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Abstract—We present the results of our study of the temporal structure of the muon disk at the Yakutsk array
in extensive air showers with primary energies E; > 5 x 10 eV at distances of 250-1500 m from the shower
axisobtained using alarge muon detector with an areaof 184 m? and adetection threshold of E, = 0.5sec6 GeV.

We have found two components with different muon disk thicknesses that require significant revisions of our
view of the development of extensive air showers. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Muonswith energies of ~0.5-1.0 GeV are animpor-
tant component of the extensive air showers (EASS)
produced by ultrahigh-energy (E, = 10'° eV) cosmic-
ray particles. These are weakly absorbed in the atmo-
sphere and are sensitive to the characteristics of the
nuclear interactions during the development of an EAS
and to the chemical composition of primary cosmic-ray
(PCR) particles.

PCR composition is believed to be appreciably
enriched with heavy nuclei at energies 3 x 10'° < E, <
10" eV (see, e.g., [1, 2]) and to rapidly change again
toward protons at 107 < E, < 10% eV [3]. The compo-
sition is heaviest at E, = 10% eV. These results can be
explained in terms of the diffusion model [4].

Muons with energies E, > 1.0 GeV have been con-
tinuously studied at the Yakutsk EAS array since 1974.
In our previous papers [5-8], we showed that air show-
ers at Ey = (3-5) x 10 eV develop differently than
those at |lower energies. In our opinion [9-19], this dif-
ference may be attributable to new PCR particles of
extragalactic origin.

A large muon detector with a threshold E, =
0.5secB GeV (8 is the zenith angle) came into opera-
tion at the Yakutsk EAS array in November 1995. A
preliminary analysis of the data obtained with this
detector showed that it is highly efficient in studying
the development of EASs [20, 21]. Below, we present
some of the results of our study of the temporal struc-
ture of the muon disk. Based on the quark—gluon string
(QGS) model [22], we compare the measured and cal-
culated parameters.

2. THE LARGE MUON DETECTOR

Thelarge muon detector (LM D) consists of 92 scin-
tillation counters with an area of 2 m? similar to those
used at the ground-based stations of the Yakutsk EAS
array. These are arranged in six rowsina26 x 12 m
underground room located at a distance of 180 m from
the array center. The main electronics was made in the
CAMAC standard and placed in the same room, except
for the IBM PC 486 control computer that wasinstalled
in the laboratory. This computer controls the proper
operation of the electronic circuits, calibrates the detec-
tors, and records and stores information. Information
between the computer and the electronics in the under-
ground room is exchanged by means of two seria driv-
ers with six communication lines each.

The electronics was designed in such away that the
amplitude and arrival time of the signal in an air shower
were measured from each counter, irrespective of the
triggering of other detectors. An ATC (amplitude-time
channel) unit was created for such measurements and
installed on each scintillation counter. This unit con-
sists of an amplitude channel (AC) to measure the num-
ber of muons and a time channel (TC) to measure the
arrival time of the first particle. All ATCs are concen-
trated in eleven crates, and the signals from a FEU-125
photomultiplier tube are fed to the input of each ATC
over an RK-75 cable from 20 to 70 m in length.

The amplitude channel operates with a tracking
threshold (from 1 mV to 2 V) in a background load
mode of 100-1000 events s™. Its dynamic range is
~10%. The analog signal at the AC input isfirst delayed
by about 100 ns (20 m of the RK-75 cable) for thetime
channel to generate a 2-us-long square signal at the
control AC input to integrate the charge g from the pho-
tomultiplier tube (PMT). In 2 us, the linear transforma-
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tion g — T begins, and this duration is written into
memory by a 10-MHz clock generator. Amplitude
information is stored in the ATC memory until the
arrival of the next signal fromthe PMT or until the cen-
tral recorder ends the LMD polling (see below).

The time channel of the ATC, which consists of two
synchronized channels, is used to accurately measure
the time from the counter triggering (start) to the signal
from the receiver of synchronization pulses of the main
EAS array (stop). The start signal triggers the precise
time channel (PTC) that measures the interval until the
next clock of the 10-MHz reference generator, whichis
commonto all ATCs. Inturn, the PTC stop servesasthe
start of a coarse time channel (CTC) that counts the
number of clocks of the reference generator until the
main LMD stop generated by thereceiver of synchroni-
zation pulses of the EAS array. The LMD signal stopis
synchronized with the start of the next 10-MHz clock,
which guarantees a simultaneous CTC stop for all of
the counterstriggered in an air shower. Inthe PTC, the
short time interval (from O to 100 ns) is extended by
approximately afactor of 100 by atime-time converter,
and the same 10-MHz clock generator is used to pro-
duce adigital code. This scheme allows oneto measure
the entire interval until the internal LMD stop with an
accuracy of ~5 ns and to achieve arelative accuracy of
the same order of magnitude between different counters
inside the basement.

The signal isfed to the time channel after preampli-
fication and high-frequency front adjustment to a dis-
criminator with a tracking threshold that triggers at a
certain phase of the leading edge and makesthetrigger-
ing of this channel independent of the input signal
amplitude. Synchronization pulses of the EAS array are
fed by a 10-kHz transmitter.

The total TC triggering time for an individual
counter isdefined asthe sum of the CTC and PTC read-
ings with an alowance made for the delay of the signal
propagation over the cable from the PMT to the ATC
and for the additional equipment delay.

Once the processing of the received signal has
started, the ATC is disabled from repeated triggerings
until the end of the processing in each channel (this
time can change from 5 to 250 ps). If the Yakutsk array
selects an EAS or records a local LMD triggering
within 100 ps after the signal arrival, then the triggered
ATCs are disabled to save information and to transfer
data to the control computer.

Information about the last selected event is always
stored in the ATC memory. It is cleared only when a
new event arrives (if the unit has not been specialy dis-
abled on command). The ATC has a special trigger to
memorize the countersthat triggered in a given shower.
It is set to a certain state in the presence of a signal at
the ATC input when a shower is selected with aresolu-
tion time of 100 us (participation bit) and isthen polled
when reading information.
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A master selection unit (MSU) serves to synchro-
nize the operation of al ATCs, to obtain the master of
the main EAS array, to select local events, and to gen-
erate aninterrupt signal for the computer. The signal on
the shower recorded by the main EAS array isfed from
the central recorder to the MSU over a specia cable,
and the MSU generates an interrupt for the computer
that workswith the LMD and sendsasignal to all ATCs
to generate a participation bit. Such an event is always
recorded, irrespective of whether the LMD counters
triggered or not.

In addition, the MSU itself selects local showers
with energy E, ~ 10'° eV when several counters trigger
simultaneously within 2 ps. The number and arrange-
ment of counters are determined by the adjustments of
the adding circuits in each crate and in the MSU itself.
A given type of selection can be permitted or forbidden
by software. The control software can also simulate an
artificial shower at the operator’s command. It is used
to test the equipment and check the connection between
the computer and the remote el ectronics.

The MSU has memory to store 32 16-bit words into
which the occurrence times of individua events are
continuously written. A special ten-digit time counter
(clocks) counts the number of clocks of the 10-MHz
generator starting from the next array synchronization
pulse. The clocks are zeroed when such asignal arrives.
Ten digits are used to store the time, and the event flag
is written into the remaining six digits. The events of
this kind include the arrival of a synchronization pulse
from the EAS array, whose timeiswritten into memory
before time counter reset (flag 0); the triggering of any
detector from each row of 14-16 counters, the flag is
specified by the row number from the first to the sixth
digit; the termination of the pulse generated in the MSU
in shower events to produce a participation bit in the
ATC that disables further writing until the polling and
the subsequent disabling by the control software
(flag 0). This scheme allows one to obtain a time scan
of events for several 100-um periods until the time of
shower selection and to control the operation of the
time channel inindividual ATCs.

A separate computer is used to record and accumu-
late the LMD data. In showers, the MSU generates an
interrupt signal on which the event is written into afile
on the hard disk of the computer. Each record of thisfile
refers to one shower and has a structure that allows
information from al LMD counters to be stored. To
easily identify and combine the datafrom the LMD and
the main EAS array in common showers, both record-
ers record the event time from UT (Universal Time)
clocks. To this end, an input register is installed in a
special crate connected to one of the seria driver lines,
and the code from external UT clocksisfed to thisreg-
ister. The same code is simultaneously fed to the input
register of the main recorder of the Yakutsk array.

In the intervals between showers, the LMD record-
ing program accumulates check and calibration infor-
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mation. It regularly measures the background and the
amplitude spectra from al counters and writes these
data into separate files on the hard disk. The latter are
used for the amplitude calibration of the counters.

3. THE CHARACTERISTICS UNDER STUDY

We studied the temporal structure of the muon disk
in EASs with energies E; = 5 x 10'® eV and zenith
angles cosB = 0.7. Asan example, Fig. 1 showsthedis-
tribution of arrival delays T (curve 1) for muons with a
threshold energy E,, = 0.5sec GeV relativeto the plane
front (the plane perpendicular to the EAS axis at the
point of itsintersection with the array plane) calculated
using the QGS model for primary protons with E, =
108 eV and cosb = 0.9 at R = 630 m from the shower
axis. The mean muon density at this distance is
P,(630) = 0.35 m, the mean delay is [T [= 156 ns, and
the standard deviation is o = 114.2 ns. The full width
at half-maximum of this pulseis T;;, = 107 ns, and the
width at 0.01 of its maximum is475 ns. Thisisthe total
integration time (99%) of all muons in this specific
event.

Curve 2 in Fig. 1 corresponds to the distribution
obtained by integrating curve 1. In fact, it reflects the
pulse shape that would be recorded by an oscillograph
at the output of an ideal detector. The width of thisdis-
tribution at the level from 10 to 50% is T15 = 62 ns.
This quantity is commonly measured in experiments
and used as an EAS disk thickness parameter.

Of practical interest in measuring the particle den-
sity are not the values of T, but the relative delays

=T -Ty D

where T, isthe arrival time of the fastest muon from n
triggered LMD countersin each individual shower, and
T, isthe arrival time of the first muon to the ith counter.
The reason is that the quantities in Eq. (1) reflect the
actual time it takes to collect a given fraction of all par-
ticles at a chosen distance from the shower axis.

The relative delays (1) have an exponentia distri-
bution:

P(t) = exp(~t/A). )

It uniquely depends on the mean density of the detected
muons [ ,(R)or, to be more precise, on the number of
muons mthat passed through an area S(in our case, S=
2 m?), which for the mean

O = [p,(R)B
have the Poisson distribution

P () = Ohid"/m! exp(—Cii). (3)

Histogram 3 in Fig. 1 represents the distribution of
delays (1) obtained from curve 1 by the Monte Carlo
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Fig. 1. The distributions of arrival delays for muons with
energy E,, = 0.5sech GeV at an observation level of X =
1020secB g cm2 calculated using the QGS model for pri-
mary protons with Ey = 10*® eV at R = 630 m from the axis

of a shower with cos® = 0.9: relative to the plane front
(curve 1); and relative to thefirst muon (curve 3) at adensity

py < 0.35 M and when two counters (with an area of 2 m?)

trigger in each of the 5000 showers; T15 is the rise time of
curve 2 at thelevel from 10 to 50% when integrating curve 1.

method for [ 0.7 and n = 2 triggered counters. The
delay and its standard deviation that correspond to this
histogram are [@0= 99 ns and o; = 115.8 ns, respec-
tively. The parameters [{Cland T15 are related by

[0~ 1.6(T15). 4)

This relation may prove to be useful for estimating the
signa integration time at the input of the amplitude
converters when measuring the number of particles at
various distances from the EAS axis.

Analysis shows that, in our case, the delays at p,, <
1 m~ have exponential distributions (2) with similar
parameters A and [ Thus, we can easily derive arela-
tion to estimate the time T,, it takes to detect a fraction
n of al muons;

T, = -00n(1-n). 5)

It follows from Eq. (5) and from our calculations
(seeFig. 1) that the effective thickness of the muon disk
(95% of al particles) in showers with Ey < 10 eV at
R < 630 m from the EAS axis does not exceed 300 ns,
and that 99.7% of all muonswill be detected in thetime
T,=600ns.

4. THE RESULTS

We analyzed the showers detected at the Yakutsk
EASarray with the LMD during the period 1995-2002.
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Fig. 2. Delays [ilin EASs with [Eq= 3 x 107 eV and
[¢osBF= 0.95at various distances from the shower axisrel-
ative to the fastest muons in each shower: the muon densi-
ties are [p, = 0.45 m 2 (filled circles) and p, > 2.5 m™2
(open circles); the dashed curve represents the average
behavior; the solid curve represents the calculations using
the QGS model for primary protons.

The primary particle energy E, was determined from
therelations

Eo = (481 1.6) x 107 (pg 600(0°)) "% [eV], (6)

Ps 600(0°)
= Ps soo(B) exp((secO — 1) x 1020/A,) [m™7],

Ap = (450 £ 44) + (32 + 15)l0g (P o(0%)) [@/em?],
8

where pg 600(6) is the density of the charged particles
measured by ground-based scintillation detectorsat R=
600 m from the shower axis.

Below, we consider only the mean delays derived
from parameters (1). Figure 2 shows [iCin showerswith
10 < E;< 10%8 eV and cosB = 0.9 at R = 250-1500 m
from the EAS axis. The filled circles correspond to {0
during the triggering of two LMD counterswhenm< 2
(inJ1= 0.9) muons passed through them. The dashed
curve represents the average behavior. The solid curve
corresponds to the expected values of [[Jcalculated
using the QGS model for primary protons.

We see that the measured dependence [@0is flatter
than that predicted by the model. The difference
between the dependences at R < 500 m stems from the
fact that al muon densities were taken in the calcula
tions without constraining them by the condition m< 2.
Thisleadsto asignificant decreasein the“looseness’ of
the muon disk and, asaresult, to adecreasein @ This
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Fig. 3. Delay @Oversus Eyin EASswith cos@ =2 0.8 at R=
630 m from the shower axis: the filled circles indicate the
experimental data at [p,(J= 0.45 m™ for the triggering of

two LMD countersin each shower; the dashed curve repre-
sents the average behavior; the solid curves represent the
calculations using the QGS model for primary protons (1)
and iron nuclei (2).

difference vanishes when m = 5 muons pass through
LMD counters in the experiment (open circles). How-
ever, the discrepancy between the dependences at R >
800 m remains difficult to explain.

Let us now analyze the thickness of the muon disk
at R=500-800 m from the shower axis. There are sev-
era reasonsfor thischoiceof R. First, the LMD dataare
presented in this distance range most widely as a func-
tion of E, and 8. Second, since the muon density p,, g
measured at a distance of 600 m from the EAS axis
depends weakly on the zenith angle at E, < (3-5) x
10 eV [7, 8], it isanother convenient parameter, along
with (6), for estimating the primary particle energy. The
following dependence in vertical showers was derived
a the Yakutsk EAS array for muons with a threshold
E,=21.0GeV [8]:

Eo = 24x10%(p, 60(0°)) % [eV].  (9)

Third, since there is agreement between our model
and the experiment at R = 500-800 m from the shower
axis (see Fig. 2), calculations can be used to interpret
the results obtained bel ow.

We chose R = 630 m as a standard distance and
reduced all our resultsto it. The linesin Figs. 3 and 4
indicate the expected (at this distance) delays [fcalcu-
lated using the QGS model for primary protons (1) and
iron nuclei (2) after thetriggering of two LMD counters
when m < 2 muons passed through them: in showers
with cosB = 0.8 asafunction of E, (Fig. 3) and in show-
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ers with 10 < E, < 10% eV as a function of secO
(Fig. 4). The calculations satisfy the relation

(0= 104 + 5(log(E/18) — logA)

(10)
—140(sec6 —1) + 0.194(R—630)
for primary particleswith an atomic weight A at 1067 <
E,< 10'®3eV and 6 < 45° in the range of distancesfrom
the shower axis 500 < R< 1000 m.

The filled circles correspond to the experimental
data obtained for the same selection conditions for
which the calculations were performed. The dashed
curves represent the average behavior of the experi-
mental data. We see that the measured and calculated
values of [ICin Fig. 3 are consistent with the hypothesis
about amixed composition of the PCR particlesat E, <
108 eV. Thiscomposition issignificantly enriched with
ironnuclei at E,= 10% eV andiscloseto the purely pro-
ton composition at E, = 10'8 eV. At first glance, this
conclusion is in reasonably good agreement with the
results obtai ned by many authors (see the Introduction).
However, we see from Fig. 4 that the zenith-angle
dependence of the experimental values of @Ois in
poorer agreement with the calculations for oblique
EASs (6 > 35°-40°), where the mean thickness of the
muon disk proved to be much larger than that expected
from the QGS modd!.

To figure out this problem and the above discrep-
ancy between theory and experiment in Fig. 2, we ana-
lyzed the measured delays (1) in more detail. Their dis-
tribution at E, < (3-5) x 10'7 eV turned out to differ
markedly from the purely exponential distribution (2).
This is clearly seen from Fig. 5a, which shows the
experimental results for a sample of 477 showers with
10%7 < Ey < 1017 eV and cosO = 0.8 after the trigger-
ing of two LMD counters when m £ 2 muons passed
through them. The filled circles correspond to an inte-
gral distribution that may be represented as

N(=t) = Nyexp(-t/A)) + Noexp(-t/A,).  (11)

Thefirst term of thissum (solid line) hasA; = 105 ns
and includes about 50% of all events. It is not attribut-
ableto technical LMD operation factors but reflects the
presence of showersin the sample under consideration
with a wider muon distribution at R = 630 m from the
EAS axis than that expected from model calculations.
If we subtract these events from the integral distribu-
tion, then the second term (dashed line) with A, = 52 ns
remains. At E > (5-7) x 10' eV, the pattern looks dif-
ferent. Inthis case, delays (1) have apurely exponential
form over the entire range of their measurements. This
is clearly seen from Fig. 5b, which shows the experi-
mental results for a sample of 154 showers with
10'7° < E, < 10*82 eV and cos6 = 0.8 after the trigger-
ing of two LMD counters when m < 2 muons passed

{HCIns
120 T T T T

110
100
90
80
70
60
50

40 1 1 1 1
1.0 1.1 1.2 1.3 1.4 1.5

sec
Fig. 4. Delay [@Oversus secB in EASs with Egl= 3 x

10 eV at R= 630 m from the shower axis. The notation is
the same asthat in Fig. 3.

Number of events

103 E\ T T T T T

103 F T T T T T

107 ¢
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| | | | |
0 100 200 300 400 500 600
t,ns
Fig. 5. The integral distribution of delays (1) at R=630 m
in EASs with [¢os8 0.9 after the triggering of two LMD
counters with [ (= 0.45 m~2 in each shower for samples
with 1017 < E;< 1017 %eV (8) and 10Y"° < Ey < 1082 eV
(b): the solid line represents the first termin (11) with Ay =

105 ns; and the dashed line represents the second term
in (11) with A, =52 ns.
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Fig. 7. Theformation of relative delaysin EASswith differ-
ent primary energies.
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Fig. 6. Variations in the structural parameters A4 (filled cir-
cles) and A, (open circles) of the integral distribution of
delays (11) (a) and in the fraction of these components (b)
with EASenergy (in Alog(E;) = 0.3 bins). The dashed and
solid lines indicate the data from Fig. 3.

through them. The solid line corresponds to the distri-
bution

N(=t) = N,exp(~t/100).

5. DISCUSSION

Figure 6 shows variations in the structural parame-
ters of the delay spectrum (11) with EAS energy in
Alog(E,) = 0.3 hins. At E; < (5-7) x 10V eV,
delays (1) have a stable two-component distribution (11)
with distinctly different parameters A, (filled circles)
and A, (open circles). This can be seen from Fig. 6a,
which, for comparison, also shows the model calcula-
tions and the average dependence of the experimental
data (dashed line) presented in Fig. 3. Figure 6b shows
the fraction of the two components. All of the results
apply to R= 630 m and showers with [¢os8= 0.9.

Before we interpret these results, let us consider
how the delays [f[are formed in general terms. Our cal-
culations indicate that these are determined mainly by
the muons that arrive from heights near the EAS maxi-
mum. The delay [f[0decreases with decreasing primary
energy E,, because the depth of the shower maximum
X, recedes from the observation level X (for Yakutsk,
X =1020secB). Thisisclearly seen from Fig. 7, where
the relative delays t, < t, due to the deterioration of the
geometrical muon collection factor. At fixed E,, X — X,
increases with zenith angle, causing the difference
between the muon delays to decrease (see Fig. 4).

Let us revert to the data presented in Fig. 6 and try
to understand their physical meaning. Given the forma-
tion mechanism of delays (1) described above, these
may be assumed to be attributable to two types of cas-
cade curves with distinctly different values of X,,. One
refers to showers for which the depth of the maximum
is much higher in the atmosphere than that expected
from the QGS model for any composition of the pri-
mary particles (from protons to iron nuclei). The frac-
tion of these showers at energies E, = (4-10) x 10'" eV
rapidly decreases (see Fig. 6b).

These events may be assumed to be attributable to
primary particles of anew nature. In[19], we analyzed
the arrival directions of PCR particles with energies
E, = 10'%%72 gV, We showed that a significant fraction
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of these (about 50%) form clusters with a small-scale
cellular structure and are probably produced by neutral
particles of extragalactic origin. In [19], we aso
showed that these particles have a very short range for
the first nuclear interaction (A, = 3.3 x 102 g cm™).
These probably disappear after thefirst interaction, giv-
ing way to a normal cascade of secondary particlesin
EAS development; otherwise, the showers from them
would differ greatly from ordinary showers and would
easily reveal themselves. Due to such a short range /\;,
the showers from enigmatic neutral particles would
accelerate EAS development with a higher maximum
of the cascade curve than that for primary protons.
One of the components, indicated in Fig. 6 by open cir-
cles, may roughly reflect the contribution from these
particles.

So far, it is hard to tell what these particles are. It
may well be that these are neutrinos. The calculations
performed in [23] indicate that EASs that are in many
ways similar to the showersfrom PCR particles of ordi-
nary composition can be formed under certain condi-
tion for theincrease in the neutrino—nucleon interaction
cross section (oy,) at ultrahigh energies. The hypothe-
sis about ultrahigh-energy neutrinos that interact with
relic neutrinos near Earth to produce Z-bozon showers
was considered in [24, 25].

These neutral PCR particles may also prove to be
neutral pions[26]. The possibility that stable pions can
exist inthe composition of ultrahigh-energy cosmic-ray
particleswas shown in this paper. The calculationswere
performed using the QGS model [22] by taking into
account the L andau—Pomeranchuk—Migdal effect [27] in
terms of the Coleman—Glashow hypothesis about the
very weak violation of the Lorentz invariance. Of par-
ticular importance hereisthefact that the reactions of the
interaction between pions and cosmic microwave back-
ground photons are kinematically forbidden, which
alows the Greisen—Zatsepin—Kuzmin paradox [28, 29]
to be resolved.

The second group of data presented in Fig. 6 (filled
circles) refers to showers for which the depth of the
maximum is probably much lower in the atmosphere
than that expected from the QGS model for primary
protons. The fraction of these events at energies E, =
(4-10) x 10* eV rapidly decreases (see Fig. 6b). The
cause of this disagreement between theory and experi-
ment is not yet clear. The imperfectness of the QGS
model may be responsible for this disagreement. How-
ever, it may well be that these events belong to long-
range showers for which the depth of the maximum
“sinks’ deep into the atmosphere compared to ordinary
EASs. Such showersare experimentally observed at the
Tian Shan array at E, > 2 x 10% eV [30]. These are
explained by the formation of an appreciablefraction of
charmed particles during the EAS development that
penetrate deep into the matter without interaction and,
thus, significantly shift the maximum of the cascade
curve to the observation level.
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6. CONCLUSIONS

In our view, the results shown in Figs. 3 and 6 are
very instructive. On the one hand, they are roughly con-
sistent with the hypothesis on the mixed composition of
the PCR particles in the energy range under consider-
ation, where it rapidly changes from dominant iron
nuclei at E;= 107 eV to apurely proton composition at
E, = 108 eV. On the other hand, amore careful analysis
of the same experimental datayieldsresults (see Fig. 6)
that reveal acompletely different pattern of EAS devel-
opment. We do not rule out the situation where the
superposition of two componentsin Fig. 6 can be cam-
ouflaged as showers from a mixed PCR composition.
This may be why the problem of the origin of the first
knee in the comic-ray spectrum at E, > 3 x 10'° eV has
not yet been solved since it was detected more than
40 years ago by a team from Maoscow State Univer-
sity [31]. Note that most of the methods for determin-
ing PCR composition are indirect. These are based on a
comparison of various observational EAS characteris-
ticswith those cal culated from models of EAS develop-
ment with a particular assumed PCR composition.

A large number of experiments have been carried
out over time, but there is no clear understanding of the
EAS phenomenon as yet. Revealing its naturewould in
many ways contribute to solving the problem of the ori-
gin of cosmic-ray particles at ultrahigh energies (up
to ~10% eV). In [9-19], we showed that some of the
PCR particles at E, > 5 x 10'¢ eV have a small-scale
ordered structure related to the distribution of extraga-
lactic pointlike PCR sources, which probably generate
neutral particles. These conclusions are consistent with
our results (regarding the possibl e existence of extraga-
lactic neutral particles). However, this problem requires
more serious theoretical astrophysical studies whose
results would agree with the experimentally measured
nuclear physical characteristics of EAS development;
these studies are beyond the scope on the traditional
views of PCR composition.
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Abstract—Asymmetry in the angular selectivity of the diffraction efficiency observed in polymer-dispersed
liquid-crystal holograms polymerizing under the action of IR radiation is studied experimentally and explained
theoretically. The theory of coupled waves developed for anisotropic media successfully describes basic dif-
fraction properties of the anisotropic holographic gratings obtained. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Diffraction of light from volume phase gratings
based on multilayered or holographic materials has
been studied in detail (see, for example, [1]). In partic-
ular, holographic polymer systems have been thor-
oughly studied in recent decades [2—4] in connection
with their possible application in various optical sys-
tems used for data recording [5], detecting acoustic
waves [6], obtaining flat displays as well as displays
with a required curvature [7, 8], beam cleanup [9],
holographic focusing [10], etc. In contrast to classical
recording materials such as photographic films, photo-
resistors, or gelatins, these systems permit recording
with a high resolution in real time with low irradiation
energies and do not require awet process of film devel-
opment. Hologram fixation in these materials is
ensured by polymerization (initiated in illuminated
regions) and molecular diffusion; asaresult, the refrac-
tive index experiences periodic modulation.

In some cases, itisrequired to control the diffraction
efficiency, for example, for obtaining e ectrooptically
controlled holographic multipliers, data storage units,
and lenses with adynamically variable focal length. In
this connection, the interest in holographic polymer-
dispersed liquid crystals (PDLCs) has increased in
recent years [11]. This interest is due to strong optical
anisotropy and the possibility to control birefringence
in LC drops, which makes it possible to easily control
the optical properties of parts made of such materials.

Holographic PDLC materials are formed by illumi-
nating homogeneous light-sensitive  monomer—LC
mixtures with two coherent interfering waves. In the
course of polymerization, as the number of monomers
decreases in the illuminated areas, monomers from
dark regions diffuse to illuminated areas. For PDLCs,
LC molecules are chosen that can mix with the initial

monomer solution but do not form mixtures with a
polymer or partly polymerized solution. As a result,
phase separation of the L C and the polymer takes place,
producing 3D LC domains (drops) predominantly in
dark regions[12]. In some special cases, well-separated
planar zones of the polymer and the LC with a submi-
crometer resolution are formed [13]. In al these sys
tems, the initial homogeneous mixture is completely
separated into polymer-enriched regions and the LC-
enriched regions; the refractive index of the materia
experiences a periodic perturbation in this case. The
molecular-orientation distribution in each drop (or
layer) of aLC is controlled by the elastic deformation
energy associated with the coupling conditions at the
wallsof drops, pressure, and variation of the drop shape
and size. Sincethe LC density in dark regionsis higher
than in illuminated regions, the effective refractive
index in these regions is mainly determined by the LC
orientation. Illuminated regions are more saturated
with the polymer and the total refractive index of these
regionsis close to that of the polymer. For this reason,
modulation of the refractive index and the diffraction
efficiency of such PDLC gratings strongly depend on
the size of LC drops, their density, shape, and LC
orientation in the drops. Since these materials are
strongly anisotropic, one of the main questions is
understanding the role of LCsin the angular and polar-
ization dependences of the characteristics of the
obtained systems [14-16].

On the other hand, it is well known that the key
parameter of 3D holographic gratingsisthe Bragg con-
dition and the Bragg detuning. Although this condition
for the above ani sotropi ¢ systems can be obtained using
rigorous numerical methods, a simple formulafor esti-
mating this condition as well as a moderate angular
deviation from it would be very useful. Indeed, the
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Fig. 1. Diffraction of light from a thick transmission
hologram.

problem of phase deviation and the diffraction shift
associated with this deviation is quite important. The
most generally accepted technique for describing dif-
fraction properties of thick oscillogramsisthetheory of
coupled waves or the theory of coupled modes [17].
This theory was successfully generalized in [18] to the
case of diffraction gratings produced from anisotropic
materials. However, the final results are given in [18]
only for photorefractive crystals. In addition, the angu-
lar dependence of diffraction efficiency isnot derived in
explicit form, which makes it impossible to use this
dependence for explaining experimental results. It is
therefore necessary to modify this theory for studying
anisotropic diffraction in the case of the Bragg detun-
ing. We performed specific theoretical calculations of
an anisotropic diffraction grating to explain the specific
behavior of recently discovered [19, 20] holographic
PDLCs, which are sensitive to the near-IR spectral
region (850 nm). In some cases, such gratings may have
a diffraction efficiency above 95%. Since the above-
mentioned wavelength isimportant for laser diodes and
laserswith vertical resonators, it has numerous applica
tionsin the recording of holographic structures.

In many of the above-mentioned cases, asymmetry
in the angular selectivity of holographic elements of
thistypeis of specia importance. Although this asym-
metry is an experimentally established fact [12, 13], it
is often disregarded. It should also be noted that our
experimental and theoretical investigations make it
possible to obtain information on the orientation of
molecules in LC drops without resorting to complex
microscopic methods.

The article has the following structure. In Section 2,
the solutionisgiven for asystem of coupled wave equa-
tions in the unsalted-band approximation for purely
phase-transmission 3D grating. A special case of phase
deviation from the Bragg conditions in holographic
PDL Csisconsidered in Section 3. Corresponding exper-
imental results are described in Section 4. Conclusions
are summarized in Section 5.

2. THEORETICAL TREATMENT

Let us consider a unsalted transmission diffraction
grating of thicknessd and period A. We direct they axis
along the normal to the grating surface and the x axis
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along the grating vector (Fig. 1). We assume that inci-
dent light with awavelength A, and awave number k, =
217\ is monochromatic and linearly polarized in vac-
uum. Light isincident on a PDLC at an angle 6, mea-
sured in the sample. We consider the grating formed by
the modulation of the refractive index aone; conse-
quently, the permittivity tensor € has no complex part.

We assume that € varies sinusiodally along the x axis
and that the principal optical axis of the mediumisalso
directed along the x axis. Consequently, we can write

permittivity tensor € in the form

¢ = £°+&'cos(Kx), (1)

where &° is the mean permittivity tensor and &' isthe
permittivity tensor whose components describe the
modulation depth. The wave vector K is oriented along
the x axis; the magnitude of this vector is K = 217A,
where A isthe grating period. Following [17], we con-
sider the propagation of only two waves (incident and
diffracted) for thick holograms. We can write the
expression for the electric field in an anisotropic
medium as the sum of two above-mentioned waves,

E(r,t) = [Ei(r)exp(ik; [F) + E4(r) exp(ikq [1)]
x exp(iwt) +c.c.,

)

where E;(r) and E4(r) are the complex amplitudes of
the incident and diffracted waves, respectively. Using
the Bragg condition k; + K = ky, we can write

exp(ik; [+)exp(iK [F) = exp(ikq [F),
exp(iky () exp(—iK ) = exp(ik; [T).

Taking these relationsinto account aswasdonein [18],
we substitute Egs. (1) and (2) into the wave equation

V x(VxE(r)) = ke€E(r). 3)

Eliminating the terms describing the propagation of
light in an unperturbed medium and applying the
slowly-varying-amplitude approximation, we arrive at
the following system of coupled equations:

2| VE[k-a(e k)] = SAE, (4
2i|ky| VE [ ka—ey(eq [kq)]

K ®)
— 2k Ey(dy [By)°A = EOAEi.

Here and below, we use the following notation: g =
Ei/E; and g4 = E4/Ey are the unit vectors directed along

No.1 2004



FINE STRUCTURE OF ANGULAR SELECTIVITY OF DIFFRACTION EFFICIENCY

E; and E, respectively; d; 4 are the unit vectors along
the corresponding electric induction vectors, A =

eé'e;=e,8'e; and ki, are the unit vectors along the
wave vectors k; 4. Following [17], we define the phase
detuning from the Bragg condition as

kG -k

A = T (6)

This approach is more convenient for comparing theo-
retical and experimental results. The expressionsin the
bracketsin Egs. (4) and (5) are vectorsin the direction
of energy propagation (Poynting vector); consequently,
we can write

R.—ei(e, Dz.) = gu;,

. . (7

Ka—ey(€g Ka) = ggUg,
where u; and uy are unit vectors in the direction of the
Poynting vector and g; 4 are cosines of the angles
formed by the wave vectors and the Poynting vectors.
In the plane-wave approximation, we assume that the
electric field amplitude depends only on coordinate y.
Thus, We can write Egs. (4) and (5) for coupled waves
in the form

Ei = —iXiEq ©)
£+ 215E, = ~iX,E, (©)

where the derivative istaken only with respecttoy; & is
the parameter describing Bragg detuning; X; 4 are the
coupling constants for two waves,

dggkA B KoA
2k4c0osd 4’ Xia = 4n; 40; 4CoSo; 4

= (10)

¢; and ¢ are the angles between the normal to the sur-
face of the PDLC (along the y axis) and the Poynting
vector for the incident and diffracted beams, respec-
tively; and n; 4 is the mean refractive index for the inci-
dent and diffracted beams (k; 4 = Kon; ¢). We can find the
eectric field amplitude at the grating outlet by solving
Egs. (8) and (9) for coupled waves. The principal solu-
tion to this system can be written in the form

Eexp(y.y) + Eexp(Yay),
Eq exp(yyy) + Eq exp(Yay),

Ei
Eq

(11)

where Ef’ld and EI 4 are complex-valued constants.
Substituting these expressions into the system of equa-
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tions (8), (9), we obtain

2
Y2 = —igii /XiXd"'z—z-

Taking into account the normalized initial conditions
E(0) = 1 and E40) = 0, as well as relation (12), we
obtain the solution to system (8), (9) for diffracted
waves with the p and s polarization in the form

derwv +E 3
A/1+E 2Iv?

wherev =d,/X;Xq describesthe modulation of the grat-

ing and & describes the phase detuning from the Bragg
condition (§ = O when light is incident at the Bragg
angle).

Diffraction efficiency n is defined as theratio of the
normal (to the grating surface) components of the
power flux of the diffracted and incident waves. Taking
into account relation (13), we obtain the following
expression for the diffraction efficiency:

_ sin? /EZ+V2
n= 2,2 " (14)
1+&/v

(12)

Eq(d) = i (13)

This expression has the same form as the corre-
sponding expression in [17, 18]. The definition of v
coincideswith that givenin[18], whilethe phase detun-
ing isdefined asin [17].

3. HOLOGRAPHIC POLYMER-DISPERSE LC
WITH PHASE DETUNING

To further develop the model and compare the theo-
retical results with experiment, we must make certain
assumptions concerning a composite grating. We
assume that the grating contains regions with a high
concentration of LC drops, which are separated by
solid polymer regions.

Measurements of scattering of p- and s-polarized
light with normal incidence shows that scattering in the
case when light is polarized along the wave vector of
the grating (p polarization) is stronger than for the s
polarization (perpendicular to the wave vector). It is
well known that anisotropic L C molecules scatter light
polarized along the director more effectively than light
polarized across the director of LC molecules [21].
Thus, we have established that LC molecules in the
drops are oriented parallel to the grating vector (see
Fig. 1), which is confirmed by our analysis of diffrac-
tion efficiency reported here. Thus, s-polarized light
hasthe effective refractive index determined by the per-
pendicular component of the LC permittivity. This is
confirmed by our experiments with a polarization
microscope and scanning with the help of an electron

No. 1 2004



104

microscope. Similar results on the orientation of LC
molecules were obtained in [22, 23] by comparing the
theoretical and experimenta studies of diffraction effi-
ciency of a dlightly different PDLC. We aso assume
that polymer-enriched regions are aimost free of LC
drops. With allowance for the above-mentioned
assumptions, the permittivity tensor for the PDLC has
the form

€« 0 O
0¢,0
0 0 g

g = (15)

ooooo
o [ [

N

where g,, = g isthe LC permittivity for light with the
polarization vector directed along the grating vector
and &, = €, = g is the permittivity for light with the
polarization vector perpendicular to the grating vector.
Thus, in Eg. (1) we set

0 LC
SD” = SD“ c+ 8p0|(l—C), (16)
1 _ ,.LC
€y = (&g C—€pa)C,

where c isthe volume concentration of the LC, shc and

er,” arethe LC permittivity components for light polar-

ized paralel and perpendicularly to the grating vector,
and €, isthe permittivity of the polymer. For obtaining

numerical estimates, we set £;° = 2.95 and e = 2.3

for an E7 LC and €, = 2.4 for the photopolymer used
in our experiments. The LC concentration in our exper-
iments was on the order of 30%.

To study the angular selectivity of the diffraction
efficiency, we must know the explicit dependences of al
parameters on the angle of incidence in expression (14)
for diffraction efficiency. It can easily be seen that the
angles 6; 4 between the normal to the grating surface (y
axis) and the wave vectors 6; 4 of the incident and dif-
fracted light are connected with angles ¢; 4 viatherela-
tions ¢; 4 = 6, 4 + arccosg; 4. In the genera case, the
expressionsfor refractiveindicesn; 4 and the cosines of
angles g; 4 between the wave vectors and the Poynting
vectors have the form

0.2 0 2
€,SN"6; 4 +€pcos B, 4

gi‘dzJoz.z 0224,
(g)) SiN"6; 4+ (en) cos 6 4 (17)
0.0
iy =
" glsin’®, 4 +£dc0s°0, 4
for p-polarized light and
Giq = 1, nfd = 5% (18)
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for s-polarized light. Definition (6) of A leadsto thefol-
lowing expression:

K? - 2k,Kn;siné,

A= 2k

(19)

Parameter A=e &' e, =e,8" e can bewrittenin theform

A = gising;sing,—&jcosd; cosd (20a)
for the p wave and
A =g} (20b)
for the swave.

It can easily be verified that all expressionsin (17),
(19), and (20) are asymmetric relative to the Bragg
angle 65, which can be determined from formula (19)
by setting A = 0. Consequently, the angular dependence
of diffraction efficiency must also be asymmetric rela-
tive to the Bragg angle 6. It is important to note that
6, 4 areanglesin the sample; to compare the theoretical
results with experimental data, we recalculated the
results for the external angle.

In numerical calculations with asmall Bragg detun-
ing, we set 6, = 8; = 6. The angular dependences of
parameters g; 4 and the refractive index lead to a small
correction to the asymmetry in the angular dependence
of diffraction efficiency. The main contribution to the
asymmetry comes from the asymmetric dependence of
the Bragg detuning and the asymmetric dependence of
modulation parameter A or v. The former mechanismis
isotropic (is also observed in isotropic gratings), while
the latter mechanism is anisotropic (is present only in
anisotropic gratings).

Numerical calculations were made with the help of
MATHEMATICA 4.0. The parameters used in calcula
tions for the E7 polymer and liquid crystal are given
below. The wavelength of the test beam was A =
0.628 pum, the lattice period was A = 1.0 um, and the
thickness was d = 27.4 um. It can be seen from Fig. 2
(solid curve) that the angular dependence of diffraction
efficiency is dlightly asymmetric relative to the Bragg
angle 65 = 18.3° = 0.32 rad. The first left peak (n_,) in
Fig. 2 isobvioudy higher the first right peak (n.,). We
define parameter a as a measure of asymmetry as

N_1—N+1

a=2 ,
Ng+Nsg

(21)

inthis case, a, = 6% for a p-polarized test wave in our
experiments with the above-mentioned parameters. To
calculate the diffraction efficiency for an s-polarized
wave, we must substitute € for g, everywhere. Thenthe
angular dependence of the modul ation parameter disap-
pears, and asymmetry (19) of the Bragg detuning
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0.8
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0.2F

0 01 02 03 04 05 06 07
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Fig. 2. Theoretical (solid curve) and experimental (dashed
curve) dependences of the diffraction efficiency on the
angle of incidence for a p-polarized wave.

remains the only mechanism of angular asymmetry in
the diffraction efficiency (solid curve in Fig. 3). In
accordance with definition (21), this asymmetry is neg-
ative and a, = —4.3%. It follows from the obtained
results that the contribution to asymmetry from the
anisotropic mechanism is much larger than from the
isotropic mechanism. In addition, the contribution of
the anisotropic mechanism is partly compensated by
the isotropic mechanism of asymmetry.

It is interesting to consider a certain difference
between the side peaksin the case of p- and s-polarized
test waves. It should be noted that the side peaks are
higher for the p-polarized test wave. It can be seenfrom
relation (14) that the mth-order diffraction peak is
given by

2

_ Vv
Nm = 2

- for WV +E% = T .
Vo+E 2

This means that the ratio of the neighboring peak
heightsis

Nmes _ (2m+1)°
Nm  (2m+3)%

The central peak isaobtained for { =0andv = 172 + TT
(m=0, £1, £2, ...). For our grating made of PDLC, we
have v, = 7.43 and vs = —-1.44 for 6 = O. It is for this
reason that the value of m corresponding to the central
and next peaks begins from zero for an s-polarized test
beam and from two for a p-polarized test beam. As a
result, n,/ny, = 1/9 for an s-polarized test beam and
25/49 for a p-polarized test beam.

One more (the third) mechanism of angular asym-
metry in diffraction efficiency also exists. This mecha-
nism is associated with absorption. The larger the angle
of incidence on the grating, the longer the optical path
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Fig. 3. Theoretical (solid curve) and experimental (dashed
curve) dependences of the diffraction efficiency on the
angle of incidence for an s-polarized wave.

of the beam and, hence, the stronger itsabsorption. This
leads to a positive asymmetry. The alowance for
absorption leads to the following correction: expres-
sion (14) for the diffraction efficiency must be multi-
plied by exp(—ad/cosB), where a is the absorption
coefficient. However, this mechanism is beyond the
scope of this paper since the absorption in our case is
quite small (o = 35 cm™ and ad = 0.0875) and the
asymmetry in the diffraction efficiency due to absorp-
tion isinsignificant.

Thus, we have established the existence of an aniso-
tropic mechanism of asymmetry, which competes with
the asymmetry of the Bragg detuning. Naturally, the
contribution of the anisotropic mechanism strongly
depends on the polarization of the incident beam,
which makes it possible to control the value of asym-
metry. Since the asymmetry has a positive value of
approximately 6% in the case of p polarization (azi-
muth angle 3 = 0) and a negative value of about —4.3%
inthe case of spolarization (azimuth angle 3 = 90°), the
asymmetry must vanish at a certain polarization. To
analyze the dependence of the asymmetry on the azi-
muth angle of the incident polarization, we denote the
intensities of diffracted p- and s-polarized waves by |4,
and |4, the intensities of incident p- and s-polarized
waves by |;, and |5, and the angles between the normal
to the surface of the PDLC (y axis) and the Poynting
vector of the incident and diffracted waveswithpand s
polarizations by ¢;, and ¢;s, ¢4, and ¢, respectively.
In accordance with the definition of diffraction effi-
ciency, for p and s waves, we can write

n — I dp(d) ndpgdeOS(l) dp
P Iip(o)nipgipcosq)ip , (22)
r] — I ds(d)ndsgdscosq) ds

I is(o) nisgiscos¢is .
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Fig. 4. Theoretica (solid curve) and experimental (trian-
gles) dependences of the asymmetry in the angular selectiv-
ity of the diffraction efficiency on the azimuth angle of
polarization.

Since

lip = EipE)p = EES cos’B = 1;cos’B,

E4EX cos’B = I4c08°B,

EE*sin’B = I,sin°B,

—_ *
lap = EgpEap

Iis = EisEi*s

(23)

lgs = EgsEls = EqESSIN'B = 14sin’B,
where [3 isthe azimuth angle of polarization of theinci-
dent beam and I; and |4 are the total intensities of the

incident and diffracted beams, we obtain the following
expression for the intensity of the diffracted wave:

ly = I+ lgp = Li(NsFeSin’B+1n,foco8’B), (24)
where

ni sgi SCOS(I) is
ndsgdscosq) ds

_ nipgipcosq)ip _
fo= —e=e—lp f_ =
ndpgdpcosq)dp

Inthe general case, the expression for the diffraction
efficiency hasthe form

_ 14(d)cosBy

_ 1l

1,(0)cos®,  fl;’ (25)

where f = cosB;/cosb,, 6; and 6, are the angles of

incidence and diffraction outside the sample, which can
be expressed in terms of the angles of incidence and
diffraction 6, and 6, inside the sample with the help of
Snell’sformula. Substituting relation (24) into (25), we
obtain the following expression for the dependence of
the diffraction efficiency on the azimuth angle of polar-
ization of the incident beam:

1 .
N = z(n.f.sin+n, f,c08p). (26)
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This formula is used for plotting a series of curves
describing the angular dependence of diffraction effi-
ciency for the azimuth angle of polarization varying
from 0 to 90° with a step of 5°; from these curves the
dependence of the asymmetry on the angle of polariza-
tion was calculated using formula (21). The result is
given by the solid curve in Fig. 4. It can be seen from
the figure that the asymmetry decreases from the value
a = 6%, which correspondsto p polarization, to zero for
a polarization angle of approximately 55°, attains its
minimum value, and then corresponds to the case of an
s-polarized test wave.

4. EXPERIMENTAL SETUP AND RESULTS

In our experiments, we used a photopolymerizable
solution of a monomer and an LC sensitive in the near
IR spectral region [20]. The material consisted of the
following components:. monomer DPEPA (d-penta-
erythrol-penta-acrylate), monomer 2EEEA (2-ethoxy-
ethoxy-ethyl-acrylate), liquid crystal E7, and a photo-
sensitive system. Thelatter consisted of three elements:
cyanine dye IR-140 with an absorption peak near
818 nm (with a linewidth of 100 nm), electron donor
CBr,, and initiator EDAAB (ethyl-dimethyl-amino-
benzoate). This photopolymerizable solution was
placed between two parale glass plates (25 mm in
width and length and 1 mm in thickness) with a
27.4-um gasket.

It should be noted that the main five-duty monomer
DPEPA produces a 3D network, while the single-duty
monomer 2EEEA with a low viscosity can easily dif-
fuse from dark to strongly illuminated regions. Illumi-
nation of the composite system of the photoinitiator by
infrared light leads to irreversible photolysis and dye
bleaching. Thus, the final absorption of the material is
much lower even for samples with an initial optical
density higher than two (at awavelength of 823 nm). As
a result, we can obtain a very effective (with an effi-
ciency of more than 95%) reproducible holographic
grating with a high resolution. An unsalted transmis-
sion grating was recorded using a standard interference
setup. Two vertically polarized beams (s polarization)
from a titanium:sapphire cw laser (A = 823 nm) inter-
fere at an angle of 48.6°; as aresult, the most effective
period on the order of 1 umisformed [24].

The block diagram of the measuring setup is shown
inFig. 5. A test beam from aHe-Nelaser (A = 628 nm),
which is polarized at 45° relative to the plane of inci-
dence, passes through a quarter-wave plate and
becomes circularly polarized. Then the beam passes
through polarizer P fixed to a step motor SM2 and is
program-controlled by computer PC through a CAMAC
interface. The minimal angle through which the motor
can rotate the polarizer is about 0.77°. Using this sys-
tem, the required polarization of the incident beam can
be programmed. Then light hits the holographic grating
fixed to a step motor SM1. The minimal angle through
which the motor can rotate the holographic grating is
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approximately equal to 0.25°. From the two waves
(transmitted and diffracted) emerging from the grating,
the diffracted wave propagates along the straight line,
while the transmitted wave reflected by the mirror
passes through optomechanical gates G1 and G2 with
open and closed states controlled by the computer as
well. These two beams hit photodetector PM. The gates
shutting down the diffracted wave with a period of
140 ms, open the transmitted wave and the photodetec-
tor measures its intensity; then the transmitted wave is
shut down and the diffracted wave is opened. When
step motor SM1 rotates the grating, the transmitted
wave remains stationary, while the diffracted wave is
displaced. For this purpose, lensL isinstalled between
gate G1 and the grating, which maps an illuminated
point of the grating on the photodetector; consequently,
any beam (incident at any angle) hitting the lens neces-
sarily falls on the photodetector. The setup measures
first the angular dependence of diffraction efficiency for
p polarization and then rotates polarizer P with step
motor SM2 through 5° and measures again the angular
dependence of diffraction efficiency until the s polar-
ization is attained. We obtain a series of curves describ-
ing the angular dependence of diffraction efficiency as
afunction of the polarization. Each intensity measure-
ment is performed ten times and the results are then
averaged. The dstatistical error of the experiment
amounts approximately to 0.01%.

Figures 2 and 3 show experimental results for the
angular dependence of diffraction efficiency for p- and
s-polarized incident waves (dashed curves). The exper-
imentally obtained the Bragg angle is 6 = 18.9° =
0.329 rad. Calculating the asymmetry on the basis of
formula(21) and taking into account experimental data,
we obtain a, = 8% for a p-polarized incident wave (see
Fig. 2) and a, = —4.6% for the s-polarized wave (see
Fig. 3). These results are in good agreement with theo-
retical calculations.

Figure 4 shows the experimental curve describing
the dependence of the asymmetry in the angular depen-
dence of the diffraction efficiency on the polarization
angle (triangles). As expected, the asymmetry vanishes
a a certain angle of polarization. The experimental
value of this angle is 50°. By varying the polarization,
one can in fact control the value of asymmetry. The
behavior of the experimental curve is in good agree-
ment with the theoretical results.

It should be noted that for our parameters (d, A,
etc.), the value of the quantity Q = K?Ad/2rmn, describ-
ing athick holographic grating is equal to 67. However,
the grating is also determined by one more parameter
p = 2A\%A\’ngn,. In our case, p = 14.499 for a p-polar-
ized wave and p = 46.398 for an s-polarized wave.
According to [25], parameter p must satisfy the condi-
tion p > 20 for thick holographic gratings. Thus, for our
parameters, we are completely in the Bragg regime for
s-polarized waves and are close to this regime for
p-polarized waves. Our calculations for thick holo-
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Fig. 5. Block diagram of the setup for measurement
of angular and polarization dependences of diffraction gra-
tings.

grams coincide with experiment to a high degree of
accuracy.

5. CONCLUSIONS

Thus, we have studied theoretically and experimen-
taly a diffraction grating based on PDLCs, which is
sensitiveto the near IR spectral region. Analysisof light
scattering reveals that the orientation of LC molecules
inapolymer matrix is parallel to the wave vector of the
grating. On this basis, a model is constructed for such
an anisotropic grating. Comparison of our experiments
and theoretical calculations confirmsthe validity of the
distribution of the LC director described above. The
asymmetry in the angular selectivity of diffraction effi-
ciency is observed and theoretically explained. The
dependence of the asymmetry on the polarization of the
incident beam is studied as well as the possibility of
controlling the asymmetry in the azimuth angle of
polarization of incident radiation.
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Abstract—Transverse phonon relaxation according to the Landau—Rumer mechanismis considered for an iso-
tropic medium and crystals of germanium, silicon, and diamond possessing a cubic symmetry. The energy of
elastic deformation caused by the anharmonicity of vibrations of the cubic crystal lattice is expressed viathe
second- and third-order moduli of elasticity. Using the known values of these elastic moduli, parameters deter-
mining the frequencies of the transverse phonon relaxation in the Landau—Rumer mechanism are evaluated for
the germanium, silicon, and diamond crystals. It is shown that the dependence of the relaxation frequency on
the wavevector of thermal and high-frequency phonons sharply differs from the classical Landau—Rumer rela-
tionship both in the isotropic medium and in the cubic crystals. It is established that the observed peculiarities
in the relaxation frequency are related to the angular dependence of the probability of anharmonic scattering
and the anisotropy of elastic properties of the germanium, silicon, and diamond crystals. A new method is pro-
posed for the experimental determination of the relaxation frequency of high-frequency phonons as afunction
of the wavevector using the temperature dependence of the coefficient of absorption of high-frequency ultra-

sound. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, much attention has been devoted to
investigation of the isotope effects manifested in the
thermal conductivity of germanium, silicon, and dia-
mond [1-8], The results of experimental investigations
[2, 3] showed that the maximum values of thermal con-
ductivity increase by one order of magnitude on the
passage from germanium crystals with the natural iso-
tope composition (N2Ge) to the samples highly (up to
99.99%) enriched with °Ge isotope. For silicon
enriched (99.8588%) with 28Si isotope, the maximum
thermal conductivity exhibits a sixfold increase in
comparison to natural crystals. Theoretical analysis of
these results [9-11] showed that an important role in
the lattice therma conductivity of isotopically
enriched, chemically pure germanium, silicon, and
diamond crystals is played by the normal phonon—
phonon scattering processes (N processes) charac-
terized by conservation of the total momentum of
colliding phonons. These processes, together with the
boundary scattering, determine the maximum val ues of
therma conductivity in the isotopically enriched
crystals[10, 11].

Calculations of the thermal conductivity within the
framework of the relaxation method [1-13] usualy
employ expressions for the frequencies of phonon

relaxation in the N processes obtained in the long-
wavel ength approximation,

iy,
= —P <1
2 T eT
where wy, is the frequency of the phonon with the
wavevector q and the polarization A. However, themain
contribution to the lattice thermal conductivity isdueto
thethermal phononswith z,, = 1, and in theisotopically
enriched crystals, due to the phononswith z, = 2-3. In
this approach, quantities determining the intensity of
anharmonic scattering processes are the fitting parame-
tersof the theory, determined from acomparison of the-
ory and experiment [1-13]. Using the model of isotro-
pic medium for evaluating the probability of anhar-
monic scattering processes also does not adequately
describe cubic crystals of germanium, silicon, and dia-
mond possessing a significant anisotropy of both sec-
ond- and third-order elastic moduli.

In this paper, the transverse phonon relaxation is
considered within the framework of the Landau—Rumer
mechanism for the isotropic medium and crystals of
germanium, silicon, and diamond possessing a cubic
symmetry. In Section 2, we will obtain an expression
for the energy of elastic deformation of a cubic crystal
via the second- and third-order moduli of elasticity.

1063-7761/04/9901-0109$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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This energy determines the probabilities of various
anharmonic three-photon scattering processes. In Sec-
tion 3, the relaxation frequencies of the transverse ther-
mal and high-frequency phonons in the isotropic
medium and the cubic crystals are calculated in terms
of the Landau—Rumer mechanism. In the crystals of
germanium, silicon, and diamond, this is the principal
mechanism of the transverse phonon relaxation. Since
the elastic moduli for the germanium, silicon, and dia-
mond crystals are known, this calculation provides an
independent method for determining the relaxation fre-
guencies of transverse phononsin the anharmonic scat-
tering processes. The obtained results will be compared
to the data obtained previoudly using the model of iso-
tropic medium. Section 4 considers the long-wave-
length limit, a transition to the model of the isotropic
medium, and the dependence of the phonon relaxation
frequency on the temperature and the wavevector for
the germanium, silicon, and diamond crystals. It will be
shown that the dependence of the transverse phonon
relaxation frequency on the wavevector can be deter-
mined using the temperature dependence of the coeffi-
cient of absorption of high-frequency ultrasound.

2. THE ELASTIC ENERGY
OF CUBIC CRYSTALS

Theexpression for the elastic energy of acubic crys-
tal, written to within the third-order terms in compo-
nents of the strain tensor n);;, isasfollows[14, 15]:

1
W, = 5011(71 11+ N2+ Nas)
+C1p(N11N22 + N22Nss + NasNia)

+ 2C44(r]i2 + nga + nis) + Clll(nil + ngz + ngs)

+ 30112[“%1(“22 +Ng3)

+r]§2(r]11+n33) +n§3(n11+n22)] D
+6C123N11N 22N 33

+12¢14(N 11']53 + nzznia +Nasn iz)
+12C55[(Nyg + r]zz)niz + (N + rlss)ngs
+(Ny + r]ss)rﬁs] + 48C 56N 12N 23N 13-

Here, the third-order elastic moduli c; are normalized
according to Tucker and Rampton [16]. The passage to
the Birch normalization cﬁk [14] is provided by the

substitution
— ~B _ B _ B
Ci1 = Cpi1s 3Cup = Cripy 6Cip3 = Copg,

_ B _ B _ B
12C14y = Cray  12Ci55 = Cis5,  24Cys5 = Cyse.
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Expression (1) can be converted to the following form,
which is more convenient for subsequent calculations:

2
1 g 1
W = zcllélzr]i% +§(C11_012_C44)Znﬁ

+ CMZ ni2k+ E:1112 nﬁ + 361122 rlﬁnkk
i i ik
3 (2
g 2
+ C123§ nid + 601442 NiiNjk
— U ik

+ 8C4562 NicNiN ;i + 1261552 niinizkv
ik ik

where
Ci1x = Cig3—3Cyp+ 2C13
+ 12Cy4 — 12C 55 + 16C 45,
3

Ci1z = Ci1p—Cizz = 2Cyaa,
Cis5 = Ciss — C1a4 — 2Cysg.
The strain tensor components n;, can be expressed via
the distortion tensor components &, [17]:
A oul
Nik = 1Py + ou + z%auJ
200X 0% £ 0X 0%
J
4)

10 U
—ZE{ik"' i + ]ZEjiEjI%-
Substituting expression (4) into (2), we obtain

1 01
W, = écnm Eiig "'5(011—012—2044)

X Z Eﬁ + %10442(% + Eki)z + Emzﬁﬁ

3

- U

+3sziﬁ€kk+cmﬂ Eiig
ik i

+ 301442 &ii€ i + %Cm + %01% %)
ik
X z EiiEjzk + 2Cy56 Z &ik€ii&ji T (Caq + 6Cys5)
ik ik
x Z NI 361552 (Ei&h+ 2880 &)

ik ik

~ 1
+ [3(3155 + E(Cu —Cpp— 2044)} z Eiiaii-
ik
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Table 1. Elastic moduli of the first and second order of germanium, silicon, and diamond crystals

Elastic modulus
Crysta
Ci1 C12 Cas Ci11 Ci12 C123 Ci44 Cis55 Cas56

Ge 1.289 0.483 0.671 —7.10 -3.89 -0.18 -0.23 —2.92 -0.53
S 1.657 0.638 0.796 -8.25 -451 -0.64 0.12 -3.10 -0.64
C 10.76 1.25 5.758 —62.6 —22.6 1.12 —6.74 —28.6 -8.23
Ge - - - -1.18 -0.65 -0.03 -0.04 -0.49 -0.18
Si - - - -1.38 -0.75 -0.11 0.02 —0.52 -0.21
C - - - -10.43 =3.77 0.187 -1.123 -4.76 —2.74

Note: Thermodynamic quantities cj;, in the first three lines are presented according to [17]; the values in the last three lines are given

according to the normalization [16] adopted in this study (in units of 1012 dyn/cm?).

Thethird-order termswith respect to &, in expression (4)
correspond to the phonon—phonon interaction. It is
expedient to pass from the elastic energy of a cubic
crystal to the elastic deformation energy W of the iso-
tropic medium. For this purpose, let us compare expres-
sion (5) to [16, Eq. (4.6)]. The condition AW = W, —
W, =0vyields

AC = c;;—Cp,—2Cy = 0,

Ciss = Cis5—Ciaa—2Css6 = O,
Cir = Cip—Cip3—2Cyqy = O, (6)
Cut = Cuy1—3Cip + 2C1
+12Cy44 —12Cy55 + 16C45 = O.

Let us check how the conditions (6) are satisfied in
the case of germanium, silicon, and diamond crystals
using the results of measurements of their second- and
third-order elastic moduli reported in [15, 16, 18-22]
and summarized in Table 1. Our analysis showed (see
Table 2) that neither second-order nor third-order elas-
tic moduli of germanium, silicon, and diamond crystals
satisfy relations (6): for these crystals, AC ~ ¢,,, while
the value of C,cz amounts to about one-fourth of ¢;s5
and is more than two times greater than ¢,,,. The max-
imum discrepancy with the model of isotropic medium
is observed for the elastic modulus C,;, : this value not
only significantly exceeds the other third-order elastic
moduli of germanium, silicon, and diamond, but has a
sign opposite to that of the c¢;; value. The third-order
moduli Cyy;, Cy30, and C;s5 distinguish the cubic crys-
tals from the isotropic medium. Therefore, the maxi-
mum deviation from this model must take place for the
phonon relaxation frequencies containing contributions
from the termsinvolving ¢,;; modulus.
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L et us represent the displacement of aparticlein the
standard form [16],

0o = 'Zmzpvw 0 (0 b))

where biqA and b, are the operators of production and
annihilation of phonons, p is the density, V is the nor-
malization volume, and e is the polarization vector.
Obviously, each &;; value corresponds to the coefficient
g Direct substitution of formula(7) into expression (5)
yields the following relation for the energy density
related to the anharmonicity of the crystal lattice vibra-
tions:

-1/2
)

Z EQpVD ((1) 1)\1(0Q2)‘2 (CEU
A1 G2, A3
A1 A Ag

x (bCh}\l - bi%)\l)(b%}\z - bin)\z)(b%}\s - bi%)\z) (8)

. AAoAg
X eXp[|(q]_ +(Q,+t QS) |jﬂ]VCthch’

where

A AN,
Vq1q2q3 = 6Clllz e1|ql|e2|QZ| e3qu|

+6Cy5(€

D:h)(ez [h,)(e; [hs)

1) €505 €313

+ 661122 [(e.H

+ (€, [0,)€40;€303 + (€3 [03)€1i01i€20xi]

[0,) (e, (hs)(e; [O)
[0,) (e, (hs)(e; [hy)

+6Cy4[ (8
+ (&,
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+ (&5 L) (e [Hp) (e, [hy) ]
+(Cyp + 6C14)[ (€ L0, ) (&, Les) (a3 [H,)
+ (e, L) (e [e3)(as Lony)

+ (&5 Lhs) (e [ey) (0, [Hp,) ]
+6Cs[ (€1 [H3) (€ Le1) (g3 L)

+ (e, L) (e, [hs)(e; [hyy) ]
+(Cyq + 6Ca56) [ (€1 LH2) (A1 [HI3) (€2 [85)
+ (e, [h3)(q: L) (e [Bs)
+(e; [0,) (a2 [hs) (e [ky)

+ (e, [03) (0, [9,) (e, [&,)
+ (e, [0,)(d, [95) (e, [&,)
+ (63 [0,) (0, [O3) (e [8,) ]

+ 661552 { ewiexies[a5(a, L)

+ 0 (0, [03) +9zi(9, [,) ]
+ €1, 01i[ €031 (€5 [H5) + €510y (€; [h3)]

) *+ €5i0yi(e; [3)]

[0,)]}

+(6Cys5 + AC) z 01i02i0ai[ €11 (€, [B3)

+ €50y [€1;031(65 [,
+ €503 [ €10z (€, [0) + €505(e;

+65(e [B;) + e5(e [B,)].

Using relation (8), it is possible to study various mech-
anisms of the three-photon scattering processes in
cubic crystals. Under conditions (6), we can obtain
expressions for the energy density related to the anhar-
monicity of the crystal lattice vibrationsin terms of the
model of isotropic medium (see [16 Eq (4.22)]. The
new terms, involving coefficients ,;;, €135, and Cysg,

distinguish the cubic crystals from the isotropic

Table 2. Elastic moduli AC, Cy;;, Cyy5, and Cys5 Of germa
nium, silicon, and diamond crystals (in units of 102 dyn/cm?)

Elastic Crystd
modulus Ge Si c
AC —0.536 -0.574 —2.05
Ciss —0.095 -0.111 1.84
Ci1 -0.542 -0.685 -1.71
Cins 3.26 372 1.05
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medium. Integration over the normalization volume

l)\Z 3

yieldsthe matrix element V, ., , the squared modulus

of which determines the probability of phonon scatter-
ing in the anharmonic scattering processes. This ele-
ment will be used for calculating the phonon relaxation
frequencies in the N processes (8y1+q2+qs.0) iN the
cubic crystals of germanium, silicon, and diamond.

3. LANDAU-RUMER MECHANISM
FOR THERMAL PHONONS
IN GERMANIUM, SILICON, AND DIAMOND

According to the Landau—Rumer mechanism [23]
the relaxation of long-wavelength transverse phonons
(o < kgT) consistsin merging of transverse (T) and
longitudinal (L) phonons with the formation of a new
longitudinal phonon:;

Wg,7+ Wg,r. = gy -
An analysis of this relaxation occurring at a suffi-

ciently low temperature yields an expression for the
relaxation frequency [23]

hiwyg
KT ©

LR 5 _
Vo = Broz T, 23 =

where By, is a coefficient depending on the second- and
third-order elastic moduli, atomic masses, and lattice
parameters. In the theory of lattice thermal conductiv-
ity, this coefficient is considered as thefitting parameter
determined from a comparison of theory and experi-
ment [1-13]. In [13, 16, 24], an analysis of the phonon
relaxation according to the Landau—Rumer mechanism
was restricted to the long-wavelength approximation
(01 <€ Oy 03 73 < 1) and the model of the isotropic
medium. The same approximations were used for the
relaxation frequency of thermal phononsin the calcula
tions of phonon thermal conductivity, athough condi-
tion z; < 1isnot valid for thermal phonons. Estimates
show that, in germanium and silicon crystals with nat-
ural isotope composition, the maximum contribution to
the lattice thermal conductivity is due to the longitudi-
nal phonons with z = 0.4-0.5 and the transverse
phonons with z; = 2, while for isotopicaly enriched
crystals, the maximum contribution is due to the longi-
tudinal phononswith z = 1 and the transverse phonons
with z- = 4. Obvioudly, the previous results[1-13] have
to be refined so as to reject the long-wavelength
approximation and the mode! of isotropic medium.

Below, we calculate the relaxation frequency vony

for the aforementioned cubic crystals. This will allow
us to determine the coefficient By, using the known val-
ues of the second- and third-order elastic moduli and to
refine the dependence of the relaxation frequency on
the temperature and wavevector of thermal phonons.
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According to[13], the expression for the phonon relax-
ation frequency can be written as

' 1

Y VA = ——=
onn (D1 A1) (2pkBT)3V

gnh(zl/2)6%+%+%x 0 ‘ A1AoAg|2

2,2,Z,58nh(Z,/2) sinh(z/2)! "~ %1929
Q2!Q3123 (2 ) (3 ) (10)

Ao Ag

x[20( oy, +

oAy w%)‘3)

+ 6( %1}\1 - sz}\z - (an;\3) ] ’

Thetransverse phonons can beinvolved only inthe pro-
cess of merging (reflected by the first term in square
brackets), while the probability of decay (second term
in square brackets) is zero because otherwise the law of
energy conservation cannot be satisfied. The process of
phonon merging obeys the following relations:

el =0, elf, =0, elf;=0qs
e ld; = el 0gs;=0:+0;.
Using expression (8) and taking into account rela-
tions (11), one can readily obtain a formula for the

matrix element according to the L andau—Rumer mech-
anism:

TLL _ (el 2)
qqu%_

(11)

2 g, + (q, ()] [0 + (dy [0,)]
+ zi%lz{ 12C155€1105i0si[ 01 (0, [H3)

+02(0, [3) + g5i(d, ()]
+(12C;55 + AC)[ (€1 [12) 010 0ai (T + Gai)

+€4101i01 0 (02 13) ]} -

Thefirst term in this expression corresponds to the iso-
tropic scattering of phonons, and the second, to their
anisotropic scattering (this term vanishes on the pas-
sage to the model of isotropic medium). For a cubic
crystal,

(12)

A= A, = Cpt+3Cy+12C 1+ 24C,.  (139)
Using relations (6) and passing to theisotropic case, we
obtain the result of Tucker and Rampton [16]:

Ais = AL t3A+ At A,

13b
3 1C12 +12Cs5, (130)

=535
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where A;—A, are the coefficients determined in [16]. In

the general case, the relaxation frequency vghLﬁ , aswell
astheintrinsic frequencies, depends on the direction of
propagation of the transverse phonon relative to the
crystallographic axes.

In what follows, we simplify the problem and
restrict the consideration to one of the symmetric direc-
tions ([100], [001], [111], etc.). The z axis and the
phonon wavevector g, are also oriented along this
direction, so that vector e; occurs in the xy plane (for
certainty, it coincides with the x axis). In this case, the
condition e, - g, = 0 can be supplemented by the condi-
tions e;;q;; = 0, and the matrix element (12) can be writ-
ten in terms of the angular variables 6, and ¢, of the g,
vector:

TLL 2Q1Q2

09
ana = 270 smezcoscb2 + coseZD

az

0 a: 0
X DApAL + = cosO
0 Cahtss (14)

+ 128,45 SiN°0,C08 ¢, + (128,55 + AC)
X cose ! + cosB E
2L, s

Here,

of 2 St
cosf, = s* ——(1—-s*7), s* = —
2 2q2( ) 3

I )

and s; and s_ are the sound velocities for the trans-
verse and longitudina phonons, respectively. In
expression (10), the integrals with respect to the angu-
lar variables 6, and ¢, can be readily calculated.
Indeed, the integral over 8, is calculated using & func-
tion and taking into account the law of energy conser-
vation for the three-phonon scattering (14'), while the
integral over ¢, has nonzero contributions only due to
the terms contai ning even powers of cos,. Eventually,
we obtain the following expression the relaxation fre-
guency according to the Landau—Rumer mechanism:

TLL
Vonn = T le ,

1 _ kps*?(1—s*?)sinh(z,0h2)
16mi’p’s;ss  &l2

(15

B J(z,, T),
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Table 3. Parameters determining the transverse phonon
relaxation frequencies in germanium, silicon, and diamond
crystals

5 10 | B 0% | B,10* Bro Bro
( dylzlcmz)z (dyn/em?)?| (dyn/em?)?| sTKS | sTK™®
[100] [111] [100] | [111]
Ge| 13.46 12.20 10.99 1.4 0.46
S 11.55 10.79 9.74 0.12 0.045
C | 1628 1787 1826 7.66 501
x10°2 | x10°
where
oL
J,(z,T) = I dzF(z 2,)$4(z z,)
Zmln (15')

b3+ b, + 20T

z %Hzlm

sthZDsthzl ZE

F(z z) =

%H

bu(z2) = [1+ 20+ 21+ 20 2]
b, = Ady(2 ;) + (Ciss + AC)S* *b4(2, 22),
by = Cis(1—5%)0:(2 21),

0,(z2,) = 142 1D7_]D = 1%

z 200 DS*Z
_ 1201 O el 10
$0s(z,z) = [1—2 > Tz_lm}[l + ZZETJ’L + STE}
z - i, T
Ciss = 12Cpes, 25 = kBgl_

101 hw
Zmin = é%—lgzp oL = kB-T-L
and wp, is the Debye frequency for the longitudinal
phonons.
In the isotropic case, ;s = AC = 0 and, hence,
by = 0. The expression for b, is asfollows:
Aish(z 2,). (16)

In the long-wavelength limit (z,/z < 1) for cubic crys-
tals, expressions (15) and (15" yield formula (9) with
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the coefficient By, given by the expression

BKS(1-59)"  Zdz

By, = .
T 16nh4p3sTsf.! sinh’(2/2)

(17)
For the temperatures significantly below the Debye
temperature, thisformulayields
_ Brkgs*(1-s*?)
T 15%°p°s; s’

(17)
where

B =A%+ A[ZS*Z(élss +AC) + gélss(l —s* 2)}

+ 2(8155 + AC)5155S*2(1 —s* 2) + (3155 + AC)ZS*4

+ géiss(l —s* 2)2.

Thus, the transverse phonon relaxation frequency
according to the Landau—Rumer mechanism isretained
in the long-wavel ength limit: v;hLNL = 7z, T°. However, in
addition to the isotropic scattering (the first term in
expression (17')) this mechanism also contains contribu-
tions dueto theinterference of theisotropic and anisotro-
pic scattering (the second term in expression (17) and
the ani sotropic scattering as such (thelast threetermsin
expression (17). Estimates show that contributions
due to the isotropic scattering in the [100] direction for
germanium and silicon amount to approximately 40
and 32%, respectively; the corresponding contributions
of the interference term in these crystals are 46 and
49%, respectively; and the anisotropic scattering
accounts for 14 and 19%, respectively.

Thevalues of parameters B, B, and By, for the crys-
tals of germanium, silicon, and diamond are presented
in Table 3. For the[100] directionat T=10K and z= 1,

the vgﬁ,\ﬁ values are 1.4 x 10° s for germanium, 1.2 x

10* st silicon, and 7.7 x 108 s1 for diamond. The val-
ues of B, for all these materials are approximately 10%
greater than the coefficient B. The values of the fitting
parameters B, used for the analysis of thermal conduc-
tivity in germanium and silicon crystals with various
isotope compositionsin [3, 9-11] (see[11, Table 2]) are
smaller than the values according to the theory of elas-
ticity, on the average by a factor of 50 for germanium
and 46 for silicon (see Table 2). Sincetherelaxation fre-

guency v;hL,\ﬁ for thermal phonons (z;, > 1) is signifi-
cantly lower than that according to the Landau—Rumer
theory in the entire temperatureinterval 1< T< 100 K,
the effective By value for thermal phonons has to be
also smaller than that according to the long-wavelength
approximation (see the next section). However, even
with alowance for these factors, the effective relax-
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ation frequencies v;hLNL obtained using the fitting
parameters By, for germanium and silicon crystals with
different isotope compositions [3, 9-11] are lower by
one order of magnitude than the values obtained in our
calculations within the framework of the theory of elas-
ticity. It can be noted that the anisotropy of the relax-

. TLL . . Ly
ation frequency v,y in the germanium and silicon

crystals is mostly due to the anisotropy of the second-
order elastic modulus.

In the isotropic case, formula (17) yields the result
of Tucker and Rampton [16]:

2
Bis = Aizs = BB

1
@Cll - éclz + 12C15q|% . (18)

This expression is at variance with the result obtained
for theisotropic medium by Maris (see[22, Eq. (210)]:

3,5
_ TKg C;y—Cy
To

©1204%S  Cu
> (19)
o (111 —C11p +3Cy; — Cy
O 0

Cu

A difference by afactor of two in numerical coefficients
of formulas (19) and (17") is due to the fact that two
relaxation processes of transverse phononsaretakeninto
consideration in formula (10). However, the main differ-
ence between expressions (15)—17) and formula (19)
consistsin the elastic modulus c¢,;; entering into the | at-
ter formula. The point is that this elastic modulus
accountsfor the relaxation of longitudinal phonons and
is not related to the transverse phonon relaxation
according to the Landau—Rumer mechanism. Appar-
ently, the introduction of the generalized Griineisen
parameter [24] and its averaging is adequate neither for
the cubic crystals nor in the isotropic case. We have
reproduced the main transformations involved in the
calculation of the transverse phonon relaxation fre-
guency in much detail, because even recently published
papers (see, e.g. [25]) contain errors. For example, cal-
culations of the thermal conductivity of Ge, Si, GaN,
and C crystalsin [25] employ relation (9) for the relax-

ation frequency vghLNL , in which the coefficient By, is
given by the expression

_ kaysv

BT0~ Mh3ps$’

(20)

where y; is the Griineisen coefficient for the transverse
phonons. A comparison of expressions (15)—(18) and
(19) shows that formula (20) incorrectly describes
polarization in the sound velocity entering into the
denominator of Bry. Use of this approximation for the
relaxation frequency of thermal phonons in evaluation
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Fig. 1. Plotsof theN(z;, T) versusreduced wavevector z; for

T=1K and the sound velocities s = 4.92 x 10° crm/s and
st = 3.55 x 10° cm/s.

of the isotope effectsin the thermal conductivity of Ge,
Si, GaN, and C crystals[25] can hardly give reasonable
results.

4. RESULTS OF NUMERICAL ANALYSIS

L et us analyze the dependence of the relaxation fre-

guency vgﬁ,\ﬁ (25, T) on the reduced wavevector z, and

the temperature T according to formulas (15) and (15').
First, we will estimate the deviation from the Landau—
Rumer formula (9) for the isotropic medium. For this
purpose, wewill construct aplot of theratio of frequen-

cies v;hLNL (z, T) and v;hRN (z;, T) calculated using

expressions (15)—18):

Vo (21, T)
V;L)EN(ZL T)
_ Esinh(zll2)
- 4','[4 21/2

N(Zl! T) =
(21)
‘]is(zll T),

where Ji(z;,, T) = J(z;, T) is caculated for b; = 0 and
b, = Az, z).

As can be seen from Fig. 1, this ratio for small z;
tends to unity and, accordingly, v;hLNL (z, ) —

v;hRN (z, T). However, as z; increases, the deviation of
N(z;, T) from unity at a fixed temperature grows and,
for z; > 1, we have v;hLNL (2, T) < v;hRN (z, T) in the
entire temperature interval 1 < T < 100 K. As for the
temperature dependence of vgﬁ,\ﬁ (25, T) inthe region of

7z, < 1, we have v;hLNL (z, T) ~ v;hRN (zi, T) ~ T how-
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Fig. 2. Plotsof v} | versus reduced wavevector zy at T =

1K calculated using various models for the isotropic case:
(1) linear Landau—Rumer approximation; (2) this study;
(3) approximation (26); (4) approximation (25); all calcula-

tions performed for 5 = 4.92 x 10° cm/s and sy = 3.55 x
10° cm’s.

fi
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Fig. 3. Plots of the integrand functions versus reduced
2
wavevector z (1) F*(z, z)91(z z1) 95 (z z); (2) F*(z z9);

3) 01(z. z1); (4 ¢§ (z, 7). All calculations were performed

for z; = 13 and the sound velocities s = 4.92 x 10° cm/sand
st = 3.55 x 10° cm/s.

ever, at T>50K and z; > 1, thetemperature dependence
becomes less strong and the exponent is smaller than
five.

Deviation of the relaxation frequency from the lin-

ear law (9) is most clearly manifested for the function

v;hLNL (zy, T). Figure 2 shows plots of the quantities

TLL
Vorn (21, T)

BroT®

LR
ViL(z, T) = Vio(z) =z (22
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as functions of the reduced wavevector z,. As can be
seen, alinear approximation is possible only for z; < 1

v#LLLR (z), the Landau—Rumer approximation (9)). For

7, > 4, the value of v¥ | (z, T) first sharply decreases,
then exhibits a plateau for 10 < z < 20, and finally
shows a monotonic decrease with increasing z;. Such a
striking deviation from the classical behavior according
to the Landau—Rumer approximation (9) was unex-
pected. Previous analysis [26, 27] showed that, for
z1 > 1 (hwg > kgT), the relaxation frequency

vghLNL (21, T) exponentialy decreases with increasing
z a8

1M
vin(z T DZep| S -Ha| @
where n = 3 according to [16, 24] and n = 5 according
to[27]. Therefore, we expected only asingle maximum

in Vi (z, T) followed by a monotonic decay for
z, > 1. The appearance of anew peculiarity, the plateau
at 10<z, <20, intheplot of the relaxation frequency ver-
sus wavevector requires additional thorough anaysis.

Before proceeding with thisanalysis, it is necessary
to make two important remarks. First, the observed
peculiarities are related to the dependence of the matrix
element (14) (transition probability) on the angle of
phonon scattering. In contrast to [26, 27], this depen-
dence was strictly taken into consideration. Second, the

characteristic shape of the v, | (z;, T) curvecan bereal-

ized only for sufficiently low temperatures. Indeed, the
limiting frequency of the transverse phonons is
restricted to the Debye frequency, which amounts to
approximately 118 K for germanium and 210 K for sil-
icon. Therefore, although the characteristic shape of the

VI L (z, T) curveisretained at high temperatures, the

plateau inthiscurveat T~ 50-100 K fallswithin anon-
physical region of the wavevectors exceeding the
Debye wavevector: z > zyr = it /kgT (Where wpy is
the Debye transverse phonon frequency). However, at
low temperatures (about 1-4 K for germanium and
1-10 K for silicon), the aforementioned peculiarities
fall within the physical region of the phonon wavevec-
tors(z< z7).

Let us consider the factors responsible for the
appearance of a plateau on the plot of relaxation fre-
guency as a function of the phonon wavevector. The
integrand in Eqg. (15') for the isotropic case comprises a
product of three functions, F*(z, z))¢,(z, zl)¢§ (z z),
where F*(z, z)) = F(z, z)sinh(z/2) and the functions
¢4(z, z) and §,(z, z)) are related to the angular depen-
dence of the scattering probability (see Eq. (14)). The
dependences of these functions on z at a fixed value of
z, are shown in Fig. 3. The function F*(z, z;) reaches a
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maximum at z = 4 and then exhibits exponential decay.
The functions ¢4(z, z) and ¢,(z, z) tend to unity for
7, < zand are equal to zero when

1l .0
e o

{2

Evidently, the probabilities of phonon scattering by
theangles 6, and 6, (cosB, =—1, sinB; =0, cosB, =s* —
(1-s*)(2s*a,)™) are zero, which leads to a nonmono-
tonic dependence of the scattering probability on the
phonon wavevector (Fig. 3, curve 1). The function

¢§ (z, z)) quite rapidly increases on both sides of the
point z = z,,. The value of z,, increases with the param-
eter z; and, for z = z,, = 4-5, the function ¢,(z, z)
becomes zero exactly in the region of maximum of the
function F*(z, z). This leads to the appearance of

inflection on the vT, | (z;, T) curve and the onset of pla-

teau at z; = 8(4/2/s**—1 — 1)L, Further increasein z;
leads to a shift of the zero of the function ¢,(z, z)
toward the region of exponentia decay in F*(z, z),
whereby the values of vi  (z, T) slightly decrease

(which corresponds to the plateau) until the zero of the
function ¢4(z, z;) would pass through the maximum of
F*(z, z,), which corresponds to the second inflection on

the Vi, (z, T) curve (see Fig. 2). At z,;, > 4 or z; >

8(Us* — 1)1, the transverse phonon relaxation fre-
guency occursin the region of exponential decay. Thus,
it is evident that the angular dependence of the phonon
scattering probability should be taken into account in
calculations of the phonon relaxation frequencies.
Intheregion of z; > 1 and z;,, Zy, > 1, the value of
the preexponential factor can be estimated as follows.
The main contribution to the integral is related to the
region of the first peak, z,, < z < z, (see Fig. 3).
According to the theorem of the mean, functions
smoothly varying at the middle point z = (z, + Zy)/2
can be placed before the integral over thisregion, while

the remaining strongly varying part ¢1¢§ exp(—2) hasto
be precisely integrated. Thisyields

yTLt z+ l/gj
th (Z]_! T) 7D 7+ 1 |:|

Beg a4

X [(0y— alo)zzi —4(0y
Ascan be seen from Fig. 2 (curve 4), this approach pro-
vides areliable estimate of v;hLNL (2, T) for the high-fre-

Z =719 = Zypin = UyZy, Oyo =
(24)

Z = 7y = UyZy, Oy =

(25)

—alo)zf +62,] exp(-0 19Z;).
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guency phonons. Thus, allowance for the angular
dependence (14) of the phonon scattering probability
leads, in contrast to the results obtained in [26, 27],to a
preexponential factor in the form of third-order polyno-
mial, which cannot be reduced to a simple power
dependence (23).

In contrast to the isotropic case, the angular depen-
dence of the squared matrix element for the cubic crys-
talsis determined by a combination of three functions:
01(z, ), d4(z, 7)), and ¢4(z z). Inthiscase, achangein
positions of the zeros of these functions (2,5 = Zin, Zxo
and zg, = (1/2)z,(1/s*? — 1)) relative to the maximum of
F*(z, z) in the course of increasing the phonon
wavevector also determines peculiarities in the behav-

ior of the relaxation frequency v, (z, T). For the

cubic crystals of germanium, silicon, and diamond, the
probability of phonon scattering turns zero only at the
lower integration limit z,, = Z,,,,(6, = 7). However, sep-
arate contributions to the scattering probability may
also turn zero. For example, the isotropic contribution
to the scattering is zero for z = z,; the interference con-
tribution and some of the terms corresponding to the
anisotropic scattering of phonons (proportional to the
functions ¢,(z, ;) and ¢4(z, z,)) are zero at z= z,; and
Z = Zyy. The anisotropic part of the scattering probabil-

ity proportional to b; is nonzero in the entire integra-

tion domain and accounts for amonotonically decreas-
ing contribution to the phonon relaxation frequency.
This contribution does not exceed 4% for germanium
and 6% for silicon.

L et us consider the dependence of the phonon relax-
ation frequency on the reduced wavevector in the [100]
direction of germanium, silicon, and diamond crystals.
As can be seen from Fig. 4, these dependences qualita-
tively differ from those obtained in the case of the iso-

tropic medium. The v¥,, (z;, T) curves are nonmono-

tonic and display aminimum and the second maximum
instead of the plateau. The appearance of new peculiar-
ities (the minimum and the second maximum at z > 1)
in the dependence of the phonon relaxation frequency
on the phonon wavevector is of considerable interest
from the standpoint of ultrasonic investigations and
requires additional thorough investigation. Our analysis
of al contributions to the relaxation frequency

VI L (z, T) showed that the appearance of the second
maximum is related to the cubic anisotropy of the crys-
tals. The interference of the isotropic and anisotropic
scattering (the second term in expression (174), aswell
as the anisotropic scattering proper (the last threeterms
in expression (17"), accounts for the two-hump shape
of the observed dependence of the phonon relaxation
frequency on the reduced wavevector in the crystals of
germanium and silicon (see Fig. 4, curves 3 and 4).
A comparison of the curvesin Fig. 4 showsthat the pre-
dominant contribution to the relaxation frequency in
the case of germanium and silicon is dueto the interfer-
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Fig. 4. Plots of the phonon relaxation frequency v, | versus reduced wavevector z; in the [100] direction for (&) germanium,

(b) silicon, and (c) diamond crystalsat T = 1 K (1) and contributions due to the isotropic scattering (2), interference of theisotropic
and anisotropic scattering (3), and anisotropic scattering (4); curve 5 shows the approximation by formula (26); curve 6 shows the

linear Landau—Rumer approximation.

ence term, while the contribution of isotropic scattering
is somewhat less significant. In diamond crystals, pre-
dominant contribution in the region of the first maxi-
mum is due to the isotropic scattering, while the inter-
ference scattering is negative and isone and ahalf times
lower in absolute value; for this reason, we have apla
teau instead of the second maximum as in the isotropic
case. The contribution due to the anisotropic scattering
(curves 4) is rather significant for germanium and sili-
con and is half as small for diamond in the entire range
of wavevectors. It should be noted that the dependence
of the relaxation frequency vi,, (z, T) on the phonon
wavevector in the [111] direction of germanium, sili-
con, and diamond crystals is similar to that in the iso-
tropic case (seeFig. 2): the second maximum ismissing
and there isaregion of slower decay instead of the pla-
teau. Thus, the appearance of the second maximum on

the v¥,, (z;, T) curves for the [100] direction in the

crystals of germanium and siliconisrelated to the cubic
anisotropy of these crystals.

As for the analysis of thermal conductivity of the
germanium, silicon, and diamond crystals, the use of

formulas (15) for v;hLNL (24, T) israther inconvenient and
strongly complicates calculations. Since the redlistic
energies of photons important from the standpoint of
thermal conductivity are limited from above on alevel
of z; < 4-5 (greater values are exponentialy cut by the
Planck distribution function), the phonon relaxation
frequency in the region of the first maximum can be
approximated by the expression

Vomi (23, T) = 0.65B1,T°z
x [exp(—0y92;) + eXp(—0Z)] .

Intheregion of 0 <z < 8 (see Fig. 4), this approxima-
tion agrees well with formulas (15) for both the isotro-
pic case and the cubic crystals of germanium, silicon,

(26)
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Fig. 5. Plots of the phonon relaxation frequency vj, | versus reduced wavevector z; in the [100] direction for (a) germanium and

(b) silicon and diamond crystals at various temperatures: (a) germanium at T = 1-20 K (1), 30 K (2), and 50 K (3); (b) silicon at
T=1-40K (1) and 50 K; diamond at T = 1-100 K (3) and 200 K (4).

and diamond. At least, this formula provides a better
approximation than the Landau—Rumer formula (9)
with afitting parameter.

Let us also consider the possibility of experimental
observation of the aforementioned features in the
dependence of the transverse phonon relaxation fre-
guency on the wavevector. As can be seen from Fig. 5,
the relaxation frequency v, (z, T) for germanium,
silicon, and diamond in the region of sufficiently low
temperatures is practically a function of variable z;
only. Thisfunction very dightly changes depending on
the temperature: the positions of maxima and minima,
as well as their absolute values, vary within less than
1% in the temperatureinterval 1 < T < 20K for germa-
nium, 1 < T< 40K for silicon,and 1 < T < 100 K for
diamond. As is known (see, e.g., [18, 24], the coeffi-
cient of ultrasound absorption o, is proportiona to
the phonon relaxation frequency:

TLL

Ar(z T) = Vo (2 T)/2sr. (27)

Therefore, once the absorption coefficient of ultrasound
with an energy of Awp = 10 K is measured in the tem-
perature interval from 0.1 to 50 K, it is possible to
determine the behavior of vy, (z, T) intheinterval of
wavevectors 0.2 < z; < 100 as

Vi(z, T) = ZSTGTLL/BTOTS- (28)

For this purpose, it is necessary to transform the tem-
perature dependence vy, | (z, T) at afixed phonon fre-
quency wqr into the function z,r = Ay /ksT at afixed
temperature, taking into account that, in the interval of
low temperatures indicated above, the frequency

VI (z, T)ispracticaly afunction only of z;. Insilicon
and diamond crystals, the observation conditions are
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more favorable for transverse phonons in the terahertz
range (1 THz = 50 K). Thus, if the Landau—Rumer
mechanism is the main process of the transverse
phonon relaxation, the dependence of the relaxation
frequency on the phonon frequency in germanium, sil-
icon, and diamond crystals can be determined from the
results of measurements of the ultrasound absorption
coefficient. It can be recommended to perform such
experiments with highly isotopically enriched, pure
crystals of germanium, silicon, and diamond in order to
reduce the phonon scattering on defects, which can
mask the anharmonic phonon scattering processes at
rather low temperatures.

5. CONCLUSIONS

Thus, we have considered the relaxation of trans-
verse thermal and high-frequency phonons according
to the Landau—Rumer mechanism in the isotropic
medium and in the crystals of germanium, silicon, and
diamond possessing a cubic symmetry. The elastic
energy caused by the anharmonicity of vibrations of the
cubic crystal lattice is expressed via the second- and
third-order moduli of elasticity. Using the known val-
ues of these elastic moduli, parameters determining the
frequencies of the transverse phonon rel axation accord-
ing to the Landau—Rumer mechanism have been evalu-
ated for the germanium, silicon, and diamond crystals.
It is shown that the dependence of the relaxation fre-
guency on the wavevector of therma and high-fre-
guency phonons sharply differs from the classical Lan-
dau—Rumer relationship both in the isotropic medium
and in the cubic crystals studied. For the [100] crystal-
lographic direction in the germanium, silicon, and dia-
mond crystals, in contrast to the case of isotropic
media, this dependence exhibits a substantially non-
monotonic character with two maxima; the second
maximum falls within the region of high-frequency
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phonons (fiwqr > KgT). It is established that peculiari-
ties revealed in the dependence of the relaxation fre-
guency of the phonon wavevector are related to the
angular dependence of the probability of anharmonic
scattering and the anisotropy of elastic properties of
germanium, silicon, and diamond crystals. The values
of scattering angles are determined for which the scat-
tering probability is zero. We have also considered the
possibility of experimentally determining the relax-
ation frequency for high-frequency phonons as a func-
tion of the phonon wavevector by measuring the tem-
perature dependence of the coefficient of absorption of
high-frequency ultrasound.
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Abstract—For elastic deformation of arbitrary magnitudein an isotropic solid, Legendre conjugate strain vari-
ables are found and used to define the Gibbs free energy of a deformable solid. An additional thermodynamic
equilibrium condition is found in the case when transition in a nonuniform strain field is incompl ete and there
exists an equilibrium boundary between phases. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

1.1. Phase equilibria and phase transitions in solids
under high pressure (when the isotropic strain compo-
nent is large) cannot be described if strain is treated as
asmall quantity. A straightforward, but tedious, mathe-
matical analysis can be performed outside the scope of
linear elasticity theory by applying the nonlinear theory
of natural strain developed in [1-3], which is particu-
larly well suited to dealing with states in the vicinity of
the hydrostatic axis, oj; = —J;;, in the stress space. To
examine the regions of phase coexistencein this space,
thermodynamic potentials that are Legendre conjugate
to energy and Helmholtz free energy (i.e., enthalpy and
Gibbs free energy, respectively) are required. Their
determination is one of the objectives of this study.

1.2. The symbolic notation used hereisalmost iden-
tical to that adopted in [1-3]. The most frequently
employed symbols include the following: (A= Spa =
a;;; an element a of the space of rank 2 tensors [E(3) O
[E(3) isdenoted by aljJitsconjugate (i.e., itstranspose a’
in matrix representation), by [@&. Elasticity theory
mostly deals with elements of the subspace SymlE(3) O
[E(3) (symmetrized with respect to permutation of indi-
ces), for whicha™ = a, i.e,, al= [&. Cursive notation (as
A) is used to denote operators represented by rank 4
tensors in this subspace. The unit tensor E is the Kro-
necker delta: E;; = §;. It is assumed that S{E0= AL
dAaF da, and AL} = Aj. It is obvious that slall=
@sd', i.e., (A = Auij- When the indices of a tensor
operator are omitted, the following notation is used

for adyadic product and

93;  oa

oby ob

for a derivative of a tensor with respect to a tensor,
where the indices in the differentiation variable are
placed rightmost to satisfy the rules of matrix multipli-
cation. Different components of the same tensor con-
tained in the same expression are distinguished by
using primed variables and placing them rightmost, as
in the following derivative of a scalar function:

0°w o°w
da;0ay dada'’

Similarly, the quadratic form based on the second
derivative of a scalar function with respect to the same
tensor may be written as

o°w W .,
b”aai,-aak, Bi <b6aaa‘b>'

More complicated expressions are not considered here.

Aju =

A =

2. HELMHOLTZ FREE ENERGY ASA FUNCTION
OF “EXTENSIVE” STRAIN VARIABLES

2.1. It was shown in [1] that the work required to
create an infinitesimal elastic strainin anisotropic solid
can be written as

OR = decijéxj = J'dV [60d] (@)

where the integrals are, respectively, over the actual
surface and volume of the strained solid (i.e., in Eule-

1063-7761/04/9901-0121$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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rian variables); o isthe stresstensor satisfying the equi-
librium equation

Si=o, @)

and sisthe natural strain tensor.! This madeit possible
to define a Helmholtz free-energy density f as a func-
tion of s. However, its Legendre conjugate, known as
the Gibbs free energy in the hydrostatic case, till
needed to be determined.

Consider the Helmholtz free energy f of aunit mass
of asolid as afunction of the variable

_ A+E/3
K =
P

, ©)

where A isthe deviatoric (traceless) part of s[1, 2] and
p isthe mass density at a particular point. Since

kO = 1/p, (3)

and p = poe™*[1] (subscript O refersto the undeformed
state), itisclear that f must be expressed asafunction of

s=a+=E = X+ Sinp(k0)-1]. (4

3 kO 3
Therefore, the derivative of swith respect tok is
Dy = pU, (5)
where
EME

a = .g)—meE"'T = 9 —AllE.
The following operators are frequently used below:

at=al, = $+AME, U = F—EM,

gt ®)
A "=U, = $+EM.

Strictly speaking, theidentity operator $ in [£(3) O [E(3)
(i = Bidy) should be replaced here by the operator I,
of projection onto the subspace SymE(3) O [E(3)
(whichisequivalent to theidentity operator in this sub-
space),

(M = (01dy; + 0;0)/2. (5"
However, the latter operator is required only when the
symmetry of certain final resultswith respect to permu-
tation of pairs of indices must be demonstrated (see [5]
for details concerning operatorsin Sym[E(3) O [E(3)).

L An expression for the work required to create an incremental
strain ds that is coaxial with o in a uniform stress field was origi-
nally considered in [4].
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By virtue of (5), infinitesimal work (1) per unit mass
can be expressed as

%Ebdsl] = %EbgbidKD = Mdk

which implies that
df = —ndT + [BdkO (6)
Here, n isthe entropy per unit mass and

p=9f -

of s _ - —onyt
= a—sébk—oou—o OANE=AW0. (7)

Recalling the expression for o from [1] (seedso [2)]),

0 =—-pE+1, T =2uA+VA,, (8

where 1 = () isthe shear modulus, v = v(s) isthe sec-
ond shear modulus, and A, is the deviatoric part of the
tensor A?, one obtains

0 = —TmE+T,
where
m=p+ [OA] [OA]= OA0= 4pk,+ 3vks,
2 (7)
2k, = T 3k = AT

2.2. Scalar thermodynamic state variablesfor aniso-
tropic solid are invariant under rotation, i.e., functions
of any set of three functionally independent invariants
{ Xy, X5, X3} of the tensor representing strain. If

Xy =1lg= ] X, =k, X;=Kksg, 9
then equation of state (8) can be rewritten in a more
general form:

2= X =1, (10)
where
f2 ﬂ = O_Xa
X, * os’
with
ee=E e =»47A e=A (11)

(see (8) and [1, 2)).
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GIBBS FREE ENERGY AND THERMODYNAMIC EQUILIBRIUM BOUNDARY CONDITION

Similarly, define the “ extensive” deviatoric part and
second deviatoric part of the tensor K,

2,
Q=2=-k- DE Qz— -2
p p 3

(12)

and choose the following set of functionally indepen-
dent invariants of K

1_.>
ZEQEL

(9)

5(1=|K= 5(2=sz:

where v isthe volume per unit mass. Then, the equation
of state becomes

0 = fe, (107
where
za_ Of ~ _0Xa_ i-a
fa = — = a —
OXa’ ea aK p ea
Since thisimplies that
él = E, éz = Q, é3 = Qz,
it follows that
__of _ of
= -TmME+2MmQ +nQ,, T = _5|—K = 3y
(13)
akZK, akSK.
By virtue of Egs. (8), (11), and (12),
m=pu, n=pv.

The following expressions for cross derivatives are
straightforward corollaries to (13):

ot _ _Za_m o _ _on
0Ky, ol kg, al’
(14)
Za_m = ﬁ
Oks,  0ky'

which can be written (for covariant X ) as

T = —2m’,

2.3. Asanillustration, let us define the elastic mod-
ulus of an isotropic solid. Under an arbitrary choice of
invariants, the general definition of theisothermal mod-
ulusis

1 2
™ = -n', 2m’ = n’.

_lpey 1 90f 5 L 10f 5
~ plbkd, T paxaaxb oo

(15
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where

P = B,08, = pz‘a‘b@ab,
e (16)
ab — eam:eb gba - W

(seedso[5]). When the invariants are defined by (9), it
can be shown directly that

_ lp O
6Q - a_|+_§9)11l:|6K’

5Q, = 2[&&? —%@12 + éﬂ)}éx

(17)

where
%X = %(Qx+ XQ) = %[(Q 0 E)+(E0Q)x,

Ox O SymE(3) O E(3).

Accordingly,
P, = ﬂ+—%@ﬂ, Y3 = 25&?-%(@12"'@21)
and the elasticity modulusis
M = MPP+2un, +2vsl?, (18)

where the symmetric matrix M2 has the entries

and
(18)

2.4. To relate the tensor of thermodynamic moduli
to the tensor K introduced in [3], combine (4) with (7)
to obtain

_ 100 _

@eao@
paK

w'ya — EMmU, (19)
where % = do/ds and

G = ' —Em Y™
It was shown in [3] that

(20)

Y =9+ %(E[ﬂﬂ _TIIE).
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Therefore, such that
M = WU~ S(ET U+ UTIE), d = —ndT - (kder (24)
- (21) and therefore
H = M+ Z(EM +TIE),
2 000 _ o

where AL = UL MU,

The modulus K was defined in [3] somewhat artifi-
cialy by using its symmetries with respect to both per-
mutation of indicesin the first and last index pairs and
permutation of the pairs of indices. Consequently, it has
the smallest number of independent components,
which is equal to the number of independent compo-
nentsin the linear elastic modulus (i.e., 21 components
at most). However, these properties characterize the
quantity ., which should, with more reason, be
called—and is called in what follows—the tensor of
elastic moduli. One additional reason for this is that,
according to (5), (5", and (21), both definitions of the
modulus are equivalent on the hydrostatic axis, in
whichcase Q = Q, =0, ky, = kg =0, T=p,and M =K
in (18, where K is the conventional bulk modulus [6].
This leads to the expression [ 3]

M= MU, +2un,

(187)
= E( ED]E+ 2ur,,
or (inindicial notation, see Section 1 and (5"))
2
Mijw = K99 + “%ikéjl + 5i|51k—§5ij5kH-

Asin [3], its distinction from the conventiona linear
approximation (see [7]) lies in the fact that it contains
the bulk modulus K(p) and shear modulus u(p) deter-
mined under pressure.

Formula (21) can be used to calculate Jl if the mod-
ulus K is known. The latter modulusiis easier to calcu-

late and interpret, because the natural strain tensor sis
easier to conceive as compared to K.

3. GIBBS FREE ENERGY
3.1. According to (6), we can subtract the quantity

k0= BkO- BAORO= 2= B (29
3p p

fromf (i.e., apply the Legendre transform) to define the
function

¢=f—[BKD=f+§ (23)
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oo,
3.2. By thefirst law of thermodynamics, the rate of
variation of the energy € of a near-equilibrium solid
with rigid boundariesis
E=Q+R121
where Q is the rate of heat transfer to the solid and

R isthework done on it per unit time (R = 0 under the
rigid-boundary condition). Therefore, the second law

of thermodynamics, Q < TH (H isthetotal enthalpy of
the solid), dictates that (see [6])

F<O,
whereF = [pdVf isthetotal Helmholtz free energy of
the solid. Thisimpliesthat F isminimal in equilibrium.

In particular, when K deviates from an equilibrium
value, it holds that

S5F = J’pdvgm;@ %p[BK./‘/LTéKD+...EZO, (25)

where [l is the isothermal elastic modulus defined
by (15).
By virtue of (1) and (2), the first summand in this
integral is
00X;
J’dVEbésD J'dV i a

= deGijéxj - Idva—)(ijjéxi =0

since the equilibrium Helmholtz free energy F is
defined for ox; = 0. Therefore, the quadratic form based

on il is positive definite.

Suppose that the state of equilibrium with pre-
scribed surface force density P; = gj;n; corresponds to
fieldso,and s, insidethe solid. Using (7) and (3) to find
0. and K., define

J = J(6,K) = IpdVEBeKD (26)

with 8,(r) = 6(r ) corresponding to the material point
N =re+uU =ry+u

that is located at r, in equilibrium. Here, u is the total
displacement of the point due to deformation and u' is
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the displacement relative to its equilibrium location.
Since dm = pdV (where m is mass) is invariant under
the change of variablesr, <~ r, integrals of the form

J’pde(r) can be written as

JPedVei(re+u)
Ve
or even

Ipodvoj (ro+u),

Vo

where ry is the location of the point in the unloaded
state of the solid and the subscripts “0” and “€” corre-
spond to the unloaded and equilibrium states of the
solid, respectively. Then, (26) isrewritten as

J= IpdV B (r —u)k(r)d= J’pedve[Be(re)K(re+ u)d

and the change from r to r, makes it possible to ignore
the condition J’ dv/kO=m.

Now, a“nonequilibrium” functional ® (correspond-
ing to an arbitrary k) can be defined:

(T, {64 ,{«}) = F(T,{K})—-JI(6 K)

= [PVl - B0, @)

By virtue of (25), alocal minimum of thisfunctional
isreached for aone-phase system with a prescribed sur-
face force density P at the equilibrium values k(r):

5¢:fd3(0ij—0iej)6xj
1, (259
+§J'p dVv OKkM oK+ ... =0,

_ e _ pe .
because g;n; = a;; n; = P; at equilibrium.

Consequently, the equilibrium (minimal) value of
the functional @ is

O(T{PF) = F(T, M {kd)-Im {xd.{})

= J’pdV(])(T, 0), (28)

where 8 = 6, and K, are obtained by solving simulta-
neously either equation of state (8) or (13) and equilib-
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rium equation (2) subject to the boundary condition
o;njls = P;, calculating k from (3) at every point, and
using relation (13) to express K, in terms of ©; ¢ is
determined from (23); the surface force density is
assumed to satisfy the conditions of zero total force and
torque applied to the solid:
deS =0, f(r x P)dS = 0. (29
Thisfunctional is called the Gibbs free energy of an
elastically deformed solid. There exist an infinite num-
ber of functions minimized at equilibrium.? They cor-
respond to different bulk moduli and dimensions of the
ambient medium. In hydrostatics, a unified description
is developed by assuming that the ambient medium
(called barostat and/or thermostat) is infinitely large.
Since this cannot be done in the case of a solid (normal
surface stress cannot be held constant), the force den-
sity

P = &,n = Ben + B A

always fluctuates with both n and A. Expression (28)
can be the Gibbs free energy, because ¢(T, 6) and
f(T, K) are Legendre conjugate quantities. Thus, the
Gibbs free energy per unit mass of an arbitrarily
deformed solid is given by (23), asin hydrostatics [8].

By virtue of (22), the equilibrium value of J can be
expressed as

J= —J'pdV = %deoijxj,

where all quantities are taken at equilibrium.

3.3. In accordance with a conventional approach
(e.g., see [6, 9]), the solid is divided into macroscopic
regions and 6, is assumed to be constant within each
region. Then, the partition function for the T-8 distribu-
tion defined by analogy with the T-p distribution [9] is
written as follows (with index pair in atensor defined,
for example, by Vogt'srule):

(30)

Y = I@a(r) |_| DK,(r)
a=1 (31)

xeXpEkBJ'pdV[S(r) ~THE), K0) - BNKOIT,
0 4 0

where 3 = 1/T, theintegralsareinterpreted as functional
ones with respect to € and K, (a = (ij)), temperature is
measured in energy units so that entropy is a dimen-
sionless quantity, and (see[9])

P(T,{P}) = -TInY. (31)

2 Their number is greater than the number of their analogs in
hydrostatics, since the number of degrees of freedom in deviation
from equilibrium is greater at every point.
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3.4. When the set of independent invariants of 6 con-
sists of

lg = B0 = —3m, ky = %E’[ZD Kgp = %ETSEL(SZ)

then the basis for the decomposition of K is

2
& =, =2 AL
3 2 3 .

By analogy with subsections 2.2 and 2.3, (24') yields

e,=E, & =r1,

K = %E+CT+dT2, v ===-3
0 4o 00
0kye'’ OKge
Consequently, cross derivatives are expressed as

v _ 9 ov _ ad éc _ od
0k, 0T’ 0kgg O 0kgg  Okyg'

cC=-

and can berewritten (in accordance with the ordering of
the invariants) as follows:

2=3c¢, vi=3d, & =d%

where

The derivative of (32') is the compressibility modu-
lus€ = M

9K

= P3g = C®ply + pell, + 2pd s,

© (33)

where P, = €,118, and the entries of the symmetric
matrix C® are

= f0toa, c = o5 o

c® = pd’.

On the hydrostatic axis, the compressibility tensor
reduces to

22 — pCZ, C23 — pdl,

© = c"®,, +pchl,.

Since Jl and 6 are mutually inverse, this entails the
obviousrelation ¢ = 1/2up and

1 0l 1n
e EIE.
oK~ 6p0

3.5. Since moduli under pressure are generally mea-
sured in ultrasonic experiments and, therefore, can be

@ = (33)
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treated as adiabatic ones, the following identity can be
proved by analogy with [6]:

Jl/LTle/Ln+CIaEBa, a= = (34)

which implies that

T bb

br = - T T AT

b=b0O= 6,a, (35
and, therefore, [b = [&€,,.

4. FLUCTUATIONS
AND THERMODYNAMIC INEQUALITIES

4.1. Let usconsider thermodynamic inequalities and
fluctuations of state variables. The results presented
here are obtained for a solid of unit mass. Suppose that
T and 6 are held constant, while € and k fluctuate.
Denote an incremental deviation of any variable from
itsvalue at equilibrium by & and, following [6], replace
V with K and adV (where a is a scalar) with [@okO
(where ais atensor):

50 = %[6n6T+ 505k]. (36)

Since the thermodynamic definition of enthalpy, w =
€ — BkL] impliesthat (T/06),, = —(0k/dn),, the expres-
sion above can be rewritten in terms of N and 6 as

50 = Z[E@TD (5)? + BORXD 69‘@.

(37)
oot

Since identity (6) for Helmholtz free energy implies
that (06/0T), = —(0n/oK);, expression (36) can be
rewritten intermsof T and K as

5 = [B’”D (5T)%+ BKD)GH 5Kq

Following [6], we obtain

(3n)° = co, 3OMBO = Tp.l,, 3nd6 = 0,
2 (38)

(5T)? = I— SKIBK' = E%T, 5ToK = 0,
where p.il,, = (08/0K),, and cq and ¢, denote the specific

heats at constant stress and strain, respectively.

The quadratic forms based on the moduli .it,, and
M+ are positive definite. The corresponding Sylvester
inequalities, which ensure local stability of a physical
Zlyftem are generally called thermodynamic inequ-

ities.
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By virtue of (38), Eq. (5) yields
dsbs = pTAUG,U", &Tds = 0. (39)

The projections of a symmetric rank 2 tensor onto
the isotropic subspace of SymE(3) O E(3) and its
orthogonal (deviatoric) complement are %,,/3 and
Po=M, —P,./3, respectively. Therefore, since

P = N, —pkIIE,

it follows from (38) and (39), respectively, that

(dv)* = ngDE g((@T)nu’ oTov =0,
and
BATBA = pT(M, - PKIE) €-(. - ETpK),

A (39)
3T3A = 0.

In particular, thefirst expressionin (39" iswrittenin
indicial notation as

oA DA, = PT(((@T)ijm—pKij((@T)mmm
—P(61)ijmmK + pz(C@T)mmnnKinkl)

1
= ((€T)ijkl _Aij(ch)mmkI - ééij((@T)mmkl
1
- (%T)ijmmAkl - é(ch)ijmm6kI

1 1 1
+ (%T)mmnn%ijAkl + ééijAkl + éAijakl + §6ij6klg-

Fluctuations of the stress tensor are calculated by
using the identity 8o = %g d6:
30Bo’ = Bd0MBODg = pTDe M, Dy (40)
The operator %g can readily be found as the inverse of
%g given by (20). Using the expression
yt =g tEL
1+ 60

(41)

with € = M, which can be derived from (19), one
finds that

g = AU, + EMUSG.
Hence,

50B0 = p(My+ ETE +TIIE + ETF €, TIE)

= plr, + %(E[Dﬂ +TIE) + EOE €, TIES.
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4.2. By virtue of (18") and (33", Egs. (39) and (40)
yield the following reations valid on the hydrostatic
axis:

, OADBVv =0,
pPK

(3v)* =

sama = P 1
SAMDA = ZHTBn 3E|]]]EH,
(3p)* = pTK,, dpt = 0,

i = 2Tuna1+—%ED]]%.

In particular, volume and shear fluctuations (as well as
pressure and shear-stress fluctuations) are statistically
independent for arbitrary values of strain and stress.

Fluctuations of intensive quantities for a solid of
arbitrary mass m in uniform stress field are given by
the right-hand sides of these expressions divided by m.
Fluctuations of extensive quantities are obtained by
multiplying similar quotients by m2.

This leads to the well-known formulas (see [6])

_Tm _ —@Vg
(BV)* = — = T,
K (b
F-)r T EapDT (42)
2 _pt - _T[PPO
(6p) - r"hKr] - T@VD’

where V = mv isthe volume of the solid. For self-aver-
aging quantities,

5O, A, = %/E‘I—%ED]]%

The formulas obtained in this section are similar to
those used in linear elasticity theory. Thisisnot surpris-
ing, since the point corresponding to the unloaded state
lies on the hydrostatic axis and the nonlinear theory of
natural strain isintentionally constructed to be as simi-
lar informto linear elasticity theory as possible. (How-
ever, one should bear in mind the meaning of the quan-
tities contained in these formulas.) The fact that expres-
sions (38)—(40) are valid for arbitrary strain can be
used, for example, in analyzing the thermodynamic sta-
bility of rubber.
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5. BEHAVIOR OF THE GIBBS FREE ENERGY
IN THE NEIGHBORHOOD
OF THE HYDROSTATIC AXIS
AND UNDER LOW-STRESS CONDITIONS

5.1. Denote the value of ¢(0) on the hydrostatic axis
(at ® = —pE) by ¢(p). By virtue of (7'), thefirst termin
the power series expansion of ¢ asafunction of T (at a
constant p) is

~[Ky(0 + PE)I= —5— E(e+ pE)= ——DEBD pH

— ETAD 1 (1041

Pp Pp
By the definition of Win (19), expression (43) can be
rewritten as @€tllp,, since it follows from (41) that
Y-t = on the hydrostatic axis.

By virtue of (18), the second term in the expansion,
—{(6 + pE)(0k/06")(6" + pE"), is

= ——(P m =

——[T,/l/t = ——[TC@ TD~—
2p, Tt 20,

Therefore, the final result is

Oe,td

2pp

_ 1
¢®) = ¢(p) + Z—ppﬁ(@TD (44)

According to (33), this expression reduces to

g
4u(p)p,

¢®) = o(p) +

for an isotropic solid.

5.2. For small p, the power series expansion of ¢(p)
combined with
op(p) _ 1 o __1
op p’ dp K’
yields
s g ?
0= 6o+ TR
po 4U0po PoKo

The thermodynamic state variables F and @ character-
izing an elastically deformed solid were defined in [7]
per unit volume of the initial (undeformed) solid. The
functionsf and ¢ are defined here per unit mass, ® and
F should be compared to py¢ and p,f, respectively:

2

P- e ~p_P
—f) = po- = pe'=p+pl=p-i-,
Po(@ =) = Py = Pe =p+ple=p—i

s = —'9 o(p%) +0(ED)

(see [1]). In the present notation, a similar difference
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considered in [7] iswritten as

g p°
®-F = -[budl= ———-=-
2, Ko’
where u = s is the strain tensor in linear theory. The
power series expansions of pyf and F in terms of small
strain increments are obviously identical to second
order inclusive. The inequality of the differences writ-
ten out above is not unexpected, because a nonzero
term proportional to p implies that al higher order
terms in the expansion of ¢ in powers of the strain ten-
sor have different values. Therefore, ® cannot be inter-
preted as the Gibbs free energy (in particular, it con-
tains no term linear in p, as noted in [7]). However, it
was never claimed in [7] that ® reaches a minimum at
equilibrium (i.e., is the Gibbs free energy). Therefore,
the results obtained in studies relying on the assump-
tion that ® and its modifications include corrections
that are linear in the strain tensor should be revised.

5.3. It was postulated in [10] that the chemica
potential per unit mass ¢, is a function of o whose
derivative defines an “extensive” tensor V,:

00, _
30 A

Since ® has aloca minimum (see Section 3), it can be

hoped that ¢, = ¢ by virtue of (4). Asaresult, V, can be
calculated as
1
V, = kDg pg Wy 1TD

Thus, it is clear that ¢, cannot be derived from any
well-defined thermodynamic variable by a Legendre
transform, because the transform cannot depend on any
elastic property of a particular material (such as the
modulus %Y). One would not expect otherwise, since o
can be used as a thermodynamic variable only in the
linear approximation and must be replaced with the ten-
sor 6 in an exact theory.

6. PHASE EQUILIBRIUM
IN A NONUNIFORM STRESS FIELD

A phase transformation caused by varying pressure
does not take place simultaneoudly at every point of a
pressure chamber, because the stress distribution over
the chamber is nonuniform. Therefore, there can exist
an equilibrium boundary between phases in a nonuni-
form stress field. Let us derive a condition for thermo-
dynamic equilibrium on such a boundary, using the
maximum entropy principle for an isolated system con-
sisting of subsystem 0 (called tensothermostat by anal-
ogy with the hydrostatic case) and subsystem 1 + 2
comprising the two phases of the material under study.
The phases can exchange material particles, as well as
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energy and strain. All boundaries between subsystems
transfer the total stress, whereas the outer boundary is
supposed to berigid.

In terms of an equilibrium n(g, k), the first law of
thermodynamicsis written as

1 1
on(g, K) Tés T [(BOK (45)
In [11], athermodynamic condition for phase equilib-
rium based on the maximum entropy principlewas con-
sidered for an isolated subsystem 1 + 2 with a fixed
outer boundary. Reasons for revisiting this problem are
discussed at the end of this section.

Suppose that the virtual transition of asmall amount
of amaterial from phase 1 to phase 2 resultsin the dis-
placement of the phase boundary from alocus I to a
locusT ', while the outer boundary I, with the tensostat

shifts to a locus I'y. To be specific, assume that the
mass of the denser phase 2 increases. In the figure, r

and " aretheloci of the material boundaries” and '

after and before the transformatlon respectively. In the
domains V; (conflned between T ' and M) and Va
(bounded by r ), the states of phases 1 and 2, respec-
tively, undergo purely elastic changes.

The equilibrium entropy of subsystemi isexpressed
in terms of its density as

H; = _[pide- (46)

For the same subsystem subjected to an additional elas-
tic deformation without any change in its mass,

Hi = [pidvini(r) = [pidVini(r +u).

A Vi

After a portion of mass changes from phase 1 into
phase 2, the corresponding expressions are written for
the respective phases as follows:

H, = Iplanl = Iplan1+ I P.dVNy,

\21 \Y \Vl
Hy = Ipidvna = jpldvn'l,
V'1 V1
H, = J’pderlz, (47)

H; = Ipzdv N, = Ipzdv N2

Vs

+ I p2dV'n; = Ipzdvrlz I podV'ny.

(VAIVA (VAIA
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Changes in phase boundaries due to a phase transition.

Denoting by &n the corresponding change in entropy
per unit mass at amaterial point, Ny (r +u) —ny(r), we
have

dH, = Hy—H, = J'pldVESnl— _[ p,dVn,, (48)
v AW
OH, = Ipde5ﬂ2 I P20V'N. (49)
VAYA

By using (45), H, isrewritten as
_ [puava B
%

I p.dVN;.

YAWA

0T, T,

Since the movement of the equilibrium boundary
between phases is sufficiently slow for temperature to
remain equal at all points of subsystem 1, the equation

o€, = J’pldVESs1 J’ p,dVe,, (50)
V\Vy
analogous to (48), can be used to obtain
_ 06, (® 6K1D [pl
Vq V\V1

Similar expressions are abtained for dH, and oH,.
Finaly,

_ 8¢, 5%, 5%, 9,5k ]
AT s A e L
Vi
_IPZdV[B 6K2D_I OdV[B 00K (51)
0

+ J’ pldvgr n]D Ipzdvgrzz n%.

A VAVA

By substituting the expression for 8¢, derived from the
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energy balance equation
0¢éy+0¢é,+0¢€, = 0,
itisverified that T,= T, = T, = T. Therefore,

T6H = —J.pldV mléK]_D_Ipde [926 K2E|

(51)
—IpodV [B,0K 1+ I p.dvf,— J’ podV' f5,
Vo V,\Vy VoV,
wheref, =g —Tn);.

Here, the first three terms can be represented as
follows:

—J’pldVEB 6K15—Ip2dVEB 6K2D—J'p0dV [0,0K ]

Vi D

= - .[ dV [b,5s,0— J’dV 5,0, J’dv (6005

Vi

— fds 0.(1)6)((1) fds 0.(1)6)((1)
fds 0'(2)6X(2) + fds 0'(0)6X(0)

Since 5x{” = 3x on Iy, the second and fourth

terms cancel out. For adisplacement d of the boundary
at point 1in phase 1,

fds 00" — fds 00X = fds 0 (3% - 5x?)

to thefirst order in d.

Let the vector d be pointing from apointaon [ to
an arbitrary point a on I'. Consider adjacent points 1
and 2inthevicinity of ain phases 1 and 2, respectively,
and analogous points 1' and 2' in the vicinity of a'. For
a coherent nucleus (the only case amenable to thermo-
dynamic analysis), two adjacent materia points
belonging to the same phase remain adjacent after they
are separated by a phase boundary. Suppose that

points 1' and 2 are the locations of material points 1

and 2 after their respective elastic displacements by or ;
and dr, due to an increase in the mass of phase 2.
Denoting the respective inelastic displacements by d,
and d,, we have

d=dP+8r, = d? +r,. (52)
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If the boundary can be represented by an analytic func-
tion, then

_[pme f&m”bl

v\,
and
I pde f “'-fdsd(Z)pzfz
VAV,
Since o’n; = o{’n; onT,, expression (51') can be
rewritten as

TOH = de(o(l)E)x(l) &)

—o?éﬁ”+d9pﬁl—d”mfa.

Under the no-dlip condition on the boundary, the
invariance of the area dS in the volume element dV =
dSd, and the mass-conservation condition for a mass
element undergoing the transition imply that
d(l) - d(z).

p.n @® = p,n@®, (52)

Since mechanica equilibrium on the phase boundary
implies that o{’n, = o{”n, = P}, relations (52) and
(52" can be used to rewrite (51") as

o P =
ToH = §dSd@p,af, —— — ——’%.
fS pzD 175, 027 )

The inelastic component d@ of the total displacement
d in phase 2 is arbitrary, and the equilibrium condition
oH = 0 implies that the integrand is zero, i.e.,

(53)

whereP,=n-P=n, 0(1) n=n ci(jz) n;. Since the differ-

ence of f, of f, can be Iarge under high pressure, it is
reasonable to single out the isotropic part in g; and
rewrite (53) as
@ @)
Nt N _ TN, )
-t = —t— 53
b, 01 by o (53)
A similar thermodynamic equilibrium boundary
condition was obtained in [11]. However, the results
presented in [3, 5] can be used to show that Eq. (10)
in [11] isnot equivalent to (53"). This may be explained
by the insufficiently rigorous definition of the chemical
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potential of an elastically deformed solid in[11]. More-
over, distortion was used as a measure of deformation
in[11]. For thisreason, all results obtained in that study
are not symmetric and are therefore difficult to apply, in
particular, in deriving formulas corresponding to linear
approximation.

The meanings of the quantities used in this paper
imply that the Gibbs free energies of both phases are
measured relative to the Helmholtz free energy of a
deformed solid. The Helmholtz free energy ismeasured
relative to the unloaded state of the solid (which may
not be observable), and the change in strain is deter-
mined by the equations of state for the phases subject to
matching conditions on the boundary (Egs. (52" for
virtual displacements) and continuity conditionsfor P;.

According to Eg. (53", the Gibbs free energy @ =
@, + ®, does not remain constant in the course of a
phase transition, in contrast to the hydrostatic case.
More precisely, the equilibrium value of ® changes by
the following increment as the boundary shifts by a
vector d:

O = I P dVO G, + Ipzd\/6¢2
Vi Va

+ dedf”plwz—w = [Padv3e, (54)

+ J'pZdV6q)2 +fds[df2)nir§j2)nj —dPnt{n)].

V, r

Let us rearrange this expression to make it more
intelligible. Thefirst two summands are associated with
the changein the elastic strain field due to displacement
of the phase boundary. The first summand can be rear-
ranged as follows:

5 = [Pu0VED, = IpldV[afﬁaEEE}
) )

Vi

= IdV( M8s,0+ p,d%,0+8 p,)
v

1

= J’dV(ET(l)651D+6 p,) = fdsrfj”éx,-
A To

op
- deTi(jl)ij + J’dV%pl - a—;axjg.
7 J
r Vi

Adding an anal ogous expression for dd, and using
the relations (1@ — 1)n = (6@ — a®)n + (p, — pn,
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n-d;+n-8;=n-d,+n -8, and&r{’ = &r
(see (52)) leads to

3P = $dSd,(p,— py) + $dST 0, + [dVdp
-f rf; -\g 1)
(54)
= fdsdi(pz— p;) +dR+ de ;10X +J’dV5p,
r o v

where 8R is the work done by external forces, the third
summand is minus the work done by external pressure
(note that p; is not equal to external pressure), and

dp = Op — (0p/ax;)0x; is the variation of p at a certain
point in space (not material point).

If the temperature of the entire system is assumed to
be constant from the outset, then it can easily be shown
that the resulting equilibrium condition can be derived
from the following relation (see (25')):

OF —deGﬁéxj = 0.

7. CONCLUSIONS

1. Legendre conjugate measures of deformation and
stress are introduced and used to define a thermody-
namic potential of an elastically deformed solid. Since
the thermodynamic potential is minimized in a homo-
geneous state at constant values of temperature and
forces applied to asolid in equilibrium, it isinterpreted
as the Gibbs free energy. It is shown that the quadratic
terms of its expansion in terms of the stress tensor
known from the linear theory change when the poten-
tial contains aterm proportional to p.

2. In contrast to the hydrostatic case, the Gibbs free
energy of a multiphase system changes with its phase
state, and the changeis not entirely dueto changeinthe
elastic equilibrium field.

3. The most remarkable result isthe similarity of the
expression for the Gibbs free energy density corre-
sponding to an arbitrary elastic strain to its counterpart
in hydrostatics.

4. Correlation functions are cal cul ated for strain and
stress fluctuations in an arbitrarily deformed solid.

5. A thermodynamic equilibrium boundary condi-
tion isfound for coexisting phases.
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Abstract—Mechanisms of acoustic pulse generation by a single-mode electromagnetic field propagating in a
photoel astic material are analyzed. The anisotropy induced by acoustic excitationsin an isotropic medium leads
to nonlinear coupling between the polarization components of a single-mode electromagnetic field. For differ-
ent conditions, it is shown that the acousti c—el ectromagnetic wave interaction due to mixing of the polarization
components of light and acoustic waves can give rise to soliton-like coherent acoustic excitationsin athin crys-
tal plate. When spatial dispersion isignored, the governing system of equations for unidirectional acoustic soli-
tons can be reduced to an integrable model. It is shown that qualitatively different scenarios of formation of
acoustic solitons are possible, depending on the directions of deformation and field polarization. © 2004 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

When a single-mode €electromagnetic field propa-
gatesin an isotropic medium, coherent soliton-like and
other excitations can develop as a result of balance
between group-velocity dispersion and Kerr nonlinearity
or parametric interaction between several field modes
with different carrier frequencies (e.g., see [1, 2]). Of
particular interest are systems in which dynamic inter-
action regimes do not lead to any steady state under
time-independent external conditions. The interactions
associated with evolution of quasi-monochromatic
optical pulses have been analyzed in detailed studies,
which in many cases relied on specific choices of time
scales and resonance conditions [3]. This has led to
good understanding of the physical patterns of funda-
mental nonlinear interactions between solitary waves of
different nature. Analogous analytical results concern-
ing single-phase solutions were obtained in studies of
acoustic—€lectromagnetic wave interactions governed
by systems of equations related to some of those
employed in nonlinear optics [4-6].

Propagation of waves of moderate amplitude is
dominated by quadratic nonlinearity, which leads to
generation of solitons via either parametric interaction
of two fundamental waves with a wave with difference
carrier frequency or (in the degenerate case) second
harmonic generation [2]. Resonant three-wave mixing
in solids have been analyzed in detailed studies [2]. If
effects due to acoustic—electromagnetic wave interac-
tions in an elastic crystalline materia are strong, then
the reverse effect of elastic strain on the dielectric con-
stant must be taken into account. Dependence of the
dielectric constant on strain leads to a nonlinear cou-

pling between polarization components described by
equations analogous to those of the slowly varying
envel ope approximation for three- or four-wave mixing
of optical pulses. Nonlinear acoustic—electromagnetic
wave interactions of this kind in solids have been ana-
lyzed in numerous studies (e.g., see [4-6]). It was
shown in [4, 5] that the interaction between orthogo-
nally polarized components of the ordinary and extraor-
dinary wavesin auniaxial crystal can result in the gen-
eration of a nonpiezoactive longitudinal acoustic wave
via resonant parametric interaction. The simplest one-
soliton solutions were found in those studies by solving
appropriate evolution equations derived in the dowly
varying envel ope approximation.

Currently, conditions for subnanosecond and pico-
second pul se generation and evol ution are the subject of
special interest. The length of apulse of duration on the
order of 1 ps propagating in a solid with a velocity of
about 5 x 10° cm/sis only afew interatomic distances.
Therefore, pulses of thiskind can be used to explorethe
structure of various crystalline materials, complex
molecular structures [7], and quantum wells in semi-
conductor films [8]. Acoustic pulse evolution was ana-
lyzed by Sazonov with coauthors (e.g., in [9-11]) and
the present author (e.g., in[12, 13]) under light—matter
interaction conditions different from those considered
in this study without applying the slowly varying enve-
lope approximation. Studies of such pulses are of great
current interest, as well as the ongoing studies of their
optical counterparts, femtosecond pulses and micro-
pulses (see [14]). Even though the models that
describe the evolution of acoustic and optical pulses
without using the slowly varying envel ope approxima-
tion bear some resemblance, they are substantially dif-
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ferent in certain respects (cf. the models developed
in[14] and [12, 13]).

Intensive studies of acoustic—€lectromagnetic wave
interactions involving nanosecond acoustic pulse gen-
eration and polarization effects are being conducted for
anisotropic crystals characterized by nonlinear moduli
strongly depending on the directions and polarizations
of the interacting waves. As an example, consider the
interaction between parallel acoustic and electromag-
netic wavesin the optically anisotropic LiNbO; crystal.
Suppose that the ordinary and extraordinary waves
propagating along the x axis interact with an acoustic
wave whose frequency is nearly equal to the difference
of the electromagnetic-wave frequencies. This interac-
tion (dueto linear photoel asticity) can lead to propaga-
tion of solitons [15]. Localization of the bound optical
component of acoustic—electromagnetic solitons was
observed experimentally in[16]. In the theoretical anal-
yses of soliton solutionsto parametric-interaction prob-
lems presented in [4-6], both electromagnetic and
acoustic fields were described in quasi-monochromatic
approximation. However, the frequency difference
between the extraordinary and ordinary waves imposes
arestrictive condition on the duration of the generated
acoustic pulses. For example, the difference frequency
is about 108 s for BaTiO5, which is characterized by
3m symmetry at temperatures below —90°C [5]. A
higher difference frequency, about 4 x 10° s7, is
attained for LiNbO;. Thisimplies that the durations of
quasi-monochromatic solitons must be at least 107 and
108 s, respectively. Generation of acoustic pulses with
duration comparable to (or even shorter than) that cor-
responding to the difference frequency would make it
possible to implement nanosecond (or even shorter)
pulses with this mechanism of acoustic—€lectromagnetic
wave interaction. Furthermore, the attenuation factor for
an acoustic pulse is proportional to the sguared fre-
quency in the range between 10° and 10° s [5]. There-
fore, the attenuation factor is more than two orders of
magnitude larger for quasi-monochromatic pulses as
compared to pulses with durations of about Q~1, which
may include picosecond pulses. Generation of picosec-
ond acoustic solitonsin acrystal plate was observed in
recent experiments [17]. Solitons formed over a dis-
tance of about one millimeter as a result of balance
between dispersion dueto location of atomsinthecrys-
tallinelattice and nonlinearity caused by anharmonicity
of the interatomic interaction potential. Analysis of
pulse generation caused by acoustic—electromagnetic
wave interaction offers additional opportunities and
mechanisms for using electromagnetic field to control
acoustic-pulse parameters.

The theoretical results obtained in the studies of
acoustic—el ectromagnetic wave interactions mentioned
above cannot be used to analyze propagation of sub-
nanosecond—and, particularly, picosecond—acoustic
pulsesin crystals, because the slowly varying envelope
approximation is not applicable to such pulses. There-
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fore, the development of a theory of acoustic—electro-
magnetic wave interactions (in particular, at the differ-
ence frequency) that does not rely on this approxima-
tion is of great interest and practica importance.
Theories describing the evolution of pulses with dura-

tions comparable to T[QI; do not make use of fre-

guency resonance conditions. Therefore, new effective
mechanisms and conditions of acoustic soliton genera-
tion can be suggested in these theories. Note also that
the use of short light pulsesfor generating acoustic soli-
tons in multimode parametric interactions is impeded
by technical difficulties due, in particular, to the
requirement of pulsetiming [6].

In this paper, new mechanisms of acoustic pulse
(soliton) generation in photoelastic materials are ana-
lyzed without invoking the slowly varying envelope
approximation for acoustic pulses. The present analysis
is restricted to the case of a single-mode field and a
homogeneous medium.

The paper is organized as follows. In the next sec-
tion, the system of evolution equationsis derived for an
electromagnetic wave and acoustic excitations. In
Section 3, single-phase solutions are presented. In Sec-
tion 4, an integrable reduced system is derived, the cor-
responding Lax representations are found and a self-
similar nonsoliton solution is obtained. The results
obtained in this study are discussed in Section 5. In the
Appendix, N-soliton solutionsto the integrable reduced
system are found.

2. EVOLUTION OF A SINGLE-MODE FIELD
IN A TWO-DIMENSIONAL MEDIUM

Consider an isotropic crystal that has large dimen-
sions along the x and y axes and is optically thin along
the zaxis. Weak deformation of aninitially undeformed
crystal is described in linear approximation with
respect to the strain tensor

_ 19y,

] LU
ke ZEBXK

ox 0 D

where U(X, Y, 2) isthe vector of displacement of amate-
rial point. Accordingly, the dielectric tensor has the
form (e.g., see[18])

€ = soéjk+a1ujk+a2ujj6jk, 2

where 9, is Kronecker’s delta and a, and a, are real
constants. When nonlinear effects are neglected, the
dynamics of acoustic field are described by the Hamil-
tonian

= I%—Z pj + % Jklmgu @‘Ed 3

jk1,m
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where n, is the mean density of the crystal, p; is acom-
ponent of the momentum density associated with time-
dependent displacement (j = X, Y, 2), and Ay, isthe ten-
sor of elastic moduli [18]. Theintegral in (3) isover the
crystal volume. It is assumed that both photon and
phonon concentrations arelarge and classical models of
both acoustic and electromagnetic fields are valid.

Suppose that the electromagnetic wave vector k =
(ke K, k,) makes an angle 6, with the z axis (see below).
Since the crystal plateis optically thin along the z axis,
both the derivative of the el ectric-field envelope and the
acoustic waves associated with U, are negligible. The
coordinate system (X, Y, Z) associated with light propa-
gation is defined by the Euler angle 6, between the z
and Z axes and the Euler angle @, between the x axisand
the projection of the Z axis on the xy plane[19, 20]. The
corresponding dielectric tensor €' is related to the

dielectric tensor € in the case of 6, = ¢, = 0 asfollows:

~ A1,
€ =D €D,

where D(6,, ¢.) isarotation matrix.

Electromagnetic field in the crystal is governed by
the Maxwell equations

~ 19°D
Oxg XE)=—(‘:‘2‘a‘t—2, (4)
(0mD) =0, 5)

where E = (Ex, Ey, Ez), D = £E isthe polarization
vector, and c is the speed of light in the crystal. In the
absence of acoustic excitations, € is adiagonal tensor.

Nonlinear dependence of € on E is not taken into
account.

If

E(x,y,zt) = exp(iK2)E(x, y, ),

then E, can be eliminated by combining (4) with the
identity

OxQ xE) = 00 E)-(A,-K?)E,  (6)
where

_ _ o @
AD - DDEDD - a_X2+a_y21

0, = 2 90
0 Dox oy

The resulting equation for the transverse field E; =
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(E.E)is

2 19° ., 2
DDED_;_Z?(&E)D_K Eg
—-0O(0E; +iKE,) = 0.

(7)

The longitudinal field component is expressed in terms
of the transverse field by using Eg. (5):

iK(£E),+ O, OEE), = O. (8)

Since the unperturbed medium is assumed to beiso-
tropic, it follows from (2) that the differences between
the components of € for a perturbed medium are on the
order of a,uy (N=1, 2;j =X, Y, 2). The angle between k
and the z axis is assumed to be small, but sufficiently
large for conditions (28) to be satisfied (see below).

By analogy with [19], the longitudinal electric field
component is estimated as follows. In the zeroth
approximation, the expansion of (8) in terms of /Kl
where |, isthe optical-soliton length, yields

-1 . -1
E, = —&, a,u,,SNB,cosQ.E, = —€, a,U,,0,E,

if the off-diagonal components of € are ignored. It is
assumed that 6, @, ~ € and a,u,, ~ € (e isasmall quan-
tity). Henceforth, the contribution of the longitudinal
electric-field component is of order €? and other contri-
butions of similar order (including the off-diagonal
components of €) are neglected.

Since the processes analyzed in this study develop
on a (sub)picosecond time scale, the slowly varying

envelope approximation is applied to the electromag-
netic field polarization components:

Eo = exp(ikx +iky—iot)é(x,y,1),

where 0,8 < wé. Similarly, the time scale of acoustic
perturbations u,, U, and u,, is much larger than w™
for the optical frequency range.

The assumptions introduced above are used to
derive the following system of equations from (7):

[2i(kD ) +AD+ii—‘;’%]%x
2 9

W
= ?[(qx + azuxx)%x + a1u><y%y] )

[Zi(kDEDD)+AD+i2—wa}%y

c? ot
o (10)
= —C—Z[(qy + a2uyy)%y + a:Luxy%x] )
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where k= (k,, k) and

q, = (K*+K +K)c’w’~g, = 0

Qx

for asingle-mode field. However, the case of q, # g is
also of physical interest. This condition is satisfied, for
example, by the envelopes E, and E, of orthogonally
polarized waves with different carrier frequencies w,
and w, in which case the quantity

Qo = c]x_qy[| (wx_wy)

can be both positive and negative. This case is dis-
cussed in Section 5.

The Stokes vector is defined as

S=(S.S,S)
B8+ BB, BBE BB, B8 — 8,6
=0 2 | 2 ! 2 O

Its magnitude ) is

S=S+S+S = [([&°+]€))2)".

The right-hand sides of (9) and (10) can be used to
define the Hamiltonian of interaction between € ectric
and acoustic fields as

(11)

Hint = AlI[g(uxx_ uyy)Sz

(12)
+g(Uy + Uy ) S + Uy S dr,
where
A, = 2a,0°Ic’, g = ayl2a,.
Acoustic waves are governed by the equations
e I

where U = (U,, U,) and P = (P,, P). These equations
are used to derive equations

1 9° _ A PS, 0€,Ex0
e St AL B

I 102, _ .S, 0¢,én
DD_V_§(3_'[2 Uy = A, YOy o (15)

for elastic-strain waves, where

_ _ _ ]
Vi = Vy = Vg = JAung
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isthe phase velocity of acoustic waves, which entail

i a [0S,  9°¢,&:0
Op——=— Uy = A + {], 16
T V2ot xoy 9 e o 1O

B 1 62_ DaZS( 62% %*D
-=—lu, = A + N, (17
S v ‘Hoxay Y ay’> O 4

1 9° A aZSOD
{Dm_véatz}uxy S 2 DSX+93X<3>D' (18)

When the Euler angles are small, diffraction (i.e., terms
proportional to O &, with | = x, y in Egs. (9) and (10))
cannot be neglected. The resulting system of equations
is a generalization of the two-dimensional nonlinear
Schrddinger equation, which does not have stable soli-
ton solutions (e.g., see review in [21]). Instabilities due
to diffraction effects can lead to collapse, i.e., singular
behavior of localized solutions. This suggests that the
system of Egs. (9), (10), and (16)—(18) does not
describe stable soliton propagation.

When the Euler angles arerelatively large, theterms
proportional to 0-¢, (I = x, y) in Egs. (9) and (10) may
be negligible. A numerical analysisof theresulting sys-
tem (9), (10), (16)—«18) without diffraction-related
terms reveal ed that a Gaussian-shaped acoustic pulse

Uy(X, ¥, 0) = Upexp[—(x° +y*)Ix5],

Ue(X, Y, 0) = Uyl(X,y,0) = 0

evolves into a ring-shaped pulse. The ring diameter
grows with decreasing speed, and the pulse profile
becomes irregular. Figure 1 illustrates the numerically
predicted evolution of an initially bell-shaped two-
dimensional acoustic pulse.

3. SINGLE-PHASE SOLUTION

Since soliton-like solutions are sought in this study,
let us consider physical situations in which solitons
can be generated. One can find conditions such that
system (9), (10), (16)—18) reduces to a version of the
two-component Schrédinger equation and admits soli-
ton and soliton-like periodic solutions. They are
obtained in the case of quasi-one-dimensiona dynam-
ics, when the second derivative along one coordinateis
negligible in a corresponding reference frame, for
example, if the projection of the electric-field vector on
they axisis such that

k,0,€ > 9,6,
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Fig. 1. Profiles of uy, versusx, y for an initial pulse with uy, = 1.2exp[~(¢ + Y2)], Uy, = Uy, = 0, Ex(-5, 0) = 1, and E,(-5, 0) = O at

instants separated by equal time intervals.

whereas
k0,8, < 0°€,.

Then,A = coszyoai to therequired accuracy in Egs. (9)
and (10). Thisisthe case, for example, when the ellip-
tical cross section of the light beam incident on the
crystal is oblate in the x direction and stretched along
the y axis. Steady-state periodic and one-soliton solu-
tions to system (9), (10), (16)—18) can be sought as
functions of the single phase variable

0 = cosyyXx + sinyyy — Vi,

where y; is the angle between the soliton trgjectory in
the xy plane and the x axis. System (16)—(18) yields

Uy = A(COSYoSINYoS, +gcos'Yé,E5),
Uy = A(cOSY,SinyoS, + gsin’y,€,85), (19
2uxy = /\(SB( + gCOSVOSinVOSJ)’

where

2
AVq

N = .
vi-V?
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Here, the constants of integration are set to zero and
Uj| =0(j, | =X,y) if%x=céy=0.
By substituting these results into (9) and (10), the

model is reduced to the trandation-invariant nonlinear
Schrodinger equations

{Zi &, -

Vard L2 98°
R

06’ (20)
= (b€, +b,%,)S, + b€, S, + b |€,*€,,
. Vo | 2 a0’
2ik, — — + be— |€
[ a 2108 0662} y (21)

= (0,8, +b,8,)S +b,E,S + b|€) ¢,
where

b, = cosy,, b, = a,Acosy,siny,w’/c’,

b, = a,Aw’/2¢’, by = a,gAcosy,siny,w’/2c’,
b, = a,gAcos’yw?/c’, b, = a,gAsiny,w’/c’.
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The simplest single-phase solution to system (20),
(21) is sought in the form

©x = NoFoG(s6) exp(i f,0), (22)

€, = Ny'FoG(s,8) exp(i f8), (23)
where A\, Fo, fp, and g, are rea constants and G(8) is a
real-valued function. Substituting (22) and (23) into (19)—
(21), wefind that A\, isasolution to the algebraic equa-
tion

A31—gceosy,— Ay (L—gsin’yo)

(24)
= gsiny,cosy(Ay —Ag)/2,
where
fo = 2(Vwlc®~k,), Fg = 4K|By,
By' = (2b, + by) + 2b,A5° + byAy" + 2b, A
The function G solves the equation
05G(08) = Ko2G(08)° - foG(:8),  (25)

where

S = l/cosy,, Ko = sgnB,.

One of the simplest solutionsto (25) corresponds to
Ko =—1 and has the form

G(s:0) = Nnodn(sone6, m), (26)

where dn is the Jacobi ellipsoidal function with

. _ fi-Jfi-C 2 [
m = —————, no = fi+Jf;-C,

2+ [t-C
f, = .G,

and arbitrary real constants. When C = f7, solution (26)
reduces to the one-soliton solution

G(s,8) = ficosh(fis0). (27)
Solutions (26) and (27) describe a long-wavelength
wave packet or an electromagnetic solitary wave prop-
agating across the plate. The pulse profiles are constant
along the direction perpendicular to the trgectory of
soliton propagation.
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4. INTEGRABLE REDUCED MODEL
4.1. Derivation of the Model

Generally, only single-phase solutions can be found
to nonintegrable equations, such as (9), (10), and (16)—
(18). A more detailed analysis and control of nonlinear
pulse dynamics should rely on solution of an initial—
boundary value problem. This can be done only by
applying theinverse scattering method (ISM) to nonlin-
ear evolution equations. Therefore, integrable reduced
models amenable to analysis by 1SM should be formu-
lated. Furthermore, soliton-like solutions and other
coherent structures should be sought as a result of bal-
ance between dispersion, cross modulation, nonlinear
mixing, and other physical effects modeled by corre-
sponding terms in the governing equations. Conditions
for the formation of a particular structure should be
determined by finding appropriate combinations of the
scales that characterize the amplitudes of fields. Soli-
ton-like and other solutions corresponding to integrable
models can also be used as zeroth-order approximations
in perturbative analyses of near-integrable models.

An integrable reduced model is derived from sys-
tem (9), (10), (16)—(18) by applying the slowly varying
envelope approximation with respect to the transverse
coordinates:

0€<k¥& j=xy. (28)
Under these conditions, the terms proportional to A5 in
Egs. (9) and (10) can be neglected. These conditions
can be combined with the assumption of small Euler
angles introduced above in analyzing picosecond pulse
propagation for awide range of pulse duration.

Again, let us consider one-dimensional pulse prop-
agation in the xy plane at an angley, to the x axis. Sup-
pose that the elliptical cross section of the light beam
incident on the crystal is oblate in the direction of the
vector (cosyy, Siny,, 0) and elongated in the orthogonal
direction in the xy plane. A numerical analysis of sys-
tem (9), (10), (16)—(18) without diffraction-related
terms reveal ed that the propagation of such abeam can
be described in a quasi-one-dimensional approxima-
tion. A highly dliptic, large-amplitude, Gaussian-
shaped pulse splits into two independent pul ses propa-
gating in opposite directions. The rightward-propagat-
ing pulseis similar in shape to the one-soliton solution
obtained below in the one-dimensional approximation
for unidirectional acoustic pulse propagation. Note that
no splitting of thiskind was observed in numerical sim-
ulations if the initial Gaussian-shaped pulse had a
nearly symmetric profile. It can also be shown analyti-
cally that quasi-one-dimensional dynamicsis observed
when the incident pulse has auniform field distribution
along the coordinate perpendicular to the propagation
direction.

When diffraction-related terms in Egs. (9) and (10)
are neglected in analyzing one-dimensional pulse prop-
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agation, the Stokes vector satisfies the following corol-
lary to system (9), (10):

a):(% = _g(uxx_uyy)%v
a)?sy = g(uxx_uyy)sx_zuxyszv
05S; = 2UqS,

(29)

where
O = 2A7 (K, + k9, + wCd,).

However, system (14), (15), (29) is too difficult to
analyze. The widespread slowly varying envelope
approximation cannot be applied to derive an integrable
reduced model, because the Stokes vector does not con-
tain fast-oscillating terms. Without using this approxi-
mation, Egs. (14), (15), and (29) can be simplified if
AS/G, < 1 (i.e, if acoustic—electromagnetic wave
interaction is sufficiently weak; see Eq. (33) below).
This condition is widely used in fluid dynamics and is
analogous to the unidirectional approximation used
in [22, 23] to derive reduced Maxwel|-Bloch equations
for atwo-level laser medium.

In the unidirectional approximation for acoustic
pul se propagation used here to simplify analysis of sys-
tem (16)—(18),

0, = cosyyd;, 0, = sinyydy,

where
X = COSYoX + siny,y,
and it formally holds that
95 =—v5'0; + O(e).

The factor multiplying the right-hand sides of (14) and
(15) issimilar in order of magnitude to the derivatives

05 = 05+ V50,

of acoustic field amplitudes. Under this condition,
acoustic pulses propagate with a velocity close to the
phase velocity v, and the derivatives with respect to x
and y on the right-hand sides of (16)—(18) can be
replaced with cosy,0; and siny,d;; , respectively, up to

O(€?) terms. Asaresult, unidirectional one-dimensional
pulse propagation is obtained for arbitrary initia and
boundary conditions. If theinitial pulseisaplanewave,
then unidirectional pulse propagation can be obtained
when the factors on the right-hand sides of (16)—(18)
are of order unity.

The derivatives of electromagnetic field compo-
nents become

2A7" (K, cosy, + k,Siny,)dx
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since the ratio vy/c is about 10~ for solids, and the
time derivative in 9; can be dropped. Furthermore,
system (29) entails the invariance of the Stokes-vector
magnitude:

;S = 0. (30)

To simplify analysis, assume that y, < 1; i.e, the
terms proportional to sin?y, on the right-hand sides

of (16)—(18) can be neglected. Asaresult, system (16)—
(18) isreduced to

0% , 103 _ OADS,

X Voot 2 9y’ (1)

0% . 10% _ A0S

3% veot | 20%’ (32)
where

H = Uy —Uy, G = 2u,,.

By virtue of (29), (31), and (32), the acoustic field
components are related as follows:

G+ 9 = G (33)

Thereal function Gy(X , t) is determined by the equation
9;Gy = —V'0,Go.

In view of the essentially nonresonant nature of the
acoustic—electromagnetic wave interaction analyzed
here, amultimode el ectromagnetic wave packet should
be considered in the general case. The present model is
analogous to that describing interaction between elec-
tromagnetic fields and ion waves in plasmas. In both
models, the contributions due to different electromag-
netic field modes are taken into account by performing
weighted averaging of the right-hand sides of Egs. (31)
and (32).

Without loss of generality, suppose that

Gy = const, § = const.

By virtue of (33), the integrable system of Egs. (29),
(31), and (32) becomes

0.G = B,R[] (34)
o.H = gd,R[] (35)
o,R, = gHR,~GR,, (36)
R, = —gHR,, (37)
d,R, = GR,, (38)
Vol. 99 No.1 2004
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where

_ % _ ¥ _ S _
65 Mgy BTy YIXve

(X + Vo) ASy
2(kycosy, + kysiny,)’

AlGO)’Z
2(kycosy, + kysiny,)

X:

The angle brackets in (34) and (35) denote averaging
over the electric-field carrier frequencies:

00

T = [ @)D, (39)

where 9 (w) is afrequency distribution function.

4.2. Inverse Scattering Method

To obtain a solution defined on the entire x axis,
assume that the acousto-optic system is in the stable
ground state corresponding to an energy minimum at
X — oo, Suppose that the acoustic pulse with H(X, 0)
and G(x, 0) introduced into the system gives rise to
acoustic- and electromagnetic-field solitons. Details of
the required initial pulse shape are discussed below.

System (34)—(38) is the compatibility condition for
the following linear systems:

0@ = Lo, (40)
0.® = A, (41)
where
. O O
[ =g M MGG (42)
0-A.G iAHO
A__ 9
A =
g°— 4N’
5 SiAR, A(GR—2IAR) |  (43)
~A(gR+2IA_R) iA_R, ’
)\i = Ei—rZE_l'

with & denoting a spectral parameter,

G°+E*=1, r= %1 g -1
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Since both (40) and (41) areindependent of «, it can be
assumed that 2 (w) = &(w).

Physically meaningful solutions must describe soli-
ton propagation against the background corresponding
to a stable vacuum solution. Let us analyze the linear

stability of the homogeneous vacuum solution { Rﬁo) :

GO, HO} to system (34)—<38). The solution satisfies
the equations

gRPH® = R9G®, RO =0, (44)
Suppose that

R, = R”+ Ryexp(ivt +iqy),

H = HO+ Hexp(ivt +igx),

G = G+ Gexp(ivt +iqx),

where the tilde denotes small perturbation amplitudes.
In the long-wavelength limit (g — 0), the dispersion
relation reduces to

2_ .2 2 (0)2
Vo= vgal+ —-1)H
0«/ (9 ) (45)

x[1+(g" - )H? - gRPsgn(H?)],

wherev,isareal constant. According to (45), the solu-
tion to (44) is stable if sgn(gROH?) < 0. If
sgn(gRPH®) > 0, then stable and unstable solutions
correspond to g? < 1 and @? > 1, respectively. If g=1
and sgn(R'H®) > 0, then the solution to (44) corre-
sponds to neutral stability. The solutions obtained
below demonstrate that stability of the background
solution corresponds to soliton propagation with a
velocity lower than the phase velocity of sound propa-
gating in the medium. Formally, there exist solutions
corresponding to solitons that propagate against an
unstable background solution to (44) with a velocity
higher than the phase velocity of sound propagating in
the medium. However, they are physically meaningless
because of instability, and the actual solution will be a
quasi-self-similar one describing the decay of an unsta-
bleinitial state. It can be shown that the group velocity
inthissolutionislower than the phase vel ocity of sound
propagating in the medium.

The spectral parameter in (40) and (41) differsfrom
that employed in [13]. It is chosen so that it may not be
necessary to introduce Riemann surfaces when g = 1

in certain cases. One of these cases corresponds to the
conditions

R{0,T) = R(0,T) = 0, R(0,1) = -1,

(46)
G(x,0) = 0, H(x,0) = 1.
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The ISM apparatus corresponding to the parameteriza-
tion used here and to the background solution defined
by (46) is simpler than that developed in [13] for a dif-
ferent problem.

Solutions to (40) have the symmetry
®E) = MeAD™ (47)

where

[l
=00 (48)
0-1

Oodod

1
0

The standard Jost functions ¥+ are defined as solutions
to (40) having the asymptotic form

W = Woexp(—iA_G5T), T oo, (49)
where 65 isaPauli matrix and
A O O
v, =09 1g (50)
0-100

These solutions are related by a scattering matrix T:

] + 1|:||:|
vo=w't, w0V ey
Oy; w30

Symmetry (47), (48) entails the following form of the
scattering matrix:

# = ga® -ble) g
Jh(e) al{e) U

(52)

The functions a(§) and b(g), as well as the Jost func-
tions, have standard analytic properties: a(§), W*(g),
and Y~ admit analytic continuation to the upper half-
plane; a*(¢), Y**(&), and Y *(§), to the lower half-
plane.

The following symmetries are valid:

a(-r’/€) = a€), b(-r’/€) = bE), EOR. (53

Let&,and & (m=1, 2, ..., 2N) be the poles in the
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complex plane such that
bn(En) = _b:(E:)’ bN+n = _bnv
n=12..,N,
2¢-2 2 (54)
CN+n = - E; Cnl E.N+n = I /E.na
>\J_r,N+n = i7\J_r,n:
where
Cy = bEN/(ida/dEg_g ), Aum = EntrEy.

By substituting the components of the Jost functions

represented as
WYX, &) = w'(X, &)
©[]

DAKl(x s AKy(X, S)D .
* * D
XD—AK(x 8) AKI (X, 90

v (s ¢)ds

into (51); integrating the resulting equations

- _qu_D_l_)qf
1 a a 1
-

+ b +
2= 92———%

with the weighting factors

0

I exp(—iA,y)/2m
and using the relations

J’exp(i)\_x)dE = 2ny X,

jn(a)z‘lexp(m_xwz = 0,

QE) = Q(r78),
one obtains the Marchenko equations for y = x:

[

K;(X’ y) - FZI.(X’ y) = IKl(Xi S) I:2(S+ Y)[US,

00

KI(X y) = —[KxX, 9)Fs(s+y)ds,

X
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(57)

(58)

(59)

(60)
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wherethe kernels F, are where
4N e 2 * * 2 g%
F.(x) = 27\” ~oX) Cr=Cul&n Apn=8&2r7/&,, AL =& £r /&,
n=1 " (62)

* 5[ 2 (A X,

4N

FaX) = Z caeXp(iA_ ,X)
n=1

(63)
+ 5= [PeP(IA X)CE.
Fad) = 3 - e®(irx)
=1 (64)

1 PA, .
+2—nf " exp(iA_x)dg,
with

p(€) = bE)/aE®), &OR.

The symmetries formulated above and real -valued-
ness conditions for G and H imply that an N-soliton
solution is associated with a set of 4N poles, among
which the 2N poles &, and ¢,y (N =1, 2, ..., N) are
related as follows:

—r?IE,..

Each pole is associated with an additional pole Em =
=-&r (m=1,2,...,2N)if Re¢,,# 0. Theexistence of such
pairs of poles combined with the symmetry condition

(&) = - (=€
ensures that G and H are real-valued.
The kernels F;, F,, and F5 corresponding to the

radiationless soliton spectrum and preserving symme-
tries (54) and (65) are

N

EN+n =

(65)

Fil) = > (Chexp(id_ X)) + Ch exp(—iA* x), (66)
n=1
N
Fo(X) = CA i
2(X) HZI( n —,nexp(I —,nX) (67)
—ChA* Lexp(—iA* X)),
Falx) = Z D—exp(m X)
(68)
CiAZ,
_ ;\* exp (-~ |)\*x)EL
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Substituting the expression for ¥* into (40) and col-
lecting the terms proportional to powersof A, we obtain

KOG X)L+ HX)] = GOOLL—iK (X, X)] -

Thisrelation is combined with G2 =1 —H?to express G
andH intermsof K, , as

(69)

[1-iKy(x X)1% = K5(X, X)
[1—iKy(X, X)] %+ K50 X)

21— iKy(x, )T KaX, X)
[1-iKy(X, X)]%+ K30 X)

The N-soliton solutions corresponding to the sets

HX) =

(70)

Gx) =

(71)

{&, —E5, 1718, T°IE}

can be obtained by a standard method. The matrix form
of the solutionsis given in the Appendix.

The function ¢,(1) is determined from system (41)
corresponding to R(xe0, T) = 1 by using the equation

n=12..,N

O.T = TAX Uy~ w—AX Dy . T, (72)

A, 1) = ¥ AX D]

For the initial and boundary conditions chosen here
to describe soliton dynamics,

A
¢(1) = c,(0) exp%gTJE (73)
If
C, = |Cjjexp(igy), & = rexp(ia),

then the one-soliton particular solution, which corre-
sponds to an eigenvalue A_ ; lying on the imaginary
axis, hasthe form

2

H=1-—= 74
f2(x, 1) + 1 (74)
_ 2f(x. 1)
G = , 75
f2(x, T) + 1 (73)
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where

f(x. 1)

2|C,| exp[—4rBsina] cosp, (76)

I 8r|C2cos’al |sina| ™ cos, exp[-8rBsina]

with

_ ~ ~ 2 2 .o 1
0 = x—Vot, Vo=g9[g +(g"—1)sin"a] .

Figure 2 demonstrates that the solution profile
depends on the sign of cos,. The expressions for K'
and K, obtained in the Appendix imply that the soliton
corresponding to the more general case of § =r,exp(ia)
(r, #r) has an additional degree of freedom analogous
to the oscillatory mode of the breather described by the
sine-Gordon equation.

5. DISCUSSION

It is shown in this study that solitons can be gener-
ated as aresult of acoustic—electromagnetic wave inter-
action when a single-mode field propagates in an iso-
tropic photoelastic material. The evolution equations
describing nonlinear coupling between polarization
components admit single-phase solutions and reduce
(under redlistic assumptions) to integrable models.
These models describe (multi)soliton solutions and
solutions of other types, which arise as aresult of para-
metric mixing due to off-resonance interaction between
light and acoustic waves.

The mechanism of nonlinear interaction between
acoustic and electromagnetic fields described in this
paper provides abasis for using electric field to control
generation and evol ution of picaosecond acoustic pulses.
Acoustic pulse propagation can be analyzed in one-
dimensional approximation if the initial pulse has the
form of a wave or a highly elliptic Gaussian-shaped
pulse. According to a numerical analysis, the initia
pulse splits into two independent packets of pulses
propagating in opposite directions. Thus, it is shown
that an initial pulse having the form of a wave can be
described in the unidirectional approximationif thefac-
tors multiplying the right-hand sides of Egs. (31) and
(32) are of order unity.

Picosecond acoustic solitons can propagate against
the background corresponding to a stable vacuum solu-
tion if electric field of required form is applied to the
crystal. The stable background state described by
model (34)—(38) may correspond to the conditions

Uw>0, u, =u,=0, E#0, E =0,
when the plate is deformed in the direction of initial
incident-field polarization (compressed along the x
axis). In the case of a two-mode field, when g, # 0
(see (9) and (10)), there exists an additional possibility
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G
1.0

0.5

0

Fig. 2. Soliton profile G(X) given by (75) for r = 0.25,
|cq| =1, and a = 21v5: solid and dashed curves correspond

to @, = /3 and @, = 2173, respectively.

of contralling the generation of solitons. When u,, =0
and u,, = u, = 0, the role of an initial condition is
played by the detuning g,. Depending on its sign
(instead of the sign of H(x, 0)), either stable or unstable
pulse propagation regime is obtained; i.e., detuning can
be used to control acoustic wave generation.
According to the solution to an initial—-value prob-
lem for integrable system (34)—(38) with coupling via
the Stokes vector, when the incident electric field is
concentrated in a high-power pulse, the acoustic field
U, is a packet of solitons. Strictly speaking, the prob-
lem of acoustic pulse generation is equivalent to a spec-
tral problem inwhich the potential isexpressedinterms
of E, , or the Stokes vector S. However, the spectral-
parameter dependence in the spectral problem corre-
sponding to system (34)—38) is much more compli-
cated than in (40), and the corresponding analysis
requires further development of the ISM apparatus.

Inthe“initial value’ problem (40) considered inthis
paper, solitons are generated by the initial deformation
represented by G(x, 0). A criterion for soliton genera-
tion can be obtained by using a gauge transformation
analogous to that applied in [24] to transform spectral
problem (40) into the Zakharov—Shabat problem with
the potential g(X) defined in terms of G by the relation

qx) = i(J1-g°G+9,G/J/1-G). (77)

According to the Zakharov—Shabat theory, solitons can
be generated if the integral

lo = [fats)ds

is sufficiently large (approximately equal to 3) (e.g.,
see [25]). Thiscondition requiresthat either theintegral
of Gissufficiently large or G isasufficiently fast-vary-
ing monotonic function of x. Thus, acoustic solitons
can be generated by creating either an almost uniform
strain u,, # 0 in the crystal or a sufficiently intense
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Fig. 3. Transformation of an initial pulse with u,, = 2e><p[—(x2 + 0.00001y2)], Uy = Uy = 0, Ex(-5, 1) =1, and E (-5, 1) = 0into
solitons. Profiles of u,, versusx, y are shown at instants separated by equal time intervals.

acoustic pulse. Figure 2 shows that the resulting solu-
tion is ether two-hump or soliton—-antisoliton bound
state, depending on the value of C,. Note that a right-
ward-propagating soliton—antisoliton pair was obtained
numerically for a Gaussian shaped initial pulse with
maxuy(X, ¥, 0, 0) = 2 (see Fig. 3).

A different pattern will be observed if an unstable
steady state is used as an initial-boundary condition,
such as

Uy >0, Uy, = Uy =0,

E.#0, E, =0, g>1,

in which case the initial strain is perpendicular to the
initial polarization. If the initial perturbation is a pico-
second electromagnetic pulse such that S(0O, 1) # 0,
then packets of acoustic and electromagnetic pulses of
similar duration will be generated as a result of decay
of the unstable state. Detailed analysis of this process
lies outside the scope of the present study. It should
only be noted that the ensuing dynamics are described
by a nonsoliton solution that can be expressed, under a
certain choice of initial conditions, in terms of a Pain-
levé transcendental function after applying a gauge

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

transformation to system (40), (41). This solution is
analogous to that describing Raman scattering or a
phonon avalanche in a paramagnetic crystal with spin-
V2 impurities[13].

It isclear that additional mechanisms can be used to
generate acoustic and electromagnetic pulses and con-
trol their parameters in the case of finite Euler angles
(see Section 2) and anisotropic unperturbed crystal.
However, acoustic—el ectromagnetic wave interactionin
such systems are described by substantially more com-
plicated equations, which require separate analysis. It
would be interesting to extend the results of this study
to the case of a medium with a periodically modulated
density or dielectric constant.

ACKNOWLEDGMENTS

I thank A.l. Plekhanov and F.Kh. Gel’ mukhanov for
discussion of the physical aspects of the problem. This
work was supported, in part, by the Russian Foundation
for Basic Research, project no. 03-02-16297; under the
Interdisciplinary Integration for Basic Studies of the
Siberian Division of the Russian Academy of Sciences,
project no. 84; and under the Program of Basic

No.1 2004



GENERATION OF ACOUSTIC SOLITONSBY A SINGLE-MODE ELECTROMAGNETIC FIELD

Research of the Presidium of the Russian Academy of
Sciences, grant no. 8-2.

APPENDIX
By representing the kernels as

Fi(X +Y) = Dy(X)Do(y)
FaX +Y) = Da(X)Do(y)
FaX +Y) = Da(x)Do(y) ",

(78)

with
Do(X)n = exp(iA_nX),
Do(X)n+n = €XP(=IAZ X)),
D1(X)n = Co&n DoX)n

Di(X)nsn = CtEnexp(<in* x),

Do(X)n = Coh_nén &XP(IA_ X)), (79)

DoX)nsn = —CA* & Hexp(=in* 1),

Da(X)n = Coh2 A En exp(in_ X)),

DaX)nsn = —CE A2 n(A nEn) Hexp(=in* 1X),
n<N,

and using the analogous representation

Ki(X, y) = Qi%) DO(Y)T,
KaX, Y) = QxX)Do(y)

the Marchenko equations (60) and (61) can be rewritten
in matrix form as

(80)

Q:(X) = —Q(X)P1(X), (81)
QAX) = DI(X) + QuX)PaAX). (82)
where P, and P, are 2N-by-2N matrices:
_ D5 (X)nD3(X)m
P = T ) ) (83)
_ Do(X)nD3 (X)m
PZ(X)nm - |()\fm—)\_ n) ' (84)
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Their formal solution leads to expressions for K' = 1 —
iK; and K,

K'(X,X) = 1+ Tr[iP;Dg D} (I + P,P,)]
(85)

_ det(l + P,P,+iP,DgD?)
- det(l + P,P,) ’

Ko(X, X) = Tr[Dg D (I + P;P,)]

86
_ det(l + P,P, + DyIDY) (80)

det(l + P,P,)
If N=1, then

KX, x; 1) = 1+

-1

f(x, 1)
D(x, 1)

0

x (PR i0, +i@)sin(6, +iy/2
52 ef exp(i i@,)sin(0; +iy/2)] (87)

XD

2 —5>—-Im[sin(0, +iy/2) (X, 1)] D

|Cy| exp(=2Z (X — V1))
D(X, 1)

KoX, X5 1) =
(88)

< Coos(2n(x ~Vin) + g0 + Dl six, o1}

where
D(X, 1) = 1+ sinh*(y)|f(x, 1)*(22)~
—f(X, )T 'Re[exp(i@, + B +i@,/2)sin(6, +iy)],
|C17\+ 1| exp(—4¢(x — VoT))

A4
exp(i,)sin(6y) + exp(—ig,)sin(6,—iy),
0, = 2n(x = V1) —-B/2+ @,/2,

8; = 2n(x — V1) -B/2,

Y, = pR2+Ma+¢@, Y= In|)\_Y1/Z|,
A1 =n+il =i|]A_o/exp(ip),
C, = |Cl/31|eXp(i(P1),
®, = @ +2ag(A, ;) —-B-102,

g’ +49({+n)
[0°+ 42 -n)]*+ (8nQ)*
_ _ —g’+49(+n)
[g°+4(C°-n*)1°+(8n0)*

2004

fx. D) =

X 1) =

Vo =
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Abstract—We theoretically analyze the tunneling of el ectrons through a heterostructure with two barriers and
aquantum well between them in amagnetic field perpendicular to the current. We take into account the contri-
bution from electrons with various positions of the magnetic oscillator center to the current. The region of the
Z-shaped current—voltage characteristic for the heterostructure is shown to narrow as the magnetic field
strengthens. Our analysis reveals a critical magnetic field strength at which the Z-shaped current—voltage char-
acterigtic transforms into an N-shaped one. We compare our results with experimental data. © 2004 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Semiconductor systems with highly nonlinear cur-
rent—voltage characteristics have gained widespread
acceptance in electronics. They are used as high-fre-
guency oscillators, logic gates, and switches[1]. A het-
erostructure with two barriers and a quantum well
between them is an example of a system with a highly
nonlinear current—voltage characteristic. This structure
is called a resonant tunnel diode and was first studied
by Esaki and Chang [2]. One or more energy levels can
exist in the quantum well. Theregion on the left acts as
areservoir of conduction electrons, while the region on
the right acts as a collector. Contacts are adjacent to
these regions. The following peculiarity of the double
barrier is used in a resonant tunnel diode: its tunnel
transparency has a distinct resonant pattern. This
implies that the current strongly depends on the loca
tion of the energy level in the quantum well with
respect to the Fermi energy of the electronsin the emit-
ter. The current reaches its maximum at voltages at
which the energy of the electronsin the emitter is equal
to the energy of the discrete level in the quantum well.
At higher voltages, the energy of the incident electrons
is larger than the energy of the discrete level in the
guantum well, and the tunnel transparency of the bar-
rier decreases.

Chang et al. [2] studied the N-shaped current—volt-
age characteristic of aresonant tunnel diode. Ricco and
Azbel [3] suggested that the charge carriersin the quan-
tum well affect the potential of the system and the shape
of the current—voltage characteristic. Subsequently,
Goldman et al. [4] established that such a system could
have a Z-shaped current—voltage characteristic. These
authors explained the existence of a Z-shaped segment

in the current—voltage characteristic by the influence of
the electric field produced by the charge carriers accu-
mulated in the quantum well on the potential of the
structure; many authors subsequently used this model
in their studies [5-8]. However, Sollner [9] offered an
alternative explanation for this effect where the high-
frequency oscillations of the current in the externa cir-
cuit in the range of negative differential resistance are
responsible for the Z-shaped pattern. Based on a
dynamical model, Buot [10] showed that not only the
Z-shaped pattern of the current—voltage characteristic,
but also the high-frequency oscillations of the current
that were presumably observed by the authors of [9] are
the result of the accumulation of electronsin the quan-
tum well and the screening of the potential by these
electrons. Below, we do not consider these oscillations.

For the Z-shaped current—voltage characteristic, two
output currents are possible at one voltage. Below, this
possibility is called the bistability of the current—volt-
age characteristic. The possibility of several states
being realized when aload is connected should not be
meant by the bistability.

The effect of a magnetic field was analyzed to fur-
ther study the transport properties of aresonant tunnel
diode. A magnetic field paralel to the current was
found to have no effect on such parameters of the cur-
rent—voltage characteristic as the width of the bistabil-
ity region and the peak current. Thisis because alongi-
tudina magnetic field does not affect the motion of
charge carriers along the current, but changes the den-
sity of the states. Experiment and theory [11-13] show
that alongitudinal magnetic field gives rise to stepsin
the current—voltage characteristic the number of which
isrelated to the number of Landau levels.

1063-7761/04/9901-0147$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. The potential of the system in amagnetic field: z; is
the position of the center of the magnetic oscillator; E; and
E, are the quantized energy levels in the emitter; by and b,
are the left turning points for the electrons with energies E;
and E,, respectively, aistheright turning point for the elec-
tron with energy E;; AU is the shift of the bottom of the
quantum well relative to the emitter.

The tunneling through a resonant tunnel diode in a
magnetic field perpendicular to the current is a more
complex problem, because the magnetic oscillator
component of the potential is superimposed on the het-
erobarrier potential. The single-barrier tunneling in a
transverse magnetic field was investigated in [14]. The
coordinates of the center of the magnetic component of
the potential can take on various values on which the
tunneling probability strongly depends. For the current
through a heterostructure to be cal cul ated, the contribu-
tion from electrons with various positions of the mag-
netic oscillator center must be taken into account.

It was experimentally found [15] that the region of
the Z-shaped current-voltage characteristic narrows
and the peak current decreases as the transverse mag-
netic field increases in strength. Zaslavsky et al. [15]
showed the existence of a criticad magnetic field
strength above which the current—voltage characteristic
degeneratesinto an N-shaped one. However, their paper
contains no quantitative estimates and cal culations that
would confirm the disappearance of the Z-shaped pat-
tern. The tunneling through a resonant tunnel diode in
atransverse magnetic field was theoretically calculated
in[16, 17]. However, the authors of these papersdid not
investigate the influence of the charge accumulated in
the quantum well on the potential and, hence, the bista-
bility effect of the current—voltage characteristic.

In this paper, we use the formalism of the tunnel
matrix element [18] to calculate the current—voltage
characteristic of a resonant tunnel diode in transverse
electric and magnetic fields by taking into account the
screening of the potential by the charge carriers accu-
mulated in the quantum well. We show that atransverse
magnetic field causes the bistahility region in the cur-
rent—voltage characteristic to narrow, and that the
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Z-shaped characteristic degenerates into an N-shaped
one at acertain critical field strength. The narrowing of
the bistability region is accompanied by a decrease in
the peak resonant current. We derive an expression for
determining the critical magnetic field at which the
Z-shaped pattern of the current—voltage characteristic
disappears. Our results are in agreement with experi-
mental data[15].

2. THE HAMILTONIAN OF THE SYSTEM,
FORMULATION OF THE PROBLEM

Let us consider a resonant tunnel diode in a mag-
netic field perpendicular to the current. We direct the
magnetic field vector along the'y axis, while the current
flows along the z axis. We choose a calibration of the
vector potential of the magnetic field that alows the
problem to be reduced to one-dimensional:

A = (Hz0,0), (1)

where H isthe magnetic field strength.

In this case, the Hamiltonian of the system takes the
form

”+—+w@ @

2m5b %

where Uy, isthe potential of thetwo barriers, and eisthe
electron charge. We see from (2) that a magnetic com-
ponent quadratic in z coordinate is added to U, (Fig. 1).
Note that the position of the center of the parabola is
specified by the electron momentum p, and, hence, can
differ for different electrons. The potential energy for
the electronsis

2 2
(€©)
_op o o_eH
T en T e

where wy is the cyclotron frequency in the magnetic
field, and z, is the center of the magnetic oscillator.
Note that the energy level of an electronin the quan-

tum well in a transverse magnetic field shifts upward
relative to the emitter by (see Fig. 1)

2 2
Moy +d; +1,/2
(z : 1 ) ’ 4)

AU(z,) =

where d, is the width of the heterobarrier, and |, is the
width of the quantum well.

The potential difference applied to the structure
shifts the bottom of the quantum well downward while
also shifting the energy levels relative to the emitter.
Apart from the external voltage, the location of the
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electron energy level in the quantum well is affected by
the electric field produced by the electronsinit. It isthis
field that leads to the bistability of the current—voltage
characteristic. Let us determine the total shift of the
energy level of an electron, AE, in the quantum well as
afunction of the external voltage and the charge carrier
density. Assuming the electric field produced by the
charges in the quantum well to the field of a charged
plane, we derive an expression for the energy level shift
in the quantum well [4]:

eU  2me’(d;+1,/2)n eU
AE = ep—= = (d, ) -

€

Here, n is the two-dimensional electron density in the
guantum well, e isthe permittivity, and U isthe applied
voltage.

Figure 2 shows the energy band structure without
thefield of the electronsin the quantum well (solid line)
and with its influence on potential (5) (dashed line). It
followsfrom Fig. 2 that the bottom of the quantum well
shifts upward in the field produced by the electronsin
the quantum well. The higher the density of the elec-
trons in the well, the stronger the field produced by
them and the higher the shift of the well bottom relative
to the emitter, along with the location of the energy
level. It thus follows that bistability can emerge when,
depending on the electron density, the energy level in
the quantum well is below or above the bottom of the
emitter conduction band. In the former case, the current
through the structure will be weak; in the latter case, a
resonant current will be observed.

To calculate the current through the structure, we
use amodel in which the current of coherent electrons
(passing through the heterostructure without reflection)
isassumed to be weak dueto the scattering processesin
the quantum well. Experimental circumstantial evi-
dence for this fact was given by Zaslavsky et al. [13],
who studied the tunneling through an asymmetric reso-
nant tunnel heterostructure. These authors considered
the forward (the first barrier of the heterostructure is
weaker than the second barrier) and backward (the sec-
ond barrier of the heterostructure is weaker than the
first barrier) shifts under the applied potential differ-
ence; the widths of the heterostructure barriers were
equal. The coherent tunneling model (the Fabry—Perot
resonator model) must yield equal valuesfor the coher-
ent contribution to the current in both cases. However,
for the forward shift (a Z-shaped current—voltage char-
acteristic), the peak current is an order of magnitude
larger than that for the backward shift. Even if we
assume that the entire current for the backward shift is
determined by the coherent tunneling, this current may
be ignored for the forward shift.

Thus, electrons from the emitter tunnel through the
first barrier into the quantum well from which they tun-
nel into the collector after multiple reflections from the
barrier walls. Since we assume the states in the emitter

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

149

el A

Fig. 2. The potential of the system in the absence of a mag-
netic field with (solid line) and without (dashed line) elec-
tron screening.

to be constantly occupied, the electrons from the quan-
tum well cannot return to the emitter because of the
Pauli exclusion principle. The current from the emitter
into the quantum well is determined by the potential of
the system (the location of the energy level in the quan-
tum well relative to the emitter) and, hence, depends on
the applied voltage and the charge carrier density inthe
guantum well. In turn, the current from the quantum
well into the collector does not depend on the voltage
and is proportional to the charge carrier density in the
guantum well. To obtain the current—voltage charac-
teristic, we must seek for the intersection of the depen-
dences of the currentsinto and out of the quantum well
on the charge carrier density in the well at fixed
voltages.

3. THE TUNNEL MATRIX ELEMENT

To calculate the current from the emitter into the
guantum well, we use the formalism of the tunnel
matrix element suggested by Bardeen [18]. This issue
is studied in more detail in [19, 20]. Bardeen applied
the following approach to this problem. Rather than
introducing the states that would be exact solutions of
some approximate Hamiltonian, he introduced approx-
imate solutions of the exact Hamiltonian. Following
Bardeen, we choose these states of the charge carriers
in the subbarrier region:

W, (2) = b,e™, z<d, (6)

We(e) = be ™, z20, )
where |, is the wave function of the electron to the
right of the barrier, which decreases at z< 0 rather than
satisfying the Schradinger equation in thisrange. Anal-
ogoudly, W, the wave function of the electron in the
emitter, continues to decrease at z= d,. In this case,
is the exact solution of the problem with the Hamilto-
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nian H for z= 0, and Y, is the exact solution at z < d.
The tunnel matrix element is[18, 19]

Twe = J.lIJ\ifv(H - Ee)wedz- (8)

Using functions (6), we obtain
7%k
Twe = —rﬁ—zb\fv be- (9)

Using the boundary conditions for the wave func-
tion and its derivative at the boundary of the barrier at
z=d;, we can derive the following expression for the
coefficient b,

2ik -
bw — .3 le K2d1’
Ky +iksnl,

where k; = A71,/2mE,, .

To calculate the coefficient b,, we use the quasi-
classical wave functions in the emitter and the subbar-

(10)

rier region
P = lzmeOS%J'de+ IE <a, (12)
Yo = 1 Zmpwexp[-)——II pIdZ] z>a, (12)

where aisthe turning point (Fig. 1) and w = 2rtvisthe
electron—barrier collision frequency in the emitter.
Thus, b, can be written as

1 2mw

o (23

e_

pEr jlpldzz

To smplify the latter expression, we introduce |, =
|z, — aJ. Given that

lpl = /2m(U—E) = muw,/(z—2)*~IZ,

and integrating in (13), we obtain
1 2moo ma
be = / e (PANC
il
—leIn(jzo| + 25— 12) + IélnIE]Er

Substituting (14) and (10) into (9) yields the fina

(14)
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expression for the tunnel matrix element

(15

—leIn(lz + Jz5—-12) + eIl ] 5

The electrons in the emitter for which the relation
lb— z)| > |z,| holds (see the level E; in Fig. 1) do not
reach the barrier; the quasi-classical frequency of their
collisions with the walls of the potential well is

vV = /2T (16)
For the remaining electronsin the emitter (seethe level

E, in Fig. 1), the electron-barrier collision frequency
can be determined by using the quasi-classical relations

01
IT

v(z) = %A/Zm(E—U)

(17)

= We (0, 20)*— (- 2,)°,

oMb -2)" ) mu(z-2)°
2 ’ 2 '
Here, T is the oscillation period of the electron in the
emitter, and E is one of the dimensional quantization
energy levels in the emitter, which can be found by
using the quasi-classical approximation.
Integrating (17) yields

m, 2 .
T =2+ Zacsnk
wc (*)c

[b, — 24+

Consequently, the electron—barrier collision frequency is

(18)

0

(19)

<
I
=l

n+ 2arcsind

tb, — 24

For b, — z, = 7z,, the barrier no longer affects the quanti-
zation conditionsand v takes asimpler form that agrees
with (16):

vV = /2T (20)
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For b = z,, the collision frequency doubles:

vV = W/ (21)

4. CALCULATING THE CURRENT
FROM THE EMITTER
INTO THE QUANTUM WELL

Knowing the tunnel matrix element, we can now
calculate the current through the heterostructure.
According to the golden rule of quantum mechanics,
the probability of the transition from state a to state b
per unit time can be expressed in terms of the matrix
element as

21
Ppa = 7|Tba|2Ab(Eb)- (22)

Here, T,, isthe tunnel matrix element of the transition
from state a to state b, and A, describes the density of
the states in b. Taking into account the number of elec-
trons in the emitter and the Pauli exclusion principle,
we can express the density of the current from the emit-
ter into the quantum well as[7]

2e

‘]ew = LXL

. y (23
xS STud "AlE) F(B)(1 - f(E)).

Here, the summation is over the electron quantum
states in the emitter, f(E) is the Fermi—Dirac distribu-
tion function for the charge carriersin the emitter, f,, is
the Fermi—Dirac distribution function in the quantum
well, T, isthe tunnel matrix element, L, and L, are the
cross-sectiona dimensions of the structure, and A, is
described by the Lorentz function:

1 r
2TYE-E,)*+T%4

Here, I =T, + I, + [, characterizes the smearing of the
dimensional quantization energy level in the quantum
well; I, and I, describe the reciprocals of the tunneling
times from the quantum well through the first and sec-
ond barriers, respectively; I characterizes the recipro-
cal of the scattering timein the quantumwell; and E,, is
the particle energy in the quantum well measured from
its bottom. The reciprocals of the tunneling times from
the well into the emitter and the collector can be esti-
mated by using the formula

r, = alt = Av,D. (25
Here, v,,, the classical electron—barrier collision fre-
guency, is expressed in terms of the energy of the
dimensional quantization level inthewell and thewidth
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of the quantum well, and D is the barrier penetration
coefficient.

Given the screening of the potential by the elec-
trons (5) accumulated in the quantum well and the
influence of the magnetic field (4), A, takesthe form

1 2me’(d, +1,/2)n
A | BT o
eU f. et
+S-aU@) +_4_} .

To calculate the current from the emitter into the
guantum well, we must add up the contributions from
al of the electron oscillator centers. The problem is
simplified by the fact that, the farther the position of the
oscillator center from the barrier, the smaller its contri-
bution to the current, because distant oscillators need to
overcome not only the potential barrier of the hetero-
structure, but also the region under the parabolic poten-
tial to fall into the quantum well (see E, in Fig. 1). For
this reason, their tunneling probability decreases
sharply. Let us calculate the energy levels for each
oscillator and add up their contributions to the current.

The quasi-classical approximation, which is known
to provide a good accuracy for the parabolic potential,
is used to calculate the energy levels of the oscillators
in the emitter. To determine the energy of the electrons
with aturning point at the heteroboundary (|b—z,| > |7,
the energy level E, inFig. 1), we usethe quasi-classical
guantization condition

0
1
nﬁ%ul +12% = IdzpZ = mec|b2—zo|
b,

X{nzo—nb2+2arcsingb %
,—

2

Z,
—27y 12|
\ (bz—zo)z}

P, = 2M(E,— U) = M,/ (b, — 2)> — (2—2)°. (28)

Solving Eq. (27) for b, at various values of n;, we can
find the energy levels

D|Zo —by|

(27)

where

ma; (b, —Z,)°

Enl = 2

(29)
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Fig. 3. Currents from the emitter into the quantum well
(solid line) and from the well into the collector (dashed line)
versus electron density in the quantum well for voltages
U, < U; < Us. The intersections of the curves specify the

points of the current—voltage characteristic.

When the condition |b — z)| > |z)| is satisfied for the
electrons in the emitter (the energy level E; in Fig. 1),
the barrier does not affect their spectrum:

E, = Aw,(n +1/2). (30)
We can now calculate the density of the current from

the emitter into the quantum well by adding up the con-
tributions from all oscillators:

E, <E;

nl(zo)

_ 4e Pm(E. —E_IT. |21
Jew = Lxﬁz z 2m(E; Enl(zo))lTwel 7t

Zo, My

2
9 r[%z_ EW_Zne (d; +1,/2)n
€

(31)

eu . et
+7—AU(20)D "‘2}

The current from the quantum well into the collec-
toris

(32)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

SEROV, ZEGRYA

5. CONSTRUCTING A STATIONARY
CURRENT-VOLTAGE CHARACTERISTIC

As has been noted above, the current—voltage char-
acteristic is stationary when the current from the emit-
ter into the quantum well is equal to the current from
the well into the collector, Jg, = J,,c. Figure 3 presents
the Jg,(n) and J,(n) curves for a fixed voltage in the
absence of a magnetic field. Figure 3a shows such a
potential difference across the structure that the energy
level in the quantum well at n = 0 is below the bottom
of the emitter conduction band. We see from the figure
that the current from the emitter into the quantum well
increases as the density increases, i.e., as the energy
level in the quantum well shiftsupward. Thisis because
the energy level in the well rises above the bottom of
the emitter conduction band. Consequently, several
intersections of the J,, and J,, curves are possible: one
intersection with alow electron density in the quantum
well (see Fig. 3c), three intersections (one with a low
density and two with a high density) (see Fig. 34), and
one intersection with high densities (see Fig. 3b).

The case of three intersections must yield three val-
uesin the current—voltage characteristic, but the middle
value of the current is unstable against electron density
fluctuations in the quantum well. The reason is as fol-
lows. at the middle point of intersection, Jg,(n) is
sharper than J,(n), and the current from the emitter
into the well increases faster than does the current from
the well into the collector for a small positive density
variation, which leads to the accumulation of electrons
in it until the currents become equal. Thus, a positive
electron density fluctuation in the quantum well will
cause a switch to the third point of intersection of the
Jaw(N) and J,(N) curves. In contrast, for the first and
third points of intersection, the electron density fluctu-
ation inthe quantum well will relax, because J,.(n) var-
ies faster than J,,(n); thus, these points of intersection
are stable. A Z-shaped current—voltage characteristic is
observed for the caseillustrated by Fig. 3a.

Solving the equation Jg,(n) = J,,.(n) for the electron
density in the quantum well for various voltages yields
the current—voltage characteristic.

For our calculations, we use parameters of the het-
erostructure for which a Z-shaped current—voltage
characteristic can be observed [15]: a GaAs quantum
well 56 A in width enclosed between two Al,Ga, _,As
barriers85 A inwidthwith x=0.4and 0.5, E; = 40 meV,
and E,, = 93 meV.

6. ANALY SIS OF THE CURRENT-VOLTAGE
CHARACTERISTIC

The computed current—voltage characteristics are
shown in Fig. 4. We see that the peak current decreases
with increasing magnetic field strength, which is
accompanied by a narrowing of the bistability region.
There is a critical magnetic field strength at which the
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Fig. 4. Computed current—voltage characteristics in amagnetic field of strength H transverse to the current.

Z-shaped current—voltage characteristic transformsinto
an N-shaped one.

The current—voltage characteristic exhibits a Z-sha-
ped pattern in the range of voltagesin which the energy
level in the quantum well is near the bottom of the emit-
ter conduction band. If a sufficient number of electrons
is accumulated in the quantum well at such voltages,
then its bottom shifts upward—a resonant current is
observed; if the number of electrons in the quantum
well issmall, thenthe energy level init isbelow the bot-
tom of the conduction band—the current is weak.

For the bistability to exist, the currents from the
emitter into the quantum well and from thewell into the
collector must be equal at two different electron densi-
ties. This requires that J,,(n) be sharp enough in the
range of densities after thefirst intersection with J,.(n).
Thewidth of the region of the Z-shaped pattern is char-
acterized by the peak Jg,(n) (see Fig. 6); the larger the
peak J,,(n), the wider the region of the Z-shaped pat-
tern in the current—voltage characteristic. If, however,
the slope and peak value of the current from the emitter
into the quantum well decrease, then the bistability
region narrows.
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The peak current decreases, because the location of
the energy level in the quantum well shifts by different
values (4) for different oscillators. Therefore, not al of
the oscillators contribute to the current at the same volt-
age; the dependence of J,, on the charge carrier density
in the quantum well is smeared, which is accompanied
by adecrease in the peak current. In Fig. 5, the currents
from the emitter into the quantum well and from the
well into the collector are plotted against electron den-
sity in the presence and absence of a magnetic field. It
follows from Fig. 5 that, in the presence of a strong
magnetic field, the J,,(n) curveis smoother and cannot
have three points of intersection with the J,.(n) curve.

7. DEPENDENCE OF THE WIDTH
OF THE Z-SHAPED PATTERN
ON TRANSVERSE MAGNETIC FIELD
STRENGTH

Figure 5 shows that a magnetic field causes the
dependence of the current from the emitter into the
guantum well on the electron density inthewell, J,,(n),
to be smeared. At a critical magnetic field, this smear-
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Fig. 5. The currents from the emitter into the quantum well
in the absence of amagnetic field (solid line) and in atrans-
verse magnetic field (dashed ling); the current from the
quantum well into the collector (straight line).

Jmax

Fig. 6. Current versus density at various voltages: Jyc1,
Jwe2: dwes are the currents from the quantum well into the
collector at various voltages, 01, O,, O3 ate the points of
intersection of the straight lines J,,,c with the x axis that cor-

respond to a zero electron density in the quantum well;
Jaw iSthe current from the emitter into the quantum well in

the absence of a magnetic field; 1 is the current from the
emitter into the quantum well in atransverse magnetic field
weaker than the critical one; 2 isthe current from the emitter
into the quantum well in a transverse magnetic field stron-
ger than the critical one.

ing is so significant that J,,(n) and J,,.(n) cannot have
two intersections, and, hence, the current—voltage char-
acteristic cannot have bistahility.

To analyze the smearing of the J,,(n) curve, let us
examine Fig. 6 in which the current through the hetero-
structure is plotted against the electron density in the
guantum well. It follows from (5) that a change in the
potentia difference applied to the structure causes the
coordinate origin for Jg,(n) to shift. Thus, a zero elec-
tron density in the quantum well for the voltage U;
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applied to the structure corresponds to the point of
intersection of the x axis of the straight line J,,(n) (0)
(wherei =1, 2, 3). The higher the applied voltage, the
larger the leftward shift of the coordinate origin; i.e.,
the voltage U, corresponding to 0, is higher than the
voltage U, corresponding to 0, (see Fig. 6). In other
words, the coordinate originin Fig. 6 isdifferent for the
Juwerr Jwez, @Nd J,c3 CUNVES, because the energy leve in
the quantum well sinks in energy under the voltage
applied to the heterostructure, and a large number of
electrons must be accumulated in the quantum well to
return this level to its original location. It follows from
Fig. 6 that three points of intersection of the J,,(n) and
J.c(n) curves are possiblein the range between the volt-
ages corresponding to the coordinate origins 0, and 0;.

The shift of the coordinate origin along the x axis,
|0,0,|, for the change in voltage AU = U, — U, is given
by the relation (see (5))

2me’(d; +14/2)[0,0,] €Uy —Uy| _
€ 2

0. (33

Denote the point on the x axis that corresponds to
the peak of the Jg,(n) curve by M. The width of the
bistability region in the current—voltage characteristic
is proportional to the length of the segment |0;0,]:

|050,] = |03M| —|0,M]. (39

The length of the segment |0;M| can be determined
from relation (32)

|0sM| = Adler,. (35

To determine the length of the segment [0,M|, i.e.,
the smearing of the J,,(n) curve, we must determinethe
location of the energy level in the quantum well relative
to the emitter at which the current from the emitter into
the well reaches its maximum (corresponds to point M

in Fig. 6) and the location at which the current
decreases to zero (corresponds to point O, in Fig. 6).

We estimate the shift of the energy level in the quan-
tum well relative to the emitter at which the current
through the structure decreases appreciably from the
condition that the matrix element as a function of the
coordinate of the magnetic oscillator center z, be small:

BITue(Zer)|” = [Tuwe(0)]”, (36)
where B varies within the range 10-100.
Hence, the expression for z,, (15) is
Z, = J2hInB/mo,. (37)

The shift of the energy level in the quantum well rela-
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tive to the emitter for the oscillator with z, =z is

2
ma L1
A1=EW+T°%ﬁ+d1+E“E. (39)

The current reaches its maximum when the energy
level in the quantum well coincides with the lower
energy level of the oscillator whose center lies at the
left boundary of the first heterobarrier (z, = 0). In this
case, the shift of the energy level in the quantum well
relative to the emitter is given by

2
ma, W=
By = EW_FTCE]'H%H'

(39)
Thus (see (5)),
e(A—A
|o,M| = ——————————g 1=8) (40)
2me”(d, +1,/2)
Substituting the latter expression into (34) yields
R max
0,04 = r o2 .
e  2me(d,+1,/2)
(41)

2
mew,
5 (22501 + 2o+ Z0).

X

The width of the bistability region in the current—volt-
age characteristic takes the form

AU < 4+ 1/2) e

€ I,
e (42)
2
- e C(zzcrdl + Zcrlw + Zcr)
Taking into account (37), we obtain
AU = am(dy +1,/2) 1 d e
€ I,
43)

eH? [2chInB 2chinB]
_= LR NBY 4+ + ,
m(_:2 eH %dl lw eH O

The critical magnetic field strength can be calculated
from (43). Asfollows from Fig. 6, point 0, shifts left-
ward as the magnetic field strength increases; thus, the
region of the Z-shaped pattern in the current—voltage
characteristic narrows. At the critical magnetic field
strength at which |0;M| = |0;M|, the Z-shaped pattern
disappears; i.e., the region of the Z-shaped pattern has
a zero width. For example, we see from Fig. 6 that the
J.(N) curve cannot intersect curve 2 at three points.
The width of the bistability regionis plotted against the
magnetic field strength for B=30in Fig. 7. To simplify
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Fig. 7. Width of the bistability region versus magnetic field
strength: the solid and dashed lines represent the numerical
and analytical calculations, respectively.

our caculation, we disregarded the influence of the
magnetic field on the peak current J,,,.

It followsfrom Eq. (43) and Fig. 7 that thereisacrit-
ica magnetic field strength at which the width of the
region of the Z-shaped current—voltage characteristic,
AU, becomes zero. As the transverse magnetic field
strength increases further, the current—voltage charac-
teristic transforms into an N-shaped one.

Our results are in agreement with the experimental
data obtained by Zaslavsky et al. [15], who investigated
a heterostructure with a GaAs quantum well 56 A in
width between two Al,Ga, _,As barriers 85 A in width
with x = 0.4 and 0.5. The authors observed a Z-shaped
current—voltage characteristic in the case of a positive
potential difference. According to experimental data,
the bistability region disappears when the magnetic
field strength is equal to 5 T. This result is consistent
with our calculation.

8. CONCLUSIONS

Using the formalism of the tunnel matrix element,
we calculated the current—voltage characteristic of a
resonant tunnel diode in a magnetic field perpendicular
to the current. We took into account the contribution
from electrons with various positions of the magnetic
oscillator center to the current. Our analysis showsthat,
in contrast to alongitudinal magnetic field, atransverse
magnetic field strongly affects the shape of the current—
voltage characterigtic. It follows from our data that the
region of the Z-shaped current—voltage characteristic
narrows as the magnetic field strength increases. There
is a critical magnetic field strength at which the bista-
bility region disappears and the current—voltage charac-
teristic transforms into an N-shaped one. In addition,
the peak current slightly decreases asthe magnetic field
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strengthens. Thereason isthat for electronswith differ-
ent positions of the magnetic oscillator center, the
energy level in the quantum well shiftsby different val-
ues relative to the emitter. As a result, the current
through the heterostructure decreases, the potential
screening effect is smoothed out, and, hence, the region
of the Z-shaped current—voltage characteristic narrows.
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Abstract—The mechanisms leading to instability of the non-Fermi-liquid state of a L uttinger liquid with two-
level impurities are proposed. Since exchange scattering in 1D systems is two-channel scattering in a certain
range of parameters, several types of non-Fermi-liquid excitations with different quantum numbers exist in the
vicinity of the Fermi level. These excitations include, first, charge density fluctuations in the Luttinger liquid
and, second, many-particle excitations due to two-channel exchange interaction, which are associated with
band-type as well asimpurity fermion states. It is shown that mutual scattering of many-particle excitations of
various types leads to the emergence of an additional Fermi-liquid singularity in the vicinity of the Fermi level.
The conditions under which the Fermi-liquid state with a new energy scale (which is much smaller than the
Kondo temperature) is the ground state of the system are formulated. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The interest in low-dimensional, in particular, one-
dimensional (1D), systems has been revived in recent
years in connection with the obtaining of degenerate
guantum gases in quasi-one-dimensional magnetic and
optical trapsaswell asin 1D optical gratings. The pre-
viouspeak ininterest in 1D systems about ten years ago
(seereferencescited in [1, 2] and in thiswork) was due
to the development of so-called quantum wires, viz.,
1D electronic systemsin inversion layers of GaAs[3].
Degenerate atomic Fermi gases have already been
obtained in traps [4—7]. It should be noted that Fermi
gases with practically any number of particles and any
intensity of the interaction between them can be pro-
duced intraps. Thiscan be done by using the Feschbach
resonance|[7]. Thus, we can expect that various remark-
able properties predicted theoretically for 1D systems
both in the framework of the low-energy Luttinger
model [8], as well as using exactly solvable models
(see, for example, [9]), can be experimentally observed
in such systems with aquasi-one-dimensiona geometry.

The properties of 1D metalsin afairly widerange of
parameters can be described using the L uttinger model
(see, for example, recent reviews [1, 2] and the litera-
ture cited therein). Accordingly, such materias are
referred to as L uttinger liquids (in contrast to the Fermi
liquid in the 3D case). In such systems, even a weak
interaction leads to a qualitative rearrangement of the
excitation spectrum at low energies. Namely, 1D metals
have no well-defined one-particle excitations. The only
stable excitations in the vicinity of the Fermi level are
collective charge and spin density fluctuations (acoustic
modes). These excitations are dynamicaly indepen-
dent, which corresponds to complete separation of the

spin and charge degrees of freedom. The interactions
also lead to a power decay of all correlation functions
over large distances and times. The response to local
perturbations is an important problem for real systems.
Inthiscase, the behavior of 1D systemsalso differsqual-
itatively from the situation in 3D metals. It wasshownin
the famous publication by Kane and Fisher [10] that the
potential scattering of right fermions by left ones (so-
called backward scattering) in a Luttinger liquid with a
repulsive interaction leads to complete reflection of
excitations from the potential at low energies so that
only aweak tunneling through the barrier takes place.
The X-ray responsein a L uttinger liquid has been stud-
ied extensively [11-14] (including the situation with
backward scattering [14]). The exchange interaction
with a spin impurity is one of the central problems for
strongly correlated systems[15]. It should be noted that
if the number of electron channels participating in the
exchange interaction exceeds double the impurity spin,
the system has a non-Fermi-liquid fixed point, exhibit-
ing an abnormal behavior of heat capacity and suscep-
tibility [16, 17]. The Kondo effect in Luttinger liquids
was studied in [18-20]. It was shown that, asin the 3D
case, the problem could be renormalized to the strong-
coupling limit. However, two distinguishing features
are observed. First, the Kondo effect in a Luttinger lig-
uid exists both for the antiferromagnetic and ferromag-
netic interactions. Second, the system has three fixed
points, two of which correspond to the one-channel
Kondo behavior and one exhibits the two-channéd (i.e.,
non-Fermi-liquid) behavior (we consider the impurity
spin 1/2). The conditions for a stable two-channel
Kondo behavior relative to the exchange backward
scattering were obtained in [20].
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It isimportant for subsequent analysisto emphasize
that, in the absence of interaction between fermions, the
non-Fermi-liquid (NFL) state associated with a multi-
channel (two-channel) exchange interaction is unstable
to any mechanism removing the degeneracy of the
channel participating in exchange scattering. In partic-
ular, the instability of the NFL state in the two-channel
Kondo model upon the introduction of anisotropy of
exchange constants in different channels was consid-
ered in [21]. The instability of the same state to poten-
tial scattering of many-particle excitations with differ-
ent quantum numbers in quantum-dimensional struc-
tures and in metals containing impurities of d- or f-
elements was demonstrated in [22, 23].

In this study, the mechanisms leading to instability
of the NFL state of a Luttinger liquid with two-level
(pseudospin) impurities are proposed. Since exchange
scattering in 1D systemsis of the two-channel typeina
certain range of parameters, several types of NFL exci-
tations exist in the vicinity of the Fermi level: density
fluctuations of the Luttinger liquid in the charge chan-
nel and many-particle excitations generated by the two-
channel exchange interaction in the pseudospin chan-
nel. It will be shown below that allowance for resonant
scattering of 1D fermions (along with their potential
backward scattering) from many-particle excitations
generated by the two-channel exchange interaction
leadsin our case to the emergence of additional narrow
Fermi-liquid resonances in the vicinity of the Fermi
level (even for very weak backward scattering) and to
the instability of the NFL state in this sense. A transi-
tionfromthe NFL to the FL stateisaccompanied by the
emergence of anew small energy scale and, as a conse-
guence, by an anomalous increase in the density of
states at low energies.

2. HAMILTONIAN
AND SCATTERING PROBLEM

1. Let us consider the situation when a 1D lattice
with a number of fermion per site smaller than unity
(metallic state) contains localized fermions with two
internal degrees of freedom. The energy of alocalized
state is much lower than the Fermi level. Localized fer-
mions do not interact with one another. We assume,
however, that the wave functions of localized and band
fermions may overlap; for thisreason, alocalized state
interacts with band fermions. Since a two-level atom
can be described by a pseudospin variable with two val-
ues of the zcomponent, wewill refer to thissituation as
a pseudospin impurity in a metallic 1D lattice. We
assume that the repulsion of fermions at an impurity
Site is so strong that only one fermion can occupy this
site. We will consider below a 1D system with periodic
boundary conditions. It should be emphasized that, in
the case of an atomic Fermi gas, the pseudospin degrees
of freedom in the optical lattice correspond to two
intrinsic atomic levels of the hyperfine structure.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

MANAKOVA

The Hamilton of such asystem will bewritteninthe
form

H = %+HscEH§£+HOd+Hh+Hint+Hsc;

Hog = ZEdndc; (1)
o

Hh = z (V(dea;acdo + H.C.),
koo
where H., is the Hamiltonian of 1D fermions, which
coincides with the Hamiltonian in the Luttinger model
in the continuous limit; Hyy is the Hamiltonian of a
localized level with energy E4; ng, = d; d,; Hy, is the
hybridization between band and localized fermions;
operators ay,, , 8., O = R, L = +, describe the right

and left 1D fermions: Wee(x) = (VL)Y , € Ao,

L being the chain length (it should be recalled here that
therelations N —» o0 and L —» oo hold in the contin-
uous limit); and (2r\N/L) = kg, N being the number of
fermions and kg the Fermi momentum. The term Hg.
describesthe potential scattering of band fermionswith
different quantum numbers (in other words, backward
scattering); namely,

He= 5 5 (TR oo tHE). (D
kk aza,o

The interaction between band fermions and a localized
state is generated, apart from hybridization, by the
repulsion between fermions at adeep level. In H;; from
Eq. (1), thisinteraction correspond to the term

1
EU Z ndo-nd_o-.

2. Excitations in a system with Hamiltonian H =
7 + Hg, are completely determined by the Green func-

tion of complex argument z, G4(2) = [|(z — A )dC)
which can be evaluated using the equations of motion.

The system of equations of motion for G4(2) hasthe
form

492G~ Y ViGw(pid) = 1,

pa=L,R

G.{(p; 2)Ga(P; 2)

= TosGur(P: D) =VpeGa(d =0, (3)
.

Hint =

Gr(p; 2)Gr(P; 2)

= TosGa(P' 2) = VeGa(2) = 0.
.
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Here, 45 (2) = @z — (Hog + Hin) ™0 Go(p; 2) =

[Bpal(z— H)ageand Guy(k; 2) = [i|(z— H) ™ ay, Car
the Green functionstaking into account all interactions,
but disregarding scattering. In expressions (3) and
below, the spin indices are temporarily omitted.

44(2)

&0 TS %

522 (2 + 2R (22 (2] +Z (D)[2](2) + ZIT(z)ZEV(zn

159
In the case of separable matrix elements and/or those
exhibiting a weak energy dependence and describing

potential scattering [in particular, for ToS = ToT:*
(v #V"], G4(2) can be evaluated exactly.
The solution for G4(2) hasthe form

G4'(2) = 9" 1<z>—zsz<z>,

2s(2) =

1-3 (22§ (2)

(4)

2(2) = Y We(P)Galp; 2).

Here, 94(2) isthe Green function of impurity degrees of
freedom disregarding scattering processes associated
with Hamiltonian Hg.. However, by definition, this
function includes all interactions between band and
localized fermions, which are generated by the repul-
sion H;, of fermions at an impurity site. The self-

energy functions ZZD (2) arewritten in the form of spec-
tral expansions of many-particle Green functions for

1D fermions; W2° are the products of matrix elements,
which are defined by the superscripts of the self-energy
functions; and p,(€) isthe density of states correspond-
ing to the many-particle excitation spectrum taking into
account the interactions. This spectrum is determined
by the Green function G,(p; 2). The complete Green
function in relations (4) has singularities of two types.
Functions 4(2) contains singularities generated by the
interaction between band fermions and a localized
state. The denominators in relations (4) appear due to
scattering of various types of many-particle excitations
from one another. It follows from the expression for
>(2) that the system experiences, first, potential scat-
tering of right fermions from left ones (the term con-
taining =" (2Zg (2), but taking into account the
modification of the density of states due to the
exchange interaction and, second, the resonance scat-
tering of 1D fermions from many-particle excitations,
which are described by the Green function 94(2). It will
be shown below that in both cases scattering may lead
to the emergence of additional singularities (namely,
simple poles) inthe Green functionin thevicinity of the
Fermi level. The poles correspond to Fermi-liquid exci-
tations. The position of polesz = €, + iy, is determined
from the solution of the equation

1_Zsc(zr)cgd(zr) = 0. (5)
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In turn, the self-energy functions can be written in
the form of spectral expansions of many-particle Green
functionsfor 1D fermions,

W5 (p)
ZZ €4(p)

= W(p,) jds‘;“T(? = WE2(pe)Za(2),

(6)

where W2 are the matrix elements defined in rela-
tions (4), €,4(p) is the low-energy excitation spectrum,
and p,(€) is the density of states corresponding to this
spectrum.

Thus, to solve the scattering problem, we must
know the many-particle density of states for 1D fermi-
onsin the energy range of importance to us (disregard-
ing scattering) as well as the Green function %4(2) for
the resonance level.

If U isthe maximal parameter of the problem, it is
natural to solve first the problem with Hamiltonian ¥
and to determine 94(2) with the help of the methods
used in the two-channel Kondo problem; the scattering
problem can then be solved by substituting the expres-
sions obtainedinto relations (4). In other words, wefirst
determine low-energy many-particle excitations,
assuming that the interactions of fermions with one
another and with the impurity are strong, and then take
into account the scattering of fermions from one
another.

3. TWO-CHANNEL EXCHANGE INTERACTION

1. In the case of noninteracting band fermions, the
interaction between these particles and a localized fer-
mion with a spin 1/2 for large values of U can be
derived using the method of projection operators or the
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Schrieffer—Wolf transformation to Hamiltonian 7 with
Hy — Hy (See, for example, [15]).

The exchange interaction for a 1D system with
Hamiltonian 7€ can also be obtained analogously in the
limit of large values of U ensuring asinglefilling of the
localized state. Namely, a transformation analogous to
the Schrieffer—Wolf transformation in the lowest order
in Vg, gives the Hamiltonian

Hat = Hy + Hoot He! + Hoo + H,

=Y S Y IOl (0S, (D)

a i=xYy,z0#%0

HE =5 5 Y JaWio(0t obaa(0)S.
a#a'i=xYy,z0#0
Here, J ~ |Vax. F/Eq are the exchange interaction con-

stants, Sisthe impurity pseudospin, and t' are the Pauli

matrices. Hamiltonian H corresponds to the back-
ward exchange scattering emerging in the presence of
anisotropy of scattering channels. Term Hg. describes

the total potential scattering of fermions taking into
account the additional contribution associated with the
exchange interaction. Henceforth, we will omit the
prime on Hg.. Hamiltonian H' includes the terms that
areinsignificant for low energies.

Theinteraction in the charge channel of aL uttinger
liquid is characterized by parameter K, (see expres-
sion (10) below). It was proved in [20] that, in the case
of repulsive interactions (K. < 1), the small anisotropy
(Jg) of the exchange scattering channels in the vicinity
of the fixed point of strong interaction in J is relevant
only for 1/2 < K. < 1. In this case, the results obtained
in[19] arevalid (it wasfound in[19] that the two-chan-
nel Kondo model is absolutely unstable). However, for
K. < 1/2, the two-channel Kondo behavior is stable to
the exchange anisotropy of the channels. In this case,
however, one more mechanism violating the channel
degeneracy (weak resonant and potential scattering of
many-particle excitations) in the two-channel exchange
interaction was discarded. We will consider this mech-
anism here.

Using the fact that the exchange anisotropy of the
channelsisirrelevant for K. < 1/2, we consider the sit-

uation when the impurity pseudospin has a symmetric
coupling with adjoining lattice sites so that Jg = 0. It
will be shown below that Hamiltonian (7) in this case
can be reduced to the model of the resonance level (this
model was constructed in [24] for the two-channel
exchange interaction).

In determining the mechanism of formation of an
NFL state in the case of interaction with a pseudospin
impurity, the splitting A of the two-level impurity plays
asignificant role. Splitting may be due to the following
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factors: (i) local distortionsin the region of animpurity
site; (ii) transformation to the exchange Hamiltonian,
and (iii) hyperfine intraatomic interactions. In the pres-
ence of splitting, the Hamiltonian acquires the term

= AS.

In order to represent the two-channel exchange
interaction in the form of the model of a resonance
level, we introduce the boson representation of fermion
fields W,4(0). In the Luttinger model, these fields are
defined as (see, for example, [2] aswell as[9])

= Moo gt
ano(X) - /\/Z_T[aexp[ IA/E[q)ao(X)]’

Do (X) (8)

= —}E[a(cpc(x) +0Qy(X)) + (8,(x) + 3B,(X))],

wheren,, arethe so-caled Klein factors, a = +. Fields
@ and I, = 0,0, are canonically conjugate: [@,(X),

@:(x)] =0, [My(X), My(X)] = 0, and [@,(x), My(X)] =
19, ,O(X — X). Boson fields @, s are determlned by
change and spin density fluctuations, respectively: p. =

3,0/ /TT, ps = 0,44 +/TT. In turn, the total fermion den-
sity can be written with the help of the boson fields in

the form p,, = (1//810)(0,9. — all, + o(d,q — arly).
The Hamiltonian of a purely Luttinger liquid has the
form

He = H + Hq,

H, = Idx%%(vl'lvz+kl—(6x(pv)ﬂ, v=ocs,

H/ +94\D u )
nd Dl

/\/ZT[VF +29, + 0,
K, =

(9)

2T[VF + 2g4v _gv’

where g, = g, —20,, 0s = 01, 9ac = U4, 9as = 0, Qay, 9, A€
interactions in a Luttinger liquid. Here, we consider
only the casewhen interactionsin a L uttinger liquid are
independent of pseudospins. It is well known [1] that
g, isidentically equal to zero in this case. Accordingly,
K¢ = Ll irrespective of the presence of splitting A. In the
charge channel, the case g; = 0 corresponds to the
parameters

i
- (10)
K2 = TVe+0,—0p
TWe+0,+t 0,
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Hamiltonians H, lead to the canonical (for bosons)
form
' u, 2 ,
Hy = S [ax(Ny + (0,9))

with the help of the following redefinition of boson
fields: @, = /K, @, and N, = (1/,/K, )M, . Inthis case,
phases @, in relation (8) are transformed to

P
1 . Do, 6.0 (11
= —| 2(Q/K+ 0@ /Kg) + — +0—1]|.
st on )+ @}

Passing in relations (7) for fields ¢, and 6,, and tak-
ing into account relation (11), we obtain

S IWio(0)To, o Wi (0)S

g#0'
= I T a0y 4150
= 2T[aS [exp[l Bps./4nKs—J%GE}
al AT (]
+exp[—|%pSA/4nKS+ /\/%seﬂ:uxzol
2 L}
JZSZZ(pm _pul) = JZSZ 'T[_Ks(axeS)XZO.

Thus, in the general case, the exchange interaction in a
Luttinger liquid has the form

Hoe = 221" cos( /4TI 41(0))

x exp(—i /41K 05(0)) + H.c.]

| 2 '
+JZSZ T[_Ks(axes)xzo-}-ASZ'

It should be emphasized that the expression for the
exchange interaction contains only pseudospin fields.

To reduce expression (12) to the Hamiltonian in the
model of a resonant level, we carry out the following
transformations.

(1) Weintroduce fields @  instead of ¢, 6;:

(12)

. D+ Dy , /K
= ——, 0. = (D, +D,) [—=.
(18 K, s = (P R) am

(2) For convenience, wereplacetheright field g by
the left field @,

PL(X) = —Pg(-X).
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(3) We introduce the symmetric and antisymmetric
fields @g 4,

:(DS+(DA P’ :CDS_CDA
2 2

Asareault of thesetransformations, Hamiltonian (12)
assumes the form

b,

Jo

= —
Hex=Hex - oma

2(05+ @) | 2(D5-0p)

x[S' (e ) +H.c] (13)

Jz
+ Z.[Sz(axq)s)x =0t AS'

Field ®dg from the transverse part of the interaction is

eliminated by rotation about the Saxis. U = emssz . For

g; = 0 (or, which is the same, for Kq = 1), the kinetic
energy in the spin channel can be reduced to the form
corresponding to free boson fields so that

Hy = [ (01" +[® 517, (19

Since UHU = H,— 4(v/m)(0,P<)F, we obtain, using
the transformation U(H, + H® )U-L, the Hamiltonian
Ho=Hs + H(esx) = H, in the pseudospin channel in the
model of aresonant level; here,

JD + +
ﬁl[%(o) +Ya(0)](d" —d)

H! =
+ 2= (.- 8V UL Ws(O)FH'd - 3],
(15)

—2iPg A(X
e SA( )

J2ma

S = Efd—%, A% = 1.

+ A

dr]a

m‘\"
I

LIJ;A(X) =1

It should be noted that phases ®g A(X) describe the sym-
metric and antisymmetric fluctuations of pseudospin
density.

The total Hamiltonian of a Luttinger liquid with a
two-level impurity has the form

H = Ho+ Hot HQ + Hi = Ho + HY + He.. (16)

If we disregard H., Hamiltonian (16) gives excita-
tions of the Luttinger liquid with velocity u. in the
charge channel. In the pseudospin channel, excitations
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Lp; A are determined by the two-channel exchange
interaction, generating, among other things, a resonant
many-particle level for low energies.

2. n the absence of scattering Hg,, many-particle
excitations at the Fermi level are described by the
Green function

G4(2) = [d (z— %) *d = [@[2— (Ho + HE)] " 1dD)

It iswell known [25, 26] that the behavior of physical
guantities in the two-channel model (7), (15) depends
on the relation between Ty and A, where Ty is the
Kondo temperature.

For Ty > A, the physical properties of the system are
determined by the Kondo effect. We will henceforth
refer to this region as the Kondo regime. In this case,
model (15) can be renormalized to the limit of strong
coupling [25, 26]; in this limit, A — (A%Ty) < Tk.

Thefixed point liesontheline J, = (J,—8vg) =0[21]
(the Emery—Kivelson (EK) line). Onthisline, theimpu-
rity degrees of freedom are hybridized only with the
field associated with antisymmetric pseudospin fluctu-
ations. The Kondo temperature Ty is defined on the EK
line so that parameters Tx and A are independent. For
T = 0, the Green function in the vicinity of the Fermi
level hasthe form

fO_:fx
e+ilsgne

To+ 1y
e+ iésgns}' (17)

1
Gule) = 5|
In the strong coupling limit, T, ~ k. The second term
in relation (17) emerges due to the fact that half the
impurity degrees of freedom in the two-channel Kondo
model are not hybridized with collective variables of
band fermions. Since Hamiltonian (15) does not con-
serve the number of fermions, %§4(z) has nonzero anom-
alous matrix elements proportional to [ddland [d*d*[]

On the other hand, if the conditions Ty < A and

J; < Jy are satisfied, model (15) cannot be renormal-
ized to thelimit of strong coupling for low temperatures
since A isrenormalized only dlightly [25]. In this case,
the NFL state is generated by the screening interaction
in Hamiltonian (15). Below, this mechanism will be
referred to the X -ray-edge regime. For J; =0, the Green
function is defined by the well-known expression [27]

—i s W Dl_as

Gy(e) = Ar(1-age L
TR (18)
g—A>0.

Here, A~W-1, I'(X) isthe gammafunction, W~ ¢ isthe

truncation parameter, ag = (d4m)? and &g ~ 322 is the
phase shift due to the screening interaction in the S
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channel, and A=A- €5, &5~ :]ZZ/SF being the polaron
shift induced by the same interaction.

4. CALCULATION OF DENSITY OF STATES
AND SELF-ENERGY FUNCTIONS

1. To determine the many-particle density of states
for low energies, the following considerations can be
used. For an impurity localized in space, the Green
function of band fermions has the form

Guas (ki K; 2) = 3(k—k)Gqo(k; 2)

(19)
+%Goo(K; )T 4a(k K 2)Gao(K; 2),

where 4, (k; 2) isthe Green function of apure Luttinger
liquid and I ., (k, K'; 2) is the matrix of scattering from
a pseudospin impurity. If we assume that the effect of
the exchange interaction in the important energy range
mainly consists in the formation of the resonant level,
the approximate expression for the scattering matrix
can be obtained by the method of the equations of
motion in the form

T aalk K; 2 = ThG4@ M o, Ga(2) = [@(z—9¢)"1d0)

where My, are the vortex parts weakly depending on

energy and 94(2) isthe Green function of a many-parti-
cle resonant level, which is defined by formula (17).

Henceforth, we will assume that Mgy = Vyy. In this
case, the density of statesis defined as

Pac(€) = FIIM[TrGqe (K, K €)] = Pogol(€)

20
$n‘llm[Tr&@d(s)Z|Vﬁd|2<§§c(k; s)}, (20
k

where the minus and plus signs correspond to € > 0 and
€ <0, respectively, and pgy,(€) isthe density of states of
apure Luttinger liquid.

For such aliquid, the Green function 9§ ,(x; t) was
obtained in [28]. The spectral functions and, accord-
ingly, the density of states py,(€) were calculated
almost twenty years later in [29, 30]. In particular, the
total spectral function (density of states) for a pure Lut-
tinger liquid in the long-wave limit is defined as

_ A dﬂDnCms
Poao(£) = F(1+n.+ngele ’
i (21)
— (Kv_l)
=2k,

Here, A~ 1; g, ~ & isthe cutoff energy in the Luttinger
model; n., ns are anomalous dimensions in the charge
and pseudospin channels; and parameters K. and K. are
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defined in (9). The energy is measured from the Fermi
level.

The Green function of impurity degrees of freedom
for low energies is defined by relation (17). Thus, to
calculate the density of states (20) in the presence of a
pseudospin impurity, we must know the quantity

S Vid Geotk ) = Vi S Gl (K ©),
k k

where
2 ) 62000(8)
2 Gunlli ) = 5=

Functions Z,,,(€) are defined by expressions (4)
with the density of states pyg(€) = Pogs(€) from (21);

namely,
+ ’ i Ie (o]} 8I l
Zg)u)o(z) = J-dE pi—({i') T
= F(1+nce
° (22)
fo &)™ e fo ()"
|:J’d8 +Id5 7 + £i| = AO(‘JO— + JO+)'

Here, z, =€ iy, > 0. Fore <0, WehaveZo(,o(z)z

—me)o (2. Integras Jy:(2), which are Gilbert trans-

forms of the density of statesfor a Luttinger liquid, are
defined as

ﬂc"'l

3oz (2) = FEL N+ 15 ne+2; ZE

(nc+1)z

where F(a, B; y; X) is ahypergeometric function. Since
we consider here only the case when €4/|7 > 1, we can
use the transformation formulas for a hypergeometric
function with [x| > 1[31],

CY)F@=0), (oo
FEry—a D X

CYr(=B+a), .\s,-8
YRy op DX

and obtain the following expressions for 15 (2):

F(a,B; y; x) =

nzic L &
sin(mne)

o+ — —

nZ" €0
sn(mn;) Nne+1

Jo. = _(_1)(nc+ 1)

We have used the familiar relations '(1) = 1, I'(n, +
1) =nJ (g, and (1 —nJr(ny) = 1vsin(mry). Thus, in
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the long-wave limit, for y — 0, we obtain

EjzITTSW\[(TWZ)']C] €‘><D[I(Tf/2)r]c]D ne
D sn(mn)r (L+nyeg " D

o (€) = .(23)

Since F(1, 1; 2; ¥x) = ¥x7n(1 £ x), expression (23)
for n. = O corresponds to the principal term in the
expansion in parameter x = (gy€) > 1. Using the
expressions

%505 (€)

2 i - _ .
chac(k, €) = e £>0;
G (k) = OZme(®) | 0Zouo(e)
Z aok™ =T de dlel ’

we obtain with the help of formulas (22) and (23)

chia(k; g) = z%(k; le])

(24)
m. exp[l(TUZ)nc]ngcs'n[(TUZ)nclglslnc-l_

D r(1+n )sl e DD sin(mn)

In the Kondo regime, substituting this expression
into (20), we arrive at the following expression for the
impurity contribution to the density of states:

2Vvn, sin[(TU2
- 20|
r(1+nc)80 CS‘”(T”]C)
X[COS[(T-ZZ)H‘:]lslnC+ Sn[(mz)nc]lslnc_l (25)
M
K
+COSEgrch|8| }
Here, we have introduced the notation V2 = [V, P. For

low energies, the most singular term in the density of

statesis py(|e) O €™ . Pay attention to the fact that
this contribution is due to the term of the form

Re‘?;d(s)lmzkcgio (k; €); in ReY4(€), we take the part
corresponding to nonhybridized degrees of freedom (sec-
ond term in relation (17)). While deriving formula (25),
we took into account the fact that the term with the &
functionin Im%Y4(€) makes zero contribution to the den-
sity of statesfor n. z 0.

Thus, we see that, in contrast to noninteracting
Fermi gas, excitations in a Luttinger liquid consider-
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ably modify the peaks at the Fermi level, which are
generated by the interaction with a two-level impurity.
The singularity in the impurity density of states is
enhanced for n, < 1; onthe contrary, it is suppressed for
Ne>2.

2. The contribution to Z,(2) from the impurity term
Pis(€) to the density of states is determined by the
expression

Z.(2) = Idspd"T(? = J’ds—p;‘:‘(_lil)

’ (26)
J-d p;u(l |) = Z(+)(Z+) + Z( )(Z ).
Taking into account expression (25) for the impurity

density of states, we seethat X ,(2) containstheintegrals
of three types, which are defined in the complex plane:

J'de

rlc_l

To evaluate integrals 187 and 1$” (which are singular

for small 2), in the complex plane we choose an auxil-
iary function of the form f(z) = (Z)*~Y(Z — 2) and the
contour C consisting of alarge circle Cg, R — o, a
small circlec,, r — 0, around zero, and a cut along the
real axis (I and 1l are the upper and lower banks of the

cut). Noting that f(€?™) = e?™f(¢) at the lower bank,
considering that I o J’CR — 0, and taking into account

the fact that there is a pole for Z = z within contour C,
we obtain

J_ = dsi_1
- Z—¢&
0
= (f(2)dz = [+ [+ [+ =2,
o=

_ -1
J-+I - (1—82”-[“)\]_, J_ - ilTr:Zinu-

Substituting the expression obtained with different val-
ues of W for theintegralsin (26), we get

8 = AZ7P, @27)
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—i TN,

for pyy ~ |z»:|nc ,WhereP,=—-e *, (-1) for “£,” and

2nnccos(nr]c/2)sn(nnc/2)v
O S'n("ﬂc)r(ﬂc"‘l)

A =

8 = AP, (28)

for pe ~ [, where P, =—e " ¥, (+1) for “+ and

21tn.sin’ (1n,/2) V2

Msin’ ()T (e + 1eg”

Integrals 15" (7) are defined by the same formulas that
were derived while determining =5, .

3. Inthe X-ray-edge regime, expression (18) defines

the retarded Green function C§d(e) where € =g —A.
Let us consider the case when the quantity

2
6L (k; s)} et
3

as a function of energy varies much more slowly than
‘gff (£) . The definitions of these two quantities imply
that thisis possible for n. > as.

In this case, we can set

2 2
[Z%Ec(k; s)} =[z&@f§c<k; A)} .
k k

Accordingly, it can easily be verified that the density of
states for € > 0 has the form

~ % qujlj_q:ﬁ'_us
pd(s) - QdDT[%DDED )

0, =0T g "
¢ I (ag)F(n )AL

(29)

The retarded self-energy functions are defined as

5 (Z) — J-d pd(s) Id pd(s)

- (4292

(30)
Pa(€ )

+Ids

wherez, =z, — A and ReZ, = § > 0.
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Using formulas (29) and the expressions for the
integrals derived above, we obtain

Z Qs
D‘rV E?q% ,
Oeg 0-2

b2 (z) =
(31)

(~Qd = Qqcot(mag).

Since ag < 1, the above contribution of the impurity
density of statesto =5 (2) isalso singular for small |z].

5. FERMI-LIQUID RESONANCES
IN THE VICINITY OF THE FERMI LEVEL

Let usnow consider the Fermi-liquid singularitiesin
the total Green function (4), which are associated with
the scattering of many-particle excitations, described
by Hamiltonian Hg. in expression (2). In the presence of
resonance and potential scattering, the position of the
polesisdetermined from the solution of Eq. (5). Substi-
tuting 2 into Eq. (5) and assuming that all matrix ele-

ments appearing in =2° (2) are determined by their val-
ues for k = kg, we obtain the equation

1-T°5(2)2r(z) =V’ T 94(2) 2. (2) Zr(Z:)

(32)
x[2+ T (Z(z) + Zr(z))] = O,

whereV and J arethe matrix elements of the resonance
and potential scattering and Z,(2) are the self-energy
functions calculated in (27), (28), and (31). The three
terms on the left-hand side of Eq. (32), containing self-
energy functions Z,(2), describe different scattering
processes of many-particle excitations. The term pro-
portional to J 2 corresponds to scattering of right fermi-
ons from left fermions taking into account the fact that
the density of states contains the impurity contribution
Puq - The terms proportional to JV2 and V2 describe
two possible processes of resonant scattering, i.e., scat-
tering of charge and pseudospin densities from many-
particle impurity degrees of freedom, which are
described by the Green function %,(z) defined in (17).

1. In the Kondo regime, the impurity density of
states is defined by expression (25); accordingly, the
polesin the vicinity of the Fermi level are generated by
the contributions to Z,(2), which are most singular in a
certain range of parameters for small |zl < . We will
first consider the solutions to Eqg. (32), which are asso-
ciated with scattering of nonhybridized excitationswith
band collective excitations of impurity degrees of free-
dom. In accordance with relation (17), nonhybridized
degrees of freedom are described by the Green function
G4(z) = Uz.. We begin with the case when the main
contribution to 2, (z) comes from the term proportional

to g™ ? in the density of states. Retaining in Eq. (32)
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the principal terms with small values of |z, we abtain
the following equation for the poles:

1-V?*T*G4(2)%,(2)2r(2)
x(2.(z) +Z(z)) = 0.

For z.., werespectively substitute X7 (z.,) into Eq. (33).
It should also be noted that X%, (z) = Zg(z) since
pL(leD = pr(leD-

Let usconsider solutionswith z_. Wewritez_inthe
form z_= |z _|exp(i¢); physical solutions correspond to
valuesof 0 < ¢ <172 for Re(z_) < 0. Solving the imag-
inary and real parts of Eq. (33), we obtain the following
solutionwith |z_| < Tk:

m <A D@‘DZIU—SQC) |:T\_/|:|8/(7—3r]c)
e Lo ’
Tt

¢ = 7-3n.

where A, isafactor on the order of unity. This solution
exists when the following conditions are satisfied:

5 |:1@‘|:|1/4DVD |j-KD(7 3n.)/8
3 B0 B0 '

The first system of inequalities emerges from the
requirement of vanishing of the imaginary part of
Eqg. (33).

When conditions (35) are violated, Eqg. (33) may
have solutions due to two other contributions to the

density of states. For py, ~ |g/™ " and Y4(z) = Uz,
there exists a solution z_ = ¢,_ < 0 corresponding to a
localized level below the Fermi energy. The position of
thislevel is determined by the energy

|£r| A D\/[|8/(4—3r]c)|:1E7}‘|:|2/(4—'3r]c)|:|€o|]3/(4—3l]c)
== e SR e

le| < k.

(33)

(34)

1<nc< (35

" (36)

Finally, for py, ~ |€|™and €4(z) = 1z, we have a

resonance with z,,

| | A DgJDml 2n°)DVD6/(1 2n°)D£0D4/(1 2n,)
3[‘1:05 [td] D‘KD !

_ 2nn,
¢ = 1-2n.

which exists when the following conditions are satis-
fied:

(37)

n <1_ EgD1/4DVD lj-KD(S 2n.)/8
c<% [by) k) Cg,0 '

It can be seen that all the resonance obtained above
are formed as a result of scattering of nonhybridized

(38)
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impurity degrees of freedom by many-particle excita-
tions, which form the density of states at low energies.

The scattering of many-particle excitations with
G4(z) = U(z, + il sgne,, ), which is described by the
term in X, proportional to J2V?, does not lead to the
formation of resonanceswith |z| < I',. In other words,
Eqg. (33) has no physical solutionsin this case.

In the X-ray-edge regime, we substitute into
Eq. (33) theexpressionsfor 9, and =, from relations (18)
and (31), respectively. For Re(z) >0, we obtain ares-

onance whose position and width are defined by thefor-
mulas

|Zr| Dgjml/z(l GS)DVDZM aS)DAD(nc—l)/A(l ag)
3&05 BN e

T
6 =17

(39)

where A; ~ 1. Since A < €,and n. > ag, the resonance
for n. > 1 can be quite narrow with a width much

smaller than J5 /.

2. In the range of parameters where Eq. (33) has ho
solutions, the poles can be due to other scattering pro-
cesses apart from those making contributionto 2., pro-
portional to J2V2. Assuming that this contribution is
small intheregionswhere Eq. (33) has no solutions, we
consider the equation

1-2V2T%G4(2)5(z)Za(z) = 0. (40)
In the Kondo regime, when the main contribution to =,

comes from the term proportional to |s|"°_2 in the den-
sity of states, the Fermi-liquid resonanceisformed due
to scattering of many-particle excitations by the reso-
nant level with
_ 1 i

Ha(z) = Z,, +ilsgne, , - +rK
for Re(z) > 0 and Re(z) < 0, respectively. The position
and width of the Fermi-liquid resonance are determined
by the solution to Eq. (40),

H._AEﬂ'Dl/Z(Z nc)D\/DGIZ(Z ﬂc)De Dl/Z(z Ne)
To g oo
(41)
3 Tt
=2z

where A is afactor on the order of unity. This solution
exists when the following conditions are satisfied:

3 D@'DMBDVD Ij_KI:I(S 2n.)/6
> b G0~ g0 '

The same scattering process generates the Fermi-liquid
resonance with z_ in the case when the main contribu-

1<n.< (42)
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tion to =, comes from the term proportional to |e| ™ !
in the density of states. In the present case, the new res-
onance exists for

DQJ-DNGDVD |j—KD(a 2nc)/6.

Ne<l Gp Gp~ o0

(43)

Naturally, when the regions of existence of resonances
intersect, the most singular contribution for low ener-
giesisdecisivein Eq. (32).

Finally, new singularities may appear due to poten-
tial scattering of right fermions from left ones taking
into account the impurity density of states (25). The
positions of the polesin this case is determined by the
solutions to the equation 1 — J2%, (z)Zx(z) = 0. It can
easily be verified that a solution exists in the case when
the main contribution to >, comes from the term pro-

portional to |€ "<~2 and hasthe form of alocalized level
below the Fermi energy.

It can also be proved that potential scattering in the
X-ray-edge regime generates a localized level above
the Fermi energy.

If the density of states at the Fermi level is deter-
mined by expression pg, for apure Luttinger liquid, the
potential scattering of right fermions from left ones
does not lead to the formation of additional Fermi-lig-
uid resonances or levels at low energies. This case was
treated in [10].

Concluding the section, let us prove that the inegual -
ities for parameter n, derived in (35), (38), (42), and
(43), which determine the ranges for new Fermi-liquid
resonances, are in accordance with the inequality K, <
1/2. 1t should be recalled that this is the condition of
applicability of the model with Jg = 0. In particular, the
conditionsfor n.in (35) and (42) correspond to theine-
qualities 0.13 < K, < 0.2 and 0.11 < K, < 0.2, respec-
tively. Finally, the condition n. < 1in (43) corresponds
to values of K, < 0.2. In this case, the mechanism con-
sidered in this study ensuresinstability intheregion 1 >
n.> 1/8, whichis also in agreement with the conditions
derived above.

6. CONCLUDING REMARKS:
SINGULARITIES IN THE BEHAVIOR
OF PHYSICAL QUANTITIES

Severa types of non-Fermi-liquid excitations with
different quantum numbers characterize a L uttinger lig-
uid with two-level impurities at low energies. First,
these are charge density fluctuations of the Luttinger
liquid and, second, many-particle excitations due to
two-channel exchange interactions, which are associ-
ated with band and impurity fermion states. The results
described above indicate that the scattering of many-
particle excitations of various types from one another
leads to the emergence of an additional Fermi-liquid
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singularity inthevicinity of the Fermi level ina 1D sys
tem. The conditions are determined under which the
Fermi-liquid states with a new energy scale much
smaller than the Kondo temperature is the ground state
of the system.

1. Thetype of many-particle excitations at low ener-
gies and, accordingly, the type of the phase state are
determined by the following parameters: width ' or
(in the strong-coupling limit) the Kondo temperature
Ty; theinitial energy E, of adeep level, which appears
in exchange constants; the value of abnormal dimen-
sionality n. in the charge channel of a Luttinger liquid
(or, which isthe same, the value of parameter K.); and,
finally, the impurity level splitting A. Let us define the
states of the system depending on the values of these
parameters.

New Fermi-liquid resonances are absent. In
accordance with conditions (35), (37), (42), and (43),
this meansthat, at any rate, n, must be greater than 5/3
and/or the Kondo temperature is found to be very low
inthe Kondo regime. Inthelatter case, conditions of the
type |z| < Ty are violated and we obtain a phase state
of the system, in which excitations of the Luttinger lig-
uid take place in the charge channel and the excitations
generated by two-channel exchange interaction occur
in the pseudospin channel. In turn, if the initial values
of the parameters are such that the condition Ty > A
holds and the system isin the Kondo regime, we passto
the X-ray-edge regime by reducing the value of Ty by
increasing the depth of the impurity level and, hence,
by decreasing J. A similar transition can also be carried
out by increasing the value of A at afixed value of T.

The low-temperature behavior of the heat capacity
C of alinear chain is determined by the product yT,
where vy is inversely proportiona to the velocity of
sound.

This expresses the Debye law in the 1D case. In a
pure Luttinger liquid, the heat capacity hastwo additive

contributions of the same form with y, ~ v;l and y; ~

vgl owing to the separation of the pseudospin and
charge degrees of freedom.

In the presence of two-level impurities, excitations
in the pseudospin channel are determined by the two-
channel exchange interaction. It iswell known [24, 32]
that y in this case behaves as In(T¢/T) in the second

order of perturbation theory in 3Z/JD; this dependence
playsamajor role at low temperatures. At the crossover
temperature T, ~ A, the logarithmic dependence is

l+ag

transformed into the power dependencey O T = °.
The increase in the heat capacity upon cooling contin-

ues to T O max[y. , A¥T.]. Accordingly, Vima U
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max[y,, T«/A?]. The homogeneous static susceptibility

behaves analogously on the EK line (\NJZ = 0); however,
since the susceptibility has no constant term, the low-
temperature increase continues until T 0 A%/ Ty.

It should be noted that anomal ous correlations exist
at an impurity site. The divergence of the correlator
[B'SHw=0,T) ~In(L/T) corresponds to free rotation
of the impurity pseudospin. It should also be noted that
the anomal ous components [ddCand [d*d*[of the Green
function 9, for the resonant level differ from zerointhe
Kondo regime since the number of fermionsin the two-
channel exchange interaction (15) is not conserved.

Fermi-liquid resonancesexist in the Kondo regime
for relatively small values of n, and high values of Ty
in accordance with the formulas derived above. If the
value of 1, satisfies any condition of the existence of
resonances, but the corresponding condition of the type
|z.| < Tk isviolated, we can obtain an additional Fermi-
liquid resonance in the vicinity of the Fermi level by
reducing the depth of the impurity level and, hence, by
increasing the Kondo temperature.

Expression (40) showsthat Fermi-liquid resonances
exist in the X-ray-edge regime for all admissible values
of ag (i.e., impurity level depths), but only for strong
interactionsin the charge channel of a Luttinger liquid.

Both in the Kondo regime and in X-ray-edge
regimes, transitions from an NFL state to an FL state
can take place. The characteristic crossover tempera
tures T, O y;, where y, are the widths of Fermi-liquid
resonances. In this case, the temperature transition to
the Fermi liquid state, which took place in the absence

of FL resonances at T ~ max[y;l, A?%Ty], can now
occur at T~ y, if v, > max[y., A2T].

2. Fermi gasesin atrap are formed by fermion atoms
of mass mwith two intrinsic states [4—7]. The number
of atoms in each state is the same. If the atoms are
cooled to a temperature below the Fermi temperature
Tg, they form a degenerate Fermi gas. The system can
be treated as effectively one-dimensional if the charac-
teristic energy of longitudinal motion is much smaller
than the characteristic separation w; between trans-
verse quantization levels. In other words, the condition
& < Wy (A = 1) must be satisfied. At low temperatures,
only stype collisons are possible between Fermi
atoms with different spins. For this reason, the interac-
tions are characterized by a single parameter, viz., scat-
tering length a < |, where | ; = (1/mwy)Y2. The effec-
tive 1D interaction can be represented in the form of
short-range potential with a characteristic value of g =

2ma/ml? [4, 5]. Taking these limitations into account,

we assume that, in the longitudinal directions, atoms
arein abox of length L with periodic boundary condi-
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tions. Then the Hamiltonian of the atomic Fermi gas
free of impurities has the form

H=mvey jdxpéc(x)

2 dX{gZ"'pw(x)pw(x)

a,0,0'

+Y (627 Pac(X)Puc(X)

a'za
+ ggdwgcw;'—owacwa'—o)} '

i.e., the Hamiltonian in the L uttinger model. The possi-
bility of describing an atomic impurity-free Fermi gas
with the help of the Luttinger model and the methods
for experimental observation of the spin-charge separa-
tion were considered in [33]. In the presence of impuri-
ties, the results obtained above are applicable to an
atomic gas if, in addition to the relations given above,
the inequality U < wy holds. In an atomic Fermi gas,
charge fluctuations correspond to fluctuations of the
average density of the gas, while pseudospin fluctua-
tions describe the fluctuations of the relative density at
two levels corresponding to intrinsic states of atoms.
The anomalous behavior of the one-site correlator
BSHw =0, T) ~ In(UT) for atomic Fermi gases,
which is associated with the two-channel exchange
interaction, corresponds to an anomalous increase
(upon cooling) of the correlations between the occu-
pancies for two intrinsic states of an impurity site. This
may indicate a tendency to the formation of the super-
fluid state in the relative density of two components of
the impurity subsystem in a quasi-one-dimensional
system.
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Abstract—The process of magnetic field penetration into polycrystalline high-T, superconductors of the
Y Ba,Cu;0; _, and Bi,Sr,Ca,Cu;0;( _« Systems has been studied using traditional magnetooptical methodsand
scanning Hall probe microscopy. It is established that remagnetization of a sample is accompanied by the for-
mation and propagation of a stationary magnetic flux annihilation (MFA) wave. Spatial inhomogeneity of the
superconductors studied is manifested by a curvature of the MFA wave front. © 2004 MAIK “ Nauka/ I nter pe-

riodica” .

1. INTRODUCTION

Investigation of the process of magnetic flux pene-
tration and propagation in type Il superconductors,
including high-T. superconductors, is very important
because these processes determine the magnetic and
transport characteristics of superconductors, in particu-
lar, the local and integral magnetization M(H). In turn,
once the behavior of M(H) is known, it is possible to
determine both the basic characteristics of supercon-
ductors (e.g., the lower and upper critical fields) and the
parameters important in practical applications (critical
current J., hysteresis energy losses, and residua
trapped magnetic flux).

The process of the magnetic flux penetration and
trapping in the so-called hard superconductors of typelll
(i.e., high-T, superconductors exhibiting strong vortex
pinning) are frequently described in terms of the one-
dimensional Bean model [1]. According to this model,
the process of superconductor remagnetization is
accompanied by motion of an interface between the
regions where the magnetic induction has opposite
signs. Within the framework of the Bean model, this
boundary appears as a plane front parallel to the super-
conductor surface, which moves from the sample sur-
face into bulk with increasing externa field. However,
in some cases (e.g., of weak pinning or strongly inho-
mogeneous superconductors), the Bean model is too
rough and cannot reflect the real local distribution of
magnetic induction and the integral magnetization of a
superconductor.

Analytical description of the behavior of magnetiza-
tionin ahigh-T, superconductor with an arbitrary preset
arrangement of pinning centers is very difficult and

requires many parametersto betaken into account. This
makes expedient the use of numerical methods for the
description of magnetization. Numerical calculations
of the magnetization and the local distribution of mag-
netic induction in atypell superconductor with an arbi-
trary preset local distribution of defects have been per-
formed in [2-5] using amodified Monte Carlo method.
As aresult, we determined the behavior of magnetiza-
tion of amodel superconductor (with the parameters of
a real high-T, superconductor of the Bi,Sr,CaCu,O,
system) and calculated the patterns of magnetic flux
penetration and distribution in superconductors with
arbitrary (in particular, inhomogeneous) distribution of
defects. Theresults of computer simulation showed that
a change in the sign of applied magnetic field leads to
the appearance of a macroscopic region of zero mag-
netic induction in the superconductor. The process of
motion of thiszone from the surface to the center of the
superconductor plate was called the magnetic flux anni-
hilation (MFA) wave because the leading front of the
input magnetic flux features annihilation of the Abriko-
sov vortices with opposite directions. The magnetic
flux annihilation wave is characterized by its“vel ocity”
Vi = dXqu/dH equal to the average distance Xq, trav-
eled by the front of the input magnetic flux per unit
change in the magnetic field H.

An analysis of the results of computer simulation of
the magnetic flux penetration in stratified high-T,
superconductors with defect structures of varioustypes
[3-5] alowed us to predict the following peculiarities
in the motion of MFA waves.

(1) The “velocity” Vg, of the MFA wave front
depends on the temperature and defect structure of the
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Liquid
nitro-

Fig. 1. Schematic diagram of a scanning Hall probe micro-
scope: (1) Hall effect transducer; (2) sample; (3) resistive
coil; (4) mechanical manipulator.

superconductor: Vy,,, increases with increasing temper-
ature and decreasing defectness of the material and vice
versa

(2) The MFA wave front can exhibit a significant
curvature in inhomogeneous superconductors. In the
case of strong inhomogeneity, the MFA wave front can
separate into several independently propagating fronts.

(3) The MFA wave front “velocity” Vy,, exhibits a

nonmonotonic dependence on the applied magnetic
field.

(4) Cyclic variations of the sign of the applied mag-
netic field leads to periodic motion of the MFA wave
front from the surface to the center of the supercon-
ductor.

Despite the large number of papers devoted toimag-
ing of the magnetic induction distribution by magne-
tooptical methods (see review [6] and references
therein) and scanning Hall probe microscopy [7-10],
no direct observations of a curved MFA wave front in
real polycrystalline high-T, superconductors were
reported so far.

This paper presents experimental data on the forma-
tion and propagation of MFA wavesin inhomogeneous
high-T, superconductors.

2. EXPERIMENTAL

The MFA wave was observed by means of tradi-
tional magnetooptics and scanning Hall probe micros-
copy (SHPM). The experimental SHPM setup (Fig. 1)
was based on a semiconductor Hall effect transducer
(Hall probe) mounted on athree-coordinate mechanical
manipul ator. We employed the Hall probe with a sensor
area of 450 x 150 um? and a magnetic responsivity of
several dozens microvolts per millitesla. The Hall
probe monitored the normal component of the local
magnetic induction B, immediately at the surface of a
high-T, superconductor sample. By moving the Hall
probeinthe vertical direction, the distance between the
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sensor and the sample surface was set at 0.1-0.2 mm.
Then the Hall probe was scanned al ong two coordinates
in the plane to measure the local magnetic induction
variation along the entire sample surface. External
magnetic field was generated by a resistive coil. The
manipulator allowed the Hall probe to be scanned over
an area of 8 x 8 mm? line by line with a resolution of
24 x 24 points. Further increase in the resolution did
not change the image obtained. The output voltage of
the Hall effect transducer was amplified and fed viaan
anal og-to-digital converter to acomputer in the form of
bit sequences. Then the data were rearranged into a
two-dimensional array and displayed in the form of an
image (map) showing the local magnetic induction
B,(x, y) distribution on the sample surface. The mea-
surements were performed at liquid nitrogen tempera-
ture (77 K).

The spatial distribution of the magnetic flux at liquid
helium temperature was imaged by a magnetooptical
technique [6] based on the Faraday effect in a ferrite
garnet indicator film. The corresponding experimental
setup is described in detail elsewhere [11]. For the
magnetooptical measurements, a sample with the indi-
cator film is fastened with a vacuum seal to the cooled
sample holder in an optical flow-type cryostat. The
sample was cooled down to liquid helium temperature
in a zero magnetic field, after which an external mag-
netic field was applied aong the normal to the sample
surface.

We have studied polycrystalline high-T, superconduc-
tors of theYBa,Cu;0, _, (Y 123) and Bi,Sr,Ca,Cu;0,4_,
(Bi2223) systemsin the form of tablets with a diameter
of 8 mm and a height of 2 mm. Temperature T, corre-
sponding to the onset of the superconducting transition
was determined from the magnetic susceptibility mea-
surementsand wasequal to 92 K for Y123 and 108 K for
Bi2223. The superconducting transition widths AT, for
the samples chosen for the experiments were in the
range of AT, = 5-15 K. We intentionally selected the
samples with large widths of the superconducting tran-
sition, which ensured a considerable inhomogeneity
required for our experiments.

3. RESULTS AND DISCUSSION

The MFA waves were observed in Y123 high-T,
superconductor samples possessing strong spatial inho-
mogeneity. The sample was cooled in a zero magnetic
field to liquid nitrogen temperature, after which a pos-
itive magnetic field of H = 50 mT was applied. Then
the field was switched off and the magnetic flux
trapped in the sample was studied by SHPM. Figure 2
shows the typical SHPM image of the residual local
magnetic induction distribution. The image reveals
three clearly resolved macroscopic superconducting
grains possessing residual magnetic induction and a
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Fig. 2. Residual local magnetic induction B/X, y) distribu-

tion over the surface of aY 123 sample measured by SHPM
aT=77K.

region between these grains possessing lower critical
characteristics.
Application and increase of the external field in the

opposite direction leads to the appearance of a region
with the opposite orientation of magnetic induction

y, mm
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(denoted B_ to distinguish from the direct field B,) and
givesrise to the MFA wave, representing the motion of
a zero magnetic induction zone at the leading front of
the input magnetic flux. In a strongly inhomogeneous
material, magnetic field from the opposite direction
rapidly penetrates into the sample under a relatively
weak external field to occupy the intergranular region.
At a certain value of the negative field, the front sepa-
rates into two parts surrounding regions of the positive
trapped magnetic field (Fig. 3).

The formation of a curved MFA wave was also
observed in polycrystalline Bi2223 samples studied by
magnetooptical techniques. It should be noted that
scanning of the trapped magnetic flux by a Hall probe
did not reveal significant inhomogeneity of the sam-
ples. At the same time, the results of magnetooptical
measurements at a high spatial resolution indicated the
presence of inhomogeneitiesranging from several units
to dozens of microns, which accounted for the curva-
ture of the MFA wave front.

A sample of Bi2223 was mounted in the magne-
tooptical setup and cooled in a zero magnetic down to
T = 4.0 K, after which a positive magnetic field was
applied. Even a small field was sufficient to obtain a

5 6 7 8

X, mm

Fig. 3. SHPM image of MFA waves (black zones) surrounding regions of strong pinning in an'Y 123 sample measured at T= 77 K.
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Fig. 4. Magnetooptical images of apolycrystalline Bi2223 sample at various (a—) values of applied magnetic field and (d) trapped

magnetic flux at the maximum field H = 50 mT (T = 4.0 K).

magnetooptical response in the indicator film, which
was manifested by a bright contour at the tablet edge
(Fig. 4a8). This contour is due to the Meissner effect,
whereby the enhanced brightness is caused by demag-
netizing fields and the rapid drop in brightness in the
direction inward the sampleis caused by magnetic field
screening. An increase in the applied magnetic field
leads to deeper field penetration into the depth of the
sample (Figs. 4b and 4c). The magnetooptical image
clearly revealsinhomogeneity of the sample containing
regions possessing lower critical characteristics. After
removal of the maximum positive field (H = 50 mT), a
positive trapped flux isretained in the sample (Fig. 4d).
Note that the image brightness decreases on approach-
ing the sample edge, which reflects a decrease in the
magnetic induction down to zero. At the sametime, the
magnetooptical response arises again in the vicinity of
the sample due to a magnetic flux of the opposite sign
existing along the sample edge. It should be pointed out
that the intensity of the magnetooptical response
(image brightness) in these experiments depends only
on the absolute value of the magnetic induction and is
not influenced by its direction. For this reason, the pos-
itive and negative magnetic induction of the same
amplitude is manifested by the regions of equal bright-
ness in the magnetooptical image (in SHPM measure-
ments, the direction of the magnetic field can be
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uniquely determined by the sign of the Hall response
voltage).

An increase in the negative magnetic field (Fig. 5)
leads to gradually increasing response near the sample
edge and givesrise to an initially small (H = 10.2 mT)
and then strong penetration of a negative flux into the
sample. The formation of a curved MFA wave is
dlightly manifested at H = 13.6 mT. Then the MFA
wave moves away from the sample edge (H = 23.8 mT)
and propagates into the region of trapped positive mag-
netic field. The annihilation wave front is indicated in
Fig. 5 by white arrows. The entire sample is gradually
occupied by the negative field and the MFA wave dis-

appears.

Figure 6 shows aseries of linear profiles of the mag-
netic induction modulus obtained by digital processing
of the magnetooptical images. In the interval of fields
H = 13.6-34.6 mT, the profiles clearly revea a local
minimum corresponding to the MFA wave. Figure 7
presents the position of the leading MFA wave front
Xqux @nd the front “velocity” Vy, as functions of the
applied magnetic field. The curve of xq,(H) exhibits
two inflections, which correspond to asharp drop in the
value of Vy, in the region of H = 20-27 mT. This
decreasein the MFA wave “velocity,” predicted in [3-5],
is related to remagnetization of the region of a super-
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Fig. 5. Magnetooptical imagesillustrating the dynamics of the formation and propagation of the MFA wave front in a Bi2223 sam-
ple (white arrows indicate the leading and trailing fronts of the vortex annihilation wave).

conductor where the magnetic flux of the opposite sign
is trapped.

In order to elucidate the nature of the MFA wave, let
us consider the results of computer simulation of the
process of magnetic field penetration into high-T,
superconductors. The process of remagnetization was
studied by Monte Carlo method [4] in high-T, super-
conductor plates with various defect configurations set
by varying the concentration and potentia of the pin-
ning centers. The main result of these numerical calcu-
lations was equilibrium configuration of the probability
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density of Abrikosov vortices in the plate for the given
temperature, applied field, and defect configuration.
The overall pattern of the magnetic flux distribution in
the sample was obtained by adding the magnetic fields
of al vortices.

An increase in the applied magnetic field initialy
leads to manifestation of the Meissner effect. When the
field exceeds the first critical value H,, vortices enter
the plate and the magnetic flux starts penetrating deep
into the superconductor. In the case of medium or
strong pinning, the front of the magnetic flux gradually
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Fig. 6. Linear profilesof thelocal magneticinduction for variousvaues of the applied magnetic field. Intherange of H = 13.6-34.6 mT,
the profiles exhibit a clear minimum corresponding to the MFA wave.
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moves from the surface to the center of the plate. The
magnetic flux front may exhibit curvature that reflectsa
local inhomogeneity in the distribution of pinning cen-
ters. In the case of weak pinning, the magnetic flux
spreads over the superconductor volume almost imme-
diately. On reaching the so-called full penetration field
(depending on the sample defectness), the magnetic
flux occupies the entire plate. Further increase in the
applied field leads to a growth in the magnetic induc-
tion in the plate, which is manifested by an increase in
the vortex density with atrend of triangular lattice for-
mation.

When the external field decreasesto zero, the super-
conductor retains the trapped magnetic flux formed due
to the pinning of Abrikosov vortices on defects. Asthe
applied field increases with changed sign, vortices of
the opposite sense (antivortices) begin to enter the
plate. Annihilation of the vortices and antivortices |eads
to the formation of a clearly pronounced zone of zero
magnetic induction at the front of the entering magnetic
flux. This zone, moving inward the superconductor
with increasing amplitude of the externa field, repre-
sents the MFA wave. The lower the pinning, the higher
the MFA wave “velocity.” In the case of weak pinning,
annihilation is amost instantaneous. The MFA wave
ceases when the magnetic field exceeds the full pene-
tration value. Subsequently, the MFA waves appear
with every change in the sign of the applied magnetic
field. The MFA wave velocity also depends on the tem-
perature: as the temperature increases, the wave veloc-
ity grows.

According to the results of numerical calculations,
the width of the zone of zero magnetic induction at the
MFA wave front is on the order of 1 um. However,
experimental data obtained in this study give an esti-
mate on the order of 100 um. This large value of the
zero-induction zone width is probably explained by the
polycrystalline structure of the samples studied. This
structure is characterized by a large number of weak
links acting as channels of accelerated field penetration
into the polycrystalline superconductor, which is mani-
fested by strong broadening of the zero-induction zone.
This assumption is confirmed by a clearly pronounced
cellular structure of the magnetooptical image at the
leading front of the input magnetic flux (see Figs. 4
and 5).

It should be emphasized that the MFA waveisasta-
tionary phenomenon and moves only with increasing
external magnetic field. Every change in the field sign
leads to the formation of the MFA wave moving from
the surfaceto the center of asample. At arelatively high
frequency of the applied field and a complex, spatialy
inhomogeneous potential relief of the pinning centers,
the magnetooptical images of MFA waves may appear
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Fig. 7. Plots of the (1) position xg,, oOf the leading MFA
wave front and (2) “velocity” Vg, of this front versus the
applied magnetic field H.

as multiple moving dark spots, observed, for example,
in[2].

4. CONCLUSIONS

Using magnetooptical imaging and SHPM tech-
nigues, we have demonstrated the MFA waves in inho-
mogeneous high-T. superconductors. The obtained
experimental data qualitatively agree with the results of
numerical analysis [3-5]. Further investigations are
required for a comparative analysis of the behavior of
MFA waves depending on the temperature and defect
state of a superconductor. We suggest modifying the
defect state of Bi2223 samples in the stage of synthe-
sis, for example, by introducing various nanodimen-
sional inorganic inclusions playing the role of addi-
tional pinning centers. By changing the type and con-
centration of such inclusions, it is possible to provide
for a controlled modification of the defect confi-
guration. This possibility is confirmed by the results of
measurements of the trapped flux magnitude in
(Bi,Pb),Sr,Ca,Cus0, . , With nanodimensional inclu-
sions of hafnium nitride [12].
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Abstract—The magnetic absorption cross section of a small spherical particle with a dielectric core and a
metallic shell is calculated. The general caseis considered when the ratio of the radius of the dielectric core to
thetotal radius of the particle may take arbitrary values. The condition of specular—diffuse reflection of conduc-
tion electrons from the surfaces of the metal layer of the particle is chosen as the boundary conditions of the
problem. The limit cases are considered, and the results are discussed. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Electromagnetic properties of small metal particles
have a number of distinctive features [1]. These fea
tures are associated with the fact that the electron mean
free path in such particlesis on the order of their linear
dimensions. Here, nonlocal phenomena begin to play
an essentia role. The classical theory of interaction of
€l ectromagnetic waveswith metal particles[2] (theMie
theory), which is based on local equations of macro-
scopic electrodynamics, is inapplicablein this case.

In [3, 4], magnetic dipole absorption of infrared
radiation by spherical particles is considered. To
describe the electromagnetic response of a particle, the
authors apply the standard kinetic theory of degenerate
Fermi gas of conduction electronsin metals[5]. In[3],
the analysis is restricted to the case of pure diffuse
reflection of conduction electrons from theinternal sur-
face of a particle, whereas, in [4], the authors carried
out a detailed analysis of the magnetic dipole absorp-
tion of a spherical particle under the condition of
mixed, specular—diffuse, reflection of electrons from
the surface of the particle [5]. In al these studies, the
authors considered only homogeneous particles; i.e.,
the question about the internal structure of absorbing
particles was not raised.

Note also the studies in which the authors tried to
take into account quantum-mechanical effects in the
problem; these studies are especialy important at low
temperatures[6, 7].

Recently, publications have appeared about experi-
mental investigations of particles with complex struc-
ture [8, 9]. These particles consist of a dielectric (or
metallic) core surrounded by a metallic shell; such a
structure naturally affectsthe optical properties of these
particles.

In this paper, which isalogical continuation of [4],
we construct atheory of interaction of electromagnetic
radiation with an inhomogeneous spherical particle
(ametal particle with a dielectric core) with regard to
the mixed (specular—diffuse) reflection of electrons
inside the metal layer.

2. STATEMENT OF THE PROBLEM

Consider ametal sphere with adielectric coreinthe
field of aplane electromagnetic wave. The radius of the
coreis R;, and the radius of the shell is R,. The wave
frequency is bounded from above by the near-infrared
band (w < 2 x 10% s!). Magnetic absorption of such a
particle is associated with eddy currents induced in its
metallic shell. In the dipole approximation, neglecting
the skin effect (assuming that R < §, where d isthe skin
depth), we obtain the following expression for the eddy
electric filed that induces eddy currents:

_ 1 OH7 _ W .
E = 2c[r X at} = 2iC[r xHol exp(—iwt), (1)
where H = Hyexp(—iwt) is the magnetic field strength,
r isthe radius vector (the origin of coordinates is cho-
sen at the particle center), H, is the magnetic field

amplitude, w is the angular frequency of the wave, and
c isthe speed of light.

The mean dissipated power Q in the particle is
determined by the formula [10]
= _ T~ —~ 7~ -~ 13 _ 1_ . 3
Q= I(ReE)(ReJ)d r= 2ReIJ [(ELdr. 2

Here, the bar denotes time averaging, the star denotes
complex conjugation, and j isthe eddy current.
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When the particleradius R, is comparable to or less
than the el ectron mean free path A in metal, the relation
between E and j proves to be essentially nonlocal. To
describe this relation, we apply a kinetic equation (in
the relaxation-time approximation) to the degenerate
Fermi gas of conduction electrons in the metallic shell
of the particle.

For sufficiently weak external fields, this equation
can belinearized with respect to the external field E and
small deviationsfy(r, v) from the equilibrium Fermi dis-
tribution function fy:

. of, of, 1,
—|(m‘1+var +e(v[E) % - 1 3

Here, e and v are the charge and the mass of a conduc-
tion electron, respectively, and 1 is the electron relax-
ation time.

Next, we consider a quadratic dependence of the
energy € of an electron on its velocity, € = mv%/2 (mis
the electron effective mass) and apply a stepwise
approximation for the equilibrium energy distribution
function of electronsfy(e) [11]:

L,
foe) = 0= = 9"
] f ]

O<e<g

where g = mvf/2 is the Fermi energy (v; isthe Fermi
velocity).

The distribution function of electronsis given by

f(r,v) = fo(e) + f4(r,v), €= Ln%/—z

The deviation f;(r, v), due to the eddy electric field,
of the eectron distribution function f(r, v) from its
equilibrium value fy(€) givesrise to the eddy current

j = end= en[ J’fodgv]_lj’flvdgv (4)

inside the particle.

The electron concentration n in the meta layer of
the particle is determined by the standard formula

34mv3
= 2%—*, (5)

3
_ oM
n= 2h3J’fodv 3

where h is the Planck constant.

Substituting field E in the form (1) into Eq. (3), we
determine f,(r, v) as a solution to this equation. Then,
we determine current by (4) and the absorption cross
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section of the external electromagnetic field of the
particle:

o = 8mQ/cH}. (6)

The problem under consideration has a unique solu-
tion when we impose boundary conditions on the
unknown function f;(r, v) on the spherical surfaces of
the metallic shell and the dielectric core of the particle.
As such boundary conditions, we take the condition of
specular—diffuse reflection of electrons from these sur-
faces [4]. Since electrons can be reflected from the
internal (R,) and external (R,) boundaries of the metal
layer, we have to write out two boundary conditions:

, gdrl = Ry
fa(r,v) = qfu(r,v) for g (7)
rv>0,
, drl = R,
fio(r,v) = qpfo(r,v) for O 8
rv<o0.

The caserv > 0 (rv < 0) corresponds to the motion of
electrons from the core (toward the core). Here,

v = V_2r(|;2Ev)

is the velocity vector, which reduces to the vector v
under the specular reflection from the inner or outer
surface of the metal layer at the pointr (r|[=Ryor|r| =
R,), and g; and g, are specular reflection coefficients
(the probabilities of specular reflection):
0<qg;=1, O<sqg,s2

For g, = 0 (g, = 0), we obtain a condition of diffuse
reflection of conduction electrons from the inner or
outer surface of the metal layer of the particle, whereas,
for g; = 1 (g, = 1), we obtain a condition of pure spec-
ular reflection. When g # 0 and g # 1, we obtain various
types of mixed (specular—diffuse) reflection of elec-
trons.

3. DISTRIBUTION FUNCTION
The kinetic equation (3) is solved by the method of
characteristics [12]. The variation of f; along a trajec-
tory (characteristic)
dr = vdt

is determined by the equation
df, = -Hf +e(v EE)‘l‘Ddt 9)
! ! oe™
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where

_ 1.
V==-iw
T

IS acomplex scattering rate.

The boundary conditions (7) and (8) allow one to
trace the variation of the function fi(r, v) along the
specularly reflected trgjectory. At the reflection point
t =t, (from any surface), the function f,(t) has ajump

fi(ta+0) = af,(t, - 0). (10)

The signs + and — indicate the limits of the function
fi(r, v) at the reflection point t, on the left and right
along theflight time, respectively. The quantity g stands
for g, or g,, depending on the place of scattering.

Under the specular reflection, the angular momen-
tum [r x v] =[r x v'] is conserved; therefore,

[r xv] = const

on the trajectory under consideration.

The difference t, —t,_, isindependent of the num-
ber n of the reflection point:

t, = nT+const, nlZ,

where T istheflight time of an electron from pointr,_,
to point r, with velocity v:

2(v, [t,)

> .
%4

T =
The product v - E is also constant on the trajectory,
v[IE = 2iC[r x H] O ZC[r xv] (H = const.

A solution to Eq. (9) is given by the function

f, = Cexp(—vt) + A, (11)

where

A = _g(_\{_D_E_)?_tQ
vV 0¢
The parameter t in (11) has the meaning of the
motion time of an electron along the trgjectory from the
boundary where the reflection occurs to the point r at
velocity v.

Let us solve this equation on theinterval (t,_4, t,) in
the case when the el ectron moves along atrajectory that

does not intersect the core of the particle under a spec-
ular reflection.
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At theinitial moment (t = 0),
fi(t,_,+0) = C+A.

Hence, we seek a constant C such that
C = fi(t,_, +0)—A.

Now, we obtain arelation between the initial values
of the function f; on two adjacent segments of the tra-
jectory. Sincet,—0=t,_, + T, we have

fata=0) = (fi(tis+0)—A)e" + A
= Al-e"N)+ fy(t,_,+0)e"".
Applying Eq. (10), we obtain

fi(t,+0) = G AL—€e"T)+ fyt,_,+0)e"}. (12)

Then, applying this recurrent relation to express
fi(t,- 1 + 0) in terms of f,(t,_, + 0), etc., we express
fi(t, + 0) in terms of an infinite geometric progression

with the ratio qze_"T. Summing this progression, we
obtain

A(L-€")

T

f,(t,+0) = (13)

1-q,e"’

To determine a specific form of the solution to
Eq. (9), we apply condition (13). Whent =0,

Al— VT
O A( iT) - C+A
1—q2e
Hence,
1-¢'") 0O 0 g,—-1 O
CzAEI%(—e_VT)—ll:JzA 9 —
01-q.e 0 M-g.e" 0O

Therefore,

O g,-1 0O
f.(t) = A —-vt,) + A
10(t) DlD—— qze_\,TEeXp( vt,)
(14
[(d, — 1) exp(-vt,) + 1%

= A}
0l-g.exp(-vT,) 0

The parameterst, and T, can be related to the coor-
dinates of the point (r, v) in the phase space (for n =0,
Vo = V) by the conditions

r =ro+vt,, vy<O,
2(v [Ty)
2 _ 2 _ 0
rO_ Rz, T2__ 2 .
v
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Eliminating r,, we obtain

t, = {r W+[(r )2+ (Re=r)v]"3 1v2 (15)

T, = 2[(r )2+ (RR=r) vy 1v2. (16)

Formulas (14)—(16) completely define the function
f,(r, v) in the case when electrons move aong the tra-
jectories that do not intersect the core of the particle.

Now, we pass on to the case of double specular
reflection of an electron (from the core and from the
external boundary of the metallic shell). We solve the
kinetic equation (9) on the interval (t,_4, t,) under the
assumption that, at a certain moment of time, an elec-
tron is reflected from the boundary of the metal layer
(previoudly, it was reflected from the core). Then
(see (12)),

f' = g{A@Q-€e"N+f _e"}.

Next, expressing f_, intermsof f,_,, etc., weobtain
fo= a{A1-€"T)

+0e " (AL-e") + fre ")}
= A1-€") +qAL-e" e + g0, f, e
= quA(Ll-€e"") + i A(L-€e ")
+aige " {A(L-€e") + o5}
= qA(L-e") + Al - e

—2vT

+Agiq,e T (1—€"T) +qra,fr e

= q;A(l- e_VT){ 1+ Q2e_VT + Q1Q2e_2VT

+ou056 T +aigpe ™ + LY
Let
S=1+0,6" + e +apope
+ e+
Then,
S =1+ Q2e_VT(1 + Che_VT) + ChQZe_ZVT
+O0e T+ = e {14y (1 e

+ Q1Q2e_2VT +...)} =1+ Q2e_VT(1 + Q1e_VTSQ)-
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Hence,
_ 1+ Q2e_VT
1-0,067"

and

fro = A(Ll-€")S,
_ g AL-€e")(1+qe")

—2vT

1-0:0:€

Let us write the solution of the kinetic equation (9)
in explicit form. Using the initial condition (17), we
have

(17)

QuAL-€e")(1+qe"")

—2vT

1-0q,0.€

= C,+A.

Hence,

_ AG(1-€"+ge’) -1

—2vT

1-q,0,€

Substituting (18) into (11), we obtain the deviation
fio(t) of the distribution function of eectrons from its
equilibrium value:

C, (18)

1-e g ™ -1 v, .0
oty = AR %e_)-lovyih. (9
O 1-q,0,e ' O

The deviation f;4(t) of the distribution function of
electrons reflected from the core of the particle is deter-
mined analogously:

—VT,

T,
Eth(l -e "+(Q,e
—2vT,

u 1-q.0.€

fat) = A

)=l ) (20)
O

The parameter t; in (20) is determined as

t, = {rv—[(r >+ (R=r)vi"3 1v°. (1)
Indeed, from the obvious vector equality r = ry + vt;,
where r, is the radius vector of the electron at the

moment of reflection from the core of the particle (ry =

R?), one can easily obtain (21) by squaring both sides
of thisequality and solving the equation obtained for t; .

The parameter T, (the period of motion of an elec-
tron under double reflection, i.e., aperiod of time after
which the electron is again reflected from the core or
from the external boundary of the metal layer) can be
determined from another vector equality, r* =rqy+vT,,
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wherery=r1 —vty, |rg| = R, and |r* | = R, (we assume
that an el ectron moves from the core to the boundary of
the particle). Squaring both sides of this equality, we
obtain the quadratic equation

22 2 2\ _
A solution to this equation (which will be presented
below)