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Abstract—The reflectometer method is used to comparatively study plasma fluctuations in the edge plasma of
the TUMAN-3M tokamak during L–H transitions initiated by different methods. It is shown that the width of
the spectrum of backscattered microwave radiation is the most representative parameter when comparing the
results obtained in different confinement regimes. The following methods for affecting the edge plasma were
applied: gas puffing, a fast current ramp-up, a rapid increase in the toroidal magnetic field, and ion cyclotron
heating. The studies were performed at different positions of the cutoff of O- and X-mode probing waves. A
similar behavior of the spectral width was observed during transitions triggered by the fast current ramp-up and
the rapid increase in the toroidal field. This provides evidence that the mechanism for transition to the H-mode
is the same in both cases in spite of the different character of the evolution of the current density profiles. The
fastest and strongest narrowing of the spectra was observed during the transition triggered by ion cyclotron
heating. Possible reasons for similarities and differences in the behavior of the spectra during the transitions to
the improved confinement regime are discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Among the processes associated with a transition to
the improved confinement mode in a tokamak plasma,
the occurrence of an edge transport barrier in the
H-mode is the most extensively studied phenomenon,
both in divertor and limiter discharges. It is commonly
accepted that the improved confinement in the H-mode
is ensured by the drift in the radial electric field, which
results in the sheared poloidal rotation. The sheared
rotation causes the decorrelation of fluctuations and
decreases the rate of turbulent transport processes [1].
Although the nature of the occurrence and maintenance
of a plasma state with improved confinement is basi-
cally the same for different types of L–H transitions, the
mechanisms for generating the radial electric field can
differ widely. They are determined by specific methods
for triggering the H-mode. In recent experiments in the
TUMAN-3M tokamak, a transition to the H-mode was
achieved by different methods [2]; this made it possible
to carry out a comparative study of L–H transitions.
The study included an analysis of the behavior of
plasma fluctuations. According to theoretical models,
the suppression of plasma turbulence is related to the
sheared rotation; hence, the study of fluctuations can
provide indirect evidence of the generation of the radial
electric field, which is necessary for the L–H transition.
The rate and degree of the suppression of fluctuations
were estimated from the scattering of probing micro-
wave radiation under conditions of strong refraction;
i.e., the measurements were carried out in the reflecto-
meter version of the experiment. In this paper, we
1063-780X/02/2802- $22.00 © 20103
present phenomenological data demonstrating that the
change in the spectral width of the reflected signal is
related to the change in transport processes in the edge
plasma and is the most representative parameter in
comparative studies using different scenarios of the
L−H transition. In Sections 3 and 4, we present the
results from a comparison of the time evolution of the
spectral width of the reflected signal obtained in differ-
ent scenarios of the L–H transition for different cutoff
positions of the incident microwaves. In Section 5,
based on the results obtained, we discuss possible pri-
mary mechanisms giving rise to the electric field, which
is a key factor for the suppression of turbulence and
transition to the H-mode in the TUMAN-3M tokamak.

2. METHOD FOR ESTIMATING THE SPECTRAL 
WIDTH OF THE BACKSCATTERED 

MICROWAVE SIGNAL

The TUMAN-3M backscattering microwave diag-
nostics is based on a single-antenna reflectometer
scheme, which allows probing by O- and X-mode
microwaves [3]. The frequency of the probing micro-
waves could vary in the range F = 17–25 GHz from shot
to shot. At such frequencies, the cutoff is at the plasma
edge, where the transport barrier arises during the tran-
sition to the H-mode. The probing radiation was
launched from the low-field side with the help of a con-
ical antenna 4 cm in diameter and 8 cm in length. The
scheme is designed to observe backscattered radiation
for various angles of incidence of the probing micro-
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wave beam (see [3]). However, in the described experi-
ments, most of the measurements were performed with
an antenna placed in the equatorial plane of the torus,
when the probing radiation was normally incident onto
the flux surface. The reflected radiation was detected by
the microwave two-homodyne receiver technique
(quadrature detection), which is described in detail in
[4]. This method allowed us to obtain the spectra in the
blue and red frequency ranges by means of the Fourier

transform of the complex signal (t) = Ucos(t) +
iUsin(t) (where Ucos(t) and Usin(t) are the signals from
two homodyne channels in which the phases of refer-
ence radiation are shifted by π/2 with respect to each
other). In the course of experiments, we obtained statis-
tically averaged estimates for the power spectrum of the

complex signal (t). These spectral estimates were
then used to determine how the width of the spectrum

and the root mean square (RMS) values of (t) in dif-
ferent frequency ranges varied during the discharge.
The spectra were analyzed in the frequency band ±0.5
or ±1 MHz.

3. COMPARISON OF THE TIME EVOLUTION
OF THE BACKSCATTERED SPECTRA

DURING DIFFERENT TYPES OF TRANSITIONS 
TO THE H-MODE

Experimental studies of turbulence were carried out
in the TUMAN-3M tokamak (a = 0.22 m, R = 0.53 m,
and BT ≤ 1.2 T) after the boronization of the vessel at
relatively high discharge currents (Ip > 140 kA) in a
deuterium plasma. A traditional method for triggering
the H-mode in the TUMAN-3M tokamak is gas puffing
[5]. In recent years, new methods for triggering the
transition to improved confinement have been sought
with the purpose of investigating the generation mech-
anisms for the radial electric field. As a result, transi-
tions to the H-mode triggered by perturbing the current
profile during a rapid increase in the toroidal field
(magnetic compression) or a fast current ramp-up have
been found and investigated. In addition, a specific L–
H transition triggered by an RF pulse in the ion cyclo-
tron resonance (ICR) frequency range was obtained.
The occurrence of a transport barrier at the plasma edge
was usually identified by an increase in the average
plasma density accompanied by a decrease in the Dα
emission, which was detected in several sections of the
torus. It was natural to suggest that the transitions
observed in the TUMAN-3M tokamak were accompa-
nied by an increase in the energy confinement time.
This fact was confirmed for the case when a transition
to the H-mode of an ohmically heated plasma was trig-
gered by gas puffing [5].

With the above methods for triggering the H-mode,
transitions to improved confinement were always
accompanied by a decrease in the level of the reflecto-
meter signal in the high-frequency (>100 kHz) range.

U̇

U̇

U̇

Such a decrease in the oscillation level was observed in
many reflectometer experiments in tokamaks during
transitions to the H-mode and is now interpreted as the
suppression of plasma fluctuations (see review [1]).
However, the TUMAN-3M experiments showed that
the change in the level of the fluctuation signal of the
reflectometer did not necessarily correlate with the
achievement of improved confinement or its degrada-
tion. As an example, Fig. 1 shows how the RMS value
of the output signal in the band 0.5–1 MHz varies dur-
ing the fast plasma current ramp-up or ramp-down. The
fast current ramp-up triggers a transition to the
H-mode, which is seen, e.g., in the increase in the aver-
age plasma density (Fig. 1c). In contrast, the decrease
in the current is not accompanied by an L–H transition
(Fig. 1a). Nevertheless, a decrease in the level of the
output URMS signal was observed in both cases. This
experimental result can be explained by the fact that
variations in the level of the reflectometer signal at a
fixed probing frequency can be attributed to both the
variations in the level of plasma fluctuations and the
change in the conditions for detecting backscattered
radiation, e.g., the shift of the cutoff and/or the change
of the fluctuation scale.

In our opinion, the change in the level of scattering
plasma fluctuations is more adequately represented by
the spectral width of the output signal δf. This spectral

characteristic was determined as δf = ( f )df/S(0),

where S( f ) is the averaged power spectrum of the com-

plex signal (t). As is seen in Fig. 1b, the spectral
width δf in a discharge with a current ramp-down only
fluctuates about a certain mean level. In contrast, when
a transition to the H-mode is triggered by a fast current
ramp-up, the spectral width drops and remains at a low
level throughout the entire phase of improved confine-
ment (Fig. 1d). It should be noted that, in many experi-
ments carried out in the TUMAN-3M tokamak, the nar-
rowing of the spectrum of the output signal always cor-
relates with the increase in the plasma density and the
decrease in the intensity of the Dα line, i.e., with the
suppression of the charged particle transport at the
plasma edge. In contrast, the degradation of confine-
ment was always accompanied by a broadening of the
spectrum. Another example of such correlation
between the spectral width and plasma confinement is
illustrated in Fig. 2, which shows the discharge phase in
which radiation at the ICR frequency was launched in
the plasma. It is seen that the RF pulse results in a short
period of improved confinement, which manifests itself
by an increase in the density and a decrease in the Dα
emission. This phase (from 35 to 38 ms) is character-
ized by a sharp narrowing of the spectrum. However,
the density then stops growing and the Dα emission
increases. This change in the confinement correlates
with an increase in the spectral width. A spontaneous
transition to the H-mode in the ohmically heated
plasma occurs at 47 ms. This appears in the narrowing

S∫
U̇
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Fig. 1. Comparison of the RMS values URMS and the spectral width δf of the output complex reflectometer signal in discharges with
a fast plasma current (a, b) ramp-down and (c, d) ramp-up: (1) plasma current Ip, (2) line-averaged electron density 〈ne 〉 , (3) δf, and
(4) URMS. The vertical line marks the instant of transition to the H-mode during a fast current ramp-up. The probing O-mode fre-
quency is F = (b) 20 and (d) 18 GHz.
of the spectrum and also in the characteristic increase in
the plasma density and decrease in the Dα emission.

The possible mechanisms for the broadening of the
spectrum under the experimental conditions of the
TUMAN-3M tokamak were discussed in detail in [3].
It was shown that the observed spectral width could not
be attributed to the Doppler broadening due to a finite
width of the antenna directivity diagram in the presence
of the poloidal rotation. The broadening of the spec-
trum by the Doppler mechanism because of the pres-
ence of the rotation shear (i.e., because of the spread in
the poloidal velocities in the scattering volume) is also
of less importance. It is well known that the shear of the
poloidal rotation should increase during the transition
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
to the H-mode [1] and should also result in an increase
in the spectral width. However, in our experiments, the
spectral width decreased. The observed correlation
between the change in the spectral width of the back-
scattered signal and the change in the rates of anoma-
lous transport allows us to assume that the spectral
width is determined primarily by a chaotic displace-
ment of scattering fluctuations in the strongly nonlinear
stage of instability. In this case, we may expect a corre-
lation between the anomalous transport and the spectral
width. This correlation is qualitatively confirmed by the
theory of small-angle scattering of laser radiation [6].
According to [6], if the characteristic size of scattering
fluctuations is larger than the correlation length of the
velocity of chaotic plasma density perturbations, then



 

106

        

ASKINAZI 

 

et al

 

.

      
the spectral width is proportional to the turbulent diffu-
sion coefficient. Under conditions of strong refraction
of the incident and scattered waves (i.e., under condi-
tions of reflectometry measurements), such correlation
has not yet been verified theoretically. Nevertheless, the
above phenomenological facts allow us to consider the
spectral width to be the most representative parameter
when comparing the results obtained using different
methods for triggering the H-mode.

Figure 3 shows a comparison of such results in the
case when the L–H-transition was triggered by the per-
turbation of the current profile caused by the magnetic
compression (Figs. 3a, 3b) or the plasma current ramp-
up (Figs. 3c, 3d). The current Ip increased by 15–20%
of its initial value [7]. The rapid increase in the toroidal
magnetic field BT corresponded to a low compression
ratio of 1.15 [8]. The transition times are marked in
Fig. 3 by vertical lines. In Fig. 3, we can see the fast
phases of the transitions, i.e., the short time intervals
(shorter than 1 ms) in which the growth rate of the aver-
age plasma density increases and the slope of the time
dependences of the Dα emission and the spectral width
δf vary. The subsequent growth of the average density
and the drop of the spectral width apparently indicate
that a transport barrier increases and extends in space.
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Fig. 2. Time dependence of the spectral width δf in the dis-
charge with a short RF pulse at the ICR frequency: (1) 〈ne 〉 ,
(2) Dα emission, and (3) δf. Two vertical lines mark the
front of the RF pulse and the instant of spontaneous transi-
tion to the H-mode. The probing O-mode frequency is F =
19 GHz.
As is seen in Fig. 3, the relative variations in the spec-
tral width during the transitions (δfOH/δfH ≈ 2), the char-
acteristic time of spectrum narrowing τ (τ =
[(1/δfOH)dδf/dt]–1 ≈ 4–5 ms), and the behavior of the
line-averaged density and the Dα emission are close for
both scenarios of the transition to the H-mode. Here,
δfOH and δfH are the spectral widths before and after the
transition, respectively. All of this apparently indicates
that the mechanism for the occurrence and further evo-
lution of the transport barrier is the same in both cases.
It is particularly remarkable that similar dependences
were observed when the variations in the current-den-
sity profile j(r) at the plasma edge (and, correspond-
ingly, in the q profile) were opposite in character. When
the magnetic field increases, the current profile should
sharpen; in contrast, when the current increases, the
profile j(r) should flatten [7].

The variations in the spectral width and the average
plasma parameters for the other two scenarios of the
transition to the H-mode are compared in Fig. 4. In
these discharges, the H-mode was triggered by gas
puffing or by launching RF radiation at the cyclotron
resonance frequency for hydrogen minority. The trig-
gering of the H-mode in an ohmically heated plasma in
TUMAN-3M by means of an additional gas puffing is
described in many papers (see, e.g., [5]). A specific
transition to improved confinement triggered by an RF
pulse was revealed in experiments on ICR heating. The
RF power with a power of 100 kW and a frequency of
12 MHz was launched from the low-field side with the
use of a single-loop antenna coated with boron nitride.
It is well known from divertor experiments in large
tokamaks that the L–H transition occurs spontaneously
during ICR heating (see, e.g., [9]). Unlike this type of
transition, the drop in the Dα emission and the increase
in the average plasma density (i.e., the processes asso-
ciated with the L–H transition in TUMAN-3M) were
observed immediately after the RF generator was
switched on (Fig. 4c). Over this period, we observed a
sharp narrowing of the spectrum of the reflectometer
output signal. We should note that, with this method for
triggering the H-mode, the relative change of the spec-
tral width δfOH/δfH ≈ 3.2 and the time during which the
spectral width δf decreased (τ = 2 ms) were maximum
as compared to the other scenarios for achieving
improved confinement. In contrast, with gas puffing,
we observed a slow variation in the measured values
(Fig. 4a), which clearly indicates that the mechanisms
for the generation of an edge transport barrier are dif-
ferent in these two cases.

4. MEASUREMENTS OF THE SPECTRAL WIDTH 
AT DIFFERENT POSITIONS 

OF THE MICROWAVE CUTOFF

Since the experimental facts indicate that the change
in the spectral width δf is related to the rates of anoma-
lous transport processes, it is interesting to estimate the
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
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Fig. 3. Comparison of the time dependences of the spectral widths δf for the triggering of the H-mode by (a, b) a rapid increase in
the magnetic field BT and (c, d) a fast plasma current ramp-up: (1) 〈ne 〉 , (2) Dα emission, (3) δf, (4) BT , and (5) Ip. The instants of
transition to the H-mode are marked by vertical lines. The probing O-mode frequency is F = (b) 17.5 and (d) 18 GHz.
spatial region in which, for different transitions, the
suppression of fluctuations, resulting in the narrowing
of the observed spectra, occurs. For this purpose, mea-
surements were performed at different positions of the
cutoff of the O-mode probing wave, i.e., at different
microwave frequencies from 17.5 to 25 GHz. The prob-
ing radiation frequency F was varied from shot to shot.
We could select a relatively small number of shots with
identical signals of monitor diagnostics for different
frequencies F. It is these measurements that were used
for a comparative analysis. In Fig. 5, the measurements
of the spectral width for transitions triggered by the cur-
rent ramp-up (Figs. 5a, 5b) are compared with those
triggered by an RF pulse at the ICR frequency (Figs. 5c,
5d). The results are presented for two probing frequen-
cies 17.5 (curve 1) and 25 GHz (curve 2), correspond-
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
ing to the cutoff electron densities of 3.5 × 1012 and 7.5 ×
1012 cm–3, respectively. Figure 5 shows the positions rc

of the probing wave cutoffs estimated from the data of
multichord interferometer measurements. In spite of
the relatively low accuracy of the determination of rc,
the estimates clearly demonstrate the different penetra-
tion depth of incident radiation in the plasma at the
given frequencies F.

It is seen in Figs. 5a and 5b that, during a transition
triggered by a fast current ramp-up, the narrowing of
the spectrum is first observed only when the cutoff is
located at the edge, near the last closed flux surface
(rc ≈ 22–23 cm). It is interesting to note that the values
of the spectral width at the instants of transition are dif-
ferent for different probing frequencies. This difference
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(d) 19 GHz.
apparently points to the local character of the method of
microwave backscattering, i.e., to the fact that the scat-
tered signal comes dominantly from the cutoff region.
On the other hand, assuming that the spectral width is
related to the transport coefficient, we can conclude
that, during this transition, the transport suppression
first occurs at the edge of the plasma and then expands
gradually into deeper plasma regions. It follows from
the presented dependences that, in this case, the nar-
rowing of the spectrum during the discharge is more
pronounced at the edge.

A radically different behavior of the spectral width
was observed during transitions triggered by an RF
pulse. After RF radiation was input into the plasma, the
narrowing of the spectrum was observed simulta-
neously for every cutoff position (see the time interval
35–38 ms in Figs. 5c, 5d). After the end of the RF pulse,
the spectral width measured for deeper cutoff positions
was restored rapidly to its value measured before the
transition. In contrast, when the cutoff was located at
the edge, the narrowed spectrum was observed up to the
end of the discharge, which probably indicates that the
transport barrier is formed near the plasma edge.

5. DISCUSSION OF RESULTS

The similar behavior of the width of the signal spec-
trum during both a fast current ramp-up and magnetic
compression (Fig. 3) is evidence that the mechanism
for the suppression of plasma turbulence and anoma-
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
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lous transport is the same in both cases. According to
the recently proposed concept of an L–H transition trig-
gered by a perturbation of the current profile (see [7,
8]), the primary cause of the transition in both cases is
the generation of an inhomogeneous toroidal electric
field Eϕ at the periphery of the discharge. The Ware drift
in the field Eϕ turns out to be uncompensated for elec-
trons and ions under the TUMAN-3M conditions. This
eventually results in the generation of a negative radial
electric field Er . As was previously established [7], the
negative electric field is favorable for the L–H transi-
tion. In contrast, according to the same mechanism, the
current ramp-down is accompanied by the formation of
a positive field Er at the edge. In this case, the transport
barrier does not form and the narrowing of the spectrum
is not observed in the experiment (Figs. 1a, 1b). It is
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
obvious that a finite time is required for the expansion
of the positive radial field and the transport barrier. This
time should be on the order of the diffusion time. This
circumstance can probably explain the character of the
behavior of the spectral width δf measured at different
positions of the incident radiation cutoff. As was
expected, δf first decreases at the plasma edge (Figs. 5a,
5b). The delay times observed for the spectrum narrow-
ing at cutoff positions spaced by nearly 3 cm amounts
to 8–10 ms, which coincides with the delay time of the
expansion of the negative field Er that was obtained in
numerical simulations [10].

A different mechanism for the generation of a nega-
tive electric field takes place when the H-mode is initi-
ated by gas puffing. This is evidenced by a slow narrow-
ing of the spectrum and, accordingly, a slow increase in
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the plasma density and a slow decrease in the Dα emis-
sion (Figs. 3a, 3b). The most probable cause of an
increase in the radial electric field in this case is the for-
mation of a pedestal in the plasma pressure during an
additional pulsed injection of the neutral gas. Model
calculations [11] confirm this mechanism for the gener-
ation of the radial electric field. The energy source for
such an evolution of the plasma pressure in TUMAN-
3M is ohmic heating. In this context, it is interesting to
note that the time interval in which the narrowed spec-
trum was observed increased just after the boronization
of the chamber, when the ohmic heating power was
reduced [12].

The strong narrowing of the spectrum of the back-
scattered signal when the H-mode is triggered by an
ICR heating pulse allows us to conclude that there is
another mechanism for the formation of the transport
barrier, different from those governing the transition to
the H-mode in the previous scenarios. We note that the
transition to the H-mode is not related to heating of the
main ion component, because the transition occurs
immediately after the RF pulse is switched on and its
occurrence depends weakly on the concentration of the
resonant hydrogen minority. The primary mechanism
for the H-mode initiation in this case may be the rapid
generation of high-energy ions in the RF wave field;
leaving the plasma, these ions can give rise to a negative
electric field. This mechanism for the generation of the
radial electric field related to the loss of ions moving
along banana orbits was studied theoretically for toka-
maks with divertors [13]. The generation of fast ions in
the TUMAN-3M tokamak is indirectly confirmed by
the data on charge-exchange neutral fluxes. For exam-
ple, Fig. 4d demonstrates the flux of neutral hydrogen
with an energy of 1.01 keV (the temperature of the
main ion component is ≈0.2 keV). As is seen, the
growth time of this flux is close to the characteristic
time of spectrum narrowing. Note that, during the RF
pulse, the region in which the spectrum narrowing was
detected spans to r = (2/3)a. However, after the RF
pulse, the narrowed spectrum was observed only when
the cutoff was located at the edge (Fig. 5d). This means
that, during the suppression of turbulent transport, an
appreciable pressure gradient responsible for sustain-
ing the radial electric field after the RF pulse occurs
only at the plasma edge. Obviously, a certain time is
needed for this pressure gradient to form. Actually,
when the RF pulse duration was decreased to 3–4 ms,
the narrowed spectrum and all characteristic signs of
transport suppression were observed only for a short
time (Fig. 2); then, the discharge was restored to the
regime with a low energy confinement time.

Hence, a comparative study of plasma turbulence
confirms that, in the cases when the H-mode is trig-
gered by magnetic compression or by the plasma cur-
rent ramp-up, the mechanism for the formation of a
negative radial field at the plasma edge is basically the
same. A fast transition to the H-mode is revealed during
an RF pulse at the ICR frequency. In this case, the pri-
mary process starting the sequence of phenomena
resulting in improved confinement may be the loss of
fast ions. A remarkable fact is that the transition to the
H-mode in the TUMAN-3M tokamak occurs immedi-
ately after the RF pulse is switched on.
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Abstract—It is proposed to apply the statistical analysis of the increments of fluctuating particle fluxes to
examine the probability characteristics of turbulent transport processes in plasma. Such an approach makes it
possible to pass over to the analysis of the dynamical probability characteristics of the process under study. It
is shown that, in the plasmas of the L-2M stellarator and the TAU-1 linear device, the increments of local fluc-
tuating particle fluxes are stochastic in character and their distributions are scale mixtures of Gaussians. In par-
ticular, in TAU-1, the increments obey a Laplacian distribution (which is a scale mixture of Gaussians with an
exponential mixing distribution). A mathematical model is proposed to explain such distributions. Possible
physical mechanisms responsible for the random character of the increments of fluctuating particle fluxes are
discussed.© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is clear that heat transport in the edge plasma of
toroidal magnetic confinement systems is largely gov-
erned by turbulent fluctuations in the charged particle
density and the electric and magnetic fields [1, 2]. The
correlation between transport processes and turbulent
fluctuations manifests itself most clearly during transi-
tions to the improved confinement mode (H-mode) and
the generation of transport barriers both at the plasma
edge and in the plasma core [3, 4]. A general feature of
such transitions is the change in the gradients of the
plasma parameters and the shear of the poloidal rota-
tion velocity, as well as variations in the local charac-
teristics of turbulent fluctuations. A transition from one
plasma confinement mode to another can be induced in
different ways, in particular, by varying the plasma
heating power or the particle flux from the toroidal
chamber wall [5–7]. However, both of the mechanisms
by which local turbulent fluctuations affect the plasma
as a whole and the influence of these fluctuations on the
features of the processes occurring in plasma still
remain unclear.

In some respects, the development of the experi-
mental research on plasma turbulence resembles the
evolution of the experimental research on hydrody-
namic turbulence. Let us quote here an excerpt from the
book by Belotserkovskiœ and Oparin [8]: “During the
first years, these phenomena were interpreted to be
completely stochastic processes (determined by the dis-
tributions of fluctuating quantities). However, to date, a
radical revolution has occurred in the understanding of
these phenomena. It was found that turbulence also
includes the ordered motion of almost coherent struc-
1063-780X/02/2802- $22.00 © 20111
tures, and the interrelation between determinate and
chaotic sources is being actively studied now.” Indeed,
a similar revolution in the study of plasma turbulence
has occurred over the last few years: a mixed determi-
nate–chaotic state was observed in plasma turbulence.
Moreover, structural plasma turbulence seems to be
peculiar to all plasmas. In such turbulence, the forma-
tion of structures is random in character and the role of
rare events increases (in [9], such a state was called
rigid turbulence). That is why the probabilistic–statisti-
cal approach to the analysis of turbulent plasma fluctu-
ations has been developed in recent years [10, 11].
Strong structural plasma turbulence was observed in
several plasma experiments in which random ensem-
bles of stochastic plasma structures were revealed. For
example, it was shown that strong structural turbulence
is characteristic of the plasma of the L-2M stellarator:
at the edge, it is produced by ensembles of MHD struc-
tures, whereas, in the plasma core, it is produced by
ensembles of vortex drift structures [12, 13]. Ensem-
bles of nonlinear ion-acoustic solitons were observed in
ion-acoustic structural turbulence in a low-temperature
plasma [14]. At present, all of the methods of spectral
analysis of the experimental data can be applied to
examining the turbulence characteristics. However, we
believe that the use of the above probabilistic–statistical
analysis is more adequate for studying such turbulence,
because this method makes it possible to obtain addi-
tional information on the turbulent process. The
method implies the calculation and analysis of the cor-
relation coefficients between the amplitudes of plasma
fluctuations, the means and variances of the ensembles
of plasma processes, and the probability distribution
functions (PDFs). To date, a great deal of experimental
002 MAIK “Nauka/Interperiodica”
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data from PDF measurements has been accumulated in
experiments performed in different devices. The quan-
tities measured in experiments on structural plasma tur-
bulence usually have non-Gaussian PDFs. In this con-
text, the problem of the deviation of the PDF from
Gaussian arises, because, until now, all theories of
plasma turbulence operated with Gaussian distributions
of the fluctuation amplitudes. The conclusion that the
PDF differs from Gaussian is usually deduced from the
shape of a histogram constructed from the amplitudes
of fluctuating quantities at equidistant times. The con-
struction of the PDF in this way is not quite adequate.
In fact, it can be easily shown that, even for a discrete
time sequence constructed for classical Brownian
motion, this approach gives an excess value of å4 ≈ 4,
whereas, for a Gaussian distribution, we have å4 = 3.1

The problem is that the amplitude values taken at equi-
distant times do not constitute a homogeneous indepen-
dent sample; as a result, it is difficult to make decisive
conclusions about the probabilistic properties of the
process under study.

In this paper, we will consider the problem of cor-
rect (from the standpoint of mathematical statistics)
processing of the experimental data on turbulent
plasma fluctuations using as an example the measured
local turbulent fluxes in the L-2M stellarator and the
TAU-1 linear device and will discuss in more detail the
resultant statistical characteristics of the turbulent pro-
cesses under study.

We will mainly consider the PDF of amplitudes of
the radial local turbulent particle flux (which will be
referred to below as a local flux).2 The PDF measure-
ments of local fluxes have been carried out in many
devices (linear devices, tokamaks, and stellarators [15,
16]). The measured PDFs usually differ from Gaussians
by a higher peakedness and more slowly decreasing
tails. Such features of the amplitude distribution of the
local flux indicate the important role of rare events in
transport processes. However, until recently, the mech-
anisms responsible for the difference of the local flux
PDF from Gaussian were not discussed. Only recently
[17, 18] have attempts been made to relate the statistical
probability characteristics to nonlinear wave processes
in plasma.

The paper is organized as follows. Section 2 gives a
brief mathematical description of PDFs with tails
decreasing more slowly than in Gaussian distributions.
Section 3 is devoted to the processing of the measured
local fluxes. In Section 4, the results obtained are dis-
cussed, and Section 5 presents a brief summary.

1 Proof of this assertion is given in the Appendix.
2 Below, we consider the so-called one-point radial fluctuating par-

ticle flux defined as .Γ̃ c
B
----n~E~=
2. HEAVY-TAILED DISTRIBUTIONS
IN PHYSICS

During the last few decades, non-Gaussian proba-
bility models have attracted considerable interest in
various fields of science. Now, it is generally accepted
that normal distributions (which are applied to the mod-
eling of many physical phenomena) fail to adequately
describe experimental data. The observed empirical
distributions possess considerably larger excesses,
higher peakedness, and heavier tails (i.e., tails decreas-
ing more slowly as compared to normal distributions).
This means that, for such processes, the number of
observations of very small and very large values (i.e.,
values substantially different from the standard devia-
tion) exceeds the number of similar observations for a
normal process. This phenomenon is almost universal
and is observed, e.g., in turbulent plasma and stock
price fluctuations.

There have been many attempts to explain the
observed departure from the normal distribution. His-
torically, the first models were stable distribution mod-
els that appeared as limit laws in the limit theorems for
the sums of independent random variables (see, e.g.,
[19, 20]). These models possess two drawbacks. The
first is that only a few stable distributions can be
expressed via elementary or special functions; for this
reason, the statistical analysis of stable models is not a
simple matter because it is often impossible to deal
directly with the probability functions. The second
drawback is the assumption that elementary summands
have infinite variances is very far from being realistic.

Recently, alternative models have been proposed to
describe heavy-tailed distributions. These models have
the form of scale mixtures of normal laws. Such distri-
butions appear as limit distributions in the limit theo-
rems for the sums of a random number of random vari-
ables with finite variances (see, e.g., [21, 22]). In these
models, the observed high peakedness of sample distri-
butions can be explained as follows. Each observation
in the sample has the normal distribution (there are
many reasons for this assumption; the entropy approach
and the approach based on the central limit theorem of
probability theory both lead to this conclusion). How-
ever, being influenced by some global factor (or several
factors), each observation has its own values of the
location and scale parameters of the normal distribu-
tion. In other words, the sample can be regarded as non-
homogeneous. As a result, we naturally arrive at the
representation of the sample as an ensemble of many
homogeneous subsamples. This actually means that the
total sample distribution is a mixture of normal distri-
butions of homogeneous subsamples. In this case, the
problem of determining the mixing distribution is of
great importance. This distribution corresponds to the
distribution of global factors.

In other words, if the system under consideration is
closed, then the observed distribution is normal. How-
ever, in open systems influenced by some external fac-
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
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tors, this is not the case, and, instead of a normal distri-
bution, we have a mixture of normals with mixing dis-
tributions determined by external factors.

Formally, if the standard normal distribution Φ(x) is
defined as

then, in the general case, the total sample distribution
can be written in the form

(1)

where Q(u, ν) is the two-dimensional distribution func-
tion. Therefore, the problem of fitting the sample by a
model distribution reduces to the problem of finding
Q(u, ν). Unfortunately, in the general case, the latter
problem appears to be ill-posed. Its solution is not
unique. There are two ways of regularizing this prob-
lem.

(i) A simplification of the model by replacing distri-
bution (1) by simpler representations. One of them is

(2)

with an unknown parameter u and unknown one-
dimensional distribution function Q1(ν). Formula (2)
represents F(x) as a location mixture of normals. The
second simpler representation of F(x) is

(3)

with an unknown parameter ν and unknown one-
dimensional distribution function Q2(u). Expression (3)
represents F(x) as a scale mixture of normal distribu-
tions.

(ii) Replacing Q(u, ν) with its discrete approxima-
tion Qn(u, ν). In this case, instead of the integral repre-
sentation (1), we obtain

(4)

with 3n – 1 parameters p1 , …, pn, u1 , …, un , ν1, …, νn

(p1 + … + pn = 1).
All of the reduced problems are well posed and can

be solved by either parametrical techniques (i.e., using
a special parametric representation for Q1(ν) and Q2(u);
for example, Q2(u) may be regarded as a gamma distri-
bution or a universal Gaussian distribution with
unknown parameters whose estimates should be found
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statistically) or nonparametric techniques (the so-called
“separation of mixtures”).

3. EXPERIMENTAL RESULTS

In this paper, we study the probability characteris-
tics of fluctuating particle fluxes measured in the plas-
mas of the L-2M stellarator and the TAU-1 model
device. The parameters of the devices and the plasma
are presented in [13, 14]. The L-2M stellarator has two
helical windings of different polarity (l = 2). The major
radius of the torus is R = 100 cm, and the mean minor
plasma radius is 〈r〉  = 11.5 cm. The plasma was pro-
duced and heated by ECR heating at the second har-
monic of the electron gyrofrequency. The magnetic
field at the axis of the plasma column was B = 1.3–1.4 T,
the gyrotron power was P0 = 150–200 kW, and the
microwave pulse duration was 10–12 ms. Measure-
ments were performed at the mean plasma density 〈n〉  =
(1.3–1.8) × 1013 cm–3. The central electron temperature
was in the range Te(0) = 0.6–1.0 keV. The working gas
was hydrogen. In the edge plasma at the radius r/rs =
0.9 (where rs is the separatrix radius), the density was
at a level of n(r) = (1–2) × 1012 cm–3 and the electron
temperature was Te(r) = 30–40 eV. The relative level of
density fluctuations was (δn/n)out = 0.2–0.25 in the
outer plasma region and (δn/n)in = 0.1 in the inner
plasma region. In the TAU-1 device, a cylindrical argon
plasma column 4 cm in diameter and 100 cm in length
was produced in a uniform magnetic field with an
induction of ≤800 G by a steady low-energy electron
beam with an energy of Eb = 60–150 eV at an argon
pressure of p = (2–4) × 10–4 torr. The plasma density
was maintained at a level of n = (0.9–1.2) × 1010 cm–3.
The electron temperature was 5–7 eV, and the ion tem-
perature was Ti ≈ 0.1Te. The main differences between
these devices are the magnetic field topology (the L-2M
field is toroidal and the TAU-1 field is uniform) and the
plasma temperature (Te(0) = 0.6–1.0 keV in L-2M and
Te = 5–7 eV in TAU-1). On the other hand, as was
observed in previous experiments [23], the spectral and
statistical characteristics of plasma turbulence in both
devices are very similar (broadband continuous fre-
quency spectra, autocorrelation functions with nonvan-
ishing oscillating tails, etc.).

In our measurements, the local fluctuating particle

flux was defined as  = (δneδv r) [10, 11], where δne is
the plasma density fluctuation, δv r = cδEΘ/B is the
radial velocity fluctuation, δEΘ = (δϕ1 – δϕ2)/∆Θr is the
fluctuation of the poloidal electric field, δϕ is the fluc-
tuation of the plasma floating potential, Θ is the poloi-
dal angular coordinate, and r is the mean radius of the
magnetic surface. Obviously, the local flux is governed
by turbulence resulting from a variety of instabilities
existing in the plasmas of these devices. The descrip-
tion of the local flux is simplified if its origin is associ-
ated with a limited set of plasma instabilities. In exper-

Γ̃
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iments carried out in the TAU-1 device, the local flux is
governed by the drift-dissipative instability [24]. In the
L-2M stellarator, the interchange resistive ballooning
instability is dominant in the edge plasma [11], whereas
the drift-dissipative instability prevails in the plasma
core [13]. For TAU-1, the frequencies of turbulent fluc-
tuation spectra are in the range from several kilohertz to
one-hundred kilohertz (∆f/f |TAU-1 ≈ 0.3). The fre-
quency spectrum of turbulence resulting from the resis-
tive ballooning instability in the stellarator is broader
and extends over several hundreds of kilohertz
(∆f/f |[L-2M] ≈ 1). In this paper, we analyze the local
fluxes measured in the edge plasma of the L-2M stellar-
ator and in the low-temperature plasma of TAU-1. In
these relatively simple cases, we can introduce the
effective growth rate, γeff = f(γ, χ) (where γ = γ1, …, γk and
χ = χ1, …, χl), in order to describe variations in the
local flux. Even if only one type of instability develops,
the effective growth rate includes not only the linear
growth rate of the instability but also the characteristic
nonlinear growth rates related to the limitation of the
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L-2M stellarator. The signal sampling rate is 1 MHz.
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Shot no. 4449
 amplitudes of unsteady motions, the appearance of
plasma structures in the nonlinear stage of the instabil-
ity, and the interaction between plasma structures: γ =
γ1, …, γk, where k is the number of linear and nonlinear
mechanisms responsible for the growth of fluctuations.
It is reasonable that all of the linear and nonlinear
damping rates χ = χ1, …, χl (where l is the number of
linear and nonlinear mechanisms responsible for the
damping of fluctuations) also must be included in the
effective growth rate of the local flux. The variation in
the local flux is determined by variations in δne and δv r

with respect to the thermal noise level. In our experi-
ments, variations in the local fluxes were measured
with probe arrays, each consisting of three individual
cylindrical probes. The probes measured the plasma
density fluctuations δn (in the regime in which the ion
saturation current Is is measured, δIs ~ δn) and floating
potential fluctuations δϕ. These measurements were
then used to calculate the radial fluctuating particle
flux. The sampling rate (i.e., the reciprocal of the time
interval between successive points) was up to 5 MHz,
and the realization length was up to 128 kB. The sam-
pling rates are given in the figure captions.

Figure 1a shows typical signals of the local flux 

(Fig. 1a) and its increment  = (tj) – (tj – 1)
(Fig. 1b) for edge plasma of the L-2M stellarator. It is
seen that both signals are intermittent and bursty. Fig-
ure 1c shows the autocorrelation functions (ACF) of the
flux and its increment for the same signals. It is seen

that, within the given time window, the ACF of  does

not approach the noise level, whereas the ACF of 
approaches this level in several microseconds. The slow
variation of the ACF of the local flux in the edge plasma
demonstrates that the flux amplitudes does not repre-
sent a homogeneous independent sample, whereas the

rapid drop in the ACF of  indicates the random and
independent character of the increments. Figure 2 illus-
trates the time dependence of the local flux (Fig. 2a)
and its increments (Fig. 2b) in the TAU-1 plasma and
their autocorrelation functions (Fig. 2c). The autocorre-

lation function of the local flux  associated with drift
instability in the low-temperature plasma approaches
the noise level more rapidly than the local flux in the

stellarator, but the ACF of its increment  approaches
the noise level even more rapidly. Hence, the ampli-
tudes of the local flux in TAU-1 do not represent a
homogeneous independent sample; in contrast, the
increments of the local flux constitute a homogeneous
independent sample. Hence, when applying the con-
ventional methods of probability analysis, it is more
correct to use the increments of the fluctuating flux
instead of the flux amplitudes themselves.

We describe the local particle flux determined by

plasma fluctuations in the following form:  = (tj) =

Γ̃
∆Γ̃ Γ̃ j Γ̃ j 1–

Γ̃
∆Γ̃

∆Γ̃

Γ̃

∆Γ̃

Γ̃ Γ̃
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(tj) , where  is a quantity slowly varying in
time. Then, we can consider a mathematical model of

the dynamic characteristics of the process  (namely,

γeff = (tj) dependent on the random time tj and con-

stituting the set of random values ). Such a repre-
sentation corresponds to the shape of the ACF of the
local flux increments shown in Figs. 1c and 2c. As was
mentioned above, for unstable plasma fluctuations, the
parameter γeff depends on all of the linear and nonlinear
growth and damping rates that can occur under our

Γ̃ j
0

e
γeff

t j Γ̃ j
0

Γ̃

γ j
eff

γ j
eff
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experimental conditions. We can suggest that the phys-
ical mechanisms responsible for the random character
of the parameter γeff will determine the characteristic
features of local fluctuation transport.

Figure 3 shows the PDFs for the processes of a local
fluctuating flux and its increments in L-2M (Figs. 3a,
3c) and TAU-1 (Figs. 3b, 3d). The asymmetry coeffi-
cient M3 and the excess M4 of the corresponding PDFs
are also shown. The PDF of the time sample of the local

flux  (Figs. 3a, 3c) differs substantially from Gauss-
ian. Note that the measured PDFs of the density fluctu-

Γ̃
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ations δne and the poloidal electric field δEΘ in L-2M
and TAU-1 are usually Gaussian. Even if the data from

the time sample of  were independent and homoge-

neous, the PDF of the local flux  obtained by multi-
plying two Gaussian fluctuating variables (δne and δEΘ)
would differ from Gaussian by having a heavier tail and
sharper vertex (the proof of this assertion is given in the
Appendix). In our case, when there are no homoge-

Γ̃

Γ̃

neous and independent data in the time sample of the

local flux , such a non-Gaussian PDF of the local flux
is difficult to analyze. Hence, it is more interesting to
consider the deviation of the increments of the local

flux  from the Gaussian PDF, because, as was noted
above, the time sample for the flux increments consists
of statistically homogeneous and independent values.

Characteristically, the PDF of the process  is sym-

Γ̃

∆Γ̃

∆Γ̃
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metric, which indicates a dynamic symmetry of the flux
increments. The asymmetry coefficient and excess of

the PDF of the process  in L-2M are M3 = 0.9 and
M4 = 9.3; for TAU-1, they are M3 = 0.08 and M4 = 7.3.
The values of the moments of the discrete process of
increments of the local flux in TAU-1 are very close to
the moments of the continuous process of a random
variable with the Laplacian PDF: M3 = 0 and M4 = 6
(the difference between the excess values may be attrib-
uted to the procedure of the signal discretization). Fig-
ure 4a shows a histogram of the amplitudes of the incre-
ments of the local flux in TAU-1 (see Fig. 3d) and its
approximation by a Laplacian distribution (the Gauss-
ian distribution is also shown in the figure). In Fig. 4b,
we can see that the Gaussian distribution is inappropri-
ate for describing the heavy tail in the histogram of the
amplitudes of the local flux increments. Note that the
time sample of the local flux increments contains 64 kB
points. The two curves differ by only several percent,
and the peakedness of the PDF is described better by
the Laplacian process than by the Gaussian distribu-
tion. This example is more interesting because the cor-
responding histogram agrees well with the Laplacian
PDF. The Laplacian PDF (accurate to the scale param-
eter) can be represented as a scale mixture of Gaussians
with an exponential3 mixing distribution. Thus, if L(x)
is a Laplacian PDF,

(5)

and Φ(x) is the standard normal distribution function,

(6)

then we have

(7)

(see, e.g., [25]). From here, we can conclude that each

increment  =  –  is a result of classical

(Brownian) diffusion from the point  to the point

 occurring with its own diffusion coefficient σj . This
means that the random process of the local flux incre-
ments can be described by the diffusion law in which
the coefficient σj varies randomly on successive sam-
pling intervals (when varying j). Hence, in this diffu-
sion law for the process of the local flux increments, the
diffusion coefficients σj ( j ≥ 1) are random values that

3 In the case of drift oscillations in TAU-1, the PDFs of the incre-
ments of fluctuations of the floating potential and the saturation
ion current are described by normal distributions.
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obey the exponential distribution [see Eqs. (1)–(3)]. In
this connection, we note that the Gaussian distribution
has the highest entropy among all the laws with a finite
second moment and corresponds to steady states in
closed systems. The exponential distribution has the
highest entropy among the laws with a finite first
moment that are concentrated on the positive semiaxis;
this distribution corresponds to stable states in open
systems. Naturally, both plasma devices are open sys-
tems for which the duration of dynamic equilibrium
with respect to macroscopic plasma parameters sub-
stantially exceeds the characteristic fluctuation times. It
turns out that the measured distribution of the local flux
increments in the TAU-1 device corresponds to the
most stable steady-state process for an open plasma
system. The PDF for the local flux increments is the
Laplacian distribution (the distribution with the highest
entropy) only if the sampling interval is as short as 1–
5 µs; as the time interval increases, the PDF of the
increments departs from Laplacian (the shape of the
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Fig. 4. (a) Approximation of the histogram of the incre-

ments  of the local flux in TAU-1 by a Laplacian distri-
bution, and (b) the comparison of a Gaussian distribution
with the tail of the histogram of the increments. The signal
sampling rate is 1 MHz.
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Fig. 5. Histogram of the increments of the local flux mea-
sured at a sampling rate of 10 kHz in TAU-1 (M3 = 0.1,
M4 = 7).

0.05

0.10

0.15

0.20

0

(‡)

Amplitude, arb. units

100 200 300 5004000

0.10

0.08

0.06

0.04

0.02

(b)

Frequency, kHz

Shot no. 44479

Fig. 6. Fourier spectra of (a) the local flux and (b) its incre-
ments in the edge plasma of the L-2M stellarator.
PDF in this case will be examined below). This time
interval (1–5 µs) is characteristic of a local flux associ-
ated with the drift-dissipative instability. Previously, we
measured the oscillation periods, the linear growth
rates, the saturation times, the autocorrelation times of
turbulent fluctuations, etc., for drift motions driven by
the drift-dissipative instability under the TAU-1 exper-
imental conditions. It turns out that the variations in the
local particle flux determined by drift motions occur on
a time scale (we have already mentioned that this time
is characteristic of the local flux) more than one order
of magnitude shorter than those drift-motion times.

We can also assume that, in the general case, the

fluctuating particle flux  is a doubly stochastic diffu-
sion process (or, in other terms, the diffusion process
with random time). Mathematically, such a process
results from the passage to the limit in the generalized
Cox process4 [21]. In this case, the incremental distri-
butions of individual processes can be represented as
scale mixtures of Gaussians, which is confirmed in our

case by the statistical analysis of . The Laplacian
distribution obtained for the drift flux increments is one
of the important cases of such distributions. The proba-
bility for large (larger than three standard deviations5)
variations in the local flux increments distributed by the
Laplacian law is many times higher than that for the
Gaussian law. In other words, the probability of the
experimental observations of ultrafast6 increments of
the local flux increases (Fig. 4b). Figure 5 shows a his-
togram of the increments of the drift particle flux in the
TAU-1 device for the case when the time interval
between observations is 100 times longer than for the
initial distribution presented in Fig. 2d (the longer the
sampling time, the lower the contribution to the PDF
from the processes determined by the influencing func-

tions). The PDF for  approaches the normal (Gaus-
sian) distribution, which corresponds to the asymptotic
of the generalized Cox processes [22].

The spectral characteristics of the local flux incre-
ments apparently differ from the spectral characteris-
tics of the fluxes themselves. This is illustrated in Fig. 6
by the Fourier spectra of the local fluxes (Fig. 6a) and
their increments (Fig. 6b) in the edge plasma of the
L-2M stellarator. The broadband (∆ω > ω) spectra of
the local flux increments have a typical noise shape, and

the frequency values for  are higher than those

4 This is a doubly stochastic Poisson process N (k)(t) = N1(Λk(t)),
where N1 is a homogeneous Poisson process with unit intensity
and Λk are random processes independent of N1. In [21], argu-
ments are also presented in favor of using generalized Cox pro-
cesses as mathematical models for inhomogeneous chaotic physi-
cal processes.

5 In probability theory, this estimate is known as the three-sigma
rule.

6 In principle, the probability of the observation of slow (ultraslow)
events also increases; however, the contribution from these events
to the transport processes is insignificant (Fig. 4a).
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Fig. 7. Time behavior of the wavelet spectra of (a) the local flux and (b) its increments in the TAU-1 device.
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for . Similar to the local flux increments in the TAU-1
device, the characteristic times of the local flux incre-
ments in the edge plasma of the L-2M stellarator turn
out to be much shorter than the previously known peri-
ods and autocorrelation times for the edge turbulence
driven by the resistive ballooning instability.

We have already pointed to the intermittent charac-

ter of the signals  and  (see the time dependences
shown in Figs. 1a and 2a). We believe that the random
character of the local flux and its increments is more
clearly demonstrated in the time dependence of the
wavelet spectra of these quantities, when the signal is
represented not as a superposition of harmonic func-
tions (as in the conventional Fourier analysis), but as a
superposition of another base functions, the so-called
wavelets [14]. Wavelet analysis allowed us to trace the
time evolution of the flux events and their emergence
and disappearance in the spectrum. The frequency
spectrum was constructed in successive time intervals
using the formula

(8)

We used wavelets of the same form Ψa(t) =
a−1/2exp[i2πt/a – (t/a)2/2] as in [14]. Figure 7 shows the
time evolution of the wavelet spectra of both the flux
driven by the drift instability and the flux increments.
These time-dependent spectra are compiled from 100
spectra computed for successive 200-µs time intervals.
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The amplitude of spectral components is shown by
shades of gray. The frequency corresponding to the
wavelet duration is plotted on the abscissa, and the time

is plotted on the ordinate. The spectra of  and 
vary substantially with time, whereas the macroscopic
plasma parameters do not change. It is seen that the
local flux in TAU-1 and the increments of this flux are
intermittent and exist as extending events with pauses
between them. In Fig. 7, these events correspond to
intense random dark zones that represent the wavelet
harmonics. The characteristic duration of the local flux
events is ~1 ms, and the pauses between them are
shorter. The individual flux events do not resemble each
other; their spectra and amplitudes are also different
(e.g., the flux events at times 12 and 14.5 ms are quite
different). The characteristic flux frequency related to
the wavelet duration as ω = 2π/a indicates a longer
duration of the local flux events (the low-frequency
region in Fig. 7a) as compared to the characteristic time
of the local flux increments (the high-frequency region
in the spectra of flux increments in Fig. 7b). The local
flux in the L-2M stellarator also occurs in the form of
individual events; the duration of individual events
exceeds the incremental times for these events. The
time behavior of the wavelet spectra of the local flux
and the local flux increments in the stellarator is identi-
cal to that in the TAU-1 device. Hence, the measured
steady-state local flux in the plasma can be represented
as an ensemble of individual flux events. Figures 1 and

Γ̃ ∆Γ̃
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2 show that, as the delay time increases, the value of the
correlation coefficient for the events of the local flux
increments decreases more rapidly than that for the
events of the local flux. We can attribute this indepen-
dence of the events to the random nature of the correla-
tion coefficients between the fluctuations of the density
and poloidal field in each individual flux event. For very
long arrays of flux events in the TAU-1 device, it is pos-
sible to estimate how these events are related in time or
whether the next flux event remembers the preceding
one.

To answer this question, we can determine the Herst
parameter [26] for the local flux. In the present paper,
we found this parameter only for the steady-state flux in
TAU-1, because this parameter can only be determined
from long arrays of steady-state experimental data. The
method for evaluating the Herst parameter is based on
the so-called R/S analysis [27]. The Herst parameter H
characterizes the relation between events on long time
intervals and is convenient to use when analyzing
experimental data. We can use the following criteria:
H = 1 for regular processes, H = 0.5 for random Gaus-
sian processes, H > 0.5 for self-similar processes with a
positive correlation, and H < 0.5 for self-similar pro-
cesses with a negative correlation. In Fig. 8, the value
of log(R/S) (where R/S is the range of accumulation
divided by the standard deviation for a certain time
interval [27]) calculated for the local flux in TAU-1 is
shown as a function of the logarithm of time (the length
of a data file is 128 kB). Two lines obtained from the
R/S analysis for a regular (H = 1) and a Gaussian (H =
0.5) process are also presented in the figure. The shape
of the function log(R/S) for the local flux in TAU-1 is
very close to that for a random process. Strikingly, the
self-similarity Herst parameter (H = 0.58) turned out to
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Fig. 8. Time dependences of the function log(R/S) for
(1) the local flux in the TAU-1 device, (2) a regular signal,
and (3) a Gaussian signal.
be equal (accurate to the second digit) to the Herst
parameter for the local flux in the edge plasma of the
W7-AS stellarator [18]. Note that the W7-AS stellara-
tor and the TAU-1 device belong to different classes of
plasma devices and the plasma characteristics in these
devices are very different, whereas the memory charac-
teristics between the flux events coincide. Such a small
departure of the local flux from a random process may
be attributed to the existence of a certain weak influ-
ence function, which we plan to analyze in our future
studies.7

4. DISCUSSION OF RESULTS
AND CONCLUSIONS

Now, we attempt to clarify the physical mechanisms
responsible for the random character of the dynamical
characteristics of the local flux (such as the growth and
damping rates) and, correspondingly, the values of the
local flux increments. We will try to identify some
physical mechanisms whose influence on the formation
of the process of random increments is confirmed by
the experimental data. It is clear that the measured
incremental times for local fluxes are shorter than the
reciprocals of the growth rates of the above-mentioned
instabilities, which are related to the poloidal field and
plasma density fluctuations. We recall that the local flux
is determined not only by the amplitudes of the density
and poloidal field fluctuations, but also the cross-corre-
lation coefficient between these amplitudes at a certain
time. The characteristic times of the local flux varia-
tions can be related to the characteristic times of varia-
tions in the cross-correlation coefficient between the
fluctuation events. The variations in the cross-correla-
tion coefficient may be very sensitive to the collisional
damping of oscillations, the nonlinear mechanisms
governing the growth of oscillations, the limitation of
their amplitude, and the suppression of unstable oscil-
lations; other mechanisms are also possible. For exam-
ple, for the beam–plasma and parametric instabilities,
the process determining variations in the value of the
cross-correlation coefficient between the density and
poloidal field fluctuations may be Langmuir collapse.
For the drift-dissipative instability responsible for the
local flux in TAU-1, the growth of fluctuations can be
limited by stochastic ion heating, which increases
plasma diffusion [24]. The additional ion heating not
only changes the conditions for the onset of the drift-
dissipative instability, but also causes its aperiodic sup-
pression. It is obvious that, when the instability is sup-
pressed, the associated flux must decay, in which case
the cross-correlation coefficient between the density
and field fluctuations changes rapidly. Note that the
mechanisms for the instability suppression due to sto-
chastic ion heating and convection are nonlinear,
because they depend on the amplitude of the growing

7 We believe that the R/S analysis can be widely used to analyze the
processes with memory that are determined by strong structural
turbulence.
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Fig. 9. Autocorrelation functions of drift-dissipative fluctuations of the floating potential V in the TAU-1 device and the increments
∆V represented on (a) the linear and (b) logarithmic time scales.
oscillations. Such a mechanism may be one of the pos-
sible mechanisms responsible for the random change of
the cross-correlation coefficient between the density
and poloidal field fluctuations, which determine an
individual fluctuation of the local flux.

Another mechanism responsible for the random

character of the flux increments  and, accordingly,
the parameter γeff may be the generation of nonlinear
structures in the turbulent plasma. Previously, turbulent
plasma states were described as states of strong struc-
tural turbulence, when a random ensemble of plasma
structures is superimposed on strong plasma turbu-
lence. In low-frequency turbulence in the edge plasma
of the L-2M stellarator, we observed extended poloidal
structures; it was also found that vortex drift structures

∆Γ̃
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can form in the plasma core [12, 13]. In the TAU-1
device, we observed ion-acoustic solitons in the low-
frequency structural ion-acoustic turbulence [14, 27];
the solitons moved with velocities exceeding the ion-
acoustic velocity. The plasma turbulent structures arise
and decay randomly in time; the characteristic times of
their appearance/disappearance at a given point can be
much shorter than the plasma oscillation period. They
can significantly contribute to the local flux.8 Hence,
the growth and decay of plasma structures is an addi-

8 For example, up to 10–15% of the energy of turbulent fluctua-
tions in the edge plasma of the L-2M stellarator is contained in
MHD structures; in the structural ion-acoustic turbulence in the
TAU-1 device, up to 30% of the fluctuation energy is contained in
ion-acoustic nonlinear solitons.



122 BATANOV et al.
tional factor provoking the random change in the char-
acteristic times of the growth and damping of individ-

ual events in the local flux and the change in .

The incremental method is useful for analyzing the
original fluctuations in structural plasma turbulence,
because it provides an opportunity to determine the
characteristic time scales on which nonlinear structures
evolve. From this standpoint, it is important to note that
the characteristic time of the turbulent process can be
deduced from the ACF of the increments of fluctuating
quantities (such as the ion saturation current, the float-
ing potential, and the local flux). As is seen in Fig. 1,

this time is ~1 µs for the flux increments  in the
edge plasma of the L-2M stellarator. An analysis of the
ACF of the increments of fluctuations in the floating
potential and the ion saturation current of original sig-
nals in the edge plasma of the stellarator gives a time of
2 µs. The same value was also obtained for the charac-
teristic time of the increments of microwave gyrotron
radiation scattered by plasma density fluctuations in the
plasma core [28]. Since, in the latter case, we measured
the scattered signal averaged over a rather large volume
near the plasma column axis, we can assume that the
dynamic time of the local flux is the characteristic
dynamic time of certain plasma processes occurring in
the stellarator. For instance, this time may be the char-
acteristic time of the growth and decay of nonlinear
structures in the stellarator plasma. Similar results were
obtained for the characteristic time of the increments of
the local flux (Fig. 2), floating potential, and ion satura-
tion current in the case of the drift-dissipative instabil-
ity in the TAU-1 plasma. To illustrate the importance of
determining the increments of various fluctuating quan-
tities (not only fluxes), Fig. 9 shows the ACFs of the
floating potential and the increments of the floating
potential in the case of drift-dissipative oscillations in
TAU-1. Here again, the characteristic time of incre-
ments deduced from the ACF amounts to several micro-
seconds. Such a short characteristic time of the incre-
ments of the floating potential may be attributed to the
short time of the appearance and disappearance of drift
wavelets, which, in aggregate, determine a steady state
in the drift frequency range [29].

We draw attention to the fact that, in both the edge
plasma and the plasma core, the characteristic
(dynamic) time is nearly one order of magnitude
shorter than the correlation time defined as a character-
istic time of fluctuating quantities. Hence, the growth
and decay of a nonlinear structure occur nonadiabati-
cally (they may be characterized as the abrupt misphas-
ing of particle motion). To estimate the diffusion coef-
ficient, one must know the characteristic decorrelation
time τdecorr and the characteristic spatial length ∆l of the
process:

(9)

∆Γ̃
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D
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τdecorr
------------.∼
The problem is to estimate the quantities involved.
We assume that the decorrelation time is a time scale on
which the cross-correlation coefficient between fluctu-
ations in the plasma density and the poloidal field and,
consequently, the flux evolve. The characteristic spatial
scale length can be chosen as the maximum scale length
of the process (the scale length of nonlinear structures).
Thus, we can conclude that the dynamic time and the
spatial scale length of nonlinear structures determine
the characteristic velocity of plasma transport across
the magnetic field. Let us estimate this velocity for the
L-2M stellarator. For the characteristic scale length of
fluctuations ∆l ~ 0.2–1 cm [6] and the dynamic time
τdecorr ~ 1–2 µs, we obtain a characteristic transport
velocity of (1–5) × 105 cm/s, which agrees with the
results of probe measurements in the edge plasma [3].

5. CONCLUSIONS

The results obtained can be summarized as follows:
(i) It is shown that a correct statistical analysis of the

characteristics of fluctuating particle fluxes in plasma
should be carried out with an equidistant sample of the
process, namely, the sample of incremental amplitudes
of this process.

(ii) It is shown that the increments of the local fluxes
in the L-2M and TAU-1 devices are stochastic in char-
acter and the PDFs of increments are scale mixtures of
Gaussians. The PDF of increments corresponds to a
Laplacian distribution in the case of the drift turbulence
and a more complicated distribution in the case of edge
plasma turbulence.

(iii) A correct statistical analysis of the local flux
fluctuations carried out with an equidistant sample of
the local flux increments provides an opportunity to
determine the characteristic (dynamic) time of a pro-
cess of the local flux in the L-2M and TAU-1 plasmas.
In both cases, this time turns out to be one order of mag-
nitude shorter than the characteristic correlation time.

(iv) The measured steady-state local flux in a plasma
can be represented as an ensemble of random individ-
ual flux events that arise spontaneously in time.

(v) Possible physical mechanisms responsible for
the random character of the time-dependent parameters
of the local flux in a plasma are as follows: nonlinear
processes suppressing the growth of unstable oscilla-
tions, Langmuir collapse, stochastic particle heating,
and the formation of nonlinear structures.

Taking into account the above said, we can formu-
late several questions to be answered in future investi-
gations. Do the PDF and the corresponding characteris-
tic correlation time of the increments vary when one
plasma state transforms into another? What are the
characteristics of the local turbulence in transport bar-
riers in toroidal confinement systems? Do the turbulent
plasma states under study belong to systems with
dynamic chaos? Can the transitions in such systems be
controlled with the help of weak regular waves? Note
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
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that, in [30], a weak signal was successfully used to
affect the transition from a state with a broad drift spec-
trum to a single-mode state with a suppressed noise
spectrum. In this case, it turns out that the controlling
signal should be appropriately phased. Finally, we note
that, although we have considered the processes of par-
ticle diffusion, the approach proposed may be used to
analyze heat transport processes in toroidal confine-
ment systems.
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APPENDIX

For a random variable Y with EY < ∞, the excess
coefficient ϑ(Y) (which is referred to as M4 in the text)

is defined as ϑ(Y) = E . If P(X < x) = Φ(x),

then we have ϑ(Y) = 3. Here, E is the mathematical
expectation of a random variable and P is the PDF. For
PDFs with higher peakedness (and, accordingly,
heavier tails), we have ϑ(Y) > 3. For flatter PDFs, we
have ϑ(Y) < 3. The PDF of the random flux amplitude

 is equal to the product of the two fluctuating vari-
ables, δne and δEΘ, whose PDFs are Gaussian.

Lemma 1. Let X and U be independent random vari-
ables with finite fourth moments. We also assume that
EX = 0 and P(U ≥ 0) = 1. Then, ϑ(XU) ≥ ϑ(X). Further-
more, ϑ(XU) = ϑ(X) if and only if P(U = const) = 1.

Proof. The independence of X and U implies that

(A.1)

According to Jensen’s inequality, we obtain EU4 ≥
(EU2)2. Hence, the right-hand side of formula (A.1)
always is greater than or equal to ϑ(X). Furthermore, it
is equal to ϑ(X) if and only if EU4 = (EU2)2, which is
obviously possible only if P(U = const) = 1. Thus, the
lemma is proved.
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Using Jensen’s inequality, we can easily obtain
another inequality directly related to the tails of the nor-
mal distribution.

Lemma 2. We assume that the random variable U
satisfies the normalization condition EU1 = 1. Then, 1 –
EΦ(x/U) ≥ 1 – Φ(x) (x > 0). The proof is elementary
and, therefore, is omitted.

Thus, scale mixtures of normal distributions are
always more leptokurtic and have heavier tails than the
normal distribution.

Let us consider an effect observed when analyzing
inhomogeneous samples. As is known, Brownian
motion is well modeled by the Wiener processes. Let
W(t), where t ∈  [0, 1], be a Wiener process; i.e., W(t) is
a homogeneous Gaussian stochastic process with inde-
pendent increments such that W(0) = 0, EW(t ) = at, and
DW(t ) = σ2t for some a ∈  R and σ2 > 0. For simplicity,
we assume that a = 0 and σ2 = 1. Let n > 1 be an integer.
We assume that W(t) is observed at equidistant times
ti = i/n, where i = 1, …, and n, so that we have the sam-
ple W1, W2, …, and Wn with Wi = W(ti). Note that all Wi

are independent and have different distributions.
Namely,

If the sample W1, W2, …, and Wn is independent, then
each Wi is assumed to be the observation of a random
variable W with the probability

so that, for large n, we have

However, the latter expression is the distribution func-
tion of the product of the random variable X with the
standard normal distribution and the random variable

, where S is distributed uniformly over [0,1] and is
independent of X; i.e.,

From Lemma 1, it follows that

It is easy to see that
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Finally, we obtain
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Abstract—A review is given of theoretical and experimental investigations and numerical simulations of the
generation of intense electromagnetic fields in accelerators based on collective methods of charged particle
acceleration at rates two or three orders of magnitude higher than those in classical resonance accelerators. The
conditions are studied under which the excitation of accelerating fields by relativistic electron bunches or
intense laser radiation in a plasma is most efficient. Such factors as parametric and modulational processes, the
generation of a quasistatic magnetic field, and the acceleration of plasma electrons and ions are investigated in
order to determine the optimum conditions for the most efficient acceleration of the driven charged-particle
bunches. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most promising methods for collective
acceleration [1–9] is a plasma-based scheme for parti-
cle acceleration by space-charge waves [3]. There are
many papers devoted to the development of such
schemes [10–77]. The most important of these are the
following: paper [3], in which this method was first pro-
posed by Fainberg; paper [4], in which Tajima and
Dawson suggested new efficient methods for exciting
plasma waves by laser light [plasma beat-wave acceler-
ator (PBWA) and laser wake-field accelerator (LWFA)
schemes] and analyzed some important relevant prob-
lems of particle acceleration; and paper [10] by Chen
et al., who proposed to excite plasma waves by a short
electron bunch or a periodic train of electron bunches
[plasma wake-field accelerator (PWFA)]. An important
point here is that it was suggested to accelerate particles
by wake plasma waves. Note that the question of the
excitation of an electromagnetic field by an electron
bunch in a plasma has already been discussed in the lit-
erature [69–74]. The self-consistent dynamics of rect-
angular electron bunches in a plasma has been examined
in many papers (see, e.g., [14, 36, 78] and the literature
cited therein). Theoretical investigations [15–18] and
experimental works [19–22] (see also [48]) have also
substantially contributed to the development of acceler-
ation schemes based on laser-driven plasma waves, and
papers [12, 13, 79–82] made significant contributions
to research on the excitation of wake plasma waves by
electron bunches in PWFA schemes. In recent years,
the wake-field acceleration method has been substan-
tially modified: a new version—Self-Modulated Wake-
Field Acceleration (SMWFA), which is based on the
1063-780X/02/2802- $22.00 © 20125
self-modulation of a laser pulse—was proposed in [15–
20, 83–85] (see also [52]). The most impressive results
on plasma acceleration of charged particles were
obtained in experimental studies on LWFA [19–22], in
which the accelerating fields at short distances were as
strong as 1.5–20 × 108 V/cm and particles were accel-
erated to energies of 100–300 MeV over distances of
about 1 cm. Thus, the method of laser acceleration in a
plasma is now being actively developed. The results
achieved in the acceleration method based on relativis-
tic electron bunch–driven wake plasma waves are not as
significant: the accelerating fields are about 50 kV/cm,
the bunch charge being about 4 nC. Recent progress in
producing short dense electron bunches raises the hope
that very strong accelerating fields will also be achieved
in PWFA research [13, 80].1 

2. NEW POSSIBILITIES OF INCREASING 
THE ACCELERATING FIELD STRENGTH

IN A PLASMA

In this section, we discuss new possibilities of fur-
ther increasing the accelerating field. Recall that the
maximum electric field of a relativistic space-charge

wave in a plasma is Emax = , where  is

the maximum density in the space-charge wave [24].

The ratio  is governed by the way in which the space-

charge wave is initiated. In experiments on laser excita-
tion, this ratio is less than 15% (LWFA), and, in exper-

1 The reviews and descriptions of the theoretical and experimental
results on this subject can be found in, e.g., [55, 56].
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iments on the generation of plasma waves by electron
bunches, it is about 3% (PWFA). According to [15–19,

48], for LWFA, we have  = , where a =

, E is the electric field, and λ =  is the laser

wavelength. For the excitation of wake plasma waves
by electron bunches (PWFA), this ratio is known to be

approximately equal to  ~  [13], where nb is the

beam density. Consequently, the maximum electric
field in a plasma wave can be increased by increasing
the laser field and/or laser wavelength as well as the
density of the electron bunch exciting the plasma wave
(or by searching for new ways of generating plasma

waves). Comparing the ratios  for LWFA and PWFA

gives [9]

(1)

thereby determining the electron density in the bunch
nb that is required to excite a plasma wave with the
same maximum electric field as that of a laser-driven
plasma wave. This relationship implies that, in order to
generate such a plasma wave in PWFA, it is necessary
to make the ratio nb/n0 as large as possible. Note that the
case nb/n0 ~ 1 is not considered here, because it goes
beyond the applicability range of the above expression
for Emax in LWFA, which was derived under the
assumption a ! 1.

2.1. Excitation of Wake Fields by Laser Pulses
in a Solid-State Plasma

Another way of increasing Emax is to initiate waves
in higher density plasmas, in particular, in a solid-state
plasma. This possibility can be realized, in particular, in
semiconductor plasmas. However, the plasma density
in semiconductors (n0 ~ 1014–1018 cm–3) is lower than
the gas plasma density that has already been achieved
in experiments on LWFA (~1019 cm–3). Consequently,
in developing plasma-based charged particle accelera-
tors, it seems natural to turn to the plasma of metals, in
which the density of free electrons is as high as 1022–
1023 cm–3. Chen et al. [59, 60] proposed a very daring
but somewhat exotic2 idea of implementing LWFA,

2 Note that our views regarding exotic things may soon undergo a
radical revision. The methods of collective acceleration (in partic-
ular, the scheme for accelerating charged particles by charge-den-
sity waves in a plasma), which were proposed in 1956, also
seemed to be very exotic at that time.

ñp
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which, however, involves solving the following chal-
lenging problems [9]:

(i) launching laser light into a metal,
(ii) exciting space-charge waves in a metal plasma

by laser light,
(iii) weakening the effect of multiple scattering of a

beam of accelerated particles by the plasma electrons
that occur between the channeling planes, and

(iv) solving a very important problem of preventing
the destruction of crystals affected by extremely power-

ful laser radiation via utilizing very short (~ ) laser
pulses.

According to the Chen and Nable’s estimates [59],
the energy density required to generate accelerating
fields of about 100 GeV/cm should be as high as 3 ×
107 J/cm3.

Recall that the electric field of a space-charge wave
is governed to a large extent by the way in which it is
generated. The authors of [59, 60] proposed to excite a
plasma wave by laser light via either the method used
in LWFA or the method suggested by Katsouleas et al.
[56], which involves the interaction between laser radi-
ation and a plasma whose density is made periodically
nonuniform in space by an acoustic wave or with the
help of a diffraction grating. The latter method is based
on the three-wave interaction involving a laser wave, an
ion acoustic wave, and a Langmuir plasma wave. The
wave interaction can give rise to a plasma wave with the
frequency ωpe and wavenumber kp only under the fol-
lowing conditions: ω ≈ ωpe , ωs ! ωpe, the wavenumber
of a laser wave in a plasma is close to zero, and the
wavenumber of an ion acoustic wave is equal to kp . The
phase velocity v ph = ωpe/kp of the excited plasma wave
is close to c.

Another method suggested by the authors of [60] is
the generation of wake plasma waves by short laser
pulses (as is done in the LWFA scheme), in which case
the condition ω @ ωpe should be satisfied. Since ωpe ≈
1016 s–1 in both methods, it is necessary to develop and
create extrapowerful UV lasers. It is suggested that a
plasma density of about ~1023 cm–3 will be achieved by
ionizing the atoms of a solid body by the same UV
laser. In this way, however, the fact that laser light will
be strongly damped because of the strong absorption
should also be taken into account. To answer the ques-
tion of whether or not the very daring and interesting
ideas expounded in [59, 60] can be implemented in
practice, it is necessary to investigate the issue of how
deep intense UV laser light can penetrate into a metal
with allowance for the losses from ionization and pho-
toeffect. Keeping in mind the fact that even very short
laser pulses of enormous power will destroy a solid
body, the authors of those two papers proposed to
accelerate charged particles in optical fibers or thin
metal films, in which case laser radiation may become
easier to launch into a crystal. They are justified in sug-

ωpe
1–
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002



CHARGED PARTICLE ACCELERATION 127
gesting that preliminary experiments in this direction
can be performed with semiconductors in which the
electron density is as high as ~1018 cm–3. In this connec-
tion, we must point out the very interesting work by
Kitson et al. [64], in which the phenomenon of anoma-
lous penetration of visible laser pulses into a semicon-
ductor was predicted theoretically and discovered
experimentally. In the opinion of the authors of [66,
67], this anomaly can be attributed to the excitation of
surface plasma waves.

Note that the maximum possible electric field
strength in a steady-state space-charge wave in a plasma
is limited by the condition that the velocity v e acquired
by the plasma electrons in the field of this wave is equal
to the wave phase velocity vph, so that we have

(2)

Another idea (of no less importance) presented in [59, 60]
is that of utilizing not only solid-state crystal bodies in
order to raise the electric fields of laser-driven plasma
waves but also of using the crystalline properties of
solid bodies in order to generate high-brightness beams
of accelerated particles through the channeling effect.
In fact, under the channeling conditions, strong acceler-
ating fields and the very high rates at which accelerated
particles acquire energy can substantially lower the
emittance of a beam of accelerated particles; however,
it is necessary to take into account the fact that the
channeling angle is approximately equal to ψ ≈

, where eUb is the depth of the potential well
(or the height of the potential barrier that forms
between the lattice planes of the crystal). For very high
energies εp, this angle is very small. That is why the
possibility of substantially reducing the emittance of a
beam of charged particles accelerated to extremely high
energies in crystals requires more detailed theoretical
and experimental investigations. It may be that the
ideas developed by the authors of [59, 60] will not be
implemented in full measure in the near future. How-
ever, some aspects of the acceleration methods pro-
posed in those papers can be used to create very-high-
energy (about 1013−1018 eV) particle accelerators.

A different scheme for charged-particle acceleration
in crystals was proposed by Tajima et al. [62, 63] and
was further developed in subsequent works. This
scheme is based on the analogy with particle accelera-
tion in microwave waveguides with periodically spaced
metal or dielectric disks and implies acceleration via
hard X radiation, for which a periodic crystalline struc-
ture plays the same role that periodically spaced disks
play for microwave radiation in waveguides. The use of
crystals for particle acceleration via hard X radiation on
the basis of the Borman effect [62] eliminates the prob-
lems of launching laser radiation into a crystal and of
guiding laser pulses over relatively large distances in a
crystal. Tajima and Covenago [62] proposed to channel
accelerated charged particles in a crystal in order to

Emax 4πn0mc
2

2γ 1–( ).=

eUb/εp
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
reduce their scattering. They also noted that Hofstadter
had already originated analogous ideas in his unpub-
lished paper. At this point, we should say a few words
about the history of research on charged-particle accel-
eration in solids. Grishaev and Nasonov [61] suggested
to accelerate charged particles by longitudinal polariza-
tion waves of an optically active matter that are driven
by the beating of two electromagnetic waves and noted
that the channeling effect can serve to reduce the diver-
gence of a beam of accelerated particles due to their
multiple scattering. Tajima and Covenago [62] pro-
posed to accelerate charged particles in crystals by hard
X radiation and to lower the divergence of a beam of
accelerated particles by channeling them. They also
studied some other aspects of this acceleration method.
Examining the prospects for the new concept of accel-
erating charged particles by laser radiation in a solid
body, Tajima and Covenago determined the electric
field of a plasma wave in a metal from the relationship
that was obtained for the maximum field of a nonlinear
wave propagating in a plasma by solving the problem
of natural waves. However, it is clear that the electric
field should be estimated by solving the problem of
induced oscillations and waves. Since the electric field
of the plasma wave is very sensitive to the way in which
the wave is excited, we think that deriving the final
expression for the electric field requires solving the
problem of the excitation of the plasma wave in the case
at hand. In the wake-field acceleration scheme pro-
posed in the rather interesting paper by Rosenzweig
et al. [14], a high-energy electron beam is used to excite
extremely nonlinear plasma oscillations in which accel-
eration occurs preferentially in the transverse direction.

Balakirev et al. [42] proposed a method for substan-
tially increasing relativistic electron bunch–driven
wake fields owing to the self-modulation of a long
pulsed electron bunch in a plasma. The field excited by
the bunch front affects the motion of the bunch elec-
trons in such a way as to modulate the bunch density, or,
in other words, to break the bunch into microbunches.
Since the bunch is modulated at the plasma frequency,
the wake fields generated by microbunches are coher-
ent, so that the amplitude of the excited wake fields
can increase substantially. However, the results of
2.5-dimensional simulations carried out by Batishchev
et al. [34] show that, because of the unsteady dynamics
of the self-consistent fields of a relativistic electron
bunch with dimensions comparable to the skin depth,
the wake field amplitude along the train of
microbunches increases more gradually than in the case
of a “rigid” bunch.

2.2. PWFA Experiments

Experimental investigations on PWFA were begun
at the Argonne National Laboratory (ANL) [13, 14, 79–
82, 86] and then were continued at the University of
Tokyo [87]. The first experiments at ANL were carried
out with 24.1-MeV beams (the electric charge of the
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driving bunch was 4 nC, the bunch dimensions being
about 1 mm) and 16.6-MeV beams (the accelerated and
diagnosed bunches had the same dimensions). The
bunches were injected into a plasma whose density was
varied from 1011 to 1013 cm–3. The amplitude of the
excited wake fields was measured to be about
6 MeV/m, which could only be explained by invoking
the plasma and bunch nonlinearities. The correspond-
ing simulations performed at this time were all one-
dimensional (see, e.g., [13, 14]), and only some esti-
mates were obtained with allowance for two- and three-
dimensional effects. It was pointed out that three-
dimensional effects should be systematically taken into
account in investigating the role of the nonlinear behav-
ior of the plasma and bunch particles. At the University
of Tokyo, PWFA experiments were carried out with
trains of six 500-MeV bunches. The plasma density
was varied approximately within the same range as in
the experiments at ANL. It was found that the ampli-
tude of the excited wake field depends linearly on the
plasma density in the range from 1011 to 1012 cm–3 [87].
The insufficiently high excitation rates of the wake
fields and large radial displacements of the succeeding
bunches in the train were not adequately explained at
the theoretical level (these questions were mostly
answered in our investigations). Further PWFA
research is aimed at developing wake-field acceleration
schemes for future linear colliders. At present, the
PWFA scheme is being investigated most actively at
ANL, the University of California at Los Angeles
(UCLA), and the University of Southern California
(USC) in collaboration with the Stanford Linear Accel-
erator Center (SLAC) on the 30-GeV linear accelerator
at Stanford. Preliminary results from these very impor-
tant experiments were reported at the annual meeting of
the American Physical Society in October 2000. How-
ever, since these promising results were presented as
abstracts of papers and have not yet been published in
scientific journals, we cannot discuss them here. The
photocathode in an accelerator created at ANL [79–82]
is capable of ensuring the following bunch parameters:
an electron energy of 200 MeV, a bunch charge of
100 nC, and a bunch duration of 20 ps. The photocath-
ode is struck by light from a laser with a wavelength of
248 nm, a pulse duration of 2 ns, and an input energy of
8 mJ. This project is aimed at achieving acceleration
rates of about 100 MeV/m.

2.3. Excitation of Wake Fields by Laser Pulses

Another promising method for exciting wake fields
in a plasma makes use of short (picosecond and femto-
second) laser pulses with intensities of 1016 to
1019 W/cm2. The results of recent PBWA experiments
at UCLA are presented in [88–90] (recall that the accel-
eration scheme based on the beating between electro-
magnetic beam pulses was first proposed by Litvak
[91]). In those experiments, relativistic plasma waves
were resonantly excited in a plasma by the beating
between two collinear beams from CO2 lasers operating
simultaneously at two different wavelengths. The
acceleration of test electrons in a plasma was investi-
gated using electron beams with a peak current of
200 mA, an electron energy of 2 MeV, and a pulse dura-
tion of 1 ns in order to measure the longitudinal wake
fields, which themselves had a large relativistic factor
equal to 34 (the relativistic factor of the excited wake
field is large because of the large ratio of the laser fre-
quency to the electron plasma frequency, γ = ω/ωpe).
The energy spectrum of the accelerated electrons was
recorded using a special-purpose multisector magnet
and a surface-barrier detector. The electrons were
accelerated to an energy of 20 MeV over a distance of
1 cm, the acceleration rate being higher than
1.8 GeV/m. Clayton et al. [90] experimentally demon-
strated the acceleration of electrons by relativistic
plasma waves generated by stimulated Raman forward
scattering of a short single-frequency laser pulse with a
wavelength of 1.053 µm, a duration of 6 × 10–13 s, and
a peak power of 8 × 1017 W/cm2. The density of the
plasma created by an auxiliary laser was varied in the
range (1–2.5) × 1015 cm–3, and the plasma itself was
homogeneous over a length of 0.8 mm. Electron accel-
eration was observed to correlate with the generation of
the first anti-Stokes satellite in the radiation spectrum.
The calculations carried out in [90] showed that, by
increasing the interaction length to 1.3 mm, it is possi-
ble to achieve acceleration rates as high as 1 GeV/cm.
Beginning with the pioneering paper [4] by Tajima and
Dawson, the PBWA method has been actively investi-
gated not only theoretically and experimentally but also
numerically [21, 88]. These investigations showed that
the PBWA method works most efficiently with the the-
oretically predicted lengths of the laser pulses [92]
because of the detuning of the plasma frequency from
the difference between the laser frequencies. Numerical
simulations showed that short acceleration lengths stem
not from the plasma inhomogeneity but rather from the
effect of the diffractive spreading of laser pulses on the
Rayleigh length, in which case only about 2% of the
injected particles are accelerated. The progress
achieved in theoretical and numerical studies on
plasma-based laser accelerators was reported in [57,
88], where the possibility of guiding laser pulses in
plasma channels was also discussed in the context of
preventing their radial spreading. The question of
whether or not it is expedient to use plasma channels
has already been discussed by Tajima and Dawson [4].
At present, it is proposed to use channels preformed in
a special manner rather than rectangular channels.
Since the most serious obstacle to acceleration is the
diffractive spreading of the pulse, it is by the appropri-
ate choice of the channel parameters that the accelera-
tion length was significantly increased to
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where Vosc =  is the electron oscillatory velocity in

the laser field. In this case, the growth rate of the Raman
instability is equal to

(4)

where p2 + h2 = , p = , and a0 is the

characteristic channel radius.
The guiding of intense laser pulses by plasma channels

preformed in a special way was investigated in [57, 93].
It was shown that, in an empty channel, the growth rate
of the Raman forward scattering instability decreases if
πa0 < 0.13λpe .

2.4. SMWFA Method

This method for charged particle acceleration has
already been discussed above. Here, we analyze recent
results on this subject. The SMWFA scheme is of con-
siderable physical interest because the self-modulation
of a laser pulse and the self-modulation of a relativistic
electron bunch have much in common. As will be seen
below, the self-modulation of a relativistic electron
bunch is one of the most promising methods for excit-
ing intense accelerating fields in a plasma. Moore et al.
[94] carried out a detailed experimental investigation of
the self-modulation of intense laser pulses with a power
of 2 TW, a duration of 400 fs, an energy of 1 J, a wave-
length of 1.054 nm, and an intensity of 5 × 1018 W/cm2,
the radius of the initial focal spot being 6 µm. In a
plasma with a density of 1.4 × 1019 cm–3, they suc-
ceeded in accelerating 108 plasma electrons to an
energy of 30 MeV. The plasma wave was generated
over a distance of 20 Rayleigh lengths. It was estab-
lished that electron acceleration correlates with the
generation of harmonics in the radiation spectrum.
When the laser power was decreased by one-half or the
plasma density was lowered, no high-energy electrons
were observed. In the experiments of [95, 96], intense
(1018 W/cm2) laser pulses in the plasma were found to
undergo self-channeling over a distance of 20 Rayleigh
lengths. Papers [97, 98] were devoted to an experimen-
tal and theoretical study of the acceleration of the
injected 3-MeV electrons by an intense wake wave,
such that the accelerating electric field strength was
1.5–15 GV/m. The wake wave was excited by a 5-J
laser pulse with a duration of 0.4–7 ps, which was
guided in a preformed plasma channel with a density of
1019 cm–3. It was shown that, in such plasma channels,
long laser pulses (such that the laser power is low in
comparison with the critical power for self-focusing)
propagated a distance of three Rayleigh lengths. The
self-modulation of a laser pulse led to the excitation of
a plasma wave with a density variation of 6%. Since the
amplitude of this plasma wave was far below the wave-
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breaking amplitude, the electrons could not be acceler-
ated to megaelectronvolt energies. High-power laser
pulses were observed to interact with a plasma in a
strongly nonlinear fashion, giving rise to the filamenta-
tion instability. The pulses underwent self-focusing and
self-modulation without generating high-energy reso-
nant plasma electrons. The acceleration of a large num-
ber of plasma electrons to megaelectronvolt energies
was observed with laser pulses whose power was
28 times higher than the relativistic self-focusing
threshold. The radial structure of a wake wave excited
during the self-modulation of a laser pulse in a homo-
geneous subcritical plasma was studied in detail by
Andreev et al. [99]. The generation of an electron beam
in the SMWFA scheme was thoroughly investigated by
Chen et al. [100] both experimentally and by three-
dimensional numerical simulations. They showed that
the emittance of the generated 2-MeV electron beams is
extremely small (0.06π mm mrad), in which case the
main role is played not by the space-charge forces in the
beam but by the nonlinearity of the plasma wave and
the magnetic field of the wave (rather than the quasis-
tatic magnetic field, as was asserted in many papers;
see, e.g., [101, 102]). The interaction of short laser
pulses with a transversely inhomogeneous plasma, rel-
ativistic filamentation, and field ionization were studied
in [103–107]. The self-focusing of an intense ultrashort
laser pulse and the accompanying processes (such as
the generation and acceleration of ions, electron cavita-
tion, the formation of channels, and the magnetic field
generation) were investigated in detail in [101, 102,
108, 109].

2.5. PWFA Scheme with a Plasma Channel
of Depressed Density

The PWFA research program proposed by Barov
and Rosenzweig [81] relies on the use of plasma chan-
nels with a depressed electron density. The authors of
[81] presented previous results obtained on the interac-
tion of intense relativistic electron beams with plasmas
in weak magnetic fields and suggestions for future
work. This PWFA method deals with electron beams of
density nb > np. In such a situation, the plasma electrons
escape from the propagating beam, thereby giving rise
to an ion channel (the so-called ion focus regime). The
PWFA experimental research program is being imple-
mented in the accelerator at ANL. In recent papers [81,
110], it was proposed to use the so-called blow-out
regime, which ensures that an electron beam propa-
gates through a plasma with minimum distortions and
losses. The model developed in those papers describes
a nearly equilibrium electron beam propagating in such
a manner through an underdense plasma, in particular,
in the presence of an external magnetic field. The
numerical results were obtained by solving the Vlasov–
Maxwell equations for beam electrons and the hydro-
dynamic equations for plasma particles. A comparison
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between the results obtained from the equilibrium
model and from the related simulations based on the
macroparticle method showed that, under the condi-
tions of collisional damping, the beam keeps its equilib-
rium. In addition, the possibility of using a relativistic
electron bunch as an adiabatic lens was discussed. The
blow-out regime, which has been recently proposed for
the PWFA scheme [81, 110] and in which the plasma
electrons are completely blown out from the beam
region, has a number of advantages. When an intense
electron beam with a sufficiently long duration propa-
gates through a low-density (n0 < nb) plasma, the blow-
out of all plasma electrons from the beam region gives
rise to an ion channel. This regime was called the ion
focus regime. The magnetic self-focusing forces cause
the beam to propagate in the ion channel. The radius Req

of the equilibrium beam propagating in a fully formed
ion channel is equal to

(5)

where εn is the normalized beam emittance and re is the
classical radius of an electron. It is possible to single
out three qualitatively different regions of the beam.
The leading part of the beam (the beam head) is not
focused by the plasma and therefore expands. The body
of a beam propagating in the ion channel experiences
the strongest focusing force. The transition region
between the head of the beam and its body cannot be
described in the linear-optics approximation because of
the presence of plasma electrons. For a laser pulse of
sufficiently short length L0 (2πL0 ≤ λpe), the evolution
of both the beam head and the transition region has a
substantial impact on the efficiency with which the
beam is transported over long distances. The head of an
ultrarelativistic beam expands freely in accordance
with the value of the emittance, in which case the blow-
out rate of the plasma electrons becomes slower. As a
result, the succeeding parts of the beam experience a
weaker focusing force, so that the beam is distorted to
a significant extent. A simple one-dimensional model
shows that, after a certain period of initial expansion,
the beam is distorted at a very slow rate. It was also
shown that the beam continues to expand until the
plasma electrons are completely blown out from the
beam region; in other words, the beam slowly evolves
to a pinching regime and acquires an equilibrium struc-
ture. Barov et al. [110] proposed to use the blow-out
regime in order to generate accelerating fields of 80–
150 MeV/m by electron bunches with a charge of
90 nC. Below, we will describe the results from inves-
tigations of the formation of an ion channel due to the
ion motion in self-consistent electromagnetic fields
excited by a relativistic electron bunch.

Req

εn

2πren0γb

--------------------------,=
3. 2.5-DIMENSIONAL NUMERICAL 
SIMULATION OF THE EXCITATION OF WAKE 

FIELDS BY A TRAIN OF RELATIVISTIC 
ELECTRON BUNCHES IN LOW- 
AND HIGH-DENSITY PLASMAS

The excitation of a steady-state nonlinear wake
wave by a periodic train of relativistic electron bunches
in a plasma was studied by Amatuni et al. [12], who
showed that, when the plasma and bunch densities are
comparable, the wave electric field increases with the
relativistic factor of the train. Investigations of the non-
linear regime in PWFA experiments made clear the
importance of three-dimensional effects [13, 14]. There
are two different mechanisms that can produce strong
wake fields and thus can be exploited in the physics of
plasma-based accelerators. On the one hand, a short
wide first bunch can excite large-amplitude wake waves
capable of accelerating the succeeding bunches. On the
other hand, a long narrow electron bunch can be well
focused by its own magnetic field, provided that its
space charge is completely neutralized by the plasma.
The wake-field excitation is studied with COMPASS, a
modified two-coordinate three-velocity axisymmetric,
truly relativistic electromagnetic code [30–32]. Previ-
ously, this code was used to model inductive plasma
accelerators [32], to simulate the interaction of relativ-
istic beams with plasmas [33], and to investigate the
propagation of a solitary relativistic electron bunch or a
train of such bunches through both high-density and
low-density plasmas [34]. Note that, in the experiments
of [13, 14], the density of relativistic electron bunches
was nb ≤ n0/2, in which case the transverse and longitu-
dinal dimensions of the bunch, R0 and L0, were small in
comparison with the skin depth c/ωpe. Computer simu-
lations [34, 35] showed that the transverse dimension of
the bunch may change substantially as it propagates
through the plasma. This results in significant changes
in both the bunch density (by more than one order of
magnitude) and the excited wake fields. It was shown
that the amplitudes of the transverse and longitudinal
fields increase as each next relativistic electron bunch is
injected, but, unlike in the case of rigid bunches, their
increase is not proportional to the number of injected
bunches. A new electron accelerator created at the
Kharkov Institute of Physics and Technology [69] is
expected to be used in future experimental research on
the acceleration of charged particles in intense wake
fields. The operating parameters of the accelerator are
as follows: the electron energy is W = 18–20 MeV, the
number of electrons in a bunch is N ≈ 1010, the number
of bunches is up to 20, and the modulation frequency of
the bunches is 2797.16 MHz. It is proposed that, in
experiments, relativistic electron bunches with dimen-
sions comparable to the skin depth will be injected into
a plasma whose density will be varied over a very wide
range (by more than four orders of magnitude). The
plasma is to be homogeneous to within several percent,
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002



CHARGED PARTICLE ACCELERATION 131
so that the homogeneous plasma approximation is quite
adequate for describing the experiment.

Since it is anticipated that no instabilities giving rise
to the azimuthal plasma inhomogeneity would occur
under the planned experimental conditions, a theoreti-
cal description can be based on the azimuthally sym-
metric mathematical model involving the injection of
particles into the computation region and their escape
from it. Under the conditions that are expected to pre-
vail in experiments with the new accelerator, relativistic
electron bunches will be injected into a plasma column
with the length L = 100 cm, the radius R = 10 cm, the
density in the range n0 = 1010–1014 cm–3, and a mini-
mum longitudinal density gradient. The numerical
results presented below were obtained precisely for this
experimental situation.

3.1. Mathematical Model

We describe the dynamics of a relativistic electron
bunch by the relativistic Vlasov equations (the
Belyaev–Budker equations) for the distribution func-
tions of each of the plasma components and by the set
of Maxwell’s equations for the self-consistent electric
(E) and magnetic (B) fields. The plasma–bunch system
to be modeled is shown schematically in Fig. 1. At the
initial instant, a two-component (mi/me = 1840, where
mi and me are the ion and electron masses) cold plasma
fills the entire computation region [0, L] × [0, R]. In
simulations, we usually set L and R equal to 100 and
10 cm, respectively. A finite number of relativistic elec-
tron bunches with the electron density

are injected into a plasma through the z = 0 plane. Here,
θ(z) is the Heaviside step function; n is the order num-

ber of the injected bunch; Vb =  is the bunch
velocity; the initial bunch dimensions L0 and R0 are
equal to 0.4 and 0.5 cm, respectively; λp = 2πc/ωpe ; and
nb is the mean bunch density. The bunch electrons and
plasma particles can escape from the computation
region through the boundary surfaces z = 0 and z = L.
The plasma particles can also enter the computation
region. The boundary conditions at the inner surface of
the computation region assume a metal surface r = R

n r z,( ) nbθ R0 r–( )θ v bt z– n 1–( )λ p+( )=

× θ z v pt– L0 n 1–( )λ p+ +( )

c 1 1/γb
2

–
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and a free escape of electromagnetic waves through the
front and back surfaces. In our calculations, we use an
explicit difference scheme. The excitation of wake
fields by a train of bunches in a plasma was investigated
in four series of simulations aimed at analyzing the
dependences of the excited field on the number Nb of
bunches injected into the plasma, on the bunch-to-
plasma density ratio, on the repetition rate of the
bunches, and on the ratio of the bunch radius R0 to the
skin depth c/ωpe . The parameters of these four series
are presented in the table.

The mass of the model particle is a function of its
radial positions. In a lesser perturbed region (which is
farther from the symmetry axis), the plasma is modeled
by a relatively small number of particles. The total num-
ber of macroparticles is about 106. Note that all simula-
tions were carried out with an advanced particle-in-cell
(PIC) method implemented on a Pentium-133 PC.

3.2. Numerical Results and Discussion

Computer modeling showed that, as a relativistic
electron bunch with R0 < c/ωpe and L0 < c/ωpe propagates
in a plasma, its radius changes substantially. In contrast
to the frequently used conditions L0 @ c/ωpe > R0 or
R0 @ c/ωpe > L0, we simulated bunches with the initial
dimensions L0 ≈ R0 < c/ωpe or L0 ≈ R0 ≈ c/ωpe , which
correspond to those in the experiments of [13, 14]. In
this case, the plasma and bunches are essentially non-
linear. The numerical results obtained in [36] showed
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z

LMetal wall
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Fig. 1. Schematic of the model plasma–bunch system.

electron
bunch
Parameters of the plasma and the bunches

Calculation 
version

Bunch density
nb , cm–3

Plasma
density n0, cm–3

Plasma
frequency ωpe , s–1 Skin depth c/ωpe , cm Number of electrons 

in a bunch N

1 2 × 1010 4 × 1010 1.13 × 1010 2.66 6.28 × 109

2 2 × 1010 4 × 1011 3.57 × 1010 0.84 6.28 × 109

3 4.86 × 1010 9.72 × 1010 1.76 × 1010 1.71 1.53 × 1010

4 4.86 × 1010 8.75 × 1011 5.27 × 1010 0.57 1.53 × 1010
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Fig. 2. Longitudinal profiles of the ion density obtained in
calculation version 1 at the radius r = 0.5 cm at the times
tωpe = (1) 70, (2) 120, (3) 150, and (4) 180.
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Fig. 3. Radial profiles of the ion density obtained (a) in cal-
culation version 1 at the times tωpe = (1) 70, (2) 120, and
(3) 150; (b) in calculation version 4 at the times tωpe = (1)
100, (2) 200, (3) 260, and (4) 330; and (c) in calculation ver-
sion 3 at the times tωpe = (1) 100 and (2) 300.
that the propagation of a relativistic electron bunch in a
plasma is greatly affected by the ion motion. The time
evolution of the longitudinal profile of the ion density ni

is illustrated in Fig. 2, which was obtained in calculation
version 1 (see table). The time evolutions of the depen-
dence of the ion density on the radial coordinate r are
illustrated in Figs. 3a, 3b, and 3c, which were obtained
in calculation versions 1, 4, and 3, respectively. From
Figs. 2 and 3, we can see that the formation of an ion
channel stems from the radial ion motion in self-consis-
tent fields. At the axis of the system, the ion density is
elevated and increases in the direction opposite to the
propagation direction of the bunches. The elevated cen-
tral density is higher than the unperturbed ion density by
more than 15%. The characteristic time scales on which
the ion channel forms are about a hundred inverse elec-
tron Langmuir frequencies; in other words, as may be
expected from illustrative physical considerations, these
scales are governed by the inverse ion Langmuir fre-
quencies. The channel parameters are determined by the
plasma-to-bunch density ratio and the ratio of the initial
bunch radius R0 to the skin depth c/ωpe.

The amplitude of the ion density oscillations is seen
to be substantially smaller than the averaged density.
For comparison with the longitudinal profile of the ion
density, Fig. 4 shows the longitudinal profile of the
electron density. The electron density is seen to
undergo only strong oscillations driven by the excited
wake wave, and its averaged value remains essentially
unchanged. In wake fields, the electrons oscillate with-
out any significant change in their equilibrium posi-
tions. As a result, the electric field of the unneutralized
positive ion charge accumulating at the system axis sta-
bilizes the propagating electron bunches.

Figures 5 and 6 show longitudinal profiles of the
longitudinal (Ez) and radial (Er) electric fields at two
times. One can see that the amplitudes Er and Ez

increase as each next bunch is injected, but, unlike in
the case of rigid bunches, their increase is not propor-
tional to the number of injected bunches. This depen-
dence stems from the fact that, because of the charge
and current neutralization processes, the bunch elec-
trons undergo transverse oscillations in self-consistent
fields. We can see that, owing to neutralization of the
bunch space charge by a dense plasma, the azimuthal
magnetic field is not fully canceled and thus drives the
bunch electrons into radial motion, leading to a signifi-
cant distortion of the bunch shape and a charge density
redistribution within the bunches. As a result, the wake
fields are excited in an unsteady fashion, which is unfa-
vorable for charged particle acceleration. The shape of
the envelope of the bunches is seen to deviate substan-
tially from the Bennett equilibrium shape. The electro-
magnetic fields generated by the bunches propagating
in a plasma redistribute the ion plasma density and give
rise to the averaged electric field, which promotes the
focusing of the bunch electrons. Hence, the radial
expansion of the bunches is prevented to a large extent
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
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by the formation of the plasma channel due to the radial
motion of the plasma ions. A train of bunches propagat-
ing in a stable and steady-state fashion in the fully devel-
oped ion channel excites steady-state wake fields suit-
able for accelerating the injected electrons. We can thus
conclude that the nonlinear processes analyzed in this
section have a beneficial effect on the bunch propaga-
tion and, accordingly, on the excitation of the accelerat-
ing fields by the bunches. The investigation of the three-
dimensional nonlinear behavior of the beam–plasma
system was undertaken in order to provide a better
insight into the fundamental physics governing the
acceleration and focusing of charged particles by the
wake waves. Numerical experiments show that the ion
motion in the self-consistent fields excited by a train of
relativistic electron bunches gives rise to an ion channel
at the symmetry axis of the system; in turn, the ion chan-
nel makes the bunch propagation more stable, so that the
accelerating fields excited by the bunches are stronger.

1.4
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1.0

0.8

20 40 60 80 100

n/n0

z, cm

Fig. 4. Longitudinal profile of the electron density obtained
in calculation version 1 at the radius r = 0.5 cm at the time
tωpe = 180.
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4. 2.5-DIMENSIONAL NUMERICAL 
SIMULATION OF THE EXCITATION OF WAKE 

FIELDS DURING THE SELF-MODULATION 
OF A LONG RELATIVISTIC ELECTRON BUNCH

In this section, we describe the results of numerical
modeling of the wake-field excitation by a relativistic
electron bunch in a dense plasma. The results presented
were obtained using a two-coordinate three-velocity
model in which the complete set of equations for the
bunch–plasma interaction consists of the relativistic
Vlasov equations for the bunch electrons, the nonlinear
Vlasov equations for each of the plasma components,
and nonlinear Maxwell’s equations for the self-consis-
tent electromagnetic fields. Our computer modeling
showed that the nonlinear dynamics of the plasma and
bunch particles leads to a significant self-modulation of
the density of a long bunch, in which case the amplitude
of the excited wake fields substantially increases.

4.1. 2.5-Dimensional Numerical Modeling 
of the Wake-Field Excitation by a Long Relativistic 

Electron Bunch

The physics of plasma accelerators usually deals
with two regimes of the bunch–plasma interaction
accompanied by the generation of large-amplitude
wake plasma waves. In the first regime, a large-ampli-
tude wake field excited by a short wide first bunch can
accelerate the succeeding bunches in the train. In the
second regime, a long narrow relativistic electron
bunch can be strongly focused by its own magnetic
field, provided that its space charge is completely neu-
tralized by the plasma. In a wake electric field, the
bunch electrons experience not only transverse forces
but also strong longitudinal forces. Longitudinal wake
fields give rise to a longitudinal modulation (with the

period λp = 2πc/ωpe = 3.36 × 106/  cm) of the origi-n0
Fig. 5. Profiles of the longitudinal electric field Ez along the z-axis obtained in calculation version 4 at the radius r = R0 = 0.5 cm at

the times (1) t = 100  and (2) t = 200 .ωpe
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Fig. 6. Profiles of the radial electric field Er along the z-axis obtained in calculation version 4 at the radius r = R0 = 0.5 cm at the

times (1) t = 100  and (2) t = 260 .ωpe
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nally uniform electron bunch, thereby breaking it into
microbunches. In particular, in a plasma with a particle
density of 1016 cm–3, the modulation period is 0.3 mm.
The effect of the longitudinal modulation of relativistic
electron bunches by the wake fields can be used to
develop plasma modulators of high-density electron
beams. Now, we should say a few words about another
aspect of the modulation phenomenon. Since the mod-
ulation frequency coincides with the plasma frequency,
the wake fields of the microbunches are coherent. Con-
sequently, the modulation of an electron bunch leads to
an increase in the wake-field amplitude behind the
bunch. This effect makes it possible to use long relativ-
istic electron bunches to generate intense wake fields in
a plasma. It is important to note that long laser pulses
can also undergo longitudinal modulation at the plasma
frequency [28]. The modulation of long electron
bunches by longitudinal wake fields in a plasma was
investigated theoretically by Balakirev et al. [42]. The
results of one-dimensional numerical modeling of the
nonlinear dynamics of the bunch modulation showed
that the modulation of a long electron bunch propagat-
ing in a plasma increases the amplitude of the excited
wake wave. This effect is explained as being due to the
coherence of the wake fields generated by
microbunches resulting from the modulation of a long
bunch at the plasma frequency. The one-dimensional
approximation applies only to relativistic electron
bunches with a sufficiently large radius (2πR0/λp @ 1).

The results presented in this section were obtained
from 2.5-dimensional numerical modeling of the wake-
field excitation by long relativistic electron bunches
[38–41] with the COMPASS code [30–32].
4.2. Mathematical Model and Parameter Choice

The dynamics of a relativistic electron bunch is
described by the relativistic Vlasov equations (the
Belyaev–Budker equations)

for the distribution functions fα(r, p) of each plasma
component and by Maxwell’s equations for the self-
consistent electric and magnetic fields. At the initial
instant, a two-component (mi /me = 1840) cold plasma
fills the entire computation region [0, L] × [0, R] with
the length L = 100 cm and radius R = 10 cm. A cold rel-
ativistic electron bunch is injected into the plasma
through the z = 0 plane. The bunch velocity is Vb =

, and the initial bunch radius is R0 = 4c/ωpe .
The plasma and bunch particles can escape freely from
the computation region through the two boundary sur-
faces z = 0 and z = L and are elastically reflected from
the r = R surface. Cold plasma electrons and ions can
also return to the computation region from the buffer
zones z < 0 and z > L. The boundary conditions for the
electromagnetic fields imply the existence of a metal
wall at the cylindrical surface r = R and free emission
of electromagnetic waves from the right and left bound-
aries. In calculations, we used an explicit scheme. The
mass of the model particle is a function of the radial
coordinate, and the total particle number is about 106.
Like the calculations described in Section 3, all simula-
tions were carried out with a Pentium-133 PC using an
advanced PIC algorithm. Our simulations showed that,
for γb = 5, the bunch-to-plasma density ratio nb/n0
increases from the initial value 0.018 to 0.04 already at
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t = 60 . At the time t = 100 , the maximum elec-
tron density in the bunch becomes comparable to the
plasma density, thereby indicating a very strong bunch
modulation. In this case, the electron plasma density ne

also becomes modulated very strongly. The spatial dis-

tributions of ne at the times t = 60  and t = 100
are shown in Figs. 7a and 7b, respectively. We can see

that, at the time t = 100 , the maximum amplitude of
ne is larger than the initial amplitude by a factor of 4.5.
The spatial distributions of the longitudinal (Ez) and
radial (Er) electric fields computed for the same times
as in Fig. 7 are shown in Figs. 8 and 9, respectively.
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Fig. 7. Spatial distributions of the electron plasma density at

the times (a) t = 60  and (b) t = 100 . The coordi-

nates are normalized to the skin depth c/ωpe.

ωpe
1– ωpe

1–
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
4.3. Discussions and Conclusions

The numerical experiments described above show
that the nonlinear dynamics of both the bunch electrons
and the electron and ion plasma components lead to the
following effects. The radii of the bunches vary over a
very wide range. The self-modulation of a long bunch
gives rise to a very strong modulation of the bunch and
plasma densities, thereby substantially increasing the
amplitude of the excited wake electric fields. However,
it is necessary that the bunch length be optimum,
because the self-modulation of longer bunches does not
increase the amplitude of the excited electric fields. The
results of numerical modeling show that even a very
low-density relativistic electron bunch can perturb the
plasma so strongly that the density perturbation ampli-
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Fig. 8. Spatial distributions of the longitudinal electric field
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(b) t = 100 . The coordinates are normalized to the skin
depth c/ωpe .
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tude will become comparable with the initial particle
density of the plasma. This conclusion indicates that the
plasma electrons cannot be described in the linear
approximation. The results obtained show that both the
effect of the self-modulation of long relativistic elec-
tron bunches and the use of a train of bunches hold
promise for the generation of accelerating fields that
would be far stronger than those achievable in conven-
tional accelerators. Further investigations in this direc-
tion will provide the physical basis for the development
and creation of a new generation of devices capable of
accelerating charged particles at higher rates.

5. EXCITATION OF WAKE FIELDS 
BY A RELATIVISTIC ELECTRON BUNCH

IN A MAGNETIZED PLASMA

Another promising way of accelerating charged par-
ticles is to excite wake fields by a relativistic electron
bunch in a magnetized plasma [25–27]. Here, we
present the main results obtained on the excitation of
wake fields by an individual bunch in a magnetized
plasma. In our opinion, this scheme is the most advan-
tageous: because of the nonresonant character of the
wake field excitation, it is only slightly sensitive to lon-
gitudinal density variations peculiar to a real plasma.
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Fig. 9. Spatial distributions of the radial electric field Er (in

units of meωpec/e) at the times (a) t = 60  and (b) t =

100 . The coordinates are normalized to the skin depth
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Additionally, in order to prevent the development of
electromagnetic filamentation or the onset of slipping
instabilities, as well as other kinds of instabilities (see,
e.g., [28]), it is worthwhile to apply a stabilizing exter-
nal longitudinal magnetic field. As will be seen below,
the stabilizing field not only serves to suppress instabil-
ities but also gives rise to a large number of new wave
branches, thereby substantially expanding the possibil-
ities of the wake field acceleration scheme. In this sec-
tion, we determine the wake field generated by an axi-
symmetric relativistic electron bunch propagating
along the z-axis in a magnetized plasma, assuming that
the ions are immobile and neglecting the electron ther-
mal motion. The expression for the longitudinal com-
ponent of the electric field excited by an annular rela-
tivistic electron bunch in an unbounded magnetized
plasma was obtained in [25]:

where τ = ωpe  – ; µ = ; ωpe is the Lang-

muir frequency of the plasma electrons; and Vb , R0, and
Q0 are the velocity, radius, and electric charge of the
bunch, respectively.

Far behind the bunch, the wake field falls off as τ –3/2,
because the group velocity of plasma oscillations in a
sufficiently strong magnetic field is finite. Because of
the emission of plasma waves from the axial region, the
wake field decreases in the longitudinal direction.

We consider a waveguide partially filled with a
plasma, i.e., a waveguide with a vacuum gap between
the plasma surface r = a and the perfectly conducting
wall r = b, and assume that the waveguide is placed in
an external magnetic field.

The field distribution over the waveguide cross sec-
tion is governed by the transverse wavenumbers. The

ranges  > 0 and  < 0 correspond to the spatial
and surface modes, respectively. The complex values of

 refer to a hybrid mode. The boundaries of the

region where  are complex are determined by the
inequalities ω1 > ω > ω2, where

ωHe is the gyrofrequency of the plasma electrons, and k
is the longitudinal wavenumber.
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In order for a relativistic electron bunch to excite a
hybrid mode, the relativistic factor of the bunch should

satisfy the condition γb > .

The electromagnetic field distribution and the fre-
quency of a hybrid mode that synchronously accompa-
nies the bunch were obtained numerically for the fol-

lowing parameters of the plasma waveguide:  =

6.3,  = 23.3,  = 2.4, and γb = 4.6, in which case

the frequency of the wake hybrid mode is equal to

0.35ωpe . It was found that, at the radius  = 0.8, the

absolute value of the longitudinal component of the
electric field has a pronounced maximum, which corre-
sponds to an energy conversion factor equal to RE =

 = 37.

Recall that the energy conversion factor is defined as
the ratio of the amplitude of the electric field accelerat-
ing a driven bunch to the amplitude of the electric field
decelerating a driving bunch (the bunch exciting the
wake field). Such a large value of RE indicates that the
maximum energy the driven bunch can gain during
acceleration is significantly higher (by a factor of RE)
than the initial energy of the driving bunch.

Hence, it is shown that, for a certain relation among
the parameters of the plasma–bunch–magnetic field
system, the hybrid nature of the wake waves, which are
excited by a relativistic electron bunch in a magnetized
plasma and are a superposition of the surface and spa-
tial modes, makes it possible to accelerate the driven
bunch to the maximum energy

which is many times higher than the initial energy of
the driving bunch (even when the bunch is initially
unmodulated in the longitudinal direction).

6. CONCLUSION
We have reviewed the results from theoretical and

experimental investigations as well as from mathemat-
ical modeling of the wake-field generation by both
charged-particle bunches and laser radiation in a
plasma and have analyzed the wake-field acceleration
of charged particles. A new, substantially modified ver-
sion of the PBWA scheme has recently been pro-
posed—a version based on the self-modulation of a
laser pulse. The most impressive results on plasma
methods of charged particle acceleration were obtained
in the LWFA experiments [19–22], in which the accel-
erating fields at short distances were as strong as (1.5–
20) × 108 V/cm and the particles were accelerated to

ωHe

2ωpe

-----------

ωHe

ωpe

---------

ωpea
c

----------- b
a
---

r
a
---

Ez max

Ez r 0=( )
-----------------------

εmax mc
2

REγb 1–( ),=
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energies of 100–300 MeV over distances of about 1 cm.
An interesting fact has been established: for a certain
relation among the parameters of the plasma–bunch–
magnetic field system, the hybrid nature of the wake
waves (which are excited by a relativistic electron
bunch in a magnetized plasma and are a superposition
of the surface and spatial modes) makes it possible to
accelerate the driven bunch to an energy εmax that is
many times higher than the initial energy of the driving
bunch (even when the bunch is initially unmodulated in
the longitudinal direction). We have discussed the for-
mation of an ion channel as a result of the radial ion
motion in self-consistent electromagnetic fields excited
by a train of relativistic electron bunches. The parame-
ters of the fully developed channel are determined by
the plasma-to-bunch density ratio and the ratio of the
bunch radius to the skin depth. The effective dimen-
sions of the channel and its “depth” (i.e., the elevated
ion density at the channel axis) increase monotonically
both in time and in the direction opposite to the propa-
gation direction of the bunches. The formed ion chan-
nel stabilizes the propagation of relativistic electron
bunches, which thus generate stronger accelerating
fields. The results of 2.5-dimensional numerical model-
ing of the wake-field excitation during the self-modula-
tion of a long relativistic electron bunch showed that the
maximum electron density in the bunch becomes com-
parable to the plasma density and the amplitude of the
plasma density perturbations becomes larger than the
initial plasma density by a factor of 4.5. This indicates
a very strong modulation of both the bunch density and
the plasma density. That is why, even in the above case
of a low-density bunch (in which the unperturbed elec-
tron density is about two orders of magnitude lower
than the plasma density), it is incorrect to describe the
plasma in the linear approximation. The amplitude of
the longitudinal field is about 0.8 of the maximum elec-
tric field that can be generated in the plasma, and the
amplitude of the radial field is about 0.4 of the maxi-
mum possible field. An important point is that the field
amplitude increases only over a short distance along a
relativistic electron bunch; hence, it would be of no use
to operate with bunches whose length exceeds the dis-
tance over which the longitudinal field amplitude is
maximum, because doing so would provide no addi-
tional increase in the excited wake field. The results
obtained with allowance for all possible nonlinearities
give a better insight into the three-dimensional behav-
ior of relativistic electron bunches in a plasma and may
help to ensure the optimum conditions for the wake-
field generation during the dynamic self-modulation of
the bunches. The results of investigations of the excita-
tion of accelerating fields by an individual relativistic
electron bunch or by a train of such bunches in a plasma
(in particular, in the presence of an external magnetic
field) make it possible to evaluate the potentialities of
the wake-field acceleration method and to analyze
whether it can serve as a basis for creating a new gen-
eration of devices capable of accelerating charged par-
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ticles at substantially higher (by two to three orders of
magnitude) rates in comparison with those achievable
in classical linear resonance accelerators.
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Abstract—The linear stability analysis of the l = 1 diocotron perturbations in a low density single charged
plasma confined in a cylindrical Penning trap is critically revisited. Particular attention is devoted to the insta-
bility due to the presence of one or more stationary points in the radial profile of the azimuthal rotation fre-
quency. The asymptotic analysis of Smith and Rosenbluth for the case of a single-bounded plasma column
(algebraic instability proportional to t1/2) is generalized in a few respects. In particular, the existence of unper-
turbed density profiles that give rise to l = 1 algebraic instabilities growing with time proportionally to t1 – 1/m,
m ≥ 3 being the order of a stationary point in the rotation frequency profile, and even proportionally to t, is
pointed out. It is also shown that smoothing the density jumps of a multistep density profile can convert alge-
braically growing perturbations into exponentially decaying modes. The relevant damping rates are computed.
The asymptotic analysis (t  ∞) of the fundamental diocotron perturbations is then generalized to the case
of a cylindrical Penning trap with an additional coaxial inner conductor. It is shown that the algebraic instability
found in the case of a single-bounded plasma column becomes exponential at longer times. The relevant linear
growth rate is computed by a suitable inverse Laplace transform (contour integral in the complex plane). In the
particular case of an uncharged inner conductor of radius a, the growth rate is shown to scale as a4/3 for a  0.
The theoretical results are compared with the numerical solution of the linearized two-dimensional drift Poisson
equations. © 2002 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

It is known that nonneutral plasmas consisting of an
ensemble of single species charged particles have some
unique properties. In particular, a single charged
plasma can approach a state of global (though localized
in space) state of thermodynamic equilibrium, where
the plasma is contained in a cylindrical Penning trap by
means of static electric and magnetic fields for up to a
few hours, without visible degradation of confinement
[1]. The existence of a state of global thermodynamic
equilibrium in a cylindrical Penning trap (see Fig. 1a)
has been known for more than 20 years [2–6]. Recently,
it was observed that a thermodynamic equilibrium is
also possible for a hollow plasma cloud confined in a
cylindrical trap with a coaxial inner conductor [7] (see
Fig. 1b).

A cloud of single charged particles with an arbitrary
radial density profile (i.e., in general, not consistent
with a thermodynamic equilibrium) can be unstable
against small azimuthal and axial perturbations. The
linear stability of a single charged plasma column was
studied in detail in the literature [8, 9]. In this paper, we

1 This article was submitted by the authors in English.
1063-780X/02/2802- $22.00 © 20141
are interested in the case of purely azimuthal diocotron
perturbations (i.e., kz = 0, kz being the axial wavenum-
ber of the perturbation). In this case, using a model with
a radial step density profile (Fig. 2a), Levy [10] showed
that an infinitely long plasma column radially bounded
by two cylindrical conductors held at fixed potential is
neutrally stable when it is in contact with one or both
conductors or if the charge on the inner conductor has a
large enough (positive or negative) value. If the central
conductor is absent, the l = 1 diocotron mode is neu-
trally stable, while lower l ≥ 2 modes can be unstable.
The effect of the central conductor on the stability of a
hollow plasma column has also been studied experi-
mentally [11].

In general, the number of eigenmodes in a plasma
with a multistep density profile for a given azimuthal
number l is equal to the number of density jumps [10,
12]. A smooth density profile yields a continuum spec-
trum, while neutrally stable modes become exponen-
tially decaying modes [13–16], except for the case
l = 1, for which neutrally stable modes exist for an arbi-
trary density profile [13, 17]. The continuum spectrum
decays as some power of time [13–16, 18–20], so that
neutrally stable eigenmodes can be hidden in the time
evolution.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Scheme of a cylindrical Penning trap (a) without a central conductor and (b) with a central conductor.

Fig. 2. Plasma density and electric drift frequency vs. radius: (a) a plasma column with a step density profile and (b) more realistic
profile. When the density jump at r = 0.6 is smoothed, a stationary point of the electric drift frequency r0 ≈ 0.6 appears, where  = 0,

which gives rise to an algebraic SR instability. When an inner conductor is included, the algebraic instability is converted into an
exponential one at late times, with the real part of frequency close to ωE(r0).

ωE'
Earlier theories were recently critically reviewed,
because the results of experiments showed an exponen-
tial growth of the l = 1 diocotron mode [21]. The
explicit solution to the initial value problem obtained
by Smith and Rosenbluth [22] for the special case l = 1,
but for an arbitrary density profile, reveals an algebraic
instability of a hollow electron column with the pertur-

bation growing as . In the following, this instability
will be referred to as the Smith–Rosenbluth (SR) insta-
bility. In [23, 24], it was shown that finite-Larmor-
radius (FLR) effects can lead to an exponentially grow-
ing instability, but with a growth rate much smaller than
that experimentally observed. Smith [25] showed that
shifts in the azimuthal rotation frequency due to the
finite plasma length can lead to exponential growth
rates comparable to those of the experiments, but the
shifts were adjusted ad hoc, making a quantitative com-
parison with the experiments difficult. More recently,
Finn et al. [26] included the effect of a finite plasma
length in a quasi-two-dimensional model, allowing a
direct test of the theory. The instability mechanism
involves compression of the plasma parallel to the mag-
netic field, with conservation of its line-integrated den-
sity. This mechanism has recently been tested experi-
mentally by Kabantsev and Driscoll [27]. A more gen-

t

eral treatment of this case was presented very recently
in [28]. An analysis of finite-length diocotron modes,
which includes kinetic effects, was also reported in
[29]. For completeness, we also note that the nonlinear
theory of the l = 1 diocotron modes was developed in
[30, 31]. The nonlinear stage was investigated experi-
mentally in [32]. It was found that a steplike electron
cloud persists in a stationary state for a long time. In
this case, the center of rotation of the cloud is displaced
away from the axis of the trap and drifts around it.

In the present paper, the linear stability analysis of
the l = 1 diocotron perturbations is critically revisited.
Finite-length and FLR effects are neglected here. Par-
ticular attention is devoted to the instability due to the
presence of one or more stationary points in the radial
profile of the azimuthal rotation frequency. The asymp-
totic analysis of Smith and Rosenbluth [22] for the case
of a single-bounded plasma column (algebraic instabil-
ity proportional to t1/2) is generalized to include density
profiles that give rise to algebraic instabilities growing
as t1 – 1/m, m ≥ 3 being the order of a stationary point in
the rotation frequency profile, and even proportionally
to t.

Moreover, the asymptotic analysis is generalized to
the case of a Penning trap with a coaxial inner conduc-
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tor. It is shown that the algebraic instability found in the
case of a single-bounded plasma column becomes
exponential at longer times. The relevant linear growth
rate is computed using a suitable inverse Laplace trans-
formation. The theoretical results are compared with
the numerical solution of the linearized two-dimen-
sional drift Poisson equations.

The paper is organized as follows. In Section 2, the
SR solution of the initial-value problem is extended to
the case of a Penning trap with a central conductor. In
Section 3, the stability of a single charged plasma with
a general density profile is analyzed. It is shown that an
inflection point in the density profile yields an algebraic
instability that grows proportionally to t2/3. An example
is also given of a density profile that exhibits an insta-
bility growing proportional to t. It is also shown how
the asymptotic behavior of an initial density perturba-
tion changes as the sharp edges of a multistep density
profile are smoothed. The relevant computations are
presented in Appendix A, in which an alternative deri-
vation of the algebraic growth rate for the SR instability
is also presented. Section 4 is devoted to an analysis of
the plasma stability in a cylindrical Penning trap with a
central conductor. The discussion is based on the calcu-
lations performed in Appendix B, which extend the der-
ivation of the SR instability reported in Appendix A.
The conclusions are drawn in Section 5.

2. BASIC EQUATIONS

In the model considered here, the evolution of the
two-dimensional plasma density n(r, θ, t) and the elec-
trostatic potential ϕ(r, θ, t) are governed by the equa-
tions [8, 9]

(1‡)

(1b)

Eqs. (1) are known as drift Poisson equations (or 2D
MHD equations) and are written here for the guiding
center of particles with charge e. The charged plasma is
assumed to be contained in an infinitely long grounded
cylindrical conductor of radius R. The system is
immersed in a static and uniform magnetic field B = Bz,
directed along the axis of the cylinder.

The unperturbed equilibrium situation is described
by a plasma density n0(r), depending only on the radial
coordinate. The density n0(r) and the corresponding
potential ϕ0(r), where (1/r)(d/dr)r(d/dr)ϕ0 = –4πen0,
obviously satisfy Eqs. (1). In the unperturbed state, the
plasma is convected azimuthally with the local E × B
velocity. The corresponding angular frequency is given
by

(2)

∂n
∂t
------

c
B
--- ∇ϕ ∇ n×( ) z⋅+ 0,=

∆ϕ 4πen.–=

ωE r( ) c
B
---1

r
---

dϕ0

dr
--------- 4πe

2

mΩr
2

-------------- n0 r( )r rd

a

r

∫ 2Qe

mΩr
2

--------------,+= =
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where Q denotes the charge per unit length on the inner
conductor; a is its radius; and Ω = –eB/mc is the cyclo-
tron frequency, assumed conventionally to be positive
for negatively charged particles. The other notation is
standard. The frequency ωE is sometimes referred to as
the electric drift frequency; we will follow this termi-
nology. The drift Poisson Eqs. (1) are valid as long as

the plasma frequency ωp =  is small com-
pared to the cyclotron frequency |Ω|. Note that, due to
the inequality ωp ! |Ω|, the drift frequency is also
small, |ωE | ! ωp.

In the following, dimensionless quantities are used.
The density is normalized to an arbitrary reference den-
sity  (usually the maximum value of the density  =
max[n(r)] will be chosen unless the opposite is indi-
cated). The lengths are normalized to the radius of the
outer cylindrical conductor  = R, while the normaliza-
tion factors for the other relevant quantities are as fol-

lows:  =  for the potential,  = /mΩ
for frequencies, and  =  for the electric charge
per unit length on the central conductor. Note that the
normalization factors of ϕ and Q explicitly contain the
particle charge e and, therefore, its sign. The normaliza-
tion factor for the frequency also depends on the sign of
e because it contains Ω .

The same notation is used in the following for
dimensionless quantities, so that, e.g., Eq. (2) takes the
form

(3)

Note, in particular, the useful relations

Linearizing the set of equations (1) for the perturba-
tions δϕ = φl(r, t)eilθ, δn = nl(r, t)eilθ with a given azi-
muthal number l yields the following second-order dif-
ferential equation for the potential amplitude φl (see,
e.g., [8]):

(4)

where the prime stands for the derivative over r.
Equation (4) should be supplemented with the

boundary conditions φl = 0 at r = a and r = R (though
R = 1 in dimensionless units, we will maintain an
explicit notation for R).

In the following, we restrict our analysis to the case
l = 1. A neutrally stable linear l = 1 mode is known to
survive for an arbitrary density profile n0(r) of a single-

4πne
2
/m

n̂ n̂

r̂

ϕ̂ 4πen̂r̂2 ω̂ 4πe
2
n̂

Q̂ πen̂r̂2
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r
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-------.+=
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----- r

2ωE r( )[ ] , Q 2a
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bounded plasma column [13, 17]. In addition, for a step
density profile, the l = 1 mode can become exponen-
tially unstable in the presence of an inner conductor
[17]. These results will be generalized in a few respects.
At the end, we will be able to track the transitions
between neutrally stable, algebraically unstable, and
exponentially unstable regimes for a general plasma
density profile, with or without a central conductor.

Applying the Laplace transformation to Eq. (4), we
obtain an ordinary differential equation:

(5)

As was noted in [22], the left-hand side of Eq. (5) can
be written in the form

(6)

It is possible to integrate Eq. (5) for an arbitrary density
profile. Introducing the dimensionless functions

, (6‡)

(6b)

which depend on the initial perturbed plasma density
n1(r, 0), we obtain the Laplace transforms for the per-
turbed potential and density,

, (7‡)

(7b)

Note that the solution for the l = –1 mode can be
obtained from Eq. (7) by reversing the sign of the drift
frequency, ωE  –ωE . The inversion of the Laplace
transform,

(8‡)

(8b)

involves an integration in the complex plane along a
Bromwich contour Br, which lies to the right of all the
transform’s singular points and branch cuts.
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3. STABILITY IN THE CASE
WITHOUT A CENTRAL CONDUCTOR

The inverse Laplace transformation (8) can be per-
formed in a closed form if 

 

a

 

 = 0 and 

 

Q

 

 = 0. Taking into
account that 

 

(

 

p

 

)

 

 = 0 in this case, it is possible to
recover the result of [22] (corrected from missprints):

 

(9‡)

(9b)

 

The first term on the right-hand side of Eq. (9b)
describes the unperturbed azimuthal rotation of the ini-
tial perturbation. The differential rotation produces a
phase mixing (similar to the case of Landau damping),
which transforms the first term to a fast oscillating
function of 

 

r

 

 as 

 

t

 

  ∞. Growing disturbances are
latent in the second term only, which contains the
explicit factor t. It is readily seen that an unstable per-
turbation cannot grow faster than the first power of t,
because the integrals in Eq. (9) are decreasing functions
of time. Similar terms appear in Eq. (9a). An asymptot-
ically nondecaying solution can originate from the two
ends of the integration interval in Eq. (9) or from sta-
tionary points inside the same interval.

3.1. End Points

As long as ωE(r) is a monotonically decreasing
function of r, the main contribution to Eq. (9) comes
from the upper limit of integration, r = R. This yields an
oscillatory solution with the frequency ω = ωE(R):2 

(10)

This is the neutrally stable Levy’s mode for l = 1, which
is found in [17].

3.2. Contribution of Nondegenerate Stationary Points

If the plasma density is a nonmonotonic function of
r, then the electric drift frequency ωE(r) can also be
nonmonotonic with the extremum points of the func-
tion ωE(r) being the points of the stationary phase for
the integrand functions in Eqs. (9). Suppose that r = r0
is a nondegenerate stationary point for ωE , i.e.,

2 In the corresponding Eq. (5) in [22], a factor – (R) is missing
in the denominator of the right-hand side.
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(r0) = 0, while (r0) ≠ 0. Then, the main contribu-
tion to the asymptotic behavior of the integral in
Eq. (9a) comes from the neighborhood of the point r0,

(11)

where H(x) is the Heaviside step function. The pertur-

bation grows in this case proportionally to  [22]. In
particular, if r0 = R, then an additional factor 1/2
appears in Eq. (11), which was not taken into account
in [22]. To distinguish this kind of instability from other
cases where the perturbation always grows algebra-
ically but with a different power of t, we refer to
Eq. (11) as the SR instability. An example of the den-
sity profile that gives rise to the SR instability and the
corresponding time behavior of the complex amplitude
of the potential perturbation are shown in Figs. 3 and 4,
respectively.

3.3. Density Jumps

Suppose that a density jump occurs at r = rs . This
gives rise to a jump in the derivative of the electric drift
frequency (r) at the same radius. If the density jump
carries a surface charge σ as well, then the function h(r)
is also discontinuous at r = rs, with the jump given by
h(rs + 0) – h(rs – 0) = σ/rs . The asymptotic contribution
of the density jump to φ1,

(12)

describes a neutrally stable eigenmode with the eigen-
frequency equal to ωE(rs). This eigenmode was first
discussed by Levy [10]. Note in particular that the per-
turbation fades outside the density jump; i.e., φ1 ≡ 0 for
r > rs .

3.4. Fast Algebraic Instability

A charged plasma column with a multistep density
profile, where layers of constant density are alternated
with empty gaps, is known to have eigenmodes for an
arbitrary azimuthal number l, with eigenfrequencies
being either real or complex conjugated by pairs [13].
In the former case, the modes are neutrally stable; in the
latter case, one of the two conjugated modes is expo-
nentially damping, while the other is exponentially
growing. The exact solution described by Eq. (9)
reveals that an l = 1 exponentially growing mode cannot
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exist,3 since in this case, the perturbation cannot grow
faster than the first power of t.

A linear growth of the amplitude of an initial pertur-
bation is found if there is some interval where ωE(r) is
constant and if this interval does not comprise the

3 To avoid possible misunderstandings, recall that both the present
and previous statements are valid in the framework of the 2D
electron magnetohydrodynamics [see Eqs. (1)] and for a single-
bounded plasma only.
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Fig. 3. Example of the density (solid line) and correspond-
ing electric drift frequency ωE(r) (dashed line) profiles,
which determine an SR algebraic instability as is shown in
Fig. 4. The density profile is borrowed from [22] and is
given by n0 = [1 + (r/rp)2/∆][1 – (r/rp)2]2 for r < rp and n0 = 0
for r > rp with ∆ = 0.25 and rp = 0.6.
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Fig. 4. Amplitude of the perturbed potential |φ1| vs. r and t
for the density profile shown in Fig. 3. Here, and in subse-
quent figures, the initial density perturbation is assumed to
be given by δn(r, θ, t = 0) = en0(r)cosθ. Since e can be
included in the normalization factors of the perturbed quan-
tities, we set e = 1.
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whole plasma column. In Fig. 5, this is the interval
between a1 and b1. The frequency ωE is constant inside
that interval, if the plasma density is also constant and
equal to the average density inside the inner boundary
of the same interval. The perturbed potential φ1 turns
out to be nonzero only within the inner boundary
(r < a1) as t  ∞,

(13)

φ1 r( ) itr ωE r( ) ωE a1( )–[ ] H a1 r–( )≈

× e
iωE a1( )t–

h x( )/x
3[ ] x.d
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Fig. 5. Density (solid line) and electric drift frequency
ωE(r) (dashed line) profiles that give rise to a linear growth
of initial perturbations, as is shown in Fig. 6. The densities
of the internal (r < b0) and external (a1 < r < b1) columns

are related by n0(b0)  = n0(a1) .b0
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Fig. 6. Amplitude of the perturbed potential |φ1| vs. r and t
for the density profile shown in Fig. 5.
This behavior is confirmed by the numerical evaluation
of Eq. (4), as is shown in Fig. 6.

The oscillations that grow algebraically in time are
not eigenmodes. We will show in the next section that
smoothing the density jumps leads to an exponential
decay of these oscillations at late times. Note also that
the instability of a plasma with a radial density profile
similar to that shown in Fig. 5 is not in contradiction
with the stability in a state of global thermodynamic
equilibrium [7]. Namely, although each of the two
coaxial columns in Fig. 5 fits an equilibrium profile (in
the limit λD  0), they do not form together a thermo-
dynamic equilibrium, because they have different azi-
muthal drift frequencies.

3.5. Merging Extremum Points

A real density profile can only be very roughly
approximated with a set of steps that have sharp edges.
It is useful to track how the asymptotic behavior of φ1
changes as the idealized multistep density profile
shown in Fig. 2a is transformed into the smoother pro-
file shown in Fig. 2b. The density profile in Fig. 2a has
two neutrally stable eigenmodes. The first mode,
described by Eq. (10), has the eigenfrequency ωE(R).
This is independent of the length over which the density
decays to zero. The second mode, described by
Eq. (12), has the frequency ωE(b1). As the sharp edge at
r = b1 becomes smoother, the extremum point r = r0
appears near the endpoint r = b1, and this mode is trans-
formed into an algebraically unstable mode that grows

as . The amplitude of the unstable mode is roughly
proportional to the decay length of the density, because
the right-hand side of Eq. (11) contains the factor

.

Smoothing the density profile further, it is possible
to produce algebraic instabilities that grow faster than

, as one can deduce from the example of Section 3.4.
This increase of the instability occurs through a merg-
ing of the extremum points considered in Section 3.2.
Let us consider the two close extremum points r+ and r–
shown in Fig. 7a. Turning to a progressively smoothing
density profile, the extremum points merge at the
inflection point r∗ , where the equality  = 0 holds
(Fig. 7b). As smoothing progresses, the extremum
points r+ and r– disappear, while the inflection point
r = r∗  exists both before and after merging. The neigh-
borhood of the point r∗  overwhelmingly contributes to
the integral on the right-hand side of Eq. (9a), thus
determining the asymptotic behavior of the initial per-
turbation. Inside this neighborhood, we can expand the
electric drift frequency as

(14)

t
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Fig. 7. Density profiles (solid lines) and corresponding electric drift frequency profiles (dashed lines) for different evolution scenar-

ios of initial linear perturbations: (a) growth proportional to  (see Fig. 8), (b) growth proportional to t2/3 (see Fig. 10), and
(c) exponential damping (see Fig. 11). In all cases, the density profiles are described by the fourth-order polynomial n0(r) = (1 –

r)(1 + r + ar2 + br3), where a = [36α + 3(3 – 20α)r∗  – 20 ]/[r∗ (9 – 20r∗  + 12 )] and b = [3(12αr∗  – 5α + 3 )]/[ (9 – 20r∗  +

12 )] are expressed through the coordinate r∗  of the inflection point, (r∗ ) = 0, and the corresponding value of  (α =

(r∗ )). The parameter r∗  = 0.8 is the same for all cases, while α = (a) 0.3, (b) 0, and (c) –0.1. In case (a), two extrema are located

at r– = 0.626539 and r+ = 0.942552 and the corresponding values of ωE are 0.108805 and 0.171385, respectively. In case (b), the
two extrema coalesce in the inflection point at r∗  = 0.8 (ωE(r∗ ) = 0.198824). The parameter Γ, which characterizes the separation

of the two extrema, is equal to (a) i0.0308593, (b) 0, and (c) 0.00923489, respectively.
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where x = r – r∗  and (r∗ ) plays the role of a small-

ness parameter.

If (r∗ )/ (r∗ ) < 0, the function ωE(r) has two

extrema at r± = r∗  ±  (see Fig. 7a). At large

times, t @ |Γ|–1, with Γ = , these extrema
contribute separately. Therefore, the perturbed poten-
tial is the sum of two asymptotic contributions [see
Eq. (11)] coming from r+ and r–, so that the initial per-

turbation grows as . Figure 8 clearly exhibits two
modes localized in the regions r < r+ ≈ 0.94 and r < r− ≈
0.59. A spectral analysis supports the prediction of the
analytic theory, which gives the following values for
the mode frequencies: ωE(r–) = 0.0500865 and ωE(r+) =
0.120887. These modes produce a beating effect in the
inner radial region, r < r–, with the period T =
2π/ |ωE(r+) – ωE(r+)| ≈ 88.74. However, this period is
too short to be resolved on the time scale of Fig. 8. The
actual wave beating is evidenced in Fig. 9. Note in par-
ticular that the beating period increases as ωE(r∗ )

becomes smaller and the extremum points r± become
closer to each other.

At smaller times, t ! |Γ|–1, we can set (r∗ ) = 0.

If (r∗ ) = 0 and the stationary points merge at

r = r∗ , which, in this particular case, appears to be the

extremum of the density profile n0(r), then the perturba-
tion grows proportionally to t2/3 (see Figs. 7b, 10):
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(15)

Finally, if (r∗ )/ (r∗ ) > 0 (see Fig. 7c), the
extremum points move into the complex plane x, while
φ1 grows algebraically according to Eq. (15) in the ini-
tial time evolution, t ! |Γ|–1 (see Fig. 11) and then
decays exponentially at late times,

(16)

Figure 11 shows a sort of saturation. A spectral analysis
shows that the “saturated” mode has the frequency
ωE(R) and, hence, is nothing but the neutrally stable
Levy’s mode [see Eq. (10)].

Using Eq. (14), it is possible to derive a more gen-
eral formula which combines all the cases discussed
above:

(17)
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Fig. 8. Amplitude of the perturbed potential |φ1| vs. r and t
for the density profile shown in Fig. 7a.
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Fig. 10. Amplitude of the perturbed potential |φ1| vs. r and t
for the density profile shown in Fig. 7b.
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Fig. 9. Time evolution of the amplitude of the perturbed
potential |φ1| for r = 0.4 (solid line, the beating effect is evi-
dent) and r = 0.7 (dashed line, oscillations without beating)
for the density profile shown in Fig. 7a.
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for the density profile shown in Fig. 7c. The initial stage

exhibits a growth proportional to . A sort of “saturation”
is reached in a relatively short time, which is nothing but the
Levy’s mode.
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Here, τ = Γt, and K1/3(τ) is the McDonald’s function of
order 1/3.

3.6. Higher Order Stationary Points

If the ωE profile has, for the sake of simplicity, only

one stationary point r∗  of order m (i.e., (r∗ ) = 0 for

all derivatives with j < m and (r∗ ) ≠ 0), then we can
repeat the computation of the asymptotic behavior of
the perturbed potential to obtain

(18)

which is valid for all integers m > 1. For m = 2, this for-
mula gives Eq. (11), and, for m = 3, it gives Eq. (15).

4. TRAP WITH A CENTRAL CONDUCTOR

We now turn to the analysis of the stability of l = 1
diocotron perturbations in a cylindrical Penning trap
with a coaxial inner conductor. It is shown how the
presence of the central conductor transforms the alge-
braic SR instability into a weakly exponential one at
longer times, while the algebraic growth survives in the
initial stage of the evolution.

Contrary to the previous case with no central con-
ductor, the inversion of the Laplace transform [see
Eq. (8)] cannot be performed in a closed form. In any
case, an asymptotic analysis is still possible. To this
aim, Appendix A contains an alternative derivation of
Eq. (11) by an explicit contour integration in the com-
plex plane of Eq. (8a). This derivation is extended here
and in Appendix B to the case where an additional inner
conductor is present in the trap configuration. In this
section, we present the results obtained by the method
described in Appendix B.

As was shown in Section 3.2, the SR instability
comes from the neighborhood of a nondegenerate sta-
tionary point r0 where  = 0. Appendix A interprets
this instability as the contribution of the branching
point p = –iωE(r0) in the complex p-plane. The major
difference from the case considered in Appendix A is of
course the presence of a nonzero function (p).

Near the branching point p = –iωE(r0), the integrals

over r that enter the definition of (p) [see Eq. (6b)] are
mainly determined by the neighborhoods of the points
r = r0 and r = a. Near the central conductor, r  a, the
frequency ωE can be expanded as ωE(r) ≈ ωE(a) +

ωE
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∆ωE[1 – a2/r2], where ∆ωE = n0(a)/2 and ωE(a) =
Q/2a2. Near the stationary point, r  r0, we can write

ωE(r) ≈ ωE(r0) + (r – r0)2/2, where  stands for

(r0). Using these expansions, we obtain

(19)

where

come from points r0 and a, respectively. The function
)(σ) is two-valued, because it contains the rational
power 3/2 of σ = p + iωE(r0). As is explained in Appen-
dix A, one should choose the “physical” sheet (argσ ∈
(–π, π)) of the Riemann surface, which corresponds to
the complex σ-plane with the branch cut σ ∈  (–∞, 0)
along the negative part of the Reσ axis.

For a rough estimate of the integral in Eq. (8a), we
can evaluate σ as t–1. This shows that the effect of the
central conductor is negligible (  ! h(r0)) at small

times, t ! T ≈ . At larger times, t @ T,

the value of (p) tends to h(r0) at the branching point

p = –iωE(r0), so that two terms, h(x) and (p), in the
integrand of expressions (7) cancel each other and the
algebraic SR instability disappears. This conclusion
might seem to be a paradox. If the inner conductor is
very thin and is not charged, the spatial structure of the
perturbed potential is changed only in the small vicinity
of the central conductor itself. It is therefore puzzling
how such a small modification is able to change the
time evolution of the perturbation so strongly. Note,
however, that the thinner the internal conductor, the
longer is the initial stage t < T of the algebraic growth.

A careful analysis reveals that (p) has poles close
to the branching point. They can be found from the
equation

(20)

where β ≈ β(–iωE(r0)) is real,
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Squaring both sides of Eq. (20), we obtain three differ-
ent roots,

(21)pn iωE r0( )– i
π2

2ωE
''r0

6β2
---------------------3 e
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,+=
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Fig. 12. Amplitude of the perturbed potential |φ1| vs. r and t
for the density profile shown in Fig. 3, truncated at the
radius a = 0.05 of the central conductor. The value of Q on
the central conductor corresponds to the total charge of the
particles within r = 0.05 in the case of Fig. 3.
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Fig. 13. Generalized parabolic density profile (solid line)
and electric drift frequency (dotted lines). The density pro-

file is given by ne = [1 – (r – rc)2/ ]2 for |r – rc | < rp and

ne = 0, otherwise, with the parameters rc = 0.5 and rp = 0.1.
Frequency profiles are calculated for a = 0.1 and different
values of Q, indicated directly on the plot.

rp
2

where n is an integer. However, it is worth emphasizing
that not all of them belong to the physical sheet.
Depending on the sign of β, only one or two of the roots
satisfy the condition arg[pn + iωE(r0)] ∈  (–π, π). The
other roots belong to adjacent sheets.

The inverse Laplace transform can be performed, at
least asymptotically for t  ∞, by means of a suitable
deformation of the inversion (Bromwich) contour
inside the physical sheet. The deformed contour wraps
around the poles of the Laplace transform (7) and its
branch cuts. The contribution of the poles can be com-
puted with the theory of residues. Poles on adjacent
sheets are not wrapped around and, hence, do not con-
tribute to the asymptotic behavior of the perturbed
quantities. Such poles are sometimes associated with
the so called quasi-modes [15, 16, 33], but the fact that
they do not contribute to the asymptotic behavior of the
perturbation is not well elucidated in the existing liter-
ature. Appendix B provides more details about this
issue.

For the sake of clarity, we assume that the cubic root
in Eq. (21) has a real positive value if  > 0 and a real

negative value if  < 0. The condition arg[p + iωE(r0)] ∈
(–π, π) then selects n = 0, +1, +2 for  > 0 and n = 0,

–1, –2 for  < 0.

The first root, p0, is purely real. The second root, p±1

(i.e., p+1 for  > 0 and p–1 for  < 0), has a positive
real part, Rep±1 > 0. The third root has a negative real
part, Rep±2 1 < 0. In terms of the frequency ω = ip, the
second and third roots form a complex conjugate pair of
eigenfrequencies.

The function )(p + iωE(r0)) has a real negative value
at p = p0 and p = p±2, while it is positive at p = p±1. This
simply means that the number of roots on the “physi-
cal” sheet depends on the sign of β. If β > 0, Eq. (20)
has two roots: p0 and p±2. If β < 0, only the roots p±1
belong to the “physical” sheet. Observing that only p±1
has a positive imaginary part, we conclude that an
exponential instability exists if β < 0, or

(22)

The growth rate is given by

(23)

If inequality (22) breaks, the algebraic SR instability
saturates at t > T.

The destabilizing effect of the central conductor is
confirmed by the simulations relevant to the density
profile shown in Fig. 3. If the central conductor is
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absent, this case exhibits an algebraic SR instability, as
is shown in Fig. 4. We have repeated the simulation for
the same density profile with an inner conductor of
radius a = 0.05 and electric charge per unit length Q =

(x)xdx, which exactly compensates the charge of

the removed particles, so that the radial profile of ωE is

2 n00

a∫

–0.010

0.050 0.10 0.15 0.20
Re ω

–0.005

–0.015

0.005

0

0.010

0.015
Im ω

Fig. 14. Frequency spectrum for the density profile shown
in Fig. 13, Q = 0, and different values of a: 0.2, 0.1, 0.05,
0.025, and 0.001 (the closest to the Reω axis). The solutions
are indicated by dots. The continuum spectrum lies on the
Reω axis from 0 to ωE(r0). For a given a, there are two com-
plex conjugate discrete frequencies. As a  0, they con-
verge to ωE(r0) at the upper end of the continuum spectrum.
Stable solutions (Imω < 0) do not belong to the “physical”
sheet of the Riemann surface.
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not changed outside the inner conductor. Figure 12
clearly shows that the perturbed potential evolves in a
qualitatively different fashion than that in Fig. 4.

For a further comparison, we have used the general-
ized parabolic profile shown in Fig. 13. This profile
provides a more realistic approximation of the experi-
mental conditions, because the plasma density vanishes
close to the central conductor. The growth rates were
estimated numerically by solving the eigenvalue equa-
tion by the finite difference method. The agreement
between the theoretical and numerical γ values is typi-
cally within 10% for sufficiently low values of the inner
conductor radius (a ≤ 0.05) and a spatial grid of
800 points in the interval r ∈  [a, R]. The agreement
improves by increasing the number of grid points.

The frequency spectrum computed numerically is
drawn in Fig. 14 for a set of a values. The number of
solutions with Imω = 0 increases with the number of
radial grid points, indicating that these solutions corre-
spond to the continuous spectrum. The range of Reω
corresponds (as it must for the case l = 1) to the interval
of values of ωE(r).

These results, in particular the existence of an unsta-
ble solution, are also confirmed by the numerical solu-
tion of the linearized drift Poisson system. In the
numerical code, ωE(r) and (r) are assigned as inputs.
The solution is then found on a grid that is radially uni-
form between a and R. At every time step, the radial
Helmholtz equation for the l = 1 harmonic of the per-
turbed potential is solved with the boundary conditions
φ1 = 0 for r = a and r = R.

The eigenfunction relevant to the unstable mode for
the l = 1 perturbation of the density profile shown in
Fig. 13 is plotted in Fig. 15. Note in particular that this
extends over the whole interval r ∈  [a, R]. On the con-
trary, neutrally stable eigenmodes (which exist, e.g., in the
case of a multistep density profile treated in Section 3.3)
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Fig. 15. Eigenfunction φeig(r) (in arbitrary units) for the discrete unstable mode for the generalized parabolic density profile shown
in Fig. 13, Q = 0, and a = 0.1: (a) real part and (b) imaginary part. The stable mode with the complex conjugate eigenfrequency ω*
has the complex conjugate eigenfunction . The stable mode does not belong to the physical sheet of the Riemann surface.φeig* r( )
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are localized inside the resonant radius, as is deduced
from Eq. (12). An eigenfunction of the continuum spec-
trum is discontinuous at its resonant radius, where ω =
ωE(r) [33]. It is interesting to compare these results
with those obtained for a step density profile. In this
case, we can compute the discrete spectrum analyti-
cally (see, e.g., [8–10]). In particular, for a step density
profile located between r = 0.4 and 0.6 (n0 = 1) and the
inner conductor at a = 0.1, the discrete spectrum for
Q = 0 has two neutrally stable modes, ω1 . 0.10 and
ω2 . 0.26. The first exponentially unstable solution
appears for Q . 0.0176, and this becomes more and
more unstable (i.e, its growth rate increases) as Q
increases.

5. CONCLUSIONS

We have shown that for an infinitely long charged
plasma column with radial density gaps, algebraic
instabilities growing with time proportionally to t1 – 1/m,
m ≥ 3 being the order of a stationary point in the rota-
tion frequency profile, and even proportionally to t can
be found. All these instabilities grow faster than what is
called the SR instability, already known in the litera-
ture.

We have then observed that smoothing the density
jumps in a single-bounded plasma converts algebra-
ically growing perturbations into exponentially decay-
ing modes at late times, and we have computed the
damping rate of these modes.

We have also shown that the presence of an addi-
tional inner conductor (even very thin and uncharged)
can transform the algebraic SR instability into an expo-
nential one at late times (while the algebraic character
of the instability persists in the initial time evolution).
In particular, we have obtained a criterion for the expo-
nential instability to occur and we have computed the
growth rate analytically in a limiting case. These results
have been confirmed by the numerical solution of the
linearized drift Poisson equations (1).

Finally, we note that the analytic theory developed
here successfully handles the problem of the presence
of an inflection point in a stratified flow. This allowed
us to trace the above-mentioned mode transformations.
Explicit results related to this particular problem are
very rare, if any, in the literature. Qualitative predic-
tions of a slow instability near the inflection point can
be found in the review paper by Timofeev [14]. Our
results confirm the predictions of that work.

APPENDIX A

SMITH–ROSENBLUTH INSTABILITY

Here, we explicitly perform the integration in
Eq. (8a) to invert the Laplace transform (7a). The result
will be the same as that described by Eq. (11), derived
by another method in Section 3.2. The method pre-
sented here will be used, with small amendments, in
Appendix B to study the asymptotic time evolution of
linear perturbations in a cylindrical Penning trap with
an inner conductor. The notion of the physical sheet of
the Riemann surface used in Section 4 to derive the sta-
bility criterion is also introduced here.

Our goal is to calculate integral (8a)

(Ä.1)

where σ is a positive real number and φp(r) is the usual
Laplace transform defined by

(Ä.2)

We will refer to the integration path in Eq. (A.1) as the
Bromwich, or the inversion, contour. The solution for
φp(r) can be obtained from Eq. (7a) with (p) ≡ 0:

(Ä.3)

The integration contour in Eq. (A.3) will be referred to
as the r-contour to distinguish it from the inversion con-
tour in the complex p-plane. The initial, or undeformed,
r-contour belongs to the Re x axis, x ∈  [r, R] (see
Fig. 16).

To be definite, we consider an ωE(r) profile such that

(r) is negative in a stationary point r0 where  = 0.
The final result will be written in a form valid for any
sign of (r0). Reversing the sign of ωE can be accom-
plished by reflecting all the figures in this appendix
around the horizontal (real) axis.

The Laplace transform (A.3) is an analytic function
of p in the right half of the p-plane. This statement fol-
lows from the discussion of Eq. (9) in the beginning of
Section 3.2, where it is emphasized that any initial per-
turbation cannot grow faster than t. Namely, recall that
a singularity in the p-plane in a point with Rep > 0
would mean an exponential instability.

It is worth emphasizing that the Laplace transform
(A.3) is a multivalued function of p. To prove this, we
consider a path in the p-plane for which p passes
through the imaginary axis Imp (see Fig. 17a). The
dashed line in Fig. 17a denotes the branch cut, which is
the projection p(x) ≡ –iωE(x) of the r-contour of inte-
gration, x ∈  [r, R], in Eq. (A.3) onto the p-plane. The
integrand function in Eq. (A.3) becomes singular as p
tends to the branch cut. Consider now a path in the
p-plane starting somewhere in the right half-plane. The
starting point can be thought of as belonging to the
inversion contour. If the path meets the branch cut, as
path 1 in Fig. 17a does, the branch cut should wrap
around the final point of the path in order to avoid any
singularity in the integrand. Consequently, the r-con-
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Fig. 16. A sketch of the drift frequency profile ωE(x) with an
inflection point and the r-contours of integration in the com-
plex x-plane in Eq. (A.3). If the inflection point r0 occurs
inside the interval of integration, then ωE(x) is a nonmono-
tonic function of x on the interval [plot (a)]. The original
r-contour goes along the Rex axis [plots (b)–(d), dashed
lines]. The contour encompasses the image xp of the Laplace
variable p defined by p = –iωE(xp) as xp approaches the r-
contour [plot (b)]. Two images exist if ωE(r) < ωE(xp) <
ωE(r0) close to the Rex axis, because ωE(x) assumes two
times any value between ωE(r) and ωE(r0) along the r-con-
tour on the Rex axis [plot (c)]. The transformed r-contour
suitable to uncover the asymptotic behavior of the inverse
Laplace transform crosses the Rex axis in the inflection point
r0 at an angle of +45° in the case  < 0 [plot (d)]. Reversing
the sign of the frequency, ωE  –ωE, reflects the trans-
formed contour vertically around the Rex axis (not shown).
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tour should wrap around the pole x = xp in the x-plane,
where p = –iωE(xp), as is shown in Fig. 16b. We denote
the value assumed by the Laplace transform in the final

point of the path in the left half of the p-plane as (r).
If one arrives at the same final point, encompassing the
branch cut along, e.g., path 0, then the Laplace trans-

form assumes a different value (r). The two values
differ by the residue at the pole x = xp; the residue is
namely just integral (A3) along a small contour that
detours the pole.

Moving along path 2 in the p-plane, which meets the
branch cut between the points p = –iωE(r) and p =
−iωE(r0), we obtain, generally speaking, a third value

(r), because the r-contour wraps around two pro-
jections xp of the point p onto the complex x-plane,
because ωE(x) assumes two times any value between
ωE(r) and ωE(r0) along the unperturbed r-contour (see
Fig. 16c).

It is readily seen that the function described by
Eq. (A.3) is a multivalued function in the right half of
the p-plane as well. This follows from the fact that paths
0 and 1 (or 2) combine in a close contour any point of
which can be treated as starting/final point in the above
treatment. It is clear that the points –iωE(R), –iωE(r),
and −iωE(r0) in the complex p-plane play a special role.
We will refer to them as branching points.

Any additional turn around any branching point
adds one or more residue values. Hence, the branches

(r) of the Laplace transform are related to the funda-

mental branch (r) by the equation
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Fig. 17. Contour of integration in the complex p-plane: (a) initial contour and (b) transformed contour. The branch cut (dotted line)
goes along the projection p(x) = –iωE(x) of the integration contour in the x-plane shown in Fig. 16.
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where ns is an integer and the summation goes over all
poles. The number of branches is generally infinite. An
important exception of the last statement is represented
by a multistep density profile. In that case, all the resi-
dues in the above equation are equal to zero and the
Laplace transform is a single-valued function of p. Note
that any numerical simulations are, in fact, performed
for a multistep density profile.

To proceed further, we need to fix the branch of the
Laplace transform (A.3) to be substituted into the
inverse Laplace transform (A.1). The desired branch is
fixed by the condition that the integration contour in
Eq. (A.3) goes exactly along the Rex axis for any p
such that Rep > 0. This is in fact a general feature of the
solution to an initial-value problem with the use of the
Laplace transform. Indeed, the integral in Eq. (A.2)
must, at least, converge, which requires the real part of
p to be positive and sufficiently large. This also explains
why the inversion contour must go to the right of all the
integrand’s singular and branch points in Eq. (A.1).

The inversion contour in the p-plane is shown in
Fig. 17a as a solid line parallel to the Imp axis. Shifting it
to the left as far as possible, it is a standard matter to find
out the asymptotic behavior of Eq. (A.1) at t  ∞.
Namely, the parts of the inversion contour that remain
the farthest right yield the most significant contribution
to the integral in Eq. (A.1), because the integrand func-
tion contains the factor ept. Being shifted, the inversion
contour wraps around the branch cuts and, possibly,
around other singularities of the Laplace transform in
the left half of p-plane.

To characterize the asymptotic behavior, the branch
cut should also be shifted to the left as far as possible.
Shifting the branch cut requires the r-contour in the
x-plane to be deformed as is shown in Fig. 16. The end
points of the branch cut, p = – iωE(r) and p = –iωE(R),
cannot be moved away from the Imp axis because they
correspond to the actual point r and the boundary con-
ditions imposed on the outer conducting cylinder,
respectively. An additional point, p = –iωE(r0), which
also cannot be moved, corresponds to the stationary
point r0 in the x-plane, where  = 0. Shifting the point
from the Rex axis in any direction would even increase
Rep(x). Thus, the farthest left parts of the inversion
contour in the p-plane wrap around these branch points.
Other points that have to be wrapped around are the
poles of the Laplace transform φp(r). However, as is
explained above, no such poles exist to the left of the
Imp axis.

In the following, we restrict ourselves to the contribu-
tion of the stationary point r0. Expanding ωE(x) in the
denominator of Eq. (A.3) over a small distance s = x – r0,

ωE'
we obtain from Eq. (A.1)

(Ä.4)

where, again, Br denotes the inversion contour and 

stands for (r0). Since we are interested in the asymp-

totic behavior at long times (so that | |(r – r0)2t @ 1),
it is possible to substitute the lower limit r – r0 of the
inner integral in Eq. (A.4) with +∞ or –∞, depending
on the sign of r – r0. This yields

(Ä.5)

where

(Ä.6)

The function )(σ) has two branches corresponding to

two poles s1, 2 = ±  of the integrand in
Eq. (A.6) in the complex s-plane. To be definite, we
assume that s1 is initially placed above and s2 below the
r-contour in the x-plane (see Fig. 16). The standard the-
ory of residues establishes that integral (A.6) is equal to
the residue at s1 with the positive sign or to the residue
at s2 with the negative sign, which, in fact, yields the
same result:

(Ä.7)

The first form of the ) corresponds to shifting the
r-contour upwards. This then wraps around the s1 pole,
making a small contour that detours the pole counter-
clockwise. The second form corresponds to shifting the
r-contour downwards; it yields a small contour that
detours the s2 pole clockwise and, hence, gives the
minus sign in the second line of Eq. (A.7).

Let us imagine that σ makes one turn around the
σ = 0 point in the complex σ-plane; i.e., argσ increases
by 2π. Then, the s1 pole (with the small contour
attached) moves to the lower half of the s-plane and
takes the place of the s2 pole, while the s2 pole takes the
place of s1 in the upper half-plane. Note that this oper-
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ation makes the detour direction opposite to the previ-
ous case: the wrapped contour now detours the upper
pole clockwise and the lower pole counterclockwise.
Consequently, the value of )(σ) reverses its sign. The
function )(σ) is single-valued on the Riemann surface
produced from two σ-planes, which are linked together
in such a way that argσ spans over an interval of 4π.

An alternative treatment requires a branch cut to be
drawn from σ = 0 to complex infinity and introduces
two branches of )(σ) corresponding to two leaves of
the Riemann surface. The second branch of )(σ) differs
from Eq. (A.7) by the sign. The branch cut prohibits
argσ to be changed by 2π or more. The argument of σ
experiences a jump of 2π when σ crosses the branch
cut. As the jump reverses the sign of )(σ), the two
branches ±)(σ) must be linked on the opposite parts of
the branch cut to emulate a continuous behavior of
)(σ) on the Riemann surface.

The explicit choice of the branch cut geometry is a
matter of convenience. Usually, it is convenient that the
branch cut goes to the left in the shortest way, i.e., along
the Rex axis. Figures 18 and 19 show the s-plane
(which is in fact a small neighborhood of the x = r0
point in the x-plane) and the σ-plane (i.e., a small
neighborhood of the p = – iωE(r0) point in the p-plane)
with a branch cut and integration contour for the case

 < 0. The position of the poles s1, 2 for a real and pos-
itive σ is also indicated in Fig. 16d.

As is shown in Fig. 19, the branch cut initially goes
up along the Imσ axis. A transformation of the r-con-
tour brings the branch cut to the desired position along
the left half of the Rex axis. Such a choice of the branch
cut means that argσ ∈  (–π, π). This condition selects the
“physical” sheet of the Riemann surface.

The transformed inversion contour goes along the
two parts of the branch cut without crossing it. There-
fore, one does not need to worry about how to link the
two branches of the Laplace transform. The target
branch (A.7) is fixed by the condition that the pole s1 is
placed above the transformed r-contour provided that σ
belongs to the physical sheet; i.e.,

(Ä.8)

Hence,

(Ä.9)

Inserting Eq. (A.9) into Eq. (A.5) yields

(Ä.10)
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where

(Ä.11)

Rearranging the integrand function in Eq. (A.11) and
integrating by parts yields
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Fig. 18. Contour of integration in the complex s-plane (s =
x – r0). The original contour goes along the Res axis. The
transformed contour (dashed line) is shown for the case

 < 0 and moves at 45°. The contour wraps around the

pole s1 or s2 if it shifts upward or downward, respectively.
The arrows indicate the detour direction of the wrapped
contours. Making one turn in the σ-plane exchanges s1 with
s2, which reverses the detour direction and, hence, the sign
of the Laplace transform (A.5).
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Fig. 19. Original (dotted line) and transformed (dashed line)
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transformed branch cut and poles of the Laplace transform
in Eq. (B.2). The poles σ0 and σ–2 exist if β > 0 and the
pole σ–1 exists if β < 0.
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It is possible to neglect the second term in the brackets
because we are interested in the behavior at t  ∞.
Writing explicit limits for the inversion contour, we
readily recognize that the remaining integral can be
expressed through the Euler’s Γ function as

Inserting this result into Eq. (A.10) yields Eq. (11).

APPENDIX B

EXPONENTIAL SMITH–ROSENBLUTH 
INSTABILITY

Here, we invert the Laplace transform (8a) for the
case treated in Section 4. Inserting Eq. (19) into
Eq. (7a) and following the method of Appendix A,
Eq. (8a) can be cast into the form

(B.1)

where

(B.2)

and the inversion contour Br wraps around the branch
cut p + iωE(r0) ∈  (–∞, 0] and the poles of the integrand
function. Making the substitution p = σ + iωE(r0) and
neglecting σ in the numerator of the integrand function
in Eq. (B.2), we obtain

(B.3)

To find the poles of Eq. (B.3), we introduce the notation
σn = iγ0e–2πin/3, where n is an integer, and

As is shown in Section 4, there are two poles σ0 and σ±2
if β > 0 and a single pole σ±1 if β < 0. Here, the sign in
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the subscript corresponds to the sign of . The contri-
bution of any of the poles σn is given by

An exponentially growing term Φ±1 appears if β < 0.
The contribution Φcut of the inversion contour

wrapped around the branch cut σ ∈  (–∞, 0] can be eval-
uated as follows. For small times, t < T, one can neglect
q in the denominator of Eqs. (B.2) and (B.3). This leads
to Eq. (A.11), treated in Appendix A; as a result, we
obtain

(B.4)

For larger times, t > T, we can expand the integrand
function in Eq. (B.3) in the small ratio σ3/2/q:

(B.5)

Integrating the first term in brackets over a closed
inversion contour yields zero. The remaining term
decays as t –5/2,

(B.6)

In conclusion, we note that Φcut ~ Φn at t ~ T.
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Abstract—A study is made of the interaction of the electron component of a low-density plasma with a mac-
roscopically inhomogeneous, mirror-reflecting surface in mutually orthogonal electric and magnetic fields. The
collisionless kinetic equation is solved analytically in the (2R + 3V)-dimensional space. A nontrivial structure
of the nascent near-wall currents is revealed, and their two-dimensional distribution is analyzed in detail. From
the standpoint of practical applications, attention is focused on the near-wall conductivity in a stationary plasma
thruster. The results obtained agree with the available experimental data. Moreover, the investigations described
here provide a basis for the study of the possibility of tailoring the insulator in the channel for the purpose of
suppressing anomalous erosion and ensuring the required operating period of plasma thrusters. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

This paper is aimed at investigating the interaction
of the electron component of a low-density plasma with
a macroscopically inhomogeneous surface in mutually
orthogonal electric and magnetic fields (Fig. 1). The
Debye sheath at the surface—an intrinsic property of
most plasma devices—is assumed to be sufficiently
thin in comparison with the dimensions of macroinho-
mogeneities. On the other hand, the potential jump
across the Debye sheath ensures a mirror reflection of
the plasma electrons under consideration. Such a for-
mulation of the problem is fairly general. Below, the
problem will be reduced to that of investigating the
near-wall conductivity (NWC) at a macroscopically
inhomogeneous (rippled) insulator surface in a station-
ary plasma thruster (SPT).

The concept of NWC was first introduced by Moro-
zov [1] in the context of developing the theory of phys-
ical processes in an SPT [2, 3]. Later, the NWC effect
was revealed and thoroughly analyzed in the experi-
ments of [4, 5]. The theory of the processes occurring
in an SPT was generalized by Morozov and Savel’ev in
their review [6].

The NWC is one of the most important factors in
ensuring the normal operation of an SPT. In studying
the situation under discussion, attention has been
focused on the origin and structure of the near-wall cur-
rents stemming from the surface macro-inhomogene-
ities [7]. A general approach to investigating the rele-
vant phenomena is described in [3, 6]. Note that, under
certain circumstances, the NWC is particularly affected
by such effects as multiple reflections of the electrons
1063-780X/02/2802- $22.00 © 20158
from the surface and their trapping in the surface
macro-inhomogeneities. However, the results obtained
in the present paper show that even a single reflection
from a mirror-reflecting rippled surface can produce
near-wall currents with a pronounced nontrivial struc-
ture and that this process is dominated by singly
reflected electrons for a wide range of parameters of the
problem.

It should be noted that, in this study, the effects of
the possible screening of the rippled surface from a cer-
tain electron group and, accordingly, the appearance of

y

x

z

h

H

E

Vd

Fig. 1. Geometry of the problem.
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a shadow region are neglected. These effects require
separate consideration.

The NWC, like neoclassical transport across a mag-
netic field, is associated with a reduction in electron
drifts in crossed E and H fields due to collisions with
heavy particles. The only difference is that, in the case
of NWC, in which electron scatterings in the region
near the wall are unimportant, the reduction in electron
drifts is due to collisions of electrons with the wall,
which thus plays the role of superheavy particles.
Depending on the roughness of the surface, its geome-
try, and the Debye sheath thickness, electron drifts can
be reduced either by diffusive scattering or by mirror
reflections from particular surface sites. Of course, the
NWC differs in origin and magnitude from both the
plasma conductivity across the magnetic field, σB ~ 1/H
(which was introduced by David Bohm when analyzing
experimental data), and from the classical electron con-
ductivity, σ⊥  ~ 1/H2.

The investigations described here are based on the
analytic solution of the collisionless kinetic equation
for plasma electrons in (2R + 3V)-dimensional space.
The solution obtained describes, in particular, the NWC
associated with a mirror reflection of the electrons from
surface macroinhomogeneities and applies to the case
in which the Debye sheath thickness is much smaller
than both the characteristic inhomogeneity scale length
and the thickness of the layer in which the near-wall
current flows.

Macroinhomogeneities in insulator surfaces may
result from anomalous erosion during long-term opera-
tion of the existing SPTs. However, the insulator can
also be tailored artificially in order to ensure the desired
level of the NWC in next-generation plasma thrusters
and to provide the required operating period. Regard-
less of the properties of the insulator material, such arti-
ficial tailoring will make it possible to radically lower
the rate of anomalous wall erosion, which limits the
operating period of the thruster. The results obtained
raise the hope of overcoming the problem. At present,
SPTs are being successfully developed and are more
advanced in comparison with, e.g., coaxial plasma
accelerators [8–10]. Over the past few decades, SPTs
have been used to correct for satellite orbits, and, in the
near future, they are planned to be used as the mid-
flight engines for possible long-duration space flights.

2. FORMULATION OF THE PROBLEM

We specify a mirror-reflecting rippled surface in
such a way that its projection onto, e.g., the (y, z) plane
is a sinusoid Y1(z) = Asin(kp z), where the quantity kp

determines the ripple period of the surface, λp = 2π/kp ,
and A is the ripple amplitude. Figure 1 shows the geom-
etry of the problem in the (x, y, z) coordinates. The
model to be constructed possesses plane symmetry
rather than axial symmetry, as is the case with existing
SPTs. However, this circumstance is not of fundamen-
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tal importance for the effects under investigation. Let
the plasma occupy the region in the form of a strip
Y1(z) ≤ y ≤ h, and let the mutually orthogonal electric
and magnetic fields be directed in such a way that E =
(E, 0, 0) and H = (0, H, 0), where E and H are assumed
to be constants.

A specific electromagnetic field strength can be cho-
sen to fit the available experimental data, according to
which the magnetic field strength is about H ≈ 100–
300 Oe and the length of the discharge gap is about L ≈
2–3 cm. In this case, the electron and ion gyroradii, Re

and Ri, satisfy the inequalities Re ! L ! Ri . The poten-
tial difference across the discharge gap is about Up ≈
250 V. Since the plasma configuration in the channel of
an SPT is on the whole stable, the distribution of the
electric field, which is directed along the system axis
(the x-axis in Fig. 1), is also stable. According to the
general pattern of the processes occurring in an SPT,
the magnetized electrons in crossed (E, H) fields move
in spirals around the magnetic field lines. On the whole,
the electron cloud drifts in the azimuthal direction
(along the z-axis in Fig. 1) with the velocity Vd =
cE × H/H2. The electron plasma component is trans-
parent to the ions, whose gyroradii are much larger than
the length L of the discharge gap. For the plasma to be
quasineutral, the characteristic particle density should
be equal in order of magnitude to n ≈ 1011 cm–3.

In the kinetic model developed here, the most
important point is that, according to the experimental
data, the self-consistent field is negligible.

The plasma density is assumed to be sufficiently
low, so that the electron dynamics is described by the
following collisionless kinetic equation for the electron
distribution function (EDF) f(t, R, V):

(1)

where 

The characteristics of the linear equation (1) satisfy
the equations

(2)

Integration of Eqs. (2) yields the following relation-
ships describing the electron trajectories:
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(3)

where Vd = cE/H is the electron drift velocity in crossed
electric and magnetic fields.

In the case at hand, the trajectories of both the inci-
dent and reflected electrons are trochoids. Along the
trajectories, which are characteristics of Eq. (1), the
EDF is constant. Now, we take into account the above
formulas in order to determine the EDF and generated
electron current.

3. SOLUTION OF THE KINETIC EQUATION

The solution of the general kinetic equation (1) is
based on the method of characteristics and the corre-
sponding boundary condition for the EDF at the mirror-
reflecting surface.

In order to determine the EDF over the entire region
under consideration, it is necessary, first of all, to spec-
ify the distribution function of the electrons entering
this region at the boundary y = h. It is natural to assume
that the distribution function of the incident electrons,
f – = f(y = h, Vy < 0), is known. One of the integrals of
Eq. (1) is a Maxwellian distribution function shifted by
the magnitude of the drift velocity Vd along the Vz-axis
in velocity space (Fig. 1). This Maxwellian function
can be taken as the distribution function f – required for
our problem:

(4)

where β =  and C = n  is a normalizing

constant.
Since function (4) is an integral of Eq. (1), it is inde-

pendent of the spatial coordinates everywhere, in par-
ticular, at the mirror-reflecting surface y = Y1(z). Conse-
quently, electrons with the velocities Vy ≤ 0, which are
incident on the surface, do not contribute to the sought-

for near-wall current density jx = –e  (e > 0)

because the distribution function is even in Vx . We can
thus conclude that, in a sense, the current jx and, accord-
ingly, the NWC stem exclusively from the effect of the
mirror-reflecting surface. The possible deviation of the
EDF at y = h from a Maxwellian function has essen-
tially no impact on the method developed here and may
be the subject of ongoing investigations.

x x0

V x0

ω
-------- ωtsin

Vz0 Vd–
ω

------------------- 1 ωtcos–( ),+ +=

Vy Vy0,=

y y0 Vy0t,+=

Vz Vz0 ωtcos V x0 ωtsin– Vd 1 ωtcos–( ),+=

z = z0

Vz0

ω
------- ωtsin

V x0

ω
-------- 1 ωtcos–( )– Vdt

Vd

ω
------ ωt,sin–+ +

f
–

C β V x
2

Vy
2

Vz Vd–( )2
+ +[ ]–{ } ,exp=

m
2T
------ m

2πT
---------- 

 
3/2

V x f Vd∫∫∫
Taking into account the fact that the distribution
function (4) is time-independent, we restrict ourselves
to considering a steady-state problem, in which case the
time dependence can be eliminated with the help of one
of the relationships (3).

The boundary condition at the mirror-reflecting sur-
face y = Y1(z) can be imposed in accordance with the
standard assumption familiar in the theory of kinetic
equations [11–14]: the distribution functions of the
incident and reflected electrons with opposite signs of
the normal velocity component Vn are the same.

As a result, the boundary condition that relates the
distribution functions of the incident ( f –) and reflected
(f +) electrons at the surface y = Y1(z) can be written as

(5)

The electrons moving along complicated trajecto-
ries can undergo multiple reflections from a macro-
scopically inhomogeneous (in the case at hand, rippled)
mirror-reflecting surface. However, in our analysis, we
use the single-reflection approximation [15] (its appli-
cability range will be discussed in the next section).

In velocity space, we switch from the components
(Vx, Vy, Vz) to the components (Vx, Vn, Vτ) using the fol-
lowing relationships, which are valid at the mirror-
reflecting surface y = Y1(z):

(6)

where a =  and (z) = dY1/dz.

Recall that, according to the geometry of the prob-
lem, the drift velocity is equal to Vd = Vdi, where i is a
unit vector along the z-axis. In this case, using the trans-
formations inverse to transformations (6), we can rep-
resent the distribution function (4) of the incident elec-
trons in the form

From the mirror reflection condition (5) and trans-
formations (6) in velocity space (Vx , Vy , Vz), we obtain
the distribution function near the mirror-reflecting sur-
face after a single reflection:

(7)

where 

f
–
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V x Vn– V τ, ,( ).=
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1
a
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1 Y1
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2
+ Y1
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We can see that the distribution function of the
reflected electrons depends on Vd rather than on the
drift velocity V1. Since the distribution function (7) is
no longer an integral of Eq. (1), its shape and values
will change with increasing distance from the mirror-
reflecting surface, thereby determining the structure of
the generated electron current.

Egorov et al. [5] suggested that the interaction of
electrons with an inhomogeneous surface may change
the electron drift velocity. This is clearly illustrated by
formula (7).

The time dependence can be eliminated using one of
the relationships (3), namely, y = y0 + Vy0t, where y0 =
Y1(z) at t = 0. This relationship gives

(8)

We assume that, in relationships (3), Vx0, Vy0, and
Vz0 are the components of the velocities of the electrons
that start simultaneously from any point in the mirror-
reflecting surface at the time t = 0. At y = Y1(z); we
replace Vx , Vy , and Vz in formula (7) by Vx0, Vy0, and
Vz0 , respectively. According to relationships (3), the
inverse transformation of the form Vx ⇒ Vx0 leads to the
relationships

(9)

In expression (7), we replace Vx , Vy , and Vz by Vx0,
Vy0, and Vz0 , respectively, and substitute relationships
(8) and (9) into the resulting expression. As a result, we
arrive at the distribution function of the reflected elec-
trons for arbitrary values of y and z:

(10)

where θ = .

Let us solve for the x-component of the electron cur-

rent density, jx =  –

. For Vy < 0, the function f – does not

contribute to the current density jx, because it is even in

Vx. Thus, we only need to substitute the function  (10).

t
y Y1 z( )–
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B1 }〉 ,+ +

y Y1 z( )–
Vy
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e V x f
– Vd∫

Vx  = –∞

0

∫∫–

e V x f 1
+ Vd∫

Vx  = 0

∞

∫∫

f 1
+
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Then, we perform integration to obtain

(11)

where G(x) = sin , Re = , and

VT = .

4. APPLICABILITY RANGE
OF THE SINGLE-REFLECTION 

APPROXIMATION

We introduce the mirror-reflection operator  in
such a way that it transforms the distribution function
of the incident electrons to the distribution function of
the reflected electrons in accordance with the above-
described procedure. The single-reflection approxima-

tion ( f – = ) implies that all of the reflected elec-
trons (whose density is nI) pass through the boundary
y = h and move off to infinity. Using expression (10), we
can easily find that the density of these electrons is

equal to nI =  = nexp(–βB1). However,

in reality, only part of the electrons moves off to infinity
after one reflection, while another (smaller) part returns
to the rippled surface. Denoting the distribution func-

tions of these two electron groups by f1, ∞ and ,

respectively, we can write f – = f1, ∞ + .

According to relationship (8), the operation of
changing the sign of Vy transforms the distribution

function  of singly reflected electrons that move
away from the mirror-reflecting surface to the distribu-
tion function of singly reflected electrons that reverse
the direction of their motion and return to the surface:

 ⇒ . Applying the mirror-reflection opera-
tion again, we can see that part of the doubly reflected
electrons moves off to infinity. Denoting the distribu-
tion function of these electrons by f2, ∞ , we can write

 = f2, ∞ + . In the next approximation, it is

natural to assume that  = 0, in which case we have

f2, ∞ = ( f – – f1, ∞), where f1, ∞ = f1, ∞, and, accord-

ingly, f1, ∞ + f2, ∞ = 2f –. Applying the mirror-reflection

operation again, we obtain 2f – = Cexp{–β[  +

 + (Vz – V2)2] – βB1(1 + δ2)}, where V2 = Vdδ2. Then,
we can readily estimate the density of the doubly
reflected electrons that move off to infinity: nII =

 + f2, ∞)dV = nexp(–βB1(1 + δ2)). At

jx y z,( ) enVdG
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the points on the rippled surface at which  ≈ 0, the
densities of the reflected electrons are nearly the same
regardless of the approximation used, nI ≈ nII ≈ n/2, by

virtue of the relationship B1 ~ ( )2. Accordingly, the
density of the doubly reflected electrons that move off
to infinity, , is negligible. At other points on the rip-

pled surface, specifically, those at which  ≠ 0, the
density of such electrons in the approximation at hand
should also be much lower than the density of the singly
reflected electrons that move off to infinity,  ≈ nI .

Since /  ≈ |nI – nII |/nI = 1 – exp(–βB1δ2), inequality

/  ! 1 implies that

(12)

where Q(ξ) = ξ2(1 – ξ2)2/(1 + ξ2)4 and (z) =

cos(kpz) for the rippled surface under consider-

ation. Elementary calculations show that Q(ξ) ≤ 0.06
for arbitrary values of ξ. Consequently, inequality (12)
holds for a broad range of A and λp values under the
condition

(13)

Hence, the single-reflection approximation is appli-
cable to mirror-reflecting surfaces that are rippled in a
fairly arbitrary manner, provided that the plasma elec-
tron temperature is sufficiently high (VT ≥ Vd). This con-
clusion agrees with the available experimental data,
according to which the electron temperature is about
several tens of electronvolts.

5. MAIN RESULTS

One of the main results obtained in this paper is that
the onset of the near-wall current (in the case at hand,
this is the current jx) stems precisely from the surface
macro-inhomogeneities. From formula (11), which was
derived in the single-reflection approximation, we can
see that, over the entire region adjacent to the unrippled
(A = 0) surface, the electron current is identically zero
(jx ≡ 0). The second important result is that the near-
wall current possesses a nontrivial structure. We
should, first of all, note that the analytic solution of the
above kinetic problem in two-dimensional configura-
tion space implies that the integral in G(x) in expression
(11) should be calculated at each point in this space. A
possible structure of the distribution of the current den-
sity jx normalized to enVd is depicted in Fig. 2. Shown
here are isolines of the current density, whose direction
is perpendicular to the plane of the figure and which
was calculated for A/λp = 0.3, RL/λp = 0.3, h/λp = 3, and
Vd/VT = 0.5. In this case, the gyroradius Re of an elec-

Y1'

Y1'

ñ2

Y1'

ñ1

ñ2 ñ1

ñ2 ñ1

βB1δ
2
 ! 1 or 4 Vd/VT( )2

Q Y1' z( )( ) ! 1,

Y1'

2πA
λ p

----------

Vd

VT

------ 1.≤
tron moving in crossed electric and magnetic fields is
equal to the amplitude A of the sinusoidal ripples in the
mirror-reflecting surface. The upper boundary y = h
corresponds to the condition h @ A. Recall that, at this
boundary, the incident electrons are assumed to obey
the initial Maxwellian distribution function (4) with an
argument shifted along the Vz-axis in velocity space.

From Fig. 2 and formula (11), we can see that the
obvious requirements for the solution and, accordingly,
for the current density jx are satisfied. The structure of
the current density distribution is symmetric about the
z-axis. At the mirror-reflecting surface y = Y1(z), the
current density is identically zero, jx ≡ 0, and, at suffi-
ciently long distances from the surface, we have jx  0.

According to Fig. 2, the near-wall current is prima-
rily localized in layers with a thickness on the order of
Re , which are separated by layers in which (z) ≈ 0
and the current vanishes. One can also see that, in the
direction of the transverse y-coordinate, the current
density distribution is oscillatory in nature, as is the
case in the experiments of [4]. In the islands in the
region y ≈ (0.2–0.4)h, the current jx flows in the direc-
tion opposite to that of the current near the mirror-
reflecting surface but is much less in magnitude. This
result also agrees with the available experimental data,
according to which the current density experiences
damped oscillations. The fact that some of the isolines
in Fig. 2 are not smooth is associated with the inaccu-
racies of the numerical algorithm used to calculate the
integral in G(x) in expression (11) at each point in the
(y, z) plane.

Varying the parameters of the problem made it pos-
sible to reveal a number of regular features in the
behavior of the electron current in the approximation of
single reflection of electrons from a macroscopically
inhomogeneous, mirror-reflecting surface. In particu-
lar, when the amplitude A of the sinusoidal ripples in
the surface is sufficiently small (Akp < 1, Vd/VT ≤ 1), for-
mula (11) gives the following dependence of the maxi-
mum near-wall current on the parameters of the prob-
lem:

(14)

Otherwise, for a large amplitude such that Akp > 1 and
Vd/VT ≤ 1, we obtain

(15)

In fact, a comprehensive calculation of the two-
dimensional current density distribution showed that, in
accordance with the above relationships, the current
near the mirror-reflecting surface increases with
increasing the ripple amplitude A of the surface. In this
case, the overall pattern of the two-dimensional current
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  2

16π2 Vd
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 
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Fig. 2. Distribution of the electron current density jx(y, z) for Vd/VT = 0.5.
density distribution does not change qualitatively. As
the electron thermal velocity VT increases, the current
also increases, in which case the current structure
remains essentially the same, provided that Vd < VT.

The spatial distribution of the near-wall current
changes markedly at a sufficiently large value of the
ratio Vd/VT , in particular, at temperatures lower than
those prevailing in experiments. The current structure
shown in Fig. 3 was calculated for Vd/VT = 2, the
remaining parameters being the same as those adopted
above. In accordance with the indicated dependence of
the current on the velocity ratio, the current magnitude
in Fig. 3 is much lower than that in Fig. 2. In addition,
the current in Fig. 3 is distributed in such a way that it
tends to form its own wavelength λC in the direction of
the electron drift (along the z-axis). In Fig. 2, this wave-
length is approximately equal to 2 λC ≈ λp/2, while, in
Fig. 3, it is about λC ≈ λp/6. A further increase in the
velocity ratio Vd/VT causes the current to decrease and
SICS REPORTS      Vol. 28      No. 2       2002
be localized in layers where  ≈ 0. Such a behavior of
the near-wall current at VT < Vd agrees with the avail-
able experimental data. In the experiments of [5], the
NWC was observed to decrease with temperature. For
VT < Vd, the single-reflection approximation can be
used to treat each particular set of parameter values of
the problem (including the set in Fig. 3) only under the
more general applicability condition (12), which can be
satisfied even when inequality (13) fails to hold. If this
more general condition is violated, the only way to
refine the results obtained in the single-reflection
approximation is to develop the theory of NWC at mac-
roscopically inhomogeneous surfaces with allowance
for multiple reflections.

In addition to what was said above, note that varying
the parameters that determine the two-dimensional cur-
rent density distribution made it possible to reveal one
more regular feature: the smaller the electron gyrorad-
ius Re, the smaller the thickness hNWC of the layer of

Y1'



164 KOZLOV
0.
00

2

–0
.0

01 –0.001

–0.001

–0.001

0.002
0.006
0.010
0.014

0.018

0.
00

2
0.

00
8

0.
01

0
0.

01
4

0.
01

8

–0.001

–0
.0

01

–0
.0

01

0.002

h

A

y

λp z

Fig. 3. Distribution of the electron current density for Vd/VT = 2.
nonzero NWC. This conclusion can be written as
hNWC ≈ Re, which agrees with the experimental results
of [4].

Let us estimate the near-wall electron current I
under the operating conditions typical of existing SPTs,
e.g., for the current density distribution shown in Fig. 2.
Let the characteristic strengths of the electric and mag-
netic fields be E = 100 V/cm and H = 100 Oe. In such
fields, the electron drift velocity is equal to Vd =
108 cm/s and the electron thermal velocity is VT = 2Vd =
2 × 108 cm/s, which corresponds to an electron temper-
ature of about T ≈ 10 eV and an electron gyroradius
Re = VT/ω = 4 × 10–2 cm. For the current density distri-
bution in Fig. 2, the ripple period of the mirror-reflect-
ing surface is equal to λp = (10/3)Re = 0.133 cm. For the
characteristic radius R = 3 cm of the insulator surface,
it is easy to find that the number of ripples is equal to
N = 2πR/λp ≈ 140. The electron current per ripple is

calculated from the formula i1 = enVd , where theĩ1
dimensionless integral  = (y, z)dS of the electron

current density (11) over the surface shown in Fig. 2 is

approximately equal to  ≈ 0.3A(λp/2) = 8 × 10–4. In
this case, the total near-wall electron current can be
estimated as I ≈ N i1 ≈ 0.18 A, which is in reasonable
agreement with the available experimental data [6].

6. CONCLUSIONS

The collisionless kinetic equation for the electron
plasma component near a macroscopically inhomoge-
neous, mirror-reflecting surface in mutually orthogonal
electric and magnetic fields has been solved analyti-
cally in (2R + 3V)-dimensional space. The near-wall
currents associated with the corresponding change in
the drift velocity of the reflected electrons are found to
possess a nontrivial structure, which stems precisely
from the macroinhomogeneities of the mirror-reflect-
ing surface. An analytic model for investigating the

ĩ1 jx∫∫
ĩ1
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structure of the generated currents has been developed
on the basis of the single-reflection approximation. A
detailed analysis made it possible to reveal the main
features of the near-wall current density distribution.
The characteristic magnitudes of the near-wall currents
under different conditions are described by formulas
(11), (14), and (15).

The results obtained provide a better insight into the
causes of the onset and behavior of near-wall currents,
even though the model developed here (like any other
analytic model) makes it possible to investigate the sub-
ject primarily at a qualitative level and does not allow a
detailed comparison with the experiment. Nevertheless,
the above analysis of the NWC near macroscopically
inhomogeneous (rippled) insulator surfaces in SPTs
shows that the results obtained may find practical appli-
cations, primarily because the normal operating condi-
tions of plasma thrusters are ensured precisely by the
near-wall currents.

Another purpose of this work is to stimulate further
theoretical and experiment investigations of such an
important phenomenon as NWC, which has been stud-
ied very little up to now.
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Abstract—In empirical tokamak scalings, not all of the standard engineering parameters are independent.
Thus, the larger the tokamak, the higher the required plasma current and input power. Also, by using higher
magnetic fields, it is possible to raise the plasma density. Instead of the plasma density, plasma current, and
input power, it is proposed to use such combinations of engineering parameters whose values are essentially the
same for different tokamaks. With this approach, the number of free scaling parameters can be reduced from
six to three, thereby improving the reliability of the scaling. © 2002 MAIK “Nauka/Interperiodica”.
1. There is a certain amount of disagreement
between the global ITER scalings for the energy con-
finement time τE, which were constructed from a com-
mon database created by summarizing experimental
data from various machines, and particular experiments
in some tokamaks. The most familiar of these are T-10
experiments on determining the dependence of τE on
the plasma density n and also JET and DIII-D experi-
ments on determining the dependence of τE on the
dimensionless parameter β.

In my opinion, the reason for the disagreement with
these and other experiments lies in the disparity
between the engineering plasma parameters

(1)

which are used to construct the dimensional energy
confinement time scaling

(2)

The function f = f(k, δ, …), which depends on dimen-
sionless parameters, will not be considered here. In
scaling (2), not all of the engineering parameters (1) are
independent. The quantities

(3)

are essentially the same in different devices and thus
can be regarded as being quasi-invariant with respect to
them. However, quantities (3) may vary widely in a par-
ticular tokamak. More precisely, shots with the same
quasi-invariants can be realized in different tokamaks,
whereas the parameters B, a, and A are essentially fixed
for a given machine. Note that quantities (3), as well as
engineering parameters (1), are dimensional.

The disparity of parameters (1) and the possibility of
constructing quasi-invariants (3) suggest that the most
adequate form of global scaling can be the following:

(4)

n P B a I A,, , , , ,

τE f n
c1P

c2B
c3a

c4I
c5 A

c6.=

J1 nR/B, J2 P/ aR( ), J5 I/a
2

= = =

τE f 1J1

d1 J2

d2B
d3a

d4 J5

d5 A
d6.=
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Not all of the quasi-invariants (3) should enter scaling
(4); their number may be reduced. Thus, it might be
convenient to omit the quasi-invariant J1, which con-
tains the plasma density. In this case, the scaling can be
written as

(5)

For brevity, we will call scalings (4) and (5) subscal-
ings. Different tokamak discharges can be referred to as
similar discharges with respect to subscaling (4) or (5)
if they have the same quasi-invariants included in this
scaling. Similar discharges conform to subscalings
with a smaller number of unknown parameters (power
indexes). Thus, subscaling (4) contains three unknown
power indexes (d3, d4, d6) and, in subscaling (5), there
are four unknown indexes.

The problem of constructing subscalings with the
help of a large database, such that it includes the param-
eters of many shots from various tokamaks, can be for-
mulated in two different ways. First, one may try to
determine all six of the power indexes in subscalings
(4) and (5). However, it should be kept in mind that this
approach somewhat decreases the reliability of deter-
mining the power indexes of the quasi-invariants,
because quasi-invariants differ only slightly between
usual discharge modes peculiar to tokamaks. Conse-
quently, in order to determine the desired power
indexes reliably, it is necessary to use a database that
contains enough information on “unusual” discharges,
for which the values of quasi-invariants differ mark-
edly.

The second approach is to select a class of similar
shots from the general database and to construct a sub-
scaling based on this class. Although this approach
reduces the number of unknown parameters, it never-
theless yields subscalings that are valid only for a class
of similar shots with the chosen values of quasi-invari-
ants. In principle, the discrepancy between subscalings
constructed from different classes should not be too

τE f 1n
g1 J2

g2B
g3a

g4 J5

g5 A
g6.=
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large, but it depends on how many unusual shots are in
the selected classes.

With subscalings of the form of (4) or (5), the prob-
lem of modeling future tokamaks (e.g., the ITER
device) by using the data from existing machines can be
reformulated as follows. It is necessary to choose the
parameters of the reference shot for a projected device
and to determine the relevant values of quasi-invariants
(3). Then, the problem of modeling reduces to carrying
out experiments with discharges similar to the refer-
ence shot on existing tokamaks with different values of
the parameters B, a, and A (or n, B, a, and A) and con-
structing subscalings of the form of (4) or (5) on the
basis of the experimental data obtained.

2. As examples, let us consider subscalings that fol-
low from the known ITER scalings constructed from
the most complete database. First, we express the quan-
tities n, P, I, and R in terms of quasi-invariants (3),

(6)

and insert them into scaling (2). As a result, we arrive at
subscaling (4) with

(7)

Analogously, substituting expressions (6) for P, I, and
R into scaling (2) yields subscaling (5) with

(8)

Let us derive subscalings for the L- and ELMy
H-modes.

(i) In scaling (2) for the energy confinement time

 in the L-mode [1], the power indexes are equal to

c1 = 0.4, c2 = –0.73, c3 = 0.03,

c4 = 1.83, c5 = 0.96, c6 = 1.89. 

Using relationships (7), we obtain the values

d1 = 0.4, d2 = –0.73, d3 = 0.43,

d4 = 1.89, d5 = 0.96, d6 = 0.76, 

which yield

(9)

Using relationships (8), we arrive at a subscaling with
two quasi-invariants:

(10)

n J1B/R, P J2aR, I J5a
2
, R aA= = = =

d1 c1, d2 c2, d3 c1 c3,+= = =

d4 c1– 2c2 c4 2c5,+ + +=

d5 c5, d6 c1– c2 c6.+ += =

g1 c1, g2 c2, g3 c3,= = =

g4 2c2 c4 2c5,+ +=

g5 c5, g6 c2 c6.+ +=

τE th,
L

τE th,
L

f 1J1
0.4

J2
0.73–

B
0.43

a
1.89

J5
0.96

A
0.76

.=

τE th,
L

f 1n
0.4

J2
0.73–

B
0.03

a
2.29

J5
0.96

A
1.16

.=
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(ii) In the IPB98(y, 2) scaling (2) for the energy con-

finement time  in the ELMy H-mode [1], the
power indexes are equal to

c1 = 0.41, c2 = –0.69, c3 = 0.15,

c4 = 1.97, c5 = 0.93, c6 = 1.39.

Using these power indexes, we can readily obtain sub-
scalings analogous to (9) and (10):

(11)

(12)

Since the quasi-invariants differ insignificantly
between these modes, the dependence of the energy
confinement time on the geometric dimensions of the
device is of primary importance. This dependence is
especially pronounced in subscalings (9) and (11),
which contain three quasi-invariants. It is well known
that τE ~ a2 for purely diffusive losses and τE ~ a for
purely convective ones. In subscaling (9) for the
L-mode, we have d4 = 1.89 < 2. This indicates that con-
vective losses play a significant role in the L-mode. In
subscaling (11) for the H-mode, we have d4 = 2.04 > 2,
in which case the transport barrier that improves
H-mode confinement completely prevents convective
losses.

3. Now, we consider how the ITER-FEAT dis-
charges can be modeled in existing tokamaks.

As a reference shot, we choose a planned ITER dis-
charge with the parameters

R/a = 6.2 m/2 m, B = 5.3 T, I = 15 MA, 

P = 87 MW, n = 1020 m–3,

where P is the difference between the input power
(including the α-particle power) and the radiation
power. The quasi-invariants for this shot are equal to

J1 = 11.7, J2 = 7, J5 = 3.75.

Let us analyze the possibility of modeling the refer-
ence shot in the JET tokamak with the parameters R/a =
3 m/1.1 m and B = 2.5 T. The parameters of a similar
discharge in JET can be found from expressions (6): n =
9.7 × 1019 m–3, P = 25 MW, and I = 4.4 MA. In pellet
injection experiments in JET [2], the plasma density
amounted to 9 × 1019 m–3. The required power P =
25 MW and the required current I = 4.4 MA are also
achievable in this tokamak. Hence, JET is a possible
candidate for modeling discharges that are similar to
the reference shot in terms of the above three quasi-
invariants.

As for the possibility of modeling the reference
ITER shot on the projected T-15M tokamak with the
parameters R/a = 1.55 m/0.5 m and B = 2.0 T, the situ-
ation is different. The parameters of T-15M discharges
similar to the reference shot should be as follows: n =
15 × 1019 m–3, P = 5.3 MW, and I = 0.94 MA. We can

τE th,
ELMy

τE th,
ELMy

f 1J1
0.41

J2
0.69–

B
0.56

a
2.04

J5
0.93

A
0.29

,=

τE th,
ELMy

f 1n
0.41

J2
0.69–

B
0.15

a
2.45

J5
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A
0.7
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see that the required plasma density is unlikely to be
achievable in T-15M, because, at a current of about
I ~ 1 MA, Greenwald’s formula for the maximum den-
sity gives nGr = 13 × 1019 m–3.

4. If a subscaling of the form of (4) or (5) has been
constructed, it might be expedient to express it in terms
of the dimensionless parameters

ρ*, β, ν*, d*, q, A, (13)

which were described in my earlier paper [3]. In order
to analyze the difficulties arising in this way, we write
out the following expressions for the quasi-invariants
using the corresponding formulas of [3] and omitting
the asterisk from parameters (13):

(14)

Note that, in place of J5, one can use the quasi-invariant
q, which is better suited for an approach based on the
dimensionless variables.

With allowance for the quasineutrality condition
[4], the dimensionless scaling can be written as

(15)

i.e, there are five independent parameters. However,
since the parameter q is a quasi-invariant in the spirit of
this article, scaling (15), in fact, contains four indepen-
dent parameters. However, it is highly unlikely that the
number of independent parameters can be further
reduced with the help of quasi-invariants (14). The rea-
son for this is the complicated dependence of these

J1 nR/B β0.5
A/d ,= =

J2 P/ aR( ) d
6β3ν/ qρ6

A
3.5τE( ),= =

J5 I/a
2 β2.5

d
9ν2

/ ρ6
q

3
A

6( ).= =

BτE f ρ
α1ν*α2β

α3q
α4 A

α5,=
quasi-invariants on d, q, and τE . Of course, one may try
to find quasi-invariants that depend on the dimension-
less parameters in a simpler way than those used here.
However, it is not a priori obvious that such quasi-
invariants exist.

5. In conclusion, let us summarize the main results
obtained in this paper. The disparity in the six main
parameters entering the dimensional scalings for the
energy confinement time of a tokamak plasma makes it
possible to construct parameter combinations (quasi-
invariants) that differ only slightly between different
tokamaks. With these quasi-invariants, the number of
independent parameters in the dimensional scaling can
be reduced to three. As for the dimensionless scalings,
they contain five main independent parameters by vir-
tue of the quasineutrality condition. However, since one
of the independent parameters, namely, q, is a quasi-
invariant, the dimensionless scalings actually contain
four independent parameters. It would hardly be possi-
ble to further reduce the number of independent param-
eters in dimensionless scalings.
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In Memory of Vladimir Vladimirovich Alikaev
(October 23, 1932–September 12, 2001)
Vladimir Vladimirovich Alikaev, an eminent Rus-
sian scientist and head of the Department of RF and
Microwave Plasma Heating at the Nuclear Fusion Insti-
tute of the Russian Research Centre Kurchatov Insti-
tute, passed away on September 12, 2001 after an
extended illness in his 69th year.

Alikaev was born October 23, 1932. After graduat-
ing from the Physics Department of Moscow State Uni-
versity in 1956, he began to work at the Kurchatov
Institute in the laboratory headed by V.M. Glagolev.
From the very beginning, his interests were related to
both problems of the interaction of high-frequency
fields with plasmas and plasma diagnostics. His first
experimental works were aimed at studying the propa-
gation of electromagnetic waves in a magnetized
plasma and the related plasma instabilities. He was one
of the first scientists in the Soviet Union to create a
microwave interferometer for measuring the plasma
density and successfully apply it to experimental inves-
tigations.
1063-780X/02/2802- $22.00 © 20169
Alikaev’s first works already showed him to be a
competent experimentalist who was able to formulate
an idea of the experiment and obtain reliable scientific
results. He combined the talents of an eminently quali-
fied physicist and an excellent engineer in the fields of
electronics and plasma diagnostics. His exceptional
abilities were recognized by Academician L.A. Artsi-
movich, who assigned Alikaev to the Research Institute
of Radiophysics at Gorki (now, Nizhni Novgorod) in
1970. His mission there was to become acquainted with
new high-power millimeter-wavelength microwave
oscillators (gyrotrons), developed under the supervi-
sion of Academician Gaponov-Grekhov. Since then, a
fruitful collaboration between Moscow and Nizhni
Novgorod scientists on the development of the methods
of electron cyclotron resonance (ECR) plasma heating
and the improvement of gyrotrons has taken place.

In order to understand Alikaev’s contribution to this
field of research, we recall that, at the beginning of con-
trolled fusion research, attention was primarily focused
on direct RF heating of the plasma ion component. Ali-
kaev was one of the first to recognize the importance of
auxiliary heating (independent of ohmic heating) of the
plasma electron component in tokamaks with the aim
of investigating how the plasma thermal insulation
depends on the experimental conditions. He put much
effort into the implementation of this idea.

The pioneering attempts of using gyrotrons encoun-
tered many difficulties, which were overcome, first of
all, owing to Alikaev. Experiments carried out under his
leadership in the TM-3 and T-10 tokamaks demon-
strated that it was in fact possible to use gyrotrons in
controlled fusion experiments. At present, these high-
power millimeter-wavelength oscillators are widely
used in controlled fusion research. However, gyrotrons
have another important application: they can be used to
generate electric current in plasmas in order to both
maintain plasma equilibrium and modify the current
density profile with the aim of stabilizing dangerous
helical perturbations in tokamaks. The ECR current
drive became the main problem with which Alikaev
was occupied for the last decade. A gyrotron complex
for plasma heating and long-duration current drive is
one of the main components in the ITER project. Ali-
kaev contributed greatly to the development of contin-
uously operating 170-GHz 1-MW gyrotrons, which are
necessary for ITER.
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The great contributions of Alikaev to the develop-
ment of methods for plasma heating did not go unre-
warded. In 1983, he and his colleagues were awarded
the State Prize.

Works by Alikaev have received world-wide recog-
nition. It is fair to say that he is the founder of the prac-
tical implementation of ECR plasma heating and non-
inductive current drive in tokamaks.

Vladimir Vladimirovich Alikaev was a purposeful
scientist; an excellent organizer; and an extremely reli-
able, modest, friendly, and attentive man. His memory
will always remain in the hearts of all those who were
lucky enough to know him and work with him and
those with whom he generously shared his experience
and knowledge.
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TOKAMAKS

       
Transport Barrier as a Bifurcation of the Equilibrium
of a Tokamak Plasma

V. I. Ilgisonis and Yu. I. Pozdnyakov
Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, Russia
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Abstract—The phenomenon of the internal transport barrier in a tokamak plasma is interpreted as a bifurcation
of the plasma equilibrium. An expression describing the change in the plasma pressure due to the buildup of the
barrier is derived as a functional dependent on the parameters of the original plasma equilibrium and the plasma
rotation velocity within the barrier. This expression is applied to a circular cross section tokamak, specifically,
the T-10 device. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The progress achieved during the last 15 years in
magnetic fusion research is mainly associated with the
so-called improved confinement regimes of tokamak
operation, among which we should, first of all, mention
the H-mode and its modifications and regimes with
internal transport barriers (ITBs). Beginning with a
paper by Wagner [1], improved confinement regimes
have been actively studied in experiments, so that, at
present, they are attainable in virtually all existing toka-
maks. The characteristic feature of these regimes is the
appearance of a fairly narrow (localized in the minor
radius) layer within which the main plasma parameters
(the temperature T and/or density n) change sharply.
This layer, which is referred to as a “barrier zone,” can
occur either at the edge of the plasma column [an exter-
nal transport barrier (ETB), typical of the H-mode] or
inside the hot plasma region (an ITB; see, e.g., Fig. 1
[2]). Although the physical mechanisms for the buildup
of internal and external barriers are likely to be very
similar, we will restrict ourselves to analyzing ITBs and
will not consider the possible role of atomic processes,
which should be taken into account in the analysis of
peripheral effects.

An intrinsic property of transport barriers that has
been definitely established is the generation of a fairly
strong radial electric field in the barrier zone, resulting
in observable macroscopic plasma rotation (see Fig. 2,
borrowed from the paper by Synakowski [3]).

The term “transport barrier” may be illustrated by
the following simple considerations. It is usually
assumed that transport fluxes are linearly related to the
temperature and/or density gradients. Consequently, if
these gradients become large in a certain zone, then the
conservation of transport fluxes indicates a sharp reduc-
tion in the corresponding transport coefficients in this
zone. This is what is meant by the term transport bar-
rier. Among the various theoretical speculations, the
following concept [4] is now considered to be the dom-
1063-780X/02/2802- $22.00 © 20083
inant one: tokamak transport is anomalous, and the
sheared plasma rotation under the action of the electric
field in the barrier zone leads to the decoupling of the
perturbation modes, thereby lowering the level of
plasma turbulence and, accordingly, reducing the trans-
port coefficients. In this paper, we will not discuss the
transport mechanism in the barrier zone. Note only that
the basic assumption regarding the linear dependence
of transport fluxes on the gradients of the main physical
parameters is not self-evident. On the other hand, the
appearance of an ITB as a narrow layer with large gra-
dients of the plasma parameters has clearly been estab-
lished in experiments; moreover, the ITBs exist for a
long period of time. The latter indicates that a plasma
configuration with an ITB should be in an MHD equi-
librium; otherwise, fast MHD processes would destroy
the configuration on a time scale of about several
Alfvén times. Here, the term “MHD equilibrium” is
used in a generalized sense, i.e., with allowance for
possible macroscopic plasma rotation.

An important property of the equilibrium of a
plasma with an ITB can be revealed by analyzing the
buildup of the barrier, because the scenarios for the
development of transport barriers in different tokamaks
are very similar. After a tokamak discharge has been
initiated, the plasma evolves into a steady (equilibrium)
state. Then, the plasma is exposed to an external local
action (e.g., external heating) and, under certain condi-
tions, makes a fairly rapid transition to a new equilib-
rium state with an ITB. The plasma can be affected in
different ways, specifically, by neutral beam injection,
pellet injection, RF heating, and even ECR heating. To
a certain extent, the parameters of the new equilibrium
state depend on the way in which the plasma is affected
(the physical meaning of this dependence will be clari-
fied below). However, a more important point is that the
above transition is not possible for any arbitrary initial
state. It is, in particular, for this reason that, despite the
50-year history of magnetic fusion research, improved
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Radial profiles of (a) the ion and electron tempera-
tures and (b) electron density in JT-60. The barrier zone is
hatched.
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confinement regimes have been discovered only
recently. The intensity of the external action that causes
the plasma to undergo a transition to a new state with an
ITB should, as a rule, exceed a certain threshold level,
which is determined by the initial plasma state and by
the external action itself. This situation is very similar
to the classical example of the bifurcation of the equi-
librium of a weight on an resilient rod with fixed ends
(Fig. 3), in which case there are only two possible equi-
librium states (while the intermediate equilibrium
states are absent) and the transition from one equilib-
rium state to another can only be triggered by an exter-
nal action that is strong enough to deform (bend) the
rod.

It should be noted that, although the idea of inter-
preting the formation of transport barriers as a bifurca-
tion of plasma equilibrium is generally not accepted,
this assumption is rather straightforward and has
already been discussed in the literature. However, the
question of which of the many physical quantities char-
acterizing the plasma equilibrium undergo the bifurca-
tion remains open. Undoubtedly, sharp variations of the
electric potential in the barrier zones have a direct rela-
tionship to the phenomenon of transport barriers. That
is why, beginning with papers [5, 6], attempts were
made to describe L–H transitions in the context of the
bifurcation of the radial electric field (and, accordingly,
the plasma rotation velocity). In turn, Hinton [7]
explained the L–H transition in terms of the energy life-
time, taking into account the specific dependence of the
turbulent thermal diffusivity on the shear of the poloi-
dal rotation velocity, which was assumed to be neoclas-
sical. It seems, however, that the logical approaches of
these three papers are not quite adequate for explaining
the ITB phenomenon. First, it is well known that, in the
hot plasma core, the poloidal plasma rotation should be
fairly rapidly damped by neoclassical viscous effects.
Second, recent T-10 experiments on the formation of
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ITBs by ECR heating [8] showed that, after the ITB has
been formed and, accordingly, a characteristic bend has
appeared in the temperature profile in the barrier zone
(Fig. 4a), the radial electric field (and, accordingly, the
plasma rotation velocity) again decreases (Fig. 4b,
curve 3). However, under these conditions, the shape of
the temperature profile shows that the barrier continues
to exist.

The foregoing allows us to draw the following con-
clusion: it is the thermodynamic functions (in the cited
T-10 experiments, it is the plasma temperature, because
the plasma density remains unchanged during ECR
heating) that bifurcate during the transition to an
improved confinement regime, while the plasma rota-
tion generally acts as a trigger for this transition (an
analogue of the bending deformation in the example
shown in Fig. 3). In order for the plasma to undergo a
transition to a new equilibrium state, the plasma should
start to rotate; in MHD theory, the plasma rotation
reflects an imbalance in the forces within the barrier
zone under the external action. However, the specific
functional dependence of the rotation velocity on the
main plasma parameters seems to be of little signifi-
cance. To pursue the analogy with the above mechani-
cal system, we must specify the reference parameters
that are conserved during the transition (these parame-
ters are analogues of the fixed ends of the rod and its
constant length in the example shown in Fig. 3). Here,
we assume that the role of the reference parameters is
played by the magnetic configuration or, more pre-
cisely, by the structure of the magnetic surfaces. At
present, there is no experimental evidence that the
buildup of the transport barrier leads to a more or less
distinct restructuring of the magnetic configuration, so,
in our analysis, it is assumed to be unchanged. (As will
be shown in Section 3, we require only the invariance
of some integral characteristics of the magnetic sur-
faces, while the surfaces themselves can be locally
deformed.)

Our paper is organized as follows. Section 2 pre-
sents an abbreviated derivation of the equilibrium
MHD equations for a steadily moving plasma. In Sec-
tion 3, a general expression for the change in the plasma
pressure at the inner boundary of the barrier zone is
obtained under the assumption that the structure of the
magnetic surfaces remains unchanged during the tran-
sition to a state with an ITB. In Section 4, a particular
version of the general expression is deduced for a circu-
lar cross section tokamak and is tested against the data
from T-10 experiments. In the conclusion, we summa-
rize the main results obtained in this study.

2. EQUILIBRIUM EQUATIONS

Here, we outline the derivation of MHD equilibrium
equations for a rotating plasma. In a steady state, the
ideal one-fluid MHD equations have the following
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
form (for simplicity, we normalize the magnetic field

by multiplying it by the factor 1/( )):

(1)

(2)

(3)

(4)

Equations (1)–(4) should be supplemented with the
equation for the plasma pressure; this will be done
below.

2 π

ρ v —⋅( )v — p B ∇ B×[ ]×+ + 0,=

∇ B⋅ 0,=

∇ ρ v( )⋅ 0,=

∇ v B×[ ]× 0.=
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Fig. 3. Classical example of the bifurcation of the equilib-
rium of a weight on an elastic nonstretchable rod with fixed
ends.

Fig. 4. Radial profiles of (a) the electron temperature and
(b) plasma potential within an ITB in T-10: (1) before the
barrier formation, (2) during the buildup of the barrier, and
(3) after the formation of the barrier.
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It is natural to describe an axisymmetric tokamak
configuration in cylindrical coordinates {r, z, ζ} such
that (∂/∂ζ)  0, where ζ is the toroidal angle. As
usual, we consider a tokamak magnetic configuration
with nested magnetic surfaces ψ(r, z) = const defined
by B · —ψ = 0, in which case the tokamak magnetic
field satisfying Eq. (2) has the form

(5)

Accordingly, the current density and the square of the
magnetic field are equal to

Here and below, the subscripts p and t refer to the poloi-
dal and toroidal components of the quantities and

where ψ is the poloidal magnetic field flux and F is the
poloidal current through the central hole of the toroidal
magnetic surface with a given value of ψ. Below, we
will see that, unlike in the case of static equilibrium, the
poloidal current F is not necessarily a function of the
magnetic surface.

The general expression for the plasma rotation
velocity can be obtained from Eq. (3) in an analogous
way [as in Eq. (5) for the magnetic field, we can discard
in Eq. (3) possible δ-shaped solutions localized in the
vicinity of the rational magnetic surfaces, which is jus-
tified by the assumption that the velocity field is suffi-
ciently smooth]:

(6)

where κ = κ(ψ) and ν is the angular frequency of the
toroidal plasma rotation. The poloidal rotation velocity
is determined by the quantity κ:

where cAp is the absolute value of the Alfvén speed in
terms of the poloidal magnetic field; in other words, the

quantity κ determines the Mach number MA = κ/  =
v p/cAp . Under the usual assumption v  < cA , the dimen-
sionless parameter κ2/ρ is smaller than unity. Integrat-
ing Eq. (4) gives the relationship

(7)

where the quantity φ has the meaning of the electric
field potential (in which case we can readily see that φ =
φ(ψ) and c is the speed of light. We introduce the quan-
tity ω = –cφ' (here and below, the prime denotes the
derivative with respect to ψ) and take into account rela-
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tionship (7) in order to rewrite the plasma rotation
velocity (6) in the form

(8)

A comparison between expressions (6) and (8) yields

(9)

Expression (8) implies that, in the absence of the
electric field (ω = 0), the plasma can only undergo a
force-free rotation along the magnetic field lines; this
rotation is described by the term proportional to ~κ in
expression (8). From expression (9), we can see that,
for κ = 0, the electric field determines only the toroidal
rotation (ν|κ = 0 = ω). Hence, in contrast to the widely
held opinion based on the standard neoclassical theory,
in ideal magnetohydrodynamics, the angular frequen-
cies of the plasma rotation in both the poloidal and the
toroidal directions cannot be uniquely determined by
the electric field in a conventional MHD description of
the plasma rotation in terms of the two flux-surface
functions ω and κ.

The force balance equation in vector form (1) is
equivalent to three scalar equations. The projection of
Eq. (1) onto the direction of [—ζ] gives the first equa-
tion, which characterizes the poloidal current,

so that, with allowance for expression (9), we obtain

(10)

where I(ψ) is a flux-surface function. For a purely tor-
oidal (κ = 0) or a purely poloidal (ν = 0) rotation, the
poloidal current F is also a flux-surface function, F =
I(ψ), as in the case of static equilibrium. In particular,
for a purely poloidal (ν ≡ 0) rotation, expression (9)
gives the following functional dependence of the
plasma density:

Simple kinetic considerations show that, in static (rota-
tion-free) equilibrium, the plasma density is a flux-sur-
face function. The same conclusion can also be drawn
from the multifluid hydrodynamic model, which pos-
sesses a limiting transition to the one-fluid MHD model
(see, e.g., [9]). That is why, in ideal MHD, a purely
poloidal (without singularities and discontinuities)
plasma rotation in a narrow plasma layer localized in
the minor radius is physically impossible.
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The projection of Eq. (1) onto the radial direction
gives the second equation, which relates the plasma
pressure to the plasma rotation parameters:

(11)

The third equation is an analogue of the Grad–Shafra-
nov equation for the function ψ:

(12)

In the absence of poloidal rotation, κ = 0, Eq. (12) is
similar in structure to the conventional Grad–Shafranov
equation; the only difference is that, in Eq. (12), the role
of the derivative of the plasma pressure with respect to
ψ is played by the partial derivative (∂/∂ψ)r .

Equations similar to Eqs. (10)–(12) have already
been used in the literature. In particular, Hameiri [10]
considered the adiabatic case mentioned below, and
very similar equations were obtained by Tasso and
Throumoulopolus [11]. Here, we again emphasize that
Eq. (11) can be easily integrated in the following three
cases.

(i) The plasma density is a flux-surface function, ρ =
ρ(ψ). This case describes a steady incompressible
plasma flow with velocity (6). Introducing the plasma
temperature through the relationship T = p/ρ, we obtain
from Eq. (11) the following expression:

(13)

where the quantity T0 is a flux-surface function, which
has the meaning of the temperature of a rotation-free
plasma.

(ii) The plasma temperature is a flux-surface func-
tion, T = T(ψ). This case corresponds to a practically
important situation of high thermal conductivity along
the magnetic field. In this case, Eq. (11) yields the fol-
lowing implicit expression for the plasma density:

where ρ0 is a flux-surface function, which has the
meaning of the density of a rotation-free plasma.

(iii) The plasma entropy is a flux-surface function,
S = S(ψ) ~ p/ργ, where γ is the adiabatic index. Intro-
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ducing the specific enthalpy h, we arrive at the follow-
ing relationships for the thermodynamic quantities:

From Eq. (11), we obtain

where H is a function of only ψ and has the meaning of
the enthalpy of a rotation-free plasma.

We can see that the equilibrium configuration is
determined by five flux-surface functions: one of them,
I(ψ), characterizes the effective poloidal current;
another two, ω(ψ) and κ(ψ), determine the steady-state
velocity field; and the remaining two—ρ(ψ) and T0(ψ)
in case (i), or ρ0(ψ) and T(ψ) in case (ii), or S(ψ) and
H(ψ) in case (iii)—describe the thermodynamic plasma
state. In case (i), the plasma pressure p is explicitly
determined by expression (13); in cases (ii) and (iii),
the functional dependence of p is described by tran-
scendental equations.

In the Introduction, we pointed out that, when the
ITB is formed by RF or even microwave (ECR) heating
(as is the case in, e.g., the cited T-10 experiments), the
plasma density does not change during the transition to
a new equilibrium state. Hence, the plasma that starts to
evolve from the static state with ρ = ρ(ψ) undergoes a
transition to a new state corresponding to case (i). It is
this case that will be the subject of further analysis.

3. PRESSURE JUMP ACROSS THE ITB ZONE

The concept under discussion implies the buildup of
an ITB in a comparatively narrow layer localized in the
ψ coordinate: ψ1 < ψ < ψ2, where ψ1 and ψ2 are the
outer and inner boundaries of the barrier (see Fig. 5,
which schematically illustrates the formulation of the
problem). As a result of bifurcation, the pressure profile
in the barrier zone changes substantially: in Fig. 5, the
dashed curve, which refers to the initial equilibrium
state (below, the quantities corresponding to this state
will be marked by the subscript i), evolves into the solid
curve. In the initial and final states, the pressure gradi-
ents are different only inside the barrier zone, in which
the plasma rotates in the poloidal direction (see the dot-
ted curve in Fig. 5).

Let us calculate the pressure jump ∆p at the inner
boundary ψ = ψ2 of the barrier after the bifurcation. It
turns out that this can be done by using only the integral
consequences of the equilibrium equations rather than
by solving these equations exactly.

ρ h
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We multiply the initial (before the bifurcation) static
equilibrium equation

(14)

by r–2 and integrate the resulting equation over the vol-
ume V = V(ψ) of the toroidal region enclosed by the
instantaneous flux surface ψ = const with the cross-sec-
tional area S = S(ψ). As a result, we obtain

(15)

where the angular brackets denote averaging over the
toroidal flux surface ψ = const:

(16)

The minus sign in formula (16) reflects the way in
which the coordinate ψ is measured from the z-axis: at
the magnetic axis, the quantity ψ is maximum and is
equal to ψ0 (this corresponds to V ' < 0). With the poloi-
dal magnetic field flux thus defined, we have 〈 f(ψ)〉  =
f(ψ) and

On the other hand, by definition, we can write

(17)
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Fig. 5. Schematic representation of the barrier zone. The
solid curve illustrates the change in the pressure profile after
the development of the barrier, and the dashed curve refers
to the initial pressure profile. The poloidal plasma rotation
is localized in the barrier zone (the dotted curve).
Substituting this relationship into Eq. (15) yields the
following expression for the derivative of the pressure:

(18)

Now, we apply the same procedure to calculate the
derivative 〈 p〉 ' in the new equilibrium state (after the
bifurcation). In the case ρ = ρ(ψ), the Mach number

MA = vp/cAp = κ/  is also a flux-surface function, and
the new equilibrium state is described by Eq. (12),
which now becomes

(19)

Note that expression (13) makes it possible to relate the
ψ-derivative of the averaged pressure, 〈 p〉 ', to the aver-
aged partial derivative of the pressure, namely,

(20)

We integrate Eq. (19) over the volume of the barrier
zone. Taking into account the fact that, at the bound-
aries of the barrier, the plasma poloidal rotation veloc-
ity vanishes (Fig. 5) and, accordingly,  = 0,

we obtain

(21)

Our conceptual assumption that the structure of the
magnetic surface remains unchanged during the bifur-
cation is formalized as the conservation of the flux-sur-

face functions V = Vi and  = .

We insert Eq. (20) into Eq. (21) and combine the
resulting equation with expressions (10), (17), and (18)
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to obtain the following formula for the pressure jump at
the inner boundary of the barrier:

(22)

Here, following [12], we introduced the notation W =

〈2pi + 〉  and made use of the fact that, since there is
no plasma rotation on the outside of the barrier zone,
the pressures in the initial and final states are there the
same, ∆p(ψ ≤ ψ1) = 0. The bifurcation gives rise to an
ITB when ∆p(ψ2) > 0. Consequently, formula (22)
implies that the presence of a magnetic well (  < 0)
in the initial state should favorably affect the buildup of
the barrier. In the next section, we will analyze expres-
sion (22) in more detail for a tokamak with a relatively
large aspect ratio and nearly circular cross sections of
the magnetic surfaces.

4. CIRCULAR CROSS SECTION TOKAMAK

Let us apply expression (22) to a tokamak with a
sufficiently large aspect ratio, R/ab @ 1 (where R and ab

are the major and minor radii of the tokamak). Mag-
netic surfaces with circular cross sections can be speci-
fied as [13]

(23)

where the toroidal flux surface label a has the meaning
of the characteristic minor radius of the flux surface, θ
is the poloidal angle, and ∆ is the shift of the center of
the flux surface with respect to the magnetic axis. In the
approximation at hand, we as usual assume that ∆(a) ~
a2/R. Having specified the geometric parameters, we
can calculate the averaged quantities 〈r±2〉  in formula
(22):

(24)

where a superior dot denotes the derivative with respect
to a. In expressions (24), we neglect the terms on the
order of ~(ab/R)3 and higher but keep the second-order
term in ab/R (because these expressions contain no lin-
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ear terms). Hence, in order of magnitude, we have

The signs of these quantities depend on the particular
equilibrium conditions and, therefore, are not fully
deterministic. Note that, as will be shown below,
〈r2  < 0, and 〈r–2  > 0 for “conventional” equilibrium
states with customary parameter distributions. In the
expression for the magnetic well, it is sufficient to
retain only the lowest order terms in the expansion in
powers of the inverse aspect ratio. Introducing the tor-
oidal current J and the safety factor q through the rela-
tionships

we can readily obtain the following expression for the
magnetic well:

(25)

where βp = –a3 J–2 is the so-called poloidal beta and
s = /q is the shear. In deriving expression (25), we
used the static equilibrium equation (14), which deter-

mines the derivatives  and  through two highest
orders in the expansion in powers of ab/R, namely,

(26)

In order to estimate the terms in the square brackets of
expression (22), we turn to the virial theorem [14],
which will be formulated and proved for an equilibrium
state with a steady plasma flow in the Appendix. We
start by noting that, according to our concept, the
plasma pressure gradient outside the barrier zone does
not change:

(27)

Consequently, under the assumption that the magnetic
surfaces remain unchanged, the quantity FF ' also does
not change:

(28)
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ṗ,–=

∆̇̇R 1– 2βp–
∆̇R
a

------- 2s 3–( ).+≈

p a a1≥( ) pi,=

p a a2≤( ) pi ∆p.+=

F
2

a a2≤ I
2

a a2≤( ) Fi
2

a a2≤( ) c2,–= =

F
2

a a1≥ I
2

a a1≥( ) Fi
2

a a1≥( ) c1.+= =



90 ILGISONIS, POZDNYAKOV
The ITB builds up when c1, 2 > 0. The virial theorem
relates the increment in pressure to the constants c1, 2.
To see this, we use the formula

(29)

where r is the position vector drawn from the origin of
the coordinates. The volume integral on the left-hand
side is taken over the entire plasma volume Vb, first, for
the initial equilibrium state and, then, for a state with a
fully developed plasma rotation in the barrier zone. We
take into account the relationships v · dS = 0 and
B · dS = 0, which hold on the magnetic surfaces, and
neglect the contribution of the barrier zone to the vol-
ume integral (this contribution is proportional to
~∆a/ab , where ∆a = a1 – a2). As a result, we obtain

(30)

The relationship between the constants c1 and c2 can be
found under the assumption that, during the bifurca-
tion, the integral toroidal magnetic flux remains
unchanged,

(31)

because this flux is determined primarily by the cur-
rents flowing in the toroidal magnetic field coils rather
than by the plasma currents, which merely redistribute
the flux over the cross section (of area St) of the plasma
column. Strictly speaking, the desired relationship
between the constants c1 and c2 should be found by sub-
stituting into formula (31) expressions (28) and the spe-
cific dependence Fi(a) characterizing the initial equi-
librium state under consideration. This method requires
numerical calculations. However, as will be seen below,
there is no need to know the exact relationship when the
magnetic flux changes relatively insignificantly,

|c1, 2 / | ! 1. To be specific, we estimate this relation-
ship only roughly, assuming that the averaged toroidal
field depends weakly on a, 〈Bt 〉  = 〈F1/r〉  ≈ const, in
which case simple manipulations yield

(32)
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Here and below, we neglect the corrections propor-
tional to ~∆a/a1, 2 in comparison with the quantities of
order unity (because the barrier zone is narrow). To cal-
culate the pressure jump given by expression (22), we
use the following linear interpolation formula for I2(a)
in terms of a2:

which satisfies the boundary conditions (28) at a = a1, 2.
Then, we find

In expression (22), we switch to integration over a to
obtain

(33)

The specific details of both the relationship between the
constants c1, 2 and the approximate formula for I2(a ∈
[a2, a1]) are associated with the integral term on the left-
hand side of formula (33). This term is on the order of
~a · ∆a/R2 and, therefore, can be omitted. In order to
estimate the integral on the right-hand side, note that,
by virtue of expression (9), the quantities MA and ω are
related by

In the absence of toroidal plasma rotation, we have
〈ν〉  = 0, so that

(34)

It is these conditions that are realized in the cited T-10
experiments with ECR plasma heating, which intro-
duces no toroidal momentum in the plasma. Note that
the difference of Fi from I in conditions (34) also yields
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a correction on the order of ~∆pR2/I2 ! 1. This allows
formula (33) to be reduced to

(35)

In order to obtain a quantitative estimate for the pressure
jump ∆p in T-10, we substitute expressions (24) and (25)
into formula (35) and replace the integrands by their
characteristic values in the barrier zone, f(a)   for
∀ f. As a result, expression (35) simplifies to

(36)

The characteristic feature of expression (36) is that it
does not in fact contain the details of the particular
equilibrium state that are associated with the parame-

ters s, βp, and . This indicates that, if the auxiliary
heating power is high enough for the plasma pressure to
acquire pressure jump (36), the bifurcation actually
occurs; otherwise, the new equilibrium state is not
achieved.

Let us apply formula (36) to estimate the electron
temperature jump observed in T-10 (assuming, as
above, that the plasma density is unchanged). The

quantity  can be calculated from expression (34), in
which the quantity ω is determined by the measurable
change in the electric potential, ∆Φ, in the barrier zone:

Under the conditions prevailing in the T-10 tokamak
(Bt ≈ 2.14 T, ∆a ≈ 2 cm, a2 ≈ 17 cm, and q ≈ 2), the elec-
tron temperature jump ∆Te = ∆p/ne = mp∆p/ρ is approx-
imately equal to

(37)

This order-of-magnitude estimate agrees reasonably
well with the experiment (Fig. 4a). Note that the
approximate formula (37) is unlikely to fit the experi-
mental measurements exactly because of the fairly arbi-
trary estimates for the electric and poloidal magnetic
fields within the barrier zone, so that the agreement to
within a factor of 1 to 2 seems to be quite satisfactory.
However, agreement between our estimates and the
experiment is actually much better. The reason is that
the upper temperature profile in Fig. 4a was calculated
for a certain time after the formation of the barrier, i.e.,
when the electric field in the barrier zone has already
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dissipated (Fig. 4b), while formula (37) refers to the
transient equilibrium state in which the electric field is
at its maximum. As the electric field dissipates, the
energy of the plasma rotation is converted into heat.
Although this energy is lower than the plasma temper-
ature, it is quite comparable to the temperature incre-
ment ∆T. The corresponding correction to the approxi-
mate formula (37) provides better agreement (to within
10%) with the cited T-10 experiments. It is important to
note that, although the plasma stops rotating, it does not
evolve back to the initial equilibrium state: after the
bifurcation, the new equilibrium state is maintained,
e.g., by continued ECR heating (as is the case in T-10).

5. CONCLUSION

The proposed concept of a transport barrier in a
tokamak plasma as a bifurcation of an equilibrium
plasma state makes it possible to obtain an expression
for the plasma pressure jump resulting from the barrier
formation. This expression can be tested against the
experimental data, because, in expressions (22) and
(33), all of the quantities characterizing both the initial
equilibrium state and the final state with a fully devel-
oped barrier can be either measured directly or calcu-
lated relatively easily from the measurable parameters.
It should be noted that, in light of the proposed concept,
the nature of the physical processes that may affect the
transport properties of a plasma with an ITB is unim-
portant, because all of the results were obtained only
from the equilibrium conditions and their integral con-
sequences.

One of the important statements of our work is the
conclusion about the bifurcations of the thermodynamic
functions describing the equilibrium gas-kinetic plasma
pressure (e.g., the temperature and enthalpy) and the
poloidal plasma current (the toroidal magnetic field).
According to the analysis carried out in Section 4, a nec-
essary condition for the buildup of the barrier is the
change in the toroidal magnetic field over the entire
plasma column (including the plasma edge). This
change may be detected by magnetic measurements.

The theory developed here makes it possible to
reveal an interesting feature of a circular cross section
tokamak with auxiliary heating that does not perturb
the plasma density (e.g., ECR heating). It was found
[see expression (36)] that the details of a particular
equilibrium state (e.g., the values of the shear and βp in
the barrier zone) are unimportant for determining a pos-
sible jump in the plasma pressure (or temperature). This
feature explains why regimes with ITB are experimen-
tally achievable both in discharges with positive shears
and in those with negative shears. Note that situations
with other heating methods for which 〈ν〉  ≠ 0 (e.g.,
injection of the beams of fast atoms) are more compli-
cated: the shear profile can have a significant impact on
the value (and even the sign!) of the expected jump in
the plasma pressure [see the term proportional to



92 ILGISONIS, POZDNYAKOV
~ 〈r2  in formula (33)] and, moreover, the assumption
that the plasma density profile is unchanged fails to
hold. Such situations require a more detailed theoretical
analysis.

From expressions (22) and (33), we can see that the
toroidal plasma rotation (〈ν〉  ≠ 0) may play an impor-
tant role in the buildup of “large” transport barriers (in
which the temperature changes by an amount of about
several initial plasma temperatures; see Fig. 1). How-
ever, even when the toroidal rotation velocity v t is
about the sound speed, this effect seems to be possible

only for  ~ 1 because of the corresponding denom-
inator.

The above analysis still keeps the question of
whether or not the barrier is localized in the vicinity of
a rational magnetic surface to be open. In our opinion,
the reason why ITBs are most likely to build up in the
vicinity of the rational surfaces is the following: in the
area of the magnetic islands or regions of stochastic
magnetic field lines near these surfaces, it is easy to
involve the plasma in macroscopic rotation by a slight
force balance perturbation resulting from auxiliary
heating and/or current drive; this rotation, in turn, can
trigger the bifurcation of the equilibrium.
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APPENDIX

Virial Theorem for a Steady Plasma Flow

Following [14], note that, with allowance for
Eq. (3), the equilibrium equation (1) can be written in
divergent form:

(A.1)

where the tensor is given by its elements,

(A.2)

Let r be the position vector drawn from the origin of the
coordinates to the observation point in space. We inte-
grate the identity
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over the plasma volume under consideration and, using
Gauss’s theorem, obtain

(A.4)

where  is an identity tensor composed of the Kro-
necker indices δij and the trace of the tensor is equal, by
definition, to

Substituting (A.2) into (A.4) immediately yields the
desired relationship (29).

The same result can be obtained without recourse to
tensor analysis. We consider the integral of (p + B2/2)r
over the surface ∂V enclosing a plasma volume V:

(A.5)

The equilibrium equation gives

so that we have

Taking into account relationships (A.5), we obtain
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which yields

which was to be proved.

REFERENCES

1. F. Wagner, G. Becker, K. Behringer, et al., Phys. Rev.
Lett. 49, 1408 (1982).

2. K. Tobita and the JT-60 Team, Plasma Phys. Controlled
Fusion 40, A333 (1998).

3. E. Synakowski, Plasma Phys. Controlled Fusion 40, 581
(1998).

4. H. Biglari, P. Diamond, and P. Terry, Phys. Fluids B 2, 1
(1990).

5. S.-I. Itoh and K. Itoh, Nucl. Fusion 29, 1031 (1989).

3 p
B

2

2
------ ρv

2
+ + 

  Vd

V

∫

=  p
B

2

2
------+ 

  r Sd ρ v r⋅( )v Sd B r⋅( )B– Sd⋅ ⋅+⋅
 
 
 

,

∂V

∫

PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
6. K. Shaing and E. Crume, Jr., Phys. Rev. Lett. 63, 2369
(1989).

7. F. Hinton, Phys. Fluids B 3, 696 (1991).
8. V. V. Alikaev, A. A. Borshchegobskij, V. V. Chistyakov,

et al., in Proceedings of the 27th EPS Conference on
Controlled Fusion and Plasma Physics, Budapest, 2000,
ECA, Vol. 24B, p. 592; K. A. Razumova, Usp. Fiz. Nauk
171, 329 (2001).

9. V. Ilgisonis, Plasma Phys. Controlled Fusion 43, 1255
(2001).

10. E. Hameiri, Phys. Rev. A 27, 1259 (1983).
11. H. Tasso and G. N. Throumoulopolus, Phys. Plasmas 5,

2378 (1998).
12. V. D. Shafranov, Plasma Phys. 13, 349 (1971).
13. L. E. Zakharov and V. D. Shafranov, in Reviews of

Plasma Physics, Ed. by M. A. Leontovich and B. B. Ka-
domtsev (Énergoatomizdat, Moscow, 1982; Consultants
Bureau, New York, 1987), Vol. 11.

14. V. D. Shafranov, in Reviews of Plasma Physics, Ed. by
M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1967), Vol. 2.

Translated by O. Khadin



  

Plasma Physics Reports, Vol. 28, No. 2, 2002, pp. 94–102. Translated from Fizika Plazmy, Vol. 28, No. 2, 2002, pp. 110–118.
Original Russian Text Copyright © 2002 by Romannikov, Petrov, Platz, Hess, Hutter, Farjon, Moreau.

                                                    

TOKAMAKS

                          
Ion Temperature Profiles along a Hydrogen Diagnostic Beam
in a TORE SUPRA Tokamak Plasma

A. N. Romannikov*, Yu. V. Petrov**, P. Platz***, W. R. Hess***, T. Hutter***, 
J. L. Farjon***, and P. Moreau***

*Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow oblast, 142092 Russia
**Prairie View A&M University, Prairie View, TX 77446, USA

***Association Euratom-CEA sur la Fusion, Cadarache 13108, St. Paul Lez Durance, France
Received June 25, 2001; in final form, August 28, 2001

Abstract—The active particle diagnostic technique is used to study the ion temperature at five spatial points
along the path of a hydrogen diagnostic beam. The temperature of the main ion plasma component (deuterium
ions) measured by this diagnostic technique along the beam path is compared with the temperature of carbon
ions (C+5). A study is made of the following characteristic features of the behavior of the ion temperature pro-
files Ti in various TORE SUPRA operating modes: the formation of flat and even hollow Ti profiles in ohmic
discharges with q ~ 3 at the plasma edge, the change in Ti profiles in ergodic divertor discharges, and the dif-
ference between the temperature of the bulk ions measured by the active particle diagnostic technique and the
temperature of C+5 ions in the plasma region r/a > 0.5. The features revealed are explained at a qualitative level.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The main (and virtually only) method for investigat-
ing the energy distribution function f(E) of hydrogen
isotopes in tokamak plasmas is a particle diagnostic
technique based on measurements of the energy spectra
of charge-exchange neutrals [1]. The most informative
version of this method is the so-called active particle
diagnostic (APD) technique, which is based on the
diagnostic beams (DBs) of atoms (usually, the beams of
hydrogen isotopes) [2]. In the APD technique, the DB
parameters are such that the beam has an insignificant
impact on the distribution function f(E) of the majority
ions but makes it possible to localize charge-exchange
neutral fluxes along the line of sight of a particle ana-
lyzer (PA), in which case the analyzer preferentially
measures the fluxes from the region where the DB
intersects its line of sight. Unfortunately, a diagnostic
complex that includes a device capable of generating
DBs adapted to particular experimental conditions as
well as PAs is relatively difficult to create. That is why,
in recent years, almost no experiments aimed at study-
ing the main ion plasma component by the APD tech-
nique have been carried out in tokamaks. Because of
this, of particular interest is a series of experiments with
DBs (about 85 shots) that were conducted in the TORE
SUPRA tokamak (a tokamak with superconducting
windings and with a major radius of R ~ 2.34 m, a
minor radius a of up to 0.8 m, a toroidal magnetic field
Bt of up to 4 T, a plasma current Ip of up to 2 MA, and a
mean plasma density 〈n〉 of up to 5 × 1019 m–3) before it
was shut down for upgrading. Moreover, these TORE
SUPRA experiments with the APD technique are
1063-780X/02/2802- $22.00 © 20094
unique in that, in each shot, the distribution function of
charge-exchange neutrals (and, accordingly, the ion
temperature) was measured simultaneously at five spa-
tial points along the DB path and, in most of the shots,
DBs also served to measure the temperature of carbon
ions (C+5) at eight spatial points along the beam path by
charge-exchange spectroscopy.

In this paper, the experimental data are described as
follows.

In Section 2, we briefly describe the diagnostic com-
plex used in experiments.

In Section 3, we investigate the main characteristic
feature observed in experiments with an ohmically
heated plasma, specifically, the flattening of the ion
temperature profiles and even their deepening in the
central plasma regions, in which case the profiles of the
electron density ne and electron temperature Te in these
regions behave in a conventional manner. We present an
additional indirect confirmation that hollow ion tem-
perature profiles T1 are associated with the toroidal ion
rotation in the central region of the TORE SUPRA
plasma. We also explain the formation of hollow pro-
files at a qualitative level.

In Section 4, we present for the first time experimen-
tal findings providing evidence that an ergodic divertor
(ED) [3] in TORE SUPRA affects the ion temperature
in the central plasma regions.

In Section 5, we analyze the Ti profiles in the plasma
regions r/a > 0.5 and arrive at the conclusion that, under
the conditions prevailing in TORE SUPRA, the signif-
icant deviation of the profile of the temperature of car-
002 MAIK “Nauka/Interperiodica”
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Fig. 1. DB path with respect to the magnetic surfaces (dotted circles) and the viewing chords of five PAs after the time t = 6.01 s
from the beginning of shot no. 28099. The major and minor radii of the TORE SUPRA tokamak, R and a, are given in millimeters.
As an example, two regions free of locally trapped ions, calculated for q(a) ~ 3 and 4, are shown in the upper part of the plasma
column (in the lower part of the column, the corresponding regions, symmetric about the z = 0 plane, are not plotted).

number
bon ions from the deuterium temperature profile mea-
sured by the APD technique cannot be explained in a
simple way.

In the conclusion, we summarize the observed char-
acteristic features of the behavior of the energy distri-
bution function f(E) of the bulk ions in a TORE SUPRA
plasma.

2. TORE SUPRA ION TEMPERATURE 
DIAGNOSTIC COMPLEX

In TORE SUPRA, the ion temperature is deter-
mined primarily from the energy spectra of charge-
exchange H or D neutrals (the data presented here were
obtained in experiments with deuterium beams)
detected by six PAs of the E || B type [4]. Five analyzers
are placed in the same toroidal cross section in which
the DBs are injected (the coordinates along the beam
path being 2 cm for PA1, –16 cm for PA2, –31 cm for
PA3, –48 cm for PA4, and –61 cm for PA5). In order not
to observe the region of locally trapped ions, the ana-
lyzers are oriented at an angle of about ~97° with
respect to the direction of the toroidal magnetic field Bt

at the center of the plasma column (R = 2.5 m). Figure 1
shows the lines of sight of the PAs with respect to the
DB and the TORE SUPRA plasma. The sixth PA (the
so-called tangential analyzer) is oriented at an angle of
38° to the direction of Bt in the equatorial plane, and its
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
line of sight does not intersect the beam path. Each ana-
lyzer has 2 × 46 energy channels (in our experiments,
the range of measured energies was 1–30 keV), which
allows the simultaneous measurement of the distribu-
tion functions of H and D isotopes. The diameter of the
observation region in the central plasma is about 7 cm.
Along the lines of sight of PA1–PA5, the length of the
region from which the charge-exchange neutrals are
detected most efficiently is about 12–18 cm; this is the
characteristic region of the DB neutrals (the beam plus
the halo). Each energy spectrum of the beam neutrals is
recorded during a time interval of about 150 ms.

A diagnostic neutral injector is located at the bottom
vertical port (see, e.g., [5]). The injector produces
hydrogen beams with an energy of about 45 keV (the
beams consist of ~60% H, ~30% ç2, and ~10% ç3), a
duration of up to 200 ms (in the experiments reported
here), and a current of about 10 A. Thus, during the
operation of the injector, the APD technique makes it
possible to obtain the energy spectra of charge-
exchange neutrals detected by PA1–PA5 at one point or
even a pair of neighboring points of time. Figure 2 illus-
trates the representative energy spectra of charge-
exchange neutrals recorded by PA1 and PA5 before (the
lower spectrum) and during the beam injection (the two
upper spectra). In the chosen discharge with ion cyclo-
tron auxiliary heating (shot no. 27823), the mean ion
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density was the highest (〈n〉  ~ 3 × 1019 m–3) among the
remaining discharges in the above experimental series
with DBs. The time evolution of the central chord mean
ion density during the discharge and the time at which
the injector is switched on are illustrated in Fig. 3.
Unfortunately, in this and some other discharges, the
energy spectra recorded by PA3 were distorted because
of technical problems. That is why the figures presented
below contain no points obtained from PA3 during cer-
tain discharges. The spectra in Fig. 2 show that, even
against the background of high ion density, the active
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Fig. 2. Energy spectra of charge-exchange neutrals detected
by (a) PA1 and (b) PA5 before (the lower spectrum in each
figure) and during (the two upper spectra) beam injection
after the time t ~ 6.5 s from the beginning of shot no. 27823
(Ieff is the ratio of the intensity of the neutral flux detected

by the analyzer at a given energy to E1/2).

Fig. 3. Time evolution of the mean plasma density in shot
no. 27823. The time at which the DB starts to be injected is
indicated.
signal associated with a DB is pronounced and is
almost Maxwellian in shape in the energy range above
3Ti. In all experiments with the neutral beam–based
APD technique, the statistical deviation of the energy
spectra from the straight line from which the deuterium
ion temperature Ti was calculated (using up to 20 points
in the energy range between 3Ti and 8Ti) was, as a rule,
smaller than 5%. The energy resolution in the channels
of the analyzers provided measurements of the ion tem-
perature with a relative accuracy of 10–15% [4]. The
ion temperatures were calculated from the experimen-
tally measured profiles of the electron temperature and
Zeff with allowance for the actual distortions of the
energy spectra of the neutrals that originated in the DB
region and propagated against the background of the
plasma ions before reaching a PA. This procedure of
determining the ion temperatures was applied to all of
the discharges analyzed below.

The TORE SUPRA spectral diagnostic complex
makes it possible to record the emission spectra pro-
duced by light impurities from eight viewing chords
[5]. The spectral diagnostic complex is installed at the
same port as a system of PAs, thereby providing the
possibility of applying the methods of charge-exchange
recombination spectroscopy (CXRS) to DBs. The eight
viewing chords intersect the DB path at nearly equidis-
tant points in the interval between z = –12 cm and z =
−58 cm. In half of the TORE SUPRA experiments with
DBs, the CXRS method was used to measure the Dop-
pler broadening of the ë+5 line (n = 8  7 at λ =
5290.7 nm). Our estimates show that, to a good accu-
racy, the carbon ion temperature calculated from the
Doppler broadening of the C+5 lines in the TORE
SUPRA steady-state operating modes coincides with
the temperature of the thermal ions of the main ion
plasma component. The spatial resolution of the CXRS
method is determined by the DB dimension along the
viewing chord (~15 cm). The temporal resolution (the
time required to record one emission spectrum) is about
100 ms, which is long enough to obtain the energy
spectrum at two points of time during the injection of a
DB. All the results on the C+5 ion temperature that will
be analyzed below were measured with a relative accu-
racy no worse than 10%. The comparative measure-
ments of the ion temperature in the central plasma
regions (r/a < 0.25) by the APD technique and CXRS
method yielded essentially the same results (when cor-
rected for a measurement error), except for the mea-
surements in several discharges with lower hybrid heat-
ing.

Together with these two diagnostic methods, the
central ion temperature and the toroidal rotation veloc-
ity of heavy impurity ions (Cr+22, Fe+24) were measured
by a Bragg spectrometer recording X-ray helium-like
lines of impurities [6]. The Bragg spectrometer is
mounted at the tangential port, operates independently
of the DBs, and makes it possible to measure the ion
temperature throughout the discharge in a region with a
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
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diameter of about 10 cm where the electron tempera-
ture is maximum. In experiments with DBs, the spec-
trometer operated for about 15 discharges. It was found
that the temperature of Cr+22 ions was close to the tem-
perature of D ions (the difference being smaller than
10%) measured with PA1 by the APD technique (the
temperatures were measured at the same instant in
neighboring spatial regions).

The electron temperature profiles used in our work
were measured by Thomson scattering. The electron
density profiles were measured by five vertically ori-
ented microwave interferometers and also from Thom-
son scattering (as implied by the standard TORE
SUPRA diagnostics). The results of measurements dur-
ing each discharge were corrected for the position of
the plasma column with respect to the DB. In essen-
tially all of the discharges, the position of the plasma
column corresponded to that shown in Fig. 1.

The parameters of the discharges to be analyzed
below are listed in the table, in which the shots are num-
bered in order of their appearance in the paper. The
duration of each of the discharges was about 12 s. The
table illustrates ohmic discharges, discharges with ion-
cyclotron auxiliary heating, and ohmic discharges with
an ED.

3. CHARACTERISTIC FEATURES 
OF THE Ti(z) PROFILES IN DIFFERENT OHMIC-

HEATING REGIMES

About 40% of the experiments were carried out with
ohmic discharges in a wide range of plasma currents
(from 0.5 to 1.5 MA), edge safety factors q(a) (from 3
to 11), and mean electron densities (from 0.7 × 1019 to
3.8 × 1019 m–3). The maximum ion temperatures along
the beam path varied from about 1 keV at low plasma
currents to about 1.5 keV at high plasma currents. The
experiments showed that, along with the expected pro-
files Ti(z), which are peaked about the z = 0 plane
(Fig. 4b), a fairly large number of discharges were
characterized by flat and even hollow profiles Ti(z) both
for D and C+5 ions (Fig. 4a), in which case the radial
profiles Te(r) and ne(r) in the central plasma regions
were found to have a conventional shape. Figures 5a
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
and 5b show the ratio Ti(PA1, +2 cm)/Ti(PA2, –16 cm)
versus 〈n〉 and q(a), respectively. We can see that there
are not only discharges with Ti(PA1, +2 cm)/Ti(PA2,
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Fig. 4. (a) Ti(z) profiles for deuterium (circles) and C+5

(asterisks) ions at 〈n〉  = ~1.2 and Ip = 0.75 in shot no. 28318.
(b) Ti(z) profiles along the DB path for deuterium ions at
〈n〉  ~ 2 and Ip = 0.5 in shot nos. 27793 and 28107. The mean
ion density 〈n〉 and plasma current Ip are given in units of

1019 m–3 and MA, respectively.
Table

Shot number 〈n〉  × 10–19, cm–3 Ip , MA Bt , T Regimes

27823 3.2 1.6 3.8 ICRH
28318 1.2 0.75 1.6 Ohmic heating + ED
27793 2.6 1.4 3.8 Ohmic heating
28107 2.0 0.5 3.8 Ohmic heating
27905 2.0 1.5 3.2 Ohmic heating + ED
25737 2.0 1.0 3.9 Ohmic heating
28315 1.2 0.75 1.6 Ohmic heating + ED
28320 1.2 0.75 1.6 Ohmic heating + ED
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Fig. 5. Ratio of the deuterium temperature at the point +2 cm (measurements by PA1) to that at the point –16 cm (measurements by
PA2) along the DB path vs. (a) the mean electron density and (b) the safety factor q(a) at the boundary of the plasma column. The
asterisks refer to deuterium discharges with an ED, the circles illustrate ohmic deuterium discharges, and the crosses correspond to
ohmic helium discharges, in which the detected deuterium is an impurity species.
−16 cm) > 1 (centrally peaked ion temperature profiles)
but also discharges for which this ratio is smaller than
unity (hollow profiles).

Indirect evidence for the formation of hollow ion
temperature profiles in such discharges is provided
from measurements of the toroidal plasma rotation
velocity Vtor (the positive direction of the toroidal rota-
tion coincides with the direction of the plasma current)
by the passive particle diagnostic technique with the
help of a tangential PA [7]. A method analogous to that
described in [7] was used to measure the toroidal rota-
tion velocity in the steady-state phase (which lasts
approximately from the fourth to the eighth second) of
shot nos. 27905 and 25737; the mean toroidal rotation
velocity was measured in the region ~(0.1–0.35)r/a at
the given moderate plasma densities. In discharges with
hollow ion temperature profiles, the velocity Vtor was
found to be close to zero (shot no. 27905 with ED) and
even to be slightly positive (about +10 km/s), in con-
trast to shot no. 25737 (from the series of experiments
carried out in [7]), in which Vtor was about –40 km/s.
The velocity was measured with an accuracy of
±20 km/s. According to [7], the role of the governing
mechanism for the generation of the radial electric field
in TORE SUPRA is played by significant ripples in the
toroidal magnetic field Bt , in which case the velocity
Vtor is described by the expression (see formula (9)
in [7])

(1)

where Bp is the poloidal magnetic field and the coeffi-
cient k is about 3.5. Obviously, for discharges with hol-
low Ti profiles, the toroidal rotation velocity might be

V tor c
k

eBp

---------
dTi

dr
--------,≈
expected to be positive in regions where the derivative
of Ti is increasing, as is the case in experiments. How-
ever, such a behavior of Vtor was also observed in dis-
charges with q(a) ~ 3 but without an ED. Moreover, in
experiments in which the ED was switched on (or off)
nearly in the middle of the discharge, measurements by
the particle diagnostic technique and by a Bragg spec-
trometer (in TORE SUPRA, this spectrometer is capa-
ble of measuring only the variations in the toroidal rota-
tion velocity) revealed no significant change in Vtor (to
within experimental error).

Since the ion temperature profiles were observed to
become flat or hollow in all discharges with an ED [3],
we made an attempt to explain the formation of such
profiles as being due to the effect of the divertor opera-
tion. However, the data from experiments with an ED
and the results of numerical calculations show that, at
the same electron densities, the divertor does not
change the radial profile of the electron temperature in
the central plasma regions. The influence of the divertor
on the magnetic configuration in the plasma core is also
insignificant: near the plasma axis, the divertor-induced
perturbation in the relative ripple amplitude of Bt

(~0.003) is about 0.0001, the impact of the divertor on
the poloidal magnetic field being negligible. That is
why the divertor cannot be responsible for the forma-
tion of hollow radial profiles of Ti in the plasma.

Additional indirect evidence that the shape of the
radial ion temperature profiles is not influenced by the
ED operation is provided by Fig. 6. The shape of the
deuterium temperature profile in the central region is
insensitive to the decrease in the current flowing in the
divertor from the nominal value 2.2 kA to 0.5 kA
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(in which case the effect of the divertor on the plasma
diminishes in the same proportion).

We believe that the most likely cause of the flatten-
ing or even deepening of the ion temperature profiles is
associated with the dependence shown in Fig. 5b (the
number of experimental points in Fig. 5b differs from
that in Fig. 5a because some points coincide). The
change in q(a) results in a substantial change in the
plasma magnetic configuration, thereby changing the
behavior of the locally trapped ions. For the TORE
SUPRA discharges illustrated in Fig. 5b, we calculated
the regions of the locally unrippled magnetic field for
different q(a) values (in which case the relative ripple
amplitude of the magnetic field at the plasma boundary
is about 7% and, in the region where the beam inter-
sects the z = 0 plane, it is about 0.3–0.4%). The calcu-
lations were carried out using the method described in
[8]. The q(r) profile was approximated by a parabola
chosen so as to fit the q values measured experimentally
at the plasma edge and plasma center. The unrippled
magnetic field regions calculated for two different q(a)
values are shown schematically in Fig. 1 (in which the
corresponding symmetric regions in the lower part of
the plasma column are not plotted). In TORE SUPRA,
the gradient drift of the ions is directed from bottom to
top. From Fig. 1, we can see that, for q(a) ~ 3, suffi-
ciently energetic ions trapped in local magnetic wells in
the inner region enclosed by the magnetic surface with
a radius of about r ~ 15 cm will drift upward, thereby
inevitably leaving this inner region and accumulating in
the region of the unrippled magnetic field. The only
way that the ions can return to the inner region is to be
trapped in magnetic wells in the lower part of the
plasma column. However, in the lower part, ions will
also appear in the unrippled magnetic field region. As a
result, the core region will act as a heat sink, while the
magnetic surface with a radius of r ~ 15 cm will play
the role of a heat source, thereby leading to the forma-
tion of hollow ion temperature profiles in the steady-
state phase of the discharge. In TORE SUPRA, the gov-
erning factor for the formation of such profiles is a
marked relative ripple amplitude (about 0.003) of the
toroidal magnetic field at the plasma center. In momen-
tum space, the fraction of the locally trapped ions that
are entrained in the upward drift in such a toroidal mag-
netic field is about 0.1. Among these ions, all D ions
with an energy of about 7 keV and higher (for the char-
acteristic parameter values Bt = 3 T and n(0) = 5 ×
1019 m–3) [9] will enter the unrippled magnetic field
region and reach the magnetic surface with a radius of
r ~ 15 cm. For sufficiently large q(a) values, the unrip-
pled magnetic field regions no longer overlap with the
central plasma region. In this case, the only possible
effect is a slight distortion of the tails of the distribution
function f(E) [9] at different magnetic surfaces without
appreciable heating of any particular magnetic surface.
PLASMA PHYSICS REPORTS      Vol. 28      No. 2       2002
4. EFFECT OF ED ON THE ION TEMPERATURE 
IN THE CENTRAL PLASMA REGIONS

Following [3], let us briefly discuss how the ED
affects the TORE SUPRA plasma. The divertor gives
rise to a region of ergodized magnetic field around the
magnetic surface with q(r) ~ 3. When the edge q value
is about 3 at the nominal current in the divertor, the
plasma boundary is observed as if it were displaced at
the magnetic surface with r/a ~ 0.8. However, for the
electron plasma component, this effect cannot be
treated merely as a decrease in the minor radius of the
plasma. The divertor acts as a kind of barrier that cuts
off the plasma edge but does not diminish the electron
temperature and density in the plasma core. Prior to the
experiments presented here, the effect of an ED on the
core ions was experimentally investigated only by pas-
sive particle diagnostics [10]. These investigations
revealed no significant impact of an ED on the ion tem-
perature Ti .

Our experiments show that an ED may influence the
ion plasma component. We found that the divertor does
not substantially change the shape of the Ti(z) profile
along the DB path but decreases the central ion temper-
ature by about 15%. This decrease was observed not
only in the temperature of D ions measured by the APD
technique but also in the temperature of C+5 ions mea-
sured by the CXRS method. Figure 6 illustrates two
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Fig. 6. Ti(z) profiles for deuterium (points connected by line

segments) and C+5 (unconnected points) ions in two identi-
cal discharges but with different currents in the ED: Ied =
0.55 in shot no. 28315 (circles) and Ied = 2.2 in shot
no. 28320 (asterisks) (the current Ied in the divertor is mea-
sured in kA). The toroidal magnetic field is Bt = 1.6 T, the
plasma current is Ip = 0.75 MA, and the mean ion density is

〈n〉  = 1.2 × 1019 m–3.



100 ROMANNIKOV et al.
discharges with the same electron density, toroidal
magnetic field Bt, and plasma current Ip , the profiles of
the electron temperature in the central region also being
practically the same (Fig. 7). The discharges differed
only in the current flowing in an ED. Recall that, at the
nominal current in the divertor, the effective minor
radius of the plasma column decreased to 0.8r/a [3].
Since the effective minor radius increases almost lin-
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Fig. 7. Electron temperature measured by Thomson scatter-
ing in shot nos. 28315 (circles) and 28320 (crosses) vs.
dimensionless minor radius.

Fig. 8. Banana orbit of a 5-keV deuterium ion at the mag-
netic surface with a radius of r ~ 60 cm in a TORE SUPRA
discharge with a toroidal magnetic field of 3 T and a plasma
current of 0.65 MA. Indicated in the banana orbit is the
observation point from which a charge-exchange neutral
can reach the PA5 analyzer.
early with the current in the divertor (provided the cur-
rent is below the nominal value), we can expect that, for
shot no. 28315, this radius is about ~0.95r/a. Let us
estimate how the change in the central ion temperature
Ti(0) depends on the change in the minor radius,
neglecting all the remaining factors that may affect this
dependence. Under the assumption that the plasma
electrons act as a heat source for the ions, the desired
estimate can be obtained from the heat balance relation
for the ion plasma component:

(2)

where χ(Ti) is the ion thermal diffusivity. Ascribing to

the diffusivity χ(Ti) the simple dependence ~1/  and
using Figs. 6 and 7 and formula (2), we can estimate the
expected central temperature value Ti1 for the effective
minor radius ~0.95a/r from the known central temper-
ature Ti2 ~ 0.92 keV for the effective minor radius
~0.8a/r (in both cases, the electron temperature Te is
the same and is approximately equal to 1.5 keV). As a
result, we obtain Ti1 ~ 1.08 keV, which is close to the
experimentally measured temperature (Fig. 6). We can
thus conclude that the effect of the ED operation on the
plasma ions consists merely in a reduction of the effec-
tive minor radius for the radial ion temperature profile.

5. PLASMA ION TEMPERATURE
IN THE REGIONS r/a > 0.5

From Figs. 3b and 6, one can see that, in these
regions, the temperature of the D ions measured with
PA4 and PA5 by the APD technique is higher than the
temperature of C+5 ions by about 20%. An analogous
situation was observed in all experiments with DBs. We
failed to reveal how this temperature difference
changes depending on the plasma parameters. Note
only that this difference was found to be minimum
(about 10%) in discharges with ion cyclotron auxiliary
heating, in which the mean electron density and central
ion temperature were about ~3 × 1019 m–3 and about
3 keV, respectively (these values are approximately
close to those in the discharge illustrated in Fig. 2). The
effect of the broadening of the radial profile of the ion
temperature measured by a particle diagnostic tech-
nique is often observed in experiments (see, e.g., [11]).
In all particle diagnostic methods, the ion temperature
is calculated from the tails of the ion energy distribution
function. Consequently, it may be expected that, if the
function f(E) deviates from a Maxwellian distribution
function (MDF), then the temperature of C+5 ions (in
the CXRS method, the measured spectral line width is
associated primarily with the thermal ions of the main
ion plasma component) will differ from the calculated
temperature of D ions. In the TORE SUPRA tokamak,
there may be two possible causes for the deviation of
the ion energy spectrum measured by the APD tech-
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---------------
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Ti2
-------
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----- 

 
2 Te Ti1–
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nique from being Maxwellian (these causes were
already studied in the literature, see, e.g., [9, 12]). The
first cause is associated with the position of the obser-
vation point in the banana orbit of an ion in the actual
experimental geometry: it is this point from which a
charge-exchange D neutral can reach the PA. Figure 8
shows the observation point for a 5-keV D ion detected
by PA5 (the ion energy is chosen from the central spec-
tral region, from which the ion temperature is calcu-
lated). We can see that, unlike in [12], the observation
point lies in the inner circuit of the banana orbit. In the
case at hand, this indicates that, in the energy range of
about 5 keV, measurements of the ion temperature by
detecting the ions that come from this observation point
give the ion temperature at a magnetic surface whose
minor radius is larger than the distance from the obser-
vation point to the plasma axis by about 5 cm [12]. In
reality, the characteristic features of the method used to
calculate Ti from the energy spectra of charge-exchange
neutrals [10] are such that the resulting ion temperature
is even lower. Consequently, the expected distortion of
the MDF should lead to a lower temperature of D ions
in comparison with C+5 ions. However, in actual exper-
iments, the opposite situation occurs. Carrying out cal-
culations with allowance for a marked toroidal plasma
rotation [7] reduces the above difference from ~5 cm to
~4.5 cm, which is, nevertheless, too large to resolve the
problem in question. Moreover, in earlier TORE
SUPRA experiments with passive particle diagnostics,
the temperature of D ions measured by PA4 in dis-
charges with a reversed plasma current (the remaining
parameters being fixed) was found to be the same (it has
been established experimentally that, in discharges
with a moderate electron density, passive and active
particle diagnostics yielded practically equal ion tem-
peratures). This contradicts the predictions of our anal-
ysis, according to which the temperature of D ions cal-
culated from their energy spectra is expected to be sub-
stantially higher.

The second possible cause for the above tempera-
ture difference may be associated with the large ripple
amplitude of the toroidal magnetic field in TORE
SUPRA. The exact calculation of the maximum possi-
ble number of fast ions that can occur at different mag-
netic surfaces and can be detected by PA4 and PA5 after
they have undergone charge exchange is a very compli-
cated task and is to be the subject of our further studies.
However, we believe that the experimental results
under discussion can hardly be interpreted as manifes-
tations of the locally trapped ions. The main reasons for
this are twofold. First, the analyzers were oriented in
such a way that their viewing chords do not intersect the
corresponding regions of local magnetic wells. The
experimental data obtained in [8] show that, for the ions
to be trapped in a local magnetic well along the viewing
chord of PA4, the ratio of their longitudinal velocity to
their transverse velocity should be smaller than 0.03; in
turn, PA4 can detect ions for which this ratio is about
0.11. In energy space, the corresponding zones are well
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separated. For PA5, these zones are closer to one
another but still do not overlap. Hence, the detectable
ions move along banana orbits and can be described
using the above approach, which is based on Fig. 8.
Second, in accordance with [9], we can expect that the
maximum possible number of ions at a given magnetic
surface will be achieved, in particular, at the expense of
retrapping ions that were trapped at neighboring sur-
faces (in this case, the retrapped ions all have physically
reasonable longitudinal and transverse momenta and
thus fill the entire momentum space). For a relative rip-
ple amplitude of about 1% near PA4 and PA5, the num-
ber of such retrapped ions can be fairly large. However,
unlike in [9], the ripple amplitude in TORE SUPRA
varies strongly in the vertical direction. To be specific,
let us illustrate how the relative ripple amplitude
changes along the DB path in a discharge with q(a) ~ 4.
It decreases from ~7% at z = –75 cm to ~1.5% at z =
−60 cm (PA5). Further, it continues to decrease to 0.9%
at z = –50 cm (PA4) and to 0.1% at z = –15 cm (PA2).
Then, it starts increasing to 0.4% at z = 0 cm (PA1). The
variation in the relative ripple amplitude in the upper
part of the plasma column is a mirror image of that just
described. 

Let us consider a magnetic surface associated with
AH4. In our experiments, this analyzer measured ions
with mean energies of about 6–7 keV. For the character-
istic experimental plasma parameters, the result is that,
for the ions trapped in local magnetic wells at inner
magnetic surfaces to become untrapped in the upper
half-plane, they should travel a distance of about 15 cm
(with allowance for the variation in the ripple ampli-
tude) and, analogously, for the ions trapped at outer
magnetic surfaces to become untrapped in the lower
half-plane, they should travel a distance of about 25 cm.
That is why, in regions far from the local magnetic
wells, the distortion of the MDF at a chosen magnetic
surface is more likely to reflect the losses of ions with
energies of about 6–7 keV in the energy spectrum (with
allowance for the ion escape from the chosen surface
outward in the upper half-plane and inward in the lower
half-plane). As a result, the temperature of D ions mea-
sured by the APD technique should be lower than the
temperature of the thermal ions of the main ion plasma
component. Hence, we believe that neither the method-
ical consideration nor the above qualitative physical
analysis can explain the difference in the ion tempera-
tures measured by two diagnostic techniques in the
region r/a > 0.5 (the temperature of deuterium ions is
always measured to be higher than the temperature of
carbon ions).

6. CONCLUSIONS

Our experimental investigations of the Ti(z) profiles
along the DB path in various TORE SUPRA operating
modes allow us to draw the following conclusions.

(i) Measurements of the ion temperature in the cen-
tral plasma regions by three different diagnostic tech-
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niques (the APD, CXRS, and Bragg methods) yield the
same results (to within the experimental error).

(ii) The TORE SUPRA tokamak can operate in
ohmic modes with hollow ion temperature profiles and
conventional electron temperature profiles. A possible
cause of these operating modes, which occurs when
q(a) ~ 3, is associated with locally trapped ions and
regions of locally unrippled magnetic field in the cross
section of the plasma column. The toroidal ion rotation
velocity in the plasma core was measured to be close to
zero and even positive, in agreement with the theoreti-
cal model proposed in [7] (in TORE SUPRA, the for-
mation of the radial electric field and the onset of the
toroidal ion velocity Vtor is associated with the ripples
in the toroidal magnetic field Bt). Since, in some toka-
maks, the ripple amplitude in the central plasma regions
is always significant, the radial ion temperature profiles
Ti(r) may become hollow during discharges with small
q values. The study of such operating modes can also be
of interest from the standpoint of the possible evolution
of a discharge to a state in which the toroidal ion rota-
tion velocity Vtor (and, accordingly, the radial electric
field [7]) may have opposite directions at neighboring
magnetic surfaces in the plasma core [formula (2)].

(iii) In our experiments, the effect of the ED on the
ion temperature Ti in the central regions has been mea-
sured for the first time. As the current in the divertor
increases, the central ion temperature Ti decreases, the
shape of the Ti(z) profile being unchanged. This behav-
ior of the ion temperature can be explained as being due
to the divertor-induced reduction of the effective minor
radius for the radial ion temperature profile.

(iv) In the plasma region r/a > 0.5, the ion tempera-
tures measured by two diagnostic techniques differ by
about 20%. The temperature of the thermal ions mea-
sured from the Doppler broadening of the C+5 line by
the CXRS method is lower than the temperature of D
ions measured by the APD technique. As a result, in the
energy range from 3Ti to 8Ti, the MDF is observed to be
distorted in such a way that it reflects a significant
increase in the fraction of these ions above the Max-
wellian background level. A qualitative analysis carried
out with allowance for such factors as the influence of
locally trapped ions and the position of the observation
region in the banana orbit fails to explain the results
obtained. Moreover, the analysis shows that these fac-
tors should produce the opposite result.

It is well known that a similar strong distortion of
the MDF in the thermal energy range plays a governing
role in the transport processes of the majority ions in
tokamak plasmas. The results from the above supple-
mentary methods for measuring the ion temperature Ti

provide a clearer insight into the problems associated
with ion confinement. In recent years, particle diagnos-
tic methods for ion measurements in the thermal energy
range have been largely abandoned in favor of the spec-
tral methods for measuring the emission from impurity
ions. However, this preference leads to a significant loss
of information about the ion component of the tokamak
plasma.
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