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Abstract—We consider one-loop effects in general relativity that result in quantum long-range corrections to
the Newton law, as well as to the gravitational spin-dependent and velocity-dependent interactions. Some
contributions to these effects can be interpreted as quantum corrections to the Schwarzschild and Kerr metrics.
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1. INTRODUCTION

It was recognized long ago that quantum effects in
general relativity can generate long-range corrections
to the Newton law. Such corrections due to the photon
and massless neutrino contributions to the graviton
polarization operator were calculated in [1–4]. The cor-
responding quantum correction to the Newton potential
between two bodies with masses m1 and m2 is

(1)

where Nν is the number of massless two-component
neutrinos and k is the Newton gravitational constant.

The reason the problem allows a closed solution is
as follows. The Fourier transform of 1/r3 is

(2)

This singularity in the momentum transfer q implies
that the discussed correction can be generated only by
diagrams with two massless particles in the t-channel.
The number of such diagrams of the second order in k
is finite, and their logarithmic part in q2 can be calcu-
lated unambiguously.

Analogous diagrams with gravitons and ghosts in
the loop (Figs. 1a, 1b) were considered in [1, 5–7].
(Here and below, wavy lines refer to quantum fluctua-
tions of metric; double wavy lines denote a background
gravitational field; dashed lines here refer to ghosts.)
Clearly, other diagrams with two gravitons in the
t-channel also contribute to the discussed correction
proportional to 1/r3. This was pointed out long ago

Uγν
4 Nν+

15π
---------------

k2
"m1m2

c3r3
----------------------,–=

r
iq– r⋅( )exp

r3
------------------------------d∫ 2π q2.ln–=

¶This article was submitted by the authors in English.
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in [8], where all relevant diagrams were explicitly indi-
cated.

The problem of quantum corrections to the Newton
law is certainly interesting from the theoretical stand-
point. It was addressed later in [9–15]. Unfortunately,
as demonstrated in [16], none of these attempts was sat-
isfactory.

The problem was then considered quantitatively in
our previous paper [16]. Therein, all relevant diagrams
except one (see Fig. 4b below) were calculated cor-
rectly. In a recent paper [17], this last diagram has been
calculated correctly,1 and our results for all other con-
tributions are confirmed.

The content of our present work is as follows.
Using the background field technique [7], we construct
invariant operators that describe quantum power-law
corrections in general relativity. In the limit, as one of
the interacting particles is heavy, some of the derived
corrections can be interpreted as quantum corrections
to the Schwarzschild and Kerr metrics. Here, our results
differ substantially from those in [18].

We also demonstrate in an elementary way that, to
our accuracy, the spin-independent part of the dis-
cussed corrections for spinor particles coincides with
the corrections for scalar particles. In particular, this
implies that the obtained quantum corrections to the
Schwarzschild metric are universal, i.e., independent of
the spin of the central body. For some loop diagrams
relevant to the problem, the mentioned coincidence of
the spin-independent contributions of spinor particles
with the corresponding results for scalar ones was
proved previously in [18] by direct calculation.

With the effective operators constructed, we not
only derive the corrections to the Newton law easily,
but also obtain quantum corrections to other gravita-
tional effects: spin-dependent and velocity-dependent

1 Both previous results for this contribution, by Donoghue [10] and
by us [16], were incorrect.
2004 MAIK “Nauka/Interperiodica”
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interactions. In the present paper, we mainly consider
the case of scalar particles. By spin, we therefore mean
the internal angular momentum of a compound particle
with scalar constituents.

We also comment on the problem of the classical
relativistic corrections to the Newton law. Our conclu-
sions here agree completely with the results in [19–21]
(see also the textbook [22, Section 106]), but, on some
point, we strongly disagree with the statements in [17].

2. PROPAGATORS AND VERTICES

Below, we use the units where c = 1 and " = 1. Our
metric signature is diag(1, –1, –1, –1).

The graviton operator hµν describes quantum fluctu-

ations of the metric gµν in the background metric ,

(3)

We use the gauge condition

(4)

for hµν , where the indices of hµν are raised with the

background metric , and the covariant derivatives

gµν
0

gµν gµν
0 κhµν, κ2+ 32πk 32πlp

2 .= = =

hν ; µ
µ 1

2
---hµ; ν

µ– 0=

gµν
0

(a) (b)

Fig. 1. Graviton loop.
JOURNAL OF EXPERIMENTAL
are taken in the background field . The free graviton
propagator is

(5)

The tensor Pµν, αβ is conveniently represented as [7]

where

is a sort of unit operator with the property

for any symmetric tensor tαβ . We note the useful
identity

(6)

The propagators of scalar and spinor particles are
the usual ones,

respectively.

The single-graviton vertex for both scalar and spinor
particles (see Fig. 2a) are related to the energy-momen-
tum tensor Tαβ(p, p') of the corresponding particle as

(7)

The explicit expressions for the scalar and spinor

gµν
0

Dµν αβ, q( ) i
Pµν αβ,

q2 i0+
----------------,=

Pµν αβ,
1
2
--- δµαδνβ δναδµβ δµνδαβ–+( ).=

Pµν αβ, Iµν αβ,
1
2
---δµνδαβ,–=

Iµν αβ,
1
2
--- δµαδνβ δναδµβ+( )=

Iµν αβ, tαβ tµν=

Pαβ κλ, Pκλ γδ, Iαβ γδ, .=

D p( ) i
1

p2 m2– i0+
----------------------------- and G p( ) i

1
p̂ m– i0+
-------------------------,= =

Vαβ p p',( ) i
κ
2
---Tαβ p p',( ).–=
(a) (b)

q

µν

p p'

k k – q

ρσ κλ

αβ γδp p'

q

µν

k – q

k

(c)

Fig. 2. Gravitational vertices.
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particle vertices are

(8)

and

(9)

respectively; here, P = p + p'.

The contact interaction of a scalar particle with two
gravitons (see Fig. 2b) is

(10)

To our accuracy, we can neglect the last term with (p' –
p)2 = q2 in this expression and rewrite the vertex conve-
niently as

(11)

We use the two-graviton vertices on mass shell only.
Therefore, the terms with the Kronecker δ entering the
energy-momentum tensor in the last expression are also
proportional to q2 and, hence, can be neglected.

The contact two-graviton interaction of a spinor par-
ticle (see Fig. 2b) can be written on mass shell as

(12)

As regards the 3-graviton vertex (see Fig. 2c), which
has the most complicated form, we follow [7, 17] in

Vαβ
0( ) p p',( ) i

κ
2
--- pα pβ' pα' pβ δαβ p p' m2–( )–+[ ]–=

Vµν
1/2( ) iκ

4
-----u p'( ) IµναβPαγβ δµν P̂ 2m–( )–[ ] u p( ),–=

Vκλ ρσ,
0( ) iκ2 Iκλ αδ, Iδβ ρσ, pα pβ' pα' pβ+( )=

–
1
2
---δκλ Iρσ αβ, δρσIκλ αβ, pα pβ'+

+
p' p–( )2

4
-------------------- Iκλ ρσ,

1
2
---δκλ δρσ– 

  .

Vκλ ρσ,
0( )

=  iκ2 Iκλ αδ, Iδβ ρσ, Tαβ
1
4
--- δκλ Tρσ δρσTκλ+( )– .

Vκλ ρσ,
1/2( ) i

κ2

8
----- 3

2
--- Iκλ µβ, Iρσ βα, Iρσ µβ, Iκλ βα,+( )Pµ=

---– δκλ Iρσ µα, Pµ δρσIκλ µα, Pµ– u p'( )γαu p( )

=  iκ2 3
4
--- Iκλ αδ, Iδβ ρσ, Tαβ

1
4
--- δκλ Tρσ δρσTκλ+( )– .
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representing it as

(13)

In this vertex, we can also neglect the last structure
5vµν, αβ, γδ to our accuracy.

3. UNIVERSALITY
OF SPIN-INDEPENDENT EFFECTS

We first address the lowest order s- and u-pole dia-
grams for graviton scattering, presented in Figs. 3a
and 3b.

We start with a scalar particle. The terms with the
Kronecker δ in single-graviton vertices (8) then cancel
the s- and u-pole denominators. It can be easily demon-
strated that, in the sum of the two diagrams, the arising
contact contributions combine into

(14)

In the course of these transformations, we omit the
terms with extra powers of the graviton momenta
because they do not lead to lnq2 after subsequent loop

Vµν αβ γδ, , –i
κ
2
--- v

i
µν αβ γδ, , ,

i

∑=

v
1

µν αβ γδ, , Pαβ γδ,=

× kµkν k q–( )µ k q–( )ν qµqν
3
2
---δµνq2–+ + ,

v
2

µν αβ γδ, , 2qκqλ Iκλ αβ, Iµν γδ, Iκλ γδ, Iµν αβ,+[=

– Iκµ αβ, Iλν γδ, Iκν αβ, Iλµ γδ, ] ,–

v
3

µν αβ γδ, , qκqµ δαβ Iκν γδ, δγδIκν αβ,+( )=

+ qκqν δαβ Iκµ γδ, δγδIκµ αβ,+( )

– q2 δαβ Iµν γδ, δγδIµν αβ,+( )

– δµνqκqλ δαβ Iγδ κλ, δγδIαβ κλ,+( ),

v
4

µν αβ γδ, , 2qκ=

× Iκλ αβ, Iγδ νλ, k q–( )µ Iκλ αβ, Iγδ µλ, k q–( )ν+[
– Iκλ γδ, Iαβ νλ, kµ Iκλ γδ, Iαβ µλ, kν ]–

+ q2 Iλµ αβ, Iγδ λν, Iλν αβ, Iγδ λµ,+( )
+ δµνqκqλ Iαβ κρ, Iρλ γδ, Iγδ κρ, Iρλ αβ,+( ),

v
5

µν αβ γδ,, k2 k q–( )2+[ ] Iλµ αβ, Iγδ λν,
1
2
---δµνPαβ γδ,– 

 =

– k2δγδIµν αβ, k q–( )2δαβ Iµν γδ, .–

Vαβ γδ,
0( ) i

κ2

4
----- δαβ pγ pδ' pγ' pδ+( )[=

+ δγδ pα pβ' pα' pβ+( ) ] i
κ2

4
----- δαβTγδ

0( ) δγδTαβ
0( )+( ).=
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l'lp p' p p' p p'

k k – q
k k – q k k – q

αβ γδ αβ γδ αβ γδ

(a) (b) (c)

Fig. 3. Pole diagrams.
integration. Combining this induced term with (10), we
obtain the total effective two-graviton vertex for a sca-
lar particle,

(15)

For spinor particles, the single-graviton vertices (9)
also contain terms with the Kronecker δ. Proceeding
here with the s- and u-pole diagrams in the same way as
in the scalar case, we obtain the following correction to
the two-graviton vertex:

(16)

The total effective two-graviton vertex for a spinor par-
ticle is then given by

(17)

If we are interested in spin-independent effects in
the graviton scattering off a spinor particle, one more
step is possible. The spinor structure of the numerators
in the s- and u-pole diagrams can be transformed as
follows:

(18)

The term (p')(  – m)u(p) in this expression, being
averaged over spins, transforms to l2 – m2 (here, we
again omit a term proportional to q2). After cancellation
of the denominators, the sum of these terms in the s-
and u-pole diagrams reduces to

(19)

Because the spin-averaged energy-momentum tensor
for spinors coincides with the scalar one, which is equal
to PµPα/2, the spin-independent term in the sum of (17)

Vκλ ρσ,
0( )eff iκ2Iκλ αδ, Iδβ ρσ, Tαβ

0( )=

=  i
κ2

2
----- Iκλ αδ, Iδβ ρσ, Pα Pβ.

Vαβ γδ,
1/2( )' i

κ2

4
----- δαβTγδ

1/2( ) δγδTαβ
1/2+( ).=

Vκλ ρσ,
1/2( )eff i

3
4
---κ2Iκλ αδ, Iδβ ρσ, Tαβ

1/2( ).=

u p'( )γσ l̂ m+( )γωu p( ) u p'( ) lσγω lωγσ+[=

– l̂ m–( )δσω iγ5
e

σξωηlξγη mσσω+ + ]u p( ).

u l̂

Vκλ ρσ,
1/2( )'' iκ2

8
------- Iκλ µβ, Iρσ βα, PµPα .=
JOURNAL OF EXPERIMENTAL 
and (19) reduces to (15). In other words, from the fer-
mion diagrams, we can single out the sum of structures
that coincides with the effective sea-gull for a scalar
particle after averaging over spins.

Finally, it can be easily demonstrated that, after
averaging over the spins, all the other terms in the
numerators of the s- and u-pole spinor diagrams coin-
cide with the corresponding terms in scalar diagrams
with the required accuracy.

For the diagram in Fig. 3c, with the graviton pole in
the t-channel, the coincidence between the scalar and
spin-averaged spinor cases is obvious.

To summarize, the sum of scalar and spin-averaged
spinor tree amplitudes, and, hence, the sum of the cor-
responding loop diagrams coincide with the required
accuracy.

4. SPIN-INDEPENDENT EFFECTIVE 
AMPLITUDES

We start the discussion of loops with the vacuum
polarization diagrams (see Fig. 1). The covariant effec-
tive Lagrangian corresponding to the sum of these
loops was derived in [7] with dimensional regulariza-
tion. It is given by

(20)

where, as usual, g is the determinant of the metric ten-

sor, Rµν is the Ricci tensor and R = .

For our purpose, Lagrangian (20) can be conve-
niently rewritten as [9]

(21)

We are interested, in particular, in the situation where at
least one of the particles is considered in the static limit.
In this case, |q2|  q2, and, in the coordinate represen-
tation, we obtain

(22)

LRR
1

960π2 4 d–( )
-------------------------------- g– 42RµνRµν R2+( ),–=

Rµ
ν

LRR
1

1920π2
----------------- q2 42RµνRµν R2+( ).ln–=

LRR
1

3840π3r3
---------------------- 42RµνRµν R2+( ).=
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The next set of diagrams (Fig. 4) refers to the vertex
part. The corresponding effective operator is

(23)

Here and below, Tµν is the spin-independent part of the
total energy-momentum tensor of matter.

We finally consider the diagrams in Fig. 5. The first
two of them, the diagrams in Figs. 5a and 5b, as well as
the diagrams in Figs. 1 and 4, depend only on the
momentum transfer t = q2. As regards the box diagrams
in Figs. 5c and 5d, their contribution is partly reducible
to the same structure as that of the diagrams in Figs. 5a
and 5b. The sum of all these t-dependent effective oper-
ators originating from the diagrams in Fig. 5 is

(24)

The irreducible contribution of the s-channel box
diagram in diagram 5c is

(25)

where m1 and m2 are the particle masses,

and p1 and p2 are the incoming 4-momenta.

LRT
k

8π2r3
------------- 3RµνTµν 2RT–( ), T– Tµ

µ.= =

LTT
k2

πr3
--------T2.=

Ms

k2 s m1
2– m2

2
–( )

2
2m1

2m2
2–[ ]

2

m1
2
m2

2 q2
--------------------------------------------------------------------- q

2

λ2
--------ln=

× 1

s m–
2–( ) s m+

2
–( )

--------------------------------------------
s m–

2–( ) s m+
2

–( )+

s m–
2

–( ) s m+
2–( )–

------------------------------------------------------,ln

m± m1 m2±( ), s p1 p2+( )2,= =

(a) (b)

Fig. 4. Vertex diagrams.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The irreducible contribution Mu of the u-channel
diagram in Fig. 5d is obtained from formula (25) by the
substitution

with the corresponding analytic continuation.

The expressions for Ms and Mu are convergent in the
ultraviolet sense, but diverge in the infrared limit,
depending logarithmically on the “graviton mass” λ. As
usual, such behavior is directly related to the necessity
to cancel the infrared divergence in the bremsstrahlung
diagrams (evidently, the gravitational bremsstrahlung
in the present case). The box diagrams in Figs. 5c
and 5d were considered previously in [23] from a dif-
ferent standpoint.

As regards the three Lagrangians in Eqs. (22)–(24),
by virtue of the Einstein equations

(26)

they can be conveniently combined into

(27)

The irreducible amplitudes generated by the box
diagrams in Figs. 5c and 5d depend nontrivially on s
and u, respectively (in line with their simple depen-
dence on ln|q2|/|q2|. Therefore, they cannot be reduced
to a product of energy-momentum tensors.

5. QUANTUM CORRECTIONS TO METRIC

The effects due to Lagrangian (27) can be conve-
niently interpreted as generated by quantum corrections
to the metric. To obtain these corrections, we split the
total energy-momentum tensor Tµν into those of a static

central body and of a light probe particle,  and tµν ,
respectively. Varying the expression resulting in this
way from (27) with respect to tµν, we then obtain a ten-

s u p1 p2 q––( )2,=

Rµν 8πk Tµν
1
2
---gµνT– 

  ,=

Ltot
k2

60πr3
-------------- 138TµνTµν 31T2–( ).–=

Tµν
0

(a) (b) (c) (d)

Fig. 5. Scattering diagrams.
SICS      Vol. 98      No. 6      2004
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sor that can be interpreted as a quantum correction 
to the metric created by the central body,

(28)

It follows immediately from this expression that

(29)

where M is the mass of the central body.

For the space components  of the metric created
by a heavy body at rest, one might naively expect from
formula (28) that they are given by

However, the calculation of  actually requires a
modification of formula (28). The point is that we work
with gauge condition (4) for the graviton field. It is only

natural to require that the resulting effective field 
should satisfy the same condition, which now simpli-
fies to

The space metric thus obtained is

(30)

Technically, the expression in square brackets
in (29) originates from the terms containing structures
of the type ∂µTµν. Generally speaking, they arise in cal-
culating Lagrangians (23), (24), and (27), but are omit-
ted there because they vanish on mass shell. These
terms are therefore absent in (28). However, they can be
restored by rewriting the net result (27), by means of
Einstein equations (26), as

(31)

and then attaching energy-momentum tensors to the
double wavy lines using graviton propagators (5). The
presence of ln(r/r0), where r0 is some normalization
point, is quite natural here if we recall ln|q2| in the

hµν
q( )

hµν
q( ) k2

15πr3
-------------- 138Tµν

0 31δµνT0–( ).=

h00
q( ) 107

15
--------- k2

πr3
--------T00

0 107
15
---------k2M

πr3
----------,= =

hmn
q( )

31
15
------ k

2

πr3
--------δmnT00

0 31
15
------k2M

πr3
----------δmn.=

hmn
q( )

hmn
q( )

hν µ,
q( )µ 1

2
---hµ ν,

q( )µ– 0.=

hmn
q( ) k2M

πr3
---------- 31

15
------δmn





=

–
76
15
------

rmrn

r2
----------

r
r0
---- 

  δmn 3
rmrn

r2
----------– 

 ln+




.

Ltot
1

3840π3r3
---------------------- 138RµνRµν 31R2–( ),–=
JOURNAL OF EXPERIMENTAL A
momentum representation. Fortunately, this term in the
square brackets does not influence physical effects.

The obtained quantum corrections  and  to
the metric are universal, i.e., the same when created by
a spinless or spinning heavy pointlike particle.

Our results (29) and (30) differ from the correspond-
ing ones in [18]. The main reason is that the contribu-
tion of operator (24) to the metric is absent in [18]. This
omission does not appear logical to us: on mass shell,
one cannot distinguish this operator from other ones
(see (27), (31)). Yet another disagreement is perhaps
due to the same inconsistency: the contribution of oper-
ator (23) to the metric, as given in [18], is two times
smaller than ours.

In addition, the Fourier transformation of
(qmqn/q2)lnq2 is performed in [18] incorrectly, which
gives a wrong result (rmrn/r2 only) for the term in the
square brackets in (30).

In concluding this section, we consider the 0n com-
ponent of tensor (28). It is given by

(32)

where v is the velocity of the source. 
We are interested in the situation corresponding to a

compound central body rotating with the angular veloc-
ity w, but with its center of mass being at rest. The
velocity of a separate element of the body is then given
by v = w × r, where r is the coordinate of this element.
In addition, we must shift r  r + r in formula (32).
Then, following [22, Section 106, Problem 4], we
obtain a quantum correction to the Kerr metric,

(33)

We emphasize that the spin S involved here is in fact
the internal angular momentum of a rotating compound
central body with spinless constituents. We cannot see
any reason why this last quantum correction (33)

should be universal (as distinct from  and ). If,
instead of the compound body discussed here, we deal

with a particle of spin 1/2, the general structure of 
is of course the same, but the numerical coefficient can
be quite different.

The last problem, that of a quantum correction to the
Kerr metric created by a particle of spin 1/2, was
addressed in [18]. However, the treatment of this cor-
rection there raises the same objections: the contribu-

tion of operator (24) to  is missed entirely, and the
corresponding effect of operator (23) is not taken into
account properly.

h00
q( ) hmn

q( )

h0n
q( ) 46

5
------ k2

πr3
--------T0n

0 46
5
------k2Mv

πr3
-------------,–= =

h0n
q( ) 69

5
------ k2

πr5
-------- S r×[ ] .=

h00
q( ) hmn

q( )

h0n
q( )

h0n
q( )
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6. QUANTUM CORRECTIONS
TO GRAVITATIONAL EFFECTS: I

We start with the correction to the Newton law. As
usual, it is generated by the 00 component of metric.
Here, expression (29) gives

(34)

However, in line with (29), we must now take into
account the irreducible contribution of the box dia-
grams in Figs. 5c and 5d, which cannot be reduced to
the metric. Having other applications in mind, we write
the sum of the two amplitudes, retaining in it the terms
of not only the zeroth order in c–2, but also the first
order,

(35)

In the static limit, ω  0, p1p2  m1m2 , expres-
sion (35) reduces to

(36)

Changing the sign (in passing from the amplitude to the
potential) and performing the Fourier transformation,
we obtain [16, 17]

(37)

Thus, the net correction to the Newton law is

(38)

This result was also cross-checked and confirmed
by independent calculation in the standard harmonic
gauge, with the field variables

and the gauge condition

We now consider the quantum correction to the
interaction of the orbital momentum l of a light particle
with its own spin s, i.e., to the gravitational spin–orbit
interaction. It is most easily obtained with the general
expression for the frequency w of the spin precession in
a gravitational field derived in [24]. For a nonrelativis-

Uqr r( ) 107
30
---------k2Mm

πr3
---------------.=

Ms Mu+ k2m1m2 q2 ω2–( )ln–=

×   2
3
--- 23

524
5

--------- 
p

 
1 
p

 
2 

m
 

1 
m

 
2 

–
 

m
 

1
 

m
 

2
 ------------------------------+   

  .

Ms Mu
46
3
------k2m1m2 q2.ln–+

Uqi r( ) 23
3
------k2Mm

πr3
---------------.–=

Uq r( ) 41
10
------k2Mm

πr3
---------------.–=

ψµν g– gµν δµν–=

∂µψµν 0.=
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tic particle in a weak static centrally symmetric field,
this expression simplifies to

(39)

where

are the Ricci rotation coefficients and v is the particle
velocity (the present sign convention for w is opposite
to that in [24]). A simple calculation results in

(40)

Finally, with formula (33), we easily derive the
quantum correction to the interaction of the orbital
momentum l of a light particle with the internal angular
momentum (spin) S

 

 of a compound central body, i.e., to
the Lense–Thirring effect,

(41)

7. AN ASIDE 
ON CLASSICAL RELATIVISTIC CORRECTIONS

In this section, we first consider the classical veloc-
ity-dependent correction to the Newton law. On the one
hand, this is an introduction to the derivation of quan-
tum velocity-dependent corrections in the next section.
On the other hand, this is necessary for the discussion
of another, velocity-independent relativistic correction
to the Newton law. The derivation of the classical
velocity-independent correction via the diagram tech-
nique served in [16, 17] as a check of calculations of
quantum corrections to the Newton law.

We consider the Born scattering amplitude with the
graviton exchange in the harmonic gauge,

(42)

where  are the energy-momentum tensors of parti-
cles with the respective masses 

 

m

 

1, 2

 

 and velocities 

 

v

 

1, 2

 

.
To the adopted accuracy, the numerator simplifies to

We then expand the denominator to the first order

ωi
1
2
---εimn γmnkv k γ0n0v m+( ),=

γmnk
1
2
--- ∂mhnk ∂nhmk–( ), γ0n0

1
2
---∂nh00–= =

Uls
q r( ) 169

20
--------- k2

πr5
--------M

m
----- l s⋅( ).–=

ULT
q r, r( ) 69

5
------ k2

πr5
-------- l S⋅( ).–=

MB 8πk
Tµν

1 Tµν
2 1/2( )Tµµ

1 Tνν
2–

q2 ω2–
-----------------------------------------------------,=

Tµν
1 2,

1
2
---T00

1 T00
2 2T0n

1 T0n
2–

m1m2

2
------------- 1 4v1 v2⋅–( ).=
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in ω2/q2 and thus arrive at the expression

The term of the zeroth order in c–2 in this formula,
4πkm1m2/q2, is obviously (after the necessary sign
reversal) the Fourier transform of the Newton potential.
However, we are interested here in the terms of the first
order in c–2. To transform ω2/q2, we note that ω is in fact
the energy difference between the initial and final ener-
gies of a particle. The particles can now be considered
nonrelativistic, and this difference therefore transforms
(to the first order in p' – p) as follows:

Therefore, the terms of the first order in c–2 are rewrit-
ten as

The Fourier transform of this expression, taken with
the opposite sign, is the well-known relativistic velo-
city-dependent correction to the Newton potential [19,
20, 22]

(43)

We here essentially follow the derivation by Iwasaki [21].
At least equally simple is the derivation of the rela-

tivistic velocity-independent correction to the Newton
potential. In the harmonic gauge, the metric created by
a pointlike mass m1 is

(44)

In the expansion in rg of the classical action –m2  for

a probe particle of mass m2, the second-order term is

−k2 m2/2r2. Now, reversing the sign (to pass from
a Lagrangian to a potential) and restoring the symme-
try between m1 and m2 , we arrive at the discussed cor-
rection

(45)

4πkm1m2

q2
----------------------- 1 4v1– v2

ω2

q2
------+⋅ 

  .

ε' ε– p' p–( ) v.⋅=

4πkm1m2

q2
----------------------- 4v1– v2

q v1⋅( ) q v2⋅( )
q2

-----------------------------------+⋅ .

Uvv
cl km1m2

2r
---------------- 7v1 v2 n v1⋅( ) n v2⋅( )+⋅[ ] ,=

n
r
r
--.=

ds
2 r km1–

r km1+
------------------ t2d=

r km1+
r km1–
------------------dr2–

– r km1+( )2
dθ2 θ φ2dsin

2
+( ).

sd∫
m1

2

Ucl k
2
m1m2 m1 m2+( )

2r2
-------------------------------------------.=
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The classical correction (45) was found long ago
in [19, 20] (see also the textbook [22, Section 106]) and
was derived later in [21] by calculating the correspond-
ing parts of the diagrams in Figs. 4b and 5b–5d in
the harmonic gauge. A subtle point of the last calcula-
tion [21] refers to the box diagrams in Figs. 5c and 5d.
Obviously, the classical c–2 contribution of these dia-
grams, in particular, contains the result of iteration of
the usual Newton interaction and the velocity-depen-
dent interaction (43). Therefore, the result of this itera-
tion should be subtracted from the sum of the contribu-
tions of the diagrams in Figs. 4b and 5b–5d. This has
been done properly by Iwasaki [21].

However, Bjerrum-Bohr, Donoghue, and Holstein
argue (see Section 2.1 in [17]) that, in the scattering
problem, as distinct from the bound-state one, this sub-
traction is unnecessary. They claim that there is a differ-
ence between what they call “the lowest order scatter-
ing potential” without this subtraction, and the classical
correction Ucl, which they call the bound state potential.
For our part, we do not see any difference of principle
between the bound state problem and the scattering
one2 and therefore we believe that it is just (45) that
should be considered as a relativistic correction to the
Newton law, both in the scattering and bound-state
problems.

8. QUANTUM CORRECTIONS
TO GRAVITATIONAL EFFECTS: II

We now address the quantum correction to the clas-
sical velocity-dependent gravitational interaction (43).
We start with the amplitude (27) written in the momen-
tum representation,

(46)

Unlike with the previous quantum corrections, we here
go beyond the static approximation and, in the spirit of
the previous section, expand

to the first order in ω2. Following the same lines of rea-
soning further, we easily obtain the quantum velocity-
dependent correction

(47)

2 For instance, the second Born approximation is as legitimate a
notion to a scattering amplitude as is the second-order correction
to a bound state energy.

Ltot
k

2

30
------ q

2
138TµνTµν 13T2–( ).ln=

q2ln q2 ω2–( )ln=

Uvv
q r, r( )

k2m1m2

60πr3
------------------–=

× 445 v1 v2⋅( ) 321 n v1⋅( ) n v2⋅( )+[ ] , n
r
r
--.=
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With formula (47), we can derive (in the spirit
of [22, Section 106, Problem 4]) the quantum correc-
tion to the spin–spin interaction of compound bodies 1
and 2 rotating with the angular velocities w1 and w2,
but with their centers of masses at rest. The velocity of
a separate element of the body i is then given by vi =
wi × ri, where ri is the coordinate of this element counted
off the center of mass of this body. In formula (47), where
r = r1 – r2, we then shift

Again following [22], we thus obtain

(48)

where Si are the internal angular momenta (spins) of the
rotating compound central bodies.

We note that quantum correction (41) to the Lense–
Thirring effect can also be derived in the same way.

We finally consider the corresponding corrections
induced by irreducible amplitude (35), which is now
conveniently rewritten as

(49)

This amplitude also generates quantum corrections to
the velocity-dependent, Lense–Thirring, and spin–spin
interactions. The calculations are practically identical
with the previous ones, and give the respective correc-
tions

(50)

(51)

(52)

r r r1 r2.–+

Uss
q r, r( ) 69

10
------ k2

πr5
-------- 3 S1 S2⋅( ) 5 n S1⋅( ) n S2⋅( )–[ ] ,=

n
r
r
--,=

Ms Mu+ k2m1m2 q2 ω2–( )ln–=

× 2
3
--- 23

524
5

---------v1 v2⋅– 
  .

Uvv
q irr, r( )

=  
k2m1m2

10πr3
------------------ 311 v1 v2⋅( ) 115 n v1⋅( ) n v2⋅( )+[ ] ,

ULT
q irr, r( ) 262

5
--------- k

2

πr5
-------- l S⋅( ),=

Uss
q irr, r( )

=  
131
5

--------- k
2

πr5
-------- 3 S1 S2⋅( ) 5 n S1⋅( ) n S2⋅( )–[ ] .–
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Now, combining these contributions with those
originating from quantum corrections to the metric, we
finally obtain

(53)

(54)

(55)

Note added in proofs. After submitting our manu-
script to the journal, we became aware that the problem
of long-range quantum corrections in gravity was also
addressed by D. Dalvit and F.D. Mazzitelli [Phys. Rev.
D 56, 7779 (1997); E-print archives hep-th/9708102].
In particular, they found the contribution of the vacuum
polarization diagrams 1a, b to the metric and to the
Newton law.
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Abstract—Self-induced transparency is analyzed for optical pulses interacting with a two-level system by
solving an integrable system of evolution equations without using the slowly varying envelope approximation.
A suitable modification of the inverse scattering method is developed to find soliton solutions. The characteris-
tics of linearly and circularly polarized optical solitons (including those created in a laser) are compared. To
assess the scope of the two-level model, the effects due to additional levels are analyzed in the adiabatic approx-
imation. It is shown that these effects violate the integrability of the model and lead to loss of self-induced trans-
parency for pulses with duration comparable to oscillation period. However, self-induced transparency is recov-
ered in the quasi-monochromatic limit. Applications of the results are discussed. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Generation and evolution of femtosecond pulses
with a duration comparable to the oscillation period
2π/ω0, where ω0 is a transition frequency, are the sub-
jects of ongoing research motivated by applications in
various branches of physics (e.g., see reviews in [1–4]).
The applicability of the two-level model to such pulses
requires that the resonant frequency be well separated
from other frequencies [5–12]. The applicability condi-
tions are improved if the dipole moment corresponding
to the resonant transition is larger than those of the
nearest transitions [6].

It was noted in various publications that the theoret-
ical methods developed for analyzing femtosecond
optical-pulse propagation do not meet the requirements
dictated by experiment. In particular, pulse dynamics
are analyzed by using the slowly varying envelope
approximation with small corrections allowing for
deviations from this approximation [3]. In [13], numer-
ical methods were applied to solve the semiclassical
Maxwell–Bloch (MB) equations. In those and other
studies, self-induced transparency was analyzed for lin-
early polarized pulses interacting with a two-level sys-
tem. However, numerical methods may not provide a
sufficiently detailed and reliable characterization of
dynamics governed by complicated systems of equa-
tions, such as the Maxwell–Bloch system describing
femtosecond optical pulse propagation.

The period of a light wave with a wavelength of
780 nm is about 2.6 fs. Currently, the Ti:sapphire laser
can be used to generate 7.5-fs pulses [7] and 4.5-fs with
the use of a fiber-optic pulse compressor [8]. These
pulse durations are only a few times longer than the
oscillation period. Therefore, their dynamics cannot be
analyzed by using solutions obtained in models with
1063-7761/04/9806- $26.00 © 1073
slowly varying amplitudes and phases as zeroth
approximations. However, these pulses are not short
enough to justify the use of the ultrashort-pulse (USP)
approximation, which is applicable if τp ! π/ω0 (e.g.,
see [9–12]), and reduce the original Maxwell-Bloch
system to simpler equations. Some authors noted that
this approximation is not realistic in the optical fre-
quency range [12]. For this reason, simplifying approx-
imations other than the condition τp ! π/ω0 should be
employed. In this paper, the unidirectional approxima-
tion is used, in combination with other conditions, to
reduce the Maxwell–Bloch equations to an integrable
form. Accordingly, appropriate localized solutions to
these evolution equations are called unidirectional
pulses (UDPs). The concept of UDP was recently
developed in [14], where the vector Maxwell equations
were solved numerically without using the slowly vary-
ing envelope approximation.

It is well known that the most detailed analytic solu-
tions describing pulse evolution can be obtained for
integrable models by the inverse scattering method
(ISM) [15]. The well-studied integrable models are
based on the MB systems describing dynamics of
quasi-monochromatic pulse propagation (see [4] for
review and [16] for details of ISM as applied to the MB
system for a degenerate two-level system). Self-
induced transparency for UDPs in a nondegenerate
two-level system was analyzed in [17], where the orig-
inal system was simplified to obtain reduced Maxwell–
Bloch (RMB) equations that can be solved by ISM.
In [17], the RMB equations were derived for a low-den-
sity active medium instead of the slowly varying enve-
lope approximation, which corresponds to unidirec-
tional propagation. However, all of these results corre-
spond to linearly polarized fields and do not apply to
2004 MAIK “Nauka/Interperiodica”
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transitions with moments changing by unity and to cir-
cularly polarized UDPs. The only exception is the par-
ticular soliton solution to the Maxwell–Bloch system
found in [11] for a circularly polarized USP interacting
with a two-level nondegenerate system. However, anal-
yses of multisoliton propagation and other cases of self-
similar dynamics of circularly polarized UDPs based
on solutions of the initial–boundary value problems for
appropriate systems of equations are by no means less
important. It should be emphasized that the applicabil-
ity conditions imposed in the theory are much less strin-
gent for UDP as compared to USP propagation, which
is essential for optical pulses. Moreover, the results pre-
sented below can readily be used to show that the theo-
ries of USP and quasi-monochromatic pulse propaga-
tion are formally subsumed under the UDP propagation
theory as its special cases.

The analysis presented in this paper is focused on
the dynamics of interaction between a unidirectional
femtosecond pulse and a two-level system consisting of
atoms with a σ transition, in which the magnetic-
moment projection changes by unity (∆m = ±1). The
corresponding dipole matrix element is a complex
quantity:

(see [18]). Here, ex and ey are the unit basis vectors of a
Cartesian coordinate system. A laser pulse resonant
with this transition is circularly polarized [18].

Note that the unidirectional approximation applied
in this study to the Maxwell-Bloch equations for circu-
larly polarized field leads to evolution equations having
qualitatively different properties, as compared to the
equations derived in the slowly varying envelope
approximation. As noted in [1], this is an essential dis-
tinction between the problems of circularly and linearly
polarized pulse propagation. In the latter case, the evo-
lution equations derived by using the slowly varying
envelope and unidirectional approximations are related
by simple transformations. Accordingly, the ISM appa-
ratus developed for circularly polarized UDPs is sub-
stantially different from the technique applied to the
MB equations derived in the slowly varying envelope
approximation.

The technique is based on an analysis of the dynam-
ics of circularly polarized UDPs interacting with a two-
level system described by a new integrable system of
equations proposed in [19]. The exact solutions
obtained are used to compare the shapes of circularly
and linearly polarized UDPs, including those propa-
gating in a two-level laser medium with continuous
pumping.

It was mentioned above that the two-level model
frequently employed in analyses of the evolution of
few-cycle pulses is valid under relatively stringent con-
ditions. In particular, the separation from the nearest
level must be at least several times greater than the

d dxex idyey–=
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spectral pulse width. Applicability conditions for the
two-level model in this problem were analyzed numer-
ically in [20]. However, the specific results obtained in
that study cannot be used to examine UDP dynamics
when the influence of additional levels is taken into
account. In this paper, an adiabatic approximation is
invoked to show that interaction between the field and
additional levels leads to violation of integrability for
relatively short pulses. Furthermore, the model con-
structed here provides qualitative explanations for
some well-known experimental observations.

The paper is organized as follows. In the next sec-
tion, the basic system of equations describing the
dynamics of a circularly polarized wave in a nondegen-
erate medium is derived. In Section 3, the most general
integrable reduced system is derived from the basic sys-
tem and an appropriate ISM apparatus for finding soli-
ton solutions is developed. In Section 4, pulse amplifi-
cation in a laser is analyzed. In Section 5, the contribu-
tion due to interaction between pulses and additional
levels is examined. Section 6 presents a discussion of
the results and their applications.

2. DERIVATION OF THE BASIC SYSTEM
OF EQUATIONS

The semiclassical theory of interaction between
radiation and a two-level system was developed, in par-
ticular, in [21]. The Heisenberg equation for the opera-

tor  describing a two-level system is written as fol-
lows (e.g., see [18]):

(1)

with

(2)

where

is the dipole moment operator,  denotes the Pauli

matrices (n = 1, 2, 3), and  is the electric field opera-
tor. If the electromagnetic wave is elliptically polarized,
then dx, y ≠ 0.

A circularly polarized field stimulates transitions in
which the magnetic-moment projection changes by
unity. These transitions can be observed in a two-level
system with the following optical transition between
magnetic sublevels:

,

where subscripts “l” and “u” correspond to the lower
and upper sublevels, respectively. For example, this can

Ŝ

i"∂tŜ Ŝ *̂,[ ] ,=

*̂
1
2
---ω0σ̂3 dx Ê⋅( )+ σ̂1 dy Ê⋅( )σ̂2,+=

d̂ dxσ̂1 dyσ̂2+=

σ̂n

Ê

J l 1/2 Ju 1/2= =
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be the 2S1/2–  transition in sodium vapor [18, 22].
When an elliptically polarized field interacts with a
two-level system, transitions with ∆M = ±1 should be
taken into account:

Suppose that the initial populations of the {Jl = 1/2,
Ml = 1/2} and {Jl = 1/2, Mu = ±1/2} sublevels is zero
and the population of the {Jl = 1/2, Ml = –1/2} sublevel
equals the total population of all sublevels. Then, it can
readily be shown that there exists a stable solution cor-
responding to zero populations of the {Jl = 1/2, Ml =
1/2} and {Ju = 1/2, Mu = –1/2} sublevels at an arbitrary
instant. Therefore, the contribution of the transition

can be neglected.

The analysis that follows is restricted to interaction
between the transition

and an optical pulse of a width comparable or greater than
the inverse frequency of this transition. The correspond-
ing Bloch equations for this two-level system is [18]

(3)

(4)

(5)

where

ω0 is the transition frequency, and %x and %y are the
projections of the polarization vector. The term W in
Eq. (5) represents the pumping of the upper level (see
details in Section 4). The components of the Bloch vec-
tor S can be expressed in terms of the density matrix 
for a two-level system:

P2 0
1/2

J l 1/2 M l 1/2–=,={ } Ju 1/2= Mu 1/2=,{ } ,

J l 1/2 M l 1/2=,={ } Ju 1/2= Mu 1– /2=,{ } .

Jl 1/2 Ml 1/2=,={ } Ju 1/2= Mu 1– /2=,{ }

Jl 1/2 Ml 1/2–=,={ } Ju 1/2= Mu 1/2=,{ }

∂Sx

∂t
-------- ω0Sy– ω0 f y%ySz,+=

∂Sy

∂t
-------- ω0Sx ω0 f x%xSz,–=

∂Sz

∂t
-------- ω0 f x%xSy f y%ySx–( ) W z( ),+=

f x y( ) dx y( )"
1– ω0

1– ,=

ρ̂

Sz
1
2
--- ρ11 ρ22–( ), Sx

1
2
--- ρ12 ρ21+( ),= =

Sy
i
2
--- ρ12 ρ21–( ).=
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Here,

i.e., the total population is normalized to unity:

When W = 0, the magnitude of S is a conserved quan-
tity:

The Maxwell equations for the field components are
obtained as projections on the corresponding axes:

(6)

(7)

where c is the speed of light in a medium with density n.
The simplest soliton solution to (3)–(7) was found

in [11] under conditions corresponding to USP propa-
gation. The system of equations is simplified in the uni-
directional approximation, which is widely used in
fluid dynamics. It was applied to obtain reduced Max-
well–Bloch equations in [17]. The approximation is
based on the following considerations. Frequently, the
density of active atoms or molecules in a real medium
is low enough to set

where e is a small parameter. In other words, the nor-
malized density of two-level atoms is similar in order of
magnitude to the derivatives ∂z + c–1∂t of the field polar-
ization. Accordingly, the contribution due to the coun-
terpropagating wave can be neglected. The resulting
system of equations describes UDP propagation with a
group velocity comparable to the speed of sound in the
medium. 

The system of equations (3)–(7) describing UDP
propagation can be written as

(8)

Sz
2 Sx

2 Sy
2+ + 1;=

2S0 ρ11 ρ22+ 1.= =

∂tS0 0.=

∂2%x

∂z2
-----------

1

c2
----

∂2%x

∂t2
-----------–

4πdx

c2
------------

∂2Sx

∂t2
----------,=

∂2%y

∂z2
-----------

1

c2
----

∂2%y

∂t2
-----------–

4πdy

c2
------------

∂2Sy

∂t2
----------,=

∂z c 1– ∂t– O e( ),+≈

∂Sx

∂τ̃
-------- Sy– EySz,+=

∂Sy

∂τ̃
-------- Sx ExSz,–=

∂Sz

∂τ̃
-------- ExSy EySx– h χ( ),+=

∂Ex

∂χ
---------

∂Sx

∂τ̃
--------,=

∂Ey

∂χ
--------- r2∂Sy

∂τ̃
--------,=
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where

3. INVERSE SCATTERING METHOD

System (8) extends the model proposed in [19] to
the case of arbitrary continuous pumping. For an
arbitrary real r, is can be written in the Lax representa-
tion as

(9)

(10)

where

are Jacobi ellipsoidal functions, ζ is a spectral parame-
ter, and r is the modulus of a Jacobi function. When
pumping is allowed for, the spectral parameter ζ
depends on the variable χ defined by the equation

(11)

where

for any real r. It should be noted here that the case of
r = 0 is described by the limit form of Eq. (11) obtained
as r  0.

The algebraically parameterized Lax representation
is simpler and, therefore, better suited for application of
ISM. It can be found separately for three nonoverlap-
ping subdomains of r: for r2 = 1 (isotropic case), for
r = 0 (extremely anisotropic case), and for r2 ≠ 0, 1.

Note that the case of r = 0 and Ey ≡ 0 corresponds to
propagation of a linearly polarized UDP. If r = 0 and
Ey ≡ const ≠ 0, then Eqs. (8) can be transformed into a

r dy/dx, Ex y( ) f x y( )%x y( ), τ̃ ω0 t c 1– z–( ),= = =

χ z2πndx
2

c"( ) 1– , h χ( )– Wω0
1– .= =

∂τ̃Φ
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2
---=

× icndn– dnEx icnEy–
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Φ,

∂χΦ 1

2sn2
----------=

× icndnSz– dnSx icnSy–

dnSx– icnSy– icndnSz 
 
 

Φ,

sn sn ζ r,( ), cn cn ζ r,( ) 1 sn2– ,= = =

dn dn ζ r,( ) 1 r2sn2–= =

∂λ
∂χ
------

2r2h χ( )λ–

1 r2 1 r2–( )2
4r2λ2+–+

----------------------------------------------------------------,=

λ cn ζ r,( )dn ξ r,( )=
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set of RMB equations for a linearly polarized field
interacting with a two-level system. Indeed, define a
new Bloch vector R = (Rx, Ry, Rz) as follows:

(12)

where

Then, Eqs. (8) are rewritten as

(13)

(14)

(15)

(16)

where hν0 is the rate of pumping of the upper level for
a two-level system with transition frequency ν0. The
Lax representation for Eqs. (13)–(16) with pumping is
well known [23, 24]. Hereinafter, it is assumed that
h(χ) = 0. The case of h(χ) ≠ 0 is considered in Section 4.

In the isotropic case, spectral problem (9) is similar
to the Kaup–Newell problem [25] with spectral param-

eter  = cn = dn. When r = 0, it reduces to the
Zakharov–Shabat problem [15] with spectral parameter

 = cn and with –i Ey added to a real potential ±Ex ,
where Ey is an arbitrary real function of .

Suppose that r2 ≠ 1 and r ≠ 0, in which case the
spectral parameter ζ can be replaced by ξ by using the
relation

As a result, the Lax representation for system (8)
becomes

(17)

(18)

Rx Sx, Ry

Sy EySz–
ν0

---------------------, Rz

EySy Sz+
ν0

----------------------,= = =

ν0 1 Ey
2+ .=

∂τ̃ Rx Ryν0,–=

∂τ̃ Ry Rxν0 ExRz,–=

∂τ̃ Rz ExRy hν0,+=

∂χEx ν0Ry,=

λ̃

λ̃ λ̃
τ̃

cn ζ r,( ) 1 r2– ξ ξ 1––( ) 2r( ) 1– .=

∂τΦ
i ξ2 1

ξ2
-----– 

 – ξE*
1
ξ
---E+

ξE–
1
ξ
---E*– i ξ2 1

ξ2
-----– 

 
 
 
 
 
 
 
 

Φ,=

∂χΦ 2r2 1 r2–( )3/2ξ2

4r2 1 r2–( )ξ2 1– r2–[ ] 2
–

---------------------------------------------------------------=

×
i
κ
r
--- ξ2 1

ξ2
-----– 

  Sz– ξS*
1
ξ
---S+

ξS–
1
ξ
---S*– i

κ
r
--- ξ2 1

ξ2
-----– 

  Sz

 
 
 
 
 
 
 

Φ ÂΦ,≡
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where

In the limit cases corresponding to the extreme val-
ues of ξ and a constant r, problem (17) reduces to the
spectral problems mentioned above. In particular, as
ξ  0 (or ξ  ∞), spectral problem (17) reduces to
the Kaup–Newell problem [25] if only the terms pro-
portional to ξ1 and ξ2 (or ξ–1 and ξ–2, respectively) are
retained. When the spectral parameter is represented as

ξ = 1 + , spectral problem (17) reduces to the
Zakharov–Shabat problem [15] with the addition of

−i Ey if  !  and only terms of the zeroth and first

degrees in  are retained.
Since spectral problem (17) contains only the pow-

ers ±1 and ±2 of the spectral parameter, the ISM asso-
ciated with this problem must be related to the tech-
nique previously developed for related spectral prob-
lems for the Thirring equation [26], the nonlinear
Schrödinger equation [25], and the Maxwell–Bloch
system allowing for the nonlinear Stark effect [27].
Therefore, this presentation is restricted to the basic
elements of the ISM for a potential E rapidly decaying
toward infinity together with its derivatives.

Solutions to (17) have the following symmetries:

(19)

where

κ 1 r2– /2, E rEx/κ iEy/κ ,+= =

S Sx iSy/r, τ+ κ2τ̃ / 2r( ).= =

ξ̃

ξ̃ ξ̃
2

ξ̃
ξ̃

Φ M̂Φ ξ*( )*M̂
1–
,=

M̂ 0 1

1– 0 
 
 

=
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and

(20)

The standard Jost functions Φ± are defined as solutions
to (17) having the asymptotic form

(21)

where

Symmetry (19) entails the following matrix form of the
Jost functions:

These solutions are related by a scattering matrix :

(22)

Its dependence on χ is determined by the equation

(23)

The Jost function can be represented as

Φ ξ*( )* Φ ξ 1–( ).=

Φ± iΛσ̂3τ–( ), τ ∞ ,±exp=

Λ ξ 2 ξ 2– .–=

Φ± ψ1
± ψ2

±*–

ψ2
± ψ1

±* 
 
 
 

.=

T̂

Φ– Φ+T̂ , T̂ a* b

b*– a 
 
 

.= =

∂χT̂ T̂ iσ̂3Λτ–( ) Â τ ∞–=( ) iσ̂3Λτ( )expexp–=

+ iσ̂3Λτ–( ) Â τ ∞=( ) iσ̂3Λτ( )T̂ .expexp
(24)

Φ+ τ( ) iσ̂3 Λτ µ τ( )+[ ]–{ }exp=

+
Q1 τ s,( ) ξ 2– Q2 τ s,( )+[ ] iµ τ( )–( )        exp  ξ K 1 τ s ,( ) ξ 

1–
 K 2 τ s ,( ) + [ ] i µ τ( ) – ( ) exp–  

ξ

 

K

 

˜

 

1

 

τ

 

s

 

,( ) ξ

 

1–

 

K

 

˜

 

2

 

τ

 

s

 

,( )

 

+

 

[ ]

 

i

 

µ τ( )( )        Q 1 * τ s ,( ) ξ 
2– Q 2 * τ s ,( ) + [ ] i µ τ( )( )     expexp   

 
 

 
i

 
σ

 
ˆ

 
3

 
Λ

 
s

 
–

 
( )
 

s
 

,
 

d
 

exp
 τ

∞

 ∫
with a function µ(τ) (independent of the spectral
parameter) to be specified below. Substituting (24)
into (17) and using the symmetries of the Jost func-
tions, one obtains

K̃1 2, K1 2,* .=
The kernels K1, 2 and Q1, 2 must satisfy the con-
ditions

(25)

(26)

K1 2, τ s,( )
s ∞→
lim 0,=

Q1 2, τ s,( )
s ∞→
lim 0.=
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By substituting (24) into (17), relations between the
potential and the kernels are obtained:

(27)

(28)

Hence,

(29)

Substituting the components of the matrix Φ into
(22), integrating the results, with weights ξmexp(iΛτ)
(m = 0, –1, –2), along the contour Γ shown in Fig. 1, and
using the relations

(30)

(31)

we obtain the Marchenko equations

(32)

(33)

E* τ χ,( ) 2K1 τ τ χ, ,( ) 2iµ–( ),exp=

E τ χ,( ) 2K2 τ τ χ, ,( ) 2iµ–( ).exp=

µ χ τ,( ) i
4
---

K1 τ τ χ, ,( )
K2* τ τ χ, ,( )
---------------------------.ln–=

ξm iΛτ( ) ξdexp

Γ
∫ 4πδ τ( ), m 1 3,–,= =

ξ2m iΛτ( ) ξdexp

Γ
∫ 0, m 1/2 0 1 2,±,±, ,–= =

K1 τ y,( ) F0 τ y+( ) Q1 τ s,( )F0 s y+( )[
τ

∞

∫+=

+ Q2 τ s,( )F–1 s y+( ) ]ds,

K2 τ y,( ) F 1– τ y+( ) Q1 τ s,( )F 1– s y+( )[
τ

∞

∫+=

+ Q2 τ s,( )F 2– s y+( ) ]ds,

Im ξ2 > 0

Im ξ2 < 0Im ξ2 > 0

Im ξ2 < 0

Re ξ

Im ξ

+ –

+

+
+
–

–

–

Fig. 1. Contour Γ follows the paths indicated by arrows
along the axes and lies above and below the poles in the first
and third quadrants, respectively.
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(34)

(35)

where y ≥ τ, and the kernel F has the form

(36)

with

Hereinafter, we consider only the soliton spectrum,
which consists of isolated nondegenerate poles ξk in the
ξ plane. Expression (36) for the kernel is written out
without using the symmetries of the problem. Symme-
tries (19) and (20) can be taken into account by combin-
ing the poles ξk into pairs in Fm: {ξk, 1/ }. The poles
making up a pair obviously coincide on the unit circle.
Then, the soliton part ^m of a kernel Fm is rewritten as

(37)

where

Expression (37) implies that

(38)

The simplest soliton solution corresponds to the
case of a single pole ξ1 lying in the first or third quad-
rant. The asymptotic conditions correspond to stable
states with

Q1 τ y,( ) K1 τ s,( )F1* s y+( )[
r

∞

∫–=

+ K2 τ s,( )F0* s y+( ) ]ds,

Q2 τ y,( ) K1 τ s,( )F0* s y+( )[
r

∞

∫–=

+ K2 τ s,( )F 1–* s y+( ) ]ds,

Fm y χ,( ) b χ( )
a χ( )
-----------ξ2m iΛy–( )exp

2π
----------------------------------- ξd

∞–

∞

∫=

– i
ξk

2mb χ ξ k,( ) iΛky–( )exp
a' χ ξ k,( )

---------------------------------------------------------,
k

∑

Λk ξk
2 ξk

2– , a' ξk χ,( )– da ξ χ,( )
ξd

--------------------
ξ ξ k=

.= =

ξk*

^m y( ) ηky( )exp
k

∑=

× ξk
2m 1+ Ck y χ ξ k, ,( ) ξk*

2m– 1–
Ck* y χ ξ k, ,( )–[ ] ,

Ck y χ ξ k, ,( )
ibk χ ξ k,( )–

ξka' χ ξ k,( )
-------------------------- iζ ky( ),exp=

ηk ImΛk, ζ k ReΛk.–= =

^0 y( ) ^ 1–* y( ), ^1 y( )– ^ 2–* y( ).–= =

E ∞± χ,( ) 0, Sz ∞± χ,( ) 1.–= =
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By virtue of (20), the single pole ξ1 is subject to the
condition |ξ1| = 1. By setting

Eqs. (23), (32)–(36) are solved to find the one-pole
solution

(39)

where

The relations between kernels that follow from (27) and
(28) entail a phase constraint: φ1 = 0, π. The phase
dependence of the soliton shape and position is illus-
trated by Fig. 2.

Note that the two-pole solution corresponding to the
pair {ξ1, 1/ } is not subject to any condition for ξ1. To
find this solution, the kernels are represented as

(40)

(41)

where

and Eqs. (32)–(35) are solved, with C1 expressed as a
function of χ. The resulting expressions for kernels are

(42)

(43)

ξ1
2

iφ1( ), φ1 R,∈exp=

E τ χ,( )
2 φ1sin iγ1 iφ1/2–[ ]exp–

4 φ1θsin γ2 iφ1/2–+[ ]cosh
---------------------------------------------------------------------,=

θ τ κχ

2 r2 φ1/2( )cos
2 φ1/2( )sin

2
+

----------------------------------------------------------------------,+=

γ1

ic1–
2a' ξ1( )
-----------------, γ2arg c1

2a' ξ1( )
----------------- .ln= =

ξ1*

K1 2, x y,( ) h1 2,
+ x( ) ηy iζy+( )exp=

+ h1 2,
– x( ) ηy iζy–( ),exp

Q1 2, x y,( ) g1 2,
+ x( ) ηy iζy+( )exp=

+ g1 2,
– x( ) ηy iζy–( ),exp

η ImΛ1, ζ ReΛ1,–= =

K2 χ χ τ, ,( )

=  
c1ξ1

1– X θ iθ1+( )exp c1*ξ1*X* θ iθ1–( )exp–
D

---------------------------------------------------------------------------------------------------------,

K1 χ χ τ, ,( )

=  
c1ξ1X θ iθ1+( )exp c1*ξ1*

1–
X* θ iθ1–( )exp–

D
-------------------------------------------------------------------------------------------------------------,
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where

Then, (29), (42), and (43) are used to obtain

(44)

Soliton solution (44) has an internal degree of free-
dom manifested in oscillations analogous to the oscilla-

X τ χ ξ 1, ,( ) 1 A Z̃–
β̃ ξ1

4 1+( )
ξ1

4η
--------------------------- β̃µ* βµ–( ),+ +=

D 1 A2 Z2 Z̃
2
, θ––+ ητ ImΩ1χ ,+= =

θ1 ζτ ReΩ1χ ,+=

A
β θ( )β̃ θ( ) 1 ξ1

4+( )2

2η ξ 1
2( )

2
--------------------------------------------------, Z 2µ θ1( )β θ( ),= =

Z̃ 2µ θ1( )β̃ θ( ),=

β θ( ) 2ηθ( )c1ξ1
1– , β̃ θ( )exp 2ηθ( )c1*ξ1*,exp= =

C1 χ ξ 1,( ) c1 ξ1( ) 2iΩ1χ–( ),exp=

µ θ1( )
2iθ1( )exp

2 η iζ+( )
-------------------------,=

Ω1

r 1 r2–( )2 ξ1
4

1–( )S3 ∞– 0,( )

4r2 1 r
2

–( )ξ1
2 1– r2–[ ]

2
–

------------------------------------------------------------------.=

E χ τ,( ) 2i–=

×
c1ξ1X θ1( )exp c1*ξ1*

1–
X* θ1–( )exp–

DD*
----------------------------------------------------------------------------------------- θ( ).exp

0

14

12

10

8

6

4

0 0.5 1.0 1.5 2.0 2.5 3.0

2

τ

I

Fig. 2. Soliton intensity I = |E|2 given by (39) versus τ for
φ1 = π/4 (thick curve), φ1 = π/2 (dashed curve), and φ1 =
3π/4 (thin curve).
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tory behavior of a breather described by the sine-Gor-
don equation. However, as well as the solution pre-
sented above, this solution has an arbitrary amplitude
for a finite ξ1. This is a qualitative distinction of the
solution obtained here from solutions to the Maxwell–
Bloch equations for a linearly polarized field.

4. THE LIMIT OF ISOTROPIC INTERACTION

As noted above, the isotropic case indicated above
corresponds to ξ  ∞. Formally, as r  1 and ξ 
∞, we have

and

in the Lax representation given by (9) and (10), where
λ is a spectral parameter. It is clear that symmetry (20)
does not hold in this limit. The corresponding March-
enko equations can also be obtained in this limit.

Alternatively, both Lax representation and ISM
equations can be found directly for system (8) for an
arbitrary value of the spectral parameter by setting r2 =
1. These equations are formally identical to those
derived in [25] for the nonlinear Schrödinger equation.
However, the difference of the ISM equations for sys-
tem (8) from those obtained in [25] lies in the scattering
matrix as a function of χ and λ = cn(ζ, 1).

In particular, the Marchenko equations have the
form

(45)

(46)

where y ≥ τ and the kernel ^m has the form

(47)

As the Marchenko equations (32)–(35) are reduced
to (45) and (46), the following correspondence between

1 r2– ξ ξ 1––( ) 2r( ) 1– λ ,

ξE* ξ 1– E λ Ex iEy–( ),+

dn λ , cn λ , sn
2

1 λ 2
,–

_1* τ y,( ) ^0 τ y+( ) 41 τ s,( )^0 s y+( ) s,d

τ

∞

∫+=

41* τ y,( ) _1 τ s,( )^1 s y+( ) s,d

τ

∞

∫–=

^m y χ,( ) b χ( )
a χ( )
-----------λ2m iξ2y–( )exp

2π
------------------------------------ ξd

∞–

∞

∫=

– i
λ k

2mck χ( ) iλ k
2
y–( )exp

a' λ k χ,( )
--------------------------------------------------.

k

∑
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kernels is valid:

(48)

Relations (27) and (28) reduce to the following rela-
tions between the diagonal values of the kernels and the

potential :

(49)

(50)

where

The one-hump solution to Eqs. (8) with |r| = 1
corresponding to a single eigenvalue λ1 = |λ1|exp(iα1)
lying in the first or third quadrant of the λ plane is

(51)

where

It is of practical interest to compare linearly and cir-
cularly polarized pulses in terms of how efficient they
are high-power pulsed light sources. For this reason, let
us compare solution (51) for a circularly polarized
wave with an analogous soliton solution to the RMB
equations for a linearly polarized electromagnetic wave
interacting with a two-level system (e.g., see [17]):

(52)

where (Imη1)–1 is the soliton duration, (c–1 + )–1 is
its group velocity, and τ0 is the initial position of the

K1 r 1( ) _1, Q1 r 1( ) 41,

K2 Q2( ) r 1( ) 0.

Ẽ

∂τµ τ χ,( ) 2 _1 τ τ χ, ,( ) 2
,=

Ẽ* τ χ,( ) 2_1* τ τ χ, ,( ) 2iµ–( ),exp–=

Ẽ* Ex iEy.–=

Ẽcirc τ χ,( )

=  
2Imλ1

2
i Reλ1

2τ Wχ– γ1 α1– 2µ–+( )[ ]{ }exp–
λ1 θ1 β1 iα1+ +[ ]cosh

-----------------------------------------------------------------------------------------------------------------,

θ1 Imλ1
2 τ χ /V+( ), V 1 Reλ1

2
–( )

2
Imλ1

2( )
2
,+= =

W Reλ1
2

1 Reλ1
2

–( ) Imλ1
2( )

2
–[ ] V 1– ,=

β1 λ1c1( )/ 4Imλ1
2
a' λ1( )( ) ,ln=

µ α1 Imλ1
2 τ χ

V
---– 

  β1+cothcot
 
 
 

arctan–=

×
2Imλ1

2

λ1
2

2α1( )sin
------------------------------.

Ẽlin τ z,( )
2Imη1

Imη1 τ τ 0– z/V0–( )[ ]cosh
----------------------------------------------------------------,=

V0
1–
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soliton. For comparison, let us consider solitons (51)
and (52) with equal durations and set

An analysis of these solutions shows that the solitons

have comparable amplitudes when  ! , i.e.,

in the limit of small amplitude (∝ ) and high fre-

quency (∝ ). This corresponds to quasi-mono-
chromatic pulses, i.e., UDPs with slowly varying

amplitudes. When  = , the peak intensity
Icirc of soliton (51) is twice the peak intensity Ilin of
soliton (52). Figure 3 demonstrates that Icirc @ Ilin when

 @ , because solution (51) can describe a
Lorentzian profile and become singular under specially
chosen initial conditions. For example, in the neighbor-
hood of zero, when

the soliton has the form

(53)

Singular behavior implies that the dispersion effects
ignored in deriving system (8) should be taken into
account to describe a real physical system. Further-
more, the applicability conditions for the two-level
approximation also impose a constraint on the normal-
ized field amplitude, Elin & 1, and restrict the range of
initial conditions that can be used in this model.

5. INFLUENCE OF PUMPING 
ON CHARACTERISTICS OF SOLITONS

A UDP propagating in a single-pass laser can be
amplified so that it its amplitude increases while its
duration decreases. Effects of this kind were described
by deformed integrable models [28] for quasi-
monochromatic pulses [28] and for linearly polarized
UDPs [24]. Since the MB equations for circularly and
linearly polarized UDPs are qualitatively different, they
should be expected to exhibit different behavior when
propagating a laser medium. In this section, UDP
amplification is analyzed by means of an integrable
deformation of model (8).

Lasers are frequently modeled by two-level systems
with time-independent pumping of the upper level [29].
In model (8), the pumping is represented by an addi-
tional term h on the right-hand side of the third equation
in (8). It should be noted that pumping modifies the

η1 λ1
2, λ1 1.= =

Imλ1
2 Reλ1

2

Imλ1
2

Reλ1
2

Imλ1
2 Reλ1

2

Imλ1
2 Reλ1

2

λ1 λ1 iα1( )exp=

θ1 β1+ y ! 1, α1 π/2 φ1, φ1 ! π,+= =

Elin y( )
λ1 2iα1( )exp

y2 φ1
2

+
----------------------------------.=
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“reference” solution, because not only solitons are
deformed, but also a nontrivial radiation solution corre-
sponding to continuous spectrum is obtained. When the
MB equations describe linear polarization, this solution
is obtained by solving the Painlevé V equation [30].
The addition of a pumping term proportional to h
changes the analytic properties of the Jost functions in
the general case, and the ISM apparatus is modified
accordingly. A detailed numerical and analytical analy-
sis presented in [24] shows that both changes in the ref-
erence solution and the corresponding modifications of
the ISM apparatus can be ignored within a certain range
of parameters, in particular, when the lower level is the
ground state and its initial population is sufficiently
high, while the pumping rate h is low, within a short
time interval. For this reason, we assume here that the
reference solution remains trivial:

The pumping changes soliton characteristics, since
the dependence of λ on χ described by Eq. (11) modi-
fies Lax representation (9), (10). The heights and
inverse lengths of solitons are important characteristics
of one-humped soliton solutions to (8). It is well known
that soliton amplitude (52) increases with χ under pos-
itive pumping [23]. However, solutions to (8) may
exhibit qualitatively different dynamics induced by
pumping. For example, the amplitude of soliton (39)
reaches a maximum value of 4 as r  0 for an arbi-
trary pumping rate. Figure 4 shows its peak intensity ver-
sus amplification length. This soliton has no analog cor-
responding to r = 1, whereas the analog of soliton (52) in

the case of r2 ≠ 0, 1 is a solution with twin poles  =

η and  = η–1, which may have an arbitrary amplitude
depending on η.

Ex Ey 0.= =

ζ1
2

ζ2
2

12

10

8

6

4

2

0
0 1 2 3 4 5

τ

I

Fig. 3. Soliton intensity I = |E|2 given by (51) (solid curve)

and (52) (dashed curve) versus τ for λ1 = (0.5 + i)/ .1.25
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Suppose that

and

for solitons (39) and (51), respectively. Then, the corre-
sponding peak intensities are expressed as

(54)

where |λ1| = 1 for soliton (39). In the case of linear
polarization (r = 0, Ey ≡ 0), the soliton amplitude is

Figure 4 shows the peak intensities of small-ampli-
tude solitons versus amplification length for several
values of r. The figure demonstrates that an almost cir-
cularly polarized soliton (with r2 = 0.99) is amplified
more strongly when χ is small, whereas a steeper
increase in pulse amplitude with χ is predicted in the
case of almost linear polarization (r = 0.1). Singular
solution (53) found above for a circularly polarized
USP is not obtained when the soliton amplified in a
laser medium has a small initial amplitude.

There also is a substantial difference in the variation
of UDP duration between linearly and circularly polar-
ized solitons propagating in a laser medium. Figure 5
shows the curves of inverse soliton duration Imλ1 as a
function of χ obtained for several values of r. The vari-
ation of soliton duration due to increasing amplification
length under pumping is qualitatively different for
almost linearly and almost circularly polarized waves
(with r = 0.1 and r = 0.99, respectively). In the latter
case, the decrease in soliton duration due to increasing

ξ1 iφ0( )exp=

λ1 λ1 iφ0( )exp=

A χ r,( )2 16 λ1 χ( ) φ0 χ( )( ),sin
2

=

A r 0=( ) 2Imλ1 χ( ).=

60

50

40

30

20

10

0
0 2 4 6 8 10 12

χ

I

Fig. 4. Peak intensities of solitons in a laser versus χ for
h = 1 and r = 0.1 (dashed curve), r = 0.5 (dotted curve), and
r = 0.99 (solid curve), in arbitrary units.
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pumping is counteracted by increase in nonlinear cou-
pling between field components, i.e., in the phase of the
field E. This phenomenon is analogous to phase modu-
lation of a pulse in the case of a quasi-monochromatic
field.

6. INFLUENCE OF AN ADDITIONAL LEVEL

As a physical example, let us consider a pulse with
duration several times greater than the inverse transi-
tion frequency. For a real system, a model of such

pulses, and especially pulses with a duration & ,
interacting with a two-level system must evaluate the
contribution of interaction between the pulse and addi-
tional levels. This is done here by analyzing the influ-
ence of a remote state on the dynamics of circularly and
linearly polarized UDPs. Consider a three-level system
with 1  2  3 cascade transitions, where levels 2
and 3 lie above levels 1 and 2, respectively, and level 3
is an additional level. Denote by ω0 and Ω the 1  2
and 2  3 transition frequencies and assume that
Ω @ ω0. It is obvious that the results obtained in this
section can be extended to the case of an arbitrary num-
ber of transitions between levels 1 and 2 and additional
levels without taking into account transitions between
the additional levels.

To facilitate adiabatic elimination of the additional
level, suppose that the pulse duration for the field

is nearly equal to, or greater than,  and is much

greater than πΩ–1 (recall that %y ≡ 0 in the case of linear
polarization).

ω0
1–

          

     
     

% %x i%y+=

πω0
1–

                

7

6

5

4

3

2

1

0
0 5 10 15 20

Im 

 

λ

 

1

 

χ

 

Fig. 5. 

 

Inverse soliton duration versus 

 

χ

 

 for 

 

h

 

 = 1 and 

 

r 

 

= 0.1
(dashed curve), 

 

r 

 

= 0.5 (dotted curve), and 

 

r =

 

 0.99 (solid
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The Schrödinger equations for the population
amplitudes ψk (k = 1, 2, 3) are

(55)

(56)

(57)

where d1k denotes the 1  k dipole transition
moment. Under the conditions for pulse duration
imposed above, the following Bloch equations are
obtained for the effective two-level medium:

(58)

where

and  is defined above. In the unidirectional approxi-
mation, Eqs. (6) and (7) reduce to

(59)

where

Equations (58) and (59) for a circularly polarized
UDP are valid if r2 = 1, i.e., dx = dy = d12. The last con-
dition is frequently satisfied (see physical examples
in [18]). In the case of a linearly polarized UDP, one
should formally set ImU ≡ 0 in (58) and (59) to discard
the Maxwell equation for this component. Since
Eqs. (58) and (59) do not admit any Lax representation
when g ≠ 0 and/or g1 ≠ 0, they cannot be solved by ISM.
Since Ω @ ω0, the terms responsible for the nonintegra-
bility of (58) and (59) can be treated as a perturbation.
However, the number of additional levels may be as
high as 100. When only transitions between level 2 and
additional levels are allowed for, the contributions due
to these transitions can be added in the adiabatic
approximation. The resultant contribution to UDP
dynamics is comparable to the contributions of other
terms. In this case, interactions between soliton solu-
tions are not elastic, and the UDP energy is lost by radi-

∂tψ1 id12%"
1– ψ2,=

∂tψ2 iω0ψ2 id12* %*"
1– ψ1 id23%"

1– ψ3,+ +=
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1– ψ2,+=

     

∂S
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------ iS 1 gUU*–( ) iUS3,–=

∂S3

∂τ̃
-------- 2i US* U*S–( ),=

g
d23

2ω0

d12
2Ω

------------------, U
d23%
ω0"
-----------,= =

S ψ2ψ1*, S3 ψ2
2 ψ1

2
,–= =

τ̃

∂U
∂χ
-------

∂
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ν0 S0g1, S0 χ( ) ψ2
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d23ω0
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ation in the course of their evolution. Since the nonlin-
ear perturbation terms increase with soliton amplitude,
the pulse amplitude should be expected to decrease
under perturbation. Let us show that Eqs. (58) and (59)
for UDPs is integrable even if the influence of addi-
tional levels is taken into account when the pulse has a
small amplitude and a sufficiently large duration (in the
quasi-monochromatic limit).

Suppose that the amplitudes of the field components

are characterized by time and length scales much
greater than 

 

ω

 

–1

 

 and 

 

k

 

–1

 

, respectively. Consider the cas-
cade three-level system described above in the case
when the transition frequency 

 

ω

 

0

 

 is close to 

 

ω

 

 and the
difference frequency 

 

ν

 

 = 

 

Ω

 

 – 

 

ω

 

 > 0 is much greater than
the spectral pulse width. In the quasi-monochromatic
limit of Eqs. (3)–(7) corresponding to 

 

r

 

2

 

 = 1 and allow-
ing for the influence of an additional level, the wave
function for the upper level is eliminated analogously to
obtain

(60)

where

Equations (6) and (7) reduce to

(61)

where

Note that similar equations can be obtained (up to a
factor of 2 in the Maxwell equation) in the quasi-mono-
chromatic limit by applying this approximation to sys-
tem (58), (59) and retaining only the nonlinear term

 

ig

 

1

 

US

 

z

 

 in Eq. (59), which represents the influence of an
additional level.

For a quasi-monochromatic field, system (58)
and (59) can be reduced, by simple linear transforma-
tions, to integrable Maxwell–Bloch (MB) equations
describing the interaction between a high-power quasi-
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monochromatic electromagnetic field and a two-level
system, allowing for the nonlinear Stark effect, and
involving a nonlinear term proportional to USz in the
reduced Maxwell equation. The latter nonlinearity is
due to the retained first term of the expansion, which is
proportional to ∂tP/w0, where P is polarizability and ω0
is the transition frequency for the system. The Lax rep-
resentation was found for this system in [31]. The
equations admit elastic interactions between soliton
solutions, as well as other attributes of integrable sys-
tems [27].

7. CONCLUSIONS AND APPLICATIONS

Self-induced transparency is described for a two-
level system interacting with a circularly polarized
pulse with a duration nearly equal to, or greater than,
the inverse transition frequency. Analysis of the behav-
ior of solutions to the Maxwell–Bloch (MB) equations
is important for understanding UDP formation and self-
induced transparency in two-level systems. The observ-
ability conditions for UDPs formulated in terms of
pulse intensity are weaker at least by two orders of
magnitude than those required to observe USP dynam-
ics [9–11]. Since UDPs have narrower spectra, the con-
ditions for applicability of the two-level model are also
much less restrictive than those imposed on USPs. For-
mally, model (8) is applicable in the spectral interval

between  ! ω0 and  @ ω0, where τ1 is the soliton

duration. However, the condition  & ω0 must be
imposed on optical pulses.

The solutions obtained in this study demonstrate
that the dynamics of circularly polarized UDPs are
qualitatively different from those of linearly polarized
UDPs and from the behavior of 2π-pulses in the
McCall–Hahn theory [4]. For example, the McCall–
Hahn theorem is not applicable to UDPs with durations
comparable to the inverse transition frequency. There-
fore, the results of the self-induced transparency theory
developed for quasi-monochromatic pulses cannot be
extended to pulses with τ1 ~ ω–1, especially to circularly
polarized pulses, for which the nonlinear effects due to
interactions between field components are essential. It
has been found that σ transitions and circularly polar-
ized electromagnetic pulses can be used to obtain
pulses of much higher intensity, as compared to the
case of linearly polarized pulses of equal duration.
Accordingly, circularly polarized pulses have shorter
durations as compared to linearly polarized ones with
equal peak amplitudes. To obtain pulses with such char-
acteristics, the initial pulse phase must be close to α1 ≈
π/2. The required parameters of a pulse injected into a
medium can be found by solving problem (17).

An analysis of UDP amplification in a single-pass
laser represented by a model with pumping of the upper
level shows that linearly polarized pulses are amplified
more strongly (see Fig. 4). A comparison of the profiles

τ1
1– τ1

1–

τ1
1–
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of amplified pulses shows that the dynamics of ampli-
fied circularly and linearly polarized pulses are differ-
ent because of nonlinear coupling in the reduced Max-
well equations describing the former case.

However, there exists a certain analogy between cir-
cularly and linearly polarized unidirectional solitons.
One-pole solution (51), with pole η1 having a zero real
part, corresponds to a one-humped pulse-intensity pro-
file. If the pole η1 has a nonzero real part, then the sim-
plest solution corresponds to the twin poles η1 and
− . It can readily be shown that this solution in the
general case corresponds to two-humped profiles of
both linearly and circularly polarized solitons when
r = 1.

The derivation of the Maxwell–Bloch equations for
circularly polarized UDPs revealed that these equations
are somewhat analogous to the integrable equations for
quasi-monochromatic wave found in [31] for a different
optical system. These equations describe the interaction
between linearly polarized optical pulses and a two-
level nondegenerate system, allow for the quadratic
Stark effect, and/or contain nonlinear terms associated
with the first time derivative of polarizability. This anal-
ogy makes it possible to use some results obtained
in [27]. Properties specific to the Maxwell–Bloch equa-
tions for circularly polarized UDPs must manifest
themselves in analyses of optical bistability. In particu-
lar, multistable optical solitons can be generated by
placing a sufficiently long specimen of a nonlinear
material described by Eqs. (8) in a ring cavity with
pumping by a field of constant amplitude. The pulse
amplitude and duration are many-valued functions of
pumping amplitude and initial conditions in certain
ranges of the pumping amplitude. It can be shown that
multistable linearly polarized UDPs cannot exist under
similar conditions.

In the adiabatic limit, interaction with an additional
level (or levels) is represented by additional nonlinear
terms in the Maxwell–Bloch equations. As a conse-
quence, the integrability of the model is violated in the
case of a relatively short pulse, but is retained in the
quasi-monochromatic limit. Thus, the degree of viola-
tion is determined by deviation from quasi-monochro-
maticity. Directional pulses with durations comparable

to  lose energy by radiation under the influence of
additional levels, in contrast to quasi-monochromatic
pulses. The solutions obtained above can be used to
show that adiabatic treatment of additional levels leads
to an intensity dependence of the phase for a linearly
polarized pulse in the quasi-monochromatic limit and
for circularly polarized pulses described by both inte-
grable and nonintegrable systems. This chirp is mani-
fested in the pulse spectrum and shape. The one-hump
quasi-monochromatic UDP solution obtained for r2 = 1
by taking into account the chirp is formally identical
to (52) up to notation.

η1*

ω0
1–
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The solutions presented in this paper provide a basis
for qualitative interpretations of some well-known
experimental results. In [32], effects due to an initial
phase shift φ0 were studied experimentally for a pulse
with a duration of several periods propagating in a non-
linear optical semiconductor, and a two-level approxi-
mation was used to analyze the system of levels. The
influence of higher energy levels was taken into
account in modeling the experiment by modifying the
dielectric constant. At the same time, some qualitative
disagreement with predictions of the two-level model
was found experimentally in [32]. For example, the
pulse energy strongly depended on the initial phase φ0,
while the effective nonlinear phase of the pulse was a
function of its intensity, which could not be explained
by the proposed model. The results obtained in the
present study can be used to interpret the effects of
phase shift φ0 and pulse polarization observed in [32]
for a quasi-two-level system without applying perturba-
tion or quasi-monochromatic approximation. The
behavior of optical pulses revealed experimentally
in [32] is similar to the behavior of circularly or linearly
polarized UDPs interacting with a two-level system
predicted for a two-level system by taking into account
the influence of additional levels analyzed above in the
adiabatic approximation. As shown above, the influ-
ence of additional levels manifests itself in an intensity
dependence of the pulse phase and in a dependence of
pulse amplitude on the initial phase α1.

In [33], the Rabi splitting caused by a pulse with
duration corresponding to the transition frequency in an
effective two-level system was studied experimentally.
The theory based on the approach proposed in [33] pre-
dicts an increase in Rabi splitting with pulse intensity.
However, the splitting observed experimentally in [33]
was substantially weaker than that predicted by the the-
ory. The solutions to Eqs. (58) obtained here can be
used to explain the narrow Rabi splitting due to the
influence of additional levels. Since the number of
additional levels in the optical system examined in [33]
was about 50, their influence could be strong. The
“instantaneous” Rabi frequency at the instant corre-
sponding to the peak intensity of the pulse, I0 = |U|2, is
found by solving system (58):

(62)

The dependence of ΩR on I0 reaches a minimum at

With increasing I0 at g > 2, the Rabi splitting decreases,
goes through a minimum, and then increases. Since the
number of additional levels is large, the value of g can

ΩR 1 κ0I0–( )2
I0+ .=

I0 3/2g,=

minΩR
g 6+

2 g
----------------.=
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be greater than 2 and their influence can reduce the
Rabi splitting, as in the experiment reported in [33].
Note that ΩR(I0) has a minimum when transitions
between additional levels and the upper level. When
only transitions between additional levels and the lower
level are taken into account, it can be shown that ΩR(I0)
is a monotonically increasing function.

Integrable model (8) and the ISM apparatus devel-
oped above, after some modification, can be used to
describe transverse acoustic waves in a paramagnetic
crystal doped with ions of spin 1/2, as well as the
dynamics of transverse magnetic-field pulses in a mag-
netic crystal with low spin density and rhombic sym-
metry.

It would be interesting to apply the results of this
study in analyzing polarization effects on circularly
polarized ultrashort (pico- and femtosecond) unidirec-
tional pulses propagating in a two-dimensional photo-
nic crystal. It is well known that there exist solitonlike
solutions corresponding to forbidden zones of a photo-
nic crystal [34]. The structure of solitonlike pulses in a
two-dimensional crystal is much more complicated [35].
Effects of multiple levels and nonlinear coupling
between components of a circularly polarized field on
UDP propagation must manifest themselves in the
structure of pulses propagating in a photonic crystal
doped with resonant atoms [36]. One should expect to
observe effects due to bistable behavior and compres-
sion of circularly polarized pulses in a photonic crystal
involving a resonant component. These effects are qual-
itatively different from the dynamics of linearly polar-
ized pulses with a duration comparable to the inverse
transition frequency [37].
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Abstract—Numerical simulations are performed to examine the rotational dynamics of a molecule in a strong
laser field when the molecular axis is initially oriented in a certain direction. The results obtained by solving
the quantum-mechanical problem are compared with those computed in the framework of classical mechanics.
It is found that certain characteristics of rotational motion cannot be described by classical theory, particularly
for light molecules. It is demonstrated that the axis of a heteronuclear molecule can be reversed by tunneling.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent progress in the development of high-power
pulsed lasers stimulated studies of interaction between
coherent radiation and matter, such as interactions
between strong laser fields and atomic and molecular
systems. Interaction with a strong laser field can excite
various electronic, vibrational, and rotational states of a
molecule. It is commonly believed that electronic
degrees of freedom are excited by interaction with a
field at much higher rates, as compared to nuclear ones.
For this reason, nuclear degrees of freedom are fre-
quently treated as “frozen” in theoretical analyses.
However, this assumption was found to be incorrect.
Theoretical [1–7] and experimental [8–13] studies
showed that molecular rotations play an important role in
the processes in question, leading to alignment of mole-
cules parallel or perpendicular to electric fields [14].

According to a theoretical study, alignment of mol-
ecules in a Ti:Sapphire laser field of intensity below
1014 W/cm2 can occur without any significant elec-
tronic or vibrational excitation, while 10 to 15 rota-
tional sublevels can be excited [7]. Therefore, substan-
tial rotational dynamics may not be accompanied by
dissociation or ionization.

Excitation of a large number of rotational states
gives rise to an angular distribution of molecular-axis
orientation. In a quantum-mechanical treatment, this
state is represented by a wave packet characterized by
certain shape and width. Both field-free evolution of
this localized wave packet and its dynamics in a
“probe” laser field are of great interest. Laser pulses can
be used to control the orientation of molecules, align
them parallel or perpendicularly to electric fields, and
hold molecules in oriented states. Control of the orien-
tation of molecules in space or on solid surfaces offers
new opportunities for control of both homogeneous and
heterogeneous chemical reactions and other applica-
1063-7761/04/9806- $26.00 © 21087
tions. In particular, this effect can be applied to enhance
the efficiency of high-order harmonic generation in
molecules [15].

Rotational dynamics of molecules interacting with
fields can be described by different models. In the
approach employed in [11, 16, 17], the effective energy
of interaction between the molecule and the field is rep-
resented by the classical expression for a field interact-
ing with an induced dipole [18–20]:

(1)

Here, ε0(t) is the laser-pulse envelope, α|| – α⊥  is the dif-
ference of the longitudinal and transverse molecular
polarizabilities, and θ is the angle between the molecu-
lar axis and the field polarization. When the envelope is
ignored, the potential above is given by a time-indepen-
dent expression:

(2)

This expression for potential energy provides a qualita-
tive physical interpretation of alignment of molecules:
the minima of the potential correspond to an angle of 0
or π between the molecular axis and the laser field, and
its depth is proportional to the laser intensity. Accord-
ingly, the average orientation of the molecular axis is
parallel to the field, especially when the field is turned
on gradually [3, 4].

Note that (2) is an anharmonic potential. Therefore,
it is interesting to explore the feasibility of classical
treatment of dynamics of a localized rotational wave
packet interacting with a laser field.

Standard classical treatment is based on the assump-
tion that, since the nucleus-to-electron mass ratio is

U
α|| α ⊥–( )ε0
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large, the nuclear wave-packet width is much smaller
than both characteristic width of the electron wave
function and characteristic range of nuclear motion
(several atomic units). Furthermore, the rotational
energy quantum is frequently much smaller than the
molecule–field interaction energy: B ! αε2/4, where B
is the rotational constant and α is the molecular polar-
izability. For these reasons, the problem is frequently ana-
lyzed in the framework of classical mechanics [21, 22].
However, classical description of rotational dynamics
of a molecule interacting with a field is not obviously
applicable, because the initial rotational state is repre-
sented by a relatively wide wave packet or even an uni-
form angular distribution. Moreover, the interaction is
described by an anharmonic potential depending on the
field.

In this paper, a quantum-mechanical model is used
to simulate the rotational dynamics of a molecule inter-
acting with a laser field in the case when the molecular
axis is initially oriented in a certain direction. A com-
parison of quantum-mechanical calculations with the
results obtained within the framework of a classical the-
ory shows that molecular rotation has an essentially
quantum nature in the general case. Classical descrip-
tion of rotational dynamics is similar to quantum-
mechanical representation only within a narrow range
of parameter values. The inherently quantum-mechani-
cal characteristics of rotational dynamics are explained
by the substantial width and fast dispersion of rota-
tional wave packets, quantum interference of different
parts of the wave function, the anharmonicity of the
molecule–field interaction potential, and the possibility
of tunneling processes having no analog in classical
mechanics.

2. NUMERICAL MODEL

We consider the  ion in a plane as a model molec-
ular system. A two-dimensional model is used here
because an analysis of rotational dynamics of a mole-
cule must begin with estimation of the range of laser
intensity in which both ionization and dissociation of
the system are negligible. An analysis of this kind is
very difficult to perform for a three-dimensional molec-
ular system. Note that rotational dynamics of a planar
molecule are qualitatively similar to rotational motion
of a three-dimensional molecule (in a plane defined by
the molecular axis and the field polarization) in the case
of zero projection of its angular momentum on the z
axis.

The rotational dynamics of the model system in a
laser field e(t) = e0(t)cos(ωt) are described by the time-
dependent Schrödinger equation

(3)

H2
+

i"
∂ψ
∂t
------- Ĥψ.=
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In the center-of-mass system, the Hamiltonian is

(4)

where /2m is the kinetic energy of the electron,

/2µ is the kinetic-energy operator for the nuclei in
the center-of-mass system, r = {x, y} is the electron
radius vector and R is the internuclear radius vector
characterized by the angle θ between the vector e
(x axis) and the molecular axis, µ = M/2 is the reduced
mass, and d is electronic dipole moment of the system
(the nuclear dipole moment is zero in the center-of-
mass system). The field frequency was set equal to that
of the Ti:Sapphire laser ("ω = 1.55 eV), and various
field-switching methods were examined.

The problem was solved in the Born–Oppenheimer
approximation, and only the lowest two electronic
terms of the molecule were taken into account:

(5)

because the interaction between the molecule and a
laser field of intensity not higher than 1014 W/cm2

results in the excitation of only the lowest electronic
level, whereas both excitation of all higher states and
ionization are negligible [7]. Furthermore, the highest
population of the second lowest term during the inter-
action with a pulse does not exceed several percent.

Both electronic wave functions ϕ1(r, R) and ϕ2(r, R)
and the corresponding electron energies E1 and E2 can
be found by solving the time-independent Schrödinger
equation with the electronic Hamiltonian

(6)

parameterized by R. The functions ϕ1 and ϕ2 can be
used to obtain the transition matrix elements for the
electron dipole-moment projections on the internuclear
axis and on the perpendicular direction, d|| = ex12 =
ex21 = e〈ϕ 1|x |ϕ2〉  and d⊥  = ey12 = e〈ϕ 1|y |ϕ2〉 , parameter-
ized by the internuclear distance. A detailed analysis of
this parametric dependence can be found in [7]. Note
that the symmetry of the wave functions of the lowest
two states dictates that d⊥  ≡ 0 in the two-dimensional
model.

Decomposition (5) was used to derive a system of
equations for the nuclear parts Φ1, 2(R, θ, t) of the wave

Ĥ
p̂e

2

2m
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p̂N
2

2µ
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e2

R
-------+ +=

– e2

r R/2–
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r R/2+
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p̂e
2

p̂N
2

Ψ Φ1 R θ t, ,( )ϕ1 r R,( ) Φ2 R θ t, ,( )ϕ1 r R,( ),+=

Ĥe
p̂e

2

2m
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function:

(7)

where

is the effective potential energy of the nuclei (depend-
ing on the electron energy for both electronic terms) as
a function of the internuclear distance R.

An analysis of rotational dynamics of molecules
taking into account excitation of vibrational levels [7]
showed that the population of vibrational states is neg-
ligible in the range of laser parameters of interest here.
Therefore, the internuclear distance in the molecule is
approximately equal to its equilibrium value R0 = 1.2 Å
during its interaction with the laser pulse. Thus, the
approximation based on a constant internuclear dis-
tance is physically correct, the nuclear wave functions
in (7) depend only on the angle θ between the field
polarization vector and internuclear axis, and all quan-
tities depending on R can be calculated at R = R0.

The expansions of the nuclear wave functions in
terms of rotational eigenstates of a planar molecule for
R = R0,

(8)

i"
∂Φ1 R θ t, ,( )

∂t
-----------------------------

pN
2

2µ
------ V eff

1( ) R( )+ 
  Φ1 R θ t, ,( )=

– eε t( ) x12 R( ) θ y12 R( ) θsin+cos[ ]Φ 2 R θ t, ,( ),

i"
∂Φ2 R θ t, ,( )

∂t
-----------------------------

pN
2

2µ
------ V eff

2( ) R( )+ 
  Φ2 R θ t, ,( )=

– eε t( ) x12 R( ) θ y12 R( ) θsin+cos[ ]Φ 1 R θ t, ,( ),

Veff
1 2,( ) R( ) e2

R
---- E1 2, R( )+=

Φ1 2, θ t,( ) Cm
1 2,( ) t( ) eimθ

2π
----------,

m

∑=
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were used to derive a system of equations for the popu-
lation amplitudes of the kth rotational sublevel in both
states:

(9)

where

is the rotational constant.

The initial rotational-sublevel population ampli-

tudes  were defined so that the initial wave packet
was localized in a narrow neighborhood of an angle θ0.
The analysis was performed for several values of the
average angular momentum 〈m〉 . In classical mechan-
ics, this initial condition describes a molecule making a
certain angle θ0 with the field polarization and having

different initial angular velocities. Since  is a homo-
nuclear ion (the nuclei are identical), the initial condi-
tion must correspond to localized nuclear wave packets
making an angle of π. The initial nuclear angular distri-
bution was described by the function

i"
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2
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=

Here, ∆θ* is the total (base) width of the initial wave
packet, and A is a normalization constant. Figure 1a
shows the initial angular distribution for θ0 = π and
∆θ* = π/4.

Equations (9) were solved numerically. The func-
tions Φ1, 2(θ, t) were used to determine the probability
that the molecule makes an angle θ with a certain
direction,

(11)

and the time-dependent angle averaged over the nuclear

ρN θ t,( ) Φ1 θ t,( ) 2 Φ2 θ t,( ) 2,+=
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wave packet,

(12)

The time-dependent averaged angle was compared with
the solution to the equation of motion

(13)

which describes a classical rigid rotor driven by mole-
cule–field interaction potential (1).

θ t( )〈 〉 θ Φ 1 θ t,( ) 2 Φ2 θ t,( ) 2+[ ] θ .d

0

2π

∫=

θ̇̇
α || α ⊥–( )ε0

2 t( )B

"
2

--------------------------------------- 2θ( ),sin–=

0.8

0.6

0.4

0.2

0 π 2π
θ, rad

(a)

0.4

0.3

0.2

0.1

0 π 2π
θ, rad

(b)

0.3

0.2

0.1

0 π 2π

(c)

ρΝ

ρΝ

ρΝ

Fig. 1. Angular distribution of nuclear probability density (11)
characterizing the field-free dynamics of a homonuclear
molecule at (a) t = 0, (b) 40, and (c) 140 fs.

θ, rad
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3. RESULTS AND DISCUSSION

3.1. Field-Free Dynamics of a Molecule 

First, we analyze the field-free rotational dynamics
of a molecule. It is obvious that a molecule initially at
rest will remain at rest in the absence of any interaction
and its orientation will be preserved. In a quantum-
mechanical treatment, the orientation of a molecule is
represented by a wave packet of nonzero width. The
field-free dynamics of a molecule predicted by Eqs. (9)
are illustrated by the squared amplitudes (11) of the
nuclear wave function shown in Fig. 1 for several
instants.

Figure 1 demonstrates that both wave packets repre-
senting an initially oriented state of a homonuclear
molecule tend to spread out and interfere with one
another. As a result, several peaks appear in the angular
distribution (see Fig. 1c), which means that there is no
preferred orientation of the molecular axis. Further-
more, the average angle 〈θ〉  given by (12) is a time-
dependent quantity. Figure 2 shows details of the evo-
lution of the corresponding nuclear angular distribu-
tion. Here, the slice of the distribution taken at any
instant is nuclear probability density (11) as a function
of θ. Heavier shading corresponds to a higher nuclear
probability density. The initial wave packet is localized
in the neighborhoods of 0 and π. Figure 2 demonstrates
that an early stage of dispersion of the rotational wave
packet is similar to the spreading of a free localized
wave packet over an infinite axis. After this stage of
classical motion of the packet’s centroid, wave-packet
components interfere with one another and a varying
number of peaks appear in the distribution. Accord-
ingly, the quantum average value 〈θ〉  of the angular
location of the centroid begins to depend on time. This
behavior is beyond the scope of classical mechanics.
Even in the case of a single initial wave packet (hetero-
nuclear molecule), different parts of the wave function
would interfere and the average angle 〈θ〉 , as well as
〈cosθ〉 and all of its higher order moments, would
depend on time.

The interference of different parts of the wave
packet is essentially due to the fact that its dynamics are
computed on the finite angular interval [0, 2π] under
periodic boundary conditions and to the quick spread-
ing of the packet over the entire domain of the wave
function. Note that any attempt to represent a quantum
wave packet as an ensemble of classical particles
(rather than a single particle) would not lead to better
agreement between quantum-mechanical and classical
results. One might expect good agreement if the initial
joint distribution of the angular locations and velocities
of classical particles were similar to the corresponding
quantum distributions before the onset of interference.
This could be achieved only if the desired initial distri-
bution were calculated by using a quantum-mechanical
uncertainty relation, but the result would be an artificial
ensemble rather than a classical one. However, a sub-
stantial difference between quantum and classical
 AND THEORETICAL PHYSICS      Vol. 98      No. 6      2004
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Fig. 2. Field-free evolution of nuclear angular distribution for a nuclear wave packet from initial state (10) with width ∆θ* = π/4
and deviation angle θ0 = π. Shading varies between 0.1 and 1.0 as a linear function of density.
dynamics would manifest itself by quantum interfer-
ence even in this hypothetical situation. The quantum
probability density would periodically exhibit several
peaks corresponding to the most probable orientations
of the molecular axis, whereas the angular distribution
of particles in the classical ensemble defined above
would simply spread and approach a uniform one by
virtue of superposition of probabilities in classical
mechanics. Of all integral characteristics (in which
interference effects are partly smoothed out), higher
moments of cosθ exhibit the difference most clearly.
Note that complete revival of the quantum wave packet
would be observed after a certain time interval. In the
problem considered here, the revival time is determined
by the energy difference between the lowest two states
contributing to the superposition. It can be estimated as
Trev ≈ "/B (about 700 fs for the system under analysis).
The instants at which the distribution consists of several
identical peaks correspond to the so-called fractional
revivals. This behavior was observed in [23], where the
dynamics of a wave packet in an anharmonic potential
were analyzed. In the two-dimensional case, the anhar-
monic spectrum of rotational states of a free molecule is

Essentially, it is determined by the periodic boundary
conditions for the wave function defined on the interval
(0, 2π).

Em Bm2, m 0 1 2 ….,±,±,= =
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The breakup of the probability density into several
peaks followed by a complete revival explained by the
interference that takes place when the system moves
within a finite interval under boundary conditions. For
example, analogous behavior is characteristic of a wave
packet in an infinitely deep potential well [24].

Thus, the quantum field-free evolution considered
here is characterized by a quick spreading and subse-
quent, inherently quantum interference of different
parts of the wave packet.

Both self-interference and breakup of the wave
packet develop more rapidly in the case of a light mol-
ecule. Heavier molecules are characterized by slower
spreading and longer time intervals of rotational motion
described by classical mechanics.

Molecular dynamics prior to substantial spreading
can be analyzed by assuming that the initial average
momentum 〈L〉  = "〈m〉  is very large, which corresponds
to a high angular velocity of a rotor in classical repre-
sentation. Curve 1 in Fig. 3 is the quantum average
angle 〈θ〉  as a function of time given by (12) for a single
wave packet with an initial deviation of π + π/10 (in the
hypothetical case of a heteronuclear molecule). The ini-
tial value of angular momentum was sufficiently large
to observe rotation with negligible wave-packet disper-
sion. The time dependence presented here demonstrates
that the molecule executes almost six revolutions dur-
ing about 10 fs, and the dispersion is exhibited insignif-
icantly (only in the final revolutions). Overall, the rota-
SICS      Vol. 98      No. 6      2004
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tion resembles that of a classical rotor under similar ini-
tial conditions (curve 2 in Fig. 3). A difference between
quantum and classical dynamics is observed only in the
neighborhoods of the extreme points 0 and 2π and is
explained by a nonzero packet width and the fact that
the evolution is simulated on the finite interval [0, 2π]
under periodic boundary conditions. These quantum-
mechanical predictions should obviously agree with
results calculated for a corresponding classical ensem-
ble of particles, because neither interference nor
spreading would manifest itself over the time intervals
considered here. Note that the packet would execute
several revolutions without spreading out to any signif-
icant extent if the initial momentum were sufficiently
large. For light molecules, the required value must be
about 100". Such states cannot be implemented for real
molecules, because the corresponding energies exceed
dissociation thresholds. If the initial angular velocity
were lower, then substantial spreading during a “classi-
cal” rotation period would lead to interference of differ-
ent parts of the wave packet, which is beyond the scope
of classical mechanics.

Thus, quantum interference due to a nonzero packet
width results in a wave-packet centroid dynamics that is
different from classical behavior even in the case of
field-free rotation of a molecule.

3.2. Dynamics of a Molecule Interacting 
with Laser Field 

Let us now consider the dynamics of a molecule in
a laser field. The initial orientation of the molecule is
represented by a wave packet localized around a certain
direction. It should be expected that the field would
impede the dispersion of the wave packet over the

7

6

5

4

3

2

1

0 5 10 15
t, fs

〈θ〉 , rad

1

2

Fig. 3. Trajectory of the centroid of a quantum wave packet
(1) and a classical particle (2) in the case of field-free rota-
tion with initial deviation angle π + π/10 and initial angular
momentum L = 500".
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entire domain of the wave function. Moreover, the
degree of dispersion must strongly depend on the initial
packet width. The width corresponding to minimal
spreading can be estimated by using effective poten-
tial (2) of molecule–field interaction. Using the har-
monic potential

(14)

to approximate (2), we estimate the width minimizing
the rate of packet spreading as

(15)

which corresponds to the characteristic width of the
ground state in this potential. Using (10) to approxi-
mate the Gaussian packet with width given by (15), we
estimate the total (base) width of the initial wave packet
as ∆θ* ≈ π/4 for a laser intensity of 1014 W/cm2.

We consider the dynamics of a molecule in the field
of a laser pulse of intensity 1014 W/cm2 for a packet of
width ∆θ* = π/4 deviating by the angle θ0 = π/4 from
the field polarization vector. We assume that the pulse
is switched on instantly to rule out packet dispersion
during the pulse rise time. The evolution of the nuclear
wave-packet density in the laser field is depicted in
Fig. 4 for one-half of packet (10) only, because the dis-
tribution is symmetric. It is clear that the field of a laser
pulse restricts the molecule’s motion to a bounded
angular interval. Furthermore, the packet remains
localized and retains its shape during an initial time
interval. However, angular oscillation analogous to
classical angular oscillation of the molecular axis about
the equilibrium point in potential (2) is observed only
during one period. After that, the wave packet breaks up
and additional peaks appear. Eventually, the packet
spreads over the entire domain of admissible classical
motion; i.e., a rotational dynamic of an essentially
quantum nature is observed.

This behavior of the wave packet is due to the
strongly anharmonic form of potential (2) and to the
large initial deviation of the packet from the equilib-
rium point θ0 = π/4. Since the packet moves in an anhar-
monic potential most of the time under these condi-
tions, its shape is distorted and interference of different
parts of the wave function gives rise to “fractional”
peaks.

In the steady-state basis corresponding to potential (2),
the wave packet is a superposition of the corresponding
eigenstates. The energies of these states are sufficiently
high to cause deviation from the equidistant spectrum
of a harmonic oscillator. On the other hand, these ener-
gies are not sufficiently high to justify the use of a
quasi-equidistant approximation of the anharmonic

Ueff

α|| α ⊥–( )ε0
2

4
----------------------------θ2∼

∆θ 4B

α|| α ⊥–( )ε0
2

---------------------------4 ,=
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Fig. 4. Evolution of density distribution for a nuclear wave packet with θ0 = π/4 and ∆θ* = π/4 in laser field of intensity I =

1014 W/cm2 with rectangular envelope.
spectrum corresponding to large quantum numbers, as
proposed in [23].

Thus, the essentially nonequidistant energy spec-
trum of the rotational eigenstates constituting the wave
packet in a laser field is responsible for substantial dis-
persion (without fractional revival after a classical
angular-oscillation period) and for reduction of the time
interval of nearly classical motion. The packet should
be expected to regain its shape characteristic of a super-
position of states in an anharmonic potential over
“quantum revival” times, which are much longer than
the classical oscillation period.

Now, let us analyze the conditions ensuring that
quantum rotational dynamics are closest to classical
motion over a time interval much larger than the classi-
cal rotation period. It is obvious that not only the opti-
mal packet width given by (15) is required, but also the
deviation angle must be sufficiently small to remain
within the “harmonicity” region of potential (2): θ0 +
∆θ ! 1. Furthermore, the field must be switched on
instantly to rule out dispersion during the pulse rise
time. The quantum-mechanical and classical treatments
are mutually consistent if the centroid of the wave
packet executes classical motion and the packet width
is much smaller than its displacement in space. Note
that the latter condition is difficult to satisfy for a mol-
ecule rotating in a laser field, because the strictly
required small initial deviation θ0 is similar to—or even
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
smaller than—the characteristic packet width given
by (15).

Figure 5 illustrates the evolution of one-half of the
angular nuclear density for a wave packet characterized
by a small initial deviation and optimal width (15). The

graphs demonstrate that the  molecule executes a
nearly classical “angular oscillation” in the field of a
laser pulse during several hundreds of femtoseconds.
The spreading and distortion of the wave packet are
effectively suppressed by virtue of a special choice of
initial conditions. Since the packet width is much larger
than the oscillation amplitude, the anharmonicity of the
potential affects its motion even in this situation, and
the rotational dynamic of the molecule can resemble a
classical motion only in a qualitative sense.

To perform a more detailed comparison of quantum
and classical dynamics of a molecule in a laser field, we
analyze the time dependence of the quantum average
angle 〈θ〉  given by (12) and compare it with the solution
to Eq. (13). The dynamics to be analyzed are illustrated
by Figs. 6a and 6b, respectively.

The results shown here demonstrate that the “angu-
lar-oscillation” amplitude predicted by quantum-
mechanical calculations is smaller because of the
spreading and distortion of the wave packet. However,
the packet shape is almost restored after a time interval
Trev ≈ 1.6 ps, and the initial oscillation amplitude of the
packet’s centroid is recovered (see Fig. 6a). Note also

H2
+
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Fig. 5. Evolution of density distribution for a nuclear wave packet with θ0 = π/10, characteristic width given by (15), and other
parameters as in Fig. 4.
the difference in frequency between the “quantum” and
“classical” angular oscillations. For the parameter val-
ues used here, the quantum-to-classical period ratio
predicted by numerical calculation is

(16)

The larger value of the “quantum” period as compared
to the classical one is explained by the finite width of
the nuclear wave packet, which implies that the force
〈F(θ)〉  averaged over a quantum ensemble is weaker
than the force F(〈θ〉 ) acting at the middle point. The
period ratio can be estimated analytically by invoking
the Ehrenfest theorem [25]. Assuming that the angular
distribution is symmetric about the centroid, we can
estimate the difference of the “quantum” and “classi-
cal” forces as follows:

(17)

where Dθ is the variance of the nuclear angular distribu-
tion. The difference of these forces increases with
angular distribution width and deviation angle. As the
wave packet tends to a delta function, the difference
between the forces vanishes and the quantum-mechan-
ical description becomes equivalent to the classical

Tq

Tcl
------ 1.06.≈

F θ( )〈 〉 F θ〈 〉( )– – α|| α ⊥–( )ε0
2 θ〈 〉 Dθ 0,<=
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treatment. In view of (17), the quantum-to-classical
period ratio is

(18)

which is in good agreement with numerical result (16).
It is obvious that the nonzero difference of forces that
entails the inequality of the periods characteristic of
quantum and classical dynamics is essentially due to
the anharmonic potential of interaction between the
molecule and the laser field.

Thus, the rotational dynamics of a molecule in a
laser field have inherently quantum characteristics,
which makes it impossible to reach complete agree-
ment between quantum and classical predictions.

Another essentially nonclassical phenomenon man-
ifests itself in the rotational dynamics of heteronuclear
molecules.

It was shown in [6] that problem (7) can be reduced
to the motion of a rigid rotor in effective potential (1) if
electronic excitations are negligible (in a one-term
approximation). Interaction of a heteronuclear mole-
cule with a field contains contributions due both to
induced electronic dipole moment and nonzero nuclear
dipole moment d0 parallel to the molecular axis. In the

Tq

Tcl
------

1

1 2Dθ–
----------------------- 1.065,≈=
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rigid-rotor approximation, the corresponding potential
energy of the molecule is

(19)

The latter contribution to (19) has an alternating sign
corresponding to a high-frequency deformation of
potential well (1). The energy of interaction between
the nuclear dipole moment and the field averaged over
a time interval much longer than the laser period van-
ishes, and molecular dynamics in the field of a pulse
with rectangular envelope are characterized by poten-
tial (2). This is manifested in a much lower efficiency of
direct excitation of rotational states in a heteronuclear
molecule by high-frequency laser field, as compared to
excitation of rotational levels by transitions via an adja-
cent electronic term.

As noted above, potential (2) has a double-well
structure with minima at θ = 0 and θ = π (see Fig. 7).
Therefore, a wave packet initially localized in one well
can penetrate into the other one by tunneling. In other
words, the axis of a heteronuclear molecule initially
oriented in a certain direction can reverse via a nonro-
tational mechanism of an essentially quantum nature.
Let us estimate the characteristic time of reversal by
tunneling. In the case of a nearly impenetrable barrier,
each energy level of both wells splits into two close-
lying levels, which correspond to even and odd states of
a particle in a double-well potential. The wave packet
representing the lowest eigenstate in either well is the
superposition of such “paired” states with energies E1
and E2. Then, the characteristic time of packet penetra-
tion from one well into the other can be estimated as

Using the semiclassical approximation [26], we esti-
mate the energy difference as follows:

(20)

where

is the semiclassical angular momentum of a particle of
energy E0 in the starting well, Tc is the period of its clas-
sical motion in the well, and the lower limit of the inte-
gral corresponds to a classical turning point. Using har-
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Fig. 6. Quantum average angle 〈θ〉  versus time (a) and clas-
sical rotational trajectory (b) for a molecule in field of inten-
sity I = 1014 W/cm2, with θ0 = π + π/10 and characteristic
width given by (15).
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Fig. 7. Effective potential energy (2) versus angle for a pla-
nar molecule interacting with laser field.
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Fig. 8. Evolution of nuclear angular distribution for a molecule with axis reversed by tunneling.
monic approximation (14) for the lowest energy level,
we obtain

(21)

where ∆θ is equal to vacuum-state width (15) for a har-
monic oscillator and

is the classical angular-oscillation period for an individ-
ual well.

Expression (21) is valid in the semiclassical approx-
imation. According to (21), the probability of tunneling
during a period of classical motion (which depends on
the laser intensity) is

In particular, W ~ 10–8 if the intensity is 1014 W/cm2,
which means that the tunneling probability is 10–6 per
picosecond. Numerical calculations performed for a
stationary wave packet close to an eigenstate in one
well resulted in similar values of the probability. Even
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though the value obtained is small, the exponential
dependence of the tunneling probability on field strength
implies that the effect will be enhanced in a weaker field,

when (α|| – α⊥ )  ≥ B. When the barrier penetrability is
high, the accuracy of expression (21) is low. However,
the numerical results presented in Fig. 8 suggest that the
wave packet can penetrate from one well to the other in
about 2 ps with a probability of about 50%. Note also
that the analytical and numerical results presented here
were obtained for a packet initially oriented in the direc-
tion corresponding to a minimum of potential energy.
When the initial packet deviates from an equilibrium
direction, the tunneling probability may increase by sev-
eral orders of magnitude because of the higher effective
energy of the initial state.

4. CONCLUSIONS

Numerical simulations are performed to examine the
rotational dynamics of a molecule in a strong laser field
when the molecular axis is initially oriented in a certain
direction. “Oriented” states of this kind can be created in
a physical experiment by irradiating a molecular system
with a laser pulse.

It is shown that certain general characteristics of the
dynamics of both freely rotating molecule and molecule
interacting with a laser field cannot be described by a
classical theory. These characteristics are explained by
nonzero width and fast spreading of the wave packet

ε0
2
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and by quantum interference (particularly when the
packet is localized in a region of strongly anharmonic
potential).

Because of anharmonicity and “penetration” of a
quantum wave packet into the domain where classical
motion is forbidden, the difference between quantum
and classical dynamics cannot be eliminated even if
classical motion is modeled by using an ensemble of
particles. The possibility of constructing a classical
ensemble of particles that provides an adequate model
of quantum state of the system remains an open
question.

We have found only a narrow range of laser pulse
intensity and initial conditions in which the rotational
dynamics obtained in quantum-mechanical and classi-
cal representations are mutually consistent. The neces-
sary conditions include an instantly applied field of suf-
ficiently high strength, wave-packet width (15) mini-
mizing the spreading, and an initial deviation of the
wave packet from the equilibrium direction that is suf-
ficiently small to ensure its localization in the region of
nearly harmonic potential most of the time.

It is found that the axis of a heteronuclear molecule
can reverse. This essentially quantum effect is
explained by the tunneling of a localized wave packet
in the effective molecule–field interaction potential.
Estimates for the characteristic times and probability of
tunneling obtained in a semiclassical approximation are
in good agreement with numerical results. Numerical
simulations have shown that the probability of molecu-
lar-axis reorientation by tunneling is about 50%. Since
this phenomenon is likely to occur in relatively weak
fields, it should be easy to observe in experiments. In
particular, the HD+ ion placed in the field of a Ti:Sap-
phire laser with a pulse intensity of 5 × 1012 to
1013 W/cm2 and a pulse width of about 200 fs must
reverse with a probability of 10 to 20%. Note the char-
acteristic time of rotational motion without tunneling in
this field substantially exceeds the pulse width.
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Abstract—The photoabsorption cross section σ(ω) and the distribution of oscillator strengths df/dω [these val-
ues are related as σ = (2π2e2/mc)(df/dω)] were determined for an atom with a large Z value using the semiclas-
sical approach. These values were found for low frequencies with the use of the Vlasov kinetic equations, which
were numerically solved by the method of particles. The asymptotic behavior of the distribution of oscillator
strengths at high frequencies was determined by semiclassical equations for the photoabsorption cross section
of electron shells in a Coulomb potential. The asymptotic equations were used to suggest an interpolation equa-
tion for the distribution of oscillator strengths over the whole Thomas–Fermi frequency range 27 eV ! "ω !
27Z2 eV. This equation was used to calculate the logarithmic mean excitation energy, which appears in problems
of ionization loss of charged particles. The distribution of oscillator strengths in a neutral atom allows the radi-
ative properties of dense matter to be determined. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Calculations of the photoabsorption cross section as
a function of frequency σ(ω) or the distribution of
oscillator strengths df/dω (these values are related by
the equation

(1)

[1]) in multielectron atoms are very complex and often
performed in the static approximation; that is, it is
assumed that the potential in which each of the elec-
trons moves is constant, and field screening caused by
the dynamic polarization of the other electrons is
ignored (e.g., see [2]). For frequencies ω lower than or
on the order of the characteristic frequency of rotation
of most of the electrons in heavy atoms Zme4/"3 [3]
(Z is the atomic number), the error then amounts to a
value on the order of one, although the problem con-
tains the small parameter Z–1 used in the Thomas–
Fermi or Hartree–Fock approximation.

Dynamic polarization was included in calculations
of the photoeffect cross section in statistical models of
atoms in [4], where polarizability was taken into
account using the local electron density in an atom, and
in [5] with the use of the Bloch hydrodynamic approach
to spatial charge oscillations in the Thomas–Fermi
atom.1 Both these approaches are, however, model in
character and lack consistent theoretical substantiation,
although they predict reasonable behavior of σ(ω) and
satisfy the sum rule. In particular, the applicability of

1 Recently, a review of polarization effects on atomic transitions
was published [6].

σ 2π2e2

mc
------------- df

dω
-------=
1063-7761/04/9806- $26.00 © 201098
the hydrodynamic approach would require characteris-
tic distances traversed by electrons during spatial
charge oscillations (effective range) to be small com-
pared with characteristic distances (distances from the
nucleus). The frequency range to which electrons at
some distance r from the nucleus contribute is, how-
ever, determined by the relation ω ~ v /r (v  is the veloc-
ity of electrons). It follows that their path in motion at
frequency ω is on the order of the characteristic dis-
tance. For this reason, although these approaches deter-
mine the power dependences σ(ω = 0) = const and
σ(ω  ∞) ~ 1/ω2, which are correct for Thomas–
Fermi atoms in the limiting cases of low and high (com-
pared with Zme4/"3) frequencies, the coefficients of
these dependences are generally incorrect.

In this work, we use a consistent kinetic approach
based on the smallness parameter Z–1 to obtain correct
asymptotic equations for these limiting cases.

Note that fairly accurate experimental and theoreti-
cal data on photoabsorption cross sections taking into
account particular electronic structure details are cur-
rently available for many elements. Our analysis gives
a universal approach to describing cross sections for
arbitrary heavy elements; in particular cases, the accu-
racy of describing cross sections decreases. The results
obtained in this work can be helpful for estimating
cross sections in the frequency ranges (especially at
low frequencies) where polarization effects play an
important role, because including these effects in
direct quantum-mechanical calculations involves seri-
ous difficulties.

Knowledge of the distribution of oscillator strengths
for a cold atom allows not only its photoabsorption
cross section to be found but also the radiative proper-
04 MAIK “Nauka/Interperiodica”
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ties of dense matter to be determined. This is shown in
Section 6.

The accuracy of the developed approach, which is
based on the Thomas–Fermi model, can be estimated as
follows. The individual properties of some substance
and, accordingly, particular transitions can introduce
relative deviations from the statistical Thomas–Fermi
description of the cross section on the order of 1/n,
where n is the characteristic quantum number, which is
supposed to be large for the semiclassical description of
the motion of electrons and photoabsorption to be pos-
sible. At low frequencies, 1 < ω < Z (in atomic units), n
can be estimated as n ~ ω1/3; therefore, the accuracy of
the description is estimated as ω–1/3. At high frequen-
cies, Z1.4 < ω < Z2, we have n ~ Z/ω1/2 (see Section 4),
and the accuracy of the description is estimated2 as
ω1/2/Z. For values integral over the spectrum such as the
logarithmic mean excitation energy (Section 5) or the
intensity of radiation from dense matter (Section 6),
details of the electronic structure of elements will be
averaged, and we can then expect the usual semiclassi-
cal accuracy of about n–2, which corresponds to relative
quantum and exchange corrections of Z–2/3 [7, 8].
Although the asymptotic behaviors of photoabsorption
in the limiting cases of low and high frequencies cannot
be used to determine the photoabsorption cross sections
of particular elements in these limiting cases, they are
necessary for constructing photoabsorption cross sec-
tions over the whole Thomas–Fermi frequency range
1 < ω < Z2. In addition, the low- and high-frequency
asymptotics can be helpful for estimating cross sections
in the intervals 1 ! ω ! Z and Z ! ω ! Z2, res-
pectively.

2. EQUATIONS FOR THE DISTRIBUTION 
FUNCTION OF ATOMIC ELECTRONS

IN AN ELECTROMAGNETIC WAVE FIELD

We use the atomic units e = " = m = 1.
As the motion of electrons in a heavy atom is semi-

classical (with an accuracy to Z–2/3), they can be
described by the classical distribution function f and the
Vlasov equations

(2)

where ϕ is the electric field potential.

2 We will not give more complex accuracy estimates for intermedi-
ate frequencies Z < ω < Z1/4. Only note that the lowest error of
about Z–5/9 is obtained at frequencies on the order of ω ~ Z 4/3.

∂f
∂t
----- v ∂f

∂r
----- ∇ϕ ∂f

∂p
------⋅+⋅+ 0,=

∆ϕ 4πρ,–=

ρ f d3 p,∫–=
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The electric field of an incident electromagnetic
wave is considered low compared with atomic fields.
Let us linearize (2) with respect to the incident wave
field E and use the equilibrium distribution function of
electrons, which, for a neutral atom, is

(3)

where

is the total energy of an electron in the Thomas–Fermi
potential ϕ0(r) and η(–ε) is the Heaviside step function.
In (3), it is taken into account that each phase space cell
can be occupied by two electrons. As a result, we obtain

(4)

(5)

(6)

where index “0” labels equilibrium values, and “1” is
for perturbed values. As the wavelength of incident
radiation is large compared with the size of an atom, E
is considered constant at infinity.

To numerically solve kinetic equation (4) by the
method of particles, we interpret this equation as fol-
lows: its left-hand side describes particle motions in a
Thomas–Fermi potential, and the right-hand side corre-
sponds to the creation of particles, electrons if f1 > 0 and
holes if f1 < 0. It should be borne in mind that, although
holes make a positive contribution to charge density (6),
their motion according to (4) occurs in the same poten-
tial as the motion of electrons.

Substituting the equilibrium distribution function (3)
into the term that describes the creation of particles
in (4) yields

(7)

This means that electrons and holes are created with
zero energy and have a Lambert distribution of exit
angles; holes fly out along the field, and electrons,
against it. The rate of electron and hole creation in unit
volume is

(8)

where pF is the boundary Fermi distribution momentum.

f 0
η ε–( )
4π3

--------------,=

ε p2

2
----- ϕ0 r( )–=

∂ f 1

∂t
-------- v

∂ f 1

∂r
-------- ∇ϕ 0

∂ f 1

∂p
--------⋅+⋅+ ∇ϕ 1–

∂ f 0

∂p
--------,⋅=

∆ϕ1 4πρ1,–=

ρ1 f 1d3 p,∫–=

∇ϕ 1–
∂ f 0

∂p
--------⋅ δ ε( )

p ∇ϕ 1⋅
4π3

------------------.=

dn
dt
------

∇ϕ 1

4π2
------------- pF

2 ∇ϕ 1

2π2
-------------ϕ0,= =
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As the ϕ1 potential in our problem can only depend
on two vectors, E and r, and ϕ1 should linearly depend
on the E vector, ϕ1 takes the form

Here, ψ(r  ∞) = 1, because the electric field at infin-
ity is E. By virtue of Poisson equation (5), the charge
density ρ1 also has the form

We can therefore use (5) to obtain a relation between
the total dipole moment of particles P within a certain
radius r and ψ', namely,

(9)

The total dipole moment induced on the atom deter-
mines the behavior of ψ(r) at infinity,

The photoabsorption cross section that we are inter-
ested in can be found as the ratio between the q energy
absorbed by the atom and the energy flux that passes
through the unit area,

(10)

Here, the time dependence of the electric field at a
given frequency has a sinusoidal oscillatory character,
and the integral in the denominator and the numerator
should generally be considered over an arbitrarily long
time interval including an infinite number of oscillation
periods.

Let us relate the dipole moment to the energy q
absorbed by the atom. The dq energy absorbed by the
atom during a short time interval dt comprises two
parts [9], namely, the work done on charges

where j is the current density, and the change in the
electrostatic energy

(11)

where E' = – ∇ϕ 1 – E is the field of induced charges and
dE' is the change in this field during time dt.

ϕ1 E r⋅( )ψ r( ).–=

ρ1 E r⋅( )R r( ).=

P
E
3
--- 4πRr2 rd

0

r

∫ E
3
---r4ψ'.= =

ψ r ∞( ) 1
P

Er3
--------.–=

σ q

cE2

4π
-------- td∫

-----------------.=

qJd dt ∇ϕ 1 j V ,d⋅–∫≡

dqC
1

4π
------E' E' V ,dd⋅∫=
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Let us transform dqJ by transferring the sign of ∇
to j,

and use first the continuity equation and then the Pois-
son equation to obtain

(12)

Summing (11) and (12) yields the energy absorbed
by the atom in time dt,

Let us represent field E in the form E = ∇ (Ez) (we
assume that E is directed along the z axis) and use the
identity ϕ1 ≡ ϕ1 + Ez – Ez. The last equation can then be
rewritten as

Combining the first two integrals yields

The first integral reduces to the integral over an infi-
nitely distant surface and disappears at infinity. The
second integral gives the increment of the dipole
moment. We eventually find that dq = EdP.

The total energy absorbed by the atom in time t is
found by the equation

(13)

If we know the time dependence of the dipole moment
of the atom, we can use (10) and (13) to calculate the
photoabsorption cross section.

3. THE LOW-FREQUENCY LIMIT
OF THE DISTRIBUTION 

OF OSCILLATOR STRENGTHS

3.1. Simplifications in the Low-Frequency Limit

At low frequencies ω ! Z, the major contribution to
oscillator strengths is made by electrons at large dis-
tances r @ Z–1/3 from the nucleus. The asymptotic
behavior of the Thomas–Fermi function at large dis-

dqJ dt ϕ1div j V ,d∫=

dqJ  =  
ϕ

 
1 

4
 π ------div E ' V . dd ∫  –

dq
1

4π
------ E' E' V

1
4π
------ ϕ1div E' V .dd∫–dd⋅∫=

dq
1

4π
------ ∇ ϕ 1 Ez+( ) E' Vdd⋅∫–=

–
1

4π
------ ϕ1 Ez+( )div E' V

E
4π
------ zdiv E' V .dd∫+dd∫

dq
1

4π
------ div ϕ1 Ez+( ) E'd( ) V E z ρ1 V .dd∫+d∫–=

q E P.d∫=
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tances has the form χ = 144/x3, and the asymptotic
behavior of the potential is described by the equation

(14)

The motion of zero-energy electrons (and holes) in
such a potential is described by simple analytic equa-
tions. Their trajectories are circles passing through the
center.

The next simplification that can be used in the low-
frequency limit is based on the independence of the
absorption cross section from frequency in this limit. It
follows that the cross section can be found using an
electromagnetic wave with an arbitrary time depen-
dence. A wave with a rectangular profile, electric field
amplitude E, and time t can conveniently be considered.
Equation (13) for the energy q is then written in the
form

and the distribution of oscillator strengths, in the form

(15)

One more simplification follows from (4)–(6); this
is the self-similar dependence

(16)

and, accordingly, a linear time dependence of the dipole
moment, as required for calculating the distribution of
oscillator strengths by (15).

3.2. The Method for Numerical Calculations

3.2.1. Creation of Particles
Kinetic equation (4) is integrated by the method of

particles.
In the language of particles, the right-hand side

of (4) corresponds to the creation of pairs of particles,
electrons (if the right-hand side is larger than zero) and
holes (if the right-hand side is smaller than zero). A ran-
dom number generator is used to obtain random initial
coordinates of holes and electrons and their exit angles.
If the created particles are assigned weight wE, then,
according to (8), the number of electrons (and holes)
created in unit time is

(17)

where β(r) is the angle-average electric field modulus

ϕ0
81π2

8r4
-----------.=

q EP,=

df
dω
-------

2
π
--- P

Et
-----.=

ψ r

t1/3
------- 

  ,

dN
dt
-------

1
wE
-------- nd

td
------ Vd∫ 81π

4w
--------- β r( )

r2
---------- r,d

0

∞

∫= =
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(to simplify equations, we assume that E = 1),

If ψ = const, which corresponds to an electric field
constant over space (if polarization-induced screening
is absent, the field is constant, and this is so at the initial
time moment), then β = const and integral (17) diverges
at small radii. For integral (17) to converge, it is neces-
sary that the condition ψ ∝  rα, where α > 1, be satisfied.
Our studies of the behavior of the distribution function
at short distances, however, showed that solutions with
ψ ∝  rα, where α < 1, are possible, and numerical calcu-
lations (Section 3.3) substantiated that such solutions
did exist. For this reason, we had to perform numerical
calculations with the integral of the creation of particles
that diverged at short distances and cut this integral at
some radius r = r0. As the particles created at a small
radius made a negligible contribution to the dipole

moment [according to (9), P ∝  ], this could not
have a noticeable effect on the results. In reality, the r0
value was successively decreased from one calculation
to another during refinement (as calculations with an
ever increasing number of particles were performed),
which ensured the passage to the r0 = 0 limit. The pro-
cedure for cutting off the potential was as follows: the
ψ(r0) potential was determined by solving the Poisson
equation, and, at r < r0, it was assumed that

It was taken that ψ(r0) = 1 at the initial time.

The time step ∆t selected for numerical calculations
was such that one pair of particles (an electron and a
hole) were created during time ∆t.

The probability density of the creation of a pair of
particles in volume dV = r2sinθdrdθdϕ is

As p is independent of ϕ, the probability of the cre-
ation of a pair of particles in the interval of radii from r

β r( ) ∇ϕ 1 θ θdsin

0

π/2

∫=

=  ψ2 2rψψ' r2ψ'2+( ) θcos
2

+ θ θ.dsin

0

π/2

∫

r0
3 α+

ψ r( ) ψ r0( ) r
r0
---- 

  2

.=

p
dn

wdN
-----------

ψ2 2rψψ' rψ'( )2+( ) θ2cos+

4πr4 β r( )
r2

---------- rd

0

∞

∫
-------------------------------------------------------------------------.= =
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to r + dr and in the interval of angles from θ to θ + dθ is

Hence we obtain the probability distribution of the
creation of particles over radii,

(18)

and over angles (at a given radius),

(19)

In the calculations, particle creation probabilities
were generated by (18) for radii and (19) for angles.
The exit angle of a particle with respect to the field was
drawn based on the Lambert distribution according
to (7).

3.2.2. The Motion of Particles

Let us introduce a polar system of coordinates in the
plane of particle motion. The potential energy of a par-
ticle has the form U(r) = –a/r4, and the total energy is
ε = 0. When a particle moves in a central field, the
radius and angle φ are related as [10]

where m = 1 is the mass of the particle, M is the angular
momentum, and C1 = const. This gives the trajectory
equation

Let us use the notation /M = 2R and select C1 in
such a way that r = 2R at φ = 0. The last equality can
then be rewritten as

(20)

This is the equation of a circle of radius R that passes
through the origin. After a particle falls onto the center
because of the Coulomb behavior of the potential at
short distances, it flies out of the center in the same

p r θ,( ) r θdd 2πr2 θp r θ.ddsin=

pr p r θ,( ) θd

0

π

∫ β r( )

r2 β r( )
r2

---------- rd

0

∞

∫
------------------------,= =

pθ
p r θ,( )

pr

-----------------=

=  
ψ2 2rψψ' rψ'( )2+( ) θ2cos+

2β r( )
------------------------------------------------------------------------- θ.sin

φ C1+

M

r2
----- rd

2 ε U r( )–[ ] M2

r2
-------–

----------------------------------------------,∫=

r
2a
M

---------- φ C1+( ).cos=

2a

r 2R φ.cos=
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direction as it fell, and then again moves in a circle. As
a result, its trajectory is two tangent circles that form a
figure eight.

Using (20) and the equation that relates the radius
and time for motion in a central field [10]

we obtain the time dependence of the angle for ε = 0,

(21)

where χ = 2φ, the angle χ is counted in the direction of
hole motion, and the period of particle rotation is

(in reality, the period of a particle that moves along the
figure eight is 2T). As a = 81π2/8, the period T expressed
at ε = 0 through the circle radius R is written as

(22)

The initial particle coordinates and exit angles with
respect to the field obtained by drawing probabilities
can be used to find the trajectory of a particle in the
three-dimensional space as a function of the χ parame-
ter. The χ angle itself at arbitrary time t is found
from (21). It follows that all particle coordinates can be
calculated at arbitrary time t.

3.2.3. The Solution of the Poisson Equation

The potential was numerically calculated using a
grid along the radius with step h. The potential cutoff
radius r0 was usually r0 = 2h.

The dipole moment P(ri) was calculated by sum-
ming the contributions of all particles at every grid
point. For a particle whose current radius was in the
interval [ri, ri + 1] and equaled r = ri + µh (0 < µ < 1), the
zw value of this particle corresponding to its contribu-
tion to the dipole moment was projected onto point ri

with the weight 1 – µ and onto point ri + 1 with the
weight µ. All the particles projected onto point ri cre-
ated a dipole moment increment at this point. The
dipole moment P(r) accumulated for the current radius
was obtained by summing all these increments up to
this radius.

The integration of (9) with the boundary condition
ψ(r∞) = 1 was performed to find the ψ(r) dependence
over the whole space taking into account the interpola-

t C2+
rd

2 ε U r( )–[ ] M2

r2
-------–

----------------------------------------------,∫=

t
a

2M3
---------- χ χsin+( ) T

2π
------ χ χsin+( ),≡=

T
aπ
M3
-------=

T
8R3

9
---------.=
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tion of ψ(r) to the boundary condition ψ(0) = 0 (see
above).

3.3. Numerical Results

The dependences of P/t and ψ on the self-similar
variable ζ = r/t1/3 obtained in the calculations with w =
0.00001, r0 = 0.016, and h = 0.008 after the creation of
84000 pairs of particles (this corresponded to the total
time t = 1.01 × 10–3) are shown in Fig. 1.

According to Fig. 1 and (22), the major contribution
to the total dipole moment is made by distances from
the nucleus at which the rotation period of particles cre-
ated in this region is several times larger than time t.
The calculations also show that, at small radii, the ψ(r)
function behaves irregularly, but decreases fairly
slowly as the radius becomes smaller, certainly slower
than r3, as according to the dependence obtained using
the polarization of the potential of the static Thomas–
Fermi equation. It follows that the kinetics significantly
changes the behavior of screening at small radii. The
estimate obtained from the dependence of the number
of created particles on time N ∝  t1 – α/3, which follows
from the self-similar dependence (16) and the behavior
of the potential at small radii, namely, ψ ∝  rα, gives the
exponent α ≈ 0.5 for the power dependence ψ ∝  rα at
small radii. This exponent is within the interval of its
admissible values 0 < α < 1 obtained in our analytical
calculations.

The time dependence of the P/t value for the whole
atom obtained in our calculations is shown in Fig. 2.
The P/t value tends to a constant of 27.11 ± 0.09 as time
passes (the oscillations of P/t are explained by fluctua-
tions).

Our calculations show that fluctuations decrease and
the results become more accurate as the number of par-
ticles increases and we pass to finer grids and simulta-
neously reduce the smoothing parameters. Some of the
results of calculations performed with different particle
weights w up to time t = 0.001 are summarized in the
table.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
Using the tabulated data on P/t, we can estimate the
P/t value taking into account possible errors as

The low-frequency limit of the distribution of oscil-

P
t
--- 27.12 0.09.±=
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t × 104

Fig. 2. Time dependence of P/t.
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Fig. 1. Dependences of P/t and ψ on self-similar variable
ζ = r/t1/3 obtained in numerical calculations.
Table

Particle
weight w

Number of
created

particles N
r0

Maximum radius R at which 
potential ψ fluctuations

exceeding 30% are observed
α P/t

0.00020 14000 0.025 0.275 0.35 29.0 ± 0.6

0.00010 20500 0.025 0.225 0.23 27.3 ± 0.4

0.00005 36000 0.02 0.260 0.05 26.8 ± 0.3

0.00002 46000 0.016 0.208 0.58 27.13 ± 0.09

0.00001 84000 0.016 0.176 0.5 27.11 ± 0.09
ICS      Vol. 98      No. 6      2004
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lator strengths corresponding to this P/t value is

(23)

This value is 1.21 times lower than that calculated by us
using the hydrodynamic approach developed in [5].3 It
follows that the hydrodynamic approach [5] overesti-
mates the limiting value of the distribution of oscillator
strengths. It can be thought that, at nonzero low fre-
quencies, the df/dω values in [5] are also exaggerated,
although to a lesser extent than at zero frequency,

because the sum rule for oscillators,  = Z, is satis-

fied in the hydrodynamic approach.

4. THE HIGH-FREQUENCY LIMIT
OF THE DISTRIBUTION 

OF OSCILLATOR STRENGTHS

At high frequencies ω @ Z, the influence of polar-
ization is insignificant and the potential in which elec-
trons that contribute to oscillator strengths move can be
considered Coulomb. This situation can most easily be
analyzed using the well-known equations for photoab-
sorption cross sections in a Coulomb potential [1].

The electron photoionization cross section in a Cou-
lomb field from the level with the principal quantum
number n is [1]

(24)

Let us multiply (24) by 2n2 (the number of electrons in
shell n) and integrate it in n from the lowest possible
principal quantum number to infinity for

(no transitions from lower n can occur because such
transitions would be to discrete levels, which are occu-
pied in a neutral atom). This gives the total photoab-
sorption cross section

and, accordingly, the asymptotic behavior of the distri-

3 Low-frequency limit calculations in [5] contain an error, which
results in the neglect of electron gas polarization and a strong (by
a factor of 2.3) exaggeration of the low-frequency limit of df/dω
compared with correct calculations according to the hydrody-
namic approach.

df
dω
------- 17.3.=

fd∫

σn
8π

3 3
---------- Z4

cω3n5
--------------.=

Z2

2n2
-------- ω=

σ 16π
3 3
---------- Z2

cω2
---------=
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bution of oscillator strengths at high frequencies,

(25)

It should be mentioned that this distribution of oscil-
lator strengths was in essence used earlier [11] to calcu-
late emission from multicharged ions but was obtained
by a different method.

The coefficient in dependence (25) is 1.59 times
larger than a similar coefficient obtained in [5].4 As the
df/dω value decreases compared with the hydrody-
namic approximation in the low-frequency limit, we
arrive at the conclusion that taking the kinetics of the
motion of electrons into account shifts the distribution
of oscillator strengths to higher frequencies.

5. THE INTERPOLATION EQUATION 
FOR THE DISTRIBUTION

OF OSCILLATOR STRENGTHS 
AND THE LOGARITHMIC MEAN EXCITATION 

ENERGY

The photoabsorption cross sections σ(Ω) for fre-
quencies Ω = ω/Z from the interval [0.03, 12] were cal-
culated in [5] using the hydrodynamic approach. The
corresponding distribution of oscillator strengths can
be found by (1). The low-frequency asymptotic distri-
bution of oscillator strengths df/dω obtained in [5]
exceeds our value (23), whereas at high frequencies, the
coefficient in the asymptotic equation

is 1.59 times smaller than our coefficient in (25). This
leads us to conclude that the hydrodynamic approach
underestimates oscillator frequencies. Let us introduce
the value

,

which is the number of oscillators below a given fre-
quency. If exact asymptotic functions differed from the
hydrodynamic functions [5] by the same factor k at low
and high frequencies, it would be possible to obtain a
function with correct asymptotic behavior using cross
sections from [5] and transforming the corresponding F

4 Note that this ratio is close to the ratio between the zero sound
velocity [12] in a Fermi gas and the hydrodynamic velocity

( ). The elastic properties of the electron gas are determined by
the zero sound velocity. Possibly, taking them into account,
which appears appropriate for a collisionless gas, would improve
the results of the hydrodynamic approach [5]. For instance, the
low-frequency limit of df/dω would then exceed the exact value
given by (23) by as little as 4%.

df
dω
-------

8

3 3
---------- Z2

ω2
------.=

3

df
dω
------- 0.31

Ω2
----------=

F
1
Z
--- fd

ωd
------- ωd

0

ω

∫=
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value as F(ω)  F(ω/k). We could even hope to
obtain a more accurate description also for intermediate
frequencies, because the shortcomings of the hydrody-
namic approach in the limiting cases would then be
removed. As the oscillator strengths were calculated
in [5] for the frequency range far from the low-fre-
quency limit, we will attempt to improve the descrip-
tion of the distribution function of the number of oscil-
lators using the k value obtained at high frequencies.

Thus, if we know the F(Ω) function from [5], a
change in the frequency by the formula Ω  1.59Ω
causes the df/dω function to transform as

. (26)

The new df/dω values should satisfy our asymptotic
equation at high frequencies (25). The lowest frequency
at which the photoabsorption cross section was calcu-
lated in [5], Ω = 0.03, is fairly far from the low-fre-
quency limit. We will therefore try to construct an inter-
polation formula for F using the values from [5] trans-
formed according to (26) and our asymptotic functions
at low and high frequencies. We selected the interpola-
tion function

(27)

where the coefficient 17.3 is determined by the low-fre-
quency asymptotic function (23) and the high-fre-
quency asymptotic function (25) gives the relation C1 =
2.04C4. The df/dω value is then found by the equation

(28)

The coefficients C1, C2, and C3 in (27) were
adjusted by the method of least squares to shift the
df/dω = F'(Ω) values toward the df/dω values from [5]
transformed according to (26). This adjustment gave

The df/dω values reported in [5] and calculated by
interpolation equation (27) are shown in Fig. 3 (the
dashed line shows the asymptotic dependence at low
frequencies).

The logarithmic mean excitation energy, which
appears in problems of ionization loss of charged parti-
cles [3], is calculated by the equation

(29)

df
dω
------- Ω( ) 1

1.59
---------- df

dω
------- Ω

1.59
---------- 

 

F Ω( )
17.3Ω C1Ω

3+

1 C2Ω
0.4 C3Ω C4Ω

2 C1Ω
3+ + + +

---------------------------------------------------------------------------------,=

df
dω
------- F ' Ω( ).=

C1 55.7, C2 11.2, C3 6.6, C4 27.3.= = = =

Iln Z
fd
ωd

------- Ω Ω.dln

0

∞

∫+ln=
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Substituting df/dω from (27) and (28) into (29) yields
I = 8.3Z eV, which is closer to the range of experimen-
tal values I/Z = 9.5–16 eV [13] than the I/Z = 4.95 eV
value from [5].

6. THE USE OF THE DISTRIBUTION
OF OSCILLATOR STRENGTHS

IN A NEUTRAL ATOM FOR DETERMINING
THE RADIATIVE PROPERTIES 

OF DENSE MATTER

The degree of ionization of a dense plasma is deter-
mined by the Saha equation with multiple ionization [1],

(30)

where z is the degree of ionization, I is the ionization
potential, nZ is the density of ions, and T is the temper-
ature. In a fairly dense plasma, I ~ T. For this reason, in
the Thomas–Fermi atom at low temperatures 1 ! T < Z,
the major contribution to the range of oscillator
strengths of interest to us ω ~ T is made by electrons
that fly past at such distances r from the nucleus at
which the rotation period is on the order of ω. As we are
considering the case ω < Z, the rotation frequency of
electrons depends on r as ω ~ 1/r3 and the major contri-
bution to these frequencies is made by the regions of the
atom

(31)

These regions are not involved in ionization, which
comes into play at distances rI ~ 1/T1/4. It follows that
the distribution of oscillator strengths of a cold Tho-
mas–Fermi atom should be valid at these frequencies.

I z 0.5+( ) T
2

znZ

-------- T
2π
------ 

 
3/2

,ln=

rω 1/ω1/3 1/T1/3
 ! rI 1/I1/4.∼∼ ∼

102101

10–1

10–2

df/dω

Ω

10–3

10–2 10–1

10

102

1

Fig. 3. Distributions of oscillator strengths from [5] (solid
circles) and calculated by interpolation equation (27) (solid
line); the dashed line is the low-frequency asymptotic
obtained in this work.
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At high temperatures Z ! T < Z2, rω and rI can be esti-
mated by the Coulomb equations

The major contribution to the ω ~ T range of oscillator
strengths is then also made by electrons that fly past the
nucleus at the distances

(32)

not involved in ionization. It follows that, at these fre-
quencies also, the distribution of oscillator strengths of
a cold Thomas–Fermi atom should be valid. The distri-
bution of oscillator strengths of a cold Thomas–Fermi
atom should therefore determine the true absorption
coefficient  (the absorption coefficient corrected for
stimulated emission) of a fairly dense substance at arbi-
trary temperatures. Using (1) and passing to the usual
units, we can write

(33)

The spectral intensity of radiation of ions Jω is
related to  by the equation (in the usual units)

(34)

and, like  (33), is proportional to the density. When
using (33) and (34) for calculating the radiative charac-
teristics of substances, it should be borne in mind that,
as we use the semiclassical approach, the spectra (33)

ω Z

rω
3/2

--------, I
Z
rI

----.∼∼

rω
Z1/3

T2/3
--------- ! rI

Z
I
---∼∼

κω'

κω' nZσ
2π2e2nZ

mc
------------------- df

dω
-------.= =

κω'

Jω
"ω3

π2c2 "ω
T

-------exp 1– 
 

------------------------------------------κω'=

κω'

102101

0.4

0.2

T/Z

0
10–2 10–1

0.8

1.0

0.6

J

Fig. 4. Intensity of radiation of dense plasma ions as a func-
tion of temperature.
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and (34) are continuous and smoothed over a large
number of lines. For this reason, when, for instance, the
Rosseland mean free paths are calculated, for which the
discrete character of spectra is essential, the use of (33)
can only give the lowest mean free paths estimate,
because the major contribution to the Rosseland mean
free paths is made by regions of maximum trans-
parency.

At high temperatures T @ Z, the distribution of
oscillator strengths should be calculated by (25), which
allows the radiative plasma characteristics reported
in [11] to be obtained. In particular, the intensity of
radiation of ions is proportional to T2 in this limit.

At low temperatures T ! Z, we have df/dω 
const and the spectral intensity of radiation of ions (34)
coincides in form with the spectral intensity of black-
body radiation. Accordingly, the intensity of radiation
of ions is proportional to T4 in this limit. Note that,
because the df/dω  const limit is only attained at
very low frequencies, the transition to the T4 depen-
dence of radiation intensity also occurs only at exceed-
ingly low temperatures.

The dependence of the total intensity of radiation of
ions for df/dω from (27) and (28) on the temperature
T/Z is shown in Fig. 4. The intensity of radiation of ions
J is expressed in the units

.

Note that we can actually use (33) with the Thomas–
Fermi df/dω value to determine the radiative character-
istics of substances only at very high densities. This
requires that the characteristic distances rω for the elec-
trons with the ω ~ T rotation frequency be small com-
pared with the rI distances determined by the ionization
potential (30). Equations (31) and (32) at low and high
temperatures, respectively, Eq. (30), and the relations
between I and z at small and large z,

can be used to find the conditions of the applicability
of (33) with the Thomas–Fermi df/dω value,

8π
9 3
---------- e6

"
4c3

----------Z2nZT2

I z4/3 for z ! Z ,∼

I
Z2

Z z–( )2/3
---------------------- for Z z ! Z ,–∼

for T Z T  @ 
T3/4

2π3/2nZ

----------------------ln
 
 
  3

,<

for T Z T  ! 
Z2

T3/2

2π3/2ZnZ

--------------------------ln
 
 
  3
---------------------------------------.>
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For instance, for iron at the temperature T = Z =
0.7 keV, these conditions are satisfied starting with den-
sities higher than 50 g/cm3.

At lower densities, ionization decreases oscillator
strengths and the “number” of lines in the region of
ω ~ T. This makes the discrete character of the spec-
trum essential, and the intensities of radiation may con-
siderably decrease. A consideration of this situation at
high temperatures T @ Z or Z – z ! Z (nevertheless, at
T ! Z2) can be found in [14].

The results obtained in [14] can be used to suggest a
convenient interpolation equation for the true absorp-
tion coefficients of a plasma. This equation gives cor-
rect results in the limit of high densities, takes into
account the discrete character of the spectrum, and
transforms into correct Coulomb formulas at high tem-
peratures [14],

(35)

Here,

and ωI is the electron rotation frequency, which equals
"ωI = 2I/n in a Coulomb field (I is the ionization poten-
tial). Indeed, sum (35) can be replaced by the integral
in k in the limit of high densities, when the "ωI = 2I/n !
I value is small compared with the characteristic radia-
tion frequencies "ωI ~ T ~ I; we then obtain (33). On the
other hand, at high degrees of ionization, df/dω can be
replaced by the high-frequency limit (25) and we obtain
the results reported in [14]. For describing a cold sub-
stance and/or photoeffect cross sections, the sum
in (35) should be taken to k that corresponds to "ω = I
rather than to infinity and then replaced by the integral
(on the assumption that ξk = 1), because these frequ-
encies correspond to the transition to a continuous
spectrum.

Assuming that

we can obtain an equation for "ωI correct at high tem-
peratures and correct in order of magnitude at low tem-
peratures,

(36)

Equations (35) and (36) can give incorrect results at low
temperatures for a not very dense plasma. However in

κω' nZσ
2π2e2nZ

mc
------------------- fd

dω
-------ωIξkδ ω kωI–( ).

k 1=

∞

∑= =

ξk π 3kJk k( )Jk' k( ) 1
0.21775

k2/3
-------------------,–≈≡

I
z 1+( )2

2n2
------------------me4

"
2

---------,=

"ωI
2I

z 1+
----------- 2I

me4/"2
-----------------.=
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this region also, a result correct in the order of magni-
tude can be obtained.

7. CONCLUSIONS

In this work, we suggested a method for calculating
the cross section of photoabsorption of complex atoms.
This method is based on solving the kinetic equation by
the method of particles.

We found that, in the low-frequency limit, the distri-
bution of oscillator strengths of the Thomas–Fermi
atom tends to the constant

It was shown that, when an electric field is applied
to a neutral atom, field screening at small radii in the
kinetic problem is weaker than in the stationary (hydro-
dynamic) problem.

The asymptotic behavior of the distribution of oscil-
lator strengths at high frequencies is described by the
equation

We used the results obtained in [5], the sum rule,
and asymptotic equations (23) and (25) to suggest an
interpolation formula for the distribution of oscillator
strengths over the whole frequency range. The logarith-
mic mean excitation energy, which appears in problems
of ionization loss of charged particles, calculated by
this equation was I = 8.3Z eV, which was close to the
range of experimental values.

We showed that the distribution of oscillator
strengths in a neutral atom could be used to determine
the radiative properties of dense matter.
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Abstract—Transition radiation that arises when a charged particle passes through two consecutive plane grat-
ings is considered. The gratings are made up of parallel metal wires. The planes of the gratings are parallel to
each other and perpendicular to the direction of motion of the particle. The conductors of one of the gratings
are perpendicular to the conductors of the other. It is shown that the generated transition radiation has elliptic
polarization; the ellipticity and the sign of rotation depend on the angle of radiation, the distance between the
gratings, and the velocity of the charged particle. © 2004 MAIK “Nauka/Interperiodica”.
To diagnose and control a beam of charged particles
during their acceleration, one needs continuous acqui-
sition of information about the parameters of the beam:
its trajectory, particle energy, etc. A promising method
for obtaining such information is the use of transition
and diffraction radiation. For this purpose, one places a
thin film on the path of particles and records transition
radiation generated when fast particles pass through
this film. The possibility of using diffraction radiation
for the diagnosis of a beam was also discussed. In this
case, fast particles generate radiation when they travel
near an optical irregularity, without crossing it. This
method of recording leads to minimal disturbance of
a beam.

It is well known that transition radiation has linear
polarization. This fact was established in the first work
by Ginzburg and Frank [1]. In most subsequent stud-
ies [2, 3], which dealt with various versions of transi-
tion radiation, it was also shown that transition radia-
tion has linear polarization (except for the problem of
transition radiation in the presence of a gyrotropic
medium; see, for example, [4]). In the present paper, we
consider the possibility of generating elliptically polar-
ized radiation as a result of two successive processes of
transition radiation in each of which linearly polarized
waves are emitted. Elliptically polarized radiation is
defined by several parameters: the lengths and the dis-
position of the axes of the polarization ellipse and the
sign of rotation. Below, we will show that these param-
eters carry information about the energy of particles
and the direction of a beam. The fact that elliptically
polarized radiation depends on a greater number of
parameters than linearly polarized radiation provides
additional possibilities for diagnosing the parameters of
the beam.

Consider a plane diffraction grating situated in the
plane xy (Fig. 1). The grating consists of metal wires
1063-7761/04/9806- $26.00 © 21109
that are parallel to the x axis. We assume that the dis-
tance between the wires is small compared with the
wavelength of the radiated wave. Such a grating can be
considered as a conductive plane in which the conduc-
tivity along x axis is infinite and the conductivity along
y axis is zero. A charged particle moving along the nor-
mal to the grating (along the z axis) crosses the grating.
This gives rise to transition radiation. This radiation can
be considered as radiation due to the currents induced
in the wires by the traveling particle. Since all the con-
ductors of the grating are parallel to the x axis, the
induced currents are also parallel to the x axis. Hence,
the vector potential describing the radiation of induced
currents is also parallel to the x axis. Note that the prob-
lem of transition radiation in such a grating was consid-

x

y

z

ϕ

θ

R
n

d

Fig. 1. Geometry of the problem. A charged particle moves
along axis z.
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ered in [5] by Barsukov and Naryshkina. The results
obtained by these authors imply, in particular, that the
forward small-angle transition radiation is linearly
polarized and the polarization vector is indeed parallel
to the wires, i.e., to the axis x in our case.

Let us place the second grating at a distance d from
the first one. The planes of these gratings are parallel,
while the wires of the second grating are perpendicular
to those of the first grating, i.e., directed along the y
axis. Both the field of the charge and the radiation field
of the currents induced in the first grating are incident
upon the second grating. Since the electric field radi-
ated by the first grating is perpendicular to the conduc-
tors of the second grating, it does not induce any cur-
rents in the second grating and freely passes through it.
The field of the traveling particle induces currents par-
allel to the y axis in the second grating, and these cur-
rents give rise to radiation in which the electric-field
vector is directed along the y axis. Thus, the transmis-
sion of a charged particle through two gratings gives
rise to two waves. The electric-field vectors of these
waves are mutually perpendicular, while their phases
differ by a quantity that depends on the distance
between the gratings and the flight time. A superposi-
tion of two such waves represents an elliptically polar-
ized wave. Below, we will determine the parameters of
this wave.

Let us calculate the field generated when a charged
particle passes through the first grating. Suppose that
the charged particle moves along the z axis at velocity
v  according to the law

The field of a uniformly moving particle is determined
by a vector potential A and a scalar potential ϕ. In the
calibration adopted here, the vector potential has only
one component, Az . Let us write out the integral repre-
sentation of the potentials A and ϕ as a plane-wave
expansion. If we expand the potentials in time Fourier
series,

(1)

(2)

we then obtain the following expressions for Azω and ϕω:

(3)

(4)

z v t.=

Az t( ) Azw iωt–( ) ω,dexp∫=

ϕ t( ) ϕω iωt–( ) ω,dexp∫=

Azω
q

2π2c
-----------=

×
i kxx kyy ω/v( )z+ +( )[ ]exp

kx
2

ky
2 ω/v( )2 1 β2–( )+ +

------------------------------------------------------------------- kx ky,dd∫

ϕω
q

2π2v
-------------=

×
i kxx kyy ω/v( )z+ +( )[ ]exp

kx
2

ky
2 ω/v( )2 1 β2–( )+ +

------------------------------------------------------------------- kx ky,dd∫
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where q and v  are the particle charge and velocity, ω is
the radiation frequency, and β = v /c is the reduced
velocity of the particle. These formulas give an integral
representation for Aω and ϕω in the form of the expan-
sion in plane waves exp[i(kxx + kyy + kzz)]. Here, kx , ky ,
and kz are the projections of the wave vector onto the
coordinate axes. Note that, for a uniformly moving par-
ticle, kz = ω/v.

The field defined by (3) and (4) is incident upon the
first grating and induces currents in its wires. Since
these wires are oriented along axis x, the currents are
induced only by the Ex component of the field of a
uniformly moving particle. Let us write out the compo-
nent Exω:

(5)

The field Exω induces currents in the wires. We denote
the densities of these currents by jxω(x, y). Let us repre-
sent jxω(x, y) also in the form of the Fourier series

(6)

where jxω(kx, ky) are to be determined from the bound-
ary conditions on the surface of the grating. Let us cal-
culate the vector potential  of the radiation emitted
by the current jx . The equation for the vector potential

 is expressed as

(7)

A solution of this equation can be represented as

(8)

Let us integrate with respect to kz , circumventing the
poles of the integrand according to the radiation princi-
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∞–

∞

∫=

× i kxx kyy+( )[ ] kx ky,ddexp

Ax'

Ax'

∆ 1

c2
---- ∂2

∂t2
-------– 

  Ax'
4π
c

------ jx=

=  
2
c
--- i kxx kyy kzz ωt–+ +( )[ ]exp∫–

× jxω kx ky,( ) kx kyd dkz ω.dd

Ax'
2
c
---

i kxx kyy kzz ωt–+ +( )[ ]exp

kx
2

ky
2 kz

2 ω/v( )2
–+ +

---------------------------------------------------------------------∫=

× jxω kx ky,( ) kx kydkz ω.ddd
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ple (i.e., the solution must consist of the waves outgo-
ing from the grating). Then, we obtain

(9)

The field of the currents induced in the grating is deter-
mined by both the vector potential  and the scalar

potential  = ckx /ω:

(10)

Knowing  and , we can determine the compo-

nent  of the electric field generated by the first
grating:

(11)

The x component of the total electric field must vanish
on the surface of the grating:

If we take expression (5) for Exω and expression (11) for
, then we obtain an equation from which one can

determine jxω, the Fourier component of the current
induced in the grating,

(12)

Axω'
i2π
c

--------=

× i kxx kyy ω/c( )2 kx
2

– ky
2

– z ωt–+ +( )[ ]exp∫

× jxω kx ky,( )
dkxdkydω

ω/c( )2
kx

2
– ky

2
–

------------------------------------------.

Axω'

ϕω' Ax'

ϕω' i2π=

× i kxx kyy ω/c( )2
kx

2– ky
2

– z ωt–+ +( )[ ]exp∫

× jxω kx ky,( )
kxdkx ky ωdd

ω ω/c( )2
kx

2
– ky

2
–

-----------------------------------------------.

Axω' ϕω'

Exω'

Exω'

=  2π i kxx kyy ω/c( )2
kx

2
– ky

2– z+ +( )[ ]exp∫–

× jω kx ky,( )
ω/c( )2 kx

2
–[ ] dkxdky

ω ω/c( )2
kx

2
– ky

2–
-------------------------------------------------.

Exω' Exω+ 0, z 0.= =

Exω'

jxω
iq

4π3v
-------------–=

×
kxω ω/c( )2

kx
2

– ky
2–

kx
2 ky

2 ω/c( )2 1 β2–( )+ +[ ] ω/c( )2 kx
2

–( )
-----------------------------------------------------------------------------------------------.
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Substituting this expression into formulas (9) and (10),
we determine the vector and scalar potentials:

(13)

(14)

Formulas (13) and (14) define the radiation emitted
when a charged particle passes through the grating sit-
uated in the plane z = 0. The total field in the region
between the first and the second gratings (i.e., between
the planes z = 0 and z = d) is given by the sum of the
radiation field  (13),  (14), and the field of a uni-
formly moving particle Axω (3), ϕω (4). This total field
is incident upon the second grating and induces cur-
rents in it. Since the conductivity of the second grating
is different from zero only in the y direction, the
induced currents have only the y component jy . In turn,
the currents jy generate a field that can be described by
a vector potential  and the corresponding scalar
potential ϕ".

The y component of the total electric field must van-
ish on the surface of the second grating. This condition
enables one to determine the currents induced in the
grating. Indeed, if the currents induced in the second
grating have the Fourier component jyω(kx, ky), then the
electric field  generated by the grating can be
expressed as

(15)

Recall that the second grating lies in the plane z = d.
This formula is completely analogous to formula (11)
for the field generated by the first grating, with the only
difference that, in the first case, the field is generated by
the current that flows in the first grating along the x axis,
whereas in the second case, it is generated by the cur-

Axω'
q

2πcv
--------------–=

×
kxω i kxx kyy ω/c( )2 kx

2
ky

2
–– z+ +( )[ ]exp

kx
2

ky
2 ω/v( )2

1 β2–( )+ +[ ] ω/c( )2
kx

2–( )
-----------------------------------------------------------------------------------------------------------dkxdky,∫

ϕω'
q

2πv
-----------–=

×
kx

2
i kxx kyy ω/c( )2 kx

2
ky

2
–– z+ +( )[ ]exp

kx
2

ky
2 ω/v( )2

1 β2–( )+ +[ ] ω/c( )2
kx

2–( )
-------------------------------------------------------------------------------------------------------dkxdky.∫

Axω' ϕω'

Ay'

Eyω'

Eyω' 2π–=

× i kxx kyy ω/c( )2
kx

2 ky
2

–– z d–+ +( )[ ]exp∫

× jyω kx ky,( )
ω/c( )2

ky
2

–[ ] kx kydd

ω ω/c( )2
kx

2
ky

2
––

------------------------------------------------.
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rent flowing in the y direction. Let us also write the y
components of the electric fields generated by a uni-
formly moving charge and by the first grating. The
superposition of these fields can be expressed as

(16)

In this case, the first term in braces refers to the field of
a uniformly moving particle, and the second, to the field
of the first grating. It is obvious that the sum of (15)
and (16) should vanish at z = d. From this condition, we
determine the currents induced in the second grating:

(17)

Taking into account this formula, we determine the vec-
tor potential of the radiation from the second grating:

(18)

Thus, the field in the region behind the second grating
consists of three terms: the field of the uniformly mov-

Eyω
q

2π2v
-------------

ky i kxx kyy+( )[ ] kx kyddexp

kx
2

ky
2 ω/v( )2

1 β2–( )+ +
-----------------------------------------------------------------∫–=

× i
ω
v
----zexp

kx
2

ω/c( )2 kx
2

–
---------------------------+





--× i ω/c( )2
kx

2
ky

2–– z[ ]exp




.

jyω
q

4π2v
-------------–=

×
iky ω/c( )2

kx
2 ky

2––

kx
2 ky

2 ω/v( )2
1 β2–( )+ +[ ] ω/c( )2 ky

2
–( )

-------------------------------------------------------------------------------------------------

× i
ω
v
----dexp

kx
2

ω/c( )2 kx
2–

--------------------------+




--× i ω/c( )2
kx

2
– ky

2d–[ ]exp




.

Ayω'
q

2πcv
--------------–

×
kyω i kxx kyy ω/c( )2 kx

2
ky

2
–– z d–+ +( )[ ]exp

kx
2 ky

2 ω/v( )2 1 β2–( )+ +[ ] ω/c( )2 kx
2

–( )
-------------------------------------------------------------------------------------------------------------------∫

× i
ω
v
----dexp

kx
2

ω/c( )2 kx
2

–
---------------------------+





--× i ω/c( )2 kx
2

ky
2d––[ ]exp





kx ky.dd
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ing charged particle, the field described by the vector
potential  (the radiation of the first grating that
freely passes through the second grating), and the field
of the second grating, which is described by the vector
potential .

Consider the field at large distances from the grating
(z @ d). Choose such distances at which the proper field
of a uniformly moving charged particle does not inter-
fere with the fields of the radiation that are described by
the potentials  and . Calculating these poten-
tials by the method of stationary phase, we obtain

(19)

(20)

where

R is the distance from the origin to the observation
point, x = Rcosϕ sinθ, y = Rsinϕ sinθ, z = Rcosθ, θ is
the angle between the wave vector and the axis z, and ϕ
is the azimuthal angle.

The potentials (19) and (20) represent a spherical
vector wave. One can see that the components of this
wave are inversely proportional to (1 – β2cos2θ); i.e.,
for a relativistic velocity of the charged particle, the
radiation is concentrated in a narrow range of angles θ

of order 1/γ, where γ = 1/ . The radiation fields
at large distances from the gratings can be obtained
from formulas (19) and (20):

(21)

Axω'

Ayω'

Axω' Ayω'

Axω'
iqv
ωc
--------- θ θ ϕcoscossin

1 β2 θcos
2

–( ) 1 θ ϕcos
2

sin
2

–( )
---------------------------------------------------------------------------–=

×
i
ω
c
----R–exp

R
----------------------------,

Ayω'
iqv
ωc
---------C

θ θ ϕsincossin

1 β2 θcos
2

–( ) 1 θ ϕcos
2

sin
2

–( )
---------------------------------------------------------------------------–=

×
i
ω
c
----R–exp

R
----------------------------,

C i
ω
v
----d 1 β θcos–( ) θ ϕcos

2
sin

2

1 θ ϕcos
2

sin
2

–
------------------------------------,+exp=

1 β2–

Exω
q
c
--- β θ θcossin

1 β2 θcos
2

–
----------------------------=

× ϕcos C
θ ϕ ϕcossin

2
sin

2

1 θ ϕsin
2

sin
2

–
---------------------------------------– 

 
i
ω
c
----R–exp

R
----------------------------,
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(22)

(23)

In the relativistic case, when γ @ 1 (and the angle θ ≤
1/γ is small), the second term in the expression for C is
much less than the first one and is therefore negligible.
In this case, C gives a phase shift that determines the
phase difference between the radiation of the first and
the second gratings. For small angles θ, we also
neglect the terms proportional to sin2θ. In this case,
expressions (21)–(23) reduce to

(24)

(25)

These formulas show, in particular, that, for azimuthal
angles of ϕ = 0, π, the electric field of the radiation lies
in the xz plane, whereas, for ϕ = ±π/2, it lies in the yz
plane. In these cases, the radiation field is linearly
polarized for any distance between the gratings. For
angles of ϕ = ±(π/4) and ±(3π/4), the fields Ex and Ey

are equal in magnitude but differ in phase by

Let us introduce unit vectors ex and ey directed along the
coordinates x and y, respectively. Then, the resulting
field can be expressed as

(26)

Eyω
q
c
--- β θ θcossin

1 β2 θcos
2

–
----------------------------=

× C ϕsin θ ϕ ϕsincos
2

sin
2

1 θ ϕcos
2

sin
2

–
---------------------------------------– 

 
i
ω
c
----R–exp

R
----------------------------,

Ezω
q
c
---β θsin

2 θcos
2

1 β2 θcos
2

–
------------------------------–=

× ϕcos
2

1 θ ϕcos
2

sin
2

–
------------------------------------ C

ϕsin
2

1 θ ϕsin
2

sin
2

–
-----------------------------------+

 
 
  i

ω
c
----R–exp

R
----------------------------.

Exω
q
c
---β θ θ ϕcoscossin

1 β2 θcos
2

–
----------------------------------------

i
ω
c
----R–exp

R
----------------------------,=

Eyω
q
c
---β θ θ ϕsincossin

1 β2 θcos
2

–
---------------------------------------

i
ω
c
----R–exp

R
----------------------------=

× i
ω
c
----dexp 1 β θcos–( ).

α ω
v
---- 1 β θcos–( ).d=

E exE0 i kz ωt–( )[ ]exp=

+ eyE0 i kz ωt– α+( )[ ]exp

=  exE0 i kz ωt–( )[ ]exp

+ eyE0 α i αsin+cos( ) i kz ωt–( )[ ] .exp
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The wave (26) has a generally elliptic polarization. To
determine the parameters of the polarization ellipse and
the sign of rotation of the vector E, we use the results
of [6].

The field (26) can be represented as

(27)

where

(28)

Let us rewrite expression (27) in the following identical
form:

(29)

where

and ψ is a certain fitting parameter that will be deter-
mined below. Choose ψ so that the scalar product C'D'
vanishes:

After the multiplication, we obtain that ψ must satisfy
the equation

(30)

Substituting (28) into (30), we obtain

(31)

Thus, ψ is equal to half the phase difference between
the waves Ex and Ey:

(32)

where

(33)

is the so-called length of radiation formation. If we con-
sider the radiation at small angles and the velocity v  of
a charged particle is close to the velocity of light c, i.e.,

E A iB+( ) i kz ωt–( )[ ] ,exp=

A E0 ex ey αcos+( ), B E0ey α .sin= =

E A iB+( ) i kz ωt–( )[ ]exp=

=  A iB+( ) i kz ωt– ψ+( )[ ] iψ–( )expexp

=  A iB+( ) i kz ωt– ψ+( )[ ] ψ i ψsin–cos( )exp

=  C' iD'+( ) i kz ωt– ψ+( )[ ]exp ,

C' A ψ B ψsin+cos( ), D' B ψcos A ψsin–( ),= =

A ψcos B ψsin+( ) B ψcos A ψsin–( ) 0.=

2ψtan
2A B⋅
A2 B2–
------------------.=

2ψtan
2E0

2 α αcossin

E0
2 1 α αsin

2
–cos

2
+( )

------------------------------------------------------ α .tan= =

ψ 1
2
---α 1

2
---ω

v
---- 1 β θcos–( )d

1
2
---πd

lf
---,= = =

lf
πv

ω 1 β θcos–( )
---------------------------------=
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1114 BOLOTOVSKII, SEROV
if the parameter β = v /c is close to unity, then lf satisfies
the approximate equality

to a good accuracy, where λ is the radiation wavelength.
The quantity lf is also called a coherence length.

For a chosen value of ψ, the radiation field can be
represented as

(34)

where

(35)

The vectors E1 and E2 are mutually perpendicular.
Their disposition is shown in Fig. 2. The vector E1 is
directed along the bisector of the angle between the
positive directions of the axes x and y. The vector E2 is
directed along the bisector of the angle between the
negative direction of axis x and the positive direction of
axis y. The magnitudes of these vectors depend on the
ratio d/lf . The absolute values of E1 and E2 represent the
semiaxes of the polarization ellipse. One can see
from (35) that, for

ψ = α/2 = (π/4) ± nπ, where n is integer,

the polarization of the wave is circular. If ψ = α/2 =
(3π/4) ± nπ, then the polarization is also circular, but
with the opposite sign of rotation. When ψ = α/2 = ±nπ,
the radiation is linearly polarized in the direction of the
vector (ex + ey) (35). If

lf λγ2≈

E E1 iE2+( ) i kz ωt–( )[ ] ,exp=

E1 E0 ex ey+( ) πd
2lf
------,cos=

E2 E0 e– x ey+( ) πd
2lf
------.sin=

ψ α/2 π/2( )± nπ,±= =

x

y

ex

ey

ex + ey

–ex + ey

E1

E2

Fig. 2. Disposition of the axes of the polarization ellipse.
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then the polarization is also linear, but is directed along
the vector (–ex + ey) (35). In the remaining cases, the
radiation is elliptically polarized.

Note that, according to the derivation of formulas (34)
and (35), they apply to small-angle radiation. If we con-
sider the radiation of relativistic particles (γ @ 1), the
analysis considered above describes the main part of
radiation. If a particle is not relativistic or we consider
the radiation of a relativistic particle at a large angle
(θ @ 1/γ), then formulas (34) and (35) are inapplicable,
and one needs additional analysis.

Let us evaluate the radiation intensity. Radiation of
frequency ω that passes through a surface element dS
perpendicular to the radius vector R (see Fig. 1) is
determined by the formula

(36)

In this case, |Eω|2 is equal to 2|E0|2. The maximal energy
is radiated at small angles on the order of θ ≈ 1/γ; there-
fore, in formula (24) for Exω, we can set

This approximation yields

(37)

The solid angle into which radiation is emitted is on the
order of

An order-of-magnitude estimate for the spectral inten-
sity yields

(38)

Formula (38) shows that the spectral intensity is indepen-
dent of frequency. It is also obvious that formula (38) is
valid up to a certain frequency at which the wavelength
is comparable to the distance between the wires of the
gratings.

It follows from the analysis carried out that, to
obtain radiation with a pronounced circular or elliptic
polarization, the distance between the gratings must be

Wω
c
2
--- Eω

2 S.d∫=

θ 1/γ, θ θ≈sin 1/γ, θcos 1.≈= =

E0
qv

c2
-------γ ϕ

i
ω
c
----R– 

 exp

R
----------------------------.cos=

Ωd θdθdϕsin
1

γ2
----- ϕ .d≈=

Wω
c
2
--- E0

2 Ωd∫=

=  
q2v 2

2c3
----------- ϕ 1

γ2
-----γ2 ϕdcos

2 πq2v 2

2c3
---------------.≈
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on the order of the formation length lf (33). In our case,
the formation length is proportional to the wavelength
of radiation and to the square of the particle energy. The
size of the equipment cannot be too large. This fact
imposes certain constraints on the energy of particles.
On the other hand, the wavelength of radiation is
bounded from below by the distance between the
wires of the grating. It might be expected that the
waves with elliptic and circular polarization could
also be generated in the millimeter and submillimeter
wave bands.
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Abstract—The solution to the Maxwell–Bloch equations describing interaction of two light pulses with a gas
of magnetically trapped cold atoms is used to establish fair quantitative agreement between theory and experi-
mental results reported in [5]. The spacetime dependence of the probe- and coupling-pulse fields and nonlinear
dynamics of atoms are analyzed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Substantial reduction of the group velocity of light
in the interaction between a three-level system and two
light waves that are resonant with adjacent transitions
(related to electromagnetically induced transparency)
was originally hypothesized in [1–3] and supported by
experiments [4–7] (e.g., see monograph [8]).

In [5], a drastic reduction of the group velocity of a
probe pulse (to 17 m/s) was observed in a gas of mag-
netically trapped sodium atoms. After laser and evapo-
rative cooling to a temperature of 450 nK, which is
close to the Bose–Einstein condensation point (435 nK
for a peak density of 5 × 1012 cm–3), the central region
of a trapped atom cloud was exposed to two laser
beams, a coupling one and a probe one, separated by a
short delay. The leading quasi-monochromatic cou-
pling pulse was exactly resonant with the 3  2 tran-
sition (ωc = ω32). The trailing probe pulse was much
shorter (by about 40 times), and its central frequency
was in resonance with the 1  3 transition frequency
(  = ω31). In Fig. 1, levels 1 and 2 are the hyperfine
sublevels of the ground 3S1/2 state (with F = 1, MF = −1,
F = 2, and MF = –2), and level 3 is one of the hyperfine
sublevels of the 3P3/2 state (with F = 2 and MF = –2).

When a probe pulse enters a medium and excites
(even if only very slightly) atoms to a state Ψ3, the
probe and coupling pulses prepare a coherent superpo-
sition of the states Ψ1 and Ψ2. A narrow transparent
region and an extremely steep dispersion curve (refrac-
tive index as an increasing function of frequency) are
observed in the vicinity of ω31. This leads to reduction
of the group velocity of light, which is manifested in an
anomalously long residence time of the probe pulse in
the trap.

     

     
ωp

         
1063-7761/04/9806- $26.00 © 21116
This qualitative explanation of the effect and some
estimates can be found in references cited above. Most
quantitative theories tend to reduce the explanation to
the coherent population trapping outlined above (in the
present case, only levels 1 and 2 are substantially pop-
ulated) and to the mutual compensation of the 1  3
and 2  3 transition amplitudes (e.g., see [8]).

There is no doubt about the key role played by quan-
tum interference of atomic states in resonant interac-
tions between atoms and radiation. However, zero
polarization of an atom exposed to two monochromatic
light waves, which means that both absorption coeffi-
cient and resonant part of refractive index vanish for a
strictly monochromatic wave with frequency ω = ω31,
implies that this wave propagates at the speed of light
in free space, but does not explain the deceleration of a
probe pulse. As noted above (and, obviously, realized
by the authors of papers referenced), this effect must be
attributed to a special form of the dispersion curve in
the vicinity of the frequency ω31 of the so-called dark
resonance 1  3, as well as to the dark-resonance–
to–probe-pulse spectral-width ratio, intensity-depen-
dent effects, and balance of material and wave-energy
fluxes. Thus, the dynamics of the system as a whole
must be analyzed, and both its spatial extent and
induced substantial nonuniformity must be taken into
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Fig. 1. 

 

Schematic diagram of transition in a three-level
system.
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DRASTIC DECELERATION OF LIGHT PULSES IN ATOM TRAPS 1117
account. Indeed, a probe pulse that has a length of
about a kilometer in vacuum is compressed in an atom
cloud to a length smaller than the trap size (about
230 µm in [5]).

In what follows, we formulate the problem and
present the principal results of a quantitative analysis of
the effect, which is motivated primarily by the experi-
mental results reported in [5]. We apply a semiclassical
approach, i.e., consider quantum dynamics of atoms
interacting with a classical electromagnetic field. We
develop a theory describing the nonlinear response of a
medium and the propagation of two waves. Under the
physical conditions implemented experimentally in [5],
the trapped gas may be treated as perfect and secondary
quantization may not be applied explicitly. In other
words, the density matrix for a system of atoms is fac-
tored into single-atom matrices. Sufficient self-consis-
tency (as in most problems in nonlinear optics of gases)
is ensured by interaction between atoms and the mean
field of two waves, including the secondary field asso-
ciated with the polarization induced by these waves.

To compare computed results with experiment, we
use the parameter values corresponding to a particular
measurement in [5] (when the measured group velocity
of the probe pulse was Vg ≈ 32.5 m/s). However, we did
not try to achieve complete quantitative agreement
between the theoretical results based on the present
model and those obtained in [5], because the experi-
ment was complicated by additional factors.

To single out the key effect and simplify computa-
tions, we consider the one-dimensional model of paral-
lel propagation of two waves in a homogeneous
medium.

We apply the following two approaches.

In one approach, the spectrum of the linear response
of an atom due to the 1  3 transition is determined,
while the effect of a prescribed coupling laser field on
the 2  3 transition is treated exactly (only the rotat-
ing-wave approximation is used). Then, we numeri-
cally solve the boundary value problem of probe-pulse
propagation in a medium characterized by the complex
susceptibility determined in this manner (with linear
absorption and dispersion depending on the coupling-
field amplitude accordingly).

In the other (much “heavier”) approach, we solve
the complete Maxwell–Bloch system, i.e., self-consis-
tent equations for density matrix elements of an atom
and the wave equations for two waves propagating in a
medium. The analysis allows for variation of the com-
plex amplitude of a propagating coupling beam. Thus,
we solve a problem that is nonlinear with respect to
both waves.
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2. EQUATIONS FOR DENSITY MATRIX
The starting system of equations for the density

matrix of an atom has a standard form:

(1)

Here,

(2)

dik denote the transition dipole moments, and Ec, p(t, x)
are the “slow” complex amplitudes of the two waves
with exp(–iωc, pt + ikc, px) factored out (ωc and ωp are the
central frequencies of the coupling and probe pulses
and kc, p are the corresponding wave vectors in vac-
uum). A similar factorization was performed in the
matrix elements (t; x) and (t; x) (where 
denotes the density matrix in the Schrödinger represen-
tation), and exp[–i(ωp – ωc)t + i(kp – kc)x] was factored
out in the matrix element (t; x). Then, the “fast vary-
ing” factors indicated above cancel out. Thus, ρik(t; x)
(i ≠ k) are the slowly varying complex amplitudes of the
off-diagonal elements of the density matrix of an atom
localized in a slab orthogonal to the wave propagation
direction, with longitudinal coordinate x.

The relaxation constants γ31, γ32, and 

 

γ

 

21

 

 are the
probabilities of spontaneous emissive 3  1, 3  2,
and 2  1 transitions, respectively, and 

 

γ

 

3

 

≈

 

 6.3 

 

×

 

10

 

7

 

 s

 

–1

 

 [5, 9] is the inverse lifetime of the state 
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3
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γ

 

3

 

 >

 

γ

 

31

 

 + 

 

γ

 

32

 

, see below). In accordance with the conditions
of the experiment described in [5], the nonradiative
transverse relaxation is ignored and the constant 

 

γ

 

2

 

 for
metastable level 2 is hereinafter set to zero, which
implies that the transverse relaxation constants are

ρ̇11 γ31ρ33 γ2ρ22 i Vp*ρ31 c.c.–[ ] ,+ +=

ρ̇22 γ2ρ22– γ32ρ33 i Vc*ρ22 c.c.–[ ] ,+ +=

ρ̇33 γ3ρ33– i Vp*ρ31 c.c.–[ ]– i Vc*ρ32 c.c.–[ ] ,–=

ρ̇31 = –
γ3

2
-----ρ31 i ωp ω31–( )ρ31+

– iVp ρ33 ρ11–[ ] iVcρ21,+

ρ̇32
γ2 γ3+

2
----------------ρ32– i ωc ω32–( )ρ32+=

– iVc ρ33 ρ22–[ ] iVpρ12,+

ρ̇21
γ2

2
-----ρ21– i ωp ω31–( )ρ21+=

– iVpρ23 iVc*ρ31,+

ρ13 ρ31* , ρ23 ρ32* , ρ12 ρ21* .= = =

V c V c t x,( )≡
d32 Ec t x,( )⋅

2"
------------------------------,=

Vp Vp t x,( )≡
d31 Ep t x,( )⋅

2"
------------------------------,=

ρ̃32 ρ̃31 ρ̃

ρ̃21
SICS      Vol. 98      No. 6      2004



1118 VASIL’EV, TROSHIN
Γ31 = Γ32 = γ3/2 and Γ21 = 0. In view of the actual rela-
tions between the rate constants for radiative transitions
between hyperfine sublevels of the 3P3/2 and 3S1/2 states
in the sodium atom [9–11], we set γ31 = γ3/2 and γ32 =
γ3/3. Note that the three-level model considered here is
not closed with respect to radiative relaxation: normal-
ization is violated by the contribution of the spontane-
ous (3P3/2, F = 2, MF = –2)  (3S1/2, F = 2, MF = –1)
transition characterized by the constant γ0 = γ3/6.
Numerical results confirm that this lack of closure
(departure from the subspace spanned by the basis
{Ψi}, where i = 1, 2, 3) is virtually unobservable
because of the extremely low population of level 3 dur-
ing the probe-pulse propagation time.

3. PROPAGATION 
OF A WEAK PROBE PULSE

As we already noted, the observed drastic reduction
of the group velocity of a probe pulse is primarily due
to a special form of dispersion curve in the vicinity of
the 1  3 resonant transition explained by the effect
of the coupling-laser field on the 3  2 transition.
Therefore, it is reasonable to analyze probe-pulse prop-
agation in the linear approximation with respect to the
probe field. In this case, it is sufficient to solve Eqs. (1)
in the first approximation with respect to Vp for the
matrix elements ρ31 and ρ13, which determine the polar-
ization

(3)

where N0 is the concentration of atoms in the zone of
their strongest interaction with both pulses. We assume
that the coupling laser beam is monochromatic:

We tentatively set Vp = const and define ω = ωp and
δω = ω – ω31. In the zeroth approximation with respect
to Vp, we have ρik = δi1δk1. Therefore, Eqs. (1) can be
reduced to

(4)

Equations (4) are solved to find the steady-state
value of :

(5)

Substituting (5) into (3), we obtain an exact expression

     

Pp t x,( ) N0d13ρ31 t x,( ) c.c.,+=

ωc ω32, V c const t x,( ).= =

ρ̇31
γ3

2
-----– iδω+ ρ31 iVp iVcρ21,+ +=

ρ̇21 iδωρ21 iVc*ρ31.+=

ρ31

ρ31

Vpδω V c
2 δω2–( ) iδω γ3/2( )+[ ]

Vc
2 δω2–( )2 δω2 γ3/2( )2+

---------------------------------------------------------------------------------.=
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for the complex linear polarizability in the vicinity of 

 

ω

 

31

 

,

, (6)

and, in a standard approximation, expressions for
refractive index and amplitude absorption coefficient

 

β

 

(

 

δω

 

) (see Fig. 2),

(7)

(8)

where

(9) 

δω

 

 is the detuning normalized to 

 

γ

 

3

 

/2, and 

 

Ω

 

c

 

 is the
Rabi frequency in the coupling laser field normalized
to 

 

γ

 

3

 

,

(10)

In the calculations based on this approach and the other
one (see below), the units of time and length are (

 

γ

 

3

 

/2)

 

−

 

1

 

and  = 2

 

π

 

/ , respectively.

In accordance with [5], we set

In the present calculations (based on the former
approach), the envelope of the input probe-pulse field
strength is defined (up to a factor in the linear approxi-
mation) as

(11)

where 

 

T

 

p

 

 = 34.5, which corresponds to a probe-pulse
full width at half-maximum of 2.5 

 

×

 

 10

 

–6

 

 s [5].

Now, let us consider the propagation of a probe
pulse. Let 

 

F

 

p, 0

 

(

 

δω

 

) be the Fourier transform of the
input probe-pulse envelope. Then, the slow field ampli-
tude at a location 

 

x 

 

inside the medium can be calculated

α δω( )
N0d31

2

"
--------------

δω V c
2 δω2–( ) iδω γ3/2( )+[ ]

Vc
2 δω2–( )2 δω2 γ3/2( )2+

---------------------------------------------------------------------------=

n δω( ) 1 Bp

δω Ωc
2 δω2–( )

Ωc
2 δω2–( )2 δω2+

---------------------------------------------,+=

β δω( ) ω
c
----Bp

δω2

Ωc
2 δω2–( )2 δω2+

---------------------------------------------,=

Bp

4πN0d31
2

"γ3
---------------------,=

Ωc

d32 Ec⋅
"γ3

--------------------.=

kp
1– λp

Bp 0.013, Ωc 0.56.= =

Ep 0, t( ) 2π( ) 1/4– Tp( ) 1/2– t2/4Tp
2–( ),exp=
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to sufficient accuracy as a Fourier integral:

(12)

Figures 3 and 4 show the probe-pulse intensity ver-
sus time in several cross sections and the spatial distri-
bution of intensity at several instants, respectively. Fig-
ure 5 (which illustrates the key result to be compared
with Fig. 3 in [5]) shows the input and output probe
pulse intensities. Here, the factor 2/(2 + ∆n) in (12) is
replaced with 4(1 + ∆n)/(2 + ∆n)2; i.e., the changes in
field amplitudes at both input and output ends of the
specimen are taken into account. However, it should be

Ep t x,( ) 1

2π
---------- 2

2 ∆n δω( )+
----------------------------Fp 0, δω( )

∞–

∞

∫=

× β δω( )x–[ ] δωt ∆n δω( )x–[ ] δω( ).dcosexp

Fig. 2. Spectral characteristics (in arbitrary units): β(δω) ×
50 (absorption without the factor ω/c) (1); ∆n(δω) × 50 (dis-
persion) (2); |Fp, 0|2/25 (input probe pulse intensity) (3).
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Fig. 4. Spatial profile of the probe pulse at t = 0 (1), 50 (2),
and 100 (3).
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noted that refractive index is close to unity under the
conditions considered here and the boundary of a cloud
of atoms can be defined only tentatively.

The results presented in Figs. 3–5 demonstrate good
agreement with the experimental results reported in [5].
According to our calculations, the group velocity of the
probe pulse is estimated as Vg ≈ 71 m/s.

4. SOLUTION 
OF THE COMPLETE MAXWELL–BLOCH 

SYSTEM

Now, we discard the linear approximation with
respect to the probe-pulse field and treat the coupling-
pulse field in the medium as unknown. We take into
account explicitly the self-induced field of the medium
in the vicinity of both ω31 and ω32.

–50–100 0 50 100 150 200
t

0

0.1

0.2

0.3

0.4

Ip(t, x), arb. units

1 2
3

4

Fig. 3. Temporal profile of the probe pulse at x = 0 (1), 500
(2), 1500 (3), and 2440 (output cross section) (4). Hereinaf-
ter, the units of length and time are λ/2π and (γ3/2)–1,
respectively.

–100 0 100 200 300
t

0

0.1

0.2

0.3

0.4

Ip(t, x), arb. units

1

2

Fig. 5. Input (1) and output (2) probe pulse profiles.
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Equations (1) relate the evolution of the density
matrix of an atom to the variation of the effective mean
field of two pulses. These equations must be supple-
mented by expressions for the secondary fields gener-
ated by polarization currents induced in the medium. In
one-dimensional problems, these expressions are well
known (e.g., see [12]). Neglecting the counterpropagat-
ing waves, we write the relations between the positive-
frequency amplitudes  and the polarizations Pc, p as

(13)

Substituting (3) into (13), choosing the units of mea-
sure as in the former approach (see above), and rewrit-
ing Eqs. (1) and (13) in dimensionless form (under a
special choice of input phases in the amplitudes of both
waves that does not affect the result), we obtain a closed
system of real equations:

(14)

Ec p,'

Ec p,' t x,( ) 4πi Pc p, t x',( )kc p, x'.d

0

x

∫=

ρ̇11 ρ33 2Epρ13,+=

ρ̇22
2
3
---ρ33 2Ecρ23,+=

ρ̇33 2ρ33– 2Epρ13– 2Ecρ23,–=

–10

0

10

ηc, %

3

1

2

1000 200 300 400 500
t

0

50

100

150

200

Ip, arb. units

Fig. 6. Solution to the nonlinear problem: input (1) and out-
put (2) probe pulse profiles and relative variation of the out-
put coupling pulse intensity ηc(t) = Ic, out(t)/Ic, in(t) – 1 (3).
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More precisely, if (t, x) are the slowly varying local
amplitudes of the two waves in the strict sense, then the
quantities Ec, p in (14) are defined as

(15)

where l = 2 and l = 1 for Ec and Ep, respectively. The
factor Bc is defined by (9) with d31 replaced by d32.

System (14) was solved numerically for various
combinations of parameters. The results obtained for
conditions closest to experiments are presented in
Figs. 6 and 7. We used boundary conditions consistent
with [5]:

The calculated group velocity of the probe pulse is
Vg ≈ 78 m/s.

5. DISCUSSION

One expected numerical result obtained by solving
the problem that is nonlinear in both waves is that stron-
ger deceleration of the probe pulse corresponds to
lower peak intensity of the input pulse. Thus, the lowest
Vg is obtained for the linear polarizability given by (6)
when the remaining parameters are held constant.
Using the definition of group velocity

(16)

and expression (7), we find (dropping the unity in the

ρ̇12 Epρ23 Ecρ13,+=

ρ̇13 ρ13– Ep ρ33 ρ11–[ ] Ecρ12,–+=

ρ̇23 ρ23– Ec ρ23 ρ22–[ ] Epρ12,–+=

Ec t x,( ) Ec; free t x,( ) Bc ρ23 t x',( ) x',d

0

x

∫+=

Ep t x,( ) Ep; free t x,( ) Bp ρ13 t x',( ) x'.d

0

x

∫+=

Ẽc p,

Ec p, t x,( ) i
dl3Ẽc p, t x,( )

"γ3
-----------------------------,–=

Ec t 0,( ) 0.56,=

Ep t 0,( ) Ep 0,
t

2

4Tp
2

---------–
 
 
 

, Ep 0,exp 0.2,= =

Bc 0.0086, Bp 0.013.= =
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------- c 1 ωdn
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-------+ 

 
1–

= =
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denominator)

. (17)

(This result is obviously equivalent to expression (1)
in [5], which was written in SI units.) It should be noted
here that the unlimited decrease in Vg as Ωc  0
in (17) is an artifact due to the approximation γ2 = 0.
According to the exact formula for α(ω) with γ2 ≠ 0, the

Rabi frequency that minimizes Vg is γ3Ωc = .

Expression (17) yields Vg ≈ 72 m/s. This value is
nearly equal to our result (determined by the shift of the
peak output intensity of the probe pulse in Fig. 5). How-
ever, it is more than twice as high as the experimental
result (32.5 m/s) obtained for the same values of other
parameters. The change in shape and decrease in
height observed in the experiment are also much
greater than those in Figs. 3–7. As noted above, the
experimental conditions in [5] were complicated by
additional factors (a nearly resonant fourth sublevel of
the upper state, nonuniform concentration of trapped

Vg
λγ3Ωc

2

4πBp
----------------=

γ3γ2
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Fig. 7. Average density matrix elements per atom (a, b) and
probe pulse (c). Solid and dashed curves correspond to
input and output profiles.
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atoms, nonparallel propagation of the probe and cou-
pling pulses, etc.).

The most remarkable result obtained by solving the
completely nonlinear problem is the substantial nega-
tive correlation between the output intensities of the
coupling and probe pulses (see Fig. 6) predicted for a
very low, but definitely nonzero, population of level 3
(see Fig. 7). This suggests that the energy of a probe
beam propagating in the medium is transferred mainly
to the coupling beam and then is partially returned to
the probe beam. The density matrix elements ρ13 and
ρ32, which determine the average induced dipole
moment per atom, remain small (Fig. 7). However, they
certainly do not vanish as in the “reference” single-
atom problem with specially chosen field parameters
that leads to the hypothesis of electromagnetically
induced transparency (e.g., see [8]).

The average matrix element ρ12 per atom (corre-
sponding to a forbidden transition) increases to a con-
siderable extent when the pulses transform substan-
tially. It plays the role of a source of mutual modulation
of two waves (as in coherent Raman scattering [13–15],
which is analogous to the substantial reduction of speed
of light discussed here in terms of nonlinear dynamics).

The main results were published in [16, 17]. A dif-
ferent semiclassical theory of the effect considered here
was presented in [16, 18].
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Abstract—Interaction between high-power ultrashort laser pulse and giant clusters (microdroplets) consisting
of 109 to 1010 atoms is considered. The microdroplet size is comparable to the laser wavelength. A model of the
evolution of a microdroplet plasma induced by a high-power laser pulse is developed, and the processes taking
place after interaction with the pulse are analyzed. It is shown theoretically that the plasma is superheated: its
temperature is approximately equal to the ionization potential of an ion having a typical charge. The microdrop-
let plasma parameters are independent of the pulse shape and duration. The theoretical conclusions are sup-
ported by experimental studies of x-ray spectra conducted at JAERI, where a 100-terawatt Ti–sapphire laser
system was used to irradiate krypton and xenon microdroplets by laser pulses with pulse widths of 30 to 500 fs
and intensities of 6 × 1016 to 2 × 1019 W/cm2. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interaction of a high-power ultrashort laser pulse
(with an intensity I ~ 1017–1020 W/cm2 and duration τ ~
30–300 fs) with a cluster beam differs substantially
from its interaction with an isolated atom. In terms of
structure, a cluster beam is intermediate between solid
and gas targets. It consists of separate atoms or mole-
cules and clusters of size smaller than 10–100 nm,
which contain several thousand to several million
atoms. The average concentration of atoms in a beam
varies between 1016 and 1019 cm–3, while the local con-
centration of atoms (in a cluster) is 1022 cm–3. The frac-
tion of atoms bound into clusters in a beam varies from
10 to 100% of the total number of particles [1]. A clus-
ter beam irradiated by a high-power laser pulse trans-
forms into a plasma characterized by unique properties.
On the one hand, the plasma of highly charged ions cre-
ated at cluster locations is characterized by a density
much higher than critical [2–5] and by electron ener-
gies on the order of kiloelectron-volt [6]. On the other
hand, since the electron density is lower than critical
and the cluster diameter is small, the electromagnetic
wave freely propagates and interacts with all target
atoms, i.e., penetrates into regions of supercritical elec-
tron density instead of being reflected, as in the case of
a solid-state target [7]. Thus, a high specific rate of
laser-energy absorption can be attained in a cluster
beam, which results in a specific excitation rate that is
higher than in targets of different types. Accordingly,
the results are substantially different from those
1063-7761/04/9806- $26.00 © 21123
obtained in experiments on gas and solid targets. First,
the laser pulse irradiating a cluster beam is absorbed
almost entirely (up to 95%) [8]. Second, the average
particle charge in plasmas thus created is higher than in
both solid-state and atomic-beam plasmas produced by
laser beams with similar parameters [9, 10]. From 10
to 15% of the pulse energy lost via x-ray emission is of
a nonthermal nature [11–14]. A substantial neutron
yield was obtained by irradiating a jet of deuterium
clusters [15].

One disadvantage of a cluster beam, as compared to
a solid-state target, is the high sensitivity of the target to
the laser-pulse contrast [16–19]. Indeed, when the con-
trast is low, the prepulse destroys the target and the
main pulse interacts with a nearly homogeneous
plasma rather than with a cluster beam. Since the rate
of cluster decay is primarily determined by the cluster
geometry, giant clusters (microdroplets) of a diameter
comparable to the pulse wavelength can be used to
retain all advantages of a cluster beam, on the one hand,
and to reduce the target’s sensitivity to contrast, on the
other hand. Thus, a wider variety of laser systems can
be used in applications and in studies of cluster targets.
Even though a droplet target is analogous to a cluster
beam, it has some distinctive properties [20, 21]. Since
the focal spot of a laser pulse interacting with a cluster
beam contains many clusters, the processes taking
place both outside and inside individual clusters are of
equal importance [22]. In the system considered here,
only several tens of microdroplets are in the focal spot,
004 MAIK “Nauka/Interperiodica”
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and an analysis of their interactions and the subsequent
plasma evolution can be restricted to a single micro-
droplet even if the incident intensity is high. This
approach is additionally justified by the fact that the
fraction of electrons released from a cluster decreases
with increasing cluster size, so that the effects due to
the processes outside the cluster decrease accordingly.
Moreover, an increase in droplet size implies a decrease
in the cluster (or microdroplet) breakup rate. Therefore,
the increase in cluster (or microdroplet) size over the
time of interaction with a laser pulse can be neglected;
i.e., the cluster core can be approximately treated as
“frozen.” In this study, we analyze the evolution of a
microdroplet having a size comparable to the laser
wavelength consisting of 109 to 1011 atoms of xenon or
krypton excited by a high-power laser pulse (I ~ 1016–
1019 W/cm2).

2. EVOLUTION OF A MICRODROPLET
2.1. Model 

The characteristics of the plasma created by a laser
pulse irradiating a droplet and the processes induced by
their interaction vary rapidly during and after the inter-
action. This observation provides a basis for a hierarchy
of time scales characteristic of plasma evolution. At the
initial stage of irradiation, atoms and ions are ionized, a
fraction of electrons is released from the droplet and is
distributed uniformly in space, the droplet becomes
positively charged, and the remaining electrons are
trapped in the self-consistent potential of the droplet. At
the next stage, the positive charge and the hydrody-
namic pressure of the trapped electrons cause the struc-
ture to disintegrate. As the droplet expands, all density
gradients tend to zero and the plasma becomes spatially
uniform. Simultaneously, the kinetic energy of elec-
trons transforms into x-ray radiation and kinetic energy
of ions. The duration of this stage varies from tens to
hundreds of picoseconds. Note that the characteristic
final ion energy is higher than the electron energy. At the
third stage, the resulting uniform plasma decays in sev-
eral nanoseconds. An analogous model was successfully
used to analyze interaction between a cluster beam and a
laser pulse [23].

Let us consider the irradiation stage in more detail.
A laser pulse ionizes atoms, and the microdroplet trans-
forms into a dense plasma. Driven by the laser field, the
electrons trapped in the droplet oscillate, which may
lead to droplet deformation and affect both the degree
of ionization of the droplet as a whole and the distribu-
tion of the trapped electrons. If the oscillation ampli-
tude δ is relatively small as compared to the droplet
size, it can be estimated as follows [24]:

(1)

where ωMie is the Mie frequency of electrons in the
cloud and F is the external field intensity. (Henceforth,

δ F

ωMie
2

----------,≈
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we use the atomic system of units with " = me = e = 1.)
The Mie frequency is related to the electron concentra-
tion ne as

where rW is the Wigner–Seitz radius. Comparing the
amplitude of electron-cloud oscillation with the droplet
radius R, we obtain

(2)

When a xenon droplet consisting of 109 ions with
charge Z varying between 30 and 40 is exposed to radi-
ation of an intensity of 1019 W/cm2, this ratio does not
exceed 10–2; i.e., the droplet retains its spherical sym-
metry.

The penetration of a laser pulse into a droplet calls
for a special analysis. The propagation of an electro-
magnetic wave into a droplet is impeded by two factors:
reflection of the electromagnetic wave from the droplet
surface due to skin effect and strong surface absorption
due to a high density of electrons in the droplet. If the
skin depth exceeds the absorption depth, then a greater
part of the radiation incident on the droplet is scattered.
In the opposite limit, radiation is absorbed by the drop-
let and the effective absorption cross section of the
droplet is approximately equal to its geometrical cross
section. The plasma skin depth lskin is

(3)

where the conductivity σ at an electron temperature T
is expressed as

(4)

if the electron–ion collision frequency νei is much higher
than the radiation frequency ω (lnΛ is the Coulomb log-
arithm) [25]. Substituting (4) into expression (3), we
estimate the skin depth as

(5)

where ωp is plasma frequency. According to [26], the
absorption depth labs for a uniform plasma is

(6)
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Combining (6) with (5), we have

(7)

Thus, when the plasma density is high, radiation is
almost completely absorbed by the droplet and the cor-
responding effective cross section for a single droplet is
equal to its geometrical cross section. Note that the
expression for absorption depth used here was obtained
in the limit of weak absorption, whereas we consider
the opposite limit. However, the use of more compli-
cated models would not lead to qualitatively different
results, because the electron mean free path lfree in a
droplet is much smaller than the droplet radius R. To
analyze the heating of electrons, we tacitly assume that
absorption by a droplet is due to bremsstrahlung and
ignore the Brunel mechanism [27]. This assumption
can be justified by simple estimates. When the droplet
charge is Q, the concentration of electrons outside the

cluster is estimated as Q/  (where R0 is the distance
between clusters) and the energy absorbed by the elec-
trons per unit time does not exceed

(8)

Since the charge Q can be estimated as (10–40)RT and
R/R0 ~ 0.1, we compare WBr with the bremsstrahlung
absorption rate cF2R2/2 to obtain

(9)

The distribution of electrons in a droplet determines
the processes taking place during and after the pulse–
droplet interaction. Following [25], we estimate the
electron–electron collision time at T ≈ 3 keV for Z =
30 as

(10)

Therefore, the time of relaxation to the Boltzmann dis-
tribution of electron energy is comparable to the laser
period (3 fs); i.e., the electron subsystem is in thermal
equilibrium even during the interaction with the pulse.
In the case of an equilibrium electron energy distribu-
tion, the electron concentration in a droplet with charge
Q and concentration ni of ions with charge Z is
expressed as

(11)
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where N is the number of atoms in the droplet [26].
Thus, the electron concentration is nearly uniform
inside the droplet and exponentially decreases at its
boundary.

Summarizing the estimates presented above, we
come to the following conclusions about the evolution
of a microdroplet in a laser field. First, an initially neu-
tral droplet transforms into a dense blob of highly
charged ions and electrons and becomes positively
charged. Second, a Boltzmann distribution of electron
energy is reached during the interaction with a laser
pulse, and the electron concentration is nearly uniform
inside the droplet, exponentially decreasing toward its
boundary. Third, the absorption cross section of a
microdroplet is equal to its geometrical cross section,
radiation energy is absorbed by the droplet via a
bremsstrahlung mechanism and transferred inwards by
electrons, the droplet retains its spherical shape in laser
field, and the amplitude of its oscillation is small as
compared to its radius.

2.2. Results 

We used the estimates presented in the preceding
subsection to construct a model describing the basic
parameters of the resulting plasma at all stages of its
evolution. Let us consider the initial stage of plasma
formation. The laser pulse ionizes atoms and heats elec-
trons. The first electrons are released via ionization by
the laser field, and further ionization is due to inelastic
collisions of the droplet electrons with ions. The energy
balance equation for these processes is

(12)

where JZ denotes the ionization potential for an ion with
charge Z – 1. To obtain a closed system of equations
describing the evolution of a droplet, the energy bal-
ance equation should be combined with equations
describing ionization of ions and droplet as a whole.
Ionization of ions is dominated by electron impact ion-
ization, whereas ionization by the laser field is respon-
sible for the creation of highly charged ions (with Z >
8–10) in the course of cluster formation. The concentra-
tion of ions with charge Z is found by solving the bal-
ance equations

(13)
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where WZ and RZ are, respectively, the ionization and
recombination frequencies for ions with charge Z, and
ni and ne denote the ion and electron concentrations in
the microdroplet, respectively. Straightforward solution
of the system of equations requires vast labor and com-
puting resources. To simplify the problem, we make use
of the average-ion model [28] and assume that the
plasma consists of ions characterized by a continuously
varying charge Z = ne/ni . Neglecting slow relaxation
processes (three-body recombination, dielectronic
recombination, and photorecombination), we write the
following equation for the ion charge:

(14)

with

where pZ is the number of equivalent electrons in a
shell. The dominant mechanism of droplet ionization is
thermionic emission of electrons from the droplet sur-
face. If the droplet potential Q/R is much lower than the
characteristic energy of bound electrons, then the
release of electrons does not lead to any significant
change in their distribution and its variation is
described by the equation

(15)

Thus, we have a complete set of equations describ-
ing the evolution of a droplet at the irradiation stage.
Let us now find the droplet charge and the contribution
of thermionic emission to the energy balance. Ignoring
the changes in electron temperature and droplet size,
we integrate Eq. (15) with respect to time to obtain

(16)

where τ is the laser-pulse duration. According to
expression (16), the droplet charge varies within (10–
40)TR. Compare the energy Eion required to ionize the
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droplet with the kinetic energy Ekin = (3/2)NZT of the
electron subsystem:

(17)

When the electron temperature is T ≈ 1–3 keV, the ion
charge is Z = 30–40, and the droplet radius is R =
500 nm, this ratio is lower than 10–2; i.e., the contribu-
tion due to thermionic emission is insignificant. A frac-
tion of the laser-pulse energy is consumed to ionize
atoms in the droplet. The power required to ionize the
ions with charge Z – 1 reaches a maximum Wion when
T ≈ JZ:

(18)

The corresponding power consumed to heat the elec-
tron subsystem is

(19)

Comparing (18) with (19), we obtain

(20)

Thus, the energy consumed to ionize both ions and
the droplet as a whole is low as compared to that
required to heat the electron subsystem, and the rate of
ionization of ions is controlled by the electron temper-
ature. The final ion charge Zfin can be found from the
relation

(21)

If Iτ = 2 × 1019 [W/cm2] · 30 [fs] and N = 109, then the
xenon and krypton droplet ions are neon- and helium-
like, respectively. After interaction with a laser pulse,
ionization of droplet ions continues, but at a substan-
tially lower rate, because the droplet breaks up and
electrons cool down. Therefore, we can neglect ioniza-
tion after the interaction with laser pulse in the first
approximation.

After the interaction with laser pulse, the droplet
begins to decay. A highly charged ion in the cluster is
driven by the result of three forces: the electrostatic
force FE exerted by the cluster, the force Fh of electron-
gas pressure, and the drag force Fr due to electron scat-
tering. Since the electron density is nearly uniform
inside the droplet and rapidly varies only at its bound-
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ary, the hydrodynamic pressure is important only at the
droplet surface. The hydrodynamic force is comparable
to the electrostatic force exerted by the droplet:

(22)

where P is the electron-gas pressure. The drag force can
strongly affect the motion of ions, being comparable to
the electrostatic force:

(23)

where v i is the ion velocity. The general equation of
motion for ions of mass M is

(24)

A solution of this equation can be obtained only by
a numerical method that takes into account redistribu-
tion of electrons in the self-consistent potential of the
droplet, which lies outside the scope of this paper. In
this study, we focus on estimating the characteristic
droplet breakup time and the effects of both pulse and
prepulse on droplet stability. To estimate the cluster
expansion time, we retain only the Coulomb term and
assume that the droplet expands uniformly (the velocity
of each layer is proportional to its distance from the
center). Then, the microdroplet breakup time is

(25)

where R0 is the initial droplet radius. Suppose that the
electron temperature is approximately equal to the ion-
ization potential for an ion with charge Z and energy is
consumed to heat and ionize ions. Then, we obtain

(26)

If time and prepulse intensity are measured in picosec-
onds and W/cm2, respectively, then

(27)

For Ipr ~ 1014 W/cm2, the expansion time is 100 ps; i.e.,
it exceeds a typical pulse duration by two orders of
magnitude. Expression (27) can also be used to esti-
mate the microdroplet breakup time after its interaction
with the main pulse. For I ~ 1019 W/cm2, the breakup
time is estimated as 100 fs. In the case of a uniformly
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expanding droplet, this means that an appreciable num-
ber of ions accelerate to velocities on the order of
109 cm/s. Accordingly, a substantial Doppler broaden-
ing must be recorded in experiments, but is not actually
observed. This disagreement has an obvious explana-
tion emphasizing the distinction between microdroplets
and clusters. Both electron-density gradient and
uncompensated droplet charge, which are responsible
for the breakup, have relatively large values only on the
droplet surface and exponentially decrease toward the
center by Eq. (11). In particular, the electrostatic field
that accelerates ions is

where r0 is the initial radial location of the ion. There-
fore, the forces acting on ions in the droplet are strong
only on the surface, and only a small number of ions
contained in a layer of thickness about R/k leaves the

droplet quickly (recall that k =  @ 1), whereas
most ions accelerate at later stages. This leads to a
higher stability of the droplet.

Let us consider the electron-gas temperature varia-
tion due to the expansion of a microdroplet. Droplet
breakup is an adiabatic process with respect to the elec-
tron subsystem; i.e., the plasma remains in equilibrium
at any instant. Indeed, the electron relaxation time (esti-
mated as the electron–electron collision time τee) can be
used to write

(28)

The ion velocity on the droplet surface, u = dR/dt,
becomes almost constant after the droplet size has
increased by a factor of two or three:

(29)

Substituting expressions (10) and (29) for electron–
electron collision time and expansion velocity into (28),
we obtain

(30)

where  is the average distance between ions. Thus, the
electron gas cools down adiabatically:

(31)

According to Eq. (31), the electron-gas temperature in
a typical target must drop by 100 times (the distance
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Fig. 1. Example of the x-ray spectrum emitted by krypton microdroplet plasma.
between droplets about ten times larger than the initial
droplet size). However, the influence of electrons
released from the droplet at earlier stages impedes this
process, and the final electron temperature recorded in
experiments is higher than the estimated one by an
order of magnitude.

We have analyzed the evolution of a microdroplet
interacting with a high-power laser pulse and the pro-
cesses taking place after their interaction. It has been
established that the radiation incident on the droplet is
entirely absorbed. The plasma thus produced is super-
heated, and its temperature is comparable to the ioniza-
tion potential for an ion with a characteristic charge.
After interaction with the laser pulse, the electron gas
rapidly cools down and its temperature drops by several
times, while ion recombination processes are inhibited.
A droplet target is totally insensitive to the pulse shape
and duration, and even picosecond prepulses of rela-
tively high intensity (about 1014 W/cm2) cannot strongly
affect the evolution of a microdroplet. These conclu-
sions are supported by the experimental results pre-
sented in the next section.

3. X-RAY SPECTRAL STUDIES
OF XENON AND KRYPTON MICRODROPLETS 

HEATED BY LASER PULSES 
OF DURATION 30–500 fs

Experiments were performed at JAERI (Kyoto,
Japan) by using a 100-terawatt Ti:sapphire laser system
with amplification of chirped laser pulses. The system
was designed to generate pulses of width 20 fs at a rep-
etition rate of 10 Hz. The pulses could be focused to
reach intensities of up to 1020 W/cm2 [29, 30]. The start-
ing pulses (with λ = 800 nm and τ = 10 fs at a repetition
rate of 82.7 MHz) were generated by a Ti:sapphire
oscillator. These pulse were stretched to a width of
10 ns, chirped, and then amplified by a regenerative
amplifier and two multipass amplifiers. The amplified
pulses were compressed to 30 fs by a vacuum pulse
JOURNAL OF EXPERIMENTAL 
compressor with a maximum output energy of 1.9 J.
Compressed pulses were directed by two gilded flat
mirrors into a vacuum target chamber and focused by
an off-axis parabolic mirror with an aperture of f/3. The
focal-spot diameter measured at the 1/e2 level was
11 µm, which is only 10% higher than the diffraction
limit. A Gaussian spot of similar diameter would con-
tain about 64% of the total energy. The peak intensity
of the laser pulses of width 30 fs and energy 300 mJ
used in the experiments was 1.2 × 1019 W/cm2. The
pulses were passed through two Pockels cells to sup-
press the prepulse. The pulse contrast ratio normalized
to a prepulse of similar duration preceding by 1 ns was
higher than 105.

Microdroplets were created in a supersonic krypton
or xenon jet expanding (from 2.8 and 2.0 MPa, respec-
tively) into a vacuum chamber through a specially
designed pulsed conical nozzle. The nozzle entrance
and exit diameters were 0.5 and 2.0 mm, respectively,
and its length was 75 mm. The nozzle geometry was
specified by using the results of numerical simulations
performed for a two-phase jet to optimize the concen-
tration of clusters of the required diameter (dd ≈ 1 µm)
[31–33].

In the experiment, a laser pulse was focused on the
jet at 1.5 mm downstream of the nozzle exit. The x-ray
spectra of the laser plasma were measured with the use
of a FSPR-1 focusing spectrometer with spatial resolu-
tion [34–37]. The spectrometer was equipped with a
mica crystal spherically bent with a radius of 150 mm
and a DX420-BN ANDOR vacuum-compatible x-ray
camera. When the spectra were recorded near the
4−2 transitions in the neonlike krypton ion, the crystal
was placed at 381.2 mm from the plasma radiation
source and was oriented at the Bragg angle θ = 54.3°
(with third-order reflection at a wavelength of 0.54 nm).
When the Rydberg spectrum of krypton or xenon ions
was recorded at 2.7–2.9 Å, the crystal was placed at
360 mm from the plasma and was oriented at a Bragg
AND THEORETICAL PHYSICS      Vol. 98      No. 6      2004
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angle of about 45°. In all cases, the reflection plane of
the spectrometer was oriented along the laser beam to
ensure one-dimensional transverse resolution.

Figure 1 shows the x-ray spectrum emitted by the
krypton plasma in the wavelength range of 4.6 to 5.2 Å.
Note that the krypton microdroplet spectrum includes
lines of the neonlike Kr XXVII ion (in particular, the
6D, 5C, 5D, and 5G lines shown in Fig. 1), as well as
lines of the fluorine-like Kr XXVIII ion and the dielec-
tronic satellites corresponding to transitions in the
sodium-like Kr XXV and magnesium-like Kr XXVI
ions. The spectrum emitted by xenon microdroplet
plasma includes resonant lines of the neonlike Xe XLV
ion and their dielectronic satellites in the wavelength
range of 2.75 to 2.95 Å.

Table 1.  Numerical results for krypton (focal-spot diameter =
10.8 µm)

N E, J R, nm T, eV Z

109 0.035 255 850 18

1010 0.035 550 500 14

1011 0.035 1200 330 10

109 0.07 255 1200 25

1010 0.07 550 790 18

1011 0.07 1200 470 14

109 0.11 255 1800 26

1010 0.11 550 1000 22

1011 0.11 1200 640 16

109 0.305 255 4010 33

1010 0.305 550 2370 26

1011 0.305 1200 1190 24
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Fig. 2. Spectral line intensity versus laser pulse width for
highly charged krypton ions: d—F-like ion lines; h—4D
line of Ne-like ion; ∗ —Na-like satellites; ×—Mg-like satel-
lites. All intensities are normalized to their respective values
at τ = 30 fs.
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One principal prediction of the model of microdrop-
let evolution considered above is that droplet-target
plasmas are insensitive to the width of laser pulses of
constant energy. Figure 2 demonstrates that this conclu-
sion is fully consistent with experimental results.
Indeed, as the pulse width varies from 30 to 500 fs, the
intensities of the spectral lines corresponding to transi-
tions between the shells with the principal quantum
numbers 4 and 2 in F-, Ne-, Na-, and Mg-like krypton
ions are equal within 20%, whereas the heating-radia-
tion flux density changes by 25 times. A similar varia-
tion of the laser-pulse width leads to a 30% drop in the
intensities of transitions from Rydberg states of Ne-
and Na-like krypton ions (see Fig. 3). This can be
explained by the drop in concentration of generated
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Fig. 3. Rydberg line intensity versus laser pulse width for
highly charged krypton ions at E = 110 mJ: m—5D line of
Ne-like ion; r—6D line of Ne-like ion; ×—Na-like satel-
lites. All intensities are normalized to their respective values
at τ = 30 fs.

Table 2.  Numerical results for xenon (focal-spot diameter =
10.8 µm)

N E, J R, nm T, eV Z

109 0.035 260 845 18

1010 0.035 570 504 14

1011 0.035 1200 328 10

109 0.07 260 1216 25

1010 0.07 570 784 18

1011 0.07 1200 468 14

109 0.13 260 2000 32

1010 0.13 570 1150 26

1011 0.13 1200 650 21

109 0.3 260 3400 43

1010 0.3 570 2050 33

1011 0.3 1200 1200 26
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Fig. 4. Spectral line intensity versus laser pulse energy for highly charged krypton ions at τ = 45 fs (a) and τ = 500 fs (b): d—F-like
ion lines; j—4D line of Ne-like ion; ∗ — Na-like satellites; m—Mg-like satellites. All intensities are normalized to their respective
values at minimal energies.
superthermal electrons when the pulse duration
exceeds 100 fs (i.e., the flux density is below
1018 W/cm2). Note that these electrons are ignored in
the simple model presented above, but they may con-
tribute substantially to the populations of high-lying
excited states. According to Fig. 3, superthermal elec-
trons play an insignificant role in the case of ions with
L shells in the ground states: when the flux density is
below 6 × 1018 W/cm2, their contribution to Rydberg
line intensities does not exceed 30%.

The numerical results listed in Tables 1 and 2 dem-
onstrate that the parameters of droplet-target plasmas
mainly depend on the total pulse energy. Figures 4a and
4b show line intensities measured for highly charged
krypton ions as functions of pulse energy at τ = 45 fs
and τ = 500 fs, respectively. It is clear that the x-ray
emission by the plasma does increase with pulse
energy. Note (see Fig. 4b) that the line intensities
increase almost similarly for all krypton ions consid-
ered when the flux density is relatively low (I ≈ 2 ×
1017 W/cm2), whereas the line intensities for the F-like
Kr XXVIII ion increase to much higher values when I >
5 × 1017 W/cm2. This result can also be explained by
generation of superthermal electrons, which shifts the
ionization balance in the plasma. As a consequence, the
increase in F-like transition line intensity is determined
not only by an increase in the rate of excitation by elec-
tron impact, but also by an increase in the concentration
of higher charged (F-like) ions.

Figure 5 shows Rydberg line intensities versus pulse
energy measured for Ne- and Na-like krypton ions. The
laser pulse width was 30 fs, and the flux density was as
high as 2 × 1019 W/cm2. The figure demonstrates that
the spectral line intensities are nonmonotonic functions
of pulse energy decreasing as the energy increases to
380 mJ, with maxima at E ≈ 160 mJ. According to
Table 1, the ionized states corresponding to the highest
energies in this interval are shifted toward higher
charged ions (even to heliumlike ones), which explains
the decrease in the Ne- and Na-like ion line intensities.
JOURNAL OF EXPERIMENTAL A
Analogous results were obtained for xenon droplets.
As an example, Fig. 6 shows the intensities of three
spectral lines (with wavelengths of 2.77, 2.90, and
2.96 Å) versus pulse width and energy. These lines cor-
respond to resonant transitions in the neonlike xenon
ion and their electron satellites. As in the case of kryp-
ton, these line intensities are virtually independent of
pulse width when the pulse energy is constant (see
Fig. 6b) and increase as the pulse energy is increased to
300 mJ while the pulse width is held constant (see
Fig. 6a). In contrast to krypton plasmas, the concentra-
tions of the neonlike Xe XLV reach maximum values at
energies up to 300 mJ (see Table 2), and the curves
shown in Fig. 6a do not exhibit explicitly nonmono-
tonic behavior.

In addition to x-ray spectrometry of plasma radia-
tion, we also used a time-of-flight detector, which also
recorded the total vacuum UV and x-ray emission by
ions leaving the plasma. Figure 7 shows examples of
oscilloscopic traces obtained for heated krypton drop-
lets. They also demonstrate that the time-of-flight
detector output remains invariant as the pulse width is
increased from 30 to 500 fs while the pulse energy is
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Fig. 5. Rydberg line intensity versus laser pulse energy for
highly charged krypton ions at τ = 30 mJ: m—5D line of
Ne-like ion; r—6D line of Ne-like ion; ×—Na-like satel-
lites. All intensities are normalized to their respective values
at E = 70 mJ.
ND THEORETICAL PHYSICS      Vol. 98      No. 6      2004



MICRODROPLET EVOLUTION INDUCED BY A LASER PULSE 1131
6

3

0
50 150 250 30 100 300

1

0.1

In
te

ns
ity

, a
rb

. u
ni

ts

In
te

ns
ity

, a
rb

. u
ni

ts

E, mJ τ, fs

(b)(a)

Fig. 6. Spectral line intensity versus laser pulse energy at τ = 30 fs (a) and width at E = 300 mJ (b) for highly charged xenon ions:
h—2.77 Å; ∆—2.90 Å; e—2.96 Å. All line intensities are normalized to their values at E = 70 mJ.
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Fig. 7. Time-of-flight detector output signals obtained in experiments on krypton microdroplets at constant pulse width (a) and
energy (b): 1—E = 57 mJ, τ = 30 fs; 2—E = 123 mJ, τ = 30 fs; 3—E = 326 mJ, τ = 30 fs; 4—E = 320 mJ, τ = 500 fs; 5—E = 320 mJ,
τ = 30 fs.
held constant (curves 4 and 5), whereas an increase in
the energy of pulses of equal width leads to a substan-
tial increase in output at short times of flight, where the
detector signal is due to high-energy ions and photons
(curves 1–3).

4. CONCLUSIONS

We propose a simple model of microdroplet evolu-
tion induced by a high-power ultrashort laser pulse. It is
shown theoretically that the droplet target is insensitive
to the pulse shape and duration and the characteristics
of the resulting laser plasma are almost entirely deter-
mined by the pulse energy. Theoretical predictions are
supported by x-ray spectral studies performed with
laser pulses of widths varying from 30 to 500 fs, ener-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
gies between 10 and 400 mJ, and flux densities of 6 ×
1016 to 2 × 1019 Wt/cm2.
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Abstract—Neutron production as a result of the reaction 2H(d, n)3He in a picosecond laser plasma is reported.
A considerable neutron yield of 5 × 104 per pulse is obtained for the first time in a picosecond laser plasma on
the surface of a solid deuterated target at laser radiation intensity of 3 × 1017 W/cm2. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Considerable advances in laser technology made in
recent years in designing high-power lasers with
ultrashort pulses (50 fs–1.5 ps) have created unique
opportunities for solving new problems in such fields as
nuclear physics, physical kinetics, and physics of
atomic and radiative processes in plasma [1]. Such laser
systems make it possible to attain powers of up to
1015 W and radiation intensities of 1017–1021 W/cm2 for
radiation focused at a target. The laser plasma formed
in this case is a source of X rays and γ radiation, as well
as beams of charged particle (electrons, protons, ions,
and α particles) and neutrons [2]. Analysis of the char-
acteristics of these types of radiation serves as a tool for
studying the atomic and nuclear processes occurring in
such laser plasmas. Neutrons produced as a result of the
reaction 2H(d, n)3He in a laser plasma were detected for
the first time in [3], where the possibility of nuclear
fusion reactions in a dense laser plasma was studied.

A number of recent publications have been devoted
to the production of neutrons in a laser plasma with the
help of laser radiation with an ultrashort pulse duration
of τ = 35 fs–1.3 ps. Solid deuterated targets of CD2,
TiD2, SiD2, and PdD2 [4–8], D2 cluster targets [9–11],
and gaseous D2 targets [12] were used in these studies.

Almost all experiments on studying the neutron
yield from a laser plasma on solid deuterated targets
were performed with relativistic intensities exceeding
1018 W/cm2. The reported neutron yield varied from
140 [7] to 109 [4]. Neutron production on a TiD2 target
1063-7761/04/9806- $26.00 © 21133
with a subrelativistic intensity of 2 × 1016 W/cm2 and
with a yield of five neutrons per pulse has been reported
so far only in one publication [8]. Nevertheless, the
problem of obtaining an appreciable neutron yield for
subrelativistic intensities is of considerable importance
since its solution will make it possible to use relatively
small terrawatt laser devices for the production and
practical application of pulsed sources of nuclear radi-
ation and for studying nuclear processes in a laser
plasma.

2. EXPERIMENTAL SETUP

Experiments were made on a Neodim terrawatt laser
system [13]. The laser setup has the following laser
pulse parameters: energy up to 1.5 J, wavelength
1.055 µm, and duration 1.5 ps. The focusing system
ensures a concentration of at least 50% of the laser
beam energy at a spot 15 µm in diameter and, accord-
ingly, an intensity on the target at a level of 3 ×
1017 W/cm2.

Laser radiation generated by the Neodim system is
characterized by the presence of two types of prepulses,
viz., picosecond and nanosecond prepulses. The first
type is associated with the multipass nature of amplifi-
cation in the regenerative amplifier and a finite trans-
mission of the Pockels cell in such an amplifier [14].
A prepulse emerges 13 ns prior to the main pulse and
has a duration of 1.5 ps. The energy of this prepulse
does not exceed 100 µJ after its passage through the
amplification path, which determines a laser radiation
004 MAIK “Nauka/Interperiodica”
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intensity contrast of not worse than 104. The second
prepulse is the result of amplified spontaneous emis-
sion in the regenerative amplifier. The duration of this
pulse at half-height was 4 ns. The prepulse energy of an
amplified spontaneous emission after its passage
through the amplification path does not exceed 150 µJ,
which determines a laser radiation intensity contrast of
not worse than 107 relative to the amplified spontaneous
emission pulse.

Unless special measures are taken, picosecond
prepulses may appear tens of picoseconds prior to the
main pulse. The reasons for the emergence of such
prepulses are given in [15], where the method of chirped
pulsed spectral interferometry is also described. This
method can also be used for detecting such prepulses, for
determining the reason for their emergence, and for elim-
inating these prepulses by suppressing their action (this
was done using the Neodim laser system).

The block diagram of the setup is shown in Fig. 1.
The laser beam was focused by an aspherical lens with
a focal length of 14 cm to the surface of solid target T
at an angle of 40° to the target normal. The targets were
150-, 250-, and 350-µm-thick flat plates of deuterated
polyethylene (CD2)n , 200-µm-thick fluoroplastic
plates, and 2-mm-thick beryllium plates. The target was
placed at the center of a vacuum chamber 30 cm in
diameter and 30 cm in height. The residual gas pressure
in the vacuum chamber was not higher than 10–3 Torr.
The laser radiation intensity at the target was controlled
by measuring hard X-ray radiation with an energy of
quanta of above 100 keV with the help of detector D1
mounted at a distance of 17 cm from the target. Detec-
tor D1 is a scintillation counter based on a stilbene crys-
tal (C14H12) 5 cm in diameter and 5 cm in height.
A 1.5-cm-thick lead shield was installed in front of

FSSR-1 FSSR-2

1

2

1

D2D1

D4

D3

T

LN

Fig. 1. Block diagram of experiment: T—flat target, L—
focusing lens, N–normal to the target surface, FSSR-1 and
FSSR-2—X-ray spectrographs, D1—scintillation detector
based on a stilbene crystal (C14H12), D2—detector based on
a plastic scintillator, D3—neutron detector with helium
counters, D4—high-sensitivity activation neutron detector,
1—lead, 2—polyethylene.
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detector D1; the thickness of the shield remained
unchanged during the entire series of experiments. The
lateral surfaces of detector D1 were covered by 1.5-cm-
thick protecting lead plates.

The maximal energy of hard X-ray radiation and the
number of hard γ quanta were estimated using scintilla-
tion detector D2 located at a distance of 35 cm from the
target. The detector sensor was in the form of a plastic
scintillator of diameter 5.0 cm and length 10.0 cm.
Lead shields having a thickness up to 5 cm were
installed in front of detector D2. The lateral surfaces of
detector D2 were also covered by a 1.5-cm-thick pro-
tective lead layer.

Neutron radiation emitted by the laser plasma was
monitored by neutron detector D3 operating on helium
counters mounted at a distance of 25 cm from the tar-
get. Detector D3 consists of the following parts: a block
of neutron counters based on three SNM-18 helium
counters, a voltage transducer, a signal takeout device,
and a power amplifier. Detector D3 was 45 cm in width,
20 cm in height, and 10 cm in thickness. The lateral sur-
faces of the detector are encased in a polyethylene cov-
ering 2 cm thick. Neutrons produced during a short
(~1.5 ps) laser pulse are slowed down in polyethylene
to the thermal energy over different time intervals and
are detected by helium counters at different instants. In
this way, a delay (stretching) in the time of detection of
instantaneous neutron fluence is carried out. The effi-
ciency of neutron detection for a steady-state neutron
flow from a 252Cf source was approximately 50%. Since
the time resolution of detector D3 is on the order of 1 µs,
it can be used only for neutron radiation monitoring.

Signals from detectors D1 and D2 are fed to the
input of a TEKTRONIX TDS-3032 digital oscillo-
scope, while the signal from detector D3 is supplied to
the input of a TEKTRONIX TDS-3014 digital oscillo-
scope. The neutron yield is determined with the help of
a high-sensitivity activation-type neutron detector D4
mounted at a distance of 20 cm from the target. The
detector is 9 cm in diameter and 5 cm in length. The
sensitive element in detector D4 is an indium sleeve
with a wall thickness of 0.8 mm, covering a 1.5-mm-
thick scintillator.

The performance of the detector is based on the
nuclear reaction 115In(n, γ)116In, accompanied by the
formation of radioactive nuclei with a half-life of
14.2 s. Figure 2 shows the variation of the total neutron
capture cross section in indium in the thermal range of
neutron energy [16]. A sharp resonance at 1.46 eV is
clearly seen. The capture cross section in this energy
range amounts to about 30000 barn.

The detector contains a polyethylene moderator for
improving the sensitivity at the expense of resonance and
thermal neutrons. The detector is protected from back-
ground radiation by a 1-cm-thick external lead shield.

The scintillator in the detector registers β particles
with a threshold energy of 3.3 MeV, emitted during the
decay of 116In, over a period of 30 s. Weak light pulses
AND THEORETICAL PHYSICS      Vol. 98      No. 6      2004
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from the scintillator are amplified by a photomultiplier.
The apparatus spectra of pulses have the shape of a
clearly manifested peak formed during detection of β
particles. Figure 3 shows an example of the recorded
spectrum. The channel number of the spectrometric
amplitude-to-digital converter is laid on the x axis and the
relative count in the channels is plotted along the y axis.

The number of pulses recorded over 30 s are
counted by summing the counts in channels from 110
to 330 with the help of a spectrometric transducer
board. The sensitivity of detector D4 for a pulsed neu-
tron beam with an energy of 2.5 MeV amounts to
0.5 counts/(neutrons/cm2).

X-ray radiation emitted by the plasma produced as a
result of the interaction of a laser pulse with the target
was detected with the help of FSSR spectrographs [17]
with spherically bent quartz or mica crystals (the radius
of curvature of the crystal surface was 150 mm). In all
experiments, the angle of observation was 5° to the nor-
mal to the target surface for spectrometer no. 1, and 85°
for spectrometer no. 2 (see Fig. 1). Kodak-2492 X-ray
film was used to detect radiation reflected from the
crystal. The input window of the film was protected
from visible radiation by a double-layer filter in the
form of a 1-µm-thick polypropylene film with an Al
layer of a total thickness of 0.2 µm deposited on both
sides of the film. The emission spectra of the plasma
were analyzed in the spectral range containing the Lyα
line of the H-like ion F IX. The spectral resolution λ/∆λ
ensured by the spectrographs under the experimental
conditions was not worse than 5000.

3. EXPERIMENTAL RESULTS: DISCUSSION

Investigating the neutron yield from a laser plasma
with an intensity of 3 × 1017 W/cm2, we carried out in
8 series (10 experiments in each) using three different
targets of deuterated polyethylene (CD2)n of thickness
150, 250, and 350 µm. A neutron yield was detected
from each target, but the best results were obtained with
the 350-µm-thick (CD2)n target. Figure 4a shows oscil-
lograms of signals from neutron detector D3 operating
on helium counters, which were obtained during the
recording of neutron radiation from the laser plasma at
the 350-µm-thick (CD2)n target. The upper oscillogram
shown in Fig. 4a was obtained from the digital output
of detector D3, while the lower oscillogram was
obtained from the analog output. Pulses from neutrons
were detected only during the first 200 µs. No neutrons
were detected from Be and fluoroplastic targets. The
oscillograms of signals from the D3 detector (Fig. 4b)
display a single pulse due to the action of γ radiation
from the laser plasma and electromagnetic noise of the
laser system. The neutron yield from the laser plasma
on (CD2)n targets was determined using activation
detector D4. Taking into account the solid angle 0.16 sr
of neutron detection and the detector sensitivity and
assuming that the neutron distribution is isotropic, we
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
determined the neutron yield per laser pulse. The max-
imal neutron yield per laser pulse amounted to 5 × 104.
Considerable fluctuations in the value of neutron yield,
amounting to a factor of several units, were observed
from pulse to pulse.

Using scintillation detector D2 with a set of lead
shields, we performed experiments on determining the
maximal energy of γ quanta in a laser plasma on (CD2)n

as a function of the lead shield thickness. The attenua-
tion of the γ-quantum flux was measured as a function
of the lead shield thickness. The measured dependence
was used for estimating the maximal energy of γ
quanta, which amounted to 650 keV, the number of
such quanta being equal to 106.

The presence of a considerable number of high-
energy ions in the plasma is confirmed by the experi-
mental observation of spectral profiles of X-ray lines.
For this purpose, we performed a series of experiments
with a fluoroplastic target for the same values of the
laser pulse parameters, in which the spectral profiles of
the Lyα line of the H-like ion F IX were recorded.

Figure 5 shows the recorded profile of the 2p–1s line
of the H-like ion F IX. It can be seen that the profile has
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Fig. 2. Energy dependence of indium cross section.
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Fig. 3. An example of the recorded β-particle spectrum. The
channel number of the amplitude-to-digital converter is laid
on x axis and the relative count in the channel is plotted
along the y axis.
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Fig. 5. Profile of the Lyα line of the F IX ion: experimental
result (circles) and calculation for an optically thin plasma
with Ne = 1021 cm–3 and Ti = 1 keV (dashed curve) and an

optically thick plasma with Ne = 1021 cm–3, Ti = 3 keV, and
τ = 3.7 (solid curve).
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Fig. 4. Oscillograms of pulses from neutron detector D3 on
helium counters (the upper oscillogram is obtained from the
digital output of the detector and the lower, from the analog
output): (a) (CD2)n target, 350 µm in thickness; (b) Be tar-
get, 2 mm).
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an essentially non-Gaussian shape corresponding to a
distribution at a certain temperature. To demonstrate
this difference, Fig. 5 shows the Doppler profiles of the
lines corresponding to ion temperatures Ti = 1 and
3 keV. It can be seen that the observed emission spec-
trum contains high-intensity “tails” corresponding to
the presence of fast ions with an energy considerably
higher than the thermal energy. It follows from the sym-
metry of the Doppler profile of the lines that the distri-
bution of such ions is isotropic to a considerable extent.

A considerable fraction of fast ions, which follows
from the presence of intense wings of the Doppler-
broadened line in Fig. 5, is worth noting. To determine
the fraction of fast ions in their total energy spectrum
from the experimentally measured Doppler profile of
the Lyα line, the energy distribution of fast ions was
determined (Fig. 6). Analysis of the results presented in
Figs. 5 and 6 shows that the fraction of fast ions with an
energy exceeding 10 keV is appreciable (20%). An
important feature of the energy distribution is also a
comparatively slow decay with increasing energy,
which makes it possible to detect ions having an energy
higher than 100 keV. Thus, the results of measurement
of X-ray spectra indicate the presence of a considerable
number of fast ions in the plasma.

It would be interesting to compare the obtained
experimental data on the neutron yield with the esti-
mate based on the familiar formula for the number of
neutrons produced in a laser plasma [18]:

where τ is the lifetime of a dense plasma and/or the time
of its cooling, V is the plasma volume, and 〈σv 〉DD is the
rate of the thermonuclear reaction averaged over the ion
distribution. The energy distribution of deuterons was
not measured in the experiment. The neutron yield can
be estimated assuming that the deuteron energy distri-
bution corresponds to the energy distribution for fluo-
rine ions, which is obtained under the same experimen-
tal conditions and shown in Fig. 6. In this case, we find
that the total number of neutrons produced in a laser
plasma is Nn ≈ 104 for nD ≈ 3 × 1022 cm–3, τ ≈ 1.5 ps, and
V ≈ 3 × 10–10 cm–3, which is in reasonable agreement
with the experimentally measured neutron yield.

It should be emphasized that a considerable neutron
yield (5 × 104 neutrons per pulse) was detected here for
the first time for a solid (CD2)n target for a moderate
laser radiation intensity at a level of 3 × 1017 W/cm2.
Such neutron yields were detected earlier with (CD2)n

targets using only laser pulses of a relativistic intensity
I ≥ 1018 W/cm2 [4–7].

Figure 7 shows the data on experimental measure-
ment of the neutron yield from a laser plasma on the
surface of solid deuterated (CD2)n targets for various
laser radiation intensities and various laser pulse dura-
tions (triangles correspond to femtosecond lasers in the
range of 50–300 fs, while circles correspond to pico-

Nn 0.25nD
2 σv〈 〉 DDτV ,≈
 AND THEORETICAL PHYSICS      Vol. 98      No. 6      2004
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second lasers with a pulse duration of 1.3–1.5 ps). The
figure clearly demonstrates that picosecond lasers are
preferable for obtaining the maximum neutron yield
from the laser plasma on the surface of the solid deuter-
ated (CD2)n target; the threshold intensity of laser radi-
ation for obtaining an appreciable neutron yield on the
order of 104 per pulse is higher than 1018 W/cm2 for
femtosecond lasers and 1017 W/cm2 for picosecond
lasers.

4. CONCLUSIONS

It has been shown for the first time that a consider-
able neutron yield of up to 5 × 104 per pulse can be
obtained using a picosecond laser plasma at the surface
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Fig. 6. Distribution of fast F IX ions obtained from analysis
of the Lyα line profile.

Fig. 7. Neutron yield obtained in a laser plasma on the sur-
face of solid deuterated (CD2)n targets: 1—VULCAN: 20 J,
1.3 ps, 1.06 µm [4]; 2—France: 7 J, 300 fs, 0.53 µm [5];
3—MBI, Berlin: 0.3 J, 50 fs, 0.8 µm [6]; 4—ATLAS: 0.2 J,
160 fs, 0.79 µm [7]; 5—Moscow State University: 1 mJ,
200 fs, 0.8 µm [8]: 6—NEODIM: 1.5 J, 1.5 ps, 1.06 µm.
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of a solid deuterated (CD2)n target with a laser radiation
intensity of 3 × 1017 W/cm2. Consequently, relatively
small laser devices with a terrawatt power can be used
for obtaining and practical application of pulsed
sources of nuclear radiation and for studying nuclear
processes in a laser plasma.
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Abstract—An analysis of pressure-field dynamics is performed for an axially symmetric problem of interac-
tion between a shock wave and a “free” bubble system (toroidal cluster) giving rise to a steady oscillating shock
wave. The results of a numerical study of near-axis wave structure are presented for a focusing shock wave emit-
ted by a bubble cluster. It is shown that the wave reflected from the axis has irregular structure. The Mach disk
developing on the axis has a core of finite thickness with a nonuniform radial pressure distribution. The evolu-
tion of the Mach-disk core is analyzed, and the maximum pressure in the core is computed as a function of the
gas volume fraction in the cluster. The effect of geometric parameters of the toroidal bubble cloud on the cumu-
lative effect is examined. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Generation of pressure pulses in liquids and gases
has been the subject of ongoing research for many
years. This work resulted in the development of various
pressure generators and shock-wave cumulation meth-
ods. Research efforts were focused on the exploration
of media in which the energy transferred by relatively
weak pulsed loading can be absorbed, concentrated in a
local region, and reemitted in a pulse of substantially
higher amplitude. Frequently, it is required not only to
cumulate energy, but also to emit it in a certain direc-
tion. From a wide variety of relevant publications, we
single out experimental and theoretical studies of axi-
ally symmetric shock waves related to annular shock-
wave generators and conical flows. In particular, an
experimental investigation of the focusing of a pressure
wave generated on the surface of a toroidal high-volt-
age discharge source was reported in [1]. Theoretical
studies based on the model developed by Chester, Chis-
nell, and Whitham for a gas [2–4] have shown that
unlimited cumulation can also be achieved by focusing
annular and conic shock waves [5–7]. According to [7]
the Mach-wave velocity increases by a factor of α–1 (if
dissipative processes are neglected), where α is the
cone half-angle.

The topological changes in a curved shock front
associated with its cumulation and the resulting flow
patterns were analyzed experimentally and theoreti-
cally in [8]. Experimental investigations of irregular
reflection of annular shock waves propagating in gases
1063-7761/04/9806- $26.00 © 21138
from symmetry axes and rigid walls were conducted
in [9–11]. It was found that a quasi-spherical conver-
gent shock enhanced the cumulative effect in a local
region [11]. Irregular reflection of axially symmetric
shock waves generated in the atmosphere from liquid
surfaces was observed in experimental simulations of
surface point explosions (see [12]). The wave pattern
associated with the toroidal shock generated in water
by an underwater high-voltage explosion of a ring-
shaped conductor, the focusing of the shock wave, its
subsequent interaction with the expanding toroidal cav-
ity containing the explosion products, the focusing of
the accompanying rarefaction wave, and the develop-
ment of bubble cavitation at the center of the torus were
also examined in [12]. Underwater explosions of spiral
coils of detonating cords and spiral three-dimensional
charges were studied in [12, 13]. The focusing of the
shock wave generated in air by a detonation wave prop-
agating along a ring and the structure of the pressure
fields created by explosions of ring-shaped and spiral
charges in air were investigated in [14, 15]. The results
of a numerical analysis of the focusing of toroidal
shock waves obtained for different Mach numbers and
geometric parameters were reported in [16].

In the 1990s, the first publications appeared on the
basic principles of hydroacoustic analogues of laser
systems, such as SASER (shock amplification by sys-
tems with energy release) or SABSER (shock amplifi-
cation by bubbly systems with energy release). In [17],
the model developed by Iordanskii, Kogarko, and van
004 MAIK “Nauka/Interperiodica”
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Wijngaarden [18–21] was used in numerical studies to
show that interaction between a plane shock wave and
a bubble cluster gives rise to a shock wave with a pres-
sure gradient tangent to its curved front. By focusing
such a wave, its amplitude can be increased by one or
two orders of magnitude. As another example of waves
focusing in an axially symmetric geometry, processes
taking place in a shock tube with abruptly changing
cross section filled with a chemically active bubbly
medium were analyzed numerically in [22]. It was
shown that the focusing of a bubbly detonation wave on
the axis results in a Mach configuration; i.e., the possi-
bility of irregular Mach reflection was demonstrated for
media of this kind.

Thus, bubbly media are of great interest as sources
of high-energy emission in fluids. In this study, the
focusing of the steady oscillating shock wave generated
by a toroidal bubble cluster and the wave pattern in the
near-field zone of the cluster are analyzed numerically.
The pressure fields are analyzed for liquids described
by the Tait equation of state (see Eqs. (1)). The gas
phase is air (with ratio of specific heats 1.4), and the liq-
uid is water (characterized by viscosity, surface tension,
and ratio of specific heats).

2. STATEMENT OF THE PROBLEM
AND GOVERNING EQUATIONS

We consider the shock wave generated by piston
motion at the end of a shock tube of radius rst filled with
a liquid at the moment t = 0. The shock tube contains a
toroidal bubble cluster whose center is located on the
shock-tube axis (denoted by z) at a distance lcl from its
left boundary. The plane of the base circle of the torus
(hereinafter called the toric plane), which has a radius
Rtor (Rtor < rst), is perpendicular to the shock-tube axis.
The cross-sectional radius of the torus is Rcirc (see
Fig. 1). The initial volume fraction of the gas phase in
the cluster is denoted by k0. All gas bubbles have equal
radii Rb, and their distribution over a cluster is uniform.
At t > 0, the shock wave propagates along the positive
z axis, interacts with the toroidal bubble cloud,
bypasses around it, and is refracted as it encounters the
cluster. The interaction between the refracted wave and
the bubble cloud results in its focusing inside the clus-
ter, and its intensity increases to an extent determined
by the cluster parameters and the cross-sectional radius
Rcirc of the torus. The shock wave amplified by interac-
tion with the cluster propagates further into the ambient
liquid.

The focusing of the refracted wave by the cluster
was computed by using a modified Iordanskii–Kog-
arko–van Wijngaarden model [17], based on the conti-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
nuity and momentum equations written for the average
pressure p, density ρ, and velocity u:

(1)

where ρ0 is the unperturbed liquid density, c0 is the
speed of sound in the liquid, and ρ is the density of the
bubbly liquid normalized to ρ0. It is obvious that sys-
tem (1) is not closed: the Tait equation of state for the
liquid phase contains the volume fraction k of gas in the
cluster, which is expressed in terms of the dynamic
variable β = R/R0 (relative bubble radius).

In the Iordanskii–Kogarko–van Wijngaarden model,
a physically heterogeneous medium is treated as homo-
geneous, and the Rayleigh equation for β

(2)

where

is used as a closure for system (1). Here, σ is surface

tension; µ is viscosity; n = 7.15; and p0, ρ0, R0, ,

and R0  are the reference parameters used to
obtain a dimensionless system of equations.
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Fig. 1. Toroidal bubble cluster: the hatched area is the toric
section; z is the symmetry axis.
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Starting from papers published in 1968 (see refer-
ences in [12]), both one- and two-dimensional versions
of the model were applied to describe cavitation, liquid
strength, structure of shock and rarefaction waves, and
their interactions in both inert [17, 23] and chemically
active [22] bubbly media. The numerical results con-
cerning shock waves and the dynamics and structure of
bubbly media were compared with experiments, and it
was shown that the Iordanskii–Kogarko–van Wijn-
gaarden model and its modifications provide correct
descriptions of various processes in both inert and
chemically active bubbly media.

In cylindrical coordinates, the flow domain is a rect-
angle with 0 ≤ z ≤ zmax and 0 ≤ r ≤ rst . The boundary
conditions set at z = 0 correspond to a steady shock
wave of amplitude Psh with prescribed axial velocity
and zero radial velocity. Symmetry conditions are set at
r = 0. The computations were performed for k0 = 0.001–
0.1, R0 = 0.01–0.4 cm, and Psh = 3–10 MPa. The bound-
ary condition set at r = rmax rules out reflection of the

Table

k0 p α RMach, cm ZMach, cm

0.001 47.6 37.45 1.4 4.6

40.6 1.5 5.1

54.8 2.2 8.5

59.8 2.5 10.3

63.43 3.3 12.0

66.35 6.0 13.7

0.010 99.4 40.9 2.4 5.2

45.2 2.5 6.1

56.0 2.7 8.9

60.5 3.1 10.6

63.8 3.6 12.2

66.5 4.1 13.8

68.7 6.0 15.4

0.050 199.2 23.4 2.6

48.6 3.2 6.8

55.1 3.6 8.6

59.5 3.8 10.2

63.2 6.0 11.9

0.100 231 17.6 1.9

42.5 2.2 5.5

51.34 3.2 7.5

56.9 3.8 9.2

63.0 5.0 11.8
JOURNAL OF EXPERIMENTAL A
shock wave from the shock-tube wall. For the wave
emerging from the flow domain at z = zmax, the second
axial derivatives of all variables are set to zero. To solve
system (1), we adapted the upwind explicit and splitting
schemes described in [24] to the present problem. At
the first stage, we applied the scheme proposed in [25].
Subsystem (2) was computed by using the Runge–
Kutta–Merson fourth-order implicit scheme.

The results presented below were validated as
follows:

(i) the mathematical technique was tested against a
known analytical solution;

(ii) the results obtained by means of the first-order
accurate upwind explicit scheme and the second-order
accurate splitting scheme adapted to flows with
strongly nonlinear equations of state were compared;

(iii) the convergence of numerical methods was ver-
ified by performing computations on a sequence of pro-
gressively refined grids;

(iv) the results were checked for self-consistency
and agreement with available experimental observa-
tions.

3. RESULTS

Figure 2 shows contour maps of constant pressure in
a focusing shock wave generated by the toroidal bubble
cloud at several instants. The pressure is quantified (in
units of the hydrostatic pressure p0 = 0.1 MPa) by the
gray scale shown in Fig. 2c. Each instant is illustrated
by two panels: an overall map (right column) and an
enlarged view of the region bounded by the toric plane
z = 10 cm, the toric radius Rtor , and the shock front inci-
dent on the torus (left column). The maps were com-
puted for Psh = 3 MPa, rst = 20 cm, zmax = 40 cm, lcl =
10 cm, Rtor = 6 cm, Rcirc = 1 cm, k0 = 0.01, and Rb =
0.1 cm.

Figure 2a shows the pressure field before the wave
emitted by the torus focuses on the axis. Note that the
pressure distribution over the shock front is highly non-
uniform and the reflection of the precursors propagat-
ing ahead of the wave from the axis is already irregular.
It is natural that reflection of the toroidal wave from the
axis is irregular even at the initial stage, as illustrated by
Fig. 2b (see the leading-edge isobar of the incident
wave). This map demonstrates the second maximum of
the oscillating shock wave generated by the cluster. The
maps in Fig. 2c illustrate the development of two Mach
disks on the axis. The intricate wave structure (includ-
ing rarefaction waves, precursors, and a decaying
sequence of pressure peaks in the oscillating shock
wave) somewhat obscures the detailed pattern in the
zone of irregular reflection.

Figure 3 illustrates the onset of irregular reflection
of the shock waves emitted by the toroidal bubble clus-
ter. These results were computed with a finer resolution
ND THEORETICAL PHYSICS      Vol. 98      No. 6      2004
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Fig. 2. Pressure fields: (a) t = 110 µs; (b) t = 130 µs; (c) t = 180 µs. Panels in the left column are enlarged maps of the reflection zone.
for four values of the volume fraction of gas in the torus
(other parameters are as specified above). It is clear that
the zone of axially symmetric irregular reflection (the
Mach disk) has a finite thickness of 4 to 5 cm. The disk
contains a well-defined zone of high pressure (bounded
by closed isobars), which can be identified as the core
of the Mach disk. In Figs. 3a–3c, the centroid of the
core is shifted slightly to the right of the point z =
15 cm. In Fig. 3d, the core occupies the interval
between z = 12 and 15 cm. The isobars ahead of the
core belong to the leading front associated with a max-
imum pressure in the focusing shock wave; those
behind it, to the reflected-wave pattern. In the process
of reflection illustrated here, the consecutive peaks of
the focusing oscillating wave are characterized by pro-
gressively increasing pressures, and the reflected wave
interacting with them is “bent” toward the axis. This
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
phenomenon gives rise to a zone of relatively rarefied
flow behind the Mach disk (see Fig. 2c).

The table lists the results of a numerical analysis of
the Mach-disk core radius RMach as a function of the dis-
tance ZMach between the disk and the toric plane. It dem-
onstrates that RMach monotonically increases with ZMach
and the angle α of shock incidence on the axis in the
entire range of k0. The choice of the range of k0 is dictated
by its substantial influence on shock-wave amplification
and acoustic wave generation in bubbly media [23]. For
each value of k0 shown in the table, a pressure value in
the core is given to illustrate the degree of shock ampli-
fication.

At first glance, unexpected effects are observed
when Rcirc is varied while Rtor is held constant. They are
illustrated by Fig. 4, which shows results obtained for
SICS      Vol. 98      No. 6      2004
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Rcirc = 0.5, 2.0, 4.0, and 6.0 cm; Psh = 3 MPa; Rtor =
6 cm; k0 = 0.01; and Rb = 0.1 cm. The flows correspond-
ing to the first three values of Rcirc are topologically
equivalent. Computations show that the wave ampli-
tude in the Mach-disk core substantially increases with
Rcirc: P = 81.7 for Rcirc = 0.5 cm, P = 99.4 for Rcirc =
1.0 cm, P = 166 for Rcirc = 2.0 cm, P = 258 for Rcirc =
3.0 cm, P = 386 for Rcirc = 4.0 cm, P = 568 for Rcirc =
5.0 cm, and P = 859 for Rcirc = 6.0 cm.

When Rcirc = 6.0 cm, the inner boundary of the torus
contracts to a point on the axis and the pressure field
exhibits substantially different dynamics. The shock
front converging to the axis is a concave surface with an
outward pressure gradient. Even though the pressure on
the converging front is minimal in the vicinity of the
axis, cumulation eventually gives rise to a high-inten-
sity shock wave with an amplitude higher than that of
the wave interacting with the torus by a factor of 30 (see
Fig. 4d).

An analysis of the shock-wave structure shows that
the peak pressure in the Mach disk moving along the
axis is a nonmonotonic function of the distance
between the disk and the torus (see Fig. 5). When the
torus geometry and initial bubble radius are held con-
stant, the pressure reaches a distinct maximum, which
increases with the gas volume fraction. The pressure in
the Mach-disk core rapidly grows with distance from
the torus in the near-field zone around it, and the wave
amplitude increases by six to seven times. For k0 =
0.01–0.1, the core pressure levels off at a distance of
20 cm from the torus, remaining higher than the ampli-
tude of the wave interacting with the torus (by a factor
of 2.0 to 2.5).

According to our computations, the cumulation of
the toroidal wave inside the torus follows a classical

100 20

z, cm

100

200

P, arb. units

1

3

4

2

Fig. 5. Peak pressure in the core of the Mach disk versus dis-
tance from the toric plane for Rcirc = 1 cm and Rtor = 6 cm:
1—k0 = 0.1; 2—k0 = 0.05; 3—k0= 0.01; 4—k0 = 0.001.
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scenario: an initial pressure decrease near the torus’
surface is followed by its increase as the wave
approaches the axis, and a maximum is reached when
at the focal point (see Fig. 6). Note that cumulation can
be interpreted as the second stage of wave amplifica-
tion. The initial stage (which is no less important)
involves processes taking place inside the toroidal clus-
ter, in which the refracted incident shock wave is
absorbed, transformed, amplified by focusing, and
reemitted into the ambient liquid. We define the focal
spot as the intersection of the focal region with a plane
parallel to the toric plane. The location of the spot
inside the torus and the degree of wave amplification
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P, arb. units
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Fig. 6. Pressure distribution in the converging shock wave:
1—k0 = 0.1; 2—k0 = 0.05; 3—k0 = 0.01; 4—k0 = 0.001.
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Fig. 7. Axial pressure distribution in the core of the Mach
disk for tori of equal volume: 1—Rcirc = 1.414 cm, Rtor =
3 cm; 2—Rcirc = 1 cm, Rtor = 6 cm; 3—Rcirc = 0.866 cm,
Rtor = 8 cm.
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depend on the value of k0, which determines the veloc-
ity of wave propagation in the cluster and, therefore,
both the curvature of the converging shock front and
pressure distribution over the front.

It is shown above that the torus volume (determined
by its radius) has a strong effect on the pressure in the
Mach-disk core. According to our computations, an
analogous effect can be obtained by varying the geom-
etry of the torus while its volume is held constant. Fig-
ure 7 shows the core pressure as a function of the axial
coordinate for three pairs of torus parameters: Rtor =
3 cm and Rcirc = 1.414 cm (curve 1), Rtor = 6 cm and
Rcirc = 1 cm (curve 2), and Rtor = 8 cm and Rcirc =
0.866 cm (curve 3). The pressure curves are similar to
those presented in Fig. 5. Figure 7 demonstrates that the
degree of wave amplification is the highest for the
smallest value of the toric radius combined with the
largest cross-sectional radius (curve 1). As the toric
radius is reduced by half (from 8 to 4 cm), the normal-
ized pressure increases by 40, and a further reduction
(from 4 to 2 cm) results in an increase by 200. When the
characteristic radii are equal, the generated wave has
the largest amplitude.

The variation of the core pressure amplitude with
increasing distance from the toric plane is analogous
for different incident wave amplitudes Psh (see Fig. 8).

4. CONCLUSIONS

We present the results obtained by using an axially
symmetric numerical model of pressure-field dynamics
developed and implemented for a shock wave interact-
ing with a toroidal bubble cluster in a hydrodynamic
shock tube.
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2

Fig. 8. Axial pressure distribution in the core of the Mach
disk for identical tori and different incident-wave ampli-
tudes Psh: 1—Psh = 120; 2—Psh = 30.
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The problem is formulated and analyzed for the first
time here. This is done in order to find out if this
method can be effectively used to generate strong shock
waves emitted in a certain direction before starting an
experimental study of the problem. As a result, we
found that the incident shock wave is substantially
amplified via the formation of Mach disks as it propa-
gates along the axis.

A numerical simulation of the interaction between a
shock wave and a “free” bubble system has shown that

(1) the convergence of the toroidal shock wave re-
emitted by the bubble cluster is a classical cumulative
process;

(2) the wave reflection from the symmetry axis is
irregular, and the Mach disk of finite thickness develop-
ing on the axis has a core in which pressure reaches a
maximum;

(3) the shock wave generated by the torus in the liq-
uid is characterized by a decaying sequence of pressure
peaks generated by the bubble system;

(4) the focusing of the wave results in successive
formation of a sequence of Mach disks on the axis.
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Abstract—The polarized electronic absorption spectra, orientation ordering, and the special local field features
were studied for push-pull linear dye molecules with strong donor–acceptor electronic conjugation of terminal
fragments in the matrix of a nematic liquid crystal. The temperature-induced inversion of the sign of the split-
ting of polarized impurity absorption bands was observed. This effect was shown to be caused by the statistical
character of orientation ordering of impurity molecules and manifestation of the higher moments of the orien-
tation distribution function. The dependence of local field parameters (Lorentz tensor components) of impurity
molecules on their orientation ordering was established. This dependence was used to reproduce the tempera-
ture dependence of the orientation order parameter of the matrix. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Orientation ordering of uniaxial molecules in a
nematic liquid crystal with respect to director n is sta-
tistical in character and is characterized by the
moments 〈Pn(cosθ)〉  of the orientation distribution
function f(θ). Here, θ is the angle between the longitu-
dinal molecular axis l and n, Pn(cosθ) represents even
Legendre polynomials, and angle brackets denote sta-
tistical averaging. The degree of molecular ordering is
determined by the 〈P2〉 = S parameter, and the 〈Pn〉  val-
ues with n ≥ 4 characterize inhomogeneity of the orien-
tation distribution of molecules, which is described by
the variances ∆mq = 〈PmPq〉  – 〈Pm〉〈 Pq〉 . The influence of
the 〈Pn〉  parameters on the physical properties of liquid
crystals is of great interest for understanding the nature
of the liquid crystalline state, development of molecu-
lar-statistical theory, and practical applications. For
instance, the ratio between S and 〈P4〉  determines the
anisotropy of elastic deformation moduli of nematics
Kii [1] and the volt–contrast characteristics of liquid
crystalline displays, the thresholds and periods of dis-
tortions of  the director n(r) field in nematics under
field actions [2], the anisotropy of Leslie viscosity
coefficients α i [3], the time characteristics of Freeder-
icksz transitions [2], the amplification coefficients and
threshold characteristics of lasers with dyes in nematic
matrices as active media [4], the intensity of polarized
Raman bands [5], the dichroism of two-photon absorp-
tion [6], the splitting of polarized absorption bands of
1063-7761/04/9806- $26.00 © 21146
impurity molecules in a nematic phase [7], and other
properties of liquid crystals. This has stimulated many
works concerned with measuring 〈P2, 4〉  by various
methods and theoretical interpretation of the observed
dependences of 〈P4〉  on S.

Much less is known about the physical effects in liq-
uid crystals caused by the 〈Pn〉  moments with n ≥ 6. The
〈P2–6〉  values determine the saturation parameters and
the output generation power of lasers with dyes in nem-
atic matrices as active media [4] and also the splitting
of polarized Raman bands in nematic liquid crystals
[8]. Apart from the physics of liquid crystals, manifes-
tations of the 〈Pn〉  moments with n ≥ 6 in anisotropic
statistically ordered molecular media are of interest
because the ∆mq(S) dependences at high S values are
sensitive indicators of fine structural distinctions
related to the appearance of medium structure anisot-
ropy under external actions or as a result of molecular
self-organization [9]. Recently, the first neutron diffrac-
tion measurements of 〈P2–6〉  in various liquid crystalline
phases were performed [10]. The first physical effect
caused by 〈P2–8〉  moment manifestations, the tempera-
ture inversion of the sign of the splitting of polarized
electronic absorption bands of impurity dye molecules
in a nematic phase, was reported in [11]. The present
work is a complete study of this system taking into
account the special features of orientation ordering of
matrix and impurity molecules, the local field anisot-
ropy for impurity molecules, and other aspects that had
not been considered earlier.
004 MAIK “Nauka/Interperiodica”
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2. OBJECTS OF STUDY
AND EXPERIMENTAL PROCEDURE

The effects caused by 〈Pn〉  moments with n ≥ 4 can
be observed if we select a liquid crystal property that
fully depends on the variances ∆2n with n ≥ 2, because
the ∆2n value contains contributions of the ~〈Pn〉  and
〈Pn ± 2〉  terms. Such a property is the difference ∆ν =
ν|| – ν⊥  between the νj maxima (splitting) of the Dj(ν)
electronic absorption bands of uniaxial impurity mole-
cules in a nematic matrix when the light wave is polar-
ized parallel (j = ||) and normally (j = ⊥ ) to n [12]. The
νj value for impurity absorption bands with the transi-
tion dipole moment d || l is given by the equation [12]

(1)

where the summation is over even n, C|| = 2, C⊥  = –1, νi

is the Di(ν) band maximum of impurity absorption in
the isotropic liquid crystalline phase, and Sm is the ori-
entation order parameter of matrix molecules. The
An(Sm) = An0 + An1Sm coefficients [7] characterize
changes in the impurity–matrix anisotropic interaction
energy under electronic excitation of the impurity, and
magnitudes and signs of the An0, 1 parameters are deter-
mined by intermolecular interaction contributions of
various types.

The splitting ∆ν is determined by the statistical
character of orientation ordering of molecules in the
nematic phase, and its value

(2)

depends on the balance of the contributions of the vari-
ances ∆2n and the 〈Pq〉 values with q ≥ 4. The ∆2n param-
eters change as the temperature of the mesophase varies
and are characterized by different dependences on S [9],
which must manifest itself in the character of tempera-
ture variations of νj . One of the possible effects is the
temperature-induced inversion of the sign of ∆ν caused
by mutual balancing of the ∆2n contributions to ∆ν,
which is only possible if at least n = 2, 4 and 〈P2 – 6〉  are
taken into account. At the inversion point, the condition
ν|| = ν⊥  ≠ νi should be satisfied. This effect of the man-
ifestation of the 〈Pn〉  moments with n ≥ 6 is easy to dis-
tinguish from the temperature-induced inversion of the
sign of ∆ν when only one term with n = q is included
in (2) and Aq vanishes at this point, because the equality
νj = νi is then satisfied.

It follows from (2) that the impurity molecules and
nematic matrix should satisfy several requirements for
the contribution of ∆2n with various n to ∆ν to be notice-
able. For An0, 1 values to be large, the electronic excita-
tion of molecules should be accompanied by strong

ν j ν i Sm An Sm( ) Pn〈 〉
C j∆2n

1 C jS+
------------------+ ,

n 2≥
∑–=

∆ν
3Sm

1 S–( ) 1 2S+( )
------------------------------------- An Sm( )∆2n

n 2≥
∑–=
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changes in quite a number of their properties, namely,
the dipole moment and the anisotropy of linear and
nonlinear polarizabilities. Impurity molecules should
also have high S values in the nematic matrix for the ∆2n

values with n ≥ 4 to be large. Such objects are long lin-
ear push-pull-type molecules with a system of π conju-
gated fragments that have terminal π electron–donor
and acceptor substituents bound by polar conjugation
through a system of molecular fragments. We used the
K-6 dye [13],

,

which satisfied the above requirements. The nematic
matrix should have high Sm values for the An(Sm) and ∆ν
values to be maximum and broad nematic phase and Sm

variation ranges. These requirements are satisfied by 4-
butoxyphenyl 4'-hexyloxybenzoate liquid crystals
(BEHA [13]),

,

with the crystal–nematic–isotropic liquid (Cr–N–I)
phase transition temperatures of 50 and 102.5°C,
respectively.

H2N NO2

C(O)OH13C6O OC4H9

Dj

1.5

1.0

0.5

0
30 28 26

ν, 103 cm–1

1

2

3

4

Fig. 1. Spectral dependences of the sample optical density
components (1) D||(ν) and (2) D⊥ (ν) and (3) the dichroic
ratio 0.1D||(ν)/D⊥ (ν) in the nematic phase at ∆T = –21.5 K

and (4) Di(ν) in the isotropic phase at ∆T = 6 K.
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The spectra of the Dj(ν) polarized optical density
components of the sample in the region of the elec-
tronic absorption of K-6 were measured in a plane-par-
allel cell of thickness d = 40 µm with a uniform planar
director orientation at a 0.3 wt % dye concentration,
which had no noticeable effect on the TNI value, sample
birefringence, and the degree of matrix ordering. The
spectra were recorded and automatically processed on
a PU-8800 spectrophotometer. Weak background
absorption of the pure matrix in the high-frequency
wing of the impurity band was subtracted from the
absorption of impurity liquid crystals at equal d and
reduced temperature ∆T = T – TNI values for each spec-
trum component. The resulting Dj(ν) spectra were used
to determine Dj(νj) and νj for the nematic and isotropic

–40–50 –30 –20 –10 0 10

T–TNI, K

0

0.4

0.8

1.2

1.6

Dj

1

2

3

Fig. 2. Temperature dependences of the optical densities
(1) D||, (2) D⊥ , and (3) Di for dye K-6 in the BEHA matrix.
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T–TNI, K
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1.6

1.7

1.8

1.9

nj

Fig. 3. Temperature dependences of the refractive indices
(1) n|| , (2) n⊥ , and (3) ni of the BEHA matrix at λ = 345 nm.
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phases. Such Dj(ν) spectra obtained at ∆T = –21.5 K
and the Dj(ν) spectra at ∆T = 6 K are shown in Fig. 1.
The isolated nondegenerate long-wave transition in K-6
is polarized along the long molecular axis, and the
dichroism N1(ν) = D||(ν)/D⊥ (ν) is virtually independent
of ν within the absorption band, which is evidence of its
uniform polarization in the absence of latent unresolved
vibronic transitions.

3. ORIENTATION ORDERING
OF IMPURITY MOLECULES 

AND LOCAL FIELD ANISOTROPY

The temperature dependences of the Dj = Dj(νj) and
Di = Di(νi) parameters are shown in Fig. 2. At every ∆T
value, the dichroic ratios N1 = D||/D⊥  and N2 = D⊥ /Di

were used to consistently determine S and the Lorentz
tensor Lj components by the procedure described
in [14]. The S value is given by the equation

(3)

and the Lj components, by the system of equations

(4)

The correction factors have the form

(5)

Here, nbj = nj(νj) is the background refractive indices in
the impurity absorption band, which coincide with the
refractive indices of the matrix because of the low con-

centration of impurity molecules, fbj = 1 + Lj(  – 1) is
the background components of the light wave local
field for impurity molecules in their absorption band,

and fbi = (  + 2)/3. The nj values at a λ = 345 nm
wavelength (the mean wavelength of the maxima of the
Di, j(λ) bands) obtained as in [7] are shown in Fig. 3.
The densities ρ and ρi for the nematic and isotropic
BEHA phases were taken from [13].

The S(∆T) dependence shown in Fig. 4 is well
approximated by the equation

(6)

with the parameters S0 = 1.047, β = 0.127, and T1 –
TNI = 0.18 K. Figure 4 shows that the experimental L⊥
values in the nematic matrix phase are substantially dif-
ferent from Li = 1/3 for the isotropic phase, and the
L⊥ (S) dependence is well approximated by the equation

(7)

S
N1g1 1–
N1g1 2+
---------------------,=

N2g2 N1g1 2+( ) 3, SpL 1.= =

g1

nb|| f b⊥
2

nb⊥ f b||
2

---------------, g2

nb⊥ ρi f bi
2

nbiρ f b⊥
2

--------------------.= =

nbj
2

nbi
2

S S0 1 T /T1–( )β=

L⊥ a bS+=
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with the parameters a = 0.343 and b = 0.056. The fb⊥  >
fb|| components differ weakly from each other at λ =
345 nm over the whole nematic phase interval because
of the mutual balancing of the contributions of the ten-
sor L anisotropy and matrix birefringence to the anisot-
ropy of the tensor fb . For the K-6 dye, the inclusion of
the local field anisotropy insignificantly increases S
compared with the value obtained in [11] by (3) in the
isotropic approximation fb|| = fb⊥ .

The Sm(∆T) dependence is not known for the BEHA
matrix. In [11, 13], it was identified with the S(∆T)
dependence for impurity molecules of dye K-2 (4-dime-
thylamino-4'-nitroazobenzene, λmax = 490 nm) obtained
from the dichroism N1 of its absorption band without
taking the tensor fb anisotropy into account. Let us
show that the experimental S(∆T) and (7) dependences
can be used to determine the Sm(∆T) function for the
nematic matrix. The dependence [14]

(8)

and the universal relation [15]

(9)

which is valid for all impurity nematics studied thus far,
lead to empirical formula (7) with the parameters a =
1/3 – bB and b = C/A. Substituting B = (1 – 3a)/3b
into (9) yields the dependence ASm(∆T). Approximat-
ing this dependence by (6) allows the ASm0 product and
A parameter to be determined (in the natural limit
Sm0 = 1). Applying this procedure to BEHA yields B =
0.116, ASm0 = 1.191, β = 0.118, and T1 – TNI = 0.6 K. At
Sm0 = 1 and A = 1.191, the Sm(∆T) values insignificantly
differ from S(∆T) for K-6 molecules over the whole
range of the existence of the nematic phase and are
somewhat underestimated at ∆T > 35 K, whereas the S
values for K-2 molecules [11, 13] are slightly higher
than those for K-6 in this temperature range.

4. THE SPECIAL FEATURES OF CHANGES
IN νj(∆T) AND THEIR INTERPRETATION

The νj(∆T) dependences shown in Fig. 5 are charac-
terized by certain features that have not been observed
earlier for transitions with d || l [7, 12]. The temperature
inversion of the sign of ∆ν is observed at ∆T = ∆T* =
−6.5 K, while the ν⊥  value is constant over the whole
mesophase interval, and a strong ν||(∆T) dependence is
observed with a change in the ratio between νj and ν||
close to TNI . The D||(ν) and D⊥ (ν) bands correspond to
the absorption of orthogonally polarized normal light
waves in the liquid crystal that do not interact with each
other. As a result, exact degeneracy ν|| = ν⊥  is observed
at ∆T*. The difference νi > νj at ∆T* is evidence of the
presence in (2) of contributions of variances ∆2n with
several values of n ≥ 2 and mutual balancing of these

L⊥ 1/3 CSm+=

S ∆T( ) ASm ∆T( ) B,+=
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contributions to ∆ν at this point. Figures 2–4 show that
the S(∆T) dependence and the ensuing temperature
dependences of the Dj , nj , and L⊥  parameters do not
have singularities in the neighborhood of the ∆T* point,

0.8

0.7

0.6

0.5
50 40 30 20 10 0

0.41

0.40

0.39

0.5 0.6 0.7 0.8 S

TNI – T, K

S

L⊥

Fig. 4. Dependences S(∆T) and L⊥ (S) for K-6 molecules in
the BEHA matrix (open and solid circles) and their approx-
imations by (6) and (7) (lines).

νj,i, 103 cm–1

29.2

29.0

28.8

28.6
–40 –20

 

1

2

3

0

T – TNI, K

Fig. 5. Temperature dependences of the maxima (1) ν|| ,
(2) ν⊥ , and (3) νi of Dj, i(ν) absorption bands of dye K-6 in the
BEHA matrix. Solid lines were obtained by interpolating the
νj values calculated by (1) with the parameters given in text.
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which is also evidence of contributions of moments
〈Pn〉  with n ≥ 4 to ∆ν sign change. Note that, for many
impurity systems studied thus far, taking into account
terms with n = 2 in (1) was sufficient for describing
νj(S) dependences (see [7, 12] and the references
therein).

The 〈Pn〉  parameters and ∆2n variances in (1) were
calculated using the distribution function

(10)

which corresponds to experimental distributions when
S values are high and native and impurity molecules are
fairly long and do not contain terminal alkyl chains [7,
10, 12]. The λ2(S) parameters were found by the equa-
tion S = ∂lnZ/∂λ2 and then used to calculate the 〈Pn〉(S)
and ∆2n(S) dependences shown in Fig. 6. Because of the
closeness of the S and Sm values at equal ∆T values (see
above), it was assumed that Sm = S in (1).

An analysis showed that including terms with n = 2
and 4 in (1) and the determination of the An0, 1 adjust-
ment parameters from two pairs of ν||, ⊥  values at two
∆T points or from ν⊥  values at four ∆T points gave a lin-
ear ν||(∆T) dependence with ∆ν sign change at ∆T close
to the middle of the mesophase temperature interval.
Including terms with n = 2–6 into (1) substantially

f θ( ) 1
Z
--- λ2 S( )P2 θcos( )[ ] ,exp=

Z λ2 S( )P2 θcos( )[ ] θ ,cosdexp

1–

1

∫=

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0

〈Pn〉 , ∆2n

S
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4
5

Fig. 6. Dependences of (1) 〈P4〉 , (2) 〈P6〉 , (3) ∆22, (4) ∆24,
and (5) ∆26 on 〈P2〉  = S for distribution function (10).
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improved agreement between theory and experiment.
The νj(∆T) dependences corresponding to the smallest
mean-square deviation of the calculated νj(∆T) values
from experimental ones with the parameters A20 =
1855, A21 = 2348, A40 = –20123, A41 = 13867, A60 =
36773, and A61 = –35260 cm–1 are shown in Fig. 5.
Agreement between theory and experiment is evidence
of mutual consistency of all special features of changes
in νj(∆T) and the ratios between them and νi mentioned
above. Even an insignificant deviation of the calculated
ν⊥  values at ∆T = –6.5 and –4.5 K toward lower values
compared with experiment corresponds to substantial
exaggeration of calculated ν|| values at the same tem-
peratures. On the whole, agreement between the calcu-
lated and experimental νj(∆T) dependences obtained in
this work is similar to that reported [11], where S values
for dye K-2 were used as Sm [13] and the local field
anisotropy was ignored in determining S. The An0, 1
parameters given above are also close to those obtained
earlier [11]. These observations are evidence of a weak
influence of the characteristics of changes in Sm(∆T)
and S(∆T) on ∆ν sign change for impurity molecules.

The largest discrepancy between the theoretical and
experimental νj(∆T) values is observed at the inversion
point ∆T*; the discrepancy rapidly decreases as the sys-
tem departs from this point. Figure 6 shows that, in the
interval S = 0.5–0.8, ∆22(S) monotonically decreases as
S increases, whereas the ∆24(S) and ∆26(S) dependences
are nonmonotonic and pass maxima at S = 0.55 and
0.74, respectively. As the experimental S(∆T*) = 0.633
value coincides with the value 0.638 at which the
∆22(S) – ∆24(S) difference changes sign from positive to
negative as S increases, the discrepancy between theory
and experiment in the vicinity of ∆T* can be related to
a small difference between the real distribution func-
tion and model (10). Such differences have been
reported for low S values [5, 7, 14].

To summarize, the temperature-induced inversion of
the sign of ∆ν and the other observed characteristics of
changes in νj(∆T) are caused by the statistical character
of orientation ordering of impurity molecules and man-
ifestations of the 〈Pn〉  moments of the orientation distri-
bution function with n = 2–8. Distribution function (10)
can serve as a good approximation for theoretically
modeling the physical properties of nematics in the
region of high S values. The spectral characteristics of
polarized impurity absorption and luminescence [9] are
effective and are the only indicators of fine structural
features of anisotropic statistically ordered molecular
media known thus far.
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Abstract—Behavior of the magnetic susceptibility of quasi-uniaxial ferromagnetic films in the vicinity of the
Curie point was studied with allowance for a periodic spatial inhomogeneity in the distribution of the magneti-
zation vector for an arbitrary frequency ω of an external magnetic field. In the presence of a constant bias magnetic
field H0, the temperature dependence of the real and imaginary parts of the magnetic susceptibility exhibits, in the
general case, both frequency-independent extrema and numerous additional extrema having shapes and posi-
tions dependent on frequency. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The first investigations of anomalies in the magnetic
susceptibility of magnetically ordered media under ori-
entational and spontaneous phase transitions were per-
formed more than half a century ago (see, e.g., mono-
graphs [1, 2] and references therein). Despite long and
extensive research, there is still considerable interest in
these problems. Theoretical analysis is usually per-
formed using the approximation of an infinite medium
(or a massive sample), which makes it possible to
ignore the domain structure. However, real samples
always have finite dimensions and, hence, the absence
of domains is a rare exception rather than the rule. For
this reason, attempts to interpret the results of experi-
ments in terms of the theoretical calculations per-
formed in a monodomain approximation often do not
provide acceptable results. In recent years, limitations
of the traditional approach, which ignores the influence
of the long-range dipole–dipole interaction on the
behavior of the magnetic susceptibility in the vicinity
of phase transitions, are being more thoroughly recog-
nized by theorists (see, e.g., [3–5]) because the exist-
ence of a domain structure in magnets occurring in the
critical state not only leads to trivial consequences
(such as a shift of the susceptibility extrema relative to
their positions theoretically predicted for the infinite
medium), but gives rise to some qualitatively new phe-
nomena [4, 6].

For second kind phase transitions in magnetically
uniaxial films, the Landau theory [7] provides for a suf-
ficiently exhaustive analysis of behavior of the mag-
netic susceptibility with allowance for the fluctuations,
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domain structure, and its possible amorphization
caused by the formation of magnetic dislocations and
disclinations. Previously [8], we have used this approach
for description of the static differential (ω = 0) magnetic
susceptibility under spontaneous and orientational sec-
ond kind phase transitions. It was established that a
shift of the point of a second kind phase transition and
the contribution to the magnetic susceptibility related to
the formation of a domain structure in finite samples
hinder determination of the critical indices using the
traditional method.

Below we present the results of investigation of the
magnetic susceptibility of quasi-uniaxial ferromagnetic
films in the vicinity of the Curie point TC with allow-
ance for a periodic spatial inhomogeneity in the distri-
bution of the magnetization vector M for an arbitrary
frequency ω of an external magnetic field.

2. GENERAL THEORY

The results of theoretical calculations presented
below refer, strictly speaking, to ferromagnetic films
with a rhombic anisotropy and the energy density
described by the expression

(1)

where βu > 0 and βp (of any sign) are the anisotropy
constants satisfying the condition βu @ |βp|; nu and np

are the unit vectors of the mutually perpendicular axes
of anisotropy (nu ⊥  np). The introduction of a weak
“rhombic” anisotropy component was shown [9] to
remove the manifold degeneracy of states at the point of
a spontaneous transition in the absence of a bias mag-

f a βu M nu⋅( )2– βp M np⋅( )2,+=
004 MAIK “Nauka/Interperiodica”



        

BEHAVIOR OF THE DYNAMIC MAGNETIC SUSCEPTIBILITY 1153

                                                                                                                                           
netic field (H0 = 0). This is achieved due to splitting of
the multicritical point on the phase diagram in the coor-
dinates (T, H0) into two tricritical points connected by
the line (a critical parabola) of second kind phase tran-
sitions from the paramagnetic state to that with a stripe
domain structure. This line separates second-order tran-
sitions in weak bias fields (|H0| < Hcr) from the first-
order phase transitions for |H0| > Hcr  [9].

Considering a Cartesian coordinate system with the
unit vectors {ex, ey, ez} = {np, nu × np, nu} and assuming
that the easy magnetization axis (collinear with nu) is
oriented along the normal n to the film surface, the free
energy of the system in the presence of an external
magnetic field H = Hez directed along the normal can
be presented as

(2)

where

δ and α ~ δa2 are the uniform and nonuniform exchange
constants, respectively; a is the lattice parameter; M is
the magnetization vector; Ms = M (T = 0); Hm, is the
magnetostatic field; and ξ(T) ≤ 4π is a function deter-
mining the temperature dependence of the absolute
value of the magnetization vector. In the region of tem-
peratures T close to the Curie temperature T0 of the infi-
nite medium (in the absence of the bias field), we can
use for function ξ(T) a linear approximation ξ(T) =
c0(T0 − T), where c0 = –∂ξ/  is a positive con-

stant [10]; the value ξ = 4π corresponds to the Curie
temperature Tf of a monodomain ferromagnetic film
(H0 = 0), that is, Tf = T0 – 4π/c0.

The spatial and temporal variation of the magnetiza-
tion vector are described by the Landau–Khalatnikov
equation

(3)

where η1 and η2 are the kinetic coefficients, and by the
equations of magnetostatics

. (4)

Equations (3) and (4) have to be solved with the corre-
sponding boundary conditions on the film surfaces z =

F
Ms

2

2
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---δm4+d∫=

---+ βum⊥
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±L/2 (L is the film thickness),

(5)

where Hm⊥  = Hmxex + Hmyey ,  is the magnetostatic

field inside the film (demagnetizing field), and  is
the external magnetic field in the free space (stray
field).

The consideration below is restricted to the static
and dynamic properties of the possible distributions of
the magnetization vector in sufficiently thick films

(L @ ) with a strong (βu @ 4π) uniaxial anisotropy
in a small vicinity of the Curie point, which corre-
sponds to |ξ| ! βu .1 

Let the film be exposed to a uniform harmonic mag-
netic field

(6)

with a small amplitude  as compared to the absolute

value of the bias field H0 = H|| = H||ez = H0ez (i.e. | | =
| |/Ms ! |h0| = |H0|/Ms ! βu).2 In the general case, a
distribution of the magnetization vector in the film can
be described by the formula

(7)

where m(r) is the static magnetization component and

is the dynamic component induced by the alternating
magnetic field. In the small amplitude approximation
adopted in this study, the dynamic response of the sys-
tem is harmonic and is a linear function of the external
force, while the dynamic magnetic susceptibility of the
system at a frequency ω is a tensor

(8)

where  is the complex amplitude of the harmonic
component of the magnetization vector averaged over
the volume of the magnet. In what follows, we will con-
sider only one component of the susceptibility tensor,

1 The first limitation allows us to ignore the contribution of the sur-
face modes to the free energy of the film; the second and third
limitations (together with the conditions introduced above) allow
us to construct the theory using the method of expansion with
respect to small parameters ξ/βu , 4π/βu , and βp/βu .

2 The alternative notation H|| for the component of the external
constant bias field along the normal to the film surface is intro-
duced for convenience of comparison to the results reported
in [8].

∇ zM 0, Hm⊥
i( ) Hm⊥

e( ) ,= =

Hmz
i( ) 4πMz+ Hmz

e( ),=

Hm
i( )
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e( )

α

H̃ t( ) H̃ t( )ez H̃e iωt– H̃*eiωt+( )ez= =

H̃

h̃
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m r t,( ) m r( ) m̃ r t,( ),+=

m̃ r t,( ) m̃ r( )e iωt– m̃* r( )eiωt+=
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χzz(ω), because mz the dominating component of the
magnetization vector in the approximation adopted in
this study (see also [11, 12]).

According to Eq. (3), the behavior of mz(r, t) in the
general case is described by the equation

(9)

where  = /Ms is the normalized z-component of
the demagnetizing field.

3. DYNAMIC SUSCEPTIBILITY 
OF A UNIFORM FILM

For a film without domain structure in the absence
of an alternating magnetic field, we have mz(r, t) = m0 =

const and  = –4π. Then, Eq. (9) yields

(10)

and

(11)

where p = (4π – ξ)/3δ. It should be noted that, in the
region where the adopted theory is valid, ∂m0/∂T < 0
and ∂2m0/∂T2 > 0.

In the presence of a weak alternating magnetic field,
we have

where | | ! m0, and Eq. (9) can be reduced, to
within the terms of the first order of smallness, to

(12)

According to this, the real and imaginary parts of the
complex magnetic susceptibility 

η1
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dt2

------------------------ η2
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dt

----------------------+ h0 h̃ hmz
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are given by the expressions

(13)

(14)

where  = (4π – ξ + )  is the frequency of the
“soft” mode and ωη = η2/η1 is the relaxation fre-
quency.3 An explicit expression for the temperature
dependence of the “soft” mode frequency is as follows:

(15)

In deriving expressions (13) and (14), we took into
account that, in magnets with a large uniaxial anisot-
ropy, the transverse component of the magnetization
vector is small in absolute value as compared to the lon-
gitudinal component:

It should be noted that, in the case under consider-
ation, the magnetic susceptibility depends not only on
the frequency, but on the temperature and the bias field

as well, so that  = f(ω, T, h0). The frequency depen-
dences of the susceptibility at T = const and h0 = const,
having a shape typical of the resonant dispersive media,
are not considered here in detail. The temperature

dependences of  and  exhibit some special
features, which will be discussed below. For better pre-
sentation, the main theoretical conclusions will be illus-
trated by the curves calculated for a physical model of
a ferromagnet with the following parameters (changes
will be stipulated in each case):

These values are typical of some ferromagnets, for
example, for alloys of the permalloy type (Ms ≈ 100 G,
T0 ≈ 600 K) [1, 13].

Application of the standard procedure for determin-
ing the temperatures of extrema in the real and imagi-

3 Quotation marks in the term “soft” mode emphasize that a uni-
form mode (with a wavevector k = 0) in the case under consider-
ation is actually not soft: as the temperature decreases from the
region of T > T0, the nonuniform mode (with k ≠ 0) exhibits soft-
ening and freezing much earlier, thus leading to the formation of
a domain structure (see below).
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nary parts of the susceptibility for ω = const and h0 =

const and the signs of the second derivatives ∂2 /∂T2

and ∂2 /∂T2 at these points showed that, in the gen-
eral case, the susceptibility components exhibit the
main and additional extrema. For the main extremum,
existing for any frequency ω, the position of an map-
ping point on the (h0, T) plane is independent of the fre-
quency and is determined by the equation

(16)

This equation can be rewritten as

(17)

or

(18)

where T(m) = T0 – ξ(m)/c0 is the temperature correspond-
ing to the main extremum; ξ(m) is the value of function
ξ(T) at this temperature. As the bias field increases, the
main extrema shift toward higher temperatures.

Equation (16) shows that the temperature of the
main extremum corresponds to a minimum of the fre-

quency  of the “soft” mode; therefore, this mini-
mum also corresponds to ξ = ξ(m). The temperature
dependence of the “soft” mode frequency in a model

film for h0 = 0.002 is presented by the curve  in
Fig. 1 (negative values of ξ are selected to provide that
the positive direction of the abscissa axis would corre-
spond to increasing temperature). At the point of mini-
mum (point A in Fig. 1), the absolute value of the mag-
netization vector and the “soft” mode frequency are
given by the formulas

while the real and imaginary parts of the susceptibility

are determined by formulas (12) and (13) for ω0 = .
For the selected parameters of the film, the “soft” mode

frequency is  = ω(A) = 5.27727 × 105 s–1 and is
attained at ξ(m) = 11.1739. For ω  0, the imaginary
part of the susceptibility at the point of extremum tends

to zero, while the real part tends to (1/3)(2/ )1/3; for
ω  ∞, both components become negligibly small.
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For the real part, the main extremum corresponds to

a minimum for  < ω < , where

(19)

and to a maximum for the frequencies outside the above
interval. The imaginary part of the susceptibility at the
point of the main extremum reaches maximum for ω <
ω0 and minimum for ω > ω0. The absolute maximum

and minimum of  (equal to ( η2)–1 and

−( η2)–1, respectively) are observed for the fre-

quencies ω =  and ω =  given by the formula

.

These quantities are the minimum possible values of

the characteristic frequencies  and  reached for
ξ = ξ(m) (see formula (18)). The absolute maximum of

 (equal to ( η2)–1) is observed for the fre-

quency ω0 = . The temperature dependences of the

boundary frequencies  and  are presented in
Fig. 1, where points C and B correspond to the mini-
mum values of these frequencies:

Now let us turn to analysis of the additional extrema

of the susceptibility, which exist for  only under
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Fig. 1. Temperature dependences of the characteristic fre-
quencies for a uniformly magnetized ferromagnetic film
(for parameters, see text).
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Fig. 2. Temperature dependences of the (a) real and (b) imaginary parts of the susceptibility for a ferromagnetic film uniformly mag-
netized at various frequencies (see text for the values of frequencies for curves 1–11).
the condition that (  – ω2)2 = ω2 (i.e., at ω = 

or ω = ), and for  only provided that ω = ω0.
At these points, the imaginary part of the susceptibility
always exhibits a maximum. For the real part, a maxi-
mum takes place for ω < ω0, while the reverse inequal-
ity corresponds to a minimum. At the points of maxi-

mum and minimum, the values of  equal to
(2ωη2)−1 and –(2ωη2)–1, respectively; the absolute max-

imum and minimum are observed at ω =  and ω =

. The imaginary part of the susceptibility at the
points of maximum equals to (ωη2)–1; at the point of

absolute maximum (ξ = ξ(m), ω = ), this corre-

sponds to ( η2)–1.

Thus, at low frequencies (whereby the line ω = const
in Fig. 1 passes below point C), both susceptibility
components exhibit only the main maxima. At frequen-
cies above the first critical value (point C in Fig. 1),

 acquires two additional maxima, while the main
extremum becomes a minimum. For the imaginary part
of susceptibility, the same conversion is observed at

higher frequencies (for ω = , that is, above the
point A in Fig. 1). Further increase in the frequency
leads neither to the appearance of new extrema, nor to
a change in the character of the existing extrema. For
the real part of the susceptibility, there exists a second
critical frequency (point B in Fig. 1). For frequencies
above this critical value, the main extremum becomes a
maximum again and two additional minima appear
between this and the additional maxima. As the fre-

ω0
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2 ω0
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0( )'
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quency increases, both “right” and “left” additional
extrema move away from the main extremum (Fig. 1).

Modification of the shape of the temperature depen-
dences of extrema in the real and imaginary parts of the
susceptibility in response to the frequency variation is
illustrated by the families of curves in Fig. 2. The val-
ues of ω × 10–5 for curves 1–11 are 5.2, 5.25, 5.2665,
5.2715, 5.2765, 5.281, 5.2868, 5.294, 5.31, 5.35, and
5.4 s–1, respectively (in Fig. 2b, curve 1 is not depicted
because it virtually coincides with the abscissa axis).
These curves clearly illustrate the process of appear-
ance and development of various extrema in the suscep-
tibility. Note that such dramatic variations in the tem-
perature dependence of the susceptibility take place
over a very narrow (about 2%) relative change in the
frequency.

For determining the shapes of curves reflecting the
positions of additional extrema in the (T, H0) or (–ξ, h0)
planes for ω = const, we can use a relationship between
the characteristic frequency ω0 and the normalized bias
field h0 following from the equation of state (10):

(20)

Here, Cω = η1  and ∆ = 4π – ξ. Substituting the con-
dition ω0 = ω into Eq. (20), we obtain an expression
describing the positions of mapping points on the
(T, H0) plane for an additional maximum in the imagi-
nary part of the susceptibility. By the same token, sub-

stituting the conditions  = ω2 + ωωη and  = ω2 –
ωωη into Eq. (20), we obtain analogous expressions for
the additional maximum and minimum in the real part

h0
1
3
--- 1

3δ
------ Cω

3 3∆Cω
2

4∆3–+( ).=

ω0
2

ω0
2 ω0

2
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of the susceptibility. The resulting curves h0i = fi(–ξi)
(i = 1, 2, 3) exhibit temperature-dependent maxima at
the points –ξt = Cωi/2 – 4π, where

and the corresponding values of the normalized bias

field equal to h0i = .

Thus, additional extrema in the temperature depen-
dence of the magnetic susceptibility can be observed
only provided that the bias magnetic field strength does
not exceed a certain frequency-dependent value. The
regions of determination of the functions h0i =fi(–ξi)
bounding the interval of existence of the additional
extrema in the absence of the bias field (H0 = 0) fall
within the limits

.

It should be recalled that ξ = 0 and ξ = 4π correspond
to the Curie temperatures T0 and Tf for the infinite
medium and the monodomain film at H0 = 0, respec-
tively. The existence of a low-temperature limit in the
above sequence of inequalities is related only to the lin-
ear approximation of the function ξ(T) used in this
study. More accurate estimates can be obtained by
using an alternative, for example, the Brillouin func-
tion, for approximating the temperature dependence of
the magnetization. The possibility to observe additional
extrema in the susceptibility increases with the fre-
quency of the alternating magnetic field; for ω  0,
the region of existence of the additional extrema on the
(H, T) plane degenerates into a point.

The character of field-induced variations in posi-
tions of the temperature peaks of susceptibility is
clearly illustrated in Figs. 3 and 4. Figure 3 shows the
h(–ξ) curves for the main (frequency-independent)
extremum (curve 0) and the additional extrema in the
imaginary part of the susceptibility for the frequencies
ω × 10–6 = 1.4, 1.05, and 0.545 s–1 (curves 1–3, respec-
tively). Analogous curves for the additional extrema in
the real part of the susceptibility for the selected film

parameters virtually coincide with the (–ξ)
curves; for this reason, the upper part of Fig. 3 is
depicted in a different scale in Fig. 4, where curves 1'

and 1" refer to the additional maxima in (–ξ) and

minima in (–ξ), while curve 0 refers (as in Fig. 3)
to the main (frequency-independent) extremum. Fig-
ures 3 and 4 show only the first quadrant of the Carte-
sian coordinate system because the analogous curves
for the negative values of h0 are obtained as mirror
reflections relative to the abscissa axis. The dashed line
in Fig. 3 corresponds to the loss of stability of the uni-
form state with respect to the domain structure forma-

Cω η1 ω2; ω2 ωωη ; ω2 ωωη–+( ),=

2Cωi
3 /27δ

4π– ξ Cωi/2 4π–<–<

χzz
0( )''

χzz
0( )'
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0( )''
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tion (see Section 4) for a 2-µm-thick film. The above
analysis is inapplicable to the region of bias fields and
temperatures inside the area confined between this
curve and the abscissa axis. At low frequencies (deter-
mined by curve 3 in Fig. 3), only the main extremum (in
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Fig. 3. The plots of h0(–ξ) for the main extremum (curve 0)
and additional maxima in the imaginary part of the suscep-
tibility (curves 1–3) for a ferromagnetic film uniformly
magnetized at various frequencies (see text for the values of
frequencies for curves 1–3). The dashed line indicates the
position of the curve describing the loss of stability of a uni-
form state with respect to the domain structure formation in
a 2-µm-thick film.
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Fig. 4. The plots of h0(–ξ) for the main extremum (curve 0),
additional maxima in the imaginary part (curve 1), and
additional maxima (curve 1') and minima (curve 1") in the
real part of the susceptibility for a uniformly magnetized
ferromagnetic film measured at a frequency of ω = 1.4 ×
106 s–1.
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the region above the point of intersection of curve 0 and
the dashed line corresponding to the loss of stability of
the uniform state) has to be (and usually is) observed in
experiment (see, e.g., [8]).

4. DYNAMIC SUSCEPTIBILITY
OF A FILM WITH DOMAINS

It is known that, as the temperature decreases from
the region T > T0 in the presence of a bias field, the uni-
form state of the film (paraphase) loses stability with
respect to the formation of a stripe domain structure
with a wavevector kc = 2π(4πµαL2)–1/4 at T and H0 (or ξ
and h0) obeying the relation (see, e.g., [8])

(21)

or

(22)

where ξc = (4π/L) , TC = T0 – ξc/c0 is the Curie
temperature (for the domain structure formation at
H0 = 0) in the film, and

The sign of βp determines orientation of the wavevector
kc for the nucleating stripe domain structure (kc || ex for
βp > 0 and kc || ey for βp < 0); in both cases, the differ-
ence of µ from unity for βu @ 4π can be ignored.

According to Eq. (9), the normal magnetization
component

in the film with a domain structure in the absence of an
alternating magnetic field is described (within the
framework of the adopted approximation) by the equa-
tion

(23)

Following [14], let us seek a solution to Eq. (23) in the
vicinity of the phase transition line with allowance for
the boundary conditions (5) in the form of a two-dimen-
sional series

(24)

T ud( ) H0( ) TC
3δ
c0
------

H0

4πM0
-------------- 

 
2

,–=

ξ ud( ) h0( ) ξc 3δ h0/4π( )2,+=

πα/µ

µ
1 4πβu

1–  at βp 0,<+

1 4π βu βp+( ) 1–  at βp 0.>+



=

mz r( ) md r( ) md0 mdr r( )+= =

h0 hmd
i( ) α

∂2md

∂x2
----------- α

∂2md

∂z2
----------- ξmd δmd

3–+ + + + 0.=

md r( ) md0 A11
0( ) qz A13

0( ) 3qzcos+cos( ) kxcos+=

+ A20
0( ) A22

0( ) 2qzcos+( ) 2kxcos
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where md0 is the (spatially-uniform) constant of the z-
component of magnetization and q = π/L. Coefficients

 can be expressed as

(25)

where (λa) is a formal small parameter characterizing
the degree of proximity to the line of phase transitions.
Explicit expressions for the coefficients a3, b0, b2, c1,
and c3 can be found in [14] (these quantities are not
used below).

Substituting expansion (24) into Eq. (23) and select-
ing terms with the same dependence on the spatial coor-
dinates, we obtain a recurrent system of equations (not
presented here for brevity) relating md0 to the coeffi-

cients . An analysis of this system shows that, to
within terms of the second order of smallness with
respect to (λa), we have

(26)

The effect of a weak alternating magnetic field on a
film with domains is manifested by the appearance of
small corrections to each term in expansion (24):

(27)

where

(28)

and | | ! | | ! |md0|. Substituting expression (27)
into Eq. (9) and taking into account that the static part
md(r) of the magnetization satisfies Eq. (23), we obtain
an equation describing the dynamic response (r, t):

(29)

+ A31
0( ) sqzcos A33

0( ) 3qzcos+( ) 3kx,cos

Aij
0( )

A11
0( ) λ0( ), A13

0( ) δa3 λa( )3,= =

A20
0( ) δb0m0d λa( )2, A22

0( ) δb2m0d λa( )2,= =

A31
0( ) δc1 λa( )3, A33

0( ) δc3 λa( )3,= =

Aij
0

4π ξ– δmd0
2 3

4
---δ A11

0( )( )2
+ + md0 h0.=

mz r t,( ) md r( ) m̃d r t,( )+=

=  md0 m̃d0 t( ) mdr r( ) m̃dr r t,( ),+ + +

m̃dr r t,( ) Ã11 t( ) qz Ã13 t( ) 3qzcos+cos( ) kxcos=

+ Ã20 t( ) Ã22 t( ) 2qzcos+( ) 2kxcos

+ Ã31 t( ) qz Ã33 t( ) 3qzcos+cos( ) 3kx,cos

Ãij m̃d0

m̃d

η1

d2m̃d

dt2
------------ η2

dm̃d

dt
---------- α

∂2m̃d

∂x2
-----------–+

– α
∂2m̃d

∂z2
----------- 4π ξ– 3δmd

2
+( )m̃d+ h̃.=
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Using this equation and expressions (24) and (28), we
obtain an equation describing the uniform part of the
dynamic response of the film with domains to the uni-
form alternating magnetic field. To within terms of the
second order of smallness with respect to (λa)2, this
equation appears as

(30)

A comparison of Eqs. (10) and (12) for a uniformly
magnetized film with the analogous Eqs. (26) and (30)
for the film with domains shows that the former equa-
tions convert into the latter upon substitutions

where

(31)

This analogy allows us to use the results obtained in the
preceding section for the uniformly magnetized state
and perform the above substitutions instead of consid-
ering once again behavior of the susceptibility in the
domain phase. It should be taken into account that, in
contrast to parameter ξ depending only on the temper-
ature, the quantity ξ* also depends on the amplitude of
magnetization variation (λa) in the domains. Since
(λa) = f(h0), the new parameter depends on both the
temperature and the bias field: ξ* = f(T, h0).

The form of the function (λa) = f(h0) for thermody-
namically stable stripe domain structures (with k = kc)
in the vicinity of a phase transition with the critical
point

was determined by Tarasenko [14]. In particular, it was
established that the form of this function for second
kind phase transitions (|h0| < hcr) depends on the interval

of ξ. For ξd ! ξc|1 – / |, where ξd = ξ – ξ(ud)(h0), we
have the relationship

(32)

while for ξc|1 – / | ! ξd ! ξc the function changes to

(33)

η1

d2m̃d0

dt2
-------------- η2

dm̃d0

dt
------------+

+ 4π ξ– 3δmd0
2 3

4
---δ A11

0( )( )2
+ + m̃d0 h̃.=
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ξ* ξ 3
4
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– ξ 3

4
---δ λa( )2.–= =

hcr π 3ξc/δ, ξcr ξ ud( ) hcr( )= =
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2 hcr

2

λa( ) 4
3
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ξd

δ 1 h0
2
/hcr

2–
-----------------------------,=

h0
2 hcr

2

λa( ) 5
4
---ξd

1/4 ξc

δ
---- 

 
1/2

.=
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The consideration below is restricted to the former rela-
tionship, since the latter case is simple and adds no new
qualitative features to the behavior of magnetic suscep-
tibility.

Using expressions (31) and (32), we obtain the for-
mula

(34)

which shows that the sign of the derivative ∂ξ*/∂T in
the domain phase is opposite that of ∂ξ/∂T. For this rea-
son, the derivative ∂md0/∂T is positive, which can be
readily checked by direct differentiation of relation (26).
This implies that the uniform magnetization component
md0 decreases when the mapping point leaves the line
corresponding to the loss of stability of the uniform
state and moves toward lower temperatures.4 Since
both derivatives (∂ξ*/∂T and ∂md0/∂T) change sign in
the domain phase, this does not affect the character of
extrema in the magnetic susceptibility,

In accordance with the above considerations, the imag-
inary and real parts of this susceptibility are determined
by the formulas

(35)

(36)

where  = (4π – ξ* + /η1) and md0 satisfies
Eq. (26), which can be rewritten as

(37)

Similarly to the case of uniform magnetization, the
type of the main (frequency-independent) extremum, as
well as the types and positions of additional extrema in
the domain phase at a fixed bias field depend on the
relationship between the frequency of the variable mag-

4 This result is a consequence of making allowance for the correc-
tion quadratic in (λa) in Eq. (26) for md0. In [14], this correction
was ignored and the constant magnetization component was cal-
culated using Eq. (10), which was quite expedient for the pur-
poses of that investigation. In our case, this approximation cannot
be used because all special features in the behavior of magnetic
susceptibility in the domain state are determined entirely by the
corrections proportional to (λa)2 in the equation of motion of the
magnetization vector.
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ξ 1 3h0

2/hcr
2
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2/16π2+( )+
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2
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netic field and three characteristic frequencies: ωd0,

, and , where

(38)

Figure 5 shows the temperature dependence of the

frequencies ω0,  and ωd0,  at h0 = 0.002 for
a model film with the parameters

The temperatures are measured from the point
ξ(ud)(0.002) = 1.008006 corresponding to the domain
structure nucleation for the given bias field. At this
point on the phase transition line, the minimum charac-
teristic temperatures are

and the corresponding critical point on the (ξ, h0) plane

ωd0
1( ) ωd0

2( )

ωd0
1 2,( ) ωd0

2 ωη
2

4
------+

ωη

2
------.+−=

ω0
1 2,( ) ωd0

1 2,( )

δ 4 105, η1× 10 11– ,= =

η2 2 10 8–×= , ωη 2 103,×=

L 10 3–  cm, βu 100, βp ! βu.= =

ω0min ωd0min ωA 1.073434 106 s 1– ,×= = =

ω0min
1( ) ωd0min

1( ) ωC 1.072435 106 s 1– ,×= = =

ω0min
2( ) ωd0min

2( ) ωB 1.074434 106 s 1– ,×= = =

–2–3 –1 0 1 2 3

–[ξ–ξ(ud)(h)] × 107

1.072
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1.082

ω, 106 s–1

A

C

B

ωd0
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(1) ω0

(2)

ω0
(1)

ω0

Fig. 5. Temperature dependences of the characteristic fre-
quencies determining the types and positions of extrema in
the real and imaginary parts of the magnetic susceptibility
of a 2-µm-thick model film.
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as the coordinates

Since the Intersection of the line corresponding to the
main (frequency-independent) extremum (curve 0 in
Fig. 3) with the line of phase transitions (dashed line in

Fig. 3) takes place at ξ(cp) = 5.3248,  = 0.02372
(point D in Fig. 3), this extremum is not observed (see
considerations at the end of this section).5 

Figure 5 shows a considerable difference between
the rates of variation of the characteristic frequencies
in the uniform and domain phases depending on the
temperature (in the selected scale, the branches corre-
sponding to the uniform phase appear as almost hori-
zontal, but in fact they possess a significant negative
slope). This implies that the extrema of the magnetic
susceptibility in these phases must exhibit significantly
different temperature sensitivity. For ξ – ξ(ud) = 0
(phase transition point), all three curves in Fig. 5
exhibit minima, which implies the appearance of a
localized (frequency-independent) extremum (referred
to below as additional frequency-independent extre-
mum).6 

Behavior of the additional extrema in the tempera-
ture dependence of the real and imaginary parts of the
susceptibility for h0 = const and variable frequency can
be readily traced using Fig. 5 (by analogy with the anal-
ysis in Section 3), Fig. 6 (for the real part of the suscep-
tibility), and Fig. 7 (for the imaginary part of the sus-
ceptibility). Note that Figs. 6 and 7 employ different
temperature scales, since the behavior of extrema in the
susceptibility of the uniform and domain phases cannot
be depicted in the same scale. Below, the consideration
refers to the case of h0 = 0.002 (the analysis for other h0
values encounters no difficulties). The values of the fre-
quency ω × 10–6 for curves 1–10 in Figs. 6 and 7 are
1.06, 1.07, 1.0725, 1.07305, 1.0735, 1.0745, 1.078,
1.082, 1.094, and 1.13 s–1, respectively.

The simplest behavior is observed for the imaginary
part of the susceptibility: for ω < ωA , this part exhibits
only an additional frequency-independent maximum (at
the phase transition point) with the amplitude smoothly
increasing with the frequency (Fig. 7, curves 2–4). When

5 The abscissa ξ(cp) of this intersection point is a real root of the
equation ξ3 – 12πξ2 + 57π2 – (9ξc + 64π)π2 = 0, while the ordi-

nate is given by the formula  = 4π .
6 Note that quantitative results obtained for the additional fre-

quency-independent extremum should be treated with care,
because the line of the second kind phase transition occurs at the
center of the fluctuational interval, where the Landau theory is
inapplicable [15]. Our analysis [8] of behavior of the differential
magnetic susceptibility showed that allowance for fluctuations
leads to the appearance of an additional fluctuational maximum
in the susceptibility on the phase transition line, so that a total
response is observed in experiment.

ξcr 1.04966, hcr 0.008815.= =

h0
cp( )

h0
cp( ) ξ cp( ) ξc–( )/3δ
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Fig. 6. Temperature dependences of the real part of the magnetic susceptibility of a ferromagnetic film in the uniform and domain mag-
netization states; the temperature scale is (a) expanded and (b) not expanded (the values of frequencies for curves 1–10 are given in
the text).
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Fig. 7. Temperature dependences of the imaginary part of the magnetic susceptibility of a ferromagnetic film in the uniform
and domain magnetization states; the temperature scale is (a) expanded and (b) not expanded (the values of frequencies for
curves 1–10 are given in the text) (curve 1 is not shown since it virtually coincides with the abscissa axis).
the frequency exceeds the value ωA (see Fig. 5) at which
the imaginary part of the susceptibility reaches absolute
maximum, the additional frequency-independent extre-
mum converts into a minimum and there appear two
frequency-dependent maxima (one in the uniform
phase and another, in the domain phase). As the fre-
quency grows further, these maxima move away in
opposite directions from the phase transition point
(Fig. 7, curves 5–9).

For ω < ωC , the real part of the susceptibility exhib-
its only an additional frequency-independent maximum
(at the phase transition point). The χ' value smoothly
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
increases with frequency and reaches a maximum (pos-
itive) at ω = ωA (Fig 6, curves 1 and 2). When the fre-
quency grows further in the interval ωB > ω > ωA , this
extremum converts into a minimum and there appear
two frequency-dependent maxima (in the uniform and
domain phases, see Fig 6, curves 3–5). As the frequency
ω keeps increasing, the χ' value at the point of the addi-
tional frequency-independent minimum monotonically
decreases, becomes negative, and exhibits a minimum
(negative) at ω = ωB . Then (for ω > ωB), the additional
frequency-independent extremum again converts into a
maximum and acquires (besides the two additional fre-
SICS      Vol. 98      No. 6      2004
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quency-independent maxima) two additional fre-
quency-independent minima (in the uniform and
domain phases, see Fig. 6, curves 6–10).

It should be noted that the existence of the main (fre-
quency-independent) extremum at the line of the phase
transition from the uniformly magnetized state to a
state with domain structure is also possible for other
parameters of the film and/or for other values of the
bias magnetic field. For calculating the temperature of
this extremum in the region of existence of the domain
structure, it is necessary to replace in expression (18) ξ(m)

by ξ(m) – (3/4)(λa)2 in accordance with formula (31) and
use the analytical relationship (λa) = f(h0) valid in the
selected interval of the bias fields for the given param-
eters of the film. For example, formally assuming that
the function (λa) = f(h0) at the line of phase transitions
is described by formula (32), the curve of ξ(m)(h0) in the
region of existence of the domain phase on the (ξ, h0)
plane will have the shape depicted by dashed line 0' in
Fig. 3.

The degree of deviation of this line from line 0 (cor-
responding to the calculation for the uniformly magne-
tized state) will depend on the particular form of the
function (λa) = f(h0), but qualitative behavior will be
generally the same. Indeed, in the vicinity of the phase
transition, the value of (λa) (i.e., the amplitude of vari-
ation of the z-component of magnetization in the
domain phase) monotonically increases with distance
from the phase transitions line. For this reason, the
position of the main (frequency-independent) extre-
mum (which is frequently the only experimentally
observed feature) on the (H0, T) plane cannot be
described by the same function. This circumstance
most probably accounts for the discrepancies between
theoretical and experimental vales of the critical indices
for the magnetic susceptibility in the vicinity of the
Curie point (see, e.g., [8]).

5. CONCLUSIONS

The above analysis showed that an analysis of the
temperature dependence of the magnetic susceptibility
of ferromagnetic films in the vicinity of the Curie tem-
perature in the general case is a quite complicated prob-
lem. The theory predicts, in particular, the possible
existence of multiple extrema in the real (χ') and imag-
inary (χ'') parts of the susceptibility and the different
functional relationships describing the positions of
these extrema in the phase plane (T, H) for the uniform
and domain phases.

Since the behavior of the magnetic susceptibility in
the vicinity of the Curie temperature was performed
within the framework of the Landau theory, the quanti-
tative results obtained are, formally speaking, inappli-
cable in the region of temperatures inside the fluctua-
tional interval (∆ξ)f . For real ferromagnets, the width of
this temperature interval is comparable to the value of
JOURNAL OF EXPERIMENTAL 
ξc determining the temperature interval of applicability
of the Landau theory (ξ ! ξc). However, this circum-
stance does not deprive the results obtained above of
practical significance, because the main qualitative
conclusions from the Landau theory—the existence of
a temperature minimum for the uniform modes of oscil-
lations of the magnetic moment (ω0 and ωd0) near the
Curie point and the difference between the functions
ω0(ξ) and ωd0(ξ) for the uniform and domain phases,
respectively—remain valid for ξ > max{ξc, (∆ξ)f}.

This statement is confirmed by the fact that many
features in the behavior of the magnetic susceptibility
near TC predicted by the Landau theory (in, particular,
the existence of the main frequency-independent extre-
mum, the presence of a jump in the susceptibility at the
line of the phase transition from the uniform state to the
domain phase, etc.) were repeatedly observed in exper-
iment (see, e.g., [2, 8, 16–18]. Moreover, some ferroelec-
trics (e.g., RbHSO4) whose behavior near the Curie point
is described by analogous equations (see, e.g., [19])
exhibit (besides the main frequency-independent extre-
mum) two additional extrema in the real part of the per-
mittivity at frequencies above 455 MHz, which shift in
opposite directions from TC when the frequency of the
external alternating electric field increases to 9.5 GHz
(see [20] and the monograph [19], where this paper is
cited). It should be noted that the observation of such
effects in ferromagnets (in contrast to ferroelectrics)
requires conducting the experiments in an extremely
narrow frequency interval and using frequency-stabi-
lized sources of the alternating magnetic field (see Sec-
tions 3 and 4).
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Abstract—A generalized mean field theory for disordered systems with the RKKY interaction is constructed
on the basis of calculation and analysis of distribution functions for random magnetic fields produced by mag-
netic moments with an irregularly spatial distribution. These distribution functions are determined by two meth-
ods: (i) analytically and (ii) numerically by statistical processing of the results of calculation of random fields
in a model system. For metals diluted by magnetic impurities, it is shown that the ground state of the system
becomes magnetically ordered when the impurity concentration exceeds a certain critical value depending on
the type of crystal lattice of the metal and the sample shape. The magnetic phase diagram of the system is deter-
mined and the temperature dependence of its magnetic susceptibility, the concentration dependence of the Curie
temperature, and the temperature and concentration dependences of the magnetization and magnetic part of the
heat capacity of the system are established. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The introduction of magnetic impurities into a non-
magnetic matrix is known to change the physical prop-
erties of the composite (its magnetic susceptibility, spe-
cific heat, etc.). Systems of this type can be classified
according to the type of the matrix: (i) magnetic impu-
rities in a diamagnetic metal, (ii) magnetic impurities in
a semiconductor, and (iii) magnetic impurities in an
insulator. An example of the first-type systems are
metal alloys Cu1 – x(Mn, Fe)x and Au1 – xFex , which have
been studied for a long time [1] and in which the inter-
action between magnetic moments µ of introduced
impurities is effected by free charge carriers of the
metallic matrix (the concentration of these carriers vir-
tually does not change upon the introduction of impuri-
ties). Second-type systems can be represented by mag-
netic semiconductors such as Ca1 – xMnxAs [2] or
Cd1 − xMnxTe [3], which have been studied extensively
due to their properties, which are of interest for new
trends in electronics and especially spintronics. Free
charge carriers in such systems not only carry out the
interaction between magnetic impurities, but are also
supplied by these impurities. Systems of the third type
remain insulators even after the introduction of impuri-
ties; for this reason, the magnetic interaction in such
systems is of the dipole–dipole type. An example of
such a dielectric system is LiY1 – xHoxF4. The properties
of this system were studied in [4] and will not be con-
sidered here.

A common property of all these systems is random
distribution of impurities among the lattice sites of the
matrix. It is well known, however, that the traditional
1063-7761/04/9806- $26.00 © 21164
mean field theory does not provide an adequate descrip-
tion for such a disordered (random) system of magnetic
moments [5]. This study aims at generalization of the
mean field theory for systems with an indirect interac-
tion of magnetic impurities (via conduction electrons)
allowing for the random nature of their spatial distribu-
tion. We confine our analysis to the Ising approxima-
tion and assume that the indirect interaction between
the magnetic moments of impurity atoms is effected
with the help of the RKKY interaction via the polariza-
tion of free charge carriers [2, 3, 6–8]. The magnetic
properties of the system are described using the distri-
bution function for random effective local magnetic
fields. The latter is determined analytically (for
strongly dilute systems) or using numerical calcula-
tions for a model random system of Ising magnetic
moments arranged at the lattice sites of the matrix. In
real systems, the spread in these fields is so strong that
the RKKY interaction overcomes this spread “with dif-
ficulty” and can ensure a magnetic ordering at consid-
erably lower temperatures (as compared to the predic-
tions of the traditional mean field theory). The depen-
dence of magnetic properties of such systems on the
impurity concentration is also peculiar.

This approach was proposed and used for the first
time in the well-known publication by Klein and
Brout [7].1 However, the analysis carried out in [7] per-
tained only to the properties of the magnetically disor-
dered state. According to Klein and Brout, the correla-
tion of the magnetic moments of impurity atoms must

1 A similar approach for calculating random fields in the RKKY
interaction was proposed in [9].
004 MAIK “Nauka/Interperiodica”
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be taken into account in this case. According to the
ideas formulated by these authors, these moments are
completely or partly correlated if the distance between
atoms is smaller than a certain correlation radius Rc =
0.51x–1/3a, where a is the parameter of the cubic lattice
of the crystal. The number of impurity atoms in a
sphere of radius Rc is independent of their concentra-

tion x and is equal to (4π/3)  ≈ 2.3 (except for the
atom located at the center of the sphere.). The magnetic
field at each atom is the sum of two independent contri-
butions, viz., the “near” field of the atoms of the corre-
lation sphere and the “far” field of the remaining atoms.
Each of these fields is characterized by its own distribu-
tion function. According to this scheme, a body consists
of small clusters of atoms with correlated magnetic
moments, which are coupled via the RKKY interaction
(the average number of atoms in a cluster is approxi-
mately equal to 3.3).

Further, it was assumed that the distribution func-
tion for the fields produced by the atoms of the external
region (R > Rc) is a Gaussian function with the peak at
H = 0 and with variance σ ∝  x. The distribution function
for the fields produced by the atoms of the correlation
sphere was described by a certain implicit relation,
which is used for numerical calculations. The total dis-
tribution function for random magnetic fields in a face-
centered cubic (fcc) lattice, which was determined for
x = 0.18, was found to be the function with the maximal
value (for H = 0) equal to one-fourth (!) of its value in
the absence of correlations.

Using this approach, the authors of [7] drew the con-
clusion that the systems in question cannot be mag-
netically ordered for impurity concentrations x < 0.5.
This contradicts the experiments with Pd(Co) [10],
Pd(Fe) [11], and Au(Fe) [12], in which a ferromagnetic
ordering was observed for xc < 0.01. It was also pre-
dicted in [7] that the magnetic part Cm of the specific
heat capacity of such systems must be independent of
the impurity concentration, which is in contradiction to
the results of experiments with Cu(Co) [13] and
Au(Co) [14], according to which Cm ∝  x2.

In our opinion, the reason for the noted discrepancy
lies in the fact that role of correlations was grossly over-
estimated in [7]. In order to verify this, it is sufficient to
compare the results of the model numerical calcula-
tions of the field distribution functions in magnetically
disordered systems of two types: (i) with complete cor-
relation of the moments within a sphere of radius Rc and
(ii) in the absence of any correlation of these moments
(see below). As a result, the maximal values of the cor-
responding functions differ by less than 5%. In addi-
tion, the methods for taking into account correlations
used in [7] obviously becomes less and less applicable
upon an increase of the magnetic order parameter of the
system. In this connection, we can state that it is possi-
ble to obtain a qualitatively adequate description of the
properties of the systems in question without taking

Rc
3
x
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into account the correlation between magnetic
moments, but (in contrast to [7]) the method should be
extended to systems with nonzero magnetization. This
leads to the results that are in better agreement with the
experimental data.

It should also be noted that we will disregard the
Kondo effect (antiferromagnetic interaction of conduc-
tion electrons with magnetic impurities, leading to
compensation of impurity magnetic moments) every-
where in the subsequent analysis; in other words, we
assume that the indirect RKKY interaction of impuri-
ties is predominant. Such a situation is obviously real-
ized [1] in some nonmagnetic metals with 3d impurities
of the Fe and Co type (e.g., in Au(Fe)).

2. DISTRIBUTION FUNCTIONS
OF RANDOM FIELDS

We write the energy wRKKY of the indirect (via free
charge carriers) exchange RKKY interaction between
two parallel spins of magnetic ions separated by a dis-
tance r from each other in the form [6]

(1)

where J is the energy of exchange interaction between
the spin and a free charge carrier; εF and kF are the
Fermi energy and the Fermi wave number of free
charge carriers with number density n and mass m; in
the standard band model, these quantities are defined as

and V is the unit cell volume of the matrix. The expo-
nential function in the expression for φ(y) reflects the
finite value of the mean free path l of free charge carri-
ers. Energy wRKKY can be represented as the result of the
interaction of the spin with the effective local magnetic
field equal to

(2)

where µ is the magnetic moment.
Let us suppose that a system consisting of randomly

located Ising magnetic moments (spins) is in the state
characterized by the average magnetization I. The local
effective fields H3 produced by randomly distributed
spins at various points and the random value H of the
sum of all such fields can be characterized by the distri-
bution function Fx(j; H3) depending on the relative con-
centration x of magnetic ions and on the relative mag-
netization j ≡ I/µNµ of the system. Here, Nµ = xN is the
magnetic impurity concentration and N is the concen-
tration of the matrix atoms replaced by impurities.

wRKKY r( ) Wφ 2kFr( ), W–
9π
2

------ nVJ( )2

εF

-----------------,= =

φ y( ) y y ysin–cos

y4
------------------------------- y

2kFl
----------– 

  ,exp=

εF "
2/2m( ) 3π2n( )2/3

, kF 3π2n( )1/3
,= =

h r( ) hJφ 2kFr( ), hJ W /µ,= =
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Magnetization j determines the average fraction η =
(1 + j)/2 of spins oriented along its direction (Fx(1; H3)
is the distribution function in the case when all spins are
parallel to one another).

The random nature of the impurity distribution is
limited by the fact that they are “forced” to be localized
only at definite places (sites) of the matrix lattice. For
strongly dilute systems, this limitation is insignificant
and the distribution function for random local fields can
be determined with the help of the Markov method [13],
according to which

(3)

where

here, hζ(r, ζ) = ζh(r) = ζwRKKY/µ is the effective mag-
netic field produced at the origin by the spin separated
from it by a random distance r. Random parameter ζ
assumes values of ±1 (with probability η and (1 − η),
respectively) and determines the direction of the spin;
τ(r, ζ) is the continuous distribution function of random
values of distance r and parameter ζ; and Nmax =

4π Nµ/3 is the number of impurities in a sphere of
radius rmax (integration is carried out over the volume of
this sphere). If we now assume that the distributions of
r and ζ are uniform and disregard the correlation of
magnetic moments, we can write

(4)

where we have taken into account the existence of the
minimal possible distance rmin ≈ N–1/3 between mag-
netic ions (for the alignment of impurity atoms into a
cubic sublattice).

Substituting expressions (4) into (3), we obtain

(5)

Among other things, this expression shows that, in the
absence of magnetization (j = 0), distribution function

F j; H( ) 1
2π
------ A q( ) iqH3–( ) q,dexp

∞–

∞

∫=

A q( )

=  iqhζ r ζ,( )[ ]τ r ζ,( ) rdexp

0

rmax

∫
ζ 1±=

∑
Nmax

;
Nmax ∞→

lim

rmax
3

τ r ζ,( ) ρ ζdd

=  

3r2/ rmax
3 rmin

3–( )[ ] r 1 η–( )δ ζ 1+( )[ ]d

+ ηδ ζ 1–( ) ]dζ , r rmin,>
0, r rmin,<






A q( ) 4πxNC q( )–[ ] ,exp=

C q( ) 1 qh r( )[ ]cos– ij qh r( )[ ]sin–{ } r2 r.d

rmin

∞

∫=
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Fx(0; H3) for local fields is even, i.e., symmetric relative
to H3 = 0 (as assumed in [7]).

Relations (5) do not lead to a simple analytic expres-
sion for distribution function Fx(j; H). To determine the
latter function, we used two mutually supplementing
methods: (i) the “small q approximation” based on the
fact that the range of large q’s in inverse Fourier trans-
formation (3) is insignificant and (ii) numerical calcu-
lations for the model random system of Ising moments.

In the framework of the first approach, functions
cos[qh(r)] and sin[qh(r)] subjected to integration in
Eq. (5) are replaced by their approximate power expan-
sions in small argument qh (up to the first nonvanishing
term in qh). In this approximation, we have

(6)

where

(7)

For l = ∞, we have

(8)

where Si2y = dt.

The values of the functions φP(2kFrmin) and
φS(2kFrmin) for l = ∞ are shown in Fig. 1. Among other
things, it follows from this figure that the average direc-
tion of the random effective field (the position of the
peak of distribution function Fx(j; H)) determined by
the sign of parameter φS(2kFrmin) depends on the lattice
type: for body-centered cubic (bcc) and face-centered

C q( ) Pq2 ijSq,–=

P h2 r( )r2 rd

rmin

∞

∫ 3
8
---W

W

µ2kF
3

-----------φP 2kFrmin( ),= =

φP 2kFrmin( ) y2φ2 y( ) y,d

2kFrmin

∞

∫=

S h r( )r2 rd

rmin

∞

∫ 3
4
---µ W

µ2kF
3

-----------φS 2kFrmin( ),= =

φS 2kFrmin( ) y2φ y( ) y.d

2kFrmin

∞

∫=

φS y( ) ysin
y

----------, φP y( )–
1
5
--- 2

3
--- π

2
--- Si2y– 

 = =

+ y y ysin–cos( )2

y5
--------------------------------------

1 2y y 2ysin–cos–

3y3
-----------------------------------------------+

+
2y 2y 2ycos–sin

6y2
----------------------------------------- ,

t/tsin( )
0

2y∫
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Fig. 1. Functions φP(2kFrmin) and φS(2kFrmin) for cubic metals (l = ∞). The inset shows the dependence of these functions on the
mean free path of charge carriers.

–0.2

–0.4

–0.6

–0.8
cubic (fcc) lattices, it coincides with the direction of
average magnetization (Hj > 0), while for a simple
cubic (sc) lattice, it is opposite to this direction (Hj < 0).

Functions φP(2kFrmin) and φS(2kFrmin) considerably
depend on the mean free path of charge carriers only for
l/a & 10 (see the inset to Fig. 1). Consequently, in a
“good” metal (in which l/a @ 1), this dependence can
be disregarded.

Substituting Eq. (5) into (3), we see that distribution
Fx(j; H3) in this approximation is described by a Gaus-
sian function displaced relative to H = 0:

(9)

The width σ of this distribution is proportional to

 and is determined by parameter P, while the posi-
tion of the peak (H = jHj) is determined by parameter S.
With decreasing magnetization, the peak in distribution
Fx(j; H) is linearly displaced towards smaller (in abso-
lute value) fields, while its width remains unchanged.
The exponentially descending wings of the Gaussian
distribution function correspond to a low probability of
the emergence of strong local fields for which qh * 1.
This approximation holds well when the concentration
x of magnetic ions is low (see below). The value of
parameter 2kFrmin depends on the lattice type. For sys-
tems of the first type (nonmagnetic metals with impuri-
ties), the corresponding value of characteristic parame-
ters for monovalent metals with a cubic lattice of period
a are given in the table.

Fx j; H3( ) 1

2πσ
--------------

H3 jH j–( )2

2σ2
----------------------------– ,exp=

H j 4πxNS x,∝–=

σ 4πxNP( )1/2 x1/2.∝=

x
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For metals with an fcc lattice (Cu, Ag, Au, and Pd),
relations (9) for shift Hj of distribution function
Fx(j; H3) and its width σ can be written in the form

(10)

The corresponding dependences Hj(x) and σ(x) for a
monovalent metal with an fcc lattice are shown in Fig. 2
(dashed lines).

The model system was constructed via a uniformly
random distribution of spins with the ratio of “up” and
“down” moments determined by a selected value of rel-
ative magnetization 0 ≤ j ≤ 1 among the sites of the
cubic lattice (with a total number of sites varying from
104 to 105). Then the magnetic field H3 at the central lat-

H j x
φS 2kFrmin( )

π
---------------------------- hJ ,=

σ x
φP 2kFrmin( )

2π
----------------------------

1/2

hJ .=

Vital parameters determining the properties of monovalent
metals with a cubic lattice

Parameters
Lattice type

sc bcc fcc

rmin/a 1 /2 1/

Na3 1 2 4

1 1.30 1.41

2kFa 6.19 7.79 9.80

2kFrmin 6.19 6.75 6.94

φS(2kFrmin), l = ∞ –0.0150 0.0667 0.0880

φP(2kFrmin), l = ∞ 7.43 × 10–4 4.54 × 10–4 4.23 × 10–4

3 2

Nrmin
3
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tice site was calculated with the help of formula (1) and
functions Fx(j; H3) were determined by sampling from
a large number (about 104) of realizations of such a
system.

10–210–3 10–1 1
x

10–5

10–4

10–3

10–2

Hj/hJ, σ/hJ

Hj

σ

Fig. 2. Concentration dependences of parameters Hj and σ
of the Gaussian distribution function F(1; H3) for effective
magnetic fields, resulting from RKKY interaction between
magnetic ions located at the sites of the fcc lattice of a
monovalent metal. Symbols correspond to numerical calcu-
lations and the dashed straight lines describe the analytic
approximation for small q at l = ∞.

–0.002 0 0.002 0.004 0.006
H3/hJ

0

200

400

600

800

1000
hJF(0, H3)

Fig. 3. Distribution function F(0; H3) for systems with cor-
related (d) and noncorrelated (s) magnetic moments of
impurities with concentration x = 0.02 located at sites of the
fcc lattice of a monovalent metal (l = ∞). The results are
obtained by numerical simulation.
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The procedure for verifying the results obtained
in [7] was slightly different: a quasi-spherical domain
surrounding the central site and containing the required
number of sites,2 in which all impurities produced a
magnetic field coinciding in direction with the moment
of impurity at the central site, was singled out in a sys-
tem with zero magnetization. In this way, the correla-
tion of magnetic moments predicted in [7] was imi-
tated.3 Figure 3 shows the result of one of such calcula-
tions. It can be seen that, although the magnetic field
distribution functions “perceives” the presence of cor-
relations, its general form is preserved and the maximal
value changes insignificantly (for x = 0.02, by less than
5%). This means that the role of correlations in [7] is
considerably overestimated and can be disregarded
when the distribution function Fx(j; H3) is calculated.

The evolution of the distribution function Fx(1; H3)
determined in this way upon a change in the concentra-
tion x of magnetic ions in a metallic fcc lattice is
depicted in Fig. 4. Approximating such functions by the
Gaussian functions, we can find the corresponding val-
ues of parameters Hj and σ; the concentration depen-
dences of these parameters are shown in Fig. 2 (circles).
It can be seen that the small q approximation gives cor-
rect values of Hj for any concentrations x; however, this
approximation can be used for calculating σ only for
low concentrations x & 0.1. By the way, practically any
actual system satisfies this condition.

3. GENERALIZED MEAN FIELD THEORY 
FOR SYSTEMS WITH RKKY INTERACTION

The traditional mean field theory for a regular sys-
tem corresponds to a δ-shaped distribution function

Fx(j; H3) = δ[H3 – H0(x, j)]

for any value of magnetization j. Clearly, the broaden-
ing of this distribution in the case of a random system
is a factor “hampering” ferromagnetism. The magneti-
zation of such a disordered system must be calculated
taking into account the spread in local fields H3 via
direct generalization of the equation I/µNµ =

µH0/kT) corresponding to the regular system:

(11)

or

(12)

2 According to [7], this number is independent of the impurity con-
centration and amounts to 2.3/x ~ 100.

3 It is not necessary to take such a correlation into account for the
lattice sites located outside the selected sphere in view of the
large distances separating these sites from the central one.

(tanh

I
µNµ
----------

µH
kT
-------- 

  Fx j; H( ) H ,dtanh

∞–

∞

∫=

j
H/hJ

Θ
------------ 

  Fx j; H( ) H ,dtanh

∞–

∞

∫=
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where H = (4π/3)I + Hd + H3 is the total field consisting
of the field (4π/3)I of the magnetic moments on the sur-
face of the Lorentz sphere, the demagnetizing field
Hd = –ηI (η is the demagnetizing factor), and the ran-
dom field H3; Θ = kT/W is the reduced temperature
(equal to the ratio of the thermal energy to the charac-
teristic energy of RKKY interaction).

Using expression (9) for distribution function
F(j; H), we obtain the following equation generalizing
the standard mean field equation:

(13)

This equation defines the phase diagram of the system,
the temperature dependences of its magnetization (in
the ferromagnetic phase) and susceptibility (in the
paramagnetic phase), and the dependence of the Curie
temperature ΘC of the system on the concentration of
magnetic ions.

To determine the conditions under which this equa-
tion has a solution corresponding to the magnetically
ordered state (j > 0), we note that for Θ  0 this equa-
tion is transformed to

(14)

where

and

is the probability integral. Equation (14) has a solution

j > 0 if z0 > /2, i.e., for

(15)

The meaning of the last condition is that the effec-
tive RKKY field Hj and the field (4π/3)xµN produced
by magnetic moments on the surface of the Lorentz
sphere must together “overcome” the spread in local
fields (on the order of σ) and the demagnetizing field
(proportional to η). The most favorable conditions for
the emergence of magnetic ordering are naturally cre-
ated for η = 0 (a long cylindrical sample).

j
1

2πσ/hJ

----------------------
4π/3 η–( ) xµN /hJ( ) j u+

Θ
--------------------------------------------------------------tanh

∞–

∞

∫=

×
u jH j/hJ–( )2

2 σ/hJ( )2
--------------------------------– u.dexp

j Φ z0 j( ),=

z0
1

2σ
----------- H j

4π
3

------ η– 
  xµNhJ+=

Φ x( ) 2

π
------- x2–( ) xdexp
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∫=

π
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4π
3

------ xµN
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σ
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The ground state will be magnetically ordered for
x > xc , where the critical concentration xc of magnetic
ions is determined by the equation

(16)

where

parameter Z0 being a function of the magnetic moment
of the impurity and the intensity of RKKY interaction.
Using the functional dependences σ(x) and Hj(x) deter-
mined earlier by numerical simulation (see Fig. 2), we
can find the dependence xc(Z0) for a monovalent metal
with an fcc lattice, represented by dark circles in Fig. 5.

π
2
---

σ xc( )
hJ

-------------
H j xc( )

hJ

----------------– Z0xc,=

Z0
µN
hJ

-------- 4π
3

------ η– 
  ,=
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Fig. 4. Evolution of distribution function F(1; H3) upon a
change in concentration x of magnetic ions located at sites
of the fcc lattice of a monovalent metal for l = ∞. The results
are obtained by numerical simulation.
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For a spherical sample (η = 4π/3), the critical con-
centration xc is equal to 0.10 irrespective of the value of
parameter Z0.

For a sample in the form of an oblong ellipsoid (η <
4π/3), the critical concentration of magnetic impurities

0 0.1 0.2 0.3
Z0

0.001

0.01

0.1

1
xc

sc, l = ∞
fcc, l = ∞fcc, l/a = 2

Fig. 5. Dependence of the critical concentration xc of mag-
netic ions located at sites of the cubic lattice of a monova-
lent metal on parameter Z0. Circles correspond to numerical
calculations, while the curves describe the analytic approx-
imation of small q. Sample shape: oblong ellipsoid (Z0 > 0),
prolate ellipsoid (Z0 < 0), and sphere (Z0 = 0).

10–410–5 10–3 10–2 10–1

Θ

10–2

10–1

1

10

χ

12

Fig. 6. Temperature dependences of magnetic susceptibility
χ of a system of magnetic ions with concentrations x > xc
(curve 1) and x < xc (curve 2), located at sites of the fcc lat-
tice of a monovalent metal (Z0 = 0.05, l = ∞).

x = 0.1

x = 0.01
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rapidly decreases upon an increase in this parameter.
For η = 0 (long cylinder), for typical values of W ~
0.01 eV and µ ≈ 5µB , we obtain Z0 ~ 0.05, which corre-
sponds to xc ~ 0.01. It is also interesting to note that the
critical concentration in a “poor” metal (l/a = 2) in this
case is smaller than in a “good” metal (see Fig. 5).

For a sample in the form of a prolate ellipsoid (η >
4π/3), the critical concentration of magnetic impurities
increases with the absolute value of parameter Z0 and
attains the value xc = 1 for Z0 ≈ –0.025. This in fact indi-
cates the absence of a magnetic order under real condi-
tions.

The same dependence xc(Z0) can be determined pro-
ceeding from analytic expressions (10) for parameters
σ and Hj:

(17)

It can be seen from Fig. 5, in which this dependence
corresponds to the middle curve, that it correctly deter-
mines the critical concentration xc for Z0 > 0; however,
this is not surprising since the small q approximation is
quite accurate in this range (see above).

The same figure shows an analogous dependence for
a metal with an sc lattice, for which the critical concen-
tration is much higher.

Equation (14) also defines the low-temperature
magnetization j0 ≡ j(T  0) of the system, which nat-
urally differs from zero only for x > xc . The concentra-
tion dependence j0(x) shown in Fig. 7 indicates that
j0 < 1 in all cases; however, the equilibrium magnetiza-
tion j0 of the system approaches unity even when the
impurity concentration x slightly exceeds the threshold
value xc . Thus, the system is formally an unsaturated
ferromagnet. In fact, this phase with random direction
and frustration of magnetic moments of impurities is
a magnetic (spin) glass.4 

In the range of low concentrations (x < xc) or high
temperatures, the system is paramagnetic. To describe
the properties of such a system in an external magnetic
field He , it is sufficient to carry out the substitution
H3  H3 + He in the argument of the hyperbolic tan-
gent in Eq. (13). In a weak external field (He/hJ ! 1),
the magnetization of the paramagnetic system is small

4 The equality of spontaneous magnetization to zero is a generally
accepted, but not a necessary property of the spin glass state. For
example, a state with a nonzero magnetization can exist in sys-
tems with a nonzero average value of the random exchange inte-
gral [14]. In our case, an analog of the latter state is a random
RKKY field for which the distribution functions is such that its
mean value (equal to jHj) differs from zero.

xc

φP 2kFrmin( )
4 φS 2kFrmin( )/π Z0+([ ] 2
----------------------------------------------------------.=
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(j ! 1); expanding the functions appearing in Eq. (13)
in He and j, we obtain

(18)

Relation (18) makes it possible to determine the low-
field magnetic susceptibility of the system,

and its temperature dependence (see Fig. 6) as well as
the Curie temperature and its concentration dependence
(see Fig. 7).

At low temperatures (Θ ! σ/hJ), we have I0 =

hJ/σ, which gives χ0 ≡ χ(Θ ! 1) = x/(xc – x), i.e.,
a temperature-independent susceptibility. In the vicin-
ity of the ferromagnetic transition (with the boundary
determined by condition (16)), the susceptibility
increases indefinitely.

At high temperatures (Θ ! σ/hJ), we have I0 
1/Θ and relation (18) leads to χ(Θ @ 1) = 1/Θ, or I =
xµN(µHe/kT), i.e., the ordinary Curie law for noninter-
acting Ising dipoles with magnetic moment µ.

j
He/hJ( )I0

1 Z0x H j/hJ+( )I0–
-----------------------------------------------,=

I0 x Θ,( ) 1

Θ 2π
--------------- u2/2–( )exp

σ/hJΘ( )u[ ]cosh
2

------------------------------------------ u.d

∞–

∞

∫=

χ I
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jZ0x

He/hJ

--------------,= =

2/π
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Fig. 7. Concentration dependences of low-temperature
magnetization j0 and Curie temperature ΘC for a system of
magnetic ions located at sites of the fcc lattice of a monov-
alent metal (Z0 = 0.05, l = ∞).
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Vanishing of the denominator in expression (18)
corresponds to a transition to the ferromagnetic state.
The corresponding condition

(19)

for T = 0 coincides with Eq. (16) determining the criti-
cal concentration xc of magnetic impurities; for x > xc ,
this condition makes it possible to determine the Curie
temperature ΘC . Figure 7 shows the dependence of
ΘC(x > xc) on the impurity concentration. The charac-
teristic value of ΘC ≈ 5 × 10–3 corresponds (for W ~
0.01 eV) to the actual temperature TC ≈ 0.5 K.

The temperature dependence of the system magne-
tization at temperatures Θ ≤ ΘC is defined by Eq. (13).
Figure 8 shows a series of similar dependences for var-
ious impurity concentration x > xc .

In the framework of the generalized mean field the-
ory used above, we can determine not only magnetiza-
tion, but also any other quantity depending on the mag-
netic field. For example, we can calculate the magnetic
component Cm of the heat capacity of the system under
investigation; for noninteracting Ising magnetic
moments in a uniform magnetic field H, this compo-
nent is defined as

(20)

This relation predicts a linear concentration depen-
dence Cm ∝  x; the violation of this dependence in an
experiment would indicate the uselessness of such a

I0 Z0x H j/hJ+( ) 1=

Cm kNx
µH/kT

µH/kT( )cosh
----------------------------------

2

.=

0 0.002 0.004 0.006 Θ

0.2

0.4

0.6

0.8

1.0
j
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=
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.0

2

0.
03

0.
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Fig. 8. Temperature dependences of magnetization j of a
system of magnetic ions with various concentration x > xc ,
located at sites of the fcc lattice of a monovalent metal (Z0 =
0.05, l = ∞).
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simple model and would necessitate the inclusion of the
interaction between magnetic moments.

Generalizing this relation to random local fields
described by distribution function (9), we obtain, anal-
ogously to Eq. (13),

(21)

where j = j(x, Θ) is the equilibrium magnetization of the
system defined above and σ(x) and Hj(x) are the param-
eters of distribution (9).

It follows from Eq. (21) that, as a result of the inter-
action between magnetic moments, the heat capacity is
not proportional to the impurity concentration even in
the paramagnetic state (j = 0). Indeed, in this case, rela-
tion (21) leads to

Cm x Θ,( ) kNI1,=

I1 x Θ,( ) x

2πσ/hJ

----------------------=

×
Z0xj u+( )/Θ

Z0xj u+( )/Θ[ ]cosh
------------------------------------------------

 
 
 

2
u jH j/hJ–( )2

2 σ/hJ( )2
--------------------------------– u,dexp

∞–

∞

∫

I1 x
2
π
---

Θ
σ/hJ

----------- I2,=

10–4 10–3 10–2 10–1

Θ

10–7

10–6

10–5

Cm

Θ0.02

Θ0.03

Θ0.05

x = 0.02
0.03 0.05

Fig. 9. Temperature dependences of magnetic part of heat
capacity Cm(Θ, x) of a system of magnetic ions with various
concentration x, located at sites of the fcc lattice of a
monovalent metal (Z0 = 0.05, l = ∞). Arrows indicate the
corresponding values of the Curie temperature.
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where

At high temperatures, when Θ2/2(σ/hJ)2 * 1, we have

I2 ≈ (σ/ΘhJ)3 and, hence,

(22)

Considering that σ/hJ ∝  (see relation (10)), we
obtain Cm ∝  x2/Θ2. This quadratic concentration depen-
dence of the magnetic component of heat capacity was
repeatedly observed for metals with magnetic impuri-
ties (see, for example, the results obtained in [15, 16]
for the alloys Cu(Co) and Au(Co), respectively. Numer-
ical calculations show, however (see Fig. 2), that the

dependence σ(x) ∝   is typical only for compara-
tively low impurity concentrations x & 0.1 and then
becomes “flatter,” which must decelerate the increase in
heat capacity with increasing concentration. Precisely
this tendency was observed in experiment [15]. It should
also be noted that, in accordance with relation (22), Cm ∝
1/T2 in the paramagnetic region. Unfortunately, the
accuracy of the corresponding measurements is too low
to verify the correctness of this dependence.5 

To determine the concentration and temperature
dependences of heat capacity Cm in the low-tempera-
ture region, we observe that

where

For Θ & σ/hJ , we have

5 The low accuracy of measurements is due to the fact that the
magnetic component of specific heat is small as compared to the
total specific heat of the metal (see discussion in [17] and the ref-
erences therein).
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taking into account dependences (10), we obtain

For ordinary impurity concentrations x ! 1 and for typ-
ical values of Z0, φS , and φP (see table), the exponent in
the last exponential is comparable to unity; i.e., the
value of I3 depends on x. Thus, in the low-temperature
range, the magnetic component of specific heat is not a
monotonic function of the impurity concentration. This
explains the ambiguity of the conclusions concerning
the presence or absence of such a dependence [17]. The
obtained conclusions are illustrated by the temperature
dependences Cm(T, x) derived with the help of expres-
sions (21) and depicted in Fig. 9.

4. CONCLUSIONS
A description of disordered systems with RKKY

interaction (such as nonmagnetic metals diluted with
magnetic impurities) calls for a generalization of the
mean field theory with allowance for nonequivalence of
individual magnetic moments in such a system. We
have considered a version of such a theory, based on the
calculation and analysis of the distribution function for
random magnetic fields produced by magnetic
moments irregularly distributed in space. These distri-
bution functions were obtained by two methods, i.e.,
analytically and numerically (from statistical process-
ing of the results of calculation of random fields in a
model system). The former method makes it possible to
find only approximate analytic expressions for distribu-
tion functions in a limited range of impurity concentra-
tions; however, this enables one to obtain reliable qual-
itative estimates of the form of these functions and,
hence, about the properties of the system being studied.

In the framework of the generalized mean field the-
ory, it is shown that the ground state of the system
becomes magnetically ordered when the magnetic
impurity concentration exceeds a certain critical value
determined by the type of the crystal lattice of the metal
and the sample shape. The magnetic phase diagram of
the system is constructed and the temperature depen-
dence of its magnetic susceptibility of the system, the
concentration dependence of the Curie temperature, as
well as the temperature and concentration dependences

I3
π2

6
-----Θ

xj2 Z0 φS /π+( )2

φP/π
----------------------------------------– .exp≈
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
of the magnetization and the magnetic component of
the heat capacity of the system. All these dependences
are in qualitative agreement with the experimental
results.
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Abstract—The energy spectrum of localized and resonant states of shallow donors in heterostructures
GaAs/AlxGa1 – xAs with quantum wells is calculated. The widths of the resonant states belonging to the second
size quantization subband are determined. It is shown that the width of a resonance level is mainly determined
by the interaction with optical phonons. The spectrum of impurity absorption of light due to electron transitions
from the ground state of the donor to the resonant states belonging to the second size quantization subband is
calculated. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The growing interest in resonant states of shallow
impurity centers in semiconductors is due to the possi-
bility of employing the resonant states of a shallow
impurity for lasing in the long-wave IR range. This pos-
sibility was demonstrated for an axially compressed
p-Ge placed in a strong electric field [1]. Naturally, the
possibility of resonant states of other bulk semiconduc-
tors and heterostructures being used for obtaining stim-
ulated radiation, and the optimization of parameters of
available sources of stimulated radiation, has been
explored. However, it is quite difficult to change the
parameters of resonant states in bulk semiconductors.
The parameters of impurity states may vary over a wide
range in semiconductors with quantum wells (QWs).
Indeed, owing to the presence of an impurity in a QW
or in a neighboring barrier, discrete impurity levels with
parameters depending both on the position of the impu-
rity and on the characteristics of QWs appear in addi-
tion to the continuous parabolic spectrum of size quan-
tization subbands. The impurity levels “associated”
with the second, third, etc., size quantization subbands
may fall in the continuous energy spectrum of lower-
lying subbands. In this case, the electron lifetime in
these states is finite and such states are referred to as
quasi-stationary or resonant. The resonant states of
shallow donors in QWs have been studied insuffi-
ciently. The ionization energies and level widths were
calculated by the variation method in [2]. It should be
noted that resonant states of donors in barriers were
investigated in [3] in the approximation of configura-
tion interaction and zero radius. However, the scatter-
ing at phonons, which mainly determines the resonance
level width, has not been taken into account. The
absorption coefficients for radiation induced by elec-
tron transitions to resonant states have not been calcu-
lated either. The lack of calculations of the observed
1063-7761/04/9806- $26.00 © 21174
properties of such states is probably the reason for the
absence of systematic experimental studies.

In this study, we report on the results of theoretical
analysis of resonant states of shallow donors in QWs in
heterostructures AlxGa1 – xAs/GaAs. The dependence of
the resonance level width and the ionization energy of
resonant states on the impurity position in a QW is ana-
lyzed. The absorption coefficient is calculated for the
radiation induced by electron optical dipole transitions
from the donor ground state belonging to the first
subband to the donor states and to the continuous spec-
trum of the second subband. It is shown that the reso-
nance level width and the spectrum of impurity absorp-
tion of the radiation stimulated by transitions to reso-
nant states are mainly determined by scattering from
optical phonons (unless it is forbidden by the conserva-
tion laws).

2. MODEL FOR CALCULATING THE STATES
OF A SHALLOW DONOR

To describe electron states, we use the effective
mass approximation. The dispersion relation for the
electron was assumed to be isotropic and quadratic in
the QW plane. The polarization of the heteroboundary
associated with charges was discarded in view of the
small difference between the permittivities of the mate-
rials of the QW and the barrier (in the following analy-
sis, we will consider the GaAs/Al0.2Ga0.8As system).
The difference between the effective electron masses in
GaAs and Al0.2Ga0.8As was disregarded.

To calculate the energy spectrum of the states of
shallow donors in a QW, we used the method of expan-
sion in “plane waves,” which was proposed in [4] and
developed in [5]. The wave functions of resonant states
004 MAIK “Nauka/Interperiodica”
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and the states in the continuum were expanded into

a  series in the eigenfunctions of the Hamiltonian 
for an electron in the QW (disregarding the impurity
potential),

(1)

where µ is the electron effective mass and potential
U(z) defines the QW profile and depends on the alumi-
num concentration in the solid solution AlxGa1 – xAs [6].
Since the dispersion relation for electrons is assumed to
be isotropic in the QW plane, the system possesses
axial symmetry and the angular momentum projection
Lz = "m onto the normal to the QW (z axis) is con-
served. The wave function corresponding to quantum
number m can be written in the form [5]

(2)

where S is the area of the QW, ρ and ϕ are the polar
coordinates in the QW plane, k is the modulus of the 2D
wave vector in the same QW plane, n is the size quan-
tization subband number, and ψn(z) is the normalized
wave function describing the motion of the electron
along the z axis and satisfying the Schrödinger equation
with Hamiltonian (1),

(3)

energy En corresponding to the bottom of the nth sub-
band. It should be noted that we have omitted the term
corresponding to the contribution from the continuous
spectrum in expansion (2). This assumption is justified
in the case when the binding energy of the donor states
being described is much smaller than the QW depth and
the states are localized in the QW.

To find the expansion coefficients (k), we substi-
tute the wave function in form (2) into the Schrödinger
equation with the total Hamiltonian

(4)

where κ is the permittivity of the material, e is the elec-
tron charge, and zim is the z coordinate of the donor. The

Ĥ0
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integral equation for the expansion coefficients has the
form

(5)

where ε is the electron energy; the kernel of the integral
operator is defined by the relation

Integral equation (5) can be solved by the finite dif-
ference method, in which the integral with respect to k'
is replaced by the sum. Each term of this sum corre-
sponds to the integral with respect to k' in a certain
interval. If this interval is smaller than the characteristic
scale of variation of the integrand, the integral over
each interval can be replaced by the product of the
length of the interval and the value of the integrand in
this interval. We will use an equidistant partition in k'
with a step of ∆k.

If we choose the step in k' much smaller than the
reciprocal Bohr radius (∆k ! 1/rB), the integrand in
Eq. (5) varies insignificantly over a step. In addition,

functions (k) in expansion (2) for localized and res-
onant states decrease quite rapidly for large values of k'
(such that 1/  ! rB); consequently, the sum over k'
can be truncated. For the chosen partition in k', Eq. (5)
can be written in the form

(6)

This equation shows that the problem is reduced to
determining the eigenvalues of quantity ε and eigenvec-

tors (k) of the symmetric real-valued matrix

(7)

The eigenvalues and eigenvectors of matrix Am define
the energy spectrum and the wave functions for local-
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ized and delocalized states. The expansion coefficients
of the wave function satisfy the normalization relation

It should be noted that kernel (k, k') has a singu-
larity for k = k'. A method for overcoming this difficulty
was proposed in [4]. In this method, while replacing an
integral by a sum, allowance should be made for the
finiteness of the integral in any interval in spite of the
tendency of the integrand to infinity. For this reason, we

must take the value of (k, k') averaged over ∆k in
such a replacement. In this case, matrix Am can be writ-
ten in the form

(8)

and matrix elements  are finite.

an
m ki( ) 2

n j,
∑ 1.=

In n',
m

In n',
m

An i; n' i,,
m δn n', εn ki( ) q2∆k

πκ
------------ π–
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q2∆k
πκ
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2 1 θcos–( )
--------------------------------- zd
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∞
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Fig. 1. Electron energy dependence of the probability of
finding an electron in the second subband (m = 0). The
peaks in the range of energies smaller than 62.5 meV corre-
spond to donor resonant states of the electron. For energies
ε > 62.5 meV, the continuous spectrum of the second size
quantization subband begins.
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3. RESULTS OF CALCULATION 
OF THE ELECTRON SPECTRUM

AND THE LIFETIME OF RESONANT STATES

The parameters of resonant states were calculated
for the Al0.2Ga0.8As/GaAs heterostructure with a QW of
width dQW = 150 Å. The QW contains three energy lev-
els (size quantization subbands) with energies of E1 =
15.8 meV, E2 = 62.5 meV, and E3 = 136.8 meV, mea-
sured from the bottom of the conduction band of GaAs.
To find the resonance levels of a shallow donor, we
diagonalized the 3000 × 3000 matrix (three subbands,
1000 points in k) with ∆k = 4 × 10–5 Å–1 = 4 × 103 cm–1;
in the course of the diagonalization, the eigenvectors
and eigenvalues were determined. The results given
below will be qualitatively valid for QWs of width
below 200 Å. For broader QWs, the interaction of elec-
trons with optical phonons does not affect the width of
resonance levels.

The resonant states belonging to the nth subband
can be easily found from analysis of the electron energy
dependence of the probability of finding an electron in
the given subband (for a given m):

(9)

Figure 1 shows the (ε) dependence corresponding to
the position zim = 0.3dQW of the donor (zim = dQW and
zim = 0 correspond to the QW boundaries). Four peaks
with energies lower than E2 = 62.5 meV can be clearly
seen on this dependence. The peaks correspond to res-
onant states belonging to the second size quantization
subband. For energies higher than E2, we can see the
states of continuous spectrum of the first and second
subbands, which are mixed by the Coulomb potential of
the impurity. The fraction of the third subband in the
wave functions of these resonant states is on the order
of 10−5. Consequently, the share of states from the con-
tinuous spectrum must also be small. It should be noted
that the model used for calculations is not suitable for
describing strongly excited resonant and localized
states with a characteristic size of the orbit exceeding
1/∆k. To improve the accuracy of calculations, the num-
ber of resonant states being calculated should be
increased. The values of ki used in the calculations
make it possible to resolve four resonant states. It will
be shown below, however, that the resonance width
amounts to about 2 meV due to the interaction with
optical phonons. For this reason, all resonant states
except the first are poorly resolved since the binding
energy for these states is smaller than their width. The

(ε) dependence in the vicinity of the peak is Lorent-
zian [7],

(10)
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where  is the energy of the sth resonance level of the

second subband,  is its width determined by the
interaction of the states of the subbands in the presence
of the donor (“Coulomb” width), and A is the normal-
ization constant depending on the number of points

in k. The values of  can be found from the depen-

dence (ε) in the vicinity of the peak by determining,

for example, the values of A, , and  from three

points. To determine the values of  and , we can
also use the method described by Fano [7]. For this pur-
pose, we must solve the Schrödinger equation disre-
garding the intersubband elements of the Coulomb

interaction (setting  = 0 for n ≠ n') and then
make use of the expressions [7]

(11)

(12)

where  is the energy of the sth localized state of the
second subband from which a resonant state originates;

(E) is the interband matrix element of operator F,
calculated for the sth localized state of the second sub-
band and the delocalized state of the first subband, cor-
responding to energy E; and G1(E) is the 1D density of
states of the first subband with the z component of the

angular momentum equal to "m. Symbol  indicates

the principal value of the integral. It should be borne in
mind that the uniform partition in k is almost equivalent
to zero boundary conditions for ρ = R = π/∆k. The
equivalence would be complete if the roots of the
Bessel function Jm(kR) were taken as points in k. How-
ever, the roots with larger numbers are spaced almost
equidistantly; if the characteristic Bohr radius is
smaller than ∆k–1, the error associated with a uniform
partition in k is small. In this case, the following expres-
sion holds for the 1D density of states:

Energy  can be determined from the solution of the
Schrödinger equation disregarding the intersubband
elements of the Coulomb interaction. While deriving
expressions (11) and (12) from the results obtained

in [7], we assumed that the matrix element (E)

varied insignificantly on the scale of energies . It
should be noted that equality (11) corresponds to the
formula for determining the energy in the second order
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of perturbation in F, while expression (12) corresponds
to the golden rule of quantum mechanics for determin-
ing the probability of a transition induced by perturba-
tion F.

Figure 2 shows the Coulomb width of the lower res-
onant donor state (m = 0) belonging to the second sub-
band calculated by the two methods described above
vs. the relative position of the impurity. It can be seen
that the results obtained for a level width exceeding
0.1 meV almost coincide. For smaller values of this
quantity, the first method is characterized by a consid-
erable error for the given value of ∆k since the level
width becomes comparable to the separation between
the energy levels obtained in calculations for the states
of the continuous spectrum. For example, for an impu-
rity located at the center of the QW, the resonance level
width tends to zero and the steady-state method of
expansion in plane waves yield incorrect results (this
point is marked by the arrow in Fig. 2). For this reason,
the widths of excited donor resonance levels were cal-
culated using the second method.

The dependences of the ionization energy and the
Coulomb width of resonance levels on the position zim

of the impurity are shown in Fig. 3. Negative values of
zim/dQW correspond to the donor position in the barrier.
It can be seen from the figure that the ionization ener-
gies of resonant states associated with the second sub-
band have a local minimum for zim = 0.5dQW. This is
due to the fact that the wave function of the second sub-
band vanishes at the center of the QW. For this reason,
an electron located in the second subband weakly “per-
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Fig. 2. Comparison of the widths of the lower resonance
level, calculated by using perturbation theory (solid curve)
and by approximating the probability density peak by the
Lorentzian function (dashed curve). The relative position
zim/dQW of the impurity (dQW is the QW width) is laid along
the abscissa axis.
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ceives” the attractive potential of the impurity located
at the center of the QW.

The Coulomb width of the resonance level belong-
ing to the second subband vanishes when the impurity
is at the center of the QW; i.e., the states become local-
ized. The impurity located at the center of the QW does
not break the symmetry of the potential; this means that
parity is preserved and transitions between the first and
second subbands are ruled out. For small displacements
of the donor from the center of the QW, the resonance
level width is a quadratic function of the displacement

since matrix elements , which are off-diagonal
in the subbands, are linear functions of the displace-
ment. It should be noted that the Coulomb width of the
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Fig. 3. (a) Dependence of the ionization energy on the posi-
tion of the impurity in the QW. The donor ground state
(solid curve) and the resonant states belonging to the second
subband: the first state (dashed curve), the second state (dot-
and-dash curve), and the third state (dotted curve). (b) the
Coulomb width of resonance levels as a function of the
position of the impurity in the QW. For better visualization,
the width of the third resonance level is increased tenfold.
JOURNAL OF EXPERIMENTAL 
lower resonance level calculated for the same structure
using the variational method [2] is approximately 20%
larger than the value obtained here.

To verify the accuracy of calculations, we calculated
the parameters of resonance levels for zim = 0.3dQW using
1500 points in each band with ∆k = 2.7 × 10–5 Å−1 = 2.7 ×
103 cm–1. The results differ from those obtained with
1000 points in each subband by less than 2–3% for the
ionization energies and by less than 10% for the reso-
nance level widths.

4. SCATTERING 
FROM POLAR OPTICAL PHONONS

The total resonance level width is determined not
only by the departure of an electron from the resonant
state due to the interaction of subbands via the Cou-
lomb potential of the impurity. Another important
mechanism of resonance level broadening for donors is
the interaction with phonons. We are interested in the
case of low temperatures, when scattering is mainly
determined by the spontaneous emission of phonons.
For not very broad quantum wells in which the energy
gap between the lower resonance level belonging to the
second subband and the bottom of the first subband
exceeds the energy of the optical phonon, emission of
optical phonons is the main scattering mechanism. The
interaction between electrons and acoustic phonons is
much weaker. For this reason, we will consider the scat-
tering only from optical phonons. Like the Coulomb
interaction between the states of the subbands, scatter-
ing causes resonance level broadening.

It is well known that the scattering of electrons by
deformation-induced optical phonons in the Γ valley in
GaAs cannot take place in view of the high symmetry
of this valley [8]; for this reason, we take into account
only the interaction of electrons with polar optical (PO)
phonons. We assume that optical phonons correspond
to bulk GaAs. As a result of the emission of a PO
phonon, the electron in a resonant state may pass to the
continuous spectrum of the first subband. It will be
proved later that the resonance level width determined
by the interaction with PO phonons considerably
exceeds the Coulomb width.

The matrix element of the operator of spontaneous
emission of a polar phonon in our description is a func-
tion of quantum numbers mi and mf characterizing the
wave functions of the initial and final states, respec-
tively,

(13)

where V is the crystal volume, "ωLO is the energy of a
longitudinal optical phonon, q is the wave vector of the

Vmimf
q( ) 2πe2

κV
-----------"ωLO 

 
1/2

=

× Ψ
mi r( )( )* iq r⋅( )exp

q
--------------------------Ψ

mf r( )d3r,∫
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phonon, and 1/  is the difference between reciprocal
permittivities of the material at low and high frequ-
encies,

(14)

For the wave functions of the initial and final states, we
can use the wave functions calculated disregarding the
possibility of the electron departure from the resonant
state due to the Coulomb interaction. Since the pro-
cesses of scattering from PO phonons are taken into
account in perturbation theory, the total frequency of
transitions (taking into account scattering and reso-
nance transitions) is equal (in the linear approximation)
to the sum of the corresponding frequencies.

Taking into account the above simplifying assump-
tions and integrating with respect to angle ϕ in the r
space, we can write expression (13) in the form

(15)

where  is the radial part of the wave function (the
subscript specifies the subband number and the super-
script is the quantum number m) and q⊥  and qz are the
components of the phonon wave vector perpendicular
and parallel to the z axis.

It should be noted that the z component of the
phonon angular momentum is equal to the difference
between the electron angular momentum components
of the final and the initial state since the total angular
momentum component of the entire electron–phonon
system along the z axis is conserved in the course of
scattering. The electron angular momentum component
(Lz = "m) may change during such scattering. Conse-
quently, calculating the probability of the electron
departure from state i accompanied by the emission of
a phonon, we must carry out summation over all quan-
tum number of final states (including mf) and over q. In
the subsequent calculations, we assume that the quan-
tum number mi of the initial state is equal to zero and
omit the corresponding index. This particular case is
interesting in connection with possible application of
the obtained results for calculating the spectrum of the
absorption coefficient.

The frequency of transitions from the sth resonant
state under the second subband to the continuous spec-

κ

1
κ
--- 1

κ0
-----

1
κ∞
------.–=

Vmi mf, q( ) 2πe2

κV
-----------"ωLO 

 
1/2

2π i( )
mi mf–

=

× φ2
mi ρ( )

Jmf mi– q⊥ ρ( )

q⊥
2

qz
2+

-----------------------------φ1
mf ρ( )ρ ρd∫

× ψ1 z( ) iqzz( )ψ2 z( ) z,dexp∫
φn

m ρ( )
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trum of the first subband is described by the formula

(16)

It is convenient to evaluate the integral of the
squared matrix element over d3q numerically. For the
“phonon” level width, we obtain the expression

(17)

where

In addition, Is(mf) = Is(–mf), which allows us to write

(18)

Figure 4 shows the dependences of integral Is(mf) on mf
for various values of s for zim = 0.35dQW.

νsc
s 2π

"
------G1 εres

2 s,
"ωLO–( )=

× V

2π( )3
------------- Vmf

s q( ) 2
d3q.∫

mf

∑

"νsc
s Is mf( ),

mf ∞–=

∞

∑=

Is mf( ) G1 εres
2 s,

"ωLO–( ) V

2π( )2
------------- Vmf

s q( ) 2
d

3
q.∫=

"νsc
s Is 0( ) 2 Is mf( ).

mf 1=

∞

∑+=
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Fig. 4. Dependence Is(mf) for zim = 0.35dQW. Physical
meaning can be attached only to integral values of the angu-
lar momentum projection mf . The resonant states belonging
to the second subband: the first state (solid curve), the sec-
ond state (dashed curve), and the third state (dot-and-dash
curve).
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It can be seen from Fig. 4 that, first, function Is(mf)
for s = 1 decreases the most rapidly; second, the number
of peaks of this function corresponds to number s. The
energy of ionization of the sth resonant state decreases
with increasing s (Eion ∝  1/s2 for the hydrogen atom),
while the localization radius increases. With increasing
localization radius of the wave function, the depen-
dence of Is on mf becomes smoother. It is hence clear
that the Is(mf) dependence also becomes weaker as the
impurity is displaced from the center of the QW since
the localization radius increases in this case. As the
impurity passes to the barrier, the total scattering prob-
ability tends to the value corresponding to a free elec-
tron; this is illustrated in Fig. 5, which shows the depen-
dences of the phonon and total widths of resonance lev-
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Fig. 5. (a) Dependence of the “phonon” width of resonance
levels on the position of the impurity in the QW. Notation:
s = 1, 2, and 3 are respectively the widths of the first
(belonging to the second subband), second, and third reso-
nance levels; c.s. stands for the broadening of the states of
the continuous spectrum at the bottom of the second sub-
band. (b) Total width of resonance levels as a function of the
position of the impurity in the QW.
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els on the position of the donor. It should be noted that
the Is(mf) dependence for free electrons in a size quan-
tization subband is absent altogether for all possible
values of mf .

A comparison of Figs. 3b and 5a shows that the
main contribution to resonance line broadening comes
from the scattering by PO phonons.

Estimates of resonance level broadening associated
with the interaction with acoustic phonons give values
of 0.002 meV for scattering by the deformation acous-
tic potential and 0.0004 meV for scattering by the
piezoelectric acoustic potential. These values are much
smaller than the “Coulomb” width of the resonance
level and will be disregarded in subsequent analysis.

5. DIPOLE TRANSITIONS OF ELECTRONS

Since resonant states are often observed in experi-
ments by measuring the impurity absorption spectra, it
would be interesting to calculate the absorption coeffi-
cient for dipole optical transitions of electrons from the
donor ground state to the second subband (including
resonant states). Uniform and nonuniform broadening
of the transition line play an important role in absorp-
tion spectra. If the initial state of the electron coincides
with the ground state of the donor, while its final state
after the absorption of a photon is a resonant state, uni-
form broadening is determined by the total width of the
resonance level. Nonuniform broadening is determined
by the coordinate distribution of the impurity. For the
given structure, the uniform broadening of the absorp-
tion line amounts to about 1 meV (half the resonance
level width). It can be seen from Fig. 3 that, to ensure
such a linewidth due to nonuniform broadening in the
case when the average coordinate of the impurity corre-
sponds to the QW center, the variance in the position of
the impurity must be approximately 30 Å. We will
assume that the variance in the position of the impurity
is smaller than this value, which allows us to disregard
nonuniform broadening.

The wave function of the impurity state is formed to
a considerable extent by states from the subband that is
the closest on the energy scale. Consequently, the selec-
tion rules for the dipole transitions of electrons between
the ground donor state and the resonant states are
almost the same as for transitions from the first subband
to the subband forming the given resonant states. Thus,
the probability of electron transitions to the resonant
states belonging to the second subband assumes the
highest values for transitions induced by radiation
polarized along the z axis. However, transitions induced
by radiation polarized in the QW (xy) plane are not
completely forbidden since the wave functions of the
resonant states contain small contributions from far
subbands as well. In addition, x- and y-polarized radia-
tion induces transitions between states belonging to the
same subband. At the same time, intrasubband transi-
tions under the action of z-polarized radiation are for-
AND THEORETICAL PHYSICS      Vol. 98      No. 6      2004
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bidden for an electron with a parabolic isotropic disper-
sion relation. We will henceforth consider only the tran-
sitions induced by the z-polarized radiation since the
probability of such transitions is many times higher
than the probability of transitions with the x and y
polarization.

An electric field directed along the z axis does not
break the axial symmetry; consequently, the angular
momentum component along the z axis is conserved in
dipole optical transitions. The probability of such tran-
sitions between the ground donor state and the states of
the second subband is described by the formula

(19)

where zif is the matrix element of operator z between the
initial and final states, E is the electric field amplitude,
"ω is the photon energy, and εgs is the energy of the
donor ground state. The dimensionless absorption coef-
ficient is proportional to the probability of dipole tran-
sitions,

(20)

where c is the velocity of light; N is the planar impurity
concentration; which is assumed to be equal to 3 ×
1010 cm–2 (even D– centers are observed [9] in the QW
for such an impurity concentration); and n is the refrac-
tive index. The ordinary dimensional absorption coeffi-
cient for radiation propagating along the QW can be
derived from relation (20) by dividing it by the QW
thickness.

Figure 6 shows for comparison the spectra of the
dimensionless absorption coefficient β("ω) for dipole
optical transitions of electrons taking into account and
disregarding scattering (for the impurity position zim =
0.35dQW). 

It can be seen that scattering considerably reduces
the amplitude of the main peak corresponding to the
electron transition from the ground state belonging to
the first subband to the lowest resonant state belonging
to the second subband. Since the density of states deter-
mining the peak of the Lorentz line is Gmax = 2/πΓ, the
absorption peak amplitude is inversely proportional to
the width of the level to which the transition takes
place. Auxiliary peaks and the plateaus of the continu-
ous spectrum are hardly distinguishable on the “tail” of
the main peak.

It should be noted that the shape of the absorption
line for the electron transition from the donor ground
state to the lower resonant state, which is induced by a
field with the z polarization, is Lorentzian. This is a
consequence of the fact that the matrix element of the z
operator for transitions from the donor ground state to

W "ω( ) 2π
"

------q
2
E2 zif

2G1 "ω εgs–( ),=

β "ω( ) 2πW "ω( )"ωN

cE2n
-------------------------------------,=
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the states of the first subband is equal to zero. Other-
wise, the absorption spectrum would have zero value in
the vicinity of the resonance [7].

It can be seen from Fig. 6 that the absorption
amounts to about half a percent. This means that such
an effect can easily be observed for a structure contain-
ing 5–10 such QWs by using the experimental geome-
try of total internal reflection, which is conventionally
used for observing the intersubband absorption [10].

6. CONCLUSIONS

Summarizing the results of calculations, we can for-
mulate the following conclusions. The electron transi-
tion from the donor ground state to the lower resonant
state belonging to the second subband determines the
impurity absorption of light with the photon energy
corresponding to intersubband transitions under the
conditions of freezing out of electrons in
GaAs/AlxGa1 – xAs heterostructures. The absorption
line corresponding to this transition has a Lorentzian
shape. The absorption linewidth is mainly determined
by the interaction of electrons with optical phonons.
The value of the dimensionless absorption coefficient at
the peak for a planar donor concentration of 3 ×
1010 cm–2 amounts to about 0.5%.

ACKNOWLEDGMENTS

The authors are grateful to A.M. Satanin for fruitful
discussions.

This study was financed by the Russian Foundation
for Basic Research (grant nos. 01-02-16106 and

4540 50 55
"ω, meV

0
1
2
3
4

β × 102

4540 50 55 60
"ω, meV

0

0.05

0.10

0.15
β × 102

Fig. 6. Absorption coefficient spectrum (solid curve is plot-
ted taking into account scattering by PO phonons and the
dashed curve, disregarding scattering). The inset shows the
ratio of the amplitudes of the main peaks.
SICS      Vol. 98      No. 6      2004



1182 ALESHKIN, GAVRILENKO
04-02-17178), the International Center of Science
and  Technology (grant no. 2293), the program Rus-
sian Universities (grant no. UR.01.01.057), and the
Ministry of Industry, Science and Technology of the
Russian Federation (contract nos. 40.072.1.1.1173
and 40.031.1.1.1187).

REFERENCES

1. I. V. Altukhov, M. S. Kagan, K. A. Korolev, et al., Zh.
Éksp. Teor. Fiz. 115, 89 (1999) [JETP 88, 51 (1999)].

2. S. T. Yen, Phys. Rev. B 66, 075340 (2002).

3. A. Blom, M. A. Odnoblyudov, I. N. Yassievich, et al.,
Phys. Rev. B 65, 155302 (2002).
JOURNAL OF EXPERIMENTAL 
4. J. P. Loehr and J. Singh, Phys. Rev. B 41, 3695 (1990).
5. V. Ya. Aleshkin, B. A. Andreev, V. I. Gavrilenko, et al.,

Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 582 (2000)
[Semiconductors 34, 563 (2000)].

6. E. H. Li, Physica E (Amsterdam) 5, 215 (2000).
7. U. Fano, Phys. Rev. 124, 1866 (1961).
8. V. F. Gantmakher and I. B. Levinson, Scattering of Car-

riers in Metals and Semiconductors (Nauka, Moscow,
1984).

9. S. R. Ryu, Z. X. Jiang, W. J. Li, et al., Phys. Rev. B 54,
R11086 (1996).

10. B. F. Levine, J. Appl. Phys. 74, R1 (1993).

Translated by N. Wadhwa
AND THEORETICAL PHYSICS      Vol. 98      No. 6      2004



  

Journal of Experimental and Theoretical Physics, Vol. 98, No. 6, 2004, pp. 1183–1197.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 125, No. 6, 2004, pp. 1349–1366.
Original Russian Text Copyright © 2004 by Yurishchev.

                                                                                                    

SOLIDS
Structure
Lower and Upper Bounds on the Critical Temperature
for Anisotropic Three-Dimensional Ising Model

M. A. Yurishchev
Institute of Problems of Chemical Physics, Russian Academy of Sciences, 

Chernogolovka, Moscow oblast, 142432 Russia
e-mail: yur@icp.ac.ru

Received December 4, 2003

Abstract—The Ising model is considered on a simple cubic lattice, with a coupling constant J along one axis
and coupling constants J' along the remaining two axes. The transfer-matrix technique and an extended phe-
nomenological renormalization group theory [18, 19] are applied to obtain two-sided bounds on the critical
temperature for the model with J '/J ≤ 1. The bounds monotonically converge with decreasing J '/J and provide
improved estimates for the phase-transition temperature in anisotropic three-dimensional Ising model, as com-
pared with those available from the literature. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Unlike the two-dimensional Ising model, the three-
dimensional one is not solved exactly. Current studies
of the model rely on various approximate methods. Per-
manent interest in the model is dictated by the fact that
it admits a phase transition whose universal properties
can be used to describe critical behavior of a broad class
of materials, including easy-axis magnets, binary
alloys, simple liquids and their mixtures, polymer solu-
tions, subnuclear matter, etc. [1–3].

An analysis of a phase transition begins with the
definition of the corresponding critical point. To date,
the most reliable estimates for the phase-transition
temperature Tc in the isotropic three-dimensional Ising
model were obtained by using high-temperature series [4]
and Monte Carlo RG methods [5]. The best estimates
rely on finite-size scaling of Monte Carlo simulations
on L × L × L cubes [6, 7]:

i.e.,

Thus, numerical studies have provided, at least, the first
five or six digits in the critical temperature for the sim-
ple cubic Ising lattice:

. (1)

Note that rigorous bounds have been found for the crit-
ical temperature in the isotropic model [8], but they are
too rough as compared to numerical result (1).

Kc 0.22165459(10),=

kBTc/J 1/Kc 4.5115240(21).= =

kBTc/J 4.51152…=
1063-7761/04/9806- $26.00 © 21183
In the case of an anisotropic Ising model, an asymp-
totically exact formula was found for the phase-transi-
tion temperature [9]:

(2)

This expression predicts logarithmic decrease in the
critical temperature with increasing lattice anisotropy.
However, the accuracy of (2) is relatively low in the
interval of highest importance for applications, 10–3 ≤
J '/J ≤ 1 (see Section 6).

Numerical estimates for kBTc/J in an anisotropic
Ising model were also obtained by using high-tempera-
ture series [10]. However, since series of this kind con-
tain a finite number of terms, the estimation error
increases with decreasing J '/J and degrades even the
results obtained for J '/J ≤ 10–2.

Similar difficulties arise in every approach based on
the use of strictly finite subsystems. In particular,
Monte Carlo simulations on L × L × pL parallelepipeds
reported in [11] were not sufficient to calculate kBTc/J
for J '/J < 3 × 10–3. Moreover, substantial errors were
obtained starting from J '/J < 10–1. This is explained pri-
marily by insufficiently large relative lengths of the par-
allelepipeds (p ≤ 6).

On the other hand, the accuracy of results obtained
by methods based on the use of subsystems that are infi-
nite along the axis corresponding to the dominant inter-
action increases with lattice anisotropy. In particular,
even the simplest approximation of the original lattice
by a set of linear chains embedded in a molecular
field [12] leads to asymptotically correct expression (2)

kBTc

J
----------- 2

J
2J'
------- 

 ln
J

2J'
------- 

 lnln O 1( )+–
1–

,=

J'/J 0.
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for the critical temperature. (In this approximation, the
dominant interaction represented by J is treated exactly,
whereas the weak bonding between chains responsible
for J ' is described by a mean-field theory.) The success
is obviously explained by the fact that chain clusters
reflect the physics of an anisotropic system.

The accuracy of estimates for the critical tempera-
ture improves when a method that is more reliable than
molecular field theory is applied or the transverse
dimensions of an infinitely long system subsystem are
increased in a systematic manner [13–17]. A detailed
discussion of these results is presented below.

In this paper, the phase-transition temperature in an
anisotropic Ising model is calculated by applying
recently improved versions of the phenomenological
renormalization group theory proposed in recent publi-
cations [18, 19]. The variety of available versions
makes it possible to select those yielding both upper
and lower bounds. These methods were applied to L ×
L × ∞ chain clusters with transverse dimensions L ≤ 4.
Group-theoretic reduction is performed to determine
the eigenvalues and eigenvectors of full transfer matri-
ces with dimensions up to 65536 × 65536, which can
be done by virtue of symmetry of the subsystems.

The paper is organized as follows. The equations of
an extended phenomenological renormalization group
theory are presented in Section 2. Section 3 presents
formulas that can be used directly to compute the sus-
ceptibilities and the derivative of the inverse correlation
length contained in the renormalization group equa-
tions. In Section 4, the methods developed here are
tested by applying them to the two-dimensional aniso-
tropic Ising model, which admits an exact solution.
The calculation of critical temperature in the three-
dimensional Ising model is presented in Section 5. In
Section 6, the results obtained by different methods are
discussed. Section 7 summarizes the results of this
work and outlines guidelines for future studies. A basic
description of group-theoretic reduction of transfer
matrices is given in the Appendix.

2. EXTENDED PHENOMENOLOGICAL 
RENORMALIZATION GROUP 

AND EQUATIONS FOR Tc

According to the theory of finite-size scaling [20–22]
(see also reviews in [23, 24]), the singular part fs of the
dimensionless Helmholtz free energy and the inverse
correlation length κ in the vicinity of a phase-transition
point satisfy the functional equations

(3)

(4)

Here, d is the space dimension, t = (T – Tc)/Tc is the
reduced temperature, h is the normalized external mag-
netic field, L is the characteristic length of a strictly or

f s t h 1/L, ,( ) l d– f s tl
yt hl

yh l/L, ,( ),=

κ t h 1/L, ,( ) l 1– κ tl
yt hl

yh l/L, ,( ).=
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partly finite system, yt is the thermal critical exponent,
yh is the magnetic critical exponent, and l is the
Kadanoff scaling parameter.

Relations (3) and (4) are generalized homogeneous
equations [25]. They can be solved by substituting stan-
dard expressions for l to find various characteristics of
the system as functions of deviations from the critical
point t = h = 1/L = 0 along different directions. In par-
ticular, if l = L, then Eq. (4) yields the inverse correla-
tion length for a finite subsystem of an infinite system
at the phase-transition point t = h = 0:

(5)

Applying Eq. (5) to two subsystems with characteristic
sizes L and L', i.e., to the cluster pair (L, L'), one has

(6)

which is used to estimate critical temperature in the
conventional phenomenological renormalization group
theory [26–29].

The mth derivatives of (3) and (4) with respect to h,

(7)

(8)

can be combined to obtain alternative equations for Tc ,
which correspond to extended versions of the phenom-
enological renormalization group theory.

By using isotropic lattice models as test examples, it
was found that the renormalization-group equation

(9)

yields lower bounds for critical temperatures [18, 19].
On the other hand, the equation

(10)

as well as (6), provides upper bounds. However, the
bounds obtained by using (10) are more accurate.

In (9) and (10),

(11)

is the initial linear susceptibility of a subsystem,

(12)

is its initial nonlinear susceptibility, and

(13)

κ L Tc( ) κ 0 0 1/L, ,( )≡ L 1– κ 0 0 1, ,( ).=

Lκ L Tc( ) L'κ L' Tc( ),=

f s
m( ) t h 1/L, ,( ) l

myh d–
f s

m( ) tl
yt hl

yh l/L, ,( ),=

κ m( ) t h 1/L, ,( ) l
myh 1–

κ m( ) tl
yt hl

yh l/L, ,( ),=

L1 d– κ L'' /χL Tc
L'( )1 d– κ L''' /χL' Tc

=

L d– χL
4( )/χL

2
Tc

L'( ) d– χL'
4( )/χL'

2
Tc

,=

χL T( ) ∂2 f L/∂h2
h 0=≡ f s

2( ) t 0 1/L, ,( )=

χL
4( ) T( ) ∂4 f L/∂h4

h 0=≡ f s
4( ) t 0 1/L, ,( )=

κ L'' T( ) ∂2κ /∂h2
h 0= κ2 t 0 1/L, ,( ).= =
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In these expressions, fL is the total Helmholtz free
energy per site in a subsystem:

(14)

where f0 is the regular (background) part of the Helm-
holtz free-energy density for a system with L = ∞.

To solve Eqs. (9) and (10), they should be supple-
mented with expressions for the susceptibilities and the
second derivative of the inverse correlation length with
respect to the external field at h = 0. This problem is
addressed in the next section.

3. CALCULATIONS OF χL , , AND 

In the anisotropic Ising model, the Hamiltonian is
written as

(15)

where the spin variables Si are localized at the lattice
sites and are equal to +1 or –1, and H is magnetic field.
The sums with 〈i, j〉  and [i, j] are taken over the nearest-
neighbor pairs along the directions with the coupling
constants J and J', respectively.

To calculate the thermodynamic characteristics of
the subsystem defined on an Ld – 1 × ∞ lattice (which is
infinite along the J direction), consider the transfer
matrix V with elements

(16)

Here, n = Ld – 1 is the number of chains in the sub-
system, K = J/kBT, K ' = J '/kBT, h = H/kBT , and Si and 
denote the spin variables at sites in adjacent layers of
the Ld – 1 × ∞ lattice. To eliminate undesirable surface
effects, consider a subsystem subject to a periodic
boundary condition in the transverse direction. The
transfer matrix V is a real, symmetric, full matrix with
positive elements.

Note that the transfer matrix defined by (16) can be
expressed as

(17)

where V0 = V|h = 0 is the transfer matrix corresponding to
zero external field and

(18)

f L f 0 f s,+=

χL
4( ) κ L''

* J SiS j

i j,〈 〉
∑ J' SiS j

i j,[ ]
∑ H Si,

i

∑–––=

S1 … Sn, ,〈 |V S1' … Sn', ,| 〉 K SiSi'
i 1=

n

∑exp=

+
1
2
---K' SiS j Si'S j'+( )

i j,[ ]
∑ 1

2
---h Si Si'+( )

i 1=

n

∑+ .

Si'

V U1/2V0U1/2,=

U ehM 1 Mh
1
2
---M2h2 …+ + += =
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is a diagonal matrix with a magnetic moment

(19)

where

(20)

In this product, the Pauli matrix σz is the ith multipli-
cand and the remaining ones are two-dimensional iden-
tity matrices.

According to [26–29] (see also earlier publications
cited therein), the dimensionless Helmholtz free-
energy density can be expressed in terms of the largest
eigenvalue Λ1 of the transfer matrix as

(21)

and the longitudinal inverse correlation length for an
Ld – 1 × ∞ subsystem is

(22)

where Λ2 is the second largest eigenvalue of V. Analo-
gous formulas are valid for the model with zero exter-
nal field, with Λi replaced with λi , where λi denote
eigenvalues of V0. Thus, to determine the critical tem-
perature in the conventional phenomenological renor-
malization group theory (i.e., by solving Eq. (6)), only
certain eigenvalues of V0 must be found.

A transfer matrix (V or V0) is an N × N matrix with
positive elements, where N = 2n. By the Perron–Frobe-
nius theorem [30], its largest eigenvalue is not degener-
ate and positive.

In the Ising model, the second largest eigenvalue λ2
is not degenerate either. In particular, this follows from
the fact that the second largest eigenvalue in the q-state
Potts model is degenerate with multiplicity q – 1 (e.g.,
see [31, p. 441]), and q = 2 in the Ising model.

Exact formulas for χL , , and  in zero external
field are obtained by applying perturbation theory to
nondegenerate λ1 and λ2 as follows. The transfer matrix
V for a nonzero external field is represented as a power
series in h up to the fourth-order terms inclusive:

(23)

The expressions for Vs can be derived from (16) and
written as

(24)

(25)

etc. In the analysis that follows, it should be kept in
mind that the matrices Vs with even and odd s consist of

M σ1 σ2 … σn,+ + +=

σi 1 1 … σz … 1.×××××=

f L L1 d– Λ1,ln=

κ L Λ1/ Λ2( ),ln=

χL
4( ) κ L''

V V0 hV1 h2V2 h3V3 h4V4 O h5( ).+ + + + +=

V1
1
2
--- MV0 V0M+( ),=

V2
1

2!22
---------- M2V0 2MV0M V0M2+ +( ),=
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terms containing even and odd numbers of operators M,
respectively.

Denote by Ψi the eigenvectors of V0 corresponding
to λ1 < |λ2| < …. With second-order corrections calcu-
lated by using the perturbation theory, it holds that

(26)

where (Vs)ij = VsΨj . In the primed sum, the singular
term (with k = 1) is skipped. Recalling definition (11)
and using expressions (21) and (26), one finds an exact
formula for the initial linear susceptibility:

(27)

Similarly, the following expression is obtained by
collecting the fourth-order terms in the perturbation
series for Λ1:

(28)

Finally, the inverse correlation length in zero exter-
nal field is obtained by perturbative calculation of cor-
rections to λ1 and λ2:

(29)

Thus, to determine the critical temperature in the
extended phenomenological renormalization group

Λ1 λ1 V2( )11

V1( )2k
2

λ1 λ k–
----------------

k

'∑+ h2 O h4( ),+ +=

Ψi
+

χL
2

Ld 1– λ1

----------------- V2( )11

V1( )1k
2

λ1 λ k–
----------------

k

'∑+ .=

χL
4( ) 24

Ld 1– λ1

----------------- V4( )11

V2( )1k
2

λ1 λ k–
----------------

k

'∑+




=

+ 2
V1( )1k V3( )1k

λ1 λ k–
------------------------------

k

'∑ 2
V1( )1k V1( )kl V2( )l1

λ1 λ k–( ) λ1 λ l–( )
--------------------------------------------

k l,

'∑+

+
V1( )1k V2( )kl V1( )l1

λ1 λ k–( ) λ1 λ l–( )
--------------------------------------------

k l,

'∑ V2( )11

V1( )1k
2

λ1 λ k–( )2
-----------------------

k

'∑–

+
V1( )1k V1( )kl V1( )lm V1( )m1

λ1 λ k–( ) λ1 λ l–( ) λ1 λm–( )
-----------------------------------------------------------------

k l m, ,

'∑

–
V1( )1k

2 V2( )l1
2

λ1 λ k–( )2 λ1 λ l–( )
--------------------------------------------

k l,

'∑ 1
2λ1
-------- V2( )11

V1( )1k
2

λ1 λ k–
----------------

k

'∑+

2

–




.

κ L'' 2
1
λ1
----- V2( )11

V1( )1k
2

λ1 λ k–
----------------

k

'∑+




=

–
1
λ2
----- V2( )22

V1( )2k
2

λ2 λ k–
----------------

k

'∑+




.
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theory (based on Eqs. (9) and (10)), one has to find all
eigenvalues and eigenvectors of V0 or its submatrices.
On the one hand, this requires tedious calculations. On
the other hand, since Eqs. (9) and (10) carry more infor-
mation about the system, the resulting estimates are
expected to be more accurate as compared to those
based on the conventional phenomenological renormal-
ization group theory.

Expressions (27)–(29) were used in a program writ-
ten in C, while the eigenvalues and eigenvectors of rel-
atively small transfer matrices V0 were found by direct
diagonalization with the use of the library functions
tred2 and tqli [32].

4. HEURISTIC EXAMPLE: 
TWO-DIMENSIONAL ISING LATTICE

Before new results were obtained for the three-
dimensional Ising model, Eqs. (9) and (10) were tested
by applying them to its exactly solvable analog defined
on an anisotropic square lattice.

In the two-dimensional Ising model [33], critical
temperature satisfies the transcendental equation

(30)

In in the isotropic limit (J ' = J),

(31)

According to (30), the critical temperature for a slightly
anisotropic lattice is calculated in the linear approxima-
tion as

(32)

In the model with strong interaction, iterative solution
of Eq. (30) provides an asymptotically exact expres-
sion [34]:

(33)

The critical temperatures for intermediate values of J '/J
can be found by solving Eq. (30) numerically.

Table 1 shows the lower and upper bounds for criti-

cal temperature,  and , obtained by solving
Eqs. (9) and (10) for cluster pairs (L, L') with L ' = L ± 1,
respectively. The calculations were performed for L × ∞
strips with periodic boundary conditions in the trans-
verse direction. Since the strip width was varied
between 2 and 5, the transfer matrices were not larger
than 32 × 32. For these relatively small dimensions, the
eigenvalues and eigenvectors of V0 were found by

2J
kBTc
-----------sinh 2J'

kBTc
-----------sinh 1.=

kBTc

J
----------- 2

1 2+( )ln
-------------------------- 2.269185….= =

Tc J'/J( )
Tc 1( )

------------------- 1
1
2
--- 1 J'

J
----– 

  , J' J .–≈

kBTc

J
----------- 2

2J /J'( )ln
-----------------------,

J'
J
---- 0.≈

T<
L L',( ) T>

L L',( )
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Table 1.  Lower and upper bounds for critical temperature and its exact values in the two-dimensional anisotropic Ising model
(kB = J = 1)

J'/J Exact

1.0 2.1088 2.2147 2.2409 2.26919 2.2898 2.3126 2.3478

0.5 1.5660 1.6134 1.6266 1.64102 1.6484 1.6587 1.6894

0.1 0.8788 0.8962 0.9011 0.90588 0.9076 0.9097 0.9180

0.05 0.7219 0.7345 0.7380 0.74131 0.7425 0.7439 0.7492

0.01 0.4988 0.5054 0.5072 0.50893 0.5095 0.5102 0.5128

0.005 0.4375 0.4427 0.4441 0.44546 0.4459 0.4465 0.4485

0.001 0.3378 0.3409 0.3418 0.34266 0.3429 0.3433 0.3445

T<
2 3,( ) T<

3 4,( ) T<
4 5,( ) T>

5 4,( ) T>
4 3,( ) T>

3 2,( )
direct numerical diagonalization and , ,

and  were calculated by using formulas given in
Section 3. The roots of Eqs. (9) and (10) were obtained
numerically by the bisection method. The exact values
of the critical temperature determined by Eq. (30) are
also listed in Table 1 for comparison.

In Table 1, the lower bounds determined from renor-
malization group equation (9) are denoted by subscript
“<.” The estimation accuracy improves with increasing
strip width. Moreover, Table 1 demonstrates that the
estimation accuracy improves with increasing degree of
lattice anisotropy as well. This result is also dictated by
physical considerations, since the strip geometry pro-
vides an increasingly better model of quasi-one-dimen-
sional coupling with decreasing parameter J '/J.

According to Table 1, the accuracy of the upper

bounds  determined from Eq. (10) also uni-
formly increases with strip width and coupling aniso-
tropy.

The analogy between the two- and three-dimen-
sional models suggests that the bounds predicted by
Eqs. (9) and (10) will be uniformly convergent in the
case of an anisotropic Ising lattice, when no exact solu-
tion is available.

5. THREE-DIMENSIONAL ISING LATTICE

This section presents the calculations performed to
solve Eqs. (9) and (10) in the three-dimensional case.

Since Eqs. (9) and (10) are transcendental, they
should be solved by applying an iterative procedure.
The bisection method was used again in this study. At
each iteration step, two problems must be solved: both
eigenvalues and eigenvectors of the transfer matrix V0

must be found, and the susceptibilities and  given
by (27)–(29) must be calculated. It is well known [35]
that solution of the spectral problem for an N × N full
matrix requires O(N3) operations [35] (tred2 includes
three nested cycles of length N each). Calculation of χL ,

χL T( ) χL
4( ) T( )

κ L'' T( )

T>
L L 1–,( )

κ L''
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, and especially  must also include nested
cycles, which entail even higher computational costs
than solution of the spectral problem. (The program

used in this study to calculate  contained five
3-cycles of length N for each inner cycle.)

For L × L × ∞ parallelepipeds used as subsystems,

the transfer-matrix dimension increases as N = ,
whereas N = 2L in two dimensions. In particular, 16 ×
16, 512 × 512, and 65536 × 65536 transfer matrices are
to be analyzed when L = 2, 3, and 4, respectively.

5.1. Quasidiagonalized Transfer Matrices 

and Reduced Formulas for χL(T), , and 

To find the eigenvalues and eigenvectors of a large
transfer matrix, it was represented in block diagonal
form by using symmetries of Ising subsystems.
Note that this transformation also facilitates calcula-
tions of (27)–(29) involving nested cycles, because the
lengths of all cycles reduce to subblock dimensions.
Moreover, it is shown below that only two submatrices
of a quasidiagonalized transfer matrix V0 are actually
required.

In the case of zero external field, the Hamiltonian of
the Ising model defined on an L × L × ∞ cyclic parallel-
epiped and, therefore, the transfer matrix V0 are invari-
ant under the group Z2 × (TL ∧  C4v), where Z2 is the
group of spin inversions, TL is the group of transverse
translations relative to L × L × ∞, and C4v is the point
group consisting of rotations about the infinite axis of
the parallelepiped and reflections in the planes contain-
ing the axis. The symbols × and ∧  correspond to direct
and semidirect products, respectively.

The largest eigenvalue of a quasidiagonalized trans-
fer matrix (V or V0) must belong to the subblock corre-
sponding to the totally symmetric representation of the
group. This follows from the Perron–Frobenius theo-
rem, the invariance of eigenvalues under changes of

κ L'' χL
4( )

χL
4( )

2L
2

χL
4( ) T( ) κ L'' T( )
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matrix elements and model parameters, and the positiv-
ity of all elements in the subblock.

Generally, the second largest eigenvalue may belong
to different subblocks depending on model parameters
(see [27, 36]). However, a numerical analysis shows
that the second largest eigenvalue Λ2 for Ising models
defined on a square or simple cubic lattice with nearest-
neighbor interactions is localized in the subblock asso-
ciated with the totally symmetric representation of the
subgroup of spatial transformations (i.e., the subgroup
TL ∧  C4v in three dimensions). In the case of zero exter-
nal field, the internal symmetry under Z2 holds and this
block can be represented as a direct product of two sub-
blocks. The largest eigenvalue λ1 is associated with the
subblock spanned by the totally symmetric basis func-
tions of Z2 × (TL ∧  C4v). The second largest eigenvalue
λ2 lies in the subblock spanned by the basis functions
that are symmetric under the spatial transformations
and antisymmetric under transformations involving
spin inversion.

Thus, the present analysis of the quasidiagonalized
transfer matrix V can be restricted to the subblock asso-
ciated with the totally symmetric representation of the
subgroup of spatial transformations. The series expan-
sion of this subblock in powers of h is similar to (23).
By using the basis in which the representation of Z2 is
totally reduced and taking into account the symmetry
and antisymmetry of Vs with even and odd s, respec-
tively, with respect to spin inversion (which can be
derived from (19), (24), and (25)), the subblock in ques-
tion is written as

(34)

V'
V0

1( ) 0

0 V0
2( )

 
 
 
 

h
0 V1

12( )

V1
21( ) 0 

 
 
 

+=

+ h2 V2
1( ) 0

0 V2
2( )

 
 
 
 

h3 0 V3
12( )

V3
21( ) 0 

 
 
 

+

+ h4 V4
1( ) 0

0 V4
2( )

 
 
 
 

O h5( ).+
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The sequence of alternate diagonal and antidiagonal

blocks in this expansion is ordered so that  and 
correspond to symmetric and antisymmetric irreducible
representations of Z2, respectively.

Let λk and ψk be the eigenvalues and eigenvectors of

, and denote its dimension by N1. Let ξk , ϕk , and N2

be the eigenvalues, eigenvectors of , and dimension

of . Then (27) reduces to the following expression:

(35)

Similarly, (28) yields the expression

(36)

where

(37)

V0
1( ) V0

2( )

V0
1( )

V0
2( )

V0
2( )

χL T( )
2

L2λ1

----------- ψ1
+V2

1( )ψ1
ψ1

+V1
12( )ϕk( )2

λ1 ξk–
------------------------------

k 1=

N2

∑+ .=

χL
4( ) T( )

12

L2λ1

-----------=

× 1
λ1
-----Q2 2 Q1 Q2 Q3 Q4 Q5 Q6– Q7 Q8–+ + + + +( )– ,

Q ψ1
+V2

1( )ψ1

ψ1
+V1

12( )ϕk( )2

λ1 ξk–
------------------------------,

k 1=

N2

∑+=

Q1 ψ1
+V4

1( )ψ1, Q2

ψ1
+V2

1( )ψk( )2

λ1 λ k–
-----------------------------,

k 2=

N2

∑= =

Q3 2
ψ1

+V1
12( )ϕk( ) ψ1

+V3
12( )ϕk( )

λ1 ξk–
---------------------------------------------------------,

k 1=

N2

∑=

Q4 2
ψ1

+V1
12( )ϕk( ) ϕk

+V1
21( )ψl( ) ψl

+V2
1( )ψ1( )

λ1 ξk–( ) λ1 λ l–( )
-------------------------------------------------------------------------------------,

l 2=

N1

∑
k 1=

N2

∑=

Q5

ψ1
+V1

12( )ϕk( ) ϕk
+V2

2( )ϕ l( ) ϕ l
+V1

21( )ψ1( )
λ1 ξk–( ) λ1 ξ l–( )

------------------------------------------------------------------------------------,
l 1=

N2

∑
k 1=

N2

∑=

Q6 ψ1
+V2

1( )ψ1

ψ1
+V1

12( )ϕk( )2

λ1 ξk–( )2
------------------------------,

k 1=

N2

∑=
Q7
ψ1

+V1
12( )ϕk( ) ϕk

+V1
21( )ψl( ) ψl

+V1
12( )ϕm( ) ϕm

+ V1
21( )ψ1( )

λ1 ξk–( ) λ1 λ l–( ) λ1 ξm–( )
-----------------------------------------------------------------------------------------------------------------

m 1=

N2

∑
l 2=

N1

∑
k 1=

N2

∑=
Q8
ψ1

+V1
12( )ϕk( )2

λ1 ξk–( )2
------------------------------

k 1=

N2

∑ ψ1
+V1

12( )ϕ l( )2

λ1 ξ l–
------------------------------.

l 1=

N2

∑=
It was noted above that the Λ2 is also localized in V '.
The required expression for the second derivative of
the inverse correlation length is found from (29)
by taking into account the structure of the terms that
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constitute V ':

(38)

where χL(T) is given by (35).

Before using the expressions for χL , , and ,
the transfer matrix V0 must be partially quasidiagonal-
ized by isolating two subblocks, and the terms V1–V4
must be rewritten in a different basis. Technically, this
is the most difficult part of the present study. The key
details of this procedure are given in the Appendix.

Table 2 lists the dimensions of the subblocks con-
tained in expansion (34). The values of N1 and N2 are
obtained by performing a group-theoretic analysis,
which is also developed in the Appendix for L = 2, 3,
and 4. The subblock dimensions for L = 5 and 6 are also
presented in Table 2, but their calculations are omitted.

5.2. Intervals of Localization for Critical Point 
and Estimates for Critical Temperature 

The block quasidiagonalization was used to perform
calculations for L × L × ∞ subsystems with L ≤ 4, i.e.,
for transfer matrices with dimensions up to 216 × 216.
The results are listed in Table 3.

The bounds  and  were obtained by solv-
ing Eq. (9) for the cluster pairs (2,3) and (3,4) respec-

tively;  and , by solving Eq. (10) for the
same pairs of subsystems. An analysis of the tabular
data shows that the highly accurate value of critical
temperature given by (1) for J ' = J lies between

kB /J and kB /J (the factor kB/J is omitted in
tables). Therefore, the temperatures denoted by “<” and
“>” (at least, in the first row) are the lower and upper
bounds, respectively.

Furthermore, Table 3 demonstrates that the values of

 and  and those of  and , respec-
tively, converge with decreasing J ' /J, but never meet.
By analogy with the two-dimensional model consid-
ered in Section 4, it should be expected that exact criti-
cal temperature for anisotropic Ising lattice lies

between the values  and . These are the best
lower and upper bounds obtained in the present study.

The analysis above suggests that the mean value

(39)

κ L'' T( ) L2χL T( )=

–
2
ξ1
----- ϕ1

+V2
2( )ϕ1

ψk
+V1

12( )ϕ1( )2

ξ1 λ k–
-------------------------------

k 1=

N1

∑+ ,

χL
4( ) κ L''

T<
2 3,( ) T<

3 4,( )

T>
3 2,( ) T>

4 3,( )

T<
3 4,( ) T<

4 3,( )

T<
2 3,( ) T<

3 4,( ) T>
3 2,( ) T>

4 3,( )

T<
3 4,( ) T>

4 3,( )

Tc T<
3 4,( ) T>

4 3,( )+( )/2=
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provides the most reliable estimate for critical temper-
ature. The corresponding absolute error does not
exceed

(40)

These estimates and errors are listed in the last column
of Table 3. As J '/J decreases from 1 to 10–3, the relative
error of these estimates for the critical temperature
monotonically decreases from 0.7 to 0.14%; i.e., the
accuracy is higher than that achieved for the two-
dimensional model (see Table 1).

Note that, as in the case of planar lattice, the devia-
tions of the upper and lower bounds from the exact crit-
ical temperature in the three-dimensional model are
approximately equal. Therefore, the actual errors must
be even smaller than those listed in the last column of
Table 3. In particular, the actual error of the estimate for
the critical temperature given by (1) in the case of iso-
tropic lattice is as small as 0.01%, rather than 0.7%.
This error is even smaller than that of the estimate
kBTc/J = 4.53371 obtained in [37] by solving conven-
tional renormalization group equation (6) for the isotro-
pic cluster pair (4,5) (see also [38]).

The data listed in the last column of Table 3 can be
used to quantify the behavior of critical temperature for
a quasi-isotropic lattice:

(41)

Thus, the slope at J ' = J is lower than that in the two-
dimensional Ising model by almost an order of magni-
tude (cf. (32)).

6. COMPARISON WITH RESULTS OBTAINED
BY VARIOUS METHODS

To compare the bounds for critical temperature in
the anisotropic three-dimensional Ising model found in
the preceding section with those obtained by different
methods, consider Table 4. Its rows are arranged so that
accuracy improves as the Exact row is approached from
above or below.

In the linear-chain (LC) approximation considered
in [12], three-dimensional Ising lattice is represented as

∆Tc T>
4 3,( ) T<

3 4,( )–( )/2.=

Tc J'/J( )
Tc 1( )

------------------- 1 0.075 1 J'
J
----– 

  , J' J .–≈

Table 2.  Dimensions of the leading-order subblocks of the
transfer matrices for L × L × ∞ Ising lattices with Z2 × (TL ∧  C4v)
group symmetries

L

2 3 4 5 6

N1 4 13 433 86056 119583470

N2 2 13 372 86056 119539680
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Table 3.  Lower and upper bounds for critical temperature in the three-dimensional anisotropic Ising model and the correspond-

ing estimates for Tc calculated as the arithmetic means of  and , with errors ∆Tc given in parentheses (kB = J = 1)

J'/J Tc

1.0 4.413461 4.479658 4.544243 4.582331 4.512(32)

0.9 4.121298 4.178933 4.237039 4.275470 4.208(29)

0.8 3.823165 3.872973 3.924647 3.962271 3.899(26)

0.7 3.517969 3.560676 3.605985 3.641676 3.583(23)

0.6 3.204178 3.240483 3.279517 3.312201 3.260(20)

0.5 2.879539 2.910087 2.942957 2.971640 2.927(16)

0.4 2.540487 2.565829 2.592660 2.616479 2.579(13)

0.3 2.180792 2.201317 2.222236 2.240527 2.212(10)

0.2 1.787702 1.803508 1.818607 1.831006 1.8110(76)

0.1 1.325918 1.336496 1.345701 1.352289 1.3411(46)

0.09 1.272257 1.282236 1.290826 1.296859 1.2865(43)

0.08 1.216271 1.225625 1.233592 1.239075 1.2296(40)

0.07 1.157454 1.166154 1.173484 1.178424 1.1698(37)

0.06 1.095101 1.103112 1.109789 1.114190 1.1065(33)

0.05 1.028172 1.035449 1.041449 1.045316 1.0385(30)

0.04 0.955023 0.961509 0.966800 0.970133 0.9642(27)

0.03 0.872788 0.878403 0.882937 0.885728 0.8807(23)

0.02 0.775604 0.780225 0.783922 0.786148 0.7821(19)

0.01 0.647148 0.650541 0.653231 0.654821 0.6519(14)

0.009 0.630851 0.634096 0.636669 0.638185 0.6354(13)

0.008 0.613470 0.616560 0.619008 0.620449 0.6178(12)

0.007 0.594762 0.597689 0.600005 0.601367 0.5989(12)

0.006 0.574388 0.577140 0.579317 0.580595 0.5782(11)

0.005 0.551841 0.554405 0.556431 0.557619 0.5554(10)

0.004 0.526316 0.528672 0.530533 0.531622 0.52960(93)

0.003 0.496386 0.498507 0.500181 0.501160 0.49934(84)

0.002 0.459088 0.460929 0.462382 0.463231 0.46166(73)

0.001 0.405958 0.407430 0.408590 0.409267 0.40801(58)

T<
3 4,( ) T>

4 3,( )

T<
2 3,( ) T<

3 4,( ) T>
4 3,( ) T>

3 2,( )
an array of one-dimensional chains parallel to the J
(dominant interaction) direction. The coupling in
chains is treated exactly; the coupling between chains,
by invoking molecular field theory. The critical temper-
ature predicted in the LC approximation satisfies the
equation

(42)

where z is the number of the nearest chains (z = 2 and

kBTc zJ' 2J /kBTc( ),exp=
JOURNAL OF EXPERIMENTAL 
4 for two- and three-dimensional lattices, respectively).
The numerical results obtained by solving Eq. (42) with
z = 4 are listed the LCA row of Table 4.

It is well known (see [39]) that iterative solution of
the equation xex = t yields

and the series for x is absolutely and uniformly conver-

x t O tlnln( ),+ln=

x t t O t/ tlnlnln( ), …,+lnln–ln=
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Table 4.  Estimates for critical temperature in the three-dimensional Ising model obtained by different methods

J '/J

1.0 0.5 0.1 0.05 0.01 0.005 0.001

(2) – – 1.7644 1.3619 0.7849 0.6498 0.4558

(45) – – 1.6215 1.2831 0.7740 0.6452 0.4552

LCA 5.6861 3.5264 1.5075 1.1458 0.6991 0.5907 0.4280

ECA 4.9326 3.2061 1.4647 1.1277 0.6965 0.5896 0.4278

ELCA 4.8815 3.1251 1.4009 1.0776 0.6694 0.5686 0.4155

EBPA 4.8106 3.0906 1.3918 1.0718 0.6669 0.5667 0.4144

(46) – – 1.3619 1.0534 0.6498 0.5508 0.4020

CPRGT – – 1.3473 1.0428 0.6540 0.5574 0.4089

UB 4.5442 2.9430 1.3457 1.0414 0.6532 0.5564 0.4086

Exact 4.51152…

Series 4.5106 2.9286 1.343 1.041 0.65 – –

LB 4.4797 2.9101 1.3365 1.0354 0.6505 0.5544 0.4074
gent if t is sufficiently large. Therefore, the solution to
Eq. (42) with J '/J  0 is

(43)

In the three-dimensional case (z = 4), this result is
equivalent to asymptotic expression (2). However, its
accuracy is very low (see the top row in Table 4).

The extended chain approximation (ECA) devel-
oped in [17] is listed next to LCA in Table 4. In this
approximation, an Ising chain with offshoots is embed-
ded in a molecular field and the equation for critical
temperature is

(44)

Iterative solution of this equation for a three-dimen-
sional lattice with J '/J  0 yields

(45)

According to Table 4, this expression leads to better
results as compared to those predicted by (2).

The extended linear-chain approximation (ELCA)
[13, 14] deals with a simple Ising chain similar to that
used in LCA. However, the use of a variational

kBTc

J
----------- 2

2J
zJ'
------ 

 ln
2J
zJ'
------ 

 lnln–
1–

.≈

z
2J

kBTc
----------- 

 exp 2–
2J'

kBTc
----------- 

 exp 1– 2.=

kBTc

J
----------- 2 J

2J'
-------

1
2
--- J

2J'
------- 1

2
---+ 

 ln+ln




≈

– J
2J'
------- 1

2
---+ 

 lnln




1–

.
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approach in the ELCA leads to results that are better
than the ECA estimates, even though a more realistic
cluster is used in the latter approximation, as demon-
strated by the numerical results listed in Table 4.

The accuracy is substantially improved by increas-
ing the number of chains in the approximating sub-
systems and treating exactly all interactions within
chains and part of interactions between chains (cou-
pling within clusters). In Table 4, this is demonstrated
by the numerical results obtained in the extended
Bethe–Peierls approximation (EBPA) [15] and in the
framework of the conventional phenomenological
renormalization group theory (CPRGT) [16]. In the
former, an Ising cluster consisting of five chains (cen-
tral one and four nearest neighbors) is embedded in a
molecular field, i.e., not only coupling within a chain,
but also interaction within a cylinder, is treated exactly.
In CPRGT, phase-transition temperatures were calcu-
lated by solving Eq. (6) for the pairs (1,2), (2,3), and
(3,4) and extrapolating the results to the thermody-
namic limit L = ∞. (However, because of certain anom-
alies due to the 1 × 1 × ∞ cluster, the extrapolation
could be performed only for relatively high degree of
anisotropy [16].)

The approaches enumerated above lead to upper
bounds for critical temperature that are less accurate

than the upper bounds , which are shown in the

UB row of Table 4. The lower bounds  obtained
in this study are listed in the LB row of the table.

An analysis of high-temperature expansions [10]
leads to intermediate estimates between those listed in
the LB and UB rows (see the Series row in Table 4). The
only exception is the value corresponding to J '/J = 10–2,

T>
4 3,( )

T<
3 4,( )
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which falls outside the lower bound for critical temper-
ature (0.65 < 0.6505). This is obviously explained by
the loss of accuracy due to a finite number of terms
(≤11) retained in the high-temperature expansions for
anisotropic lattices.

In [11], asymptotic expression (2) for the critical
temperature in the anisotropic Ising model was
replaced with

(46)

which is equivalent to replacing z with z/2 in (43). In the
two-dimensional case (z = 2), this yields the asymptot-
ically correct behavior predicted by (33). It was
claimed in [11] that asymptotic expression (46) is cor-
rect in an unexpectedly wide interval of J '/J. According
to Fig. 14 in [11], the results obtained by a Monte Carlo
method are in good agreement with (46) for J '/J
between 0.3 and 3 × 10–3.

The numerical results obtained in the present study
can be used to evaluate the actual errors associated with
expression (46). Table 4 shows that the values predicted
by (46) for J'/J = 0.1 and 0.05 lie above the interval of
critical temperatures found here, while those predicted
for J'/J ≤ 0.01 fall below the lower bounds. Thus, (46)
should actually be interpreted only as an approximate
interpolation; moreover, it is not monotonically con-
vergent.

7. CONCLUSIONS

The main results of this study are numerical bounds
for critical temperature in anisotropic three-dimen-
sional Ising model. The interval found here is monoton-
ically narrowing with increasing degree of anisotropy,
and the average values corresponding to its centerline
provide the best estimates obtained to date for phase-
transition temperatures in the anisotropic model.

These results are obtained by performing extensive
transfer-matrix computations based on two unconven-
tional phenomenological renormalization schemes for
statistical models. One scheme (using the universal
quantity Y = L1 – d /χL) leads to lower bounds for crit-
ical points. The other strategy (associated with an equa-

tion for L1 – 2d / ) leads to upper bounds. These
assertions are supported, on the one hand, by a qualita-
tive comparison with analogous computations per-
formed for the exactly solvable two-dimensional Ising
model. On the other hand, detailed comparisons with
available quantitative results for the three-dimensional
Ising model show that the upper and lower bounds for
critical temperature found here are correct.

The bounds obtained for critical temperature are
used to specify, in terms of J '/J, limits for correct pre-
dictions of kBTc/J based on high-temperature expan-
sions [10]. Moreover, the high accuracy attained here in

kBTc

J
----------- 2

J
J'
---- 

 ln
J
J'
---- 

 lnln–
1–

,≈

κ L''

χL
4( ) χL

2
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computing the interval of critical points makes it possi-
ble to elucidate the actual behavior of the function
defined by (46).

The highly accurate relation between Tc and the cou-
pling constants J and J ' can be used to interpret experi-
mental results concerning quasi-one-dimensional Ising
magnets.

The accuracy of bounds for the critical point can be
further improved by the size of an L × L × ∞ subsystem
to L = 5. An additional estimate could also be used to
perform three-point interpolations, which would fur-
ther improve the accuracy of results. (Unfortunately,
the pair (1,2) cannot be used in the versions of the
extended phenomenological renormalization group
considered here.) According to Table 2, all of the prob-
lems discussed above must be solved for 86056 ×
86056 subblocks if 5 × 5 × ∞ subsystems are employed.
Currently, this task can be accomplished only by using
the best supercomputing facilities. In particular, recent
computations [40, 41] performed on the MVS-1000M
supercomputer at the Joint Supercomputing Center [42],
which is rated as one of the world top 100 [43],
advanced the solution of the complete spectral problem
only to 215 × 215 Hamiltonian matrices.

APPENDIX

The procedure used to reduce an L × L × ∞ unper-
turbed transfer matrix V0 to block diagonal form relies
on group theory and includes three stages: (1) a group-
theoretic analysis performed to determine subblock
dimensions in advance, (2) determination of the basis
vectors of irreducible representations by finding a sim-
ilarity transformation of the transfer matrix into block
diagonal form, and (3) actual calculations of submatrix
elements. Despite its outward simplicity, the last stage
is the most labor-consuming.

The group Z2 × (TL ∧  C4v) is on the order of g =
16L2. It can be generated by spin inversion R, transla-
tions t1 and t2 by one step in both transverse directions
for a cyclic L × L × ∞ parallelepiped, rotation C4 to an
angle of π/2 about the longitudinal axis of the parallel-
epiped, and reflections in the symmetry planes σv and

 containing the axis. In the initial representation
defined by the basis vectors

(A.1)

(spin variables Sij are now denoted by double sub-

σ'v

S11 S12 … SLL, , ,| 〉

S11 S12 … S1L

S21 S22 … S2L

… … … …
SL1 SL2 … SLL

≡
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Table 5.  Characters of the initial and two irreducible representations of the transfer-matrix symmetry group for the 2 × 2 × ∞
Ising subsystem

Z2 × C4v E C2 2C4 2σv R RC2 2RC4 2Rσv

Γ(1) 1 1 1 1 1 1 1 1 1 1

Γ(2) 1 1 1 1 1 –1 –1 –1 –1 –1

Γ 16 4 2 4 8 0 4 2 4 0

2σv' 2Rσv'
scripts), the group generators are

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

Every group transformation is a combination of these
operators.

Multiplying (A.2)–(A.7) on the left by the conjugate
vectors and using the normalization condition

(A.8)

one obtains the matrices of the initial representation Γ
of Z2 × (TL ∧  C4v). To analyze the structure of Γ, the
characters (traces of the constructed matrices) are calcu-

R S11 S12 … SLL, , ,| 〉 –S11 –S12 … –SLL, , ,| 〉 ,=

t1

S11 S12 … S1L

… … … …
SL1 SL2 … SLL

S1L S11 … S1 L 1–,

… … … …
SLL SL1 … SL L 1–,

,=

t2

S11 … S1L

S21 … S2L

… … …
SL1 … SLL

S21 … S2L

… … …
SL1 … SLL

S11 … S1L

,=

C4

S11 … S1L

… … …
SL1 … SLL

S1L … SLL

… … …
S11 … SL1

,=

σv

S11 … S1L

S21 … S2L

… … …
SL1 … SLL

SL1 … SLL

SL 1– 1, … SL 1– L,

… … …
S11 … S1L

,=

σv'
S11 … S1L

… … …
SL1 … SLL

SLL … S1L

… … …
SL1 … S11

.=

S11 S12 … SLL, , , S11' S12' … SLL', , ,〈 〉 δ SijSij'

i j, 1=

L

∏ ,=
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lated by using definitions (A.2)–(A.7) and relations (A.8)
and summing over all repeated indices in S:

(A.9)

(A.10)

and so on. This procedure was programmed in integer
arithmetic, and the characters of all elements in the
group were computed.

The multiplicity aµ of each irreducible representa-
tion Γ(µ) in Γ is calculated as 

(A.11)

where gi is the number of elements in the ith class of the
group, χi is the character of an element of the ith class

in the initial representation Γ, and  is the character
of an element of the ith class in the µth irreducible rep-
resentation; the sum is taken over all classes i of the
group (e.g., see [44]). The dimensions of the subblocks
corresponding to the one-dimensional irreducible rep-
resentations are equal to the multiplicities thus defined.

Table 5 shows the characters of the symmetry group
Z2 × C4v associated with the 2 × 2 × ∞ Ising cluster. (In
this case, there is actually no transverse translation, and
periodic boundary conditions imply mere doubling of
the constants of interactions between chains.)

The tabular data and formula (A.11) are used to
determine the structure of the initial representation of
the group:

. (A.12)

According to group theory, after a similarity transfor-
mation into a totally reduced representation, the trans-
fer matrix of the system has a block diagonal structure,

with 4 × 4 and 2 × 2 subblocks  and , respec-
tively (N1 = 4 and N2 = 2).

χ E( ) S11 S12 … SLL, , , S11 S12 … SLL, , ,〈 〉=

=  δSijSij

i j, 1=

L

∏ 2L
2

,=

χ R( ) S11 S12 … SLL, , , R S11 S12 … SLL, , ,〈 〉=

=  δSij – Sij,

i j, 1=

L

∏ 0,=

aµ
1
g
--- giχ iχ i

µ( )∗ ,
i

∑=

χ i
µ( )

Γ 4Γ 1( ) 2Γ 2( ) …+ +=

V0
1( ) V0

2( )
ICS      Vol. 98      No. 6      2004
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The characters of the representation Γ of the spatial
group T3 ∧  C4v are shown in Table 6. It is easy to see
(or verify by calculations) that the odd number of
chains in the system, combined with the fact that spatial
transformations can only move a spin configuration S11,
S12, …, SLL on an L × L lattice by, implies that the char-
acters of the elements involving spin inversions R are
zeros. When the set of characters is known, the struc-
ture of the representation Γ can be found for L = 3:

. (A.13)

Thus, the dimensions of the required subblocks are
N1 = N2 = 13. Therefore, the calculation of the eigenval-
ues and eigenvectors of a full 512 × 512 matrix can be
reduced to an analogous calculation performed for two
matrices of dimension as low as 13. The characters of
Z2 × (T4 ∧  C4v) listed in Table 7 are used to expand the
initial representation in terms of the irreducible repre-
sentations in question:

. (A.14)

This result implies that the eigenvalues and eigenvec-
tors of the 65536 × 65536 transfer matrix can be found
by solving spectral problems for matrices with dimen-
sions 433 and 372 on a PC instead of solving the com-
plete spectral problem on a supercomputer.

These procedures were also used to find N1 and N2
for Ising parallelepipeds with L > 4. The results of the

Γ 13 Γ 1( ) Γ 2( )+( ) …+=

Γ 433Γ 1( ) 372Γ 2( ) …+ +=

Table 6.  Characters of the initial representation of the group
T3 ∧  C4v , which has nine classes of conjugate elements

E 6σv 6σ' 9C2 4t1 4t1t2 18C4 12t1σv

512 64 64 32 8 8 8 4 4

12t1σv'
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group-theoretic analyses performed for the 5 × 5 × ∞
and 6 × 6 × ∞ systems are shown in Table 2.

The basis vectors of irreducible representations are
obtained by symmetrizing linear combinations of the
original basis vectors given by (A.1) or by applying
projection operators [44]. In particular, the basis vec-
tors of the irreducible representations Γ(1) and Γ(2) for
the 2 × 2 × ∞ chain are

(A.15)

where dots and crosses correspond to +1 and –1,
respectively. The basis vectors are then used to find the

sets of coefficients in matrix elements Vs .

f 1
1 2,( ) 1

2
------- · ·

· ·

× ×
× ×

±
 
 
 

,=

f 2
1 2,( ) 1

2 2
---------- · ·

· ×
· ·

× ·

· ×
· ·

× ·

· ·
+ + +=

± · ×
× ×

× ·

× ×
× ×
· ×

× ×
× ·

+ + +
 
 
 

,

f 3
1( ) 1

2
------- · ·

× ×
× ×
· ·

+
 
 
 

,=

f 4
1( ) 1

2
------- · ×

· ×
× ·

× ·
+

 
 
 

,=

f 5
1( ) 1

2
------- · ×

× ·

× ·

· ×
+

 
 
 

,=

f i
µ( )+ f j

ν( )
Table 7.  Characters of the group Z2 × T4 ∧  C4v

I II III IV V VI VII VIII IX X XI

(1) (4) (12) (27) (16) (52) (16) (27) (52) (16) (33)

Γ(1) 1 1 1 1 1 1 1 1 1 1 1

Γ(2) 1 1 1 1 1 1 1 –1 –1 –1 –1

Γ 216 212 210 28 26 24 22 28 24 22 0

Note: To minimize the table size, 40 classes are combined into 11 unified classes for which characters are equal in the representations Γ(1),
Γ(2), and Γ simultaneously. The number of elements in each unified class is shown in parentheses. The unified classes are I{E},

II{4t1σv}, III{4t1t2C2, }, IV{ , 4C2, 8t1C2, 4σv , , }, V{16t1C4}, VI{4t1, 4t1t2, t2, 16C4, 8t1σv ,

8t1t2σv , }, VII{ }, VIII{ , , 4RC2, 8Rt1C2, 4Rσv , , }, IX{4Rt1, 4Rt1t2, , 16RC4,

8Rt1σv , 8Rt1t2σv , }, X{ }, and XI{R, 4Rt2σv , 4Rt1t2C2, , 16Rt1C4}.

8σv' 2t1
2

t1
2
t2
2, 4t1

2σv 4t1
2
t2σv 4t1

2

8t1
2σv' 16t1σv' 2Rt1

2
2Rt1

2
t2
2

4Rt1
2σv 4Rt1

2
t2 4Rt1

2
t2

8Rt1
2σv' 16Rt1σv' 8Rσv'
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These sets consist of integers, which are calculated
once and for all, stored on a disk, and retrieved to con-

struct the matrices , , , …,  corre-
sponding to given T, J, and J'. For example, the matrix

elements in the subblocks  of the 3 × 3 × ∞ system
are

(A.16)

(A.17)

with i, j = 1, 2, …, 13 and

(A.18)

(A.19)

(A.20)

Since  and  are symmetric matrices, the coeffi-

cients  may be calculated only for their upper trian-
gular parts. Overall, 91 sets of five numbers are
required. After ordering the sets of indices i and j col-
umn-by-column into a one-dimensional sequence so
that i, j  l = i + j(j – 1)/2, the coefficients g are writ-
ten as

 

V0
1( ) V0

2( ) V1
12( ) V4

2( )

V0
1 2,( )

V0
1( )( )ij

2

nin j

------------- gs
ij( ) Kns

a( )cosh
s 1=

5

∑=

×
K' mi

b m j
b+( )

2
---------------------------- ,exp

V0
2( )( )ij

2

nin j

-------------=

× gs
ij( ) Kns

a( )sinh
s 1=

5

∑ K' mi
b m j

b+( )
2

----------------------------- ,exp

ni 2 18 36 12,  36,  72 72,  72 18 72 18 12 72 , , , , , , , , ,{ } ,=

mi
b

=  18 10 6 6 2 2 2 2 2 2 6 6 6–,–,–,–, , ,–, , , , , ,{ } ,

ns
a 9 7 5 3 1, , , ,{ } .=

V0
1( ) V0

2( )

gs
ij( )

1) 2 0 0 0 0 , 2) 0 18 0 0 0 ,

3) 18 0 144 0 0 , 4) 0 0 36 0 0 ,

5) 0 72 0 252 0 , 6) 36 0 216 0 396 ,

7) 0 0 0 12 0 , 8) 0 0 36 0 72 ,

9) 0 36 0 72 108– , 10) 12 0 0 24– 36 ,

11) 0 0 36 0 0 , 12) 0 72 0 252 0 ,

13) 0 0 288 0 360 , 14) 0 0 0 144 72– ,

15) 36 0 216 0 396 , 16) 0 0 0 72 0 ,
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17) 0 0 216 0 432 , 18) 0 144 0 576 576– ,

19) 0 0 144 144– 144 , 20) 0 72 0 720 504– ,

21) 72 0 504 648– 1368 , 22) 0 0 0 72 0 ,

23) 0 0 216 0 432 , 24) 0 72 0 720 504– ,

25) 0 0 72 72– 288 , 26) 0 144 0 576 576– ,

27) 0 0 576 576– 1440, 28) 72 0 504 648– 1368,

29) 0 0 0 0 72 , 30) 0 0 0 288 360– ,

31) 0 0 288 432– 576 , 32) 0 72 72– 72 216– ,

33) 0 0 144 288– 864 ,

34) 0 144 432– 1008 1008– ,

35) 0 72 216– 936 1368– ,

36) 72 144– 504 936– 936 ,

37) 0 0 0 0 18 , 38) 0 0 0 72 90– ,

39) 0 0 72 108– 144 , 40) 0 0 36– 72 0 ,

41) 0 0 36 72– 216 , 42) 0 72 72– 144 360– ,

43) 0 0 72– 288 288– ,

44) 0 72– 144 144– 288,

45) 18 0 0 72– 72 , 46) 0 0 0 0 72 ,

47) 0 0 0 288 360– , 48) 0 0 216 360– 720 ,

49) 0 0 72– 216 144– , 50) 0 0 216 360– 720 ,

51) 0 144 288– 864 1296– ,

52) 0 144 288– 864 1296– ,

53) 0 144– 432 720– 1296 ,

54) 0 0 144 288– 216 ,

55) 72 72– 288 864– 1296 , 56) 0 0 0 0 18 ,

57) 0 0 0 72 90– , 58) 0 0 36 72– 216 ,

59) 0 0 0 36 72– , 60) 0 0 72 108– 144 ,

61) 0 0 72– 288 288,– 62) 0 72 72– 144 360– ,

63) 0 0 72 216– 360 , 64) 0 18– 0 0 144 ,
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The coefficients  were calculated by using a special
program and stored in a file on a hard disk. The sets of

coefficients {ni}, , , and  are used
in (A.16) and (A.17) to calculate the matrix elements of
subblocks. In particular,

(A.21)

Similar operations are executed for the 4 × 4 × ∞ sys-
tem. Since the amount of numerical data that determine
g is huge, they cannot be written out here.

65) 0 0 144 288– 216 , 66) 18 0 0 72– 72 ,

67) 0 0 0 12 0 , 68) 0 0 36 0 72 ,

69) 0 0 0 144 72– , 70) 0 0 0 0 72 ,

71) 0 36 0 72 108– , 72) 0 0 72 –72 288 ,

73) 0 0 144 144– 144 ,

74) 0 0 0 144 288– , 75) 0 0 0 36 72– ,

76) 0 0 72– 216 144– , 77) 0 0 36– 72 0 ,

78) 12 0 0 24– 36 , 79) 0 0 0 0 72 ,

80) 0 0 0 288 360– , 81) 0 0 144 288– 864 ,

82) 0 0 0 144 288– , 83) 0 0 288 432– 576 ,

84) 0 72 216– 936 1368– ,

85) 0 144 432– 1008 1008– ,

86) 0 0 288 864– 1440 , 87) 0 0 72 216– 360 ,

88) 0 144– 432 720– 1296 ,

89) 0 72– 144 144– 288 ,

90) 0 72 72– 72 216– ,

91) 72 144– 504 936– 936 .

gs
ij( )

mi
b{ } ns

a{ } gs
ij( ){ }

V0
1( )( )11 2 9K( ) 18K'( ),expcosh=

V0
1( )( )34 2 3 7K( )cosh[=

+ 2 3K( )cosh 3 Kcosh+ ] 6K'( ),exp

V0
2( )( )13 13, 2 9K( )sinh 2 7K( )sinh–{=

+ 7 5K( )sinh 13 3K( )sinh Ksinh–[ ]– } 6K'–( ).exp
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Abstract—It is shown in the framework of the generalized mean-field approximation taking into account spa-
tial fluctuations of the local magnetic field that the collective effect of dipole interaction in a random 3D system
of identical (rodlike) magnetic nanoparticles with parallel easy magnetization axes shifts the relaxation magne-
tization curves towards shorter times (i.e., accelerates the relaxation process). In addition, the course of this pro-
cess depends (via the demagnetizing field) on the sample shape. The interaction between nanograins affects the
magnetization relaxation of a random 2D system only when the magnetic moments of the grains are perpendic-
ular to the plane of the system. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The relaxation of the magnetization of a system of
magnetic nanoparticles is a process determined by a
large number of factors, such as the spread in the geo-
metrical parameters (volume and shape) of such parti-
cles in real systems, the spread in the directions of their
easy magnetization axes and anisotropy fields, and the
(dipole–dipole) interaction between particles. The
description of this process is a difficult problem; it is
therefore not surprising that various approximate meth-
ods for solving this problem lead to contradictory
results (see [1] and the literature cited therein). One of
the basic questions is whether the above factors decel-
erate or accelerate the relaxation process. The experi-
mentally observed long-term relaxation processes in
such magnetic systems are often associated with a strong
spread in the values of at least one of the parameters
influencing the relaxation [2]. For example, the consider-
able spread in the sizes and shapes of magnetic grains,
which is typical of such systems, is chosen in [3, 4] as a
reason for such relaxation of magnetization of mag-
netic nanocomposites. Another reason for prolonged
relaxation may be the long-range interaction between
individual relaxing elements of the system, which
accelerates relaxation. In this case, a negative feedback
appears: the reason for this acceleration is simulta-
neously eliminated in the course of relaxation process
(i.e., when a relaxing integrated quantity approaches its
equilibrium value). In [5], for example, the relaxation
of magnetization of a 2D system of Ising magnetic
moments with the easy axis perpendicular to the plane
is considered in the mean field approximation. The fac-
tor accelerating the relaxation of individual elements in
such a system is the demagnetizing field proportional to
the relaxing quantity itself (total magnetization of the
1063-7761/04/9806- $26.00 © 1198
system). In [6, 7], an attempt was made to transgress the
frames of the mean field approximation due to the
inclusion of a part of the local field fluctuating with
time. Such fluctuations elevate the effective tempera-
ture of the system and, hence, change the relaxation
rate. The feedback mechanism operates in this case so
that, along with the suppression of fluctuations, the
effective temperature decreases (approaching the actual
temperature) as the system attains equilibrium, which
slows down the relaxation.

In this study, it will be shown that long-term relax-
ation of magnetization may occur in the ensemble of
interacting magnetic nanoparticles even in the absence
of all the three sources listed above (the spread in
parameters, the demagnetizing field, and time fluctua-
tions) if the arrangement of individual elements of the
system is not regular (i.e., if spatial disorder leading to
spatial field fluctuations takes place).

We will consider the systems consisting of mon-
odomain nanograins with uniaxial magnetic anisotropy
(geometrical or crystallographic). The magnetic energy
E of such a grain in a magnetic field H directed along
the easy axis can be written in the form

(1)

where θ is the angle between the magnetic moment of
the grain and its easy axis, Ku is the anisotropy energy
per unit volume, and µ = IsV is the magnetic moment of
a grain, Is being the saturation magnetization of the
grain material and V its volume. The angular depen-
dence of energy (1) corresponds to two potential wells
of different (for H ≠ 0) depth, corresponding to angles

E KuV θcos
2

– µH θ,cos+=
2004 MAIK “Nauka/Interperiodica”
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θ = 0 and θ = π and separated by an asymmetric barrier.
Different heights of this barrier,

, (2)

are measured from the bottom of the corresponding
well (HA = 2Ku/Is and the plus and minus signs corre-
spond to the “deep” and “shallow” wells, respectively;
for H > HA, the shallow well disappears and we must set
∆– = 0.1 

Thermal fluctuations lead to “jumps” of the mag-
netic moment of a grain from well to well, the rate of
such jumps being determined by the height of the cor-
responding barrier. Let n+ and n– be the grain concen-
tration in the states corresponding to the lower and
higher values of energy (1) (i.e., in the states corre-
sponding to the deep and shallow wells). Then the
change in the concentration can be written in the form

(3)

where Ω ~ 109–1010 s–1 is the frequency of the magnetic
moment’s “attempts to escape” from the well [10]. The
magnetization of the system is I = µ(n+ – n–); if we
introduce the relative magnetization j = (n+ – n–)/n,
where n = n+ + n– is the total concentration of the grains,
it follows from Eqs. (3) that

(4)

or

(5)

1 In actual practice, magnetization reversal of rodlike particles
occurs not via the rotation of the uniform magnetization, but via
the formation and subsequent growth of a critical “nucleus” with
a turned magnetization, i.e., an activation-type process [8]. Natu-
rally, the activation barrier height changes in this case. However,
according to the results of calculations [8], the field dependence
of the barrier height functionally differs from that in the Néel–
Braun theory only slightly. In accordance with experiment [9]
(elongated nanograins with an aspect ratio of about 10), the angu-
lar dependence of the remagnetization field also remains virtually
the same as in the Stoner–Wohlfahrt theory. Consequently, for-
mulas (2) following from this model can be used as before. The
change in the activation barrier height in this case is equivalent
only to renormalization of anisotropy energy Ku .

∆± KuV 1
H
HA

-------± 
  2

=

dn+

dt
-------- Ω n+

∆+

kT
------– 

 exp n–
∆–

kT
------– 

 exp– ,–=

dn–

dt
-------- Ω n–

∆–

kT
------– 

 exp n+
∆+

kT
------– 

 exp– ,–=

dj
dt
----- Ω 1 j+( )

∆+

kT
------– 

 exp–=

– 1 j–( )
∆–

kT
------– 

 exp ,

dj/dt ΩΦ j H,( ),–=
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where

For a 3D system, the magnetic field

(6)

appearing in expressions (1), (2), and (5) is a function
of magnetization I and is the sum of (i) external field
He , (ii) field H3 produced by all the grains located in the
Lorentz sphere, (iii) field 4πI/3 produced in the bulk of
a given grain by the magnetic moments of the grains
located on the surface of the Lorentz sphere surround-
ing the grain, and (iv) demagnetizing field Hd = –NI
(N is the demagnetizing factor) [11].

For a 2D system (monolayer of magnetic grains),
the expression for field H depends on the direction of
the easy axis of the grains. If this axis lies in the plane
of the system, the last two terms in expression (6) are
missing; if, however, this axis is perpendicular to the
plane of the system, Hd = –4πI and the last term is
absent.

As regards field H3, it is determined by the spatial
configuration and the directions (signs) of the magnetic
moments of the grains neighboring with the given grain
and varies from grain to grain. In the mean field model,
this difference is neglected and H3 is replaced by the
average (averaged over all grains) field 〈H3〉  propor-
tional to magnetization I: 〈H3〉  = αI. Moreover, since
α = 0 for a cubic lattice of the grains [11], the mean
field 〈H3〉 is usually also discarded (although α ≠ 0, for
example, for tetragonal and hexagonal lattices [12, 13]);
the same applies to a 2D square lattice of moments [14].
It will be shown below that the generalized mean field
approximation in which the spread in local fields H3 is
taken into account qualitatively changes the results
obtained in the traditional model in which field H3 is
disregarded. In this model, it is assumed that in zero
external field (typical conditions for observing the
relaxation of magnetization), the mean magnetic field
at grains is given by

(7)

respectively, for a 3D system, a quasi-two-dimensional
system with the moments perpendicular to the planes,
and a quasi-two-dimensional system with the moments
parallel to the plane. Field 〈H3〉  proportional to the mag-
netization of the system ensures the feedback between

Φ j H,( ) 1 j+( )
KuV
kT

----------– 1
IsH
2Ku

---------+ 
  2

exp




=

– 1 j–( )
KuV
kT

---------- 1
IsH
2Ku

---------– 
  2

–




.exp

H He H3 Hd 4πI/3+ + +=

H〈 〉
4π/3 N–( )I ,

NI ,–

0,





=
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the magnetization relaxation rate and its instantaneous
value. In the traditional approach, substitution H 
〈H〉  is performed in Eq. (5) (using relations (7)). Pre-
cisely this method was used for deriving the equation
for relaxation of the magnetization in a 2D system of
moments perpendicular to the planes, which was stud-
ied in [5]. It can be seen from relations (7) that in this
case the feedback leading to long-term relaxation is
ensured by a nonzero demagnetizing factor. We will
prove that such a relaxation is possible for N = 0 as well.

2. RELAXATION OF MAGNETIZATION
IN THE GENERALIZED MEAN FIELD MODEL

The generalization of the mean field approximation
lies in averaging Eq. (5) with the help of the distribution
function F(j, H3) of local fields H3 instead of the substi-
tution H  〈H〉:

(8)

this equation defines the relaxation of magnetization.
In this approximation, the problem is reduced to

defining distribution function F(j, H3), which was deter-
mined earlier [15, 16] for a number of systems with dis-
order. In studying the effect of the interaction between
grains on the relaxation process, it is usually assumed
that the grains are pointlike magnetic dipoles [1, 6, 7];
this assumption is valid only for spherical  grains.2

However, the “defect” of fundamental importance in
the mean field theory, i.e., the disregard of spatial cor-
relations, becomes significant in this case. As a matter
of fact, the distribution function F(j, H3) for a system
consisting of spherical grains (of diameter 2a) is a
Lorentzian function (independent of magnetization j
and even in H3) with wings truncated due to finite size
of the grains3 [15]:

(9)

where h0 = (8π2/9 )µn.

2 The interaction of uniformly magnetized spheres is equivalent to
the interaction of pointlike magnetic dipoles [17].

3 For a  0, the distribution function is transformed into the

Lorentzian function: F(j, H3)  h0/[π(  + )]. The type of

the ground state of such a system depends on the grain concentra-
tion: it is paramagnetic for na3 < 0.183; otherwise, the ground
state is ferromagnetic with a Curie temperature TC ~ µ2n/k.

dj
dt
----- Ω Φ j H He H3 Hd

4π
3

------µnj+ + +=,
∞–

∞

∫–=

× F j H3,( ) H3;d

h0
2

H3
2

F j H3,( )

=  
2 µ

h0a
3

----------arctan
1– h0

h0
2

H3
2

+
------------------, H3 µ/a3,≤

0, H3 µ/a3,>





3
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The initial stage of relaxation in this case is associ-
ated with a change in the magnetic state of the grains
which at the initial instant were in a field H3 ~ HA that
virtually eliminated the barrier ∆+ (see relation (2)). It
is well known, however [15], that strong local fields
H3 * h0 corresponding to the wings of the (Lorentzian)
distribution F(j, H3)) in a random system of spherical
dipoles cannot be regarded as a collective effect of a
large number of magnetic dipoles (as is assumed in the
mean field model), but are produced by the nearest
neighbors. It is these grains (forming only a small frac-
tion of the system) that determine the initial stage of
relaxation. We cannot expect that the “collective” mean
field approximation will provide a correct description
for such a “local” relaxation.

A completely different situation is observed in a 3D
system of randomly arranged rodlike grains, which
ensures the uniaxial form of magnetic anisotropy of the

grains (Ku ≈ ). For such a system (thin rodlike
grains of length 2a), the form of distribution function
F(j, H3) depends on the grain concentration n deter-
mined by the value of parameter na3. However, in a
wide concentration range 0.3 & na3 & 300, in which
the ground state of the system is paramagnetic, this
function is of a Gaussian shape (Fig. 1) with a peak lin-
early displaced towards negative fields H3 (directed
opposite to the magnetization) upon an increase in the
magnetization [16]:

(10)

The parameters of this distribution (the position of the
peak and the width) are determined by the grain con-
centration:

(11)

It is important to note that actual fields H3 in this
case are a collective result of composition of the fields
produced by a large number of grains, which corre-
sponds to the spirit of the mean field approximation and
raises hopes that this method provides a correct
description of relaxation of the magnetization in such a
system.

The correlation of interacting magnetic moments is
of considerable importance for analysis of magnetic
relaxation. Unfortunately, analytic methods for calcu-
lating such correlations in the case of the long-range
anisotropic interaction (which is the case in our system)
have not been developed. Nevertheless, the following
two arguments can be put forth, which allow us to dis-
regard correlations in the present case.

πIs
2

F j H3,( ) 1

2πσ
--------------

H3 jH j+( )2

2σ2
-----------------------------– .exp=

H j
4π
3

------µn, σ π
2

------- 1

na3
--------µn.= =
AND THEORETICAL PHYSICS      Vol. 98      No. 6      2004



MAGNETIC RELAXATION IN A RANDOM SYSTEM 1201
1. Since only long-wave correlations can exist in a
system with long-range interaction, these correlations
can be accounted for in the framework of the Ginzburg–
Landau theory (it is well known [18] that the results of
this theory differ from the results of the mean field the-
ory only in a range of temperatures close to the critical
temperature).

2. We have estimated the possible effect of correla-
tions by calculating the distribution function for local
magnetic fields in the case when all magnetic moments
in a sphere with the diameter equal to the length of the
rodlike grains completely correlate (the field produced
by each magnetic moment is parallel to the magnetic
moment at the center of the sphere). The allowance for
such a correlation only leads to a shift in the distribution
function (which is the smaller, the higher the integrated
magnetization of the system), the width of the function
remaining unchanged. Since the increase in the effec-
tive temperature of the system, which determines the
change in the magnetic relaxation rate, depends pre-
cisely on the width of the distribution function (see for-
mula (13)), we can assume that the inclusion of corre-
lations will not change the final conclusions.

We will study the relaxation of magnetization in
zero external field (He = 0); to reveal the role of disorder
in pure form, we will first consider a spherical sample
for which Nd = 4π/3. It follows from relation (6) that the
contribution of the magnetization to local field H in this
case is associated with random field H3 alone (H ≡ H3).
If local fields H3 were to be identical for all grains and
proportional to the magnetization (H3 = jHj , Hj =
const), Eq. (5) would not require any averaging and
would be transformed, after the substitution H3 
jHj , into a relaxation equation similar to that analyzed
in [5]. However, in our case, this equation has a com-
pletely different meaning: local field H3 = jHj is not a
demagnetizing field (as in [5]), but a random field of
magnetic moments in the Lorentzian sphere.

Substituting distribution function (10) into relation (8)
and integrating the result, we obtain the equation
describing the relaxation of magnetization in a random
system of rodlike grains:

(12)

where Θ = kT/KuV is the reduced temperature and

(13)

dj
dt
----- Ω Θ

Θeff
-------- 1 j+( )

1 jH j/HA–( )2

Θeff
----------------------------------–exp





–=

– 1 j–( )
1 jH j/HA+( )2

Θeff
-----------------------------------–





,exp

Θeff Θ ∆Θ, ∆Θ+
2σ2

HA
2

---------.= =
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Here, Θeff is the effective relaxation temperature
exceeding the actual temperature Θ by the quantity ∆Θ
proportional to variance σ2 of the distribution of ran-
dom local fields H3. Formally, Eq. (12) coincides with
the magnetization relaxation equation [15]; however, as
noted above, this equation has a completely different
meaning. Analogously, the excess of the effective relax-
ation temperature over the real temperature resembles
the result obtained in [6] where temporal field fluctua-
tions were taken into account. However, in the present
case, we are dealing with the result of spatial field fluc-
tuations.

Using the definitions of various parameters intro-
duced above, we can write the average local field and
the effective excess of temperature in the form

(since the relative fraction nV of the volume occupied
by the grains and the ratio of the grain diameter D to the
grain length 2a are always smaller than unity).
Although it follows from Eqs. (12) and (13) that local
field fluctuations can affect the relaxation process only
for Θ & ∆Θ ! 1, this does not mean that the corre-
sponding temperatures are very low. Indeed, for grains
of a material with Is ≈ 103 Oe, having a length of 2a =
100 nm, a ratio of D/2a = 0.1, and a concentration of

H j/HA
2
3
---nV  ! 1, ∆Θ π

4
--- D

2a
------ 

 
2

nV  ! 1= =

–5–10 0 5 10
H3/µn

0

0.05

0.10

0.15

0.20

0.25

0.30
µnF(0.5, H3)

1 2

Fig. 1. Distribution functions F(0.5, H3) of local fields for
the model system of randomly arranged rodlike Ising
dipoles with na3 = 1. The solid curves are approximating
Gaussian functions: uncorrelated magnetic moments (1)
and correlated magnetic moments (2) (see text).
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nV = 0.1, the latter inequality is satisfied even at T &
100 K.

Let us now consider the relaxation of magnetization
in the given system, which was preliminarily magne-
tized to saturation (j = 1) with the help of a strong exter-
nal field. In accordance with Eq. (12), after the removal
of the field (at instant t = 0), the relaxation process
obeys the law

(14)

where

(15)

The nature of this process is determined by two
parameters: temperature Θ and its effective increment
∆Θ proportional to interaction parameter σ2 (see
above). If we disregard the terms proportional to j in the
arguments of the exponential functions in relation (15)

1 ∆Θ
Θ

--------+ 
  1/2 jd

Ψ j Θ nV, ,( )
------------------------------

j

1

∫ Ωt,=

Ψ j Θ nV, ,( ) 1 j+( ) 1 βjnV–( )2

Θeff
----------------------------–exp=

– 1 j–( ) 1 βjnV+( )2

Θeff
-----------------------------– , βexp

2
3
---.=

1010 1012 1014 1016 1018

Ωτ

0

0.2

0.4

0.6

0.8

1.0
j

1013 1014 1015

N = 0
4π/3 0 4π

0

0.2

0.4

0.6N = 0

–
ln

(–
ln

 j)

Fig. 2. Magnetization relaxation in a random system of rod-
like grains for samples in the form of a long cylinder
(N = 0), a sphere (N = 4π/3), and a thin disk (N = 4π) at a
temperature Θ = 0.025 and for a grain concentration
nV = 0.1 (solid curves). The inset illustrates that the magne-
tization relaxation in a cylinder can be described by an
“extended” exponential (with exponent γ ≈ 0.3). The dashed
curve describes the magnetization relaxation in a cylinder at
the same temperature, but with nV = 0.05.

Ω/τ
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(for a low grain concentration or a low magnetization of
the system), the solution to Eq. (14) has the form

(16)

where

In accordance with this equation, the magnetization
relaxation in the present case follows a simple exponen-
tial law, but relaxation time τ depends to a considerable
extent on the interaction of magnetic moments. In sys-
tems where this interaction is strong, the relaxation
time at low temperatures can decrease by several orders
of magnitude. However, this can hardly be observed in
experiments since this time itself is very long at low
temperatures.

In nonspherical samples, local field H is determined
not only by the random field H3 produced by the dipoles
in the Lorentzian sphere, but, in accordance with rela-
tion (6), has an additional component

In this case, the procedure for deriving the relaxation
equation leads to the familiar equation (14) with a mod-
ified integrand:

(17)

where β1 = N/2π – 4/3 and β2 = N/2π (for a spherical
sample, N = 4π/3 and, hence, –β1 = β2 =2/3; see rela-
tions (15)).

At the initial stage of the relaxation process (as long
as j ≈ 1), the first term of function (17) prevails. The
effect of the demagnetizing field on the relaxation pro-
cess is determined by the sign of parameter β1: magne-
tization relaxation is slowed down for β1 > 0 (i.e., for
N > 8π/3) and accelerated for β1 < 0. The final relax-
ation stage (j  0), as well as the magnetization relax-
ation in a “dilute” system with a small volume fraction of
grains, always occurs in accordance with an exponential
law with the time constant τ defined by relation (16).

The results of calculations (based on Eq. (14) with
the integrand (17)) are presented in Fig. 2, which shows
the relaxation (solid) curves for samples in the form of
a long cylinder (N = 0), a sphere (N = 4π/3), and a thin
disk (N = 4π), which were magnetized along their rota-
tional axes. The dashed curve describing the magneti-
zation relaxation in a cylindrical sample with a lower

j t( ) t
τ
--– 

  ,exp=

τ 1
2Ω
------- 1 ∆Θ

Θ
--------+ 

  1/2 1
Θ 1 ∆Θ/Θ+( )
---------------------------------- .exp=

Hd 4πI/3+ 4π/3 N–( ) j IsnV .=

Ψ j Θ nV, ,( ) 1 j+( )
1 β1 jnV+( )2

Θeff
--------------------------------–exp=

– 1 j–( )
1 β2 jnV+( )2

Θeff
--------------------------------– ,exp
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concentration of magnetic grains demonstrates the
effect of the grain concentration on the relaxation pro-
cess (in the present case, a twofold decrease in the con-
centration increases the characteristic relaxation times
by more than two orders of magnitude).

It can be seen that the most prolonged magnetization
relaxation occurs in the cylindrical sample, In this case,
it is close to a logarithmic relaxation (i.e., described by
the law j = const – lnt) over the third–fourth decade (on
the time axis). The inset to Fig. 2 shows that the mag-
netization relaxation law for a long cylinder (N = 0)
over a time interval of 2–3 decades can also be
described by the “extended” exponential

which is often employed for describing relaxation pro-
cesses [19].

The model described here is also applicable for
analysis of a 2D random system of rodlike nanoparti-
cles. For moderate grain concentrations (0.1 & na3 &
100), distribution function F(j, H3) for random fields in
this case is close to the Gaussian function, but the val-
ues of parameters σ and Hj of this distribution are dif-
ferent [12]:

(18)

where h0 = µ/a3 ≡ IsV/a3 and n is the 2D (surface) con-
centration of grains. Numerical parameters I1 and I2 are
determined by the spatial dependence of energy
W(ρ, α) = –(µ2/4a3)h(ρ, α) of interaction between two
uniformly magnetized rodlike grains on the distance r ≡
ρa between the grains and on the angle α formed by the
straight line connecting these grains and the direction
of the magnetic moment [16]:

(19)

where

(20)

For the system in question, both the demagnetizing
field and the field of the Lorentzian 2D sphere (circle)
are equal to zero. For this reason, in zero external field,
the magnetization relaxation equation for a 2D system

j j0 t/t0( )γ–[ ] , 0 γ 1,< <exp=

H j/h0 na2I1, σ/h0( )2 2na2I2,= =

I1 α h ρ α,( )ρ ρ,d

0

∞

∫d

0

π/2

∫–=

I2
1
8
--- α h2 ρ α,( )ρ ρ,d

0

∞

∫d

0

π/2

∫=

h ρ α,( ) 2
ρ
---–

1

ρ2 4 4ρ αcos+ +
--------------------------------------------+=

+
1

ρ2 4 4ρ αcos–+
--------------------------------------------.
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coincides with Eq. (12) for a 3D system of a spherical
shape, in which we now have

(21)

Parameters I1 and I2 for a 2D system have a finite
value only provided that the grains do not touch one
another.4 Formally, this means that integration in rela-
tions (19) should be carried out over the domain in
which points are separated from the surface of a rodlike
grain by a distance longer than grain diameter D (see
the inset to Fig. 3). The result of the integration natu-
rally depends on the diameter-to-length ratio D/2a of
the grains.

Two cases should be distinguished: parallel axes of
the grains (i) lie in the plane of the system or (ii) are
perpendicular to this plane (this situation was analyzed
in [6, 7]). In the latter case, all angles α = π/2 and there
is no need to integrate with respect to α. Figure 3 shows
the corresponding dependences of parameters I1 and I2
on ratio D/2a.

4 Otherwise, distribution function F(j, H3) loses its Gaussian shape
and acquires long wings described by a power rather than the
exponential law.

H j

HA

-------
I1

2π
------na2 V

a3
-----,=

∆Θ 2σ2

HA
2

---------
I2

π2
-----na2 V

a3
----- 

  2

.= =

0.01 0.03 0.1 0.3

D/2a

0.1

1

10

100
I1, I2

I1

I2

I2

I1

2a

D

Fig. 3. Dependences of parameters I1 and I2 determining the
values of Hj and σ (see formulas (18) and (21)) on the diam-
eter-to-length ratio D/2a of the grains. Dashed curves corre-
spond to the case when the axes of the grains lie in the plane
of the system, while solid curves correspond to the situation
when the axes of the grains are perpendicular to this plane.
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In the first case, numerical calculations yield I1 &
0.2 ! 1 (i.e., the Gaussian distribution (10) is almost
symmetric relative to H3 = 0) and I2 & 3. The rodlike
shape of the grains means that their length 2a is an
order of magnitude (or more) larger than their diameter
D, which gives ∆Θ & 10–3naD. For this reason, ∆Θ &
2 × 10–4 even for a high grain concentration of 2naD ~
0.5 (the grains cover 50% of the surface). This means
that the interaction between grains noticeably affects
the magnetization relaxation in the system only at very
low temperatures in this case.

In the second case, for D/a & 0.02, parameter I2 *
10 and is an order of magnitude larger than in the first
case. This corresponds to a much stronger spread in
random fields (a broader relaxation function F(j, H3))
and a considerable elevation in the effective tempera-
ture in accordance with relation (21). Thus, the interac-
tion of nanograins in a random 2D system considerably
affects the relaxation of its magnetization, but only in a
system of the second type (magnetic moments of the
grains are perpendicular to the plane of the system).

3. CONCLUSIONS

In the framework of the generalized mean field
approximation accounting for spatial fluctuations of the
local magnetic field, it is shown that the collective
effect of the dipole interaction in a random 3D system
of identical (rodlike) magnetic nanoparticles with par-
allel easy magnetization axes leads to a displacement of
the relaxation magnetization curves towards shorter
times (i.e., it accelerates the relaxation process). The
systems where the mean value of the local magnetic
field differs from zero exhibit a negative feedback:
relaxation is slowed down upon a decrease in the aver-
age magnetization. These conclusions agree with the
results obtained in [6, 7] taking into account local field
fluctuations in a regular system. At the same time, the
results contradict the opinion that the interaction always
increases the effective height of energy barriers (2) and,
hence, slows down the relaxation.

As regards a random 2D system, the interaction of
nanograins affects the relaxation of its magnetization
only when the magnetic moments of the grains are per-
JOURNAL OF EXPERIMENTAL 
pendicular to the plane of the system, i.e., in the situa-
tion analyzed in [6, 7].
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Abstract—Screening and rearrangement of excitonic states in double layer systems were considered. Binding
energy changes as a result of screening by spatially separated electrons were calculated for both direct and spa-
tially indirect excitons. The critical electron concentrations at which screening effects cause a sharp decrease
in the exciton binding energy and an increase in the exciton radius depending on the interlayer distance were
determined. For a spatially indirect exciton, this dependence had a maximum caused by the competition of two
effects as the interlayer distance grew, namely, a decrease in the seed interaction between electrons and holes
and a weakening of the effect of hole screening by spatially separated electrons. The effect of spatially separated
electron–exciton drag in a double layer system was studied in the Debye–Hückel approximation taking into
account screening of interlayer electron–exciton interaction. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Advances in the technology for growing semicon-
ducting heterostructures allowed high-quality samples
with closely spaced parallel electron and (or) hole two-
dimensional channels to be prepared. One of the exam-
ples of such structures is double quantum wells, in
which two interacting electron–electron or electron–
hole layers are separated by a barrier of width D. Cur-
rently, double quantum well systems attract much
attention of researchers [1–10], in particular, in view of
predicted superfluidity in such systems [11], quasi-
Josephson phenomena [11, 12], and unusual properties
in strong magnetic fields (see [13] and the references
therein). It has also been predicted that interlayer elec-
tron–electron interaction should strongly influence the
energy spectrum of electrons in both integer and frac-
tional quantum Hall effects [14, 15], cause the appear-
ance of fractions with even denominators [16], and
increase the stability of the Wigner crystal state [17].
Moreover, spatially separated electrons and holes can
form bound states, or indirect excitons. Such a system
was found to have a fairly rich phase diagram (e.g.,
see [18]). Excitons with spatially separated electrons
and holes can experience the transition to the liquid
phase in a certain region of parameters, and the crystal-
lization of indirect electrons could occur in a certain
intermediate region of lower electron and hole concen-
trations [18]. Accordingly, the spectrum of collective
excitations of double quantum wells is modified com-
pared with the spectrum of collective excitations of a
single quantum well.

An important feature of the “two-component” sys-
tem that we are considering is the screening of excitons
1063-7761/04/9806- $26.00 © 21205
by electrons and/or holes, which causes a decrease in
their binding energy and an increase in their radius. As
follows from experimental data and theoretical calcula-
tions, the exciton luminescence line sharply disappears
at some critical electron gas concentration [19, 20]. As
the disappearance of the excitonic line is also observed
for a very rarefied excitonic system, the problem actu-
ally reduces to studying the “jump” disappearance of an
isolated excitonic state as the concentration of electrons
grows (as distinct from the Mott dielectric–metal tran-
sition in a purely excitonic system that occurs when the
density of the system increases). We address this prob-
lem in Sections 2 and 3.

Systems of quasi-two-dimensional excitons that
coexist with electrons in the same [19] or a spatially
separated layer (see [2, 6, 7] and the references therein)
are of interest because of possible observation of drag
effects. These effects could be used, first, to analyze
excitonic systems by measuring the transport properties
of electrons and, secondly, to control excitons by means
of electron transport [21]. For this reason, one of the
problems considered in Section 4 is that of the drag
coefficient of spatially separated excitons and elec-
trons.

2. THE REARRANGEMENT 
OF A DIRECT EXCITON IN A SYSTEM
OF SPATIALLY SEPARATED EXCITONS

AND ELECTRONS

Let there by two quantum wells of equal widths l0
with infinitely high walls spaced D apart. One of these
contains excitons whose concentration is Nexc, and the
004 MAIK “Nauka/Interperiodica”
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other, electron gas with concentration Ns . We ignore
tunneling between the two wells. The effect of screen-
ing by the electron gas will be included in the approxi-
mation of chaotic phases. Suppose that Nexc ! Ns; we
can then formulate the problem of screening of a single
exciton. In order to study this effect, let us calculate the
exciton binding energy as a function of the concentra-
tion Ns of the quasi-two-dimensional electron gas at
various distances between the quantum wells. We will
use the variational method for self-consistently calcu-
lating the energy of the exciton ground state in the
quantum well.

Below, we consider GaAs/AlGaAs quantum wells.
In the region of low momenta (low momenta give the
major contribution to the effects under study), the split-
ting of the energy levels that correspond to light and
heavy holes in a quantum well is fairly large, and we
can therefore restrict ourselves to a consideration of a
bound state on a heavy hole; the dispersion of a heavy
hole in the region of low momenta of interest to us is
quadratic. Bound electron states on light holes lie sub-
stantially higher in energy, and their binding energy is
substantially lower; these states are for this reason of no
interest to us. Calculations will be performed for the
effective mass of the electron in the quantum well plane
me = 0.067m0, the effective mass of the hole in the
quantum well plane mh = 0.26m0 (here, m0 is the mass of
the free electron), and static permittivity e = 12.86 [22].
Consider an exciton situated in the first quantum well.
After separating the coordinates of the center of gravity,
which describe motion over the plane of quantum
wells, the Hamiltonian takes the form

(1)

where

(2)

Here, µ* = memh/(me + mh) is the reduced mass of the
exciton; u(ze, zh) = u(ze) + u(zh); u(zi) is the quantum
well confining potential,

r is the coordinate of relative motion over the plane of
quantum wells; and ze and zh are the coordinates of the
motions of the electron and hole in the direction of
quantum well growth.

H
"

2

2µ*
----------∆– U r ze zh, ,( ),+=

U r ze zh, ,( ) e2

e r2 ze zh–( )2+
---------------------------------------– u ze zh,( ).+=

u zi( ) 0, zi l0/2 ,≤=

u zi( ) ∞, zi l0/2 ;>=
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As has been mentioned, the ground state energy will
be determined by the variational method with the trial
wave function (also see [20])

(3)

where γ and r0 are the variational parameters.

The condition that the distance between excitonic
levels should be much smaller than the characteristic

energy π2"2/2me(h)  of the dimensional quantization of
the electron (hole) in the quantum well is sufficient for
the adiabatic approximation to be applicable to this
problem. For this reason, averaging the interaction
potential along the direction of quantum well growth
yields the effective potential

(4)

The Fourier transform of this potential is

(5)

where J0(x) is the Bessel function of the first kind. Con-
sider the screening of the effective interaction potential
between an electron and a hole in one layer by spatially
separated quasi-two-dimensional electrons. The corre-
sponding equation written in the momentum represen-
tation has the form

(6)

where U22(q) is the Fourier transform1 of the electron–
electron interaction potential in the second layer,

U12(q) is the Fourier transform of the interlayer elec-
tron–hole interaction potential,

1 As in (5), f(q) = 2π (qr)f(r)rdr.

Ψ r ze zh, ,( ) N
πze

l0
------- 

  πzh

l0
-------- 

 coscos=

×
r2 γ2 ze zh–( )2+

r0
-----------------------------------------–

 
 
 

,exp

l0
2

Ueff r( ) Ψ r ze zh, ,( ) 2U r ze zh, ,( ) ze zh.dd∫=

Ueff q( ) eiq r⋅ Ueff r( ) rd∫∫=

=  2π J0 qr( )Ueff r( )r rd ,∫

Ueff
scr q( ) Ueff q( )=

+ U12 q( ) Π Π U22 q( )Π …+ +( )U12 q( )

=  Ueff q( )
U12 q( )ΠU12 q( )

1 U22 q( )Π–
--------------------------------------,+

J0∫

U22 r( ) φe z D+( ) e2/ r2 z D+( )2+ φe z D+( ) ;=

U12 r( ) φh z( ) e– 2/ r2 z D+( )2+ φe z D+( ) ;=
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Π is the polarization operator in the approximation of
chaotic phases at T = 0 [23, 24],

kF =  is the Fermi wave vector; and

represents the wave functions of the free electron and
hole in the z direction. The second term in (6) describes

the change in effective interaction (q) caused by
static Lindhard screening by the electron gas contained
in the second quantum well. Note that the potential

U12(q) tends to zero and (q)  Ueff(q) as the dis-
tance between the quantum wells increases.

The ground state energy of the quasi-two-dimen-
sional exciton is the minimum of the functional

(7)

with respect to the variational parameters r0 and γ.
Subsequent calculations of the ground state energy

and thence the exciton binding energy were performed
numerically. The calculations for l0 = 300 Å gave the

critical parameters  at which the binding energy
decreased e times (as in [20]) at various distances
between the quantum wells. The corresponding depen-
dence is shown in Fig. 1. For D  0, when the two-
dimensional electron gas is closest to the exciton, the
threshold concentration is on the order of 2 × 1010 cm–2.
This value is much larger than that obtained for a single
quantum well in [20]. The substantial difference in the
threshold concentrations arises because the problem
should be solved taking into account a nonlinear system
response for a single well and a linear response for dou-
ble wells. Let us clarify this point.

In a single well, the interaction between the screen-
ing quasi-two-dimensional electron gas and the hole
equals the interaction between the hole and the electron
that forms the exciton. As a result, we have an integral
equation with respect to the screened effective poten-
tial. If the exciton and electron gas are spatially sepa-
rated, a change in the interaction between the bound
hole and electron does not cause a change in the inter-
action potential between the screening quasi-two-
dimensional electron gas in one quantum well and the
hole in the other.2 It follows that we deal with a linear
problem, which is similar to that considered in [25] when
D  0.

2 Recall that we ignore tunneling in the system.

Π
me

π"
2

--------- 1 Θ q 2kF–( ) 1
2kF( )2

q2
---------------–– ;–=

2πNs

φe z( ) φh z( ) 2
l0
---

πz
l0
----- 

 cos= =

Ueff
scr

Ueff
scr

F Ψ r ze zh, ,( ) "
2

2µ
------∆– Ψ r ze zh, ,( ) Ueff

scr r( )〈 〉+=

rs
c
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As has been mentioned above, the screening effect
weakens as the distance between the quantum wells
grows and disappears as D  ∞.

The problem of the finiteness of the quantum well
barrier should be considered separately. In real
GaAs/AlGaAs systems, the barrier height is about
360 meV. This value is several orders of magnitude
higher than the exciton binding energy. The corre-
sponding effect is therefore of importance for very nar-
row quantum wells, when the size of the exciton3

 is
much larger than the quantum well width. The exciton
can then be outside the well most of the time (e.g.,
see [26]). The screening effects and bound state rear-
rangement should then be studied taking into account
the penetration of the wave function below the barrier.
If l0 ≥ 200 Å, the influence of the barrier on the exci-
tonic wave function is insignificant, and taking into
account a finite barrier height yields energy corrections
less than 5%. This shows that the model under consid-
eration is a good approximation for studies of this kind.

3. SCREENING OF INTERLAYER EXCITONS

Let us turn to the problem of spatially indirect
excitons. Let two layers4 be situated at distance D from
each other. One layer contains a hole gas of concentra-
tion Nh , and the other, an electron gas. Tunneling
between the layers is ignored. Suppose that Nh ! Ns and

 ! 1, where aB is the exciton Bohr radius. For
these conditions, we can formulate the problem of

3 The Bohr radius of the exciton is on the order of 100 Å.
4 To simplify numerical calculations, we consider a purely two-

dimensional case, because the small layer thickness is of no sig-
nificance for the effect under consideration.

NhaB
2

0 1000 2000 3000

D, Å

1

2

3

rs
c

Fig. 1. Dependence of critical parameter  at which the

collapse of the excitonic state in a GaAs/AlGaAs quantum
well of width 300 Å occurs on distance D between quantum
wells.

rs
c
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screening of a single spatially indirect exciton. The
effect of screening by the electron gas will as previ-
ously be included in the approximation of chaotic
phases. The screened interaction potential can then be
written in the momentum representation in the form
(e.g., see [24])

(8)

where

Uscr q( )
U12 q( )

1 U22 q( )Π–
------------------------------,=

U22 q( ) 2πe2

eq
-----------, U12 q( ) 2πe2

eq
-----------e qD– .–= =

30 6 9 12 15 rs

0.2

0.4

0.6

0.8

1.0

Eb, meV

Fig. 2. Binding energy Eb of a spatially indirect exciton in a
double layer system based on GaAs/AlGaAs with a 200 Å
interlayer distance as a function of dimensionless parameter
rs in the approximation of chaotic phases (T = 0 K).

2500 500 750 1000 1250 D, Å

4

8

12

16

rs
c

Fig. 3. Dependence of critical parameter  at which the

collapse of a spatially indirect excitonic state occurs on
interlayer distance D: r0  aB = "2e/2µe2, γ = const/D
(D < r0), r0 = const · D, and γ  1 at large D.

rs
c
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The Hamiltonian of the spatially indirect exciton has
the form

(9)

where Uscr(r) is the Fourier transform of the Uscr(q)
potential (see Footnote 1). The ground state energy of
the spatially indirect exciton is found by minimizing
the energy functional for the wave function

(10)

with respect to the r0 and γ parameters.
The binding energy of a spatially indirect exciton

calculated for D = 200 Å as a function of dimensionless
parameter rs is shown in Fig. 2. The rs parameter
describes the mean distance between the electrons in
the gas in Bohr radius aB units, rs = (aB )–1. The

figure shows that the bound state experiences a rear-
rangement similar to that in a single quantum well.
Note that the rearrangement under consideration is
smoother, which, like the existence of bound states at
arbitrary quasi-two-dimensional electron gas concen-
trations, is caused by the purely two-dimensional char-
acter of the interaction potential.

On the other hand, because of the existence of many
experimental works performed for structures with dif-
ferent interlayer distances [1, 2, 6, 7], the behavior of
the bound state depending on distance D is of interest.

The dependence of the critical parameter  on the dis-
tance between spatially separated electrons and holes is
shown in Fig. 3. An unexpected and very intriguing
behavior related to a change in the wave function of the
spatially indirect exciton even when it is not screened is
observed. For instance, the equations for the variational
parameters in the region of small D values (D < r0) take
the form

as Ns  0. In the absence of screening, the binding
energy of the spatially indirect exciton tends to the
binding energy of the two-dimensional direct exciton as
D  0. Nevertheless, the presence of a growing γ
parameter is indicative of different behaviors of the spa-
tially indirect and two-dimensional direct excitons, and
this difference is responsible for substantial differences
in the effectiveness of screening of these bound states.
At large D, the variational parameters behave as (see
Fig. 3)

Ĥ
"

2

2µ
------∆– Uscr+ r( ),=

Ψind r( ) N
r2 γ2D2+

r0
--------------------------–

 
 
 

exp=

2πNs

rs
c

r0 aB
"

2
e

2µe2
-----------, γ const

D
------------= =

r0 const D, γ 1,⋅=
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and the  = (D) dependence has a maximum at

 ≈ D, where the transition from one region to the
other occurs.5 

Another question that we considered in detail was
the influence of finite layer thicknesses in the z direc-
tion. Calculations by the numerical relaxation method
(e.g., see [27]) show that this complication of the prob-
lem only results in the renormalization of the distance
between spatially separated electrons and holes,

(〈ze, h〉  is the coordinates of the electron and hole aver-
aged over the wave function), and does not give new
physical effects. This result is, however, important for
comparatively estimating experimental data on the
binding energy of spatially indirect excitons and the
effectiveness of indirect Coulomb interaction.

4. EXCITON-ELECTRON DRAG 
IN A DOUBLE LAYER SYSTEM

In this and the next sections, we discuss drag effects.
Let us consider a double layer structure in which, in one
of the layers indexed 1, excitons with density inhomo-
geneity are created by a laser (for instance, by using a
mask opaque to laser radiation, focusing, etc.). The
other layer indexed 2 contains electron gas of density
n2. Tunneling is ignored. Our goal is to calculate the
response of the system of excitons to an external elec-
tric field applied to the system of electrons.

The exciton mass flux i = m1n1v1 and the electron
charge flux j = –en2v2 in the double layer system of
electrons and excitons can be written via the exciton
concentration gradient ∇ n1 and external electric field
E2 applied to the electronic subsystem as

(11)

where

D11 is the exciton diffusion coefficient, D21 is the inter-
diffusion coefficient of excitons and electrons, µ12 is the

5 Here,  is the radius of the screened spatially indirect exciton

at the quasi-two-dimensional electron gas concentration that cor-

responds to the critical  parameter at given D.
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mutual mobility (drag) coefficient of excitons and elec-
trons, and µ22 is the coefficient of mobility of electrons.

Note that the D11 and µ22 coefficients (like D21 and
µ12) in the double layer system that we are considering
take into account the interaction between electrons and
excitons.

If ∇ n1 = 0, the exciton flux is

(12)

As follows from (12), the velocity of excitons is then

(13)

Let us calculate the velocity that excitons acquire as
a result of their interaction with electrons. The kinetic
equations then take the form

(14)

(15)

where I1 is the collision integral that takes into account
all exciton scattering processes, including exciton scat-
tering by electrons; p2 is the momentum of electrons;
and I12 is the collision integral that takes into account
exciton scattering by electrons. As macroscopic forces
do not act on excitons, the term (∂f1/∂p1)  in (14) is
zero (p1 is the momentum of excitons).

To simplify (14) and (15), we assume that the cur-
rent of electrons is uniform and the collision integral I21
is a small addition to I2 and can be ignored in (15). In
addition, our only interest is the drag velocity v drag,
which is assumed to predominate over the velocity of
diffusion v diff . We can then omit the term containing the
derivative of f1 with respect to the coordinate in (14).
These simplifications yield

(16)

(17)

As usual, (17) is linearized by representing f2 in the
form

(18)

where  is the Fermi function satisfying the normal-
ization condition

(19)

i1 n1m1µ12E2.–=

v1 µ12E2.–=

∂ f 1

∂r1
--------v1 I1 I12,+=

∂ f 2

∂r2
--------v2

∂ f 2

∂p2
--------ṗ2+ I2 I21,+=

ṗ1

I1 I12+ 0,=

∂ f 2

∂p2
--------ṗ2 I2.=

f 2 f 2
0 f 2

0 1 f 2
0–( )ψ2,+=

f 2
0

n2 2 f 2
0 p2d

2π"( )2
-----------------.∫=
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Using the τ-approximation to I2, we obtain

(20)

Here, E2 = {E2, 0} is the external electric field strength
and τ2 is the relaxation time of electrons.

Let us write (16) in more detail,

(21)

where w(p1p2; p1'p2') = (2π/")|W(q)|2 is the probability
of exciton scattering by an electron in the Born approx-
imation (q = p2' – p2) and W(q) is the Fourier transform
of the effective exciton–electron interaction energy (see
Section 5). We will use f1 in the form

(22)

where  is the Bose function with the chemical poten-
tial µ = µ(n10) = µ0 normalized as

(23)

Substituting f1 given by (22), f2 given by (18), and I1 =

–(f1 – )/τ1 (τ1 is the relaxation time of excitons)
into (21) yields the linearized equation

(24)

The condition v diff ! v drag allows the ψ1 and ψ1' terms
in the integrand in (24) to be ignored.

The equation for the drag velocity takes the form

(25)
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Let us write the equation for v drag [see (13)] in the form

(26)

Taking into account equalities (24) and (25) yields µ12
in the form

(27)

After certain transformations of (27), the coefficient of
mutual mobility µ12 can be written as

(28)

where

(29)

(30)

If the parameters of the system are such that the dis-
tribution of excitons and electrons is Boltzmann (the
classical case), a simpler equation for µ12 follows
from (28), namely,

(31)

5. THE SCREENING 
OF THE DRAG EFFECT

Lastly, we turn to calculations of the screening of
two-dimensional polarization (electron–dipole) inter-
action, which causes the drag of two-dimensional exci-
tons by spatially separated electron gas. The effective
interaction energy in the double layer system will be
calculated using the self-consistent approximation. If

v drag µ12E2.–=
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the exciton radius is much smaller than the distance
between the electron and exciton, the interaction
energy between the isolated electron and exciton has
the form (see [21])

where γ = αe2/2e, α is the polarizability of the two-
dimensional exciton in the ground state, D is the dis-
tance between layers, |r1 – r2| is the distance between
the exciton and electron along layers, and e is the
medium permittivity. The equation for the effective
interaction energy in a many-particle electron–exciton
system will be derived on the assumption that exciton–
exciton interaction is negligibly weak compared with
electron–exciton interaction and can therefore be
ignored. Let us place trial charge –e into the electronic
subsystem at the origin. The linearized kinetic equa-
tions for the distribution functions of excitons and elec-
trons have the form

(32)

(33)

where

The interaction energies W(r, 0) and W(r, D) obey the
equations

(34)

(35)

where

Passing to Fourier components in (32)–(35) (we
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assume that k = {k, 0}) yields

(36)

(37)

where  is the Bose function,  is the Fermi func-
tion,

(38)

(39)

F(k, D) = (πk/D)K1(kD), and K1(z) is the Macdonald
function.

Using (36)–(39), we obtain a system of two alge-
braic equations for determining W(k, 0) and W(k, D),

(40)

(41)

where

(42)

If  and  are Boltzmann distributions, then

(43)

and if  is a Fermi step, then

(44)
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As a result, the equation for the effective interaction
energy in a many-particle electron–exciton system
takes the form

(45)

The effective interaction energy for a two-compo-
nent system of interacting electrons and excitons with a

low density of the latter (Nexc  ! 1) has the form

(46)

where ΠDH = β2 is the polarization operator in the clas-
sical Debye–Hückel approximation at T ~ EF [28, 29].
The polarizability of a two-dimensional exciton in the
ground state is given by (e.g., see [18, 21])

.

Taking this into account, we can write the γ = αe2/2e
parameter in (46) in the form

(47)

Next, consider the influence of screening on the drag
coefficient µ12. Let us first fix the temperature of the
system (T = 10 K) and construct the dependence of
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/  on the concentration of the two-dimensional

electron gas (Fig. 4); here,  is the screened drag
coefficient calculated by (31) with potential (46) and

 is the drag coefficient for a system of noninteract-
ing electrons and excitons. One can see that the exci-
ton–electron drag coefficient decreases exponentially
as n2 increases. It follows that the drag effect in a
strongly correlated electron–exciton system is less
manifest than the drag effect in a rarefied electron–exci-
ton or electron–electron system. This circumstance
complicates experimental observations of this effect in
systems of spatially separated electrons and excitons.
On the other hand, the effectiveness of screening by a
two-dimensional electron gas decreases as the temper-
ature increases, and the exciton–electron drag coeffi-
cient increases, the interlayer distance being the same
(Fig. 3, inset). We may therefore hope that this effect
will be observed in high-quality structures at low elec-
tron gas concentrations.

6. CONCLUSIONS

In this work, we solved two problems for double
layer systems. First, we considered a system with spa-
tially separated excitons and electrons, studied spatially
indirect screening effects, and obtained a dependence

of the critical parameter  on distance D between
quantum wells. It was found that, in such a system, the
solution is found in the linear response approximation.
In the limit D  0, the results are in agreement with

µ12
scr µ12

0

µ12
scr

µ12
0
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those obtained by Kleinman [25], who considered a
single quantum well in this approximation. In the sec-
ond problem, the screening of a spatially indirect exci-
ton was considered. We obtained the dependence of the
binding energy of a spatially indirect exciton on the
concentration of the quasi-two-dimensional electron
gas to show that the bound state experienced rearrange-
ment and constructed a dependence of the critical

parameter  on distance D between the layers. This
dependence was used to show how a given bound state
was modified as D changed and how this change influ-
enced the effectiveness of the screening properties of
the quasi-two-dimensional electron gas. It was found
that taking into account the thickness of layers caused
the renormalization of the distance between the spa-
tially separated electron and hole. Coulomb interaction
in such systems with an interlayer distance on the order
of 50–300 Å was shown to be substantial. In addition to
the rearrangement of the excitonic state, we studied the
drag effect in the system of spatially separated excitons
and electrons. It was shown that the drag coefficient,
which appeared because of screening by spatially sep-
arated electrons, decreased exponentially as the con-
centration of the electrons increased. On the other hand,
the effectiveness of screening decreased and the drag
coefficient µ12 therefore increased as the temperature
grew. To summarize, the collective effects that we dis-
cussed in this work and that are mainly determined by
electron–hole interlayer interactions (crystallization,
superfluidity, drag effects, and quasi–Josephson phe-
nomena) can be studied experimentally.
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Abstract—The solution to the Schrödinger equation is analyzed for two particles interacting in an external
potential. It is assumed that a shallow level exists for one of the particles in the external potential. It is shown
that repulsion leads to a transfer of one of the particles to the continuous spectrum after attainment of the
interaction threshold. For the shallow level, the threshold value of the interaction is independent of level depth.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of particles in a solid cannot be
exactly taken into account; various approximations
used for this purpose make it possible to single out the
“principal terms” with a subsequent allowance for the
remainder [1–3]. The introduction of an impurity into a
metal leads to a redistribution of the electron density
and, hence, necessitates the inclusion of the electroneu-
trality condition. New physical phenomena are
observed if the impurity is strong enough to lead to the
formation of a localized state. As the first stage of inves-
tigation of this effect, we consider the problem of
motion of two interacting particles in an external poten-
tial such that a shallow level exists for one of the parti-
cles. We assume that the interaction is repulsive. In the
absence of interaction, the level can be filled with two
particles (electrons) with opposite spins.

As a result of the interaction, one of the particles is
separated from the center by a larger distance than the
other. In this case, a difference emerges between the
exact solution and the Hartree–Fock approximation.
The Hartree–Fock equations are symmetric relative to
the substitution 1  2 and perturbation theory in the
interaction generates two identical one-particle func-
tions. For this reason, the Hartree–Fock equations
acquire a bifurcation point above which two different
functions of the one-particle approximation exist, and
the energy of such a state is lower than the solution
composed of identical one-particle functions. Above a
certain critical value of the interaction, the level is
occupied by only one particle, while the other particle
goes to the continuum. This critical value can be deter-
mined in the Hartree–Fock approximation. Near the
threshold, the correction terms to the Hartree–Fock
approximation are small and can be found in perturba-
tion theory.

                                 
1063-7761/04/9806- $26.00 © 21214
2. SCATTERING FUNCTIONS IN A POTENTIAL 
WITH A SHALLOW LEVEL

We assume that U(r) is a short-range potential in
which a shallow level with energy E0 < 0 exists. We set

(1)

Since the level is shallow, the radius of the localized
state κ –1 is much larger than the effective radius a of the
potential U(r). The results are independent of the
explicit form of potential U(r) as long as the localized
level can be treated as shallow. For simplicity, we will
demonstrate our conclusions for the simplest form of
potential U(r):

(2)

The localized (ground) state ψ0 of the Schrödinger
equation can be represented in the form

(3)

where

(4)

2m E0 κ .=

U r( )
U0 for r a,<–

0 for r a.>
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ψ0
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e κa– 2m U0 E0–( )ρ( )sin

2m U0 E0–( )a( )sin
------------------------------------------------------, ρ a.<
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The normalization coefficient B is given by

(5)

in the approximation we are dealing with (independent
of the explicit form of the potential), we have

(6)

Energy E0 of the localized state is the solution to the
equation

(7)

Under the condition κa ! 1, Eq. (7) leads to the
important relation

. (8)

The wave function of the continuous spectrum in
state s can be written in the form

(9)

where

(10)

L being the size of the sphere (at the boundary of this
sphere, the boundary condition is set) and δE the scat-
tering phase. The scattering phase satisfies the equation

(11)

It follows from Eqs. (8) and (11) that in the range of
low energies (E ! U0), phase δE satisfies the equation
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------------------------------------------------------





B 2κ .=

2m U0 E0–( )a( )tan
1
κ
--- 2m U0 E0–( ).–=

2mU0a
π
2
--- 2κa

π
--------- …+ +=

ψE
1

4π
----------1

ρ
---χE,=

χE
2
L
---=

×
2m U0 E+( )ρ( )

2mEa δE+( )sin

2m U0 E+( )a( )sin
-------------------------------------------------,    ρ a , < sin

2

 

mE

 

ρ δ

 

E

 

+

 

( )

 

,

 

ρ a,>sin





2mEa δE+( )tan

=  E
U0 E+
---------------- 2m U0 E+( )a( ).tan

δEsin
2mE

2mE κ2+
----------------------- 

  1/2

, δE 0= π.= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
                                    

 

Expression (12) for the scattering phase at low ener-
gies is universal and independent of the explicit form of
short-range potential 

 

U

 

(

 

r

 

) [4].
For a nonzero value of angular momentum, scatter-

ing functions 

 

ψ

 

(

 

l

 

, 

 

M

 

)

 

 can be chosen in the form

(13)

In the region 

 

ρ

 

 > 

 

a

 

, function 

 

χ

 

l

 

(

 

ρ

 

) satisfies the con-
dition

(14)

where  is the scattering phase with angular momen-
tum 

 

l

 

 and energy 

 

E

 

, and 

 

J

 

ν

 

 is the Bessel function. For
low energies, all scattering phases with 

 

l

 

 

 

≠

 

 0 are small
and can be neglected. In this case, we have

(15)

In the absence of interaction, two particles with
opposite spins can occupy the same level. The interac-
tion leads to the emergence of correlation between the
particles. The problem is to determine the threshold
value of interaction potential 

 

V

 

(

 

r

 

1

 

 – 

 

r

 

2

 

), for which the
energy minimum is attained in the state with one of the
particles in the continuous spectrum. To reveal the sig-
nificant moments in the problem, we will use perturba-
tion theory in interaction potential 

 

V

 

(

 

r

 

1

 

 – 

 

r

 

2

 

). After this,
we will use perturbation theory in the deviation of the
potential from the threshold value. As the zero-order
approximation, we will use the Hartree–Fock equations
in this case.

3. PERTURBATION THEORY
IN INTERACTION POTENTIAL

We write the operator  of the system of two inter-
acting particles in the form

(16)

where  is the zeroth-approximation Hamiltonian

(17)

and  is the Laplacian.

ψE
l M,( ) Yl

Mχ l ρ( )/ρ.=

χ l ρ( ) ρ Jl 1/2+ 2mEρ 
 





∼

+ 1–( )l δE
l( )J l 1/2+( )– 2mEρ 

 




,tan

δE
l( )

χ l ρ( ) π
L
--- 2mEρ 

 
1/2

Jl 1/2+ 2mEρ 
  ,=

l 0.>

L̂

L̂ Ĥ0 V r1 r2–( ) 2 E0 ,+ +=

Ĥ0

Ĥ0
1

2m
------- ∆r1

∆r2
+( )– U r1( ) U r2( ),+ +=

L̂0 Ĥ0 2 E0 ,+=

∆r1
SICS      Vol. 98      No. 6      2004



1216 OVCHINNIKOV
The function

(18)

is the zeroth mode of operator ,

(19)

In perturbation theory, the function  of the ground
state of two particles and energy E can be represented
in the form of a power series in interaction potential
V(r1 – r2):

(20)

From formulas (16) and (20), we obtain

(21)

and so on.
The solvability condition for system of equations (21)

determines the value of energy Ei:

(22)

On the subspace orthogonal to the zeroth mode,

operator  has the inverse operator , which can
be represented in the form

(23)

In this expression, indices ν and µ denote three vari-
ables: energy E and indices of angular momentum l, M,

(24)

ψ̃0 r1 r2,( ) ψ0 r1( )ψ0 r2( )=

L̂0

L̂0ψ̃0 0.=

ψ̃

ψ̃ ψ̃0 ψ̃1 ψ̃2 ψ̃3 …,+ + + +=

E 2 E0– E1 E2 E3 … .+ + + +=

L̂0ψ̃1 Vψ̃0 E1ψ̃0–+ 0,=

L̂0ψ̃2 V E1–( )ψ̃1 E2ψ̃0–+ 0,=

L̂0ψ̃3 V E1–( )ψ̃2 E2ψ̃1– E3ψ̃0–+ 0,=

L̂0ψ̃4 V E1–( )ψ̃3 E2ψ̃2 E3ψ̃1 E4ψ̃0– 0,=––+

E1 d3r1d3r2ψ̃0Vψ̃0,∫=

E2 d3r1d3r2ψ̃0Vψ̃1,∫=

E3 d3r1d3r2ψ̃0Vψ̃2,∫=

…………………………

L̂0 L̂0
p( )

1–

L̂0
p( )

1– ψ0 r1( )ψ0 r1'( )ψν r2( )ψν* r2'( )
Eν E0+

------------------------------------------------------------------=

+
ψν r1( )ψν* r1'( )ψ0 r2( )ψ0 r2'( )

Eν E0+
------------------------------------------------------------------

+
ψν r1( )ψν* r1'( )ψµ r2( )ψµ* r2'( )

Eν Eµ 2 E0+ +
-------------------------------------------------------------------.

ν E l M, ,{ } ,=
JOURNAL OF EXPERIMENTAL
where energies Eν, µ ≥ 0. The sum over the states of the
continuous spectrum is replaced by the integral with
respect to energy,

(25)

and summation is carried out over indices l and M. In
formula (20), partial summation can be carried out.
This gives

(26)

where operator  is defined by the expression

(27)

It should be noted that operator (V – E1) is not
positive. It has negative eigenvalues E– such that

(28)

For this reason, perturbation theory in the interaction
potential can be used in any case under the condition

(29)

The general formula for the solution for the ground
state  can be written in the form

(30)

where

(31)

For large values of quantities ρ1, 2 , the number of
significant harmonics is large. However, in the range of
ρ1, 2 @ κ –1, only one harmonic with angular momentum
l = 0 survives since the asymptotic form at large dis-

L
π
---d 2mE,∑

ψ̃ ψ̃0 L̂0
p( )

1–
R̂ψ̃0,–=

R̂

R̂ V V 1 L̂0
p( )

1–
V E1–( )+[ ]

1–
L̂0

p( )
1–
V–=

– E2V L̂0
p( )

1–
1 V E1–( ) L̂0

p( )
1–

L̂0
p( )

1–
V E1–( )+[ ]–{

+  V E 1 – ( ) L ˆ 0 
p ( ) 

1–
 V E 1 – ( ) L ˆ 0 

p ( ) 
1–

 [  

+

 

V E

 

1

 

–

 

( )

 

L

 

ˆ

 

0

 

p

 

( )

 

2–

 

V E

 

1

 

–

 

( )

+ L̂0
p( )

1–
V E1–( ) L̂0

p( )
1–

V E1–( ) ]

– V E1–( ) L̂0
p( )

1–
V E1–( ) L̂0

p( )
1–

V E1–( ) L̂0
p( )

1–
[

+ V E1–( ) L̂0
p( )

1–
V E1–( ) L̂0

p( )
2–

V E1–( )

+ V E1–( ) L̂0
p( )

2–
V E1–( ) L̂0

p( )
1–

V E1–( )

+ L̂0
p( )

1–
V E1–( ) L̂0

p( )
1–

V E1–( )

× L̂0
p( )

1–
V E1–( ) ] } L̂0

p( )
1–
V … .+

L̂0
p( )

1–

E– E1/ E0 .≥

E1 E0 .<

ψ̃

ψ̃ r1 r2,( ) ψ̃ ρ1 ρ2 z, ,( ),=

r1 2, ρ1 2, , z
r1 r2⋅
ρ1ρ2
--------------.= =
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tances is associated with singularities in the scattering
phase. Nevertheless, in the general case, the approxi-
mation that takes into account only the states with l = 0
in the continuous spectrum cannot be used for calculat-
ing the energy corrections in formula (22). The energy
of state can be reconstructed from the asymptotic
expansion of the wave function.

4. SECOND-ORDER PERTURBATION THEORY 
FOR THE WAVE FUNCTION 

IN THE ASYMPTOTIC REGION

In the asymptotic region ρ1, 2 ≥ κ –1, we can use for
the extreme left operator the approximation that takes
into account only the states with l = 0. In this approxi-
mation, the first-order correction  is given by

(32)

ψ̃1

ψ̃1
2π
κ

------E1
κe

κρ1–

4π3ρ1ρ2

-------------------- d 2mE
E E0+
-------------------

0

∞

∫



–=

× δE 2mEρ2 δE+( )sinsin

+
κe

κρ2–

4π3ρ1ρ2

-------------------- d 2mE
E E0+
------------------- δEsin

0

∞

∫

× 2mEρ1 δE+( )sin
1

4π4ρ1ρ2

--------------------+
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Phases δE in this equation are defined by formula (12).
The first two integrals in formula (32) can be calculated
comparatively easily for arbitrary values of ρ1, 2 . In the
asymptotic region, we obtain from Eq. (32)

(33)

Formula (21) leads to the second-order correction to
the wave function,

(34)

It should be noted that operator  produces
terms of the form (κρ1, 2)2exp(–κ(ρ1 + ρ2)) for large val-
ues of ρ. These terms determine the renormalization of
quantity κ. Formulas (23) and (34) lead to

×
d 2mEνd 2mEµ

Eν Eµ 2 E0+ +
------------------------------------------- δEν

δEµ
sinsin

0

∞

∫

---× 2mEνρ1 δEν
+( )sin 2mEµρ2 δEµ

+( )sin




.

ψ̃1
mE1

2πκ
----------e

κ ρ1 ρ2+( )–

ρ1ρ2
--------------------- 1

2
--- κmax ρ1 ρ2,( )– .–=

ψ̃2 E1 L̂0
p( )

2–
Vψ̃0– L̂0

p( )
1–
V L̂0

p( )
1–
Vψ0.+=

L̂0
p( )

2–
(35)

ψ̃2
κe

κ ρ1 ρ2+( )–

2πρ1ρ2
-------------------------

m2E1
2

2κ4
------------ 1

2
--- κ2max ρ1

2 ρ2
2,( )– 

 –
2π
κ

------E2
κe

κρ1–

4π3ρ1ρ2

-------------------- d 2mE
δE 2mEρ2 δE+( )sinsin

E E0+
------------------------------------------------------------

0

∞

∫



–=

+
κe

κρ2–

4π3ρ1ρ2

-------------------- d 2mE
δE 2mEρ1 δE+( )sinsin

E E0+
------------------------------------------------------------ 1

4π4ρ1ρ2

-------------------- d 2mEµd 2mEµ

0

∞

∫∫+

0

∞

∫

×
δEν

δEµ
2mEνρ1 δEν

+( ) 2mEµρ2 δEµ
+( )sinsinsinsin

Eν Eµ 2 E0+ +
------------------------------------------------------------------------------------------------------------------------------------





.

In formulas (32) and (35), quantities E1 and E2 are
exact first- and second-order corrections to energy that
take into account all harmonics. In the asymptotic
region ρ1, 2 @ κ–1, we obtain from Eq. (35) the correc-

tion  to the wave function,

(36)

ψ̃2

ψ̃2
κe

κ ρ1 ρ2+( )–

2πρ1ρ2
-------------------------

m2E1
2

2κ4
------------ 1

2
--- κ2max ρ1

2 ρ2
2,( )– 

 –




=

–
mE2

κ2
---------- 1 κmax ρ1 ρ2,( )–( )





.

S

Thus, in the second order of perturbation theory,
wave function  in the asymptotic region ρ1, 2 @ κ–1 is
defined by the formula

(37)

ψ̃

ψ̃ κe
κ ρ1 ρ2+( )–

2πρ1ρ2
------------------------- 1

mE1

2κ2
----------–

m
2
E1

2

4κ4
------------–

mE2

κ2
----------–





=

+
mE1

κ2
----------κmax ρ1 ρ2,( )





+
mE2

κ2
----------κmax ρ1 ρ2,( )

m2E1
2

2κ4
-------------κ2max ρ1

2 ρ2
2,( )
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This equation implies that value of κ for the particle
closest to the center remains unchanged, while the
value of κ for the particle at a larger distance from the
center is renormalized and becomes equal to . The
value of  can be determined from Eq. (37) and is
given by

(38)

At large distances, the particles do not interact and,
hence, the following relation holds:

(39)

The first-order correction to energy E1 is defined by for-
mulas (3), (4), and (22) and is given by

(40)

where

(41)

To obtain the second-order correction to energy E2, the
wave function  must be determined at distances
ρ1, 2 ~ Rint , where Rint is the range of the interaction
potential V(r). At distances ρ1, 2 ≥ Rint , the function 
taking into account only the states with l = 0 is given by

(42)

At large distances ρ1, 2 @ κ–1, Eq. (42) reproduces
formula (33). In region Rint < ρ1, 2 ! κ–1, the last term
on the right-hand side of formula (42) has a logarithmic
singularity. In this region, we obtain

(43)

κ̃
κ̃

κ̃ κ 1
mE1

κ2
----------–

mE2

κ2
----------–

m
2
E1

2

2κ4
-------------–

 
 
 

.=

E1 E2 E3 …+ + +
1

2m
------- κ2 κ̃2–( ).=

E1 π2κ2I0,=

I0 dρρV ρ( ).

0

∞

∫=

ψ̃1

ψ̃1

ψ̃1
πmκ I0

2ρ1ρ2
---------------- κ ρ1 ρ2+( )–( ) 1 κ ρ1 ρ2+( )–( )∫exp





–=

+
1

2π2
-------- x yxy 1– xy ix iy+ + +( )dd

x2 1+( ) y2 1+( ) x2 y2 2+ +( )
---------------------------------------------------------------------

∞–

∞

∫∫

× iκxρ1 iκyρ2+( )exp




.

x y 1– xy ix iy+ + +( )dd

x2 1+( ) y2 1+( ) x2 y2 2+ +( )
---------------------------------------------------------------------

∞–

∞

∫∫
× iκ xρ1 yρ2+( )( )exp

=  π– π2

2
-----– πK0 κ 2 ρ1

2 ρ2
2+( )( ),+
JOURNAL OF EXPERIMENTAL 
where K0 is the Bessel function. Finally, function  in
region Rint < ρ1, 2 ! κ–1 is defined as

(44)

The coefficient of the logarithmic singularity is numer-
ically small; consequently, formula (44) enables us to
obtain the second-order correction to energy to a high
degree of accuracy,

(45)

where Rint is the characteristic range of interaction of
two particles.

The repulsion of particles leads to a decrease in
parameter  in the wave function of the particle at a
larger distance from the center than the other particle.
This phenomenon is apparently preserved in all orders
of perturbation theory. The theory has two scales. One
of these scales is associated with the logarithmic singu-
larity and can be defined as

(46)

The second scale is defined by formula (28):

(47)

The first scale is smaller than the second scale only
under the stringent condition

(48)

The enhancement of the interaction leads to the
expulsion of the second particle to a delocalized state.
Near the threshold, the value of  tends to zero. As a
result, the emerging perturbation theory starts from
strongly asymmetric one-particle scale.

ψ̃1

ψ̃1
mκ I0

4ρ1ρ2
-------------- 3π

2
------ 1– K0 κ 2 ρ1

2 ρ2
2+( )( )+

 
 
 

.–=

E2

π3mκ2I0
2

2
-------------------- 3π

2
------ 1– 

  1
κ Rint
----------- 

 ln+




–=

+
2

π2I0

---------- ρ1 ρ2 zV ρ1
2 ρ2

2 2ρ1ρ2z+ +( )d

1–

1

∫dd

0

∞

∫∫

×
2Rint

ρ1
2 ρ2

2
+

---------------------
 
 
 





,ln

κ̃

mI0
1( ) 2

π
--- 1

1/κ Rint( )ln
---------------------------.≈

mI0
2( ) 1

2π2
--------.=

1
κ Rint
----------- 

 ln 4π.>

κ̃
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5. THRESHOLD VALUE OF INTERACTION 
FOR TRANSFERRING THE SECOND PARTICLE 

TO A DELOCALIZED STATE

As the zero-order approximation for determining
the threshold value of the interaction, we will use the
Hartree–Fock equations

(49)

This system of equations is symmetric relative to the
substitution   . Consequently, there exists a
solution such that

(50)

According to perturbation theory, this is the only
solution that can be obtained. In this respect, the Har-
tree–Fock approximation differs from the exact solu-
tion, in which parameter κ of only one particle changes
in the first two orders of perturbation theory. This
means that the Hartree–Fock equations have a bifurca-
tion point, above which a nonsymmetrical solution
appears. The energy corresponding to this solution is
lower than that for the symmetric solution.

We will confine our analysis to the range of interac-
tion in which |E2|  0. In the Hartree–Fock approxi-

mation, operator  is given by

(51)

The exact solution to the Schrödinger equation can
be written in the form

(52)

where

(53)

1
2m
-------∆r1

– U r1( ) V r1 r3–( )ψ̂2
2 r3( )d3r3∫+ +

 
 
 

× ψ̂1 r1( ) E1 ψ̂1 r1( ),–=

1
2m
-------∆r2

– U r2( ) V r2 r3–( )ψ̂1
2 r3( )d3r3∫+ +

 
 
 

× ψ̂2 r2( ) E2 ψ̂2 r2( ).–=

ψ̂1      ψ̂2

ψ̂1 ψ̂2.=

L̂0

L̂0
1

2m
------- ∆r1

∆r2
+( )– U r1( ) U r2( )+ +=

+ V r1 r3–( )ψ̂2
2 r3( )d3r3∫

+ V r2 r3–( )ψ̂1
2

r3( )d3r3∫ E1 E2 .+ +

L̂0 V r1 r2–( ) V r1 r3–( )ψ̂2
2

r3( )d3r3∫–[+{

– V r2 r3–( )ψ̂1
2 r3( )d3r3∫ ] }ψ δ Eψ– 0,=

ψ ψ1 r1( )ψ2 r2( )= δψ,+

E E1 E2– δE.+–=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
 

In the subspace orthogonal to function

{

 

ψ

 

1

 

(

 

r

 

1

 

)

 

ψ

 

2

 

(

 

r

 

2

 

)}, operator  has the inverse operator

(54)

In this expression, functions  and  are solu-

tions of system of equations (49). Functions (

 

r

 

1

 

) and

(

 

r

 

2

 

) of the continuous spectrum are the solutions of
the same system of equations after the substitution 
−|

 
E

 

1

 
| 

 
 

 
Eν and –|E2|  Eµ and the replacement of

functions  and  in the braces by (r1) and

(r1), respectively.

Since |E2|  0, we can use the zero-order approx-
imation for function  and energy E1 and set

(55)

where function ψ0 is defined by formulas (3) and (4)
and energy E0 is defined by formula (7).

Potential (ρ2) for the second particle in the same
approximation is given by

(56)

As before, we set

(57)

Function (ρ2) is the solution to the equation

(58)

In the vicinity of the threshold, energy E2 of the
localized state tends to zero. In this case, Eq. (58) is

L̂0
p

L̂0
p( )

1– ψ̂1 r1( )ψ̂1 r1'( )ψ̂̃ν r2( )ψ̂̃ν* r2'( )
Eν E2+

------------------------------------------------------------------=

+
ψ̂ν r1( )ψ̂ν* r1'( )ψ̂2 r2( )ψ̂2 r2'( )

Eν E1+
------------------------------------------------------------------

+
ψν r1( )ψν* r1'( )ψ̂̃µ r2( )ψ̂̃µ* r2'( )

Eν Eµ E1 E2+ + +
-------------------------------------------------------------------.

ψ̂1 ψ̂2

ψ̂ν

ψ̂µ

ψ̂1 ψ̂2 ψ̂ν

ψ̂̃µ

ψ̂1

ψ̂1 r1( ) ψ0 r1( ), E1 E0,= =

V̂

V̂ ρ2( ) U0 ρ2( ) B2e
2κρ2–

4ρ2
-------------------+=

× ρ1ρ1V ρ1( )
ρ1 ρ2+
ρ1 ρ2–
----------------- 

 
2

.lnd

0

∞

∫

ψ̂̃ r2( )
χ̂̃

l( )
ρ2( )

ρ2
------------------Yl

M.=

χ̂̃
l( )

χ̃''ˆ 2m V̂ ρ2( )– l l 1+( )
ρ2

2
-----------------– E+ χ̂̃+ 0.=
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reduced to the simple equation

(59)

This equation can easily be solved, which gives

(60)

Equation (60) leads to the threshold value of interaction,

(61)

It should be noted that scattering amplitude f in per-
turbation theory for small energies is defined by the for-
mula [4]

therefore, there exists a margin in interaction in deter-
mining the expulsion threshold before the Born appro-
ximation must be replaced by the exact scattering
amplitude.

For low energies in the continuous spectrum (for
l = 0), the solution to Eq. (58) is given by

(62)

where scattering phase δE is the solution to the equation

(63)

From Eq. (63), we obtain

(64)

χ̂̃2
''

+ 2m U0 ρ2( )– E2–
π2B2

4
----------- I0δ ρ a–( )– χ̂̃2 0.=

2m E2 κ2,=

2m E2 κ
π2mB2I0

2
---------------------,–=

χ̂̃2 2κ2 κ2ρ2–( ), ρ2 a.>exp=

π2mI0 1.=

f
2m

"
2

------- V r( )r2 r;d∫–=

χ̂̃ 2
L
--- 2mEρ2 δ̃E+( ),sin=

2mEa δ̃E+( )tan
2mE

ma E κa/ma+( )
--------------------------------------,–=

δE 0= π.=

δ̃Esin
mE

m E κ2
2
/2+( )

------------------------------ 
  1/2

.=
JOURNAL OF EXPERIMENTAL 
6. CORRECTION 
TO THE HARTREE–FOCK APPROXIMATION

The first-order correction δE(1) to the Hartree–Fock
can be obtained with help of Eqs. (3), (4), (52), (55),
and (60):

(65)

This correction is small, and we must now prove that, at

large distances (ρ1 @ κ–1, ρ2 @ ), the correction to
the wave function is also small. The first order correc-
tion ψ(1) to the wave function is defined as

(66)

In the region r1 @ κ–1, r2 @ , only the states of
continuous spectrum with l = 0 are significant. In this
region, from Eq. (66), we obtain

(67)

× 

Using expressions (12) and (64) for phases δEν and

. We can reduce expression (67) for function ψ(1) to
the form

(68)

In the asymptotic region, ρ1 @ κ1, ρ1 @ , wave

δE 1( ) d3r1d3r2V r1 r2–( )
κκ 2

4π2r1
2r2

2
------------------∫–=

=  π2I0κκ 2.–

κ2
1–

ψ 1( ) r1 r2,( )

=  d3r1' d3r2'
ψν r1( )ψν* r1'( )ψ̂̃µ r2( )ψ̂̃µ* r2'( )

Eν Eµ E1 E2+ + +
-------------------------------------------------------------------∫–

× V r1' r2'–( )ψ0 r1'( )ψ̂̃2 r2'( ).

κ2
1–

ψ 1( ) r1 r2,( ) δE 1( )

2π3 κκ 2ρ1ρ2

----------------------------------=

×
d 2mEνd 2mEµ

Eν Eµ E1 E2+ + +
------------------------------------------------

0

∞

∫∫
× δEν 2mEνρ1 δEν+( ) δ̃Eµsinsinsin

2mEµρ2 δ̃Eµ+( ).sin

δ̃Eµ

ψ 1( ) r1 r2,( ) mδE 1( )

4π2ρ1ρ2 κκ 2

----------------------------------=

×
x yxy xy iκy iκ2x κκ 2–+ +( )dd

x2 κ2+( ) y2 κ2
2+( ) x2 y2 κ2 κ2

2+ + +( )
----------------------------------------------------------------------------------------

∞–

∞

∫∫

× iκρ1 iκ2ρ2+( ).exp

κ2
1–
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function ψ(1) is given by the expression following from
formula (68):

(69)

This formula shows that it is only quantity κ that is
slightly renormalized in the given approximation.
Quantity κ2 remains unchanged and all corrections are
small in parameter κ2/κ tending to zero.

7. CONCLUSIONS

The Schrödinger equation is investigated for two
interacting particles in an external potential. The exter-
nal potential is assumed to be such that only a single
shallow level exists for one of the particles. The repul-
sion between the particles leads to a transition of the
other particle to the continuous spectrum, when the
interaction attains the threshold value. The threshold
value of the interaction is independent of the depth of
the level as long as this level is shallow. In the vicinity
of the threshold, one of the particles is separated from
the center by much longer distances as compared to the
other particle; in this case, the Hartree–Fock approxi-
mation can be used. The corrections to the Hartree–

ψ 1( ) r1 r2,( )
mδE 1( )e

κρ1– κ2ρ2–

2πκρ1ρ2
----------------------------------------

κ2

κ
----- 

 
1/2

κρ1
1
2
---– 

  .=
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Fock approximation are determined. These corrections
are small in parameter κ2/κ  0.
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Abstract—The temperature dependence of the compressibility of two-dimensional electron systems (2DESs)
in GaAs/AlGaAs heterostructures in the quantum Hall effect regime have been studied both experimentally and
theoretically. The compressibility was determined using the capacitance spectroscopy technique and the mea-
surements of a low-frequency electric field penetrating through the 2DES. The measured temperature depen-
dences of the 2DES compressibility are quantitatively described using a model taking into account inhomoge-
neity of the electron density at a finite temperature. Changes in the chemical potential of the 2DES in the vicin-
ity of even filling factors determined from the capacitive and transport measurements are mutually consistent
and agree with the results of finite-temperature calculations. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the discovery of the quantum Hall effect in
1980 [1], the thermodynamic density of systems (com-
pressibility) of two-dimensional electron states
(2DESs) in a quantizing magnetic field has been exten-
sively studied [2–8]. The measurements of capaci-
tance [2–4], heat capacity [5], magnetization [6], and
magnetoresistance [4, 7, 8] showed unexpectedly high
values of the density of states in the gap between the
Landau levels, in sharp contrast with theoretical predic-
tions [9, 10]. A possible explanation for this experimen-
tal fact, based on allowance for the electron density
fluctuations caused by the long-range potential fluctua-
tions in 2DESs, was suggested in [11, 12], but this idea
was not provided with a reliable experimental basis.
Additional difficulties were encountered in attempts to
quantitatively explain the strong temperature depen-
dence of the compressibility [4, 13].

This study is aimed at demonstrating that the model
proposed in [11, 12] ensures a quantitative explanation
for the whole body of data on the compressibility of
2DESs under the conditions of the integer quantum
Hall effect. Such 2DESs are formed in selectively
doped heterostructures characterized, according to the
commonly accepted opinion, predominantly by the
long-range potential fluctuations. Within the frame-
work of the adopted model, an analytical expression for
the temperature dependence of the compressibility of
2DESs in the regime of the integer quantum Hall effect
have been obtained. In this model, the only parameter
dependent on the properties of a sample (determining
the width and the temperature-dependent amplitude of
1063-7761/04/9806- $26.00 © 21222
minima on the concentration dependence of the com-
pressibility) is the dispersion of the electron density in
the sample. This parameter determines the slope of the
temperature dependence of the compressibility for even
filling factors of the Landau levels in a broad range of
magnetic fields and temperatures. We show that the
broadening of the Landau levels due to a short-range
random potential can be evaluated from the character of
the temperature dependence of the compressibility.
Such estimates have been obtained for the heterostruc-
tures studied.

As is known, the electron mobility in a 2DES is usu-
ally increased by means of an undoped spacer separat-
ing this system from the layer of donors supplying elec-
trons. This spacer significantly decreases the amplitude
of the short-range random potential. In this case, disor-
der in the 2DES is determined by a long-range random
potential caused by fluctuations in the density of
charged donors in the layers behind the spacer. For the
following considerations, it is important to note that the
influence of the random potential on the 2DES in a
quantizing magnetic field H depends on the relation-
ship between the potential correlation length δ and the
magnetic length lH . The short-range random potential
with a correlation length δ ! lH leads to broadening of
the Landau levels without violating the homogeneity of
the electron density. In contrast, screening of the long-
range potential by the 2DES in the case of δ @ lH is
accompanied by redistribution of the electron density,
leaving the Landau levels locally narrow. The Landau
levels repeat the profile of the screened potential, while
the electron density n varies along the sample.
004 MAIK “Nauka/Interperiodica”
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In an ideal sample without disorder in the absence of
electron–electron interactions, the chemical potential µ
in a quantizing magnetic field H at a zero temperature
is a stepwise function of the electron density n (Fig. 1a).
For n = pnL, where p = 1, 2, … and nL = eH/hc is the
number of electron states on the Landau level, the
chemical potential exhibits jumps equal to the distance
between the neighboring Landau levels and is indepen-
dent of n in the intervals between jumps. The broaden-
ing of the Landau levels due to a short-range random
potential is manifested primarily by an increase in the
derivative dµ/dn for half-integer filling factors ν ≡
n/nL = p + 1/2 of the Landau levels and by a decrease in
the magnitude of the chemical potential jumps for the
integer ν values (Fig. 1b). Figure 1c shows the effect of
a long-range random potential on the thermodynamic
characteristics of a 2DES. In this case, the sample is
characterized by the average electron density ns and the
average chemical potential µs . The adopted model with
electron density dispersion σ independent of the filling
factor ν unavoidably involves a situation (in the vicinity
of integer ν) with two different Landau levels simulta-
neously filled in different regions of the sample. Such a
pattern is observed in the case of nonlinear screening of
long-range potential fluctuations [12, 14, 15].

Thus, the presence of long-range potential fluctua-
tions leads primarily to the disappearance of jumps in
µs(ns) for integer values of the filling factor νs averaged
over the sample leaving horizontal regions in the chem-
ical potential. Figure 1 shows the behavior of the deriv-
ative dµs/dns in the three cases considered above. This
quantity, inversely proportional to the compressibility
of the 2DES, has been experimentally determined.
Obviously, an inhomogeneous distribution of the elec-
tron density leads to a significant increase in the com-
pressibility dns/dµs of the electron system for integer
values of the filling factor νs averaged over the sample.

Following [11, 12], the experimental results were
evaluated within the framework of a model assuming a
Gaussian distribution of the electron density in the
2DES. To within the experimental accuracy, our exper-
imental results are adequately described by calculations
using the δ-shaped Landau levels without making
allowance for an additional short-range random poten-
tial. It should be noted that the assumption concerning
predominance of the long-range fluctuations in the
electron density in our samples is based on the definite
arrangement of layers in these heterostructures, where
the δ-layer of donors is spaced from the 2DES by a dis-
tance (70 and 80 nm for the structures of two types
studied) much greater than lH , and the high electron
mobilities (above 106 cm2/(V s)). In our experiments,
the derivative dµs/dns was determined by three different
methods based on the measurements of (i) the capaci-
tance of field-effect transistors in a magnetic field,
(ii) the electric field penetrating through the 2DES [16]
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in transistors with two gates occurring on different
sides of the 2DES, and (iii) the transport properties. The
results obtained by the three methods were mutually
consistent.

In the main part of this study, the analysis is carried
out considering electrons as noninteracting. Evidence
that the way used for the presentation of experimental
data excludes to a considerable extent the effects of the
electron–electron interaction will be given in the final
part of the paper.

2. MAGNETOCAPACITANCE MEASUREMENTS

2.1. Sample Preparation

The samples for this study were based on
GaAs/AlGaAs heterostructures grown by molecular
beam epitaxy. The measurements of capacitance were
performed on the samples of type I with a single gate
electrode. These samples were grown with the follow-
ing order of layers: GaAs–AlGaAs(70 nm)–Si(δ-layer)–
AlGaAs(500 nm)–Si(δ-layer)–GaAs(10 nm). In this
structure, a 2DES is formed in the GaAs layer near the
lower GaAs/AlGaAs heterojunction. A rectangular
metal gate electrode with an area of Sg = 0.4 × 2.3 mm2

was deposited onto the surface of the upper GaAs layer.
As a result, a Schottky barrier is created between this
electrode and the heterostructure.

D nL 2nL
n = ns

nL 2nL

dµs/dnsµ = µsε

(a)

(b)

(c)

D nL 2nL
n = ns

nL 2nL ns

dµs/dnsµ = µsε

D nL 2nL nL 2nL

dµs/dnsµ = µsε

nsns

Fig. 1. The local density of states D(ε) = dn/dµ and the plots
of µs and dµs/dns versus ns for (a) the ideal 2DES and for
the systems with only (b) a short-range and (c) a long-range
random potential.

ns
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The electron density ns in the 2DES determined
from the period of the Shubnikov–de Haas oscillations
varies linearly with the voltage Vg between the 2DES
and the gate. The coefficient of proportionality between
the quantities eSgns and Vg coincides (with an accuracy
of better than 1%) with the measured sample capaci-
tance C = 165 pF, which indicates that the donors
exhibit no recharge upon Vg variations. At a zero gate
voltage, the electron density is ns = 1.4 × 1011 cm–2 and
their mobility is 1.2 × 106 cm2/(V s). The type I samples
had the form of a Hall bar with ohmic contacts to the
2DES, which allowed us to perform both the magneto-
capacitance measurements and the investigation of
transport properties of the 2DES.

The electric field penetrating through the 2DES was
measured on the samples of type II, in which the lowest
highly doped conducting GaAs layer performed the
function of the back gate. This layer was followed by an
AlAs/GaAs superlattice, which played the role of the
barrier. The GaAs/AlGaAs heterojunction, at which the
2DES was formed, was spaced 608 nm from the back
gate and 240 nm from the surface of the structure. The
silicon δ-layer supplying electrons to the 2DES was
separated from this system by a 80-nm-thick spacer
(undoped AlGaAs layer). The type II samples also had
the form of a Hall bar, in which the area of overlap with
the back gate was Sbg = 3.24 mm2. The front gate with
an area of Sfg = 1 mm2 occurred completely inside the
region of overlap of the 2DES and the back gate. At a
zero gate voltage, the electron mobility in samples II
exceeded a level of 1 × 106 cm2/(V s).

2.2. Experimental Techniques 

Magnetocapacitance measurements consist in pre-
cise determination of the capacitance C ≡ dQ/dVg of a
plane capacitor formed between the 2DES and the gate
of the field-effect transistor, where Q is the charge and
Vg is the voltage applied to this capacitor. Since there is
a contact potential difference between the 2DES and
the gate, the measured value includes a small correction
δC proportional to the derivative dµ/dn [2, 17]:

(1)

where Sg is the 2DES area under the gate electrode,
Cg = κSg/4πd is the geometric capacitance of the sam-
ple, κ is the average permittivity of the insulator
between the gate and the 2DES, and d is the thickness
of this gate insulator. The correction δC is the only
magnetic-field-dependent contribution to the capaci-
tance, which accounts for all its specific features con-

δC C Cg
C2

Sge2
----------dµ

dn
------,–≈–≡
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sidered below. In the presence of electron density fluc-
tuations in the 2DES, described by a Gaussian distribu-
tion with the dispersion σ, the correction to the
capacitance acquires the following form [12]:

(2)

For the measurement of C(ns), the gate voltage Vg
determining the electron density ns was modulated by
the ac voltage with a frequency of 9.2 Hz and an ampli-
tude of 20 mV. The ac current passing through the
capacitor was measured using a current–voltage con-
verter. Both components of the current were detected.
The imaginary component is proportional to the sample
capacitance. A decrease in the modulation amplitude by
a factor of four did not change the shape of the experi-
mental curves.

The electric field penetrating through the 2DES was
measured on the samples of type II, with the 2DES con-
fined between the two gates (front and back). When an
ac voltage Vfg is applied between the 2DES and the
front gate, the electric field partly penetrates through
the electron system due to its finite compressibility and
is screened by the back gate. The magnetic-field-depen-
dent contribution to the current Ibg collected by the back
gate is [16]

(3)

where Cbg is the geometric capacitance between the
back gate and the 2DES, Sbg is the area of overlap of the
2DES and the back gate electrode, and Ifg is the ima-
ginary component of the current passing through the
front gate.

The penetrating field was measured by applying an
ac voltage with an amplitude of Vfg = 5 mV and a fre-
quency of 9.2 Hz to the front gate. Two components of
the response ac current Ibg from the back gate were
measured using a current–voltage converter. The elec-
tron density in the 2DES was controlled by the voltage
Vbg applied to the back gate, which could be varied
from 250 to 450 mV. The corresponding electron den-
sity was proportional to Vbg with a coefficient of
∆ns/∆Vbg = 1.24 × 108 cm–2 mV–1.

Applicability of the above methods near the Hall
plateaus is usually restricted to the region of not very
small conductivity along the 2DES, otherwise the
resistive effect [18] leads to a sharp increase in the real

δC
C

2

Sge2
----------

dµs

dns
--------–≈

=  
C2

2πσe2Sg

------------------------- µd
nd

------
n ns–( )2

2σ2
--------------------–

 
 
 

n.dexp∫–

Ibg

dµs

dns
--------

Cbg

e2Sbg

------------Ifg,=
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part of the measured signal accompanied by a decrease
in the imaginary component. The results presented
below were obtained in the absence of such resistive
effects.

2.3. Capacitance in a Quantizing Magnetic Field 

Using the techniques described above, we have
studied the capacitance C(ns) of a plane capacitor
formed between the 2DES and the gate of the field-
effect transistor at various values of the quantizing
magnetic field H and the temperature T. Figure 2 shows
the typical plots of C(ns) measured in various magnetic
fields. The minima in these curves reflect the jumps in
the chemical potential at the values of filling factors
corresponding to the quantum Hall effect states (see
Eq. (1)). Note that minima corresponding to different
states possess almost equal widths. This is illustrated in
Fig. 3, where the minima of C(ns) observed in Fig. 2 are
matched by shifting along the abscissa and ordinate
axes and by the ordinate expansion. As can be seen
from Fig. 3a showing the minima corresponding to the
even filling factors in various magnetic fields (and dif-
ferent ns), the width remains the same (to within 10%)
upon an increase in the magnetic field strength (and,
hence, in the cyclotron gap) by a factor of six. Figure 3b
shows the minima matched by ordinate expansion for
the filling factor νs = 2 and the magnetic filed H = 2 T
at various temperatures. The amplitude of these min-
ima decreases with increasing temperature, but the
width remains virtually unchanged up to a rather high
temperature and then begins to grow. Figure 3c shows
the matched minima for the even filling factors νs = 2,

0.50 1.0 1.5

ns, 1011 cm–2

v  = 4
v  = 8

v  = 6

v  = 2

v  = 2

v  = 2

v  = 2

1

2

3
4

5
6

v  = 4

2 pF

δC

Fig. 2. The capacitance C(ns) measured in the quantum Hall
effect regime in various magnetic field at various tempera-
tures: (1) H = 3 T, T = 4.2 K; (2) H = 2 T, T = 3.1 K;
(3) H = 2 T, T = 4.2 K; (4) H = 1 T, T = 1.2 K; (5) H = 0.5 T,
T = 0.9 K; (6) C(ns, H = 0). The curves are shifted along the
ordinate axis.
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4, and 6 at a fixed magnetic field of H = 1 T. The widths
of all these minima coincide to within 10%. The min-
ima are well described by the Gaussians with disper-
sions σ = (3.3 ± 0.4) × 109 and (5.2 ± 0.5) × 109 cm–2

for the samples of types I and II, respectively.

(a)

4 
pF

2 
pF

(b)

(c)

1 
pF

–3 –2 –1 0 1 2 3

δns, 1010 cm–2

Fig. 3. Matched plots of the C – C(H = 0) difference versus
electron density variation δns from values corresponding to
integer filling factors [the C(ns, H = 0) dependence was sub-
tracted from the curves of Fig. 2 and the differences were
matched by shifting along the ordinate and abscissa axes
and multiplying the ordinate by various coefficients k]:
(a) in a field of 0.5 T (dash-dot line, νs = 4, k = 12.5),
1 T (dashed line, νs = 2, k = 4.2), 3 T (solid line, νs = 2,
k = 1); (b) for νs = 2 in a field of 2 T and T = 3.1 K (solid
line, k = 1) and 4.2 K (dashed line, k = 1.6); (c) in a field
of 1 T for νs = 2 (dash-dot line, k = 1.3), 4 (dashed line,
k = 1.1), and 6 (solid line, k = 1).

C – C(H = 0)
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2πσ(dµs/dns), K
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Fig. 4. The temperature dependence of (a) ∆µ and (b) σ(dµs/dns) determined from the magnetocapacitance and penetrating
field measurements, respectively, for νs = 2 (black symbols), 4 (s), 6 (,), and 8 (n): solid lines show the results of numerical cal-
culations (see the text); the inset shows the ∆µ(T) curves for νs = 4, 6, 8 measured at H = 0.5 T plotted on a greater scale.

2π
Figure 4a shows the temperature dependence of the
amplitude of ∆C minima (determined as the difference
between the capacitance values for the integer and half-
integer νs) recalculated to the chemical potential jumps:

(4)

Analogous data obtained from the measurements of
field penetration in the samples of type II are presented
in Figure 4b. In this case, the chemical potential jumps
observed for the quantum Hall effect states correspond
to maxima in the current Ibg to the back gate. This figure
presents a quantity expressed as

(5)

under the assumption that the reciprocal thermody-
namic density of states in the zero field is equal to the
value corresponding to the case of noninteracting elec-
trons:

(6)

where m* is the effective mass of electrons in GaAs.
Note that both values exhibit nearly linear temperature

∆µ T( ) 2πσ∆C
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=  2πσ dµs

dns
--------

νs 2 p=

dµs

dns
--------

νs 2 p 1/2+=

– 
  .

dµs

dns
--------

νs 2 p=

=  Ibg H( ) Ibg H 0=( )–[ ] νs 2 p=

e2Sbg

IfgCbg
-------------- π"

2

m*
---------+ ,

dµs

dns
--------

H 0=

π"
2

m*
---------,=
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dependences, especially in the region of large magnetic
field strengths.

2.4. Discussion of Results 

Let us firstly derive an analytical expression for the
derivative dµs/dns and analyze the temperature depen-
dence of this quantity. Consider a system comprising a
set of narrow spin-split Landau levels. Denoting the
cyclotron and spin splitting as ∆c and ∆s , respectively,
the distance between levels can be expressed as ∆c – ∆s
and ∆s . Below we assume that ∆s ! ∆c , which is reli-
ably valid for GaAs. Our experiments were performed
under the condition T ! ∆c – ∆s . In this case, the tem-
perature dependence of the chemical potential can be
calculated taking into account the occupation only of
the four Zeeman sublevels closest to the Fermi level.
First, let us consider the behavior of the chemical
potential in the vicinity of the filling factor ν = 2. Under
the aforementioned condition on the temperature, the
expressions given below will be valid for any even fil-
ing factors.

The energy and the chemical potential of the four-
level system under consideration are measured from the
center of the cyclotron gap. At a finite temperature,
electrons are distributed over energy levels according to
the Fermi function f(E) = 1/[1 + exp(E/T)], whereby

(7)

At a sufficiently low temperature, such that T !
(∆c – ∆s)/2, in the vicinity of the filling factor ν = 2,

ν f
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where T ! (∆c – ∆s)/2 – |µ|, this expression can be
reduced to

(8)

From this we obtain

(9)

where b = 2exp(–∆c/2T)cosh(∆s/2T). Relation (9)
shows that the derivative dµ/dν|ν = 2 exponentially
grows as T  0.

For an inhomogeneous system, it is necessary to
average expression (9) in accordance with formula (2),
taking into account that νs = ns/nL. Here, we present
only the resulting analytical expression for dµs/dns at
the maximum corresponding to νs = 2,

(10)

where K0 is the modified Bessel function of the second
kind. At low temperatures, T ! ∆s , the curve of
dµs/dns  takes the form

(11)

where γ = 0.577 is the Euler constant.
Thus, for sufficiently low temperatures such that

relation bnL/σ ! 1 is also satisfied, the dispersion of
electron density leads to a change in the character of the
temperature dependence from exponential to linear.
Extrapolation of the linear temperature dependence to
T = 0 in the limiting case under consideration deter-
mines the value of ∆c – ∆s . An expression for the case
of ∆s ! T, which is still closer to the experimental con-
ditions, is as follows:

(12)

This linear temperature dependence has a greater slope
(corresponding to the double number of states 2nL on
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the Landau level) and extrapolates to ∆c/  for
T  0.

For comparison with experiment, we numerically
determined ∆µ(T) using formula (4). Solid lines in
Fig. 4a show the results of these calculations with a fit-
ting parameter ∆c (and the previously determined value
of σ = 3.3 × 109 cm–2 for all fields). A comparison of the
slope of experimental plots with that of the calculated
curves shows that the spin splitting is ∆s ! T in the
entire temperature range studied. For this reason, calcu-
lations for the chemical potential at the center of the
cyclotron gap were performed with nonenhanced spin
gaps ∆s = gµBH, where the g value is equal to the bulk
value for GaAs (gµB = 0.3 K/T).

The results of numerical calculations showed that
∆µ(T) is a linear function in the same temperature
region where  exhibits linear behavior,

and

Therefore, taking into account that ∆s ! T ! ∆c , the
cyclotron gap ∆c can be determined (to within ∆s/∆c) by
linear extrapolation of the experimental data for ∆µ(T)
to T = 0.

Figure 4b shows the results of numerical calcula-

tions of the quantity  in compari-

son with the experimental data obtained for the field
penetration. The value of σ = 5.2 × 109 cm–2 was deter-

2πσ

dµs/dns( )νs 2 p=

∆µ T 0=( ) 2πσdµs

dns
--------

νs 2 p=

T 0=( ).=

2πσ dµs/dns( )νs 2 p=

0.50 1.0 1.5 2.0 2.5

H, T
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∆c, 2∆a, K

Fig. 5. The cyclotron gap versus magnetic field: (j) ∆c val-
ues determined by approximation of the amplitude of the
capacitance features at (H, ν) = (0.5 T, 8), (1 T, 4), (1.7 T, 2),
and (2 T, 2); (m) ∆c values determined from the measure-
ments of the penetrating field at (H, ν) = (0.7 T, 8),
(1.1 T, 4), (1.6 T, 2), and (2.5 T, 2); (s) 2∆a values deter-
mined from the activation measurements at features at
(H, ν) = (0.5 T, 8), (1 T, 4), (1.7 T, 2), and (2 T, 2); solid bar
shows the value of "ωc = He"/m*c for m* = 0.067m0.
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mined previously, the spin splitting was taken equal to
∆s = gµBH, and the only fitting parameter was the cyclo-
tron gap determined by the intercept at T = 0. Thus,
there is a good agreement between experimental data
and the proposed model. The values of ∆c(H) obtained
by the two methods are compared in Fig. 5. These val-
ues are close to the cyclotron energy for GaAs.

When the concept of level broadening due to the
short-range random potential is introduced into the
model, the slope of the temperature dependences of

 and ∆µ decreases as compared to the

value for narrow levels in the entire temperature range
and these temperature dependences exhibit saturation
at low temperatures (Fig. 6). This behavior indicates
that ∆c obtained by extrapolating the measured curve of

 to T = 0 does not exceed the real

value. At the same time, Fig. 6 shows that determina-
tion of the spectral gap according to the “area of the
minimum” [4, 13] at a finite temperature unavoidably
leads to underestimated values even when the inverse
compressibility dµs/dns exhibits saturation.

A comparison of the experimental data obtained for
our samples at H = 0.5 T with the values calculated with
allowance for the finite Γ value (Fig. 6) shows that
Γ/∆c ≤ 0.15 even in this case of a weak field. For greater
values of Γ/∆c , the discrepancy between calculated and
experimental values would exceed experimental uncer-
tainty and cannot be compensated by selecting a differ-
ent value of ∆c . It should be noted that, for this estimate
of the upper limit for the level width (Γ/∆c = 0.15), the
local density of states at the middle of the cyclotron gap
does not exceed 2% of the density of states in a zero
magnetic field.

dµs/dns( )νs 2 p=

2πσ dµs/dns( )νs 2 p=

10 2 T, K

2

4

6

8

∆µ, K

Fig. 6. The effect of the Landau level broadening due to the
short-range potential calculated assuming a Gaussian distri-
bution with the dispersion Γ for ∆s = 0.15 K, σ/nL = 0.26,
and (1) Γ = 0 K, ∆c = 8.6 K, (2) Γ = 1.0 K, ∆c = 9.3 K, and
(3) Γ = 1.7 K, ∆c = 10.5 K in comparison to the results of
capacitance measurements at H = 0.5 T and ν = 6 (squares).

1

3

2
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3. COMPARISON OF THE RESULTS 
OF THERMOACTIVATION

AND CAPACITANCE MEASUREMENTS

The gap in the energy spectrum of an electron sys-
tem in the regime of the quantum Hall effect can be also
determined by measuring the temperature dependence
of the dissipative conductivity having an activation
character:

In the case of a screened long-range random potential,
the activation energy ∆a is equal to a distance from the
Fermi level to the percolation level (coinciding with
"ωc/2 for a nonlinear screening and integer filling fac-
tor) [14].

The measured values of 2∆a(H) are plotted in Fig. 5.
The double activation energy is a linear function of the
magnetic field strength, but the slope of this depen-
dence (2d∆a/dH = 26 K/T) is greater than that for the
cyclotron splitting in GaAs (e"/m*c = 19.5 K/T). The
same effect was observed in [19], where the corre-
sponding value amounted to 26.5 K/T. In our experi-
ments, the double activation energy exceeded the cyclo-
tron splitting in the fields H > 1 T.

Using the results of transport measurements in the
magnetic field and an expression for the conductivity [8],

it is possible to determine µs(ns). According to the
results reported in [14], this formula (obtained in the
model of homogeneously broadened Landau levels
with electron activation to the mobility edge) is also
applicable to the case of a screened long-range poten-
tial. Figure 7b shows the µs(ns) curves calculated using

the experimental plots of σxx(ns)/  for various tem-
peratures depicted in the inset to this figure.

The dependence µs(ns) can be also determined from
the results of capacitance measurements (see the inset
to Fig. 7a). This is achieved by integrating the capaci-
tance C(ns) relative to the curve

The results of such integration presented in Fig. 7a
show that the µs(ns) curves obtained using the capaci-
tance and transport measurements are in good agree-

σxx
min σ0 ∆a/T–( ).exp=

σxx ns( ) σ0
∆a

T
-----– 

  µs ns( )
T

--------------- 
 coshexp=

σxx
min

Cg ns( ) C ns H 0=,( ) π"
2C2

m*Sge2
------------------.+=
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ment and coincide well with the theoretical calculations
for the same temperature (Fig. 7c).

Now, let us consider the role of electron–electron
interactions. It was demonstrated above that our exper-
imental results could be described using the approxi-
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Fig. 7. Plots of µs(ns): (a) determined by integrating C(ns)
relative to the geometric capacitance Cg(ns) (the inset shows
the temperature dependence of the capacitance measured in
a field of H = 2 T); (b) determined from the results of the
transport measurements (the inset shows the conductivity

σxx(ns)/  measured at various temperatures); (c) com-

parison of the results of measurements and calculation for
T = 4.2 K.

σxx
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µs, K

µs, K
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mation of noninteracting electrons. The applicability of
this approximation to description of the quantum Hall
effect for even filling factors νs is probably related to
the fact that the contribution of the electron–electron
interaction to the thermodynamic density of states in a
broad range of νs weakly depends on the magnetic field
and is determined primarily by the electron density.
This fact is reliably established, for example, in the case
of νs = 1/2 observed in strong magnetic fields [20].
Additional evidence is provided by zero value of the
integral [21]

in the case of weak fields, where the spin splitting is
negligible. Being weakly dependent on the magnetic
field, the electron–electron interaction does not influ-
ence the difference of capacitances for even filling fac-
tors and in a zero field and the difference of capaci-
tances for the even and half-integer filling factors. In
the latter case, a small difference in electron densities
for the corresponding filling factors is apparently insig-
nificant. Well-known cases of deviation from this
behavior include the fractional quantum Hall effect
states and enhanced values of splitting for small odd
filling factors, which does not influence the results of
this study.

Thus, we have demonstrated that nonzero dns/dµs
values in the gap between the Landau levels observed
for our samples are caused by the long-range fluctua-
tions of the electron density. The experimental data
obtained in a broad range of filling factors agree with
the results of numerical calculations of dµs/dns in the
case of narrow magnetic levels taking into account the
temperature dependence of the chemical potential and
its averaging with respect to the electron density. Our
results imply a very small value of the local density of
states in the gap between the levels. It was demon-
strated that the capacitance and transport measurements
give the same results for dµs/dns in the vicinity of ν = 2.
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Abstract—We present theoretical studies of the temperature and magnetic field dependences of the Coulomb
drag transresistivity between two parallel layers of two-dimensional electron gases in the quantum Hall regime
near half-filling of the lowest Landau level. It is shown that Fermi-liquid interactions between the relevant qua-
siparticles can significantly affect the transresistivity, providing its independence of the interlayer spacing for
spacings that take values reported in the experiments. The obtained results agree with the experimental evi-
dence. © 2004 MAIK “Nauka/Interperiodica”.
During the last decade, double-layer two-dimen-
sional (2D) electron gas systems were of significant
interest due to many remarkable phenomena that they
exhibit, including the so-called Coulomb drag. In Cou-
lomb drag experiments, two 2D electron gases are
arranged close to each other, such that they can interact
via Coulomb forces. A current I is applied to one layer
of the system, and the voltage VD in the other nearby
layer is measured, with no current allowed to flow in
that layer. The ratio –VD/I gives the transresistivity ρD ,
which characterizes the strength of the effect. The phys-
ical interpretation of the Coulomb drag is that momen-
tum is transferred from the current-carrying layer to the
nearby one due to interlayer interactions [1–3].

It was shown theoretically [4, 5] and confirmed with
experiments [5] that the transresistivity between two
2D electron gases in the quantum Hall regime at half-
filling of the lowest Landau level for both layers is pro-
portional to T 4/3 (where T is the temperature of the sys-
tem), which is quite different from the temperature
dependence of ρD in the absence of the external mag-
netic field applied to 2D electron gases. This tempera-
ture dependence of the drag at ν = 1/2 originates from the
ballistic contribution to transresistivity. The latter reflects
the response of the two-layer system to the driving dis-
turbance of a finite wavevector q and finite frequency ω
in the case where the relevant scales are smaller than the
mean free path l of electrons (ql @ 1) and times are
shorter than their scattering time τ (ωτ @ 1).1 

¶This article was submitted by author in English.
1 When the external driving disturbance applied to one of the lay-

ers is of small q, ω (ql ! 1, ωτ ! 1), the transresistivity is domi-
nated by the diffusion contribution and new effects can emerge
(see, e.g., [6] and references therein).
1063-7761/04/9806- $26.00 © 21231
In further experiments [7], the Coulomb drag was
measured between 2D electron gases where the layer
filling factor was varied around ν = 1/2. The transresis-
tivity was reported to be enhanced quadratically with
∆ν = ν –1/2. It was also reported that the curvature of
the enhancement depended on temperature but was
insensitive to both the sign of ∆ν and the distance d
between the layers. The present work is motivated with
these experiments of [7]. We calculate the transresistiv-
ity between two layers of 2D electron gases subject to
a strong magnetic field that provides ν close to 1/2 for
both layers.

We start from the well-known expression [1, 3] that
relates the Coulomb drag transresistivity to density–
density components of the polarization in the layers
Π(1)(q, ω) and Π(2)(q, ω),

(1)

where U(q, ω) is the screened interlayer Coulomb
interaction, and electron densities in the layers are sup-
posed to be equal (n1 = n2 = n).

Within the usual composite fermion approach [8], a
single layer polarizability describes the part of the den-
sity–current electromagnetic response that is irreduc-
ible with respect to the Coulomb interaction. Adopting
the random-phase approximation (RPA) for simplicity,
we obtain the following expression for the 2 × 2 polar-
izability matrix:

(2)

ρD
1

2 2π( )2
---------------- h

e2
---- 1

Tn2
--------- q2 qd

2π( )2
------------- " ωd

"ω/2T( )sinh
2

----------------------------------∫∫=

× U q ω,( ) 2ImΠ 1( ) q ω,( )ImΠ 2( ) q ω,( ),

Π 1– K0( ) 1–
C 1– .+=
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Here, the matrix K0 gives the response of noninteract-
ing composite fermions and C is the Chern–Simons
interaction matrix. Assuming the wavevector q to lie in
the x direction for definiteness, we have

(3)

Starting from expression (2), we arrive at the following
results for the density–density response function

(4)

Here,

(5)

Within the RPA, the response functions included in
Eqs. (4) and (5) are simply related to the components of
the composite fermion conductivity tensor  [8],

(6)

To proceed, we calculate the components of the
composite fermion conductivity at ν slightly away from
1/2. In this case, composite fermions experience a non-
zero effective magnetic field

We concentrate on the ballistic contribution to the tran-
sresistivity, and we therefore need the asymptotics for
the relevant conductivity components applicable in
nonlocal (ql @ 1) and high-frequency (ωτ @ 1)
regimes. The corresponding expressions for  were
obtained in earlier works [8]. However, these results are
not appropriate for our analysis because they do not
provide a smooth passage to the Beff  0 limit at finite
q. Therefore, we do not use them in further calcula-
tions. To obtain a suitable approximation for the com-
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posite fermion conductivity, we start from the standard
solution of the Boltzmann transport equation for the
composite fermion distribution function. This gives the
following results for the composite fermion conductiv-
ity components for a single layer [9]:

(7)

Here, m* and Ω are the composite fermion effective
mass and the cyclotron frequency at the effective mag-
netic field Beff; ψ is the angular coordinate of the com-
posite fermion cyclotron orbit. We now perform some
formal transformations of this expression (7) following
a way proposed before [9, 10]. First, we expand the
composite fermion velocity components vβ(ψ') in a
Fourier series,

(8)

Substituting this expansion (8) in (7), we obtain

(9)

where

Then, we introduce a new variable η related to the vari-
able θ as

(10)

σ̃αβ
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Ω
-----– v x ψ''( ) ψ''d

0

ψ

∫expd

0

2π

∫=

× v β ψ'( ) iq
Ω
----- v x ψ''( ) ψ'd '

0

ψ'

∫exp

∞–

ψ

∫

+
1

Ωτ
------- ψ' ψ–( ) 1 iωτ–( ) ψ'.d

v β ψ'( ) v kβ ikψ'( ).exp
k

∑=

σ̃ m*e
2

2π"( )2
----------------- v kβ ψv α ψ( ) ikψ( )expd

0

2π

∫
k

∑=

× ikΩ iω– 1
r
--- iq v x ψ( )+ +

 
 
 

θexp

∞–

0

∫

+ iq v x ψ Ωθ'+( ) v x ψ( )–( ) θ'd

0

∞

∫ θ,d

θ ψ' ψ–
Ω

---------------.=

η ikΩ iω– 1
τ
--- iqv x ψ( )+ + 

  θ=

+ iq v x ψ Ωθ'+( ) v x ψ( )–[ ] θ '.d

0

θ

∫

AND THEORETICAL PHYSICS      Vol. 98      No. 6      2004



FERMI-LIQUID EFFECTS IN TRANSRESISTIVITY IN QUANTUM HALL DOUBLE LAYERS 1233
The result is

(11)

Under the conditions of interest, ωτ @ 1, ql @ 1, and
also assuming that the filling factor is close to ν = 1/2,
and, hence, qvF @ Ω (where vF is the composite fermi-
ons Fermi velocity), the variable θ is approximately
equal to

Taking this into account and expanding the last term in
the denominator of (11) in powers of Ωθ, we obtain

(12)

Substituting this asymptotic expression in (9), we can
calculate the first terms of the expansions of relevant
components of the composite fermion conductivity in
powers of the small parameter (qR)–1, where R = vF/Ω
is the composite fermion cyclotron radius. In the “col-
lisionless” limit 1/τ  0, we have

(13)
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(14)

(15)

where N = m*/2π"2 is the density of states at the com-
posite fermion Fermi surface and δ = ω/qvF . Using
these results, we can easily obtain approximations for

the functions (q, ω) (α, β = 0.1) and, subse-
quently, the desired density–density response function
given by (4). It was shown in [3] that the integral over
ω in the expression (1) for ρD is dominated by ω ~ T,
and the major contribution to the integral over q in this
expression comes from

where kF is the Fermi wavevector and the scaling tem-
perature T0 is defined below. Therefore, we obtain an
estimate for δ, namely,

where µ is the chemical potential of a single 2D elec-
tron gas included in the bilayer. For parameter T0, tak-
ing values on the order of room temperature, δ is small
compared to unity at low temperatures (T ~ 1 K).

Here, we limit ourselves to the case of two identical
layers (Π(1) ≡ Π(2) ≡ Π). For δ ! 1, we obtain the
approximation
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where dn/dµ is the compressibility of the ν = 1/2 state,
which is defined as [3]

(17)
dn
dµ
------ Π00 q 0; ω 0( )≡ 3m*

8π"
2

------------.=
This differs from the compressibility of the noninteract-
ing 2D electron gas in the absence of the external mag-
netic field (the latter is equal to N). The difference in the
compressibility values is a manifestation of the Chern–
Simons interaction in strong magnetic fields.
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In the following calculations, we adopt the expres-
sion used in [3] for the screened interlayer potential
U(q, ω),

(18)

where

are the respective Fourier components of the bare Cou-
lomb potentials for intralayer and interlayer interac-
tions and e is the dielectric constant. Substituting (18)
in (1) and using our result (16) for Π(q, ω), we can
present the transresistivity in the “ballistic” regime as

(19)

where the first term ρD0 is the transresistivity at ν = 1/2
when the effective magnetic field is zero and the second
term gives a correction arising in a nonzero effective
magnetic field (away from ν = 1/2). As expected, our
expression for ρD0 coincides with the already known
result [3],

, (20)
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theory νtot = 2/5 + 3/5

νtot = 2/3 + 2/3

Fig. 1. Scaled drag resistivity versus ∆ν at T = 0.6 K; the
lowest dashed curve is the plot of Eq. (22) at m* = 4mb;
A0 = 15; and remaining curves represent the experimental
data in [7].
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where

and

(21)

The leading term of the correction δρD at low tempera-
tures,

,

can be written as

(22)

where the dimensionless positive constant a2 can be
approximated as

(23)

We must remark that our result (23) cannot be used
in the limit of T  0. Actually, this expression pro-
vides a good asymptotic form for the coefficient a2

when (TkFl/µ)1/3 ≥ 1.5. Assuming that the mean free
path is on the order of 1.0 µm as in experiments [11] on
dc magnetotransport in a single modulated 2D electron
gas at ν close to 1/2, and using the estimate in [7] for
the electron density n = 1.4 × 1015 m–2, we find that
expression (23) gives a good approximation for a2

when T/µ is not less than 10–2.
It follows from our results (19) and (22) that the

transresistivity ρD is enhanced nearly quadratically
with ∆ν when the filling factor deviates from ν = 1/2.
The term linear in ∆ν is also present in the expression
for δρD . This causes an asymmetric shape in the plot of
Eq. (22) with respect to ∆ν = 0. However, this asymme-
try is not very significant because the linear term is
smaller than the last term in the right-hand side of (22).
This difference in magnitude is due to the different tem-
perature dependences of the terms considered. The first
term, including the correction linear in (kFR)–1, is pro-
portional to (T/T0)4/3, whereas the second one is propor-
tional to (T/T0)2/3 and predominates at low tempera-
tures. Therefore, the magnetic field dependence of the
transresistivity near ν = 1/2 matches that observed in
the experiments (see Fig. 1).
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Keeping only the largest term in (22), we can repre-
sent the ratio ρD/ρD0 as

(24)

with the coefficient

(25)

This coefficient is proportional to the curvature of the
plot of Eq. (22) assuming that the first term is
neglected. The curvature reveals a strong dependence
on temperature; its character also agrees with experi-
ments of [7], as shown in Fig. 2.

A striking feature of the experimental results is that
they appear to be insensitive to the distance between the
2D electron gases. Sets of data corresponding to sam-
ples with different interlayer spacings dA = 10 nm and
dB = 22.5 nm fall on the same curve. This concerns both
the magnetic field dependence of the transresistivity
and the temperature dependence of the parameter β.
The results of the present analysis provide a possible
explanation for this feature. It follows from (20)–(25)
that the dependence of ρD on the interlayer spacing is
completely included in the characteristic temperature
T0, which is defined with Eq. (21). The above quantity
is nearly independent of the interlayer separation d
when the parameter α takes values larger than unity.
Estimating the parameter α given by Eq. (21), we find
that the condition α > 1 could be satisfied for small val-
ues of the compressibility of the ν = 1/2 state. However,
within the RPA, the effective mass of composite fermi-
ons coincides with the single electron band mass mb ,
which takes the value mb ≈ 0.07me for GaAs wells
(me is the mass of a free electron). Using this value to
estimate the compressibility introduced by Eq. (17), we
obtain α ≈ 0.44. This is too small to provide insensitiv-
ity of the coefficient β determined by Eq. (25) to the
interlayer distance for interlayer spacings reported in
the experiments [3]. The above discrepancy could be
removed by taking Fermi-liquid interactions among
quasiparticles (composite fermions) into account. To
include Fermi-liquid effects into consideration, we
write the renormalized polarizability Π∗  as [8]

(26)

where Π is the polarizability of noninteracting compos-
ite fermions defined with Eq. (2), and the remaining
terms represent contributions arising due to the Fermi-
liquid interaction in the composite fermion system.
Only contributions from the first and greatest two terms
in the expansion of the Fermi-liquid interaction func-
tion in Legendre polynomials (f0 and f1, respectively)

ρD

ρD0
-------- 4β ∆ν( )2

1+=

β 3 3a2

Γ 7/3( )ζ 4/3( )
----------------------------------

2T0

T
--------- 

 
2/3

.=

Π* 1– Π 1– F 0( ) F 1( ),+ +=
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are kept in Eq. (26) to avoid too lengthy calculations.
Matrix elements of the 2 × 2 matrices F(0) and F(1) are

(27)

Within the Fermi-liquid theory, the effective mass
m* is related to the “bare” mass mb as

(28)

Using expressions (26)–(28) and performing calcula-
tions within the relevant limit δ ! 1, we obtain that the
expression for the density–density response function
for a single layer preserves the form given by Eq. (16),
where the compressibility dn/dµ is replaced with the
quantity dn*/dµ renormalized due to the Fermi-liquid
interaction,

(29)
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Fig. 2. Temperature dependence of the coefficient β–1 for
interlayer distances d = 10 nm (upper curve) and d =
22.5 nm (lower curve) compared to the summary of experi-
mental curvature at both spacings [7].
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For strongly correlated quasiparticles, this renor-
malization may significantly reduce the compressibility
of the composite fermion liquid, and, consequently,
increase the value of the parameter α. It is usually
assumed [3, 8] that the Fermi-liquid renormalization of
the effective mass significantly changes its value: m* ~
(5–10)mb . This gives values on the order of 10 for
Fermi-liquid coefficient A1. Using this estimate and
substituting our renormalized compressibility (29) in
expression (21), we arrive at the conclusion that dn*/dµ
is low enough for the condition α > 1 to be satisfied
when the Fermi-liquid parameter A0 = f0/2π"2 takes val-
ues on the order of 10–100. This conclusion does not
seem unrealistic because it is reasonable to expect A0 to
be on the order of or greater than the next Fermi-liquid
parameter A1. We obtain a reasonably good agreement
between the plot of our Eq. (22) and the experimental
results using A0 = 15 and A1 = 3 (m* = 4mb) (Fig. 1).

Our results for the temperature dependence of β–1

also agree with the results of experiments [7]. The
upper curve in Fig. 2 corresponds to the double-layer
system with smaller interlayer spacing dA = 10 nm,
which gives T0 = 487 K, and the lower curve exhibits
the temperature dependence of β–1 for greater spacing
dB = 22.5 nm (T0 = 587 K). The curves do not coincide,
but they are arranged rather close to each other.

Finally, the results of the present analysis enable us
to qualitatively describe all important features observed
in the experiments in [7] on the Coulomb drag slightly
away from half filling of the lowest Landau levels of
both interacting 2D electron gases. They also give us
grounds to treat these experimental results as one more
piece of evidence for a strong Fermi-liquid interaction
in the composite fermion system near half filling of the
lowest Landau level. The above interaction provides a
significant reduction of the compressibility of the com-
posite fermion liquid and a consequent enhancement in
the screening length in single layers. Essentially, the
parameter α characterizes the ratio of the Thomas–
Fermi screening length in a single 2D electron gas at
JOURNAL OF EXPERIMENTAL 
ν = 1/2 and the separation between the layers [3]. When
α > 1, intralayer interactions predominate those
between the layers, which could be the reason for low
sensitivity of the bilayer to changes in the interlayer
spacing. It is likely that there is an explanation for the
reported near-independence of the drag on the inter-
layer separation [7]. We believe that, at larger distances
between the layers, the dependence of the transresistiv-
ity on d could be revealed in experiments. At the same
time, the results in [7] give us a valuable opportunity to
estimate the strength of Fermi-liquid interactions
between quasiparticles at the ν = 1/2 state, which is
important for further studies of such systems.
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Abstract—An averaged-Lagrangian method is used to analyze diffraction effects on propagation of solitons of
various types in homogeneous media. It is shown that diffraction can counteract the self-focusing of dark and
gray envelope solitons described by the nonlinear Schrödinger equation and solitons described by the Korteweg–
de Vries equation when the soliton intensities do not exceed certain values. Conversely, diffraction enhances the
self-focusing of dark and gray envelope solitons described by the modified Korteweg–de Vries equation, kinks
described by the sine-Gordon equation, and domain walls in the u4 model, which is explained by mutual correla-
tion between transverse and longitudinal soliton dynamics. Critical parameters that determine soliton stability with
respect to self-focusing are found for several models. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Stability analysis of one-dimensional solitons
described by various equations with respect to trans-
verse perturbations (i.e., with respect to extension to
additional dimensions) is important for experimental
observation of solitons.

An averaged-Lagrangian method for analyzing
problems of this kind was proposed in [1, 2]. This
approach can be used to find approximate soliton-like
solutions to various nonlinear wave equations and ana-
lyze their stability with respect to transverse perturba-
tions, i.e., to extension to additional dimensions. The
authors of [1, 2] developed a technique for detailed
quantitative analysis of influence of long-wavelength
perturbations, based on the use of “fast” and “slow”
variables in trial soliton-like solutions. The nonlinear
gas-dynamics equations for these variables obtained
in [1, 2] were solved by the hodograph method. The
formalism was applied to develop a soliton stability
theory without assuming small perturbations. However,
the hodograph method can be successfully applied only
in the case of one-dimensional perturbations. More-
over, separation into fast and slow variables corre-
sponds to the eikonal (geometric-optics) approximation
for solitons [2, 3]. Diffraction effects, which play an
essential role at the final stage of self-focusing, are left
outside the scope of this approach.

Here, diffraction of solitons is interpreted as their
self-diffraction in a homogeneous medium. Owing to
the nonlinearity of solitons, certain properties of the
medium exhibit transient variations in the regions occu-
pied by solitons, and the solitons are diffracted by these
inhomogeneities.

It is well known that self-focusing of a high-power
continuous quasi-monochromatic beam is counteracted
and, under certain conditions, can be compensated for
by diffraction [4, 5]. As a result, the beam contracts to
1063-7761/04/9806- $26.00 © 1237
a certain diameter and propagates in a self-trapping
regime in a nonlinear medium. Analogous behavior can
be exhibited by envelope solitons with well-defined
carrier frequencies.

Recently, optical and acoustic pulses with durations
of about a period (or even a half-period) of the corre-
sponding physical modes were generated in several lab-
oratories around the world [6, 7]. In the standard termi-
nology, they are called ultrashort or video pulses and,
sometimes, video solitons. Most theoretical analyses of
their propagation in nonlinear media are restricted to
one-dimensional approximations. Their transverse
dynamics were investigated without allowance for dif-
fraction effects; i.e., only the eikonal approximation
was applied. However, there is a difference in the
dynamic behavior between envelope solitons and video
pulses even in the geometric-optics approximation: the
transverse dynamics are determined by the amplitude
dependence of phase and group velocities in the former
and latter cases, respectively. Therefore, there must also
be some difference between diffraction effects on the
transverse dynamics of envelope solitons and video
pulses. These issues are addressed in the present study.

The paper is organized as follows. In Section 2, sim-
ple physical models are used to briefly derive nonlinear
wave equations describing propagation of both enve-
lope and video solitons in nonlinear media, including
their transverse dynamics. In Section 3, diffraction
effects on dark and gray envelope solitons are analyzed
by an averaged-Lagrangian method. In Sections 4
and 5, analogous analyses are presented for video soli-
tons in quadratic nonlinear media and for dark and gray
video solitons in isotropic Kerr media, respectively.
Effects of diffraction on the kinks described by the sine-
Gordon equation and the domain walls predicted by the
well-known u4 model are considered in Section 6. In the
Conclusions section, the results are summarized, diffi-
2004 MAIK “Nauka/Interperiodica”
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culties and unsolved problems are outlined, and direc-
tions of further research in this field are sketched out.

2. NONLINEAR WAVE EQUATIONS

In this section, some three-dimensional nonlinear
equations that admit soliton and soliton-like one-
dimensional solutions are derived by invoking physical
examples.

Consider the propagation of a linearly polarized
high-power optical pulse in a nonlinear dielectric.

The Maxwell equation for the electric field E of the
pulse is

(1)

where ∆ is the Laplace operator, c is the speed of light
in free space, and P is the polarization response of the
medium.

As a first step, let us assume that the pulse spectrum
(without any well-defined carrier in the general case)
belongs to the transparent region of a dielectric. Sup-
pose that the Fourier components of the pulse have fre-
quencies satisfying a condition formulated in [8],
which can be rewritten as

(2)

where ω0 is the characteristic optical-transition fre-
quency and τp is the pulse time scale [9, 10].

Since the pulse spectrum does not contain any reso-
nant Fourier components, the interaction between the
field and the medium is relatively weak. Therefore,
both dispersion and nonlinearity are sufficiently weak
to be represented as additive effects by allowing for dis-
persion only in the linear part Pl of polarization
response.

The contribution of ion polarization to the response
of the medium is neglected. The optical electronic sus-
ceptibility χ(ω) as a function of frequency is

where χ(0) is the static electron susceptibility.

Since dispersion is relatively weak, χ(ω) can be rep-
resented as a power series in (ω/ω0)2:

Making the change ω  i∂/∂t in the expression for
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χ(ω), we rewrite Pl = χ(ω)E as

(3)

The nonlinear part of the response is represented as a
power series in field strength restricted to cubic nonlin-
earity:

(4)

where χ2 and χ3 are, respectively, the second- and third-
order inertia-free nonlinear susceptibilities.

The quadratic nonlinearity in (4) implies that the
medium can be anisotropic, in which case χ2 and χ3 are
third- and fourth-rank tensors, respectively. However, if
the input pulse is polarized in the principal plane
(defined by the optical axis and the input pulse propa-
gation direction, i.e., the z axis), then the polarization of
a pulse propagating perpendicularly to the extraordi-
nary-wave polarization plane remains invariant [11]. In
what follows, this condition is assumed to hold. There-
fore, χ2 and χ3 can be treated as scalar quantities in (4).
When χ2 = 0, the pulse propagates in an isotropic
medium and χ3 is a scalar without any additional con-
dition.

Substituting (3) and (4) into (1), one obtains

(5)

where v 0 = c/n0 (n0 is a linear inertia-free refractive
index) and ∆⊥  is the transverse Laplace operator.

According to (3), weak dispersion and nonlinearity
imply that the leading term in the expansion of P is
χ(0)E, which contributes to n0. Other terms retained
in (5) are of higher order in µ1. The condition ∆⊥ E !
∂2E/∂z2 of paraxial approximation is assumed to hold as
well [1, 2]; i.e., the wavefront of a propagating pulse is
weakly curved. This approximation is used in the the-
ory of quasi-monochromatic beams [5]. Despite obvi-
ous limitations, the paraxial approximation can be used
to obtain plausible results for transverse beam dynam-
ics and to simplify analytical calculations taking into
account diffraction.

In summary, the terms on the right-hand side of (5)
are small as compared to each term on the left-hand
side. In the zeroth approximation, the solutions to the
linear wave equation describe waves propagating in
both positive and negative directions along the z axis:
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In the case of a forward-propagating wave E+, the
effects of the right-hand side of (5) are taken into
account by introducing a “slow” coordinate ζ = µz: E =
E(τ, ζ), where τ = t – z/v 0. Dropping the terms of order

, one has

Substituting this into (5), averaging the result over τ,
and changing back to the variable z, one obtains

(6)

where

Since the slowly varying envelope approximation is
not employed in (6), this equation describes the dynam-
ics of pulses containing an arbitrary number of modes.
Thus, its scope is extended from video pulses to enve-
lope pulses. It should be noted here a nonlinear
Schrödinger (NLS) equation for the field envelope
can be derived from (6) when a2 = 0 by expressing the
field as

(7)

Here, r⊥  is the transverse radius vector, q is the wave
number in the coordinate system moving with the
velocity v 0, and ξ is a slowly varying envelope satisfy-
ing the condition

Expression (7) entails

(8)
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Here, the term of order ∂3ξ/∂τ3 in the second expres-
sion is neglected, because it represents dispersion of
higher order as compared to the last term (proportional
to ∂2ξ/∂τ2). In the third expression, both the fastest
oscillating terms (proportional to exp[±3i(ωτ – qz)])
and the dispersive term of order ∂(|ξ|2ξ)/∂τ ! ω|ξ|2ξ are
dropped. In accordance with the paraxial and slowly
varying envelope approximations, only the leading
term is retained after integrating by parts in the last
expression.

By substituting (8) into (6) and setting to zero the
coefficients of terms proportional to ξ, it is found that
q = bω3. The resulting equation is

(9)

where

The group velocity v g is defined by the relation

where k is the wave number in the laboratory frame.
The group-dispersion coefficient is

and α = ωa3.
Since α ∝  –χ3, defocusing behavior (see below) and

normal group dispersion are observed when α, β > 0.
Vice versa, the case of self-focusing combined and
anomalous dispersion corresponds to α, β < 0. The
combinations of defocusing behavior with anomalous
group dispersion (α > 0, β < 0) and self-focusing
behavior with normal group dispersion (α < 0, β > 0)
are considered below in an analysis of the diffraction of
dark solitons.

Now, consider the case of reverse inequality (2):

(10)

When (10) holds, the spectral pulse width, δω ~
1/τp @ ω0, spans the corresponding range of quantum
transition frequencies. Since this condition corresponds
to strong interaction with the medium, dispersion and
nonlinearity cannot be represented additively.

Condition (10) can be satisfied, in particular, for
proton tunneling (ω0 ~ 1013 s–1) in the presence of a
femtosecond optical pulse (τp ~ 10–14 s) [12]. Since
interactions between optical electronic transitions char-
acterized by ω0 ~ 1015 s–1 and the field are weak in this
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case, they can be taken into account by introducing an
appropriate refractive index n0.

It was shown in [9, 10, 12] that condition (10) entails

(11)

where d is the dipole moment for a tunneling transition,
N is the number of transitions per unit second per unit
volume,

and " is Planck’s constant.
Substituting (11) into (1) and averaging the result

over t, one obtains the three-dimensional sine-Gordon
equation

(12)

where

By changing to the variables τ = t – z/v 0 and ζ = z +
v 0t, Eq. (12) is rewritten as

(13)

where

Note that the paraxial approximation was not used
in passing from (12) to (13). Therefore, Eq. (13) can be
used to describe strongly curved wavefronts propagat-
ing in both directions along the z axis.

Finally, consider the Klein–Gordon–Fock equation
frequently used to describe domain-wall dynamics in
ferroelectrics, ferromagnets, and other solids below the
critical temperature Tc of a second-order phase transi-
tion [13, 14]:

(14)

Here, v 0 is a characteristic velocity, u is an order param-
eter, and g0 and b0 are positive phenomenological
parameters [g0 = a1(Tc – T), where a1 depends on the
material, and b0 is virtually independent of tempera-
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ture]. In terms of τ = t – z/v 0 and ζ = z + v 0t, this equa-
tion is rewritten as

(15)

where a0 = gv 0/4 and s = b0v 0/4.

Again, the paraxial approximation is not employed
here. The analysis that follows is focused on the effects
of diffraction on the dynamics of solitons and domain
walls described by Eqs. (6), (9), (13), and (15).

3. DIFFRACTION OF GRAY 
AND DARK ENVELOPE SOLITONS

When αβ > 0, Eq. (9) has a solution describing a
one-dimensional gray soliton (∆⊥ ξ = 0):

(16)

Henceforth, the Ritz–Whitham averaged-Lagrangian
method is applied to allow for transverse dynamics [1, 2].
The Lagrangian associated with Eq. (9) is

(17)

Following [2], let us use (16) as a template for a trial
solution:

(18)

where ρ and Φ are functions of z and r⊥ .

After substituting (18) into (17), an averaged
Lagrangian is found by integration:

(19)

The Euler–Lagrange equations for Λ,

∂2u
∂τ∂ζ
------------ a0u su3–

v 0

4
------∆⊥ u,+=

ξ 1
τp
---- 2β

α
------

iβz

τp
2

------- 
  η

τp
----.sechexp=

L
i
2
--- ξ∗ ∂ξ

∂z
------ ξ∂ξ∗

∂z
---------– 

  α
2
--- ξ 4+=

– β ∂ξ
∂η
------

2 v 0

2ω
------- ∇ ⊥ ξ 2.+

ξ 2β
α
------ρeiΦ ρη( ),sech=

Λ α
4β
------ L ηd

∞–

∞

∫≡ ρ∂Φ
∂z
-------–

β
3
---ρ3+=

+
v 0

2ω
-------ρ ∇ ⊥ Φ( )2 v 0

6ω
------- π2

12
------ 1+ 

  ∇ ⊥ ρ( )2

ρ
-----------------.+

z∂
∂ ∂Λ

∂ ∂Φ/∂z( )
------------------------ ∇ ⊥

∂Λ
∂ ∇ ⊥ Φ( )
--------------------+ 0,=

∂Λ
∂ρ
------- ∇ ⊥

∂Λ
∂ ∇ ⊥ ρ( )
------------------– 0,=
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can be written as

(20)

where ϕ = –v 0Φ/ω, V⊥  = ∇ ⊥ ϕ,

(21)

and p is related to ρ by the equation

(22)

In the one-dimensional case (∇ ⊥  = ∆⊥  = 0), Eq. (20)

yields ρ = ρ0 = 1/τp = const and Φ = –ωϕ/v 0 = βz/ .
Thus, trial solution (18) is found to be identical to the
exact one-soliton solution given by (16). In what fol-
lows, equations analogous to (20) are used to validate
trial solutions against exact one-dimensional one-soli-
ton solutions.

System (20) is analogous to corresponding equations
in the theory of nonlinear monochromatic beams [5].

The term on the right-hand side of the latter equa-
tion in (20) represents diffraction effects in transverse
dynamics of a pulse. Neglecting it (F = 0), one obtains
the eikonal approximation for solitons. In this case, sys-
tem (20) is equivalent to the equations of inviscid fluid
dynamics, where z, ρ, and p correspond to time, density,
and pressure, respectively. The former equation in (20)
is interpreted as the continuity equation; the latter, the
Cauchy theorem for inviscid flows. Equation (22)
describes an isentropic process associated with fluid
motion. It is obvious that the criterion for soliton stabil-
ity with respect to self-focusing in the eikonal approxi-
mation is identical to the stability condition of the
“inviscid flow” described by Eqs. (20)–(22): dp/dρ > 0
[11, 15, 16]. In view of (22), this implies that self-
focusing and defocusing NLS solitons correspond to
β < 0, α < 0 [see (18)] and β > 0, α > 0, respectively.
These conditions admit an obvious physical interpreta-
tion. It follows from (7) and (16) that the wave number
of a soliton in the laboratory frame is

where k = ω/v 0 + q is its linear part and ξm is the ampli-
tude of soliton (16). The soliton refractive index is

where nl = ck/ω is its linear part.

∂ρ
∂z
------ ∇ ⊥ ρV⊥( )+ 0,=

∂ϕ
∂z
------

V⊥
2

2
------- pd

ρ
------∫+ + F ρ ∇ ⊥ ρ ∆⊥ ρ,,( ),=

F
π2

12
------ 1+ 

  v 0
2

3ω2ρ
------------- 2∆⊥ ρ

∇ ⊥ ρ( )2

ρ
-----------------– ,=

dp
dρ
------

2v 0β
ω

-------------ρ2.=

τp
2

ks
ω
v 0
------ q

β
τp

2
----–+ k

αξ m
2

2
----------,–= =

ns
cks

ω
------- nl

cαξ m
2

2ω
-------------,–= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
By the Fermat principle, the wave normal bends in
the direction of increasing refractive index. When α >
0, the soliton refractive index is lower at the center of
the soliton cross section, where its amplitude reaches
its maximum. Therefore, the wavefront bulges forward,
which leads to defocusing. When α < 0, self-focusing
(collapse) of a soliton is predicted in the eikonal
approximation.

Now, let us examine effects due to diffraction. Fol-
lowing an approach developed in the theory of mono-
chromatic beams [4, 5], consider an axially symmetric
pulse. Rewriting (20) in a cylindrical coordinate system
(z, r), let us seek a self-similar approximate solution
for ρ [5]:

(23)

where the constant R0 is interpreted as the radius of the
input pulse, R(z) is its current radius, and ρ0 is the
inverse duration of the input pulse (proportional to its
input amplitude).

The self-similar transverse dynamics of the soliton
defined by (23) corresponds to an aberration-free
approximation [4].

The analysis presented below focuses on the near-
axis dynamics (r2/R2 ! 1) [4, 5]. For this reason, the
solution for ϕ is represented as the expansion

. (24)

It follows from the former equation in (20) com-
bined with (23) and (24) that

(25)

where the prime denotes a derivative with respect to z.

By substituting (23) and (24) into the latter equation
in (20) and collecting the terms of degree zero and two
in r, the following equations are obtained:

(26)

(27)

According to (24), the value of f2 characterizes the
curvature of the constant-phase surfaces in the input

ρ z r,( ) ρ0

R0
2

R2 z( )
------------ r2

R2 z( )
------------– ,exp=

ϕ z r,( ) f 1 z( )
r2

2
---- f 2 z( ) …+ +=

f 2
R'
R
----,=

f 1'
v 0β
ω

---------ρ0
2 R0

4

R4
-----–

8v 0
2

3ω2
--------- π2

12
------ 1+ 

  1

R2
-----,–=

f 2' f 2
2+

2v 0β
ω

-------------ρ0
2 R0

4

R6
-----

4v 0
2

3ω2
--------- π2

12
------ 1+ 

  1

R4
-----.+=
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pulse. Indeed, the soliton phase can be represented as
ϕs = ωt – Φs, where the total soliton phase eikonal is

The eikonal curvature is positive and negative if f2 > 0
and f2 < 0, respectively.

The phase velocity v ph is parallel to its normal, and
its magnitude is defined by the relation

where the longitudinal and transverse velocity compo-
nents, v || and v ⊥ , are calculated as

It is obvious that the phase velocity on the soliton
centerline (at r = 0) reduces to the longitudinal compo-
nent, for which

Thus, the value of  determines the dispersive compo-
nent of phase velocity on the centerline. Since the sec-
ond term on the right-hand side in (26) characterizes the
effect of diffraction on this component, it is clear that
diffraction increases the near-axis phase velocity, i.e.,
reduces the effective refractive index. Thus, diffraction
counteracts self-focusing, as in quasi-monochromatic
beams.

The eikonal approximation corresponds to the limit

R0, R  ∞. In this limit, (26) yields  = –v 0β /ω;
i.e., defocusing by diffraction is eliminated. Hence,

which is equal to Φ in exact solution (16).

The equation obtained by substituting (25) into (27)
is formally equivalent to the equation of motion for a

Φs kz Φ– kx
ω
v 0
------ϕ+= =

=  kz
ω
v 0
------ f 1 z( )

r2

2
---- f 2 z( ) …+ + .+

1
v ph
--------

1
ω
---- ∇Φ 1

v ||
2

------ 1

v ⊥
2

------+ ,= =

1
v ||
----- k

ω
----

v 0

ω2
------ f 1'

r2

2
---- f 2'+ 

  ,+=

1
v ⊥
------

v 0

ω2
------r f 2.=

1
v ||
----- k

ω
----

v 0 f '

ω2
-----------.+=

f 1'

f 1' ρ0
2

Φ ωϕ
v 0
--------–

ω f 1

v 0
--------- βρ0

2z
βz

τ p
2

-----,= = = =
JOURNAL OF EXPERIMENTAL 
Newtonian particle of unit mass in the field with poten-
tial energy U(R):

(28)

where

(29)

The parameters of the potential curve U(R) defined
by (29) are determined by properties of the medium and
parameters of the input pulse. The first term on the
right-hand side in (29) corresponds to the eikonal
approximation, and the second one represents the effect
of diffraction. Again, it is clear that diffraction has a
defocusing effect.

To determine the function R(z) describing soliton
dynamics, Eq. (28) must be supplemented with bound-
ary conditions: R(0) = R0, R '(0) = . Suppose that the
input pulse has a plane wavefront, i.e., f2(0) = 0. Then,
R '(0) = 0 by virtue of (25). In this case, defocusing is
stronger than self-focusing if R ''(0) > 0. According
to (28), this condition entails

(30)

For a focusing medium (β < 0), it follows from (29)
and (30) that

(31)

The left-hand side of (31) is proportional to the
input pulse intensity Q. Thus, as in the case of a high-
power monochromatic beam [5], self-focusing is com-
pensated for if the input soliton intensity does not
exceed a certain critical value.

To analyze the effect of diffraction on propagation
of dark envelope solitons, consider the solution to
Eq. (9) when αβ < 0 [17]:

(32)

Note that the existence of dark solitons was sup-
ported by experiments [18].

Using (32) as a template, consider the trial solution

(33)

where the variables ρ and Φ are interpreted by analogy
with their counterparts in (18).

R''
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----------.=
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τp
---- 2β

α
------ i
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Substitution of (33) into (17) and subsequent inte-
gration with respect to the “fast” variable η lead, among
other things, to the divergent integrals

Note that these integrals arise from the quadratic
and quartic terms in (17), respectively. As η  ±∞,
the intensity of a dark soliton approaches a finite con-
stant value corresponding to the classical “soliton vac-
uum” [19, 20]. The contributions of this “background”
to the integrals result in divergent terms linear in η. A
dark soliton can be treated as the deviation of |ξ|2 from

its “background” value |ξ∞|2 = 2β/(α ) (see (32)), i.e.,
as a perturbation. By retaining the perturbation and dis-
carding the “background” (i.e., ignoring the classical
vacuum), the Lagrangian can be regularized by per-
forming the following change in the divergent integrals:

(34)

An analogous procedure is used in quantum field
theories when infinite terms corresponding to vacuum
states are dropped and only deviations from vacuum are
assumed to be observable [20]. Further argumentation
supporting rule (34), including additional examples, is
given below.

In summary, the regularized averaged Lagrangian is
written as

(35)

where Lreg is the regularized Lagrangian density obtained
by substituting (32) into (17) and applying (34).

By varying (35) with respect to ρ and Φ, equations
analogous to (20) are obtained, with ϕ = v 0Φ/ω,

(36)

and

or

(37)
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2
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2
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6ω
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2
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ρ
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pd
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ω
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In the one-dimensional case, ρ = ρ0 =1/τp and

∂Φ/∂z = β , which yields Φ = 2βz/  in full agree-
ment with (32) (see also (33)). Thus, regularization rule
is validated by “one-dimensional testing.”

In the eikonal approximation (F = 0), Eq. (37) shows
that the dark NLS soliton is stable if β < 0 (α > 0) and
unstable with respect to self-focusing if β > 0 (α < 0).
The physical interpretation of this behavior is analo-
gous to the case of a gray NLS soliton, i.e., associated
with the dependence of the nonlinear soliton refractive
index on the soliton intensity.

Introducing diffraction as in the scheme described
above, one obtains Eq. (28) with

(38)

as well as (24) and (25). Furthermore,

The form of U(R) is qualitatively similar to that of
its counterpart for gray NLS solitons in both focusing
(α < 0, β > 0) and defocusing α > 0, β < 0) media. If the
an input soliton has a plane constant-phase wavefront
(R '(0) = 0), then condition (30) for self-focusing com-
pensation is

(39)

As in the case of a gray soliton, the intensity of a dark
soliton must not exceed a certain critical value.

4. DIFFRACTION OF VIDEO SOLITONS
IN A MEDIUM 

WITH QUADRATIC NONLINEARITY

If a3 = 0 in (6), then the resulting Korteweg–de Vries
(KdV) equation has the following one-dimensional
soliton (∆⊥  = 0):

(40)

The parameter V is related to the soliton propagation
velocity v  in the laboratory frame:

(41)
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The Lagrangian density corresponding to (6) is

(42)

The “potential” Q is related to the field E as follows:

Using (40) as a template, let us take the trial solution

(43)

where the dynamical variables γ and Φ depend on coor-
dinates [1]. Note that a group eikonal is well defined in
this case, rather than the phase eikonal associated with
the NLS equation.

Substituting (43) into (42), setting a3 = 0, averaging
the result over τ, and applying (34) to a divergent inte-
gral analogous to J1, one obtains

(44)

where ρ = γ3.
Variation of Λ with respect to ρ and Φ again leads to

equations analogous to (20) with ϕ = v 0Φ,

(45)

(46)

In the one-dimensional case, Eqs. (20) and (45)
yield

Since γ0 = 1/2τp (see (40) and (43)), it follows that Φ =

–b/ , in agreement with (40), (41), and (43).

“Process equation” (45) implies that the KdV soli-
ton described in the eikonal approximation (F = 0) is
stable if b > 0, i.e., in the case of normal dispersion.
According to Eq. (40), E > 0 if a2 > 0 and E < 0 if a2 < 0.
This result admits a simple physical interpretation.
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Indeed, (3) and (4) can be combined to define the effec-
tive susceptibility

where χl is the linear susceptibility (including disper-
sion), and the total refractive index is

Since a3 = 0, the refractive index on the centerline is
reduced by nonlinearity when a2E > 0, i.e., defocusing
is observed in accordance with the result obtained
above.

This result can be derived directly from (40) and
(41) if the group velocity v  is expressed as

where Em is the amplitude of soliton (40).
For the group refractive index defined as ng ≡ c/v, it

holds that

;

i.e., the group refractive index is minimal on the center-
line if a2Em > 0, whereas the group velocity reaches its
maximum.

Introducing diffraction as in the scheme described
above, one obtains Eq. (28) with

(47)

Both expansion (24) and relation (25) hold, and f1(z)
satisfies the equation

The form of U(R) is qualitatively similar to that of
its counterpart for the NLS soliton. Again, diffraction
has a defocusing effect.

In the case of anomalous dispersion (b < 0), crite-
rion (30) for compensation of self-focusing by diffrac-
tion leads to the condition

(48)
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where γ0 =  = 1/2τp0 is the inverse duration of an
input KdV soliton. According to (40), its amplitude is

estimated as Em ~ . Therefore, inequality (48) pro-
vides an upper limit for the intensity of an input soliton.

The transverse length scale of the nonuniformity
associated with a soliton is determined by its diameter
(or radius). Therefore, the relative importance of dif-
fraction as compared to effects described by geometric
optics can be characterized by the dimensionless
parameter

(49)

where λ is a typical soliton wavelength.

According to (23), self-focusing is accompanied by
longitudinal self-compression of solitons. Since an
envelope soliton spans a spectral range, the characteris-
tic wavelength λ of its high-frequency components
remains invariant under self-compression, while R
decreases. Therefore, the parameter δ increases; i.e.,
the diffractive spread tends to increase. This explains
criteria (31) and (39). In the case of a KdV video soli-
ton, which has no carrier, the role of wavelength is
played by its characteristic length:

(see (23)).

Then,

Similarly to the case of an envelope soliton, self-focus-
ing is accompanied by an (albeit slower) increase in δ.
Therefore, diffractive spread can suppress self-focus-
ing, as expressed by condition (48).

5. DIFFRACTION OF VIDEO SOLITONS
IN A MEDIUM WITH CUBIC NONLINEARITY

If a2 = 0 in (6) and (42), then the resulting modified
Korteweg–de Vries (MKdV) equation, which describes
propagation of video solitons in an isotropic medium,
has the one-dimensional one-solution solution

As in the case of a KdV soliton, the parameter V is
related to the propagation velocity v in the laboratory
frame by (41).
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λ l v 0τp

v 0

γ
------≈≈ ≈

v 0

ρ1/3
--------

v 0

ρ0
1/3R0

2/3
-----------------R2/3≈=

δ
v 0

ρ0R0
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E
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-----------------.sech=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
To allow for diffraction, the trial “potential” is
defined as

(50)

Substituting (50) into (42), setting a2 = 0, and aver-
aging the result over τ, a system similar to (20) is
obtained, with V⊥  = ∇ ⊥ ϕ, ϕ = v 0Φ/2,

(51)

and the “process equation”

(52)

In the eikonal approximation (F = 0), the MKdV
soliton is stable with respect to self-focusing if b = 0,
i.e., in the case of normal dispersion. Both the one-soli-
ton solution and (50) imply that a3 > 0, or χ3 < 0 (see
above), in this case; i.e., the medium is defocusing.

Introducing diffraction as in the scheme described
above, one obtains Eq. (28) with

(53)

Both (24) and (25) hold, and

The first term on the right-hand side of (53) corre-
sponds to the geometric-optics approximation, and the
second one represents the influence of diffraction. It is
clear that the diffraction part of “potential energy” is
similar to the energy of harmonic oscillator, with the
only exception that R ≥ 0 here. In contrast to the exam-
ples discussed above, diffraction decreases the soliton
radius. Accordingly, the function U(R) has a minimum
in a defocusing medium (b, a3 > 0). In this case, diffrac-
tion counteracts transverse spread and can lead to self-
trapping, in which case the soliton radius fluctuates
about

where ld = (b )–1 = /b is the characteristic length
of dispersive spread and l = v 0/ρ0 = v 0τp0 is the length
of an input soliton.

In a focusing medium (b, a3 < 0), solitons are unsta-
ble and diffraction enhances self-focusing.
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The unusual role played by diffraction in the
dynamics of video solitons in isotropic media can be
explained by analyzing the evolution of the parameter δ
(see (49)). Indeed, assuming that

(see (23)) and using (49), one obtains

As R  0 as a result of self-focusing, the parame-
ter δ also tends to zero. In other words, the contribution
of wave properties of the field decreases relative to
those described by the eikonal approximation, and this
makes it impossible to compensate for self-focusing of
solitons by diffraction effects.

If b and a3 in the MKdV equation have opposite
signs, then its one-dimensional solution describes a
dark video soliton:

The parameter V is related to the soliton velocity v
in the laboratory frame and its duration τp as follows:

(54)

Using the one-dimensional solution as a template,
let us take

(55)

By substituting (55) into (42), setting a2 = 0, aver-
aging the result over τ, and applying regularization
rule (34), an averaged Lagrangian is obtained. Varia-
tion with respect to ρ and group eikonal Φ leads to sys-
tem (20) with V⊥  = ∇ ⊥ ϕ, ϕ = v 0Φ,

(56)

Hence,

In the one-dimensional case, ρ = 1/τp = const and ϕ =

2bv 0z/ . Then, ϕ = 2bz/  and the solution is identical
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with the one-dimensional dark soliton described by
MKdV. As in the case of dark NLS solitons, it is clear
that regularization rule (34) is physically correct.

In the eikonal approximation, the dark soliton is sta-
ble in a defocusing medium (b < 0, a3 > 0) and exhibits
self-focusing when b > 0 and a3 < 0, which is obviously
consistent with the nonlinear Fermat principle.

Allowance for diffraction leads to (24), (25), and (28)
with

(57)

Again, diffraction enhances self-focusing. In the case
of a defocusing medium with anomalous dispersion
(b < 0, a3 > 0), dark solitons can exhibit self-trapping
behavior, in which case the soliton radius fluctuates
about

In a focusing medium, dark MKdV solitons are
unstable with respect to transverse perturbations.

6. DIFFRACTION OF KINKS 
AND DOMAIN WALLS

Let us consider self-diffraction of solitons (kinks)
described by the sine-Gordon equation and domain
walls described by the Klein–Gordon–Fock equation.

Equation (13) has the one-soliton one-dimensional
solution

(58)

where ρ0 and V are constant parameters such that

1/V = a/ .

The argument in the exponential can be rewritten in
the physical variables as (t – z/v)/τp. In the laboratory
frame, duration τp and velocity v  are related to V as
follows:

This implies a relation between v  and τp:

(59)
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The Lagrangian associated with (13) is

(60)

In accordance with (55), the trial non-one-dimen-
sional solution to (13) reducing to the one-soliton one
when ∆⊥ θ = 0 is represented as

(61)

where ρ and Φ are functions of ζ = z + at and transverse
coordinates.

Substituting (61) into (60) and averaging the result
over τ, one obtains the averaged Lagrangian

Its variation with respect to Φ and ρ leads to Eqs. (20)
up to the change z  ζ = z + v 0t, where V⊥  = ∇ ⊥ ϕ, ϕ =
v 0Φ/2,

(62)

It is obvious that Eqs. (20) combined with (62) yield
one-soliton solution (58) in the one-dimensional case.

The latter equation in (62) implies that the video
soliton described by Eq. (13) is stable in the eikonal
approximation with respect to self-focusing when a ~
g > 0.

Allowance for diffraction again leads to Eq. (28)
with

(63)

Here, the prime denotes the second derivative with
respect to ζ = z + v 0t. If the change z  ζ = z + v 0t is
made in (23), then R0 can be interpreted as the soliton
radius when z = –v 0t. In particular, R = R0 if z = t = 0;
i.e., R0 is the input soliton radius.

According to (63), diffraction (represented by the
second term on its right-hand side) enhances self-
focusing as in the case of a MKdV video soliton. When
the input soliton has a plane wavefront (R '(0) = 0),
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Eq. (63) and condition (30) can be combined to obtain
the defocusing criterion

(64)

which strengthens the corresponding condition derived
in the eikonal approximation, g > 0. For this reason, the
criterion for validity of the geometric-optics approxi-
mation for the soliton described by the sine-Gordon
equation can be written as R0 @ Rc . If R < Rc , then solu-
tion (58) cannot exist. To estimate Rc for an electromag-
netic video soliton propagating in a system with tunnel-
ing transitions, set d ~ 10–18 CGSE units, N ~ 1021 cm–3,
and ω0 ~ 1013 s–1. Then, g ~ 103 cm–2 and Rc ~ 1 mm.

Now, let us analyze the effect of transverse perturba-
tions on a domain wall described by Eq. (14) (see
also (15)). In the one-dimensional case,

(65)

The transition layer thickness l is related to the domain-
wall velocity v  by the “relativistic” expression

(66)

where l0 = .

As in the case of a soliton described by the sine-Gor-
don equation, it is convenient to use canonical variables
in the non-one-dimensional case. Equation (15) is asso-
ciated with the Lagrangian

(67)

Let us take the following trial solution correspond-
ing to (65):

(68)

where ρ and Φ are functions of ζ = z + v 0t.

Substituting (68) into (67), averaging the result over
τ, and applying (34), one obtains the averaged
Lagrangian

(69)
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By using (69) in the Euler–Lagrange equation for Φ
and ρ, system (20) is obtained, where ϕ = v 0Φ/2,

(70)

The corresponding “process equation” is

(71)

Thus, the eikonal approximation predicts the stabil-
ity of solution (65) with respect to transverse perturba-
tions. Moreover, it is clear that the trial solution given
by (68), (20), and (71) reduces to (65), (66) in the one-
dimensional case. This result provides additional sup-
port to the regularization procedure based on (34).

Allowance for diffraction (F ≠ 0) leads to (24), (25),
and (28) up to the change z  ζ, where U is defined
by (63) with

while

By criterion (30), an axially symmetric domain wall
is stable with respect to self-focusing described by (61),
where

(72)

In the case of a second-order phase transition, a ~
Tc – T. Accordingly, condition (64) becomes more
restrictive as the transition temperature is approached,

while Rc ~ 1/ . Thus, stable domains cannot
form in the neighborhood of Tc as easily as far from the
phase-transition temperature.

7. CONCLUSIONS

The present study reveals important trends in the
behavior of transversely perturbed solitons of different
types. It is shown that diffraction effects on transverse
dynamics strongly depend on the soliton type. In partic-
ular, diffraction counteracts self-focusing of gray and
dark NLS envelope solitons and KdV video solitons in
media with quadratic nonlinearity if their intensities do
not exceed certain critical values. The corresponding
criteria are given by (31), (39), and (48). Conversely,
diffraction enhances self-focusing of video solitons,
kinks, and domain walls. The mechanism responsible
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for these effects is explained by correlation between the
transverse and longitudinal soliton dynamics: trans-
verse pulse compression is accompanied by longitudi-
nal compression, amplitude growth, and a change in
propagation velocity. This leads to the following ques-
tion: what is the largest number of modes contained in
a soliton for which defocusing by diffraction is over-
taken by self-focusing? The change in diffraction
effects may be associated with the essential role played
by aberration. An answer to this question can be
obtained, for example, by analyzing three-dimensional
breather dynamics. The averaged-Lagrangian method
can hardly be applied because of difficulties in analyti-
cal calculations of integrals. Either the method should
be modified, or essentially different analytical
approaches should be found.

These problems motivate the study of two-hump soli-
tons propagating in the regime of synchronized long and
short waves or Zakharov–Benney resonance [21, 22].
These solitons develop as bound states of envelope
solitons and video solitons. They arise in plasma phys-
ics, optics, acoustics, solid-state physics, and the phys-
ics of macromolecules. One may expect competition
between different diffraction effects on envelope and
video solitons.

Furthermore, the effects considered here motivate
analysis of diffraction effects on video solitons in media
with combined quadratic and cubic nonlinearities.

By no means less important is the question about the
effects of transverse perturbations on envelope and
video solitons at the eikonal stage. According to Sec-
tion 3, the transverse dynamics of envelope solitons are
determined by the dependence of their phase velocity
(or phase refractive index) on amplitude. This is clear
from the fact that the group velocities of gray and dark
NLS solitons are independent of their amplitudes,
whereas the transverse dynamics of video solitons is
determined by the amplitude dependence of their group
velocities (or group refractive indices). This is made
clear by comparing the stability criteria obtained in the
eikonal approximation with the dependence of group
velocities on soliton duration and noting that the ampli-
tudes of video solitons increase with decreasing τp. The
corresponding analyses presented in Sections 4 and 5
apply to the solitons described by the sine-Gordon
equations as well. Basically, a nonlinear Fermat princi-
ple should be formulated for solitons to embrace these
phenomena. Conditions should be determined under
which transverse dynamics are determined by phase or
group refractive indices (for envelope or video solitons,
respectively) or by certain combinations of both in
intermediate cases (for breathers).

The issues addressed here are of practical, as well as
fundamental, importance in view of growing interest in
the propagation of few-cycle nonlinear pulses in vari-
ous media.
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Abstract—The Josephson qubit based on a superconducting single charge transistor inserted in a low-induc-
tance superconducting loop is considered. The loop is inductively coupled to a radio-frequency driven tank cir-
cuit enabling the readout of the qubit states by measuring the effective Josephson inductance of the transistor.
The effect of qubit dephasing and relaxation due to electric and magnetic control lines, as well as the measuring
system, is evaluated. Recommendations for qubit operation with minimum decoherence are given. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Superconducting quantum bit (qubit) circuits com-
prising mesoscopic Josephson tunnel junctions have
recently demonstrated remarkable quantum coherence
properties and are now considered as promising ele-
ments for a scalable quantum computer [1]. However,
the readout of macroscopic quantum states of a single
qubit or a system of coupled qubits with the minimum
decoherence caused by the detector remains one of the
most important engineering issues in this field.

The Josephson qubits are commonly subdivided
into flux, phase, charge and charge-phase qubits. The
design of charge and charge-phase qubits is based on a
Cooper pair box [2] in which a small superconducting
island with significant Coulomb energy is charged
through a small Josephson junction (charge qubit) or a
miniature double-junction SQUID (charge-phase). The
distinct quantum states of the box generated by signals
applied to a gate are associated with different observ-
able charges on the island. This makes it possible to
read out the qubit state by discriminating the island
charge. Probing this charge can be done either by single
quasiparticle tunneling across a small auxiliary tunnel
junction attached to the island [3] or by a capacitively
coupled electrometer [4]. In the charge-phase qubits,
the quantum states of the box involve the phase coordi-
nate of the SQUID loop and, hence, discriminating
these states can also be done by measuring the persis-
tent current circulating in the loop at an appropriate dc
flux bias. Such a measurement was performed in the
experiment of the Saclay group [5]. In their setup, nick-
named “Quantronium,” the circulating current that
passed through a larger auxiliary (third) junction was

¶This article was submitted by author in English.
1063-7761/04/9806- $26.00 © 21250
read out by measuring the switching current of this
junction.

The persistent current is not the only phase-depen-
dent quantity characterizing the quantum state of the
charge-phase qubit. Another useful quantity is the
Josephson inductance of the double junction, which can
be probed by small radio-frequency (rf) oscillations
induced in the qubit. Recently, we proposed a transistor
configuration of the Cooper pair box (see Fig. 1) in
which the macroscopic superconducting loop closing
the transistor terminals is inductively coupled to a
radio-frequency tank circuit [6]. Similar to the rf-
SQUID-based method of measuring the Josephson
junction impedance [7], this setup makes it possible to
measure the rf impedance (more specifically, the
Josephson inductance) of a system of two small tunnel
junctions connected in series, and in doing so, to probe
the macroscopic states of the qubit.

On the one hand, the advantage of this method con-
sists in an effective decoupling between the qubit and a
measurement device, which reduces the decoherence of
the qubit. Moreover, the loop design of the qubit has the
potential to perform data readout in a nondestructive
way [8]. On the other hand, due to the selective charac-
teristic of the tank, the bandwidth of this setup is rather
narrow, and therefore the optimum relation between the
relaxation time of the qubit and the time of measure-
ment becomes an issue. Furthermore, the driving rf sig-
nal may induce appreciable frequency modulation and
dephasing of the qubit during its evolution (perfor-
mance of quantum operations). Switching the oscilla-
tions off and on is, however, possible only on a rela-
tively long-time scale of a transient process in the tank.

In this paper, we address the problem of decoher-
ence induced in the charge-flux qubit by the classical
resonance tank circuit. In addition, we propose a mea-
004 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) The electric circuit diagram of the charge-flux qubit inductively coupled to a tank circuit by the mutual inductance M.
The macroscopic superconducting loop of inductance L is interrupted by two small Josephson tunnel junctions positioned close to
each other and forming a single-charge transistor; the capacitively coupled gate polarizes the island of this transistor. The qubit is
controlled by the charge Q0 generated by the gate and the flux Φm induced by coil Lm . The tank circuit, which is either of a parallel
(b) or a serial (c) type, is driven by a harmonic signal (Irf or Vrf , respectively) of the frequency ωrf ≈ ω0 , the resonant frequency of
the uncoupled tank circuit
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surement strategy and optimize the regime of qubit
operation for typical parameters of the circuit.

2. BACKGROUND

The small tunnel junctions of the charge-flux qubit
are characterized by self-capacitances C1 and C2 and
the Josephson coupling strengths EJ1 and EJ2. These
junctions with a small central island in-between and a
capacitively coupled gate therefore form a single-
charge transistor connected in our network as the Coo-
per pair box (see Fig. 1). The critical currents of the
junctions are equal to

where Φ0 = h/2e is the flux quantum, and their mean
value is 

The design enables magnetic control of the Josephson
coupling in the box in a dc SQUID manner. The system
therefore has two parameters, the total Josephson phase

Ic1 c2,
2π
Φ0
------EJ1 J2, ,=

Ic0
1
2
--- Ic1 Ic2+( ).=
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across the two junctions φ = ϕ1 + ϕ2 = 2πΦ/Φ0 con-
trolled by the flux Φ threading the loop and the gate
charge Q0 set by the gate voltage Vg . The geometrical
inductance L of the loop is assumed to be much smaller
than the Josephson inductance of the junctions LJ0 =
Φ0/(2πIc0),

(1)

Neglecting the magnetic energy term associated
with the current through the small inductance L, we can
express the Hamiltonian of the autonomous qubit cir-
cuit as

(2)

The second term in Eq. (2) originates from the total
Josephson energy equal to –EJ1cosϕ1 – EJ2cosϕ2. The
effective Josephson coupling strength is

(3)

with the phase variable χ = ϕ + γ(φ). The angle γ is

βL L/LJ0 ! 1.=

H0
2en Q0–( )2

2C
---------------------------- EJ φ( ) χ .cos–=

EJ φ( ) EJ1
2 EJ2

2 2EJ1EJ2 φcos+ +( )
1/2

,=

EJ1 EJ2– EJ φ( ) EJ1 EJ2+ 2EJ0≡≤ ≤
Φ0

π
------ Ic0,=
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Fig. 2. Shape of the energy bands E0 and E1 in the charge-flux qubit calculated for the mean Josephson coupling EJ0 ≡ (EJ1 +
EJ2)/2 = 2Ec and the Josephson coupling asymmetry parameter |j1 – j2| = (EJ1 – EJ2)/(EJ1 + EJ2) = 0.1. Black (hollow) circles on
the zero (excited) band surface mark the locations of magic points A (A'), B (B'), and C (C') and the avoided level crossing
point D (D').
given by

(4)

where the dimensionless Josephson energies are j1, 2 =
EJ1, J2/(2EJ0) with j1 + j2 = 1. The phase difference ϕ =

(ϕ1 – ϕ2)) is a variable conjugate to the island charge

2en = –2ei  and n is the operator of the number of

excess Cooper pairs on the island. This charge enters
the charging energy (first) term in Eq. (2), in which C is
the total capacitance of the island, C = C1 + C2 + Cg ≈
C1 + C2, and the gate capacitance Cg ! C1, 2 . The char-
acteristic charging energy Ec = e2/2C is assumed to be
of the order of the Josephson coupling energies EJ1 ~
EJ2 @ kBT.

The Schrödinger equation corresponding to the
Hamiltonian in Eq. (2) is the Mathieu equation [9]. The
eigenenergies form Bloch bands and the |n, q〉  are the
Bloch wave functions of a particle in the periodic
(Josephson) potential with “quasimomentum” (here,
quasicharge) q. Its value is the charge induced by the
gate source on the island, i.e., q = Q0 = CgVg . Each of

γtan j1 j2–( ) φ/2( ),tan=

1
2
---

ϕ∂
∂
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such eigenfunctions can be represented as a coherent
superposition of plane waves,

(5)

where m = 0, ±1, ±2, … is the number of the excess
Cooper pairs on the island [10, 11]. The weights of

these coherent contributions  depend on q, the
band index n, and the characteristic ratio

(6)

The lowest two energy levels En(q, φ), i.e., n = 0 and 1
(see their dependences on q and φ in Fig. 2) form the
basis {|0〉 , |1〉} suitable for qubit operation. In this basis,
Hamiltonian (2) is diagonal,

(7)

where σi with i = x, y, z is the Pauli spin operator. The
general state of the qubit is

(8)

q n,| 〉 Cm
n( ) i

q
2e
------ m+ 

  χ ,exp
m

∑=

Cm
n( ) 2

λ EJ φ( )/Ec.=

H0 –
1
2
---eσz,=

Ψ| 〉 a 0| 〉 b 1| 〉 ,+=
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with |a|2 + |b|2 = 1. It is remarkable that the level spacing
e(q, φ) ≡ "Ω = E1(q, φ) – E0(q, φ), and therefore the
transition frequency Ω are efficiently controlled by two
knobs, i.e., by varying the parameters q and φ (or,
equivalently, Q0 and Φ).1 

The idea underlying the measurement of this
charge-flux qubit is based on inducing radio frequency
oscillations in the tank circuit of frequency ωrf ! Ω [6].
Due to inductive coupling M, these oscillations cause
oscillations of the corresponding flux ΦT (see Fig. 1a)
and therefore of the total phase,

(9)

If the rf drive signal is sufficiently weak, the amplitude
φa of these oscillations is relatively small, φa ! π. In
this linear regime, the Josephson inductance is given by 

(10)

It is therefore determined by the local curvature of the
energy surface En . For example, for EJ0 = 2Ec (see
Fig. 2) at q ≈ 0, the respective estimates within the
zeroth and first bands are

(11)

and

(12)

In the vicinity of the avoided crossing point, q = e and
φ = π (marked as D–D' in Fig. 2), the inverse induc-
tances can increase significantly,

(13)

because of a small asymmetry of the transistor parame-
ters, |j1 – j2| ! 1. For example, in the case presented in

Fig. 2, |j1 – j2| = 0.1 and  =  for the zeroth
and first band, respectively. At points C and C ', the

absolute values  are smaller, but the signs for n =
0 and 1 are still different.

Coupling to the qubit causes a shift in the resonance
frequency ω0 = (LTCT)–1/2 of the tank circuit, i.e.,

 = ω0 + δω0(n), where

(14)

1 In fact, the energy spectrum of this system is similar to that of
Quantronium [5], having one additional large Josephson junction
in the loop.

φ 2π
Φ0
------ ΦT Φm+( ) φa ωrf t θ+( )sin φ0.+= =

LJ
1– n q φ, ,( )

2π
Φ0
------ 

  2∂2En q φ,( )

∂φ2
------------------------.=

LJ
1– 0 0 φ, ,( ) 0.4LJ0

1– φcos≈

LJ
1– 1 0 φ, ,( ) 0.1LJ0

1– φ.cos≈

LJ
1– n 0 π, ,( )

1–( )n 1+

4 j1 j2–
---------------------LJ0

1– , n≈ 0 and 1,=

LJ
1– 2.5LJ0

1–+−

LJ
1–

ω0' n( )

δω0 n( )
1
2
---k2βL

LJ0

LJ n q φ, ,( )
------------------------ω0.=
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Here,

(15)

is the dimensionless coupling coefficient. The reso-
nance frequency shift δω0(n) carrying information
about the qubit state |n〉  is found from the amplitude
and/or phase of forced oscillations in the tank. For
achieving sufficient resolution in such measurements,
the quality factor of the tank circuit Q should be about
or larger than the ratio ω0/|δω0(0) – δω0(1)|.

3. INHERENT AND EXTERNAL SOURCES 
OF DECOHERENCE

We neglected the quasiparticle tunneling that inevi-
tably causes dissipation of energy. Even rare tunneling
of individual quasiparticles across the tunnel junctions,
i.e., on and from the island, can decohere the qubit and
completely destroy the readout regime described
above. These processes lead to a sudden change in the
operation point, q  q ± e and, possibly, of the energy
band index; i.e., they cause a relaxation of 1  0.

The processes of single quasiparticle tunneling
across a small Josephson junction have been studied by
Averin and Likharev in [12, 13]. They generalized the
orthodox theory of single electron tunneling to the case
of a finite Josephson coupling, EJ ≠ 0, taking into
account the dynamics of the essential phase factors
exp(±iχ/2) in the electron tunneling terms added to a
Hamiltonian of type (2). These factors are the operators
of a single-electron transfer and their nonzero matrix
elements in our basis are

(16)

The rates of transitions |q, n〉   |q ± e, n'〉  are given by

(17)

In our case, Iqp(U) is the quasiparticle current-voltage
dependence of the network of two tunnel junctions of
the qubit connected in parallel. Because the energy sur-
faces are 2e-periodic, the corresponding energy gains
are identical,

(18)

and their value depends on the operation point {Q0, Φ}
(see Fig. 2).

The relation between this energy and the supercon-
ductor energy gap ∆sc is important for making the qua-
siparticle transitions infrequent or even eliminating

them. First, if the voltage is U = /e ≤ 2∆sc/e, the qua-
siparticle current Iqp(U) entering Eq. (17) is exponen-

k
M

LT L
-------------- 1<=

enn'
± n q,〈 | iχ/2±( )exp q e± n',| 〉 .=

Γnn'
± enn'

± 2 Iqp enn'
± /e( )
e

----------------------- 1
enn'

±

kBT
---------– 

 exp–
1–

.=

enn'
+

enn'
– En q φ,( ) En' q e± φ,( ),–= =

enn'
±
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tially small, i.e., ~Ic0exp(–∆sc/kBT).2 At larger voltages,
U > 2∆sc/e, the current Iqp is enormously large, ≥2Ic0.
Therefore, in order to prevent, intensive tunneling of

quasiparticles, the energy gain  must never exceed
2∆sc . Second, if this gain is smaller than ∆sc , then infre-
quent quasiparticle tunneling can, in principle, be
blocked by the gap energy associated with one unpaired
electron in the superconducting island (the so-called
even-odd parity effect).3

Suppression of quasiparticle transitions within the
zero energy band in superconducting Al single-charge
transistors and Cooper pair boxes was extensively
investigated experimentally. Depending on experimen-
tal skill and luck (see, e.g., [14–17]), the inspected
devices often exhibited pure Cooper pair behavior
when their charging energy Ec was not larger than
~100 µeV ≈0.5∆Al, where ∆Al is the superconductor
energy gap of aluminum. Because the energy gain for
transitions in the Cooper pair boxes and low-voltage-

biased transistors, , is less than Ec for any EJ , the
condition Ec < ∆sc can ensure suppression of quasipar-
ticle tunneling in the ground state in a “good” qubit
sample.

For quasiparticle transitions from the excited state,
this condition is clearly insufficient. For example, for
small EJ (corresponding to the flux value Φ = Φ0/2,
Eq. (3)), the energy gain values are between about Ec

(for the process D'  A, see Fig. 2) and 4Ec (for the
processes A'  D' and A'  D). At larger EJ , both
the minimum and maximum energy gain values are

2 See, for example, a simple approximation formula in S. Ramo,
J. R. Whinnery and T. van Duzer, Fields and Waves in Communi-
cation Electronics, Wiley and Sons, New York (1965), p. 211.

3 As follows from the entropy consideration, the threshold value is
somewhat smaller than ∆sc for finite volume of island and non-
zero temperature; see for details M.T. Tuominen, J.M. Hergen-
rother, T.S. Tighe and M. Tinkham, Phys. Rev. Lett. 69, 1997
(1992).

enn'
±

e00
±

1.0

0.5

–1.0 –0.5 0 0.5 1.0
0

Charge Q0/e

Fig. 3. Off-diagonal matrix elements of the single quasipar-
ticle transfer operators exp(±iχ/2) computed for different
values of the equivalent Josephson coupling set by the flux
Φ = Φ0/2 (solid lines), Φ0/4 (dashed lines), and 0 (dotted
lines). The qubit parameters are the same as in Fig. 2.

e10
± 2

e10
– 2

e10
+ 2
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even larger. For example, for EJ = 4Ec (i.e., Φ = 0), the
transitions C'  B and B'  C correspond to the
respective energies ≈4Ec and ≈5Ec . Because the first
factor in the expression for the resulting relaxation rate,

(19)

is nonzero for any Q0 and Φ (see the plots of the two
quantities in Fig. 3), only the condition Ec ≤ ∆sc/5 can
ensure suppression of these transitions at an arbitrary
operation point of our qubit. An insufficiently small
value of Ec was possibly the reason for the very short
relaxation time (tens of nanoseconds) in the recent
experiment with a charge qubit by Duty et al. [17].
Their Al Cooper pair box had Ec ≈ 08∆sc and EJ ≈ 0.4Ec ,
and therefore the energy gain in the chosen operation
point (Q0 = 0.4e) was too large, i.e., about 2.2Ec ≈
1.8∆sc > ∆sc (this sample nicely showed the pure Cooper
pair characteristic although in the ground state).

Moreover, there are several sources of decoherence
due to coupling of the qubit to the environmental
degrees of freedom. For evaluating the effect of these
sources on the qubit, the coupling Hamiltonian term

Hcoupl =  +  is included in the total Hamilto-
nian of the system,

(20)

where Hbath is a bath operator, and  and  are
the electric control line term and the magnetic coupling
term respectively. The latter is associated with both the
flux control line and the tank circuit. Fluctuations orig-
inating from the sources of gate- and flux-control lines
can, in principle, lead to a significant decoherence of
the qubit. As was shown in [18] and demonstrated in
experiments [3–5], these effects can, however, be min-
imized by choosing the appropriate (minimum) cou-
pling. On the other hand, the decoherence caused by the
tank-circuit-based readout system requires special
analysis, because weakening this coupling results in
reducing the input signal. Below, we start with the
sources of decoherence associated with the control
lines and then analyze the effect of the tank circuit and
amplifier.

4. COUPLING
TO THE CHARGE CONTROL LINE

The coupling of the charge-phase qubit to the elec-
tric control line is actually similar to that of the gate
coupling in the ordinary Cooper pair box [18]. How-
ever, we now assume that the Josephson coupling
parameter λ is not necessarily small, as is usually
assumed in the analysis of charge qubits. This general-

τ r
qp( )[ ] 1– Γ10

+ Γ10
–+=

≈ e10
+ 2

e10
– 2

+( )
Iqp e10

± /e( )
e

----------------------,

Hc
e( ) Hc

m( )

H H0 Hcoupl Hbath,+ +=

Hc
e( ) Hc

m( )
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ization of the model is essential because the external
flux Φm changes the effective Josephson energy (3) of
the qubit over a wide range. The assumption that λ is
not small implies that the eigenstates of our system,
Eq. (5), are generally composed of several (not only
two) plane-wave states.

The coupling term can be represented as

(21)

where δVe is the operator of voltage fluctuations on the
island in the absence of Josephson coupling. The

charge operator is equal to 2en = Q0 – C , and there-
fore the essential part of the coupling Hamiltonian is

(22)

The voltage operator is given by

(23)

Here, we assume slow variation of the total phase φ,

Eq. (9). The voltage operator  is similar to the veloc-
ity operator of an electron in the periodic electric poten-
tial of a crystal lattice [19], and its interband matrix ele-
ments are

(24)

where δn, n' is the Kroneker delta and χnn' are the matrix
elements of the phase operator χ [11].

Finally, the coupling Hamiltonian, Eq. (22), takes
the form

(25)

where we introduce the operator

(26)

with

(27)

and

(28)

(The plots of the terms entering Eqs. (27) and (28)
obtained by numerical calculations are presented in

Hc
e( ) 2enδVe,–=

V̂

Hc
e( ) CV̂δVe.=

V̂
Φ0

2π
------ϕ̇

Φ0

2π
------ χ̇ ∂γ

∂φ
------φ̇– 

  Φ0

2π
------χ̇ .= = =

V̂

Vnn'

∂En

∂q
---------δn n', i

En En'–
2e

------------------χnn' 1 δn n',–( ),+=

Hc
e( ) σx ηesin σz ηecos+( )Xe,=

Xe C V δVe=

V
1
2
--- V11 V00–( )2 4 V01

2+=

ηetan
2 V01

V11 V00–( )
--------------------------.=
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Fig. 4.) Thus, Xe =  can be considered as an
operator of the bath [20] with the Hamiltonian

(29)

and the spectral density  =  =
Je(ω)Θ(ω, T)/ω. Here, the oscillator energy function is

(30)

and

(31)

With Cg assumed to be small, the spectral density 
of the fluctuations of δVe is given by

(32)

Caxaa∑
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e( ) pa

2

2ma

---------
maωa
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2

2
------------------+ 
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∑=
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"ω
2

-------coth
"ω

2kBT
------------=

Je ω( )
π
2
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2

maωa

-------------δ ω ωa–( ).
a
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SV
e( )

SV
e( ) ω( )

2
π
---

Cg

C
------ 

 
2

ReZt ω( )Θ ω T,( ),=

1.0

0.5
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[(V11 – V00/2]2(e/C)2
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Fig. 4. Terms composed of diagonal (a) and off-diagonal

(b) matrix elements of the operator  in Eqs. (27) and (28)
for different values of the dimensionless flux Φ/Φ0 for the
given qubit parameters (see caption to Fig. 2)
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where Zt = (iωCg + )–1 is determined by the parallel
connection of the qubit capacitance CgC/(Cg + C) ≈ Cg

and the gate line impedance Zg(ω) ~ R100 ≡ 100Ω .
Therefore, for frequencies up to ωg ≡ (R100Cg)–1 @ e/",
i.e., at all characteristic frequencies of the system,
ReZt = R100. This is the case of linear damping in the
Caldeira–Leggett model,

(33)

with the dimensionless factor

(34)

where RQ = h/4e2 ≈ 6.45 kΩ , the resistance quantum.
The estimate similar to the last expression in Eq. (34)
was given in [18] for small λ.

Relaxation and dephasing caused by the charge con-
trol line can therefore be described by the spin-boson
model with linear damping [21]. The corresponding
rates are given by the expressions

(35)

and

(36)

One can see that in accordance with the conclusions
made in [18, 22], reducing the coupling coefficient αe

by a small factor of (Cg/C)2 ! 1 can significantly
depress the decoherence rates.

5. COUPLING TO THE FLUX CONTROL LINE

The inductive coupling of the qubit loop to the control
and readout circuits is described by the Hamiltonian

(37)

where  is the operator of the current circulating in the
qubit loop, δΦm = MmδIm is the bath operator (propor-
tional to fluctuations of the current δIm in the control
inductance Lm), and δΦT = MδI is the operator of the
flux associated with current fluctuations in the tank
circuit.

To specify the coupling, we represent operator  in
eigenbasis (5); i.e., we find the matrix elements

(38)

Zg
1–

Je ω( )
π
2
---α e"ω,=

α e q φ,( )
Cg V

e
--------------- 

 
2 R100

RQ

--------- & 
Cg

C
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2 R100

RQ

---------,=

τ r
e( )[ ] 1– παe ηesin

2 Ωcoth
"Ω

2kBT
------------=

τϕ
e( )[ ] 1–

2τ r
e( )[ ] 1– παe ηecos

2 2kBT
"
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Hc
m( ) Îs δΦm δΦT+( ),–=

Îs

Îs

n〈 | Îs n'| 〉 , n n', 0 1.,=
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In the general case,  is given by the expression

(39)

with the dimensionless factors κ1, 2 = C2, 1/C such that
κ1 + κ2 = 1. The quantities

are the respective charges on the first and second junc-
tion, and their time derivatives are Josephson supercur-
rents,

(40)

Using the identity

and Eq. (4), we can represent the circulating current as

(41)

The respective amplitudes of these two components are

(42)

and

(43)

Because the Hamiltonian in Eq. (2) is an even func-
tion of χ, the operators cosχ and sinχ entering Eq. (41)
are diagonal and off-diagonal, respectively. The ampli-
tude I1 is merely the classical Josephson current across
two large-capacitance junctions, expressed as a func-
tion of the overall phase difference φ, while the diago-
nal term cosχ describes the suppression of this current
due to the charging effect (Ec ≠ 0) (see, e.g., [23]). The
second, off-diagonal term in Eq. (41) is due to asymme-
try of the transistor; it gives rise to the interband transi-
tions 0  1. Using the notation

(44)

and

(45)

for the nonzero values of the corresponding matrix ele-
ments, we obtain the coupling Hamiltonian in Eq. (37)
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in the form

(46)

where

(47)

(48)

(49)

(see the plots of the terms entering these expressions in
Fig. 5).

We first omit the term XT associated with fluctua-
tions of the tank circuit in Eq. (46) and focus on the
effect of fluctuations in the flux control line δΦm =
MmδIm . Assuming real impedance of the flux control
line, Zm ~ R100, we obtain the spectral density of the

operator Xm ∝ δ Im in the form  =

. At frequencies
below ωm ≡ R100/Lm , the function Jm is linear,

(50)

with the dimensionless coupling factor

(51)

At higher frequencies, ω > ωm , the effective damping
decays as (ωm/ω)2.

In fact, Eq. (51) describes the effect of coupling to
the control flux in the general case. An estimate of the
coupling factor based on the evaluation

(52)

which is valid for a symmetric transistor (I2 = 0) with
small EJ , was made in [18]. Small mutual inductance
Mm [18, 22] leads to small αm and therefore causes sig-
nificant depression of the corresponding relaxation
rate,

(53)

and dephasing rate,

(54)

Hc
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So far, we have considered the effects of decoher-
ence due to the charge and flux control lines as two
independent effects. They must actually be described
together using a multibath model [18]. If either of these
decoherence effects is small, i.e., the so-called Hamil-
tonian-dominated regime is realized, the total rates due
to contributions of the two control lines are given by

(55)

(56)

In our model, we assume that such a regime is realized
and, moreover, the resulting rates in Eqs. (55) and (56)
can be made negligibly small. Below, we focus on the
effect of the readout circuit, whose coupling strength
has to be optimized.

6. DECOHERENCE 
DUE TO THE READOUT SYSTEM

In contrast to control lines, coupling to a readout
device (in our case, the tank circuit with an amplifier)
cannot be made arbitrarily small in order to reduce the
decoherence. This coupling should ensure sufficiently
strong signals at the amplifier input in order to perform

τ r
c( )[ ] 1– τ r

e( )[ ] 1– τ r
m( )[ ] 1–

,+=

τϕ
c( )[ ] 1–

2τ r
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.+ +=
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Charge Q0/e
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(c00 – c11)2

(a)

(b)1.0
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–1.0 –0.5 0 0.5 1.00

Charge Q0/e

(2s01)2

Fig. 5. Terms composed of diagonal (a) and off-diagonal
(b) matrix elements of the operator cosχ and sinχ, respec-
tively, calculated for different values of the dimensionless
flux Φ/Φ0 for the given qubit parameters (see caption to
Fig. 2).
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a measurement with a reasonable signal-to-noise ratio
on a time scale shorter than that determined by other

factors, namely, . Moreover, without an efficient
switch (see one possible design of such a switch, e.g.,
in [24]), such a coupling may cause significant dephas-
ing of the qubit during quantum gate manipulation.

The inductive qubit coupling to the tank circuit is
described by the Hamiltonian in Eq. (46). The spectral
density of fluctuations of the corresponding variable
XT ∝ δΦ T = MδI is expressed as

(57)

where  is the spectral density of the noise cur-
rent δI across the inductance LT . Because the cold
(superconducting) tank circuit itself presumably has
very low losses, a back-action noise δI of the amplifier
is dominating. It is associated with the input real
impedance, modeled by Rp or Rs for parallel and serial
configurations, respectively (see Fig. 1). T* is the effec-
tive temperature associated with this impedance.

The spectral density  and the function JT(ω) can
be found from a network consideration. With the small
detuning δω0 ! ω0 neglected, in the case of the parallel
network (Fig. 1b), the spectral function JT is given by
the expression

(58)

with

(59)

and with the quality factor Q = ω0CTRp = Rp/ω0LT . For
the serial network shown in Fig. 1c, we have

(60)

with

(61)

and Q = (ω0CTRs)–1 = ω0LT/Rs .
In contrast to the linear spectral functions for the

control lines, Eqs. (33) and (50), the functions given by
Eqs. (58) and (60) describe a structured bath, i.e., they
both are of a Lorentzian (resonance) shape. A similar
situation emerges, for example, in the case of the flux
qubit with readout using a C-shunted dc SQUID [22].
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The spin-boson model with a structured bath was ana-
lyzed theoretically in [25] on the basis of the flow equa-
tions. If the coupling is weak, as in our case, then only
the high frequency (ω ~ Ω) and low frequency (ω  0)
behaviors of J(ω) account for relaxation and dephasing,
respectively [22, 26, 27].

Because the frequency Ω is typically about tens of
gigahertz and the distance between the qubit and the
amplifier presumably exceeds the wavelength, the
effective real admittance of the parallel circuit at these

frequencies is equal to  and the impedance of the
serial circuit is ≈R100. Therefore, the relaxation rates
increase by respective factors of gp = Rp/R100 @ 1 and gs =
R100/Rs @ 1.

For the parallel tank circuit, the relaxation and depha-
sing rates (presumably, !ω0) are equal to

(62)

and

(63)

respectively. The relaxation rate is dramatically sup-
pressed due to the small frequency ratio, (ω0/Ω) ! 1.
For the serial configuration, the corresponding rates are

(64)

(65)

The dephasing rate is determined by the rate of relax-
ation, because at low frequency, ω ! ω0, it follows that

 ∝  ω3 [21]. Due to weaker decay of the serial cir-
cuit impedance at high frequencies, ω @ ω0, the relax-
ation rate is, however, substantially higher than in the
case of the parallel circuit configuration. We therefore
focus further consideration only on the parallel tank cir-
cuit as the more favorable (allowing longer measuring
time).

7. MAGIC POINTS 
AND SOME ESTIMATIONS

Analysis of the coupling between the qubit and the
tank circuit, Eqs. (46–49) and Fig. 5, shows that its
strength XT ∝ || I || and mixing angle ηm can be signifi-
cantly varied by choosing an appropriate operation
point. For example, as can be seen from Eq. (42), the
diagonal component of XT (∝ I1), which essentially
causes pure dephasing of the qubit, is zero, i.e., the mix-
ing angle ηm = π/2, at the phase values φ = 0 and π. The
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derivatives ∂E0, 1/∂φ and therefore the circulating super-
current are zero. Moreover, as illustrated in Fig. 5b, if
the gate charge Q0 ≈ 0 (i.e., derivatives ∂E0, 1/∂Q0 = 0),
then |s01 | and hence XT are minimum. In particular, at
the bias flux Φm = Φ0/2 or, equivalently, φ = π (this point
is marked in Fig. 2 as A), EJ(φ) = |EJ1 – EJ2| ! Ec , and
we can therefore use the explicit expressions for the
wave functions, Eqs. (A.11) and (A.12) in [11], and
obtain

(66)

Then the value of ||I || given by (48) is

(67)

where we have taken into account that κ1 ~ κ2 ~ 0.5 and
the second term in Eq. (43), ∝ (κ1 – κ2), vanishes
because cos(φ/2) = 0. At the point Q0 = 0, φ = 0 (marked
as B in Fig. 2), the Josephson energy EJ(φ) = 2EJ0 and

2|s01 | is approximately equal to (1/8 )EJ0/Ec and
therefore

(68)

while for Q0 = e (point C in Fig. 2), |s01 | ≈ 0.5 and

(69)

It is remarkable that the effect of asymmetry in critical
currents and capacitances of the junctions can, in prin-
ciple, cancel if (j1 – j2) = –(κ1 – κ2). In practice, how-
ever, the signs of (j1 – j2) and (κ1 – κ2) are normally sim-
ilar because the critical current and capacitance are
both proportional to the junction area and such cancel-
ling does not occur.

Comparing Eqs. (67), (68), and (69), we can see that
under the assumption of small asymmetry of the tran-
sistor, j1 ≈ j2 ≈ κ1 ≈ κ2 ≈ 0.5, the coupling strength αp at
the points A(Q0 = 0, φ = π), B(Q0 = 0, φ = 0), and C(Q0 =
e, φ = 0) is rather small, but it is significant at the point
D(Q0 = e, φ = π), where the parameter |s01 | ≈ 0.5 and

(70)

To illustrate this behavior, the coupling strength evalu-
ated for typical parameters of the system is presented in
the table.

From the standpoint of operation with a minimum
dephasing rate, the “magic” points A, B, and C at which
I1 = 0 (see Eq. (42)) are clearly preferable to other
points in the Q0–Φ plane. Therefore, manipulation of
the qubit can, in principle, be performed at any of these
points. The estimated values of the corresponding fidel-

s01
1

16 2
-------------

EJ φ( )
Ec

-------------
j1 j2–

8 2
-----------------

EJ0

Ec

--------.= =

I A s01 I2

j1 j2–

8 2
-----------------

EJ0

Ec

-------- Ic0,≈=

2

I B

j1 j2– κ1 κ2–+

8 2
-----------------------------------------≈

EJ0

Ec

-------- Ic0,

I C j1 j2– κ1 κ2–+ Ic0.≈

I D Ic0.≈
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ity factor for quantum manipulation, Qϕ ≡ Ω , given
in the table, are sufficiently high. For example, in the
case of preparation of the qubit at point A, the manipu-
lation can be performed by means of a dc pulse applied
to the transistor gate [3, 4, 17]. This pulse (with short
rise and fall times) can rapidly switch the qubit, for
example, to point D and back to A causing its evolution
(although with significant dephasing) during the pulse
span. Our qubit prepared in the ground state at point A
or B or C can be (preferably) manipulated by a pulse of
microwave frequency, ~Ω , applied to the gate. For
example, the Quantronium qubit in the experiment by
Vion et al. [5] was manipulated by microwave pulses at
point C.

For reading out the final state, the qubit dephasing is
of minor importance, while the requirement of a suffi-
ciently long relaxation time is decisive. Moreover, the
relaxation rate may somewhat increase due to oscilla-
tions in the tank induced by a drive pulse (see Fig. 6),
which leads to the development of oscillations around a
magic point along the φ axis, Eq. (9). If the frequency
of these oscillations is sufficiently low, ωrf ! Ω , they
result only in a slow modulation of the transition fre-
quency Ω . The increase in the amplitude of steady
oscillations up to φa ≈ π/2 (determined by the amplitude
of the drive pulse and detuning) yields a large output
signal and still ensures the required resolution in the
measurement provided the product k2QβL is sufficiently
large. (At larger amplitudes φa , the circuit operates in a
nonlinear regime probing the averaged reverse induc-
tance of the qubit whose value, as well as the produced
frequency shift δω0, is smaller [28].) Because points A
and B lie on the axis Q0 = 0 and are both characterized
by a sufficiently long relaxation time, a readout of the
qubit state with the rf oscillation span ±π/2 is preferable
at either point. In the case of operation point C, the lim-
ited amplitude of the oscillations does not significantly
reduce the relaxation time either. Significant reduction

τϕ
p( )

Evaluated qubit parameters derived under the assumption
that EJ0 = 2Ec = 80 µeV (i.e., Ic0 ≈ 40 nA and 5Ec = ∆Al ≈
200 µeV, the energy gap of Al) and j1 – j2 = κ1 – κ2 = 0.1. The
tank circuit quality factor Q = 100, frequency ω0 = 2π ×
100 MHz, (LT/CT)1/2 = 100Ω , k2QβL = 20 and temperature
T* = 1 K @ T ~ 20 mK. As long as the dephasing rate at the
magic points is nominally zero, a 0.1% inaccuracy of the
adjustment of the values φ = π and 0 was assumed

Operation point: A–A' B–B' C–C ' D–D'

Frequency Ω/2π, GHz 39 50 36 4

Coupling strength αp 2 × 10–2 10–2 4 × 10–2 1

Qubit fidelity 
factor Qϕ

3 × 104 2 × 105 104 <30

Relaxation time , s 8 × 10–2 10–1 6 × 10–3 10–7
τr

p( )
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of the relaxation time occurs in the vicinity of point D.
Because of this property, which is due to the depen-
dence of the transversal coupling strength on φ,
Eqs. (43–49), the measurement of the Quantronium
state using a switching current technique was possible
in the middle of segment CD (see Fig. 2), where the
(maximum) values of the circulating current in the
excited and ground states were of different signs [5].

In the vicinity of level crossing point D, in which the
gap between the zeroth and the first excited states is
minimum, "Ω = 2|j1 – j2|EJ0, oscillations of φ may
cause the Landau–Zener transitions |0〉   |1〉  [29].
The probability of a such transition per single sweep,

(71)

     

pLZ 2π
j1 j2–( )2EJ0

φa"ωrf
------------------------------– ,exp=

   

Fig. 6. Principle of narrow-band radio-frequency readout of
the qubit. (a) The resonance curves of the uncoupled tank
circuit (dotted line) and the tank circuit coupled to the qubit
biased at operation point A in the excited state (dashed line)
and in the ground state (solid line). (b) Driving rf pulse of
frequency ωrf =  (n = 0) applied to the tank circuit (top
curve) and the response signal of the tank in resonance (the
ground qubit state, bottom curve) and out of resonance
(excited state, middle curve). A smooth envelope of the
driving pulse is used to suppress transient oscillations and
has a small effect on the rise time of the response signal. For
clarity, the curves are shifted vertically.
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can be appreciable in a sufficiently symmetric transis-
tor and/or at a high driving frequency ωrf
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. These transitions lead to
unwanted mixing of the qubit states [30]. In the vicinity
of point 
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', where the gap between the first and the sec-
ond (not shown in Fig. 2) energy bands is smaller [9],
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 are more probable. Fortunately, the second
energy band has a positive curvature, 
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 > 0, and therefore the mixing of these states
might even improve the distinguishability of signals
from the ground and excited states. More rigorous anal-
ysis of this effect on operation of the qubit at point 

 

A

 

 is
needed, however.

We finally evaluate the time of measurement
required for the resolution of the states 

 

n

 

 = 0 and 
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 = 1
at the most favorable magic points 

 

A

 

 and 
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. As sche-
matically shown in Fig. 6, an rf drive pulse is applied to
the tank circuit just after manipulation of the qubit
(
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 = 0) and induces growing oscillations in the tank. The
amplitude of the oscillations of voltage
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. Assuming a corresponding amplitude of oscil-
lations of the phase 

 

φ

 

a

 

 = 

 

π

 

/2, we obtain the amplitudes

(72)

and 

 

A1 ≈ 1 µV for the parameters in the table.
Assuming that the equivalent noise of a semicon-

ductor-based amplifier referred to the input is of the
order of the Johnson voltage noise across Rp ≈ 10 kΩ at

ambient temperature T* ~ 2 K, i.e.,  ≈ 1 nV/ ,
we can express the signal-to-noise ratio as

(73)

where tmeas is the time of measurement. This time
should clearly be much shorter than the relaxation time

 (evaluated as ≈0.1 s, see table) and exceed the rise
time of the oscillations in the tank trise ≈ 1 µs (the latter
condition nicely agrees with the requirement of an
SNR > 1). Thus, a drive pulse duration of ~10 µs ensur-
ing tmeas ~ 10 µs seems to be a good choice because it
yields a sufficiently high value of SNR ≈ 6. The latter
(as well as the quantum fidelity factor Qϕ) can be sub-
stantially improved using a SQUID-based low-noise
amplifier [31].

8. CONCLUSIONS

We have demonstrated that both manipulation and
readout of the charge-phase qubit coupled to a tank cir-
cuit is, in principle, possible. More specifically, the

EJ0
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A0 φa
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πΦ0ωRpIc0
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decoherence effect of the electric and magnetic control
lines can seemingly be minimized by reducing cou-
pling to the qubit. The readout system based on the par-
allel tank circuit and cold amplifier can ensure suffi-
ciently weak dephasing in the regime without an rf
drive. The dephasing rate strongly depends on the accu-
racy of adjusting the offset flux bias Φm = 0 or Φm =
Φ0/2 corresponding to operation at the magic points.
High symmetry of the Josephson junction parameters
may further improve the coherence characteristics of
the qubit. Because the LC resonance tank circuit intro-
duces only small noise at the high transition frequency
of the qubit, Ω @ ω0, the rate of relaxation can also be
made sufficiently small. Applying an rf drive pulse of
limited span allows a readout of the qubit state in the
regimes of single and repeated measurements.

Other problems in engineering Josephson qubits
with weak decoherence are the 1/f noise of critical cur-
rents of Josephson junctions [32] and the 1/f back-
ground noise coupled to the charge variable [33], which
have not been addressed in this paper but are equally
important. Hopefully, in the given system, these effects
might not be as strong as in “traditional” tunnel-junc-
tion devices like dc SQUIDs and single electron transis-
tors operating at nonzero voltage bias. Due to perfect
decoupling of the superconducting loop with the sin-
gle-charge transistor from dc bias lines and due to the
coherent nature of the Josephson current in the zero
voltage bias regime, one could expect a minor back-
action effect of the zero-bias operating transistor on its
critical current noise and charge noise, which dramati-
cally depend on the current fed (see, for example, [34]).
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