perchloroethyl-
ene, then the formation of a gas hydrate of the second
type—an A - 2B - 17H,0 structure, where A and B are
the cavities populated by various molecules, radicals,
and ions—is probable. Cavity B can be a cavitand for
Ar¥ [31].
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In the model being described, the correlation with
solar activity arises, because the state of the target lig-
uid depends on the parameters of the background geo-
physical fields, in particular, very-low-frequency elec-
tromagnetic fields controllable by solar activity. When
Ar®¥ is trapped into a clathrate structure, for example,
the number density of these structures in the target
dependsontheliguid runinthe fields mentioned above.

In the past, this kind of reasoning could not be con-
vincingly justified and was perceived as speculation. In
the last decade, the situation has changed significantly.
The following arguments now force us to treat the idea
of modulation of the detection efficiency by solar activ-
ity in earnest.

First, the pattern of the dependence of neutrino flux
variations on heliogeophysical indices closely follows
the patterns attributable to the surface effects of solar
activity that are known from solar—terrestrial physics.
Significantly, the 28-day period with its ghosts found
by Sturrock et al. [21] is precisely the period that was
observed in the sunspot numbers at the epoch under
study [25]. Further, the heliophysical indices taken for
the central zone of the solar disk are known to correlate
better with the parameters of purely terrestrial pro-
cesses than the same disk-averaged indices do. Charac-
teristically, the neutrino flux shows a correlation both
with the global solar indices (pertaining to the entire
disk) and with the solar-wind (magnetic activity)
parameters that reflect the processes in a narrow zonal
region for a given heliolatitude. In solar—terrestrial
physics, this applies to two different connection chan-
nels through the short-wavelength radiation (iono-
sphere) and the solar wind (magnetosphere).

Second, direct evidence for the instability of the
detection efficiency in the chlorine-argon experiment
has been obtained. For example, for some reason, there
is a strange anticorrelation between the flux Q and the
run time [4, 24]. If this anticorrelation is real, then it
could correspond to continuous bonding of the reaction
product, its fictitious destruction, in certain time inter-
vals. The anticorrelation between the flux Q and the
background correction [24] appears no less strange.

Third, a number of examples where the effects of
solar activity on the processes in condensed phases
were found with confidence have been accumulated to
date. The directly acting agent—the very-low-fre-
guency electromagnetic background disturbances—
actsin al these cases as an uncontrollable factor in the
given experiment. The widely known example isareg-
ular increase in the measured biochemical reaction
rates during each solar minimum over three 11-year
cycles[35]. The above studies (of the so-called macro-
scopic fluctuations) based on a comparison of histo-
grams have reveadled characteristic periods of about
27 days and about a year for normal measurements of
the count rate of radioactive standards [36]. A behavior
of the same type in an 11-year cycle was aso discov-
ered when analyzing the gravitational constant mea-
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Table 1
Revealed interval Runs
Even cycle 20, 1970-1976 18-46
Odd cycle 21, 1977-1986 4791
Even cycle 22, 1987-1994 92-133
Plus at solar north pole 18-64; 109-133
Minus at solar north pole 65-108

surements using a torsion pendulum [37]. In this case,
the point of action of the uncontrollable factor is the
torsion pendulum suspension filament. This conclusion
was reached after studying the dependence of the mea-
surements with this detector on the index used
below—the sign of the radial interplanetary magnetic
field (IMF) [38]. Semiannual variations of seemingly
the same nature [39] (for an overview of the solar
activity effects on the “technosphere” see the mono-
graph [40, Chapter 7]) are now known even in neutrino
mass measurements. In general, as long as the solar
activity effects, which apparently modulate the detec-
tion efficiency in many cases, do not seem absurd, a
special search for similar effects in radiochemical
experiments is quite justifiable. Although the targetsin
these experiments are placed at relatively large depths,
they are nevertheless within the reach of electromag-
netic disturbances. For typical electrical conductivities
of rocks, the skin depth for afrequency of 8 Hz is sev-
eral kilometers. In addition, there is a significant com-
ponent of lithospheric origin in the variations of these
geophysical fields. This component of the electromag-
netic background also varies synchronously with solar
activity.

If the neutrino flux variations in the radiochemical
experiments are attributable not to variations in the
number of reaction product atoms, but to variations in
the number of these atoms extracted from the target
material, then the heliogeophysical situation at the end
of the run is of great importance in analyzing the
results. In the following sections, we present some of
the results of our analysis of data from the chlorine—
argon experiment and the GALLEX and SAGE experi-
ments in connection with the solar activity and mag-
netic disturbance variations when the corresponding
indices were calculated for the final stage of the run
(less than 25% of the session duration).

3. CORRELATION OF THE NEUTRINO FLUX
IN THE RADIOCHEMICAL EXPERIMENTS
WITH HELIOGEOPHY SICAL INDICES
AT THE END OF THE RUN

3.1. The Chlorine-Argon Detector

The measurements processed by the maximum-like-
lihood method [41] (a total of 108 runs, 1970-1994)
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were used as the source data. We took unweighted
(best-fit) values. The heliogeophysical indices—the
sunspot numbers R and the A, magnetic activity indi-
ces—were taken from the Solar—Geophysical Data.
Theindex | of the mid-latitude E-ionosphere was tabu-
lated in [42]. The IMF signs restored from geophysical
data were taken from the catalog of laboratory polar
measurements (Institute of Terrestrial Magnetism, 1ono-
sphere and Radio-Wave Propagation, IZMIRAN) [43].
Itis clear from general considerations that an optimal
time interva for which the effect of heliogeophysical
variations on the target materia is most pronounced
must exist. Since this interva is not known, we used
three different intervals in many cases. 27, 14, and 7
days. They were counted backward from the comple-
tion date, which was the main reference date of our
analysis. As is customary in solar—terrestrial physics,
the even—odd solar cycles are considered separately. It
is of no less importance to distinguish the epochs at
which the general solar magnetic field changes sign.
Table 1 presentsthe distribution of runs (their numbers)
for the selected time intervals. The sign of the field in
polar solar regionsisknown to be established relatively
slowly. Therefore, referring a certain run to the interval
of a particular polarity at such transitional epochs is
controversial.

The diagrams presented in the figures were con-
structed by using the same standard method: the helio-
physical index obtained for a given run (its final part)
allowed it to be placed in acertain bin of thisindex. The
fluxes Q (in atoms day) were averaged within thisbin.
The indices R (sunspot numbers) and A, (magnetic
activity) were used for comparison with the corre-
sponding data by other authors. The ionospheric and
IMF data are physically more meaningful.

The neutrino flux Q is plotted against the sunspot
numbersin the last 27 days of therunin Fig. 1 (Q was
averaged for each R bin). The distinct anticorrelation
for the odd solar cycle corresponds to the anticorrela-
tion found for approximately the same time interval by
other authors who used the mean R for the entire run
(see, e.g., [4]). For the even cycles, we clearly see a
weak opposite tendency. Theionosphericindex | exhib-
its a similar pattern (Fig. 2) in the last 27 days of the
run; | hasthe meaning of acorrected daily mean critical
frequency. The similarly constructed data for the A,
index are shown in Fig. 3. Theindex was averaged over
thelast 7 daysof therun. Inthis case, we see atendency

for Q to increase with A, for the even cycle (this ten-
dency for the entire data set was also found by other

authors who used the mean indices for the entire run
time).

Finally, Figs. 4-6 show plotsof Q against IMF sign
inthelast 14 days of the run (the sum of the numbers of
days of positive, negative, and mixed polarities divided
by 14). We clearly see a tendency for Q to decrease
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with increasing dominance of the positive polarity in
Fig. 4a and the change in sign of the effect when the
polarity of the general solar magnetic field is reversed.
In general, this pattern does not change if the IMF signs
aretakeninthelast 7 and 27 days of the run, but for 14
days it is move distinct. Figure 5 shows data convolu-
tion for the entire data set (Fig. 4b wasinverted relative
to the zero line). According to the Mann—Whitney test,
the general means for different polarities differ at the
102 significance level. We can see from Fig. 6 that the
effect is systematic in nature; in the means, it manifests
itself in aredistribution of extreme values: 80% of the
values close to zero belong to one IMF sign, and all of

Q > 1.0 belong to the other IMF sign.

It is easy to verify by direct comparison that the

dependence of Q onthelMF sign contributes apprecia-
bly to the annual variation. According to the standard
Coleman—Rosenberg law, the phase of this variation is
reversed when the polarity of the general solar mag-
netic field is reversed.

It is important to emphasize that the dependence

Q(R), which is distinct for the odd solar cycle (see
Fig. 1), holds irrespective of the IMF sign. If we con-
struct such a dependence separately for all cases of dif-
ferent IMF polarities, then it will remain valid. Thus,

the dependences Q (R) and Q (IMF) cannot be reduced
to each other and represent different effects. It is partic-
ularly important to take this into account when analyz-

ing the dependence of Q on the run time found in [4].
Itisshownintheform adopted herein Fig. 7aand holds
irrespective of the solar activity level (R) and the IMF
sign. There is no such general anticorrelation for the
even cycle. However, it has emerged that this kind of
relationship exists for different IMF polarities
(Fig. 7b). Aswe see, thetendencies are oppositefor dif-
ferent IMF signs. Note that the dependencesin Fig. 7b
cannot be explained by the Ar3” bonding with aconstant
rate (the aging of the solution), as should seemingly be
donefor the case of Fig. 7a. The curvesin Fig. 7b were
constructed in such away that, most likely, thereis no
bonding for one of the IMF signs at short runs. The
effect in a weakened form for longer runs proves
noticeable because of the inertia of the index used. If
the IMF sign is taken for the final 7 days of the run
(rather than 14 days, asin Fig. 7b), then this difference

in fluxes Q disappears abruptly at a run time of L =
60 days. In general, the IMF sign index differs only
slightly from one 27-day interval to another. Therefore,
when thisinterval isused, the effect for L <80 daysdis-
appears completely. However, when the IMF signs are
taken for 7 and 14 days at L < 60 days, the changesin

the means are the same: Q (-)/Q(+) = 3 (in all cases,
when the sign of the genera solar magnetic field
changed, the IMF polarities also changed in accordance
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Fig. 1. Mean neutrino flux versus sunspot numbers R aver-
aged over thelast 27 days of the run for the even (thin solid
and dash-dotted lines) and odd (heavy solid and dashed
lines) solar cycles. Q was calculated for al of the runs that
fell within agiven Rbin. The numbers near the dots give the
number of such runs. The error is atypical rms scatter; the

straight lines were drawn by least squares; n is the number
of runs.
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Fig. 2. Same as Fig. 1 for the index | of the mid-latitude
E-ionosphere at the Moscow station. The even solar cycleis
represented by the thin solid line; the odd solar cycleisrep-
resented by the heavy solid and dashed lines.
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Fig. 3. Same as Fig. 1 for the A; magnetic activity index in
thelast 7 days of therun. The even solar cycleisrepresented
by the heavy solid and dashed lines; the odd solar cycle is
represented by the thin solid line.
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Fig. 4. “Neutrino flux Q—mean IMF polarity sign in the last 14 days of the run” scatter diagram: (a) the general solar magnetic
field at the north poleis positive; (b) the general solar magnetic field at the north pole is negative. The numbers near the dots give

the number of runs.

with the pattern shown in Fig. 4). The Q difference is
statistically significant at the 1.7 x 1072 level for an

interval of 30-50 days and at the 4.8 x 102 level for an
interval of 50-60 days.

The effect of the IMF sign in the last days of the run

on the recorded neutrino flux Q, whichis important for
the subsequent analysis, can be tested independently.
For the set of runs used in the experiment under consid-
eration (amedian value of about 70 days), the IMF indi-
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ces for the final and initial run intervals may be shown
to be uncorrelated. Therefore, we once again con-
structed a convolution of the dependence of Q on the
IMF sign, but for the initial 14 days of the run. We
found no correlation between Q and the IMF sign: the

corresponding values were Q (-) = 0.476 + 0.041 and
Q(+) = 0.479 + 0.048 (see Fig. 5, where the corre-
sponding means differ by a factor of 1.6; the standard

deviations pertain to the scatter of pointswith different
signs).
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3.2 The Gallium—Germanium Detectors—
the GALLEX and SAGE Experiments

The well-known published data (GALLEX Caoall.,
1993, 1994, 1996, and 1999 [44—-48], 65 runsin 1991—
1997) served as the source data for our analysis of the
GALLEX experiment. For acomparison with magnetic
activity, we also used 19 runs of the continuation of
these measurements (GNO, 1998-1999). The SAGE
measurements were received from the authors of the
experiment (1989-2000, 80 runs). The method of anal-
ysis was similar to that used above. All of the cosmo-
physical data were counted for the last 7 days of the
run. Sincethe IMF polarity estimatefor a7-day interval
may contain a significant error due to the erroneous
determination of the field sign for a single day in the
IZMIRAN catalog, the data were checked by using
independent direct measurements (the OMNI data-
base). The gaps in these data were filled by interpola-
tion. The IMF sign was assumed to have been deter-
mined reliably only when it was the same in both types
of data. For the intervals of the GALLEX and SAGE
measurements, the sign proved to be uncertain for 25%
and 10% of the runs, respectively (atrivial factor, geo-
magnetic disturbances, is responsible for the discrep-
ancy between the data in the catal ogs mentioned above
in half of the cases). Although, at first glance, the run
statistics for the gallium—germanium experiments is
comparable to that for the chlorine—argon measure-
ments, analysis of the GALLEX and SAGE data runs
into additional difficulties. Since the transition from
(even) solar cycle 22 to odd solar cycle 23 occurred in
the spring of 1996, these measurements do not com-
pletely cover a cycle of this type. The possible varia-
tions through the two channels of solar—terrestrial rela
tionships mentioned above are largely independent.
Therefore, for a correlation between the neutrino flux
and a given cosmophysical index to be found, we must
consider only those data that were obtained at constant
values of another index. This approach cannot be
consistently implemented for the accumulated body of
data.

It is al the more surprising that the very important
result on the intensity variations of the chlorine—argon
experiment (see Fig. 7b) is aso reproduced for the gal-
lium—germanium measurements. This result is shown
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Fig. 5. Convolution of the data shown in Figs. 4a and 4b
after the inversion of the datain Fig. 4b relative to the zero
IMF line. The difference between the means, 0.557 + 0.042
and 0.341 + 0.056, for the negative and positive IMF signs,

respectively, is statistically significant at the 1072 level.
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Fig. 6. The distribution (frequency of occurrence) of mea-
sured Q for the positive (1) and negative (2) IMF polarities.

inthe samenotion in Fig. 8. The corresponding dataare
presented in Table 2. Aswe see, the GALLEX datafor
the measurement interval under consideration behave
in exactly the same way as the Brookhaven data: the
intensity is higher for the negative IMF polarities for
short runs and is close to the mean for longer runs (Fig.
8a). For the SAGE data, the effect isless distinct and is
oppositein sign (Fig. 8b).

On average, theintensity isgenerally slightly higher
for short runs for the two experiments under consider-
ation (as in the chlorine-argon experiments, about

Table 2
Experiment Run “+" IMF n ‘" IMF n P(U*)
GALLEX about 21 days 42.4 + 69.5 7 94.4+ 457 10 0.13
about 28 days 73.3+39.9 18 75.6+434 10 -
SAGE 35 days 84.6 + 60.9 20 63.1+49.9 15 0.24
about 45 days 64.4+ 354 10 70.9+50.3 14 -

Note: nisthe number of runs, and P(U*) isthe significance level.
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Fig. 7. (a) The relationship between mean neutrino flux Q and run time L found in [4]. The data pertain to the odd solar cycle 21.

(b) The neutrino flux Q for the given run time L for the positive (curve 1) and negative (curve 2) IMF signs in the last 14 days of
the run. The numbers near the dots give the number of runsin the given interval L. A typical rms scatter is shown for an interval of
70-80 days. Six pointsfrom the entire data set were excluded from our analysis (the IMF polarity isequal to zero, L > 110). Accord-

ing to the Mann-Whitney test, the difference between the mean Q for an interval of 30-50 days is statistically significant at the
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Fig. 8. The neutrino flux (SNU) for the run time under consideration for the positive (curve 1) and negative (curve 2) IMF signsin
the last 7 days of the run. The numbers are the corresponding means with their standard deviations; the number of runsisgivenin
parentheses. The same as Fig. 7b for GALLEX (a) and SAGE (b).

20%). More importantly, a significant (by a factor
of 1.7) increasein the variance is characteristic of short
runs. Thisincrease may be considered as evidencefor a
higher sensitivity of the measurements to the influence
of the uncontrollable factor precisely for short runs.
Figure 9 showsan“ A, (7 days) —intensity” scatter dia-
gram for the GALLEX measurements. There is aweak
tendency for an anticorrelation (—0.22 + 0.09), whichiis
also observed separately for the 19 GNO runs. It is
more distinct for short runs and is definitely absent for
the SAGE data. This can be seen from Table 3, which
gives the means with their rms deviations when the
entire data set is broken down into groups for quiet and
disturbed conditions. The conditional boundary corre-

spondsto A, (7 days) = 12.5.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

The values of A, > 25 correspond with a high prob-
ability to the falling of a magnetic storm with a sudden
commencement within the seven-day interval in ques-
tion. This is a specia type of global electromagnetic
disturbance. Such events should be considered sepa-
rately. The corresponding counts are summarized in
Table 4. (No magnetic storms appear in the right-hand
part of Table 3 and Fig. 9).

To facilitate our comparison of the various experi-
ments, the last column in Table 4 gives the data normal -
ized to the corresponding means. In all cases, an effect

of the same typeisobserved (in all cases, the mean A,
(7 days) > 30). If the revealed tendencies are real, then
it makes senseto return to Table 2 to check the sensitiv-
ity of the measurements to the change of IMF sign for
the most favorable conditions—short runs and a fixed
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The correlation coefficient isr = 0.22 + 0.09.

level of geomagnetic activity. Of course, the number of
corresponding runs decreases. The result can be seen
from Table 5.

Note that the variations in the experiments being
analyzed show opposite tendencies. in the GALLEX
and SAGE measurements, the intensity is enhanced
when, respectively, the negative and positive IMF
polarities dominate at the end of the run. As the geo-
magnetic disturbance level increases, the intensity on
GALLEX decreases, while the intensity on SAGE
increases (the last column in Table 5—the significance
of the differences between the meansfor different signs
in quiet conditions). Finally, having selected the runs

that ended when the conditions were geomagnetically
quiet (A, < 12.5), we may attempt to find the possible
influence of sunspot number variations on the results of
the measurements. The picture obtained is clear from
Table 6. The conditional boundary between the high
and low levels of solar activity was adopted for R =
60.0. As follows from the data obtained in Section 3.1
for the chlorine-argon measurements, the even and odd
solar cycles should be considered separately.

As we see from an examination of Table 6, the dif-
ferences are marginally significant, but we obtain a
coherent picture: the GALLEX—GNO datareveal acor-
relation for the even solar cycle 22 and an anticorrela

Table 3
Conditions
Experiment Run All data P(U*)
quiet, A; < 12.5 disturbed, A, > 12.5
GALLEX Lessthan 21 days 825+ 755 86.1+ 62.0 41.4+75.6 0.18
n=28 n=13 n=7
About 28 days 746+ 449 89.1+46.7 67.1+38.6 0.20
n=237 n=16 n=19
SAGE 35 days 86.1+75.4 73.1+55.8 85.3+74.6 -
n=>51 n=30 n=15
About 45 days 704+ 433 724+ 434 62.1 +40.2 -
n=29 n=17 n=11
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98 No.4 2004
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Table4
Experiment n Intensity, SNU | Normalized values
Brookhaven | 18 3.09+1.49 119+ 0.58
GALLEX 10 95.9+79.1 1.30+1.08
SAGE 7 136.6 £ 115.7 1.77+150

tion for the odd solar cycle 23. This result isin close
agreement with the results obtained above for the
Brookhaven data. The variations for the SAGE mea-
surements are opposite: an anticorrelation for the even
cycle and a correlation for the odd cycle. It follows
from these data that the GALLEX and SAGE results
show an opposite behavior for all of the cosmophysical
indices under consideration: for the IMF sign (Table 2),
the A, magnetic activity indices A, (Table 5), and the
sunspot numbers (Table 6). If the above tendencies are
real, then the data obtained with these detectors must
generally anticorrelate, while the Brookhaven and
GALLEX data must correlate.

3.3. Comparison of the Data
from Different Detectors

To test the above prediction, we must choose the
runs from the corresponding sets of measurements that
would end simultaneously, with a small mismatch. As
this mismatch, we chose |A| < 5 days for the gallium—

germanium measurements and |A| < 10 days for the
Brookhaven and GALLEX detectors. For the
12 synchronous runs, the actual value was |A| = 3.2 £

1.6 daysin the former case and |A| = 4.5 + 3.1 daysin
the latter case. Next, we may choose lower (higher)
intensities from the catalogs compiled in this way for
the entire data set and calculate the mean of the syn-
chronous runs for another detector. The inverse proce-
dure can serve as a check. The data normalized to the
corresponding means are presented in Tables 7 and 8.

Thelarge variance at the first point in the right-hand
column in Table 7 is attributabl e to the presence of two
extremely large values. If they are disregarded, then the
inequality remains valid. Another check of the
GALLEX and SAGE data for anticorrelation is to

search for synchronous runs for extreme intensities on
a particular detector. The corresponding examination
shows that through the extremely large val ues obtained
on SAGE (more than 150 SNU), we can find seven
“twins’ in the GALLEX-GNO dataif the requirement
for synchronism is relaxed to |A] < 10 days. The result
of our comparison by the epoch-folding technique is
shown in Fig. 10. As we see, extremely low values for
GALLEX-GNO correspond to anomalously high val-
ues for SAGE. The mean mismatch between the runs
for thissampleis|A|= 6.7 £ 2.7 days, P(U*) < 1073,

Unfortunately, the number of corresponding syn-
chronous runsistoo small for anomalous values of the
opposite sign. The aforesaid suggests that the annual
neutrino intensity variations must be similar in the
GALLEX and Brookhaven measurements. In contrast,
the annual variations in the GALLEX and SAGE mea-
surements must be different. Indeed, if we construct the
annual variations for the even solar cycle, then we will
observe the characteristic minima for the GALLEX
datain April and November and the maximum in Sep-
tember that have long been known for the chlorine—
argon measurements. The SAGE data do not contain
these features and even show a tendency for anticorre-
lation with the profile mentioned above (it is pertinent to
recal that the annual variation in this case was con-
structed for the completion date of the run).

4. DISCUSSION

Thus, we may summarize the main results presented
above as follows: the measured solar neutrino intensity
in al three radiochemical experiments depends on the
heliophysical indices pertaining to the last run interval.
At the same time, all of the previously known main
results, with theimportant refinement that an anticorre-
lation between the neutrino flux and the sunspot num-
bersisonly observed for the odd solar cycle, while the
IMF sign has the strongest effect on the recorded flux,
are reproduced in the chlorine—argon measurements.
This effect for shorter runs is also found for the gal-
lium—germanium measurements. For all three detec-
tors, wefound amagnetic storm effect of the sametype:
asharp increase in the mean scatter of results. Evidence
suggests that the variations on the Brookhaven and
GALLEX detectors are of the same type, while those

Table5
Quiet conditions, A, < 12.5 Disturbances, A, > 12.5
Experiment P(U*)
“+" IMF “= IMF “+" IMF “~ IMF
GALLEX 76.3+ 205 103.1+40.0 17.0£ 815 74.0+51.3 0.19
n=3 n=7 n=4 n=3
SAGE 79.6 £ 61.9 488+ 23.1 96.2 £ 56.8 84.7 £ 68.1 0.23
n=14 n=9 n==6 n==6
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Table6
Er):%irti_ Cyde Solar act|-V|ty P(UY)
low, R<60 | high, R=60
GALLEX | 22,even | 624+50.1| 82.6+40.9 | 0.16
n=14 n=5
CNO 23,0dd |125.8+40.3| 74.9+28.7 | 0.16
n=11 n=10
SAGE 22,even | 774+458| 60.8+734 | 0.29
n=13 n=10
23, odd 61.1+36.6| 84.6+41.7 | 0.01
n=12 n=14

on the SAGE detector are opposite. For the runs that
ended simultaneously, to within several days, the
GALLEX and SAGE data probably anticorrelate, while
the Brookhaven and GALLEX data correlate.

In many cases, the statistical significance of the
results obtained aboveislow (1072), and, strictly speak-
ing, they need to betested. Such atest can be made only
when additional data will be accumulated. In our case,
the statistical reliability is determined by random fluc-
tuations (not by systematic errors). Therefore, circum-
stantial evidence is aso important for assessing
whether the tendencies under consideration are real. In
particular, it is important to note that the results
obtained fit into a self-consistent picture. Note, in par-
ticular, that the correl ations of the neutrino flux with the
IMF sign, R, and A, necessarily give rise to the already
detected about 27-day periodicity. These correlations
give a qualitative insight into the bimodal distribution
of the results from [26]: the two stated found by the
authors of [26] may correspond to the two IMF signs
and the corresponding quasi-periodic A, variations.
Some of the periods found in the neutrino flux varia-
tions (see point 7 in the Introduction) are equal to the
periods found in the IMF variations (1.3, about 3, and
about 4.5 years). The annual period is of greatest inter-
est. As was noted above, the profile of the annua vari-
ations for the even solar cycle for the Brookhaven and
GALLEX detectors share common characteristic fea-
tures. Interestingly, in the various precision measure-
ments that also reveal the annua period of unknown
origin (the frequency drift of the atomic standards, the
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search for dark matter, etc.), the extreme points are
arranged in a similar fashion. Finaly, note that an
examination of the GALLEX calibration measure-
ments using Cr® (seven runs, June-July 1994 [48])
makes it possible to understand why this procedure
does not completely solve the question of flux varia-
tions either: the runs mentioned above were taken for
various values of the cosmophysical indices used here.
What level of the reconstructed activity of the source
should be taken—at a low (60.7 = 3.9) or enhanced
(72.2 £ 2.1) geomagnetic disturbance level ?

Of course, by ho meansall of the empirical data pre-
sented above can be understood. Even in those cases
where a simple explanation can be found for the effect
in question, it is most often ambiguous or not compre-
hensive. We have failed to find any idea that would
explain why the measured flux for all three experiments
is, on average, higher for shorter runs. The even and
odd solar cycles are generally known to differ in vari-
ous properties, but it is not clear what these differences
specifically in parameters of the acting electromagnetic
fields are. The anticorrelation between the ionospheric
index and the neutrino flux could in principle be an
important argument for our hypothesis that very-low-
frequency emissions affect the target material. How-
ever, the conclusion that the anticorrel ation between the
ionospheric index and the flux for the odd solar cycle
(see Fig. 2) is causal cannot be considered to have been
proved. This correlation may just arise from the corre-
lation between | and R.

In contrast, the influence of the sign of the radia
IMF on the results of the measurements can be inter-
preted unambiguously in our case. All of the parame-
ters of geomagnetic micropulsations and low-fre-
guency emissions in the IMF sectors of different signs
have long been known to vary significantly. It has been
firmly established that some physicochemical systems
respond to the change in sign of the IMF sector (in par-
ticular, this has been established for the rest reaction
that reveals an 11-year solar cycle; see [49]). Clearly,
this dependence must change sign with polarity rever-
sal of the general solar magnetic field (although the
dynamics of such phenomena has been studied inade-
quately). It should be emphasized that the change in
IMF sign and the accompanying change in the excita-
tion regime of geomagnetic micropulsations and kilo-
hertz magnetospheric emissionsis ageophysical effect.
Therefore, large variationsin neutrino flux Q for differ-

Table7
GALLEX-GNO, initia sample smaller than M = 78.0 SAGE, mean of synchronous runs P(U*)
n==6;043+0.35 n=6;,186+1.79 5x 1072
SAGE, initial sample smaller than M = 77.0 GALLEX-GNO, mean of synchronous runs
n=7;0.56 + 0.25 n=7;1.05+041 3x107
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Fig 10. Intensity (SNU) versusrun sample on SAGE (1) and
GALLEX (2). The zero interva—synchronous runs (the
mismatch between their endsis no more than 10 days). The
initial SAGE sample—extremely large values (>150 SNU).
The corresponding runs adjacent to the synchronous runs
are to the left and to the right of zero (the minus and plus
correspond to the preceding and succeeding runs, respec-
tively).

ent IMF signs at the end of the run is a decisive argu-
ment that there are fictitious variations in the radio-
chemical experimentsthat were not caused by real vari-
ations.

The model of the variations under consideration
assumesthat the action on the physicochemical kinetics
through both channels (through the short-wavelength
solar radiation, the ionosphere, and through the solar
wind, the magnetosphere) always only reduces the
measured flux, differently at different epochs and on
different detectors. Therefore, the measured fluxes
must be lower than the actual fluxes. The actud
recorded flux can be estimated by assuming that all of
the correlations under consideration are real. For the
chlorine-argon detector, these are the correlations
(anticorrelations) with the sunspot numbers, the critical
ionospheric frequencies, and the A, index. By analyz-
ing the distribution of these indices, we can obtain the
following limiting valuesfor ahigh (low) activity level:

Table 8

GALLEX-GNO, initial
sample larger than M = 78.0

Brookhaven, mean of
synchronous runs

n=7,176+0.84 1.27+0.46

GALLEX, mean of
synchronous runs

Brookhaven, initial sample
larger than M = 0.478

n=9;1.40+0.29 1.37+0.96
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R> (<) 90; | > (<) 220; and A, > (<) 12.5. Choosing the
intervals of flux-stimulating IMF polarities and requir-
ing the satisfaction of theinequalitieswritten above, we
obtain

for the odd cycle,

Qmax = 0.726£0.338 (n=09),

Qmin = 04310313 (n = 35);
for the even cycle,

Qnmax

Quin = 0400+ 0.267 (n = 47);
and for the entire data set,

0.690+0.226 (n=17),

Qmax = 0.702%0.293 (n = 26),

Qmin = 0413£0.228 (n = 82)

(al of the errors are standard deviations).

Finaly, if we take into account the significant effect
of the IMF sign (see Fig. 7b) and exclude the long (A >

70 days) runsfrom thelist for Quax , then we can obtain

the extreme value, Qma = 0.768 £ 0.289 (N=17; 45+
1.5in SNU). Clearly, if this flux is taken as the actual
value, then the problem of its deficit becomes less
acute. Unfortunately, such an estimate for the
GALLEX and SAGE data cannot be obtained because
of the poor statistics. However, recall the result of ana-
lyzing the data di stribution (histograms) in the gallium—
germanium measurements[26]. Thetwo statesfoundin
the above paper may correspond to the two IMF signs,
with the higher state approaching the theoretical flux.

Without touching upon the complicated question of
the influence of weak electromagnetic fields on the
physical-chemical kinetics of solutions (where the
most important events develop at the mesolevel, e.g.,
the drawing of ions or atoms into nanotubes), we will
briefly list the possible tests of the ideas presented
above. Most of them are ssmple and quite redlizable.

(1) It would be instructive to carry out a series of
direct measurements of the variations in electromag-
netic fields of low and very low frequencies near the
detector, including the fundamental mode frequencies
of the Schumann ionospheric resonance and Pc3-type
geomagnetic pulsations.

(2) It seems of considerable interest to carry out a
series of measurements on all of the radiochemical
detectors (e.g, for ayear) in such away that therunsend
simultaneously.

(3) It would be appropriate to measure the detection
efficiency of a suitable radioactive standard near the
detector by using standard measuring devices, prefera
bly simultaneously through several channels (scintilla-
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tors, Geiger counters, semiconductor detectors). It is
quite probable that the count-rate measurementsin this
case could correlate (anticorrelate) with the recorded
neutrino flux variations.

(4) 1t seems of considerable importance to automat-
ically monitor the parameters of the target liquid (e.g.,
perchloroethylene) in stable laboratory conditions. The
various parameters of the liquid that could be systemat-
ically measured, such asthe electrical conductivity, the
dielectric loss tangent, the heat conductivity, etc., are
related. Therefore, if the liquid-iquid phase transition
affecting the Ar¥” (Ge'™) extraction efficiency occursin
the target material under external conditions, it can be
detected. Such amonitoring is of interest for many rea-
sons, and it would be appropriate to perform it simulta-
neousy at several points on a cooperative basis
[Crimean Astrophysical Observatory, Institute of Bio-
physics of the Russian Academy of Sciences (Push-
chino), and Institute of Chemical Physics of the Rus-
sian Academy of Sciences (Moscow)].

From the viewpoint of the hypothetical ideas pre-
sented here, weak neutrino flux variations could also be
detected with water Cherenkov detectors. The effect of
solar activity—geomagnetic disturbance—on physico-
chemical phenomenais universal in nature [40]. On the
detectors mentioned above, the effect on the neutrino
count rate is possible through variations in the refrac-
tiveindex of water (the intensity of the Cherenkov light
isaquadratic function of this parameter) and variations
in the quantum efficiency of the photomultiplier cath-
odes [50]. We think that about one-week and about
27-day periods could be easiest to find at the epochs of
the Earth’s high heliolatitudes. These variations could
be detected and studied in detail in laboratory condi-
tions by measuring the beta activity of a suitable radio-
active standard with Cherenkov water detectors.

5. CONCLUSIONS

Our analysis hasled usto thefollowing conclusions.

(1) The neutrino flux in all of the radiochemical
experiments depends on the heliogeophysical situation
at the very end of the run, when the neutrino reaction
product has already been accumulated.

(2) This dependence holds for such ionospheric and
magnetospheric indices as the critical frequencies of
the ionosphere and the sign of the radial interplanetary
magnetic field, i.e., geophysical indices.

(3) The correlation of the neutrino flux with cosmo-
physical indices is mainly or entirely attributable to
variations in the detection efficiency. The latter proba-
bly arise from the effects of the very-low-frequency
background electromagnetic fields controlled by solar
activity on the target material.

(4) The proposed model of the variations can only
reduce the recorded neutrino flux. Therefore, the mean
neutrino flux in the radiochemica measurements has
probably been underestimated.
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Abstract—An analysis of al the direct measurements of the spectrum for al cosmic-ray particles over the
energy range 0.1-10 TeV revealsan anomaly in the spectrum in the form of astep if the spectrum isrepresented
as EPIo(E). The pattern of the anomaly unequivocally implies a proton spectrum with aknee at energy closeto
1 TeV. The qualitative difference between the spectra of protons and nuclei with Z = 2 (the latter have a purely
power-law spectrum over awide energy range) leads usto conclude that the accel eration conditions for protons
and nuclei are different. We consider the process characteristic only of protons that may be responsible for the
emergence of aknee in the proton spectrum. © 2004 MAIK “ Nauka/Interperiodica” .

1. DIRECT MEASUREMENTS
OF ALL GALACTIC COSMIC-RAY PARTICLES
OVER THE ENERGY RANGE 0.1-100 TeV

Historically, there have been very few direct mea-
surements of the spectrum for all galactic cosmic-ray
(GCR) particles. In general, information about the
spectrum of all particles, 14(E), have been obtained by
adding the spectra of the individual components.

Since the spectra of the individual componentswere
measured by different methods (using electronic
devices at energies E < 1 TeV and, as a rule, X-ray
emulsion chambers (XEC) with a high detection
threshold at E > 1 TeV (5-10 TeV)), the proton spec-
trum contained a range from about 1 to 5-10 TeV in
which virtually no direct measurements were carried
out. In the spectrum of all particles obtained by adding
theindividual components, the energy range 1 <E < 5-
10 TeV was not covered by direct measurements. This
energy range in the spectrum of all particlesis usually
drawn by interpolation based on the confidence that the
proton spectrum is similar to the spectrum of nuclei.
This spectrum is commonly considered as the spectrum
of al GCR particles|(E) [1].

Direct information about the spectrum of all parti-
clesin the energy range 1 to 5-10 TeV can be obtained
by using direct measurements of the spectrum for all
particles with electronic equipment that covers a wide
energy range containing particles both to the left and to
theright of the narrow interval 1-5 TeV to be measured.
Such information wasfirst obtained in 1972 by measur-
ing the spectrum of all particleswith the SEZ-14 instru-
ment onboard the Proton-1,2,3 satellites over the
energy range 0.07—-17 TeV and with the SEZ-15 instru-
ment onboard the Proton-4 satellite over the energy
range 0.19-10° TeV [2]. These measurements first
revealed an anomaly in the spectrum of al particlesin
the energy range 1-10 TeV. (Subsequently, the energy

spectra taken by the authors of [2] were published in a
tabulated form [3].)

Thediscovered anomaly had been neither confirmed
nor disproved over thewhole 25 years. The spectrum of
all particles was remeasured with athin ionization cal-
orimeter (TIC) flown on aballoon only in 1997 [4]. The
T1C measured the energy release of all the particlesthat
fell on theinstrument in any direction. Asthe authors of
[4] showed, the energy release spectrum revealed the
same anomaly in the spectrum of all particles that was
observed in the Proton satellite measurements [2].
When the energy release was recal culated to the parti-
cle energy, aswasdonein [5], the TIC energy spectrum
was quantitatively identical to the spectrum obtained by
the authors of [2]. The TIC, SEZ-14, and SEZ-15 mea-
surements are shown in Fig. 1. The solid linein Fig. 1
indicates the best fit ®(E) to the experimental spectrum
of al particlesat a= 0.4 TeV:

®(E) = EI)(E) = — == —
[1+(E/a)}°
. E/ay® O )
x(1+037— &) 24 0130m2 st gt Tev®,
0 1+ (E/a)

We see from Fig. 1 that the anomaly in the spectrum of
all particles, if it is represented as EPI,(E), appears as a
step.

Figure 1 shows that the anomaly in the spectrum of
all particlesis revealed irrespective of the thickness of
the ionization calorimeter (1C) in the instrument (it is
~IA, InTIC, ~L.71A, in SEZ-14, and ~3\, in SEZ-15).
Therefore, we decided to look for such an anomaly in
the spectrum of all particles measured with the BFB-S
instrument, in which the IC had a mean thickness
of ~0.7A,.

1063-7761/04/9804-0643$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. E>®1 versus E, as measured with different instru-
ments: SEZ-14 (e) [3], SEZ-15 (+) [3], TIC (o) [5], and
BFB-S (x) (this paper). The ATIC data are shown in the
upper right corner; arbitrary unitsare along the vertical axis,
and energy release in the calorimeter is aong the horizontal
axis.

The BFB-S was installed on the Intercosmos-6 sat-
elliteand described in [6]. Theionization calorimeter of
this instrument consisted of two identical sections.
Each section consisted of eight 1.5-cm-thick lead
plates. A 0.5-cm-thick scintillator was placed under
each odd plate. All four scintillators were viewed by
two photomultipliers from their ends, one from each
side. The signals from both photomultipliers were
added and fed to apul se-height analyzer. It recorded the
energy release spectrum without being connected with
the trigger that controlled the operation of the instru-
ment.

Since the photomultiplier photocathodes were
strongly diaphragmed, the particles emerging from the
IC affected the signal from the photomultiplier. As a
result, the relationship between the measured energy
release € and the particle energy E turned out to be non-
linear, E=¢% (at a = 0.78). Therefore, the spectrum lost

Table 1

Instrument B1 B, Bs Source
SEZ-14 2.59 3.00 - [3]
SEZ-15* - 294 2.63 [3]
TIC - 2.80 2.65 [4, 5]
BFB-S 2.59 2.78 2.66 This

paper

ATIC 261 2.87 - (8]
Literature 2.62 - 267 |[1,39
Mean 260+ 0.01 |2.88+0.04/2.65+ 0.01

* In some of the publications, SEZ-15 is called I C-15.
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its scientific significance and was not published. Now,
we are interested in the presence (or absence) of an
irregularity in anarrow spectral range that cannot arise
from the nonlinear relationship between € and E. There-
fore, werecal culated the measured energy releaseto the
spectrum of al particles I(E) and plotted EPI(E) in
Fig. 1 (crosses). We see that the measured BFB-S spec-
trum also exhibits an irregularity in the form of a step
inthe spectrum of al particlesin the same energy range
in which it is recorded by other instruments. The
smaller step height is a natural result of the IC thinness
(protons—the culprits of the step—make a small con-
tribution to the number of recorded particles).

A preliminary result of the ATIC measurement of
the spectrum for all particles was published at the 27th
International Conference on Cosmic Rays [7]. The
spectrum of energy release in the calorimeter of the
instrument presented in this paper was thoroughly mea-
sured in [8]. As aresult, the authors obtained a depen-
dence of EF(dN/dlogE) on logE in different ranges of
energy release. This dependence is shown in the upper
right corner of Fig. 1. It convincingly demonstrates that
there is also the same step as that recorded by previous
instrumentsin the ATIC energy release spectrum for al
particles.

Thus, we have measurements of the spectrum for al
particles with five different instruments: SEZ-14, SEZ-
15, TIC, BFB-S, and ATIC. They all measured the spec-
trum over awide energy range that contained the inter-
val 1-10 TeV concerned, and they all revealed asimilar
anomaly in the spectrum in the form of a step: with dif-
ferent spectral indices in different energy ranges.
Accordingly, the values of EPI,(E) before and after the
step are also different. The five qualitatively identical
results suggest that the step in the spectrum of all parti-
clesis an objective redity that has certain quantitative
characteristics. These characteristics include the fol-
lowing: the spectral index at energiesupto 1 TeV (3,),
the spectral index in the energy range 1-5 TeV (3,), the
spectral index at E = 10 TeV (B5), and the mean values
of EPI,(E) at E< 1 TeV and E = 5 TeV. We determined
al of these characteristics from the results of each
experiment and gathered them together in Tables 1
and 2.

The differences between the mean spectral indices
in different energy ranges are

(B, B ,0=0.28+ 0.04, (B~ B{I=0.23+0.04.

These values allow usto formulate the first characteris-
tic of the anomaly in the spectrum of al particles. the
spectral indicesat energiesE<1TeV andE>5TeV are
almost equal and closeto 2.6. The spectral index in the
energy range 1-5 TeV is larger than that outside this
range by 0.2-0.25.
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If the spectrum of all particlesis represented as
®(E) = EPI(E), P = 26,

then in the energy regionswhere | (E) is described by a
power function with a spectral index of 2.6, ®(E) will
be constant over the entire energy range. This implies
that ® must have some constant values @, and @, inthe
spectrum of all particlesat E< 1 TeV and E > 5 TeV,
respectively. The values of @, and @, obtained from
each experiment are given in Table 2.

The second quantitative characteristic of the anom-
aly inthe spectrum of all particlesistheratio of the step
height to the flux of all particles before the step, i.e.,
(P, — D,)/D,. This parameter is close to the ratio of the
proton flux to the total flux of all GCR particles at equal
energy per particle.

The following two remarks should be made regard-
ing the results presented in Table 2.

First, if we take data from the All-Union State Stan-
dard (GOST) [10] for energies E < 1 TeV, then we
obtain the sum

28
> E*°l, = 0258+ 0005 M~ s s Tev'®

Z=1
which is amost the same as that obtained by directly
measuring the spectrum of al particles with the instru-

ments listed in Table 2. This implies that there are no
significant systematic errors in these measurements.

The above sum consists of the sum of two quanti-
ties: one refersto protons and is equal to

E*°l, = 0120m* s s Tev™,

and the other refersto all nuclei withZ=> 2 and isequal
to

E’l, = 0138+0.005m? s s Tev'®.

In other words, the protons at E < 1 TeV account for
0.120/0.258 = 0.46 of the total particle flux at equal
energy per particle (thisis awell-known resuilt).

Second, it iswell known that for the nuclei,
E*°l, = const

over a wide energy range of severa orders of magni-
tude. At E<1TeV,

28
Z E*°l, = 0138+ 0.005 M~ s s TevV'®,

Z=2

and at E >5TeV for the flux of all particles|,,

E*°l, = 0.148+0.008 M~ s s Tev'®
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Table 2
Instro- | PV mstat| by m2st s
ment Tev16 Tev16 K=®,/®,
(E<1TeV) (E>5TeV)

SEZ-14 | 0.247 + 0.009 - 1.66 + 0.07
SEZ-15 - 0.149 + 0.003 -
TIC 0.240 £ 0.018 | 0.134 + 0.008 1.79+£0.17
BFB-S 0.237 £ 0.012 | 0.198 + 0.007 1.20 £ 0.07
ATIC[8] - - 1.49 + 0.08
Literature| 0.270[1] | 0.160+ 0.007[9] | 1.69 + 0.07
Mean 0.249 + 0.007 | 0.148 + 0.008 1.66 + 0.06

Note: The mean values do not include the BFB-S data. The errors
of the mean are the rms deviations from the mean. The first
row in the column K = ®4/d, was obtained from SEZ-14
and SEZ-15 data.

Thefact that these two values are almost equal suggests
that there are very few protonsin the flux of all particles
aE>5TeV.

Thus, Table 2 and the remarks to it lead us to con-
cludethat the step in the spectrum of all particlesispro-
duced by protons.

2. PARAMETERS OF THE PROTON SPECTRUM
(FROM THE SPECTRUM OF ALL PARTICLES)

We obtain the proton spectrum 1,(E) from the obvi-
ous equality

lo(E) = 1,(E) +12(E),

where |,(E) is the spectrum of the sum of al nuclear
components with Z = 2. Multiplying all terms of this
equality by E>® and interchanging I, and |, yields

E*°I,(E) = E*°I4(E) —E*°I(E). 2
Since
E*®I,(E) = const = @,

over awide energy range, equality (2) may be rewritten
as

E*°I (E) = E*®15—®,.
Since
E*°I,(E) = const = &,
aE<1TeV,
E*l, = &, -®, = const
= 0114001 m°s" o Tev'®

in this energy range.
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Hence, we obtain for E < 1 TeV
I,(E) = (0.11£001)E™**m? st g™ Tev ™.

The proton spectrum at E > 1 TeV must decrease
faster than E2; i.e., it must have a spectral index 3, >
2.6. The value of 3, can be determined from the datain
Tables 1 and 2. To this end, we represent the proton
spectrum in aslightly simplified form:

DE , E<E.,
WD, i
LE E>E..

For this proton spectrum, the spectrum of all particlesis

E2°I(E) = BE® )+ 0,

AtE=E,

(Bp-2

E*®l, = ®,, B = (®,—P,)E,

Therefore,

E*°Io(E) = (&, —,)(E/E) >

The sum of two power functions,

+ ¢)Z'

BE—V1 + CE—Vz ,

may be substituted with a good accuracy by one power
function DEYY, where

B + C
C+Byl C+BV2

y:

(see[11]). In our case,

_P-9

yl Bp_26l - (D1 ’
®;
y, =0, C= 31

Therefore, the power-law index of the sum of the spec-
trais

q)]__q)

2(B,—2.6).

At E > E., the spectral index of the spectrum for al par-
ticlesisequal to 3. Therefore, E>°l(E) isapower func-
tion with anindex f —2.6. Asaresult,

¢1

(Bp 2.6) = B-26.
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If we use the mean value of ®; = 0.249 + 0.007 from
Table 2, B —2.6 =0.24 + 0.04 from Table 1, and @, =
0.138 £ 0.005, then we obtain

B,—2.6 =(0.24 + 0.04) (12.26 + 0.18) = 0.54 + 0.09,

whence 3,=3.14+0.09 at E> 1 TeV.

Thus, the step in the spectrum of all particles inevi-
tably leads usto conclude that the proton spectrum has
a knee at energy close to 1 TeV. The proton spectral
index is 3, = 2.6 before the knee and 3, = 3.14 + 0.09
after the knee.

The shape of the proton spectrum can be obtained in
more detail from the same equality (2) if we subtract
the contribution of nuclei @, from the function ®(E)
that describes the spectrum of all particles. If expres-
sion (1) is taken as ®(E), then the proton spectrum
takes the form

0.11

=l S
[1+(E/a)]"

o(E) =

3

(E/a) 2 1 ©
-——-————35m stoa™ Tev?®

x Eﬂ +0.37
0 1+ (E/a)T
The coefficient a should be determined by compar-

ing (3) with the experimental proton spectrum (see
below).

It is important to emphasize that we obtained the
proton spectrum (3) with aknee at E = a from the spec-
trum of all particles, i.e., from the experimentsto which
the reverse particle current from the ionization calorim-
eter (which frighten many experimenters) bearsnorela-
tion whatsoever.

Let us now consider the direct measurements of the
proton spectra. They all refer to energies E > 4-10 TeV,
and most of them were carried out by the XEC method
without experimental chamber calibration. Therefore,
caution should be exercised when dealing with the
absolute fluxes determined by this method. However,
this remark does not apply to the spectral index 3, con-
cerned.

Table 3 lists the values of {3, obtained by different
authors.

Its columns give the following data: (1) the author
and the measurement method, (2) the minimum proton
energy in the spectrum (in TeV), (3) the value of 3, with
its error, and (4) the number of protons N, used to con-
struct the spectrum. The number N, without an asterisk
is given in the paper; the number with an asterisk was
estimated by us from the statistical errors.

The mean (3, of the five measurements listed in
Table 3is

(B = 294+0.07.
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The rms deviation ¢ of the individual result from the
meanis0.14, i.e., of the same order of magnitude asthe
error of the individual measurements. This circum-
stance suggests that the scatter of numerica 3, values
is purely statistical in nature, and the individual B, val-
ues can differ significantly from the mean at the statis-
tical errors characteristic of these experiments.

We see that the direct measurements of the proton
spectrum yield B = 2.94 + 0.07 for energies 5-20 TeV,
which agrees with the above value of 3, = 3.14 + 0.09
for energies 1-5 TeV (theregion of the step in the spec-
trum of al particles).

In [12, 15], the XEC had targets. As was noted
in [16, 17], protons with energies close to the detection
threshold are detected with a low efficiency in such
chambers, which may cause 3, to decrease. Therefore,
we determined B, for E > 20 TeV, farther from the
threshold energy in the spectra of [14, 15]. It turned out
that 3, = 3.17 + 0.19 and 3.05 + 0.19 in these spectrain
the above energy range. The mean valueis 3, = 3.11 +
0.14 (see [18]).

Within the error limits, all three values of Bp (3.14,
2.94, and 3.11) refer to the same spectral index that
characterizes the proton spectrum in an energy range
from approximately 1 to 40-50 TeV. The weighted
mean 3, of these three valuesis 3.02 + 0.05.

There is only one experimental proton spectrum in
an energy range of about 0.1-10 TeV. It was obtained
more than 30 years ago from the Proton-2 and 3 satel-
lites; this spectrum was published in integral and differ-
ential formsin [19] and [11], respectively. We show it
in Fig. 2 (from [11]) together with the proton spec-
trum obtained from the spectrum of al particles:
expression (3) at a = 0.8 TeV. We see from Fig. 2 that
the experimental proton spectrum matches the spec-
trum obtained from the spectrum of all particles; aswas
shown above, the latter matches the direct measure-
ments in an energy range of about 540 TeV.

Thus, we may assert that al of the direct measure-
ments yield the same result: the proton spectrum has a
kneeat energy near 1 TeV. The spectral index is3,=2.6
(or possibly 2.7) before the knee and is larger by 0.5—
0.6, i.e., 3.0-3.1, after the knee.

It should be added to this conclusion that all of the
indirect measurements of high-energy secondary parti-
clesin the Earth’s atmosphere (hadrons, muons, y pho-
tons) lead usto concludethat 3, = 3.0inthe TeV energy
range [11].

3. THE ORIGIN
OF GALACTIC COSMIC-RAY PROTONS

Even a fleeting glimpse of the proton and nuclear
spectra reveals a significant difference between them:
the nuclei have a purely power-law spectrum over a
wide energy range, while the protons have a power-law
spectrum, but with a knee near 1 TeV. This difference
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E>C L, [m? s sr! TeV!o]

0.10 - : i .

0.1 1 10

0.01 —
E, TeV
Fig. 2. Measured SEZ-14 proton spectrum [11]. The solid
curve represents the fit to the difference between the spec-

trum of all particles and the spectrum of nuclei withZ > 2
(formula (3)).

cannot be acquired during the propagation of particles
inthe Galaxy. In this case, particles of identical rigidity
undergo identical disturbances, irrespective of their
charge and mass. Therefore, changesin the spectrum, if
they were caused by the propagation processes, would
have the same effect both on protons and on nuclei. In
other words, the observed difference is acquired in the
sources. Consequently, the protons and the nuclei have
different sources; the sources of nuclel give particles
with apurely power-law spectrum, while the sources of
protons give particles with aknee in their spectrum.

A characteristic feature of the knee in the proton
spectrum is that the energy range in which 3, changes
by 0.5-0.6 is narrow. This circumstance isindicative of
a universality of the knee formation that depends
weakly on the specific properties of the source.

When explaining the formation of the knee in the
proton spectrum, we should also point out the cause of
the formation of aknee at energy near 1 TeV, and not at
some other energy that differs greatly from 1 TeV.

We believe that the particles themselves rather than
the sources are mainly responsible for the difference in
the spectra of protons and nuclei. What are the differ-

Table 3
Method and Eine :

reference Tev Spectral index No
XEC, [12] 5 |B,—1=182+0.13 90*
Calorimeter,[9] | 4 |B,-1=211%0.15 90*
Caorimeter, [13]| 5 |B,=285+0.14 160*
XEC, [14] 10 |B,=314+008 602
XEC, [15] 6 |B,=2.80+0.04" 656

1 The error of 0.04 given in [15] has no physical meaning, because
itis smaller than the statistical error of 0.07.
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Fig. 3. Effective cross section for p—p interaction versus
energy [23].

ences between the protons and the nuclei that can have
a crucia effect on their acceleration and escape from
the sources? There is one quadlitative difference
between these types of particles: asthey accelerate and
escape from the sources, the protons can undergo an
infinite number of inelastic collisions while remaining
nucleons. In contrast, the nuclei are too fragile: after
several inelastic collisions, they break up into their con-
stituent nucleonsand ceaseto exist asnuclei. Asaresult
of this difference, the protons can accelerate in a suffi-
ciently dense medium and traverse a significant thick-
ness of material (~10>-10° g cm™). In contrast, the
nuclei can accelerate only in a low-density medium,
i.e., in agreatly expanded supernova envel ope.

The possibility of particle acceleration to high ener-
gies at the initial phase of a supernova explosion was
considered by Colgate and Johnson [20]. They showed
that accel eration was possible even in dense stellar lay-
ers; in this case, a power-law spectrum of the acceler-
ated particles can be formed.

Without going into the details of the acceleration
process, let us consider what particleswill escape from
such a source and what spectrum they will have.

A supernova explosion is the final phase of stellar
evolution. Therefore, old stars, red giants and super-
giants, explode. In these stars, hydrogen has long
burned out, and the shells are composed of complex
nuclei heavier than hydrogen. The explosion energy is
released in the stellar core and the adjacent shell
regions. Therefore, particle acceleration can begin in
sufficiently dense shell layers. The nuclei will acceler-
ate, because the shell consists of nuclei. However, the
accelerated nuclel in a dense medium will undergo
inglastic collisions and continuously fragment into
lighter parts. Therefore, the accelerated nuclei will rap-
idly turn into a beam of energetic protons. (The neu-
trons will also turn into protons because of their insta-
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bility.) Having a speed close to the speed of light, the
protonswill rapidly escape from the accel eration region
and, moving through the stellar envelope, will escape
from it. Clearly, during this escape from the exploded
supernova, the protons will inevitably have to traverse
a significant thickness of material of several hundreds
or thousands of g cm. What will happento the original
spectrum in this case?

Suppose that the protons in the acceleration region
acquire a power-law spectrum of the form

I(E) = I,E®.

The equation that describes the passage of protons
through matter is

dI(E,x) _ I(E X)
ox A

“HE X)) .
+[F52P(E B)EE. @)

If the effective cross section for inelastic interaction
of protons with matter, o', does not depend on energy,
then the mean free path before inelastic interaction is
Ao = const. Inthis case, the solution of Eq. (4) isknown
to be

I(E, x) = I,EPe ™,

where the absorption mean free path L, isrelated to the
mean free path before interaction A, by

1 _1-of
I-O )\O ,
1

o= IuB_lP(u)du.

In other words, in the case under consideration, a
proton beam with the same power-law energy distri-
bution as that formed in the acceleration region, but
with a lower intensity, would emerge from the stellar
envelope.

In reality, however, the effective cross section for
inelastic interaction depends on energy, as shown in
Fig. 3. In the first approximation, this dependence at
E > E, may be fitted by the function

0"(E) = 0,(1+bIn(E/Ey)). (5)

For a hydrogen medium, as shown in Fig. 3, b = 0.08.
For the Earth’s atmosphere, b = 0.04-0.05. For this
energy dependence of the cross section, the situation
must change.

Indeed, the probability of an inelastic collision
between a nucleon and nuclel increases with E. There-
fore, a higher-energy nucleon undergoes a larger num-
ber of collisionsin agiven layer of material than doesa
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lower-energy nucleon. Therefore, a higher-energy
nucleon loses a larger fraction of itsinitial energy than
does a lower-energy nucleon. Hence, as it emerges
from the absorbing layer, a higher-energy nucleon is
shifted on the energy scale toward the lower energies by
a larger interval than a nucleon with a lower initia
energy. Consequently, the initial power-law spectrum
emerging from an absorber will be softer than the orig-
inal spectrum; i.e., the spectral index will be larger than
that for the original spectrum. One of us explained the
softer spectrum of high-energy hadrons deep in the
Earth’s atmosphere than the spectrum of primary GCRs
by this effect back in 1965 [21]. An approximate solu-
tion of Eq. (4) with fit (5) wasfound in [22]:

XIL(E)

I(E, x) = I,EPe
where

Lo

LE) = T BinEEy

or, in adifferent form,

- —x/
I(E, x) = 1,E "™,

where
0 = bx/L,.

This approximate solution refers to particles with E >
E, under the boundary conditions I (E, x = 0) = I,E™®. It
yieldsan error in L(E) of only 2% for alayer of absorb-
ing material x =700 g cm™ and b = 0.04.

We see from Fig. 3 that 0'" = const at E < E,. There-
fore, for particles with E < E,, the solution of EQ. (4)
must correspond to o' = const; i.e., it must be

I(E, x) = I,E e,

Let us apply these solutions to the acceleration of
particles at the early phase of a supernova explosion,
i.e., in sufficiently deep regions of its envelope.

Suppose that the accelerated particlesinitially had a
power-law spectrum of the form

I(E) = I,E ™.

From the place of acceleration to the escape of particles
from the star, they had to traverse asignificant thickness
of envelope material. Therefore, the spectrum emerging
from the envelope will have different spectral indicesin
different spectral ranges. The spectral index is3 = 3, +
0, where & = bx/L, (x is the amount of traversed mate-
ria) at E> Eyandisconstant and equal toB =Py at E <
Ey. Thus, theinitially power-law spectrum of the accel-
erated protons as they emerge from the supernova will
be a power-law spectrum with aknee.
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Fig. 4. Proton spectraat various depths x of ahydrogen atmo-
sphere: x = 100 (1), 200 (2), 300 (3), and 450 (4) g cm 2.

To find out how wide the region in which the spec-
tral index changes from 3, to 3, + & is and how this
region changes with the amount of material traversed,
we performed Monte Carlo numerical simulations of
the passage of a nucleon beam through different thick-
nesses of material using fit (5). The results of these sim-
ulations are shown in Fig. 4.

Using Fig. 4, we may relate the energy E, at which
the knee in the spectrum occurs to the amount of tra-
versed material x by the empirical relation

E, = 34(x/Ly)*° TeV.

As we seg, the location of the knee in the proton spec-
trum depends weakly on the amount of materia tra-
versed. Therefore, the kneeregion in the observed spec-
trum, which is the sum of the spectra from many
sources in which the protons traverse different amounts
of material, will be smeared only dlightly; i.e., the
observed location of the knee will be close to E; in
dependence (5), as observed in the experiment.

A crucia factor in considering various cosmic-ray
acceleration mechanisms is usually the spectral shape
of the accelerated particles and the spectral index 3 in
this spectrum. However, adifferent approach to the for-
mation of the observed GCR spectrum is also possible.

According to this approach, particles are generated
in the sources with a spectrum far from the power law
| O E® with B = 2-2.6. If there is a characteristic
parameter & in the generated spectrum that determines
the spectral shape and if the sources themselves have a
power-law distribution of this parameter, i.e., 1,(§) O
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&P, where |, is the intensity of source k, then the total
spectrum can be a power law with an index equal to .

A glaring example of the formation of a power-law
spectrum in this way is the spectrum of energetic y-ray
photons in the Earth’s atmosphere from m°-meson
decay. If the T® mesons (sources) have a power-law dis-
tribution in the Lorentz factor (or, equivaently, in
E,..—the maximum energy of the generated y-ray pho-
tons), then the total y-ray spectrum will be a power law
with an index that determinesthe distributionin E,,, . At
the same time, the y-ray photons in the sources them-
selves (the rest frame of T mesons) are monoenergetic;
i.e., their digtribution is very far from a power law.

If we take into account the fact that the power-law
distribution of aparticular property of the various phys-
ical quantitiesin nature is widespread, then the forma:
tion of the observed proton spectrum by the process
under consideration also seems likely. In this case, the
observed value of 3 is the mean of many [3; values for
the spectra from the individual sources. The value of
0 = bX¥/Lyis also the mean of many individual thick-
nesses of traversed material in individual supernovas.

A peculiar feature of this formation of the observed
spectrum isitsflattening with increasing energy. Thisis
because the observed spectrum consists of aset of spec-
trawith different 3;. As E increases, the contribution of
the components with larger (3; will decrease, and,
accordingly, the contribution of the components with
smaller (3; will increase. This effect is experimentally
observable.

To conclude the discussion of the proton spectrum,
we emphasize that the existence of aknee in the proton
spectrum at E, ~ 1 TeV is important evidence that the
cosmic-ray protons are generated in dense objects in
which they traverse hundreds of g cm™ of material.
This circumstance can be important evidence for the
Galactic origin of the cosmic-ray proton component.

The cosmic-ray particles discussed above constitute
the bulk of the beam. Their energies are within the so-
called knee in the spectrum of al particles at E = (3
5) x 10% eV. In general, they are investigated by direct
methods in experiments on balloons and Earth satel-
lites. According to the popular view, their sources are
supernovas of our Galaxy, and their acceleration mech-
anism involves the shock waves of the expanding
supernovas envelope. The range of ultrahigh-energy
cosmic-ray particles extends from the knee up to the
measured end of the spectrum (~10%° eV). This range
has been investigated only by indirect methods. In this
range, there are interesting problems far from those
considered above (see review of current statusin [24]).

The formation of a proton spectrum with a knee at
energy of ~1 TeV considered here does not affect exist-
ing models for the acceleration of nuclei in any way.
Moreover, since the acceleration of nuclei is possible
only in alow-density medium, the nuclei can be accel-
erated by shock waves in the envelopes of the same
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supernovas in which the protons were accel erated, but
at alater phase: first, the protons accelerate, and then,
after alapse of time, the nuclei accelerate.
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Abstract—We consider amodel of electrodynamicswith two types of interaction, the vector (eQ (yHA,)W) and
axial vector (e P (Y “y‘SBu) W) interactions, i.e., with two types of vector gauge fields, which corresponds to the

local nature of the complete massless-fermion symmetry group U(1) O Ua(1). We present a phenomenological
model with spontaneous symmetry breaking through which the fermion and the axial vector field B, acquire
masses. Based on an approximate solution of the Dyson equation for the fermion mass operator, we demon-
strate the phenomenon of dynamical chiral symmetry breaking when the field B, has mass. We show the pos-
sibility of eliminating the axial anomalies in the model under consideration when introducing other types of
fermions (quarks) within the standard-model fermion generations. We consider the polarization operator for the
field B, and the procedure for removing divergences when calculating it. We demonstrate the emergence of a
mass pole in the propagator of the particles that correspond to the field B, when chiral symmetry is broken and
consider the problems of regularizing closed fermion loops with axia vector vertices in connection with chiral
symmetry breaking. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In the universally accepted quantum electrodynam-
ics (QED), the fermion masses are assumed to be given,
and the question about the origin of these massesis not
considered. At the same time, the idea that the €l ectron
massis generated by electromagnetic interactions dates
back to the end of the 19th century—beginning of the
20th century. Despite such a long history, this ideais
also embodied in present-day studies[1-4], now on the
basis of quantum theory.

It should be noted that the symmetry of the
Lagrangian for massless fermions is higher than the
symmetry of the Lagrangian for massive fermions.
Massl ess fermions have a chiral symmetry, while mas-
sive fermions have no such symmetry. Thus, if the fer-
mion masses are generated dynamically, through inter-
actions, then dynamical chiral symmetry breaking
(DCSB) takes place.

One of the first qguantum-field models that described
DCSB wasthe so-called Nambu—Jona-L asinio modd [5]
with the local interaction Lagrangian

L. = GO+ (Biyw)T,
where G is the coupling constant. In a more general

form, the interaction Lagrangian for this model appears
as the product of two fermion currents,

Lo = G(OY W) (Dy,W).

In this form, the interaction Lagrangian is actualy a
local ssimplification of the interaction between the two
fermion currents through the nonlocal interaction that
describes the vector field photon exchange in a phe-
nomenological form. DCSB with the generation of fer-
mion mass m and vacuum condensate [D|PY|00 is
observed in the Nambu-JonaLasinio model with
massless fermionsif the coupling constant G exceeds a
critical value,

G=G,, = 21¢/N?,

where A? isthe invariant cutoff parameter.

In the quantum electrodynamics of massless fermi-
ons, DCSB aso exists for strong coupling a > a,
where a.. isthe critical coupling constant, and is absent
for a < o¢ [14]. If a > o, and if there is an invariant
cutoff parameter A, then a nontrivial solution to the
Dyson (Schwinger—Dyson) equation exists for the
dynamical fermion massfunction B(k?), 1/(p —B(k?)) is
the fermion Green function in momentum space.

At the sametime, it should be noted that the leading
principle of almost any current quantum-field interac-
tion theory is the idea of gauge (local) invariance. In
this case, the symmetry of the Lagrangian for free (gen-
erdly fermion) fields uniquely determines the
Lagrangian for the interaction of these fields with the
additional vector fields that ensure the satisfaction of
the local (gauge) invariance conditions and that are
interaction carriers.
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The standard quantum electrodynamics is nothing
but the gauge U(1) theory. However, in contrast to the
case of a nonzero mass, the symmetry group of the
Lagrangian for massless fermions is U(1) O U(1),
wherethe group U(1) correspondsto the ordinary phase
transformations of the field function, and the group
UA(1) corresponds to the chiral transformations. In this
case, it seems more natural to consider both U(1) and
UA(2) as equivalent local transformations and to con-
struct the interaction from the group U(1) O U(2).

Clearly, new particles (axial photons) will corre-
spond to the additional gauge field, but they acquire a
mass through chiral symmetry breaking; their mass
may prove to be very large, or, in a sense, the field of
these particles may be considered as akind of aregula-
tor field of the theory.

In this paper, we consider amodel of electrodynam-
ics with two types of interaction, the vector

(el (YWA,)W) and axial vector (e, (Y*y°B,)) interac-
tions, i.e., with two types of interaction-carrying vector
gauge fields, which corresponds to the local nature of
the complete masdessfermion symmetry group
U(1) O Ux(1). A phenomenological (o-type) model
with spontaneous symmetry breaking through which
the fermion and the axial vector field B, acquire masses
is presented in Section 2. In Section 3, based on an
approximate solution of the Dyson equation for the fer-
mion mass operator, we demonstrate the phenomenon
of DCSB in a model with two gauge fields when the
field B, hasamass. In Section 4, we show the possibil-
ity of eliminating the axial anomalies in the model
under consideration when introducing other types of
fermions (quarks) within the standard-model fermion
generations for an appropriate choice of axial coupling
constants e, (axial charges) a, = a for each type of fer-
mions. In Section 5, we consider the polarization oper-
ator for the field B, and the procedure for removing
divergences when calculating it. We demonstrate the
emergence of a mass pole in the propagator of the par-
ticles that correspond to the field B, when chiral sym-
metry is broken. This confirms that the solution of the
Dyson equation for the fermion mass operator is ade-
guate in a situation with DCSB. We also consider the
problems of regularizing closed fermion loops with
axial vector vertices in connection with chiral symme-
try breaking.

2. THE PSEUDOVECTOR INTERACTION
IN QED AND SPONTANEOUS CHIRAL
SYMMETRY BREAKING

The standard quantum electrodynamics with mass-
less fermions described by the Lagrangian

1 v ;
L = —ZF“ Fu +B(iv'o, +ey" Ay, (1)

Fuw = 0,A,—0,A,,
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is symmetric relative to the gauge transformations
u(l):

U— (1+i6(x)y,

1 2
A — A+ éau@(x),

which are represented in (2) in an infinitesimal form.
However, there is also a symmetry of Lagrangian (1)
relative to the global chiral transformations U,(1):

P — (1+iy°O) . 3)

The electromagnetic field described by the potentias
A, corresponds to the interaction of charge particles.

In this formulation of electrodynamics, the symme-
try relative to transformations (2) and (3) isagauge and
nongauge one, respectively, which is connected with an
imbalance in the virtually equivalent symmetries of
Lagrangian (1).

Let usintroduce the second gauge field B, that cor-
responds to the chiral symmetry transformation U,(1).
Lagrangian (1) takes the form

1 1

_ Hv Hv
__ZF F“"_ZG G

+{(iy"o, +ey"A, + eAy“yE’B“)lp,
G, = 0,B,-0,B,;

vPu
it is invariant relative to the gauge transformations
u(d),

(4)

g — (1+i0(x)v,

1 (59)
Ap — Au + éa“O(X),

and UA(),
P — (1+iy°0,(X) Y,

1 (5b)
B,— B,+ aaueA(x).

The symmetry transformation U,(1) becomes local
with the local parameter ©,(x), while the field B, isa
pseudovector. The coupling constant e,, the axial fer-
mion charge, is introduced to couple the field B, with
the fermion field .

If we naively described the electrodynamics using
Lagrangian (4), then we would have two massless
gauge fields, A, and B,; i.e., we would have two types
of massless photons corresponding to A, and B,,. How-
ever, only the A, photons, i.e., ordinary photons, are
observable massless photons, so we should take into
account the U,(1) symmetry breaking.

The actual charged fermions have observable finite
masses, i.e., the U,(1) symmetry is broken. As aresult
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of symmetry breaking, the charged fermions acquire a
mass [1-3, 6].

By analogy with the o-models used to describe
strong interactions (see, e.g., [5]), in which the fermi-
ons acquire a mass when the symmetry is spontane-
ously broken, we write the Lagrangian that clearly
shows spontaneous chiral symmetry breaking in our
case as

1 1

L = —ZF“"FW —ZG“VGW

+P(iy"o, + ey' A, + eny"'yV’ B Y

T -
#3651 0.+ T.2e,B,) (6)

x (5“—iT22eAB“)gB

~2(0P+ P -0 ~gB(o + iy W,

ThisLagrangian isinvariant relative to the gauge trans-
formations U(1),

Y (1+i0()Y, A, A+ %aue(x), (78)
and U(1),
P (1+iy°04(x) Y,

1
B, — B, + e—auOA(x), (7b)
A

0 — 0+20,(X)T, TT— TI—20,(X)0
or

0 (1+i1,20,(x)FE,

0o (7c)

where

O i O
TZ:DC_) 'O

Oi o0

In (6), the Higgs o and rtbosons (scalar and pseudo-
scalar, respectively) are the phenomenologica fields
that are coupled with the fermion field by the coupling
constant g; they have no eectric charge e, but have an
axial charge 2e, equal to twice the fermion axia
charge.

The potential
V(o,m) = (M) (0?+ 18 —02)’

formed from the Higgs fields have minimaat 02 + 12 =
og that correspond to a vacuum with a spontaneously
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broken symmetry. By substituting o' = 0 — o, for the o
field, we can obtain the fermion mass term in
Lagrangian (6),

myy, m = goy, (8)
and the mass term for the pseudovector boson B,
%MZB“B“, M? = 4e505. )

Thus, the fermion and the gauge field of the
pseudovector boson acquire masses. The o field

remains massive with the mass M2 = 2\a, but the Tt

field remains massless, showing the emergence of
massless Goldstone modes (excitations) in the case of
spontaneous symmetry breaking. As might be
expected, the electromagnetic field A, acquires no
mass.

When the o0 models for strong interactions are ana-
lyzed, telike fields are associated with low-mass Tt
mesons, but when the electrodynamics is considered,
the existence of a physical massless pseudoscalar field
isunacceptable. To eliminate the massl ess pseudoscal ar
field 1T, we should take into account the fact that the the-
ory under consideration is a gauge one. In accordance
with the standard scheme for demonstrating spontane-
ous symmetry breaking in theories with gauge fields,
we may choose a (unitary) gauge of the field B, such
that the Ttfield vanishes.

Thus, the explicit scheme of spontaneous chiral
symmetry breaking with the pseudovector gauge field
B, and a set of Higgs bosons (the phenomenological
scalar and the pseudoscalar) show that the fermion and
pseudoscal ar gauge fiel ds acquire masses and that there
are no physical fields corresponding to massless Gold-
stone modes.

In caculations in the theory described by
Lagrangian (6), the propagator of the massive field B,
inthe unitary B, gaugeis

Do(K) =

1 BJ kukaZI.
KE—Mm2+ioB" wm2D
its use causes difficulties with the removal of diver-

gences and renormalization. However, we may use
other gauges with a gauge-fixing term of the form

1 2
Lor = —5(@"B,)"

Thefollowing propagator of thefield B, correspondsto
these gauges:

(10)
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a specia case of it is the propagator in the transverse
Landau gauge:

Kk

5 —
D3y (k) = wah

1
kZ—M2+iO%w_ (D

Renormalizability is restored in these gauges, but
the unphysical Ttfield remains in the theory and inter-
actswiththefield B, viaan interaction term of theform

B9, . When using propagator (11), this interaction is
ineffective, or thefield "By, is said to be nonpropagating.
An interaction of the form B*d,,1t does not emerge

explicitly in the t'Hooft gauges with a gauge-fixing
term of the form

1
Lo = —z(a“BHaMn)z.

Propagator (10) also corresponds to the family of
t' Hooft gauges.

When § — o (physical limit), this propagator cor-
responds to the propagator of a massive vector field.
The unphysical Ttfields are present in these gauges at a
finite &. However, the physical results should not
depend on the gauge, i.e., on the parameter &.

3. THE MASS OF THE FIELD B,
AND DCSB

We will use the Dyson equation [1-3, 6] to demon-
strate the DCSB in the model with Lagrangian (4). For
the two types of interaction in momentum representa-
tion, this equation may be written as

S(k) = G(K) - Gn(K)

, w, oy d*
= €[V, Gu(k+ P (k+ P, p.K)DI(P) —L;
(2m)
. (12)
GV Gk + PITS(+ P, P DY (P) S
' (2m)
where Z(K) is the fermion mass operator; G;(K) is the
complete fermion Green function (propagator); G(K) is
the propagator of afreefermion; D;; (k) and Dz, (K)
are the Green functions for the electromagnetic field
(photon) and thefield B,; and I ,(k + p, p, k) and Ff{ (k+
p, p, k) are the vector and axia vector vertex functions,
respectively.
The complete fermion propagator G, (k) may be
represented as

Gu(k) = U[k-2(K)], Z(k) = a(k)k+B(K*),

BUCY = ZUlZ(R, k= vk

"
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In theinitial approximation, we use the fits for the fer-
mion Green function B(k?) = mmisthe electromagnetic
fermion mass)

Gi(K) =

—_— 13
k—-m+i0 (13

m = 2[5(0)],

which are similar to those used in demonstrating DCSB
in the Nambu—Jona-Lasinio model [5].

The following approximation may be used for the
vertex function of the electromagnetic field:

Fu(k+p, Kk p) =y (14)

Since Lagrangian (4) is symmetric relative to the
gauge transformations (5), the Ward axial identity may

be written for the vertex function Ffl(p +k, k p). In
momentum representation, it appears as

K'T(p+k k p) = Gu(p+K)Y° +y°Gin(p). (15)

When using fit (13) for the complete fermion prop-
agator, we can find from Eq. (15) that

re(p+kk p) = VuV5—V5kpB((p + k)z) +B(p)

. k (16)
=V -y Tz L when k, ~ 0.

If we expect B(p?) and mto be nonzero and to result
from DCSB, then the second (pole) term in (16) does
not vanish and the emergence of a pole at the vertex

Ffj (p + k, k, p) for k? = 0 corresponds to the generation
of massless Goldstone states in the theory.

However, if we use the propagator of the field B, in
a transverse gauge similar to (11), then this pole term
makes no contribution because of the transverse tensor
structure of propagator (11), much as the interaction
B9, mof thefield B, with the Goldstone rtfieldsisinef-
fective in the model with Lagrangian (6).

Based on what we have said above about the pro-
pagator of the field B, it would be appropriate to use
the fit

1
(K +i0)(1-P°(K)/K?)

Ds/in(k) =

VM
X%vp_k k|:| 1 (17)

k0 T KM+

Vi kvkuD 5/1,2\ — n12
X % - 7['1 P (k ) - M ’
where P5(k?) is the polarization operator of the particle
(see Section 5) that correspondsto thefield B, and M is
the mass of the field B, generated by DCSB. Accord-
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ingly, we may use a fit similar to (14) for the vertex
ra(e+kkp),

Fo(p+kk p) — v,y (18)

and the Landau gauge for the Green function of the
electromagnetic field,

t( ) 1 %vp_kvkum
" (K2 +i0)(1—P(k®)/K?) k2 U as)
1 %vu_&h
K2 +i0 k2

where P(k?) is the photon polarization operator.

Setting p, = 0 in the Dyson equation (12) and sub-
stituting fits (13)—<(19) for the Green and vertex func-
tionsinto it, we obtain

1 =0
Ztr[Z(p)] PPl m

- i62 VV(R'I-m)yu
4 tr[I(kz—m2+i0)(k2+i0)
L Don KK d'k 20
% K D(21T) } (<0)
IeA oy (K + m)y,y°
I(k —m*+i0)(k*=M*+i0)
x %vu k ku d k i|
K D(Zn) |

The gauge U(1) and U,(1) symmetries for
Lagrangian (4) are equivalent. It would also be natural
to assume for the ordinary charge e characterizing the
vector interaction and the charge e, characterizing the
axial vector interaction that

ey = xe. (21)

It should also be noted that relation (21) corresponds
to the condition for eliminating the axial anomaliesthat
will be present in the model under consideration asin
any theory with the pseudovector interactions
eal (Y*Y°B,)W (see aso formulas (25) and (26) in Sec-
tion 4).

The sum of theintegralsin (20) will converge under
condition (21). Integration in (20) yields an equation
that relates the masses mand M:

__3a X2 2 2 _ M? _ e’
m = m=— Inx®, X" = —, o= -—.

(22)

Apart from the trivia solution m= 0, Eqg. (22) hasa
nonzero solution for m at a nonzero value of M.
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Thus, a nontrivial solution of Eq. (12) for the mass
operator Z(p = 0) = m that corresponds to dynamical
chiral symmetry breaking is possible for a nonzero
mass of the vector field B,,. In this case, calculating the
integral in (20) does not require the introduction of an
ultraviolet cutoff (aswould be the case, for example, in
the Nambu—Jona-Lasinio model [5]), and a nontrivial
solution for Z(p = 0) = mat anonzero value of M exists
for any value of the coupling constant

a = e/4m = €X/AT = ay.

Whereas DCSB arises in the Nambu—Jona-Lasinio
model at a coupling constant of the model

G=G,y = 21°/N?,

with the corresponding invariant cutoff parameter A?,
such a natural parameter as the mass of the field B,
playsarolesimilar to that of A?inthe model considered
here.

By min (13)—(22) we may also mean the sum of the
seed mass m, inducing symmetry breaking and the
variable mass m, reflecting the degree of symmetry
breaking:

m = my+ m,.
By analogy, we obtain for the mass of the field B,
M = Mg+ M;

the parameters that induce symmetry breaking, m, and
My, are independent and tend to zero at the end of the
calculations (in accordance with the Bogolyubov
method when analyzing the DCSB; see, eg., [6]):
m, — 0and My — 0. If my, = mand My, = M are
nonzero when passing to azero limit of the seed param-
eters, then dynamical chiral symmetry breaking may be
said to be present.

4. AXIAL ANOMALY

It follows from the symmetry of Lagrangian (4)
(or (6)) relative to transformations (5) (or (7)) that the
corresponding axial current is conserved,

5 _
", = (23)

and that the corresponding Ward identity (15) is valid.

However, when the theory is quantized, equality (23)
breaks down due to the triangular loop diagrams with

the axial vertices e, (y*y°B,)W, with three axial verti-
ces (loop BBB in Fig. 1), and with one axia vertex
(loop AAB in Fig. 2). The anomaly emerges, because
the divergences cannot be removed from these dia-
grams without explicit symmetry breaking, and exp-
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Fig. 1.

B
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: yoys

Fig. 2.

ression (23) for the model under consideration will
appear as

2 2
apJS - e Uvpo FE + €A

ghPoE
1617 WPY 48P

The emergence of anomalies leads to a number of
problems with the B, quantization and the renormaliz-
ability of the theory [7]. In the model under consider-
ation, the axial interaction is not an external object and
the anomaly causesthe self-consistency of the theory to
be broken.

Including other types of fermions in the theory
allows the anomalous components that emerge in the
loops in Figs. 1 (loop BBB) and 2 (loop AAB) to be
eliminated. It would be appropriateto treat the fermions
included in the model under consideration in accor-
dance with the standard-model fermion generations.

£"°°G,,G,q. (24)
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Within the first generation of charged fermions of the
standard model (e, u, d) (i.e., with an electron and two
quarks) with charges

02 10
Q_eD_l’3’ 3]1

the anomalies can be eliminated if the following rela
tion isvalid for the coupling constants at axial vertices:

Qa —eD+l ID

(25)

(26)

Given the three color degrees of freedom of the
guarks (N, = 3), the anomalous components of the
amplitudes that correspond to both loop BBB (Fig. 1)
and loop AAB (Fig. 2) for al charged fermions vanish
(in the massless case, the sum of the diagrams for all
fermions with the quark colors becomes equal to zero).
This anomaly elimination condition corresponds to
assumption (21). Clearly, al of the aforesaid aso
applies to other generations. The neutrinos as particles
that have no charge, but that are members of the stan-
dard-model generations, are disregarded; it would be
natural to set e, = O for al neutrinos. It should aso be
noted that the anomalies are eliminated precisely
within the standard-model generations.

5. THE POLARIZATION OPERATOR
OF THE FIELD B
AND CHIRAL SYMMETRY %REAKING

The complete Green function D¢, (k) for the field

B, and the propagator for free particles (in the trans-
verse Landau gauge)

1
DIM(K) = ———g"™ -
> (0 k2+i0%

can berelated by

Kk
k2 U

Defin(K) = De*(K) + Dz’(K)Pgo(K) D&% (K),

kkD
ZD’

, (27)
D&in(k) = Ds(K) g™ -

where Pﬁv(k) is the (axia) polarization operator. The

tensor structure of the axial polarization operator (in
any case, for the gauge used) may also be assumed to
be transverse (i.e., we may consider only the transverse

projection of the operator Pﬁv(k); the longitudinal

parts, if they exist, make no contribution to the com-
plete Green function in this gauge):

QD

Ph(k) = PY(k)Eg™ - (28)
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From (27), we may derive

1 1

Dg(K) = ———+

L) = a0 @0
1

(K +i0)(1=P3(K))/KD)

P°(K*)Ds(K),
(29)
Ds(K%) =

The following Dyson equation similar to (12) is valid
for the operator Py, (k) :

Po(K)
= e[V, Gin(P + KITU(P +k k, P)Gin(P)] (30)

d'p
(2m*

X

Since divergences of the loop integrals arise when cal-
culating Pﬁv(k) in (30), it would be appropriate to
determine the normalization conditions. Assuming that
the complete propagator for DCSB must describe the
propagation of amassive vector particle of thefield B,
the first normalization condition is

P’ (M%) = M?, (31)

which corresponds to the fit of the complete Green func-
tion using in (17) when solving Dyson equation (12).

We redefine the scalar part of the polarization oper-
ator asfollows:

PS(k}) = M2+ (K= M3)P (K%, (32)

where M is the mass acquired by the field B, due to
chiral symmetry breaking. The complete Green func-
tion appears as

D5,int - l
W P —MP+i0) (1= P°(KY)

k,k
‘et

The second normalization condition related to the nor-
malization of the axial chargee, is

(33)

(34)
or, equivalently,
P°(0) = P°(M?) = M?, (35)

Calculating a loop integral similar to (30) requires
using regularization. In the presence of gauge U(1)
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invariance, the corresponding axial current isconserved
(for the time being, we disregard the axial anomalies),
and the tensor structure of the operator Pﬁv(k) must

have only transverse components. However, the com-
monly used regularization methods (e.g., cutoff regu-
larization) themselves distort the tensor structure of

Pﬁv(k) even in the presence of gauge invariance.
For the two normalization conditions, (31) and (35),
to be satisfied, the scalar part of the transverse projec-

tion of the polarization operator P>(k?) after regulariza-
tion must be

P°(K%) = ¢;M?+K3(c, + F(KY)) + M?Fy(K%), (36)

where ¢, and ¢, are constants that generally contain
divergences when removing regularization, and F(k?)
and F,(k? are finite functions. If there were gauge
invariance and if the regularization procedure did not
distort the tensor structure of Pﬁv(k) , then the constant
¢, (and the function F;(k?)) would be equal to zero,

P3(K’) = K*(c,+ K(KY),

and it would be impossible to simultaneously satisfy
both conditions, (31) and (35). Physically, this would
imply that the B, photons remain massless.

Introducing the mass m (or the Bogolyubov seed
mass My, because m and M are generally independent
parameters) in the fermion propagator, we obtain U,(1)
symmetry and gauge invariance breaking. In this case,
the operator P, (k%) losesits transverse structure, but
this loss of transversality will be controllable by the
breaking parameter m, while P3(k?) after the separation
of the transverse part may be represented as (36). Since
the regularization procedure can also distort the tensor
structure of wa (k) , weimpose a condition on the con-
stant ¢,

limc,— O, (379)
m-0
and, similarly for the function F,(k?),
lim Fy (k%) — O; (37b)
m- 0

i.e., the componentsof ¢, (F,(k?)) that do not satisfy this
condition arise in the calculations from the regulariza-
tion procedure.

In general, using the standard regularization meth-

ods that preserve the tensor structure of wa(k) (the

dimensional regularization method or the Pauli—Villars
method for fermion loops) is not logically consistent.
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The dimensional regularization method runs into prob-
lemswhen determining the matrix y®°. The Pauli-Villars
method for fermion loops requires introducing addi-
tional regularizing fermion loops with masses that are
regularization parameters that explicitly break the axial
gauge U,(1) invariance, which, in our case, makes it
identical to simpler methods like the cutoff regulariza-
tion method.

Although using the dimensional regularization
method is not quite consistent, we will use it to show
how the terms corresponding to DCSB emerge in the

operator Pﬁv(k) . To this end, we note that, in fermion
loops with an even number of axia vertices, all of the
matrices y° in integral expression (30) may be rear-
ranged in such a way that they will be close and, as a
result, will disappear:

P>, (K)
d'p
(2r)°

5 p+k+m
(p+k)>—m’

\

A tr[vuv ° p+m}

p2_m2
p+k+m
"(p+k)’-m

A 4
=& tr[y p—m} dp (38)

“p’-m’J(2m)’
2 p+k+m |“o+m} d'p
=€ tr[ .

AJ- yu(p+ k)Z_mZY p2_m2 (2_,_[)4

4
_8m2e2 gpv d P .
e mien’

In expression (38), the integra that formally corre-

spondsto an ordinary vector fermion loop and the addi-

tiontoit proportional to n¥ appear in thelast part of the

equality. This equality may be represented in diagram

form, asshownin Fig. 3 (f(k?) isafinite scalar function,

2
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and c; is a constant that generally contains diver-
gences). In the massless case, the expressions for loops
with vector and axia vector vertices areidentical. This
identity reflects the facts that there is a symmetry rela-
tive to both gauge transformations (5), that the vector

and axial vector currents are conserved (9,J, = 9,J;, =
0, m=0), and that both fields A, and B, are massless.

Applying dimensional regularization to theintegralson
the right-hand side of the equality in Fig. 3 yields

5
Puv(K)
_.o4-d 2 p+k+m f)+m}ddp
=1 e tr[ v 39
H A yu(p+k)2—m2 pz_mz (2T[)d ( )
4-d_2 2 Ouv ddp

I rer oy —

where U is the mass operator that restores the correct
dimensions of the polarization operator; regularization
isremoved for d — 4. Thefirst integral (vector loop)
on the right-hand side of equality (39) has a transverse
tensor structure owing to the properties of the dimen-
siona regularization, and expression (39) may be writ-
ten as

P>, (K)

; K Ky K>
" e B S B

2 2
e 1 k
* O S+ L O (40)

1

_ [ —4x(1-X)t]
|(t, U) = GIX(l—X)lnmLDdX,
0

1
_ M =4x(1-=x)tg
|1(t, LI) = GIInmdx,
0

where ¢; and ¢, are constantsthat contain divergences

when removing regularization (d — 4), and we have
for the P>(k?) projection

2 2
5.2 _ -2 €A [ Ok
0= ot e ]

en kz%' +|Dk_2 (%
o U7 Oy

According to (36), it allows both normalization condi-

(41)

+
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tions, (31) and (35), to be satisfied:

2
€r 12
clﬂm oM g y+|anZD
Q‘ 21(%D (42)
A 0K AQ

e
F,(K) Omf—2—|, 0=, =
' 12reM? Thm? am

for d — 4, yisthe Euler constant, and A isthe normal-
ization point. Condition (37) is also satisfied.

The expansion of the axial loop presented as a dia-
gramin Fig. 3isconvenient for separating out the com-
ponents related to the breaking of gauge U,(1) invari-
ance (5) and to DCSB for any regularization method.
The first term in Fig. 3 formally corresponds to the
polarization vector of the electromagnetic field A, and
the vector current is conserved. Therefore, the final
result after the separation of divergences and the
removal of regularization for the first term in Fig. 3
must be transverse and have the structure

KE(Cz + F(K)) (G — ko /K),

where F(k?) is a finite function, and the components
corresponding to DCSB with ag,,-typetensor structure
remain in the second term, which clearly corresponds
to condition (37).

Thus, for an arbitrary regularization procedure, the
terms without the above structure in the vector loop of
the first expansion term in Fig. 3 are assumed to be
unphysical and introduced by the regularization proce-
dure. They introduce no problems in the theory and in
the corresponding divergences and can be removed by
introducing appropriate counterterms. However, in
contrast to the addition related to the second term on the
right-hand side of the expansion in Fig. 3, these terms
have no physical meaning.

When analyzing DCSB, one should use an expres-
sion of form (16) with the following pole term of the
Goldstone state in (30) for the vertex function:

Fa(p+k k p)=v,y° —y°2mk,/k*.

Thisnontrivia addition to the vertex FS (p+k k, p)dis
rupts the transverse tensor structure of the operator
P°,(k%), and the integral for the Goldstone addition
2mk, /k? divergeswhen regul arization is removed. How-

ever, this addition to the polarization operator P, (k%)
has apurely longitudinal structure; when separating out
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the transverse part proportional to P°(k?), it gives no
contribution to the propagator of the field B,.

In accordance with conditions (31) and (35), we
may obtain for the transverse projection of Pﬁv(k)

Ps(kz) — M2
0 ok mg
A5 2
+(k M) D4m 4m
MO (K- M)

2, M? 2 Dk2
kl, 54—, &= — M°1l,5—, =
_rpf hny? CB hy? (%D

- 4
M? (K*=M?) O
O
K M
1 A
|55(k2) _ G_AD( m” 4m (43)
31TE (k -M )

2, M? 2, 0K
kK°l,=—, 05— M, 52—, =0
me Cam? (% W CED

M? k2 —M? 0
( ) -

1

I(t, u) = GJ'x(l—x)InD%ltEd

—Ax(1—x)t dx.

l.(t,u) = 6J'In ~ax(1— )]
0

For the proper energy operator of the B, photon
Mo (x=x) = iex( 0| T(33(x)35(x))|0)
in momentum representation, we have
Dfin(K) = D3 (K) + D’ (K)Mg,(k) DE"(K),
v kaLlD
(k) = -
K+ |0%

K
By analogy with the polarization operator, we may
consider only the transverse projection for N fw(k) ,

(44)

M5,(k) = MK (gyy — Kok, /KY).
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We obtain for it
1507 = K’P*(K?)

K’ +i0—P°(k%)
K(M? + (K= M*)P°(K%)) .
(K =M2+i0)(1-P°(K}))’

(45)

n°(k%) =

i.e, N ﬁv(k) also hasapolethat correspondsto the mas-
sive B, photon exchange in momentum representation.

6. CONCLUSIONS

Thus, based on our model for the electrodynamics
of massless fermions, which, apart from the gauge field
A, corresponding to U(1) symmetry, also includes the
field B, corresponding to chiral gauge Ua(1) symmetry,
we have shown that both the fermions and the
pseudovector gauge field B, can acquire masses. We
have demonstrated that the Dyson equation for the fer-
mion mass corresponding to DCSB when the mass of
the gauge field B, is generated can have a nontrivial
solution, and, when the fermion mass is generated
through DCSB, the field B, can acquire mass.

The massiveness of the field B, that results from
DCSB is consistent with the existence of only one type
of massless particles—the electromagnetic interaction
carriers (photons). The remova of anomalies in this
QED model, especialy within each standard-model
fermion generation, aso placesit in the class of models
that can be physically adequate.

Condition (21) for the vector and axial vector cou-
pling constants, which corresponds to the condition for
eliminating the axial anomaliesin the model under con-
sideration, allows us to dispense with the ultraviolet
cutoff when working with the Dyson equation and
when analyzing its solutions. The mass of the field B,
actsas a cutoff factor, while the massiveness of thefield

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

FEDOROV, YURKOV

B, itself isthe condition for the existence of anontrivial
solution to the Dyson eguation that corresponds to
dynamical chiral symmetry breaking.

If the B, photons are assumed to be physical parti-
cles, then they must be assumed to very massive in
order not to come into conflict with the actual experi-
mental situation: according to (22), we havefor M > m

M O expEBT[ZD
m

et

At the same time, it should be noted that not only elec-
tromagnetic, but also other types of interactions can
significantly affect the masses of real particles. Thus,
actual physical numerical mass estimates for the B,
photons require further studies.
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Abstract—We analyze the potential of the compact linear collider (CL1C) based on e~y collisionsto search for
the new Z' gauge boson. Single Z' production on e~y colliders in two SU(3)c O SU(3), O U(1)y models, the
minimal model and the model with right-handed neutrinos is studied in detail. The results show that new Z'
gauge bosons can be observed on the CL1C and that the cross sectionsin the model with right-handed neutrinos
are bigger than those in the minimal one. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Neutral gauge structures beyond the photon and the
Z boson have long been considered one of the best
motivated extensions of the standard model of elec-
troweak interactions. They have been predicted in many
models going beyond the standard one, including the
models based on the SU(3) 0 SU(3), O U(1)y (3-3-1)
gauge group [1-5]. These model s have someinteresting
characteristics. First, they predict three families of
quarks and leptons if the QCD asymptotic freedom is
imposed. Second, the Peccei—Quinn symmetry natu-
rally occursin these models[6]. Finaly, it is character-
istic of these models that one generation of quarks is
treated differently from the other two. This might lead
to a natural explanation for the unbalancing heavy top
quark.

The Z' gauge boson is a necessary element of vari-
ous models that extend the Standard Model. In general,
the extra Z' boson may not couple in a universal way.
There are, however, strong constraints from flavor-
changing neutral current processes that specifically
limit the nonuniversality between the first two genera-
tions. Lower bounds on the mass of Z' following from
analysis of avariety of popular models are found to be
in the energy range 5002000 GeV [7, §].

It was suggested recently that the 3-3—1 models
arise naturally from the gauge theoriesin spacetime with
extradimensions[9] where the scalar fields are the com-
ponents in additional dimensions [10]. A few different
versions of the 3-3—1 model have been proposed [11].

Recent investigations have indicated that signals of
new gauge bosons in models may be observed on the

TThis article was submitted by the authorsin English.

CERN large hadron collider [12] or the next linear col-
lider [13, 14]. In[15], two of us have considered single
production of the bilepton and shown that several thou-
sand events are expected at the integrated luminosity
L =9 x 10* fb™. In this work, single production of the
new Z' gauge boson in the 3-3-1 modelsis considered.
The paper is organized as follows. In Section 2, we give
a brief review of two models: the relation among real
physical bosons and constraints on their masses. Sec-
tion 3 is devoted to single production of the Z' boson in
the e~y collisions. Discussion is presented in Section. 4.

2. REVIEW OF 3-3-1 MODELS

To put the context in aproper frame, it isappropriate
to briefly recall some relevant features of the two types
of 3-3-1 models: the minimal model proposed by
Pisano, Pleitez, and Frampton [1, 2], and the model
with right-handed neutrinos [4, 5].

2.1. The Minimal 3-3-1 Model

The model treats the leptons as the SU(3), antitrip-
lets[1, 2, 16],*
0%
Hvag=(130), (D)
qec)aD
where a = 1, 2, 3 is the generation index. Two of the
three quark generations transform as triplets, and the

fo =

1 The leptons may be assigned to atriplet asin [1]; the two models
are mathematically identical, however.
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third generation is treated differently. It belongs to an
antitriplet,

QiL = %iL%: 13! _13%! (2)

Ur=(3,1,2/3), dr=(31,-1/3),
Dir=(3,1,-1/3), i =12,

0%
Qa = HUaf=(3,3,2/3), 3
Ot U

U3R: (3, 1, 2/3), ng: (3, 1, _1/3),
Tr=(3,1,2/3).
The nine gauge bosons W3a =1, 2, ..., 8) and B of
U(3), and U(1), are split into four light gauge bosons
and five heavy gauge bosons after U(3), O U(1)y has
been broken into U(1)q. The light gauge bosons are
those of the Standard Model: the photon (A), Z;, and
W=, The remaining five correspond to new heavy gauge

bosons Z,, Y* and doubly charged bileptons X*t. They
are expressed in terms of W2 and B as[16]

L2W5 = W —iWa, 2Y) = W —iw, @
J2XT = W —iwWS

u!
Au = SyWj + Cu(+/3ty W, + /1-3t5,B,),

Z, = CaW,—Su(J3twW, + /1-3t3B,),  (5)

1 2
Z, = —J1-3te W + /3t,B,,
where we use the notation
Cy = cosBy,

Sw=9n06,, ty=tanB,,.

The physical states are a mixture of Z and Z',

Z, = Zcos@—Z'sing,

Z, = Zsin@+ Z'cos,

where @ isthe mixing angle.
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Symmetry breaking and fermion mass generation
can be achieved by three scalar SU(3), triplets @, A, A'
and a sextet n,

5He!
oooocT

+

€
I

O
g

=(1,3,1),

=(1,3,0),

>

I
e
o

o

oo

>
I

=(1,3,-1),

QDEDE
mlw

O

++ + Il

O M nll«/é r]O/,\/éD

N =802 n° nyl20=(L6.0).
O . 0
Dr]ol,\/é ndv2 n; 0O

The sextet n is necessary to give masses to charged lep-
tons [3, 16]. The vacuum expectation value

'O = (0,0, ul/2)

yields masses for exotic quarks, the heavy neutral
gauge boson Z', and two new charged gauge bosons
X**, Y*. The masses of the standard gauge bosons and
the ordinary fermions are related to the vacuum expec-
tation values of the other scalar fields,

0= v//2, mO= v'/.J/2,

MO =wl//2, mO=o0.

For consistency with low-energy phenomenology, the
mass scale of SU(3), O U(1)y breaking must be much
larger than that of the electroweak scale, i.e, u> v, v/,
. The masses of gauge bosons are explicitly given by

= )

2 1

M = 207"+ v* + o), ©)
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and

2 2

2 2 2 2
mZ:g—z(v +v +w):m—2"’
Cw Cw

M2 = 92 C\z/v 2
=Y o ™

+

1-4s 32
2SW(V2+ v‘2+oo2)+ 5\/\/2 v2 1
1-4s,,

4cy
Expressions in (6) yield a splitting between the
bilepton masses [17],
IMZ— M| < 3mj,. (8)

Combining the constraints from direct searches and
neutral currents, we obtain the range for the mixing
angle[16] as

~16x10°<@<7x10"
and alower bound on M,
Mz, =13 TeV.

Such a small mixing angle can be safely neglected. In
that case, Z, and Z, are the Z boson in the Standard
Model and the extraZ' gauge boson, respectively. With
the new atomic parity violation in cesium, we obtain a
lower bound for the Z, mass[18]:

M,,>12 TeV.

2.2. The Model with Right-Handed Neutrinos

Inthismodel, the leptons are in triplets and the third
member is aright-handed neutrino [4, 5],

et
fo = O€ O=(1,3,-1/3),
0 .. O ©)
dv) o
exr=(1,1,-1).

Thefirst two generations of quarksarein antitriplets
and thethird oneisin atriplet,

ndig
Qu = E—U”H:(& 3,0), (10)
DD”_D
ugr=(3,1,2/3), dir=(31,-1/3),
Dir=(3,1,-1/3), i =1,2,
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Qa = Hluf=(3,3,1/3), (11)
Cr O

Usp= (3,1,2/3), di3r=(3,1,-1/3),
Tr=(3,1,2/3).

The doubly charged bileptons of the minimal model are
here replaced by complex neutral ones as

J2W = WE—iWa, W2Y, = W =W,
0 _ .
J2X0 = W —iW,
The physical neutral gauge bosons are again related

to Z and Z' through the mixing angle ¢. Together with
the photon, they are defined as [5]

A SWW3 +C B'___tw va + [1 t—iv BLD
" " WD ,\/é : 3 D’

Zy= 1= W+ 2B,

Symmetry breaking can be achieved with just three
(3), triplets,

(12)

1
= = (1, ,_/ ,
X %(E (1,3,-1/3)
el
i
p = 0E'~*(1,3,2/3),
g
Epv*D

(14)

(15)

O
O

n = mMO=(13,-1/3).
O
The necessary vacuum expectation values are
xd = (0,0, w//2), [pd = (0,ul/2,0), an
MmO = (v/.4/2,0,0).

The vacuum expectation value [{0generates masses
for the exotic 2/3 and —1/3 quarks, while the values [p[J
and MO generate masses for al ordinary leptons and

(16)

|
(|
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Fig. 1. Feynman diagrams for the reaction €y — Z'e".

guarks. After symmetry breaking, the gauge bosons
gain masses as

My = F0°W V), MY = 2(v o),
1 (18)
M = Z0°(U°+ ),
and
My
m2=g(u+v)——2, (19)
4cy Cw
2 2 2 _ 2.2
M2 = 9—2 4w2+u_2+w . (20)
4(3-4sy) Cw Cw

For consistency with low-energy phenomenology,
we have to assume that 0> [P0) [R] such that my, <
My, My.

The symmetry-breaking hierarchy gives us a split-
ting between the bilepton masses [19]

2 2 2
It is therefore acceptable to set My = My,.

The constraint on the Z — Z' mixing based on the Z
decay isgivenin[5],

—28x10°<p<1.8x107"

in this model, we do not have a limit for sin?6,,, With
thissmall mixing angle, Z; and Z, arethe Z boson in the
Standard Model and the extra Z' gauge boson, respec-
tively. From the data on parity violation in the cesium
atom, we obtain a lower bound on the Z, mass in the
range between 1.4 TeV and 2.6 TeV [18]. Data on the

kaon mass difference Amy gives the bound M, <
1.02 TeV [§].

(21)

3. Z' PRODUCTION IN e-y COLLISIONS

Now we are interested in the single production of
new neutral gauge bosons Z' in e~y collisions,

e (PuA) +Y(p2 N) — e (k, )+ Z(k, T), (22)

where p; and k; arethe momentaand A, A', T, and T' are
the helicities of the particles. At the tree level, there are
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two Feynman diagrams contributing to reaction (22),
depicted in Fig. 1. The s-channel amplitudeis given by

' ie

MZ = L2 (py)ey(k)a(ky)

2Cw0s (23)
¥ [Gv(€) — 92a(€)Ys] ey u(py),
where g = p; + p,. The u-channel amplitudeis
' |e _ v
Mi = —Ze,(K)e,(p2)T(ky)Y g,

wdu (24)

X Y[ dav(€) — gaale)Ysl u(py),

where g, = p; — ky; Ep(p2)1 €,(p2) and e, (ky), Ep(kz) are
the respective polarization vectors of the photon y and
the Z' boson, and g,/(€), g,.(€) are the coupling con-
stantsof Z' to the electron e. In the minimal model, they
are given by [16]

Jav(e) = /\/éAll 45w

(25)
o) = —L [1-4s,
924(€) >3 Sw

and in the model with right-handed neutrinos [5],
-0l
dov(e) = 05 + 2

SV\DA/3 455,

(26)

1

2.[3-4s?,

From Egs. (25) and (26), we see that because of the

factor
J1—4sh, < 1,

the cross sectionsin the minimal model are smaller than
those in the model with right-handed neutrinos. We
work in the center-of-mass frame and let 6 denote the
scattering angle (the angle between the momenta of the
initial electron and the final one). We have evaluated the
0 dependence of the differentiad cross section
do/dcosB, the energy, and the Z' boson mass depen-
dence of the total cross section o.

1) In Fig. 2, we plot do/dcosB for the minimal
model as afunction of cos6 for the collision energy at
CLIC /s = 2733 GeV [20] and therelatively low value
of mass m,: = 800 GeV. From Fig. 2, we see that
do/dcosb is peaked in the backward direction (thisis
duetothe e poletermin the u-channel) but isflat in the
forward direction. We note that the behavior of
do/dcosB for the model with right-handed neutrinosis

similar at other values of ./s.

2) The energy dependence of the cross section for
the minimal model is shown in Fig. 3. The same value

g2a(€) =
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Cross section, pb
0.07 T T T

0.06 H .
0.05H .
0.04

0.031 .
0.021 .
0.01F .

1
-0.5 0 0.5 1.0
cos O

0
-1.0

Fig. 2. Differential cross section of the minimal model,
/s = 2733 GeV, my: = 800 GeV.

of the mass as in the first case, m,. = 800 GeV, is cho-
sen. The energy rangeis

1200 < ./s< 3000 GeV.

Curve listhetota crosssectionfor the minimal model,
and curves 2 and 3 represent the respective cross sec-
tions of the u- and s-channels. Curve 4 is the cross sec-
tion for the Standard Model, reduced three times. The

u-channel, curve 2, rapidly decreases with ./s, while

the s-channel has a zero point a ./s = m,. and then
slowly increases. In the high-energy limit, the s-chan-
nel makes the main contribution to the total cross sec-
tion. In Fig. 3, the cross section of the Standard Model
reaches 0.18 pb and then slowly decreases to 0.05 pb,
while the cross section of the minimal model is only

0.14 pb at /s = 800 GeV and 0.05 pb a /s =
2733 GeV. The same situation occursin the model with
right-handed neutrinos. In this model, we fix m, =
800 GeV and illustrate the energy dependence of the
cross section in Fig. 4. The energy range isthe same as

in Fig. 3, 1200 < ./s < 3000 GeV. We see from Fig. 4

that the cross section o decreases with ./s, from ¢ =
0.35 pb to 0 = 0.08 pb.

3) We have plotted the boson mass dependence of
the number of eventsin the three modelsin Fig. 5. The

energy is fixed as /s = 2733 GeV and the mass range
is 800 < m,. < 2000 GeV. As we mentioned above, due
to the coupling constant, the order of the lines of num-
ber of events, from bottom to top, isasfollows: themin-
imal model, the Standard Model, and the model with
right-handed neutrinos. The smallest number of events
is for the minimal model. With the integrated luminos-
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Cross section, pb

0.18 —- . . . .
0.16F
0.14
0.12
0.10
0.08
0.06
0.04 .
002 , e.. -

e = = -

1= ===-- |

| -
1600 2000 2400

A
2800
Js, GeV
Fig. 3. Cross section g(e'y — Z'e") of the minimal model

as a function of ./s: 1—total cross section, 2—cross
section in the u-channel, 3—cross section in the s-channel,
4—cross section in Standard Model; m: = 800 GeV.

ity L = 100 fb™%, the number of events can be severa
thousand.

Inthefinal state, Z' decaysinto leptons and quarks.
Its partial decay width isequal to [21]

Mz — ff)
- Gemy.
6./21

_ [16.4 GeV for minimal model,
%11.8 GeV for right-handed neutrinos model.

2 2
NE[(g24) Ra+ (Gav) RY]

Because of the coupling constants, the lifetime of Z'in

Cross section, pb
0.35 T T T T

0.30

0.25

0.20

0.15

0.10

1
2800
Js, GeV

0.05 ! ' !
1200 1600 2000 2400

Fig. 4. Cross section o(e€'y — Z'e") of the model with
right-handed neutrinos as afunction of ./s; mz: = 800 GeV.
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Number of events

9000 ¢ T T T T
STl 2
7000 ERRI R N
5000 .
3000 .
_
000 1 1 1 1
800 1000 1200 1400 1600 1800
m, GeV

Fig. 5. Number of events of three models. 1—minimal
model, 2—right-handed neutrinos model, 3—Standard
Model.

the minimal model islonger than that in the model with
right-handed neutrinos.

4. CONCLUSIONS

In this paper, we have considered the production of
asingle Z' boson in the e-y reaction in the framework
of the 3-3-1 models. We see that with this process, the
reaction mainly occurs at small scattering angles. The
results show that if the mass of the bosonisin the range
of 800 GeV, then single boson production in e~y colli-
sions may give observable values at moderately high
energies. On a CLIC based on e-y colliders, with the
integrated luminosity L = 100 fb™, we expect observ-
able experimentsin future colliders. Because of the val-
ues of the coupling constants, cross sections in the
model with right-handed neutrinos are bigger than in
the minimal model.

In conclusion, we have pointed out the useful ness of
electron—photon colliders in testing the 3-3—1 models
at high energies viathe reaction

ey —eZ'.
If the Z' boson is not very heavy, this reaction offers a
much better discovery reach for Z' than the pair produc-
tionin e'—e or e—e collisions.
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Abstract—The process of Zeeman laser cooling of #Rb atoms in a new scheme employing a transverse mag-
netic field has been experimentally studied. Upon cooling, the average velocity of atomswas 12 m/s at abeam

intensity of 7.2 x 1012 s1 and an atomic density of 4.7 x 10%° cm=. © 2004 MAIK “ Nauka/Interperiodica’” .

1. INTRODUCTION

Cold atomic beams characterized by a small average
velocity of atomsat ahigh intensity and high phase space
density are widely used in various experimentsin atomic
beam optics, interferometry, and lithography [1, 2].
Low-energy atomic beams can be obtained by method
of laser cooling, which is known in several variants
employing the Zeeman effect [3, 4], frequency-chirped
laser radiation [5], isotropic light [6], and wideband
laser radiation [7]. Unfortunately, the process of cool-
ing by all these techniquesis accompanied by unavoid-
able increase in the transverse temperature of atoms
and, hence, by a decrease in the beam brightness and
phase space density.

An effective means of solving this problem is
offered by schemes employing atwo-dimensional mag-
neto-optical trap (2D-MQOT) ensuring both transverse
compression of the atomic beam and a decrease in the
transverse velocity of atoms [8-10]. The degree of
compression and cooling in 2D-MOT isusually limited
by afinitetime of flight of atomsthrough the apparatus.
Effective use of 2D-MOTs requires that atoms in a
beam would possess a sufficiently low longitudinal
velocity.

An dternative method for obtaining atomic beams
of high brightness and high phase space density is
based on the extraction of atoms from a three-dimen-
siond MOT (3D-MQT) [11], an advantage of this
device being a relatively high phase space density of
atoms. However, the use of thistechnique for obtaining
continuous atomic beams of high intensity islimited by
the large time required for the accumulation of atoms.

We have developed anew method for obtaining cold
atomic beams of high intensity (7.2 x 10 s?) and a
small average velocity of atoms (12 m/s) and have stud-
ied this method in application to a beam of 8Rb atoms.
The proposed technique employs the Zeeman laser
cooling of thermal 8Rb atoms in transverse magnetic

field [12]. Application of the transverse magnetic field
allowed us to obtain the optimum distribution of mag-
netic field along the beam axis, which is necessary for
effective cooling. Using the scheme with transverse
magnetic field, we succeeded in creating acompact and
effective Zeeman slower ensuring the formation of
intense beams of atoms with an average velocity aslow
as 10 m/s.

2. ZEEMAN LASER COOLING

2.1. Zeeman Sowing
in Longitudinal Magnetic Field

According to the method of laser cooling, an atomic
beam interacts with the counterpropagating beam of
laser radiation with a frequency tuned in resonance
with that of a given atomic transition. In the course of
deceleration, the absorption frequency exhibits a Dop-
pler shift relative to the laser radiation frequency and,
hence, the efficiency of the process tends to decrease.
The Doppler shift can be compensated using the linear
Zeeman effect. The scheme of atomic beam cooling by
laser radiation in amagnetic field, called Zeeman slow-
ing, isnow most widely used for obtaining slow atomic
beams.

An experimental setup for Zeeman slowing com-
prises a source of neutral atoms and a Zeeman slower
creating the required magnetic field distribution in the
zone of interaction between atoms and laser radiation.
The cooling laser radiation tuned in resonance with a
given atomic transition propagates in the direction
opposite to that of the atomic beam. In most Zeeman
slower schemes, atoms are decelerated only inside the
apparatus and do not interact with the laser radiation
outside. The required magnetic field configuration in
the Zeeman slower is created using amagnetic solenoid
with the distance between turns varied so asto provide
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for the optimum distribution of the magnetic field inthe
axial direction. The solenoid axis coincides with the
axes of atomic and laser beams (Fig. 18). It is possible
to use ring permanent magnets instead of the magnetic
coil. In both cases, the magnetic field vector in the Zee-
man slower is collinear with the wavevector of laser
radiation. The laser radiation possesses a o* polariza-
tion and excites transitions between the Zeeman sub-
levels corresponding to a change in the magnetic quan-
tum number Am= +1.

The Zeeman shift of the atomic transition frequency
is proportional to the magnetic field strength (magnetic
induction) B: AWyeaman = 0B, where a is a constant
determined by the Zeeman effect. The resonance inter-
action between atoms and laser radiation in the Zeeman
slower is determined by the condition

A+kV—aB = 0, o

where A = Wy — W, IS the detuning of the laser radia-
tion frequency w. from the atomic transition fre-
guency wy in a zero magnetic field, V is the atomic
velocity, and k = 217\ isthe wavevector. If the magnetic
field B variesin space so that condition (1) isvalid at all
points of the atomic trajectory in the course of deceler-
ation, then atoms occur in resonance with the laser radi-
ation.

The required magnetic field distribution in the Zee-
man slower can be readily determined asfollows. When
condition (1) isfulfilled at al points of the atomic tra-
jectory, the force of light pressure imparts a constant
acceleration a to an atom so that its velocity decreases
according to the law

V(z) = JVi-2az
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The acceleration is determined by the expression

_ hkT G
2M 1+ G+ (A+kV—aB)y*

)

where 2y is the natural width of the given atomic tran-
sition, M is the atomic mass, G = I/l is the parameter
of saturation of the atomic transition, | isthe laser radi-
ation intensity, and |, is the laser saturation intensity.
The latter quantity is given by the formula

_ oy
~ 210’

©)

|

where T = 1/2yisthe time of spontaneous decay and wy,
is the atomic transition frequency, and o is the absorp-
tion cross section.

Let the laser frequency be tuned precisely in reso-
nance to that of the given atomic transition. Using con-
dition (1), we obtain an expression for therequired field

profile:
B(2) = B, 1—2—azz.
Vo

The existence of a maximum possible acceleration for
a given atom in a magnetic field, a,, = 2kkl'/M (for
| > lg) poses a limitation on the maximum magnetic
field gradient [3],

dB7  _ AB8ma
o) < AV’ “)

where dB/dw = a~1. When the magnetic field gradient is
below maximum, the laser radiation intensity islimited
by the condition

Gs— L )
anxdB dz

VA dwdB

The minimum temperature T, of atoms that can be
achieved by means of Zeeman slowing, called the Dop-
pler cooling limit, is determined by the formula[13]

To = 5~ (6)

For 8Rb atoms, Tp = 141 pK and the corresponding
minimum atomic velacity is Vp = 0.12 m/s. However,
there are several other limiting factors that hinder
obtaining such alow velocity by Zeeman slowing. The
main difficulty is encountered in extracting low-energy

No. 4 2004



ZEEMAN LASER COOLING OF %Rb ATOMS IN TRANSVERSE MAGNETIC FIELD

atoms from the Zeeman slower [4]: a a low atomic
velocity (~10 m/s), the length of interaction between an
atom and the laser field on which the velocity is
reversed is as small as a fraction of a millimeter. For
this reason, intense atomic beams with particle veloci-
ties below 50 m/s could not be obtained by means of
Zeeman slowing.

2.2. Zeeman Sowing
in a Transverse Magnetic Field

The principal difference between the Zeeman slow-
ing in atransverse magnetic field and the scheme con-
sidered above is that the magnetic field vector is per-
pendicular to the wavevector of the cooling laser radia-
tion (in the conventional scheme, these vectors are
collinear). This mutual orientation of the magnetic
field B and the wavevector k determines, in turn, the
required polarization of the laser radiation, and the
electric field vector is perpendicular to the magnetic
field vector B (Fig. 1b). In this configuration, the laser
radiation can induce atomic transitionswith achangein
the magnetic quantum number Am=+1 or Am=-1.

The method of Zeeman slowing in the transverse
magnetic field offers two important advantages over the
conventional scheme: (i) simpler realization of the
required magnetic field distribution in the Zeeman
slower and (ii) higher accuracy of controlling thelength
of interaction between atoms and laser radiation, facil-
itating the extraction of low-energy atoms from the
Zeeman sower. Let us consider application of the new
scheme to cooling &Rb atoms.

The existence of hyperfine splitting of the ground
and excited states in alkali metal atoms leads to transi-
tions between various sublevels of the hyperfine struc-
ture. Excitation with single-mode laser radiation leads
to optical pumping of atoms to one sublevel of the
hyperfine structure of the ground state and drives these
atoms out of resonance with the laser radiation. For
8Rb atom (Fig. 2), a transition from the ground state
with F = 3to an excited statewith F' = 4isacyclic tran-
sition and the F' =4 — F = 2 transition is forbidden
inthe dipole approximation. Therefore, the former tran-
sition can be used for Zeeman slowing of &Rb atoms.

However, there is a small probability (6 x 10 for a
laser intensity on asaturation level) of atransition to the
sublevel with F' = 3 of the excited state. From this state,
the atom can equiprobably pass either to the ground
state sublevel with F = 3 or to an excited sublevel with
F = 2 spaced at 3 GHz from the sublevel with F = 3,
which will break cyclic interaction with the laser radia-
tion. A commonly accepted straightforward solution of
this problem consistsin using two-frequency laser radi-
ation. The dominant (cooling) laser mode (decelerating
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Fig. 2. Schematic diagram of energy levels of the D, line of
85Rb atom.

field) istunedinresonancetothe F =3 — F' =4 tran-
sition. The second (auxiliary) mode is tuned in reso-
nancetotheF =2 — F'= 3 transition so asto provide
for the optical pumping of the ground state sublevel
withF = 3.

For ®Rb atoms possessing therma velocities, a
Doppler frequency shift is greater than the distance
between sublevels of the hyperfine structure of an
excited state. For this reason, the positions of energy
levels in a magnetic field should be calculated for the
cases of weak and strong magnetic fields. In a weak
magnetic field, each component of the hyperfine struc-
ture of the ground and excited states of ®Rb atom splits
into 2F + 1 Zeeman sublevels characterized by the
magnetic quantum number me,

Um = HeOeMeB, ()

where g = 9.27 x 102* JT is the Bohr magneton and
Or isthe Lande factor.

In strong magnetic fields such that the energy of an
atom in the magnetic field is greater than the energy of
electron interaction with the nucleus, the character of
splitting changes significantly. A level characterized
by the magnetic quantum number J splits into (2J +
1)(21 + 1) sublevels, determined by the quantum num-
bers m, and m;, with the energies

Umm = Hggsm;B+Amm;, (8)

where Aisthe hyperfine splitting constant. For the 5Py,
level of 8Rb atom, A= 25 MHz.

Figure 3 shows the pattern of splitting of the mag-
netic sublevels of the ground (5S,,,) and excited (5P5,)

states of #Rb atom in a magnetic field B. As can be
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seen, the weak magnetic field approximation is valid
for most of the sublevels under consideration in afield
with B < 20 G, while the strong magnetic field approx-
imation is applicable when B > 80 G.

For the ground state level with F = 2, the Lande fac-
tor is negative, while for the level with F = 3 thisfactor
is positive. As a result, the Zeeman sublevels of the
ground state levels with the same magnetic moment
projection mg behave differently in response to increas-
ing magnetic field strength. As can be seen from Fig. 3,
the field dependences of the frequencies of transitions
between magnetic sublevelswith F =3 and F' = 4 sig-
nificantly differ from the analogous dependences for
the stateswith F =2 and F' = 3. Since the Doppler shift
for theselevel sisthe same, the complicated behavior of
magnetic sublevels in the applied magnetic field will
lead to aloss in efficiency of excitation for the second
mode of the two frequency laser radiation in the course
of Zeeman dlowing. The efficiency in interaction
between atoms and laser radiation can be increased at
the expense of the field-induced broadening. According
to our calculations, the parameters G; and G, of the
atomic transition saturation for the dominant (cooling)
laser mode and the second (auxiliary) mode, respec-
tively, must obey the condition G, > 0.1G;.

When %Rb atoms interact with a two frequency
laser radiation in the presence of a magnetic field, sev-
eral photon absorption—reemission cycles are sufficient
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for the optical pumping of the atom to the sublevels
withF =3, m-=3andF =2, m- = 2. Therefore, an anal-
ysis of the Zeeman dowing can be restricted to the
F=3m=3—F'=4m=4andF=2,m-=2 —
F'=3, mz = 3 transitions.

The number of cooled atoms at the output of the
Zeeman slower is, together with the average vel ocity of
atoms, among the most important parameters charac-
terizing the cooling efficiency. This number is deter-
mined primarily by two factors: (i) the fraction of the
initial velocity distribution of atoms cooled by laser
radiation in the Zeeman slower and (ii) the fraction of
the primary atomic flux injected into the Zeeman
slower. The former circumstance dictates the need for
increasing the velocity interval of atoms subjected to
cooling. However, this usually leads to a considerable
increase in the length of the Zeeman slower and,
accordingly, to a decrease in the flux of thermal atoms
injected into the system. An analysis shows that the
shorter the Zeeman slower, the greater the output flux
of cold atoms. In selecting the optimum Zeeman slower
length, it is also necessary to take into account the fact
that the real atomic velocity distribution in a beam is
depleted of the low-velocity fraction because of atomic
collisionsinthebeam [14]. With allowancefor thisfact,
we selected a magnetic field configuration in the Zee-
man slower such that atoms are decelerated beginning
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Fig. 4. Schematic diagram of the experimental setup.

with avelocity equal to half of the most probable value
for atoms in the beam.

3. EXPERIMENTAL SETUP

The experimental setup for studying the Zeeman
slowing of atoms is schematically depicted in Fig. 4.
The radiation sources were semiconductor lasers
employing the Littrov scheme. Both lasers operated in
a two frequency lasing regime ensured by resonance
excitation of the relaxation oscillations due to micro-
wave modulation of the injection current [15]. The
microwave modulation frequency was equal to the dif-
ference in the frequencies of F =3 — F' = 4 and
F=2— F'= 3 transitions (2916 MHz). The micro-
wave generator power was selected such that the inten-
sity at the fundamental frequency would be four times
that of thefirst side band. The dominant laser mode was
used to excitethe F = 3 — F' = 4 transition in ®Rb
atoms, while the one at the side band frequency excited
theF =2 — F'=3transition. The maximum | aser out-
put power was 15 mW. The laser beam diameter at the
Zeeman slower entrance and exit was 3.5 and 5 mm,
respectively. The cooling lasers were operating in the
regime of active frequency stabilization with respect to
the absorption signal in a cell placed in the magnetic
field [16]. The short-term laser frequency stability was
3 MHz, while the long-term frequency drift was within
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9 MHz/h. The probing laser frequency was chirped in
the vicinity of the frequency of theF =3 — F'=4
transition in ®Rb. The atomic velocity distribution was
determined using the signal of fluorescence detected by
aphotomultiplier.

In order to eliminate the influence of the cooling
laser radiation during the atomic velocity measure-
ments, the cooling laser was switched off by means of
an acoustooptical modulator (AOM). The fluorescence
signal was measured using a BoxCar electronic gate
(Fig. 5). In order to determine a stationary distribution
of the atomic velocities, the time for which the cooling
laser was switched on was sel ected sufficiently large, so
that dow atoms leaving the slower could reach the
detector before the laser was switched off. In our exper-
imental configuration, this time was 6 ms. With this
time delay, we measured the stationary distribution of
atomic velocities—the same as that established for the
constant laser irradiation of the atomic beam. In order
to reduce the mechanical action upon atoms from the
side probe laser, the probing laser radiation was
switched on by an AOM only during the fluorescence
measurements.

Since we employed the low-velacity part of the ini-
tial atomic velocity distribution for laser cooling, spe-
cial measures were taken to obtain a beam of thermal
atoms with undepleted low-energy fraction of the total
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velocity distribution. This was achieved by using a
source of ®Rb atoms anaogous to that described
in [17]. The atomic source temperature could be varied
from 20 to 500°C. The intensity of the atomic beam
formed with a4-mm aperture at a source temperature of
T=250°Cwas4.5 x 10'3 s (approximately half of the

MELENTIEV et al.

calculated value). Investigation of the primary atomic
beam characteristics showed that this source exhibited
no depletion of the low-energy part of the velocity dis-
tribution as a result of the beam scattering from vapor
inthe vicinity of the exit diaphragm of the atomic oven.

The magnetic field profile along the Zeeman slower
axis was calculated using the formula

B(2) = B, [1-2m=Z,
Vo

where a5 = 1.07 x 10° m/s? and the initial velocity is
V, = 150 m/s. The Zeeman slower comprised two
22-cm-long aluminum stripe combs cut to various
depths (Fig. 6). The variable cut depth alowed the
required field profile along the axis to be obtained
because the current passed only viaa continuous part of
the metal stripe. The comb configuration provided for
an increase in the effective mass and the surface area,
thus increasing the heat exchange rate under ultrahigh
vacuum conditions.

Figure 7 compares the calculated and experimen-

tally measured field profiles along the Zeeman slower
axisfor acurrent of | = 170 A. As can be seen, the max-

Rb atoms

@

Laser
radiation

(b)

Fig. 6. The Zeeman slower: (@) schematic diagram; (b) general view.
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imum deviation of the measured magnetic field strength
from the calculated profile amountsto AB = 15 G. This
deviation may lead to adecreasein the Zeeman slowing
efficiency as aresult of the laser radiation being out of
resonance with the atomic transition frequency. The
compensation of the deviation of the magnetic field
strength from that required for the effective cooling was
achieved by increasing the laser radiation intensity. To
this end, the parameter of the atomic transition satura-
tion must be not less than

G=14.

The electric resistance of the Zeeman slower
(together with connecting leads in the vacuum cham-
ber) was R= 3 x 1072 Q. For acurrent of 170 A passing
through the device, the electric power converted into
heat amounted to 90 W. In order to reduce the influence
of Joule heating of the Zeeman slower on the residual
gas pressure in the vacuum chamber, the current was
supplied in a quasiperiodic regime, with the current
switched on for 2 s and off for 8 s. The residual gas
pressure in the vacuum chamber was 3 x 107~ Torr.

For acorrect analysis of the measured atomic veloc-
ity distributions, it is very important to know the posi-
tion of zero velocity. For this purpose, a part of the
probing laser radiation was introduced perpendicularly
to the atomic beam and the corresponding fluorescence
component was measured by a separate photomulti-
plier. Since this scheme eliminates the Doppler broad-
ening, the resonance between the atomic fluorescence
signal and the probing radiation indicated the position
of the exact resonance corresponding tothe F =3 —
F' =4 transition, thus determining the atomswith azero
velocity. It should be noted that deviation of the angle
between the probing laser radiation and the atomic
beam from 90° leads to an error in the zero velocity
determination. In order to minimizethiserror, the prob-
ing laser radiation was adjusted to cross the atomic
beam at an angle of about 89° and reflected back by a
mirror. This resulted in the appearance of two peaks
equally shifted from the zero velocity position. The
accuracy of zero velocity calibration in this schemeis
determined by the uncertainty of matching of the for-
ward and reflected laser beams. In our experiments, this
uncertainty led to an error below 2 m/sin the velocity
determination. We have also used an aternative tech-
nique for the zero velocity calibration based on the
monitoring of nonlinear absorption resonancesin acell
with Rb vapor.

4. EXPERIMENTAL RESULTS

Figure 8 shows the atomic velocity distributions of
abeam of #Rb atoms upon Zeeman slowing at various
detunings A of the laser radiation frequency. The
atomic source temperature was T = 250°C. A peak in
the low-velocity part of the distribution corresponds to
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300

atoms decelerated asaresult of the Zeeman slowing. As
can be seen from these data, the average velocity of
atoms in this peak, as well as the peak amplitude,
depend on the laser frequency detuning. The closer the
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Fig. 9. The effect of magnetic field strength in the Zeeman
slower on the atomic velocity distribution. The maximum
cooling efficiency is observed for the magnetic field
induced by the current | = Iy = 170 A.

cooling laser frequency to that of the atomic transition,
the lower the average velocity of cooled atoms.

The data in Fig. 8 show that the amplitude of the
peak of cold atoms remains virtually unchanged for the
laser frequency detunings corresponding to the average
velocities of cooled atoms above V = 12 m/s. The peak
of cold atoms accounts for about 7% of the total num-
ber of atomsin the initial velocity distribution, which
agrees with theoretical estimates. For the average
velocity below 12 m/s, the peak amplitude drops with
decreasing detuning A. A minimum average velocity
for which the peak contains a significant fraction of
atoms from the initia distribution is 10 m/s (A =
-39 MHZz). This decrease in the low-velocity peak
amplitudeis explained by adecreasein the efficiency of
detection of low-energy atoms, which is caused by a
large divergence of the beam of atomswith longitudinal
velocities below 15 m/s. Good agreement of the exper-
imentally observed numbers of cooled atoms with the
results of calculations showed that the proposed
scheme provides for the effective extraction of cold
atoms from the Zeeman slower.

Inthe spectraof Fig. 8, afull width at half maximum
(FWHM) of the peak of cold atoms amounts to AV =
28 + 2 m/s. This value is significantly greater than the
minimum width determined by the Doppler cooling
limit. There are several factors responsible for the final
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(and higher than the Doppler limit) temperature of the
atomic beam. According to the results of our calcula-
tions, spatial inhomogeneity of the laser radiation
intensity leads to a finite width of the atomic velocity
distribution on alevel of 6 m/s, spatial inhomogeneity
of the magnetic field leads to additional broadening of
about 3 m/s, and a contribution due to the impulse dif-
fusion amountsto 0.5 m/s. Thetotal cal culated width of
the low-velocity peak is AV = 10 m/s, which corre-
sponds to a temperature of AT = 1 K. This estimate is
lower than the value observed in experiment. The dis-
crepancy is related to a finite length of the detection
zone, in which atoms continue to interact with the cool -
ing laser radiation. As a result, the average velocity of
atoms at various points of the detection zone exhibits
various values.

In order to study the dependence of the slowing effi-
ciency on the magnetic field strength in the Zeeman
slower, we varied the current passing through the sys-
tem, all other parameters being fixed. The correspond-
ing velocity spectra are presented in Fig. 9. As can be
seen, the curves measured for the current exceeding
lopt = 170 A exhibit two peaks. Thisisrelated to the fact
that the process at high currents does not obey the con-
dition (4) for the maximum possible magnetic field gra-
dient during Zeeman slowing, which breakstheinterac-
tion between atoms and laser radiation. For currents
below the optimum value, the magnetic field gradient
drops and, hence, the cooling efficiency decreases.

We have experimentally investigated the depen-
dence of the flux of cold atoms on the laser radiation
intensity |, . 1N Our experiments, the maximum laser
radiation intensity corresponded to a saturation param-
eter of G = 30. A twofold decrease in this value reduces
the detected flux of cold atoms approximately by half,
while the average velocity of cooled atoms remains
unchanged. A fourfold decrease in the value of |
leads to a significant decrease in the number of cold
atoms, while the average velocity of these atoms
increases by a factor of about 1.4. This behavior is
explained by the fact that the magnetic field profile in
the Zeeman slower deviated from the ideal shape. By
increasing the laser radiation intensity, it was possible
to compensate for the nonideal magnetic field distribu-
tion by means of field-induced broadening, which led
to adecrease in the average velocity and an increase in
the flux of cold atoms. According to the estimates pre-
sented above, the imperfect magnetic field distribution
can be compensated provided that the atomic transition
saturation parameter is G = 14. When the saturation
parameter for the dominant (cooling) laser mode in our
experiments was G, = 14, the corresponding value for
the second laser mode was as small as G, = 3.5 that was
insufficient for the effective Zeeman slowing.

We have a so studied the dependence of the Zeeman
slowing efficiency on the laser radiation polarization
and on the mutual orientation of electric vector E and
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magnetic field B. As expected, any deviations of the
laser radiation polarization from the optimum (linear)
reduced the efficiency of Zeeman slowing. These devi-
ations lead to a decrease in intensity of the laser radia-
tion component exciting the atomic transitions with
Am = +1 and, hence, to adrop in the cooling efficiency
(Fig. 10).

5. PARAMETERS
OF A COLD ATOMIC BEAM

We have determined the main parameters of the cold
atomic beam, including the intensity, density, diver-
gence, brightness, and phase space density. The inten-
sity of abeam of cold atomswith an average velocity of
12 m/s (at an atomic source temperature of 250°C) was
3x10% st We studied the possibility of improving this
parameter by increasing the source temperature. Asthe
source temperature was increased to 400°C, the cold
atomic beam intensity exhibited a growth by afactor of
2.4, but further increase in the source temperatureled to
a decrease in the beam intensity. This is related to the
primary beam depletion of the low-velocity atoms as a
result of their scattering from fast atoms. Thus, the
maximum intensity of the beam of cold atoms in our
experiments was |, = 7.2 x 10'? s, The correspond-

ing density of cold atoms was Ny = 11a/SV = 4.7 %
109 cm3,

The brightness of an atomic beam is defined as

Re— L
T( AX)"AQ

where Axg isthe transverse size of the beam and AQ is
the solid angle in which atoms are confined. The latter
solid angle is determined as AQ = T(AV/ V)%, where
AV is the width of the transverse velocity component

distribution and V|, is the average value of the longitu-

dinal velocity component. The maximum transverse
velocity of atoms was determined by the beam-forming
diaphragms and amounted to V; = 4.5 m/s. Therefore,

for an average longitudinal velocity of V| = 12 m/s,
cold atoms move within a solid angle of AQ = 0.141t
For the maximum atomic flux of I, = 7.2 x 102 s%,

the brightness amountsto R= 1.3 x 10*® (sr m?s)™. The
spectral brightness of an atomic beam is defined as

R ]
B, = R—L.
Ap

In our experiments, the spectral brightness was B, =
1.7 x 10*® (sr m? s)™*. The phase space density of an
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slowing efficiency.
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Fig. 11. The flux and average velocity of cooled atoms
obtained in this study in comparison to the results obtained
by other researchers using cooled atomic beams (m) and
atomic beams from 3D-MOT (e®): This study; Hannover
Univ. [8]; PTB [20]; Australia Univ. [21]; Bonn Univ. [19];
Stanford Univ. [9]; FOM [23];Colorado Univ. [11].

atomic beam is given by the expression

Tt

h?.
m’V

A = B,

The maximum phase space density observed in our
experimentswas A =2.4 x 10714,

Figure 11 shows a comparison of the parameters
(plotted as the beam intensity versus average atomic
velocity) of cold beams obtained in various research
centers. As can be seen from these data, the flux of cold
atoms achieved in this study is more than two orders of
magnitude higher than the beam intensities reported by
other researchers. Thisincrease in the total flux of cold
atoms has become possible for two reasons: first, dueto
the implemented scheme with transverse magnetic
field, which allowed the length of the cooling tract to be
significantly reduced; second, due to the use of an
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Fig. 12. The brightness and phase space density of cooled
atomic beams obtained in this study in comparison to the
results obtained by other researchers: This study; Australia
Univ. [21]; LCV Univ. [22]; Bonn Univ. [19]; Colorado
Univ. [11]; Stanford Univ. [9]; FOM [23]; Hannover Univ. [8].
Arrows show the values of brightness and phase space den-
sity of a cold atomic beam predicted for the proposed
method in combination with 2D-MOT cooling: (A) for the
transverse Doppler cooling; (B) for transverse sub-Doppler
cooling.

atomic source providing for an intense primary thermal
beam with undepleted low-velocity fraction of the total
velocity distribution.

We have estimated the possibility to further increase
thelevel of brightness and phase space density of acold
atomic beam achieved in our experiments. This can be
provided by the two-dimensional magnetooptical trap
technique (2D-MOT). The density of atoms in a
2D-MQT is limited by the following physical factors:
(i) dipole—dipole interaction between atoms; (ii) repul-
sive potentia created by scattered laser radiation; and
(i) attractive potential related to the absorption of laser
radiation [18]. The large intensity of a cold beam
achieved in our case suggests that the most important
factor determining the transverse size and temperature
of the beam in the course of transverse laser cooling is
reabsorption of photons inside the atomic ensemble.
The multiple reabsorption of photons leads to the heat-
ing of atoms and to a decrease in the compressiveforce,
so that the maximum possible density of atoms in the
beam is restricted to a value on the order of Ny, =

10%2 cm~3 [18]. Taking into account this limitation and
considering the maximum cold beam intensity and the
average atomic velocity obtained in our experiments, a
minimum possible transverse size that can be achieved
by means of the 2D-MOT technique is Ax; = 430 pm.
Upon cooling atomsina2D-MOT down to the Doppler
limit of laser cooling, the angular divergence of the
atomic beam is 2 x 107 rad, while reaching sub-Dop-
pler temperatures of about 3 UK allows the divergence
to be reduced down to 2.7 x 1073 rad. Therefore, appli-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

MELENTIEV et al.

cation of the 2D-MOT technique in our case will alow
the brightness and phase space density to be increased
by afactor of 3 x 10* and 1.5 x 106, respectively.

Figure 12 presents a summary of data on the bright-
ness and phase space density of cooled atomic beams
obtained in various research centers using the 2D-MOT
technique. For the comparison, we have also plotted the
brightness and phase space density of the atomic beam
obtained in this study, as well as expected values of the
phase space density that can be achieved using a
2D-MOT technique in the case of Doppler (point A)
and sub-Doppler cooling (point B). As can be seen, our
cold beam parameters obtained even without using the
2D-MQT technique are comparable to the analogous
parameters achieved due to 2D-MOT. The arrows in
Fig. 12 show the calculated values of brightness and
phase space density of a cold atomic beam obtained by
the proposed method in combination with 2D-MOT.
According to Figs. 11 and 12, the proposed method of
obtaining cooled atomic beams significantly improves
the phase space density of a beam.

6. CONCLUSIONS

Using the method of Zeeman laser cooling in a
transverse magnetic field, we obtained a source of cold
8Rb atoms with abeam intensity of 7.2 x 102 st at an
average atomic velocity of 12 m/s. The density of cold
atoms in the source was 4.7 x 10%° cm3,
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Abstract—The feasibility of phase control over above-threshold tunnel ionization and subsequent recombina
tion emission in two-frequency laser fieldsis studied. It is shown that, in such fields, we can control theinstants
of ionization t, (within optical cycle T) and recombination t,. The conditions that minimize the characteristic
times oty < T and &ty << T, within which effectiveionization and recombination occur, were found. Phase control
allows recombination radiation to be generated with the selection of a narrow spectral range, while additional
high-frequency “background illumination” sets up high harmonic “amplification” conditions. It was shown that
special two-frequency pumping with elliptically polarized radiation can generate coherent electromagnetic
pulses of attosecond width. The width of the pulses decreases as the intensity of pumping increases and can
reach subattosecond values. Experimental generation of such pulses may lead to a breakthrough in the devel-
opment of new methods for femto- and attosecond diagnostics of fast processes. © 2004 MAIK “ Nauka/ I nter-

periodica” .

1. INTRODUCTION

The feasibility of generating extremely narrow
coherent radiation pulses 10°-10" s in width has
been extensively studied to develop effective methods
of femto- and attosecond metrology [1]. Current sug-
gestions for generating femto- and attosecond pulses
are related to the generation of high harmonics in the
above-threshold tunnel ionization of atoms in strong
laser fields [1, 2]. Generally, the spectrum of high har-
monics is a broad slowly sloping plateau that extends
from the pumping frequency wy to the “cutoff” fre-
quency Q = U; + 3.17U,,, where U; is the ionization
potential of the atom and U, is the ponderomotive
potential of pumping radiation. It should be noted from
the outset that a certain part of this spectrum is only
needed for applications. Subfemtosecond pul ses can be
generated if the phase matching condition is satisfied
for a group of harmonics from the plateau [3] or by
applying a polarization gate [4]. The latter technique
uses pumping radiation with time-dependent ellipticity.
This alows the return of a photoelectron to the parent
ion (and, accordingly, the duration of recombination
radiation) to be controlled, because such areturnisonly
possible at the instants when the pumping radiation is
linearly polarized. In both cases, the duration of recom-
bination radiationisty = T = A/c (T and A are the opti-
cal cycleduration and the pumping wavel ength, respec-

tively, and c isthe speed of light), which correspondsto
avalue on the order of one femtosecond.

Simultaneously, methods for measuring the width of
such short pulses have been under development [1, 5].
These methods use the idea of the phase control of
above-threshold tunnel ionization, that is, the control of
the ionization instant (the instant of electron transfer
into the continuum) within the optical radiation period.
Phase control is possible because an electron produced
in tunnel ionization begins its motion in the continuum
(after the subbarrier evolution stage) at a zero velocity
along the instantaneous direction of the electric pump-
ing field. The motion of the electron in the continuum
includes both oscillatory and drift components. The
drift velocity of the electron containsinformation about
the instant of atom ionization [5] and is recorded by a
detector after the photoel ectron ceases to interact with
radiation. In this work, we study the feasibility of the
phase control over the generation of high harmonicsin
two-frequency fields. It is shown below that the use of
two-frequency radiation allows us:

(2) to control the spectrum of high harmonic gener-
ation, for instance, generate recombination radiation in
a selected narrow spectral range rather than as a broad
plateau;

(2) to contral the duration of recombination radia-
tion, which opens up a real possibility of generating
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coherent pulses of width 1, ~ 1-10 attoseconds (1 as =
108 g);

(3) to create conditions for the “amplification” of
high harmonics.

The recombination radiation that arisesin the tunnel
ionization of atomsfollowed by electron recombination
with the parent ion is described by the wave equation
with a source, which is the second derivative of the
field-induced dipole moment D(t) with respect to time.
The moment D is calculated by the Schrédinger equa-
tion, which, in particular, determines its dependence on
time t. This dependence (along with propagation
effects) controls the duration of recombination radia-
tion. In this work, propagation effects, which are
described by the wave equation and can both broaden
and narrow recombination pulses, are not considered.
We concentrate on single-atom response D(t) calcu-
lations.

2. A QUANTUM MODEL
OF HIGH-ORDER HARMONIC GENERATION
IN TWO-FREQUENCY FIELDS

The quantum model of high-order harmonic gener-
ation by one atom in a monochromatic field described
in[6, 7] can be generalized to more complex pumping,
for instance, pumping that includesradiation at two dif-
ferent frequencies. We will use the same approximation
asin[6, 7], which corresponds to the tunnel conditions
of the ionization of atoms. Under these conditions,
high-order harmonic generation admits a quasi-classi-
cal description and clear physical interpretation as a
process including three stages [8], nhamely, the ioniza-
tion of an atom proper (photoel ectron transfer into the
continuum), kinetic energy gain by the electron to € ~
U, (the above-threshold ionization stage), and the
recombination of the electron with the parent ion with
the emission of aphoton at the frequency w,=kU, + U;.
The k factor varies in the range 0—3.17 depending on
the phase (instant) of ionization ¢, which resultsin the
generation of abroad spectrum of high harmonics. The
maximum generation frequency Q corresponds to the
ionization phase ¢ = 1710 counted from the pumping
field maximum. Also note that, because the generation
of high harmonics is an essentially nonlinear process,
the “fine” structure of the spectrum of high harmonic
generation is complex, and, if narrow pumping pulses
are used, the spectrum is continuous.

Asin [6, 7], we consider pumping radiation of a
fairly high intensity | at which atoms experience tunnel
ionization. This alows us to ignore the influence on
ground state ionization of intermediate resonances,
which correspond to the transition to the continuum
from all the other bound states [9]. Also note that the
probability of recombination into the ground atomic
stateis much higher than that of recombination into any
other discrete state [10]. We can therefore ignore the
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contributions of all discrete states except the ground
state [OCto the wave function W(r, t),

W(r, 1) = a®)obr ¥, W= J'dpbp(t)IIOD (D

where a(t) and b,(t) are the amplitudes of the ground
atomic state and continuum states [pthat correspond to
electron states with momentum p. On the other hand, if
the intensity of radiation is insufficient for effecting
above-the-barrier ionization, and the el ectron beginsits
evolution in the continuum fairly far fromthe parention
(at the far boundary of afairly broad potential barrier),
then the influence of Coulomb forces on the motion of
the electron in the continuum can be ignored. We aso
ignore bremsstrahlung against the background of
recombination radiation. The introduced approxima-
tions alow the Schrédinger equation to be solved (the
procedure for solving this equation is described in [6]).
The amplitude of the p state of the continuum can be
represented in the form

t

bp(1) = | Idtoa(to)E(to)dBa sk

2
x eXp[—IS(p, t! 1:0)] ’

where d(p) = [p|r|OLs the matrix element of the dipole
moment of the transition from the ground state of the
atom to the p state of the continuum and E(t,) and A(t)
are the amplitudes of the pumping radiation electric
field and vector-potential at the instant of ionization t,

aptto)-fthu 2o A‘”}E 3

Note that the contribution to the b, amplitudeis formed
during the whole effective ionization time [the integral
over ionization instantst, in (2)], which causes the for-
mation of alongitudinal structure of the wave packet in
the continuum. Substituting (2) into (1) allows us to
write the wave function W, in the form

t

We(r,t) = iJ’dtoB(pO, to) F(r, t,ty)
0

4)
X eXp[—iS(pm t, tO) + IpO |j‘] '

where

B(Po to) = a(to) E(to)dpo—

A(to)D
c O

is the amplitude of the electron wave packet at the
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instant t, and the function

~ d(p—A(to)/c)
f(r o) = [P g —R )70 5)

x exp[—iS(p, t,t5) +iS(po, t, o) —ipe [F] [p O

describes the shape and phase of the packet (packet
spreading effects). In these equations, pq(t, ty) is the
momentum that makes the major contribution to inte-
gra (5) and corresponds to the stationary phase deter-
mined by the condition dS0p = 0. The stationary phase
can be used because the characteristic scale p? 0 1/(t —t,)
of changesin action Sat times on the order of the opti-
ca period is much smaller than the p? O U, scale of
changes in the matrix element d. Further, the explicit
form of the packet f(r, t, ty) will be of no interest to us.
It is, however, important that its center, which corre-
sponds to momentum p,, moves along a classical tra-
jectory (this directly follows from the condition
0950p = 0). The packet width will be described by a
fairly strict equation [see Eq. (7) below] valid for the
tunnel ionization conditions.
Taking (4) into account, the dipole moment

D(t) = W*(r, t)|r |¥(r, )0

is obtained in the form

t

D(t) = a (t)Idto B(Po: to) ©)
0

x[r|f(r,t, to)exp[—i1S(Po t, ty) +ipy (] OF C.C.

Equation (6) describes the quasi-classical evolution of
the photoelectron during above-threshold tunnel ion-
ization and admitsaclear physical interpretation. At the
first stage of high harmonic generation, the electron
wave packet is formed in the continuum. The packet
amplitude B(p,, tg) O a(ty) is determined by the proba-
bility W, of tunnel ionization at time t, and takes into
account ionization saturation (depletion of atomic
states). Analytic results for dipole moment (6) were
obtained in [6] in the approximation of acomparatively
low pumping radiation intensity, at which the probabil-
ity of ionization was small. Thisled to the Keldysh for-
mula for the dependence of the probability of tunnel
ionization on the instantaneous pumping field value F.
The W(F) dependence can, however, be substantially
different in strong laser fields. The modification of the
ionization probability W, in strong fieldsis discussed in
detail in [11] (also see [12]). Independent ionization
probability calculations can be helpful in applying (6).

At the next stage of tunnel above-threshold ioniza-
tion, the wave packet experiences evolution in the con-
tinuum under the action of pumping radiation. The
f(r, t, tp) function describes the shape of the packet (its
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spreading) and the evolution of its center. In strong (but
not relativistic) fields, the electron path in the contin-
uum L ismuch larger than the size of itswave packet o;
at the sametime, L < A. We can then use the quasi-clas-
sical approach, and the evolution of the center of the
wave packet in the continuum can be described by a
classical equation of motion; that is, classical trajecto-
ries for the wave packet center can be considered. For
the Coulomb potential (when the electroniscloseto the
parent ion), the applicability of such an approximation
is not obvious. It can, however, be used because the
electron largely gainskinetic energy (which isessential
to high harmonic generation) far from the parention. In
addition, thefirst return of the photoel ectron to the par-
ent ion makes the major contribution to high harmonic
generation, which allows usto assume that the shape of
its wave packet does not change significantly during its
evolution. At the same time, the effect of wave packet
spreading is of importance. It can be described as the
spreading of afree particle packet but at aV, rate deter-
mined by tunnel ionization [13],

a(t) = Jo(to) + V2 (t—t5)%,

V. = g2 —1/4 ()
sp~ i (2U|) ’

where F; = F(t,) is the pumping field at the instant of
ionization. We suggest to use the Vg, = 1 nm/fsvalue (at
pumping radiation intensities | = 10107 W/cm?),
which closely agrees with the experimental value
from [4].

During its evolution in the continuum, the electron
gainsthe energy € = 0S0dt fromthefield. After returning
to the parent ion, it can recombine and emit a photon
with theenergy wy, = U, + €. The [0r|...Omatrix element
in (6) determines both the probability of recombination
and the duration of recombination radiation from asin-
gle atom, because this matrix element is only nonzero
when the electron closely approaches the parent ion
(when the electron wave packet and the wave function
of the ground state of the atom noticeably overlap).
Lastly, note that the integral in t, in (6) describes the
coherent contribution to high harmonic generation of
electrons released from an atom at varioustimest,, that
is, the longitudinal structure of the wave packet.

Such a clear physical interpretation of high har-
monic generation, which is possible because the pro-
cess is quasi-classical, allows usto extend the applica-
bility of the high harmonic generation model suggested
in [6] to fairly high pumping radiation intensities [11],
takeinto account the three-dimensional character of the
evolution of the electron in the continuum, and consider
pumping fields of arbitrary configurations [14]. In the
next sections, we discuss pumping by combined radia-
tion whose components have different frequencies and
are differently polarized.
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3. GENERATION
OF RECOMBINATION RADIATION
IN A TWO-FREQUENCY FIELD
WITH DIFFERENT COMPONENT
POLARIZATIONS: GENERATION
OF ATTOSECOND PULSES

It is known that usual circularly polarized pumping
does not cause harmonic generation [4]. This is so
because, after ionization, the photoelectron goes far
away from the parent ion and never returnstoit; that is,
at all ionization instants, there are no collisional elec-
tron trajectories. Conversely, collisional trgjectories
exist at any ionization instant if pumping radiation is
linearly polarized. Let us show that, under special two-
frequency pumping conditions (including circularly
polarized fields), high harmonic generation is possible
and it becomes feasible to control generation parame-
ters, recombination radiation duration in particular.

Consider two-frequency pumping, which is a com-
bination of a high-frequency elliptically polarized field
and a low-frequency linearly polarized field,

F = Fo(%a/1—0a’cos(wt) + yasin(wt)) + Fy., (8)

Fae = —BFo(R1-y?+9y), 9)

where F,, w, and a are the amplitude, frequency, and
ellipticity of the high-frequency pumping component;
X and § aretheunit vectors; and 3 and y are the param-
etersthat determinethe relative amplitude and direction
of the linearly polarized low-frequency pumping com-
ponent F.. The role of the low-frequency component
can be played by CO, laser radiation synchronized with
the high-frequency field. During one optical cycle of
high-frequency radiation at A ~ 1 um, the CO, laser
field can be considered constant. For simplicity, we
only consider collinear propagation of the low-fre-
guency and high-frequency fields. As has been men-
tioned above, the evolution of the photoelectron in the
continuum (in tunnel ionization) can be described by
classical trgjectories of the center of the electron wave
packet. Solving the classical equations of motion in
field (8) with zeroinitial conditions for the coordinates
and velocity of the electron [7] leads to the following
trajectories:

X(t) = —J1-0a®

(10)
x [ cost — costy + (t —to) sinty + By (t —t5)7],

y(t)
= —a[sint —sint,— (t—ty) costy + Po(t —t,)],

(11)
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where

_B 1=y _ By
Bl—z/l_az, B, = 51,

Here and throughout this section, we use dimensionless
variables, namely, time is normalized with respect to
V/w; coordinates, with respect to (eFy/muwy); velocity,
with respect to (eFy/mw); and energy, with respect to
the ponderomative energy of the high-frequency pump-

ing component U, = ’F /4mu?, wheremand e are the

mass and charge of the electron. For collisional tra-
jectories, both x and y tend to zero simultaneously at
timet,.

It followsfrom (10) and (11) that, in contrast to one-
frequency pumping, collisional electron trajectories
(seeFig. 1) only exist for certain sets of the a, 3, and y
parameters and certain ionization instantst,. It isdesir-
able that the following requirements be met when
selecting these parameters: The electron energy €, at the
recombination instant should be higher (for generating
harmonics of higher orders), the time spent by the elec-
tron in the continuum should be shorter (this decreases
wave packet spreading and increases recombination
effectiveness), the ratio between the amplitudes of the
low- and high-frequency fields should be smaller
(because of the differencein the power of 1 and 10 pm
lasers), and a single collisiona trajectory should exist
during the whole period of pumping (for generating a
single recombination radiation pulse). An analysis
of (10) and (11), however, showsthat there is no unam-
biguous solution to this problem, namely, there exist
many (generaly, infinitely many) various sets of the a,
B,y, and t, parameters that lead to collisional trajecto-
ries. Of the greatest importance for generating the
shortest recombination radiation pulses is to minimize
the time during which the electron occurs close to the
parent ion, that is, in the region

Ar <o(ty), (12
where dipole moment (6) isnonzero. Thisisattained by
increasing both the kinetic energy of the electron at the
instant of recombination g, (thisenergy islimited by the
intensity of radiation used for pumping) and the rate of
the “transition” from collisional to noncollisional elec-
tron trgjectories. The latter factor isin effect when the

dr(t)/dt, derivative, wherer = N y2 , isfairly large,
because, at given a, [3, and y parameters, the ionization
instant t, determines whether or not the electron trajec-
tory iscollisional. Thetime of electron interaction with
the parent ion can be substantially decreased by select-
ing the pumping two-component field (8) parameters
that determine the spatial orientation of the electron
wave packet at the instant of its return to the nucleus.
The packet can be oriented in such away that its over-
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Fig. 1. Time dependence of photoel ectron coordinatesin the

continuum [see (10), (11)] for case Yat o = 1//2, B =
-0.276, y=-0.96, and ty = 1710.

lap with the parent ion region (and, therefore, recombi-
nation) would only involve a small longitudinal packet
part that corresponds to a short interval of ionization
instants ot, < 21t The time of interaction with the ion
(and the duration of recombination) is then determined
by the cross size of packet (7).

We found two families of solutionsto (10) and (11)
that give large dr(t,)/dt, derivative values. We denote
them by X and Y. Case Y is shown in Fig. 1. It corre-
sponds to electron—on collision instants (recombina
tion instants) t, that are found from (10), according to
which x(t,) = 0. We then have

dx(ty) _
dt, =0,
(13)
dy(ty) _ 9y , 9y ot _
dt, ~ at, atat,

The first equation in (13) is a corallary to the x(t,) = 0
equation, which determines the t,(t,) function, and the
second equation ensures a large dr(t)/dt, derivative
value. The condition that must be satisfied by the a, 3,
and y pumping parameters and the ionization instant t,
for the collisional trajectory to exist and be character-
ized by the shortest time during which the electron
occurs close to the parent ion is determined by (13) and
(10), (11),

sint,—sint, = 2p,1, (14
wheret =t,—t,.
Case X corresponds to the opposite situation,
dy(te) _ dx(t) _
a, S o 0% (15)

The a, B, y, and t; parameters must then satisfy
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the condition

cost, — cost, = —2f3,T. (16)
Neither (14) nor (16) determines a unique set of the a,
B, v, and t, parameters at which collisional trgjectories
exist. They, however, considerably facilitate seeking
such sets with a computer.

The above reasoning suggests the following proce-
dure. Equation (14) or (16) is used to determine a suit-
able set of the a, 3, and y pumping parameters and ion-
ization instant t,. Given these pumping parameters,
computer simulation of electronic trajectories (10),
(11) is performed for various ionization instants in the
vicinity of t, to determine the maximum deviation of
the ionization instant &t, (and the corresponding maxi-
mum deviation of the recombination instant ot,) at
which recombination condition (12) is still satisfied;
that is, at which the deviation of the electronic trajec-
tory from the parent ion is smaller than the electron
wave packet width. Photoelectrons that appear in the
continuum outside the ot interval do not collide with
the parent ion and do not contribute to recombination
radiation. This procedureis used to determine the “ele-
mentary” duration of recombination radiation (radia-
tion of asingle atom) in the process of high harmonic
generation, namely, T, = Oty.

Below, we present the results of numerical experi-
ments performed for cases X and Y to determine the
duration of recombination radiation 1, for high har-
monic generation under two-frequency pumping condi-
tions (8), (9). Let the high-frequency component be
laser radiation with a wavelength of A = 1-0.8 um and
intensity of I, = 10¥-10Y W/cm?. Such radiation
intensities have already been used in experimental and
computational studies of above-threshold ionization
and high harmonic generation on ions (the use of ions
ensures tunnel ionization, which is essential for high
harmonic generation). For instance, the emission of
high harmonics by He* ions under pumping by radia-
tion of intensity | = 10'" W/cm? was calculated in [15].
In [16], lasers with radiation intensity | ~ 10%-
10%" W/cm? were used to effect the tunnel ionization of
noble gases (Ar, Kr, Ne, and Xe€). High by charged ions
(with chargesup to Z = 8) were observed. High harmonic
generation by such ions under pumping with intensity
| ~10%-10" W/cm? was calculated in [17, 18].

Case X. The set of parameters that satisfied condi-
tion (16) for pumping (8), (9) with intensity I =

10Y7 W/cm2 was a = 1/./2 (this corresponded to circu-
larly polarized high-frequency radiation), B = 0.4, y =
0.65. The only ionization instant (during the optical
cycle of the high-frequency field) was t, = —175 (t, was
counted from the high-frequency field maximum).
Numerical examination of electron trajectories (10),
(11) with such parameters gave the recombination
instant t, = 1.2m and the kinetic energy of the electron
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at the recombination instant €, = 3.6. The correspond-
ing deviations of t, and t, [at which recombination con-
dition (12) was still satisfied] were ot, = ot, = 0.02.
Such a &t, value corresponded to the dimensional dura-
tion of recombination radiation by a single atom 14 =
10 as. Note once more that the obtained set of the a, 3,
y, and t, parameters, which ensures the generation of
such short pulses, is neither unique nor optimal. It fol-
lows that the actual T, (at the selected high-frequency
radiation parameters) can be still shorter. Also note that
a consideration of pumping with intensity Iz ~ 10—
108 W/cm? generally requires taking into account the
influence of the magnetic field of radiation on electron
trajectories [11], which, however, does not change the
14 value substantially, although the exact parameter val-
ues [and condition (16)] can change.

Case Y. Equation (14) gave the following set of
parameters for pumping with I, = 10 W/cm? a =

1.2, B=-0.22,y=-1, and t, = 0. The simulation of
electron trgjectories (10), (11) with these parameters
gavet, = 21, g, = 4, and oty = ot, = 0.25, which corre-
sponded to recombination radiation duration T, =
100 as. Increasing the | intensity decreases 14. For
instance, the parametersfound for I, = 5 x 10" W/cm?

werea = 1/./2, B = —0.276, y = —0.96, and t, = T7'10.
These parameters gave t, = 1.9m, €, = 4.5, ot, = 0.01,
and d&t, = 0.002, which corresponded to the recombina-
tion radiation duration 1, = 0.9 as. Obtaining such
pulses experimentally would mean a breakthrough in
the development of new methods for femto- and
attosecond diagnostics of fast processes [1]. Note that
the 14 value found above is more than three orders of
magnitude smaller than the optical period T of the high-
frequency field. Such a pulse, however, contains about
50 recombination radiation optical cycles (whose dura-
tion is determined by the g, parameter) and is almost
monochromatic in this sense.

The above estimates are valid for each high-fre-
guency field optical cycle. In each cycle, we observe a
recombination radiation burst of duration ty. If the
high-frequency radiation pulse is long, this results in
the generation of atrain of attosecond pulses with the
repetition frequency ~w. Such trains can, for instance,
be used in petahertz spectroscopy with attosecond time
resolution. The isolation of one pulse from such atrain
is, however, adifficult problem.

With extremely short high-frequency radiation
pulses (when the ionization of an atom effectively
occurs only during one optical cycle), the use of two-
frequency pumping (8), (9) opens up the possibility of
generating a single attosecond recombination radiation
pulse automatically (without additional experimental
efforts). For instance, consider an extremely short high-
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Fig. 2. Example of an extremely narrow high-frequency
pumping pulse for generating a single attosecond pulse
[see (17)].

frequency pumping pulse with peak intensity |, =
108 W/cm? and field envelope

(t=7)°

Fo(t) O exp[—T] (17)

which describes the pulse shown in Fig. 2. The proce-
dure suggested above gives a = 0.708, = -0.275, y =
—0.96, and t, = 7.3575 for such a pumping pulse. This
corresponds to a single collisiona trgjectory (t, = 12)
during the whole pulse (17). Varying the t, parameter
gives &ty = 0.02 and at, = 0.06; that is, thewidth of asin-
gle recombination radiation pulseisty= 30 as.

These simulations lead us to conclude that the sug-
gested approach opens up the possibility in principle of
generating 1-10 as coherent electromagnetic radiation
pulses and even of overcoming the subattosecond bar-
rier. In essence, this approach isavariety of the method
for phase control of tunnel ionization, because it is
based on the selection of photoelectrons (within the
ionization interval &ty) that contribute to recombination
radiation generation. Let us shortly consider the effi-
ciency of this generation. As with usual pumping, the
efficiency is determined by three factors, namely, the
probability of ionization of an atom (ion), the rate of
electron wave packet spreading in the continuum, and
the probability of eectron-on recombination. The use
of combined pumping (including circularly polarized
waves) does not charge the probability of tunnel ioniza
tion to any significant extent, because this probability is
determined by instantaneous field strength. Wave packet
spreading and recombination probabilities per photo-
electron are approximately the same as under usual high
harmonic generation conditions. Pumping (8), (9), how-
ever, selects only asmall part of all photoel ectrons that
recombine with the parent ion (oty/T ~ 0.1-0.01). This
results in both the generation of short recombination
radiation pulses and the selection of a narrow region
dwy, in awide plateau of the spectrum of high harmonic
generation. Note that there is no contradiction between
the generation of a short recombination radiation pulse
(of duration 1y) and a relatively narrow (dwy,) genera-
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tion spectrum; indeed, dwyT, > 1 thanksto the high fre-
guency of recombination radiation. It follows that,
when we use pumping (8), (9), the total energy of high
harmonic generation decreases (proportionally to oty/T
or dwy/Q). The intensity (recombination radiation har-
monics), however, remains approximately the same as
under usual pumping conditionswithin the dwy, spectral
range.

4. ACTIVE PHASE CONTROL
OF TUNNEL IONIZATION
AND THE GENERATION OF RECOMBINATION
RADIATION WITH THE SELECTION
OF A NARROW SPECTRAL RANGE

In the preceding section, we considered passive
phase control of tunnel ionization, when the ionization
of an atom occurred at al time instants during optical
cycle T, whereas the selection of photoelectrons
occurred at the stage of their recombination with the
parent ion. The two-frequency pumping parameters are
selected such that only those electrons recombine that
“go away” from the atom during a fairly short time
interval oty/T < 1. The short duration of recombination
radiation is then attained because of the high sensitivity
of recombination condition (12) to ionization instant t,
variations. Using two-frequency radiation, we can aso
exercise active phase control, that is, the selection of
photoelectrons already at the atom ionization stage
(when ionization only occurs during asmall fraction of
optical period T). The overall degree of mediumioniza-
tion isthen much lower than under passive control con-
ditions. A substantial concentration of free electronsin
a medium is known to cause radiation defocusing,
which imposes limitations on increasing the effective-
ness of high harmonic generation [2]. It followsthat the
selection of ionization instants decreases pumping radi-
ation defocusing and allows the phase matching length
and, therefore, the effectiveness of high harmonic gen-
eration to be substantially increased. While remaining
within the framework of analyzing the single-atom
response, let us show that two-frequency pumping of a
special kind also allows the width of the recombination
spectrum to be substantially decreased and thereby the
effectiveness of using it to be increased.

Let pumping be performed by the following two-
component field: a strong low-frequency field F_
(which by itself does not cause the tunnel ionization of
an atom) and an extremely short high-frequency pulse
field wy > U;, capable, for instance, of inducing the
one-photon ionization of an atom. We assume that the
high-frequency pulse duration is substantially smaller
than the optical period T, of the low-frequency field.

We can write
F = F cos(w, T) + Fycos(wyt + ), (18)

where F| > F, arethe amplitudes and wy < wy, arethe
frequencies of the low- and high-frequency fields,
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respectively. Let both fields be polarized linearly and
parallel to each other (along axisx) and synchronizedin
such a way that the high-frequency pulse corresponds
to a certain phase ¢ of the optical cycle of the low-fre-
guency field. If the F_ amplitude isinsufficient for tun-
neling an electron from an atom, the ionization of the
atom is determined by the short high-frequency radia-
tion pulse. Conversely, the above-threshold ionization
stage is determined by the low-frequency field. Note
that such a scheme of high harmonic generation isfully
equivalent to the scheme used in [5] to measure the
pulse duration in the subfemtosecond range.

Further calculations and estimates refer to the fol-
lowing experimental situation: The low-frequency
component is CO, laser radiation of intensity I, = 6 x
10" W/cm? (the tunnel ionization, for instance, of
helium atoms by this radiation can be ignored, but its
ponderomotive energy is substantial, U, = 500 V). The
high-frequency component is radiation at an w, ~
25 eV freguency of duration 1, ~ 1-3 fs and intensity
I, ~ 10 W/cm?. Such parameters are attained in mod-
ern high-harmonic generation experiments [2].

If the high-frequency field satisfies the inequality
wy = U,, the velocity of the photoel ectron at the exit to
the continuum is V, = 0 or, more exactly, 0 <V, < Vg,
The maximum initial velocity of the photoelectron in
the absence of phase modulation of the high-frequency
pulse, Vo, = (27/mr,,)Y?, is determined by itswidth 1,,.
The probability of ionization isthen proportional to the
intensity I, and the threshold cross section of one-pho-
ton ionization. The further evolution of the photoel ec-
tron wave packet largely occurs under the action of the
low-frequency field (because of the condition F| > F)
and, as has been shown above, can be described by the
classical trajectory x(t) of the center of the packet. If
Coulomb attraction to the parent ion is ignored (which
can be doneif U, > U;), the equation for this trgjectory
has the smple form

2
d’x
2

o = %FLcos(ooLt +d).

(19)

Solving (19) with theinitial conditions x(t = 0) = 0 and
V(t = 0) =V, allows cal culation of the kinetic energy of
the electron g, at the instant of its return to the parent
ion (that is, at the x = 0 point where it recombines with
the parent ion). Wave packet spreading (7) then only
influences the effectiveness of electron recombination
and has no significant effect on its kinetic energy €.
The ¢, energy depends on the initial photoelectron
velocity V, and ionization phase ¢ (Fig. 3). Thelatter is
determined by the high-frequency field (the phases ¢, ,
in Fig. 3 correspond to the high-frequency pulse start
and end points), which alows us to control the recom-
bination radiation spectrum. Note that the return of the
photoelectron to its parent ion and its recombination
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with it only occur when the direction of velocity V, is
oppositeto that of the low-frequency field. As one-pho-
ton ionization generates a symmetrical two-lobe wave
packet (xV,), half the total number of the photoelec-
trons do not contribute to recombination radiation.

The electron energies g, (actualy, the recombina-
tion spectrum w, = €, + U;) calculated by (19) are plot-
tedinFig. 3, which showsthat the high-frequency pulse
gatesionization phases (¢, < ¢ < ¢,) and causes gener-
ation only in a narrow spectral range AQ. The spectral
componentsthat lie between the g,(¢) curvesfor V,=0
and V, = V,,, and correspond to the ionization phases
¢, < ¢ < ¢, only contribute to AQ. As is shown in
Fig. 3, a high-frequency pulse of width 14 = (¢, —
¢)T /21t = 1.2 fs close to the relative phase ¢ = 1010
generates recombination radiation in the narrow fre-
quency range AQ = 0.12Q,, where Q; = Q — U,. The
central frequency of the recombination spectrum can be
retuned by changing the amplitude of the low-fre-
quency field, because Q, 00 I, . The V;,,, value used in
Fig. 3 corresponds to a high-frequency pulse with cer-
tain phase modulation. For a high-frequency pulse of the
same width (t, = 1.2 fs) but without phase modulation,
the width AQ of the spectrum is smaller by about 30%.

A decrease in the width of the high-frequency pulse
increases the initial electron velocity V. At fairly
small 1y, this can broaden the recombination spectrum
rather than narrow it. It follows that there exists an opti-
mal high-frequency pulse width at which the recombi-
nation spectrum width is minimum. If the £,(¢) depen-
denceiscloseto parabolic at the top (Fig. 3) and thereis
no phase modulation of the high-frequency pulse, (19)
yields

AQ _ BT

o A%H+TTE. (20)
H

If T, and 14 are in femtoseconds and Q; isin electron

volts, then A= 55.8/ T2 and B=0.17T,/Q7. It follows

from (20) that the smallest recombination spectrum
width AQ,;,, is observed at the high-frequency pulse

width T, = (B/2)23 O T°Q;"° and is given by the
equation

AQmin

1

= 9AT..

(21)

For T, = 35 fs (CO, laser low-frequency radiation), the
following estimates were obtained: 1, = 0.2 fs and
AQ./Q, = 0.016. The absolute recombination spec-
trum width increases as the intensity of low-frequency
radiation grows, AQ.;, O Qi°, Q, O 1,. However
simultaneously, the relative spectrum width decreases,
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Fig. 3. Dependence of recombination radiation frequency
on ionization phase (counted from the low-frequency field
maximum) at various initial photoelectron velocities; the
gating of the recombination spectrum by a high-frequency
pulse of width T is shown.

AQ./Q, O Q7°, and can be noticeably smaller
than 1%.

To summarize, the generation of an extremely nar-
row recombination spectrum requires the use of high-
frequency pulses of optimum width without phase
modulation. These pulses should be synchronized with
the low-frequency field near the optimum phase ¢ <
1710 (the higher the initial electron velocity V,, the
closer the high-frequency pulse must be to the low-fre-
guency field maximum). Also note that a single high-
frequency pulse causes a single event of recombination
radiation generation. This results in a continuous gen-
eration spectrum and decreases generation effective-
ness. The effectiveness of generation can be increased
if atrain of high-frequency pulsesisused. The synchro-
nization of two lasersisthen, however, amore complex
experimental task.

Notein conclusion that the mechanism of ionization
of an atom by two-frequency field (18) considered in
thiswork also explains the absorption of recombination
radiation (harmonics) in the usual (one-component)
scheme for high harmonic generation. Atoms under the
action of pumping radiation also experience the influ-
ence of weak recombination radiation. Recombination
radiation photons change the effective i onization poten-
tial of the atom, U, 4 = U; — wy [19], and can therefore
participate in the tunnel ionization of an atom by the
low-frequency pumping field. Because of the exponen-
tial dependence of the probability of tunnel ionization
on the ionization potential, this causes a sharp (by sev-
eral orders of magnitude) increasein the rate of ioniza-
tion and, therefore, effective absorption of recombina-
tion radiation. This effect limits the effectiveness of
high harmonic generation when the recombination
radiation absorption length is shorter than the active
medium length or coherence length. When additional
radiation (high-frequency background illumination) is
used, this effect can, however, be inverted and used to
increase the effectiveness of high harmonic generation.
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For instance, if the main pumping is accompanied by
comparatively weak radiation at the frequency of one of
the harmonics, the rate of the tunnel ionization of atoms
considerably increases. Thisin turn causes an increase
in the intensity of al recombination spectrum compo-
nents. Thereisno real radiation amplification at the fre-
guency of the harmonic used for additional (back-
ground) pumping because of afairly low efficiency of
high harmonic generation. The intensity of the other
components of the high harmonic spectrum, however,
noticeably increases.

5. CONCLUSIONS

To summarize, two-frequency fields allow us to
exercise phase control over the above-threshold tunnel
ionization process. A consequence of such control is
the unique possibility of controlling recombination
radiation parameters. In this work, we showed the fea-
sibility of actively controlling the recombination radia-
tion spectrum (its central frequency and width, which
can be decreased by two orders of magnitude) for the
example of single atom radiation. We also showed the
possibility in principle of generating coherent pul ses of
width 14 = 1-10 as. Obtaining such pulses in experi-
ments would signify a fundamentally new step in the
development of methods for diagnostics of fast pro-
cesses. |t should especialy be noted that conditions (14),
(16) for attaining such pulse widths admit further selec-
tion of two-frequency pumping parameters. Additional
efforts (experimental or in the field of numerical simu-
lations) will alow us to obtain coherent radiation
pulses of width actually smaller than one attosecond.

Because of propagation effects and spatial inhomo-
geneity of laser radiation, the calculation of recombina-
tion radiation can change (increase or decrease), which
requires a separate study [20]. Of primary importance
for any such study are, however, the single-atom
response calculations performed in this work.
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Abstract—Thelow-energy electron scattering cross section in astrong Coulomb field is analyzed theoretically.
It is shown that the exact cross section in awide energy range significantly differs from the results obtained in
thefirst Born approximation and in the nonrel ativistic approximation. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

An explicit expression for the scattering cross sec-
tion of an electron with an arbitrary energy in a strong
Coulomb field was derived long ago by Mott [1] and
contained an infinite series in Legendre polynomials.
Although the methods of summation of this serieswere
developed in a number of publications, the numerical
calculation of the cross section remains a complicated
problem. A detailed review of publications devoted to
this problem can be found in monograph [2]. The elec-
tron scattering cross sections in a Coulomb field were
caculated in [3-5] for various scattering angles,
nuclear charges Z, and electron energies above
0.023 MeV. In an analysis of backward scattering for
Z =80, it was proved that the ratio of the exact relativ-
istic cross section to the nonrelativistic (Rutherford)
cross sections increases from 0.15 to 2.35 upon a
decreasein the lectron energy from 1.675t0 0.023 MeV.
In view of such a large difference between the exact
result and that obtained in the nonrelativistic approxi-
mation, it would be interesting to study the behavior of
the exact scattering cross section for slow electronsin a
strong Coulomb field. Here, we obtain the answer to
this question by calculating the asymptotic form of the
cross section for an arbitrary Z and a low electron
energy.

2. ELECTRON SCATTERING CROSS SECTION
IN A COULOMB FIELD

The electron wave function ,,(r) in an external
field can be derived from the Green function G(r ,, I 4]€)
of the Dirac equationinthisfield. Wewill usethe famil-
iar relation

lim G(ry, r4|€)

rlaoo

— exp(lprl) z lIJ(+)(r2)U;\p, (1)

4nr

where p = Je&—m’; mis the electron mass; L|J(+)(I’)
denotesthe solution to the Dirac equation, containing at
infinity a plane wave with momentum p = —pn; (N, , =
ryJry,) and a diverging spherical wave; A =
denotes two independent spinors @,; and 2 =c=1.In
the Coulomb field, the right-hand side of expression (1)
contains the additional factor (2pr,)'9, where g = Zage/p
and a = 1/137 is the fine-structure constant. A conve-
nient integral representation of the electron Green
function in a Coulomb field was derived in [6]. Using
equalities (19)—(22) from [6], we obtain

" f, D
Wip(rz) = Je+m Hoo[hz H,
|‘1Dg+m 2D

- [821A+im§aR2E%Ml$iRzBM2}%,
A=13P )+ P i(y)
dy | -1 y

B = dﬂy(P.(y)—P._l(y», @

y = n;h,, Ry, = 1F(oLhy)(e[hy),
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exp(lpr2 IT[V)

My, =i

Jct(n 2iq)

x exp(it°)J,, (2t./2pr,)dt.
Here, P,(X) are Legendre polynomials, J,, are Bessel

functions, and v = A/IZ—(ZO()Z. The integrals in func-
tions M; , can be expressed in terms of degenerate
hypergeometric functions. Result (2) is in accordance
with the well-known solution to the Dirac equation in a
Coulomb field.

To find the scattering amplitude, we must calculate
coefficient W, of the diverging spherical wave
explipr, + iqin(2pr,)]/r, in the asymptotic form of
function Wi, (ry) (r; — o).

A nonzero contribution to W, comes from function
M, (see Egs. (2)), the required asymptotic form of this

function being determined by the integration domain
t < 1. We have

= Jetm %0’ [hz D’
I = 1Dg+m (3)
_iexp(dnv)lr(v-iq) mZa
= 2pr(v+1+iq) [RlAH p RZB}%

Calculating the flux of scattered particles, averaging it
over spins, and dividing by the incident current density,
we obtain the scattering cross section:

do _
dQ 4p)\zlzw)\(a [hZ)W)\

_ 20 02 [mZaD |F| D
p 0 Hp

Mv-iq) @)

o
F = _§|leexp[m(l_\})]r(v ¥1+i0)

x [P1(X) =Pi_1(X)],

. dF
I:_dx’

This result coincides with that obtained earlier in [1].

X = cosd = —n, [h,.

3. SCATTERING CROSS SECTION
IN THE LOW-ENERGY LIMIT

Let us calculate the scattering cross section (4) for
g= Zae/p > 1 and Za ~ 1. This range of parameters
corresponds to scattering of alow-energy electronin a
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strong Coulomb field. We consider theratio of the exact
cross section (in parameter Za) to the cross section

dog _ q2 _p_z_
o Fa wt Y ©

obtained in the first Born approximation. Using the
asymptotic form of the I" function for large values of
the argument, the expression for S = do/dog can be
reduced to the form

S= 1+1Tlmgexp |qlan)%
x> I(=1)'TP, (%) = Pi_1(X)] [exp(-2iTtv) = 1]~ (6)

=1

(el
<eofllE

For 1 + x> 1/q, factor exp(il?/q) in this formula can be
replaced by unity. This gives

1- 1-X7
S—1+TRegexp |qInTD

13 —~ - ir(za)’In /1%‘

-y 1(=1)'[P,(x) = P,_1(X)]
=1

[n(zO()zD
7)

y iy 4 iT(Za)?  T(Za) 10
%»(p( 2iTv) —1 I + o2 D}%

Thus, for 1 + x > 1/q, the correction to function Sis
proportional to 1/qg. It should be noted that the sum over
| in expression (7) converges very rapidly for an arbi-
trary x. If 1 + x ~ 1/q (backward scattering), the main
contribution to sum (6) comes from moments| ~ ./q >
1. Using the asymptotic form of the Legendre polyno-

mialsfor x — —1 and replacing summation by integra-
tion, we obtain

3/2

S= 1+(1—x)n (Za) cos%z[ q(l4+X)D
(8)
« 3.LA(L+X)
T 4 | 4 O

It can be seen that the correction to function Sfor 1 +

x ~ 1/qisproportional to 1/./q O ./p/e . Consequently,
thevalue of Stendsvery slowly tounity asv — 0. The
exact (in Za) backward scattering cross section signifi-
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Fig. 1. Dependence of function Son v for x =1 and Za =
0.6 (1), 0.7 (2), and 0.8 (3). Salid curves correspond to exact
results and dotted curves, to the asymptotic form.

cantly differs from dog/dQ even for comparatively low
energies.

For x = -1 and for arbitrary values of g, the exact
expression for function S (see relations (4)) hasasim-
ple form:

S=4 Zlexp(—inv)% o

=1

Figure 1 shows the dependence of function Son v = p/e

689

for x =—1 and for severa values of Z. The same figure
shows the low-energy asymptotic form (8) for x = 1.

S = 1+./2r%%(z0)* Jv. (10)

It can be seen that, for backward scattering, the exact
(in Za) cross section significantly differsfrom the Born
cross section even for small velocities v, the difference

decreasing very slowly (in proportion to 0./v ). It can
be seen from Fig. 1 that the exact result virtually coin-
cides with the asymptotic form for v < 0.2.

It iswell known that the Born cross section istrans-
formed to the Rutherford cross section for v < 1:

dog _ 2o 7

dQ  Hhv2a—x
It isinteresting to analyze the ratio S, = do/doy, of the
exact scattering cross section to the Rutherford cross
section. Figure 2 shows the dependence of S, on g =
Zalv for x = =1 and for several values of parameter
Za. It can be seen that theratio S; of the cross sections

increases with decreasing energy, attains its maximal
value, and then slowly tends to unity (S, — 1 O

1.Jq O .Jv).

In classical electrodynamics, for scattering with
impact parameters p satisfying therelation Za/mvp = 1,
a particle attains velocities of v, ~ 1 a minimal dis-
tance from a Coulomb center and relativistic effects

(11)

200

Fig. 2. Dependence of function S; on variable q = Za/v for Za = 0.5 (a), 0.6 (b), 0.7 (c), and 0.8 (d). Solid curves correspond to the

exact result and dashed curves describe the asymptotic form.
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become significant. In relativistic classical mechanics,
for p < (Za)/mv (we consider the case with v < 1 as
before), the phenomenon of falling to the center takes
place. In addition, the cross section of scattering through
anglescloseto tissingular. For 1+ x < v#3 < 1, thefor-
mulas given in [7] readily give

doy _ Zarfqmp_ 1
do v, 4 6, /2(1+x)

in this region. However, in the quantum-mechanical
case, for Za ~ 1 and v — 0, the backward scattering
cross section (small values of p) tendsto the nonrelativ-
istic limit. This is due to the fact that, for a given p,
indeterminacy A@ ~ 1/mvp in the scattering angle
appears, which becomes of the order of unity for p <
Za/mv.

(12)
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Abstract—A theory of optical properties of clusters of spherical metal nanoparticles characterized by an arbi-
trary size distribution is developed in a quasi-static dipole approximation. The equations for coupled dipoles
and general relations are formulated in terms of reduced dipole moments. It is shown that the dipole resonant
frequencies and amplitudes, the absorbed power, and the acting-field magnitudes strongly depend on the ratios
of particle radii in a cluster. Properties of linear, planar, and three-dimensional systems are examined. © 2004

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Optical properties of disordered fractal clusters of
spherical metal nanoparticles have been studied in a
vast literature, including a number of reviews and
monographs (e.g., see [1-6]). A variety of new linear
and nonlinear effects have been discovered: inhomoge-
neous broadening of the plasmon band, giant field fluc-
tuations with correlation radii much smaller than the
wavelengths, surface-enhanced Raman scattering, pho-
tomaodification of clusters, fast-response highly nonlin-
ear behavior, and nonlinear optical activity. Fine tech-
niques have been devel oped for producing clusterswith
controlled values of basic parameters. It was proved
that many natural systems with interesting properties
have fractal structure [6, 7]. The key role played by the
fractal structure of clusters with Hausdorff dimension
substantially lower than three (D ~ 1.5-1.8) was dem-
onstrated both experimentally and theoretically. In
recent years, fractal aggregates of metal nanoparticles
were found to be increasingly useful for various appli-
cations.

In the pioneering studies [8, 9], it was aready
revealed that optical properties of fractal clusters are
mainly determined by electrodynamic interactions
between particles, which is manifested in both linear
and nonlinear effects. In particular, the interaction is
directly responsible for the strong plasmon-band split-
ting characteristic of an isolated particle and for awide,
inhomogeneously broadened tails in the absorption
spectra of clusters. Numerical simulations showed that
the splitting interval isindependent of the number N of
particles (when N is sufficiently large) and of the opti-
cal properties of the particle material (when measured
in certain units) [10, 11]. Thisfundamental fact implies

that the dominant role is played by the nearest neigh-
bors of a particle, whereas the contribution of a more
distant environment to local field characteristics is not
important. The interaction indicated above determines
the structure of field fluctuations and explains the
essential difference of the optical properties of media
consisting of fractal clusters from those of “normal”
(weakly inhomogeneous) media

The observations enumerated above suggest that a
collection of fractal clusters should be considered as an
unconventional medium that has unusual optical prop-
erties and is different from a gas, plasma, liquid, or
solid.

The existing theories rely on the assumption of
equal particle size (an interaction parameter of primary
importance). The actual polydispersity is taken into
account by averaging the results over some size distri-
bution (e.g., see [6]). This approach is not self-consis-
tent. Indeed, if particles of difference size exist, then
nearest neighbors may have different diameters. How-
ever, electrodynamic interaction between particles of
equal size is characterized by a certain symmetry,
which implies acorresponding degeneracy in thevibra-
tional spectrum and certain selection rules. For exam-
ple, in a system of two interacting particles (dimer),
dipole oscillations of certain types cannot be excited by
an external field because of its simple structure. In this
respect, a dimer is analogous to a molecule consisting
of two identical atoms, for which infrared absorptionis
prohibited. The analysis presented below shows that
particle-size variability has fundamental consequences
for spectroscopy of fractal clusters, nonlinear effects,
properties of field fluctuations, etc. Thus, the existing
theories of optical properties of clusters are essentialy
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inadequate. Therefore, both foundations of the theory
and its applications to real systems must be revised.
This problem is addressed in the present study.

2. GENERAL RELATIONS

Consider a system of N spherical particles (mono-
mers) in a medium with a dielectric constant ¢,,. The
particle material is characterized by a dielectric con-
stant €. Suppose that each particleradiusa (i=1, 2, ...,
N) is sufficiently small as compared to the wavelength,
so that the dipole approximation is valid. The dipole-
dipole interactions between particles and their interac-
tion with a monochromatic external field Ey(r) of fre-
guency w are described by a system of equations for
their dipole moments d; [10, 11]:

3 €&

di = aiShEi’ i8+28h’

a; = a

(2.1)

E,
Ei = Eo(ry) + zgj,
) (2.2)
E. = 3nii(nij [dj)q)ij_djl-pij’

J 3
I’ij

Fp = r=rg, rg = (el nyg = rlry, (23)

¢i; = [1—ikr —(krij)2/3] exp(ikrj;),

_ , _ (2.4

Wi = [1—ikrj;—(kr;;)7] exp(ikr;;).
Thefield E; acting on theith dipole isthe superposition
of Ey(r;) and the fields E;/e, generated by all dipoles
(indexed by j) at the point r; where the ith dipole is
located.! The retardation effects due to the nonzero dis-
tance between the ith and jth particles are represented
by ¢;; and ;. The general analysis of system (2.1),
(2.2) presented in [10, 11] was entirely based on the
equality of all particle radii. Since this assumption was
inherent in the theory developed in [10, 11], the particle
diameter was used as the unit of length. System (2.1),
(2.2) isfreeof thisrestriction, but it can be transformed
into the one that was analyzed in [10, 11] by changing
the variables. Define

dr = i E = —(aiaj)g/2
i a'3/2' ij /3 J
" L (2.5)
a;  E+2g,
K = — =
i E—&y

1 The near field of adipoleisinversely proportional to g, and this
dependence is factored out in (2.2). The polarizability of aball is
ajep (see (2.1)), and the factors g, cancel out.
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Equations (2.1) and (2.2) arerewritten intermsof d; as

Kdj + Ziij[dflbi,- —3n;;(n;; ) ¢;]
j#i

(2.6)

= aiglzshEo(r i)-

The use of the reduced dipole moment d; facilitates

further analysis. Since its square has the dimension of
energy, both energy and amplitude relations are most

conveniently formulated in terms of d; . Define column
vectors d" and E" with the components

dio = dia/a’”, Eiq = & enEoe(r).  (27)
Following [10], rewrite Egs. (2.6) in operator form:

(k +U)d" = E,

(2.8)
Uia,ip = &ij[OapWij — 3NijaNijpdii]

i%].

Thematrix elements U;,, ;¢ of theinteraction operator U
are symmetric under the permutation i ~— j of the
particle and coordinateindices, ij and af3, and are com-
plex in the general case. Asin [10, 11], the operator U
can be diagonalized, and the eigenvalues u,,, and eigen-
states defined by the relation

U|mO= u,|mO
can be used to represent the solution to Egs. (2.6) as

die = 3 Oa|nilk +uy) " |jpEj. (29
Formally, both Eq. (2.8) and its solution (2.9) are simi-
lar to those describing systems of identical particles.
Moreover, the proposed model (2.7)—(2.9) hasthe addi-
tional advantagethat U, §;, K, and u,, are dimensionless
guantities, whereas their counterparts in [10, 11] are
measured in cm3. Note that Egs. (2.6) and (2.8) can be
separated with respect to parametric dependence (when
kr;; = 0): the parameter k depends only on the dielectric
properties of particles and medium, while the operator
U and its eigenvalues are determined by the system’s

geometry. Note also that Ejg 0 &' in (2.9), whereas
the column vector on theright-hand side of the equation
analogous to (2.8) in the standard theory [10, 11]
dependsonj only viar;in Eg,(r;). A detailed analysisis
easier to perform in terms of K, = —U,,,.

It is obvious that the variability of a, is essential in

variousrespects. Since Ej; 0 &%, theamplitude of the

resonance (K — K,,)* depends on the relations between
particleradii. In particular, certain amplitudes that van-
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ish when g, = a [5] are finite in the general case. Fur-
thermore, the coupling parameters

3/2
i = (aq) /rIJ

depend on theratios of particle radii viaboth a,a; and r;;
(rj = & + a). Both eigenval ues uy, and eigenfunctions of
U are modified accordingly. In particular, degenerate
eigenstates split since the symmetry associated with
equality of particle diametersis broken when the ratios
a/a; arearbitrary. A detailed analysis of the effects dueto
particle-size variahility is presented in Sections 3 to 5.

In the quasi-static approximation adopted in what
follows (kr; —= 0), ¢;; = Y;; = 1. In this case of highest
practical importance, both operator U and eigenvalues
U, arereal.

It is assumed above that all particles consist of the
same material and are characterized by equal permittiv-
itiese. Thetheory can be naturally extended to particles
of different size (a) and materia (g). This may be
important for analyzing the effects of particle size and
temperature T on g;. It is reasonable to define the fol-
lowing gquantities and introduce a relation between
them:

o g _ .3&—¢&y
di = le, ai = & & +28,
(1+WV)d = €
(q o )1/2 (2.10)
Via,ip = =3 [0apWij — 3N;jaNijpdij] ,
u
1 d|
dior = ——17—21 %iq = llzshEOQ((r)

I
The operator V is also invariant under the permutation
ia < jB, and all general conclusions made above
apply to Eq. (2.10).
In the model adopted here, the work A done on the
dipoles d; by the external field is consumed to produce
scattered radiation and to heat the particles[12, 13]:

A = —(wIZ)Re[iZdi EE’g(ri)} = Q.+0Q, (211

An estimate obtained below (see Eq. (2.16)) showsthat
the scattered power Qis much lower than the absorbed
power Q, for systems of interest here, and Q; is
neglected in the analysis that follows.?

2 Following [14], we can take into account the effect of scattering
on relaxation characteristics. However, we focus here on the fun-
damental role played by the variability of particle size and do not
expand the model to allow for corrections of this kind.
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Thetotal work A done on the dipoles d; by the exter-
nal field E, isthe sum of contributions dueto the acting
fields E;. Indeed, the sum over i and j on the right-hand
sidein therelation

Re[iZdi EE(’;(ri)} = Re[iZdi EEi*}
+Red 3 d, (I3 (r) ~E/1 = Re[izdi EET}
04 O i

_ [
+ Re%ahl 3 [di CF = 3(ny; ) (ny )] /rig
i, j#i 0
is obvioudly real, and the corresponding term vanishes.
By virtue of (2.1), E¥ can be replaced by d /g,a,
with €, assumed to be real:

A |di
Q, = 5 Re[l ,z a*sh}

- ——Z|d| |leD

(2.12)

Expression (2.12) can also be derived from a standard
expression for the absorbed power per unit volumeq [13]:
q = we'|E/A/8m, €' = Ime.

To calculate the power Q, absorbed by the ith particle,
this expression must be multiplied by its volume, with
E interpreted as the field strength E; ;, inside the parti-
clerelated to the acting field E; [13]:

_ E3: _ 34,
MIn T e+ 2e,  aj(e+2g)

As aresult, we have

2 3

@ a’. (2.13)

- = n dl
Qai - 235

a;(e + 2¢y)

Itiseasy to show that expression (2.13) is equivalent to
theith summand in (2.12).

The inverse specific susceptibility k represented as
follows [10]:

= —X—i8, (2.14)

wherethe sign of thereal part Xis consstent with the opti-
ca properties of metals (€' < 0). Now, expression (2.12)
has a particularly simple form:

wéldl

=T Q= = 2"

(2.15)

Expressions (2.12) and (2.15) extend the results
of [10, 11] to the case of an arbitrary size distribution.

No. 4 2004



694

Formula (2.15) demonstrates that Q,; is determined by
the squared absolute value of the reduced dipole
moment. Expressions (2.12) and (2.15) determine the
power absorbed by each particular particle, i.e., thedis-
tribution of power over particles parameterized by their
size, field frequency, properties of surrounding parti-
cles, and other characteristics. It is obvious that the

quantity {<(w/2)Relid; - E (r;)]} in (2.11) cannot be
interpreted as the absorption by the ith particle. In par-

ticular, the contributions of some individual summands
in (2.11) to the work A done by the field are negative.
It iswell known that the power scattered by a parti-
cle characterized by a dipole moment d;, is Qg =
w*|d;[/3c3. For g = 10 nm, 2mc/w = 10% nm, and & =
0.1-0.01 characteristic of metal nanoparticles,

s _ 2& rwart
8—_ - 58%355 <1 (2.16)

Therefore, scattering is negligible as compared to
absorption. This conclusion holds even if interference
of the fields scattered by different monomers is taken
into account.

Itiswell known that fluctuations and nonlinear phe-
nomena depend on the acting field strength [3]. This
guantity of special importance for fractal clusters can

be cal culated by using solutions d; to Egs. (2.6):

di _ kd;
g a’’e

E = (2.17)

h

Its absolute value sguared is proportional to the
absorbed power per unit volume:

2 _ (Qulal)IKl”
&I = 26,00 (218)
According to (2.17) and (2.18), the value of E; strongly
depends on the monomer radius.

The energy of adipole placed in an external field is

2
= Lperd rE*) = Lreddi o
U, = 2Re(dI [(Eg) = ZReEb(*shD
5 (2.19)
= —:—LmReK
2 g,

The ponderomotive force exerted by the external field
on theith dipole and other dipolesis

F, = -0U,. (2.20)

According to [15], the motion of a particle driven by
the force given by (2.20) changes its kinematic proper-
ties and leads to certain nonlinear effects. An adequate
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description of these effects must take into account the
variability of particle size, which is suitably character-

ized intermsof d; .
Analyses of fractal clusters of metal nanoparticles

commonly rely on the dielectric constant given by
Drude's formula

(2.21)

where w, is the plasma frequency, I is the damping
constant (generally, a function of particle size), and
€, — 1 is the contribution of interband transitions. Set-
ting g, = g, for smplicity, we obtain

£ = go—w/w(w+2il),

X =@y -1, 8=2wle), @) = wy3e,. (2.22)

For example, silver is characterized by @, = 2.5 x

10*cm™ and ' = 500 cm . According to (2.22), the
equation X = —K, yields resonant values of ¥, which
are equivalent to

W@, = (1-Ky)"? (2.23)

on the w scale. When K, is positive or negative, the cor-
responding resonance is shifted toward the low- or
high-frequency end of the spectrum, respectively. Sub-
stituting the expression for Q, in (2.15) into (2.22), we
obtain

2
(8} _ 2
Qu = (2 & Tld]" (2.24)
p

Sinceit is obvious that
06t w?

at resonant frequencies, the factor «? in (2.24) is can-
celed out in resonant values of Q.

The model of irregular fractal clusters of identical
particles involves the random parameters r;; (spacing
between particles), n; (relative position of particles),
and a (particle radius). In the generalized model con-
structed here, the ratio a/a; is an additional random
parameter. An exact analysis must rely on an N-dimen-
sional size distribution P(ay, a,, ..., ay). Spectral prop-
erties of clusters depend primarily on the interaction
between monomers that are relatively close to each
other. Therefore, the minimal required dimension of
P(a;, a,, ...) may be relatively low. This means that a
much greater number of random realizations must be
computed in numerical experiments of the kind
reported in [10, 11].

After this brief discussion of statistical aspects, we
focus below on dynamics of clusters. Some dynamical
aspectsaredirectly related to experiment, asan analysis
of photomodification of clusters based on electron dif-
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fraction patterns visualizing individual monomers and
aggregates.

3. DIMER

Consider the case of two particles (a dimer) as an
illustration of the principal optical propertiesof clusters
due to electrodynamic interaction between particles [8,
16]. We suppose that a, < a; and drop the subscripts ij

in n; and r;; as unnecessary. For the projections of df,

and d;; on n and the plane perpendicular to it, respec-
tively, Egs. (2.6) reduceto

(k—28)(dy, + dyy) = (a7 + a5 %)enEqn, )
(k+28)(d,—dp) = (@22 —a3?)enEon
(K +&)(di+dyn) = (a)%+ a3 )enEqn, 32
(k=&)(din—dyn) = (ai*—a3?)e Eon,
_ 3 1/2
E=(alr)’ a=(aa) 33)

Eon = NLE, = Ejcos0, Ey = Eosine.

For the n-projections, k,, = 2¢ and K, = —2¢ correspond
to the sum- and difference-frequency oscillations (the
latter mode was called antisymmetric in [14]). For the
U-projections, the sum- and difference-frequency
modes are characterized by K5 =— and K = &, respec-

tively.The oscillations of d are twice degenerate by
virtue of axial symmetry. It should be noted that the
normal modes described by (3.1) and (3.2) are
expressed in terms of reduced dipole moments d;, .
This observation applies to systems consisting of a
greater number of monomers as well.

The solutions to Egs. (3.1) and (3.2) can be written
as

i = e E 532 a-3/2 532
EONCK 428 +i5 X —28 +id)
3/2 3/2 (34)
52 = a ta
2 L
_3/2 3/2  _3/2
diy = —nEqn 2 X 20 35
IX—&+id X+&+id]
32 .32 312
& —a _ _1-t 3O
? = +B, B = i1 t = ChD (3.6)

In (3.6), plus and minus correspond toi =1 andi =
respectively. The components of the total induced
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dipole moment d =d, + d, of adimer are
dn = —€xEon(@3 + &) Fo(X),
_ (3.7
fX) = 2= 4+ _C
X+28+id X-28+id
d = —€nEon(a; +83) f(X),
_1-C C (3.8
o) = S s Xve v
1 2(3-16‘2)3/2 C 2
C=z1- , = B". (3.9)
2{ ava | 1°C

The resonance shifts £2¢ and ¢ in (3.7) and (3.8)
depend on the distance r between the particles, and
absorption in different spectral rangesis due to dimers
with different values of r. Thistheoretical conclusionis
generally used as a basis for interpreting inhomoge-
neous broadening of an absorption band. Thisinterpre-
tation holds for a; # a,, but is more complicated and
entails additional properties. In particular, formulas (3.6)
and (3.9) yieldB=0and C=0for a, = a,; i.e,, two res-
onant amplitudes vanish. The remaining two reso-
nances correspond to oscillations that are paralel and
perpendicular to n and are characterized by X, = -2
and X = &, respectively. If a; # a,, then C # 0, oscilla-
tion amplitudes change, and the band profile is differ-
ent. The difference-frequency resonant amplitudes van-
ish for a; = a, in the approximation of kr = 0 adopted
here. However, the difference-frequency resonant
amplitude does not vanish because of retardation
effects [14] even if a; = a,. In this case, the amplitude
is proportional to 1 — cos(kr). For A = 103 nmand r =
23, , =20 nm, we havekr = 10t and 1 — cos(kr) = 1072
An amplitude of similar order of magnltude is obtained
when the particle radii differ by about 10%.3

The dependence of B? on a,/a, is illustrated by
curve 1linFig. 1. When a,/a, issmall, the coefficient B?
rapidly decreasesto B2= 0.5 at a,/a, = 0.3. Theratio of
resonant amplitudes (3.4) and (3.5) in dipole oscilla

tionsis B, and its dependence on the difference in radii
is stronger. In (3.7) and (3.8), we expose the factors

(af + ag ) proportional to the total volume of the inter-
acting particles. Thus, the functions f,(X) and f-(X) are
normalized to the unit volume of the particle material.
The sums of resonant amplitudesin f,(X) and f;(X) are
constant. Therefore, the appearance of doublet compo-
nents proportional to B? (when a, # a,) is related to a
decrease in absorption in stronger components.

3In [5, p. 158], it was claimed that nonvanishing different-fre-
guency resonance amplitudes should be explained solely by retar-
dation effects. This assertion obviously disagrees with reality.
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Fig. 1. Resonant-amplitude ratio (curve 1) and largest shift
(curve 2) versusratio of particle radii in adimer.
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Fig. 2. Normalized absorption coefficient for a dimer ori-
ented (a) parallel and (b) perpendicular to the electric field
vector for the values of ay/a; shown at the curves, & =

& max/2, and &= 0.01.

At first glance, it may seem that a decrease in a,
implies a smaller minimal distance between particles
and a wider splitting interval. However, this factor is
weaker than the concomitant decrease in volume and
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polarizability of the smaller particle. Indeed, the value
&max COrresponding to the minima distance rp,, =
a +ay,,

_ (alaz)llz 3 _ 2(8.13.2)1/2 3
E-max B |: I min i| - |: a1+a~2 i| EO’ (310)
£, = 1/8,

reaches its maximum when a; = a,. Curve 2 in Fig. 1
represents §,,.../& asafunction of a,/a; . It demonstrates
that the “new” resonances aready have appreciable
amplitudes (curve 1) at a,/a; = 0.25-0.50, while the
splitting interval remains relatively wide (curve 2).

Equations (2.1), (2.2), and (2.6) are valid when the
field generated by a dipole changes insignificantly over
the length of a neighboring particle. Whenr = a, + a,,
thisconditionisviolated. A detailed analysis showsthat
the change in the dipole's field is equivalent to an
increasein 2a/r by afactor of (6/m)Y23[3, 17, 18]. Qual-
itative considerations suggest that a similar renormal-
ization of (a; + ay)/r applies when a; # a, [3]. The
renormalization changes the value of &, by afactor of
amost 2:

EO = 1/84> EO = 3/4T[

Theimaginary parts of f,(X) and f;(X) determinethe
spectral profile of absorption on the X scale. Figures 2a
and 2b present, respectively, the resonance profiles
dImf,(X) and dImf(X) calculated for several values of
a,/a; and a constant difference (a; + a,) —r between the
particle surfaces. Figures 2aand 2b show that the n- and
(-polarization resonances “prohibited” for a, = a; can
contribute substantially to the high- and low-frequency
tails of the band, respectively. Note aso that the reso-
nances shift asa,/a; variesfrom 1to0 0.1 and the doubl et
components merge as a,/a; — 0. The physical expla-
nation of this fact is obvious: as a,Ja, — 0, a dimer
becomes a monomer. In summary, there exist two
mechanisms of inhomogeneous broadening of the
absorption band: variability of the distance r and poly-
dispersity of particles.

The integral absorption (over X) includes a partial
contribution (a,/a;)® due to the smaller particles,
whereas their contributions to the resonance shifts are
proportional to (aya,)¥? for a/a, < 1, i.e, much
greater. For example, when a,/a; = 1/5, the contribution
of the smaller particlesto the integral absorptionisless
than one per cent, while &, = 0.5, which amounts to
40% of the highest value of ¢, (1/8). For sufficiently
small &, shifted resonances give rise to appreciable
inhomogeneous broadening. Therefore, relatively
small particles can substantially modify the absorption
profile without contributing to the integral absorption.

In the conventional model of identical spheres, a
change in the central portion of an absorption band is
explained by interaction between relatively distant par-
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ticles, which implies cooperative effects [10]. This
explanation is not complete: when a,/a; is sufficiently
small, the resonance shifts are smaller than their half-
width,

& ex = (22127) Y2 < 8. (3.11)

In this situation, the central portion of the absorption
band results from the combined contributions of distant
particles of nearly equal size and dimers with particles
having disparate sizes. For example, condition (3.11) is
satisfied for 6 = 0.1 when a,/a, = 0.215. These trends
are demonstrated in graph form by the curves corre-
sponding to a,/a; = 0.05and =0.01in Figs. 2aand 2b.

Now, let us discuss the individual properties of the
dipolesd, and d,. For the projections d,,, and d,; of the

larger particle’s dipole, the amplitudes of both reso-

nances have like signs (a5 2 > a°%); for d,, and d,, the

signs are opposite. Moreover, it is easy to show that
both Imd,,, and Imd,; can be negative.

Consider the power Q,;,, absorbed by individual par-
ticles. According to expressions (3.4) and (3.5), their
respective Lorentzian profiles do not overlap and the
resonant amplitudes corresponding to particles 1 and 2
areequal. Therefore,

Qaln = Qa2n1 Qall:l = QaZD

near the resonance points. Note also that theratio of the
resonant amplitudes in Q,, is B?, as in Imf,(X) and
Imfy(X).

The quantity Q,, is the total power absorbed by the
ith particle. Approximate equality of Qu, and Q.
impliesthat the smaller particle absorbs a higher power
per unit volume. Therefore, the smaller particle is
heated by radiation to ahigher degree. This can be man-
ifested in the temperature dependence of dielectric con-
stant and in photomodification of clusters [4, 19], for
example, when particles melt or coalesce. Additional
factorsinclude the rate of particle cooling, the duration
of the irradiating laser pulse, thermal properties of the
particle material, etc. The problems related to photo-
modification of clusters require a special analysis.

Many optical properties of fractal clusters strongly
depend on the local acting field E;. Since Eg. (2.18)
entails

(3.12)

Bl 0 (Qafa)”,
the field acting on (smaller) particle 2 is stronger than
that acting on particle 1 by afactor of 1/t = (a,/a,)%? by
virtue of (3.12).

4. EIGENFREQUENCIES
OF MANY-PARTICLE SYSTEMS

The eigenfrequency range of the interaction opera-
tor isindependent of the number N of particlesin afrac-
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tal cluster consisting of many spherica particles[10, 11].
Thisimpliesthat the nearest neighbors of aparticle play
a dominant role, whereas distant particles do not con-
tribute substantially to local field characteristics. In the
units used here, the width of the range in question is
approximately 8¢,, whereas the largest width of the
eigenfrequency splitting interval for a dimer is +2¢,.
Therefore, the dimer model cannot be used to explain
optical properties of real fractal clusters. It would be
interesting to identify the microscopic systems respon-
sible for a splitting width of +4&, and find out if the
width varies with the ratio of monomer radii. It should
also be expected that the equal of power absorbed by
different monomers is specific to dimers, whereas
many-particle systems are characterized by nonuni-
form distributions of Q,; over particles. These questions
are addressed in Sections 4 and 5.

Absorption spectra for systems of several mono-
mers in the approximation of dipole—dipole interaction
were calculated in numerous studies (see [5] and refer-
encestherein). Detailed results of eigenvalue calculations
for linear, planar, and three-dimensiona systems with N
varying from 2 to infinity were presented in [20, 21].
It was established in [21] that |K./&,| = 4 are character-
istic of various configurations with N = 6 and 7.
However, since all studies of this kind were conducted
for particles of equal size, the problem should be reex-
amined.

System (2.6) written for N interacting dipolesis on
the order of 3N, and analytical results are difficult to
obtain and understand. The present analysis is
restricted to several simple configurations, but its
results provide a basis for some general conclusions
that answer the questions posed in this study.

First, we consider a linear aggregate of N particles.
The corresponding system (2.6) breaks up into equa-

tions for the projections d;,, and d;; on the chain axis
and the plane perpendicular to it:
Kdirn_2 Eijd;n = a?IZShEOn’
2

&ij = (aiaj)slz/ri?},

Kdip + Eijdgm = aiS/ZShEom-
2
System (4.2) can be obtained from (4.1) by performing
the change

ZEij - _Eija
Theanalysis presented hereismainly performed for the
simpler system (4.2).

Since §;; is acubic function of 1/r;;, the interactions

between neighboring particles play the dominant role.
As afirst approximation, we set

&ij = &ix10i21j-

(4.1)

ij=12..,N,

(4.2)

Eon — EOD'

4.3
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Table

N 2 3 4 5 6 7 8 9
K/ +1 0 +0.618 0 +0.445 0 +0.351 0
+1/2 +1.618 +1 +1.245 +0.766 +1 +0.618
+3V2 +1.800 +1.414 +1.523 +1.176
+1.845 +1.882 +1.618
+1.902

Matrices of thisform (with Kk as diagonal entries) are a
special case of Jacobian matrices [22]. We denote the
determinant of a matrix of order N by Ay and recall a
number of properties of Ay important for this study [22].
All roots of Ay are real and distinct. The sum of the
roots of Ay iszero. If Niseven (odd), then Ay contains
only even (odd) powers of K. The interval between two
consecutive roots of Ay contains exactly one root of
A - ;. Boththelargest positive root and the largest abso-
Iute value of a negative root increase with N. The small-
est root min(k,)) of Ay isadecreasing function of &;. Its
largest root max(K,) is an increasing function of &;. The
minimal and maxima roots satisfy the inequalities

—2max (&;;) cos[TU/(N + 1)] < min(k,)

<-2min(§;;) cos[TV/(N + 1)], 44
2min(&;;) cos[TU/(N + 1)] < max(K,) (44

< 2max(&;;) cos[TU/(N + 1)].
The equalitiesin (4.4) are valid for &;; = . In this case,

Ky = —2&cos[Ttm/(N + 1)],
m=12..,N, Eij = ¢&.

(4.5)

The table shows the numerical values of K./¢ given
by (4.5).4 It demonstratesthat the distribution of K, cal-
culated in approximation (4.3) is symmetric about the
point K,, = 0 and is nearly uniform over the interval
bounded by +k (becoming slightly *“condensed”
toward max|ky|. The largest root Kk amost reaches the
limit 2& when N = 6. With further increasein N, both the
largest and smallest roots remain nearly constant. Since
the number of roots increases, so does their density in
the interval bounded by +2€. Recall that these results
are valid for dipole polarization perpendicular to the
chain axis. For axially polarized dipoleswithN > 1, the
interval occupied by the roots correspondsto |ky /€ = 4,
which agreeswith the numerical resultsof [10, 11]; i.e.,
approximation (4.3) adequately describes linear aggre-
gatesin this case.

4 Approximation (4.3) applies to many physica models, e.g., the
linear crystal [23, 24].
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The lowest-order corrections (linear in &; with
[i =j]> 1) amount to about 10% and break the symme-
try about K, = 0, in particular, by shifting the zero root.
To illustrate the error due to approximation (4.3), we
present the exact values of max(k ) obtained for N = 6
and for an infinite chain of contacting spheres[20, 21]:

max(K,/&) = 2.008, N = 6,

max(K /&) = 240, N — o0,

The corresponding approximate values given by (4.5)
are 1.800 and 2.000, respectively; i.e, the error
increases with N, reaching 10-15% at N = 10.

Let us use (4.3) and (4.5) to examine the influence
of difference in radii on K,,,. For a chain of alternating

particles of radius a, and a,,

1/2_3

=g =[], (46

a; +a,
Inthiscase, theratio of K, corresponding to a;, # a, and
a, = a, isequal to that for dimers:

£ 2(313-2)1/2 3<1
& [ ata, }
(see (3.10) and curve 2in Fig. 1).

Somewhat similar results are obtained by analyzing
two- and three-dimensional configurations. In particu-
lar, for the “ seven-leafed rosette” consisting of six par-
ticlesof radiusa; (j =1, 2, ..., 6) located equidistantly
on a circumference of radius r and a particle of radius
a, at the center,

&jjr1 = (allr)3 =&,
Eiiv2 = E/(3)™ = 01928 = n,

0= E18=0, &= [(a,@)"]” = &, (47)

r=2a (ala;<1),

r=a+a, (aya;>1).

When a,/a, > 1, the outer particles are in contact with
the central one. When a,/a; < 1, the outer particles are
in contact with one another. In the case of polarization
perpendicular to the rosette’s plane, the seventh-order
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system of equations breaks up into fivefirst-order equa-
tions and a second-order system, which yield

Ky = 2(§—n)+& = 1741,

Kys = &+n - = 1067¢ (2),

Kgys = —&+n+{ = -0.683¢ (2),
Kg7 = —&—N—0/2

2.1/2

£[681+(E +n +1/2)]

= {1255+ [6(ay/a,) + 1575 3¢ .

(The numbers in parentheses are the multiplicities of
degeneracy.) The roots Ky, ..., Ks correspond to differ-
ence-frequency dipole oscillations of outer particles
and depend only on the parameters of their interaction
(for a,/a; < 1). The roots K¢ ; are associated with the
interaction of the central dipole with the resultant
peripheral dipole, varying with a,/a,. For a,/a; = 1/2
and 1 (r = 2a,), we obtain

Ke/§ = —2.780, —4.007,
K,/§ = 0.270, 1.497,

i.e., theroots strongly depend on a,/a,. When a,/a; > 1,
the distancer increaseswith a, as 1 + a,/a, and the fre-
quencies Ky, ..., Ks scale with (1 + a,/a,)3; i.e., they
vary rapidly.

Analogous results are obtained for the five-leafed
rosette consisting of four particles of radius a, located
equidistantly on a circumference and of a particle of
radius a, at the center. The interaction between the
reduced central and resultant peripheral dipoles polar-
ized perpendicular to the rosette’s plane is character-
ized by the roots

Kip=-N-0R2+[48+0n+E/27", ks=2n-C.
The difference-frequency root is doubly degenerate:
Kgs = C.

In the case of outer particlesin contact with the central
one,

(4.8)

1/2 3 1/2 3
- B %, n=E A
O+ L+t (4.9)
= (1+1)73%, t=ala=2""-1.

The numerical valuesfort=1/2, 1, and 2,
Kgs/&o = 0.296, 0.125, 0.037;

K4/&, = 1.380, 0582, 0.173;
K&, = —2.931, —2.459, —1.804;
K,/&, = 0959, 1.627, 1557,
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exhibit a substantial and intricate dependence of K,
on a,/a;.

Toillustrate the dependence of roots on particle size
for three-dimensional systems, we now consider aclus-
ter with six spherical particlesof radiusa; (j =1, 2, ...,
6) lying on the coordinate axes at equal distances from
acentral spherical particle of radiusa, (an endohedrally

doped octahedron). The system of equations for d;,

breaks up into third-, second-, and first-order systems.
The sum-frequency roots are

Ky = —«(N—0{/2)
+[1287+2(n+0)*+ (N -0/ (3),  (410)
K, = 0(3),
and the difference-frequency roots are
K, = 3n+2C (2),
s = 30+ (3),
Ke = 2N —C (3), (4.12)
7= =30+ (3),
Kg = —6n +2¢C.

Since the particles lying in each coordinate plane con-
dtitute a five-leafed rosette similar to that considered
above, the parameters&, n, and  aregiven by (4.9). For
t=a,/a; =1/2,1, and 2, we obtain

Ki/&, = 2.698, 3.251, 2.825;

K4/&, = —4.078, —3.833, —2.998;
K4/€, = 3.107, 1.311, 0.388;
Ks/€, = 2.810, 1.186, 0.351;
Ke/€o = 1.380, 0.582, 0.172;

K,/€, = —2.218, —0.936, —0.277;

Kgl€, = —4.436, —1.871, —0.554.

The sum frequencies K; 5 (associated with interaction
of the peripheral particleswith the central one) vary rel-
atively slowly, because an increasein a, affects both the
interparticle distance and the central particle’s pola
rizability. Accordingly, K, ;3 varies approximately as
[2tY2/(1 + t)]3. Since the difference modes are deter-
mined only by the interactions between periphera par-
ticles, the frequencies Ky, ..., Kg vary as (1 + t)= with
increasing a,. These trends are anal ogous to those char-
acteristic of the seven- and five-particle two-dimen-
sional systems considered above. Note also that
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max|K,,| almost reaches 4¢, for the endohedrally doped
octahedron.

Thedifference modes strongly depending on therel-
ative particle sizes are not excited in the symmetric sys-
tems discussed here, and the corresponding linear phe-
nomena cannot be manifested in optical spectra. It is
obvious that these difference modes must be excited
when the symmetry is broken (as in dimers), and their
frequency will be sensitive to ratios of radii.

The specific cases analyzed here illustrate the gen-
eral considerations about the influence of relative parti-
cle size on u,, and K, presented in Section 1. When the
eigenfrequency K, has an extremum for a, = a,, it var-
iesslowly. For other types of oscillations or geometries,
K, may strongly depend a,/a,;. For this reason, mono-
mer polydispersity should be taken into account in
numerical K, calculations analogous to [10, 11]. The
results presented in [10, 11] are of fundamental impor-
tance for understanding optical properties of fractal
clusters, but have alimited scope as applied to real sys-
tems. In particular, the range of eigenvalues obtained
in[10, 11] would but dlightly depend on size distri-
bution, because its boundaries are determined by inter-
action between particle of equal size. However, allow-
ance for size variability would obviously result in a
slower variation of the eigenfrequency spectrum at the
boundaries.

5. ABSORBED POWER AND ACTING FIELD
FOR MANY-PARTICLE AGGREGATES

In many phenomena, including nonlinear effects
and photomodification of clusters, an essentia role is
played by the local fields E; acting on individual parti-
cles. According to one hypothesis, photomodification
of clusters may be due to melting, evaporation, coales-
cence, and other changesin particles strongly heated by
absorbed radiation. If the pulse duration istoo short for
heat exchange between particles or heat transfer to the
environment to occur, then the initial temperature
change is determined by the energy per unit volume
absorbed by a particle:

r 2

WQu
ai

T ’

3/2
i

where 1, is the effective pulse duration. According
to (2.18), the squareroot of this quantity determinesthe
magnitude of the acting field E;.

For transversely and longitudinally polarized
dimerswith different particleradii, it was shown in Sec-
tion 3 that Q. = Q,, hear the resonanceswhen & > 8. In
contrast, the distribution of Q4 over particlesfor linear,
planar, and bulk many-particle systems depends on
many factors, including ratios of particle sizes.
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The analysis that follows is focused on the distribu-

tions of |d{ |and |d] Ja* over particles near the stron-
gest resonances and (as in Section 4) is restricted to
simple cases, but the results provide a basis for some
general conclusions. For longitudinally and trans-
versely polarized linear aggregates, the strongest reso-
nances correspond to the largest K., and —,, respec-
tively. Consider asymmetric linear trimer with contact-
ing particles and a; = a;. Using approximation (4.3)
and assuming that &, = &,3 > 0, we find that

|d2| 912 =2
al % Qa
These results are independent of polarization and the

value of a,/a, . Theratios of the acting-field magnitudes
and absorbed powers per unit volume are

= 2" dyf = [di.  (5.2)

| E2| 2 [ﬁﬂjs/z

B~ ° [af 52)
Qe _ o7 '
QutaH ~ "Lall”

Therefore, thefields acting on the peripheral particlesis
stronger than that acting on the central one if a;/a, <
27Y3 = 0.794. This phenomenon is analogous to the
increase in field strength at a metal needlepoint. Under
this condition, the peripheral particles are heated stron-
ger than the central one. When the interaction between
particles 1 and 3 istaken into account, the resulting cor-
rection to (5.1) depends on a,/a, and amounts to about

10%. In particular, |d; | slightly increases, while |d; |
dlightly decreases; i.e, the “needlepoint effect”
becomes more pronounced.

For a symmetric tetramer with contacting particles
(a, = a4, &, = a3), we abtain

R
o
0 ) pﬂ (5.3)
2 _ H2N P
Q—al—1+p§1+m} ZE,
o = [, dif = |d3,
p 3 Dl[iﬂ:luz_'_ E?_]Dﬂz}
20 TG
Sincep=1(p=1whena, = a,)), it holds that
dof  1+5 _ Qu
|dr1| > 5 = 1.618, Qal>2618 (5.4)

Thus, the difference in absorbed power between outer
and inner particlesis dightly greater than in the case of
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a trimer. The ratio of the acting-field magnitudes is
derived from (5.3):

B _ coyrldd
Ef [aH |dr1|
(5.5
- a]l] s[ﬁg a;Td
=2 + +2 + .
o3 -2 -2
A simple calculation showsthat |E,[/|E,|/ = 1 if
a,/a,<0.717. (5.6)

Therefore, the needlepoint effect manifests itself at a
smaller ratio a,/a, in atetramer as compared to atrimer.

For the strongest resonance in a symmetric linear
system of five contacting monomers (a; = as, a, = a,),
we obtain

e, 4
|d1| g, ’ |dr1| €10
jdef = [, [d] = |,
3/2 (5.7)
Ky = —(&3,+ 2&33)1/2 1o = (aLZ)y
(2, +a,)
_ (*'5123-3)3/2
“ (a2+a3)3'
If g = a, then

o _ = 32 = 1732, o _ 2.
] £

According to (5.7), |d;J|d; | > 1 for any a/a;, and

|d5 J|d5 | can be both greater and smaller than unity.
Setting a, = a5 for simplicity, we obtain

&1 8(3132)3/2 [ [1;»12]2]1/2
22 = DA o1 K, = 2+ 28|
€23 (a; + a2)3 ! tz [E,
& = 1/8
Furthermore,
Ed _ [osm , &, P ]?
|E1| [2 %L-Fa}j +@4] )
EJ (L+a/a)’
% = e (5.8)
| E3| |: glﬂz} 1/2 [a:lllz
=2/|2+ > == .
|E2| L, ] (8]

Both |E,|/|E,| and |E5)/|E,| monotonically increase with
ay/a,, and |E5)/|E,| reaches a minimum when a, = a,.
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Thevauesof a,/a, for which |E,|/|E;| =1 and |EgJ/|E,| = 1,
respectively, are
a,/a, = 0676, ala, = 2°°—1 = 0588. (5.9)

Thus, a stronger field acting on an outer particle (as
compared to inner ones) is associated with an even
smaller size of outer particles in a pentamer as com-
pared to a tetramer or trimer. Otherwise, the fields act-
ing on the inner particles are stronger.

These particular cases suggest the following general

rule. The degree of nonuniformity of a|d; |or Q4 distri-
bution over particles increases with the number of

monomers in a chain, and |d; | is increases toward the

center of a chain. Therefore, nonlinear effects in an
aggregate of identical particles are localized at its cen-
ter. With decreasing outer-particle radius, the localiza-
tion of nonlinear effects shiftsto the corresponding end
of a chain. For example, melting must begin either at
the center of achain of identical particles or at the ends
of anonuniform chain with sufficiently small outer par-
ticles. This rule applies to two- and three-dimensional
systems as well.

Let us discuss this rule as applied to the symmetric
five-leafed rosette considered in Section 4. For polar-
ization perpendicular to the rosette’s plane, we obtain

A S S
] K1 @+)P+g

12 3/2
2

3/2
00&a — 0208'331['

1
q= E%L-F?D@ﬂ o (5.10)

|Ey 2
[(a,/a,)® +0.0433]

+0.208

Therefore, if a, = a;, then

ol _
o]

which iscloseto the values obtained for linear systems.
Furthermore, both |ds J|d; | and |E,|/|E,| are monotoni-

= 1.627,

cally decreasing functions of a,/a,, and |d, J|d}|= 1
and |E,[/|E,| < 1, respectively, when

a,/a; 20425, a;/a,<0.681. (5.11)
Thus, when the radius of the central particle 2 is not
sufficiently small, its reduced dipole moment is greater
than that of the outer particles. Owing to the needle-
point effect, the acting field and absorbed power per
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unit volume are greater for the outer particles if their
radius is sufficiently small.

Analogous results are obtained for the seven-leafed
rosette considered in Section 4:

|d3 6 ey
Pd - O gz 12550
dif  (6+d")"*+q -]
@—1497 (a; = &) (5.12)
r - . l - 2 ] .
o)
Ed _ 6 _
Bl [6(a,la,) + 1.575) " + 1.255
Instead of (5.11), we obtain
a,/a; £0.632, a;/a,<0.659. (5.13)

Now, consider the endohedrally doped octahedral
cluster with a central particle of radius a, and identical
peripheral particles of radius a;. If the external field is
parallel to the z axis, then the four particleslying in the
xy plane are geometrically equivalent and are called
particles 1, the particle at the originisreferred to as par-
ticle 2, and those onthe zaxis are called particles 3. For
this symmetric system, we obtain

o3| _ 12
ldb  [12 +0.543(a /a,)]"? + 1.248(ay/2,)"

(2.505),

o _,
r
|dlz| (5.14)
- 2871 _ (1400),
[12 + 0.543(a,/a,)’] "~ + 1.248(a,/a,)
Bad _ 12 (2.505).

B [12(a,/a,) + 0.543] "2 + 1.248

The numbers in parentheses are the corresponding
ratiosfor a; = a,. Again, we see that the dipole moment
of particle 2 is greater than that of particles 1. There-
fore, |[E./|E;] > 1 only if a; issufficiently small ascom-
pared to a, (cf. (5.11) and (5.13)):
a,/a,<0471. (5.15)

Thus, the distributions of absorbed power and act-
ing-field magnitude strongly depend on the number of
particlesin acluster, its geometry, and the relative radii

of the constituent monomers. A general ruleis that the
reduced dipole moment increases toward the center of
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an aggregate. However, nonlinear effects can be more
pronounced either for inner or for outer particles,
depending on their relative radii. A sufficiently small
outer particle can be the “locus’ of a nonlinear effect.
To perform amore detailed calculation, one must spec-
ify the cluster geometry and state a physical problem to
be solved.

6. DISCUSSION

In the 1980s and 1990s, when the principal objective
was to highlight the properties of fractal clusters as a
special optical medium, research was focused on large
systems as whole entities, e.g., on the absorption spec-
tra of N-particle aggregates with N ~ 10* and higher.
However, disordered, strongly bonded fractal clusters
always contain subsystems of closely spaced, nearly
contacting particles, whereas the density of distantly
spaced particles is relatively low. This feature distin-
guishes fractal clusters from uniform media. In partic-
ular, closely spaced particles determine the width of the
dipole eigenfrequency range and, therefore, the width
of the inhomogeneously broadened tail of the plasmon
band and the spectral range where resonant nonlinear
effects can be observed. It is shown in Section 4 that
max(|K|/&g) = 4 isreached for N = 7 in linear, planar,
and bulk systems; i.e., the number of particlesis more
important than the aggregate’'s geometry. This result
highlights the dominant role played by the dynamics of
dipole—dipole interaction of a relatively small number
of monomers, as compared to statistical aspects of the
problem. The approach adopted above must bejustified
with regard to various nonlinear problems. For exam-
ple, photomodification of clusters is studied by using
electron diffraction patterns to analyze changes in
aggregate structure, and thisanalysisisnot amenableto
statistical averaging of any kind.

Inawidely applied model [1-11], the particleradius
was assumed to be equal for all monomersin acluster.
In Sections 3 and 4, it is shown that the eigenfrequen-
cies K, strongly depend on the ratio of radii and the
largest max|k,| corresponds to approximately equal
radii. Accordingly, the spectrum width (therange of k)
is determined by interaction between almost identical
contacting particles. The physical explanation of this
result lies in the fact that the polarizability of the
smaller particle decreases as its radius cubed and this
trend has a stronger effect than the possibility of a
decrease in interparticle distance. However, the fre-
guency K, can vary drastically (as radius cubed) within
theinterval (mink,,, maxk,,). Thisbehavior of K, spec-
trum is independent of the aggregate geometry. Thus,
inhomogeneous broadening of absorption spectra is
explained by variation of both interparticle distance and
particle radii.

A difference in radii has an even stronger effect on
resonant amplitudes, particularly those corresponding

to difference modes. According to (2.7), di — d} ispro-
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portional to &’* — a]'?. Therefore, difference reso-

nance amplitudes strongly depend on a;/a;, and the res-
onant modes prohibited when & = & can be excited by
an externa field. Figure 2 illustrates this effect in the
simplest case of adimer.

The distributions of absorbed power Q,, absorbed

power per unit volume Qai/a?, and acting-field mag-
nitude

1/2

Ei| O[Qa/a]]

areof primary interest for analysis of nonlinear phenom-
ena. According to the general rule stated in Section 5, the
value of Q, increases toward the center of an aggregate
of monomers of equal size. Moreover, Q, may change
by severa times within an aggregate. If the radii of
peripheral particles are sufficiently small, then the field
acting on them is stronger than that acting on “inner”
particles. This effect is qualitatively consistent with the
electrostatic needlepoint effect. Thus, nonlinear phe-
nomena can be more pronounced either for inner or for
outer particlesin an aggregate, depending on their rela
tive radii.

The distribution of |E;| isessential for scattering that
is not degenerate with respect to frequency. For exam-
ple, Raman scattering by molecules adsorbed on a
nanoparticle surface depends on the product |E;P|Eir[%,
where E;r isthe local field at the Stokes frequency [1].
Thus, the strongest effect is attained when both pump
and scattered fields are strong at the point where the
scattering molecule is located. Since local fields reach
maximum values at resonant frequencies, the distribu-
tion of modes over the particles that make up a cluster
has to be calculated in the theory of giant scattering. A
similar problem arises in studies of nonlinear scatter-
ing. According to Section 3, a dimer with a; = a, is
characterized by a single resonance in the long-wave-
length absorption tail, whereas another resonance
appears for particles of different size; i.e., high loca
field magnitudes can be obtained simultaneoudly at two
frequencies. This example demonstrates that the use of
aggregates of particles of different size offers new pros-
pects in nonlinear optics. In other words, particle-size
variability may be introduced into a model as an ele-
ment of practical importance rather than acomplicating
factor that simply cannot be ignored.

Thus, optical properties of acluster strongly depend
on the relative sizes of its constituent particles. This
conclusion is supported both by the general analysis
presented in Section 2 and by illustrative numerical cal-
culations. Effects due to difference in particle size are
so strong that they may change the overall physical pic-
ture of optical phenomenain cluster systems, particu-
larly those involving nonlinear optical properties and
local field fluctuations.
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The diversity of factors that affect the eigenvalue
distributions and resonant amplitudes for disordered
clusters and the need for statistical averaging over var-
ious random parameters suggest that absorption and
refraction spectra must be insensitive to the details of
models. Wide and featureless inhomogeneously broad-
ened tails of an absorption band merely imply that the
particles are strongly bonded in afractal cluster. Toval-
idate a model, one should consider experiments that
yield “more local” characteristics. Valuable informa-
tion of this kind may be extracted from nonlinear
effects, such as creation of “holes’ in absorption spec-
tra, experimental methods based on near-field optics, or
experiments on arelatively small number of particles.
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Abstract—An integrodifferential equation describing the angular distribution of beams is analyzed for a
medium with random inhomogeneities. Beams are trapped because inhomogeneities give rise to wave localiza-
tion at random locations and random times. The expressions obtained for the mean square deviation from the
initial direction of beam propagation generalize the “3/2 law.” © 2004 MAIK * Nauka/Interperiodica

Fluctuations of the beam propagation direction in a
randomly inhomogeneous medium are frequently
observed in nature. Examples include random refrac-
tion of radio waves in the ionosphere and solar corona,
stellar scintillation due to atmospheric inhomogene-
ities, and other phenomena. The propagation of abeam
(of light, radio waves, or sound) in such media can be
described as a normal diffusion process [1, 2]. One
extraordinary property predicted for random media—
and later revealed—is the Anderson localization [3],
which brings normal diffusion to acomplete halt. Inthe
context of wave propagation in a random medium, the
Anderson localization is caused by interference of
waves resulting from multiple scattering [4]. When two
waves propagating in opposite directions along a closed
path are in phase, the resultant wave is more likely to
return to the starting point than propagate in other
directions. The properties of a randomly inhomoge-
neous medium vary not only from point to point, but
also with time. Consequently, localization may take
place both at random locations and at random times.
Random localization affects diffusive light propagation
in a random medium. An approach to describing this
effect is developed in this paper.

Suppose that the medium is statistically homoge-
neous and isotropic. Then, a beam propagating through
the medium is deflected at random. Localization
implies that the beam is trapped in some region. Since
the trapped beam returns to the point where it was
trapped, its propagation is “frozen” for some time.
After that, arandomly deflected beam |leaves the region
and propagates further until it is trapped in another
region (or at apoint), and the localization cycle repeats.
The randomly winding beam path due to inhomogene-
ities is responsible for the random refraction analyzed
in this study.

The angle 6 of deviation of a beam from its initial
direction is characterized by a probability density
W, (6, 0), where o isthe path traveled by the beam. Let
us derive an integrodifferential equation for the proba-

bility density. In contrast to rotationa Brownian
motion, the random walks analyzed here consist of ran-
dom anglejumps A8, at points separated by segments of
random length Ag;. Exact knowledge of the distribu-
tions of these random variablesis not required. It is suf-
ficient to assume that the angle jumps are independent
random variables belonging to the domain of attraction
of Gaussian probability distributions. The random seg-
ment lengths Ao; are also identically distributed inde-
pendent random variables, with distribution is charac-
terized by an exponent a. Since Ag; is a nonnegative
guantity, thisdistribution istotally asymmetric, and 0 <
o < 1. Recall that arandom variable characterized by a
probability distribution f(x) of thiskind is described by
the Laplace transform

0

®(s) = [exp(-sx)df(x) = exp{~(AX)}
0

where x = 0 and A > 0 [5]. The total path length is the
sum of al Ag;. Both Ag; and A8, are Markov processes.
However, since the former is the master process with
respect to the latter, the resultant process may not pre-
serve the Markov property [6]. Convergence of distri-
butions ensures passing to a continuous limit [7]. This
leads to the diffusion equation

W, (8, 0) — W, (8, 0)

oW, (6 a)n
J’F(a)sneae% N9—55 (

o) do’,

where D is a diffusion coefficient and '(x) is the
gamma function. The solution to this equation can be
expressed as an integra transform of the probability
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distribution associated with rotationa Brownian

motion;

00

W,(8, 0) = IFG(Z)Wl(G, 0°2)dz,
0

where

e (2"
Fa(2) = kzok!r(l—a—ka)'

The diffusion equation yields the mean
cosB = E,(—2Dac?%),

where

_ (="
Ba(=x) = zr(1+n0()

is the Mittag-Leffler function. At large o, al beam
directions are equiprobable. However, in contrast to
normal diffusion (a = 1), abeam hasto travel alonger
path o to reach this state. This process is somewhat
analogous to “anomalously slow” relaxation.

Following the method developed in [8], one can find
the mean square of the distancer from the starting point
to the observation point reached by the beam that has
traveled an intricate path of length o through the
medium:

a

3 _ o
If Do < 1, then

2 _ . 20 1 2Do*

=20 [F(2a+1)_r(3a+l)] @)

If the zaxis of apolar coordinate system isaligned with
the initial beam direction, then the mean sguare of the
distance passed by the beam along this axisis given by
the formula

7= ;{ﬁ 6D(1 E,(-6Do ))} 3)

If Do issmall, then

5 ool 1 6DG"
=2 - .
z2 =20 [I’(Za 1) TGa+ 1)}

(4)
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Now, the mean square deviation of the beam from its
initial direction can be calculated by combining (1)
with (3):

2 _ 2 »_ 200 1. _ . q
p ' =r"-2 = S—Dl'(a+1) 2Dz[1 E,(-2Da")]
©)
a ].
18D’
If Do issmall, then ageneralized 3/2 law [8] is obtained:
«/p:2 _ 2A/§ D1/20_3a/2. ©6)

JT(3a +1)

The mean squares given by (1), (3), and (5) increase as
0% at large 0. The case of a = 1 corresponds to normal
diffusion without wavelocalization. Thus, the approach
devel oped here subsumes classical results of the theory
of beam propagation in a randomly inhomogeneous
medium [1, 2].

Finally, it should be recalled that considerable
experimenta deviations from the 3/2 law (more pre-
cisely, from an exponent of 3/2 in the classical power
law) were mentioned in [9]. However, they were attrib-
uted to systematic measurement errors, probably
because of the lack of plausible interpretation. This
problem can be revisited in view of the results obtained
in this study. Moreover, new accurate experimental
studies of beam propagation in suitable randomly inho-
mogeneous media would be extremely useful for veri-
fying the model proposed here.
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Abstract—The collision operator of relativistic electrons with a cold gas of atomic particlesis derived consis-
tently taking into account elastic interactions, excitation of electron shells, and ionization. The creation of sec-
ondary electronsis described accurately. In the range of energies exceeding the binding energy of atomic elec-
trons, the operator implicates only the angular scattering by nuclei and theionization integral that automatically
allows for scattering by atomic electrons. The collision operator used earlier for studying the kinetics of ava-
lanches of relativistic runaway electronsis analyzed. A more exact operator derived in the present study issim-
pler in form and savestime in computer calculations. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In collision operators of the kinetic equation (KE),
which are reduced to the forms convenient for numeri-
cal calculations of transport of relativistic electronsina
substance, infrequent events of creation of high-energy
electrons are usually ignored. However, Gurevich et al.
[1, 2] proved that such events may change the course of
an ionization process in the presence of electric field,
leading to the devel opment of relativistic runaway elec-
tron avalanches (RREAS) and to gas breakdown in
weaker fields than those required for the conventional
breakdown. The theory of breakdown in air and the
mechanisms of ascending atmospheric discharges
involving RREAswas developed in terms of the kinetic
equation [3, 4]

of r1-p°a )
3 [ 5 mf + pa—pf}eE
= Stfr + Stsc + Stion
with the following components of the electron—mole-
cule collision operator:

(1.1)

_ 10, >
Sty = p_za_p[p F(p) f(t, p, W], (1.2)

(ZmoI/2 + 1) F(p) r
= L f t! ’ ’
ap uf(t P, 1)

Sty (1.3

* 2
Stion = NmoIBC J- dslw _ID

-1

X Ojon(E, 8')%Jf(t’ €', u)da.
0

2e+¢€,

(1.4)

Operators (1.2) and (1.3) describe the flux in the
momentum space and the angular diffusion due to scat-
tering from atomic nuclei (the component containing
factor Z,,/2 in Eq. (1.3)) and electrons. The creation of
high-energy electrons is described by ionization inte-
gral (1.4). Here, f(t, p, W) is the electron distribution
function (EDF) over the momentum modulus p and the
cosine of the angle between p and unit vector e = —E/E
inthedirection of theelectric force, where E istheelec-
tric field vector; e is the elementary charge; €, is the
ionization threshold; N, is the molecule concentra-
tion; Z,, isthe number of electrons per molecule; a is
the azimuth angle (see Fig. 1);

- 0 0
Ly = m(l - Uz)ﬁ

isthe angular part of the Laplace operator in the spher-

ical system of coordinates; y=1/+/1—B*; B = v/c; F(p)
isthe drag force describing the average energy losses of
anelectron[5, 6]; Oio,(€', €) isthedifferential ionization
cross section; and € = (y — 1)mc? is the kinetic energy.
Primes denote the values of the quantities prior to inter-
action events.

The dependence of the characteristic time t, of
RREA enhancement on eE/F,,;,, was calculated in [3, 4]
by numerically solving Eq. (1.1)—«1.4). The discrep-
ancy with the values of t, abtained by the Monte Carlo
method [7, 8] was partly eliminated in subsequent pub-
lications [8-12], where the procedure for solving
Eqg. (1.1)«(1.4) was refined. Satisfactory agreement
was reached in [10-12], where the ionization process
was described in the KE in 3D geometry, contrary to 2D
geometry used in [3, 4], and kinetic equation (1.1)—(1.4)
was written in divergent form. The remaining discrep-
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Fig. 1. Scattering geometry: vector e definesthe direction of
the electric force, p' and p are the electron momenta before
and after the interaction, and  is the scattering angle.

ancy isprobably dueto the approximationsmadein [3, 4]
in deriving operators (1.2)—(1.4).

Here, we expound on a consistent derivation of the
collision operator in amedium with a uniform external
eectric field, specifying a preferred direction, and
describe al approximations made. We assume that
interactions with neutral atoms (molecules) dominate
and atoms are immobile, so that their energy distribu-
tionisinsignificant. We use the procedure devel oped by
Holstein [13], who obtained an exact nonrelativistic
operator consisting of rigorous balance components
responsible for elastic collisions, excitation, and ioniza-
tion. In contrast to [13], in reducing the exact operator
to the form convenient for calculations, we will not use
the Lorentz approximation, which is valid for weakly
anisotropic EDFs, but will take advantage of the fact
that interactions with small variations of the direction
and magnitude of the momentum dominate in the high-
energy range. For this reason, the parts of the operator
responsible for elastic interactions and excitation of
atomic particles can be reduced to differential form.
The ionization integral describing the population of an
element of the phase volume remains nonreduced with
the lower integration limit equal to the accurate value of
€ +¢,,asin[13] and not to 2¢ + ¢, asin relation (1.4).
In contrast to [13], this integral takes into account the
relation between the scattering angle and the electron
energiesaswell asthe exact relation between the angles
formed by the electron momentum vectors participat-
ing in ionization event with direction e.

Tofind the differenceswith relations (1.2)—(1.4), we
reduced the collison operator to a form similar
to (1.2)—(1.4). For this purpose, we divide the ioniza-
tion integral into two parts, one of which describes
“weak” interactions and the other, “ strong” interactions
with an energy change of an impinging electron, such
that both electrons after ionization event enter the high-
energy range (in particular, both electrons can become
runaway electrons). The criterion adopted for separat-
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ing interactionsisthe sameasin[3, 4]. Inthelatter pub-
lications, the explicit dependence of cross section €,
on €' and € as well as the procedure of its factorization
were used, although neither of these are necessary.

In the gas of molecules consisting of n identical
atoms, molecular quantities N, and Z,,,, are connected
with atomic quantities N, and Z; viathe relations

Ng =NNpo, Zyg = Zpg/N. (1.5)
The operator components describing the excitation and
ionization contain product NZ, which, in accordance
with relations (1.5), is the same for atoms and mole-
cules. The component responsible for scattering from a
nucleus contains a factor with number n if calculations
are carried out in terms of molecular quantities (see
Section 7):

NuZ% = Ny Zmg/N. (1.6)

2. GEOMETRY OF SCATTERING PROCESSES

Figure 1 shows the scattering geometry in the coor-
dinate system defined by unit vectors

i = px[exp]/p’sind = (ep’—p(p [&))/p’sing,

j = [pxel/psing, k = p/p,
where p(p, 6, ¢) isthe electron momentum vector after
scattering [13]. In this system, Kk is the polar axis and
scattering angle Y O [0, 1] becomes the polar angle,
while angle a O [0, 211 between j and the momentum
projection p'(p', 8', ¢") onto plane p = 0 before scatter-
ing is the azimuth angle. Formula (19b) from [13],
cosB' = cosBcosy + sinBsincosa, (2.1
which connects angles a and () with angles 8" and 6
between vector e and the directions of the electron
momenta before (p'(p', 0', ") and after (p(p, 6, ¢))
scattering, was derived under the assumption that p' =
p, which isviolated in inelastic collisions and which is
actually superfluous. If we form the scalar product of
the regular decomposition of p' in unit vectorsi, j, k,

C_ P pxe .. .
p' = pp cosy + _psinep snysina
px[exp] o
+—————p'cosycosa,
p°sin®
and vector e, result (2.1) isobtained directly without the
assumption that p' = p.
Thechangein p'isespecialy largeinionizing inter-
actions since the energy €' of a primary electron not
only decreases by €;,,, but the remaining energy €' — €,
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is divided between two free electrons. The alowance
for the exact relation between angles 6' and 6 is very
important in the problem of multiplication of runaway
electrons since the runaway energy threshold depends
on the angle at which an electron moves relative to
direction e. Thisrelation determines whether both elec-
trons (primary and secondary) are in the runway mode
or only one of them will be arunway electron.

3. ELASTIC COLLISIONS

In the approximation of symmetry relative vector e,
the EDF depends only on the modulus p of the momen-
tum and angle 6 between the directions of p and e. In
this section, we denote by € the total relativistic energy.
The electron elastic scattering probability per unit time
from the phase volume element du'dV to element dudV,
whose element du = p?dpdw is seen from the coordi-
nate origin in the momentum space at solid angle dw
(Fig. 2), isdefined as

Tel(p'! pi UJ, dp! d(A))

(3.1)
= NaV'(0a(p', B))dwd dq(E, €', ) vdp,

where
dog = a4(p, P)dw

is the differential cross section of elastic scattering.
Deltafunction d(¢) takes into account the energy and
momentum conservation laws:

da(E, €, 0) = e—gqy(e, Y) = 0.

The formulas describing the scattering of a particle
of mass m by animmobile particle of massM in thelab-
oratory reference frame [14] can be used to derive the
exact expression for the energy transferred to the sec-
ond particle. Thisexpressionissimplified form< M as
follows:

(3.2)

(1+8)e+M

e = p¥(1- .
e W e

(3.3)

Here, & = cosy and the energy is measured in units of
the electron rest energy me?. Since &2n? < M?, we can
replace p'2 in the denominator by €'2 and simplify rela-
tion (3.3) so that law (3.2) can be written explicitly in
the form

(- 1)§7(1-8)

€= gulE\Y) = &'- (34)

1+e7(1-8)

The total number of transitions to dudV from all
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Pz
du

du'

dw' 0 Py

Dx

Fig. 2. Scattering geometry: du' and du are the volume ele-
ments in the momentum space before and after the interac-
tion, p' and p are the electron momenta before and after the
interaction, and Y is the scattering angle.

other elementsdu'dV is given by
J‘f(p', ) T4(p', p, ¥, dp, dw)du'dV
T (D du
dVJ’f(p, W, OTa(P', P, Y, dp, dw) = du

dVAuNv [ (P’ ' D(0u(P, W) (p/p)?

x O(by(e, €, P))v'dwdp'.

Here, W' = cosB'. Function d(¢,) satisfies the formal
relation [14]

O(da(E, €, 1)) = ‘

(35)

3(p' = p.)
00, W) de’

o' dp

d(p' = p.)
‘age.os', W,

o¢'

where p, is the solution to Eg. (3.2). Evaluating the
derivative of g4, we obtain the expression

5(p' —Py)
(p/p)°v’
which makes it possible to integrate in Eq. (3.5) with
respect to momentum modulus p',

dV duN,v [ (P’ ', 1)(0a(P, W)(p/p)?

LO(P—py)
(p/p)°v'

p'=p

(3.6)

p'=py

3(¢e) = (3.7)

vidwdp' 39)

= dVduNgv [ (P ' 1)(0a(p, W) (p/p)dw,

wherep' = p,. Using relation (3.3), we obtain acumber-
some expression for the derivative of g4. A disadvan-
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tage of relation (3.4), which isinsignificant as long as
€' < M, is the independence of the condition for the
smallness of the transferred energy,

g—t

€—-m

<1,
on the energy itself:
(MM)(1-¢) < 1.
Subtracting from relation (3.8) the total number of

transitions from dudV to other elements, we obtain the
following expression for the elastic collision operator:

Sta = Nav [LF(P W, (p/p)*(o4(p, W)
—f(p, 1, (04(p, ¥))]dw.

Taking into account the smallnessof Ap=p'—p as
compared to p', we expand the part of the integrand in
expression (3.9) responsible for the population of ele-
ment dudV, into a series;

HCATRICONCRCAD)

= f(p, W, 1) (ag(p, U))

o EoGE GG A

p=p

(3.9)

(3.10)

Expressing Ap in terms of Ag(y) = vAp and then, in
accordance with relation (3.4), Ag(W) interms of €,

(e*~mPch) (1 -E)

Aeg(Y) = ;
mcz—s%(l—ﬁ)

(3.11)
we transform relation (3.9) asfollows:
Sty = NatVI(f(p, W, 1) = f(p, 1, 1) (0a(p, W) do

(e?—mPch) (1 -8) (3.12)

i F‘[ mc?—e(1-F)
o M

xaipf(p, I, ) p(0u(p, 1) das.

In the coordinates depicted in Fig. 1, an element of
the solid angleis given by [13]
dw = snydyda = —d&da. (3.13)
In the nonrelativistic limit, relation (3.12) can be
reduced to formula (11) from [13].

Further, we will use the conventional procedure
developed for high energies, when the variation of
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angle 6 in asingle collision event is small. Expanding
the right-hand side of operator (3.12) into a series in
Ay, we obtain the following diffusion approximation:

1 2n

Sty = NaIVJ'dEJ'dO(
1%

of r 4 (AW’
x|:duAIJ+au2 2 :|Gel(p! l'lJ)

(3.14)

Expanding the left-hand side of relation (2.1) into a
series, we reduce it to the form

Ap = —p(1—8) + J1—p*J1—E%cosa.
It can be seen that small values of Ap are realized for

& — 1. The quadratic form of relation (3.15) is as
follows:

(Ap)? = p¥(1-8)*-2p(1 - &)J1-p®J1-Ecosa

+(1-p?)(1-8)cos’a. (3.16)

(3.15)

Sincef(, p, t) and o4(p, W) are independent of o [
[0, 2m], we can integrate relations (3.15) and (3.16)
with respect to this variable:

2n

IAuda = 2mu(1-¢), (3.17)
0

{(Au)zda = 2mpf(1-&%) + (1 - p*)(1-&7) 318
~2m W(1-8)*+ (1-p*)(1-&)].

Substituting these relations into operator (3.14), we
obtain

S = Nag| @D, +o@WTS] 319
where
1
o) = 2n[(1-§)og(p. O, (320)
)
(3.21)

o(p) = 2nj(1—z>2crd(p, £)de.

Since transport cross section (3.20) is much larger than
cross section (3.21) because & — 1, we can disregard
the second term in Eq. (3.19), which makes it possible
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to satisfy the condition of conservation of the number
of particlesin elastic collisions:

1

[ Stadht = 0 (3.22)

We continue to expand the second term in rela-
tion (3.12) in Ay, neglecting the terms quadratic in
(M/M)(1 — €)e as compared to mc? and taking into
account relation (3.17):

(3.23)
[f(u p.00W(P) ~ 5 o(p)}

This operator satisfies the condition of conservation of
the number of electrons, so that

[

J'Ste,(z) p’dp = 0 (3.24)

due to the fact that f(p, 1, t) — O for p — 0. Since
values of & ~ 1 dominate, we disregard the second term
in relation (3.23) and obtain the following expression
for the total operator of elastic collisions:

Sty = Na| 50u(A)Lu T, PO
(3.25)
+

'Olp

mp- 9 s
MimasP P (P |

4. INELASTIC INTERACTIONS
(BOUND-BOUND TRANSITIONS)

L et us derive operator St,, responsible for excitation
of atomic particles to state (i) with excitation energy

sgx). In this case, the energy conservation law can be
written in the form
del(E €, W) = E—grl(e, W) = 0, (4.1)
where
alle, p) = &' —€l). (4.2)

Anaogoudly to relation (3.1), the probability of
scattering per unit time from du'dV to dudV isgiven by

TSP, p, W, dp, dw)

= Nav'oS(p, W) dod( ¢ (e, €, ¥))de,
where

(4.3)

dog! = o(p' ¥)dw
isthe differential cross section of excitation of state (i).
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The total number of transitions to dudV from all
other elementsdu'dV is

ZJ’f(p 9TOduadv = dVZJ’f( t)T“’d“

= dVduNaIZIf(p', W, Hviel(p, wydw  (44)
p' dpdu)

x (oY vd
(dex) ppdpd

Since dgY) /d¢’ = 1, the analog of relation (3.7) has the

form

3(p' - p)
V. ’

3(04)(E €, W) =

where p; is the solution to Eq. (4.1), and relation (4.4)
can be reduced to the integral

dVdyN,v

(4.5)

. ) 46
xS [P 1 D0s(P, W)(P/p) do, o

in which p' = p;. Subtracting the number of transitions
from dudV and expanding into a power seriesin Ap =

Aglv = sgx) /v, we obtain the following expression
for Ste,:

Stee = Nav Y [[F(p, ', )0(P, W)(PYP)’

~ (P, 1, Hoc(p, Y)Jdw
- 4.7
= Nov 3 1.0 1P, . 0 L(p. Wy

Apa M
+ B0 1P 0oL, ¥ 5

Repesating procedure (3.14)—(3.18) for the first part
of St.,, weobtain

%
ey = Naz e u(P)L TP, 1, 1), (4.8)

where we have omitted theterm quadraticin (1-¢&) and
used the following notation:

O, «(P) = Z 0-¢(=)i<), «(P)
o 4.9)
_ Zan’dE(l—E)U(eix)(p, g).
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Analogously to relation (3.23), taking into account the
relation

vAp = Ae = €2,

we obtain for the second part of St

= _l_i pZ
ex(2) pza P

N (4.10)
X [f(p, M, D) Fexny(P) — Fa(z)(p)UaJ'

Here, we introduced the friction forces responsible for
inelastic collisions (without ionization):

Fo = Na ) £206/(P). (4.11)
1
oo(p) = 2nf au(p, £)dE, (4.12)
-1
() (i)
ex(2) =N Zs o-ex tr(p)- (413)

Operators (4.8) and (4.10) satisfy the condition of con-
servation of the number of electrons. Since the scatter-
ing through small angles dominates (¢ — 1), we have

0%, «(p) < 0%)(p) and, hence, the second term in rela-

tion (4.10) can be neglected. The term proportional to
Fe isapart of the term describing small variationsin
the electron momentum (see Section 7). In the RREA
problem, in the atmosphere of the Earth (small values
of Z), St is superfluous since atomic electrons can be
regarded asfreein view of the smallness of the binding

energy (and, the more so, sgx)) as compared to the
energy €' of impinging electrons. Bound-bound transi-
tions dlightly add to the contribution from the collisions
transferring atomic electrons to the continuum. Opera-
tor St can be used in problems in which the binding
energy iscomparableto €'.

5. IONIZING COLLISIONS

The probability that, as aresult of a collision ioniz-
ing shell (i), the electron is moved per unit time from
element du'dV in the vicinity of kinetic energy €' =
mc(y — 1) to element dudV in the vicinity of € =
mc2(y—1) is

T, € W, de, dw)

(5.1)
= Nav'(0g (€, € W)ndwd( §(€, €, W) de,
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where

dol (e, &, p) = (Gs-,w-(ﬁ',e,lp))(')ds dos

on

= (04(€, £)){(3()/2m)de' dw

on

isdoubly differential (with respect to energy and angle)

ionization cross section of shell (i); el is the ioniza-

tion threshold of shell (i); and (0.(€', €)1, isthe differ-
ential ionization cross section, which is symmetric rel-

ative to the secondary electron energy &, = (€' — £\, )/2.

The energy and momentum conservation law can be
written in the form

(e, €, ) = cosP — (e, €) = 0. (5.2

For (€', €), in the approximation €, €' > sfoﬁ, the fol-
lowing expression isvalid [5, 14]:

g(e' +2mc’)

£'(e +2mc?) 53

ui(e, ) =

The total number of electron transitions in ionizing
collisions populating per unit time the phase volume
element dudV in the vicinity of energy € is given by

NV z [T W, OV'(0u(E, )igndord e

= dVduNatvz I dsJ’(c ¢(€, 8)).(031\/2

Cere

dE (5.4)

2mn

jf(p H, 1)

0

(E U—o)

Summation is carried out over all shells. Integrating
with respect to &, we obtain the same operator as in
relation (1.4), but with adifferent lower limit of integra-
tion with respect to €":

Stion(l) = Natv Z I dsl(cs'(elﬂ 8))|(cl))n
Lo
. (5.5)

2
y' -1 f(p, 1,1
X da ,
2_11

21

where, in accordance with relations (2.1), (5.2), and
(5.3), we have

W' = Hpto+ o/1—pg/1—p’cosa.

(5.6)
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The operator describing the departure of electrons
from du has the form

(e-eign)/2
St = NgV F(p, 1, 1) (0., €)Y de’
ion(2) at p’ IJ" Z I e\&s ion
i (5.7)

= Nav f(p. 1,0y 0ae),

where

(e—elgn)2

[ (o £))de’

0

ou(e) = (5.8)

is the total ionization cross section of shell (i). In
expressions (5.5) and (5.7), €' and € are transposed in
accordance with the fact that Sty i responsible for
populating element du and St;,, ) is responsible for the
departure of electrons from du.

6. WEAK IONIZING COLLISIONS
In relation (5.5), we single out the “weak” interac-
tions in which the primary electron participating in an
ionization event preservesalarge part of itsenergy; i.e.,

g'=¢. (6.1

We will take advantage of the symmetry of
(o(e', £))") with respect to the secondary electron
energy & = (€' — €,,)/2 (Fig. 3) [6]. Since electrons are
indistinguishable, we assume, for convenience, that the

secondary electron is the one possessing the lower
kinetic energy,

< (€' —€ign)/2. (6.2)

Since the energy range €, < (€' — §,,,)/2 dominates in

(o(e, ss))i(f))n, expressions (6.1) and (6.2) can be
regarded as compatible. Since

€ = ete tg, = €+Ag, (6.3)

the following inequality holds for “weak” interactions:

—&ion +e — € +8i0n.

Ag =g +¥¢ ion >

(6.4)

on s

Substituting this relation into formula (6.3), we obtain
for weak interactions the formula (cf. (1.4))

€'<2e+¢g,,. (6.5
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Fig. 3. Dependence of the differential ionization cross sec-
tion on the secondary electron energy.

Repesating the procedure used in the derivation of elas-
tic collision operator (3.19) and taking into account the
fact that, in accordance with relation (5.2), & =
cosy = |, we single out from expression (5.5) the
operator

()

on

Nav S j de'(o(e, s»f;’ngpg

"l

2e +¢g

(weak) _
St|on(1)

<[ty +da-wlieuny 0

29% f
+ (1) }
2 9p®

where the second and third terms in the brackets are
analogous to the terms of operator (3.19), where inte-
gration with respect to € is carried out in analogs of
relations (3.20) and (3.21).

Let us calculate using relation (5.3) the value of
1 - Yo in the approximation of small values of Ae. Here,
wetakeinto account for thefirst timethe smallness of the
binding energy of atomic electrons since relation (5.3)
was derived precisaly in this approximation:

0 9 /68
1- i g =1-0+ S Ho

20

mAE
>

D
€=t (67)
2mc® Ae _
(e + 2mc?)e 2 p

Replacing € by & in (o(g, e))i(c',L, we expand the
integrand in expression (6.6) into a power seriesin Ag
and replace the integration with respect to €' by inte-
gration with over ¢, substituting, by virtue of relation
(6.1), € for €' in the upper limit of integration with
respect to €, which is equal to (6.2). As a result, we
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arrive a the differential representation of the operator
of weak ionizing collisions:

E (e—eln)/2
Sty = Nav'y Ef(p, M, 1) I (0E, £9)ionCEs
i 0
O

(e-eln)/2
;&pﬂnuﬂ j 2e”(o(e, £9)nde, (6:8)

(e-clon)f2 %

M - | ‘
Sty [ 8e(0(e e))ade.
2p %

Using effective drag K for “large” momentum trans-
fer [6], we introduce the friction force acting on elec-
trons as aresult of weak ionizing interactions,

I:ion(s) = NatK
(e-£0n)/2

. 6.9
:Nmz J’ AV (a(e, €)Y de., (69)
[ 0

which enables us to rewrite relation (6.8) in a more
compact form,

Sty = Ngv o) (P, 1, 1)

6.10
&ﬁpaﬁﬁmuo+“§%M(uo( )

where the tota ionization cross section is the sum

Ou(®) = 0wl®). (6.11)

It can be seen that the first term in relation (6.10) is
completely compensated by integral (5.7) Stigyp
responsible for the departure of electrons from the con-
sidered element du.

Result (6.10) can be abtained by factorizing theion-
ization cross section in relation (6.6),

(0(€, €))'on = oE)X"(E, €9, (6.12)

bearing in mind its symmetry relative to € and &5 and
taking into account the normalization

0]
€—Ejon

J' X', e)de, = 1. (6.13)
0

A rigorous reduction procedure has made it possible
to automatically single out from the ionization integral
the differential component responsiblefor angular scat-
tering by atomic electrons. The absence of this compo-
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nent in [3, 4] isdue to the fact that the process was con-
sidered on a plane and the EDF f(p', ', t) was fixed for
two values of ['; asaresult, an opportunity for expand-
ing into aseriesin W' was missed.

Operator Stf(fﬂ("l’;g) ,whichisapart of ionization inte-
gral (5.5) remaining after the replacement of the lower

limit of integration over energies by 2¢ + s,((',L asin[3,4]

(see formula (1.4) in the Introduction), is responsible
for strong collisions.

7. DESCRIPTION OF INTERACTIONS
OF ELECTRONS WITH ATOMIC PARTICLES

The operators obtained in the previous sections have
a large range of application. In this section, we give
arguments enabling usto derive simpler and convenient
for numerical calculations representations of operators
for electron energies considerably exceeding the ion-
ization energies for the electron shells of atoms.

To avoid errors in calculations, it is appropriate to
makethefollowing remark. Theliterature datafor cross
sections should be used bearing in mind that these data
are frequently given in a form integrated over angle a
(i.e., contain the factor 2m), while in the formulas
derived here (e.g., (3.14), (3.23), (4.7), and (5.4)), the
integration with respect to a is carried out as well.

7.1. Elastic Interactions

Using the Rutherford formula with the Mott factor
for og4(p, W) [6, 15], we obtain the following expression
for transport cross section (3.20):

22 o 2
Zye'y

(mc?)*(y*-1)°

a,(y) = 21 %lnwiin—g’% (7.1)

Here, @, = 0.0153Z%/By in accordance with the
Thomas—Fermi model [15, 16] and integration with
respect to a is performed. In this approximation, we
obtain the following dependence of the reciproca
transport length on y or € = ymc?:

0
4TIN, 25"y n13B_BE (72

NaI tr 3
o) = (mc®)’(y*-1)°0 z&° 20

In accordance with formula (1.6), expression (7.2)
for agas of molecules consisting of two identical atoms
(n = 2) can be written in terms of molecular quantities:

Natzgt = 2Nmol(zmollz)2 = Nmolzﬁ"lollz- (73)
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7.2. lonization (Bound-Free Transitions)

If electron energies €' and € before and after the
interaction are considerably higher than the binding
energy of atomic electrons, it is expedient, following
[3, 4], to use for the ionization cross section

(o4, s))(') the Moeller formula for the cross section

on
of electron scattering by free electron, which was ini-
tially at rest [5, 6]. Thetotal differential ionization cross
section can be obtained by multiplying this formula
by Zmol:

. _2MZyg€ y? Tl 1
O (€, s)ion - mc2 y-2_1|:8_2_£(8'—8)
| ) , (7.4
erme)me, 1, 1 2}.
(e+mc®)”  (€-8)° (g+mc)

In Section 4, we introduced the force F,;)(p) origi-
nating from excitation processes (see formula (4.11)).
In reduced operator (6.10), we introduced the force
Fion(p) associated with weak ionizing interactions. We
will express these forces via the well-known formulas
of quantum electrodynamics. Tota inelastic (“ioniza-
tion” in the historically adopted terminology) specific
losses of electron energy in the medium of particles
with the mean “ionization” energy | can be calculated
in terms of effective drag k, including the range of
small momentum transfer (in particular, including
transfer as aresult of bound—bound transitions) and the
range of large momentum transfer. In the range of
small momentum transfer, which is defined by the ine-
quality [6]

o°/m = (p' - p)°/m < mc?,

the value of K iscalculated asfollows (see, for example,
formula (82.20) in monograph [6]):

(S 2T[Zmole4 Y2
2 2
mc- y -1
2 4, 2 (7.5)
XInEqu (y ;1)+ 10
2.731 Y

This expression includes the processes of excitation
and ionization. The product N,k ™) gives the sum of
the entire force F(p) and a part of force Fi,,(p). In the
range of large momentum transfer, which is defined by
the inequality

o’/m = (p'—p)/m> I,

the value of K is calculated as the integral of cross sec-
tion (7.4) multiplied by energy €. transferred to the sec-
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ondary electron (see formula (6.4), where Ae = €/) [6],

€l2

(a0 _ ISS(G(S, €9)iondEs,

€

(7.6)

where
g, = gi/m, | <gi/m< mc*;
i.e, |l isinthe overlap region.
Thetotal drag force appearing in the reduced oper-
ator (9.1) (see, for example, the problem on p. 383
in[6]),

F(p) = (K™ + k"N o = Folp) + Fion(P) (7.7)

isthe Bethe drag force F(y) (see formula (1.2)) [5, 6]:

4 2 2 4, 2
F(y) — 2T[Zmolez NmoI 2V [In%m C (V _g-)(y_l)%
mc v -1 2l
(7.8)
2 1pg +y=1) 1)
+ In2+ 5+
Y Y Y 8V

Since formulas (7.4) and (7.8) were derived under
the assumption that €', €, &, > €, Quantity €|(c'>)n should

be omitted in the lower limit of the ionization integral
aswell asthe summation over index i. The inclusion of

81(31 leads to an excessive accuracy, while the summa:

tionwasin fact carried out when the Moeller cross sec-
tion was multiplied by Z,,,,;.

7.3. Excitation Processes
(Bound-Bound Transitions)

These processes are taken into account via force
Fex@)(P) and cross section o, «(p). Since o4(p, Y) and
O (P, V) are proportional to Z2 and Z, respectively (in
the range of small angles, both cross sections are
described by the Rutherford formula [15]), quantity
O, (D) Can be neglected for large values of Z. The
quantity Fe)(p) appears in the first component of the
operator with reduced ionization integral (9.1) and (9.2)
viathetotal Bethe force F(p) (see Section 9). It follows
from expressions (9.3)«9.6) that the component
responsible for elastic energy losses is much smaller
than F(p):

2 2
MNEOUPIFY) = FEsr () FNIFE)
vvP (79)
— ZmoI m .
- Amol mnuclr(y) 10
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Here, Zo/Ana = /2 isthe ratio of the number of elec-
trons to the number of nucleons in a molecule,

(M (y-1(yY’-1) 2
0y

2|7

BABICH

m/m,,y = 1/1840 istheratio of the el ectron and nucleon
masses, and the following notation is used [16]:

1|:|2

19 ,,1,1
N2+
VAL ol

rly) =

In(131Z;°y* - 1)

In accordance with calculations made in [16], I
weakly depends on vy, increasing for air from 0.262 to
0.271 for electron energiesin the range from 51 keV to

1.53 MeV. In the factor preceding operator L, in the
second component of Eg. (9.2), force Fiy,(p) can be
replaced by the total Bethe force since the main contri-
bution to this force for large values of Z comes from
ionization processes (see the arguments on p. 732 in
monograph [15]). In accordance with formula (9.5), in
the second component of operator (9.2), we have

N > otr( p) > (7.11)

2yp’

i.e., angular scattering by nuclei dominates over the
scattering from atomic electrons. By virtue of rela-
tion (7.11), the first component in the total operator
with nonreduced ionization integral (8.2) cannot be dis-
regarded (see below). In the RREA kinetics, this com-
ponent is most important, el evating the runaway thresh-
old for electrons and reducing the rate of avalanche
enhancement [7, 8].

The operator in form (8.2) with the nonreduced ion-
ization integral can be obtained from relation (8.1) due
to the fact that the first term, the only one containing
Fe, Can be ignored in the high-energy range since

2

Lol <F(p. (712

m
Fe(P) + M Ny

Indeed, it was mentioned above that excitation pro-
cesses make asmall contribution to the first component
of reduced operator (9.2), which includes the total
Bethe force. Since weak ionizing collisions for which
this component is responsible are contained in the non-
reduced ionization integral of total operator (8.1), this
disregard, subject to relation (7.12), is justified with a
high accuracy.

8. TOTAL COLLISION OPERATOR

Let us combine the parts of operator (3.25) for
Sta{ f}, (4.8) and (4.10) for St { f}, and (5.5) and (5.7)
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for St f}, disregarding the terms quadratic in 1 — €.
As aresult, we obtain the following representation for
the total collision operator:

St{ f(p, K, O}

2
- pzapp B:EX(I)(D) Gtr(p%f(pf H, t)

+ [Nag(otr(p) + O o(P) |Lut (P, 1)
(8.1)

Ny S .f de'(0,(¢, s))f;,’ny2

Cerd

21

da ., .,
XIng(p.u,t)—Natvomt(S)f(p,u,t)-
0

Here and below, 0,4(€) isthe total ionization cross sec-
tion (6.11); cos@' = Y'(e', €, 4, a) as afunction of €', €,
M = cosB, and a is defined by formulas (5.3) and (5.6);
and cross sections 0y(p), O () and forces Fe1)(P),
F.on(P) are described by formulas (3.20), (4.9), (4.11),
and (6.9), respectively.

Theionization integral in relation (8.1) was derived
without any limitations except those imposed by the
conservation laws. The accuracy of a description is
determined by the differential cross section and depen-
dence (€, €). If we use formula (5.3) for (€', €) and
Moeller formula (7.4) for the cross section, the ioniza-

tion integral is limited by the condition €', €, &, > e,(('%

To preserve the strictness in problems where the kinet-
ics should be taken into account in the range of energies

on the order of €\"), we must use the appropriate set of

((og(€, s))i((',)n and the exact formulafor (€', €) taking
into account the coupling of atomic electrons.
The first component of relation (8.1) is not signifi-

cant while describing the kinetics of high-energy elec-
trons. We can also disregard o, () in the second com-
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ponent according to the arguments given in Section 7.
As aresullt, the total operator

S F(p, O} = Nz 0P Luf (P )

+Ngv S f de' (0, (€, s))f(',’ny2

P el

(8.2)

ion

_[ D (0, 1, 1) = Ngv 0 (€) F(p, 1, 1)

turns out to be simpler than operator (1.2)—(1.4). In
contrast to relations (1.2)—(1.4), where processes of
angular scattering by nuclei and atomic electrons are
artificially combined in factor (Z,,,/2 + 1)F(€)/4yp, the
scattering by nuclei isdescribed in relation (8.2) by the
transport cross section, while the scattering by atomic
electrons remainsin theionization integral.

9. ANALY SIS OF THE TOTAL REDUCED
COLLISION OPERATOR

If we usethe reduced form of the ionization operator

with extracted weak interactions, the total operator
assumes the form

St[f(p, K, t)]

= zapp " (p) + TN otr(p)Hf(p,un
P (9.2)

IOﬂ(p)
[Nmz(o"(p) *+ O P) + =5 |Luf (01,9
PNV j de (0, (¢, e)).ﬂ?nyz : ;gg;np Y,

i @i)

28 + gy

in which after the separation of weak interactions (6.6)
from relation (5.5); the lower limit of integration in the
remaining part of relation (5.5) describing strong inter-

actionsis egual to 2¢ + s,(('; (cf. relation (1.4)). Inrela

tion (9.1),

F(p) = Fion(p) + Fex(l)(p)

is the Bethe force.

Omitting el astic energy lossesin the first component
of operator (9.1) and 0, (p) in the second component
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in accordance with the arguments given in Section 7,
we obtain the operator

S0} = P PP (P 0

+BagouP + STy g
PN J de'(0. (¢, s))f;LVZ Ian(p I, 1),

2¢ +&l)

ion

which differsfrom relations (1.2)—(1.4) only in the sec-
ond component responsible for angular scattering. The
same role is played by operator (1.3) combining the
description of angular scattering by the nucleus and by
atomic electrons in factor (Z,,,/2 + 1)F(p)/4yp derived
in[3, 4] using the results of analysis of Longmire and
Longley [16]). It should berecalled that angul ar scatter-
ing isalso contained inionization integral (1.4) appear-
ingin (9.2) aswell.

For molecules consisting of two identical atoms (see
relation (7.3)), quantity (v/2)N40.(y) in relation (9.2)
can be written, in accordance with the results obtained
in [16], in terms of Bethe force F(y):

UNGGuly) = §2Zm2) )
c*(y* - 1)

Zmo
- m)'F(v)F(v)-

In report [16], the contribution of the Mott factor is
absent. Apparently, it was assumed in [3, 4] that ' =
0.25 since relation (9.3) in these publications has the
form (see formula (1.3) in the Introduction)

(9.3)

74 _ mol
5NaOu(Y) = GRF). (9.4)
If we use this formula and assume that F(p) = F;,.(p),

whichisvalid for small values of Z,,, and (y—1)mc? >
€ion max» the quantity

v Fi
NaIE o(p) + ;;(pp)
in relation (9.2) will be reduced to the expression
(ZmoI/2 + 2) F(S)

9.5
Zp (9.5)
differing from relation (1.3) in the addend “2” in the
numerator; however, this should not strongly affect the
results of the solution of the kinetic equation since
Z.o/2 is usually much larger than unity.

A consistent procedure of reducing theionization inte-
gral permitted not only comparison with operator (1.2)—
(1.4), but also madeit possible to estimate the contribu-
tion from the components of thetotal collision operator
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(see Section 7) and, which isimportant, to considerably
simplify the total operator by omitting some of these
components (cf. expressions (8.1) and (8.2)). The sepa-
ration of weak ionizing interactions into an individual
differential operator isinexpedient sincethislowersthe
accuracy of the description without providing any com-
putational advantages.

10. CONCLUSIONS

We have derived the collision operator (8.1) for
electrons in a dense weakly ionized plasma with pre-
dominant interactions with atomic particles, which
takes into account the elastic scattering by nuclei, the
excitation of atomic particles, and their ionization.

The operator in form (8.2) isintended for describing
the kinetics of high-energy electrons, for which the
Ccross sections and arguments given in Section 7 are
valid. Predominant interactionsin relation (8.2) are the
elastic scattering by nuclei and the ionization of atoms.
Operator (8.2) issimpler than operator (1.2)—1.4) used
earlier [3, 4, 8-12] and requires less computer time in
numerical calculations since it does not contain an ana-
log of component (1.2) separately describing small
variations of the momentum modulusin ionizing colli-
sions.

A consistent procedure of separating “weak” inter-
actions from the ionization integral made it possible to
obtain the operator component responsible for angular
scattering, which differsfrom relation (1.3) in thefactor

in front of I:u and in alarger contribution of ionizing
collisions to the angular scattering of electrons.

Operator (8.1) can be used for describing the kinet-
icsof electronsin awiderange of energies considerably
higher than the excitation energies. Limitations are
imposed by the requirement of smallness of the scatter-
ing angle.

Operator (8.2) can be used not only in studies per-
taining to the problem of breakdown in planetary atmo-
spheresin thunderstorm fields, which isonly aparticular
physical problem in spite of its fundamental importance
for atmospheric eectricity. A KE with operator (8.2) is
applicable in problems of high-energy electron trans-
port through dense gaseous media both in the presence
and absence of an electric field (the description of the
electron—positron component of cosmic-ray showers;
analysis of high-voltage dischargesin dense gases with
runaway electrons and gas discharges sustained by an
electron beam, including those intended for pumping
high-power gas lasers; analysis of propagation of rela
tivistic electron beams in the atmosphere; and descrip-
tion of the kinetics of Compton electronsfrom anuclear
explosion in the atmosphere).
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Abstract—A pseudopotential model is suggested to describe the thermodynamics and correlation functions of
an ultracold, strongly nonideal Rydberg plasma. The Monte Carlo method is used to determine the energy, pres-
sure, and correlation functions in the ranges of temperatures T = 0.1-10 K and densities n = 102106 cm=.
For aweakly nonideal plasma, the results closely agree with the Debye asymptotic behavior. For astrongly non-
ideal plasma, many-particle clusters and a spatial order in the arrangement of plasma electrons and ions have
been found to be formed. © 2004 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The unigue experimental works [1-3] have given us
an insight into some of the physical properties of a
denseionized gasat cryogenic temperatures. Until now,
a dense ionized gas has been traditionally produced at
high temperatures and high pressures.

In [1-3], in which a Xe plasma was studied, about
5 x 106 metastable X e atoms (the 693/2], level, alife-
time of 43 s) were produced, decelerated by using the
Zeeman technique, collected in a magneto-optical trap,
and radiatively cooled on the 693/2], -6P[5/2]; (A, =
882 nm) transition down to a temperature of 100 pK.
The maximum atomic density reached 5 x 10 cm=;
the density distribution was Gaussian with aroot-mean-
square radius of o = 180 um.

To produce a plasma, more than 20% of the atoms
were photoionized over 10 ns. First, the 6P[5/2]; (A, =
882 nm) level was populated, and then the atom was
ionized by photonswith awavelength A, = 514 nm. The
difference between the photon energy and the ioniza-
tion potential, AE, was distributed between electrons
and ions. Because of the small electron-to-ion mass
ratio, only an energy of 4 x 10°AE was acquired by
ions, while the remaining energy was acquired by elec-
trons. In [1-3], AE/k was varied in a controllable way
between 0.1 and 1000 K. The maximum charged parti-
cle density was

n=n.+n = 2x10° cm™.

An anomalous slowdown of the recombination in the
produced plasma was found in [1-3]. The recombina-
tion time was on the order of 100 ps. The recombina-
tion time estimated by using a formula valid for arar-
efied plasma is several nanoseconds, which is many
orders of magnitude shorter than the observed value.

Note that the produced plasmais strongly nonideal.
In this plasma, the ratio of the mean potential energy of
the particlesto their kinetic energy (nonideality param-
eter), y = Be?n?3 (where B = /KT is the inverse temper-
ature, and e isthe electron charge), is much larger than
unity. Thus,at T=0.1K and n=2 x 10° cm™3, y = 21.
At the sametime, the electronsin this plasma are nonde-
generate. The ratio of the thermal de Broglie wavelength
X, of an electron to the mean particle separation (degen-
eracy parameter) aa T=01K andn=2 x 10° cm3 is
much smaller than unity:

1/3
n1/37i9= nh
2mKT

= 02x107 (1)

Here, m, is the electron mass, and # is the Planck con-
stant.

In astrongly nonideal plasma, the estimates of any
processes based on the formulas obtained in the
approximation of y < 1 are inapplicable for such non-
ideality parametersy.
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2. THERMAL RELAXATION

Based on the properties of anonideal plasma[4], the
authors of [1-3] concluded that thermal equilibrium
setsin several tens of microseconds. It seemsto usthat
this conclusion is unjustified, because a weakly non-
ideal plasma with y < 1 was considered in [4]. Since
there is no quantitative kinetic theory for y = 1, only
gualitative estimates can be obtained. Inthiscase, it fol-
lows from general physica considerations that the ther-
mal relaxation timein astrongly coupled system (e.g., at
fixed temperature T with variation in particle density n)
will be shorter than that in aweakly coupled system.

To estimate the thermal relaxation time in a gas of
electronsand ions, we use astandard expression from [5]
fory<landn\3<1:

goTeM 1
“ gnZe'(emm) L.

)

Here, T, isthe electron temperature, M is the ion mass,
zistheion charge, n; is the ion density, and L, is the
Coulomb logarithm:

L. = InE'F[TED = In 1 D—-Zgi

Oe?0 ™ g2 Ve

where v isthe electron velocity that correspondsto T,
and

> O

a= ; (4)

JATn e’

isthe Debye screening length.

If the plasmaisélectrically neutral, thenn,=n;. For-
mula (2) contains a Coulomb logarithm L, that has no
physical meaning for y > 1. The Coulomb logarithm L,
arises in this formula when the transport cross section
is calculated. The latter is generally determined in the

rarefied case for a > n (where n is the mean density).
However, it is clear that the transport cross section
always has a physical meaning and isfinite.

By analogy, the estimate of the thermal relaxation
time 5, for y= 1 can be represented by using the char-
acteristic physical quantities as (2); in this case, how-
ever, L. (the effective Coulomb logarithm that

includes the collective effects in a nonideal plasma)
should be substituted for L,

e _ (Teido

ei — *
Le

)
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where

TY*M
8n,z°e’(2mm,) "’

(TZi)O =

(15)0=34%x102sa T,=01Kandn =104 z=1(y=
0.67, M = 131.3 amu). At T, = 0.1 K and n, = 10%,
(15 )o=34ns.

We also assume that the differential scattering cross
section remains Coulomb, but either corrections to it
arise or the integration limits change. However, the
dependence of the relaxation time on n at T = const
remains logarithmic.

The value of T;; can change via the substitution of

Ly for L, by no more than a factor of 10 to 20. Of

course, all of this reasoning must be confirmed by rig-
orous estimations or numerical calculations. Thus, we
may assume that thermal equilibriumat T = 0.1 K and
n=10°-10' setsin lessthan 1 ps.

3. THEORETICAL APPROACHES TO STUDYING
AN ULTRACOLD NONIDEAL RYDBERG
PLASMA

The Xe plasma produced in the experiments [1-3]
consists of singly charged Xe ions, electrons, and
highly excited (n > 100) hydrogen-like X e states. These
states are called Rydberg atoms. The possibility of the
existence of condensed excited states of matter wasfirst
considered in [6]. At present, these condensed states of
substance for Rydberg atoms (the so-called Rydberg
substance) have been extensively studied theoreti-
caly [7, 8] and experimentally [9-11]. Subsequently,
thisidea has been devel oped by several authors (seethe
review [12]). According to this approach, the interac-
tion between Rydberg atoms as their density increases
ultimately leads to a change in the phase state of the
system and to a qualitative change in all parameters.
Moreover, in contrast to free Rydberg atoms whose
lifetime in an excited state is about 10 ns, the lifetime
of a Rydberg substance is macroscopically long.
Despite the low density that is the gas density by its
parameters, the condensed excited state is a metastable
ordered state of the substance. At present, there are
experimental data [13, 14] for a cesium plasmaat T =
500-1000 K that suggest the existence of a Rydberg
substance.

In [15, 16], the experimental data [13, 14] were
found to correlate with the ideas of anisolated region of
metastable states of an ultracold nonideal plasma.
In[6, 12], the methods of solid-state physicswere used
to produce a Rydberg substance by assuming the pres-
ence of an electron Fermi liquid. In [17, 18], the recom-
bination time of a dense plasma was cal culated numer-
icaly and was shown to be much longer than that for a
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weakly nonideal plasma. The authors of [19, 20] sug-
gested a different approach to studying the thermody-
namics of a Rydberg substance in the case where the
electron gas is nondegenerate. This approach uses pre-
viously developed methodsfor astrongly nonideal non-
degenerate plasma[21].

We consider the thermodynamic equilibrium of a
nonideal gas of electrons and ions (y = 1). Thisgasis
peculiar in that there is absolutely no atomic discrete
spectrum or there are discrete states with n > n*, where
n* =100 or more. Sincen* = 100, the states may be said
to be Rydberg ones. Strictly speaking, there is no full
thermodynamic equilibrium in our case. Therefore,
when we tak about thermodynamic equilibrium
degrees of freedom, we primarily have in mind the
trandational degrees of freedom. The thermodynamic
equilibrium of al the remaining degrees of freedom
(rotational, vibrational, dissociation and chemical reac-
tions, ionization and electron excitation) arises much
later. It may be assumed that in easily excited degrees
of freedom, equilibrium exists at each instant of time,
while the slow relaxation processes do not proceed at
al over the period under consideration. We will use
results from [21-29] to describe this gas.

4. THE PSEUDOPOTENTIAL MODEL
AND THE RANGE OF ITS APPLICABILITY

The thermodynamics of an equilibrium quantum-
mechanical system iscompletely determined if the par-
tition function is known:

Zy = Tr(exp(—BH))

© 6
= [ W, *exp(-BE,)day, ©

N n=1

where Tr(exp(—BH)) isthetrace of the density matrix
exp(—BH ); W, (ay) and E, are the wave functions and

energy levels of N particles, respectively; H is the
Hamiltonian of the N-particle system; gy are the coor-
dinates of the N particles; and V is the volume of the
system.

The authors of [25-29] developed an approach that
allowsthe thermodynamic properties of adense plasma
to be described over a wide range of nonideality and
degeneracy parameters, including the region of strong
nonideality and degeneracy. However, a simpler
approach developed in [21-24] can be used for a non-
degenerate plasma. The authors of these papers sug-
gested a pseudopotential model to calculate the parti-
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tion function of a nonideal nondegenerate plasma. It
involves the Slater partition function

Su= NN |l exp(-BE,), (7)

where A is the particle thermal wavelength.

The essence of the pseudopotential model isthat the
partition function (7) is represented as a product of the
pair electron—€lectron, ion—ion, and el ectron-ion Slater
partition functions:

2N N,
S\Ie+Ni: |—| Sj = rl See
i<j=1 i<j=1 (8)

N N=N, =N,
X Si |_| Sii-
i<j=1 i<j=1

In the experimental conditions under consideration,
this approximation is valid not only for y < 1, but also
for y= 1, because there are neither pair nor many-parti-
cle bound states in the Xe gas. By analogy with the
classical case, product (8) may be substituted with

Sy = eX EI—B UE 9
i+ N ™ pD Z |]|:|1
where
InS.
U, = —”TSJ (10)

is the pseudopotential .

The pair Slater partition functions for electron—ion,
electron—electron, and ion—on interactions can be cal-
culated accurately. The expression for the long-range
pseudopotentia isidentical to the Coulomb law, while
the short-range pseudopotential is finite and tempera-
ture-dependent.

4.1. The Electron- on Pseudopotential

For the interaction of an électron with an ion, the
pseudopotential @ is defined by the relation

exp(—BPg(r, T)) = S

- 8% S W nfep(-BE),

E,=Ep

where S, is the two-particle Slater partition function,
E,(r) isthe energy of the electron in the field of theion
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Fig. 1. The ion—electron pseudopotentials at various tem-
peratures, T =1 (1), 0.5(2), and 0.1 K (3), compared to the
Coulomb potentials (solid lines)

in state a, W,(r) is the corresponding wave function,

and Ay = A,/+/2. The summation is over al possible
states E,. This pseudopotentia is finite at r = 0, while
the expression for the long-range pseudopotential is
identical to the Coulomb law.

For a plasma without bound states up to n = n,, the
expression for S;(r, T) can be written as[21]

Si(hT) = S+ S (12)

Here,

S =8NS Y |We(n°exp(-BE.)  (13)

E,=Ey

is the contribution of the part of the discrete spectrum
from E, to E', which can be calculated from the known
wave functions W,(r) for the hydrogen atom, and the
contribution of the remaining part of the spectrumis

S(zT) = expH BeDy

O o (149)

and
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if

where

y(2) = 21T'1’2Iexp(—t2)dt.

0

The partition function S(r, T) was derived in the
quasi-classical approximation for bound states at E, >
E' and continuum states.

Expressions (13) and (14) for |[Be/Ag| > 1 atr =0
take the form

2

BeT_ _w2PerT s e
ool

On30

Be2 _ 2[36‘2
S, )\—EE~ 2t

At ny = 100, it will suffice to use (14) and (15) and
the hydrogen wave functions and energy level sto deter-
minethe potential ®4(r, T). When determining ®g4(r, T)
for the Xeion, we must aso take into account the fact
that its sizeisfinite (its crystallographic radius is about
2 A). Figure 1 shows the el ectron-ion pseudopotentials
aT=0.1,0.5 and 1 K and, for comparison, the Cou-
lomb potentials.

4.2. The Electron-Electron
and lon—on Pseudopotentials

The Slater partition function for the interaction
between two eectronsis[21]

See(r, T)

= 16Tt3/2)\262|‘|’a(r, 01, 0,)°exp(-BE,)  (16)

= exp(_BcDee(r’ T))

The wave functions in expression (16) depend on the
electron spins 0, and ¢, and must be antisymmetric.
Expression (16) can be written as a sum of the contri-
butions from the wave functions with symmetric and
nonsymmetric parts.

Slr, T) = 355, T) + 2851, 1)
= exp(_BcDee(r’ T))

(17)
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The potential ®(r, T) was numerically calculated
by Barker [22] over a wide temperature range, T =
10>-10° K. He suggested the following fitting formula
for ®g(r, T):

D1, T) = 2(1— exp(—8.35 x 107 TO%Y),
r (18)

Deo(0, T) = 16.7 x 10T,
wherer ismeasured in ay, Tisin Kelvins, and @ isin
Rydbergs (Re = 0.5me*/4?).
At long range, formula (18) isidentical to the Cou-

lomb law. For Be?/A. > 1, expression (17) at r = 0 can
be written [23] as

(19)

Thus, for Be?/A, > 1, fit (18) can be used downto T =
0.1K.

Figure 2 shows the electron—€lectron pseudopoten-
tialsat T=0.1, 0.5, and 1 K and, for comparison, the
Coulomb potentials.

According to [21], the expressions for the ion—-ion
pseudopotentials are identical to the Coulomb law. We
must only take into account the fact that the ion size
(e.g., the crystallographic radius) is finite.

5. CALCULATING
THE THERMODYNAMIC QUANTITIES
AND CORRELATION FUNCTIONS

5.1. The Method of Calculation

In the pseudopotentia approach, the quantum parti-
tion function reduces to an expression that is classical
inform[21]. Therefore, all of the methods developedin
the statistical thermodynamics of classical systems
(both analytical and numerical) can be used to deter-
mine the relevant thermodynamic quantities.

We used the Monte Carlo method for a multicom-
ponent plasma in a canonical ensemble developed
in[24, 25] to calculate the thermodynamic quantities
and correlation functions of an ultracold Rydberg
plasma.

In this case, determining the various thermody-
namic quantities reduces to calcul ating the mean values
of the known functions of coordinates g. For example,
for the energy, we obtain

E = Q_l(N,V,T)I...J'EN(q)S“(a, T)d"g, (20)

where Q(N, V, T) isthe path integral.
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5% 107

1 %107

Fig. 2. The electron—electron pseudopotentials at various
temperatures, T=1 (1), 0.5 (2), and 0.1 K (3), compared to
the Coulomb potentials (solid lines).

The Monte Carlo method isanumerical method that
uses Markov chains[24]. It dlows usto select only the
principal, most typical terms that define the integral
sum. Therefore, it isalso called amethod of significant
selection. Another peculiarity of the method is the use
of periodic boundary conditions. The entire three-
dimensional space is broken down into equal cells of
volumeV with N particlesin each cell. If one of the par-
ticles exits from a cell due to a change in its coordi-
nates, then its image from a neighboring cell simulta-
neously enters through the opposite cell face, and the
number of particlesin the cdll is conserved.

Theerrorsin the Monte Carlo results[24] are attrib-
utableto the choice of the number of particlesinthecell
and to thefinite length of the Markov chain. To estimate
the error in choosing the number of particles, we per-
formed calculationsfor various N = 16, 32, 64, and 128
and showed convergence ((JN1)). Our estimate of the
statistical error due to the finite length of the Markov
chain [24] allowed us to choose Markov chains of the
required length. In addition, we discarded the nonequi-
librium part. We also calculated the electron—electron,
Oee(r), ion-on, g;(r), and electron—on, g4(r), radia
correlation functions.

5.2. Results of the Calculations

Thus, we consider the pseudopotential model of an
ultracold Rydberg plasma. Experimental data suggest
that this plasma consists of electrons, singly charged
ions, and atomsin highly excited (n > 100) states. There
are no low-excitation (n < 100) states in this plasma,
because it was produced through the laser excitation of
atoms at a certain wavelength, and because an anoma-
lous increase in the recombination time was observed
in the experiment.

We performed calculations for the temperature
range T = 0.1-10 K and the density range n = 10—
10% cm3. The calculationsin the range of low densities
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Fig. 5. The correlation functions at various densities and temperature T = 0.1 K: gg(r) (1), 9ee(r) (2), and g;i(r) (3); @) n=10,y=
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Fig. 6. The correlation functions at density n = 101> cm and

temperature T = 10 K: ggi(r) (1), geelr) (2), and g;i(r) (3).

(a)

T

|

were needed to pass to the limit of the values that are
consistent with the Debye—-Hickel approximation for
y << 1(see eg.,[21]).

In Figs. 3 and 4, internal energy E/NKT per particle
and pressure P/nkT are plotted against nonideality
parameter y. In the limit of small y, there is agreement
with the Debye-Huickel approximation (seetheinsetin
Fig. 3). At y < 0.5, the dimensionless energy E/NKT
reaches the Debye value

E _ /2
Ser = Y (21)

Figures 5 and 6 show the correlation functions
Oee(r), G;(r), and g4 (r) for various densities and temper-
atures T = 0.1 and 10 K, respectively. For y < 1, there
is good agreement with the Debye—Hiickel approxima:

(b)
[
o1
© b [ o 1
o M
X
| E x =
MO 1o
o b >
] ¢

Fig. 7. The graphical images of the particle coordinates that correspond to the correlation functions gee(r), g;i(r), and gg(r). The
open and filled circles represent the ions and electrons, respectively: (8) T=0.1K, n= 10 cm™3, the ions and electrons are at the
lattice site; (b) T=0.1K, n= 1010 cm‘3, theions are at the sites of onelattice, while the electrons are at the sites of the other lattice;
(6 T=10K,n= 10'® cm3, theions and electrons form dropletswith lattice site nuclei, the transition state between the short-range

order and the lattice.
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0.1

Fig. 8. The n—T diagram. The crosses, squares, and circles
represent the gaseous, liquid, and solid (lattice) states of the
plasma, respectively. The solid and dashed lines correspond

toy=1and n\® = 1, respectively.

tion (linearized or nonlinearized). For y = 1, the shape
of the correlation functions suggests that a short-range
order is formed among particles of both the same and
opposite signs. This order is enhanced with increasing .
The maxima of the correlation functions increase,
while their minima become zero, which is attributable
to the formation of a strict order in the spatial arrange-
ment of particles. There are almost no particles in the
region of zero correlation functions.

We used a visualization program to better under-
stand the situation related to ordering with increasing y.
This program visualizes the arrangement of particlesin
various equilibrium configurations. Figures 7a-7c
show some of the equilibrium configurations for vari-
ous T and n.

Let usdiscussthe resultsfor the T = 0.1 K isotherm.
The order that correspondsto alattice of sizelL = 2.2 x
10%a, at n = 10° cm2 arises as the density increases
(Figs. 5d and 7a). The pairs of electrons and ions are
located at the lattice sites at distancer = 2.2 x 10°%a,. As

the density increasesto n = 10'° cm3 (Figs. 5e and 7b),
the electrons and ions that form the pair move apart,
and two (electron and ion) lattices are formed. This
probably suggests that two nested lattices constituted
the initial lattice at the sites of which the pairs were
located.

As the temperature increases, the formation of an
ordered structure shiftstoward higher particle densities.
Thus, for T = 10 K and at a much higher density, n =
10® cmr3, only a short-range order in the form of elec-
tron—on clusters (as we see from the equilibrium con-
figuration) shownin Figs. 6 and 7cisestablished. These
clusters are droplets of oppositely charged particles,
with the éectronsand ionsin these dropletslining upin
minilattices.

As was noted above, the energy E/NKT aty=>0.1in
the range T = 0.1-10 K is a linear function of y (see
Fig. 3). This implies that, eliminating the temperature
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from thisfunction, we will obtain an expression similar
to the standard Madelung law for an ionic crystal [30]:

2 1/3

E _
N—Aen , (22

where A = 8-9 is a constant (an analogue of the Made-
lung constant).

As follows from our calculations, the lattice con-
stant is proportional to n~Y3, The form of Eq. (22) sug-
gests that an order similar to a crystal lattice is estab-
lished in the ionized gas produced at y = 1. In this case,
the energy isafunction of the mean particle separation,
which is approximately equal to the lattice constant.

Figure 8 shows an n-T diagram. The region of
parameters that corresponds to a Debye plasmaisindi-
cated by crosses; theregionswhere droplets and lattices
appear are indicated by sguares and circles, respec-
tively. They=1and nA3 =1 linesare al'so shown in the
figure. We see from this diagram that the formation of a
short-range order beginsonly at y = 1; aswas described
above, the formation of an ordered structures shifts
toward higher particle densities as the temperature
increases. In addition, under the given conditions, a
long-range order is formed long before the onset of
degeneracy.

Our results also give us an insight into what the
authors of [1-3] cal the anomaloudy slowed down
recombination. There are no Rydberg atoms that must
recombinein anionized gasat y = 1. However, thereis
ashort-range order (and along-range order at y > 1) for
charged particles of both the same and opposite signs,
which reduces the probability of the approach and
recombination of oppositely charged particles.

6. CONCLUSIONS

We have considered a Rydberg ionized gas formed
from continuum electrons and ions. We investigated the
temperature range T = 0.1-10 K and the density range
n=102-10'° cm=3. Asaresult, we found the formation
of a structure at y = 1, which probably leads to the
experimentally observed slowdown of the recombina-
tion. The structure is formed in the region where the
electron gasisfar from being degenerate (nA? < 1) and
where the structure itself changes from a short-range
order (similar to the structure in a liquid) to a long-
range order (similar to the lattice in solid bodies). Add-
ing states of the discrete spectrum to the gas under con-
sideration will change the properties of this gas. When
these states are taken into account for specific densities
and temperatures, the energy decreases, which may
cause the phase diagram to change.

The suggested model contains no specific parame-
ters of the elements. Therefore, it may be used for agas
of any element.
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Abstract—It is shown that the well-known conservation laws for magnetic helicity and passive-scalar fluctua-
tion intensity in the case of negligible molecular diffusion require that the hierarchy of nonlinear equations for
the averaged Green function and the hierarchy of Bethe-Salpeter-type equations for fluctuation intensity be
treated in amutually consistent manner. These hierarchies are obtained to the sixth order in turbulent velocity
correlators. Asymptotic formulas describing the evolution of scalar fluctuations and magnetic field are pre-
sented. A number of new effects are revealed that strongly affect diffusion, but are beyond the scope of the fre-
quently used model of adelta-correlated turbulent field. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Diffusion of passive fields, such as particle density,
temperature, or magnetic field, isaproblem of practical
importance in turbulence theory. Passivity means that
theinverse effect of apassivefield on turbulent flow can
be neglected. This condition is most restrictive as
applied in the theory of magnetic field diffusion in tur-
bulent plasmas, because turbulent motion may
strengthen both large- and small-scale components of a
magnetic field. When the magnetic energy, B%/8m, is
comparable to the plasma kinetic energy, 9u2/2, the
effect of magnetic field on turbulence must be taken
into account.

Itwasarguedin[1, 2] that magnetic field fluctuation
intensity rapidly grows to alevel comparable to turbu-
lent energy, and therefore magnetic field can almost
never be treated as a passive variable. The results of
these studies are analogous to the well-known estimate
for the energy of magnetic field fluctuations in a two-
dimensional fluid [3]. Computations of time-dependent
magnetic fields in turbulent flows [4-6] do not support
these estimates. In [7, 8], the predictions madein [2, 3]
was thoroughly analyzed and the estimates for mag-
netic energy fluctuations presented therein were shown
to be highly overestimated. Thus, the evolution of mag-
netic field in a turbulent flow involves a period when
magnetic field can be treated as passive (particularly in
the case of zero turbulent helicity). In numerous stud-
ies, evolution of magnetic field is analyzed in this par-
ticular approximation.

The starting stochastic equations for passive-scalar
density n(r, t) and magnetic induction B(r, t) are
on(r,t)

5 —D,,0°n(r,t) = =div[u(r, t)n(r,t)] (1)

and
a—-—-—Bgt' H_ D, 0°B(r,t) = Ox[u(r,t) xB(r,1)].(2)

Here, u(r, t) is the turbulent velocity field with pre-
scribed statistical propertiesand D,,, is molecular diffu-
sivity (D, = c¥4mc for magnetic field, where o is
plasma conductivity and c is the speed of light).

The problem of turbulent diffusion essentialy
reduces to finding evolution equations for the mean
fields [mCand [Band for the second-order quantities

V(r,t;r',t) = Oh(r, t)n(r', tHO

o e 3)
= t(1)I(2)T+ M (D)(2)7]

Hi(r, t; ', t) = Bi(r, t)B;(r', t')J

4

= [B;(1)0B;(2)0+ [B;(1)B;(2)d @

All variables are routinely represented as sums of mean
and fluctuating components: n = M+ n', B = B[+ B,
where ['[= 0 and B'[= 0. Suppose that turbulent flow
can be characterized by an rms velocity fluctuation u,

(U2 = A(r, t)[J WCE 0) and the length and time scales
R, and 1, associated with two-point correlations. The
assumption that the mean fields are smooth over the
characteristic scales R, and 1, (or t; = Ryu,) leads to
diffusion equations for these fields, with diffusivity
D,, + D;, where D, isaturbulent diffusivity and D, > D,
(e.g., see[9]). Thus, the problem reduces to calculation
of D;.

In the model of turbulence in an unbounded flow
domain considered here, exact formulas can be

1063-7761/04/9804-0728%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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obtained for D; in both Lagrangian [10, 11] and Eule-
rian [9, 12] representations. Since Eulerian calculations
are more suitable from a practical perspective, the
present analysis relies on the Eulerian representation.
In this representation, the exact value of D, is deter-
mined by finding the stochastic Green function G(r, t;
r',t) =G(1, 2) of Eg. (1) or (2) and averaging the result
over the statistical ensemble of the u(r, t) components.

Hereinafter, we use the following convenient abbre-
viated notation:

f(1) = f(ry, ty),

dm = drdt,,

f(1—2) = f(rl_rZI tl_t2)1

dm =dr,, R=r,—-r,,

T= tl_t27 sea

The derivation and solution of evolution equations
for correlators (3) and (4) is a much more complicated
task than the determination of the mean fields [m[Jand
B Indeed, it is shown below that correlators (3)
and (4) cannot be fully described in the diffusion
approximation, and complex Bethe-Salpeter-type inte-
gral (or integrodifferential) equations must be solved
(e.g., see [13, 14]). Various approximate forms of this
equation have been proposed and analyzed in [15-17].
In this equation, fluctuation intensity is determined by
the difference of two terms of similar order of magni-
tude. On the other hand, Egs. (1) and (2) written for
homogeneous turbulence have the following important
corollaries:

d

d—tEhz(r,t)D -
= 2D, [0On(r, t))’0- Oh’(r, t)divu(r, )0
dﬂtm [BO = —2D,,(B ({0 x B)l (6)

According Eg. (5), decrease in the mean square of
passive-scalar density at afixed point in anincompress-
ible turbulent flow (divu = 0) can be caused only by
molecular diffusion. When molecular diffusion is
neglected, [(r, t)OJis a conserved quantity. Accord-
ingly, Egs. (5) and (6) are referred to as conservation
laws here. Equation (6) reduces to the well-known con-
servation law for magnetic helicity A - B in a perfectly
conducting, homogeneous plasma as ¢ — o and
D,,— 0(eg., see[18, 19]). Here, A is the magnetic
vector potential: B = [0 x A.

Evolution equations for [m(1)n(2)Uand [B;(1)B;(2)0
should be derived under the condition that conservation
laws (5) and (6) hold; i.e., the aforementioned differ-
ence of two terms of similar order of magnitude van-
ishes in an integral sense. Note that the conservation
laws are satisfied automatically in the frequently
employed approximation of o(t)-correlated velocity
field ([ (1)u(2) 3 3(t; —t,)), since G(R, 0) = &(R) for
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any Green function by definition. In [20] and other
studies, amodel was proposed for the evol ution of mag-
netic field fluctuations in a non-d(t)-correlated velocity
field. However, the Bethe-Sal peter-type equation derived
therein is not consistent with conservation law (6).
Therefore, the results obtained in these studies must be
incorrect, at least, quantitatively.

Linear stochastic equations (1) and (2) imply that
the averaged quantities (MJand [Bare related to the
fluctuations n' and B', and vice versa. Therefore, an
attempt to write a separate equation for the averaged
Green function [G(1, 2)0of Egs. (1) and (2) leadsto a
hierarchy of nonlinear equations for [GLI This situation
is completely analogous to the classical closure prob-
lem in turbulence theory.

It is frequently assumed that the turbulent velocity
ensemble is Gaussian; i.e., the averaged product of an
odd number of velocity components vanishes while the
averaged product of an even number of componentsis
expressed as the sum of terms containing all possible
two-point correlators. Under this assumption, a Dyson
equation can be written for [G(1, 2)[J[13]. Formally, it
isalinear integral equation with a kernel expressed as
the sum of an infinite number of terms describing ele-
mentary interactions between the turbulent flow and the
passive field (so-called connected, or irreducible, inter-
actions). Similarly, one can easily derive a Bethe-Sal-
peter-type linear integral equation for the averaged
quantity [G(1, 3)G(2, 4)Clwith a kernel also expressed
asthe sum of an infinite number of terms corresponding
to irreducible interactions. Retaining a progressively
increasing number of termsin the kernels of these equa-
tions, one obtains a hierarchy of linear equations for
[G(1, 2)Uand [G(1, 3)G(2, 4)L1 However, the linear
equationsfor [G(1, 2)Care not very useful. In particular,
retaining the first term in the kernel (in the Bourret
approximation [15]), one can calculate D, only for &, =
UoTo/Ry <€ 1. Thisfollows already from the fact that the
Green function of the Bourret equation tends to that of
the standard diffusion equation in the diffusion (long
time, long distance) limit, with the diffusivity D, =

u§r0/3 obtained as the first term of the expansion in
terms of &, in the general theory [9, 12].

A more effective calculation of D, relies on the hier-
archy of nonlinear equationsfor [G(1, 2)[1In particular,
even the first equation of the hierarchy (direct interac-
tion approximation equation [16]), which involves a
guadratic nonlinearity, can be used to calculate D, =

D for any value of &,. When the next term (contain-
ing irreducible interaction of the fourth order in veloc-
ity) is retained in the hierarchy, the resulting correction
to D; (denoted here by Dfl)) is a negative quantity

increasing from zero at &, = 0 to approximately 0.1D{”

as§, — oo [21]. Thus, solving even the first two equa-
tions of the nonlinear hierarchy for [G(1, 2)Cdmakes it
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possible to caculate turbulent diffusivity amost
exactly asD,= D! + DIV,

The nonlinear equations take into account a much
greater number of elementary interactions between the
turbulent flow and the passive field, as compared to the
corresponding ones in the hierarchy of linear Dyson
equations. Mathematically, thisimpliesthat the asymp-
totic behavior of the averaged Green function at > 1
isdifferent from that of the Green function of the Bour-
ret equation (see details below). This makes it possible
to calculate D, for large values of &,. However, since D,
is primarily determined by large-scale turbulent
motion, the accuracy of description of small-scale dif-
fusion by the first equations of the nonlinear hierarchy

remains an open question. The expansion D, = Dfo) +

Dfl) + ... isan asymptotic series even if it is based on
the nonlinear hierarchy for the Green function, because
the number of different interactions allowed for in suc-
cessive approximations rapidly increases. (Recall that
the nth approximation for a Gaussian velocity field con-
tains (2n—1)!! different terms!) Even though this num-
ber is somewhat reduced in a nonlinear analysis (see
below), a mere improvement of the asymptotic conver-
gence of the seriesis achieved as aresult.

In contrast to the hierarchy of linear Dyson equa-
tions, ahierarchy of nonlinear equations can be derived
for anon-Gaussian vel ocity ensemble aswell. Thispos-
sibility can be used to analyze the influence of non-
Gaussian velocity statistics on the behavior of the aver-
aged Green function, in particular, on the value of tur-
bulent diffusivity. The nonlinear hierarchy is derived in
this paper. 1t iswell known that real turbulence is non-
Gaussian [22]. Furthermore, the nonlinear hierarchy is
characterized by areduced number of irreducible inter-
actionsin the kernels of the equations. For example, the
nonlinear hierarchy contains only one irreducible
fourth-order correlator instead of two in the corre-
sponding Dyson equation, four sixth-order correlators
instead of nine, and so on.

Evolution of [m'(1)n'(2)0and [B; (1) B; (2)Lis deter-
mined by the averaged quantity [G'(1, 3)G'(2, 4)[i.e.,
by the fluctuating parts of the Green function). Since
conservation laws (5) and (6) involve M*(1)0 =
(m(1) (1) [+ '(1)n'(1)Tand B;(1)By(1)Lit is reason-
able to consider the correlation functions V(1, 2) and
H;;(1, 2) defined by (3) and (4). The mean quantities (H[]
and BOsatisfy diffusion equations and decay over a
short characteristictimetj= R§/12Dt. Att=trthecor-
relators V(1, 2) and Hj;(1, 2) represent only the fluctua-
tions M'(1)n'(2)Cand [B; (1) B; ()0

The present derivation of integrodifferential equa-
tions for V(1, 2) and H;;(1, 2) (resulting in a hierarchy

of Bethe—Sal peter-type equationsin the case of a Gaus-
sian ensemble) showsthat conservation laws (5) and (6)
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hold only if the averaged Green function [G(1, 2)[1=
Go(1, 2) satisfies the hierarchy of nonlinear equations
derived in the next section. In particular, thismeansthat
the widely used Bourret equation for the averaged
Green function, being alinear one, cannot be applied to
the evolution of fluctuation intensity, because thisleads
to violation of conservation laws (5) and (6).

Note that the simplest equations for V(1, 2) and
H;;(1, 2) (where only the ladder diagrams describing
interactions between passive field and turbulence are
retained) require that the function [G(1, 2)Osatisfy the
first equation in the nonlinear hierarchy (the DIA equa-
tion). Allowance for interactions of the next order,
which are described by afourth-order irreducible corr-
elator of u(r, t), requires that [G(1, 2)Osatisfy the next
eguation in the hierarchy, which contains fourth-order
correlators; and so on. Thus, conservation laws (5) and
(6) will hold if the hierarchical equations for V(1, 2)
and H;(1, 2) are consistent with the corresponding
equationsin the nonlinear hierarchy for [G(1, 2)1t has
been pointed out that the Bethe—-Sal peter equations may
not be consistent with conservation laws (see [23] and
references cited therein). However, integrodifferential
equations for V(1, 2) and H;(1, 2) consistent with (5)
and (6) are derived for thefirst timein this paper.

The paper is organized asfollows. First, ahierarchy
of nonlinear equations for the averaged Green function
[G(1, 2)Uis derived from Egs. (1) and (2) simulta-
neously with increasingly complex expressions for the
fluctuating part G'(1, 2) of the Green function. These
results are somewhat similar to those obtained in [12],
but are obtained by a different method. It is important
that theresulting hierarchy of equationsisnot restricted
to Gaussian turbulence. Next, correct equations are
derived for the correlators V(1, 2) and H;(1, 2) up to
sixth-order irreducible velocity correlators. After that,
equations for fluctuation spectra are written out and
some asymptotic expressions are presented for [m(r, t)]
and B(r, t)Opredicted by models of delta-correlated
turbulent field and turbulence with a finite correlation
time. (Owing toitsrelative mathematical simplicity, the
latter model is still widely used to describe turbulent
advection of passive fields, as in [24].) By comparing
these expressions, it is shown that the delta-correlated
approximation applies only to turbulence with &, < 1
and substantially overestimatesthe fluctuation intensity
for both passive scalar and magnetic field.

2. NONLINEAR EQUATIONS
FOR THE GREEN FUNCTION

The equations for the Green functions G(1, 2) of
Egs. (1) and (2) have the general form

09 _n -
O, Dm03G(1, 2) = Lo(1)G(L, 2)

= L(1)G(L, 2) + 13(R)3(1),

(7)
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where L(1)G(1, 2) = —div[u(1)G(1, 2)] for Eqg. (1),
while both Green function and operator L(1) of Eq. (2)
aretensors:

Li(1)Gy (1, 2) = [O{7u (1) -3, 0 u(1)] Gy (1, 2).

Recal that R =r; —r, T = t; — t,, summation over
repeated indices is assumed, and I; = §;. The Green
functions vanish at negative T; i.e., they can be repre-
sented as G(1, 2) = 6(1)g(1, 2), where 6(t) isthe Heavi-
side step function (B(t1) = 0att<0and 6(t) =1 a
1>0).

The Green function of the |eft-hand side of Eq. (7),

G, (1-2) = 8(1)(41D, 1) ¥ *exp(-R?/4D, 1),
can be used to write an integral equation for G(1, 2):
G(1,2)=G,(1-2) +J’d3Gm(1—3)L(3)G(3, 2).

)

In what follows, diagrammatic notation is used to
abbreviate cumbersome equations and demonstrate
their symmetry:

G(1,2) =, Gh(1-2) =—,
L(1) =0, [G(1,2)0=Gy(1,2) =P,
o=+
In this notation, EQ. (8) hasthe form
o= —+—o. 9

A comparison of (8) with (9) showsthat the integral
is taken over the coordinates of the interaction operator
(circle) while the outer coordinates 1 and 2 are held

fixed. lterating Eq. (9), one obtains the series
O=—+ —o— +—o—o0—+ ... (20)

Averaging the series over the ensemble of u(r, t) leads
to the expressions
H=—+—(boi=—+—0Uo0—.  (11)

It isassumed here that the medium asawholeis at rest,
i.e., W= 0. Applying the operator L to series (10), one
obtains the relation

—o(= Oo— = ——. (12
Averaging thisrelation and using (11), one has
— ] = D — = —[dd3—. (13)

Combining (11) with (12) yields two expressions for
the fluctuating part of the Green function G'(1, 2) =

o= -
O'= —oO —— o=,
O'= Oo— ——dodd—.

To eliminate the molecul ar-diffusion Green function
Gi(1-2) from theseformulas, replace the outer G, = —

(14)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

731

in the second term of thefirst equation with
— =0 ——O,

which follows from (12); replace — in the inner part of
the second term in the second equation with

— =0 - Oo—,

and use (11) and (13) in the resulting expressions to
obtain the equivalent formulas

O'=eO - [dOdiD,
O'= O -l
Adding the averaged Green function Gy(1, 2) to

these formulas, one finally obtains equivalent equations
for the total Green function that do not contain G,,;:

(15)

O =+ - o,

(16)
O =+ -Oaod

Equations (15) and (16) play a key role in the deri-
vation of a hierarchy of nonlinear equations for
[G(1, 2)[E Gy(1, 2). Equations (16) written out inliteral
form are

G(L, 2) = Gy(1,2)

+ [d3[G(1, 3)L(3) - [B(1, 3)L(ITG(3, 2),
G(L,2) = Gy(1,2)

+ [d3G(1, 3)[L(3)Go(3, 2) - (L(3)G(3, 2)].

To verify that [G'(1, 2)0= 0, by virtue of (15), one
must show that

B0 = TP,

Thisisdone by inserting (11) into both sides of Eq. (18)
and using (13).

Note that expressions (15)—(18) are valid when
(r, t)[ 0 as well. Their derivation follows that pre-
sented above for [W= 0, where one can set Gy(1, 2) =
Go(1 —2) for stationary homogeneous turbulence.

Represent G(1, 2) as a seriesin powers of L:

(18)

G(1,2) = Gy(1-2) +GP(1,2) +G*(1,2) +....

(19)
Equations (17) entail the recursion relation
c"(1,2) = J’d3[G(”‘”(1, 3)L(3)Gy(3-2)
) (20)
-y c" (1, 3y (3)c* V3, Z)D}.
k=2
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The expression for GM(1, 2) approximates the fluctuat-
ing part of the Green function and contains n interaction
operators L. Using (18), one can readily show that
[GM(1, 2)= 0. The analysis that follows relies on dia-
grammatic representations for the first three G in the
case of = 0:

GM(1,2) =boch, (21)

G?(1,2) =pochoch ~pEcp D,  (22)
G¥(1,2) = chochochodd

— D BDech P (23)

— P UchIpedd — dredplcpdich .

Substituting (21) into the first expression in (11),
one obtains a nonlinear equation with a quadratic non-
linearity for the averaged Green function,

q:) :—+—Ed:)o|]:b, (24)
known asthe DIA equation [16, 25]. Similarly, the sub-
dtitution of the sum of (21) and (22) into (11) leads to
an equation with a cubic nonlinearity:

P =—+—0BPDID +—DLDeelD . (25)
For a Gaussian velocity ensemble, the three-point corr-
elator in (25) vanishes and (25) reduces to (24). Thus,
Eqg. (25) is the lowest order equation that reflects the
non-Gaussian nature of real turbulencein the nonlinear
hierarchy.

The next eguation of the hierarchy is obtained by
substituting G'(1, 2) = GO + G@ + GO into (11):

b = — + —[dpdap + — Bchechotp
+— B ecpech it —— Bdpeabich b
—— b B pp.

The next-to-last term in this equation is disconnected.
The 17 sixth-order terms contained in the next equation
of the hierarchy include seven disconnected ones. Thus,
the resulting hierarchy of nonlinear equationsfor anon-
Gaussian ensemble of u(r, t) is not a Dyson equation,
because it contains disconnected terms. In the Gaussian
limit, the disconnected (reducible) terms cancel out,
and a nonlinear analogue of the hierarchy of Dyson
equations is obtained.

Applying the operator Ly(1) defined by (7) to
Eqg. (26), one obtains a nonlinear integrodifferential
equation for Gy(1 — 2):

(26)

Lo(1)Go(1-2) = B - D, 0TG(R, )

= 13(R)d(1) + Uchdp
+ DCechelp + Bpecpech P
— B PP U - BpBcpLepdep.

In the case of a Gaussian velocity ensemble, this

(27)
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equation is much simpler and the sixth-order correla-
tors can be included:

%‘%_DmDEGO(R,T) = 15(R)3(1)

+ Bebelitp + cpIprpp

+ Bd:)od:)o[d:)mo(j:)od:)djd:)
+ Bpech MEdheltbechelEp
+ 5P BCp e CpelTbh

(28)

+ Beh Bpechopdpoch.

Here, the use of nested angle brackets [II.. [Tland supe-
rior braces is dictated by the complexity of combina-
tions of averaged pairs of operatorsL.

If series (10) were averaged directly without pro-
ceeding to the derivation of the nonlinear hierarchy, and
the connected (irreducible) terms were singled out in
the averaged series, then the standard Dyson equation
would be obtained [13]. This equation can be derived
from (28) by replacing every inner Gy(1, 2) = o with
the molecular-diffusion Green function G, (1-2) = —
and adding to the right-hand side the fourth-order irre-
ducible term

[G— G—O—tp, (29)
and five additiona sixth-order connected terms, which
are not written out here. Terms analogous to (29) are
aready contained in (24), which can be demonstrated
by developing an iterative series for this nonlinear
equation. Similarly, additional sixth-order terms arise
as the next eguation of the hierarchy, Eq. (26), is iter-
ated for a Gaussian velocity ensemble. Thus, the ker-
nels in nonlinear equations contain fewer connected
terms.

The connectedness of termsin (28) ensures that the
kernels are narrowly supported. Therefore, the outer
Green function ¢ can be expanded into a Taylor series
in coordinates and time, and the first terms of the result-
ing expansion can be used to obtain a diffusion approx-
imation:

9
%ﬁ — D, 0HG(R 1)

= 18(R)3(T) + D(T)0°Gy(R, 1).

(30)

Retaining only the first equation in the hierarchy (with
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guadratic nonlinearity), one obtains

O = L (D
DO(1) = 3J’dRJO'on[m,(l)u,(z)m @D

—R (1) divu(2)0] Gy(R, 1).

In the diffusion approximation, only the first term
should be retained in the Taylor series expansion with
respect to time, i.e., the value of the outer Green func-
tion at the point of the kernel’s maximum on the time
axis should be factored out (see details in [26]). An

expression for D" (contribution of the fourth-order
nonlinear termsin the hierarchy) wasgivenin[27]. The

accuracy of the expressions for D” and G is dis-
cussed in Introduction. Expressionsfor Dﬁo) andthea-

effect factor a” for magnetic field diffusion can be
found in [26].

3. EQUATIONS
FOR THE CORRELATORS V(1, 2) AND H;(1, 2)

Suppose that the distribution of passive-scalar den-
sity in aturbulent medium at the initial momentt=0is
No(r). When the Green function G(r, t; r', t') of Eq. (1)
is known, the statistical properties of n(r, t) are deter-
mined by the expression

n(r,t) = Oh(r, t)d+n'(r, t)

(32)
= Idr‘G(r,t; r',0)ny(r").
An analogous expression relates the magnetic field
B(r, t) toitsinitial distribution By(r).

Using (32), one can easily write expressions for
V(1,2) = mM()n(2)0and H;(1, 2). The stochastic
Green function G(1, 2) is given by two expressions:
series (10) in molecular-diffusion Green function
G(1—2) and series (19) in the averaged Green func-
tion Gy(1, 2). For the commonly used Gaussian ensem-
ble of u(r, t), the averaging of the expressions for
n(1)n(2) and B;(1)B;(2) leads to a hierarchy of Bethe-
Salpeter-type linear integral equations (see[13]) differ-
ing only by the number of connected (irreducible)
terms retained in their kernels. These equations have
the following general form:

V(1,2) = [d3[d4Go(L; 3, 0)Go(2; 4,0)Vo(3, 4)

+ Id3 J’d4Id5 J’dGGO(l, 3)Gy(2, 4) (33)

x K (3, 4; 5,6)V(5, 6),

where V(3, 4) = Mhy(r 3)ny(r ,)[I Here, double brackets
denote averaging over the ensemble of initial particle-
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density distributions. The ensemble is generaly
assumed to be homogeneous and isotropic, in which
case Vy(3, 4) = V(|3 — 4]). The absolute and variable
termsin (33) are (1) Ih(2) Cand the fluctuation corre-
lator m'(1)n'(2)0) respectively. Equation (33) can
readily be used to write an integral equation for
m'(1)n'(2)L) which is more complex than (33). This
equation is not employed here.

The analysis is smplified by applying the operator
Lo(1) or Lo(2) to Eqg. (33) and using an equation for the
averaged Green function (Eg. (28) in the present con-
text) to obtain an integrodifferential equation for V(Z, 2)
independent of V(3, 4).

The simplest form (ladder approximation) of
Eq. (33) is obtained when only the first connected term
isretained in the kernel. In the case of a d(1)-correlated
field, the ladder approximation yields an exact solution,
because the contribution of remaining connected terms
to (33) vanishes (e.g., see [17]). In the non-3(T)-corre-
lated case, this equation is written as

V(1,2) = [d3[d4Gy(1; 3, 0)Go(2; 4,0)Vo(3,4)

+ J’d3 Id4GO(1, 3)Gy(2, 4) (34)

x 000 [y (3)u; (4)IV (3, 4).

To abbreviate diagrammatic representation of more
complicated equations, an additional symbol is defined
by writing Eq. (34) as

= doracdp + o Belep.

Henceforth, it should be borne in mind that coordi-
nates 1 and 2 correspond to the extreme left and
extreme right elements of a diagram, respectively. The
operators on the right of a box (which represents
V(3, 4)) act on the terms on its left, and time decreases
toward the box. The box crossed by avertical line rep-
resents Vy(3, 4).

When operator Ly(1) or Ly(2) isapplied to (35), one
has to determine how many terms should beretained in
Eqg. (28). It was noted in Introduction that conservation
law (5) will hold only if the orders of the nonlinear
equation for the averaged Green function cH = Gy and
in the obtained integrodifferential equation for V(1, 2)
are matched. This implies that only the first integra
term must be retained in (28), i.e., the analysis must be
restricted to the DIA equation for Gy(1, 2). The result-
ing equations are

Lo(1)0= Gchd—o +add,

(35)

(36)

Lo(2)ca = 1 O+ chhiradl.

By virtue of the symmetry V(1, 2) =V(2, 1), Eq. (37)
is obtained from Eq. (36) by interchanging the points

(37)
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indexed by 1 and 2, which means inversion of dia-
grams. Thisistrue in any approximation.

The terms on the right-hand side of (36) can be
obtained from the first diagram on the right-hand side
of (28) by successively replacing one of the averaged
Green functions Gy(1, 2) with V(Z, 2). A direct verifica-
tion shows that this rule applies to higher order equa-
tions in the hierarchy of Bethe—Salpeter equations as
well. In particular, alowing for fourth-order irreducible
interactions (see (28)), one obtains

Lo()3 = Bpe + B
+ BOP P lTpi + Bp b b (39)

+ B o ec + Braech O edp.

The equation containing the sixth-order correlators
has an analogous form. Since Eq. (28) has four sixth-
order terms with six Green functions G, in each, the
total number of sixth-order terms in (38) is 24. This
equation is not written out here, because even its dia-
grammatic representation is too cumbersome. Note
also that the nonlinear equationsfor Gy(1, 2) again con-
tain fewer connected terms, as compared to the Bethe—
Salpeter equations derived directly from series (10)
(see [13]). However, this reduction starts only from the
sixth-order correlators: the 26 connected terms con-
tained in the linear theory [13] reduceto 20. Each elim-
inated term has the form

B edD;

i.e., it contains a disconnected element inside a pair of
averaging brackets. Note that the Bethe-Sal peter equa-
tions are commonly represented as “two-level” dia
grams (see [13, 17]). The diagrammatic expressions
presented here are more compact, and their symmetry
properties are demonstrated more explicitly. In particu-
lar, this representation is consistent with the rule of suc-
cessive replacement of terms in the Bethe-Salpeter
equation with V(1, 2) (see Eq. (38)). Of course, these
equations can readily berecast in the standard two-level
form.

The evolution of m(r, t)O= V(1, 1) is of primary
interest. The derivative di(r, t)[dt is obtained by add-
ing Egs. (36) and (37) and setting t; =t, =t. Thismakes
the right-hand sides of (36) and (37) equal, and twice
the right-hand side of (36) (or (38) in the next equation
of the hierarchy) can be taken. By virtue of conserva-
tion law (5), the right-hand side of the equation for
dm?(r, t)[dt must vanish if D, = 0 for incompressible
turbulence. It is important that the particle distribution
must also be statistically homogeneous, i.e., V(1, 2) =
V(R t;, ty). Violation of (5) would lead to spurious
effects: m2(r, t)Cwould rapidly increaseif thefirst term
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on the right-hand side of (36) is less than the second
one, and vice versa. Equations (36), (38), and others
obtained here ensure that conservation law (5) is con-
sistent with each equation in the Bethe—Sal peter hierar-
chy and the spurious effects are ruled out. However, it
remains unclear if these equations can adequately
describe the spectral distribution of scalar field fluc-
tuations.

To show that Eq. (36) (the simplest one in the hier-
archy) is consistent with conservation law (5), set 1 =2
(i.e,ry=ry=randt; =t,=t) and divu = 0. Then, the
first diagram on the right-hand side can be represented
as

jd3[D§”Go(1—3) [y (2)u;(3)]
x OOV(11-3, t, 1))

= g® J’d3Go(1—3) [ (1)u;(3)0
(39)
x OOV(11-3, t, 1))

~ [d3Gy(1-3) C(1)uy(3)C

x IP0PV(|11-3), ty, ty).

Since the correlator [0;(1)u;(3)= B;(1 — 3) depends on
the difference of the arguments, the integral in the first
term on the right-hand side of (39) isindependent of r,
and therefore vanishes. The second term is obviously
equal to minus the second diagram in (36) (since the
latter is invariant under inversion if 1 = 2). Thus, the
right-hand side of Eq. (36) vanishes when 1 = 2. In
other words, the extreme left operator L (circle) can be
placed at the extreme right position in the diagram
(with opposite sign).

Similarly, the first fourth-order term in (38) cancels
out with the last one, and the second and third terms
cancel out as well. When 1 = 2, the terms of the equa-
tion containing 24 sixth-order correlators also cancel
out pairwise; i.e., conservation law (5) holds for these
eguations as well.

In [20] and other studies, Eq. (35) was considered
for the magnetic field correlator H(1, 2) = [B;(1)B;(2)L]
but the averaged Green function was assumed to satisfy
the Bourret equation

P =—+—D—lp, (40)
rather than nonlinear Eq. (24), which would be correct
in the ladder approximation. This led to the equation

Lo(1)c = B—oli + B, (41)

which isinconsistent with conservation law (6), instead
of (36) (here, boxes represent correlators Hy). Therefore,
the quantitative results obtained in [20] are not valid.
The foregoing analysis shows that conservation
laws (5) and (6) ensure that the hierarchy of Bethe-Sal-
peter equationsis correct if the orders of the nonlinear
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equation for the averaged Green function Gy(1 — 2) and
the corresponding Bethe-Salpeter equation are equal.
One may use any plausible expression for the averaged
Green function (e.g., a diffusion Green function) in
properly structured Egs. (36) and (38). The conserva
tion laws will hold. It isimportant that the expressions
for the averaged Green functions in the kernels of the
equations be identical, whereas different expressions
are contained in (41). Equation (41) is equivalent
to (36) only in the model of delta-correlated turbulent
field ([ (1)u,(2)[ d(t, —t,)), when the Green functions
in the first terms on the right-hand sides of these equa
tions reduce to §(R).

The analysis presented above made use of the com-
mon assumption of Gaussian turbulent-velocity ensem-
ble. Real turbulent fields are not Gaussian [22]. The
nonlinear equations for the averaged Green function
Go(1, 2) (see Egs. (26) and (27)) and the expressionsfor
the fluctuating part G'(1, 2) of the Green function
(see (21)—23)) are obtained herefor an arbitrary veloc-
ity ensemble. Using (21)—(23), one can easily verify
that [G'(1, 3)G'(2, 4)Ocannot be decomposed into con-
nected and disconnected parts. For example, the terms
of fourth order in L do not involve the corresponding
fourth-order ladder diagram. Thus, no equation of
Bethe-Salpeter type can be written. One can only
directly use the approximate expressions for G'(1, 2)
given by (21)—(23) to write down an approximate series
expansion for m(1)n(2)= V(1, 2). Applying the opera-
tor Ly(1) or Ly(2) to the series and making use of (27),
one obtains

Lo(1)3 = B +LBrpad
+ BCPecpel + BperpOd
+ Aol +... .

Here, the ten fourth-order terms are not written out. In
contrast to the Gaussian case, these terms do not satisfy
the rule of successive replacement of one of the aver-
aged Green functions in (27) with the initial correlator
Vo(1 — 2) = 3. The method applied to Eq. (39) can
readily be used hereto show that expression (42) iscon-
sistent with conservation law (5). Note that the third
term on the right-hand side of (42) vanisheswhen 1 =
2. Asinthe Gaussian case, the order of expression (42)
equals that of the equation for Gy(1 — 2).

Once again, recall that the nonlinearity of (27)
ensures good asymptotic convergence of (42) even
when the parameter &, = UsT/R, islarge. Equation (42)
can be used as a basis for analyzing non-Gaussian
behavior of the correlation functions V(1, 2) and Hj; if
an expression for the three-point velocity correator is
known or prescribed.

All results obtained in this section can be applied to
describe the correlator H;;(1, 2) = [B;(1)B;(2)LJin which
case both operator L(1) and Green functions are ten-
sors. Magnetic-helicity conservation (6) was verified

(42)
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only for Eq. (36) (with a quadratic nonlinearity),
because of the complexity of further calculations.

4. EQUATIONS FOR PASSIVE-SCALAR SPECTRA

Restricting analysisto the case of a Gaussian veloc-
ity ensemble, consider first Egs. (24) and (36) (with
quadratic nonlinearity) and then Egs. (28) and (38) (of
fourth order in L(1) = —Di(l) u;(1)). The spectrum of the
correlator V(1, 2) = V(R; t;, t,) isrelated to the Fourier
integral

V(R ty, ty) =

1 [ope” T V(pity ) (43)

(2m)°
asfollows:

V(0;ty, t,) = IdpEv(p; ty, to),

0 (44)

2
Ev(p; t, t) = -ZET—[ZV(p; t, ty).

Therefore, it is sufficient to analyze the equations
for V (p; ty, o).

A stationary, homogeneous, and isotropic turbulent
velocity ensemble is characterized by the correlator
Bj(R, ) = (DU (LR =1, =1y T=1, —ty), and its
Fourier transform has the form [28]

Bi(p,T) = (84P°— pepy) F(P. T)
+ pepyW(p, 1) +iggpD(p, 1),

where g is the Levi-Civita permutation symbol (e, =
—€,, = 1 etc.). Thefunctionsf(p, 1), W(p, 1), and D(p, 1)
characterize turbulence spectra:

(45)

[

u(r,t) fu(r,t+0)d= IdpE(p, 1),
0

E( p’ T) = Einc( pl T) + Ecompr(pi T),
Einc(p1 T) = p4f(p, T)/T[z,
Ecompr(pf 1) = p4W(p, T)/ZT[2

For incompressible turbulent flow, W(p, T) = 0. The helic-
ity spectrum is characterized by the function D(p, 1):

(46)

H(t) = u(r,t) QO xu(r,t+1))0= Idth(p, 1),
0 (47)

En(p, T) = —p’D(p, 1)/TC.
The equation for \7(p, t;, t,) in the ladder approxi-
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mation is the Fourier transform of Eq. (36):
1o

10 Yy -1
@tl + Dmp DV( p! tll t2) (2]‘[)3

4

Xqu{—jdt'piéu(q, [t —t])(p—q); )
0

xg(lp—al, t,—t)V(p, t', 1)
t

+_[dt' piBi(a, [t. =t P3P, t,—t)V(Ip —al, t, t')},
0

where the representation Go (p, 1) =6(1)g (p, T) isused
(6(7) isthe Heaviside step function, see the beginning
of Section 2). It can readily be shown that (48) does
not contain turbulent helicity; i.e., Bi; can be treated
as a wmmetrlc tensor. Equatlon (48) holds for

Lo (P, tz)V(p, ty, ) = Lo (P, tz)V(p: t,, ty) (see (37)),
under the changet, — t,andt, — t;.

By virtue of conservation law (5), theintegral of the
right-hand side of (48) over p must vanish if divu = 0.
This can readily be verified. It may seem that Eq. (48)
can be analyzed in a diffusion approximation under the
assumption that p < py = VR, t; > 1y, and t, > 1, by
analogy with Eqg. (28) for the averaged Green function.
However, the resulting equation is integrodifferential

because the second term contains V (g, t;, t'). More
importantly, this equation is not consistent with conser-
vation law (5).

The use of the Bourret equation (see (41)) is equiv-
alent to replacing g(Jp — q|, t; — t') in (48) with the
molecular-diffusion Green function g, (|p —q, t; —t) =
exp[-Dp(p —q)4(t, —t")], which can be approximated by
unity if thediffusivity D, issmall. Thefirst termin (48)
describes the decrease in particle density due to turbu-
lent diffusion. In the Bourret approximation defined
by (41), its contribution is overestimated and conserva-
tion law (5) isviolated again.

Setting t; =t, = tin the sum of (48) with its counter-
part for Lo (2)V (p, t;, t,) and integrating the result over
p, one obtains

(%Ehz(r, )0 = —2D,,[On(r, t))T

t 0

+.!dr'([quV(q, t,t—1) (49)

o0 1

X [dp [ M Ecomr(P, (P + 1)(p*+ pap),
0
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where U is the cosine of the angle between the vectors
p and g. For an incompressible flow (divu = 0),
Ecompr(P: T) = 0 and Eq. (49) reduces to conservation
law (5). The second term on the right-hand side of (49)
is an approximate expression for the term with divu
in (5) that corresponds to the ladder approximation of
the Bethe-Sal peter equation. The term containing divu
in(5) isresponsiblefor particle clustering [14], i.e., for-
mation of regions of excessively high and low particle
density in a compressible turbulent flow.

In the frequently used model of delta-correlated tur-
bulent field (Bij (p, T) = 1o0(T) Bij (p)), EQ. (48) is exact
since the remaining equations of the hierarchy vanish.
In this model, a closed time-dependent equation can be

written for V (p, t, 1):

V(pt,t) _
ot

] 1

+ 3P"T0[d0 [ QUL (1~ 1) Eie(0) + 21" Exsms ()] (50)

~2(D,, + D) p?V(p, t,1)

xV(lp-al,t,t).

Thediffusivity DEO) given by (31) can also bewritten as

O = Lrar (o
DO(t) 3£dT{dp§[E.m<p,T)
(51)

0 T
* Exe (P DTGP, ) + Eam(p. 1) IR

It should be noted that the last term in (51) vanishes
(9(p, 0) = 1) in the case of a &(1)-correlated field and
compressibility (divu # 0) does not affect the diffusiv-
ity since D\ = u214/3 (diffusivity is determined by the
total turbulent kinetic energy). However, thisisnot true
for correlated scalar fluctuations, because the contribu-
tions of Ejn(g) and Eymp(0) to the exact Eq. (50) have
different angle-dependent weights.

In the &(1)-correlated model under consideration, (49)
is also an exact equation:

tm (r,t)0 = -2D,On(r, t)) 0

d (52)

+ 21, [Hiviulmh’(r, t)O

According to (52), the fluctuating part of oh?CJ(i.e.,
clustering) grows at the initial stage, when the density
is nearly uniform. However, [{CJn)?Clincreases with the
contribution of small-scale scalar fluctuations, and dif-
fusive dissipation of fluctuations tends to play a domi-
nant role.
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Attt =t, > 14 (ort; = t, > t; = Ry/up), both (48) and
(49) can be approximated in termsof V (p, t, t). Let us
consider two cases. At moderatet (t = 1,), when the sca-
lar turbulence has not yet concentrated in small-scale
motions, it can beassumedthat V (g, t,t—1) = V (q, t, t)
has a maximum at q < ¢, = U/R,. Using the series
expansion of g (|p —q|, 1) in powers of the small param-
eter g, one obtains

d

2
= —2(D,,—D}) On(r, t))’ 0+ 2C h*(r, t)J
where
C= fdpjdrszcompr(p,r)@(p,r), (54)
0 0
P ag(p,r)
IdpJ’dTEoompr(p,r)p op (55)

Here, D isthedirect contribution of compressibil-

ity (divu # 0) to the turbulent diffusivity D' It van-
ishes for a &(1)-correlated field. When acoustic effects
in turbulence are negligible, a9 (p, T)/dp < 0 and, there-
fore, D, < 0. This implies that chaotic shock waves

strongly damp fluctuations in a compressible gas flow.
Note that the coefficient C in (53) may be much smaller
than the corresponding coefficient in (52), which leads
to additional damping of fluctuations. In the limit of
o(1)-correlated turbulence, Eq. (53) reducesto (52). In
other words, Egs. (53)—«(55) can be interpreted as an
extension of Eq. (52) to the initial stage of scalar-field
evolution in turbulent flows with finite correlation
times.

For “acoustic” turbulence,
Eoompr( p, T)

5 (56)

= Ecompr( p) COS(CpT) exp[—k( p) p T] '

and the method for calculating D{” developed in [29]
can be used to obtain

00

L) T[M u
D = =g [ Ecoms (), (57)
0
C = ugpoM
(58)

X }dxx2 Ecompl‘(x) %] (X) + gMzEcompr(X)gy
0
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where M = uyc is the Mach number, x = p/pg,

Ecompr(P) = Ecompr(X) Uo/Po, and N() = k(x)po/c (c is the
sound speed). According to the model proposed in[30],
N(X) = M*Egompu(X).

It is obvious that the correlator (56) cannot be
approximated by 6(t), and the growth of fluctuations
can be evaluated only by using Eq. (53). For “acoustic”

turbulence, D; > 0, i.e., the fluctuation intensity at
t>1, (or t = ty) increases owing to both Cm?Jand
D; [{0n)2C]

Thus, a more realistic model of turbulence with a
finite correlation time reveals new qualitative tends in
theinitial evolution: fluctuations are damped by turbu-
lent diffusion when acoustic effects are negligible,
whereas additional growth of [(r, t)Clis predicted for
turbulence with a substantial acoustic component.

When t is much greater than the smaller of thetimes
To and ty = Ry/uy, only small-scale scalar fluctuations
may be taken into account, i.e., one may assume that
g > poin (49). A series expansion in terms of p/q < 1
yields

Q DI12(r, t)0 = —2D,,[{0n)’D

V(p,t ) (59)

wiviudfd
«/_Uo Ip

This equation is derived by assuming that the function
g(g, 1) has a narrower support in T as compared to
Ecompr(P; T) and using the approximation

00

J-d-[g(q’ T) = ﬁ! q > qO! (60)

which follows from DIA equation (24) written for the
Laplace transform of g (p, 1):

d(p. s)

[ 1 00

S+ Dyy” + [ [ ot [l (1~ 1) PEie(d, ) o
0 0

-1

g(lp—al, 1)

—ST

+ 2U(PH — ) Ecompr(a: T)] €

Thus, Eqg. (59) also substantially differs from its
counterpart, Eq. (52), written for a o(t)-correlated
process.
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In the &(t)-correlated case, the exact solution to
Eq. (61) is(see[17])

d(p.s) = [s+(Dp+D?)p3 7, (62)

which entails

a(p, 1) = exp[—(Dy, + D) p],

i.e., the solution to the diffusion equation with the dif-

fusivity D, + D(O) where DEO) = U(Z)TO/S. Thisdiffusive
solution is identical to that predicted by the model of
turbulence with a finite correlation time for p < p,.
However, the largest contributions to expressions (54)
and (55) aredueto p = p, (rather than p < pp). Sincedif-
fusive solution (62) is not valid in this case, the
o(1)-correlated approximation cannot be used either.
Indeed, when the diffusion Green function is substi-
tuted into (54), the resulting expression equals the dif-
fusivity in (52) only for (p/py)%€e < 1. In most turbu-
lence models, itisassumed that &, = u,Ty/Ry ~ 1, i.€., the
o(1)-correlated approximation is not valid a priori (e.g.
see [31]). In summary, the &(t)-correlated approxima-
tion is applicable only to turbulence with &; < 1, in
which caseit issufficient to use expansion (10) in terms
of molecular-diffusion Green functions.

The Green function of the Bourret equation (40) is
given by expression (61), where g(jp — q], T) on the
right-hand side should be replaced with g, (Jo — |, 1)
or with unity (if the small molecular diffusivity D,, is
neglected). In the diffusion approximation (p <€ py, s <<
1/1), the Green function of the Bourret equation is
given by (62).

When &, > 1, the Green functions of the DIA equa-
tion (61) and the Bourret equation (40) exhibit different

asymptotic behavior. While the exact asymptotic
expressions are not written out here (see[21]), it should

be noted that, roughly, g (p, S) O (§qp/po)~t in theformer

case and g (p, s) O (§,p/Py)2 in the latter. This differ-
ence explains why general expression (51) yields the
physically reasonable Dfo) = constuy/pyas&y —» «in
the former case (see also [12]), whereas the result
obtained in the latter case tendsto zero as 1/€,. Thefact
that the DIA equation yields qualitatively correct val-
ues of turbulent diffusivity both for &, < 1 and for
&, > 1 wasfirst noted in [16], where the DIA equation
for scalar diffusion was derived on the basis of an ear-
lier paper by Kraichnan focused on a nonlinear theory
of turbulence per se[25]. Thus, the nonlinear theory of
turbulent diffusion does not rely on any expansion in
terms of ¢,. The nonlinear analysis takes into account a
much greater number of elementary interactions
between the scalar field and the flow, as compared to a
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Bourret-like linear theory, leading to an expression for
D, that isvalid for any &.

The equation for V (p, t;, t,) up to fourth-order irre-
ducible correlatorsis obtained by adding the four terms
corresponding to the last four termsin (38) to the right-
hand side of Eg. (48). These additional terms are
denoted by A, B, C, and D in accordance with their
order in (38):

A(p, ty, t,) = J’dT J’ dr' J’ I(ZT[)

xg(lp—SI,r)g(lp—q—SI, ™)g(p—-al, ")
x pBij(s, T+T)(p-q-9),
X (P —8)Bam(d, T+ T") (P~ Q)
-1 1),

(63)

xV(p, t;-1-T
t, t-T t,-1-T

D(p, ty,t,) = — dTIdr J’ J’

(2m°
xg(p, r)g(lp +q-9,T )g(lp +q, T)p,
xBij(s, =t + T+T])(p + ),

X PaBom(Q, T+ 1) (P + A= 9)m
X\7(|p—s|, tL,L—1-1T-1"1,),

t, 4-1 b

B(p, ty, 1) = —[dr I dt.rd I(Zn) I(Zﬂ)s

0

xg(lp-9, T)g(lp—q—ﬂ,r )a(p, T)p;
xBij(s, T+1)(p—q-9),
X (P =8)aBom(0, [ty —t; — T+ T) Py,
><\~/(|p—q|,tl—T—T',tZ—T"),

(64)

(65)

t, tL-T

C(p t, tp) = J’dT J’ er’d I(zn)

x9(p, T)g(lp—ql, T )g(lp +9, ") (p-0q),
x Byj(s, L=t +T+T))p;
X (P +8)aBan(0, [t —t + T=T") Ppy
x\7(|p_q +9, 4, -1, 1,-1-T).

Consistency with conservation law (5) is verified
by showing that the integrals of A+ D and B + C over
p vanish if t; = t, = t and divu = 0. In contrast to
Eq. (48), additional terms (63)—66) depend on turbu-
lent helicity. When (63)—(66) are taken into account,

(66)
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the following expressions must be added to the right-
hand side of (49):

-1 t-1-T

E(t) = deIdT I f(sz(zm I(Zﬂ)

><@J(IIO—SLT)@J(IIO—Ol—SI,r)@J(IlO—ql,r )s

. (67)
X Bij(s, T+1)(p—q—9);
X (P —8)pBam(Q, T+ T") (P = Ay
X\7(p,t—T—T‘—r",t),
= —(dt [ dt'[dr
AR | f f(sz(zn) I(zm
><g(llo—SI,r)g(llo—q—SI,T)@J(lo.T)si (68)

xBij(s, T+1)(p—q-9),
X (P —5)yBnm(Q, [T =T"]) P
xV(p-ql,t-1"t-1-T1).

The functions E(t) and F(t) are obtained by integrating
the sums A + D and B + C, respectively. In contrast to

V (p, ty, t,), the quantity m?(r, t)Cis independent of tur-
bulent helicity even if the fourth-order correlators are
taken into account. It should be noted that both E(t) and
F(t) depend on the product of the energy spectrum
Ecompr(P: T) (@ssociated with potential motions in com-
pressible turbulence) with a correlator containing
E;«(p, T). Expressions (67) and (68) can be used to cal-
culate corrections to asymptotic equations (53) and (59).
The additional contribution to (59) hasarelatively sim-
ple analytical form:

Ev(q, t, t)
—t,

Edlv uCeurl uDI dg—-=-2tt (69)

3u0

Expression (69) demonstrates that turbulent fluctua-
tions are additionally damped by vortex motion. When
the molecular diffusivity is small, this effect plays a
dominant role in damping the fluctuations (dispersing
clusters of particles) at theinitial stage. At alater stage,
molecular diffusion takes over as a factor that flattens
out the particle density. This effect is beyond the scope
of the &(t1)-correlated model, because vortex motion
cannot be described by this model.

5. EQUATIONS FOR MAGNETIC ENERGY
AND MAGNETIC HELICITY SPECTRA

Magnetic field diffusion is described by a tensor
Green function Gj(1, 2) and atensor interaction opera-

tor Lyj() = 0 u() - 8,0 u(d). For stationary,
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homogeneous, and isotropic turbulence, [G;;(1, 2)U=
8(1)g;(R, 1) and Hy(1, 2) = B(1)B;(2) 1= Hy(R, ty, to),
whereR =r,; —r,and T =t; —t,. The Fourier transforms
of these quantities with respect to R are expressed as
follows:

Gi(P.T) = 8iGn(P 1) * (BP" = PPIGP ) 70
+igj, p.9:(p, 1),
Hi: to ) = (B’ = pipOH(P tut) o,

+igePHa(p ty 1),

The term containing g,, (p, T) is due to the absolute
term in Eq. (9) for the Green function. The condition
divB =0 (p - B = 0) is satisfied, because the initia
magnetic field By(r) is solenoidal. Further analysis is
facilitated by introducing the function

Go(P. T) = Gm(P, T) + P°8x(P, T) (72)

and deriving a system of equations for g, (p, T) and
g, (p, T) from DIA equation (24). Defining g, (p, T) =
do (P, T) = pQ; (P, T), one obtains

T -1

9.(p, 1) = Ou(Pp, T)—IdT' I dt"gm(p, T)
0

(73)
x [P°Sy(p, T) £ pSy(p, T)] 8.(p, T-T' =17,
where
P'Si(p. ) = [da foh{ p'(1-1)
0 -1
X [Einc(Q, T)Go(Ip —al, T) 4

—En(a, 1)81(lp—al, T)] + 2pp(pu —q)
x Ecompr(q1 T)go(|p _q|1 T)} ’

] 1

S(P 1) = Z[dafdu{ (L-L(P"+ o — pa)
0

X [Einc(a, T)8:(Ip—al, T) 75)
~E,@ 1)3lp —al, 1] + [2p7° + (L + 1) (0" — 2pqu)
X Ecompr(q1 T)@l(lp _q|1 T)} .

Expressions (73)—(75) have much simpler form for
incompressible turbulent flow. The Laplace transform
of Eq. (73) is

3:(p,S) = [+ Dpp®+ p*So(p, 5) £ pSu(p, 5)] . (76)
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Under the solenoidality conditionp - B =0, theterm
Pip; 0, (p, T) vanishes and Green function (70) reduces
to

@jk(p' 1) = 5jk§o(p’T)+iejktpt§l1(p1T)- (77)

In the case of zero turbulent helicity (D(p, t) = 0), both
g;(p, 1) = 0 and S(p, T) = 0, and the equations for
Jo(p, 1) are identical to Egs. (61) and (62) for scalar
diffusion.

In the diffusion approximation, expression (76) has
the form

3=(p. ) = [s+(Dy+DP)p?xa®p] !, (79)
where
0® = Lrapfeh
¢ = 3fdef
0 0
x E{Eim(p, 1)+ B (P D] 8(PT)  (79)

09(p, T ~ O
* B (P 0P By 0B( 1)

In the case of zero turbulent helicity (En(p, T) = 0), this
expressionisidentical to turbulent diffusivity (51) for a
passive scalar (different coefficients D, are obtained for
magnetic and scalar fields only if irreducible inter-
actions of fourth order in velocity are taken into
account [26]). The factor describing amplification of
the mean magnetic field by turbulent helicity is

<) [

o _1 _ ~
oy = {dp{dT{ En(p, T)Qo(p, T) (€0)

+ P[Einc( P, T) + 2Ecompe(P, 1 82(P, D)}
For a d(t)-correlated process,

D = ulry/3, al” = —u OO xu)i /3.
The diffusion Green function corresponding to (78) has
the form of (77) with

Go(p, T) = cosh(a”pt)exp(-D p?1),
© (81)

~ 1.
G:(p. 1) = —sinh(a pt) exp(-D{” p’1).

Now, consider Eq. (38) for the tensor |:|ij (p, ty, 1),
retaining only second-order correlators (ladder approx-
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imation for the Bethe—Salpeter equation). First of all,

note that the function Ho (p, ty, t,) determines the spec-
trum of magnetic energy fluctuations:

[

[B(r, ty, tp) [B(r, ty, t)0 = J’dpEB(p, t, 1),
) (82

Es = p*Ho(p, ty, t,)/10.

Usetherelation B = V x A to express the spectrum of
magnetic helicity fluctuationsin terms of Hi (p, t, t):

00

HMh(t) = m(n t) [B(r! t)D = IdpEMh(p! t)’ 83)
0

Eun(p, t) = —p2l:|1(p, t,t)/T[z.
When D,, = 0 in a homogeneous turbulent flow, mag-

netic helicity conservation law (6) implies that

dﬂtjdpﬁl(p, t,t) = 0. (84)

The validity of this relation is demonstrated bel ow.
Equation (38) entails the following system of equa-
tionsfor Ho(p, t3, t,) and Hy (p, t;, t):

a ~
%t—l + Dm p%HO( p1 tlv t2)

ty

= —IdT[ P*S(p, T)Ho(p, t; —T, t,)
0

+Sy(p, T)H(P, t; — T, t,)]

t

"'IdT[To( p, |ty —t, + 1], ty, t,—T)8o(P, T)
0

+ Tl( p1 |t1 _tZ + T|1 t11 t2 _T)gl( pl T)] ’
(85)

a ~
%t—l + Dm p%Hl( p1 tlv t2)

151

= —Idr P[Su(p. T)Ho(P, t, —T, 1)
0

+S(p. DHL(P, t —T, 1,)]
t
+IdT[T1(p, |ty —t, + 1], ty, t,—T)Go(P, T)
0
+ TO(p1 |tl_t2 + Tlv tl!tZ_T)@l( pl T)]v
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where

[

1
To(p, It ty, t,—1) = Zqu
0

1

X_[du{(l—uz)[(p2+q2—pqu)
a

X Ene(Q [t Ho(lp =l ty, t, = 1)

_Eh(qv |t|)H1(|p—Q|,t1, tZ_T)]
+[2p°% + (1 + p®)(g*—2pqu)]

X Ecompr(qv |t|)H0(|p _ql’ tl’ tZ_T)} ’

o

1
Ti(p, It ty, t,—1) = szq
0

(86)

1

x _jldu{ P’ (L —p)[Ene(a, It Hu(lp =gl ty, tz—r)(87)

—En(q, It)Ho(lp—dl, ty, t,— T)

+ 2P PH — ) Ecompr (0 [ H1(lp =0l t, t, = T) } -

Note that §, and S; are associated with the diagram
Lol To and Ty, with L—o0(see (38)). Therefore,
the corresponding expressions have similar structure.
In the case of zero turbulent helicity (D(p, 1) = 0,

31 (p, T) = 0, Sy(p, ) = 0), system (85) splitsinto separ
rate equations for Ho (p, t1, t,) and Hy (p, t1, to).
In the frequently used case of ad(t)-correlated vel oc-

ity ensemble ( B, i (P, T) =100(7) Bij (p)), system (85) sim-
plifiesto

0 1y
Oyt T 2PmPgHo(P. 1. 1)

= 2[DpHo(p t, t) + a{PHi(p, t, )]
+ 3 [dafdul (1-u")[(p" + o~ paw)
x Epne(@)Ho(Ip =0, t,t) = En(a@)Ha(lp —al, t, 1)]
+[2p°p% + (1 + p°)(g*—2pqu)]

X Ecompr(@)Ho(lp =, , 1)}, (89)

10 7
ot 2D,pgHi(p. t, 1)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

741

= 2p’[DPHa(p, t, 1) + aPHo(p, t, 1)]
=) 1
To 2 2 ~
+ zjdqfdu{ P (1—-p)[Enc(@)Ha(lp—al, t, t)
0

-1

x En(q)Ho(lp —ql, t, t) + 2(p°* - pap)
X Ecompr(q)Hl(lp _ql, t, t)} ,

where

D = UgTo/3, a” = —[u OO xu)F /3.

For incompressible turbulent flow with zero helicity,
thefirst equation in (88) written for p?Hy(p, t, t) isiden-
tical to Eq. (14) in[17].

Now, magnetic helicity conservation law (84) for
flowswith D,,, = 0 can be obtained by performing some
simple changes of variablesin theintegral of the second
equation in (85). It should be noted that even calcula-
tion of magnetic energy (82) must be consistent with

conservation law (84), because the functions Ho (p, ty, 1)
and Hi (p, t1, t,) areinterrelated.

Equations (85)—(87) can be used to obtain an equa-
tion for B(r, t)I

dﬁtEBZ(r, )0 = —2D,, {0 x B(r, )T

) ) 1 t

+%J'dpquj'dude{EB(pat!t_T)
0 0 -1 0

x Go(lp —al, T)[(1—p*)(g* - pap)

X Eine(G T) + (6(1 + %) — 2pap®) Egompr (0, T)]

i Y
+0:(Ip—al, T)Eyn(p. t, t=T)[p q(1-p")

x Eine(@, T) + (P47 (L — 1) + 2pp(a’ + 2p°p + qp’p?)

X Eompr(0 1)1 = (1 - 1) (0" - 2pap)
x En(q, T)Eg(p, t, t=1)0s(Ip—al, 1)} .
In the model of delta-correlated turbulent field, it
simplifiesto
antBZD = —2D,,[{0xB)T
21, 2 .2 2 (%0)
+?[E(Dxu) O+ 2 Deiveud (BT

Note that Eg. (90) isindependent of turbulent helic-
ity, which determines the amplification factor for the
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mean magnetic field B(see (80)). Since B2[1= B[
B+ B0 this implies that the increase in the mean
(large-scale) magnetic energy due to the a-effect is
compensated for by the damping of magnetic fluctua-
tions due to the same mechanism. This observation was
originally madein [7], where the diffusion approxima-
tion was used without assuming short turbulent correla-
tion time. Note that Eq. (90) was recently obtained
in [24], where extension of Kazantsev's equation [17]
to two- and three-dimensional compressible turbulent
flows with zero helicity was analyzed in detail.

It should be noted that magnetic fields are generally
associated with rotating media (rotating stellar atmo-
spheres, rotation of the Galaxy, etc.). Since rotation of
a turbulent medium as a whole gives rise to helicity,

system of equations (88) for Ho (p, t, t) and Hy (p, t, 1)
must be solved even in &(1)-correlated models. However,

effects due to helicity are totally ignored in [20, 24] and
other studies.

As in the analysis of scalar transport [see (53)],
Eq. (90) can be extended to describe an initial stage of
field evolution in the model of delta-correlated turbu-
lent field:

d n 2
—[BT= -2(D,,— D)0 xB)T
4 O G L

+y[B 0 x B)0+ (C, + C,) (BT

where

00 00

D; = = {dp{d@am( P. ) + (P, V)]

(92)
a9,(p, 1P
xp g‘}gg D _2€,(p.1)p2 (g WP T
_ 2oo . 2
- éj’dpJ’dTp Ecompr( P, T)
0 o0 (93)
x| @p 0 -p gl(gg’ T)},
_ 2oo . 2
= §.(|:dp.(|:dTp (o)
X [Einc( p, T) + 2Ecompr(p1 T)] go( pl T)1
(95)

2 ~
C, = —5[dp[drp’Ex(P, (P, 1)-
0 0

Note that two small terms on the order of [1°B - (O x
B)areignored in EqQ. (91). Furthermore, the term with
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y is entirely determined by compressible turbulent
motion with nonzero helicity. In contrast to (90), the
term proportional to B2(in (91) contains a contribution
due to turbulent helicity, because the function g, is pro-
portional to the helicity spectrum. This implies that
C,<0; i.e, turbulent helicity inhibits the increase in
magnetic energy at initial stages of evolution. Since
89, (p, T)/dp < 0O, it may be expected that D, < 0 (the
termwith E,, must be smaller than thefirst termin (92)).
Since D, is much greater than D,,, the former coeffi-
cient controlstheinitial decay of magnetic energy. Note

that Eq. (91) reduces to (90) in the limit of short corre-
lation time.

In summary, the increase in magnetic energy in tur-
bulence with a finite correlation time is substantially
slower than that predicted by the model of delta-corre-
lated turbulent field.

When acoustic effects are important, one obtains
D; =3D;/5, C,=0, and C, = 4C/3, where the positive

coefficients D; and C are given by (57) and (58),

respectively. Note that the magnetic field diffusivity in
“acoustic” turbulence is equal to the scalar diffusivity
obtained in [27]. Thus, additional growth of fluctua-
tions due to acoustic effectsis predicted for both scalar
and magnetic field diffusion.

In the case of zero helicity, magnetic energy must
concentrate in small-scale fluctuationsin the long-time
limit. Equation (89) simplifies accordingly:

(%DBD— —2D,,(0 x B)
9%
(0.0 40

0 x u)’0+ 2 ivZul] (d
5«/:-3’0[( ) ﬂJ’p

In contrast to scal ar fluctuations (see (55)), magnetic
field fluctuations can be amplified not only by com-
pressible turbulent motions (e.g., shock waves), but
also by rotational motions of aturbulent plasma. Since
Eg(p, t, t) hasamaximum at p,, < po, the value of 1/p
at some intermediate point p; (Po << P1 < Pma) Can be
factored out of theintegral. Asaresult, the second term
in (96) will become similar in structure to its counter-
part in (90), but its value will differ by a factor of
(Po/P)/€o- When &, = 1 (as usually assumed for well-
developed turbulence [31]), the resulting amplification
factor will be much smaller than that predicted by
Eq. (90). A similar result is obtained for scalar fluc-
tuations.

Equations (91) and (96) differ substantially from (90),
which correspondsto a &(t)-correlated process. All crit-
ical remarks on the model of delta-correlated turbulent
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field made in the preceding section apply to the model
of magnetic field diffusion.

6. CONCLUSIONS

The principal results of this study are summarized as
follows. Most importantly, it is shown for the first time
that the Bethe-Sal peter-type time-dependent integrod-
ifferential equations for magnetic field and scalar fluc-
tuation intensities must be consistent with conservation
laws (5) and (6). The kernels of these equations are dif-
ferences of two terms of similar order describing the
balance of growth and decay of fluctuations at a fixed
point in a turbulent medium. The conservation laws
impose integral constraints on these processes. Consis-
tency with these laws rules out spurious growth or
damping of fluctuations.

It isfound that a hierarchy of Bethe-Salpeter equa-
tions are consistent with the conservation laws only if
the averaged Green function [G(1, 2) (katisfies a hierar-
chy of Dyson-type nonlinear equations. Moreover, the
highest orders of velocity correlators retained in both
hierarchies must be equal. In particular, it is shown that
the widely used approximate Bourret equation for
[G(1, 2)Odoes not ensure consistency of Bethe-Sal-
peter equations with the conservation laws even in the
case of &y = ugty/Ry < 1, when this equation yields a
correct value of turbulent diffusivity.

The simple derivation of a hierarchy of nonlinear
equations for the averaged Green function is not
restricted to the case of a Gaussian velocity ensemble.
Correct time-dependent equations are obtained for sca-
lar and magnetic fluctuations in compressible turbulent
media with nonzero helicity. These equations are con-
sistent with the conservation laws. They can aso be
used to analyze the influence of non-Gaussian velocity
statistics on turbulent diffusivities and time evol ution of
scalar fluctuations.

These eguations are used to derive asymptotic for-
mulas describing the evolution of scalar fluctuation
intensity at afixed point of aturbulent medium.

It is shown that the model of delta-correlated turbu-
lent field ([y(1)y, ()03 (t; —t,)), which is frequently
applied because of its mathematical simplicity, failsto
predict anumber of important effects of turbulent diffu-
sion on the time of energy transfer to small-scale fluc-
tuations. The overall effect of afinite velocity correla-
tiontimeisto inhibit the growth of fluctuation intensity,
because fluctuations are damped by turbulent diffusion
(inthe &(1)-correlated model, damping is due to molec-
ular diffusion only) and the amplification factor is
reduced by taking into account nonlocal mechanisms of
turbulent transport. In contrast, turbulent diffusion in
“acoustic” turbulence counteracts molecular dissipa-
tion and simultaneously increases the amplification fac-
tor. However, when small-scale fluctuations play a
dominant role at thefinal stage of evolution, their decay

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

743

is controlled by molecular diffusion. Note also that the
amplification factor for well-devel oped turbulence with
& = 1 is much smaller than that predicted by the
o(1)-correlated model.

The correct hierarchies of equations for [G(1, 2)0
and fluctuation intensities provide a solid basis for
more detailed analysis of time-dependent fluctuation
intensities. The method used to derive and match the
hierarchies can also be used to analyze the background
turbulence. In particular, it would be interesting to gen-
eralize Kraichnan's equation (which predicts p=?
instead of Kolmogorov's p~> for the energy spectrum
in the inertial subrange [25]) by retaining the fourth-
order correlators. Such a generalization should be
expected to yield a power exponent closer to Kolmog-
orov’s, which would mean a more accurate description
of real turbulence.
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Abstract—A field-theoretic description of critical behavior of I1sing systems with long-range interactions is
obtained by using the Padé-Borel summation technique in the two-loop approximation directly in the three-
dimensional space. It is shown that long-range interactions affect the relaxation time of the system. © 2004

MAIK “ Nauka/Interperiodica” .

It was shown in [1] that effects due to long-range
interaction are essential for the critical behavior of
Ising systems. The renormalization-group approach to
spin systems with long-range interactions devel oped
in[2] directly in the three-dimensional space made it
possible to calculate the static critical exponentsin the
two-loop approximation. However, analogous calcula-
tions of critical dynamics have never been performed
for these systems.

In this paper, afield-theoretic description of critical
behavior of homogeneous systems with long-range
interactions is developed directly for D = 3 in the two-
loop approximation. The model under analysis is the
classical spin system with the exchange integral
depending on the distance between spins. The corre-
sponding Hamiltonian is

H = %ZJ(|ri—rJ|)ss, (1)
1]

where § isaspin variable and J(|r; —r;|) isthe exchange
integral. This model is thermodynamically equivalent
to the O(n)-symmetric Ginzburg—Landau—Wilson
model defined by the effective Hamiltonian

H = deqg(ro+qa>¢a+uo¢"§, @

where ¢ isafluctuating order parameter, D is the space
dimension, 1y ~ |T — T, (T, isthe critical temperature),
and u, is a positive constant. Critical behavior strongly
depends on the parameter a characterizing the interac-
tion as a function of distance. It was shown in [3] that
long-range interaction is essential when 0 < a < 2,
whereas systems with a = 2 exhibit critical behavior
characteristic of short-range interactions. For this rea-

son, the analysisthat follows is restricted to the case of
O<a<2

Relaxational dynamics of spin systems near the crit-
ical temperature can be described by a Langevin-type
equation for the order parameter:

0 oH
% = ~hogg +n A, ©)

where A, is a kinetic coefficient, n(x, t) is a gaussian
random force (representing the effect of a heat reser-
voir) defined by the probability distribution

Py = Ayep[~(4ho) " [d'xdin’(x O] (4

with a normalization factor A, and h(t) is an external
field thermodynamically conjugate to the order param-
eter. The temporal correlation function G(x, t) of the
order-parameter field can be found by solving Eg. (3)
with H[$] given by (2) for ¢[n, h], averaging the result
over P, and retaining the component linear in h(0):

6(x D = GGl B e O
where

[(x 00 =B J’D{rl}¢ (X OPy, (6)

B = ID{ n} Py. ()

When applying the standard renormalization-group
procedure to this dynamical model, one must deal with
substantial difficulties. However, it was shown in [4]
that the model of critical dynamics in homogeneous
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systems without long-range interaction based on aLan-
gevin-type equation is equivalent to that described by
the standard Lagrangian [5]

L = [d xth?\ocl) +ig* %\mzp 6H . ®

where ¢* denotes an auxiliary field. The corresponding
correlation function G(x, t) of the order parameter is

2k, w; Tq, Uo,

}\0) = T0+ka_%\@_96uO2Do,

BELIM

defined for a homogeneous system as
G(x,t) = [@(0,0)d(x, )T
= Q_lfD{dJ} D{ ¢} (0,0)0(x, t)exp(-L[$,9*]),

where

Q = [D{¢} D{¢*} exp(-L[9. ¢~]). (9)

Instead of dealing with the correlation function, it is
reasonable to invoke the Feynman diagram technigue
and represent the corresponding vertex in the two-loop
approximation as

(10)
0

d°qd°p

K YRR

The next step in the field-theoretic approach is the cal-
culation of the scaling functions 3, v;, Yy, and yy in the
renormalization-group differential equation for ver-
texes:

0 0 0 d m
[Hﬁ By Vil Py —§V¢}

x T™(k, 0; T, u, A\, 1) = 0,

(11)

where the scaling parameter [ is introduced to change
to dimensionless variables.

Further analysis requires the use of the function 3
and the dynamic scaling function vy, .

+]ql* +|pl*+|p + /> —iw/A)’

An expression for (3 in the two-loop approximation
was abtained in [2]:

2
B=—(4- D)[1—36uJ0+ 1728%J1—J§—§(%u2},

3 = d®qd°p
1_I ay 2 a 2. 2 al2
(L+19®°(L+[p)(1+|o®+ p* + 2p ™)

I(l+lql)

d°qd°p

alklaI(l +|g?+ K2+ 2k

The function y,, calculated in the two-loop approxima-
tionis

Ya = (4-D)2(D'-G)U,

D = _ 9D . (12)
(=0 k=0, 0-0
Defining the effective interaction vertex
= U
v = 3 (13)

one obtains the following expressions for 3 and yj:
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al2

)(L+Ip*) (L +|g?+ p?+2p ™)

al2

B=—(4- D)[1—36v + 17285@31—1——0%\/ }

V, = (4—D)96(D —G)v?, (14)
~ J ~ ~ '
Jh=3, G= % D = D.

)z )2 )z

Thisredefinition ismeaningful for a< D/2. Inthiscase,
Jo, J1, G and D' are divergent functions. Introducing the
cutoff parameter /A, we obtain finite expressions for the
ratios
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AN

J1 _ 00
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[[d°ad”pi((1+ A1) (L +[pl?) (1 + |o? + p* + 2p %))

3

A

AN

[diq/m |q|a)2}
0

—0/(3Ik[%) Uqude’““ |0 + K2+ 2k T )*(1+ [pl*) (1 +|g® + p? + 2p (%))
00

2 3

7\

Ud”q/(l + |q|ﬂ
0

o 3/4[dqd”p/((L+[a*)(L+ |pI*)(3+ |g* +[p* + |p +q[))

(15

2 ’

Jo
0

as/N\ — o,
The integrals are performed numerically. For a <

D/2, a sequence of J,/J5 and G/J% corresponding to
various values of A is caculated and extrapolated to
infinity.

Critical behavior is completely determined by the
stable fixed points of the renormalization group (RG)
transformation. These points can be found from the
condition

B(v*) = 0. (16)
The effective interaction vertexes were evaluated at
the stable fixed points of the RG transformation in [2].

The dynamic critical exponent z characterizing crit-
ical slowing-down of relaxation is determined by sub-
stituting the effective charges at a fixed point into the
scaling function y,:

(17)

The table shows the stable fixed points of the RG
transformation and the values of the dynamic critical

Z=2+Y,.

Fixed points and values of the dynamic critical exponent for
three-dimensional systems

a v* z
15 0.015151 2.000072
16 0.015974 2.000180
17 0.020485 2.000777
18 0.023230 2.001529
19 0.042067 2.006628

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

Udf’q/(l + |q|a)2}

exponent for 1.5<a<1.9. When0<a< 15, theonly
fixed point is the unstable gaussian one, v* = 0.

A comparison of the present results with the value
z= 2.017 of the dynamic critical exponent for three-
dimensional systems with short-range interactions
obtained in [6] demonstrates the essential role played
by long-range interactions in critical dynamics of spin
systems. In particular, the system’s relaxation time
increases according to the scaling t ~ [T — T4, wherev
is the critical exponent characterizing the increase in
the correlation radius near a critical point. In three-
dimensional systems with long-range interaction [2],
both the critical dynamics and static behavior become
increasingly gaussian as the long-range interaction
parameter a decreases. When a < 1.8, thecritical behav-
ior isvirtualy gaussian.
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Abstract—Peculiarities of the superconducting state (s and d pairing) are considered in the model of the
pseudogap state induced by short-range order fluctuations of the dielectric (AFM (SDW) or CDW) type, which
is based on the model of the Fermi surface with “hot spots.” A microscopic derivation of the Ginzburg—L andau
expansion is given with allowance for al Feynman diagrams in perturbation theory in the electron interaction
with short-range order fluctuations responsible for strong scattering in the vicinity of hot spots. The supercon-
ducting transition temperature is determined as a function of the effective pseudogap width and the correlation
length of short-range order fluctuations. Similar dependences are derived for the main parameters of a super-
conductor in the vicinity of the superconducting transition temperature. It is shown, in particular, that the spe-
cific heat jump at the transition point is considerably suppressed upon a transition to the pseudogap region on
the phase diagram. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The pseudogap state observed in a wide region on
the phase diagram of HTSC cuprates|eads to numerous
anomaliesin the properties of these compounds both in
the normal and in the superconducting state [1, 2]. In
our opinion, the most feasible scenario for the forma-
tion of the pseudogap state in HTSC oxides is that [2]
based on the existence of strong scattering of charge
carriers under short-range order fluctuation of the
“dielectric” type (antiferromagnetic AFM (SDW) or of
the type of charge density waves (CDW)) in thisregion
of the phase diagram. In the momentum space, this
scattering occurs in the vicinity of the characteristic
vector Q = (17a, 17a) (a is the parameter of the 2D lat-
tice), corresponding to period doubling (the antiferro-
magnetism vector) and is apredecessor of the spectrum
rearrangement occurring during the establishment of
the long-range AFM (SDW) order. Accordingly, an
essentially non-Fermi-liquid rearrangement of the elec-
tron spectrum takes place in definite regions of the
momentum space in the vicinity of the so-called hot
spots at the Fermi surface [2]. In a number of recent
experiments[3-5], precisaly this scenario of pseudogap
formation was convincingly confirmed. In the frame-
work of the picture described above, it is possible to
construct a simplified model of the pseudogap state,
which describes the main features of this state [2] and
takes into account the contribution from al Feynman
diagrams in perturbation theory relative to scattering
from (Gaussian) short-range order fluctuations with a
characteristic scattering momentum from a neighbor-

hood of vector Q, which is determined by the corre-
sponding correlation length & [6, 7].

Most of the previous theoretical publications were
devoted to analysis of the models of the pseudogap
state in the normal phaseat T > T.. In our earlier publi-
cations [8-11], we considered superconductivity using
a simplified model of the pseudogap state, which is
based on the assumption of the existence of hot (plane)
regions at the Fermi surface. In the framework of this
model, we constructed the Ginzburg—Landau expan-
sion for various types of Cooper pairing [8, 10] and
studied peculiarities of the superconducting statein the
region of T < T, on the basis of analysis of the solutions
to the Gor’'kov equations [9-11]. It should be noted
above al that we considered an extremely simplified
model of Gaussian short-range order fluctuations with
aninfinitely large correlation length, for which an exact
solution can be obtained for the pseudogap state [8, 9].
A more redlistic case of finite correlation lengths was
analyzed both for model [10] (under the assumption of
self-averaging of the superconducting order parameter in
short-range order fluctuations) and for an extremely sim-
plified, exactly solvable model [11], in which therole of
non-self-averaging effects could be analyzed [9, 11].

The present study aims at analyzing the basic prop-
erties of the superconducting state (for various types of
pairing) arising against the background of a*“dielectric”
pseudogap in a more realistic model of hot spots at the
Fermi surface. We will confine our analysis to a very
close neighborhood of the superconducting transition
temperature T, based on the microscopic derivation of
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the Ginzburg-Landau expansion, assuming that the
superconducting order parameter is self-averaging,
thus generalizing the approach proposed for the model
of ahot region developed in [10].

2. HOT-SPOT MODEL
AND PAIRING INTERACTION

In the model of an “amost antiferromagnetic”
Fermi liquid, which is actively used for explaining the
microscopic mechanism of HTSC [12, 13], the effec-
tive interaction of electrons with spin fluctuations is
introduced. This interaction is described by the
dynamic susceptibility characterized by the correlation
length & of spin fluctuations (which must be determined
from experiment), the vector Q = (1/a, 1va) of antifer-
romagnetic ordering in the dielectric phase, and the
characteristic frequency wy of spin fluctuations. This
dynamic susceptibility and, hence, the effectiveinterac-
tion have peaksintheregion of g ~ Q. Accordingly, two
types of quasiparticles appear in the system: hot quasi-
particles whose momentaliein the vicinity of hot spots
at the Fermi surface (Fig. 1) and cold quasiparticles
whose momenta are in the vicinity of regions at the
Fermi surface, surrounding the diagonals of the Bril-
louin zone [6]. As a matter of fact, quasiparticles from
the neighborhoods of hot spots are strongly scattered
over avector on the order of Q due to their interaction
with spin fluctuations, while this interaction for parti-
cles with momenta far away from hot spots is quite
weak.

Considering the range of high temperatures 21T >
Wy, We can disregard the spin dynamics [6], confining
our analysis to the static approximation. Computations
can be considerably simplified and the contributions
from higher orders of perturbation theory can be ana-
lyzed if we pass to the model interaction of electrons
with spin (or charge) fluctuations of the form [7]

Vi (d)
W2 28t 287 (1)
£+ (a-Q)° 2+ (q,-Q)”

where Wis an effective parameter having thedimension
of energy. Here, asin [6, 7], Wand & are treated as phe-
nomenological parameters (which are determined from
experiment). Expression (1) is qualitatively similar to
the static limit of the interaction considered in [12, 13]
and quantitatively differsinsignificantly from thislimit
inthe most interesting region |q — Q| < &, which deter-
mines scattering in the vicinity of hot spots, if the
parameters appearing in this expression are appropri-
ately defined. In fact, we are talking about the replace-
ment of the actual interaction with dynamic short-range
order fluctuations by the electron scattering from the
static random (Gaussian) field of such fluctuations. The
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Fig. 1. Fermi surface with hot spots connected by a scatter-
ing momentum on the order of Q = (17a, 17a).

least justified assumption from the standpoint of phys-
ics is the one that concerns the static (and Gaussian)
nature of fluctuations, which can be used only for quite
high temperatures [6, 7]. At low temperatures (includ-
ing those corresponding to the superconducting phase),
the spin dynamics and the non-Gaussian nature of fluc-
tuations may also become significant for the micros-
copy of Cooper pairing inthe model of anearly antifer-
romagnetic Fermi liquid [12, 13]. However, in our
opinion, the static Gaussian approximation considered
here might be sufficient for analyzing the qualitative
effect of the pseudogap formation on superconductivity
(in particular, in the vicinity of the superconducting
transition temperature), which will be henceforth
described by using the simple approach of the BCSthe-
ory and the Ginzburg-L andau phenomenol ogy.

The spectrum of theinitial (free) quasiparticles will
be taken in the form [6]

&p, = —2t(cosp,a+ cosp,a)

()

—4t'cosp,acosp,a— U,

where t is the integral of transfer between the nearest
neighbors, t' is the same for the next to nearest neigh-
borsin asguare lattice, aisthelattice parameter, and u
is the chemical potential. This expression provides a
good approximation to the results of band calculations
for rea HTSC systems. For example, for
Y B&a,Cu;04, 5, We havet =0.25 eV and t' = -0.45t [6].
Chemical potential [ is determined by the carrier con-
centration.

In the limit of an infinitely large correlation length
(§ — ), the model of scattering from short-range
order fluctuations of the type considered here has an
exact solution [14]. For finite values of &, we can con-
struct an approximate solution [7] generalizing the 1D
approach proposed in [15]. In thiscase, it is possible to
sum (approximately) the entire diagrammatic series for
the one-particle electron Green function. As a result,
the following recurrent procedure arises for the one-
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£, pt+q

X(q) = e(p) e(p)

—&, -

Fig. 2. Diagrammatic representation for generalized sus-
ceptibility x(q) in a Cooper channel.

particle Green function G(g.p) (representation in the
form of achain fraction) [6, 7, 15]:
Gk(snp)
_ 1 NE)
€0 —&(P) + ikV K —WS(k +1)Gy1(€qp)’

here, k = &2, g, = 2rtT(n + 1/2) (for definiteness, we

assume that €, > 0),

[Xp+q for odd k,
p for evenk,

&(p) = 4
Ov«(p+ Q)| +|v,(p+ Q)| for odd k,
= Bu(p)] + vy(p)| for evenk,

where v(p) = 0¢,/0p is the velocity of a free quasi-
particle.

The “physical” Green function is defined from rela-
tion (3) as G(&,p) = Go(€np)-

The combinatorial factor is given by

()

s(k) = k (6)

in the case of commensurate functions with Q = (17a,
1va) [15], which will be considered below, if we disre-
gard their spin structure [6] (i.e., if we confine our anal-
ysis to fluctuations of the CDW type). If we take into
account the spin structure of the interaction in the
model of a nearly antiferromagnetic Fermi liquid (the
spin-fermion model [6]), the combinatorics of dia-
grams becomes more intricate. In particular, the spin
and charge two-particle vertices differ considerably in
thismodel. The spininteraction was described in [6] by
using the isotropic Heisenberg model. If we adopt the
Ising model for this interaction, we will be left only
with scattering processes with electron spin conserva-
tion, for which the commensurate combinatorics of dia-
grams (6) is valid both for the one-particle Green func-
tion and for spin and charge vertices. For this reason,
we will confine our analysis only to the case of com-
mensurate (6) “Ising” spin fluctuations (AFM, SDW)
and commensurate charge fluctuations (CDW). The
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details corresponding to incommensurate fluctuations
of the CDW type can befoundin[7, 14, 15].

The conditions for applicability of this approxima-
tion were discussed in detail in [6, 7]. In the limit
& — oo, relation (3) is reduced to the exact solution
[14], while in the limit § — O for a fixed value of W,
relation (3) gives aphysically correct limit of free elec-
trons.

Passing to superconductivity in the system with
developed short-range order fluctuations considered
here, we assume that the superconducting pairing is due
to the attractive potential acting between electronswith
opposite spins of the simplest (BCS) form,

Vee(P, ) = —Ve(p)e(p), (7)
where for e(p) we assume that

(Il (s pairing),

Dcos( p.@) —cos(pya) (d._ /2 pairing),
e(p) = Dsn(pxa)sn(pya) (dyy pairing), (8)

[cos(pxa) + cos(p,a)

O . . .

[(anisotropic s pairing).

As usual, the attraction constant V is assumed to be
nonzero in acertain layer of width 2w, in the vicinity of
the Fermi level (w is the characteristic frequency of
guanta, which ensures attraction between el ectrons). In
the general case, the superconducting gap is anisotropic
and has the form A(p) = Ae(p).

The subsequent analysis will be carried out under
the assumption of self-averaging of the energy gap of
the superconductor over short-range order fluctuations,
which allows usto use the standard approach of the the-
ory of disordered superconductors [16, 17]. Under the
conditions when the short-range order correlation
length is & < &,, where &, ~ vi/4, is the coherence
length of the BCS theory (i.e., when fluctuations corre-
late over distances smaller than the characteristic size
of Cooper pairs), the assumption concerning self-aver-
aging of A must be preserved, being violated only in the
region & > &o [9-11].

3. COOPER INSTABILITY.
RECURRENCE PROCEDURE
FOR THE VERTEX PART

It iswell known that the superconducting transition
temperature can be determined from the equation for
Cooper instability of the normal phase,

1-Vx(0; T) = 0, 9

1 The absence of self-averaging of the superconducting gap even in
theregion § < &g, which was obtained in our previous publication
[11], is apparently due to the specific nature of the short-range
order model used in that work.
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where the generalized Cooper susceptibility is defined
in Fig. 2 and is given by

X(a; T)

=-TS > e(p)e(p) Py, p(en £, Q);

€ PP

(10)

here, @, (€, — €, Q) is atwo-particle Green function
in the Cooper channel, which takes into account the
scattering from short-range order fluctuations.

We will first consider the case of charge fluctuations
(CDW), where the interaction is independent of spin
variables. For the sand d,, pairing, the superconducting
gap remains unchanged upon a transfer over Q (i.e.,
e(p + Q) = e(p)) and e(p") = e(p). In the case of aniso-
tropic s and dxz_yz pairing, the superconducting gap

reverses its sign upon a transfer over Q (e(p + Q) =
—€(p)); consequently, &(p’) = (p) for p'= p and &(p’) =
—g(p) for p' = p + Q. Thus, for diagrams containing an
even number of interaction lines connecting the upper
(g,) and lower (—,,) electronlines, wehavep' = p; Thus,
we arrive at the same expression for the contribution to
susceptibility asin the case of the s and d,, pairing. On
the other hand, for diagrams with an odd number of
such interaction lines, we obtain an expression with the
opposite sign for the contribution to susceptibility. This
sign reversal can be attributed simply to the sign rever-
sal for the interaction connecting the upper and lower
electron lines of the loop in Fig. 2. In this case, we
obtain for the generalized susceptibility the expression

X(@T) = =Ty 5 G(e,p + ) G(~n —P)€(p) 1

& b )
X ri(8n1 —€n Q),

where (g, —€,,, q) isthe triangular vertex part taking
into account the interaction with short-range order fluc-
tuations, the superscript “+” allowing for the above-
mentioned difference in the signs of interactions con-
necting the upper and lower electron lines.

Let us now consider the scattering from spin fluctu-
ations (AFM (SDW)). In this case, the line of interac-
tion with the longitudina spin component &, which
embraces the vertex and changes the direction of the
spin, should be supplemented with an additional factor
of (1) [6]. From this point of view, in the case of inter-
action with spin fluctuations, the types of pairing con-
sidered above “change pla(:as”2 and the generalized
Cooper susceptibility is determined by triangular ver-
tex '~ for sand d,, pairing and by triangular vertex '
for anisotropic sand dXz_yz pairing.

2This is due to the fact that the sign of the spin projection is
reversed at the vertex of the interaction with the superconducting
gap (we consider only the singlet pairing).
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M

Fig. 3. Recurrence equations for the vertex part.

Thus, we must calculate the triangular vertices tak-
ing into account all diagrams (including cross dia
grams) describing the interaction with dielectric fluctu-
ations. The corresponding recurrence procedure for a
1D analog of our problem (and for real-valued frequen-
cies, T=0) wasformulated for thefirst timein [18]. For
the 2D model of the pseudogap with hot spots at the
Fermi surface considered here, a generdization of this
recurrence procedure is given in [19] in connection
with optical conductivity calculations. The details of
the corresponding derivation can also be found in [19].
A generdization to the case of Matsubara frequencies
required for our problem can be carried out directly. For
definiteness, we will henceforth assume, as before, that
€,> 0. Ultimately, for atriangular vertex, we obtain the
recurrence relation represented by the graphsin Fig. 3
(where the wavy line indicates the interaction with
pseudogap fluctuations) and having the following ana-
lytic form:

M 1(€n €0, q) = 12 Ws(k)G, G

O 2ikv K 0
* Ol +— -t — (12
O 2ig,—v, [g—-Ws(k+1)(Gy,;—GCk+1)O

x ri(snf —<€n Q),

here, G, = G(&.p + q) and Gy = G,(—¢,,, ) are calcu-
lated in accordance with expression (3), v, isdefined by
formula (5), and v, have the form

_ v(p +Q) for odd k,

- Ey(p) for even k. (13)

k

A “physical” vertex is defined as (g, —€, Q) =
5 (€ —€n 0.
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Fig. 4. Dependence of the superconducting transition tem-
perature TJ/ T on effective pseudogap width W/ T for the

stype pairing and scattering from charge (CDW) fluctua-
tions (curves sl and s2) and for the dX2 2 -type pairing and
scattering from spin (AFM (SDW)) fluctuations (curves d1
and d2). The data are given for the following values of

reciprocal correlation length: ka = 0.2 (sl and d1) and ka =
0.5 (s2 and d2).

To determine T., we must consider the vertex for
q=0. Inthiscase, Gy = G} and vertices ', and I,
become real-valued, which considerably simplifies pro-

cedures (12) For ImG, and ReG,, we have the system
of recurrence equations

€+ kv K —W2s(k + 1)ImG,, ,

ImG, = D,
(14
+ +
ReG, = &k(p) W S(Dk 1)ReGk+l
k

where Dy = (§(p) + W2s(k + 1)ReGy., 1)* + (€, + kvyk —
W2?s(k + 1)ImG, , ,)? and the vertex part for g = 0 can be
determined from the equation

ImG,

M1 = 1FW’s(K)
N £,—W’s(k + 1)ImG,, ,

(15)

-
T_I+

Passing to numerical calculations, itisconvenient to
set the characteristic scale of energies (temperatures),
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which characterizes the superconducting state in our
mode! in the absence of pseudogap fluctuations (W= 0).
In this case, the equation for the corresponding super-
conducting transition temperature T, has the standard
form for the BCS theory (in the general case of aniso-
tropic pairing) and can be written as

Zjd J’dpy

nOo

_ 2VT

(16)

where m = [w /21T is the dimensionless cutoff
parameter for the sum over Matsubara frequencies. All
calculations were made for atypical quasiparticle spec-
trum (2) in HTSC with u=-1.3t and t'/t = —0.4. Choos-
ing (quite arbitrarily) w, = 0.4t and T, = 0.01t, we can
easily select the value of pairing parameter V in rela-
tion (16), which gives the same value of T, for various
types of pairing enumerated in (8). In particular, we
obtain V/ta? = 1 for the conventional isotropic s-type
pairing and V/ta? = 0.55 for the dxz_yz -type pairing. For

the remaining typesof pairing fromrelation (8), theval-
ues of the pairing constant for such a choice of param-
eters are found to be unrealistically high and we do not
give the results of the corresponding calculations.?

Figures 4 and 5 show typical results of numerical
calculations of the superconducting transition tempera-
ture T, for a system with a pseudogap, which were
obtained directly from relation (9) using the recurrence
equations described above. It can be seen that
pseudogap (dielectric) fluctuations considerably reduce
the superconducting transition temperature in all cases.
The dxz_yz pairing is suppressed much more rapidly
than the isotropic s pairing. At the same time, a
decrease in correlation length & (an increase in param-
eter K) of pseudogap fluctuations facilitates an increase
in T.. These results are quite analogous to those
obtained earlier in the model of hot regions [8, 10].
However, considerable differences also arise. It can be
seen from Fig. 4 that the curve describing the depen-
dence of T, on pseudogap width W has a characteristic
plateau in theregion of W< 10T, for spairing and scat-
tering from charge (CDW) fluctuations as well as for
d._ /2 palrlng and scattering from spin (AFM (SDW))
fl uctuatl ons’ (i.e., in the cases when the upper signin

formulas (12) and (15) “operates’, leading to sign-con-
stant recurrence procedure for avertex), whileaconsid-

3 Of course, such adescription on the basis of equationsin the BCS
theory with weak binding does not claim to be redistic in the

cases of s and dxz_yz pairing considered here as well. We must

just preset the characteristic scale of Ty to express all tempera-

tures in subsequent calculations in units of this temperature,
assuming that a certain universality relative to this scale existsin
the problem considered here.

4The latter case is redlized, in all probability, in actual HTSC
materials based on copper oxides.
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erable suppression of T, takes place on a scale of W ~
50T, Qualitative differences appear in the case of s
pairing and scattering from spin (AFM (SDW)) fluctu-
ations and in the case of dxz_yz pairing and scattering

from chargefluctuations. Figure 5 showsthat, in thelat-
ter case (when the lower sign in formulas (12) and (15)
operates, i.e., an aternating procedure arises for a ver-
tex), the rate of suppression of T, isan order of magni-

tude higher. In the case of dxz_yz pairing, in the range

of WIT,, values corresponding to almost complete sup-
pression of superconductivity, the accuracy of our cal-
culations becomes considerably worse in view of the
alternating nature of the recurrence procedure for the
vertex part. In particular, atypical ambiguity of T. may
appear, which corresponds to possible existence of a
narrow region of “recurrent” superconductivity on the
phase diagram.® Such a behavior of T, dlightly resem-

bles similar peculiarities emerging in superconductors
with Kondo impurities [20]. Our calculations show,
however, that the most probable scenario is the emer-
gence of the critical value of parameter WIT,,, for
which superconductivity is completely suppressed. In
this case, a region may appear, in which the transition
to the superconducting state becomes a first-order
phase transition analogously to the known situation in
superconductors with a strong paramagnetic effect in
an external magnetic field [21]. In any case, the effects
arising in this case deserve a separate analysis. All
results considered below correspond to the region of
unambiguous behavior of T..

4. GINZBURG-LANDAU EXPANSION

In our earlier publication [8], the Ginzburg—L andau
expansion was constructed in the exactly solvable
model of a pseudogap with an infinitely large correla-
tion length for short-range order fluctuations. Subse-
quently [10], these results were extended to the case of
finite correlation lengths. In these publications, we con-
sidered, in fact, only charge fluctuations and used a
simple model of the pseudogap state, which was based
on the concept of hot (plane) regions existing at the
Fermi surface. In this model, the sign of the supercon-
ducting gap remained unchanged upon a transfer over
vector Q both for s and d pairing [10]. Here, we carry
out the generalization to a more realistic case of the
model of hot spots at the Fermi surface.

The Ginzburg—L andau expansion for the difference
in the free energies of the superconducting and normal
states can be written in the standard form

FamFo = Al +a°CIA*+ 2845 (D)

where A, is the amplitude of the Fourier component of

SSucha peculiar behavior of T is manifested more strongly in the
case of scattering from incommensurate pseudogap fluctuations.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

753

T(./ T(AO

1.0

0.8

0.6

0.4

0.2 -
dr o
1 1 1 :I 1
0 2 4 6 8 10 12
W/TCO

Fig. 5. Dependence of the superconducting transition tem-
perature TJ/ T on effective pseudogap width W/ T for the

s-type pairing and scattering from spin (AFM (SDW)) fluc-
tuations (curves sl and s2) and for the dX2 2 -type pairing
and scattering from charge (CDW) fluctuations (curves d1
and d2). The data are given for the following values of

reciprocal correlation length: ka = 0.2 (sl and d1) and ka =
1.0 (s2 and d2).

the order parameter, which can be written for various
types of pairing in the form A(p, q) = A.e(p). Expan-
sion (17) isdetermined by the graphs of theloop expan-
sion for free energy in the field of order parameter fluc-
tuations (shown by dashed lines) with a small wave
vector g [8], which are represented in Fig. 6.

It is convenient to write the Ginzburg—L andau coef-
ficientsin the form

A= AK, C=CyKe B=BKg,  (18)
where A, C,, and B, stand for the expressions for these
coefficients in the absence of pseudogap fluctuations

(W= 0), which are derived in the Appendix for an arbi-
trary spectrum &, and various types of pairing,

T-T
Ao = No(0)—=

7¢(3)

Co = M@ Mot 19
B, = No(0)7f[§3)2 ' (p)d
Vol. 98 No. 4 2004
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Fig. 6. Graphical form of the Ginzburg—L andau expansion.

angle brackets denote conventional averaging over the
Fermi surface,

1
0.0= m%es(zp)...,

and Ny(0) isthe density of statesfor free electrons at the
Fermi surface.

All peculiarities of the model in question, which are
associated with the emergence of a pseudogap, are con-
tained in dimensionless coefficients K, K¢, and Kg. In
the absence of pseudogap fluctuations, all these coeffi-
cients are equal to unity.

It can be seen from Fig. 6a that coefficients K, and
K¢ are completely determined by the generalized Coo-
per susceptibility [8, 10] x(q; T) depicted in Fig. 2:

_ x(0; T) —x(0; To)

Ka ~ (20)
q-0 qCo

It was shown above that the generalized susceptibility
can be found from relation (11), where the triangular
vertices are determined by recurrence procedures (12);
this allows us to directly calculate coefficients K, and

Kc numerically.
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The situation with coefficient B is more complicated
in the general case. Calculations can be significantly
simplified if we confine our analysis, as usual, to the
case of g = 0in the order of |A,|* and define coefficient
B by the diagram show in Fig. 6b.Then we obtain the
following expression for coefficient Kg:

T 4 2
KB - g()szn %e (p)(G(snp)G(_sn- _p)) (22)

X (M*(€n €0, 0))".

It should be noted from the very outset that this expres-
sion leads to a positive definite coefficient B. This fol-
lows from the fact that G(—,, p) = G*(g,p) so that
G(g,p)G(-€,,, —P) is rea-vaued; accordingly, vertex
part '+ (g, —€,, 0) defined by recurrence procedure (15)
isalsorea.

5. PHYSICAL CHARACTERISTICS
OF SUPERCONDUCTORS WITH A PSEUDOGAP

It is well known that the Ginzburg—Landau equa-
tions define two characteristic lengths of superconduc-
tor, viz., the coherence length and the magnetic field
penetration depth.

For a given temperature, coherence length &(T)
gives the characteristic scae of inhomogeneities of
order parameter A:

2y = _C
(1) = 4. (23)
In the absence of a pseudogap, we can write
C
Zacs(T) = —1- (24)
0
In our model, we have
&M - Ke 25)

E.ZBCS(T) Ka

For the magnetic field penetration depth, we have
¢ B
32me’ AC

AN(T) = — (26)

Analogousdly to relation (25), in the given model, we
can write

1/2
AT _nKep
)\BCS(T) D<AKé] .

In the vicinity of T, the upper critical field H, is

(27)
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Fig. 7. Dependence of the sguared coherence length

2 EZBCS on effective pseudogap width W/ T for the s-type

pairing and scattering from charge (CDW) fluctuations
(solid curve) and for the dx2 2 -type pairing and scattering

from spin (AFM (SDW)) fluctuations (dotted curve). The
dataare given for the reciprocal correlation lengthka=0.2.

defined in terms of the Ginzburg-Landau coefficients as
- _ % _ %A

oné(T)  2nC
where @, = crv|e| is the magnetic flux quantum. Then

the slope of the curve describing the upper critical field
near T is given by

(28)

Heo

2
‘dch 16T e (P)I - Ka (29)

aT . 72(3) Ov(p)2€(p)D K

The specific heat discontinuity at the transition point
has the form

_Tg AT
(Cs_Cn)Tc - EDI-TTCD )
where C, and C,, are the specific heats of the supercon-

ducting and normal states, respectively. At temperature
T, (in the absence of a pseudogap, W = 0), we have

(30)

81T, &°(p)f
7¢(3) &' (p)0
Then therel ative specific heat discontinuity in the given

(Cs_Cn)Tco = N(O) (31)
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Fig. 8. Dependence of the penetration depth A/Agcg on
effective pseudogap width W/T for the s-type pairing and
scattering from charge (CDW) fluctuations (solid curve)
and for the dxz_yz -type pairing and scattering from spin
(AFM (SDW)) fluctuations (dotted curve). The data are
given for the reciprocal correlation length ka = 0.2.

model can be written as

_ (Cs_Cn)Tc _ IE_K.Z
(Cs_Cn)Tco TCOKB.

Cosfficients K,, Kg, and K. were calculated numeri-
cally for the sametypical parameters of the model asin
the calculations of T, described above. The numerical
values of these coefficients as such are not very interest-
ing and are not given here.® Figures 7-12 show the
WIT,, dependences of the corresponding physical quan-
tities, defined by relations (23)—(32). In accordance
with the situation with T, described above, two qualita-
tively different modes of the behavior are also observed
in this case depending on whether the behavior of the
vertex part in the recurrence equations is sign-constant
or alternating (the upper and lower signsin relation (12)
and spin or charge fluctuations). The results of calcula-
tions of physical quantitiesfor the first case (the s-type
pairing and scattering from charge (CDW) fluctuations
as well as the dxz_yz -type pairing and scattering from

spin (AFM (SDW)) fluctuations) are shown in Figs. 7—

AC (32)

6 The typical dependences of these coefficients on parameter W/T

are functions rapidly decreasing from unity in the superconduc-
tivity range.
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|dH o/dT |
2.0

0.5 1 1 1
0 20 40 60
W/TCO

Fig. 9. Dependence of the derivative (slope) of the upper
critical field on effective pseudogap width W/T for the
stype pairing and scattering from charge (CDW) fluctua-
tions (curves sl and s2) and for the dX2 Y -type pairing and
scattering from spin (AFM (SDW)) fluctuations (curves d1
and d2). The data are given for the values of reciprocal cor-
relation length ka = 0.2 (sl and d1) and ka = 0.5 (s2 and

d2) and are normalized to the value of the derivative in the
absence of a pseudogap.

AC
1.0

0.8

0.6

0.4

0.2

0 20 40 60
W/ TCO
Fig. 10. Dependence of the specific heat discontinuity at the
transition point on effective pseudogap width W/ T for the
stype pairing and scattering from charge (CDW) fluctua-
tions (curves sl and s2) and for the dX2 Y -type pairing and
scattering from spin (AFM (SDW)) fluctuations (curves d1

and d2). The data are given for the values of reciprocal cor-
relation lengthka=0.2 (sl and d1) and ka= 0.5 (s2 and d2).

KUCHINSKII et al.

10. It can be seen that, with increasing pseudogap width
W, coherence length &(T) decreases, while penetration
depth A(T) increases as compared to the corresponding
values in the BCS theory. Both these characteristic
lengths exhibit a very weak dependence on parameter
K; for this reason, the resultsin Figs. 7 and 8 are given
only for ka = 0.2. The dope (derivative) of the upper
critical field at T = T, first increases and then beginsto
decrease. The most typical is the decrease in the spe-
cific heat discontinuity as compared to the BCS value
(see Fig. 10), which isin direct qualitative agreement
with experimental data[22]. It should be noted that the
specific heat discontinuity in our model also hasachar-
acteristic plateau in the region of W/T, < 10, which is
similar to that noted above in the corresponding depen-
denceof T..

Thebehavior of physical quantitiesin the case of the
s-type pairing and scattering from spin (AFM (SDW))
fluctuations and the dxz_yz -type pairing and scattering

from charge (CDW) fluctuations is illustrated in
Figs. 11 and 12. Data on the characteristic lengths are
not shown since both coherence length &(T) and pene-
tration depth A(T) are virtually the same as the corre-
sponding values in the BCS theory everywhere in the
superconductivity range (except a small neighborhood
of theregion of ambiguity and vanishing of T, inwhich

ldH .,/dT |

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10
W/TL'O
Fig. 11. Dependence of the derivative (slope) of the upper
critical field on effective pseudogap width W/Ty for the
s-type pairing and scattering from spin (AFM (SDW)) fluc-
tuations (curves sl and s2) and for the dx2 2 -type pairing

and scattering from charge (CDW) fluctuations (curves d1
and d2). The data are given for the values of reciprocal cor-
relation lengthka=0.2 (sl and d1) and ka= 1.0 (2 and d2)
and normalized to the value of the derivative in the absence
of a pseudogap.
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AC

WIT

Fig. 12. Dependence of specific heat discontinuity at the
transition point on the effective pseudogap width W/ T, for
s-type pairing and scattering from spin (AFM (CDW)) fluc-
tuations (curves sl and s2) and for dx2 ¥ -type pairing and
scattering from charge (CDW) fluctuations (curves d1 and

d2). The data are given for the values of reciprocal correla
tion length ka = 0.2 (sl and d1) and ka = 1.0 (s2 and d2).

these lengths sharply increase). As regards the deriva
tive of the upper critical field and the specific heat dis-
continuity at the superconducting transition point, the
values of these quantities decrease quite rapidly with
increasing parameter WiT,, apparently up to its critical
value at which T, is completely suppressed (or to the
value at which a narrow region of the first-order transi-
tion is formed).

6. CONCLUSIONS

We have considered the peculiarities of the super-
conducting state emerging in the pseudogap state dueto
scattering of electrons from dielectric short-range order
fluctuations in the model of hot spots at the Fermi sur-
face. Our analysis was based on the microscopic deri-
vation of the Ginzburg—Landau expansion taking into
account all orders of perturbation theory in scattering
from pseudogap fluctuations. The condensed phase of
such a superconductor can be described on the basis of
the corresponding analysis of the Gor’ kov equationsfor
asuperconductor with a pseudogap (see[10]) and isthe
subject of specia analysis.

Themain result of this study is the demonstration of
superconductivity suppression by pseudogap fluctua-
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tions of the CDW or AFM (SDW) type and the separa-
tion of two classes of qualitatively different models of
such suppression depending on the sign-constant or
alternating behavior of the vertex part in the recurrence
equations (the upper or lower signs in expression (12)
and spin or charge fluctuations). The version with scat-
tering from spin fluctuations and pairing with the

d._ ¥ -type symmetry is observed in high-T, supercon-

ductors based on copper oxides; however, we are not
aware of systems in which the peculiar behavior
obtained above for the s-type pairing and scattering
from spin (AFM (SDW)) fluctuations as well as for

dxz_yz -type pairing and scattering from charge (CDW)

fluctuations is realized. The search for such systemsis
of considerable interest.

The most important question in the description of
the pseudogap state of actua HTSC systems is the
behavior of physical parameters upon a change in the
carrier concentration. In our model, the concentration
dependence must be expressed in terms of the corre-
sponding dependence of effective width W of the
pseudogap and correlation length &. Unfortunately, such
dependences can be determined from experiment anly
indirectly and have been studied insufficiently [1, 2] ’1n
avery rough approximation, we can state that correla-
tion length & in a wide concentration range does not
vary very strongly, while pseudogap width W linearly
decreases with increasing charge carrier concentration
from values on the order of 10° K in the vicinity of the
dielectric phase region to values on the order of the
superconducting transition temperature as we approach
the optimal doping level, vanishing at slightly higher
carrier concentrations (see Fig. 6inreview [2], whichis
based on Fig. 4 in [3], where the corresponding set of
datais given for theY BCO system). Using thisregular-
ity, one can easily recalculate the above dependences
on W to the corresponding dependences on the charge
carrier concentration. Inthe extremely simplified version
of our model with an infinitely large correlation length
and the Fermi surface with complete nesting, such an
analysis was carried out in a recent publication [23]
under the assumption that the value of Ty isaso alin-
ear function of the concentration. The typical form of
the phase diagram for HTSC cuprates was completely
reproduced qualitatively. At the same time, the obvious
roughness of the model and the absence of reliable
experimental data on the concentration dependences of
W, &, and T, do not make it possible to treat the
attempts at “improving” these qualitative conclusions
very seriously.

In addition to the repeatedly mentioned disregard of
the dynamics of short-range order fluctuations and the
confinement to Gaussian fluctuations aone, it should
be noted once again that the disadvantages of the model

71n additi on, an analogous dependence of the value of T, which
is completely unknown, may turn out to be significant.

No. 4 2004



758

considered here also include the simplified analysis of
the spin structure of interactions, which presumes that
these interactions are of the Ising type. It would be
interesting to also carry out a similar analysis for the
general case of an interaction of the Heisenberg type.
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APPENDIX

Ginzburg-Landau Coefficients for Anisotropic Pairing
in the Absence of a Pseudogap

In the absence of fluctuations (W = 0), the general-
ized Cooper susceptibility, which is defined by the dia-
gramin Fig. 2, assumes the form

Xo(a; T)
_ 2 1 1
- _nge (p)isn_zp+q_i€n_ap.

For the susceptibility at g = 0, which determines coef-
ficient Ay, we obtain the expression

(A1)

Xo(0; T) = —Tzze (p)

+Ep

za(a £,)€'(p)

= —TZIdE
(A.2)
1 3,8(8,)€(p)

=-N (O)TZJ'dE £ No(0)

= Xaes(0; T) E(p)T]

where the angle brackets denote averaging over the
Fermi surface and the standard susceptibility Xgc<(0; T)
in the BCS model for isotropic s pairing is introduced.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

KUCHINSKII et al.

As aresult, coefficient Ay assumes the form
Ao = Xo(0; T) =Xo(0; Te) = AgcslE'(P)T (A3)
where

Xecs(0; T) —Xees(0; Te)
T-T,

C

ABCS

= No(0) (A9

is the standard expression for coefficient A in the case
of isotropic s pairing.

Coefficient C, of the Ginzburg—L andau expansionis
defined by generalized susceptibility (A.1) for small
values of q:

XO(q’ Tc) _XO(O; Tc)

2

Co = lim
0 qlﬁo q

Expanding expression (A.1) for X(q; Ty) into aseriesin
small g, we obtain

Xo(Q; Tc) = xo(O: Te)

+T, 224( 25

so that we have for coefficient C, the expression

(A.5)

.0
S’ (A5

o 382—22
Co=T.S (dE—o—~
’ ZI aer ey

x z 5(&~&,)e*(P)Iv(p)|“cos’p

[

R

xS 8(&,)e (P)Iv(p)|cos’e
p

3¢? —E
4(e2+87)°

(A7)

= Ng(0) 7ZTE23)2

where @ is the angle between vectors v(p) and q and

& (p)Iv(p)I®cos’q]

00

1
(3) = = =1.202.
2
For a square lattice, the Fermi surface and, hence,
[v(p)| also possess a symmetry relative to rotation
through angle 172; the same symmetry is also inherent
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in €(p) for the types of pairing considered here. Conse-
guently, we can easily find that

& (p)Iv(p)I*cos’q]

= ()P (L + cos2)]  (A8)

= 20€(p) v(p)| ]

since quantity cos2 reverses its sign when vector p
rotates through angle 12. Indeed, the direction of
velocity v(p) upon this rotation changes to the perpen-
dicular direction; accordingly, cos2¢@ —» —c0s2¢. As
a result, we obtain the isotropic expression for coeffi-
cient C,,

No(0) ng’)z

in the case of isotropic s pairing and a spherical Fermi
surface, this expression acquires the standard form

7¢(3) VF
2T

In the absence of pseudogap fluctuations (W = 0)
and for g = O, coefficient B defined by the diagram in
Fig. 6b hasthe form

= Tcsz%

Ov(p)®e’(p) (A.9)

Coes = No(O) == (A.10)

&) (p)
&p)

00

- 1 4
= TCZJ’dE—-—E-Z-)-z%NE—Ep)e (p)

=) (et
" (A.11)
_ 1 23(&)e'(p)
No(0)T, sz_[odﬁ( o ) N, (0)
= Bacs®'(p)]
where
7¢(3
Becs = No(0) ig )2 (A.12)

is the standard expression for coefficient B in the case
of isotropic s pairing.
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Abstract—The short-range order and electron structure of amorphous silicon nitride SiN, (x < 4/3) have been
studied by a combination of methods including high-resolution X-ray photoel ectron spectroscopy. Neither ran-
dom bonding nor random mixture models can adequately describe the structure of this compound. An interme-
diate model is proposed, which assumes giant potential fluctuationsfor electrons and holes, caused by inhomo-
geneitiesin thelocal chemical composition. The characteristic scale of these fluctuations for both electrons and
holesis about 1.5 €V. The photoluminescence in SiN, is interpreted in terms of the optical transitions between
guantum states of amorphous silicon clusters. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Amorphous silicon nitrides SiN,, together with sili-
con dioxide SiO,, arethe main dielectrics used in mod-
ern silicon-based electronic devices. Silicon nitride
exhibits a unique memory effect, being capable of
localizing and capturing injected electrons and holes
with a giant time of localized carrier trapping (about
10years at 300 K) [1]. In recent years, the memory
effect in silicon nitride has been used for developing
electrically rewriteable ROM devices of Giga- and Ter-
abit capacity [2].

There are two alternative models describing the
structure of amorphous layers of nonstoichiometric tet-
rahedral silicon compounds (SIO,, SIO;N,, SiN,): the
random mixture (RM) model and the random bonding
(RB) model [3-17]. The RM model assumes that SIN,
comprises a mixture of two phases, amorphous silicon
(aSi) and silicon nitride (SisN,), and is composed of
SiSi, and SiN, tetrahedra [8, 10]. According to the RB
model, the structure of SIN, represents a network com-
posed of SN, Si, _,, tetrahedraof fivetypeswithv =0-4
[3, 4, 11, 12]. Since amorphous SiN, is synthesized
under thermodynamically noneguilibrium conditions,
the product structure depends on the method of synthe-
sis. In particular, it was established that the structure of
SiN, obtained by plasmadeposition is described by the
RM model [8]. Silicon-based devices also widely
employ SIN, synthesized by high-temperature pyroly-
sis of silicon- and nitrogen-containing gas mixtures.
The silicon-containing component is typically silane
SiH,, silicon tetrachloride SiCl,, or dichlorosilane

SiH,Cl,; the nitrogen-containing gas is ammonium
NH;. The process is carried out at a temperature of
700-800°C. The structure (short-range order) of SiN,
obtained by pyrolysis till remains unstudied.

Although the memory effect in SIN, has been stud-
ied for more than a quarter of century, the nature of
traps responsible for the localization of electrons and
holes is still unknown [1, 3]. It was suggested [1] that
the role of traps for electrons and holesin SiN, can be
played by silicon clusters. Recently, Park et al. [17]
observed photoluminescence (PL) from quantum dots
in plasma deposited SiN,. Therefore, we may suggest
that amorphous silicon quantum dots can exist in pyro-
Iytic SiN, aswell and can be detected by PL measure-
ments.

This paper reports on the results of investigations
into the short-range order, el ectron structure, and PL in
amorphous SiN, synthesized by pyrolysis. Based onthe
structural data, we propose a model assuming large-
scale potential fluctuations caused by inhomogeneities
of the local chemical composition of SiN,. The PL
observed in SIN, (x= 4/3) isinterpreted in terms of the
optical transitions between quantum states of amor-
phous silicon clusters.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUES

The experimentswere performed with SiN, samples
synthesized in a low-pressure reactor by chemical
vapor deposition (CVD) at 760°C from a SiH,Cl,—NH;,
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gas mixture. The samples of SiN, with various compo-
sitions were obtained by changing the ratio of SiH,Cl,
and NH; in the gas phase. The SiN, layers were depos-
ited onto p-Si(100) substrates with a resistivity of p =
10 Q cm. The luminescence was studied in the samples
of SiN, with x= 4/3 synthesized by decomposition of a
SiH,~NH;H, mixture at 890°C.

High-resolution X-ray photoelectron spectroscopy
(XPS) measurements were performed in a Kratos
AXIS-HS system using a source of monochromated
AlK, X-ray radiation with v = 1486.6 €V. The natural
oxide film from the samples was removed by 2-min
etching in an HF—methanol mixture (1 : 30), followed
by rinsing in methanol. Prior to X PS measurements, the
samples were washed in cyclohexane and blown with
flow of dry nitrogen. The binding energies were mea-
sured relative to the 1s peak of carbon in cyclohexane
with a binding energy of 285.0 eV. In cases of signifi-
cant positive charging of asample, the charge was com-
pensated using a beam of low-energy electrons. All the
XPS measurements (except for the angle-resolved
ones) were performed for the sample surface oriented
perpendicularly to the electron energy analyzer axis
(zero polar angle).

In order to check that the XPS spectra reflect the
bulk properties of SIN,, we performed angle-resolved
measurements on a Phi Quantum 2000 spectrometer.
Figure 1 shows the XPS spectra of Si 2p levels in
SiNgs; measured for the photoelectron take-off angles
of 20°, 45°, and 90°. Weak angular dependence of the
signal shape shows evidence that the bulk of a sample
is probed, so that the X PS data obtained reflect the bulk
properties of SIN,.

In studying SiN, layerswith different compositions
(i.e., with variable x), we used a nearly stoichiometric
silicon nitride (Si3N,) as a reference sample for deter-
mining the relative sensitivity factors with respect to Si
2p and N 1s photoelectron lines. The reference sample
synthesized at 800°C from a SiCl,—NH; mixture with a
1: 10ratio of components had arefractiveindex of 1.96
and exhibited a characteristic IR absorption band at
3300 cm™ due to the stretching vibrations of Si,N-H
bonds. The calculated concentration of N—H bonds in
this material was 2.1 x 10?* cm=. Thus, it was estab-
lished that the reference sample had a composition of
Si N1.41H0.05'

The Raman spectra were measured on a Renishaw
Ramanscope spectrometer using He-Ne laser radiation
(A =6328 A). The IR absorption spectrawere recorded
on a Nicolet 550 spectrometer with a resolution of
4cm,

The PL measurements for SIN, (X = 4/3) samples
were performed at room temperature. The emission
spectra were normalized with respect to the sensitivity
of the detection system. The sample film thicknesses

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

761

Intensity

! ! ! b
104 102 100 98
Binding energy, eV

1
106

Fig. 1. The XPS spectraof Si 2p levelsin SiNg 5; measured

for a photoelectron take-off angle of 20° (points) and 45°
and 90° (solid curves).

determined using alaser ellipsometer was about 800 A.
The PL excitation spectra were measured using a deu-
terium lamp of the DDS-400 type.

3. SHORT-RANGE ORDER
IN SIN, BY XPS DATA

Figure 2 shows the experimental XPS spectra
(depicted by symbols) of Si 2p levelsin SIN, samples
of various compositions. All these curves exhibit either
two peaks or one peak with a shoulder and are analo-
gous to the spectra reported previously [7, 9, 13].
Applicability of the RB and RM models to description
of the structure of SiN, with variable composition was
checked by comparing the experimentally measured Si
2p spectrato the results of calculations based on these
models.

Dashed curves in Fig. 2 show the XPS spectra cal-
culated in terms of the RB model. This model assumes
that the structure consists of SIN,Si,_, tetrahedra of
five types corresponding to v = 0—4. The probability of
finding the tetrahedron with a given v obeys a binomial
distribution [6, 8]

x4l

we) = RS Ty O

ta0

Theideaof using five types of tetrahedrafor model-
ing the XPS spectrum of Si 2p levels is based on the
assumption that only nearest-neighbor silicon and/or
nitrogen atoms contribute to the chemical shift of the S
2p electron state. Equation (1) also assumes the
absence of point defects such as =N-N= bonds, dan-
gling bonds (=Sie and =Ne), and hydrogen bonds
(Si-H, N-H) in SIN,, (here, symbols“—" and “*" denote
acovalent bond and an unpaired el ectron, respectively).
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Fig. 2. The XPS spectraof Si 2p levelsin SiN, samples of
various compositions: symbols represent the experimental
spectra; the results of theoretical calculations are depicted
by solid (RM model) and dashed (RB model) curves.
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Fig. 3. The XPS spectra (points) of Si 2p levelsin SiNg 51

measured (a) before and (b) after irradiation with 4-keV Ar*
ions. Solid curves show the results of calculations using the
RB model.

GRITSENKO et al.

The results of electron paramagnetic resonance (EPR)
measurements showed that the concentration of dan-
gling bonds=Si« and =N« in our samplesdid not exceed
10%° cm3,

Theoretica convolutions of the Si 2p spectra were
obtained using the XPSPEAK 4.1 program package[14].
The theoretical spectra were calculated assuming the
peaks corresponding to different SIN,Si,_, tetrahedra
to be equidistant (equally spaced on the energy scale).
The peak hafwidth (defined as the full width at half
maximum, FWHM) was taken either the same for al
peaks or linearly increasing as determined by extrapo-
lation between the peak halfwidth for S and SizN,.
The results of calculations according to the RB model
showed that the XPS spectrum of the Si 2p level in
SiN, must contain a single maximum (Fig. 2, dashed
curves) with the peak position being shifted toward
higher binding energies with increasing nitrogen con-
tentin SIN,.

For the sake of generality, we also checked for the
applicability of the RB model to description of the
structure of adisordered SiN, sample. The disorder was
produced by irradiating a SiN, 5; sample with abeam of

4-keV Ar*ions(Fig. 3). Ascan beseen from Fig. 3a, the
structure of the initial SiNy5; sample is not adequately
described by the RB model: the experimental XPS
spectrum exhibits two peaks corresponding (in the first
approximation) to the SiSi, and SIN, tetrahedra,
whereas the theoretical model predicts a single peak
with a maximum positioned at a Si 2p binding energy
of the SIN,Si, tetrahedron (Fig. 3b). After irradiation,
nitrogen and silicon atoms are mixed and the sample
exhibits atendency to form asubstitution solid solution
(RB model). The XPS spectrum of the ion-bombarded
SiNgy5 sample displays a single peak with a binding
energy of the maximum close to that calculated within
the RB model (Fig. 3b).

Theresults of simulation of the X PS spectra of SiN,
within the framework of the RM model are depicted by
solid curvesin Fig. 2. The spectra calculated using this
model show, in agreement with experiment, atendency
to decrease in the fraction of a silicon phase in SIN,
with decreasing silicon content. However, the RM
model somewhat overstates the silicon phase fraction
and, in addition, predicts a dip approximately in the
middle of the spectrum presented in Fig. 2. In experi-
ments, however, such adip is observed only for SiNg 5;
and is absent in the XPS spectra of other samples.

Thus, neither RB nor RM models can quantitatively
describe the structure of an SIN, compound. For this
reason, we propose an intermediate model illustrated in
Fig. 4. Thismodel suggeststhe presence of separate sil-
icon (SiSi, tetrahedra) and Si;N, (SIN, tetrahedra)
phases, as well as subnitrides (composed of SiN;Si,
SiN,Si,, and SINSi; tetrahedra) in the SiN, structure.
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Fig. 4. Schematic diagramsillustrating the proposed intermediate model of SiN,: (a) atwo-dimensional diagram of SiN, structure
showing (bottom) the regions of a silicon phase, stoichiometric silicon nitride, and subnitrides and (top) the energy band profile of
SiN, in the A-A section (E, is the conduction band bottom; E, is the top of the valence band; ®, and @y, are the energy barriers for
electronsand holes at the a-Si-SiaN, interfaces, respectively; Eg isthe bandgap width; and X isthe electron affinity); (b) fluctuations
of the Shklovskii—Efros potential in a strongly doped compensated semiconductor (u isthe Fermi level).

The proposed intermediate model assumes|ocal spatia
fluctuations of the chemical composition of amorphous
silicon nitride. This model will be considered in more
detail in Section 6.

4. EXCESS SILICON IN SiN,
ACCORDING TO RAMAN SCATTERING DATA

The XPS measurements do not provide information
on the spatial distribution of silicon in the SiN, struc-
ture. The chemical shift of the Si 2p level is sensitive to
the local chemical environment, but not to the long-
range order. Being nonpolar, S—Si bonds do not con-
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tribute to the IR absorption spectra either. At the same
time, the method of Raman scattering allows excess sil-
iconin SiN, to be detected.

Figure 5 shows the Raman spectra of SiN, samples
of various compositions grown on silicon substrates.
Here, theintense peak at 520 cm is due to the longitu-
dinal optical phonons in the silicon substrate. For SiN,
samples with a low nitrogen content (x < 0.72), there is
an additional weak signal in the region of 460-480 cnm ™,
that is, at afrequency coinciding with the position of the
peak of Raman scattering in amorphous silicon [18].
Previoudly, the Raman scattering from silicon in SiN,
was studied in [15]. Thus, the Raman spectra provide
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Fig. 5. The Raman spectra of SiNq g4, SiNg 75, and SiNg 51

samples on silicon substrates. The peak at 520 cm™ corre-
sponds to scattering in silicon substrate; the arrow indicates

the signal dueto scattering from amorphoussilicon clusters.

unambiguous evidence for the presence of amorphous
silicon clustersin SIN,.

Thebandgap widthin SizN,isE;=4.6 V. However,
experiments reveal the optical absorption in SizN, at
photon energies below thisvalue[1]. Thissignal can be
attributed to the absorption of light by silicon clusters
in a Si;N, matrix. The existence of silicon clustersin
SiN, is also confirmed by data on the fundamental
absorption edge, according to which long-wavelength
absorption takes place at 1-2 eV [16]. Silicon clusters
with dimensions of 12-24 A in hydrogenated silicon
nitride (SiN,:H) were observed in a high-resolution
electron microscope [17, 19]. The Raman spectra of
SiN, with x = 1.04 exhibit no signal related to the scat-
tering from silicon clusters. However, this result does
not exclude the existence of such clusters. the lack of
the signal can be explained by insufficient sensitivity
of thismethod, related to small cluster size, low cluster
density, and small thicknesses of sample films (about

1000 A).

5. DETERMINING ENERGY BARRIERS
FOR HOLES AT THE S-Si;N, INTERFACE
FROM XPS DATA

For a comparative study of the valence bands of
Si;N,, SiN,, and aSi, we have measured the corre-
sponding XPS spectra. The samples of aSi were pre-
pared by irradiating crystalline silicon with 4-keV Ar*
ions. The valence band of Si;N, consists of two sub-
bands separated by an ion gap (Fig. 6a). The narrow
lower subband is formed by N 2s orbitals with an
admixture of Si 3sand 3p orbitals[3]. The broad upper
subband is formed by the nonbonding 2p;, orbitals of
nitrogen and the bonding 3s, 3p, and 3d orbitals of sili-
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con and 2p orbitals of nitrogen [20]. In addition, Fig. 6b
presents the high-resolution XPS spectra of Si for the
valence bands of amorphous silicon nitrides SizN,,
SiN; o1, and Au measured relative to the top of the
valence band of gold.

As can be seen, features of the valence band spec-
trum of SiN,,, are generaly analogous to those for
Si;N,, except for the region at the top of the valence
band (Fig. 6b). The high-resolution XPS spectra show
that the top of the valence band of aSi coincides with
that of gold. The electron work function of gold is
5.1 eV. Therefore, the top of the valence band of &Si is
spaced 5.1 eV from the electron energy level in vac-
uum. The top of the valence band of Si;N, is spaced
15eV from the top of the valence band of &S
(Fig. 6b). Therefore, the energy barrier for holes at the
aSi-Si3N, interface also amountsto 1.5 eV.

6. LARGE-SCALE POTENTIAL FLUCTUATIONS
IN SIN, CAUSED
BY SPATIAL INHOMOGENEITIES
IN THE CHEMICAL COMPOSITION

According to the XPS data, SIN, comprises a mix-
ture of SizN,, silicon subnitrides, and amorphous sili-
con. The silicon nitride phase is composed of SiN, tet-
rahedra; subnitrides are composed of SIN;Si, SIN,Si,,
and SINSi; tetrahedra; and the amorphous silicon clus-
ters are composed of SiSi, tetrahedra. The bandgap
width of compound Si;N, is4.6 eV, while that of amor-
phoussiliconis 1.6 eV [19, 21] and that of silicon sub-
nitrides varies within 1.6-4.6 eV. Therefore, the band-
gap width in compound SiN, aso varies from 1.6 to
4.6 eV. According to the data presented in Section 5, the
maximum scale of potential fluctuations for holes is
1.5 eV. Since the bandgap width of aSi is 1.6 eV, the
energy barrier for electrons at the aSi-SizN, interface
amounts to 1.5 eV. Thus, the maximum scale of poten-
tia fluctuations for electronsin SiN, isalso 1.5 eV.

Figure 4a presents the proposed model of large-
scale potentia fluctuations caused by variations in the
local chemical composition of SIN,, asillustrated by a
two-dimensional diagram showing all possible variants
of the local (spatial) structure of silicon nitride. The
energy band diagram refers to the A-A section; the
straight line indicates the level from which the electron
energies are measured (vacuum level). A decrease in
the bandgap width E, is evidence of the presence of
subnitrides in the silicon nitride matrix. The minimum
bandgap width (E, = 1.6 €V) corresponds to the silicon
phase. This model assumes smooth variation of the
chemical composition at the boundaries between sili-
con clusters and the Si;N, matrix. Our experimental
data do not allow the size of thistransition region to be
estimated. We reckon that this size may be on the order
of several dozens of angstroms.
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Fig. 6. (a) XPS spectra of the valence band of SigNy, SiNy g4, &Si, and Au samples (arrows indicate the energy position of the top
of the valence band); (b) the same spectrain the top of the valence band region recorded at a higher resolution.

Region 1 in Fig. 4a corresponds to a “quantum”
cluster (with dimensions L on the order of the de Bro-
gliewavelength of quasi-free electronsin asilicon clus-
ter) incorporated into the Si;N, matrix. The ground
state energy in this cluster is E = A%2mL2, where mis
the effective electron mass. Region 2 represents large
silicon clusters surrounded by Si;N,. In this case, there
is no transition layer of silicon subnitrides and the
energy band diagram reveals a sharp S-Si;N, inter-
face. Large clusters do not feature quantization of the
energy levels of electrons and holes. Region 3 isamac-
roscopic silicon cluster surrounded by a silicon subni-
tride phase. In this situation, the transition from silicon
to Si;N, in the energy band diagram is smooth. Note

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY

that, here and below, we assume that the size of the
transition region occupied by silicon subnitridesis sig-
nificantly greater than the length of S—N and S-S
bonds (amounting to 1.72 and 2.35 A, respectively).
Region 4 corresponds to a silicon subnitride cluster in
the silicon nitride matrix. Region 5isa“quantum” sili-
con cluster incorporated into the subnitride phase, and
regions6 and 7 represent subnitride and nitride clusters,
respectively, surrounded by silicon.

Thus, fluctuations of thelocal chemical composition
of SiN, lead to large-scale spatial fluctuations of the
potential for electrons and holes. Previoudly, similar
models of large-scale potential fluctuations have been
developed for Si:H [22], SIC:H [23], SIC,O,:H [24],

SICS  Vol. 98
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Fig. 7. The spectra of (1) PL and (2) PL excitation in SiN, (X = 4.3) at room temperature. Points represent the experimental data,
solid curves show the results of approximation by the Gauss function.

and SIO, [25]. When an electron—hole pair is generated
in silicon subnitride, the electric field is directed in the
same direction for both electron and hole, thusfavoring
their recombination (Fig. 4a). In the case of aradiative
recombination mechanism, SiN, is an effective radia-
tive medium. Figure 4b illustrates the Shklovskii—Efros
model of large-scale potential fluctuationsin astrongly
doped compensated semiconductor [26]. According to
this model, the bandgap width is constant and the
potentia fluctuations are caused by the inhomogeneous
spatia distribution of charged (ionized) donors and
acceptors. Here, the electron—hole pair production is
accompanied by spatial separation of electrons and
holes, thus not favoring their recombination.

7. PHOTOLUMINESCENCE
OF SILICON NITRIDE SiN,

Figure 7 shows the room-temperature PL spectrum
of SIN, (x= 4/3) with nearly stoichiometric composition
excited by quanta with an energy of 5.2 eV (curve 1).
The emission has a maximum intensity at an energy of
E.m = 2.4 eV. Approximated by a Gauss function, the
PL peak has an FWHM of 0.92 eV. The spectrum of
excitation of the PL line at 2.4 €V has a maximum at
E.. = 5.2 eV. The PL excitation spectrum approximated
by a Gauss function has the same FWHM (0.92 eV) as
that of the emission spectrum. Deviations of the shape
of the emission and excitation spectra from the Gauss
function are probably caused by experimental errors.

In recent years, the PL spectra of silicon nitride
(SiN,) and oxynitride (SION,) of variable composi-
tions have been observed in an energy interval of 2.2—
2.8 eV [27-32]. The PL excitation peak at 5.2 eV was
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reportedin[27, 30]. Park et al. [17, 19] studied the opti-
cal absorption and PL spectra of amorphous silicon
clustersin the Si;N, matrix, observed quantum confine-
ment of electrons and holes at these quantum dots, and
determined [17] the PL peak energy asafunction of the
average size of amorphous clusters. As the cluster size
decreased from 2.9 to 13 A, the PL peak shifted from
1.8t02.7eV.Accordingto[17, Fig. 1], the PL quantum
energy of 2.4 eV observed in our experiments corre-
sponds to asilicon cluster size of 17 A. Figure 8 shows
a configuration diagram of a defect for a strong elec-
tron—phonon coupling constructed using the available
PL and PL excitation data. The Franck—Condon shift

Total energy

0 O
Generalized coordinates
Fig. 8. A configuration diagram of a defect according to PL
data: the lower and upper terms refer to the energies of the
ground and excited state, respectively. The optical transi-
tions at 5.2 and 2.4 eV correspond to excitation and emis-

sion; 1.4 eV (polaron energy) corresponds to the Franck—
Condon shift.
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(polaron energy) W; estimated from this diagram equals
to half of the Stokes shift: W, = (Eo, — E,,)/2= 1.4 €V.

Thewidth A (FWHM) of the PL spectrumisrelated
to the phonon energy W, in a single-mode approxima
tion as

A = 8W,W,,In2.

The phonon energy determined from this relation
amountsto W,, = 109 eV and the corresponding Hung—
Rice ratio is Wi/W, = 12.7. This W, value is signifi-
cantly greater than the phonon energy (60 meV)
reported for amorphous silicon [33]. The experimen-
tally determined phonon energy coincides with the
energy of S—N bond oscillations in amorphous Si;N,
(900 cm* or 110 meV) [3]. The results can be
explained by alarge surface to volume ratio for the sil-
icon clusters studied. Thus, the interaction in the
excited electron—holepair isrelated to local oscillations
of the S—N bonds at the boundary between asilicon clus-
ter and the Si;N, matrix. Previoudy, a strong interaction
in the excited dectron-hole pairs in silicon nanoclusters
occurring in a SIO, matrix was studied by monitoring
Si—O bond oscillations at low temperatures [34, 35].
Thus, according to the proposed interpretation, the
emission at 2.4 eV isrelated to the optical transitions
between guantum states of amorphous silicon clusters

with an average size of about 1.7 A.

8. DISCUSSION OF RESULTS

As was mentioned above, amorphous SIN, can be
synthesized only under thermodynamically nonequilib-
rium conditions. The structure and properties of this
compound depend on the conditions of synthesis (the
temperature and gas pressure) and subsequent high-
temperature annealing [1]. We have studied the samples
of SIN, prepared at relatively high temperatures. The
structure of this material is adequately described by the
proposed intermediate model. lon irradiation of the
samples modifiesthe structure so that it approachesthat
described by the RB model. When the deposition tem-
peratureis decreased (plasma deposition), the structure
of the synthesized SiN, compound is described by the
RM model [§].

Previoudly, it was demonstrated that the intermedi-
ate model describes the structure of an amorphous sili-
con oxide SO, [25], which is analogous to that of SIN,
and also depends on the conditions of synthesis. In par-
ticular, provided that the chemical composition is the
same, the optical bandgap widthin SIO, 4, can bevaried
from5.0to 7.5 eV [36]. Note that the structure of silicon
oxynitrideswith variable composition SO;N, isquantita-
tively described (in contrast to the structures of SiN, and
SiO,) within the framework of the RB model [37, 38].
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Basic differences between the proposed model of
large-scale potential fluctuations in SIN, and the
Shklovskii—Efros model for compensated semiconduc-
torsare asfollows.

(i) Large-scale potential fluctuations in compen-
sated semiconductors are of electrostatic nature, being
related to the spatial fluctuations in the density of
charged donors and acceptors, while the bandgap width
isconstant (Fig. 4b). The electric field caused by spatial
fluctuations of the potential favors separation of elec-
trons and holes. In SiN,, the potential fluctuations are
caused by inhomogeneities of the local chemical com-
position. In the proposed intermediate model (Fig. 4a),
no space charge isformed (unlike the Shklovskii—Efros
model) and the potential fluctuations favor the recom-
bination of electrons and holes.

(ii) The low-frequency dielectric permittivities of
Si;N, and Si are 7.0 and 11.8, respectively. Therefore,
SiN, features spatial fluctuations of the permittivity.

(iif) According to the proposed model assuming
potential fluctuationsin SiN,, thismaterial is capable of
localizing electrons and holes in potential wells, as
experimentally observed in [1], with a giant time of
localized carrier trapping (about 10 years at 300 K).
The proposed intermediate model predicts the possibil-
ity of electron and hole percolation in the large-scale
potential [25, 26].

The presence of silicon clusters (i.e., regions of sig-
nificant excess of silicon) in SIN, is confirmed by
Raman scattering data. We believe that the excess sili-
con is not detected by Raman spectroscopy in nearly
stoichiometric silicon nitride (SIN, with x = 4/3)
because of insufficient sensitivity of thistechnique. The
existence of silicon clustersin SiN, is confirmed by the
following experimental data:

(i) The EPR spectrum of SiN, with x = 4/3 displays
asignal with g = 2.0055 belonging to aSi atom with an
unpaired electron, bound to three other silicon atoms
(=SizSie) [39].

(if) The low-energy electron loss spectrum of SiN,
with x = 4/3 exhibits peaks at the energies of 3.2 and
5.0 eV [40], which coincide with the energies of direct
electron transitionsin silicon [41].

(iii) The fundamental absorption edgein nearly sto-
ichiometric silicon nitride SIN,, (x= 4/3) isabout 4.6 eV
[1, 42]. However, experiments on the photothermal
absorption [16] showed the presence of absorption in
therangefrom 1.7 to 3.9 eV. Thisresult provides unam-
biguous evidence of the presence of excess silicon in
SIN, with x = 4/3.

(iv) The transport of electrons and holes in silicon
nitride is conventionally interpreted within the frame-
work of the Frenkel mechanism, according to which the
Coulomb potential decreases in a strong electric field
[43, 44]. However, our recent results showed that using
this model at low temperatures leads to unreasonably
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small values of the frequency factor (v = 10° s?) and an
anomalously large tunneling mass of an electron (m* =
5.0m,) [45]. It was shown that the charge transfer in sil-
icon nitride in a broad range of temperatures and fields
can be quantitatively described using the theory of mul-
tiphonon ionization [45].

The thermal energy of trap ionization amounts to
1.4 eV [46], which coincides with the value of the
Franck—Condon shift estimated in this study. The
energy of local oscillations (60 meV) determined in
[46] corresponds to the frequency of oscillations of sil-
icon atomsin silicon clusters. These data provide inde-
pendent evidence that amorphous silicon clusters act as
traps for electrons and holesin silicon nitride.

Nevertheless, this study does not provide straight-
forward proof of the existence of amorphous silicon
clusters with dimensions below 17 A in nearly stoichi-
ometric SiN, with x = 4/3. Previoudly [47, 48], we for-
mulated a hypothesis that the role of traps in silicon
nitride can be played by silicon clusters of minimal size,
namely, by S—Si bonds. Indeed, Gee and Kastner [49]
observed the PL at 4.4 eV with an excitation energy of
7.6 eV related to transitions on the Si—Si bonds. Our
results presented above do not exclude that Si—Si bonds
are the centers responsible for the luminescence at
2.4 eV and for thetrapping of electronsand holesin sil-
icon nitride. Thus, further investigations are necessary
for judging between the models of amorphous silicon
clustersand Si—-Si bonds.

9. CONCLUSIONS

We have used high-resolution X-ray photoelectron
spectroscopy and Raman scattering to study the short-
range order in the layers of silicon nitride of variable
composition SiN, enriched with silicon. It has been
established that neither random bonding (RB) nor ran-
dom Si + Si;N, mixture (RM) models can adequately
describe the structure of this compound. An intermedi-
ate model has been proposed, according to which the
SiN, structure comprisesfive types of tetrahedral units,
but the probability of finding agiven tetrahedron typeis
not described by the RB model. It is suggested that fluc-
tuations in the local chemical composition lead to
large-scale potentia fluctuations.

The PL spectra and the photoluminescence excita-
tion spectra of SIN, have been measured and inter-
preted in terms of amodel assuming optical transitions
between quantum states of amorphous silicon clusters.
The Franck—Condon shift is 1.4 €V, which coincides
with the thermal ionization energy of trapsin SiN, with
X = 4/3. This result is evidence that either amorphous
silicon clusters or S—Si bonds (minimal silicon clus-
ters) play the role of traps for electron and holes in
nearly stoichiometric silicon nitride.
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Abstract—Peculiarities of the electron spectrum rearrangement for the double-well heterostructure
GaAg/AlGaAs with a variable dimensionality of electronic states in an external electric field are investigated
theoretically and experimentally. The structureis an important part of the active element of aquantum-well uni-
polar semiconductor laser proposed by the authors earlier. The possibility of controlling the dimensionality of
the lower laser subband in such an active element by an external electric field is demonstrated. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The possibility of obtaining stimulated radiation
between subbands of semiconductor quantum wells
(QWSs) was predicted by Kazarinov and Suris more
than 30 years ago [1]. The ideas expounded on in this
publication formed the basis of the injection semicon-
ductor quantum-well laser developed by specialists at
Bell Laboratories in 1994 [2]. It was a unipolar laser
based on intersubband transitions in the conduction
band of tunnel-coupled QWs. Such adesign of a quan-
tum-cascade | aser has a number of advantages over tra-
ditional diode lasers in which radiative recombination
occurs between the electron and hole states. In contrast
to diode lasers, the wavelength emitted by a unipolar
laser is determined by the quantum constraint, i.e., by
the thickness of the layers in the active region, rather
than by the forbidden gap of the material. The advan-
tages of unipolar lasers also include the high tempera-
ture stability and the possibility of operating at room
temperature due to suppression of Auger relaxation
processes. Both factors are associated with the same
sign of the effective massin working subbands (parallel
subbands) of a unipolar laser. Contemporary lasers of
this type can operate at room temperature in a wave-
length range of 3.57-16 um [3, 4].

Unfortunately, parallel working subbands used in a
unipolar laser are responsible for a serious drawback
hampering the attainment of a noticeable population

inversion in such a system. Owing to the similarity
between theinitial and final el ectronic statesin unipolar
lasers, a single LO phonon with a nonzero momentum
is sufficient for electron relaxation between the parallel
subbands irrespective of their separation. At the same
time, it is impossible to increase the lifetime of elec-
trons by decreasing the overlap of the wave functions
since this reduces the optical efficiency of the laser. For
thisreason, the electron lifetimes for intersubband tran-
sitionsin the structures of unipolar laserslieinthe pico-
second range. Under these conditions, to attain consid-
erable gain, the structure of a unipolar laser must
include up to 500 periods of the active element. As a
result, the structure of a cascade laser remains
extremely complicated despite considerable advances
made in recent years [5, 6].

In an earlier publication [7], we proposed an origi-
nal design of the active element for a unipolar semi-
conductor laser. The structure is based on the physical
idea of suppression of intersubband nonradiative relax-
ation by using the quasimomentum dependence of the
wave function of a QW with strongly asymmetric bar-
rier heights[8, 9]. In such structures, alocalized elec-
tronic state existsin alimited range (0, k.) of wave vec-
torsk in the direction along the layers of the structure.
For k =k, the 2D-3D transformation of the dimen-
sionality of states takes place [10]. This effect can be
used for a sharp increase in the nonradiative recombi-
nation timein the active element of aunipolar laser, in
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which the lower laser subband corresponds to a QW
with strongly asymmetric barriers. Such a subband
exists only for small momenta of longitudinal motion,
which makesit possibl e to eliminate one-phonon inter-
subband transitions. Our calculations[7, 11] show that
optimized structures with a variable dimensionality of
states, which are used as the active element of aunipo-
lar laser, ensure a considerableincreasein the nonradi-
ative relaxation time between the laser subbands and a
significant gain in the population inversion.

Here, peculiarities of the electron spectrum
rearrangement for the double-well heterostructure
GaAgAl Gy _,As with a variable dimensionality of
electronic statesin an external electric field are studied
theoretically and experimentally. Such investigations of
structures with asymmetric barriers are of considerable
interest in view of the expected anticrossing of energy
levelsin complex systems and the passage of the elec-
tronic state in a QW with asymmetric barriers to the
continuum and also due to possible realization of the
situation studied herein an injection unipolar laser. The
first step in this direction was made in [10] for asingle-
well structure with asymmetric barriers.

2. EXPERIMENT

The structure, which is afragment of the active ele-
ment of a unipolar laser with a variable dimensionality
of the electronic states, was grown by the method of
molecular beam epitaxy on a semi-insulating GaAs
substrate. The structure included the following layers
(in the direction of growth): a 250-nm-thick buffer
layer of undoped GaAs; a 50-nm-thick silicon-doped
n*-GaAs layer (Np = 10%8 cm3); a 25-nm-thick silicon-
doped n-AlygeGaygAs barrier layer (N = 5.3 %
10% cm3); an undoped 45-nm-thick i-AlgneGayg;AS
barrier; a 2.8-nm-wide GaAs QW; a 4-nm thick
i-Alp3sGagesAS Separating barrier; a 5.3-nm-wide
GaAs QW; a 10-nm-thick undoped i-Aly35Gay6sAS
barrier; a 30-nm-thick silicon-doped n*- Alj 3:Gay gsAS
barrier (Np = 6.5 x 10 cm3); and a 10-nm-thick silicon-
doped n*-GaAs upper cap layer (Np = 108 cnrs). A sim-
plified band diagram of the structurein zero (E = 0) and
anonzero electric fieldisshownin Fig. 1. The structure
was designed so that it ensured the resonance of sub-
band €, (lower working subband) in well 2 with asym-
metric barriers (QW2) and subband €, in symmetric
QWL1. Inthiscase, the degree of localization of the elec-
tron wave functionsin QW2 increases and the effect of
the existence of a subband in the QW with asymmetric
barriers only for small momentaof longitudinal motion
can be used most fully. The structure under study in fact
played the role of a single QW with asymmetric barri-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

771
Up E=0 _
(.- ToTTC U,
G| | L
1 2
Uy —
~— EZ0
——

Fig. 1. Simplified band diagram of the structurein zerofield
(E=0) and in an external electric field.

ers in the proposed design of the active element of a
unipolar laser, but with a higher degree of localization
of the lower laser subband.

The structure was designed so that an external elec-
tric field could be applied to it. For this purpose, the
upper and the buffer n*-GaAs layers were used, in
which control electrodes were formed. The doping
level inthe structure was sel ected in such away that the
fulfillment of the condition of flat bands in the active
guantum region was ensured in the absence of an exter-
nal bias voltage. This condition is essential when the
structure is used in a unipolar laser with optical inter-
subband pumping (fountain laser). The upper electrode
in the form of a semitransparent Ni film was deposited
through amask with asize of 3 x 7 mm?. Subsequently,
this electrode itself served as a mask for etching the
structure around this electrode down to the n* lower
buffer layer used as the lower electrode. Leads were
soldered to the upper and lower electrodes using
indium solder.

The optical properties of the structure were studied
by the photoluminescence (PL) method at a tempera-
ture of 80 K and excitation by radiation emitted by an
Ar* laser Stabilite 2017 (Spectra-Physics) with awave-
length of 5145 A in the microprobe mode. The laser
emissive power density at the sample was ~100 W/cm?.
Scattered radiation was analyzed by a monochromator
Jobin Yvon T64000 and detected by a CCD matrix
Spectrum One (Spex) cooled with liquid nitrogen. Dur-
ing measurements, a dc bias varying from +2 to -8 V
was applied to the upper semitransparent el ectrode. The
upper value of the positive bias was determined by the
diode properties of the structure: for biases of +3V and
higher, a considerable current passed through the struc-
ture, which partly compensated the applied field. The
minimum negative bias corresponded to the disappear-
ance of exciton peaks in the PL spectra due to the
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Fig. 2. PL spectraof the structure for various biases applied
to the upper semitransparent electrode.

rupture of corresponding excitons by the applied elec-
tric field.

3. PHOTOLUMINESCENCE SPECTRA

Figure 2 shows the PL spectra of the structure for
biases at the upper semitransparent electrode V = 0,
-1.5,-3.0, and—6.0V. The spectraare given on both the
wavelength scale and on the energy (upper) scale. The
steps on the curves in the vicinity of 7640 and 7775 A
are due to joining of different spectral regions encom-
passed by the multichannel matrix during one mea
surement. The PL spectra recorded at zero bias across
the structure display four peaks at energies of 1.604,
1.619, 1.637, and 2.031 €V. The peak in the region of
1.604 eV has the highest intensity in the spectrum,
while the peak at 2.031 €V (not shown in Fig. 2) has
thelowest height. Theintensity of the latter peak istwo
orders of magnitude lower than the intensity of the
main peak corresponding to 1.604 eV. The peak at
2.031 eV isdueto the contribution of the higher barrier
to the PL spectrum. Its position corresponds to a
composition of the solid solution Al,Ga, _,As with
x = 36%. Accordingly, the low-intensity peak in the
energy range of 1.637 eV (marked by the arrow in
Fig. 2) is due to the contribution of the lower barrier
and corresponds to x = 9.3%.

In accordance with our calculations, the peaks at
energies of 1.604 and 1.619 eV are associated with the
guantum region of the structure with layer parameters
close to nomina values. It should be noted that the
intensity of the peak associated with the lower electron
subband in the QW with asymmetric barriersis consid-
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Fig. 3. Bias dependences of (a) the positions of peaks at
energies 1.604, 1.637, and 1.619 eV, (b) their intensities,
and (c) the half-width of the main PL pesk and thetotal area
of al peaks. The results for the main PL peak and for the
high-energy peak with alower intensity are shown by trian-
gles and squares, respectively.

erably higher than the intensity of the PL spectrum of
asingle QW with asymmetric barriers [10] in view of
a considerably stronger localization of the electron
wave function in this subband in the case of its reso-
nance with the subband in a QW with symmetric bar-
riers. It can be seen from Fig. 2 that the position of the
peaksin the energy range of 1.604 and 1.619 eV varies
insignificantly upon a change in the bias across the
structure from 0 to —6 V; however, the considerable
change in the intensity and half-width of the peaks
indicates that the structure is controlled by the external
electric field.

Figure 3 showing the bias dependences of the posi-
tions of the peaks at energies of 1.604 and 1.619 eV (a)
and their intensity (b) as well as the half-width of the
main PL peak and the total area of the peaks at energies
of 1.604 and 1.619 eV (c) demonstrates these peculiar-
itiesmost visually. Dark circlesin Fig. 3aaso show the
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bias dependence of the position of the PL peak corre-
sponding to the lower barrier. The behavior of the main
PL peak (1.604 eV) can betraced downtoV = -8 V. At
lower biases, the peak cannot be detected since the cor-
responding exciton istorn by the strong field. The peak
at an energy of 1.619 eV can be traced approximately
to —6 V. At lower biases, it becomes very weak and
merges with the main PL peak. Approximately at the
same biases, the electric field tears the exciton of the
lower barrier also. The weak dependence of the posi-
tions of the PL peaks on the applied biasin the quantum
region (Fig. 3a) isworth noting. The main feature of the
spectrum is the nonmonotonic behavior of al depen-
dences depicted in Fig. 3 in the field. Indeed, as the
value of V changes from 0 to -3V, the intensity of the
main PL peak in the energy range of 1.604 eV attains
its maximal value (the peak height is amost doubled
and its width is reduced aimost by half). As bias V
decreases further, the intensity of the main peak
decreases and the peak becomes broader. The sameten-
dency can aso be traced for the PL peak with the max-
imum at 1.619 eV. In order to explain the observed
peculiarities, we analyzed theoretically the spectrum of
el ectronic states of the given structure and its modifica-
tion in an externa electric field.

4. THEORY

In studies of the PL spectraof the GaAgAl,Ga, _,As
structures with asingle QW and asymmetric barriersin
an external electric field [10], we demonstrated the pos-
sibility of exciton transitions involving the electron
states lying above the lower barrier. Consequently, the
continuous spectrum must be taken into account in the-
oretical analysis of relaxation processes in such struc-
tures. We developed an original method for calculating
the electron spectrum of structures with a variable
dimensionality of electronic states, which takes into
account the contribution from the continuum, including
the situation in an external electric field.

Strictly speaking, the bound states vanishes due to
an indefinite decrease of the potential at infinity when
an external electric field is applied to quantum wells.
Nevertheless, to describe the behavior of such systems
in external fields, the eigenvalue spectrum can be cal-
culated in most cases by erecting an artificial bound-
ary with afinite (or infinite) potential at a certain dis-
tance L to the right of the structure (see Fig. 1). Asa
result, instead of the actual continuous spectrum, we
obtain a set of discrete states (the model of aquasi-con-
tinuous spectrum). The energies of the states and the
probability of the electron location in the well proper
weakly depend on L in awide range of the values of L
up to several thousands angstroms. Aslong asthetime
of tunneling through the triangular barrier remains
longer than the characteristic times of the problem
(e.g., the recombination time in analysis of PL spec-
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The results are given for various values of L (in angstroms).

tra), such an approach ensures a quite admissible
accuracy.

The application of this approach for QWs with
asymmetric barriersunder transformation of the dimen-
sionality of states requires additional investigations. In
this connection, we consider the behavior of a single
GaAs QW with asymmetric Al,Ga, _,As barriers for a
finite width L of the lower barrier in zero electric field
(the level diagram of the structure is shown in the inset
to Fig. 44). In systems with asymmetric barriers and
with different effective masses of carriersin the layers,
the bound state is absent starting from a certain well
width h.. For h> h, this state exists for zero wave vec-
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tor k of motion along the layers of the structure and dis-
appears for a certain finite wave vector k = k. since the
“transformation of the dimensionality” of electronic
states takes place. This conclusion follows from analy-
sis of the solution of the problem with bounding barri-
ersof an infinite width.

Figure 4a shows the dependence of probability W of
finding an electron in the vicinity of QW of width 24 A
on the energy (measured from the bottom of the well),
when fraction x of aluminum in theleft (high) barrier is
0.36, while x = 0.093 in the right (low) barrier. The
parameters of the barriers are taken close to the charac-
teristics of the sample. Thecritical width for such asys-
temis28A:i.e, thebound stateisabsent in awell with
h < 28 A. For comparison, Fig. 4b shows the situation
when the well is absent atogether (the potential in the
region of the quantum well is equal to the height of the
low barrier). Theresults of calculations are represented
for various values of L (the corresponding notation is
given in Fig. 4b). It can be seen from Fig. 4athat, due
to the presence of a QW, probability W for energies
close to the edge U, (about 82 meV) of the low barrier
has a maximum; the dependence of the probability on L
at the maximum becomes weak starting from L =
1000 A.. Since the effective mass of a hole exceeds the
corresponding parameter for an electron, the hole state
in the QW is strongly localized. As a result, the exist-
ence of a W peak for electrons at € = U; may lead to
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recombination of this state with hole states localized in
the well even in the absence of a bound electron sate.
Thus, a PL signal can be observed for structures in
which the bound state of electrons formally does not
exist.

We have theoretically studied the behavior of states
in aQW with asymmetric barrier heightsin an external
electric field. Proceeding from the results obtained for
aQW in zero field, we can conclude that, in simulating
the continuous spectrum, it is sufficient to extend the
region of the low barrier to a distance of L = 1000 A.
A schematic diagram of the structure for which the cal-
culationswere madeis shown intheinset to Fig. 5. The
heights of theright and |eft barriers are chosen the same
asin Fig. 4 and the QW width ish = 28 A. For such a
width, the bound state exists in zero external field.

Figure 5 shows the energy dependences of probabil-
ity W of finding an electron in aQW for L = 1000 A for
various values of electric field E. For E = 0, apreferred
state exists, for which W= 0.16 and the energy islower
than U; (bound state). For a finite value of the field,
there exists a set of states with energies closeto the low
potential barrier height and with a high probability of
electron location in the QW,; i.e., in this case we can
speak of the existence of quasi-bound states that can be
manifested in PL spectra. The existence of relaxationin
the system and tunneling in the presence of an electric
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field leads to a certain ambiguity in determining the
specific state from the set of quasi-bound states, which
will be manifested in the PL spectrum.

Depending on the times of intersubband relaxation,
tunneling, and radiative recombination, PL can be asso-
ciated with the states at the peaks of W(¢€) as well as
with the states separated from the maximum by a cer-
tain distance. The positions of energy levels in the
quasi-continuous spectrum dightly change with the
value of L. To determine the characteristic energies, we
approximate the discrete function W(€,,) by a continu-
ous function (spline) and calculate the value of energy
€ max & the peak as well asthe value €, for which the
probability is equal to one-half the probability W(¢€ )
at the maximum.

As usua in such problems, we investigate the con-
vergence of the results upon an increase in model
parameter L. Figure 6 shows the dependences of €,
and €, on electric field E for values of L equal to 750,
1000, and 1500 A. A characteristic feature of these
curves is the weak dependence on model parameter L;
in other words, the use of the model of a quasi-contin-
uous spectrum indeed makes it possible to describe the
behavior of such systems in an electric field. The
dashed line in Fig. 6 corresponds to L = O, when the
electric field exists only in the QW (the right barrier of
an infinitely large width is shown by the dashed linein
theinsetto Fig. 5). Inthefield E=E,=—7.6 x 10V/cm,
the bound state in such a system disappears. In the
model of a quasi-continuous spectrum, the state in the
QW is localized quite strongly in fields significantly
exceeding E. as well. As a consequence, the PL line
associated with recombination of such states is
observed in fields considerably stronger than E..
Another typical feature of the dependences shown in
the figure is a comparatively large value of the differ-
ence €, — €4, anditsincrease with eectric field. This
must lead to an increase in the PL linewidth with elec-
tric field. The noticeable difference between €, and
€., leads to ambiguity in the interpretation of experi-
mental resultson PL in an electric field.

Let us now describe the PL spectra for a system of
tunnel-coupled QWSs, one of which has barriers with
asymmetric heights. The general methods of computa-
tion in this case are quite similar to the case of asingle
QW with asymmetric barriers. An additional difficulty
in the interpretation of the PL spectra in this case
emerges due to the presence of several electron and
hole energy levels in the system, their formation and
disappearance upon a change in the field and, finally,
due to anticrossing of the levels belonging to different
QWs. For convenience of interpretation, we will first
calculate the transition energies, disregarding the field
inthelow barrier, and then solvethe problem for afinite
(sufficiently large) L. Asin the case of asingle QW, it
is sufficient to take L = 1000 A.
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Figure 7 shows examples of the field dependences
of theinterband transition energy for double-well struc-
tures with an aluminum fraction of x; = 0.36 in the left
barrier, x, = 0.09 in theright barrier, and with a separat-
ing barrier width of 40 A. The widths of the wells are
50 and 30 A in Fig. 7aand 45 and 35 A in Fig. 7b. The
parameters of the model structures are chosen in such
away that, in fields with a strength on the order of 3 x
10*V/cm, transitions occur with energies (including
the exciton binding energy of about 10 meV) close to
the experimentally observed energiesin the given sam-
ple. For thefirst structure, the ground state for an elec-
tron is localized in the QW with symmetric barriers
(50 A), whilefor the second structure, it islocalized in
the well with asymmetric barriers (35 A). The figure
shows only the transitions for which the overlap
integral for the electron and hole wave functions
exceeds 0.01.

We will describe the types of transitionsin thefields
corresponding to characteristic points in Fig. 7. We
introduce the following notation for the electron and
hole states. We dencote by na the state with level number
n, which is localized predominantly in the well with
symmetric barriers (QW1), and by nb, the state local-
ized in QW2 (with asymmetric barriers). In Fig. 7a, for
fields E > E,, two electron subband and one hole sub-
band are localized and transition 2b-1b takes place.
This transition takes place from the second electron
subband to the first hole subband; the corresponding
wave functions are predominantly localized in QW2
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with asymmetric barriers. For the 1la—1b transition, the
overlap integral is smaller than 0.01. In fieldsE ~ E;,
the second hole level localized in QW1 isformed; asa
result, transition 1a—2a becomes possible. In the range
E, < E < E;, anticrossings of both electron (for afield
strength of E = E, = 5.0 x 10° V/cm) and hole (for E =
E, = 1.3 x 10* V/cm) subbands take place. In the anti-
crossing region, the probability of finding an electron
(hole) in both wells becomes appreciable for each state;
as a result, in addition to the above-mentioned trans -
tions, transitions 1-1 and 2—2 begin to be manifested. In
the vicinity of E,, the upper electron subband reaches
the continuum (transformation of dimensionality); asa
result, only one localized electron subband remains for
E <E;. Inthiscase, the PL spectrum acquiresthe main
transition 1b—2b and the weaker 1b—1b transition. The
intensity of the latter decreases smoothly with the
field. Finally, for E < E,, only one transition 1b—2b is
left. In the field E5 = -5 x 10* V/cm, the first electron
level reaches the continuum and the PL line disap-
pears. On the whole, for the 50/40/30 structure, in
the entire range of applied fields, we can single out
curves 1 and 2 (outside the anticrossing region), which
are associated with transitions in QW2, and curves 3
and 4, for which transitions for statesin QW1 play the
major role.

For the 45/40/35 structure (Fig. 7b), thereverse (rel-
ative to the previous case) arrangement of curves 1, 2
and 3, 4 on the energy scale and reverse positions of
anticrossings of eectron and hole states (on the field
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scale) are observed. The anticrossings of electron and
hole levels take place for E,= 2.1 x 10*V/cm and E,, =
3.2 x 10°V/cm, respectively. For E > E;, only onetran-
sition 2b—1b can be observed. For E < E,, aweak non-
diagonal transition 1a—1bismanifested. For E < E,, the
second hole subband is formed, and the electron sub-
bands converge. As aresult, the (high-intensity) 1la—2a
and the (weak) 2b—2a transitions take place, and the
intensity of the 1-1 transition increases. In the region of
E = E;, the second electron subband passes to the con-
tinuum (as in the previous case, thisfield is quite close
to Eg) and we are left only with transitions 1b-1b (with
high intensity) and 1b—2a. After attainment of anti-
crossing of the hole subbands (E = E,), transition 1b-2b
plays the major role. In field E = E,, the second hole
subband disappears and only one transition 1b—2b
remains possible. Finaly, in field E5 = -5 x 10* V/cm,
transformation of the dimensionality for the electron
subband takes place and PL disappears.

Figure 8 shows the field dependences of transition
energiesfor the same structures, but taking into account
thefield in the region of the low barrier. The size of cir-
clesin Fig. 8 is proportional to the intensity of the cor-
responding transition. A comparison of Figs. 7 and 8
shows that the inclusion of the contribution of the con-
tinuum leads to an increase in the range of fields in
which the states localized in the symmetric QW are
manifested, to a decrease in the field range for transi-
tions involving the states in the asymmetric QW, and,
finally, to blurring of singularitiesin the regions of anti-
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Fig. 8. Dependences of interband transition energies 7w on electric field E for structures with the same geometrical parameters as
in Fig. 7, but taking into account the field in the region of the low barrier. The size of the circles in the figure is proportional to the

intensity of corresponding transitions.

crossing of electron and hole states. The low-energy
curve exists in Fig. 8ain the entire field range under
investigation, while the high-energy peak disappears
for afield strength slightly exceeding E,,. For the struc-
ture corresponding to Fig. 8b, the two curves can coex-
ist in the entire range of fieldsin view of what was said
above about the possibility of the emergence of PL
states from the continuum, which are localized in the
asymmetric QW (dashed linesin the figure).

5. DISCUSSION

Taking into account the theoretical dependences of
energies and intensities of transitions on the external
electric field presented in Fig. 8, we return to the dis-
cussion of the experimental results. It follows from
Fig. 3 that, in a wide range of biases applied to the
structure, two peaks associated with the quantum
region are present in the PL spectraat energies of 1.604
and 1.619 eV. For V, = -2V, alow-intensity maximum
isobserved in the position of thelow-energy PL peak as
well as a minimum in the half-width of this peak. The
intensity of the same peak and the total area of both
peaks associated with the quantum region attain their
minimum values for V; = -1V, while the maximal val-
ues of these quantities are observed for V; = -3 V.
Finally, the intensity minimum of the high-energy PL
peak corresponds to lower biases as compared to V;.
Thelack of exact information on the actual distribution
of the doping impurity concentration and the complex-
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ity of the sample geometry did not allow usto carry out
direct recalculation of the bias applied to the structure
to the field in the region of quantum wells. Moreover,
dependence E(V) may be essentially nonlinear due to
currents present in the structure. For this reason, acom-
parison with experiment can be carried out only on
qualitative level.

A comparison of Figs. 3 and 8 showsthat Fig. 8bis
in better agreement with the experimental data. Indeed,
the theory predicts for the 45/40/35 structure a consid-
erable intensity of two transitions with energy values
close to experiment both below and above the anti-
crossing region. If we assume that, for a positive bias
across the sample, the field in the quantum region cor-
respondsto E,, the changesin the spectrain accordance
with Fig. 8b must be asfollows. When the external field
variesininterval E.—E,, the system getsin the region of
anticrossing of states. Thisfield interval correspondsto
the range of biases from +2to -1V in Fig. 3. Delocal-
ization of electronic states in this region leads to split-
ting of each line into two lines, which is manifested in
experiment as a dight broadening of PL peaks with a
simultaneous decrease both in thelineintensitiesand in
the total area of the peaks since delocalization of the
electron wave functions facilitates the departure of
electrons from QW1 with symmetric barriers to the
states of the continuum (i.e., the departure of electrons
from the quantum region). For E < E,, the system
leavesthe state of anticrossing of electron levelsand the
contribution from the continuum is still virtually
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absent; this can be attributed to the strong localization
of the lower electronic state in QW2 with asymmetric
barriers and to the low intensity of electron tunneling
from the state in QW1 in the absence of resonance
between subbands due to the large width of the separat-
ing barrier. Asaresult, the PL peaks associated with the
guantum region become narrower, while their intensity
increases (bias range from -1 to -3 V). At the same
time, the total area of the peaks in this bias range
increases.

A peculiar feature of the structure considered hereis
that the bias at which the transformation of the dimen-
sionality of the lower electronic state takes place is
closeto the bias corresponding to anticrossing of states.
The effect of the 2D—-3D transformation of the dimen-
sionality of the subband belonging to QW2 plays a
decisive role in the suppression of nonradiative relax-
ation to this subband. Due to the asymmetry in the bar-
rier heightsin the given structure, thelocalization of the
wave functions of the subband corresponding to QW2
is determined by wave vector k (the state can be local-
ized inthewell for k=0 or in the region of the low bar-
rier for k> k.). Let usdefine the “width” of the subband
asA =¢€(k,) —€(0). InFig. 8b, the effect of the 2D-3D
transformation of the dimensionality of the electron
subband in QW2 takes place in region E—E.. A
decrease in A results in an additional decrease in the
width (proportional to A) and in the area of the PL peak
associated with the lower electronic state due to the
suppression of relaxation from the second subband to
the first. As aresult of the competition with the effects
associated with anticrossing of energy levels, the posi-
tions of the minima of the width of the PL peak, its
intensity, and area for different lines do not coincide.
The transformation of the dimensionality leads to a
decrease in the exciton binding energy, which might be
responsible for the formation of alow-intensity maxi-
mum in the position of the low-energy PL peak at -2V
in Fig. 3a. An additional argument in favor of this
explanation is the coincidence of the positions of this
maximum and the minimum of the linewidth on the
bias scale.

A further increase in the field enhances the pro-
cesses of tunneling and relaxation involving the states
localized inthe region of thelow barrier; thisfirst Sows
the variation of line widths and intensities and leads to
the attainment of intensity maxima at biasesV = -3 V.
In the region of fields E < E, the contribution of the
continuous spectrum becomes predominant, which
leads to a decrease in the transition energy and to a
sharp decrease in the PL peak intensities down to their
compl ete disappearance as a result of the rupture of an
exciton. The shift in the position of extrema in the
intensity for the high-energy PL peak towards lower
biases as compared to the low-energy peak (seeFig. 3b)
can be explained by the facts that the first extremum is
associated with transitions from the states of QW1 and
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the departure of electronsto the states of the continuum
is hampered by abroad (40 A) barrier.

It should be noted that the bias dependences of the
energies of PL peaks in the quantum region (Fig. 3a)
are more gently sloping than those predicted by the the-
ory (Fig. 8b). Indeed, the range of transition energy
variation with thefieldin Fig. 8bis 15 meV for thelow-
energy PL peak and about 5 meV for the high-energy
peak, whilethisrangein Fig. 3adoes not exceed 5 meV
for both peaks. Thisis due to the fact that the decrease
in the transition energy with increasing field is partly
compensated by the decrease in the binding energy of
the corresponding exciton.

Thus, a comparison of experimental and theoretical
results for a double-well structure enclosed between
strongly asymmetric (in height) barriers shows that the
observed singularities in the variation of the character-
isticsof PL spectrain an external electric field are asso-
ciated with the transformation of the dimensionality of
the electronic state in the QW with asymmetric barriers
and with anticrossing of this state with a state in the
QW with symmetric barriers.

6. CONCLUSIONS

Peculiarities of rearrangement of the electron spec-
trum for the double-well GaAs/AlGaAs heterostructure
with variable dimensionality of electronic states in an
external electric field are investigated theoretically and
experimentally. The structure is an important compo-
nent of the active element of the quantum-well unipolar
semiconductor laser proposed by us earlier. An origina
method devel oped for cal culating the el ectron spectrum
of structures with variable dimensionality takes into
account the contribution from the continuum, including
the situation in an external electricfield. It isshown that
the dimensionality transformation effect in the lower
subband associated with the QW with asymmetric bar-
riers plays a decisive role in the variation of the PL
spectra in an externa electric field. The possibility of
controlling the dimensionality of the lower laser sub-
band in such an active element by an external electric
field is demonstrated. This makes it possible to con-
struct the active element of a quantum-well unipolar
laser with record-high characteristics on the basis of
QWs with asymmetric barriers.
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1. INTRODUCTION

There are only two independent undetermined quan-
tities in the theory of ideal superconductors. the
Bardeen—Cooper—Schrieffer (BCS) constant and the
preexponential factor €. In the superconductivity the-
ory based on the Hamiltonian of the electron—phonon
interaction, the € valueison the order of the Debyefre-
guency, whereas the BCS constant can be expressed via
the slope of the temperature dependence of resistivity
in the region above the Debye temperature. In these
terms, the superconducting transition temperature is
inversely proportional to the square root of the total
mass of atoms in a unit cell and hence decreases with
increasing mass of the introduced isotope. There is a
large group of simple metals (Hg, Ph, Sn, Tl, Zn) pos-
sessing a correct sign and order of the isotope effect.
However, the power of the isotope effect in complex
compounds exhibiting arather high transition tempera-
ture (T, > 20 K) isaways below 0.4 and keeps decreas-
ing with increasing T... Therefore, we may suggest that
there exists a nonphonon mechanism of the Cooper
electron pairing in high-T, superconductors.

The experiments with tunneling in high-T, super-
conductors showed that the 2A,/T, ratio in these mate-
rialsis amost two times that according to the BCS the-
ory. However, the most intriguing peculiarity is an
extremely sharp dependence of the transition tempera-
ture on the dopant concentration. For example, the
superconductivity in La, _,Sr,CuO, exists for 0.05 <
X < 0.34 and the maximum T, corresponds to x = 0.15—
0.16. Compounds of the Nd, _,Ce CuO, system can be
superconducting within a rather narrow interval of
0.14 < x < 0.18, where the maximum T, corresponds to
x = 0.15. In the YBa,Cu;0;,_5 system, the maximum

transition temperature is observed for 6 = 0, while the
compound with & = 1/2 exhibits no superconductivity.

This paper is devoted to the so-called kinematic
mechanism of superconductivity, which is capable of
explaining the aforementioned peculiarities in the
behavior of high-T, superconductors.

The notionsthat superconductivity ispossibleinthe
Hubbard model with strong repulsion were criticized,
first because the anomalous Gor’kov mean values [1]
appearing below the point of development of the Coo-
per instability have to obey an additional sum rule, the
existence of which implies infinite Hubbard energy.
However, researchers formulating these objections
(N.M. Plakida, Yu.A. lzyumov, V.Yu. Yushankhai,
et al.) had no doubts about the existence of the kine-
matic interaction discovered by Dyson [2] and about
the correctness of the equation derived by the author [3]
for determining the superconducting transition temper-
ature. The abjection concerning the anomalous
Gor'kov means was based on intuitive (so-called
“physical”) considerations and, until now, has not been
confirmed by rigorous mathematical calculations.

A solution to this problem was suggested by Val’ kov
et al. [4]. It was demonstrated that “the inclusion of a
singular contribution to the spectra intensity of the
anomalous correlation function is shown to regain the
sum rule and remove the unjustified forbidding of the
s-symmetry order parameter in superconductors with
strong correlations.”

Another critical remark is related to possible ferro-
magnetic ordering in the region where the supercon-
ductivity appears. As will be shown below, a tendency
toward ferromagnetism is manifested only in the region
of small concentrations, where superconductivity is
impossible. It will be demonstrated that the presence of
paramagnetic fluctuations in the superconducting
region leads to the appearance of atemperature-depen-
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dent finite time of relaxation with electron spin flip-
ping. In the region of ultimately low temperatures, the
effect of paramagnetic fluctuations is insignificant,
whereas a significant decrease in the effective BCS
constant at a finite temperature leads to a decrease in
the superconducting transition temperature T, and to a
corresponding increase in the 2A,/T, value.

The third problem under dispute is the behavior of
the concentration dependence of the superconducting
transition temperature, T(n), inthelimitasn — 1. It
will be shown below that the transition temperature in
this limit tends to zero for any finite Hubbard energy.
With allowance for a finite value V of the Coulomb
interaction between adjacent cells, the superconductiv-
ity disappears within afinite interval of concentrations
inthevicinity of n =1, beginning with a certain critical
vaueV=V,.

Although the integral equations obtained admit
solutions of different symmetry, we will consider solu-
tions of the s type symmetry, which are free of nodes
and lead to a phase diagram with a maximum tempera-
ture of the superconducting transition.

2. CALCULATION
OF THE SCATTERING AMPLITUDE
FOR INFINITE HUBBARD ENERGY

Our task here is to calculate the BCS constant
directly as a function of the dopant concentration ny.
For definiteness, | et us consider the lower Hubbard sub-
band for ny< 1 and, for simplicity, assumethat the Hub-
bard energy is infinite (U —» ). The spectrum of
excitations is expressed via the product of the Fourier
component of the hopping integral t, and the so-called
end factor f equal to the sum of the occupation numbers
of theinitial and final states,

&p = fty—u, f=ng+n; = 1-n_. D

The equation of statein zero external field isasfollows:

ng = 2f 3 ne(E,), f = 1-”—2". @
p

The one-particle Green function is conventionally
defined via the excitation spectrum as

1

G, (p) = o_t 97 nr(2n+1). €
p

The Cooper instability develops when the two-particle
vertex part acquires asingularity for zero total momen-
tum, spin, and energy. The condition for the appear-
ance of this singularity can be formulated as the condi-
tion of solvability of the corresponding homogeneous
system [1]. For the model under consideration featur-
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ing only theinteraction between el ectrons having oppo-
site spins, we obtain the following ladder equation,

FP1, P2|P3, Ps) = rgO)(pli P2|P3, Pa)

=Ty r(py P[P, s-P)GuP) 4

w,p
X GQ—w(S_ p)rs(p1 S_p|p31 p4)1
where s = p; + p, = p; + P4, p are the operators of

momenta, and % (py, p,|p, P) is the vertex part irre-

ducible for cutoffs with respect to parallel momenta.
This vertex part will be calculated using the method
developed by Dyson [2] for calculating the spin wave
scattering amplitude.

In the limiting case of infinite Hubbard energy, it is
sufficient to use a Hamiltonian corresponding to the
lower Hubbard subband,

~ 50,0800

H = t(l’ _r')Xr Xr' ) (5)
r,r(rzr’), o
where X operators obey the commutation relations
{XOXY = X078
DXEOXT = (24 X798, 1,
and the other anticommutators are zero.
Now let us determine the ground (|00}, one-particle
(X*°|0D), and two-particle (X"° X=°|00) states and
calculate their energies. Denaoting by E, the energy of

the ground state, H|0C1= E,|OC) we define the one-parti-
cle excitation energy (measured from the ground state

energy level) viathe commutator [H, X o]:

(6)

AXZ %00 X AI0CE (B, - Ey) X™°00 7
= ¢ X7°o0

By the same token, the two-particle excitation energy is
defined via the commutator [H, X)"° X:°1:
AX" X000 XX °Alo0

_ + 0y 0 (8)
- (EZ_EO)Xr Xr' |OEI

The two-particle commutator [H, X% X°] is calcu-

lated using the operator identity relation
[H, XX = X7 °[H, X2
—0r [y 0 Nyt 07y ©)
= XTI+ XX

where the first two terms can be transformed using
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Fig. 1. The Born amplitudes of kinematic interaction (14).
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Fig. 2. The curve of transition temperature T, versus elec-

tron density n calculated using Eq. (16). Thearrowsindicate
critical electron densities.

definition (7) as
XOTAL X = & XX

~(+)

NP (10)
Xe[H X = ep

Xz OO

(here and above, p and p' are the operators of momenta
acting uponr and r', respectively), and the third term is
directly calculated as

{IA, X" X9

0. 0. (12)
= _zt(rl_r)(xrioxr"o-'- Xryoxr’lo)ér,r'-

5]

The action of the two-particle commutator on the
ground state gives the following equation:

(E,—Eo) XX %00 [&” + €51 X ° X %j00

X (12)
+{[A, X" X% 0T

An approximate expression for the one-particle

energy operator €(p) is provided by Eg. (1). The
effect of scattering is determined by the double com-
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mutator (11). Passing to the momentum representa-
tionin Egs. (11) and (12),

X °X:%00="y w(p, q)exp(ip OF +iq ),

p.q

we obtain an explicit expression for the two-particle
interaction energy

(Ex—Eo)d(p, q) = [ +&5 1w (p, q)
(13)
=3 (k) +t(k=p ~a)w(k, p+a—k).
k

Thus, the scattering amplitude in the Born approxima-
tion depends only on the momenta of scattered particles
[2, 3]

F Py, P2|P3 Pa) = ~t(Ps) ~ (P (14)
The Born amplitudes corresponding to this interaction
aredepicted in Fig. 1.

3. SUPERCONDUCTING TRANSITION
TEMPERATURE

Substituting expression (14) into the homogeneous
part of EQ. (4), we obtain an equation for determining
the point of appearance of the Cooper instability

rs = Tz [tp + 1:s;—p] Gw(p)G—w(S_ p)rs (15)

wp

Using Green functions (3) and summing over frequen-
ciesw=T1T(2n + 1) for s=0, we arrive at the equation
for determining the temperature T of the superconduct-
ing transition,

5 Piann Q%0 = g (16)
) p

T

where &, is the excitation energy defined by Eq. (1).
Equation (16) together with the equation of state (2)
and the condition of electroneutrality determine the
dependence of the superconducting transition tempera-
ture T, on the dopant concentration. Figure 2 shows a
plot of thetransition temperature versusthe electron den-
sity n, which was calculated using Eqg. (16) (see [3-5]).
It should be noted that the integration in Eq. (16) is
performed predominantly in the vicinity of the Fermi
surface, where &, = 0 or t, = W/ f. From this it follows
that the Cooper instability is not developed for negative
values of the chemical potential. This result appears as
quite natural because small values of the chemical
potential correspond to small occupation numbers. The
scattering amplitude will have the same sign as that for
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two particles possessing a small relative velocity and
exhibiting infinitely strong repulsion at small distances.

As the energy of the relative motion increases, the
scattering amplitude decreases and changes sign for a
wavevector on the order of the inverse radius of the
interaction potential. These properties are characteristic
of the scattering amplitude (14) for zero total momen-
tums=p; +p,=p3z+p,=0.

According to Eq. (16), the scattering amplitude cal-
culated on the Fermi surface changessign at zero chem-
ical potential. Using the equation of state for T =0, we
obtain a critical value of ny = 2/3. Beginning with this
dopant concentration, the scattering amplitude is nega-
tive and the transition temperature is finite within the
entireinterval of 2/3 < ny< 1. Theanaysis of filling of
the upper Hubbard subband reveal s the symmetry with
respect to the particle-hole transformation: ny — 2 —
ny. For thisreason, the Cooper pairing according to this
simplest model also takes place in the region of 1 <
ng < 4/3.

Thus, even the Born approximation stipulates the
possibility of a change in the sign of the scattering
amplitude over the entire Fermi surface. This provides
explanation of a rapid change in the superconducting
transition temperature and the existence of narrow
regions of high-temperature superconductivity with
respect to the dopant concentration.

Astheelectron density increases so that n —» 1 and
the lower Hubbard subband is completely filled, the
system passes to a semiconductor state. The radius of
screening of the Coulomb potential rapidly grows to
become infinite for n = 1 and zero temperature. From
thiswe infer that, in the region of n= 1, it is necessary
to take into account the direct intercell Coulomb inter-
action,

(17)

where f, isthe electron density operator expressed in

terms of the Hubbard operators X. Using the commuta-
tion relations,

[X%°8) = X*° A= X"T+XT+2X7

we obtain an expression for the Born scattering
amplitude,

M %Dy, P2|Ps, P2) = —t(Pa) —t(Ps) + O (P3—Py), (18)

which is a generalization of relation (14). Figure 3
shows the Born amplitudes of the Coulomb scattering,
which represent only the first term corresponding to
scattering in the lower Hubbard subband.
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Fig. 3. The Born amplitudes of scattering on the Coulomb
potential in terms of X operators.

In order to determine the superconducting transition
temperature, let us consider the simplest model in
which the influence of the direct Coulomb potential is
bounded by the given potential of interaction V between
nearest neighbors,

d(@) = VZ exp(—iq ).

Using the Coulomb potential in thisform, it is possible
to solve the homogeneous equation for T, by means of
separating variables.

Assuming that the total momentum is zero, we
obtain a solution Y(p) of the homogeneous equation
depending only on the relative momentum p = p; =—p,
of colliding particles,

() = -TY T(p|a) GG (W), (19)

. q

where the scattering amplitude for a simple cubic or
square latticeis

rpla) = ~2t,+ y 2Vcos(p—c)
k

= 2ty + z 2V cosp, Cosq, (20)
k

+ ) 2Vsinp,singy.
2

Under the assumption that the unknown function Y(p)
is even with respect to a change in the sign of momen-
tum, integration of the sum of sinesyields zero. By vir-
tue of the cubic symmetry, integration of the sum of
cosines yields equal values for all summands. There-
fore, with respect to the integration over cosqy, the ver-
tex part in Eq. (20) isequivaent to

~(0)
r (plq) = _2tq + Btptq! (21)
where 3 = V/Dt2. For abcc lattice, we obtain an analo-
gousexpression for 3 without the factor 1/D, that is, not
divided by the number of measurements D.
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Fig. 4. The curve of transition temperature T, versus elec-
tron density n calculated using Eq. (23). The arrowsindicate

critical electron densities n = 2/3, n, = 0.96, ny; = 4/3,
and n, = 1.04.

Thus, we arrive at the following equation for deter-
mining T

W(p) = 2T 1,Gu(A) G- W(a)
® (22)

- BtpT Z thw(q) G—w(_q) llJ(C{) .
This equation can be readily solved by separating vari-

ablesas Y(p) = A + Bt,. As aresult, we obtain the con-
dition of solvability that generalizes relation (16),

t(p) _ £0) o0&
Z 3 tanh = 22 tanhEQT 5 (23)
p

where &, = ft, — . Inthelimit of T, =0, thisintegral is

finite provided that either of the two conditionsis satis-
fied,

p=0 or ftp—uEC%’L—— (24

The first condition is independent of the Coulomb
potential and determines a lower critical concentration
(ng = 2/3) above which the superconductivity appears.
The second condition reduces to the relation 3 = (2 —
n)/u determining the upper critical dopant concentra-
tion which depends on the ratio fw ~ V/w of the Cou-
lomb potential V and the seeding energy width w of the
electron subband.

For T =0 and n = 1, the maximum value of the
chemical potential is L = 1/2 and, hence, the upper crit-
ical electron density for B < 2 remains equal to unity. In
other words, the superconductivity under these condi-
tions exists inside the fixed interval 2/3 < n < 1. The
transition temperature significantly decreases when [3
increases from zero to two. However, as the Coulomb
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potential increases further, the second critical concen-
tration determined from the system of equations

appears,

u/f
2f

B =20 n=2f [pfede. (25)

M

Since f = 1 — n/2, the function n.,(P) can be set in the
parametric form,

2 2K(Q)

B=7 ned =15

4 (26)
K@) = [ede)de, 7=k, 0<i<1,
-1

where pg(e) is the dimensionless seeding density of
states.

In the case of aconstant density of states, we obtain
N = 2(2 + B)/(2 + 3[). When the parameter 3 increases,
N, decreases and, in the limit of B — o, Ny, — 2/3
so that the region of existence of the superconducting
state disappears. As can be checked, this behavior is
retained in the general case of an arbitrary seeding den-
sity of states.

Figure 4 showsthe plot of the transition temperature
versus the electron density n, which was calculated for
a constant density of states. The value of 3 = 2.36 cor-
responds to the experimentally observed critical con-

centration n, = 1.04. A comparison of the Ty(n) curves

presented in Figs. 2 and 4 shows that the inclusion of
the direct Coulomb interaction leads to a significant
shift of the position of maximum toward lower (and
higher) electron densities: from n,, = 0.93 to n,, = 0.8

(and accordingly, from n;, = 1.07 to n,, = 1.16).

Thus, by selecting the magnitude of the direct Cou-
lomb repulsion, it is possible to fit the critical electron
density corresponding to the disappearance of super-
conductivity. However, the value of the transition tem-
perature turns out to be overstated because the calcula-
tion was performed using the Born approximation for
the scattering amplitude. As will be shown below, the
inclusion of scattering on the spin fluctuations provides
for adecreasein T..

4. ALLOWANCE
FOR RELAXATION PROCESSES

Asisknown from the original Hubbard papers, €l ec-
tron excitations in the normal phase are characterized
by afinite free path length determined by scattering on
the charge and spin fluctuations. In the limit of infinite
Hubbard energy, the fluctuations of one-particle charge
and spin states are determined by the longitudina and
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Fig. 5. A homogeneous equation for the vertex part with allowance for (a, b) kinematic and (c) Coulomb interaction and the scat-

tering on (d) longitudinal, and (€) transverse spin fluctuations.

transverse parts of spin correlators calculated in the
same unit cell,

&0 20+ &40 20+
(27)

Ko

l o+ — o+
- élz{xf ,Xr }E]l
where

AKX K = T X - MK+ X0

In the one-loop approximation,

[GOE] ™ =[G VP " -2(p),

%o (P) = Kit(p) Y G (p)t(p) (28)
A

+Kat(p) ' GL7 (PP
.

For the norma paramagnetic phase, Egs. (28) are
rewritten as

GO = iw—(f+Kio)t,+1,  (29)
where
f =X 5. = TG pmtp)
2 ¢ %‘” ’ (30)
x=1-n, K; = K +Kp.

Equationsfor the transition temperature with all ow-
ance for the scattering on the charge and spin fluctua-
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tions have a graphical representation as in Fig. 5 and
can be analytically represented as

Folp) + Kz 5 GulP) G -PIT o(P)
g (31)
= 2T Tu(P)Gu(P) Gus(—P)ty,
w, p'

where
K, = Ko— X% X°%,A(%° X%y .0

After the separation of variables, the conditions of solv-
ability of Egs. (31) can be represented in the following
form:

S,)l)

2Ty —— =1,
§1+KZS‘£)

where the sums over momenta are expressed via the
function o, determined from the self-consistency con-
dition (30),

(32)

SREDX OIR)IHE)
p

_ 0,[K,05+ f]

"~ pK,0, - 2iwf —iwK, o’

(33)
&= S (PGP G-P)
p

_ MO, +iwoy
© pK,o, - 2iwf —iwK,o’

and o5, = 0, * 0. Substituting these expressions
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into (32), we obtain an equation

o (f +Kyy)
ZTZ uK o, —2iwf —iwK, o,
w

=1, (34)

where Kq, = K; = K,. In the low-temperature limit
where K; , — 0, we obtain Eq. (16) for the supercon-
ducting transition temperature in the ideal model.

The quantities o,  can be expressed via the density
of statesp = z p2'>(Ep) on the Fermi surface:

% = Zt Zt—loo =&,

25 ) (35a)
th 2 =0,
) L 1)
2 e E (35h)
2|ootEb

o] = =2itbpsgn( w,),

where the t* value is determined from the condition
&(t*) = 0. The density of states on the Fermi surfaceis
expressed via the seeding density of states py(e) =

Y 8(e—ty) as

E(tl:) = ftD—H =0, (36)

p= T alfty—k) = [pd(fe-wde = TpolH
p

As can be seen, Eq. (34) in fact contains only the com-
bination pKg, which hasthe meaning of theinversetime
of relaxation with spin flipping.

In order to determine the temperature dependence of
the time of relaxation with spin flipping, let us express
K, via mean-sguare spin fluctuations. To this end, the
initial expression for Kq can be transformed as

K = 2K +{A{X"% X a{X"° X% )
~(A{X" K0 A0 X0 )
= 2K+ %( (AKX +AXI DX -a%K )

+ %( BKT+aC 0% —axy G
= 2K, + %( (AKX =AY AKT T —AKTT))

= 2KD+%<(A>‘<I’+—A>‘<?‘)2>.
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Introducing the electron spin operators

§ = -(5<**—5<"‘),
ST (38)
§-8_i¥=%

we obtain an expression for K via a sum of the mean-
square spin fluctuations:

K. =208 80+ 2( (a&)%)

Ak 2
=2 3 ((28)).
k=xYy,z
Based on the isotropy considerations, this sum is
expressed via the mean-square fluctuation <(AS,Z)Z>

which, in turn, can be written in terms of the static spin
susceptibility as

(39)

K, = 6((8%)°) = GTQQ—SZ—D = 6TX(T),

(40)
where x(T) is the static susceptibility of the normal
phase.

Recently, the author demonstrated [6] that the spin

magnetic susceptibility in the Hubbard model with infi-
nite repulsion is given by the formula

_ an
X(n, T) = ah "

1-K-fD,—(1-K)D, - f(D,D,-D?)

By virtue of the equation of state, the K value can be
expressed via the electron density and the other coeffi-
cients, via the integrals of a derivative of the Fermi
function:

2(1—n) n

2y 'Ti2

D = 3 tpne(Ep)-
p
For T — 0, these coefficients can be expressed viathe

seeding density of states py(e) and, hence, via the den-
sity of states on the Fermi level:

Po(e) = > de—t;), K= Ipo(e)e(p—fe)de,
p

1-K =
(42)

(43)
D, = —J'espo(e)é( fe —)de.

In the limit of T = O, the coefficients obey the relation

DD, = D? and, hence, the susceptibility can be
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expressed as a function of the electron density with
only two coefficients (D, and D,):

X0 = TR —E-Kk + 1D,

_ 2po(H/ 1)
1-K+ (1=K + f)(W/ ) pou/f)

Since both the density of states py(e) and the factor 1 —
K + f arealways positive, we may ascertain that the sys-
tem with small electron densities (1 < 0) aways exhib-
its atendency toward ferromagnetism.

In the case of a constant seeding density of states
Po(e) =0(1—€?)/2wat T = 0, the magnetic susceptibility
goesto infinity only for n =0 (see Fig. 6):

(44)

1 2(2-n)°

nT=0) = =——————, 45
X( ) Wn(8—6n— ) (45)
where nisthe electron density and w isthe energy half-
width of the lower Hubbard subband.

For asquare or bcc lattices, the density of stateslog-
arithmically tends to infinity on the zero energy level.
However, the influence of the singularity in the denom-
inator is compensated by the energy factor p/f so that
the magnetic susceptibility remains constant for all
electron densities.

At a finite temperature and a constant density of
states, all integrals are explicitly calculated and the
chemical potential and, hence, the magnetic suscepti-
bility can be determined (Fig. 6). At a small electron
density, we obtain the Curie-Weiss law corresponding
to the gas phase. In thislimit, the mean-square correla-
tor is temperature-independent and acquires the classi-
cal value §(S+ 1) = 3/4. For intermediate densities, the
Curie-Weisslaw isvalid only at asufficiently high tem-
perature. At low temperatures (T < t), the system
exhibits the Pauli spin susceptibility with a Stoner fac-
tor significantly above unity (Fig. 6). Here, the suscep-
tibility never goes to infinity and the system remains
paramagnetic at all electron densities (see[7, 8]).

Thus, it can be ascertained that, for T <t and n >
Tit, the value of K, linearly tendsto zero with decreas-
ing temperature, K — 0, with a proportionality factor
equal to the limiting value of the magnetic susceptibil-
ity at T = 0. From thiswe infer that the spin correlators
are linear functions of the temperature and strongly
depend on the degree of doping x =1 —n.

Performing calculations for zero magnitude of spin
fluctuations and subtracting the corresponding sum
over frequencies from the left-hand part of Eq. (34), we
can obtain asimpler form of the equation for the super-
conducting transition temperature T, (for analogous
calculations, see[9]). It can noticed that, after such sub-
traction, the sums over frequencies are taken in the
region of |w,| = T, and, hence, it is sufficient to take the
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Fig. 6. Plots of the magnetic susceptibility versus electron
density at T = 0 for (I) a semielliptic density of states and
(1) aflat band model.

limit of sgn(w)o,(0+) instead of the function o, (w).
Then, the right-hand part is calculated with a logarith-
mic accuracy, whilethe differential sumintheleft-hand
part can be expressed in terms of the digammafunction
W(x) =)/ (x) as

1+¢[1+“0Eks}_wmlm

g 'l2 4mT.] "0

®tanh(£/2T,) (46)
_ clan )y — |n2Y W
= [0 = InZL

0

Here, all values are determined on the Fermi level e* =
W/ f and expressed via the seeding density of states

Po(e) = 3 3(e—,):
o= 2melpy(eD/f, g = 2elpy(eD/f.

The correlation function K¢ goes to zero in the limit as
T — O andis alinear function of the temperature at
T > w. For this reason, the influence of spin fluctua-
tions reduces to renormalization of the BCS constant:

11 1+w[;+poﬂ<s}_w@5

g o0 g ‘L2 4nfT.) TOO

(47)

(49)

Tl . = ywexp E_glﬂ%

Thisrelation is supplemented by an equation for deter-
mining the energy gap at T = O:

(49)

Thus, the ratio 2A/T, isindependent of the parame-
ter { = po*KJATtf T calculated at T =T,

2/ _ ! 0
T_CO = 8T[€Xp|:ljJEE + ZD}' (50)
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20/T,
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Fig. 7. A plot of the dimensionless 2Ay/T, ratio versus
parameter ¢ constructed using relation (50).

Since the value of K, is proportional to the ratio of the
temperature to the absolute value of the hopping inte-
gral, the parameter ¢ iseventually on the order of unity.

ZAITSEV

Accordingly, theratio 20,/ T, isoverstated as compared
to the well-known value approximately equal to 3.53
according to the classical BCS theory. This can be
observed for most of high-T, superconductors.

The measured values of 2A,/3.53T, for various
high-T, superconductors fal within the interval from
1.27 to 3.12. As can be seen from Fig. 7, these values
correspond to the parameters = 0.05-0.55. For exam-
ple, the experimental values for YBa,CusO, are
20,/ 3.53T. = 1.98-2.27 and { = 0.2.

5. FINITE HUBBARD ENERGIES

In order to write the eguation of state, let us obtain
the Green functions in the simplest zero-loop approxi-
mation. For zero externa field and a given spin projec-

=2

(_s 2)

©0,-)

Fig. 8. The right-hand part of a homogeneous system of equation for four vertex parts of I'; . Cross-hatched squares indicate the
vertex partsof 'y . Indices*a” and “B” denote the transitions (0, +), (-, 2) and (0, —, (+, 2), respectively.
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tion, the inverse Green function is represented by the
matrix

iw—e; - fit,,
_sztp,

clp =0 <ofit, 5
O iw—e,— fot, [
wheree; =1 and e, = U — 1 are the energies of transi-
tions between the empty and one-particle and the one-
particle and two-particle levels, respectively (differing
by the Hubbard energy U); f; =1 —n/2 and f, = n/2 are

the end factors expressed via the electron density n.

Within the framework of the zero-loop approxima-
tion, the equation of stateiswritten using the sum of all
possible products of the components of one-particle
Green function and the end factors:

B¢ +a%0= (X7 + aX ) (X + 0% %)

= TZ exp(iwd) (52)

w, p

x{(Gy(p) + G, (P)) f1+ (Gi(p) + 0GL (P)) f 2 -

Upon calculation and substitution of the matrix ele-
ments and summation over the spin projections, we
arrive at the relation

_ El(lm e)f, +(lw- el)f%
2T
N e -ty O
where
£ = %+522 %Ju +-20(1-n)t,—

arethe two branches of the energy spectrum of one-par-
ticle excitations. Expanding the summand into simple
multipliers, we obtain

n=2T 5 AP)nE)),
pAs (54)
Ai:;[li t,—U(1-n) }
2L P+ -2u@-ny,

The conditions of appearance of the Cooper instability
at afinite Hubbard energy consist of two pairs of equa-
tionsfor the two types of excitations, (0, o) and (—o, 2),
differing by the direction of spin projection and thesign
of thetransition energy €, =€, —€gand e, = €, —€_; (See
Fig. 8).
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Taking into account the commutation relations for
the electron density operators,
[5\(0,0, ﬁ] — 5\<0,01 [5\(—0,2, ﬁ] — 5(—0,21
A= X"T+XT+2X%

we readily obtain the Coulomb correctionsto four scat-
tering amplitudes (see Fig. 3).

Using the double commutation relations between
four operators X, (X*°, X°°%), and (X*°, X*7°), we

obtain asystem of homogeneous equationsfor four ver-
tex parts:

r11
M

(55)

F(0+[0-), Ty = T(=2+2),
F(0+[+2), Ty =T (-2/0-),
M =Acplap

0-|p

—Bt(p)Tz Go ' (0) Gl (PP .

r22 = Bu', B'rcx', )

-2|a’ +2|B'

—Bt(P)T Z G, (PG PPN a,p:

(56)

© = Q(Aa', B Ba', B')ru‘, B

O+|a’ +2|p

—Bt(p)TZG (PG (PIPIM g

= é( B, B Aq, B') Mo, B

2o o+

—Bt()T z G, (PG, (PP g
where indices “0(” and “[” independently run over two
couples (0, +), (— 2) and (0, -), (+, 2), respectively.
Direct calculation of the matrix elements A, g and B,
leads to the following system of relations:
1 = Tz Ot { (1w, —€))(iw,—e,— 1ot}
w,p
+ (iwl_EZ)(iw_EZ_

fato)},

Ap = TS Ot fi{ (i —e) + (i, —ey)}

W, p

A12 = _TZ q)tp{ (l (.01 - Ez) fltp

w, p

+(iw —e,— fotp)(iw,—€;) },
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- C g The coefficients A, s and B,  are symmetric: the sub-
Aa = TZ Prof (0, —ey) (1w, — e = Toly) gtitution €; < ,, f; < f, corresponds to A;; ~——
“P =By, Biy > —Ag, Ay By, and Ay —— By

iy e futp}, Separating the variables, we obtain the following

_ _ (57) equations:
By = sztzfz{ (i, —€;) + (W, —¢€y)}
@ X = ANt Ay, A = AT, =)
By, =~ Ot,{ (i —er) (i, — ey~ fit;) Yi = B4+ By, i k=123
W, p
+(l—e€)(iw, —e — fitp)}, Here, the first index corresponds to the scattering of
(O, +) on the (0, -) excitation; the second index corre-
_ . . spondsto the scattering of (-, 2) onthe (+, 2) excitation;
B = —T Pty{ (i —e)(iw,—e; = fity) and the third index correspondsto amixed scattering of
wp (O, +) on the (-, 2) excitation (the fourth index is miss-
+(iw,—ep) fotp}, ing because x, = —x3 and y, = —y,). It can be also noted
that X3 = (X, — X)/2; this relation follows from the
_ Y P explicit form of A® matrices. Upon summation over
B = T) ®t{(iwy—er)(iwn—ei~ity) the frequencies, it turns out that summands depend on
wp _ the momentum only via the function t,, which makes
+ (10, —€;) oty }, expedient the introduction of the seeding density of
, s s states py(€) = pES(e—tp) . In addition, it can be noted
@ = [(o + &) (0, +E)] that integration for determining the pole part of the sin-
U t — (58) gular integrals is performed near the Fermi surface
g, = o+2-pt U+ -20(1-n)t,, - o -
2 2 P P determined from the relation &, = 0. Using this condi
tion, we can fix the hopping integral t, = t* (instead of
where the chemical potential 1) determined from the condi-
iw, = —iw, = iw, = IMT(2n+1), tion
€ = — ] €y = U I D
T e H = %+§—%Ju2+(t®2—zuu—n)tu (60)
f = 10,0 = (X7 + X%,
VN As aresult, al integrals can be expressed viat*, e; =
f, = f(2,-0) = (X7 +X*?). ~p, and e, =1 + U
3 o, 2e,f, 2e,f, O
A(l) — LD 2 2 2. -1 2 0
E _2t* f2€2 2t* €1f2€2 Zt* Elfz E’
D—ti Ezell(flez— fo€q) ti Elegl(flez_ fo€,) ti (freo—12€1) 0 (61)
A(2) A €1€ 1
A =t A7, t,=——22 L=T .
fie+ Toe E,«»ﬁ + () (wn+ &)
Matrices B®@ = t.B® also exhibit a strong degeneracy,
) H 2?41 feeitfin
A (2
BY = —BLE W G tefl E (62)
D—tiflfzezef tif1f2€1e£1 tiflfz U

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98 No. 4 2004



PECULIARITIES OF THE ELECTRON MECHANISM OF SUPERCONDUCTIVITY 791
710
T T T T T T T T T T T T T
1'0”/; B=25 1 F B=2 1 / B=175
0.8 / ] ] |
0.4 i | |
0.2 | |
1 1 1 1 1 1 1 /6
0.97 0.98 0.99 1.00  0.98 0.99 1.00 098  0.99 1.00
n n n

Fig. 9. Phase diagrams showing the regions of existence of the superconducting phase at T = 0 for the various val ues of the Coulomb

potential B and the rectangular density of states.

The variablesx; , andy, , 3 4in Eq. (59) are expressed
via each other using the relations following from the
form of A and B matrices:

-y 1€ R C b )

Xl - X2f2€l, X3 - X4 - 2 ]
2,2 ‘e (63)

Y1 = Y2;_;1 Y3 = —Y4 = _ylfzel

5€1 1€2

Substituting these relations into Egs. (59), we obtain
the following conditi ons of solvability:

N

_ _[ 2U€ €, + B } aE( 3

fzei + f 162 at,

Here, the calculations were performed for the lower

Hubbard subband, so that the partial derivativeiscalcu-
lated for EO(p) = 0 or t(p) = t*.

The superconductivity takes place for the positive
values of /\, which has the meaning of the effective BCS
constant. The coefficients in Egs. (64) can be expressed
viathe degree of underfilling x = 1 — n and the chemical
potential i = — U/2. Eventually, we obtain

tanh(E/ZT) @ =1
(64)

_ U _ v
€= -U=-35 & =-U+5,
foolex oo _l-x o Ut-ap
! 2 ' 2 2 ' Y7 2(Ux-2p) -
2Ue €, (65)

2 2
frer+ fie;

0 2U
, 2 —2 —
U™+ 41" +4xUp

X

4(Ux—2p)
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Substitution of these expressions into Egs. (64) shows
that, for agiven finite value of the interstitial Coulomb
repulsion between electrons (parameter 3), the phase
diagram is symmetric relative to the simultaneous sub-
stitution i —» —p1 and x — —x. It can be a so shown
that p(X) is antisymmetric if the seeding density of
states py(e) = pCS(e—t(p)) is an even function. For

this reason, the phase diagram describing the existence
of superconductivity interms of the variables (x, t/U) is
symmetric with respect to the particle-hole transforma-
tion X — —X.

For the sake of illustration, let us perform further
calculations for a constant seeding density of states
Po(€) with a unity halfwidth. In this case, the equation
of state (53) can be represented in the form of a full
derivative,

o0& (tp)

22 0(-¢€ (t,)
= E (tE) —-& (-1).

For T = 0, this yields the following explicit function
t*(n) and the energies:

(66)

=[2n°+u(l-n)-2n+1
+(1-2n)/(1+u)®-2nu] (67)
x[2n —u(l—n)—1—J(1+u)’—2nu] ", u= v

t
u
€. = +——n+ +—A/(1+u) —2nu.

These relations, together with the effective BCS con-
stant determined above, allow the phase diagram
describing the existence of superconductivity can be
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Fig. 10. Phase diagrams showing the regions of existence of the superconducting phase at T = 0 for the various values of the Cou-

lomb potential B and the rectangular density of states.

constructed for all values of the dimensionless Hub-
bard energy U/t, Coulomb parameter 3, and electron
density n.

For any strength of the Coulomb interaction, there
exists acritical electron density, corresponding to zero
chemical potential, above which the Cooper instability
can arise. In the flat band model, the corresponding
value can be determined from the condition €,(n, u) =
0, which yields

1 3u,l

24 4

Ny = 9u® + 4u + 4. (68)

As the intercell Coulomb repulsion increases, the
BCS constant decreases and the region of existence of
the superconducting state diminishes. Beginning with a
certain critical value 3. = 2 in a system with arbitrarily
large Hubbard repulsion, the superconductivity appears
when there is a finite underfilling n,, of the Hubbard
subband (cf. Figs. 9 and 10). The temperature of the
superconducting transition exhibits two zeros, corre-
sponding to the electron densities n, and n,. Thisvery
form of the phase diagram is observed for high-T,
superconductors.

6. CONCLUSIONS

It was demonstrated that the phase space of the Hub-
bard model with strong repulsion contains a finite
region in which the scattering amplitude is negative. It
was also found that the Fermi level can occur entirely
in the region where the scattering amplitude corre-
spondsto the Cooper pairing. In this system, the super-
conductivity can exist only in alimited interval of elec-
tron densities.

In this study, various phase diagrams were obtained
for the most symmetric case of superconductivity of the
Cooper type with s-pairing. Asfor the phase diagramin
a system with d-pairing, it can be obtained proceeding
from the same Egs. (56-59) written for afinite Hubbard
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energy. Inthelimit of infinite Hubbard energy, only the
region of s-pairing is retained.

In the nonsuperconducting part of the phase dia-
gram, the effect of magnetic fluctuations reduces to the
appearance of relaxation with spin flipping, the rate of
which is proportional to the first power of the tempera-
ture. This leads to a decrease in the superconducting
transition temperature. In the superconducting part of
the phase diagram, the relaxation rate exhibits an addi-
tional decrease caused by arapid drop of the supercon-
ducting gap and the corresponding decrease in the den-
sity of state on the Fermi level. This corresponds to an
increase in the 2A/T, ratio.
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Abstract—The Hall coefficient Ry, resistivity p, and Seebeck coefficient S of the CeAl, compound with fast
electron density fluctuations were studied in a wide temperature range (from 1.8 to 300 K). Detailed measure-
ments of the angular dependences Ry (¢, T, H < 70 kOe) were performed to determine contributionsto the anom-
alous Hall effect and study the behavior of the anomal ous magnetic R and main R, components of the Hall
signal of this compound with strong electron correlation. The special features of the behavior of the anomalous

magnetic component RZ’" were used to analyze the complex magnetic phase diagram H-T determined by mag-
netic ordering in the presence of strong spin fluctuations. An analysis of changes in the main contribution

R, (H, T) to the Hall effect made it possible to determine the complex activation behavior of this anomalous

component in the CeAl, intermetallic compound. The results led us to conclude that taking into account spin—
polaron effects was necessary and that the Kondo | attice and skew-scattering model swere of very limited appli-
cability as methods for describing the |low-temperature transport of charge carriersin cerium-based intermetal-
lic compounds. The effective masses and localization radii of manybody states in the CeAl, matrix were esti-
mated to be (55-90)my, and 6-10 A, respectively. The behaviors of the parameters Ry, S, and p were jointly
analyzed. The results allowed us to consistently describe the transport coefficients of CeAl,. © 2004 MAIK

“ Nauka/Interperiodica”

1. INTRODUCTION

One of the most interesting and complicated proper-
ties of rare-earth metal-based compounds with interme-
diate valence and heavy fermionsisthe Hall coefficient
Ry [1-4]. In particular, in the overwhelming majority
of cases, the Hall effect in cerium-based intermetallic
compounds is anomalous both in the magnitude and
sign of R,. Indeed, the R, value for conducting cerium
compounds is dozens of timeslarger than the Hall coef-
ficient of their nonmagnetic analogues (La, Y, Lu, etc.,
compounds) and positive at temperatures comparable
to the characteristic temperature of spin fluctuations
T4 [1, 2]. Studies performed by various authors for var-
ious Ce-based intermetallic compounds (CeAl; [5],
CeCu,Si, [6], CeCug [ 7], CePd; [8], CeNiSn[9], CeOs,
[10], CePb, [11], etc.) showed that their R, (T) temper-
ature dependences contained large-amplitude maxima

at Tf{;x in the neighborhood of the Ty temperature.
Accordingto[1, 2], the most correct explanation of this
behavior of the R (T) parameter can be obtained using
the model of skew-scattering of charge carriers by

localized magnetic moments of rare-earth metal ions.
However, our preliminary study of the Hall coefficient
performed comparatively recently [12] for a typical
representative of this class of compounds, the so-called
magnetic Kondo lattice CeAl,, revealed acomplex acti-
vation behavior of the R,(T) parameter, which did not
fit in with the concept [1, 2] of the determining role
played by the scattering effect in the formation of
anomalies of the R, coefficient in this intermetallic
compound.

In this work, we thoroughly studied the Hall effect
in CeAl, in awide temperature range from 1.8 to 300 K
and in magnetic fields of up to 70 kOe. Our goal wasto
experimentally examine if the existing theoretica
approaches could be used to describe the anomalous
Hall effect in rare-earth metal compounds with long-
range magnetic order and heavy fermions. To elucidate
the special features of the low-temperature transport of
charge carriersin CeAl,, we also measured the temper-
ature dependences of the Seebeck coefficient S(T) and
resistivity p(Ho, T) at fixed magnetic field values.

1063-7761/04/9804-0793$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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2. EXPERIMENTAL

The transport characteristics were measured in this
work for polycrystaline CeAl, samples with a cubic
Laves phase structure. The samples were synthesized
from stoichiometric amounts of high-purity compo-
nents in an electric arc furnace with a nonconsumable
tungsten electrode on a water-cooled copper hearth in
an atmosphere of purified helium. Composition homo-
geneity in the bulk was attained by repeatedly remelt-
ing the samples with subsequent homogenizing anneal -
ing in evacuated quartz ampules. X-ray (DRON-3) and
microstructure (optical microscopy) analyses showed
the products to be single-phase.

The Seebeck coefficient was measured by the four-
probe method using a setup of an origina design simi-
lar to that described in [13]. The temperature gradients
AT on the samples were varied in the region of alinear
response of the thermal electromotive force voltage
U, , O AT measured for various pairs of sample con-
tacts [13]. The relative maximum superheating value

SLUCHANKO et al.

AT/T between the “cold” and “warm” sample ends was
no more than 5%.

An experimental setup of an original design was
used to measure the Hall coefficient; its block diagram
isshownin Fig. 1. Measurements were taken in cryostat
1 with superconducting magnet 2 while the sample was
step-by-step rotated in a magnetic field. Sample 3 pre-
pared for direct-current measurements in the four-con-
tact configuration (Fig. 1, inset a) was placed on copper
plate 4 (Fig. 1, inset b) of arotary device together with
Hall probe 5 and CERNOX 1050 standard resistance
thermometer 6 (Lake Shore Cryotronics, USA). Hall
probe 5 measured the magnetic field vector component
normal to the surface of the sample. The assemblage on
copper plate 4 was rotated in the magnetic field of the
superconducting magnet step-by-step (stepsof Ad =1.8°)
by step motor 7. After each rotation through 2-5 steps,
the position of the assemblage was fixed (see insets in
Fig. 1), and signals from the sample Hall contacts, Hall
probe, and resistance thermometer were measured.
A modd 2182 (Keithley, USA) nanovoltmeter was
used to directly perform precision measurements of the

(a)

Superconducting
solenoid current

Uy ORy(T,H)Hcos ¢

source

7 Microprocessor
device

Temperature
controller

Digital voltmeters

Nanovoltmeter

PC ...
LAY
,

N

Fig. 1. Block diagram of setup for measuring transport characteristics: (1) cryostat, (2) superconducting magnet, (3) sample,
(4) copper plate, (5) Hall probe, (6) resistance thermometer, (7) step motor, and (8) double-walled ampule. The geometry of contacts
to the sample and the position of the sample on the plate are shown in insets aand b, respectively.
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Fig. 2. Temperature dependences of the resistivity of CeAl, in various magnetic fields: Hy = 0 (1), 32 (2), 50.5 (3), 60 (4), and
70.7 kOe (5). Curve 6 is the temperature dependence of the Seebeck coefficient. Curves 1 and 6 are shown in inset aon alinear
temperature scale; a scheme of crystal-field splitting of the 2F5/2 Ce ground state in CeAl, is shown ininset b.

Hall voltage from the sample. The temperature of the
measuring cell with the sample, which was placed in
double-walled ampule 8, was stabilized and controlled
by a temperature controller of an origina design. The
controller provided a 0.01 K accuracy of temperature
stabilization. The system for recording and controlling
low-temperature experiments was connected to a PC
(Fig. 1) through a microprocessor device. The PC was
used to accumulate and process experimental informa:
tion and set the required parameters and operating con-
ditions for the electronic components of the setup.

The resistance of CeAl, was measured by the four-
probe direct-current method. In magnetic fields, the
behavior of transverse (I O H, Fig. 1, inset a) magne-
toresistance was studied.

3. RESULTS

The results of measurements of the resistivity p(T,
Ho) in a fixed magnetic field Hy < 70 kOe and of the
Seebeck coefficient S(T) of CeAl, are shown in Fig. 2
(curves 1-5 and 6, respectively). The temperature

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

dependence p(T) in the absence of an external magnetic
field (Fig. 2, curve 1) iscloseto linear in the temperature
range 100-300 K (Fig. 2, inset a). At T < 100 K, the
resistance decreases more sharply as temperature low-
ers. After the p(T) curve passes through a minimum
near 13K (Fig. 2, inset @), p increases ailmost |ogarith-
mically as temperature decreases and passes through a

maximum at Th, = 5.5 K. Below this maximum, the
p(T) curve hasakink at T = Ty = 3.8 K (marked by a
dashed linein Fig. 2), which correspondsto long-range
magnetic ordering (antiferromagnetic modulated struc-
ture[14]) of the system of magnetic moments|ocalized
on cerium centers in the CeAl, matrix.

An external magnetic field of up to 70 kOe notice-
ably changes the form of the p(T) curve. The appear-
ance of substantial (up to 50%) negative magnetoresis-
tance in the specified range of field valuesat T < 20 K
(Fig. 2, curves 1-5) is accompanied by a broadening of
the low-temperature p(T) maximum and its shift
upward along the temperature axis. At the same time,
the suppression of the low-temperature magnetic con-
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Fig. 3. Angular dependences of the Hall resistance of CeAl, in magnetic fields up to 70 kOe at temperatures Ty = 4.17 (a) and

3.4K (b).

tribution to p(T) in magnetic fields H, > 30 kOeismuch
more effective at helium temperatures T < 5 K. Thisin
turn transformsthe low-temperature p(T, Hg) maximum
into a step (Fig. 2, curves 1-5). Note that the experi-
mental datapresentedin Fig. 2 (curves 1-5) arein close
agreement with the results of measurements performed
in [15] for polycrystalline CeAl, samples at low and
superlow temperatures in magnetic fields up to
200 kOe.

The temperature dependence of the Seebeck coeffi-
cient YT) of CeAl, measured in this work is shown in
Fig. 2 (curve 6). In the temperature range 100-300 K,
the Seebeck coefficient is a owly varying function of
temperature, which takes on positive values, T), how-
ever, sharply decreases as temperature lowers (T <
100 K) and changessignat T=T,,, = 45 K (Fig. 2, see
also inset @). In addition to a negative S(T) minimum of
a considerable amplitude at T,;, = 10 K, our precision
Seebeck coefficient measurements revealed the pres-
ence of asingularity in the vicinity of the Néel temper-
ature Ty = 3.85K (thedashed linein Fig. 2); thissingu-
larity corresponded to the transition to the magnetically
ordered state of localized cerium magnetic moments.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

Notethat, asfar aswe know, thisresult isthefirst exper-
imental observation of the S(T) curve singularity that
corresponds to the transition of CeAl, to the magneti-
caly ordered phase. The small amplitude of T)
changesa T = Ty (AS< 1 pV/K a |§> 20 pV/K)
allows us to exclude the formation of a magnetically
ordered state of CeAl, as a factor responsible for the
deep negative Seebeck coefficient minimum.

As mentioned above, we measured the Hall resis-
tance component py(H, T) on the setup shownin Fig. 1
by rotating the sample through a certain angle and then
by fixing its position in amagnetic field. Typical fami-
lies of the angular dependences py (¢, Hy, Tp) obtained
for CeAl, in various magnetic fieldsH < 70 kOe both at
temperatures above the Néel temperature (for instance,
a T, =417 K > Ty = 3.8 K) and in the magnetically
ordered state (T, = 3.4 K < T,) are shown in Figs. 3a
and 3b, respectively. Measurements with sample rota-
tionsin amagnetic field, when the amplitude of the nor-
mal component of the external magnetic field vector
Hy|[n changes by the harmonic law Hy = Hycosd,
should usually be expected to give a sine Hall voltage
dependence of theform Uy, [ Ry(T, Hp)Hycoso (Fig. 1,
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Fig. 4. Angular dependences of the Hall resistance of CeAl, at various temperaturesin magnetic fields Hg = 3.4 (a) and 32 kOe (b).

inset a). However, with CeAl, samples, such aform of
Pu(d, Hy, To) curvesisonly observed in limited temper-
ature and magnetic field ranges. In particular, at helium
temperatures, an angular dependence of the Hall signal
close to sinusoida is only observed in fields up to
35 kOe (Fig. 3a). At temperatures below Ty, the shape
of the p,(¢) curves becomes much more complex and
a contribution of even harmonics is added to the main
signal constituent p(¢) O cos¢ over the whole range
of magnetic fields used in thiswork (Fig. 3b). Changes
in the form of the py(¢) curves as temperature lowers
fromT > Ty to T < Ty are most visually shown in
Figs. 4a and 4b, where the angular dependences of the
Hall resistance measured at various temperatures in
magnetic fields H, = 3.4 and 32 kOe, respectively, are
plotted.

Another specia feature of the py(¢) dependencesin
CeAl, is the appearance of a contribution of even har-
monics to the Hall effect in high magnetic fields H >
40 kOe. This contribution is observed both in the tem-
peratureregion4< T< 75K (above T\ ) andat T < Ty
for T and H values outside the region of the low-tem-
perature antiferromagnetic modulated phase in the H-T
magnetic phase diagram of CeAl,. This anomalous
Hall resistance behavior most clearly manifestsitself in

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

fieldH,= 60 kOe[Fig. 5a, all experimental curveswere
obtained at temperatures T > Ty(H)]. Another visua
example of the appearance of the specified additional
contribution of even harmonicsis provided by the fam-
ily of py(T) curvesrecorded at temperature T,=5.5K >
Ty (Fig. 6a, curvesin thefield range 40-80 kOe). At the
same time, the angular dependences of the Hall resis-
tance again become sinusoidal already at T,= 8K (e.g.,
see the family of curves shown in Fig. 6b) over the
wholefiled range H < 70 kOe studied in this work.

To conclude this section, we stress that the anoma-
lous component observed in this work and caused by
the appearance of even harmonics in the Hall signal
cannot be explained by asymmetry in the arrangement
of Hall contacts on the sample of the intermetallic com-
pound and, therefore, cannot be related to the addition
of acontribution of CeAl, magnetoresistance, whichis
an even magnetic field function, to Uy(T, H, ¢). The
angular dependences of magnetoresistance p(¢, H, T)
measured simultaneously with Hall effect dependences
allow us to exclude such an influence of the ordinary
resistive component, which arises because of “non-
equivalence” in the arrangement of Hall contacts to the
sample, as afactor determining the shape and character
of variations of Uy(T, H, ¢) for all CeAl, samples stud-
ied in thiswork.
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4. DISCUSSION
4.1. Separation of Contributions to the Hall Effect

We analyzed the results obtained for the angular
dependence of the Hall resistance (Figs. 3-6) of the
CeAl, intermetallic compound using the representation

Pu(9, To, Ho)

1

= Pro+ PH1SIN(P — 1) + Pr2SIN[2(0 — b 2)], @
which includes not only the main component p,; (odd
with respect to the magnetic field) and the constant shift
PHo, but also the second harmonic contribution. The
procedure for separating the contributionsto (1) ismost
clearly shown in Fig. 5b, where the contributions with
the amplitudes py; and py, found for the family of
curvesrecorded at T = 3.8 K in various magnetic fields
H < 70 kOe are plotted aong with the experimental

expt

pL curves. The accuracy of approximating the exper-

SLUCHANKO et al.

imental data by (1) can be estimated from the differ-
ences

peprt(q)’ To, Ho) =Pro—Pu1SIN($ —d 1)
—Pr2SIN[2(d — b )],

which arealso plottedin Fig. 5b. Notethat (1) isafairly
good approximation everywhere except the region of
high magnetic fields H > 50 kOe, where a noticeable
additional contribution of higher even harmonics

appearsin the pi™ (¢) curves (Fig. 5b, curves D).

We applied the approach described above to deter-
mine the temperature and magnetic field dependences
of the amplitudes of both the main contribution to the

Hall effect py,[mQ]d[cm] = pf, [MQ cm], where d is

the sample thickness and p{, is the anomalous Hall
resistance component (according to the classification
suggested in [1-4], this is the anomalous contribution
of skew scattering) and the anomalous magnetic com-
ponent p,,d = piy . The results are plotted in Figs. 7
and 8, respectively. Figure 7 showsthat the field depen-
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Fig. 5. (&) Angular dependences of the Hall resistance of CeAl, at various temperatures in magnetic field Ho = 60 kOe and (b) sep-

aration of contributionsto (1) (seetext) at variousH valuesand Tp = 3.8 K; p|

&P are experimental data, pyy isthe main component

contribution, py, is the second harmonic contribution, and py — Py — PH2 IS the difference signal (triangles).
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dences of the Hall resistivity py, (H, To) are essentially

nonlinear not only for the antiferromagnetic modul ated
phase of CeAl, but also in theimmediate vicinity of the
Néel temperature (Fig. 78). In magnetic fields H <
70kOe, they remain nonlinear up to temperatures
above 10 K, and, only at T = 30 K do the field depen-

dences p, (H) become linear (Fig. 7b).

4.2. The Anomal ous Magnetic Hall Effect Component

The temperature dependences of the anomalous

magnetic contribution to the Hall resistivity pi;" (H, To)

were studied at various fixed external magnetic field
values, theresultsare shownin Fig. 8. At comparatively
low fieldsH < 30 kOe, the appearance of the anomal ous
magnetic contribution can be unambiguously related to
the transition to the antiferromagnetic modulated phase
at temperatures below Ty = 3.85 K (Fig. 8). The appear-

ance of the anomalous magnetic contribution pg"
becomes noticeable also at T > Ty asfield H increases,

and, in field H, = 60 kOe, the presence of a small p{}"
component is observed at temperaturesupto T= 8-10K

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

(Fig. 8). Such abehavior of pii" (T, H) is, onthewhole,
in agreement with the conclusions drawn in [16-18],
where quasi-elastic neutron scattering by CeAl, was
studied, and with the H-T magnetic phase diagram of
this compound [19] (see also inset in Fig. 8). In partic-
ular, our data lend support to the conclusion [16] of the
existence in CeAl, of aregion of strong magnetic fluc-
tuations with the coherence length & > 20 A at temper-
atures up to 12 K. Note that, in the series of Laves
phases LnAl, (Ln = Ce, Nd, Tb, Dy, etc.), al trivalent
rare-earth metal dialuminides except CeAl, are ferro-
magnets. This leads us to suggest that the main factor
responsible for the complex long-range antiferromag-
netic ordering in the magnetic Kondo lattice of CeAl,is
precisely the competition between magnetic RKKY
exchange interaction and the mechanism of spin-flip
scattering. The latter mechanism is responsible for the
compensation (commonly attributed to the Kondo
effect) of the localized rare-earth metal magnetic
moment. This reduction of the magnetic moments of
rare-earth metal ions determines the trend toward the
formation of a nonmagnetic ground state and resultsin
a substantial instability of the ferromagnetic structure.
It appears that, in this situation, the presence of strong
ferromagnetic fluctuations in the CeAl, matrix in high
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Fig. 7. Field dependences of the main anomal ous component pa of the Hall resistivity of CeAl, at various temperatures.

magnetic fields H = 60 kOe at both helium and interme-
diate (510 K) temperatures can result from the sup-
pression of Kondo magnetic moment fluctuations on
cerium centers by an external magnetic field H ~ Hy =

KeTi/Ms = 70 kOe (Tro 2 = 5K [16]). Another conse-
guence of magnetic ordering in CeAl, at low tempera-
tures under the conditions of the competition between
various mechanisms (see above) appears to be the for-
mation of new phases in the H-T magnetic diagram of
CeAl,. In particular, the phase transition from the anti-
ferromagnetic modulated phase to a noncollinear mag-
netic structure was observed in [19] (Fig. 8, inset).

Yet another interesting feature of the anomalous
magnetic component of the Hall resistivity is the non-

monotonic magnetic field dependence of the pi" (H)
amplitude at temperatures T < Ty (Fig. 8). These results

can more conveniently be discussed using the R}, and
R" Hall coefficients, which can be directly obtained
from p;, and pfy" and the magnetic field value. The

field dependences of R, and RY" found from the data
shown in Figs. 3-6 are plotted in Fig. 9. According to

Fig. 9a, the R}, and R{" Hall coefficients are compara-
ble in order of magnitude at helium temperatures, and

the anomalous magnetic contribution RY"(H, T,) is
indeed essentially nonmonotonic. The RY" (H) curves

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

have a singularity (a maximum) in the vicinity of
H, . = 15 kOe (Fig. 9a), which increases in amplitude
as temperature decreases below liquid helium tempera-

A" > HQ cm

03 - "///.’l/,, -

D
%

0.2%

0.1 ® 34kOe
D 320kOe N
5 60.0kOe
0 Lnssn-u—e ey
2 Ty 5 10

T,K
Fig. 8. Temperature dependences of the anomalous mag-

netic component pﬁm (see text) of the Hall resigtivity in

magnetic fieldsHg = 3.4, 32.0, and 60.0 kOe; the H—T phase
diagram of CeAl, isshown in theinset: AFM is the antifer-
romagnetic modulated phase, P is the paramagnetic phase,

and HCAF is the phase boundary of the AFM phase; the

lower hatched region corresponds to the mode of the reori-
entation of antiferromagnetic domains by an externa field
(see text), and the upper hatched region corresponds to a
noncollinear magnetic structure (according to [19]).

No. 4 2004



GENESIS OF THE ANOMALOUS HALL EFFECT IN CeAl,

Ry, 103cm?/C

801

Ry, 10-3cm?/C

m750K

(b) m414K

i 42,0
m 05.50 K
®7.50K
RY 010.0K

i A160K Iis
A30.0K
v40.0K

- H1.0

A b G ——— 5

1
0 20 40 60 H,kOe

1
0 20 40 60 H, kOe

Fig. 9. Field dependences of the anomalous Rﬁi and anomal ous magnetic Rﬁm components of the Hall coefficient of CeAl, at var-
ious temperatures. Field dependences of the phase shift between harmonics (see text) are shown in the inset.

ture and becomes equal to R, at T< 3.4 K.Ananalysis

based on (1) also makes it possible to determine the
phase shift Adp = ¢ — b, between the main and even
Hall signal harmonics, which offers an additiona pos-
sibility of quantitative characterization of the changein
the anomal ous magnetic contribution and related scat-
tering of charge carriers by CeAl, magnetic structure
features asthe temperature and magnetic field vary. The
inset in Fig. 9a shows that, to within the accuracy of
measurements, the phase shift A takes on fixed values
at H < 30 kOe (A = 25°) and H = 40 kOe (A = —-35°).
A sharp change in the sign and value of A occursin a
fairly narrow neighborhood of H* = 35 kOe, and this
H* value remains virtually unchanged bothat T < Ty =
3.85K (this corresponds to the antiferromagnetic mod-
ulated phaseinthe CeAl, matrix) and intheregion from
4 to 8 K characterized by strong magnetic fluctuations
in the CeAl, matrix (Fig. 9a). For a more visual and
convenient representation, the change by 60° in the
phase shift Ad = ¢y, — ¢, Of the second harmonic with
respect to the main signal in thevicinity of H* = 35 kOe

isshownin Fig. 9aasareversa of sign of the R com-

ponent. In our view, the observed behavior of the A
parameter isan additional argument in favor of therear-
rangement of the magnetic structure of CeAl,. It aso
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lends support to the conclusion [19] on the existence of
a“horizontal” (H; = const) phase boundary in the H-T
magnetic phase diagram of this compound (seeinset in
Fig. 8).

While discussing the nature of the Ry} (H, T,) max-
imain the vicinity of H,, = 15 kOe (Fig. 9a), we must
mention the results obtained in [20-22] for the thermal
expansion and magnetostriction of CeAl,. According
to[20, 21], the reorientation of antiferromagnetic
domains occurs in the antiferromagnetic modulated
phase of CeAl, asthe magnetic field value increases to
15 kOe. The antiferromagnetic domains, initially ori-
ented chaotically (uniformly), assumethe orientationin
which the antiferromagnetic polarization direction is
transverse with respect to the external magnetic field.
As CeAl, magnetization reversal at H < 20 kOe virtu-
ally does not change the Ty temperature of the mag-
netic transition in this compound (the lower hatched
phase diagram region in theinset in Fig. 8), the authors
of [20, 21] arrived at the conclusion of the reorientation
of antiferromagnetic domains by an external magnetic
field without noticeable changes in their size and anti-
ferromagnetic polarization. These findings lead us to
conclude that the appearance of the anomalous mag-
netic scattering of charge carriers and, accordingly,
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Fig. 10. Temperature dependences of the main anomal ous component of the Hall coefficient of CeAl, in magnetic fieldsHy = 3.4,

32.0, and 60.0 kOe.

essentially nonmonotonic behavior of the anomalous

magnetic component of the Hall coefficient RY" at H <

30 kOe are likely caused by magnetic domain magneti-
zation reversal in the magnetically ordered state of
CeAl,.

4.3. The Main Hall Effect Component in CeAl,

The temperature dependences of the main (odd in
magnetic field) anomal ous component of the Hall coef-
ficient RY, (T, Ho) of CeAl, measured in thiswork in a
wide temperature range from 1.8 to 300 K at several
fixed magnetic field values are shown in Fig. 10. In
agreement with the results obtained in [5-10] for other
cerium-based intermetal lic compounds with charge and
spin fluctuations, a positive large-amplitude R (T)
maximum was observed in the vicinity of the character-
istic temperature of spin fluctuations Ty equal to T4 =
T« = 5 K for the compound under study [16]. As the
condition pgH = kgTg is satisfied in fields H < 70 kOe
used in this work (see above), the amplitude of the
R, (T) maximum essentially depends on the external

magnetic field value. The magnetic field-induced sup-
pression of spin fluctuationsthat are caused by spin-flip
scattering of charge carriers results in nonlinear field

dependences of the Hall resistivity py, (T) (see Fig. 7)
and, as a consequence, a sharp decrease in the ampli-

tude of the R, (T) maximum (Fig. 10). Note that the

anomalous positive component R (T) cannot be

related to the magnetic (antiferromagnetic) ordering of
the CeAl, matrix at temperatures T < Ty = 3.85 K.

Indeed, the width of the Hall coefficient R, (T) maxi-
mum is fairly large compared with Ty (AT ~ 10 K,

Fig. 10), and the suppression of the R, amplitude in
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magnetic fields occurs amost equally effectively at
both T, = Ty (e.9., see Fig. 9a, curvesfor Ty = 4.14 and
3.8K)and Ty<Ty(eg., Tp=3.4KinFig.9a). Itfollows
that the nature of the appearance of the anomalous pos-
itive Hall effect in the vicinity of T4 may be common to
CeAl,, which is a magnetic Kondo lattice according to
the classification suggested in [23] (T4 = Tk), and other
cerium-based intermetallic compounds with strong
spin (nonmagnetic Kondo lattices [23]) and charge
(intermediate-valence compounds) fluctuations, in
which nonmagnetic ground states are formed as tem-
perature decreases because of manybody effects. Simi-

larly, the resistivity maximum at T2, = 5.5 K (Fig. 2,
curve 1) and the negative Seebeck coefficient minimum
(Fig. 2, curve 6) should in our view betreated as special
features of low-temperature transport in compounds
with electron density fluctuations. In the CeAl, matrix,
these fluctuations are caused by the formation of many-
body states. The problem of a consistent interpretation
of p(T), R (T), and T) singularities will be consid-
ered in the next section in more detail.

The suppression of the R, (T) maximum in mag-
netic fields is accompanied by its noticeable shift
upward along the temperature axis (see Fig. 10). For
instance, the R}, (TE';X ) Hall coefficient decreases more
than twofold in magnitudein magnetic field H = 60 kOe

(Fig. 10), whereas the TrF,:f,j,x value increases to
TR (60 kO€) = 6.5 K. Such a noticeable shift of the

low-temperature singularity of Rf, (T) in high magnetic
fieldsupward along the temperature axis correl ates well
with the behavior of the low-temperature resistivity
maximum in magnetic fields (see Fig. 2 and [15]). Asa
result, while the absolute R, (4.2 K) and p(4.2 K) val-
ues decrease substantially and in paralléel to each other

No. 4 2004



GENESIS OF THE ANOMALOUS HALL EFFECT IN CeAl,

(both parameters decrease approximately threefold in
magnetic field H = 70 kOe), their ratio pu, = R}, /pisa
slowly varying magnetic field function (Fig. 11).

We must stress that this noticeabl e shift of the low-

temperature singularities of Rf, (T) and p(T) upward
along the temperature axis, which depends on the exter-
nal magnetic field strength, cannot be given a ssimple
explanation within the traditional Kondo lattice model.
Indeed, in this approach, the specified anomalies of the
galvanomagnetic properties of the system with strong
electron correlation appear to be related to the forma-
tion of a manybody resonance in the density of elec-
tronic states in the neighborhood of Fermi energy Er
having a width about kzT. It is expected in this situa-
tion that the resonance spin-flip scattering of conduc-
tion electrons by localized cerium magnetic moments,
which determines both the renormalization of the den-
sity of states mentioned above and the appearance of

the anomalies of R}, (T) and p(T), should be aimost
fully suppressed by magnetic field H ~ kgT«/z, and

that the R}, (Tmax) and p(Th,) parameters should
decrease without noticeable changes in the positions of
the low-temperature galvanomagnetic singularities.

Another special feature of the behavior of the anom-
alous Hall coefficient in CeAl,, which also does not fit
in with the traditionally used approach, is the complex
activation dependence of R (T) in this intermetallic

compound; this dependence was for the first time stud-
iedin[12]. The temperature dependence of the anoma-
lous Hall coefficient is plotted in the coordinates

log(RS —R) = f(1/T) in Fig. 12. In these coordi-

nates, we easily see three characteristic temperature
intervals of the R (T) dependence and, accordingly,

three asymptotic behaviors. Inthetemperatureintervals
50-300K (1) and 1040K (I1), an anomalous activation
growth is observed as the temperature decreases,

RA(T) O exp(Eay o/keT) )

(see Fig. 12); the activation energies in these intervals
are E,/kg = 12.0 £ 0.5 K and E/ks = 7.6 £ 0.2 K,
respectively. Note that, as distinct from the results
reported in [12], these E,; and E,, values were obtained
with the Hall coefficient of the LaAl, nonmagnetic ana-
log of cerium dialuminate used as the Rf, anomalous
component of the CeAl, compound; for LaAl,,

LaA'Z = —6 x 10 cmd3/C [24]. In temperature interval
[l (T < 5 K), the behavior of R, (T) below its maxi-
mum isfairly well described by the dependence

RA(T) O exp(—EaglksT). ©)
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The E_4/kg value, which liesin the interval 1.5-2.6 K,
depends on the external magnetic field (see Fig. 12).

As has been mentioned above, such a behavior of
the Hall coefficient R, (T), very unusual for metallic
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systems, not only does not fit in with the Kondo lattice
model, but also cannot be given a simple explanation
in terms of the model of skew-scattering of charge car-
riers[1-4]. Indeed, both approaches under consideration
are based on the assumption of a prevailing role played
by resonance spin-flip scattering of conduction electrons
by localized magnetic moments of rare-earth metal ions.
From the point of view of the authors of [1-4], both the
anomalous positive Hall effect in compounds with
heavy fermions (including cerium-based compounds)
and resistivity anomalies are consegquences exclusively
of the specia features of scattering effects. In particu-
lar, the contribution of skew-scattering at temperatures

above the R}, (T) maximum (that is, at T > T,) is esti-
mated in [1-4] by the approximate equation

RL(T) O p(M)x(T), (4)

where x(T) isthe reduced magnetic susceptibility of the
system. On the whole, applying (4) to analyze the data

onthepy = R (T)/p(T) O x(T) parameter (Figs. 2, 10),
which characterizes the scattering of charge carriers,
leads to qualitative agreement between the experimen-
tal results obtained in this work (see inset in Fig. 11)
and the conclusions drawn in [1-4]. The Curie-Weiss

behavior of Wy (T) O (T -0, ,) O xXT) is character-
ized by the paramagnetic Curie temperatures ©; =
-350+ 20 K and ©, = -3.6 £ 0.5 K. However, as has
been mentioned above, the whole set of manybody

effectsin the low-temperature transport of charge carri-
ers, namely, the activation behavior of the Hall coeffi-

cient, shiftsof R, (T) and p(T) singularitiesin magnetic
fields, etc., fall outside the scope of this approach. In
addition, the influence of crystal-field splitting of the
2F, cerium state (see Fig. 2, inset b) on the behavior of

the Hall mobility p, = R% (T)/p(T) was not consistently

taken into account in [1-4], which impedes a quantita-
tive analysis of these results.

The use of the approach based on the formation of
spin-polaron states in Hubbard bands to interpret the
anomalies of the low-temperature transport in the com-
pound with heavy fermionsthat we are studying isin our
view much more preferable (e.g., see monograph [25]
and [26, 27]). Such states arise as a result of fast spin
fluctuations in the immediate vicinity of localized
cerium magnetic moments in the CeAl, matrix. This
approach provides a natural explanation of the activa-
tion behavior of the Hall coefficient in CeAl, (see
Fig.12). In our view, the activation energies E,; »
should be put in correspondence to the characteristics
of spin—polaron complexesformed in the vicinity of Ce
sites. Thetransition fromT=> A, , (interval | in Fig. 12)
to T <A; = 100 K determines the change in the mode of
fast spin 4f-5d fluctuations (here, A, , are the crystal-
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field splitting parameters of the?F, cerium state, A, =
100 K and A, = 170 K [16-18, 28-30], see Fig. 2,
inset b). As a consequence, the parameters of spin-
polaron states in CeAl, change. The localization radii
apy; , and effective masses my , of manybody states
with the binding energies E,,/ks = 12 K (Fig. 12, inter-
val I) and E,/kg = 7.6 K (Fig. 12, interval Il) can be
estimated by the equations

My, = €Tei/ Uy, )

a’;§1,2 = 1l 2B, .M 5. (6)

The relaxation time T4 a various temperatures
between 4 and 300 K can be determined from the half-
width /2 of the quasi-elastic peak in the neutron scat-
tering spectra of CeAl, (e.g., see[16]). The equation

[/2 = #ilty, 7

gives1.3x 102 and 4.1 x 103 sfor 14 at 5and 60 K,
respectively. Using the experimental data on p(T) pre-
sented in Figs. 2, 10, and 11 and Egs. (5) and (6), we
obtain the following effective masses of heavy charge
carriers and the corresponding localization radii of
spin-polaron states:

my (60 K)=90m,, a¥, = 6.4A,

pl

m;(5K)=57m,, a, = 10A

p2

(my is the mass of the electron). Note that these esti-
mates of m;, and ay, , are comparable in order of

magnitude with the m§ = 30m, and a3, = 6 A parame-
ters of manybody exciton-polaron states found in [31]
for the classic compound with fast charge and spin fluc-
tuations, samarium hexaboride SmBg.

The magnetic field-induced shift of the anomalies of
the galvanomagnetic characteristics upward along the
temperature axis observed in this work for CeAl, (see
Figs. 2, 10) aso finds a natural explanation within the
framework of the suggested approach. Theformation of
spin polarons as aresult of fast spin fluctuations on Ce
sites is accompanied by the appearance of exchange
field Hg,, which isto a great extent responsible for the
anomalous increase in the Hall coefficient and the

appearance of R}, (T) singularities in the vicinity of
KsTs = HgHe. 1N addition to the suppression of fast spin
fluctuations on Ce sites, the summation of the compo-
nents H + H,, substantially shifts the anomalies of the
transport characteristics upward along the temperature
axis as the external magnetic field increases. Note that
the H,, = 75 kOe value in CeAl, at low temperatures
was estimated in[14, 32, 33] by analyzing the polarized
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neutron diffraction spectra. Close H,, values were also
obtained in [22] from CeAl, magnetostriction measure-
ments at helium temperatures, Hy, = 79 £ 2kOe. An
additional “estimate from below” of the exchange field
UgHe/Kg is provided by the ©, = -3.6 + 0.5 K value
found in this work (Fig. 11, inset), which reproduces
well the paramagnetic Curie temperature © = -3.9 K
obtained in [34] from CeAl, magnetic susceptibility
measurements.

Another no less important argument in favor of the
spin-polaron approach that we propose for interpreting
the low-temperature properties of CeAl, is, inour view,
the Schottky anomaly of the low-temperature heat
capacity at about T = 6 K observed in [35], where mea-
surements were performed in magnetic field H =
50 kOe. Recall that, according to the result obtained in
this work (see Fig. 10), the Zeeman splitting of the
ground state of the system in the effective field Hy =
H + H,, (external magnetic field H = 60 kOe) causes

the appearance of an R} (T) maximum at about

TEZX (60 kOe) = 6.5 K. The calculations of two-level

system parameters in the resonance level model per-
formed in [35] using the results of low-temperature
CeAl, heat capacity measurements then acquire special
significance. In [35], the activation energy E./ks =
9.6 K wasfound fromthe /2 = filtg; = kgTx = 0.5 meV
value as an estimate of the width of two-level system
levels. To within calculation errors [35] and taking into
account the contribution of the external magnetic field
H = 50 kOe to the Zeeman splitting of the I'; doublet,
this value fairly closely agrees with that found in the
present work, E./ks = 7.6 + 0.2 K.

The suggested approach predicts that temperature
loweringintheregion T <50 K (Fig. 10, region 1) will
not cause only an increase in the manybody resonance
amplitude in the vicinity of the Fermi energy E; but
also an essential rearrangement of the magnetic struc-
ture of spin polarons. By analogy with the result
obtained for the FeSi compound with strong electron
correlation [36, 37], the transition to coherent spin fluc-
tuations in the vicinity of Ce sites should be accompa-
nied by the formation of ferromagnetic microregions
(ferrons) from spin polarons in the CeAl, matrix.
According to the study performed in [36, 37] for iron
monosilicide, an additional special feature of such a
“phase transition” in a system of nanosized magnetic
regions is the retention of virtually unchanged activa-
tion characteristics (band structure parameters) both for
spin polarons and for ferromagnetic nanoclusters
formed from them. It appears that the situation with
CeAl, is similar. At T < 20 K, a strong dispersion of
elastic constants and the related substantial anomaly in
the absorption of ultrasound was observed in this com-
pound [38]. Also note the result obtained in [39, 40] in
studying NMR spin-lattice relaxation in the antiferro-
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magnetic modul ated phase of CeAl,. Intheseworks, an
“energy gap in the excitation spectrum of magnons’
with E; = 0.87 + 0.08 meV [39] (E, = 11 £+ 3 K [40])
was observed. In addition, the inelastic neutron scatter-
ing spectra of the magnetically ordered CeAl, phase
contained two absorption singularities, or “magnon
peaks,” at E,; = 1.2+ 0.8 meV and E,, = 0.7 £ 0.4 meV
[17]. To within the error of measurements performed
in [17], these values correspond to the binding energies
of spin polarons E,; , found in this work (see Fig. 12).
At the sametime, it is hecessary to stressimportant dif-
ferences between the formation of manybody states in
the narrow-band FeSi semiconductor with afairly low
concentration of spin polarons at low temperatures T <
40 K (10%-10* cm3[36, 37]) and in the CeAl, inter-
metallic compound with a fairly broad conduction
band. In addition to substantial screening effects, the
strong magnetic interaction of ferromagnetic microre-
gions through RKKY electron density oscillations
(indirect exchange) arisesin CeAl,. Therelated special
features of magnetic ordering in CeAl, were discussed
in [19] comparatively recently. It appears that so com-
plex a magnetic structure in CeAl, at medium- and
long-range magnetic order distances (antiferromag-
netic ordering in the system of ferrons of submicron
dimensions) is the main reason why the identification
of magnetically ordered phases in this compound
encounters serious difficulties (e.g., see [41-47]).

Let us return to the experimental results shown in

Figs. 10 and 12. Note that the R, (T) 0 exp(—E,a/kgT)
dependence observed in this work for the anomalous
contribution to the Hall coefficient of CeAl, at T<10K
issimilar to that predicted in [48] on the basis of calcu-
lations of the behavior of the Hall coefficient in a
system with topologically nontrivial spin configura-
tions (Berry phases). According to [48, 49], the Hall
effect is modified in this situation because of the
appearance of the internal magnetic field H;,,, = [h,[00]
(VkgT)exp(—E4/ksT), which adds to the external field H.

To conclude this section, let us fairly roughly esti-
mate the localization radius of manybody statesfrom the

results presented in Fig. 10. The R}, parameter will be
put in correspondenceto the effective reduced concentra-
tion of carriers per cerium atom v = (RyeNg)™ (the
right-hand axisin Fig. 10). In this situation, an increase
invintheinterval 0<v <1 can betreated asanincrease
in the effective volume per carrier; we believe this
increase to be caused by manybody effects in CeAl,.
The characteristic Ce—Ce distance in the crystal struc-
ture of the CeAl, Laves phase is ace o= 3.5 A [50].

Using this value, we obtain the crude estimate aj;, = 6—
16 A for v = N/Ng, = 0.2-0.3 in the vicinity of the R},
maximum.
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4.4. The Segparation of Contributions
to the p(T), T), and R, (T) Transport Coefficients

As has been mentioned in Section 3, the resistivity
p(T) (Fig. 2, curve 1), Seebeck coefficient YT) (Fig. 2,

curve 6), and Hall coefficient R}, (T) (Figs. 10, 12, H =

3.4 kOe) dependences contain several anomaliesin the
temperature range 1.8-300 K. These anomalies are evi-
dence of concerted changes in the specified CeAl,
parameters in the temperature ranges 50-300 K (1), 5—
50K (II), and T < 5 K (I11). The distinguishing feature
of the transport of charge carriersin region | is a deter-
mining role played by the contribution of inelastic scat-
tering related to the transitions between the ground (I";)
and two excited doublets (Fig. 2, inset b) of the ?F,
cerium state. The transport of carriers in mode | at
100-300 K is characterized by a linear p(T) depen-
dence combined with slow variations in the positive
(12-15 pV/K) Seebeck coefficient and an ailmost acti-
vation behavior of the Hall coefficient with E_ /kg =
12 K. Thetransition from mode | to I (see Figs. 2, 10,
12, 13) is accompanied by sharp changes in the mea

sured p, S and R}, values. In addition to substantial
deviations of the p(T) dependence from linearity, S(T)

sign reversal (Fig. 2, curve 6) and akink in the R, (T)

dependence (Fig. 12) are observed at T = 50 K. The
low-temperature features of the behavior of p, S, and

R}, inthetransition region 4-12 K between intervals||

and Il (Figs. 2, 10, 12, 13) also provide clear evidence
of achangein the asymptotic behaviors of the specified
CeAl, characterigtics.

Currently, neither reliable and consistent explana-
tion can be suggested for the transport characteristics of
cerium-based compounds with heavy fermions, includ-
ing the nature of various contributionsto the conductiv-
ity, Seebeck coefficient, and Hall coefficient nor can
these contributions be identified. It istherefore of inter-
est to perform a comparative analysis based on the
results of measurements performed in this work for
high-quality polycrystalline CeAl, samples. Among the
few investigations in which resistance and thermoel ec-
tric data on cerium intermetallic compounds were con-
sidered jointly, we must mention work [51], where the
Nordheim equation

pS = pOSO + pmagsmag

was used to analyze the impurity and magnetic contri-
butionsto p(T) and T) of CeNi,Sn,. Such asimplified
representation of the sum of the low-temperature trans-
port components for a tetragonal compound with A =
20K and T4 =T = 1.6 K isat least, insufficiently accu-
rate. In addition, according to [52], both the Gorter—

Nordheim equation and the Matissen rule p = Z‘ [o}

are not good approximations for compounds with
heavy fermions, which should be treated taking into
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account a qualitative rearrangement of the density of
electronic states in the neighborhood of E¢.

For thisreason, it is more correct to use the standard
equationsfor o, S, and R}, in the form [53]

o= zci, (8)
:
So = Y as, ©

3 3
@zﬁzzﬁm. (10)
i=1 i=1

We could not analyze the experimental data of this
work using the approach suggested in [52] and based on

summing the nonmagnetic S,, positive Kondo Sﬁl)(T) ,
and negative resonance S7(T) terms (in [52], the
inversion temperature of the Seebeck coefficient was
found to be T}, < 0.6T« = 3 K, which is obviously at
variance with the value for CeAl,, T;, =46 K). For this
reason, we applied a phenomenological approach to sep-
arate the contributionsto g, S and R{; in thiscompound.

Also note that, as far as we know, no self-consistent

analysis of contributionsto the g, S, and R, transport

coefficientsfor rare-earth metal-based compounds with
heavy fermions has been performed as yet.

In region |, of the greatest importance is inelastic
scattering of carriers accompanied by transitions
between cerium 2F, state doublets spaced A, = 100 K
and A, = 170 K apart from the ground-state doublet I'.

For this reason, the contributions o,, S;, and R}, (see
Fig. 13) were approximated by the analytic equations

0, = 0o(T)exp(-A,/kgT),
oo(T) = 1.03/T%, a = 0.73,
s, = +BT, s =11V,

B = 0.0085 pV/K?,
(12)

eSO LaAl,

Ri. = Rﬁ?exp%f%— Ry,

RY) =0.89x 10~ ecm®/C,
ENi/kg = 12 K.

The preexponential factor oy(T) was found by fitting
the experimental dependence with the use of the opti-
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Fig. 13. Decomposition of the temperature dependences of the transport characteristics (a) o(T), (b) S(T), and (¢) Rﬁ (T) of CeAl,

into contributions in temperature intervals|, 11, and I11.

mization procedures implemented in the ORIGIN 6.1
program.

The “inelastic” contribution g, is described in (11)
by avery simplified equation, which gives an activation
dependence of conductivity in the transition region at
T < 100 K. The main requirement imposed on (11) is
the vanishing of the o, component at T < 100 K.
Clearly, the high-temperature contribution also con-

tains the o component determined by the scattering

of carriers by the ground-state doublet ;. Unlike the
inel astic contribution, thiscomponent isalso retained at
low temperatures. Comparative estimates of itsrelative
valuein region I, however, give Or, < 0.10,, whichin
our view justifies the approximation that we use.

In addition, (11) contains a large constant contribu-
tion to the Seebeck coefficient (S)) alongside a small
linear term. We can therefore use the Heikes' formula
to describe the Seebeck coefficient under strong Hub-
bard correlation conditions,

d-vo

S'Ozk—BIn—

sIngVo (12

where, as previoudly, we use the notation v = N/Nc,,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

and Ng = 1.5 x 102 cm=2in CeAl,. It followsfrom (12)
that the concentration of carriers in the temperature
range 100-300 K can be estimated at v, = 0.53 and,
therefore, N, = 8 x 10° cm3. Note that (12) describes
the asymptotic behavior of S which, in our case, corre-
spondsto the formation of aband of spin-polaron states
of width E,,/kg = 12 K in the vicinity of E¢.

According to [36], an analogous activation depen-
dence of the Hall coefficient of spin-polaron transport
in (11) can also be used to approximately estimate the
concentration of carriers for the spin-polaron states of
the FeSi matrix,

N2 = —1a(0) =7x10% em™.
eRy;

This estimate agrees satisfactorily with the results
obtained above.

The asymptotic behaviors of all charge carrier trans-
port parameters of CeAl, change as temperature
decreases in the interval 50-100 K (see Figs. 13, 14).

The corresponding contributions to o, S, and R, are

comparable in magnitude. The situation in the transi-
tion temperature region 5-10 K between intervals Il
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Fig. 14. Decomposition of (a) So and (b) Rﬁ‘ o into partial contributions in temperature intervals|, I1, and 111 for CeAl,.

and Il is similar. In this region, the g, and 03, S, and

S, and R, and R; components have comparable

values (see Figs. 13, 14). The procedure used within the
phenomenological approach to separating the contribu-
tions to low-temperature transport was as follows: In
interval Ill, the data given in Figs. 2 and 10 were
approximated by the analytic dependences

0, = AT, B = 144,
=9'+CT, §' = -18uV/K,
S =9 S n 13
C = -0.8 uW/K?,
R%, = DT*/, D = 0.76386.

Equations (13) fairly accurately describe the g®®, 3>,
and R%™ curvesat T<4K.

Next, additivity condition (8) for o was used to
obtain the g, component by subtracting the sum g, + 05

from the experimental 0® curve. The S, and RY,, con-
tributions were anayzed using the equations that

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

described the activation behavior of the thermoel ectric
and Hall coefficientsin interval 11,

ke Es,
SU3 keT’

(14)

LaAl,

CE0
R, = Ry ex EZ—T_D""Z -R
H2 H2 EXP ST H

Figures 13, where the components of g, S, and R,
are plotted, and 14, where their additivity is verified
[Egs. (9) and (10)], show that, on the whole, the sug-
gested procedure for separating contributions, in spite
of its approximate character, gives a quantitative
description of the behavior of the transport coefficients
of CeAl,. It can therefore be used to estimate certain
microscopic parameters that characterize the electronic
structure of this compound. Within this procedure, the
activation energy of the Seebeck coefficient in interval 11

is estimated at ES,/ks = 3.6 K, which is noticeably
smaller than the value for the Hall coefficient EL, /kg =

7K. Theuse of REY = 1.03 x 102 cm3/C in (14) for
estimating the concentration of carriers in interval 11
gives N, = 6 x 102 cm2 or v = N,/Ng = 0.4. The
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S, =—18pV/K value can also beformally used in (13)

within the framework of the spin-polaron approach to
estimate the reduced concentration of carriers in the
transition temperature region 5-10 K. The use of the
high-temperature asymptotic behavior of the Seebeck
coefficient [Eq. (12)] is justified in this temperature
region, because the formation of a narrow band of
manybody states in the vicinity of Eg with the activa-
tion energy E,,/ks = 7.6 K results in the appearance of
ferromagnetic nanoclusters based on spin-polaron
statesat T < 20 K (see the argumentation given above).
Asaresult, we have

v, =045, N, =6.8x 10% em™2.

It should also be stressed that a comparison of the
activation energies of the thermoelectric (E§2/kB =

3.6 K) and Hall (El.ffzH kg = 7 K) coefficients and the

paramagnetic Curie temperatures found in this work
(©, = 3.6 K) and measured in [34] (©, = 3.9K) lead us
to suggest that there are two approximately equal com-
ponents that determine the formation of manybody
statesin CeAl, at low temperatures. It can be expected
that the spin-polaron (magnetic) contribution to E,,,
although it does not manifest itself in the temperature
dependence of the Seebeck coefficient [53], at the same
time plays a key role in determining the ©, and He, =
75 kOe magnetic exchange parameters. This sugges
tion allows us to expect that the sum of the contribu-
tions of the exciton (4f *-5d-) and spin-polaron compo-

nents should determine the Ezz“ value, which character-

izes the low-temperature behavior of the Hall
coefficient. At the same time, the experimental results
presented in thiswork are obviously insufficient as reli-
able evidence of exciton—polaron nature of manybody
states in CeAl, with fast electron density fluctuations.

Notein conclusion that, within the framework of the
approach that we useto separate the contributionsto the
low-temperature charge transport, the most complex
problem is, in our view, a quantitative analysis of the

05 S3, and RY; componentsat T< 5 K. In this region,

we must take into account not only the establishment of
coherence (the formation of heavy carrier bands), but
also effectsrelated to compl ex magnetic ordering of the
cerium-based intermetallic compounds under conside-
ration.

5. CONCLUSIONS

The detailed measurements of the Hall effect in
CeAl, with fast electron density fluctuations performed
inthiswork alowed usto separate and classify the con-
tributions to the anomalous Hall effect in this com-
pound with heavy fermions. The appearance of an
anomalous magnetic contribution “even in magnetic
field” tothe Hall resistance observed inthiswork at T <
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10 K is caused by the special features of medium- and
long-range magnetic ordering and the complex H-T
magnetic phase diagram of CeAl, at low temperatures.
Thisresult and the estimates of the ©,= 3.6 K and He, =
75 kOe magnetic exchange parameters appear to pro-
vide evidence in favor of the formation of nanosized
ferromagnetic regions in the CeAl, matrix at tempera-
tures substantialy higher than the Néel temperature
Ty = 3.85 K of this compound. It was shown that the
temperature dependence of the main anomalous com-

ponent R}, in this compound with heavy fermions has

acomplex activation character. The behavior of RS, (T)
observed in CeAl, does not fit in with the interpretation
within the framework of the skew-scattering model,
according to which scattering effects play a determin-
ing role in the formation of Hall coefficient anomalies
in concentrated Kondo systems.

The special features of the suppression of the anom-
alous Hall effect in high magnetic fields studied in this
work are likely to be evidence that spin-polaron effects
should be taken into account to interpret the behavior of
the transport characteristics of cerium-based interme-
tallic compounds. We estimated the parameters charac-
teristic of manybody states that arise in the CeAl,
matrix at low and intermediate temperatures (their
effective masses and localization radii). The nontrivial
analysis of contributionsto the transport characteristics
of CeAl, performed in thiswork based on the results of
Hall effect measurements combined with resistivity and
Seebeck coefficient data led us to conclude that the
approach that uses the Kondo lattice model has serious
limitations as applied to the totality of properties of
cerium-based concentrated Kondo systems.

ACKNOWLEDGMENTS

This work was financially supported by the Russian
Foundation for Basic research (project nos. 01-02-16601
and 03-02-06531); the “New Materials’ project of the
Ministry of Education of Russian Federation
(no. 202.07.01.023); the program “ Strongly Correlated
Electrons in Semiconductors, Metals, Superconduc-
tors, and Magnetic Materials’ of the Russian Academy
of Sciences (Division of Physical Sciences); the pro-
gram for the development of the instrumental base of
scientific organizations of RF Ministry of Industry and
Science; INTAS project no. 00-807; and the program of
the Russian Academy of Sciences for support of young
scientists. Special thanks for individual support are due
to the Foundation for Promoting Sciencein this country
(V.V.G. and S.V.D.) and Government of Moscow and
Soros Foundation (A.V.B. and M.1.1.).

REFERENCES
1. P Coleman, P W. Anderson, and T. V. Ramakrishnan,
Phys. Rev. Lett. 55, 414 (1985).

No. 4 2004



10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.
27.

28.

SLUCHANKO et al.

A. Fert and P. M. Levy, Phys. Rev. B 36, 1907 (1987).
P. M. Levy and A. Fert, Phys. Rev. B 39, 12224 (1989).
P. M. Levy, Phys. Rev. B 38, 6779 (1988).

N. B. Brandt, V. V. Moshchakov, N. E. Sluchanko, et al .,
Solid State Commun. 53, 645 (1985).

V. V. Moshchalkov, F. G. Aliev, N. E. Sluchanko, et al.,
J. Lesss=Common Met. 127, 321 (1986).

T. Penney, F. P. Milliken, S. von Molnar, et al., Phys.
Rev. B 34, 5959 (1986).

A. Fert, P. Pureur, A. Hamzic, and J. P. Kappler, Phys.
Rev. B 32, 7003 (1985).

T. Hiraoka, E. Kinoshita, T. Takabatake, et al., PhysicaB
(Amsterdam) 199-200, 440 (1994).

H. Sugawara, H. R. Sato, Y. Aoki, and H. Sato, J. Phys.
Soc. Jpn. 66, 174 (1997).

U. Welp, P. Haen, G. Bruls, et al., J. Magn. Magn. Mater.
6364, 28 (1987).

N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, et al.,
Pis'maZh. Eksp. Teor. Fiz. 76, 31 (2002) [JETP Lett. 76,
26 (2002)].

N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al.,
Zh. Eksp. Teor. Fiz. 113, 339 (1998) [JETP 86, 190
(1998)].

B. Barbara, J. X. Boucherle, J. L. Buevoz, et al., Solid
State Commun. 24, 481 (1977).

F. Lapierre, P. Haen, A. Briggs, and M. Sera, J. Magn.
Magn. Mater. 63-64, 76 (1987).

F. Steglich, C. D. Bredl, M. Loewenhaupt, and
K. D. Schatte, J. Phys. Collog. 40 (C5), 301 (1979).

S. Osborn, M. Loewenhaupt, B. D. Rainford, and
W. G. Stirling, J. Magn. Magn. Mater. 63-64, 70 (1987).

M. Loewenhaupt, W. Reichardt, R. Pynn, and E. Lindley,
J. Magn. Magn. Mater. 63-64, 73 (1987).

N. E. Sluchanko, A. V. Bogach, I. B. Voskoboinikov,
etal., Fiz. Tverd. Tela (St. Petersburg) 45, 1046 (2003)
[Phys. Solid State 45, 1096 (2003)].

M. Croft, I. Zoric, and R. D. Parks, Phys. Rev. B 18, 345
(1978).

M. Croft, I. Zoric, and R. D. Parks, Phys. Rev. B 18,
5065 (1978).

E. Fawcett, V. Pluzhnikov, and H. Klimker, Phys. Rev. B
43, 8531 (1991).

N. B. Brandt and V. V. Moshchalkov, Adv. Phys. 33, 373
(1984).

M. Christen and M. Godet, Phys. Lett. A 63A, 125
(2977).

N. F. Mott, Metal-Insulator Transitions (Taylor and
Francis, London, 1974; Nauka, Moscow, 1979).

S. H. Liu, Phys. Rev. B 37, 3542 (1988).

T. Portengen, Th. Ostreich, and L. J. Sham, Phys. Rev. B
54, 17452 (1996).

M. Loewenhaupt, B. D. Rainford, and F. Steglich, Phys.
Rev. Lett. 42, 1709 (1979); M. Loewenhaupt and
U. Witte, J. Phys.: Condens. Matter 15, S519 (2003).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

29

30

31

32.

33.

35.

36.

37.

38.

39.

41.

42.

& R

46.

47.

49,

50.

51.

52.
53.

P. Thameier and P. Fulde, Phys. Rev. Lett. 49, 1588
(1982).

G. Guntherodt, A. Jayaraman, G. Batlogg, et al., Phys.
Rev. Lett. 51, 2330 (1983).

N. E. Sluchanko, V. V. Glushkov, B. P. Gorshunov, et al.,
Phys. Rev. B 61, 9906 (2000).

B. Barbara, M. F. Rossignol, J. X. Boucherle, et al.,
Phys. Rev. Lett. 45, 938 (1980).

A. Benait, J. X. Boucherle, J. Flouquet, et al., in Valence
Fluctuations in Solids, Ed. by L. M. Falicov, W. Hanke,
and M. B. Maple (North-Holland, Amsterdam, 1981),
p. 197.

M. C. Croft, R. P Guertin, L. C. Kupferberg, and
R. D. Parks, Phys. Rev. B 20, 2073 (1979).

C. D. Bredl, F. Steglich, and K. D. Schotte, Z. Phys. B
29, 327 (1978).

N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al.,
Zh. Eksp. Teor. Fiz. 119, 359 (2001) [JETP 92, 312
(2001)].

N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al.,
Phys. Rev. B 65, 064404 (2002).

G. Hampel and R. H. Blick, J. Low Temp. Phys. 99, 71
(1995).

D. E. MacLaughlin, O. Peca, and M. Lysak, Phys. Rev.
B 23, 1039 (1981).

J. L. Gavilano, J. Hunziker, O. Hudak, et al., Phys. Rev.
B 47, 3438 (1993).

S. M. Schapiro, E. Gurewitz, R. D. Parks, and L. C. Kup-
ferberg, Phys. Rev. Lett. 43, 1748 (1979).

A. Schenk, D. Andreica, M. Pinkpank, et al., PhysicaB
(Amsterdam) 259261, 14 (1999).

A. Schenk, D. Andreica, F. N. Gygax, and H. R. Ott,
Phys. Rev. B 65, 024444 (2002).

A.Amato, Rev. Mod. Phys. 69, 1119 (1997).

E. M. Forgan, B. D. Rainford, S. L. Leeg, et al., J. Phys.:
Condens. Matter 2, 10211 (1990).

F. Giford, J. Schweizer, and F. Tasset, Physica B
(Amsterdam) 234236, 685 (1997).

T. Chattopadhyay and G. J. Mclntyre, Physica B
(Amsterdam) 234236, 682 (1997).

J.Ye Y. B. Kim, A. J. Millis, et al., Phys. Rev. Lett. 83,
3737 (1999).

Y. B.Kim, P. Mgumdar, A. J. Millis, and B. I. Shraiman,
cond-mat/9803350 (1998).

E. Walker, H. G. Purwins, M. Landolt, and F. Hulliger,
J. Less-=Common Met. 33, 203 (1973).

J. Sakurai, H. Takagi, T. Kuwai, andY. Isikawa, J. Magn.
Magn. Mater. 177-181, 407 (1998).

K. H. Fisher, Z. Phys. B 76, 315 (1989).

P. M. Chaikin, in Organic Superconductivity, Ed. by
V. Z. Kresinand W. A. Little (Plenum, New York, 1990),
p. 101.

Trandlated by V. Spachev

No. 4 2004



Journal of Experimental and Theoretical Physics, Vol. 98, No. 4, 2004, pp. 811-819.

Trangated from Zhurnal Eksperimental’ nor i Teoreticheskor F|Z|k| \ol. 125, No. 4, 2004, pp. 927-937.
Original Russian Text Copyright © 2004 by Konyukhov, L|khachev Oparin, Anisimov, Fortov.

NONLINEAR

PHYSICS

Numerical Modeling of Shock-Wave | nstability
in Thermodynamically Nonideal Media

A.V.Konyukhov®?, A. P. Likhachevd, A. M. Oparin®, S.1. Anisimov®, and V. E. Fortov®

4 nstitute of Thermophysics of Extreme States, Joint Institute of High Temperatures, Russian Academy of Sciences,
Moscow, 125412 Russia
bInstitute for Computer-Aided Design, Russian Academy of Sciences,
Vtoraya Brestskaya ul. 19/18, Moscow, 123056 Russia
‘Landau Institute for Theoretical Physics, Russian Academy of Sciences,
Chernogolovka, Moscow oblast, 142432 Russia
e-mail: a.oparin@icad.org.ru
Received August 27, 2003

Abstract—A numerical analysis of the nonlinear instability of shock waves is presented for solid deuterium
and for amodel medium described by a properly constructed equation of state. The splitting of an unstable
shock wave into an absolutely stable shock and a shock that emits acoustic waves is simulated for the first

time. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

For avariety of media (in particular, for mediawith
phase transitions), the shock Hugoniot curves include
segments corresponding to shock waves that are unsta-
ble with respect to small disturbances of the wave front.
The linear analysis developed in [1, 2] predicts two
types of shock-wave evolution: small periodic shock-
front disturbances may either grow exponentially with
time or persist for an indefinitely long time without
being either damped or amplified. In the latter case, the
shock front emits acoustic and entropy waves propagat-
ing downstream. The D’yakov—Kontorovich linear the-
ory was the first to provide criteria for shock-wave
instability. In terms of the stability parameter

z@%]

wherej? = (p, —p)/(V; —V,) isthe mass flux across the
shock front, V = 1/p is specific volume, p is pressure,
and the derivative is taken along the Hugoniot curve,
thefollowing regions of qualitatively different behavior
are identified: absolute stability (-1 <L <L), acoustic
emission (L, < L < 1+ 2M), and exponential growth
(L<-1,L>1+ 2M). We use the following notation
here:

2 2
_ — V

LOZLZIVIZ’ e:_O’ M:g
1+6M° =M \ c

Subsequently, it was shown that the Hugoniot seg-
ment corresponding to exponential growth lieswithin a
region of shock-wave nonuniqueness, where a single

shock wave splits into multiple stable elementary
waves (shock waves, isentropic rarefaction/compres-
sion waves, and/or contact discontinuities) [3]. These
findings led to the hypothesis that exponential growth
cannot be observed because an unstable initial shock
wave must evolve into an admissible split-wave config-
uration [3].

To facilitate further analysis, we recall here some
facts concerning the problem of shock-wave stahility. It
was shown in [4] that the point in the p—V diagram
where the shock Hugoniot curve is tangent to a line
passing through theinitial stateisasonic point; i.e., the
Mach number behind the shock front isunity in arefer-
ence frame tied to the front:

lu-D] _D-u
c c

M = =1

The slope of the tangent line to the corresponding isen-
trope satisfies the relation

By definition,

at the tangency point. Therefore, a point wherethe Ray-
leigh line is tangent to the Hugoniot curve is a point of
tangency of the Hugoniot with the isentrope:

@ﬂJ:_J (PP
LoV oV,

1063-7761/04/9804-0811$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Typical Hugoniots (a) without and (b) with a kink
corresponding to the model equation of state and the
SESAME tabular equation of state for deuterium, respec-
tively. The intervals of stability (0-1), exponential growth
(1-2), acoustic emission (2-3), and shock-wave splitting
(1-4) areindicated. The dot—dash curve is an isotherm.

At such points, the D’yakov—Kontorovich stability
parameter is

Thus, the points where the Rayleigh line is tangent
to the Hugoniot curve correspond to the boundaries of
exponential growth. Between these boundaries, L < —1.

If the Hugoniot is smooth, then the convexity condi-
tion for equation of state (EOS) is violated below the
lower tangency point:

90

EVZEN

Above this point, a single initial shock wave evolves
into the following split wave configuration:

<0.

> - >
S— WTCS,

where Sis a shock wave, W is a shock or rarefaction

wave, T is atangential discontinuity, and C is an isen-

tropic compression wave [3]. This is explained by the
fact that u + ¢ < D below the point where
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i.e.,, acoustic disturbances (with velocity u + ¢) lag
behind the shock, transforming into an isentropic com-
pression wave [3].

The lower point of tangency of the Rayleigh line
with the shock Hugoniot is the lower boundary of
acoustic emission:

_1-6M*-M* _

L
° T 1+aMEoM?

-1=1L.

If the Hugoniot curve is smooth (see Fig. 1a), then the
L(P) and Ly(P) curves are either mutually tangent or
they intersect at this point. If the Hugoniot curve has a
kink (Fig. 1b), then the values of L and L, are not
defined at this point, whereas L — L, either reverses or
retains its sign across the kink (as in the case of inter-
section or tangency, respectively). However, the L(P)
and Ly(P) curves must intersect at the upper point of
Rayleigh-line tangency with a Hugoniot of any shape.
This point separates Hugoniot segments associated
with exponential growth and acoustic emission. Shock
waves with parameters corresponding to a portion of
the latter segment adjoining the former one emit acous-
tic waves at angles close to the shock propagation
direction. AsL — -1 and M — 1, the equation for
the cosine of thisangle tendsto alimit form [4] that has
a unique solution: cosa = —1. When cosa < 0, the
acoustic wave vector points in the direction of shock
propagation. Thewaveis* outgoing” because of advec-
tion by the flow.

The upper boundary of shock-wave splitting is
determined by equating the velocities of the leading
wave and the downstream shock. The pressure at this
boundary can be found from the equation

2
Ps—P1 _ C

V4—V1 Vf

as atangency condition for aRayleigh line and an isen-
trope. (Here, subscripts correspond to pointsin Figs. 1a
and 1b.) This relation also means that the downstream-
shock velocity relative to the medium equal s the speed
of sound:

p4—p151/2
D, —u, = Vv, = Cq.
n—ut 15‘/1_\/41 1

A detailed analysis of the splitting wave configura-
tions corresponding to smooth and kinked Hugoniot
curves was presented in [3].

Even though shock-wave stability has been ana-
lyzed in numerous theoretical studies for aimost half a
century, experimental observations supporting the the-
oretical predictions mentioned above remain scarce to
this day. On the one hand, the corresponding thermody-
namic conditions are difficult to implement experimen-
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taly. Another reason is the lack of data required to
specify the conditions of an appropriate physical exper-
iment and the expected manifestations of shock-wave
instability. To obtain data of this kind, a parametric
numerical analysis of the behavior of a shock wave
must be performed by varying its intensity under suit-
able choice of a properly constructed or realistic equa-
tion of state. Only a few numerical simulations of
shock-wave splitting [5, 6] and acoustic emission [7]
have been performed to date, and their results are far
from complete. Thus, systematic numerical analysis of
nonlinear shock-wave instability remains a challenging
task. This problem is addressed in the present study.

In this paper, we analyze the stability of a shock
wave in solid deuterium (using an EOS borrowed from
the SESAME library [8]) and in a model medium
described by the equation [5]

e(p.p) = (1-€™)(4—g ),

This equation of state isthermodynamically consistent,
and the corresponding shock Hugoniot curves include
segments associated with instabilities of all known
types. The realistic three-phase SESAME equation of
state (given in tabular form) describes the first-order
molecular-to-metallic phase transition in solid deute-
rium [8].

The shock Hugoniot curve based on the model equa-
tion of state characterizes shock compression processes
involving phase transitions or endothermic chemical
reactions. This curve alows for both shock splitting
and acoustic emission. Figure 1a shows alow-pressure
portion of this curve.

Figure 1b shows the shock Hugoniot curve for low-
temperature deuterium compressed from an initial state
characterized by p, = 1.6 x 10° GPaand V, = 0.7 cm®/g.
Unlike the curve shown in Fig. 1a, it has two kinks
where adiabatic compressibility decreases and
increases stepwise (points 1 and 3, respectively). Since
a kinked curve is a limit case of a smooth curve, one
may say that a smooth region of EOS convexity viola-
tion reduces to a point in this limit and tangency at a
kink isinterpreted accordingly.

2. NUMERICAL METHOD

To solve the governing equations, we use Roe€'s
method [9] extended to an arbitrary equation of state of
the form € = (p, p). In this conservative method based
on exact characteristic flux splitting, a stationary shock
satisfying the Rankine-Hugoniot jump conditionsis an
exact solution to the finite-difference problem. We use
a computationally efficient formulation of the method
in terms of the vector Y = (p, p¥?, u)T [10].

Following the approach developed in [10], we find
the solution vector on the (n + 1)th timelayer from inte-
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gra conservation laws written as expressions for the
grid pressure, velocity, and p¥:

2= (e

2
Gt = () u"+&,

(Zn+l)2 !

n+1

e(p""p") = e(p", p")

2 1 1.2
I (CAT ICARTRD DS
where z = p¥?, g isthe internal energy per unit volume,

T
€ = —H(Fi+1/2—Fi—1/2)

isthe net flux of the conserved quantities across a cell,
T isthetime step, and h isthe mesh size. The numerical
flux across a cell face can be written in amore compact
form in terms of pressure, density, and velocity (as
compared to the conserved quantities):

1
Fivw = E[Fi +FL1 T RL1Pi a0,

ST

F = Ep+puzgs

O puH O
0 0
UJ 1 P P 0
0 2c 2c 0
R=g , PU=0 pu+c) §
0 2c 2c O
Es +1u2 p(H —uc) p(H+uc)E

ovr 2 2c 2c

Ap —Apl/c? E

1l

0
@ = Hap/(pe)-du g
OAp/(pc) +Auld

A= (uu-cu+c),
The components @ of the vector ®; , ,,, are expressed as

1 gi1-00 |
@rr = 9i1+9i1+1—¢g\i1+1/2+%50:+1/2-

i+1/2
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In TVDL1 (first-order accurate scheme),

(P: +12 = —llJ()\: +1/2)ai1+ 1/2-

In TVD2 (Harten's second-order accurate scheme [11]),

g = 1=ldl

KONYUKHOV et al.

1-|o
gil = %w()\:-+1/2)m[a:jl+1/21 a}L—l/Z] '

In the UNO3 scheme relying on the third-order ENO
interpolation [12],

1 1 1
WA 12) MO 4 10, O]

O 2 2
+ 2-3|oj+0o G
E%\il+1/2—|6| + N1 5 lgm[A 0(] AW 0‘1 2], if |O‘| 1/2| <|0‘|+1/2|

2-3lo|+0” 1+ o°=1_ 1 1 . 1 1
D%\Hl/Z | l +)\i:1/2'—6"1%m[A—0(j+1/21A+0(j+1/2], if |0(i—1/2|>|0‘i+1/2|,

with
1
0= )\j+1/2|,_]1
[0, xy<0,
mixyl =0
[mln(IXI lyl)sgn(x), xy>0,
1
_ X, X<y,
mx,y] = 0
oy, X >y,
X, Ix=e€,
lIJ(X) = |:|X2+e2
D-—_’ |X|<€1
0 2¢

where e is the entropy correction parameter [11].

An approximate solution to the Riemann problem
for two states corresponding to adjacent cells labeled
“1" and “2" isgiven by the relations

P = 77,

_ LU+ U,
Z; + Z,

zH, +z,H,
Zl+ZZ

H =

¢ = h—sp.
€

p
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The EOS derivatives are calculated numerically by
using states“1” and “2:"1

0.5 ~ ~
€ " e(D, P,) + £(py,
o pz—pl( (P2, P2) + €(P1, P2)

—€(P2 P1) —€(P1, P1)),

™
|

05 ,_ ~ = .
= = e(p,, + &(p,,
b pz—pl( (P2, P2) +€(P2 P1)

—&(py, P2) —€(P1, P1)),

. 0Pz [P2—Pd 2 Psd,
p. =0
0OP: + P19, |Po— Paf < P16,
~ P2 |P2—p4 2psd,
P, = 0O
[P1+ P10, |P2—P4| <P10,

where d isasmall positive number.

This differentiation procedure ensures that the jump
condition

€—€1 = €5(P2—P1) +€p(P2—P1)
and hence the relation
AF = AAU,

hold across a shock. (Here, A is the Jacobian matrix of
the flux vector for an averaged state.) Then, an arbitrary

L This approach is analogous to Glaister's solution [13], where dif-
ferent states were combined for the first time in calculating pres-
sure derivatives to extend Roe’'s method to an arbitrary EOS.
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steady shock satisfying the Hugoniot relations, i.e.,
defined by a grid function of the form

Un = MJ,, i<io, @
I 21 i>i0’

such that F(U,) — F(U,) =0, is an exact solution to the
finite-difference equations (i, is a particular value of
grid index).?

In the region of shock-wave nonuniqueness, single
shock waves are exact solutions to the finite-difference
problem in areference frame tied to its front and small
disturbances introduced into initial conditions either
decay (when the shock is stable) or grow exponentially.
In the course of computations, single waves split and
evolve into alternative scale-invariant configurations,
because solutions to the finite-difference problem are
not unique either. Figure 2 demonstrates that the norm
of residual computed by the schemes employed in this
study levels off as a split-wave solution is approached
under nonuniqueness conditions.

3. ANALY SIS OF SHOCK-WAVE SPLITTING

The Cauchy problem for the Euler equations supple-
mented with initial conditions (2) was solved in a coor-
dinate system moving with the front; i.e., the initia
shock wave was stationary on the numerical grid. Fig-
ure 3 shows the resulting scale-invariant solutions as
functions of x/t for various Hugoniot points character-
ized by post-shock pressures P. In the right panel, 0 is
theinitial state, 1 isthe lower boundary of exponential
growth and shock-wave splitting, 2 is the upper bound-
ary of EOS convexity violation, 3 isthe upper boundary
of exponentia growth and the lower boundary of
acoustic emission, and 4 is the upper boundary of
shock-wave splitting.

The solution is depicted by constant-pressure con-
tours in the (P, x/t) plane. The pressure values on the
contours correspond to those on the P axis. Hereinafter,
this representation of results obtained for various
Hugoniot curvesis called a splitting diagram.

Below point 1, shock waves are absolutely stable.
Between points 1 and 2, asingle shock wave splitsinto
a configuration involving a shock and an isentropic
compression wave:

S— WTCS.

2Thisistrue only when the Harten entropy correction parameter is
zero. Generally, entropy correction is applied to eliminate the rar-
efaction shock arising in Roe's method. In the present context,
rarefaction shocks do not arise when EOS convexity holds. How-
ever, we have to deal with the “symmetric” problem of compres-
sion shocks when the EOS convexity condition is violated.
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Fig. 2. Norm of residual for split-wave solutionsversustime
step number.

Between points 2 and 3, the split-wave configuration
involves two shocks separated by an isentropic com-
pression wave:

- - —

S—» WTSCS.

At point 3, M = 1. The difference in propagation veloc-
ity between shock waves can be determined as the dis-
tance between the corresponding fronts on the x/t axis.
As P increases along the Hugoniot, the |eading-wave
intensity remains invariant, the downstream-shock
intensity and velocity increase, and the pressurerise in
the isentropic compression wave decreases. At point 4,
the leading-wave and downstream-shock velocities are
equal, and the isentropic-wave pressure rise vanishes.
Thismeansthat point 4 isthe upper boundary of shock-
wave splitting.

In contrast to the case of smooth violation of EOS
convexity, the split-wave configuration corresponding
to a kinked Hugoniot curve (Fig. 1b) does not involve
any isentropic compression wave:

S — WTSS.

Figure 4 compares the scal e-invariant pressure profiles
obtained for the model equation of stateat P = 0.54 (left
panel) and for deuterium at P = 3.6 x 10° GPa (right
panel). The pressure interval where the isentropic com-
pression wave (ICW) exists is indicated here. The
velocity difference between the leading wave and
downstream shock resulting from shock-wave splitting
in deuterium is about 2.8 x 10% m/s.

These results were verified by using various numer-
ical techniques (other than those described above),
including Eulerian and Lagrangian schemes. All of
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P P
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1
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X/t

0.1
1

Fig. 3. Pressure versus scaling variable X/t (Ieft panel) for one-dimensional shock waves corresponding to Hugoniot curve for model

equation of state (right panel).

these results are mutually consistent and agree with
previous computations [6].

4. COMPARISON OF RESULTS
FOR SEVERAL FINITE-DIFFERENCE SCHEMES
AND THE REQUIREMENT
OF ENTROPY CORRECTION

Test computations were performed with the first-
and second-order accurate TVD schemes and with
fluxes calculated by using the third-order one-dimen-
siona ENO interpolation [12]. It was shown that phys-
ical solutions satisfying the law of entropy increase
under conditions of EOS convexity violation can be
computed by the TV D schemes only with entropy cor-
rections. Among the tested schemes, only UNO3 pro-
vides acorrect solution without entropy correction. For
example, the first-order accurate scheme without
entropy correction yields the incorrect two-shock solu-
tion S— WTSS instead of S— WTSCS. Fur-
thermore, the upper boundary of shock-wave splitting
predicted by using higher order accurate schemes is
lower than its experimental value. This result was

P P
0.6 T T T T
350
300
0.3r q 2501
0.2 | 200+
0.1p 1 1 1 1 15 1 1

0 1
02 0.1 0 -0.1-0.2 1 05 0 -05 -1

X/t X/t
Fig. 4. Shock-wave splitting configurations:. S —
WTSC S for Hugoniot without kinks (model equation of

dtate, left pandl); S —= WTS'S for kinked Hugoniot
(SESAME equation for deuterium, right panel).
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Fig. 5. Splitting diagrams obtained by using different finite-difference schemes.

L.Ly

Fig. 6. D’yakov—Kontorovich stability parameter L and itscritical value L versus post-shock pressure P. Pressuresbehind (a) initial,
leading, and (b) downstream shocks are denoted by Py, P, and P, respectively.
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improved by introducing additional diffusion, as in 5. SMULATION OF ACOUSTIC EMISSION
Harten entropy correction (1). A satisfactory solution UNDER SHOCK-SPLITTING CONDITIONS
was obtained near the upper shock-splitting boundary

with an entropy correction parameter of 0.125w, where ~ In computations, acoustic emission can be observed
w is the spectral radius of the Jacobian matrix of the if the post-shock state lies above point 4 on the Hugo-
flux vector. niot curvein Fig. 1, during alimited timeinterval under

shock-splitting conditions before the distance between

Figure 5 compares splitting diagrams computed for  split shocks exceeds the acoustic wavelength (if acous-

the model equation of state (see Fig. 3) by using differ-  tic emission develops faster than does shock splitting),

ent schemes with this value of the entropy correction  or when acoustic waves are emitted by the downstream
parameter. shock in a split-wave configuration.

t= 908'31

Fig. 7. Magnitude of pressure gradient. Darker areas correspond to steeper gradients.
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Numerical results illustrating the last manifestation
are presented herefor aninitial shock wave correspond-
ing to the Hugoniot point at P = 0.82 in Fig. 3. At this
point, the original wave simultaneoudly satisfies the
Kontorovich criterion for acoustic emission and the
shock-splitting  conditions. Figure 6 shows the
D’yakov—Kontorovich stability parameter L and its
critical value L, for two Hugoniot curves: the origina
Hugoniot emanating from point 0 and the Hugoniot
corresponding to the downstream shock. The pressures
indicated by vertical linesin Fig. 6a correspond to the
initial and leading shocks. The vertical line in Fig. 6b
represents the pressure corresponding to the down-
stream shock. The figure demonstrates that both initial
and downstream shocks satisfy the acoustic emission
condition Ly <L <1+ 2M. The inset in the left panel
shows that the equation L(P) = Ly(P) has two nearly
equal roots, which implies that there is a small region
of acoustic emission below point 1 in Fig. 3a.

The splitting into stable and unstable shocks was
simulated numerically by solving a two-dimensional
Riemann problem on a 400 x 300 grid in a coordinate
system tied to the initial shock front. Initial conditions
were set to approximate an unstable shock-front frag-
ment and adjoining uniform flow regions. The initial
disturbance was a 1% drop in the velocity profile at the
center of a cell contiguous to the shock front. No qual-
itative change in the ensuing flow pattern was induced
by varying the perturbed velocity component or pertur-
bation amplitude. The gray-scale plots of pressure-gra-
dient magnitude shownin Fig. 7 illustrate the numerical
solution obtained for P = 0.82 with the time step corre-
sponding to a Courant number of 0.3 (darker areas cor-
respond to steeper gradients). Time is measured herein
arbitrary units since the system does not have any
intrinsic time scale. In the three-wave configuration
shown here, the cusps in the downstream shock front
emit weak downstream-propagating acoustic waves
and move aong the front. The acoustic-emission
parameters have the following values: L = -0.59, M =
0.83, and 6 = 2.8. The cosine of the angle between the
acoustic wave vector and the positive x axis is deter-
mined by the equation [4]

g+ M’
U1+L

M4 g lgcoszcx +2M

+L —].ECOSCX

2(1+ M?) o
+—1+L —(1+6M7%) =0,

whoserootsare—1 and—0.66 in thisparticular case. The
range of the latter root is—M, < cos’a < 1, which cor-
responds to an outgoing acoustic wave with wave vec-
tor making an angle of £131° with the positive x axis.
The snapshots shown for three successive instants in
theright-hand part of Fig. 7 illustrate the propagation of
acoustic wave fronts and demonstrate good agreement
with the theoretical value of the angle.
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6. CONCLUSIONS

Theevolution of ashock waveinto a split-wave con-
figuration involving a stable shock and ashock emitting
acoustic waves has been simulated for the first time
under conditions of shock-wave nonuniqueness. The
direction of the simulated acoustic wave propagation is
consistent with predictions of the linear theory.

An analysis of scae-invariant solutions represented
by splitting diagrams in the (P, x/t) plane supports the
theoretical resultsof [3] intermsof structure of solutions

and boundaries for the split wave configurations S —
WTCS,S — WTSCS,andS — WTSS.

A numerical smulation of shock splitting performed
with the use of generalized Roe's method (approximate
solution of the Riemann problem for an arbitrary equa-
tion of state) has demonstrated that entropy correction is
required to obtain physical solutions near the upper
shock-splitting boundary and solutions satisfying the
condition of entropy increase for split-wave configura-
tions involving isentropic compression waves.
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Abstract—A semiclassical method of complex trajectoriesfor the calculation of the tunneling exponent in sys-
tems with many degrees of freedom is further developed. It is supplemented with an easily implemented tech-
nique that enables one to single out the physically relevant trgjectory from the whole set of complex classical
trajectories. The method is applied to semiclassical transitions of a bound system through a potential barrier.
We find that the properties of physically relevant complex trajectories are qualitatively different in the cases of
potential tunneling at low energy and dynamical tunneling at energies exceeding the barrier height. Namely, in
the case of high energies, the physically relevant complex trajectories describe tunneling via creation of a state
close to the top of the barrier. The method is checked against exact solutions of the Schrodinger equation in a
guantum-mechanical system of two degrees of freedom. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Semiclassical methods provide a useful tool for the
study of nonperturbative processes. Tunneling phe-
nomena represent one of the most notable cases where
semiclassical techniques are used to obtain otherwise
unattainable information on the dynamics of the transi-
tion. One standard semiclassical technique is the WKB
approximation to tunneling in quantum mechanics of
one degree of freedom. In this case, solutions §q) of
the Hamilton—Jacobi equation are purely imaginary in
the classically forbidden region. Therefore, the func-
tion §q) can be obtained as the action functional on
areal trajectory q(t), which is a solution to the equa-
tions to motion in the Euclidean time domain,

= 4T,
with the real Euclidean action
S = -iS

This simple picture of tunneling is no longer valid
for systems with many degrees of freedom, where solu-
tions §q) of the Hamilton—Jacobi equation are known
to be generically complex in the classically forbidden
region (see[1, 2] for recent discussion). This leads to
the concept of “mixed” tunneling, as opposed to “pure”
tunneling, where §q) is purely imaginary. Mixed tun-
neling cannot be described by any real tunneling trajec-
tory. However, it can be related to acomplex trajectory,

TThis article was submitted by the authorsin English.

in which case the function §q) (and, therefore, the
exponential part of the wave function) is calculated as
the action functional on this complex trajectory.

A particularly difficult situation arises when one
considers transitions of a nonseparable system with a
strong interaction between its degrees of freedom such
that the quantum numbers of the system change consid-
erably during the transition. Methods based on the adi-
abatic expansion are not applicable in this situation,
while the method of complex trgjectories proves to be
extremely useful.

The method of complex trajectoriesin the form suit-
able for the calculation of Smatrix elements was for-
mulated and checked by direct numerical calculations
in [3-5] (see [6] for review). Further studies [7-12]
showed that this method can be generalized to the cal-
culation of the tunneling wave functions and tunneling
probabilities, energy splitting in double-well potentials,
and decay rates from metastable states. Similar meth-
ods were successful in the study of tunneling in high-
energy collisionsin field theory [13—-16], where one con-
siders systems with a definite particle number (N = 2) in
the initial state, and in the study of chemical reactions
and atom ionization processes, where the initial bound
systems are in definite quantum states [6, 17, 18], etc.
The main advantage of the method of complex trajecto-
riesisthat it can be easily generalized and numerically
implemented in the cases of a large and even infinite
(field theory) number of degrees of freedom, in contrast
to other methods, such as the Huygens-type con-
struction in [1, 2] and the initial value representation
(IVR) in[3, 19-23].

1063-7761/04/9804-0820$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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In this paper, we devel op the method of complex tra-
jectoriesfurther. Namely, we concentrate on the follow-
ing problem. It is known [3] that a physically relevant
complex trgjectory satisfies the classical equations of
motion with certain boundary conditions. However, this
boundary value prablem generically has also an infi-
nite, athough discrete, set of unphysical solutions. In
one-dimensional quantum mechanics, all solutions can
easily be classified. In systems with many degrees of
freedom, such a classification is extremely difficult, if
at al possible. In the case of asmall number of degrees
of freedom (redlistically, N = 2), one can scan over al
solutions and find the solution giving the largest tunnel-
ing probability [3, 9, 10], but in systemswith alarge or
infinite number of degrees of freedom, the problem of
choosing the physicaly relevant solution becomes a
formidable task.

The problem of choosing the appropriate solution
becomes even more pronounced when the qualitative
properties of the relevant complex trajectory are differ-
ent in different energy regions. This may happen when
the physically relevant classical solution “meets’ an
unphysical one at some energy value E = E,, or in other
words, when solutions of the boundary value problem,
viewed as functions of the energy, bifurcate at E = E;.

In this paper, we give an example of thiskind, which
appearsto befairly generic (seealso[11, 12, 15, 16, 24]).
We then devel op amethod that allows oneto choosethe
physically relevant solution automatically, implement it
numerically, and check this method against the numer-
ical solution to the full Schrodinger equation.

We study inelastic transitions of a bound system
through a potential barrier. To be specific, we consider
amodel with oneinternal degree of freedomin addition
to the center-of-mass coordinate. We consider a situa-
tion in which the spacing between the levels of the
bound system is small compared to the height of the
barrier and assume a sufficiently strong coupling
between the degrees of freedom to make sure that the
guantum numbers of the bound system change consid-
erably during the transition process. This is precisely
the situation in which the method of complex trajecto-
ries showsitsfull strength.

Transitions of bound systems involve a particular
energy scale, the barrier height V,. At energies below
V,, classical overbarrier transitions are forbidden ener-
getically; the corresponding regimeis called “ potential
tunneling.” For E > V,, it is energetically allowed for
the system to evolve classically to the other side of the
barrier. However, overbarrier transitions may beforbid-
den dynamically even at E > V,,. Indeed, inelastic inter-
actions of a bound system with a potential barrier gen-
erally lead to the excitation of the internal degrees of
freedom with the simultaneous decrease of the center-
of-mass energy, and this may prevent the system from
the overbarrier transition. The tunneling regime at ener-
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gies exceeding the barrier height is called “dynamical
tunneling.”*

Examples of dynamical tunneling arewell knownin
scattering theory [4]. This type of tunneling between
bound states was discovered in [25], and the generality
of dynamical tunneling in large molecules was stressed
in [26, 27]. Dynamical tunneling is of primary interest
in our study.

We observe a novel phenomenon that dynamical
tunneling at E = V, (more precisely, at E > E;, where
E, is somewhat larger than V) occurs in the following
way: the system jumps on top of the barrier and restarts
its classica evolution from the region near the top.
From the physical standpoint, thisis not quite what is
normally meant by “tunneling through a barrier.” Yet,
the transitions remain exponentially suppressed, but the
reason is different: to jump above the barrier, the sys-
tem has to undergo considerabl e rearrangement, unless
the incoming state is chosen in a special way (see foot-
note 1). This rearrangement costs an exponentially
small probability factor. We note that a similar expo-
nential factor was argued to appear in variousfield the-
ory processes with multiparticle final states [28-31].

Wefind that the new physical behavior of the system
isrelated to abifurcation of the family of complex-time
classical solutions, viewed as functions of energy. This
is precisely the bifurcation mentioned above. Our
method for dealing with thisbifurcation isto regularize
the boundary value problem so that the bifurcations dis-
appear altogether (at real energies), and the only solu-
tions recovered after removing the regularization are
physical ones.

This paper is organized asfollows. The system to be
discussed in what follows isintroduced in Section 2.1.
In Section 2.2, we formul ate the boundary value prob-
lem for the calculation of the tunneling exponent. In
Section 2.3, we then examine the classical overbarrier
solutions and find all initial states that lead to classi-
cally alowed transitions. In Section 2.4, we present a
straightforward application of the semiclassical tech-
nique outlined in Section 2.2 and find that it ceases to
produce relevant complex trgjectories in a certain
region of initial data, namely, at E > E;. In Section 3,
we introduce our regularization technique and show
that it indeed enables usto find all the relevant complex
trajectories, including those with E > E; (Section 3.1).
We check our method against the numerical solution of
the full Schrédinger equation in Section 3.2. In Sec-
tion 3.3 and Appendix C, we show how our regulariza-

L1t is clear that the properties of transitions of a bound system at
E > V, depend on the choice of the initial state. Namely, there
always exists a certain class of states the transitions from which
are not exponentially suppressed. To construct an example, one
places the bound system on top of the barrier and evolvesit clas-
sically backwardsin time to the region where the interaction with
the barrier is negligibly small. On the other hand, even at E >V,
there are states the transitions from which are exponentialy sup-
pressed (dynamical tunneling).
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Fig. 1. An oscillator hitting a potential barrier, with only the
“dark” particle interacting with the barrier.

tion technique is used to smoothly join the “classically
allowed” and “classically forbidden” families of solu-
tions in the respective cases of two- and one-dimen-
siona quantum mechanics.

2. SEMICLASSICAL TRANSITIONS
THROUGH A POTENTIAL BARRIER

2.1. Mode

The situation discussed in this paper is a transition
through a potential barrier of the bound system consid-
ered in[11, 12], namely, the system made of two parti-
cles of mass m, moving in one dimension and bound by
aharmonic oscillator potential of frequency w (Fig. 1).
One of the particles interacts with a repul sive potential
barrier. The potential barrier is assumed to be high and
wide, while the spacing between the oscillator levelsis
much smaller than the barrier height V,. The Hamilto-
nian of the model is

2 2
p1 P L mw 2
_ + P2 M
H = 2m 2m 4 (X1=%;)
1
ool )
exp ,
020

where the conditions on the oscillator frequency and
potential barrier are

hw < V,,

o > fl, /mV,.

Because the variables do not separate, thisis certainly a
nontrivial system.

We choose unitswithA =1, m= 1. It is aso conve-
nient to treat the frequency w as adimensionless param-
eter, sothat all physical quantitiesare dimensionless. In
our subsequent numerical study, we use the value w =
0.5 but keep the notation “w” in formulas. The system
is semiclassical, i.e., conditions (2) are satisfied, if we

choose 0 = 1./2\ and V, = 1/A, where A is a small

)
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parameter. At the classical level, this parameter isirrel-
evant: after rescaling the variabl

X; —» Xg/ N, Xy —= Xol /A,

the small parameter enters only through the overall
multiplicative factor /A in the Hamiltonian. Therefore,
the semiclassical technique can be developed as an
asymptotic expansion in A.

The properties of the system are made clearer by
replacing the variables x; and x, with the center-of-
mass coordinate

_X X
X= 7
and the relative oscillator coordinate
KT Xe
-2
In terms of these vari ables, the Hamiltonian becomes
H = %X+ r;y+ 2y AexpB}‘(XZW)E ©)

The interaction potential

AX+
UInI_ eXpE ( 2 y)D

vanishes in the asymptotic regions X — +c and
describes a potential barrier between these regions. At
X — o0, Hamiltonian (3) correspondsto an oscillator
of the frequency w moving along the center-of-mass
coordinate X. The oscillator asymptotic state is charac-
terized by its excitation number N and total energy

E = —+wg\l

We are interested in the transmissions through the
potential barrier of the oscillator with given initial val-
ues of E and N.

2.2. T/6 Boundary Value Problem

The probability of tunneling from a state with a
fixed initial energy E and oscillator excitation number
N from the asymptotic region X — —o to any statein
the other asymptotic region X —= + is

T (E, N)
(4)

= lim S |flexp(-iA(t - t)[E NI,
f_t| - ®

where it isimplicit that the initial and final states have

support only well outside the range of the potential,

2 To keep the notation simple, we use the same symbols x;, X, for
the rescaled variables.
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with X <0 and X > 0, respectively. Semiclassical meth-
ods are applicable if the initial energy and excitation
number are parametrically large,

E = E/A, N = N/A,

where E and N are kept constant asA —» 0. Thetran-
sition probability has the exponential form

Dexp%—)—l\F(INE, I(I)E, (5)

where D isapreexponentia factor, whichisnot consid-
ered in this paper. Our purpose isto calculate the lead-

ing semiclassical exponent F(E, N) . The exponent for
tunneling from the oscillator ground state is obtained

in [11-13, 32] by taking thelimit N —~ 0in F(E, N).

In what follows, we rescale the variables as

X = XIJN, y—=yl/A

and omit thetilde over therescaled quantities EandN.

The exponent F(E, N) isrelated to acomplex tragjec-
tory that satisfies a certain complexified classical
boundary value problem. We present the derivation of
thisproblem in Appendix A. The outcomeisasfollows.
There are two Lagrange multipliers T and 6, which are
related to the parameters E and N characterizing the
incoming state. The boundary value problem is conve-
niently formulated on the contour ABCD in the com-
plex time plane (see Fig. 2), with the imaginary part of
the initial time equal to T/2. The coordinates X(t) and
y(t) must satisfy the complexified equations of motion
in the interior points of the contour and must bereal in
the asymptotic future (region D):

(62)

Imy(t) — 0, ImX(t) — 0, ast-— +o. (6b)

In the asymptotic past (region A of the contour, where
t=t'+iT/2,t'isreal negative), the interaction potential
U, can be neglected and the oscillator decouples,

y = 7-;_Z)(uexp(—imt') +vexp(it)).

The boundary conditionsin the asymptotic past, t' —
—oo, are that the center-of-mass coordinate X must be

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

823

A Im ¢
. T/2
| B
—_—
| D
A C Re ¢

Fig. 2. Contour in the complex time plane.

real, while the complex amplitudes of the decoupled
oscillator must be linearly related,

ImX— 0, v Heeu*, as t—» —oo, (60)
Boundary conditions (6b) and (6c¢) in fact make eight
real conditions (because, e.g., ImX(t) — O implies
that both ImX and ImX tend to zero) and completely
determine a solution, up to the time trandation invari-
ance (see the discussion in Appendix A).

It is shown in Appendix A that a solution of this
boundary value problem is an extremum of the func-
tional

FIX,y; X*,y* T,6] = —ig[X,y] +igX*, y*] @
—ET — N6 + Boundary Terms.

The value of this functional at the extremum gives the

exponent for the transition probability (up to the large

overall factor 1/A, see Eq. (5)),

F(E,N) = 2ImS,(T, 8) —ET — N6, (8)

where & is the action of the solution, integrated by
parts,
1,d°X
= dtD__X___
i Pl
1.dy 1 ©
—-yd—y——wzy Uin(X, )5

Here, theintegration runs along the contour ABCD. The
values of the Lagrange multipliers T and 6 are related
to the energy and excitation number as

6

E(T,8) = 5=2ImSy(T, ), (10)

0

N(T,8) = 572ImS,(T, ). (11)

Using Eg. (8), it is also straightforward to verify the
inverse Legendre transformation formulas

T(E, N) = —a—aEF(E, N), (12)
8(E, N) = —aiNF(E, N). (13)
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It can aso be verified that the right-hand side of
Eqg. (10) coincideswith the energy of the classical solu-
tion and the right-hand side of Eqg. (11) is equal to the
classical counterpart of the occupation number,

X

E=—=+wN, N =uv.
2

(14)

Therefore, we can either seek the values of T and 6 that
correspond to given E and N or, following a computa-
tionally simpler procedure, solve boundary value prob-
lem (6) for given T and 8 and then find the correspond-
ing values of E and N from Eq. (14). We notethat initial
conditions (6¢) complemented by Egs. (14) are equiva-
lent to the initial conditions in [3-5], the latter being
expressed in terms of action-angle variables. The
boundary conditions in the asymptotic future (6b) are
different from those in [3-5], because we consider an
inclusive, rather than fixed, final state.

We now discuss some subtle points of boundary
value problem (6). First, we note that the asymptotic
reality condition in (6b) does not always coincide with
the readlity condition at finite time. Of course, if the
solution approaches the asymptotic region X — +o
on the part CD of the contour, asymptotic reality condi-
tion (6b) implies that the solution is real at any finite
positive t. Indeed, the oscillator decouples as X —
+00, and, therefore, condition (6b) means that its phase
and amplitude, aswell as X(t), arereal ast —» +o. Due
to the equations of motion, X(t) and y(t) are real on the
entire CD part of the contour. This situation corre-
sponds to the transition directly to the asymptotic
region X —= +oo, However, the situation can be drasti-
cally different if the solution on the final part of thetime
contour remainsin the interaction region. For example,
we can imagine that the solution approaches the saddle
point of the potential X=0,y=0ast —» +o0. Because
one of the perturbations around this point is unstable,
there may exist solutions that approach this point expo-
nentially along the unstable direction, i.e.,

X(t), y(t) O exp(—const 1)

with possibly complex prefactors. In this case, the solu-
tion may be complex at any finite time and become real
only asymptotically ast — +o0. Such a solution cor-
responds to tunneling to the saddle point of the barrier,
after which the system rolls down classically towards
X — +oo (With probability of order 1, inessential for
the tunneling exponent F). We seein Section 3.1 that a
situation of this sort indeed takes place for some values
of the energy and excitation number.

Second, because theinteraction potential disappears
at large negative time (in the asymptotic region X —
—00), it isstraightforward to continue the asymptotic the
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solution to the real time axis. For solutions satisfying
(6¢), this gives

1 T] .
y(t) = E@expg—%gexpmn

WT] .
+u* exp% + TEexp(lwt)Er

T
ImX(t) = ) Px

at large negative time. We see that the dynamical coor-
dinates on the negative side of the rea time axis are
generally complex. For solutions approaching the
asymptotic region X —» +oo ast —» +oo (such that X
and y are exactly real at finite t > 0), this means that
there should exist a branch point in the complex time
plane: the contour A'ABC in Fig. 2 winds around this
point and cannot be deformed to thereal time axis. This
argument does not work for solutions ending in the
interaction region as t — +oo, and, hence, branch
points between the AB part of the contour and the real
time axis may be absent. We seein Section 3.1 that this
is indeed the case in our model in a certain range of E
and N.

2.3. Overbarrier Transitions. the Region
of Classically Allowed Transitions
and Its Boundary Ey(N)

Before studying the exponentially suppressed tran-
sitions, we consider the classically alowed ones. For
this, we study the classical evolution (real time, real-
valued coordinates) in which the system is initialy
located at large negative X and moves with a positive
center-of-mass velocity towards the asymptotic region
X —»= +00, The classical dynamics of the system is
specified by four initial parameters. One of them (e.g.,
the initial center-of-mass coordinate) fixes the invari-
ance under time trandation, while the other three are
thetotal energy E; theinitial excitation number of they
oscillator, defined in classical theory asN = E . /w; and
theinitial oscillator phase ¢;.

Any initial quantum state of our system can be fully
determined by the energy E and the initial oscillator
excitation number N; we can represent each state by a
point inthe EN plane. Thereis, however, one additional
classicaly relevant initial parameter, the oscillator
phase ¢;. An initia state (E, N) leads to unsuppressed
transmission if the corresponding classical overbarrier
transitions® are possible for some value(s) of ¢;. These

3 We note that the corresponding classical solutions obey boundary
conditions (6b) and (6¢) with T =6 = 0; i.e., they are solutions to
boundary value problem (6).
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states form some region in the EN plane, which isto be
found in this section.

For given N, at sufficiently large E, the system can
certainly evolve to the other side of the barrier. On the
other hand, if E is smaller than the barrier height, the
system definitely undergoes reflection. Thus, there
exists some boundary energy Ey(N) such that classical
transitions are possible for E > Ey(N), while, for E <
Eo(N), they do not occur for any initial phase ¢;. The
line Ey(N) represents the boundary of theregion of clas-
sically allowed transitions. We have calculated Ey(N)
numericaly: the result* is shown in Fig. 3.

An important point of the boundary Ey(N) corre-
sponds to the static unstable classical solution X(t) =
y(t) = 0. In the field theory context, such a solution is
called “sphaleron” [33], and we keep this terminology
in what follows. This solution is the saddle point of the
potential

U(X, y) = 0’y 12+ Ui(X, y)

and has exactly one unstable direction, the negative
mode (see Fig. 4). The sphaleron energy Es= U(0, 0) =
1 determines the minimum value of the function Ey(N).
Indeed, classical overbarrier transitionswith E < Egare
impossible, but the overbarrier solution with a dightly
higher energy can be obtained asfollows; a momentum
along the negative modeis added at the point X=y =0,
“pushing” the system towards X — +oo, Continuing
this solution backwards in time shows that the system
tendsto X — —oo for large negative time and has a cer-
tain oscillator excitation number. Solutions with the
energy closer to the sphaleron energy correspond to a
smaller “push” and, thus, spend alonger time near the
sphaleron. In the limiting case where the energy is
equal to Eg, the solution spends an infinite time in the
vicinity of the sphaleron. Thislimiting case has a defi-
nite initial excitation number Ng, so that Ey(Ng) = Eg
(see Fig. 3). The value of Ngis unique because thereis
exactly one negative direction of the potential in the
vicinity of the sphaleron.

In complete analogy to the features of the overbar-
rier classical solutions near the sphaleron point (Eg, Ng),
we expect that, as the values of E and N approach any
other boundary point (Ex(N), N), the corresponding
overbarrier solutions spend more and more time in the
interaction region, where U, # 0. This follows from a
continuity argument. Namely, we first fix the initial

4We note that the boundary Eg(N) of the region of classicaly
allowed transitions can be extended to N > Ng. Because E = Egis
the absolute minimum of the energy of classically alowed transi-

tions, the function Eg(N) growswith N at N > Ng. In fact, it tends
to the asymptotics Ej° = wN asN — +oo. In what follows, we

are not interested in transitions with N > Ng, and, therefore, this
part of the boundary Eg(N) is not shown in Fig. 3.
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Fig. 3. The boundary Eg(N) of the region of classicaly
allowed transitions, the bifurcation line E{(N), and the line
of the periodic instantons Ep (N).

y+X

Fig. 4. The potentia (dotted lines) in the vicinity of the
sphaleron (X = 0, y = 0) (marked by the point), the excited
sphaleron (thick line) corresponding to the point (E, N) =
(1.985, 3.72) at the boundary of the region of classicaly
alowed transitions, and the trajectory of a solution that is
close to this excited sphaleron (thin line). The asymptotic
regions X — o are along the diagonal.

and final times, t; and t;. If, within thistime interval, a
solution with the energy E; evolvesto the other side of
the barrier and a solution with the energy E, and the
same oscillator excitation number is reflected, there
exists an intermediate energy at which the solution
ends up at t = t; in the interaction region. Taking the
limit ast; — +c0 and E; — E, —= 0, we obtain a point
at the boundary E(N) and a solution tending asymptot-
ically to some unstable time-dependent solution that
spends an infinitetimein the interaction region. We call
the latter solution the excited sphaleron; it describes
some (in general, nonlinear) oscillations above the
sphaleron along the stable direction in the coordinate
space. Therefore, every point of the boundary (Eq(N), N)
corresponds to some excited sphaleron. In the phase
space, solutions tending asymptotically to the excited
sphalerons form a surface (separatrix) that separates
regions of qualitatively different classical motions of
the system.

InFig. 4, wedisplay asolution found numerically in
our model that tends to an excited sphaleron. We see
that the trgjectory of the excited sphaleron is, roughly
speaking, orthogonal to the unstable direction at the
saddle point (X=0, y=0).
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2.4. Suppressed Transitions:
Bifurcation Line E;(N)

We now turn to classically forbidden transitions and
consider the boundary value problem in Eq. (6). It is
relatively straightforward to obtain solutions for 6 =0
numerically. In this case, boundary conditions (6b) and
(6¢) take the form of readlity conditions in the asymp-
totic future and past. It can be shown [34] that the phys-
ically relevant solutionswith 6 = O arereal ontheentire
contour ABCD in Fig. 2 and describe nonlinear oscilla-
tionsin the upside-down potential on the Euclidean part
BC of the contour. The period of the oscillations is
equal to T, and, hence, points B and C are two different

turning points where X =y = 0. These real Euclidean
solutions are called periodic instantons. A practical
technique for obtaining these solutions numerically on
the Euclidean part BC consists in minimizing the
Euclidean action (for example, with the method of con-
jugate gradients, see[11, 12] for details). The solutions
on the entire contour are then obtained by solving the
Cauchy problem numerically, forward in time along the
line CD and backward in time along the line BA. From
the solution in the asymptotic past (region A), we then
calculate its energy and excitation number (14). The
solutions of this Cauchy problem are obviously real,
and, hence, boundary conditions (6b) and (6¢) are
indeed satisfied for 8 = 0. It is worth noting that solu-
tions with 8 = O are similar to the ones in quantum
mechanics of one degree of freedom. The line of peri-
odic instantons in the EN plane in our model is shown
inFig. 3.

Once the solutionswith 8 = 0 are found, it is natural
to try to cover the entire region of classically forbidden
trangitions in the EN plane with a deformation proce-
dure, by moving in small stepsin 8 and T. The solution
of the boundary value problem with (T + AT, 6 + AB)
may be obtained numerically by applying an iteration

Re X
T T T T T
20 Physical . -~ ]
OfF----mmmmm e e o2 e

Reflected

1 1 1
-10 0 10 20
Ret

1
=20

Fig. 5. The dependence of the tunneling coordinate X on
time for two solutions with nearly the same energy and ini-
tial excitation number. The physical solution tunnels to the
asymptotic region X — +oo, while the unphysical oneis
reflected to X — —o0. The physical solution has E = 1.028,
N = 0.44, while the unphysical onehas E = 1.034, N = 0.44.
These two solutions are close to the point on the bifurcation
line E;(N = 0.44) = 1.031.
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technique, with the known solution at (T, 6) serving as
theinitial approximati on.” If the solutions end upinthe
correct asymptotic region at each step, i.e., X — +o
on part D of the contour, the solutions obtained by this
procedure of small deformations are physicaly rele-
vant. But the method of small deformationsfailsto pro-
duce relevant solution if there are bifurcation pointsin
the EN plane, where the physical branch of solutions
merges to an unphysical branch. Because there are
unphysical solutionscloseto physical onesinthevicin-
ity of bifurcation points, the procedure of small defor-
mations cannot be used near these points.

We have found numerically that, in our model, the
method of small deformations produces correct solu-
tions of the T/6 boundary value problem in a large
region of the EN plane where E < E;(N). However, at
sufficiently high energy E > E;(N), where E;(N) = Eg,
the deformation procedure generates solutions that
bounce back from the barrier (see Fig. 5), i.e., have a
wrong “topology.” This occurs deep inside the region of
classically forbidden transitions, where the suppression
islarge, and one naively expectsthe semiclassical tech-
nique to work well. Clearly, solutions with a wrong
topology do not describe the tunneling transitions of
interest. Therefore, if the semiclassical method is appli-
cableintheregion E;(N) < E < Ey(N) at all, there exists
another, physical, branch of solutions. In that case, the
line E;(N) is the bifurcation line where the physical
solutions meet the ones with a wrong topology. Walk-
inginsmall stepsin 6 and T isuselessin the vicinity of
this bifurcation line, and a special trick is required to
find the relevant solutions beyond that line. The bifur-
cation line E;(N) for our quantum-mechanical problem
of two degrees of freedom is shownin Fig. 3.

The loss of topology beyond a certain bifurcation
line in the EN plane is by no means a property of our
model only. This phenomenon has been observed in
field theory modelsin the context of both induced false
vacuum decay [14] and baryon-number violating tran-
sitionsin gauge theory [15] (in field theory models, the
parameter N isthe number of incoming particles). Inall
cases, theloss of topology prevented one from comput-
ing the semiclassical exponent for the transition pro-
bability in the interesting region of relatively high
energies.

Returning to quantum mechanics of two degrees of
freedom, we point out that the properties of tunneling
solutions with different energies approaching the bifur-
cation line E;(N) from the left of the EN plane are in
some sense similar to the properties of tunneling solu-
tions in one-dimensional quantum mechanics whose
energy is close to the barrier height (see Appendix C).
Again by continuity, these solutions of our two-dimen-
siona model spend a long time in the interaction
region; this time tends to infinity on the line E;(N).

51n practice, the Newton-Raphson method is particularly conve-
nient (see[11, 12, 14, 15]).
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Hence, at any point of thisline, there is a solution that
starts in the asymptotic region left of the barrier and
ends up on an excited sphaleron. Such behavior is
indeed possible because of the existence of an unstable
direction near the (excited) sphaleron, even for com-
plex initial data. In the next section, we suggest atrick
to deal with this situation—this is our regularization
technique.

3. REGULARIZATION TECHNIQUE

In this section, we develop our regularization tech-
nigue and find the physically relevant solutions
between the lines E;(N) and E(N). We seethat all solu-
tions from the new branch (and not only on the lines
Eo(N) and E;(N)) correspond to tunneling onto the
excited sphaleron (“tunneling on top of the barrier”).
These solutions would be very difficult, if at all possi-
ble, to obtain directly by numerically solving the non-
regularized classical boundary value problem (6): they
are complex at finite times and become rea only
asymptotically ast —= +oo, whereas numerical meth-
ods require working with finite time intervals.

As an additional advantage, our regularization tech-
nique allows one to obtain afamily of overbarrier solu-
tions that covers al the region of the initial data corre-
sponding to classically allowed transitions, including
its boundary. Thisis of interest in models with alarge
number of degrees of freedom and in field theory,
where finding the boundary E,(N) by direct methodsis
difficult (see, e.g., [35] for adiscussion of this point).

3.1. Regularized Problem:
Classically Forbidden Transitions

The main idea of our method is to regularize the
equations of motion by adding aterm proportional to a
small parameter e such that configurations staying near
the sphaleron for an infinite time no longer exist among
the solutions of the T/8 boundary value problem. After
performing the regul arization, we explore all theregion
of classically forbidden transitions without crossing the
bifurcation line. Taking the limit e — 0, we then
reconstruct the correct values of F, E, and N.

In formulating the regularization technique, it is
more convenient to work with thefunctional F[X, y; X*,
y*; T, 6], Eq. (7), itsdlf rather than with the equations of
motion. We prevent F from being extremized by config-
urations approaching the excited sphal erons asymptot-
ically. To achieve this, we add a new term of the form
2€T,; to the original functional (7), where T, estimates
the time the solution “ spends” in the interaction region.
Theregularization parameter e isthe smallest onein the
problem, and, hence, any regular extremum of the func-
tional F (the solution that spends a finite time in the
region U, # 0) changes only dightly after the regular-
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ization. At the same time, the excited sphaleron config-
uration has T, = o, which leads to the infinite value of
the regularized functional

F.=F+2eT,,.

Hence, the excited sphalerons are not stationary points
of the regularized functional.

For the problem under consideration, U;, ~ 1 in the
interaction region and T;,,, can be defined as

T = SL[AUR(GY) + [dtU (X, Y] (15)

We note that T, is rea and that the regularization is
equivalent to the multiplication of the interaction
potential with a complex factor,

U — (1=i€)Ujy = €°Ujp + O(e?).  (16)

Thisresultsin the corresponding change of the classical
equations of motion, while boundary conditions (6b) and
(6¢) remain unaltered.

We still have to understand whether solutions with
ez 0 exist a al. The reason for the existence of such
solutionsis asfollows. We consider awell-defined (for
€ > 0) matrix element

T

= |im

ti—t >

3 [Hlexpl(=iF —eUp) (t ~t)] [E NI,
f

where, asbefore, |E, NLhenotes the incoming state with
given energy and oscillator excitation number. The
quantity 7 . has a well-defined limit ase — 0, equal
to tunneling probability (4). Because the saddle point of
the regularized functional F, gives the semiclassical

exponent for the quantity J ., we expect that such a
saddle point indeed exists.

Therefore, the regularized T/6 boundary value prob-
lem is expected to have solutions necessarily spending
a finite time in the interaction region. By continuity,
these solutions do not experience reflection from the
barrier if the procedure of small deformations starting
from solutions with the correct topology is used. The
line E;(N) is no longer abifurcation line of the regular-
ized system, and the procedure of small deformations
therefore enables usto cover the entire region of classi-
cally forbidden transitions. The semiclassical suppres-
sion factor of the original problem is recovered in the
limite — O.
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Fig. 6. Large-time behavior of asolution withe =0at (E =
1.05, N=0.43). The coordinates X and y are decomposed on
the basis of the eigenmodes near the sphaleron. We note that
Imc, =0.

It is worth noting that the interaction time is Leg-
endre conjugate to e,

19
Tint - ZaeFe(Ev N!E)' (17)

This equation can be used as a check of numerical cal-
culations.

We implemented the regularization procedure
numerically. To solve the boundary value problem, we
use the computational methods described in [11, 12].
To obtain the semiclassical tunneling exponent in the
region between the bifurcation line E;(N) and the
boundary of the region of classicaly alowed transi-
tions Ey(N), we began with a solution to the nonregul ar-
ized problem deep in the “forbidden” region of the ini-
tial data(i.e., at E < E;(N)). Wethen increased the value
of e from zero to acertain small positive number, keep-
ing T and 0 fixed. We next changed T and 6 in small
steps, keeping e finite, and found solutions to the regu-
larized problem in the region E;(N) < E < Ey(N). These
solutions had the correct topology; i.e., they indeed
ended up in the asymptotic region X —»= +oo. Finally,
we lowered e and extrapolated F, E, and N to the limit
e — 0.

We now consider the solutionsin theregion E;(N) <
E < E4(N), which we obtain in the limit e — 0 more
carefully. They belong to a new branch and may, there-
fore, exhibit new physical properties. Indeed, we found
that, as the value of e decreases to zero, the solution at
any point (E, N) with E;(N) < E < E,(N) spends more
and more time in the interaction region. The limiting
solution corresponding to € = 0 has infinite interaction
time: in other words, ast — +oo, it tendsto one of the
excited sphalerons. The resulting physical picture is
that, at a sufficiently large energy (i.e., a E > E;(N)),
the system prefers to tunnel exactly onto an unstable
classical solution, excited sphaleron, that oscillates
about the top of the potential barrier. To demonstrate
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this, we have plotted in Fig. 6 the solution x(t) = (X(t),
y(1)) at large times after taking the limit e —= 0 numer-
ically. To understand this figure, we recall that the
potential near the sphaleron point X =y = 0 hasone pos-
itive mode and one negative mode. Namely, introduc-
ing new coordinatesc,, C_as

X = cosac, + sinac_,

y = —sihac, + cosac._,
2
w
cot2o0 = —,
2

we write, in the vicinity of the sphaleron,

2 2 2 2
Pr , P-, W, 2 W
S350 3%

2 4
2 _ 044 @0, |1, 9
W, = g1+ >0t 1+ 4>0.

Because the solutions of the T/6 boundary value prob-
lem are complex, the coordinates ¢, and c_ are aso
complex. InFig. 6, we show real and imaginary parts of
c, and c_at alargereal timet (part CD of the contour).
We see that, while Rec, oscillates, the unstable coordi-
nate ¢_ asymptotically approaches the sphaleron value:
c_.— Oast —» +oo, Theimaginary part of c_isnon-
zero at any finite time. Thisisthe reason for the failure
of straightforward numerical methodsin theregion E >
E,(N): the solutions from the physical branch do not
satisfy the reality conditions at any large but finite final
time. We have pointed out in Section 2.2 that this can
happen only if the solution ends up near the sphaleron,
which has a negative mode. Thisis precisely what hap-
pens: for e = 0 at asymptotically large t, our solutions
are real and oscillate near the sphaleron, remaining in
the interaction region.

H

where

3.2. Regularization Technique
versus Exact Quantum-Mechanical Solution

Quantum mechanics of two degrees of freedomisa
convenient testing ground for checking the semiclassi-
cal methods and, in particular, our regularization tech-
nique. We have found solutions to the full stationary
Schrédinger equation and exact tunneling probability
J by applying the numerical techniquein[11, 12]. Our
numerical calculations were performed for severa
small values of the semiclassical parameter A, namely,
for A = 0.01-0.1. Transitions through the barrier for
these values of the semiclassical parameter are well
suppressed. In particular, for A = 0.02, the tunneling
probability I is of the order 4. To check the semi-
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classical result with better precision, we have calcu-
lated the exact suppression exponent

Fom(A) =-Alogd

(cf. (5)) for A = 0.09, 0.05, 0.03, and 0.02 and extrapo-
lated Fqy to A = 0 by polynomids of the third and
fourth degree. The extrapolation results are indepen-
dent of the degree (3 or 4) of polynomials with a preci-
sion of 1%. The extrapolated suppression exponent
Fom(0) corresponds to infinite suppression and must
coincide exactly (up to numerical errors) with the cor-
rect semiclassical result.

We performed this check in the region E > Eg = 1,
which is most interesting for our purposes. The results
of the full quantum-mechanical calculation of the sup-
pression exponent Fq in the limit A — 0 are repre-
sented by pointsin Fig. 7. Thelinesin that figure repre-
sent the values of the semiclassical exponent F(E, N)
for constant N, which we obtain in the limit e — 0 of
the regularization procedure. In practice, instead of tak-
ing thelimit e — O, we cal culate the regul arized func-
tiona

F.(E, N) = F(E, N) + O(e)

for sufficiently small e. We used the value e = 1075, and
the value of the suppression exponent was then found
with a precision of the order 10-°. We see that, in the
entire region of classically forbidden transitions
(including the region E > E;(N)), the semiclassica
result for F coincides with the exact one.

3.3. Classically Allowed Transitions

We now show that our regularization procedure
allows one to obtain a subset of classical overbarrier
solutions existing at sufficiently high energies. This
subset isinteresting because it extends to the boundary
of the region of classicaly alowed transitions, E =
Ey(N). In principle, finding this boundary is purely a
problem of classical mechanics; indeed, in mechanics
of two degrees of freedom, this boundary can be
found numerically by solving the Cauchy problem for
given E and N and all possible oscillator phases (see
Section 2.3). However, if the number of degrees of
freedom is much larger, this classical problem becomes
guite complicated, because a high-dimensional space
of Cauchy datahasto be spanned. Asan example, asto-
chastic Monte Carlo technique was developed in [35] to
deal with this problem in the field theory context.
The approach below is an aternative to the Cauchy
methods.

Wefirst recall that all classical overbarrier solutions
with given energy and excitation number satisfy the T/6
boundary value problem with T = 0, 6 = 0. We cannot
reach the“allowed” region of the EN plane without reg-
ularization, because we haveto crosstheline E,(N) cor-
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X
0.70.8 N

Fig. 7. The tunneling exponent F(E, N) in the region E >
Es= 1. The lines show the semiclassical results, and the

dots represent exact ones, obtained by solving the
Schrodinger equation. The lines across the plot are the
boundary of the region of classically alowed transitions
Eo(N) and the bifurcation line Eq(N).

responding to the excited sphaleron configurations in
the final state. But the excited sphalerons no longer
exist among the solutions of the regularized boundary
value problem at any finite value of €. Thissuggeststhat
the regularization makes it possible to enter the region
of classically alowed transitions and, after taking an
appropriate limit, obtain classical solutions with finite
values of E and N.

By definition, the classically allowed transitions
have F = 0. We therefore expect that, in the “allowed”
region of initial data, the regularized problem has the
property that

F.(E, N) = ef (E, N) + O(€).

Inview of inverse Legendre formulas (12) and (13), the
values of T and 8 must be of order e,

T = et(E, N), = ed3(E,N),

where the quantities T and 9 are related to the initial
energy and excitation number (see Egs. (12), (13)) as

.0 F 10

T=maEe T 2 BN (8
.0 F 10

§=AmaNe T an BN (9

where we have used Eq. (17). We thus expect that the
region of classically allowed transitions can be invaded
by taking a fairly sophisticated limit e —= O with t =
Tle = const, 3 = 6/e = const. For the allowed transitions,
the parameters T and & are analogousto T and 6.
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2 6

Fig. 8. The phase of the tunneling coordinate in the complex time plane at three points of the curve 1 = 380, 9 = 130. Figures 8a,
8b, and 8c correspond to € = €5 = 0.01, € = ¢, = 0.0048, and € = ¢ = 0, respectively. The asymptotics for X — —0 and X —
+0o correspond to argX = rtand 0. The contour in the time plane is plotted with the white line.

Solving the regularized T/6 boundary value problem
alowsoneto construct asingle solution for given E and
N. On the other hand, for € = O, there are more classical
overbarrier solutions: they form a continuous family
labeled by the initial oscillator phase. Thus, taking the
limit e — O gives a subset of overbarrier solutions,
which should therefore obey some additional con-
straint. It is almost obvious that this constraint is that
the interaction time T, (EQ. (15)) is minimal. Thisis
shown in Appendix B.

The subset of classica overbarrier solutions
obtained inthee — O limit of the regularized T/0 pro-
cedure extends to the boundary of the region of classi-
cally alowed transitions. We now consider what hap-
pens as this boundary is approached from the “classi-
caly alowed” side. At the boundary Ey(N), the
unregularized solutions tend to excited sphalerons, and
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the interaction time T, is, therefore, infinite. This is
consistent with (18) and (19) only if T and & become
infinite at the boundary. Hence, to obtain a point of the
boundary, we take the further limit,

(Eo(N),N) = /Bli:m St(E(T,{)), N(T,9)).

T > +too

Different values of 1/9 correspond to different points of
the line Ey(N). We thus find the boundary of the region
of classically allowed transitions without initial-state
simulation.

We have checked this procedure numerically. The
limit e — O indeed exists—the values of E and N tend
to the point of the EN planethat correspondsto the clas-
sically alowed transition. The phase of the tunneling
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T
A tunneling @ i
Ty reflection 7
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onto
sphaleron
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0 reflection over-barrier
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. i
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Fig. 9. Dependence of the parameter T = —0F/0E on the
energy for (a) the two-dimensional model with fixed N=0.1
and (b) the one-dimensional model (see Appendix C). Dif-
ferent lines correspond to different branches of classical
solutions of the T/6 boundary value problem. The branches
labeled “reflection” end up on the wrong side of the barrier.
Figure 9b aso contains aline with nonzero e.

coordinate X(t) in the complex time plane is shown in
Fig. 8 for the three points (Figs. 8a-8c) of the curvet =
T/e = 380, 9 = 6/e = 130. Point (a) lies deep inside the
tunneling region, E, < E;(N,); point (c) corresponds to
the overbarrier solution with T=0,6 =0, e = 0; and
point (b) is in the middle of the curve. The branch
points of the solution, the cuts, and the contour are
clearly seen on these graphs.®

It is worth noting that the left branch points move
down as T and 6 approach zero. Solutions close enough
to the boundary E,(N) have the |eft branch point in the
lower complex half-plane (see Fig. 8). Therefore, the
corresponding contour can be continuously deformed

6 The phase of the tunneling coordinate changes by 1t around the
branch point. The points where the phase of the tunneling coordi-
nate changes by 21t correspond to zeros of X(t).
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to the real time axis. These solutions still satisfy the
reality conditions asymptotically (see Fig. 6) but show
nontrivial complex behavior at any finite time.

The regularized T/6 procedure makes it possible to
approach the boundary of the region of classically
allowed transitions from both sides. The points at this
boundary are obtained by taking the limits T —» 0,
T/6 = const of the tunneling solutions and T — +oo,
/9 = const of the classically allowed ones. Because
T =1/9 = T/0 by construction, the lines T* = const are
continuous at the boundary Ey(N), although they may
have discontinuity of the derivatives. The variable T*
can be used to parameterize the curve Ey(N).

4. CONCLUSIONS

We conclude that classica solutions describing
transmissions of a bound system through a potential
barrier with different values of energy and the initial
oscillator excitation number form three branches.
These branches merge at bifurcation lines Ey(N) and
E;(N). Solutionsfrom different branches describe phys-
ically different transition processes. Namely, solutions
at low energies E < E;(N) describe conventional poten-
tia-like tunneling. At E > E,(N), they correspond to
unsuppressed overbarrier transitions. At intermediate
energies, E;(N) < E < Ey(N), physicaly relevant solu-
tions describe transitions on top of the barrier. This
branch structure is shown in Fig. 9a, where the period

= —0F/0E obtained numerically for solutions from
the different branchesis plotted as a function of energy
for N=0.1.

We note that the qualitative structure of branchesin
a model with internal degrees of freedom is similar to
the structure of branches in one-dimensional quantum
mechanics (see Appendix C). The latter is shown in
Fig. 9b. The features of solutionsin both cases are sim-
ilar, although the solutions ending up on top of the bar-
rier are degenerate in energy in the one-dimensional
case and, hence, are not physically interesting.

In this paper, we introduced a regularization tech-
nigue that allows smoothly connecting solutions from
different branches. Its advantageisthat it automatically
chooses the physically relevant branch. This technique
is particularly convenient in numerical studies: we have
seen that it makes it possible to cover the whole inter-
esting region of the parameter space. We applied this
technique to baryon-number violating processes in
electroweak theory [16].

ACKNOWLEDGMENTS

The authors are indebted to V. Rubakov and C. Rebbi
for numerous vauable discussions and criticism;
A. Kuznetsov, W. Miller, and S. Sibiryakov for helpful
discussions; and S. Dubovsky, D. Gorbunov, A. Penin,
and P. Tinyakov for stimulating interest. We wish to

No. 4 2004



832

thank the Boston University Center for Computational
Science and Office of Information Technology for alo-
cation of supercomputer time. This research was sup-
ported by the Russian Foundation for Basic Research
(grant no. 02-02-17398), grant of the President of the
Russian Federation no. NS-2184.2003.2, US Civilian
Research and Devel opment Foundation for Independent
Statesof FSU (CRDF) award no. RP1-2364-MO-02, and
under the DOE (grant no. US DE-FG02-91ER40676).
F.B. is supported by the Swiss Science Foundation
(grant no. 7SUPJ062239).

APPENDIX A

T/6 Boundary Value Problem

The semiclassical method for calculating the proba
bility of tunneling from a state with a few parameters
fixed was developed in [13-15, 32] in the context of
field theory models and in [3-5, 11, 12] in quantum
mechanics. Here, we outline the method adapted to our
model of two degrees of freedom.

1. Path integral representation of the transition
probability. We begin with the path integral represen-
tation for the probability of tunneling from the asymp-
totic region X — —oo through a potential barrier. Let
the incoming state |E, NChave fixed energy and oscilla-
tor excitation number, and have support only for X < 0,
well outside the range of the potential barrier. The
inclusive tunneling probability for states of thistypeis
given by

J(E,N) = t 1'1”1 WEJ— deJ'dyf

(A.1)
x| XX, yil exp(<i Fi(t; ~t))E, Ntlfg;

where H isthe Hamiltonian operator. This probability
can be reexpressed in terms of the transition amplitudes

Ag = Xy, yil eXp(—iH(tf—ti)”Xi,YiD (A.2)
and the initial-state matrix elements
%ii' = D(ia yilE! ND]E! lell’ y;D (A3)
as
+oo 0
J(E,N) = lim DIdeIdXdX
t—t - °°D
(A.9)

+o00

] * D
x J’dyidyidyf&qfi&qi'f%ii'g

The transition amplitude and its complex conjugate
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have the familiar path integral representation
= o ‘Xm __exp(isix)),

X(tg) = X; (A5)
exp (-1 [x7),

=X

|f_

X(tf) = X
where x = (X, y) and Sis the action of the model. To
obtain a similar representation for the initial-state
matrix elements, we rewrite 9B, as
By = D, v PePulXi, yil) (A.6)
where Py and Pe denote the projectors onto the
respective states with the oscillator excitation number
N and the total energy E. It is convenient to use the

coherent state formalism for they oscillator and choose
the momentum basis for the X coordinate. In thisrepre-

sentation, the kernel of the projector operator PePy
becomes

- 1
(4, b PePe|p, al= (2]'[)2

xexpHEE —iNn +5pE+ explio€ +in) BB — ),

where |p, alis the eigenstate with the respective eigen-
values p and a of the center-of-mass momentum py

and the y-oscillator annihilation operator a. It is
straightforward to express this matrix element in the
coordinate representation using the formulas

Mal= 4 —exp ——a + Zway—%u)y%,

X|pO= %[exp(ipxr

Evaluating the Gaussian integralsover a, b, p, and g, we
obtain

a N — i (X — X)
Bii —IdEdnexpg—lEE iNn - > T

+ W
1-exp(-2iw&-2in)

(A7)

2 12
y |:yi -;yi (1+ exp(—2iw&—-2in))

' . . O
—2y}Yi eXp(—l(DE—'ﬂ)} %

where we omit the preexponential factor depending on
n and &. For the subsequent formulation of the bound-
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ary value problem, it is convenient to introduce the
notation

T = -g,
Then, combining integral representations (A.7) and
(A.5) and rescaling the coordinates, energy, and excita-

tion number asx —» x/ /A ,E —= E/A\, N —> N/A, we
finally obtain

0 = —in.

|]+it>o
lim dTdo([dxdx'
 Jim w% j I [dxax]
o (A.8)

T(E N) =

x eXpEi—}-l\F[x, X' T, 6]%
0 0

odad

where
FIx,x'; T,6] = =i X, y] +i§X,y]
—ET-NO+B(x;, x; T, 0).

Here, the nontrivial initial term B; is

(A.9)

B o X=X ®
! 2T 1—exp(2wT + 20)

<[50F+ V(A ep20T+28)  (A0)

—2y,yexp(wT + e)]

In (A.8), x and X' areindependent integration variables,
while X =X, (see Eq. (A.5)).

2. Theboundary value problem. For small A, path
integral (A.8) isdominated by a stationary point of the
functional F. Therefore, to calculate the tunneling prob-
ability exponent, we extremize this functional with
respect to all the integration variables X(t), y(t), X'(t),
y'(t), T, and 6. We note that, because of the limit t; —
t; — +oo, variation with respect to the initial and final
values of the coordinates leads to boundary conditions
imposed at asymptotic t —»= oo rather than at finite
timest;, t;. We also note that the stationary points may
be complex.

Variation of functional (A.9) with respect to the
coordinates at intermediate times gives second-order
equations of motion, in general complexified,

0S 0S 0S 0S'

XD a0 XM  aym o A
The boundary conditions at thefinal timet; — +o are
obtained by extremization of F with respect to X, = X
andy; = y; . These are

Xi = Xi, Y = Vi (A.11b)
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It isconvenient to write the conditions at theinitial time
(obtained by varying X, y;, X;, and y;) in terms of the
asymptotic quantities. At the initial time instant t; —
—oo, the system movesin the region X —» —o, well out-
side the range of the potential barrier. Equations (A.118)
in this region describe free motion of decoupled oscil-
lators, and the general solution takes the form

X(t) = X+ pi(t-t),

1 , .
t) = —[aexp(-iw(t-t;)) +aexp(iw(t-t;))],
y(t) @[ p(-iw(t-t;)) p(iw(t—t;))]
and similarly for X'(t) and y'(t). For the moment, a and
a areindependent variables. In terms of the asymptotic
variables X;, p;, a, a, the initial boundary conditions
become
o X=X
Pi=0=——7
- - (A.11c)
a+a = aexp(wT +0) + aexp(—wT —06),
a+a = aexp(—wT—-0)+aexp(wT+8).
Variation with respect to the Lagrange multipliers T and
0 gives arelation between the values of E, N, and the

initial asymptotic variables (where we use boundary
conditions (A.11c)):

2

_ b

E=7%+oN, (A.11d)
N = aa.

Equations (A.11a)—«(A.11d) constitute the complete set

of saddle-point equations for the functional F.

The variables X' and y' originate from the conjugate
amplitude o4 (see Eq. (A.5)), which suggests that
they are complex conjugate to X and y. Indeed, the
ansatz X'(t) = X*(1), y'(t) = y*(t) is compatible with
boundary value prablem (A.11). The Lagrange multi-
pliers T and 6 are then real, and problem (A.11) may be
conveniently formulated on the contour ABCD in the
complex time plane (see Fig. 2).

We now have only two independent complex vari-
ables X(t) and y(t), which have to satisfy the classical
equations of motion in the interior of the contour,

8S _ dS _
oX(t)  dy(1)
The final boundary conditions (see Eq. (A.11b))

become the reality conditionsfor the variables X(t) and
y(t) at the asymptotic part D of the contour,

ImX; = 0,
|me =0,

Seemingly complicated initial conditions (A.11c) sim-
plify when written in terms of the time coordinate t' =

(A.129)

Imy; = 0O,
f (A.12h)

t—>+00_

Imy; = 0,
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t +iT/2 running along part AB of the contour. We again
write the asymptotic from of a solution, but now along
theinitial part AB of the contour,

X = Xo+ po(t' 1),
1
J2w

Intermsof X,, Yy, U, and v , boundary conditions (A.11¢)
become

y = [uexp(Hiw(t' —1)) + v exp(iw(t —1))].

ImX, = 0, Imp, =0,
° ° (A.12¢)

v = uré’.

Finally, we write Egs. (A.11d) in terms of the asymp-
totic variables along the initial part of the contour,

E=5 (A.13)

N = wuv.

These equations determine the Lagrange multipliers T
and 6 in terms of E and N. Alternatively, we can solve
problem (A.12) for given values of T and 0 and find the
valuesof E and N from Egs. (A.13), which ismore con-
venient computationally.

Given a solution to problem (A.12), the exponent F
isthe value of functional (A.9) at this saddle point. We
thus obtain expression (8) for the tunneling exponent.
The exponent F is now expressed in terms of S, in
Eq. (9), the action of the system integrated by parts.
The nontrivial boundary term B; (Eq. (A.10)) is can-
celed by the boundary term coming from integration by
parts. We note that we did not use constraints (A.13) to
obtain formula (8), and we therefore still have to
extremize (8) with respect to T and 6 (see discussion in
Section 2.2).

Classical problem (A.12) is conveniently called the
T/6 boundary value problem. Equations (A.12b) and
(A.12c) imply eight real boundary conditions for two
complex second-order differential equations (A.12a).
However, one of these real conditions is redundant:
Eq. (A.12b) implies that the (conserved) energy isreal,
and, therefore, the condition Imp, — 0 is auto-
matically satisfied (we note that the oscillator energy
E.s = wuv = wePuu* isreal). On the other hand, sys-
tem (A.12) is invariant under time translations along
thereal axis. Thisinvarianceisfixed, e.g., by requiring
that ReX take a prescribed value at a prescribed large
negative time t, (we note that other ways may be used

instead; in particular, for E < E;(N), it is convenient to

imposethe constraint ReX (t = 0) = 0. Together with the
latter requirement, we have exactly eight real boundary
conditionsfor the system of two complexified (i.e., four
real) second-order equations.
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APPENDIX B

A Property of Solutions to the T/ 6 Problem
in the Case of Overbarrier Transitions

For given Eand N, thereisonly one overbarrier clas-
sical solution, which is obtained in the limit e — O of
the regularized T/6 procedure. To see what singles out
this solution, we analyze the regularized functional

Flal = Fla] +2eTiy[d], (B.1)

where g denotes the variables x(t), x'(t) and T, ©
together. The unregularized functional F hasavalley of
extrema g8(¢) corresponding to different values of the
initial oscillator phase ¢. Clearly, at small €, the extre-
mum of F, is close to a point in this valley with the

phase extremizing T [9%($)],

d

do

Hence, the solution g of the regularized T/6 boundary

value problem tends to the overbarrier classical solu-

tion, with T, extremized with respect to the initial
oscillator phase.

Because U;(X) > 0, T, isapositive quantity with at

least one minimum. In anormal situation, thereisonly

one saddle point of F,, and, hence, solving the T/0

boundary value problem gives the classical solution
with the time of interaction minimized.

Tin[d"(9)] = 0. (B.2)

APPENDIX C

Classically Allowed Transitions:
A One-Dimensional Example

The difficulties with bifurcations of classical solu-
tions emerge in quite a genera class of quantum-
mechanical models. To illustrate this statement, we
consider one-dimensional quantum mechanics, where
the result is given by the well-known WKB formula.
We show that the origin of the above difficulties can
also be seen in one-dimensiona model. |mplementa-
tion of the regularization technique is explicit in the
one-dimensional case. This makes it easy to see how
our technigque allows us to smoothly join the classica
solutions relevant to the tunneling and allowed transi-
tions.

In quantum mechanics of one degree of freedom,
only one variable X(t) is present, which describes the
motion of a particle of mass m = 1 through a potential
barrier U(X). The motion is free in the asymptotic
regions X — oo, The semiclassical calculation of the
tunneling exponent is performed by solving the classi-
cal equation of motion

dS _
OX(t) 0
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on contour ABCD in the complex time plane, with the
condition that the solutionisreal in the asymptotic past
(region A) and asymptotic future (region D). The rele-
vant solutions tend to X — —oo and X — +o0 in
regions A and D, respectively. The auxiliary parameter
T is related to the energy of the incoming state by the
requirement that the energy of the classical solution
is E. The exponent for the transition probability is

F = 2ImS—ET. (C.1)

We note that these boundary conditions resemble the
ones on the tunneling coordinate X in the two-dimen-
sional system.

In quantum mechanics of one degree of freedom,
contour ABCD may be chosen such that points B and C
aretheturning points of the solution. Then, the solution
isalsoreadl at part BC of the contour. Indeed, area solu-
tion at part BC of the contour oscillates in the upside-
down potential, T/2 is equal to the half-period of oscil-
lations, and points B and C are the two different turning

points, X = 0. Continuation of this solution from
point Cto the positive real timesin accordance with the
equation of motion corresponds to real-time motion,
with zero initial velocity, towards X —» +oo; the coor-
dinate X(t) stays real on part CD of the contour. Like-
wise, the continuation back in time from point B leads
to areal solution in part AB of the contour. The reality
conditions are, thus, satisfied at A and D. The only con-
tribution to F comes from the Euclidean part of the con-
tour, and it can be checked that expression (C.1)
reducesto

X

F(E) = ZJ’A/Z(U(X) —E)dX, (C.2)

which is the standard WK B resullt.

The solutions appropriate for the classically forbid-
den and classicaly alowed transitions apparently
belong to different branches. Asthe energy approaches
the height of the barrier U, from below, the amplitude
of the oscillations in the upside-down potential
decreases, while the period T tends to a finite value
determined by the curvature of the potential at its max-
imum. On the other hand, the solutions for E > U,
always run along the rea time axis, and, hence, the
parameter T is aways zero. Therefore, the relevant
solutions do not merge at E = Uy, and T(E) has a dis-
continuity at E = U,. The regularization technique of
Section 3.1 removes this discontinuity and alows
smooth transitions through the point E = U,. The only
difference with quantum mechanics of multiple degrees
of freedom is that, in the latter case, bifurcation points
exist not only at the boundary of the region of classi-
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cally allowed transitions but also well inside the region
of classically forbidden transitions (but still at E > Eg;
see the Introduction and Section 2.3).

To illustrate the situation, we consider an exactly
solvable model with

1

U(X) = .
cosh™ X

We implement our regularization technique by for-
mally changing the potential

U(X) —» e U(X), (C.3)
which leads to the corresponding change of the classi-
cal equations of motion. Here, e isareal regularization
parameter, the smallest parameter in the model. At the
end of the calculations, we take the limit e — 0.

We do not change the boundary conditions in our
regularized classical problem, i.e., we still require X(t)
to bereal in the asymptotic future on the real time axis
and X(t") to be real ast' — —oo 0N part A of contour
ABCD. Then, the conserved energy isreal. The sphale-
ron solution X(t) = 0 now has a complex energy
(because the potential is complex). Hence, the solutions
of our classica boundary value problem necessarily
avoid the sphaleron, and we can expect that the solu-
tions behave smoothly in energy.

The general solution to the regularized problem is

E

e —-E

sinhX = —cosh(/2E(t—t,)),

wheret, istheintegration constant. Thevalue of Imtyis
fixed by the requirement that ImX = 0 at positive time

t — +oo,

|mt0 = I_L

2 2,/2E

The residual parameter Ret, represents the real-time
trandational invariance present in the problem. The
condition that the coordinate X isreal ontheinitial part
AB of the contour gives the relation between T and E,

arg[e’“—F].

{T+arg(e “—E)} .

T 1
5= = (C.4)

J2E

For e = 0 and E < 1, the original unregularized result
T/2 = 17 J/2E is reproduced.

We now analyze what happens in the regularized
case in the vicinity of the would-be special value of
energy, E = Eg= 1. Itis clear from Eq. (C.4) that T is
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now asmooth function of E. Away fromE=1, Eq. (C.4)
can be written as

T
2
E}—E—, forbiddenregion, 1-E > e, (C.5)
_ O.J/2E
alowed region, E—-1> e.

o€
H/2E(E-1)’

Deep enough in the region of forbidden transitions,
where 1 — E > ¢, the argument in Eq. (C.4) is nearly
zero and we return to the origina tunneling solution.
When E crosses the region of size of order e around
E =1, the argument rapidly changes from O(e) to —,

and, hence, T/2 changes from 17 J2 to nearly zero.
Thus, at E > 1, we obtain asolution that is very closeto
the classical overbarrier transition, and the contour is
also very closeto thereal axis. Thisisshownin Fig. 9.
We conclude that, at small but finite €, the classically
allowed and classically forbidden transitions merge
smoothly.

For E < 1, the limit e — 0O is straightforward. For
E > 1, a somewhat more careful analysis of the limit
e — 0 is needed. It follows from Eq. (C.5) that the

limit e —» O with a constant finite T < 11/./2 leads to
solutions with E = 1. Classical overbarrier solutions of
the original problem with E > Eg= 1 are obtained in the
limite — Oif T aso tendsto zero while T = T/e iskept
finite. Different energies correspond to different values
of 1. This is what one expects. classical overbarrier
transitions are described by the solutions on the contour
withT=0.
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